
o

o

o

o

o

[D)(Q)MA~N lCOlU19JlUItOl9J®
leve~ [D)(9lQ)(UJ9J9Jerr

Apollo Computer Inc.
330 Billerica Road

Chelmsford, MA 01824

~®~®lreUi)C~

Order No. 001525
Revision 04

Copyright © 1987 Apollo Computer Inc.
All rights reserved. Printed in U.S.A.

First Printing:
Latest Revision:

April, 1982
January, 1987·

This document was produced using the Interleaf Workstation Publishing Software (WPS). Interleaf and WPS are trade
marks of Interleaf, Inc.

APOLLO and DOMAIN are registered trademarks of Apollo Computer Inc.

AEGIS, DGR, DOMAIN/BRIDGE, DOMAIN/DFL-100, DOMAIN/DQC-100, DOMAIN/Dialogue, DOMAINIIX, DOMAIN/La
ser-26, DOMAIN/PCI, DOMAIN/SNA, D3M. DPSS. OSEE. GMR. and GPR are trademarks of Apollo Computer Inc.

Apollo Computer Inc. reserves the right to make changes In specifications and other Information contained in this publi
cation without prior notice, and the reader should In all cases consult Apollo Computer Inc. to determine whether any
such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF APOLLO COMPUTER INC. HARDWARE PRODUCTS AND
THE LICENSING OF APOLLO COMPUTER INC. SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE WRIT
TEN CONTRACTS BETWEEN APOLLO COMPUTER INC. AND ITS CUSTOMERS. NO REPRESENTATION OR OTHER
AFFIRMATION OF FACT CONTAINED IN THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO STATEMENTS RE
GARDING CAPACITY , RESPONSE-TIME PERFORMANCE, SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS
DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRANTY BY APOLLO COMPUTER INC. FOR ANY PURPOSE,
OR GIVE RISE TO ANY LIABILITY BY APOLLO COMPUTER INC. WHATSOEVER.

IN NO EVENT SHALL APOLLO COMPUTER INC. BE LIABLE FOR ANY INCIDENTAL. INDIRECT, SPECIAL OR CONSE
QUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARISING OUT OF OR
RELATING TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT. EVEN IF APOLLO COMPUTER INC.
HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF SUCH DAMAGES.

THE SOFTWARE PROGRAMS DESCRIBED IN THIS DOCUMENT ARE CONFIDENTIAL INFORMATION AND PROPRIE
TARY PRODUCTS OF APOLLO COMPUTER INC. OR ITS LICENSORS.

c

C '. I

0,

o

o

o

Preface

This manual describes the language level debugger, DEBUG. We've organized this manual as follows:

Provides a brief overview and tutorial of DEBUG. Chapter 1

Chapter 2 Explains how to compile your source code so that it can be debugged,
and how to invoke the debugger.

Details all DEBUG commands. Chapter 3

Chapter 4 Explains some language dependencies. For example, what should a C
programmer know when using DEBUG?

Appendix A

Appendix B

Appendix C

Related Manuals

Supplies some helpful hints in Question and Answer format.

Explains how to debug an installed library.

Describes how optimization affects debugging.

Use the following language manuals in conjunction with the debugger manual:

• DOMAIN Pascal Language Reference (000792)

• DOMAIN FORTRAN Language Reference (000530)

• DOMAIN C Language Reference (002093)

Problems, Questions, and Suggestions
\Ve appreciate comments from the people who use our system. In order to make it easy for you to com
municate with us, we provide the User Change Request (UCR) system for software-related comments,
and the Reader's Response form for documentation comments. By using these formal channels you make
it easy for us to respond to your comments.

You can get more information about how to submit a UCR by consulting the DOMAIN System Command
Reference. Refer to the CRUCR (CREATE_USER_CHANGE_REQUEST) Shell command description. You
can view the same description on-line by typing:

$ help crucr <RETURN>

For your documentation comments, we've included a Reader's Response form at the back of each manu
al.

Documentation Conventions
Unless otherwise noted in the text, this manual uses the following symbolic conventions:

boldface Bold, uppercase words or characters in formats and command descriptions repre
sent commands or keywords that you must use literally. Letters in uppercase

iii Preface

boldface must be used, but letters in lowercase boldface are optional. For in
stance, consider SIGnal. Since the word is boldfaced, it is mandatory. The ar-
rangement of uppercase and lowercase letters indicates that the word can be ab- I~

breviated to SIG. \ ' ,_/
nonboldface

italicized

output

color

(comments)

< >

CTRL/Z

Words that are neither boldfaced, nor italicized indicate a part of the expression
that you must supply, but you do not supply it literally. For instance, consider
pathname. You would not enter the word "pathname," you would enter a path
name instead.

Italicized words are optional arguments.

Typewriter font words in command examples represent literal system output.

Colored words indicate user input.

In examples, comments are italicized and enclosed in parentheses.

Angle brackets enclose the name of a key on the keyboard.

The notation CTRL/ followed by the name of a key indicates a control character
sequence. You should hold down <CTRL> while pressing the key.

Horizontal ellipsis points indicate that the preceding item can be repeated one or
more times.

Vertical ellipsis points mean that irrelevant parts of a figure or example have been
omitted.

Summ~ry of Technical Changes
We last revised this manual for SR9.0. Since then, we've reorganized the manual and made it look pret
tier. DEBUG software has changed in the following ways:

• -SRC is now on by default. The -NSRC option must be used to suppress source display.

• You no longer have to supply fully-qualified routine names or variable names (e.g.,
FOO\BAR\ WALDO) when the routine or variable is visible from the current environment.

• You can now refer to line numbers in other routines in the current source file without prefixing
the routine name.

• DEBUG marks breakpoint locations in the source display with a "I".

• New options for the ENVIRONME!'\TT command allow you to walk up and down the call stack,
and restore a previously defined user environment.

• A new SOURCE command allows you to directly specify the source file to be displayed. Please
use this new SOURCE command instead of the old SDIR command.

• By using the new SOURCE command, you can display the source code of programs that were
compiled with the -DB option.

• The DELETE -BREAKPOINT command accepts two new SUb-options: -VA for deleting a
breakpoint at a specific address, and -HERE for deleting the current breakpoint.

• If a program stops in Apollo library code. DEBUG no longer automatically sets the user environ
ment to the last-called user routine. (The new -CALLER option of the ENVIRONMENT com
mand makes it easy to walk back manually.)

Preface iv

c

c

c

0

0

0

o

o

"

0

0

0

0

0

0

0

0

0

0

0

0

0

A new debugger variable named 'MAX_QUAL limits the number of qualifiers (which are enclos
ing routine-names) that prefix displayed routine and variable names.

DEBUG displays unprintable characters in ASCII data as '<Ax>' or '<xx>'. A new debugger vari
able named 'MAX_BAD_CHARS limits the number of such characters which are output in a
string.

Character string literals in commands may be delimited with either single or double quotes. Single
and double quotes are interchangeable (but must be used in matching pairs).

You can now set breakpoints on FORTRAN statement functions.

DEBUG now correctly accesses FORTRAN arrays that have variable dimensions.

By default, DEBUG displays C "char" variables (8-bit integers) in ASCII format and allows you
to set them to character literals. You can set Pascal" char" variables to integer values.

You can subscript all C pointers. (Prior to SR9.5, you could not subscript struct fields and array
elements.) The" all" subscript [.] is not valid in general because the size of the implied array is
unknown. But it can be used with pointers to chars for which the usual null-terminated string con
vention applies.

You can now de-reference pointers to procedures and functions. The result is a character string
containing the name of the routine.

The SHELL command now accepts a shell command string as an argument.

The -PROC command line option now accepts a process uid or a Unix pid as its argument.

The source code position arrow is now turned off while the target program is running.

You can now debug installed libraries, though some rather severe restrictions apply. A new
-GLOB command line option lets you step into code in global address space.

A new SIGNAL command simulates a fault at the current point of execution.

Action lists for faults have been added. If you define a macro named 'FAULT_ACTION, DE
BUG executes it when the program faults. The debugger variable 'FAULT_STATUS contains the
fault status code.

o There is a new -VERBOSE option for HELP.

o DEBUG can now distinguish between unsigned and signed integer variables.

o We've fixed many bugs.

We've used changed bars to mark technical changes to DEBUG since SR9.0.

v Preface

c

C/ .-

c

Contents o
Chapter 1 Introduction to DEBUG

1.1 The Debugging Process .. 1-2
1.2 A Short Debugging Tutorial ... 1-2

1.2.1 Three Sample Debugging Sessions ... 1-2

Chapter 2 Invoking DEBUG

2.1 Preparing Programs For DEBUG ... 2-1
2.1.1 The -DB Compiler Option .. 2-2
2.1.2 The -DBS and -DBA Compiler Options 2-2

o 2.1.3 The -NDB Compiler Option .. 2-2
2.2 Invoking DEBUG ... 2-3

2.2.1 DEBUG Options ... 2-4
2.2.2 The -NC Option ... ' .. 2-4
2.2.3 The -PROC Option ' 2-5

-PROC Example ... 2-5
Using PROC to Debug Child Processes Spawned by a Program 2-7
Advantages of -PROC .. 2-7

2.2.4 The -READ Option .. 2-7
2.2.5 The -SET Option .. 2-8

o 2.2.6 Windowpane Options: -WPnn and -NWP 2-8
2.2.7 Source Display Options: -SRC, -NSRC, -SRC_T, and -SRC_R 2-10
2.2.8 The -SDIR Option ... 2-11
2.2.9 The -GLOB Option .. '. '.' ... 2-11
2.2.10 The -SMAP Option ... 2-11

Chapter 3 Using DEBUG

3.1 Entering DEBUG Commands .. 3-1
3.2 Overview of DEBUG's Features .. 3-2

o 3.2.1 Setting Breakpoints and Tracing ... 3-2
3.2.2 Controlling Program Flow .. 3-2
3.2.3 Operating on Variables .. 3-2
3.2.4 Displaying Traceback and Examining Routine Arguments 3-3
3.2.5 Creating Debugger Macros and Definitions 3-3
3.2.6 Setti~g' Environments .. '1' .. 3-3
3.2.7 Runmng a Shell From The Debugger .. 3-3

3.3 General DEBUG Information .. 3-3
3.3.1 Command Abbreviatjons ... 3-3
3.3.2 Case Sensitivity ... ~ .. 3-4
3.3.3 Debugger Names (of Variables, Macros, and Definitions) 3-4

3.4 The DEBUG Encyclopedia .. 3-4
Action-lists ... 3-6
ARGS ... 3-8
Arrays ... 3-10
BREAKPOI1\TT ; ... 3-12

o Debugger Variables ... 3-15
DEFINE ... 3-19
DELETE ... 3-21
DESCRIBE ... 3-24

vii Contents

ENVIRONMENT .. 3-26
EXAMINE ... 3-29
EXIT .. 3-32
Expressions ... 3-33
Faults .. 3-36 c
GO .. 3-38
HELP ... 3-40
IF ... 3-41
JUMP ... 3-42
LIST .. 3-43
MACRO ... 3-45
Pointer Variables .. 3-47
PRINT ... 3-49
QUIT .. 3-51
READ ... 3-52
Routine-Name ... 3-53
SDIR .. 3-57
SET ... 3-58
SHELL .. 3-62
SIGNAL ... 3-63
Source -Code Display ... 3-64
SOURCE ... 3-67
Statement-ID ... 3-69
STCODE ... 3-71
STEP .. 3-72
TB .. 3-75
VA .. 3-76
Variables ... 3-78
... 3-80 c

Chapter 4 Language-Related Issues

4.1 Debugging FORTRAN Programs ... 4-1
4.1.1 FORTRAN Expressions .. 4-2
4.1.2 FORTRAN Statement Numbers ... 4-2
4.1.3 FORTRAN Alternate Entry Points ... 4-2
4.1.4 FORTRAN I/O Statements ... 4-2
4.1.6 FORTRAN Statement Functions .. 4-2

4.2 Debugging C Programs ... 4-3
4.2.1 C Case-Sensitivity .. 4-3
4.2.2 C Expressions and Operators ... 4-3
4.2.3 C Preprocessor Symbols ... 4-4
4.2.4 C Characters and Character Strings . 4-4

Assigning a String Constant to an Array Variable 4-4
The Special int8 and byte Types .. 4-5

4.2.5 C Pointers .. 4-5
Pointers and Arrays .. 4-6

4.2.6 C Inner Block Variables ... 4-6
4.3 Debugging Pascal Programs .. 4-7

4.3.1Pascal Expressions .. 4-8
4.3.2 Pascal Sets .. 4-8

Describing and Displaying Set Variables .. 4-8
Resetting the Value of a Set Variable .. 4-8

4.3.3 WITH Statements .. 4-9

Contents viii

Appendix A Helpful Debugger Hints

o Appendix B Debugging Installed Libraries

B.l Controlling Program Flow .. B-1
B.l.l The DEBUG Option -GLOB ... B-1

B.2 Variables and Breakpoints " .. B-2

Appendix C Debugging Optimized code

C.l -DBA .. C-l
C.2 -OPT 0 ... C-2
C.3 -OPT 1 ... C-2

C.3.1 Dead-Code Elimination ... C-2
C.3.2 Assignment Merging .. C-2
C.3.3 Common Subexpression Elimination ... C-3

C.4 -OPT 2 ... C-3
C.S -OPT 3 ... C-3

o C.S.l Putting Local Variables in Register .. C-4
C.S.2 Eliminating Assignments to Dead Static Variables C-4
C.S.3 Reordering Instructions .. C-4
C.S.4 Removing Loop Invariant Statments ... C-4

C.6 -OPT 4 ! •• C-4
C.7 Summary and Advice " C-S

o

o

o
ix Contents

Illustrations

Figure Page

1-1 A DEBUG Session With a Simple FORTRAN Program 1-4
1-2 A DEBUG Session With a Simple C Program 1-5
1-3 A DEBUG Session With a Simple Pascal Program 1-6
2-1 Debugging Without the -PROC Switch 2-5
2-2 Debugging With The -PROC Switch .. 2-6
2-3 Default Window Panes .. 2-9
2-4 -WP70 Creates Nonequal Window Panes 2-9
2-5 -NWP Combines the DEBUG Commands Window Pane and the

Target Program I/O Window Pane ... 2-10
C-1 To Optimize or Not To Optimize ... C-1

Table

2-1
2-2
3-1
3-2
3-3
4-1

Contents

Tables

Page

Compiler Options Affecting Debugging :................................. 2-1
DEBUG Command Line Options .. 2-4
DEBUG Operators ... 3-34
Legal DEBUG Data Types ... 3-47
Variable Cross Assignments ' ... 3-61
C Operators Not Supported by DEBUG 4-4

x

c

c

c

o

o

o

o

o

Chapter 1

The DOMAIN Language Level Debugger (DEBUG) is a high-level language debugger. You use it to debug
FORTRAN, Pascal, and C programs running on the AEGIS or the DOMAINIIX operating systems. DEBUG
supports the features found in most high-level language debuggers; that is, it lets you set breakpoints, jump
through the program, and examine variables. But DEBUG also supports many other interesting features. Us
ing DEBUG, you can

• Control program flow

• Set breakpoints to suspend program execution at any statement.

• Step the program one source statement at a time.

• Change the order of execution.

• Intercept or simulate program faults.

• Examine program status

• Display, set, or change the value of a variable.

• Describe the data type and storage allocation of a variable.

• Trace the chain of calls that brought the program to its current state.

• Display program source code

• Display the source code of the program in a separate window, with an automatically updated
indication of the current point of execution.

• Have full Display Manager access to the source file display for scrolling, text searching, etc.

• "Program" DEBUG

• Define action-lists of commands to be automatically executed at breakpoints or program
faults.

• Define macros to abbreviate common sequences of commands.

• Define startup files of commands to be automatically executed when DEBUG starts.

• Specify conditional execution of commands.

1-1 Introduction

1.1 The Debugging Process
The debugging process can be divided into the following three steps:

1. Compile the program so that DEBUG can use it. (For details, see Chapter 2.)

2. Invoke DEBUG. (Also see Chapter 2.)

3. Use DEBUG after you've invoked it. (For details, see Chapter 3.)

To accomplish step 1, compile with the -DB, -DBA, or -DBS option. For example:

$ ftn test.ftn -dba $ pas test.pas -dba $ cc test.c -dba

The simplest way to accomplish step 2 is to issue the command DEBUG followed by the name of the object
file you want to debug, for example: .

$ debug test. bin

Accomplishing step 3 is more complicated, so we provide the following short tutorial.

1 .2 A Short Debugging Tutorial
The goal of a debugging session is to eliminate the errors in your source code. The debugger is a tool that
helps you find errors by allowing you to selectively examine a program's variables while the program is run
ning. Once you find the' errors, you must edit the source code and recompile it.

A feature of all debuggers is that they let you set breakpoints through the program. A breakpoint is an order
to temporarily halt program execution at a particular line. For instance, if you set a breakpoint at line 20, the
program will run normally until it reaches the statement at line 20, and then it will halt. In DEBUG, you set
breakpoints with a command called, conveniently enough, BREAKPOINT. While halted at a breakpoint,
you can examine the values of variables or perform any other debugger function. In DEBUG, you use the
EXAMINE, PRINT, or ARGS command to display the value of variables. You can set an unlimited number
of breakpoints in the program. Debuggers also support a command that resumes program execution from the
breakpoint; in DEBUG, this command is called GO.

The STEP command is an alternative to the combination of BREAKPOINT and GO commands. You use
the STEP command to execute the program one statement at a time.

So, there you have it in a nutshell. You use the debugger to flip from breakpoint to breakpoint in order to

c

discover where your program went wrong. Keep in mind that you cannot use DEBUG to change erroneous C,. ,,'
source code. You can only use DEBUG to detect the location of erroneous source code. When you find the .
error, you still have to go back and change your source code.

1.2.1 Three Sample Debugging Sessions
To help you get started, we provide Figures 1-1, 1-2, and 1-3, which show sample debugging sessions with
FORTRAN, C, and Pascal programs. Notice how the d~bugging window in these figures is divided into the
following three window panes:

• The right window pane is a listing of the source code that we are debugging.

• The bottom left window pane is a transcript pad showing all input and output of the running program.

• The top left window pane is where we enter all our DEBUG commands, and DEBUG displays debug
ger output.

Let's now examine the top left window pane in greater detail. Here's the order of the debugging commands:

PRINT Displays the value of the character array.
BREAKPOINT Sets a breakpoint at the given line number.

Introduction 1-2

o

o

o

o

o

GO
EXAMINE
SET
BREAKPOINT
GO
EXAMINE
STEP
QUIT

Advances the program from the start to the first breakpoint.
Displays all four elements of the array.
Changes the value of the second element of the array.
Sets a second breakpoint at the given line number.
Advances the program from the first breakpoint to the second.
Displays the value of a simple variable.
Advances the program to the next statement.
Ends the debugging session.

Look at the source display in the window pane on the right. Notice how each line of code is preceded by a
line number. These line numbers are very useful for setting breakpoints. DEBUG places an exclamation
point next to a line number where a breakpoint has been set. If you delete the breakpoint (with the DE
LETE command), the exclamation point disappears. Find the arrow (it's on line 26, 23, or 29 in the three
figures). The arrow tells you where the location of the program counter; in other words, it marks your cur
rent position in the program.

1-3 Introduction

Break at: $MAIN\9
>PRINT welcoMe
Hi Ma
> BREAKPOINT 19
> GO
Break at: $MAIN\19
> EXAMINE va lues
$MAIN\valuesCl) = 3.288888
$MAIN\values(2) = 4.188888
$MAIN\values(3) = 3.688888
$MAIN\values(4) = 3.788888
>SET values(2) = 3.9
> BREAKPOINT 25
> GO
Break at: $MAIN\25
> EXAMINE tota I
$MAIN\total = 14.40888
> STEP
Stepped to: $MAIN\26

> QUIT

$ debug -src_r test. bin
debug 6.85

Hi Ma
Value 1=

3.2
Value 2=

4. 1
Value 3=

3.6
Value 4=

3.7

1
2
3
4
5
6
7
8
9

18

IICASCAO_7/BARRY/OEBUGBOOK/T

CHARACTER*18 welcoMe
REAL*4 values(4)
REAL*4 total~ avg
INTEGER*2 c~ rc

DATA welcoMe/~Hi Ma~1
DATA total/81

PRINT *~ welcoMe

11 C Read in Pour va lues.
12 DO 188 c=l~ 4~ 1
13 PRINT *~~Value~~c~~= ~

14 READ *~ valuesCc)
15 188 CONTINUE
16
17
18
19
28
21
22
23
24
25 - ... - ..
27
28

C SUM the values.

208

DO 288 rc=1~ 4~ 1
total=total+valuesCrc)
CONTINUE

C Find their average.
avg = total I 4.0
PRINT *~~avg = ~~avg

END

Figure 1-1. A DEBUG Session With a Simple FORTRAN Program

Introduction 1-4

-------- ---- --------

,

(~

c'

o

o

o

o

o

Break at: TEST_C\Main\7
>PRINT welCOMe
Hi Ma
> BREAKPOINT 17
> GO
Break at: TEST_C\Main\17
>EXAMINE values
TEST C\valuesC8J = 3.288888
TEST-C\valuesC1J = 4.188888
TEST-C\valuesC2J = 3.688888
TEST:C\valuesC3J = 3.788888
>SET valuesC1J = 3.8
> BREAKPOINT 22
> GO
Break at: TEST_C\Main\22
> EXAMINE tota I
TEST_C\total = 14.38888
> STEP
Stepped to: TEST_C\Main\23

> QUIT

$ debug -src_r test. bin
Hi Ma
Value 1= 3.2
Value 2= 4.1
Value 3= 3.6
Value 4= 3.7

-" IISHOWER6/BARRY/DEBUGBOOK/TE

1 char welcoMeCJ = (IIHi Mall);
2 Ploat valuesC4J .. total .. avg;
3 int c .. rc;
4
5 Main()
6 (
7 printP(lIi:s\nll .. we I cOMe);
8
9 1***Read in Pour values***1

18 Por (c = 8; C (= 3; c++)
11 (printP("Va I ue i:d= " .. c+1);
12 scanP(lIi:p lI .. 8:va I uesCcJ);
13)
14
15
16 I***SUM t he va I ues***1
17 Por (rc = 8; rc <= 3; rc++)
18 total += valuesCrcJ;
19
28
21 1***Find their average***1
22 avg = tot a I I 4. 8;

=~ printp(lIavg = i:P\n" .. avg);
24)

Figure 1-2. A DEBUG Session With a Simple C Program

1-5 Introduction

Break at: TEST\12
) PRINT w
Hi Ma
) BREAKPOINT 23
) GO
Break at: TEST\23
) EXAMINE vals
TEST\valsC1J = 3.288888
TEST\valsC2J = 4.188888
TEST\valsC3J = 3.688888
TEST\valsC4J = 3.788888
) SET valsC2J = 3.8
) BREAKPOINT 28
) GO
Break at: TEST\28
) EXAMINE total
TEST\total = 14.38888
) STEP
Stepped to: TEST\29

) QUIT

$ debug -src_r test.bin
Hi Ma
Value 1= 3.2
Value 2= 4.1
Value 3= 3.6
Value 4= 3.7

IISHOWER6/BARRY/DEBUGBOOK/TE

1 PrograM t es t ;
2 CONST
3 g = ~ H i Ma~;

4
5
6
7
8
9

18

VAR
w:arrayCl •• *J of char
vals: arrayC1 •• 4J of
total~ avg real;
c~ rc : integer;

11 BEGIN
12 wri te I n(w);
13
14
15
16
17
18
19
28
21

(Read in four vals.)
for c := 1 to 4 do
BEGIN

write(~Value~~c:2~~=

readln(valsCcJ);
END;

22 (SUM t he va Is)
23 for rc : = 1 to 4 do

: = 9;
rea I;

24 total:= total + valsCrcJ;
25
26
27 (Find their average)
28 avg: = tot a I I 4.8;

===~ writeln(~avg = ~~ avg:3:1>;
38 END.

Figure 1-3. A DEBUG Session With a Simple Pascal Program

Introduction 1-6

c'

c

C~\i

o

o

o

o

o

Chapter 2

This chapter explains how to prepare a program so that it can be debugged, and how to invoke the debug
ger.

2.1 Preparing Programs For DEBUG
In order to use DEBUG to debug a program, you must first compile your source code with the correct com
piler option. Each compiler (CC, PAS, and FTN) supports four command options that affect DEBUG's ac
cess to a program. Table 2-1 lists these options and summarizes the DEBUG access each option provides.
A detailed description of each option follows the table.

Table 2-1. Compiler Options Affecting Debugging

~ -DB
Effects (default)

You can access the names of routines. YES

You can access the values or NO
descriptions of variables.

You can access line numbers and set YES
breakpoints.

DEBUG automatically displays the NO'"
source code you are debugging.

The compiler removes any optimizations NO
that might interfere with debugging.

The compiler performs the level of YES
optimization specified by the -OPT
option.

DEBUG only displays the source code that you request.
'" '" You cannot debug a file compiled with -NOB.

2-1

-DBA

YES

YES

YES

YES

YES

NO

-DBS -NOB"''''

YES NO

YES NO

YES NO

YES NO

NO NO

YES YES

Invoking Debug

2.1.1 The -DB Compiler Option
When you compile a program with the -DB option (the default), the compiler performs its normal optimiza-
tions and creates a line number table, but it does not create a symbol table. C'
The line number table permits you to set breakpoints or run a traceback. The line number table provides
DEBUG with the names of the routines in the module, but does not provide information on the nesting
structure. Therefore, if two routines have the same name, DEBUG cannot distinguish between them.

Because it does not create a symbol table, the -DB option provides no access to variables, constants, and
labels. Therefore, the -DB option is usually of little value when you intend to use DEBUG.

This option does permit source display debugging (described in the "Source Code Display" listing of Chap
ter 3); however, DEBUG will only display the source code that you explicitly request to see. (The -DBS
and -DBA options provide DEBUG with enough information to automatically display the proper source
code.)

2.1.2 The -DBS and -DBA Compiler Options
For most debugging, you will want to compile with either the -DBS or -DBA option. As Table 2-1 shows, ~

both options provide the exact same access to the debugger, the only difference is in how the compiler opti- I,

mizes the code. \..,---

If you specify -DBA, the compiler eliminates all optimizations that could interfere with debugging. If you
specify -DBS, the compiler allows any optimizations. These optimizations could interfere with debugging
since the source code may not correspond exactly to the object code. On the other hand, -DBS ensures
that the code you debug is the same as production code compiled with -DB or -NDB thereby increasing
your confidence in the correctness of the final program.

-DBA makes debugging easier by eliminating compiler optimizations that interfere with a direct correspon
dence between the source and object programs. Which is better? It is hard to generalize, but here are two
helpful hints:

• The difficulty of debugging a program 'compiled with -DBS depends greatly on the program itself.
You may wish to start with -DBS and switch to -DBA only if optimization-related programs are too
great.

• Optimization sometimes exposes latent program bugs. Debugging a program compiled with -DBA
should not ·replace thorough testing of the optimized program.

Appendix C details the ways in which optimization can affect debugging.

2.1.3 The -NOB Compiler Option
The -NDB option causes the compiler to create as compact an object module as possible. The resulting ob
ject module will have no line number table or symbol table. DEBUG has no access to programs compiled
with -NDB. In fact, -NDB also interferes with the TB, HPC, and DPAT utilities. Therefore, we recom
mend that you not use -NDB unless it is absolutely essential to reduce the program's size. Note that the ex
tra DEBUG information added by -DB, -DBA, or -DBS does not affect the execution time of the program.

Invoking Debug 2-2

c:

o

o

o

o

o

2.2 Invoking DEBUG
To invoke DEBUG, issue a command line that has one of the following two formats:

$ debug debug_options target_program target-program_arguments

or

$ debug debug_options -proc process_name

Debug_options are one or more options described in the next section. The target_program is the object
file that you want to debug. Target_program_arguments are any arguments you want to supply to the tar
get_program.

You must specify all debug_options before you specify the target program name. DEBUG only scans for
options up to the target program name. For example, consider how the system interprets the following two
different command lines:

$ debug to test.bin at
DEBUG

sees this
Your program

sees this

$ debug test. bin -src

t
Your program

sees this

By default, when you invoke DEBUG (without specifying the -proc option), the following happens:

1. The system forks, creating a new process. DEBUG runs in the child process, which is named "DE
BUG" (or "DEBUG.1" or "DEBUG.2", etc.).

2. DEBUG loads the target program into the original (parent) process. During program loading, DE
BUG copies all read-only portions to read/write storage, so that you can set breakpoints.

3. DEBUG splits the window into three window panes -- one window pane displays the source code
you are debugging, another window pane displays all DEBUG commands you make, and a third
window pane holds all I/O of the program you are debugging.

4. DEBUG sets a breakpoint on the first executable statement in the target program.

5. DEBUG looks in your home directory for the pathname user_data/startup_debug. If
DEBUG finds this pathname, DEBUG processes the file's contents as a sequence of DEBUG
commands. If DEBUG does not find this pathname, no error occurs. DEBUG then looks in your
working directory for filename startup_debug. If DEBUG finds this filename, DEBUG
processes the file's contents as a sequence of DEBUG commands. If DEBUG does not find this
filename, no error occurs.

6. DEBUG starts execution of the target program. The target program runs until just before the first
executable user statement, where DEBUG sets a breakpoint. At that point, DEBUG issues its
prompt character (» and waits for a command.

NOTE: You cannot redirect or pipe the I/O of the target program. For example, the com
mand line

$ DEBUG foo.bin >foo.output
.

redirects DEBUG's standard output stream, rather than foo's because I/O redirection
is a Shell function. If you need to redirect or pipe target program I/O, use the -PROe
option.

2-3 Invoking Debug

2.2.1 DEBUG Options
The DEBUG command line options allow you to customize the operation and appearance of your debugging
session. Table 2-2 summarizes these options and gives a brief description of each option's function.

Table 2-2. DEBUG Command Line Options

Option Function

-nc Prevents DEBUG from copying the target object file. DEBUG
maps the object file so that you can write the breakpoint directly
into the object file.

-proc proc_name Enables DEBUG to debug the next program executed in a
specified process.

-read pathname Invokes a DEBUG command file with the specified pathname.

-set argument(s) Sets one or more DEBUG variables at invocation.

-wpl0 ... -wp90 Sets the size of the DEBUG window pane from 10% to 90% of
the process transcript window.

-nwp Causes DEBUG to use the same windows as your target program
(no separate DEBUG windowpane). DEBUG's input and output
mixes with your program's input and output.

-src Creates a "source-display" window paneas well as a DEBUG
windowpane and displays the source file as you debug your
program. This option is on by default.

-nsrc Suppresses creation of a source-display window pane.

-src_t Forces DEBUG to put the source-display window pane at the top
of the DEBUG window pane.

-src_r Forces DEBUG to put the source-display window pane on the
right of the DEBUG windowpane.

-sdir pathname Allows you to specify one or more alternate pathnames for
source files.

-glob Enables DEBUG to enter routines in global address space.

-smap Prints a brief section map of the target program loading operation.

The remainder of this section describes these options in more detail.

2.2.2 The -NC Option
The -NC (No Copy) option prevents DEBUG from copying the target object file. Instead, DEBUG maps
the object file so that you can write breakpoints directly into the object. This option is useful when you are
debugging a large program. The -NC option saves time because the system requires less time to map the tar
get for writing than it does to copy the entire procedure code.

NOTE: Take care when using the -NC option, because it is possible to make the object file in
valid. Normally, when you exit from a debugging session, DEBUG repairs the break
point locations in the object file, leaving it exactly as it was before you invoked DE
BUG. However, if you are debugging a program that is crashing itself and/or the proc
ess, DEBUG may never regain control before exiting. In this case, the object file will
have breakpoint instructions in its procedure code that you cannot remove.

Invoking Debug 2-4

o

o

o

o

o

If DEBUG does leave breakpoints in the object file, it sets a flag so that you know that the object file is bad.
If you try to use the object file again, you receive the following error message:

object module has unremovable breakpoints; rebind (process manager/loader)

When you use the -Ne option, it is a good practice to keep an original copy of the object file and copy it to
a test file before invoking DEBUG.

2.2.3 The -PROC Option
DEBUG always runs in a separate process from the target program. By default, DEBUG runs in a child of
the process in which it is originally invoked, and the target program runs in the parent. You use the -PROe
option to specify a different process for the target program to run in. The format for the option is:

process name
-PROC pid -

process_uid

You must specify exactly one of the three choices with -PROe.

When you use the -PROe option, you do not specify a target program; instead, DEBUG watches the speci
fied target process (and its children) until it detects a new program being started (invoked or exec'ed). You
are responsible for starting the target program in the named process. Usually you start the target program
by invoking it on a command line, just as you would if you were not debugging it.

-PROC Example

If you do not specify the -PROe option, DEBUG and the target program run in the same window, as shown
in Figure 2-1. In this example, DEBUG is a child process of Process_B.

IISHOWER6/BARRY/DEBUGBOOK/TEST.C

1 P I oa t x.. y.. avg;
2 Main()
3 (
4
5

printP(IIEnter 2 nUMS: II);
scanf(IIZPZP II .. gx .. gy); ,-.. . - .. avg = (x + y) I 2;
printP(IIAvg = ;"-:P\nll .. avg); 7

8)

Break at: TEST C\Main\4
> BREAKPOINT 13-
> GO
Break at: TEST_C\Main\13

>

$ debug test.bin
Enter 2 nUMS: 4.2 6.8

Figure 2-1. Debugging Without the -PROe Switch

2-5 Invoking Debug

Sometimes, you may want to control the process in which the target and debugger run. Figure 2-2 shows
how we used the -PROe option to run DEBUG in Process_13 and the target program in Process_14.

$ test.bin
Enter 2 nUMS: 4.2 G.8

IISHOWERG/BARRY/DEBUGBOOK/TEST.C

1 F' I oa t x.. y.. avg;
2 Main()
3 (
4
5

1-" .-..
7
8)

printF'("Enter 2 nUMS: II);
scanF'(Ii:F'i:F'" .. Bx .. By);
avg = (x + y) I 2;
printF'(IIAvg = i:F'\n" .. avg);

$ debug -proc process_14
(debug) Waiting Por prograM startup in Iprocess_14"
Break at: TEST C\Main\4
> BREAKPOINT G-
> GO
Break at: TEST_C\Main\G

>

Figure 2-2. Debugging With The -Proc Switch

Let's trace the steps we used to get the situation shown in Figure 2-2:

1. We created two shells. In our examples, the operating system named the sGhe~ls process_
1
1
3
4 and

d
C

Process_13. You'll likely get different names. We decided to run DEBU In Process_ an
test. bin in Process_14.

Invoking Debug 2-6

------~-----------

o

o

o

o

o

2. We typed the following command in Process_13:

$ debug -proc Process_14

The system responded with the following prompt:

(debug) Waiting for program startup in "Process_14"

3. We moved the cursor into Process_14 and entered the command:

$ test. bin

4. We debugged test. bin by entering DEBUG commands from Process_13; program output ap
peared in Process _14.

Using -PROC to Debug Child Processes Spawned by a Program

Because DEBUG watches both the specified target process and its children for a program start, you can use
DEBUG to debug child processes spawned by a program. The basic technique is the following:

1. Start the parent program, but don't start it under DEBUG.

2. After the program has started, but before it spawns the child process, start DEBUG specifying the
parent process in a -PROe option. You may need to force the parent to pause in order to accom
plish this.

3. Resume the parent process. When the child process is created and either invokes or execs a new
program, DEBUG switches its attention to the child process and debugs the new program.

For programs that use a fork-exec sequence to spawn a child, you can use the following alternate tech
nique:

1. Modify the code to force the child process to pause after the fork but before the exec.

2. When the child process pauses, start DEBUG on it.

3. Resume the child process. DEBUG will detect the exec as above.

Advantages of -PROC

Using the -PROe option has several advantages. The first advantage is that the -PROe option minimizes
DEBUG's interference with the target process. The normal DEBUG invocation creates a new process in
which to run the debugger (transparent to the user). However, at invocation, DEBUG momentarily runs in
the same process as the target before continuing in the newly created process. This can alter memory con
tents and cause the target to run differently from a program running in a separate process, particularly if the
program has unitialized variables or erroneously makes wild memory references. Therefore, if your pro
gram runs differently during a normally invoked DEBUG session than when you run it alone, try using the
-PROe option.

The second advantage is that the -PROe option forces DEBUG to run in its own separate window. This en
ables you to use the Display Manager DQ (eTRL \Q) command unambiguously in either the debugger or
the target window.

The third advantage is that the -PROe option gives the target program full use of a window.

2.2.4 The -READ Option
The -READ option causes DEBUG to read a specified file that contains DEBUG commands. The format
for the option is:

2-7 Invoking Debug

-Read path name

where pathname is the name of a file containing DEBUG commands. DEBUG executes the commands in
the file immediately after it executes the commands in the default startup files (if they exist; see Chapter 1).
The -READ option serves an identical purpose as the READ command (described in Chapter 3). By issu
ing a READ command as your very first command, you get the same results as if you had used the -READ
option on your command line.

If the file contains any GO or STEP commands, DEBUG defers processing these commands until it has
processed every other command. For example, in the following command file, the EXAMINE command
executes before the GO command:

> SET 'max_var_len = 66
> BREAKPOINT 262
> GO
> EXAMINE try

NOTE: Your DEBUG command line may contain no more than one -READ option. How
ever, the file of DEBUG commands may itself contain READ commands.

2.2.5 The -SET .Option

The -SET option sets the value of one or more debugger variables at invocation. For information on
debugger variables, see the "Debugger Variables" listing in Chapter 3. Remember that debugger variables
are somewhat different from program variables. After you invoke DEBUG, you can also set values with the
SET command. (The option and the command are similar.) The option has three different formats:

FORMAT1: -SET 'debugger variable
-SET 'debugger-variable=initial value FORMAT2:

FORMAT3: -SET u 'debugger_variable = imtia,-value "

In other words, specifying the name of the 'debugger_variable is mandatory, but specifying its value is op
tional. If you do not specify its value, DEBUG will prompt you for it. The only difference between FOR
MAT2 and FORMAT3 is blank space. If there are any blank spaces between the 'debugger_variable and
the initial_value, then you must enclose both in quotation marks (either single or double). For example,
compare the right and wrong ways to use -SET:

-SET 'max_array_dim
-SET 'max_array_dim=8
-SET 'max_arraY_dim = 8
-SET "'max_array_dim = 8"

(Right)
(Right)
(Wrong)
(Right)

For more information about the SET command, refer to Chapter 3.

2.2.6 Window pane Options: -WPnn and -NWP

By default, DEBUG divides the window into three window panes: the source display window pane, the DE
BUG commands window pane, and the program I/O window pane. In this section, we concentrate on the
DEBUG commands window pane and the program I/O window pane.

c

By default, the DEBUG commands window pane and the target program I/O window pane take up equal ~,
space as shown in Figure 2-3. You can scroll through the DEBUG commands transcript pad and the target l ..
program 1/0 transcript pad work just as you would through any other DOMAIN transcript pad. DEBUG
uses the error input and error output streams for its I/O.

Invoking Debug 2-8

o

o

Break at: TEST_C\Main\4
> BREAKPOINT 6
> GO
Break at: TEST_C\Main\6

>

$ debug test.bin
Enter 2 nUMS: 4.2 6.8

IISHOWER6/BARRY/DEBUGBOOK/TE

1 F'I oa t x.. y.. avg;
2 Main()
3 (
4
5

1-" .-..
7
8)

printF'("Enter 2 nUMS: II);
scanF'(IZF'ZF'" .. ex .. ey);
avg = (x + y) I 2;
printF'(IIAvg = ZF'\n" .. avg);

Figure 2-3. Default Window Panes.

Use the -WPnn options to specify window panes of differing sizes. You can set the DEBUG window pane
size in increments of 10 percent of the transcript window. The options are: o -WP10, -WP20, ... -WP90 = DEBUG window pane size of: 10%, 20%, ... 90%

For example, Figure 2-4 demonstrates a DEBUG window pane size of 70%.

o

o

I Ii

Break at: TEST_C\Main\4
> BREAKPOINT 6
> GO
Break at: TEST_C\Main\B

>

$ debug -wp78 test.bin
Enter 2 nUMS: 4.2 6.8

IISHOWER6/BARRY/DEBUGBOOK/TE

1 F' I oa t x.. y.. avg;
2 Main()
3 (
4
5

1-" .-..
7
8)

printF'("Enter 2 nUMS: II);
scanF'(IIZF'ZF'II .. ex .. ey);
avg = (x + y) I 2;
printF'(IIAvg = ZF'\nll .. avg);

Figure 2-4. -WP70 Creates Nonequal Window Panes.

2-9 Invoking Debug

The -NWP option suppresses the creation of separate input and transcript pads; therefore, all DEBUG
commands mix with program input and output as illustrated in Figure 2-5.

$ debus -nwp test.bIn
Break at: TEST C\MaIn\4
> BREAKPOINT B-
> GO

Enter 2 nUMS: 4.2 B.8

IISHOWERB/BARRY/DEBUGBOOK/TE

1 f' I oa t x.. y.. avS;
2 MaIn()
3 (
4
5
B
7
8)

prlntf'(IIEnter 2 nUMS: II);
scanf'(II~f'~f'II .. &x .. &y);
avS = (x + y) I 2;
prlntf'(IIAvS = ~P\nll .. avg);

Figure 2-5. -NWP Combines the DEBUG Commands Window Pane and the Target Program I/O Win- (
dow Pane. \, __ ~

The primary advantage of the -NWP option is that it causes the DEBUG commands you enter to be pre-
served when the DEBUG session ends. (If you do not specify -NWP, the DEBUG commands disappear.)

The primary disadvantage of -NWP, is that if you specify it, DEBUG may not be able to display anything if
your program

• Creates a frame.

• Does direct graphics in a window. That's because direct graphics programs take control of the dis
play and keyboard (resources that the Display Manager normally controls). If a breakpoint or fault
occurs while you're debugging a program of this kind, DEBUG returns the display and keyboard to
the Display Manager's control. The program regains control of these resources just before it re
sumes execution.

• Relies on exclusive use of STREAM_$ERRIN and STREAM_$ERROUT.

If you specify -NWP and -PROC on the same command line, DEBUG ignores the -NWP.

2.2.7 Source Display Options: -SRC, -NSRC, -SRC_T, and -SRC_R
The source display feature allows you to view your source code as you debug it. Use one of the DEBUG op
tions -SRC, -SRC_T, or -SRC_R to trigger source display debugging. There are only minor differences
among the three:

• If you specify -SRC_R, DEBUG puts the source display to the right of the other window panes. For
example, see Figure 2-4.

Invoking Debug 2-10

c'

c

----------------- - --------

o

o

o

o

o

o If you specify -SRC_T, DEBUG puts the source display on top of the other window panes. For ex
ample, see Figure 2-1.

o If you specify -SRC in a window that is wider than it is tall, DEBUG puts the source display to the
right of the other window panes (Le., like -SRC_R).

o If you specify -SRC in a window that is taller than it is wide, DEBUG puts the source display on top
of the other window panes (Le., like -SRC_T).

The -SRC option is the default. Use the -NSRC option to suppress source display.

If you specify -NWP with -SRC, -SRC_R, or -SRC_T, DEBUG divides the window into only two window
panes (instead of three) and puts the source display to the right or on top.

2.2.8 The -SOIR Option
The -SDIR (Source Directories) option allows you to specify one or more alternate directories for the
source filename(s) stored in the object file. If DEBUG cannot find a source file that has the pathname
stored in the object file, it extracts the filename section of the pathname, combines it with the first path
name from the list created with -SDIR, and searches again. DEBUG continues to search through the list of
pathnames until the search succeeds or until the end of the list. The format of -SDIR is:

-SDIR pathname ... -SDIR pathname

In other words, the key word -SDIR must be followed by a pathname. Furthermore, the command line can
optionally contain more than one of these options.

DEBUG processes the pathnames from left to right across the command line to compose the SDIR list. You
can also create or add to the SDIR list with the SOURCE command described in the" SOURCE" listing of
Chapter 3.

2.2.9 The -GLOB Option
The -GLOB option is detailed in Appendix B. It should only be of concern for those programmers wishing
to debug installed libraries.

2.2.10 The -SMAP Option
If you specify the -SMAP option, DEBUG prints a section load map at startup. For example, here is a
sample load map:

Object Module "//SHOWER6/BARRY/DEBUGBOOK/TEST.BIN"
Section Map:

Location Size Name
1 00008000 000000A8 PROCEDURE $
2 000080A8 00000068 DATA$
3 009080E8 00000104 DEBUG$
4 00008110 00000004 AVG
5 00008114 00000004 Y
6 00008118 00000004 X

2-11 Invoking Debug

c

,;---
/ '

\ '----- .'

c

u

o

o

0

o

Chapiter 3

In Chapter 2, we explained how to invoke DEBUG; here we explain how to use DEBUG once it has been
invoked. This chapter starts with some important facts about using DEBUG; the remainder of this chapter
is an encyclopedia of DEBUG commands.

If you are not familiar with DEBUG, we suggest that you read the tutorial introduction in Chapter 1, focus
on sections 3.1, 3.2, and 3.3 of this chapter, and concentrate on the following listings later in this chapter:

• BREAKPOINT

• EXAMINE

• GO

• QUIT

• Routine-Name

• Variables

• STEP

3.1 Entering DEBUG Commands
DEBUG provides many ways to enter DEBUG commands. The simplest method is simply to enter one
command at a time in response to the DEBUG prompt (»; for example:

> EXAMINE prufrock
> BREAKPOINT 17
> QUIT

A command string is two or more DEBUG commands separated by semicolons. A command string can
not exceed 512 characters. Here are three simple commands combined into a command string:

> EXAMINE prufrock; BREAKPOINT 17; PRINT carray

3-1 Encyclopedia

An action-list is a command or command string enclosed by a pair of brackets. Usually you do not enter'
an action-list by itself but as an argument to a more complex command such as IF. You can make an ac
tion-list span more than one line by not closing the brackets until the end of the action list. For example,
the following action-list spreads across three lines: .

> [EXAMINE prufrock;
BREAKPOINT 17;
PRINT carray]

>

Note that DEBUG prompts you with an underscore U until you include the closing brackets.

Another way to enter commands is to store them in a file and allow DEBUG to execute all the commands
in the file. There are a number of ways to specify such files:

• If the user_data directory in your home directory contains a file named startup_debug, DE
BUG reads and executes the commands in the file when you invoke DEBUG.

• If the working directory contains a file named startup_debug, DEBUG reads and executes the
commands in the file when you invoke DEBUG.

• If you specify the -READ pathname option when you invoke DEBUG, DEBUG reads and exe
cutes the commands in pathname when you invoke DEBUG.

• If you specify the READ pathname command after you've invoked DEBUG, you can get DEBUG
to read and execute the commands in pathname during your DEBUG session.

Finally, you can group one or more DEBUG commands into a macro by using the MACRO command.
Then, if you want DEBUG to execute all these commands, you merely specify the name of the macro.

3.2 Overview of DEBUG's Features
This section provides an overview of DEBUG features.

3.2.1 Setting Breakpoints and Tracing

c

Use the BREAKPOINT command to set a breakpoint. If you just want to know that your program exe
cuted a certain statement, use the -TRACE option with BREAKPOINT. DEBUG does not stop the pro
gram when you use -TRACE. DEBUG permits you to specify an action-list for DEBUG to perform when
it reaches the breakpoint. (~

3.2.2 Controlling Program Flow
DEBUG permits you to step through the program on a statement by statement basis or to go until the next
breakpoint is reached. You can restart a stopped program from the statement where it last stopped or
from anywhere else in the same routine. You can stop the execution of the current routine and, if the
routine has a return value or can take a FORTRAN alternate exit, you can force the return parameters to
whatever values you wish. The GO and STEP commands control program flow.

3.2.3 Operating on Variables
DEBUG can show the values, give the virtual address, describe the data types, and change the values of
variables. It can perform these operations on all FORTRAN, Pascal, and C variables with one exception:
Pascal FILE variables. You can only describe (with the DESCRIBE command) a Pascal FILE variable.
You can, however, do anything with a file_variable".

When you use DEBUG to examine the contents of a variable, you can display the data according to the
variable type (for example, integer data displayed as integers) or in some other standard format (hexa
decimal or ASCII, for example).

Encyclopedia 3-2

"-- .

c

o

o

o

o

o

You can also use variables as terms in expressions that DEBUG evaluates.

Use the PRINT and EXAMINE commands to display a variable's value, and use the SET command to
change a variable's value.

3.2.4 Displaying Traceback and Examining Routine Arguments
The DEBUG command ARGS (arguments) displays the arguments, if any, of a routine. The DEBUG
command TB (traceback) traces the calling sequence that led to the current routine, and can optionally
show the arguments of each routine in the calling sequence.

3.2.5 Creating Debugger Macros and Definitions
If you have commands that you often enter or text strings that you often use, you can define debugger
names as shorthand for those strings or commands. This allows you, for example, to examine a group of
variables repeatedly without typing all the variable names each time.

Use the MACRO command for creating command macros and the DEFINE command for creating text
string definitions.

3.2.6 Setting Environments
In most instances, DEBUG automatically searches the proper environment (i.e., routine) when you ask to
set a breakpoint, examine a variable, etc.; however, in some cases, you may want to explicitly name a dif
ferent environment for DEBUG to look in. The two most common reasons for setting a different environ
ment are:

o When the program is stopped in a routine, but you want to examine the value of a variable stored
in another routine.

• When the program is stopped in a routine, but you want to set a breakpoint in another routine.

You control the environment with the ENVIRONMENT command.

3.2.7 Running a Shell From the Debugger
DEBUG allows you to run a Shell by invoking the SHELL command. This Shell is exactly like any DO
MAIN operating system Shell: it allows you to run programs, execute Shell commands, and so on. Once
you close the Shell, you return to debugging your program.

3.3 General DEBUG Information
Here, we discuss command abbreviations, case sensitivity, and debugger names.

3.3.1 Command Abbreviations
Most DEBUG commands can be abbreviated. For example, you can use any of the following to specify
the QUIT command:

> Q
> QU
> QUI
> QUIT

But how can you find the legal abbreviations for each command? The "FORMAT" section of each com
mand listing shows the name of each command in boldface. The letters in uppercase are required, and
the letters in lowercase are optional. For example, the format for the QUIT command is displayed as
Quit indicating that only the Q is required.

3-3 Encyclopedia

3.3.2 Case Sensitivity
The keywords in DEBUG commands are case insensitive. The names of procedures, functions, subrou- (;,
tines, and variables in Pascal and FORTRAN programs are also case insensitive. However, the names of -'
functions and variables in C programs are case sensitive.

3.3.3 Debugger Names (of Variables, Macros, and Definitions)
You can use debugger names in definitions made with the MACRO and DEFINE commands, and as
names for debugger variables. A debugger name has the following general format:

... identifier

The accent grave ("'), often called a "tic", must be the first character. Following the accent grave, you
must specify an identifier. The fiTst character of the identifier must be a letter. Each succeeding character
can be a letter, a digit, an underscore lJ or a dollar sign ($). The name can contain up to 32 characters.

3.4 The DEBUG Encyclopedia
The remainder of this chapter consists of an encyclopedia of DEBUG commands and concepts. We've
organized the listings alphabetically. The following list summarizes the DEBUG commands:

ARGS

BREAKPOINT

DEFINE

DELETE

DESCRIBE

ENVIRONMENT

EXAMINE

EXIT

GO

HELP

IF

JUMP

LIST

MACRO

PRINT

QUIT

READ

SET

SHELL

SIGNAL

SOURCE

Encyclopedia

Displays the names and values of each argument in an active routine.

Sets a breakpoint.

Defines an abbreviation for a frequently-used command or string.

Deletes macros, definitions, breakpoints, or alternate source directories.

Describes the data types of one or more variables.

Displays· or changes an environment.

Displays the value(s) of one or more variables.

Ends a debugger session.

Begins or resumes execution of the target program.

Displays information about DEBUG commands.

Evaluates a given expression and conditionally executes an action-list.

Moves between commands in an action-list.

Lists information on macros, definitions, breakpoints, routines, program vari
ables, DEBUG variables, and alternate source directories.

Defines a sequence of DEBUG commands that you can then invoke with a sin-
gle name. .

Displays the value(s) of one or more expressions.

Ends a debugger session and terminates the target program.

Executes a file of DEBUG commands.

Assigns a new value to a program variable or debugger variable.

Invokes a command Shell.

Simulates a fault.

Specifies the source code that DEBUG displays.

3-4

(~

(~

c·

o

o

o

o

o

STCODE

STEP

TB

VA

Displa ys the text of a system error code.

Executes the next statement in the target program.

(Traceback) Displays the current call stack.

Displays the virtual address of a variable, a routine, or the program counter.

Adds a comment line to the DEBUG transcript pad.

The following list summarizes the DEBUG conceptual listings:

Action-Lists

Arrays

You use an action-list to group commands for easy access.

When you want to examine or define a portion of an array you can turn to this
listing for information on specifying all or part of an array.

Debugger-Variables In addition to program variables from your source code, DEBUG understands

Expressions

Faults

Po in ter-Variables

Routine-Name

two other kinds of variables: user-defined debugger variables and predefined
debugger variables. Both are described here.

Some DEBUG commands can take an expression as an argument. Here, we
explain the rules for composing a legal DEBUG expression.

This listing explains how DEBUG handles faults and fault-handlers.

This listing explains how to manipulate pointer variables during DEBUG ses
sions. (Also see Section 4.2.5 in Chapter 4.)

In a program with more than one routine, it is important that you understand
how to identify the proper routine; turn here for that understanding.

Source Code Display This listing details the source code that DEBUG displays.

Statement-ID

Variables

This listing explains how to specify a particular statement in a program (so that
you can set a breakpoint there, for instance).

Turn to this listing for information on specifying program variables during DE
BUG sessions.

3-5 Encyclopedia

Action-Lists -- Use an action-list to group commands together for easy access.

FORMAT

An action-list is not a command, but a way of entering commands.

[debug-command1,' debug-command2; ... ; debug-commandN]

REQUIRED

None.

OPTIONAL

debug-command Zero or more DEBUG commands separated by semicolons (;). See Section 3.1
for a description of DEBUG commands.

DESCRIPTION

An action-list is a way to group commands for easy access. Usually, action-lists are used as arguments
to other commands. For instance, the BREAKPOINT command takes an action-list as an optional
argument. However, you can also issue an action-list by itself, unattached to another command.

Enclose the entire action-list in square brackets. For example, here is a sample action-list:

[EXAMINE x; PRINT string; GO]

DEBUG prompts for more commands for the action-list as long as there are more left brackets than
right brackets, and the total length of the command string does not exceed 512 characters. The
prompt for more input is an underline character. For example, here is a command with an action-list
that is spread over four lines. For clarity, we show the commands in the action-list on separate lines
(DEBUG does not require this format).

> BREAKPOINT beach\ -DO [EXAMINE david;
PRINT ~Value should be:~, mermaids
DESCRIBE waves, storm;
EXAMINE waves, storm]

DEBUG also uses the underline character as a prompt for more input when you use square brackets to
define arrays and sets. Refer to the" Arrays" listing for details.

DEBUG does not check the contents of an action-list until you execute it. In other words, if you
made some sort of syntax error within an action-list, DEBUG does not detect the error when you de-
fine the action-list, but detects the error when you execute the action-list. .

GO and STEP Commands Within Action-Lists

If you place a GO command in an action-list, it will be the last command executed in the action-list.
For instance, although the following action-list looks temptingly correct

> [BREAKPOINT 25; GO; EXAMINE x]

DEBUG only executes the BREAKPOINT and GO commands. DEBUG does not execute the EX
AMINE because it appears after the GO. (You could put the EXAMINE command in an action-list
associated with the breakpoint to get the desired result.)

Encyclopedia 3-6

c

o

o

o

o

o

A STEP command inside an action-list does not suppress the execution of the commands that follow
STEP. In other words, a STEP command within an action-list works in the same way as a STEP com
mand outside of an action-list.

3-7 Encyclopedia

ARGS -- Displays an active routine's arguments and argument values.

FORMAT

Args routine-name

REQUIRED ARGUMENTS

None. If you do not specify a routine-name, DEBUG displays the arguments of the cur
rent routine.

OPTIONAL ARGUMENTS

routine-name

DESCRIPTION

The name of an active routine whose arguments you want to investigate. (See the
"Routine-Name" listing later in this encyclopedia for details about specifying a
routine-name. Note that a routine-name can include an activation-number
which identifies a specific activation of a recursive routine. Don't forget that a
routine-name must end with a backslash \.)

Use the ARGS command to display the name and value of each argument of the specified active rou
tine. Note that ARGS only reports information about the routine's arguments (Le., parameters); it
does not report the routine's local variables. DEBUG does not necessarily display the arguments in the
same order you defined them.

The optional routine-name must be the name of an active routine. The only routines that are active at
anyone time are

• The routine where DEBUG is currently stopped.

• The routine(s) that called this routine. (Therefore, the main routine of the program is always
active.)

Before issuing ARGS, you may want to set the debugger variables ... max_qual, ... max_ var_Ien, or

... max_array_dim, which are detailed in the "Debugger Variables" listing later in this encyclopedia.

See also the -Args option of the TB command.

Note To FORTRAN Users

DEBUG does not know whether a a program entered a subroutine through the main or through an al
ternate entry point. When you issue an ARGS command, DEBUG always tries to display the arguments
associated with the main entry. Thus, the data that DEBUG displays may be invalid if the program en-
tered the routine through an alternate entry. -

You can use EXAMINE or SET commands to access the arguments you know to be valid. If you use
the ARGS command or attempt to EXAMINE or SET invalid arguments, you will get bad data and
possibly an access violation or odd address fault.

EXAMPLES

Suppose you are stopped at a breakpoint somewhere in routine F. To study the arguments of this rou
tine, issue the following command:

> ARGS
SAMPLEMOD\MATH\F\x 5
SAMPLEMOD\MATH\F\y 3.14

Encyclopedia 3-8

c

C~'

o

o

o

o

The results indicate that routine F supports two arguments, x and y, with values of 5 and 3.14, respec
tively. We could have produced the same results by issuing a routine-name, for instance:

> ARGS F\
SAMPLEMOD\MATH\F\x = 5
SAMPLEMOD\MATH\F\y = 3.14

Since routine F was called by routine MATH, we can also investigate the arguments of routine MATH
as follows:

> ARGS MATH\
SAMPLEMOD\MATH\bitrnap_nurnber = 4
SAMPLEMOD\MATH\pixel_range = 1000
SAMPLEMOD\MATH\text_color = 2

3-9 Encyclopedia

Arrays -- Here, we explain how to specify arrays in commands that accept them as arguments.

DESCRIPTION

DEBUG supports several ways to specify an array or a portion of an array. Before you specify an ar
ray, you may want to read the "Debugger Variables" listing later in this encyclopedia. The variable
.. max_array_dim is particularly useful when specifying arrays.

Consider, for example a three-dimensional array (10 x 9 x 8) named stearns. You can refer to
this variable or parts of this variable in any of the following ways:

• Simply give the array name, in which case any operation refers to the whole array (for example,
stearns).

• Name an element explicitly (for example, stearns (1,5,5) or stearns [1,5,5]). (You can
use parentheses or square brackets interchangeably, regardless of the source language.)

• Specify, in place of an array subscript, a range of the form:

o

expression: expression

In this case, the first expression must be less than or equal to the second, and both must evalu
ate to integers or the appropriate index type, for example:

stearns(1:5,6:9,5»
alphabet['a':'z'] (A Pascal array indexed by chars.)

Replace an explicit reference to one or more array dimensions with an asterisk (*), which re
fers to all subscripts in that dimension. Omitting the dimension has the same effect, as long as
you include all dimensions to the left, and do not include any dimensions to the right. For ex
ample, each of the following examples refer to the entire array:

stearns(1:10,1:9,1:8)
stearns[*,*,*]
stearns(*,*)
stearns []
stearns

The following are also equivalent to each other:

stearns(8)
stearns[8,*,*]
stearns(8:8,1:9,1:8)

Here are some more, examples of legal array references:

stearns(1:8)

stearns(8,1:9)

stearns(*,8)

stearns(9,8)

Encyclopedia

(Refers to the first eight elements of the first
dimension, and all elements of the other two dimensions.)

(Refers to the eighth element of the first dimension
and all elements of the second and third dimensions.)

(Refers to all of the first and third dimensions and
the eighth element of the second dimension.)

(Refers to the ninth element of the first dimension,
the eighth element of the second dimension, and all elements
of the third dimension.)

3-10

c

c~

o

o

o

o

o

stearns (10,8,2: 4) (Refers to the tenth element of the first dimension
the eighth element of the second dimension, and the
second, third, and fourth elements of the third
dimension.)

You do not have to restrict yourself to the actual defined bounds of an array. If you try an operation
with array subscripts greater than the array boundaries, the compiler performs the operation as if the
array were actually that big. and. if you use the SET command, DEBUG alters the memory contents at
that location. DEBUG does, however, warn you that you are referencing outside the array boundaries.
(DEBUG does not issue a warning in the case of one-dimensional arrays with one element.)

Arrays and C Pointers

DEBUG permits you to access C pointer variables as arrays by specifying subscripts. The asterisk sub
script is legal in this context only if the pointer points to a char. in which case the size of the array is
determined by scanning for a null byte. See Section 4.2.5 of this manual for details.

Some More Examples

Consider a one-dimensional array of 120 characters. To view only the first six characters of the array,
enter a commanq like the following:

> EXAMINE my_char_array[I:6]
TEST\my_char_array[l] M
TEST\my_char_array[2] a
TEST\my_char_array[3] r
TEST\my_char_array[4] i
TEST\my_char_array[5] 1
TEST\my_char_array[6] y

To display an array of characters as a string, use the PRINT command.

The debugger variable 'max_array_dim can be particularly useful for examining arrays. When you
examine an array without specifying the dimensions. this variable determines how many array entries,
per dimension, DEBUG examines. For example. consider the affect of 'max_array_dim in the fol
lowing example:

> EXAMINE carray
TEST\carray[l] K
TEST\carray[2] = e
TEST\carray[3] = r
TEST\carray[4] = r
TEST\carray[5] y
>
> SET 'max_arraY_dim 2
>
> EXAMINE carray
TEST\carray[l] K
TEST\carray[2] = e

The EXAMINE command ignores' max_array_dim when you use the" *" or "expr:expr" subscripts;
for example, even though 'max_array_dim is 2 we still get the following results:

> EXAMINE carray[I:4]
TEST\carray[l] K
TEST\carray[2] e
TEST\carray[3] r
TEST\carray[4] r

3-11 Encyclopedia

BREAKPOINT -- Sets a breakpoint.

FORMAT

Breakpoint

Exactly one from
this column.

routine-name
statement-id
-Exit
-Here
-VA address
-VA routine-name\offset

None, any, or all from
this column.

-Do action-list
-Trace
-After integer

REQUIRED ARGUMENTS

The BREAKPOINT command must be followed by exactly one of the following: .

routine-name

-Exit

-Here

-VA

Identifies where DEBUG will set a breakpoint. This must be either a routine
name by itself (see the "Routine-Name" listing of this encyclopedia for details)
or a statement-ID (see the" Statement-ID" listing). If you specify a routine
name by itself, DEBUG sets the breakpoint just before the first executable state
ment in the named routine. Don't forget that a routine-name by itself must end
with a backslash (\).

Sets a breakpoint on the exit of the current routine. (Note, each routine has only
one physical exit even though it may have multiple RETURN statements. DEBUG
sets the breakpoint on the physical exit only.)

Sets a breakpoint at the current run environment location. Any user environ
ment specification is ignored.

Allows you to set a breakpoint on a virtual address. -VA must be followed by one
of the following:

c'

address A virtual address. By default, DEBUG views the number C. "
you enter as a decimal value; you can, however, change
the base to hexadecimal or octal. (See the "Expres-
sions" listing for details on setting different bases.)

routine-name\offset A routine-name followed by an integer offset (in bytes)
from the beginning of the routine provides a virtual ad
dress.

If the virtual address does not correspond to the start of a source statement, DE
BUG may have difficulty setting the environment when the program hits the
breakpoint.

OPTIONAL ARGUMENTS

-Do action-list

-Trace

Encyclopedia

Causes DEBUG to execute the action-list when the break occurs. See the" Ac
tion-List" listing earlier in this encyclopedia for details.

Prevents the breakpoint from stopping program execution. Instead, DEBUG
prints a message that identifies the tracepoint, and executes any action-list that
you have given (see the -DO option). Target program execution continues.

3-12

o

o

o

o

o

-After integer

DESCRIPTION

DEBUG maintains a "hit" count for every breakpoint. The hit count measures
how many times a statement is executed. (That is, the hit count is incremented
each time the statement at that breakpoint is executed.) You must supply an inte
ger argument to -After. When the hit count is less than the integer, the break
point is not activated. When the hit count equals the integer, the break is acti
vated, and the hit count is reset to zero. If you never specify -After in a DEBUG
session, the default value of the integer is 1.

The integer you supply will not change unless you explicitly change it with another
-After. For example, if you specify -After 3, then the program breaks on the
third, sixth, ninth, etc. times that the statement is executed.

Use the BREAKPOINT command to set a breakpoint. The breakpoint always occurs immediately be
fore your program executes the statement, exit, or routine where you set the break. For example, if
you set a breakpoint at line 100, then the program halts just before it executes the statement at line
100. If you set a breakpoint at a routine, DEBUG executes the routine prolog (which establishes the
addressing environment, allocates local variables, etc.), but halts before executing the first user state
ment of the routine.

If you specify an action-list with the breakpoint, DEBUG invokes the commands in the action-list.
DEBUG then checks to see if the breakpoint is a trace. If it is a trace, DEBUG prints a message noti
fying you that the break occurred, and execution continues. If the breakpoint is not a trace, DEBUG
requests a command.

Use the LIST command to learn the positions of all active breakpoints. Use the DELETE command
to remove one or more breakpoints. (See the "LIST" and "DELETE" listings for details.)

Only one breakpoint can be set on a statement. Setting a breakpoint deletes any previous breakpoint
on the same statement.

EXAMPLES

Here are some simple uses of the BREAKPOINT command:

> BREAKPOINT -Here
> BREAKPOINT 15
> BREAKPOINT aloe\37
> BREAKPOINT vera\

> BREAKPOINT -Exit

(Set a breakpoint at the current line.)
(Set a breakpoint at line 15.)
(Set a breakpoint in routine aloe at line 37)
(Set a breakpoint on the first procedural
line of routine vera.)

(Set a breakpoint at every line in which this
. routine can return to its caller.)

> BREAKPOINT -VA 16#10050 (Set a breakpoint at hexadecimal virtual
address 10050.)

> BREAKPOINT 17 -After 5 (Set a breakpoint at line 17, but don't
actually trigger the break until the fifth
time that the statement has been executed.)

The following is an example of a breakpoint set with a -DO action-list clause.

> BREAKPOINT 19 -DO [PRINT ~x = " xl
> GO
Break at: SAMPLEMOD\vera\19
x = 5.23

Suppose that you want to know the value of a particular variable in a loop with each iteration of the
loop, but you don't want to restart after every break. Fortunately, DEBUG supplies two simple ways to
let you do this. The first method involves the -Trace option. For example, suppose you want to know

3-13 Encyclopedia

variable r's value just before line 22 is executed. To find this out, you could issue a command like the
following:

> BREAKPOINT 22 -Trace -DO [PRINT 'r = ',r]
> GO

(Trace the value of r)

Trace at: TEST_C\main\22
r = 550 (First time through loop r = 550)
Trace at: TEST_C\main\22
r = 600 (Second time through loop r = 600)
Trace at: TEST_C\main\22
r = 650 (Third time through loop r = 650)

The second method involves an action-list that contains the GO command. It produces results nearly
identical to the first method. For example:

> BREAKPOINT 22 -DO [PRINT 'r =' r; GO]
> GO
Break at: TEST_C\main\22
r = 550 (First time through loop r = 550)
Break at: TEST_C\main\22
r = 600 (Second time through loop r = 600)
Break at: TEST_C\main\22
r = 650 (Third time through loop r = 650)

Now consider another common debugging chore. Suppose you want your program to halt when the
value of variable p becomes negative or zero. To accomplish this, -set a series of breakpoints wherever
you think the value of p might change. The BREAKPOINT commands might look something like
this:

> BREAKPOINT 17 -DO [IF P > 0 [GO]]
> BREAKPOINT 25 -DO [IF p > 0 [GO]]
> BREAKPOINT 44 -DO [IF p > 0 [GO]]

Then to set the program in motion, just issue a simple GO command.
the value of p becomes greater than zero.

Encyclopedia 3-14

The program won't halt until

c'

c

c

o

o

o

o

o

Debugger Variables -- Special variables that you can create or access during your debugging
session.

DESCRIPTION

In addition to program variables (Le., the variables from your source code), you can also manipulate
two other kinds of variables in a DEBUG session, namely:

o User-defined debugger variables

o Predefined debugger variables

We describe them separately.

You can use debugger variables wherever you would use program variables. You can also mix program
variables and debugger variables in expressions.

User-Defined Debugger Variables

You can define your own variables for temporary use during a debugging session. Use the SET com
mand to create and initialize these variables; for example:

> SET ... hea ther
> SET ... wea ther

4

30.10
> SET rainy = ' c'

Notice that each user-defined debugger variable name must begin with an accent grave ("'). The
value you supply determines the variable's data type. For example, by setting "'weather equal to
30.10, you implicitly declare the variable as a 64-bit real. You can create user-defined debugger vari
ables of the following types:

• 32-bit integer (if you initialize the variable to any integer value).

o 64-bit real (if you initialize the variable to any real value).

o Logical (boolean) (if you initialize the variable to .TRUE. or .FALSE.).

o Character (if you initialize the variable to a character constant).

Assigning a new value to an existing debugger variable may change its type.

NOTE: You cannot define a debugger variable with the same name as an existing macro
or definition.

We now demonstrate a practical application for user-defined debugger variables. Suppose you want to
discover how many times a program executes a particular statement. To do so, you can create a
debugger variable named ... counter, initialize it to zero, then increment it each time a statement is
executed. The whole sequence looks something like this:

> SET "'counter = 0
> BREAKPOINT 27 -DO [SET "'counter
> GO

"'counter + 1] -Trace

(The program increments ... counter each time the
statement at line 27 is executed.)

> EXAMINE "'counter
... counter = 43 (The program reaches the statement 43 times.)

3-15 Encyclopedia

Predefined Debugger Variables

The predefined debugger variables are special purpose variables that provide you with an easy way to
control some of the parameters associated with DEBUG's operation. The term predefined can be
somewhat misleading. Debugger variables are predefined in the sense that DEBUG understands a spe
cial meaning for each of them; however, in a sense they are not predefined.because DEBUG does not
allocate any storage space for a predefined variable until you activate them. You activate a predefined
debugger variable by setting its value with the SET command.

You can set and examine debugger variables just as you would a program variable. (However, unlike
program variables, you cannot examine a debugger variable until it has been set.) The predefined DE
BUG variables are:

DEBUG automatically sets its value to the status code of the most recent
fault. See the "Faults" listing for details.

'MAX_ARRAY_DIM Controls the maximum number of array dimensions that the PRINT,
ARGS, and EXAMINE commands display. See the" Arrays" listing for
details.

~

'MAX_BAD_CHARS Limits the number of unprintable characters that DEBUG displays when (_,
outputting data in ASCII format.

'MAX_QUAL Limits the number of qualifiers in a routine-name or variable-name.

'MAX_STRING_LEN Controls the length of a string that the PRINT command displays. For de
tails, see the "PRINT" listing later in this encyclopedia.

Truncates all but the specified number of characters in a variable name.

Sets the minimum number of lines of source code displayed above and be
low the current source line. See the" Source Code Display" listing for de
tails.

Controls the display of the backup version of a file of source code. See the
"Source Code Display" listing for details.

To activate a predefined debugger variable, you merely use the SET command to establish the vari
able's initial value; for example:

You cannot delete a predefined variable, but you can deactivate one. To deactivate any of these vari
ables, set its value to a negative number; for example, to deactivate 'max_ var_Ien issue a command
like:

> SET 'MAX_VAR_LEN = -1

To see a list of active debugger variables (both user defined and predefined), use the LIST command.

Let's now examine some of the predefined debugger variables.

, max_bad_chars

When you use the PRINT command to display a string (particularly in FORTRAN or Pascal) it is pos
sible that some of the characters in the array are "unprintable." You use 'max_had_chars to limit
the number of unprintable characters that DEBUG displays. For example, notice how the following
use of ... max_had_chars eliminates some needless characters:

Encyclopedia 3-16

c

o

o

o

o

o

> PRINT cstr
Hi ma<~P><~P><~P><~P><~P>

> SET 'max_bad_chars = 2
> PRINT cstr
Hi ma<~P><~P>

> SET 'max_bad_chars 0
> PRINT cstr
Hi rna

DEBUG truncates output when the specified number is exceeded. Setting the value of
... max_bad_chars to zero causes DEBUG to truncate strings when it encounters the first unprintable
character. This is useful in the common case of variable-length data stored in a fixed-length buffer,
leaving part of the buffer uninitialized.

When you use EXAMINE to display a character array, DEBUG displays each element of the array as a
separate one-character string. Using'" max_bad_chars will not reduce the number of elements that
DEBUG displays.

DEBUG separates unprintable characters into two categories -- unprintable control characters and
other unprintable characters. DEBUG displays unprintable control characters in the format '<Ax>',
and other unprintable characters in the format '<nn>', where nn is the character's hexadecimal value.
The newline character (~J) is considered printable, but all other control characters are considered un
printable.

, max_qual

By default, the ARGS, EXAMINE, and interactive SET commands display variable names in fully
qualified form. That is, DEBUG precedes the variable names with the routine-name containing them.
Use'" max_qual to limit the maximum number of qualifiers (routine-names) displayed prior to the re
quested routine-name or variable-name. For example, consider the effect of 'max_qual on the ex
amination of the following variable:

> SET 'max_qual = 2
> EXAMINE self
TEST_C\f\self = 3.400000

> SET 'max_qual = 1
> EXAMINE self
f\self = 3.400000

> SET 'max_qual
> EXAMINE self
self = 3 '.400000

o

> SET 'max_qual = -1
> EXAMINE self
TEST_C\f\self = 3.400000

(2 qualifiers prior to variable-name.)

(1 qualifier prior to variable-name.)

(0 qualifiers prior to variable-name.)

(Fully qualified variable-name.)

Setting ... max_qual to a negative number forces DEBUG to fully qualify all names.

Use the'" max_var_Ien variable to reduce the length, not values, of the variable names displayed by
the ARGS, DESCRIBE, or EXAMINE commands. For example, before issuing the ARGS com-

3-17 Encyclopedia

mand, you might set the debugger variable" max_var_Ien so that each displayed argument has only a
certain number of characters. First, consider an ARGS command with the default .. max_ var_Ien
specified:

> ARGS
ERROR\TEXT(l) H
ERROR\TEXT(2) i
ERROR\TEXT(3)
ERROR\TEXT(4) M
ERROR\TEXT(5) 0

ERROR\TEXT(6) m

Now consider setting .. max_ var_len to 2 as follows:

> ARGS
· .. 1) H
· .. 2) i
· .. 3)
· .. 4) M

· .. 5) 0

· .. 6) m

Notice that DEBUG truncates from the beginning of the name. Also, if the variable-name has fewer
than three characters, DEBUG will not truncate it.

Encyclopedia 3-18

c

c

c~

o

o

o

o

o

DEFINE -- Defines an abbreviation for a frequently used command or string.

FORMAT

DEFine debugger-name text

REQUIRED ARGUMENTS

debugger-name Any legal debugger-name. All debugger-names must begin with an accent grave
(') .

text Any text. Do not enclose the text in quotes or brackets unless you want them to
become part of the definition. The text can include blanks.

OPTIONAL ARGUMENTS

None.

DESCRIPTION

Use DEFINE to create a name (Le., a nickname) for some text. The text must either be a string (e.g.,
a routine-name) or be one DEBUG command.

For example, consider the long-hand method of setting up breakpoints in a routine:

> BREAKPOINT test\main$\math_io\write_io\28
> BREAKPOINT test\main$\math_io\write_io\56

However, by using DEFINE as follows, we can abbreviate test \main$\math_io\wri te_io to the
simpler'r:

> DEFINE r test\main$\math_io\write_io\
> BREAKPOINT 'r28
> BREAKPOINT 'r56

As already noted, the text string could also be a single DEBUG command. For instance, if you fre
quently type the command

> EXAMINE barray[lO, 5:*]

you could create an abbreviation called 'b as follows:

> DEFINE 'b EXAMINE barray[lO, 5:*]

and then issue the abbreviation in place of the longer command; for instance:

> 'b

DEBUG does not check strings for illegal commands until you actually issue the corresponding debug
ger-name.

Use the LIST command to display a list of current definitions, and use the DELETE command to re
move definitions.

NOTE: The MACRO command is similar purpose to DEFINE, but MACRO is more so
phisticated. MACRO can abbreviate an entire action-list; DEFINE can only
abbreviate a single command.

3-19 Encyclopedia

Using DEBUG Definitions as Text for Other Definitions

You can specify a DEBUG definition as text. By doing so, you can build a chain of definitions. For
example, the following sequence of commands is legal:

> DEFINE x quarts
> DEFINE y EXAMINE x

> y
quarts = 4

> DEFINE x pints

>
,

y

quarts = 4

Notice that when we redefined' x, the value of .. y did not change, because the value of 'x was ex
panded at the time we defined 'y. The definition of .. y will not change unless you explicitly change

y.

The Predefined Symbol '.

DEBUG translates the predefined symbol'. (accent grave followed by a period) as the current rou
tine-name. For example, suppose the program is halted at a breakpoint in routine $main\math. If
you make the following definition

> DEFINE 'e EXAMINE' . extraterrestrial

then entering the DEBUG symbol 'tom at any point in the program, even in a routine other than
MAIN, is exactly equivalent to entering the following command:

> EXAMINE $main\math\extraterrestrial

NOTE: You can only use this predefined symbol inside macros or inside the text of a
definition. You cannot use it anywhere else.

Encyclopedia 3-20

-~ .. -.~-- .--.. ---------.---.... -~--.--

c

c

o

o

o

o

C)

DELETE -- Deletes macros, definitions, breakpoints, or source directories.

FORMAT

-Macro

-DEFine

Delete

-Breakpoint

-SDIR

macro-name1 ... macro-nameN
-All

debugger-name 1 ... debugger-nameN
-All

statement-id
routine-name -ALL
-HERE
-VA address
-ALL

an integer
-A71

REQUIRED ARGUMENTS

Following DELETE, you must specify at least one of the following four arguments:

-Macro

-DEFine

-Breakpoint

Deletes one or more DEBUG macros. Following -Macro you must specify one of
the following two sub arguments :

macro-name

-All

Deletes only those macros that you specify. Macros are
created with the MACRO command.

Deletes all current DEBUG macros.

Deletes the definitions for one or more debugger-names created by the DEFINE
command. Following -Define you must specify one of the following two subargu
ments:

debugger-name Deletes only those definitions that you specify.

-All Deletes all definitions. The -ALL option does not affect
the predefined symbol

Deletes one or more breakpoints. Following -Breakpoint, you can optionally
specify one of the following subarguments. If you do not specify a subargument,
the -HERE sub argument is assumed.

statement-id Deletes the breakpoint at the given statement. See the
"Statement-ID" listing for details on specifying a particu
lar statement.

routine-name -ALL Deletes all the breakpoints in that routine.

-HERE Deletes the current breakpoint. In order to use this
subargument, the program must currently be stopped at a
breakpoint. -HERE always refers to the run
environment, not any user environment defined through
an ENVIRONMENT command.

3-21 Encyclopedia

-SDIR

-VA address

-All

Deletes the breakpoint on the given virtual address. (By
default, DEBUG expects the address to be a decimal in
teger. Should you wish to supply a hexadecimal integer,
precede the integer with 16#; for example, 16#1003C.

Deletes every breakpoint in the program.

Deletes one or all of the alternate source listing directories generated through the
SOURCE command (described later in this encyclopedia) or the -SDIR com
mand line option (described in Chapter 2). Following -SDIR, you must specify
one of the following two subarguments:

n

-All

Deletes exactly one of the source listing directories. n
must be a positive integer between 1 and 32,767. As
suming that there are x source listing directories, you
specify the nth one to delete. If you specify an n greater
than x, DEBUG takes no action. Note that DEBUG or
ders the source listing directories in the same order that
you define them. You can use the LIST command to
check the order. And by the way, a DELETE -SDIR
command deletes the directory's name from DEBUG's
internal list, it does not delete the directory itself.

Deletes all of the source listing directories.

OPTIONAL ARGUMENTS

None.

DESCRIPTION

Use the DELETE command to remove just about any DEBUG construct except a debugger variable.
(You cannot delete a debugger variable, but you can deactivate one by setting its value to a negative in
teger.)

You cannot delete -EXIT breakpoints without giving the specific statement numbers. You can use the
LIST command (described in this chapter) to display the statement numbers.

Encyclopedia 3-22

c

c

c

----------- -------------------- - -----------------------

o

o

o

o

o

EXAMPLES

> DELETE -Macro 'penny
> DELETE -Macro -all

> DELETE -DEFine
,
pfennig

> DELETE -DEFine -All

> DELETE -Breakpoint
> DELETE -Breakpoint

> DELETE -Breakpoint
> DELETE -Breakpoint

> DELETE -Breakpoint

> DELETE -Breakpoint

> LIST -SDIR
Source Directories:

-PROGS_REV6/
-PROGS_REV7/
-PROGS_REV8/
-PROGS_REV9/

> DELETE -SDIR 2
> LIST -SDIR
Source Directories:

-PROGS_REV6/
-PROGS_REV8/
-PROGS_REV9/

> DELETE -SDIR -All
> list -sdir
Source Directories:

22
f\

f\ -All
-Here

-VA 16#1004C

-ALL

(Delete the macro named' penny.)
(Delete every macro.)

(Delete the definition named 'pfennig.)
(Delete al/ definitions.)

(Delete the breakpoint at line 22.)
(Delete breakpoint at first statement of
routine f\.)

(Delete every breakpoint in routine f\.)
(Delete breakpoint where program is
currently stopped.)

(Delete breakpoint at the statement that begins
at the hexadecimal virtual address 1004C.)

(Delete every breakpoint in the entire program.)

(Get a listing of al/ the source directories.)
(There are four source directories.)

(Eliminate the second source directory.)

(Eliminate the other three source directories.)

3-23 Encyclopedia

DESCRIBE -- Describes the data type of one or more variables.

SYNTAX

DEScribe variable1, ... variableN

REQUIRED ARGUMENT

variable One or more program variables or debugger variables.

OPTIONAL ARGUMENTS

None.

DESCRIPTION

Use DESCRIBE to find the data type, size, and storage attribute (local, static, or register) of one or
more variables. Note that DESCRIBE does not display the contents of the variables. Use the
EXAMINE or PRINT commands (described in this chapter) to display the contents of variables.

(~
'_ ...

Before issuing DESCRIBE, you may wish to set the debugger variables .. max_ var_Ien, c-.
.. max_array_dim, or .. max_qual. See the "Debugger Variables" listing for details.

Also before issuing DESCRIBE, you may wish to use the ENVIRONMENT command to change the
user environment. See the "ENVIRONMENT" listing for details.

Note that DESCRIBE can only describe variables; it cannot describe types or typedefs. Furthermore,
although DEBUG can describe a variable having a user-defined data type, it describes the variable in
terms of the underlying standard data type.

NOTE: In optimized code, the compiler may assign a variable to memory in some part of
the program, and to a register in others. The DESCRIBE command always re
flects the current location. Therefore, using DESCRIBE on the same variable at
different points of the program may possibly return a different description.

EXAMPLES

First, we use DESCRIBE to explore some simple variables:

> DESCRIBE r
TEST_C\F\r = 32-bit real, local.
> DESCRIBE x
TEST_C\main\math\x = 32-bit integer, register.

Consider a Pascal record named test declared as follows:

VAR
test : record

end;

Encyclopedia

value : integer16;
percentage : single;

3-24

r'

o

o

o

o

o

Here's how the DESCRIBE command analyzes this record:

> DESCRIBE test
SAMPLE\test = record (2 fields, 6 bytes), static.
SAMPLE\test.VALUE = I6-bit integer, static.
SAMPLE\test.PERCENTAGE = 32-bit real, static.

The following DESCRIBE command provides information on a Pascal set variable:

> describe ice_cream
TEST\F\ice_cream = set of enumerated type (6 members), local.

Note that DESCRIBE cannot list the legal identifiers of an enumerated type.

Finally, here's the description of a 3x3 array named board:

> DESCRIBE board
TIC_TAC\board = array (9 bytes) of array (3 bytes) of character, static.
TIC_TAC\board(I,I) character, static
TIC_TAC\board(3,3) character, static.

Notice that DESCRIBE gives you a general description of the array and does not explicitly describe all
the elements. (Because it is an array, all the elements have the same characteristics.)

3-25 Encyclopedia

ENVIRONMENT -- Changes the user environment, or identifies the current program and user
environments.

FORMAT

statement-id
-Run

ENVironment -User
-Caller
-Sub

REQUIRED ARGUMENTS

None. If you do not supply an argument, the command returns the name of the current
environment.

OPTIONAL ARGUMENTS

statement-id

-Run

-User

-Caller

-Sub

DESCRIPTION

Sets the user environment to the given location. Usually, you just specify a
routine-name, but sometimes you specify a particular statement-number within
the routine. When dealing with recursive routines, you may also want to specify
an activation-number. (See the "Routine-Names" and "Statement-ID" listings
of this encyclopedia for details.)

Sets the current environment to the run environment.

Sets the current environment to the most recently defined user environment.

Sets the user environment to the statement that called the current routine. The
current routine must be active. This option and the -SUB option provide a con
venient way to "walk" up and down the call stack.

Sets the user environment to the routine called by the current routine. The cur
rent routine must be active. This option is essentially the opposite of -Caller.

Use the ENVIRONMENT command to set or describe an environment. You can optionally supply
one argument to the command. An environment is really just a particular region of source code. DE
BUG actually differentiates between two kinds of environments: the run environment and the user en
vironment.

The run environment is the routine and statement where execution stopped. Execution can be
stopped by a breakpoint, a STEP command, or a fault. Ordinarily, the program also resumes execu
tion at the run environment, though you can use a GO -Location command to resume execution some
where else.

The user environment is the routine and statement that you set with an ENVIRONMENT command.
You set a user environment to facilitate debugging operations outside the run environment. Suppose,
for example, you want to set a breakpoint in a routine stored in a file other than the current one. You
have two choices. Either you could fully qualify the routine's name, or you could set the user environ
ment to that routine and then set breakpoints without fully qualifying the routine name.

The current environment is the routine and statement that DEBUG is currently using in its
calculations. The current environment is always either the run environment or the user environment.

Encyclopedia 3-26

c

c

('

o

o

o

o

o

Whenever the program stops, DEBUG sets the current environment to the run environment.
Whenever you define a user environment, it automatically becomes the current environment. You can
set the current environment equal to either the run environment or the user environment by using the
ENVIRONMENT command. DEBUG displays the source code surrounding the current environment.

Many debugger operations implicitly reference the current environment. For example, if you ask to
examine variable X, and don't qualify X with a particular routine name, the debugger shows you the X
visible from the current environment. If X is not visible from the current environment, for instance, if
it is defined in another routine, then DEBUG will not be able to find it.

In review, DEBUG understands the following three kinds of environments:

user environment

run environment

The user environment is the statement-ID that you set with the ENVI
RONMENT command.

The run environment is the statement-ID at which the program is stopped.

current environment The current environment is the environment that DEBUG is currently us
ing; it may be either the run environment or the user environment.

There are a few points worth noting about the ENVIRONMENT command:

• The ENVIRONMENT command has no effect on the execution of the target program. Al
though a user environment overrides the run environment for source display and name refer
ences, the run environment remains defined and unchanged.

• If you are using source-display debugging (-SRC), then setting a user environment causes DE
BUG to display the specified user environment. Specifying a particular line number within a
routine affects only the positioning of the source code display.

• The specified routine does not have to be active. However, if a routine is inactive, you can only
access the static storage in it.

• Normally you cannot set the user environment to a routine compiled without debug informa
tion. However, the -CALLER and -SUB options set up a partial environment in these cases.
You cannot examine variables, etc. in these routines but at least you can move over them in the
stack.

EXAMPLE 1

Given a program consisting of two routines and three static variables organized as follows:

PROGRAM "TEST"

GLOBAL VARIABLE "G"

ROUTINE "P"
STATIC VARIABLE "LP"

ROUTINE "M"
STATIC VARIABLE "LM"

3-27 Encyclopedia

The following sample DEBUG session demonstrates the ENVIRONMENT command:

> ENVIRONMENT
Stopped at: TEST\m\16
> EXAMINE g, 1m
TEST\g = 0
TEST\main\lm = 4
> EXAMINE Ip
*** Error: Unknown variable name.
ex Ip

>
> ENVIRONMENT p\

(Display the current environment.)
(It's routine m.)
(We can access g and 1m, but ...)

(we can't access Ip since it's in)
(another environment.)

(However, if we change the environment ...)
Stopped at: TEST\main\16
User environment: TEST\p\7
> EXAMINE g, Ip

(inactive routine)

TEST\g = 0
TEST\p\lp = 10
> EXAMINE 1m
*** Error: Unknown variable name.
ex 1m

EXAMPLE 2

(we can access g and Ip, but ...)

(we can't access 1m.)

Now let's consider a second program consisting of two files of source code organized as follows:

FILE "ONE"

ROUTINE "X"
lines 5-30

ROUTINE "Y"
lines 35-76

FILE "TWO"

ROUTINE "Z"
lines 4-150

Suppose that the current user environment is ROUTINE "X", but you want to set a breakpoint at line
55 of ROUTINE" Z". If we issue the following statement, DEBUG sets a breakpoint, but at line 55 of
FILE "ONE":

> BREAKPOINT 55

We can set a breakpoint in "Z" by specifying a routine-name in front of the statement-id:

> BREAKPOINT Z\55

or, we can change the user environment to routine Y2 as follows:

> ENVIRONMENT Z\

and then set one or more breakpoints without having to specify a routine-name; for example:

> BREAKPOINT 55

Encyclopedia 3-28

c,

c

o

o

o

o

o

EXAMINE -- Displays the value or values of variables, arrays, or other data structures.

FORMAT

-Ascii
-Binary
-Decimal
-Hex

Examine variable1, ... variableN -Octal
-Unsigned
-Float
-Real
-DOUble

REQUIRED ARGUMENT

variable One or more program variables (of any data type) or debugger variables.

OPTIONAL ARGUMENTS

Each of the following optional arguments causes EXAMINE to ignore the data types of all variables in
the list and to display the data in a specific way.

-Ascii

-Binary

-Decimal

-Hex

-Octal

-Unsigned

-Float

-Real

-DOUble

Displays the data as one or more ASCII characters. (An ASCII value takes up 8
bits, so a 32-bit variable is translated as 4 consecutive ASCII values.)

Displays the data in binary (base 2) format.

Displays the data in decimal (base 10) format.

Displays the data in hexadecimal (base 16) format.

Displays the data in octal (base 8) integral format.

Displays the data in unsigned decimal format.

Displays the data in 32-bit (single-precision) floating-point format.

Identical to -Float.

Displays the data in 64-bit (double-precision) floating-point format.

Note that data is never converted (cast).

DESCRIPTION

Use the EXAMINE command to display the current value of one or more variables. The variables can
be of any data type. If you specify a compound variable (such as an array, structure, or record)
EXAMINE displays the value of each component of the variable.

You can optionally specify one formatting option. The option may precede or follow the list of vari
ables but cannot be placed in the middle of the list.

The PRINT command provides you with an alternative way to display the contents of a simple vari
able. Refer to the "PRINT" listing for more information. You should also refer to the "Arrays",
"Pointers", and "Variables" listings for more information on specifying variables in EXAMINE com
mands.

3-29 Encyclopedia

Examining Simple Variables

It is easy to display the value of a simple variable; for example, to examine the value of a floating-point
variable named pi, you would merely enter the following command:

> EXAMINE pi
TEST~c\pi = 3.14

Note that specifying an integral option such as -DECIMAL does not convert 3.14 to a decimal integer,
DEBUG only interprets pi's bits as a decimal integer, leading to bizarre results.

Examining Pointer Variables

Before attempting to .examine or de-reference a pointer variable, you should read the "Pointer Vari
ables" listing later in this encyclopedia.

Examining Records, Structures, and Unions

Specifying a record, structure, or union variable causes EXAMINE to display each member (field) of
the variable. For example, the display of a variable of the standard type status_$t would show:

> EXAMINE statrec
TEST\statrec.FAIL = .FALSE.
TEST\statrec.SUBSYS = 1
TEST\statrec.MODC = 2
TEST\statrec.CODE = 14
TEST\statrec.ALL = 16908302

Should you wish to examine only one field (member) of such a variable, specify the name of the vari
able followed by a period and the name of the field; for example:

> EXAMINE statrec.modc
TEST\statrec.modc = 2

Examining Arrays

If one of the variables given is an array, EXAMINE displays the array's elements one by one. For ex
ample, EXAMINE displays an array of dimensions 3 x 2 as:

> EXAMINE cambridge
PROG1\CAMBRIDGE(1,1)
PROG1\CAMBRIDGE(1,2)
PROG1\CAMBRIDGE(2,1)
PROG1\CAMBRIDGE(2,2)
PROG1\CAMBRIDGE(3,2)
PROG1\CAMBRIDGE(3,2)

100
150
75
125
50
100

NOTE: The first element of C arrays is labeled 0 rather than 1, so DEBUG displays the
contents of C arrays beginning from element O. For all languages, DEBUG dis
plays arrays with the same subscript range as the source code defined for the ar
ray.

You can specify a portion of an array in the many ways explained in the" Arrays" listing earlier in this
encyclopedia.

Reducing the Length of Variable Names in Output

Before issuing EXAMINE, you can set the debugger variable .. max _ var _len so that EXAMINE
displays only a certain number of characters in variable names. For example, consider the affect of
.. max_ var_Ien on the following array:

Encyclopedia 3-30

c:'

c

("'.,
-'~/

o

o

o

o

o

> EXAMINE board
C_FRAME\board(1,l)
C_FRAME\board(l,2)
C_FRAME\board(l,3)
C_FRAME\board(2,l)
C_FRAME\board(2,2)
C_FRAME\board(2,3)
C_FRAME\board(3,l)
C_FRAME\board(3,2)

> SET 'max_var_len 4

>
> EXAMINE board

· .. 1,1)
· .. 1,2)
· .. 1,3)
· .. 2,1)
.' .. 2,2)
· .. 2,3)
· .. 3,1)
· .. 3,2)

The debugger variable' max_qual also reduces the length of the variable-name that DEBUG displays.
See the "Debugger Variables" listing earlier in this encyclopedia for details.

Note To FORTRAN Users

When you are in a FORTRAN subroutine with alternate entry points, do not attempt to use
EXAMINE with arguments that are not valid for that entry. If you try to access an invalid argument,
you will get bad data and may cause an access violation or odd address fault.

3-31 Encyclopedia

EXIT -- Ends a debugger session and terminates the target program.

FORMAT

EXit

REQUIRED ARGUMENTS

None.

OPTIONAL ARGUMENTS

None.

DESCRIPTION

Use this command to quit the debugger session. The EXIT command has the same effect as the QUIT
command. See the "QUIT" listing for more information.

Encyclopedia 3-32

c

c

o

o

o

o

o

Expressions -- Some DEBUG commands accept expressions as arguments. We describe ex
pressions here.

DESCRIPTION

Several DEBUG commands accept expressions as arguments. DEBUG has its own expression syntax,
which draws from Pascal, C and FORTRAN, but is not identical to any of them. The same expression
syntax is accepted regardless of the source language of the program being debugged.

A DEBUG expression can consist of variables, constants, and operators. In this listing, we describe
constants and operators. See the "Variables" listing for a description of variables.

Integer Constants

Decimal integer constants are written in the usuaL way, as a string of one or more decimal digits option
ally preceded by a sign. Integers may be written in base 2-16 using the <base>#<value> notation. The
base specification is always given in decimal. For example, all of the following are equivalent:

27
16#1B
8#33
2#11011

DEBUG treats integer constants as signed 32 bit integers. DEBUG accepts values in the range 231

through 232 - 1. Such values have the proper unsigned integer internal representation, but DEBUG
treats them as negative for computation and printing.

Floating-Point Constants

DEBUG uses Pascal notation for floating-point constants. In particular, at least one digit must precede
and follow the decimal point. DEBUG treats all floating-point constants as double precision.

String (and Character) Constants

You must enclose string constants in either single or double quotes. You can designate quotes in the
string by doubling the character, although using the other type of quote is usually more convenient.
For example, the following are equivalent:

'''Don''t'' he cried'
"""Don't"" he cried"

String and character constants can only consist of printable characters; C '\' escapes are not accepted.
There is no separate notation for character constants. DEBUG converts a string of length 1 to a char
acter in appropriate contexts.

Boolean (Logical) Constants

You must write boolean constants by using the FORTRAN-style names .TRUE. and .FALSE. (upper
case or lowercase).

Complex Constants

To represent complex constants, use the format

(x,y)

where x and yare both floating-point constants.

3-33 Encyclopedia

Pascal Set Constants

To write Pascal set constants, create a list of values enclosed in square brackets, for example:

[2, 4, 6, 8]
[x+l, y, lOO-x]

Each component's value must evaluate to an integer in the range 0-255. (Note that enumerated type
constants evaluate to integers for this purpose.) You cannot use Pascal's subrange notation. For ex

. ample, compare the right and wrong ways to represent 2 through 8:

[2 .. 8]
[2,3,4,5,6,7,8]

Operators

(WRONG)
(RIGHT)

DEBUG expressions can include any of the operators shown in Table 3-1. Operators listed on the
same line are identical.

Table 3-1. DEBUG Operators

Function

add
subtract
multiply
divide
modulo

equal
not equal
less than or equal
less than
greater than or equal
greater than

AND
OR

negation, NOT

left shift
right shift

set membership

DEBUG Operators

+

*
/ DIV
% MOD

--
<>
<=
<
>=
>

&&
1

«
»

IN

= .EQ.
1= .NE.

.LE.

.LT.

.GE.

.GT.

& .AND.

II I .OR.
AND
OR

All operators in DEBUG expressions have equal priority. Therefore, if you do not place any parenthe
ses in an expression, DEBUG evaluates the expression in strict left-to-right order. Use parentheses to
force a different order of evaluation.

DEBUG permits you to mix values of different data types in expressions. If you mix integer and real
values in an expression, DEBUG converts the integer value to real before evaluating the expression. In
expressions, DEBUG treats pointers and enumerated variables as ordinary integers. Therefore, you
can use pointers and enumerated variables anywhere that you would use an integer. C programmers

Encyclopedia 3-34

c

c

c

o

o

o

o

o

should note that DEBUG does not scale by the size of the objects when performing pointer arithmetic.
However, see the "Pointers" listing for a way around this.

The operators / and DIV are equivalent. Both operate like FORTRAN division, that is, if both oper
ands are integers, the result is an integer. Otherwise, the result is a real number.

Applied to integers, all forms of the AND and OR operators work bitwise and produce integer results.
Applied to logical operands, the operators generate the correct boolean result. However, they do not
"short circuit" like the C operators && and II.
The unary minus operator (-) acts as a logical NOT operator when applied to a boolean or logical
value.

3-35 Encyclopedia

Faults -- This listing explains how DEBUG handles faults.

When a fault occurs in the target process, DEBUG intercepts it, suspends program execution, and dis
plays a message describing the fault. If you type GO or STEP, DEBUG attempts to continue execution
from the point of the fault, but the attempt will not always be successful. The -Location option of the
GO command may be useful in skipping over the faulting statement, or in restarting the program at the
faulting statement if you were able to repair the cause of the fault. Note that DEBUG warns you if the
operating system had marked the fault unrestartable.

You can send the intercepted fault to whatever fault handling routine the target program has estab
lished by entering the command:

> GO -Cleanup

If you want to debug a fault handler or cleanup handler, be sure to set a breakpoint on it before resum
ing execution with GO -Cleanup.

The macro name 'fault_action has a special meaning to DEBUG. If you define a macro by this
name, DEBUG executes the associated action-list whenever a target program fault occurs. The
predefined debugger variable 'fault_status is set to the status code of the most recent fault. For ex
ample, the following macro automatically resumes program execution if a floating-point overflow fault
occurs:

> MACRO 'fault_action [IF 'fault_status 16#00120026 [GO]]

Causing Faults

You can send asynchronous faults to an executing program with

• Shell command SIGP or

• CTRL-Q

DEBUG ignores faults sent to the target while it is suspended. However, you can simulate an asynchro
nous fault at the point where the target is suspended with the SIGNAL command. Using the SIGNAL

c

command allows you to cause a fault at a precise point of execution. For example, to debug a fault C .. ·"
handler, you would first set a breakpoint on it, run or step the target to the point where you want the
fault to occur, enter a SIGNAL command to simulate the fault, and then type GO -Cleanup to restart
the target and invoke the fault handler.

Faults in DEBUG

Faults· can occur in DEBUG itself if you attempt to access data via a bad pointer or outside of array
bounds, and in other similar situations. A fault in DEBUG aborts execution of the current command
and returns you to the command prompt level (except for a stop fault, which terminates execution.)
Note that the message describing a fault is prefixed with" (debug)" for faults in DEBUG, and with the
target process name for faults in the target.

When the debugger and target are running in the same window (whether or not DEBUG has its own
window pane), a CTRL-Q will cause a fault in both processes. DEBUG must then decide whether the
CTRL-Q was meant for DEBUG or for the target program. Here are the criteria that DEBUG uses to
decide:

• If the target program was running when the fault occurred, DEBUG assumes that the intention
was to stop the target. Therefore, DEBUG ignores its own quit fault.

Encyclopedia 3-36

c

o

o

o

o

o

• If the target program was not running when the fault occurred, DEBUG assumes that the fault
was intended for itself. As noted above, the fault is ignored in the target process.

3-37 Encyclopedia

GO -- Begins or resumes execution of the target program.

FORMAT

Zero or one
from this group.

Zero or one
from this group.

Zero, one, or more
from this group.

-Location statement-ID
-Exit Go -Return (expr) -Alt integer -After integer -Until statement-ID -OR statement-ID
-Cleanup

REQUIRED ARGUMENTS

None. If you enter GO with no arguments, DEBUG resumes execution from the state
ment where the program is currently stopped.

OPTIONAL ARGUMENTS

-Location

-Exit

-Return

-Cleanup

-After

-Until, -OR

DESCRIPTION

Causes your program to resume execution at the specified statement. The speci
fied statement must be in the run environment routine. You cannot use -Loca
tion to jump to a different routine.

Sets one-shot breakpoints on all exits of the current routine thus allowing you to
examine the state of the routine's variables just before control returns to the
caller. Note that an "exit" is a return to the calling routine, an "exit" is not a call
to another routine.

Causes the current routine to exit immediately. The optional (expr) argument
defines a return value if the routine is a function. You must enclose the (expr)
argument in parentheses. The phrase -Alt integer is optional, and you can only
use it when debugging FORTRAN programs. Use it to specify an alternate rou
tine return. Note that (expr) and -Alt are mutually exclusive, since the former
applies only to functions and the latter only to subroutines.

This option is valid only after the target program has stopped for a °fault (other
than a normal breakpoint or single-step.) It causes the fault to be delivered to
the target program, so that any cleanup handlers are executed. See the "Faults"
listing earlier in this encyclopedia for a complete discussion of fault handling.

Applies only if the target program is currently stopped at a breakpoint. If it is,
the current break will not occur again for the number of passes ~hrough the state
ment that you specify with "integer." The action of this option is identical to that
of the -After option of the BREAKPOINT command. This option replaces any
existing after count on the breakpoint.

Sets one or more one-shot breakpoints at the given statement-IDs. -Until and
-OR produce identical results.

Use the GO command to begin or resume execution of the target program. All options are mutually
exclusive except for -After and -Until, which can be combined with any of the others.

Encyclopedia 3-38

c~

c~

c

- __ 00 ____________ 0 __________ _

o

o

o

o

o

Several of GO's arguments establish one-shot breakpoints. A one-shot breakpoint, like all other
breakpoints; stops the program be/ore the statement executes. A one-shot breakpoint remains in ef
fect until the program stops for any reason. As soon as the program stops, DEBUG deletes the one
shot breakpoint. A one-shot breakpoint replaces any existing breakpoint at the same statement.
Therefore, after you set a one-shot breakpoint, you lose any permanent breakpoint set at the same
statement.

NOTE: Because of program optimization, it is possible that the GO -Location command
may cause unexpected results. The compiler optimizes code by assuming that
the program executes in a certain order. By using the GO -Location command,
you depart from this expected order and possibly cause program bugs. The
-DBA compiler option prevents the optimizations that can lead to unexpected
results when you debug. (See Appendix C for complete details on optimization
and debugging.)

EXAMPLES

Here are several sample GO statements:

> GO

> GO -LOCATION 27

> GO -EXIT

> GO -RETURN

~ > GO -RETURN (5)

> GO -RETURN -ALT 2

> GO -AFTER 3

> GO -UNTIL 40

> GO -UNTIL 40 -OR move\6

(Begin execution from current line.)

(Jump to the statement at line 27, and begin
execution. Line 27 must be in the current routine.)

(Begin execution at current line, and set
temporary breakpoints at all routine exits.)

(Return immediately to calling routine.)

(Return immediately from a function and set
the function's value to 5.)

(Return to FORTRAN's second alternate
return point.)

(Set a temporary breakpoint at the current line.
The breakpoint will be activated on the third, sixth,
ninth, etc. times that the program reaches this line.)

(Set a one-shot breakpoint at line 40 and
then begin program execution from the
current line.)

(Set two one-shot breakpoints, then begin
program execution from the current line.)

3-39 Encyclopedia

HELP -- Displays information about DEBUG commands.

FORMAT

Help command -Verbose

REQUIRED ARGUMENTS

None. If you specify HELP with no arguments, DEBUG displays a list of all the DEBUG
commands.

OPTIONAL ARGUMENT

command

-Verbose

DESCRIPTION

Any DEBUG command name or a valid command abbreviation. Previous revi
sions of DEBUG permitted you to put an optional dash prior to the command,
but SR9.5 DEBUG no longer permits the dash.

Provides you with a longer, more-detailed help file.

Use HELP to display an on-line description of a particular DEBUG command, or a general summary
of all available DEBUG commands. If you do not use the -Verbose option, DEBUG displays a brief
file containing one or more examples of the command. If you do use the -Verbose option, DEBUG
displays a format-oriented description of the command.

EXAMPLES

> HELP (DEBUG displays a complete list of al/ available DEBUG
commands.)

> HELP BREAKPOINT (DEBUG displays several examples of the BREAKPOINT
command.)

> HELP B (Equivalent to HELP BREAKPOINT.)

> HELP BREAKPOINT -Verbose (DEBUG displays a detailed description of the syntax of
the BREAKPOINT command.)

Encyclopedia 3-40

('

c

o

o

o

o

o

IF -- Evaluates a given expression, and executes an action-list conditionally.

FORMAT

IF expression action-list1 -Else action-list2

REQUIRED ARGUMENTS

expression Any legal expression that produces a boolean (logical) or integral result. See the
"Expressions" listing earlier in this encyclopedia for details.

action-list! An action-list. See the" Action-Lists" listing earlier in this encyclopedia for a
definition of action-list. If expression is boolean and evaluates to true, or if ex
pression is arithmetic and evaluates to nonzero, then DEBUG executes action
list1.

OPTIONAL ARGUMENT

-Else action-list2 An action-list. If the expression is boolean and evaluates to false, or if the ex
pression is arithmetic and evaluates to zero, then DEBUG executes action-list2.

DESCRIPTION

Use the IF command to conditionally execute one or more DEBUG commands stored in an
action-list.

EXAMPLE

Here are four IF command examples:

> IF x > 0 [EXAMINE x]

> IF x > 0 [EXAMINE x] -ELSE [EXAMINE y]

> IF «x> 0) AND (q < p» [DELETE -B -All; BREAKPOINT f1\; GO]

> IF flag [PRINT 'flag is true']

For our final example we consider an IF statement used in the action-list of a BREAKPOINT com
mand:

> BREAKPOINT 24 -DO [IF (status.all .eq. 0) [GO]
-ELSE [EXAMINE status]]

The preceding command would be particularly useful for testing the success or failure of a system call.
Basically, it tells the debugger to GO through the breakpoint if the system call succeeded, but to halt
and EXAMINE the error code if the system call failed.

3-41 Encyclopedia

JUMP -- Moves between commands in an action-list.

FORMAT

Jump label

REQUIRED ARGUMENT

label A command label. The label must appear within the same command action-list
as the JUMP command. A label is an identifier consisting of one or more alpha
numeric characters followed by a colon (:). The first character in a label must be
a letter; it cannot be a digit.

OPTIONAL ARGUMENTS

None.

DESCRIPTION

You can only use JUMP within an action-list. JUMP works like a goto statement. Use JUMP to
move from one portion of an action-list to another.

In the action-list, you can specify the label before or after the corresponding JUMP command; that is,
you can jump forward or backward.

DEBUG looks for the label using a simple string matching search. Therefore, be careful that you do
not pick a label that conflicts with another part of the line. If you have a program variable called la
bel, for example, a line like the following would loop incorrectly:

[SET label:= 5;
label: PRINT 'want loop here';
JUMP label]

DEBUG would jump to the first "label:", rather than the "second.

EXAMPLE

In this example we set a label called loop: within a macro's action-list. The following macro prints
the contents of a linked list. Notice how the macro borrows the program variable head to walk the
list. A debugger variable would not have the correct type.

> MACRO 'print_list [
SET 'save_head = head;
loop:

EXAMINE headA.car;
SET head = headA.cdr;
IF head <> 0 [jump loop];

SET head = 'save_head]

You do not have to put each statement in the action-list on a different line or indent the command's in
the loop, but it does help readability.

Encyclopedia 3-42

o

o

o

o

o

LIST -- Produces a list of program routines, program variables, DEBUG definitions, DEBUG
macros, breakpoints, or alternate search directories.

FORMAT

-Macro macro-name
-DEFine definition-name
-Breakpoint statement-ID

List -Routines
- VARiables routine-name
-DV
-SDIR

REQUIRED ARGUMENTS

None. If you specify LIST with no arguments, DEBUG returns a list of all macros, defi
nitions, breakpoints, routines, program variables, DEBUG variables, and alter
nate search directories.

OPTIONAL ARGUMENTS

-Macro

-DEFine

-Breakpoint

-Routines

-VARiables

Lists the names and definitions of DEBUG macros. A macro is something you
create with the MACRO command. Use this option in one of the following two
ways:

List -Macro Lists the names and definitions of all macros.

List -Macro macro-name Lists the definition for this particular macro.

Lists the names and definitions of DEBUG definitions. A DEBUG definition is
something you create with the DEFINE command. Use this option in one of the
following two ways:

List -Define Lists the names and definitions of all DEBUG
definitions.

List -Define definition-name Lists the definition for this particular DEBUG
definition.

Lists information about breakpoints. Use this option in one of the following three
ways:

List -Breakpoint Describes every breakpoint in the program.

List -Breakpoint routine-name Describes every breakpoint in that routine.

List -Breakpoint statement-id Describes the breakpoint at that line number.

Lists all routines in the program (including the startup routines provided by the
compiler). If you compiled the routine with either the -DBS or the -DBA com
piler option, DEBUG prints the message" (symbol table available)" next to the
routine-name. If this message does not appear, then you cannot access the vari
ables in this routine. DEBUG lists nested routines by indenting them under their
parent routine or module.

Lists the names of program variables. Use this option in one of the following two
ways:

List -Variables

List -Variables routine-name

3-43

Lists the names of all program variables in the
current routine.

Lists the names of all program variables in the
specified routine.

Encyclopedia

-DV

-SDIR

Lists all active DEBUG variables. You activate DEBUG variables with the SET
command.

Lists the current alternate source file pathname(s) specified by the SOURCE
command or the -SDIR option.

DESCRIPTION

Use the LIST command to identify the components of a DEBUG session. You can issue the LIST
command without any arguments or with one or more arguments. If you issue the LIST command
without arguments, DEBUG displays information on all components. Specifying LIST with one or
more arguments limits the information to particular components.

EXAMPLES

The following example shows typical output of the LIST -BREAKPOINT command:

> LIST -BREAKPOINT
Breakpoints:

SAMPLE\22
-AFTER 4
current counter = 0

SAMPLE\subr3\12

(Lists every breakpoint In the program.)

(See the -After option of BREAKPOINT.)

-AFTER 1 -DO [PRINT x]
current counter = 0

(An action-list at this breakpoint.)

Using the -ROUTINES option provides a list of every routine in the program. The following example

~

l /
j

shows that the program consists of four user-written routines divided into two modules (MAIN and MA- ("",
NIPULATE_MASTER_FILE):

> LIST -ROUTINES (Lists every routine in the program.)
Routines:

<apollo_c_startup> (symbol table available)
MAIN_C (symbol table available)

main (symbol table available)
<apollo_c_startup> (symbol table available)

MAN I PULATE_MASTER_F ILE_C (symbol table available)
open_master_file (symbol table available)
initialize_master_file (symbol table available)
search_for_correct_program (symbol table available)

Here are two examples of the LIST -VARIABLES command:

> LIST -VARIABLES
Variable(s):

XR
K
J
I

> LIST -VARIABLES subr3\
Variable(s):

Encyclopedia

QUARK
STRANGE

(Lists program variables in current routine.)

(Lists program variables in routine subr3.)

3-44

c

o

o

o

o

o

MACRO -- Defines a sequence of DEBUG commands that you can invoke using a
debugger-name.

FORMAT

Macro debugger-name action-list

REQUIRED ARGUMENTS

debugger-name

action-list

Any legal DEBUG name. All such names must begin with an accent grave (').

Any legal DEBUG action-list. See the "Action-Lists" listing earlier in this ency
clopedia for details.

OPTIONAL ARGUMENTS

None.

DESCRIPTION

Use the MACRO command to create a macro (Le., a script) of DEBUG commands. For instance,
you might create a macro that examines the values of several variables. Such a macro might be defined
as follows:

> MACRO 'ml [EXAMINE ponce; PRINT ponts; BREAKPOINT r3\]

You can invoke a macro anywhere you could use a normal DEBUG command. To invoke the macro,
simply specify its name, for instance:

> 'ml

Note that you cannot abbreviate a macro name. Also, don't forget that a macro name must begin with
an accent grave (..). The name you choose cannot duplicate that of an existing debugger variable or
debugger definition, though it can be the name of an existing macro. By picking the name of an exist
ing macro, you delete the old definition.

DEBUG does not check macro definitions for illegal commands until you actually invoke the macro.

You can use macros as part of other macro definitions, but you cannot create a recursive macro (Le., a
macro that calls itself).

By default, macro definitions disappear when the DEBUG session ends. (Such a pity when you've
written a long macro.) Therefore, you might consider storing the macro definitions in one of the
startup files described in Section 3.1.

The Special 'CR Macro

When you press the RETURN key on a blank DEBUG input line, DEBUG automatically invokes a spe
cial macro named' CR, if it is defined. (By default, 'CR is not defined.) The most common use of
'CR is to cause DEBUG to STEP when you input a blank line. To accomplish that, simply define the
following macro:

> MACRO 'CR [STEP]

3-45 Encyclopedia

DEBUG Definitions in Macro Definitions

Suppose you specify a DEBUG definition in the action-list of a macro definition. Does DEBUG substi
tute the definition's value when you define the macro or when you invoke the macro? For most defini
tions, DEBUG substitutes the value when you invoke the macro. The predefined symbol

is an exception to this rule. This symbol designates the current routine name that appears in macro
definitions. For example, suppose you make the following macro definition while the current routine is
$MAIN\:

> MACRO ezra [EX '. pound]

Entering the DEBUG symbol' ezra as a DEBUG command, even while the program is executing a
routine other than $MAIN, is exactly equivalent to entering:

>EX $main\pound

The ' FAULT_ACTION Macro

If you define a macro named' FAULT_ACTION, DEBUG automatically invokes it when the target pro
gram faults. See the "Faults" listing for an example.

Encyclopedia 3-46

c

o

o

o

o

o

Pointer Variables -- Here, we explain how to use pointer variables during DEBUG sessions.

You can use DEBUG to reference and de-reference pointer variables. For example, assume that pstr
is a pointer variable that points to a character variable. Consider how we reference and de-reference
pstr:

> EXAMINE pstr
pstr = 000101e8
> EXAMINE pstr"
pstr" = h

(Find the address that pstr points to.)

(Find the contents at the address that pstr points to.)

Notice that we must use the Pascal de-referencing symbol" because the C de-referencing symbol * is
not available for debugging. C programmers can use" wherever you would have used *. Also, C pro
grammers should read Section 4.2.5 in Chapter 4 for full details on C pointers in DEBUG sessions.

DEBUG permits you to freely interchange pointers and integers; for example, in a DEBUG expression,
you can substitute a pointer anywhere that an integer is permitted. See the "Expressions" listing for
more details.

De-referencing a Pointer to a Function or Procedure

You can de-reference a pointer to a function or procedure. When you de-reference such a pointer,
DEBUG returns a character string representing the name of the routine. You can EXAMINE or
PRINT the string, but you cannot change its value.

De-referencing a Virtual Address

You can de-reference any legal virtual address. To do so, use the syntax

address"data-type

where address is the virtual address and data-type is any legal DEBUG data type shown in Table 3-2.
DEBUG de-references the address and interpret the results as having the given data-type. For exam
ple, the following command displays two bytes of data at the absolute address 3A8180 (hex) as an inte
ger:

> EXAMINE 16#3A8180"integer16

To find the virtual address of a variable, use the VA command.

integer
integer16
integer32

float
real
double

Pascal UNIV _PTRs

Table 3-2. Legal DEBUG Data Types

boolean
logical

complex univ-ptr char
byte] int8 8-bit integers

DEBUG allows you· to de-reference a variable of the UNIV pointer type (UNIV _PTR) even though
the Pascal language does not. To de-reference such a variable, use the same syntax you would use for
de-referencing a virtual address. For example, suppose that a variable named pointless has the

3-47 Encyclopedia

UNIV _PTR data type. The following SET command causes DEBUG to de-reference pointless and
to reset its value to 1000498:

> SET pointless A INTEGER32 = 1000498

FORTRAN Pointers

You can examine and set FORTRAN pointers in a similar way. However, the address to which a FOR
TRAN pointer refers must have variable names. You can use these variable names directly, without
explicitly de-referencing the pointer. For example, the following is a possible FORTRAN pointer defi
nition:

INTEGER*4 mirror POINTER /mirror/ alice, carroll, dodgson

Once you define the pointer, mirror, in the program, the variables alice, carroll, and dodgson
have locations and values. You can then treat the variables as ordinary variables. You can also treat
mirror in the same manner as any variable, except that changing its value changes the locations of
alice, carroll, and dodgson. For example, all of the folloWing DEBUG commands are legal:

SET carroll
EXAMINE mirror
EXAMINE alice
PRINT carroll + alice
DEFINE 'look [P mirror]
DESCRIBE alice, carroll, mirror, dodgson

NOTE: You cannot explicitly de-reference a FORTRAN pointer.

Encyclopedia 3-48

c

o

o

o

o

o

PRINT -- Displays the values of one or more expressions.

FORMAT

Print

Zero or one from
this column:

-Ascii
-Binary
-Decimal
-Hex
-Octal
-Unsigned
-FLoat
-Real
-DOUble

REQUIRED ARGUMENTS

expression 1 , ... expressionN

None. If you issue the PRINT command with no arguments, DEBUG prints a blank line.

OPTIONAL ARGUMENTS

You can optionally supply one formatting option from the following list. Each formatting option causes
PRINT to ignore the data types of all variables in the list and to display the data in a specific way.

expression

DESCRIPTION

-Ascii

-Binary

-Decimal

-Hex

-Octal

-Unsigned

-Float

-Real

-DOUble

Displays the data as if it were one or more ASCII values.
(An ASCII value takes up 8 bits, so a 32-bit variable will
be translated into 4 ASCII values.)

Displays the data in binary (base 2) integral value.

Displays the data in decimal (base 10) integral value.

Displays the data in hexadecimal (base 16) integral
value.

Displays the data in octal (base 8) integral value.

Displays the data in unsigned decimal integral value.

Displays the data in 32-bit (single-precision) floating
point value.

Identical to -Float.

Displays the data in 64-bit (double-precision) floating
point value.

One or more legal DEBUG expressions. (See the "Expressions" listing earlier in
this encyclopedia for details.) If you specified a formatting option, you must
specify at least one expression.

Use the PRINT command to display the values of one or more expressions. The PRINT command is
similar to the EXAMINE command except for the following differences:

3-49 Encyclopedia

• EXAMINE can only display the values of variables; PRINT can display the values of any ex
pression (including a variable by itself).

• The PRINT command can only show the value of individually named array or record elements.
It cannot show the contents of each element of a record or array when given the aggregate
name. The one exception is that PRINT can display a string; in fact, it prints it on one line. In
contrast, EXAMINE displays each element of an array of characters on a separate line. PRINT
can only display an entire string; you cannot use a subrange specification. For C strings,
PRINT prints characters up until it reaches the string termination character \0.

• The EXAMINE command displays the name and value of the variable; the PRINT command
displays only the value of the variable.

• The PRINT and EXAMINE commands accept the same data type options (-ASCII,
-BINARY, etc.); however, EXAMINE accepts them before or after the variable, and PRINT
only accepts them be/ore the expression.

• The PRINT command displays all expression values on the same line with no spaces between
them. In contrast, the EXAMINE command displays each variable on a separate line.

EXAMPLES

Here are some examples that distinguish PRINT from EXAMINE:

> EXAMINE letter
TEST_C\letter = Z

> PRINT letter
Z

> PRINT -Decimal letter
90

(EXAMINE reports variable's name ...)

(but PRINT does not.)

(Display value as a decimal number.)

> PRINT 'The value is " letter
The value of letter is Z

(A string is a valid expression.)

> EXAMINE stu
TEST_C\stu.x b
TEST_C\stu.y 325432

(EXAMINE can display the value of
an aggregate type like a record
or a structure ...)

> PRINT stu (but a PRINT cannot.)
*** Error: Cannot have aggregate reference here.
PRINT stu

> EXAMINE carray
TEST_C\carray[O]
TEST_C\carray[l]
TEST_C\carray[2]
TEST_C\carray[3]
TEST_C\carray[4]
TEST_C\carray[5]

> PRINT carray
Mary

Encyclopedia

M

a
r
y

<00>
<00>

(EXAMINE displays every value, even
the meaningless ones, of a
character array.)

(PRINT only displays the significant part of a C string.
When you debug FORTRAN or Pascal programs,
DEBUG prints the entire array unless you specify
.. max_bad_chars .)

3-50

c,~

c'

o

o

o

o

o

QUIT -- Ends a debugger session and terminates the target program.

FORMAT

Quit

REQUIRED ARGUMENTS

None.

OPTIONAL ARGUMENTS

None.

DESCRIPTION

Use this command to get out of the debugger. The QUIT command has the same effect as the EXIT
command.

This command forces the target program to quit, then it forces DEBUG to quit. The target exits as if it
had called pfm_$exi t. Therefore, if you set cleanup handlers in the program, DEBUG invokes them
as the program exits. If the target program has inhibited faults when this command is issued, DEBUG
may not be able to force the target program to exit. In such a case, DEBUG exits and leaves the target
program running.

3-51 Encyclopedia

READ -- Reads and executes a file of DEBUG commands.

FORMAT

Read path name

REQUIRED ARGUMENTS

pathname The pathname of a file containing DEBUG commands.

OPTIONAL ARGUMENTS

None.

DESCRIPTION

A READ command is similar to a Shell script. When you issue the REA.D command, DEBUG reads
the specified file and executes each line in the file as a DEBUG command. DEBUG echoes each line
of the input file as it reads the line.

c

When you issue DEBUG commands from a command file, DEBUG defers the processing of GO and r-,
STEP commands until all other commands in the file have been processed. For example, consider the ~. __ .
following sample command file:

SET 'max_var_len = 66
BREAKPOINT 262
GO
EXAMINE try

When DEBUG processes this file, it defers the execution of the third command, GO, until last. The
EXAMINE command, therefore, will execute before the GO command. To avoid confusion, you C'"
should only put a GO or STEP command at the end of the file.

Command files can themselves contain READ commands.

EXAMPLE

Suppose you store the following information in a file named debugging_my _prog:

PRINT r
BREAKPOINT rout3\
GO

To invoke these commands, simply enter the following command:

> READ debugging_my-prog
PRINT r
10388142
BREAKPOINT rout3\
GO
Break at: TEST_C\rout3\10

Encyclopedia

(DEBUG echoes the command here ...)

(and here ...)
(and here.)

3-52

o

o

o

o

o

Routine-Name -- The name of a subroutine, procedure, or function.

FORMAT

A routine-name is not a command, but many DEBUG commands accept a routine-name as an argu
ment. When you specify a routine-name, you must give it the following format:

routine-identifier\routine-identifier\ ... activation-number\

REQUIRED

routine-identifier One or more program, module, subroutine, procedure, or function names sepa
rated by backslashes.

OPTIONAL

activation-number\ An integer that indicates a specific activation if the routine is on the call stack
more than once. If the activation-number is positive, it refers to an absolute
activation-number from the first activation of the routine. If the
activation-number is negative, you subtract it from the most recent activation,
and the result is the absolute activation-number. Note that you must follow the
activation-number with a backslash (\), and the activation-number cannot be a
variable. Note also that there cannot be spaces between the routine-name and
the activation-number. The default is the most recent activation.

DESCRIPTION

Use a routine-name to specify a particular subroutine, procedure, or function. Several DEBUG com
mands accept a routine-name as an argument.

In general, specifying a routine-name is easy. In most cases you merely have to specify the name of
the routine (Le., subroutine, procedure, or function) followed by a backslash. In a few cases (particu
larly those involving Pascal programs), you may also have to specify the names of other routines or
modules. Let's examine routine-names language by language.

NOTE: Routine-names must always end with a backslash \.

Routine-Names in' FORTRAN

For FORTRAN programs, a routine-name usually consists of a single identifier: the name of the rou
tine. (An unnamed main program bears the name $MAIN.) A two-component name such as foo\bar\
denotes a statement function (bar) defined within a routine (foo).

Routine-Names in C

For C programs, you usually specify a routine-name of the simple format:

function-name\

However, in order to fully qualify aroutine-name, you can precede the routine with the name with the
module; in this case a routine-name takes the following form:

module-name\function-name\

3-53 Encyclopedia

The longer form is of particular help when a program has two functions with the same name stored in
different modules.

See the DOMAIN C Language Reference for details on naming modules.

Routine-Names in Pascal

In Pascal, the first component of a full routine-name is the name of a program or a module. Successive
components denote nested procedures or functions. For example

EUROPE\FRANCE\PARIS

denotes a routine (procedure or function) named PARI S which is internal to anothe~ routine named
FRANCE, which is in turn nested in a module or program named EUROPE.

In most cases, it is not necessary to use fully qualified routine-names. If a 'routine (Le., subroutine,
procedure, or function). is visible from the current environment, you need only specify the name of
that routine; for example, PARIS\. To specify a routine that is not visible from the current environ
ment, you need to specify the name of the program or module containing it, followed by the name of
the routine itself; for example, EUROPE\FRANCE\PARIS\. A partially qualified name, such as
FRANCE\PARIS\, can also be used if the first component is visible in the current environment. (See
the "ENVIRONMENT" listing for a complete discussion of environments.)

For example consider the following Pascal program structure:

program P

procedure A
procedure X

procedure B

module M
procedure X

function Y

If. current
routine is

A
A
A
A
A
B
B
B

then is equivalent to

X\ P\A\X\
B\ P\B\
Y\ error: Y is not visible from A
X\Y\ error: X refers to P\A \X\
M\X\Y M\X\ Y\ (full name required here)
X\ M\X\
X\Y\ M\X\Y\
A\X\ P\A\X\

We have not yet described precisely what is meant by a routine being "visible". For the most part,
DEBUG's visibility rules are the same as those of the source language. In other words, a routine is vis
ible if and only if it could be called from the current point of execution. However, there are a fewex
ceptions:

• The visibility of external routines in Pascal and C programs depends on whether and where the
routines are declared (typically via an insert file.) The debugger assumes that all top-level rou
tines in modules are globally visible.

• DEBUG ignores Pascal 'INTERNAL' and C 'static' declarations in modules. Internal routines
are globally visible, just as if they were exported.

Encyclopedia 3-54

c

o

o

o

o

o

• The debugger is insensitive to the order of declaration of routines within a program or module.
It can make forward references not permitted in the language.

Ambiguous References

In some cases, the rules DEBUG uses to identify the routine-name can lead to ambiguous routine ref
erences. For example, suppose two different routines -- an 'INTERNAL' routine in one module and
an exported routine in another -- have the same name. DEBUG cannot distinguish between the two
routines unless the names are fully qualified. If an unqualified name is given, DEBUG uses whichever
routine it happens to find first.

If a module has the same name as a routine, it is possible for a routine-name to be interpreted as
either the fully-qualified name of one routine or a partially qualified name of another. For example, if
a module named Faa contains a function named Faa, then does FOO\ refer to the module or the
procedure? DEBUG normally assumes that it refers to the module. In general, if a name can be inter
preted as fully-qualified, then it will be. An exception to this rule occurs when the routine-name is
part of a statement-ID (see the" Statement-ID" listing). Since modules never have statements, DE
BUG assumes you are referring to a routine rather than a module.

Pascal and C do not require module names to be unique. It follows that it is possible to have two rou
tines with the same fully-qualified name. There is no way for DEBUG to distinguish between such rou
tines. The only cure is to rename one of them.

If you compiled a file with the the -DB compiler option, the nesting structure of the routines is not
known to DEBUG. You can only use simple unqualified routine-names in this case. If two routines
have the same name, there is no way to distinguish between them.

In most cases DEBUG will do what you expect. When in doubt, use fully-qualified names. Also note
that in some commands the current routine is the default and you need not specify it at all.

Activation-Number

In most cases a routine-name is sufficient to specify the environment for accessing variables, etc.
However, for recursive routines, more than one activation of the routine, each with its own set of argu
ments and local variables, may be on the call stack. You use an activation-number to specify a par
ticular activation of a recursive routine.

NOTE: You cannot specify an activation-number when setting a breakpoint. However,
you can simulate an activation-number by using the -AFTER option of the
BREAKPOINT command.

By using an activation-number we can study the effects of recursion on a function's arguments. For
example, assume a recursive function named FACTORIAL which takes one argument (n). Suppose we
set a breakpoint at the beginning of FACTORIAL and let the function call itself three times. Here are
the results:

> TB
Stopped at RECURSIVE_EXAMPLE\FACTORIAL\ll
Called from RECURSIVE_EXAMPLE\FACTORIAL\-l\ll
Called from RECURSIVE_EXAMPLE\FACTORIAL\-2\11
Called from RECURSIVE_EXAMPLE\18

> ARGS factorial \ (Current value of No)
RECURS IVE_EXAMPLE\FACTORIAL \N 5
> ARGS factorial \0\ (Current value of No)
RECURS IVE_EXAMPLE\FACTORIAL\O\N 5
> ARGS factorial \1 \ (First value of N.)
RECURS IVE_EXAMPLE\FACTORIAL\l \N 7
> ARGS factorial \2\ (Second value of No)
RECURSIVE_EXAMPLE\FACTORIAL\2\N 6
> ARGS factorial \3\ (Third value of No)
RECURSIVE_EXAMPLE\FACTORIAL\3\N 5

3-55 Encyclopedia

Negative activation-numbers can be quite useful. They trace values directly backwards from the cur
rent value.

> ARGS factorial \0\ (Current value of N.)
RECURSlVE_EXAMPLE\FACTORIAL\O\N = 5
> ARGS factorial \-1 \ (Value of N before that.)
RECURSlVE_EXAMPLE\FACTORIAL\-1\N 6
> ARGS factorial \-2\ (Value of N before that.)
RECURSlVE_EXAMPLE\FACTORIAL\-2\N 7
> ARGS factorial \-3\ (That's all.)
*** Error: Specified routine activation does not exist.
ARGS factorial\-3\

Encyclopedia 3-56

c'

!",
\
"'---- '

c·

SDIR -- This command is obsolete. Use the SOURCE command instead.

o

o

o

o

o
3-57 Encyclopedia

SET -- Sets the values of one or more variables.

FORMAT

The SET command supports two different formats:

-F1

Set -F2
-F3 variable ~= expression Set variable1 ,... variableN

-F4

(Assignment Format) (Interactive Format)

REQUIRED ARGUMENTS (Assignment Format)

variable

:= or =

expression

Any program variable or debugger variable. The variable cannot be a record,
structure, or union, although it can be a single element of a record. See the" Ar
rays" listing for details on manipulating array variables.

The two assignment operators are equivalent, and you can use either operator no
matter what language the program was written in.

Any legal DEBUG expression. See the "Expressions" listing earlier in this ency
clopedia for details on DEBUG expressions.

REQUIRED ARGUMENT (Interactive Format)

variable One or more variables. You can specify any number of variables of any type, as
long as they fit on one line.

OPTIONAL ARGUMENTS (Assignment Format)

-Fl -F2 -F4 -FN Each of these options forces the expression's value into the variable. The -FI,
-F2, and -F4 options force exactly one, two, or four bytes of data, respectively.

CI

The - FN option forces into the variable as many bytes of data as there are in the r"
expression value. In any case, DEBUG does not perform any conversion on the '--_
data, and DEBUG does not check whether or not the variable can accommodate
that amount of data. Therefore, be careful: you may inadvertently change the
values of other variables if the value overflows the assigned variable.

OPTIONAL ARGUMENTS (Interactive Format)

None. (The -Fi, -F2, -F4, or -FN options are illegal in the interactive format.)

DESCRIPTION

Use the SET command to change the value of one or more variables during the DEBUG session. The
changes you make will have no effect on any future debugging sessions.

The SET command takes two formats:

The assignment format

The interactive format

Encyclopedia

Allows you to change the value of exactly one variable.

Allows you to change the value(s) of one or more variables in
response to prompts from DEBUG.

3-58

c

o

o

o

o

o

We describe these formats separately.

The Assignment Format

Use the assignment format to directly assign the value of an expression to one variable. For example,
to change the value of integer variable xeno to 5, enter the following command:

> SET xeno = 5

You can also assign the value of one variable to another. For example, assuming that integer variable
yeti has a value of 6, the following command sets xeno to 6:

> SET xeno = yeti

Although you can set one simple variable to another simple variable, you cannot assign one aggregate
variable (array, record, structure, or union) to another, except for character strings. For example,
given two variables myrec and youree of the same record type, the following assignment is illegal:

> SET myrec = youree

You can, however, assign one field of an aggregate variable to another; for example:

> SET myrec.status = youree. status

You can use the SET command to set every element in an array to the same value. To do so, specify
the name of an array as the variable and the initializing value as the expression. For example:

> EXAMINE ar
ar [1] 111
ar[2] = 222
ar[3] = 333
> SET ar = 0
> EXAMINE ar
ar [1] 0
ar[2] = 0
ar[3] = 0

(Set every element in the array to zero.)

As mentioned earlier, you can assign a character string to a character array variable. If the string is
shorter than the target array, DEBUG pads the string with blanks. If the string is longer than the target
array, DEBUG signals an error and makes no assignment. For example, consider an array of 20 char
acters and the following legal and illegal assignments:

> PRINT s
The Cat in the Hat

> SET s = 'Comes Back'
> PRINT s
Comes Back (DEBUG pads the remainder of the array with blanks.)

> SET s = 'is a really wonderful book for children'
***Error: String too long for the dimension of the character array.

NOTE: C users should note that DEBUG pads arrays with blanks, and therefore does
not use a \0 to mark the end of the string. Since most C output functions de
pend on a delimiting \0, you will probably have to use the SET command to in
sert one yourself.

You cannot use a range subscript to assign a string to part of a character array, nor can you assign a
string to a C pointer that implicitly denotes a string.

The Interactive Format

To invoke the interactive format, enter the word SET followed by the variables whose values you might
want to change. DEBUG responds by displaying the present value of each variable one by one, and
waiting for you to type in its new value. For instance, consider the following command sequence:

3-59 Encyclopedia

> SET x, y, z
TEST_C\x 3 = 5
TEST_C\y = 100
TEST_C\z = 4.200000
> EXAMINE x, y, z
TEST_C\x 5
TEST_C\y = 100
TEST_C\z = 3.140000

3.14

In the previous SET command, we changed the value of x from 3 to 5 and the value of z from 4. 2
to 3.14. Since we did not enter a new value for y, DEBUG kept its old value of 100.

If you specify a structured variable (Le., an array, record, structure, set, or union), DEBUG prints the
current value of each element or field of that structured variable. Thus, you can use the interactive
format to change all or part of a structured variable. For example, to change all three elements of a
one-dimensional array of integers, we could enter the following:

> SET einstein
TEST_C\einstein[O]
TEST_C\einstein[l]
TEST_C\einstein[2]

400
300
200

5
19
99

DEBUG supports many features for specifying a portion of an array. For details, see the "Arrays" list
ing earlier in this encyclopedia. Note that you can specify array subscripts that refer to portions of
memory outside the array. If you do that, DEBUG issues a warning that you have used out-of-bounds
subscripts, but you can still set the contents of the locations referred to as though they were actually
part of the array. (DEBUG does not, however, issue a warning in the case of single-element one
dimensional arrays, because DEBUG assumes that you create such arrays only for the purpose of refer
encing memory outside the array boundaries.)

NOTE: Be careful with Pascal variant fields and C unions because the next field may ac
tually occupy the same memory space as the previous field.

Special Symbols in the Interactive Format

When prompted for data, you can either enter a new value for the variable or you can do one of the
following:

<blank> If you enter a blank line, DEBUG leaves the old value of the variable unchanged.

If you enter a comma, DEBUG skips to the next variable in the command list. This is
useful for prematurely ending operations on an array or record variable.

If you close the line with a semicolon, DEBUG completely terminates the SET com
mand, even if you have given more variables on the command line list. This is useful for
ending the SET operation without seeing the rest of the -variables.

EXAMPLE OF INTERACTIVE FORMAT

> SET i, j, CAMBRIDGE, table, k
i = 1234 = 5678<RETURN>
j = -1000 = <RETURN>
CAMBRIDGE(l,l) 1 <RETURN>
C~IBRIDGE(1,2) = 2 = 0, <RETURN>

table.nextp = 0012F4A4s = <RETURN>
table. value = 1 = O<RETURN>
table. hash = 457234 = O;<RETURN>

Encyclopedia 3-60

(Contents changed.)
(Contents unchanged.)
(Contents unchanged.)
(Contents changed, and we end
operations on the array CAMBRIDGE.)

(Contents unchanged.)
(Contents changed.)
(Contents changed, and we end the
entire SET command. Notice that DEBUG
does not display the last field of "Table" or
the variable "k".)

r
........ ~ .. -..

('

o

o

o

o

o

Variable Assignment To a Different Data Type

If you assign the result of an expression to a program variable, the data type of the result generally
must be valid for the target variable. DEBUG does cross assignments in the cases shown in Table 3-3.
Note that this table applies to both the interactive and the assignment format.

Table 3-3. Variable Cross Assignments

A Variable of This Type Can Be Set Equal To a Value of These Types

Character Any Character value.
Any integer between -128 and +255.

8-bit integer (This is the Any character value.
C char type) Any integer between -128 and +255.

16-bit integer Any 8-bit integer value.
Any 16-bit integer value.
Any 32-bit integer value between -32768 and 65535 inclusive.

32-bit integer Any integer value.
Any pointer.

Real Any integer value.
Any real value.

Pointer Any pointer (need not be pointing to same base type).
Any integer value.

Logical or boolean Any logical or boolean value.

Enumerated An enumerated value of the same type.
Any integer value (DEBUG does not check the range).

Note To FORTRAN Users

If you enter a routine that has alternate entry points, DEBUG does not know which entry point you
used. Therefore, DEBUG cannot determine which set of arguments is valid. The TB and ARGS com
mands assume the primary entry point. If you try to access a different argument, your results will be
invalid and addressing violations may occur.

3-61 Encyclopedia

SHELL -- Invokes a DOMAIN Shell or executes a Shell command.

FORMAT

SHeil a-shell-command;. .. a-shell;...command

REQUIRED ARGUMENTS

None. If you issue SHELL without an argument, the Shell prompt ($) appears in the
DEBUG window pane.

OPTIONAL ARGUMENTS

a_shell_command A Shell command described in the DOMAIN System Command Reference. If
you specify more than one Shell command, you must separate the different com
mands with semicolons (;) and enclose the entire sequence of Shell commands in
single or double-quotes. (

\ _.

DESCRIPTION

Use SHELL to access Shell commands. You can issue the SHELL command with or without an argu
ment.

If you issue SHELL without an argument, the Shell prompt ($) appears in the DEBUG commands
window pane. You respond to the Shell prompt by entering Shell commands, running programs, or
doing anything you would normally do in a Shell. To return to your DEBUG session, simply type an
End-of-File character (usually CTRL/Z).

If you issue the SHELL command with an argument, the argument must be one or more Shell com
mands. After the operating system executes these Shell commands, control returns to DEBUG and you
can continue your debugging session.

SHELL invokes the Shell in the debugger process, not in the target process. Thus process-sensitive
Shell commands, such as LAS or LOPSTR, apply by default to the debugger process. Note that most
of the process-sensitive commands permit you to specify the name of the process, so you can specify
the process being debugged if you choose. For example, assuming that you want to check on
process_27, you could enter the following command:

> SHELL las -p process_27

EXAMPLES

> SHELL
$ wd
//fountains/aqua
$ *** EOF ***

> SHELL wd
//fountains/aqua

> SHELL "wd; ld a?*"
//fountains/aqua

appendix appendixb assembly

3 entries listed.

>

Encyclopedia 3-62

c

o

o

o

o

o

SIGNAL -- Simulates a fault.

FORMAT

SIGnal status

REQUIRED ARGUMENTS

None. If you do not specify an argument, DEBUG supplies the default status code. The
default status code is a quit fault.

OPTIONAL ARGUMENTS

status

DESCRIPTION

The numeric status code for the fault to be simulated. By default, DEBUG as
sumes that you are entering a decimal (base 10) integer. You can enter a number
in a different base if you desire. (See the "Expressions" listing for details.)

Use this command to simulate a particular fault at the current point of execution. DEBUG responds
with its normal fault message and invokes the .. FA UL T _ACTION macro (if it is defined). If you con
tinue execution with the GO -Cleanup command, DEBUG invokes program fault handling for the
specified fault as described in the "Faults" listing.

DEBUG signals an error if you issue this command while the target program is stopped for another
fault.

EXAMPLE

> SIGNAL 16#00120026 (Simulates a floating-point overflow fault.
Notice how we specified a hexadecimal status code
by prefixing the number with 16#.)

3-63 Encyclopedia

Source Code Display -- Here, we detail the source code that DEBUG displays. (See also the
"SOURCE" listing which appears next in this encyclopedia.)

In Chapter 2 we described the DEBUG invocation options affecting the source code display. Here, we
try to explain more fully what the source code display is by detailing the following topics:

• Source file display characteristics

• How DEBUG finds the right source file to display

• How DEBUG finds DSEE files

• Source file display with nonstandard fonts

• Programs compiled with the -DB option

• The" src_adjust and .. src_try_bak DEBUG variables

Source File Display Characteristics

The source display window pane contains source code and its associated line numbers. An arrow in
the source display indicates your current position in the program.

In general, the source file display is similar to a standard read window (as if you had read the source
file with the Display Manager's READ key). Most Display Manager commands are available to you if
you position the cursor in the source file window pane. You can scroll, search, and move around in
the pad. The line numbers and arrow are in a separate window pane from the source text. DEBUG
normally keeps these synchronized, but if you scroll the text, DEBUG does not automatically scroll the
line numbers and arrows. You can use the Display Manager "=" command to determine the correct
line number of any line in the display.

You cannot edit the contents of the source display window pane. However, you can bring up the
source code file as a separate window and edit it during your DEBUG session. The changes will not ap
pear in the source display until DEBUG refreshes the source display (e.g., if you specify a SOURCE
command) . When you make a change to your source code, the change is not reflected in the object
code. Therefore, changing the source code while debugging can be somewhat misleading.

You can use the ENVIRONMENT command or the SOURCE command to display any source code
you want to see (as long as the file is available). See the "ENVIRONMENT" and" SOURCE" listings
in this chapter for details.

How DEBUG Finds the Right Source File to Display

In most cases, DEBUG has no problem finding the appropriate source file to display. However, be
tween the time you compile and debug the program, it is possible that you have modified the source
file, moved it, or renamed it. If you've done any of these things, DEBUG may require some assistance
in finding the proper file to display. DEBUG searches for the file in the following order:

1. If you specify a file in a SOURCE command, DEBUG displays that file.

2. If the pathname and time-stamp recorded in the object module match those of an existing file,
then DEBUG displays that file.

3. If you have set the debugger variable" src_try_bak to a non-zero value, DEBUG appends the C~
.BAK suffix to the compilation pathname. Then, if this file exists and its time-stamp matches
the compilation file, DEBUG displays it.

Encyclopedia 3-64

o

o

o

o

o

4. If you have specified alternate search directories with the -SDIR option or SOURCE
command, then DEBUG searches these directories for a file with the same name and the
proper time-stamp. DEBUG searches the directories in the same order you defined them. If
'src_try_bak is non-zero, DEBUG also checks the .BAK versions of the file.

5. DEBUG next searches for the file in the working directory.

6. If DEBUG cannot find a file with the proper time-stamp but can find one or more with the
right name, then DEBUG displays the first such file it finds. DEBUG issues a warning message
when it displays such a file.

7. If all previous steps have failed, DEBUG displays the error message "SOURCE UNA V AIL
ABLE." In this case, track down the file yourself and issue a SOURCE command to tell DE
BUG of the file's location.

How DEBUG Finds OSEE Files

The preceding search procedure is extended for files managed by the DOMAIN Software Engineering
Environment (DSEE) as follows:

8. If a file encountered in the search is a DSEE element and the default version has the wrong
time-stamp, then DEBUG looks for an alternate version with the proper time-stamp.

When you compile a reserved file under DSEE, the source file name recorded in the object module is
the DSEE library element name, not the actual name of the reserved copy. DEBUG therefore initially
looks for the file in the DSEE library rather than the working directory. To enable DEBUG to find the
proper file you must do one of the following:

• Run DEBUG in a process created by DSEE's CREATE ENVIRONMENT command, so that all
source file references are automatically redirected to the proper versions. (We recommend this
method.)

• Run DEBUG with the same working directory as that used by DSEE. DEBUG finds the file at
step 5 of the procedure above.

• Use the SOURCE command (or the -SDIR option) to direct DEBUG to search DSEE's work
ing directory.

Source File Display With Nonstandard Fonts

If you use a standard font, DEBUG has no trouble drawing an arrow to indicate the current line num
ber. However, if you invoke DEBUG in a Shell that is running a nonstandard font (Le., your own
font), you must define the appropriate characters. To print an arrow, DEBUG prints hexadecimal
characters 1E and 1F. Therefore, you must use the EDFONT program (described in the DOMAIN
System Command Reference) to create definitions for these two ASCII values.

You can create any characters you want for 1E and 1F. If you want to add the arrow pointer, define
character 1E as a horizontal bar representing an arrow shaft ("-", for example). Then, define char
acter 1F as a right-pointing arrowhead.

Programs Compiled With the -DB Option

If you compile a program with the -DB option, DEBUG reports

SOURCE FILE UNKNOWN

However, you can still use the source display feature by supplying the name of the file in a SOURCE
command. See the" SOURCE" listing for details.

3-65 Encyclopedia

Note the difference between the preceding message and the following, which indicates that DEBUG
knows the name of the source file, but is unable to find it.

SOURCE FILE UNAVAILABLE

The 'src_adjust DEBUG Variable

DEBUG's default strategy for displaying the source location is:

• If the line is already visible in the display, DEBUG moves the arrow to the line without scrolling
the text.

• If the line is not visible in the display, DEBUG scrolls the text to put the desired line at the top
of the window pane.

The' src_adjust DEBUG variable enables you to display a specified minimum number of lines above
and below the target line. For example, if you enter:

Break at: $MAIN\8
> SET 'src_adjust
> BREAKPOINT 15
> GO
Break at: $MAIN\15

2

the source window display begins with line 13 rather than with the target line 15. This variable is help
ful when you want to view entire sections of code in context.

If you set' src_adjust to a negative number, the variable is deactivated, and DEBUG displays source
code lines in the default manner.

The'src_try_bak DEBUG Variable

If you invoke DEBUG for a program that you modified but didn't recompile, DEBUG issues the warn
ing message:

***Warning: Source file and object file have different "modified" dates
20-Mar-1985 14:15:00 //WALDEN/POND/HENRY.FTN
13-Mar-1985 14:49:31 in the object file.

The preceding message indicates that DEBUG discovered that the current version of the source file
contains a newer modified date than the one recorded in the object. Therefore, the object code you
are about to debug does not contain the changes you made to the program. However, if the
'src_try_bak debugger variable is activated, DEBUG prints the warning message and then attempts to
display the .bak (backup) file. To activate the variable, just set it to any number greater than zero; for
example:

If you want 'src_try _bak to apply to the first source code file displayed, you have to use the -set
command line option when you invoke DEBUG; for example:

$ debug -set 'src_try_bak=1 -src henry.bin

Encyclopedia 3-66

c~

c

o

o

o

o

o

SOURCE -- Specifies the source code file that DEBUG displays.

FORMAT

Zero or one from
this column.

SOurce compiled-file pathname
-NONE

You can abbreviate the SOURCE command to SO or SRC.

REQUIRED ARGUMENTS

None. If you specify SOURCE with no arguments, DEBUG displays the name of the
current source file.

OPTIONAL ARGUMENTS

compiled-file

pathname

-NONE

DESCRIPTION

The name of a target program source file at the time it was compiled. You may
enter either a full pathname or a partial pathname that is unique within your pro
gram name. (A leafname is usually all that DEBUG requires.)

The pathname of a file or a directory.

A keyword that tells the debugger that no source file is available for the given or
implied compiled-file.

"

In the "Source Code Display" listing we described how DEBUG displays the source code that you are
debugging. Most of the time, DEBUG chooses the correct source code to display. However, in some
cases, DEBUG chooses incorrectly. For these cases, you can use the SOURCE command to specify
the correct source code for DEBUG to display. In fact, you can use the SOURCE command to display
any file you desire (even source code from another program).

SOURCE can take zero, one, or two arguments. With no arguments, the command shows the name of
the current source file. If the file used for source display is different from the originally compiled file,
both file names are shown. (Note that specifying SOURCE with no arguments produces results even if
you specified -NSRC when you invoked DEBUG.)

With one or two arguments, the interpretation of the command depends on whether compiled-file is
present and on whether pathname resolves to a file or to a directory. There are five cases.

Case 1: Compiled-file is Present, Path name is a File

If you specify both a pathname and a compiled-file, and if pathname resolves to a filename, then path
name specifies the file to be used for displaying source for the given compiled-file. For example, the
following command tells DEBUG to use file old_ut il. pas (in the working directory) for source dis
play of the file whose leaf name was util. pas when it was compiled:

> SOURCE util.pas old_util.pas

3-67 Encyclopedia

Case 2: Compiled-file is not Present, Pathname is a File

If you specify a pathname that resolves to a file, and you do not specify a compiled-file, then DEBUG
displays the file stored at the pathname. For example, the following command causes DEBUG to dis
play the contents of file old_util. pas stored in the working directory.

> SOURCE old_util.pas

This command works even if you compiled old_util. pas with -DB instead of -DBA or -DBS.
However, it does not work if you compiled with -NDB.

DEBUG records the association between the current routine and this source code; therefore, if you re
turn to this routine, DEBUG redisplays this source code.

If the current environment shifts from a routine with no symbol table (Le., compiled with -DB) to an
other routine with no symbol table, DEBUG assumes that the two routines are in the same source file.
If this is not the case, enter another SOURCE command to specify the correct file.

Case 3: Compiled-file is Present, Path name is a Directory

If you specify both a pathname and a compiled-file, and if the pathname resolves to a directory, then
the command is equivalent to:

> SOURCE compiled-file pathname/compiled-file

For example, the following two commands are equivalent:

> SOURCE util.pas archives
> SOURCE util.pas archives/util.pas

Case 4: Compiled-file is not Present, Path name is a Directory

If you only specify one argument -- a directory -- then the pathname is added to the list of alternate
directories to be searched for all source files. For example, suppose that directory archives is di
rectly underneath the working directory. By issuing the following command:

> SOURCE archives

DEBUG searches . archi ves if it cannot find the source code in the working directory.

Case 5: The -NONE Option

The -NONE option used in place of a pathname specifies that no source file is available for the given
or implied compiled-file. This is useful when the debugger displays the wrong source file and the right
one is not available. DEBUG leaves the source display window pane blank.

Encyclopedia 3-68

--------~------- ---------

c

o

o

o

o

o

Statement-ID -- This listing tells you what to provide when a command takes a statement-ID as
an argument.

FORMAT

A statement-ID is not a command, but is an optional argument to many commands. It takes the fol
lowing format:

routine-name\/ine-ID+offset

REQUIRED

You must specify a routine-name, a line-ID, or both.

OPTIONAL

routine-name The name of the routine containing the statement. (See the "Routine-Names"
listing for a description.)

line-ID The line number of the statement in the program source file or the name of a la
bel used in your source code. (We mean a "label" in the traditional program
ming sense; that is, something that a gota statement jumps to.) If the label is nu
meric, you must precede it by a pound sign # to distinguish it from a line number.

offset An integer describing the position of the statement on the)ine.

DESCRIPTION

Several DEBUG commands require a statement-ID. A statement-ID identifies a particular statement
in the source code. A statement-ID can take any of the following forms:

1. A line-ID by itself; for example, 46

2. A line-ID followed by an offset; for example, 46+2

3. A routine-name by itself; for example, jersey\newark\kozinski \

4. A routine-name followed by a line-ID; for example, j ersey\newark\kozinski \46

5. A routine-name followed by a line-ID followed by an offset; for example,
jersey\newark\kozinski\46+2

You can omit a routine-name (that is, you can use Forms 1 or 2) if the statement-ID is either:

• a label in the current environment, that is, the current routine or any statically enclosing one.

• a line-number in the current source file, that is, the source file containing the current routine.

If you omit a line-ID, you must specify a routine-name by itself (Form 3). In this case, DEBUG inter
prets the statement-ID as the first executable statement in the routine.

Offset

You can use an offset (Form 2 or 5) whenever you want; however, the only practical use of an offset is
to distinguish between two or mare statements occupying the same line. In such a case, the first state-

3-69 Encyclopedia

ment has an offset of zero (the default); the second has an offset of one, and so on. For instance,
suppose line 50 contains two statements as shown below:

(00050) a:= b; d:= a + 50;

To distinguish between them, you can refer to the first statement as statement-ID 50 and the second
statement as statement-ID 50+1. Notice that you cannot leave any blank spaces between the line-ID,
the plus sign, and the offset. The plus .sign is mandatory (minus signs won't work).

An unusual but legal use of offsets is to refer to statements on subsequent lines. For example, the fol
lowing might be two statements in a compiler listing:

(00100) IF (A = B) THEN c := d;
(00101) i := i + 1;

The statement-ID 100 refers to:

IF (A = B) THEN

The statement-ID 100+1 refers to:

c := d;

The statement-IDs 100+2 and 101 both refer to:

i := i + 1;

EXAMPLES

The BREAKPOINT command takes an optional statement-ID as an argument. Here are several dif
ferent ways to use statement-IDs:

> BREAKPOINT 50

> BREAKPOINT #50

> BREAKPOINT math\12

> BREAKPOINT math\

> BREAKPOINT loop

Encyclopedia

(Line 50 of the current file.)

(The statement preceded by the program label
named 50 in the current file.)

(Line 12 in the file containing routine math.)

(The first executable statement in routine math.
Don't forget that a routine-name must end with
a backslash.)

(The line that begins with the program label
named lOop.)

3-70

c'

o

o

o

o

o

STCODE -- Displays the text of a system error code.

FORMAT

STCode expression

REQUIRED ARGUMENT

expression Any integer expression that evaluates to a legal status code.

OPTIONAL ARGUMENTS

None.

DESCRIPTION

You supply a numeric status code to STCODE; in return, it provides the error message associated with
the number.

An important difference exists between the DOMAIN Shell command STCODE and the DEBUG
command STCODE. The Shell command expects a hexadecimal (base 16) value, but the DEBUG
command expects a decimal (base 10) value. If you want to provide a hexadecimal value to the DE
BUG STCODE command, you must precede it with 16# to indicate that the value is base 16. (See the
" Expressions" listing for details on different bases.)

EXAMPLE

The following example shows a single status code in decimal first and then in hexadecimal:

> PRINT status.all
84279297
> STeODE 84279297
(steode) end of file (from library / read)

> PRINT -HEX status.all
05060001
> STeODE 16#05060001
(steode) end of file (from library / read)

> STeODE status.all
(steode) end of file (from library / read)

3-71 Encyclopedia

STEP -- Executes the next statement in the target program.

FORMAT

-Over
STep -Until statement-ID

REQUIRED ARGUMENTS

None. If no arguments are given, the command advances the program to the next state
ment and then halts the program.

OPTIONAL ARGUMENTS

-Over

-Until

DESCRIPTION

Suppresses single-stepping through a routine about to be called.

Single-steps the program from its current location up until statement-ID.

Use the STEP command to advance the program counter through one or more statements. The STEP ('"
command can optionally be followed by one of two arguments. The two arguments are mutually exc!u- __ "
sive. We examine these options separately.

The -Over Option

Use STEP -Over to jump straight through a routine. DEBUG implements a STEP -Over command in
two parts. First, it sets a temporary breakpoint at the statement immediately following the current
statement. (In other words, it sets the breakpoint on the statement the routine will return to.) Sec
ond, DEBUG internally issues the equivalent of a GO command, so that the program runs at full speed
through the routine and then stops when the routine returns.

To study this option, consider a program having the following line numbers:

15 routine y
16 first statement in routine y

17
18
19
20 end of routine y

21
22 routine x
23
24
25
26
27

a statement that calls routine y

28
29
30 end of routine x

Encyclopedia 3-72

c

-,,-,-~---- ------------

0

o

o

o

o

Now compare the following two transcript pads to understand how STEP works with and without
-Over:

STEP WITHOUT -OVER STEP WITH -OVER

> STEP > STEP
Stepped to: x\26 Stepped to: x\26
> STEP > STEP -OVER
Stepped to: y\16 Stepped to: x\27
> STEP
Stepped to: y\17
> STEP
Stepped to: y\18
> STEP
Stepped to: y\19
> STEP
Stepped to: y\20
> STEP
Stepped to: x\27

Without -:Over the program breaks at every statement in the called routine, but with -Over the pro
gram breaks at no statements in the called routine. Nevertheless, whether or not you use -Over, DE
BUG does execute every statement in the called routine. In other words, the results will be the same,
you'll just get there faster with -Over.

The -Over option only has meaning when the program is stopped at a routine that contains a call to a
procedure, function, or subroutine. If the statement does not contain one of those calls, a STEP
-Over command works just the same as a STEP command.

The -Over option does not suppress any breakpoints in the called routine. For example, if we had set
a breakpoint at line 19 of routine y, the STEP -Over command would have stopped at line 19. Inter
estingly, if you would then issue a GO command from line 19, DEBUG will halt at line 27 and report
"Stepped to: x\27."

NOTES: If you use STEP without -Over and if a called routine does not have available
debugging information, then DEBUG will treat the command as a STEP
-Over.

DEBUG always steps over calls to DOMAIN system library routines. See Ap
pendix C for information about installed libraries.

The -Until Option

Use the -Until option to single-step the program from the current statement to the statement you spec
ify. STEP -Until is similar to the GO -Until command; the end results are the same. However, Go
-Until is several thousand times faster (no exaggeration) than STEP -:Until. In fact, STEP -Until is so
slow that you may be fooled into thinking that your program is hung. The obvious question, therefore,
is "why use STEP -Until?" The not-so-obvious answer is that a GO -Until command cannot be used
on read-only code (such as installed libraries), but a STEP -Until command can.

If STEP Doesn't Seem To Work Properly

You may not be able to use STEP to go past a FORTRAN READ or WRITE statement that contains an
error and/or exit clause. A FORTRAN IOSTATUS parameter can also cause DEBUG to lose control.
See Section 4.1.4 for details on both problems.

STEP sometimes steps across more than one statement. Depending on compiler optimization, STEP
may consider a "tight" loop like the following to be a single statement:

DO 100, i = I, 9
100 init(i)="

3-73 Encyclopedia

Note that DEBUG will single-step the machine instructions that make up this loop. Single-stepping is
several thousand times slower than full-speed execution. For a long loop, this slow-down may create
the impression that DEBUG has hung.

Similarly, you may compile other combinations of statements so that individual statements are not ac
cessible. Use of the -DBA option minimizes such problems. (See Appendix C for a complete discus
sion of compiler optimization and debugging.)

Encyclopedia 3-74

C"
-,."

c

o

o

o

o

o

TB -- (Traceback) Displays the current call stack.

FORMAT

TB -Frames n -Args

REQUIRED ARGUMENTS

None.

OPTIONAL ARGUMENTS

-Frames Displays the n most recent calls only.

-Args Displays routine arguments and shows their contents.

DESCRIPTION

Use the TB command to follow the chain of calls leading to the current routine. For instance, if you
want to know what routine called the routine you are currently in, use the TB command. Note that
the TB command has no long form; that is, you cannot invoke it by spelling out TRACEBACK.

You can issue the TB command with no options, one option, or two options. With no options, the TB
command displays all calls from the most recent to the least recent. If you specify the -Frames option,
TB displays the n most recent calls only. Specifying the -Args option is something like specifying a
combination TB command and ARGS command. In other words, DEBUG traces the names of the
routines and the values of all arguments to those routines.

EXAMPLES

> TB
Stopped at TEST_C\g\4
Called from TEST_C\double_it\17
Called from TEST_C\main\27
Called from UNIX_$MAIN\190
Called from <apollo_c_startup>

> TB -Frames 2
Stopped at TEST_C\g\4
Called from TEST_C\double_it\17

> TB -Frames 3
Stopped at TEST_C\g\4
Called from TEST_C\double_it\17
Called from TEST_C\main\27

> TB -Frames 2 -Args
Stopped at TEST_C\g\4
TEST_C\g\motion = 5.340000000000000

Called from TEST_C\double_it\17
TEST_C\double_it\multiplier = 2

3-75

(List the sequence of routine calling.)

(List
the current routine and
the routine that called it.)

(List
the current routine and
the routine that called it and
the routine that called it.)

(List
the current routine and
the names and values of its arguments and

list the routine that called it and
the names and values of its arguments.)

Encyclopedia

VA -- (Virtual Address) Displays the virtual address of a variable, routine, or program counter.

FORMAT

Zero or one of the
following options.

variable 1, ... , variableN
-Routine routine-name

REQUIRED ARGUMENTS

None. If you specify VA without arguments, DEBUG displays the current symbolic loca
tion and the virtual program counter (PC).

OPTIONAL ARGUMENTS

variable

-Routine

To find the address of program variable or debugger variable, specify its name.
You can specify one or more variable names.

To find the starting address of a particular routine, you can specify one of the fol
lowing three formats:

-Routine Displays the address of the current routine.

-Routine routine-name Displays the address of the named routine.

routine-name Displays the address of the named routine.

c

(See the "Routine-Name" listing for details on routine-names. Don't forget that
a routine-name must end with a backslash \.) C"

DESCRIPTION

Use the VA command to determine the address of one or more variables or of one routine. You can
use VA with or without arguments.

If you specify a routine-name, the starting address shown is that of the first instruction in the routine's
procedure section.

It is not usually necessary to be concerned with memory addresses when you use DEBUG. However,
the need to inspect raw storage may occasionally arise. The -VA command, combined with the ability
to de-reference an absolute address as a pointer (see the "Pointer Variables" listing) provides a means
of doing this.

The VA command cannot be abbreviated to V, nor expanded to VIRTUAL.

NOTE: You cannot mix routine-names and variables in the same VA command. Also,
you cannot specify more than one routine-name in the same VA command.

Encyclopedia 3-76

o

o

o

o

o

EXAMPLES

The following examples show some typical output of the VA command.

> VA (Return the program counter.)
Stopped at: TEST_C\main\19
PC = 10030
> VA r
TEST_C\main\r

(Return the address of variable r.)
32-bit integer, local. VA = 9872EC

> VA r, str (Return the address of two variables.)
TEST_C\main\r = 32-bit integer, local. VA = 9872EC
TEST_C\str = array (6 bytes) of 8-bit integer, static. VA = 1017C
TEST_C\str[O] 8-bit integer, static. VA = 1017C

8-bit integer, static. VA = 10181

> VA -Routine
TEST_C\main\ VA 10024

> VA -Routine f\
TEST_C\f\ VA = 10000

> VA f\
TEST_C\f\ VA 10000

(Return the address of the current routine.)

(Return the address of routine f.)

(Return the address of routine f.)

3-77 Encyclopedia

Variables -- Here, we explain how to specify program variables in commands that accept them
as arguments.

FORMAT

"Variables" is not a command, but many DEBUG commands accept one or more variables as argu-
ments. A variable takes the following format in DEBUG: .

routine-name\ variable-name

REQUIRED

variable-name Specify a variable of any data type. When debugging a FORTRAN or Pascal pro
gram, DEBUG is case-insensitive to variable-names. But when debugging a C
program, DEBUG is case-sensitive to variable-names. You should refer to the
"Arrays" listing and the "Pointer Variables" listing for details on specifying vari
ables of those data types.

OPTIONAL

routine-name Enter the name of the routine containing the variable. If you omit the
routine-name, DEBUG searches the current routine first, followed by routines
which statically enclose it, working outward. Don't forget that a routine-name
can include an activation-number in order to distinguish between multiple
activations of a recursive routine. See the "Routine-Name" listing for details.

DESCRIPTION

When a DEBUG command takes a program variable as an argument, you must specify a variable in the
format shown at the top of the page. That is, there must at least be a variable-name, and there can op
tionally be a routine-name and an activation-number. The variable-name can take any of the follow
ing forms:

• A simple identifier representing a simple or an aggregate variable (though aggregates are re
stricted in some commands).

• A variable name denoting an array (or C pointer) followed by a set of subscript expressions. A
subscript can be any expression that evaluates to an integer. (If the source code was written in
Pascal, the subscript can be any expression that evaluates to a value of the array index type.)
DEBUG supports several means for specifying all or a portion of an array. See the" Arrays"
listing for details. Here are some sample array variables:

my_array[i,j]
keys (current+l)
name[*]

• A variable name denoting a pointer (or Pascal file variable) followed by the de-referencing op
erator ""'''. DEBUG does not support the standard C de-referencing operator "*". For exam
ple:

head_ptr'"

• A variable name denoting a record, structure, or union, followed by the field selection operator
" ." and a field name. For example, here are two sample variables:

Encyclopedia

status.all
rec.code

3-78

c

c

c

.-- •....... ----~---- ----------

o

o

o

o

o

DEBUG does support both the C and the Pascal de-referencing operators for pointers to struc
tures and unions, namely "->" and ""'.". Here are some valid uses of pointer variables:

headytr'"
ptr_to_rec->priority
ptr_to_rec priority

Note that you can only apply subscripting, de-referencing, and selection to variable names, not to gen
eral expressions. That is, DEBUG does not permit expressions such as (p+ 1) '" .

FORTRAN Common Names

You cannot use FORTRAN common names to reference variables. You must make a reference to a
specific instance of the variable in a specific routine.

EXAMPLES

Here are a few samples of variables:

vl

tree_walk\4\v3

tree_walk\-l\v4

(A variable. v1 must be visible from the current environment.
See the "Routine-name" listing for details on visibility.)

(A routine-name and variable. v2 must be visible from
from routine tree_walk.)

(A routine-name, activation-number, and variable. v3 must
be visible from routine tree_walk. The activation-number 4
specifies the fourth activation of variable v3.)

(A negative activation-number denotes an activation relative
to the most recent one. Therefore, we are denoting the
variable v4 in the next to most recent activation of the routine.)

3-79 Encyclopedia

-- Adds a comment line to DEBUG.

FORMAT

comment

REQUIRED ARGUMENTS

None.

OPTIONAL ARGUMENTS

comment Any comment that you want to enter into your debugging session.

DESCRIPTION

This command ignores any information that follows it. You cannot add comments on the same line as
a valid command.

Comment lines are most frequently placed in command files. Sometimes though, you might want to
enter a comment from the keyboard in order to add it to a transcript.

EXAMPLES

The following examples show the valid and invalid use of the # command.

> # THIS IS A VALID COMMENT.
> B COREY\CAR\ # THIS IS AN INVALID COMMENT

Encyclopedia 3-80

~

c

o

o

o

o

0

Chapier 4

With a few exceptions, DEBUG is not sensitive to the source language of the program being debugged.
While this has the advantage of presenting a uniform user interface, it also means that the interface is not
optimally tailored to any single language. For example, DEBUG's expression syntax borrows elements
from Pascal, C, and FORTRAN, but is not identical to any of them.

This chapter discusses some language-specific issues for users of each of the three languages supported by
DEBUG. We describe the following topics:

• Areas where DEBUG's behavior is sensitive to the source language.

• Places where DEBUG's behavior differs from similar source language constructs.

• DEBUG features specifically targeted to a single source language.

Most of the material in this chapter is also covered in the encyclopedia section of the manual. The follow
ing discussion highlights topics in a language-dependent setting and provides some expanded examples.

4.1 Debugging FORTRAN Programs
Here, we address the unique ways that DEBUG handles the following FORTRAN features:

• Expressions

• Statement numbers

• Arrays declared with variable dimensions

• Alternate entry points

• I/O statements

• Statement functions

4-1 Language Specific Issues

4.1.1 FORTRAN Expressions
DEBUG's rules for expression evaluation differ from FORTRAN's in the following areas:

• All DEBUG operators have equal precedence; however, as in FORTRAN, you can use parenthe
ses to guarantee a specific order of evaluation.

• DEBUG does not support the following FORTRAN operators:

** (exponentiation)
.NOT .
. XOR .
. EQV .
. NEQV.

• DEBUG interprets two identifiers separated by a period as a record, structure, or union. There
fore, if a DEBUG expression contains a dotted logical or relation operator (e.g., .LT.), then you
must use blanks to separate the operator from any surrounding operands. If you don't, then DE
BUG will probably confuse the operator for a record, structure, or union. For example, consider
the right and wrong ways of using the dotted .GT. operator:

X. GT. 0 (Wrong, DEBUG thinks this is a record named X instead
of a . GT. operation.)

X • GT. 0 (Right, DEBUG views this as a . GT. operation.)

4.1.2 FORTRAN Statement Numbers
You must prefix a statement number with "#" in order to distinguish it from a line number; for example:

> BREAKPOINT #100
> BREAKPOINT 100

(Set a breakpoint at the statement preceded by the label 11100")
(Set a breakpoint at program line number 100)

4.1.3 FORTRAN Alternate Entry Points
DEBUG has no information on alternate entry points. Therefore, to set a breakpoint on an alternate en
try point, you must set it at the appropriate line of the main subroutine. If you enter a routine that has al
ternate entry points, DEBUG does not know which entry point you used. Therefore, DEBUG cannot de
termine which set of arguments is valid. The TB and ARGS commands assume the primary entry point.
If you try to access a different argument, your results will be invalid and addressing violations may occur.

4.1.4 FORTRAN 1/0 Statements
READ, WRITE, and INQUIRE statements with an ERR, END, or lOST AT specifier can cause DEBUG to
lose control if you attempt to STEP through the statement. In the case of IOSTAT this can occur even
though no apparent transfer of control results when the statement is executed.

To avoid loss of control, set breakpoints at the statements specified by ERR and/or END, and at the next
sequential statement if there is an IOSTAT parameter. For example, suppose you are stepping through a
program and the next statement is:

READ (5, 100, END = 900, IOSTAT = RSTAT) X, Y, Z

In this case, before doing the STEP you should set breakpoints at statement 900 and at the statement fol
lowing the READ statement.

4.1.5 FORTRAN Statement Functions
You cannot use any of the following commands when the current run environment is a statement function:

> BREAK -EXIT
> GO -EXIT
> GO -LOCATION
> GO -RETURN

Language Specific Issues 4-2

c

c

c

c

o

o

o

o

o

4.2 Debugging C Programs
Here, we examine the unique ways that DEBUG handles the following C features:

0 Case-sensitivity

0 Expressions and operators

0 Preprocessor symbols

0 Characters and strings

0 Integers

0 Pointers

fa Inner-block variables

4.2.1 C Case-Sensitivity
The C compiler is case-sensitive. That is, the compiler sees the following names as representing three dif
ferent variables:

ROBERTA
roberta
Roberta

Because the C compiler is case-sensitive, when debugging a C program, DEBUG is, also case-sensitive to
names. However, if you compile a C program with the -DB option, DEBUG will be case-insensitive to
names.

4.2.2 C Expressions and Operators
DEBUG's rules for expression evaluation differ from C's in the following areas:

o All DEBUG operators have equal precedence; however, as in C, you can use parentheses to guar
antee a specific order of evaluation.

CD DEBUG's arithmetic operators treat all long integer operands as signed long integers.

o DEBUG uses a different format than C for establishi~g octal and hexadecimal constants. (See the
"Expressions" listing of Chapter 3.)

• DEBUG does not scale by the size of objects when doing pointer arithmetic. Hence if P is a
pointer to an element of an array of long integers, the address of the next element is P+4, not
P+1.

• In DEBUG, you can only apply pointer de-referencing and subscripting to variables, not to arbi
trary expressions. Expressions such as (p+4)" are not valid.

• DEBUG does not support the C operators shown in Table 4-1.

4-3 Language Specific Issues

Table 4-1. C Operators Not Supported By DEBUG

Operators Meaning

++ increment
-- decrement
- bitwise not
I logical not
unary & address (see V A command)
* pointer dereference (use Pascal" operator instead)
,.

bitwise xor
&& logical and (DEBUG uses it as a bitwise and)
II logical or (DEBUG uses it as a bitwise or)
=, +=, -=, ... assignment operators (use DEBUG's SET command

instead)
? : conditional operator
sizeof sizeof operator
type casting type casting operators

4.2.3 C Preprocessor Symbols
If the source file contains "#line" directives, they are reflected in the debugging information for the af
fected functions. DEBUG displays the source file specified by the #line directives and uses the specified
logical line numbers rather than the physical line numbers of the file actually compiled. In order for this
to work correctly, directives must not specify more than one source file and the logical line numbers
should be in increasing order.

Except for #line, DEBUG does not recognize symbols defined by preprocessor control lines. For example,
if you specify

#define end_flag 0

the identifier end_flag is not passed to the debugger.

4.2.4 C Characters and Character Strings
To specify either a character constant or a string, surround the character(s) in single or double-quotes;
for example:

'A'
"big"
'thrill to be'
"here, Johnny."

NOTE: The escape sequence '\ddd' is not available.

When you EXAMINE or PRINT a character variable, DEBUG displays its value as a character by de
fault. If you want to view the variable's integer equivalent, use the -Decimal option.

Assigning a String Constant to an Array Variable

DEBUG does not automatically append an end-of-string byte (\0) when you specify a string constant.
Therefore, when your program depends on a string terminating with a \0, you must append the \0 your
self (with a SET command). For example, consider an array of char named animal. And suppose you
want to change its value from "tiger" to "cat". Observe the following process:

Language Specific Issues 4-4

0

o

o

o

> EXAMINE animal -decimal
TEST_C\animal[O] 84 (t)
TEST_C\animal[l] 105 (i)
TEST_C\animal[2] 103 (g)
TEST_C\animal[3] 101 (e)
TEST_C\animal[4] 114 (r)
TEST_C\animal[5] 0 (\0)

> SET animal = "cat" (Change its name to "cat")
> EXAMINE animal -decimal
TEST_C\animal[O] 99 (c)
TEST_C\animal[l] 97 (a)
TEST_C\animal[2] 116 (t)
TEST_C\animal[3] 32 (blank)
TEST_C\animal[4] 32 (blank)
TEST_C\animal[5] 32 (blank)

> SET animal[3] = 0 (Terminate string with a \0.)

It is generally poor debugging style to store a string with more characters than were allocated for the array
variable because you run the risk of overwriting some other variable. Nevertheless, by using the -fn option
of the SET command, DEBUG does permit you to store a large string into the space allocated for a small
array; for example:

> SET -fn animal = "Elephant"

Your success in doing this will depend on how the compiler has allocated variable space.

The Special int8 and byte Types

If you use "char" as a type specifier for de-referencing an absolute address or debugger variable, "char"
refers to the Pascal char type, which is not an integer. To refer to 8-bit integers, use the special DEBUG
type specifiers "int8" or "byte" instead. For example:

> PRINT 'p~char+1

*** Error: Incompatible operands in the expression.
> PRINT 'p~int8+1

89
> PRINT 'p~char

X

(Doesn't matter in this case ...) > PRINT 'p~int8

X (since DEBUG displays C chars in ASCII by default.)

4.2.5 C Pointers
You must de-reference C pointers with trailing ~ characters, rather than leading * characters. You can
de-reference pointers to structures and unions with either the -> or the A. operator. Thus:

In C Notation

*intp
structp->field

In DEBUG Notation

intp~

structp~.field or structp->field

You can perform integer arithmetic on pointer variables; however, DEBUG does not scale the integer
value by the size of the data type. You must do the scaling yourself. For example, consider the following
C declarations:

char *cp;
int *ip;

/* a 1 byte data type */
/* a 4 byte data type */

4-5 Language Specific Issues

You can perform pointer arithmetic as shown below:

> EXAMINE CpA -A
CpA = N

> SET cp = cp + 1

> EXAMINE CpA -A
CpA = 0

> EXAMINE ipA
ipA = 1

> SET ip ip + 4

> EXAMINE ipA
ipA = 2

Pointers and Arrays

(Adding 1 to get next char.)

(Adding 4 to get next integer.)

You can examine and subscript C pointer variables the same way that you examine and subscript C arrays.
For example, consider the following declaration of str and strp:

char str[10] = {"Bon jour"}, *strp = str;

The following DEBUG session manipulates the array variable and the pointer variable:

> PRINT strp
0001011C

(Returns the address stored in strp.)

> VA str (The VA command is also helpful for finding addresses.)
TEST_C\str = array (9 bytes) of 8-bit integer, static. VA = 1011C
> PRINT strp A (De-reference strp. It returns the first char in str.)
B

> PRINT strA (You cannot refer to an array as if it were a pointer.)
*** Error: Variable is not a pointer.

> EXAMINE str[4:6]
TEST_C\str[4] j
TEST_C\str[5] = 0

TEST_C\str[6] = u
> EXAMINE strp[4:6]
TEST_C\strp[4] j
TEST_C\strp[5] = 0

TEST_C\strp[6] = u
> PRINT strp[*]
Bon jour

(You can EXAMINE a string directly ...)

(or you can EXAMINE it through its pointer.)

(PRINT the entire string that strp paints to.)

> SET strp = 16#0001011D (You can SET a pointer to point to a new address.)

In the last example, we used an asterisk (*) to specify the entire range. You can only use the asterisk if
the pointer points to a character array that ends with the \0 (null) terminator.

4.2.6 C Inner Block Variables
DEBUG supports a special naming convention (for C programs only) that allows you to access a variable
declared in an inner block when that variable has the same name as an outer block variable. The naming
convention takes the following format:

Language Specific Issues 4-6

c

c

o

o

o

o

o

variable_name. number

where number is the nth declaration (in textual order) of that variable name. For example, you can ac
cess a variable named x (assuming that it has been defined in three different blocks) as:

x.1 or x
x.2
x.3

(The .1 modifier is optional.)

Now consider the following program which consists of several different layers of blocks:

struct faa {int q; float f;};
main()
{ int i = 100; /* i.1 */

static struct faa abc = {4, -3.14}; /* abc.1 */
static.char s[] = "The first string"; /* s.l */
{ int i = -27; /* i.2 */

{ int i = 1234; /* i.3 */
static char s[] = "The second string"; /* s.2 */
static struct foo abc = {5,-2.1} /* abc.2 */

this_point: printf("GO to this point.\n");
}

}
}

Consider the following DEBUG session on the previous source file. In it, we GO to thisyoint and
perform the following operations:

> EXAMINE i i.1 i.2 i.3
TEST_C\main\i = 100 (Ifi" still refers to the outermost declaration.)
TEST_C\main\i.1 100
TEST_C\main\i.2 -27
TEST_C\main\i.3 1234

> EXAMINE abc.1 abc.2
TEST_C\main\abc.1.q 4
TEST_C\main\abc.1.f -3.140000
TEST_C\main\abc.2.q 5
TEST_C\main\abc.2.f -2.100000

> PRINT s.l
The first string

> PRINT s.2
The second string

Note that the compiler allocates all variables of a routine, including inner block variables, at the start of
the routine. These variables remain valid to DEBUG until the entire program exits. DEBUG references,
unlike references within the program itself, do not depend on the'current position within the routine. Thus
in the example, if the program stops in an inner block, i still refers to i . 1, the outermost declaration of
i.

4.3 Debugging Pascal Programs
Debugging a Pascal program is rather straightforward. However, DEBUG's handling of expressions, sets,
and WITH statements will seem different to Pascal programmers.

4-7 Language Specific Issues

4.3.1 Pascal Expressions
DEBUG's rules for expression evaluation differ from Pascal's in the following areas:

• All DEBUG operators have equal precedence; however, as in Pascal, you can use parentheses to
guarantee a specific order of evaluation.

• Boolean constants must be entered in FORTRAN syntax, i.e., .TRUE. and .FALSE .. The terms
TRUE and FALSE (no dots) will not produce the desired effect.

• The division operators / and DIV are identical; both behave like DIV if both operators are inte
gers.

• The logical NOT operator is not implemented; however, unary minus "-" applied to a Boolean
value has the same effect.

• Type-checking is less rigorous. Pointers and integers can be freely mixed, as can pointers to dif
ferent base types.

• Subrange constraints, in particular those that imply unsigned integers, are ignored.

4.3.2 Pascal Sets
This section explains how to use Pascal sets (don't confuse Pascal sets with DEBUG's SET command).
See also the "Expressions" listing in Chapter 3 for an explanation of set constants.

In this section, we will use the following definitions to explore sets:

TYPE
eliot = (cruelest, month, spring, growth, melting,

peaches, lilacs, rain, stirring, thomas, stearns);
VAR

april : SET OF eliot;

Describing and Displaying Set Variables

Use the DESCRIBE command to see the base type and number of members of a set variable. DEBUG is
not capable of displaying the names of the members of an enumerated set type. For example:

> DESCRIBE april
APRIL = set of enumerated type (11 members), static.

You can use EXAMINE or PRINT to display the value of a set variable. For instance:

> EXAMINE april
april = [MONTH,GROWTH,PEACHES,LILACS,RAIN]

Resetting the Value of a Set Variable

Use a SET command to change or initialize the value of a set variable. You must enclose the new value in
square brackets. Each element of the new value must be a member of the set.

> SET april = [peaches, lilacs, rain]

To change it value to the null set, use square brackets with nothing inside them; for example:

> SET april = []

Note that the interactive format of the SET command does not permit an entry to run across more than
one line. (See the "SET" listing in Chapter 3.) Therefore, an attempt like the following causes an error:

> SET april
SETS\APRIL = [] = [cruelest, spring, growth, melting, peaches, lilacs, rain
*** Error: Illegal character in the item.
[CRUELEST, SPRING, GROWTH, MELTING, PEACHES, LILACS, RAIN

Language Specific Issues 4-8

("
I
\ ...

~'

4.3.3 Pascal WITH Statements

o DEBUG does not recognize abbreviated variable references inside WITH statements.

o

o

o

o
4-9 Language Specific Issues

("
'

('
\
'---- .

c

o

o

o

o

Appenab{ A

This appendix answers some commonly asked questions about DEBUG.

Q Why does my program behave differently under DEBUG than when running alone?

A It is nearly impossible for a debugger to have no effect whatsoever on its target. There are several
likely possibilities:

G Programs with uninitialized variables may appear to behave consistently when run alone
(though this is largely a matter of luck), but behave differently under DEBUG because the pro
gram and/or variables are loaded at different addresses. To minimize changes to the environ
ment of a program running under DEBUG, use both the -PROC and -NC options.

• Values of uninitialized local variables allocated on the stack can also be affected by processing
of breakpoint and single-step faults which occur when a program is being debugged.

I) If a program generates an access violation when running stand-alone but does not generate the
violation when being debugged, the program may be writing into a read-only section. DEBUG
gives write access to such sections so that DEBUG can set breakpoints. You should be able to
use the TB shell command (not under DEBUG) to locate the problem. Look especially for
constants passed as arguments or accessed via pointers.

Q How can I stop program execution when the value of a certain variable changes?

A DEBUG does not provide data watchpoints as a built-in feature. However, breakpoint action lists
can be useful here. Set breakpoints at points in the program where you wish to check the value of
the variable. Specify an action list of the following form on each:

-DO [IF ptr <> nil [GO]]

This restarts execution if the desired stopping condition is not met.

Q How can I navigate through a linked data structure?

A The usual problem here is that you need a temporary pointer variable to walk through the structure,
but you cannot declare a debugger variable with the correct pointer type. (Debugger variables only
support pointers in the form of integers.) A useful trick is to temporarily "borrow" a program vari
able of the correct type. You can use a debugger variable to save and restore the program variable's

A-1 Helpful Debugger Hints

value before resuming program execution. An example of this appears in the "JUMP" listing of
Chapter 3.

Q How can I debug a program that borrows the entire display (i.e., a graphics program
running in borrow mode)?

A By debugging remotely from a second node. Suppose, for example, that there are two nodes in your
office, named nodel and node2. Use the following procedure to debug the program:

1. From nodel , use the Shell command CRP (described in the DOMAIN System Command Refer
ence) to create a remote process. For example:

$ crp -on Ilnode2 -me

2. Using nodel's keyboard, with the cursor in the remote process Shell, invoke DEBUG. Note that
the debugger and target must both run on node2. Use the -nwp and -nsrc options when you in
voke DEBUG; for example:

$ debug graphics_program -nwp -nsrc

DEBUG creates a debugging window, but does not divide the window into separate windowpanes.

3. Debug your graphics program. The graphics will be displayed on node2. Obviously, this process
is much more convenient if you can see node2 from nodel.

In place of nodel, you can use a terminal connected to an SIO port. Assume that the terminal is
connected to node2. In this case, follow these steps:

1. Using the terminal's keyboard, invoke DEBUG. Use the -proc, -nwp, and -nsrc options when
you invoke DEBUG; for example:

$ debug graphics_program -proc Process_14 -nwp -nsrc

2. On node2, invoke the program from the designated process (Process_14); for example:

$ graphics_program

. 3. Debug your graphics program. The graphics will be displayed on node2.

Q Can I use Display Manager key definitions in the debugger?

A Yes. For example, the following definition allows you to examine a variable by pointing at it in the
source display and pressing M3 (mouse key 3):

KD M3 \[-A-Za-zO-9_$]\; ar;dr; (Find and mark start of name.)
I [-A-Za-zO-9_$]I;xc; (Find end of name; copy name.)
ti;es'e ';xp;tr;en (Make EXATvIINE command.)

KE

Note, however, that there is no way to create key definitions that are local to DEBUG only.

Helpful Debugger Hints A-2

\'

r'
\.. ...

c

o

o

o

o

o

[0) ~ rQ) (tJ ~ ~ ~ llIl ~ ~ rro ~~ ~ ~ ~ ® CO~
l~rO)rr~[f~®~

You can use DEBUG to debug installed libraries. If you don't know what an installed library is, read the
DOMAIN Binder and Librarian Reference. Some rather severe restrictions apply to debugging installed li
braries, and this appendix details them. One general piece of advice: since there are so many restrictions
in debugging installed libraries, you are probably better off avoiding the process. To avoid it, simply bind
the routines into your object file and debug the object file. When the object file works properly, install
the appropriate routines and rebind the object file without the installed routines.

B.1 Controlling Program Flow
Because the code in installed libraries is read-only, you cannot set an explicit or implied breakpoint in an
installed library. Therefore, you cannot use any of the following commands:

• Any BREAKPOINT command

• GO -Until

• GO -Exit

• STEP -Over

Thus, the only way to control program flow through an installed library is with one of the following two
commands:

• STEP

• STEP -Until

The STEP -Until command is useful for stepping through long sequences of code, although execution is
several thousand times slower than setting a breakpoint and running at full speed.

If you invoke DEBUG with the -SMAP option, DEBUG announces each new library when encountered
(and prints a load map if the information is available.)

B.1.1 The DEBUG Option -GLOB
If you invoke DEBUG with the -GLOB option, you can debug routines stored in
/lib/userlib. global. If you do not use the -GLOB option, DEBUG automatically steps over calls to
such routines.

DEBUG always steps over calls to system-defined global libraries. However, if the -GLOB option is set, it
is preferable to use explicit STEP -OVER commands to step over calls to system routines. The reason is

8-1 Debugging Installed Libraries

that if DEBUG attempts to step into a system library, DEBUG processes the entire library and enters it
into the DEBUG symbol tables before recognizing it as system code. In some cases DEBUG may not be
able to distinguish between system and user code and will step into the library, leaving you stuck in system
code with no debugging information. (If this happens, use a GO command to get out.)

B.2 Variables and Breakpoints
You can use PRINT, EXAMINE, and ARGS to display the values of variables just as you would for vari
ables not in installed libraries. As usual, if you compiled the source code with the -DB or -NDB compiler
options, you will not be able to examine the variables' values.

You cannot set a breakpoint on a routine in a library that DEBUG has not seen yet. Therefore, the first
entry to a library must be done by stepping into it, rather than by setting a breakpoint. In other words,
step into the routine (with the STEP command) rather than jumping into it with the GO and BREAK
POINT commands.

Debugging Installed Libraries B-2

o

o

o

o

o

c

DEBUG permits you to debug optimized code. However, some of the optimizations performed by the
compilers may cause unexpected or seemingly incorrect results during debugging. This section describes
the symptoms of optimization-related problems and offers some advice on debugging optimized code.

In general, you face the tradeoff illustrated by Figure C-1. In other words, the more the compiler opti
mizes, the closer your code will be to the final production version of the program (assuming your produc
tion code is optimized), but the harder it will be to debug.

Easiest to
debug

Hardest to
debug

Compiler
Optimization

Switches

-DBA

-OPT 0

-OPT 1

-OPT 2

-OPT 3

-OPT 4

Code least resembles
production code

Code most resembles
production code.

Figure C-1. To Optimize or Not To Optimize?

Debugging is easiest if you switch off all optimization with the -DBA compilation option,. This option en
su~es a direct correspondence between your source code and the object code produced. On the other
hand, working with optimized code ensures that the code you debug is identical to production code com
piled with -DB or -NDB options. This can increase your confidence in the correctness of the final result.

For the remainder of this appendix, we examine the debugging effects at each optimization level.

C.1 -DBA
The -DBA option tells the compiler to prevent any optimizations that could interfere with debugging. The
only optimizations allowed are those that take place within a single source statement. Since DEBUG oper
ates at a source statement level of resolution, such optimizations do not affect debugging.

C-1 Debugging Optimized Code

C.2 -OPT 0
A Symptom -- You are stepping through a program and the source display unexpectedly jumps to an- C

other statement. /'

If you specify the -OPT 0 option, a compiler tries to perform cross-jumping (tail-merging) optimizations.
That is, if the compiler detects two identical code sequences, it may replace one of them by a jump to the
other. Therefore, a sequence of object code may correspond to two or more different source statements.
DEBUG cannot represent this multiple correspondance, and arbitrarily relates the object code to one of
the source statements .. Therefore, if the program stops at such a location, the reported source location
may be incorrect.

Cross-jumping optimization is done at the machine instruction level, rather than source statement level.
For example, two calls to the same procedure with some, but not all, of the arguments identical can result
in a cross-jump. If the program location following a cross-jump does not correspond to the start of a
source statement, DEBUG reports the location as "between" two statements.

A Symptom -- The ARGS or TB command returns inaccurate results.

If a procedure has no executable statements (Le., it is a "stub" routine), the compiler optimizes it into a
single instruction. You can set a breakpoint or step into such a routine. However, if you attempt to exam
ine its arguments or do a traceback, DEBUG returns incorrect results.

During program development it is sometimes useful to define stub routines for not-yet-written source
code and then use the debugger to simulate the code's effects. You should compile such stubs with the
-DBA option, so that DEBUG can access the routine's arguments.

C.3 -OPT 1
The -OPT 1 option can optimize in the following three ways:

• Dead code elimination

• Assignment merging

• Common subexpression elimination

We examine all three ways individually.

C.3.1 Dead-Code Elimination
A Symptom -- You use the GO -Location command to jump to a line of source code, but DEBUG tells

you that the line does not exist. So, you double check your source code and, in fact, the
line does exist.

Dead-code elimination means that the compiler discovered a line of source code that had no affect on
the program and so decided not to generate any object code for it. For example, if you initialize a vari
able when you declare it, but you never use that initial value, then the compiler may decide to eliminate
that initialization. Dead-code elimination has no effect on normal execution, but it does prevent you
from using the GO -Location command to jump to the eliminated line of code.

C.3.2 Assignment Merging
A Symptom -- DEBUG claims that one or more record (or structure) initialization statements do not .ex-

ist, but you know they do.

Multiple assignments to physically adjacent variables may be replaced by a block move that accomplishes
several assignments in a single instruction. A common situation where this applies is initializing a record
or struct. DEBUG may claim that some of the assignment statements do not exist (if you try to set a
breakpoint on one for example), or appear to skip statements when single-stepping.

Debugging Optimized Code C-2

o

o

o

o

o

C.3.3. Common Subexpression Elimination
A Symptom -- You use the SET command to change the value of a variable that's part of a subexpres

sion, but after you restart the program (with GO or STEP), subsequent mathematical op
erations behave as if the old value of the variable were still being used.

A sub expression used in two places may be computed once, and its value saved for the second use. If you
manually change the value of one of the variables involved, the expression will not be recomputed; hence
the change may appear to have no effect.

For example, consider the following two lines of Pascal code:

q .- (x + y) * 4;
z := (x + y) - 7;

The subexpression (x + y) is common to both lines, so the compiler may decide to calculate it just once
and save the result in a register for the second use. After all, it appears to the compiler that x and y do
not change values between the first and second instructions. However, suppose you are using the debug
ger and you are stopped somewhere between the first statement and the second statement. If you use the
SET command to change the value of x or y, then this change can have no effect on z.

C.4 -OPT 2
A Symptom -- You use the SET command to change the value of a variable, but after you restart the

program (with GO or STEP), subsequent mathematical operations behave as if the old
value of the variable was still being used. The variable was initialized to a constant value.

If the compiler can determine the value of a variable at compile time, it may replace the reference to the
variable with a reference to a constant. If you use the SET command to change the variable's value, the
change may have no effect.

For example, consider the following Pascal code:

CONST
my_constant = 5;

VAR
x, q : integer;

BEGIN
x .- my_constant;
q := x * 4;

The compiler may decide to optimize x by viewing it as a constant. Therefore, the compiler will code the
multiplication statement as q = 20. If you use the SET command to modify the value of x, the value of q
will still be 20.

c.s -OPT 3
The -OPT 3 option can optimize code in the following four ways:

• Putting local variables in registers.

• Eliminating assignments to dead static variables.

• Reordering instructions.

• Removing loop invariant statements.

We examine the four ways separately.

C-3 Debugging Optimized Code

C.S.1 Putting Local Variables in Registers
A Symptom -- When you examine a loop index variable, its value does not seem correct.

Every variable in a program has an assigned memory location. However, local variables may be cached in
machine registers for all or portions of their lifetime. In general, DEBUG knows approximately when a lo
cal variable is in memory and when it is in a register. By" approximately", we mean that the compiler
knows that the variable will be in a register from somewhere in source statement A to somewhere in source
statement B, and this is not quite accurate enough to ensure that DEBUG will always access the correct lo
cation.

If a variable stored in a register is "dead" (i.e., its value is not used again), then its value will not be writ
ten back to memory. If the variable was updated in the register, a stale value will thus be left in memory.
For example, suppose that a loop index variable is assigned to a register during execution of the loop. Fur
ther assume that the final value of the index variable is not used after exiting the loop. In this case, the
program has no reason to write the register value back to memory. Now suppose that you use DEBUG to
examine the variable after the loop ends. The correct value no longer exists because the value in main
memory is stale and the register value has probably been overwritten.

C.S.2 Eliminating Assignments to Dead Static Variables
A Symptom -- When you examine a static variable, its value does not seem correct.

The compiler eliminates assignments to dead variables. Therefore, the variable can be left with a stale
value, similar to the case described in Section C.S .1. Assignment elimination produces a compiler warn
ing since it usually indicates a program error.

C.S.3 Reordering Instructions
A Symptom -- The statement at line number x appears to get executed at line number x+n or line num

ber x-no

The compiler sometimes reorders machine instructions without regard to source statement boundaries.
Therefore, the object code generated by a source statement may not necessarily directly follow the object
code generated by the previous statement. Statement execution may not be complete even after the
source display indicates that control has passed it. Conversely, some of the work of a statement may be
done before control appears to reach it.

C.S.4 Removing Loop Invariant Statements
A Symptom -- You put a statement inside a loop, but the program appears to execute this statement be

fore or after the loop.

A loop invariant statement is a statement that does not affect any other statements in the loop. There
fore, the compiler optimizes by moving it out of the loop. (After all, why calculate something 1000 times
if it only has to be calculated once.)

e.6 -OPT 4
A Symptom -- When you examine a global variable used in a loop, its value does not seem correct.

Optimization level 4 extends register caching (see Section C.S .1) to global variables used in loops. How
ever, for such global variables, DEBUG is unaware of any possible caching, so DEBUG always displays the
value stored in memory. (For local variables, DEBUG can display the value stored in memory or the
value stored in a register.) What this all means is that DEBUG may display the wrong value of a variable.

Debugging Optimized- Code C-4

c

('-----."
""-. '

c

o

o

o

o

o

C.7 Summary and Advice
To close out this appendix, we offer the following advice:

• Optimization-related problems are more likely to arise if you attempt to change the values of vari
ables than if you only examine them.

• Optimization levels 0-2 present· few debugging difficulties if you refrain from changing variable
values (and in practice, problems are rare even if you do.)

• Debugging at optimization levels 3 and 4 must be done with care. If DEBUG displays an unex
pected value for a variable, you should consider the possibility of an optimization-related debug
ger problem before assuming that you have found a bug in your program.

II Optimization tends to affect procedure calls less than other kinds of code. Before making an ex
ternal procedure call, the compiler must ensure that global variables and arguments passed by ref
erence will be returned to memory. Therefore, procedure calls are often good choices for break
point locations.

• Programmers familiar with machine-level code will find expanded listings useful when debugging
optimized code .. To get an expanded listing, simply use the -EXP option when you compile. Ex
panded listings show explicitly how code has been reordered, and where variables are cached in
registers.

C-5 Debugging Optimized Code

C~

c

o

o

o

o

o

The letter f means "and the following page"; the letters!! mean "and the following pages". Symbols are
listed at the beginning of the index. Entries in color indicates procedural information.

Symbols

(breakpoint specifier) 1-3
-> (PC specifier) 4-5
" (pointer operator) 4-5f

.. (Accent grave) 3-4

+ (Addition operator) 3-34
& (AND operator) 3-34f
&& (AND operator) 3-34f
\ (backslash) 3-53
: (colon) 3-10
/ (Division operator) 3-34f
= (DM command) 3-64
= (Equality operator) 3-34
== (Equality operator) 3-34
> (DEBUG prompt) 3-1
> (Greater than operator) 3-34
>= (Greater than or equal to

operator) 3-34
» (Right shift operator) 3-34
< (Less than operator) 3-34
« (Left shift operator) 3-34
<= (Less than or equal to operator)

3-34
1 (OR operator) 3-34f
1= (Inequality operator) 3-34

... macro 3-46

% (Modulo operator) 3-34
* (Multiplication operator) 3-34
* (Pointer operator) 4-5f
""" (Negation operator) 3-34f
I (OR operator) 3-34f
II (OR operator) 3-34f
(Pound sign) 3-69f

... (Predefined symbol) 3-20

[(Square bracket) 3-6
- (Subtraction operator) 3-34f
_ (Underscore) 3-2
8-bit integer 3-61

A

Abbreviating DEBUG commands
3-3, 3-19f

Accent grave (..) 3-4
Access to DEBUG 2-H
Access violation A-1
Action-lists 3-2, 3-6f

associated with breakpoints
3-12f, A-1

in IF commands 3-41
in JUMP commands 3-41
maximum length 3-6
spreading across mUltiple lines

3-2
Activating debugger variables 3-15 ff
Activation-number of routines 3-53,

3-55f
Active routines 3-8
Addition operator 3-34
Address

of a variable 3-47f, 3-76f
Adjusting the visible source lines

3-66
Alternate

entry points 3-61, 4-2
search directories 2-11, 3-65,

3-67f
Ambiguous references to

routine-names 3-55
.AND. (AND operator) 3-34f
AND operator 3-34f
ARGS command 1-2, 3-8f

and alternate entry points 4-2
and TB command 3-75
in FORTRAN programs 3-8
in installed libraries B-2
.. max_qual 3-17

optimization C-2
Arguments

Index-1

of routines 3-8f, 3-75
to DEBUG 2-3

Arrays
address range of 3-78
displaying 3-50
examining 3-30
how to specify them 3-10f
in C programs 4-6
setting their values 3-58ff

Arrow (-» indicator 1-3, 3-66
ASCII values

of expressions 3-49
of variables 3-29

Assignment format of SET
command 3-58f

Assignment merging C-2
Asterisk (*) 3-10
Asynchronous faults 3-36

B

.BAK version of source code 3-64f
Beginning execution of program

3-38f
Binary values

of expressions 3-49
of variables 3-29

Bitwise operators 3-35
Blank lines

printing them 3-50
Block variables 4-6f
Boolean

constants 3-33
operators 3-35
Pascal constants 4-8

Borrow mode graphics programs
A-2

Brackets [] 3-6
BREAKPOINT command 3-12

FORTRAN statement functions
4-2

installed libraries B-1 f
tutorial 1-2

Breakpoints
activating after line is hit n times

3-13
effect of compiler options 2-lf
conditional 3-13f, 3-38
deleting 3-2lff
in loops 3-13f
list of current 3-43f
-NC DEBUG option 2-4
one-shot 3-38
resuming execution from 1-2

setting 1-2f, 3-2
suppressing activation 3-13
tracing 3-12

Byte data type 4-5

c
C Language 4-3ff

arrays 4-6
byte data type 4-5
case-sensitivity 3-4, 4-3
casting 4-4
characters 4-4
expressions 4-3
external routines 3-54
inner block variables 4-6f
int8 data type 4-5
integer constants
operators 4-3f
pointers 4-5 f
preprocessor symbols 4-4
routine-names 3-53f
sample DEBUG session 1-5
static declarations 3-54
strings 4-4

Case-sensitivity 3-4
Causing faults 3-36
Chains of routine calling 3-75
Changing a variable's value 3-58ff
Characters

constants 3-33, 3-61
in C programs 4-4

Child processes spawned by a
program 2-7

Cleaning-up after a fault 3-36,
3-38, 3-63

Colon (:) 3-10
Command line

DEBUG 2-3
on-line help 3-40
options 2-3ff

Commands
creating a string of 3-1
packaging into a macro 3-45f
Shell 3-62

Comments in DEBUG 3-80
Common subexpression elimination

C-2f
Comparison operators 3-34
Compiler

optimizations 2-lf, C'-lff
options 2-1 f, C-1 ff

Complex constants 3-33

Index-2

c

c

c

c'

o

o

o

o

o

Conditional
breakpoints 3-13f, 3-38

evaluation of DEBUG commands
3-41

Constants

boolean 3-33
character 3-33, 3-61
complex 3-33
floating-point 3-33
integer 3-33
logical 3-33

Pascal set 3-34
string 3-33

Continuing program execution
3-38f, 3-72ff

Control characters 3-17
Controlling program flow 1-1
Copying the target program 2-4
Correcting source code 1-2

.. CR macro 3-45f

Cross-jumping optimization C-2

Cross-process debugging 2-5ff
CTRL/Q 3-36

CTRL/Z 3-62

Current
environment 3-26f

position in program 1-3
routine predefined symbol 3-20

D

Data types
cross-assignments 3-61

description of 3-24
of debugger variables 3-15

-DB compiler option 1-2
effect on DEBUG 2-H, C-1

case-sensitivity 4-3
routine-names 3-55

source code display 3-65f
-DBA compiler option 1-2

effect on DEBUG 2-1£, C-H

vs. -DBS compiler option 2-2
-DBS compiler option 1-2

effect on DEBUG 2-H

vs. -DBA compiler option 2-2

\ddd 4-4

Dead-code elimination C-2ff

DEBUG
effect of compiler options on

optimization 2-H, C-Hf
effect on target program A-1
arguments to 2-3
capabilities 1-1 ff
command files 2-7f
command line options 2-3ff
commands

abbreviating 3-19f
packaging 3-45f
programming with 3-42
window pane 2-8ff

cross-process debugging 2-5ff
debugging child processes

spawned by a program 2-7
definitions 3-19 f
entering commands 3-H
exiting from 3-32, 3-51
faults 3-36
getting started with 3-1
hangs 3-73
helpful hints A-H
how to invoke 2-3
introduction 1-1 ff
options 2-3
overview 1-2, 3-2f
preparing programs for 1-2, 2-H
prompt (» 3-1
results of optimization C-1£
running on a terminal A-2
sample session

C 1-5
FORTRAN 1-4
Pascal 1-6

scripts 3-52
startup files 3-2
strategy 1-2
tutorial 1-2f
using 3-Hf
what happens when you invoke

2-3
Debugger variables 3-15ff

activating 3-15ff
data types of 3-15
list of current 3-44
predefined 3-16ff
setting their values 3-16, 2-8
user-defined 3-15

Debugging vs. optimizing 2-2
Decimal values

Index-3

of expressions 3-49f
of variables 3-29f

#define C preprocessor statement
4-4

DEFINE command 3-19f
Defining keys in DEBUG A-2
Definitions 3-19f

deleting 3-2lff
list of current 3-43f

DELETE command 3-2lff
Deleting

breakpoints 3-2lff
definitions 3-2lff
macros 3-2lff
source directories 3-2lff

Dereferencing pointers 3-47f
C 4-5f

DESCRIBE command 3-24f
Pascal sets 4-8

Describing
data type of variables 3-24f

Direct graphics
-NWP option 2-10

Directories
alternate 3-67f
deleting from search list 3-2lff
to search 2-11, 3-65, 3-67f

Displaying
a traceback of called routines

3-75
error codes 3-71
source code 3-64ff

effect of compiler options 2-lf
values

of expressions 3-49f
of variables 3-29ff·

DIV (Division operator) 3-34f
Division operator 3-34f
DOMAIN Software Engineering

Environment (DSEE) files 3-65
Double-precision values

of expressions 3-49
of variables 3-29

DPAT utility
effect of -NDB compiler option

2-2
DSEE (DOMAIN Software

Engineering Environment) files
3-65

E

Echoing DEBUG commands 3-52

Eliminating
common subexpressions C-2f
dead code C-2ff

Encyclopedia of DEBUG commands
3-4ff

Ending DEBUG session 3-32, 3-51
Entering DEBUG commands 3-lf
Entry points 3-61, 4-2
ENVIRONMENT command 3-26ff

source code display 3-64
Environment

examining 3-26ff
setting 3-26ff

.EO. (Equality operator) 3-34
Equality operators 3-34
Equals sign (DM command) 3-64
Error· code 3-71
Errors

in source code 1-2, 3-64
EXAMINE command 3-29ff

block variables in C 4-7
C characters 4-4
in installed libraries B-2

.. max_bad_chars 3-17

'max_qual 3-17
Pascal sets 4-8
tutorial 1-2f
vs. PRINT command 3-49

Examining
arrays 3-30
expressions 3-49ff
records 3-30
structures 3-30
unions 3-30
variables 1-2

effect of compiler options 2-lf
Exclamation point (I) 1-3
Execution of target program 3-38f

single-stepping 3-72ff
EXIT command 3-32
Exiting DEBUG session 3-32, 3-51
Expressions 3-33ff

C 4-3
converting data types 3-49f
FORTRAN 4-2
mixing data types 3-34f
Pascal 4-8
values of 3-49f

External routines 3-54

F

FALSE 4-8

Index-4

c

c

o

o

o

o

.FALSE.4-8

.. Fault_action macro 3-46, 3-63

Faults 3-36f
causing 3-36
exiting DEBUG session 3-51
SIGNAL command 3-63
simulating 3-63

.. fault_status debugger variable 3-16

FILE
Pascal data type 3-2

Files
of DEBUG commands 3-52
startup 2-3

Finishing DEBUG session 3-32,
3-51

Floating-point
constants 3-33
values

of expressions 3-49
of variables 3-29

Flow of program
controlling 1-1

Fonts

source code display 3-65
Formatting options

in EXAMINE command 3-29
FORTRAN 4-lf

alternate entry points 3-61, 4-2
ARGS command 3-8
case sensitivity 3-4
expressions 4-2
INQUIRE statement 4-2
I/O statements 4-2
IOSTAT specifier 4-2
labels 3-69f, 4-2
line numbers 4-2
operators 4-2
pointers 3-48
program 1-4
READ statement 4-2
routine-names 3-53
sample DEBUG session 1-4
statement functions 4-2
statment numbers 4-2
WRITE statement 4-2

Frame 2-10
Functions

FORTRAN statement 4-2
pointers to 3-47

G

.GE. (Greater than or equal to
operator) 3-34, 4-2

-GLOB option 2-11, B-lf
GO command 3-38f

faults 3-36
FORTRAN statement functions

4-2
in a DEBUG command file 2-8
in installed libraries B-lf
in READ files 3-52
optimization C-2
tutorial 1-2
within action-lists 3-6

Graphics programs
debugging in borrow mode A-2
-NWP option 2-10

Grouping DEBUG commands 3-6
.GT. (Greater than operator) 3-34

H

Halting program execution 1-2,
3-12ff

with a fault 3-36
Hanging DEBUG session 3-73
HELP command 3-40
Hexadecimal values

of expressions 3-49
of variables 3-29

Hit count 3-13
HPC utility

effect of -NDB compiler option
2-2

IF command 3-41
If/then/else 3-41
IN (Set operator) 3-34
Inner block variables 4-6f
INQUIRE FORTRAN statement 4-2
Installed libraries

and STEP -Until command 3-73
debugging B-lf

Int8 data type 4-5
Integer

constants 3-33
values

of expressions 3-49f
of variables 3-29f

Interactive format of SET command
3-58ff

Index-5

INTERNAL declarations in Pascal
3-54

Introduction to DEBUG 1-1ff
Invoking DEBUG 1-2, 2-3

controlling source display 2-10f
printing a section load map 2-11
reading DEBUG commands 2-7f
setting debugger variable values

2-8
setting window pane sizes 2-8ff

I/O redirection 2-3
I/O statements 4-2
IOSTAT specifier 4-2

J

JUMP command 3-42

K

Key definitions in DEBUG A-2

L

Label 3-69f
LAS Shell command 3-62
.LE. (Less than or equal operator)

3-34
Left shift operator 3-34
Legal characters in variables 3-4
Lilacs 4-8
Limiting display of an array 3-11
#line C preprocessor statement 4-4
Line numbers 3-69f

effect of compiler options 2-H
optimization C-4

Lines
spreading an action-li~t across

multiple 3-2
Linked lists A-1f

walking with DEBUG commands
3-42

LIST command 3-43f
Lists

linked 3-42, A-1f
Load map 2-11
Local variables

in registers C-3f
Logical

constants 3-33
operators 3-34f

Loop invariant statements C-3f

Loops
checking values in 3-13f
of DEBUG commands 3-42

LOPSTR Shell command 3-62
.LT. (Less than operator) 3-34, 4-2

M

MACRO command 3-45f
Macros 3-2, 3-45f

deleting 3-21
list of current 3-43f

Map
section load 2-11

.. max_array_dim debugger variable
3-10f, 3-24

.. max_bad_chars debugger variable
3-16f

Maximum variable length 3-4
.. max_qual debugger variable 3-16f,

3-24, 3-31
.. max_string_Ien debugger variable

3-16
.. max _ var _len debugger variable

3-16ff, 3-24, 3-30f
Merging assignments C-2
MOD (Modulo operator) 3-34
Modifying a variable's value 3-58ff
Modulo operator 3-34
Moving

between commands in an
action-list 3-42

through a program 3-2, 3-72ff
Multidimensional arrays 3-10
MUltiple commands on one line

3-69f
Multiplication operator 3-34

N

-NC DEBUG option 2-4f
-NDB compiler option 2-1ff, C-1
.NE. (Inequality operator) 3-34
Negation operator 3-34
No copy option 2-4f
Not equal operator 3-34
NOT operator 3-34f
-NSRC option 2-10
Number of line 3-69f
-NWP option 2-8, 2-10

and -PROC 2-10

Object module size
reducing 2-2

Index-6

a c

o

o

o

o

o

Octal values
of expressions 3-49
of variables 3-29

Offset from a line number 3-69f
One-shot breakpoints 3-38f
On-line

examples 3-40
help 3-40

Operators 3-34f
C 4-3f
FORTRAN 4-2
Pascal 4-8
priority of 3-34

-OPT compiler option C-Hf
Optimization

assignment merging C-2
dead-code elimination C-2ff
effect on debugging C-Hf
reordering of line numbers C-4
summary C-5
vs. ease of debugging 2-2, C-1

Options
compiler 2-lf
DEBUG command line 2-3ff

OR operator 3-34f
.OR. (OR operator) 3-34f
Outer block variables 4-6f
Overview of DEBUG features 3-2

p

Panes 2-8ff
Parameters of a routine 3-8, 3-75
Parent processes 2-3
Pascal 4-7ff

boolean constants 4-8
case sensitivity 3-4
expressions 4-8
external routines 3-54
FILE variables 3-2
INTERNAL declarations 3-54
operators 4-8
routine-names 3-54f
sample DEBUG session 1-6
sets 3-25, 4-8
type-checking 4-8
UNIV _PTRs 3-47f
WITH statement 4-9

PC 3-77f
pfm_$exit system call 3-51
Piping I/O of the target program 2-3

Pointers 3-47f
arithmetic 4-5f
C 4-5f
FORTRAN 3-48
VA command 3-76f

Position in program 1-3
Predefined

debugger variables 3-16ff
symbol for current routine 3-20

Preparing programs for DEBUG
1-2, 2-lf

Preprocessor statements 4-4
PRINT command 3-29 ff

C characters 4-4
in installed libraries B-2
.. max_bad_chars 3-16f

tutorial 1-2f
vs. EXAMINE command 3-49f

Printing
error codes 3-71
the value of a variable 1-2

-PROC option 2-5ff
advantages of 2-7
and -NWP 2-10
example of 2-5ff, A-2

Procedures
pointers to 3-47

Process that DEBUG runs in 2-3,
2-5ff

Program
controlling flow 1-1 3-2
counter 1-3, 3-77f
execution

halting 3-12ff, 1-2
faults 3-36f
I/O window pane 2-8ff

Programming with DEBUG
commands 3-42

QUIT command 3-51
tutorial 1-3

Q

Quitting DEBUG session 3-32, 3-51

R

READ command 3-2, 3-52
READ FORTRAN statement 4-2
-READ option 2-7f, 3-2
Real

Index-7

constants 3-33
values

of expressions 3-49
of variables 3-29

Records 4-2

describing 3-24f
examining 3-30, 3-50
setting their values 3-58ff

Recursive
macros 3-45

routines 3-55 f
Redirecting 1/0 of the target

program 2-3

Reducing

object module size 2-2

the length of variable names
3-17f

Registers

compiler optimization C-3f

Removing
breakpoints 3-21ff

definitions 3-2Hf

macros 3-2Hf
source directories 3-21ff

Reordering instructions C-3f

Resetting the value of a variable
3-58ff

Resizing window panes 2-8ff
Restarting after a breakpoint 1-2f

Resuming program execution 1-2f
3-38f, 3-72ff

Returning from a called routine
3-38f

Right shift operator 3-34

Right window pane 2-10

Routine-names 3-53ff
abbreviating 3-19f

in output 3-17
effect of compiler options 2-H

ambiguous references 3-55f
as part of a statement-ID 3-69f
as part of a variable name 3-78f

Routines
arguments 3-8f, 3-75
fault-handling 3-36
list of current 3-43f

pointers to 3-47

setting a breakpoint at the
beginning of 3-12

starting address of 3-76f

traceback of calls 3-75
visibility 3-27

Run environment 3-26f

s
SDIR command 3-57
-SDIR option 2-11

and SOURCE command 2-11
Search list 2-11, 3-65, 3-67f
Search rules 2-11! 3-65, 3-67f
Section load map 2-11
SET command 3-58ff

debugger variables 3-15 ff
.. max_qual 3-17
optimization C-3
Pascal sets 4-8
tutorial 1-3

-SET option 2-8
Sets in Pascal 4-8

constants 3-34
membership operator 3-34

Setting
breakpoints 1-2f

effect of compiler options 2-H
the value of program variables

3-58ff
the values of debugger variables

2-8
SHELL command 3-62
SIGNAL command 3-36, 3-63
SIGP Shell command 3-36
Single-stepping through a program

3-72ff
-SMAP option 2-11, B-1
Source code

adjusting the visibility of 3-66
.BAK version 3-64f
C 1-5
confusion C-2
correcting 1-2
display 3-64ff

effect of compiler options 2-H
environment 3-27
options 2-10f
suppressing 2-11, 3-67f
window pane 2-8ff, 3-64

FORTRAN 1-4
Pascal 1-6
reordering C-3f
suppressing display 3-68

SOURCE command 3-67f
and -SDIR option 2-11

Source directories
deleting 3-2Hf
list of current 3-44

SOURCE FILE UNAVAILABLE
error message 3-66

Index-8

c

C.'

('

o

o

o

SOURCE FILE UNKNOWN error
message 3-65

SOURCE UNAVAILABLE error
message 3-65

Square brackets [] 3-6

-SRC option 2-10

.. src_adjust debugger variable 3-16,
3-66

-SRC_R option 2-10

-SRC _ T option 2-10

.. src_try_bak debugger variable
3-16, 3-64ff

Stack

walking up and down 3-26

Standard 110 redirection 2-3

Starting

after a breakpoint 1-2f

DEBUG 2-3

Startup files 2-3, 2-7, 3-2

Startup_debug file 3-2

Statement functions 4-2

Statement-ID 3-69f

Static declarations in C 3-54

Status code 3-63, 3-71

STCODE command 3-71

STEP command 3-72ff

faults 3-36

FORTRAN 110 statements 4-2

in a DEBUG command file 2-8

in installed libraries B-lf

in READ files 3-52

tutorial 1-2

within action-lists 3-6f

Stepping 3-72f

over a routine 3-72f

Stop fault 3-36

Stopping

DEBUG session 3-32, 3-51

program execution 1-2, 3-12ff

with a fault 3-36

Storing DEBUG commands in files
3-S2

Strategy

debugging 1-2

STREAM _ $ERRIN 2-10

STREAM_ERROUT 2-10

Strings
abbreviating 3-19f
C 4-4f
constants 3-33
of DEBUG commands 3-1
printing 3-S0

Structures 4-2
describing 3-24f
examining 3-30, 3-S0
setting their values 3-S 8ff

Subrange constants 4-8
Subtraction operator 3-34
Suppressing

source code display 2-11
window panes 2-10

Syntax of commands 3-Sff
on~line 3-40

System calls
testing for success 3-41

System error code 3-71

T

Tail-merging optimization C-:-2
Target program 2-3

advancing through 3-38f
borrow mode A-2
controlling execution 3-38
faults 3-36f
hangs 3-73
running in a nondefault process

2-S
stand-alone vs. debugged A-1

TB command 3-7S
alternate entry points 4-2
optimization C-2

TB utility
effect of -NDB compiler option

2-2
Temporary breakpoint 3-39
Terminal

running DEBUG on A-2
Top window pane 2-10
Traceback 3-7S

effect of -DB compiler option
2-2

Tracing 3-2, 3-12ff
TRUE 4-8
.TRUE.4-8
Truncating unprintable characters

3-16f
Tutorial on DEBUG 1-2f

Index-9

Type-checking
Pascal 4-8

Typedefs
DESCRIBE command 3-24

Types 3-24

Underscore U 3-2
Unions 4-2

examining 3-30

u

setting their values 3-58ff
UNIV _PTRs 3-47f
Unprintable characters 3-16f
Unsigned values

of expressions 3-49
of variables 3-29

User environment 3-26f
user_data/startup_debug file 2-3
User-defined debugger variables

3-15
userlib.global installed library B-H

VA command 3-76f
Values

v

converting to different data types
3-29, 3-49

of expressions 3-49
of routine arguments 3-75, 3-8
of variables 3-29

Variables
effect of compiler options 2-H
C arrays 4-6
casting 3-29, 3-49
changing their values 3-58ff
converting 3-29, 3-49
cross-assignments 3-61
describing their data types 3-24f

examining 1-2, 3-29ff
halting when a value changes

A-1
how to use them in DEBUG

3-78f
in loops 3-13f
legal characters in 3-4
list of 3-43f
local A-1
maximum length 3-4
names

abbreviating 3-30f
reducing their length 3-17f

pointers 3-47 f
C 4-5f

setting their values 3-58ff
unitialized A-1

Variant fields 3-60
Verbose help 3-40
Virtual address 3-76f

setting a breakpoint on 3-12
Visibility

of routines 3-27, 3-54
of source code 3-66

w

Walking up and down the stack
3-26

Watchpoints A-1
Window panes 1-2

control 2-8ff
default startup 2-3
options 2-8ff
source code display 2-10f, 3-64ff
suppressing 2-8ff

WITH statement 4-9
-WPnn option 2-8ff
WRITE FORTRAN statement 4-2

Index-10

(
.-.-'

"

c.

