Order No. 005506
Reyvision 00
Software Release 9.0

Programming with General System Calls
RE

Programming With General System Calls
Update 1

Order No. 008858
Revision 00
Software Release 9.2

Apollo Computer Inc.
330 Billerica Road
Chelmsford, MA 01824

Copyright © 1986 Apollo Computer Inc.
All rights reserved.

Printed in U.S.A.

First Printing: March, 1986

This document was produced using the SCRIBE document preparation system. (SCRIBE is a
registered trademark of Unilogic, Ltd.)

APOLLO and DOMAIN are registered trademarks of Apollo Computer Inc.

AEGIS, DGR, DOMAIN/Bridge, DOMAIN/Dialogue, DOMAIN/IX, DOMAIN/Laser-26,
DOMAIN/PCI, DOMAIN/SNA, DOMAIN/VACCESS, D3M, DPSS, DSEE, GMR, and GPR are
trademarks of Apollo Computer Inc.

Apollo Computer Inc. reserves the right to make changes in specifications and other information
contained in this publication without prior notice, and the reader should in all cases consult
Apollo Computer Inc. to determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF APOLLO COMPUTER INC. HARDWARE
PRODUCTS AND THE LICENSING OF APOLLO COMPUTER INC. SOFTWARE CONSIST SOLELY OF THOSE
SET FORTH IN THE WRITTEN CONTRACTS BETWEEN APOLLO COMPUTER INC. AND ITS CUSTOMERS. NO
REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFORMANCE,
SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A
WARRANTY BY APOLLO COMPUTER INC. FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY BY
APOLLO COMPUTER INC. WHATSOEVER.

IN NO EVENT SHALL APOLLO COMPUTER INC. BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARISING
OUT OF OR RELATING TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT, EVEN IF APOLLO
COMPUTER INC. HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF SUCH
DAMAGES.

THE SOFTWARE PROGRAMS DESCRIBED IN THIS DOCUMENT ARE CONFIDENTIAL INFORMATION AND
PROPRIETARY PRODUCTS OF APOLLO COMPUTER INC. OR ITS LICENSORS.

Preface

Programming With General System Calls describes the general-purpose DOMAIN system calls
you can use to perform services for your programs.

Audience

This manual is intended for programmers who write applications and wish to make use of the
system calls provided by DOMAIN . Before using this manual, you should be familiar with
programming concepts and terminology, and should also understand the DOMAIN
implementation of the programming language you are using.

This manual describes how to use system calls to perform programming tasks, and makes
extensive use of programming examples to clarify explanations. However, the manual does not

provide complete reference information for each call that it demonstrates. For complete reference
information, see the DOMAIN System Call Reference manual.

Organization of this Manual
This manual contains nine chapters:

e Chapter 1 describes the predefined data type scheme used with system calls, and
provides necessary data type information for C and FORTRAN programmers.

e Chapter 2 describes how to handle errors and faults.

e Chapter 3 describes how to invoke programs and how to obtain process information.

e Chapter 4 describes how to perform I/O using the IOS manager.

o Chapter 5 describes how to program the Display Manager.

e Chapter 6 describes how to use system-defined eventcounts.

e Chapter 7 describes how to manipulate time.

e Chapter 8 describes a variable formatting package for Pascal programmers.

e Chapter 9 describes how to access DOMAIN object types using IOS calls.
This manual uses excerpts of Pascal programs to illustrate the narrative descriptions. Most
excerpts begin with the name of the program from which they were taken. To see the C

translation, find the corresponding program in Appendix A.

You can also view the programs on-line, as described in the next section.

iii Preface

On-Line Sample Programs

The programs from this manual are stored on-line, along with sample programs from other
DOMAIN manuals. We include sample programs in Pascal and C. All programs in each language
have been stored in master files (to conserve disk space). There is a master file for each language.

In order to access any of the on-line sample programs you must create one or more of the
following links:

(For Pascal examples) $ crl “com/getpas /domain_examples/pascal_examples/getpas
(For C examples) $ crl “com/getcc /domain_examples/cc_examples/getcc

To extract a sample program from one of the master files, all you have to do is execute one of the
following programs: -

(To get a Pascal program) $ getpas
(To get a C program) $ getce

These programs prompt you for the name of the sample program and the pathname of the file to
copy it to. Here is a demonstration:

$ getpas

Enter the name of the program you want to retrieve -- stream sio_access
What file would you like to store the program in? -- siol.pas

Done.

$

You can also enter the information on the command line in the following format:

$ getpas name_of program to retrieve name_of output_file

For example, here is an alternate version of our earlier demonstration:

$ getpas stream sio_access siol.pas
GETPAS and GETCC warn you if you try to write over an existing file.

For a complete list of on-line DOMAIN programs in a particular language, enter one of the
following commands:

(for Pascal) $ getpas help

(for C) $ getcc help

Documentation Conventions

Unless otherwise noted in the text, this manual uses the following conventions:

UPPERCASE Uppercase words or characters in formats and command descriptions represent
commands or keywords that you must use literally.

Preface iv

lowercase Lowercase words or characters in formats and command descriptions represent
values that you must supply.

[] Square brackets enclose optional items in formats and command descriptions.
In sample Pascal statements, square brackets assume their Pascal meanings.

{} Braces enclose a list from which you must choose an item in format and
command descriptions. In simple Pascal statements, braces assume their Pascal

meanings.

| A vertical bar separates items in a list of choices.

< > Angle brackets enclose the name of a key on the keyboard.

CTRL/Z The notation CTRL/ followed by the name of a key indicates a control
character sequence. You should hold down the < CTRL> key while typing the
character.

Horizontal ellipsis points indicate that the preceding item can be repeated one
or more times.

Vertical ellipsis points mean that irrelevant parts of a figure or example have
been omitted.

Suggested Reading Paths

Before you read this manual, you should be familiar with the following:
e Getting Started With Your DOMAIN System. This manual provides general

information about using your node.

e DOMAIN System Call Reference (Volumes 1 and 2). These manuals give complete
reference information on all DOMAIN system calls.

In addition, you should be familiar with the DOMAIN language manuals for your programming
language.

Problems, Questions, and Suggestions

We appreciate comments from the people who use our system. In order to make it easy for you
to communicate with us, we provide the User Change Request (UCR) system for software-related
comments, and the Reader’s Response form for documentation comments. By using these formal
channels you make it easy for us to respond to your comments.

You can get more information about how to submit a UCR by consulting the DOMAIN System

Command Reference manual. Refer to the CRUCR (Create User Change Request) Shell
command description. You can view the same information on-line by typing:

$ HELP CRUCR <RETURN >

For documentation comments, a Reader’s Response form is located at the back of each manual.

v Preface

Contents

Chapter 1 Using DOMAIN Predefined Data Types 1-1
1.1. Why DOMAIN Uses Predefined Data Types 1-1
1.2. How to Use Insert Files 1-1
1.3. How to Use Predefined Constants and Values 1-3
1.4. How to Use DOMAIN Predefined Data Types 1-4
1.4.1. Enumerated Types 1-5
1.4.2. Sets 1-5
1.4.3. Records 1-6
1.4.4. Variant Records 1-6
1.4.5. Arrays 1-7
1.4.5.1. Arrays of Records 1-7

1.5. Basic Data Types 1-9
1.6. How to Use Data Type Reference Material 1-9
1.6.1. Data Types Sections 1-10
1.6.2. System Call Descriptions 1-12
1.6.2.1. Parameter Descriptions 1-12

1.6.3. Error Sections 1-12

1.7. Data Type Information for FORTRAN Programmers 1-13
1.7.1. Boolean Type 1-13
1.7.2. Pointers 1-14
1.7.3. Enumerated Types 1-16
1.7.4. Sets 1-18
1.7.4.1. Setting Bits 1-18

1.7.4.2. Testing Bits 1-19

1.7.4.3. Emulating Large Sets 1-21

1.7.5. Records 1-22
1.7.6. Variant Records 1-24
1.7.7. Passing Parameters to System Calls 1-29
1.7.7.1. Passing Integer Parameters 1-29

1.7.7.2. Passing Integer Constants 1-30

1.8. Data Type Information for C Programmers 1-30
1.8.1. Boolean Type 1-30
1.8.2. Sets 1-30
1.8.2.1. Setting Bits 1-31

1.8.2.2. Testing Bits 1-32

1.8.2.3. Emulating Large Sets 1-34

1.8.3. Records 1-36
1.8.4. Variant Records 1-36
1.8.5. Passing Parameters to System Calls 1-37
1.8.5.1. Passing Character Arrays 1-37

1.8.5.2. Passing Integer Parameters 1-38

1.8.5.3. Passing Integer Constants 1-40

vii Contents

Chapter 2 How to Handle Errors and Faults

2.1.
2.2.

2.3.
2.4.
2.5.
2.6.

2.7.

2.8.

System Calls, Insert Files, and Data Types
Status Structure
2.2.1. Accessing Fields of the Status Code with FORTRAN
Testing for Errors
Printing Error Messages
Standardized Error Reporting
Testing for Specific Errors
2.6.1. Setting a Severity Level
Faults
2.7.1. Synchronous Faults
2.7.2. Asynchronous Faults
Handling Faults with Clean-Up Handlers
2.8.1. Establishing a Clean-Up Handler
2.8.2. Releasing a Clean-Up Handler
2.8.3. Multiple Clean-Up Handlers
2.8.4. Exiting a Clean-Up Handler
2.8.4.1. Resignaling Passing the Fault Status
2.8.4.2. Resignaling Passing a Severity Level

2.8.4.3. Re-establishing the Handler and Returning to the Program

2.8.4.4. Returning to the Program
2.8.5. Handling Errors With Clean-Up Handlers

2.9. Handling Faults with Fault Handlers

2.9.1. Establishing a Fault Handler
2.9.1.1. Writing the Fault-Handling Function
2.9.1.2. Establishing the Function as a Handler
2.9.1.3. Setting Target Faults
2.9.1.4. Specifying Handler Types

2.10. Inhibiting Asynchronous Faults

Chapter 8 Managing Programs

3.1.
3.2.

3.3.
3.4.

3.5.
3.6.
3.7.

System Calls, Insert Files, and Data Types
Invoking External User Programs
3.2.1. Invoking a Program in Wait Mode
3.2.1.1. Setting Severity Levels
3.2.2. Invoking a Program in Default Mode
3.2.2.1. Waiting for a Child Process
3.2.3. Invoking a Program in Background Mode
Passing Arguments to Invoked Programs
Accessing Arguments from an Invoked Program
3.4.1. Accessing Arguments with PGM _ $GET _ ARG
3.4.2. Accessing Arguments with PGM _ $GET _ ARGS
Deleting Arguments
Passing Streams to an Invoked Program
Getting Process Information
3.7.1. Getting Information About Your Process
3.7.2. Getting Information About Other Processes

Contents viii

2-1
2-1
2-2
2-3
2-3
2-4

2-8

2-8
2-11
2-11
2-12
2-12
2-14
2-15
2-15
2-15
2-16
2-16
2-17
2-17
2-21
2-21
2-21
2-22
2-23
2-24
2-25

3-1
3-1
3-2
3-3
3-6
3-7
3-11
3-18
3-20
3-20
3-21

- 3-22

3-24
3-27
3-27
3-29

Chapter 4 Performing I/O with I0S Calls

4.1. System Calls, Insert Files, and Data Types
4.2. Overview of the IOS Manager
4.2.1. Stream Connections
4.2.2. Stream IDs
4.2.3. Default Stream IDs
4.2.4. Stream Markers
4.2.5. I0S Calls for Manipulating Streams
4.3. Creating and Opening Objects
4.3.1. Specifying an Object’s Type
4.3.2. Controlling how IOS Creates Objects
4.3.3. Creating a Backup Object
4.3.4. Creating Temporary Objects
4.3.5. Examples of Opening and Creating Objects
4.3.6. Controlling how IOS Opens Objects
4.3.7. Controlling a Stream’s Access and Concurrency
4.3.8. Example of Controlling an Object’s Access and Concurrency
4.4. Reading and Changing Object Attributes
4.4.1. Inquiring about and Changing Object Attributes
4.4.2. Example of Inquiring about and Changing Attributes
4.4.3. Example of Changing Attributes
4.4.4. Getting Additional Information about Objects and Directories
4.5. Closing and Deleting Objects
4.6. Writing to Objects
4.6.1. Example of Writing to Objects
4.7. Reading Objects
4.8. Reading Objects Sequentially
4.9. Performing Random Access
4.9.1. Nonkeyed Seeking
4.9.2. Keyed Seeking
4.9.3. Example of Using Seek Keys
4.10. Handling Record-Oriented Object Types
4.10.1. Writing Fixed-Length Records
4.10.2. Writing Variable-Length Records
4.10.3. Reading Fixed-Length Records with Seek Keys
4.10.4. Record Formats

Chapter 5 Using the Display Manager

5.1. System Calls, Insert Files, and Data Types
5.2. Overview of the Display Manager
5.3. Starting Out
5.3.1. Creating a New Pad in a New Window
5.3.2. Creating a New Pad in a Window Pane
5.4. Creating Subsequent Pads in Window Panes
5.4.1. Creating Input Pads in Window Panes
5.4.2. Creating Transcript Pads in Window Panes
5.4.3. Creating Edit Pads in Window Panes
5.4.4. Creating Read-Only Edit Pads in Window Panes

ix

4-1
4-2
4-3
4-3
4-3
4-4
4-5
4-5
4-6
4-7
4-8
4-9
4-9
4-11
4-12
4-15
4-16
4-18
4-19
4-21
4-24
4-24
4-25
4-25
4-27
4-29
4-31
4-31
4-32
4-32
4-35
4-36
4-38
4-41
4-44

5-1
5-2
5-4
5-4
5-5
5-6
5-7
5-8

5-10

Contents

5.4.5. Closing Windows and Window Panes
5.4.6. Sample Program: Creating and Closing Windows and Window Panes

5.5. Manipulating Windows

5.5.1. Specifying a Window Number with PAD _ $INQ _ WINDOWS

5.5.2. Getting Window Positions with PAD _ $INQ _ WINDOWS

5.5.3. Getting Position of Window Borders with PAD _ $INQ _ FULL _ WINDOW
5.5.4. Changing How Windows Look

5.5.5. Inquiring About the User’s Display and Keyboard

5.5.6. Specifying Character Fonts

5.5.7. Changing Scale Factors

5.5.8. Getting Current Scale Factors with PAD __ $INQ_ FONT

5.5.9. Sample Program: Creating a Window to Run a Clock

5.6. Using Icons

5.6.1. Creating an Icon

5.6.2. Positioning an Icon

5.6.3. Creating Your Own Icon Font
5.6.4. Sample Program: Using Icons

5.7. Handling Graphics Input with Frames

5.7.1. Creating the Frame
5.7.2. Clearing the Frame
5.7.3. Sample Program: Creating and Writing to Frames

5.8. Sending and Receiving Program Input

5.8.1. Processing System Input in Cooked Mode

5.8.2. Bypassing System Input Processing with Raw Mode

5.8.3. Controlling System Output with Cursors

5.8.4. Writing to an Output Stream: Control Codes and Escape Sequences

5.9. Using Paste Buffers

5.9.1. Reading and Writing to Paste Buffers
5.9.2. Sample Program: Using Paste Buffers

5.10. Using the Touchpad Manager

5.10.1. Absolute Mode

5.10.2. Relative Mode

5.10.3. Absolute/Relative Mode

5.10.4. Changing Touchpad Sensitivity with Scale Factors

5.10.5. Timing Factors for the Touchpad or Bitpad in Relative Mode
5.10.6. Changing the Origin in Absolute Mode with TPAD _ $SET_ MODE
5.10.7. Setting the Origin in Relative Mode with TPAD _$SET _ CURSOR
5.10.8. Hysteresis Factor

Chapter 6 Using Eventcounts

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.

EC2 System Calls, Insert Files, and Data Types

Overview of Eventcounts

How the System Uses Eventcounts

Getting and Reading Eventcounts

Waiting for Events

Responding to Events and Incrementing the Trigger Value
Handling Asynchronous Faults during Eventcount Waits

6.7.1. Disabling Asynchronous Faults with EC2__ $WAIT
6.7.2. Disabling Asynchronous Faults with EC2_$WAIT _ SVC

Contents x

5-10
5-11
5-14
5-14
5-14
5-17
5-18
5-21
5-23
5-25
5-27
5-29
5-34
5-34
5-36
5-38
5-38
5-42
5-42
5-43
5-43
5-49
5-49
5-49
5-52
5-56
5-57
5-57
5-58
5-61
5-61
5-62
5-62
5-63
5-63
5-63
5-64
5-64

6-1
6-2
6-4
6-5
6-7
6-9
6-13
6-14
6-16

Chapter 7 Manipulating Time

7.1. CAL and TIME System Calls, Insert Files, and Data Types
7.2. How the System Represents Time
7.3. Getting System Time

7.3.1. Getting Local Time

7.3.2. Timezone Offsets
7.4. Converting from System Time to Readable Time
7.5. Converting from Readable Time to System Time
7.6. Manipulating Time

7.6.1. Relative Time

7.6.2. Adding Times

7.6.3. Subtracting Times

7.6.4. Comparing Times
7.7. Suspending Process Execution
7.8. Using the Time Eventcount

Chapter 8 Formatting Variables with VFMT

8.1. VFMT System Calls, Insert Files, and Data Types
8.2. Data Types That Can Be Formatted with VFMT
8.3. Routine Syntax .
8.4. Simple Examples
8.5. Building Control Strings

8.5.1. Format Directive Overview

8.5.2. Inserting Literal Text

8.5.3. Repeating Control Strings
8.6. Format Directive Usage

8.6.1. Formatting ASCII Data: The %A Directive

8.6.2. Formatting Floating Point Data: The %F and %E Directives
8.6.3. Formatting Integer Data: The %0, %D, and %H Directives

8.6.4. Special Control String Directives
8.6.5. Format-Related Directives
8.7. Examples
8.7.1. Building a Character Table
8.7.2. Parsing an Input Line
8.7.3. Reading Strings Using a Variety of Formats

Chapter 9 Accessing DOMAIN Types with IOS Calls

9.1. Overview of DOMAIN Object Types
9.2. Accessing Mailboxes
9.2.1. Opening a Mailbox with I0S_$OPEN
9.2.2. Performing I/O on Mailboxes with IOS Calls
9.2.3. Example of Accessing a Mailbox with IOS Calls
9.3. Accessing Serial Lines
9.3.1. Opening a Stream to a Serial Line
9.3.2. Setting Serial Line Object Characteristics
9.3.3. Performing I/O across a Serial Line

xi

7-1

7-1
7-1
7-2

7-4
7-6
7-7
7-9
7-9
7-10
7-11
7-13
7-16
7-18

8-1
8-2
8-2
8-2
8-4

8-5
8-5
8-5
8-5
8-8
8-10
8-12
8-13
8-14
8-14
8-15
8-19

9-2
9-3
9-4
9-4
9-5
9-8
9-8
9-8
9-9

Contents

9.3.4. Example of Accessing an SIO Line 9-10

9.4. Accessing Files on Magnetic Tape 9-12
9.4.1. Creating and Opening a Magtape Descriptor Object 9-12
9.4.2. Reading and Changing Magtape Descriptor Attributes 9-13
9.4.3. Closing a Magtape Descriptor Object 9-13
9.4.4. Example of Writing to a Magtape File 9-14
9.4.5. Example of Reading from a Magtape File 9-18

Appendix A Sample Programs in C A-1

A.l. PFM__CLEAN_UP.C A-8

A.2. PGM_SHELL.C A-8

A3.PGM_INVOKE.C A-9

A.4. PGM_ OPEN.C A-10

A5.PGM_EC.C A-11

A.6. PGM __INVOKE _DIVIDE.C A-14

A.7. PGM_DIVIDE.C A-17

A.8. PGM__ZERO _HANDLER.C A-18

A.9. PGM_ORPHAN.C A-19

A.10. PGM _PASS_ ARGS.C A-20

A.11. PGM _PASSEE _ ARG.C A-22

A.12. PGM _PASSEE.C A-23

A.13. PGM_DEL_INV.C A-24

A.14. PGM_PASS_STREAMS.C A-26

A.15. PGM_YOUR_PROC.C A-28

A.16. PGM _ CHILD _ INFO.C , A-30

A.17. STREAM _INQ__REC_LEN.C A-32

A.18. STREAM _ CHANGE _EXP.C A-34

A.19. STREAM _PUT_FIXED.C A-37

A.20. STREAM_ PUT__VAR.C A-39

A.21. STREAM _PUT_ VAR _UASC.C A-41

A.22. STREAM _GET _VAR.C A-43

A.23. STREAM _GET_ VAR _UASC.C A-45

A.24. STREAM _ UPDATE.C A-48

A.25. STREAM _ WRITE _ TAPE.C A-52

A.26. STREAM _ READ _ TAPE.C A-56

A.27. STREAM _SIO _ ACCESS.C A-60

A.28. STREAM _ MBX _CLIENT.C A-62

A.29. STREAM _ LIST _ LINKS.C A-64

A.30. PAD _MAKE_WINDOWS.C A-66

A.31. PAD _INQ__WINDOW _SIZE.C A-69

A.32. PAD _FULL_WINDOW_SHOW.C A-T1

A.33. PAD _WINDOW _ SHOW.C A-73

A.34. PAD _INQ_DISP_KBD.C A-77

A.35. PAD _SCALE.C A-80

A.36. PAD _INQ_FONT.C A-83

A.37. PAD _DIGCLK.C A-85

A.38. PAD _MAKE _ICON.C A-89

A.39. PAD _CREATE _ICON.C A-92

A.40. PAD _FILENAME.C A-96

A.41. PAD _RAW_MODE.C A-102

Contents xii

A.42.
A.43.
A4,
A.45.
A.46.
A47.
A 48,
A.49.
A.50.
A51.

PAD _PASTE_ BUFFER.C
EC_TIME_KBD_EVENTS.C
EC_WAIT_FOR_ TIME.C
CAL_DECODE_ LOCAL.C
TIME_ ZONE.C

CAL_ADD_ TIMES.C
CAL_SUB_ TIMES.C

TIME_ COMPARE.C

TIME _WAIT _ABS.C

TIME _WAIT_OR_DEFAULT.C

Index

xiii

A-105
A-108
A-111
A-114
A-115
A-117
A-118
A-120
A-123
A-125

Index=~1

Contents

Figure 1-1.
Figure 2-1.
Figure 3-1.
Figure 4-1.
Figure 4~2,
Figure 4-3.
Figure 5-1.
Figure 6-1.

Illustrations

The Pointer/Data Relationship

The Structure of the Status Data Type

Argument Vector/Argument Configuration
Record-Oriented Object with Count Fields
Record-Oriented Object without Count Fields
Unstructured Record-Oriented Object

The DEBUG Display with the -SRC Option
Relationship Between a Process and an Eventcount

xiv

1-15

2-2
3-18
4-45
4-46
4-46

5-3

Contents

Table 1-1.
Table 2-1.
Table 2-2.
Table 2-3.
Table 2-4.
Table 3-1.
Table 4-1.
Table 4-2.
Table 4-3.
Table 4-4.
Table 4-5.
Table 4-8.
Table 4-7.
Table 4-8.
Table 4-9.
Table 4-10.
Table 4-11.
Table 4-12.
Table 4-13.
Table 4-14.
Table 4-15.
Table 5-1.
Table 5-2.
Table 5-3.
Table 5-4.
Table 6-1.
Table 6-2.
Table 6-3.
Table 6-4.
Table 6-5.
Table 8~1.
Table 8-2.
Table 8-3.
Table 8-4.
Table 9-1.
Table A-1.

Tables

Summary of Insert Files
Summary of Faults
Synchronous Program Faults
Synchronous System Faults
Types of Fault Handlers
Severity Levels
Default Streams
IOS Calls to Manipulate Stream Connections
Object Types
Controlling IOS_$CREATE when a Name Refers to an Existing Object
Options That Control how to Open Streams
10S Options for Specifying Access Types and Concurrency Modes
Access/Concurrency Combinations for Shared Streams
Object Attributes
FORTRAN Carriage Control Characters
Stream Connection Attributes
Type Manager Attributes
Getting Additional Information about an Object
Options to Control an IOS__$PUT call
Options to Control an IOS Get Call
Available Record Formats
PAD System Calls to Create and Manipulate Icons
Control Codes to Format Output to Windows and Panes
Escape Sequences
Touchpad Scale Factor Values for Display
Summary of EC2 System Calls
EC2 Calls for Obtaining Pointers to Eventcounts
Wait Actions When Asynchronous Faults are Enabled
Wait Actions When Asynchronous Faults are Inhibited
Program Results if a Fault Occurs During a Wait
Summary of Format Directives
%A: Format ASCII Data
%F and %E: Format Floating Point Data
%0, %D, and %H: Format Integer Data
Default SIO Descriptor Objects Pathnames
Summary of C Programs in Appendix A

XV

1-2

2-9
2-11
2-11
2-24

3-4

4-4

4-5

4-7

4-8
4-11
4-13
4-14
4-16
4-16
4-17
4-18
4-24
4-25
4-28
4-45
5-34
5-56
5-57
5-63

6-2

6-5
6-13
6-14
6-18

8-7
8-9
8-11
9-8
A-1

Contents

Example 2-1.
Example 2-2.
Example 2-3.
Example 2-4.
Example 2-5.
Example 2-6.
Example 2-7.
Example 3-1.
Example 3-2.
Example 3-3.
Example 3-4.
Example 3-5.
Example 3-6.
Example 3-7.
Example 3-8.
Example 3-9.
Example 3-10.
Example 3-11.
Example 3-12.
Example 4-1,
Example 4-2.
Example 4-3.
Example 4-4.
Example 4-5.
Example 4-8.
Example 4~7.
Example 4-8.
Example 4-9.
Example 4-10.
Example 4-11.
Example 5-1.
Example 5-2.
Example 5-3.
Example 5-4.
Example 5-5.
Example 5-86.
Example 5-7.
Example 5-8.
Example 5-9.
Example 5-10.
Example 5-11.
Example 5-12.

Examples

A Simple Error-Handling Procedure
Formatting Error Messages with System Calls
Testing for Specific STREAM Errors
Establishing A Clean-Up Handler
Invoking a Clean-Up Handler for an Error
Writing a Fault-Handling Function
Establishing a Fault Handler
Invoking an Existing Shell Command
Returning a Severity Level from an Invoked Program
Using an Eventcount to Wait for a Child Process
Invoking a Program in Background Mode
Converting a Child Process to an Orphan Process
Passing Arguments to an Invoked Program
Accessing Arguments with PGM_ $GET _ ARG
Accessing Arguments with PGM _ $GET _ ARGS
Deleting an Argument from the Argument Vector
Passing Streams to an Invoked Process
Getting Information About Your Process
Getting Information About an Invoked Process
Creating an Object
Opening an Existing Object

Checking for Compatible Access Type and Concurrency Modes

Inquiring About an Object
Changing an Object from RIW to Write Access
Writing to a UASC Object Line by Line
Reading Sequentially From an Object
Accessing a UASC Object Randomly Using Seek Keys
Writing Fixed-Length Records
Writing Variable-Length Records
Seeking Fixed-Length Records
Creating a New Pad with PAD _ $CREATE _ WINDOW
Creating a New Pad with PAD _ $CREATE
Creating an Input Pad in a Window Pane
Creating a Transcript Pad in a Window Pane
Creating an Edit Pad in a Window Pane
Creating and Closing Windows and Window Panes
Getting Size and Position of Windows
Using PAD Calls to Manipulate a Full Window
Changing How a Window Looks
Inquiring About User’s Display and Keyboard
Selecting a Character Font File

Setting Scale Factors to Raster Units with PAD_ $SET _ SCALE

xvi

2-3
2-5

2-13
2-19
2-22
2-24

3-5

3-8
3-13
3-17
3-19
3-21
3-22
3-23
3-25
3-28
3-30

4-9
4-10
4-15
4-19
4-21
4-26
4-29
4-33
4-36
4-39
4-41

5-5

5-5

5-7

5-8

5-9
5-11
5-15
5-17
5-19
5-21
5-24
5-26

Contents

Example 5-13.
Example 5-14.
Example 5-15.
Example 5-186.
Example 5-17.
Example 5-18.
Example 5-19.
Example 5~20.
Example 5-21.
Example 5-22.
Example 5-23.
Example 8-1.
Example 6-2,
Example 6-3.
Example 6-4.
Example 6-5.
Example 7-1.
Example 7-2.
Example 7-3.
Example 7-4.
Example 7-5.
Example 7-6.
Example 7-7.
Example 7-8.
Example 7-9.
Example 7-10.
Example 7-11.
Example 8-1.
Example 8-2.
Example 8-3.
Example 8-4.
Example 8~5.
Example 9-1.
Example 9-2.
Example 9-3.
Example 9-4.

Contents

Using PAD _ $INQ__FONT
Using PAD Calls to Create a Clock
Changing a Window to an Icon
Creating an Icon
Changing Icon Position and Character
Using Icons
Creating a Frame
Displaying a Filename at the Top of a File
Using Raw Mode
Using PAD _ $CPR _ ENABLE to Report Cursor Positions
Using Paste Buffers
Getting and Reading System-Defined Eventcounts
Waiting for System-Defined Eventcounts
Responding to System-Defined Eventcounts
Handling Asynchronous Faults with A Time Eventcount
Handling Asynchronous Faults with EC2_ $WAIT _ SVC
Getting Local Time Using an Offset
Getting Local Time in Readable Format
Getting Timezone Offset and Name
Converting from System Format to Readable Format
Converting Time from ASCII strings to System Format
Adding a Relative Time to an Absolute Time
Subtracting Two Times
Comparing Two File Creation Times
Suspending Process Execution for a Relative Time
Suspending Process Execution Until an Absolute Time
Using a Time Eventcount to Repeat a Prompt
Writing (Encoding) a Variable to Output using VFMT _ $WRITE
Decoding a Variable using VFMT _ $READ
Building a Character Table of ASCII Characters
Parsing an Input Line
Reading Strings Using a Variety of VFMT Formats
Writing to and Reading from a Mailbox
Accessing a Serial Line
Writing to a Magtape File
Reading from a Magtape File

xvii

5-28
5-30
5-35
5-35
5-36
5-39
5-42
5-44
5-50
5-53
5-58

6-8
6-10
6-15
6-17

7-3

7-3

7-5

7-7

7-8
7-10
7-11
7-13
7-16
7-17
7-19

8-3

8-3
8-14
8-15
8-20

9-5
9-10
9-15
9-19

Chapter 1 _
Using DOMAIN Predefined Data Types

DOMAIN provides predefined data types, constants, and values to make using the DOMAIN
system calls easier. This chapter describes how to use these predefined types and values. It
includes sections that address the special needs of FORTRAN and C programmers.

1.1. Why DOMAIN Uses Predefined Data Types

The DOMAIN system provides predefined data types to use when calling system routines to
facilitate passing arguments between your program and the system. Using a predefined data type
lets you declare in a single line of code a complex data type that would otherwise require a
lengthy declaration.

Predefined data types are especially useful when using a programming language that supports
user-defined data types; C and Pascal are two such languages.

FORTRAN, however, does not support user-defined data types. A FORTRAN programmer must
declare each data type using standard FORTRAN data types. This makes the declaration of
some DOMAIN data types more involved for FORTRAN programmers. For this reason, Section
1.7 describes in detail how FORTRAN programmers should declare each DOMAIN data type.

1.2. How to Use Insert Files

The DOMAIN system routines are divided, by function, into several subsystems. The routines of
each subsystem are prefixed for easy indentification. A subsystem prefix consists of a number of
identifying characters followed by the special characters " _$". For example, the routines that
perform stream functions are prefixed with STREAM _$. These subsystem prefixes are also used
to distinguish DOMAIN data types and constants that are used by the subsystem routines.

The DOMAIN predefined data types for each subsystem are declared in a separate file, known as
an insert file. When you use a routine belonging to a certain subsystem, you must include that
‘subsystem’s corresponding insert file. For some languages, the insert files define the required
number and type of each system call parameter.

Insert files are located in the directory /SYS/INS/. There is one insert file per subsystem for
each programming language. Include the appropriate insert file for your programming language.
For example, if you are using error routines in a Pascal program, you include the insert file
/SYS/INS/ERROR.INS.PAS. Using the same routines in a FORTRAN program, you include
/SYS/INS/ERROR.INS.FTN. All insert files are specified using the syntax:

/SYS/INS /subsystem-prefix.INS.language-abbreviation

where language abbreviation is PAS (Pascal), FTN (FORTRAN), or C (C). Table 1-1 shows a
list of all the available insert files.

1-1 Domain Data Types

In addition to including required subsystem insert files in a program, you must always include the
BASE insert file for your programming language. When specifying more than one insert file, the
BASE insert file should be specified first.

BASE insert files are specified using the syntax:
/SYS/INS/BASE.INS language-abbreviation

These files contain some basic definitions that are used by a number of subsystem routines. See
Section 1.5 for details about the BASE file.

Table 1-1. Summary of Insert Files

Insert File Operating System Component
/SYS/INS/BASE.INS.lan Base definitions -- must always be included
/SYS/INS/ACLM.INS lan Access control list manager
/SYS/INS/CAL.INS.lan Calendar
/SYS/INS/ERROR.INS.lan Error reporting
/SYS/INS/EC2.INS.lan Eventcount
/SYS/INS/FAULT.INS lan Fault status codes
/SYS/INS/GM.INS.lan Graphics Metafiles Resource
/SYS/INS/GMF .INS .lan Graphics Map Files
/SYS/INS/GPR.INS.lan Graphics Primitives
/SYS/INS/IPC.INS.lan Interprocess communication datagrams
/SYS/INS/KBD.INS.lan [Useful constants for keyboard keys]
/SYS/INS/MBX.INS.lan Mailbox manager
/SYS/INS/MS.INS.lan Mapping server
/SYS/INS/MTS.INS.lan Magtape/streams interface
/SYS/INS/MUTEX.INS.lan Mutual exclusion lock manager
/SYS/INS/NAME.INS.]lan Naming server
/SYS/INS/PAD.INS.lan Display Manager
/SYS/INS/PBUFS.INS.lan Paste buffer manager
/SYS/INS/PFM.INS.lan Process fault manager
/SYS/INS/PGM.INS.lan Program manager
/SYS/INS/PM.INS lan User process routines
/SYS/INS/PROC1.INS.PAS Process manager (Pascal only)
/SYS/INS/PROC2.INS lan User process manager
/SYS/INS/RWS.INS.lan Read/write storage manager
/SYS/INS/SIO.INS. lan Serial 1/0
/SYS/INS/SMDU.INS lan Display driver
/SYS/INS/STREAMS.INS.lan Stream manager
/SYS/INS/TIME.INS.lan Time

/SYS/INS/TONE.lan Speaker

/SYS/INS/TPAD.INS.lan Touchpad manager
/SYS/INS/VEC.INS.lan Vector arithmetic
/SYS/INS/VFMT.INS lan Variable formatter

The suffix *.]lan" varies with the language you’re using; it is either *.FTN", * . PAS" or ".C".

In some cases, you may find insert files to be a useful on-line reference. Be aware, though, that
the way in which insert files are written is not completely consistent. For complete and
consistent information, use the DOMAIN System Call Re ference manual.

Domain Data Types

1.3. How to Use Predefined Constants and Values

In addition to predefined data types, DOMAIN provides predefined values and constants that are
used when calling system routines. The insert files define the values of all predefined constants,
such as completion status codes.

Predefined values correspond to specific predefined data types. That is, if you have declared a
variable to be of a certain predefined data type (an enumerated type or a set, see Section 1.4),
then the values that the variable can have are limited to a number of predefined values.
(However, not all predefined data types have predefined values.)

For example, in the third parameter of the PAD_$CREATE_ WINDOW call, you must specify
which type of pad you are creating. The predefined data type of the parameter is
PAD_$TYPE_T (INTEGER*2 for FORTRAN). You can specify one of three predefined
values, PAD _$EDIT, PAD_ $READ _EDIT, PAD _ $TRANSCRIPT. Of course, the program
must include the PAD insert file to reference the PAD routines, data types, and values.

%include ’sys/ins/base.ins.pas’;
%include ’sys/ins/pad.ins.pas’;
%include ’'sys/ins/streams.ins.pas’;

VAR
{ Delare variables. }
type : pad_$type_t:
display unit : integer;
window : pad_$window_desc_t;
stream win : stream $id_t.
status . status_$t;

BEGIN

{ Load window values. }

{ Load the parameter with predefined value. }
type := pad_$transcript;

display_unit := 1;

pad_$create_window(’ °, { Null pathname for transcript pad }
0, { Null namelength for transcript pad }
type. { Type of pad }
display_unit, { Number of unit}
window, { pad_$window_desc_t }
stream win, { stream ID of the new window }
status) ; { Completion status }

You can specify predefined constants for input parameters in a call directly; you do not need to
declare a variable to hold them. (The same is true for non-predefined constants, although, in this
case, the call must expect a scalar type.) However, you must declare a variable to hold output
and input/output parameters. The example above may be written:

1-3 Domain Data Types

%include ’sys/ins/base.ins.pas’;
%include °’sys/ins/pad.ins.pas’;-
%include ’sys/ins/streams.ins.pas’;

VAR
{ Delare variables. }
window : pad_$window_desc_t;
stream_win : stream $id_t;
status . status_$t;

BEGIN

{ Load window values. }

pad_$create_window(’ { Null pathname for transcript pad }
0, { Null namelength for tramnscript pad }
pad_$transcript, { Type of pad }
1, { Number of unit}
window, { pad_$window_desc_t }
stream_win, { stream ID of the new window }
status) ; { Completion status }

The Data Types sections of the DOMAIN System Call Reference manual list any predefined
values that a data type may have.

Note that although FORTRAN programs cannot use predefined data types, they can reference
predefined constants and values. See Section 1.7 for details.

1.4. How to Use DOMAIN Predefined Data Types

Because the DOMAIN operating system is predominantly written in Pascal, the predefined data
types reflect the data types available in that language. The following sections describe the
different kinds of predefined data types, in Pascal terms. Each section contains the following
information:

e The purpose of the data type.
e How to recognize the data type in the insert files.

e A program segment showing how to declare and load a variable of that data type.

The fact that C also supports user-defined data types permits C programs to use the predefined
data types. For this reason, C programmers should find this section useful. However, C and
Pascal are not completely compatible; some data type differences exist, and certain circumstances
require C programmers to employ special programming techniques. Section 1.8 describes these
differences and techniques in order to make programming on DOMAIN easier for C programmers.
If you are a C programmer, read Section 1.8 before reading this section.

FORTRAN does not support user-defined data types. A FORTRAN programmer must declare

all data types using standard FORTRAN data type statements. Section 1.7 describes how
FORTRAN programmers should declare each DOMAIN data type.

Domain Data Types 1-4

1.4.1. Enumerated Types

Enumerated types are used by DOMAIN when an argument may contain one of a number of
constant values. For example, the following is the insert file data type declaration of the mapped
segment (MS) access mode parameter:

ms_$acc_mode_t =
(ms_$r. { Read }
ms_$rx, { Read and execute }
ms_$wr, { Read and write }
ms_$wrx, { Read, write, and execute }
ms_$riw); { Read with intent to write }

The following program segment declares and loads a parameter of this type, in Pascal:

%include ’/sys/ins/base.ins.pas’;
%include °/sys/ins/ms.ins.pas’;

VAR

" { Declare parameter. }
access : ms_$acc_mode_t;

BEGIN
{ Load parameter with predefined value. }
access = ms_$r;

1.4.2, Sets
A set type is used by DOMAIN when an argument can contain a combination of constant values.

For example, the following is the insert file data type declaration of the Process Fault Manager
(PFM) options parameter.

pfm_$fh _opt_set_t = SET OF (pfm_$fh_backstop,
pfm_$fh_multi_level);

The following program segment declares and loads a parameter of this type, in Pascal:

%include '/sys/ins/pfm.ins.pas’;

VAR
{ Declare parameter. }
options : pfm_$fh opt_set_t;
BEGIN
{ Load parameter with both predefined values. }
options := [pfm $fh backstop, pfm $fh multi level]:

1-5 Domain Data Types

1.4.3. Records

A record type is used by DOMAIN when an argument contains multiple pieces of information
that may be accessed separately.

For example, the following is the insert file data type declaration of the calendar (CAL) readable
time format.

cal_$timedate_rec_t = PACKED RECORD { Returned from cal_$decode_time }

year: integer
month: integer
day: integer ;
hour: integer ;

minute: integer ;
second: integer
END ;

The following program segment declares and loads a parameter of this type, then accesses one
field in it:

%include ’/sys/ins/base.ins.pas’;
%include °’/sys/ins/cal.ins.pas’;

VAR
d_clock @ cal_$timedate_rec_t;

BEGIN

{ Get decoded local time -- load d_clock. }
cal_$decode_local_time (d_clock);

{ Access the year. }
writeln (’the year is ’,d_clock.year) .

1.4.4. Variant Records

A variant record type is used by DOMAIN when an argument contains multiple pieces of
information that may be typed differently, depending on usage.

For example, the following is the insert file data type declaration of the status parameter.

TYPE status_$t = PACKED RECORD CASE integer OF

1: (fail: boolean; { TRUE if module couldn’t handle error }
subsys: 0..127; { Subsystem code }
modc: 0..255; { Module code }
code: integer): { Module specific error }
2: (all: integer32); { Used for testing for specific value }
END ;

Domain Data Types 1-6

The following program segment declares and loads a parameter of this type, in Pascal:

%include ’/sys/ins/base.ins.pas’;
%include °‘/sys/ins/error.ins.pas’;

VAR
status : status_$t;

BEGIN
open(a_file_variable,
file name,
status); { Returns status in one form }

IF status.all <> status_$ok THEN
writeln (°STATUS CODE IS :’, status.code) { Writes it in another }

1.4.5. Arrays

An array type is used by DOMAIN when an argument contains a large number of smaller,
identical data types. That is, an array of characters, an array of pointers, etc. The most
commonly encountered array is the character array.

For example, the following is the insert file data type declaration of the pathname data type:
CONST name_$pnamlen_max = 256; { Max length of pathname }
TYPE name_$pname_t = ARRAY [1. .name_$pnamlen max] OF char;

To declare and load the pathname parameter in Pascal, write:

%include °/sys/ins/base.ins.pas’;
%include ’/sys/ins/name.ins.pas’;

VAR
pathname : name_$pname_t;

BEGIN

writeln (’Input File Name: *);
readln (pathname) ;

1.4.5.1. Arrays of Records

Arrays of records are used by DOMAIN when an argument contains a number of record
structures. The graphics interface to DOMAIN (the GPR and GM subsystems) uses arrays of
records to pass information.

1-7 Domain Data Types

One of the more complicated data types is the GPR_$WINDOW _LIST _ T data type. It is an
array of GPR__$WINDOW _ T records. A GPR_$WINDOW _T record is made up of two
fields that are, in turn, records made up of two fields.

The following is the insert file data type declaration of the GPR_ WINDOW _LIST _ T and all
the declarations that make up a window record:

{ Lists of windows }
gpr_$window_list_t = ARRAY[1..10] OF gpr_$window_t;

{ Wwindows on a bitmap }

gpr_$window_t = RECORD
window_base: gpr_$position_t;
window_size: gpr_$offset_t
END;

{ Bitmap positions }

gpr_$position_t = RECORD
X_coord, y_coord: gpr_$coordinate_t
END;

{ Bitmap offsets }

gpr_$offset_t = RECORD
X_size, y_size: gpr_$coordinate_t;
END;

{ Bitmap coordinates }

gpr_$coordinate_t = integeri6;

The following program declares a window list and loads it by calling GPR_$INQ__ VIS _ LIST.
It then writes the coordinates of the returned windows to standard output.

%include ’sys/ins/base.ins.pas’;
%include ’sys/ins/gpr.ins.pas’;

VAR
num of windows : integer; { Number of subwin to return }
total windows . integer:; { Number of subwin that exist }
visible_list : gpr_$window_list_t; { List of visible subwindows }
BEGIN
num_of_windows := 2

{ Returns list of visible subwindows when a window is obscured. }

gpr_$inq_vis_list(num_of_windows, { Number of subwindows to return }
total_windows, { Returns number of subwin that exist }
visible list, { Returns list of visible subwindows }
status) ;

{ Print the visible window coordinates. }
writeln (’VISIBLE WINDOW COORDINATES’);

n=1,;

Domain Data Types 1-8

DO WHILE (n <= num_of_ windows) BEGIN
WITH visible_list[n] DO

writeln
writeln
writeln
writeln
writeln
n=n-+
writeln

1.5. Basic Data Types

(’x-coordinate’, window_base.x_coord);
(*y-coordinate’, window_base.y_ coord) ;
. window_size.x _size);
, window_size.y size);

There are a number of data types that are used by more than one subsystem They are defined

in the BASE insert file.
STATUS _8$T

NAME_$PNAME _T

STREAM _ $ID

TIME _$CLOCK _T

UID_$T

These data types include:

Describes a status code. The value of the status code tells
whether a system call succeeded or failed. A detailed
description of how to use the return status appears in Chapter
2.

Describes a DOMAIN pathname. A pathname is used to
specify a system object.

Describes a unique identifier for an I/O connection. The
stream ID is used in most I/O system calls.

Describes the internal clock representation of time.

Describes the unique identifier for a file type.

C programmers, note that the C BASE insert file predeclares a Boolean type to be an unsigned
character type, and also declares a "true" and "false" value to test Booleans. See Section 1.8.1

for more information.

1.6. How to Use Data Type Reference Material

In addition to this task-oriented handbook, DOMAIN provides you with the DOMAIN System

Call Reference manual.

The reference is arranged alphabetically. The subsystems are ordered

alphabetically, and each call within a subsystem is ordered alphabetically.

The material for each subsystem is organized into the following three parts:

1. Detailed data type information (including illustrations of records for the use of

FORTRAN programmers).

2. Full descriptions of each system call.

3. List of possible error messages.

1-9 Domain Data Types

1.8.1. Data Types Sections

A subsystem’s Data Types section precedes the subsystem’s individual call descriptions. Each
Data Types section describes the predefined constants and data types for a subsystem. These
descriptions include an atomic data type translation (i.e., TIME__$REL _ABS__T = 2-byte
integer) for use by FORTRAN programmers, as well as a brief description of the type’s purpose.
Where applicable, any predefined values associated with the type are listed and described. Below
is an example of a data type description for the TIME _$REL_ABS _ T type.

TIME $REL_ABS T A 2-byte integer. Indicator of
type of time. One of the following
predefined values:

TIME $RELATIVE - relative time

TIME _$ABSOLUTE - absolute time

In addition, the record data types are illustrated in detail. These illustrations are primarily
intended to assist FORTRAN programmers in constructing record-like structures, but have been
designed to convey as much information as possible for all programmers. Each record type
illustration:

e Clearly shows FORTRAN programmers the structure of the record that they must
construct using standard FORTRAN data type statements. The illustrations show the
size and type of each field. (How to declare predefined records using FORTRAN is
described in Section 1.7.)

e Describes the fields that make up the record.

e Lists the byte offsets for each field. These offsets are used to access fields
individually.

e Indicates whether any fields of the record are, in turn, predefined records.

The following is the description and illustration of the CAL _$TIMEDATE _REC _ T predefined
record:

Domain Data Types 1-10

CAL _$TIMEDATE _REC_T Readable time format. The
diagram below illustrates the
CAL_$TIMEDATE _REC_T

data type:

predefined byte:
type of‘f’;gt field name

0: integer year

2: integer month

4: integer day

6: integer hour

8: integer minute

10: integer second

Field Description:
year
Integer representing the year.

month
Integer representing the month.

day
Integer representing the day.

hour
Integer representing the hour
(24 hr. format).

minute
Integer representing the minute.

second
Integer representing the second.

FORTRAN programmers, note that a Pascal variant record is a record structure that may be
interpreted differently depending on usage. In the case of variant records, as many illustrations
will appear as are necessary to show the number of interpretations. See Section 1.7.6 for details
on how to handle variant records.

1-11 Domain Data Types

1.8.2. System Call Descriptions

The system call descriptions are listed alphabetically for quick reference. Each system call
description contains:

e An abstract of the call’s function.

e The order of call parameters.

o A brief description of each parameter.

e A description of the call’s function and use.

These descriptions are standardized to make referencing the material as quick as possible.

1.6.2.1. Parameter Descriptions

Each parameter description begins with a phrase describing the parameter. If the parameter can
be declared using a predefined data type, the descriptive phrase is followed by the phrase *,n
XXX format", where XXX is the predefined data type. Pascal or C programmers, look for this
phrase to determine how to declare a parameter.

FORTRAN programmers, use the second sentence of each parameter description for the same
purpose. It describes the data type in atomic terms that you can use, such as, "This is a 2-byte
integer". In complex cases, FORTRAN programmers are referenced to the respective subsystem’s
data type section. FORTRAN programmers should read Section 1.7 to learn how to construct
complex DOMAIN data types in FORTRAN.

The rest of a parameter description describes the use of the parameter and the values it may
hold.

The following is an example of a parameter description:

access
New access mode, in MS_$ACC_MODE T format. This is a 2-byte
integer. Specify only one of the following predefined values:

MS_$R Read access.
MS_$WR Read and write access.
MS _$RIW Read with intent to write.

An object which is locked MS _ $RIW may not be changed to MS_ $R.

1.8.3. Error Sections

Each error section lists the status codes that may be returned by subsystem calls. The following
information appears for each error:)

e Predefined constant for the status code.

e Text associated with the error.

Domain Data Types 1-12

The following is a portion of the NAME Error Section:

NAME _$DIRECTORY _FULL The directory has no room for any more objects.
NAME _$ALREADY_ EXISTS The pathname given is not unique.
NAME _ $BAD _ PATHNAME The pathhname given is not a valid pathname.

See Chapter 2 for details on how to use status codes.

1.7. Data Type Information for FORTRAN Programmers

As stated above, DOMAIN predefined data types reflect the data types available in Pascal.
FORTRAN programmers must emulate these data types using standard FORTRAN data type
statements. You do not need to know Pascal to emulate these data types, but understanding the
purpose of the Pascal data types is useful.

The following sections are organized by the data type to be emulated. Each section explains:

e The purpose of the data type.
e How to recognize the type in the reference material.
e How to emulate the type using FORTRAN.

o How to reference a variable of this type.

1.7.1. Boolean Type

Boolean types are variables that evaluate to either TRUE or FALSE. A Boolean value is
described in the reference material and the insert files as a Boolean.

There are two ways to emulate a Boolean type in FORTRAN. Which way you use depends on
the way the Boolean is used by the system. DOMAIN uses a Boolean either as a separate data
type or as a field in a record structure.

If the system uses a Boolean as a separate type, emulate the Boolean type by using the LOGICAL
type. A Pascal Boolean is one byte long and a LOGICAL is four bytes long. However, they both
evaluate to TRUE or FALSE and a Boolean value returned from the system may be loaded into a
logical parameter.

The following program segment declares a LOGICAL variable into which the system loads a
Boolean value. The program then writes the value to output, using logical formatting.

1-13 Domain Data Types

* Declare SIO_$ variables
INTEGER*#4 status
INTEGER*2 stream_id

LOGICAL value_ b { Boolean value }
* INQUIRE CTS_ENABLE
CALL sio_$inquire (stream id,
2 sio_$cts_enable, { Option }
2 value_b, { Returned by system }
2 status)

IF (status .NE. status_$ok) THEN
CALL error_$print (status)
ENDIF
* Print whether Boolean is TRUE (T) or FALSE (F)

write (*,40) value_b
40 format (’The CTS _ENABLE is ’,L5)

If the system uses a Boolean as a field in a record structure, declare the field to be a CHAR type.
Although the fact that a Pascal Boolean is one byte long and a LOGICAL is four bytes long when
the Boolean type stands alone, in a record structure, the Boolean must be one byte long.

To test the Boolean for TRUE and FALSE:

1. Use the ICHAR transfer function to convert the CHAR value to an integer.
2. Test for equivalence to 0. If the value is equivalent to 0, the Boolean value is FALSE.

See Section 1.7.5 for information about record structures.

1.7.2. Pointers

Throughout the documentation you will see references to a data type known as a pointer. A

pointer is an address; it "points" to another data structure. A pointer is four bytes long. Many
system calls return pointers as parameters. A common example is a call that returns a pointer to
an array.

In the reference material a pointer may be described in one of three ways:

o With the phrase "in UNIV_PTR format".
® As being a pointer.
o As the address of a structure.

DOMAIN FORTRAN provides the POINTER statement as an extension to the ANSI standard, in
order to make using returned pointers easier.

Domain Data Types 1-14

The POINTER statement permits you to access the data to which an address points. The syntax
is:

POINTER /pointer-variable/based-variable-list

Where:

pointer-variable Must be defined as an INTEGER*4 before you refer to it in the POINTER
statement. (A pointer is a 32-bit address.)

based-variable-list Lists variable(s) pointed to by the pointer-variable. If the pointer-variable

points to a record structure, you specify all the variables that make up the
record structure, in low byte to high byte order. (Section 1.7.5 describes
how to emulate record structures.) The pointer refers directly to the
variable listed first. Subsequent variables in the list are offset by the sum
of the sizes of the previous variables, so that once the pointer variable is
loaded, you may directly access any listed variable.

If the pointer points to an array, you may dimension the array in the POINTER statement.

PGM_$GET_ARGS is an example of a system call that returns a pointer.
PGM _$GET _ ARGS retrieves command line arguments. It places each argument in a record,
preceded by the length of the argument. PGM_$GET _ ARGS then loads an array with pointers
to each record. PGM_ $GET _ ARGS returns two parameters, the number of arguments it has
retrieved, and a pointer to the array of pointers.

Figure 1-1 illustrates the GET _ ARG pointer arrangement:

Returned Array of Retrieved Argument
Pointer Pointers Records
index
pointer 0: pointer —P arg_len arg_text
. ointer |—»
L arg_len arg_text
n: pointer —p arg_len arg_text

Figure 1-1. The Pointer/Data Relationship

The argument record structure consists of a 2-byte integer in the low end and a character string
of up to 128 characters in the high end. The character string is the text of the argument, and the
integer is the length of the argument.

The following program example uses the PGM_$GET _ ARGS call to illustrate how to handle
pointers in FORTRAN.

1-15 Domain Data Types

%include ’/sys/ins/base.ins.ftn’
%include ’/sys/ins/pgm.ins.ftn’

CHARACTER*128 arg_text
* Declare pointers as 4-byte integers
INTEGER#4 argv_ptr, { Pointer to array of args }
2 arg ptr, { Pointer to record }
2 argv
INTEGER#*2 arg count,
2 arg_len,
2 i
* Associate pointer and based list
POINTER /argv_ptr/argv(0:127) { Pointer to array }
POINTER /arg_ptr/arg_len, arg_text <{ Pointer to record }

* Load argument records and pointer array

CALL pgm_$get_args (arg_count,

2 argv_ptr)
* Print out commmand line arguments

DO 10 i = 0, arg_count-1
* Associate ptr variable and ptrs in array

arg_ptr = argv(i)

write (¢, %) ‘argument ’,i, ° is ’, arg_text(l:arg len)
10 CONTINUE

END

Once a value has been assigned to a pointer, you can reference its based variables. In the
example, the system assigns the address of the array to argv__ptr, which allows you to reference
argv. You must explicitly assign each address in the array to the argument pointer, arg__ ptr:

arg_ptr = argv(i)

This permits you to reference the variables in the argument record.

1.7.3. Enumerated Types

Pascal implements a data type known as an enumerated type, in which the type is associated
with a list of values. A variable defined to be of this data type can only take one of these values.

In the reference material, the parameter description for an enumerated type ends with the
sentence:

Specify only one of the following predefined values: (for input parameters)
or

One of the following predefined values: (for output parameters)

This sentence is followed by a list of the predefined values that a variable of this type may hold.
These values are defined by the subsystem insert file, and each corresponds to the ordinal position
of the value in the data type definition.

Domain Data Types 1-16

To use an enumerated type in FORTRAN, define the parameter variable as a 2-byte integer, and
load the variable using the predefined values listed in the parameter description.

The following is the description of the weekday parameter to the CAL _ $WEEKDAY call:
weekday

The computed day of the week, in CAL_ $WEEKDAY _ T format.
This is a 2-byte integer. One of the following predefined values: |

CAL_ $SUN
CAL_ $MON
CAL_$TUE
CAL_ $WED
CAL_ $THU
CAL_$FRI

CAL_$SAT

The following program example calls CAL__$WEEKDAY to determine what day of the week a
specific date falls on. It uses the predefined values to determine what has been returned.

%include ’/sys/ins/base.ins.ftn’
%include ’/sys/ins/cal.ins.ftn’

INTEGER*2 year,

2 month,

2 day,

2 weekday
* Get the input

print *, ’'What year? °
read (*,10) year
print *, °What month? °’
read (*,10) month
print *, ‘What day? °
read (*,10) day
10 format (BN, I3)
weekday = cal_$weekday (year,
2 month,
2 day)

IF (weekday .EQ. cal_$mon) THEN
print *, °*The day of the week is Monday’
ELSE IF (weekday .EQ. cal_$tue) THEN
print %, 'The day of the week is Tuesday’
ELSE IF (weekday .EQ. cal_$wed) THEN
print *, °*The day of the week is Wednesday’
ELSE IF (weekday .EQ. cal_$thu) THEN
print *, °The day of the week is Thursday’
ELSE IF (weekday .EQ. cal_$fri) THEN
print %, ’'The day of the week is Friday’
ELSE IF (weekday .EQ. cal_$sat) THEN
print *, ’'The day of the week is Saturday’
ELSE IF (weekday .EQ. cal_$sun) THEN
print *, ’The day of the week is Sunday’

END IF :

1-17 Domain Data Types

1.7.4. Sets

Another Pascal data type you must emulate is a set. A set is a bit field. In the reference
material, the parameter description for a set ends with the sentence:

Specify any combination of the following predefined values:

This sentence is followed by a list of predefined bit values to be used in setting the bit field.
These values are defined by the subsystem insert file, and each corresponds to the position of a
bit.

In FORTRAN, the bit field is always an integer variable. The parameter description will
explicitly state whether it is a 2-byte or 4-byte integer.

There are some exceptions to this case. One is the MBX__$CHANNEL _ SET _ T data type, used
to indicate channel numbers in a call to MBX _$GET_REC_CHAN_ SET, and another is the
GPR_$KEYSET _T data type, used to specify a set of keys in a call to
GPR_$ENABLE _INPUT. These exceptions can be handled using set emulation calls supplied
in the FTNLIB library. See Section 1.7.4.3 for information about the set emulation calls.

1.7.4.1. Setting Bits

In some cases you must set bits in a field that you pass to the system. The following is the
description of the options parameter to the PGM_ $ESTABLISH _FAULT _ HANDLER call.

options

A value specifying the type of handler you want to establish,

in PFM_$FH_OPT_SET__ T format. This is a 2-byte integer.
Specify any combination of the following set of predefined

values:

PFM__$FH_MULTI_LEVEL
To declare a multi-level fault handler which handles faults
for its own program level and all subordinate levels.

PFM __$FH__BACKSTOP
To establish a backstop fault handler which takes effect
after all non-backstop handlers have taken effect.

In this case, you declare the options parameter to be an INTEGER*2, and assign a value to it by
adding the predefined values:

Domain Data Types 1-18

%include °'/sys/ins/pfm.ins.ftn’

* Declare the variable
INTEGER*2 options

* Set both bits
options = pfm_$fh multi level + pfm_$fh backstop

* Use the parameter in a (function) call
handle = pfm $establish_fault_handler (t_status,
options,
func_p.
status)

1.7.4.2. Testing Bits

In some cases the system returns a bit field that you must test to determine which bits are set.
SIO _$INQUIRE returns an option parameter that may return the SIO__$ERR__ENABLE
option. This option is a 2-byte bit field that may have the predefined values:

SIO_$CHECK_ PARITY
SIO_$CHECK _ FRAMING

SIO_$CHECK _DCD_ CHANGE
SIO_$CHECK _CTS_CHANGE

To test a single bit (or test each bit separately):
1. AND the returned value and the predefined bit value.

2. If the result is 0, the bit is not set.

The following program segment calls SIO_ $INQUIRE, asking which types of errors are enabled.
SIO __ $INQUIRE returns a bit field, which the program tests bit-by-bit to determine the types of
errors that are enabled.

%include ’/sys/ins/base.ins.ftn’
%include ’/sys/ins/streams.ins.ftn’
%include */sys/ins/sio.ins.ftn’

INTEGER*4 status

INTEGER*2 value_m, { Bit field }
stream_id

* OPEN an SIO line w/ STREAM $0PEN
* INQUIRE enabled errors

CALL sio_$inquire (stream_id,

2 sio_$err_enable, { Option }

2 value_m, { Specify bit mask }

2 status)

IF (status .NE. status_$ok)
2 GOTO ERROR

1-19 Domain Data Types

* Test each bit and print enabled errors
IF (AND(value_m,sio_$check parity) .NE. 0)
2 print *, °'Parity errors enabled’

IF (AND(value_m,sio_$check framing) .NE. 0)
2 print *, °‘Framing errors enabled’

IF (AND(value_m,sio_$check_dcd_change) .NE. 0)
2 print *, °DCD line changes reported’

IF (AND(value_m,sio_$check cts_change) .NE. 0)
2 print *, °CTS line changes reported’

To test a number of specific bits:

1. Create a mask and set the bits you wish to test, using the predefined values.

2. AND the mask and the returned value. The AND results in a bit field in which the
bits you set in the mask are either set or not, depending on the state of the
corresponding returned value bits. That is, if bit 5 of the returned value was set, bit 5
in the result is set.

3. Test the bits using the predefined constants. If you want to test a bit for being set,
add the predefined value to the value against which you test the result. If you want
to test a bit for being not set, simply omit it from the test value.

The following program segment again calls SIO_$INQUIRE, asking which types of errors are
enabled. In this case, it tests two bits for two specific conditions:

1. Both bits set.
2. One bit set, one bit not set.

%include ’/sys/ins/base.ins.ftn’
%include ’/sys/ins/streams.ins.ftn’
%include °/sys/ins/sio.ins.ftn’

INTEGER*4 status
INTEGER*2 mask

INTEGER*2 value_m, { Bit mask }
stream_id
* OPEN an SIO line w/ STREAM_$OPEN
* INQUIRE enabled errors
CALL sio_$inquire (stream id,
2 sio_$err_enable, { Option }
2 value_m, { Specify bit mask }
2 status)
* Create the mask

mask = sio_$check_parity + sio_$check framing

Domain Data Types 1-20

* Test for both bits set

IF (AND(mask,value_m) .EQ.

2 (sio_$check_parity + sio_$check_framing))
2 print *, °Parity and Framing enabled’
* Test for parity off, framing on

IF (AND(mask,value m) .EQ. sio_$check_framing)
2 print *, °’Parity not enabled - Framing enabled’

1.7.4.3. Emulating Large Sets

Two cases exist for which the set emulation techniques described above will not work; the
MBX__$CHANNEL_SET_T data type (used to indicate channel numbers in a call to
MBX _$GET _REC_ CHAN_SET), and the GPR_$KEYSET _ T data type (used to specify a
set of keys in a call to GPR_$ENABLE _ INPUT).

In both cases, there are no predefined values for the bits. MBX_ $CHANNEL _SET_ T is a set
of integers from 0 to 255. GPR_$ENABLE _INPUT is a set of characters not exceeding 256.

To initialize, set, clear, and test these sets, use the set emulation calls supplied in the FTNLIB
library.

To initialize a set, use the LIB__$INIT _ SET call with the following syntax:
LIB__$INIT_ SET(name-of-set, number-of-elements-in-set)

A set should be initialized before using it.

To set a bit in a set, use the LIB_ $ADD_ TO _ SET call with the following syntax:

LIB__$ADD_ TO _ SET(name-of-set,number-of-elements-in-set,new-element)

LIB_$ADD _ TO_ SET must be called once for each element you wish to add to the set.

To clear a bit from a set, use LIB_ $CLR_FROM _ SET call with the following syntax:

LIB_ $CLR _FROM_ SET(name-of-set,number-of-elements-in-set,element-to-clear)

LIB_$CLR_FROM _ SET must be called once for each element you want to clear from the set.

To test a bit in a set, use the LIB_ $MEMBER _ OF _ SET call with the following syntax:

boolean = LIB__ $MEMBER __ OF __ SET(name-of-set,number-of-elements-in-set,
element-to-test)

The Boolean value returns TRUE if the tested element is in the set.

The following program example declares the channel set as an 8-element INTEGER*4 array.
This creates a bit field of 255 bits -- each bit corresponds to a channel number. The program
uses the set emulation calls to specify that messages be accepted from two channels - 2 and 4.

1-21 Domain Data Types

%INCLUDE °’/sys/ins/base.ins.ftn’
%INCLUDE ’/sys/ins/mbx.ins.ftn’

INTEGER*4 handle, status, retptr, retlen

INTEGER#2 buffer(4), returned buffer(4), open channels
POINTER /retptr/returned_buffer

INTEGER*4 chanset(8) <{ Declare channel # set (265 bits) }

{ Initialize the set. }
CALL 1ib_$init_set(chanset, { Set name }
2 int2(256)) { Number of elements }

{ set channel 2. }
CALL 1ib_$add_to_set(chanset, { Set name }
2 int2(256), { Number of elements }
2 int2(2)) { Element to set —-- channel 2}

{ Set channel 4. }
CALL 1lib_$add_to_set(chanset,

2 int2(256),

2 int2(4)) { Element to set —-- channel 4}
* Create the mailbox -- ten communication channels, 100 bytes in
* the queue.

open_channels = 0O

CALL mbx_$create_server(’mailbox’,
int2(7),
int2(100),
int2(10),
handle,
status)

CALL error(’mbx_$create_server’, status)

write(*,%*) °Mailbox opened.’

NNNNN

* Get the messages

100 CALL mbx_$get_rec_chan_set(handle,

chanset, { Channel set }
iaddr (buffer),

int4(8),

retptr,

retlen,

status)

NNNNNN

1.7.5. Records

A record is a complex data structure encoded into a single variable. A record may be composed
of several “fields" of information that can be referenced separately. Records are of differing
sizes, depending on the information being transferred.

The reference material is useful in determining how to emulate records.

The parameter description for a record will end with the sentence: *This data type is X bytes

long. See the XXX Data Types for more information.* This sentence tells you the length of the
record, in bytes, and references you to the appropriate subsystem Data Types section.

Domain Data Types 1-22

As described in Section 1.6.1, each record is illustrated in the Data Types section, in order to
make it easier for you to understand what it is you wish to emulate.

The illustrations show the size and type of each field, and describe the fields that make up the
record. The following is the illustration of the CAL__$TIMEDATE _REC _ T predefined record:

CAL_$TIMEDATE_REC_T Readable time format. The
diagram below illustrates the

CAL _$TIMEDATE _REC_T

data type:

predefined byte:
type of)f/;et field name

0: integer year

2: integer month

4: integer day

6: integer hour

8: integer minute

10: integer second

This record may be passed to the system using the CAL__$ENCODE _TIME call, or returned
from the system using the CAL_ $DECODE _ TIME call.

Typically, you use an array to emulate a record, and you use EQUIVALENCE statements to
access the record’s fields as separate variables.

The following program segment accepts the six fields of the CAL__$TIMEDATE_REC_T

record as separate input variables, and passes the full record to CAL_$ENCODE _TIME as a
6-element 2-byte integer array. It does so by equivalencing each field to an element of the array.

1-23 Domain Data Types

%include ’'/sys/ins/base.ins.ftn’
%include */sys/ins/time.ins.ftn’
%include °/sys/ins/cal.ins.ftn’

* Emulate cal_$timedate_rec t

INTEGER*2 c_clock(6), { Array -- full record }
year, { Six separate fields }
month,
day,
hour,
minute,
second

NNNDNNN

* . Equivalence each element with a field

EQUIVALENCE (c_clock(1),year),
(c_clock(2) ,month),
(c_clock(3),day),
(c_clock(4),hour),
(c_clock(5) ,minute),
(c_clock(6),second)

NNVNNDN

* Emulate time_$clock_t
INTEGER*2 clock(3)

* Get input variables
WRITE (*,%) ’'Input year in integer format: °
READ (*,10) year

WRITE (*,*) ’Input second in integer format: °’
READ (*,60) second
10 FORMAT (BN, I3)

* Convert TIMEDATE REC_T to CLOCK_T
CALL cal_$encode_time (c_clock,
2 clock)

1.7.8. Variant Records

Pascal implements a special type of record, the variant record, in which the definition of the
record may differ, depending on the value of a field in the record or the record’s usage. An
example of this is the SIO_$VALUE _ T predefined type.

This record may alternately be a character, a positive 2-byte integer, a Boolean value, or a set
(bit field).

In the Data Types section of the reference material, all possible variations are illustrated.
One way to emulate a variant type is to declare the parameter to be whichever form you wish to
reference. In cases where you wish to reference the parameter in more than one form, declare

more than one variable and use each form where appropriate.

Below is the data type description of the variant record SIO_ $VALUE _ T.

Domain Data Types 1-24

predefined byte:

type offset field name
0: char c
or
0: integer i
or
0: boolean| b
or
sio_$err_enables_t 0: integer es

Field Descriptions

c
A character value.

i
An integer value.

b

A boolean value.

es
A set of enabled errors.

The following program segment uses the SIO _ $INQUIRE call to determine several options for a
serial line. The value returned by this call is in the format SIO _$VALUE _T and may be a
2-byte integer, a Boolean value, a character value, or a bit field, depending on which option is
being inquired. The program declares variables of all four types and uses whichever is
appropriate to the specific call.

¥ This program inquires and changes attributes of a serial line

%include °/sys/ins/base.ins.ftn’
%include '/sys/ins/streams.ins.ftn’
%include ’'/sys/ins/sio.ins.ftn’
%include ’/sys/ins/error.ins.ftn’

* $0PEN variables
INTEGER*4 status
CHARACTER*256 pathname
INTEGER*2 namelength,

2 stream_id,
2 access,
2 conc

1-25 Domain Data Types

* Declare 4 forms of the parameter
LOGICAL value b { Boolean value }
CHARACTER*1 value_c¢ { Character value }
INTEGER#2 value_i, <{ Integer value }
2 value m { Bit field }

* Get pathname as input
print *, *Input the pathname’
read (*,10) pathname

10 format (BN, A80)
namelength = LEN(pathname)

CALL stream $open (pathname,

2 namelength,

2 stream $write, { Access }

2 stream_$no_conc _write, { Concurrency }
2 stream_id,

2 status)

IF (status .NE. status_$ok)
2 GOTO ERROR

* INQUIRE serial line # (INTEGER)
CALL sio_$inquire (stream_id,
2 sio_$line, { Option }
2 value_ i,
2 status)

IF (status .NE. status_$ok)
2 GOTO ERROR

write (*,30) value i
30 format (’The serial line is ’,I3)

* INQUIRE if CTS is enabled (BOOLEAN)
CALL sio_$inquire (stream_id,
2 sio_$cts_enable, { Option }
2 value b,
2 status)

IF (status .NE. status_$ok)
2 GOTO ERROR

write (%*,40) value_b
40 format (’The CTS_ENABLE is *,L5)

* INQUIRE the KILL char (CHARACTER)
CALL sio_$inquire (stream_id,
2 sio_$kilL, { Option }
2 value_c,
2 status)

IF (status .NE. status_$ok)
2 GOTO ERROCR

Domain Data Types 1-26

* Test for ~X using hex value
IF (ICHAR(value_c) .EQ. 16#18) THEN
print *, °‘The KILL character is control X’
ELSE
GOTO ERRCR
ENDIF

* INQUIRE which errors are enabled (MASK)
CALL sio_$inquire (stream id,
2 sio_$err_enable, { option }
2 value_m,
2 status)

IF (status .NE. status_$ok)
2 GOTO ERROR

* Test each bit and print if set
IF (AND(value_m, sio_$check_parity) .NE. 0)
2 print *, °‘Parity errors enabled’

IF (AND(value_m, sio_$check framing) .NE. O)
2 print *, ‘Framing errors enabled’

IF (AND(value_m, sio_$check _dcd_change) .NE. 0)
2 print *, °DCD line changes reported’

IF (AND(value_m, sio_$check cts_change) .NE. 0)
2 print *, °*CTS line changes reported’

You may also equivalence the variants. The status returned from system c¢alls is a variant type.
Typically, after each call you test the status.all form (the full four bytes) against the success
status, STATUS _$OK. However, when checking for a STREAM_$END _ OF _ FILE status,
you test against the status.code form of the record.

Below is the data type description of the STATUS _$T type.

3}';2; 31 field name
0: integer all
or
31
0: _I fail
24
subsys
16
1: modc
0
2: integer code

1-27 Domain Data Types

all
All 32 bits in the status code.

code
A signed number that identifies the
type of error that occurred (bits O - 15).

modc
The module that encountered the
error (bits 16 - 23).

subsys
The subsystem that encountered the
error (bits 24 - 30).

fail

The fail bit. If\this bit is set, the error

was not within the scope of the module invoked,
but occurred within a lower-level module (bit 31).

The program segment below equivalences both variants and accesses whichever form of the status
it needs.

* Declare status
INTEGER*2 status(2)
INTEGER*4 status_all
INTEGER*2 status_code

* Declare GET _REC variables
* Open a file
* Read a record

Call STREAM $GET_REC (stream_id,

IADDR(info_rec), { Address of buffer }
LEN(info_rec), { Length of buffer }
retptr, { Pointer to returned data }
retlen, { Length of returned }
seek_key, { Returned seek key }
status) ; { Returned status }

* Test the returned status

IF (status_all .NE. status_$ok) THEN
IF (status_code .EQ. stream $end of_ file) THEN
GOTO CLOSE
ENDIF
GOTO ERROR
ENDIF

Domain Data Types 1-28

1.7.7. Passing Parameters to System Calls

DOMAIN requires that integer variables and integer constants be of a particular length,
depending on the usage of the parameter.

1.7.7.1. Passing Integer Parameters

When passing integer parameters to system calls, it is important to pass an integer that is the
size that the call expects.

In the reference material, the second sentence of a parameter description informs you whether the
expected integer is a 2-byte or 4-byte integer.

If you declare all your integer data types as INTEGER*4, it is important to note that some call
parameters expect a 2-byte integer value; for example, pathname lengths.

To pass an integer to a system call that expects a 2-byte integer, either explicitly declare the
parameter variable to be INTEGER*2, or typecast the parameter to be INTEGER*2 with the
INT2 intrinsic function.

The two following examples show both ways of passing an integer properly. The
NAME _$SET _DIR call permits you to set a naming directory by passing the pathname of the
directory and the length of the pathname. The length parameter is expected to be a 2-byte
integer. Example A declares the length parameter as a 2-byte integer. Example B declares the
length parameter as a 4-byte integer, and typecasts the parameter in the call.

EXAMPLE A
INTEGER*4 status
- CHARACTER*256 pathname
INTEGER*2 namelength

CALL name_$set_ndir (pathname,

2 namelength,
2 status)
EXAMPLE B
INTEGER*4 status
CHARACTER*256 pathname
INTEGER*4 namelength

CALL name_$set_ndir (pathname,
2 INT2(namelength),
2 status)

1-29 Domain Data Types

1.7.7.2. Passing Integer Constants

DOMAIN system calls permit you to specify integer constants as parameters where applicable.

Again, it is important that when you do so, you are careful to pass a constant of the expected
length.

In FORTRAN, integer constants have the same length as the default integer type (INTEGER*4).

To pass a constant to a call that expects a 2-byte integer value, type cast the constant with the
intrinsic function INT2.

1.8. Data Type Information for C Programmers

As stated above, DOMAIN predefined data types reflect the data types available in Pascal.
However, you can use standard C programming statements to emulate the data types that are not
supported.

In addition, the way that parameters are passed also reflects Pascal. That is, parameters are
passed by reference rather than by value. In the C insert files, each system call is declared using
the “std__$call" keyword that informs the compiler that your program will pass parameters to
system calls by reference. Obviously, this will effect the way you specify parameters. Section
1.8.5 describes how to avoid problems when passing parameters to system calls.

The following four sections describe data types to be emulated. Each section explains:

o The purpose of the data type.
e How to recognize the type in the reference material.
o How to emulate the type using C.

o How to reference a variable of this type.

1.8.1. Boolean Type

Boolean types are variables that evaluate to either TRUE or FALSE. A Boolean value is
described in the reference material and the insert files as a Boolean.

The C BASE insert file predeclares a boolean type, to emulate a Pascal Boolean type. It also
declares a true and false value for use with the boolean type.

1.8.2. Sets

Another Pascal data type you must emulate is a set. A set is a bit field.

In the reference material, the parameter description for a set ends with the sentence:

Specify any combination of the following predefined values:

Domain Data Types 1-30

This sentence is followed by a list of predefined bit values to be used in setting the bit field.

These values are defined by the subsystem insert file, and each corresponds to the position of a
bit.

In C, the bit field is usually an integer variable. However, the insert files predefine the bit field
types so that you may use the predefined types listed in the parameter descriptions.

There are some exceptions to this case. One is the MBX _$CHANNEL _ SET _ T data type, used
to indicate channel numbers in a call to MBX_$GET_REC_CHAN_ SET, and another is the
GPR_$KEYSET_T data type, used to specify a set of keys in a call to
GPR_$ENABLE _INPUT. These exceptions can be handled using set emulation calls supplied
in the FTNLIB library. See Section 1.8.2.3 for information about the set emulation calls.

1.8.2.1. Setting Bits

In some cases, you must set bits in a field that you pass to the system. The following is the
description of the options parameter to the PGM_ $ESTABLISH__FAULT_HANDLER call.

options

A value specifying the type of handler you want to establish,

in PFM_$FH__OPT_SET_T format. This is a 2-byte integer.
Specify any combination of the following set of predefined

values:

PFM_$FH__MULTI__LEVEL
To declare a multi-level fault handler which handles faults
for its own program level and all subordinate levels. '

PFM _ $FH__ BACKSTOP
To establish a backstop fault handler which takes effect
after all non-backstop handlers have taken effect.

In this case, you declare the options parameter using the predefined type
PFM_$FH_OPT _SET _ T, and assign a value to it by adding the predefined bit values:

#include <stdio.h>
#include "/sys/ins/pfm.ins.c"

/* Declare the variable. */
pfm_$fh opt_set_t options:

/% Set both bits. */
options = pfm_$fh multi_level + pfm $fh backstop;

/* Use the parameter in a (function) call. */

handle = pfm $establish_fault_handler (t_status,
optiomns,
func_p,
status) ;

1-31 Domain Data Types

1.8.2.2. Testing Bits

In some cases, the system returns a bit field that you must test to determine which bits are set.
SIO _$INQUIRE returns an option parameter that may return the SIO__$ERR__ENABLE
option. This option is a 2-byte bit field that may have the predefined values:

SIO _$CHECK _ PARITY
SIO_$CHECK _ FRAMING
SIO_$CHECK_ DCD__ CHANGE
SIO_$CHECK_CTS_ CHANGE

To test a single bit (or test each bit separately):

1. AND the returned value and the predefined bit value.

2. If the result is 0, the bit is not set.

The following program segment calls SIO _$INQUIRE, asking which types of errors are enabled.
SIO __$INQUIRE returns a bit field (value.es), which the program tests bit-by-bit to determine
the types of errors that are enabled.

#include <stdio.h>

#include "/sys/ins/base.ins.c"
#include "/sys/ins/streams.ins.c"
#include "/sys/ins/sio.ins.c*
#include "/sys/ins/error.ins.c"

status_$t status;

/* SIO_$ variables */
sio_$value_t value;
stream $id stream_id;

/* Open an SIO line with STREAM OPEN. */

/* INQUIRE enabled errors. */

sio_$inquire (stream_id,
sio_$err_enable, /* Option */
value.es,
status) ;

if (status.all != status_$ok)
error_$print (status);

if ((value.es & sio_$check_parity) != 0) /* Bit set x/
printf ("Parity errors emnabled \n");

if ((value.es & sio_$check framing) != 0) /* Bit set */
printf ("Framing errors enabled \n");

if ((value.es & sio_$check_dcd_change) != 0) /* Bit set */
printf ("DCD line changes reported \n"):

Domain Data Types 1-32

if ((value.es & sio_$check cts_change) != 0) /% Bit set */
printf (“CTS line changes reported \n"):

To test a number of specific bits:

1. Create a mask and set the bits you wish to test, using the predefined values.

2. AND the mask and the returned value. The AND results in a bit field in which the
bits you set in the mask are either set or not, depending on the state of the
corresponding returned value bits. That is, if bit 5 of the returned value was set, bit 5
in the result is set.

3. Test the bits using the predefined constants. If you want to test a bit for being set,
add the predefined value to the value against which you test the result. If you want
to test a bit for being not set, simply omit it from the test value.

The following program segment again calls SIO__$INQUIRE, asking which types of errors are
enabled. In this case, it tests two bits for two specific conditions:

1. Both bits set.

2. One bit set, one bit not set.

#include <stdio.h>

#include "/sys/ins/base.ins.c"
#include "/sys/ins/streams.ins.c"
#include "/sys/ins/sio.ins.c"
#include "/sys/ins/error.ins.c"

status_$t status;

/* SIO_$ variables */
sio_$value_t value;
stream $id stream_id.

/* Open an SIO line with STREAM OPEN. */

/* INQUIRE enabled errors. */

sio_$inquire (stream id,
sio_$err_enable, /* Option */
value.es,
status) ;

if (status.all != status_$ok)
error_$print (status);

/* Create a mask. */
mask = sio_$check_parity + sio_$check_framing:

/* Test for both bits set. */
if ((value.es & mask) ==

(sio_$check parity + sio_$check framing))
printf ("Parity and Framing enabled \n"):

1-33 Domain Data Types

/* Test for parity off, framing on. *x/
if ((value.es & mask) == sio_$check_framing);
printf ("Parity enabled - Framing not enabled \n");

1.8.2.3. Emulating Large Sets

Two cases exist for which the set emulation techniques described above will not work; the
MBX__$CHANNEL_SET_T data type (used to indicate channel numbers in a call to
MBX_$GET_REC_CHAN_ SET), and the GPR_ $KEYSET _ T data type (used to specify a
set of keys in a call to GPR__$ENABLE _ INPUT).

In both cases, there are no predefined values for the bits. MBX_$CHANNEL _SET_T is a set
of integers from 0 to 255. GPR_$ENABLE _ INPUT is a set of characters not exceeding 256.

To initialize, set, clear, and test these sets, use the set emulation calls supplied in the FTNLIB
library.

To initialize a set, use the LIB__$INIT _ SET call with the following syntax:

LIB_ $INIT _ SET(name-of-set, number-of-elements-in-set)

A set should be initialized before using it.

To set a bit in a set, use the LIB__ $ADD _TO _SET call with the following syntax:

LIB__$ADD _ TO _ SET(name-of-set,number-of-elements-in-set,new-element)

LIB__$ADD _TO _SET must be called once for each element you wish to add to the set.

To clear a bit from a set, use LIB_ $CLR_FROM _ SET call with the following syntax:

LIB_ $CLR _FROM_ SET(name-of-set,number-of-elements-in-set,element-to-clear)

LIB__$CLR_FROM_ SET must be called once for each element you wish to clear from the set.

To test a bit in a set, use the LIB_ $MEMBER _ OF _ SET call with the following syntax:

boolean = LIB_ $MEMBER _ OF _ SET(name-of-set,number-of-elements-in-set,
element-to-test)

The Boolean value returns TRUE if the tested element is in the set.
The following program example declares the channel set in the usual way, using the predefined
MBX _$CHANNEL _SET _ T type. This creates a bit field of 255 bits - each bit corresponds to

a channel number. The program uses the set emulation calls to specify that messages be accepted
from two channels -- 2 and 4.

Domain Data Types 1-34

#include </sys/ins/base.ins.c>
#include </sys/ins/mbx.ins.c>
#include </sys/ins/error.ins.c>

/* Declare channel set. */
mbx_$chan_set_t chan_set;

main() /% Program server %/

{
init () ;

/* Create the mailbox. */

mbx_$create_server (mbx_name,
mbx_namelen,
mbx_chansize,
mbx_maxchan,
mbx_handle,
status);

if (status.all != 0)

{ error_$print_name(status, "error creating mailbox" , 22);

exit(1);
}

printf("Mailbox %s was successfully opened.\n", mbx_name) ;
/* Initialize set. %/
lib_$init_set(chan_set, /* Name %/
256) ; /% Number of elements */

/* Set channel 2. */

1ib_$add_to_set(chan_set, /* Name */
256, /* Number of elements */
2). /% Channel # to set %/

lib_$add_to_set(chan_set,
256,
4);

/* Keep getting messages until there are no more clients. */
do
{ mbx_$get_rec_chan_set(
mbx_handle,
chan_set, /* Channel set */
&srv_msg buf,
srv_msg len,
mbx_retptr,
mbx_retlen,
status).
if (status.all != 0)
{ error $print_name(status, "error getting record" , 20):
return(1);
}
printf ("Message received from channel %4d\n",mbx_retptr->mbx_hdr.chan):

1-35 Domain Data Types

1.8.3. Records

A Pascal record is analogous to a C structure. Both may be composed of several *“fields" of
information that can be referenced separately. ’

The C insert files predefine structures to emulate the records required by system calls.

In the reference material, if a parameter has a predefined record type, the first sentence of the
description ends with the phrase, *in XXX format", where XXX is the predefined type.

For example, the CAL__$DECODE_LOCAL__TIME system call has one parameter,
decoded _clock. The following is the parameter description:

decoded_clock
The local time, in CAL_$TIMEDATE REC_T format. This is a 6-element

array of 2-byte integers. The first element represents the year,
the second the month, and so on.

The following program segment declares and loads this record, then accesses one field in it:

#include "/sys/ins/base.ins.c";
#include "/sys/ins/cal.ins.c";

cal_$timedate rec_t d_clock;

/* Get decoded local time -- load d_clock. */
cal_$decode_local_time (d_clock):

/* Access the year. */
printf ("The year is %s \n",d_clock.year);

To determine the field names of predefined records, see the illustrations in the appropriate Data
Types section, or read the appropriate insert file.

1.8.4. Variant Records

A Pascal variant record permits a single field of a record to contain any one of several data types,
depending on usage. A Pascal variant record can be emulated by using C unions.

The C insert files predefine structures to emulate the variant records required by system calls. In
the reference material, if a parameter has a predefined variant record type, the first sentence of
the description ends with the phrase, "in XXX format", where XXX is the predefined type.

For example, the status parameter returned by most system calls is a variant record, in

STATUS _$T format. The following program declares status parameter, loads it by calling the
system call, then accesses it in two different forms.

Domain Data Types 1-36

#include "/sys/ins/base.ins.c";
#include "/sys/ins/error.ins.c";

name_$pname_t name;
short len;
status_$t status;

name_$get_ndir (name,
length,
status) ;

/* Check status. */
if (status.all != status_$ok) /* Access one form */
printf (" status code is: %d", status.code) /* Access another form */

To determine the field names of predefined records, see the illustrations in the appropriate Data
Types section, or read the appropriate insert file.

NOTE: DOMAIN C permits you to reference members of structures
or unions that are inside other structures or unions
without specifying all of the member names.

1.8.5. Passing Parameters to System Calls

As discussed above, parameters are passed to DOMAIN system calls by reference. Because of
this, you must pay particular attention to the way you declare and pass character arrays. '

In addition, DOMAIN requires that integer variables and integer constants be of a particular
length, depending on the usage of the parameter.

NOTE: If a call has no para.meters,’you must specify
an empty set of parentheses for the call to
work properly.

1.8.5.1. Passing Character Arrays

The way that you pass a character array to a system routine depends on how the array was
declared. In C, a character array may be declared two ways:

1. As a "true" array, using the following syntax:

char example __array[25];

2. As a pointer to a character array, using the following syntax:
char *example _array;

In the insert files, all character arrays are declared as "real" arrays. For example, the following
definition of the NAME _$PNAME T data type appears in the BASE insert file:

#define name_$pnamlen_max 256 /* Max pathname length */
typedef char name_$pname_t[name_$pnamlen max];

1-37 Domain Data Types

If you declare a pathname using the predefined type, specify the parameter as follows:

status_$t status;
short len;
name_$pname_t pathname; /* Declared using predefined type */
name_$set_ndir (pathname, /* Passed by reference %/
len,
status)

If you declare a pathname using the pointer syntax, you must dereference the pointer before you
pass it. Specify the parameter as follows:

status_$t status;
short len;
char *pathname; /* Pointer syntax */

name_$set_ndir (*pathname, /* De-reference the pointer *x/
len,
status) ;

Because the system call is a "std__$call", it expects the parameter to be passed by reference. If
you do not dereference the pointer before you pass it, an extra (incorrect) level of indirection is
introduced.

NOTE: When the system returns a character array, it may not be
null-terminated. If you intend to use it as a string, you
must explicitly null-terminate it or use the length that
the system returns as well.

1.8.5.2. Passing Integer Parameters

When passing integer parameters to system calls, it is important to pass an integer that is the
size that the call expects.

In the reference material, the second sentence of a parameter description informs you whether the
expected integer is a 2-byte or 4-byte integer.

If you declare all your integer data types as "int", it is important to note that an "int" type on
the DOMAIN system is a 32-bit integer -- not a 16-bit integer.

To pass an integer to a system call that expects a 2-byte integer, either explicitly declare the
parameter variable to be a "short" type, or type cast the "int" parameter to be short. The two
following examples show both ways of passing an integer properly. The NAME _$SET _ DIR call
permits you to set a naming directory by passing the pathname of the directory and the length of
the pathname. The length parameter is expected to be a 2-byte integer. Example A declares the
length parameter as a 2-byte integer. Example B declares the length parameter as a 4-byte
integer, and typecasts the parameter in the call.

Domain Data Types 1-38

EXAMPLE A
status_$t status;
short len;

name_$pname_t pathname;

name_$set_ndir (pathname,

len,
status) ;
EXAMPLE B
status_$t status;
int len;

name_$pname_t pathname;

name_$set_ndir (pathname,

(short)1len,

status) ;

There is a third case to consider.

/* Declared to expected

/* Type cast to expected size */

size */

If you use the "strlen" function to load the length of a

character array, note that it always returns a 4-byte integer. Again, you must either type cast
this returned value or declare the returned value as a short integer and force strlen to load the

4-byte value into a 2-byte variable.

Example A typecasts the value that strlen returns as the

length of the pathname. Example B forces strlen to load the returned value in a short integer.

EXAMPLE A

status_$t status;
name_$pname_t pathname;

name_$set_ndir (pathname,

(short)strlen(pathname),

status);
EXAMPLE B
status_$t status;
short len;

name_$pname_t pathname;

/* Force strlen to return into 2 bytes. %/

len = strlen(pathname)

name_$set_ndir (pathname,
len,
status) ;

1-39

/* Declared to expected size */

Domain Data Types

1.8.5.3. Passing Integer Constants

DOMAIN system calls permit you to specify integer constants as parameters, where applicable.
Again, it is important that when you do so, you are careful to pass a constant of the expected
length.

Normally, the C compiler considers all constants as 4-byte entities. However, in DOMAIN system
calls, any constant between the values -32768 and 32767 is passed as a 2-byte entity. This is done
because DOMAIN system calls most commonly expect 2-byte values where constants can be used
(i-e, the length of names).

If you are passing a constant to a call that expects a 4-byte integer value, you must type cast the
constant to be long. Use a long constant (i.e., 20L) to typecast a constant to be long.

Domain Data Types 1-40

Chapter 2
How to Handle Errors and Faults

Any serious programming effort should include a method of handling runtime errors. Runtime
errors take two forms:

System errors Error condition returned from system calls and detected by the algorithms of
your program. For example, passing an invalid parameter to a system call
results in a system error.

Faults Error condition detected (usually) by the hardware. For example, an attempt
to access protected memory results in an access violation fault.

The first half of this chapter describes how to detect system errors, and how to format and print
the corresponding error messages, using the ERROR system calls. The second half of the chapter
describes how to handle faults, using the PFM system calls.

2.1. System Calls, Insert Files, and Data Types

To format and print errors, use system calls with the prefix ERROR. In order to use ERROR
system calls, you must include the appropriate insert file in your program. The ERROR insert
files are:

/SYS/INS/ERROR.INS.C for C programs.
/SYS/INS/ERROR.INS.FTN for FORTRAN programs.
/SYS/INS/ERROR.INS.PAS for Pascal programs.

To handle faults, use the system calls with the prefix PFM. You must also include the
appropriate insert file. The PFM insert files are:

/SYS/INS/PFM.INS.C for C programs.
/SYS/INS/PFM.INS.FTN for FORTRAN programs.
/SYS/INS/PFM.INS.PAS for Pascal programs.

This chapter is intended to be a guide for performing certain programming tasks; the data type
and system call descriptions in it are not necessarily comprehensive. For complete information on
the data types and system calls in these insert files, see the DOMAIN System Call Reference.

2.2. Status Structure

Most DOMAIN system calls return a 32-bit integer status code. A status code indicates the
condition in which the call completed. If a call succeeds, the value of the status code is 0. If the
call fails, the returned status will vary, depending on the nature of the failure.

The structure of a status code permits it to convey several pieces of information. A status code is
a variant record, in STATUS _ $T format. Figure 2-1 shows a diagram of this data type:

2-1 Errors and Faults

byte:

offset 31 field name
0: integer all
or
31
0: —l fail
24
subsys
16
1: modc
0
2: integer code

Figure 2-1. The Structure of the Status Data Type

If a call fails, each of the fields contains the following;:

all The full status - usually used to test for successful completion.

fail The fail bit -- if this bit is set, the error was not within the scope of the module
invoked, but occurred within a lower-level module.

subsys The subsystem code -- a number identifying the subsystem that encountered
the error.
modc The module code -- a number identifying the module that encountered the

error. (Some subsystems, such as STREAMS, are made up of several modules.)

code The error code -- a signed number identifying the type of error that occurred.
Each type of error is associated with a unique number.

The subsystem code, module code, and error code are all associated with text strings. The text
associated with the error code explains the nature of the error, while the text associated with the
module and subsystem are the names of each. You use a number of the DOMAIN ERROR
subsystem calls to access these text strings.

2.2.1. Accessing Fields of the Status Code with FORTRAN

Four ERROR routines exist specifically for FORTRAN users to access each of the fields that
make up a status code. They are:

code = ERROR _ $CODE (status)

fail = ERROR _ $FAIL (status)

module = ERROR__ $MODULE (status)
subsys = ERROR _ $SUBSYS (status)

CODE, MODULE, and SUBSYS take a status code as an input parameter and return the
respective piece of the code as a 2-byte integer. FAIL takes a status code as an input parameter
and returns a LOGICAL value indicating whether the fail bit is set.

Errors and Faults 2-2

2.3. Testing for Errors

When a system call returns a status to your program, you should always examine the returned
status. In general, when testing a status code you should test the full 32-bit code. For Pascal
and C users, that is status.all; FORTRAN users should declare status to be an INTEGER*4
variable and test the full value.

The insert file for a subsystem declares a mnemonic constant for each of the status codes that the
subsystem may return. For example, the BASE insert file declares the constant STATUS _$0OK
to be equivalent to the success status 0. Always use the mnemonic constants when referencing
status codes.

Typically, you test the returned status for success and, if the call failed, print an explanatory
error message before exiting. Below is a program segment that tests the STREAM __$DELETE
call for the success status:

STREAM_$DELETE (stream-id,
status) ;

{ Test the returned staus. }
IF status.all <> status_$ok THEN
{ Print an error message. }

Printing error messages is described in the next section.

2.4. Printing Error Messages

The simplest way of printing an error message is to use ERROR_ $PRINT. This call takes the
status as input and prints out the text associated with the error code, along with the subsystem
and module names.

Example 2-1 demonstrates a simple error-handling procedure. (It is the error-handling procedure
invoked in many of the examples in this book.) Note that the procedure uses PGM _ $EXIT to
exit. PGM_ $EXIT will exit from within a subroutine (if necessary), close any open files, release
any acquired storage, and call PGM _ $SIGNAL (to invoke any clean-up handlers) before exiting.

%include ’/sys/ins/base.ins.pas’;
%include °’/sys/ins/streams.ins.pas’;
%include ’/sys/ins/error.ins.pas’;
%include ’/sys/ins/pgm.ins.pas’;

VAR
status : STATUS_$T;
{ Declare CREATE variables }

Example 2-1. A Simple Error-Handling Procedure

2-3 Errors and Faults

{ Declare procedure for error_handling. }
PROCEDURE error_routine;

BEGIN
error_$print (status);
pgm_$exit;

END; { error_routine }

BEGIN { Main Program }

{ Create a file. }

stream_$create (pathname,
namelength,
access,
conc,
stream_id,
status) ;

{ Test the returned staus. }

IF status.all <> status_$ok THEN
{ Invoke error handling procedure.}
error_routine;

Example 2-1. A Simple Error-Handling Procedure (Cont.)

This program produces the following error message format:

file already exists (stream _ $write specified on create) (stream manager/open)

The last section of the error indicates that the error status was passed from the open module of
the stream manager.

2.5. Standardized Error Reporting

DOMAIN-supplied software follows these standards for error reporting:
e Reports all errors on STREAM _ $ERROUT.

e Uses a question mark as a prefix character.
e Prints any filenames in lowercase surrounded by double quotation marks.

For example, the following is an error returned from the CPF Shell command.

?(cpf) "file.dat" - name not found (OS/naming server)

By using the system calls ERROR_$INIT _STD _FORMAT, ERROR _$STD_ FORMAT, and
ERROR _$PRINT _FORMAT, you may standardize the format of your error reporting along
the same lines. These routines permit you to specify:

Errors and Faults 2-4

o The stream on which to report errors.
e A prefix character.
e A program name to appear in parentheses.

o Text of the error message.

ERROR _ $PRINT_FORMAT permits you to specify all of the above with one system call.
ERROR _$INIT _STD_FORMAT and ERROR _$STD _FORMAT work in conjunction with
each other to specify the same type of error message. Calling
ERROR_ $INIT _STD__FORMAT and ERROR _$STD_FORMAT is equivalent to .calling
ERROR _$PRINT _FORMAT. However, for programs that use common subroutines, the
former method provides more flexibility. For example, if an application’s command level sets the
command name with ERROR _$INIT _STD_FORMAT, it automatically provides the common
lower-level modules with the correct command name for their error messages. Also, because
ERROR _$STD _FORMAT has fewer parameters, it is easier to code using the pair of calls
instead of using ERROR__$PRINT _FORMAT. ERROR_$STD_FORMAT uses a VFMT-
style control string {(see Chapter 8 for information about how to construct a control string).

The program in Example 2-2 uses ERROR_S$INIT _STD_FORMAT and
ERROR _$STD _FORMAT to print an error message that simulates standard error format.
The program prints the error message in the main program to avoid passing parameters to the
error procedure.

%include ’/sys/ins/base.ins.pas’;
%include °’/sys/ins/streams.ins.pas’;
%include ’/sys/ins/error.ins.pas’;

VAR
status @ status_$t;

{ Declare CREATE variables. }

{ Declare procedure for error_handling. }
PROCEDURE error_routine;
BEGIN
pgn_$set_severity (pgm $error);
pgm_$exit;
END; <{ error_routine }

BEGIN { Main Program }

{ Initialize standard error format. }
error $init_std format (stream $errout, { Error output stream }

', { Prefix character }
*PROG1’, { Command name }
5): { Namelength }

Example 2-2. Formatting Error Messages with System Calls

2-5 Errors and Faults

{ Create a file. }

stream $create (pathname,
namelength,
access,
conc,
stream_id,
status) ;

IF status.all <> status_$ok THEN BEGIN
{ Print error message. }
error_$std_format (status,
'Error creating file "%la" %$°,
file_name,
name_length) ;

{ Invoke error handling procedure. }
error_routine;
END;

Example 2-2. Formatting Error Messages with System Calls (Cont.)

If the user attempts to open an existing file, this program produces the following error message:

(format) Error creating file *file.dat" - file already exists (stream_ $write specified on create) (stream manager /open)

2.6. Testing for Specific Errors

In some cases, you will wish to test for specific errors. A number of system calls return status
codes that require special handling. The following is a nonexhaustive list of such status codes,
and the calls that return them.

STREAM_ $END_ OF _FILE
Returned by the STREAM _ $GET calls when an end of file is encountered (for
example, a CTRL/Z from a keyboard).

EC2_$WAIT_QUIT
Returned by the EC2_$WAIT__SVC call when an asynchronous fault occurs
while faults are inhibited.

PFM _$CLEANUP _SET
Returned by the PFM__$CLEANUP call when a clean-up handler is
successfully established.

The following program segment shows how a clean-up handler tests for the

PFM__ $CLEANUP _ SET status code.

Errors and Faults 2-6

{ Clean-up handler code. }

status

{ Check for est. status. }
IF (status.all <> PFM_$CLEANUP_SET) THEN BEGIN

{ End of clean-up handler. }

ELSE

BEGIN

:= PFM_$CLEANUP (handler_id); { Establish clean-up handler}

When testing for a specific error from the STREAM subsystem, testing status.all is not sufficient.
You must test two fields of the status record:

e Test the subsys field against the predefined value STREAM _ $SUBS.

o Test the code field against the predefined error code.

The program segment in Example 2-3 shows a loop that reads records from a file. After each
read, it tests for the STREAM _ $END _ OF _ FILE error.

END;

{ Enter loop to get and print records. }
WHILE (status.all = status_$ok) DO BEGIN

{ Get a record. }
stream_$get_rec(stream_id,
addr(info_rec),
sizeof (info_rec),
retptr,
retlen,
seek key,
status) ;

{ Test for EOF. }

IF (status.code = stream $end_of file) AND
(status.subsys = stream_$subs) THEN
EXIT:

IF (status.all <> status_$ok) THEN
error_routine

ELSE BEGIN
{ Assign returned pointer to buffer. }
info_rec := retptr~.

{ Print the name and id fields. }

writeln(’name: °, info_rec.name:info_rec.namelen);
writeln(’id: *, info_rec.emp_id);
END; { if }
{ while }

Example 2-3. Testing for Specific STREAM Errors

Errors and Faults

2.6.1. Setting a Severity Level

In addition to exiting a program at the end of an error handling procedure, you may wish to set a
severity level for your program, if your program:

e Is invoked by another program; for example, the Shell.
e Has a single, well-defined function.
e Is not interactive.

A severity level informs an invoking program of the completion status of an invoked program.
You can use various features of the Shell, such as the ABTSEV command, to control the
execution of Shell scripts based on the severity code. You set a severity level by calling
PGM _$SET _SEVERITY. The error routine in Example 2-2 sets a severity level. See Chapter
3 for details about how to set a severity level.

2.7. Faults

While an error is detected by the algorithms of a system call and returned as a status code, a
fault is detected (usually) by the hardware of the machine, and is not detected until the actual
machine instructions are executed.

Depending on the exact nature of a fault, you may be able to "handle" the fault and continue

processing. A fault that permits you to continue processing is referred to as restartable.
(Restarting is highly application-dependent, and is beyond the scope of this manual.)

There are three ways to handle faults:

o Establishing clean-up handlers, described in Section 2.8.

o Establishing fault handlers, described in Section 2.9.

e Inhibiting asynchronous faults, described in Section 2.10.
The different types of faults you may encounter are described in this section. Every fault is
either synchronous or asynchronous. Sections 2.7.1 and 2.7.2 describe synchronous and
asynchronous faults, respectively.
Table 2-1 lists the predefined mnemonic constants for each of the faults that may be encountered

on the system, along with a brief explanation of what causes the fault. These mnemonic constants
are defined in the FAULT insert files, and are used by fault handlers to target specific faults.

Errors and Faults 2-8

Table 2-1.

Summary of Faults

Fault

Explanation

FAULT _$ADDRESS_ERROR
FAULT _$ILLEGAL _INST
FAULT _$ZERO_DIVIDE

FAULT _$CHK _ INST

FAULT _$TRAPV _INST

FAULT _$PRIV_ VIOLATION
FAULT _$ILLEGAL_SVC_ CODE
FAULT _$ILLEGAL _SVC_NAME
FAULT _$UNDEFINED _TRAP
FAULT _$UNIMPLEMENTED _ INST
FAULT _$PROT _ VIOLATION
FAULT _$BUS_ TIMEOUT
FAULT _$ILLEGAL _USP

FAULT _$ECCC
FAULT _$ECCU

FAULT _ $QUIT

FAULT _$ACCESS_ VIOLATION

FAULT_ $NOT_ VALID
FAULT_$NULLPROC _ ONB
FAULT _$DISPLAY _ QUIT

FAULT_ $SINGLE _STEP

FAULT _$INVALID _USER _FAULT

FAULT $PBU_USER_INT FAULT

Used odd address.

Executed illegal instruction.

Divided by zero.

CHK instruction trapped, index out of range?
Arithmetic overflow occurred.

Privileged instruction violation.

Executed unrecognized SVC instruction.

Not currently used.

Executed undefined TRAP instruction (6 thru 13).
Executed unimplemented instruction.
Protection boundary violation.

Bus time-out occurred.

Invalid user stack pointer detected.

Correctable memory error detected, (DN420,
DN460, DN600, DN660 only).
Uncorrectable memory error detected, {DN420,

DN460, DN600, DN660 only).
Executed process quit (CTRL/Q).

Attempted to access protected memory or write
read-only memory.

Hardware crash status (DN420, DN600 only).
Hardware crash status (DN420, DN60O only).
OS-internal quit (with display return).
Executed instruction with trace bit on.
Invalid user-generated fault.

Fault in interrupt handler for PBU device.

Errors and Faults

Table 2-1. Summary of Faults (Cont.)

Fault

Explanation

FAULT_$STOP

FAULT_ $BLAST

FAULT _$CACHE_PARITY
FAULT _$WCS_ PARITY
FAULT _$NOT_IMPLEMENTED
FAULT _$INVALID _STACK
FAULT _$PARITY

FAULT _$INTERRUPT

FAULT _$WHILE_LOCK _SET
FAULT _$SPURIOUS _PARITY
FAULT _$FP_ INEXACT
FAULT _$FP_DIV_ ZERO
FAULT _$FP_UNDFLO
FAULT _$FP_OP_ERR
FAULT_$FP_ OVRFLO

FAULT _$FP_BSUN

FAULT _$FP_SIG _NAN

FAULT _$SUSPEND _PROC
FAULT _$SUSPEND _PROC_KBD
FAULT_$SUSPEND _PROC
FAULT _$SUSPEND _PROC
FAULT _$CONTINUE _PROC

FAULT _$FAULT_LOST

FAULT _$ILLEGAL _COPROC

Executed process stop instruction (dq -s).
Executed process blast (dq -b).

PEB cache parity error detected.

WOS parity error detected.

Issued unimplemented SVC instruction.
Invalid stack format detected.

Memory parity error detected.

Executed process interrupt.

Fault occurred while resource lock(s) set.
Spurious parity error detected.

Floating point inexact result.

Floating point divide by zero.

Floating point underflow.

Floating point operand error.

Floating point overflow.

Floating point branch/set on an unordered
condition.

Floating point signaling not-a-number.
Process suspend fault.

Process suspend from keyboard.

Process suspend due to background read.
Process suspend due to background write.
Process continue fault.

Fault(s) lost; process suspended or inhibit count
problem.

Executed illegal coprocessor instruction.

Errors and Faults

2-10

2.7.1. Synchronous Faults

Synchronous faults occur as the result of an instruction executed by your program. The following
two tables list specific types of synchronous faults and whether or not they are restartable. Table
2-2 lists program faults. Program faults are caused directly by an action of your program.

Table 2-2. Synchronous Program Faults

Program Faults Description
Unimplemented instruction Restartable.
Odd address error Not restartable.

(Typically caused by a bad pointer.)

Reference to an invalid address Not restartable.
Access violation Not restartable.
Reference to an unresolved global Not restartable.
Guard fault Restartable.

Table 2-3 lists system faults. System faults are triggered by a program instruction, but occur
because of a failure on the part of the system.

Table 2-3. Synchronous System Faults

System Faults Description

Network failure Not restartable.
(Typically, occurs during paging
across the network.)

Disk full Not restartable.
(Use the Alarm Server to avoid
disk full errors.)

Disk error Not restartable.

2.7.2. Asynchronous Faults

Asynchronous faults are produced from outside of your program. They can occur at any point in
your program and are unrelated to anything your program did. A common example is the "quit
fault," caused by the Display Manager’s DQ command (usually when someone types CTRL/Q to
stop a program).

You may choose to handle asynchronous faults, or you may choose to inhibit the delivery of
asynchronous faults. Section 2.10 describes how to inhibit asynchronous faults.

2-11 Errors and Faults

2.8. Handling Faults with Clean-Up Handlers

Typically, you use a clean-up handler in programs when you wish to deal with faults by
terminating normal processing. A cleanup handler, like its name implies, is used to clean up a
process before the program exits. Before exiting, the clean-up handler might restore disk files or
in-memory tables to a known or stable state, or restore other things the program has changed.
When a fault occurs, the process fault manager automatically calls the PFM _ $SIGNAL system
call as part of the fault handling process. PFM __ $SIGNAL invokes the clean-up handler on the
top of the stack, passing the fault status.

You may also use clean-up handlers to let the program continue processing after a fault occurs.
However, a clean-up handler effects a nonlocal GOTO when a fault occurs. Control passes to the
clean-up handler code, and the context in which the fault occurred is destroyed, so it is not
possible to return to the point in the code at which the fault occurred. If you choose to continue
processing after handling a fault, control passes to the point after the clean-up code.

Note that there is a built-in clean-up handler. This handler is established when PGM _ $INVOKE
was called to invoke your program. The built-in handler always closes any files that are still
open and returns control to the invoking program, such as the Shell.

Because of the way in which the clean-up handlers are invoked, you should not establish clean-up
handlers to work across program levels. That is, if you perform an operation that requires clean-
up in a subroutine or function, the handler should be established and released within the
subroutine or function.

Once a clean-up handler handles a fault, the process fault manager releases the handler; it will
not handle future faults unless you re-establish it. Re-establishing clean-up handlers is described
in Section 2.8.4.3.

Asynchronous faults are inhibited during the execution of a clean-up handler, so that the program
cannot be interrupted while it is trying to clean up.

2.8.1. Establishing a Clean-Up Handler

To establish a clean-up handler:

1. Call PFM_ $CLEANUP. The initial call to PFM_ $CLEANUP returns a status of
PFM_ $CLEANUP _ SET (indicating that the handler has been established). It also
returns a unique identifier for the handler (referred to as the handler-ID) that permits
you to identify specific clean-up handlers when using more than one.

2. Construct an IF-THEN-ELSE block that tests the status returned by
PFM _ $CLEANUP. If the status is equal to PFM__$CLEANUP _SET, branch to

the beginning of normal operations. If the status is not equal to
PFM _$CLEANUP _ SET, a fault is assumed and the clean-up operations should be
performed.

3. Write the clean-up operation. What operations are performed as part of the clean-up
depends on what the program does. If files are opened and created in the program,
you may want to close or delete them in the clean-up handler to ensure a stable state.

Errors and Faults 2-12

If your program contains a clean-up handler, it is invoked when a fault occurs or when
PFM _ $SIGNAL is invoked. (PFM_ $SIGNAL invokes the topmost clean-up handler on the
stack (if there is one), passing it a status code; it can be called from any point in a program.) At
that point, control immediately returns to the place in your program where you call
PFM _ $CLEANUP. In this case, the status test fails and the clean-up code is executed.

The program segment in Example 2-4 creates a file and performs I/O on it. It establishes a
clean-up handler that deletes the file and exits, if a fault occurs during the processing of the file.
Note that the variable stream _open is used to indicate that a stream has been opened to the file.
The clean-up handler checks the state of this variable to determine whether it should delete the
file. This prevents the handler from attempting to delete the file if a fault occurs before the file is
created.

PROGRAM pfm clean up (input,output);

%include '/sys/ins/base.ins.pas’;
%include ’/sys/ins/error.ins.pas’;
%include ’/sys/ins/streams.ins.pas’;
%include ’/sys/ins/pfm.ins.pas”’;
%include °/sys/ins/pgm.ins.pas”’;
%include °/sys/ins/vimt.ins.pas’;

VAR
status . status_$t;
stream_open : boolean; <{ State variable }
count . integer; { VFMT parameter }
{ $CREATE variables }
pathname . name_$pname t;
namelength : integer;
stream_id : stream $id t;
{ $CLEANUP variable }
handler_id : pfm $cleanup rec;

PROCEDURE error_routine; { for error handling }
BEGIN

error_$print(status);
END; { error_routine }

BEGIN { Main Program }

{ Initialize state variable. }
stream_open := FALSE; { Not open yet }

{ Clean-up handler code. }
status = pfm_$cleanup (handler_id); { Establish clean-up handler }

{ Check for established status. }
IF (status.all <> pfm $cleanup_set) THEN BEGIN

{ Delete file if open while fault occurs. }
IF stream open THEN
stream $delete (stream_id,
status) ;
pgm_$exit;
END; { of clean-up handler }

Example 2-4. Establishing A Clean-Up Handler

2-13 Errors and Faults

{ Begin normal operations. }
{ Get the filename. }
writeln (’Input pathname: °);
readln (pathname);

{ Calculate namelength. }

namelength := sizeof (pathname);
WHILE (pathname[namelength] = *> *) AND
(namelength > 0) DO
namelength := namelength - 1;

stream_$create (pathname,

namelength,

stream $write, { Access }
stream $controlled_sharing, { Concurrency }
stream id,

status) ;

IF status.code <> status_$ok THEN
error_routine;

{ Set state variable. }
stream open := TRUE; { File is open }

{ Get the input. }

{ Finish processing the file. }

{ Release the clean-up handler. }

pfm $rls_cleanup (handler_id,
status) ;

END. { pfm;clea,n_up }

Example 2-4. Establishing A Clean-Up Handler (Cont.)

2.8.2. Releasing a Clean-Up Handler

Note that the program segment in Example 2-4 releases the handler when it finishes processing
the file. When a clean-up handler is no longer needed, it should be released. Releasing a handler
removes it from the stack that the process fault manager uses to keep track of handlers.

You release handlers to prevent invoking clean-up code when it is not appropriate. Often, a
clean-up handler applies to only one section of a program, and should not take effect if a fault
occurs later in the program. For instance, in Example 2-4, the file might have been properly
processed and closed, leaving it in a stable state. Yet, had the handler not been released, a fault
might have occurred before the program completed, and the file would be needlessly deleted.

To release a clean-up handler, call PFM_$RLS CLEANUP, specifying the handler ID of the

handler you want to release. The call to PFM_ $CLEANUP returns the handler ID when you
establish the handler.

Errors and Faults 2-14

A procedure, function, or subroutine must release all the clean-up handlers it established before
returning to its caller.

After a clean-up handler handles a fault, the process fault manager releases it, unless it is
explicitly re-established. A clean-up handler that has been released by the process fault manager
may be placed back on the stack by re-establishing it. See Section 2.8.4.3.

NOTE: When a handler is released, all handlers established more recently than
that handler are also released.

2.8.3. Multiple Clean-Up Handlers

More than one clean-up handler can be in effect at once. The process fault manager invokes
clean-up handlers on a last-in-first-out (LIFO) basis. The last clean-up handler that gains control
is the built-in clean-up handler (as it is the first to be established).

When you have a number of clean-up handlers, it is important that each handler be invoked only
when appropriate. One way to help ensure this is to release clean-up handlers when you no
longer need them, as stated above. In addition, you may wish to use state variables to ensure
that a handler is not invoked be fore it is needed.

For example, if you establish a clean-up handler to clean up a file that you modify, declare a
Boolean variable that you set to TRUE when you open the file. Write the clean-up handler so
that it tests the Boolean before trying to clean up the file. If the file has been opened, the

handler cleans up. If the file has not been opened, the handler does not attempt the clean-up.
Example 2-4 uses the variable stream _open as a state variable.

2.8.4. Exiting a Clean-Up Handler

There are four ways to exit a clean-up handler:

¢ Resignaling passing the fault status.
e Resignaling passing a severity level.
e Re-establishing the handler and returning to the program.

o Returning to the program.
2.8.4.1. Resignaling Passing the Fault Status

Resignaling is the act of passing the signaled fault to the next handler in the process fault
manager’s stack. Typically, a handler resignals a fault when you want to invoke a number of (or
all) established clean-up handlers.

To resignal a fault status, 2 handler calls PFM _ $SIGNAL, specifying the status returned to it by
the PFM _ $CLEANUP call.

If you resignal and your program has no more clean-up handlers, control passes to the built-in
clean-up handler, and eventually your program exits to the invoking program. When this occurs,
your program returns the fault status as its severity code.

2-15 Errors and Faults

2.8.4.2. Resignaling Passing a Severity Level

If another program invokes your program, the invoking program may expect your program to
return a severity level instead of a fault status. Every program starts with the severity level set
to PGM __$OK (successful completion). When a fault occurs, you may change the severity level
by calling PGM_ $SET _ SEVERITY.

To resignal a fault by passing a severity level:

1. Call PGM__$SET _ SEVERITY to set the severity to the chosen level.
2. Call PGM__$EXIT.

PGM _$EXIT resignals the next clean-up handler, but instead of passing the fault status code, it
passes a status code that translates to the severity level.

The following is a clean-up handler that sets the severity level to PGM_$ERROR, then
resignals.

{ Clean-up handler code. }
status := pfm $cleanup (handler_id); { Establish clean-up handler }

{ Check for est. status. }

IF (status.all <> pfm $cleanup_set) THEN BEGIN
{ Delete file if fault occurs. }
stream $delete (stream_id,

status) ;

pfm_$set_severity(pgm_$error) ;
pgm_$exit;
END { of clean-up handler }

See Chapter 3 for more information about setting severity levels.

2.8.4.3. Re-establishing the Handler and Returning to the Program

Once a clean-up handler is invoked, it is released and will not be invoked again, unless you
specifically re-establish it.

You re-establish a handler if you are restarting after the fault and there will still be a need for
the handler. Consider, as an example, a program that processes files based on commands that the
user input. This program needs a clean-up handler to clean up a file if a fault occurs, but can
easily continue processing by getting the next command. The program can simply establish one
handler that re-establishes itself.

To re-establish a clean-up handler, call PFM_$RESET _ CLEANUP, specifying the handler ID.
When you re-establish a handler, fault handling stops (no other handlers on the stack are
invoked). The re-established handler is now the most-recently-established clean-up handler and
will be the first clean-up handler to handle the next fault. The program can now continue
running, but cannot return directly to the point where the fault occurred.

Errors and Faults 2-16

-

The following is a clean-up handler that resets itself and re-enables asynchronous faults.

{ Clean-up handler code. }
status := pfm $cleanup (handler_id); { Establish clean-up handler }

{ Check for est. status. }
IF (status.all <> pfm_$cleanup_set) THEN BEGIN
{ Delete file if fault occurs. }
stream $delete (stream id,
status) ;
pim $reset_clean up (handler_id,
status) ;
END { of clean—up handler }

2.8.4.4. Returning to the Program

In some cases, you may wish to simply handle a fault and return to the program, without re-
establishing a clean-up handler. One example is a program that is performing a number of
loosely connected tasks. Your program may abort one task and continue by processing the next
task on the list.

No special action is required to return to the program. However, because asynchronous faults are
disabled when a clean-up handler is invoked, you should re-enable them before returning. To
re-enable asynchronous faults, call PFM_ $ENABLE.

The following is a clean-up handler that re-enables a.sync'hronous faults and returns to the
program.

{ Clean-up handler code. }
status := pfm $cleanup (handler_id); { Establish clean-up handler. }

{ Check for est. status. }

IF (status.all <> pfm $cleanup_set) THEN BEGIN
{ Delete file if fault occurs. }
stream_$delete (stream id,

status) ;
pfm_$enable;
END { of clean-up handler }

2.8.5. Handling Errors With Clean-Up Handlers

You can also use clean-up handlers to handle error conditions. However, unlike fault conditions,
error conditions do not automatically call PFM__$SIGNAL to pass to a clean-up handler.

To invoke a clean-up handler for an error condition, your program must:

e Detect the error condition.

e Call PFM _ $SIGNAL, passing the error status to the clean-up handler on the top of
the stack.

2-17 Errors and Faults

The program in Example 2-5 creates a file and calls a procedure to write to it. The main program
declares a clean-up handler that deletes the file before exiting. If an error occurs while writing
data to the file the procedure invokes the clean-up handler by explicitly calling PFM__$SIGNAL.

PROGRAM pfm_clean_ error (input,output);

%include °/sys/ins/bvase.ins.pas’;
%include °/sys/ins/error.ins.pas’;
%include ’/sys/ins/streams.ins.pas’;
%include ’/sys/ins/pfm.ins.pas’;
%include ’/sys/ins/pgm.ins.pas’;

VAR
status . status_$t;
stream open : boolean; { State variable }
count : integer; { VFMT parameter }

{ $CREATE variables }

pathname : name_ $pname_t;
namelength . integer;
stream_id : stream_$id_t;

{ $CLEANUP variable }
handler_id : pfm_$cleanup_rec;

{**}

PROCEDURE error_routine; { for error handling }
BEGIN

error_$print(status);
END; { error_routine }

ke e ook sk sk sk sk sk sk s o ok sk ok sk ok ok ok sk ok ok o o ok ok ok ok ok koK ok ok ok ok Kok ok ok ok ok koo ok sk ok sk sk sk sk ok ok ok ok ok B
{ Procedure to write to file }

{**}

PROCEDURE write to_file (str_id : stream $id_t);

VAR
line : ARRAY[1..80] OF char;
seek_key : stream $sk_t;
buflen . integer32;

BEGIN

{ Get a line of input. }
writeln (’Input data (or CTRL/Z to stop):’);
WHILE NOT eof DO
BEGIN
readin(line) ;
buflen := SIZEOF(line);
WHILE (line[buflen] = *> ’) AND (buflen > 0) DO
buflen .= buflen - 1;

{ Terminate line with newline character. }
buflen := buflen + 1;
line[buflen] := CHR(10);

Example 2-5. Invoking a Clean-Up Handler for an Error

Errors and Faults 2-18

{ Write the line to a file. }
stream $put_rec (str_id,
ADDR(line),
buflen,
seek key,
status) ;
{ Invoke clean-up handler if error occurs. }
IF status.code <> status_$ok THEN
pfm_$signal(status) ;

writeln (’Record written’);
writeln (’Input more info (or CTRL/Z to stop):’):
END; {while}
END; { write to file }
Lotk stk e ke ook e ok s ook o ko ok ks o ok ok o ok ok ok ok ok o ok ok ok o o ok sk o ok ke ok sk ok ook ok sk ok Kok ok ok

BEGIN { Main Program }

{ Initialize state variable. }
stream open := FALSE; { Not open yet }

{ Clean-up handler code }
status := pfm $cleanup (handler_id); { Establish clean-up handler }

{ Check for established status. }
IF (status.all <> pfm_$cleanup_set) THEN BEGIN

{ Delete file if open while fault occurs. }
IF stream_open THEN
stream $delete (stream_id,

status) ; .
writeln (’Output file deleted — write error occurred’);
pgm_$exit;
END; { of clean-up handler }

{ Begin normal operations. }

{ Get the filename. }

writeln (’Input pathname of file to be written: *);
readln (pathname) ;

{ Calculate namelength. }

namelength := sizeof (pathname);
WHILE (pathname[namelength] = * °) AND
(namelength > 0) DO
namelength := namelength - 1;

stream_$create (pathname,

namelength,

stream $write, { Access }
stream $controlled_sharing, { Concurrency }
stream id,

status) ;

Example 2-5. Invoking a Clean-Up Handler for an Error (Cont.)

2-19 Errors and Faults

IF status.code <> status_$ok THEN
error_routine;

{ Set state variable. }
stream open := TRUE; { File is open. }

{ Call procedure to write to the file. }
write to file (stream_id);

{ Finished processing the file. }
{ Release the clean-up handler }
pfm_$rls_cleanup (handler_id,
status) ;
END. { pfm_clean_error }

Example 2-5. Invoking a Clean-Up Handler for an Error (Cont.)

2.9. Handling Faults with Fault Handlers

A fault handler is a procedure that is called when a fault occurs; unlike a clean-up handler, it is
capable of returning to the point at which the fault occurred.

A fault handler might handle faults where you want to respond to the fault by taking some

corrective action and continuing normal processing.

2.9.1. Establishing a Fault Handler

To establish a fault handler:

1. Write a function that performs the actual fault handling.

2. Call PFM_$ESTABLISH _FAULT _HANDLER to establish the function as a fault
handler.

2.9.1.1. Writing the Fault-Handling Function

You must write a fault handler as a function.

Each fault-handling function takes one input parameter, the fault record. The fault record is a
data type, in PFM_ $FAULT_REC_ T format. One field of this record contains the fault
status. When a fault occurs, the process fault manager loads this record and invokes the handler.

The value that a fault-handling function returns determines the action taken after the fault is

handled. The return value for a fault handler must be in PFM_$FH__FUNC_ VAL _ T format
(a 2-byte integer), and must be set to one of the following two predefined values:

Errors and Faults 2-20

PFM_$CONTINUE _FAULT _HANDLING
Indicates that the program should invoke any other established fault handlers.
If no more handlers exist, clean-up operations are invoked.

PFM _$RETURN_ TO _FAULTING _ CODE
Indicates that control should return to the program. No further fault handling
is performed. The program restarts after the instruction that took the fault.

In Pascal, the fault handling function must be in a Pascal MODULE (as opposed to a
PROGRAM). The call that establishes the fault handler passes the system the address of the
function -- this cannot be done from within a Pascal PROGRAM.

Example 2-6 is a module in which a fault-handling function named "zero__fault__handler" is
declared. The return value is set to PFM__$CONTINUE _FAULT _HANDLING, specifying
that any other established handlers should be invoked.

MODULE pgm_zero_handler; (input,output):

{ This is a fault handling function that prints }
{ a line and continues to fault handle. >

%include °/sys/ins/base.ins.pas’;
%include °’/sys/ins/error.ins.pas’;
%include ’/sys/ins/pfm.ins.pas’;

FUNCTION zero_fault_handler (IN f_status : pfm _$fault_rec_t { Fault record }
): pfm_$fh func val ¢t ; { Return value }

BEGIN
{ Write a message to the error log. }
error_$print (f_status.status);

{ Load the return value. }
zero_fault_handler := pfm_$continue_fault_handling;

END; { zero_fault_handler }

Eiample 2-6. Writing a Fault-Handling Function

2.9.1.2. Establishing the Function as a Handler

Before a fault-handling function can be used by a program, it must be established as a fault
handler. To establish a function as a fault handler, call the
PFM _ $ESTABLISH_FAULT_HANDLER function. The following is the syntax for
PFM _$ESTABLISH__FAULT _HANDLER:

handler_id := pfm_$establish_fault_handler (target_fault,
type_options,
address_of function,
status) ;

2-21 Errors and Faults

You pass PFM _ $ESTABLISH__FAULT _ HANDLER three input parameters:

e A target fault, as a 4-byte integer.

e An option describing the type of handler you are establishing, in
PFM_$FH__OPT_SET _ T format.

e The address of the fault handling function, in PFM_$FAULT_FUNC_P_T
format.

PFM _$ESTABLISH _FAULT_HANDLER uses this information to establish the handler and
returns a handler ID that uniquely identifies the handler. The call also returns a completion
status.

You can specify the address of the function using the ADDR extension to DOMAIN Pascal, or the
IADDR special function of DOMAIN FORTRAN.

2.9.1.3. Setting Target Faults

PFM _$ESTABLISH _FAULT_HANDLER’s target fault parameter permits you to specify the
fault(s) to which you want a handler to respond. You can specify one specific fault, a group of
faults, or all faults. The target fault parameter expects a 4-byte integer value.

e To specify a specific fault, simply specify the parameter to be the specific fault status
code.

e To specify all the faults in a DOMAIN module, specify any status code returned by
that module, with the fault code field set to zero. The following program example
sets the target fault to be all faults in the SMD module:

VAR
target_fault : status_$t;

{ Declare other variables. }

BEGIN

{ Load the target fault. }
target_fault := smd_$illegal unit;

target_fault.code = 0;

{ Establish the fault handler. }

handler_id := pfm $establish_fault_handler (target.all, {integer32}
options,
ADDR (my_fault_handler),
status) ;

e To specify all faults, specify the predefined constant PFM _ $ALL _FAULTS.

Errors and Faults 2-22

2.9.1.4. Specifying Handler Types

You can establish fault handlers to be of three types. Table 2-4 lists them.

Table 2-4. Types of Fault Handlers

Fault Handler

Description

Default By default, if a number of fault handlers are responding to a
fault, they are invoked in reverse order of establishment (LIFO)
and applies to the program level in which it is established. To
specify a default handler, specify the null set.

Backstop handlers If you specify a handler to be a backstop handler, the
process fault manager does not invoke it until all the
nonbackstop handlers have been invoked.

Multilevel handlers If you specify a handler to be a multilevel handler, it applies to

the program level at which it is established and all subordinate
program levels. This means that the fault handler will be
executed for the program that establishes the fault handler and
for any programs that the program invokes (even though they
do not establish a fault handler).

Backstop and multilevel types are not exclusive of each other; a handler can be both a backstop
and multilevel fault handler.

The program segment in Example 2-7 establishes the function shown in Example 2-6 as a default-
type handler that responds to the FAULT _$ZERO_ DIVIDE fault. Note that the program
includes the FAULT insert file that defines this fault.

PROGRAM pgm_divide (input, output);

{ Program to divide two numbers. }

%include ’/sys/ins/base.ins.pas’;
%include ’/sys/ins/pfm.ins.pas’;
%include ’/sys/ins/pgm.ins.pas’;
%include °'/sys/ins/fault.ins.pas’;
%include '/sys/ins/error.ins.pas’;

VAR
numberi
number?2

status

handler_id :

. integer;
. integer;

. status_$t;

pfm_$fh handle_t;

Example 2-7. Establishing a Fault Handler

2-23 Errors and Faults

{ Declare external fault handling function. }
FUNCTION zero_fault_handler (IN f_status : pfm_$fault_rec_t
): pfm_$fh func_val_t; EXTERN;

BEGIN { Main Progranm }
{ Establish the zero divide handler. }

{ Load the target fault -- first parameter. }
handler_id := pfm $establish_fault handler (fault_$zero_divide,

(1. { Default type }
ADDR(zero_fault_handler),
status) ;

IF (status.all <> status_$ok) THEN
error_$print (status):

Example 2-7. Establishing a Fault Handler (Cont.)

2.10. Inhibiting Asynchronous Faults

During part or all of your program, you can inhibit asynchronous faults. Inhibiting asynchronous
faults defers the effect of the CTRL/Q key in stopping the program. This is appropriate when
there are intervals during which your program must not be interrupted. For instance, your
program may perform some I/O that would be left in an inconsistent state if the user were
allowed to interrupt execution. However, it is good programming practice to only inhibit
asynchronous faults during these critical intervals, so that a user may terminate the program at
some point, if necessary.

To inhibit asynchronous faults, call PFM_ $INHIBIT. This call has no parameters.
To re-enable asynchronous faults, call PFM _ $ENABLE. This call also has no parameters.

If a fault occurs while asynchronous faults are inhibited, the system holds the fault for delivery
when faults are re-enabled. However, the system will only hold one fault; all others are ignored.

The operating system keeps track of inhibits by incrementing and decrementing an inhibit
count. Asynchronous faults are only delivered when the inhibit count is 0. Each time an inhibit
occurs (either explictly called by you, or implicitly called by the system - as during a clean-up
handler) the count is incremented. It is decremented any time a call is made that re-enables
asynchronous faults, such as PFM _ $ENABLE. This is why clean-up handlers that return to the
invoking program must call PFM__ $ENABLE before returning.

Inhibiting asynchronous faults has no effect on the delivery of synchronous faults.

Errors and Faults 2-24

Chapter 3
Managing Programs

Programs are normally divided into a number of smaller program units, which perform specific
tasks. Program units may take three forms:

1. Subroutines, procedures, and functions that you write.

2. DOMAIN system calls. System calls are procedures and functions that can be called
to perform specific predefined tasks. The DOMAIN System Call Reference
alphabetically lists all the available system calls and describes what each of them does.

3. Other programs. DOMAIN permits you to invoke other programs from within your
program. You can invoke other programs you have written, or you can invoke
system-provided programs (i.e., DOMAIN Shell commands).

This chapter describes how to invoke programs with the PGM system calls and how to obtain
process information with the PROC and PM system calls.

3.1. System Calls, Insert Files, and Data Types

To invoke and manage programs, use system calls with the prefix PGM. In order to use PGM
system calls, you must include the appropriate insert file in your program. The PGM insert files
are:

/SYS/INS/PGM.INS.C for C programs.
/SYS/INS/PGM.INS.FTN for FORTRAN programs.
/SYS/INS/PGM.INS.PAS for Pascal programs.

To obtain process information, use the system calls with the prefix PROC1, PROC2, or PM,
depending on what inmformation you want. You must also include the appropriate insert file.
The insert files are: -

/SYS/INS /prefix.INS.C for C programs.
/SYS/INS /prefix.INS.FTN for FORTRAN programs.
/SYS/INS /prefix.INS.PAS for Pascal programs.

where prefix is the desired subsystem prefix.
This chapter is intended to be a guide for performing certain programming tasks; the data type

and system call descriptions in it are not necessarily comprehensive. For complete information on
the data types and system calls in these insert files, see the DOMAIN System Call Re ference.

3.2. Invoking External User Programs

Invoking programs from within a program avoids having to duplicate the work of existing
programs. It also provides a way of performing concurrent processing.

3-1 Managing Programs

To invoke the execution of another program, use PGM_$INVOKE. PGM_ $INVOKE permits
you to pass arguments and stream connections to the invoked program. How to pass arguments
to an invoked program is described in Section 3.3. How to pass streams to an invoked program is
described in Section 3.6.

PGM _$INVOKE returns two parameters: the process handle and the completion status. The
process handle uniquely identifies the invoked program and is used as an input parameter to
other system calls; for example, PGM_$PROC_WAIT. This completion status is slightly
different from the completion status of other system calls because it is interpreted differently
depending on the mode in which a program is invoked. How to interpret the completion status is
described, along with the invoke modes, in the following sections.

When you call PGM_$INVOKE, you have three options for the mode in which the invoked
program will execute: : .

Wait mode The program executes as a separate program within the same process as
the invoking program. The invoking program ’waits’ until the invoked
program is completed before resuming execution. (Described in Section
3.2.1)

Default mode The program executes as a separate process that communicates its
termination status to the invoking program. (Described in Section 3.2.2.)

Background mode The program executes as a separate process that runs to termination
independently of the invoking process. (Described in Section 3.2.3.)

The mode in which you choose to run a program depends on the task performed by the program.

3.2.1. Invoking a Program in Wait Mode

To invoke a user program in wait mode, call PGM__$INVOKE, with the mode option set to
PGM _$WAIT. When you invoke a program this way, the invoking program executes the
program and waits for it to complete before continuing. In this respect, calling PGM _ $INVOKE
with the WAIT option is similar to calling a subroutine.

Executing a program within your own process avoids the overhead associated with process
creation.

The DOMAIN Shell is an example of using INVOKE with the PGM _ $WAIT option. Each Shell
command is a program, and the options to the command are arguments. The Shell invokes the
specified program passing any arguments, and waits for the program to complete.

You may also wish to invoke an existing Shell command from within a program. The program
segment in Example 3-1 invokes the "date" Shell command, using PGM_ $WAIT mode. Note
that the invoking program passes the invoked program the four standard streams. It is good
programming practice to pass an invoked program the standard streams. Section 3.6 describes
how to pass streams. The "date" program writes the date to the standard output stream.

Managing Programs 3-2

PROGRAM pgm_shell;

%include °/sys/ins/base.ins.pas’;
%include °/sys/ins/pgm.ins.pas’;
%include ’/sys/ins/error.ins.pas’;

VAR
handle : pgm_$proc;
status : status_$t;

{declare and load the standard streams}
connv : pgm $connv =
[stream_$stdin, stream_$stdout,
stream_$errin, stream $errout];

PROCEDURE check_status; {for error_handling}
BEGIN

IF status.all <> status_$ok THEN BEGIN
error_$print (status):

pgm_$exit;
END;
END;
BEGIN
pgm_$invoke(’/com/date’,
9,
0, O, { no args }
4,
connv, { std. streams }
[pgm_s$wait],
handle,
status)
check_status;
END.

Example 3-1. Invoking an Existing Shell Command

A program that you invoke in wait mode is said to be running at a higher program level. The
invoking program is at program level n, while the invoked program is at program level n+1. If
the invoked program were, in turn, to invoke a third program, the third program would be at
program level n+2, and so on. The context of an invoking program level is preserved while an
invoked program is executing. The context is restored when an invoked program terminates.

3.2.1.1. Setting Severity Levels

Typically, an invoked program returns a severity level when returning from a higher program

level. A severity level indicates the completion status of an invoked program. To set a severity
level, call PGM_$SET_ SEVERITY, passing it one of the predefined severity levels listed in
Table 3-1. Then call PGM _ $EXIT to exit the current program level.

For a program invoked in wait mode, PGM_ $EXIT returns the severity level in the status of the
PGM _$INVOKE call. Of course, the return status may also indicate that the PGM__ $INVOKE

call failed to invoke the specified process.

Using the severity levels requires coordination between the invoking program and the invoked

3-3 Managing Programs

Table 3=1. Severity Levels

Severity Level

Description

PGM_ $0K
PGM_ $TRUE
PGM _ $FALSE

PGM_$WARNING

PGM_ $ERROR

PGM_ $OUTPUT _INVALID

PGM_ $INTERNAL _ FATAL

PGM_$PROGRAM__ FAULTED

The program completed successfully and performed the
requested action. This is the default severity level.

The program completed successfully; its purpose was to
test a condition, the value of that condition was TRUE.

The program completed successfully; its purpose.was to
test a condition, the value of that condition was FALSE.

The program completed successfully and performed the
requested action. However, an unusual (but nonfatal)
condition was detected.

The program could not perform the requested action
because of syntactic or semantic errors in the input. The
output is structurally sound, however.

The program could not perform the requested action
because of syntactic or semantic errors in the input, and
the output is not structurally sound.

The program detected an internal fatal error and ceased
processing. The state of the output is neither defined nor

guaranteed.

The program detected a fault.

program. An invoked program may interpret status codes as belonging to a specific severity level.
However, this interpretation is strictly determined by how the invoked program is written. For
example, one program may interpret a STREAM _$INVALID _ PATHNAME code as an error,
while another may interpret it as a warning.

Depending on the severity level returned from a program, an invoking program may continue
_processing, take an appropriate action, or signal the severity level and exit.

Example 3-2 contains two programs: PGM_INVOKE.PAS and PGM_ OPEN.PAS. INVOKE
invokes the program OPEN in wait mode. OPEN opens a file and sets the severity level to
PGM _$ERROR, if any status other than STATUS _$OK is returned. INVOKE signals the
error and exits. Note that INVOKE’s error-handling routine distinguishes between an error and a
warning so that other programs it invokes may return a warning severity.

Managing Programs

3-4

PROGRAM pgm_invoke;

%include °/sys/ins/base.ins.pas’;
%include ’/sys/ins/pgm.ins.pas’;
%include ’/sys/ins/error.ins.pas’;

VAR
handle : pgm_$proc;
status : status_$t;

{ declare and load the standard streams }
connv : pgm_$connv =
[stream_$stdin, stream $stdout,
stream $errin, stream $errout];

PROCEDURE check status; {for error_handling}
BEGIN

IF status.all <> status_$ok THEN BEGIN
CASE status.all OF

pgm_$error : writeln (’Invoked program ended with error status’);
pgm_$warning : writeln (’Invoked program ended with warning status’);
END. {case}
pgm_$exit;
END; {if}

END; {procedure}

BEGIN
pgm_$invoke (’pgm_open.bin’,
12,
0, O, {no arguments}
4,
connv, {std. streams}
[pgm_$wait],
handle,
status)
check_status;
END. {pgm_invoke}

{LEkkx}
PROGRAM pgm_open (input,output);
%include ’'/sys/ins/base.ins.pas’;
%include °/latest/us/ins/pgm.ins.pas’;

%include ’'/sys/ins/streams.ins.pas’;
%include ’/sys/ins/error.ins.pas’;

VAR
status . status_$t;
pathname : name_$pname_t;

namelength :@ integer;

Example 3-2. Returning a Severity Level from an Invoked Program

3-5 Managing Programs

{ $open variable }
stream id : stream $id_t:

PROCEDURE check status; {for error_handling}

BEGIN

IF status.all <> status_$ok THEN BEGIN
pgm_$set_severity (pgm_$error);
pgm_$exit;
END;
END;

BEGIN

{ open the file }
stream $open (’file.out’,

9.

stream_$read, {access}
stream_$controlled sharing, {concurrency}
stream id,

status) ;

check status;

END.

Example 3-2. Returning a Severity Level from an Invoked Program (Cont.)

3.2.2. Invoking a Program in Default Mode

To invoke a user program in default mode, call PGM _$INVOKE, with the mode option set to a
null parameter. When you invoke a program this way, the invoking program creates a new
process in which to run the program. A default mode process communicates its termination
status to the invoking program through the PROC_$WAIT system call.

When a process invokes another process, the invoking process is referred to as the parent

process, and the invoked process is referred to as the child process. Executing a program in a
child process is useful'if you wish to perform concurrent processing or if your program requires a
large amount of address space (each process gets its own address space).

There are a number of things that should be considered before invoking a program in a child
process:

e Creation of a new process is more expensive in terms of processor overhead. Unless
you need the additional address space or are performing concurrent processing, it is
recommended that you invoke programs in wait mode.

e A child process has its own process address space. This permits you the advantage of
more address space. However, because private libraries are stored in the parent’s
address space, the child process has no access to the private libraries loaded in the
parent process.

e A child process inherits some environment from the parent. A child process inherits

the working directory of its parent, and also inherits any stream locks its parent may
have.

Managing Programs 3-6

e A parent process can pass any streams it holds to a child process, with the exception
of magtape streams. It is a good practice to always pass the standard streams to a
child process. Section 3.6 describes how to pass streams.

e Only some operations taken by a child process are permanent. For example, if a child
process creates a file, the file exists even after the process terminates. However, if a
child process performs a GPR__$INIT to initialize the graphics environment, when
the child process terminates, the program exits the graphics environment, even if the
invoked program does not call GPR__$TERMINATE. (This is true of all invoked
programs.)

3.2.2.1. Waiting for a Child Process

If you are performing concurrent processing, you may wish to wait for a child process to complete
before executing a specific piece of a program. For example, you may wish to add the results of
calculations performed by both the parent and child processes.

There are two ways to wait for completion of a child process:

e Waiting on a process eventcount, using PGM _$GET _EC.
e Calling PGM _ $PROC _ WAIT.

The PGM _$GET _EC call permits you to get a process eventcount that is advanced when the
process terminates. Generally speaking, you cannot depend on the actual value of an eventcount.
However, you can depend on the value of the process eventcount. When a process is invoked, its
eventcount value is set to 0. When a process terminates, its eventcount value is set to 1. These
are the only two values a process eventcount can have. Because of this, you can explicitly set the
satisfaction values of the process eventcounts to 1.

By using this call in conjunction with the system calls EC2__$READ and EC2_ $WAIT, a parent
process can wait for the completion of a child process (or a list of eventcounts). For general
information about using eventcounts, see Chapter 6 of this manual.

PGM _$PROC _ WAIT waits for a specified child process to terminate, and returns its
completion status. (Typically, a child process returns severity levels in the same way that a
program invoked in wait mode does.) PGM__$PROC__WAIT takes the process handle as an
input parameter, and returns the completion status of the invoked process. If the child process
has not completed execution at the time of the PROC_WAIT call, execution of the parent
process suspends until a completion status is available. The process handle is only valid between
the time a default mode process is invoked and the time the PGM_ $PROC_ WAIT mode
completes.

A certain amount of resources in a parent process are used to keep track of a child process.
When a call to PGM__$PROC _ WAIT is completed, those resources are released. If you invoke
a number of child processes without ever calling PROC _ WAIT, the parent process may run out
of resources. Once a child process has completed, you should call PGM_$PROC_ WAIT to
release these resources, whether you are interested in its completion status or not. That is, if you
wait on a process using an eventcount, you must still call PGM_ $PROC_ WAIT.

3-7 V Managing Programs

If you are NOT interested in when or how an invoked program completes, invoke it using
background mode (see Section 3.2.3).

The program in Example 3-3 invokes two child processes and gets an eventcount for each one. It
then waits for each to complete, and processes the results. (Assume that the programs
communicate results by mapping files — see the Programming With System Calls for
Interprocess Commaunication manual for information about mapping files.)

When the child processes terminate, their resources are released with a call to
PGM__$PROC_ WAIT. Note that handling process eventcounts differs from other eventcounts
in the following ways:

e You explicitly initialize the eventcount satisfaction (trigger) value to 1. An
eventcount of 1 indicates that a process has terminated.

e When you release the resources of the terminated process, its process eventcount (and
the eventcount pointer) becomes invalid. This requires that you create a valid
eventcount and eventcount pointer to take its place in the eventcount pointer array,
while you wait for the other eventcounts to be satisfied. Otherwise, the EC2__ $WAIT
call will reference an illegal address. To do so, declare the replacement eventcount to
be a variable in EC2_ $EVENTCOUNT format, and load it with a valid eventcount
by calling EC2__$INIT. In the example, this eventcount is the variable
“replace _ec".

e You explicitly set the created eventcount value to 1. This guarantees that the
eventcount will not be selected again.

e You replace the invalid pointer in the eventcount pointer array with a pointer to the
eventcount you created.

PROGRAM pgm_ec;

%include ’/sys/ins/base.ins.pas’;
%include °/sys/ins/pgm.ins.pas’;
%include °/sys/ins/error.ins.pas’;
%include ’/sys/ins/ec2.ins.pas’;

CONST
calcl _ec = 1;
calc2_ec = 2;
VAR
ec2_ptr : array [1..2] of ec2 $ptr_t,;
ec2 val : array [1..2] of integer32;
replace_ec : ec2 $eventcount_t;
which . integer;
status . status_$t.
dead_count : integer;
handlel . pgm_$proc;
handle2 : pgn_$proc;

Example 3-3. Using an Eventcount to Wait for a Child Process

Managing Programs 3-8

{declare and load the standard streams}
connv : pgm_$connv :=
[stream_$stdin, stream $stdout,
stream_$errin, stream $errout];

PROCEDURE check_status; {for error_handling}

BEGIN

IF status.all <> status_$ok THEN BEGIN
error_$print (status):
pgm_$exit;
END;
END;

BEGIN

{invoke 1st process}
pgm_$invoke(’calcl.bin’, {program name}

9, {namelength}

0, O, {no args}

4, {number of streams}
connv, . {std. streams}

1. {default mode}
handlel, {process handle}
status)

check_status;

{invoke 2nd process}
pgm_$invoke(’calc2.bin’,
9.
0, O,
4,
connv, !
(1.
handle2,
status)
check_status;

{get ec for 1st process}

pgm_$get_ec (handlel, {process handle}
pgm_$child _proc, {ec keyl}
ec2_ptrlcalcl ec],{ec_ptr}
status) ;

check_status;

{get ec for 2nd process}

pgm_$get_ec (handle2, {process handle}
pegm_$child_proc, {ec key}
ec2_ptricalc2 ec], {ec_ptr}
status) ;

check_status;

{map results files}

Example 3-3. Using an Eventcount to Wait for a Child Process (Cont.)

3-9 Managing Programs

{initialize the replacement event count}
ec2_$init (replace_ec);

{initialize counter}
dead_count := O;

{initialize satisfaction values to 1}
ec2_val[calcl _ec] = 1;
ec2 val[calc2 ec] := 1;

{ NOW GO INTO A LOCP PROMPTING FOR INPUT }

REPEAT
{determine which event count reaches satisfaction first}
which := ec2 $wait (ec2 ptr, {ec pointer array}
ec2_val, {ec value array}
2, {number of ec’'s}
status) ;

IF status.all <> status_$ok THEN RETURN;
CASE which OF
calcl_ec: {when process 1 completes...}
BEGIN
writeln (’Processing Process 1 results’);
{get the termination status of calci}
pgn_$proc_wait (handlel,

status) ;

{load the pointer array with a valid pointer}
ec2 ptrlcalci_ec] := addr(replace_ec);

{set the ec value to be 1 (process terminated)}
ec2_vall[calcl_ec]l := 1;

{process the results of CALC1}

END;
calc2_ec: {if the process 2 completes...}
BEGIN
writeln (’Processing Process 2 results’);
{get the termination status of calc2}

pgn_$proc_wait (handle2,
status) ;

Example 3-3. Using an Eventcount to Wait for a Child Process (Cont.)

Managing Programs 3-10

{load the pointer array with a valid pointer}
ec2_ptr[calc2_ec] := ADDR(replace_ec);

{set the ec value to be 1 (process terminated)}
ec2_val[calc2 ec] := 1;

{process the results of CALC21}

END;
END; {case}

{advance the dead count}

dead_count := dead_count + 1;
{repeat until both processes complete }
UNTIL (dead_count = 2)

END. {program}

Example 3-3. Using an Eventcount to Wait for a Child Process (Cont.)

3.2.3. Invoking a Program in Background Mode

To invoke a user program in background mode, call PGM _ $INVOKE, with the mode option set
to PGM_$BACK _GROUND. When you invoke a program this way, the invoking program
creates a new process in which to run the program. Background mode differs from default mode
in that a background mode process runs independently of the parent; that is, there is no
communication of the completion status. If you attempt to obtain the return status of a
background mode process using PGM__$PROC_ WAIT, you will get an error, because the
process handle is not valid for a background process.

Because a background mode process has no dependence on the parent, it is referred to as an

orphan process. Background mode is useful for performing processing that has no further
dependence on the parent process. For example, a parent process may perform interactive data
collection, invoke a program in a background process to manipulate the data, then return to
further data collection. This permits the data collection and data manipulation to be performed
concurrently.

Example 3-4 contains two programs and a module. One program (PGM_ INVOKE__DIVIDE)
does the following:

e Creates an "input" file and an “error" file for use by a child process, using
STREAM _ $CREATE. The INVOKE _DIVIDE program will load the input file with
data for the child process to use as input. The error file is for use as an error log by
the child process.

e Collects data interactively -- (gets two numbers to be divided).

e Writes the data to the input file, using STREAM _ $PUT _ REC.

3-11 Managing Programs

Resets the stream pointer to the beginning of the file when finished writing to the file,
using STREAM _ $SEEK. This is done because the stream will be passed to a child
process that will read from the file. If the pointer is not RESET, the child will
immediately encounter end of file.

e Invokes a program (PGM_ DIVIDE) in background mode to process the information,
using PGM _ $INVOKE.

e Passes the background process the open stream to the input file as standard input,
and passes the open stream to the error file as standard error output. (It also passes
the default standard output and standard error input.)

e Continues processing.

The other program (DIVIDE) does the following: -

e Establishes a fault handler to trap the divide-by-zero fault, using
PFM_ $ESTABLISH_FAULT_HANDLER. A fault handler must be established if
you wish to log the fault before the process is terminated. The actual fault handler
must be written as a separate module, and declared external. You specify the targeted
fault by using the predefined fault constants in the FAULT insert file. See Chapter 2
for details about how to establish a fault handler.

o Reads the two numbers it is to divide from the standard input stream, which is the
input file created and passed by INVOKE _ DIVIDE.

o Divides the numbers and writes the result to standard output.

The module (PGM_ZERO_HANDLER) is the fault handler established by DIVIDE. It is
invoked if the user attempts to divide by zero. It writes the fault message text to the standard
error output stream, which is the error file created and passed by the parent. You must bind
ZERO _HANDLER and DIVIDE befor attempting to invoke the program. See Chapter 2 for
details about how to establish a fault handler.

Managing Programs 3-12

3 2k o sk ok ok ok ok ok ok ok ok sk ok ok ok sk ok ok ok k

* PGM_INVOKE_DIVIDE
3k 3k 3K 3k 3k o ok ok 3K sk ok ok ok ok sk ke sk sk sk kg

PROGRAM pgm_invoke_divide (input, output);

%include °'/sys/ins/base.ins.pas’;
%include ’/sys/ins/streams.ins.pas’;
%include °/sys/ins/error.ins.pas’;
%include °'/sys/ins/pgm.ins.pas’;

VAR
status . status_$t;

{ $CREATE variables }
error_name : name_$pname_t;

error_len : integer;

input_name : name_$pname_t;
input_len : integer;

error_id : stream_$id t;

input_id : stream $id_t;
seek_key : stream $sk t;

number : ARRAY [1..20] OF char;

number_len : integer32;

{ PGM_$INVOKE variables }

handle . pgm_$proc; {process_handle}
connv : pgm_$connv; {connection vector}
arg_count : pinteger;

PROCEDURE check_status; {for error handling}

BEGIN
IF status.all <> status_$ok THEN BEGIN
error_$print(status):
pgm_$exit;
END;
END; {check_status}

BEGIN {main}

{ get standard error pathname for program to be invoked }
writeln (’Input the filename to be opened as standard °’,
‘error in background process DIVIDE:

readln (error_name);
error_len := SIZEOF (error_name)

{ calculate the namelength }

WHILE ((error_name[error_len] = * ') AND (error_lemn > 0)) DO

error_len := error_len - 1;

Example 3-4. Invoking a Program in Background Mode

3-13

Managing Programs

{ create error file - get stream }
stream $create (error_name,

error_len,

stream $write, - {access?
stream $unregulated, {conc}
error_id, {stream ID}
status) ;

check_status;

{ get standard input pathname for program to be invoked }
writeln (’Input the filename to be opened as standard °,
‘input in background process DIVIDE: °);

readln (input_name) ;

{ calculate the namelength }

input_len := SIZEOF(input_name);

WHILE ((input_name[input_len] = * ’) AND (input_len > 0)) DO
input_len := input len - 1;

{create standard input file - get stream }
stream_$create (input_name,

input_len,

stream $write, {access}
stream $unregulated, {conc}
input_id, {stream ID}
status) ;

check status;

{ Get numbers to be divided by invoked program and }

{ write them to the created standard input file. }
writeln(’input an integer to be divided:’);
readln(number) ;

{ calculate record length }

number_len := SIZEOF (number) ;

WHILE ({(number[number_len] = ° *) AND (number_len > 0)) DO
number_len := number len - 1;

{ add one for the newline }
number_len := number_len +1;
number [number_len] := CHR(10): { terminate w/ newline}

{write the number to the file}

stream_$put_rec (input_id, {stream to write to}
ADDR (number), {address of data buffer}
number_len, <{length of data}

seek _key,
status) ;
check_status;
writeln(’input an integer ', number: (number_ len -1),
' is to be divided by:’);

readln(number);

Example 3-4. Invoking a Program in Background Mode (Cont.)

Managing Programs ' 3-14

{ calculate record length }

number_len := SIZEOF (number) ;

WHILE ((number [number len] = * *) AND (number_len > 0)) DO
number_len := number_len - 1;

{ add one for the newline }
number_len = number_len +1;
number [number_len] := CHR(10); { terminate w/ newline}

{write the number to the file}
stream_$put_rec (input_id,

ADDR (number) ,
number_len,
seek key,
status) ;
check_status;
{ reset stream pointer to the beginning of the }
{ input file before passing stream to the program }
stream $seek(input_id, {stream ID}
stream $rec, {seek-base}
stream $absolute, {seek-type}
1, {record number}
status);

check _status;

{ load $INVOKE connection vector}

connv[0] := input_id; { set stream IDto be created stdin }

connv[1] := stream $stdout; { set stream ID to be STD_OUTPUT }
connv[2] := stream $errin; { set stream ID to be STD_ERRIN }
connv[3] := error_id; { set stream ID to be created errout }

{ invoke program }

pgm_$invoke (’pgm divide’, { pathname of program to invoke
10, { length of pathname
0, { number of arguments to be passed
0, { no arguments
4, { number of streams to be passed
connv, { array of stream IDS to be passed
[pgm_$back_ground],{ mode in which to invoke program
handle, { not used in background mode
status) ; { status

check_status;

{continue processing}

(SRS P T W

Example 3-4. Invoking a Program in Background Mode (Cont.)

3-15 Managing Programs

sk Rk ok ok ok ok o K
* PGM_DIVIDE *
oK ARk KKK
PROGRAM pgm_divide (input, output);

{Program to divide two numbers}

%include ’/sys/ins/base.ins.pas’;
%include ’/sys/ins/pfm.ins.pas’;
%include ’/sys/ins/pgm.ins.pas’;
%include ’/sys/ins/fault.ins.pas’;
%include °/sys/ins/error.ins.pas’;

VAR
numberi : integer;
number2 : integer;

status . status_$t;
handler_id : pfm $fh handle_t;

{declare external fault-handling function}

FUNCTION zero_fault_handler (IN f_status : pfm $fault_rec_t
): pfm_$fh_func_val_t; EXTERN;

BEGIN {main}

{establish the zero divide handler }
{load the target fault - 1st parameter}
handler_id := pfm $establish_fault_handler (fault_$zero_divide,

1. {default type}
ADDR(zero_fault_handler),
status) ;

IF (status.all <> status_$ok) THEN
error_$print (status);

{read from standard input - (file passed by parent)}
readln(numberi) ;
readln(number?2) ;

{calculate and write the result}

write (numberl:1, ’ divided by ’,number2:1i,’ is °’, (numberl DIV number?2):1);
‘ writeln (’ with a remainder of °’, (numberl MOD number2) :1);

END.

sk ok ok ks ook o ook ok ko o
* ZERO_HANDLER #*
ek sk ok ok ko ok ok ok ok
MODULE pgm zero_handler; {(input,output);}

{ This is a fault-handling function that prints }
{ a line and continues to fault handle. }

%include ’/sys/ins/base.ins.pas’;
%include °’/sys/ins/error.ins.pas’;
%include °'/sys/ins/pfm.ins.pas’;

Example 3-4. Invoking a Program in Background Mode (Cont.)

Managing Programs 3-16

FUNCTION zero_fault_handler (IN f_status : pfm_$fault rec_t
’): pfm_$fh_func_val_t ;

BEGIN
{write a message to the error log}
error_$print (f_status.status);
zero_fault_handler := pfm $continue_fault_handling:

END; {zero_fault_handler}

Example 3-4. Invoking a Program in Background Mode (Cont.)

You can change a default child process into an orphan process by calling
PGM__$MAKE__ ORPHAN from the parent process. This option may be used for child processes
that need to communicate with the parent process initially, but at some point can run
independently.

PGM__$MAKE __ ORPHAN takes the process handle of the child process as an input parameter.
It returns a process UID that can be used to obtain information about the process (see Section
3.7). Once you convert a child process to an orphan process, the process handle is no longer valid.

The program segment in Example 3-5 demonstrates how to convert a child process into an orphan
process.

PROGRAM pgm_orphan (input,output):

%include ’/sys/ins/base.ins.pas’;
%include °/sys/ins/pgm.ins.pas’;
%include ’/sys/ins/error.ins.pas”’;

VAR
puid ©ouid_$t;
status : status_$t;

handle : pgm $proc;

{declare and load the standard streams}
connv : pgm $connv =
[stream_$stdin, stream $stdout,
stream $errin, stream $errout];

PROCEDURE check_status; {for error_handling}

BEGIN

IF status.all <> status__$ok THEN BEGIN
error_$print (status);
pgm_$exit;
END;
END; {check_status}

Example 3-5. Converting a Child Process to an Orphan Process

3-17 Managing Programs

BEGIN {main}

{invoke child process}
pgm_$invoke(’test5.bin’, {program name}

9, {namelength}

0, 0, {no args}

4,

connv, {std. streams}
1. {default mode}
handle, {process handle}
status)

check_status.

{communicate with child}

{cut the child loose}

pgm_$make orphan(handle, {process handle}
puid, {process uid}
status) ;

check_status;

END.

Example 3-5. Converting a Child Process to an Orphan Process (Cont.)

3.3. Passing Arguments to Invoked Programs

In addition to specifying the mode in which an invoked program is to run, PGM_ $INVOKE
permits the passing of arguments to the invoked program. The third and fourth parameters of
the PGM _$INVOKE call are the argument count and argument vector, respectively. The
argument count is a 2-byte integer specifying the number of arguments being passed. The

argument vector is an array of pointers to the arguments being passed. The argument vector is
of the type PGM _ $ARGYV, which is an array of UNIV__PTR types.

A program can pass any number of arguments to a program it is invoking. However, when
passing arguments to a Shell, the Shell’s syntax limits the number of arguments to 10 (including
program name). Each argument must be preceded by a 2-byte integer indicating the number of
bytes in the argument. The first argument must be the name of the program -- the simple name,
not the full pathname (i.e., date, not //deedle/com/date).

DOMAIN provides a predefined record type, PGM __$ARG, which is a 128-byte character array
preceded by a 2-byte integer. Whether you choose to use the predefined argument type, or
declare a argument type of your own, will depend on the length of the passed arguments and how

critical storage is to your program.

Figure 3-1 illustrates the argument vector/argument arrangement.

Managing Programs 3-18

Returned Array of Retrieved Argument

Pointer Pointers Records
index
pointer [—%» .| pointer —» arg_len | arg_text
1: | pointer ’ arg_len | arg_text
n: | pointer —» arg_len arg_text

Figure 3-1. Argument Vector/Argument Configuration

The program in Example 3-6 invokes a program (in a child process) and passes two arguments:
the invoked program name and a text string. (Remember, the name of the invoked program
must be passed as the first argument.)

PROGRAM pgm pass_args (input,output);

%include ’/sys/ins/base.ins.pas’;
%include ’/sys/ins/pgm.ins.pas’;
%include ’/sys/ins/error.ins.pas’;

VAR
status : status_$t;

{argument variables}
name,
argument : pgm $arg;

{INVOKE variables}
argv . pgm_S$argv;
handle : pgm_$proc;

{declare and load the standard streams}
connv : pgm $connv =
[stream_$stdin, stream_$stdout,
stream_$errin, stream $errout];

PROCEDURE check_status; {for error_handling}

BEGIN

IF status.all <> status_$ok THEN BEGIN
error_$print (status);
pgm_$exit;
END;
END;

Example 3-6. Passing Arguments to an Invoked Program

3-19 Managing Programs

BEGIN {main program}

{load the arguments}

name.chars := ’'pgm passee.bin’;
name.len .= 14;
argument.chars := ’test’;
argument.len = 4;

{load the argument vector w/ addresses}
argv[0] ADDR (name) ;
argv(1] ADDR (argument) ;

pgm_$invoke (’pgm_passee.bin’, {process name}

14 . {name length}

2, {arg count - name & arg}
argv, {arg vector}

4, {stream count}

connv, {std. streams}

f1. {mode}

handle, {process handle}

status) ;

check_status;

pgm_$proc_wait (handle, {process handle}
status) ;
check status;

Example 3-8. Passing Arguments to an Invoked Program (Cont.)

3.4. Accessing Arguments from an Invoked Program

An invoked program can access the arguments passed to it in two ways:

e Calling PGM _ $GET _ ARG, which returns one argument at a time.

e Calling PGM_$GET_ ARGS, which returns a pointer to an array containing all the
passed arguments.

3.4.1. Accessing Arguments with PGM _$GET _ARG

PGM_$GET _ARG is a function that returns an argument and its length. To access an
argument with it, specify the argument vector index number of the pointer to the argument, and
the maximum length of the argument. For example, to index the program name, which is the first
argument, specify the index number as 0 and a maximum length that will accommodate the

name.

Example 3-7 shows a program that could be invoked by a program similar to the one in Example
3.3. This program accesses the second argument in the argument array. (Typically, the program

name is ignored by an invoked program.)

Managing Programs 3-20

PROGRAM pgm_passee_arg (input, output);

%include ’/sys/ins/base.ins.pas’;
%include °'/sys/ins/error.ins.pas’;
%include ’/sys/ins/pgm.ins.pas’;

VAR
status . status_$t;
arg_length : pinteger; {returned argument length}
arg_num . pinteger; {ordinal # of desired argument}
argument : array [1..256] of char; {argument buffer}
max_len . pinteger := 256; {maximum length of returned arg}
BEGIN
{access 2nd argument}
arg num := 1; {2nd arg #, 0 is 1st}
arg_length := pgm $get_arg (arg_num, {arg number}
argument, {arg buffer}
status,
max_len) ;
writeln (’this is the second argument: °, argument:arg_length);
IF status.all <> status_$ok THEN
error_$print (status);
{process the argument}
END.

Example 3-7. Accessing Arguments with PGM_$GET_ ARG

3.4.2. Accessing Arguments with PGM _$GET_ ARGS

PGM _$GET _ ARGS returns a pointer to the argument vector, and the number of pointers in
the vector (the number of arguments passed).

The program in Example 3-8 may also be invoked by a program similar to the one in Example
3.3. It accesses both arguments passed to it.

Note that the argument vector is a PGM_$ARGYV data type. This is an array of addresses in

UNIV _PTR format. You cannot dereference a UNIV__PTR. So, to access the argument you
must:

1. Declare an explicit type pointer for the arguments.
2. Typecast the UNIV_PTRs to be explicit pointers.

3. Dereference the explicit pointers.

The program segment in Example 3-8 accesses arguments with PGM__ $GET _ ARGS, and writes
them to output.

3-21 Managing Programs

PROGRAM pgm_passee (input, output);

%include '/sys/ins/base.ins.pas’;
%include °’/sys/ins/error.ins.pas’;
%include ’/sys/ins/pgm.ins.pas’;

TYPE
{declare an explicit argument pointer}
pgm_arg ptr = ~pgm $arg;

VAR
arg_count . pinteger; {argument count}
arg_vec_addr : pgm $argv_ptr; {argument vector}
i . pinteger; {index}

{declare array to hold arguments}
arguments . array [0..127] of pgm arg_ptr;

BEGIN
{get a pointer to the argument array}
pgm_$get_args (arg_count, {number of arguments}
arg_vec_addr); {returned pointer}

FOR i := 0 TO (arg_count - 1) DO BEGIN

{typecast the pointer and load into argument array}

arguments[i] := pgm_arg ptr(arg_vec_addr~[i]);

{write argument to output (dereference explicit pointer)}

writeln (’Argument *, i:1,’' is *, arguments[I]}~.chars:arguments[I]~.len);
END;

Example 3-8. Accessing Arguments with PGM _$GET _ ARGS

3.5. Deleting Arguments

DOMAIN provides the call PGM_$DEL _ ARG to delete arguments from the argument vector.
PGM_ $DEL _ ARG is useful in the case of invoking a program (for example, PROG _A) that
invokes another program (PROG_B). In this instance, you can pass PROG__A the arguments
needed for both programs. PROG_A uses PGM _ $DEL _ ARG to delete the arguments it uses
from the argument vector, then uses the modified vector to invoke PROG _B.

The DOMAIN Language Level Debugger (DEBUG) is an example of such a program. Consider
the following Shell command:

debug -src taxes.bin income

This command invokes the debugger with an argument vector that contains pointers to all four
elements of the command. All four elements are arguments to the DEBUG program. However,
before invoking the user program taxes.bin, the debugger deletes "debug" and "-src* from the
argument vector.

Managing Programs 3-22

To delete an argument from the argument vector, call PGM _$DEL_ ARG specifying the index
number of the argument pointer in the argument vector. For example, to delete the first
argument, specify 0 as the index number.

The program in Example 3-9 is passed an argument vector that contains two arguments, its name
and the name of a program it invokes. The example accesses the argument vector using
PGM _$GET _ ARGS, deletes the name argument, then invokes the other program, using the
same argument vector. In a more complex program, you might read each argument, searching
for a flag that separates the arguments of the two programs.

PROGRAM pgm del_inv (input, output);
%include ’/sys/ins/base.ins.pas’;
%include ’/sys/ins/error.ins.pas’;
%include ’/sys/ins/pgm.ins.pas’;

TYPE
{construct a pointer to arguments}
pgm_arg_ptr = ~pgm_$arg:

VAR
arg_count . pinteger;
arg_vec_addr : pgm_$argv_ptr:

{declare array to hold arguments}
i : integer;
arguments : array [0..127] of pgm_arg ptr;

{INVOKE variables}
status : status_$t.
handle : pgm_$proc;
{declare and load the standard streams}
connv : pgm_$connv :=
[stream $stdin, stream $stdout,
stream $errin, stream $errout];

PROCEDURE check__sta.tus ; {for error_handling}

BEGIN

IF status.all <> status_$ok THEN BEGIN
error_$print (status);
pgm_$exit;
END;
END;

BEGIN {main}
writeln (*In del_inv’);

pgm_$get_args (arg_count, {number of arguments}
arg_vec_addr); {pointer to argument vector}

writeln(’passed folowing arguments:’);

Example 3-9. Deleting an Argument from the Argument Vector

3-23 Managing Programs

FOR i := 0 TO (arg_count - 1) DO BEGIN

arguments[i] := pgm_arg_ptr(arg_vec_addr~[il);

writeln(’ARG °, i:1, * ’, arguments[i]~.chars : arguments[i]~.len);
END;

{delete program name argument}
writeln;

writeln(’deleting ARG 0°);
‘pgm_$del_arg (0);

{GET_ARGS passes UNIV pointer to the argument array. To b
{reference arguments, you must typecast to pgm_$arg pointers }

FOR i := O TO (arg_count - 1) DO BEGIN
arguments[i] := pgm _arg ptr(arg_vec_addr~[il);
END;

writeln(’invoking ’,arguments[0]~.chars:arguments[0]~.len,’ (now arg 0)’);
writeln;

{invoke second program w/ modified arg vector}

pgm_$invoke(arguments[0]~.chars, {process name}

arguments[0]~.len, {name length}

1, {arg count - name}
arg_vec_addr~, {arg vector}

4, {stream count}
connv, {std streams}
[pgm_$wait]. {mode}

handle, {process handle}
status)

check_status;

END.

Example 3-9. Deleting an Argument from the Argument Vector (Cont.)

3.6. Passing Streams to an Invoked Program

PGM _$INVOKE also permits the passing of streams to the invoked program. The fifth and
sixth parameters of the INVOKE call are the stream count and connection vector, respectively.
The stream count is a 2-byte integer specifying the number of streams being passed. The
connection vector is an array of stream IDS, in PGM _ $CONNV format. Stream IDS refer to
objects already - opened by the calling program, using STREAM__$CREATE or
STREAM _$OPEN. The first element in the connection-vector array becomes stream 0 in the
invoked program, the second element becomes stream 1, and so on.

By default, every program is invoked with four streams, numbered 0 through 3. Stream 0 is
standard input, stream 1 is standard output, stream 2 is error input, stream 3 is error output.
To invoke a program with these four streams, pass the predefined standard stream constants.

You may also leave "holes" in the connection vector, by setting a stream ID equal to the

predefined constant, STREAM _ $NO_ STREAM. (The STREAMS insert file must be included
to use this constant.)

Managing Programs 3-24

The program in Example 3-10 opens a file and passes the stream ID of the file as standard
output. Note that the STREAM __$NO__ STREAM constant is used to pass a null stream as the
standard input.

PROGRAM pgm_pass_streams (input,output);

%include ’/sys/ins/base.ins.pas’;
%include '/sys/ins/pgm.ins.pas’;
%include ’/sys/ins/streams.ins.pas’;
%include °‘/sys/ins/error.ins.pas’;

VAR
status : status_$t;
{argument variables}
name . pgm_$arg;
argument : pgm $arg:;

{INVOKE variables}
argv . pgm_$argv;
connv : pgm $connv;
handle : pgm_$proc;

{CREATE variables}

pathname : name_$pname_t;
namelength . integer;
stream id : stream $id_t;

PROCEDURE check _status; <{for error handling}
BEGIN

IF status.all <> status_$ok THEN BEGIN
error_$print (status);
pgm_$exit;
END;
END;

BEGIN {main program}

{get the input}
writeln (’Enter the output file pathname: *);
readln (pathname) ;

{ calculate the length of pathname }

namelength := SIZEOF (pathname) ;

WHILE (pathname[namelength] = * *) AND (namelength > O) DO
namelength := namelength - 1;

{open w/ $CREATE}
stream $create (pathname,

namelength,

stream $write, {access}
stream $controlled sharing, {conc}
stream_id,

status) :

check_status;

Example 3-10. Passing Streams to an Invoked Process

3-25 Managing Programs

{load the arguments}

name.chars := ’'pgm passee.bin’;
name.len = 14;

argument.chars = ’test’;
argument.len = 4;

{load the argument vector w/ addresses}
argv[0] := ADDR(name)
argv([1] := ADDR(argument) ;

{l0oad connection vector}

connv[0] := stream $no_stream; {null stream}

connv([1i] := stream id; {pass stream ID as stdout}
connv([2] := stream $errin;

connv[3] := stream $errout;

pgm_$invoke (*pgm_passee.bin’, {process name}

14, {name length}

2, {arg count - name & arg}
argv, {arg vector} ’
4, {stream count}

connv, {connection vector}

(1. {mode}

handle, {process handle}

status) ;

check_status;

{get process termination status}

pgm_$proc_wait (handle, {process handle}
status) ;

check_status;

Example 3-10. Passing Streams to an Invoked Process (Cont.)

Managing Programs 3-26

3.7. Getting Process Information

You can obtain information about your process and other processes on your node by using calls
from the PGM, PM, PROCI1, and PROC2 subsystems.

3.7.1. Getting Information About Your Process

The following calls return information about the process that calls them:

PM_$GET_HOME _ TXT Returns the home directory as a string.
PM_$GET _SID_ TEXT Returns the SID (login identifier) as a string.
PROC1 _$GET_CPUT Returns the CPU time used by the process.

PROC2 _$GET _INFO Returns a record containing the following information:

e The program state (ready, waiting, suspended, susp_ pending,
bound).

e The User Status Register (USR).

e The User Program Counter (UPC).

e The user stack pointer (A7).

e The stack base pointer (AS8).

o The amount of CPU time used.

e The CPU scheduling priority.
To obtain either the home directory or SID, call PM__$GET_HOME__TEXT or
PM _$GET _SID_ TEXT, respectively, specifying a maximum length for the string buffer to
hold the returned data. The calls return the pequested string along with the actual length of the

string.

To obtain the CPU time used by your process, call PROC1_$GET _ CPUT, specifying an
output parameter in TIME _$CLOCK _ T format. ‘

To obtain the information record for your process, you must pass PROC2__$GET __INFO the
UID of your process and the buffer length for the record. Your process UID is obtained by calling
PROC _$WHO _AM _I, which has one parameter -- the returned process UID. Specify a length
of 36 bytes for the information record buffer.

The program in Example 3-11 gets the home directory text, the process SID, the total CPU time,
and the information record, and prints the information to standard output.

3-27 Managing Programs

PROGRAM pgm_your_proc (input,output) ;

%include °’/sys/ins/base.ins.pas’;
%include °'/sys/ins/cal.ins.pas’;
%include °/sys/ins/proci.ins.pas’;
%include °’/sys/ins/proc2.ins.pas’;
%include ’/sys/ins/pm.ins.pas’;
%include ’/sys/ins/error.ins.pas’;
%include °/sys/ins/type uids.ins.pas’;

VAR
home . string;
home_1len © pinteger;
sid . string;
sid_len : pinteger;
uid D uid_$t;
info . proc2_$info_t;
status : status_$t;
total time : time_$clock t;
d_clock : cal_$timedate _rec_t;
BEGIN
pm_$get_home_txt (30, {maxlen}
home, {dir}
home_1len);
writeln ('home directory ', home : home_len);
pm_$get_sid_txt (40, {maxlen}
sid, {dir}
sid_len);

writeln (’sid °, sid : sid_len);
proc2_$who_am_i (uid):

writeln ("uid °, uid.high, uid.low);

proc2_$get_info (uid, {process uid}
info,
36, {info buffer length}
status) ;

IF (status.all <> proc2_$is_current) THEN
error_$print (status);

{write the information}

writeln (’stack uid *, info.stack_uid.high);
writeln (’stack uid ’, info.stack_uid.low);
writeln (’stack base °, info.stack_base);

Example 3~11. Getting Information About Your Process

Managing Programs 3-28

IF proc2 $waiting IN info.state THEN
writeln (’state: waiting’);

IF proc2_$suspended IN info.state THEN
writeln (‘state: suspended’);

IF proc2_$susp_pending IN info.state THEN
writeln (’state: susp_pending’):

IF proc2_$bound IN info.state THEN
writeln (’state: bound’);

writeln (’user sr ’, info.usr);
writeln (’user pc ’, info.upc);
writeln (’user stack pointer ’, info.usp);
writeln (’sb ptr °, info.usb);

{decode the time}
cal_$decode_time (info.cpu_total,
d_clock) ;

writeln (’cum cpu: *,d _clock.hour:1,’ *,
d_clock.minute:1," °,
d_clock.second:1,’ *):
writeln (’priority °, info.priority:1);
writeln ;

proci_$get_cput (total_ time);
{decode the time}
cal_$decode_time (total_time,

d_clock)

writeln (°GET_CPU total time: °,d_clock.hour:1,’ °,
d_clock.minute:1,’ °’,
d_clock.second:1,’ ’);

END.

Example 3-11. Getting Information About Your Process (Cont.)

3.7.2. Getting Information About Other Processes

You can also obtain process information about:

e Processes invoked by your process.
e All other user processes on the same node as your process.

To obtain process information about a process invoked by your process:

1. Call PGM _$GET _PUID specifying the process handle of the child process as an
input parameter. (The process handle is returned when you invoke a process using
PGM_$INVOKE.) PGM_ $GET _ PUID returns the UID of the specified process.

2. Call PROC2 _$GET __INFO, using the returned UID.

3-29 Managing Programs

To obtain information about all user processes running on the same node as your process:

1. Call PROC2__$LIST, specifying a maximum number of UIDS you want returned.
PROC2 _$LIST returns the UIDS of all the user processes running on the same node
as the calling process, in an array of PROC2 _$UID __ LIST _ T format.

2. Call PROC _$GET _ INFO once for each returned UID.
The program in Example 3-12 invokes a program in a child process, gets the information record

of the invoked process, and writes the accumulated CPU time of the process (a field in the
information record) to standard output.

PROGRAM pgm child _info (input,output);
{ This program gets the amount of time the child has used}

%include ’/sys/ins/base.ins.pas’;
%include ’/sys/ins/pgm.ins.pas’;
%include °/sys/ins/cal.ins.pas’;
%include °/sys/ins/time.ins.pas’;
%include °/sys/ins/proc2.ins.pas’;
%include ’/sys/ins/error.ins.pas’;

VAR
status . status_$t;
proc_uid : uid_$t; {process uid}
info : proc2_$info_t; {information record}
total time : time_$clock_t: {encoded time}
d_clock . cal_$timedate_rec_t. {decoded time}
rel_time . time_$clock_t; {relative amount of time}
handle . pgm_$proc; {process handle}

{declare and load the standard streams}
connv : pgm $connv =
[stream $stdin, stream $stdout,
stream_$errin, stream_$errout];

PROCEDURE check_status; {for error_handling}

BEGIN

IF status.all <> status_$ok THEN BEGIN
error_$print (status);
pgm_$exit;
END;
END;

Example 3-12. Getting Information About an Invoked Process

Managing Programs 3-30

PAnN

BEGIN
pgm_$invoke(’calc.bin’, {process name}

8, {name length}
0,0, {no args}

4, {stream count}
connv, {std streams}
1. {default mode}
handle, {process handle}
status)

check status;

{wait 10 seconds}
{convert # of seconds to UTC value}
cal_$sec_to_clock (10,

rel _time);

time_$wait (time_$relative, {pre-defined}
rel_time, {time to waitl}
status) ;

{perform other processing}

{get the process uid}

pgm_$get puid (handle, {process handle}
proc_uid, {process uid}
status) ;

check status:

{get process information}

proc2_$get_info (proc_uid, {process uid}
info,
36, {info buffer length}
status) ;

check_status;

{decode the cpu time}
cal_$decode_time (info.cpu_total,
d_clock):

vimt_$writes (’Accumulated CPU time of Child : %2ZWD:%2ZWD:%2ZWD %.°,
d_clock.hour,
d_clock.minute,
d_clock.second,
©0,0); {dummy arguments}

{get child’s terminaton status}
pgm_$proc_wait (handle, {process handle}
status) ;

check_status;

END.

Example 3-12. Getting Information About an Invoked Process (Cont.)

Managing Programs 3-31 Managing Programs

Chapter 4
Performing I/O with IOS Calls

The IOS interface consists of I0S system calls that allow you to create, read, write, and delete

objects by opening stream connections to them. A stream connection is a pathway from the
program that is manipulating the object to the disk file or I/O device where the object is
physically located. You can read and change the attributes of an object and its stream
connection. This allows you to control what operations can be performed on an object, and how
your program and other programs can access it.

Usually, you can perform I/O operations using statements and functions in your high-level
language. And, in fact, you want to use high-level langauge I/O if you are most concerned about
transporting your programs to other operating systems.

However, DOMAIN provides this IOS interface to perform I/O operations if your high-level
language does not provide a way, is less convenient to use, or if using it would introduce
undesirable peculiarities on certain devices.

IOS calls can sometimes be more efficient than language I/O. For example, the JOS manager
provides a call that allows you to read data without having to copy the data into a buffer.

Standard UNIX I/O does not provide a comparable feature.

This chapter describes the most common calls in the IOS interface. It describes how to create,
open, close, read, write, and delete various types of objects using IOS calls.

4.1. System Calls, Insert Files, and Data Types

To perform system I/O, use system calls with the prefix IOS. In order to use IOS system calls,
you must include the appropriate insert file in your program. The IOS insert files are:

/SYS/INS/IOS.INS.C for C programs.
/SYS/INS/IOS.INS.FTN for FORTRAN programs.
/SYS/INS/IOS.INS.PAS for Pascal programs.

Note that some IOS system calls require that you specify a type UID. To use standard DOMAIN
types, you must include the appropriate type UID insert file for your program:

/SYS/INS/TYPE _ UIDS.INS.C for C programs.
/SYS/INS/TYPE _ UIDS.INS.FTN for FORTRAN programs.
/SYS/INS/TYPE __ UIDS.INS.PAS for Pascal programs.

This chapter is intended to be a guide for performing certain programming tasks; the data type
and system call descriptions in it are not comprehensive. For complete information on the data
types and system calls in these insert files, see the DOMAIN System Call Reference manual.

4-1 Performing I/O with IOS Calls

4.2. Overview of the IOS Manager

The IOS interface is actually part of a larger facility that DOMAIN provides to perform stream
I/O. The Streams facility allows DOMAIN programs to perform I/O on various types of
objects. Among the object types that DOMAIN defines is the unstructured ASCH (UASC) type,
serial I/O line (SIO) type, and the record (REC) type. (See Section 4.3 for a more complete list.)

The Streams facility is designed so that it can insulate the I/O operation from the type of object
it is operating on. For example, a program can use the same I/O statement to write to an object,
regardless of whether the object’s type is UASC or MBX. Whenever a program performs an I/O
operation, the Streams facility recognizes the object type being manipulated and calls a
corresponding type manager. The type managers define how the I/O operations can be
performed on that particular object type. The managers actually perform the I/O operation by
making calls to more primitive (or device-dependent) managers. For example, the UASC type
manager uses MS calls to perform an I/O operation on a UASC object while the MBX type
manager uses MBX calls to perform an I/O operation on an MBX object. This layered approach
allows application programmers to use various object types without having to know the details of
how I/O for each type is implemented.

Another advantage of having the Streams facility comprised of various type managers is that
users, as well as DOMAIN, can define new object types and write new type managers as the need

arises. For information on writing a type manager see the Using the Open System Toolkit to
Ezxtend the Streams Facility manual.

Generally, when using IOS calls, you need not be concerned about the other parts of the Streams
facility. The Streams facility does the work for you. Whenever a program performs an I/0O
operation, (either by using a language I/O statement such as Pascal’s writeln, DOMAIN/IX’s
write, or by an IOS call such as IOS__$PUT) the Streams facility recognizes the object type being
manipulated and calls the appropriate type manager for that type.

You can use IOS calls as a way of making your program generic or less dependent on any specific
device, or manager. You can do so because most of the IOS calls perform the same way,
regardless of the object type you are using. This chapter describes the basic IOS calls

independent of any objects. Chapter 9 describes how to use IOS calls to access the object types
that DOMAIN supports.

Before we describe how to use IOS calls to perform system I/O, we must first define a few terms.
The following sections define some of the basic features of the IOS interface:

e Stream connections
e Stream IDs
o Default Stream IDs

e Stream markers

Performing I/O with I0S Calls . 4-2

4.2.1. Stream Connections

A stream connection, often referred to as simply a stream, is a pathway to an object such as
a disk file or I/O device. This is how your program connects to the object. Whenever a program
wants to perform I/O on an object, the program must first make one or more stream connections

to that object. You establish a stream connection when you open the object using
IOS _$CREATE or I0S_ $OPEN.

4.2.2. Stream IDs

You make a connection when you create or open an object, specifying the pathname of the
desired object. If the call succeeds, it returns an identification number or stream ID. The
stream ID identifies the stream connection to the calling program. You use the returned stream
ID as an input parameter to any system calls requiring a stream ID. (IOS, SIO, PAD, and some
GPR system calls require that you specify a stream ID.)

Once a program makes a stream connection, the program uses the stream ID, not the pathname,
to perform I/O on the associated object. The program terminates the stream connection when it
performs a close operation (for I0S calls, IOS_ $CLOSE closes the specified stream connection).

Note that stream IDs are not the same as FORTRAN logical unit numbers, which are channel

numbers that the programmer selects. In contrast, stream IDs are assigned by the Streams
facility.

4.2.8. Default Stream IDs

Typically, a program’s runtime environment requires a specific set of stream connections, so the
IOS manager provides these by default. Each time ‘you create a process, IOS opens these default
streams for program input and output:

e Standard input

e Standard output

e Error input

e Error output
Standard input and standard output are streams that channel normal input and output
between a user and a process. By default, standard input is an input pad. Standard output is a
transcript pad.
Shell commands use input and output streams when processing command line data. When a user
specifies a command in the Shell input pad, standard input passes data from the command line to

the command program. Standard output passes data from the program to the transcript pad.

Error input and error output are streams that handle additional program input and output.
By default, error mput is an input pad. Error output is a transcript pad.

4-3 Performing I/O with IOS Calls

An error input stream has nothing to do with errors; it is simply an additional input stream to
pass data to a program. For example, when a command queries a user to verify wildcard names,
error input passes the user’s response to the command program. Error output is the stream that
passes program error messages to the process transcript pad.

Table 4-1 lists the default streams by their predefined names, and actual stream number. These
constants are defined in the BASE insert files for each programming language.

Table 4-1. Default Streams

Stream I0S Defined Value Number
Standard input I0S _$STDIN (0)
Standard output I0OS_$STDOUT (1)
Error input I0S_$ERRIN (2)
Error output I0S__$ERROUT (3)

In some cases, you may want to redirect standard input and output to read input from and write
data to locations other than the process input and transcript pads. For example, your program
might expect data from a disk file rather than from a user at the keyboard. The Shell allows
users to redirect standard input and output with the I/O control characters such as < and >.

You can redirect standard input and standard output stream connections by assigning a different
stream ID to the stream connection. You can also redirect any standard stream using
PGM _$INVOKE. For details, see Chapter 3 of this manual. A single process can have a
maximum of 127 stream IDs open at one time.

Note that when you redirect standard input or standard output, the error input and error output
keep their original connection. Some programs use error input and error output as interactive
connections, and standard input and standard output for the remaining data I/O. For example, if
a user has redirected standard input to a disk file, the program uses error input to get
information from the user (the keyboard) rather than from the file.

4.2.4. Stream Markers

Every open stream has a stream marker that points to the current position in an object. When
you open a stream to an object, the stream marker usually starts at the beginning of the object
(BOF). However, if your program wants to add data at the end of an existing object, you can
specify that the stream marker’s initial position be at the end of the object (EOF).

The stream marker moves as you perform read or write operations on the object. When you read
from the object, the stream marker always moves so that it points to the data item you would
read next. The IOS manager returns an error if you try to read data when a stream marker is
pointing to EOF'.

Many stream operations refer to the stream marker to complete the operation. Your programs
can inquire about, and explicitly move the stream marker, by using the IOS_$SEEK calls. (For
details, see Section 4.9).

Performing I/O with IOS Calls 4-4

For some types of objects, like UASC objects, the stream marker keeps track of the current
stream position. For other types of objects, like an SIO line, the stream marker is irrelevant.

4.2.5. I0S Calls for Manipulating Streams

The IOS manager provides a few calls that allow you to to manipulate stream IDs or make copies
of stream connections. Table 4-2 lists the calls you can use.

Table 4-2. IOS Calls to Manipulate Streamm Connections

IOS Call Description

I0S _$EQUAL Determines whether two stream IDs refer to the
same object. (Useful to avoid using two streams
when one is sufficient.)

10S _$SWITCH Switches a stream connection from one stream ID to
another stream ID. The new stream ID refers to
the same connection as the old stream ID, making
the old stream ID invalid.

I0S _$DUP Creates a copy of a specified existing stream ID.
The new stream ID refers to the same connection as
the existing stream ID.

IOS _$REPLICATE Creates a copy of a specified existing stream ID.
The new stream ID refers to the same connection as
the existing stream ID.

Note that IOS_$DUP is identical to IOS__$REPLICATE except that IOS__$DUP looks for a
free stream number in ascending order from the specified stream ID, while IOS _ $REPLICATE
looks in descending order. IOS _$DUP is analogous to UNIX’s DUP function.

You use either IOS_$DUP or I0S__$REPLICATE to copy existing stream IDs -- both the
existing and new stream IDs remain valid connections. Typically, you copy a stream to keep the
connection open when passing it to a subroutine. By copying the stream before passing it, you
prevent the subroutine from closing your connection to the object. Even if the subroutine closes
its connection, you will still have a valid stream ID for an open stream.

You use I0S__$SWITCH to replace stream IDs; you switch the connection from the existing
stream ID to the new stream ID. :

4.3. Creating and Opening Objects

The IOS manager provides two calls to open objects:

I0S_$CREATE Creates an object if it does not exist, or opens an existing object.

I0S_$OPEN Opens an object only if it exists. The call returns an error if the object you
specify does not exist.

4-5 Performing [/O with I0S Calls

I0S _$CREATE allows you to create an object of any type defined by a user or DOMAIN (for
example, UASC, record, or MBX objects). An object’s type determines how IOS calls work for
that object. For example, IOS calls can support seek operations if you create a UASC object, but
not if you create an MBX object.

You can specify various actions to take if your program tries to create an object with a name

that already refers to an existing object. For example, you can create temporary or backup
~ versions of existing objects. You control how IOS_$CREATE opens existing objects by
specifying appropriate create modes.

When opening the object using either IOS__ $CREATE or I0S_$OPEN, you can control certain
aspects of the open stream connection. For example, you can specify how your program can
access the object and whether other programs can access the object at the same time. You
control how to open an object by specifying the appropriate open options.

The following sections describe the create and open calls in detail:

e Section 4.3.1 describes how to create an object of a particular type with
IOS _$CREATE.

e Section 4.3.2 describes how to use the create modes to control how I0S__ $CREATE
opens an object if it already exists.

e Section 4.3.6 describes the open options that you can specify with either
IOS_$CREATE and IOS _ $OPEN.

4.3.1. Specifying an Object’s Type

The IOS manager allows you to operate on many types of objects. As an application
programmer, you will see that most of the IOS calls work the same way regardless of the object
type you are using (unless the type manager does not support the IOS operation). This allows
you to design your program independent of any implementation details specific to a particular
object type.

To handle the specifics of each type, the IOS manager directs each IOS call to the appropriate
type manager for that type. The type manager actually performs the I/O operation according to
its implementation. For example, when your program uses IOS__$CREATE to create a UASC
object, the IOS manager directs the call to the UASC type manager. The UASC type manager
creates the UASC object by making subsequent MS calls. In contrast, if the program uses
I0S _$CREATE to create a mailbox object, the IOS manager directs the call to the MBX type
manager.

The IOS manager recognizes the object’s type by checking its type UID. A type UID is a
number that uniquely identifies a class of objects. You can specify the type of object that you
want to operate on when you create the object. You supply the object type, in UID _ $T format,
of a system object in the third parameter of the create call. Table 4-3 lists some of the object
types defined by DOMAIN with their predefined constants. Chapter 9 describes the types of
objects defined by DOMAIN in detail.

Note that the following is only a partial list of type UIDs because users, as well as DOMAIN, can
add a new object type whenever the need arises by writing a type manager. DOMAIN provides
the Open System Toolkit to help you define your own I/O operations. See the Using the Open
System Toolkit to Extend the Streams Facility manual for details. ‘

Performing I/O with IOS Calls 4-6

When using any IOS calls that require you to specify a type UID, you might need to include a
type UID insert file. The standard DOMAIN types are defined in the TYPE _UIDS.INS.xxx insert
file, where xxx stands for the language extension,. C, .FTN, or .PAS.

Currently, the only IOS call that requires you to specify a type UID is IOS_$CREATE. Even
then, you don’t have to specify the type UID insert file in programs that use I0S__ $CREATE
when you create an object of the default type. You specify the default type, which is currently
the UASC object type, by specifying the predefined value, UID_ $NIL. UID _ $NIL is declared in
the BASE insert file.

Most of the examples in this chapter manipulate this default type. See Chapter 9 for information
on using IOS calls to access other types of objects such as mailboxes, serial lines, and magnetic
tapes.

Table 4-3. Object Types

Type UID

Object

UASC_$UID
RECORDS _ $UID
HDR_UNDEF _ $UID

OBJECT _FILE_ $UID

SIO _$UID
MT _$UID
PAD _$UID

INPUT _PAD _$UID
MBX__ $UID
DIRECTORY _ $UID

NULL _ $UID

UASC object

Record-structured object

Nonrecord-structured object

Object module object (compiler or binder output)
Serial line descriptor object

Magnetic tape descriptor object

Saved Display Manager transcript pad

Display Manager input pad

Mailbox object

Directory

Null device

4.3.2. Controlling how IOS Creates Objects

You can specify various actions to take if your program tries to create an object with a name
that already refers to an existing object. For example, a user of your program might specify a
name of an object not knowing it already exists. Your program can either create a new version of
that object, open a stream to the existing object, or return an error indicating that the object
already exists.

You control how I0OS__$CREATE creates an object by specifying one or more of the create
modes in the fourth parameter of your call. Table 4-4 lists the modes, in
IOS_$CREATE_MODE _ T format, that control how I0S__$CREATE creates new objects if
the name specified refers to an object that already exists. If a name does not refer to an existing
object, IOS__$CREATE just creates a new object, ignoring any create modes. \

4-7 Performing I/O with I0S Calls

Table 4-4. Controlling IOS_ $CREATE when a Name Refers to an Existing Object

IOS _$NO_PRE_EXIST_MODE Returns the IOS_$ALREADY _EXISTS error
status code, if an object with the specified name
already exists.

I0S _$PRESERVE _MODE Preserves the contents of the object, if an object
with the specified name already exists. It then
opens the object and positions the stream marker to
the begining of the object (BOF) unless you set the
IOS _$POSITION _TO _EOF open option. Use
this mode to change or add data to an existing
object. (See Section 4.3.6 for details on open
options.)

I0S _$RECREATE _MODE Recreates the object if an object with the specified
name already exists. Essentially, this option deletes
the existing object and creates a new one. Use this
mode to create the object as if the name never
existed. The object created will have the default set
of attributes for that object type.

IOS _$TRUNCATE _MODE Opens the object and deletes the contents, if an
object with the specified name already exists. Use
this mode to create an object that has the same
attributes as the object with the specified name.

IOS _$MAKE _BACKUP _MODE Creates a temporary object with the same type and
attributes as the object specified in the pathname, if
an object with the specified name already exists.
Use this mode to create a backup object.

Section 4.3.3 describes how to create a backup version of an existing object in detail. Section
4.3.4 describes how to use an additional create mode, IOS_$LOC_NAME ONLY _MODE,
which determines how IOS__ $CREATE creates a temporary object.

4.3.3. Creating a Backup Object

To create a backup version of a specified object, use I0OS_$CREATE with the
JOS_$MAKE _BACKUP _MODE create mode. The new object is the same as the object
specified by "pathname" (if it exists) in that it has the same type and other attributes, and it is
created on the same volume (node).

I0S _$CREATE (with I0S__$MAKE__BACKUP_MODE) does not open or modify the object
specified by the pathname, but it examines the object to extract its attributes. Even though the
call doesn’t modify the object, it conceptually replaces the object, so this operation requires write
access to object.

Performing I/O with IOS Calls 4-8

When you close this stream with an IOS_$CLOSE, IOS _$CLOSE changes the object specified
by “pathname" to "pathname.bak." It changes the new (formerly the temporary, unnamed)
object to "pathname," and makes the object permanent. If a ".bak" version of the object
already exists, IOS_$CLOSE deletes it. (The caller must have either D or P rights to delete the
object.} If the ".bak" object is locked at the time IOS_$CLOSE is called, the object will be
deleted when it is unlocked.

If the object doesn’t exist, IOS__$CREATE creates the object specified by "pathname," and
IOS _$MAKE _BACKUP _ MODE has no effect.

4.3.4. Creating Temporary Objects

IOS _$CREATE allows you to create a temporary object two ways. To create a temporary
object on your boot volume, specify a null value for a pathname and a value of 0 in namelength.
To create a temporary object on another volume, specify the pathname of an existing object on
that volume and the IOS__$LOC_NAME_ONLY_MODE create mode. IOS__$CREATE
creates a temporary unnamed object on the same node as the object you specify in "pathname."

4.3.5. Examples of Opening and Creating Objects

Example 4-1 is a program segment that calls IOS__$CREATE to create a UASC object, or open
one if it already exists. The program calls I0OS_$CREATE with the
I0S _$PRESERVE _MODE create mode to save the contents of the object (if it exists) and the
IOS _$POSITION _TO _EOF _ OPT open option to position the stream marker at the end of
the object. This causes IOS_$PUT to append data to the end of the object. Since we use
I0S _$CREATE, the object is automatically open for write access. See Section 4.3.7 for more
information about controlling an object’s read and write access.

%include °/sys/ins/base.ins.pas’;
%include ’/sys/ins/ios.ins.pas’;
%include ’/sys/ins/error.ins.pas’;
VAR

status : status_$t;
count : integer;

{$CREATE variables}

pathname . name_$pname_t;
namelength : integer;
type_uid Douid_$t;
stream_id : ios_$id_t:

PROCEDURE check_status; { for error handling }

Example 4-1. Creating an Object

4-9 Performing I/O with 10S Calls

BEGIN {main}

{ Get the pathname. }

writeln;)
writeln ('Type the pathname of object to create or open: ’);
namelength := SIZEOF (pathname) ;

{ Convert pathname to internal format using VFMT_$READ. }
vimt_$read2 (%" "%eka%. ",

count,

status,

pathnanme,

namelength) ;

{ Create the object, or open an existing object for appending input. }
ios_$create (pathname,

namelength,

uid_$nil, { Default type UID (UASC) }
ios_$preserve_mode, { Open object if exists }
[ios_$position_to_eof opt], { Append data at end }
stream_id,

status) ;

check_status;

Example 4~1. Creating an Object (Concluded)

The program segment in Example 4-2 asks the user to specify an existing object. It then opens
the object using IOS__$OPEN with write access and sets the stream marker to EOF to append
data. If it opened the object for write access without specifying
I0S _$POSITION _TO_EOF _ OPT, the data would be overwritten. The next section
describes the IOS_$OPEN call in detail. See Section 4.3.7 for more information about
controlling a stream’s read and write access.

%include ’/sys/ins/base.ins.pas’;
%include ’/sys/ins/ios.ins.pas’;
%include ’'/sys/ins/pgm.ins.pas’;
%include ’/sys/ins/error.ins.pas’;

VAR
status @ status_$t;
count . integer;

{$0PEN variables}

pathname . name_$pname_t;
namelength : integer;

open_opt : ios_$open_options_t;
stream id : ios_$id_t;

BEGIN {main}

{Get the pathname. }
writeln (’Type the name of the existing object you want to open: °);

Example 4-2. Opening an Existing Object

Performing I/O with I0S Calls 4-10

{ Convert pathname to internal format using VFMT_$READ. }
namelength := sizeof (pathname)
vimt_$read2(%" "%eka%. .

count,

status,

pathname,

namelength) ;

{ Open the object.}
stream id := IOS_$OPEN (pathname,

namelength,

[ios_$write_opt, { Open with write access }
ios_$position_to_eof opt], { Append data at end }

status) ;

check_status;

Example 4-2. Opening an Existing Object (Concluded)

4.3.6. Controlling how IOS Opens Objects

You control how IOS opens stream connections to objects by specifying various open options in
your IOS_ $CREATE or IOS_$OPEN system call. For example, you can open an object
permitting write access to the stream by specifying IOS__$WRITE _ OPT. Most of these options
determine how your program can access an object, and how programs from other processes can
access an object. Section 4.3.7 describes these options in detail.

Table 4-5 lists the IOS _ $OPEN_ OPTIONS _ T option set that control how I0S_ $CREATE or
IOS _$OPEN opens streams to objects.

Table 4-5. Options That Control how to Open Streams

Specifying this open option: Causes the open call to:

I0OS_$NO_OPEN_DELAY_OPT Return immediately, instead of waiting for the call
to complete.

IOS _$WRITE _OPT Permit writing data to a new object. If a program
tries to write on a stream for which you have not
specified this option, it returns an error status. Note
that when creating an object, this value is
automatically set because the IOS manager assumes
that when you create an object, you will want to
write to it. Therefore, you do not need to specify
this option on an IOS_$CREATE call.

IOS _$UNREGULATED _OPT Permit unregulated (shared) concurrency mode. See
Section 4.3.7 for details.

IOS_$POSITION _TO _EOF _ OPT Position the stream marker at the end of the object
(EOF). Use this to append data at the end of an
object.

4-11 Performing I/O with IOS Calls

Table 4-5. Options That Control how to Open Streams

Specifying this open option: Causes the open call to:

IOS _$INQUIRE _ONLY_ OPT Open the object for attribute inquiries only; do not
permit reading or writing of data.

IOS_$READ _INTEND _WRITE _OPT | Open the object for read access, with the intent
that it can later be changed to write access. This
allows other processes to read the object; but they
cannot have write or read-intend-write access. See
section 4.3.7 for details.

4.3.7. Controlling a Stream’s Access and Concurrency

When you open a stream to an object, you determine how your program can use that object by
specifying the stream’s access type. At the same time, you determine how other processes can

use the object by specifying the stream’s concurrency mode. (You control a stream’s access

type and concurrency mode by specifying the appropriate open options in
[0S _$OPEN_ OPTIONS __T format.)

A stream’s access type can be either read, write, or read-intend-write (RIW). Read and write
access mean, respectively, that you allow your program to read from the object and write to the
object. RIW access means that you currently allow your program to read from the object stream,
and that you intend to change your program’s access to write access in the future.

A stream’s concurrency mode can be either regulated (protected) or unregulated (shared).
Regulated concurrency mode means that you do not allow other programs read or write access to
the object at the same time. Unregulated concurrency mode means that other programs can
access the object at any time.

Together, the access type and concurrency mode allow you to determine how the object can be
used. For example, if you open a stream to an object with write access and regulated
concurrency mode (by specifying the IOS__$WRITE __ OPT open option) only your program can
access the object. Other processes that try to open a stream to the object will get the error,
"Requested object is in use." However, if you open a stream to an object with write access, and
unregulated concurrency mode, another process will be able to open a stream to the object, and
can have any kind of access.

By specifying different combinations of access types and concurrency modes, you have a variety
of ways to control how an object is used. Some DOMAIN managers refer to the combination of

access type and concurrency mode as a lock. Also, some managers refer to the concurrency mode
as being either protected or shared. That is, the object is either protected from other

processes, or it is shared by other processes. The terms are analogous to the IOS manager’s
regulated and unregulated concurrency mode.

How you specify the type of access and concurrency mode when opening an object depends on
how you expect to use the object. The following are some guidelines for determining access type
and concurrency mode. Table 4-6 tells you which open options you can specify to get these
combinations. Use read access and regulated concurrency mode when you expect several
programs to read the object, but no program will write to the object.

Performing 1I/O with I0S Calls 4-12

Use read-intend-write (RIW) access and regulated concurrency mode when you want to read
an object, and expect that you will write to it later. By doing this, you do not block other
processes from reading the object, but they cannot write to the object. You can change the access
to write when no other programs are reading it.

The Display Manager uses regulated RIW when it allows a user to edit an object. It opens the
object for RIW, which allows the user to make edits to the object. At this time, other programs
can read the object in its pre-modified form. When the user types CTRL/Y to close the object,
the Display Manager changes the stream to write access and writes the changes to the disk.

Use read access and unregulated concurrency mode when you want to read an object, but also
allow other programs on your node to write to the object (by getting shared write locks). You
must synchronize the programs to handle reading and writing to the same object.

Use write access and regulated concurrency mode when you want to write to an object, and you
want to deny any programs access to the object while you are writing.

Use write access and unregulated concurrency mode when you want to allow many programs to
read from and write to an object. Note that you must synchronize the programs to handle
concurrent reading and writing to the same object. (For details on synchronization techniques,
see the Programming with System Calls for Interprocess Communication manual.)

Only programs on the same node can have unregulated write access to the same object, because
they share the same physical memory for the object. When programs on different nodes share the
same object, each node stores the object in its own memory. For this reason, programs on
different nodes can have only unregulated read access, not unregulated write access.

Table 4-6 shows the predefined values that you can specify to get the type of control you want.
These values are in I0S_$OPEN_ OPTIONS _ T format. The first column lists the combination
(or lock) that you want. The second column lists the option (or options) you would specify on the
open call to get the corresponding access type and concurrency mode. Note that the IOS manager
assumes that most programs open objects using read access and protected concurrency mode. So,
you don’t need to specify these values in the open call.

Table 4-8. I0OS Options for Specifying Access Types and Concurrency Modes

Combination I0S Options to Specify

Regulated Read The empty set, ||

(Protected Read)

Regulated RIW (I0S_$READ INTEND WRITE _OPT]
(Protected RIW)

Regulated Write [IOS_$WRITE _ OPT]

(Exclusive Write)

Unregulated Read [IOS _$UNREGULATED _ OPT]

(Shared Read)

Unregulated Write [I0S_$WRITE _ OPT, I0S_ $UNREGULATED _ OPT]
(Shared Write)

4-13 Performing I/O with IOS Calls

Just as you set the concurrency mode to control how other processes can access the object you
open, other processes will try to control how your program accesses the objects that it opens. If
another process has already opened a stream to an object, and you try to open the same object
with an incompatible access type and concurrency mode, then your open call will fail with the

error, IOS__ $CONCURRENCY _ VIOLATION.

Refer to the following rules to determine whether the object you plan to open has compatible
access types and concurrency modes with an existing open stream to the object.

If another process has opened the object for:

e Read access, regardless of the concurrency mode, you can open another stream for
read or read-intend-write (I0S__$READ _ INTEND _ WRITE _ OPT) access.

e Write access (IOS_$WRITE_OPT), and regulated (protected) concurrency, you
cannot open another stream to the object.

e Write access (IOS_$WRITE _OPT), and unregulated (IOS_$UNREGULATED)
concurrency, you can open another stream to the object for unregulated concurrency,
regardless of the access type.

e Unregulated (IOS_ $UNREGULATED) concurrency, regardless of the access, you can
open another stream for unregulated concurrency -- as long as you open the object on
the same node.

Table 4-7 summarizes the various access type and concurrency mode combinations that you can
have.

Table 4-7. Access/Concurrency Combinations for Shared Streams

If another process opened | You can open a stream to that
a stream with: same object with:
Combination Access Type Concurrency Mode
Regulated Read Read or RIW Either mode
Regulated RIW Read Either mode
Unregulated Read Read or RIW Either mode
or Write Shared only
Unregulated RIW Read Either mode
or RIW or Write Shared only
Regulated Write Cannot open another stream.
Unregulated Write Read, RIW, or Write | Shared only

Performing I/O with IOS Calls 4-14

4.3.8. Example of Controlling an Object’s Access and Concurrency

Example 4-3 is a sample Pascal program that shows how to make sure that an object has
compatible access and concurrency modes. Since the above rules state that only one object can be
open with write access, the program must anticipate that its open call can fail if another process
has an open stream to the object. Therefore, it tests for this error.

{ Open the object with write access. }
done := FALSE;
WHILE (done = FALSE) DO
BEGIN

stream_id = ios $open (pathname,
namelength,
[ios_$write,
ios_$position_to_eof opt], { Append data }
status) ;

IF status.all = status_$ok THEN
done := TRUE
ELSE IF (status.all = ios_$concurrency_violation) THEN
BEGIN
writeln;
writeln (* Can’’'t get object for write access.’);
writeln (* Type YES if you want to try again. *);
writeln (* Type NO to terminate program. ’);
readln (ans);
IF (ans = °NO’) OR (ans = ’'no’) THEN

BEGIN
done := TRUE,
writeln;
writeln (* Terminating program. ’);
pgm_$exit; ’
END;
END
ELSE IF (status.all <> status_$ok) THEN
BEGIN
error_$print(status);
pgm_%$exit;
END;

END; { while not done }

Example 4-3. Checking for Compatible Access Type and Concurrency Modes

4-15 Performing I/O with IOS Calls

4.4. Reading and Changing Object Attributes

When you create or open an object, the object has an associated set of attributes. These
attributes fall into three categories: object, connection, and manager.

Object attributes describe an object’s characteristics. For example, an object can contain
ASCI data, or use FORTRAN carriage control characters. Table 4-8 lists the attributes
associated with an object. Table 4-9 listes the FORTRAN carriage control characters.

Table 4-8. Object Attributes

Attribute The object:

I0S_$OF _DELETE_ ON_ CLOSE Will be deleted when all its associated streams close.

I0S_$OF _SPARSE_ OK Can be written as a sparse object.

IOS _$OF _ASCII Contains ASCII data.

I0S_$OF _FTNCC Uses FORTRAN carriage control characters.*

I0S _$OF _ COND Has get or put calls performed conditionally, as if
' the IOS_$COND _ OPT was specified on a get or

put call.

* In the FORTRAN carriage control format, the first character of each record is a carriage
control character. The characters listed in Table 4-9 are recognized as FORTRAN carriage
control characters; all others are ignored. Each line must end with a NEWLINE character.

Table 4-9. FORTRAN Carriage Control Characters

Character Effect
space Go to beginning of next line.
0 Skip one line.
1 Skip to beginning of next page.
+ Overprint: go to beginning of current line.

Performing I/O with IOS Calls 4-16

Connection attributes describe the characteristics of a specific stream connection. For
example, a stream can behave like a Display Manager pad, or it can be written. Stream
connection attributes affect the behavior of a single stream only, so two streams open to the same
object can have different connection attributes. Table 4-10 lists the attributes associated with a
stream connection.

Table 4-10. Stream Connection Attributes

Attribute The connection:

I0S _$CF_TTY Behaves like a terminal.

I0S _$CF _IPC Behaves like an interprocess communication (IPC)
channel.

I0S_$CF_ VT Behaves like a DOMAIN Display Manager pad.

I0S_$CF _ WRITE Can be written.

I0S_$CF _ APPEND Positions its stream marker to the end of the object
(EOF') before each put call.

I0S__$CF_ UNREGULATED Is open for unregulated (shared) concurrency mode.

I0S_$CF _READ _INTEND _WRITE Is open for read access, and can later change to
write access.

Manager attributes describe the operations that a type manager will allow to be performed on
that type of object. For example a type manager might allow programs to create objects of this
type or use different record formats. Table 4-11 lists the attributes associated with a type
manager.

Even if the type manager permits an operation, a specific object of that type might not be able to
perform the operation. Consider, for example, the write operation that allows writing to sparse
objects. (A sparse object is an object that can contains gaps created when a program seeks past
EOF and then writes to the object.) Both the type manager’s and the object’s attribute set must
contain the appropriate attribute to permit writing to sparse objects before the operation can
actually be allowed.

You set some of the object attributes when you create an object. You set connection attributes
by specifying certain open options in the create or open call. For example, if you open an object
specifying the I0S $WRITE _OPT, the object’s stream connection set will contain the
I0S _$CF _ WRITE attribute.

You can add attributes to either the object or stream connection set after opening the object with
the IOS_$SET_ CONN__FLAG or IOS__ $SET_ OBJ_FLAG calls. Section 4.4.1 describes how
to use these calls. Section 4.4.2 is a program segment using the IOS_$INQ... and IOS _ $SET...
calls.

4-17 Performing I/O with I0S Calls

Table 4-11. Type Manager Attributes

Attribute The type manager can:

I0S_$MF _ CREATE Create other objects.

I0S _$MF _ CREATE _ BAK Create backup (.bak) objects.

10S _$MF _IMEX Export streams to new processes.

I0S_s$MF _FORK Pass streams to forked processes.

IOS_$MF _FORCE_ WRITE Force-write object contents to disk.

10S _$MF _ WRITE Perform write operations.

I0S_$MF _ SEEK _ ABS Perform absolute seeks.

I0S_$MF _ SEEK _SHORT Perform seeks using short (4-byte) seek keys.
I0S_$MF _ SEEK _FULL Perform seeks using full (8-byte) seek keys.
IOS_$MF__SEEK _BYTE Perform seeks to byte positions.

I0S_$MF _SEEK _REC Perform seeks to record positions.

I0S _$MF _ SEEK _BOF Perform seeks to the beginning of the object.
I0S_$MF _REC_TYPE Support various record type formats.
I0S_$MF_TRUNCATE Truncate object.

I0S_$MF _ UNREGULATED Have unregulated (shared) concurrency mode.
10S _$MF _ SPARSE Support sparse objects.

I0S_$MF _READ _INTEND _WRITE Have RIW access.

4.4.1. Inquiring about and Changing Object Attributes

You can use the following IOS calls to determine an object’s current object, connection and
manager attribute sets: I0S _$INQ_OBJ_FLAGS, IOS_$INQ__CONN_FLAGS, and
I0S _$INQ_MGR _ FLAGS.

Typically, you would use these calls directly after opening an object to determine what types of
operations can be performed on that object. If the object, connection, or manager set has the
attribute, the set contains the value.

You initially set object or connection attributes when you create or open an object. A type
manager sets the attributes for the manager set when it implements the type operations. You can
change the initial object or connection attribute set by using the IOS__$SET_OBJ_FLAG or
1I0S _$SET_ CONN __FLAG, respectively.

Performing I/O with IOS Calls 4-18

Note that the attribute set does not list the read access or regulated concurrency as values in the
set. Rather, all stream connections have these two qualities, so the IOS manager does not consider
them as attributes that you can add or subtract from a set.

Add attributes to the object or connection attribute set with the IOS__$SET _OBJ_FLAG or
IOS_$SET_ CONN__FLAG, respectively. Specify the desired attribute in the second parameter
of either call, and a value of TRUE in third parameter. To remove attributes from either set,
specify the attribute and a value of FALSE. Note that you must make a separate call to add or
remove each attribute from its respective set.

After changing the attribute set, you can perform another IOS__$INQ to see the full attribute
set. Note that you might have what appears to be conflicting values in the set. For example, if
you open the object with RIW access, and then change the access to write, the attribute set will
contain both RIW and write attributes (unless you explicitly removed RIW from the set).

If the object connection set contains both the RIW and write access attributes, the stream
connection has write access.

This is useful when you want the object to be available for read access most of the time, and you
plan to write to the object for only short intervals. You can open the object for RIW access, and
then change it to write access by setting I0OS_$CF _WRITE to TRUE when writing to the
object. You can change the access back to RIW by simply setting IOS_ $CF _ WRITE to FALSE.
Since the RIW attribute is still in the set, the object has RIW access.

4.4.2. Example of Inquiring about and Changing Attributes

The program in Example 4-4 uses the IOS__$INQ calls to get the object and manager set of
attributes for an object. This program uses the DOMAIN Pascal functions FIRSTOF and
LASTOF (which are extensions to ISO/ANSI Standard Pascal) to get the first and last possible
value in each set of object attributes.

PROGRAM ios_ing_attributes;

%include ’'/sys/ins/base.ins.pas’;
%include ’/sys/ins/ios.ins.pas’;
%include ’/sys/ins/type_uids.ins.pas’;
%include ’/sys/ins/error.ins.pas’;
%include °/sys/ins/vimt.ins.pas’;
%include '/sys/ins/pgm.ins.pas’;

VAR
status : status_$t.

count : integer;
ans . string.

Example 4-4. Inquiring About an Object

4-19 Performing I/O with IOS Calls

{$CREATE variables}

pathname . name_$pname_t;
namelength : integer;

type_uid ©ouid_$t;

create_mode : ios_$create_mode t;
open_opt . ios_$open_options_t;
stream_id : ios_$id_t.

{INQ_FLAGS variables}
conn_flags : ios_$conn_flag set;
obj_flags : ios_$obj_flag set;

mgr_flags : ios_$mgr_flag set;
c_flg . ios_$conn_flag_t.
o_flg : ios_$obj_flag t;
m flg . los_$mgr_flag t.

PROCEDURE check_status; { for error handling }
BEGIN {main}

{ Ask user for pathname and convert it to internal format using VFMT.

{ Create the object. }
ios_$create (pathname,

namelength,

uasc_$uid, { Unstructured ASCII Type UID }
ios_$no_pre_exist_mode, { Return error if exists }
[ios_$write_opt, { Permit write access }
ios_$unregulated_opt]. { Permit concurrent users }

stream id,

status) ;

check status;
{ Get object attributes with IOS_$INQ OBJ FLAG. }

obj_flags = ios_$inqg_obj flags (stream id,

status) ;
check status;
writeln;
writeln (’Object Attributes of Created Object:’);
writeln;

{ Write each attribute in the set. }
FOR o_flg := firstof(ios_$obj_flag t) TO
LASTOF(ios_$obj flag t) DO
IF o_flg IN obj_flags THEN
writeln(* ', o_flg);

Example 4-4. Inquiring About an Object (Cont.)

Performing I/O with IOS Calls 4-20

{ Get manager attributes with IOS_$INQ MGR _FLAG. }
mgr_flags := ios_$inq_mgr_flags (stream id,

status) ;
check_status;

writeln;
writeln (’Manager Attributes of Created Object:’);

{ Write each attribute in the set. }
FOR m_flg := FIRSTOF(ios_$mgr flag t) TO
LASTOF(ios_$mgr_flag_t) DO
IF m _flg IN mgr flags THEN

writeln(°* ', m_flg);
{ Get connection attributes with IOS_$INQ CONN_FLAG.
conn_flags := ios_$inq_conn_flags (stream_id,
status) ;

check_status;

END. {ios_inq_set_attributes }

Example 4-4. Inquii-ing About an Object (Concluded)

4.4.3. Example of Changing Attributes

Example 4-5 is a sample Pascal program that changes an object attribute set from RIW to write
access. The program opens an object with RIW access so that other programs can read the object

until it needs to write to the object.

Since the program cannot change the access to write until no other processes have the object
open, the program keeps trying until it can. The program uses IOS_$SET__ CONN _FLAG to
add write access to the object’s attribute set. Note that the set still contains RIW access, because
the program did not explicitly remove this attribute. This way, the program allows other
processes to read the object by simply removing the write access attribute from the set as soon as

it finishes writing to the object.

PROGRAM ios_riw_to_write;

%include °’/sys/ins/base.ins.pas’;
%include ’/sys/ins/ios.ins.pas’;
%include ’'/sys/ins/error.ins.pas’;
%include ’/sys/ins/vimt.ins.pas’;
%include °'/sys/ins/pgm.ins.pas’;
%include ’/sys/ins/time.ins.pas’;
%include '/sys/ins/cal.ins.pas’;

Example 4-5. Changing an Object from RIW to Write Access

4-21

Performing I/O with IOS Calls

VAR

status : status_$t;
count : integer;

ans : string;
rel_time : time_$clock t:
done . boolean;

{$0PEN variables}

pathname . name_$pname_t;
namelength : integer;

open_opt . ios_$open options_t;
stream_id : ios_$id_t;

{INQ_FLAGS variables}
conn_flags : ios_$conn_flag set;
c_flg . ios_$conn flag t;

{ OPEN variables }
msg . string := ’Writing to the object. *;

BEGIN {main}
{ Ask user for filename convert it to internal format using VFMT. }
{ Open the object with RIW access. }

stream_id := ios_$open (pathname,
namelength,
[ios_$read_intend write_opt,
ios_$position_to_eof_opt], { Append data }
status) ;
check_status;

{ Add write access to the object’s connection attribute set so it
can write to the object. If it cannot change the object’s access,
it keeps trying until it does, or until user types NO.

Try locking object, if it can’t, send messsage to user. }

» Example 4-5. Changing an Object from RIW to Write Access (Cont.)

Performing I/O with IOS Calls 4-22

done := FALSE;
WHILE (done = FALSE) DO
BEGIN
ios_$set_conn_flag (stream id,
ios_$cf_write,
TRUE, { Add write access to set }
status) ;

IF status.all = status_$ok THEN
done := TRUE

ELSE BEGIN
writeln;
writeln (° Cant lock object for writing.®);
writeln (* Type YES if you want to try again. *);
writeln (° Type NO to terminate program. *);
readln (ans);
IF (ans = °NO’) DR (ans = ’'no’) THEN

BEGIN
done := TRUE:
writeln;
writeln (' Terminating program. *);
pgm_$exit;
END;

END ;
END; { while not done }

{ Write message to the object. }

ios_$put (stream id, { Stream ID }
[ios_$cond_opt], { Default put options }
msg, { Buffer to hold message }
SIZEOF (msg) . { Length of message }
status) ;

check_status;
{ Write message to user. }

IF status.all = status_$ok THEN
writeln (’Wrote message to object.’):

{ Remove write access from set, so other processes can open the
object for read access again. }

ios_$set_conn flag (stream id,
ios_$cf_write,
FALSE, { Remove write access }
status) ;

check _status;
END. { ios_riw_to_write }

Example 4-5. Changing an Object from RIW to Write Access (Concluded)

4-23 Performing I/O with I0S Calls

4.4.4. Getting Additional Information about Objects and Directories

The IOS manager provides a few calls to get additional information about an object. Table 4-12
lists these calls.

Table 4-12. Getting Additional Information about an Object

IOS Call Description

I0S_3$INQ_FILE_ATTR Returns an object’s usage attributes: date and time
created, date and time last used, date and time last
modified, and number of blocks in the object.

IOS_$INQ_PATH_NAME Returns the pathname of an object open on a
specified stream. The pathname can be in any one
of the following formats: absolute pathname from
the root (//) directory; name relative to the root,
working, naming or "node__data" directory; or the
or residual name if stream was opened using
extended naming.

I0S__$INQ_TYPE_ UID Returns the type UID of an object.

The IOS manager also provides a call to determine or set your current working or naming
directory. IOS_$GET_DIR returns the current working or naming directory.
IOS_$SET _DIR changes the current working or naming directory to the pathname you specify
in the first parameter of the call.

4.5. Closing and Deleting Objects

Although the system automatically closes the streams your program opens when the program
terminates, it is good practice to close the streams explicitly with IOS__ $CLOSE. This way you
can also report any errors that occur during the close operation.

To close a stream to an object, call [OS__$CLOSE and specify the stream ID of the open stream.
Your program can close only those streams that it has opened at the current or lower program
levels (that is, streams opened by programs that the calling program invoked). IOS_ $CLOSE
returns an error if you try to close a stream in the current program that was opened by its
invoker.

You can make a permanent copy of the object without closing the stream by calling
I0S_$FORCE _WRITE _FILE. Use this call to ensure that the object is stored safely in the
event of a system crash. Safe storage depends on the object type. For most object types, safe
storage is the disk. Safe storage for a magnetic tape descriptor object is the tape.

If you have completed processing an object and have no further need for it, you should delete it.
To delete an object, call IOS__$DELETE, specifying the stream ID of the open object. If more
than one stream is open to the object, I0OS__$DELETE marks the object for deletion, but the
object still exists until all streams to the object are closed.

Performing I/O with IOS Calls 4-24

The IOS_S$DELETE call actually sets the delete-on-close object attribute
(IOS_$OF _DELETE _ON_CLOSE) to TRUE, then closes the stream. So, if the type
manager does not allow the object to have the delete-on-close attribute, the delete call fails. In
this case, the call closes the stream but does not delete the object.

You can also use IOS_ $TRUNCATE to delete the contents of an object following the current
stream marker.

4.6. Writing to Objects

Use the IOS_$PUT call to write data to any kind of object. Specify the stream ID of the open
stream you want to write the data to, a buffer containing the data, and the size of the buffer.
You can also specify various put options, in IOS__$PUT_GET_ OPTS_ T format, depending
on the type of object you are writing to.

Table 4-13 lists the put options in IOS_ $PUT _ GET _ OPTS _ T format that you can specify in
an IOS _$PUT call.

Table 4-13. Options to Control an I0S_$PUT call

Put Option Description

IOS_$COND _ OPT Writes data only if it can be done without waiting.
If the put call must wait, it returns the
I0S_$PUT _ CONDITIONAL _ FAILED error
status. A call would have to wait if the receiver
was full, for example, a mailbox couldn’t hold any
more messages.

I0S_$PREVIEW _ OPT Writes data but does not update the stream
marker.
JIOS _$PARTIAL _RECORD _ OPT Writes a portion of a record but does not terminate

it. IOS_$PUT terminates the record when you
call IOS _$PUT without specifying this option. If
you do not specify this option, IOS__$PUT writes a
full record. You can use this option with record-
oriented objects only. Type managers that do not
support records ignore this option. For information
on record-oriented objects, see Section 4.10.

4.6.1. Example of Writing to Objects

The program in Example 4-6 shows how to write data using IOS_$PUT. The program writes to
a UASC object type, line by line. To store and retrive data by lines, the program explicitly
embeds NEWLINE characters at the end of each line of input. To embed a NEWLINE character
in a UASC object, use the CHR Pascal function to assign the ASCII NEWLINE character value
(which is 10) to a byte at the end of the line buffer array. (You can also use the
PAD _ $NEWLINE constant instead of CHR.)

4-25 Performing I/O with IOS Calls

This program asks the user to type data into a UASC object line by line. It then performs the
following:

e Defines an input buffer, "line," as a character array. This buffer holds the data that
you want to write.

e Calls IOS _ $CREATE to create a new, or open an existing UASC object.
e Loads the buffer, using input from the user.

e Calculates the length of the line.

e Terminates the line with a NEWLINE character.

e Writes the line, using I0OS_ $PUT.

PROGRAM ios_put_uasc_newline;

%include ’/sys/ins/base.ins.pas’;
%include ’/sys/ins/ios.ins.pas’;
%include ’'/sys/ins/error.ins.pas’;
%include ’/sys/ins/vfmt.ins.pas’;
%include '/sys/ins/pgm.ins.pas’;

VAR
status : status_$t;
count : integer;

{ $CREATE variables }

pathname . name_$pname_t;
namelength : integer;
stream id : ios_$id ¢

{ $PUT variables }

line . string;

linelen : integer;
BEGIN { main }

{ Get the pathname and convert it to internal format using VFMT. }

{ Create the object, or open an existing object for appending input. }
ios_$create (pathname,

namelength,

uid_$nil, { UASC type UID }
ios_$preserve_mode, { Open object if exists }
[ios_$position_to_eof_opt], { Append data }
stream_id,

status) ;

check_status;

Example 4-6. Writing to a UASC Object Line by Line

Performing I/O with IOS Calls 4-26

{ Get a line of input from keyboard. }
writeln (’'Type in a line or CTRL/Z to stop:’);
WHILE NOT eof DO
BEGIN
{ Load keyboard input into buffer. }
readln(line) ;
linelen := SIZEOF(line)

WHILE (line[linelen] = *> *) AND (linelen > 0) DO
linelen := linelen - 1;

{ Terminate line with NEWLINE character. }
linelen := linelen + 1;
line[linelen] := CHR(10):

{ Write the line to a object. }
ios_$put (stream id, { Stream ID }

{1. { Default put options }

line, { Buffer to hold input line }
linelen, { Length of line }

status) ;

check_status;

writeln (’Type in another line or CTRL/Z to stop:’);
END;{ while not EOF }
END. { ios_put_uasc_newline }

Example 4-68. Writing to a UASC Object Line by Line (Concluded)

4.7. Reading Objects

The IOS manager supplies the following two calls for reading data from objects:

IOS _$LOCATE Reads data from a stream and returns a pointer to the data.
I0S_$GET Reads data from a stream and copies the data into a buffer.
Regardless of whether you use IOS_$LOCATE or I0S_$GET, we refer to this as the get call.

In most cases, use IOS_$LOCATE to read data because it is faster, since it does not perform a
copy operation while reading. One drawback to using IOS _$LOCATE is that the pointer that
J0S_$LOCATE returns is valid only until the next IOS call. If you cannot tolerate this
drawback, use IOS_$GET. For example, you would use IOS_$GET when you need to read
more data than can be obtained in one call -- like when you need to read and rearrange a number
of lines from an object.

Normally, I0S__$LOCATE locates data and returns a pointer to the data. However, not all
managers support the internal buffering necessary for I0S__$LOCATE to work this way. In
these cases, IOS_$LOCATE will not be able to return a pointer to the data. Instead,
I0S _$LOCATE actually creates a buffer and then calls IOS__ $GET to perform the get call. If
this occurs, IOS _$LOCATE is no more efficient than 10S_$GET. The size of the buffer that
I0S _$LOCATE creates is either the length you specify in "data-size," or 1024 bytes, whichever
is the smaller. You can use the IOS_$SET _LOCATE _BUFFER _SIZE call to specify a buffer
larger than 1024 bytes, if necessary.

427 Performing I/O with I0S Calls

You can control how the IOS get call reads data by specifying any of the get options listed in
Table 4-14.

Table 4-14. Options to Control an I0OS Get Call

Get Option Description

I0S_$COND _ OPT Reads data; if available. Use this option to read
data from places where it might not be available
immediately, for example, SIO lines, mailboxes, and
input pads. I0S_$GET returns the
IOS _$GET _ CONDITIONAL _FAILED status
code if data is not available, and sets the return
value of "ret-length" to 0.

IOS_$PREVIEW _ OPT Reads data but does not update the stream marker.

I0S_$NO_REC__BNDRY_ OPT Ignores record boundaries while reading data. For
example, it ignores NEWLINE characters in a
UASC object, which guarantees that the call fills
the specified buffer.

When an IOS get call returns either a pointer to the data (IOS_$LOCATE) or a buffer
containing the data (IOS__$GET), it also returns the amount of data read, in the return value,
"return-length." You can specify how much data to read with the input parameter, "buffer-
size.” If the get call reads the data successfully, the "return-length" equals the amount of data
read. If the get call does not return any data, "return-length" equals the value, 0.

If you did not specify a large enough buffer for the returning data, the get call:

e Reads enough data to fill the requested size
o Sets "ret-length" equal to "buffer-size"
e Positions the stream marker to the first unread byte

e Returns the IOS_$BUFFER _ SIZE _TOO _ SMALL status code to indicate that this
condition has occurred

You can inquire about how many bytes remain to be read in the current record by calling
I0S_3$INQ__REC _ REMAINDER.

There are two methods for accessing data from objects: sequential access and random access. In

sequential access, multiple get calls read an object from beginning to end of the object. That is,
a program using sequential access reads the first line, then the second, and so on.

In random access, the get call reads objects from a object in random fashion. For example, a
program using random access might read byte position 12, then byte position 7, and so on.

The following sections describe how to get data from an object using both methods.

Performing I/O with I0S Calls 4-28

4.8. Reading Objects Sequentially

Sequential access occurs when the get call reads an object from the beginning to the end. Each
get call reads a specified amount of data at a time, for example, one line, or one record or 4
bytes. You specify the amount of data you want to read in the fourth parameter of the get call.
Since the get call returns a fixed amount of data per call, you can simply use it within a loop to
read more data. In most cases, the loop reads data until it reads the end of object (EOF) marker.

The program in Example 4-7 asks the user to specify an existing UASC object, and then reads the
object sequentially. The program does the following:

e Declares a constant to indicate how much data you want to read. If this is smaller
than the amount of data to read, the get <call returns the

I0S _$BUFFER _ TOO _ SMALL error.
e Declares a pointer to the string that contains the data to be read.

o Opens the existing object that the user specified with IOS_ $OPEN.

e Enters a loop that:

1. Reads a line from the object using IOS__ $LOCATE.

2. Tests for the IOS_$END _OF _FILE, and other get call errors.

3. Writes the line to standard output by specifying values returned by
IOS _$LOCATE: the amount of data read, and the pointer that points to

the data. Note that it must dereference the pointer variable.

e Exits the loop when the get call reads an EOF.

PROGRAM ios_locate;

%include ’/sys/ins/base.ins.pas’;
%include ’/sys/ins/ios.ins.pas’;
%include ’'/sys/ins/type_uids.ins.pas’;
%include ’/sys/ims/error.ins.pas’;
%include ’/sys/ins/vimt.ins.pas’;
%include ’/sys/ins/pgm.ins.pas’;

CONST

data_size = 1024 { Amount of data to read }
VAR

status : status_$t;

count . integer;

pathname : name_$pname_t;

namelength : integer;

open_opt : ios_$open_options_t.

stream_id : ios_$id_t;

Example 4-7. Reading Sequentially From an Object

4-29 Performing I/O with IOS Calls

{ $GET variables }

ret_length : integer32; { Amount of data read }
line . string; { String containing line read }
data_ptr . "string; { Pointer to returned data }

BEGIN { main }

{ Get the pathname and convert it to internal format using VFMT. }

{ Open the object. }

stream id := ios_$open (pathname,
namelength,
[ios_$read_intend write opt], { RIW access }
status) ;

check status;

WHILE (status.all = status_$ok) DO
BEGIN

{ Read data until an EOF is encountered. Set the IOS_$COND_OPT
option, in case data is not available immediately. }
ret_length := ios_$locate (stream_id,
[ios_$cond_opt],
data_ptr,
data_size,
status) ;

{ Test for read errors. }
IF status.all = ios_$end_of_file THEN
writeln (’ End of file reached. °*);
IF status.all = ios_$buffer_too_small THEN
vimt_$write2 ('%d byte buffer too small on stream %wd%. ',
data_size, stream_id)
ELSE IF (status.all = ios_$get_conditional failed) THEN
writeln (° No data available.’)
ELSE IF (status.all <> status_$ok) THEN
check_status:

{ Write data to standard output by dereferencing
-the pointer that points to the line read. }

ios_$put (ios_$stdout,
(1.
data_ptr~, <{ Dereference pointer }
ret_length, { Amount returned by IOS $LOCATE }
status) ;
check_status;
END; { While not EOF }

{ Close the stream of the open object before terminating. }
ios_$close (stream id, '
status);
END. { ios_locate }

Example 4-7. Reading Sequentially From an Object (Concluded)

Performing I/O with IOS Calls 4-30

4.9. Performing Random Access

Random access is the method by which an object is read (and processed) nonsequentially. For
example, a get call can read starting at byte position 12, then byte postion 7, then byte position
41.

To access an object randomly, you perform one of the IOS__$SEEK calls to reposition the stream
marker to a specified location. Then, you perform a get call.

The IOS manager provides two kinds of seek operations: nonkeyed and keyed. In a nonkeyed
seek a program moves the stream marker to:

e The beginning or end of the object
» A specified byte position
e A specified record position

In a keyed seek, a program stores and retrieves information by identifying positions on a seek
key.

Whether you perform a nonkeyed or keyed seek depends on how the object’s data is represented.
For example, programs that need perform "arithmetic" on the data (such as comparing two
positions) will use nonkeyed seek operations. Programs that require only the ability to move from
one position to another in an object will use keyed seek operations.

The following sections describe the two types of seeks.

4.9.1. Nonkeyed Seeking

You can perform a nonkeyed seek on an object by specifying the beginning or end of the object,
or any offset from the beginning of the object.

To move the stream marker to the beginning of the object, call IOS__$SEEK _TO _BOF. To
move the stream marker to the end of the object, call IOS_$SEEK _ TO _EOF.

To obtain the offset of the stream marker, use IOS_$INQ_BYTE_POS or
I0S_$INQ_REC_ POS. (Use the latter if your object is record-oriented.) These calls return
the current position of the stream marker from the beginning of the object. The calls can also
return the position of the stream marker at the beginning of the object (which is always 0}, or the
end of the object (which indicates the length of the object in bytes or records).

Once you have the returned offset, you can move the stream marker to the desired location by
calling I0S_$SEEK. You can continue to move the stream marker to offsets from the

beginning, or end of the object -- this is called absolute seeking. Or you can move the stream
marker to offsets from the current position -- this is called relative seeking.

4-31 Performing I/O with I0S Calls

4.9.2. Keyed Seeking

Keyed seeking is based on positioning information that the IOS manager provides with a seek
key. You get a seek key by wusing either IOS_$INQ_FULL_KEY or
IOS_$INQ_SHORT _KEY. These calls return a value that represents the position of the
stream marker at the time of a call. By storing this returned seek key, you can return to the
position at a later time.

Whether you get a full seek key or short seek key depends on your application program. A full
seek key is 8-bytes long and represents an exact stream position. A short seek key is 4 bytes long
and represents a stream position up to a record boundary. Since short seek keys require half the
storage space as full seek keys, you might want to use short seek keys if your application program
stores a large number of seek keys. However, short seek keys are limiting in that you can only
indicate record boundary positions, while full seek keys allow you to indicate any position.

Use seek keys merely as an index -- do not depend on their contents. The contents of a seek key

remains private to the IOS manager, which guarantees only that the seek key returns to the
position it describes.

4.9.3. Example of Using Seek Keys

The program in Example 4-8 uses seek keys to access lines (by line number) randomly in a UASC
object. Note that a line number is not the same thing as a record number.

The program does the following:

e Declares a seek-key vector to store seek key values. Since it is using short seek keys,
this is an array of 4-byte integers.

e Opens a UASC object.

e Enters a loop to read the object sequentially. The program:

1. Gets a seek key by calling IOS __$INQ _SHORT _KEY.
2. Reads a line.

3. Stores the returned seek key in the array of seek keys. Note that by doing
this, the vector is indexed by line number.

e Prompts the user for a line number.

o Moves the stream marker to the desired line by calling
I0S _$SEEK __SHORT _KEY. This call associates the seek key with the line number
that the user specified.

e Reads the line by calling IOS _$LOCATE.

e Writes the line to output and continues to prompt the user until the user types a
CTRL/Z to stop.

Performing I/O with IOS Calls 4-32

PROGRAM ios_seek uasc;

%include ’/sys/ins/base.ins.pas’;
%include ’/sys/ins/ios.ins.pas’;
%include ’/sys/ins/error.ins.pas’;
%include */sys/ins/vfmt.ins.pas’;
%include ’/sys/ins/pgm.ins.pas’;

CONST

max_lines = 1024; { Maximum number of lines in object }
VAR

status @ status_$t;

count : integer;

{$0PEN variables}

pathname : name_$pname_t;
namelength : integer;
stream id - los_$id_t:

{ $GET variables }

line . string;
ret_len . integer32;
choice_line :@ integer;
no_of lines : integer;

{ $SEEK variables }
short_key : integer32;

{ Declare vector to hold seek keys }
seek vector : ARRAY[1. .max lines] OF integer32;

BEGIN { main }

{ Get the pathname and convert it to internal format using VFMT. }
{ Open the object for reading. }
{ Read the object and fill the seek_vector with seek keys. }

no_of_lines := O;
WHILE status.all = status_$ok DO
BEGIN { while there is data in object }

{ Get a short seek key. }

short_key := ios_$inq_short_key (stream id,
ios_$current, { position 2
status) ;

check status;

Example 4-8. Accessing a UASC Object Randomly Using Seek Keys

4-33 Performing I/O with IOS Calls

{ Read a line. }

ret_len := ios_$get (stream id,
(1. { put-get options }
line,
SIZECF (line),
status) ;

{ Test for EOF. }

IF (status.all = ios_$end of file) THEN

EXIT.
check_status;

{ Increment the vector index. }
no_of lines := no_of lines + 1;

{ Test for maximum number of lines. }
IF no_of lines <= max_lines THEN
{ Load vector with the returned seek key. }

seek vector[no_of_lines] := short_key

ELSE

BEGIN
writeln(’Maximum number of lines exceeded. *):
EXIT,;

END; { IF no_of_lines <= max_lines }
END; { while there is data in object }
{ Prompt the user for a line number. }
write(°Type the number line you want to see:’);
writeln(® (1 - ’, no_of lines:1, ' or CTRL/Z to stop:’);
WHILE NOT eof DO BEGIN { while user wants more }
readln(choice_line);

{ Test to see if the chosen line is in range. }
WHILE (choice_line <= 0) OR (choice_line > no_of_lines) DO

BEGIN
write (’Line number is out of range. Enter a number’);
writeln(’ ©between 1 and ’, no_of_lines:1, ':’);
readln(choice_line);

END;

{ Load the seek key using the vector. }
short_key := seek_vector[choice_line];
ios_$seek_short_key (stream id,

short_key, {4-byte integer}

status) ;

check_status;

{ Read the line. }

ret_len := ios $get (stream id,

B - n. { put-get options }

line,
SIZEOF (line),
status);

check_status;

Example 4-8. Accessing a UASC Object Randomly Using Seek Keys (Cont.)

Performing I/O with IOS Calls 4-34

{ Write the line to output. }
writeln(line : ret_len);

{ Prompt for next line. }
write('Type the next number line you want to see:’)
writeln(’ (1 - ', no_of_ lines:1, * or CTRL/Z to stop:’);

END; {while}

END. { ios_seek uasc }

Example 4-8. Accessing a UASC Object Randomly Using Seek Keys (Concluded)

4.10. Handling Record-Oriented Object Types

The UASC object type thinks of data as flowing in a continuous stream. In contrast, the record-
oriented object type thinks of data as being broken into discrete groups, or records. A record
boundary marks the end of each record.

Get and put calls recognize these record boundaries. So, when using get and put calls on record-
oriented objects, the calls return the data contained in a single record at a time, even if you
request more data than is contained in the record.

For example, you have a record-oriented object whose first three records are 12-bytes, 16-bytes,

and 32-bytes long. If you specify a buffer size of 16 bytes, three successive put calls would
perform the following:

e The first put call returns the first record (12 bytes) because the record is smaller than
the size of the buffer.

e The second put call returns the second record (16 bytes) because the record is equal to
the buffer size.

e The third put call returns the error I0S_ $BUFFER _ SIZE _ TOO _ SMALL because
the buffer is too small to hold the next record, which is 32-bytes long. (If this
happens, you might use IOS _$INQ_ REC REMAINDER to determine the number
of bytes in the record left to be read.)

You can use most IOS calls to operate on record-oriented objects. Some calls provide options
particular to record-oriented objects. For example, the IOS__$PARTIAL RECORD _OPT
option on a put call allows you to write portions of a record without terminating it. Currently,
DOMAIN supports the REC object type. Users can implement their own record-oriented object
types by writing a type manager.

The following sections describe how to perform I/O using the two most common record formats,
variable-length and fixed-length records. Section 4.10.1 describes how to write to fixed-length
record objects. Section 4.10.2 describes how to write to variable-length record objects. Section
4.10.3 shows how to read data from fixed-length record objects using seek keys. Section 4.10.4
describes the possible record formats that a record-oriented type can have.

4-35 Performing I/O with IOS Calls

4.10.1. Writing Fixed=Length Records

To write to a object containing records you open an object specifying a type UID that handles
records, such as DOMAIN’s RECORDS _ $UID.

The program in Example 4-9 asks the user to type data into a record-oriented object that
contains employee records. It performs the following:

e Defines an employee information record "info_ rec" containing fields for employee
name, number, and address.

e Creates a record-oriented object, using IOS__$CREATE. (To handle fixed-length
records, this program declares the record data type with fields of the same length.)

o Loads the record, using input from the user.

e Writes the record to the object, using IOS_ $PUT.

PROGRAM ios_put_rec_fixed;

%include ’/sys/ins/base.ins.pas’;
%include °/sys/ins/ios.ins.pas’;
%include '/sys/ins/type_uids.ins.pas’;
%include '/sys/ins/error.ins.pas’;
%include ’/sys/ins/vfmt.ins.pas’;
%include ’/sys/ins/pgm.ins.pas’;
TYPE
info rec_t = RECORD { Employee record }
emp_id : integer;
address : string:;
name . string;
END;
VAR
status : status_$t;
count : integer;

{ $CREATE variables }

pathname . name_$pname_t;
namelength : integer;
stream_id : ios_$id_t;

{ $PUT variables }

line

info_rec :

. string:;
info_rec_t.

Example 4-9.

Performing I/0 with IOS Calls

Writing Fixed-Length Records

4-36

BEGIN { main }

{ Get the pathname. }
writeln (°Type the pathname of the object you want to create: *);
namelength := SIZEOF (pathname) ; { Max namelength }

{ Transfer the pathname into internal format using VFMT. }
vimt_$read2 (%" "%eka%. .
count,
status,
pathname,
namelength) ;

{ Create the object, or open an existing object for appending input. }
ios_$create (pathname, :

namelength,

records_s$uid, { Record Type UID }
ios_$preserve mode, { Open object if exists }
[ios_$position_to_eof opt], { Append data }
stream_id,

status) ;

check_status;

{ Get a line of input. }

writeln (’'Type employee name or CTRL/Z to stop:’):

WHILE NOT EOF DO

BEGIN
readln(info_rec.name);
writeln(’Type employee id #:°);
readln(info_rec.emp_id) ;
writeln(’Type address of employee on one line: ’);
readln(info_rec.address);

{ Write the record. }

ios_$put (stream id, { Stream-id of open object }

1. { Put options }

info_rec, { Data buffer }

SIZEOF (info_rec), { Length of data buffer }
status) ; { Completion status }

check status;

writeln;
writeln (’ Record written. ’);
writeln (’Type the next employee name or type CTRL/Z to stop:’):

END;{while}
END. { ios_put_rec_fixed }

Example 4-9. Writing Fixed-Length Records (Concluded)

4-37 Performing I/O with I0S Calls

4.10.2. Writing Variable-Length Records

You can write variable-length records to an object in the same way that you write fixed-length
records to an object except, since the data buffer varies, you must calculate its length. A
common way to do implement a variable-length buffer is to write to the variable-length field,
calculate its length, then write the length in a field containing the length. To write to individual
fields of a record, call IOS__$PUT with the IOS_$PARTIAL _RECORD _ OPT put option.
When you want to terminate the record, write the last portion of the record by using I0S__ $PUT
without specifying the IOS__$PARTIAL_RECORD _ OPT option.

The program in Example 4-10 uses IOS _$PARTIAL _RECORD _ OPT to write variable-length
records. After the user types an employee name, the subroutine, PUT _NAME__LENGTH,
calculates the length and puts that value in the record’s "namelen" field.

Since the name field of this record varies in length, the records are of variable length. Note that,
in Pascal, you must declare the variant portion of a record in the last field. Note also that you
may not be able to handle variable-length records if your object type does not support them. See
Section 4.10.4 for details.

This program performs the following:

e Defines an employee information record "info__rec" containing three fields: length of
the employee name "namelen," the employee ID number "emp id," and the
employee name "name."

e Declares a procedure "put__name__length" to calculate the length of the input name,

and writes the result to the output object separately, wusing the
I0S _$PARTIAL _RECORD _ OPT put option.

e Creates a record-oriented object by specifying the RECORDS _$UID type UID.
e Loads the record, using input from the user.

e Calls the "put__name__length" procedure to calculate the length of the employee’s
name and write the length into the first field of the record "namelen."”

o Writes the second field “emp __id" of the record, using
I0S _$PARTIAL _RECORD __OPT.

e Writes the last field of the record "name," using IOS__$PUT. This terminates the
record because the program did not specify I0S_$PARTIAL _RECORD _ OPT.

Performing I/O with I0S Calls 4-38

PROGRAM ios_partial rec;
{ This program uses partial records. }

%include ’'/sys/ins/base.ins.pas’;
%include ’'/sys/ins/ios.ins.pas’;
%include °'/sys/ins/error.ins.pas’;
%include ’'/sys/ins/vimt.ins.pas’;
%include '/sys/ins/pgm.ins.pas’;
%include '/sys/ins/type_uids.ins. pas’

TYPE
info_rec_t = RECORD { Employee record }
namelen : integer;
emp id : integer;
name . string; { Variable-length field at end }
END;
VAR
status @ status_$t;
count : integer;

{ $CREATE variables }

pathname : name_$pname_t;
namelength : integer;
stream_id : ios_$id_t;

{ $PUT variables }
line . string;
info_rec : info_rec_t;

PROCEDURE put_name_length;

{ This procedure calculates the length of the employee name
and puts the value into the namelen field. }

BEGIN

{ Calculate the length of info_rec.name. }
info_rec.namelen := SIZEOF(info_rec.name) ;
WHILE (info_rec.name[info rec.namelen] = * *’) AND
(info_rec.namelen > 0) DO
info_rec.namelen := info_rec.namelen - 1;

{ Put the value of namelength into the record. }

ios_$put (stream_id, { Stream ID of open object }
[ios_$partial_record_opt], { Put options }
info_rec.namelen, { Data buffer }
SIZEOF (info_rec.namelen), { Length of data buffer }
status) ;

check status;

END; {put_name length}

Example 4-10. Writing Variable-Length Records

4-39 Performing I/O with IOS Calls

BEGIN { main }
{ Get the pathname and convert it to internal format using VFMT. }

{ Create the object. }
ios_$create (pathname,

namelength,

records_$uid, { Type UID }
ios_$no_pre_exist_mode, { Error if exists }
[ios_$write_opt], { Write access }
stream_id,

status) ;

check status;

{ Get record information. 3}
writeln (’Tye employee name or CTRL/Z to stop):’);
WHILE NOT eof DO
BEGIN

readln(info_rec.name);
{ Call internal procedure to calculate the namelength of
employee name and put in namelen field. }

put_name_length;

writeln(’Type employee id #:°);
readln(info_rec.emp_id) ;

{ Put employee ID field into the record. }

ios_$put (stream id, { Stream ID of open object }
[ios_$partial_record opt], { Put options }
info_rec.emp id, { Data buffer }
SIZEOF (info_rec.emp_id, { Length of data buffer }
status) ;

check_status;

{ Write name field and terminate record. }
buflen := info_rec.namelen; <{ Record length varies with
length of name field }

ios_s$put (stream_id, { Stream ID of open object }
{1. { Put options 2}
info_rec.name, { Data buffer }
buflen, { Length of data buffer }
status) ;

check_status;

writeln (’Type the next employee name or CTRL/Z to stop:’);
END;{while}
END. { ios_partial_rec }

Example 4-10. Writing Variable=-Length Records (Concluded)

Performing I/O with I0S Calls 4-40

4.10.3. Reading Fixed-Length Records with Seek Keys

Example 4-11 is a program that opens a stream to an object containing fixed-length records. This
program reads the records sequentially, and then numbers them so it can later use IOS _ $SEEK

to seek to the record that the user specifies randomly.

This program performs the following:

e Declares a Pascal record containing the same fields as the program that created the

record object, (in this case, ios_ $put__rec_ fixed.pas).

® Declares a seek key that corresponds with the record that you want to seek to.

e Reads the record-oriented object, and writes each record to the screen. It numbers
each record beginning with zero (since records are zero-based).

e Asks the user to specify the number of the record to update, and assigns the number
to “choice _rec.” "Choice _rec" serves as the seek key for the record.

e Moves the stream marker to' the requested record using IOS__$SEEK. This is an
absolute seek because we want the offset to be calculated from the beginning of the
object (which is record number 0). Since the user specifies the number of the desired

record, it corresponds to the beginning of the object.

PROGRAM ios_seek_fixed rec:

%include ‘/sys/ins/base.ins.pas’;
%include °’/sys/ins/ios.ins.pas’;

%include °'/sys/ins/error.ins.pas’;

%include ’/sys/ins/vimt.ins.pas’;
%include ’/sys/ins/pgm.ins.pas’;

TYPE { Define the record type }
info_rec_t = RECORD
emp_id : integer:
address : string;
name . string;
END;

VAR
status @ status_$t;
count : integer:

{ $OPEN variables }

pathname . name_$pname_t;
namelength : integer;
stream_id ios_$id_t;

{ $GET variables }
line : string:
ret_len : integer32;
info_rec @ info_rec_t;

Example 4-11.

Seeking Fixed-Length Records

4-41

Performing I/O with 10S Calls

{ $SEEK variable }

choice_rec . integer32; { Record number user wants changed }

{ This serves as the seek key }
no_of_recs : integer; { Number of records in object }
response . char;

BEGIN { main }

{ Get the pathname of a record-oriented object. }
writeln;
writeln ('Type pathname of a fixed-length record object to update: °):

{ Convert pathname to internal format using VFMT. }
namelength = sizeof (pathname) { Maximum namelength }

vimt_$read2(%" "%eka%. ’,
count,
status,
pathname,
namelength) ;

{ Open the object. }

stream_id := ios_$open (pathname,
namelength,
[ios_$write_opt], { Write access }
status) ;

check_status;

no of recs := O; { Initialize to zero. }

{ Read and print the records and record numbers contained in the object }
{ until you read the entire object, or encounter an error. }

WHILE status.all = status_$ok DO BEGIN

ret_len := ios_$get (stream id,
1. { Get options }
info_rec,
SIZEOF (info_rec),
status) ;

IF (status.all = ios_$end_of_file) THEN
EXIT

ELSE
check status;

Example 4-11. Seeking Fixed-Length Records (Cont.)

Performing I/O with I0OS Calls 4-42

{ Print and increment the record number. ¥
{ Note that record numbers are zero-based. }

writeln;
writein(’Record Number: °*,no_of_recs:1);
no_of recs := no_of recs + 1;

{ Print the employee ID, name and address. }

writeln('Employee Number: °, info_rec.emp id:1):
writeln(’Name: °, info_rec.name);
writeln(’Address: ', info_rec.address);
writeln;

END; {WHILE}

{ Update the addresses. }

write(’'Type the number of the record you would like to update:’);
writeln(® (0 - ’, no_of_recs-1:1, *) or type CTRL/Z to stop:’):
WHILE NOT eof DO BEGIN

readln(choice_rec);

{ Test record choice }
WHILE (choice_rec < 0) OR (choice_rec > no_of_recs) DO

BEGIN
write (’Record number is out of range. Enter a number’);
writeln(’ between O and °, no_of recs:1, ’':’);
readln(choice_rec);

END;

{ Move to the specified record -- using absolute record seek. }

ios_$seek (stream id,
ios_$absolute, { Seek_base }
ios_$rec_seek, { Seek_type }
choice _rec, { Offset }
status) ;

check_status;

{ Read the record. }
ret_len := ios_$get (stream id,
(. { Get options }
info_rec,
SIZEOF (info_rec),
status) ;
check_status;

{ Print the employee ID, name and address. }

writeln(’Employee Number: *, info_rec.emp id:1);
writeln(’Name: °, info_rec.name);
writeln(’Address: °, info_rec.address);

writeln;

Example 4-11. Seeking Fixed-Length Records (Cont.)

4-43 Performing I/O with I0OS Calls

{ Prompt for confirmation. }
write(’Would you like to update the address?’);
writeln(’ (Y or N):).
readln(response) ;
IF (response = 'Y’) OR (response = ’y’) THEN
BEGIN
writeln(’Type the new address on one line: ’);
readln(info_rec.address) ;

{ Reposition stream marker to beginning of the record.}
ios_$seek (stream_id,

ios_$absolute, { Seek_base }

ios_$rec_seek, { Seek_type }

choice_rec, { Offset }

status) ;
check status;

{ Update the record. }
ios_$put (stream id,

(1.

info_rec,

SIZEOF (info_rec),

status) ;
check_status;

writeln(’Record updated to contain the following: *);
writeln(’Address: ’, info_rec.address) ;

END;{if }

{ Prompt for next record to be updated. }

writeln;
write(’Type the number of the record you would like to update:’);
writeln(® (0 - ', no_of_recs-1:1, ’) or CTRL/Z to stop:’);

END; {while}
END. { ios_seek_fixed rec }

Example 4-11. Seeking Fixed-Length Records (Concluded)

4.10.4. Record Formats

Usually, an application program using record-oriented objects need only know that a record-
oriented object exists so that the program can perform 1/O operations that recognize record
boundaries. Users will rarely need to know how a type manager implements the record format.

However, should the need arise, you can inquire about a record’s format wusing the
I0S _$INQ_REC_ TYPE call. You can change the record format or change the size of a fixed-
length record with the IOS_$SET_REC_TYPE call.

Any type manager can implement some or all of the following record formats. The DOMAIN
record-oriented type (REC) supports most of the following record formats. Another type
manager may choose to implement a different subset. Because of this, some of the record types
described in this section may not be applicable for your specific object type.

Performing I/O with IOS Calls 4-44

Table 4-15 lists of the various record formats with their predefined value.

Table 4-15. Available Record Formats

Predefined Value Record Format

I0S _$F2 Fixed-length records

10S_$V1 Variable-length records

I0S_ $UNDEF Unstructured records

IOS_s$F1 Fixed-length records without a count field

IOS _$EXPLICIT _F2 Fixed-length records that cannot be changed to
variable-length records

A fixed-length record object contains any number of records of the same length. A variable-
length record object contains any number of records that vary in length.

In IOS_$F2, IOS__$V1, and I0S_ $EXPLICIT _F2 formats, a record begins with a count field
indicating the the number of bytes of data in the record. (Only the type manager ever reads or
writes to a record’s count field.)

Since fixed-length records have the same length, the count field at the beginning of each record in
the object has the same value. Although this seems redundant, managers that implement
I0S _$F2 typically maintain a count field so the object can be eventually handle variable-length
records. For example, the DOMAIN REC type allows applications to change a fixed-length
record object to variable-length records simply by writing records whose size differs.

An applications program can prevent the IOS manager from implicitly changing a fixed-length
object to variable-length by specifying the IOS__$EXPLICIT _F2 record format. In this case,
the type manager returns an error if a user tries to write variable-sized records to a fixed-record
object.

A type manager can implement a fixed-length record format in a different manner. It can keep
track of the size of the fixed-length records at the beginning of the object, rather than repeating

the size of the record at the beginning of each record. In this case, the type manager uses the
IOS _ $F1 format.

Figure 4-1 illustrates how record-oriented objects with count fields are stored.

L_—— Courlt Field _l

HEADER N.I DATA1 N, DATA2 N3 DATA3 oo

Figure 4-1. Record-Oriented Object with Count Fields

4-45 Performing I/O with 10S Calls

Figure 4-2 shows how a record object without a count field could be stored. (Just how it is stored
depends on how the type manager implements it.)

HEADER DATA soe

Figure 4-2. Record-Oriented Object without Count Fields

Figure 4-3 shows how a record object without any structure could be stored. (Just how it is stored
depends on how the type manager implements it.)

DATA DATA DATA see

Figure 4-3. Unstructured Record-Oriented Object

Performing I/O with I0S Calls 4-46

Chapter 5
Using the Display Manager

The DOMAIN operating system has three components that affect the appearance of the display.
You can use the following:

e The Display Manager to display text by manipulating pads and frames with PAD
system calls. Use the Display Manager when you want to create windows, window
panes, and manipulate text.

e The Graphics Primitives Resource (GPR) to perform graphics operations on DOMAIN
displays. Use graphics primitives when you want to use graphics or mix graphics and
text within windows and window panes.

e The black-and-white display driver (SMD) to gain more direct control over black-and-
white displays. SMD calls do not work on color displays. You will rarely need to use
this driver directly since both the Display Manager and the graphics primitives use

this lower-level component. Also, there is a graphics primitive that corresponds to
most SMD calls.

This chapter provides an overview of the Display Manager and describes how to use the system
calls with the PAD prefix. It also describes calls to the paste buffer manager (PBUFS), which
maintains buffer files; and calls to the touchpad manager (TPAD), which handles the touchpad
and mouse. The graphics primitives are described in the Programming with DOMAIN Graphics
Primitives manual. The SMD calls are described in DOMAIN System Call Re ference manual.

DOMAIN has a separate graphics package, the DOMAIN 2D Graphics Metafile Resource (2D
GMR) for graphics applications programming. For more information on the 2D GMR package,
see the Programming With DOMAIN 2-D Graphics Metafile Resources manual.

5.1. System Calls, Insert Files, and Data Types

To manipulate the Display Manager, use system calls with the prefix PAD. In order to use PAD
system calls, you must include the appropriate insert file in your program. The PAD insert files
are:

/SYS/INS/PAD.INS.C for C programs.
/SYS/INS/PAD.INS.FTN for FORTRAN programs.
/SYS/INS/PAD.INS.PAS for Pascal programs.

To use paste buffers within your program, use the system calls with the prefix PBUFS. You
must also include the appropriate insert file. The PBUFS insert files are:

/SYS/INS/PBUFS.INS.C for C programs.
/SYS/INS/PBUFS.INSFTN for FORTRAN programs.
/SYS/INS/PBUFS.INS.PAS for Pascal programs.

5-1 Using the DM

To manipulate the touchpad or mouse in your program, use the system calls with the prefix
TPAD. You must also include the appropriate insert file. The TPAD insert files are:

/SYS/INS/TPAD.INS.C for C programs.
/SYS/INS/TPAD.INS.FTN for FORTRAN programs.
/SYS/INS/TPAD.INS.PAS for Pascal programs.

This chapter is intended to be a guide for performing certain programming tasks; the data and
system call descriptions in it are not necessarily comprehensive. For complete information on the
data types and system calls in these insert files, see the DOMAIN System Call Reference
manual.

5.2. Overview of the Display Manager

You use the Display Manager to manipulate the video display or screen, create and edit files, and
monitor ongoing processes. By using PAD system calls, you can manipulate the appearance of
the screen in many ways. This chapter describes how to

e Create windows and window panes through which the user can view part or all of a
pad.

e Change window position and appearance, such as making them invisible, borderless,
and having different character fonts.

e Create icons, change windows into icons, and change icon characters.
e Create and manipulate a frame to handle two-dimensional character 1/O.
e Prevent user input from echoing on the screen with raw mode processing.

To start, we need to define a few terms used to describe the different components of your node’s
display. You are familiar with most of these terms already; this section merely summarizes them.
For more information, see the DOMAIN System User’s Guide.

Windows are the areas on the screen through which you view files and processes. With PAD
calls, you can change a window’s size and position on the screen and its position over the pad.
Note that windows are not objects that any program recognizes; a program recognizes pads.
Think of windows as the user’s perspective. Most graphics applications refer to the Display
Manager window as a viewport.

Pads are files that contain text and graphics. You can see material within a pad by looking
through windows open into the pad. Note that the attributes that control the appearance and
use of the text and graphics in a window are associated with the pad, not the window. Window
attributes only control what parts of the pad are visible, and where on the screen they appear.

There are three types of pads: transcript, input, and edit pads.
Input pads accept keyboard input and transfer input to a program one line at a time. For

example, the Shell input pad is the pad with the $ prompt. Your programs can read from, but
not write to, an input pad.

Using the DM : 5-2

Transcript pads are associated with each input pad. The transcript pad contains a record (or
transcript) of the program’s dialogue with the user. That is, your program writes its output to
the transcript pad after reading input from the input pad. Because it is a record, you can scroll
the transcript pad backwards to view previous dialogue.

Edit pads are files that your program’s users can edit, using the Display Manager. You can
create edit window panes to let your program’s users use the Display Manager’s edit functions to
format input to the program.

Read-only edit pads are edit files that the Display Manager opens for the users’ viewing, but
they cannot modify them. Note that once your program creates a read-only edit pad, it cannot
be modified. Neither your program nor the keyboard user can execute a Display Manager
command to turn a read-only edit pad into an edit pad, if your program created it as a read-only
edit pad.

A line is the most common way to input information to a pad. Lines can contain text and a
few control characters (such as TAB, BACKSPACE, and NEWLINE).

A frame is another way to write information to a pad. Instead of sending information line by
line, a frame displays information from a two-dimensional area of any size. It can contain a
broad range of text and graphic information. Within the frame, a program can move the cursor
both horizontally and vertically, and write at any point. Frames are useful for simple graphics
applications.

Window panes are separate areas of a window devoted to separate activities. Each pane acts
as a window. The DOMAIN Language Level Debugger (DEBUG) is a good example of using
window panes. When you invoke the debugger with the -SRC option, it runs in a window that is
divided into five window panes, containing: the transcript of the debugging session, the
debugger’s input pad, input and transcript pads of the program you are debugging, and a copy of
the program. Figure 5-1 shows the DEBUG display with the -SRC option.

Target Program Name Frame

Debug Transcript
Window Pane -

51

Target Program
Source Code

Read/Edit
Target Program Transcript Window Pane
Window Pane

> Debug input Window Pane

Target Program Input Pane

t Target Program Line Numbers Frame

Figure 5-1. The DEBUG Display with the -SRC Option

The next few sections describe how you can use the Display Manager system calls to create and
manipulate these pads.

5-3 Using the DM

5.3. Starting Out

Usually, you run most of your user programs in the user’s Shell process, using the input and
transcript pads already created by the Display Manager command, create process (CP). In most
cases, these pads will suit your program’s needs.

In some cases though, your program may need to create new pads, and windows or window panes
to view them. You will want to create new pads when your program:

e Does not inherit any pads from the user. (When the program runs by a create process

only (CPO) command, or by PGM _ $INVOKE.)
e Needs to perform I/O in multiple contexts, or windows.

This section describes how to create a new transcript pad, and, if necessary, a window through
which you can view it.

You can either create the transcript pad in a window pane and have your program run in the
user’s Shell window, or you can create a separate window and have your program run in its own
window. Once you create the new transcript pad, you can create additional panes and frames to
further subdivide the window.

Whether you create a pane or separate window depends mainly on your application, and its users.
By creating your process within a window pane, you allow the user to have more control over the
display itself. When your process runs within a window pane, it can create additional panes and
frames within that pane. But it doesn’t have anything to do with other areas of the user’s
display. This approach is often the best for experienced technical users. For example,
programmers in a development environment often use multiple processes, and usually like to have
control over the display.

If you create separate windows, your user has less control over the display, because your process
chooses where to locate its windows on the display. This approach is useful when the user is
mainly interested in the application. For example, in a process control application, users are
usually interested in surveying the process statistics running in separate windows on the display;
they don’t want to change the display itself.

If your program creates windows, you should try to consider how much control you want to give
to the users. For example, the DOMAIN system’s alarm server creates windows in a controlled
way -- it allows users to move the windows, and change their size. You can also use PAD calls to
“remember" how the user set up the display, so you can position icons and windows according to
where the user wants them.

5.3.1. Creating a New Pad in a New Window
To create a new transcript pad in a new window, use the PAD __$CREATE_ WINDOW call.
Example 5-1 shows how you can create a transcript pad, using PAD_$CREATE _ WINDOW.

An explanation of the arguments follows this example.

You can also create a window in icon format. It is the same as creating a full-sized window, but
it first appears in icon format. For more information on icons, see Section 5.6.

Using the DM 5-4

{ Set the size and position of the future window. }

window. top 1= 800,

window.left = 3800;

window.width 1= 300,

window.height := 300;

pad_$create_window(’ °, { Null pathname for transcript pad. }
0 { Null namelength for transcript pad. }

pad_$transcript, { Type of pad. }
display unit, { No. of unit, usually 1. }

window, { pad_$window_desc_t }
stream_win, { stream_$id_t of the new window }
status) ; { Completion status }

Example 5-1. Creating a New Pad with PAD_$CREATE _WINDOW

The arguments for pathname and namelength both have null values, because the transcript
pad is normally a temporary pad that the Display Manager deletes when you close the pad.

The argument, PAD_ $TRANSCRIPT, indicates that the pad created is a transcript pad.
Display _unit indicates the unit number of the display on which the window will appear. This

parameter is reserved for future use; you should always pass the value 1. Window indicates the
position the new window will have on the display. You can set the window position by assigning
values to window prior to the call.

Stream__win is the stream ID of the new window, in STREAM _ $ID __ T format, returned by
this cal.. Status is the completion status returned by this call.

5.3.2. Creating a New Pad in a Window Pane

When you create a new transcript pad within a window pane, you associate your process with an
existing window on the user’s screen. To create the pad in a window pane, use the system call
PAD _$CREATE. With PAD_$CREATE, you specify the stream to which you are relating this
new window pane. Since you are associating your process with the user’s standard output stream,
you can either specify STREAM _$STDOUT or STREAM _ $ERROUT.

Example 5-2 creates an original transcript pad from the user’s standard output stream. An
explanation of the arguments follow this figure.

pad_$create (* °, { Null pathname for transcript pad }
0. { Null namelength for transcript pad }
pad_$transcript, { Type of pad }
stream_$stdout, { Relate to standard output stream pad }
pad_$left, { side of pad new pad will take up }
(1. { Size is relative to related pad }
100, { New pad takes up 100 % of related pad }
stream_out, { Stream ID of new pad }
status) { Completion status }

Example 5-2. Creating a New Pad with PAD _$CREATE

5-5 Using the DM

The first two arguments indicate the pathname and namelength, respectively. As in
PAD _$CREATE _WINDOW described above, you need not specify values if you are creating
transcript pads. If you do not, they are temporary files, which go away when the stream closes.

PAD_$TRANSCRIPT indicates the type of window pane you are creating. You must specify
PAD _$TRANSCRIPT when creating a transcript pad.

STREAM _$STDOUT is the stream ID, in STREAM _ $ID _ T format, of a pad to which this
new pad is related. Since you want to relate your original transcript pad to the user’s standard
output, you can either specify STREAM _ $STDOUT or STREAM _ $ERROUT.

PAD _$LEFT indicates where the new window pane will be positioned, in relation to its related
transcript pad. You can specify any one of the following positions:

o PAD _ $LEFT for the left side of the transcript pad.

o PAD__$RIGHT for the right side of the transcript pad.
e PAD _ $TOP for the top of the transcript pad.

o PAD _$BOTTOM for the bottom of the transcript pad.

An empty set of brackets, [], is the default pane_ options attribute. The value of this argument
determines, among other things, the interpretation of the next argument, pane_ size.
Pane_ size specifies the height of the new window pane. When creating a new transcript pane,
you must specify the default relative value (with empty brackets, []).

Relative value means that the value of pane_size given in the next argument is relative to the
size of its related window. In this case, the height of the new pad takes up the entire (100%)
window.

Stream _out is the stream ID of the new window pane, in STREAM _ $ID _ T format, returned
by this call. Status is the completion status returned by this call.

5.4. Creating Subsequent Pads in Window Panes

Once you have started your process on the user’s display (either by associating your process with
the user’s pads, or creating your own pads, as described in Section 5.3), you can associate other
pads, window panes and frames with it. This section describes how to create window panes.
Section 5.7 describes how to create frames.

Most often, you will want to associate an input pad with your program’s transcript pad. You
might also want to divide your window into separate window panes, or you might want to create
a frame to hold two-dimensional output.

You can have any number of window panes associated with the original transcript window, up to
the Display Manager’s limit of 40 pads and 60 windows. Just how many pads and panes you want
depends on how many different kinds of output you want displayed concurrently.

You create subsequent pads and window panes within a window with the PAD_$CREATE

system call, which we described in Section 5.3.2. You can create a pane of any one of the
following types: '

Using the DM 5-6

e PAD _$INPUT

e PAD_ $EDIT

e $PAD _$READ _EDIT
o PAD_ $TRANSCRIPT.

The following sections describe how to use PAD _ $CREATE to create the three types of window
panes.

5.4.1. Creating Input Pads in Window Panes

You will want to create an input pad to get input from the keyboard user. To create an input
pad, use the PAD _ $CREATE call, specifying PAD _ $INPUT as the third argument. This call
creates an input pad (and a window pane to view it), and associates it with a previously created
transcript pad. (You must create a transcript pad be fore the associated input pad.)

NOTE: You do NOT need to create an input pad if you are using
the transcript pad for GPR direct mode graphics only.

You can have only one input pad for each transcript pad, and it must be located on the bottom
of the pad. Example 5-3 shows how to create an input pad with PAD__$CREATE. An
explanation of each argument follows the example.

pad_$create (’ { Null pathname for input pad }
0, { Null namelength for input pad }
pad_$input, { Type of pad }
stream_out, { Stream ID of related transcript pad }
pad_$bottom, { Input pads always go on bottom }
(1. { Pane size is relative to transcript pad }
20, { New pad takes up 20% of related window }
input_stream, { Stream ID of this input pad }
status) { Completion status }

Example 5~3. Creating an Input Pad in a Window Pane

You must specify a null pathname and namelength when creating an input pad.
PAD _$INPUT indicates that the type of window pane you are creating is an input pad.

Stream _out is the stream ID, in STREAM _ $ID _ T format, of a previously created transcript
pad to which this pad is related. (In this case, the transcript pad is stream_ out.)

PAD _$BOTTOM indicates that the new window pane will be positioned at the bottom of its
related transcript pad. You must specify the bottom when creating an input pad. If you create
additional transcript and edit window panes in a transcript window pane, the input window
remains at the bottom of its associated transcript pane.

An empty set of brackets, [], indicates the default pane_ options attribute. The value of this

argument determines, among other things, the interpretation of the next argument, pane__ size.
Pane _size specifies the height of the new window pane. The value of pane_size is the

5-7 Using the DM

maximum height the input window pane will ever be. All input pads start out to hold a single
line of text in the current font. However, in cases where the user types input before the program
is ready to read it, there may be more lines of input waiting for action. To accommodate this,
you specify a larger window pane size for an input pad. A common value for the pane size is 20.

When PAD _ $CREATE creates an input pad, it returns the stream ID of an input stream. Your
program can read any keyboard input the user types into this pane. The Display Manager
usually echoes the input into the related transcript pad. If you do not want the input to be
echoed, you can specify the pane__options attribute [PAD _ $INIT _ RAW]. PAD_ $INIT _RAW
indicates that the input will be processed in raw mode, which prevents the system from
preprocessing the input. Raw mode processing is described in the section below, 5.8.2.

Input__stream is the stream ID of the new window pane, in STREAM _$ID_ T format,
returned by this call. Status is the completion status returned by this call.

5.4.2. Creating Transcript Pads in Window Panes

You can associate other transcript window panes on top of the original transcript pad. To create

a transcript pane, use the PAD _$CREATE call, specifying PAD_$TRANSCRIPT as the
third argument.

Example 5-4 shows how to create a transcript pad with PAD_$CREATE. An explanation of
each argument follows the example.

pad_$create (’transpathname’, { Pathname }

namelength, { Namelength}

pad_$transcript, { Type of pad }

stream out, { Stream ID of related transcript pad }
pad_$right, { Side of original pad that new pad is located }
[pad_$abs_size], { Pane size is absolute value }

30, { New pad is 30 lines high (scaled) }
trans_stream, { stream ID of this transcript pad }

status); { Completion status }

Example 5-4. Creating a Transcript Pad in a Window Pane

You can specify either null, or a pathname and namelength when creating a transcript pad
and pane. If you specify null, the transcript pad is a temporary file, which goes away when the
program ends.

If you specify the pathname of an existing file for a transcript pad, the Display Manager positions
the pad at the beginning of the file, but scrolls down to the bottom of the file the first time the
user writes to the pad. Creating a transcript window pane whose pad is an existing file is a
convenient way for your program to display prepared text or graphics, such as menus. The
Display Manager can call an existing file to the screen faster than your program can create it.

If you create a transcript window pane with a pathname that does not refer to an existing pad,
the Display Manager creates a new permanent file. Thus, the program dialogue is a permanent
record that you can refer to after the program terminates.

PAD _$RIGHT indicates that the new pad will be at the right side of the associated pad. You

can place the transcript pad anywhere on the original transcript pad, so you can specify any of
the following options: PAD _ $TOP, PAD _ $BOTTOM, PAD _ $RIGHT or PAD _ $LEFT.

Using the DM 5-8

PAD _ $ABS _SIZE indicates that the next argument, pane_size, will be an absolute value,
according to the current scale factor. That is, pane__size will be 30 lines high in the current font,
if the scale factors are set to the default, 0,0. For details on scale factors, see Section 5.5.7. By
specifying an absolute size, the Display Manager attempts to keep the pane at that size, even if its
related window grows or shrinks. However, the window pane can never be larger than its related
window, so that if the window shrinks below the size of the window pane, the window pane must
also shrink. You can also specify the default relative value with empty brackets, [|. This makes
the new pad’s size a percentage of the original pad.

Trans__stream is the stream ID of the new window pane, in STREAM_$ID__T format,
returned by this call. Status is the completion status returned by this call.

5.4.3. Creating Edit Pads in Window Panes

An edit window pane is a window pane where the user can type or edit text with the usual
Display Manager text-editing commands. If your program requires a large amount of input from
them, you can create an edit window pane for users to enter their data.

To create an edit pad, use the PAD_$CREATE call, specifying PAD__$EDIT as the third
argument. This call creates an edit pad (and a window pane to view it) and associates it with a
previously created transcript pad.

Example 5-5 shows how to create an edit pad with PAD_ $CREATE. An explanation of each
argument follows the example.

pad_$create (‘editpathname’, <{ Pathname }
namelength, { Namelength}
pad_$edit, { Type of pad }
stream_out, { Stream ID of related transcript pad }
pad_$top, { Side of original pad that new pad is located }
[pad_$abs_sizel., { Pane size is absolute value }
30, { New pad is 30 lines high (scaled) }
edit_stream, { Stream ID of this transcript pad }
status) { Completion status }

Example 5-5. Creating an Edit Pad in a Window Pane

You can specify a pathname and namelength when creating an edit pad. If you give a
pathname of an existing file, the user sees and can edit that file. If you give a new pathname, the
user’s input goes into a new, permanent file. If you supply no pathname for the edit file, the
user’s input goes away when the stream closes.

PAD_$TOP indicates that the edit pad is located at the top of the associated pad. You can

place the edit pad anywhere on the pad, and can specify any of the following sides:
PAD _$TOP, PAD _$BOTTOM, PAD _ $RIGHT, PAD_ $SLEFT.

5-9 Using the DM

PAD _$ABS_SIZE indicates that the next argument, pane__size, will be an absolute value,
according to the current scale factor. (That is, pane_ size will be 30 lines high.) By specifying
an absolute size, the Display Manager attempts to keep the pane at that size, even if its related
window grows or shrinks. However, the window pane can never be larger than its related window,
so that if the window shrinks below the size of the window pane, the window pane must also
shrink. You can also specify the default relative value with empty brackets, []. This makes the
new pad’s size a percentage of the original pad.

Edit__stream is the stream ID of the new window pane, in STREAM _ $ID _ T format, returned
by this call. Status is the completion status returned by this call.

After you create an edit window pane, you can then call PAD _$EDIT _WAIT. This suspends
the process until the user terminates the edit session in the edit pane with a CRTL/Y, CTRL/N,
EXIT, or ABORT (WC or WC -Q) command. The process then gains control, closes the
window, thereby allowing your program to access the information.

After an editing session, the program has different access privileges to the edited file depending
on when the file was created. If the file is a temporary file, specified by a null pathname in
PAD _$CREATE, the program has read and write access to it. However, if the file is a pre-
existing file, specified as the pathname in PAD_$CREATE, your program has only read access
to it. You can change the file access, if necessary by using the STREAM _ $REDEFINE system
call described in Chapter 4.

5.4.4. Creating Read-Only Edit Pads in Window Panes

A read-only edit pad is a file that users can read but not modify. To create a read-only edit pad,
use the PAD _$CREATE call, specifying PAD_$READ__EDIT as the third argument. This
call creates a read-only edit pad (and a window pane to view it) and associates it with a

previously created transcript pad. For a description of the call, see Section 5.4.3, Creating Edit
Window Panes. ‘

Note that once you create an edit pad as read-only, the user cannot change it into an edit pad.
The Display Manager command that turns a read-only edit pad into an edit pad does not work
when the window pane is created with PAD _$CREATE. A read-only edit pad must refer to an
existing file.

5.4.5. Closing Windows and Window Panes

A pad closes when its associated stream closes; the stream closes when your program makes a
STREAM _ $CLOSE system call, or when your program terminates, regardless of whether the
termination is normal or unexpected. It is good practice to use the STREAM __$CLOSE system
call to close any opened I/O streams before you conclude your program.

You should close the streams in the reverse order that you created them, so that you close the
original transcript pad last. You can close an edit pad stream while the user is still editing. This
denies your program further access to the file, but allows the user to finish editing it. Even
though a pad closes when your program ends, some types of windows or window panes associated
with these pads do not close automatically when their associated streams close. These include

Using the DM 5-10

e Transcript windows (not panes).
e Edit windows and panes.

¢ Read/edit windows (not panes).

If you want these windows or panes to close when their related streams close, use the
PAD _$SET_ AUTO__ CLOSE call. Usually, you would include this call soon after you create
the window or window pane in case your program terminates unexpectedly. (A user can type the
Display @ Manager WC -A command to achieve the same results as a

PAD_$SET_AUTO_ CLOSE.)

You do not need to use PAD_$SET__AUTO _CLOSE with input pads, transcript panes, or
read/edit panes, because they go away automatically when their associated streams close.

5.4.6. Sample Program: Creating and Closing Windows and Window Panes

Example 5-6 is a program that shows how to use PAD calls to create an original transcript pad

and subsequent window panes. It also shows how to use the PAD _$SET_ AUTO _ CLOSE and
STREAM _ $CLOSE system calls.

PROGRAM pad make_windows;

{ This program makes a new transcript pad and window, and associates
other window panes. }

%INCLUDE */sys/ins/base.ins.pas’;
%INCLUDE °®/sys/ins/pad.ins.pas’;
%INCLUDE °/sys/ins/error.ins.pas’;
%INCLUDE °’/sys/ins/streams.ins.pas’;
%INCLUDE ’/sys/ins/vfmt.ins.pas’;
%INCLUDE '/sys/ins/pgm.ins.pas’;

CONST
display unit = 1;
window_count = 1;
auto_close = TRUE:

VAR
source_stream : stream $id t;
input_stream : stream $id_t;
edit_streanm . stream_$id_t;
seek_key . stream $sk_t;
window . pad_$window_desc_t:
window_list : pad_$window_list_t;
windovw_size . integer;
status : status_$t;
pathname : name_$pname_t;
namelength . integer;
count : integer:

Example 5-8. Creating and Closing Windows and Window Panes

5-11 Using the DM

Lok sokokokok ek sk ok ke stk s o o o sk o s ok ks s o ok ks o ok ko s e ks o o ok o s ok sk s sk ks sk ke sk skokok sk sokok kb ok ok sk ok kR k)
{* Procedure CHECK STATUS to check for errors. It prints an error message, *}
{* and exits on bad status. *}
{x skksokskkokskokkokskokok sk ok ok Rk ok sk kokok ok kskok sk sk sksksk ook sk ok sk skok skslok ok sokkokok ok skokosk ok sk kokok k)

PROCEDURE check_status;

BEGIN

IF status.all <> status_$ok THEN BEGIN
error_$print(status):
pgm_$exit;
END;
END; { check_status}

Lok ook ke sk ok sk ok ke sk s ook e ok ok s ok ok ok sk ok ok o ok ke ok sk sk ok ok e ok sk s ok ok o sk ok o ook ok ok sk ok sk ok ok ok ok sk ok s ok skok ok ok sk ok ok ok sk sk okok skok ok sk kok ok

{* Procedure HOLD DISPLAY to suspend program to demonstrate how calls work. *}
L sokokokoroiolokok kool skok ol okokskok s kool sk sk skok kol ok sk ook ok sk ok sk kokok sk sk ok ok kokskok ok ok ok ok ok kok k)

{ This internal procedure calls TIME $WAIT to suspend the process for 3 seconds
so you can see how each call works. }

Y

PROCEDURE hold_display:

VAR
rel_time : time_$clock_t;

BEGIN { hold display}
cal_$sec_to_clock (3, rel_time); { Convert secs to UTC value }
time_$wait (time_$relative,
rel_time,
status). { Time to wait }
check _status;
JEND; { hold_display }

{* ok 5k ok 3k 3k 3k 3k 5k 3k ok >k ok sk ok sk sk 5k Sk Sk ok 3k sk 3k sk ok ok ok ok sk ok ok 2k sk sk ok ok ok ok ok Sk 3K sk ok K ok 3k 3k 3K k ok ok ok sk ok ok 3K 3k 3k 3k 3k 3k 3k ok ok K K ok Kok ok kR kK kK *}
BEGIN { Main }

{ Set position of future window. }

window. top = 150;
window.left ;= 150;
window.width := 450;
window.height := 450;

{ Create original transcript pad and window. }

pad_$create_window(* ’, { No pathname for transcript pad }
0, { No namelength for transcript pad }
pad_$transcript, { Type of pad }
display unit, { Number of display unit }
window, { Position of window }
source_streanm, { Returns stream ID }
status) ; { Completion status }

check_status;

Example 5-8. Creating and Closing Windows and Window Panes (Cont.)

Using the DM 5-12

{ Close window when stream closes. }

pad_$set_auto_close (source_stream, { Stream ID }
window_count, { Number of window }
auto_close, { Flag —- set to TRUE }
status) ; { Completion status }
check_status;

{ Make an input pane at the bottom of the window. }

pad_$create (* °, { Null pathname for input window }
0, { Null namelength }
pad_$input, { Type of pad }
source_stream, { Same stream ID as window }
pad_$bottom, { New pane position on original pad }
[1. { Pane height relative to original pad }
20, { Height maximum is 20% of original pad }
input_stream, <{ Returns stream ID of window pane }
status) { Completion status }

check status:
{ Get pathname from keyboard and set values of pathname, namelength. }
WRITELN (°Type in the pathname of the file: *);

vimt_$read2(’%""%eka%.’,
count,
status,
pathname,
namelength) ;

check_status:

{ Make an edit pane for the rest of the window above the input pad and
associate it with specified file. }

pad_$create (pathname,

namelength,

pad_$edit,

source_stream, { Same stream ID as window }

pad_$top, { New pane position on original pad }
1. { Pane height relative to original pad }
60, { Height = 60% of pad minus input pad }
edit_stream, { Returns stream ID of window pane }
status).

check_status;

{ Close edit pad when stream closes. }

pad_$set_auto_close (edit_stream, { Stream ID }
window_count, { Number of window }
auto_close, { Boolean -— set to TRUE }
status) ; { Completion status }

check_status;
hold display;

Example 5-8. Creating and Closing Windows and Window Panes (Cont.)

5-13 Using the DM

{ Close the streams. }

stream $close(edit_stream, status);
check status;

stream $close(input_stream, status).
check_status;

stream $close(source_stream, status);
check status:

END. { pad_make_ windows }

Example 5-8. Creating and Closing Windows and Window Panes (Cont.)

5.5. Manipulating Windows

There are many Display Manager calls that tell you about the display, and allow you to change
it. For example, if you run your process in the user’s Shell process, you can use various Display
Manager calls to find out about the display.

The following sections describe how to inquire about window positions and change them, pop
windows to the foreground of the screen, push them to the background, make them invisible,
re-appear, and borderless. It also describes how to change character fonts and scale factors.

5.5.1. Specifying a Window Number with PAD _ $INQ_ WINDOWS

Most of the PAD calls that manipulate windows require that you specify the stream ID and
number of the desired window. You must specify a window number because a user might have
more than one window viewing the same pad. This occurs any time a user and a program or two
programs make a window on the same object. Typically, this can happen when the program calls
PAD _$CREATE on an edit window that the user already has open on the display. Your
program opens a second window, so it must refer to the number, 2, when it manipulates that
window.

Assuming that you want to change the most current window viewing the pad, call
PAD _$INQ__WINDOWS first. Since PAD__$INQ__WINDOWS returns the number of
windows open to the pad, the number equals the latest window viewing the pad. In suBsequent
calls requiring a specific window number, use the number returned by PAD _ $INQ_ WINDOWS.

5.5.2. Getting Window Positions with PAD_$INQ_ WINDOWS

PAD _$INQ__ WINDOWS also tells you the size and position of each window viewing the pad.
This is useful, for example, if your program display depends on whether the user’s window is
vertical or horizontal in shape, or if it needs to scale its output to fit in the window.

PAD _ $INQ__ WINDOWS returns the position of the window viewed to the pad in the order of

top, left, width, and height, excluding the window’s border and legend. If more than one window
is open to the pad, you can get information about any number of windows.

Using the DM 5-14

Note that the values of top and left are expressed in raster units, but width and height are
divided by the current scale factors. If you need to know the width and height in raster units,
you can convert them wusing the system call PAD_$SET__SCALE prior to using
PAD _ $INQ_ WINDOWS. Example 5-7 shows how to convert the width and height to raster
units by using the call PAD__$SET_SCALE. The call changes the value of width and height to
raster units when you specify x and y factors to be 1. See Section 5.5.7 for details on

PAD _$SET _SCALE.

PROGRAM pad_ing_window_size;
{This program gets information about size of windows open to pad. }

%INCLUDE °/sys/ins/base.ins.pas’;
%INCLUDE °/sys/ins/pad.ins.pas’;
%INCLUDE °’/sys/ins/pgm.ins.pas’;
%INCLUDE ‘'/sys/ins/error.ins.pas’;

CONST
max_windows = 10;
font_size =0; { No need for font pathname }
VAR
window_info : pad_$window_list_t;
n_windows : integer;
width_scale v integer;
height scale . integer;
font_name . pad_$string_t;
font_len : integer;
bottom, right : integer;
status . status_$t;
i . integer;

Lk sokokskaoksksrokokok skt sk kot okl ok ko sk ok sk ook ok o s sk ook R sk ok sk sk ok ok ook sk Rk ok % }
{* Procedure Check_status for error handling. (See Example 5-6) . *}
Lk skokorok koo ko sk ook ok sk ok o ok ook ook ok ok ok ok ok sk o R KK KK sk ok Rk sk ok kR sk Rk kR Rk k)
BEGIN { Main Program }

{ Set scale to 1,1 to get width and height in raster units. }

pad_$set_scale (stream $stdout, { Standard output (display) }

1, { x factor in raster units }
1, { y factor in raster units }
status); { Completion status }

check_status;

Example 5-7. Getting Size and Position of Windows

5-15 Using the DM

{ Get window information about user’s standard output stream. }

pad_$inq_windows (stream $stdout, { Standard output (display) }

window_info, { Current position of window }
max_windows, { Maximum no. of windows desired }
n_windows, { Number of windows open to pad }
status) ; { Completion status }

check_status;

{ Write window information to screen. }

writeln;
writeln (° *).
writeln;

IF (n_windows = 1) THEN
writeln (° One window is open to this pad.’)
ELSE writeln (' There are ’, n_windows:1,

* windows are open to this pad.’):
writeln;

{ Write window information for each window open to current pad. }

FOR i := 1 to n_windows DO
WITH window_info[i] DO

BEGIN

bottom := top + height;
right := left + width;

{ Wrive positions to display: }

writeln (’ Window ’,i:1);

writeln (’—-——————--).

writeln;

writeln (’ Upper left corner is at position (°,
left:1,’,’,top:1,%) *);

writeln (’ Lower right corner is at position (°,
right:1,”,’,bottom:1,’)");

writeln (’ Width of window = ’,width:1,
* (raster units)’);

writeln (’ Height of window = ’,height:1,
* (raster units)’):

writeln ; »

END; {with}

writeln (°* '),

END. { pad_inq window_size }

Example 5-7. Getting Size and Position of Windows (Cont.)

Using the DM 5-16

5.5.3. Getting Position of Window Borders with PAD _$INQ_FULL_WINDOW

While PAD_$INQ_ WINDOWS returns information about the screen space available to your
program, PAD _$INQ_FULL_ WINDOW returns information about an entire window in
relation to the user’s display. PAD_$INQ_FULL_WINDOW returns information that tells
you how much of the display a window uses -- including its legend and border. Even if you
specify a window pane, PAD_$INQ_FULL_WINDOW returns information about the
outermost window related to the specified window pane. You might use this information if you
want to position a window on the user’s display so that it will not overlap an existing window.
To do so, use PAD _ $INQ__FULL _ WINDOW to get the dimensions of the existing windows to
calculate where to make the new window.

You can also use PAD _ $INQ__FULL _ WINDOW in programs that want to remember where the
user last placed a window. Use PAD__$INQ_ FULL_WINDOW to find out where the user
positions the window, and then, if the window is recreated at some future time, you can call
PAD _ $SET_FULL_ WINDOW to position the window in the same place. You can also use
PAD_$SET_FULL _ WINDOW to grow and move full windows.

Due to a current implementation restriction, if you use PAD__$SET_FULL_WINDOW on an
invisible window, the call makes the window visiblee. You will have to use another
PAD_$MAKE __INVISIBLE to make the window invisible again. Example 5-8 is an example of
setting the position of a full window.

PROGRAM pad_full window_show;
{ This program uses PAD calls to manipulate full windows. }

%INCLUDE °’/sys/ins/base.ins.pas’;
%INCLUDE ’/sys/ins/pad.ins.pas’;
%INCLUDE */sys/ins/cal.ins.pas’;
%INCLUDE ’/sys/ins/time.ins.pas’;
%INCLUDE *’/sys/ins/pgm.ins.pas’;
%INCLUDE °/sys/ins/error.ins.pas’;

CONST

no_border = FALSE.
VAR
stream_one : stream $id_t;
status : status_$t;
window : pad_$window_desc_t;

windowlist : pad_$window_list_t.
winlistsize : integer;
window _no : integer;
full_window : pad_$window_desc_t;

Lok stokok ook ok sk sk ok sk ke sk ke ok sk ok ok ok sk ok ok ok sk sk sk ok e ok Sk ok ok ok ok ok ok ok ok ok sk ok sk ok sk sk ok sk sk sk sk ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok sk sk ok ok ok ok ok kok *}

{* Procedure Check_status for error handling. (See Example 5-6). *}
{3 sekoksiokskokok sk dokokkokok ok skokokkokokokskokokskoksokoskokkokokokkoksiokok sk skokolokokskokok stk sk sk stk skokokskokokokokdokokokok ok k)
{* Procedure Hold_display to demonstrate calls. (See Example 5-6). *}

Lok skokookook s ok sk ok sk ok ok sk sk ok ok ok ok ok ok ok ke ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok sk ok ok sk ok ok s ok ok e sk ok ke ok ke ok s ke sk ok e ok ok ok ke ok ok ek sk ek ok sk ok sk ok *}

Example 5-8. Using PAD Calls to Manipulate a Full Window

@

5-17 Using the DM

BEGIN { Main Program }

. { Set original position of windows.
Create a window with pad_$create_window. }

pad_$inq_windows (stream one, { stream ID }
windowlist, { Array of windows }
winlistsize, { Number of windows to get info }
window_no, { Returns number of windows }
status): { Completion status }

check status;

pad_$make_invisible(stream one,
' window_no, { Returned by PAD_$INQ_WINDOWS }
status);
check status;

pad_$inq_full window (stream one,
window_no,
full window, { Returns full window position }
status)

check_status;

pad_$set_full window (stream ome,
window_no,
full window,
. status),
check_status;
hold_display:

pad_$make invisible (stream_one,
window no,
status);
check_status;

END. { pad_full window_show }

Example 5-8. Using PAD Calls to Manipulate a Full Window (Cont.)

5.5.4. Changing How Windows Look

You call PAD_$MAKE _INVISIBLE to make the specified window disappear; you call
PAD _$SELECT _ WINDOW to make it re-appear. The PAD_$POP_PUSH__ WINDOW and
PAD_$SET_BORDER calls use Boolean arguments to allow you to change the window
appearance. For example, if the program sets the Boolean argument in PAD _$SET_BORDER
to FALSE, PAD_$SET_BORDER removes the border from a window. If it is TRUE,
PAD _$SET__BORDER adds the border. (By default, all windows have borders;
PAD _$SET_BORDER adds the border only to windows made borderless by a previous call to
PAD__$SET_ BORDER.)

Example 5-9 is a sample program using these calls. Note that PAD __$SET__BORDER works
only with full windows. You cannot create a borderless window pane or frame. If you create a
borderless window and associate a window pane with that window, the border re-appears.

Using the DM 5-18

PROGRAM pad_window_show;

{ This program shows how to pop and push windows, make a
window visible and invisible, and remove a window border. }

%INCLUDE ’/sys/ins/base.ins.pas’;
%INCLUDE '/sys/ins/pad.ins.pas’;
%INCLUDE °/sys/ins/error.ins.pas’;
%INCLUDE ’/sys/ins/streams.ins.pas’;
%INCLUDE °’/sys/ins/pgm.ins.pas’;

CONST
display unit = 1;
auto_close = TRUE;
no_border = FALSE;
pop = TRUE;
push = FALSE;
VAR

stream_one
stream_two
stream_three
pane_stream

window_one
window_two
window_three

stream_$id_t;
stream_$id_t;
stream $id t;
stream_$id_t;

pad_$window_desc_t;

: pad_$window_desc_t;
: pad_$window_desc_t;

window_no1l integer;
window_no2 integer;
window_no3 integer;

window_1list

status status_$t;

pad_$window_list_t;

Lok steokeokeskeokof o ok sk sk ok s ok s sk sk sk ok sk ok o o ok Sk sk ok o 3 ok 8 3 o sk sk ok o ok ok ok 6 ok sk sk ok ok s ok ok ok sk ok ok ok ok ok ok ok ok sk ok e ok sk ok ke ok sk sk ok e sk ok ok sk ok *}

{* Procedure Check_status for error handling.

(See Example 5-6). *}

Lok sdeskokokkokeok ok ok ook ok ok sk ke ok ok o sk sk o ok sk o sk ok ke sk sk s oKk e sk sk o sk ok s sk e s sk sk ok sk ke ok sk sk sk o ok e sk ok ok ok e ok ok ok ek ok ok ok ok ok ok ok sk ok ok ok *}

BEGIN { Main Program }

AAAAA

using pad_$inq_windows. }

Set the original positions of the windows. }
Create 3 transcript pads with full windows using pad_$create_window. }
Make windows close when stream closes using pad_$set_auto_close. }

Get value of window_nol, window_no2, and window_no3 for next calls }

{ Remove border from the last window. }

pad_$set_border (stream_three,
window_no3,
no_border,
status) ;
check_status;

{ Stream ID }

{ Window number }

{ Set no border }

{ Completion status }

Example 5-9.

Changing How a Window Looks

5-19

Using the DM

{ Push the last window open to the bottom. }

pad_$pop_push_window (stream three,
window_no3,
push, { Push window }
status) ;

check status;

{ Pop the last window open to the top. }

pad_$pop_push_window (stream three,
window no3,
pPop. { Pop window }
status) ;

check_status;

{ Make the second window invisible. }

pad_$make_invisible (stream two, { Stream ID }
window_no2, { Window number }
status) ; { Completion status }

check status;

{ Make the first window invisible. }

pad_$make_invisible (stream one,
window_noi,
status) ;

check_status;

{ Make the first window visible again. }

pad_$select_window (stream one, { Stream ID }
window_noi, { Window number }
status) ; { Completion status }

check status;

{ Create pad and window pane on borderless window, note that
in doing so, the border re-appears. }

‘pad_$create (* *, { Null pathname }
0. { Null namelength }
pad_$input, { Type of pad }
stream_three, { Stream ID of related pad }
pad_$bottom, { Location on pad }
1. { Relative size }
20, { Height of pane (scaled) }
pane_stream, { Stream ID }
status) ;

check_status;
{ Close streams before terminating program using stream $close. }

END. { pad_window_show }

Example 5-9. Changing How a Window Looks (Cont.)

Using the DM 5-20

5.5.5. Inquiring About the User’s Display and Keyboard

You can use the system PAD _$INQ__DISP__ TYPE call to find out about the user’s display, and
tailor your program’s action according to it. For example, you can set up the position of your
windows according to the type of display in use. Example 5-10 checks for the user’s type of
display.

NOTE: If you are using graphics through GPR or GMR, it is better
to use the several GPR inquire calls to determine the specific
display attributes (such as the x and y dimensions). This
way, your program will be less device-dependent, and will
continue to work when new display types are introduced.

You can use the system call PAD_$INQ_KBD to find out about a user’s keyboard. For
example, you might want to set up program definition keys according to the type of keyboard in
use. Example 5-10 checks for the keyboard in use, and responds accordingly.

PROGRAM pad_inq_disp_kbd;

%INCLUDE °’/sys/ins/base.ins.pas”’;
%INCLUDE ’/sys/ins/pad.ins.pas’;
%INCLUDE ’/sys/ins/error.ins.pas’;
%INCLUDE *'/sys/ins/vimt.ins.pas’;
%INCLUDE ’'/sys/ins/pgm.ins.pas’;
%INCLUDE ’/sys/ins/cal.ins.pas’;
%INCLUDE °‘/sys/ins/time.ins.pas’;

CONST
max_windows = 10;
font_size = 0;
buffer = 256;
VAR
status . status_$t;
display type : pad_$display type_t;
unit_number . integer;
kbd_suffix . pad_$string t;
suffix_length : integer;

Lok skt ok sk ok sk ke o s ok sk ke ok ok ok sk sk s ok ok ok sk sk ok sk ok o sk ok s ok ok sk ok ok e sk ok ok ok sk sk sk ok ok ok ok skok o ok ok ok kok sk skok sk ok sk sk ok skok sk kkokk K

{* Procedure Check_status for error handling. (See Example 5-6). *}
Lok ook stk e ks s ks o ok ok o ok o o ks o ok ok o K o o ok sk ko o ok o ok ke ks o ok ok ok ke ok ko o ok sk sk ok ook ok ok sk kKRR KKk K)
{* Procedure Hold_display to demonstrate calls. (See Example 5-6) . *}

{* K 3 3k 3k 3K sk sk ok 3k sk ok o 3K ok ok ok 3k sk sk sk sk 3K ok ok ok 3k 3k sk ok 3k Sk sk sk ok sk Sk ske ke e e sk ok 3k sk 3k sk sk Sk Sk sk sk 3k Sk sk ok Sk o o sk ok 3k ok dfe o 3k Sk sk sk sk sk ok ke sk k ok *}
BEGIN { Main Program }

{ Find out which type of display is in use. }

pad_$ing_disp_type (stream $stdout, { Standard output stream - display }
display_type. { Returns type of display }
unit_number, { Returns unit number, always 1 }
status) ; { Completion status }

check _status;

Example 5-10. Inquiring About User’s Display and Keyboard

5-21 Using the DM

writeln;
writeln (° ===)
writeln (° Number of display units: °);

IF unit_number = 1 THEN
writeln (' There is ome display unit connected to this node. °*)

ELSE
BEGIN
writeln (' There are ’,unit_number,’ display units’) ;
writeln (’ connected to this node. °*);
END;
writeln.
writeln (° D I

writeln (° Type of display: ');
CASE display_type OF

pad_$bw_15p : writeln (° This is a black-and-white portrait. *)
pad_$bw_191 : writeln (' This is a black-and-white landscape. °);
pad_$color_display : writeln

(’ This is a color display (1024 x 1024 pixels). ') ;
pad_$800_color : writeln

(* This is a color display (1024 x 800 pixels). °);
pad_$none : writeln (* There is no display. °*):

END; { case }
{ Find out which keyboard is in use. }

pad_$inq _kbd (stream $stdout, { Standard output stream }

buffer, { size of string buffer }
kbd_suffix, { Returns keyboard suffix string }
suffix_length, { Returns keyboard suffix length }
status) ; { Completion status }
check_status;
writeln (°’).

IF suffix_length = O
THEN BEGIN

writeln (*® The keyboard suffix is 0 *);
writeln (* User has the 880 keyboard. ');

. END
ELSE IF kbd_suffix{suffix length] = ’2°’
THEN BEGIN

vimt_$write2 (° The keyboard suffix is:"%A" %. °,
kbd_suffix, suffix length)
writeln (* User has the low-profile keyboard. ’);
END
ELSE writeln (' Not sure which keyboard is in use. °);

Example 5-10. Inquiring About User’s Display and Keyboard (Cont.)

Using the DM 5-22

{ Redefine the keyboard function keys. }
IF (suffix_length = 0) OR (kbd_suffix[suffix_length] = *2*)
THEN BEGIN

writeln;
writeln (’° Redefining low-profile function keys. *);

pad_$def_pfk (stream $stdout, { Stream ID }

'Fi°, { Keyname }

"TT’, { DM command -- to top of window }
2, { Length of DM command }

status) ;

check status;
hold display:

END;

END. { pad_inq_disp_kbd }

Example 5-10. Inquiring About User’s Display and Keyboard (Cont.)

5.5.8. Specifying Character Fonts

You can specify different styles of character fonts that your program uses by changing the font
file. A font file contains binary data that defines the size and shape of each character. Different
font files define different typefaces (such as Times Roman or Old English), fonts (such as boldface
or italic), and size (such as 5x9 or 7x13).

Traditionally, a typeface has various attributes such as size and font. However, the Display
Manager font files do not make these distinctions. Instead, any variations of a typeface, font or
size constitutes a different font file, and no relationships exist between font files.

Most font files reside in the directory /SYS/DM/FONTS. You can tell the type of font by its
name. Fixed-width fonts begin with the letter f, and contain the size of the font in raster units.
Some have an extension indicating that the file is a variant of a standard file. For example,
*f5x9.b" is the boldface version of *f5x9". The extenstion, ".i" is the italics version, and ".iv" is
the inverted (reverse-video) version of the font.

You can specify any one of the fonts listed in that file in your program. A pad can use up to 100
fonts at the same time. Before you use a font, you must call PAD_$LOAD_FONT to inform
the Display Manager that you intend to use this font at some future time. Then you call
PAD_$USE__FONT to specify the current font for your program to use. You can use
PAD_$USE_FONT to switch between loaded fonts as often you want. The Display Manager
displays a character in a window by copying the character’s image from the current font to a
specified location in the window.

For more information about font files, see the description of the font editor, EDFONT in the

DOMAIN System Command Reference manual. This manual also lists the fonts available in
/SYS/DM/FONTS in the section describing the font load (FL) command.

5-23 Using the DM

Example 5-11 shows how to use PAD _$LOAD _FONT and PAD_$USE_FONT to specify a
font file. For another example of using fonts, see Example 5-20.

PROGRAM pad_font;

{ This program loads and uses fonts. It creates a transcript window, and
writes out a message, using the inverted font, £5x9.iv. The user
can put the keyboard cursor inside the pad to see the message. }

%INCLUDE ’/sys/ins/base.ins.pas’;
%INCLUDE °’/sys/ins/pad.ins.pas’;
%INCLUDE */sys/ins/error.ins.pas’;
%INCLUDE °/sys/ins/streams.ins.pas’;
%INCLUDE ’/sys/ins/vimt.ins.pas’;
%INCLUDE ’/sys/ins/cal.ins.pas’;
%INCLUDE ’/sys/ins/pgm.ins.pas’;
%INCLUDE ’/sys/ins/time.ins.pas’;

CONST

display unit =1;

window_no =1;

auto_close = TRUE;

trans_message = ' This is a transcript pad.’;

new_font_name = ’£5x9.iv’; { Fixed width inverted font }
VAR

source_stream : stream $id_t.

pane_stream . stream $id_t.

seek_key . stream_$sk_t;

status : status_$t;

window : pad_$window_desc_t;

new_font id ! integer;

Lok stokokeok ok ok sk ok sk ok ok ok ok ok sk ok ok ok ok ok o sk sk ke ke s ok ok ok ok s s sk sk ok s sk ok sk sk e s ok e s s ok sk s ke o s sk sk sk ke sk ok sk sk ok ook Sk s ok sk sk ok ok ok *}

{* Procedure Check_status for error handling. (See Example 5-6). *}
[k skstokskokskskok sk skook ok ok ook sk ok ok skskskokokok sk s ok ok skakoiok ok ok ko sk sk skokok sk ook ok ok skokokok skok sk bbbk ok skokkokkokok - %)
{* Procedure Hold_display to demonstrate calls. (See Example 5-6) . *}

Lo sokeskokoke otk ok ok ok ok ook sk ok o sk oK ook ok s ok ook sk o s o o Ko o K 3Kk sk ok KRRk kR Rk k)
BEGIN { Main Program }
{ Set position of future window. }
. { Create original transcript pad and window. }

{ Close window when stream closes. }

{ Load the standard inverted font, £5x9.iv, for transcript window. }

PAD_$LOAD_FONT (source_stream, { Stream ID }
new_font_name, { Font_name £5x9.iv }
SIZEOF (new_font_name), { Length of font_name }
new_font_id, { Returns font ID }
status) ; { Completion status }

check_status;

Example 5-11. Selecting a Character Font File

Using the DM 5-24

{ Use PAD_$USE FONT to have program use the desired font. }

PAD_$USE_FONT (source_stream, { Stream ID }
new_font_id, { Font ID loaded above }
status).

check_status;
{ write name of file in transcript pad. }

vimt_$ws2 (source_stream,
‘%A%, { Add newline after string using VFMT }
trans_message,
SIZEOF (trans_message)) ;

check_status; .

hold_display:

Example 5-11. Selecting a Character File File (Cont.)

5.5.7. Changing Scale Factors

Most system calls deal with screen locations by using absolute pixel (raster unit) coordinates.
Some PAD calls require the size of the current font to describe the location of text in terms of
lines and characters, rather than absolute locations or sizes.
These calls are:

e PAD_$CPR_ENABLE

e PAD _ $CREATE (with the PAD _ $ABS _ SIZE option)

e PAD _$CREATE _FRAME

o PAD _$INQ_ POSITION

e PAD_ $LOCATE

s PAD_$MOVE

e PAD _$INQ_ WINDOWS

For example, if you specify a five as the horizontal size in a PAD _ $MOVE call, you do not mean
five pixel locations, but rather five times the horizontal scale factor.

By default, the scale factor depends on the size of the font currently in use. You can change the
scale factors to be in raster units by using the PAD_$SET _ SCALE call. Normally, you specify
one for x and y when you use PAD_$SET _ SCALE, meaning the values of x and y will be in
pixels rather than lines and columns. Note that a column starts at one, so when scale factors are
according to lines and columns, the edge of the window is at column one. However, when scale
factors are in raster units, the edge of the window is zero.

To restore the default font-size scaling, use PAD_$SET__ SCALE, specifying zero as the value of
the x and y scale factors.

5-25 Using the DM

Example 5-12 shows the difference between a pad created with the default scale factor, and a pad
created after setting the scale to raster units with PAD _$SET__SCALE. Note that scaling
factors are in effect because it specifies the PAD _$ABS_ SIZE option when creating this pad.

PROGRAM pad_scale;

{ This program is a sample of using PAD_$SET_SCALE. The first
window creates a transcript pad that is & lines high. The second
window creates a transcript pad that is 20 raster units high. }

%INCLUDE °/sys/ins/base.ins.pas’;
%INCLUDE °/sys/ins/pad.ins.pas’;
%INCLUDE °’/sys/ins/error.ins.pas’;
%INCLUDE °/sys/ins/streams.ins.pas’;
%INCLUDE °/sys/ins/pgm.ins.pas”;
%INCLUDE ’/sys/ins/cal.ins.pas’;
%INCLUDE */sys/ins/time.ins.pas’;

CONST
display_unit = 1;
auto_close = TRUE;
window_no =1,

VAR
seek_key : stream $sk_t;
stream_one . stream_$id_t.
stream_ four : stream $id_t.
pane_stream one : stream $id _t;
pane_stream_four : stream $id_t;
status : status_$t.
window_one : pad_$window_desc_t;
window_two : pad_$window_desc_t;

Lok skeokeoke sk ok ook o ok ok ok ok e ok sk oo ok ke ok 6 o ok ok o ok s ok ke o ok s o sk ok o ok o sk ke ok sk e ok 3 3 ok sk sk ok sk s ok s ok sk ok sk sk sk sk sk ok sk skok s ok sk ok *}

{* Procedure Check_status for error handling. (See Example 5-6). %}
{k kokok ok ok ok ok kokokoob ok ok okok sk ok s okotokok ok ok koo ok sk ook soskstokokokok ok ook sk skolokokokokokokok ok okok sk 3
{* Procedure Hold display to demonstrate calls. (See Example 5-6) . *}

Lok skoksteotrotkdok sk Rk ok sk R ok ko KR Kok R R sk R ook ok sk ok sk ok sk ok ok ok kb ok ok ok okk ok}
BEGIN { Main Program }

{ Set position of future windows. }
. { Open the window as a transcript pad. }

pad_$create_window (* °*,
0.
pad_$transcript,
display unit,
window_one,
stream_one,
status)

check_status;

Example 5-12. Setting Scale Factors to Raster Units with PAD_$SET_ SCALE

Using the DM 5-26

pad_$create (* ’,
0.
pad_$transcript,
stream one,

pad_$top,

[pad_$abs_size], { Pad is absolute value }
5, { 5 lines high }
pane_stream_one,

status);

check status;
{ Open the window as a transcript pad. }

pad_$create_window (° °,
0.
pad_$transcript,
display unit,
window_two,
stream two,
status)

check_status;

{ Set scale of window height and width to be in raster units. }

pad_$set_scale (stream four,

1, { Scale factor for x-coordinate }
1, { Scale factor for y-coordinate }
status);

check_status;

pad_$create (° °,
0.
pad_$transcript,
stream_two,

pad_$top,

[pad_$abs_size], { Pad absolute size }
20, { Raster units }
pane_stream_two,

status) ;

check_status;

Example 5-12. Setting Scale Factors to Raster Units (Cont.)

5.5.8. Getting Current Scale Factors with PAD _$INQ _FONT

If you set the scale factor to raster units, you might want to know the scale factor of the current
font for another call. To do so, use PAD _ $INQ__FONT. Example 5-13 sets the scale to raster
units before creating a frame. To put the output cursor in the frame, it uses PAD_$MOVE. In
PAD _$MOVE, the x and y coordinates indicate where to locate the character on the display.
The y coordinate must be large enough to handle the height of the character font. To find out
the height, it uses a call to PAD_$INQ _FONT. For details on frames, see Section 5.7.

5-27 : Using the DM

PROGRAM pad_inq_font;

{ This program creates a frame at the top of the
and writes the prompt "#" inside the frame. }

%INCLUDE '/sys/ins/base.ins.pas’;
%INCLUDE ’'/sys/ins/pad.ins.pas’;
%INCLUDE °’/sys/ins/error.ins.pas’;
%INCLUDE ’/sys/ins/streams.ins.pas’;
%INCLUDE */sys/ins/pgm.ins.pas’;
%INCLUDE ’/sys/ins/cal.ins.pas’;
%INCLUDE °/sys/ins/time.ins.pas’;
CONST
display_unit = 1;
auto_close = TRUE;
prompt_str = ('# °);
max_windows = 1;
VAR
seek_key stream_$sk_t;
pane_stream stream $id_t;
status status_$t;
window_info pad_$window_list_t;
n_windows integer;
font_len integer;
font_height integer;
font_width integer;
Lok sokokokokoskorokokskok ook skokok ook o ko ok ok ook ok ok o o sk ok ok ok ok

{*
{*
{x*
{x

‘Procedure Check status for error handling.

ek ke e ook ko b e ke ook ok ok stk sk ok sk ok ok ok ok ok ok ok ok sk sk kel ks sk sk ok ok ok ok ok ok
Procedure Hold_display to demonstrate calls.
ook ook ok ok ok sk ok e ok sk ke ok ok sk ke ke o sk sk ok ok ook sk ok ok o sk ok sk sk ok ok sk sk sk ok ok ok ok ok sk ok
BEGIN { Main Program }

{ Get the size of the current window. }

pad_$inq windows (stream $stdout,

user’'s standard output pad,

sokskkokkkok sk ook sk ok Kok sk Kok sk Kok kR KKk K}
(See Example 5-6) . *}
ok skskosk ok skok ok kok ok ok sk ok ok skok kR kok ok k)
(See Example 5-6). *}
sk ok kokkok ok ok sk koK ok sk kR Rk kk

window_info,

max_windows,

n_windows,

status);
check status;

{ Current position of window }
{ Maximum no. of windows desired }
{ Number of windows open to pad }

{ Get the width and height of current font. }

pad_$inq_font (stream_ $stdout,
font_width,
font_height,
0.
font_len,
status) ;
check_status;

{ No need to know name }
{ No need to know name }

Example 5-13.

Using the DM

Using PAD_$INQ_FONT

5-28

pad_$set_scale (stream $stdout,
. 1,
1,
status) ;
check_status;

font_height,
status) ;
check_status;

pad_$move (stream $stdout,
pad_s$absolute,
5,
font_height,
status) ;
check_status;

seek_key,
status);
check_status;
hold_display.

stream_$put_chr (stream $stdout,
ADDR(prompt_str),
SIZEOF(prompt_

{ Set scale of window height and width to

{ Scale
{ Scale

pad_$create_frame (stream $stdout,
window_info[1] .width,

{ Raster
{ Height

str),

raster
factor

factor

{ Same
{ Same

units }

units. }
of x-coordinate }

of y-coorindate }

size as window }
height as font he

of font }

{ Put the prompt "#" in the input window with STREAM $PUT CHR. }

{ Pointer to buffer }
{ Number of bytes to read }

ight }

Example 5-13. Using PAD_$INQ_ FONT (Cont.)

5.5.9. Sample Program: Creating a Window to Run a Clock

Examaple 5-14 uses miscellaneous PAD calls to create a digital clock. By default, it places the
clock in the top left corner of the screen. The user can specify another position for the clock by
specifying the x,y coordinates when the user executes the program.

This program also creates and uses a frame. For details on frames, see Section 5.7.

5-29

Using the DM

PR

{

OGRAM pad_digclk;

This program displays a digital clock on the screen. The user

executes the program with the DM CPO command. The user can optionally
add the X,y coordinates on the command line to specify its location.
Otherwise the clock runs in the top left corner of the screen. }

%INCLUDE °’/sys/ins/base.ins.pas’;
%INCLUDE '/sys/ins/streams.ins.pas’;
%INCLUDE ’/sys/ins/pad.ins.pas’;
%INCLUDE ’/sys/ins/time.ins.pas’;
%INCLUDE ’/sys/ins/cal.ins.pas’;
%INCLUDE ’/sys/ins/vimt.ins.pas’;
%INCLUDE ’/sys/ins/pgm.ins.pas’;
%INCLUDE ’/sys/ins/pfm.ins.pas’;
CONST

font_name = 'f9x15.iv’; { Font file located in /sys/dm/fonts }

window_num = 1;

as_time len = 8;

border_size = 5;

close = TRUE;

no_bvorder = FALSE;
VAR

status status_$t;

window pad_$window_desc_t :=

[0.0, 10, 10]; { Default window location }

stream stream_$id_t;

font_id integer:

font_height : integer;

font_width integer;

hunoz integer;

hukairz integer;

one_second time_$clock t :=

[highi6 := 0,
low32 := 250000];

now cal_$timedate_rec_t;

last_minute : integer = -1;

as_time : ARRAY[1..as_time_len] OF char; { ASCII time }

key stream $SK_t.
Lo stoskokokokoke bk stk ke ke ok sk ke ke stk o ook skt s e e ek ks ke sk sk sk s ek ke ke sk s ke ek sk o ke ok
{* Procedure Check_status for error handling. (See Example 5-6).
Lok sokorskokookokokokokok sk s ook ok ok sk ook ok ook ke ke ke ook ok sk sk ke ok ok ok ke ke ok o e kol sk ook ok ke ok
Lok sokarokokoakokok s ko ook sk ok ook s ok s ok sk ko sk otk e sk o ok ok sk sk ke ok s sk sk ok ko e e ok o o ok ok o e ok
{* Procedure Get_num_arg checks to see if user provided arguments to specify
{* the x.y coordinates of the clock. PGM $GET ARG returns a string, so convert
{* it to an integer. If all goes well, the result is assigned to arg_val.
Lok sokaoskoroksoskokokok ok ook ok kol ko ok kok dokofok o sk stk ok stk sk sl sk sk ok ook sk ks sk ok ok ok ok o ok

*}
*}
*}

*}
*}
*}
*}
*}

Using the DM

Example 5-14. Using PAD Calls to Create a Clock

5-30

PROCEDURE get_num arg (arg_num: integer;
OUT arg_val: integer);

VAR
arg . string;
argl . integer:
hunoz . integer,;
hukairz : integer;
anywvay . integer;
number : integer;

BEGIN

{ Get argument from command line and assign its length to argl. }

argl := pgm $get_arg (arg_num, { Number of argument }
arg, { Returns argument string }
status, { Completion status }

SIZEOF (arg)). { Max length of argument }

IF status.all = status_$ok THEN
BEGIN

{ Convert string to integer and assign to variable, hunoz }

hunoz := vimt_$decode2(*%wd%.', { String }
arg, { Text buffer }
argl, { size of text buffer }
hukairz, { No need to know value }
status, { Completion status }
number, { Decoded data }
anyway). { Decoded data }

IF status.all = status_$ok THEN

arg_val = number;
END;

END; { get_num arg }
BEGIN { Main Program }

{ Get window left coordinate, if user supplies it. }
get_num _arg (1, window.left)

{ Get window top coordinate, if user supplies it. }
get_num arg (2, window.top);

{ Create the window —- note that the size is 10x10 pixels, we
will change it to after we know the font size. }
pad_$create_window (°’, { Null pathname }
0. { Null namelength }
pad_$transcript, { Type of pad }

1, { Number of display unit }
window, { Position of window }
stream, { Stream ID }

status) { Completion status }

Example 5-14. Using PAD Calls to Create a Clock (Cont.)

5-31

Using the DM

check_status;
pad_$set_auto_close(stream, window_num, close, status);
{ Load the font and use it. }

pad_$load_font (stream,
font_name,
SIZECF (font_name),
font_id, { Returns font ID }
status);
check_status;

pad_$use_font (stream, font_id, status);
check_status;

{ Get the size of the font in use. }
pad_$ing_font (stream,

font_width, { Returns width of font }

font_height, { Returns height of font }
hunoz, { No need to know value }

0, { No need to know value }

hukairz, { No need to know value }

status);

check status:

{ Adjust window width and height to font size. }

window.width font_width * as_time_len + border_size;
window.height := font height + border_size;

{ Make window borderless. }

pad_$set_border (stream, window num, no_border, status);
check_status;

{ set scale to pixel values. }

pad_$set_scale (stream, 1, 1, status);
check_status;

{ Set window to new size. }

pad_$set_full window (stream, window_num, window, status);
check_status;

{ Create a frame the same size as the window. }

pad_$create_frame (stream, window.width, window.height, status);
check status;

Example 5-14. Using PAD Calls to Create a Clock (Cont.)

Using the DM- 5-32

WHILE TRUE DO
BEGIN { Translate a system clock value into time value. }

cal_$decode_local_time (now);
IF now.minute <> last _minute THEN
BEGIN
{ If a minute has passed, clear the frame and write the
minute and second value. Note that this happens the
first time through. }

pad_$clear_frame (stream, O, status);
check_status;

vimt_$encodes ('%2wd:%2zwd:%2zwd%$’. as_time, as_time_len,
hunoz, now.hour, now.minute, now.second, O, O):

{ Put the output cursor at the left side of the frame. }
pad_s$move (stream,
pad_$absolute,
border_size,
font_height, { Must be at least font_height }
status)
check status;

stream_$put_rec (stream,
ADDR (as_time),
SIZEOF (as_time),
key,
status) ;
check_status:

END
ELSE BEGIN { Just write the seconds value. }

vimt_$encode2 (*%2zwd%$’. as_time, SIZEOF(as_time), .
hunoz, now.second, 0);

{ Move the output cursor to the 6th character position.
Note that this only works with a fixed-sized font. }

pad_$move (stream,
pad_$absolute,
border_size+6%font_width,
font_height,
status);

check status;

stream_$put_rec (stream,
ADDR(as_time),
2,
key,
status) ;
check_status;

END;

Example 5-14. Using PAD Calls to Create a Clock (Cont.)

5-33 Using the DM

last minute := now.minute;
time_$wait (time_$relative, one_second, status);
check_status;

END;

END. { pad_digclk }

Example 5-14. Using PAD Calls to Create a Clock (Cont.)

5.6. Using Icons

The DOMAIN system allows users to represent a window in icon format so they can set a window
aside without having to close its pad. You can use PAD calls to create a window in icon format,
change a full-sized window to icon format, set the position of icons, and change the icon character
displayed in the icon window.

Table 5-1 lists the PAD calls that create and manipulate icons.

Table 5-1. PAD System Calls to Create and Manipulate Icons

System Call Operation

PAD _$CREATE _ICON Creates a pad and window in icon format.

PAD _$MAKE _ICON Changes an existing window into icon format.

PAD _$INQ__ICON Returns information about a window in icon format.

PAD _$INQ__ICON_FONT Returns information about the current icon font.

PAD _ $ICON_ WAIT Waits until window is expanded from icon-format to
full-window size, or until icon moves.

PAD_$SET_ICON_FONT Sets the current icon font to a specified font name.

PAD _ $SET_ICON_ POSITION Moves or sets an icon position for future use.

5.8.1. Creating an Icon

To get an icon, your program can either create a window in icon format, or change an existing
window to icon format. To change a full-sized window into an icon, wuse the
PAD _$MAKE_ICON system call. To create a window in icon format, use the
PAD _$CREATE _ICON call.

Using the DM 5-34

Example 5-15 shows how to change a full-sized window into an icon wusing the
PAD_$MAKE _ICON system call. The argument stream win is the stream ID, in

STREAM _ $ID__ T format, of the window you want to change to icon format. Window _no is
the number of the specified window returned by PAD__$INQ_WINDOWS as described in
Section 5.5.1.

Icon__char is the icon font character to be displayed in the window. You can either specify a
character (such as "*") to get a specific icon character, or a blank character (* ’) to use the
default icon character for the type of pad. You can also specify a character from your own icon
font by making a previous call to PAD _$SET_ICON_FONT, which is described in Section

5.6.3. Status is the completion status returned by the call.

pad_$make_icon (stream win, { Stream of existing window }
window_no, { Windovw number }
', { Default icon character }
status); { Completion status }

Example 5-15. Changing a Window to an Icon

To create a new pad and window in icon format, use the PAD_$CREATE ICON call.
Example 5-16 shows how to create a new pad and window in icon format using this system call.

You supply the pathname and namelength, and type of the pad you want to create. For
details on these arguments, see Section 5.3.1.

Icon__pos is the location of the icon on the display, in PAD_ $POSITION _ T format. You set
the values of the x and y coordinates before making this call, if you want to specify the icon’s
location on the display.

Icon _char is the icon font character to be displayed in the window. You can either specify a
character (i.e., "*") to get a specific icon character, or a blank character (’ ’) to use the default
icon character for the type of pad. You can also specify a character from your own icon font by

making a call to PAD _ $SET__ ICON_FONT first. (See Section 5.6.3.)

Window indicates the size and position of the future window, in PAD _$WINDOW _DESC_ T
format. You set the values of window before making this call. Stream __win is the stream ID,

in STREAM _$ID __ T format, of the window you are creating. Status is the completion status
returned by the call.

{ Set the position of the icon to the upper right corner. }
icon_pos.x_cood := 1020
icon_pos.y_cood = 24;

{ Set location of future window. }

window. top = 600;
window.left 1= B00;
window.width = 8500;
window.height = 500;

Example 5~168. Creating an Icon

5-35 Using the DM

{ Create a new window in icon format. }

pad_$create_icon (pathname, { Pathname of pad }
namelength, { Length of pathname }
pad_$edit, { Type of pad }
display unit, { Number of display unit }
icon pos, { Location of icon on display }
icon_char, { Icon font character displayed }
window, { Location of future window }
stream_edit, { Stream ID }
status); { Status code }

Example 5-168. Creating an Icon (Cont.)

Once you have created an icon, you can change the icon to its associated window with the

PAD _ $SELECT _ WINDOW call.

5.6.2. Positioning an Icon

Oftentimes, a user has a particular place on the display for icons. Your program can check to see
if the user moved the icon, then places the icon in this same position the next time it is created.
The PAD _ $ICON _ WAIT system call automatically checks to see if the icon has been moved.

You can also change the position of the icon, or replace the current icon character, by using the
PAD _ $SET _ICON_POSITION call. If the window specified is already in icon format, then
the call moves the icon to the new location. If you want to change either the position or the icon
character without changing the other, use PAD _ $INQ __ICON first to determine the information
that is not changing.

Example 5-17 is a program that uses these system calls to place the icon where the user wants it.
It also uses PAD _ $SET _ ICON_POSITION to change the icon character in use.

PROGRAM pad_make_ icon;
{ This program is a sample of using icons. }

%INCLUDE ’/sys/ins/base.ins.pas’;
%INCLUDE ’/sys/ins/pad.ins.pas’;
%INCLUDE *'/sys/ins/error.ins.pas’;
%INCLUDE °/sys/ins/pgm.ins.pas’;
%INCLUDE °*/sys/ins/streams.ins.pas’;
%INCLUDE °/sys/ins/cal.ins.pas’;
%INCLUDE °/sys/ins/time.ins.pas’;

CONST
display_unit = 1;
auto_close = TRUE;

Exa.mplé 5-17. Changing Icon Position and Character

Using the DM 5-36

VAR

stream win . stream $id_t;

pane_stream : stream $id_t;

seek_key . stream $sk_t:

status : status_$t;

window : pad_$window_desc_t; <{ Position, height, width of window }
window_no : integer; { Number of windows open to a pad }
window_list : pad_$window_list_t: <{ Array of up to 10 windows }
window_size : integer; { Maximum no. of windows desired }
icon_pos : pad_$position_t: { Position of icom }

icon_char . char;

icon_moved : boolean := FALSE; { Checks if icon moved }

Lok skateokokeokeofe ok s ok sk ok ok ok ok sk o o s sk ok ok e s sk ok ok ke sk sk sk sk ke s s sk sk sk ke ok sk ok ok sk ok ok e o sk ek ok ke ok s ok ok ke ok ok sk ok sk ok ok ok o ok ok ok ok ok ok ok %}

{* Procedure Check_status for error handling. (See Example 5-6). *}
{F soksomkorkorksok ok ok dokkook ok ok ookkobkokok ook sokokkok ok ok sk stk sokok ko skokok ok ok sk ook ko skkoskok k- %
{* Procedure Hold_display to demonstrate calls. (See Example 5-6). *}

L sokokokskotonoseosfoke oot sk ok otk ko s ook s ok ook ok sk ok ook ok koo sk sk ok ok Ao sk sk sk kK ok ook ok ok
BEGIN { Main Program }

{ Set postion of future windows. }

{ Set position of icon to upper right corner. }

icon_pos.x coord := 1020;
icon_pos.y coord = 24;
{ Create a new transcript window using pad_$create_window. }
{ Get window statistics for next calls with pad_$ing windows. }
{ Make window close when stream closes with pad_$set_auto_close. }
{ Do work in window ... }

{ Change window into an icomn. }

icon_char := * *;

pad_$make icon (stream_win, { Stream ID }
window_no, { Window number }
icon_char, { Default character icon }
status). { Completion status }

check status;

{ Move position of icon and change the icon character. }

icon pos.x _coord := 950;
icon_pos.y_coord := 710;
icon_char =TT

pad_$set_icon_pos (stream win, { Stream ID }
window_no, { Window number }

icon_pos, { Position of icon }
icon_char, { Icon character }
status); { Completion status }

check_status:

Example 5-17. Changing Icon Position and Character (Cont.)

5-37 Using the DM

{ Suspend process until user expands window from icon format. }

pad_$icon_wait (stream win,

window_no,

icon_moved, { TRUE if icon moved }

icon_pos, { Returns new position of icon }
status);

check status;-
hold_display:

{ Turn transcript window into an icon. }

pad_$make_icon (stream win,
window_no,
icon_char.
status)

check_status:

hold display;

{ Close stream with stream_$close. }

END. { pad_make_icon }

Example 5-17. Changing Icon Position and Character (Cont.)

5.6.3. Creating Your Own Icon Font

You can determine which icon character will be displayed in the icon window by using the active
icon character set or supplying your own character set.

If you use the active icon character set, you can either specify which character you want, or
specify the blank character to get the default character for the type of window pad specified.

The default icon character set is contained in the font file /SYS/DM/FONTS/ICONS. You can
edit this font file to create your own icon characters by using the font editor, EDFONT.

You can also use EDFONT to create your own icon font file, and then use the
PAD _$SET_ICON_FONT call to supply its pathname. You can use
PAD _$INQ_ICON_FONT to get the pathname of the current icon font before replacing it
with your own font’s pathname, so that you can restore the original font before terminating your
program. For a complete description of EDFONT, see the DOMAIN System Command
Re ference manual.

5.6.4. Sample Prdgram: Uéing Icons

Example 5-18 is a sample program using various PAD calls to create and manipulate icons. It
creates a new window with an input pad in icon format. It uses STREAM __$PUT _ CHR to put
a prompt in the input pad, and a STREAM _ $GET _ REC to get input from the keyboard.

Using the DM 5-38

PROGRAM pad_create_icon;

%INCLUDE °*/sys/ins/base.ins.pas’;
%INCLUDE */sys/ins/pad.ins.pas’;
%INCLUDE ’/sys/ins/error.ins.pas’;
%INCLUDE ’/sys/ins/pgm.ins.pas’;
%INCLUDE °/sys/ins/streams.ins.pas’;
%INCLUDE '/sys/ins/cal.ins.pas’;
%INCLUDE °’/sys/ins/time.ins.pas’;

CONST
display unit
prompt_str
auto_close

VAR
stream win
pane_stream
seek_key
status

window
window_no
window_list
windovw_size

icon_pos
icon_char
icon_moved

buffer
return_ptr
return_len

Lok steokeokookokeskook sk ok ok sk ok ok o ke o ok ok ok ks sk st s s ok ok ok ok sk stk s o ok s ok ok sk stk ok o s ok s sk sk sk sk ok sk skl skolokskokokok . %k 3

stream $id_t;
stream $id_t:
stream_$sk_t;
status_$t;

pad_$window desc_t;
integer;
pad_$window_list_t;
integer;

pad_$position_t:
char;
boolean;

string;
~string.
integer32;

{ Position, height, width of window }
{ Number of windows open to a pad }

{ Array of up to 10 windows }

{ Maximum no. of windows desired }

{ Position of icon }

{ Indicates whether user moved icon }

{ Buffer to hold keyboard input }

{* Procedure Check_status for error handling.

{* Procedure Hold_display to demonstrate calls.

BEGIN { Main Program }

{ Set position

window. top

window.left
window.width
window.height := 300;

10;
= 10
;= 800;

of future windows. }

{ Set position of icon to upper right cornmer. }

icon_pos.x_coord

1020;

icon_pos.y coord := 24;

(See Example 5-6). *}
Lok ookt stokokokok sk kst sk ok ook ook sk ok ks ksl sk ook e ok ok s ko sk ke sk sk ke sk o ok ok ok ok sk ok sk sk ok ok ok ok e kok sk kokok ok %k }
(See Example 5-6). *}
Lk kst skokskokokskokkok sk koo sk ok ok ok ook ok ok o ok sk ok ok ok sk o ok ok ok o o K sk ok o ok ok oKk o koK sk Kok kK sk kKoK kKR K)

Example 5-18.

Using Icons

5-39

Using the DM

{ Create a new transcript window in icon format. The icon will have
the Shell icon character from the default icon font. }

icon_char := **’;

.

pad_$create_icon (* °*, { No pathname for transcript pad }
0, { No namelength }
pad_$transcript, { Type of pad }
display unit, { Which display unit -- 1 }
icon_pos, { Location —- x and y coordinates }
icon_char, { Icon font displayed }
window, { Location of future window }
stream win, { stream ID of new window }
status) { Completion status. }

check_status;

{ Create an input pad for the new transcript pad. This is a
window pane associated with the same window. }

pad_$create (* °, { No pathname for input pad }
0. { No namelength for input pad }
pad_$input, { Type of pad }
stream win, { Stream ID of related transcript pad }
pad_$bottom, { Input pads always go on bottom }
(. { Pane_size is relative }
20, { New pad takes up 20% of related window }
pane_stream, { Stream ID of this input pad }
status); { Completion status }

check_status;

{ Get window statistics for next calls. }

pad_$inq_windows (stream win, { Stream ID }
window_list, { Location, size of window }
window_size, { Max number of windows desired }
window_no, { Number of windows open to pad }
status); { status code }

check_status;
{ Make window close when stream closes. }

pad_$set_auto_close (stream win,
window_no,
auto_close,
status);
check_status;

{ Suspend process until user opens icon. It checks to see if icon
has moved. 1If it has, it moves the icon to the new position
when it returns to an icon. }

writeln (°’Process suspended until user turns icon into window, °)
writeln (’or until user moves the icon. If user turns icon into °’
writeln (’a window, it waits for input. After user types input,’
~writeln (’it waits 3 seconds, then turns the window into an icon.

’

o« NSNS
.. .

),

Example 5-18. Using Icons (Cont.)

Using the DM 5-40

END.

pad_$icon_wait (stream win,
window_no,
icon_moved,
icon_pos,
status).
check_status;

{ Put the prompt "#", in the input window with STREAM $PUT_CHR. }

stream_$put_chr (stream_win,
ADDR(prompt_str),
SIZEOF (prompt_str),
seek_key,
status);
check_status;
{ Get information
stream $get_rec (pane_stream,
ADDR(buffer),
SIZEOF(buffer),
return_ptr,
return_len,
seek_key,
status);
check_status;
hold_display:

{ Turn transcript window into an icon.

pad_$make_icon (stream win,
window_no,
icon_char,
status)

check_status;

hold_display;

{ Now, program turns window from icon format to full-sized window. }

writeln ('The program will now automatically turn the window *)
*from icon format to full-sized window, and then terminate. ’);

writeln (

pad_$select_window (stream win,
window_no,
status);

check_status:

hold_display;

stream $close (stream win,
status)

check_status:

{ pad_create_icon }

{ TRUE if icon moved. }
{ If TRUE, new position of icon. }

from input pad with STREAM_$GET REC. }

{ Stream of transcript pad }
{ Pointer to buffer }
{ Number of bytes to read }

{ Buffer holding input}

{ Return pointer }

{ Return length }

{ Seek key }

{ Completion status }

Example 5-18. Using Icons (Cont.)

5-41

Using the DM

5.7. Handling Graphics Input with Frames

Usually, your program output can be displayed on single lines of text. In this case, the program
can reposition the output cursor only horizontally from the beginning to the end of the line. In
some cases though, you may need to display more information than can fit on a line, and you
may want to move the cursor up and down as well as right to left. You can have this control
when you create a frame with the PAD _ $CREATE _ FRAME system call.

A frame is an area within a transcript pad where the cursor can move anywhere. As Example 5-1
illustrates, the debugger uses two frames in its display: one holds the pathname of the target
program, the other holds the source line numbers and an arrow pointing to the current line.

The most common reason for creating frames is for handling two-dimensional text output, in the
style of a dumb terminal. You can also get two-dimensional input in a frame. For more complex
graphics using I/O, see the Programming with DOMAIN Graphics Primitives manual.

NOTE: 1If you use GPR in frame mode for graphics input,
GPR uses PAD calls to create and manipulate frames.
Therefore, you cannot use the following PAD calls
in the same program: PAD_$CREATE FRAME, PAD_$CLEAR FRAME,
PAD_$CLOSE _FRAME, PAD_$DELETE FRAME, PAD_$SET_SCALE,
PAD_$LOAD_FONT or PAD_$USE_FONT.

If you use GPR in direct mode, there are even more
restrictions on using PAD system calls. For details, see
the Programming with DOMAIN Graphics Primitives manual.

5.7.1. Creating the Frame

You can create a frame in any transcript pad. If you create a frame on a new transcript pad, it
fills the entire transcript window. (The user can still scroll back to see the previous contents of
the transcript pad.) If your application is mostly graphics, you are more likely to use the original
pad.

Example 5-19 shows how to create a frame. You specify the stream ID of an existing transcript
pad, and the width and height of the new frame, scaled according to current scale factors.

Note that the Display Manager clips output to the frame size you specify. You will get the error
"value out of range" if you try to position the cursor outside the frame. Since there are no
efficiency penalties related to the size of the frame, you can simply create the maximum size
frame available (32767 x 32767 raster units), if you want.

CONST
max_frame sz = 32767

pad_$create_frame (stream trans, { Stream ID of existing transcript pad }
max_frame sz, { Width of new frame in pixels (scaled) }
max_frame_sz, { Height of new frame in pixels (scaled) }
status); { Completion status }

Example 5-19. Creating a Frame

Using the DM 5-42

If you create a frame of the maximum size, you can use the calls PAD_$INQ_VIEW and
PAD _$SET__ VIEW to position the pad over the part of the frame you want.

For example, your program may create a frame larger than the entire display to contain a large
picture, such as a mechanical drawing. You can allow the user to view pieces of the picture at a
time. If you want the user to have easy access to a particular part of the picture, such as the
title block, you can use PAD _$SET_ VIEW to move the window over the title block.

The DOMAIN Language Level Debugger is another example of using PAD_$INQ__ VIEW and
PAD _$SET __VIEW. If the user directs the debugger to a specified line number, the debugger
checks to see if the line number is already in view with PAD. $INQ__ VIEW. If not, it uses
PAD _$SET _ VIEW to move the window over the desired line number.

You can control output in a frame by using PAD calls that manipulate the output cursor. For
details, see Section 5.8.3.

5.7.2. Clearing the Frame

When you move the cursor to a certain position in the frame and write text there, you can make
the old text seem to disappear. But it doesn’t actually go away; it is still underneath the new
text. For example, when a user debugs a program, the arrow moves up and down the frame to
point to the current line. Each time the arrow moves, the Display Manager merely overwrites the
frame with the arrow’s new location; its previous locations still exist underneath.

If your program frequently overwrites text in a frame, you should wuse the
PAD _$CLEAR _FRAME call. This deletes all the text ever written, up to a point specified in
the call. If you specify zero, it deletes all the text. If you do not clear the frame yourself, and
the window needs to be redrawn (for example, due to popping windows), the redraw procedure
will be quite lengthy.

When you are finished with the frame, you call PAD_$CLOSE__FRAME. This closes the
frame, leaving the final image of the frame in the transcript pad, and returns the pad to line
mode. If you do not want this image on your transcript pad, you can call
PAD _$DELETE_FRAME instead. Note that this deletes the frame from the transcript pad
altogether, so you have no record of the text within the frame.

5.7.8. Sample Program: Creating and Writing to Frames

Example 5-20 is a program example that uses PAD calls to create and clear a frame. It also uses
other PAD calls described previously in this chapter.

This program creates a frame at the top of a window, and displays the name of a file in the
inverted version of the current font. It uses PAD _$INQ__FONT to get the name of the font,
and adds the .iv extension with the stringcopy function. Then it creates an edit pad under the
frame.

5-43 Using the DM

PROGRAM pad_filename;

as’;
pas’;

s.pas’;
as”’;

as’;

[1..512] OF CHAR; { String buffer }

%INCLUDE ’/sys/ins/base.ins.p
%INCLUDE ’/sys/ins/pad.ins.pas’;
%INCLUDE °/sys/ins/error.ins.
%INCLUDE ’/sys/ins/streams.in
%INCLUDE ’/sys/ins/vimt.ins.p
%INCLUDE ’/sys/ins/cal.ins.pas’;
%INCLUDE ’/sys/ins/pgm.ins.pas’;
%INCLUDE ’/sys/ins/time.ins.p
CONST

display_unit =1;

window_count =1;

auto_close = TRUE;

pane_size = 1;

max_frame size = 82767,
TYPE

bufstring = ARRAY
VAR

source_stream
pane_stream
pane_edit_stream

stream $id_t:
stream $id_t;
stream $id_t;

seek_Kkey stream $sk_t;

window pad_$window_desc t;

window_list pad_$window_list_t;

window_size integer;

frame_width integer;

frame_ height integer;

status . status_$t;

pathname . name_$pname t;

namelength integer:

count integer:;

source_name_font static integer := -1;

inverted_font name . pad_$string_t; { Buffer to make inverted name. }
font_heigth integer:

font_width integer;

font_len . integer; { size of font returned }
font_name . PAD_$STRING T;

i : integer;

Lok skeoke ok ok o ke sk s o ke ok ok o ke ok sk sk ok ke ok ke ok ok sk ke ok e ok ok ke sk sk e sk ok 3 ok ok ke sk ok e ok o ok sk e ok sk ke sk ok ke ok ok ke sk o ke ok sk ok ok sk skskok kb ok ok kR okk k)

{* Function stringcopy copies
{* number of characters to be

Lok stekeoke ook sk sk sk o ok o ok ok ke ok s ok sk o ok o sk e ok ke ok ke ok ke ok ke ok sk ok ke sk ok ok ok ok ke sk sk ok sk sk ok ok ok ok ok sk sk ok sk ok ok sk sk ok ok ok sk sk ok sk sk ok ok ok ke sk ok ok ok

FUNCTION stringcopy (IN src
OUT dst

VAR

i, j : integer;

a given string to a buffer, and returns the
copied. It stops at the character pair, %$.

: UNIV bufstring;

: UNIV bufstring) : integer;

{ Indexes to src and dst strings }

*}
*}
*}

Example 5-20. Displaying a Filename at the Top of a File

Using the DM

5-44

BEGIN { stringcopy }

i=1; { Initialize the indexes }
o=
WHILE (src[i] <> *%’) OR (src[i+1] <> *$’') DO
BEGIN
dst[j] := srcli];
i:=1+1;
=3+ 1
END;
stringcopy = j - 1; { The number of characters copied. }
RETURN;

END; { stringcopy }

Lok skokokokskofokoke sk b ke oe sk ok ok s oo sk sk st s o sk ok ok o ook sk sk s s sk sk sk ke s sk s sk s o sk sk sk ok sk sk sk o o ok ok ok ok sk ok ok s ok ok ok ok ok sk ok ok ok ok ok ok ok %}

{* Procedure Check_status for error handling. (See Example 5-6) . *}
Lk sskokokokorokdokokok ok ok ok skok sk kskok ok sk sk okok s ok sk ok o ok ok ok o Kook ok o ok ok ok ok sk ok sk ook sk sk ok ko okok ko ok k)
{* Procedure Hold_display to demonstrate calls. (See Example 5-6) . *}

L koo sok ook ok sk ok ok sk ok ook ok ko sk sk sk ook sk skok ok s ko ok sk ok sokokokkok ok % 3
BEGIN { Main Program }

{ Set position of future window. }

window. top = 10;
window.left = 10;
window.width := 500;

window.height := 500;
{ Get pathname from keyboard and set values of pathname, namelength. }
writeln (’Type in the pathname of the file: *);

vimt_$read2(%" "%eka%.’.
o count,
status,
pathname,
namelength) ;
check_status;

{ Create original transcript pad and window. }

pad_$create_window(°’, { No pathname for transcript pad }
o, { No namelength for transcript pad }
pad_$transcript, { Type of pad }
display unit, { Number of display unit }
window, { Position of window }
source_stream, { Returns stream ID }
status) ; { Completion status }

check_status;

Example 5-20. Displaying a Filename at the Top of a File (Cont.)

5-45 ; Using the DM

{ Close window when stream closes. }

pad_$set_auto_close (source_stream, { Stream ID }

window_count, { Number of window }
auto_close, { Flag —- set to TRUE }
status) ; { Completion status }

check_status;

{ Make a transcript pad and window pane for the name of file. }

pad_$create (*°, { No pathname }
0, { No namelength }
pad_$transcript, { Type of pad }
source_stream, { Same stream ID as window above }
pad_$top, { Location of new window pane }
[pad_$abs_size]l, { Pane size is absolute value }
pane_size, { Pane height is 1 line }
pane_stream, { Stream ID of window pane }
status); { Completion status }

check_status;
{ Close window when stream closes. }

pad_$set_auto_close (pane_stream,
window_count,
auto_close,
status) ;
check status;

{ Now make frame in above pad to hold inverted pathname. }

W

frame width max_frame size;

frame_height := pane_size;

pad_$create_frame (pane_stream, { Ssame as window pane }
frame_width, { Same as window pane }
frame_height, { Same as window pane }
status)

check status;
hold display;

{ Before printing the filename, find out the inverted font name of
the font name in use. }

inverted_font_name := (* °);

pad_$inq_font (source_stream, { Stream ID of original transcript pad
font_width, { Returns width of font }
font_height, { Returns height of font }
font_name, { Returns name of font }
SIZEOF (font_name) ,{ Size of buffer for font_name }
font_len, { Length of font_name }
status); { Completion status }

inverted_font_name := font_name. <{ Copy to working buffer }

Example 5-20. Displaying a Filename at the Top of a File (Cont.)

Using the DM 5-46

{ Assume font is not bold, try loading the bold inverted
version of the same font by adding the extension (".b.iv")
to the font_name with the stringcopy function. }

i := font_len +
stringcopy(’.b.iv%$’, inverted font_name(font_len + 1]);

pad_$load_font (pane_stream, { Stream of frame }
inverted_font_name, { Font name + ".b.iv" }
i, { Length of font_name }
source_name_font, { Returns font ID }
status) ; { Completion status }

{ If the font is already bold, it returns an error, so try
adding the inverted extension (*.iv") only. }

IF status.all <> O THEN
BEGIN
i := font_len +
stringcopy (' .iv%$’', inverted font name[font_len + 1]);

pad_$load_font (pane_stream,
inverted_font_name,
i,
source_name_font,
status) ;

IF status.all <> O THEN

BEGIN
source_name_font := O; { Use the default font. }
status.all := status_$ok;

END;

END;

{ Now clear the frame to erase any old filenames, and
write the new name. }

pad_$clear_frame (pane_stream,
0, { Clear entire frame }
status) ;

check_status;

{ Use PAD_USE FONT to have program use the desired font. }

IF source_name_font <> O THEN

BEGIN
pad_$use_font (pane stream, { Stream of frame }
source_name_font, { Font ID returned above }
status);
status.all := status_$ok;
END;

Example 5-20. Displaying a Filename at the Top of a File (Cont.)

5-47 Using the DM

END.

{ Put output cursor in frame. }

pad_$move (pane_stream,
pad_$absolute, { Move relative to top left of frame }

5, { x coordinate relative to frame }
1, { y coordinate relative to frame }
status) ;

check status;
{ Write name of file in frame. }

stream_$put_rec (pane_stream,
ADDR (pathname) ,
namelength,
seek_key,
status) ;

check_status;

hold_display.

{ Make an edit pane for the rest of the window below the frame, and
associate it with specified file. }

pad_$create (pathname,

namelength,

pad_$edit,

source_stream, { Same stream ID as window }

pad_$bottom, { New pane position on original pad }

1. { Pane height relative to original pad }

100, { Height = 100% of original pad, minus frame. }
pane_edit_strean, { Returns stream ID of window pane }
status);

check status;

{ Close edit pad when stream closes. }

pad_$set_auto_close (pane_edit_stream,
window_count,
auto_close,
status) ;

check_status:

{ Close the streams. }

stream $close(pane_edit_stream, status).
check_status;

stream $close(pane_stream, status
check_status;

stream_$close(source_stream, status);
check_status;

{ pad_filename }

Example 5-20. Displaying a Filename at the Top of a File (Cont.)

Using the DM 5-48

5.8. Sending and Receiving Program Input

To handle input and output, most programs use an input pad and the STREAM system calls
described in Chapter 4. In this case, the operating system reads text from the keyboard, buffers
it in the input pad (so the user can edit the line), and then copies it to the transcript pad (when
the user hits <RETURN>). Your program reads from the input pad.

Sometimes, you might want to bypass any system processing, for example, to prevent the system
from echoing any input on the display. Your program can read the keyboard input directly if you
put the input pad in raw mode. Section 5.8.1 describes getting and receiving input in the normal,
cooked mode. Section 5.8.2 describes how to bypass system input in raw mode.

5.8.1. Processing System Input in Cooked Mode

Normally, when your program receives keyboard input, it buffers it in the input pad to allow the
user to edit it before submitting it to the program by pressing <RETURN>. This is called
cooked mode processing because the display manager cooks (or preprocesses) the keyboard input
by displaying each keystroke in the input pad. Cooked mode allows the user to edit the input
before signaling the program to read it by pressing <RETURN>. It then copies the text from
the input pad to the transcript pad.

Every input pad starts out in cooked mode unless you create the input pad with the

[PAD _$INIT _ RAW] option to initialize it in raw mode.

When you exchange data with the Display Manager, you usually do it in terms of stream records.

A stream record is usually a string of visible text with the NEWLINE character marking its
end. Stream records can contain any character, including control characters (such as NEWLINE
or form feed) at any character position. The Display Manager limits stream records to 256
characters in length.

Some stream calls deal with incomplete records or single characters. When your program sends
partial data to the Display Manager through stream calls to standard output, the Display
Manager buffers the partial text. It becomes visible in the transcript pad only when you issue a
stream call to complete the record.

For example, if you write an incomplete record to the transcript pad and then ask for an input
record, the Display Manager moves the incomplete record to the input pad as a prompt that tells
the user what to type. When the user types a record and presses RETURN, the Display Manager
moves the complete record (your prompt and the user’s response) to the transcript pad. The
user’s response becomes the input record for your program.

5.8.2. Bypassing System Input Processing with Raw Mode

In raw mode, the Display Manager does not buffer keystrokes in the input pad, nor does it echo
them in the transcript pad. Actually, the input window goes away, and the keyboard cursor is
tied to the transcript pad’s output cursor when the cursor is in the transcript window. A
common use for raw mode is to ask for a user’s password without recording it in the transcript
pad.

The program can also read the keyboard cursor position at each keystroke if you use the

PAD _ $CPR _ENABLE call. This is most useful for graphics input. (However, in most cases, you
will want to use GPR rather than PAD calls for graphics input.)

5-49 Using the DM

In raw mode, you can call STREAM_$GET_REC or STREAM _$GET_BUF to get the
characters that the user typed at the time of the call. It gets as many characters as the limit you
specified in the call.

Example 5-21 is a program that uses the PAD_$RAW call to request the user’s password
without having it echo in the transcript pad. When you are done using raw mode, be sure to
return the pad to normal, or cooked mode.

PROGRAM pad_raw_mode;

{ This program shows how to use raw mode. It asks for your
password but does not echo the input to the screen. After
you type in your password, it replies,“"Thank you." }

%INCLUDE '/sys/ins/base.ins.pas’;
%INCLUDE '/sys/ins/pad.ins.pas’;
%INCLUDE ’/sys/ins/error.ins.pas’;
%INCLUDE ’/sys/ins/streams.ins.pas’;
%INCLUDE ’/sys/ins/pgm.ins.pas’;

CONST
display unit = 1;
auto_close = TRUE;
message = (’ Enter your password: ‘):
reply = (' Thank you. °);
window_no =1;

VAR
stream one . stream_ $id_t.
pane_stream @ stream $id_t;
seek_key . stream $sk_t;
status . status_$t.
window_one . pad_$window_desc t;
window_list : pad_$window_list_t;
move_char : integer;
buffer : string. { Buffer to hold keyboard input }
return_ptr : “string;
return_len : integer32;
i . integer;

Lok skookokok stk ok st se sk ok o s e sk sk sk ok ok ke sk sk sk ok sk sk ok ok ok sk sk ok sk sk ok ke ok ok e ok ok sk o sk o sk sk sk ok sk ok sk ok sk sk ok skok sk sk sk ok ok sk kokok sk okkkk %

{* Procedure Check_status for error handling. (See Example 5-6) . *}
Lok sk sk sk koo ook sk ook ook ok ok ok o ok ook s ko ook sk ook ok o ks sk s ok s ko sk ok ok ok ko ok k)

Example 5-21. Using Raw Mode

Using the DM 5-50

BEGIN { Main Program }

{ Create an input pad and initialize it in raw mode. }

pad_$create (° °,
0,
pad_$input,
stream one,
pad_$bottom,
[pad_$init_raw],
20,
pane_stream,
status)
check_status;

{ Write message to the transcript pad. }

stream $put_rec (stream one,
ADDR(message),
SIZEOF (message),
seek_key,
status) ;
check_status;

{ Get input from keyboard. It gets each character until it
reaches a carriage return. }

i:=1;
REPEAT
stream $get_rec (pane_stream, { Standard input -- keyboard }

ADDR(buffer[i]), { Buffer holding input}
SIZEOF(buffer) -i + 1,

return_ptr, { Return pointer }
return_len, { Return length }
seek_key, { Seek key }
status) { Completion status }
check_status;
i := 1 + return_len;

UNTIL buffer[i - 1] = CHR(pad_$cr);
{ Move output cursor to where the message text ends. }
move_ char := sizeof (message) + 1.

pad_$move (stream one,
pad_$absolute,
move_char,
1,
status) ;
check_status;

Example 5-21. Using Raw Mode (Cont.)

5-51

Using the DM

{ Write reply in window. }

stream $put_rec (stream one,
ADDR(reply),
SIZEOF(reply).
seek_Xkey,
status) ;
check_status;

{ Return to normal cooked processing before closing stream. }

pad_$cooked (pane_stream, status);
check_status;

stream $close (stream one, status);
check_status;

END. { pad_raw_mode }

Example 5-21. Using Raw Mode (Cont.)

5.8.3. Controlling System Output with Cursors

To control output in a frame, you can use PAD calls that manipulate the output cursor. Each

transcript pad has an invisible output cursor that points to the position where the next
program output will appear. You control the position of the output cursor with the
PAD _ $MOVE system call.

You can also have indirect control over the keyboard cursor if your input pad is in raw mode.
Each display has a visible keyboard cursor that indicates where the next typed character will
appear. The keyboard cursor is a blinking rectangle, or in touchpad mode, a small arrow. The
user controls the position of the keyboard cursor with Display Manager commands. If the user
moves the keyboard cursor to the corresponding transcript pad, the keyboard cursor follows the
output cursor each time the program sends output to the transcript pad.

In raw mode, your program can use the PAD _$LOCATE and PAD_$CPR__ENABLE calls to
get the location of the keyboard cursor each time the user types a character. Example 5-22 shows
how to use PAD _ $CPR_ ENABLE to report cursor positions in raw mode.

PROGRAM pad cpr_enable;

{ This program turns the user’s standard input into raw mode, waits for
user to type a character, then reports the character position. }

%INCLUDE °/sys/ins/base.ins.pas’;
%INCLUDE "/sys/ins/pad.ins.pas’;
%INCLUDE '/sys/ins/error.ins.pas’;
%INCLUDE ’/sys/ins/streams.ins.pas’;
%INCLUDE °/sys/ins/vimt.ins.pas’;
%INCLUDE '/sys/ins/pgm.ins.pas’;

Example 5-22. Using PAD_$CPR__ENABLE to Report Cursor Positions

Using the DM 5-52

CONST
display unit 1;
max_frame size = 32767

TYPE
{ Use this record to receive input. Normally, you would get
cursor position reports by finding the flag in a stream of
data from the keyboard. This record allows for efficient
handling of a single CPR. }

report = PACKED RECORD
flag : 0..255; { Should be 16#FF }
xhi, xlo : 0..255; Integer } ‘
yhi, ylo : 0..255; Integer }
text : char;

END; { type }

o~

VAR
stream_in . stream _$id_t := stream_$stdin;
stream out : stream $id t := stream_$stdout;
seek_key : stream $sk_t;
status . status_$t.
return_len : integer32;
bufptr . “report;
return_ptr : ~“report;
report_buf : report;
ix : integer;
iy . integer;
outbuf . array [1..2] of char;

Lok kst skokok ok sk sk ok ok ok e ok ok sk ok ok ke ok sk ook ok 3 sk 3k sk sk ok sk sk ok s sk ok s ok ok 5K sk ke ok sk s ok sk sk ko ok ok ok s sk ok ok ok ok sk ok ok sk ok s ok ok sk sk ok ok ok ok *}

{* Procedure Check_status for error handling. (See Example 5-6). *}
{k kbbb ok ok kokokkok ok sobkokk ok ok sk dokokok ok sk ok ok skobok ok ok ko stk sokokokskoksko sk ok sokskokokokokokokokokokok

BEGIN { Main Program }

{ Create a frame on user’s transcript pad to read cursor position
reports. }

pad_$create_frame (stream out,
max_frame_size,
. max_frame_size,
status)
check_status;

{ Change input pad to raw mode to get cursor position reports. }

pad_$raw (stream in, status);
check_status;

{ Get a cursor position report for each keystroke. }

pad_$cpr_enable (stream in, PAD_$CPR_ALL, status);
check status;

Example 5-22. Using PAD _$CPR__ENABLE to Report Cursor Positions (Cont.)

5-53 Using the DM

{ Get input from keyboard. }

stream $get_rec (stream in, { standard input -- keyboard }
ADDR(report_buf), { Buffer holding input}
SIZEOF (report_buf), { Size of buffer }

return_ptr, { Return pointer }
return_len, { Return length }
seek_key, { Seek key }

status) { Completion status }

check_status:

{ X and Y must be integers aligned on word boundaries. Since they follow
a Boolean in the record, they are not aligned. X and y are defined as an
array of 255 integers so they can be aligned. }

WITH return_ptr~ DO

BEGIN
ix = xhi * 256 + xlo;
iy = yhi =* 256 + ylo;
END;

{ Move the output cursor to where the user put the input cursor. }

pad_$move (stream out,
pad_$absolute,
ix,
iy,
status) ;
check_status;

{ This is the character the user entered. The NEWLINE character marks
the end of the display record. }

outbuf [1] := return_ptr~.text;
outbuf [2] := CHR(pad_$newline) ;

{ Write to the keyboard the character that the user typed. }

stream $put_rec (stream out,
ADDR (outbuf),
SIZEOF (outbuf),
seek_key,
status);
check_status:

{ Close frame and return to cooked mode before program exits. }

pad_$close_frame (stream out, status);
check_status;

pad_$cooked (stream_in, status);
check_status;

END. { pad_cpr_enable }

Example 5-22. Using PAD _$CPR_ ENABLE to Report Cursor Positions (Cont.)

Using the DM 5-54

You can also control the cursor’s position by redefining the arrow keys (with
PAD _ $DEF _ PFK) on the user’s keyboard, so that they can signal your program rather than
invoke Display Manager commands. If your program is in raw mode, your program can respond
to these keystrokes by moving the cursors. The user can still move the cursor by using the mouse
or touchpad.

5.8.4. Writing to an Output Stream: Control Codes and Escape Sequences

When your program writes to an output stream under the control of the Display Manager, ASCII
characters (codes from 32 to 126 decimal) instruct the Display Manager to produce the visible
character that corresponds to the code. The Display Manager refers to the current character font
to determine the appearance of the visible character.

Some ASCII characters (codes from 0 to 31 decimal) do-not correspond to a particular character,

but rather to a control code. A control code tells the Display Manager to take a formatting
action on the window or window pane in which they are sent. Table 5-2 lists these special
actions.

Table 5-2. Control Codes to Format Output to Windows and Panes

Name ASCII Character Desecription
(Decimal)

PAD _$CR 13 Moves the cursor to the start of the same
line it is on.

PAD _$ESCAPE 27 Introduces a literal: the Display
Manager does not interpret the next character.
PAD _$FF 12 Makes subsequent output start at the top
of the window or window pane.
PAD_$NEWLINE 10 Marks the end of an input or output line;
makes subsequent text start on a new line.
PAD _$TAB 9 Moves the cursor to the next tab stop.
PAD _ $BS 8 Moves the cursor one character position to

the left, if there is room in the window. (This
is meaningful only if the current font has
characters of the same width.)

To prevent the Display Manager from interpreting a control code literally, it can be preceded
with the PAD_$ESCAPE character. Instead of performing the control code, the Display
Manager writes the control code literally (if the current font has a character corresponding to
that control code).

In certain cases, the PAD_$ESCAPE character introduces a multicharacter sequence. The
Display Manager supports certain escape sequences, according to the ANSI standard. When you
write such an escape character to a stream controlled by the Display Manager, it takes a special
effect on the line or frame where the output cursor is located. These are useful alternatives to
some Display Manager calls.

5-55 Using the DM

When you use escape sequences in lines instead of frames, the Display Manager ignores the line
parameter, and the action occurs on the current line (pointed to by the output cursor).

Table 5-3 lists the multicharacter escape sequences. The *ESC* stands for the character
PAD _ $ESCAPE.

Table 5-3. Escape Sequences

Control Sequence Description

ESC|line;columnH Moves the cursor to the specified line and column.

If used outside a frame, the Display Manager ignores
the line parameter, and moves the cursor to the
specified column of the current line.

ESC[OK Erases characters in the current line, from the output
cursor to the end of the line.

ESC[1K Erases characters in the current line, from the
start of the line to the output cursor.

ESC[2K Erases the entire curent line.

ESC[0J Erases character positions in the frame, from the
output cursor to the end of the line.

ESC[1J Erases character positions in the frame, from the
start of the line to the output cursor.

ESC[2J Erases the entire frame.

5.9. Using Paste Buffers

Paste buffers are stream files located in the directory ‘NODE_ DATA/PASTE__BUFFERS.
During your program’s execution, you can use paste buffers to hold text or graphic images that a
user cuts from one part of the pad, and intends to paste into the same or different pad. You can
think of them as clipboards for your users to hold information temporarily.

5.9.1. Reading and Writing to Paste Buffers

Users gain access to paste buffers by using the Display Manager commands for copy (XC), cut
(XD), and paste (XP). Programs gain access to paste buffers by using the system calls
PBUFS_ $CREATE and PBUFS__ $OPEN, then reading or writing the contents of the file using
stream calls.

Programs can also use the PAD_$DM__CMD to invoke a keyboard-style Display Manager
command that cuts or pastes text, specifying a particular paste buffer.

When you create a paste buffer, you must refer to it by name. The name of the paste buffer is

the object name of the buffer file in the directory ‘NODE__DATA/PASTE _BUFFERS. Since
the paste buffers always reside in this directory, paste buffer calls do not allow you to specify a

Using the DM 5-56

full pathname as the name of the paste buffer. The name must be 32 characters, padded with
blanks.

Each paste buffer can hold either text or image data. Text paste buffers are simply UASC
stream files, and can be read with stream calls. Image paste buffers are essentially graphics map
files (GMF). For details on GMF files, see the Programming with DOMAIN Graphics
Primitives manual. When you create the paste buffer, you must specify whether it contains type
or graphic images. Once created, you must use the buffer according to its type.

All paste buffers (that is, all files in ‘NODE__ DATA/PASTE _ BUFFERS) are temporary, and go
away when your program terminates, or when the user logs out.

5.9.2. Sample Program: Using Paste Buffers

Example 5-23 is an example of a program using PBUFS calls. It asks the user to supply the
name of the paste buffer. If it exists, it writes the contents of the buffer. If it does not exist, it
reads lines of input from the keyboard until the user types CTRL/Z. It repeats the sequence,
asking the user to supply names of paste buffers until the user types STOP.

PROGRAM pbufs_paste_buffer(input, output);
{ This program manipulates paste buffers. }

%INCLUDE ’/sys/ins/base.ins.pas’;
%INCLUDE °/sys/ins/streams.ins.pas’;
%INCLUDE '/sys/ins/error.ins.pas’;
%INCLUDE ’/sys/ins/pgm.ins.pas’;
%INCLUDE °/sys/ins/name.ins.pas’;
%INCLUDE °’/sys/ins/pbufs.ins.pas’;
%INCLUDE ’/sys/ins/pad.ins.pas’;

CONST
text = TRUE:.

VAR
stream buf : stream $id_t;
status . status_$t;
info : name_$pname t;
buffer_name : name $pname_t;
seek_key . stream $sk t;
buflen . integer32;
retptr :“name_$pname_t;
retlen . integer32;
done . boolean:

Lok seokeskok ko koo ok ok s ok ok ok o ok ko o ko ok ok o ok ok o sk ok o ks o ko sk sk sk ks ok ok sk sk s ok ok s ks ok ok sk kol sk ok sk sk kokok sk k
{* Procedure Check_status for error handling. (See Example 5-6). *}
Lok skokorskskokskok ook ok s kok ke o ok o sk ok sk ek o sk ok ok s ok ko skt ok ok ok ok ko ok sk sk ks ki skokskokok ok ok oskokok ok

Example 5-23. Using Paste Buffers

5-57 Using the DM

PROCEDURE error_routine; - { for error handling }
BEGIN
pgm_$set_severity(pgm_ $error);
pgm_$exit;
END; { error_routine }
Lok skokabotesteskofeokoke ol ook o ok ok o o s o ke o ko sk o ok ke ks ko o o sk ke ok ok sk s ok ook ok ook sk sk ok ook ok ok ok ok ok)
BEGIN { MAIN PROGRAM }
{ write initial prompt }

done := FALSE,

writeln (° ')
writeln (’° Type the name of the paste buffer: °’);
writeln (* Or type STOP to quit. ’);

writeln;

readln (buffer_name)

IF (buffer_name = °'STOP’) OR (buffer_name = ’stop’)
THEN done := TRUE;

WHILE NOT done DO

BEGIN

{ Open existing paste buffer and write contents to screen. }

pbufs_$open (buffer_name, { Name of existing buffer }
text, { Text buffer }
stream buf, { Returns stream ID }
status) { Completion status }

IF status.all = status_$ok THEN
BEGIN

{ Read data from existing paste buffer. }

writeln (*).
writeln (’'This is the contents of paste buffer °’,buffer name, ’:*);
writeln;

WHILE status.all = status_$ok DO
BEGIN

{ Read a line and write it to screen. }
stream $get_rec (stream_buf, { Stream ID }

ADDR (info), { Address of input line }
SIZEOF (info), { Length of input line }

retptr, { Returns pointer to input }
retlen, { Returns length of input }
seek_key, { Seek key }

status) ; { Completion status }

Example 5-23. Using Paste Buffers (Cont.)

Using the DM 5-58

IF status.code = stream $end_of_file THEN { Test for EOF }

EXIT,;
{ Write buffer line to screen }
writeln (° ’, retptr~ :@ retlen)

IF (status.all <> status_$ok) THEN
error_routine;
END; { While there is input }

END { if }
ELSE IF status.code = stream $name_not_found THEN

BEGIN
{ Input data in new paste buffer }

pbufs_$create (buffer_name, { Name of buffer }
text, { Text buffer }
stream_buf, { Returns: stream ID of buffer }
status) { Completion status }

check_status;

{ Get information from keyboard for paste buffer }

writeln (°)
writeln;

writeln (* Type information for paste buffer, one line ');
writeln (* at a time. Or type CTRL/Z to stop.’);

WHILE NOT eof DO
BEGIN { User has input. }

readln(info) ;

buflen := SIZEOF(info);

WHILE (info[buflen] = * *) AND (buflen > O) DO

buflen := buflen - i; { Get rid of trailing blanks }
buflen := buflen + 1;

{ Terminate line with NEWLINE character: }

info[buflen] := CHR(pad_$newline);

stream $put_rec (stream_buf, { Stream ID }
ADDR(info), { Address of input line }

buflen, { Length of input line }
seek_key, { Seek key }
status) ; { Completion status }

check_status;

writeln;
writeln (° Type another line, or CTRL/Z to stop. °);

END; { while not eof }

writeln (°)
writeln (’Information is now in the paste buffer: ’, buffer name) ;
writeln;

END { else if }

Example 5-23. Using Paste Buffers (Cont.)

5-59 Using the DM

ELSE WRITELN (° Cannot read or write to paste buffer.’);
RESET (INPUT); { Reset INPUT to set EOF to TRUE. }

{ Repeat prompt }

writeln (° ')
writeln (' Type the name of the paste buffer: °);
writeln (* Or type STOP to quit. *);

readln (buffer_name);

IF (buffer_name = °STOP’) OR (buffer_name = ’stop’)
THEN done := TRUE;

END; { while not done }
END. { pbufs_paste_buffer }

Example 5-23. Using Paste Buffers (Cont.)

5.10. Using the Touchpad Manager

You can control how the system processes the touchpad or mouse input by using system calls
with the prefix TPAD. These calls let you

e Control touchpad mode using TPAD _$SET_MODE.

e Inquire about the mode using TPAD _ $INQUIRE.

o Re-establish the touchpad raw data range using TPAD _$RE__ RANGE.

o Re-origin the touchpad or mouse in relative mode using TPAD _ $SET__ CURSOR .
In addition to these calls, there are several display driver interface (SMD) calls for using a
customer-provided tablet or other locator device. For details on SMD calls, see the DOMAIN
System Call Reference manual.
You can operate a touchpad or bitpad in absolute mode, relative mode, or absolute/relative
mode. The mouse operates only in relative mode. The mode of operation determines how the

touchpad corresponds to the display screen. You can change the mode of operation with the
TPAD _$SET_MODE call.

You can also affect the operation of the touchpad or mouse by setting the origins, scaling
parameters, and the hysteresis factor. All of these are described below.

5.10.1. Absolute Mode

Absolute mode makes the touchpad correspond directly to the absolute point on the screen.
That is, whenever you touch the pad, the cursor jumps to the corresponding location on the
screen. Moving your finger across the touchpad moves the cursor across the screen in the same
direction.

Absolute mode maps the touchpad to a part of the screen dictated by the scaling factor and the
origin value.

Using the DM 5-60

By default, the origin value is 0,0; so the top left edge of the touchpad represents the cursor
positions at the top left edge of the screen. This means that the touchpad maps roughly onto the
full screen.

You can change the mode of operation with the TPAD__$SET__MODE call. You can also
change the origin value with TPAD_$SET_MODE, so that the touchpad manager sets the
origin to a location other than the top left edge of the screen. For details, see Section 5.10.7.

5.10.2. Relative Mode

Relative mode makes the touchpad respond only to finger movement, relative to the current
position. That is, it does not respond when the finger first touches the pad, but rather, when it
starts moving from the initial point of contact.

You typically use the touchpad in relative mode to push the cursor across the screen by rubbing
the touchpad. Note that this is the only meaningful mode for a mouse: all mouse movement
begins from the current cursor position.

Relative mode is useful when you want the cursor to have a fine resolution in a small area. To get
finer resolution, you can call TPAD _$SET_MODE with smaller scale factors. For details, see
Section 5.10.4.

When the touchpad or mouse maps to a smaller area of the screen, the user can reach distant
areas of the screen by stroking the touchpad or mouse. Each stroke moves the cursor closer to
the desired area.

You can also change the speed of the cursor movement, so that quick strokes make the cursor
move more rapidly. As a result, a quick movement across the pad will move the cursor further
than a slow, more deliberate move that covers the same distance.

As the user moves a finger across the touchpad, the pad produces points that are offset from the
first point of origin by the distance and direction the finger has moved. For details on the point
of origin, see Section 5.10.7.

5.10.3. Absolute/Relative Mode

Absolute/relative mode makes the touchpad respond to the first touch (as in absolute mode),
and then in relation to the current position (as in relative mode). In absolute/relative mode, the
effect of lifting your finger from the touchpad depends on how long you break contact. If you lift
and replace your finger quickly (within half a second) the cursor does not move. But if you lift
your finger longer than half a second, the cursor jumps to a new absolute position when you place
your finger on the pad again.

Absolute/relative mode is useful for jumping the cursor from one place to another, and then
carefully positioning it in the new area. For example, this mode is commonly used to move the
cursor from one window to another, and then point to a character in the second window.

In absolute/relative mode, the first point the touchpad produces during any use is based on
scaling factors that make the touchpad describe the full screen. (For example, x=800, y=1024).
Further points are offset from the first point, based on your finger’s movement across the pad.
The scaling factors you specify in TPAD _$SET_MODE determine how coarse or fine your
control is during the relative part of absolute/relative mode.

5-61 Using the DM

5.10.4. Changing Touchpad Sensitivity with Scale Factors

The touchpad manager scales the data into raster units. The manager then multiplies scale
factors by the prescaled data, to get the raster unit values that the Display Manager understands.
You can change scale factors with the call, TPAD _$SET_MODE, to determine how much
control the touchpad will have in relative mode. (Scale factors have no meaning in absolute
mode.)

The default scale factors map the touchpad to the entire screen. Table 5-4 shows how the x and
y factors for the display are divided by the prescaled data, to result in values for x and y in
raster units.

Table 5-4. Touchpad Scale Factor Values for Display

X Factor Y Factor Display X Value Y Value
(Raster Units) | (Raster Units)

800 1024 Portrait 0- 799 0 - 1023

1024 800 Landscape 0- 1023 0- 799

You can specify smaller scale factors with the TPAD _$SET _ MODE call, so that the touchpad
maps to a smaller area of the screen. This allows you to make the touchpad or mouse more finely
tuned.

5.10.5. Timing Factors for the Touchpad or Bitpad in Relative Mode

If you lift your finger from the touchpad for less than one-eighth of a second, the touchpad
manager ignores it. If you lift your finger for longer than one-eighth of a second, the touchpad
manager automatically re-origins the pad (as if you had called TPAD _ $SET _ CURSOR) to the
last point the pad produced.

If the cursor movement is tied to relative mode, you can make the cursor go to the right by
lifting your finger for longer than one-eighth of a second, and touching the pad again on the left
edge. By doing so, you re-origin the pad, and make it produce the same data it was producing
when you lifted your finger. By repeatedly stroking the touchpad to the right, you keep moving
the cursor to the right. Since you can re-origin the touchpad, you typically use relative mode
with lower scale factors, to produce more precise cursor control.

In absolute/relative mode, the touchpad manager ignores finger movement that lasts less than
one-eighth of a second. If your finger leaves the pad longer, the touchpad manager re-origins the
pad to let you put your finger down somewhere else on the pad. If your finger leaves the pad for
more than half a second, the touchpad manager concludes that this use of the pad has ended, and
the next time you touch the pad will be an absolute point.

5.10.8. Changing the Origin in Absolute Mode with TPAD _$SET_MODE

In absolute mode, the point of origin normally corresponds to the upper left corner of the screen
(0,0). You can change the point of origin so that it corresponds to another part of the screen
with the TPAD _ $SET _ MODE call.

Using the DM 5-62

This is useful for applications that need to move the cursor within a fixed window rather than the
entire screen. For example, your program might display a menu in one window. You can reset
the origin of the touchpad so that it resolves to a point in the menu window.

5.10.7. Setting the Origin in Relative Mode with TPAD _$SET__ CURSOR

The system "remembers" the last cursor position delivered by a locator device. When a new data
point comes from the mouse, or from the touchpad or bitpad in relative mode, a displacement
is computed and applied to the last locator position. The TPAD _$SET__CURSOR call makes
the system forget the last locator position, and use the value passed in the call instead. The next
locator data will then start from this new position instead of its former position. You will rarely
need to make this call, as GPR and the Display Manager make the call at appropriate times.

5.10.8. Hysteresis Factor

The hysteresis factor prevents the touchpad manager from responding to any minor
movements your finger makes unintentionally. The factor effectively defines a boxz around your
finger’s current position on the touchpad. The touchpad manger does not move the cursor if your
finger stays within the box.

Whenever the touchpad manager senses that your finger has moved from the point last reported,
it substracts the hysteresis factor from the absolute value of the change. If the result is zero, or a
negative value, the touchpad manager does not move the cursor. If the result is positive, the
touchpad manager subtracts the hysteresis factor from the distance moved, and moves the cursor
the remaining distance.

You can specify the hysteresis factor with the TPAD _$SET_MODE call. The units of the
hysteresis factor refer to screen coordinates. Therefore, the value of the hysteresis factor in terms
of physical distance across the screen, depends on the pad’s scaling factors. The default hysteresis
factor is five.

5-63 Using the DM

Chapter 6
Using Eventcounts

The DOMAIN system provides routines to synchronize some events that are external to your
program. These events are associated with objects that the system or an external device manages
such as:

e A mailbox.

e A stream.

e A peripheral device.

e Graphics input.

e The clock.
To keep track of the above objects, the system increments a number, or eventcount, when its
associated event occurs. By using these system-defined eventcounts, a program can wait for

events without using computer processing time.

This chapter describes how you can use eventcounts to synchronize external system events. For
example, when your program waits for input from a mailbox or a serial I/O line.

You can use another type of eventcount, called a user-defined eventcount, to synchronize
activities within your programs. For example, you might want to send data from one program to
another, or control access to a file shared by many users. These user-defined eventcounts are
described in detail in the Programming with System Calls for Interprocess Communication
manual.

6.1. EC2 System Calls, Insert Files, and Data Types

To work with eventcounts, use system calls with the prefix EC2. Table 6-1 summarizes the EC2
calls.

To use EC2 calls, you must include the appropriate EC2 insert file for the language in which your
program is written. These insert files define constants, data types, and system routines for the
EC2 subsystem. The EC2 insert files are:

/SYS/INS/EC2.INS.C for C.
/SYS/INS/EC2.INS.FTN for FORTRAN.
/SYS/INS/EC2.INS.PAS for Pascal.

Most of the EC2 calls described in this chapter require that you specify eventcounts using
pointers. For these calls, specify an eventcount using a variable in EC2__$PTR_ T format.
EC2_$PTR _T is a pointer to an eventcount. In FORTRAN, use the following declaration:

INTEGER*2 eventcount
INTEGER*4 ec2 _ pointer
POINTER /ec2 _pointer/ eventcount (1:3)

6-1 Using Eventcounts

Table 6-1. Summary of EC2 System Calls

Call Operation
EC2_$READ Reads the current value of an eventcount.
EC2 _$WAIT Waits until an eventcount reaches a trigger

EC2_$WAIT_SVC | value.

EC2_ $INIT* Creates and advances user-defined
EC2_$ADVANCE* | eventcounts.

* Use these calls only when you work with user—-defined eventcounts.
For more information on these eventcounts, see the
Programming with System Calls for Interprocess Communication manual.

Some EC2 calls require that you specify an eventcount directly. In these cases, specify a variable
in EC2_$EVENTCOUNT _T format. The data type EC2__$EVENTCOUNT _T requires six
bytes of storage. In FORTRAN, define this as an array of three INTEGER*2 elements.

This chapter is intended to be a guide for performing certain programming tasks; the data and
system call descriptions in it are not necessarily comprehensive. For complete information on the
data types and system calls in these insert files, see the DOMAIN System Call Reference
manual.

6.2. Overview of Eventcounts

When you use eventcounts to synchronize events in a DOMAIN program, you identify the events
you want to watch. The system suspends your process, but continues to increment the eventcount
until it reaches a trigger value that you also specify. When the eventcount reaches its trigger
value, the system wakes your process. Your process then checks for, and responds to the event.
(In this sense, the term process means an executing program.)

To use an eventcount in a DOMAIN program, you must specify:

e A pointer to the eventcount associated with the event you are waiting for.

e An eventcount trigger value that, when reached, "triggers* the system to wake your
process. '

Using Eventcounts 6-2

Figure 6-1 shows how the system handles eventcounts during program execution.

System
Executes
Program

Process
Runs

v

Process Sets
Eventcount
Trigger Value
ton
(t=n)

v

Process

Initializes
Eventcount

with call
EC2_S$WAIT

v

Process
Waits for
Eventcount
to reach
trigger

'

Process System Eventcount

Increments Reaches
Suspends —P» o <
Activity Eventcount Trigger

i (ec =ec + 1) (ec =1t)

Process
Checks and
Responds to <

Events

Figure 6-1. Relationship Between a Process and an Eventcount

You can specify several eventcounts to watch for different events, so that the process can respond
according to which eventcount reaches its trigger value first.

Note that eventcounts exist in shared memory. Therefore, only programs running on the same
node can use the same eventcount.

6-3 - Using Eventcounts

An alternative (but less efficient) method to wait for events is called busy-waiting. When you use
a busy-wait, your program polls for events in a loop. When the event occurs, the program
responds to it. A busy-wait is less efficient because it causes the program to monopolize the
central processing unit (CPU). This constant use of CPU resources may even delay the events the

program is waiting for. Therefore, you should use eventcounts, rather than busy-waits, to wait
for events.

6.3. How the System Uses Eventcounts

As stated previously, a system-defined eventcount is one that the system creates and advances.
The system automatically creates eventcounts when you:

o Create a mailbox.
e Open a stream.
e Acquire a device.
e Enable graphics input.
It also creates eventcounts for your node’s clock. The system uses system-defined eventcounts

when managing the associated objects listed above. You can use these eventcounts in your

programs, as long as you keep in mind that the system -- not your program -- controls these
eventcounts.

The system might not handle eventcounts as you would expect because the system might:

e Advance an eventcount more than once when a single event occurs.

e Advance an eventcount even though the event that the user program is waiting for
has not yet occurred.

¢ Not advance the eventcount for every event that is visible to a user program.

Therefore, your program cannot determine when, or the value by which, the system will advance
an eventcount.

To use system-defined eventcounts, a program should use the eventcount as a way to determine
when to check for events. After the eventcount wait is satisfied, the program should check to see
if the desired event has occurred.

Generally, the best use for system-defined eventcounts is when your program must handle

multiple events. That is, when your program is waiting for a number of events, and you want to
respond when any of the eventcounts reaches its trigger.

Using Eventcounts 6-4

To wait for multiple events, you can use the EC2 calls to create the following cycle:

1. Use the appropriate GET __EC calls to get pointers to the eventcounts.
2. Use EC2_$READ to read the current values of these eventcounts.

3. Establish a loop that uses EC2_$WAIT or EC2__$WAIT_SVC to wait for
eventcounts to reach their trigger values.

4. Branch to the code that increments the trigger value and polls for events when an
eventcount is satisfied, then return to the wait loop. (Step 3 above.)

The following sections show how to perform each of the above steps to use system-defined
eventcounts: Section 6.4 shows how to get and read eventcounts; Section 6.5 shows how to wait
for eventcounts; Section 6.6 shows how to respond to events and increment the trigger value; and
Section 6.7 shows how to handle asynchronous faults that can occur during this cycle.

Note that each section uses examples from the same sample program. The program waits for two
types of events: standard input events (from the input pad) and serial line events. When there is

a record in either place, the program gets the record and writes the record to standard output
(the transcript pad).

6.4. Getting and Reading Eventcounts

To get pointers for system-defined eventcounts, use any of the GET _EC calls listed in Table 6-2
below.

Table 6-2. EC2 Calls for Obtaining Pointers to Eventcounts

Call Gets a pointer associated with:
STREAM _ $GET _EC A stream, such as input pad or serial I/O line.
Used with stream I/O calls. (Most common.)
MBX_$GET_EC A mailbox. Used with calls to the mailbox manager.
IPC_$GET _EC Interprocess communications socket events.
PGM_$GET_EC A process.
PBU_$GET _EC A peripheral device. Used when writing GPIO
device drivers.
GPR_$GET_EC Graphics events.
TIME _$GET_EC The quarter-second clock. (The system increments

the time eventcount about every 0.25 seconds.)

When you make your GET _EC calls, place the returned eventcount pointer into an array. The
first element in the array is the pointer to the first eventcount, the second element is the pointer
to the second eventcount, and so on.

6-5 Using Eventcounts

After you obtain pointers to the eventcounts, use EC2__$READ to read the current value of each
eventcount into an array of trigger values. In doing so, use the same indexes that you use for
your eventcount pointer array. That is, the first element is the value of the first eventcount, the
second element is the value of the second eventcount, and so on.

Note that GET_EC and EC2_$WAIT take or return pointers. EC2_$READ uses a
dereferenced pointer, as Example 6-1 shows.

NOTE: You must use EC2_$READ to read eventcount values; if you attempt to
refer to the eventcount directly, you may obtain an incorrect value,
or you may incur a fault such as "odd address error," "access violation,"
or "reference to illegal address."

Example 6-1 uses STREAM _$GET _EC to get eventcounts for two streams: standard input
(usually the keyboard) and a serial input line. The STREAM_$GET_EC calls place the
eventcount pointers into an array. Then the example reads the current value of each eventcount
into an array of trigger values by dereferencing the pointer to EC2__$READ.

PROGRAM sample use_of eventcounts;

%INCLUDE °’/sys/ins/base.ins.pas’;
%INCLUDE ’/sys/ins/streams.ins.pas’;
%INCLUDE '/sys/ins/ec2.ins.pas’;

CONST { Define indexes for arrays }
kbd_ec = 1; { The first element is for keyboard events.}
sio_ec = 2; { The second element is for serial line events.}
VAR

ec2_ptr : ARRAY [1..2] OF ec2 $ptr_t. { Array of pointers to two
eventcounts. First element points to keyboard EC,
second element points to serial line EC. }

ec2 val : ARRAY [1..2] OF integer32; <{ Array of eventcount trigger
values. First element is trigger for keyboard event:
second element is trigger for serial line event. }

sio_strm : stream $id_t; { Stream ID }
status : status_$t; { Status code }
seek_key : stream $sk_t; { seek key }

BEGIN { Main program }

{ Get the standard input eventcount. Store the ec pointer, returned by the
call, in the first element of pointer array. }

stream_$get_ec(stream $stdin, { Stream ID }
stream_$getrec_ec_key, { Type of ‘eventcount }
ec2_ptr[kbd_ec], { Returns eventcount pointer }
status); { Completion status }

check_status;

Example 8-1. Getting and Reading System=Defined Eventcounts

Using Eventcounts 6-6

{ Open a stream to the serial line you’ll be reading from
and get its eventcount. Store eventcount pointer in the
second element of pointer array.}

stream_$open(°/dev/sio2’, { Pathname }
9, { Namelength }
stream $write, { Type of access }
stream_$no_conc_write, { Type of concurrency }
sio_strm, { Stream ID returned }
status)

check_status;

stream_$get_ec(sio_strm,
stream_$getrec_ec_key,
ec2_ptr([sio_ec],

Stream ID }

Type of eventcount }
Eventcount pointer
returned by call }
Completion status }

() lan W an N

status)

check status;
{ Read the current values of each eventcount and store the values
in the respective elements of the trigger value array. Note that

you must dereference the pointer to EC2 $READ. }

ec2 vallkbd ec] := ec2 $read(ec2 ptrlkbd _ec]l~);
ec2 vall[sio_ec] := ec2 $read(ec2 ptrsio_ec]”);

Example 8-1. Getting and Reading System-Defined Eventcounts (Cont.)

6.5. Waiting for Events

After creating eventcounts, set up a loop to wait for, and respond to, events. At the beginning of
the loop, use either EC2_$WAIT or EC2__$WAIT_SVC to wait for events. The only
difference between the calls is in the way they respond to asynchronous faults. See Section 6.7 for
more information. The EC2__ $WAIT calls have the following format:

ec_ satisfied = EC2__$WAIT[_ SVC] (éc __plist, ec_ vlist, ec__count, status)
Where:

e Ec__satisfied is the number returned by the call, indicating which eventcount is
satisfied.

e Ec__list is the array of pointers to the eventcounts you are waiting for.

e Ec_ vlist is the array of trigger values for each of the eventcounts. The order of the
trigger values must correspond to the order of the eventcount pointers.

e Ec__count is the number of eventcount pointers in the array.

e Status is the status code returned by the call.

6-7 Using Eventcounts

When an eventcount in the "ec__list" reaches its trigger value, the EC2__$WAIT call returns an
ordinal number, indicating the array subscript of the eventcount that is satisfied. Therefore, a
return value of 1 indicates that the first eventcount is satisfied, a return value of 2 indicates that
the second eventcount is satisfied, and so on. If more than one eventcount is satisfied, the call
returns the one with the smallest subscript. ‘

Branch to the code that responds to the event when the EC2_$WAIT call returns a value.
Section 6.6 describes how to respond to the event. After processing the event, return to the top
of the loop to wait for more events.

When you first enter the wait loop, use the current eventcount values as your trigger values, as
described in Secition 6.4. If you use these trigger values, EC2__$WAIT[_ SVC] will indicate that
each eventcount is satisfied. By doing this, the program tests for any pre-existing input before
waiting for input from each source.

NOTE: You usually want to force eventcounts to be satisfied when you
begin a wait loop. Otherwise, you may miss events that occurred
before you entered the loop.

Example 6-2 uses an EC2__$WAIT loop to wait for two eventcounts. The first eventcount
changes when there is new input from the standard input (usually the keyboard); the second
eventcount changes when there is new input from a serial line.

If EC2__$WAIT returns a 1, the program branches to the code that gets a record from standard
input. If EC2_$WAIT returns a 2, the program branches to the code that gets a record from a
serial line. 'When the program enters the wait loop for the first time, both eventcounts are
satisfied. Thus, the first time through the loop, the program tests for any pre-existing input from
standard input. The second time through the loop, the program tests for pre-existing input from
the serial line. The third time through the loop, the program waits for new input from each
source.

PROGRAM sample_use_of_ eventcounts;

%INCLUDE °’/sys/ins/base.ins.pas’;
%INCLUDE °’/sys/ins/streams.ins.pas’;
%INCLUDE ’/sys/ins/ec2.ins.pas’;

CONST { Define indexes for arrays }
kbd_ec = 1; { The first element is for keyboard events.}
sio_ec = 2; { The second element is for serial line events.}
VAR

ec2_ptr : ARRAY [1..2] OF ec2_$ptr_t; { Array of pointers to
two eventcounts }

ec2_val : ARRAY [1..2] OF integer32; { Array of eventcount
trigger values }

which . integer; { Number returned by
EC2_$WAIT }
status . status_$t; { status code }

Example 6-2. Waiting for System-Defined Eventcounts

Using Eventcounts 6-8

BEGIN { Main Program }

{ Get eventcount pointers for standard and serial line input
and place pointers into the EC2 PTR array. Satisfy the
eventcount by reading the values of each eventcount into
the EC2_VAL array. }

{ Go into an infinite loop to wait for input from the two sources.
The first time through, both eventcounts are satisfied. }

REPEAT
which := ec2 $wait(ec2 ptr, { List of pointers }
ec2 val, { List of triggers }
2, { Number of eventcounts }
status);

check_status;

CASE which OF
kbd_ec:

{ If WHICH is i, handle keyboard events
and return to EC2 $WAIT. } '

sio_ec:

{ If WHICH is 2, handle serial input events
and return to EC2_$WAIT. }

END; {case}
UNTIL FALSE;

END. { sample_use_of_ eventcounts }

Example 8-2. Waiting for System_ Defined Eventcounts (Cont.)

6.6. Responding to Events and Incrementing the Trigger Value

When EC2__$WAIT or EC2__ WAIT _SVC returns a value, branch to the code that processes
the event. Within this code, you must first increment the trigger value. To increment most
triggers, read the current eventcount value and add 1. To increment the time eventcount trigger,
read the current eventcount value and add a number of seconds. (The time eventcount gets
incremented every 0.25 seconds, so + 4 means + 1 second.) :

6-9 Using Eventcounts

Next, create an inner loop to poll for and process events. Remember that, although you are
responding to an eventcount that is satisfied, the event you are waiting for may not have
occurred, so you must check if an event occurred. (In this case, we use the
STREAM _ $GET _ CONDITIONAL system call.) If there is an event, process it and repeat the
inner loop. Otherwise, return to the EC2_ $WAIT|[_ SVC] loop.

NOTE: You must increment the trigger value before you check for events.
Otherwise, you may return to the EC2 $WAIT[_SVC] loop with a trigger
value that is too high. If this occurs, you will continue waiting
for the eventcount to increment, even though there is an event you
could be processing.

You must use a repeat loop to process all the events, because

the program may process many events before reaching the trigger
value.

Example 6-3 responds to standard input and serial line input. After incrementing the trigger
value, the program uses the system call STREAM _$GET __CONDITIONAL to see whether there
is any input. If there is input, the program writes it to the screen. If there is no input,
STREAM _ $GET _ CONDITIONAL returns with a line length of zero, and the program returns
to the EC2_ $WAIT loop.

PROGRAM sample_use_ of_ eventcounts;

%INCLUDE °’/sys/ins/base.ins.pas’;
%INCLUDE ’/sys/ins/streams.ins.pas’;
%INCLUDE °/sys/ins/ec2.ins.pas’;

CONST { Define indexes for arrays }
kbd_ec = 1; { The first element is for keyboard events.}
sio_ec = 2; { The second element is for serial line events.}
VAR

ec2 ptr : ARRAY [1..2] OF ec2 $ptr_t. { Array of pointers to
two eventcounts }

ec2 val : ARRAY [1..2] OF integer32; <{ Array of eventcount
trigger values }
which : integer; { No of satisfied eventcount }
sio_strm : stream $id_t.: { Stream ID }
status .. status_$t; { Status code }
seek_key : stream $sk_t. { Seek key }
line . string; { Buffer where record
may be read }
linep : ~string; { Pointer to buffer where line
is read }
linelen : integer32; { Length of record }

Example 6-3. Responding to System~-Defined Eventcounts

Using Eventcounts 6-10

BEGIN

. { Get eventcount pointers for standard and serial line input
and place pointers into the EC2 PTR array. Read the
value of each eventcount into the EC2_VAL array. }

{ Go into an infinite loop to wait for input from the two sources.
The first time through, both eventcounts are satisfied. }

REPEAT
which := ec2 $wait(ec2_ptr, { List of pointers }
ec2 val, { List of triggers }
2, { Number of eventcounts }
status);

check status;
CASE which OF

kbd_ec: { If WHICH is 1, enter keyboard loop. }

BEGIN

{ Read the current eventcount, increment it,
and save it as the new trigger. }

ec2 val[kbd_ec] := ec2 $read(ec2 ptr[kbd_ecl~) + 1;

{ Get and write records. When there are
no more, return to the outer loop. }

REPEAT
stream $get_conditional(stream $stdin, { Stream ID }
ADDR(line), { Buffer to
read line }
SIZEOF (line),{ Bufferlen }

linep, { Pointer to
returned
data }

linelen, { Length of
data }

seek_key,

status) ;

check_status;

IF linelen > O THEN
writeln(°*#KBD* *, linep~:linelen);

UNTIL linelen = O; { No more records to read. }
END; { kbd_ec section }

Example 6-3. Responding to System-Defined Eventcounts (Cont.)

6-11 Using Eventcounts

sio_ec: { If WHICH is 2, enter serial line loop.}
BEGIN

{ Read the current eventcount, increment it,
and save it as the new trigger. }

ec2_val[sio_ec] := EC2 $read(ec2 ptrsio_ec]~) + 1;

{ Get and write records. When there are
no more, return to the outer loop. }

REPEAT
stream $get_conditional(sio_strm,
ADDR(line), { Buffer to
read line }
SIZEOF(line), { Bufferlen }

linep, { Pointer to
returned
data }
linelen, { Length of
data }
seek_key,
status) { completion
status }
check_status;
IF linelen > O THEN
writeln(*#SIO* °, linep~:linelen);

UNTIL linelen = O; { No more records to read. }
END; { sio_ec section }

END; {case}

UNTIL FALSE; { Program continues until a CTRL/Q is typed at keyboard. }
END. { sample_use_of_ eventcounts }

Example 6-3. Responding to System=Defined Eventcounts (Cont.)

Using Eventcounts 6-12

6.7. Handling Asynchronous Faults during Eventcount Waits

This section describes what to do when an asynchronous fault occurs during an EC2_$WAIT
system call. For a more detailed description of fault handling, see Chapter 2.

When you use EC2__$WAIT or EC2__ $WAIT _SVC, you cause a program to wait until the
eventcount reaches its trigger value. During that wait, though, an asynchronous fault can occur.
An asynchronous fault is a fault generated outside your program, such as when someone types a
CTRL/Q sequence at the keyboard to terminate a program.

If a program does not use any fault-handling techniques to handle asynchronous faults, then the
system aborts the program when an asynchronous fault occurs. You can use any of these
techniques to handle a fault in the following ways:

e Declare a clean-up handler with PFM__ $CLEANUP to perform clean-up operations.
The clean-up handler aborts normal processing and destroys the program’s context, so
it cannot return to the place where the fault occurred.

o Declare a fault handler with PFM_ $ESTABLISH__FAULT _HANDLER to handle
the fault. You can respond to a fault by providing the fault handler with any
corrective actions. The fault handler can return to the program where the fault
occurred and continue normal processing.

e Disable asynchronous faults with PFM__ $INHIBIT. This causes the program to
ignore asynchronous faults until you reenable the faults by calling PFM_ $ENABLE.

At this time, the system reports the first fault (if any) that occurred while faults were
inhibited.

You can control your program’s response to an asynchronous fault differently, depending on
which of the above techniques you use, and whether you use the EC2__$WAIT or
EC2_$WAIT _SVC call. Table 6-3 shows how EC2__ $WAIT and EC2_ $WAIT _ SVC respond
to an asynchronous fault, if faults are enabled. Table 6-4 shows how EC2__$WAIT and
EC2_$WAIT _SVC act when asynchronous faults are disabled.

Table 6-3. Wait Actions When Asynchronous Faults are Enabled

Call Error-Handling Technique
Clean-Up Handler Fault Handler
EC2_$WAIT Executes clean-up Executes fault handler.
handler. If fault handler
returns control to
the interrupted code,
it continues waiting.
EC2_$WAIT_SVC Executes clean-up Executes fault handler.
handler. If the fault handler
returns control to the
interrupted code, it returns
the error EC2__ $WAIT _ QUIT.

6-13 Using Eventcounts

Table 6-4. Wait Actions When Asynchronous Faults are Inhibited

Call Error-Handling Technique
Clean-Up Handler Fault Handler
EC2_$WAIT Defers fault and Defers fault and
continues waiting. continues waiting.
EC2_$WAIT _SVC Does not handle fault, Does not handle fault,
but returns the error but returns the error
EC2__$QUIT. EC2_$WAIT_QUIT.

When you use EC2__ $WAIT or EC2__$WAIT _SVC, you need to understand how your program
will respond if an asynchronous fault occurs. You must ensure that the program performs any
required clean-up actions if a fault occurs.

At times, you want to be sure that your program handles the event it is waiting for without being
interrupted. You can do so using either the EC2__ $WAIT or the EC2__ $WAIT _ SVC call.
Section 6.7.1 shows how you can inhibit asynchronous faults during EC2__$WAIT calls with the
time eventcount. Section 6.7.2 shows how you can inhibit these faults using
EC2_$WAIT _SVC.

6.7.1. Disabling Asynchronous Faults with EC2_ $WAIT

You might want to disable asynchronous faults to prevent your program from being interrupted
during the wait cycle. If you disable faults, you must ensure that your program does not wait
indefinitely.

You can disable asynchronous faults using EC2_$WAIT, as long as you know that the wait can
be satisfied in a short period of time. To make sure, you can include a time eventcount as your
final event. This way, even though your program ignores faults, it continues waiting for only the
time specified by the time eventcount. You will want to list the time event last, in case another
event gets satisfied at the same time. (If more than one eventcount gets satisfied simultaneously,
the call returns the smallest subscript.)

Exampl