

Unknown command ignored
(warning in interactive mode)
(error in noninteractive mode)

You specified an option that the binder doesn't recognize.

Wrong version of object format
(error)

One of your input object modules has an invalid format. Possibly, you are binding with an earlier
version of the binder, or possibly you inadvertently modified the input object module.

Wrong version of library format
(error)

One of your input library files has an invalid format. Possibly, you are binding with an earlier version
of the binder, or possibly you inadvertently modified the input library.

Wrong version of library object module format
(error)

One of your input library files has an invalid format. Possibly, you are binding with an earlier version
of the binder, or possibly you inadvertently modified the input library.

Binder Errors and Warnings A-a

c

... ---_.- ------------

o

o

o

o

o

Appendb(B

l~brr~rr~a({1 lEU-WOIr SlU1d W talrrril~U19J
MeSSC019)8§)

This appendix contains a listing of the errors and warning messages that you may encounter while using
the librarian. Each message is classified as either an error or a warning.

An error message indicates that the librarian could not perform the requested operation or that some er­
ror condition arose while the librarian was trying to perform the operation. In either case, the result is
probably an unusable library file.

A warning message indicates that one of the following is true:

o The librarian could perform the requested operation, but the contents of the library file may not
be what you were expecting.

o The librarian could not perform the operation, but the library file was not corrupted. Therefore,
you can issue a corrected command on the original library file.

Here now is a list of all the error and warning messages produced by the librarian:

Cannot close library output
(error)

The librarian encountered an error when it tried to close the library file. This error sometimes indi­
cates that the library has been corrupted; therefore, you should try to recreate the library, if possible.

Cannot close map file
(warning)

The map file is the file that the librarian generates in response to the -LIST option. This warning in­
dicates that the librarian encountered a problem when it tried to close this map file. This warning has
no affect on the library itself.

Cannot close object output file
(error)

You tried to use the -OUTPUT option to copy an extracted object module to an output file, but the
librarian could not close the output file. Therefore, the output file is unusable. You have to delete it
and. try the librarian command over again.

Cannot open file
(error)

You specified an object file or library file to be added to the library, but the librarian could not open
the specified file. Operating system or network problems are responsible for this error. This error
will not corrupt the library file and the librarian will probably have correctly executed everything pre­
ceding the error.

8-1 Librarian Errors and Warnings

Cannot open file, no update done
(error)

You specified a file as an argument to -REPLACE, but the librarian could not open this file. This er­
ror will not corrupt the library file. The librarian will have processed commands up until this point.

Could not open library file
(error)

The librarian could not open the named libraryfile. Perhaps this file was being used by some other
process. Also, it is possible that there was no disk space or virtual address space available. Or, per­
haps there was a network problem when you tried to open the library file. Probably, the library file is
uncorrupted.

Could not open object output file, no extract done
(error)

When you used the -OUTPUT option, you specified a pathname that the librarian could not open.
Perhaps the error was caused by network problems. The output library file will probably not be cor- ('
rupted by this error. ~-- /

CREATE option must be followed by new library pathname
(warning)

You entered the command LBR -CREATE, but you did not specify the pathname of the library to be
created. The pathname must be on the same line as -CREATE.

CREATE option specified but named file already exists, can't create
(error)

The librarian interprets the first character string after -CREATE as the filename of the new library.
The librarian signals this error if you've entered a filename that already exists. This ensures that you
don't overwrite an existing file. Usually, you get this error when you type in the names of the con­
tributing object files and forget to enter the name of the library. This error will not change the exist­
ing library file in any way.

File not found
(warning)

You specified that object modules from a certain file should be added to the library file, but the li­
brarian could not find this file. Perhaps you misspelled the filename, or perhaps network problems
prevented the librarian from accessing the file.

File not found, no update done
(warning)

You specified a file with the -REPLACE option, but the librarian could not find this file. Perhaps
you misspelled the filename, or perhaps network problems prevented the librarian from accessing it.

File specified is not a valid library file
(error)

You specified a file immediately after -UPDATE, but this file does not contain a valid library. Re­
member that a library is a file created by the librarian. The librarian will not alter the specified file.

Binder Errors and Warnings B-2

c

o

o

o

o

o

Invalid module name, no delete done
(warning)

You entered a module name after -DELETE that does not follow the syntax rules for valid module
names. Perhaps it begins with a digit or contains invalid characters.

Invalid module name, no extract done
(warning)

You entered a module name after -EXTRACT that does not follow the syntax rules for valid module
names. Perhaps it begins with a digit or contains invalid characters.

Module already exists and replacement was not specified, old module kept
(warning)

You tried to add a module to a library (as opposed to trying to replace the module with the -RE­
PLACE option), but the named module already exists in the library file. Instead of trying to add this
object module to the library file, you should try to replace it with the -REPLACE option.

Module does not exist in library, no delete done
(warning)

When you used the -DELETE option, you specified an object module that was not part of the library
file. (Note that the librarian is case-sensitive to object module names.) To get a listing of the names
of all object modules in the library file, use the -LIST option.

Module name does not exist in library, no extract done
(warning)

When you used the -EXTRACT option, you specified an object module that was not part of the li­
brary file. To get a listing of the names of all object modules in the library file, use the -LIST option.
Remember that the librarian is case-sensitive to object module names.

Module name is not between 1 and 32 characters in length, no delete done
(warning)

You must supply a module name immediately after the -DELETE option, and that name must be less
than 33 characters in length. You probably forgot to specify an object module, or if you did specify
an object module, you may have misspelled it.

Module name is not between 1 and 32 characters in length, no extract done
(warning)

You must supply the name of an object module immediately after -EXTRACT, and that name must
be less than 33 characters in length. You probably forgot to specify an object module, or if you did
specify an object module, you probably misspelled it.

No library specified, no add done
(error)

You forgot to specify -CREATE or -UPDATE. Therefore, the librarian will not be able to perform
your request to add new object modules.

No library specified, no replace done
(error)

You forgot to specify -CREATE or -UPDATE. Therefore, the librarian will not be able to perform
your request to replace object modules.

8-3 Librarian Errors and Warnings

No path name specified, no replace done
(warning)

You forgot to put a pathname immediately after -REPLACE. The pathname must be on the same
line as the -REPLACE.

Object found in library is not a valid object module, no add done
(warning)

You specified a library file to be added to an existing library, but the library file you wanted to add
contains one or more invalid object modules. Perhaps you entered the wrong filename.

Object found was not a valid object module or library, no add done
(warning)

You tried to add object module(s) to a library file, but you didn't enter the name of a valid library or
object file. Probably, you entered the wrong filename; for example, you entered my _prog instead of
my_prog.bin.

Object found was not a valid program or library module, no replace done
(warning)

You specified a file after -REPLACE, but this file is neither a valid object file (a compiled program)
nor a valid library (a special file created by the librarian). Perhaps you misspelled the pathname.

Open error or named file already exists for output file, no extract done
(error)

There are two possible causes for this error. Perhaps the pathname you specified as an argument to
the -OUTPUT (-0) option already exists. (You must specify a pathname that does not currently ex­
ist.) The existing file probably will not be corrupted by this error. Another possibility is that you
specified a file that did not exist, but the binder could not create it. Perhaps the disk is full, or there
are network problems, or the pathname you specified was illegal.

-OUTPUT must be followed by a single valid pathname, no extract done
(warning)

When you used the -OUTPUT option, you forgot to put a single valid pathname immediately after
-OUTPUT. This pathname must be on the same line as -OUTPUT.

Previous CREATE option specified, this create option ignored
(warning)

You entered -CREATE more than once in the same LBR command. You cannot create or update
more than one library file during a single execution of the librarian. If you enter -CREATE twice,
the librarian ignores any filename that comes immediately after the second -CREATE.

Previous CREATE option specified, update not allowed
(error)

c

c

You entered -UPDATE in a command containing a previous valid -CREATE option. You cannot C'\
update a library in the same command in which you create a library. The librarian executes every-
thing in the command up until the -UPDATE (at which point, it aborts execution). This error will
not corrupt the library file.

Binder Errors and Warnings 8-4

o

o

o

o

o

Previous UPDATE option specified, CREATE not allowed
(error)

You entered -CREATE in a command that contains a previous valid -UPDATE command. A librar­
ian command cannot contain both -CREATE and -UPDATE. If this is the only error, then the li­
brarian probably correctly executed everything up until the -CREATE.

Previous UPDATE option specified, this update option ignored
(warning)

You entered -UPDATE more than once. If this is the only error, then the librarian probably exe­
cuted everything up until the second - UPDATE.

-REPLACE is followed by an option instead of a pathname, no replace done.
-REPLACE is followed by an option instead of a pathname, option ignored.
(warning)

This double line warning message indicates that the argument after -REPLACE begins with a hyphen
(-) and thus cannot be a pathname. (The librarian assumes that arguments beginning with a hyphen
are options.) The librarian performs neither the replace nor the option immediately after it. Prob­
ably, you forgot to specify a pathname after -REPLACE, or you accidentally put a hyphen before the
pathname argument.

Replace of module which is not in library, module is added
(warning)

You used the -REPLACE option, but the named object module does not exist in the library. This is
a harmless warning that the librarian issues to inform you that a replace was unnecessary (an add
would have sufficed). This lets you double check that you really gave the correct filename.

Unknown Command Ignored
(warning)

You entered a string of characters preceded by a hyphen (-) somewhere in the command line, but
the characters do not represent a valid librarian option. Perhaps you misspelled a librarian option, or
perhaps you accidentally put a hyphen in front of a filename. To let you know where you went
wrong, the librarian prints the faulty string of characters just after this warning.

UPDATE option must be followed by new library pathname
(warning)

You entered the command LBR -UPDATE, but you did not specify the pathname of the library file
to be updated. You must enter the pathname on the same line as -UPDATE.

UPDATE option specified but named file does not exists, can't update
(error)

The librarian interprets the first character string after -UPDATE as the filename of an existing li­
brary. The librarian signals this error if you've entered a pathname that doesn't exist. Usually, you
get this error when you type in the names of some contributing object files and forget to enter the
name of the library file they affect.

8-5 Librarian Errors and Warnings

c

o

o

o

o

o

Appendb(c

This appendix contains a list of the attributes that can characterize a section. This list should help you in­
terpret the maps produced by the librarian -LIST option or the binder -MAP option. The boldfaced
portion of the attribute is the abbreviation that you see in the librarian and binder maps. For example,
the expression" Abs" appearing in a binder map refers to the Absolute attribute.

Absolute Attribute

A section mayor may not have the absolute attribute. The absolute attribute tells the loader to begin
this section at a fixed virtual address. If you are programming in a high-level language, you have no
control over this attribute.

Data and Instruction Attributes
A section must have either the data attribute or the instruction attribute. The data attribute means
that the section contains program data only. The instruction attribute means that the section contains
machine code instructions only. Users cannot control these attributes.

Installed (or MARKSECTION) Attribute
A section mayor may not have the installed attribute (also called the MARKSECTION attribute). If
an installed library contains a section with the installed attribute, then that section can share data
with a section of the same name in an installed library or executing noninstalled object file. You con­
trol the installed attribute with the -MARKSECTION and -NOMARKSECTION binder options de­
scribed in Chapter 2.

Long-Aligned, Quad-Aligned, and Page-Aligned Attributes
A section must have the long-aligned attribute, the quad-aligned attribute, or the page-aligned at­
tribute. A long-aligned attribute means that the loader must install the section beginning on a virtual
address that is a multiple of four bytes. A quad-aligned attribute means that the loader must install
the section beginning on a virtual address that is a multiple of eight bytes. A page-aligned attribute
means that the loader must install the section beginning on a virtual address that is a multiple of
1,024 bytes. You can control these attributes through the -ALIGN binder option described in Chap­
ter 2.

Look_installed (or LOOKSECTION) Attribute
A section mayor may not have the look_installed attribute (also called the LOOKSECTION attrib­
ute). At runtime, a section with the look_installed attribute can share data with a section of the same
name in an installed library. You control the look_installed attribute with the -LOOKSECTION and
-NOLOOKSECTION binder options described in Chapter 2.

C-1 Attributes

Overlay and Concatenated Attributes, and the Mixed Message
A section must have either the overlay attribute or the concatenated attribute. Components of a sec-
ti?n

h
WIh'th the overlaYdattri~bute shdare thehsamehaddress sPdadce at runtime. c~mponIents 0df a hsection e,

WIt t e concatenate attn ute 0 not s are t e same a ress space at runtIme. nstea, t ey are
placed one after another. "Mixed" is not an attribute, but merely indicates that an attempt was
made to combine overlay and concatenated components in the same section. When this occurs, the
binder or librarian assumes that the section has the overlay attribute. Users have indirect control of
these attributes through source code.

Read-Only and ReadlWrite Attributes
A section has either the read-only attribute or the read/write attribute. The abbreviation for the
read-only attribute is "R/O". If "R/O" does not appear in the list of attributes, it means that this sec­
tion has the read/write attribute. A section with the read-only attribute is write-protected, and a sec­
tion with the read/write attribute is not write-protected. Sections with the read-only attribute reduce
system overhead at runtime because the operating system doesn't have to copy the sections out to
disk as part of its virtual memory operations. Users have some control of these attributes through the
-READONLYSECTION binder option described in Chapter 2.

Zero Attribute
A section mayor may not have the zero attribute. If a section has the zero attribute, then the loader
sets all of the section's bytes to zero at runtime. A section with the zero attribute must also have the
read/write attribute. If you are programming in FORTRAN, you can control this attribute with the
-ZERO compiler option. If you are programming in other languages, you have no direct control over
this attribute.

Attributes C-2

-------------- -

o

o

o

o

o

Appendb(

Sam~~e PW(Q)g]U"C8lm
Deve~(Q)~O)meIi1~

D

This appendix provides a basic tutorial for developing programs on the DOMAIN system in FORTRAN,
Pascal, or C.

D.1 Sample Source Code
To help demonstrate program development, we've written a simple sample program in FORTRAN, Pascal,
and C. We divided the FORTRAN and C programs into four files each and the Pascal program into five
files. One file in each language contains the main program and the other files contain subprograms. This
arrangement provides a lot of flexibility for developing the program.

The programs printed in this appendix are available on-line. (See the release notes for Pascal, FOR­
TRAN, or C for details on accessing them.)

D.2 Sample FORTRAN Program
Consider a sample FORTRAN program consisting of one "main" program and three subprograms. The
main program is stored in file geoshapes. ftn and is shown in Figure D-1. The three subprograms are
stored in files mathl.ftn, math2.ftn, and math3.ftn and are shown in Figures D-2, D-3, and
D-4.

0-1 Sample Program Development

C

INTEGER*2 CHOICE
REAL HEIGHT, BASE, AREA, LENGTH, RADIUS
EXTERNAL TRIANGLE, SQUARE, CIRCLE

WRITE (*,*) 'To find the area of a'
WRITE (*,*) , triangle (enter 1) ,
WRITE (*,*) , square (enter 2) ,
WRITE (*,*) , circle (enter 3) ,
WRITE (*,90)
READ *, CHOICE
GOTO (1, 2, 3) CHOICE

C TRIANGLE SECTION
1 WRITE (*,100)

READ *, HEIGHT, BASE
CALL TRIANGLE (HEIGHT, BASE, AREA)
GOTO 200

C SQUARE SECTION
2 WRITE (*,110)

READ *, LENGTH
CALL SQUARE (LENGTH, AREA)

C CIRCLE SECTION
3 WRITE (*,120)

READ *,RADIUS
CALL CIRCLE (RADIUS , AREA)

C RESULTS SECTION
200 WRITE (*,80) AREA

80
90
100
110
120

FORMAT('THE AREA IS " F7.2)
FORMAT('What is your choice -- " $)
FORMAT(' Enter the height and base of the triangle -- " $)
FORMAT(' Enter the length of one side of the square --', $)
FORMAT(' Enter the radius of the circle -- " $)
END

Figure 0-1. Code Stored in File GEOSHAPES.FTN

SUBROUTINE TRIANGLE (HEIGHT, BASE, AREA)
REAL HEIGHT, BASE, AREA

AREA = .5 * HEIGHT * BASE
END

Figure 0-2. Code Stored in File MATH 1 . FTN

SUBROUTINE SQUARE (LENGTH, AREA)
REAL LENGTH, AREA

AREA = LENGTH * LENGTH
END

Figure 0-3. Code Stored in File MATH2. FTN

SUBROUTINE CIRCLE (RADIUS , AREA)
REAL RADIUS, AREA

AREA 3.14159 * RADIUS * RADIUS
END

Figure 0-4. Code Stored in File MATH3.FTN

Sample Program Development 0-2

c

c

o

o

o

o

o

0.3 Sample Pascal Program
The following figures show a sample Pascal program consisting of one "main" program and three subpro­
grams. The main program is stored in file geoshapes . pas and is shown in Figure D-5. The three sub­
programs are stored in files rna th1 . pas, rna th2 . pas, and rna th3 . pas and are shown in Figures D-6,
D-7, and D-8. We stored the definitions of all external routines inside one file named external_rou­
tines. pas, and it is shown in Figure D-9.

program geoshapes;
%include 'external_routines.pas'

VAR
height, base, length, radius, area
choice integer;

BEGIN
writeln('To find the area of a');
writeln(' triangle (enter 1) ');
writeln(' square (enter 2) ');
writeln(' circle (enter 3) ');

real;

write('What is your choice '); readln(choice);

case choice of
1 : begin

write('enter the height and base of the triangle -- ');
readln(height, base);

2
end'
begin

triangle(height, base, area);

write('enter the length of one side of the square -- ');
readln(length);

3
end;
begin

square (length, area);

write('enter the radius of the circle -- ');
readln(radius);

END.

circle(radius, area);
end;

otherwise return;
end;
writeln('The area is area: 4: 2) ;

Figure 0-5. Code Stored in File GEOSHAPES.PAS

module math1;
DEFINE triangle;
%include 'external_routines.pas';

PROCEDURE triangle;
BEGIN

area .- (0.5 * height * base);
END;

Figure 0-6. Code Stored in File MATH1.PAS

0-3 Sample Program Development

module math2;
DEFINE square;
%include ~external_routines.pas~;

PROCEDURE square;
BEGIN

area .- length * length;
END;

Figure 0-7. Code Stored in File MATH2.PAS

module math3;
DEFINE circle;
%include ~external_routines.pas~;

PROCEDURE circle;
CONST

pi = 3.14;
BEGIN

area .- pi * radius * radius;
END;

Figure 0-8. Code Stored in File MATH3. PAS

procedure triangle(in height real;
in base real;
out area real); extern;

procedure square(in length real;
out area real) ; extern;

procedure circle(in radius real;
out area real) ; extern;

Figure 0-9. Code Stored in File EXTERNAL_ROUTINES.PAS

0.4 Sample C Program
The following figures show a sample C program consisting of one "main" program and three subprograms.
The main program is stored in file geoshapes. c and is shown in Figure D-l0. The three subprograms
are stored in files math1. c, math2. c, and math3. c and are shown in Figures D-ll, D-12, and
D-13.

Sample Program Development 0-4

c'

c

,

o

o

o

'0

o

extern float
extern float
extern float

triangle () ;
square();
circle () ;

float height, base, length, radius, area;
int choice;

main ()
{

}

printf("To find the area of a \n");
printf(" triangle (enter 1) \n");
printf(" square (enter 2) \n");
printf(" circle (enter 3) \n");
printf("What is your choice -- "); scanf("%d", &choice);

switch (choice)
{

}

case 1: printf("enter the height and base of the triangle -- ");
scanf ("%f%f", &height, &base);
area = triangle (height , base);
break;

case 2 printf("enter the length of one side of the square -- ");
scanf ("%f", &length);
area = square(length);
break;

case 3 printf("enter the radius of the circle -- ");
scanf ("%f", &radi us) ;
area = circle(radius);
break;

default: return;

printf("The area is %5.2f\n", area);

Figure 0-10. Code Stored in File GEOSHAPES.C

float
float

triangle (height , base)
height, base;

{
return(O.5 * height * base);

}

float square (length)
float length;
{

Figure 0-11. Code Stored in File MATH 1 . C

return(length * length);
}

float
float
{

circle(radius)
radius;

#define pi 3.14

Figure 0-12. Code Stored in File MATH2. C

return(pi * radius * radius);
}

Figure 0-13. Code Stored in File MATH3.C

0-5 Sample Program Development

0.5 Compiling
The next step in program developm'ent is to compile the source code . You must compile each file of
source code separately by using the commands shown in Table D-1.

Table D-l. Compiling the Source Code

FORTRAN Pascal C

$ ftn geoshapes $ pas geoshapes $ cc geoshapes
$ ftn mathl $ pas mathl $ cc mathl
$ ftn math2 $ pas math2 $ cc math2
$ ftn math3 $ pas math3 $ cc math3

Whether you used the FORTRAN compiler, the Pascal compiler, or the C compiler, the .results are basi­
cally the same. Namely, the compiler creates object files geoshapes.bin, mathl.bin, math2.bin,
and math3. bin.

D.6 Possible Program Development Paths
After compiling the source code, there are many ways in which you can create an executable object file.
We illustrate several methods in this section.

0.6.1 Path 1: Binding
The most straightforward method for creating an executable object file is to bind all four object files into
one executable output object file as follows:

$ bind geoshapes.bin mathl.bin math2.bin math3.bin -binary geo

To execute the output object file, you merely enter its name as a command, for example:

$ geo

0.6.2 Path 2: Creating a Library File, Then Binding
There is nothing wrong with the development shown in path 1; however, it may be advantageous to build a
library file instead as follows:

$ lbr -create mathlib mathl.bin math2.bin math3.bin

Then you can bind the main routine to the library as follows:

$ bind geoshapes.bin mathlib -binary geo

And execute the program as you would execute any program, for example:

$ geo

Why do it this way? Because it might be very helpful for future program development to build a library file
of related mathematical functions. The big advantage of a library file is that you have many object files at
-your disposal, but the binder will only gather the object files required for the binding. Thus, your output
object file won't contain any excess code.

0.6.3 Path 3: Using the INLIB Utility
Here, we will use the INLIB utility to build an installed library. First, we will use the binder to build a
nonexecutable object file named to_be_installed as follows:

$ bind -allmark mathl.bin math2.bin math3.bin -binary to_be_installed

Notice that we had to use the -ALL MARK binder option to make available the global symbols in
mathl.bin, math2.bin, and math3.bin.

Sample Program Development 0-6

-~--------.----- ---------------------

~
I
\ ,.' "'-_./

'"

o

o

o

o

o

Now, we will use the INLIB utility to install this object file as follows:

$ inlib to_be_installed

And finally, we can run the main program without ever running it through the binder as follows:

$ geoshapes.bin

The loader will match the unresolved external symbols of geoshapes. bin with the global symbols in
mathl.bin, math2.bin, and math3.bin.

0-7 Sample Program Development

c

C~

o

o

o

o

o

The letter I means "and the following page"; the letters II mean" and the following pages". Symbols are
listed at the beginning of the index. Entries in color indicates procedural information.

{ } (braces) 2-3
- (hyphen) 2-2f

Symbols

in binder commands 2-12
in librarian commands 3-3

32-bit boundaries 2-7, C-l
64-bit boundaries 2-7, C-l
8192-bit boundaries 2-7, C-l

A

Abs C-l
Absolute attribute C-l
Absolute pathnames 2-9
Adding library files to libraries 3-2
Adding object files to libraries 3-2
Address space

sharing C-2
AEGIS environment 2-44
-ALIGN binder option 2-7, C-l
Aligning sections 2-7
All globals are resolved 2-15f,

2-28f, 2-39
-ALLKEEPMARK binder option

2-30ff
-ALLMARK binder option 2-30ff
-ALLRESOL VED binder option 2-8
-ALL UNMARK binder option

2-30ff
Alphabetical sorting of global

symbols 2-42
Attributes 1-3

complete list of C-H
in library files 3-8f
of sections in programs 2-28f,

2-39f
read/write 2-38
relative advantages 2-38

Audit trails 1-3

8

.BAK filename extension 2-3f
and binding 2-3f

-BDIR binder option 2-9f
.BIN filename extension 1-1
-BINARY binder option 2-2, 2-4,

2-11
/bin/cc section merging 2-33
Binder

Index-1

checking installed libraries 1-4
comments 2-3
crucial option 2-2
errors 2-3
example D-6
how it scans library files 3-4
how to invoke 2-Hf
input library files 2-H
input object files 2-H
installing object files 2-19ff
library files 1-4
listing of all errors and warnings

A-Hf
object modules 1-1
options

summary 2-4ff
use of 2-2ff

overview 1-3f
program development 1-2
quitting 2-37
resolution of global symbols 1-3
role in program development

1-Hf
search order through library files

2-22ff
setting target environment 2-44
spreading command over multiple

lines 2-2f, 2-12
suppressing errors 2-36
using it in steps 2-2
version numbers 2-27, 2-28f
warnings 2-3
when to use 2-1

Binding
efficiently 2-2
multilevel 2-2

Boundaries 2-7
Braces { } 2-3
BSD4.1 environment 2-44
BSD4.2 environment 2-44
BSS$ section 2-33
Building systems 1-3

C

binding 2-1
case-sensitivity 2-14
global symbols 1-3

merging 2-33

c

global variables 2-7, 2-26, 2-38
main function 3-5
on-line examples D-l
program development i-iff
sample programs D-4f

sharing data with installed
libraries 2-26

start address 2-13, 2-29, 3-5
systype 2-44

Case-sensitivity' of binder 2-14

Changing output object module
name 2-35

Characteristics of a section 1-3
CLIB 2-44

Closing a binder session 2-12
Combining object files 1-3f
Combining sections 2-33
Comments

in binder commands 2-3
in librarian commands 3-4

Communicating between different
modules 1-3

Compilers 1-1, 1-3
program development 1-2
version numbers. 2-27

Concat C-2
Concatentated attribute C-2
Conditional loading 1-4
Conflicting object system types A-3
Controlling software 1-3
Copying object modules from library

files 3-7
-CREATE librarian option 3-2

Creating
executable programs 2-if, 2-11
library files 3-2

Cross-reference
of object modules 2-46f

D

D3mlib 4-2
Data attribute 2-26, 2-33, C-l
Data$ section 4-3
Data

sections 2-25f
sharing in sections 2-25f

Date of binding 2-28f
Debugging

object files i-if
-DELETE librarian option 3-6
Deleting object modules from library

files 3-6
Dependency tracking 1-3
Developing programs i-iff
Directories

alternate search 2-9f
Disk I/O

minimizing 2-38
Disk space

conserving 1-5
Documentation control 1-3
DOMAIN environment 2-44
DOMAIN Software Engineering

Environment (DSEE) package 1-3

DSEE (DOMAIN Software
Engineering Environment) package
1-3

E

ECO (Engineering Change Order)
control 1-3

-END binder option 2-2f, 2-12
-END librarian option 3-3
Ending a binder session 2-12
Engineering Change Order (ECO)

control 1-3
-ENTRY binder option 2-13
Errors

Index-2

binder 2-3, A-iff
librarian 3-4, 3-10, B-lff
solved by marking 2-30ff
summary 2-34
suppressing binder 2-34, 2-36

c

o

o

o

o

o

suppressing librarian 3-10
systype A-3
1:lndefined global symbols 2-4

- EXACTCASE binder option 2-14
Examples

program development D-1£f
Executable object file

creating 2-11
Executing

object files 1-1£, D-6f
Exiting

from a binder session 2-37
from a librarian session 3-11

Extensions
.BIN 1-1

External references 1-3
in library files 3-4, 3-8f
reporting 3-:-13
unresolved 2-15f, 2-45

External_routines.pas D-3f
- EXTRACT librarian option 3-7
Extracting object modules from

library files 3-7

F

Files
spreading source code across

multiple 1-1ff, D-1£f
Fixed virtual addresses C-1
Force load library files 2-17f
FORTRAN

binding 2-1
case-sensitivity 2-14
COMMON areas 2-26, 2-38
global symbols 1-3
on-line examples D-1
program development 1-1ff
sample programs D-1£
sharing data with installed

libraries 2-26
start address 2-13, 2-29, 3-5
the main program 3-5
-ZERO compiler option C-2

Ftnlib 4-2

G

Geoshapes.c D-4f
Geoshapes.ftn D-1£
Geoshapes.pas D-3f
Global map 2-15f, 2-28f

Global symbols
-ALLRESOL VED option 2-8
and compilers 1-3
and the binder 1-3f
cross-references 2-46f
error messages 2-43
in installed libraries 4-2ff
in library files 3-4, 3-8f
information on 2-15 f
limits 1-5
marked 1-5
mUltiply defined 2-30ff
primary 1-3
restrictions 1-7
sorting 2-42
undefined 2-4

Global variables
in C 2-7

-GLOBALS binder option 2-15f
Gmrlib 4-2

H

Hyphen (-)
in binder commands 2-2f, 2-12
in librarian commands 3-3

ID number of sections in programs
2-28f, 2-39f

Identifiers 1-5
-INCLUDE binder option 2-17f,

3-4f
Information

on program 2-28f
Informational messages 2-34
Initializing static data in

userlib.private 4-2f
INLIB 4-1f

alternative 2-19ff
and library files 1-4

-INLIB binder option 2-19ff
multiple uses of 2-20
pros and cons 4-3
vs INLIB utility 2-20f

INLIB
example D-6f
object modules 1-1£

Installed attribute C-1
Installed libraries 1-1f, 4-1£f

and start address 4-2
at bind time 1-4

Index-3

benefits 1-5
different kinds of 1-5
examples D-6f
global symbols in 2-15f
marking 2-30ff
primary 1-4f
sharing data 2-25f
unresolved external references

3-13
vs. library files 1-4 f

Installed library
dependencies 2-20

Installing an object file 4-1ff
Installing object files at bindtime

2-19ff
Installing on a per-program basis

2-19
Instr C-l
Instruction attribute C-l
Interaction of utilities 1-2
Intermodular communication 1-3

L

Language libraries 1-3f, 4-1f
ld command (of DOMAIN/IX) 2-33
Librarian

comments 3-4
-CREATE option 3-2
errors and warnings 3-4, B-1ff
how it scans 3-4
how to use 3-1ff
invoking 3-1f
object modules l-1f
order of execution 3-2f
primary 1-4, 3-1ff
program development 1-2
purpose 1-4
quitting 3-11
replacing object modules 3-12
reporting external references

3-13
role in program development 1-3
spreading command over multiple

lines 3-3
summary of options 3-2
suppressing external references

3-13
suppressing messages 3-10
-UPDATE option 3-2
version number 3-8
wildcards 3-2

Libraries
language 1-3f
system 1-2
04-2

Library files 1-4, 3-1ff
and binder 1-4
and INLIB 1-4
attributes in 3-8f
binder's search order 2-22ff
creating 3-2
examples D-6
external references in 3-8f
force loading of 2-17f
global symbols in 3-8f
how the binder scans them 3-4
information on 3-8f
modifying 3-2
start address 3-5
summary of 3-2'
time of creation 3-8
vs. Installed libraries 1-4

Limits
binder 1-5
global symbols 1-5
sections 1-5
variable names 1-5

-LIST librarian option 3-4, 3-8f
attributes C-1f

Listing
binder option 2-28f, 2-39f
librarian information 3-8f

Loader 1-1, 1-5
and -INLIB 2-20
role in program development 1-2

Loading
library files 2-22ff, 3-4
object modules

at runtime 1-4f
from library files 1-4

- LOCALSEARCH binder option
2-22ff

Long boundaries 2-7
Long_Aligned attribute 2-33, C-l
Look_installed attribute 2-33, C-l
LOOKSECTION attribute 2-25f
Looksection attribute C-l
-LOOKSECTION binder option

2-25f, C-l

main function 3-5
Main memory

M

maximizing use of 1-5

Index-4

c

c

c

c

--~~~---------... - ------

o

o

o

o

o

- MAKERS binder option 2-27,
2-29

Managing software 1-3
-MAP binder option 2-28f

attributes C-H
Mapd

global 2-15f
Mapping

library files 3-8f
Maps

librarian 3-8f
load 2-28f
section 2-40f

-MARK binder option 2-30ff
in installed libraries 4-2

Marked global symbols
limits 1-5

Marking
global symbols 2-30ff
object files in installed libraries

4-2f
MARKSECTION attribute 2-25f
Marksection attribute C-l
-MARKSECTION binder option

2-25f, C-l
Math1.c D-4f
Math1.ftn D-H
Math1.pas D-3f
Math2.c D-4f
Math2.ftn D-H
Math2.pas D-3f
Math3.c D-4f
Math3.ftn D-H
Math3.pas D-3f
-MERGEBSS binder option 2-33
Merging sections 2-33
-MES librarian option 3-10
-MESSAGES binder option 2-34
Messages

informational 2-34
-MESSAGES librarian option 3-10
Mixed attribute 2-33
Mixed Message C-2
Modifying a library file 3-2
-MODULE binder option 2-35
Module (see Object modules)
-MSG librarian option 3-10
Multifile programs 1-3
Multilevel binding 2-2

merging sections 2-33
Multiple global definitions in

installed libraries 4-3f

Multiple resolutions error 2-36
-MUL TIRES binder option 2-36

N

Name of all global symbols 2-15f
Names

of modules in programs 2-28f,
2-39

of sections in programs 2-28f,
2-39

Naming output object module 2-35
-NMULTIRES binder option 2-36
-NOEXACTCASE binder option

2-14
-NOINLIB binder option 2-19ff
-NOLOCALSEARCH binder option

2-22ff
-NOLOOKSECTION binder option

2-25f, C-l
-NOMARKSECTION binder option

C-l
-NOMES librarian option 3-10
-NOMESSAGES binder option 2-34
-NOMESSAGES librarian option

3-10
-NOMSGS librarian option 3-10
-NOMUL TIRES binder option 2-36
-NOSYSTEM librarian option 3-13
-NOUNDEFINED binder option

2-45
Numerical sorting of global symbols

2-42
-NUNDEFINED binder option 2-45

Object files 1-1
executing 1-H

o

in multiple directories 2-9f
installed with the - INLIB binder

option 4-H
Object modules 1-1

contributing to program 2-28f,
2-39

cross-references 2-46f
in library files 1-4, 3-8f
naming 2-35
size of 2-28f, 2-39
time of creation 3-8

Offsets
of symbols 2-15 f

One file programs
binding 2-1

Index-5

On-line examples D-1
Operating system

libraries 1-2, 4-2
setting the target 2-44

Optimizing
operating system overhead C-2
performance 2-7
programs 2-38

Options
binder summary 2-4 ff

Order of object modules in library
files 2-22ff

Output object file 1-2, 2-11
-Output option 3-7
Overlay attribute 2-26, 2-33, C-2
Ovly C-2

p

Page boundaries 2-7
Page-Aligned attribute C-1
Pascal

case-sensitivity 2-14
global symbols 1-3
named sections 2-26, 2-38
on-line examples D-l
program development 1-Hf
sample programs D-3f
sharing data with installed

libraries 2-26
start address 2-13, 2-29, 3-5
the keyword PROGRAM 3-5
when to bind 2-1

Passes
over library files 2-22ff, 3-4

Pathnames
absolute vs. relative 2-9

Performance
optimizing 2-7

Physical memory
maximizing use of 1-5

Private installed libraries 4-2
Problems

solved by marking 2-30ff
Programs

creating them 1-2 , 2-H
development 1-1 ff
examples D-Hf
executing them 1-5
start address 2-13, 3-5
optimizing performance 2-7

sharing data with installed
libraries 2-25f

Project histories 1-3

Q

Quad boundaries 2-7
Quad-Aligned attribute C-l
-QUIT binder option 2-37
-QUIT librarian option 3-11
Quitting

a binder session 2-37
a librarian session 3-11

R

r flag (of cc) 2-33
Read-Only attribute 2-38, C-2
-READONL YSECTION binder

option 2-38, C-2
Read/Write attribute 2-26, 2~38,

C-2
in userlib.private 4-3

Redirecting standard output 2-28
Relative pathnames 2-9
Removing object modules from

library files 3-6
-REPLACE librarian option 3-12

wildcards 3-2
Replacing object modules in library

files 3-12
Resolution

bind time 1-3
runtime 1-4 f

Resolving global symbols 2-22ff
error message 2-36
marking 2-30ff

Restarting your workstation 4-2
Revision numbers

reporting by binder 2-27
setting 2-41

Runtime
errors

avoided by marking 2-30ff
loading of programs 1-5
resolution of global symbols 1-4f,

4-1£f

s
Scanning library files 2-22ff, 3-4
Scripts

binder errors 2-8
Search directories 2-9f

Index-6

c~.

c

o

o

o

o

o

Searching library files 2-22ff, 3-4
Section map 2-28f, 2-39f

-SECTIONS binder option 2-39
Sections 1-3

aligning 2-7

data sharing in 2-25f
in C 2-7

information on 2-15f
limits 1-5

listing 2-46f

position in object modules 3-8f

read-only attribute 2-38
read/write attribute 2-38
size of in object files 2-28f, 2-39

size of in library files 3-8f
Setting all bytes to zero C-2
Setting systype 2-44

-SET_VERSION binder option 2-41
Severity Levels 2-8

Sharing data

at runtime 2-33
in sections 2-25f

with installed libraries C-l

Shell scripts 2-8

Shutting down your workstation 4-2
Size

of sections 2-28f, 2-39

of variable names 1-5

Software engineering tools 1-3
Software updates

optimizing 1-5

Sorting global symbols 2-42

-SORTLOCATION binder option
2-42

-SORTNAMES binder option 2-42

Source code 1-1
control 1-3
examples D-l ff

writing 1-1

Standard output
redirecting 2-28

Start address 3-5

-ENTRY option 2-13
in listing 2-28f

Static data

initializing in userlib.private 4-2f
Steps to create a program 1-2

Stopping

a binder session 2-37

a librarian session 3-11

Summary of
binder options 2-4ff
binder errors 2-34, A-Hf
librarian errors 3-1, B-Hf
librarian options 3-2

Support environment tools 1-3
Swapping

minimizing 2-38
SYS3 environment 2-44
SYS5 environment 2-44
-SYSTEM binder option 2-43

affect on -GLOBALS 2-15f
System building 1-3
-SYSTEM librarian option 3-13
System

libraries 1-2, 1-3f, 2-44, 4-H
setting the target 2-44

System-defined
global libraries 4-H
installed libraries 4-H

Systype 2-44, A-3
-SYSTYPE binder option 2-44

T

Terminating a ·binder session 2-12
Time of binding 2-28f
Troubleshooting

binder errors A -Hf
librarian errors B-Hf
solved by marking 2-30ff

Typographical conventions 2-4, iv

u

Unconditional loading 1-4
-UNDEFINED binder option 2-45
Undefined globals 2-45

error message 2-43, 2-4
information on 2-15f

UNIX environment 2-44
- UNMARK binder option 2-30 ff
Unmarking

global symbols 2-30ff
-UNMARKSECTION binder option

2-25f

Unresolved external references
2-45, 3-13

Unresolved global symbols
binding 2-8

-UPDATE librarian option 3-2
Updating object modules in library

files 3-12

Index-7

User-defined
global library 4-iff
installed libraries 4-if

Userlib.private 4-2
global symbols in 4-3

Utilities
interaction 1-2

Variable names
limits 1-5

Version numbers
in listing 2-28f

v

of DOMAIN binder 2-28f
of DOMAIN librarian 3-8
setting 2-41
utilities 2-27

Virtual addresses
absolute C-1

Warnings
binder 2-3, A-iff
count of 2-34

w

librarian 3-4, 3-10, B-iff
suppressing librarian 3-10

Wildcards
librarian inputs 3-2

Write-protection C-2

x

-XREF binder option 2-46f

z
Zero attribute 2-33, C-2
-ZERO FORTRAN compiler option

C-2
Zeroing all bytes C-2,

Index-8

c

o

o

o

o

o

Reader's Response

Please take a few minutes to send us the information we need to revise and improve our manuals from
your point of view.

Document Title: DOMAIN Binder and Language Reference
Order No.: 004977 Revision: 02 Date of Publication: February, 1987

What type of user are you?
__ System programmer; language
__ Applications programmer; language _________ _

__ System maintenance person __ Manager/Professional

__ System Administrator Technical Professional
__ Student Programmer Novice

Other

How often do you use the DOMAIN system? ______________________ _

What parts of the manual are especially useful for the job you are doing?

What additional information would you like the manual to include?

Please list any errors, omissions, or problem areas in the manual. (Identify errors by page, section, figure,
or table number wherever possible. Specify additional index entries.)

Your Name Date

Organization

Street Address

City State Zip

No postage necessary if mailed in the U.S.

0 s
0 ..,

E:
a.
I»
0'
::J
cc
a.
~
CD
a.

::J
ID

FOLD .-----___ J

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 78 CHELMSFORD, MA 01824

POSTAGE WILL BE PAID BY ADDRESSEE

APOLLO COMPUTER INC.
Technical Publications
P.O. Box 451
Chelmsford, MA 01824

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

---~
FOLD

C

- ------------------ ------~-------

o

o

o

o

Reader's Response

Please take a few minutes to send us the information we need to revise and improve our manuals from
your point of view.

Document Title: DOMAIN Binder and Language Reference
Order No.: 004977 Revision: 02 Date of Publication: February, 1987

What type of user are you?
__ System programmer; language
__ Applications programmer; language _________ _

__ System maintenance person __ Manager/Professional

__ System Administrator Technical Professional
__ Student Programmer Novice

Other

How often do you use the DOMAIN system? ______________________ _

What parts of the manual are especially useful for the job you are doing?

What additional information would you like the manual to include?

Please list any errors, omissions, or problem areas in the manual. (Identify errors by page, section, figure,
or table number wherever possible. Specify additional index entries.)

Your Name Date

Organization

Street Address

City State Zip

No postage necessary if mailed in the U.S.

0

~
0
~

0'
0::
nJ
0"
::J

(Q

0-
~
iD
0-

::J
CD

FOLD __ J

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 78 CHELMSFORD, MA 01824

POSTAGE WILL BE PAID BY ADDRESSEE

APOLLO COMPUTER INC.
Technical Publications
P.O. Box 451
Chelmsford, MA 01824

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

---,
FOLD

(,
"-....-/

(-
'-.

