
o

AEGIS Internals and Data Structures

Apollo Computer Inc.
330 Billerica Road

Chelmsford, MA 01824

Order No. N/A
Revision 00

S'oftware Release D.O

Copyright © 1986 Apollo Computer Inc .

. All rights reserved.

Printed in U.S.A.

First Printing: January 1, 1986

This document was produced using the SCRIBE document preparation system. (SCRffiE is a
registered trademark of Unilogic, Ltd.)

APOLLO and DOMAIN are registered trademarks of Apollo Computer Inc.

AEGIS, DGR, DOMAIN/Bridge, DOMAINjDialogue, DOMAIN/IX, DOMAIN/Laser-26,
DOMAIN/PCI, DOMAIN/SNA, DOMAINjVACCESS, D3M, DPSS, DSEE, GMR, and GPR are
trademarks of Apollo Computer Inc.

Apollo Computer Inc. reserves the right to make changes in specifications and other information
contained in this publication without prior notice, and the reader should in all cases consult
Apollo Computer Inc. to determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF APOLLO COMPUTER INC. HARDWARE

PRODUCTS AND THE LICENSING OF APOLLO COMPUTER INC. SOFTWARE CONSIST SOLELY OF THOSE

SET FORTH IN THE WRITTEN CONTRACTS BETWEEN APOLLO COMPUTER INC. AND ITS CUSTOMERS. NO

REPRESENTATION OR OTHER AFFffiMATION OF FACT CONTAINED IN TInS PUBLICATION, INCLUDING

BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME -PERFORMANCE,

SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A

WARRANTY BY APOLLO COMPUTER INC. FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY BY

APOLLO COMPUTER INC. WHATSOEVER.

IN NO EVENT SHALL APOLLO COMPUTER INC. BE LIABLE FOR ANY INCIDENTAL, INDIRECT. SPECIAL OR

CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARISING

OUT OF OR RELATING TO nus PUBLICATION OR THE INFORMATION CONTAINED IN IT. EVEN IF APOLLO

COMPUTER INC. HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF SUCH

DAMAGES.

THE SOFTWARE PROGRAMS DESCRlBED IN TInS DOCUMENT ARE CONFIDENTIAL INFORMATION AND

PROPRIETARY PRODUCTS OF APOLLO COMPUTER INC. OR ITS LICENSORS.

/---- "

I

I

I

o

Preface

The AEGIS Intemal, and Data Structure, manual describes the algorithms and data structures
that comprise the AEGIS operating system kernel, Software Release 9.0. It includes detailed
descriptions of the following kernel services:

• Memory management

• Local and remote file ~

• Process management

• Network management

• Naming in~rrace

• S~m initialization

This manual intends to describe only the services provided by the AEGIS kernel; subsequent
internals documents will describe the user-mode AEGIS functions.

Audience

This manual is intended Cor new and existing employees of Apollo's Research and Development
group who need a detailed explanation of AEGIS operating system architecture. The manual is
also intended for selected OEM customers with BOurce code licenses who sign or have signed a
non-disclosure agreement with Apollo Computer.

Organization of this Manual

This manual contains 29 chapters that are organized into six sections.

• Section I (Chapters 1 and 2) contains two introductory chapters that describe the
philosophy bebind AEGIS system design and provide an overview of AEGIS system
components, both kernel and user-mode.

• Section n (Chapters 3 through 8) describes the components of the object storage
system, the naming interface, and the object locating service.

• Section m (Chapters 9 through 13) describes the virtual memory management system.

• Section IV (Chapters 14 through 19) describes the process environment. It contains
chapters that describe levelland level 2 processes, eventcounta, fault handling, and
SVC dispatching.

• Section V (Chapters 20 through 24) describes the hardware and software components
of the network interrace.

• Section VI (Chapters 25 through 29) describe the system initialization procedure.

The manual also contains two appendixes.

Hi Preface

Documentation Conventions

Unless otherwise Doted in the text, this manual uses the rollowing conventions:

UPPERCASE Uppercase words or characters in formats and command descriptions represent
commands or keywords that 'you must use literally.

lowercase Lowercase words or characters in rormats and command descriptions represent
values that you must supply.

[]

{ }

Square brackets enclose optional items in rormats and command descriptions.
In sample Pascal statements, 8qU&re beackets usume their Pascal meanings.

Br&ces eD.cloa • Jist rrom which you must choose an item in rormat and
eommaDd cIescrip\ioDl~ In simple Pascal statements, braces assume their Pasc:al
meanings.

A vertical bar separates it.ema in a list of choices.

<> Angle brackets enclose the name or a key on the keyboard.

CTRL/Z The notation . CTRL/ rollowed by the name or a key indicates a control
character sequence. You should hold down the <CTRL> key while typing the
chara.eter .

Horizontal ellipsis points indicate that the preceding item can be repeated one
or more times.

Vertical ellipsis points mean that irrelevant parts or a figure or example have
been omitted.

Suggested Reading Paths

Although this manual discusses aom~ up~tIa of DOMAIN system hardware as they relate to
DOMAIN system sortware, it does not provide a complete description or processor, network, or
display hardware implementations. For such inrormation, rerer to the Apollo publications listed
below:

• The DOMAIN SJletem MULTIBUS Reference document, which describes Apollo
Comput.er's implementation or the Intel MUL TmUS.

• The Engineering Handbook, (lor internal uee onIJl), which gives brier descriptions or
processor, memory, I/O and display hardware implementations and provides diagrams
or control and status regiaters.

• The Programming with DOMAIN Advanced Sptem Galle manual, which documents
a set or unreleased system services, such as the rde utility (FU) and the command line
handler (OL).

• The E%tending Your DOMAIN Stream, manual, which describes the extensible
streams interrace (lOS) .

. ,

Preface Iv

",,- "

o

o

The Writing Device Driver, tDith GPIO CAll, manual, which describes how to use the
general-purpose I/O system services to write device drivers ror customer-supplied
devices.

• The DOMAIN AI,em6ler &/erence manual, which describes the DOMAIN assembler
and gives information about object module rormat.

For information on processor hardware, refer to the following Motorola publications:

• The Motorola MC68020 32-Bit. MicropJ'O(eaor Ueer's Manual. PreDtice-Hall, Inc.
1984.

• The Motorola IS-Bit Microprocessor User's Manual, Third Edition. PreDtiee-Hall, Inc.
1982.

v Preface

Contents

C-~'
Chapter 1 AEGIS System Design 1-1

1.1. The Distributed System Design 1-1
1.2. 1he Integrated System Design 1-1
1.3. Local Area Networking Design 1-3
1 .•. Typed File Design 1-3
1.S. AEGIS as a Peraonal Workstation System 1-4

Chapter 2 AEGIS System Overview 1-1

2.1. Int.eraction of AEGIS Kernel and User Components 2-1
2.2. AEGIS Kernel Services 2-2

2.2.1. File Management 2-2
2.2.1.1. Object Management 2-2
2.2.1.2. Object Naming 2-3

~.2.2. Process Management 2-3
2.2.2.1. Levell Processes 2-3
2.2.2.2. Level 2 Processes 2-4
2.2.2.3. Process ~ynchronization 2-5
2.2.2.4. Process Scheduling 2-6
2.2.2.5. Trap, Interrupt, and Fault Handling 2-6

2.2.3. Layout of Virtual Address Space 2-6
2.2.4. Virtual Memory Management 2-8

2.2.4.1. Mapping 2-8
2.2.4.2. Demand Paging 2-8

(-~) 2.2.5. Network Management 2-9
2.2.6. I/O Management 2-10
2.2.7. Time Management 2-10

2.3. Access Control Mechanisms 2-11
2.3:1. Processor Access Modes 2-11
2.3.2. Access Control Lists 2-11
2.3.3. Object Locking 2-11
2.3.4. Resource Control 2-11

2.4. The User Program Environment 2-12
2.4.1. The Process Manager 2-12
2.4.2. Libraries 2-13

2.5. The User Environment 2-13
2.6. The Display Manager 2-13
2.7. System Initialization 2-14

Chapter a Object Storage System Overview 1-1

3.1. Object Page and Segment 3-1
3.2. Object Attributes 3-2

3.2.1. System Type 3-3
3.2.2. Concurrency Control 3-3

vii Content!

3.2.3. Permanent and Temporary Attributes
3.2 .•. Immutable Attribute
3.2.5. Salvaged Flal
3.2.6. ACL Un>
3.2.7. Object Type UJD
3.2.S. Miscel~aneous Object Attributes
3.2.9. Reference Count
3.2.10. Lock Key At.tribae

3.3. Unique Identifiers
3.3.1. UIDa as Object Locators
3.3.2., Generating UIDs
3.3.3. GU&J'anteeing UlD Uniqueness
S.3.". Canned UIDs

3.4. Local Object Storace Components
3.5. Remote Object Storap: Components

3.S.I.,The NETWORKMaDqer
3.5.2. The Remote rlh Waoapr

3.6. Cached OSS Componen~
3.7. The Object Locatilll Senice
3.S. The Object ManagemeJLt SerTice
3.9. Lock Management

Chapter" Local Object !korage System

4.1. Disk Block Format
4.2. Physical Volume StrudIIft

•. 2.1. Physical Volume Label
4.2.2. Badspot Cylinder
4.2.3. Diagnostics Cylinder

4.3. Logical Volume Structure
•. 3.1. Logical Volume La&el
•. 3.2. Block Alloeatioa to SYSBOOT
4.3.3. Block Availability Table (BAT)
•. 3.4. Volume Table or Omttnts Data Structures

4.3.4.1. VTOC Header
•. 3.4.2. T~ VTOOMap
4.3.4.3. The VTOO Bloek
•. S.4.4. VTOC Envies

4.4. VTOC and BAT Managers
•.•. 1. Locating an Object in the VTOC
4 .•. 2. Creating an Object.
4 .•. 3. Allocating BIocb aD Disk

Chapter 5 ObJeet MaDapmeDt

5.1. MST Manager Object Management.
5.2. FILE Manager Object MaDasement

5.2.1. Object Creation
5.2.2. Object Dele~

Oontent, viii

3-3
3-4
3-4
3-4
3-4
3-4
3-4
3-5
3-5
1-6
3-6
a-e
1-7
1-7
3-7
3-8
3-8
3-S
3-9

3-10
3-10

4-1

4-2
4-4
4-4
4-4
4-6
4-6
4-S
4-S
4-S

4-10
4-10
4-12
4-12
4-14
4-19
4-19
4-20
4-21

5-1

' 5-2
5-2
5-3
5-3

----/'

// ... - ",

\
\

" . .' --

C)

c~

5.3. Reading and Writing Object Attributes
5.4. Locating Objects
5.5. Force-Writes and Force-Purification

Chapter 8 Object Lock Management

6.1. Controlling Concurrent Access
6.1.1. Concurrency Mode

6.1.1.1. No Concurrency Control
8.1.1.2. Protected Concurrency Control
6.1.1.3. Shared Concurrency Control

6.1.2. Aea.as Mode
6.1.2. Lock Comp&tibility
6.1 . .c. The Lock Table
e.l.s. Lock Key
6.1.6. ObtaiDin, & Lock
6.1.7. ChansiDla Lock's Access Mode

6.2. Maintaining Consistent Data
6.2.1. Lock Verification

Chapter '1 Object Location, or the Hint Manager

7.1. Hint File Structure
7.2. Hint File Initialization and Shutdown
7.3. Adding Hints U> a. Hint File

7.3.1. How the Hint Manager Updates a Hint File
7.3.2. Hints from ASKNODE
7.3.3. Hints from the Naming Server
7.3.4. Hints from the File Manager

7 .•. Reading a Hint File
7.4.1. How the Hint Manager Finds Hints
7.4.2. Hint File Reading by the Naming Server
7.4.3. Hint File Reading by the AST and Fll..E Managers

Chapter 8 The Naming Interface

8.1. Pathnames, Directories, and UIDs
8.2. Managers of the Naming Interface

8.2.1. Naming Server
8.2.2. The Directory Manager
8.2.3. The Naming Server Helper and Client Software

8.3. Format of a Directory -
8.3.1. Directory Header
8.3.2. Linear List
8.3.3. Information Block
8.3.4. Hash Thread Table
8.3.5. Directory Entry Blocks
8.3.6. Entry Block Data Format

Ix

8-1

6-1
6-1
8-1
8-2
8a2
8-2
6-3
8-4
6-5
6-6
6-6
6-6
6-7

7-1

7-2
7-2
7-3
7-3
7-4
7-4
7-5
7-5
7-5
7-6
7-6

8-1

8-1
8-2
8-2
8-3
8-3
8-4
8-5
8-6
8-7
8-7
8-8
8-9

Contents

8.4. Directl.>ry Operations
8 .•. 1. Opening Directories
8.4.2. Closing Directories
8.4.3. Adding Entries to Directories
8.4.4. Searching Directories
8.4.~. Managing The Network Root Directory

8.5. Pathn~me Resolution
8.5.1. Interaction of Naming Server and Hint Manager
8.5.2. Resolution Sequence

Chapter I Virtual Addrea Space La70ut

9.1. VlI'tual Address Space on 16-Megabyte Systems
9.1.1. Trap and PROM Pages
9.1.2. User Global Space
9.1.3. User Private Space
9.1.4. Supervisor Private Space
9.1.5. Supervisor Global Space

9.1.5.1. The OS Paging File
9.1.5.2. Whole Cloth Pages
9.1.5.3. Wired RFC Pages

9.1.6. I/O Address Space
9.2. Virtual Address Space on 256-Megabyte Systems
9.3. Virtual Address Space Identification

Chapter 10 Virtual Memory Management

10.1. Object Address Space
10.2. Vlft.ual Address Space
10.3. Physical Addresses
10.4. Mapping Objects to Process Private Virtual Address Space

10.4.1. The Mapped Segment Table
10.4.2. The MST Manager

10.5. Mapping Objects to Global Address Space
10.6. Binding Objects to Physical Address Space

10.6.1. Activating Object Segments
10.6.1.1. The Active Segment Table
10.6.1.2. The Segment Page Map
10.6.1.3. The AST Manager
10.6.1.4. Relationship Between Mapped and Active Segments

10.6.2. Aaaociating Object Pages with Physical Pages
10.6.2.1. Allocating Physical Pages
10.6.2.2. Fetching Object Pages

10.7. Translating From Virtual to Physical Address Space
10.7.1. Reverse-Mapped Data Structures
10.7.2. Forward-Mapped Data Structures
10.7.3. The MMU Manager

Contenta x

8-11
8-11
8-12
8-12
8-13
8-13
8-13
8-14
8-15

8-1

10-1

10-1
10-2
10-3
10-4
10-4
10-4
10-6
10-6
10-6
100S
100S

10-10
10-10
10-11
10-11
10-12
10-12
10-13
10-14
10-14

,,--

I/'--
I,

C-."~·· \

c)

Chapter 11 MemoJ7 Management Data Structures

11.1. Mapped Segment Data Structures
11.1.1. Object to VlI'tual Segment .Association
11.1.2. Pointers to Other Structures
11.1.3. Location Information
11.1.4. Access Modes
11.1.5. File Extension
11.1.6. Guard Bit
11.1.1. Touch-Ahead Count

11.2. Active Segment Data Structures
11.2.1. Aet.ive Sesment Table Header

11.2.1.1. Linked List Pointers
11.2.1.2. AST State Inrormation

11.2.2. Active Segment Table Entries
11.2.2.1. VTOCE Inrormation
11.2.2.2. ASTE Replacement Information
11.2.2.3. Linchpin and Back Thread Links
11.2.2.4. Object Modification Information

11.3. Physical Page Data Structures
11.3.1. Modified Status
11.3.2. Valid Status
11.3.3. Usage Status
11.3.4. Physical Memory Status
11.3.5. Access Rights
11.3.6. Location in Memory and on Disk
11.3.7. Page Replacement Status
11.3.8. Pointers to Other Structures

Chapter 12 Mapping, Activation, and Purifieation

12.1. Summary ofMST Operations
12.1.1. MST Routines Called From User Space
12.1.2. MST Routines Ca.lled from the Kernel

12.1.2.1. Kernel-Level Mapping Modules
12.1.2.2. Touch and Wire Operations
12.1.2.3. Modules used by the PROC2 Manager
12.1.2.4. MST Modules Called During System Initialization
12.1.2.5. Modules Used in Cross-Process Debuggir.f

12.1.3. Modules Called Within the MST manager
12.1.4. Mapping Object Segments
12.1.5. Determining the Address Space
12.1.6. Checking Access Rights
12.1.7. Getting the Information about the Object
12.1.8. Loading the Mapped Segment Data Structures

12.2. Active Segment Operations
12.2.1. ASTE Activation

12.2.1.1. Finding a Free ASTE
12.2.1.2. Loading the ASTE
12.2.1.3. Adding the ASTE to the Linked List

xi

11-1

11-1
11-2
11-2
11-3
11-4
11-4
11-4
11·5
11·5
11·5
11-5
11-7
11·8
11-8

11-11
11-11
11-12
11-13
11-13
11-16
11-16
11-16
11-17
11-17
11-17
11-19

12-1

12-1
12-1
12-2
12-2
12-2
12-3
12-3
12-4
12-4
12-5
12-5
12-5
12-6
12-6
12-6
12-7
12-7
12-7
12-7

Content~

12.22. ASTE Deactivation
12.2.3. ASTE Replacement
12.2 .•. Updating the VTOC

12.3. Page Purification
12.3.1. Demand-Based Purification
12.3.2. Time-based Purification
12.3.3. Local Page Purification
12.3.4. Remote Page Purification

12.3 .•. 1. Building ihe Page-Out Request
12.1.4.2. Handlin! the Page-Out Request
12.3.4.3. Page-Out Post-Procelling

12.3.5. Page Allocation lor Remote Operations

Chapter 11 Pale Fault Re.olutlon

13.1. Handling a Typical Page Fault
13.1.1. MST Page Fault Handling
13.1.2. AST Page Fault Handling

13.1.2.1. ~ LoeJcin& During P8.le Fault Handling
13.1.2.2. Locating and Activating the Segment

13.1.3. PMAP Page Fault Handling
13.1.3.1. Page Locking
13.1.3.2. Determining the Type of Page Fault
13.1.3.3. Fetching Pages Crom Disk

13.2. Completing the Typical Page Fault
13.3. Handling Growth Faults
13.4. Handling Null Pages
13.5. Handling Resident Page Faults
13.6. Handling Sharing Faults
13.7. Remote Page Fault Handling

13.7.1. Allocating Network Buffer Pages
13.7.2. NETWORK Client Side Paging Opera.tions
13.7.3. NETWORK Server Side Paging Operations

13.7.3.1. Processing the Pag~ln Request
13.7.3.2. Concurrency Control Checking
13.7.3.3. Fetching Pages for a Remote Request

13.7.4. Remote Page Fault Completion
13.7.5. Network Errors During Remote Page Faults
13.7.6. Creating Additional Paging Servers

Chapter 14 Process Man.Bement Overview

Chapter 1& Level 1 Proeeu Manalement

15.1. Processor State
15.1.1. Process Stack Pointers
15.1.2. Address Space ID
IS.1.S. Process Virtual Time Clock

Content8 xli

12-8
12-8
12-9
12-9

12-10
12-10
12-11
12-11
12-11
12-11
12-12
12-12

la-I

13-1
13-3
13-3
13-3
13-3
13-4
13-5
13-5
13-6
13-6
13-7
13-8
13-8
13-9
13-9

13-11
13-11
13-11
13-11
13-11
13-12
13-12
13-13
13-13

14-1

16-1

15-1
15-1
15-1
15-2

()

-.--- -_._-_._----------

15.2. Scheduling State
15.2.1. Process Priority
15.2.2. Resource Locks
15.2.3. Process State
15.2.4. Time Slice

15.3. Special Levell Processes
15.4. Levell Process Data Structures

15.4.1. Process Control Block
15.4.2. Ready List
15.4.S. Process Type ID

15.5. PROCI Manager Operations
15.5.1. Process Creation and Deletion

15.5.1.1. Binding and Unbinding
15.5.1.2. Stack Allocation
15.5.1.3. Creating Special Levell Processes

15.5.2. Resource Lock Handling
15.5.S. Process Suspension

15.6. Implementation of PROCI Operations
15.6.1. Dispa.tching

15.6.1.1. The Dispatching Algorithm
15.6.1.2. Dispatching and the Null Process

15.6.2. Interrupt Handling
15.6.2.1. Interrupt Eventcount Advance
15.6.2.2. Interrupt Exit

15.6.3. Process Scheduling
15.6.3.1. Priority and Time Slice End
15.6.3.2. Priority and Eventcount Waits
15.6.3.3. Priority and Resource Locks
15.6.3.4. Maintaining the Ready List

Chapter 18 Level 2 Process Management

16.1. Level 2 Process Context
16.1.1. The Stack Object

16.1.1.1. The Process Creation Record
16.1.1.2. Read/Write Storage
16.1.1.3. The Procedure Call Stack

16.1.2. Orphon St.Atus
16.1.3. Server Status
16.1.4. Process ID Information
16.1.5. Process Group Inrormation

16.2. PROC2 Operations
16.2.1. Process Creation
16.2.2. Process Forking
16.2.S. Process Deletion

16.2.3.1. Releasing Per-Process Resources
16.2.3.2. Notirying the Parent Process
16.2.3.3. Freeing the Stack Object

16.2.4. Stack Object Allocation
16.2.5. Maintaining Level 2 Context
16.2.6. Maintaining Process Names

xiii

15-2
15-2
15-3

'15-4
15-5
15-5
15-6
15-6
15-6
15-7
15-8
15-8
16-8
15-8
15-9
15-9
15-9

15-10
15-10
15-11
15-11
15-12
15-13
15-13
15-13
15-14
15-14
15-14
15-15

1&-1

16-1
16-3
16-3
16-3
16-3
16-3
16-4
16-4
16-4
16-5
16-5
16-5
16-7
16-7
16-7
16-8
16-8
16-9
16-9

Oontents

16.2.7. Suspend/Resume Operations

Chapter 17 Eventeounts and Mutual Exelualon

17.1. Levell EventeounUs
17.1.1. Waiting on a Levell Eventeount
17.1.2. Advancing a Levell Eventeount

17.2. Level 2 Eventcounta
17.2.1. Creating a Level 2 Eventcount
17.2.2. Waiting on Eventcounta
17.2.3. Advancing an Eventcount

17.3. Mutual' Exclusion on Resource Locks

Chapter 18 Pault Bandllngln the AEGIS Kernel

18.1. Processor Fault Handling
18.2. AEGIS Fault Ha.ndling

18.2.1. Determining Where the Fault Occurred
18.2.1.1. Handling Supervisor-Mode Faults
18.2.1.2. Handling User-Mode Faults

18.2.2. Handling Privileged Instruction Violations
18.2.3. Handling MMU-Related Errors
18.2.4. Common Fault Handling

18.2.4.1. Checking lor GPIO Faults
18.2.4.2. Checking for Fault on Fault
18.2.4.3. Locating the User Fault Handler
18.2.4.4. Validating the User Stack Pointer
18.2.4.5. Building the Diagnostic Fault Frame
18.2.4.6. Renecting the Fault to User Mode

18.3. Handling SVC Faults
18.4. Asynchronous Fault Handling

18.4.1. Posting an Asynchronous Fault
18.4.2. Structures for Asynchronous Fault Handling

18.4.2.1. Trace Bit Flag
18.4.2.2. Trace Status
18.4.2.3. Quit Inhibit Flag
18.4.2.4. Quit Eventeount
18.4.2.5. Fault Delivery Eventcount

18.4.3. Asynchronous Fault Delivery
18.4.3.1. Delivering the Asynchronous Fault
18.4.3.2. Processing the Asynchronous Fault
18.4.3.3. Taking a Trace Fault Trap

18.4.4. Using Quit Eventcounts

Oontent, xlv

18-9

17-1

17-1
17-2
17-3
17-3
17-3
17-5
17-5
17-7

18-1

18-1
18-1
18-2
18-2
18-2
18-3
18-3
18-3
18-4
18-5
18-5
18-5
18-5
18-7
18-8
18-8
18-8
18-9
18-9

18-10
18-10
18-10
18-10
18-10
18-10
18-11
18-12
18-13

" /

C)

o

o

Chapter 18 SVC Dlspatchln,

19.1. Changing Mode to Supervisor
19.2. User and Supervisor Modes and ASID

Chapter 20 Network Overview

20.1. The Physical NetwOl'k
20.2. Low-level IPC Software

20.2.1. Packets
20.2.2. Sockets
20.2.3. The Network Buffer Pool

20.3. AEGIS Network Support Software
20.3.1. Request-Response ~rotoeol
20.3.2. Clients or Sockets .

Chapter 21 Ring Hardware

21.1. Ring States
21.1.1. Message Transmission
21.1.2. Lost Tokens and Multiple Tokens
21.1.3. Transmission Time
21.1.4. Retransmission on Error
21.1.5. Biphase and Elastic Store Buffer Errors

Chapter 22 Low-Level IPC Data StructureS

22.1. Packet Structure
22.1.1. Ring Hardware Header

22.1.1.1. Packet Type
22.1.1.2. The Early Acknowledge (EACK) Byte

22.1.2. Software Control Header
22.1.3. The Internl!t Datagram Protocol Header

22.1.3.1. Transport Control
22.1.3.2. Source and Destination Names

22.1.4. Packet Exchange Protocol
22.1.5. IPC Header
22.1.6. Client Header Inrormation

22.2. The Acknowledge (ACK) Byte
22.S. Sockets

22.3.1. Socket Structure
22.4. The Network Burrer Pool

22.4.1. Allocating Pages to the Pool
22.4.2. Removing Pages (rom the Pool

xv

18-1

19-1
19-3

SO-I

to-l
10-2
.10-2
~
20-5
20-6
20-6
20-7

21-1

21-1
21-2
21-3
21-3
21-3
21-4

22-1

22-1
22-1
22-3
22-4
22-5
22-6
22-6
22·7
22-7
22-8
22-8
22-8
22-9
22-9

22-10
22-10
22-11

Oontente

Chapter 23 AEGIS Network Support Software

23.1. The NETWORK Manager
23.1.1. System lnitialilation Functions
23.1.2. Packet Type Export
23.1.3. Paging Services
23.1.4. The Remote Paging Server

23.1.4.1. Paging Request Handling
23.1.4.2. File Socket Overnow
23.1.4.3. Flushing the NETLOG Burrer
23.1.4.4. Sticky Biphaae Errors

23.1.5. The Remote Request Server
23.2. The Remote File Manager

23.2.1. REMFILE's Client Side
23.2.2. Remote File Server Operation

23.3. The Message Interlace
23.4. The ASKNODE Service

Chapter 24 The Internet Subsystem

24.1. Identification in an Internet
24.1.1. Network Number
24.1.2. Internet Address
24.1.3. Network Ports

24.2. Internet Sortware Components
24.2.1. The Routing Table
24.2.2. The RIP Handler
24.2.3. The Routing Process
24.2.4. Device-Independent Network I/O
24.2.5. Network Device Drivers

24.3. Sending a Packet on the Internet
24.3.1. Determining the Routing Node
24.3.2. Sending a Packet through a Network Port
24.3.3. Handling Incoming Packets on A Routing Node
24.3.4. Forwarding The Packet
24.3.5. Maintaining Current Routing Inrormation

24.4. Internet Support ror User Network Devices

Chapter 25 introduction to Sy.tem initialisation

Chapter 28 The Bootstrap PROM-

26.1. PROM Overview
26.1.1. RAM Memory Use
26.1.2. Physical and Mapped Modes
26.1.3. PROM Functions

26.2. PROM Structure
26.2.1. Initial Trap Page

Content, xvi

28-1

23-1
23-1
23-2
23-2
23-3
23-3
23-3
23-t
t3-4
23-t
23-t
23-5
23-6
23-7
23-8

24-1

24-1
24-3
24-3
24-4
24-4
24-5
24-5
24-5
24-6
24-6
24-6
24-7
24-7
24-7
24-7
24-8
24-9

25-1

28-1

28-1
28-1
28-1
28-2
26-3
26-3

.,.... ..-'

o

------------------ ----------------

26.2.2. Machine ID
26.2.3. Auxiliary Inrormation
26.2.4. Externally-Callable PROM Routines

26.3. PROM Initialization Procedure
26.3.1. Normal-Mode Initialization

26.3.1.1. Diagnostic Testing
26.3.1.2. Loading DNX60 Microcode
26.3.1.3. Determining the Bootstrap Program
26.3.1.4. Checking the Execution Flag

26.3.2. Service Mode Initialisation

Chapter 27 SYSBOOT, NETBOOT, and CTBOOT

27.1. The System Bootstrap Program (SYSBOOT)
27.2. The Diskless Node Bootstrap Program (NETBOOT)

27.2.1. NETBOOT Functions
27.2.2. Partner Node Support or Diskless Nodes
27.2.3. Get UIDs Service

27.3. The Cartridge Tape Bootstrap Program (CTBOOT)

Chapter 28 AEGIS lnitiaJi.ation

28.1. The Cold Start Routine
28.2. The OS $INIT Routine

Chapter 29 Uaer Mode Initialization

29.1. The Bootahell
29.1.1. Bootahelllnitialization Operations
29.1.2. Bootshell Commands

29.2. The User Environment Initialization Program (ENV)

Appendix A Boot LED Codes

Appendix B Address Space

Appendix C Canned UIDa

xvii

26-3
26-3
26-3
26-4
26-4
26-5
26-5
26-6
26-6
26-6

27-1

27-2
27-3
27-3
27-4
27-5
27-6

28-1

28-1
28-2

29-1

29-1
29-2
29-2
29-3

A-I

B-1

0-1

Oontent~

Glo .. &!,)" G1oaaarr1

",-, .

Index Index-1

' '

Oontent, xviii

-------------------- ~----------.----------.-

Dlustrations

C) Fisure 1-1. Styles or Local/Remote Implementations 1-2
Figure 2-1. Process Levels 2-5
Fisure 2-2. Layout or Virtual Address Space 2-7
Fisure 1-1. Object Storage System 3-2
Pipre 1-2. .Anatomy of a UID 8.5
Fisur,e 4-1. Disk Management Hierarchy +1
Fisure 4-2. Disk Block Header Format 4-3
Figure 4-8. Physical Volume Structure and PV Label 4-5
F1sure 4-4. Logical Volume Label Format 4-7
Fisure 4-5. Relationship of BAT header and BAT 4-9
Figure 4-8. VTOC Header +11
Figure 4-'7. VTOC Map and VTOO Blocks 4-13
Figure 4-8. VTOCEntry 4-15
Figure 4-V. Level 1 File Map 4-16
Figure 4-10. Level 2 File Map 4-17
Figure 4-11. Level 3 File Map 4-18
Figure 4-12. VTOC Index 4-20
Figure 4-13. VTOC Index for Disk Entry Directory 4-20
Figure 5-1. Object Management Components 5-1
Fisure '7-1. Relationship of Hint Manager to Other System Components 7-1
Figure 7-2. Hin t File Structure 7-2

C) Figure 8-1. Object Naming in the AEGIS System 8-1
Figure 8-2. Naming Interface Managers 8-4
Figure 8-3. Directory Structure 8-5
Figure 8-4. Information Block 8-7
Fisure 8-5. Threading to Directory Entry Blocks 8-8
Figure 8-8. Directory Entry Block Format 8-9
Figure 8-7. Directory Entry Format 8-10
Figure 8-8. Current Resolution Sequence 8-14
Figure g-l. Virtuai Address Space (16MB Systems) 9-2
Figure g-2. Virtual Address Space (256:MB Systems) 9-6
Fisure g-3. Per-Process Address Space 9-7
Figure 10-1. Object Address Space 10-2
Flaure 10-2. Relationship Between Object Addresses and Virtual Addresses 10-2
Figure 10-3. 256-Megabyte Virtual Address 10-3
Figure 10-4. Physical AddreSs Format 10-3
Figure 10-5. Virtual Segment to Object Segment Mapping via the MSTE 10-5
Figure 10-8. Global and Per-Process MSTs 10-7
Fisure 10-7. MST, AST, and PMAP Data Structures 10-9
Figure 10-8. Forward-Mapped Data Structures 10-15
Figure 11-1. Reverse-Mapped MST 11-2
Figure 11-2. Forward-Mapped MST 11-3

C~ xix Illustrations

Figure II-S. Active Segment Table Format 11·6
Figure 11-4. Active Segment Table Entry (Reverse-Mapped) 11-9
Figure 11-5. Active Segment Table Entry (Forward-Mapped) 11·10 ,,~-~

Figure 11-8. Physical Page Data Structures (Reverse-Mapped) 11~14

Figure 11-'1. Physical Page Data Structures (Forward-Mapped) 11-15
Figure 13-1. Page Fault Handling 13-2
Figure 18-2. Remote Page-In Request 13-10
Figure 14-1. Relationship between Process Levels 14-2
Figure 16-1. Process Control Block 15-7
Figure 18-1 •. Level 2 Process Context Table 16-2
Figure 11-2. Mappmg Between A Forked Process and Its Parent 16-6
Figure 1'1-1. Level One Eventcount 17·1
Figure 1'1-2. . Processes Waiting on Levell Eventcounts 17-2
Figure 1 '1-S. Level Two Eventcount 17·3
Figure 1'1-4. Registering a Levell Eventcount 17-4
Figure 1'1-6. EC2 Wait and Advance Operations 17-6
Figure 18-1. Stack at Entry to The Common Fault Handler 18-4
Fi"gure 18-2. Diagnostic Frame 18-6
Figure 20-1. AEGIS Network Components 20-1
Figure 20-2. Packet Protocol 20-3
Figure 20-3. Client/Server Operation 20-7
Figure 21-1. Ring Network Hardware 21-1
Figure 21-2. Message Transmission on the Ring 21-2
Figure 22-1. Ring Hardware Header 22-2
Figure 22-2. EACK and ACK Byte Fields 22-4 / "-

Figure 22-3. Packet Software Control Header 22-5
Figure 22-4. Internet Datagram Protocol Header 22-6
Figure 22-5. PEP and IPC Headers 22-7
Figure 22-8. Socket and Socket Queue Entry Structure 22-10
Figure 23-1. REMFILE Operation 23-5
Figure 23-2. Request..Reaponse Protocol Using MSG 23-7
Figure 24-1. An Internet 24-2
Figure 24-2. Internet Address Format 24-3
Figure 28-1. PROM Startup Activities in Normal and Service Modes 26-4
Figure B-1. Physical Memory Layout B-2
Figure B-2. Physical Memory Layout, Continued B-3
Figure B-8. Object Locations 8-4
Figure B-4. VlI'tual Memory Allocation for 16MB Systems 8-5
Figure B-6. VlI'tual Memory Allocation for M68020 Systems 8-6
Figure 8-8. VlI'tual Memory Allocation for 256MB Systems B-7
Figure 0-1. Canned UIDa 0-2
Figure 0-2. Canned UIDs, Continued 0-3

Illu,trationa xx

Tables

C
Table &-1. Lock Compatibility 6-3

: Table 8-1. Contents or Directory Header 8-6
/

. ./
Table 16-1. Resource Locks 15-4

Table 15-2. AEGIS Process Types 15-7

Table 22-1. AEGIS Socket Allocation 22-9

Table 21-1. BOOT _ISERV Serriees 27-5

Table 28-1. Manqens Initialized by OS _ tINIT 28-3

Table 28-1. Bootahell Command Summary 29-4

o xxi Tables

/-

c)

o

Chapter 1
AEGIS System Design

It may be that the whims of chance are really the importunities of design.
But if there is a Design. it aims to look natural and fortuitous;
that is hoy it gets us 1nto its web.

Mary McCarthy. On the Contrary

The DOMAIN system is an integrated local area network of personal workstations and server
computers designed to meet the computing environment needs of technical professionals. The
DOMAIN system intends to provide these technical professionals with a substrate upon which to
execute complex scientific and engineering applications by providing:

• The ability to run large, mainframe class application programs tailored to their tasks

• A high user-to-computer bandwidth, where the processor resides close to the display

• A network for cooperation and sharing with others

In order to best achieve these goals, DOMAIN system architecture is based upon AEGIS, an
integrated, distributed, objec~oriented, local area network operating system that runs on a
personal workstation. This chapter discusses the design principles that influence AEGIS
operating system architecture.

1.1. The Distributed System Design

Some operating systems are designed first with local facilities in mind, and are then made
distributed by adding a network layer. In constrast, AEGIS was designed from its inception to
provide the facilities that make it a distributed system; conseqently, remote and local operations
are tied together in the same module rather than being layered on top of each other. Figure 1-1
illustrates the two styles of distributed system.

A distributed system has certain significant advantages over a centralized system. A distribut.ed
system can expand in increments as more workstations are added to the network. This feature
produces a high degree of aggregate computing power. In 8 f 'iition, a distributed system has the
potential for robustness; a single workstation can fail without hampering the performance of
other workstations on the network. However, distributed systems often experience partial failure,
whereas centralized systems are either running or completely down. For this reason, much of
AEGIS code is devoted to signaling, handling, and recovering from errors.

1.2. The Integrated System Design

An important property of networks and distributed systems is that distinct components are often
under different administrative control. As a result, cooperation, protection, and reliability
become more complicated.

1-1 AEG IS System Design

4 ~ Application 4 ~ Applloatlon

"
Remot. MIIX

Remot. OS Local MaX

Remot. Nam.

Local Nam.
. Remote Pli •

Local fli.
Local 08

Remot. Paging

" Local Paging

Dlek Net

LAVERED IMPLEMENTATION AEGIS IMPLEMENTATION

Figure 1-1. Styles of Loeal/Remote Implementationa

There are several types of distributed systems in the industry that provide varying degrees of
autonomy and cooperation. Two such examples are:

• The ARPA Internet (ARPAnet) model, a communications facility between
autonomous hosts that are separately owned and administered .

• The V AXcluster model, a distributed multi-computer that appears to the user as a
single machine.

The ARPAnet provides a high degree oC autonomy, as each host has complete control oC its users,
and limits cooperation to electronic mail and some file transCer. In contrast, the V AXcluster
provides a high degree of cooperation and sharing· but perpetuates the problems oC timesharing
systems, such as protection and machine usage allocation.

The Apollo DOMAIN distributed system is integrated in that it balances cooperation and
autonomy. It is designed to provide the inCormation sharing oC a V AXcluster and the autonomy
of the ARPAnet network. To achieve this integrated state, the network architecture must permit
users to cooperate if they choose, while simultaneously allowing them to declare autonomy. To
allow cooperation, AEGIS system architectures makes access to files transparent and provides a
network-wide registry that identifies all users without regard to the machine they use. To
provide autonomy, AEGIS maintains a complete set of operating system facilities on each
workstation that permits it to run independently of the network. Finally, the system supports
access control mechanisms that allow users to decide with whom they wish to cooperate and from
whom they desire autonomy.

AEGIS Sf/,tem De,i". 1-2

o

c

1.3. Local Area Networking Design

Local area networks orfer high bandwidths and low error rates. Consequently, an operating
system on a local area network should minimilethe processor time required to get messages on
and off the network and use simple retransmission techniques instead or high-overhead hand
shaking protocols and error correction techniques.

To achieve these goals, the AEGIS network architecture is built upon an inexpensive datagram
service, with problem-oriented protocols layered on top or the datagram service. The base-level
system,. called the kernel, has no separate virtual circuit, session, or presentation layers like those
specified in other network architectures. Instead, each AEGIS system service defines its own
-lightweight- protocol tailored to its own special needs; the protocol can take advantage or the
service's special characteristics so that it is efficient and last, and can use simple retransmission
techniques lor error recovery.

For example, some operations can be repeated back-to-back with identical results, such as a
repeated read request. Since duplicate requests or this type pose no problem to network
operation, AEGIS network architecture does not contain a mechanism to suppress them, as it
would if it subscribed to the network layering model.

1.4. Typed File Design

In all systems, a file system object is a named collection of bits. Generally, the program that
writes the collection of bits - the file - has a purpose for the file and a model ror the file data's
interpretation. For example, text editing programs produce text files; compilers produce object
files; file system directories represent another use of files in a file system.

What differs from system to system is not the use of the file system object, but the method used
to interpret the bits within any given file. In many systems, the naming convention dictates the
interpretation: directories are named name.Dffi, FORTRAN source code is named source.FOR
and object files are named name.OBJ. Rather than depending on naming conventions, AEGIS
file system objects are typed; that is, they are stamped with a file type identifier that declares
the writer's intention for the file. It is the type identifier, Dot the object's name, that determines
how the file is to be used.

File typing has two advantages. First, it separates the file's type from the human naming
convention. More importantly, file typing is e:rten~ible: new file types can be added to the system
at any point in its lifetime, and Apollo engineers need not be the only ones to add them.

For example, a eource hi8tory file type has recently been added to the AEGIS system. A source
history file stores compressed source text and the source's complete revision history. When one of
the compilers reads the file, its type identifier indicates that it is a source history file; the
standard I/O package interprets the file's contents (by expanding and hiding the revision history)
so that the compiler recognizes it as a regular text file. The source control facility, however,
manipulates the same source history file directly, so that the file's raw contents are available to
the facility.

1-3 AEGIS System De8ign

1.5. AEGIS as a Personal Workstation System

Because AEGIS is meant to run on a personal workstation, its design differs from the time
sharing system design. Since all computation on a node is carried out on behalf of a single
person, the system requires no protection Crom intentional interference, but rather protects
against accidents. Consequently, much of AEGIS software exists in user space, where it is easier
to modify and debug. Resource allocation and accounting mechanisms are also simpler in the
workstation environment.

AEGI$ System Design

" "-(

/~
!
I

c)

o

o

Chapter 2
AEGIS System Overview

This chapter introduces AEGIS system components. They consist of:

• The protected operating system sortware, called the AEGIS nucleus or kernel

• The user program environment, which is composed or:

• The process manager (PM), which handles local program invocation and
execution

• The software libraries, which provide the environment in which the programs
run

• The server process manager (SPM), which handles remote program invocation
and execution

• Network programs, such as NETMAIN and NETMAN

• The serial I/O login facility

• The alarm server

• The user environment - the collection of programs (referred to as commands) that
make up the DOMAIN command line interpreter, called the shell.

• The display manager (OM) - the software process that manages the screen
environment of a node's display terminal.

2.1. Interaction of AEGIS Kernel and User Components

The M68OxO processor architecture supports two modes in which software programs can run:
unprivileged user mode and privileged supervisor mode. The AEGIS system . is divided into
services that operate in user mode and services that run in supervisor mode. The operating
system services that the AEGIS kernel provides run in supervisor mode. The process manager,
software libraries, display manager, and the rest of the user \..lvironment run in user mode.

User-mode programs, whether they are AEGIS user-mode system services or user-written
application programs, gain access to AEGIS kernel services through the SVC catcher. This
procedure takes the user program's call and arguments, changes from user mode to supervisor
mode, and then dispatches the call to the appropriate AEGIS kernel service. When the target
kernel service completes its operation, it passes control back to the user program. The AEGIS
kernel modules that user-mode programs can run are collectively known as the supervisor.

2-1 AEGIS System Overview

2.2. AEGIS Kernel Services

The AEGIS system is designed as a structured set of subsystems called managen. Each
manager is composed of one or more modules that define the manager's set or operations and its
private database. Many of the modules within a particular manager are available to other
managers in the system. Consequently, each manager can use its own internal database plus
modules in other managers to build a complete set or system services. And, because the system is
composed of small, independent modules, a change to a module does not require a change to the
entire operating system.

The services provided by the managers or the AEGIS kernel can be separated into the rollowing
categories:

• File management

• Process management

• Virtual memory management

• Network management

• I/O management

• Time management

• Access control

• System initialization and shutdown

The next sections introduce the methods that the AEGIS system uses to carry out each of these
functions.

2.2.1. File Management

AEGIS file management at the kernel level is, for the most part, object management. At this
level, files are abstracted, just as are all other system resources, into objects. In general, file
system objects are simply storage containers for bits. The AEGIS managers that handle objects
at this level make no attempt to interpret the bits within the object as representations of an
object type. It is the system's higher-level managers that interpret the bits.

The AEGIS file system carries out two runctions - object management and object DamiDg.

2.2.1.1. Object Management

The AEGIS components that carry out object management are collectively known as the object
storage system (OSS). The object storage system manages the storage of objects on disk and
provides the ability to read and write l024-byte portions, or pages, of an object rrom local or
remote disk to main memory. At any given time, the permanent storage ror an object resides
entirely at only one node, called the home Dode. The object storage system returns the results
of any remote modifications to an object back to the home node for permanent storage. In
addition, the system does not arbitrarily shift an object's home node from one node to another.

AEGIS System Overview 2-2

The interpretation or the bits within an object is lert to the object's type manager. Most or the
object type managers exist at the user-space level; an example or a user-space type manager is the
stream interrace. There are, however, two kernel-space managers that interpret the bits or file
system objects: the naming server, which recognizes directory objects, and the ACL manager,
which interprets access control list objects.

2.2.1.2. Object Naming

Objects are identified by 64-bit unique identifier strings, or UIDs. When an object is created, the
system manuractures it a UID by concatenating the unique node ID of the node generating the
object with a time stamp Crom the node's timer. (The DOMAIN network does not use a global
clock; instead, each node keeps its own time.) The UID is the mechanism the system uses to
locate the object; that is, it is the system's internal name Cor the object.

The naming server is the AEGIS manager that allows users and programs to rerer to objects in
the network using text string names instead or UIDs. The naming server on each node manages a
collection or directories organized as a network-wide, multilevel tree. The directories contain the
associations between text string names and the UIDs of objects local to that node. (By

- convention, an object is located on the same node as the directory in which it is catalogued.) A
user rerers to an object by its text string name, or pathnamej the naming server's function is to
translate this text string name to the object's UID using the directory data structures. Chapter 8
describes naming server function and structure in detail.

2.2.2. Process Management

Process management concerns the allocation or processor resources. The AEGIS kernel manages
processor resources by multiplexing the processor into many virtual processors, or processes. A
process is an independent, asynchronously executing entity.

The AEGIS kernel supports two levels or processes:

• Levell processes, also called supervisor, kernel, or PROCI processes

• Level 2 processes, also called user or PROC2 processes

2.2.2.1. Levell Processes

Levell processes are processes that only run the protected operating system software and thus
run e%clu~ivel!l in supervisor mode. Level 1 processes are completely internal to the AEGIS
kernel: their context - processor state and stack - exists in a protected portion or virtual
memory. In addition, level 1 process context is permanently wired; that is, the process's context
is permanently resident in physical memory and can never be paged out by the virtual memory
management subsystem. Note, however, that although a level 1 process's context is wired, it can
still run pageable AEGIS kernel procedures.

There are 32 level 1 processes; the system names them with small integers (1-32) called process
IDs, or PIDs. Process IDs are not unique; when the system deletes a level 1 process, it reissues its
PID to the next new level 1 process it creates. (A level 1 process is deleted when the level 2
process on top or it is deleted.) Because PIDs, unlike UIDs, are not unique identifiers, the system
can only rerer to level 1 processes on a single machine, rather than on a network-wide basis.

2-3 AEGIS System Overview

2.2.2.2. Level 2 Proceuea

At system initialization, eight level 1 prOcesses are rese"ed to the AEGIS kernel. The remaining
24 processes can be used as additional level 1 processes, or they can be augmented, or bound to
level 2 processes (also called user or PROC2 processes).

Level 2 processes are level 1 processes with additional, user-mode context: their own process
virtual address space. For the most part, level 2 proc.sees run user-mode sortware. To run the
supervisor-mode AEGIS kernel services, level 2 processes enter supervisor mode via the SVC
catcher.

The user-mode context or a level 2 process is pageable: the virtual memory management
subsystem can move pages of the process's virtual memory in and out of physical memory (unless
the process specifically wires its. pages.) However, while the level 2 process context is pageable,
the level 1 process context underneath it is not. The level 2 process's pageable user-mode context
provides the environment ror its user-mode activity. The level 1 process context that is bound to
every level 2 process supports the level 2 process's SUpe"i80r-mode activity.

The system gives a unique name to a level 2 process by assigning it a UID. Consequently, a level
2 process on one machine can explicitly rerer to a level 2 process on another machine. Both the
supe"isor-mode level 2 process (PROC2) manager and the user-mode process manager (PM)
handle level 2 process operations. The PROC2 manager handles the binding of level 2 process
context to level 1 processes, while the process manager handles user-mode process operations such
as program invocation, fault handling, and resource cleanup. Figure 2-1 illustrates the
relationship between levelland level 2 processes.

AEGIS SY8tem Overview 2-4

C
-'~

)

o

(DM PROCESS)

;j~In~;u~n~~n:
:~~~:~~n~~~~~;~~:

.

.................
;u.~t<::

Proc.ii:

;~~':I·I

•• PID 1 2·

1
Reserved

For
Display

Manager

24 USER oca.!.
UID --~

AIID

••• • ••

I 8 10

• KERNEL PROCESSES

Figure 2-1. Proeeu Levels

2.2.2.8. Process S)"Dchronilation

. : ; ~ : ;: .; ..

:.":::::1:1.111111: .. ,

32

In the AEGIS system, process synchronization is based on eventcounts. An eventeount is an
object that keeps a count of the number of events within a particular class that have occurred so
(ar in the execution o(the system. A process signals the occurrence of an event by advancing the
eventcount associated with it. Each time the eventcount is advanced, the counter value is
incremented. Consequently, waiting processes can synchronize their operations around an
eventcount by:

• Waiting on the very next event by waiting (or the eventcount to be advanced to a new
value

• Waiting on a future event by reading the eventcount's current value, then waiting for
it to reach the future trigger v&lue (the current value plus the nth etJent value)

h with processes, there are two levels of eventcounta: level 1 (EOI) and level 2 (EC2). Levell
processes use level I eventcounts to synchronize operations in the kernel, while level 2 processes
use level 2 eventcounts to synchronize operations with other level 2 processes.

Because the AEGIS eventcount operates as a shared object, only processes running on the same
machine can use it. See the section on memory management (or an explanation of shared objects.

AEGIS SY3tem Overview

2.2.2.4. Process Sehedullq

The AEGIS system schedules processes ror execution based on their priority, running the highest
priority process fim. The system calculates process priority inversely against the amount of CPU
time the process requires. Consequently, a process that requires a large amount or CPU time is
assigned a low priority. Process scheduling is dynamic. The system's scheduling procedure,
called the scheduler, periodically checks a process's CPU needs; as its CPU need changes, 80 does
its priority. The scheduler then performs a proeeaa exchanae (also known as a context
switch or dispatch): it switches rrom the lower priority process to the higher. Dynamic
scheduling intends to give interactive processes priority, on the theory that an interactive process
is usually waiting ror the user to type.

2.2.2.5. Trap, Interrupt, and Fault HandlinB

The AEGIS system distinguishes between traps, interrupts, and faults. A trap is an instruction,
like any other M680x0 processor instruction. Traps include SVC traps and traps to the PROM.
For example, typing CTRLjRETURN executes a trap instruction to the SF trap. A trap
generates a hardware exception that changes the normal now of program execution. When an
exception occurs, the processor hardware indexes to the appropriate trap vector address in the
trap page and uses this address as the next instruction to execute. The trap page contains the
entry points to routines that the processor hardware uses to handle exceptions and interrupts.
Once the trap is handled, code execution resumes. at the next user code instruction. Hardware
exceptions include bus errors, zero divide, and privilege violations.

An interrupt is a hardware-generated event that takes the processor away from the currently
running process. Interrupts vector through interrupt entry points in the trap page directly to
driver interrupt service routines (ISRs). Interrupts mayor may not restart or wait for
completion. Although an interrupt changes the now of execution, it is generated by system
activity that occurs independently of instruction execution, while an exception always occurs as
the result of instruction execution. Chapter 15 describes interrupt handling in more detail.

In addition to hardware exception vectors and interrupt vectors, the trap page contains five
vectors that the AEGIS system uses to handle sve traps, which are traps from user to
supervisor mode. The trap handlers to which these vectors point field user-mode calls to AEGIS
supervisor-mode services; these handlers are collectively called the sve catcher. Chapter 19
describes these trap handlers in detail.

Faults are generated by either the hardware or software. The fault interceptor manager (FIM)
handles hardware-generated faults; user code fault handlers deal with software-generated faults.
Hardware-generated faults restart the instruction that caused the fault; resumption of execution
after a software fault depends on how the user rault handler is designed. Chapter 18 describes
the fault handling carried out by the AEGIS kernel. See the manual Programming with General
System Oall, for more information on user rault handlers.

2.2.3. Layout of Virtual Address Space

The AEGIS system allocates virtual memory into private and shared areas called per-process and
global address spaces. In addition, it separates both per-process and global spaces into protected
and unprotected areas. Figure 2-2 illustrates this allocation of virtual address space.

AEGIS System Overview 2-8

o

UHr Mod.

Sup.rvlaor Mode

16 or
256 MB ...------------'

Figure 2-2. Layout or Virtual Addresa Space

Per-process address space is the virtual address space that the system gives to each level 2 process
it creates. The unprotected portion of per-process address space is called uaer private address
space and contains the process's private programs and data.

Superviaor private address space is the protected portion of per-process address space IS the
process can only access supervisor private address space while it is running in supervisor mode.
Consequently, user-mode processes must call the supervisor via the SVC catcher to let the
inrormation mapped in supervisor private space on their behalr. For example, the system maps a
process's. working and naming directories in into its supervisor private space. When the user
mode process wants to access its working directory, it makes an SVC call to the naming server to
fetch the directory from its superviao~ private address space.

Because the contents or per-process address space varies with each process, dirrerent processes
view different objects at the same virtual address. In contrast, Ilobal address space is ahared
among all processes in the system, 10 that each process views the aame object at the aame virtual
address. Global address space is also separated into protected and unprotected regions. UNr
slobal address space (also known as alobal A) is unprotected shared virtual memory that all the
user-mode programs in the system can access. User global address space contains the global
libraries and other unprotected global data.

AEGIS SJI~tem Overview

Supervisor global (or .Iobal B) address space is the protected virtual memory shared among
all supervi~or-mode processes. Supervisor global space contains supervisor-mode programs and
data such aiS the AEGIS kernel 80urce code and system data structures.

The size "r virtual address space differs depending on the DOMAIN node model. Chapter 9
provides more details about the contents or virtual address space ror each node model.

2.2.4. Vlrtual Memo!')" Manaaement

The AEGIS virtual memory management subsystem provides network-wide access to objects.
Virtual memory management includes two related operations:

• Mapping, (or 8lngle level atorase) where the system sets up an association between
a local or remote object and a process's virtual address space 80 that the process can
rerer to the object directly by rererencing addresses in its virtual memory

• Demand paging, where the system dynamically transfers l024-byte pages of an object
residing on local disk or remote node to the requestor, be it on the local node or on
another node in the network

2.2.4.1. Mapping

Som-e systems separate storage into levels; main memory is the primary storage level while the
disk is the secondary storage. These multilevel storage systems allow programs direct access only
to the primary storage level. A program must explicitly copy an object from secondary to
primary storage before it can access the data. In contrast, the AEGIS system uses a single level
storage mechanism, called SLS. Under SLS, a process gains access to an object by requesting that
it be mapped directly into its address space, associating network-wide object pages with pages of
process virtual address space. The direct mapping feature of SLS allows processes to access
objects using programming language variables, arrays, strings, and other constructs.

In addition, once the object is mapped, the system does not demand page any data until the
processor actually rererences it; consequently, processes can map objects to regions of process
address space without incurring excessive system overhead.

The mapping between object space and process address space is the fundamental I/O primitive of
the DOMAIN architecture. It provides one level of storage for all the objects in the network,
whether the objects exist on local disk or on another disk in the network. It also allows users to
share single copies of programs and data files. Because mapping proceeds independently of
whether the object is local or remote, it provides a uniform, network-transparent way to access
objects. As a result, the user can execute a program without being concerned about its location
or the location or the fues it uses. For example, it is possible to execute on node A a program
that resides on node B, reads input from node C, and creates output on node D.

2.2.4.2. Demand Paging

AEGIS manages virtual memory over physical memory by paging l024-byte pieces or virtual
memory in and out or physical memory both locally and over the network. Each node has a
remote paging server process that handles remote requests to read and/or write l024-byte pages
of objects on that node. When a page belonging to an object is referenced by another node on
the network, the remote paging server dynamically transfers, or demand pages, it to the
requesting node.

AEGIS System Overview 2-8

()

o

.... -... ---- .. -.-~ .. ~--.--.~ .. ----.--. --- •.. - ' .. --_._-------_ .. _---_ ... _-._-_ ... _--_.-.---.. -------

The paging system saves, or caches, copies ot the pages it has tetched; consequently, subsequent
references proceed at main memory speeds. The object storage system ensures that these copies
are always up-t&date by purging obsolete, or stale, pages as necessary; it also automatically
reflects an object's page modifications back to the node on which the object is stored. Because
the AEGIS virtual memory management subsystem uses a node's main memory as a cache over
objects from the entire network, the subsystem only needs to read mapped objects rrom local disk
or from the network when they are actually demanded and are not already cached locally.

2.2.5. Network Man_lement

The proprietary DOMAIN network consists of a token-passing ring. It is called a ring because
the communications cable connects the nodes in a circle. The ring uses a token-pauml
architecture, in which a special bit pattern circulates around the ring, passing through each node.
In order to transmit a message, a node must gain control or this token. The node's ring
transmitter generates the message, which is received at each successive node and re-transmitted to

keep the message going around the ring; this process is called transce1vinl. The ring hardware
carries out the transceiving sequence without intervention rrom the central processor.

Although messages sent by a transmitting node pass through each node on the ring, only the
target node actually processes the message. If the ring hardware on a node decides to receive a
message passing through it, it awakens the processor by signaling an interrupt as well as
transceiving the message. Because each node transceives the message, it eventually returns to the
node that generated it. This node checks the message for evidence of the target node's receipt
and removes the message from the ring.

Messages on the ring are called packets. While the ring hardware is responsible for getting a
packet to the target node, low-level network software exists to get the packet to its intended
recipient within a node. The AEGIS system's low-level IPC software is based on the socket
abstraction. A socket is a queue of incoming messages; the system identifies each socket by a
small number. The message sender addresses the packet to a node and to a socket number within
that node. When the packet arrives at the target node, the ring receive interrupt handler places
it into the socket specified by the socket number in the packet.

Because sockets provide the only means for packet delivery, a process that intends to receive
messages from the network must have a socket into which the messages can be queued. The
AEGIS system runs special server processes that handle requests for service from remote nodes.
Since these servers expect to receive messages from the network, they are assigned sockets at
system initialization. These sockets are called well-known sockets because the socket number
assigned to a given AEGIS process is the same on all nodes; for example, the paging server is
always assigned socket number 1, regardless of the node r 1 which it is running. Well-known
socket owners within the AEGIS kernel include the paging server, the remote file server, and the
information server. Well-known sockets are also assigned to AEGIS user-space system services,
such as the mailbox helper and the network (NETMAN) manager.

Processes that request a service from a server at a well-known socket must also allocate a reply

socket to receive the eventual response to the request. The reply socket provides a -return
address - to send along with the request packet. DOMAIN nodes support other types of
communications lines in addition to the proprietary ring; for example, a node can support the
communications hardware necessary to connect two or more ring networks, and has the facilities
to support customer-supplied network hardware that connects to a MUL TffiUS controller. An
internet is a group of two or more connected networks. In an internet, a packet can be destined
for a local network or a remote network. Packets destined for remote networks must pass

2-9 AEGIS System Overview

through one or more interim networks before they reach the target network; this process is called
routing. The AEGIS system contains routing 80ftware that provides the ability to send a paekrt
to a node on a remote network and provides routing information to the nodes on multiple
networks.

2.2.6. I/O Management

Each DOMAIN node model supports a different variety or I/O devices. In addition, the device
controllers attached to a node dirrer greatly in the operations they permit and the way these
operations can be perrormed, and usually only one of each controller type is connected to the
node. Because or these dirrerences, the AEGIS system does not currently provide a device
independent I/O interface at the nucleus level. In general, each type of device is handled by its
own manager (or device driver); for example, device managers exist for the display, fioating point
board, magtape drive, serial I/O interface, line printer, and network ring controller. The disk
controllers are the only devices that support a generalized interface above the device manager
level.

A device-independent I/O facility does exist above the kernel: this is the stream interface. User
processes call the stream manager to gain access to the various device managers; the stream
manager exists in its own library within user space. In addition, the general-purpose I/O
software library (GPIO) allows user processes to create user space device· drivers ror I/O devices
that AEGIS does not support. The GPIO library uses the memory management subsystem to
allow these processes to map a controller's CSR pages to process virtual address space to
manipulate the device.

2.2.7. Time Management

The system uses four timer clocks:

• A battery-operated calendar chip clock on each node that give the time or day, month
and year. The system uses this clock only during system initialization, when the
system bootstrap program (SYSBOOT) uses it to get the time. These clocks can be
updated using the CALENDAR utility (which can run as a stand-alone utility (SAU)).
Note that each node does its own time-keeping; there is no system-wide clock to
synchronize all nodes on the network.

• A real-time clock that keeps track or real time since system bootstrapping. The real
time clock is a counter that is incremented in 4 microsecond intervals; the system uses
this clock to calculate real time during system operation; ror example, when a user
issues the DATE command.

• An interval timer that the system uses to generate real-time events. A list of waiting
(or blocked) processes is associated with this clock; the system sets the clock to a
specific interval (an interval can be as small as 32 microseconds) and awakens the
processes in the list when that interval has passed.

• A CPU timer that computes processor time. The system uses this clock in process
scheduling; it keeps track or the CPU time accumulated by the currently running
process. The system resets the clock at each process exchange.

ABG IS System Overview 2-10

c)

o

2.3. Access Control Mechanisms

The AEGIS system supports three levels of access control that can be applied to an object:

• Controlling how an object page is accessed

• Controlling who is allowed to access the object

• Controlling how many processes can access the object at the same time

2.8.1. Processor Access Modes

Processor and memory management hardware keep track of the kind of access permitted to an
object on a per-page basis: whether the page can be read, written, or executed, and in what
processor operating mode (supervisor or user) these types of access are permitted. An object
page's access mode is specified when the object segment is mapped, and is stored in memory
management tables that differ depending on the node model. The processor checks the access
mode during virtual-to-physical address translation and issues an access violation if the kind of
access does not match the processor access mode.

2.3.2. Access Control Lists

The access control list (ACL) controls access on a per-object level. The ACL is a type of object
that defines who is permitted access to one or more objects and also how those objects can be
accessed. The system component that is using the ACL interprets the rights it specifies. For
example, the virtual memory mapping routine interprets the ACL as allowing mapping with the
hardware access mode read/write/execute privileges. The naming server, on the other hand, will
interpret the same ACL as as allowing directory listing/name changes/adding names and links
privileges.

2.3.3. Object Locking

The AEGIS object locking facility controls how many processes can simultaneously reference an
object page. This locking facility consists of a lock manager that synchronizes process access to
objects in the network. The lock manager enforces user-selected object concurrency rules. It also
supports the distributed system by notifying the virtual memory management subsystem on each
node when to flush obsolete object pages from its cache,and when to send modified pages of
remote objects back to the nodes on which they are stored.

2.8.4. Resource Control

The AEGIS system also controls access to system resources through resource locks and mutex

locks.

The system uses resource locks mainly for kernel process deadlock detection. Resource locks are
hierarchically ordered (from 1 to 32); processes with higher priority resource locks (low numbers)
run before processes with lower priority locks. Disk and network I/O locks are the highest
priority to ensure that processes have access to all the other resources they need (by obtaining the
associated resource locks) before they proceed with disk or network I/O.

2-11 AEGIS Sy~tfm Overview

Kernel-level mutex locks provide mutual exclusion to system resources; the system uses mutex
locks to synchronize process access to resource locks. For example, ir five processes want the
resource lock to lock one disk, the mutex lock controls which process will get the lock first.
(Currently, the first process that requested the lock gets it.)

AEGIS al~ supports a user level mutex library, which uses the kernel level 2 eventcount
mechanism to guarantee process synchronization.

2.4. The User Program Environment

The user program environment is composed or the process manager (PM) and the various
standard and optionailOrtware libraries.

2.4.1. The Process Manager

. The process manager is the user-mode AEGIS sortware component that handles the invocation
and execution or programs. A program appears to AEGIS simply as an object that consists of a
procedure or set of procedures bound together by the system's binder program. (The binder
program is one or a collection of programs that make up the user environment.)

Programs do not exist within process address space for the life of the process. Instead, the
process manager maps programs in and out or process address space as they are invoked. When a
program is invoked, the process manager load8 the program by mapping it to process address
space; it also attempts to resolve rererences to the entry points of external procedures by checking
them against the known global table (KGT) , which stores the entry points of all the libraries
installed in process address space. This process is called dynamic linking, because external
references are resolved when a program is invoked, rather than when it is bound.

The process manager is also responsible ror tracking the resources a program uses - the objects it
maps, the streams it opens, the scratch storage it uses, and the data bases it manipulates - and
for releasing these resources when the program exits.

The process manager actually consists of several separate programs:

• The program manager (PGM), which invokes programs

• The loader, which loads programs into process address space

• The read/write storage manager (RWS), which allows the program to allocate scratch
storage

• The mapped segment manager (MS), which tracks a program's access to objects

• The process fault manager (PFM) , which handles faults sent from AEGIS kernel
modules to the user program environment

Process manager internals will be described in a separate document.

AEGIS System Overview 2-12

--

o

o

2.4.2. Libraries

The software libraries provide the environment within which programs run. They consist of all
the entry points that a program can call that reference procedures existing outside of the
program. Most of the system services that the DOMAIN system provides are made available
through libraries; in Cact, the entry points to the AEGIS interCace are contained in one of the
software libraries.

There are two types of libraries: private and global. Private libraries exist only in the address
space of processes in which they have been installed. Users install private libraries with the
INLm program (part of the user environment discussed in Section 2.5). The program loads the
libraries and also places their externally callable entry points into the known global table.

Global libraries exist in the address space of ALL processes. The process manager automatically
installs these libraries into user global address space as part or its initialisation process when a
node is bootstrapped (when the _DM or SPM is rll'St invoked).

Private libraries are shareable among processes because of the system's shared object mechanism;
see Section 2.2.4.1.

2.5. The User Environment

The DOMAIN user environment consists or a native environment and a UNIX environment,
called DOMAIN/IX. The native environment provides a command line interpreter, called the
shell; the shell accepts and parses lines or input and also invokes various programs, or shell
commands. The shell commands provide users and application programs with a comprehensive
set of standard computing operations, such as compiling, binding, and copying files.

The native-mode shell supports I/O redirection facilities such as pipes and filters as well as
allowing users to create their own command procedures, or shell programs. Shell programs are
written in a programming language whose constructs are in many ways similar to a conventional
language. However, an executable statement in a shell program frequently involves the complete
execution of one or more additional programs. Thus, the shell program is like a sophisticated
command procedure that coordinates the execution of multiple program steps.

The DOMAIN/IX environment supports two UNIX-style user environments: The user environent
provided with the Bell Laboratories System V UNIX operating system, and the Berkeley 4.2
UNIX operating system. Both DOMAIN/IX variants support all user and program environment
Ceatures orfered by Bell and Berkeley UNIX. See the DC:v1AIN/IX documentation Cor more
information about these environments.

2.6. The Display Manager

Within each node, the user environment is managed by a process known as the display manager
(DM). The display manager allows the user to view and control separate activities both
concurrently and independently by dividing the screen into windows whose size, shape, and
placement are under user control.

2-13 AEGIS SY8tem Overview

Windows Sore viewports into objects called pada. Because it is implemented as an object, the pad
behind ear.h window is practically unlimited in size. There are several types of pads. An edit pad
displays an object that the user can modify, given the proper access rights. Input and transcript
pads provide a process wi\h & virtual terminal; the process writes output and reads keyboard
input from these pads.

Users can overlay windows on top of each other, either partially or entirely. Consequently, using
the display is analogous to U'l"aIlIing various pieces of paper on a desktop, except that the pieces
of paper actively perform 80me runction or display !Ome graphic output.

Display manager internal operations will be described in a separate document.

2.7. System Initialization

System initialization consisU or the procedures that bring a node from power-on or reset to the
display manager login prompt. System iritialization begins with the central processor's bootstrap
PROM and extends through a variety of stand-alone software programs and system routines. In
general, system initialization consists of:

1. Bootstrap PROM initialization operations

2. AEGIS bootstrapping rrom disk, network, or cartridge tape

3. AEGIS kernel initi~ion

4. AEGIS user environment initialization

Chapter 25 describes the SJStem initialization procedure.

AEGIS Sy~tem Overview 2-14

.... _ .. __ . __ ._ _._ .. __ .. _-----_._--_._-_ .. _--_ __ . __ -----

o

Cj

Chapter 3
Object Storage System Overview

The AEGIS object storage system (OSS) consists of the following components:

• The local object storage system, which manages the storage of objects on disk volumes
attached to the local node

• The remote object storage system, also called the remote rue system, which provides
access to objects on remote nodes

• The cached object storage system, which manages a per-node cache of recently used
objects, whether local or remote

• The object locating service, which aids in determining an object's location in the
network

• The higher-level object management service, which uses the facilities oC the cached,
remote, and local storage systems to provide user space programs with a location
independent way to manage objects

Together these components create a file system that provides objects with permanent storage and
allows AEGIS to use UIDs to identify and manipulate objects independent oC their location in the
network. Figure 3-1 shows the relationship between the object storage system components.

This chapter introduces information about objects and UIDs, in particular:

• How objects are structured into pages and segments

• How objects are described to the OSS and the rest of the system

• How UIDs are generated and structured and the role they play in object naming and
location

Subsequent chapters discuss each component of the object storage system in detail.

3.1. Object Page and Segment

An object's smallest divisible unit is the 1024-byte page. The system stores an object's pages on
disk blocks within the disk volume; each page occupies one 1056-byte disk block (see Section 4.1
for more inCormation about disk block rormat.) The object storage system views objects on disk
as a collection or pages occupying disk blocks on the volume. However, the virtual memory
management subsystem defines another object division; this subsystem divides an object into
units of 32 consecutive pages called segments. The memory management subsystem uses object
segmentation in its mapping and activation procedures; see Chapter 10 for more details.

8-1 Obiect Storage System Overview

PSQesble

Locatlon
Independent OSS

--Lock

File

"
HINT

~~

--
Object

locating
Service

- - - - .~ -- ---Wired
Local
OSS ,f

~ VTOC ~ -AST -
,r PMAP .. -I BAT I

V

" " I MMAP I
DISK Cached

HARDWARE OSS

Remote OSS

Remote
File server

Remfile

Client

4-- From network
via low-level apc

T o network
~ vii low- ---.

IeveIIPC

Location-Independent ---- ----
Ramote OSS

Remote
Paging Server

Network

Client

Location-Dependent

4-- From network
via low-level IPC

T o network
- via low- --..

levellPC

Fisure 1-1. Object Storase Sy.tem

3.2. Object Attributes

Each object has a set oC attributes that describe the object to the object storage system, to
managers in the AEGIS kernel, and to user space managers and programs. The object
management service (the flle manager) handles the reading and writing of an object's attributes;
it assigns deCault attributes when it creates an object, and can also modify object attributes on a
user program's or system component's behalC. The local object storage system provides the
permanent storage for an object's attributes. Object attributes are described in the next sections.

Object Storage SJl8tem Ouemew

...........

o

3.2.1. System Type

The syste'm type field (sys_type) is an 8-bit field used to distinguish, (or the same object type,
whether or not it requires special handling by the system. Currently, these system types exist:

• File objects (0)

• Directory objects (1)

• System directory objects (2)

• ACL object (3)

• Any object (-1)

The system type attribute was designed to provide the system with a way to identify objects
important to its internal operation; for example, it allows the naming server to determine
whether a directory object is a user directory (I) or a system directory (2). To date, however,
very few AEGIS system components make use of this attribute.

3.2.2. Concurrency Control

The concurrency control attribute controls simultaneous access to the object among several
processes. Concurrency control can be:

• None, where no concurrency control is applied. The system applies no concurrency
control to temporary, uncatalogued objects.

• Shared reading or exclusive writing, (file_Snr _xor _Iw), where any number of
processes can read the object at the same time, but only one process at a time is
allowed to write the object.

• Shared writing 1 (file _ Scowriters), where any number of processes can write the object
at the same time. The system limits shared writing to processes running on one node,
although these processes do not have to be on the same node as the object they are
referencing.

The lock manager enforces the object's concurrency control attribute.

3.2.3. Permanent and Temporary Attributes

The file system creates objects with the temporary attribute. Temporary objects can be deleted
by the system when it shuts down or fails. Some objects in the system remain temporary; for
example, display manager transcript pads. An object is given the permanent attribute to prevent
the system from deleting it during a shutdown or crash and so that it can be catalogued in the
directory 8ubsystem.

8-3 Object Storage SY8tem Overt1ieU'

3.2.4. Immutable Attribute

An object is marked immutable if it will never be modified. Consequently, programs can place
copies of immutable objects anywhere in the network with the guarantee that they all will be
identical. Currently, access control lists are defined as immutable objects.

3.2.5. Salvaged Flq

The salvage nag (trouble bit) indicates whether or not the system salvager (SALVOL) has
repaired the object. SAL VOL sets this bit if it detects that an object is corrupted and clears this
bit after it has salvaged the object. Consequently, this bit, when set, acts as a warning nag to
the system that the object may be corrupted.

3.2.8. ACL UID

Ev.ery object has an associated access control list (ACL) object that defines the type of access
permitted to the object; Certain system components check the object's access control list to
determine if the requested operation on the object is in fact permissible. (This manual does not
currently describe access control list internals.)

3.2.7. Object Type UID

Every object also has a type manager that interprets the data within the object; the object type
UID attribute identifies its type to the manager; the stream manager, for example, checks the
type UID attribute to determine whether the object is is a UASe file or a record-structured file.
User space type managers define classes of object types and store the class identifier - the object
type UID - as an object attribute; AEGIS kernel managers generally do not recognize type UIDs.

Type UIDs (which are canned UIDs; see section 3.3.4) are assigned during user-mode file creation,
primarily by the stream manager (stream_Screate) and the mapped segment manager
(ms _ $crmapl). These managers call the object storage system to allocate storage for the object
and its attributes, then write the type UID attribute field provided by the OSS.

3.2.8. Miscellaneous Object Attributes

Miscellaneous object attributes include the UID of the directory in which the object is catalogued,
the object's current length, the date/time that the object was last used (DTU), and the date/time
that the object was last modified (DTM). The object's home node always determines the DTM
value. The memory management subsystem, in conjunction with the lock manager, uses the
DTM to maintain distributed cache concurrency. See Chapter 6 for details.

3.2.g. Reference Count

The reference count attribute keeps track of how many other objects in the system are using the
object. For example, several objects can share a single ACL object; the system increments and
decrements the object's reference count as objects reference and dereference the ACL object. If
the object storage system is called to delete an object, it first checks the reference count to
determine if there are any other users; if the reference count is zero, the system deletes the object.

ObieCt Storage System Overview 3-4

~.
I
I

" \, -

When the file system creates an access control list, it sets the reference count to o. For all other
object types, it sets the reference count to 1.

c! 8.2.10. Lock Key Attribute

The lock key attribute enforces the higher-level concurrency control that the lock manager has
assigned to the object. An object's lock key renecta how a user has locked the object, and can
contaiu the Collowing values:

• If there is DO concurrency CODtrol on the object, the lock key field is 1; this kef allows
any node to read or write the object <any access Joek key).

• If the object is locked Cor reading only (there are no writers) the lock key field is 0 (all
readers lock key); this key allows any node to read.

• If the object is locked Cor write, the lock key field contains the node ID oC the process
that has locked Ult object, lor writej this key prevents other nodes rrom reading or
writing the object.

The lock key attribute controls concurrent access to an objeet by other nodes iII the network. It
is the system's low level object concurrency control mechanism. .Before paging in an object's
pages, the paging server checks its lock key attribute (passed to it by the file system) to ensure
that the requesting node is allowed access to the object. Object concurrency control and lock
management are described in detail in Chapter 6.

3.3. Unique Identifiers o UIDs are 54-bit unique identifiers Cor objects. They are composed of:

• A 36 bit creation record

• 8 bits reserved lor Cuture use

• A 20 bit node ID

Figure 3-2 shows the structure of a UID.

.. o

Cr .. tlon Tim. MaZ Nod.ID (iinc. 1/1/80) (8 Bltl) (20 Bltl) (36 Bltl)

Figure 8-2. Anatomy of a UID

o 1-6 Object Storage S!I~tem Overview

Because UIDs are absolute, rIXed-length, and relatively ahort, they provide the following benefits
to AEGIS system design:

• Their use as names for objects involves a minimum space penalty.

• They permit pathname translation to UID to occur in a layer above the AEGIS
kernel.

• They can be used to denote the type of an object.

• They can name temporary objects which can be given pathnames at a later time.

• They can be easily hashed and stored in system tables and sent in IPC messages.

• They can be used 88 transaction IDs in network message-passing because they are
guaran teed to be unique.

• They can be used to protect objects because they are hard to guess. Possession of an
object '8 UID can be the key that unlocks the ability to use the object.

• They permit the possibility or composite objects by embedding UIDs within objects.

3.3.1. UIDs as Object Locators

An object's UID uniquely identifies the object no matter where it resides, but does not give the
location of the object; this property or UIDs is called location independence.' Location
independence means that an object's UID has no relation to the object's actual location in the
network. The node ID portion or the UID identifies the node on which the object was created,
but this node ID does not necessarily identify the node on which the object currently resides. By
convention, the only restriction placed on object location is that most objects must reside on the
same volume as the directory in which they are catalogued.

Because UIDs are location-independent, the AEGIS system can move objects around in the
network without having to find and alter all references to them . .As a result, however, the system
requires an object locating service in order to find an object given its UID. See chapter 7 for
details on the object locating service. .

3.3.2. Generating UIDs

The system generates a UID by concatenating the node ID of the node generating the object with
a reading from the node's real time clock; the creation time has a 16 millisecond resolution.
Because UID generation can occur in bursts, the system saves unused UIDs generated within the
previous minute and uses these UIDs berore generating new ones.

3.3.3. Guaranteeins UID Uniqueness

UIDs are guaranteed to be unique as long as the clo.;k advances. However, to guard against clock
failure, the system stores the last shutdown time on the disk. During system initialization, it
checks this time against the calendar clock time. If a rorward or backward time discrepancy
exists, the initialization routine prompts the user for verification and/or correction. The system

Obiect Storage Syatem Overview 1-8

/'"

o

----- ._ _

checks for forward time discrepancies because a forward time jump is likely to be an error that
requires later correction. If the system has generated any UIDs from the erroneously advanced
clock, these UIDs may be duplicated when real time catches up to the forward jump point.

8.3.4. Canned VIDa

Some system entities need to have the same UID across different systems. To avoid the
assignment of a unique UID to these special objects, the AEGIS system supports canned UIDa,
which are special UIDs guaranteed to be the same on each system. The system contains a list of
canned UIDs organized into groups of related canned UIDs. System components assign the
appropriate canned UID to the object. For example, the volume initialilation utility INVOL
assigns a canned UID of 200.0 to the physical volume label that describes the disk. See Appendix
C for a list of canned UIDs.

3.4. Local Object Storage Components

The local object storage system provides access to objects stored on disk volumes attached to the
node that is accessing them. The local OSS provides operations to create and delete local objects
and to access the attributes and pages of existing objects. This subsystem contains two
managers:

• The Volume Table of Contents (VTOC) manager

• The Block Availability Table (BAT) manager

The VTOC manager maintains the volume table of contents for the disk volume; this table
contains an entry for each object that resides on the volume. The object's VTOC entry
(VTOCE) stores the object's attributes and provides a road map, called a file map, to the disk
blocks that contain the object's pages. The system uses the VTOC to locate an object's VTOC
entry given its UID.

The block availability table keeps .track of the disk blocks available for allocation. The BAT
manager allocates and frees disk blocks. Chapter 4 describes the VTOC, BAT, and other disk
data structures in detail and explains how the system uses these structures to manipulate local
object storage.

3.5. Remote Object Storage Components

The remote object storage system (also called the remote file system) is composed of:

• The NETWORK manager J which provides remote access to the attributes and pages
of existing objects

• The remote file (REMFILE) manager, which provides facilities to remotely create and
delete objects

The remote OSS is one of the AEGIS network support services; it is layered on top of the
system's socket datagram service and uses this low-level socket IPC to send and receive messages
over the network. See Chapter 20 for a dicussion of the interaction between network services and
the socket IPC service.

8-7 Object Storage System Overm'ew

Both the NETWORK and REMFILE managers are object location-dependent; a remote object's
location must be known before calling these managers to access it.

3.5.1. The NETWORK Manaler

The NETWORK manager portion of the remote rue system is responsible for the reading and
writing of data on remote nodes; that is, reading and writing an object's attributes and pages.
The NETWORK manager is divided into a client side and a Rl"'Ver side. The cached OSS uses
the client side to access the attributes and pages of existing remote objects not in the local cache.
When the client side of NETWORK receives a request to access a remote object on a specified
node, it packages that request into a message that it sends (via the low-level socket datagram
service) to the NETWORK server side running on the target node; it then waits for a response.

The server side is composed of a remote palinl Rl"Ver process that handles the requests from
remote nodes to read or write pages and attributes of objects on the local node. The remote
paging server calls upon the local cached OSS to carry out the read or write, then sends the reply
back to the waiting client. Chapter 13 details how NETWORK client and server sides handle
remote paging requests.

3.5.2. The Remote File Manaler

The remote file manager (REMFILE) is concerned with object maintenance; it handles any remote
requests that do not involve the reading and writing of data stored in an object. The REMFILE
manager is also divided into client and server sides. The client side operates in the same way as
NETWORK's client side, except that it packages requests from the location-independent OSS to
create and/or delete remote objects. The server side uses a remote file server process to handle
remote create/delete requests. This file server calls the local location-independent file manager
(FILE) to service these requests. The REMFILE manager also handles remote lock requests; see
Chapter 6. The REMFILE manager's role in file creation and deletion is described further in
Chapter S.

3.6. Cached OSS Components

To reduce the frequency of expensive disk and remote operations, AEGIS provides a mechanism
to cache the results of recently performed operations so that it can use them again at a later time,
providing they are still valid. The cached object storage system consists of:

• The active segment table (AST), which caches the locations and attributes of recently
used, or active objects, whether local or remote

• The page map (PMAP), which stores the file map for one segment of an object and
contains the locations in main memory of any segment pages that have been
referenced

• The memory map (MMAP), which tracks the allocation and contents of main memory
pages

Obiect Storage System Overview 8-8

o

o

o

Operations performed by the AST and P:MAP managers can be classified as lile .Jl3tem
operations and as virtual memory management operations. These operations include:

• F et.ching object pages from local or remote locations

• Reading and writing object attributes stored in the cache

• Purifying the cache by sending all modified pages back the objects' home nodes, be
they local or remote .

• Fiushing the cache by removing objects' o~solete, or .tale pages

Note that the AST manager does not contain a write operation {or object pages. Programs
modify an object's pages while they exist in the cache using MST manager mapping routines,
while the purification process eventually writes the modified pages back out to disk.

The AST manager also manages its cache's consistency with the AST caches in other nodes and
makes these operations available to the higher-level lock manager. Consequently, the lock
manager can guarantee cache consistency for its clients, provided that they obey its locking rules.
Chapter 6 provides more details. Chapter 10 describes the AST, PMAP, and MMAP managers in
detail.

3.7. The Object Locating Service

AEGIS is a distributed system and thus keeps no global state information about the location of
objects, as is commonly done in centralized systems. Instead, user programs and AEGIS system
software obtain information about an object's location dynamically through these AEGIS
components:

• The single-level store manager (the MST manager), which keeps track of an object's
location when it maps the object into process address space. The system retains
knowledge of the object's location for as long as the object is mapped.

• The cached OSS, which caches the location of recently used objects

• The hint manager, which carries out a heuristic search for an object, given its UID

Software components that cannot find mapped or cached location information about an object
use the hint manager as a source of location information. The hint manager keeps a file of hints
about object locations; there is one hint file per node that exists in the /sys/node _ data directory.

A hint consists of the node ID and internet address at which the object corresponding to this UID
was last located. Software components consult the hint manager to attempt to locate an object
by locating the ID of the node on which the object currently resides.

AEGIS system components and user programs can dynamically add hints about object location.
In general, any software component that can gueS8 the whereabouts of an object can store that
assumption in a hint file. Because most objects reside on the same volume as the directory in
which they are catalogued, the naming server becomes an important source of hints for the
system. In fact, AEGIS object location relies on the supposition that objects almost never move
from the node on which they are created, but that if they do move, the naming server hints will
almost always be accurate. Chapter 7 discusses the hint manager in detail.

3-9 Obiect Storage System Overview

3.8. The Object Management Service

The object management service exports the object management facilities of the AEGIS kernel to
user space programs. It allows user space programs to create and delete objects and to read and
write the attributes and pages of existing objects in a location-independent way.

The system divides object management operations between the mapped segment table (MST)
manager and the location-independent object manager (FILE). The MST manager provides
location-independent access to the contents of existing objects; it provides the functions to read
and write an ·objed'spages. The location-independent object manager, called the FILE manager,
provides location-independent access to object attributes and provides operations to create and
delete objects as well.

Both the MST and FILE managers call the kernel-level local and remote object storage systems to
carry out user-mode requests to read and write object pages and attributes given the object's
UID.

The FILE manager:

• Exports the cached OSS object attribute access to user programs

• Permits object creation and deletion

• Provides a location operation to return the address of an object's home node

• Exports (through the lock manager portion of FILE) the object storage system's
concurrency control mechanism to user programs

To achieve location-independence, the FILE manager uses the hint manager to determine the
location of an object. Once its location is established, the FILE manager performs the operation
locally using the local system, or uses the client side of REMFILE if it must go remote. Chapter
5 describes how the FILE manager carries out its object management operations.

3.g. Lock Management

The lock manager is a portion of the file manager that gives clients of the object management
system a method to obtain control of an object and block others from using it. A lock on an
object specifies how the lock holder intends to access the object, and restricts the way in which
others can access the object.

Each node has its own lock manager that keeps a lock database of all local objecte that are locked
by local or remote processes and all local proceee that have locked local or remote objects.

Object Storage Syetem Overview 3-10

(J

o

o

The lock manager exists to 801ve two problems:

• To control concurrent access to an object; that is, to provide orderly access to the
data 80 that, when two processes modify the same object, their modifications do not
simultaneously overwrite each other .

• To maintain consistent data between the caches in all nodes; that is, to ensure that all
processes in the distributed system have the same view of an object.

Chapter 6 describes the lock manager in detail.

8-11 Obiect Storage System Overview

'~'---'"

(_ ..

~)

o

o

Chapter 4:
Local Object Storage System

Disk structure dermes how objects are stored on disk volumes attached to a node. The AEGIS
system separates disk Itructure into two levels:

• Logical disk structure - Structures that t.hl local object storage qatem uses ~ aeeess
objects on the disk; this is the logical volume Jevel

• Physical disk structure - Structures that the disk driver uses to access objects on the
disk; this is the physical volume layer and is the low-level disk structure

Figure 4-1 &bows the relationship between the local object storage system managers and the lower
level disk managers.

VOLX FILE

BAT

OBUF

DISK

WIN FLP

LocalOSSI
Logical Volume ---------

SMD

DIsk Management I
Physical Volume

Figure 4-1. Disk Management Hierarchy

4-1 Local Object Storage System

The components pictured in Figure 4-1 include:

• The location-independent FaE manager

• The local OSS managers VTOC and BAT

• The volume mount/dismount manager (VOLX), which handles private storage
volumes

• The disk buffering mechanism (DBUF) used by VTOC and BAT to cache object file
maps (their disk addresses on the logical volume)

• The device-independent disk manager, which fields I/O requests to the device drivers
of particular disk drives

• The device· drivers for the Winchester disk, noppy disk and storage module devices

This chapter discusses the local object storage system and its logical volume view of object
storage. It covers the following topics:

.• Disk block format, which is the structure of one 10S6-byte disk block on a disk

• Physical volume structure as it relates to logical volume structure

• Logical volume format and the managers that manipulate it

• The role of the local OSS in file management

Another internals document will describe physical volume structure in detail and explain how
AEGIS disk management components use it to read and write objects on disk.

4.1. Disk Block Format

A physical volume consists of some number of disk blocks. The AEGIS system defines a disk
block as 1024 bytes of data plus a 32-byte disk block header. (Floppy disk blocks do not have
disk block headers.) The information contained in the disk block header uniquely identifies every
disk block. This information consists of:

• The UID of the object that owns the block.

• The block's page number within the object (the first block is page 0, the second is
page 1, and 80 on).

• The time the block was last written to disk.

Local Obiect Storage SY8tem 4-2

/ '

o

The type or block; that is, whether it is data (0) or a levell, 2, or 3 file map (see
Section 4.3.4 ror information on file maps).

• The object type, which is fde (0), directory (1), or system directory (2).

• A sortware-calculated checksum ror the data in the block. This field is used only if
read-a1't.er-wrjte checksumming is turned on.

• The block's physical disk address (DADDR); that is, ita aequence Dumber relat.ive to
the atar1 or the physical volume.

Figure 4-2 illustrates the disk block header.

Block
Header

01

oc

'8

DISK BLOCKS

Data Block
Header

>CUnu •• d .
.. .. " '

Data
::~Block'::
:H~d.r

1 C .:;;: ~ ~;:: ~~ :::~;~:::::: :;:: ~ ~::: ::~: ~::::::: ~:: ::: ~: ~:~ ~ ~:::~ ~~~ ~::::~::::~::::
:::j[j:~1nn\:Df.k:Addt~:.*:~I:.I~k:~\>~\lm:

20 :::::::::::::: :.:::"::::::::::

BLOCK HEADER

Data •••

Figure 4-2. Disk Block Header Format

The disk block header exists to aid in volume recovery. If' the headers ror all the blocks on the
volume exist, the system's volume salvage utility (SAL VOL) can reconstruct the disk even if the
volume table of contents has been destroyed. In addition, the disk block header protects against
unrelia.ble disk hardware.

4-8 Local Object Storage Sy~tem

4.2. Physical Volume Structure

The system's volume initiali.ation utility (INVOL) builds the physical and logical disk structures
onto a disk volume. Physical volume structure consists of:

• A physical volume label (PV label) that describes the physical disk and locates the
logical volumes on \he disk.

• One or more logical yolumes.

• A badspot cylinder thd records the physical badspots (unusable blocks) that exist on
the volume. The badspot cylinder is usually one of the last two cylinders on a disk.

• A diagnostics cylinder that is reserved for diagnostics operations.

Figure 4-3 shows the la1oo\ of the physical volume and the structure of the physical volume
label.

4.2.1. Physical Volume Label

The physical volume label (PV label) is a single disk block that describes the physical disk and
stores the physical location of the logical volumes on the disk. INVOL always creates the PV
label on the first block (pbysical DADDR 0) of a physical volume. The PV label is assigned a
canned UID of 200.0.

The PV label provides the rllSt step into the disk volume and provides the system with a way to
distinguish between mounted volumes. The information in the PV label is as follows:

• Fields that identify the volume.

• A set of disk paramet.ers that describe the size and shape of the physical volume.
AEGIS uses these parameters to determine the size of a disk so that it does not need
to depend on identification hardware or the disk drive itself.

• The physical disk address of each logic~l volume on the disk.

• The physical disk address of each alternate logical volume label. An alternate
logical volume label is a copy of the logical volume label that INVOL creates when it
initializes a logical volume. The alternate logical volume label makes it possible for
SAL VOL to reconstruct the logical volume label should the original be destroyed
(usually by an erroneous write to logical disk address 0).

4.2.2. Badspot Cylinder

A badapot is a media defect on a disk that renders one or more blocks unusable for data storage.
Most disks come rrom the manufacturer with a list of badspots. However, some storage devices
are guaranteed free of defects. Floppy disks, ror example, have no badspot lists.

When INVOL initializes a disk, it translates the hard-copy badspot list and copies it to the
badspot cylinder for permanent storage. The badspot cylinder is usually one of the last two
cylinders on a disk.

Local Obiect Storage SY3tem

------------ ~-----~- ~ ~ ---~"~-"- -~~"-"~~ -.--~-- ~

o

o

11 o
00

·:y.~r.~ori.:~~~t :lj~j~~~~!n~~~;H~ljjm

~~!1~1\~~~~\~P.~1l1jj~~1111\~t~\\~1~~lwmm~w~mw

OI~ :.,i!.:,.:.i;.=;'~f:~~!;: !;:;j;i~ ~
21 ·:~\~~\\t~)mjim~~:~~:~~\\ljl\\~\i\\~\j\l~\::

',:0'.: . ;:' '" ...• :'- . . . :' ;:.:::::'.

14 . <TC)talN~~·~(8·IOc~ii']ifVolume

18 Block.:pe, jr.~kJr;.Ok~''''r:CV01.
3C ..::>:.p;~alcal Dllk Addrel., ..

::: ·:·fat Loglca' Volume :'.":"::::: .•
... ::

14 ·::·:::::li:r~J~,~:~~:d[rrO,a~ .• :::::::::i::
18 .: •. :::::·::::PhYllcal CACCR,·:.

::::::::::Alternate LV Labe' [1].

IC

14 ::.>:'::;~~t':~~~J>~~~rhOJ
18:,:::::::,':::::PhYllca' DADCR, :

:':::::::::::::Phyalcal Sadapot Ult

PHYSICAL VOLUME LABEL

"~--"--~.--------------------

, ,

I
I
I

, ,

I
I
I
I

I
I

I

, , ,

I
I

I
I

I
I

I

I
I

I

: ~ ~ ~~H ~~;~ ~ ~~ ~~~ ~ ~ ~~ ~ ~~ ~ ~ ~:
;:)~V:~~:·l>

Logical
Volume[11

Logical
Volume[2]

logical
Volume(10)

Bad Spot
Ult

Diagno,tlci

PHYSICAL
VOLUME

Figure 4-3. Phyaleal Volume Structure and PV Label

o
Local Object Storage SlI~tem

".2.3. Diagnostics Cylinder

The diagnostics cylinder is typically the last or next-~last cylinder on the disk. It is reserved for
disk diagnostic or controller diagnostic operations, and for use by the on-line TESTVOL
program.

4.3. Logical Volume Structure

The logical volume is a section or the physical volume that is completely self-describing and
self-contained. It is the structure that the local object storage system uses to record the storage
of objects on disk.

One physical volume can support a maximum of ten logical volumes. The current practice,
however, is to create one logical volume per physical volume because:

• The cbject locating service does not keep track of logical volumes; thus, finding an
object that is local to the node but on one of several volumes becomes more difficult.

• The personal workstation philosophy suggests that each user on a node controls the
local disk, instead of partitioning it into multiple logical volumes controlled by many
different users.

• The existence of several VTOCs on one disk volume may impact system performance;
one VTOC, although large, permits the system to search only once for an object.

The logical volume contains:

• A logical volume label that describes the logical volume.

• Ten contiguous blocks reserved for the operating system bootstrap program
SYSBOOT.'

• The block availability table (BAT), which lists, ror every block allocated to the logical
volume, whether or not it is available for use.

• The volume table of contents (VTOC), which contains an entry for every object stored
on the logical volume. The system uses the VTOC to find objects on the disk and to
record placement on the disk of new objects.

• The alternate logical volume label allocated by INVOL at volume initialization.

A block within a logical volume is identified by its logieal disk address. A logical DADDR is
relative to the start or the logical volume in which the block resides. All disk block addresses
appearing llIdthin a logical volume, except those in the disk block headers, are logical DADDRs.
The logical addresses of blocks on the first logical volume are one less than their physical disk
addresses. For example, the logical volume label begins at logical DADDR 0, physical DADDR 1.

Figure 4-4 displays the logical volume structure and shows the fields in the logical volume label.

Local Object Storage SY8tem

("

I

o

C \\)

o

00

04
~~

24

2e

.tC

10

B4

I!S8

BC

CO

C4

Ver.lon I Unu.ed

Logical Volume Name

LogJoal Volume ID

BAT Header (12 Byte.)

VTOC Header (100 Byte.)

11me LV Label Written

Unu.ed I La.t
Mounted Noele

11me ay.tem Booted

11m. Volume DI.mounted

Unu •• d I Nod. of La.t
.alvag.

Tim. Salvage Completed

~~

Loalcal
Vofum.

Label

~boot
Fli.

F
Blocks

VTOC

BAT

Fr ••
Blocks

CB
Mod. of satvag.llhutdown Itat.

Logical
Volume

Lab.1
(2nd Copy)

CC

DO

D4

D8

EO

a

EI

EC

PO

IFC
.tOO

Time Dump Itart.d

Tim. Dump Flnl.h.d

UID of CUrrent
Item aelng Dumped

Mlnut •• Nam. of
From UTC 11m.zone
Nam. of La.t Valid
TZ oon't Time

La.t Valid Unu •• d TZ oon't

Bad. pot Barrier

Bad.pot u.t [10]

•
•
•

Bad.pot U.t [211]

LOGICAL VOLUME LABEL

LOGICAL
VOLUME
FORMAT

Figure 4-4. Losieal Volume Label Format

Local Object Storage Syatem

4.3.1. Logieal Volume Label

The first block of the logical volume (physical block 1 ror the first logical volume, logical block 0)
contains the logieal volume label. The logical volume label consists of:

• Information about the logical volume's size and state.

• Headers (or other data structures in the logical volume; in particular, the BAT and
VTOC headers.

• Dates and times or last mount, dismount, and salvage.

• The disk addresses or the badspots that exist within the logical volume. INVOL
constructs this list (rom the physical badspot list when it creates the logical volume.
The list can contain 256 entries; if there are more than 256 badspots, INVOL allocates
a continue block that can contain up· to 60 badspot entries. The bad_spot_barrier
field then contains the disk address of this block.

4.3.2. Bloek Alloeation to SYSBOOT

The SYSBOOT program must reside in physical disk blocks 02 through OB on any physical
volume to be used as an AEGIS boot device 80 that the bootstrap PROM can gain access to it.
These physical blocks are also the first 10 blocks of the FIRST logical volume on the disk. When
it initializes the logical volume, INVOL marks these blocks as in use in the block availability
table. However, INVOL does NOT copy SYSBOOT onto the logical volume. For more
information about SYSBOOT, see the chapter on system initialization.

4.3.3. Block Availability Table (BAT)

The block availability table (BAT) is a bitmap that describes how the disk blocks on the logical
volume are currently allocated. INVOL allocates the BAT (and the VTOC) in the middle of the
disk to minimize seeks; at most, a seek will travel half the disk. The BAT resides in contiguous
blocks on the disk.

Each bit in the BAT describes the state of one disk block:

• If the block is free, the value is o .

• If the block is in use (or is a badspot), the value is 1.

The BAT header, which exists in the logical volume label, describes the location and size of the
BAT. Figure 4-5 shows the relationship between the BAT header and the BAT.

Local Object Storage SY3tem 4-8

o

o

LV Label- 00 j
-.

BAT Header .-. IC

ao

14

------ ._-_.--_ .. -

1 t

No. of Block. Repre.ented

No. of~"" Biook.

DADDR of Ar.t BAT Block

Blk No ~re •• nt.d
by Flr.t AT Bit •

IC Volum. Trouble I Unu •• d

40 BAT 8tep to u •• on Thl. Volum •

~~ .. ~

BAT Word [OJ

04 BAT Word t1J

08 BAT Word t2J

,.

aFC~~-------B-AT--W-O-~--P-II-J----~r
400

Figure 4-5. Relationship of BAT header and BAT

Local Object Storage System

The BAT header contains the following information:

• The total number of blocks in the logical volume.

• The number of free blocks in the logical volume. Both SAL VOL and the shell
command LVOLFS (list volume free space) need the information in this field to run.

• The logical disk address of the BAT's rmt block.

• The disk address of the block represented by the first bit in the BAT; the rll'St bit in
the BAT corresponds to the first block in the logical volume.

• A volume trouble nag (bat_hdr.vol_trouble). The system sets this nag after a
system crash to indicate that the BAT may need salvaging. SAL VOL clears the nag
when it has reconstructed the BAT.

• The BAT step to use on this volume. The BAT step controls how the BAT manager
allocates blocks when it lays out a file. For example, a BAT step oC 2 tells the BAT
manager to allocate the next block at block n+2. Users set the BAT step with the
INVOL utility to optimize disk transfer rates via sector interleaving. The correct
BAT step for a given volume is the value that allows the disk to capture as many
consecutive blocks in a single revolution as possible.

4.3.4. Volume Table or Contents Data Structures

The volume table of contents (VTOC) provides all the inCormation the system needs to locate the
disk blocks of an object given its UID. One VTOC exists for every logical volume; INVOL
allocates the VTOC when it initializes the volume. VTOC data structures are:

• The VTOC header, which describes the VTOC and resides in the LV label

• The VTOC entry (VTOCE), which contains all the information that describes one
object

• The VTOC block, a ha.&h bucket of five VTOCEs

• The VTOC map, a part of the VTOC header that provides the inrormation needed to
locate all the VTOC blocks

• The VTOC index (VTOCX), which identifies a specific VTOCE

The next sections describe each of these data structures in detail.

4.3.4.1. VTOC Header

The VTOC header resides in the logical volume label. Figure 4-6 shows the fields within a VTOC
header. (The offsets given are based from the start of the logical volume label.)

Local Obiect Storage SY8tem 4-10

.... ...

o

etC

10

14

II

IC

ID

14

~~

..
110

V.r.ton No. 1 VTOC liz.
In Block.

No. of VTOC lliook. uaed

VTOCX of N.twork Root Dlr.

VTOCX 0' DI.k Entry D1r.

VTOCX 0' .08 Paging IIU.

VTOCX of Spboot

VTOCMap

Unu •• d

Figure 4-8. VTOC Beader

The VTOe header contains the Collowing information:

II!~

• The hash value that the system uses to locate an object's VTOCE in the VTOe given
its UID. (A hash value is always the _me as 1.he siu or the corresponding hash table.)

• The number of blocks in the VTOC. In general, this value is the same as the number
of VTOe blocks, unless the system has allocated additional extension blocks.

• Pointers (VToe indexes) to special objects that the system requires to boot
successfully. These pointers are VTOCXa, not UIDs; a VTOCX points directly to the
objects'VTOCEs. VTOe indexes are described Curther in Section 4.4. The special
objects are:

1. The AEGIS (OS) paging file - an uncatalogued, permanent object that must
exist on any logical volume to be used as the boot device Cor AEGIS. The
paging file is the backing storage Cor the pageable parts of the AEGIS operating
system. The chapter on system initialization describes this file in detail.

2. The network root directory (/ /) - the network .. ""ide root directory replicated on
every node. The network root directory exists in the logical volume label; no
other data structure either catalogues it or points to it. Consequently, this
VTOCX represents the only pointer to the directory.

4-11 Local Object Storage SJ/3tem

3. The disk entry directory - -I- of the node's boot volume. The system requires
this information during system initialization to locate the node _ data directory,
the bootshell program, and the startup directories such as Isys and Idm.

In addition, SYSBOOT needs this directory in order to locate the stand-alone
utilities (see the chapter on system initialization).

4. The VTOCX to the 10 consecutive disk blocks allocated to SYSBOOT .

• The VTOC map, which describes the VTOC extents; each extent is represented by a
disk address plus the number of consecutive blocks in the extent.

4.3.4.2. The VTOC Map

The size of the VTOC is a function of the size of the logical volume and the average file size
specified to INVOL. Because the VTOC is usually large, INVOL cannot allocate it in contiguous
blocks without running into badspots 1..1 the volume. Consequently, INVOL splits the VTOC
into pieces, called extents. Each extent is a contiguous set of VTOC blocks. INVOL allocates
the VTOC in one to eight extents. It attempts to circumvent any badspots in the volume when it
creates the VTOC to minimize the number of VTOC extents it must create.

The VTOC map describes the extents that INVOL creates. Each VTOC map entry describes an
extent by giving the logical disk address its first block and the number of consecutive blocks
within it. Thus, the VTOC map provides the information to locate all the VTOC blocks in the
VTOC. The local OSS consults the VTOC map to find the the disk address of particular VTOC
blocks; see section 4.4.

4.3.4.3. The VTOC Block

A VTOC block is a hash bucket with space for five VTOCEs. Each VTOC block represents one
value of hash; that is, an object's UID hashes to a particular VTOC block.

When it initializes the volume, INVOL calculates the number of VTOC blocks required for object
storage based on the average file size in blocks that the user specifies (or from the default file size
of five blocks) and allocates that number of blocks. However, the number of VTOC blocks
initially allocated may not be sufficient to store all the objects that are eventually created on the
disk.

If an object is created and its UID hashes to a VTOC block whose VTOCEs are already full, the
VTOC manager handles the overflow by creating a VTOC extension block. The VTOC manager
first consults the BAT to obtain a free block, then chains it to the original VTOC block by
inserting its address into the ne%t block field. This VTOC extension block is simply another
VTOC block; however the system cannot locate it through the VTOC map because it has been
dynamically allocated.

Figure 4-7 shows the relationship between the VTOC map, VTOC extents, VTOC blocks and
VTOCEs.

Local Obiect Storage Syatem 4-12

/-

/- "
I '

,
\,-

\
\ ,- .. "

r-\
U

o

VTOC
Block

~J
r---__ J

VTOC HEADER (In LV Label)

00

01 02
~ ::::' ,.. :::::;::::: ... ::: .. ::.:

00

~ -:~ill.k .. dd ·.'01'y:: ::lno>ofoon.ecutkie
~ 1.ll>Iook.ln '.)(t • .,t.:~ .!~q>IOOka In .)(tent , .::::::,:: :,:: ... :::::: .. ,'" '" :::.: ::::::. :,: '

~ " ~ , ,.
~~ .. ~ .. ~ .. ~ ... -... --, ----~--~ ,

:,: :.,vroc_~~::lPl.<:i "
:: ,:.:::. ':. :": .. ::::::::;::::::.:,::::::,: i.o'

•
•

'4~----__________ ~

SECOND VTOC EXTENT
VTOC
Block

FIRST VTOC EXTENT ~

•
• • r

VTOC Block

pointer to next block 00
6ft the ha.h bucket ,',' .

:' 04
' ... ,:V'I'OC ... f.1APE (0] ,
., . . ;":::. :.;.;.; .

DO . ",. '. ",

,:VTOC~M'APE'['l' ,
: .':.,'.. ":',':, , 'IC

.,)::>vr.~~~MAP.£ :(21:::'/+: , : .. ,:--:., ... ,":.:.;," ... , ' ... ::.;':. 218

, , , :'::':::::·:YAe:#-"'~!~:,~).::.:·i·:::::·:::
, ...-, .-.':'::-=: :-....... -,.;".-. -., .. ,-:, , .. -.:.:'-, .. -.• :.:-,.;,.......... 334

, ' :,::::yrOC":MAPE(41::::::(

~~:-:::'-'------------~400

t r

Fisure 4-7. VTOC Map and VTOC Bloeka

4-13 Local 06jeet Storage SY8tem

4.3.4.4. VTOC Entries

A VTOC entry, or VTOCE, completely describes a single object on the logical volume.

A VTOCE is composed of:

• The VTOCE header, which is the permanent storage for the object's attributes (which
are described in Chapter 3).

• The disk addresses Cor the first 32 pages or the object (the object's first segment).
The VTOCE provides an erficient way to represent small objects. Ir an object is 32
pages or less, all the information about object's data blocks resides in the VTOCE.

• Pointers to the object's other segments using file maps, which the local OSS allocates
as needed. The system supports three levels of file map:

1. The level 1 file map (Ll) contains 256 disk addresses ror the disk blocks
allocated to the 32nd through 287th pages of the object (segments 1-8).

2. The level 2 file map (L2) contains 256 disk addresses; each disk address points to
a level one file map. Thus, the level 2 file map can map 2048 segments.

3. The level 3 file map (L3) contains 256 disk addresses that point to level 2 file
maps; it supports 524288 segments. The system only uses the level 3 file map if
an object is larger than 64}..ffi + 32KB.

The levell, 2, and 3 file maps minimize the amount of data storage used to keep track of files.
The object storage system supports pointers for every page of data to handle sparse objects (a
sparse object is an object that contains gaps of zero-filled pages between actual data pages).

Figure 4-8 illustrates the structure of a VTOCE. Figures 4-9, 4-10 and 4-11 illustrate the
relationship between file map levels.

Local Obiect Storage System

\,

o

o

VTOCE HEADER VTOC ENTRY

31 ,. 15 0

,..-_00 :;;':::"VTOCE:. Ob ecffnfo.:::\~'~::: - - - - ---...... ~~~~ ... ---
04 .; fj~;·j~tl;)\\1~{Jl1!~~I~~:;if~:~.~~~I~;!I!!I~!iltm-;
oc- :ll~lllll!!!!I~I~:~~~!jllljljlltjll!l
1C·.: :·::::··:u6 fACCObj ·f::::::::::·:

:)Hll~lill1ii\;~~itor°n.,.'·:PbJac:;~~1~Uili~111~~ll
1C ·::><»Current :btngth::::H~H:n>
10 :::.:}/::~/H.'oo.~~.!U~:/jW~n):Hi!t
I. :·.::':::.:~!fD.temme:ta.t:U •• d::/HH
21 ::::Datemme Last Modified· .

2e ·::;::::·::U'Dof ~fK.t In .:.:::;:;:;::
·:::Which Ob~t.c.~u.(rT·:

31:24 23:16

to-----....... ,

111413121110 I I

Veralon Number 8vatem Type U C C P I F MBZ

File Trouble

Immutable
Permanent

Concurrency Control
VTOCE In Use

Fisure 4-8. VTOC EDt!')"

J
I

I
I ,

7:0

MBZ

VTOC BLOCK

- _ _N_EXT....,;_ .. A_D_D

I
J

I

::l:W~::·~~~::~;:.·::·

J VTOCE l1J
I 1-------1

VTOCE (2)

VTOCE (3)

VTOCE ,.]

4-15 Local Object Storage Sfl3tem

VTOCE
Header

FILE MAP, LEVEL 0

Ale Map 1 PTA • ____ --.

File Map 2 PTA + FILE MAP. LEVEL 1 (0)
File Map 3 PTA

Local Object Storage S1J&tem

DADDR Object Page 32
DADOR Object Page 33 1 __ ---.~

DACOR Ob ect Page 34

DADOR Object Page 35

•
• •

DADDR Object Page 288

Figure 4-8. Level 1 File Map

VTOCE
H ... d.r

Fl •• My
Lev.~

PTR to FM 1

PTR to FM 2 ~
PTR to Fm 3

255

o

LEVEL 2
FlLEMAP (0]

DADDR. FM 1 (1)

DADDR. ~, (2)

DADDR. FM [3]

•
• •

DADDR. FM [256]

•
•

~

LEVEL 1
FlLEMAP [1]

DADDR. Pag. 211

DADDR. Pag. 210

DADDR. Pag. 211

• -•
DADDR. Page 141

o

III

_______ I

255

LEVEL 1
FlLEMAP [256]

•
•
•

DADDR. 15535

~

LEVEL 1
FlLEMAP 12]

DADDR Page 146

147

148

•
•
•

102

Figure 4-10. Level 2 File Map

•

4-17 Local Object Storage SY8tem

"'

VTOCE
H.ad.r

File Map
Leve.O

LEVEL 3
FlLEMAP

PTA to FM 1

PTA to PM 2 U DADDR. ~ 2 III
PTR to Fm 3 DADDR, FM 2 12]

DADDA. FM 2 (3)

•
• •

DAD DR. FM 2 [251]

~

.-

LEVEL 2
FlLEMAP (1)

DADDR. 11M I [257 •
(251]

Pill
•
-.-
•

DADDR. IIM1 1512]

f

~ LEVEL 2 FlLEMAP [2]

DADDA. FM 1 1113] •

•
•
•

(514)

[515]

[718]

Filure 4-11. Level S File Map

Local Object Storage Sf/,tem 4-18

LEVEL 1
FlLEMAP (257)

DADDR PQ 15537

1113 •

•
• •

15712

LEVEL 1
FlLEMAP [515]

/~--"

r- '
(

..........

o

4.4. VTOC and BAT Managers

The VTOC manager performs the following functions:

• Mounts and dismounts logical volumes

• Allocates and locates a VTOCE given a UID

• Returns the UID stored in a given VTOCE

• Gets and/or sets the UIDs or the naming server directories on a given volume

• Returns the VTOCE header for a given VTOCE

• Updates a VTOCE header with specified information and writes it to disk

• Gets a specified file map and extends it

• Deletes a file map level (truncates a file) starting at a specified page

• Reads and/or writes a file map

BAT manager operations are:

• Mounts and dismounts logical volumes

• Allocates available disk blocks

• Frees specified disk blocks

• Returns the number of free blocks on the volume

• Returns the BAT step specified in the BAT header

The next sections describe some of the more important Cunctions performed by the VTOC and
BAT managers.

4.4.1. Locating an Object in the VTOC

The memory management subsystem is the primary client of the VTOC manager lookup
function; it calls the VTOC manager to read the attributes and pages of an object from the
VTOCE into its object caching data structure, the active segment table. The VTOC manager
lookup runction locates an object given its UID. In addition, it passes the object's VTOCX back
to the memory management subsystem; specifically, to the AST manager. The VTOCX points
directly to the VTOCE that describes the object; it contains the logical disk address of the VTOC
block that contains the object's VTOCE and the index within the block at which the VTOCE
exists. The layout or a VTOCX is shown in Figure 4-12.

Local Object Storage System

31 4 a o

DADDR of ObJect'. VTOC ILK INDX I
Flpre 4-11. VTO C IDdex

For example, the poinw to th~ disk entry c:lirectory in the VTOC header is a VTocx. II ita
value is 734DO, then the VTOCE ror -/- is tbe rust eDtry in VTOC block 7841), pbysical cliak
block 734E {assuming that the logical volume begins at DADDR I}. Figure 4-13 illustrates t.his.
example.

I 734D I 0 I
" II!III ~ . w

,
Dilk Addre •• VTOCE

within
block

Figure 4-13. VTOO Index for Diak EDtr)" Director)"

The VTOC manager locates a VTOCE given a UID as follows:

1. Hashes the UID to set the index into the VTOe, which is the VTOe block number.

2. Consults the VTOC map to· determine the disk address of that VToe block. Given
the block number, the VTOC map returns the logical disk address of that VTOC
block.

3. Reads in VTOC block and compares the object UID field within each of the five
VTOCEs to the given UID. II it does not find a match, the VTOC manager reads the
next _ add pointer to locate any VTOe block extensions. Ir next_add is lero, then
the UID is not located on this volume.

4. Ir it matches the UID to & VTOCE, it creates the VTOCX and returns it to the AST
manager, who places the VTOCX into the correct entry in its active segment table.
The AST manager now has & pointer to the VTOCE, and marks it in use so that no
one else can allocate it.

Ir the AST manager is rorwardins the VTOCE inrormation to a remote node, the remote AST
manager's active segment table entry will not identify the VTOCE directly; instead, ita VTOCX
will contain the home node'. m and the number of the network to which it is connected. For
more information on the AST manager, see the section on memory management; for information
about network numbers, see the chapter on the internet manager in the network section.

4.4.2. Oreatina an Objeet

The managers in the object stol'ale system interact as rollows to create an object. A higher level
system component, for example, the naming server (name_Screate_rue), calls the FILE manager
to create a file, passing to it the directory UID where the object is to be catalogued.

Local Object Storage SJ/,tem 4-20

o

o

The file manager (file_$create) uses the directory UID to determine on which volume to create
the file, then creates the object in the following steps:

1. Calls the AST manager (ast_$get_info) to locate the volume that holds the
directory UID.

2. Calls the UID generation routine (uid_$gen) to create a UID for the object.

3. Fills the VTOCE header for the new rue with default object attributes and calls the
VTOC manager to allocate a VTOCE.

4. The VToe manager (vtoc_'allocate) takes the hashed U1D, locates the appropriate
VTOe block, and checks for a free VTOCE. If it locates one, it sets the -in use- field
in the VTOCE header and appends the header to the VTOCE.

5. Ir the VTOCEs are full, it calls the BAT manager (bat_'allocate) to allocate an
extension block and chains it to the VTOe block. Once it builds the VTOCE, the
routine creates a VTOCX for the object and returns it to file _ $create, who writes it
to the active segment table entry for the object being created. In turn, file _ 'create
returns the generated UID to its caller.

Once the VToe space is allocated, the object actually exists.

4.4.3. Allocating Blocks on Disk

When allocating blocks, the BAT manager attempts to allocate the first available block that is
nearest to the last block it allocated. It allocates free blocks as follows:

• Reads the BAT into main memory

• Locates the free blocks

• Changes the in-memory copy of the BAT

• \Vrites the BAT out to disk

Note t.hat the on-disk copy of the BAT is nearly always out-of-date. Thus, one of SALVOL's
most Important functions is to reconstruct the BAT after a system crash.

4-21 Local Obiect Storage System

'

o

o

Chapter 5
Object Management

Object management concerns three u.sks:

• Object creation and deletion

• Reading and writing object pages

• Reading and writing object attributes

The AEGIS system splits the export or these tub to user space between the single-level ltore
(SLS) manager (the MST manager) and the location-independent object manager (the FILE
manager). Together J these managers export the AEGIS kernel'l object management functions to
user-mode programs. The MST manager (SLS) provides the 'unctions to read and. write object
pages, while the FILE manager makes it possible to read and write the object's attributes and to
create and delete objects. Figure 5-1 displays these managers and illustrates their interaction
with AEGIS kernel managers.

Lock --
c

File .. -
MST

Unwired

- - - - ~ -- -i- - -
MST
wired

~r
~ , ~ ,

I VTOC ~ -AST --
PMAP -'100 -
"

Remote
File Server

Remfile

Client

Remote CSS

Remote
Paging Server

Network

Client

4-- From network
via low-level IPC

T o network
- via low- ---.

levellPC

Pagsable - - --Wired

4-- From network
via low-lever ,PC

T o network
~ via low- ---.

'evellPC

Figure 6-1. Object Management Components

6-1 Object Management

5.1. MST Manager Object Management

The MST manager provides user-mode programs with location-independent access to an object's
pages. The user programs specify the object's UID; the MST manager then calls the cached and
remote object storage systems to locate the object and read or write the object's pages. The MST
manager relies on the cached OSS managers AST and PMAP to read and write object pages.
These managers obtain local object pages from disk storage, or call upon the remote rlle system's
NETWORK manager to.read in and write out remote object pages on their behalf. Chapter 10
and 13 describe how the MST, AST, PMAP and NETWORK managers carry out object page
reading and writing.

5.2. FILE Manager Object Management

The FILE manager provides the following:

• Exports to uSer programs the abili"y to get and set an object's attributes

• Exports to user programs the kernel-level purification (ast_$purify)

• Permits object creation and deletion

• Provides a location operation to return the address of an object's home node

To carry out these operations, the FILE manager relies on following managers:

• The active segment table (AST) manager

• The remote file manager (REMFILE)

The file manager exports most of the functions of the AST manager. For example, the FILE
manager modules to read and write attributes simply call the corresponding AST manager
modules to carry out the operation. The AST manager carries out any operations on local
objects or it invokes the REMFILE manager to read and write remote object attributes and delete
remote objects.

The main dirrerence between the The FILE manager and the AST manager is that the FILE
manager can be called from user mode; that is, FILE modules are pageable, whereas the AST
manager modules are wired, and FILE routines pass by rererence instead or by value.

The REMFILE manager provides a client side that packages up requests for remote FILE level
operations. The remote rlle client (be it FILE or AST manager) passes the arguments to the
target remote file server, which executes the call and passes back the response to the client
through the socket mechanism. The client side provides other services besides remote FILE
operations; see Chapter 23 for more information on REMFILE operation.

The next sections describe the object management functions shared between the FILE, AST, and
REMFILE managers.

Obie.ef Management 5-2

r-.-- -
! "

\ ...

.,
.......... ,' ..

(J

C)

o

--------------------------- .. - -

6.2.1. Object Creation

The FILE manager is responsible ror object creation. When called to create an object, it rU'St
calls t.he AST manager (ast_$get_inro) to locate the volume on which the object is to be
created.

If the object is to be created on a local volume, the FILE manager calls the VTOC manager
(vtoce_$read/write) to create space ror the object and build it into the logical volume structure.

If the object is to be created on a volume attached to another node in the network, the FILE
manager calls the REMFILE manager to create the object (rem_file_'create_type). The
REMFILE manager client side passes the creation request to the remote rlle R"er on the target
volume, where the local VTOC manager creates the object.

6.2.2. Object Deletion

Programs can delete objects in a variety of ways. Delete operations at the FILE manager level
include:

• Deleting the object on demand (file_$delete).

• Deleting the object when it is unlocked (file_Sdelete_ when_unlocked).

• Deleting an object despite the protection assigned to it; (!ile_Sdelete_rorce,
rile _ Sdelete _force _ when_ unlocked); this routine deletes the object whether or not
the caller has delete rights if it ascertains that the caller has the power to change the
ACL to delete rights (ACL change rights).

• Truncating and optionally zeroing the object (file _ $truncate, file _ Sinvalidate, or
rile_Sset_Ien, where length equals 0).

When a program calls the FILE manager to delete an object, the FILE manager checks the access
rights. If the check passes, it calls the AST manager's truncate routine (ast_Struncate).

When it is called to delete an object, the AST manager first checks to see if the object is local (by
examining the VTOCX in the ASTE for the object). If it resides on a remote node, the manager
determines the home node's internet address and calls the REMFILE manager to send the delete
request to the object's home node (rem_file_Struncate).

If the object is local, the AST manager next checks the object's reference count to see if there are
anyone else is using the object. If there are no other users, the manager deletes it. Otherwise, it
decrements the object's reference count.

5.3. Reading and Writing Object Attributes

The FILE manager relies on the AST manager to read and write an object's attributes. When
called to read or write an object's attributes, the FILE manager simply checks the caller's access
rights to the object and then calls the AST manager to read or write the object's attributes on its
behalf.

6-3 Object Management

If the request is to read an object's attributes, the AST manager (ast_$get_info) reads the
object's attributes:

• From the ASTE if the object has any active segments

• From the VTOCE if none of its segments are active

The ast _ $get _ info routine calls the REMFILE manager to send out a remote request to read
the object's attributes:

• If the object is not local and the creator node portion of its UID (uid.node) specifies a
remote node

• If the hint manager (see Chapter 7) returns a remote node to check

If the request is to write a specific object attribute, the AST manager (ast_$set_attribute)
modifies the attribute cached in the ASTE. If the object is local, it writes this modification
through to the VTOCE. If the object is remote, the AST manager calls the corresponding
REWILE manager set attribute routine, which asks the remote file server to change the
attributes using the target node's AST manager.

5.4. Locating Objects

The FILE manager provides a routine that locates an object given its UID (file _ $locatei) and
return its internet address to the caller. Clients such as the lock manager and the naming server
helper (see Chapter 8) call this routine to try to fmd the object's home node and network given
its VID. For example, if objects are created on a floppy disk on one node, and then the floppy is
moved to another node, the node ID portion of objects created on that floppy will contain the
creator node ID, not their present home node ID. So, programs that want access to these objects
call the file _ $locatei routine to find the location in the distributed system at which they
presently reside.

The file _ $locatei routine first calls the AST manager to obtain the cached location inrormation
(the object'sVTOCX). If the object is remote, the routine next calls the NET\VORK manager to
look up the network number of the object's home in the network ID table; otherwise, the object is
stored locally and the routine passes back the local network and node IDs.

If there is no VTOCE associated with the object, the object behind the specified UID could be a
diskess node. Because diskless nodes are named, the naming server helper could be attempting to
locate a diskless node as part of its operations.

In this case, the FILE manager compares the given UID against the list of canned UIDs to see if it
matches the canned UID type given to diskless nodes. If a match occurs, the routine can then
consult the naming server's directory manager to find the network on which the diskless node
resides (dir _ $find_net).

5.5. Force-Writes and Force-Purincation

The AEGIS system supports two kinds of write requests from users: force-writes and force
purifies. A forc;-write implies a write to disk. A force-puriry writes remotely modified pages to
the home node, where they are locally purified at a later time.

Object Management 5-4

C)

e',

o

The FILE manager provides user programs with routines to Corce-write and to Corce-puriCy. The
file _ $purify routine force-purifies an object. The FILE calls that Coree-write objects to disk are:

• The file_$fw _file routine, which Corce-writes the entire object to disk. This routine
Corce-writes all the modified pages oC a specified object to disk, whether it is local or
remote.

• The file _ $fw _ partial routine, which Corce-writes all the modified pages oC one
segment to disk.

• The file _ $fw _ on _ unlock routine, which Corce-writes the object as lOOn as it is
unlocked.

The lorce-write routines call the AST manager's puriCy routine (ast_$purify) with the Corce-write
option. If the object is local, the AST manager writes the object's modified pages to disk and
updates the DTM in the active ASTE with the current local time. If the object is remote, the
AST manager writes the modified pages to the home node as if it was a Corce-purify. Sending the
modified pages back to home node, however, simply sends the pages back to the home node's
main memory, where they will Call into the local purification process; it does not guarantee that
they 'Will be written to disk as was requested. Consequently, the AST manager also sends a
message to the remote file server on the remote node to make sure the modified pages get written
to disk.

6-6 Obiect Management

-------_.----- -------------------------------------

(j

o

C)

Chapter 6
Object Lock Management

The AEGIS system on every node runs a lock manager that provides rtle system clients with the
ability to control simultaneous access to objects. Using the lock manager, a process can gain
control of an object, then block other processes Crom using the object in an incompatible way.
Both . user-mode and supervisor-mode AEGIS components rely on the lock manager whep
accessing obje~ts.

The AEGIS system locking mechanism is designed to solve two problems:

• To control concurrent access to an object; that is, to provide orderly access to the
data so that, when two processes modiry the same object, their modifications do Dot
simultaneously overwrite each other .

• To maintain consistent data between the caches in all nodes; that is, to ensure that all
processes in the distributed system have the same view or an object.

The next sections explain how the lock manager handles concurrent access and maintains cache
consisten cy .

6.1. Controlling Concurrent Access

The kinds of access that the lock manager permits depends on the object's concurrency mode, its
access mode, and its lock key.

6.1.1. Concurrency Mode

The AEGIS system defines three concurrency modes that a process can apply to an object:

• No concurrency control

• Protected concurrency control, which allows shared reading or exclusive writing
(file_$nr _xor _lw)

• Shared concurrency control, which allows shared writin~ (file _ $cowriters)

6.1.1 .. 1. No Concurrency Control

An object that the FILE manager creates has the rollowing characteristics:

• It is a temporary object.

• It is uncatalogued; that is, it has no associated pathname entry in the naming server's
directory structure.

• It has no concurrency control assigned; that is, anyone in the distributed system can
potentially read and write it.

6-1 Obiect Lock Management

The object's creator is responsible ror making the object permanent, cataloguing it, and assigning
it another concurrency mode. Some objects, however, remain temporary and un catalogued
because their creators do not intend to share them with other processes. Because they are not
shared, these objects do not need any concurrency control; ror example, thePROC2 manager does
not apply concurrency control to the stack object, because only one process uses it exclusively.

8.1.1.2. Protected Concurrenq Control

Protected concurrency mode (nr _xor _Iw) synchronizes access to an object at the process level.
Protected concurrency control means that either any number or processes can read the object, and
writing is blocked, or only one process can write the object, and all readers are blocked.

8.1.1.S. Shared ConcurrenC7 Control

Shared concurrency control (cowriters) allows any number or processes to simultaneously write an
object, but all the writing processes must be running on the same node; the object, however, can
reside on a different node than the processes that are rererencing it. Consequently, the cowriters
type of concurrency provides protected concurrency mode (nr _xor _lw) access to objects at the
node level: any number or nodes can read the object, and writing is blocked, or one node can
write the object, and all readers are blocked.

8.1.2. Access Mode

When a process locks an object, it specifies, in addition to the object's concurrency mode, the way
it wants to access the object; this is the lock's access mode. The lock manager supports three
types of access (or protected and shared locks: read, write, and read with intent to write at a
later time (RIW). (Note that it does not support write with intent to read at a later time.)

In addition~ processes can direct the lock manager to change (rom one access mode to another:
change read to write, change read to RIW, and so on. The hierarchy of access modes and change
access mode requests (from weakest to strongest) is as rollows:

1. All (used on unlock only)

2. Read

3. Read with intent to write (RIW)

4. Change read to write

5. Write

6. Change write to read

7. Change read to RIW

8. Change write to RIW

9. Mark (or deletion

10. Unmark (or deletion

06jeet Lock Management 8-2

' , .'

o

o

o

Mark for delete is not really an access mode. Rather, when set, it directs the lock manager on the
home node to delete the object as lOOn as it has released the last lock held on it. The system
-locks· temporary objects with the mark-ror-delete access mode to enrorce automatic resource
cleanup during process deletion. The PROC2 manager's delete operation releases all locka that the
target. process holds; consequently, the lock release will trigger the object deletion (which the AST
manager &st _ .truncate routine carries out).

8.1.1. Lock Compatlbll1t7

Before the lock manqer CaD srant a lock to a process, the requested lock must be eotnptJti6le
with the other locka held OD the object. The compatibility rules are:

• Shared reads and protected reads are compatible and can originate rrom difl'erent
nodes.

• Shared reads, RIW s, and writes are compatible if the locking processes are on the
same node.

• Shared RIWs are compatible with protected reads, and can originate rrom different
nodes.

• Shared reads are compatible with protected RIW s, and can .. originate rrom dirferent
nodes.

Table 6-1 summarizes the concurrency control applied given a concurrency mode and an access
mode.

Protected RIW

Exclusive W

Shared R

Shared RIW

Shared W

Table &-1. Lock Compatibility

. Protected Protected Exclusive Shared
R RIW W R

YES YES NO YES

YES NO NO YES

NO NO NO NO

YES YES NO YES

YES YES NO YES

NO NO NO YES·

• muat be on •• me node

Shared
RIW

YES

YES

NO

YES

YES

YES·

Shared
W

NO

NO

NO

YES·

YES·

YES·

Thus, under the compatibility rules, if an object is locked ror protected reading, other processes,
both local and remote, can also obtain read locks on the object, but no processes can obtain a
write lock. One protected write lock, however, blocks any other writers or readers.

8-3 Object Lock Management

On the other hand, iC a process holds a shared read lock, any process on the ,ame node can
simultaneously hold a shared write lock. As a result, holding a shared read lock does not bar
other proct"sses Crom getting a shared write lock and changing the object. It is up to the
application using the shared concurrency mode to control concurrent access between the processes
on that node.

In addition, the lock manager permits protected reads ·4 occur simultaneously with shared reads,
as long as there are no unregulated write locb on the object.

8.1.4. The Loc:k Table

The lock manager on each node maintains a lock table that records:

• All locks on local objects, whether they are held by local or remote processes

• All locks held by local processes, whether they lock remote objects or local objects

Consequently, when a process requests and obtains a lock on a remote object, two lock tables are
updated: the table on the object's home node reflects the Cact that the local object is locked,
whereas the table on the calling process's node indicates that the process holds a lock. Lock
tables never store information about remote processes holding remote locks; either the process or
the object must be local. .

The information stored in the lock table entry includes:

• The locked object's network number and UID.

• The locking process's network number and UID.

• The lock's concurrency mode (protected or shared) and access mode (read, write, or
RIW).

• The transaction ID, which identifies individual lock requests in the event that a single
- process locks the same object more than once. The lock manager also uses the

transaction ID to identify duplicate lock operations. On lock requests, the duplicate
lock transaction ID will match the existing lock, 80 the lock manager can discard the
duplicate. On unlock requests, the lock will no longer be recorded in the lock table.

• Whether or not it is marked Cor delete; only the lock table on the object's home node
will indicate mark-Cor-delete status.

The object UID, process UID, and transaction II> together define a lock's uniqueness.

Obiect Lor.k Management 8-4

c

(j

8.1.5. Lock Key

In addition to the lock entries in the lock table, the cached and local object storage systems (AST
and VTOe) provide a lock key field that reflects how the object is locked. The field can contain
anyone of the following values:

• If the lock key field is 1, there is no concurrency control on the object. This key
allows any node to read or write the object (any access lock key).

• If the lock key. field is 0, the object is locked for reading only (there are no writers).
This key allows any node to read the object (all readers lock leey).

• If the lock key field contains a node ID, the object is locked Cor protected or shared
write. The node ID in the lock key corresponds to the process that has locked the
object for write. This key prevents processes on other nodes Crom reading or writing
the object.

The lock key provides cached concurrency control. The system uses the key to enforce the locks
that processes have obtained and stored in the lock table. Specifically, the AST manager on the
object's home node checks this field when it is called to process remote read or write requests for
the object's pages (ast_Stouch). On a remote request to read a page, the home node checks the
lock key and permits the read if:

• The lock key is all readers

• The lock key is any access

• The node ID of the reader matches the node ID in the lock key (shared reads and
writes can occur simultaneously, but they must originate from the same node)

If the lock key and request are not compatible, the cached OSS reports a read concurrency
violation.

If the remote request is to write a page, the write is permitted if one of the following conditions is
met:

• The lock key says any access

• The node ID of the writer matches the node ID in the lock key

Otherwise, the system issues write concurrency violation status.

The lock key check enforces the lock in two ways. First, it ensures that the locking process
cannot carry out an an illegal operation under the lock, like writing the object when it has locked
it for read access. Second, it ensures that other processes will not break the locking process's lock
as it is recorded in the lock table.

Storing the object's lock key in the ASTE also optimizes page I/O, because it allows the system
to determine quickly whether or not the requested paging operation is legal.

8-5 Obiect Lock Management

6.1.8. Obf.aining a Lock

A process that wants to lock an object makes a lock request to the lock manager, specifying the
object's UID, the concurrency mode to assign, and the way it wants to access the object (R, W,
RIW). "'''hen it receives the request, the lock manager checks its lock table to determine whether
the proce&! is allowed to lock the object; that is, whether the lock request is compatible with the
other locks stored in the table. Because locb with different concurrency modes are compatible,
the lock manager must scan the entire chain of locb for an object to make sure that the
requested Jock is compatible with every other lock held.

If the requested lock is compa.tible, the lock manager grants the lock by creating a new lock entry
for the object in the lock table. In addition, it the lock key required by the new lock is different
from the lock key cached in the object's active segment table entry (that is, if an ASTE for the
object exists), the lock manager writes the new lock key into the ASTE. If the object is local, the
AST manager will write it through to the VTOCE.

8:1.7. Changing a Lock'. Access Mode

A process· can change the access mode of an existing lock. The lock mana.ger follows the
exclusive or rule when handling requests to change the access mode of an existing lock:

• If the existing lock is a protected read, the caller can change it to a write lock as long
as there are no other readers.

• If the existing lock is a protected write, the caller can always change to a read lock.

A process can only change the access mode of an existing lock; it cannot change its concurrency
mode.

6.2. Maintaining Consistent Data

The lock manager uses the object's DTM attribute to maintain consistent data between nodes in
the distributed system. To carry out this function, it observes the following rules:

• The object's DTM can only change while it is locked.

• The home node must always have a complete copy of the latest data when the object
is not locked.

• The locking node's cache must be validated while the object is locked; that is, the file
system client must verify that the object pages it has cached are the most recent
before it reads or writes the object.

Obiect Lock Management 8-8

.... ".

" '- .

o

'\ 0"

To obey these rules, the lock manager and a client process interact as follows:

1. The client makes a request to lock the object for reading. The lock manager sets up
the object's locK key and passes back the object's DTM to the client.

2. If the client has previously cached segments of the locked object, it compares the DTM
that the lock manager has returned with the DTM stored with its cached copy of the
object. The client makes this check to determine whether the copy of the object in
the cache is the most recent version. If' the client finds that the cached version is
obsolete, it flushes the old version from the cache and reads in the new version from
the home node.

3. The client requests some read operations. On each read, the AST manager checks the
lock key to make sure that the client accesses the object properly.

4. The client changes to a write lock (the lock key changes to the process's node 10), and
makes some write requests on the object. Each time the client writes a page to the
object's home node, it receives a new DTM from the home node.

5. If the client changes the lock from write to read (or RIW), the lock manager calls
ast _ $purify to write the modified pages to the home node. This operation keeps the
home node's copy of the object consistent so that other readers won't have to go to
the locking node for the latest copy.

6. When the client unlocks the object, the lock manager writes any modified pages still
on the client node back to the object's home node before it releases the lock. This
operation ensures that the next client to lock the object will find an up-to-date,
consistent copy of the data on the home node. If the object is still locked for read and
the lock manager is running on the home node, it also updates the lock key to reflect
the • all readers· status.

6.2.1. Lock Verification

The home node's lock table does not always reflect an object's current lock status, especially
when the object is locked by processes that are running on remote nodes. A system crash on the
locking process's home node, or lag time between local and remote modification to the lock tables
can cause the lock table on the home node to reflect a lock that is no longer held.

To ensure that a process obtains up-to-date lock status, t h e lock manager's lock request service
provides a.lock verification procedure that checks the lock table entry on the locking process's
home node against the lock table on the object's home node in the event that a lock request is
denied. The verification procedure first locates and calls the lock manager on the object's home
node to read the local lock table and pass back the lock entry for the object to which its client
was denied access. This lock manager passes back the internet addresses of the process that has
locked the object and the object itself. .

If the locked object and the locking process reside on dirferent nodes, the routine then sends a
message to the remote file server on the proce38 ~ home node to see if the process still holds the
lock. This remote file in turn invokes the local lock manager to search its lock table ror a lock
entry on the object. If no entry exists, the verification procedure directs the object's home node
lock manager to remove the lock table entry from the object's home node, and passes back • not
locked· status to the calling lock manager, who then retries the denied lock request.

8-7 Object Lock Management

Note that the verification procedure Will release the lock only if it can veriry that there is no
entry for the object. If the lock verification request can't get to the process's home node, it
assumes the lock is still valid. This assumption takes into account the possibility that the
process's node could be unavailable because it is a victim of a network railure rather than a
system crash. A locking process on a node that is temporarily partitioned out of the network is
still running and will eventually want the lock again; a process on a crashed system no longer
exists.

Object Lock Management 8-8

C)

r-",

U

o

Chapter '1
Object Location, or the Hint Manager

Because UIDsare location-independent, the AEGIS "stem can move objects around in the
network without having to rmd and alter all references to them. & a result, however, the system
requires an object locating service in order to rmd an object liven ita UID.

This chapter discusses the hint manaser, the component or ihe object storage sptem that helps
locate an object resard1ess or where it resides in die network. Figure 7-1 shOWl the relatiouhip
between the object storage system components as well as the modules that call the hiDt lIlaIla&er.

I Naming Server (Name) I

Lock

Fila

AST

PMAP

MST
Unwired

- - - - - -.~ --

--
"

MST
Wired

Pageable ---Wired

Figure '1-1. Relationship or Hint Manager to Other System Components

The hint manager perrorms the following functions:

• Initializes and unmaps hint riles (hint _ tinit, hint _ tshutdn)

• Adds a specified UID/internet address pair to a hint rue (hint_tadd, hint_taddu)

• Returns a list of internet addresses at which a liven UID might be found
(hint _ Iget _ hints)

The next sections describe internal hint rile structure and gives the details of hint manager
functions.

'1-1 Object Location, or the Hint Manager

7.1. Hint File Structure

Each hint file is actually composed of a hash table. At the head of this table is a version number
that indicates the IOftware version of hint flle structure. The hint manager checks the version
number during hint file initialization to make sure the hint rlle is in the current format.

The rest of the table eontaiDa 1 to 84 pointen to hint h.ab buckets. Each pointer is an index to
the first bucket in the hash thread. Each hint bucket contains up to three hint items; each item
is composed oC a match _ node field and a search list. The ma.tch _ node field contains a node D>'
that identifies the UID about which location hints are ~ be kept. The search list contains space
Cor a maximum of three internet addresses which are the hints about where the object presently
exists. (An internet address consists of a node D> and the number of the network on which the
node resides; see Chapter 24 for more information.)

Figure 7-2 illustrates the hint file format.

HINT FILE

('node_datal hint_file)

--'
...

Hint Bucket
Hint

, - '''m-.t-c-h-n-o-de-IO-'

, - •• arch - " ' network node
lI.t 10 10

" , - - ~ _3_2 _b_lt_ 2_0_b_l_t ... ' _--_ ..
Figure 7-2. Hint File StruetUJ"e

7.2. Hint File Initialization and Shutdown

The system initialilation procedure os _ linit calls the hint manager procedure hint _ linit to
create and initialize a hint rlle when a node is bootstrapped. The hint manager creates the file in
/sys/node_datafhint_rlle. The hint_Iinit procedure initialiles a hint file in the following
sequence:

1. It checks to see it a hint file already exists on the Dode. Ir a hint rlle exists, the
procedure passes its Un> back to the caller.

2. If a hint file does not exist, hint _ Sinit attempts to retrieve the UID or the
node_data directory (by calling Dame_.resolve). Ir it can locate the node_data

Object Location, or the Hint Manager '1-2

--.---..... --~---- _._._---_._ .. _-----------------

directory, it creates a hint file (file_'create), adds the hint file name (name_'addu)
to the directory subsystem, and calls the file manager to mark the file as permanent

() (file_$mk_permanent) 00 that it will not be deleted if the system crashes.

o

o

3. If the node _ data directory does not exist, the hint manager calls the naming server to
drop the entire node_data/hint_file name from the directory subsystem and calls
the file manager to delete the file.

4. Alter the hint manager either locates or creates the hint file, it maps the file to the
caller's process address space.

5. Next, the routine checks the version field within the hint file. If the version Dumber
indicates that the caller does not need a hint file, the routine returns.

6. If the version number is not the current version, the hint file is in an obsolete format
and needs to be initialized. If this is the case, the routine truncates the file (by calling
ast _ $truncate) and sets the version field to the current version.

7. Finally, the routine sets up a pointer to the hint file and returns.

When a node is shut down, the os_'shutdown procedure calls the hint manager (hint_Sshutdn)
to unmap and unlock the hint file. The hint file persists across system shutdowns; the shutdown
procedure simply unmaps the hint file, but does not delete it. A hint file is not deleted until the
volume on which it resides is initialized with the INVOL utility. The system treats a hint file as
it does any other object in the network.

7.3. Adding Hints to a Hint File

At present, the following AEGIS components add hints to hint files:

• The ASKNODE service (ASKNODE)

• The naming server (NAME)

• The FILE manager (FILE)

The following sections describe how the hint manager adds hints to a hint file and also describes
the logic used by the above AEGIS components to add hints to a given hint file.

7.3.1. How the Hint Manager Updates a Hint File

The procedure hint _ $add adds to the appropriate hint file the node ID of the node at which the
specified (via UID) object is presently located. It carries out the following steps:

1. Checks to see if the hint file is mapped. If it is, the procedure hashes the node ID
portion of the object's UID to obtain the index into the hint hash table.

2. Compares the node ID specified in the call to the node ID in the match_node field of
the first item in the hint hash bucket. If the two node IDs match, the procedure has
located the correct hint file.

7-3 Object Location, or the Hint Manager

3. Reads the first node ID in the search list. It this node ID is the same as the node ID
to be added as a hint, then no addition to the hint file is necessary. It the second (or
third) node ID in the search list is the node ID to be added, the procedure rearranges
the list so that the desired node ID appears fll'St.

4. IT none of the node IDs in the search list match the node ID to be added, the
procedure checks to make sure that the node ID to be added is not the local node's ID
or the node ID where the object was created, and then adds the node ID to the hint
hash bucket.

7.3.2. Hints trom ASKNODE

The ASKNODE service is 'one of several information gathering services available to both users
and the system. ASKNODE allows users and AEGIS to check the state or another node on the
network. NETSTAT is an example or a program that calls this service.

The procedure asknode_$get_inro retrieves from a given node inrormation requested by the
caller. One kind or inrormation request concerns inrormation about logical volumes, including the
volume's directory entry UID, the number of rree blocks on the volume, and the number of total
blocks on the volume. IT the request to asknode_$get_inro is ror inrormation about a logical
volume, the procedure adds to the hint file (via hint _ .add) the node ID where the directory
entry is located. Adding this hint enables the file system to locate the volume if it needs to access
objects residing on it.

7.3.3. Hints from the Naming Server

The naming server adds hints to a hint file at two points:

• When it gets directory information for a specified pathname component
(name _ $get _ entryu), usually as part of pathname resolution

• When it adds the name and UID of a specified node to the requestor's local copy of
the network root directory

The naming server procedure name _ $get _ entryu searches a given directory for a specified
pathname component, and if it finds the component, returns information about the component.
To locate t.he directory, the procedure gets the hint list that hashes to the directory's UID and
reads through it for hints about the directory's location.

When it finds the directory, the procedure checks the hint list. IT the node ID where the directory
exists is not the first item in the list, the procedure adds the hint to the list, unless the component
is a link or the directory is the netw'ork root directory (/ f). It also adds a hint (via hint _ $addu)
about the component name if it locates the component within the directory.

The name $add node routine also updates hint files. This routine fetches a given node's local
root UID ~d adebit to the caller's local copy of the network root directory (/ f). If the node UID
it is adding belongs to a adisked· node, the procedure also adds a hint about its local root UID to
the hint file.

Object Location, or the Hint Manager 7-4

c)

o

o

7.3.4. Hinta from the File Manager

Although the FILE manager is primarily a hint rue user rather than a hint supplier, it makes a
call to move a successfully used hint to the head of the list so that any subsequent access to the
object will use the successful hint first.

7.4. Reading a Hint File

The hint_$get_hints routine, given an object's UID, returns to the caller a list of internet
addresses at which the object might be found. U no hints are available, the routine prompts the
calling component to search ror the object locally.

The foll,!wing AEGIS components call hint_$get_hints to read a hint file:

• The naming server (NAME)

• The active segment table manager (AST)

• The file manager (FILE)

The next sections discuss how the hint manager reads through the hint file data structures to find
hints about an object, and describes how the AEGIS components mentioned above use the hint
list in their operations.

7.4.1. How the Hint Manager Finds Hints

The function hint_$get_hints finds hints about an object's location, given its UID, by carrying
out the following steps:

1. Extracts the node ID portion or the specified UID and examines it. If the node ID is 0,
the object has a canned UID and will not need any hints. Since the node ID portion
of the UID is zero, the hint manager assumes that the object is local; consequently, it
does not need to use the hint file.

In addition, if there is no hint file associated with the extracted node ID, the
procedure returns.

2. Hashes the node ID to obtain the index into the hint hash table that points to one of
the hint buckets.

3. Examines the match node field within each of the hint items in the bucket until it
matches the extracted node ID with the node ID in one of the fields.

7-5 Obiect Location, or the Hint Manager

If the routine matches the extracted node ID with a node ID in the hint bucket, it
copies the internet addresses in the search list into its hint list buffer and returns this
list, with the number of hints in the list, to its caller.

4. Regardless of whether or not it locates a hint, the hint manager always returns two
special hints at the end of the lint list:

• The internet address of the creator node; that is, the node at which the UID was
generated. This hint is built (rom the UID and the local network number in
cases where it doesn't appear in the search list .

• The internet address of the local node.

As a result, AEGIS components carry out a local search for an object only ir ir the
remote search via the hint list fails. This sequence prevents a component from
searching locally for a remote object.

7.4.2. Hint File Reading by the Naming Server

When the naming server needs to search a directory for a pathname component, it uses the hint
manager to locate the directory. The naming server passes the directory's UID to the hint
manager, and the hint manager returns a list of node IDs at which the directory might be found.

If the hint manager returns the local node ID, the naming server assumes that the directory is
local and attempts to open it for the search.

7.4.3. Hint File Reading by the AST and Fll.,E Managers

The AST manager reads a hint file when it attempts to get information (via sst_$get_info)
about a remote object for which there is no local active segment table entry. See Chapter 10 for
more information about referencing remote objects.

The FILE manager reads the hint file when it attempts to get information about an object, or
when locking an object. See Chapter 5 for more information on this system component.

Obiect Location, or the Hint Manager 7-8

;/-- -.

o

Chapter 8
The Naming Interface

The AEGIS system provides two ways to name objects. Users and user programs rerer to objects
using text-string names,. called pathnames. The I)'Btem italr rerers to an object by ita unique
identifier, or UID.

Figure 8-1 illustrates the relationship between external aDd internal name 8pacea.

User
Visible
Objects

(Pathname)

Object
Storage
S~tem

(UID)

Figure 8-1. Object Naming in the AEGIS System

This chapter discusses how the system presently manipulates and stores pathnames and how it
translates, or resolves, pathnames to UIDs.

8.1. Pathnames, Directories, and UlDs

The user or user program names an object by assigning it a text-string name. This text string is
composed of a number of component names, each separat: : by a slash (f) character; together,
these components make up the object's pathname.

The system stores pathnames in a network-wide name apace that is structured as a multilevel
directory tree. At its base is a network-wide root directory that catalogues each node. Branches
of the tree represent directory objects; leaves on the tree represent particular objects.

A directory is an object (hence with its own U1D) that contains a simple set or associations
between component Dames and UIDs. The pathname gives the rull route through the directory
tree Dame space to the object; each pathname component provides a piece of that route.

An object's absolute pathname is an ordered list or component Dames that gives the path to
the object starting rrom the network root directory (f f). Because it begins at the root or the tree,
the absolute pathname is valid throughout the entire network. Users and programs can also rerer

8-1 The Naming Inter face

to objects by their relative pathnames; these names are abbreviated absolute pathnames relative
to one of a number of points in the naming tree: the node entry directory, the working directory,
or the naming directory. A pathname's leaf' component is the last component in the pathname.

A pathnarue component can also be a llnk to & relative or absolute pathname; a link causes a
jump from one point in the miming tree to another. Links are commonly used to refer indirectly
to an object whose absolute pathname may change over time, and as shorthand notation for
frequently used pathnames.

The AEGIS· system Dames objects by UIDs, rather than by pathnames; UIDs are described in
detail in Chapter 3. UIDs, unlike pathnames, are location-independent: they uniquely identify an
object no matter where i\ resides, but do not always identify where an object is currently located.

8.2. Managers of the Naming Interface

The AEGIS services that implement the naming interface span both AEGIS kernel and user mode
environments. The managers that maintain the naming interface are:

• The naming server

• The directory and network root directory managers

• The naming server helper (NS_HELPER) client software

• The naming server helper

This chapter briefly describes each of these managers, provides information on directory format,
and explains how these managers interact to maintain the directory data structures and resolve
pathnames.

8.2.1. Naming Server

The AEGIS component that links user level tex~string naming to system-level UID naming is
called the naming server. The naming server is a type manager that provides the following
functions:

• Associates a pathname component with a UID or link.

• Inserts and deletes DaInes Crom its database, the directory subsystem; this procedure is
called catalogumg and uncataloguins an object.

• Translates pathnames to UIDs by consulting the directory manager.

• Updates the hint rile on each node with information about the object's location (The
hint file is discussed in detail in Chapter 7.)

The Naming Inter lace 8-2

\ " ..

C)

o

8.2.2. The Directory Manager

The naming server uses the directory manager to create, delete, and operate on directories.
Directory manager functions include:

• Creating and initializing directories

• Adding and removing directory entries from the directory data structures

The network root directory manager is responsible for maintaining a node's local network root
directory (/ f). This directory differs slightly in format from the rest of the directories
maintained by the directory manager. See the next section for more information on directory
format.

8.2.3. The Naming Server Helper and Ollent Software

The naming server helper (NS_HELPER) is a server program that manages a master copy of the
network root directory. It works in conjunction with the naming server, the directory manager,
and the supervisor mode NS_HELPER client software to manage each node's network root (/ f)
directory automatically as nodes are added to the internet, moved from one network to another,
and removed from the internet. Once one NS _HELPER is notified of a node change on the
internet, it propagates that change to the other NS_HELPERs in the internet.

The naming server helper is part of the user program environment, which is not documented in
this manual. See the System Administrator's Guide for more information on this server. This
chapter does discuss how the underlying NS_HELPER client software operates to maintain the
network root directory.

Figure 8-2 illustrates the relationship between the naming server, directory, and NS_HELPER
managers.

8-3 The Naming Inter face

User Space
S7iPeNISorSpaC8 --

LOCAL

Naming
Server

DireCtory
Manager

Root Directory
Manager

rem name
(crrent)

--

Figure 8-2. Naming Interface Managers

-8.3. Format of a Directory

A directory consists oC five parts:

• The directory header

• A linear list of directory entries

NS_Helper
(.erver)

REMOTE

• An information block that contains miscellaneous inCormation about the directory

• A h..,h thread table whose contents point to directory entry blocks

• Directory entry blocks that eontain the aetual directory entries

Figure 8-3 shows the layout oC the directory.

The Naming Interlace

"- '",'

C)

(-)

11 o

V.ralon.1

Halh Valu.

Lailiaz.

PooIaaz.

Enlrl •• III look

High Block

~Chaln

~~
".,..nt U.D

~~

Enlry Counl

Maximum Count

Un •• r 1111 of
(11)

Dlr.ctory Entrl ••

Information Block

Ha.h Thr.adl
(43)

Entry Block Pool
(428)

Figure 8-S. Direetol'J' Structure

8.8.1. Direetol'J' Header

The directory header defines the sizes or the directory's lists and tables. The naming server stares
inrormation about the directory here as it creates and deletes directory entries. Table 8-1
describes the fields within the directory header.

8-5 The Naming Inter lace

Field

Version number

Hash value

List size

Table 8-1. Contents of DireetolT Header

Description

Version number of tbe directory.
Currently, tbis value is always 1.

Size of tbe basb tbrea4 table. This
value corresponds to tbe basb prime used
to hasb directory entries. Currently.
tbis value is 43.

Size of the linear list. Currently.
tbis value is .et to 18.

Pool size Total number of entry blocks witbin
tbe directory. Currently. tbis value is
set to 429.

Entries per block Number of directory entries within
each directory entry block. Currently,
there are three directory entries for
each directory entry block.

Hlgh block Number of the highest entry block that is
currently in use.

Free chain

Parent UID

Entry count

Ma.ximum count

-8.3.2. Linear List

Number of the first available entry block.
The naming server links available directory
entry blocks together and writes a pOinter to
the first free block into tbis field.

UID of the directory in wbich this
directory is catalogued.

Number of directory entries currently
catalogued in~ tbis directory.

Maximum number of entries the directory
can bold (currently, this value is 1300).

The linear list contains the first 18 directory entries. Since most directories contain less than 20
entries, the linear list provides a convenient way to manage small directories. When the naming
server performs a directory search, it searches the linear list berore any other data structures.

The Naming Inter lace 8-8

C)

o

o

----- -------------- ------ ----

8.8.8. InformatloD Block

The inCormation block stores miscellaneous information about the directory. It currently
contains:

• The UID for the deCault ACL to be applied to directories created underneath this
directory.

• The UID for the default rde ACL to be applied to all rdes created within &his
directory.

• Twelve spare words ror future expansion.

Figure 8-4 shows the layout of the information bloek.

11

0 J Veralon .,

Total Length

Header Length

0

~~ Default Directory ACL
(UtO)

~~
Default File ACL

(UtO)

12
Unu •• d
Word.

o
,

-~

~,

Info
Block

H •• der

Figure 8-4. InformatioD Block

8.8.4. Bash Thread Table

The hash thread table is an array oC pointers to linked lists or directory entry blocks. Each entry
in the table points to the first block in a chain of directory entry blocks. Each directory entry
hash chain is doubly linked; the fll'St two fields in each entry block point to the the next and
previous blocks in the chain. The last block in the chain has a lero forward pointer. If an entry
in the hash thread table contains lero. there are no directory entry ~locks associated with that
hash table entry.

The size of the hash thread table is determined by the hash prime value in the directory header.
Presently, this value is 43. Figure 8-5 shows how a hash table entries thread to chains of
directory entry blocks.

8-7 The Naming Inter lace

DIRECTORY HASH
THREAD TABLE

DIRECTORY ENTRY HASH CHAIN
•

"
next ~ next ~ next

prey (0) prev prey

entry_data entry_data entry_data

Ha.h Biook Ha.h Block Ha.h Blook

•
~ - next ~ next (0)

prey (0) prev

entry_data entry_data

H •• h Blook H •• h Blook

DIRECTORY ENTRY HASH CHAIN

Figure 8-6. ThreadiDI to DireetoJ7 EDtJ7 Blocks

8.3.5. DirectoJ7 EntJ7 Blocks

When user or system sortware catalogues an object in a directory, the naming server stores
information about the object in the directory entry block. Each entry block can contain three
directory entries or up to 144 characters of link text.

The fields within the directory entry block are:

• A pointer to the next block in the linked list or blocks.

• A pointer to the previous block in the linked list.

• The block type. The possible values ror block type are:

• 0 - the block is Cree.

• 1 - the block contains an array of up to three entries.

• 3 - the block contains up to 144 characters of link text.

• A count that indicates the number of used entries within the block.

Figure 8-6 shows the structure of a directory entry block.

The Naming Inter lace 8-8

' '

o

o

'1
Pointer to next block

PoInter to prevlou. bIook

Block Type I U •• ;e Count

Entry Mook data. The data he,..
II one of three type. dependtng
on the valu. 0' Block TYPe: .
0: Nothing

1: An arrav of u~ to three
cllrectory .nt

3: T.xt for a link name, or a
~Ion of one. (up to '44
oharaot.ra)

o

Figure 8-8. Dlreetol7 Entl7 Block Format

The naming seTVer creates a directory with all or its entry blocks free.. .As it uses blocks, the
naming server links currently unused entry blocks together into a doubly linked list, called the
free block list. The directory header contains a pointer to this list. When the naming server
deletes directory entries within a block, and the block becomes empty, the naming server places
the block back on the free block list.

8.8.6. Entry Block Data Format

The actual data about the directory entries or link data exists in the entry block data portion or
the directory entry block. Directory entry data consists or:

• The component name .

• The 32-bit network number or the catalogued node, ir the directory is the local
network root directory. The system uses the network number in two eases:

o The file system uses it to locate objects in the internet (see Chapter 7)

o Pre-internet AEGIS system services that take node IDs as arguments instead or
internet addresses use it to build the internet address (via the dir _Srmd_net
routine, which searches through the network root directory).

The Naming Inter Jaee

• The type or entry, which can be:

e 0 - Not in use .

• 1- aUlD .

• 3 - a link descriptor. The first word gives the length or the link text; the next
two words point to the entry block(s) that ~ontain the link text.

e The length of the component name .

• The rour words or entry data, either the Un> or the link text description.

Figure 8-7 shows how the data is structured.

"
i-

Nam.
(32 byt ••)

N.twork Numb.r Hint

Unu •• d I
R ••• rved

Entry Typ. I L8ngth

Thl ••• ctlon contain. 1 of thr ••
thing. de~.ndlng on the valu.
of .. Entry Flag"

1: Nothing

2: • UID (I byt ••)

3: Unk D •• crlptor
(1 word for length)
(2 word. to point to .ntry
block. containing the link
t.xt)

o

-

Flpre 8-7. Dlrectol"7 EDtl"7 Format

The Naming Inter lace 8-10

(~'
\ ..

o

o

---- .- .------•...• ----.----- .. ---.----

8.4. I)irectory Operations

The n&.ming server performs the following functions on directories:

• Oreates and deletes directories as well as names, links and files within the directory

• Calls the directory manager to retrieve information about directory entries, naming
and working directories

• Salvages the directory if it becomes corrupted

8.4.1. Opening Directories

Naming server routines that need to open directories (for example, name_.resolve,
name_$addu, and so on) call the naming server internal procedure open_dir. This routine
perfo:ms the following functions:

1. Tries to lock the directory. H the caller is the file server, the routine does not retry
the directory lock operation. (see Chapter 6 Cor inCormation on lock retries.)

2. Reads the directory's ACL to determine iC the caller has the proper rights to perform
directory operations. The open _ dir routine also checks the '!/3type field in the
VTOCE header to determine that the object being opened is indeed a directory.

3. Makes sure the directory isn't a directory that is permanently mapped. These
directories are:

• The node relative/disk entry directory U)

• The / com directory

• The working directory

• The naming directory

If the directory is not one of the above directories, open _ dir calls mst _ $maps to
map the directory to the caller's address space. The map routine returns a pointer to
th e directory.

4. Checks the directory's version number against the directory that the returned pointer
indicates. H these values do not match, the naming server returns -bad directory
error status.

8-11 The Naming Inter lace

8.4.2. Closing Directories

The internal procedure close _ dir closes a directory by:

1. Ensuring that the directory should really be unmapped; that is, ensuring that the
direct.ory is not one of the special directories.

2. Calling mst_$unmap_priv to unmap.

3. Calling fue _ $unlock to unlock the directory.

8.4.3. Adding Entries to Direetories

A naming server routine (add_name, add_link) that adds an entry to the directory calls the
directory manager to add the new information to the directory data structures. The directory
manager performs the following steps:

1. Searches the linear list for an unused entry; if a slot in the linear list is available, the
routine can then write the directory entry to the list.

2. If the linear list is full, the routine must add the new entry to a hash block chain. The
first step in this procedure is to hash the name; the result is an index into the hash
thread table.

3. Searches the chain of blocks on that hash thread for an empty entry. Ir it finds an
empty block in the chain, it writes the directory information to that block.

4. If it does not locate an empty block, it must allocate another entry block and thread
it to the chain. It first checks the free block list; if no free blocks exist, the directory
manager takes a block from the pool of available blocks.

5. When it has obtained a new entry block, the directory manager:

• Initializes the block

• Adds the entry block to the start of the hash chain that corresponds to the index
into the hash table

• Adds the new entry to the directory entry block as the first entry in the entry
data section

6. The routine then adds the block to the head of the hash chain.

The Naming Inter face 8-12

"- .. '

o

o

o

------- ------

8.4.4. Searching Directories

Ally internal naming server routine that must search the directory data structures (name_find,
find_ uid) does so in the following order:

1. The routine first searches the linear list. If' it cannot locate the entry there, it hashes
the name- for which it is searching, thereby obtaining the index into the hash thread
table. The hash thread in the table points to the rU'St block in the hash chain ror that
hash value.

2. Starting with the first block, the routine searches all three entries within each block in
the chain until it either rmds the desired entry- or reaches the end or the chain. If' it
reaches the end or the chain, the routine returns the message -Dot round - .

8.4.5. Managing The Network Root Dlreetol7

The naming server, in conjunction with the user-mode NS _ HELPER, carries out automatic
cache management of a node's local network root directory U I).

Periodically, the NS_HELPER broadcasts its presence to nodes on the local ring. Nodes that
receive this broadcast will perform the following automatic operations on their network root
directories:

• ,Vhen· the naming server is called to search for an entry in the network root directory,
either by name (via name_Sget_entry _u) or by UID (via name_Srmd_uid), it will
ask the NS _HELPER to locate the entry if it cannot find it in the / / directory. The
naming server calls the NS_HELPER using the NS_HELPER client software; if
NS _HELPER returns the entry, the client naming server catalogues the entry in its
local network root directory and returns successfully to the caller. Similarly, the / /
directory is used -as a means of mapping node IDs to network numbers to form a
complete internet address (dir _ 'find_net).

• If the naming server is attempting to resolve a pathname (via name _ 'resolve) and it
cannot locate a node's entry directory, it validates the entry against the corresponding
entry in NS _HELPER's master root directory, and if invalid, recatalogues the entry
correctly in / /. The naming server then tries to resolve the pathname again using the
newly cataloged entry.

• When a call to name_'resolve specifies an absolut, pathname (/ /node_name/ ...)
the naming server always validates the entry node_name against the NS_HELPER
database to ensure that it does not return obsolete information.

8.5. Pathname Resolution

Pathname resolution is a major naming server function. Since users see only pathnames, they are
constantly using the pathname resolution mechanism; thus, this algorithm is very performance
sensitive. Currently, the naming interrace uses the translation sequence illustrated in Figure 8-8:

8-13 The Naming Inter fllee

Pathname .1 ~mlng Server 1 • UID of Object
IN • _________ ... OUT

UID __ I Hint Manager 1 • Int.rn.t Add,....
IN .. _______ OUT of Object

Fiaul'e 8-8. Current Resolation Sequenee

8.5.1. Interaetion of Naming Server aDd Hint Manager

Because AEGIS is a distributed system, there is no global state information kept about the
location of objects in the network. Instead, the system keeps object location information on a
dynamic basis throush the !lint. manager. The hint manager is a system component that records
the location of objects that various other AEGIS system components have tried and succeeded in
locating. It stores the location information it receives in the hint file ('node_ data/hint_file) on
each node.

The naming server plays a large role in updating the hint manager for the location or objects.
When the naming server locates an object as part of its name resolution sequence, it passes the
object's location (the ID of the node on which it resides) to the hint manager, who adds it to the
hint file. If another software component requests access to that same object and presents its UID
to some AEGIS component, such as the file manager, the hint manager will have the correct
location information Cor the object so that the file manager does not have to search for the object
itself.

The hint manager is described in greater detail in Chapter 7.

The Naming Interlace 8-14

(~

\. "

o

o

8.5.2. Resolution Sequence

The naming server carries out the following steps when it must resolve a pathname:

1. Examines the pathname for its starting point, which can be one of the following
points in the naming tree:

• The network root directory (/ /)

• The disk entry (node-relative) directory (/)

• The current working directory

• The current naming directory

2. Assigns the starting directory to ·current directory, - and searches the current
directory for the pathname's next component and gets its UID (by calling
name _ $get _ entryu)

3. Assigns the UID of the found entry to -current directory- and repeats the component
search until no more pathname components are available

4. Returns the UID of the last component name (the leaf) to its caller

At each component search, the naming server decides if a hint about the component should be
added to the hint file, and calls the hint manager to add the hint if necessary.

8-15 The Naming Inter face

(~"'"
I.

\, /'

o

o

Chapter 9
Virtual Address Space Layout

Virtual address space is the virtual memory that PROCI and PROC2 processes use to map
objects, store data, and run programs. The aize and layout of virtual address space differs (rom
system to system. DNx60 nodes support a virtual address space of 256 megabytes, while the
other nodes support a 16-megabyte address space. The next sections explain how virtual address
space is apportioned for 16-megabyte and 256-megabyte systems.

g.l. Virtual Address Space on 16-Megabyte Systems

Virtual address space on 16-megabyte systems is composed of:

• Trap and PROM pages (1 segment)

• User global address space (63 segments)

• User private address space (320 segments)

• Supervisor private address space (8 segments)

• Segments reserved to Apollo (64 segments)

• Supervisor global address space (32 segments)

• I/O address space (32 segments)

These areas of address space are divided into segments; each segment consists of 32 pages, while
each page consists of 1024 bytes. Figure 9-1 illustrates how virtual address space is apportioned;
the next sections describe each area.

g.l.!. Trap and PROM Pages

The first segment of virtual address space is reserved for the trap and PROM pages. The trap
page consists of vector addresses that the processor hardware uses to handle hardware exceptions
(which are generated by traps) and interrupts. An exception is an event detected by the
hardware that changes the normal now of instruction execution. An interrupt also changes the
flow of execution, but is generated by system activity that occurs independently of instruction
execution. An exception always occurs as the result of instruction execution. Hardware
exceptions include bus errors, zero divide, and privilege violations.

When an exception or interrupt occurs, the hardware indexes, or traps, to the appropriate trap
vector address in the trap page and uses this address as the next instruction to execute.

The chapter on fault handling describes traps, exceptions, and faults in more detail. The system
initialization section describes how the PROM page is used.

Virtual Address Space Layout

000000'-'

008000'-'

200000"-'

BCOOOO --.-.

COOOOO--'-'

EOOOOO --.-.

FIOOOO"-'

FFFFFF"-'

Trap and PROM Pag •• (1 •• g)

Global Ubr

Known Global Table

ah.red dlWrlt. Data

Proc ••• ereatlon "eoord (1 •• g)

PrIvate ReacllWrtte
Storage (5 Hgment.)

Qu.rd S.gment

Procedure can
Stack (8 .egment.)

Guard .egment

Prlv.te KQT (2 .egment.)

M.pped Object.
(320 .egment.)

Worklnl'Namlng Dlr.
AC Object.

Ae.erved to Apollo
(14 .egment.)

Wired Procedure.

Wlr.d D.t.

08 P.glng Pile

I/O 8pace
(32 .egment.)

lII.r Global
(83 .. gmenla)

U.er Prlvat.
(320.egment.)

Proc •• 1 Stack Object

SUp'eNllor Private
(8.egments)

SupeNllor Global
(32 •• gmentl)

F1sure 8-1. Vlrtual Address Space (18MB S~)

Virtual Addreaa Space La,out

/'

,,~

L)

9.1.2. User Global Space

User global address space contains virtual memory that is shared among all user processes. It
stores the global libraries (read-only code and data) the global known global table (KGT) and
shared read/write code and data; for example, the stream rue control blocks (SFCBs) used by the
stream manager.

9.1.1. User Private Space

User private address space is the region of virtual memory assigned to a user process when it
is created. The process uses this section of virtual address space to access objects and run
programs. Thus, the actual contents of user private address space differs for each process. User
private address space contains:

• The stack object, which is mapped at the beginning of private address space. The
stack object provides the backing storage for the user process's pageable stack and
contains the process creation record, an area for private read/write storage, and an
area for the process's procedure call stack. Management of the stack object is
described in greater detail in Chapter 16.

• The private known global table, which contains the entry points to libraries
installed dynamically into user private address space (rather than into global space at
system initialization.) Unlike the global KGT, which is accessible to all processes,
these private KGTs are private to each address space; other processes cannot gain
access to them.

• Any programs and data that the process has mapped; the system reserves 320
segments for the per-process mapping of objects to virtual address space.

9.1.4. Supervisor Private Space

Supervisor private address space is per-process virtual memory that can only be accessed
from supervisor mode; that is, when a process is running in the kernel. The system uses this
address space to store per-process entities that it wants to protect user-mode programs from
accessing. For example, the naming server uses this address space to map per-process working
and naming directories. In addition, it stores directories here temporarily during pathname-to
UID resolution (see Chapter 8 for further details on patbname resolution.) The ACL manager
also maps access control lists to supervisor private address 8pace~ Level 2 processes must call the
system, via an SVC trap instruction, to gain access to objects in supervisor private space.
Chapter 19 explains traps to supervisor mode in more detail.

9.1.5. Supervisor Global Space

Supervisor global address space contains the procedures and data that the AEGIS system
uses to run and is the global address space that all level 1 processes share. There are three kinds
of storage in supervisor global space: the paging file, whole cloth pages, and wired run file
converter (RFC) image pages.

9-3 Virtual Address Space Layout

9.1.5.1. 1'he OS Paging File

The OS paging file stores the pageable sections of the operating system, and is where AEGIS
resides when it is running. At present, its size is 352 pages. The system initialization routine
maps the paging file to MSTs as it would any other piece of pageable code. The system pages in
and out of the OS paging file rather than Crom RFC image.

(The run file converter (RFC) is the pre-boot time loader. It creates an absolute bootable image
Crom the compiled and bound AEGIS system (aegis.bin). The AEGIS RFC image is compiled and
bound, but run-time initialization oC global variables has not yet occurred.)

9.1.5.2. Whole Cloth Pages

Whole cloth pages are wired virtual address space hole, that the system initialization routine
creates during the RFC bind procedure to hold subsequently created system data structures.
There are no objects behind whole cloth pageS. Consequently, if a process generates a page Cault
to a whole cloth virtual address, the system will crash. However, the initialization procedure
makes entries for these pages in the MST to prevent other processes from attempting to allocate
these holes in virtual address space. When the system needs to use a whole cloth page, it
allocates the page and, on reverse-mapped systems, installs it into the memory management unit
(M:MU). Many of the system's data structures occupy whole cloth pages. For example, the
ast _ $init procedure takes the number of pages it needs for the AST from whole cloth storage
and installs these pages into the MMU. Per-process supervisor stacks are also allocated from
whole cloth storage.

9.1.5.3. Wired RFC Pages

Wired RFC pages contain the code and data brought into physical memory from the RFC file
during the system bootstrap sequence; for example, the wired pages for the AEGIS kernel code.
Wired RFC pages are similar to whole cloth pages because they are wired only in the MMU.
However, they are unlike whole cloth because they contain data that also exists in pages in the
RFC file.

V.l.B. I/O Address Space

This region of address space contains the status registers and data structures for the MMU and
for the I/O devices connected to the node. It also contains the I/0 map, which supplies physical
addresses for direct memory references by the ring/disk controller, display, and other DMA I/O
devices.

Virtual Addres, Space lAyout

\ 0-·

0.2. Virtual Address Space on 256-Megabyte Systems

Virtual address space on 256-megabyte systems is composed of:

• The trap and PROM pages (1 segment)

• User global space (255 segments)

• User stack object (the rU'St 16 segments or user private address space)

• User private address space (7680 segments)

• User special space for nodes with color displays (1 segment)

• Supervisor private address space (15 segments)

• Supervisor global space (240 segments)

• I/O space (16 segments)

The layout within each of these areas is the same as the layout on 16MB systems. However I
virtual address space on 256-megabyte systems is allocated by region. Each region consists of
256 segments which in turn are allocated in order of ascending addresses.

User global address space occupies the first region of virtual memory; the first segment within
this region is reserved for the trap and PROM pages and is used only by the system. Regions 1
through 30 are reserved for the per-process user and supervisor address spaces. Region 31 is
allocated to user and supervisor global address space. Figure 9-2 illustrates the layout of 256MB
virtual address space.

9-5 Virtual Address Space Layout

Region # Segment # Addre ••

00

01

IE/30
(30)

IF/31
(31)

0000.

0001

0100

D120

IEOO

IEFO

IEF1

IFOO

000000

008000

0800000

0878000

0830000

0878000
0830000

0880000

FOOOOOO

F780000

F788000

0830000

FF80000

FFFFFFF

Tr.p .nd PROM Pag •• (' .ea)

Global Ubr

Known Glob.1 Table

Sh.red d/Wrlt. Data

.... oc ••• er •• tlon Record (1 •• g)

Prlv.t. Re.d/Wrlt.
8torage (I .egm.nt.)

Quard S.gm.nt

Proc.dur. Call
St.ck (I .egm.nt.)

Qu.rd S.gm.nt

Prlvat. KQT (2 •• gm.nt.)

Mapped ObJ.ct.

Color S.gm.nt

worklnl'N.mlng Dlr.
AC ObJ.ct.

Wlr.d Procedur ••

Wlr.d D.t.

OS Paging fill.

I/O Sp.ce
(' I .egment.)

u •• , Global
(255 •• gment.)

u •• , Private
(7880 •• gmenta)

Proce ••
Stack
Object

SupeNI.or Prtvate
(15 .egm.nt.)

Sup.rvI.or Global
(240 •• gment.)

. Fisure 1-2. Virtual Addreu Space (268MB Syatema)

Virtual Addre" Space La1JOut 1-8

\
"-.....

o

0.3. Virtual Address Space Identification

When memory management sortware allocates per-process address space to a process, it assigns
this address space an addreaa .pace Identltier, or ASID. There are 26 ASIDs; ASID 1 is used
by the first level 2 process that runs during system initialization and by the display manager
when initialization is complete. ASIDs 2 through 25 are assigned sequentially to any level 2
processes that the system (the PROC2 manager) subaequentJy creates.

The system usipa ABID 0 to user and superriaor aloba] address Ipaces. It identifies PAles or
sloba! address space by setting a hardware sJobal bit in the MMU hardware pase tables (page
rrame table entry or region register). Processes can only access ~e supervisor portion or ASID 0
while they are runDmg in supervisor mode. Level 2 processes Sain aecese to the contents or &bared
supervisor space via the SVC handler described in Chapter 19.

All level 1 processes run within the single IUpervisor Slobal address space, while there is a one-to
one correspondence between a level 2 process and ita ASID. Because level 1 processes share the
same address space, they implicitly ahare objeeta.

Figure 9-3 illustrates per-process and global virtual address space allocation.

Global A
Same for all processes

Global B
Sam. for all proc •••••

Figure sa-So Per-Process Addreu Space

ASID 0

~ ASID 1-25

ASID 0

1-'1 Virtual Addre33 Space Layout

Chapter 10
Virtual Memory Management

The AEGIS system defines several types of address spaces:

• Object address space - the network-wide object name space, identified by 96-bit
object addresses

• Virtual address space - the address space assigned ·to processes, identified by 32-bit
virtual addresses

• Physical address space - the main memory that exists in each node, identified by
physical addresses. The size of these physical addresses dep.ends on the system in use.

• Disk address space - the lOSS-byte disk blocks on a disk, identified by disk block
addresses(DAJ)D~)

AEGIS memory management components make the following associations between address spaces:

• Mapping virtual addresses to object addresses, carried out by the mapped segment
table (MST) manager

• Binding object addresses to physical addresses and disk addresses, carried out by the
cached object storage system (AST, PMAP and MMAP managers)

• Translating virtual addresses to physical addresses, carried out by the memory
management unit (MMU) manager and address translation hardware

This chapter describes object, virtual and physical address spaces (disk address space is described
in Chapter 4) and introduces the memory management components that handle the address space
associations.

10.1. Object Address Space

Object address space refers to the total object storage space available in the network. Objects
within this address space are byte-addressable by their objec: ~ddresses, which consist of:

• The 64-bit UID that identifies the object

• The segment number within the object

• The page number within the segment

• The byte offset within the page

Figure 10-1 illustrates the layout of object address space.

10-1 Virtual Memory Management

18 12 a1 11 14 10 • 0

ObJ.ct

I
Segm.nt I p::~1 Byt.

I UID No. Off •• t

14 bltl 17 bltl I bltl 10 bltl

Ffsure 10-1. Object Addreu Space

10.2. Virtual Address Space

When the system creates a level 2 process, it allocates to that process ita own separate and
private address space, identified by ASIDa 2 through 25. The display 'manager is always aaigned
ASID 1, and level! processes run entirely in supervisor pobal space, identified by ASID O.

The virtual memory management subsystem divides virtual address apace into .egmenta, which
consist or 32 I024-byte pages. In addition, the virtual memory management subsystem divides an
object into segments; each segment is composed or 32 consecutive object pages. While the object
storage system views an object as a collection 0/ page', the virtual memory management
subsystem regards an object as ,orne number 0/ ,egments, setting up a one-to-one correspondence
between object segmentation and virtual address space segmentation. In object address apace, it
is the UID that ident.ifies whieh object owns the object segment, whereas in per-process virtual
address spa~e, the .AS1D identifies which process virtual address space owns the virtual segment.
This correspondence allows processes to map segments of objects within object address apace into
segments or their virtual address space. The mapping procedure associates an object segment
with a 32-page segment of virtual memory. Figure 10-2 shows the relationship between object
addreses and virtu'! addresses.

MapPing)

ASID Seg. Page Byt.
No. No. Off •• t UID

Seg. Page Byt.
No. No. Off •• t

VIRTUAL ADDRESS OBJECT ADDRESS

Fisure 10-2. Relationship Between Object Addresaea and Vlrtual Addresses

The format of a virtual address dirrers depending on the system; in addition, memory
management software and harware view virtual addresses in different ways.

Virtual Memo,." Management 10-2

,,''''_.'''',

\ ' , "

o

AEGIS virtual memory management software running on all systems except the DNx60 recognizes
a virtual address that consists of:

• The virtual segment number within the ASID

• The page number within the segment

• The byte offset within the PAle

Vlrtual address space on DNx60 systems is divisible by region, segment and pa~. Conaeque~tly,
memory management IOftware running on DNx60 sy&tems reeopiles All additional field in the
virtual address that represents the region number within the ASID. (A region coJl8iRs of 256
segments of virtual address space.) Figure 10-3 illustrates this virtual addressing format.

11 27 21 11 1. 10. o

Region Segment Page Byt.
No. No. No. Off •• t

I bltl 12 bltl 1 bltl 10 bltl

Figure 10-a. 2S6-Megabyte Virtual Addreu

10.3. Physical Addresses

Physical addreu apace rerers to the actual main memory within a node; it is byte addressable
by physical address. The size of a physical address differs depending on the system. DNx60
systems, which have 16 megabytes of physical memory, use a 26-bit physical address, while other
systems (which possess 4 megabytes of physical memory) use a 22-bit physical address. The fields
within a physical address consist of:

• A physical page Dumber (PPN) that identifies the page of memory

• The byte offset within the physical page

Figure 10-4 illustrates a physical address.

26 DNXIO
21 other 10 I

Physical Page No. (PPN)

12-1' bltl

Byte
No.

'0 bltl

o

Figure 10-4. Physical Address Format

10-a 'Virtual Memory Management

10.4. Mapping Objects to Process Private Virtual Address Space

The AEGIS system maps objects to process virtual address space in units of segments. The
mapped segment table (MST) manager performs the mapping bel ween virtual segments and
object segments using a per-process data structure called the mapped segment table, or MST.

10.4.1. The Mapped Segment Table

Each ABID, 'and thus each process, has its own mapped segment table that lists the segments of
process virtual address space and the object segments to which they refer. The MST is indexed
by ABID Md also by virtual segment number; each MST entry (MSTE) contains an association
between an object segment and the virtual address segment to which that object segment is
mapped. \Vhen an object segment is mapped to a virtual address, its MSTE contains the urn of
the object that owns the segment, the segment's sequence number within the object, and other
information. Figure 1~5 illustrates the objeet to virtual segment association in the MST.

The size of the MST depends upon the system. DNx60 systems allocate 7680 MSTEs for per
process user mapping; the other systems allocate 320 MSTEs.

10.4.2. The MST Manager

The MST manager carries out object-to-virtual address mapping and unmapping requests by
filling in and clearing MSTEs. It returns information about an object mapped to process virtual
address space by locating its MSTE given a virtual address.

The MST manager also initiates page fault resolution when its touch operation is called to fetch
pages of an object segment. A page fault occurs when a process references a virtual address that
is not resident in physical memory;' that is, the association between virtual address and physical
address has not been made. The MST manager reads the MST to identify (by the urn stored
there) the object mapped to the virtual address, then calls the cached object storage system to
locate the object, be it on a local disk or on another node in the network, and make the object to
physical address association.

DOMAIN nodes support two types of MMUs: forward-mapped and reverse-mapped. On reverse
mapped ~1MUs, the MST manager must also call the MMU manager to load the physical page
information into the MMU, which enables the virtual-to-physical address association. Chapter 13
describes how page faults are resolved in more detail. Chapter 11 fully describes mapped segment
data structures for foward-mapped and reverse-mapped systems; Chapter 12 describes MST
mapping and unmapping algorithms and how forward- and reverse-mapped memory management
MMUs operate.

Virtual Memory Management 10-4

'''''' /'

/-~

\
\... -- /

(J

C'\
I

------------ --------------------

,..---...
PER

PROCESS
MSTS

OBJECT
ADDRESS

SPACE

CUnent
"8'0

Index
toMST

VIRTUAL ADDRESS SPACE

Index
to

MaTE

Figure 10-5. Virtual Segment to Object Segment Mapping via the MSTE

10-5 Virtual Memory Management

10.5. Mapping Objects to Global Address Space

Processes also map objects to global virtual address space. For example, the system initialization
procedure maps system libraries into user global address space and the AEGIS supervisor-mode
code into supervisor global space. These global address spaces are assigned ASID o. User and
supervisor global spaces do Dot have per-process virtual addresses; their addresses are the same
for every process. In addition, User processes do not dynamically map objects to global space as
they do to their own priTate address spaces. However, the global regions or virtual memory do
contain objects mapped to their address spaces; consequently, they also require MSTEs to record
those mapped objects.

".Then it builds the MST, the system initialization procedure allocates a range of MSTEs to user
and supervisor global address spaces; the actual number of MSTEs allocated varies depending on
the system. These MSTEs are wired at initialization, whereas per-process MSTEs are wired
dynamically. Objects mapped to global address spaces use these MSTEs to record the virtual to
object association. Thus, when a process rererences an address in user or supervisor glob8J space,
the MST used is the MST for ASID o. Figure 10-6 illustrates the relationship between mapped
segments for global space and per-process MSTs.

10.6. Binding Objects to Physical Address Space

The cached object storage system associates, or binds, object addresses with physical addresses
. (and disk addresses). The cached OSS consists of the active segment table (AST) manager, the
page map (PMAP) manager, and the memory map (MMAP) manager. The cached OSS is part of
the file system (see Chapter 3), but because it performs address space mapping, its components
are described in this section.

Binding object addresses to physical address space consists of two functions:

• Activating the object segment by caching information about it into a table in physical
memory called the active segment table (AST)

• Associating a page or pages of that segment with pages in physical address space; this
process includes making the pages resident in physical memory

10.6.1. Activating Object Segments

When a process references· a mapped object segment with an instruction, the MST manager calls
the AST manager to activate the segment by storing information about it in the active segment
table.

Virtual Memory Management 10-6

............. 4'

o

,
MST.

----SI02

ASIO 1

o

MIT 2

I MaT,

_1 MST o

u.er globa'
(global A)

MITES
wired

.up.rvl.or global
(global B)

MSTES

unu.ed

ASIOO

MST.

...., (A)

.u~rvI.or
(8)

unu •• d

MSTE for 1~
private '.gment

~iI'

~iI'

~~

~~ -.

MaT
for

A.IDO

MST
for

ABIO 1

MST
for

ASID2

1 r J~T3
"'---. ----' +

• •

Figure 10-8. Global and Per-Process MSTs

10-'1 Virtual Memory Management

10.6.1.1. The Active Segment Table

The active segment table is a wired, system-wide data structure that resides in supervisor global
address space. To activate an object segment, the AST manager reads the VTOCE for the object
that owns the segment and copies the object's UID and its attributes into an active segment table
entry (ASTE). In addition, the ASTE stores dynamic inrormation about the segment; whether it
has been modified, its current length, and so on. Each ASTE is thus a cache entry over the
VTOC; it caches the description of the object that is permanently stored in the VTOCE ror the
object, but also stores the most current information about the object while it is accessible to
processes. The number of ASTEs present in the AST is a runction or physical memory size; the
system allocates 128 ASTEs ror every one-half' megabyte of memory.

Like the VTOC,ASTEs are indexed by hashing the object's UID. Consequently, two different
segments owned by the same object will hash to the same ASTE hash thread (the start pointers
in the AST header) and will therefore be linked to the same ASTE list. When the AST manager
activates a segment, it passes back the index to the individual ASTE - its ASTEX - to the MST
manager, which stores it in the MSTE ror the object segment.

Because mapping and activation are independent procedures, the ASTEX on systems with
reverse-mapped :MMU hardware will not always be correct; it serves as a hint to the probable
location of the segment's ASTE and so helps in memory management performance. Forward
mapped hardware sets up pointers between the ASTE and MSTs that map the ASTE, so in this
case, the ASTEX is always correct. Chapter 11 describes reverse-mapped and forward-mapped
MSTE and ASTE fields in more detail.

10.6.1.2. The Segment Page Map

Associated with each ASTE is a page map (PMAP) for the segment. When the segment is
activated, the AST manager copies the segment's file map -the location of its pages on disk - to
the 32 entries in the PMAP. If any of the segment's pages are resident in physical memory, the
PMAP also identifies the physical pages with which they are associated. Consequently, the ASTE
identifies the object segment, while the PMAP locates each page of the segment on disk and, if
resident, in physical memory. Figure 10-7 illustrates the relationship between MST, AST and
PMAP data structures; Chapter 11 describes the PMAP format in more detail.

Vir'luul _'femory Management 10-8

I ', ... -,'

.. __ ._----- ---------------

C)

MITE

MSTE

MITE

object .eg. .,'
UfD no •.

wired

, MSTE

MST.~--------~--~

AST

AST
header

•• tex

•• tex

•• tex
PAGE MAPS

•• tex
L....a~-------_I ------....

ASTE PMAP

1---------1 •••••••••••• 1---------1

Unk ASTE PMAP
to

next
1---------1 • ••••••••••• 1---------1

ASTE ASTE In PMAP
-chain 1---------1 •••••••••••• t-----~-.....

L~...I~----------~ --.;.....-.;.....--................. .
ASTE •••

1---------1 •••••••••••• 1---------1
• •

~ ______ : ______ ~1r 1[~ ______ : ______ ~

PAGE MAP FOR
ONE ACTIVE

SEGMENT 0 ... ___

.. PMAPE1 ..

•• .::::.pMi"~ 2::<::-::

:.PMAPE·a .'

' ':PMAPE4

.egment pg 1

2

3

•

.....
:':PMAP£ ii .. ·· .egment pg 32 ...

3' -------

Figure 10-7. MST, AST, and PMAP Data Structures

10-9 Virtual Memory Management

10.6.1.3. The AST Manager

The AST manager's functions include:

• Maintaining the active segment table data structures

• Maintaining local AST-to-VTOC consistency

• Maintaining distributed cache consistency

• Performing operations on objects cached in the AST

The AST manager maintains the AST by activating and deactivating ASTEs for segments. When
called to activate, the AST manager allocates free ASTEs from a free list or deactivates an ASTE
already in use via a replacement algorithm. This algorithm is based on the last ASTE the AST
manager replaced, how recently an ASTE haa been used, and the number of segment pages that
are resident in physical memory for the ASTE.

The AST manager also maintains AST-to-VTOC consistency by updating the VTOC to the state
of the AST, either for a single ASTE or for the entire AST. In addition, if a process changes the
object attributes of a local object cached in the ASTE, the AST manager also changes the
attributes stored in the VTOCE. Chapter 12 gives more details about how the AST manager
activates, deactivates, and replaces ASTEs, and how it maintains AST jVTOC consistency.

The lock manager calls the AST manager to maintain distributed cache consistency on file locks
and unlocks. When it locks an object, the lock manager calls the AST manager to flush the
active segments of an object from the AST if it ascertains (via a DTM attribute compare) that
their data is obsolete. The nush is done by deactivating the ASTEs. In this way, the lock
manager ensures that it is locking the most recent copy of the object as well as purging the
distributed system of the object's obsolete versions.

When it unlocks an object, the lock manager ensures that the latest copy or the object exists on
its home node. If the object is local, the latest copy exists in the AST cache; the system does not
perform force-writes to disk on local objects.

However, if the object is remote, the lock manager initiates a remote page-out to the home
node by calling the AST manager to purify all of the object's active segments from the AST; the
AST manager in turn calls the PMAP manager to actually write the pages out to the remote
node. Chapter 6 describes the interaction between the AST and lock managers in more detail.

The AST manager also carries out operations on objects and object segments on the FILE and
REMFILE managers' behalf; these operations are described in Chapter 5.

10.8.1.4. Relationship Between Mapped and Active Segments

A segment can be mapped, but can be inactive. For example, a process can map a segment but
make no references to it; because the AST manager hasn't received a message to retrieve the
object information, no cached information about it exists. When. the process requests the MST
touch function, the AST is loaded with the object information stored in the VTOC.

'Virtual Memory Management 10-10

C)

A segment can be unmapped, but information about it will remain cached in the AST. While
unmapping the segment breaks the binding of object address to virtual address, it does not arfect
the binding of object address to physical address; thus, unmapping a segment does not cause
information to be removed rrom the AST.

The same object segment can be mapped to dirferent MSTEs, but all the MSTEs use the same
ASTE. For example, the shell program is mapped to an MSTE each time the user presses the
shell key. But, because the AST is indexed by object UID, all processes that use the same object
will index to the same ASTE.

10.8.2. Associating Object Pag .. with Physical Pages

The PMAP manager actually makes the objectrto-physical association requested by the AST
manager. This assocation consists or two steps:

• Calling the :MMAP manager to obtain a physical page

• Retrieving the object page rrom local disk or from another node on the network

10.6.2.1. Allocating Physical Pages

The :MMAP manager maintains a system-wide table called the memory map (:MMAP) that
contains, for each physical page of memory, dynamic· information about its availability ror use.
The 11MAP manager's role in page allocation is to:

• Find an available physical page to hold an object segment page by consulting the
:MMAP

• Allocate the page by filling in the appropriate :MMAP entry

• Return its physical page number to the PMAP manager.

Main memory contains a finite number of physical pages that must be shared among a large
number of object pages. Physical pages that have no object-to-physical-page associations are
linkf.d together on a free list in the :MMAP. When the PMAJ> manager directs the :MMAP
manager to find a physical page for an object page, the:MMAP manager first consults this list to
find a free physicai page to return. The free list, however, can be empty; consequently, the
:MMAP manager must ·steal- physical pages that are still associated with an object page. As a
result, an object page in physical memory has a page replacement status. A page can be:

• Resident - the object page occupies a page in physical memory, but the physical
page is available ror replacement; that is, for use by another object page

• Wired - the page is resident in physical memory and unavailable for page
replacement

• In transition - the page is in a transition state in the memory management process,
and is therefore unavailable ror page replacement until it is no longer in transition

Thus, to the :MMAP manager, an available page (also called replaeeable) is one that is not wired
or in transition. However, pages also have pure and impure status, which further determines
their availability for replacement. An impure page is an object page that has been modified in

10-11 Virtual Memory Alanagement

the course of its existence in physical memory; consequently, its contents must be written out to
disk so that the copy on disk is current. The process of writing pages out to disk is called
purification and is one of the PMAP manager's primary functions.

A pure page is an object page whose contents have not been modified during its existence in
physical memory (or one which has been purified). Pure available pages are eligible for
immediate replacement. Impure available pages have been modified and so must be purified
before they can be reused. The MMAP manager is responsible both Cor locating pure available
pages and returning the PPNs of impure available pages to the PMAP manager Cor purification.
The PMAP manager, in turn, helps in page replacement by purifying the impure available pages,
making them eligible Cor replacement.

Although the PMAP manager calls the MMAP manager to find physical pages to purify, it also
periodically (or on request) scans the PMAP for each active segment and purifies any of its
resident pages. If specified, it will also nush these resident pages Crom physical memory by
breaking their object-to-physical (and the virtual-physical) page associations.

10.8.2.2. Fetching Object Pages

\Vhen the :MMAP manager returns an' available page, the PMAP manager calls the disk
management subsystem to fetch the object page from local storage, or calls the network manager
to retrieve the page from another node in the network if the object is remote. Once the page is
written into physical memory, The PMAP manager then sets up the PMAPE for the page with
the object to physical association. Although the page is then resident in memory, the virtual-to
physical address association must be made before it can actually be used. On DNx60 systems, the
address translation hardware reads the PMAPE to make the virtual to physical translation. On
other nodes, PMAP returns the physical page number to the MST manager via the AST manager.
The MST manager then loads the MMU with the virtual-to-physical assocation. This operation
resolves the page fault that occurred when the object page was referenced and not found in
physical memory.

10.7. Translating From Virtual to Physical Address Space

The memory management unit (MMU) is the hardware that carries out virtual address to
physical address translation. The address translation mechanism that an MMU uses depends on
the ~ model. The:MMUs on DNx60 systems use a forward-mapped address translation
mechanism; the MMUs on the other node models use the reverse-mapped scheme.

The forward-mapped address translation is so named because its data structures are organized in
a tree structure; the MMU moves in a -forward- sequence from one table to the next without
ever reversing direction. A reverse-mapped MMU, on the other hand, sometimes goes back to
tables it has already referenced during the address translation process.

Although MMUs can be categorized as Corward- or reverse-mapped, further variation between
MMU models exists, such as the size and type of registers and caches and the size and type of
data structures used. The next sections introduce the forward-mapped data structures for DNx60
nodes and the reverse-mapped data structures for the other node models. ,

'Virtual Memory Management 10-12

C)

o

10. '1.1. Reverse-Mapped Data Structures

The reverse-mapped MMU uses two hardware devices in address translation:

• The page translation table (PTT), an array of 1023 physical page numbers that allows
1 megabyte of virtual memory to be mapped to physical memory at a time

• The page frame table (PFT), an array of. entries that describes the 4096 physical
pages of main memory

The AEGIS system implements the PTT and the PFT by assigning them virtual and physical
addresses so that the memory management software can use them.

The page translation table (PTT) is a translation buffer that gives hints to address translation.
The PTT contains 1023 entries, or enough entries to map one megabyte of virtual memory. Each
PTT entry points to the start of a linked list of entries in the page frame table table (PFTEs).
The chain or PFTEs consists or a circular list or all the virtual pages that hash to one physical
page; each entry in the list describes a virtual-to-physical page association and stores protection
and status information about the physical page. The last PFTE in the list has an end or chain
EOC) bit set.

Reverse-mapped memory management hardware translates a virtual address to a physical address
as follows:

When the hardware gets a virtual address to translate, it:

1. Takes the virtual page number in the virtual address and uses it as an index into the
PTT

2. Uses the information in the PTTE to locate the first PFTE in the chain. If there is
no hint in the PTT, the hardware hashes the virtual address to obtain an index
directly into the PFT.

3. Examines the PFTE, searching for a virtuaI-to-physicaI address correspondence by
checking the ASID and excess virtual page number (XSVPN) in the virtual address
against the ASID and XSVPN stored in the PFTE. (On a global reference, only the
XSVPN must match.) If the two values do not match, the hardware searches all the
PFTEs in the linked list for a match. If the virtual address that the hardware is
looking for is not in the list, and it has encountered t he end of chain field twice, the
hardware recognizes that no virtual-physical page mapping exists for the address, and
signals a page fault to install the correct mapping.

4. If a match exists, copies the index or the matching PFTE to the PTTE and calculates
the physical address by combining the offset given in the virtual address with the
PPN in the PTTEj this operation will optimize performance on the next search. In
addition, ir a PFTE is used frequently, the hardware adjusts the PTTE to point
directly to it.

The memory management subsystem also uses information stored in the PFTE for page
replacement and purification decisions.

10-13 Virtual Memory Management

10.7.2. Forward-Mapped Data Structures

The MMU hardware on DNx60 systems divides per-process virtual address space into 32 regions.
Each region is composed of 256 segments, and each segment is divided into 32 pages. The
segment map. (SMAP) keeps track of the 256 segments in one region. The 32 hardware region
registers point to the 32 SMAPs; each SMAPE points to the segment's page map. The SMAP
and PMAP data structures are allocated in memory in the same way as other objects in the
system (except that they are not pageable). Figure 10-8 illustrates the relationships between the
data structl:1res in the DNx60 forward-mapped scheme.

The :MMU hardware uses the information contained in the SMAP and PMAP tables during
virtual to physical address translation. In brief, the Corward-memory management hardware
translates a virtual address to a physical address by:

1. Locating the SMAP to search from the region field in the virtual address

2. Locating the offset into the SMAP at which the segment exists from the segment
number in the virtual address the address (which PMAP to search)

3. Locating the PMAP Crom the SMAPE

4. Locating the offset into the PMAP at which the PMAPE for the page exists from the
page number in the virtual address

5. Obtaining the physical page number (PPN) from the PMAP entry (or taking a page
fault if no PPN exists in the PMAPE)

6. Calculating the actual physical address within the physical page from the offset field
in the virtual address

The memory management subsystem also uses these tables; the MST manager fills in the SMAPE
with access information when an object is mapped to virtual address space; in addition, the
l\1M.AP and PMAP managers use fields in the PMAPEs during page replacement and purification.

Chapter 11 describes the fields within forward- and reverse-mapped data structures; Chapter 12
describes how the memory management software uses the information within these data
structures.

10.7.3. The MMU Manager

The :MMU manager's main function is to install and remove virtual-to-physical assocations from
the :MMU. The processor signals the MMU manager to update the MMU page tables (page frame
or page) by page Caulting; once the assoeation exists, the processor takes control of the
translation.

On forward-mapped systems, the MMU manager is also responsible Cor purging the translation
buffer.

Virtual .\ ,. mory Management 10-14

' _.-

Region Reglatera Segment Mapa Page Map.

PMAP for Segment 0
o

PTA to 8MAP 0 • ----0
PTA to 8MAP 1 .~

~. SMAPO 8MAPE.8EQ.0

PTR to 8MAP 2 0
8MAPE •• EQ. ,

.MAPE. 8EQ 0 •
8MAPE, .EQ 1 • •

• •
• • • • • • • a1 IBM APE. 8EQ. 255

PTR to SMAP 31 • - SMAPE. SEG 255 • ~
255

_ PMAP for Segment
31

1
-0

SMAP 1
----0 SMAPE. 8EG 256 •

•
•

•
• '1 o •

255 PMAP for Segment 2 55 -"'0

SMAP 31
•

"0 SMAPE, SEG 7836 •
•

• 31
•
•

SMAPE. SEG .181
255

Figure 10-8. Forward-Mapped Data Structures

C)
10-15 Virtual Memo'1l Management

'-,

C)

o

o

Chapter 11
Memory Management Data Structures

AEGIS contains both per-process and system-wide tables that the virtual memory management
subsystem uses to carry out its memory management functions. This chapter describes the
memory management data structures, their relationship to each other, and the kinds of
information they provide to memory management software and hardware.

The memory management data structures can be grouped into:

• Structures used in object segment/process address space mapping

• Structures used in segment activation and deactivation

• Structures used in physical page management

The next sections discuss the data structures that fall into these categories.

11.1. Mapped Segment Data Structures

The mapped segment data structures contain the object to virtual segment map, information
about the object's location, and how the object can be accessed. The location of this information
within the data structures depends upon the node's memory management hardware and the
memory size. Nodes with reverse-mapped MMUs store all the information about the mapped
segment in the MSTE for the object. Nodes using forward-mapped memory management and a
large address space (DNx60) keep mapped segment information in the MSTE and in the segment
map entry (SMAPE). The memory management hardware on forward-mapped MMUs partitions
per-process SMAPEs into 32 SMAPs, each SMAP contains 256 SMAPEs. (User private address
space is allocated 30 of these SMAPs.) However, the memory management subsystem views an
SMAP as a per-process array of SMAPEs that corresponds one-to-one with the array of per
process MSTEs.

Figures 11-1 and 11-2 illustrate the mapped data structures for reverse-mapped and forward
mapped MMUb and shows the fields within the data structures. The next sections discuss the
kinds of information kept in mapped segment data structures and where the information is
located depending on the type of MMU hardware in use.

11-1 Memory Management Data Structures

--- ,., ,.,._-"'., ., ,_ .•. _-_._---

MST

o .
MSTE .
MaTE

MITE

•
1# • ". • ~

•

MSTE

31 .. .
• • • • ••• 00 ..

. .
.

04

01

•• • 01 .

. ,. 11
I 1 I I

Object UID

~
Plle:ent x aooe •• a Hum r t

!Ok

Location (remote/node or volK)

MITE

REVERSE-MAPPED

Fipre 11-1. Reverse-Mapped MST

11.1.1. Object to Virtual Segment Auociation

... atex
.'.egno,
.ext ok
.aoo. •• ,
.guard,·
.paa.ex

.Ioex

The MSTEs for both M:MUs contain the UID or the object that owns the segment (mste.uid) and
the segment's sequence number within the object, called its file segment number (mste.fsegno).

11.1.2. Pointers to Other Structures

The MSTE contains a field to cache the index to the inrormation about the object in the AST,
called the probable ASTEX (mste.putex). The MST manager fills in this field with inrormation
it obtains rrom the AST manager when it: .

• Activates a segment for a mapped object

• Reads an already active ASTE for a segment being mapped

Because ASTEs are activated and deactivated independently or mapping and unmapping, the
-index to the active segment can chanse, Consequently, the P ASTEX on reverse-mapped systems is
a hint to ASTE whereabouts and exists to optimize memory mangement performance. It the
MST manager hu a valid P ASTEX, the memory management function proceeds more quickly
because the manager can avoid & huhing operation. If the P ASTEX is incorrect, the manager
must huh the object's UID to obtain the correct index into the AST.

MSTEs on DNx60 MMUs, however, contain a pointer to the physical address or the the segment's
page map (mste.pmap _phadd). Because the ASTE and PMAP exist in a one-to-one
correspondence, the cached ASTEX on forward-mapped systems is always correct.

MemorJl Management Data Structure, 11-2

C:\

o

()

31 • .

--

. .
. .

MST IMAP

o o
MSTE IMAPE
MITE IMAPE

• •
.# ,,- :. ItI

" • " •
• •

MSTE IMAPE
7180 121

. .
. . . .

" 15 14 10. I 1 I I r

ObJect UfO

• " ',"
Fli. I.~m.nt x Q

. ~~ p •• t.x
Num .r t .: ,:'I:IIII'·~. (12 bit.)

10k '''I,~~#f''''1

Loc.tlon (r.mot./node or vobc}

MSTE

.
.

.

. .
.

v ~';I""/;' t'>'"

• -~ ,:,/' phV.fc.' .ddre ••• ph.dd
f acee.. ,- , of PMAP
I (ph.dd_t)
d

· ·

.f •• gno.
ext ok
.cc-••••
gu.rd.
p •• t.x

· Iocx

IMAPE

FORWARD-MAPPED

Figure 11-2. Forward-Mapped MST

11.1.3. Loeation Information

If the object is local, the MSTE contains the index to the volume on which the object resides
(mate.volx). If it is remote, the MSTE'a remote bit is set (mate.mate_remote), and the MSTE
contains an index to the network number and the node ID or the remote node on which the object
resides.

11-3 Memo'll Management Data Structures

11.1.4. Access Modes

The processor and memory management hardware support access modes that define at the
hardware level the access allowed to an object. These access modes are:

• No access (access _ $nil)

• User-mode read access (access_Sr)

• User-mode read/execute access (acCe8S_Srx)

• User-mode write/read access (access_$wr)

• User-mode write/read/execute access (acCe8S_$wrx)

• Supervisor-mode read access (access _ $sr)

• Supervisor-mode read/execute access (access_ $srx)

• Supervisor-mode write/read access (access_$swr)

• Supervisor-mode write/read/execute accesss (access _ $swrx)

When a process maps a segment, the MST manager determines the access mode allowed for the
segment from the process using the arguments passed in the call and the mode in which the
process is running. It then fills in the access mode field in the MSTE (mste.access) for reverse
mapped hardware or the segment map entry (smape.access) for forward-mapped hardware. When
a page fault brings the object page into physical memory, the MST manager takes the access
rights stored in the MSTE and installs them in the MMU's hardware page table (the page frame
table). Forward-mapped:MMUs use the SMAPE directly, so no access rights loading is needed.
The MMU address translation hardware uses the access rights as a protection check during
virtual-to-physical address translation.

11.1.5. File Extension

The file extension allowed bit in the MSTEs (mste.ext _ ok) controls whether or not a segment
can grow; that is, whether pages can be added dynamically to the segment. For example, if a
segment is mapped read-only, new pages cannot be added to it. When it is called to fetch, or
touch a segment, (mst_$touch), the MST manager checks the access mode ror the segment. Hit
is read-only, the manager sets this field berore it calls the AST manager to activate the segment,
and passes not ok as an input parameter to the AST manager's activation routine
(ast_$activate).

11.1.8. Guard Bit

Guard segments are virtual segments mapped with no access rights. The AEGIS system
managers use guard segments to protect important system data structures from becoming
corrupted. For example, the process manager installs guard segments around the procedure call
stack to prevent a stack overfiow rrom corrupting the process creation record. MSTEs that map
guard segments have the guard bit (mste.guard) set. The MST manager checks this bit during its
touch operation. H the caller is attempting to touch a guard segment, the MST manager will
return a guard !ault.

Memu'!1 .\ lanagement Data Strueturea 11-4

C
--'
)

o

11.1.7. Toueh-Ahead Count

This field (mste.mste_touch_cnt) indicates how many successive pages can be fetched for a
segment during one touch operation. Both the system and user-mode programs can adjust this
value. The system initially sets the touch-ahead count to " pages, but it can be set to touch a
maximum of 32 consecutive pages (the entire segment) at one time. The stream manager is an
example of a user-mode program that uses a S2-page touch-ahead count.

11.2. Active Segment Data Structures

The AST data structure keeps track of active segments; this structure is composed of an AST
header and an array of AST entries. Figure 11-3 shows the format of the AST.

11.2.1. Active Segment Table Header

The AST header contains pointers to linked lists of ASTEs and AST state information.

11.2.1.1. Linked List Pointers

The AST header contains the following pointers that the AST manager uses:

• Start pointers (ASTEXes) to 251 linked lists of ASTEs

• A start pointer to a linked list of free ASTEs available for activation (asth.free)

• A pointer to the next replaceable ASTE (asth.1ru). If there are no free ASTEs in the
free list, the AST replacer uses this ASTEX as a starting point in its search for an
ASTE it can deactivate.

When it activates an object segment, the AST manager chains the new ASTE to the linked list
that corresponds to the object's hashed UID. In addition, each of the 251 linked lists contains a
number of sublists; each sublist links together all the ASTEs for a single object. The AST
manager orders ASTE:; within a per-object sublist by descending segment number.

11-5 Memory Management Data Structures

Forward
Link.

(a.t •• llnk)

31 1',11

AST
Ha.h Tabl.

at art Polnt.r. • • •
(211 A8TEX ••)

• • •

o

~ ~ .halhtb[O •• 250]

r----.... ·:;:: •• t.x:~fi;rMTEJn hath ohaln ; : ... : ... :.;: .. ;-.: :-: .. -:: .. :-:.: .•... ::............

• • •
AITE free ... t replaoed
lI.t poInt.r AlTE polnt.r

dl.mount
unused requnt unu.ed -.

Count of no. proc •••••
In.ld. virtual m.mory

Count. modification.
to AST Ha.h Table

No. of dl.mount.

Ev.ntcount 'or AST dl.mount.r

grac.
r.placement ptr

• • •

unu •• d

.f, Iru

".CL,.num

.Irug

Back
Links

(aste. blink)

Fisure 11-3. Active Segment Table Format

MemOf1l Management Data Structurea 11-8

"""- .' "

()

o

(j

----------------------.----~

11.2.1.2. AST State Inf'ormatioD

Some system routines cannot (because of possible deadlocking) hold an AST resource lock Cor the
duration of their operation. Since these routines cannot prevent the state of the AST Crom
changing, they use fields in the AST header to determine whether t.he contents of the AST has
changed since they began their operation, and to retry the operation if the AST state has
changed. These fields are:

• Dismount sequence number (asth.di.sm_aeq)

• Dismount request nags (asth.di.sm_req)

• Volume count (asth.vm_cnt)

• Dismount eventcount (asth.vm_ec)

• AST hash table modifications count (asth.seq_num)

The first four fields are associated with the AST manager's dismount procedure, which
deactivates all the ASTEs for object segments on a given logical volume. The dismounter always
increments the dismount sequence number each time it is called to deactivate ASTEs. Since other
routines may depend on some of these deactivated ASTEs to be active in order to complete their
operation successfully, they save this field in the AST header when they begin operation, then
check their saved copy against the current field before they signal completion.

The volume count indicates how many processes are using ASTEs associated with a logical
volume. The dis mounter checks this field before it begins its dismount procedure to make sure
that no one else is using the ASTEs for the volume. Consequently, users of ASTEs on a logical
volume can set this field to prevent the dismounter from taking away the ASTEs they need; for
example, when they are trying to write to disk.

When the dismounter starts deactivating ASTEs for a given volume, it can encounter a locked
ASTE (a positive hold count). If it does, the dismounter sets the dismount request flag bit that
corresponds to the volume it was dismounting, and waits until the ASTE is freed. Meanwhile,
the holder of the ASTE completes its operation, frees up the ASTE, and checks the dismount
request flag field. If a dismount request exists, the routine advances the dismount eventcount,
awakening the dismounter. The FILE manager is a frequent user of this field.

Routines that change the order of an ASTE linked list by adding or deleting ASTEs update the
AST hash table modifications counter (asth.seq_num). Other routines that depend upon the
consistency of a linked list can save this number before they begin operation, then check their
saved copy against the current value in the header.

For example, the AST information gathering (ast_$get_info) routine is called to read through a
linked list of ASTEs for an object by following the hash link fields in each ASTE. The routine
saves the modification count and begins its operation. In the meantime, the AST manager is
called (ast_$deactivate) to deactivate an ASTE in the linked list that ast_$get_info is reading.
It deactivates the ASTE, then increments the counter. When ast _ $get _ info finishes reading the
linked list, it checks the current state of the counter against its saved copy to make sure the
information it is returning is accurate (that no ASTEs have been activated or deactivated).
Because the counter values differ, ast_$get_info repea1;,; the entire read operation.

11-7 Memory Management Data Structures

11.2.2. Active Segment Table Entries

Active segment table entries contain four kinds of information:

• Information copied from the VTOCE where the object is stored

• Information about the status of the ASTE, used in ASTE replacement

• Information that records dynamic changes to the object segment

• Information about members in the ASTE linked list

Figures 11-4 and 11-5 show the fields within an ASTE for reverse- and rorward-mapped systems.

11.2.2.1. VTOCE information

The ASTE contains information about the object and the segment being- activated that it obtains
from the VTOCE:

• The UID of the object to which the active segment belongs.

• The segment's sequence number within the object.

• A VTOCX that points to the object's VTOCE, if the object is stored locally. H the
object exists on a remote node, the VTOCX contains the object's home node ID and
an index to the network number to which the home node is connected.

• A VTOCX that points to the starting disk address of the file map in which the active
segment exists, if the object is local.

• The attributes of the object that owns the segment - concurrency control, whether it
is permanent or immutable, its system type, its lock key, and whether it has
encountered file trouble and needs salvaging.

• An index into the device volume table (DVT) that points to the logical volume on
which the segment resides; this field is useful on nodes that support multiple logical
volumes, such as storage module devices and file servers.

Memory Management Data Structure, 11-8

\ ... , . ,,'

0

C'\
-~

--~-----~------.. -.. - -.... _-_._-----

31 24 23 ,. 11 • 7 o.

08

12

,.
20

24

21

12

36

44

12

16

31

c

~

Object UfO (uktt)

Fie .egment no. (fHgno_t) LHc to next ASTE

Addre .. of VTOCE (vtocx_t)

Addre •• of fie Map (vtocx_t)

~ \' A8TE "To-TJ.YPft FM 8Iooka
ce P I f P.s hold Delta

~. ant Mod
(-32 •• +12)

ASTE back Ink ·hd
.. DTM '\ npr

gtme (wIx..t) nag (0-31)

Date/Tme MocItIed (cIooIch_t)

,ext_dtm) &nMd ASTE Event NLl'nber

-I- Type UfO (uktt)

-I- ACL UfO (Wd_t)

Lock Key

Current Length

" 15 • 7 •

CP PAD Lit" ASTE By.tem Type M Blocks I F (0 •• 3) hold Delta oount

~ ~ ~ ~ · ., t

-~

-

.uld

.faegno, .lInk

•• honl, .~·type
• blooD_RIta

.bllnkc~ma

.cttm naD.

.uaea •• npr

.dtm

.ext_dtm, .event

.acl..uld

o

ASTE In Transition (.In_trans) File Map Modified

ASTE Unchpln (.lInchpln)

File Trouble (.trouble)

Object Is Immutable (.Immutable)

Object Is Permanent (.permanent)

Concurrency Control (.conc_ctrl)
(None, shared, exclusive)

Figure 11-4. Active Segment Table Entry (Reverse-Mapped)

MemOf1J Management Data Struetures

OFFSET

31 24 23 ,. '1 • 7

Object UID (ulcet)

01 Ale HgrMnt no. (~_t) U* to next ASTE

12 Addr ... of VTOCE (vtocx_t)

,. Ack.Iren of fie Map (vtocx_t)

~ {' A8TE Syetern Type FM
8IockI

hold Delta
~. eM (0-255) Mod (-32 .. +32)

20

ASTE back Ink voIx
DTM

'\d
npr

Ped gtmt Fa.; (0-32) 24

28
Date/Time Moclfled (clocld'Lt)

32
(ext_dtm) ...,.ed ASTE Event N.....-aber (0-15)

-- Type UID (ulcet)
31

-- ACL UID (uket) 44

52 Lock Kev

51 Current Length-

10 Back thread to MSTES (blte_t)

&nJ8ed Phvalcal Addreee of Page Map (ph_add_t)

o

-~

-r-

FIELD NAME

,uld

,f.egno •• lInk

,fm_addr

,.hent, ,ava_type
,fm_mod,
• block._delta
. blink, ,atm.,. volx,
.dtm_flag,
.npr

.dtm

.ext_dtm, ,event

.pmap..phadd

Figure 11-5, Active Segment Table Ent!")" (Forward-Mapped)

MemoJ·:; 'fnnagement Data Structure, 11-10

I
\

" ,

C)
11.2.2.2. ASTE Replacement Information

The ASTE has several fields that the AST manager consults in its replacement algorithm:

• ASTE in transition - this field indicates that the ASTE is inconsistent but will
become available shortly; the AST replacement procedure will pass over ASTEs in
transition.

• ASTE hold count - this field indicates that a process is using the ASTE and does Dot
want the AST replacement procedure to deactivate it to hold lOme other active
segment. The AST replacement procedure passes over any ASTEs with hold counts
set (while the AST dismounter waits on ASTEs with positive hold counts).

• ASTE event number - this field is used as a hint Cor ASTE replacement. Whenever
the system activates or changes an ASTE, an AST event occurs and the system
increments a master AST eventcount (in the AST header) and copies the eventcount
value into this field in the new or modified ASTE. The ASTE replacement procedure
checks the ASTE event number field during its replacement scan. If the value within
the field Calls within a certain range of the master eventcount value, the replacement
procedure passes over it; thus, the event number allows ASTEs to mature before they
are replaced.

• Number of pages resident - this field indicates the number of segment pages that are
resident in physical memory. When the system makes a segment page resident, it
increments this field; when it takes a resident page away, it decrements the field. The
ASTE replacement procedure bases its replacement decision on the number of pages
resident Cor a segment.

r-',
"'-./. 11.2.2.3. Linchpin and Back Thread Links

C)

Each ASTE contains a pointer to the next ASTE in the linked list (aste.link) and the previous
ASTE (aste.blink). The AST manager orders ASTEs for a single object sequentially by
descelJding file segment number (.Csegno). The ASTE for the object's highest numbered active
segment is called the linchpin ASTE. The AST manager sets the linchpin field in the ASTE
when it activates the ASTE. The linchpin ASTE marks the beginning of the linked list of active
segments for the object. When the AST manager is called to activate more segments for the
object, it links the newly activated ASTEs to the chain headed by the linchpin ASTE in order of
descending file segment number. The AST manager also uses the linchpin ASTE as a cache for
the object's attributes; once it determines that it is activating a segment for the same object, it
copies the information from the linchpin ASTE into the newly activated ASTE.

ASTEs Cor memory management on DNx60 systems contain additional pointers to other memory
management data structures. The MSTE back thread (aste.mste_thread) is a field within the
ASTE that points to all the processes that have mapped the active segment into their virtual
address space. The back thread in the ASTE contains the ASID of the first process that is using
the active segment and the index to the segment map entry that is pointing (through the
pmap _phadd field) to the active segment's page map. This process, in turn, points to the
ASID /SMAPX of the next sharer via the back segment table (BST). Like the MSTE and the
SMAPE, the BST is a per-process table that links together the processes currently sharing the
same object segment, and thus are sharing its page map. The system indexes into BST using the
ASID and SMAPE; each entry (the BSTE) point~ to the ASID of the next sharer in the chain and
also to its segment map. The BSTE in the ASTE I':lck thread field is the head of this chain.

11-11 Memory Management Data Structures

The memory management subsystem on forward-mapped MMUs uses the BST chain to keep
track of all the virtual segments that currently point to a page map. If the subsystem steals a
page within the map ror another use, it must invalidate all the per-process virtual/physical
associations for that page. It obtains the starting BST from the ASTE, then chains backwards
through the BSTs, beginning with the last process to map the segment. The subsystem then
removes these invalid virtual/physical associations rrom the translation burCer cache in the MMU.
Thus, the BST provides a way to selectively nush page! from the translat.ion buffer.

The ASTE on rorward-mapped systems also contains the physical address or the active segment's
page map (aate.pmap_phadd). When a rorward-mapped system maps an object segment, it seta
up the SMAPE to point to the page map's physical address. The hardware uses the SMAPE to
obtain the the physical address of the page map during address translation.

11.2.2.4. Object Modification Intormation

ASTE information about object and segment modification includes:

• File map modified - this field indicates any increase or decrease in the extent oC the
object's file map.

• Blocks delta - this field indicates the number of disk blocks (pages on disk) added to
or subtracted from the object segment since its activation.

• Current length - this field contains the actual length of the object in bytes.

• DTM nag - this field, when set, indicates that the object's date/time modified field in
the VTOCE needs updating. The memory management system stores the DTM in the
ASTE and sets this nag so that it will later be copied to the VTOCE.

• DTM - the date/time modified field provides cache control for an object segment that
is being used by several different processes. The DTM is only modified at the home
node; object modifications at remote locations are sent back to the object's home node
to be recorded, and the new DTM is then shipped back across the network to the
remote modifier, who stores the new DTM in the ASTE. The AST manager copies
the most recent DTM to the linchpin ASTE. However, at any given time, any of the
object's ASTEs can have the most recent DTM. For example, when the page purifier
writes a modified page to disk, it writes the new DTM into the ASTE that owns the
page, not into the linchpin ASTE. It is the AST manager that checks the DTMs of all
the ASTEs ror a given object, then copies the most recent to. the object's linchpin
ASTE. Consequently, any ASTE in a per-object sublist can contain the most recent
DTh!.

• GTMS nag - this field, called the global transparent mode sortware flag, indicates
that the segment is part of user or supervisor global address space. Because the
segment is shared, all processes will have the latest copy of the segment and so the
DTM does not need updating.

Memo'1l Management Data Structures 11-12

/-- .. ~

C~)

o

11.3. Physical Page Data Structures

AEGIS physical page data structures keep status about a physical page and store the page's
location in memory or on disk. Reverse-mapped systems store physical page information in the
PMAPE, the MMAPE, and the PFTE data structures. Forward-mapped MMU systems store the
information in the SMAPE, the PMAPE, and the MMAPE. Figures 11-6 and 11-7 illustrate the
per-~ru physical page data structures and the fields within them.

The page data structures keep the following statistics about a page:

• \Vhether it has been referenced

• Whether it has been modified

• Its status in physical memory

• The type of access permitted

• Its physical page number and its disk address

• Its replacement status

11.3.1. Modified Status

The virtual memory management system keeps two modified bits:

• The page-modified bit in the page map (pmod)

• The page-modified bit in the memory map (rmod)

The page modified bit, when set, indicates that a process has modified the contents of a
physical page. In reverse-mapped systems, the modified bit resides in the PFTE (flags.pmod); in
forward-mapped systems, it resides in the PMAPE (pmape.pmod). The hardware sets the page
modified bit when a process writes to the page. The system uses the page-modified bit in the
MMAP to identify pages that have been modified on other nodes in the network.

Both pmod and rmod bits indicate that the page has been modified. However, which modified bit
is set controls whether or not the purifier will update the DTM when it purifies the page. When
set, the page-modified bit in the PFTE or PMAPE directs the purifier to update the DTM when
it purifies the page. If the page-modified bit in the MMAP is set but the pmod bit is clear, the
purifier will write the page to disk, but will not update the DTM~

This DTM-update nag is necessary because the purifier normally updates the DTM when it writes
a page out to disk; on remotely modified pages, however, it is the paging aerver that updates the
DTM. Consequently, the paging server sets the rmod bit to suppress the purifier's DThf update
operation while still allowing the page to be purified. Because the rmod bit is set, the purifier
will recognize that the page has been modified and so needs to be written to disk; but, because
the pmod bit is clear, the purifier will not update the DTM.

11-13 Memory Management Data Structures

~
9
0

~

~ :s
Q

'a
9
ft :s -tJ
Q -Q

~
~
n -c:
(l
CIt

... ...
I

1---\
)

~ -1 ...
~
0 .
."
tr'
~
!.
n
!..
."
II
0:
~
~
II
Ul

2:
~
d
~

" ~
~
ct

~ :::
II
~
~
ct
A,.
~

31 2t 21 27

31

11

Phytlcal page no. Point .. to low pwt
(12 bits» of cltk addre ..

PAGE MAP ENTRY (PMAPE)

o

}
If page Is
resident

2t 22 21

Ful chic addre ..
• PHP'" .l~=:n WIred

count

P~
Iri

tr ...

Page
Is

nul

o

31 30 21 21 27 21 21 11 11

dille
a .. ex ~et. high

10 •

MEMORY MAP ENTRY (MMAPE)

o

}
"MMAPE Is

In use

31

~,~~~ o} LHc to the next free " MMAPE ~ ~~~~ I ~~

31

ASID

2423 2221 20

W R liD
.cc ••• right ••

supervisor dcJrnU1 (S)
doman 0 or 1 (D)
write (W)
read (R)
execute (X)

PAGE FRAME TABLE ENTRY (PFTE)
11 11

X lof~~IZJ z 1% 1~'::l,1

Reverse-Mapped Page Tabl ..

/ \,

()

...
~
I
~
en

~
;J

J
~
:s
Q

~
;J
R
:s -t:J
Q

S-
~
C!
n -~ ...
R
01

'!lJ
~.

= ..,
(I

~

~
~

~
tr'
~
" !!.
~

&:
(I

tj
CD
("to

CD

til
("to ...
c:
" ("to

c: ...
(I
fit -'!lJ
0 ..,
~
CD ..,
g.
I

a::
CD
~
~
(I

a.
'--'

31 30 28 25

Page Is ISO W R X
valid

Laccess rfght~

31 30 2t

47 •• .&

21

••

27

(~
"'--- .//

(',
~)

SEGMENT MAP ENTRY (SMAPE)

physical address of page map
(pmap _phadd)

21 25 24 23 22

o

21
DIsk

,.,1
PAGE MAP ENTRY (PMAPE)

o
addren Phylloll PIGI no.

(high bfte) (12 bltj)
Page Is
resident

o

F .. cIIk adchn Page Is not
resident

43 .2 38 32 31 21 ,.,1 o

} MMAPE In use

31 11

link to next
tree MMAPE

DIlle adchn (low,

} MMAPE Is free

11.3.2. Valid Status

Forward-mapped MMU hardware uses the physical page number (PPN) stored in the page map
entry to carry out virtual-to-physical address translation. However, the physical page number
will not always be valid; for example, when the page replacer steals the physical page for another
process's use. As a result, the memory management software must ensure that the hardware does
not try to translate an invalid PPN. The PMAPE valid bit, when set, indicates that the PMAPE
contains a valid virtual-~physical aasociation for the page; that is, the hardware will not trigger
a page fault if it uses this PPN. The MMAP manager clears this bit to invalidate the virtual·~
physical association when it steals the PPN during page replacement.

11.3.3. Usage Status

The virtual memory management system employs three usage bits:

• The hardware usage bit

• The replacer usage bit

• The purifier usage bit

The hardware usage bit exists in the page frame table entry or the page map entry. When set, it
indicates that the processor has referenced the page (the modified bit indicates how it was
referenced). Both the purifier and replacer examine the hardware usage bit to determine whether
or not they can puriry or replace the page; a page in use should not be purified or replaced. The
replacer and purifier usage bits in the MMAPE distinguish which procedure round the page used.
Thus, the MMAPE usage bits simulate the appearance or two hardware usage bits.

11.3.4. Physical Memory Status

Bit fields within the PMAPE determine the page's status in physical memory. They are:

• The in transition bit (pmape.in_ trans); A page is marked in transition when the
memory management subsystem is making changes to the state of the page.

• The resident bit (pmape.resident); A page is marked resident when an objec~to
physical page association exists for the object page.

• The wired count (pmape.wired); A page is wired when it is resident in physical
memory and also cannot be paged out.

• The null bit (pmape.null)i A page is marked as null when the copy on disk is invalid
for the page that exists in physical memory or the page has never been written to the
disk. 0

}. " '" O'!! Management Data Structurea 11-18

o

(j

o

11.8.5. Access Rights

The hardware uses the access rights to check for possible access violations. When a program
requests a virtual-to-physical translation, it also specifies the way it. wants to access the page.
The hardware checks the requested access mode against the access mode stored in the PFTE or
SMAPE and returns an access violation if the modes do not match. Thus, the hardware performs
access checking as well as address translation on every operation.

11.8.8. Location in Memory and on Diak

If an object page is resident in memory, its PMAPE contains the physical page Dumber assigned
to the page, and the PMAPE and M:MAPE contain the low and high portions of the disk address.
Disk addresses are split between PMAPE and M:MAPE because the PMAPE does Dot contain
enough space to store both the PPN and the disk address. Forward-mapped systems store the
high portion of the disk address in the PMAPE and the low portion in the M:MAPEj it's the
reverse in reverse-mapped systems. The M:MAPE for resident pages also contains the segment
page number (its sequence number within the object segment).

The PMAPE for an object page that is not resident in memory contains the full disk address.

11.8.7. Page Replacement Status

The M:MAPE contains two bits: the in-use bit and the avallable bit (mmape.inuse and
mmape.avail) that M:MAP manager and PMAP manager use to determine the page's availability
for replacement and/or purification. These bits describe a page's status. The M:MAP manager
sets the in-use bit when it allocates a physical page to hold an object-to-physical memory
association, and sets the available bit when it determines that a page should become available for
replacement. (Pages with wired or in transition status are marked unavailable for replacement.)

The purifier and page replacer check the in-use and available bits during their operations:

• IT the in-use bit is clear, and the available bit is set, the page is free.

• If, however, t·h,=, t.he page is marked in use and the available bit is clear, the page is
unavailable for purification or replacement.

• If both in-use and available bits are set, the page is in use but available for
replacement.

11-17 Memory Management Data Structures

Together I the in-uSe and available bits indicate whether the page is eligible for purification or
replacement, depending upon which algorithm is checking. Whether or not the purifier or
replacer should do anything to the page is based on the hardware usage and modified bits, as
follows:

• If the page hasn't been modified, purification is unecessary.

• If the page is marked used and available and modified, it is an impure available page
that should be purified before it is replaced.

• If the page is in use, purification or replacement is unwise.

Memory Management Data Structure, 11-18

o

o

11.8.8. Pointers to Other Structures

H a physical page is in use, The MMAPE contains the ASTEX for the active segment to which it
is allo::ated. Reverse-mapped systems store the index to the page translation table in the
MMAPE as well. The ASTEX in MMAPE tells the MMAP manager where the active segment
table is; on reverse-mapped systems, the PTTX in the MMAPE is used in address tra.nslation.

The PMAPE (or DNx60 systems contains a field to indicate an indirect PMAPE; currently, this
field is dermed but not implemented.

11-19 Memory Management Data Structures

/ ",

/--
I

\,.

C)

o

Chapter 12
Mapping, Activation, and Purification

This chapter details the algorithms used by memory management software as part of their
address space association lunctions. The chapter explains:

• ~1apped segment manipulation

• Active segment activation, deactivation, and replacement

• Physical page management, including page replacement and purification operations

12.1. Summary of MST Operations

The ~1ST manager provides:

• ~1odules that user programs can call; that is, the ezported MST interface

• Modules that other AEGIS kernel managers call

• Modules that only the MST manager calls to carry out functions on the behalf of
AEGIS kernel managers or user-mode programs

The next sections summarize MST module operations.

12.1.1. MST Routines Called From User Space

The routines listed below constitute the user program interface to the MST manager. When a
user program calls one of these routines, the SVC catcher invokes the appropriate MST manager
internal routine on the user program's behalf. The user callable routines are:

• mst_$map. mst_$map_global - Calls the MST internal module mst_$int_maps
to map segments of a specified object into user private or user global address space.

• mst_$unmap, mst_$unmap_global Calls the MST internal module
mst_$unmap_privi to unmap the object's segments ::om virtual address space

• mst _ $remap - maps a different or larger portion of an object that is currently
mapped. Calls the MST modules mst _ $unmap _ privi and mst _ $int _ maps to
perform the operation. If mst _ $remap incurs an error, it un maps the object from
virtual address space and returns nil. However, if an error occurs during the
execution of mst_$unmap_privi, the module leaves the address space in an
indeterminate state from which it is usually impossible to recover.

• mst _ $change _ rights - changes the acce5S rights Cor an object that is currently
mapped. If the module incurs an error, the ohjE'ct remains mapped.

12-1 Mapping, Activation, and Purification

mst _ $set _ guard - Sets the guard bit in the MSTE for the specified region of virtual
address space, which makes that region a guard segment. The process manager (PM)
calls this routine when it sets up the stack object. The MST routine calls the MST
manager modules mst_$unmap_privi and mst_Sint_maps to perform the
operation.

• mst _ Sset _ touch ahead count Calls the MST module
mst_Spriv _set_touch_ahead_ent to set the touch ahead count for the specified
object. The touch ahead count determines how many of the object's pag~ are
brought into physical memory on a page fault.

• mst _ Sinvalidate - Invalidates a portion of an object that is mapped to the given
range of virtual addresses. This routine eventually calls the AST manager
(ast_'invalidate) to invalidate the data in physical memory.

• mst _ $map _ special - On forward mapped MMUs, this routine maps the
special_seg_ Suid into the special segment. Special segments hold pages for AEGIS
data structures such as AST and PMAP pages. DNx60 systems use special segments
to reference virtual addresses that cannot take a page fault.

12.1.2. MST Routines Called from the Kernel

'l'he MST manager provides, for the managers in the AEGIS kernel:

• Kernel entry points for mapping

• Routines for fetching pages into physical memory

• Routines for ASID allocation

• Routines used in fork process creation

• Routines used during system initialization

12.1.2.1. Kernel-Level Mapping Modules

Kernel managers that need to map objects call mst _ $maps and mst _ $maps _ at. Like the user
mode modules, both these routines call mat _ Sint _ maps and mst _ Sint _ maps _ at to map
object segments to virtual address space, and call mst_$unmap_privi to unmap. The managers
that call these mapping routines include the naming server, directory manager, ACL manager,
HINT manager, PROC2 manager, and system initialization procedures.

12.1.2.2. Touch and WlI'e Operations

The MST touch operation brings into physical memory from local disk or from another node in
the network the object pages that are mapped to pages in virtual address space. The module,
mst _ .touch, is called by the fault interceptor manager when a page fault occurs; that is, when a
process tries to reference an object using a virtual address that has no corresponding physical
address. The touch operation re,olve, the page fault; it makes the virtual to physical address

-association that was missing when the object page was referenced, causing the page fault to occur.
To resolve t.he page fault, the mst _ Stouch routine calls the cached OSS managers AST and
PMAP. For details of page fault handling, see Chapter 13.

Mapping, .. 4<"1 i vation, and Purification 12-2

. __ ...

o
The touch operation makes object pages resident in physical memory. However, the physical
page replacement mechanism can take these pages away to map another process's virtual
memory. The wire operation both touche, and wire, the pages. It makes them permanently
resident in physical memory and so unavailable for page stealing.

The AEGIS system device drivers call mat _ 'wire _ area to wire to physical memory an area of
virtual address space for their use. The mat _ $wire _ area routine returns a list of physical page
numbers to the driver. The mat _ twil'e _ area routine calls the MST wired module mat _ twire
to carry out the wiring operation.

The system initialization procedure, the MST manager, and some of the AEGIS device drivers
directly reference the mat _ Swire module.

Both mst _ $touch and mat _ $wire are themselves wired modules; their procedures and data must
be wired into physical memory during the life of the system.

12.1.2.3. Modules used by the PROC2 Manager

The "level 2 process (PROC2) manager calls special MST manager routines to carry out fork
operations on the DOMAIN/IX facility's behalf (process forking is described in Chapter 16.
These routines are:

• mst _ $fork - Copies the parent process's MST to the child process and copies the
contents of the parent process's stack object to the stack object for the child process.
(PROC2 must first allocate the child process's ASID).

• mst _ $unmap _ all - Unmaps the entire address space below the protection boundary.
The PROC2 routine proc2 _ $complete":' vfork calls this routine when it is preparing
to clean up a process; the routine calls mst _ $unmap _ privi to do the unmapping
operation. "

The PROC2 manager also calls the MST manager to allocate and free ASIDs as it creates and
deletes level 2 processes. These routines are:

• mst _ $free _ asid - Unwires and frees the MST of the specified ASID; the
proc2 _ $delete routine calls this routine when it deletes a level 2 process

• mst _ $deallocate _ asid - Deallocates an ASID only if no objects are mapped to it.

12.1.2.4. MST Modules Called During System Initialization

The system initialization procedure os _ $init calls the MST manager's mst _ $init routine to
initialize the MST database and create the ASID allocation list, invokes the AST initialization
module, and also calls mst_$map_rem_paging_file to allocate the OS paging file. The
initialization procedure is the only kernel module that calls mst _ 'set _ priv _ touch _ ahead; this
routine sets the touch-ahead for supervisor global modules such as the OS paging file. See
Chapter 28 for an explanation or system initialization.

12-3 Mapping, Activation, and Purification

12.1.2.5. Modules Used In Crou-Proceu Debualng

The cross-process debugging facility (XPD) uses the rollowing information gathering operations in
the MST manager:

• mst _ Sget _ uid - Returns the UID mapped at the specified address.

• mst _ $get _ uid _ &Sid - Returns the UID mapped at the specified address ror a given
ASID.

• mst _ $get _ va _ inro - Returns information about the object mapped at the specified
address.

12.1.3. Modules Called Within the MST manager

The MST manager is separated into wired and unwired modules. The MST manager uses the
foilowing unwired modules during mapping operations:

• mst _ Sget _ mste - Returns a pointer to the MSTE at the specified address. Since the
access rights are stored in the SMAP in rorward-mapped MMUs and in the MSTE in
reverse-mapped systems, this routine returns "the access rights separately. (Calls wired
modules mst_Sva_to_segno to rmd the MSTE).

• mst _ Swire _ mste - Ensures that the MSTE is wired. If it is not, the routine
attempts to wire it. This procedure will wire an additional page of mst entries only if
the system has not exceeded the MST entry limit.

• mst_$get_info - Checks the object's access rights, then obtains information about
the object for the mst _ Smaps, mst _ Smaps _ at, and mst _ SCork routines

The MST manager's wired modules contain procedures and data that must be wired into physical
memory. They are:

• mst_$va_to_segno - Converts the given ASID and virtual address into
ASID /segment number indexes into the per-proces MSTs.

• mst_$int_alloc_8Sid - Finds a free ASID and allocates it. The kernel routine
mst _ Salloc _ asid calls this internal routine on the PROC2 manager's behalf.

• mst_$install_ioppn - Installs an I/O space physical page number (PPN) into the
page map (PMAP) for the given virtual address.

• mst_Sremove_ioppn - Removes an I/O space PPN rrom the page map. These
routines are used by the PBU manager to map memory-mapped controllers into user
private address space. The general purpose I/O (GPIO) facility uses the PBU
manager and these last two MST routines.

The next section describes how the MST manager's routines work to map an object into virtual
address space.

Mapping, ActitXJtion, Gnd Purification 12-4

". -'

r""",

/'--~

!

o

()

12.1.4. Mapping Object Segments

The MST manager's mat _ tint _ maps routine handles the actual mapping of an object to a series
of MSTEs. The kernel managers that map segments call this routine indirectly via mst_.maps.
The user-callable mapping system services call it via mst _ $map or mst _ $map _global.

(Note that mst _ tint _ maps _ at carries out approximately the same steps but calls
mst_$va_to_segno to rmd the location at which to map the object segments.)

The mst_$int_maps routine maps an object to virtual address space by:

• Determining the area of virtual address space into which the object is to be mapped

• Checking the caller's access rights against those of the object

• Getting the information about the object

• Loading the mapped data structures with the retrieved information

12.1.5. Determining the Address Space

The mst _ $int _ maps routine first examines the ASID and the protection boolean specified in the
call to determine into which section of virtual address space the object is to be mapped.

• ASID 0, unprotected means map to user global

• ASID 0, protected means map to supervisor global

• ASID 1-25, unprotected means map to per-process user

• ASID 1-25, protected means map to per-process supervisor

Once the routine determines where in the address space the object belongs, it knows which MST
(MST for ASID ° or a per-process MST) it should use to map the segment.

12.1.6. Checking Access Rights

Some objects have a system type attribute which identifies objects that are important to the
system's internal operation. Callers running in supervisor mode (for example, the naming server)
can map any type of object to virtual address space. If the calling process is running in user
mode, mst_$int_maps calls the ACL manager (mst_$get_info ->acl_$rights) to check the
calling process's rights to the object against those specified in the ACL for the object and whether
the process is attempting to map a non-file type object.

12-5 Mapping, Activation, and Purification

12.1. 'I. Getting the Information about the Object

The mst_$int_maps routine calls (via IDSt_$get_info) the AST manager to retrieve the
information about the object from the AST, from the VTOC, or from another node in the
network.

The AST manager (ast_$get_inlo) fll'8t searches for an active ASTE that corresponds to the
UID. of the object being mapped. IC it cannot locate an active segment, it calls the VTOC
manager to search the VTOCs of all mounted volumes for the obejct's VTOCE. If the object is
not local, the AST manager aab the hint manager for likely remote locations, and examines the
node II) portion or the UID to determine the node on which the UlD was created; this is also a
likely location. IC the AST manager cannot locate the file, it returns file not found to the MST
manager.

12.1.8. Loadins the Mapped Sesment Data Structures

If the obj~ct is to be mapped to per-process space, the module locates the. correct MSTE from the
given ASID and searches for a series of free MSTEs, starting from the MST's lowest segment. If
it cannot locate free MSTEs, the process has mapped its maximum number of object segments,
and the routine returns an error me8S8ge.

Once it has located empty MSTEs, the module calls its internal routine to copy the information
about the object into the MSTEs. The routine wires the MSTEs to be loaded and then fills in the
fields. On forward-mapped mapped MMUs, this routine also copies the access rights into the
associated segment map entry (SMAPE).

12.2. Active Segment Operations

The AST manager performs the following operations:

• Maintains the active segment table data structures by activating and deactivating
ASTEs.

• Maintains local AST-to-VTOC consistency by updating the VTOC to the state of the
AST.

• Maintains distributed cached consistency on the lock manager's behalf.

• Performs operations on objects cached in the AST on the FILE manager's behalf.

The following sections describe bow the AST manager activates and deactivates ASTEs and how
and when it updates the VTOC to the state of the AST. Chapter 6 discusses how the lock
manager and the AST manager interact, while Chapter 5 discusses how the FILE and AST
managers interact.

Mapping, Activation, and Purification 12-8,

". ,-,

o

o

12.2.1. ASTE Activation

The ASTE activation routine ast _ $activate activates an ASTE by finding a free ASTE, copying
the object information into it, and adding it to the linked lists of ASTEs. The AST manager
activates segments in the following eases:

• During the AST touch operation (ast_$touch/ast_$touch_segva)

• When the lock manager calls the AST manager to get an active segment's DTM, and
the segment is not active (ast_'get_dtm)

• When the AST manager is invalidating a local file (ast_$invalidate) and the segment
is not active

12.2.1.1. Finding a Free ASTE

The ast _ $activate module calls ast _ $allocate to allocate a free ASTE from the free list or via
the ASTE replacement algorithm. Once ast _ $allocate locates an ASTE, it marks it in transition
to prevent it from being replaced and returns the ASTEX to ast_$activate.

12.2.1:2. Loading the ASTE

The ast _ $activate routine calls its internal install routine to load the object and object segment
information into the new ASTE and associated PMAP. The install routine first determines
whether the segment being activated is the first active segment for this object or whether the
object has other active segments in the AST. If other active segments exist for the same object,
the routine can copy the object attributes and file map from the linchpin ASTE. If the segment
being activated is the object's only active segment, the install routine calls the VTOC manager to
retrieve the object attributes (via calls to vtoc_$lookup and vtoc_$read). In either ease, it
must retrieve the file map from the VTOC on the specified volume (via a call to fm_$read).

If ast _ $activate is activating a remote segment, it calls the ast _ $get _ info routine to obtain the
segment information from the specified node.

12.2.1.3. Adding the ASTE to the Linked List

Once ast _ $activate has read the VTOCE and file map, it checks the AST list to make sure that
the segment it is activating is not already activated. If the segment has already been activated,
the module returns the ASTE to the free list and exits.

The module then gets the AST lock and adds the new ASTE to the appropriate linked list.
Because more than one UID hashes to the same value, ast _ $ activate adds segments to ASTE
linked lists in two steps. It adds new ASTE:

• To the ASTE chain that links together all the active segments whose UIDs hash to the
same value

• To the linked list within that ASTE chain that links together all the active segments
for this UID; that is, for one object

The first ASTE in the linked list of one object's active segments is linchpin ASTE; if the segment
that ast _ $activate is activating belongs to an ohject that has other active segments, the routine
links the newly activated segment to this list in descending order of its segment number.

12-7 Mapping, Activation, and Purification

12.2.2. ASTE Deactivation

The routine ast _ Sdeactivate removes specified ASTEs Crom ASTE linked lists and places them
onto the AST Cree list. The AST manager deactivates segments in the rollowing cases:

• When it must Cree up an ASTE during segment activation (ast_Sallocate)

• When it deactivates the ASTEs ror those segments that reside on a specified logical
volume during a volume dismount (ut_Sdismount)

• When a object is truncated (ast_'truncate)

• When an object is locked; at this time, the AST manager deactivates any stale active
segments of an object (ast_Scond_nush)

The ast _ Sdeactivate routine returns with the ast _ Slock held and the ASTE marked in
transition. The routine cannot deactivr·e ASTEs that are in transition, held, or have wired pages
in the associated PMAP.

The AST manager deactivates an active segment by:

1. Writing all modified resident pages to disk (via pmap _ $flush)

2. Updating the segment's VTOCE and file map if deactivation is the result of a volume
dismount request or the segment has been written

3. Removing the deactivated ASTE Crom the ASTE linked list and adding it to. the free
list

4. Incrementing the AST header's hash table modifications counter (asth.seq_num) to
indicate to other memory management routines that a change in the AST state has
occurred

5. Advancing the ASTEs in transition eventcount (ast_$ec) to awaken any waiters for
ASTEs in transition

On forward-mapped systems, ast _ $deactivate also invalidates the ASTEX in the MSTEs of all
processes sharing the object segment, invalidates the associated SMAPEs, and purges the
translation buffer in the MMU.

12.2.3. ASTE Replacement

When ast Sallocate cannot rmd an ASTE on the Cree list, it initiates its ASTE replacement
algorithm to rmd an ASTE to deactivate. The replacement algorithm has a window through
which it scans subsets oC the ASTEs in the AST, looking Cor an ASTE to deactivate. If it cannot
find a deactivatable ASTE within one subset, it shifts its window to another group of ASTEs and
searches that next subset.

Mapping, Activation, and Purification 12-8

\, _, .. '

Cj

o

o

To begin the search, the replacement algorithm indexes into the AST to the ASTE that it last
replaced (pointed to by the AST header field G,th.lru). It then carries out a three-part scan or
each ASTE subset, passing over any ASTEs held or in transition. The three-part scan consists or
the following actions:

1. Checking the number or pages resident field (aste.npr) to rmd an ASTE with no pages
resident.

2. Searching for the ASTE with the fewest Dumber of pages resident.

3. Searching for any deactivatable ASTE (one that is Dot held, in transition, or has
wired pages)

If the routine locates a replaceable ASTE during anyone of its scans, it calls ast _ 'deactivate to
make it free. The ast _ $ allocate routine marks the returned ASTE in transition to prevent the
AST manager from replacing it on another caller's behalr.

If the routine cannot find any deactivatable ASTE in the AST because all the ASTEs are either
held or in transition, it crashes the system with ast _ $unreplaceable error status.

12.2.4. Updating the VTOC

The AST manager either updates the entire VTOC to the state of the AST (ast_$update), or it
updates selected VTOCEs (ast_$update_ vtoce). The purifier process is the only system
component that calls the AST manager (ast_$update) to update the entire VTOC to the current
state of the AST. The AST manager updates selected VTOCEs on:

• Force-writes (file_$unlock calls ast_$purify, which calls ast_$update_ vtoce)

• Volume dismount, as part of ASTE deactivation (ast_$dismount calls
ast_$deactivate, which calls ast_$update_ vtoce)

12.3. Page Purification

Page purification exists for two reasons:

• To ensure that physical pages continue to be available to all processes in the system.
The system cannot reissue a physical page that contains a modified object page until
those modifications are written to disk.

• To ensure that modified pages are written to disk in a timely manner in the event
that no physical memory pressure exists to rorce their purification

The purification process that provides available pages is called demand-based purification I
while the purification procedure that enforces writes to disk is called time-based purification.

12-9 Mapping, Activation, and Purification

12.3.1. Demand-Bued Purlftcatlon

The page fault resolution procedure includes an operation to bring an object page from its home
disk into physical memory. This operation invokes the page allocation procedure to locate a
physical page to hold the object page. The page allocation procedure then circulates through the
pages of physical memory looking for a page to allocate. A page that is eligible for allocation is
either a tree page or a replaceable pase. A free page is marked unused and available in the
MMAPE. A replaceable page haa three criteria:

• It is marked available in the MMAPE (the in-use and available bits are set)

• The processor is not currently using it (the hardware usage bit is clear)

• The page has not been modified and is thus a pure page (both the pmod and rmod
bits are clear).

The page allocation procedure cannot allocate pages that have been modified or pages that the
processor has recently referenced. Thus, when the demand on physical memory is great, the page
allocation procedure can run out of free and replaceable pages.

In this case, it advances the eventcount on which the demand-based purifier is waiting
(purifier _ $ec). The demand-based purifier cleans pages for the allocation procedure. When it is
awakened, this purifier circulates through the pages in memory looking for modified pages that
have remained unused since the last time the allocation procedure examined them. The purifier
then writes the modified contents of eligible pages to disk, making them pure and therefore
available for re-use.

In the meantime, the page allocator has suspended the process that requested the pages by
waiting .on the pages eventcount (pages _ $ec). When physical memory is no longer available on
the node, many processes will be waiting on this eventcount for the purifier.

When the demand-based purifier determines that it has purified enough pages, it advances the
pages eventcount, which awakens all the processes that want to bring object pages from disk into
physical memory.

12.3.2. Time-based Purification

Demand-based purification is sufficient for nodes that contain a limited amount of physical
memory and thus will experience frequent contention for physical pages. However, some node
models provide a large amount of physical memory. The virtual memory management system on
these types of nodes can satisfy the demand Cor physical pages without having to Cree up modified
pages by writing them to disk. ~ a result, a lag time can develop between the time that the
page is modified and the time it is written to disk. If a power failure were to occur during this
interval, all of the page modifications sitting in physical memory would be lost.

The time-based purifier exists to remedy this situatation: it writes modified pages out to disk in
the event that no demand to force them out exists. The time-based purifier ensures that the
interval between the time a process modifies a page and the time the system writes it to disk is
only about two minutes.

Mapping, Activation, and Purification 12-10

o

o

o

The time-based purifier periodically circulates through a subset or the pages in physical memory
and purifies modified pages that it determines to be least recently used; that is, pages that are
not likely to be modified in the near ruture. It also writes the contents or the ASTE through to
the VTOCE.

12.8.S. Local Page Purification

The time-based and demand-based purifiers call the write_page (one page) and write_list (list or
pages) procedures to carry out the write to disk. The write _list procedure sets all the paces it is
going to write in transition and breaks the virtual-to-physical uaocationa in the memory
management tables. It then builds a block header Crom the wormation in the ASTE and ealls
disk_Swrite to do the local I/O, paasing it the block header.

12.8.4. Remote Page Purification

When either purifier encounters remote pages that have been modified locally, it sends these
pages back to their home nodes to be stored via a page-out request to the NETWORK
manager (write_page also does this operation). In this case, the purifier is the NETWORK
manager's client; the NETWORK manager writes the pages out across the network (via
netwc.rk _ $write) on the purifier's behalf. .

12.3.4.1. Building the Page-Out Request

Before it calls the NETWORK manager, the write_list (or write_page) procedure builds the
block header from the ASTE as in the local case. However, it inserts the DTM from the ASTE
into the block header along with the rest or the inrormation to be passed. The purifier then calls
the NETWORK manager (network_$write) to package up the block header into a page-out
request packet. The NETWORK manager sends the resulting packet across the network to the
remote paging server on the object's home node.

12.3.4.2. Handling the Page-Out Request

The remote paging server on the home node determines that the request is a page-out request and
calls the AST manager (ast _ Stouch), giving the UID and segment page number of the modified
page and the PPN containing the new object page contents.

The AST manager checks for possible concurrency violation. If the lock key check does not pass;
that is, if the node ID in the lock key is not the same as the node passing in the pages to be
writt£n to disk, the AST manager simply drops the pages and the update does not occur. In· this
case, the client purifier at the remote node receives concurrency violation status.

Otherwise, the AST manager calls pmap _ $assoc to make the association between the new object
page and a physical memory page. The pmap _ Sassoc routine locates the PMAPE for the page
and waits ir it finds the page in transition.

The object page that the modified page is replacing may already be associated with a physical
page (resident in memory). If this is the case, the PMAP manager breaks the virtual-to-physical
and cbject-to-physical associations and frees up that physical page Cor some other process's use.
The pmap _ $assoc routine then updates the PMAPE for the new object page, marking the page
resid'!nt with no copy on disk because the disk is still storing the old copy. It then calls the
MMAP manager to install the PPN/object page association into the MMAP (via mmap _ $install)

12-11 Mapping, Activation, and Purification

and finally returns to ast _ Stouch. The local purifier will eventually purify the page in physical
memory by writing it out to disk.

IT the pmap _ $assoc routine rmds that it has a modified page with no backing storage, it returns
status of bad a"ociation to the AST manager.

The ast _ Stouch routine returns to the paging server (unless pmap _'auoc encounters a bad
association), which obtains a new DTM and inserts this value to into the reply packet. The
paging server then sends the packet back to the network manager on the modifying node.

12.3.4.3. Page-Out Post-PI'OCe881DS

When the purifier (write_page) receives the reply packet from the home node, it extracts the new
DTM and calls the AST manager to update the ASTE with the new DTM.

IT the purifier receives file not found or bound, fault status from the remote node, it eliminates
the page entirely by breaking the virtual-to-physical associations, setting the page to null, and
freeing up the physical page for some other process's use.

12.3.5. Page Allocation for Remote Operations

The remote file system permits processes on remote nodes to allocate physical pages on a local
node for remote operations. The remote paging pool exists to limit the amount of physical
memory that remote nodes can use so that remote processes do not steal physical memory away
from ~he local processes.

The system allocates pages for the remote paging pool from high end of physical memory. Once
the system creates the remote paging pool, remote paging requests can only use pages from
remote paging pool.

When the page allocation procedure (mmap _ $alloc) is called to allocate a physical page, it
checks to see if its caller is the remote paging server and whether the system has supplied a
remote paging pool. If both are true, the allocation procedure limits its search for an available
page to the remote paging pool.

If a user adds mUltiple remote paging servers to the system, the system adds more pages to the
pool. As a result, two remote paging servers can double the size of the remote paging pool.

Mapping, Activation, and Purification 12-12

o

o

Chapter 13
Page Fault Resolution

_______ 0 ____ 0 _____ _

A page fault occurs when the processor tries to rererence a virtual address that has no
corresponding physical address mapping in the memory management tables. (With the forward
mapped MMU, the in-memory page tables, with the reverse-mapped MMV, the page frame table
and page translation table.) The managers in the memory management subsystem are then called
to resolve the page Cault.

This chapter describes how the managers in the memory management subsystem interact to
handle page Caults. There are several types of page Caults that can occur:

• Typical page raults, where the pages exist on local disk and need to be brought into
physical memory

• Growth raults, where a segment's page has no associated disk storage

• Null page faults, where the page's backing storage has no valid data

• Resident page faults, where the pages are already resident in memory but no virtual
to-physical association exists

• Sharing faults, where two or more process virtual addresses translate to the same
physical page

• Remote page faults, where the pages to be brought into memory exist on a disk
attached to a remote node

The chapter begins by describing each manager's function to resolve a typical page fault.
Subsequent sections then describe the flow of control during growth, null, resident, sharing, and
remote page faults.

13.1. Handling a Typical Page Fault

When a process generates a page fault, the memory management unit hardware signals a bus
error, which vectors through the trap page to a routine in the wired portion of the kernel-level
fault interceptor manager (FIM). The FIM handles the page fault by calling the memory
management subsystem to resolve the fault. (FIMs on reverse-mapped systems check for sharing
faults; see Section 13.6.)

Figure 13-1 shows the flow of control between the managers in the subsystem and summarizes the
operations that each manager performs to resolve the page fault. The next sections detail the
operations performed by each manager.

13-1 Page Fault Re~olution

MMU
....

Mgr ~

Pag. Fault
R •• olv.d

Pag. Fault
Occur.

t MST Mgr l
a return to FIM a locate MSTE for

aClear=_of
-in tr ion-

(ASIO, virtual sag .)
that owns faulting VA

status • get (U10, Beg #) of

• instaH va-pa
object mapped at that
virtual segment

association In
MMU ~not for a pass (UIO, seg .) &
DNx60 no. pages to get to

ASl "'Or

~~

AST Mgr 1f

a locate ASTE for
a return PPNS, count (UIO. sag #)

from PMAP to MST a activate an ASTE if
segment not active

a check lock key

a ~et date-time/mod
(if object Is local)

OlM) from ASlE a check for bounds fault

a call PMAP mgr

~~

PMAP Mgr U

a return PPNS and
a read PMAP for segment

count of number a set touchable pages touched to AST mgr in transition

a call MMAP mgr to
a update PMAPES for allocate some PPNS

newly resident pages
• get pages from disk

or network

h

.,
Disk Manager or Network Manager gets pages

Flpre 11-1. Page Fault Handling

Page Fault &,olution 18-2

allocates
frees up

~
PPNS; if ... none PPNS

~ javailable, C- via
calls purify

purifier opr

-

,r'\
I

o

o

o

13.1.1. MST Page Fault Handling

The fault interceptor manager calls the MST manager routine mat _ .touch to initiate page fault
resolution. The mst _ Stouch routine's function is to locate the virtual segment that contains the
faulting address and get the UID and segment number of the object segment mapped to that
virtual segment. The mst _ Stouch routine carries out this operation as follows:

I. Calls mst _ $va _ to _ segno to convert the ASID /virtual address passed to it by the
fault interceptor manager to an index into the per-process MSTs.

2. Determines whether the page fault is for a page within a private or global segment,
and increments the appropriate per-process page fault counter (in procl_tstats).

3. Checks for special segments, if running on a rorward-mapped MMU. Special segments
store resources that cannot be paged in and out o(physical memory; for example,
AEGIS kernel data structures.

4. Gets the number of pages that should be ideally fetched into memory rrom the touch
ahead count count specified in the MSTE and passes this value, plus the object UID
and segment number, to the active segment table manager.

13.1.2. AST Page Fault Handling

The AST manager's function in page Cault resolution is to locate the active segment table entry
for the segment, and to activate an ASTE (or the segment if it is inactive.

13.1.2.1. AST Locking During Page Fault Handling

Use of the active segment table is controlled by the ast _ $lock resource lock and by the hold
count and in transition fields in the ASTE. The AST lock gives the AST manager's caller
exclusive use of the AST linked lists. It prevents other AST callers Crom making changes to the
state of the AST while the AST manager is searching for an ASTE.

However, the AST lock must be released once the AST is located so that other processes can
access ASTEs. Giving up the AST lock makes it possible for the AST manager to deactivate the
ASTE before any of the segment's pages become resident and for other callers to change the
contents of the ASTE while it is in use.

To prevent the AST replacement algorithm from deactivating the ASTE, the AST manager
increments the ASTE hold count each time it is called to use the ASTE. The hold count is
similar to the wired page count; other processes can use the ASTE, but it cannot be deactivated.
The AST manager later will decrement the hold count when its caller is finished holding the the
ASTE. To block other callers from changing the state o(the ASTE, the AST manager sets the in
transition bit when it activates or deactivates an ASTE. The in transition bit indicates that the
ASTE is changing and so its contents cannot be trusted. Callers that want to· use an ASTE in
transition will wait on an eventcount.

13.1.2.2. Locating and Activating the Segment

The AST routines used to locate and possibly activate a segment differ depending on the type of
MMU hardware in use. On reverse-mapped MMUs, the MST manager calls ast _ $touch to locate
the ASTE and, if necessary, to activate an ASTE for the segment.

13-3 Page Fault Resolution

On forward-mapped MMUs, mst_Stouch calls ast_Stouch_segva before calling ast_Stouch.
The ast _ Stouch _ segva routine carries out the following steps. It:

1. Gets the AST resource lock, takes the ASTEX specified by the caller and uses it to
locate the COI'responding ASTE. If no ASTEX has been given, the routine hashes the
given UID to get an ASTEX .

. 2. Compares &he UID and segment page number in the ASTE with the values specified
by mst _ Stouch. If they match, the routine reads the in transition bit in the ASTE to
make sure that no other caller is using the ASTE; ir the bit is set, ast_Stouch_segva
suspends, waitin~ on the AST eventcount ror the bit to clear. Once the ASTE is no
longer in transition, the routine must obtain a new ASTEX (by hashing the UID)
because· die ASTE on which it was waiting may have been deactivated during the
waiting period.

3. Takes the roDowiDg actions when the target ASTE has cleared in transition:

• Increments the ASTE hold count; this ensures that the segment will not be
deactivated during the call to ast _ Stouch

• Returns to mst _ Stouch with a probable ASTEX to be passed to
ast_$Wuch.

If ast_Stouch_segva cannot locate an ASTE that corresponds to the given UID, it activates an
ASTE for the segment by calling ast _ $activate, and makes associations the memory
management tables and the faulting virtual add~esses. The routine holds the AST resource lock
while it sets up ,he tables; it releases the lock before it returns to mst _ Stouch with the ASTE
held and with a probable ASTEX.

The ast _ Stoudt routine locates the ASTE for the segment in the same manner as
ast _ Stouch _ segva:

1. Gets the AST resource lock and locates the ASTE that corresponds to the object
segment. via the ASTEX or a UID hash.

2. Checks for in transition on a matching ASTE, or activates a new ASTE if it cannot
locate a match.

3. Increments- the ASTE hold count and relinquishes the AST resource lock, once it
obtains an ASTE.

The AST manager (via at _ Stouch and an internal routine touch) next carries out some checking
(described in later sections) and calls pmap _ $touch to bring the requested pages into memory
from disk or- frolll another location in the network. Note that the the AST manager (touch) does
not have the AST lock when it calls pmap _ Stouch.

13.1.3. PMAP Pqe Fault Handling

The pmap_Stoueh routine retches pages from physical memory, from disk, or from elsewhere on
the network. The routine first obtains the resource lock pag _ Slock.

Page Fault Resolution 13-4

~" (.

' -.. ,., ,.'

c)

o·

18.1.8.1. Page Locking

Most page fault handling is carried out under the pag _ Slock resource lock. The page resource
lock must be held by any routine that makes a change to the state of the paging database: the
PMAP and MMAP. However, the page lock cannot be held during I/O; releasing the lock allows
other processes to run while the I/O completes. Relinquishing the page lock means that physical
pages allocated may be available for page stealing. Therefore, the modules involved· in page fault
resolution always set the fields in the MMAPE for the physical page to unavailable, making the
page wired, and set the in transition field in the PMAPE; setting these fields prevents the MMAP
page replacement routine from stealing the physical pages into which I/O is occurring, and
prevents other PMAP callers from seeing those PMAP entries.

18.1.8.2. Determining the Type or Page Fault

Once pmap _ Stouch obtains the page lock, it gets the PMAP for the active segment and
examines the PMAPE for the first page requested. This page can be in one of the following
states:

• The first page is in transition; someone else is using it. If pmap _ $touch finds the
first page in transition, it releases the page lock and suspends itself waiting on the
page-in-transitioneventcount. When the page clears the in transition state,
pmap _ $touch restarts its first page examination.

• The first page is resident - the object-to-physical page association already exists; this
is a resident page fault or a sharing fault

• The first page is not resident, in which case it can be:

• Non-resident and existing on a remote disk; this initiates a remote page fault

• Non-resident and existing on local disk; this is the typical page fault

• Non-resident with no backing storage on disk; this state initiates a growth fault

• Non-resident with invalid data in its backing storage on disk; this is a null page
fault

The next section explains the typical page fault - how pmap _ $touch operates when it finds that
the first page is not resident and exists on local disk.

18-5 Page Fault Resolution

13.1.3.S. Fetching Pages from Disk

When pmap _ $touch determines that the fll'St page is not resident and exists on disk, it next
determine! how many more or the pages requested really can be touched by by reading the rest of
the PMAPEs Cor the active segment. The routine only attempts to touch consecutive pages,
beginning with the first page requested and stopping at the point . that: .

• It exceeds the maximum touch ahead count that the MST manager has specified in the
call to ast _ .touch

• The touch ahead coUnt causes a segment boundary to be crossed

• It fmds a page in transition

• It finds a page that is already resident in memory

• It finds a null page

The routine then sets the PMAPEs for the pages it is going to read to in transition so that it can
release the pag _ $lock resource lock, and then calls its internal routine alloc to allocate enough
physical pages to hold the pages to be read into memory. The alloc routine in turn calls the
:M:MAP manager (mmap _ $allocate), which actually allocates the pages Crom the Cree list or by its
replacement algorithm.

If the ~1MAP manager cannot locate enough physical pages to satisfy the number of pages that
alloc has requested, it indicates to alloc that there are no physical pages available. The alloc
routine then releases the page lock and advances the page purifier's eventcount, which awakens
the purifier to Cree up some physical pages by writing their contents out to disk. The alloc
routine waits for the purifier to return it some physical pages; when it does, the routine then
obtains the page lock again and returns to its caller with the page lock held.

Once enough physical pages have been allocated, pmap _ $touch unlocks the page _ $lock lock and
calls the disk driver (disk_$read_ahead) to get the pages off disk into physical memory. When
the disk driver returns, pmap _ $touch then calls the MMAP manager (mmap _ Sinstall_list) to
update the MMAP with the new physical pages, and updates the PMAPE for each newly resident
page by:

• Copying in the disk addresses (low Cor reverse-mapped MMUs)

• Setting the resident bit

• Setting the valid bit (on forward-mapped MMUs)

The pmap _ $touch routine also updates the ASTE number oC pages resident count.

13.2. Completing t!te Typical Page Fault

Once pmap _ .touch has brought the requested pages into memory, it returns the count and the
list of PPNs to the internal touch routine. The PMAP manager has marked these pages as
unavailable for replacement by the MMAP manager and in transition. The touch routine returns
to mst _ $touch a count oC the pages made resident, their PPNs, and the ASTEX of the active
segment for these pages.

Page Fault Resolution IS-6

\ ...

-------------.---------

o

o

o

The ast _ Stouch routine then returns to mat _ Stouch. On Dodes with reverse-mapped MMU
hardware, mst_Stouch calls the MMU manager (mmu_Sinstall) to install the virtual-to-physical
page assocation into the MMU's page frame table. On forward-mapped MMUs, the MMU
hardware will read in the virtual-to-physical association directly from the page tables. The
mst _ Stouch routine on reverse-mapped MMUs also copies the ASTEX returDed by ast _ • touch
into the probable ASTEX field in the MSTE; this step has already been completed in forward
mapped MMUs.

The MST manager Dext clears the in transition bit for the returned pages, and OD forward
mapped MMUs, calls eat_'release to decrement the ASTE holdeoUDt that ast_'touch_aerva
left incremented.

The mst _ Stouch routine also checks the guard field in the MSTE to make sure that the caller is
Dot trying to reference a guard segment; if a guard segment is being referenced, mst _ Stouch
returns a guard fault error.

Finally, the MST routine returns to the fault interceptor manager, which resumes the process
that generated the page fault.

13.3. Handling Growth Faults

A growth fault occurs when a Dew page is being created for an object; its PMAPE indicates
that it is not resident and also does not exist on disk (its disk address field in the PMAPE is
zero).

Growth fault handling begins in the AST manager .when its internal touch routine checks for a
bounds fault before calling pmap _ $touch to grow the object. A bounds fault occurs when
mst _ $touch 's caller is attempting to access a page that is beyond the current length of the object
and the object is not permitted to grow. The touch routine checks the faulting address against
the segment's current lengthj if the address extends beyond the current segment limit, the routine
checks the ext _ ok argument passed by mst _ $touch to make sure that the caller is allowed to
add pages to the segment. H it is not, the memory management subsystem returns a bounds fault
to the caller.

When pmap _ $touch finds, during its PMAPE examination, that the first requested page is a
non-resident page with no associated disk block, it calls the BAT manager to allocate a disk block
for it (via bat_$allocate). The pmap_$touch routine attempts to allocate the new disk block as
close as possible to the other disk blocks belonging to the se:rment. Note that there is no touch
ahead for growth faults; the system adds pages to objects one page at a time.

H the page to be created is the first within the segment, or the previous page also has DO disk
block associated with it, pmap _ Stouch gets the address of the segment's rlle map from the ASTE
and passes that address to bat _ Sallocate as a place to start.

Otherwise, pmap _ Stouch obtains the disk address from the segment page that resides just before
the one being grown and passes that disk address to bat _ Sallocate.

13-7 Page Fault Resolution

Before calling bat _ Sallocate, pmap _ Stouch sets the page in transition and releases the page
lock. Once the BAT manager returns a disk address, pmap _ Stouch:

• Adds the disk address to the PMAPE Cor the new page

• Sets the null bit to indicate that the contents of the disk address assigned to the
segment page is not valid Cor the ·new· physical page

• Indica.tes in the ASTE that the segment map has been modified

• Writes to the blocks_delta field in the ASTE the number oC pages it has added to the
segment (the blocks_delta field tracks the number oC disk blocks added to the
segment since its activation).

• Allocates and zeroes the new page and sends null page status back to ast _ Stouch.

13.4. Handling Null Pages

A null page is a page whose copy on disk is invalid. The page is not resident and has a disk
address associated with it, but the contents of the block at this address are no longer valid for the
physical page. If pmap _ Stouch encounters a null page, it searches through the segment's PMAP
for more contiguous null pages, stopping if it encounters anything else.

Then, pmap _ $touch puts the null pages it has found in transition in their PMAPEs and calls the
alloc routine to allocate some physical pages. Once the alloc routine returns these pages,
pmap _ $touch then calls an internal routine to invalidate the contents of these physical pages.

Then, pmap _ $touch returns the null page status to the AST manager (touch), which checks to
see if new pages have been created Cor the segment. H the segment contains additional pages, and
its ASTE is the first one in the linked list of ASTEs for an object, the touch routine updates the
current length field in the ASTE. The AST manager eventually copies this length into the
linchpin ASTE; see Chapter 11 Cor a description of the linchpin ASTE.

13.5. Handling Resident Page Faults

If pmap _ Stouch finds that the first page to be Cetched in the PMAP is already be resident in
physical memory, an object-to-physical association exists but the virtual-to-physical association in
the MMU does not. An object page can already be resident in memory because another process
has already brought it into memory, or because the process itself has previously brought it into
memory and then unmapped it Crom its address space. (Unmapping the object removes the virtual
to physical associations Crom the MMU, but the object is still resident in physical memory.)

The pmap _ Stouch routine handles a resident page Cault like the typical page Cault except that no
disk activity occurs. It marks the pages in transition in the PMAPEs, calls the MMAP manager
to mark them unavailable Cor replacement, and, on Corward-mapped MMUs, it also sets the valid
bit in the PMAPEs.

Page Fault Resolution 13-8

o

C)

o

13.6. Handling Sharing Faults

Reverse-mapped MMUs can only recognize one virtual-to-physical page association at a time.
Although two or more process virtual addresses can point to the same physical page, the MMU
can contain only one process virtual mapping to that page at a time. Thus, if several processes
are all referencing the same physical page, these processes must share the one table entry. Each
time one of sharing processes becomes the curren·, process and rererences that physical page with
a virtual address, the system must install the correct process virtual address space association
into the MMU's page rrame table; this procedure is called a .harms fault.

The rault interceptor manager (FIM) handles sharing raults. When it receives a rault on a virtual
address, it calls the virtual memory management managers to read the memory management
tables to determine whether or Dot the page is resident in memory (the resident bit in the
PMAPE is set). If it fmds that the page is resident, it assumes it is handling a sharing rault. It
then removes the current virtual-to-physical page association rrom the MMU and u..alls the Dew
virtual association for that physical page.

The forward-mapped MMU can hold more than one virtual-physical page association, so sharing
faults do not occur. When the fault interceptor manager on these systems recevies a virtual page
fault, it proceeds directly to the MST manager to resolve the fault.

13.7. Remote Page Fault Handling

When pmap _ $touch determines that the page or pages requested by ast _ $touch reside on
another node in the network, it calls the NETWORK manager to read in the pages from the
remote node. The NETWORK manager handles two types of paging requests:

• Page-in requests (multipage reads) for multiple pages, where the NETWORK manager
reads several pages at once from remote to local memory. The NETWORK manager
can handle a maximum or 16 page reads at once, but the PMAP manager's maximum
is 32. Consequently, if the PMAP manager issues a multiple page-in request for more
than 16 pages, the NETWORK manager will perform another page-in operation until
it gets the requested number of pages. Only when it has satisfied the request will the
manager return to the caller .

• Page-out requests (single page writes), where the NETWORK manager sends pages
modified at a remote site to their home nodes so that the modifications can be written
to local storage. An explicit page flush initiates a pa.ge-out request; examples include
FILE manager loree-writes and AST manager page nushing during ASTE
replacement. Note that the system does not currently perrorm page-outs of more than
one page (no multiple page writes) over the network.

The modules in the NETWORK manager that carry out these paging requests are collectively
known as the NETWORK client aide because the NETWORK manager is carrying out
operations on the caller's behalf. Figure 13-2 illustrates a remote page-in request; the next
sections discuss the sequence of events that occurs when the PMAP manager makes a multiple
page-in request to "the network manager.

13-9 Page Fault Resolution

USER SPACE

r',
'r va
mit Stouch

t - 1
Pfn

•• t Stouch

t- 1 Pfn
p;ap_SttouCh

ppn

network 'read a ead
t - -

ppn

• physical
memory

USER SPACE

4-HDlng .erver

reply ptfn 1
packet

•• t Stouch

t - !
pr

n

pmap Stouch t -
ppn \

.-
via

dllk_Sread_ahnd

physical
memory

Fisure 18-2. Remote Page-In Request

Page Fault &,olution 18-10

... ~. ./

o

o

18.7.1. Allocating Network Buft'er Pages

The network buCfer pool is a Pool oC virtual pages that clients oC the system's low-level IPC
service use to hold incoming or outgoing messages. To maintain the pool in a steady Itate, these
clients must allocate as many wired pages to the network bulfer pool as they intend to take from
it. and they must give the burfer pool these wired pages before they remove any pages from the
pool.

Because the PMAP manager is requesting delivery oC low-level IPC messages - the remote pases
- it must Collow the convention and allocate pages to the network buffer pool. As a result,
pmap _ $touch calls the MMAP manager to allocate lOme physical pages to hold the object pages,
then calls the network burrer pool manager (NETBUF) to add these physical pages to the
network buCfer pool. It then calls network_Sread_ahead to carry out the remote request.
Chapter 20 describes the network buffer pool and the 10w-levellPC mechanism in more detail.

18.7.2. NETWORK Client Side Paging Operations

To initiate the network read, the network_$read_ahead module allocates a reply socket to
which the socket manager will send a message indicating that the requested.pages have arrived in
the network buffer pool and then builds the request data into a network packet; in this case, a
multiple page-in request. .

The network_$read_ahead routine then calls another network manager module (send_it) to
transmit the packet through the ring to its destination, and waits ror the reply packet rrom the
remote node by waiting on the eventcount associated with the reply lOcket it has allocated.

13.7.8. NETWORK Server Side Paging Operations

The remote paging server is the -server- part of the network manager; it retrieves paging request
packets sent across the network and then then processes the packets according to their request
type, which, in this discussion, is a multiple page-in request.

13.7.8.1. Processing the Page-In Request

For a multiple page-in request, the paging server gets the object UID and the segment page
numbers within the object from the block headers passed in the packet, and then calls
ast _ $touch to retch the pages. In the remote case, there is no ASTEX for ast _ $touch to use, so
it to obtain the index to the ASTE.

18.7.8.2. Concurrency Control Checking

The AST manager locates the correct active and not in tranaition ASTE just like a local page-in
request, then performs concurrency control checking. It compares the node ID stored in the lock
key field in the ASTE against the node ID of the requesting node (specified in the call) to make
sure that the node ID oC the page-in requestor is the same as the node ID that activated, and thus
locked, the segment (when the segment is activated, the caller's node ID is stored in the ASTE.
In the local case, the node ID is always node_$me.) If the lock key check passes, the AST
manager transfers control to the touch routine, which calls pmap _ $touch to get the pages. See
Chapter 6 for more information on concurrency control.

18-11 Page Fault Resolution

13.7.3.3. Fetching Pages for a Remote Request

If the requested pages are already resident, pmap _ $touch carries out the same sequence or steps
described in Section 13.5.' The only diCCerence between the local and remote case is that the touch
routine returns the DTM stored in the ASTE along with the list or PPNs to its caller, who, in
this case, is the remote paging server. If the first page that pmap _ $touch tries to touch is not
resident, pmap _ Stouch goes through the same search process as Cor· a local page Cault, eventually
calling alloc to allocate some Cree pages Crom physical memory. In both local and remote cases,
the alice rc;)Utine calls the MMAP manager (mmap_$allocate) to locate some Cree pages.
However, once mmap _ .allocate determines that the paging server is the calling process, it
searches the remote paging pool Cor the physical pages; if there are none available, or it can't
obtain enough to satisCy the request, it returns the PPNs oC the pages it haa obtained to the alloc
routine.

Then, instead of calling the demand-baaed purifier, which happens in the local case, the allce
routine calls the purify _ Slocal module to Cree up some more physical pages; purify _ Slocal,
uI.llike the purifier, will purify only those physical pages that are associated with local objects. If
the module encounters a physical page associated with a remote page, it skips over it.

The ailoc routine calls purify _ Slocal to avoid deadlocking between the paging server process on
one node and the purifier process on another node, where each process is suspended waiting for
the other to complete.

Once the alloc routine returns some free physical pages, pmap _ Stouch proceeds as in the local
case: it unlocks the page lock, calls the disk manager, updates the MMAP and P:MAP and returns
the pages wired and in transition to ast _ $touch. The ast _ $touch routine then updates the
DTM in the ASTE and returns the PPNs to the paging server.

The paging server next builds the page-in reply packet using the block header passed to it (note
that the reply packet contains a new DTM) and clears the in transition bits in the P:MAPEs, and
calls the network manager (send _ reply) to carry out the network transfer. Note that the paging
server passes the PPNs directly to the network manager; it does not need to allocate pages from
the network buffer pool on a page-in reply.

13.7.4. Remote Page Fault Completion

Once the page-in reply packet arrives in the network buffer pool, the socket manager notifies the
network tread ahead module, which then retrieves the PPNs or the physical pages from the
network -burrer pool and returns them to pmap _ $touch. The pmap _ $touch routine then
resolves the page rault as if it obtained the pages from local disk and follows the completion path
outlined in Section 13.2. .

Again, system convention dictates that low-level- IPC clients remove all the pages they put into
the network burrer pool when their network operations are complete. Ir the-number of remote
pages returned to pmap _ Stouch is less than the number or pages that pmap _ $ touch added to
the network burfer pool, the routine takes those pages back rrom the network buffer pool and
rrees them in the MMAP.

Page Fault Re801ution 13-12

\',

o

o

13.7.6. Network Errors Durinl Remote Page Faults

All remote paging server operations are Idempotent; that is, in the event of an error, the remote
paging server initiates the same sequence of operations, regardless of the type of error that occurs.
Consequently, should a network error occur during a remote paging server reply to a client
requ~t, the server will simply retry the operation once the error condition has been resolved.

13.7.8. Creating Additional Paging Servera

The system can create additional paging servers on request (via the NETSVC command).
Multiple remote paging servers are not necessary when there is no parallel remote access to a
single node. However, if' a node incurs rrequent remote access, as it would if' it were a file server
acting as partner to several diskless nodes, then multiple remote paging servers can improve
performance by overlapping paging I/O operations; ror example, one paging server can perform a
disk transfer to memory, while the other server carries out a network transfer rrom memory.

Crea:,jng multiple remote paging servers has some disadvantages. Each remote paging server uses
up a process control block (PCB) that would otherwise be available to a level 2 process. Thus,
creating several paging servers reduces the number of processes available to user mode. Multiple
remote paging servers also tie up more physical memory and wired stack pages. And, finally,
faster parallel remote access for the group means less disk bandwidth for each group member.

13-13 Page Fault Re8olution

o

o

Chapter 14
Process Management Overview

A process is rundamentally a thread 0/ e:recution defined by its program counter (PC) and stack
pointer (SP). Although a process has additional context, its thread or exe.cution is the basic
context that distinguishes it rrom other processes.

Process 'context is divided into two levels. Levell context is a process's physical state, which
consists or its M680x0 processor context. Level 2 context is a process's virtual state, which it
acquires through the virtual memory support that exists between the two process levels. Every
process in the system haa level 1 context, and some processes in the system onl" have level 1
context.

Processes with level 1 context are called level 1 processes. Level 1 processes can only run
supervisor-mode codej that is, they only run the protected AEGIS kernel services. Consequently,
level 1 processes run exclusively in supervisor mode. In addition, a level 1 process does not
possess its own virtual address space. Instead, all of the level 1 processes share supervisor global
address space.

A level 2 process is a level 1 process with additional virtual state: its own private virtual address
space. Level 2 processes can run in either user mode or supervisor modej they run in supervisor
mode via the SVC mechanism described in Chapter 19. The level 2 process layer exists primarily
to create the environment for user-mode programs. However, user-mode AEGIS system services
also run level 2 processesj for example, the display manager a.nd the mailbox (MBX) helper.

The separation of process context into two levels allows the AEGIS kernel to use the process
mechanism to carry out operating system services such as virtual memory management while
simultaneously permitting user-mode processes to take advantage of virtual memory. In
principle, the two-level design permits an unlimited number of level 2 processes whose virtual
context can be swapped in and out of, or bound and unbound rrom their level 1 hardware
context; the system saves the virtual context at unbind. Currently, however, the AEGIS system
does not save the context of unbound level 2 processes; of the 32 available processes, 25 can be
augmented to level 2 processes, and 8 remain level 1 processes in order to carry out AEGIS kernel
functions. Level 2 process unbinding is equivalent to process deletion; when one of the level 2
process is unbound, its context is deleted, and the level 1 process context underneath it is deleted
as well. Figure 14-1 shows the relationship between process managers and process levels when a
user directs the display manager to run the shell program.

14-1 Process Management Overview

DM PROCESS NEW PROCESS RUNNING SHELL

ABIC 1 ABID2

• .hen program • • Icom/.h
1) DM call. ..
program pgm-,\ lcom/ ... 1 LEVEL 2 manager

./ I) Program NTEXT • manager
program manaa ... • 2) Program proce •• manager Invoke.
(POM) manager call. .hen • (POM) -' • PM to cr .. te program ., new procn. I '- pgm_,lnvoke I

S) New ~ • proce •• manager • proce ••
(PM) 3) PM take. •

• pgm_'lnlt .tart.
• SVC trap to

(PM) 11& running • PROC2 proc2_ Scr!tate Manager .- pm_Slnlt

" SVCtraD ~

co

~

C
t PID 1 PID 9

LEVEL 1 I ••• ONTEXT proc2_'cre.te I~ •••••
4) Bind procedure

Figure 14-1. Relationship between Process Levels

Several managers make up the process management environment in the AEGIS kernel. They are:

• The level I process manager (PROCI), which creates and deletes level I processes,
maintains level I process context and data structures, and carries out system
scheduling and dispatching operations.

• The level 2 process manager (PROC2), which creates and deletes level 2 processes,
manages the level 2 process Un> namespace and context, and plays a role in
asynchronous rault delivery.

• The level I and 2 eventcount managers (EO and E02), which synchronize operations
between level I process and between level 2 processes, respectively.

• The kernel-level mutual exclusion manager (ML), which provides mutual exclusion or
kernel resources to level! processes.

• The kernel fault interceptor manager (FIM), which handles traps, interrupts and
faults and fields faults to user processes.

• The SVO catcher, which fields traps from user mode to supervisor mode.

The next chapters discuss these managers in more detail.

Proce" Management Overview

", ./

(~
' ,. ,,~ ~

------------ ------

C)

C)

o

Chapter 15
Level 1 Process Management

This chapter discusses level I process context and PROCI manager operations. Level I process
context consists or processor state and seheduling inrormation. PROel operations include
maintaining the level 1 context, creating and deleting processes, and carrying out process
scheduling.

15.1. Processor State

Processor state is the information a process places into the processor when it becomes the
current process; that is, the process that is currently using the CPU. Processor state includes:

• Pointers to the process's stacks.

• The process's address space ID.

• The amount of time during which the process has exclusive use of the processor, called
process virtual time, CPU time or time slice. This value is -stored in the
system's process virtual time clock.

The next sections discuss processor state in more detail.

15.1.1. Process Stack Pointers

The ~f68OxO processor register set consists of address registers AO through A6, data registers DO
through D7, program counter (PC), user (USP) or supervisor (SSP) stack pointers, and the
processor status register (SR), which indicates whether the processor is running in user or
supervisor mode, and also indicates condition codes and interrupt level. Of these processor
registers, the PROCl manager needs only to preserve the stack pointer on context switch; the rest
of the registers are saved as part of the standard calling sequence imposed upon all the languages
that run on the AEGIS system.

Processes with an active USP are considered to be running in user mode, and are thus level 2
processes. In this case, the stack is pageable, private to the process, and allocated from the stack
object by the PROC2 stack allocation module. Any process with an active SSP is running in
supervisor mode. Each level I process has its own wired supervisor stack; the PROCl bind
module allocates these per-process supervisor stacks rrom a whole cloth area in supervisor global
space.

15.1.2. Address Space m

Level 2 processes have their own private virtual address space; the system keeps track of each
process-private virtual address space by assigning it an ASID. Because this virtual address space
is unique to each process, the same virtual address can refer to different objects, depending upon
the ASID of the process making the reference. For example, virtual address 20000 in ASID lean
map a completely different object than virtual address 20000 in ASID 2. Consequently, the

15-1 Levell Process Management

system needs to identify the current process's private address space to the memory management
unit (MMU) so that it can translate the virtual references issued by the processor to the correct
process virtual addresses.

At context switch, also called process dispatching, the PROCI manager installs the process's
ASID into an MMU control register. When the process makes a reference to its private address
space, the MMU hardware compares the current ASID to the ASID /virtual address pairs in ita
hardware t,ables to rmd the correct per-process virtual address.

Global virtual addresses, on the other hand, are common to all processes. Processes that
reference the same global address will all reference the same object, regardless of each process's
ASID~ Consequently, the MMU can disregard the process ASID on a reference to a global
address.

The system identifies global address space with ASID 0; however, ASID 0 acts as a mapping key
for the MST manager rather than an MMU translation key. See Chapter 9 for more details.

15.1.3. Process Virtual Time Clock

The AEGIS system keeps track of process virtual time with the virtual time clock. This clock is
one of three IS-bit timers that reside on one hardware timer chip. The virtual time clock
advances, or ticks every eight microseconds. The clock accumulates the current process's CPU
time and stores its remaining time slice; that is, the amount of time that left to the process
during which it has control of the central processor. The amount of time slice is determined by
the process scheduler (see Section 15.6.3). When a process exhausts its time slice, the timer
overflows, generating an interrupt. The dispatching procedure switches the values kept in this
timer from one process to another.

15.2. Scheduling State

A process's scheduling state determines the conditions under which a process becomes the current
process. Scheduling state includes:

• Process priority

• The set of resource locks the process currently holds

• Process state: whether is is bound, waiting, suspended, suspend pending, or has
incurred time slice end while holding a resource lock

• The amount of CPU time remaining to the process (its remaining time slice)

• The amount of CPU time since the process last waited on an eventcount

The next sections discuss scheduling state in more detail.

15.2.1. Process Priority

Process priority is an integer value that ranges from 1 to 16; 16 is the highest priority, and 1 is
the lowest. Some processes have a fixed priority value; for example, the DM always has priority
16.

Level 1 Process Management 16-2

I,

\

/

o

o

Both the system and users (with the PPRI command) can set priority bounds for a given process;
the process can only attain priority values within the specified range. The system assigns newly
created level 2 processes priority bounds of 3 to 14; this allows users to create background
processes (high = 1, low = 1) whose operation will not interfere with (in terms of CPU time, at
least) normal newly created level 2 processes. Note, however, that giving processes non
overlapping priority ranges can lead to process deadlocks, where the higher-range priority process
permanently blocks processes with the lower ·priority range from being able to run. Also note
that a forked process duplicates its parent's priority.

The PROCI manager creates level 1 processes with priority bounds between 16 and 1. Levell
processes that become special system processes also have priority bounds of 16:1.

The null process always has priority 0 80 that it does not contend with any priority 1 processes,
and 80 that there will always be a current process. If there are no other processes that are ready
to run, the system runs the null process, thereby maintaining the scheduling mechanism.

15.2.2. Resource Locks

Resource locks are the means by which level 1 processes synchronize access to system resources; a
process can only obtain a resource lock while it is running in supervisor mode. There are 32
resource locks available, 26 of which are currently used. Resource locks are ordered in priority
from 0 to 25; the higher the number, the higher the lock's priority.

Resource locks are the system's way of detecting level 1 process deadlocks; that is, when process A
gets lock 1 and tries for lock 2 while process B gets lock 2 and tries for lock 1. Processes can only
obtain locks in increasing order, and must release them in the order in which they have been
obtained. If a process gets a high lock and then tries to get a lower one, the system crashes with
lock violation status. A process that holds a resource lock cannot be suspended; arbitrary
suspension of a process holding a resource lock could tie up an important resource and possibly
cause the system to fail.

For the most part, resource locks control access to I/O devices and system data structures. Disk
and network I/O devices have high priority locks to ensure that processes have been able to gain
access to all the other resources they need (by locking and unlocking these resources with their
associated resource locks) before they proceed with disk or network I/O.

The highest resource lock is the clock process ready lock (time_Slock). This lock is not really a
resource lock; it exists to give a priority boost to the clock process. Because resource locks are
used in process scheduling, the clock process holds this highest lock to ensure that the scheduling
algorithm will always run it if it is ready to run.

Special CPU locks exist for nodes with dual M68000 processors (the DN400 model). These nodes
contain two CPUs; the second CPU (CPU B) handles all page fault resolution. Consequently,
processes that run on DN400 nodes use these CPU B locks to control access to CPU B; because
processes running on CPU B cannot take a page fault, a process that wants to run on CPU B
must ensure that it will not fault before it can run on B.

Table 15-1 shows the available resource locks and the system resources they afrect. The resource
lock word in the process control block identifies the resource locks that a process currently holds.

15-3 Level 1 Process Management

Table 15-1. Resource Loeb

Lock Name

netvork_$serv_lock
mt $lock
xpd_SlOCk
term Slock
pro C2_$ lcck
file Slock lock
eC2_SloCk -
smd_Sreapon4_1ock
smd_Srequ.s~_lock
pbu_Slock
ac l_S lock
proc1_$create_loCk
onb Slock
bOk:S10ck
disk $m.nt lock
vtoc-$lOck
bat_Slock
ast_$lock
pag_$lock
sm_$lock
flp_$lock
win_$lock
ring_SDl1t_locJt
ml_$free7
time_Sprcc_lcck
time_Slack

15.2.3. Process State

Lock No.

o (loy)
1
2
8
4
5
6
7
8
g

10
11
12
18
14
15
16
17
18
19
20
21
22
28
24
25 (high)

Resource Locked

Magtape 4rive
Cross-proclss 4ebug tables
Di8play
PROC2-database
Lock manager tables
Eventcount 4atabase
Screen manager driver
Screen manager driver
Multibus controller
Access control list
PCB array
Faulted to CPU B
Runnable on CPU B
Disk volume
Volume table of contents
Block availability table
Active segment table
Pa.ge in memory
Storage module device
Floppy disk
Winchester disk
Ring controller
Unimplemented lock
Clock process da.tabase
Clock process ready

A process can be in one or more of the following states:

• Bound, which determines whether the process is runnable at all; a bound process has a
PCB and. an initialized stack, and is ready to run

• Waiting,. which determines whether or not the process wants to use the CPU; a
process in the wait state is waiting for an eventcount to reach a specific trigger value.
It does DDt currently need to use the processor, but will resume CPU contention when
the eventco1mt. is satisfied. (Chapter 17 discusses levelland 2 eventcounts in detail.)

• Suspe!ldeci. where process context has been Crozen and the process must be explicitly
resumed.

Level 1 Proce33 Management 15-4

I

/--~

I

' /

o

o

o

• Suspend pending, where the process is in a state that prevents immediate suspension,
but will be automatically suspended once that state haa passed. A process cannot be
suspended immediately it it holda a resource lock.

• Time-slice end with resource lock held, where the process has exhausted its time slice,
but still holds one or more resource locks. This state becomes important when the
PROCI manager is releasing resource locks, because holding a resource lock affects a
process's scheduling priority even at its time-slice end.

15.2.4. Time Slice

The time slice is the length of process virtual time during which a process has exclusive use of the
processor. The time slice allotted to a process is inversely proportional to its priority; the higher
a process's priority, the smaller its time slice. Processes with priority 16 get 1/10 second time
slices, whereas priority 1 processes get 1/2 second time slices. Because the virtual time clock ticks
every 8 microseconds, 1/2 second is the largest time slice a process can obtain.

The dispatcher loads the virtual time clock with a process's time slice when it becomes the
current process; when the time slice expires, the timer chip generates an interrupt that the
PROCl manager fields.

15.3. Special Level 1 Processes

Some level 1 processes remain level 1 processes; they never acquire the per-process address space
that makes them level 2 processes and always run entirely in supervisor global address space.
These processes are internal to the AEGIS system; they are processes devoted to maintaining low
level system functions in virtual memory management, network management, and so on. Because
these processes do not possess the additional, pageable level 2 context, they are cheaper to run.

Special level 1 processes include:

• The initial system process used during system intialization to create the levelland 2
process databases. (Unlike the other special level 1 processes, this process becomes a
level 2 process after initialization is complete.)

• The null process, which figures in process scheduling.

• The clock process, which keeps track of a node's real time so that processes can wait
on real-time events.

• The purifier process, which writes modified pages out to disk as part of virtual
memory management operations.

• The terminal helper, which handles keyboard input.

• The network receive server, which handles all incoming messages to a node.

15-5 Level 1 PrOCl~.~ Management

• The network paging server(s), which handles remote page Caults.

• The network request server, which is a master server that invokes other servers, such
as the file server and ASKNODE server, as necessary.

• The memory lights process, which runs the memory lights utility.

• The internet routing process and nc guardian process, which handle packet
transmission to other networks in an internet. These processes only run on routine
nodes; see Chapter 24 for more inrormation.

The processes created during system initialization are identified by PIDs 1 through 8; note that
the correspondence or PID to these internal level 1 processes is arbitrary and may change across
system revisions. If the system is called to create additional internal level 1 processes, such as the
memory lights process, internet processes, or additional paging or request server processes, it
allocates another level 1 PCB /pID pair rrom the pool or remaining PCBs that hav_e not yet been
bound to level 2 processes.

15.4. Levell Process Data Structures

Because the AEGIS system is designed to promote information hiding and modularity, it does not
store all process context in one control block. In AEGIS, each manager is responsible for storing
only the information it needs to carry out its runctions. Thus, the PROCI manager maintains a
small process database that stores scheduling and dispatching information. The PROC1 data
structures that store this data include the process control block (PCB) and PCB array, the
current process global variable and the ready list. All of these data structures are wired into
physical memory.

15.4.1. Process Control Block

The process control block stores a process's state and scheduling information; one PCB exists for
each process. Each PCB is liuked to an array of PCBs; this array is indexed by PID. Figure 15-1
shows the fields within the PCB.

15.4.2. Ready List

A process is considered ready to run when it is bound and not waiting or suspended. The
scheduler keeps track of ready processes by placing them into a list. This ready list is a doubly
linked list oC process control blocks ordered conceptually by scheduling priority from highest
ready process to lowest ready process, and implemented as a circular buffer. Processes are
inserted into the ready list through pointers to their PCBs. PCBs on the ready list are linked
together so that any PCB points forward to the next highest PCB and backward to the next
lowest PCB on the list. Because the list is circular, the highest ready PCB points back to the
lowest ready process, while the lowest ready process (which is always the null process) points back
to the highest ready process. The global address proc1_ $ready _ pc b identifies the highest ready
process, while proc1_ $current _pcb identifies the process that is currently running.

Using a doubly linked list allows the system to remove a PCB from the middle of the ready list
by simply locating its immediate lower and higher neighbors, instead of chaining down from the
head of the ,list to find the next highest PCB.

Level 1 Frace" Management 15-8

/ '

(

o

o

11 1·111 0

Polnt.r to next PCB

Polnt.r to pr.vlOUI PCB

DB

8B

8P

USP

Tim. at alart of eC_1wa1t (clockh_t)

R.lourc. lock word

PID of thl. proce •• ASID

Remaining FloaUng point pro-
tim •• Uc. Ie ••• tvpe (If needed)

CPU time (clock_t)

State I Priority bounda

Figure 15-1. Process Control Block

15.4.3. Process Type m

The process type attribute ·identifies the level 1 processes reserved to the system and
distinguishes, (or the remaining processes, whether they are level 1 or level 2 prOcesses. A
process's type is stored in the type list structure; this list is indexed by PID. Table 15-2 shows
the process types in the AEGIS system.

Table 16-2. AEGIS Process T)'pe8

PID Proce.s Typ.

1 In1t1a1 .J.temproce.s
2 Null proc •••
8 Clock process -
4 Purlfl.r process
S Terminal .erver I

6 Network receive s.rver
7 F1rst network paging seryer
8 F1rst network request seryer
D-S2 Add1t1ona1 system processes.

1eyel 1 process or level 2 process

Level 1 Proee33 Management

Some AEGIS managers need to determine process type in order decide how to proceed during a
given operation. For example, the MMAP manager must determine that its caller is the remote
paging server before it allocates physical pages because the remote paging server can only use
pages from the remote paging pool. Other managers that depend on process type identification
are the AST manager, the directory manager, the PMAP manager, and the remote file
(REMFll.E) manager.

15.5. PROCl Manager Operations

Level I process manager operations include:

• Process creation, which includes binding, stack allocation, and creating new level I
processes

• Rescurce lock handling

• Process suspension

• Process scheduling, dispatching, and interrupt handling

None of these PROCI operations are exported to user space. (There are, however, PROCI
inquiry operations that the PROC2 manager can calion a user-mode program's behalf to obtain
information about a level I process.)

15.5.1. Process Creation and Deletion

Process creation of level 1 processes consists of binding a process to a PID and PCB, and
allocating a supervisor stack to the process. Process deletion unbinds the process and can also
result in its supervisor stack being freed.

15.5.1.1. Binding and Unbinding

Binding and unbinding are the low-level process creation operations. The PROC2 manager
actually creates the level 2 process, then calls the bind procedure to make the new process ready
to run. The bind procedure (procl_ $bind) locates an unbound PCB and initializes the PCB and
the stack to start execution in the new process at a specified procedure entry. It also initializes
the process performance counters when a process is bound to a PID.

Unbinding is the lower half of the PROC2 delete operation; any time a level 2 process is deleted,
its PROel context is unbound as well. (AEGIS does not save level 2 process context in an
intermediate state.) The unbind procedure (procl_$unbind) suspends the process (if necessary),
frees its supervisor stack (if it is using a big stack), and unbinds the PCB, thereby making it
available for use when another level I process is created.

15.5.1.2. Stack Alloeation

The system initialization procedure allocates a pool of pages within a whole cloth area in
supervisor global address space to be used for the per-process supervisor stacks. Pages of this
stack pool are allocated to a level I process during the process bind operation. The PROCI
manager's stack allocation routine (proct_$alloe_stack) allocates and wires pages from the

Level 1 Process Management 15-8

(~ .. "

o

o

o

stack pool to each newly bound level I process. The routine calls the PMAP manager to retrieve
the pages; on reverse-mapped systems it also calls the MMU manager (mmu_Sinstall) to install
them into the MMU.

The bind procedure specifies how many pages to allocate Cor the per-process stack; currently,
there are only two sizes. Level I processes that will not take page faults request a smaller stack
size, which is less than a page. Processes that take page Caults or run in user space need a larger
stack, which is currently three pages.

IC a level I process has been allocated a large stack and it is unbound, the PROCI manager (via
procl_SCree_stack) will Cree the large stack Cor re-use.

15.5.1.8. Creating Special Level 1 Proeeaes

The system calls a special PROCI operation (procI_*create) when it needs to create special
system process such as additional remote paging servers. The PROCI create operation, in turn,
uses the stack allocation, bind, and resume operations to carry out its Cunction.

15.5.2. Resource Lock Handling

Level I processes call PROCI resource lock operations to set and clear bits in their resource lock
set. Setting a resource lock bit raises the process's CPU scheduling priority; in addition, a subset
of these bits makes the process runnable on the CPU B processor on DN400 systems. A process
must set resource lock bits in increasing order; setting a lock out of order is illegal and causes the
system to crash with the error procl_$ill_lock.

Because the resource locks that a process holds affect its scheduling priority, clearing a bit in the
current process' resource lock set may cause the process to lose the CPU as· a result. In addition,
if the PROCI manager clears the last resource lock bit that a process has set, it can trigger
completion of a pending suspend operation.

Calling the PROCI manager to set· a lock does not lock a resource; these PROCI calls exist
primarily to alter a process's scheduling priority by setting and clearing the resource lock bits.
Processes call the kernel mutual exclusion manager (ML) to actually lock the resource associated
with the lock bit.

The PROCI manager also contains a special clear lock function used for CPU B to A transitions.
This function clears the lock, but also prevents dispatching in case the current process loses CPU
priority. The fault interceptor manager (FIM) is the only manager that calls this function; it is
called following page fault resolution and prior to switching back to the A processor.

15.5.3. Process Suspension

The PROCI suspend operation makes a ready or waiting process non-dispatachable; it removes a
ready process from the ready list and marks a waiting process 50 that that it cannot be placed on
the ready list when it is awakened. The process must exist, be bound, and not already be
suspended; otherwise, the module will simply return with no suspension performed. Interrupts
must be disabled during the suspend operation, and the caller should eventually dispatch
(proc 1_ $dispatch).

15-9 Levell Process Management

A process is most often suspended by:

• The display manager, which suspends a process when the user issues the DS command

• The cross-process debugging program (XPD), which suspends the process so that it
can look through the process's stack

• Itself on process deletion; this is the mechanism that procl_ .unbind uses to delete a
level I process

H the process is waiting on an eventcount, the suspend operation sets the suspend bit and takes
the PCB off the ready list. When the eventcount on which the process is waiting advances, the
level I eventcount manager (via ec_$advance), as part of its operation, reads the state bits in the
PCB and notes that the suspend bit is on, so does not return the process to the ready list.

H the process to be suspended holds a resource lock, the suspend operation sets the suspend
pending bit in the PCB state word. The PROCI suspend inquiry module should be used
following a call to suspend that did not complete immediately due to resource locks held. H the
process is not in a wait state and holds no locks, the suspend operation suspends the process by
removing it from the ready list. In all cases, the suspend operation advances the global suspend
eventcount (procl_$suspend_ec) when suspension actually occurs.

Suspended processes are brought out of suspension by procl_ $resume. In order for
procl_ $resume to be successful, the process must exist, be bound, and be suspended. H these
conditions are not met, the appropriate status code will be returned. H the process to be resumed
is not in a wait state, the resume operation adds the PCB to the ready list and dispatches.

15.6. Implementation of PRoe1 Operations

All of the PROCI routines follow this code sequence when carrying out their operations:

1. Check call validity

2. Disable interrupts by setting interrupt level bit in processor status word (SR) to 7;
consequently, the processor will not service any interrupts that occur below interrupt
level 7.

3. Modify the PCB to reflect the operation (suspend, set lock, and so on)

4. Reorder the ready list (scheduling)

5. Dispatch (make the fmt ready process current)

Previous sections have discussed the PROCI operations that modify the PCB; the next sections
discuss dispatching, interrupt handling, and scheduling.

15.B.1. DispatehinS

Dispatching switches the processor from one process to another: it makes the context of the first
process on the ready list current while saving the context of the previous current process.
Dispatching is also called process exchange or context switching.

Level 1 Proce88 Management 15-10

o

o

All of the PROCI operations cause the ready list to be reordered. In most cases, when the ready
list is reordered, the highest priority process changes. As a result, the PROCI manager contains
an internal routine known as the dispatcher that locates the highest ready process and makes it
the current process.

15.8.1.1. The Dispatching Algorithm

The dispatcher must be called with interrupts disabled to provide interrupt exclusion. If the
dispatc4er were to run with interrupts enabled, the pushing and popping of multiple interrupt
frames on the stack during interrupt servicing and subsequent stack switching during dispatching
could cause the same interrupt to be handled twice. When the dispatcher completes, it returns
with interrupts enabled.

The dispatcher proceeds in the Collowing sequence. If the process that is ready to run is already
the current process, the dispatcher simply enables interrupts and returns; otherwise, it dispatches
the process that exists at the head of the ready list (indicated by the global procl_$ready _pcb).

The dispatcher first saves the processor state of the current process; that is, it saves the registers
that must be preserved across procedure calls according to run-time conventions. Currently, it
saves the USP in the PCB and pushes the registers AS, A6, and A7 onto the stack. It then
accumulates the CPU time that the process has used and places it into the PCB.

The dispatcher then establishes the processor state of the ready process by:

1. Placing the new process's time slice into the virtual timer chip

2. Restoring registers and the user stack pointer

3. Making this the current process by adjusting procl_ $current to point to the new
process's PCB

Finally, the dispatcher enables interrupts and returns.

15.6.1.2. Dispatching and the Null Process

If there are no other processes on the ready list that are ready to run, the dispatcher runs the null
process, thereby maintaining the scheduling mechanism. 'I Je null process is always ready, and
always has the lowest priority (0) so that it does not contend with any priority 1 processes. The
null process cannot take a page fault, or the system crashes. Removal of the null process destroys
processor management operation. When the null process runs, it checks to see if the ready list is
out of order (if it is running and shouldn't be), and crashes the system if the list is out of order.

15-11 Levell Process Management

15.6.2. Interrupt HaDdling

The M68OxO processor. supports seven interrupt levels (IL). The AEGIS system implements
software interrupts as follows:

• Every interrupt service routine (ISR) runs at IL 6

• All interrupts are enabled at lL 0

• All interrupts are disabled at IL 7

The hardware records the interrupt level in the processor status register.

The AEGIS system does not support interrupt priority levels for interrupt routines for the
following reasons:

• The M68OxO processor doeS not support an interrupt stack.

• The AEGIS system is designed to keep wired memory at a minimum.

• The AEGIS system is not designed to be a real-time system.

Unlike other hardware processors, the M68OxO processor saves interrupt context on the current
supervisor stack. When an interrupt occurs, the processor simply pushes the interrupt context
(formatted as an interrupt frame) onto the stack pointed to by the SSP that exists in the
processor stack register. If AEGIS were to implement multiple interrupt levels for drivers, many
simultaneous interrupts could occur, each generating an interrupt frame on the current supervisor
stack. As a result, the system would need to allocate more wired per-process supervisor stack to
account for the possible need to store several interrupt frames.

All interrupts vector directly to driver interrupt service routines (ISRs). In general, the system
stores the entry points to these driver ISRs in the trap page. When an interrupt occurs, the
hardware vectors through the trap page to the appropriate driver ISR.

In the AEGIS system, driver interrupt routines execute quickly and complete either by advancing
an eventcount to awaken ~ ~'ruting process, or by simply returning. An ISR decides whether or
not to exit or advance an eventcount by examining the value stored in AO; if this value is zero,
the ISR simply exits.

Although all interrupt routines disable interrupts to level 6 at routine entry, it is possible for
other interrupts to occur before the ISR gains control and blocks them with the disable. Should
subsequent interrupts occur, additional interrupt frames are pushed onto the stack while the
system is handling the first interrupt. AB a result, interrupt routines cannot simply dispatch
upon completion, because any additional interrupt context saved on the current stack will be lost
when the dispatcher carries out the stack switch to the new current process. Thus, all interrupt
routines jump to routines in the PROel manager that check the stack for the existence of
additional interrupt frames berore calling the dispatcher.

Level 1 Process Management 15-12

o

o

o

15.8.2.1. Interrupt Eventcount Advance

Interrupt routines that advance an eventcount cannot simply call ec_$advance and dispatch. In
such a case, the eventcount advance would reorder the ready list, and a subsequent dispatch
would destroy any interrupt context left on the switched-out stack. Consequently, interrupt
routinp.s that complete by advancing an eventcount must carry out the following steps:

• Save all registers on the stack (currently, DO-D7, AO-A4).

• Save the address or the eventcount to be advanced.

• Jump to the PROOI interrupt handling routine procl_ tint _ advance.

The advance operation actually advances the eventcount by calling the EOI internal advance
routine. Then, if there are no other interrupt rrames on the stack, it jumps to the dispatcher.
However, if it finds that subsequent interrupts have occurred, pushing interrupt rrames onto the
stack, it restores the current interrupt's registers from the stack and jumps to the fault
interceptor manager's exit routine (fim_$exit) to return from the interrupt. Although the
interrupt routine· being handled may be a higher priority process than the current process, it is
not made current until the system has a chance to get all interrupt information from the current
process's stack. When the last interrupt frame has been removed from the current process's
stack, the proc1_ $int _ advance routine can call the dispatcher.

15.6.2.2. Interrupt Exit .

Interrupt routines that simply exit jump to another PROCI routine (procl_$int_exit). This
routine carries out the check for' nested interrupts; if the interrupt that is completing is returning
to another interrupt, dispatching cannot occur, so the routine restores registers and calls
rim _ $exit. Once there are no more interrupt frames, it determines whether or not a dispatch is
necessary; if so, it jumps to the dispatcher. The procl_$int_advance on the other hand,
assumes a dispatch is needed because the ISR has advanced an eventcount.

Note also that, unlike ISR calls to procl_ tint _ advance, interrupt routines that jump to
proc1_ tint _ exit do not need to save registers on the stack. In this case, the ISR saves only the
interrupt's fault frame: its PC and SR. The proc1_ tint _ exit routine will save registers itself if
a dispatch is necessary.

15.6.3. Process Scheduling

Compute-bound processes give up the machine in two ways:

• Voluntarily, by waiting on an eventcount

• Involuntarily, because an interrupt occurs

The scheduling mechanism exists to remove compute-bound processes from the processor when
they will not remove themselves voluntarily, and when no interrupts are occuring. The AEGIS
scheduling mech~ism is implememented as a collection of PROCI operations that move processes
around in the ready list based on time slice, priority, and resource locks held.

These PROCI operations are separated into the the scheduler - the modules that adjust a
process's scheduling priority - and the ready list routines, which insert PCBs onto the list (using
pointers) according to the priority set by the scheduler.

15-13 Levell Proce8s Management

In general, the scheduler calculates a process's scheduling priority based on the following maxim
- the longer the process waits, the higher its priority; if it exhausts its time slice, its priority is
lowered. The following sections elaborate on this maxim.

15.8.3.1. Priority and Time Slice End

The scheduler decrements a process's priority by one at each each time slice end as follows.
When a pr.)cess's time alice end Occurs, the timer chip generates an interrupt. The time manager
(TIME) h~dles the interrupt and then calls the PROCI manager's time slice end handler
(procl_$tlme_slice_end). This routine:

1. Calculates' a new time alice for the process

2. Removes the process from the ready list

3. Decrements its priority by one

4. Restores the process to the ready list in the appropriate position

Reaching time slice end may cause the process to lose control of the processor, as its priority may
no longer be high enough to keep it current. .

Decrementing priority at time-slice end causes two CPU-bound processes of equal priority to sink
to the bottom of the ready list within a minute or so, where they contend for priority 1. Thus,
priority 1 implements round-robin scheduling.

15.8.3.2. Priority and Eventcount Waits

The scheduler accounts for time lost to eventcount waits, and increments process priority by one
for each 1/4 second of wait time when a process finishes its eventcount wait. The level 1
eventcount routine ec _ $advance actually calculates the amount of time the process has waited.

Consequently, an I/O bound process gets a priority boost if it waits long enough for a disk or
network I/O.

15.8.3.3. Priority and Resource Locks

Resource locks are also used to determine a process's scheduling Sf l.tus, as follows:

• A process that holds a resource lock has priority over a process that holds no locks.

• A process with a higher resource lock has priority over a process with a lower resource
lock.

• A process that holds a resource lock cannot be suspended.

If the process is holding a resource lock and its time slice expires, the scheduler moves it to the
end of its priority class when the process releases the last of the resource locks i~ holds; this
means that the scheduler does not reorder the ready list until resource locks are released.

Level 1 Process Management 15-14

o
15.8.S.4. Maintaining the Ready List

Processes are either on the ready list or not. Processes are taken off the ready list in three cues:

• When the process initiates a wait for an eventcount (via ec_$wait)

• When the process is unbound (procl_ .unbind) as a result of a call to the level 2
process manager delete (unction (proc2 _ .delete) ·

• When the process is suspended (procI_ .suspend)

Processes are added to the ready list as the result of an eventcount advance (ec_$advance), a
resume (procl_$resume), or a bind (procl_$bind) operation. A process does not need to be
current to be placed on the ready list, nor does it need to be current to be taken off the ready
list.

The PROCI bind/unbind suspend/resume operations call the ready list routines to remove and
restore processes from the ready list; the level I eventcount manager (ec _ $advance, ec _ $wait)
calls these routines as well to take waiting processes off the ready list and restore awakened
waiters to the list.

The ready list routines must be called with interrupts disabled. They perform the following
tasks:

• Remove a PCB from the ready list .

•. Add a PCB to the ready list as determined by priority and resource locks held.

• Reorder the ready list after an event occurs that alters the scheduling priority of the
current process.

The add and remove routines assume that their callers will call the dispatcher. The reorder ready
routine, however, checks to see if the first process on the list is the same as the current process
after it reorders the ready list; this operation avoids unnecessary calls to the dispatcher. For
example, if the current process's scheduling priority has cha.nged because it has obtained a higher
priority lock, it will still be the first process on the list, because the higher lock only makes the
process more current. In this case, a call to the dispatcher is not needed, since it will simply do
the same check for rea.dy equals current and return.

Except for the reorder ready routine, the ready list routines add a process to the end of its
priority class, placing the PCB after all the PCBs of equal priority. Adding processes to priority
class end guarantees round-robin cycling/scheduling for priority 1 processes.

15-15 Level 1 Process Management

/

\.

'>
\

,.,---, u

Chapter 16
Level 2 Process Management

This chapter describes level 2 process context and PROC2 operations. Level 2 process context
consists of:

• The UID of the process's stack object

• Whether or Dot the process is an orphan

• Whether or Dot the process is a server

• Whether or Dot the process is the result oC a Cork operation

• Process ID information

• Process group information

Level 2 process operations include:

• Creating and deleting level 2 processes

• Forking level.2 processes

• Maintaining the level 2 database

• Participating in asynchronous fault delivery

16.1. Level 2 Process Context

Level 2 process context is stored in the PROC2 manager's database. This database contains a
table o! level 2 context for each level 2 process (p2 _ $in!o _ t). Figure 16-1 illustrates the layout
o! this database.

18-1 Level e Process Management

ataok UID

.. arent UID

Original proc ••• group UID I
1

UID of proo ••• group to ohang•

l _ to If orphaned _

1 CU nl proo ... group UID I
Polnt.r to .taok ba ••

Polnt.r to proc... ~
cr •• llon reoord l.

DOMAIN/IX p.r.nl proc ... ID ±
Orlllln.1 DOMAIN/IX PllrouP I
Curr.nl DOMAIN/IX Pllroup I

DOMAIN/IX PID I

Orphan Process

Forked Process

Vlorlc Incomplete

Server Process

Defined

Running In User Space (·velld-)

Figure 18-1. Level 2 Process Context Table

uvel e Procell Management 18-2

o

o

16.1.1. The Stack Object

Level 2 process stacks, also called uaer stacks, reside in a portion of a level 2 process's private
virtual address space. Because user stacks are pageable, they require backing storage; the PROC2
manager provides this storage through the stack object.

When a process is created, a stack object is mapped into its process virtual address space. The
stack object contains the process creation record, read/write storage, and the procedure call stack.

18.1.1.1. The Process Creation Record

The process's creation record resides in the first segment of the stack object and is mapped to
the same process virtual address in every process. It contains all the information that the user
mode process manager (PM) needs to carry out its operations and contains the information passed
by the process to any child processes it creates. For example, the process creation record
identifies the streams and arguments passed to the process and any programs to be invoked.

16.1.1.2. Read/Write Storage

The process manager and the read/write storage manager (RWS) manage read/write storage as a
heap rather than as a stack. Heap management divides the storage into free areas and areas in
use. \Vhen called upon to allocate some storage, the managers in charge of maintaining the heap
search through a list of free space for a portion that is large enough to accomodate the request,
then hand out the right portion to the requestor. A heap permits storage to be allocated and
freed in any order. In contrast, a stack allocates and frees storage on a last-in/first-out basis.

The R\VS manager does, however, contain an allocation procedure (rws_$alloc) that manages
the read/write storage as a stack. On a program-level exit, the RWS manager cuts back
read/write storage to the amount the program had when it entered the program level.

16.1.1.3. The Procedure Call Stack

The procedure call stack contains the stack frames created at each procedure call; this stack
consists of eight segments. Two guard segments reside at each end of the procedure call stack; A
guard segment· is a virtual segment that generates a guard fault (a kind of access violation)
when a process accesses, or touches it, via memory management routines. These guard segments
protect the process creation record and the rest of user priva.te address space from destruction by
a procedure call stack overfiow or underflow.

16.1.2. Orphan Status

When a process creates or forks a new process, the new process is called the child process, and
the spawning process becomes the parent process. An orphan process does not have a parent
process. Orphan status is significant during cleanup operations during process deletion; while
parent processes involve themselves in resource cleanup when any of their children are deleted, an
orphan process cleans up its own resources. Section 16.2.3 provides more detail.

A process is usually orphaned (through proc2_$make_orphan) so that it can run as a
background processj because an orphan process handles its own cleanup operations on deletion, it
can complete without interfering with the process that spawned it.

16-3 Level e Process Management

16.1.3. Server Status

Server processes are identical to normal level 2 processes except that the system does not delete
them at l~out. The PROC2 operat.ion proc2_$make_server assigns server process status to a
given process by setting the server bit in the process's level 2 database. The display manager
checks this bit a.t. losout.; if the bit is clear, it generates a stop fault for the process. Ir the bit is
set, the process con&.inues to run.

16.1.4. Proceaa m WormatioD

The AEGIS sys&em 8lIpPOrts three types of process ID: the level! process ID (PID), the level 2
process UID,. and the PID used in the DOMAIN/TX.. environment. Level 2 process context includes
all of these styles or process. identification.

The AEGIS PID information stored in the PROC2 database includes the PIO of the level !
process bound *<l the level 2 process, and the process UID of the process's parent, if one exists.

The PROC2 database also stores process IDs required by the DOMAIN/IX environment. When it
creates a process, the PROC2 manager assigns it a DOMAIN/IX process 10. This PID cycles
from 2 to 30,000; the PROC2 manager takes the next available number in the range, and simply
restarts numbering from 2 when the range is exhausted. (This method of PID allocation exists for
compatibility wit.h other UNIX systems.) Consequently, the PROC2 database stores the process's
DOMAIN/IX PID and that of its parent, if one exists.

16.1.5. Process Group InformatioD

The AEGIS system abo supports the concept of the process group, which the DOMAIN/IX
environment uses primarily in fault delivery to send a fault to all processes within a given group,
rather than to a sin,le process. Normally, processes in a group are ancestrally related; that is, a
group usually consists of the parent process, its children, its childrens' children, and so on. For
example, each time a new DOMAIN/IX shell is created, a new process group associated with that
process is also created. The DOMAIN/TX.. environment also allows processes to move in and out
of different process groups; the C-shell job control facility is based on this feature. While the
AEGIS system identifies a process group with a UID, the DOMAIN/IX environment identifies it
by an integer value..

The process group information stored in the PROC2 database incl"des:

• The om and DOMAIN/TX.. number of the process group to which the process
originally lJeIonged

• The tJID ·and DOMAINfIX number of the process group to which the process
currently Jaelnnp

Level e Proce88 Management 16-4

.r'"

\
'''''.

o

o

._-----------,------------ --------------------- ------- -- --------- - ---------

16.2. PROC2 Operations

The level 2 process manager carries out the following tasks:

• Creates, forks, and deletes user processes

• Allocates and frees user stack rues

• Maintains level 2 process context

• Manages level 2 process name space (UIDs)

• Participates in asynchronous fault delivery

• Suspends and resumes processes (via the level 1 process manager)

16.2.1. Process Creation

To create a level 2 process, the PROC2 create operation:

1. Takes a stack UID, a starting PC, and the orphan status, and ,gives back the UID of
the newly created process

2. Allocates a separate virtual address space (from the MST manager routine
mst _ $alloc _ asid) and maps the user stack into this address space

3. Calls the PROCl manager to allocate a level 1 process and supervisor stack for the
level 2 process

4. Binds the levelland level 2 processes together and starts the process running in user
mode at the specified PC

5. Assigns the process to the process group of the parent

When the creation is complete, the new process's address space maps the stack object whose UID
was passed in the call; the initial stack pointer is set to the base of the procedure call stack.

16.2.2. Process Forking

Forking a process (proc2 _ Sfork) proceeds like process creation except for the resulting address
space owned by the new process. In particular, the fork operation does the following:

• Copies the parent's stack object to the forked process's address space, including all
pages that the parent has touched. Thus, the forked process's stack is a replica of the
original.

• Duplicates in the forked process lock database all of the file locks held by the parent
process. The forked process holds all of the parent's locks, even if the lock status
specifies no cowriters. As a result, forking overrides the lock mechanism.

16-5 Level e Process Management

• Maps all of the objects that the parent has mapped into its addreaa space into the
forked process's address space. Consequently, the parent and rorked chlld have
identical MST entries.

The PROC2 manager then binds the rorked process to a separate level 1 process; thus, there are
never more level 2 processes than level 1 processes. When the rork is complete, the parent and
forked process share the objects mapped to their respective addreaa spaces during the fork; a
modification to one or thOR objects can be seen by both parent and child. The exception to this
sharing is the rorked procell'. stack object, which the rork operation has copied. Figure 18-2·
illustrates the relationship between parent and rorked child processes.

PARENT
ADDRESS

SPACE

- __ .-.... .
OBJECT

ADDRESS
SPACE

. . .

. . .

FORKED CHILD
ADDRESS

SPACE

· · ·l~bJ.C:t I· · · · · · · · · · · · · · · · ·
• •• """ :'::"t:;(:" • • • • • • • • • • • • • • • • • .I-~";"'''''''';'-''''''';''''

...
. .

Fiaure 18-2. Mappln& Between A FOl'ked Pl'oeeu and Ita Parent

Because the rork operation exists ror DOMAIN/IX, and because DOMAlNfIX has DO concept of
orphan processes, rorked processes seldom become orphan processes.

Level e Proce" Management ,

I~"

(
'........ ",~ ~

o

o

16.2.3. Process Deletion

The PROC2 delete operation (proc2_$delete) deletes the level two process that calls it by:

1. Releasing its associated resources and freeing its ASID

2. Uncataloguing it from the naming server directory database it it is a named process

3. Turning any of its children into orphans by setting the orphan status bit in their level
2 databases

4. Notilying its parent (if one exists) of its deletion

5. Freeing its stack object it necessary

6. Unbinding the level 1 process underneath-it by calling the PROCI manager

The delete operation cannot be called on another process because the MST procedure that frees
an ASID cannot clear the memory management unit of another process's virtual-to-physical
address associations.

16.2.3.1. Releasing Per-Process Resources

When deleting a process, the PROC2 manager first frees any resources owned by the dying
process, including mapped objects, locks, sockets, and ACLs. To free these resources, the delete
routine calls the proc2 _ $cleanup _ proc routine. This procedure (proc2 _ $cleanup _ proc) calls
all the AEGIS kernel managers that keep per-process information. Each manager cleans up its
private database of the per-process state. Resource cleanup occurs before the operation frees the
stack object to ensure that any wired stack pages have been unwired when the stack is freed.

Unfortunately, the cleanup procedure has poor locality; it makes many procedure calls which
touch many pages, making the delete operation very expensive in terms of system performance.

16.2.3.2. Notifying the Parent Process

When a process creates or lorks a new process, it keeps a copy of the child process's creation
record mapped in its address space. Within the creation record is an eventcount that the PROC2
delete operation advances to notify the parent if the child process is deleted. The creation record
also contains a field that is used to record the amount ~r CPU time the child process has
consumed. Upon deletion of the child process, proc2 _ $delete operation:

• Advances the creation record eventcount

• Writes the child's accumulated CPU time into its creation record

• Sends a trace fault to notify the parent process of its child's deletion
(proc2 _ $trace _ faul t _ enq)

16-7 Level e Process Management

16.2.3.3. Freeing the Stack Object

When proc2 _ $delete deletes a child process, it directs stack object cleanup to the parent process.
When the parent process receives notification of a child's deletion, it Crees the stack object as
follows:

• Truncates it back to the creation record (the stack's first segment)

• Collects the information stored in the child's creation record and unmaps it

• Returns the stack object to the pool of Cree stack objects that the PROC2 manager
maintains

Orphan processes clean up their own stacks when they are deleted (by calling
proc2 _ Sfree _ stack _ rue).

16.2.4. Stack Object Allocation

The PROC2 manager maintains a pool of stack objects that the first level 2 process creates
during system initialization. When the system is up and running, the PROC2 manager keeps a
maximum of eight stack objects in this pool at any given time. The system uses this pre-existing
pool of stack files to avoid the overhead incurred from calling the FILE manager
(file_ $create/delete) to create stack objects dynamically.

The stack pool is an array of stack records (stack_rec_t); each record contains the UID of a
stack object, its owner's subject identifier (SID), and an index to the next stack file in the pool.
Free stacks are chained onto a free list, while stack files in use are chained to an -in use- list.

At process creation or fork,· the PROC2 manager stack allocation procedure
(proc2 _ $alloc _ stack _ file) allocates a stack file for the new process. The procedure first
attempts to locate a stack file in the free pool that has the same subject ID as the newly created
process; if no free entries exist in the stack pool, it checks the -inuse- list for the least recently
used stack file. Note that the PROC2 manager creates a new stack file by calling the FILE
manager (file_$create) ONLY if it cannot locate a free or replaceable stack file.

The PROC2 delete operation frees the stack objects of orphan processes; the procedure
proc2_$free_stack_file frees the stack object associated with the UID specified in the call.
This routine truncates (via file_$truncate) the stack object and places it into the free pool for
later re-use by another process.

The PROC2 manager also frees stack objects at logout (via proc2_Scleanup_stack_files); it
frees the stack objects associated with a specified subject ID.

Level e Process Management 18-8

()

o

o

18.2.5. Maintaining Level 2 Context

The PROC2 manager contains operations that maintain a process's level 2 context by setting and
clearing fields in its PROC2 table. These operations include:

• Creating server processes and orphan processes

• Maintaining process group status by setting the process group of a process and
converting between DOMAIN/IX PIDs and group PIDs and level 2 process UIDs

• Assigning a name to a process by adding the name to the process's PROC2 table

18.2.8. Maintaining Process Names

The user-mode process manager (PM) allows programs to assign names to processes when they
are created. In turn, the PM naming operations call the PROC2 manager, which stores the name
in the process's PROC2 database (proc2_$set_name) and catalogues it in the directory
'node _ data/proc _ dir.

When it deletes a process, the PROC2 manager refers to the process name field in the PROC2
database. As pa.rt of its operation, proc2 _ $delete must remove the process name from the file
system directory proc _ dir. Because the process's name is stored in the PROC2 database, the
delete operation can simply drop the name from the target proc _ dir directory. If the name were
not stored, the delete operation would proceed more slowly; in this case, proc2 _ $delete would
need to open the directory and then ask the naming server to find the name/UID pair in its
directory data structures.

16.2.7. Suspend/Resume Operations

The PROC2 manager suspend and resume operations call the PROCI manager to carry out
process suspension. Unlike level I suspension, Level 2 process suspension waits for the suspension
to happen (instead of setting a suspend pending bit).

16-9 uvel £ Proce88 A1anagement

o

C)

Chapter 17
Eventcounts and Mutual Exclusion

The EO and E02 managel'8 provide the level I and 2 eventcount operations. In addition, the ML
manager exists within the AEGIS kernel to provide mutual exclusion to level I process reeourCe8.
For performance reasons, the EC and ML sources exist within the PROCI manager lOuree code.
This chapter describes level I and 2 eventcount data structures and operations and proVides
inrormation about mutual exclusion at the kernel level.

17.1. Levell Eventeounts

The sole method or synchronisation in the AEGIS system is through the level I eventcount, which
i! the AEGIS system blocking primitive that causes a process to relinquish control of the
processor. The only way a process can block itseIr is by using an eventcount.

Processes create eventcounts by allocating wired storage rrom supervisor global address space and
initializing it as an eventeount data structure. A level I eventeount is composed or a wait value
and links to the list of processes waiting on that eventeountj Figure 17-1 illustrates its structure.

11 o

o Walt value
~----------------------~

4 Walter nIt head

I Walter Ult tall

Figure 17-1. Level One Eventeount

Processes can perform the rollowing operations on level 1 eventcounts:

• Initialize an eventeount (ec _ Sinit)

• Wait ror one to three eventeounts to reach one to three trigger values (ec_$wait)

• Wait ror a list of eventcounts to reach a list of trigger values (ec_Swaitn)

• Read an eventcount (ec_tread)

• Advance an eventcount (tc_Sadvance)

17-1 Eventeounts and Mutual EzeiuBion

17.1.1. Waiting on a Level 1 Eventeount

When a process calls the EC manager to wait on an eventcount, the EC manager does the
following:

• Places a waiter entry on the on the process's stack

• Takes the process orr the ready list

• Calls the dispatcher.

A waiter entry contains the rollowing fields:

• The value (or which the process is waiting

• A pointer to the process's PCB

• Pointers to other processes waitiD;: on the same eventcount

When the EC manager completes the wait operation, the process's stack will contain the number
of waiter entries that correspond to the number or eventcounta on which the process is waiting,
and a dispatch frame. Should another process subsequently wait on the same eventcount, the EC
manager links the two waiter entries together. Figure 17-2 illustrates the linked list level 1
eventcount data structures when several processes are waiting on a number of eventcounts.

P3
walt (ec1, ec2, ec3)

P1
walt (ec1. ec2)

__ .-----.. wv4

r---~. wv1 wvS
P2 • walt (ec2)

wv2 1......_----..,. wv6
t-------t~---.... wv3 •

Ol.patch Dispatch
Frame Ol.patch Frame

Frame
P3 STACK

P2 STACK

Figure 1'7-2. Proceuea Waiting on Levell Eventcounta

Eventcounte and Mutual E%ciueion 17-2

o

o

------.--~---------.-------~------.-- ------. __ ... ----

1 '1.1.2. Advancing a Level 1 Eventeount

When a process calls the EC manager to advance an eventcount, the EC manager advances the
eventcount, then chains through all the processes waiting on that eventcount to determine
whether they are waiting for the value that the eventcount has reached and are thus ready to
run. The EO manager then awakens any processes waiting ror that value by threading them onto
the ready list. The processes, in turn, call the EO manager to UDlink their waiter entries from
the waiters list.

Ir a process is waiting on multiple eventcounts, it will become ready to run when anyone or those
eventcounts reaches .the process's specified wait value. However, a IUlpended process awakened
by an eventcount advance will not be placed back on the ready list until it is explicitly resumed.

17.2. Level 2 Eventcounts

User-mode processes use level 2 eventcounts to synchronize their operations. A level 2 eventcount
is similar to a level 1 eventcount: it consists or a 32-bit value plus a 6-bit index to the head of a
list or processes waiting on the eventcount, as shown in Figure 17-3.

31 o

Walt value

Walter Ult h .. d

Figure 1'1-3. Level Two Eventcount

While the structure of a level 2 eventcount is similar to that or a level 1 eventcount, the level 2
eventcount is not wired and exists in the per-process address space or the process that created it,
rather than in global address space.

The level 2 eventcount manager contains operations to:

• Create a level 2 eventcount (ec2_Sinit, ec2_Sinit_s, ec2_'register _ecl)

• Wait on an eventcount (ec~_Swait)

• Advance an eventcount (ec2_'advance)

Some or these operations are exported to user apace; see the manual Programming with SIl~tem
Oall~ lor [PO for more inf'ormation.

1'1.2.1. Creating a Level 2 Eventeount

A process creates a level 2 eventcount by reserving space ror it in its address space, then calling
ec2 'init to initialize it as an eventcount. Because an eventcount is a ahared object, any
p;esses that map the eventcount can concurrently observe it. However, because the level 2
eventcount mechanism is based on shared memory, processes on different nodes cannot wait on
the same eventcount.

1'1-3 Eventcount~ and Mutual E%clu~ion

Level 2 processes can also wait on level 1 eventcounts that certain AEGIS managers export to
user space. In order to protect against level 2 processes passing in bad pointers to these system
level event-counts, managers that export their eventcounts fll'lt reaister them with the EC2
manager. Registration proceeds as follows:

1. The level 2 process calls the manager to obtain a pointer to its exported eventcount.

2. The user-apace manager passes a pointer to ita eventcount to the EC2 manager.

3. The EC2 manager stores this pointer in ita database or registered eventcounta and
passes an index into this table, or ticket, back to the user-space manager.

4. The user-space manager passes t.he t.icket to the level 2 process as a return argument.

When tht. level 2 process deeides to wait on the level 1 eventcount, it calls ee2 _ $wait and
specifies the ticket that identifies the eventcount. The EC2 manager uea the ticket to index into
its array, and then sets up the wait on the corresponding eventcount. Figure 11-4 illustrates this
sequence.

GPA

smd_l"et_ec (lnput_ec)
USER PROCESS

eC2_lwalt(@)- - - - - - - - --

SMD

... :+--1

Input_ec I
t
I
I
I

ec2_lre,,1 ter(lnput_ec)

- ---

Flsure 17-4. Reaisterlna a Levell Eventcount

EC2

,

4 t-----I
5
t----....

I
t-----I

7

In Figure 11-4, a level 2 process gains access to the user-space graphics primitives (GPR)
eventcount by calling the GPR manager (gpr _'get_eel. The GPR manager in turn calls the
kernel-space screen manager driver (SMD)(smd_$get_ec) to get a pointer and pass it to the EC2
manager for registration. The EC2 manager assigns a ticket to the level 1 eventcount and
returns to the SMD manager, which returns the ticket value to the GPR routine, which returns
the ticket to the calling level 2 process.

Eventcount, and Mutual Ezclu,ion 17-4

'-

1°

o

o

When the process wants to wait on this registered level 1 eventcount, it passes the ticket back to
the EC2 wait routine (ec2_$wait). The wait routine reads its table or registered level 1
eventcounts to find the eventcount that corresponds to the ticket value passed to it.

17.2.2. Waiting on Eventcounts

Processes call EC2 wait operati~ns to wait on:

• One or more level 2 eventcounts

• One or more level 1 eventcounts exported by AEGIS managers

To wait, the process passes a wait value and a· pointer to the target eventcount. The EC2
manager carries out the following operations for a level 2 eventcount:

• Allocates a waiter entry rrom its global storage and chains it to its level 2 eventcount
database

• Copies to the waiter entry the process's trigger wait value, its process ID, and a link
to the next process waiting on that eventcount.

• Passes back a pointer that identifies the eventcount to the waiting process

H the process asks to wait on a registered level 1 eventcount, the EC2 manager passes the
eventcount itself to the ec _ $waitn call.

The EC2 eventcount service is layered on top of EC1 so that all level 2 wait calls that a process
makes actually wait on one per-process level 1 eventcount. The process waits on this one level 1
eventcount regardless of how many level 2 eventcounts it waits on. The layering of multiple EC2
eventcounts on a single ECI eventcount works because the EC2 manager awakens a process when
anyone of its trigger values is satisifed. The only time a process waits on more than one level 1
eventcount is when it waits on a registered level 1 eventcount.

Consequently, when the EC2 wait call completes, the process is waiting on:

• All registered level 1 eventcounts

• The per-process level one eventcount that represents all the level 2 eventcounts for
which the process is waiting

• A quit eventcount, because the process must exit from the kernel if it ge~ a quit fault.
Consequently, all processes that plan to wait on an eventcount for a substantial
amount of time wait on a quit eventcount as well; see Chapter 18 for more
information.

17.2.8. Advancing an Eventcount

A process that wants to advance an eventcount passes a pointer to the eventcount (which it
obtains via shared memory) to the EC2 manager's eventcount advance operation. Figure 17-5
illustrates the data structures involved.

17-5 Eventcounts and Mutual Exclusion

PROCESS A
WAITS

walt value

eventcount
value

ticket'

PROCESS B
ADVANCES

walt value

eventcount
value

EC2
PER-PROCESS

L1 EVENTCOUNTS

EC2
WAITERS

LIST

t---r----t}proc." A',
'--____ -1 Unk Walter Entry

ticket' .1--"2fIA~---------------------'

FiBure 11-6. EC2 Wait and Advance Operations

The EC2 eventcount advance operation is implemented in two parts: the eventcount advance runs
in user mode, while the operation that awakens waiting processes (ec2 _ 'wakeup) runs in
supervisor mode. The EC2 advance operation is split into user mode and supervisor mode to take
advantage of the user-level mutual exclusion facility and to avoid the expense of unnecessary calls
to supervisor mode.

When it is called to advance an eventcount, ec2 _ $advance increments the eventcount value by
one, and then determines whether there are any processes waiting on the eventcount by checking
to see if the eventcount has anything in the waiters list head field. If' it does, the routine calls the
supervisor wake operation (ec2_Swakeup), which does the followUlg:

• Locates the waiter nodes of all processes that are waiting on the advanced eventcount

• Compares each process's trigger wait value with the current eventeount value.

• Calls ec _ .advance on any processes whose trigger values match the current
eventeount value; ec _ .advance increments the per-process level 1 eventcounta, which
awakens the processes.

Eventcount6 and Mutual E%clu6ion 1'1-8

------------------------------ -----

o

c)

17.3. Mutual Exclusion on Resource Locks

The mutex lock (ML) module is the kernel-level lock manager; it guarantees rll'8t.-in/first.-out
reque.c;t and grant or process requests ror level 1 resource locks. The ML manager consists or a
sequencer that orders multiple requests ror a single resource lock by issuing -tickets- to the
requesting processes; the sequencer increments each ticket value by one, and never gives the same
ticket value to two difrerent processes.

Consequently, if five processes want the disk lock, the ML sequencer orders, via ticket values,
which process gets the lock rlrSt. Once the resource is released, it will go to the next process in
the sequence. Currently, the sequence is ordered by the order in which the processes tried ror the
lock.

Although a process that calls ML to obtain mutual exclusion on a resource lock will be the only
process authorized to proceed once ML returns, it will not be the only process that has the
requested lock bit set in its PCB.

ML calls the PROel manager's set and clear lock operations to get and release the locks. The
procl_$set_lock routine attempts to set the lock bit, then returns to the ML manager, which
issues a ticket ror the lock to the requesting process.

17-7 Eventcounts and Mutual Exclusion

o

Chapter 18
Fault Handling in the AEGIS Kernel

The AEGIS system recognizes two kinds of faults: . synchronous faults and asynchronous faults.
Asynchronous faults are 8Oftware-deflned fault conditions that occur independently of program
execution. Synchronoua faults are processor· dermed fault conditions. Unlike asynchronous
faults, they occur u a direct result of program executionj the set of synchronous fault conditions
depends on the processor architecture.

18.1. Processor Fault Handling

When a fault occurs, the M680x0 processor performs the following actions:

1. Saves the current status register (SR) and program counter (PC).

2. Enters supervisor state.

3. Generates an exception vector number that corresponds to the fault; for example, an
illegal instruction generates the vector number 010.

4. Creates a fault frame that includes the faulting SR and PC and pushes it onto the
supervisor stack. The contents of the fault frame varies according to the kind of fault
that occurred; .the fault frame format differs depending on the processor in use. See
the appropriate processor manual for more information.

5. Resumes execution at the location pointed to by the appropriate exception vector,
which points to the entry point of an AEGIS fault handler.

18.2. AEGIS Fault Handling

The AEGIS system provides a fault handler for each fault condition; these handlers, along with
some common fault handling routines, are grouped into the fault interceptor module (FIM). The
fault interceptor module is actually two modules: fim_ wireci and fim_ unwired. The fim_ wired
module contains those handlers that must be able to run without taking a page fault; in
particular, the page fault handler itself. The fim_unwired module contains all the other
handlers, such as the fault handlers for illegal instruction, zero_divide, and address errors.

In general, all of the AEGIS fault handlers follow this sequence of operations when invoked to
handle a fault:

1. Determine whether the fault occurred in user mode or supervisor mode .

• If the fault occurred in supervisor mode, they next determine whether or not the
fault was -legitimate-. If not, they call the routine fault_$crash to display the
fault information .

• If the fault occurred in user mode, they push fault status and registers on the
stack.

18-1 Fault Handling in the AEGIS Kernel

2. Build a diagnostic Cault Crame that describes the Cault.

3. Renect the Cault to user space.

This sequence represents the common rault handling rollowed by the majority of all rault
handlers. The exceptionS· to this sequence are faults that involve virtual memory management
(region, segment, and page raults). The AEGIS kernel normally handles memory management
faults exclusively; as a result, memory management Caults are generally invisible to user-mode
programs. The fault handling sequence described above is invoked only ir the manager involved
in satisfying the fault, Cor example, mst _ Stouch, reports an error.

18.2.1. Determinins Where the Fault Occurred

Fault handlers call the routine fim_ chk_ com to determine where the fault took place. The
fim _ chic _ com routine determines wJlether the rault occurred in user mode or in supervisor mode
by examining the supervisor-mode bit in the status register that the processor saved in the fault
frame.

18.2.1.1. BaDdling Supervisor-Mode Faults

If the fault oecurred in supervisor mode, fim_chk_com calls the rault_$crash routine, which
displays the fault frame and exits through the crash _ system routine. For example:

FAULT IN AEGIS:
03077B88: SR:2008 PC:S012CCC FF:B008 (8) FA:3FFFFFF SW:01S5

CRASH STATUS 00040004 ECB 00000000 PIO 0002
S ...

The routine displays the fault address (FA) and special status word (SW) only on bus/address
errors. (The frame rormat word (FF) is followed by the letter error identification Crom the
PROM.) All registers except the stack pointer (SP) remain as they were at when the fault
occurred. The G,G *+f command sequence will return control to the point of the fault using any
registers that the mnemuilk debugger (MD) has reloaded. If you want to change the return SR or
PC or othuwise modify the fault frame, you must patch the actual frame on the stack (using the
address displayed above).

18.2.1.2. Handling User-Mode Faults

If the rault occurred in user mode, fim_chk_com pushes the following information onto the
stack:

• The fault sbtus code, for example, fault _ Suii. The fim_ chk_ com routine generally
obtains the fault status code Crom the processor. However, the fim_$soft_fault
(TRAP E) passes Cault status in Crom user space; on trace faults, fim chk_com
obtains the actual Cault status Crom the fim_$trace_sts[asid] array.

• A word that indicates the kind oC fault that occurred. A value of zero indicates that
the fault was not the result of a bus or address error; a nonzero value indicates one of
the bus or address errors (address, parity, bus).

• Processor address registers AO-A6, data registers DO-D7

Fault Handling in the AEGIS Kernel 18-2

f"
\
\ ,-"".,'

o

o

o

At this point, the fault handlers all join the common fault handling path (fim_$com), which
builds the diagnostic frame and reflects the fault to user space.

18.2.2. Handling Privileged instruction Violations

The handler for privileged instruction violations carries out an additional operation to the Dormal
fault handling sequence - it checks for a Move from SR instruction. This instruction was not
privileged on the 68000, but became privileged on the 68010 and 68020. If the handler rmds that
the instruction that incurred the fault was a Move from SR, it ignores the fault (the instruction is
No-oped).

18.2.S. Handling MMU-Related Errors

Unlike most of the other fault handlers, which join the common fault handling path at
fim_$com, address, parity, and bus errors (the latter being reported by fim_ wired) join at
fim $abcom. If the fault occurred in user mode, fim_$abcom takes no special actions; it
simply transfers control to the common fault handling path. Supervisor-mode address and bus
errors, on the other hand, require special handling, because the fault may have been caused by a
reference to a user-mode argument that was incorrectly specified.

If a supervisor-mode error has occurred, the fim_ $abcom routin~ first checks to see if the
faulting process holds any mutex locks. Two locks - ec2_$lock and pbu_$lock - are special
cased: if either is held, the routine calls the kernel-level ML manager (ml_ $unlock) to release the
lock.

Next, the routine obtains the faulting address from the fault frame. If the faulting address is
above the supervisor global boundary; that is, the supervisor-mode fault occurred while trying to
reference supervisor data, the routine then calls the fault _ $ crash routine.

18.2.4. Common Fault Handling

All of the fault handlers join at the common fault handling routine rim_$com. (If you are
having trouble catching a fault or determining why a process is dying, this is a good place to put
a breakpoint.) The stack at this point contains the following:

• saved registers

• A flag that indicates the kind of fault; for example, address/bus error, parity,
fim _ $generate

• The fault status (status _ $t)

• The fault frame

Figure 18-1 shows the contents of the stack upon entry into rim_$com.

18-3 Fault Handling in the AEGIS Kernel

O(SP) ... Sav.d regl.t.r.
lreg •• I.ngth of r.gllt.r •• t ('Sx4)

Ir.g.(SP) Addr ••• /Bu. error word
o • no addr.ll/bul .rror
1 • addr ••• error
2. bUI error a • parity error

2+lr.;1 (ap) Statu. ood. (12 bit.)

Pault frame , 1+lr.gl (ap) r
Figure 18-1. Stadt at Entl'7 to The Common Fault Handler

The common fault handler carries out the following steps:

1. Cht'cks for faults within GPIO interrupt routines

2. Checks for rault on rault

3. Locates the user fault handler

4. Validates the user stack pointer (USP)

5. Creates a diagnostic frame

6. Dispatches to the user fault handler

18.2.4.1. Checking tor GPIO Faults

The fim _ Scom routine first determines if a user-mode GPIO interrupt handler was in control
when the rault occurred; faults in GPIO interrupt handlers must be treated specially because of
the non-standard environment in which these interrupt routines run.

When the processor receives an interrupt Crom a user GPIO device, it laves the ASID of the
currently running process and replaces it with the ASID of the process that owns the device. This
step is ner.essa.ry because GPIO interrupt routines are installed in per-process private address
space and must have access to their own code and data. However, the system does not perform a
full context switch to the process that owns the device, as interrupts should be handled as quickly
as possible 10 that a context switch is not necessary. The interrupt routine is not allowed to
generate any IOrt or a Cault (even a sharing Cault) while it runs, but if it does, the curren1.ly
running process Ihould not be disturbed (that is, Caulted) since it most likely has no relationship
to the process that owns the GPIO device.

Therefore, if a GPIO interrupt routine incurs a Cault, fim_Scom calls pbu_$get_diag_ptr; this
routine returns a pointer that indicates where the fim_$com should build the diagnostic frame.
The fim _ Scom routine uses this pointer as the location at which to build the frame rather than
using the user stack pointer (USP), which is where it usually builds the diagnostic fault frame.

Fault Handling in the AEGIS Kemel 18-4

\
......... ,.'

C)

o

o

18.2.4.2. Checking for Fault on Fault

The common fault handler next checks a per-process nag (fim_Sin_fim[asid]) to see if the fault
handler has been re-entered while in the process of handling a previous fault. Ir fim _ Scom
detects a prior Cault, it deletes the process (proc2_Sdelete). The process is deleted while it is
running in supervisor mode; it never returns to user-mode operation. As a result, any resources
that the process was using are not released. Although the system releases any supervisor mode
resources used, such as writing modified pages out to disk, it does not release any user-mode
resources, such as open files and transcript pads.

H it is process 1 (DM or SPM) that has incurred a fault on a Cault, fim _ Scom crashes the system.

18.2.4.3. Locating the User Fault Handler

Next, fim _ Scom determines whether or not the faulting process has installed a user-mode fault
handler. The Cault interceptor module database contains an array that lists the entry points to
each process's user fault handler (fim_ 'user _fim_addr); the process manager (PM) installs (via
fim_Sinstall) a user FIM's address into this list and deletes it (via fim_$free_asid) when the
process is deleted. The fim_$com routine attempts to locate the user FIM that corresponds to
the faulting process using the process's ASID as the index into the table. H there is no user-mode
FIM, fim _ $com deletes the process or crashes the system if the process is 1.

18.2.4.4. Validating the User Stack Pointer

The rim $com routine next validates the user stack pointer (USP) , which is the location at
which it will build the diagnostic fault frame. The USP must be:

• Below the protection boundary

• Above the bottom of the stack (as_$stack_Iow)

• On an even-address boundary

If any of these tests fail, fim_ $com forceably resets the USP to a -known" valid location a short
distance from the bottom of the user stack.

If a GPIO interrupt routine faulted, fim_ $com builds the diagnostic frame at the bottom of the
stack reserved for the interrupt routine.

18.2.4.5. Building the Diagnostic Fault Frame

Once fim _ Scom has validated the USP, it decrements its value by the size of the diagnostic fault
frame and uses this pointer to build the frame.

The diagnostic frame contains information that describes the fault to the user fault handler.
Figure 18-2 illustrates the information contained within the diagnostic frame.

18-5 Fault Handling in the AEGIS Kernel

31

F SublYltem
ID

j

00

02

01

21

2E

~~ ~I

A ,

DFDF Pattem

atatua

Reglaters ~~

I -
lIIaga

Sp

Pointer to Supervlaor ECB

Supervllor Statua Regllter

Supervllor PC

atatul Reglater

PC

11 15

Module Module-Specific
ID error oode

Asynchronous fault

Module could not .handle .rror

3 2 1

ab In

trunctlon Code
(MAOOO) or

eclal StatuI Word

o

o

return

Status
Code

~~~ aayno valid reR· va d auper okay Flags 

Figure 18-2. Diagnostic Frame 

Fault Handling in the AEGIS Kernel 18-8 



o 

o 

C) 

To build the diagnostic frame, the common fault handler: 

1. Writes a debugging pattern (DFDF) that flags the frame as a diagnostic frame; this 
pattern makes it easy to identify diagnostic frames within stack dumps. 

2. Writes the status code passed to the common fault handler by its caller; this is the 
normal status _ St code illustrated in Figure 18-2. 

3. Saves the USP and processor registers (A()..A6, DO-D7). 

4. Determines whether the fault is asynchronous; if so, it sets the asynchronous bit in the 
diagnostic frame and clears the asynchronous bit in the status code; asynchronous 
faults are described in detail in Section 18.4. 

5. If the fault was a user-mode bus or address error, it obtains the function code (Fe) or 
the special status word (SSW) and the faulting address from the fault frame. 

6. Sets the return-permitted bit in the diagnostic frame if the fault was not a 
bus/address error. 

7. Determines whether the fault occured in user mode or supervisor mode. If the fault 
occurred in supervisor mode, the handler sets the in supervisor bit in the diagnostic 
frame and saves (in the diagnostic frame) the supervisor status register, supervisor 
PC, and the ECB of the supervisor routine in which the fault occurred. If the fault 
occurred in user mode, the common fault handler saves the user SR and PC. 

& 

After building the diagnostic fault frame, fim_ Scorn ensures that the only data left on the 
supervisor stack is a short (4-word) fault frame. In this way, an exit through the fault frame 
leaves the SSP pointing exactly to the top of the stack. The fim_Scom routine may be required 
to make two adjustments to the stack. H the fault was a user-mode bus or address error, it pops 
the extra bus/address information in the long fault frame; if the fault occurred in the supervisor, 
it unwinds the entire stack; that is, it sets the SP to os _ stack _ base/asidJ minus 8. 

18.2.4.6. Renecting the Fault to User Mode 

Now fim_ $com makes another check to see if the fault occurred in a user-mode GPIO interrupt 
routine. If so, the fault handler does not pass the fault to the current process; instead, it exits 
back to the GPIO logic (pbu_$int_rault_com), which: 

• Restores the state or the interrupted process 

• Passes an asynchronous fault to the process that owns the GPIO device 

• Exits and advances the eventcount associated with the device, in case the owning 
process was ,,:aiting for the interrupt 

H the fault did not occur in a GPIO interrupt routine, the fault handler clears the rault-in-fault 
flag and moves the user-mode FIM address from the user FIM array into the fault frame. If the 
fault occurred in supervisor mode, fim _ $com calls cleanup routines for those managers that are 
susceptible to faults. (Currently, these managers are ACL, EC2 and NAME. They can be viewed 
as static cleanup handlers for the kernel.) 

18-7 Fault Handling in the AEGIS Kernel 



Finally, fim _ $com checks to see iC the faulting process holds any mutex or exclusion locka (via 
procl_$inhibit_check). If this cheek fails, the system crashes with Cault_$while_Iock_aet 
status, since there are no circumstances in which the AEGIS kernel should exit to user mode with 
a kernel lock held. If no locks are held, the fault handler exits by jumping to the common exit 
routine fim_ $exitj this routine normally just executes an RTE instruction through the fault 
frame, thus passing control to the user-mode Cault handler. Section 18.4 provides more 
information about fim _ $exit. . 

IS.3. Handling sve Faults 

The SVC trap handlers, which handle traps 0 through 5 (and pbu_um.asm, which handles trap 
6) call a special FIM routine when they detect an illegal argument or an invalid SVC code. This 
routine, called fim _ $generate, uses the common fault handling path described in the previouS 
sections; the only diCCerence is a hardware fault condition does not initiate its actions. For 
example, if the SVC catcher finds an argument pointer whose value is above the protection 
boundary, it calls fim _ $generate with fault _ $prot _ violation status. The fim _ $generate 
routine performs the following operations: 

1. Stores status on the stack (just above the frame from the trap instruction) 

2. Stores a flag that indicates to fim_ $com that the fault is the result of a 
rim _ $generate 

3. Joins the common fault path at fim_$com. 

The only effect that the fim_ $generate flag has on fim_ $com is that fim_ $com does not mark 
the registers in the diagnostic fault frame as valid, as fim_ $generate's caller has presumably 
destroyed the user-mode registers already. 

18.4. Asynchronous Fault Handling 

Asynchronous faults are faults that result from actions unrelated to the execution of a process; 
they can arrive at any time while a process runs and have no relationship to that process's 
operation. For example, if a process takes a page fault or divide-by-zero, these faults are 
synchronous because they were the direct result of code execution in the process. A quit fault, on 
the other hand, is generated by a user (with the help of the display manager process); the quit 
fault has nothing to do with what a process happens to be doing when the quit is generated. 

Asynchronous fault handling in the kernel is split into two related operations: posting and 
delivery. User processes must call the supervisor to generate asynchronous faults; specifically, 
they call the PROC2 manager to post the fault. The PROC2 manager, in turn, uses the fault 
interceptor module to deliver the fault. 

lS.4.1. Posting an Asynchronous Fault 

A process posts an asynchronous fault by calling the PROC2 manager's trace fault routine 
(proc2_$trace_fault) and specifying the target process's UID and the fault code (status_$t) to 

be sent. User-mode programs frequently post asynchronous faults; a display manager request for 
a quit fault is the most common instance. AEGIS kernel managers also post asynchronous faults, 

Fault Handling in the AEGIS Kernel IS-S 

\'"'' ." 



C) 

C) 

o 

---_._-------_ .... 

although they do so less frequently than user-mode programs; SIO line quits and floating point 
(PEB) faults are examples. Interrupt routines cannot generate asynchronous faults, (nor can cpu
B-eligible code) because the user-mode process's supervisor stack may not be valid and 
proc2_ $trace_fault is unwired. 

There are several variations on posting faults with proc2_$trace_fault: 

• Calling proc2_$quit; this routine simply calls proc2_$trace_fault with fault_$quit 
status 

• Calling proc2 _ $trace _ fault _ enqj this routine operates exactly like 
proc2_ $trace~fault, but if a previous fault has yet to be acknowleged (see below), 
the fault is queued to a small pending fault queue. 

• Calling proc2_$trace_fault_pgroup; this routine operates just like 
proc2 _ $trace _ fault, but the fault is sent to each process in a process group. 

• Calling proc2_$trace_fault_pgroup_enqj this routine operates like 
proc2_$trace_fault_enq, but the fault is enqueued for any processes within a group 
that have an outstanding unacknowleged fault. 

A process that has received an asynchronous fault must acknowledge the fault before 
proc~ _ $trace _ fault can accept any further asynchronous faults for posting; it does 80 by 
directing its user-mode FIM to call fim_$acknowledge on its behalf. 

18.4.2. Structures for Asynchronous Fault Handling 

The fault interceptor module (FIM) maintains several data structures that the asynchronous fault 
and F'IM routines use during asynchronous fault handling and deliveryj the routines use the target· 
process's ASID as an index into these structures. The asynchronous fault database associated 
with each process includes: 

• A trace bit flag 

• An area for trace status code 

• A quit inhibit flag 

• A quit eventcount and quit value 

• A fault delivery eventcount 

(Note that the term quit or quit fault appears in the variable names in the source code. These 
terms are anachronistic references to the days when the model of asynchronous faults was 
simpler. When you encounter the term quit, read a8ynchronou8.) 

18.4.2.1. Trace Bit Flag 

The per-process trace bit flag (fim_ $trace_ bit) indicates whether the process should have its 
trace bit set on its next exit from supervisor mode. The routine rim _ $deliver _ trace _ fault sets 
the flag; it is cleared by fim_$exit and fim_$clear _trace_fault. 

18-g Fault Handling in the AEGIS Kernel 



18.4.2.2. Trace Status 

The per-process status code (fim_$trace_sts) indicates the status code (status_t) to be 
delivered to the process when a trace fault occurs; the PROC2 posting routine 
(proc2 _ $deliver _ trace _ fault) puts the status code into this field. 

18.4.2.8. Quit Inhibit Flal 

The quit inhibit nag (fim_$quit_inh) indicates the state of asynchronous fault handling. A 
false (00) value indicates that the process can accept an asynchronous fault; a true value (FF) 
indicates that the process has an unacknowledged asynchronous fault and thus cannot accept 
another fault. The proc2_$deliver _trace_fault routine sets this nag; The fim_$acknowlege 
and fim $free _ asid routines clear it. 

18.4.2.4. Quit Eventcount 

The FIM provides each process with a level one eventeount (fim _ $quit _ ec) that can be used to 
awaken the process should an asynchronous fault occur. AEGIS kernel modules that need to be 
awakened on an asynchronous fault include this eventeount in the c\: _ $wait call. The 
proc2_$deliver _trace_fault routine will advance it when an asynchronous fault occurs. 

The field rim _ $quit _ value stores the fim _ $quit _ ec value for the last acknowledged 
asynchronous fault. AEGIS kernel modules that wait on the fim_ $quit _ ec eventcount use 
[rim _ $quit _ value + 1] as their wakeup trigger value. 

18.4.2.5. Fault Delivery Eventcount 

A posting process can also wait on an eventcount for a target process's acknowledgement 
(fim_$deliv _ec). User-mode processes call the PROC2 manager (proc2_$get_ec) to get a 
delivery eventcount; the fim_ $acknowledge routine will advance it when the user FIM calls it to 
acknowledge the fault. 

18.4.3. Asynchronous Fault Delivery 

Asynchronous fault delivery is a three-stage process. The first stage occurs in the process that is 
delivering the fault and the second two in the process to be faultt(l (the -target" process). 

18.4.3.1. Delivering ihe Asynchronous Fault 

All of the trace fault posting routines use the proc2 _ $deliver _ trace _ fault routine to deliver the 
fault. This routine operates with the PROC2 mutex lock held, thereby avoiding problems when 
two processes trY to post a fault to the same target process at the same time. (It also avoids 
posting a fault to a target process that deletes itself before the post is complete.) 

Fault Handling in the AEGIS Kernel 18-10 



C) 

o 

o 

The proc2 _ $ deliver _ trace _ fault routine determines whether an asynchronous fault is 
outstallding Cor the target process by examining its quit inhibit nag. If the inhibit nag is not set 
or iC the status is fault_$blast or rault_SCault_lost, then proc2_$deliver_trace_Cault does 
the CoHowing: 

1. Saves the status code in the target process's fim_Strace_sts field and sets the 
asynchronous bit. 

2. Sets the inhibit nag. 

3. Advances the target process's lim _ 'quit _ ec. 

4. Calls fim _ Sdeliver _ trace _ fault. 

If the process is inhibited, then proc2 _ 'deliver _ trace _ fault cheeb to see if the caller wants the 
Cault enqueued. If not, it returns status of proc2_$Cault_pending. Otherwise, if there is room in 
the queued fault pool, the routine saves the fault for future delivery by the 
proc2 _ $deliver _ queued _ Caults routine. If there is no room in the pool, a fault oC 
fault_$lost_Cault is Corceably delivered to the process. 

The fim_ $deliver _ trace_fault routine is responsible for seeing that the target process receives a 
trace fault the next time it leaves the kernel. (Remember that since the delivering process is 
running, all other processes must be in the kernel, either because of a trap, fault, or interrupt.) 
The fim_ $deliver _ trace_fault module performs the following actions: 

• Sets the flag fim _ $trace _ bit[ asid]. If the bit was not previously set, it increments the 
variable pending _ trace _ faults. 

• Changes the instruction at fim_ $exit from a return Crom exception (RTE) instruction 
to a no operation (NOP) instruction. 

• Calls cache _ $clear just in case the instruction was cached. 

ThiEl completes the actions performed by the delivering process. 

18.4.8.2. Processing the Asynchronous Fault 

The second stage of fault delivery occurs in the target process, starting when that process next 
leaves the kernel via rim _ $exit. The rim _ $exit routine is the common exit point to user space 
for all faults, interrupts, and traps. If no faults are pending for any process, rim _ $exit consists 
of a single RTE instruction. AB soon as a fault is pending, the RTE is changed to a NOP, and the 
following actions are taken: 

• The fim _ $exit routine examines the supervisor bit in the fault frame through when 
the RTE is to return. If the status register indicates that return is being made to 
supervisor mode, it executes an RTE instruction; in other words, the trace fault is 
retained until user mode is to be entered . 

• If fim_$exit is returning to user mode, it checks fim_$trace_bit[asid] to see if a 
trace fault is pending for this process. If not, it RTEs. 

18-11 Fault Handling in the AEGIS Kernel 



• If there is a pending trace fault, fim_Sexit clears the fim_Strace_bit nag and sets 
the trace bit in the SR of the fault frame. . 

• The count of pending trace faults is decremented. Ir it becomes zero, the NOP at 
fim_ $ exit is turned back into an RTE (and the cache is cleared). 

Note that the proc2 _ Sdeliver _ trace _fault cannot simply set the trace bit in the appropriate 
fault frame on the supervisor stack; this is so for the following reasons. On 68000-based machines 
(DN400, 600), the user-mode ltatus register alwaJl3 resides in a-known - place 
(os _ stack _ base (asid]-6), and early versions of the trace fault logic did in fact just let the trace 
bit without the fim_*deliver/fim_*exit logic. However, other processor architectures (68010, 
68020) have many different fault frame formats, and there is no fool-proof way to start at the 
bottom of the stack (highest address) and determine where the user-mode SR resides. You might 
think that you could assume a 4-word frame (traps, interrupts) and have other fault routines 
leave a nag around for the trace fault logic. This doesn't work because it is possible to get 
interrupted after a fault frame (for example, a page fault) is pushed onto the supervisor stack, 
and before the rll'St instruction of the fault handler (a disable, presumably). The current solution 
is to let the target process set its own trace bit, since it always knows where the appropriate SR 
resides. An alternative is to make;all the fault handlers follow standard stack base (SB) 
conventions. If this were implemented, proc2 _ $deliver _ trace _ fault could trace back the target 
process's stack until it found the oldest fault frame. 

18.4.3.3. Taking a Trac:e Fault Trap 

The third stage of asynchronous fault delivery takes place when the target process takes a trace 
fault trap. When the target process returns to user mode, the trace fault occurs after one user
mode instruction is executed. The trace fault causes entry to the fault interceptor module's trace 
fault handler. The trace fault code is distinguished Crom the common fault code (fim_ $com) 
only in that the. status code placed in the diagnostic frame is the status that was stored in 
rim _ $trace _ sts for the target process. 

Although fim _ $exit could be designed to obtain the trace fault status and simply jump to 
fim _ $com, it is not implemented this way because to do 50 would defeat single-stepping, which is 
one of the uses of the trace fault logic. In addition, the user-mode program may be in the middle 
of an instruction (pre-fetch or write-behind page fault, for example). Such an implementation 
would cause all sorts of difficulties by allowing asynchronous faults to occur at arbitrary points 
during the execution of an instruction. 

Running in the kernel· FIM does not cause the fault to be acknowledged. This means that 
proc2 _ $deliver .:.. trace _fault will not yet allow another asynchronous fault to be posted for the 
target process. Also, the rllD_$quit_ value is not set to the fim_$quit_ec.value; this allows 
process-blocking calls such as ec2_$wait_svc to return with a Cault-while-waiting status instead 
of blocking. 

The user fault handler is responsible for acknowledging the fault when it is capable of accepting 
another. The process manager does this when the fault is dispatched. (Dispatching occurs 
immediately if not inhibited via pfm_ $inhibit, or when the PM's asynchronous inhibit counter 
reaches zero.) 

Fault Handling in the AEGIS Kernel 18-12 

• 



o 

When a user lault handler calls fim_'acknowledge, the routine does the following: 

• Sets the fim _ 'quit _ value to the fim _ $quit _ ec.value 

• Clears the way lor another asynchronous lault by setting fim_$quit_inh to false 

• Advances the fim _ $deliv _ ec 

18.4.4; Using Quit Eventcounta 

Various parts or the AEGIS kernel use fim _ $quit _ ec to allow eventcount wait operations - also 
called blocking operations - to awaken on an asynchronous fault. Code that wakes up on the 
fim_Squit_ec must set the fim_$quit_ value to the fim_$quit_ec.value to prevent spurious 
wakeups that could occur between the time the fault is posted (eventcount is advanced) and the 
time the lault is acknowledged. 

Blocking operations within the kernel that want to wake up on an asynchronous fault cannot just 
wait for lim_$quit_ec.value+l, because an asynchronous fault may have been posted between 
the time that the target process entered the kernel and the time that the eventcount wait is 
performed. In such cases, a wait for lim_$quit_ec.value+l will never be satisfied because 
subse'1uent asynchronous faults are now inhibited, and the user fault handler will never get to call 
fim_ $acknowledge to re-enable them. Since, however, fim_$quit_ value reflects only the 
previous acknowledged fault, a wait for fim_$quit_ value+l will be immediately satisfied, and 
the blocking operation has a chance to return the appropriate status (for example, 
quit _ while _ waiting). 

The user fault handler may have inhibited asynchronous faults itself for its own reasons, and' 
therefore other kernel operations may occur before rim _ $acknowledge updates fim _ $quit _ value 
to rim _ $quit _ ec.value. In particular, there may be subsequent blocking operations that also 
want t.o wait for asynchronous faults. These operations do not, however, want to terminate 
immediately just because one asynchronous fault was received but fim _ $acknowledge has not yet 
been called. Thus, the system requires that any eventcount wait (blocking operation) that is 
• satisfied " by an asynchronous fault should immediately set fim_$quit_ value to 
fim _ $quit _ ec.value. 

In short, rim_$quit_ value can be thought of as a partial acknowledgement mechanism that 
guarantees that an asynchronous fault will satisfy at most a single blocking operation in the 
kernel. 

18-13 Fault Handling in the AEGIS Kernel 





o 

o 

o 

Chapter 19 
SVC Dispatching 

The collection of AEGIS kernel modules that user mode programs can run is referred to as the 
supervisor. User-mode code gains access to these mOdules through the SVC trap instruction, 
which causes the hardware to execute a trap instruction to. the privileged AEGIS service. Thus, 
user code is said to be running in ,upervi,or mode when it takes an SVC trap. 

ID.l. Changing Mode to Supervisor 

The trap page consists of entry points to routines that the processor hardware uses to handle 
exceptions and interrupts. While most of the trap page contains hardware exception vectors, five 
vectors in this page are reserved ror the AEGIS system to field user space calls to the AEGIS 
supervisor. These rive vectors are the entry points to the code of six trap handlers known 
collectively as the sve catcher. The trap handler used corresponds to the number of 
arguments passed in the call. For example, a call to supervisor mode that specifies three 
arguments generates a trap instruction to SVC handler number three. 

The system assigns an SVC code to each supervisor subroutine that user-mode programs can call; 
these codes are stored in the SVC library, or svclib. For example, the naming server module 
invoked in response to a WD command (name_$get_ wdir _uid) has an SVC code of 34. 
Because this routine takes one argument, SVC handler number one will process the trap. 

When a user-mode program wishes to run a supervisor-mode routine, it places the SVC code 
number into processor data register DO (part of the process's processor state) and initiates, via a . 
trap instruction, a trap exception to the trap handler that corresponds to the number of 
arguments in the call. The generic code sequence is: 

move.l #code,dO 
trap nargs 
rts 

where code is the SVC code and nargs is SVC handler zero through four (for 0 through 4 
arguments) or five (for five or more arguments). The example below illustrates the code sequence 
when user space code calls the naming server's working directory inquiry module. 

8vclib entry ror name _ $get _ wdir _ uid module 

entry.p name_$get_ wdir _uid 
name _ $get _ wdir _ uid equ * 

move.l #34,dO 
trap #1 
rts 

The user-mode caller places the SVC code 34 into DO and executes a trap instruction to trap 
handler number one. The hardware handles the trap exception by setting the supervisor bit in 
the status register and then transfers control to the specified trap handler. -

19-1 SVC Dispatching 



Each trap handler has a table of entry points to the supervisor subroutines, called the sve 
dispatch table. The SVC number passed in DO is the index into the handler's dispatch table. 
The example below shows the format or the dispatch table ror handler *1, and identifies the 
offset to the naming server routine name _ $get _ wdir _ uid. 

SVC dispatCh table for trap handler #1 

extern.p f1m_S1nstall 
ac f1m S1nstall 2 
extern.p network Sread service 
ac network_Sread_serV1ce 3 

extern.p name~Sget_vd1r_u1d 
ac name_$get_wdir_uid 34 

The SVC trap handler does the following: 

1. Takes the SVC code rrom DO and ensures that it is within the range of defined SVC 
codes 

2. Calculates the offset into the table at which the target supervisor module resides, 
thereby obtaining the module's entry point address 

3. Verifies that the user-mode arguments are below the supervisor global address space 
protection boundary; that is, that they refer to entities within the caller's private 
address space. User-mode code cannot change the contents of supervisor global space; 
thus, the SVC handler checks to make sure the user call is not attempting to make a 
change to global space. 

4. Copies the pointers to the user space arguments (if any) to the per-process supervisor 
stack and saves the information needed for the return to user mode after the 
supervisor module completes 

5. Calls the target supervisor module 

When the supervisor module completes its operation, the SVC trap handler removes the saved 
information rrom the supervisor stack and returns control to the user mode caller through a 
return from exception (RTE) instruction. 

Note that the. trap handler generates no output to its caller; it simply passes the addresses of the 
user space arguments. If the supervisor module returns any inCormation to its caller, this 
information is returned strictly through the caller's arguments. 

sve Dispatching 19-2 

\ 
\.... 



C) 

o 

C) 

19.2& User and Supervisor Modes and ASID 

Running in supervisor mode is not identical to using ASID o. (For purposes or this discussion, 
ASID 0 refers to the supervisor global portion or ASID 0.) Although the operating system - the 
code that runs in supervisor mode - resides in shared supervisor address space, which happens to 
be identified by ASID 0, user-mode code does not request that ASID 0 carry out some operation 
on its behalf. User code asks a ,upervi,or module to do the operation ror it. Thus, ASID 0 is an 
address space, not a procedure. 

All processes, whether level 2 or levell, can access locations in ASID o. Levell processes can onlJl 
use ASID 0, while level 2· processes can rererence locations in ASID 0 88 well 88 locations in their 
own private address spa.ces. However, in order to touch protected ASID 0 locations, a level 2 
process must be running in supervisor mode. Thus, level 2 processes gain access to ASID 0 by 
asking the supervisor, via an SVC trap, to rererence the protected addresses. 

When a level 2 process runs supervisor-mode code via the SVC mechanism, the process is running 
in ASID 0, because it has a supervisor program counter and its active stack pointer points to a 
per-process supervisor stack. However, the ASID portion of its process context is still the ASID 
assigned to it at process creation; ASIDs 1 through 25. Thus, the process can continue to refer to 
addresses within its per-process space as well as to addresses within ASID o. 

Because global addresses are common to all processes, level 2 processes do not have to switch 
context to ASID 0 when they reference an address within it. So, if a process with ASID 3 is 
running in the supervisor and takes a page fault in the operating system, the process handles the 
page fault in ASID 3, but installs the page in ASID o. During this sequence, the hardware 
register that tracks ASID will indicate ASID 3, not ASID O. 

19-3 SVC Dispatching 





--------------------------------- ._---- .- ............. __ .. __ ... _-------

o 

o 

o 

Chapter 20 
Network Overview 

Networking lacilities can be separated into three levels: 

.- The 'physical' network, which provides tt-e medium to uanamit meau.ges from one· 
node to another . 

• AEGIS low-level interproeess communication (lPC) 8Ottware, which provides the . 
medium tor delivering m~es to their destination within a particular node 

• AEGIS higher-level network support sottware, which offers a set or remote services to 
its clients, IUch as remote access to objects 

Figure 20-1 shows the relationship between the managers that handle AEGIS networking. 

Network 
Clients 

Socket 
Clients 

Low-Level 
IPC 

Managers 

MSG 

Packet 

LCNODE 
GPIO DRIVER 

ROUTE_I 

----- -
RIP 

SKNOD 

. FIsure 10-1. AEGIS Network Component. 

20.1. The Physical Network 

The proprietary DOMAIN network consists ot a token-pusing ring; that is, the communications 
cable connects the nodes in a circle. In a token-passing ring, a special bit pattern, called a 
token, circulates around the ring, passing through each node. In order to transmit a message, a 
node must gain control of this token. The node's ring transmitter generates the message, which is 
received at each successive node and re-transmitted to keep the message going around the ring; 

20-1 Network Overview 



this proc~ is called tranaceiving; the ring hardware carries out the receive/transceive sequence 
without intervention from the central processor. 

Although messages sent by a transmitting node pass through each node on the ring, only the 
target node actually processes the message; it sends, via direct memory access, (DMA) a copy of 
the message directly into memory, and records its receipt of the message in· a field within the 
message, called the ACK byte .(the ACK byte is part of the low-level IPC message-passing 
protocol discusSed in Chapter 22.) If the . node decides to receive a message passing through it, it 
also awakens the processor by signaling an interrupt. 

Because each nOde transceives the message, it eventually returns to the node that generated it; 
this node checks the ACK byte in the message for evidence of the target node's receipt and 
removes the message from the ring. 

The token-passing ring design promotes the following features: 

• Distributed control of communications hardware 

• Graceful degradation under heavy bursts of network traffic 

• Automatic acknowledgement of successful transmission 

• Support of wiring technologies such as fiber optics and microwave transmission as well 
as the conventional cable medium 

Chapter 21 describes the ring hardware in more detail. 

DO!v1AIN nodes support other types of communications lines in addition to the proprietary ring; 
for example. a node can support the communications hardware necessary to connect two or more 
ring networks, and has the facilities to support customer-supplied network hardware that 
connects to a MULTmUS controller. For more information on the multiple network environment 
-- called an internet - consult Chapter 24. 

20.2. Low-level !PC Software 

The components of low level IPC include: 

• The packet mechanism, which is the message-passing protocol used on the network 

• The network buffer pool, which provides a pool of pages to use for passing packets 
around the network 

• The socket mechanism, which provides the means for packet delivery to processes 
within a single node 

20.2.1. Packets 

Messages are sent around the ring as packets. Each packet has a uniform structure, or protocol. 
All messages on the network use this protocol. 

NetworkOtJerview 20-2 



o 

o 

----------------------- ---.-----.... -----.-----------

A packet is divided into two variable length pieces called the header aectlon and the data 
aection. The data section contains the message itaeIrj the packet header contains five distinct 
types or inrormation: 

• Information that directs the packet from one node to another 

• Information that the network hardware on a node uses to determine whether or not to 
accept the p~ket 

• Information th~t directs the packet from one network to another 

• Information that directa the packet to ita destination within a node once the ring 
hardware h.., accepted it 

• Information specific to the AEGIS network support' software component that is using 
the low-level IPC sortware, called the eocket ellent 

The ring transmitter hardware inserts a message separator between the header and data sections, 
and inserts two more fields after the data page: the cyclic redundancy check (ORC) field and the 
acknowledge (ACK) byte. Figure 20-2 illustrates the structure or a packet. 

Header 
Page 

Data { Page 

Ring Hardware 
H .. der 

AEGIS Software 
Control Header 

Packet 
Addre •• 

IDP Header 

PEP 
Header 

IPC 
Header 

Data 

~--------------~ 
ACK Byte 

CKC 

Figure 20-2. Packet Protocol 

20-3 Network Overview 



The division into ·header and data sections becomes significant when a node receives a packet. 
The ring hardware sets up two DMA channels to receive a single packet; one channel receives the 
packet header, while the other receives the packet data. When a packet arrives, the ring receive 
hardware -DMAs- the packet into memory; when it encounters the message separator, it ends the 
transmission into the rll'St channel and transrers DMA operation \0 the second channel. A:s a 
result, a packet's header and data pages are scattered into difCerent pages or a node's memory; 
the socket mechanism -gathers- these pages back together using pointers. 

Header and data packet sections exist specifically to support the remote paging protocol described 
in Chapter 13. A paging request packet must carry a description of the page being requested as 
well as carrying the actual page itself. The hardware-supported header/data separation allows 
variable-length protocol fielda and page descriptors but still permits the transrer of virtual 
memory pages to and Crom page-aligned physical memory buffers. ~ a result, the network 
paging protocol never copies page data; instead, it transmits pages from their location in the 
sending node's physical memory and receives the page data into page-aligned burCers in the 
requesting node. Consequently, processes can install the pages directly into virtual address space 
without having to first copy them to page-aligned areas. 

The packet manager (PKT) implements the packet transmit protocol and includes calls to build a 
header, disassemble a header, and to send and receive a packet. Chapter 22 describes the packet 
protocol in more detail. 

20.2.2. Sockets 

The socket mechanism is the lowest level of network sortware. While the ring hardware supports 
packet addressing to the node level, the socket mechanism exists to get the message to its 
intended recipient within a node. A socket is a numbered message queue. Each socket contains 
a list of incoming packets, and each socket is identified by a small integer value that is unique 
within a node but is not unique across nodes in the network. All packets are addressed to both a 
node and to a socket within that node; as a packet is received at a node, the ring receive 
interrupt handler removes it rrom the ring and demulfiplexes it to the socket number specified in 
the lito socket- field in the packet's sortware control header. 

There are three classes of sockets: well-known, reply, and user. Well-known sockets are the 
set of sockets that the system allocates at initialization to the higher-level network support 
software available in every node; the socket ID for a given network service is the same on all 
nodes and IS known toa11 potential clients of the service. For example, the remote paging server 
receives requests into socket number one regardless of the node 011 which it is running. 

The socket mechariism .provides the only way to deliver a packet to its intended destination; a 
packet sent from one node to another always goes through a socket. Thus, a process that needs 
to receive a message must have a socket into which that message can be queued. Clients allocate 
reply sockets dynamically Crom a pool of sockets to receive replies to requests for remote 
services. The reply socket provides a -return address- to send along with the request packet. 
When the client process's transaction with the server is complete, it returns the reply socket to 
the pool. The most common means or socket.-Ievel IPe is a client reply socket using a well-known 
server socket. For example, a request to read in a remote object's pages involves allocating a 
reply socket and sending a page-in message to the paging server, which runs at its well-known 
socket on the object's home node. 

Network Overview 20-4 

,,,...-----

/ 



o 

o 

C) 

User processes can also gain control of a socket through the message (MSG) interface. The 
process calls the MSG manager to allocate a socket for its exclusive use; the MSG manager 
obtains the socket from a pool of user sockets. When the process rmishes with the user socket, 
it returns it to the pool. 

The AEGIS socket mechanism is based on the datagram model; there are no connections and no 
set-up. In a socket, the message simply goes out or comes in. The socket mechanism is an 
unreliable message delivery service; sockets are deemed unreliable because the rollowing conditions 
can occur: 

• Lower level errors can cause packets to be lost . 

• A full· socket queue can cause packets to be discarded 

• Packets can get out of sequence or be duplicated 

It is the higher level network software that is responsible for ensuring reliable message delivery. 

The socket manager (SOCK) maintains the socket pool and contains operations to allocate and 
free sockets and to insert and retrieve packet entries from a given socket. Chapter 22 describes 
socket structure in more detail. 

20.2.3. The Network Buffer Pool 

The network buffer is a pool of virtual pages available for use by clients of the low-level IPC; the 
pool is divided into a header page pool and a data page pool. Clients use the header and data 
page pools to hold incoming or outgoing packet header and data information; the pool provides 
clients with a quick and easy way to get wired pages for low-level IPC transfers. The network 
buffer pool initially contains enough wired pages behind the virtual pages to handle minimal 
network traffic; clients can subsequently allocate additional wired pages to the pool. 

However, because the network buffer pool size must remain in a steady state, clients that expect 
to handle network traffic must observe the following rules when using the network buffer pool: 

• Clients must allocate as many wired pages to the network buffer pool as they intend 
to take from itj they must give the buffer pool these wired pages before they remove 
any pages from the pool 

• \Vhen their network operations are complete, the clients must remove all the pages 
they put into the pool and call the memory map (MMAP) manager to free them 

Thus, all low-level IPC clients that request delivery of messages must first allocate storage for 
those messages iQ the network buffer pool. Note, however, that the ring receive hardware will not 
necessarily return the packet to the actual physical page number that the client specifies. 
Instead, it copies the data into the buffer and returns the client a pointer to that data (via the 
socket manager). 

The network buffer manager (NETBUF) keeps track of the availability of buffer pool virtual 
pages, makes the virtual-to-physical page associations by calling the MMU manager, and and 
provides operations to remove and replace header and data pool pages. Chapter 22 describes the 
network buffer manager in more detail. 

20-5 Network Overview 



20.3. AEGIS Network Support Software 

The next level in the network hierarchy consists of kernel and user space software that offers a 
variety of network-related functions to its clients. AEGIS kernel software provides the following 
network-related services: 

• A remote rde system, which permits remote object creation and deletion and provides 
the ability to gain access to remote objects 

• A node status' inquiry service that collects statistics and general information about the 
characteristics of remote nodes 

• A user-space interface to the low-level IPC software that allows unprotected AEGIS 
software and user programs to pass socket-level messages 

• A routing service . that provides the ability to send a packet to a node on a remote 
network and provides routing information to the nodes on mUltiple networks 

• A remote naming service that maintains the consistency of multiple naming server 
network root directories and r~lves pathnames over the internet 

• The ability to define the kinds of packets that a node will accept 

The managers that comprise the higher-level network support software have the following 
characteristics: 

• They communicate with other nodes using the low-level IPC software; that is, they 
send and receive packets into sockets 

• They use a request-response protocol to implement any remote services that they offer 
to their clients 

20.3.1. Request-Response Protocol 

AEGIS network software modules that field requests for remote services (and any user space 
software that offers remote services) implement their remote operations using a request-response 
protocol that separates the operation into two sides: 

• The client aide, whose primary purpose is to send out requests chosen from its 
·menu· of remote services 

. . 
• The server aide, whose primary purpose is to receive the remote requests, handle 

them, and pass back the requested information to the client 

A process that calls a network service is also known as its client; it calls the service's client side to 
carry out a particular remote operation on its behalf. The client side uses the low-level IPe to 
send the service request to the target node where the corresponding server side performs the 
request. The server then passes back the result as t reply to the client side, which delivers it to 
the calling process. Figure 20-3 illustrates the client and server sides and how they operate. 

Network Overview 20-8 

\ ... 



o 

o 

o 

CUENT SIDE 

• builds packet 
according to request 

• gets reply socket 

• allocates network buffer 
pages to hold reply 

• sends request 

• waits on socket I 
quit. or timeout 

• passes reply to client. or 
retries on error 

• takes back allocated pages 
from network buffer pool 

• releases socket 

SERVER SIDE 

• identifies service 
requested 

• calls local Iyste 

Figure 20-3. Client/Server Operation 

20.8.2. Clients or Sockets 

Each AEGIS manager that provides remote services uses the socket mechanism and the packet 
protocol to send and receive replies to requests ror remote services. Consequently, these high-level 
network software managers are known as ·clients· of the low-level IPC software. The AEGIS 
kernel managers that are clients of sockets include: 

• The NETWORK and REMFILE managers, which use the low-level IPC and reques~ 
response protocol to to implement the remote file system. The remote file manager 
handles remote requests ror object creation, deletion, and attribute manipulation; the 
NETWORK manager fields requests to read and write a remote object's pages. 
Chapter 23 describes these managers in more detail; Chapters 5 and 13 describe how 
they interact with the local rile system to carry out remote object management . 

• The MSG interlace, which exports the low-level IPC facility to user space processes so 
that they can implement their own network services. .i'he user-space AEGIS network 
services such as MBX call the MSG manager to gain access to the socket mecha.nism; 
user processes can use the MSG interlace as well. Chapter 23 describes the MSG 
interrace .. 

20-'1 Network Overview 



• The ASKNODE service, which sends ,and receives replies to inquires about a remote 
node>s characteristics; Chapter 23 describes the ASKNODE service . 

• The internet routing software, which passes messages to other networks through 
special routing nodes. The internet routing software consists of a routing process and 
a module that maintains a table of routing information. The routing process runs 
only on a routing node; it uses the low-level IPC to receive and rorward packets to 
their destinatioris in the distributed system. The routing information protocol module 
runs on every node; for each node, it maintains a table of routing information that 
routing clients consult when they need to send packets to nodes on other networks. 
Chapter 24 describes these modules in detail. 

AEGIS user-space socket clients include the mailbox facility, the remote server portion of the 
remote naming service (NS_HELPER), and the diskless node boot server (NETMAN). 

Network Overview 20-8 



o 

o 

.-----.-.•... _-....... -.--_ ...... ~-- ..... -.----.-.----------------

Chapter 21 
Ring Hardware 

Ring hardware components consist of input and output ports, a bypass relay, digital logic and 
memory. Figure 21-1 illustra.tes these hardware components. 

RIng 
Interface 

memory + 

NODE A 

RING 
NETWORK 

memory 
NODE B 

Ring 
~--Interf.ce 

Figure 21-1. Ring Network Hardware 

21.1. Ring States . 

The ring can be in one of three states: 

memory 

NODE C 

• Disconnected from a node; this state occurs when a node is physically taken out of the 
ring, eIther through the NETSVC ·N command or a power down. Because the bypass 
relay from the input to output ports is disconnected, the node cannot -see- the 
network, nor can the network 8see8 the node . 

• Idle; this state occurs when all nodes are connected and transceiving the token, but no 
node is transmitting a message. 

~ Passing a messa.ge; this sta.te occurs when a node gains control of the token and enters 
transmit modej Figure 21-2 illustrates a message transmission from node B to node C. 

21-1 Ring Hardware 



memory 

NODE A 

RING 
NETWORK 

memory 

NODEC 

Ring 
~~-Interf.ce 

Fiaure 21-2. Mesaage Transmission on the Rina 

21.1.1. Message Transmiuion 

The transmission sequence shown in Figure 21-2 proceeds as rollows: 

1. Node B enters transmit mode by changing the token's SYNCH character. 

2. Node B breaks the ring ror a moment and starts streaming the message out onto the 
ring. 

3. Each node in the ring receives the message, decodes it to digital, and examines it. Ir 
the message is not destined ror that node and the message is not a broadcast (all nodes 
receive broadcast messages), the node transceives the messag-t':. 

4. h the message is received and transceived around the ring, Node C recognizes the 
message, makes a copy of it, sends it into its memory, and acknowledges receipt of the 
meaaage by modifying the ACK bJte. 

5. The bits of the message stream around to Node B; this node's transmitter places these -
bits in a hardware 'bit bucket, . puts the token back out on the ring, and returns the 
network to the idle state. It then reads the ACK byte and determines that Node C 
has 'succ~ully received the message. 

A node is allowed to transmit only one message at a time and then place the token back onto the 
network. The node must then wait for the first message to be correctly transmitted ror the token 
to come around again before it can transmit a second message. Thus, in one circulation or the 
token around the network, each node has the opportunity to put ONE message on the network. 

Ring Hardware 

(/-~' 

I 
",-, .. --' 

/--""'" 
\ 



o 

o 

Note that messages are not recirculated; once the transmitting gets the message back, it proceeds 
with~ut delay to the receive/transceive logic. 

21.1.2. Lost Tokens and Multiple Tokens 

During normal message transmission, the transmitting node places the token back out on the ring 
after its message revolves once around the ring; the transmitting node does not wait to read the 
ACK byte before it returns the token to the network. 

A token can sometimes be lost or destroyed, or can rail to appear when the network is booted. 
The ring hardware handles these cases as "rollows. If a node wants to transmit and the token does 
not pass through it after a specified time, the node assumes that the token has been destroyed 
and carries out a forced transmit. In a rorced transmit, the node streams a message out onto 
the network regardless of its state, and regenerates the token at the end of the message. 

A node's transmitter also handles the occurrence of multiple tokens; in this case, it removes the 
extra token and reports the error. 

21.1.3. Transmission Time 

Although there is no limit to the number of nodes that can be attached to the network, there is a 
physical limit between the output port of one node and the input port of another node; that is, 
you can only send electrical signals so far. However, the time delay created by this limit is 
negligible - it takes a message about 70 microseconds to circulate a 700-node network - and thus 
does not impact the time it takes data to travel around the ring. The time it takes to place bits 
on the ring is also short; it takes one millisecond for each 1024-byte message packet. 

There is one limit to message transmission, however. When a transmitting node is waiting for its 
packet to come full circle, it will only wait four milliseconds. If no packet arrives and the 
timeout expires, the transmitter hardware gives up and reports the error to the network software. 

21.1.4. Retransmission on Error 

The ring hardware does not perform retransmission on error; hardware retransmits are too 
expensive, because the DMA operation must be repeated on each transmit. Instead, the network 
software decides whether or not to retransmit the message. The software judges that certain 
errors are safe to retry, and does so on the following: 

• Wait acknowledge (WACK) - the node is aware that the message is intended for it, 
but it has no DMA channels set up to receive the message. In this case, the node sets 
the WACK bit in the ACK byte to indicate to the transmitter that the message could 
not be recieved, but to try again later. The AEGIS I/O drivers immediately retry on 
WACK errors . 

• No acknowledge (NACK) - the ACK byte remains unchanged, indicating that none of 
the nodes on the network received the message. A NACK error most commonly 
occurs when node hardware is so busy looking at its local disk that it fails to look at 
the messages passing through it, or when the node is disconnected from the network. 
The software also retries NACK errors. " 

21-3 Ring Hardware 



21.1.5. Biphase and Elastic Store Butter Errors 

The signal that travels between one node's output port and the next node's input port contains 
clock. When a node looks at this signal, it can lose clock because the signal is corrupted. A 
biphase error indicates tha.t "the receiver, while looking at the signal, could not correctly 
regenerate the clock rrom the previous node. A biphase error means that the electrical signal 
from node A's cable through the modem to node B's cable has broken. 

In addition, because a node's input and output ports are individually clocked, slight skews in 
transmission rate can occur. Consequently, each node has a 1- to 2-bit elastic store butter that 
takes up the slack between :data streaming in and data streaming out. However, it is possible ror 
a node to become so badly synchronized that the elastic store buffer overfiows. 

Biphase errors are reported by the next node downstream that sees the error; if node A's cable 
breaks, node B will report the error in the ACK byte. Elastic store burfer errors, however, are 
detected by the rlI'St downstream node that has the most constricted (taxed by synchronization 
attempts) elastic store bufferj consequently, it is hard to pinpoint the node that caused an elastic 
store buffer error. 

Ring Hardware 21-4 



() 

o 

o 

Chapter 22 
Low-Level IPC Data Structures 

This chapter describes the components that make up the AEGIS datagram service: 

• Packets 

• SQckets 

• Network buffer pool 

22.1. Packet Structure 

Packets are divided into several header sections and a data section. The hardware inserts a 
message separator between the header and data sections, and follows the data section with an 
acknowledge byte and a cyclic redundancy check byte. 

Packet headers include: 

• The ring hardware header . 

• The software packet control header and packet address fields 

• The internet datagram protocol (IDP) header 

• The packet exchange protocol (PEP) header 

• The interprocess communication (IPC) header 

• The client header 

The next sections describe these, headers in more detail. 

22.1.1. Ring Hardware Header 

The information passed in the ring hardware header consists of: 

• The node IDs of the source and destination nodes (the -from - node ID and the llto ll 

node ID) 

• A clock field which aids in perform~ce-measurement gathering 

• The packet type 

• An early acknowledge (EACK) field 

Figure 22-1 shows the layout of the ring hardware header and the fields within it. 

22-1 Low-Level [PC Data Structures 



HatcjWa"·;·. 
·.:.Huder .: 
. .;.' , . .:': .. :. 

Control 
Header 

Packet 
Addre •• 

IDP 

PEP 

IPC 

Client 
H .. der 

7 

bdclt 

j 

1 

hw 
dlag 

'1 1.7 0 .... 
· · · · · · · · 'jlti;i;i:j;~~ilt;ii~il~;:i;ll';';'i; 
. . . 

5 

thankl 

j 

. . . 

4 

pl •••• 

~ ~ 

i~/"'JI~i:tC{I:~;m;~jlllilji)l\~([·· 
Ilm:lIllli~IE~1i~:~~ 
,,~~~llt~!!t~j'~1~1;~1~i,~!jtiJ; 

3 

paging 

j ~ 

2 , 0 

Packet IW Tr.:e uI.r dlag 
Feld 

j ~ j" t 
Rese rved 

Software Diagnostics 

User Packet 

Paging Packet 

Please (request) 

Thanks (response) 

Hardware Diagnostics 

Broadcast 

Figure 22-1. Ring Hardware Header 

Low-Lewl 11'0 Data Structure, 22-2 



o 

o 

._-----_ .. _._._-- -'-

22.1.1.1. Packet Type 

The packet type field contains bits that indicate the type of packet being sent around the ring. 
AEGIS software components assign a packet's type; the ring hardware ANDs the type bits with 
its hardware type mask register. When a packet arrives at a node, the ring hardware compares 
the packet's type field against its corresponding type mask register to decide whether or not to 
physically receive the packet that is passing through it and DMA a copy into memory. The 
packet type field in the ring hardware header is a I6-bit field; at present, the hardware uses only 
the first 8 bits. These bits are: 

• Broadcast - when this bit is set, all nodes in the network will receive and process the 
packet, regardless of the node ID specified in the -to- node ID field. All nodes that 
receive the packet will modify the ACK byte. Also, because the hardware ignores the 
-to- node ID field, AEGIS software uses this field by convention to report 
information on broadcasts. 

• Hardware diagnostics - this bit is reserved Cor hardware diagnostics; the AEGIS 
system does not use it. 

• Please - The system distinguishes between a packet that requests a service and a 
packet that contains a reply to a service request. The please bit, when set, indicates 
that the packet is a request; that is, the packet's originator is asking for a service 
from the target node, for example, a paging request. 

• Thank you -- This bit, when set, indicates that the packet is a reply; that is, the 
packet is a response to a request made from another node. 

• User -- This bit indicates that the packet is being used for interprocess communication 
between user processes rather than for communication between AEGIS systems on 
different nodes (all packets sent from the MSG interrace have this bit set). 

• Paging - This bit indicates that the packet is part of the remote paging protocol; it is 
set on page-outs and attribute changes. 

• Software diagnostics -- The system sometimes sends packets marked with this bit set 
to determine net'work health or to help announce a problem. 

In order for a node to accept a packet and DMA it into memory, the following conditions must 
both be true: 

1. The node ID in the -to· node ID field must match the node through which the packet 
is passing, unless the broadcast bit is set. 

2 .. The node must be willing to accept packets of the type specified in the packet type 
field. 

Various AEGIS components modify the packet type field to control the information flow to 
particular nodes. For example, the user space network service (NETSVC) program turns off the 
·please· bit in the ring hardware's type mask register when the -L option is specified. As a 
result, the node will not accept any request packets (which will have only the ·please" bit set); all 
requestors are NACK'ed. . The node will continue to accept reply packets, but remains 
unavailable for requests until the the please bit is turned back on in the type mask register. 

22-3 Low-Level IE Data Structures 



22.1.1.2. The Earl7 Acknowledge (EACK) B7te 

The early ACK byte contains information that the hardware uses during message transmission 
and acknowledgement. Figure 22-2 illustrates the bits within the early ACK byte. 

7 

o 

7 

0 

• I 

• I 

CRC PKT 
ERR ERR 

~ ro 
4 " 

Earty ACt( Byte 

• o 

o o 

Parity 
Intend to Copy 
(clear = NAK) 

ACK Byte 

• 3 2 1 0 

0 CPV WAK PAR 0 

4 4 
4 " 

~ ro t 
MBZ 

Parity 

Walt Acknowledge 

Successful Copy 

MBZ 

Packet Error 

CRC Error 

Figure 2.2-2. EACK and ACK Byt,~ Fields 

In particular, the EACK byte contains an intend to copy bit (lOP) which, when set, indicates that 
a receiver intends to . try "and copy the packet. Because the EACK byte arrives at the 
transmitting node before the ACK byte, the hardware can use this field to determine whether or 
not to continue a message tr&DImit. IC the EACK bit returns unmodified, it means that no node 
on the network" wants to receive the message. In this case, the hardware abortathe message, 
takin"g the message orr the ring when the targetted receiver is not there to accept the message. If 
the EACK byte is modified, the ACK byte that follows at message end will indicate whether or 
not the target node actually has copied it. 

Low-Level lPO Data Structure, 22-4 

\ .......... _" ,,/ 



C) 

o 

o 

22.1.2. Software Control Header 

Pre-internet AEGIS systems and a node's PROM use the 80ftware control header and packet 
address fields to direct the packet to its proper destination within a node once it has been 
received by the node's ring hardware. The control header contains: 

• The socket number within the node 

• A transaction ID 

• Header, data, and lOCket queue lengths 

• A canned source route, which 'does not take into account the adaptive routing 
provided by the AEGIS internet IUbsystem 

• Compatibility iDlormation to coordinate message-pueing between different versions of 
the AEGIS system 

Figure 22-3 illustrates the fields within the software control header. 

Hardware 
Header v 
. Control 
Header 

Packet 
Addre •• , 

IDP 

PEP 

IPC 

Client 
Header 

'" / 

'" ;:!,,:ir;\(?) {y\,:V.r.lon· . ,({))\\(:):::::] 

/ /J(?:::::):'i:Packet ,-yp..:;:::}\::??<:< 

, , , 
" , 

.: .. :·:::·::::/:~:Y::::::Qu.u.· Depth .. :>:. :::.:::;::::::::::::::::. 

\::}2\>\:0 .:·:oldro:Uie·· 
···:\\:h:)::::·t.~. :new ·route 

AEGIS Software 
Control Header 

Packet 
Address 
Field 

.- - ._-_ .. - -- ._--_ .. --~ --.---.~-- .. _---
Fisure 22-3. Packet Software Control Header 

This packet format remains for compatiblity with earlier versions of AEGIS and for sending 
bootstrap messages to the PROM of diskless nodes. 

22-5 Low-Level [PC Data Structures 



22.1.8. The Internet Datalram Protocol Header 

The internet datagram protocol (IDP) header replaces the software control header of earlier 
AEGIS sy~tems. The internet routing software uses it to route the packet to a particular 
network; the system uses it to mrect the packet to ita proper destination within a node once it 
has been received by the node's ring hardware. The IDP header contains transport control 
information as well as source and destination information. Figure 22-" illustrates ita format. 

Hardware 
H .. der 

Control 
Header 

Packet 
Addre •• 

INTERNET DATAGRAM PROTOCOL 

PEP 
1-----1 

;;'fj~:;(~i:~~;~~~~;'l;il~i\t; 
~ ............... _j!~;;';pjiti~tlii~¥m='[i! 

IPC 

Client 
Header 

F1aure 22-4. 

22.1.1.1. Transport Control 

11 

t- Network 
Number 

Ho.t Addre •• 
• a con It ant 

(I EOE=Apollo) 

• a node ID 

Socket 

o 

-
SOURCE AND 
DESTINATION 

NAME FORMAT 

Internet Datagram Protocol Header 

The transport control field counts the number of hops the packet makes in ita journey through 
the internet. A hop' consists of one passage through a routing node; the routing process 
increments this field each time it forwards a packet. 

Low-Level 11'0 Data Structure, 22-8 



o 

C) 

----------------------.. -._-._-_ .. _---_._--_.-

22.1.3.2. Source and Destination Namea 

A p&Cket's source and destination names consist of: 

• A network number, which identifies the communications medium to which the target 
node is connected. 

• The node m or the target node. While .,he node ID in the ring hardware header . 
changes with each hop, the DOCIe m in the IDP header remains the aame; the packet 
has arrived at ita destination or back to ita lOurce when the node ID in the ring 
hardware header matches the node II), in the source or destination names. 

• The lOCket number within the node, which identifies the lOCket to which the packet 
should be queued. 

22.1.4. Packet Exchange Protoeol 

AEGIS network services that implement client/server operations must build a PEP header in 
addition to the IDP header. Figure 22-5 illustrates the layout of the PEP (and IPC) header. 

Hardware 
Header 

Control 
He.der 

Packet 
Addre •• 

lOP 

::.:PEP 

IPC 

Client 
Header 

1/ 

I 
/ 

I 
/. 

I 

/ 
I 

/ 

l' 0 

.......... ,;:::;:2;.:?;~i I 
... \\~.:::; .. ::::: .. >.:::.:. . . 

.. .. .. .. .. _ I;~;"lii.li!~i~~iltV~~;., ·.,;~);{)l 

Figure 22-6. PEP and IPC Headen 

PEP Header 

IPC Header 

The PEP header specifies the packet type and also contains a transaetlon m, which client and 
server sides use to match up requests (or service with the correct replies. Every time a client side 
issues a packet, it obtains a transaction ID (rom the packet manager. When the reply packet 
comes back, the client side checks the reply packet's transaction ID to make sure it matches the 
one it sent in its request; in this way, clients can synchronize request/reply packets should they 
arrive out of sequence. 

22-'1 Low-Level lPO Data Structures 



Not all packets need the PEP header; a node that sends a broadcast packet, for example, does not 
expect a reply and so does not need to build a PEP header. 

22.1.5. IPC Header 

The user space IPC _ $ system services create this header to p888 the UIDs of source and 
destination sockets. (The MSG manager allocates the sockets on the IPC services' behalf; the IPC 
calls allow users to name sockets with pathnames, which the system translates to UIDs.) This 
header only exists if the packet is the result of an IPC call. 

22.1.8. Client Header Information 

A client header, or user header, contains information that is specific to the software component 
that generated the packet. For example, the paging server creates a client header as part of its 
remote paging operations. The AEGIS system limits the size of the client header to the 
remainder of the header page (after the hardware and software headers). 

For example, the remote paging server uses the low-level IPC software to pass object pages 
through the network and' inserts information specific to the paging operation into this part of the 
header. Consequently, packet format differs depending on which client is building the packet. 

22.2. The Acknowledge (ACK) Byte 

The ACK byte follows the packet data section; the bits within it indicate whether or not the the 
target node received the packet or if an error occurred during its circulation through the ring. 

Figure 22-2 shows the fields within the ACK byte. Their use is as follows: 

• A clear byte field (no bits set) indicates that no node has acknowledged the packet; 
this is a negative acknowledge (NACK) reply. 

• The copy bit is set if the target node successfully copied the message. 

• The wait acknowledge (WACK) bit is set if the node could not receive the message for 
some reason but wants the transmitter to try again. 

• The packet error bit is set by any node that wants to indicate an error; for example, 
the ring transmitter sets this bit to indicate DMA underruIl8, overruns, clocking 
problems and bus' errors; the error bit indicates to all receivers that the packet has 
been corrupted. 

• The ORC bit, if set, indicates that a problem occurred with cyclic redundancy 
checking. 

Low-Level [PO Data Structures 22-8 



o 

o 

o 

22.3. Sockets 

The system maintains a pool of sockets; it identifies these sockets by small numbers (presently 
1-30). Sockets are either alloca~ed dynamically on a process's behalf (reply or user) or are pre
assigned by the system (well-known). Table 22-1 lists the socket numbers of the well-known 
sockets and the system function to which it is reserved and i~entifies reply and user socket pools. 

Table 22-1. AEGIS Soeket Alloeation 

Socket No. System Function 

1 Paging soCket 
2 File socket 
3 NETMAN socket 

" Information socket 
5 Receives internet asknode ·who· replies 
6 File server overfiow socket 
7 Software diagnostic socket 
8 routing information protocol (RIP) socket 
9 Mailbox socket 
10 NS Helper socket 
11 TOP/IP 
12-16 Reply socket pool 
17-30 User socket pool 
65536 . Bit bucket socket or router socket 

If a node is configured as a routing node, the system allocates the bit bucket socket (65535) to 
receive packets to be forwarded to other networks. 

22.3.1. Soeket Structure 

A socket's structure consists of: 

• A level 1 eventcount 

• The maximum number of entries the socket can contain (max_depth); currently, a 
socket can contain up to 16 packet queue entries, but routing nodes and user-allocated 
sockets can accept more than 16 packets 

• The current number of entries queued in the socket 

• Forward and backward links the other sockets in the pool 

• An array of socket queue entries that point to the incoming packets 

When a packet arrives, the ring receive software places two pointers into the socket queue entry: 
a pointer to the packet's header ·page and a pointer to the packet's data page. The header page is 
associated with a virtual address inside the operating system, so that the socket client (the AEGIS 
network support services) can refer to it. The data page, however, does not intially have a 
virtual address; it gains the virtual-to-physical address association when it is installed into a 
process's address space. Figure 22-6 illustrates the layout of a socket. 

22-9 Low-Level [PC Data Structures 



l' 

I 

• 7 

Socket 
Eventcount 

Current Current 
No. of Max 
Entrlea Depth 

Back Forward 
POfntw PoInter 

Socket 
Queue 
EntrIes 

SOCKET 

0 

'1 o 

: .. pOI" •. ~t·::.O:::"'~~t·~:h~r.·~.'--" 
::~;~::j:::{~i:tt~.c~~~·:~ta·:PPN··:::::!!f:1t:.· ... · --. 

SOCKET QUEUE ENTRY 

Figure 22-B. Socket and Socket Queue EDt!')" Structure 

22.4. The Network Butter Pool 

NETWORK 
BUFFER 

POOL 

The networkhufCer is a pool of virtual pages (192 at present); the network manager's 
initialization routine reserves the ~tual address space for the network bufrer pool at system 
initialization, and allocates to it enough wired pages to handle minimal network traffic. The 
table is subsequently managed by the NETBUF manager (which the NETWORK manager 
initializes); this manager tracks the availability of network burfer pages using a table (BUFTAB). 
Each entry in ~ table correponds to a virtual page; if the page is in use, the entry contains its 
physical page number (PPN)i otherwise, the page is available (available pages are indicated by a 
value or -l~) 

Clients that espeet incoming packets must allocate networK buffer pages to receive the 
transactions and m~ ~ree those pages when they are finished with them. 

22.4.i. AUoeatIq PaS- to the Pool . 

First, the dien' must obtain wired pages to pus to the network burrer manager. The PMAP 
manager CODt.ams a routine, wp _ 'calloc, to conditionally allocate a page by calling 
mmap _ $aUoe. Nearly all the network clients call this routine to get as many wired pages as 
they need to handle &he Dumber of packets they expect to receive (the PMAP manager calls its 
own internal aBocatiOD routine instead of calling wp_$calloc.) 

Low-LewlIFC Dido Strueturea 22-10 

\"- .. -' 



o 

o 

Next, clients call the netbur _ $getva routine to associate virtual pages in the pool with these 
newly acquired physical pages. The netbur _ $getva routine pairs. the given physical page 
number{s) with an available virtual address, notes the pairing in the buffer table, and returns the 
virtual address to the client. It also calls mmu_ $install to make the virtual-to-physical 
association (the access toa network burfer page is supervisor read/write). 

The network buffer pool is actually two pools: a buffer pool for header pages and one for data 
pages. After they receive the virtual addresses, clients next call the netbuf_$rtn_hdr or 
netbuf _ $rtn _ dat to add the physical pages to the header or data section in the network buffer 
pool. If the NETBUF manager doesn't need these PPNs, it will free them up itself rather than 
returning to the client. 

Finally, the clients turn around and call. the NETBUF manager (via netbuf _ $get _ hdr or 
netbuf _ $get _ dat) to get the same number of pages from the preallocated header or data page 
pools as they have previously put in; this operation keeps the pool in a steady state. 

22.4.2. Removing Pages from the Pool 

By convention, all clients of the low-level IPC service must remove any pages they allocate to the 
network buffer pool when they complete their IPC operations. Routines call netbuf_$get_hdr 
and net-buf _ $get _ dat to remove physical pages from the network buffer header and data pools. 
The routines then call the M1'v1AP manager (mmap _ $free) to put these pages on the free list. 

22-11 Low-Level [PC Data Structures 





o 

o 

----------------------.--------.------

Chapter 23 
. AEGIS Network Support Software 

This chapter describes the managers that comprise the higher-level AEGIS network support 
software and the functions they perform. It describes: 

• The NETWORK manager 

• The remote file (REMFILE) manager 

• The message (MSG) manager 

• The ASKNODE service 

23.1. The NETWORK Manager 

The NETWORK manager carries out the following operations: 

• Initializes network-related databases and servers during system initialization 

• Exports the ring hardware type mask to AEGIS software; programs such as NETSVC 
call the NETWORK manager to set and clear bits in a ring hardware type mask to 
control the kind of packets a node will accept 

• Provides paging request services portion of the remote file system to its clients 

The NETWORK manager includes the following network support servers: 

• The paging server 

• The request server 

23.1.1. System Initialization Functions 

The NETWORK manager is responsible for initializing the network buffer pool and the MSG 
data structures when the system is bootstrapped. In addition, it invokes the network support 
servers needed for full higher-level network operation; these servers are: 

• The ring receive server process, which handles incoming packets from the ring if the 
ring interrupt handler encounters a problem 

• The remote paging server 

• The remote request server, which is the ·shell- process that dynamically calls the 
remote file server, the asknode server, and the routing information protocol (RIP) 
server should packets arrive at their sockets 

23-1 AEGIS Network Support Software 



23.1.2~ Packet Type Export 

The NETWORK manager provides routines that other AEGIS components can call to derme the 
set of service requests that a node will handle. The service types correspond to the bits in the 
ring hardware's type mask register and the packet type bits. The NETWORK manager's add 
service and drop service routines set and clear these bits to allow or prevent the node from 
accepting packets of a certain type. 

Service Type B1t in· Type Mask 

Add/drop local requests Sets/clears the thank you b1t 
Add/drop remote requests Sets/clears the please b1t 
Add/drop pag1ng requests Sets/clears the pag1ng b1t 
Add/drop user requests Sets/clear. the user b1t 
Add/drop broadcast requests Sets/el.ar. the broadca.t b1t 
Add/drop d1agnost1c requests Sets/clears the d1agnost1es bit 

The NETSVC command calls this portion of the NETWORK manager to set the network services 
. that a node will perform; for example, NETSVC -L clears the please bit, so that requests for 
service that originate from other nodes will be rejected. 

23.1.3. Paging Services 

The NETWORK manager provides the following menu of paging requests to its clients: 

• Page-in requests, which read in object pages from another node in the network 
(network _ $read _ ahead) 

• Page-out requests, which send out remotely modified pages back to the home node 
(network_ $write) 

• Attribute requests, which modify the attributes of a remote object 
(network _ $set _ attributes) 

• Information requests, which retrieve a remote object's attributes 
(network_$ast_get_info) from the local OSS (vtoce) 

• Ring information requests, which get ring status from another node in the network. 
The ring device driver. on each node keeps statistics on the number of sends and . 
receives that encountered biphase errors, elastic store buffer errors, and other 
information. 

• Echo requests, which test to see whether a given paging server is running or not 

When a client requests one of these services, the NETWORK manager sends the request to the 
paging socket on the target node, where the remote paging server will handle it. 

AEGIS Network Support Software 23-2 



o 

o 

o 

23.1.4. The Remote Paging ·Server 

The remote paging server perrorms the following functions: ' 

• Handles paging requests 

• Flushes the NETLOG bur fer 

• Handles sticky biphase errors 

• Handles overfiowsin file server socket 

The paging server handles these operations because they are services that must be handled in a 
timely fashion by a wired process. 

23.1.4.1. Paging Request Handling 

The paging server listens on the paging socket to detect paging requests. When a packet arrives 
in the socket, the paging server breaks it down 80 that it can determine the kind of request. It 
handles client requests as Collows: 

• For page-in requests, the paging server calls ast _ Stouch. 

• For page-out requests, the paging server calls ast _ Stouch. 

• For attribute requests, the paging server calls ast _ $set _ attribute to execute the call. 
When reply . packet is sent· back successfully, remote paging server modifies the 
object's DTM. 

• For information requests, the client header specifies the type of information requested 
about the object. The paging server passes the request arguments to ast_$get_info, 
which fetches the object's VTOCE. The paging server then sends back the contents of 
the VTOCE in the reply packet. 

• For ring information requests, the paging server builds a ring diagnostic record to 
send back ring ~t.~t.us information. 

Chapter 13 describes the remote paging requests in more detail. 

23.1.4.2. File Socket Overnow 

Normally, if a socket overflows, the low-level lPe Cacility drops the packet; meanwhile, the client 
who sent it waits Cor the reply until his timeout expires, then retries the send. However, the ring 
receive interrupt handler special-cases packet delivery to the file server socket. If the file socket is 
full and cannot accept any more packets, the ring receive code sends the packet to the file 
overflow socket instead. The paging server waits Cor incoming packets on this overflow socket. 
The paging server handles rue socket overflows because the remote file server cannot do so; it is 
either busy with a page Cault or with some long operation. 

When an overflow packet comes in, the paging server changes it to indicate overflow, then sends 
the packet back to the REMFILE client side, who then retries the operation. Because the paging 
server sends back the overflow reply quickly, this method of overflow handling allows the client 
to retry more quickly than if it waited for its timeout value to expire. 

23-3 AEGIS Network. Support Software 



23.1.4.3. Flushing the NETLOG Buffer 

The paging server waits on the netlog eventcount to detect writes to the network logger 
(NETLOG) buffer. The paging server, rather than the file server, fiushes netlog pages because 
the file server is usually logging events into the NETLOG page, thus contributing to the need to 
write it out. The paging server calls the user-mode NETLOG manager to actually fiush the 
buffer. 

23.1.4.4. Sticky Biphaae Errors 

The system monitors biphase errors on the ring using the -sticky biphase· bit in the ring 
hardware register; the bit is set ir & biphase error occurs. In the past, sticky biphase errors were 
detected only if the node was receiving or transceiving. Currently, the paging server checks the 
hardware bit once every 5 seconds to see if it's set, and reports the condition if so. This 
operation provides continuous monitoring or network errors. 

23.1.5. The Remote Request Server 

The remote request server listens on the file socket, information socket, and RIP socket; when a 
packet arrives in one or the sockets, it calls the appropriate server. The request server handles 
• asknode who· (LCNODE) requests specially. The servicing of an asknode request does not 
prevent the request server from handling incoming packets in other sockets. Instead, the asknode 
server asks for a delay; at its end, the request is propagated and normal asknode requests are 
re-enabled. 

23.2. The Remote File Manager 

The remote file (REMFILE) manager handles remote requests for location-independent object 
management, directory maintenance, and lock management. The manager maintains a database 
of remote request/response pairs that provide a menu of services rrom which remote nodes can 
choose a request. 

The menu of services includes: 

• Concurrency lock, unlock, and verification requests (file_$priv _lock/unlock, 
file _ $local_ verify) 

• Directory search (dir _$root_get_entryu) requests from naming servers on remote 
nodes 

• Requests to add or drop hard links from the local directory structure 
(dir _ Sadd/ drop _ hard_linku) 

• Requests to create and delete objects (file_$create_type) (ast_Struncate, 
ast _ $invalidate) 

AEGIS Network Support Software 23-4 

(-~ 

\ 
~"" _,. ".1' 



.-•... _-_ .. _._._-_._-._ .•... _._----------_._----_ .•.. 

o 

o 

• Requests to purify or inv~idate an object (ast_$puriry, ast_'invalidate) 

• Requests to set an object's attributes (ast_'set_attribute) 

• Echo requesta, where the client sends a test message to the tarset remote rlle server to 
determine whether or not it is running 

The REMFILE client aide pasaea \he arguments in a packet to the remote rue server on the target 
node; the remote rUe server handles the request by calling the appropriate loeal AEGIS manager 
(the FILE, AST, or directory managers), then puaes back the answer to the client in a reply 
packet. 

Figure 23-1 illustrates the manager's operation. 

Menu of Service. 

• Object Create 

• Object Delete 

• Set Attributes 

• Lock/Unlock 

• Lock Verify 

• Read Lock Table 

• Purity 

• Directory Search 

• Add/Drop Hard LInks 

• Echo T •• t 

RemfUe Client Side 

CLIENT NODE 

Remote File Server 

lock 
requests 

directory 
requests 

object delete QAST 
attributes 
purity 

object create ~ FILE 
requests Y' 

SERVER NODE 

Figure 28-1. REMFILE Operation . 

18.2.1. REMFILE'. Client Side 

The REMFlLE client'side is a very ·patient- service; it will retry a railed request many times 
berore it sends a ·communications problem with remote node- message. 

23-5 ABG IS Network Support Software 



The REMFILE client. side proceeds as follows: 

• Allocates a reply socket 

• Gives t.he net.work burrer pool manager (NETBUF) a page to hold t.he event.ual reply 

• Sends the message, and waits on t.he following events: 

o The reply socket. event.count. - if t.his event.count. advances, t.he REMFILE client. 
side tries to get t.he reply. 

o The quit event.count - quits terminate the request. 

C'I Its own timeout value - if the reply wait times out, the REMFILE client tries 
again (but decrements its retry count by a large margin). 

II the client is awakened by the reply socket event.count, it retrieves the reply packet and checks 
the transaction Ip within it to make sure the response matches the request so that it. has obtained 
the correct. response. If t.he transaction IDs do not match, it resends the message. 

If the reply packet indicates that the request didn't get through because the file socket has 
overflowed, the client resends the message. 

In the event that the client side has received the data its client requested, it completes by: 

• Closing the socket 

• Removing network buffer pages from pool and freeing them 

• Sending the transaction ID back to caller 

23.2.2. Remote File Server Operation 

Although the remote file server actually handles the remote request, it is the request server that 
lllistens· to the remote file server socket and invokes the remote file server when a packet comes 
in. The remote file server in turn calls the appropriate local manager to execute the request, then 
packages up the reply to send back to the client. Before it sends the reply, however, t.he remote 
file server must check t.he kind of request it has processed. Certain requests should not be 
duplicated, because processing the request twice in the event that the client retries will cause 
problems to occur. 

For example, if a REMFILE client sends a request to create an object, and the remote file server 
is unable to send back t.he reply before the client.'s timeout value expires, the client. will simply 
issue a duplicate request, not knowing that. t.he object. has already been created. If the remote file 
server were to process this duplicate request, it would create t.wo objects to sat.isfy t.he one 
request. 

Consequently, the remot.e file server checks to make sure the operation is idempot.ent; if it isn't, 
the server then compares the request packet's al'rival time against the time that it finishes 
processing the request. If there is too great a discrepancy and a client retry is thus imminent, the 
server will NOT send back a reply packet. Instead, it -backs out- of the operation it has 
performed by undoing the operation it has performed on the remote client's behalf; for example, 
it deletes the object it has just created. Currently, object creation and concurrency lock requests 
are the only non-idempotent system operations. 

AEGIS Network Support Software 23-6 



o 

C) 

o 

23.3. The Message Interrace 

The message (MBG) interlace provides user-mode AEGIS services and individual user programs 
with access to the lOCket datagram service. Programs that want to use the eocket datagram 
service to pass messages implemeDt a user-written client/server application program, theD use the 
MSG interface to send and receive aoeket,-level messages OD the application'. behall. 

The .• application· can be an AEGIS network service that runs in user mode, ror example, the 
mailbox racility (MBX); these applications t'all the MSG maDAler clireetJy. Uaer-written 
applic~tiona make calla to the IPC services documented in the Prosrammins ~ Sl!tem 2.!:!!! 
l2!: Interprocess Communication manual to gain access to the socket mechanism. 

The MSG manager allows the application's server aide to allocate a eocket ror its exclusive use: no 
other processes can receive iDcoming packets into the lOCket while the process is using it. The 
server w&its on a level 2 eventcount uaociated with the socket (a registered level 1 eventcount; 
see Chapter 11) ror any incoming messages, then reads them, huulles them, aDd aenda a reply 
back ua~g the calls that the MSG manager provides. 

Clients of the application's socket use the MSG manager to allocate a reply eocket, send the 
remote request to the server at the user-allocated socket, and wait ror the server'. eventual reply. 

Figure 23-2 illustrates the MSG calls that the application 'a client and server aides use. 

CUENT SIDE SERVER SIDE 

1) Allocates a socket for its exclusive 
use to receive incoming messages 
(msg_Saliocate) 

2) Registers an eventcount for the 
socket (msg_Sget_ec) 

3) Blocks on eventcount waiting for 
incoming message (msg_Swait) 

1) Sends a message to the server 
socket and awaits 8 reply 

4) Read~ the messages and handles 
therrt (msg_Srcv) 

(msg_Ssari) 

2) Reads and processes reply - 5) Sends back a reply (msg_Ssendi) -
(msg_Srev) to reply socket that MSG has 

allocated for client -
6) Closes socket (msg_Sclose) 

Figure 28-2. Request-Response Protocol Uslng MSG 

28-7 AEGIS Network Support Software 



23.4. The ASKNODE Service 

The ASKNODE service allows clients to request and receive miscellaneous inrormation about 
other nodes on the network. In particular, the ASKNODE client side sends requests to: 

• Return the list or nodes that are currently responding 

• Inquire about system sortware and hardware performance, such as the frequency of 
socket overnows and the Dumber 

• Obtain network statistics, such as Dumber of page-ins, page-outs, read and write calls, 
and violations 

• Obtain network and node root direetory information 

• Obtain AEGIS system build times 

• Obtain process information so that the client can send a trace fault to a remote 
processes 

• Inquire about ring status, such as number of biphase or elastic storebuCCer errors 

• Obtain a node's hardware configuration, such as whether or not it has a PEB 

• Obtain information about the network ports on a given node 

When a packet arrives at the information socket, the request server invokes the ASKNODE server 
to handle it. The server gets the packet, processes it, sends the reply back to the requestor, and 
returns to the request server. 

If the request is to find out ·who's there· in the network, the ASKNODE client side sends out a 
broadcast message that specifies the who socket as the reply socket. The first node to receive the 
broadcast sets the ACK byte, which indicates to the other nodes that the packet is not Cor them. 
The node then sends two messages: it returns a response to the originating node, and rebroadcasts 
or propagates the ·who's there· packet. In this way, each successive node in the network 
receives the broadcast and sends back a response. From the time the node receives the broadcast 
packet until the time it sends the reply and propagates the packet, no other ASKNODE requests 
will be serviced. This procedure prevents a socket overflow on the originating node or on a 
routing node if the ·who· is being broadcast over the internet. 

When it determines that the broadcast has completed, the client side returns a list of the nodes 
that are currently responding to the process that called it. Currently, only one process at a time 
can make an ASKNODE ·who· request. 

AEGIS Network Support Software 28-8 

/ " 



o 

Chapter 24 
The Internet Subsystem 

A network can be defined as any communications medium that allows the AEGIS system to 
page through it; that is, it allows packets to be sent through it. An Internet is a group of two 
or more connected networks. An internet has several advantages over a single network: 

• It permits DOMAIN nodes to be connected to dirrerent types or local area networks 

• It allows rings or varying speeds to be connected together 

• It improves network management by using many small rings, 80 that a ring can be 
isolated without impact on the rest or the network 

Packet transmission on a ring network has been described in Section 22.1. In an internet, a 
packet can be destined for a local network or a remote network. Packets destined for remote 
networks must pass through one or more interim networks before they reach the target network; 
these interim networks can be other ring networks, Tl bridges, or user-supplied MUL TffiUS
compabitible network devices. The process of sending a packet from one network to another is 
known as routing. The node that carries out the routing procedure is called the routing node. 

Figure 24-1 shows a theoretical internet. 

24.1. Identification in an Internet 

There are three types of identification in an internet: 

• The network number, which identifies the communications line 

• An internet address, which identifies a node in an internet 

• A network port descriptor, which identifies a network in a device- independent way 

The network number and internet addresses are readily visible to other nodes in the internet; the 
network port descriptor is not. 

24-1 The Internet Subsystem 



;;i 
C\ 

~ -C\ , 
~ 
C\ -
~ 
Ot 
CIt 

-:i -C\ 

;J 

N 
t 
N 

/---.......... 
. ) 

~ -1 
N 
t ... . 
~ 
~ ....... 1: a ,. 

Iim1 
~ 

~ /OUting 
NOd~ 

----~~~--~, ~,~----------~ 

ring 
driver 

port 1 

Node 
1FB 

Node 532 

Irt 2 

IIC 
driver 

T1 
board --.-

T1 
board 

IIC 

port 0 
port 31 Uf" 
U •• r IMUltl1 Z IMUItII U •• r 
net bus bu. net 

ring 
drlv.r 

liI 

"F" ~ 

/\ 
) 

port 1 

Node 
3C6 

ME" ~ 

Node 1 F8 II • member of 4 Networkl 
Node 3C8 Is • member of 2 Networks 
Node 532 Is. member of 2 Networks 

/--~ 
. \ 

) 



o 

o 

o 

24.1.1. Network Number 

Each network in the internet (there can be a maximum or 64) is assigned a 82-bit network 
number that identifies the communications line. Each node stores these network numbers in a 
table that the NETWORK manager maintains. 

A network number or lero can mean two things: 

• The network is being brought into the internet and has not 1et been aasigneci a . 
network number 

• The network is local; that is, a network m or lero is used as a ·you are here- pointer 
in the internet topology, where ·here- differs depending on the location in \he 
internet. 

Network numbers can also be nil; that is, there'. no network at this number. Nil networks 
usually indicate an empty MOL T1BUS slot. 

24.1.2. Internet Addreu 

System components that want to communicate with another node in the internet need to identify 
the network on which it resides as well as identifying t.he node itself. Consequently, system 
components that send packets to other nodes specify the node's internet address, which consists 
of the 20-bit node ID plus the network number on which the node resides. Figure 24-2 iliustrates 
the internet address. 

Network 10 
(32 bits) 

Node 10 
(20 bits) 

Figure 24-2. Internet Address Format 

The system needs an internet address to gain access to an object; consequently, the object 
locating services (MST, AST and IDNT) and the lock manager cache information about an 
object's internet address in their data structures. In particular, the VTOC indexes in mapped 
and active segment table entries store an index into the network number table; when the system 
wants to access an object on the internet., it passes that index to the NETWORK manager, which 
returns the network number that corresponds to the index (network_,get_net). The system 
then has an internet address to place into the packet. 

Because routing nodes are members or more than one network, they have several internet 
addresses; that is, the network number portion of the internet address may be the network 
number of any network connected to the routing node. 

24-3 The Internet Sub~y8tem 



24.1.3. Network Ports 

A network is linked to the AEGIS system through its port. All nodes have at least one port, 
which idt:ltifies the ring to which they are connected. Routing nodes have several ports; 
consequently, the network's port descriptor provides the routing software with a device
independent way to refer to the different kinds of networks attached to it. 

A network port descriptor is a small integer that the routing software assigns when it connects 
the network to the internet and opens it for AEGIS paging operations. The port descriptor is the 
node's way to refer to the network hardware connected to it, and is important only to the node 
that owns the hardware. 

Currently, a node can support seven ports. The first port (0) is reserved to the rll'St ring networkj 
the other ports can identify other rings, Tl (bridge) lines, or MULTmUS network devices (4 ports 
are reserved for user-added network devices). 

The routing software uses a network's '.)ort descriptor as an index into the network port table, 
which describes the network devices connected to the routing node. Each entry in the table gives 
the following network-specific information: 

• The network device's network number 

• The kind of service the network provides; for example, whether or not the port 
supports full routing 

• The kind of network device that exists at that port; for example, ring, Tl or user 
network 

24.2. Internet Software Components 

Both routing nodes and non-routing nodes run internet software that supports packet routing; 
this software consists of the following components: 

• A routing information protocol (RIP) table, which exists on all nodes. The routing 
table provides routing information that processes use when they send packets to 
destinations in the internet. 

• A routing process, which runs only on nodes dedicated to the performance of internet 
routing functions. The routing process forwards packets to their internet destinations 
and periodically sends out the latest routing information to other nodes in the 
internet. 

• A routing information protocol (RIP) handler, which receives and stores the routing 
information packets sent out by routing nodes. 

• A device-independent network I/O manager that fields packet sends and receives to 
the various networks connected to a routing node. 

• Device-dependent network drivers that manipulate the network hardware attached to 
a given routing node. 

The Internet Subsystem 



o 

o 

24.2.1. The RoutiDI Table 

The routing information protocol (RIP) table is a per-node data structure that stores routes from 
the node to other networks in the internet. The routing information in the table depends on the 
node's location in the network. Each entry in the RIP table corresponds to a network in the 
internet. The routing information stored includes: 

• The network number of the target network 

• The number of hops it takes to get to that network; that is, the number of routing 
nodes the message must pass through before it reaches its destination network 

• The next hop towards that network 

• The next network port towards that network 

The RIP table entry also indicates how reliable the information within the entry is; it specifies a 
time after which the entry is considered unreliable, and has a status field that indicates whether 
the routing information is fresh, old, or has expired; 

Routing nodes must wire their RIP table (the table consumes approximately 1 page). 

24.2.2. The RIP Handler 

The RIP handler is a reques~response service. The client side allows processes to request routing 
information from local RIP tables and from the RIP tables of other nodes in the internet. The 
server side, called the RIP server, has its own well-known socket to receive incoming routing 
information packets sent by routing nodes in the internet. 

A node that wants to obtain a route through the internet consults the RIP handler's client side 
(rip_$find_nexthop). The RIP handler then looks at its table to find the optimum path, given 
the destination internet address, and returns the ID of the routing node that should forward the 
packet and the port through which the packet should pass. The RIP manager always chooses the 
most expedient path to the target, regardless of amount of traffic that path is presently incurring. 
The most expedient path is the path with the smallest number of hops. 

The RIP handler also provides a broadcast routine that the routing processes call to send out the 
latest routing information to all the other nodes in the internet (rip _ $broadcast). A RIP 
broadcast packet entry contains the network number of the target network and the number of 
hops away it is. The RIP servers on each node receive these broadcasts and modify their routing 
tables accordingly. 

24.2.8. The Routinl Proeeaa 

Every routing node runs a routing process, also called a router. Whenever two or more network 
ports are open for routing service, the routing software (route_ $set_service) starts a routing 
process. The routing process has two functions: 

• It forwards packets through network ports 

• It supplies nonrouting nodes with the information they need to maintain the most 
current routing information in their routing tables 

24-5 The Internet Sub3Y3tem 



The network I/O manager (net_io_$put_socket) checks packets that arrive at a routing node 
to see whether they are intended Cor the routing node itselC or are ·through traffic· to another 
network. Packets ror the routing node are placed into the socket specified in the packet header; 
for example, a request ror the routing node's build time goes to the information socket. Packets 
that should be forwarded go to the routing node's routing process socket regardless or the socket 
specified in the lleader. 

The routing process never retries a packet lorward; in addition, it will drop packets that have 
been Corwarded ~ many times and packets that have been misrouted. 

24.2.4. Device-Independent Network I/O 

The network I/O manager is the system's network-device independent send and receive 
component. It permits the AEGIS system. to handle I/O to and Crom multiple network devices. 
The network I/O manager fields all higher-level transmits to the appropriate driver using the 
port number specified in 'he call. It also sends packets that network drivers have received to the 
appropriate socket. 

24.2.5. Network Device Drivers 

The internet supports a variety or network hardware devices: DOMAIN ring controllers, Tl 
hardware, and MUL TWUS-eompatible network devices. The AEGIS system provides drivers ror 
the ring and Tl controllers; customers that wish to add their own network devices to the 
MULTffiUS backplane use the user-space general purpose I/O (GPIO) Cacility to create the 
network deTiee driver, then make SVC calls to the routing software. 

24.3. Sending a Packet on the Internet 

A node in an internet sends a packet as follows: 

• Ir t.he- packe' is addressed to a node on the local network the sender simply transmits 
the packet to the target node on the local network. 

• If the pa.eiet is addressed to a node on a remote network, the sending node transmits 
the packet \hrough the local network to a routing node. The sending node consults its 
rout.in, table to determine the path to the destination node; it then sends the packet 
to the first routing node on that path. 

• When ~e Mu\Ulg node gets the packet, it DMAs the packet into memory and 
transaeves the packet to the next node. The packet continues around the ring until it 
returns to the node that originated it; this node removes the packet from the ring and 
thus completes its role in the packet's transmission. 

• Mean .. ~ the routing node sends the packet to the routing node on the other side. 
This routing Dode examines the packet and either sends it to the target node, if it 
resides OIl lhis second network, or rorwards it to another routing node, if the 
destinMion Iletwork is still remote. 

The Internet StlNp'em 24-8 

\"." 

/'-~ 

( 
........... - .' 



o 

o 

o 

24.3.1. Determining the Routing Node 

A packet sent out on the internet has two target addresses: 

• -Where next-, which is a routing node ID 

• -Where eventually-, which is the destination node ID 

The to node ID field in the packet's ring hardware header stores the node ID or the -next- node, 
while the IDP header stores the destination node ID and the node ID that originated it. The 
packet has reached its destination when the node ID in the packet hardware header matches the 
node ID in the sortware header (when -next- equals -eventual-). 

The process determines the next node to send to by consulting its RIP table 
(rip_Sfind_nexthop); the RIP handler returns the node ID to send the packet to and the port 
through which to send it (at this point, the port is the ring controller). 

24.3.2. Sending a Packet through a Network Port 

When it has obtained the routing node to send to, the process sends the packet through the 
network port returned by the RIP handler by calling net_Sio_send. The network I/O manager 
uses the port descriptor to index into its network device table; it then reads the port device field 
to determine which network driver to call: 

• If the network is a ring, it calls the ring device driver's send operation (ring_$sendp) 

• If the network is an DC bridge, it calls the nc driver (iic _ $sendp) 

• If the network is a user-written network device, it queues the packet to that network 
port (whicli is a butter queue) and increments the eventcount that corresponds to the 
port. The eventcount advance awakens the user network's transmit procedure to send 
the packet through the port. 

24.3.3. Handling Incoming Packets on A Routing Node 

The network I/O manager (net_io_Sput_sock) on the routing node looks at the destination 
node ID of all incoming packets to determine whether the sender is sending a packet to be routed 
or is requesting information from the routing node itself. If the destination node ID matches the 
routing node's ID, then the packet is a request tor some AEGIS service. In this case, the manager 
places the packet into the appropriate socket; (or example, if the sender is requesting the routing 
node's build time, the manager places the packet into the intormation socket, which invokes the 
ASKNODE server. 

If the packet's destination is some other node ID, the packet is a routing request and is 
consequently placed in the routing node's -through-traffic· queue, which is the routing socket. 

24.8.4. Forwarding The Packet 

When it gets a packet to route, the routing process increments the hop count in the packet 
header. The process then determines where to send the packet to next by consulting the RIP 
handler to find out what the next hop is, given the packet's destination network number and 
node ID (rip_$find_nexthop). 

24-7 The Internet SubsY8tem 



The RIP handler, by examining the target network ID, determines whether the packet should pass 
to another routing node, or to one of the networks to which the routing node is directly 
connected. (If the destination is not local or directly connected, the handler must lock the RIP 
table with a mutex lock to prevent any updates to the table while it is reading it.) The handler 
passes back the node ID and the port number to send the packet through to the routing process, 
which sends the packet out through the appropriate port (via net_io_$send). Packets destined 
for directly connected networks go to the network; packets destined for remote networks go to the 
next router. 

H the routing process cannot find the next hop, it decides that the packet has been misrouted and 
simply drops it. 

24.3.5. Maintaining Current Routins Information 

The routing processes on routing nodes wait on a timer eventcount for RIP broadcast intervals; 
every 30 seconds, this eventcount reaches the broadcast value, and the routers call the RIP 
handler to issue RIP broadcast packets. 

Each RIP broadcast packet contains: 

• The standard packet header format 

• The network numbers of target networks and the distances to them via this router; 
where distance equals the number of passages through routing nodes (hops) 

• The node IDof the router broadcasting the RIP packet 

• The network number of the port through which the RIP packet is going 

The routing node builds the broadcast packet (rip _ $broadcast), then calls the RIP handler to 
send it out through all of its routing ports (rip_$send_everywhere). 

The RIP servers on the other nodes receive the RIP broadcast packets sent by routing nodes; RIP 
broadcast packets arrive in the node's RIP socket, where the RIP server unpackages them and 
adds the information to the routing table. 

If the RIP handler does not hear from a routing node (via a RIP broadcast packet) within 90 
seconds, it updates its RIP table to show that that router is unavailable. 

The RIP handler also contains a module that periodically purges the the RIP tables of stale RIP 
data (rip_$age). 

The Internet Subsystem 24-8 



o 

o 

24.4. Internet Support for User Network Devices 

Customers can connect their own network devices to the MUL TmUS backplane, but they must 
write their own drivers to run the device. Customers create user-written network drivers as 
follows: 

• Write a user-space GPIO driver that contains a transmit procedure and a receive 
procedure to send and receive packet8 through the device 

• Declare the driver a network by registering it in the network I/O manager's network 
port table; currently the manager reserves four port descriptors for user-written 
networks 

• Call the routing software to transmit messages messages through the user network 
port 

A port for a user network consists of a buffer queue that stores outgoing packets and an 
eventcount that advances when packets arrive at the port, activating the transmit portion of the 
network driver. Although the buffer queue is actually a socket, it does not accept incoming 
packets from the network; it only contains outgoing packets. 

The routing process exports two functions to user-written network drivers: 

• A route _ $outgoing procedure, which sends packets to the user port buffer queue and 
awakens the transmit procedure by advancing the buffer queue's eventcount 

• A route _ $incoming procedure, which the driver's receive side calls to forward 
incoming packets to their destinations 

24-9 The Internet StJb~y8tem 





o 

o 

-------------~.- --- ---------------

Chapter 25 
Introduction to System Initialization 

System initialization is the collection of procedures that bring a node from power-on or reset 
to the display manager's login prompt. System initialization begins with the central processor's 
bootstrap PROM hardware and extends through a variety or sortware programs and system 
routines. In general, initialization proceeds as rollows: 

1. You turn the node on or press the RESET button 

2. The bootstrap PROM initialization code begins to run. 

3. H the node is a DNx60 series device, the PROM loads the microcode files, which 
include the writeable control store (WeS) file, the instruction decode flle, and the 
scratchpad file. 

4. The PROM loads and calls the system bootstrap utility SYSBOOT if there is a local 
disk, or calls the network bootstrap utility NETBOOT if booting over the network, to 
load and run the AEGIS system. 

5. The AEGIS cold start routine sizes memory, loads the initial memory management 
unit (MMU) configuration, and calls the software system initialization procedure 
os Sinit. 

6. The os _ Sinit routine completes the operating system initialization, including the 
initialization of the AEGIS managers, device drivers, other protected supervisor-mode 
system software. It then loads and passes control to the initial user-mode program, 
the bootshell (SHELL). 

7. The bootshell displays the Apollo logo, then loads and runs the user environment 
initialization (ENV) program. 

8. The ENV program initializes the first user process environment and loads and runs 
one of the following processes: 

• The display manager (DM) 

• The single-user shell (SH) 

• The server process panager (SPM) 

25-1 Introduction to System Initialization 



Chapters in this section expand upon the rollowing system initialization procedures: 

• Bootstrap PROM initialization 

• AEGIS bootstrapping rrom a disk, the network, or a cartridge tape 

• AEGIS system initialization by the cold start and os _ $init routines 

• Establishment or the user environment by the ENV program 

The chapters in this section do not describe display manager, server process. manager, or the 
single-process shell initialization. 

Introduction to System Initialization 25-2 



o 

C) 

o 

Chapter 26 
The Bootstrap PROM 

The bootstrap PROM, also called the mnemonic debugger (MD), serves several purposes. It 
contains the code that bootstraps a node, and also contains code to run a low-level debugger. In 
addition, it contains several low-level services that are available to external routines. 

The PROM type varies according to node model. This chapter provides a generalized view of the 
PRO}'!'s system initialization functions and points out any significant differences among PROM 
types. 

26.1. PROM Overview 

System initialization begins when someone turns on a node's power or pushes the reset button. 
Either of these actions gives the PROM control Crom the M68OxO processor's power-on/reset 
vector. 

The PROM operates in one of two modes: normal mode or service mode. The node service 
switch determines the mode in which the PROM will operate when it gains control. PROM 
system initialization differs significantly between normal mode and service mode. In normal 
mode, initialization is a load and go operation that proceeds without human intervention up to 
the point of login. In service mode, the PROM enters the mnemonic debugger command 
interpreter (}.tID), which enables the use of the mnemonic debugger to control Curther operations. 

26.1.1. RAM Memory Use 

The PROM uses two to three pages or RAM memory. On DNx60 models, these pages are located 
at addresses 200000 through 200BFFj they are located at addresses 100000 - l007FF on the other 
node models. . 

The PROM's static data and supervisor stack area occupy the first one or two pages of this 
region. On DNx60 models, both the CPU and ePIO stacks also occupy this area. The last RAM 
page is reserved Cor the mapped-mode trap page, which is initially a copy of the PROM trap page 
(0-3FF). 

26.1.2. Physical and Mapped Modes 

The PROM runs in either physical or mapped mode. In physical mode, the memory 
management unit (MMU) is disabled. The PROM initially runs in physical mode. In mapped 
mode, the MMU is enabled and loaded with the PROM's mapping of memory and I/O devices. 
(the cold start routine enables the MMUj see Chapter 28.) When it begins to run, the PROM 
determines whether the MMU is enabled by examining a nag at location O. In physical mode, this 
byte has the value 00. In mapped mode, the byte's value is FF. 

26-1 The- Boot8trap PROM 



For node models other than the DNx60, physical address space in mapped mode appears as 
follows: 

• The PROM initial trap page (0-3FF physical) becomes inaccessible. 

• The PROM static procedure and data section (400-3FFF) is mapped one-to-one so 
that capped addresses correspond directly to physical addresses. 

• I/O objects are mapped to their AEGIS locations (starting at FAOOOO). 

• The PROM stack and variable data (100000 - l003FF) is mapped to EOOOOO. 

• The mapped-mode trap page at l00400-1007FF is mapped to address O. 

• The rest of physical memory is mapped one-to-one to maintain direct correspondence 
between mapped and physical ,addresses. 

The PROM can run in either physical or mapped mode because all references use variables; a 
PROM routine converts rererences to physical or virtual addresses. The service-mode MD 
commands P and M switch the PROM between physical and mapped mode. 

The ability to run in physical or mapped mode is most useful when using the PROM's mnemonic 
debugging logic while the system is running. If you enter the PROM from AEGIS, for example 
through a crash, you should be able to use the PROM without disturbing the contents or the 
MMU. Thererore, the PROM code and the AEGIS system must use the same mapped locations 
for all addresses that the PROM will access. 

PROMs on nodes with reverse-mapped MMUs must enter mapped mode in order to access the 
disk or the network. These PROMS perform disk and network I/O in mapped mode because all 
D:MA goes through the I/O map (IOMAP), and, on older node models, the I/O map is inaccessible 
unless the :M:MU is enabled. The PROMS on forward-mapped MMUs perform disk and network 
I/O in physical mode, and do not enter mapped mode unless explicitly directed to do so. 

26.1.3. PROM Functions 

The PROM's main functional units are: 

• System initialization logic ror hardware that the PROM references, including serial 
input/output (SIO) lines, VME and MULTffiUS devices, memory, (clearing parity in 
·addresses 100000 - l007FF), and I/O devices. 

• A set of minimal device drivers for the display, SIO devices, disks, the ring, cartridge 
tape, and the diagnostic LED display. 

• Boot logic, including the logic to get SYSBOOT or NETBOOT into memory 

• Power-up diagnostics to perform minimal hardware verification 

• Logic to enter mapped or physical mode 

The Boot8trap PROM 26-2 



o 

o 

o 

• Mnemonic debugger (MD) commands 

• Assembler/disassembler 

26.2. PROM Structure 

The PROM occupies physical address space 0-3FFF on DN400, DN420, DN600, DNSOO, and 
DN320 node models. It occupies physical addresses O-7FFF on DNx6Os. On DN550s, DSP80s, 
and machines using Motorola 68020 OPUs, there is additional PROM space at physical addresses 
14000 - 17FFF. These addresses are mapped to 4000 - 7FFF on DN550s and 6802()..based 
systems. This space is unused on DSP80s, and is mapped one-to-one on those units. 

28.2.1. Initial Trap Page 

Page 1 (0-3FF) of all PROMs is the initial trap page, which contains M68OxO exception vectors. 
This page is only used in physical mode. In mapped mode, the PROM replaces it with the copy 
in RAM memory, which enables the vector addresses to be changed. The mapped vector page is 
located at physical address 100400 on most machines. (It is located at address 200800 on DNx60 
nodes.) . The processor hardware assigns the actual vectors to addresses O-FF. 

28.2.2. Machine ID 

A machine ID exists at address 100 to identify the node model. Valid machine IDs are: 

o = DN400 old DN420 
1 = DN420. DN600 
2 = DN300. DN320. DN330 
3 = DSP80. DSP90 
4 = DN460. DN660. DSP160 
5 = DN550. DN560 

28.2.3. Auxiliary Information 

PROM address 102 indicates auxiliary information. Currently, two bits within this address are 
used. The first bit (1), if set, indicates that log error and crash entry points exist. Bit 2, if set, 
indicates that the node uses an M68020-based processor board (DSP90, DN330, DN560). 

28.2.4. Externally-Callable PROM Routines 

Addresses 104 through 13F or 20F contain the addresses of several subroutines that can be called 
from outside the PROM. SYSBOOT, NETBOOT, and the AEGIS system crash and dump 
routines use subroutines. They are also available to any other stand-alone routine that does I/O 
to the network, disks, or SIO lines. 

28-3 The Bootstrap PROM 



26.3. PROM Initialization Procedure 

When the node is turned on or reset, the processor loads the stack pointer (SP) and program 
counter (PC) registers from addresses 0 and 4, respectively. The initial PC points to second page 
or the PROM. The SP points to the PROM's stack at 100200 (200400 on DNx60 models). 

The PROM t.UrDS off \he LEOs and testa the normal/service switch. to determine whether it 
should proceed in normal mode or aernce mode. Figure 28-1 illustrates the normal- aDd Hl'Vice
m04e PROM initialilation activities, and mows their interrelationahipe. 

ERROR 

EX 

+ 

RTS 
QUIET_RETURN ----------" 

TRAP F 

Flsure 11-1. PROM Startup Activities In Normal and Service Moc:1es 

28.8.1. Normal-Moc:1e initialisation 

When the node is in normal mode, the PROM executes the following at startup: 

1. Runs a series of diagnostic tests. 

2. Loads the DNx60 microcode it it is initializing a DNx60 node. 

The Boot,trap PROM 

(" 
\ 
'\. .. _ ... / 



o 

C) 

o 

3. Determines which system bootstap program is required (SYSBOOT, NETBOOT, or 
CTBOOT) and loads the appropriate program. 

4. Checks the execution-requested nag to determine whether an EX command has been 
issued. 

28.8.1.1. Diagnostic Testing 

The PROM first runs a series of diagnostic testa. It indicates which diagnostic it is running by a 
message on the display (or SIO device) screen. All nodes except the DN550 use the message 
format: 

D1agnost1cs: n 

where n indicates the test completed. The DN550 uses the format. 

Self Test Started n 

The PROM carries out the following diagnostic tests (an asterisk indicates that the PROM does 
not perform the test on DNx60 nodes): 

• Checks the PROM checksum 

• Checks the PFT (pattern write and verify)(*) 

• Checks the PTT (pattern write and verify)(*) 

• Checks the I/O map (pattern write and verify)(*) 

• Tests the PFT, PTT and I/O map interaction (*) 

• Tests the RA11 memory (pattern write and verify)(*) 

• Tests the RA11 memory in mapped mode (pattern write and verify)(*) 

• Returns to physical mode and verifies the results of the mapped mode test (*) 

• Test the DSP80 CPU extension board functions (DSP80 or DN550) 

• Per!orms a single node transmit test on the ring board 

• Verifies the integrity o! the VME inter!ace board (DN550 only) 

28.8.1.2. Loading DNX80 Microcode 

H the node is a DNx60, the PROM loads the the following microcode files: 

• The writeable control store microcode file (jSAU4/WCS.UC) 

• Instruction decode RAM contents (jDCODE.UC) 

28-5 The Bootstrap PROM 



• Scrat.chpad constants and temporary varibles (jSAU4/SPAD.UC) 

• A program that loads the .above file into micro storage (jSAU4jULOAD) 

The PROl\lloads each microcode file by first loading SYSBOOT, NETBOOT, or CTBOOT and 
then using the boot program to load the file into physical memory. This procedure is identical to 
the procedure used to load the AEGIS system (which is detailed in the following steps). Once the 
microcode files exist in memory, ULOAD runs to load the microcode into micro storage, and then 
the microexec is started. 

26.3.1.8. Determlnmg the Bootstrap Program 

The PRO~f next determines whether SYSBOOT, NETBOOT or CTBOOT is required by 
checking the controllers on the node. If a winchester or storage module device controller exists, 
the PROM will load SYSBOOT from disk. If only a ring controller exists, or ir the attempt to 
load SYSBOOT failed, The PROM attempts to load NETBOOT rrom a partner node. The 
PROM will only attempt to load CTBOOT· ir you have set the disk type to C using the MD DI 
command 

If SYSBOOT is required, the PROM reads the physical volume label to get the disk parameters 
(blocks per track, and so on) that describe the size and shape of the boot volume. (The PROM 
initially assumes one block per track and one track per cylinder.) The PROM then loads 
SYSBOO'l' from the first ten blocks on the disk (2 through B). 

If NETBOOT is required, the PROM determines if it has a known partner node to boot rrom; if 
no known partner exists, the PROM broadcasts a packet requesting the NETMAN program on 
other nodes to respond ir it is this node's partner node. When they receive the broadcast, all 
nodes in the network check their diskless lists to see if they are valid partners. The partner 
node's NETMAN sends a positive response. The PROM then requests the NETBOOT program 
from the partner node and loads it into local memory. 

If CTBOOT is required, the PROM loads CTBOOT rrom the first file on the cartridge tape. 

Once it has obtained and loaded the appropriate bootstrap program, the PROM calls it to load 
the AEGIS system. See Chapter 27 for more details about AEGIS initialization. 

26.3.1.4. Checking the Execution Flag 

When the boot program returns to the PROM, it determines if EX (execution requested) flag is 
true. If e:recution was not requested, the PROM goes into the MD command loop. IT execution 
was requested (by an EX command) the PROM passes control to the loaded program. In normal 
mode, the EX command Cor AEGIS is internally generated, and AEGIS initialization proceeds 
automatically. 

26.3.2. Service Mode initialisation 

When the PROM determines that the node is in service mode, it branches to a command 
interpreter called the mnemonic debugger (MO). (Note that the entire PROM is orten called 
the MD.) The mnemonic debugger provides a set of low-level commands and an assembler and 
disassembler. Whenever the system crashes it enters the MD. In service mode, you can enter the 
MD from AEGIS by holding down the CTRL key and pressing the RETURN key. 

The Bootdrap PROM 26-6 



o 

o 

o 

In service-mode system initialization, the MD tests the standard keyboard and S101 and SI02 
line inputs Cor a RETURN character. The first device to provide such a character becomes the 
input/output device Cor the debugger. The MD will then respond to any commands from the I/O 
device (including 'EX AEGIS to initialize the operating system). 

You should not use SI02 for the MD ir you will be running AEGIS or any other stand-alone 
utility (SAU) from the mnemonic debugger. These programs only scan the standard display input 
and 8101 lines, not S102. For example, if you put a dumb terminal on 8102 and use it in service 
mode, and then enter the EX AEGIS command, the terminal will display the boot sequence 
through the Ill: LOW: START: address messages. No further output is displayed, and AEGIS 
will not accept input from the terminal. 

26-7 The Bootstrap PROM 





o 

o 

~~~ .. ~-.-.---.~- --------~ ... -.~ .. -.--.---~-.-. -----------

Chapter 27
SYSBOOT, NETBOOT, and CTBOOT

The system bootstrap program (SYSBOOT), the diskless node bootstrap program (NETBOOT),
and the cartridge tape bootstrap program (CTBOOT) are bootstrapping mechanisms that the
PROM loads and invokes directly to load stand-alone programs into memory. Stand-alone
programs include diagnostics, stand-alone utilities such as SAL VOL and INVOL, and the AEGIS
system itself. All stand-alone programs are machine type-dependent; the boot programs load
them into fIXed physical locations in memory. Each stand-alone program to be loaded must
reside in a SAUn directory (where -n· identifies the machine type) and must start with three
integer values:

• A low address at which the program is loaded

• The start address, which is the initial execution entry point

• The machine type identifier of the target machine, or 0 if the program can run on any
machine type.

The SYSBOOT and NETBOOT programs can access a disk SAUn directory and either list the
directory contents or load a specified file into memory. SYSBOOT accesses the local boot disk,
while NETBOOT accesses a partner node's disk across the network. CTBOOT can find and load
a specified program from a cartridge tape that was written with the WBAK program, and can list
the names of the files in a SAUn directory saved on the tape.

The PROM invokes the boot program and passes it three input parameters:

• The PROM's command buffer

• The boot logical volume number or network partner

• A set of option flags that provide informatio such as whether the service switch is in
normal mode.

When the PROM is running initialization in normal mode, the boot program loads AEGIS into
the node's memory in response to an EX AEGIS command that the PROM issues. When the
PROM invokes the boot program in response to an MD command, the boot program either loads
the specified file or lists the SAU directory.

The boot program returns three output parameters to the PROM:

• The starting address of the loaded program

• An execute or ·go· flag. The boot program sets the go nag to true if it loads a
program in response to an EX command; otherwise it is false. If the go flag is true,
the PROM will invoke the loaded program.

• For· NETBOOT only, a set of UIDs from the partner node. These UIDs are the OS
paging file UID, the disk entry directory U) UID. and the network root directory U /)
UID.

27-1 SYSBOOT, NEI'BOOT, and CTBOOT

27.1. The System Bootstrap Program (SYSBOOT)

SYSBOOT rull.5 if the node has a loca! disk. It loads a file from the SAUn disk directory into
memory, or lists the contents of the SAUn directory. SYSBOOT can also automatically execute
SAL VOL if the boot disk requires salvaging. However, SYSBOOT will only run SAL VOL if it is
operating in response to an EX AEGIS command in normal-mode initialization.

SYSBOOT is always located in physical disk blocks 2-B of a bootable disk. These are logical
blocks 1. through A of the /ir,t logical volume on the disk. The initialize volume (INVOL)
program reserves these blocks for SYSBOOT. The eopy boot (CPBOOT) program puts
SYSBOOT on the disk.

SYSBOOT performs the following operations:

1. Reads the disk physical volume label (using the PROM read disk routine) to get the
disk address of the logical volume.

2. Reads the Iopcal volume label for the logical volume specified by the PROM (This is
logical volume 1 for normal mode startup).

3. Determines if' SAL VOL must be run. It checks two places in the logical volume label:
1) the BAT header volume trouble bit, and 2) the shutdown state word. If the volume
trouble bit is set or the shutdown state word indicates that the disk is mounted (that
is, the volume was never properly dismounted), then salvaging is required and
SYSBOOT checks if' the following are true:

• It did not just attempt to salvage the disk

• It is responding to an EX command for a file beginning with AE

• The node is in normal mode.

If all three conditions are true then SYSBOOT saves the name of the original file to
be loaded, and changes the name of the file to be loaded to SALVOL.

4. Reads the logical YO!llm~'s root directory (f).

5. Gets the UID of t.he SAUn directory from the root directory, where:

• 11 = machine id if the machine id does not = 0

• n = 1 if the machine id = 0

• Ii = n.n if &he machine ID is 0 or 1 and the SAUl directory is not round.

6. Ge~ tile VTOCX for the SAUn directory.

7. Reads the /SAUD directory.

8. If SYSBOOT is running in response to an EX or LO command:

a. Gets the UID of the fIle to be loaded from the SAUn directory .

h. Gets die file's VTOC index (VTOCX).

SYSBOOT, NEI73OOT, and CTBOOT 27-2

'. 0
"",

'0

o

c. Uses the VTOCX to read the file's VTOCE, and uses the VTOCE to read the
first record of the file into memory.

d. If SYSBOOT is running in response to an EX" command, SYSBOOT checks to
see if the program has the correct machine ID.

e. Reads the entire rue into memory, starting at the location specified by the
low _address value in the rmt word of the rmst record .

. f. H salvaging is required as determined in step S, does the following:

• executes SAL VOL

• Changes the file Dame back to the original name of the file to be loaded.

• Returns to Step 1.

g. Writes to the output device the following addresses for the loaded file:

• Low: lowest physical address of the file

• High: highest physical address or the file

• Start: starting entry point of the program.

If the SYSBOOT is running in response to an:MD LD command:

a. Writes • / /LOCAL/SAUn x· (where x is the logical volume number) to" the
output device.

b. Lists the objects in the directory, 60 characters to a line.

9. Returns to the PROM.

27.2. The Diskless Node Bootstrap Program (NETBOOT)

NETBOOT loads a file or lists a directory from a disked partner node over the network.
NETBOOT communicates with the user-mode AEGIS -~iskless node bootstrap procedure
NETMAN on the partner Dode, and then requests services through NETMAN. This section
describes NETBOOT operation on the local and diskless nodes and NETMAN and other process
support on the partner Dode.

27.2.1. NETBOOT FunctioDS

When NETBOOT runs, it first requests a response from a partner node. In response to a LO or
EX command (normal-mode initialization automatically generates an EX AEGIS command)
NETBOOT does the following:

1. In response to an EX command, sets the execute flag to true; otherwise it is false.

2. Sends a boot request to the partner node that requests it to return the rile to be
loaded.

27-3 SYSBOOT, NEI'BOOT, and C!TBOOT

3. ReadE the reply packets that constitute the file and loads them into memory, checking
to make sure that they will not overlay the boot program.

As it loads each packet (a page), it writes a period (.) to the display.

Each time it loads eight packets, it writes the total number of bytes loaded to the
display.

4. When the it has finished loading the file, NETBOOT writes the following addresses
for the loaded file to the output device:

• Low address

• High address

• Start address

H NETBOOT has run in response to an LO command, or the file is too small to be
AEGIS, NETBOOT returns to the MD.

Otherwise, it transmits a request for the UIDs of the following:

• The OS paging file

• The network root directory U /}

• The disk entry directory U)

In response to an LD command, NETBOOT first transmits a list directory request to the partner
node. It then receives the returned messages, which contain a list of the files in the SAUn
directory, and writes them to the terminal.

27.2.2. Partner Node Support or Diskless Nodes

NETMAN runs in the partner node and services various requests from the diskless node during
startup. It supports both the PROM's loading of NETBOOT and NETBOOT's loading of
AEGIS. In general, it services requests made through NETBOOT for the MD LO, LD, and EX
commands.

NETMAN is the user-level diskless node bootstrap server. It runs in user mode and is accessed
through a well-known socket. NETMAN provides three types of service: dump, echo, and boot.
This document only covera the boot service support of system initialization and ~ operations.

NETMAN responds to a boot service request by passing the request to the boot request processor,
boot_$serv. Table 27-1 lists the kinds of boot __ $serv procedure services. In addition, the
following paragraphs describe the boot _ $get _ uids service in detail.

SYSBOOT, NEI'BOOT, and CTBOOT 2'1-4

o

o

o

--- --------------------------------- --------------

Table 27-1. BOOT _ $SERV Services

Serv1ce Descr1pt1on

Not used for 1nit1alizat1on

Old l1st d1rectory request.
returns only a .ingle packet

boot_$mult_ld List directory •• ends multiple
packets to 1i.t SAUn d1rectory

Sends the requested file from
the SAUn directory

boot_$sysboot Sends the NETBOOT file from
the SAUn d1rectory

Checks DISKLESS_LIST f11e to
determ1ne 1f th1s node 1s a
partner to the request1ng node
and sends a conf1rmation.
1ncluding the node-1d. 1f true

boot_$get_uids Sends the UIDs for the OS
paging f11e .. network root. and
the node entry directory; it
also creates any requ1red
support1ng f11es

27.2.3. Get UIDs Service

Request1ng Software/Hardware

~OT. in response to the NO
PL cOllUDand.

NEtBOOT. in response to the NO
LD cOllUDand.

NET.BOOT. in response to the NO
EX and LO commands. including
normal AEGIS in1tialization.

Diskless partner's PROM before
it can process any NO LO. EX.
or LD request. 1nclud1ng normal
mode startup.

Broadcast by diskless node's
PROM as part of normal mode
startup and 1n response to any
LO, EX or LD command if the
partner is not yet known.

NETBOOT. follow1ng a boot_$load
request. 1n response to an NO
NO EX command for any f11e long
enough to be AEGIS. 1ncluding
dur1ng normal mode start-up).

In addition to sending the requested UIDs to the diskless node, NE11v1A.N's boot service routine
boot _ $get _ uids carries out all the initialization and housekeeping required to enable the node to
support the diskless node. The get UIDs routine:

1. Resolves network root UID.

2. Resolves the node entry directory UID.

3. Resolves the /sys/node_data.node_id directory, where node_id is the ID or the
diskless node, and unlocks it.

If the directory does not exist:

• Creates the directory.

• Resolves the new directory's UID.

• Sets the derault ACLs.

27-5 SYSBOOT, NEI'BOOT, and CTBOOT

4. Does the following to prepare the os paging file
(lsys/node _ data.node _idles _paging_file):

• Resolves the rlle UID.

• If the file does not exist, creates it.

• Checks the file length, and if it is less than 320 blocks, extends it.

5. Does ihe following to prepare the bootshell file (/sys/node_data.node_id/shell):
(note that the boot shell is an impure object, mapped for read and write, and
therefore the diskless node needs its own copy.)

• Resolves the rlle UID.

• If' the file exists, unlocks it and deletes it.

• Creates the file.

• Copies /sys/node_ data/shell to the file.

6. Copies the /sys/sysdev directory to /sys/node_data.node_id/sysdev to give the
remote node its own system devices.

7. Copies the startup templates as follows:

• If' the remote node is a DN300 or DN320, it copies the DM startup file templates
to /sys/node_data.node_id/startup.191 and makes sure the file contains a
KBD 2 command.

• If the remote node is a DSPSO (and therefore does not have a display), it copies
the server process manager (SPM) startup file template directory to
/sys/node _ data.node _id/startup _ templates.

• Otherwise, it copies the DM startup template directory to
/sys/node _ data.node _ id/startup _ templates.

S. Sends a reply to the diskless node with the required UIDs.

27.3. The Cartridge Tape Bootstrap Program (CTBOOT)

The CTBOOT boot program enables a node to boot from a cartridge tape. For example, it
enables a partnerless or stand-alone DN550 to boot and load software on a new Winchester disk.
Like SYSBOOT and NETBOOT, CTBOOT enables the PROM to load and run stand-alone
programs and to list the contents of the SAUn directory on the tape. CTBOOT will only run in
response to an EX, LO, or LD command passed to it by the PROM.

The PROM can access a tape's contents only if CTBOOT is at the start of the tape. The
CPBOOT utility puts the CTBOOT at the start of a cartridge tape. The remaining files on the
tape must be written in read_backup (RBAK) format, for example, using the write_backup
utility (WBAK).

SYSBOOT, NErBOOT, Gnd CTBOOT 27-8

o

To run CTBOOT, you must first specify the cartridge tape as the boot device. To do so, enter
the MD and enter the following command line:

DIO

You can then enter an MD command to list the SAUn directory from tape or to load or run any
stand-alone program on the WBAKed tape, including AEGIS or INVOL. When the PROM
requires the boot program, for example in order to invoke the EX AEGIS command, it reads the
first file from tape. The PROM then invokes this file identically to SYSBOOT to load the
requested file or list the tape contents.

CTBOOT performs the following operations:

1. Sets up the name of the SAU directory as SAUn, where n is the machine ID.

2. Parses and saves the command line passed to it by the PROM.

3. Scans the first logical file on the tape to find the directory name / / ... /SAUn. Note
that that any directory names to the left or SAUn are ignored, so the SAUn directory
can be located at any depth in the directory tree structure.

4. If CTBOOT is running in response to an EX or LO command:

a. If CTBOOT is running in response to an EX command, checks to see if the
program has the correct machine ID.

b. Reads the entire file into memory, starting at the location specified by the
low address value in the first word or the first record.

c. Writes to the output device the rollowing addresses for the loaded file:

• Low: lowest physical address of the file

• high: highest physical address of the file

• Start: starting entry point of the program.

If the CTBOOT is running in response to an MD LD command:

a. Writes the directory pathname to the output device.

b. Lists the objects in the directory, 60 characters to a line.

5. Rewinds the tape.

6. Returns to the PROM.

27-7 SYSBOOT, NErBOOT, and CTBOOT

\

(~,

\
'-

o

o

o

Chapter 28
AEGIS Initialization

After SYSBOOT, NETBOOT or CTBOOT loads AEGIS, the PROM puses control to the newly
loaded program, and OS initialization begins. Two procedures within the AEGIS kernel - the
cold start routine (COLD_START) and the os_,init routine - are responsible for AEGIS
initialization. The cold start routine contains the initial entry point for AEGIS and is given
control directly from the PROM. When it completes its operations the cold start routine calls the
os _ $init routine.

28.1. The Cold Start Routine

The cold start routine occupies a single page of memory starting at physical address 100800. The
data space for the cold start routine and its associated data occupies one page starting at physical
address 101000; these pages are mapped one-to-one in virtual memory. The os _ $init routine
frees this memory after cold initialization completes and AEGIS is running.

The cold start routine carries out the following operations:

1. Reads the following machine definition arguments passed by the PROM:

• The boot device type (network, winchester, etc.), unit number, and logical
volume number

• The node ID

• If the node is running diskless: the UIDs of the OS paging file, network root
directory, and node directory.

2. If the node is a DN300, DN320, DSP80, or DN550, determines whether the processor
is a 68010 or 68020. If it is a 68020, enables the on-chip instruction cache and
relocates the following in virtual memory:

• AEGIS from EOOOOO to 3DOOOOO

• The page translation table from 700000 to 400000

• The i/o definitions from FAOOOO to 3F AOOOO.

3. Copies the trap page from physical address 0 - 400 to physical addresses 100400 -
100800.

4. Initializes the MMU in mapped mode with memory mapped one-tO-one. If the node is
a DNx60, the routine does not initialize the MMU, but instead relocates the trap
vectors using the vector base register (VBR).

5. Scans (reads and rewrites) physical memory to initialize the memory map (MMAP)
(by marking free and missing pages) and to eliminate ECCC or parity errors.

28-1 AEGIS Initialization

6. H the node has a VME bus, sets up the VME memory size register. This register
informs the VME interface which addresses refer to memory and which should be
pass~d to the VME bus.

7. If the node is a DN550 or DSP80 with a MUL TIBUS, then enables the MUL TIBUS.
Enables the second second half of the MUL TIBUS only if physical memory does not

. exist at address 380000.

8. Enables the MMU with the initial virtual to physical address mappings. (The virtual
and physical address spaces are defined in detail in·Appendix B.)

9. H this node has a 68020 with 68221 coprocessor, enables the coprocessor; if the node
has a 68020 but no coprocessor, enables the noating point emulator.

10. Turns on memory ECCe or parity operations.

11. Calls the os _ $init routine to complete the AEGIS initialization process.

28.2. The OS $INIT Routine

The os _ $init routine completes the supervisor-level initialization of AEGIS. When it completes
its operations, it calls the bootshell. The os_ $init routine does the following:

1. H the node has a 68020 processor, calls the routine mmu _ $init to adjust the MMU
operations for the larger PTT and as _ $initto adjust the address space.

2. Initializes the trap page with the addresses of the appropriate fault interceptor module
entry points.

3. Removes the virtual-to-physical association between the cold start routine and
associated data pages from the MMU. This frees the physical memory so that the the
memory map manager, when initialized, can record these pages as available. .

4. Initializes the managers listed in table 28-1, as required by the node configuration.
The table lists the initialization call, its function and additional information that
describes the operation. To track the structure of the os _ $init procedure, this table
also describes some operations that do not strictly initialize :nanagers but are included
within this section of the code.

AEGIS Initialization 28-2

o

u

Procedure

PBU_SINIT

IO_SINIT

LPR_SINIT

PEB_SINIT

MEM_SINIT

TERM_$INIT

TI)€_$INIT

none

Table 28-1. Managera initialised by OS _ $INIT

Manager

memory map

peripheral bus unit

Winchester. Floppy.
Ring xm1t. Ring rcv.
Cart tape. Stor mod

Parallel line printer

Comments

ReqUired by dbuf. pbu_$1n1t. makes a
list of present but unused pages.

Must precede IO_SINIT

For storage aodule. only re.erves
I/O map pages. does Dot vir. the
procedure.

PES (Floating point accelerator mOdule)

Memory ECCC logiC Must be done inhibited

Dumb terminal driver Initializes all four SIO lines

Timer Crashes if should have calendar on
disk controller and do not

UIO Generator Needs the node number and time

Sets up the null process stack

PRDC1_$INIT level 1 process mgr. Caller becomes process 1

SMD_$INIT

TPAD_$INIT

screen mgr. driver

touchpad data mgr.

Inits the d1splay dr1ver

Inlts. touchpad mode settings/mouse

OTTY_$INIT dumb TTY handler Can be initialized for display
or for a real dumb terminal

EC2_$INIT_S level 2 eventcounts Inits. freelist of wait list entries

PRINT BUILD
TIME

none

none

OBUF_$INIT

SM_$CINIT

Pa.ri ty

ONx60 float1ng pt.

Disk buffer manager

Storage module
controller

prints the system build t1me

Sets parity error trap to 1ts f1m

Sets floating p01nt traps to f1ms

Inlts. d1sk buffers used by bat/vtoc

Only 1f SM 1s boot dev1ce; do not
wire. Call 1s 1n an 1nternal proc.

28-3 AE{JIS Initialization

5. If the node is not diskless, mounts the boot volume as follows:

a. Mounts the boot physical volume, initializing the volume table entry with
information from the physical volume label.

b. Gets the UID of the flfSt logical volume on the drive.

c. Mounts this logical volume.

d. Verifies the clock time against the boot volume shut_down time. If the shut
down time is later than the clock time or is over three days before the clock
time, asks if you wish to update clock. This is done by the cal_ $verify
procedure of the os_cal_unwired module.

e. Mounts the VTOC. If salvaging is required, issues a message to the display.

If the node is in normal mode, crashes the system.

If the node is in service mode, it displays the message: • Proceed to bring up OS
(and risk volume)? If the response is yes, it mounts the VTOC; otherwise, it
crashes the system.

6. Initializes the virtual memory managers. This is done by the mapped segment table
initialization (mst_$init) procedure, which operates as follows:

a. Initializes the access control list manager (ACL) using acl_$init.

b. Initializes the active segment table manager and AST (ast _ $ini t) using
ast_$init.

c. Initializes the address space ID (ASID) allocation list (for ASIDS 1 -25).

d. Allocates ASID 0, which maps global address space.

e. Sets up the MST for ASID O.

f. On Dnx60 nodes, sets up the segment map tables (SMAPS) and region registers.

g. Sets the MST wired page limits, the maximum allowable number of wired MST
pages. This is determined by a ratio of one page or MST entries per ten pages
of pageable physical memory, so that approximately 200 megabytes or virtual
memory can be mapped in one megabyte or physical memory.

AEGIS Initialization 28-4

o

C)

\

(

0"

)
'-....-/

------- .. ---_. __ .. _--_ .. - ._--

7. Establishes the OS mappings to the OS paging file and initializes virtual memory
mechanisms as follows:

• Maps the segments required for AEGIS by running the mst _ 'maps procedure
for each of the following areas, in turn. Each area is mapped to offset 0 in the
OS paging rue:

a. The non-pageable OS procedures and data

b. The pageable OS procedures anc' initialized data

c. The Don-pageable whole cloth pages to be used for page-aligned data such
as the rue lock table, ACL lock data tables, and PROC2 database.

It is possible to map three different areas of virtual address space starting at the
same location in the OS paging file because the two wired areas will never
require space in the rue. Thus, this technique reserves the virtual address space
used by the wired procedures and wired pre-aligned data. It ensures that the
mapped segment manager will not map the anything over them, yet it does not
waste file space that will never be used.

• Wires the AEGIS procedure section pages that must always remain in· memory
by setting their memory map entry .inuse bits as false (not in use). This
eliminates the use of backing store.

• Activates (adds to the AST) and associates the pageable AEGIS procedure pages
and the initialized data areas.

• Wires the non-pageable whole cloth uninitialized area pages by setting their
memory map entry .inuse bits as false (not in use). This eliminates the use or
backing store.

• Frees any unused memory map pages, such as those that would be used for a
nonexistent second display or MUL TffiUS device and pages that mmap _ $init
has determined to be unused. This procedure both removes the page association
from the MMU (mmu_$remove) and frees the page in the memory map
(mmap _ $rree).

8. If the storage module is the boot volume, wires the SM manager.

9. Maps and activates the display memory and the memory for a second display, if it
exists.

10. Creates the rollowing special level 1 processes:

• The clock process (PID 3)

• The purifier process (PID 4)

• The wired and unwired DXM process

11. Makes the current process (PID 1) a level 2 process by allocating an address space ID
(ASID 1) and assigning it to the process, and by sets the process type to the initial
system process.

28-5 AEGIS Initialization

12. Starts the network packet receive process (PID 6), using the network_ $init
procedure. This procedure also starts the first network paging server process (PID 7)
and the first network request server (PID 8).

13. If this node does not have a clock, gets the current time Crom the partner node.

14. Initializes the lock manager database, using the rue_Slock_init procedure.

15. Initialize the naming server, using the name_$init procedure.

16. Checks that the PROM node number and the boot volume node number are identical.
If they are not the same and the node is in service mode, writes a me5Sfige asking if'
you want to proceed. If the answer is not yes, or the IDs do not match and the node
is in normal mode, initiates os shutdown.

17. Makes the disk entry directory (f) the working directory.

18. Initializes the PROC2 manager 'using proc2_ $init, which does the Collowing:,

~ Initializes the PROC2 UID array to newly generated UIDs .

• Initializes the PROC2 information record that describes process 1 (this process).
The initialization operation creates and maps the 'node_data/stack object,
which is the stack object Cor this process .

• Checks if AEGIS is being booted from tape. If so, runs the tape _ $boot
procedure to find and load /bscom/rbak_shell (the cartridge tape bootshell)
and returns.

Otherwise, resolves the bootshell 'node_data/shell, locks it Cor cowriters, maps
it, and returns with the bootshell start address.

19. Initializes the UID location hint manager using hint~ $init.

20. Initializes the event logging manger using log _ $init.

21. If the node has a color display, initializes the color debug module using
color _ $cold_init.

22. If the node is diskless, gets the calendar information from the partner.

23. Makes the trap page read-only.

24. Recalculates the maximum number oC pages allowed for the mapped segment table to
refiect the pages that have been Creed.

25. If the node has a PEB (performance enhancement board), loads the PEB writable
control store.

If the node has a 68881 coprocessor, allocates and maps an area in which per-process
68881 state inCormation will be saved.

AEGIS Initialization 28-6

/ "-

(
\, _- -'"

o

o

o

---_ -_._-_ .. _-._-----.. _---_.-

26. If the node is diskless, initializes the MST so that it can print the PARTNER NOT
RESPONDING message, if necessary.

27. Frees the pages used by the initialization code. the os _ 'init routine and all other
initialization code called only during system initialization are located in separate
named sections that are loaded at the the end ot the OS wired area. They have
therefore been wired up to this point. However, they will never be needed again and
can now be freed. As a result, the length of the paging· rde does not have to I'enect
the length of the initialization logic.

28. The os _ $init routine exits by calling proc2 _ $startup using the bootshell address
returned by the proc2 _ .init routine.

29. The proc2 _ $startup routine changes mode to user and invokes the bootshell.

28-7 AEGIS Initialization

o

Chapter 29
User Mode Initialization

The last task in system initialization is the initialization of the user interface. This process is
completed by three modules:

• The bootshell (SHELL)

• The user environment initialization program (ENV)

• The normal user interface process; DM, SH, or SPM.

The bootshell is a transition point between AEGIS initialization and the definition or the user
environment. The bootshell provides a variety of commands that are available when the node is
in service mode, including debugging, virtual memory, and file system management commands.

The user environment initialization program (ENV) initializes the first process user environment
and loads the display manager, the server process manager, or the shell program. It sets up the
address space used by the first user-mode process, which is typically the DM.

The display manager (DM) is the normal user interface. The DM can only be used on nodes with
a full bit-mapped display. It is the DM that presents the normal login message.

The server process manager (SPM) runs on server nodes, which are usually DSP80 and DSP160
systems without display interfaces. The SPM manages the node's response to create remote
process (CRP) commands from other nodes. It also handles certain houskeeping functions, such
as starting the MBX helper and monitoring the· shutdown switch.

The shell program (SH) is the single-process shell. It can provide a user interface over an SIO
line, where the full display capabilities are not available. This program is the same as the shell
program invoked by the DM SH command.

2Q.l. The Bootshell

Like AEGIS, the bootshell is a program that has been processed by the run file converter (-an
RFCed program"). The executable file is located in 'NODE_DATA/SHELL. A second version
of the bootshell, RBAK_SHELL, is loaded and used when the node boots from a cartridge tape.
This version can manipulate and read the tape, and provides an additional command, RBAK,
which reloads the system software from the cartridge tape.

Except when running the DM, RBAK, SPM, SH or GO command, the bootshell runs as
user .none.none, and therefore its access to objects can be limited by ACL restrictions. As a
result, it is in some ways a vestigial resting point. It is useful for such operations as debugging
library-level code.

User Mode Initialization

2g.1.1. Bootshelllnitialisation Operations

In a normal-mode system initialization, the bootshell carries out some preparatory operations and
then loads and calls ENV to set up the initial user process environment. In service-mode
initialization, the bootshell enters a command processor and displays the bootshell prompt. You
can then enter any of the bootshell commands.

In a normal mode ini\ialization, the bootshell:

• Displays the Apollo logo (/SYS/ APOLLO _LOGO).

• Invokes the bootshell command file located a.t 'NODE_DATA/STARTUP _SHELL,
if ODe exists. (This rue is not required.)

• Determines which program should be invoked by ENV. If the node has a display, DM
(/SYSfDM/DM) will be invoked; otherwise, SPM (/SYS/SPM/SPM) will ~e invoked.
The single process shell (/SYS /BOOT) can only be invoked explicitly by entering the
SH co-mmand when in the bootshell.

• Loads and runs ENV (/SYS /ENV)

If the node is being initialized from cartridge tape (that is, the bootshell is RBAK _ SHELL), the
bootshell automatically runs its RBAK procedure. This procedure prints a message that asks if
you wish to replace the system software on your disk. If your answer is yes, it copies the first
WBAK fue from the cartridge tape to the system disk and returns to the bootshell command
processor described below.

2g.1.2. BootaheD Commands

The bootsheU provides a command processor that appears automatically during initialization in
service mode €that is, as a result of an MD EX AEGIS command). You can enter the bootshell
command processor in normal mode by exiting the last user process as follows:

• Entering the EX command to the DM

• Pressing tile CTRL/Z key combination when in the single process shell, but only if it
was invoked by an SH command to the bootshell

• Enteriltg: the Quit command or pressing the CTRL/Z key combination to the SPM.

In these C&SeS-J: exi\ing the program returns the process to ENV, which returns to the bootshell.

User Mode Initialization 29-2

I/-~

I

'\ ' ' ... , ... '

\, '. , , ...

C)

o

o

Bootshell commands can be divided into two categories: standard commands and BSCOM
commands.

The standard bootshell commands are listed in Table 29-1. In addition, the bootshell commands
include copies of the the MD debugging commands, including the assembler/disassembler. The
debugging commands, like the other BS commands, are part of the bootshell code, and do not
rely on the PROM.

The BSCOM commands are located in the /BSCOM directory. You invoke them by using the
bootshell LO command. The BSCOM commands are:

• CPT .BS - Copy Tree

• CPBOOT .BS - Copy Boot

• DL T .BS - Delete Tree

• LAS.BS - List Address Space

These commands are similar, but not identical, in operation to their DM counterparts. For
example, the CPT and DL T commands do not take arguments, but initiate an interpreter that
requests input; they also provide online Help. Like most other bootshell commands, the BSCO~1
facilities are limited by the fact that the bootshell executes as USER.none.none.

The BSCOM directory has two additional files, LIB.BS and RBAK_SHELL. LIB.BS is the
library used by the BSCOM commands. RBAK_SHELL is a copy of the bootshell that is loaded
when AEGIS is booted from a cartridge tape. It is located in the BSCOM directory for
distribution purposes only.

29.2. The User Environment Initialization Program (ENV)

The ENV program initializes the first process user environment, including the user global space
that is shared by all user processes. It then loads the DM, SPM, or the single process shell (SH).
ENV is bound to a private copy of the process manager (PM) and uses the manager's
pm _ $init _ first procedure to carry out nearly all the initialization operations. The ENV
program deletes the 'NODE_DATA/STREAM_$SFCBS files and calls the pm_$init_first
routine.

The pm_ $init_first routine performs the initializations that are unique to the first user-level
process. It initializes user-level managers and user global space, including the global libraries and
known global table, in addition to performing process-specific tasks. See Chapter 9 (or an
explanation of user-global and process-private address space.

29-3 User Mode Initialization

Table 29-1. Bootshell Command Summary

CF
CHN
CRD
CRF
CRL
CTNODE
CTOB
DEBUG
DLF
DLL
DM
DMTVOL
GLOB
GO
H
IN
LD
LI
LO
MA
MTVOL
ND
RBAK
REL
SH
SHUT
SPM

[<patbname> I -E]
<pathname> <compname>
<pathname>
<patbname>
<patbname> <linkname>
<leaf> <node_id>
<patbname> <uidbi> <uidlo>
<value>
<patbname>
<linkname>

{WISIF} <lvno> [<pathname>]

<patbname> [-0] [-S I -NS]
[<pathname>] [-A [-DJ] [-uJ
<address>
<pathname> [-D] [-5 I -NSJ
<pathname> [<1> <sz>J [-EJ
{WISIF} <lvno> [<pathname>J
<pathname>

[-AJ

STCODE <status~code>

TB
TI {-ON I -OFF}
TR <patbname> <sz>
UCTNODE <leaf>
UCTOB
UMA
WD

Key:

<pathname>
{<pathname> I <1> <sz>}
<pathname>

<1> - lov address
 - bigh address
<s> - start address
<sz> - size

run/end command file
cbange name
create directory
create file
a.ddlink
add node to local copy of root
catalog name vith specified uid
enable/disable debug mode
delete file
drop linkname
load display manager
dismount a logical volume
list installed globals
load as if in normal mode
prints help text
:nvoke loader to install named file
list directory
set display lites address
invoke the loader v/ the given RFC file
map file
mount a logical volume
set naming directory
Restore contents of a cartridge tape *
release proc-mgr assigned storage
load single process shell
sbutdovn the system
load the server process manager
print textual definition of status code
stack trace back
enable/disable the timer
truncate rav data file to given size (hex)
drop node from local copy of root
un-catalog pathname from namespace
unmap file by name or addr/size
set working directory

<type> - { nil. rec. hdru. obj. dev. pad. undef. uasc. mt. boot }

Note • - The RBAK command is only prOVided by RBAK_SHELL. the cartridge tape
bootsbell. and can be executed only if AEGIS vas booted from a
cartridge tape.

User Mode Initialization 29-4

~-"
I
\
' "

o

-0

C)

The pm _ $init _ first routine does the following:

1. Initializes the user global space read/write storage (RWS) by creating a backing file
for the storage ('node_data/global_data). If such a file already exists, it is deleted
first. The new file is made permanent and locked for multiple readers or one writer
(nr _xor _lw).

2. Maps and allocates the global space storage used by the global information record at
the base of user global address space.

3. Initializes the user-private read/write space manager to use the private impure data
area.

4. Allocates the space in the private read/write space for the process fault manager error
mask.

5. Builds private read/write scratch space to be used in building the global space KGT
to check for duplicate entries. In doing so, it resolves the process 1 stack object
pathname ('node_data/stack) and initializes the read/write storage manager.

6. Initializes the global-space known global table (KGT) manager. This procedure
allocates the space required by the pure (read only) KGT.

7. Defines entries in the pure KGT for the PFM and FPU masks and for various creation
record variables.

8. Allocates global space for, and defines a pointer to, the first entry in the global library
section information list. Defines an entry in the pure KGT that points to the list.

9. Builds a dummy impure KGT by determining the KGT's address and setting the
number of entries, free entries, and maximum entries to O.

10. Directs the AEGIS kernel to pool stack objects when processes are deleted.

11. Determines the node machine type 10 and the type of floating point hardware, if any.
(These are used by the library installation code, to determine whether the PEB library
must be loaded.)

12. Installs the global libraries in global space. To do so it first sets the working
directory to /lib. It then loads each of the libraries specified by pm_ $libnames and
adds their defined globals to the pure KGT. Note that each global library is either
required or optional. If an optional library's name 'or UID can not be found, it is not
installed and no error occurs.

Also note that the syslib file in the /lib directory should match the type of PEB or
floating point hardware that is installed on the node. There are five versions of
syslib:

syslib
syslib.peb
syslib .460
syslib.881
syslib.020

for systems with no floating point hardware
for systems with a Performance Enhancement Board
for DNx60 systems
for systems with the Motorola 68881 coprocessor
for systems with the M68020 processor

29-5 User Mode Initialization

The pm_Sinit_first routine attempts to load the correct library, based upon the
machine type 10 and the PEB kind 10. If it fails to find the correct library then it
writes an error message and tries to install the syslib library.

13. Completes the building of the global KGT, and truncates and unmaps the scratch
area (in private Read/write space) that was used to build it.

14. Searches the KGT for the the addresses of externals required by the pm_$init
routine.

15. Builds a creation record for the user-space boot program. To do so it:

• Resolves, maps, and locks (for cowriters) the ACL cache
('node_ data/acl_ cache) that the DOMAIN/IX environment uses.

• Resolves the user-level boot file pathname passed to it by the bootshell
(fsys/dm/dm, /sys/spm/spm, or /sys/boot).

• Assigns various creation record variables

16. Initializes the following by calling the appropriate PM initialization procedure:

• The global static data in the process manager library.

• The streams manager

• The C library

17. Resolves the private address space user library (flib/userlib.private), if any, and sets
an indicator in the global information record if it is found.

18. Determines the high address of the private read/write storage space and saves it in the
global inror~ation record.

19. Makes the global data section read-only.

20. Calls the process initialization procedure pm _ Sinit to initialize this level 2 process
and invoke the user-level boot program (DM, SPM or SH). (The pm_Sinit procedure
is called whenever a new level 2 process is initialized; bel.ause it is a user-space
routine, it is not covered in deta~l in this document.)

When system initialization completes, the address space of the first level 2 process will appear as
it does in Figure 9-1 and Figure 9-2 in Chapter 9. When a user logs in, the login procedure maps
the working and and naming directories to supervisor private addresss space.

User Mode Initialization 29-6

'\
'"

o

o

o

Appendix A
Boot LED Codes

Some nodes (and probably all future ones) have four or more LEDs on the CPU board and/or
visible from the front panel. :MD and AEGIS use these lights to indicate the status of the system.
They are particularly useful on server nodes (like the DSP80, where they were first introduced)
that do not have a display or other means of communicating with a user.

A complete listing of the various LED codes can be found in the Engineering Handbook. This
appendix only covers the codes that can appear during initial power up and reset.

A set of steady state codes or unchanging values are loaded into the LEDS as the PROM is
initializing the system from power-up or a reset. If the system hangs before running the
diagnostics or printing a prompt character on the display (and dumb terminal), the code in the
LEDs will indicate that last operation that :MD has successfully performed.

Note: if the system hangs, you should try a reset while watching the LEOs. Don't worry if you
don't notice all values; some go by very quickly. Note also that one value - F - has two
meanings.

F - Power-on value

When a machine is turned on, the in~tial state of the LEOS will be
F (all on). They will also show F as long as the reset switch is depressed.

0- First instruction at -init ll

The very first instruction executed by the PROM (i.e., the one
pointed to by location 4) sets the LEDS to o. If this fails to
happen, there is probably no clock signal to the CPU. Alternatively,
the physical location of the LEOS is wrong, and you are getting an
immediate bus error.

1 - Memory passed tests at init

After turning off the LEOs, :MD pushes and pops various data patterns
to and from the stack to provide a minimal existence test for a path
to real memory. If you don't get to this point, there is something
wrong with memory or the address bus.

2 - State saved

At this point:MD has successfully saved the registers, determined
whether it is running physical or mapped, and established the appropriate
stack base register. If you don't get here, there may be a problem
with the stack operations BSR/RTS.

3 - Parity cleared in first 2 pages

MD next clears out any bad parity in the first two pages of memory
(:MD's data page and the mapped trap page. A hang here could indicate
the the parity logic is ignoring the fact that it hasn't been enabled yet.

A-I Boot LED Codes

(The next few codes are loaded in the init_sys routine, which initializes the I/O devices used by
MD.}

4 - VME address modifiers set, ring_id loaded, SIOs initialized, speaker off

MD is prepared to accept bus errors referencing the ring or the VME
interface, but not the SIOs. A hang before this value is shown could
indicate a misbehaving VME or ring board, a non-responding S10 chip,
or an error in the bus error handling logic.

5 - 10MAP cleared, multibus initialized, display (if any) cleared

Again,· bus errors on the 10MAP and multibus are tolerated, as it a bus
error accessing the display. But if a display' is present but not working
right, :MD may hang trying to clear it.

6 - Disp _ init called, returned

This value indicates that a display is present, and it was initialized
without error.

7 - Display init got bus error

This value indicates that the display initialization logic got a bus
error accessing the display.

(This is the end of the init_sys routine. You should now see a prompt character (» on the
display and/or dumb terminal.)

8 - We're in service mode, waiting for keyboard input

This value is displayed when MD determines that it is running in
service mode (or on a reset command in normal mode). If the system
is running correctly, this may be first really observable LED value.
At this point, :MD is waiting for you to enter a return or two from
the input device you are using (display keyboard or dumb terminal).

9 - Character received from keyboard

A - Character received from line 1

B - Character received from line 2

These values are displayed when a character has been received from
the indicated device. It you do not get one of these responses to
a carriage return, check the keyboard (unplug and plug in), check
your S10 cabling, suspect a bad SIO chip or associated hardware.

C - Just printed :MD's banner message

& soon as :MD has determined the input device, it prints its banner
(.:MD REV ... ·) and displays this value. (You probably won't see the
LED value, since:MD immediately enters the command loop - see below).
If you don't see the banner, check the display/terminal hardware, brightness
level, display memory functioning.

Boot LED Codes A-2

\""

o

o

o

D - PTT enabled (map routine)

E - MMU initialized (map routine)

F - MMU enabled (map routine)

These 3 values are displayed by the map routine; which
is used whenever mapped mode is to be entered - the 'M' command,
in certain diagnostics, or, on some models, when disk or ring
I/O is to be performed. -D- indicates th~t the PTT was just enabled
into the address space. If you don't get this value, there is a problem
enabling the PTT. -E- indicates that the MMU bas been completely loaded
with MD's mapping. -F- indicates that theMMU was actually enabled.
(If you entered the -M" command, the -F- will immediately be replaced

Arter MD enters the command loop, starts running diagnostics, or initiates program execution, it
uses a shor~long two-digit sequence to indicate what's occurring.

A-3 Boot LED Codes

" -'

c

o

o

Appendix B
Address Space

-------_._----------- --- -_ .. _------

The following figures show the memory layouts of the various nodes that are presently available.
These figures show both the physical layout of memory and the mapped memory address
assignments.

B-1 Address Space

Figure B-1. Physical Memol")" Layout
/-',

PPN ADDRESS APOLLO 1 APOLLO 2 APOLLO 3 APOLLO 4 APOLLO 5 ,,~
DN420/600 ON3XX OSP80/90 ONX60 ON5XX

------- ------- -------- -------- -------- -------- -----------
O-F 0 PROM PROM PROM PROM PROM

lO-lF 4000 pft pft pft PROM2 pft
20 8000 MMU MMU MMU MMU MMU
21 8400 s10 s10 s10 s10 s10
22 8800 tars. cal timers timers tmrs.cal tmrs
23 8COO floppy floppy
24 9000 c1ma dma 10map
25 9400 c11spl chameleon
26 9800 ring r1ng ring
27 9COO c11sks.cal c1sktape.cal
28 AOOO calendar manfat disk
29 A400 pbu ctl pbu ctl
2A A800 lpr
2B ACOO c1ia.gs c1iags c1iags diags c1iags
2C BOOO peb ctl fpu ctl fpu ctl useqncer fpu ctl
20 B400 fpu cmc1 fpu cmd fpu cmc1 dcoc1e ram fpu cmc1
2E B800 ringl fpu cs fpu cs ringl fpu cs
2F BCOO _ ring2 ring2 vme ctl
30 COOO fpu cs wcs ctl uvmeO
31 C400 cache vO uvmel
32 C800 cache v1 uvme2
33 CCOO uvme3
34 0000 i_cacheO uvme4
35 0400 i cachel uvme5
36 0800 i cacbe2 uvme6 r---,
37 DCOO i_cache3 uvme7 (

38 EOOO color_sup color_sup color_sup '"
39 E400 color usr color usr color usr
3A E800 color wcs color wcs color wcs
3B ECOO
3C FOOO disp1 displ displ_SUp
3D F400 disp2 disp2 dlspl_user
3E F800 dlspl_VCS
3F FCOO mem ctl mem ctl
40-4F 10000 pbu mem 10map(4K) pbu mem 10map (4K)
50-57 14000 PROM2 PROM2
58-5B 16000 PROM2 PROM2
5C-5F 17000 PROM2 PROM2
60-7F 18000 pbU 1/0 pbu 1/0 new dt(32k)
80-FF 20000 c1isp1 mem c11spl mem - c11spl mem c11spl mem

100-17F 40000 c11Sp2 mem - c11sp2 mem color mem
180-1BF 60000 NGC ctl
lCO-1FF 70000 pbu 1/0 pbU 1/0

Address Space B-2

Figure B-2. Physical Memory Layout, Continued

0 PPN ADDRESS APOLLO 1 APOLLO 2 APOLLO 3 APOLLO 4 APOLLO 5
DN420/600 DN3XX DSP80/g0 DNX60 DN5XX

-------- ------- -------- -------- -------- -------- --------
200-3FF 80000 phys mem phys mem pbu mem pbu mem
400 100000 md data md data md data ad data
401 100400 trap pg trap pg trap pg trap pg
402-7FF 100800 phys mem phys mem phys mem phys IDem
800 200000 • • • ad data •
801 200400 • • • IDd data2 •
802 200800 • • • trap pg •
803-804 200COO • • • .lIlaps •
805-824 201400 • • • plllaps •
825 209400 • • • pmaps_sp •
826 209800 • • • rars •
827-DFF 209COO • • • phys mem •
EOO-FFF 380000 • • pbu lIlem2 • pbu mem2

1000-1BFF 400000 ptt(020) ptt(020) • ptt(020)
lCOO-1FFF 700000 ptt ptt ptt • ptt
2000-3FFF 800000 •

o

o B-3 Address Space

Figure B-3. Object Locations

OBJECT APOLLO 1 APOLLO 2 APOLLO 3 APOLLO 4 APOLLO 5 \, ,- ./ ------- -------- -------- -------- -------- --------
PROM 0 0 0 0 0
PROM2 14000 4000 14000
pft. 4000 4000 4000 4000
MMU 8000 8000 8000 8000 . 8000
s10 8400 8400 8400 8400 8400
t.lmers 8800 8800 8800 8800 8800
calendar 8880 8880 AOOO 8880 8COO
cha.meleon 8400
floppy 8COO 9COO 8COO
cart.. ta.pe 8COO
onb cache •
pbu ct.l A400 A400
lpr A800
peb ct.l BOOO BOOO BOOO BOOO
fpu cmd 8400 B400 8400 B400
useqncr ct.l BOOO
dcode ram B400
dma 9000 9000
rlng1 B800 B800
rlng2 BCOO 9800 9800 BCOO 9800
vme ct.l BCOO
Yln 9COO 9COO
fpu cs COOO B800 B800 B800
cache yO C400
cache Y1 C800
YCS ct.l COOO

~" lnst. cacheO 0000
lnst. cache1 0400 "-
inst cache2 0800
inst. cache3 OCOO
color_sup EOOO EOOO EOOO
color_user £400 E400 E400
color_Ycs EeOO EeOO ESOO
disp1 FOOO 9400 9400 FOOO FOOO
disp2 F400 F400
disp1_user F400
disp1_YCS F800
mem ctl FCOO FCOO
iomap 10000 9000-91FF 10000
pbu mem 10000 80000 10000 80000
pbu 1/0 18000 70000 18000 70000
dlsp1 mem 20000 20000 20000 20000 20000
d1sp2 mem 40000 40000 40000
color mem 40000 40000 40000
NO dat.a. 100000 100000 100000 200000 100000
pt.t. 700000 700000 700000 700000

Address Space B-4

o

o

o

Figure B-4. Virtual Memory Allocation lor 18MB Systems

VIRTJAL

o
400-·3FFF

4000-7FFF
7000
8000-lFFFFF

20 0 OOO-AFFFFF
700000-7FFFFF
BOOOOO-BBFFFF

. BCOOOO-BFFFFF
COOOOO-DFFFFF
EOOOOO-EFFFFF
FOOOOO-F68000
F70000-F8FFFF
F90000-F9FFFF
FAOOOO-FBFFFF
FCOOOO-FDFFFF
FEOOOO-FE7FFF

FE6BOO
FE6COO
FE7BOO

FEBOOO-FEFFFF
FEEF300
FEECOO
FEFBOO
FEFCOO

FFOOOO-FF4FFF
FF5000-FF5FFF

DN420/600
APOLLO 1

trap page
PROM

DN300/320
APOLLO 2

trap page
PROM

DSP80
APOLLO 3

trap page
PROM
PROM2

DN550
APOLLO 5

trap page
PROM
PROM2

fpu_cmd fpu_cmd fpu_cmd fpu_cmd
GLOBAL ADtRESS SPACE

PRIVATE ADDRESS SPACE
ptt ptt ptt ptt

PRIVATE PROTECTED ADDRESS SPACE

OS PROC AND DATA
OS BUFFERS

d1sp2_mem
d1sp1_mem
pbu_mem (32K)

PbU_1/0 (32K)
pbu_sm_c_page
Pbu_sm_page
pbu_mt_page
pbu_npa_page

pbu 1/0
pbu_sm_c_page
Pbu_sm_page
pbu_mt-page
pbU_1/O

10map (4K)

NOC ctl
color_mem
d1sp1_mem
pbu_1/O
pbu_sm_c_pg
pbu_sm_page
pbu_mt_page
pbu_1/O

FF6000 color_sup
10map (4K)
color_sup
color user
color_wcs

FF6400 color user
FF6BOO
FF6COO
FF7000
FF7400
FF7S00
FF7COO
FFSOOO
FF8400
FFSBOO
FFSCOO
FF9000
FF9400
FF9S00
FF9COO
FFAOOO
FFA400
FFASOO
FFACOO
FFBOOO
FFB400

FFB800-FFF7FF
FFF800-FFF9FF

color vcs

peb_ctl
fpu_cmd
fpu_cs
cache vO
cache vi

zbuff
mem ctl
dlsp2
d1sp1
rlng2
rlng1

flop
t1mr. cal
810
MMU
pft (16K)
10map

fpu_ctl
fpu_cmd
fpu_cs

chk_buff
zbuff
par_buff

d1sp1
ring
dma

flop.w1n.cal
t1mr
810
MMU
pft

B-5

fpu_ctl
fpu_cmd
fpu_cs
pbu_ctl
lpr

chk buff
zbuff
par_buff

ring
dma
calendar

t1mr
s10
MMU
pft

fpu_ctl
fpu_cmd
fpu_cs
pbu_ctl
chameleon

chk_buff
zbuff
par_buff
vme_ctl
dlspl_SUp
ring
d1spl_user
c11spl_wcS
w1n.tape.cal
t1mr
810
MMU
pft

Address Space

Figure B-5. Virtual Memory Allocation tor M88020 Systems

VIRTUAL

o
400-3FFF

4000-7FFF
SOOO-1FFFFF

200000-3BBFFFF
3BCOOOO-3Cfffff
3DOOOOO-3EFffff
3FOOOOO-3F6S000
3F70000-3FSFFFF
3F90000-SF9FFFF
3FAOOOO-3FBFFFF
3FCOOOO-SFDFFFF
3FEOOOO-Sf£lfFF

3FE6SOO
3FE6COO
3FE7S00

3FESOOO-3FEFFFF
3FFOOOO-3FF4FFF
3FF5000-3FF5FFF

3FF6000
3FF6400
3FF6SOO
3FF6COO
3FF7000
3FF7400
3FF7S00
3FF7COO
3FFSOOO
3FFS400
3FFSSOO
3FFSCOO
3FF9000
3FF9400
3FF9S00
3FF9COO
3FFAOOO
3FFA400
3FFASOO
3FFACOO
3FFBOOO
3FFB400

3FFBSOO-3FFF7FF'

Address Space

DN330
APOLLO 2

DSP90
APOLLO 3

DN560
APOLLO 5

trap page trap page trap page
PROM PROM PROM
PROM2 PROM2 PROM2

GLOBAL ADDRESS SPACE
PRIVATE ADDRESS SPACE

PRIVATE PROTECTED ADDRESS SPACE
as PROC AND DATA

OS BUFFERS

fpu_ctl
fpu_cmd
fpu_cs

chk buff
Zbuff

dispi
ring
dma

flop. win. cal
t1mr
s10
MMU
pft

pbU_1/o
pbu_sm_c_page
pbu_sm_page
pbu_mt_page
pbu_1/o

10map (4K)

fpu_ctl
fpu_cmd
fpu_cs
pbu_ctl
lpr

zbuff

ring
dma
calendar

t1mr
s10
MMU
pft

B-8

NGC ctl
color_mem
c11sp1_mem
pbu_1/0
pbu_sm_c_pg
pbu_sm_page
pbu_mt_page
pbu_1/o

10map (4K)
color_sup
color user
color_wcs

fpu_ctl
fpu_cmd
fpu_cs
fbu ctl
chameleon

chk buff
zbuff
par buff
vme ctl
displ_sup
ring
displ_user
d1spl_WCS
win.tape.ca.l
t1mr
s10
MMU
pft

I~

(~
\'-- "

.----------- --------- --------

Figure B-8. Virtual Memory AllocatioD for 258MB SyRems

(
-_ .. "

\

U
DN160/460/660

VIRTUAL APOLLO 4

---------------- ------------------
0 trap page

400-3FFF PROM
4000-7FFF PROM2
eOOO-7FFFFF User Global

eOOOOO-F77FFFF User Private
F780000-F7FFFFF Protected Private
F800000-FEFFFFF OS Proc and data
FFOOOOO-FF68000 OS Buffers
FF70000-FF9FFFF
FFAOOOO-FFBFFFF disp2_llemory
FFCOOOO-FFDFFFF d1spl_llemory
FFEOOOO-FFE7FFF pbu_memory (82K)
FFESOOO-FFEFFFF pbu_1/O (32K)

FFEE800 pbu_sm_cJage
FFEECOO pbu_sm_page
f'F'EF800 pbu_mt_page
FFEFCOO pbu_npa_page

FFFOOOO-FFF5FFF
FFF6000 color_supervisor
FFF6400 color_user
FFF6800 color_wcs

FFF6COO-FFF87FF
FFF8800 check_buff
FFF8COO zbuff
FFF9000 memory_ctl
FFF9400 display2
FFF9800 displayl
FFF9COO r1ng2
FFFAOOO ringl o
FFFA400
FFFA800 floppy disk
FFFACOO timer. calendar
FFFBOOO s10
FFFB400 MMU

FFFB800-FFFF7FF
FFFF800-FFFF9FF iomap

o B-7 Address Space

o

o

o

Appendix C
Canned UIDs

This appendix lists the system entities that are assigned canned UIDs.

0-1 Canned UIDs

Figure C-l. Canned UIDs

Canned ACL UIDs (file ACLs) -- 0001.xxxx series

Object

acl $n11
acl-$fn11
acl-Sfndvrx
aCl=Sf11e_nwrx

Explanation

All access (file or directory)
No access (file)
All access (file)
File creation ACL used by INVOL

Canned ACL UIDs (directory ACLs) 0002.xxxx series

acl $dnil
acl-$dndcal
aCl=$dir_ncal

Disk structure

pv_label_$u1d
lv_label_$uid
vtoc_$Uid
bat_$uid

Canned object

uid_Sn11
records_Suid

canned UIDs

type UIDs --

hdr undef $u1d
object file $u1d
UNDEF $Uid -
pad_Suid
input_pad_Su1d
Sio_SUid
ddf $uid
mbx=$uid
nulldev Su1d
d3m_area_Suid
d3m_sch_SUid
pipe_$uid
uasc_$u1d
directory_$uid
unix_directory_$uid
mt $u1d
SYSboot $u1d

No access (directory)
All access (directory)
System creation ACL used by INVOL

-- OOOO.02xx series

UID of the physical volume label
UID of logical volume label
UID of the VTOC
UID of the BAT

OOOO.03xx series

Nil uid
File type of record structured files
No record structure. but has headers
Object module type
Completely undefined Objects type
Stream/display manager transcript pad
Stream/display manager input pad
SID descriptor file type
Device descriptor file (DDF) file type
IPC mailbox file (MBX) file type
Null device (/dev/null)
Area files (D3M)
Object (sub)schema files (D3M)
IPC pipe file type
DOMAIN ASCII file type
Dlrectory - for use with streams only
Directory - for use with streams only
Magtape type u1d
Type u1d for sysboot file

C-2

C)

o

o

-~-------.----.-.---------------.----------.---------~

Figure 0-2. Canned UlDs, Continued

Canned object UIOs -- OOOO~04xx series

displayl_$Uid
display2_$uid
name_$canned_root_uid
special_seg_$u1d
diskless $u1d
name_$canned_rep_root_uid

Father po1nter in node root directory
Place holder in MST for special segment
Used by naming server
Canned rep11cated root uid

Canned PPO and subsystem UIOs -- 005xx series

acl_$sys_user_Uid
acl_$sys_prOj_U1d
acl_$login_uid
acl_$locksmith_uid
acl_$sys_org_uid
acl_$nil_sUbs_Uid

Canned ACL type UIOs

acl_$file_acl
acl_$dir_acl

AEGIS user (user.I.I)
AEGIS project (I.AEGIS.I)
Login manager project (~.login.l)
Locksmith
AEGIS organization (1.I.aegis)
Nil sUbsystem

the kinds of objects ACL protects

0-3

o

/-'\

U

GLOSSARY

-When I use a word,- Humpty Dumpty said, in rather
a scornful tone, -it means just what I choose it to
mean -- neither more nor less,-

Lewis Carroll, Through the Looking Glass

absolute pathname

An ordered list of component names that gives the path to an object starting from the network
root directory U f). Because it begins at the root of the tree, the absolute pathname is valid
throughout the entire network. '

access control list (ACL)

A type of object that defines who is permitted access to one or more objects and also how those
objects can be accessed.

access violation

An attempt to write to read-only memory.

acknowledge (ACK) byte

A byte in the packet header that indicates whether or not the target node received the packet or
if an error occurred during its circulation through the ring.

active object

An object that has been recently used.

activating a segment

The AST manager operation that copies information about an object from its volume table of
content5 entry (VTOCE) to an active segment table entry (ASTE).

active segment table (AST)

The wired, per-system table that caches the locations and attributes of active (recently used) local
and remote objects.

active segment table entry (ASTE)

An entry in the AST that caches information about one object segment.

active segment table entry index (ASTEX)

The index to a specific active segment table entry (ASTE).

Glossary-l

address space identitier (ASID)

An integer from 0 to 25 that identifies the virtual address space allocated to a process. User and
supervisor global address spaces are assigned ASID O. The first process created at system
initialization uses ASID 1; thereafter, the display manager uses ASID 1. Level 2 processes are
allocated ASIDs 2 through 25.

address translation

The hardware operation that generates a physical address from a virtual address.

AEGIS kernel

The protected operating system software that runs in supervisor mode and exists in supervisor
global address space.

ASKNODE service

See node status inquiry service.

alternate logical volume label

A copy of the logical volume label that INVOL creates when it initializes a logical volume. The
alternate logical· volume label makes it possible for SAL VOL to reconstruct the logical volume
label should the original be destroyed.

AST replacement

The procedure that locates and deactivates least recently used ASTEs.

asynchronous fault

A software-defined fault condition that occurs independently of a program's instruction execution.

atomic transaction

A transaction that is completely H enclosed H such that either all subtransactions (steps) occur or
none of them occur. An atomic transaction is guaranteed to complete or perform no operation at
all.

back segment table (BST)

The per-process table that links togehter the processes that are currently sharing the same object
segment. This table only exists on forward-mapped systems.

badspot

A media derect on a disk that renders one or more blocks unusable for data storage.

badspot cylinder

The physical disk structure that records the physical badspots (unusable blocks) that exist on the
volume. The badspot cylinder is usually one of the last two cylinders on a disk.

Glossary-2

',,~ -'

o

o

.r-'-
f \ o

bat step

A field that controls how the BAT manager allocates blocks when it lays out an object. For
example, a bat step of 2 tells the BAT manager to allocate the next block at block n+2. Users
set the bat step, via INVOL, to optimize disk seeks; the correct bat step for a given volume is the
value that allows the disk to capture as many consecutive blocks in a single revolution as
possible.

binding a process

The operation that creates a level 1 process and starts it running at a specified procedure entry.

biphase error

An error that occurs when a node receives an electrical signal and cannot regenerate it.

bit BLT

Bit block transfer. Process by which display hardware moves arbitrary rectangular areas at high
speeds.

block availability table (BAT)

A table in the logical volume (a bitmap) that describes how the disk blocks on the logical volume
are currently allocated.

block availability table (BAT) manager

The manager that allocates and frees disk blocks using the BAT.

bootshell

The system initialization program that displays the Apollo logo and runs the user environment
initialization (ENV) program.

bootstrap PROM

The portion of a node's PROM that initializes. the node. The bootstrap PROM's system
initialization functions include logic that initializes hardware that the PROM references, a set of
minimal device drivers for the I/O devices connected to a node, and logic to load SYSBOOT or
NETBOOT into memory. See also mnemonic deb~gger and PROM.

broadcast

A message that all nodes on the network will receive and process.

cached object storage system (OSS)

The managers that handle the per-node cache of recently used local and remote objects. Also
called the virtual memory management subsystem .

Glossary-3

canned um

A pre-defined UID that identifies an object acrosS multiple AEGIS systems. A canned UID is
guaranteed to be the same on each AEGIS system, rather than the usual UID, which is always
unique. Examples of objects assigned canned UIDs are I/O devices and disk data structures
(VTOC, BAT).

cartridge tape bootstrap program (CTBOOT)

The program that initializes the AEGIS system on. nodes configured with a cartridge tape as the
boot device. .

client process

A process that calls a network support software's client side to carry out a remote request on its
behalf.

client-server protocol

See request-response protocol.

client side

The portion of the network support software that sends out requests chosen from its menu of
remote services.

cold start routine (cold _ start)

The system initialization routine that the PROM calls to initialize the AEGIS kernel. The cold
start routine initializes the memory management unit and the memory map and enables VME
and :MUL TIBUS devices, if they exist.

common fault handler

The fault interceptor module routine that handles all faults.

concurrency control

The object attribute that controls simultaneous access to the object among several processes.
Concurrency control can be:

• None, where no concurrency control is applied. The system applies no concurrency
control to temporary, uncatalogued objects.

• Shared reading or exclusive writing, (file_$nr _xor _lw), where any number of
processes can read the object at the same time, but only one process at a time is
allowed to write the object.

• Shared writing, (file _ $cowriters), where any number of processes can write the object
at the same time. The system limits shared writing to processes running on one node,
although these processes do not have to be on the same node as the object they are
ref eren cing.

The lock manager enforces the object's concurrency control attribute.

Glossary-4

./~

C)

c)

o

context

See process context.

context switch

The operation that makes a process the current process. Also called process exchange and
dispatching.

current process

The process that is currently using the processor.

data structure

A structure on which many separate operations are performed, for example, a window or a pad.

demand paging

The system process that dynamically transfers l024-byte pages of an object residing on local disk
or remote node to the requestor, be it on the local node or on another node in the network.

device driver

A collection of system-level commands to device-dependent control/status register bits.

device volume table (DVT)

The table that lists the logical volumes on a server node.

diagnostic frame

The data structure that describes a fault to the user-mode fault handler. The fault interceptor
module's common fault handling routine builds the diagp.ostic frame and places it on the process's
supervisor stack.

diagnostics cylinder

A disk cylinder that is reserved for disk diagnostic or controller diagnostic operations, and for use
by the on-line TESTVOL program (usually the last or next-to-last cylinder on the disk).

directory

An object that contains a set of associations between pathnarne component names and UIDs.

directory manager (Dffi)

The manager that creates, deletes and manages the use of directories.

disk address (DADDR)

A disk block's sequence number relative to the start of the physical or logical volume.

Glossary-5

disk address space

The 1024-byte disk blocks on a disk, identified by disk addresses (DADDRs).

disk block

1024 bytes of data plus a 32-byte disk block header. Floppy disk blocks do not have disk block
headers.

disk butrer. manager (DBUF)

The mechanism that the VTOC and BAT managers use to cache object file maps (their disk
addresses on the logical volume).

disk entry directory (I)

The first directory level on a node's boot volume. Also called the local root directory or the node
en~ry directory.

diskless node

A node that is not configured with a disk boot volume. The backing disk storage for a diskless
node exists on other nodes on the network.

diskless node bootstrap program (NETBOOT)

The program that initializes the AEGIS system on nodes that are not configured with a system
bootstrap device (cartridge tape or disk volume). NETBOOT works in conjunction with the
AEGIS user-mode diskless node bootstrap server NETMAN, which runs on the partner node.

diskless node bootstrap server (NETMAN)

The AEGIS user-mode server that waits for dump, echo and boot service requests at its well
known socket. NETMAN works in conjunction with NETBOOT to bootstrap a diskless node.
NETMAN runs on the diskless node's partner while ~TETBOOT runs on the diskless node.

disk structure

The data structures that define how objects are stored on disk volumes attached to a node. The
AEGIS system separates disk structures into logical and physical sections.

dispatcher

The level 1 process manager operation that locates the highest ready process and dispatches it.

dispatching

The operation that switches the processor from one process to another. Dispatching makes the
context of the first process on the ready list current and saves the context of the previous current
process. Also called context switch and process exchange.

Glossary-6

/ '"

o

o

display manager

The software process that manages the screen environment in each node. The display manager
allows the user to view and' control separate activities both concurrently and independently by
dividing the screen into windows whose size, shape, and placement are under user control.

dynamic reference

A references to a system service that is resolved at load time.

early acknowledge (EACK) byte

A field within the ring hardware header that the ring hardware on a node uses indicate that it
intends to copy the message passing through it. Because the EACK byte arrives before the ACK
byte, the ring hardware that transmitted the message can' use this field to determine whether or
not to continue a message transmit.

elastic store buffer

The buffer that takes up the slack between a node's input and output ports. An elastic store
buffer error occurs when a node's elastic store buffer overflows.

eventcount

An object that keeps a count of the number of events within a particular class that have occurred
so far in the execution of the system. Eventcounts are used for process synchronization.

exception

An event detected detected by the hardware that changes the normal now of instruction
execution.

exception error stack frame

The frame of information built by the central processor as the result of a hardware exception.
Also called a fault frame.

fault

An exception that is generated by processor ha'rdware or system or program software. The fault
intercept.or manager (FIM) handles hardware-generated faults. User-mode fault handlers service
software-generated faults. Hardware-generated faults restart the instruction that caused the
fault. Resumption of execution after a software fault depends on how the user fault handler is
designed.

file manager (FILE)

The AEGIS kernel manager that provides location-independent access to an object's attributes
and allows user-mode programs to create and delete objects.

file map

The disk volume data structure that provides a road map to the disk blocks that contain an
object's pages.

Glossary-7

file system object

A named collection of bits.

flushing the cache

The process that removes an object's obsolete pages from the active segment table.

flushing

The operation that writes modified pages to disk and also breaks the object-to-physical page
association.

force-write

The process of writing the modified pages of an object to its home disk on demand.

forking a process

The operation that creates a new process and copies the parent process's context - stack contents,
locks, mapped objects - into the forked process's address space.

forward-mapped MMU

The memory management unit that DNx60 models use. The Forward-mapped :MMU organizes its
hardware tables into a 3-level tree structure.

global libraries

Libraries that exist in the address space of all processes. The process manager automatically
installs these libraries into user global address space as part of its initialization process when a
node is bootstrapped (when the DM or SPM is first invoked.)

growth fault

The type of page fault that occurs when a process is adding a new page to an object.

guard fault

The type of fault that occurs when a program tries to reference a guard segment.

guard segment

A segment to which no access at all is allowed. The system surrounds important system resources
with guard segments to protect them from accidental corruption or destruction.

hashing

The process by which large, complex numbers are mapped to smaller, more manageable numbers.
Hashing reduces the area of data that system has to search because it reduces a large range of
numbers to a smaller range. The object storage system hashes UIDS to an index into a volume
table of contents (VTOC) entry. The naming server hashes pathname components into an index
into the directory's hash thread table.

Glossary-8

\

heap management

A read/write storage management technique that divides the storage into free areas and areas in
use. Heap management allows storage to be allocated and freed in any order. In contrast, a
stack allocates and frees storage on a last-in/first-out basis.

hint

The node ID portion of an object's UID and an internet address at which the object corresponding
to this UID was last located.

hint manager

The AEGIS service that aids in determining an object's location in the network.

home disk

The logical volume that contains an object's permanent storage (its VTOCE entry and its file
map).

home node

The node to which an object's home disk is attached.

hop

One passage through a routing node.

immutable object

An object that cannot ever be modified. An access control list is an example of an immutable
object.

impure data

Data that changes during execution, for example, program variables. Also called read/write data.

internet

A group of two or more networks connected by communications hardware.

internet address

A 32-bit network number and a 20-bit node ID.

internet datgram protocol (IDP) header

The part of a packet header that contains source and destination information used by the internet
routing software and AEGIS low-level IPC during message transfer.

internet routing software

The AEGIS kernel managers that provide the ability to pass messages to other networks through
routing nodes.

Glossary-g

interprocess communications (IPC) header

The portion of a packet header that contains source and destination information used by the
user-mode IPe _ $ system services.

interrupt

A hardware-generated event that takes the processor away from the currently running process.
Interrupts vector through the trap page directly to driver interrupt service routines.

I/O address space

The region or address space that contains the status registers and data structures ror the memory
management unit and ror the I/O devices connected to a node.

kernel

See AEGIS kernel.

known global table (KGT)

The system table that stores the entry points or all the libraries installed in user global address
space.

leaf component

The last component in a pathname.

level 1 process

A process that runs supervisor-mode code and thus runs exclusively in M68OxO supervisor'
operating mode. All processes are level 1 processes. Some processes remain level I processes, and
some are augmented (bound) to level 2 processes. A level I-only process does not possess its own
virtual address space. Instead, it uses supervisor global address space. Also called kernel process,
supervisor process, and supervisor-mode process.

level 1 process (PROCI) manager

The AEGIS kernel manager that creates and deletes level I processes and provides scheduling,
interrupt handling, and dispatching operations.

level 2 process

A process that is bound to a level 1 process and which possesses its own per-process virtual
address space. The user-mode portion of a level 2 process is its pageable virtual address space.
The supervisor-mode portion of a level 2 process is the level 1 process underneath it.

level 2 process (PROC2) manager

The AEGIS kernel manager that creates and deletes level 2 processes, manages level 2 process
context and UID namespace, and handles asynchronous fault posting and delivery.

G lossary-IO

....... , ...

/ "

------------------ -----------------

linchpin ASTE

The ASTE that describes the object's highest numbered active segment.

link

A pathname component that causes a jump from one point in the naming tree to another. Links
are commonly used to refer indirectly to an object whose absolute pathname may change over
time, and as shorthand notation for Crequently usei pathnames.

local object storage system '(OSS)

The managers that handle the storage of objects on disk volumes attached to the local node.

location-independence

A property of AEGIS system architecture that separates object identification Crom object
location. In the AEGIS system, an object's UID uniquely identifies the object no matter where it
resides, but it does not specify the object's location.

lock key

The object attribute that enforces the higher-level concurrency control that the lock manager has
assigned to the object. An object's lock key reflects how an object is currently locked; it can be
any aCt:ess, all readers, or the node ID of the writer. The paging server on an object's home node
checks the lock key to ensure the requested access is compatible with the lock on the object.

lock manager

The AEGIS kernel manager that synchronizes process access to objects in the network. The lock
manager enforces object concurrency rules and supports the distributed system.

logical volume

The disk structure that the local object storage system uses to record the storage of objects on the
disk. One physical volume can contain a maximum of 10 logical volumes.

low-level interprocess communication (IPC) software

The AEGIS software that provides the ability to send messages to and from other nodes in the
network. This software is composed of the socket datagram service, the packet protocol, and the
network buffer pool.

mailbox facility (MBX)

The user-mode AEGIS message facility.

manager

A collection of modules that provide the means for external users to access and manipulate
objects.

Glossary-11

mapped mode

The PRO~1 mode of operation in which the memory management unit is enabled and loaded with
the PROM's mapping of memory and I/O devices.

mapped section manager (MS)

The manager that caches pieces of object work space by calling on the MST manager (SLS) and
the lock manager.

mapped segment table (MST)

A per-process table that lists the segments of process virtual address space and the object
segments to which they rerer. The system indexes into an array of MSTs by ASID and virtual
segment number.

mapped segment table manager (MST)

The manager that provides location-independent access to an object's pages. The MST manager
carries out object address to virtual address mapping and unmapping requests and participates in
page fault resolution. Also called the single-level store manager.

mapping

The system procedure that sets up an association between a local or remote object and a process's
virtual address space so that the process can refer to the object directly by referencing addresses
in its virtual memory. Also called single-level store.

memory management unit (MMU)

The hardware that carries out virtual address to physical address translation.

memory map (MMAP)

The per-system data structures that keeps track of each physical page and its availability for use.

memory map manager (MMAP)

The manager that finds an available physical page to hold an object page during object
page/physical page association.

mesaage interlace (MSG)

The AEGIS kernel manager that provides user-mode AEGIS services and user programs with
access to the socket datagram service.

mnemonic debugger (MD)

The portion of the node's PROM that implements the low-level debugging racility. The
mnemonic debugger provides a set of debugging commands and an assembler / disassembler.
Whenever the system crashes, it automatically enters the MD.

G lossary-12

/'---"

o

module

A collection of subroutines that carries out a single operation.

MST back thread

A field within an ASTE that points to all the processes that have mapped the active segment to
their virtual address spaces.

multitasking

Running multiple programs and/or multiple processes using the mutex as the synchronization
mechanism.

mutex lock (ML)

The lock that synchronizes acess to level 1 process resource locks.

naming server

The AEGIS manager that links user level tex~string naming to system-level UID naming. The
naming server is a kernel-space type manager.

naming server helper (NS _ HELPER)

The user-mode server program that manages a master copy of the network root directory. It
works in conjunction with the. naming server, the directory manager, and the supervisor mode
NS_HELPER client software to manage each node's network root (f /) directory automatically as
nodes are added to the internet, moved from one network to another, and removed from the
internet.

network

Any communications medium that allows the AEGIS system to send packets through it.

network buffer pool

The pool of virtual pages available to clients of sockets to hold incoming or outgoing packets.

network buffer pool manager (NETBUF)

The manager that maintains the network buffer pool.

network I/O manager (NET _10)

The AEGIS kernel manager that fields packet sends and receives to the various networks
connected to a routing node.

network manager (NETWORK)

The manager that provides remote access to the attributes and pages of existing objects, exports
the ring hardware type mask to AEGIS software, and initializes network-related databases and
servers during system initialization.

G lossary-13

network number

The number that identifies the communcations line to which a node is connected.

network port

The mechanism that links a network to the AEGIS system on a node. A node can support seven
ports. All nodes have one port that identifies the ring network to which they are connected.
Routing nodes have several ports that identiry the other rings, Tl (bridge) lines, or MULTIBUS
network devices connected to the node.

network port descriptor

A small integer that the internet routing sortware assigns to a network when it connects it to the
internet and opens it (or AEGIS low-level IPC operations. The port descriptor is the node's way
to rerer to the network hardware connected to it, and is important only to the node that owns the
hardware.

network port table

The table that describes the network devices connected to a node. Each entry in the table gives
the network device's network number, the kind of service the network provides, and the kind of
network device that exists at that port; for example, ring, Tl or user network.

network root directory (/ /)

The network-wide root directory that is replicated on every node. The network root directory
exists in the logical volume label; no other data structure either catalogues it or points to it.

network support software

The kernel and user-mode AEGIS software that offers a variety of network services such as a
remote file system, node status inquiry, internet routing, and remote naming.

network-wide namespace

The database that stores object pathnames and which is structured as a multilevel directory tree.
The base of the· tree is a network-wide root directory that catalogues each node; branches of the
tree represent directory objects; leaves on the tree represent particular objects.

node status inquiry service (ASKNODE)

The AEGIS kernel manager that allows clients to request and receive miscellaneous information
about other nodes on the network, such as network statistics, software and hardware
performance, and a node's hardware configuration.

normal mode

The mode or system initialization that proceeds automatically from power-on or reset to the point
of login.

null page

A physical page whose corresponding disk storage contains invalid data.

Glossary-14

\ ,. ,I

(J

o

null process

A special level 1 process that is always ready and always has the lowest priority. The dispatcher
runs the null process when no other processes are ready to run.

orphan process

A process that has no parent process.

OS paging file

An uncatalogued, permanent object that must exist on any logical volume to be used as the boot
device for AEGIS. The paging file is the backing storage for the pageable parts of the AEGIS
operating system.

object

1. Sealed data and the operations that observe and manipulate the data (the computer
science definition).

2. A storage container that is defined by its set of operations (the AEGIS system
definition). An object in the AEGIS system is an abstraction of system entities such
as files, directories, bitmaps, and processes.

object address space

The network wide object name space identified by 96-bit object addresses. Object address space
refers to the total object storage available in the network.

object attributes

Fields in the object's volume table of contents entry (VTOCE) that describe the object to the
object storage system and other AEGIS kernel and user-space managers. Object attributes
include the date and time last modified; the kind of concurrency control applied; whether or not
the object is permanent, temporary, or immutable; the UIDs of its type manager, its associated
access control list, and the directory in which it is catalogued; a count of the references made to
it.

object locating service

The parts of the AEGIS system that locate an object in the network given its UID.

object locking

The procedure that controls how many processes can simultaneously reference an object page.

object storage system (OSS)

The AEGIS components that carry out object management; also called the file system. The
object storage system consists of local, remote and cached subsystems plus an object locating
service and a higher-level, location-independent object management service.

Glossary-I5

object work space

The set of objects that are mapped into a single process's address space.

odd address error

A fault that occurs when a process generates an address that does not lie on a word boundary.

packet

A message on the ring. A packet is divided into a header section and an optional data section.

packet exchange protoeol (PEP)

The portion of a packet header that contains control information used by the network support
software that implements the request-response protocol; for example, the remote file system.

page

1024 bytes of object address space, virtual address space, or physical address space.

page fault

The hardware exception that occurs when a process references a virtual address that has no
corresponding physical address association in the memory management unit tables.

page frame table (PFT)

The reverse-mapped 1vfMU hardware table that describes, for each page in physical memory, the
association between the physical page and a virtual page.

page-in request

A request to read multiple object pages from a remote home disk into the requesting node's
physical memory.

page map (PMAP)

The data structure that stores the file map for one segment of an object and contains the
locations in physical memory of any segment pages that have been referenced.

page map manager (PMAP)

The manager that associates object pages with physical pages and brings in the object pages from
disk or from the network if necessary .

page-out request

A request to write out the modifications made to an object page at a remote site to the object's
home node for eventual storage on the home disk.

page replacement

The operation that takes away a physical page that one process is using so that another process
can use it to hold and object-to-physical page association.

Glossary-16

/------
I '

o

o

page translation table (PTT)

The reverse-mapped MMU hardware translation buffer. The page translation table contains
entries for 1023 physical page numbers, which allows the system to map 1 megabyte of virtual
memory to physical memory at any given time. Each PTT entry points to a page frame table
entry.

paging

The process that moves pages of virtual memolJ in and out of physical memory (unless those
pages are wired).

paging file

See OS paging file.

paging server

See remote paging server.

paging system

The mapped segment table manager, the active segment table manager, the page map manager,
memory map manager, and remote paging server. Also called the virtual memory management
subsystem.

partner node

A node that is set up to handle diskless node bootstrap requests from one or more diskless nodes
on the network.

pathname

A text string that identifies an object. The pathname gives the full route through the directory
tree name space to the object.

pathname component

The part of a pathname that provides a portion of the route through the directory tree to an
object.

permanent object

An object that cannot be deleted by the system during a shutdown or crash and which can be
catalogued in the directory subsystem.

physical address space

The main memory that exists in each node and which is identified by physical addresses.

physical mode

The PROM mode of operation in which the memory management unit is disabled.

G lossary-17

physical page number (PPN)

The number that identifies a page in physical memory.

physical volume

A collection of disk blocks. One physical volume can contain several logical volumes.

physical volume label

The data structure (a single disk block) that describes the physical disk and locates the logical
volumes on the disk.

posting an asynchronous fault

The operation that sends an a"ynchronous fault to a level 2 process.

pri.vate known global table (KGT)

The table that contains the entry points to livraries installed dynamically into user private
address space with the INLm program.

PROCI manager

See level I process manager.

PROC2 manager

See level 2 process manager.

process

1. An abstract machine available to each user.

2. A thread of execution.

3. The basic schedulable entity in the operating system. A maximum of 16 processes can
exist at one time (per node). (Note: limit is due to need for wired memory. If PROC2
bind/unbind rewritten to stop the need to wire memory, unlimited number of
processes will be possible.)

4. A program's ·computer· that runs on the be~alf of a user:

See also level I process and level 2 process.

process blocking

The procedure in which a process blocks itself from being runnable by waiting on an eventcount.

process context

M68OxO processor state and, optionally, a process virtual address space. Only level 2 processes
acquire their own process address space. See also level 1 process and level 2 process.

Glossary-IS

(~-)

\ /

o

process control block (PCB)

The data structure that stores level 1 context.

process creation record

The segment of a user stack that contains all the information that the user-mode process manager
needs to carry out its operations. The process creation record identifies the streams and
arguments passed to the process and identifies any p:ograms to be invoked.

procesS exchange

The AEGIS system operation that switches a process's context in and out of the processor. Also
called context switch and dispatching.

process manager

The user-mode AEGIS manager that manages program invocation and execution.

process priority

An integer value from 1 to 16 that determines the process's scheduling priority. Priority 16 is the
highest priority. The scheduler decrements a process's priority each time it exhausts its time slice
and increments a process's priority each time it awakens after an eventcount wait.

processor access modes

Bits maintained by processor and memory management hardware that define the kind of access
permitted to an object page. Processor access modes specify whether the page can be read,
written, or executed, and in what hardware access mode (supervisor or user) these types of access
are permitted. The processor checks the access mode during virtual-to-physical address
translation and issues an access violation if the requested access does not match the processor
access mode specified in its tables.

private libraries

Libraries that exist only in the address space of processes in which they have been installed.
Users install private libraries with the INLIB program. The program loads the libraries and also
places their externally callable entry points into the known global table.

PROM

The part of a node that contains code to bootstrap a node and code to run a low-level debugger.
Also called the mnemonic debugger (MD) and the bootstrap PROM.

pure data

Read-only data; that is, data that does not change during program execution, for example,
instructions and constants. Since pure data does not change, the loader can map it read-only into
process address space and use the object module as backing storage.

Glossary-19

purification

The system operation that writes modifications to an object page from physical memory to the
object's home disk volume for storage.

read/write data

See impure data.

ready process

A process that runnable. A runnable process is bound, not suspended and not waiting on an
eventcount.

ready list

A doubly linked list of ready process's control blocks that is ordered by scheduling priority from
highest ready process to lowest ready process.

region

A 256-segment section of virtual memo.ry. The DNx60 machine partitions virtual memory into 31
regions.

registering an eventcount

The operation th~t records an exported level 1 eventcount in the level 2 eventcount manager's
database so that user-mode processes can wait on the level 1 eventcount.

relative pathname

An abbreviated absolute pathname that is "relative" to one of a number of points in the naming
tree: the node entry directory, the working directory, or the naming directory.

relocation table

remote file (REMFILE) manager

The manager that handles remote requests for location-indpendent object management, directory
maintenance, and lock requests. The manager consists of a client side and server side called the
remote file server.

remote file server

The portion of the remote file manager that handles remote file client side requests from remote
nodes. The remote file server calls the local FaE manager, AST manager, or lock manager to
handle the request, then passes back the answer to the client in a reply packet.

remote file system

See remote object storage system.

G lossary-20

,/
/' '

(

o

o

remote object storage system

The collection of managers that provide access to objects on remote nodes. The remote object
storage system is layered on top of the socket datagram service and uses this service to send and
receive messages over the network. Also called the remote file system.

remote paging, server

The special level 1 process that services all requests from remote nodes to read or write pages and
attributes of objects on the local node.

replicated data

Multiple copies of files, directories, and other objects.

reply socket

The socket that a process allocates to receive responses to requests that it has generated.

request-response protocol

The protocol that the network support· software uses to handle the requesting and servicing of
remote operations. Also called client-server protocol.

request server

A special level 1 process that waits on the remote file server socket, the information socket, and
the routing information protocol (RIP) socket for incoming packets to the remote file server, the
ASKNODE server, and the RIP server, respectively. When a packet arrives at one of the sockets,
the request server invokes the appropriate server to process the packet.

resource lock

The lorks that processes use to synchronize access to protected system resources. A process can
only hold a resource lock while it is running in supervisor mode.

reverse-mapped MMU

The memory management unit present on all node models except the DN160, DN460, and DN660.
The reverse-mapped MMU does not use forward-referenced hardware tables.

router

See routing process.

routing

The AEGIS internet software procedure that sends packets from one network to another.

routing node

A node that is configured to support internet packet routing.

Glossary-21

routing process

A special level 1 process that runs only on routing nodes. The routing process forwards packets
to their internet destinations and periodically sends out the latest routing information to all nodes
in the internet.

routing information protocol (RIP) handler

The AEGIS kernel manager that receives and stores in the RIP table the routing information
packets sent out by routing nodes. The RIP handler is divided into client and server sides. The
client side allows processes to request information from the local RIP table and from RIP tables
on other nodes. The server side (the RIP server) receives incoming routing inrormation packets.

routing informatioD prQtcol (RIP) table

A per-node data structure that stores routes from the node to other networks in the internet.
Each entry in the table corresponds to a network in the internet. The information stored about
each network includes its network number, the number of routing nodes the message must pass
through to get to the network, and the next network port and hop towards that network.

run tile converter (RFC)

The system initialization utility that takes the compiled and bound version of the AEGIS source
code (aegis.bin) and makes it an absolute bootable image. The AEGIS RFC image (aegis.rCc) is
compiled and bound, but run-time initialization of global variables has not yet occurred.

salvaged nag

A bit in an object's VTOCE that acts as a warning flag to the system that the object may be
corrupted. Also called the trouble bit.

salvage volume utility (SALVOL)

The stand-alone utility that attempts to salvage a corrupted disk volume.

scheduling

The level 1 process manager operation that removes compute-bound processes from the processor.

segment

Thirty-two (32) consecutive pages. The virtual memory management subsystem divides both
object address space and virtual address space into segments, and maps between these spaces in
units of segments.

service mode

The mode of system initialization that invokes the mnemonic debugger command interpreter
(MD).

Glossary-22 _

/~-~'

"

\-',

o

server process

A level 1 or level 2 process that is devoted to managing a certain function. Examples of level 1
server processes are the remote paging server, the routing process, and the remote file server.
Examples of level 2 server processes include the mailbox helper (MBX_HELPER)and the naming
server helper (NS _HELPER).

server side

The portion of the request-response protocol that receives remote requests, handles them, and
passes back the requested information to the client side.

shared object

An object that exists in the address space of more than one process.

sharing fault

The type of page fault that occurs to install the correct virtual page association into the page
frame table entry in the case where several virtual pages are associated with a single physical
page. A sharing fault occurs only on reverse-mapped systems.

single-level store

The part of the AEGIS file system that permits the user to view the entire network as his own
mass storage area. The mapped segment table manager implements the single-level store.

socket

A queue of incoming messages; each socket is identified by a small number such as socket 1 and
socket 5.

software control header

The portion of the packet header that contains source and destination information used by pre
internet versions of the AEGIS system and by the bootstrap PROM.

stack object

The object that provides the backing storage for the user process's pageable stack. The stack
object contains the process creation record and an area for private read/write storage and the
procedure call stack.

stack pointer

The M68OxO processor register (A7) that points to the current process's supervisor stack and, if
the process has level 2 context, to the process's user stack.

stream

A channel that contains data. A stream connects a process to a node, a serial I/O (SIO) line, and
other devices.

G lossary-23

supervisor

1. The collection of AEGIS kernel modules that user-mode programs can run.

2. The AEGIS operating system code that runs only in supervisor mode. Also called the
kernel and the nucleus.

supervisor address space

Protected virtual address space. Supervisor space refers to per-process supervisor private address
space and to' supervisor global address space. Objects mapped to supervisor address space can
only be accessed with supervisor access rights.

supervisor bit

A bit in the processor status register (SR) that the processor hardware sets on a change from user
mode to supervisor mode.

supervisor global address space

The protected, shared virtual address space that contains supervisor-mode code. The AEGIS
supervisor, level 1 processes, and protected system data structures such as the active segment
table exist in this address space. Also called Global B address space.

supervisor mode

The privileged, protected mode of operation on an M68OxO processor. Certain M68OxO
intructions can only be executed when the processor is operating in supervisor mode. AEGIS
kernel software uses this mode of operation.

supervisor-mode code

Software that runs in M68OxO supervisor operating mode. Supervisor-mode code contains
privileged instructions that can only be executed in supervisor mode. The AEGIS kernel is
composed of supervisor-mode code. Also called kernel code and supervisor code.

supervisor-mode process

A process that is using a supervisor stack and thus has an active supervisor stack pointer (SSP).

supervisor private address space

Protected, per-process virtual memory that can only be accessed when the process is running in
supervisor mode. Level 2 processes must call AEGIS kernel services through an SVC trap to gain
access to the information stored in supervisor private space. Also called per-process supervisor
space.

supervisor process

A level 1 process that runs entirely and solely in sU'Jervisor mode. A supervisor process does not
possess its own process address space. Instead, it uses supervisor global address space. Also
called kernel process.

G lossary-24

o

o

supervisor stack

The stack that a process uses when it runs in supervisor mode. Per-process supervisor stacks
exist in supervisor global address space.

supervisor stack pointer (SSP)

The M68OxO processor register that points to a per-process supervisor stack.

suspending a process

The operation that makes a ready or waiting process non-dispatchable.

sye catcher

The trap . handlers that field user-mode calls to AEGIS supervisor-mode services. The SVC
catcher takes the user program's call and arguments, changes from user mode to supervisor mode,
and dispatches the call to the appropriate AEGIS kernel service. When the target kernel service
completes its operation, it passes control back to the user program.

sye trap

A trap instruction that changes processor operating mode from user to supervisor mode.

synchronous fault

A processor-defined fault condition that occurs as a direct result of a program's instruction
execution.

system bootstrap program (SYSBOOT)

The program that initializes the AEGIS operating system on nodes that are configured with a
disk volume as their system bootstrap device.

system initialization

The collection of hardware and software procedures that bring a node from power-on or reset to
the display manager's login prompt. The procedure begins with the bootstrap PROM and
extends through a variety of programs and routines.

system services

The extended machine instruction set.

temporary object

An object that can be deleted by the system when it shuts down or fails. A display manager
transcript pads is an example of a temporary object.

time alice

The length of process virtual time during which a process has exclusive use of the processor. The
higher a process's priority, the smaller the time slice allotted to it.

G lossary-25

touch-ahead count

The number of successive segment pages to be brought into physical memory at a time. The
touch-ahead count is an argument to the mst _ $touch routine.

touching a page

The operation that brings the object pages mapped to pages in process virtual address space from
their home disk into physical memory.

trait

A set of operations of a generic type associated with a particular object. For example, all stream
objects are associated with get, put, open, and close operations. Managers handle traits; for
example, the stream manager handles the stream trait.

transaction ID

A field within the lOP (or software control) headers of a packet that request-response software
uses to match up request packets with response packets. The correct reply to a request will
contain the same transaction ID value as the request packet.

transeeiving

The ring hardware procedure that transmits messages to nodes on the ring network.

trap

An M68OxO instruction that generates a hardware exception which changes the normal flow of
program execution. Traps include SVC traps and traps to the PROM (l\1D).

trap page

The main memory page that contains the vector addresses that the processor hardware uses to
handle hardware exceptions and interrupts.

trouble bit

See salvaged flag.

type

The set of operations that can be performed on an object. An object's type defines how users
relate to the object. Two objects are of the same type if they share the same operations.

type manager

The manager that is responsible ror interpreting the bits within an object.

typed objects

Objects that are stamped with a file type identifier that declares the writer's intention for the
file. In the AEGIS system, it is the type identifier, not the object's name, the determin(>c; how the
rile is to be used.

Glossary-26

' , -'

o

c')

unbinding a process

The operation that deletes level 1 process context. Any time that a level 2 process is deleted, its
level 1 context is deleted as well.

unique identifier (UID)

A 64-bit string that uniquely identifies an object. The UID is the AEGIS system's internal name
for an object.

user address space

The per-process virtual address space assigned to a process. The AEGIS system separates user
address space into unprotected and protected portions called user private address space and
supervisor private address space respectively. Also called per-process address space.

user environment

The collection of programs, referred to as commands, that make up the DOMAIN command line
interpreter (the shell).

user environment initialization program (ENV)

The system initialization program that initializes the first process user environment and loads the
display manager, the server process manager, or the single-user shell to run in that process.

user mode

The unprotected operating mode of an M680xO processor.

user-mode code

Software that runs in M680xO user operating mode. User-mode code refers both to user-written
programs and to the unprotected portions of the AEGIS system.

user-mode process

A process that is using a user stack and thus has an active user stack pointer (USP).

user· global address space

The unprotected virtual address space that is shared among all the user-mode processes on the
system. User global address space contains global libraries and unprotected shared data. Also
called Global A.

user private address apace

The region of virtual memory that is assigned to a user process when it is created and which
contains the process's private programs and data. Also called per-process private address space.

user aocket

A socket that a user program allocates for its exclusive use by calling the IPC _ $ interface. The
IPC _ $interrace calls the message interrace (MSG) to allocate the socket.

Glossary· 27

user stack

The stack that a process uses when it runs in user mode.

user stack pointer (USP)

The M68OxO processor register that points to a per-process user stack.

virtual address space

The virtual memory that levelland 2 processes use to map objects, store data, and run
programs.

virtual memory

The simultaneous sharing of main memory among many users and the treatment of disk storage
as a direct extension of main memory.

volume initialization utility (INVOL)

The AEGIS program that builds the physical and logical disk structures onto a disk volume.

volume mount/dismount manager (VOLX)

The manager that handles removable private storage volumes.

volume table of contents (VTOC)

The table on each logical volume that describes the objects that exist on that volume. The
volume table of contents provides all the information the system needs to locate the disk blocks of
an object given its UID.

volume table of contents block (VTOC block)

A hash bucket of five volume table of contents entries (VTOCEs). Each VTOC block represents
one value of hash; that is, an object's UID hashes to a particular VTOC block. If an object is
created and its UID hashes to a VTOC block whose VTOCEs are already full, the VTOC
manager handles the overflow by creating a VTOC extension block and chaining it to the original
VTOC block.

volume table of contents entry (VTOCE)

The disk volume data structure that describes a single object. The VTOCE stores the object's
attributes and provides a ·road map· to the disk blocks that contain the object's pages.

volume table of contents extent (VTOC extent)

A range of contiguous VTOC blocks. The volume initialization utility splits the VTOC into 1 to
8 extents which the VTOC map subsequently describes.

volume table of contents header (VTOC header)

The structure in the logical volume lable that describes the VTOC.

G lossary-28

o

o

volume table or contents index (VTOCX)

The field in a mapped segment table entry (MSTE) or an active segment table entry (ASTE) that
points directly to an object's VTOCE.

volume table or contents (VTOC) manager

The AEGIS manager that maintains the volume table of contents for the disk volume.

volume table or contents map (VTOC map)

The part of the VTOC header that provides the information needed to locate all the VTOC
blocks. The VTOC map describes all the VTOC extents on a logical volume.

waiter node

The data stucture that the level 1 eventcount manager places on a process's supervisor stack
when it initiates a wait for an eventcount. The waiter node contains the value for which the
process is waiting, a pointer to the process's PCB, and links to other processes waiting on the
same eventcount.

well-known socket

A socket that the system allocates at initialization to the higher-level network support servers
available in every node. The socket ID for a well-known socket is the same on every node.

w hole cloth page

A wired portion of virtual address space that has no disk storage behind it. Many of the system
data structures occupy whole cloth pages; for example, the AST.

wired memory

Virtual address space that cannot be paged out of physical memory and thus needs no backing
storage. Portions of the AEGIS kernel are wired; this wired code and data resides in the first
section of the OS paging' file.

wired RFC page

A page that contains the code and data brought into physical memory from the RFC file during
the system bootstrap sequence.

wiring a page

The operation that touches object pages and also makes them permanently resident in physical
memory.

Glossary-29

(~
\
" -" ...

o

Absolut.e pat.hname 8-1

Access cont.rol 2-11

Access cont.rollist. (ACL) 2-11

UID of 3-4

. Access violation 11-17

ACK (acknowled&e) by~ 20-3, 22-8

Acknowledging &l1DChroDOUI raults 18-12

Activating object IfIIDtnts· 10-6, 12-7

Active aegment

data at.ruct.ans 11-5

nUlhing 1~10

relation to mapped 10-10

Active aegment table (AST)

See also AST (act.ive segment t.able)

Active segment ta.ble entry (ASTE) 10-8

See also ASTE (act.ive segment table

ent.ry)

Active segment ta.ble tat.ry index (ASTEX)

See also ASTEX (active segment

table entry index)

Adding hints 3-~, 7-3

Address apace identifier (ASID)

See also

ident.ifier)

ASID (address space

Address translation 10-12

rorward-mapped 10-14

reverse-mapped 10-13

AEGIS init.ialization 28-1

AEGIS kernel

See also Ker.el

AEGIS paging file

See also OS pacing file

AEGIS process

See also PROCI process

AEGIS system compoaeat.a 2-1

All readers lock key 3-5, 8-5

Allocating disk blocks 4-21

Allocating phyaical paces 10-11

Alternate logical volume label 4-4

Any access lock key 3-5,8-5

ASID (~dress apace identifier) 9-7

and dispatching 15-1

Index

Index-!

and processor modes 19-3

&I index to BST 11-11

ASID 0 9-7

ASKNODE service 20-8, 23-8

hint. file addit.ion by 7-4

AST (active aegment table) 10-8, 11-6

lock during page rault 13-3

modification counter 11-7

atate inrormation 11-7

AST header 11-5

AST manager 10-10, 12-1

and object location 3-0

and VTOC lookup 4-20

AST nushing 10-10

AST maintenance 10-10

ASTE activation 12-7

ASTE deactivation 12-8

ASTE replacement 12-8

concurrency check 6-5, 13-11

dismount procedure 11-7

function summary 10-10, 12-6

growth rault handling 13-7

hint file use 7-6

object attribute handling 5-3

object deletion runction 5-3

page rault handling 13-3

puriry operation 5- 5

VTOC update 10-10, 12-Q

ASTE (active segment table entry) 11-8

blocks delta field 11-12

BSTE thread 11-11

current length field 11-12

DTM 11-12

DTM nag 11-12

event number 11-11

file map modified bit 11-12

GTMS nag 11-12

hold count 11-11

in transition field 11-11

index to 10-8

linchpin 11-11

npr field 11-11

(.~".

".
\' ,

o

C)

PM.A.P address 11-12

VTOCE information in 11-8

ASTE (active segment table)

&Ctivation 12-7

deactivation 12-8

repla.cement 12-8

ASTE &ctiva.tion 12-7

ASTE replacement 11-11

ASTEX (&Ctive segment table index)

c&cheing in MSTE 11-2

Asynchronous fault 18-1, 18-8

&ctnowledgement 18-12

delivery of 18-10

fault delivery EC 18-10

poIt.ing an 18-8

proceu structures for 18-9

quit eventcount 18-10

quit inhibit nag 18-10

tra.ce bit nag 18-9

tra.ce fault trap 18-12

trace status 18-10

Available page 10-11

Back segment table (BST) 11-11

Badspot cylinder 4-4

BAT (block availability table) 4-8

BAT manager

disk block allocation procedure 4-21

function summary 4-1 9

BAT step 4-10

Biphase error 21-4

Block availability table (BAT) 3-7

See also BAT (block availability

table)

Bootshell 29-1

Bootstrap PROM 26-1

functions 26- 2

initialization procedure 26-4

orsanization 26-3

physical and mapped modes 26-1

Ule of RAM memory 26-1

Bound atate 15-4

BSTE thread in AST 11-11

Cached object atorage system 3-8

Cartridge tape bootstrap program

Index-2

(CTBOOT)

See &lao CTBOOT (cartridge ~pe

bootstrap program)

Client header 22-8

Client-server protocol

See &lao Request-response protocol

Clients of lOckets 20-7

Clocks

See &lao Timers

Cold atart routine 28-1

Common rault handling 18-3

exit path 18-11

Concurrency control attribute 3-3

Concurrency mode 6-1

Context awitch 2-6

registers preserved in 16-1

See also Dispatching

Cowriters concurrency control 6-2

CPU time

See also Time alice

Creating an object 4-20, 5-3

CTBOOT (cartridge tape bootstrap program)

27-1,27-6

Current process 15-1

Cyclic redundancy check (CRC) 20-3

Datagram service

See a.lso low-level IPC (interprocess

communication

Date-time modified

See also DTM

Date-time used (DTU) 3-4

DBUF (disk buffering mechanism) 4-2

Deactivating an ASTE 12-8

Deleting an object 5-3

Delivering asynchronous raults 18-10

Demand paging 2-8

Demand- bued purification 12-10

Device-independent network I/O 24-6

Diagnostic rrame 18-5

Diagnostics cylinder 4-6

Directory 8-1

adding entries to 8-12

dosing 8-12

hash thread table 8-7

header 8-5

information block 8-7

opening 8-11

operations on 8-11

searching 8-13

structure 8-4

Directory entry block 8-8

Directory manager 8-3

Disk address

logical 4-6

physical 4-3

Disk block 4-2

Disk entry directory 4-12

Disk structure 4-1

Diskless node bootstrap program

(NETBOOT)

See also NETBOOT (diskless node

bootstrap program)

Diskless node initialization 27-3

Dismount nags in AST 11-7

Dispatching 15-10

and null process 15-11

and virtual time clock 15-2

Display manager 2-13

address space allocation to 10-2

pads 2-14

Distributed system design 1-1

DOMAIN/IX environment 2-13

DTM (date-time modified) 3-4

maintenance in ASTE 11-12

use in cache consistency maintenance

6-6

DTM (date_time modified)

attribute 3-4.

Dynamic linking 2-12

Early AOK byte 22-4

EO manager 17-1

E02 manager 17-1

Elutic store burter error 21-4

ENV 29-3

Enntcount 2-5

lenll (EO) 17-1

Inel2 17-3

registering level 1 17-4

Index-3

Eventeount advance

level 1 17-3

lnel 2 (EO) 17-5

Eventcount creation

level 1 (EO) 17-1

level 2 (E02) 17-3

Eventcount wait

E02 on EO 17-4

errect on priority 15-14

lnel 1 (EO) 17-2

lenl 2 (E02) 17-5

Fault 2-6

uynchronous 18-1, 18-8

handling supervisor mode 18-2

handling user mode 18-2

hardware-generated 2-6

in GPIO interrupt routine 18-4

on fault 18-5

software-generated 2-6

synchronous 18-1

Fault delivery eventcount 18-10

Fault rrame 18-1

Fault handling

AEGIS 18-1

and diagnostic frame 18-5

common 18-3

common exit path 18-11

locating user FIM 18-5

of fault on fault 18-b

of MMU-related errors 18-3

of SVO faults 18-8

processor 18-1

renecting to user mode 18-7

USP validation 18-5

Fault interceptor module (FIM)

See also FIM (fault interceptor

module)

File management 2-2

FILE manager

and object creation 4- 20

export of AST manager function 5-2

rorce-write runctions 5-4

function summary 3-10

hint file addition by 7-5

I
\

\'.

r-',

',---_ .. '

o

C)

hint file use 7-6

object. at.t.ribut.e handling 6-3

object creation functions 5-3

object deletion functions 6-3

object management functions 6-2

File map 3-7

cacheing in ASTE 10-8

levels 4-U

File socket overnow 23-3

FIM (fault interceptor module) 18-1

uynchronous fault. handling 18-11

Flusbing

active .egments 10-10

relident pages from memory 10-12

Force-purifying objects 6-4

Force-writing objects 6-4

Forked proceases 16-5

Forward- mapped MMU 10-12

address translation 10-14

data structures 10-14

General-purpose I/O CGPIO)

definition 2-10

Global A address space 2-7

See also User global address space

Global B address space 2-7

See also Supervisor global address

spa.ce

Growth fault 13-7

Guard segment 11-4

Hardwa.re exception 2- 6, 9-1

Heap management 16-3

Hint

adding 3-0, 7-3

contents 3-0

Hint file 7- 2

reading 7-5

Hint manager 7-1

finding hints 7- 5

hint file update 7-3

Home node 2-2

and DTM 3-4

creating an object on 4- 20

I/O address space 9-4

Index-4

I/O management 2-10

IDP (internet. datagram protocol) hea.der

22-6

Immutable attribute 3-4

Impure page 10-11

In transition bit (PMAPE)

use in pa.ge raults 13-6

In transition page

bit in PMAPE 11-16

replacement .t&tua 10-11

Internet 2-g, 24-1

identification in 24-1

.ending packets on 24-6

Internet a.ddreu 24-3

Internet routing aortw&fe 20-8, 2t-l

components 2t-4

internet subsystem

See also Internet routing aoftware

Interprocess communication (lPC)

See also low-level lPC (interprocess

communication

Interrupt 2-6

Interrupt. handling 15-12

lPC header 22-8

Kernel 1-3, 2-1

Kernel process

See also Levell process

Kernel process ma.nagers U-2

Kernel services 2-2

Known global t.able (KGT) 2-12

.private 0-3

Layout of virt.ual address space 2-6

Leaf component of pathname 8-2

Level 1 eventcount manager (EC)

See also EC manager

Levell process 2-3, 1t-l

address space allocat.ion to 10-2

Levell process manager (PROCl)

See &Iso PROC1 manager

Level 2 eventcount. manager (E02)

See &Iso EC2 manager

Level 2 process 2-4, U-l

address apace &llocation to 10-2

Level 2 process manager (PROC2)

See also PROC2 ma.na.ger

Libraries 2-13

Linchpin ASTE 11-11

use in segment. act.ivation 12-7

Linea.r list. 8-6

Link 8-2

Loa.ding a. progra.m 2-12

Local object. stora.ge syst.em 3-7

Locat.ing an object.

in the VTOC 4-1 g

Locatillg objects

with the AST 3-9, 5-4

with the Fn.E manager 5-4

with the HINT manager 3-0

with the MST 3-0

wit.h UlDs 3-6

Loca.t.ion-independent Object. St.orage System

3-10

Lock

cha.nging 6- 6

obtaining 6-6

verifica.tion 6-7

Lock compatibilit.y 6-3

Lock key 3-5

Lock key a.t.t.ribute

lock mana.ger use of 6-5

Lock ma.nager 3-10, 6-1

a.ccess mode 6-2

cache consistency cont.rol 6-6

concurrency mode 6-1

concurrent a.ccess control 6-1

data structures 6-4

gra.nting locks 6-6

mark for delete nag 6-2

verificat.ion of locks 6-7

Lock table 6-4

Logical volume 4-6

Logical volume label (LV la.bel) 4-8

Low-level IPC (interprocess communica.t.ion)

20-2

Low-level IPC 22-1

Manager 2-2

Mapped mode (PROM) 26-1

Mapped segment

Index-5

data struct.ures l1-1

relation to active 10-10

Mapped segment table (MST) 10-4

Mapped segment table (MST) mana.ger

See also MST manager

Ma.pped segment. table entry (MSTE)

See also MSTE (ma.pped segment

table entry)

Mapping 2-8, 12-1

to global addreaa space 10-6

to pe~proceaa addreaa space 10-4

Mark ror delet.e 6-2

MD (mnemonic debugger)

See also Boot.atrap PROM

Memory management unit (MMU)

See alao MMU (memory

ma.na.gement. unit.)

Memory map (MMAP) 10-11

See a.1so MMAP (memory map)

Memory map entry (MMAPE)

See also MMAPE (memory map

entry)

Message interrace (MSG) 20-7, 23-7

ML (mut.ual exclusion) mana.ger 17-1, 17-7

MMAP (memory map) 10-11

MMAP manager

pa.ge allocation 13-6

use or remote paging pool 13-12

MMAPE (memory map entry)

page usage bit.s 11-17

MMU (memory management. unit.)

10-12

MMU manager 10-14

MMU-related raults 18-3

Modified page bit.s 11-13

MSG

10-4,

See also Messa.ge interrace (MSG)

MST (mapped segment. table) 10-4

MST mana.ger 12-1

and object. locat.ion 3-0

and object. mana.gement. 5-2

calla ror PROC2 manager use 12-3

runction summary 12-1

internal modules 12-4

kernel mapping calls 12-2

C)

mapping algorit.hm 12-5

object to virt.ual mapping 10-4

page fault. handling 10-4, 13-3

ayst.em init.ialization calls 12-3

touch and wire rout.ines 12-2

touch operat.ion 10-4

user mapping calls 12-1

MSTE (ma.pped segment table entry) 10-4

back thread 11-11

contents 11-2

Mutex lock 2-11,17-7

Mutual exclusion 17-7

to IYltem resources 2-11

Mutual exclusion mana.ger (ML)

See also ML (mut.ual exclusion)

ma.nager

Naming server 2-3,8-2

direct.ory management 8-11

function summary 8-2

hint file addition by 7-4

hint file use 7- 6

interaction with hint manager 8-14

network root management 8-13

pathname resolution 8-13,8-15

Naming server helper (NS_HELPER) 8-3

See a.lso NS _ HELPER (Naming

server helper) .

NETBOOT (diskless node bootstrap program)

27-1,27-3

Network a.rchitecture 1-3, 20-1

Network buffer pool 20- 5, 22-10

page allocation to 22-10

pa.ge removal from 22-11

Network device drivers 24-6

Network management 2-Q

Net.work ma.nager 3-8,20-7,23-1

funct.ion lumma.ry 23-1

packet type export 23-2

paging aervices 13-g, 23-2

remote pa.ging server 13-11, 23-3

1,Item initializa.tion 23-1

Network number 2"-3

Network port 2"-"

pa.cket tra.nsmission through 24-7

Index-6

Network root directory 4-11,8-1

ma.nllement of 8-13

NS_HELPER m&nagement or 8-3

Network IUpport aoJ't.wa.re 20-8, 23-1

request-reaponlt protocol 20-6

Node ID

a.a hint 3-g, 7-5

in lock key 3-5, 6-5

in UID 3-6

Normal mode 26-4

Nr_xor_lw concurrenc1 control 8-2

NS_HELPER (Naming It"" helper) 8-3

Null page

bit in PMAPE 11-16

Null page handling 13-8

Object 1-3

Object a.ddress 10-1

association wit.h physical 10-6

relat.ion to virt.ual address 10-2

Object address space 10-1

Object attribute 3-2

ACL UID 3-4

concurrency control 3-3

DTM (date-time modified) 3-4

immut.able 3-4

lock key 3-5

permanent 3-3

reading 5-3

reference count 3-4

salvaged flag 3-4

system type 3-3

temporary 3-3

type VII) 3-4

writing 5-3

Object crea~: ~ 6-3

local 4-20

Object deletion 5-3

Object loca.ting service 3-0

Object lock key 3-5

Object locking 2-11,3-10,6-1

Object management 2-2, 5-1

Object ma.nagement service 3-10

Object naming 2-3,8-1

Object page 2-2, 3-1

associating wit.h physical 10-11

location-independent. access to 5-2

reading 5-2

replacement status 10-11

touching 10-12

writing 5-2

Object. segment 3-1

activating 10-6

activation 12-7

Object storage syst.em 2-2,3-1

components 3-1

Orphan process 16-3

OS paging file 4-11, Q-4

OSS (object storage syst.em) 3-1

Packet 2-9

t.ransmission on internet. 24-1,24-6

Packet. manager (PKT) 20-4

Packet protocol 20-2,22-1

client header 22-8

early ACK byte 22-4

IDP beader 22-6

IPC beader 22-8

packet type 22-3

PEP header 22-7

ring hardware header 22-1

software control header 22-5

Packet t.ype 22-3

Pads 2-14

Page allocation 12-10

during page fault 13-6

from remote pa.ging pool 12-12

Page fault 10-4,13-1

completion of t.ypical 13-6

fetching pa.ges from disk 13- 6

growth faults 13-7

null page fa.ults 13-8

page locking during 13-5

remote 13-9

resident. page faults 13-8

resolution 10-4

segment activation during 13-3

sharing faults 13-9

typical 13-1

Page frame t.able (PFT) 10-13

Index-7

Page location information

in MMAPE and PMAPE 11-17

Page map entry (PMAPE)

See a1ao PMAPE (page map entry)

Page purification 10-12, 12-9

See also Purifier

Page replacement 10-11

and pa.ge usa.ge bits 11-17

Itat.us 10-11

Page resource lock (pag_'lock)

and page faults 13-6

Page st.atistics 11-13

Page t.ranslation table (P'M') 10-13

Page usa.ge bits 11-16, 11-17

Page-in requests 13-9

Page-out request 12-11

Page-out requests 13-9

Paging file

See also OS pa.ging file

Patbname 8-1

Pathname resolution 8-13

PCB (process control block) 15-6

PEP (packet exchange protocol) header

22-7

Per-process address space

See also Process address space

Per-process supervisor space 2-7

See also Supervisor private address

space

Per-process user space 2-7

See also User private address space

Permanent attribute 3-3

PFT (page frame table) 10-13

Physical address 10-3

binding objects to 10-6

Physical mode (PROM) 26-1

Physical page

allocation 10-11

replacement 10-11

Physical page data struct.ures 11-13

Physical page number (PPNl 10-3

Physical volume 4-2

label 4-4

structure 4-"

PM (process manager) 2-12

'-..

(,.,
I I

\ -/

PMAP (segment pa.ge ma.p) 10-8

PMAP mana.ger

pa.ge a.llocation to NETBUF 13-11

growth ra.ult handling 13-7

pa.ge fa.ult ha.ndling 13-4

remot.e pa.ge retching 13-12

PMAPE (page ma.p entry)

pa.ge loca.tion informa.tion 11-17

paae st.atus bita 11-16

Poating asynchronous raulta 18-8

PPN (physical pa.ge number) 10-3

Priority 2-6

and eventcount waits 16-14

and resource locka held 15-14

and time alice end 16-14

See also Process priority

Privileged Instruction viola.tion 18-3

PROCI context

processor state 15-1

scheduling state 15-2

PROCI ma.na.ger 15-1

binding 15-8

function summa.ry 15-8

implementa.tion 15-10

interrupt handling 15-12

process crea.tion 15-8

process deletion 15-8

process suspension 16-9

rea.dy list maintenance 15-15

resource lock ha.ndling 15-9

unbinding 15-8

PROC1 process 14-1

da.ta structures 15-6

reserved to system 15-5

See a.lso Levell process

PROC2 context 16-1

orpha.n atatus 16-3

process group inrormation 16-4

process ID information 16-4

lener Itatus 16-4

atack object 16-3

PROC2 mana.ger 16-1

and process naming 16-9

asynchronous rault handling 18-8

runction summa.ry 16-5

Index-S

process crea.tion 16-5

proceaa deletion 16-7

process rorking 16-5

atack object allocation 16-8

use or MST manaaer 12-3

PROC2 process 14-1

See also Level 2 process

Procedure call atack 16-3

Proceas addreu .pace g-7

Process bindiDg 16-8

Process context 14-1

level 1 2-3,14-1

level2 14-1

switching 2-6

Process control block (PCB) 16-6

Process crea.tion record 16-3

Process dispatching

See also Dispatching

Process excha.nge

See also Dispa.tching

Process group identification 16-4

Process identifica.tion 16-4

Process levels 2-3

rea.son for 14-1

Process ma.nagement 2-3

Process manager (PM) 2-12

Process priority 2-6, 15-2

Process scheduling 2-6

See also Scheduling

Process stack

alloca.tion 15-8

supervisor 15-1

user 15-1

Process stack pointers 15-1

Process sta.tes 15-4

bound 16-4

luspend pending 15-5

luspended 15-4

TSE on relource lock 15-5

Process suspension 15-9

Process synchronization 2-5

Process type 15-7

Process virtual time

See also Time alice

Process virtual time clock 15-2

Process, definition of 14-1

Processor access modes 2-11, 11-4, 11-17

Processor fault bandling 18-1

Processor regiater set 15-1

Processor state 16-1

Program loading 2-12

PROM

See &lao Bootetrap PROM

PTT (pace translation table) 10-13

Pure pace 10-12

Purifier 12-1, 12-0

and pace usace bite 11-17

and remote p .. e fault 13-12

PV label 4-4

Quit eventcount 18-10, 18-13

Quit inhibit nag 18-10

Read concurrency violation 6-5

Read/write storage (RWS) manager 16-3

Reading a hint file 7-5

Reading object attributes 6-3

Ready list IS-6

maintenance IS-15

Rea.dy process IS-6

Rererence count attribute 3-4

Regions of virtual address spa.ce 9-S

Registering eventcounts 17-4

Relative patbna.me 8-1

Rema.ining time slice 15-2

See also Time alice

REMFll..E ma.na.ger 3-8, S-2, 20-7, 23-4

and object creation S-3

client side 23-S

function summary 23-4

Remote nle (REMFlLE) manacer

See also REMFILE man .. er

Remote File Man .. er (REMFILE)

See &lao REMFJLE man .. er

Remote rile ""er 23-8

Remote rile Iy.tem

See also Remote object ltorage

Iystem

Remote object. ltoraae system 3-7

Remote page fa.ult 13-0

completion 13-12

Index-9

network erron during IS-13

Remote p .. inl pool 12-12, 18-12

Remote paaing se"er 3-8, 23-S

creating additional 13-13

nle socket oYernow bandling 23-3

NETLOG burr.r hudling 23-4

paaina operations 18-11

paaina request hudling 23-3

role in purification 12-11

Sticky bipbue error bandling 23-4

Remote request It"er 23-4

Replaeeable p .. e 12-10

Repl.J socket 2-g, 20-4

Request-response protocol 20-6

Resident paae

bit in PMAPE 11-16

repla.cement sta.tus 10-11

Resident page fa.ults 13-8

Resident paae status 10-11

ResolTing page fa.ults 10-4

Resolving path names 8-13

Resource lock handling 16-0

Resource locks 2-11, IS-3

errect on priority 15-14

mutual exclusion on 17-7

Revene-mapped MMU 10-12

a.ddress tra.nsla.tion 10-13

da.ta. structures 10-13

installing PPNs in 10-4

Ring ha.rdwa.re 21-1

error ba.ndling 21-3

messa.ge transmission 21-2

ring states 21-1

transmission time 21-3

Ring bard ware header 22-1

RIP (routing information protocol) bandler

24-S

RIP (routing information protocol) table

24-S

RIP broa.dcut 24-8

Routing 2-0,24-1

Routing process 24-5

pa.cket forwa.rding opera.tion 24-7

Run-file converter (RFC) 9-4

\.

()

Salvaged nag 3-4

SALVOL

and BAT reconstruction 4-21

Scheduling 2-6, 16-13

Scheduling atate 16-2

and process priority 16-2

and process state 16-4

ud resource locks 16-3

Segment

object 3-1

yirtual Q-l, 10-2

Segment map (SMAP) 10-14

Segment page map (PMAP) 10-S

Server process 16-4

Service mode 26-6

Sharing faults 13-g

Shell 2-13

Single-level storage (SLS) 2-S

SMAP (segment map) 10-14

Socket 2-g, 20-4

allocation 22-g

clients 20-7

reply 2-g, 20-4

structure 22-g

user 20-5

well-known 2-g,20-4

Socket manager (SOCK) 20-5

Sortware control header 22-5

Software libraries 2-13

Stack allocation 15-S

Stack object g-3, 16-3

Supervisor 2-1,1g-1

change mode to 19-1

See also Kernel

Supervisor global address space 2-7, g-3

Supervisor mode 2-1

Supervisor private address space 2-7,9-3

Supervisor atack 16-1

Suspend pending atate 16-5

Suspended Itate 16-4

SVC catcher 2-1, 19-1

SVC dispatch table 19-2

SVC dispatching 19-1

SVC trap 2-6, 19-1

SVC trap handler 19-1

Index-IO

SynchrOnous rault 18-1

SYSBOOT (IYltem bootstrap program)

27-1,27-2

block allocation to 4-S

System initialiution 2-14, 25-1

AEGIS 28-1

AEGIS bootstrapping 27-1

Bootstrap PROM 26-1

by cold ltart 28-1

byENV 2Q-3

by MST muaaer 12-3

byos_'init 28-2

by pm_Iinit_f'irlt 2Q-3

by the bootahell 2Q-l

rrom cartridge tape 27-6

rrom normal mode 26-4

rrom lervice mode 26-6

or diskless node 27-3

or user environment 29-1

with SYSBOOT 27-2

System name apace S-l

System type attribute 3-3

Temporary attribute 3-3

Text-string naming S-1

Time management 2-10

Time slice 15-2, 15-5

Time- based purification 12-10

Timers 2-10

Token-passing ring architecture 20-1,21-1

Touch-ahead count 11-5

Touching object pages 10-12

Trace bit nag IS-g

Trace status lS-10

Transaction ID

in client-aerver operations 22-7

in lock requests 6-4

Transceiving 2-g, 20-2

Translation, address 10-12

Trap 2-6

Trap handler

rault handling ror lS-S

Tra.p pa.ge 2-6, Q-l, 19-1

Type manager 2- 2

Type UID 3-4

Typed files 1-3

UID (unique identifier) 2-3

advanta.ges to using 3-5

a.nd loca.tion-independence 3-6

canned 3-7

crea.ting 2-3

generating 3-6

guaranteeing uniqueness or 3-6

,procell 2-4

Itruct.ure 3-5

UID 8-1

Unique ident.ifier (UID) 2-3

See also UID (unique ident.ifier)

Uler environment 2-13

User environment init.ia.lization 29-1

User environment initialization program

(ENV)

See also ENV

User global address space 2-7,9-3

User mode 2-1

User network device

internet support ror 24-0

User private address space 2-7,0-3

User process

See a.lso Level 2 process

User program environment 2-12

User socket 20-5

User stack 15-1

See also Stack object

Valid bit 11-16

Violation

concurrency 6-5

Virtual address 10-2

on Du60 systems 10-3

legmenta.tion 10-2

Virtual addrell Ipace

allocation 10-2

identification or global 9-7

identification or procell 9-7

layout 2-6, 9-1

on 16MB sYltems 9-1

on 256MB IYltems 9-5

regions 0-5

supervisor global 2-7,9-3

Index-11

lupeniaor private 2-7,9-3

t.ranalationto phYlical 10-12

user global 2-7,9-3

user private 2-7,9-3

Virt.ual memory manllement. 2-8, 10-1

data Itructures 11-1

Virtual memory regioDi 9-5

Vlrtual aegment 9-1, 10-2

Volume t.able or contents (VTOC) 3-7

VOLX (volume mount/dismount manlier)

4-2

VTOC (yolume table or contenta) 3-7,4-10

AST manager update or 12-0

extents 4-12

Joca.ting an object in 4-10

VTOC block 4-12

VTOC entry 3-7

VTOC header 4-10

VTOC manager 3-7

runction lummary 4-10

lookup procedure 4-20

VTOC map 4-12

VTOCE (volume table or cont.ents entry)

4-14

VTOCE header 4-14

VTOCX (VTOC index) 4-11,4-10

to special objects 4-11

Waiting on eventcounts

See also Eventcount wait

Waiting state 15-4

Well-known socket 2-0, 20-4

Whole cloth pa.ge 0-4

Wired page

bits in PMAPE 11-16

replacement status 10-11

Wired RFC page 9-4

Write concurrency violation 6-5

Writing object attributes 5-3

.~

\

/

o

Chapter

Memory Organization
and Management

2

o Introduction and Overview
This chapter describes the hardware architectures of the memory organization and
memory management schemes, as they are implemented in DN330, DN560, and DSP90
nodes. For information regarding the Motorola 68020 microprocessor, refer to the
Motorola M68020 32-bit Microprocessor User's Manual (© 1984, Motorola Inc).

Memory Organization
Besides mapping virtual-to-physical addresses, the memory management unit manages
data and program storage in DN330, DN560, and DSP90 nodes. In order to understand
the memory management unit's hardware architecture, you must first understand how vir
tual and physical space are organized within these nodes.

1-1 Memory Organization and Management

Virtual Space
See Figure 2-1. It depicts virtual address space allocation in DN330, DN560, and
DSP90 nodes.

OMB ..-------------.....,

64MB

User
Global

(Global A)

User
Private

(per-process)

Supervisor Private
(per-process)

User Mode

Supervisor Mode

Figure 2-1. Virtual Address Space in DN330, DN560 and DSP90 Nodes

Once you are familiar with the Figure, refer to Table 2-1, Table 2-2, and Table 2-3.
These tables provide listings of virtual addresses for devices that are used by the operating
system.

Memory Organization and Management 1-2

o

C)

Table 2-1. A Virtual Memory Map for DN330 Nodes (Running the AEGIS
Operating System)

Location In Virtual
Space Virtual Address Name

(Global or User)

Global A 400 Boot PROM

3fcOOOO Display1 Memory
3ff9cOO Ring
3ff9800 Display1 Control

Global B 3ffaOOO DMA
3ffa800 Floppy
3ffacOO Timers
3ffbOOO SIO
3ffb400 MMU
3ffb800 PFT

1-3 Memory Organization and Management

Table 2-2. A Virtual Memory Map for DN560 Nodes (Running the AEGIS
Operating System)

Location In Virtual
Space Virtual Address Name

(Global or User)

Global A
400 Boot PROM
4000 Boot PROM2

3faOOOO Color Memory

3fcOOOO Display1 Memory

Global B 3feOOOO PBU 1/0

3ff5000 1/0 Map
3ff6000 Color Superv.
3ff7cOO PBU Control
3ff9400 VME

3ff9aOO Display1 User

3ff9800 Display1 Superv.

3ff9cOO Ring2

3ffa800 Disk/Tape Cal

3ffbOOO SIO

3ffb400 MMU

3ffb800 PFT

Memory Organization and Management 1-4

I

\.,

o

o

,I" \

I)
~/

Table 2-3. A Virtual Memory Map for DSP90A Nodes (Running the AEGIS
Operating System)

Location in Virtual
Space Virtual Address Name

(Global or User)

Global A 400 Boot PROM

3feOOOO PBU 1/0
3ff5000 110 Map
3ff7cOO PBU Control

Global B 3ff8000 Line Printer
3ff9cOO Ring
3ffbOOO SIO
3ffb400 MMU
3ffb800 PFT

Physical Space
See Figure 2-2. It depicts physical space allocation in DN330, DNS 60, and DSP90
nodes.

1-5 Memory Organization and Management

0
...

...

4000

8000

8400

100000 liiilliillil

Up to 3MB

3FFFFF

Figure 2-2. Physical Address Space in DN330 I DN560 and DSP90 Nodes

Once you are familiar with the Figure, refer to Table 2-4, Table 2-5, and Table 2-6.
These tables provide listings of physical addresses for main memory and devices resident
in physical space.

Memory Organization and Management 1-6

./

o

\ C'
I

;'

Table 2-4. A Physical Memory Map for DN330 Nodes (Running the AEGIS
Operating System)

Physical Address Name

400 Boot PROM

20000 Display1 Memory
9800 Ring
9000 DMA
9cOO Floppy
8800 Timers
8400 SIO
8000 MMU
4000 PFT

\.

1-7 Memory Organization and Management

Table 2-S. A Physical Memory Map for DNS60 Nodes (Running the AEGIS
Operating System)

Physical Address Name

400 Boot PROM
14000 Boot PROM2

40000 Color Memory

20000 Dlsplay1 Memory

70000 PBU 1/0

10000 1/0 Map

eOOO Color
a400 PBU Control

bcOO VME
fOOO Display1 User

f400 Display1 Superv.

9800 Ring2
9cOO Disk/Tape Cal
8800 Timers

8400 SIO
8000 MMU
4000 PFT

Memory Organization and Management 1-8

"" ,." ,"

(
i

· .. _ .. _._-_._._...... ..---.-.. ---... ------ ... _ •.. __ ._-----_ --.--.--- ------ ._-------------

o

o

()

Table 2-6. A Physical Memory Map for DSP90 Nodes (Running the AEGIS
Operating System)

Physical Address Name

400 Boot PROM

70000 PBU 1/0
10000 I/O Map
a400 PBU Control
a800 Line Printer
bcOO VME
9800 Ring
9000 DMA
aOOO Calendar
9cOO Disk/Tape Cal
8400 SIO
8800 Timers
8000 MMU
4000 PFT

The Memory Subsystem
Refer to Table 2-7. It describes those physical memory configurations that are available
for DN330, DN560, and DSP90 nodes.

1-9 Memory Organization and Management

Table 2-7. Physical Memory Configurations Available for DN330, DN560, and
DSP90 Nodes

f\ODE CPU MAIN MEMORY EXPANSION MEMORY AVAILABLE

DN330 2.0 MB (256K RAMS) 1.0 MB (64K RAMS)

DN560 2.0 MB (256K RAMS) 1.0 MB (64K RAMS)

DSP90 2.0 MB (256K RAMS) 1.0 MB (64K RAMS)

Actual address space size is 4MB; 3MB are used for main memory,
and 1 MB is used (reserved) for I/O space.

The Memory Control/Status Register

See Figure 2-3. It shows and describes the contents of the memory control/status regis
ter.

Memory Organization and Management 1-10

o

c

RIO

31 :12

Failing (Physical)
Address

R/W RIO

I I
1110 9 8 7 6 5 4 3 2 1 0

~.
Upper or
Lower Word

~ , (of Longword)

" B Port Access

" DMA Access

Parity Interrupt Enable

, "" ~, Write Bad Parity

Byte Parity
Failing Address < 31: 12> Error Flags
This field contains the physical address of the location where a parity error has occurred.

Byte Parity Error Flags < 11: 8>
1 = set, 0 = clear.

Write Bad Parity < 7 >
This bit forces any memory write to generate a bad parity bit in memory.

Parity Interrupt Enable < 6 >
This bit enables an MC68020 level-7 Interrupt, when a memory parity error occurs.

DMA Access < 5 >
This bit Is set If a DMA access was In progress at the time a memory parity error occurred.

B-Port Access < 4 >
This bit Is set If a B-Port access (a memory access from a VMEbus device) was In progress
at the time a memory parity error occured.

Upper or Lower Word < 3 >
This bit designates bit 1 In the address bus when a parity error has occurred. It Is valid only
for B-Port accesses, since the B-Port Interface bus Is only 16 bits wide.

Figure 2-3. The Memory Control/Status Register

1-11 Memory Organization and Management

Memory Parity Checking

The memory subsystem calculates parity on each byte written; on memory reads, it
checks all four parity bits. When a memory parity error occurs, the memory cycle com
pletes, the longword address where the parity error occurred is frozen in the memory con
trol/status register, and a level 7 (the highest priority) interrupt is generated. Refer to the
Motorola M68020 32-bit Microprocessor User's Manual (© 1984, Motorola Inc) for in
formation regarding interrupts. To see the memory control/status register, refer back to
Figure 2-3.

The Memory Management Unit
The memory management unit's hardware functionality is closely tied with that of
software. Consequently, we often need to discuss software (and, sometimes, implementa
tion) issues, in order to provide you with a cohesive picture of the MMU. Remember that
this is a reverse- (rather than forward-) mapped memory management unit. Reverse
mapping means that the MMU's dynamic address translation (DAT) hardware checks
virtual addresses against the way physical memory is (currently) mapped, in order to per
form each virtual-to-physical address translation.

Memory Cycles
During a memory cycle, the Motorola 68020 microprocessor presents a 26-bit address to
the MMU. The microprocessor also emits one of eight 3-bit function codes (five of
which are used) and a read/write signal; these explain what type of memory access (user
or supervisor read, write, or execute) the CPU is attempting to perform. Memory
management hardware can then respond in one of two modes. These modes are:

• mapped (where virtual-to-physical address translation takes place), and

• unmapped (where virtual addresses are equivalent to physical addresses; this
mode is neccessary for bootstrapping, and useful for debugging and diagnostics
applications) .

Refer to Figure 2-4 to see the format for a virtual address as it is passed from the 68020
to the MMU.

Memory Organization and Management 1-12

/ "

(

r'

\ .. J

o

Virtual Page Number

25'22

XVPN

, ,
4-Bit Excess
Virtual Page Number

21'10

HVPN

, ,
12-Bit Hashed
Virtual Page Number

g'O

Byte Offset ,
10-Bit Offset

Figure 2-4, A Virtual Address

The MMU in Mapped ("Virtual") Mode

In mapped (MMU enabled) mode, the MMU translates the 26-bit virtual address into a
22-bit physical byte address. The CPU can then access physical memory or device regis
ters. In mapped mode, the MMU performs address space and access permissions check
ing.

The MMU in Unmapped ("Physical") Mode

In unmapped (MMU disabled) mode, the MMU passes the 22 least significant bits from
the address directly to the physical address bus. The CPU can then access physical
memory or device registers, In unmapped mode, the MMU does not perform address
space or access permissions checking.

Figure 2-5 shows the path of an address through the MMU, where the MMU is in both
mapped and unmapped modes.

1-13 Memory Organization and Management

Iillrnrnrnrnrnrnrn
.(-

Backplane

-~0~1~09Ier
-to Clock &
Calendar

-to Disk/Tape
Controller

Figure 2-5. A Virtual Address' Path through the MMU (where the MMU is in
Mapped and Unmapped Modes)

Before Address Translation Occurs

A virtual address divides into two sections. These are: the Virtual Page Number (VPN)
and the Offset. The Virtual Page Number comprises two fields. These are: the Hashed
Virtual Page Number (HVPN), and the Extended Virtual Page Number (XVPN). When
the MMU is in mapped mode, it must "look at" the virtual page number (i.e., at the
XVPN and the HVPN fields). Refer again to Figure 2-4, to examine the fields within a
virtual address.

Besides the virtual page number, the MMU must also "look at" the Address Space IDen
tifier for the current process (from the ASID register, discussed in next section). Without
these elements, the MMU cannot begin translating a virtual-to-physical address for any
process.

Memory Organization and Management 1-14

(
\

() Memory Management Tables and Registers

o

In order to understand the hardware architecture of the reverse-mapped MMU, it's im
portant to understand how its individual registers and tables function. These registers and
tables are:

• The Page Frame Table (PFT)

• The Page Translation Table (PIT)

• The MMU ASID Register

• The MMU Control Register

• The MMU Status Register

• The MMU Parity Register

In the text that follows, we show and describe each table and register in detail. When you
finish reading the descriptions, see Figure 2-16. It provides a flowchart, illustrating how
the MMU, along with its registers and tables, operates.

The Page Frame Table

The Page Frame Table contains 4096 32-bit physical page descriptors, or entries. Entries
in the PFT are indexed (pointed to) by physical page number (PPN). Each PFT entry
corresponds to a single 1K, or 1024 byte physical page (Le., one page frame). Those
PFT entries that share a common hashed virtual page number are threaded (linked)
together. Software sets a "link mark," or End-Of-List bit, in one (any, arbitrary) entry
per linked list.

Whenever the operating system brings new pages into physical memory, or, whenever it
takes existing pages out, it modifies (re- "maps") the contents of the PFT. Conse
quently, the table always presents an accurate snapshot of the way physical memory is
currently mapped.

Refer to Figure 2-6; it shows the Page Frame Table, and the format of a PFT entry
(PFTE). While you are looking at Figure 2-6, notice the way in which some PFT entries
are linked.

1-15 Memory Organization and Management

31 :25 24 232221 20 19:16 15 141312 11 :0
o

ASID Field S D W RX XVPN

2

3

•
•
•
VV

4096

ASID<31 :25>
If this field matches the contents of the
MMU ASIO field (loaded by the operatlnB
system at contexl switch), then the CP
can access the page described In this en
try.
Note: If the Global (G) bit (bit 12) is
set in the PFTE, it dIsables lhis com
parison.

Supervisor <24>
The opt!rating system sets this bit if
the PFTE descrrbes a page that can
be referenced only by the Super
visor (and not by the User).

DOMAIN <23>
This bit is unused.

Write <22>
The operating system sets this bit if
the current process can write to the
page that this PFTE describes.

. Read <21>
The operating system sets this bit If
the current process can have read
access to the page that this PFTE
describes.

eXecute <20>
The operating system sets this bit If
the current process Is allowed to ex
ecute Instructions from the page that
this PFTE describes.

E
0
l

M U G Unk Field (A PPN)

- - - ~ - -
XVPN <19:16>
These are the remaining (excess) bits
from the Virtual Page Number in the
virtual address being requested. If the
XVPN from the virtual address matches
the XVPN in this PFTE\ then the PFTE
describes the requestea page.

End-of-llst (EOl) <15>
This bit marks an arbitrary point in each
linked list within the PFT. During a search

~~gr~~~ ~~fcr6~~6d~~~~~:~d~f~7st
bit twice. If a match has not been found
by the time hardware sees the bit twice,
a bus error occurs.

Modified <14>
The MMU sets this bit to tell the operating
system that an access has occurred to the
page described by this PFTE.

Accessed <13>
The MMU sets this bit to tell the operating
system that an access has occurred to the
page described by this PFTE .

Global <12>
The operating system sets this bit In the
PFTE so thaf different processes can
reference the same ("global") page in
virtual memory.

~~:f~~~ l?;\b t~~~~~ pr~IUdes the

link <11:0>
This field serves as a pointer to the next
entry in a linked (but not neccesarily
contlguous) list of entrles'

h
It contains the

physical page number of t e next entry
whose hashed virtual page number is the
same as Its own.

Figure 2-6. The Page Frame Table (with the Format of a Page Frame Table Entry
Shown)

Memory Organization and Management 1-16

/
I

o

o

--- ----.----

Once you are familiar with Figure 2-6, refer to Figure 2-7. It shows a PFT entry again,
but this time, notice that we have re-arranged the entry into logical blocks. The logical
blocks within each PFT entry provide:

• MMU hash management information, via the XVPN and LINK fields,

• MMU address space checking information, via the ASID field and the Global
bit,

• MMU access permissions information, via the Write, Read, eXecute, and Su
pervisor bits, and

• OIS page statistics information, via the Modified, and Used bits. (Softwarewill
use these statistics bits for the page replacement algorithm that keeps the most
recently used pages resident in main memory, and for other page management
tasks.)

31 :25 24 232221 20 19:16 15 141312 11 :0
........

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~: ......... ::::. ...... PFTE's 
:::::::::::: ::::::::::::::::::::;::::::::::::::::::::::: 

:~: :: [jH~~i m!~,~:j[~~~~!fir;~>:[[[HH ~I~~~~al 
..... ::::: :::::::::::::::::::' ....... " . 

:::::::::::::::::;;:::::::::: 

PFTE's 
Logical 
Blocks 

Figure 2-7. A Page Frame Table Entry, Re-arranged into Logical Blocks 

The Page Translation Table 

The Page Translation Table contains 4096 12-bit entries. It is a cache; it provides a 
speedy (hashed) lookup into the PFT. Each Page Translation Table entry (PTTE) com
prises a 12-bit PPN. This PPN points to one entry in a circular, linked list of PFT entries. 
All of the linked PFT entries hash to a common PTT entry (Le., their hashed virtual 

1-17 Memory Organization and Management 



page numbers are the same) . Refer to Figure 2-8; it shows the Page Translation Table 
and the format of each PTT entry (PTTE). 

15:13 12:0 
o p-----~----------------------~ 

Unused Physical Page Number (PPN) 

2 

3~----------------------------~ 

• 
4096 Entries 

Figure 2-8. The Page Translation Table (with the Format of a Page Translation 
Table Entry Shown) 

Refer to Figure 2-9. It depicts the relationship between the Page Frame Table (the 
descriptor file), and the Page Translation Table (an index to the descriptor file). 

Memory Organization and Management 1-18 

/ 
\ ' .... ,_.- . 



o 

o 

o 

Virtual Page Number 

XVPN 
(Bits 25:22) 

• • 
4096 

entries 

The Page 
Translation 
Table 

Physical 
Address 

"... 

HVPN 
(Bits 21: 1 0) 

• 
• • 

Physical Page 
descriptors 

• 
• • 

4096 
entries 

Physical Page 
Number 

The Page 
Frame 
Table 

Offset 
(Bits 9:0) 

Offset 
from Virtual 
Address 

Virtual 
Address 

Figure 2-9. The Relationship of the Page Translation Table to the Page Frame Table 

The PIT must be dynamically updated, so that it will provide a current index to the PFT. 
In order to update or initialize the PIT, the operating system -- or the bootstrap loader 
-- must be able to access (write to) it. Since the PIT cannot be used to access itself via 
normal, virtual-to-physical address translation, the PIT is assigned a fixed address range 
($400000 ~ $800000). 

The PIT is enabled via the PIT access enable bit (bit 1) in the MMU control register. 
When this bit is set, software can access (write to, and update) the PIT. When the bit is 
not set, however, software cannot access the PIT. Only when the PIT is enabled, and a 

1-19 Memory Organization and Management 



reference is made to address space range $400000 - $800000, can the PIT can be ac
cessed by the operating system. 

If the MMU is enabled (in mapped mode), and the PIT is disabled, address space range 
$400000 - $800000 is treated as part of per-process virtual address space. If the MMU 
is disabled, and the PIT is disabled, address space range $400000 - $800000 is not used. 
This is because in the unmapped mode, the MMU is simply passing the 22 least sig

nificant bits of each virtual address directly to the physical address bus. Refer to Table 
2-8. It shows the relationship of an adddress to the MMU and PIT. Then, refer to 
Figure 2-10. It depicts the PIT, enabled and disabled (for the operating system's, or for 
the bootstrap loader's purposes) within virtual address space. 

Table 2-8. The Relationship of an Address to the MMU and· PTT 

Location 
MMU On MMU On MMU Off MMU Off of Virtual 

Address PTT On PTT Off PTT Off PTT On 

400000 - .. Address PTT" "Translate "Physical .. Address PTT" 
800000 Virtual Address" 
(Within 

Address" 

(Aooess PTT (Perform (Virtual (Aooess PTT PTT Range) Instead of normal Address Instead of 
memory, Virtual;'" to- Is the same mem0{y" 
using V.A.) Physloal as Physloal using .A.) 

translation, Address) 
and aooess 
memory) 

o - 3FFFFC "Translate --Translate "Physical "Physical 
or Virtual Virtual Address" Address" 
800000 - Address" Address" 

3FFFFFC (Perform (Perform (Virtual (Virtual 

(Not within 
normal normal Address Address 
Vlrtual-to- Vlrtual-to- Is the same Is the same 

PTT Range) Physloal Physloal as Physloal as Physloal 
translation, translation, Address) Address) 
and aooess and aooess 
memory) memory) 

~~----------~¥~----------" ~~----------~-~----------,~ 
Virtual Mode Physical Mode 

Memory Organization and Management 1-20 

/ 
I 
'''- .. 



o 

o 

c 

OMB 

400000 

800000 

16MB 

Virtual Address Space 

User 
Global 

(Global A) 

User-Private 
Mapped Area #1 

User-Private 
Mapped Area #2 

User-Private 
Mapped Area #3 

User-Private 
Mapped Area #4 

User-Private 
Mapped Area #5 

Supervisor 
Private 

(per-process) 

Supervisor 
Global 

(Global B) 

MMU ENABLED AND 
PTT DISABLED 

-- _ .... _-_._------_._- .----_._-------_. __ . 

Virtual Address Space 
OMB r------------, 

800000 

User 
Global 

(Global A) 

User-Private 
Mapped Area #1 

User-Private 
Mapped Area #2 

User-Private 
Mapped Area #4 

User-Private 
Mapped Area #5 

Supervisor 
Private 

(per-process) 

Supervisor 
Global 

(Global B) 

16MB '-------------' 
MMU ENABLED AND 

PTT ENABLED 

Figure 2-10. The PIT (Enabled and Disabled) within Virtual Address Space 

The ASID Register 

One binary number (of 128) is assigned to each per-process address space as each new 
process is created; this number is the ASrD for the current process. At process (or "con
text") switch, the ASrD is loaded into the AsrD register, and presented to the MMU. 
See Figure 2-11; it is designed to help you understand the concept of Address Space 

1-21 Memory Organization and Management 



IDentification. Then, see Figure 2-12. It shows and describes the contents of the ASID 
register. 

Global A 
Same for all processes 
(Always belongs to O/S) 

Global B 

Proces9-
Private 

Same for all processes 
(Always belongs to O/S) 

Figure 2-11. Address Space Identification 

Memory Organization and Management 1-22 

ASID 0 

• • • 

ASIO 0 



o 

o 

W/O 

7 6:0 

ASID 
FPU 
Trap Enable 

FPU Trap Enable < 7 > 
o = trap next FPU chip access 
1 = allow FPU chip access 

ASID < 6:0 > 
This field Identifies the process that Is currently running. 

Figure 2-12. The ASID Register 

The MMU Control Register 

CPU writes to this register control MMU operations. See Figure 2-13; it shows and 
describes the functions of the MMU control register. 

1-23 Memory Organization and Management 



RIO R/W 

I I I 
7:4 3 2 1 0 

~~ 

" M MU Enable 

,PIT Access Enable 

, ,"Domai nil Bit 

, , FPU Trap 

Reserved 

MMU Enable < 0 > 
When this bit Is set. physical addresses are formed using the contents of Page Translation 
and Page Frame tables. This bit also enables access rights checking. page fault traps. and 
page statistics updates. When reset (to MMU disable). this bit causes the low-order bits of 
the virtual address to be passed to the physical address bus. unchanged. 

PTT Access Enable < 1 > 
When this bit Is set. references to those addresses within virtual address range $4000000-
$8000000 a software to read or write to (update) the PTT. 

DOMAIN Bit < 2 > 

This bit Is presently unused. 

FPU Trap < 3 > 

This bit Is presently unused. 

Reserved < 7:4 > 
These bits are reserved. 

Figure 2-13. The MMU Control Register 

Memory Organization and Management 1-24 



o 

o 

c 

The MMU Status Register 

The CPU reads the MMU status register in order to monitor MMU operations. Refer to 
Figure 2-14; it shows and describes the functions of the MMU status register. 

1-25 Memory Organization and Management 



RIO R/W 

I I . 
76543210 

~ 
~~ 0 If Stingray 020 Board 

, , PIT Access Enable 

" Orderly Shutdown (toggle) 

" MMU Error 
, , Service Switch 

, Bus/MMU Timeout or MMU Parity Error 

, , Page Fault 

Access Violation 
Access Violation < 7 > 
When this bit Is set, It Indicates that although the MMU has found a PFT entry with the correct 
ASIO XVPN bits, the entry has failed to pass an access protection check. Writes to this register 
clear the bit. 

Page Fault < 6 > 
This bit Indicates that the MMU has passed the end-of-list bit twice, In Its search for a "correct" 
PFTE. Writes to this register clear the bit. 

Bus/MMU Timeout or MMU Parity Error < 5 > 
This bit Is set when the MMU times out, the bus times out, or an MMU parity error occurs. 
Writes to this register clear the bit. 

Service Switch < 4 > 
This bit Indicates the state of the node's service switch. 1 = Normal Mode; 0 = Service Mode. 

MMU Error < 3 > 
This bit Is set when a fault In the MMU causes a bus error. 

Orderly Shutdown < 2 > 
This bit Indicates the state of the orderly shutdown switch. The bit Is normally a "1, II but It goes 
to "0 II when a shutdown Is requested. 

PTT Access Enable < 1 > 
This bit reflects the state of the PTT Access Enable bit (bit 1) In the MMU Status Register. 

020 Board < 0 > 
This bit Is wired low ("0") so that the OIS can distinguish an MC68020-based CPU board 
from an MC68010-based one. 

Figure 2-14. The MMU Status Register 

Memory Organization and Management 1-26 



() 

o 

o 

The MMU Parity Register 

The MMU checks for parity in the Page Frame and Page Translation Tables. Even parity 
is always used to detect the failure of memory outputs going to a high (logical 1) value. 
The MMU updates the two page statistics bits in each PFT entry whenever an access is 
made to the corresponding physical page. These are the Used bit (bit 13) and the 
Modified bit (bit 14). As a result, these bits are not used in parity calculation, and parity 
is calculated only over the remaining 30 bits. See Figure 2-15; it shows and describes 
the functions of the MMU parity register. 

1-27 Memory Organization and Management 



RIO R/W RIO 

15 14 13 12 11 :0 

PFT Error or PTT Index 

~ , 
I, PFT Parity Error 

, , PIT Parity Error 

, , MMU Parity Fault Enable (MMU PF E) 

Write Wrong MMU Parity (Both PFT and PIT) 

Write Wrong MMU Parity < 15 > 

Diagnostics use this bit to test the MMU's error detection hardware. When the bit Is set, any 
data written to the Page Translation Table or the Page Frame Table Is written with odd parity 
Instead of even, and parity errors will occur. 

MMU Parity Fault Enable < 14 > 

When this bit Is cleared, MMU parity errors are Ignored. 

PTT Parity Error < 13 > 
This bit Is set when a parity error Is detected within the PTT. 

PFT Parity Error < 12 > 

This bit Is set when a parity error Is detected within the PFT. 

PFT Error or PTT Index < 11: 0 > 

This field designates the location where a parity error has occurred. If the error was In the 
PFT, this field contains the partial contents (a PPN) of the faulty entry. If the error was In 
the PTT, this field contains the Index (a PPN) of the faulty entry. 

Figure 2-15. The MMU Parity Register 

Memory Organization and Management 1-28 



o 

C) 

MMU Operations 
In the text that follows, we discuss MMU processes, and we explain how each of the 
previously described registers and tables are utilized within the MMU, when it is in 
mapped mode. Refer at this time to Figure 2-16. It provides a flowchart of MMU 
mapped mode operations. When you have familiarized yourself thoroughly with the flow
chart, go on to the text that follows it. 

1-29 Memory Organization and Management 



>~ 
/'/ il 

Figure 2-16. MMU Operations (in Mapped Mode) 

Memory Organization and Management 1-30 

( 



c:; 
-,..--, --, 

~~~I 
OffMt) from

Vlrtua. Addrea
to Phyalcal

Addreil But.

Cj

@

o

r----------------,
L:!~~~t~~
dr·:,::~f~~t ..

Physical Addr ••• But.

G I PFT aearch Loop

MMU TImeout can
OCCl.l' at any point
In the loop after
12.8 ma have elapsed
(from beginnIng of
memory cycle).

-
@ I AIHrt BUS Error

Update CSR

Walt for CPU to
begin exception
proc ... tng

r\
U

Successful Translations

Every memory (CPU) cycle results in one of two occurances, either of which can result in
a successful translation. These are:

• a PTT hit, or

• a PTT miss.

A PTT Hit

The fields within the virtual page number and the contents of the ASID register must be
checked against the contents of specific Page Frame Table entries, pointed to by the Page
Translation Table. A PTT hit occurs when:

1. The XVPN field, located in the PFT entry pointed to by the PTT, matches the
XVPN field that resides within the virtual page number (see Figure 2-17), and

2a. The ASID field, located in the PFT entry pointed to by the PTT, matches the
ASID field that resides within the MMU's ASID register, for the current process
(see Figure 2-18),

or

2b. The Global bit is set in the PFTE. Refer again to Figure 2-6 in order to see the
address space control (ASID and Global bit) fields in the PFTE.

1-31 Memory Organization and Management

(~.

o NOTE: When the Global bit is set, it obviates the need for checking the
ASID field. The Global bit set indicates that the address space in
which this data (or program) resides is global; data (or programs) in
this space are shared by all processes (regardless of their respective
ASIDs).

25:22 21 :10 9:0

Virtual
HVPN Byte Offset Address

ASIO Field Link Field (A PPN) PFTE

31 :25 24 23 22 21 20 19: 16 15 14 13 12 11 :0

Figure 2-17. Comparing the XVPN Fields

Memory Organization and Management 1-32

7 o

ASID Register

1I1I1I1I1I1I1I:rjf]tl:I:::XV~P:N:J!!j[jtl[::~u:n:k~F:,e:'d::(~A::P:PN~)::]pFTE
31:25 24 232221 20 19:16 15 141312 11 :0

Figure 2-18. Comparing the ASID Fields

Once a PIT hit has occurred, the MMU checks the function code emitted by the 68020
against the way the access permissions bits (Read, Write, eXecute, Supervisor) have been
set in the PFT entry pointed to by the PIT. Refer again to Figure 2-6 in order to see the
access permissions bits in the PFT. Then, refer to Figure 2-19 to see the function code
and access permissions bits comparison.

1-33 Memory Organization and Management

o

C'
~;

!!a:
mCll
w~
t:)(

FC R/W Q.

1 0
Data

1 "-
CD
(I)

0 ~

2 Program
1

5
0

1 "-
Data

0
en

0 ~
6 CD Program Co

1 j
U)

7 0 CPU

1
Space

If R & W both bits
bits must be set for { R* = enables access (data read)

data writes. W = allows data writes
X = allows program reads
S = the CPU must be In Supervisor mode

to access. If R and X are both set, then
then execute program (do data reads).

* R must be set for X or W to occur.

Figure 2-1 g. Comparing the Function Code and the Access Permissions Bits

If the permissions agree, the CPU can access the memory location described in the PFfE;
the MMU will update the page statistics (Modified and Used) bits appropriately in the
PFTE. Refer back to Figure 2-6 in order to see the page statistics bits.

If the permissions do not agree, the CPU cannot access the memory location described in
the PFTE, and the MMU generates a bus error.

Memory Organization and Management 1-34

A PTT Miss

The fields within the virtual page number and the contents of the ASID register must be
checked against the contents of specific Page Frame Table entries, pointed to by the Page
Translation Table. A PIT miss occurs when the first PFTE pointed to by the PIT is not
the correct one (Le., when steps 1 and 2a or 2b, above, do not occur). In the event of a
PIT miss, the MMU proceeds around the linked list of PFT entries, searching to resolve
the virtual page number. Two possibilities then exist:

3a. Steps 1 and 2a or 2b, above, occur in a P FTE other than the one first pointed to
by the PTT; remember that this is a reverse-mapped MMU. One of its charac
teristics is that if the page exists in physical memory, a descriptor for it will reside
in the PFT,

or

3b. Steps 1 and 2a or 2b, above, do not occur at all; if the page does not exist in
physical memory, a descriptor for it will not reside in the PFT.

Completing Translation

If the access is permitted, and the first P FTE pointed to by the PTT provided a successful
translation (i.e., if a PIT hit occurs), the MMU updates the page statistics (Modified and
Used) bits appropriately in the PFTE. Refer again to Figure 2-6 in orderto see the page
statistics bits in the PFTE.

If the access is permitted, and a P FTE linked to the first P FTE pointed to by the PTT
provided a successful translation (i.e., if a PIT miss occurs, but a translation is subse
quently found), the MMU updates the page statistics (Modified and Used) bits ap
propriately in the PFTE. It also writes back the correct PPN (from the correct PFTE) to
the PIT (Le. the MMU "updates" the PIT). This increases the probablity that a PIT hit
will occur on the next access to the same virtual page.

In either case, the MMU will concatenate the 12-bit PPN, yielded by a successful transla
tion, with the offset from the virtual address. This forms a physical address. Refer to
Figure 2-20; it shows the format of a physical address that is ready to be sent over the
physical address bus.

1-35 Memory Organization and Management

(

o 21 :10

Physical Page
Number (PPN)

.~---.. - ... - .---

9:0

Byte Offset

Figure 2-20. A Physical Address (note the PPN and Offset Fields)

Unsuccessful Translations

When translation is unsuccessful, a bus error (one of four types) is generated. The four
types of bus errors are:

1. Page Faults,

2. Access Violations,

3. MMU Parity Errors, and

4. MMU Timeouts.

We describe each type of bus error in the text that follows.

Page Faults

If the MMU encounters the "end-of-linked-list" bit twice, there is no match (and it can
be inferred that the page does not reside in physical memory). The MMU sets the page
fault bit (bit 6) in the MMU control register, so that the operating system can bring the
requested page into physical memory.

Access Violations

When the current process does not have the appropriate permissions (R, W, X, or S) to
perform the function that the CPU is trying to perform, the MMU sets the access viola
tion bit (bit 7) in the MMU control register.

MMU Parity Errors

When hardware detects a parity error in either the PIT or the PFT, the MMU sets the
bus timeout or MMU parity error bit (bit 5) and the MMU error bit (bit 3) in the
MMU status register. The MMU also sets the PFT error bit (bit 12) or the PIT error
bit (bit 13) in the MMU parity register. Additionally, the MMU loads the PPN from that

Memory Organization and Management 1-36

location where the fault has occurred into the MMU parity register's PFT index or PIT
contents field.

MMU Timeouts

At most, the MMU needs .68ms to completely search the PFT for a valid translation.
When a memory error in the PFT occurs, the link mark bit may be inappropriately
cleared. If a search is not completed (a match is not found, nor is a page fault generated)
within 12.8ms, the MMU sets the bus timeout or MMU parity error bit (bit 5), and the
MMU error bit (bit 3) in the MMU status register.

1-37 Memory Organization and Management

(

o

Introduction

Appendix A

Floating Point Process
ing

This chapter describes the architecture of floating-point units used in DN3XX and
DN5XX nodes (the DSPXXA does not incorporate floating-point capabilities). If you
have a DN320 or DN550 node, floating-point operations are controlled by the Perfor
mance Enhancement Board (PEB, or floating-point accelerator). If you have a DN330
or DN560 node, floating-point operations are performed by the MC68881 coprocessor.
Refer to Chapter 1, and see Figures XXX and XXX .. These figures show the system ar
chitectures of DN3XX and DN5XX nodes. Notice where the PEB, or the MC68881, is
located within each figure.

A-1 Floating Point Processing

The Performance Enhancement Board
The PEB is a 32-bit microprogrammed computer, capable of executing 255 different in
structions. User-visible elements of the PEB include the accumulator, temporary, and
constant (or "x") registers; an integer 32-bit accumulator, and the PEB control page.
Supervisor-visible elements of the PEB include user-visible elements, along with its
writable control store (WCS) , and a control register. '

PEB Registers
The PEB control page contains those registers required for control of the PEB floating
point unit. These registers are intended for supervisor processes only.

The PEB Control Register

CPU writes to this register control PEB operations.
describes the functions of the PEB control register.

Floating Point Processing A-2

See Figure A-l; it shows and

\'"

(~'.

\
\ "

o 15:9 8:4 3 2 1 0

,

, ,

,
, , F PU Enable

Step FPU

FPU R eset

FPU Exce , , ption Interrupt Enable

rol Store Address (CSA 11 --+- CSA07) Upper FPU Cont
, It

Unused

FPU Enable < 0 >
o = clock able to be single-stepped;
control store accessible.
1 = clock running;
control store inaccessible.

FPU Step < 1 >
If FPU Enable = 0 then toggling FPU Step (0 to 1 and back to 0) will advance
the FPU through one microinstruction.

FPU Reset < 2 >
o = reset FPU, start microprogram.
1 = allow FPU to run.

FPU Exception Interrupt Enable < 3 >
o = do not allow interrupts.
1 = allow interrupts.

Upper FPU Control Store Address < 8:4 >
4 = Halt.
5 = Run.
6 = Step.

Unused < 15:9 >
These bits are presently unused.

Figure A-1. The PEB Control Register

A-3 Floating Point Processing

The PEB Status Register

The CPU reads the PEB status register in order to monitor PEB operations. Refer to
Figure A-2; it shows and describes the functions of the PEB status register.

Floating Point Processing A-4

o

C\I
)

15 14:4 3 2 1 0
....

i
" M S8

, , FPU Control Store Parity Error

Unuse , ,

,
FPU Busy

MSB < 0 >
(Bit 11) of micropc.

,
FPU Micropc

FPU Control Store Parity Error < 1 >

o = FPU WCS ok.
1 = FPU error.

FPU Exc

d

eption Interrupt Pending

This bit is cleared by FPU Enable (bit 0) in the control register.

Unused < 2 >

This bit is unused.

FPU Exception Interrupt Pending < 3 >

o = Not interrupting.
1 = Interrupt pending.
This bit is cleared when an interrupt occurs, or FPU reset in the control register.

FPU MicroPC < 14: 4 >
These bits are the current micropc (bit 4 is Isb; bit 14 is msb).

FPU Busy < 15 >

o = FPU not busy
1 = FPU busy.

Figure A-2. The PEB Status Register

A-5 Floating Point Processing

The PEB Diagnostics Register

See Figure A-3. It shows and describes the functions of the PEB diagnostics register.

Floating Point Processing A-6

(

o

o

FPU Disable- < 0 >
o = halted; r/w WCS.

15:8

, ,
Unused

1 = clock on; can't read WCS.

Step+ < 1 >
o = clock running.
1 = clock stepping.

FPU Reset- < 2 >
o = FPU is reset;, clear parity error.
1 = FPU can be running.

FPU Intent+ < 3 >
o = do not allow interrupt to occur.
1 = allow interrupt to occur.

Halt- < 4 >
o = FPU is halted.
1 = FPU is running.

76543210

,
PU Disab/e-, , F

" Step +

FPU R eset-

FPU Inte nt+ , ,
" Ha/t-

, It Freeze-

, , Full-

Rev-X

Freeze- < 5 >
o = FPU has hit a clock freeze and
is halted.
1 = no freeze encountered.

Full- < 6 >
o = microstack is full and micropc is
unable to increment.
1 = microstack is ok.

Rev-X
o = hardware Rev 0 1 k WCS.
1 = hardware Rev 1 4k WCS.

Rev-X
These bits are unused.

Figure A-3. The PES Diagnostics Register

A-7 Floating Point Processing

PEe Floating-Point Formats
Floating-point formats for the PEB are as follows (where s = sign, e = exponent, and m =
mantissa):

Single Precision seee eeee emmm mmmm mmmm mmmm mmmm mmmm (an
8-bit exponent, a 23-bit mantissa + 1 hidden bit; eeeeeeee ->
actual exponent + 127)

Double Precision seee eeee eeee mmmm mmmm mmmm mmmm mmmm mmmm
mmmm mmmm mmmm mmmm mmmm mmmm mmmm (an
ii-bit exponent, 52-bit mantissa + 1 hidden bit; eeeeeeeeeee ->
actual exponent + 2047)

Floating-Point Operations
There are 6 types of floating-point operations. These are:

1. Single precision dyadic operations

2. Double precision dyadic operations

3. Single precision monadic operations

4. Double precision monadic operations

5. Regular monadic operations

6. Special operations

A physical address within the FPU page represents each flotating-point operation.
Mnemonics for floating-point operations are constructed from abbreviations. Abbrevia
tions are as follows:

DA Double Precision Add

DS Double Precision Subtract

RD Double Precision Reverse Subtract

Floating Point Processing A-a

(
'- '

o

I c····

-----"""---"""-----

DM Double Precision Multiply

DMA Double Precision Multiply and Accumulate

DD Double Precision Divide

RD Double Precision Reverse Divide

XCP EXcePtion Status and Interrupt Enable

FA Floating Accumulator

FAL Floating Accumulator Low

FAH Floating Accumulator High

FT Floating Temporary

LFT Load Floating Temporary

LIT Load Integer Temporary

SA Single Precision Add

SS Single Precision Subtract

RS Single Precision Reverse Subtract

SM Single Precision Multiply

SMA Single Precision Multiply and Accumulate

SD Single Precision Divide

RDS Single Precision Reverse Divide

Refer to Table A1, Table A-2, and Table A-3. These tables provide listings of floating
point operations, by type. The tables also provide those FPU page address assigned to
every operation.

A-9 Floating Point Processing

Table A-1. Single Precision Dyadic Floating-Point Operations

Single Precision Dyadic Operations

Mnemonic Address and Meaning

BUS FA SA $7004
lFTl=A -SA FT $7008 single precision add
FA_'eUS:'SA $700C

BUS FA SS $7010
lFT l=A -Ss FT
FA_BUS:'SS-

$7014
$7018

single precision subtract

BUS FA RS $701C
lFTl=A -Ss FA $7020 single precision reverse subtract
FA_BUS:'RS- $7024

BUS FA SM $7028
lFTl=A-SM FT $702C single precision multiply
FA_eUS:'SM $7030

BUS FA SO $7034
lFTl=A -SO FT $7038 single precision divide
FA_BUS:'SD $703C

BUS FA RDS $7040
lFTl=A RDS FA $7044 single precision reverse divide
FA_BUS:'RDS- $7048

\ '

Single Precision (Dyadic) Operations continue on the next page

Floating Point Processing A-10

o

o

Table A-1 (continued). Single Precision Dyadic Floating-Point Operations and
their Addresses within the FPU Page

Single Precision Dyadic Operations

Mnemonic Address and Meaning

LFT SMIN $7138 Min (FA, FT) -> FA
FA_BUS_SMIN $713C Condition Codes -> lAC high word

LFT SMAX $7150 Min (FA, FT) -> FA
FA_BUS_SMAX $7154 Condition Codes -> lAC high word

LFA SAX $7168 FA + FX -> FA (single precision)
FA_BUS_SAX $716A

LFA SMX $717C FA * FX -> FA (single precision)
FA_eUS_SMX $7180

BUS FA SP $71A4 write sp "x" register for sp polynomial
LFT -FA -RDS FA $71A8 load FA for SP polynomial operation
FA_BUS:RDS- $71AC (FA * FX) + FT -> FA

W_IAC_SP $7214 load integer accumulator, float to sp

BUS FA SMA $7234 sp multiply and accumulate
LFT-SMA $7238 (FA * FT) + FX -> FA, FX
FA_BUS_SMA $723C

LFT_PWR $7260 FA ** FT -> FA

IAC_SP_PWR $726C FA ** lAC -> FA

A-11 Floating Point Processing

Table A-2. Double Precision Dyadic Floating-Point Operations

Double Precision Dyadic Operations

Mnemonic Address and Meaning

BUS FAH RDS $704C
BUS-FAL-oA $7050
BUS-FTt1DA $7054 double precision add LFTC FA 1>A FT $7058
FAH ~US'" DA $705C
FAL.:aUS:OA $7060

BUS FAH OS $7064
BUS-FAL-oS $7068
BUS-FTt1DS $706C double precision subtract LFTC FA 1>S FT $7070
FAH ~US'" oS'" $7074
FAL.:aUS:OS $7078

BUS FAH RD $707C
BUS-FAL~O $7080
BUS-FTt1RO $7084 double precision reverse subtract LFTC FA 1>S FA $7088
FAH ~US'" RI5' $708C
FAL.:aUS.:RO $7090

BUS FAH OM $7094
BUS-FAL -OM $7098
BUS-FTt10M $709C double precision multiply LFTC FA 1>M FT $70AO
FAH llUS'" oM"" $70A4
FAL.:aUS:OM $70A8

BUS FAH DO $70AC
BUS-FAL-oO $70BO
BUS-FTt1DO $7084 double precision divide LFTC FA 1>0 FT $70B8
FAH ~US'" 015' $70BC
FALJ3US,:oO $70CO

BUS FAH ROD $70C4
BUS-FAL~OO $70C8
BUS-FTt1ROO $70CC double precision reverse divide LFTC FT 1>0 FA $7000
FAH ~US'" R[5b $7004
FALJ3US.:ROO $7008

Double Precision (Dyadic) Operations continue on the next page

Floating Point Processing A-12

C)
Table A-2 (continued). Double Precision Oyadic Floating-Point Operations

Double Precision Dyadic Operations

Mnemonic Address and Meaning

BUS FTH DMIN $7140 Min (DFA, OFT) -> DFA
LFTC OMThJ $7144 Condition Codes -> lAC high word
FAH "BUS DMIN $7148
FAL,:eUS.:oMIN $714C

BUS FTH DMAX $7158 Max (DFA, OFT) -> DFA
LFTC OMAX $715C Condition Codes -> lAC high word
FAH "BUS OMAX $7160
FAL,:eUS.:oMAX $7164

BUS FAH DAX $716C FA + FX -> FA (double precision)
LFAC OAX $7070
FAH 'BUS DAX $7174
FAL,:eUS.:oAX $7178

BUS FAH OMX $7184 FA '" FX ->FA (double precision)
LFAL DMX $7088
FAH "BUS OMX $718C
FAL,:eUS.:oMX $7190

BUS FXH $71BO write dp uxu register for dp polynomial
BUS-FXL $71B4
BUS-FAH DP $71B8 dp polynomial
BUS-FAL l)P $71BC (OFA * OFX) + DFT -> DFA
BUS-FTH-OP $71CO
LFTL OP- $71C4
FAH "SUS OP $71C8
FAL:BUS:DP $71CC

W_IAC_OP $7218 load integer accumulator, float to dp

BUS FAH OMA $721C dp multiply and accumulate
BUS-FAL l)MA $7220 (OFA * DFT) + OFX -> OFA, FFX
BUS-FTI-f"DMA $7224
LFTC OMA $7228
FAH BUS DMA $722C
FAL:SUS:OMA $7230

BUS FTH PWR $7264 FA * * FT -> FA
LFTL_PWR $7268

IAC_DP_PWR $7270 FA * * lAC -> DP

A-13 Floating Point Processing

o

Table A-3. Single Precision Monadic Floating-Point Operations

Single Precision Monadic Operations

Mnemonic Address and Meaning

SP_NINT $720C _ nearest integer of sp -> sp

SP_TRUNC $7240 truncate FA -> FA

SP_LOG $7248 FA <- log (FA)

SP_EXP $7250 FS <- exp(FA)

SP _SQRT $7258 FA <- sqrt(FA)

SP _SIN $7274 FA <- sin (FA)

SP_COS $727C FA <- cos (FA)

SP_TAN $7284 FA <- tan (FA)

SP_ATAN $728C FA <- atan (FA)

Floating Point Processing A-14

C) Table A-4. Double Precision Monadic Floating-Paint Operations

Double Precision Monadic Operations

Mnemonic Address and Meaning

DP_NINT $7210 nearest integer of dp -> dp

DP_TRUNC $7244 truncate FA -> FA

DP_LOG $724C FA <- log (FA)

DP_EXP $7254 FA <- exp (FA)

DP_SQRT $725C FA <- sqrt(FA)

DP_SIN $7278 FA <- sin (FA)

DP_COS $7280 FA <- cos (FA)

DP_TAN $7288 FA <- tan (FA)

A-15 Floating Point Processing

/ ,

U

Table A-5. Monadic Floating-Point Operations

_ Monadic Operations

Mnemonic Address and Meaning

F_NEG $71EO negate sp/dp accumulator

F_ABS $71E4 absolute value of sp/dp accumulator

SP DP $71E8 convert sp in accumulator to dp
DP:SP $714C convert dp in accumulator to sp

L SP $71FO float integer accumulator into sp
L:OP $71F4 float integer accumulator into dp

SP 1 $71F8 fix sp to integer accumulator
DP:1 $71FC fix dp to integer accumulator

Floating Point Processing A-16

o

._----_.- --------- -----._. -------

Table A-6. Special Floating-Point Operations

Special Operations

Mnemonic Address and Meaning

PEB_BASE $7000 base address for PEB

FPU_RESET $7000 reset FPU

R/W_XCP $70F8 readlwrite exception register

HIGH_BUS $7124 read upper 24 bits of DP mantissa

FX TO FA $7194 FX -> FA
FA:TO:FX $7198 FA -> FX

REV_BUS $719C read microcode revision level

FAH BUS
FXL.:sUS

$7100
$7104

read dp "x" register

XCHNG $7108 FA <-> FX

FTH_BUS $71DC read dp register (high part) only

LIT INTMUL $7200 load integer "x" register, multiply
LlT-INTOIV $7204 load integer "x" register, divide
L1T=INTOIV $7208 load integer "x" register, reverse divide

FPU_STATUS_BUS $73FC fpu status register

The MC68881 Coprocessor
For information regarding the Motorola 68881 co-processor, refer to the Motorola
MC68881 Floating-Point Coprocessor User's Manual (© 1985, Motorola Inc).

A-17 Floating Point Processing

(
' ...

· ... ;:;?
.-''1.r
:. .,~ 1 ..

..... "".-

-.~ ...

. .
~" • p ~ ~

, '.fI."

~ :""}~'.'''~
-!". I ~ . .. ,

-~~.~
, .. '

