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Introduction 

1.1 GENERAL DESCRIPTION 
The ADSP-2100 is a programmable single-chip microprocessor optimized 
for digital signal processing (DSP) and other high-speed numeric 
processing applications. The ADSP-2100 incorporates computational 
units, data address generators and a program sequencer in one device, 
utilizing external data and program memories. 

The ADSP-2100 contains three full-function and independent 
computational units: an arithmetic/logic unit, a multiplier / accumulator 
and a barrel shifter. The computational units process 16-bit data directly 
and provide for multiprecision computation. 

Two dedicated data address generators and a powerful program 
sequencer supply addresses. The sequencer supports single-cycle 
conditional branching and executes program loops with zero overhead. 
Dual address generators allow the processor to output simultaneous 
addresses for dual operand fetches. Together the sequencer and data 
address generators allow computational operations to execute with 
maximum efficiency. With the ability to store data in both program and 
data memory, the ADSP-2100 is capable of fetching two operands on the 
same instruction cycle. 

Figure 1.1 is a simplified representation of the ADSP-2100 in a system 
context. The figure shows the two external memories used by the 
processor. Program memory stores instructions and is also used to store 
data. Data memory stores only data. The data memory address space may 
be shared with memory-mapped peripherals, if desired. Both memories 
may be accessed by external devices, such as a system host, if desired. 
Figure 1.1 also shows the processor control interface signals, (RESET, 
HALT and TRAP) the four interrupt request lines, the bus request and bus 
grant lines (BR and BG) and the clock input (CLKIN) and output 
(CLKOUT). Complete interfacing information is presented in the chapter 
"System Interface." 

The ADSP-2100 assembly language uses an algebraic syntax for ease of 
coding and readability. The sources and destinations of computations 

1 
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and data movements are written explicitly in each assembly statement, 
eliminating cryptic assembler mnemonics. Each assembly statement, 
however, corresponds to a single 24-bit instruction, executable in one 
cycle. 

The ADSP-2100 architecture rivals the performance of a board level 
solution implemented with bit-slice building blocks, without the difficulty 
of microcode programming. 

CLOCK 

ClKIN 

ADSP-2100 

t 
ClKOUT 

DATA 
MEMORY 

16K x 16 

'-:::~=~ Program Memory Data Memory 
... Address Address 

DATA 

1 - 2 

Program Memory Data Memory 
Data Data 

RESET HALT TRAP IRQ BR BG 

PERIPHERALS 

DATA 

Figure 1.1 ADSP-2100 System 

1.2 SUMMARY OF ADSP-2100 KEY FEATURES 

• Separate Program and Data Buses, Extended Off-Chip 

• Single-Cycle Direct Access to 16K x 16 of Data Memory 

• Dual Purpose Program Memory for Both Instruction and Data Storage 

• Single-Cycle Direct Access to 16K x 24 (Expandable to 32K) of Program 
Memory 



I 

• Three Independent Computational Units: 

Arithmetic/Logic Unit (ALU) 
Multiplier / Accumulator (MAC) 
Barrel Shifter 

• Two Independent Data Address Generators 

• Powerful Program Sequencer 

• Internal Instruction Cache 

• Provisions for Multiprecision Computation and Saturation Logic 

• Single-Cycle Instruction Execution 

• Multifunction Instructions 

• Four External Interrupts 

• 50 MHz Clock Speed 

• 80 ns Cycle Time 

• Low Power Standby Mode 

• 100-Pin Grid Array Package 

1 - 3 
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Figure 1.2 ADSP·2100 Internal Architecture 

1 - 4 

DMA 

PMD 

DMD 



I 

1.3 INTERNAL ARCHITECTURE 
This section gives a broad overview of the ADSP-2100 internal 
architecture. The overview is based on Figure 1.2, on the facing page, 
which shows the architecture of the ADSP-2100. Each component is 
described in detail in the following chapters. 

Component 

• Arithmetic/logic unit 
• Multiplier/accumulator 
• Barrel shifter 
• Two data address generators 
• PMD-DMD bus exchange 
• Program sequencer 
• Status registers and stack 
• Cache memory 

Chapter I Section 

2.2 
2.3 
2.4 
3.2 
3.3 
4.2 
4.3 
4.4 

These components are supported by five internal buses. 

• Program Memory Address (PMA) bus 
• Program Memory Data (PMD) bus 
• Data Memory Address (DMA) bus 
• Data Memory Data (DMD) bus 
• Result (R) bus (which interconnects the computational units) 

The first four of these buses are extended off-chip for direct connection to 
external memories. 

The program memory data (PMD) bus serves primarily to transfer 
instructions from off-chip memory to the internal instruction register. 
Instructions are fetched and loaded into the instruction register during one 
processor cycle and execute during the following cycle while the next 
instruction is being fetched. The instruction register introduces a single 
level of pipe lining in the program flow. Instructions loaded into the 
instruction register are also written into the cache memory, described 
below. 

The next instruction address is generated by the program sequencer 
depending on the current instruction and internal processor status. This 
address is output onto the program memory address (PMA) bus. The 
program sequencer minimizes program flow overhead with features such 
as conditional branching, loop counters and zero-overhead looping. 

1 - 5 
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The program memory address (PMA) bus is 14 bits wide allowing direct 
access of up to 16K words of instruction code and 16K words of data. The 
PMOA pin distinguishes between code and data access of program 
memory. The program memory data (PMO) bus is 24 bits wide to 
accommodate the 24-bit instruction width. 

The data memory address (OMA) bus is 14 bits wide allowing direct 
access of up to 16K words of data. The data memory data (OMO) bus is 16 
bits wide. The data memory data (OMO) bus provides a path for the 
contents of any register in the processor to be transferred to any other 
register or to any external data memory location in a single cycle. The data 
memory address comes from two sources: an absolute value specified in 
the instruction code (direct addressing) or the output of a data address 
generator (indirect addressing). Only Indirect addressing is supported for 
data fetches via the program memory bus. 

The program memory data (PMO) bus can also be used to transfer data to 
and from the computational units through direct paths or via the PMO
OMO bus exchange unit. The PMO-OMO bus exchange unit permits data 
to be passed from one bus to the other. It contains hardware to overcome 
the 8-bit width discrepancy between the two buses, if necessary. 

The AOSP-2100 contains three computational blocks: an arithmetic/logic 
unit (ALV), a multiplier / accumulator (MAC) and a barrel shifter. Each 
unit functions independently of the others. All operate directly on 16-bit 
input data with provision for multiprecision operations. See the section 
"AOSP-2100 Arithmetic" in the next chapter. 

All computational units contain a set of dedicated input and output 
registers. Computational operations generally take their operands from 
input registers and load the result into an output register. The registers act 
as a stopover point for data between the external memory and the 
computational circuitry, effectively introducing one pipeline level on 
input and one level on output. The computational units are arranged side 
by side instead of in a cascade fashion. To avoid excessive pipeline delays 
when a series of different operations are performed, the internal result (R) 
bus allows any of the output registers to be used directly as the input to 
another computation. 
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For a wide variety of calculations, it is desirable to fetch two operands at 
the same time; one from data memory and one from program memory. 
Fetching data from program memory, however, makes it impossible to 
fetch the next instruction on the same cycle. An additional cycle would be 
required to fetch the next instruction. To avoid this overhead, the ADSP-
2100 incorporates an instruction cache which holds sixteen words. The 
benefit of the cache architecture is most apparent when executing a 
program loop totally contained in the cache memory. In this situation, the 
ADSP-2100 functions like a three bus system with an instruction fetch and 
two operand fetches taking place at the same time. Many algorithms can 
be coded in loops of sixteen instructions or less because of the efficiency 
and high-level syntax of the ADSP-2100 Assembly language. See the 
chapter "Instruction Set Overview." 

Briefly, the cache functions in the following way. Every instruction loaded 
into the instruction register is also written into cache memory. As 
additional instructions are fetched, they overwrite the current contents of 
cache in a circular fashion. When the current instruction does a program 
memory data access, the cache automatically sources the instruction 
register if its contents are valid. Operation of the cache is completely 
transparent to user. 

There are two independent data address generators (DAGs). Having two 
DAGs allows the simultaneous fetch of data stored in program and in 
data memory for executing dual-operand instructions in a single cycle. 
Data address generator one (DAGl) can supply addresses to the data 
memory only, but data address generator two (DAG2) can supply 
addresses to either the data memory or the program memory. Each DAG 
can handle linear addressing as well as modulo addressing for circular 
buffers. 

With its multiple bus structure, the ADSP-2100 supports a high degree of 
operational parallelism. In a single cycle, the ADSP-2100 can fetch an 
instruction, compute the next instruction address, perform one or two 
data transfers, update one or two data address pointers and perform a 
computation. All instructions execute in a single cycle. 

1 -7 
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1.4 ADSp·2100 DEVELOPMENT SYSTEM 
The ADSP-2100 is supported with a complete set of software and 
hardware development tools. The ADSP-2100 Development System 
consists of the Cross-Software Development System to aid the software 
design and the real-time Emulator to facilitate the debug cycle. An 
Evaluation Board is available for evaluating the ADSP-2100. It is also 
suitable for limited prototyping of hardware interfacing. 

The Cross-Software Development System includes: 

• System Builder 

This mod tlle allo""s the designer to specify the amount of RA~v1 alLd RO~vf 
available, the allocation of program and data memory and any memory
mapped I/O ports for the target hardware environment. It uses high-level 
constructs to simplify this task. This specification is used by the other 
modules in the Cross-Software Development System. 

• Assembler 

This module assembles your source code and data modules. It supports 
the high-level syntax of the instruction set. To support modular code 
development, the Assembler provides flexible macro processing and 
include files. It provides a full range of diagnostics. 

• Linker 

The Linker links separately assembled modules. It maps the linked code 
and data output to the target system hardware, as specified by the System 
Builder output. 

• Simulator 

This module performs an instruction-level simulation. The user interface is 
both interactive and symbolic. It supports a full symbolic assembly and 
disassembly. The simulator fully simulates the hardware configuration 
described by the System Builder module. It flags illegal operations and 
provides several displays of the internal operations of the ADSP-2100. 
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• PROM Splitter 

This module reads the Linker output and generates PROM burner 
compatible files. 

• CCompiler 

The C Compiler reads ANSI (Draft Standard) C source and outputs 
ADSP-2100 source code ready to be assembled. It also supports inline 
assembler code. 

• In-Circuit Emulator 

The Emulator provides stand-alone real-time in-circuit emulation, using 
the ADSP-2100 in a self-emulation mode. The Emulator design provides 
execution with little or no degradation in processor performance. In 
addition, there are interfaces to external instrumentation. The Emulator 
virtually duplicates the Simulator's interactive and symbolic user 
interface. 

For complete information on the Development System, consult the ADSP-
2100 Cross-Software Manual and the ADSP-2100 Emulator Manual. 

1.5 MANUAL ORGANIZATION 
The ADSP-2100 User's Manual provides the information necessary for an 
engineer to understand and evaluate the operation of the ADSP-2100. 
Together with the ADSP-2100 Data Sheet, this manual provides all the 
information required to design a hardware system with the ADSP-2100. 
You must consult the ADSP-2100 Cross-Software Manual for complete 
information on programming the chip. Additional applications 
information may be found in the ADSP-2100 Applications Handbook, 
Volume 1 and Volume 2. 

Chapter 2, "Computational Units," describes the internal architecture and 
function of the ADSP-2100 computational units. 

Chapter 3, "Data Moves," describes the data address generators and the 
PMD-DMD bus exchange units. 

1 - 9 
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Chapter 4, "Program Control," describes the program sequencer, 
instruction cache and status words. 

Chapter 5, "System Interface," describes the chip externally. It discusses 
all major interfaces to the ADSP-2100: the program memory (PM) 
interface, the data memory (OM) interface, the control interface and the 
interrupt lines. This chapter gives a functional description of the interfaces 
and their sequence of operations. For actual timing parameters, refer to the 
ADSP-2100 Data Sheet. A summary of the pin descriptions is given in this 
chapter. 

Chapter 6, "Instruction Set Overview," is an overview of the ADSP-2100 
irlstruction set. All instructions are grouped by major type. Detailed" 
programmer's reference material is in the ADSP-2100 Cross-Software 
Manual; this chapter gives enough information for you to understand the 
capabilities and flexibility of the instruction set. 

Appendix A, "Instruction Coding," shows the complete set of opcodes and 
gives the bit patterns for the choices for each field within the instruction 
word. 

Appendix B, "Division Exceptions," discusses the details of signed and 
unsigned division. 

This edition also includes an Index at the end of the book. 



Computational Units 

2.1 ARITHMETIC ON THE ADSP·2100 
This chapter describes the architecture and function of the three 
computational units of the ADSP-2100: the arithmetic/logic unit, the 
multiplier / accumulator and the barrel shifter. 

To better understand the detailed discussion of these units you should 
first understand how the ADSP-2100 handles binary arithmetic. The 
ADSP-2100 is a 16-bit, fixed-point machine. Special features support 
multiword arithmetic and block floating point. Most operations assume a 
twos-complement number while others assume an unsigned-magnitude 
number or a simple binary string. This section discusses the arithmetic 
used by each computational unit or operation. 

2.1.1 Binary String 
This is the simplest form of binary notation. Sixteen bits are treated as a 
bit pattern. The best examples of computation using this format are the 
logical operations: NOT, AND, XOR. These ALU operations treat their 
operands as binary strings with no provision for sign bit or binary point 
placement. 

2.1.2 Unsigned·Magnitude 
Unsigned magnitude binary numbers have no sign bit. They are 
frequently thought of as positive, having nearly twice the magnitude of a 
signed number of the same bit length. The lower words of multiword 
numbers are treated as unsigned-magnitude numbers. 

2.1.3 Signed Numbers: Twos·Complement 
Twos-complement is one of the most common ways to represent signed 
binary numbers. It uses the MSB of a binary number as a sign bit. Twos
complement provides a unique representation for zero, where some other 
formats have both a positive and negative zero. In twos-complement the 
largest negative magnitude is one LSB greater than the largest positive 
magnitude. 
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In discussions of ADSP-2100 arithmetic "signed" refers to twos
complement. Most ADSP-2100 operations presume or support twos
complement arithmetic. The ADSP-21 00 does not use signed-magnitude 
formats. 

2.1.4 Fractional Representation: 1.15 
A large number of DSP algorithms use sinusoidal and cosinusoidal values 
and coefficients. The ADSP-2100 is optimized for arithmetic values in a 
fractional binary format denoted by 1.15 ("one dot fifteen"). (Referred to in 
some contexts as 16.15.) This is a fixed~point format. Used with the MSB as 
a sign bit, the 1.15 means one sign bit and fifteen fractional bits 
representing values from -1 up to one LSB less than + 1. In the ADSP-2100 
the fractionai notation and twos-complement always occur together. 

2.1.5 ALU Arithmetic 
All operations on the ALU treat operands and results as simple 16-bit 
binary strings, except the signed division primitive (DIVS). Various status 
bits treat the results as signed: the overflow (A V) condition code, and the 
zero (AZ) and negative (AN) flags. 

The logic of the overflow bit (A V) is based on twos-complement. It is set if 
the MSB changes in a manner not predicted by the signs of the operands 
and the nature of the operation. For example, adding two positive 
numbers must generate a positive result; a change in the sign bit signifies 
an overflow and sets A V. Adding a negative and a positive may result in 
either a negative or positive result, but cannot overflow. 

The logic of the carry bit (AC) is based on unsigned-magnitude. It is set if 
a carry is generated from bit 16 (the MSB). The (AC) bit is most useful for 
the lower word portions of a multiword operation. 

2.1.6 MAC Arithmetic 
The multiplier array itself produces results that are simple binary strings, 
but the inputs are "interpreted" according to the information given in the 
multiplication instruction itself (signed by signed, unsigned by unsigned, 
a mixture or round). 

The number loaded into MR from the multiplier is assumed to be signed 
in that it is always sign-extended across the full 40 bit width of the MR 
register set. 



There is a built-in shift left that occurs between the multiplier product (P) 
and the multiplier result register (MR). Figure 2.6, in the MAC section of 
this chapter, shows this graphically. This shift occurs because the ADSP-
2100 assumes that the operands are in 1.15 format. Without the shift the 
32-bit result would be in 2.30 format. If a 2.30 value is rounded to 16-bits, 
the result would be 2.14, which is incompatible with 1.15. For this reason, 
the multiplier result is always shifted one bit to the left, producing a 1.31 
result, which can be rounded to 1.15. 

Therefore, to multiply twos-complement integers (16.0 not 1.15 format), 
you must compensate for the shift that occurs. Typically, this would mean 
shifting the result down (or right) one bit to get the correct 32-bit, twos
complement value. Since the MAC output register set stores 40 bits, this 
result is not lost and can be retrieved with the Shifter. 

2.1.7 Shifter Arithmetic 
Many operations in the Shifter are explicitly geared to signed (twos
complement) or unsigned values: Logical Shifts assume unsigned
magnitude or binary string values and Arithmetic Shifts assume twos
complement. 

The exponent logic assumes twos-complement numbers. The exponent 
logic supports block floating point, which is also based on twos
complement numbers. 

2.1.8 Summary 
In addition to the numeric types described in this section, the ADSP-2100 
C Compiler supports a form of 32-bit floating-point in which one 16-bit 
word is the exponent and the other 16-bit word is the mantissa. See the 
discussion in the C Compiler chapter of the ADSP-2100 Cross-Software 
Manual. 
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The table below summarizes some of the arithmetic characteristics of the 
ADSP-2100 computational units and operations. 

OPERATION ARITHMETIC FORMATS 

Operands Result 
ALU 

Addition 
Subtraction 
Logical Operations 
~ ... 
UlVlSlOn 

ALU Overflow 
ALUCarryBit 
AL U Saturation 

MAC 

Multiplication (P) 
Multiplication (MR) 
Mult+Cum. Add 
Mult+Cum. Subtract 
MAC Overflow 
MAC Saturation 

Shifter 

Logical Shift 
Arithmetic Shift 
Exponent Detection 

Signed or unsigned 
Signed or unsigned 
Binary string 
Explicitly signed / unsigned 
Signed 
16-bitunsigned 
Signed 

1.15 Explicitly signed/ unsigned 
1.15 Explicitly signed / unsigned 
1.15 Explicitly signed / unsigned 
1.15 Explicitly signed/ unsigned 
Signed 
Signed 

Unsigned / binary string 
Signed 
Signed 

Table 2.1 Arithmetic Formats Used by the ADSP-2100 

2.2 ARITHMETIC/LOGIC UNIT (ALU) 

Interpret flags 
Interpret flags 
same 
same 
same 
same 
same 

32-bits 
2.30 shifted to 1.31 
2.30 shifted to 1.31 
2.30 shifted to 1.31 
same 
same 

same 
same 
same 

The Arithmetic/Logic Unit (ALU) provides a standard set of arithmetic 
and logical functions. The arithmetic functions are add, subtract, negate, 
increment, decrement and absolute value. These are supplemented by two 
division primitives with which multiple cycle division can be constructed. 
The logic functions are AND, OR, XOR (exclusive OR) and NOT. 
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2.2.1 ALU Block Diagram Discussion 
Figure 2.1 shows a block diagram of the ALU. 

PMDBUS 24 

AZ 
AN 
AC 
AV 
AS 
AQ 

16 

Figure 2.1 ALU Block Diagram 

ALU 
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CI 
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AF 
REGISTER 
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The ALU is 16 bits wide with two 16-bit input ports, X and Y, and one 
output port, R. The ALU accepts a carry-in signal (Cl) which is the carry 
bit from the processor arithmetic status register (ASTAT). The ALU 
generates six status signals: the zero (AZ) status, the negative (AN) status, 
the carry (AC) status, the overflow (A V) status, the X-input sign (AS) 
status, and the quotient (AQ) status. All arithmetic status signals are 
latched into the arithmetic status register (ASTAT) at the end of the cycle. 

The X input port of the ALU can accept data from two sources: the AX 
register file or the result (R) bus. The R bus connects the output registers of 
all the computational units, permitting them to be used as input operands 
directly. The AX register file is dedicated to the X input port and consists 
of lwo regislel~s, AXO arld AXl. TI-l€se AX registers are readable and 
writable from the DMD bus. The AX register file outputs are dual-ported 
so that one register can provide input to the ALU while either one 
simultaneously drives the DMD bus. 

The Y input port of the ALU can also accept data from two sources: the 
AY register file and the ALU feedback (AF) register. The A Y register file is 
dedicated to the Y input port and consists of two registers, A YO and A Yl. 
These registers are readable and writable from the DMD bus and writable 
from the PMD bus. The ADSP-21 00 instruction set also provides for 
reading these registers over the PMD bus, but there is no direct 
connection; this operation uses the DMD-PMD bus exchange unit. The A Y 
register file outputs are also dual-ported: one A Y register can provide 
input to the ALU while either one simultaneously drives the DMD bus. 

The output of the ALU is loaded into either the ALU feedback (AF) 
register or the ALU result (AR) register. The AF register is an ALU internal 
register which allows the ALU result to be used directly as the ALU Y 
input. The AR register can drive both the DMD bus and the R bus. It is 
also loadable directly from the DMD bus. 

All the registers surrounding the ALU can be both read and written in the 
same cycle. Registers are read at the beginning of the cycle and written at 
the end of the cycle. All register reads, therefore, read values loaded at the 
end of a previous cycle. A new value written to a register cannot be read 
out until a subsequent cycle. This allows an input register to provide an 
operand to the ALU at the beginning of the cycle and be updated with the 
next operand from memory at the end of the same cycle. It also allows a 
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result register to be stored in memory and updated with a new result in 
the same cycle. See the discussion of "Multifunction Instructions" in the 
chapter "Instruction Set Overview" for an illustration of this same-cycle 
read and write. 

The ALU section contains a duplicate bank of registers, shown in Figure 
2.1 as a "shadow" behind the primary registers. There are actually two 
sets of AR, AF, AX, and A Y register files. Only one bank is accessible at a 
time. The additional bank of registers can be activated during an interrupt 
service routine for extremely fast context switching. A new task, such as 
an interrupt service routine, can be executed without transferring current 
states to storage. 

The selection of the primary or alternate bank of registers is controlled by 
a bit in the processor mode status register (MSTAT). Toggling this bit 
switches back and forth between the two register banks. 

2.2.2 Standard Functions 
The standard functions performed by the ALU are listed below with a 
brief comment. 

R=X+Y 
R=X+Y+CI 
R=X-Y 
R=X-Y+CI-1 
R=Y-X 
R=Y-X+CI-1 
R=-X 
R=-Y 
R=Y+1 
R=Y-1 
R=PASSX 
R=PASSY 
R = 0 (PASS 0) 
R=ABSX 
R=XANDY 
R=XORY 
R=XXORY 
R=NOTX 
R=NOTY 

Add X and Yoperands 
Add X and Y operands and carry-in bit 
Subtract Y from X operand 
Subtract Y from X operand with "borrow" 
Subtract X from Y operand 
Subtract X from Y operand with "borrow" 
Negate X operand (twos-complement) 
Negate Y operand (twos-complement) 
Increment Y operand 
Decrement Y operand 
Pass X operand to result unchanged 
Pass Y operand to result unchanged 
Clear result to zero 
Absolute value of X operand 
Logical AND of X and Y operands 
Logical OR of X and Y operands 
Logical Exclusive OR of X and Y operands 
Logical NOT of X operand (ones-complement) 
Logical NOT of Y operand (ones-complement) 

2 
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2.2.3 ALU Input/Output Registers 
The sources of ALU input and output registers are shown below. 

Source for X input port Source for Y input port Destination for R 
output port 

AXO,AX1 
AR 
MRO,MR1,MR2 
SRO,SR1 

AYO,AY1 
AF 

AR 
AF 

MRO, MR1 and MR2 are Multiplier / Accumulator result registers; SRO and 
SRI are Shifter result registers. 

2.2.4 Multiprecision Capability 
Multiprecision operations are supported in the ALU with the carry-in (Cn 
signal and ALU carry (AC) status bit. The carry-in signal is the AC status 
bit that was generated by a previous ALU operation. The "add with carry" 
(+CD operation is intended for adding the upper portions of 
multiprecision numbers. The "subtract with borrow" (CI - 1 is effectively a 
"borrow") operation is intended for subtracting the upper portions of 
multiprecision numbers. 

2.2.5 ALU Saturation Mode 
The AR register has an optional saturation mode of operation which 
automatically sets it to plus or minus the maximum value if an ALU result 
overflows or underflows. This feature is a "mode" and is enabled by 
setting a bit in the processor mode status register (MSTAT). When 
enabled, the value loaded into AR during an ALU operation depends on 
the state of the overflow and carry status generated by the ALU on that 
cycle. The following table summarizes the loading of the AR when the 
saturation mode is enabled. 

Overflow (A V) 
o 
o 
1 
1 

Carry (AC) 
o 
1 
o 
1 

Table 2.2 Saturation Mode 

ARContents 
ALUOutput 
ALUOutput 
0111111111111111 
1000000000000000 

full-scale positive 
full-scale negative 
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The operation of the ALU saturation mode is in contrast to the Multiplier / 
Accumulator saturation ability, which is enabled only on an instruction by 
instruction basis. For the ALU, enabling saturation means that all 
subsequent operations are processed this way. 

2.2.6 ALU Overflow Latch Mode 
The ALU overflow latch mode, enabled by a bit in the processor mode 
status register (MSTAT), causes the A V bit to "stick" once it is set. In this 
mode, when an ALU overflow occurs, A V will be set and remain set, even 
if subsequent ALU operations do not generate overflows. In this mode, 
A V can only be cleared by writing a zero to it directly from the DMD bus. 

2.2.7 Division 
The ALU section supports division. The divide function is achieved with 
additional shift circuitry not shown in Figure 2.1, the block diagram. 
Division is accomplished with two special divide primitives. These are 
used to implement a non-restoring conditional add-subtract division 
algorithm. The division can be either signed or unsigned, however, the 
dividend and divisor must both be of the same type. Appendix B details 
various exceptions to the normal division operation as described in this 
section. 

A single precision divide, with a 32-bit dividend (numerator) and a 16-bit 
divisor (denominator), yielding 16-bit quotient, executes in 16 cycles. 
Higher precision dividends can also be calculated. The divisor can be 
stored in AXO, AX1 or any of the R registers. The upper half of a signed 
dividend can be in either A Y1 or AF. The upper half of an unsigned 
dividend must be in AF. The lower half of any dividend must be in A YO. 
At the end of the divide operation, the quotient will be in A YO. 

The first of the two primitive instructions" divide-sign (DIVS)" is 
executed at the beginning of the division when dividing signed numbers. 
This operation computes the sign bit of the quotient by performing an 
exclusive-OR of the sign bits of the divisor and the dividend. The A YO 
register is shifted one place so that the computed sign bit is moved into 
the LSB position. The computed sign bit is also loaded into the AQ bit of 
the arithmetic status register. The MSB of A YO shifts into the LSB position 
of AF, and the upper 15 bits of AF are loaded with the lower 15 R bits 
from the ALU, which simply passes the Y input value straight through to 
the R output. The net effect is to left shift the AF-A YO register pair and 
move the quotient sign bit into the LSB position. The operation of DIVS is 
illustrated in Figure 2.2 (on the following page). 
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When dividing unsigned numbers, the DIVS operation is not used. 
Instead, the AQ bit in the arithmetic status register (AST AT) should be 
initialized to zero by manually clearing it. The AQ bit indicates to the 
following operations that the quotient should be assumed positive. 

1 
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Figure 2.2 DIVS Operation 
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The second primitive instruction is the "divide-quotient (DIVQ)" 
operation which generates one bit of quotient at a time and is executed 
repeatedly to compute the remaining quotient bits. For unsigned single 
precision divides, the DIVQ instruction is executed 16 times to produce 16 
quotient bits. For signed single precision divides, the DIVQ instruction is 
executed 15 times after the sign bit is computed by the DIVS operation. 
DIVQ instruction shifts the A YO register left by one bit so that the new 
quotient bit can be moved into the LSB position. The status of the AQ bit 
generated from the previous operation determines the ALU operation to 
calculate the partial remainder. If AQ = 1, the ALU adds the divisor to the 
partial remainder in AF. If AQ = 0, the ALU subtracts the divisor from the 
partial remainder in AF. The ALU output R is offset loaded into AF just as 
with the DIVS operation. The AQ bit is computed as the exclusive-OR of 
the divisor MSB and the ALU output MSB, and the quotient bit is this 
value inverted. The quotient bit is loaded into the LSB of the A YO register 
which is also shifted left by one bit. The DIVQ operation is illustrated in 
Figure 2.3. 

PARTIAL 
REMAINDER 

16 

15 

LOWER 
DIVIDEND 

DIVISOR ,M"'-S;:.;B"--_+-_____ ---\ 

R-BUS 

Figure 2.3 DIVQ Operation 

x Y 
ALU 

R=Y+X IF AQ=1 
R=Y-X IF AQ=O 

15 LSBs 
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The format of the quotient for any numeric representation can be 
determined by the format of the dividend and divisor. Let NL represent 
the number of bits to the left of the binary point, and NR represent the 
number of bits to the right of the binary point of the dividend; OL 
represent the number of bits to the left of the binary point, and DR 
represent the number of bits to the right of the binary point of the divisor; 
then the quotient has NL-OL+ 1 bits to the left of the binary point and 
NR-OR-1 bits to the right of the binary point. 

Some format manipulation may be necessary to guarantee the validity of 
the quotient. For example, if both operands are signed and fully fractional 
(dividend in 1.31 format and divisor in 1.15 format) the result is fully 
fractional (ill 1.15 format) and therefore the dividend must-be sillaller thall 
the divisor for a valid result. To divide two integers (dividend in 32.0 
format and divisor in 16.0 format) and produce an integer quotient (in 16.0 
format), you must shift the dividend one bit to the left (into 31.1 format) 
before dividing. Additional discussion and code examples can be found in 
the ADSP-2100 Applications Handbook, Volume 1. 

Dividend BBBBB.BBBBBBBBBBBBBBBBBBBBBBBBBBB 

NL bits NRbits 

Divisor BB.BBBBBBBBBBBBBB 

OL bits ORbits 

Quotient BBBB.BBBBBBBBBBBB 

(NL-OL+1) bits (NR-OR-1) bits 

Figure 2.4 QuotientFormat 

The algorithm overflows if the result cannot be represented in the format 
of the quotient as calculated above or when the divisor is zero or less than 
the dividend. 
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2.2.8 ALU Status 
The ALU status bits in the ASTAT register are defined below. Complete 
information about the AST A T register and specific bit mnemonics and 
positions is provided in Chapter 4, "Program Control." 

Flag Name Definition 

AZ Zero Logical NOR of all the bits in the ALU result register. 
True if ALU output equals zero. 

AN Negative Sign bit of the ALU result. True if the ALU output is 
negative. 

AV Overflow Exclusive-OR of the carry outputs of the two most 
significant adder stages. True if the ALU overflows. 

AC Carry Carry output from the most significant adder stage. 
AS Sign Sign bit of the ALU X input port. Affected only by the 

ABS instruction. 
AQ Quotient Quotient bit generated only by the DIVS and DIVQ 

instructions. 

2.3 MUL TIPLIER/ACCUMULATOR (MAC) 
The Multiplier / Accumulator (MAC) provides high-speed multiplication, 
multiplication with cumulative addition, multiplication with cumulative 
subtraction and clear-to-zero functions. A feedback function allows part of 
the accumulator output to be directly used as one of the multiplicands on 
the next cycle. 

2.3.1 MAC Block Diagram Discussion 
Figure 2.5, on the following page, shows a block diagram of the 
multiplier / accumulator section. 

The multiplier has two 16-bit input ports X and Y, and a 32-bit product 
output port P. The 32-bit product is passed to a 40-bit adder / subtractor 
which adds or subtracts the new product from the content of the 
multiplier result (MR) register. The MR register is 40-bits wide. In this 
manual, we refer to the entire register as MR. The register actually 
consists of three smaller registers: MRO and MR1 which are 16 bits wide 
and MR2 which is 8 bits wide. The adder / subtractor is greater than 32 bits 
to allow for intermediate overflow in a series of multiply / accumulate 
operations. The multiply overflow (MV) status bit is set when the 
accumulator has overflowed beyond the 32-bit boundary, that is, when 
there are significant (non-sign) bits in the top nine bits of the MR register 
(based on twos-complement arithmetic). 
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The input/ output registers of the MAC section are similar to the ALU. 

The X input port can accept data from either the MX register file or from 
any register on the result (R) bus. The R bus connects the output registers 
of all the computational units, permitting them to be used as input 
operands directly. There are two registers in the MX register file, MXO and 
MXl. These registers can be read and written from the DMD bus. The MX 
register file outputs are dual-ported so that a single register can drive the 
DMD bus at the same time it supplies operands to the multiplier. 

The Y input port can accept data from either the MY register file or the MF 
register. The MY register file has two registers, MYO and MY1; these 
registers can be read and written from the DMD bus and written from the 
PMD bus. The ADSP-2100 instruction set also provides for reading these 
registers over the PMD bus, but there is no direct connection; this 
operation uses the DMD-PMD bus exchange unit. The MY register file 
outputs are also dual-ported so that a single register can drive the DMD 
bus at the same time it supplies operands to the multiplier. 

The output of the adder / subtractor goes to either the MF register or the 
MR register. The MF register is a feedback register which allows bits 
16-31 of the result to be used directly as the multiplier Y input on a 
subsequent cycle. The 40-bit adder / subtractor register (MR) is divided 
into three sections: MR2, MR1, and MRO. Each of these registers can be 
preloaded directly from the DMD bus and output to either the DMD bus 
or the Rbus. 

All the registers surrounding the MAC can be both read and written in the 
same cycle. Registers are read at the beginning of the cycle and written at 
the end of the cycle. All register reads, therefore, read values loaded at the 
end of a previous cycle. A new value written to a register cannot be read 
out until a subsequent cycle. This allows an input register to provide an 
operand to the MAC at the beginning of the cycle and be updated with 
the next operand from memory at the end of the same cycle. It also allows 
a result register to be stored in memory and updated with a new result in 
the same cycle. See the discussion of "Multifunction Instructions" in the 
chapter "Instruction Set Overview" for an illustration of this same-cycle 
read and write. 

The MAC section contains a duplicate bank of registers, shown in Figure 
2.5 as a "shadow" behind the primary registers. There are actually two 
sets of MR, MF, MX, and MY register files. Only one bank is accessible at a 
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time. The additional bank of registers can be activated during an interrupt 
service routine for extremely fast context switching. A new task, such as 
an interrupt service routine, can be executed without transferring current 
states to storage. 

The selection of the primary or alternate bank of registers is controlled by 
a bit in the processor mode status register (MSTAT). Toggling this bit 
switches back and forth between the two register banks. 

2.3.2 MAC Operations 
This section explains the functions of the MAC, its input formats and its 
handling of overflow and saturation. 

2.3.2.1 Standard Functions 
The functions performed by the MAC are: 

X*y 
MR+X*Y 
MR-X*Y 

o 

Multiply X and Y operands 
Multiply X and Y operands and add result to MR register 
Multiply X and Y operands and subtract result from MR 
register 
Clear result (MR) to zero 

In performing a multiply I accumulate, the multiplier output P is fed into a 
40-bit adder I subtractor which adds or subtracts the new product with the 
current contents of the MR register to form the fina140-bit result R. The 32-
bit P output is format adjusted, that is, sign-extended and shifted one bit 
to the left before being added to MR. Bit 31 of P lines up with bit 32 of MR 
(which is bit 0 of MR2) and bit 0 of P lines up with bit 1 of MR (which is bit 
1 of MRO). The LSB is zero-filled. The multiplier result format is shown in 
Figure 2.6. 

This is usually a more convenient format because it eliminates the 
redundant sign bit from the lower 32 bits of the result when multiplying 
signed numbers. This justification is maintained even if one or both of the 
inputs are in unsigned format. 
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MULTIPLIER P OUTPUT 

1 11 1 1 1 1 
7 16 IS 14 13 12 11 10 1511411311211111019 18 17 16 15 14 13 12 11 10 1511411311211111019 18 17 16 Is 14 13 12 11 10 

MR2 MRl 

Figure 2.6 Multiplier Result Format 

2.3.2.2 Input Formats 
To facilitate multiprecision multiplications, the multiplier accepts X and Y 
inputs represented in any combination of signed twos-complement format 
and unsigned format. 

X input Yinput 

signed x signed 
unsigned x signed 
signed X unsigned 
unsigned X unsigned 

The input formats are specified as part of the instruction. These are 
dynamically selectable each time the multiplier is used. 

The (signed x signed) mode is used when multiplying two signed single 
precision numbers or the two upper portions of two signed multiprecision 
numbers. 

MRO • 
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The (unsigned x signed) and (signed x unsigned) modes are used when 
multiplying the upper portion of a signed multiprecision number with the 
lower portion of another or when multiplying a signed single precision 
number by an unsigned single precision number. 

The (unsigned x unsigned) mode is used when multiplying unsigned 
single precision numbers or the non-upper portions of two signed 
multiprecision numbers. 

2.3.2.3 MAC Input/Output Registers 
The sources of MAC input and output are: 

Source for X input port 

MXO,MXl 
AR 
MRO, MRl, MR2 
sRO, SRI 

Source for Y input port 

MYO,MYI 
MF 

2.3.2.4 MR Register Operation 

Destination for R output 
port 
MR (MR2, MRl, MRO) 
MF 

As described, and shown on the block diagram, the MR register is divided 
into three sections: MRO (bits 0-15), MRI (bits 16-31), and MR2 (bits 32-39). 
Each of these registers can be preloaded from the DMD bus and output to 
the R bus or the DMD bus. 

The 8-bit MR2 register is tied to the lower 8 bits of these buses. When MR2 
is output onto the DMD bus or the R bus, it is sign extended to form a 16-
bit value. MR2 also has an automatic sign extend capability. When MRI is 
preloaded from the DMD bus, every bit in MR2 will be set equal to the 
sign bit (MsB) of MRl, so that MR2 appears as an extension of MRI. To 
preload the MR2 register with a value other than MRl' s sign extension, 
you must load MR2 after MRI has been loaded. 

2.3.2.5 MAC Overflow and Saturation 
The adder / subtractor generates an overflow status signal (MV) which is 
loaded into the processor arithmetic status (AsTAT) every time a MAC 
operation is executed. The MV bit is set when the accumulator result, 
interpreted as a twos-complement number, crosses the 32-bit boundary. 
That is, MV is set if the accumulator result crosses the MRI /MR2 
boundary. Another way of stating this is that the MV bit is set if the upper 
nine bits of the result register MR are not all ones or all zeros. 
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The MR register has a saturation capability which sets MR to plus or 
minus the maximum value if an overflow or underflow has occurred. The 
saturation operation depends on the overflow status bit (MV) in the 
processor arithmetic status (ASTAT) and the MSB of the MR2 register. The 
following table summarizes the MR saturation operation. 

MVbit MSB of MR2 MR content after saturation 

o no change 
1 no change 

o 
o 
1 
1 

o 00000000 0111111111111111 1111111111111111 full-scale positive 
1 11111111 1000000000000000 0000000000000000 full-scale negative 

Table 2.3 MAC Saturation Content 

Saturation in the MAC is an instruction rather than a mode as in the ALU. 
The saturation instruction is intended to be used at the completion of a 
string of multiply / accumulates so that intermediate overflows do not 
cause the accumulator to saturate. 

Overflowing beyond the MSB of MR2 should never be allowed. The true 
sign bit of the result is then irretrievably lost and saturation may not 
produce a correct value. It takes more than 255 overflows (MV type) to 
reach this state, however. 

2.3.2.6 Rounding Mode 
The accumulator has the capability for rounding the 40-bit result R at the 
boundary between bit 15 and bit 16. Rounding can be specified as part of 
the instruction code. The rounded output is directed to either MR or MF. 
When rounding is invoked with MP as the output register, register 
contents in MP represent the rounded 16-bit result. Similarly, when MR is 
selected as the output, MR1 contains the rounded 16-bit result; the 
rounding effect in MR1 affects MR2 as well and MR2 and MR1 represent 
the rounded 24-bit result. 

The accumulator uses an unbiased rounding scheme. The conventional 
method of biased rounding is to add a 1 into bit position 15 of the adder 
chain. This method causes a slight positive net bias since the midway 
value is always rounded upward. This problem is eliminated by detecting 
this midway point and rounding half of the midway values upward and 
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half of them downward, yielding a zero net bias over a large number of 
values. When the midway point is detected, bit 16 in the result output is 
forced to zero. This is also known as round to even. 

For example, using x to represent any bit pattern (not all zeros), here are 
two examples of how this rounding scheme operates. 

Example 1 MR2 MRl MRO 

Unrounded value: xxxxxxxx xxxxxxxx00100101 lxxxxxxxxxxxxxx 

Bit 15 = 1 
Add 1 to bit 15 and carry 1 

Rounded value: xxxxxxxx xxxxxxxx00100110 Oxxxxxxxxxxxxxxx 

The first example illustrates the typical rounding operation. The 
compensation to avoid net bias becomes visible when the lower 15 bits are 
all zero and bit 15 is one, i.e. the midpoint value. This is shown below. 

Example 2 MR2 MRl MRO 

Unrounded value: xxxxxxxx xxxxxxxx 01100110 1000000000000000 

Bit 15 = 1 and bits 0-14 = 0 
Add 1 to bit 15 and carry 1 

Rounded value: xxxxxxxx xxxxxxxx 01100111 0000000000000000 

Since bit 16 = 1, force it to 0 
xxxxxxxx xxxxxxxx 01100110 0000000000000000 

In this last case, bit 16 is forced to zero. This algorithm is employed on 
every rounding operation, but is only evident when the bit patterns shown 
in the last example are present. 

2.4 BARREL SHIFTER 
The shifter unit provides a complete set of shifting functions for 16-bit 
inputs, yielding a 16-bit or 32-bit output. These include arithmetic shift, 
logical shift, normalization, derivation of exponent and derivation of 



common exponent for an entire block of numbers. These basic functions 
can be combined to efficiently implement any degree of numerical format 
control, including full floating point representation. 

2.4.1 Shifter Block Diagram Discussion 
Figure 2.7 (on the following page) shows a block diagram of the shifter 
section. The shifter section can be divided into the following components: 
the shifter array, the OR/PASS logic, the exponent detector, and the 
exponent compare logic. 

The shifter array is a 16x32 barrel shifter. It accepts a 16-bit input and can 
place it anywhere in the 32-bit output field, from off-scale right to off-scale 
left, in a single cycle. This gives 49 possible placements within the 32-bit 
field. The placement of the 16 input bits is determined by a control code 
(C) and a HI/LO reference signal. 

The shifter array and its associated logic are surrounded by a set of 
registers. The shifter input (S1) register provides input to the shifter array 
and the exponent detector. The SI register is 16 bits wide and is readable 
and writable from the DMD bus. The shifter array and the exponent 
detector can also take any result registers from the R bus as inputs. The 
shifter result (SR) register is 32 bits wide and is divided into two 16-bit 
sections, SRO and SRI. The SRO and SR1 registers can be preloaded from 
the DMD bus and output to either the DMD bus or the R bus. The SR 
register is also fed back to the OR/PASS logic to allow double-precision 
shift operations. 

The SE register ("shifter exponent") drives the shifting operation itself. SE 
is 8 bits wide and holds the exponent during the normalize and 
denormalize operations. The SE register is load able and readable from the 
lower 8 bits of the DMD bus. It is a twos-complement, 8.0 value. 

The SB register ("shifter block") is important in block floating-point 
operations where it holds the block exponent shift value, that is, the value 
by which the block values must be shifted to conform to the actual 
exponent. SB is 5 bits wide and holds the most recent block exponent 
value. The SB register is loadable and readable from the lower 5 bits of the 
DMD bus. It is a twos-complement, 5.0 value. 

Whenever the SE or SB registers are output onto the DMD bus, they are 
sign-extended to form a 16-bit value. 
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The SI, SE and SR registers can be read and written in the same cycle. 
Registers are read at the beginning of the cycle and written at the end of 
the cycle. All register reads, therefore, read values loaded at the end of a 
previous cycle. A new value written to a register cannot be read out until 
a subsequent cycle. This allows an input register to provide an operand to 
the Shifter at the beginning of the cycle and be updated with the next 
operand from memory at the end of the same cycle. It also allows a result 
register to be stored in memory and updated with a new result in the 
same cycle. See the discussion of "Multifunction Instructions" in the 
chapter "Instruction Set Overview" for an illustration of this same-cycle 
read and write. 

The shifter section contains a duplicate bank of registers, shown in Figure 
2.7 as a "shadow" behind the primary registers. There are actually two 
sets of SE, SB, SI, SR1, and SRO registers. Only one bank is accessible at a 
time. The additional bank of registers can be activated during an interrupt 
service routine for extremely fast context switching. A new task, such as 
an interrupt service routine, can be executed without transferring current 
states to storage. 

The selection of the primary or alternate bank of registers is controlled by 
a bit in the processor mode status register (MSTAT). Toggling this bit 
switches back and forth between the two register banks. 

The shifting of the input is determined by a control code (C) and a HI/LO 
reference signal. The control code is an 8-bit signed value which indicates 
the direction and number of places the input is to be shifted. Positive 
codes indicate a left shift (upshift) and negative codes indicate a right shift 
(downshift). The control code can come from three sources: the content of 
the shifter exponent (SE) register, the negated content of the SE register or 
an immediate value from the instruction. 

The HI/LO signal determines the reference point for the shifting. In the 
HI state, all shifts are referenced to SRl (the upper half of the output 
field), and in the LO state, all shifts are referenced to SRO (the lower half of 
the output field). The HI/LO reference feature is useful when shifting 32-
bit values since it allows both halves of the number to be shifted with the 
same control code. HI/LO reference signal is dynamically selectable each 
time the shifter is used. 
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The shifter fills any bits to the right of the input value in the output field 
with zeros, and bits to the left are filled with the extension bit (X). The 
extension bit can be fed by three possible sources depending on the 
instruction being performed. The three sources are the MSB of the input, 
the AC bit from the arithmetic status register (ASTAT) or a zero. The AC 
bit is used when constructing 32-bit results from successive multiword 
operations in the ALU. 

Table 2.4 gives a listing of shifter array output as a function of the control 
code and HIILO signal. 

The OR/PASS logic allows the shifted sections of a multiprecision number 
to be combined into a single quantity. When P.A.5S is selected, the shifter 
array output is passed through and loaded into the shifter result (SR) 
register unmodified. When OR is selected, the shifter array is bitwise 
ORed with the current contents of the SR register before being loaded 
there. 

The exponent detector derives an exponent for the shifter input value. The 
exponent detector operates in one of three ways which determine how the 
input value is interpreted. In the HI state, the input is interpreted as a 
single precision number or the upper half of a double precision number. 
The exponent detector determines the number of leading sign bits and 
produces a code which indicates how many places the input must be up
shifted to eliminate all but one of the sign bits. The code is negative so that 
it can become the effective exponent for the mantissa formed by removing 
the redundant sign bits. 

In the HI-extend state (HIX), the input is interpreted as the result of an add 
or subtract performed in the ALU section which Ii1ay have overflowed. 
Therefore the exponent detector takes the arithmetic overflow (A V) status 
into consideration. If A V is set, then a + 1 exponent is output to indicate an 
extra bit (the ALU Carry bit); if AV is not set; then HI-extend functions 
exactly like the HI state. When performing a derive exponent function in 
HI or HI-extend modes, the exponent detector also outputs a shifter sign 
(SS) bit which is loaded into the arithmetic status register (ASTAT). The 
sign bit is the same as the MSB of the shifter input except when A V is set; 
when A V is set in HI-extend state, the MSB is inverted to restore the sign 
bit of the overflowed value. 
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ABCDEFGHIJKLMNPR represents the 16-bit input pattern 

X stands for the extension bit 

Control Code Shifter Array Output 

H I reference LO Reference 

+16 to +127 +32 to +127 00000000 00000000 00000000 00000000 
+15 +31 ROOOOOOO 00000000 00000000 00000000 
+14 +30 PROOOOOO 00000000 00000000 00000000 
+13 +29 NPROOOOO 00000000 00000000 00000000 
+12 +28 MNPROOOO 00000000 00000000 00000000 
+11 +27 LMNPROOO 00000000 00000000 00000000 
+10 +26 KLMNPROO 00000000 00000000 00000000 
+9 +25 JKLMNPRO 00000000 00000000 00000000 
+8 +24 IJKLMNPR 00000000 00000000 00000000 
+7 +23 HIJKLMNP ROOOOOOO 00000000 00000000 
+6 +22 GHIJKLMN PROOOOOO 00000000 00000000 
+5 +21 FGHIJKLM NPROOOOO 00000000 00000000 
+4 +20 EFGHIJKL MNPROOOO 00000000 00000000 
+3 +19 DEFGHIJK LMNPROOO 00000000 00000000 
+2 +18 CDEFGHIJ KLMNPROO 00000000 00000000 
+1 +17 BCDEFGHI JKLMNPRO 00000000 00000000 

0 +16 ABCDEFGH IJKLMNPR 00000000 00000000 
-1 +15 XABCDEFG HIJKLMNP ROOOOOOO 00000000 
-2 +14 XXABCDEF GHIJKLMN PROOOOOO 00000000 
-3 +13 XXXABCDE FGHIJKLM NPROOOOO 00000000 
-4 +12 XXXXABCD EFGHIJKL MNPROOOO 00000000 
-5 +11 XXXXXABC DEFGHIJK LMNPROOO 00000000 
-6 +10 XXXXXXAB CDEFGHIJ KLMNPROO 00000000 
-7 +9 XXXXXXXA BCDEFGHI JKLMNPRO 00000000 
-8 +8 XXXXXXXX ABCDEFGH IJKLMNPR 00000000 
-9 +7 XXXXXXXX XABCDEFG HIJKLMNP ROOOOOOO 
-10 +6 XXXXXXXX XXABCDEF GHIJKLMN PROOOOOO 
-11 +5 XXXXXXXX XXXABCDE FGHIJKLM NPROOOOO 
-12 +4 XXXXXXXX XXXXABCD EFGHIJKL MNPROOOO 
-13 +3 XXXXXXXX XXXXXABC DEFGHIJK LMNPROOO 
-14 +2 XXXXXXXX XXXXXXAB CDEFGHIJ KLMNPROO 
-15 +1 XXXXXXXX XXXXXXXA BCDEFGHI JKLMNPRO 
-16 0 XXXXXXXX XXXXXXXX ABCDEFGH IJKLMNPR 
-17 -1 XXXXXXXX XXXXXXXX XABCDEFG HIJKLMNP 
-18 -2 XXXXXXXX XXXXXXXX XXABCDEF GHIJKLMN 
-19 -3 XXXXXXXX XXXXXXXX XXXABCDE FGHIJKLM 
-20 -4 XXXXXXXX XXXXXXXX XXXXABCD EFGHIJKL 
-21 -5 XXXXXXXX XXXXXXXX XXXXXABC DEFGHIJK 
-22 -6 XXXXXXXX XXXXXXXX XXXXXXAB CDEFGHIJ 
-23 -7 XXXXXXXX XXXXXXXX XXXXXXXA BCDEFGHI 
-24 -8 XXXXXXXX XXXXXXXX XXXXXXXX ABCDEFGH 
-25 -9 XXXXXXXX XXXXXXXX XXXXXXXX XABCDEFG 
-26 -10 XXXXXXXX XXXXXXXX XXXXXXXX XXABCDEF 
-27 -11 XXXXXXXX XXXXXXXX XXXXXXXX XXXABCDE 
-28 -12 XXXXXXXX XXXXXXXX XXXXXXXX XXXXABCD 
-29 -13 XXXXXXXX XXXXXXXX XXX XXX XX XXXXXABC 
-30 -14 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXAB 
-31 -15 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXA 
-32 in -128 -16 in -128 XXXXXXXX XXXXXXXX XXXXXXXX xxxxxxxx 

Table 2.4 Shifter Array Characteristic 
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In the LO state, the input is interpreted as the lower half of a double 
precision number. In the LO state, the exponent detector interprets the SS 
bit in the arithmetic status register (ASTAT) as the sign bit of the number. 
The SE register is loaded with the output of the exponent detector only if 
SE contains -15. This occurs only when the upper half-which must be 
processed first-contained all sign bits. The exponent detector output is 
also offset by -16 to account for the fact that the input is actually the lower 
half of a 32-bit value. Table 2.5 gives the exponent detector characteristics 
for all three modes. 

The exponent compare logic is used to find the largest exponent value in 
an array of shifter input values. The exponent compare logic in 
conjunction with the exponent detector derives a block exponent. The 
comparator compares the exponent value derived by the exponent 
detector with the value stored in the shifter block exponent (SB) register 
and updates the SB register only when the derived exponent value is 
larger than the value in SB register. See the examples below. 

2.4.2 Shifter Operations 
The shifter performs the following functions (instruction mnemonics 
shown in parenthesis): 

• Arithmetic Shift (ASHIFf) 
• Logical Shift (LSHIFT) 
• Normalize (NORM) 
• Derive Exponent (EXP) 
• Block Exponent Adjust (EXPADJ) 

These basic shifter instructions can be used in a variety of ways, 
depending on the underlying arithmetic requirements. The following 
sections present single and multiple precision examples for these 
functions: 

• Derivation of a Block Exponent 
• Immediate Shifts 
• Denormalization 
• Normalization 

The shift functions (arithmetic shift, logical shift, and normalize) can be 
optionally specified with PASS/OR and HI/LO modes so as to facilitate 
multiprecision operations. PASS passes the value through to SR directly. 
OR logically ORs the shift result with the current contents of SR. OR is 



S = Sign bit 
N = Non-sign bit 
D = Don't care bit 

HI Mode 

Shifter Array Input Output AV 

1 
SNDDDDDD 00000000 0 0 
SSNDDDDD 00000000 -1 0 
SSSNDDDD 00000000 -2 0 
SSSSNDDD 00000000 -3 0 
SSSSSNDD 00000000 -4 0 
SSSSSSND 00000000 -5 0 
SSSSSSSN 00000000 -6 0 
SSSSSSSS NDDDDDDD -7 0 
SSSSSSSS SNDDDDDD -8 0 
SSSSSSSS SSNDDDDD -9 0 
SSSSSSSS SSSNDDDD -10 0 
SSSSSSSS SSSSNDDD -11 0 
SSSSSSSS SSSSSNDD -12 0 
SSSSSSSS SSSSSSND -13 0 
SSSSSSSS SSSSSSSN -14 0 
SSSSSSSS SSSSSSSS -15 0 

LO Mode 

SS Shifter Array Input Output 

S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 

NDDDDDDD DDDDDDDD -15 
SNDDDDDD DDDDDDDD -16 
SSNDDDDD DDDDDDDD -17 
SSSNDDDD DDDDDDDD -18 
SSSSNDDD 00000000 -19 
SSSSSNDD 00000000 -20 
SSSSSSND DDDDDDDD -21 
SSSSSSSN DDDDDDDD -22 
SSSSSSSS NDDDDDDD -23 
SSSSSSSS SNDDDDDD -24 
SSSSSSSS SSNDDDDD -25 
SSSSSSSS SSSNDDDD -26 
SSSSSSSS SSSSNDDD -27 
SSSSSSSS SSSSSNDD -28 
SSSSSSSS SSSSSSND -29 
SSSSSSSS SSSSSSSN -30 
SSSSSSSS SSSSSSSS -31 

onal Un 

HIX Mode 

Shifter Array Input Output 

00000000 00000000 +1 
SNDDDDDD 00000000 0 
SSNDDDDD 00000000 -1 
SSSNDDDD 00000000 -2 
SSSSNDDD 00000000 -3 
SSSSSNDD 00000000 -4 
SSSSSSND 00000000 -5 
SSSSSSSN 00000000 -6 
SSSSSSSS NDDDDDDD -7 
SSSSSSSS SNDDDDDD -8 
SSSSSSSS SSNDDDDD -9 
SSSSSSSS SSSNDDDD -10 
SSSSSSSS SSSSNDDD -11 
SSSSSSSS SSSSSNDD -12 
SSSSSSSS SSSSSSND -13 
SSSSSSSS SSSSSSSN -14 
SSSSSSSS SSSSSSSS -15 

Table 2.5 
Exponent Detector Characteristic 
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used to join two 16-bit quantities into a 32-bit value in SR. The HI and LO 
modifiers reference the shift to the upper or lower half of the 32-bit SR 
register. These shift functions take inputs from either the SI register or any 
other result register and load the 32-bit shifted result into the SR register. 

2.4.2.1 Shifter Input/Output Registers 
The sources of shifter input and output are: 

Source for 
Shifter input 
SI 
AR 
MRO; MRl, MR2 
SRO, SRI 

Destination for 
Shifter output 
SR (SRO, SRI) 

2.4.2.2 Derive Block Exponent 
This function detects the exponent of the number largest in magnitude in 
an array of numbers. The EXPADJ instruction performs this function. The 
sequence of steps for a typical example is shown below. 

A. Load SB with -16 

The SB register is used to contain the exponent for the entire block. The 
possible values at the conclusion of a series of EXPADJ operations range 
from -15 to o. The exponent compare logic updates the SB register if the 
new value is greater than the current value. Loading the register with -16 
initializes it to a value certain to be less than any actual exponents 
detected. 

B. Process the first array element: 

Array(1) = 11110101 10110001 

Exponent = -3 

-3> SB (-16) 

SB gets -3 
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C. Process next array element: 

Array(2)= 00000001 01110110 

Exponent= -6 

-6<-3 

SB remains - 3 

D. Continue processing array elements. 

When and if an array element is found whose exponent is greater than SB, 
that value is loaded into SB. When all array elements have been 
processed, the SB register contains the exponent of the largest number in 
the entire block. No normalization is performed. EXPADJ is purely an 
inspection operation. The value in SB could be transferred to SE and used 
to normalize the block to maximum precision on the next pass through 
the Shifter. Or it could be simply associated with that data for subsequent 
interpretation. 

2.4.2.3 Immediate Shifts 
An immediate shift simply shifts the input bit pattern to the right 
(downshift) or left (upshift) by a given number of bits. Immediate shift 
instructions use the data value in the instruction itself to control the 
amount and direction of the shifting operation. (See the chapter 
"Instruction Set Overview" for an example of this instruction.) The data 
value controlling the shift is an 8-bit signed number. The SE register is not 
used or changed by an immediate shift. 

The following example shows the input value downshifted relative to the 
upper half of SR (SRI). This is the (HI) version of the shift. 

Input 

Shift value 

SR 

10110110 10100011 

-5 

XXXXX101 10110101 00011XXX XXXXXXXX 
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Here is the same input value shifted in the other direction, referenced to 
the lower half (LO) of SR. 

Input 

Shift value 

SR 

10110110 10100011 

+5 

XXXXXXXX XXX10110 11010100 011XXXXX 

In addition to the direction of the shifting operation, the shift may be 
either arithmetic (ASHIFf) or logical (LSHIFf). For example, the following 
shows a logical shift, relative to the upper half of SR (HI). 

Input 

Shift value 

SR 

10110110 10100011 

-5 

000001011011010100011000 00000000 

This example shows an arithmetic shift of the same input and shift code. 

Input 

Shift value 

SR 

10110110 10100011 

-5 

111111011011010100011000 00000000 

2.4.2.4 Denormalize 
Denormalizing refers to shifting a number according to a predefined 
exponent. The operation is effectively a block floating point to fixed point 
conversion. 

Denormalizing requires a sequence of operations. First, the SE register 
must contain the exponent value. This value may be explicitly loaded or 
may be the result of some previous operation. Next the shift itself is 
performed, taking its shift value from the SE register, not from an 
immediate data value. 

There are two examples of denormalizing a double-precision number 
below. The first shows a denormalization in which the upper half of the 
number is shifted first, followed by the lower half. Since computations 
may produce output in either order, the second example shows the same 
operation in the other order, i.e. lower half first. 



Always select the arithmetic shift for the higher half (HI)of the twos
complement input (or logical for unsigned-magnitude). Likewise, the first 
half processed uses the PASS modifier. 

Modifiers = HI, PASS Shift operation = Arithmetic, SE =-3 

First Input 1011 0110 10100011 (upper half of desired result) 

SR 11110110 11010100 01100000 00000000 

Now the lower half is processed. Always select a logical shift for the lower 
half of the input. Likewise, the second half processed must use the OR 
modifier to avoid overwriting the previous half of the output value. 

Modifiers = LO, OR Shift operation = Logical, SE = -3 

Second Input 0111 0 11 0 01011101 (lower half of desired result) 

SR 11110110 11010100 01101110 11001011 

Here is the same input processed in the reverse order. The higher half is 
always arithmetically shifted and the lower half is logically shifted. The 
first input is PASSed through to SR, but the second half is ORed to create 
one double-precision value in SR. 

Modifiers = LO, PASS Shift operation = Logical, SE = -3 

First Input 01110110 01011101 (lower half of desired result) 

SR 00000000 00000000 00001110 11001011 

Modifiers = HI, OR Shift operation = Arithmetic, SE = -3 

Second Input 1011 0110 10100011 (upper half of desired result) 

SR 11110110 11010100 01101110 11001011 
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2.4.2.5 Normalize 
Normalizing a number is the process of shifting a twos-complement 
number within a field so that the rightmost sign bit lines up with the MSB 
position of the field and recording how many places the number was 
shifted. The operation can be thought of as a fixed to floating point 
conversion, generating an exponent and a mantissa. 

Normalizing is a two stage process. The first stage derives the exponent. 
The second stage does the actual shifting. The first stage uses the EXP 
instruction which detects the exponent value and loads in into the SE 
register. This instruction (EXP) recognizes a (ill) and (La) modifier. The 
second stage uses the NORM instruction. NORM recognizes (HI) and (La) 
and the PASS and OR modifiers as well. NOl{M uses the negated value of 
the SE register as its shift control code. The negated value is used so that 
the shift is made in the correct direction, producing a mantissa 
corresponding to the exponent value in SE. 

Here is a normalization example for a single precision input. 

Detect Exponent Modifier = HI 

Input 11110110 11010100 

SE set to -3 

Normalize, with modifier = HI Shift driven by value in SE 

Input 11110110 11010100 

SR 10110110 10100000 00000000 00000000 

For a single precision input, the normalize operation can use either the 
(HI) or (La) modifier, depending on whether you want the result in SRI 
or SRO, respectively. 

Double precision values follow the same general scheme. The first stage 
detects the exponent and the second stage normalizes the two halves of 
the input. For double precision, however, there are two operations in each 
stage. 
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For the first stage, the upper half of the input must be operated on first. 
This first exponent derivation loads the exponent value into SE. The 
second exponent derivation, operating on the lower half of the number 
will not alter the SE register unless SE = -15. This happens only when the 
first half contained all sign bits. In this case, the second operation will load 
a value into SE. (See Table 2.5) This value is used to control both parts of 
the normalization that follows. 

For the second stage, now that SE contains the correct exponent value, the 
order of operations is immaterial. The first half (whether HI or LO) is 
normalized with the PASS modifier and the second half with the OR 
modifier to create one double precision value in SR. The (HI) and (LO) 
modifiers identify which half is being processed. 

Here is a complete example of a typical double precision normalization. 

1. Detect Exponent,Modifier=HI 

First Input 11110110 11010100 

SE set to -3 

2. Detect Exponent, Modifier = La 

Second Input 01101110 11001011 

SE unchanged, still - 3 

(Must be upper half) 

3. Normalize, Modifiers = HI, PASS, SE = -3 (negated) 

First Input 11110110 11010100 

SR 10110110 10100000 00000000 00000000 

4. Normalize, Modifiers = La, OR, SE = -3 (negated) 

Second Input 01101110 11001011 

SR 10110110 10100011 01110110 01011000 

2-33 



2 

2-34 

omputational nits 

If the upper half of the input contains all sign bits, the SE register value is 
determined by the second derive exponent operation as shown below. 

1. Detect Exponent, Modifier = HI 

First Input 11111111 11111111 (Must be upper half) 

SE set to -15 

2. Detect Exponent,Modifier = LO 

Second Input 11110110 11010100 

SE now set to -19 

3. Normalize, Modifiers = HI, PASS, SE = -19 (negated) 

First Input 11111111 11111111 

SR 00000000 00000000 00000000 00000000 

All values of SE less than -15 (resulting in a shift of + 16 or more) upshift 
the input completely off scale. 

4. Normalize, Modifiers = LO, OR, SE = -19 (negated) 

Second Input 11110110 11010100 

SR 10110110 10100000 00000000 00000000 

There is one additional normalization situation, requiring the HI-extended 
(HIX) state. This is specifically when normalizing ALU results (AR) that 
may have overflowed. This operation reads the arithmetic status word 
(ASTAT) overflow bit (A V) and the carry bit (AC) in conjunction with the 
value in AR. A V will be set (1) if an overflow has occurred. AC will retain 
the true sign of the twos-complement value. 
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For example, given these conditions: 

AR = 11111010 00110010 

A V = 1, indicating overflow 

AC = 0, the true sign bit of this value 

1. Detect Exponent, Modifier = HIX 

SE gets set to + 1 

2. Normalize, Modifier = HI, SE = 1 

AR= 11111010 00110010 

SR = 011111 01 00011 0 0 1 

The AC bit is supplied as the sign bit, shown in bold above. 

n 2 
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The HIX operation executes properly regardless of whether there has 
actually been an overflow. Consider this example. 

AR = 11100011 01011011 

AV = 0, indicating no overflow 

AC = 0, not meaningful if A V = 0 

1. Detect Exponent, Modifier = HIX 

SE set to -2 

2. Normalize, Modifier = HI, SE = -2 

AR::::: 11100011 01011011 

SR::::: 10001101 0110100000000000 00000000 

The AC bit is not used as the sign bit. A brief examination of Table 2.4 
shows that the HIX mode is identical to the HI mode when A V is not set. 



Data Moves 

3.1 INTRODUCTION 
This chapter describes sections of the ADSP-2100 that control the 
movement of data to and from the processor. These are the Data Address 
Generators (DAGs) and the unit for exchanging data between the 
Program Memory Data bus and the Data Memory Data Bus, the PMD
DMD Bus Exchange Unit. 

3.2 DATA ADDRESS GENERATORS (DAGS) 
The ADSP-2100 contains two independent data address generators so that 
both program and data memories can be accessed simultaneously. The 
DAGs provide indirect addressing capabilities. Both perform automatic 
address modification. For circular buffers, the DAGs can perform modulo 
address modification. The two DAGs differ: DAG1 only generates data 
memory addresses, but provides an optional bit-reversal capability, 
DAG2 can generate both data memory and program memory addresses, 
but has no bit-reversal capability. 

While the following discussion explains the internal workings of the 
DAGs bear in mind that the ADSP-21 00 instruction set and Cross
Software System provide a direct method for declaring buffers as circular 
or linear and managing the placement of the buffer in memory. Only the 
initializing of DAG registers needs to be explicitly programmed. See the 
discussion of data structures in Chapter 6, "Instruction Set Overview." 

3.2.1 DAG Block Diagram Discussion 
Figure 3.1 (on the following page) shows a block diagram of a single data 
address generator. There are three register files: the modify (M) register 
file, the indirect (I) register file, and the length (L) register file. Each of the 
register files contains four 14-bit registers which can be read from and 
written to via the DMD bus. 

The I registers (10-3 in DAG1, 14-7 in DAG2) contain the actual addresses 
used to access memory. When data is accessed in indirect mode, the 
address stored in the selected I register is driven out onto the appropriate 
address bus and becomes the memory address. With DAG1, the output 
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address can be bit-reversed before being driven onto the address bus by 
setting the appropriate mode bit in the mode status register (MSTAT) as 
discussed below. Bit-reversal facilitates radix-2 FFT addressing. 

The data address generator employs a post-modify scheme; after an 
indirect data access, the specified M register (MO-3 in DAGl, M4-7 in 
DAG2) is automatically added to the specified I register, modifying it. The 
choice of the I and M registers are independent within each DAG. In other 
words, any register in the 10-3 set may be modified by any register in the 
MO-3 set in any combination, but not by those in DAG2 (M4-7). The 
modification values stored in M registers are signed numbers so that the 
next address can be either higher or lower. 



The address generators support both linear addressing and circular 
addressing. The value of the L register determines which addressing 
scheme is used. L registers and I registers are paired and the selection of 
the L register (LO-3 in DAG1, L4-7 in DAG2) is determined by the I 
register used. Each time an I register is selected, the corresponding L 
register provides the modulus logic with the length information to wrap 
the address around if necessary. For linear buffer addressing, the modulus 
logic is disabled by setting the corresponding L register to zero. In this 
case, the modified I register value is simply the sum of the M register 
content and the I register content. 

For circular buffer addressing, the L register is initialized with the length 
of the buffer. If the sum of the M register content and the I register content 
would cross the buffer boundary, the modified I register value is 
calculated by the modulus logic using the L register value (see "Modulo 
Addressing" below). 

All data address generator registers (I, M, and L registers) are loadable 
and readable from the lower 14 bits of the DMD bus. Since I and L register 
contents are considered to be unsigned, the upper 2 bits of the DMD bus 
are padded with zeros when reading them. M register contents are signed; 
when reading an M register, the upper 2 bits of the DMD bus are sign
extended. 

3.2.2 Modulo Addressing 
The modulus logic implements automatic pointer wraparound for 
accessing circular buffers. To calculate the next address, the modulus logic 
uses the following information. 

• The current location; found in the I register (unsigned) 
• The modify value; found in the M register (signed) 
• The buffer length; found in the L register (unsigned) 
• The buffer base address (implicitly defined by I and L registers) 

To avoid having another set of ''base address" registers, the processor 
imposes the following restriction on the placement of circular buffers. 

• If the buffer length requires N bits to represent in binary, then the lower N 
bits of the buffer base address must be zero. 

With the above rule the base address can be obtained by masking out the 
lower N bits of the I register content in binary. Note that the ADSP-2100 
Linker automatically places circular buffers at a proper address. 
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There is one additional restriction imposed by the modulus logic. 

• The modify value must be less than or equal to the buffer length. 

Therefore, in one operation, the modified address cannot wrap around the 
buffer more than once. 

The modified address is calculated with the formula below. 

Modified address = (I + M - B) Modulo (L) + B 

Where: 

M modify value (signed) 
B base address 
L buffer length 
M:S: L 

For illustration, consider the following examples of base address 
calculation. 

3.2.2.1. Circular Buffer Base Address Example 1 
You want a circular buffer of length 8, which requires four bits to 
represent in binary. Valid base addresses, therefore, are multiples of 16, 
requiring the lower four bits of the base address to be zero: H#OOOO, 
H#0010, H#0020, H#0030 and so on (hexadecimal notation). 

3.2.2.2. Circular Buffer Base Address Example 2 
You want a circular buffer of length 7, which requires three bits to 
represent in binary. Valid base addresses, therefore, are multiples of 8, 
requiring the lower three bits of the base address to be zero: H#OOOO, 
H#0008, H#OOlO, H#0018, H#0020 and so on (hexadecimal notation). 

Here are two examples of circular buffer addressing operation. 

3.2.2.3. Circular Buffer Operation Example 1 
Suppose that 10 = 5, MO = 1 and LO = 3. A length of three takes two bits to 
represent. By zeroing the lower two bits of the 10 register the processor 
determines that the base address is at 4. The next address is calculated by 
adding MO to 10, resulting in an address of 6. Successive data memory 
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addresses using 10 for indirect addressing produce the sequence: 6,4,5,6, 
4,5 .... For MO = -1 (H#3FFF), 10 would produce the sequence: 4, 6, 5, 4, 6, 
5,4 .. .. 

3.2.2.4. Circular Buffer Operation Example 2 
Assume that 10 = 9, MO = -2 and LO = 5. This example highlights the fact 
that the address sequence does not have to result in a "direct" hit of the 
buffer boundary. The 5 word buffer resides at locations 8 through 12 
inclusive. The successive data memory addresses using 10 for indirect 
addressing cycle through the sequence: 9, 12, 10, 8, 11,9 .... 

3.2.3 Bit·Reverse Addressing 
The bit-reverse logic is primarily intended for use in FFT computations 
where inputs are supplied or the outputs generated in bit-reversed order. 
Bit-reversing is available only on addresses generated by DAG1. The 
pivot point for the reversal is the midpoint of the 14-bit address, between 
bits 6 and 7. This is illustrated in the following chart. 

Individual DMA lines (DMA ) 
N 

Normal Order 13 12 11 10 0 9 08 07 06 05 04 03 02 01 00 

Bit-reversed 00 01 02 03 04 05 06 07 08 09 10 11 12 13 

Bit-reversed addressing is a mode, enabled and disabled by setting a 
mode bit in the mode status register (MSTAT). When enabled, all 
addresses generated using indirect registers 10-3 are bit-reversed upon 
output. (The modified valued stored back after post-update remains in 
normal order.) This mode continues until the status bit is reset. 

It is possible to bit-reverse address values less than 14 bits. You must 
determine the first address and also initialize the M register to be used 
with a value calculated to modify the I register bit-reversed output to the 
desired range. This value is: 

2(14-N) 

Where N is the number of bits you wish to output reversed. For complete 
information get the application note Variable Width Bit-Reversing on the 
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ADSP-141O Address Generator; it has a general discussion of this procedure. 
The ADSP-2100 Applications Handbook, Volume 1 also has a complete 
example of this in the chapter on Fast Fourier Transforms. 

3.3 PMD-DMD BUS EXCHANGE 
This unit couples the program memory data bus and the data memory 
data bus, allowing them to transfer data in both directions. Since the 
program memory data (PMD) bus is 24 bits wide, while the data memory 
data (DMD) bus is 16 bits wide, only the upper 16 bits of PMD can be 
directly transferred. An internal register (PX) is always loaded with (or 
supplies) the additional 8 bits. This register can be directly loaded or read 
when the full 24 bits are required. 

Note that when reading data from program memory and data memory 
simultaneously, there is a dedicated path from the upper 16 bits of the 
PMD bus to the Y registers of the computational units. This read-only path 
does not use the bus exchange circuit; it is the path shown on the 
individual computational unit block diagrams. 

3.3.1 PMD-DMD Block Diagram Discussion 
Figure 3.2 shows a block diagram of this circuit. There are two types of 
connections provided in this section. 

The first type of connection is a one-way path from each bus to the other. 
This is implemented with two tristate buffers connecting the DMD bus 
with the upper 16 bits of the PMD bus. One of these two buffers is 
normally used when data is exchanged between the program memory and 
one of the registers connected to the DMD bus. This is the path used to 
write data to program memory; it is not shown in the individual 
computational unit block diagrams. 

The second connection is through the PX register. The PX register is 8-bits 
wide and can be loaded from either the lower 8 bits of the DMD bus or the 
lower 8 bits of the PMD bus. Its contents can also be read to the lower 8 
bits of either bus. 

PX register access follows the principles described below. 

From the PMD bus, the PX register is: 

1. Loaded automatically whenever data (not an instruction) is read from 
program memory to any register. 



2. Read out automatically as the lower 8 bits when data is written to 
program memory. 

From the DMD bus, the PX register may be: 

1. Loaded with a data move instruction, explicitly specifying the PX 
register as the destination. The lower 8 bits of the data value are used 
and the upper 8 are discarded. 

2. Read with a data move instruction, explicitly specifying the PX register 
as a source. The upper 8 bits of the value read from the register are all 
zeroes. 

Whenever any register is written out to program memory, the source 
register supplies the upper 16 bits. The contents of the PX register are 
automatically added as the lower 8 bits. If these lower 8 bits of data to be 
transferred to program memory (through the PMD bus) are important, the 
PX register should be loaded from DMD bus before the program memory 
write operation. 

PMDBUS 
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Figure 3.2 PMD-DMD Bus Exchange 
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4.1 INTRODUCTION 
This chapter describes the sections of the ADSP-2100 that control and 
influence the flow of your program's execution: the program sequencer, 
its associated status and interrupt logic and the cache memory. 

4.2 PROGRAM SEQUENCER & STATUS 
The program sequencer generates a stream of instruction addresses, 
providing flexible control of program flow. It provides for zero-overhead 
looping, single-cycle branching (both conditional and unconditional) and 
sophisticated interrupt processing. Figure 4.1, on the following page, 
shows a block diagram for the program sequencer and status sections of 
the ADSP-21 00. The sections immediately below discuss individual blocks 
within the sequencer. The section "Sequencer Operations Illustrated" 
shows how the individual blocks work together to implement program 
flow control. 

It is useful to be aware that the ADSP-2100 instruction set includes the 
following instructions: 

• JUMP 
• CALL 
• RETURN FROM SUBROUTINE (RTS) 
• RETURN FROM INTERRUPT (RTI) 
• DOUNTIL 

4.2.1 Next Address Select Logic 
The sequencing logic controls the flow of ADSP-210Uprogram execution 
by outputting a program memory address onto the PMA bus from one of 
the following four possible sources. 

• PC incrementer 
• PCstack 
• Instruction register 
• Interrupt controller 

4 
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The next address source selector in the diagram controls which of these 
four sources are output from the next address multiplexer, based on 
outputs from the instruction register, condition logic, loop comparator, 
and interrupt controller. A fifth possibility for the next program memory 
address, although not part of the program sequencer, is DAG2 when a 
register indirect jump is executed. 

The PC incrementer is selected as the source of the next program memory 
address if program flow is sequential. This is also the case when a 
conditional jump, return, or trap is not taken, and when a DO UNTIL loop 
terminates (see below for a description of the DO UNTIL construct and 
associated looping hardware). 

The PC stack is used as the source for the next program memory address 
when a return from subroutine or return from interrupt is executed. The 
top stack value is also used as the next program memory address when 
returning to the top of a DO UNTIL loop. 

The instruction register is selected by the next address multiplexer when a 
direct jump is taken. The jump address field of the instruction word itself 
specifies the jump address. 

The interrupt controller provides the next program memory address 
when processing an external interrupt request. Upon recognizing an 
interrupt, the processor jumps to the interrupt vector location (at program 
memory address 0000-0003) corresponding to the active interrupt request 
line IRQO-IRQ3. Control is then transferred to the interrupt service routine 
by means of a jump instruction. 

DAG2 sources the next program memory address when executing a 
register indirect jump. In this case, since DAG2 is not an input to the next 
address multiplexer, the program counter must be loaded from the PMA 
bus. Note that DAG2 can also address data values in program memory 
via the PMA bus. 

4.2.2 Program Counter and Stack 
The program counter (PC) is a 14-bit register which always contains the 
address of the currently executing instruction. The output of the PC is fed 
into a 14-bit incrementer which adds 1 to the current PC value. The output 
of the incrementer can be selected by the next address multiplexer to fetch 
the next contiguous instruction. Associated with the PC is a 14-bit by 16-
word PC stack that is pushed with the output of the incrementer when a 
CALL instruction is executed. The PC stack is also pushed when an 
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interrupt is processed. For interrupts, however, the incrementer is 
disabled so that the current PC value (instead of PC + 1) is pushed. This 
allows the current instruction, which is aborted, to be refetched upon 
returning from the interrupt service routine. The pushing and popping of 
the PC stack occurs automatically in all of these cases. The stack can also 
be manually popped. 

The output of the next address multiplexer is fed back to the PC, which 
normally reloads it at the end of each processor cycle. In the case of a 
register indirect jump, however, DAG2 drives the PMA bus with the next 
instruction address, and the PC is loaded from the PMA bus directly. 

4.2.3 Down Counter and Stack 
The down counter and associated count stack provide the program 
sequencer with a very powerful looping mechanism. The down counter is 
a 14-bit register with automatic post-decrement capability that is intended 
for controlling the flow of program loops which execute a predetermined 
number of times. Count values are 14-bit unsigned-magnitude values. 

Before entering the loop, the counter is loaded from the lower 14 bits of 
the DMD bus with the desired loop count by assigning to the system 
variable, CNTR. The actual loop count N is loaded, as opposed to N-l 
which is generally required by other microprocessors to execute a loop N 
times. This is due to the operation of the counter expired (CE) status logic, 
which tests CE (and automatically post-decrements the counter) at the end 
of a DO UNTIL loop that uses CE as its termination condition. CE is tested 
at the beginning and the counter is decremented at the end of a processor 
cycle, therefore CE is asserted when the counter goes to 0001 so that the 
loop executes N times. 

The counter may also be tested and decremented by a conditional jump 
instruction that tests CEo 

The counter is not decremented when CE is checked as part of a 
conditional return, conditional trap, or conditional arithmetic instruction. 
The counter may be read directly over the DMD bus at any time without 
affecting its contents. When reading the counter, the upper two bits of the 
DMD bus will be padded with zeroes. 

The count stack is a 14-bit by 4-word stack which allows the nesting of 
loops by storing temporarily dormant loop counts. When a new value is 
loaded into the counter from the DMD bus, the current counter value is 
automatically pushed onto the count stack as program flow enters the 
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inner loop. The count stack is automatically popped whenever the CE 
status is tested and is true, thereby resuming execution of the outer loop 
(if any). The count stack may also be popped manually if an early exit 
from a loop is taken. 

There is an exception to the automatic pushing of the count stack. A 
counter load from the DMD bus does not cause a count stack push if there 
is no valid value in the counter, because a stack location would be wasted 
on the invalid counter value. There is no valid value in the counter after a 
system reset and also after the CE condition is tested when the count stack 
is empty. The "count stack empty" status bit in the SSTAT register is set 
whenever the number of pop operations is greater than or equal to the 
number of push operations (four maximum) since the last reset (ignoring 
overflows). 

4.2.4 Loop Comparator and Stack 
The DO UNTIL instruction executes a zero-overhead loop using the loop 
comparator and loop stack. 

The loop comparator continuously compares the address of the last 
instruction in the loop (coded in the DO UNTIL instruction) against the 
next address. The address of the first instruction in the loop is maintained 
on top of the PC stack. When the last instruction in the loop is executed 
the processor conditionally jumps to the beginning of the loop, 
eliminating the branching overhead otherwise incurred in loop execution. 

The loop stack stores the end addresses and termination conditions of 
temporarily dormant loops. Up to four levels can be stored. The only 
"extra" cycle associated with the nesting of DO UNTIL loops is the 
execution of the DO UNTIL instruction itself, since the pushing and 
popping of all stacks associated with the looping hardware is automatic. 
When using the counter expired (CE) status as the termination condition 
for the loop, another cycle is required for the initial loading of the counter. 
Table 4.1, on the next page, shows the termination conditions that can be 
used with DO UNTIL. 
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Syntax 

EQ 
NE 
LT 
GE 
LE 
GT 
AC 
NOTAC 
AV 
NOTAV 
tvf\l 
NOTMV 
NEG 
POS 
CE 
FOREVER 

Status Condition 

Equal Zero 
Not Equal Zero 
Less Than Zero 
Greater Than or Equal Zero 
Less Than or Equal Zero 
Greater Than Zero 
ALUCarry 
Not ALU Carry 
ALU Overflow 
Not ALU Overflow 
MAC Overflow 
Not MAC Overflow 
X Input Sign Negative 
X Input Sign Positive 
Counter Expired 
Always 

Table 4.1 DO UNTIL Condition Logic 

True If: 

AZ=I 
AZ=O 
AN .xOR. A V = 1 
AN .xOR. A V = 0 
(AN .xOR. A V) .OR. AZ = 1 
(AN .XOR. A V) .OR. AZ = 0 
AC=I 
AC=O 
AV=I 
AV=O 
MV=l 
MV=O 
AS=I 
AS=O 
CE = 0 (at loop end) 
Always True 

These are the inverse of the conditions tested in an IF condition construct. 
That is, the termination condition for 00 UNTIL NE produces the same 
opcode condition field (0000) as IF EQ JUMP. This difference is 
transparent at the source code level. The IF conditions are given in Table 
4.3 which is located on page 4-25. 

When a DO UNTIL instruction is executed, the I4-bit address of the last 
instruction and a 4-bit termination condition (both contained in the DO 
UNTIL instruction) are pushed onto the I8-bit by 4-word loop stack. 
Simultaneously, the PC incrementer output is pushed onto the PC stack. 
Since the DO UNTIL instruction is located just before the first instruction 
of the loop, the PC stack will contain the first loop instruction address, and 
the loop stack will contain the last loop instruction address and 
termination condition. The non-empty state of the loop stack activates the 
loop comparator which compares the address on top of the loop stack with 
the next address being fetched. When these two addresses are equal, the 
loop comparator notifies the next address source selector that the last 
instruction in the loop will be executed on the next cycle. 
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There are two possible cases depending on the type of instruction at the 
end of the loop. Case 1 illustrates the most typical situation. Case 2 is also 
allowed but involves greater program complexity for proper execution. 

Case 1 
If the last instruction in the loop is not a jump, call, or return, then 
the next address source selector will choose the next address based 
on the termination condition contained on top of the loop stack. If 
the condition is false, the top PC stack value is selected causing a 
jump back to the beginning of the loop. If the termination condition 
is true, the PC incrementer is chosen, causing execution to fall out 
of the loop. The loop stack, PC stack, and counter stack, (if it is 
being used) are then popped. 

Note that conditional arithmetic instructions will be executed based 
on the condition explicitly stated in the instruction, with the loop 
sequencing controlled by the (implicit) termination condition 
contained on top of the stack. 

Case 2 
If the last instruction in the loop is a jump, call, or return, the 
explicitly stated instruction takes precedence over the implicit 
sequencing of the loop. If the condition in the instruction is false, 
normal loop sequencing takes place as described for Case 1. 

If the condition in the instruction is true, however, program control 
transfers to the jump I calli return address. Any actions that would 
normally occur upon an end-of-Ioop detection will not take place: 
jumping to the beginning of the loop, falling out of the loop and 
popping the loop, PC, and counter stacks, or decrementing the 
counter. 

Note that for a return, control is passed back to the top of the loop 
since the PC stack contains the beginning address of the loop. 

Caution is required when ending a loop with a jump, call, or 
return, or when making a premature exit from a loop. Since none of 
the loop sequencing mechanisms are active while the jump I calli 
return is being performed, the loop, PC, and counter stacks will 
generally be left with the looping information (since they are not 
popped). In this situation, a manual pop of each of the relevant 
stacks is required to restore the original state of the processor. 
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Subroutine calls only pose this problem when the call is the last 
instruction in the loop, since a return causes program flow to 
transfer to the instruction just after the loop. Calls within a loop that 
are not the last instruction present no problem. 

The only restriction concerning DO UNTIL loops is that nested loops 
cannot terminate on the same instruction. Since the loop comparator can 
only check for one loop termination at a time, falling out of an inner loop 
by incrementing the PC would go beyond the end address of the outer 
loop if they terminated on the same instruction. 

4.2.5 Interrupt Controller 
The interrupt controller of the ADSP-2100 allows the processor Lo respond 
to one of four external interrupts within two cycles. Because of the efficient 
stack and program sequencer, there is no additional latency when 
processing unmasked interrupts, even when interrupting DO UNTIL 
loops. Nesting of interrupts allows higher-priority interrupts to interrupt 
any lower-priority interrupt service routines that may currently be 
executing, also with no additional latency. Single-cycle context switching 
is provided by the secondary register set, and maximum flexibility is also 
afforded via the different modes associated with the interrupt control 
logic. Consult the Chapter 5, "System Interface," for more about the 
interrupt response. 

The secondary data register set, selected by the MODE CONTROL 
instruction allows the contents of the primary data register set (AXO, AXI, 
A YO, A YI, AF, AR, MXO, MXI, MYO, MYI, MF, MR2, MRl, MRO, SI, SE, 
SB,SRl, and SRO) to be' saved while a "fresh" set of registers may be 
switched in for use by the interrupt service routine. The processor cannot 
predict the requirements of each interrupt service routine. Consequently, 
you must explicitly program a context switch between the primary and 
secondary register banks if required. 

4.2.5.1 Configuring Interrupts 
There are two configuration parameters for interrupts: edge or level 
sensitivity and masked or unmasked operation. 

The four external interrupt inputs can be individually configured as either 
edge- or level-sensitive. If an interrupt input is edge-sensitive, the 
interrupt is recognized when two successive samples of the input reveal a 
high-ta-low transition (note that this is not, strictly speaking, a response to 
the transition edge). All four interrupt inputs are sampled once each 
processor cycle. Detection of this transition sets an internal latch 
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corresponding to the active interrupt request. The latch remains set until 
the request is serviced, then is automatically cleared. Thus an edge
sensitive interrupt signal need only be active for one processor cycle, or 
can remain active indefinitely. Edge-sensitive inputs generally require less 
external hardware than level-sensitive inputs, and allow "oddball" signals 
such as sampling rate clocks to be used for interrupt sources. 

A level-sensitive interrupt must remain asserted until the interrupt is 
serviced. The interrupting device must then remove the interrupt request 
so that this interrupt is not serviced again. Level-sensitive inputs allow 
many interrupt sources to use the same interrupt level by ORing them 
together into a single IRQ pin. 

You may also select whether nesting of interrupt service routines is 
allowed. All interrupt request levels may be automatically masked when 
an interrupt service routine is entered. Or, if desired, only equal and lower 
priority interrupts will be masked. 

The interrupt control register (ICNTL) is set to indicate these choices. The 
automatic masking of interrupts described above occurs within the 
interrupt mask (IMASK) register. Both are described later in this chapter. 

4.2.5.2 Interrupt Handling 
The individual interrupt request signals are logically ANDed with the 
four IMASK bits and then fed to a priority encoder which selects the 
highest priority unmasked active request. The priorities are permanently 
assigned, with IRQ3 being the highest and IRQO being the lowest. An 
active output from the priority encoder causes a jump to the interrupt 
location, program memory address 0000 through 0003 corresponding to 
the interrupt level serviced. 

Interrupt 

IRQO 
IRQl 
IRQ2 
IRQ3 

Interrupt Location 

0000 
0001 
0002 
0003 

Lowest priority 

Highest priority 

Jump instructions to the corresponding interrupt service routines are 
typically stored at the interrupt location addresses, although any 
instruction (such as return from interrupt) may be stored there. Note that 
the 14-bit vector address to the interrupt service routine will be contained 
within the jump instruction. 
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Vectoring to an interrupt service routine in this manner incurs a two cycle 
overhead. The first overhead cycle occurs because execution of the 
instruction fetched during the previous cycle is aborted. (No data registers 
are updated by the aborted instruction.) This instruction is aborted 
because the PC and status stacks are pushed simultaneously with the 
jump to the interrupt location, and any instruction that used these (such as 
a CALL) would cause a conflict. For the same reason, the PC incrementer 
is disabled so that the current PC value is pushed onto the stack, causing 
the aborted instruction to be re-fetched upon returning from the interrupt 
service routine. 

The second overhead cycle is incurred for the jump instruction (at the 
interrupt location) that is executed to enter the interrupt service routine. 

Interrupt vectoring pushes the status stack with the current arithmetic 
status, mode status, and interrupt mask register contents: ASTAT, MSTAT 
and IMASK. (The contents of the status stack may be examined with the 
ADSP-2100 Simulator; ASTAT, MSTAT and IMASK are stored in this 
order, with the MSB of ASTAT first, and so on.) When the interrupt mask 
register is pushed, it is automatically loaded with a new value that reflects 
the status of the interrupt nesting mode bit. There is no additional 
overhead penalty for these operations. 

After the interrupt service routine has been completed, the RTI (return 
from interrupt) instruction returns control to the main routine by popping 
the top PC stack value into the PC, while at the same time popping the 
status stack to restore the original machine status. 

4.2.6 Sequencer Operations Illustrated 
In this section, each of the major sequencer operations is illustrated and 
briefly described. The accompanying figures show only the parts of the 
program sequencer that are used in the operation described. 

4.2.6. 1 Linear Flow 
In Figure 4.2, the typical linear flow of the program sequencer is 
illustrated. The instruction, identified by the instruction function field, 
does not branch; sequential execution is correct. The program memory 
address in the program counter is incremented and put on the PMA bus. 
This incremented address is loaded back into the program counter, as 
shown by the gray arrow, to begin the next cycle. This example is not 
conditional. 
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CONDITION CODE (4 bits) 

ADDRESS of JUMP (14 bits) 

FUNCTION FIELD 

ADDRESS of 
LAST INSTRUCTION 
in LOOP (14 bits) 
& 
TERMINATION 
CONDITION (4 bits) 

From INSTRUCTION REGISTER 

NEXT ADDRESS MUX 

PMABUS 

Figure 4.2 Linear Flow 
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4.2.6.2 JUMP Sequence 
The JUMP sequence is shown in Figure 4.3. The JUMP instruction function 
field indicates the action to be taken. The 14-bit JUMP address is contained 
directly in the instruction word and is loaded directly into the next 
address mux. The address is put on the PMA bus and fed back to the 
program counter, as shown by the gray arrow, for the next cycle. This 
example is not conditional. 

NEXT ADDRESS MUX 

CONDITION CODE (4 bits) 

ADDRESS of JUMP (14 bits) 

FI)NCT!ON F!ELD 

ADDRESS of 
LAST INSTRUCTION 
in LOOP (14 bits) 
& 
TERMINATION 
CONDITION (4 bits) 

I 
From INSTRUCTION REGISTER 

PMABUS 14 

Figure 4.3 JUMP Sequence 
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4.2.6.3 CALL Sequence 
The CALL sequence, shown in Figure 4.4, is very similar to the JUMP 
sequence. The address comes directly from the instruction and the 
address put on the PMA bus is fed back to program counter to begin the 
next cycle. In addition, however, the current value of the program counter 
is incremented and then pushed on the PC stack. Upon return from the 
subroutine, the PC stack is popped into the program counter and 
execution resumes with what would have been the next instruction if the 
CALL had not occurred. This example is not conditional. 

l..-------. 
PUSH 

Figure 4.4 CALL Sequence 

CONDITION CODE (4 bits) 

ADDRESS of JUMP (14 bits) 

FUNCTION FIELD 

ADDRESS of 
LAST INSTRUCTION 
In LOOP (14 bits) 
& 
TERMINATION 
CONDITION (4 bits) 

From INSTRUCTION REGISTER 

PMABUS 14 
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4.2.6.4 Interrupt Sequence 
The interrupt sequence, shown in Figure 4.5, aborts the current instruction 
fetch. The interrupt is sensed by the interrupt controller and compared 
with the interrupt mask, lMASK. If enabled, the interrupt sequence pushes 
the current status registers (ASTAT, MSTAT and !MASK) onto the status 

(mask) 

lr----1 
PUSH 

Figure 4.5 Interrupt Sequence 

NEXT ADDRESS MUX 

PMABUS 14 

NEXT 
ADDRESS 
SOURCE 
SELECT 
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stack. The current program counter is pushed onto the PC stack without 
being incremented. This means that a return from the interrupt will 
resume with the instruction that would have been executed when the 
interrupt occurred, not the following one. 

The interrupt controller controls the next address source selection and 
drives the correct one of the four possible interrupt vector addresses via 
the next address mux onto the PMA bus. The interrupt vector address is 
loaded into the program counter for the next cycle, but since the next 
instruction is virtually certain to be a JUMP, this action is not shown in the 
figure. 

Upon return from the interrupt routine, the PC and status stacks are 
popped and execution resumes with the instruction whose fetch was 
aborted by the original interrupt. 

COUNTER 

LOGIC 

STATUS 
LOGIC 

Figure 4.6A DO UNTIL: Load Counter 

DMDBUS 

~ 
PUSH 
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4.2.6.5 DO UNTIL Loop 
The stages in a DO UNTIL loop are shown in Figures 4.6A through 4.6E. 
The sequence shown does not cover every possible case, but serves as a 
guide for understanding how this instruction is implemented in the 
ADSP-21 00 program sequencer. 

The example shown illustrates a DO UNTIL CE ("counter expired") 
version of the loop. In this case, only the counter logic is involved. If a 
different termination condition was used, the status logic would be used 
instead (see Tables 4.1 and 4.3). The balance of the DO UNTIL instruction, 
however, is unchanged. 

In Figure 4.6A (on page 4-15), the instruction 
loading the counter is shown. This assignment 
statement, which is executed 

ADDRESS oi 
LAST INSTRUCTION 
in LOOP (14 bits) 
& 
TERMINATION 
CONDITION (4 bits) 
Wi 
fl! prior to entering the loop, moves 

the counter value over the DMD 
bus into the counter logic section 
of the program sequencer. The 

From INSTRUCTION REGISTER 

previous count (if any) would be 
pushed onto the count stack, as shown 
in Figure 4.6A. This push operation is 
omitted if the counter is empty. 

l 
PUSH 

PMABUS 14 

Figure 4.68 DO UNTIL: Execute "DO UNTIL" 

NEXT 
ADDRESS 
SOURCE 
SELECT 

~l 
PUSH 
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In Figure 4.6B on the facing page, the DO UNTIL instruction itself is 
shown. The effect of the DO UNTIL instruction itself is only to set up the 
conditions for looping; no other computation occurs while this instruction 
is executed. This occurs only once, at the beginning of the loop. 

Executing DO UNTIL pushes the output of the 
incremented program counter, that is, the 
address of the instruction immediately following 
the 00 UNTIL itself, onto the PC stack. 

ADDRESS of 
LAST INSTRUCTION 
in LOOP (14 bits) 
& 
TERMINATION 
CONDITION (4 bits) 

This is the first instruction 
inside the loop. On the same 
cycle, the loop stack is also 

From INSTRUCTION REGISTER 

pushed with the address of the end of the loop 
and the termination condition. 

Within the loop, execution follows the normal 
linear sequence, as in Figure 4.2 above, except 
that the loop comparator checks the current 
address against the address of the last instruction 
loaded in the loop stack. As long as that address 
has not yet been reached, linear flow continues. 
This operation is represented in Figure 4.6C. 

PMABUS 14 

Figure 4.6C DO UNTIL: Flow Inside Loop 

NEXT 
ADDRESS 
SOURCE 
SELECT 

LOOP 
COMPARATOR 
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When the end of the loop is reached, the operations represented in Figure 
4.6D. The loop comparator now finds that the current address equals the 
last add,ress in the loop. This output changes the next address source select 

ADDRESS of 
LAST INSTRUCTION 
In LOOP (14 bits) 
& 
TERMINATION 
CONDITION (4 bits) 

I 

logic. Instead of using the 
incremented program counter, the 
termination condition is now 
evaluated. Assuming that this is 
only one of N passes through the 
loop, the termination condition is 
false and execution continues with 
the top of the loop. This selects the 
top of the PC stack as the source of 
the next address, effectively jumping 
back to the beginning of the loop. 
Note that the PC and Loop stacks are 
not popped, only read. 

From INSTRUCTION REGISTER 

The condition logic, as mentioned 
before, may be driven by either the 
counter logic section or the status 
logic, depending on the termination 
condition specified. 

PMABUS 14 

Figure 4.60 00 UNTIL: End of One Iteration 

NEXT 
ADDRESS 
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LOOP 
COMPARATOR 



I 

The termination of the loop on the final pass is shown in Figure 4.6E. As 
in the previous figure, the loop comparator signals the end of a pass 
through the loop, i.e. the current address and the address of the last 
instruction in the loop are the same. This time through, however, the 
termination condition is true. This means that the PC stack is popped and 
the next address comes from the incremented program counter, in other 
words, the instruction immediately following the last instruction in the 
loop. This carries the flow of execution out of the loop. 

The loop stack and the count stack are also popped on this cycle. 

COUNTER 
LOGIC 

t.-----.. 
POP 

Figure 4.6E DO UNTIL: Final Iteration 

ADDRESS of 
LAST INSTRUCTION 
In LOOP (14 bits) 
& 
TERMINATION 
CONDITION (4 bits) 

From INSTRUCTION REGISTER 

PMABUS 14 
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4.2.6.6 Register Indirect 
Figure 4.7 illustrates the case of a register indirect jump. In this case, the 
address is actually not being supplied by the sequencer at all. Instead, the 
processor is executing a jump to the label! address supplied by DAG2. 
DAG2 drives the address onto the PMA bus. The program counter reads 
the address from the PMA bus and continues normally from there. 

NEXT ADDRESS MUX 

14 

Figure 4.7 Register Indirect 

4.3 STATUS REGISTERS AND STACK 

NEXT 
ADDRESS 
SOURCE 
SELECT 

The status and mode bits of the ADSP-2100 are maintained internally 
within five registers, each of which are independently readable over the 
DMD bus, and four of which can be written to from the DMD bus. These 
registers are: 

ASTAT 
SSTAT 
MSTAT 
ICNTL 
!MASK 

Arithmetic status register 
Stack status register (read-only) 
Mode status register 
Interrupt control register 
Interrupt mask register 
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4.3.1 Arithmetic Status Register (ASTAT) 
ASTAT is 8 bits wide and holds the status information generated by the 
computational sections of the processor. The bits in ASTAT are defined as 
follows: 

Bit 0 
Bit 1 
Bit 2 
Bit 3 
Bit 4 
BitS 
Bit 6 
Bit 7 

AZ 
AN 
AV 
AC 
AS 
AQ 
MV 
SS 

ALU result zero 
ALU result negative 
ALU overflow 
ALUcarry 
ALU X input sign 
ALU quotient flag 
MAC overflow 
Shifter input sign 

The bits which express a particular condition (AZ, AN, A V, AC, MV) are 
all positive sense (1 = true, 0 = false). Each of the bits is automatically 
updated when a new status is generated by an arithmetic operation. Each 
bit is affected only by a subset of arithmetic operations, as defined by the 
following table. 

Status Bit 

AZ, AN, A V, AC 
AS 
AQ 
MV 
SS 

Updated by 

Any ALU operation except DIVS, DIVQ 
ALU absolute value operation (ABS) 
ALU divide operations (DIVS, DIVQ) 
Any MAC operation except saturate MR 
Shifter EXP operation 

Arithmetic status is latched into the status register at the end of the cycle 
in which it was generated, and therefore cannot be used until the next 
cycle. 

Loading any ALU, MAC, or Shifter input or output registers directly from 
the DMD bus does not affect any of the arithmetic status bits. Executing 
the ALU instruction PASS will set the AZ and AN bits for a given X or Y 
operand. 
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4.3.2 Stack Status Register (SSTAT) 
SST AT is 8 bits wide and holds information regarding the four internal 
stacks. The bits in SST AT are defined as follows: 

Bit 0 PC Stack Empty 
Bit 1 PC Stack Overflow 
Bit 2 Count Stack Empty 
Bit 3 Count Stack Overflow 
Bit 4 Status Stack Empty 
Bit 5 Status Stack Overflow 
Bit 6 Loop Stack Empty 
Bit 7 Loop Stack Overflow 

All of the bits are positive sense (1 = true, 0= false). The empty status bits 
indicate that the number of pop operations for the stack is greater than or 
equal to the number of push operations (if no stack overflow has occurred) 
since the last reset. The overflow status bits indicate that the number of 
push operations for the stack has exceeded the number of pop operations 
by an amount that is greater than the depth of the stack. When this occurs, 
the item(s) most recently pushed will be missing from the stack (old data 
is considered more important than new). Because of this "saturation" of 
the stack pointer, the stack empty status bits can be set by N sequential 
pop operations, where N is the depth of the stack, regardless of how many 
more than N sequential push operations were performed. 

Since a stack overflow represents a permanent loss of information, the 
stack overflow status bits "stick" once they are set and subsequent pop 
operations have no effect on them. It is possible to have both the stack 
empty and stack overflow bits set for a given stack. Since SST A T is a read
only register, write operations will have no effect on the stack status bits 
either. A processor reset must be executed to clear the stack overflow 
status. 

4.3.3 Mode Status Register (MSTAT) 
MSTAT is a 4-bit register that defines various operating modes of the 
processor. The bits in MST A T are defined as follows: 

Bit 0 Data Register Bank Select 
Bit 1 Bit Reverse Mode (Data Address Generator 1 only) 
Bit 2 ALU Overflow Latch Mode 
Bit 3 AR Saturation Mode 
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All registers (including MST A T) can be changed by moving a new value 
into them with any of the MOVE instructions. In contrast to the other 
status registers, MST AT can also be changed with the MODE CONTROL 
instruction. 

The data register bank select bit determines which set of data registers is 
currently active (0 = primary, I = secondary). The data registers include 
all of the result and input registers to the ALU, MAC, and SHIFTER: AXO, 
AXI, A YO, A YI, AF, AR, MXO, MXI, MYO, MYI, MF, MR2, MRI, MRO, SI, 
SE, SB, SRI, and SRO. 

The bit-reverse mode, when enabled, bitwise reverses all addresses gener
ated by data address generator one (DAGl). This is most useful for reor
dering the input or output data to a radix-2 FFT algorithm. In addition to 
the MODE CONTROL instruction, processor reset also disables it. 

The ALU overflow latch mode causes the A V (ALU overflow) status bit to 
"stick" once it is set. In this mode, A V will be set by overflow and remain 
set, even if subsequent ALU operations do not generate overflows. A V 
can then only be cleared by writing a zero into it from the DMD bus. 

The AR saturation mode, when set, causes AR to be saturated to the 
maximum positive (H#7FFF) or negative (H#8000) values when an ALU 
overflow occurs. 

4~3.4 Interrupt Control Register (ICNTL) 
ICNTL is a 5-bit register that configures the interrupt modes of the 
processor. These bits are all undefined after a processor reset. The bits in 
ICNTL are defined as follows: 

Bit 0 IRQO Sensitivity 
Bit I IRQI Sensitivity 
Bit 2 IRQ2 Sensitivity 
Bit 3 IRQ3 Sensitivity 
Bit 4 Interrupt Nesting Mode See Table 4.2 

The IRQ sensitivity bits determine whether a given interrupt input is 
edge- or level-sensitive (0 = level-sensitive, I = edge-sensitive). 

Bit 4 determines whether nesting of interrupt service routines is allowed. 
When set to zero, all interrupt levels are masked automatically (IMASK 
set to zero) when an interrupt service routine is entered. When set to one, 
IMASK is set so that only equal and lower priority interrupts are masked, 
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permitting higher priority interrupts to interrupt the current interrupt 
service routine. This is graphically shown in Table 4.2 below. 

4.3.5 Interrupt Mask Register (IMASK) 
IMASK is a 4-bit register which enables and disables the individual inter
rupt levels. The IMASK register contents are automatically pushed onto 
the status stack when entering an interrupt service routine and popped 
back when returning from the routine. The configuration of IMASK upon 
entering the interrupt service routine is determined by bit 4 of ICNTL; it 
may be altered, of course, as part of the interrupt service routine itself. 

The bits in IMASK are defined as follows: 

Bit a IRQO Enable 
Bit 1 IRQl Enable 
Bit 2 IRQ2 Enable 
Bit 3 IRQ3 Enable 

The bits are all positive sense (0 = disabled, 1 = enabled). IMASK is set to 
zero upon a processor reset. When an interrupt is processed, the interrupt 
nesting mode bit determines the state of IMASK upon entering the inter
rupt, as shown in Table 4.2. IMASK may be read from or written to via the 
DMDbus. 

ICNTL bit 4 = 0 (nesting disabled) 

IRQ # IMASK contents before, 
Serviced pushed on stack 

a 0000* 
1 DODD 
2 DODD 
3 DODD 

ICNTL bit 4 = 1 (nesting enabled) 

IRQ # IMASK contents before 
Serviced pushed on stack 

a DODD 
1 DODD 
2 DODD 
3 DODD 

IMASK contents entering 
interrupt service 

0000 
0000 
0000 
0000 

IMASK contents entering 
interrupt service 

1110 
1100 
1000 
0000 

*/lDDDD" represents any pattern of ones and zeroes. 

Table 4.2 IMASK Entering Interrupt Service Routines 



Progra ontrol 4 

4.3.6 Condition Logic 
The condition logic of the ADSP-2100 is used to determine whether an 
explicitly specified action in a conditional instruction is performed, such 
as a jump, trap, call, return, MAC saturation, or arithmetic operation. It 
also controls the implicit loop sequencing operations based upon the loop 
continuation condition on top of the loop stack. The condition logic takes 
raw status information from ASTAT and the down counter and derives a 
set of sixteen composite status conditions. The 4-bit condition code field of 
the instruction and the 4-bit loop continuation condition on the loop stack 
then select two of these to control whether the explicit operation in the 
instruction or implicit loop sequencing operation (or neither) is 
performed. When both are attempted, the explicitly specified operation 
takes precedence. 

The sixteen composite status conditions, with their derivations and 
instruction mnemonics are given below, are for the standard IF condition 
statement. Consult the section on DO UNTIL and the opcodes in 
Appendix A for details of the termination condition usage. 

Syntax 

EQ 
NE 
LT 
GE 
LE 
GT 
AC 
NOTAC 
AV 
NOTAV 
MY 
NOTMV 
NEG 
POS 
NOTCE 
TRUE 

Status Condition 

Equal Zero 
Not Equal Zero 
Less Than Zero 
Greater Than or Equal Zero 
Less Than or Equal Zero 
Greater Than Zero 
ALUCarry 
Not ALU Carry 
ALU Overflow 
Not ALU Overflow 
MAC Overflow 
Not MAC Overflow 
X Input Sign Negative 
X Input Sign Positive 
Not Counter Expired 
Always True 

Table 4.3 IF Condition Logic 

True If: 

AZ=l 
AZ=O 
AN .XOR. A V = 1 
AN .XOR.AV=O 
(AN .XOR. A V) .OR. AZ = 1 
(AN .XOR. A V) .OR. AZ = 0 
AC=l 
AC=O 
AV=l 
AV=O 
MV=l 
MV=O 
AS=l 
AS=O 
CE;t:O 
Always True 
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Since arithmetic status is latched into ASTAT at the end of a processor 
cycle, the condition logic outputs represent conditions generated on a 
previous cycle. 

4.4 INSTRUCTION CACHE 
The instruction cache memory stores up to sixteen previously executed 
instructions. When an instruction requires a Program Memory Data fetch 
(which would conflict with the instruction fetch) the cache, if valid, is used 
as the source of the instruction. This section discusses the operation and 
programming implications of the cache. 

4.4.1 Cache Memory Operation 
Cache operation is transparent. No maintenance or overhead is required 
for either the storage or use of instructions in cache memory. Because of 
the significant of the ADSP-2100 cache, however, it is vital to understand 
how it operates. 

The cache is a 24-bit by 16-word memory array. While this is a small 
memory space, the multifunctional nature of many ADSP-2100 
instructions allows a wide variety of algorithms to be coded within this 
restriction; see the discussion of the instruction set in Chapter 6 and the 
example below. 

The cache memory can be seen in the overall processor block diagram (in 
Chapter 1) interacting with the program sequencer and instruction 
register. Cache operation follows this scenario. 

1. In normal operation the ADSP-2100 fetches the (N+1)th instruction 
while executing the Nth instruction. Each instruction fetched for the 
instruction register is also written into the cache. It is stored at the 
cache memory address specified by the four LSBs of the program 
memory address. 

2. When the PMD bus is busy with a data transfer, the instruction register 
is loaded from cache. Note that, at this point, the validity of the loaded 
instruction has not been determined. 

3. If the loaded instruction is valid, it is executed on the next cycle. If the 
instruction is not valid, the instruction register is cleared. An 
additional cycle is now required to fetch the next instruction. Validity 
is determined by the cache memory monitor described below. 
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When data can be read from program memory, the ADSP-2100 becomes, 
in effect, a processor with two data busses. For the multiply / accumulate 
operations typical of digital signal processing algorithms, this gives 
significant speed advantages. For program loops that can be stored 
completely in cache, an additional cycle penalty is only incurred on the 
first pass through the loop. After all instructions are in memory, the 
ADSP-2100 can simultaneously fetch two items of data (using the DMD 
and PMD busses) and one instruction (from the cache). 

4.4.2 Cache Memory Monitor 
The cache memory monitor logic keeps track of the program memory 
address range currently stored in the cache memory. One monitor register 
contains the number of instructions that are valid ahead of the currently 
executing instruction, while another register contains the number of 
instructions that are valid behind the currently executing instruction. The 
cache addressing uses only the four LSBs of the Program Memory 
Address. 

While the cache generally contains sixteen previously executed 
instructions, not all of them are necessarily valid instructions because the 
cache memory monitor can only follow the execution of instructions that 
are contiguous in program memory. In effect, the cache memory monitor 
cannot "see" a region of memory bigger than sixteen words at a time. DO 
UNTIL loops and JUMPs inside the cache allow efficient utilization of the 
cache. 

A JUMP to an address outside of the cache invalidates the entire cache. 
The number of valid instructions in the cache then increases until the 
cache fills or the program takes another out-of-cache jump. The cache 
memory size compared to the size of DO UNTIL or other looping 
constructs is one limit to keep in mind when writing programs with 
program memory data transfers inside the loop. 

Once the cache fills, newly fetched instructions write over the oldest 
instructions in a circular manner due to the modulo-16 cache memory 
addressing. 
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4.4.3 Programmers' Guidelines For Cache Memory Usage 
Programmers need not be aware of how the instruction cache functions in 
great detail. The important constraints for getting the benefit of the cache 
can be summarized as follows. 

1. The cache can contain no more than sixteen instructions. To take 
advantage of the cache, loops should fit within this limit. The 
multifunction instruction set allows many common algorithms to be 
implemented within this limit. 

2. To be valid, the instructions in the cache must be from a contiguous 
region of program memory. This means that DO UNTIL and JUMP 
loops can be used as long as the JUMP or loop top is within the sixteen
instruction region. 

3. Cache memory is only used as the instruction source when the PMD 
bus is needed for data fetch that would conflict with the normal 
instruction fetch. 

4.4.4 Cache Memory Example 
Below is an ADSP-2100 subroutine that implements a simple sum-of
products FIR filter. This example illustrates three related advantages of the 
ADSP-2100 architecture: zero overhead looping, compact code 
requirements and execution speed resulting from use of the cache. This 
example is discussed in more detail in the ADSP-2100 Applications 
Handbook, Volume 1 in the chapter on fixed-coefficient filters. 

FIR Transversal Filter Subroutine 

Calling Parameters 
10 -> Oldest input data value in delay line 
LO = Filter length (N) 
14 -> Beginning of filter coefficient table 
L4 = Filter length (N) 
Ml,M5 = 1 

CNTR = Filter length - 1 (N-l) 
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A) fir: 
B) 

C) sop: 
D) 
E) 
F) 

Return Values 
MRI = Sum of products (rounded and saturated) 
10 -> Oldest input data value in delay line 
14 -> Beginning of filter coefficient table 

Altered Registers 
MXO,MYO,MR 

Computation Time 
N - 1 + S + 2 cycles 

Coefficients & data values assumed to be 1.lS format. 

MR=O, MXO=DM(IO,M1), MYO=PM(I4,MS); 
DO sop UNTIL CE; 

MR=MR+MXO*MYO (SS), MXO=DM(IO,M1), MYO=PM(I4,MS); 
MR=MR+MXO*MYO(RND); 
IF MV SAT MR; 
RTS; 

Figure 4.8 Cache Memory Program Example 

For the purposes of this discussion we focus on the lines that have been 
labelled A) through F). The "A)" labels are not part of the ADSP-2100 
instruction set and are used here only to identify each line of instruction 
source in this example. 

Here is a description of the function of each program line: 

A) Clears MR register, loads X & Y registers of MAC with operands, one 
from each memory. This example also uses the circular buffer 
addressing capabilities of the ADSP-2100. 

B) Sets up DO UNTIL loop. 

C) Executes a multiplication with accumulation and fetches two new 
operands, one from each memory. Executes N-l times. 

D) Executes last multiplication with accumulation, rounding the result. 

E) Checks for overflow and saturates if necessary. 

F) Return from subroutine. 
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Here is an overview of how this code executes a five tap FIR filter. 

Cycle Program Bus Internal Operation 

(Execute previous) 
Execute A 

Data Bus 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
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Fetch A 
Fetch operand 1 
FetchB 
FetchC 
Fetch operand 2 
Fetch operand 3 
Fetch operand 4 
Fetch operand 5 
FetchD 
FetchE 
FetchF 
Fetch next 

Idle, waiting for B 
ExecuteB 
Execute C, 1st time 
Execute C, 2nd time, from cache 
Execute C, 3rd time, from cache 
Execute C, 4th time, from cache 
Idle, waiting £01· D 
ExecuteD 
ExecuteE 
ExecuteF 

(Previous activity) 
Fetch operand 1 
No activity 
No activity 
Fetch operand 2 
Fetch operand 3 
Fetch operand 4 
Fetch operand 5 
No activity 
No activity 
No activity 
No activity 

Because the sequencer supports zero overhead looping, this single 
instruction loop runs as fast as any non-looped or straight-line version 
would on a different processor; in addition, two busses are available for 
data fetches. This also results in code that is compact; the loop requires 
one set-up instruction and no overhead instructions for each iteration. An 
N-tap filter requires only N+ 1 cycles for the inner loop; straightline code 
on another processor might require N * 2 cycles with loop overhead 
included. Note that these ratios hold true for multiple instruction loops, 
not just for a loop of one instruction, as in this example. 

The effect of the cache is quite dramatic in cycles 5 through 8; the 
processor executes the MAC operation and fetches two operands. (DAGs 
also update the address pointers to the circular buffer during each cycle.) 
There is no penalty for fetching the operand from program memory. This 
remains true for loop of up to sixteen instructions. 

Finally, at the end of the loop, another cycle is consumed to load the 
instruction following the loop. 
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5.1 OVERVIEW 
This chapter describes how the ADSP-2100 is interfaced to your system. 
The chip has four major interfaces: 

1. The program memory interface provides for the synchronous transfer 
of both instructions and data between the program memory and the 
processor. 

2. The data memory interface provides for the synchronous transfer of 
data to and from the processor and, using the data memory 
acknowledge signal (DMACK), supports slow, memory-mapped 
peripherals. 

When the ADSP-2100 receives the bus request signal and responds 
with the bus grant signal, it relinquishes control of both program and 
data memory interfaces. 

3. The control interface is used to halt and reset the processor and to 
signal an internal trap. 

4. The ADSP-2100 can respond to four external interrupts which are 
internally prioritized, maskable and independently programmable as 
either edge or level-sensitive. The controls for interrupt configuration 
are described in Chapter 4 in the program sequencer section. 

Figure 5.1, overleaf, is a basic system configuration for an ADSP-2100. 

5.1.1 Note On Timing Diagrams 
There are a number of "idealized" timing diagrams in this chapter; they 
show the logical relationship between internal clock phases of the 
ADSP-2100 and the external system. These timing diagrams do not show 
the actual specifications which factor in propagation delays. You must 
refer to the data sheet for that type of information. These ideal timing 
diagrams only provide a framework for understanding the function of the 
ADSP-2100. 
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Figure 5.1 Basic System Configuration 

5.1.2 Clock Signals & Processor States 
The ADSP-2100 has two clock signals, CLKIN and CLKOUT. CLKIN is a 
master input clock to the processor that operates at four times the 
instruction cycle rate. The phases of CLKIN are used to define eight (1-8) 
distinct time periods, called the processor states, that make up an 
instruction cycle. This is shown in Figure 5.2. The eighth state of each 
instruction cycle is a dead state that provides a neutral halting point for 
the processor when operation is suspended. All timing diagrams annotate 
the phases of CLKIN with these state numbers. 

CLKOUT is an output clock from the ADSP-2100 that operates at the 
instruction cycle rate. It is produced by dividing the frequency of CLKIN 
by four. The phase of CLKOUT is such that it allows external 
synchronization to the internal states of the processor. The falling 
transition of CLKOUT always occurs at the transition between states three 
and four while the rising edge always occurs at the transition between 
states seven and eight. This relationship is shown in Figure 5.2, on the 
facing page. 
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ClKIN 

ClKOUT 

PROCESSOR 
STATE 

Figure 5.2 Clock Signals & Processor States 

5.1.3 Synchronization Delay 
The ADSP-21 00 has several asynchronous inputs, namely, RESE T,HALT, 
BR, DMACK and IRQO-3. These inputs can be asserted in arbitrary phase 
to the processor clock, CLKIN. The ADSP-21 00 resynchronizes them prior 
to recognizing them. The delay associated with resynchronization and 
eventual recognition is called the synchronization delay. 

Different asynchronous inputs are recognized at different points in the 
processor cycle. For example, HALT is recognized at the end of state three 
but interrupt requests are recognized at the end of state seven. 

Any asynchronous input must be valid prior to the recognition point. The 
minimum time prior to recognition (the setup time) is given on the data 
sheet. If an input does not meet the setup time on a given cycle, it will be 
recognized during the next cycle if it is held valid. Therefore, to ensure 
recognition of an asynchronous input, it must be asserted for at least one 
full processor cycle. 

5.2 BUS REQUEST I GRANT 
Using the bus request, BR, and bus grant, BG, signals, the ADSP-2100 can 
relinquish control of both the program and data memory interface giving 
direct memory access to an external device, such as a host processor. 

The external device requests the bus by asserting BR (bus request). BR is 
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recognized at the end of the next state three and the ADSP-2100 halts in 
state eight of that instruction cycle. BG (bus grant) is asserted at the end of 
state three of what would have been the next instruction cycle, i.e. four 
cycles of eLKIN after the bus request is recognized. This is the normal 
synchronous mode of servicing this request. 

ClKOUT 

ClKIN 

HOLD SEQUENCE 

BR 

BG 

PMxx, OM xx 

RELEASE SEQUENCE 

BR 

BG 

PMxx,DMxx 

Figure 5.3 Bus Grant Flowchart __ __ _ 
Note: PMxx = PMA, PMOA, PMO, PMWR, PMRO and PMS 
OMxx = OM A, OMO, OMWR, OMRO and OMS. 
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EXTERNAL DEVICE ADSP-2100 

Figure 5.4 Bus Hold I Release 

Assert BR I 

Recognize BG 
Perform direct 

Halt execution 
Assert BG 

Tristate interface signals 

Resume operation 

The ADSP-2100 tristates all the bus driving lines: PMA, PMD, PMDA, 
PMWR, PMRDand PMS on the program memory interface and DMA, DMD, 
DMWR, DMRD and DMS on the data memory interface. Control is then 
transferred to the requesting device. 

The ADSP-2100's internal state is not affected by this operation. After the 
interface is released by the external device, normal operation resumes 
from the point at which it was halted. This applies uniformly to all 
processor operations, including the extra cycle inserted by the processor 
when a program memory data access is performed and the cache contents 
are not valid. BR can be serviced between the two cycles required for that 
operation if necessary. 

The device returns control to the processor by releasing BR. Fou~cles of 
CLKIN after BR is recognized as released, the processor releases BG and 
takes over the bus, resuming with state one of the next cycle. Figure 5.3 is 
an operations flowchart. Figure 5.4 shows the relative timing of this cycle. 
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5.2.1 Bus Request at RESET 
A bus request can be made, i.e. BR may be asserted, during a RESET of the 
ADSP-21 00. The timing is different than shown in F~re 5.4. In this case, 
BG will be asserted asynchronously some time after BR is recognized. The 
delay is solely due to propagation delay and is much shorter than the 
~chronization delay seen during normal operation. Releasing BR causes 
BG to be de-asserted asynchronously. 

BR must be removed before or coincident with the removal of RESET to 
ensure proper operation of the processor. In other words, BR can be 
asserted "during" RESET but RESET should not be asserted "during" (i.e. 
ending before) a BR. 

If the bus is requested during HALT or TRAP, the request is latched and 
serviced after the normal synchronization delay. The processor remains 
halted, but tristates the busses. 

5.3 PROGRAM MEMORY INTERFACE 
The program memory interface supports transfers between the ADSP-2100 
and program memory using the control lines shown in Figure 5.1. The 
processor supplies a 14-bit address on the program memory address 
(PMA) bus. Data or instructions are then transferred across a 24-bit 
program memory data (PMD) bus. A program memory select pin, PMS, 
indicates that the address bus is being driven and memory can be selected. 
PMS is asserted on processor cycles in which instructions or data are 
fetched from program memory. Since the ADSP-2100 always fetches either 
an instruction or data from program memory, in practice, PMS is asserted 
continuously; the only exceptions are during HALT, TRAP or when the bus 
is tristated. 

Two control lines determine the direction of the transfer. Program 
Memory Read, PMRD, is active low indicating a memory read. PMRD is 
timed so that it may be used as an output enable signal. Program Memory 
Write, PMWR, corresponds to a memory write. PMWR is timed so that it 
may be used as a write strobe. 

The program memory can be used to store both instructions and data. The 
processor distinguishes between these two by asserting PMDA (program 
memory data access) during a data transfer. The timing of PMDA is 
similar to the PMA bus, allowing PMDA to be used as an additional 
address bit. When used as the most significant address bit, the processor 
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can address 32K words of program memory of which 16K is dedicated to 
data storage. Systems requiring less than 16K of program memory may 
allocate storage to mixed instructions and data without restriction. The 
System Builder module of the ADSP-2100 Cross-Software system allows 
you to define memory use in software during development. The Cross
Software system uses this definition of code and data memory allocation 
to drive the Simulator, Linker and PROM Splitter. 

5.3.1 Program Memory Read Cycle 
Program memory reads occur across the program memory interface as 
follows. 

• The ADSP-2100 places the address on the PMA bus, sets PMDA, 
asserts PMS, then asserts PMRD. PMRD may be used as an output enable 
signal. PMS remains asserted without a change of state if it was 
asserted on the previous cycle. 

• Within a specified time period (see data sheet), valid data must be 
placed on the PMD bus by the memory. 

• The ADSP-2100 reads the data on the PMD bus. 

• The ADSP-21 00 removes PMRD and terminates the cycle. 

A timing diagram for this operation is shown in Figure 5.5, on the next 
page. 

5.3.2 Program Memory Write Cycle 
Program memory is written with the following sequence of operations. 

• The ADSP-2100 places the address on the PMA bus, sets PMDA and 
asserts PMS; PMS remains asserted if already asserted. 

• The ADSP-2100 places data on the PMD bus and asserts PMWR for 
writing. 

• The ADSP-21 00 removes PMWR and terminates the cycle after a fixed 
time period. 

Figure 5.5, on the next page, depicts the timing diagram for the program 
memory write operation. Note that PMWR may be used as a write strobe. 
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Figure 5.5 Program Memory Read I Write 
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5.4 DATA MEMORY INTERFACE 
The data memory interface supports transfers between the ADSP-2100 
and data memory using the control lines shown in Figure 5.1. The 
processor supplies a 14-bit address on the data memory address (DMA) 
bus, allowing it to address up to 16K words of data memory. Data is then 
transferred across a 16-bit data memory data (DMD) bus. Its operation is 
similar to the program memory interface operation with the following 
exceptions. 

1. There is no equivalent signal to PMDA since only data is stored in data 
memory. 

2. The data memory interface supports slow, memory-mapped 
peripherals via the DMACK signal. 

Data memory access cycles begin with the processor providing a 14-bit 
address on the DMA bus. A data memory select pin, DMS, indicates that 
the address bus is being driven and memory can be selected. DMS is 
asserted on processor cycles in which data memory is accessed. DMS 
remains asserted without a change of state or "glitch" on successive cycles 
that access data memory. Two control lines determine the direction of the 
transfer. Data Memory Read, DMRD, is active low indicating a memory 
read. DMRD is timed so that it may be used as an output enable signal. 
Data Memory Write, DMWR, corresponds to a memory write. DMWRis 
timed so that it may be used as a write strobe. 

The data memory access cycle is completed by returning DMACK (data 
memory acknowledge) to the ADSP-21 00. The processor checks DMACK 
at the end of processor state six. If DMACK is not valid, state seven is 
extended by one full processor cycle time. This is repeated until DMACK 
is asserted. With this procedure the ADSP-2100 can readily share memory 
with slow, memory-mapped peripherals. Of course, during normal full 
speed memory accesses, DMACK is returned prior to the end of state six 
and the access completes in a single processor cycle. 

Note thatthe wait for DMACK can prevent the processor from 
responding to other signals. Interrupts, bus requests and HALT are latched 
but not serviced during extra cycles required while waiting for DMACK. 
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Figure 5.6 shows the timing of typical data memory read and write cycles. 
Figure 5.7 shows a read cycle stretched one cycle while waiting for 
DMACK. 

ClKOUT 

ClKIN 4 5 8 

OMS 

DMA 

OMACK 

REAOCYClE 

OMWR 

OMO 

WRITE CYCLE 

OMRO 

OMO 

Figure 5.6 Data Memory Read / Write 
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ClKOUT 

ClKIN 

DMA 
L-________________ ~------------------------~x------

DMACK 

DMD 

Figure 5.7 Data Memory Read Extended by DMACK 

5.4.1 Data Memory Read Cycle 
Data memory reads occur across the data memory interface as follows. 

ADSP-2100 

Place address on DMA bus 
Assert DMS 

Set DMRD to read 

Read data on DMD bus 
Release DMS 

Figure 5.8 Data Memory Read Flowchart 

MEMORY I PERIPHERAL 

Decode address 
Place data on DMD bus 

Assert DMACK 

A timing diagram for this operation is shown in Figure 5.6. 
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5.4.2 Data Memory Write Cycle 
Data memory is written with the following sequence of operations. 

Figure 5.6 depicts the timing diagram for the data memory write 
operation. Note that DMWR may be used as a write strobe. 

ADSP-2100 

Place address on DMA bus 
Assert DMS 

Place data on DMD 
Set DMWR to write 

Release DMS 

Figure 5.9 Data Memory Write Flowchart 

5.5 CONTROL INTERFACE 

MEMORY / PERIPHERAL 

Decode address 
Accept data on DMD bus 

Assert DMACK 

The control interface consists of three asynchronous signals, RESET, HALT 
and TRAP. These signals allow external control over the activities of the 
ADSP-2100. 
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5.5.1 FlE~E" 
RESET performs a hardware reset on the processor. It must be asserted 
after power-up to initialize the processor to a known state prior to 
initiating any program execution. RESET performs the following functions. 

• Initializes the internal clock generator. 

• Resets all stack pointers (PC stack, Counter stack, Status stack). 

• Clears cache memory monitor (invalidates contents). 

• Clears all latches (IRQ,HALT). 

• If there is no pending BR, PMA is driven with 0004. 

• IfBG is asserted, all busses remain tristated during RESET. 

• Masks all interrupts (IMASK = 0000). Note: ICNTL is undefined. 

• Clears the MSTAT register. This disables the ALU overflow bit, ALU 
AR register saturation mode, bit-reversal of DAGI addresses and use 
of the alternate register bank. 

RESET is recognized on any rising edge of CLKIN and must be asserted for 
at least four CLKIN cycles. The processor remains in state four during 
RESET. CLKOUT remains low during this period. Upon releasing RESET, 
the processor goes from state four to state five on the second rising edge 
of CLKIN following release. 

Multiple processors operating from the same CLKIN can be synchronized 
by employing a common RESET line, since then they will all go from state 
four to state five simultaneously. However in this case, RESET must be 
externally synchronized to CLKIN first. 

See also the discussion of bus request and bus grant during RESET in 
section 5.2 of this chapter. 

5.5.2 H~LT 
HALT is used to temporarily suspend processor operation. It is recognized 
at the end of state three of the processor cycle. The processor will stop in 
state eight of the current cycle if it was performing a program memory 
instruction fetch when the HALT was recognized or in state eight of the 
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following processor cycle if it was performing a program memory data 
fetch. In the latter case, the second cycle is a forced program memory 
instruction fetch even if the instruction is available from cache. Hence, the 
processor is always halted on a program memory instruction fetch and the 
controlling device can observe the address where execution was 
terminated on the PMA bus. Normal processor operation is resumed when 
the HALT line is released. You must ensure that DMACKis HI when HALT 
is released. 

HALT and RESET are recognized at different points in the processor cycle 
but they share the common characteristic of synchronization delay 
mentioned above. 

If HALT is asserted during a bus grant, it is latched but not serviced until 
the ADSP-2100 regains control of the bus; the processor is halted by the 
bus grant already, of course. Likewise, if HALT is asserted during a wait_ 
for DMACK, it is latched but not serviced. Once the processor is halted, BR 
is latched and serviced normally. 

5.5.3 TRAP 
The TRAP signal is generated by the processor whenever a TRAP 
instruction is executed. It is asserted on the transition between state seven 
and eight of that cycle and the processor is halted in state eight. The PMA 
bus provides the address of the instruction that follows the TRAP 
instruction. The TRAP signal will remain active until HALT is asserted. 
Upon recognition of HALT, the ADSP-2100 releases TRAP but remains in a 
halt state. 

If BR is asserted during TRAP it is latched and serviced in the normal 
sequence, that is, after the required synchronization delay. 

Normal operation is resumed when HALT is released as shown in Figure 
5.10. 
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ADSP·2100 

Figure 5.10 TRAP Flowchart 

5.6 INTERRUPT OPERATION 

EXTERNAL DEVICE 

Recognize TRAP 
Assert HArT 

Remove H'A['j' 

The ADSP-2100 supports four prioritized, individually maskable 
interrupts that can be either level or edge-triggered. Additional 
information about interrupt masking can be found in Chapter 4, "Program 
ControL" 

Level-sensitive interrupts operate by asserting an interrupt request line 
(active low) until the request is recognized by the processor. The ADSP-
2100 checks the interrupt request lines in processor state seven. Once 
recognized, the request must be negated before returning from the 
interrupt service routine to prevent being reserviced. 

In contrast, edge-triggered interrupt requests are recognized when an 
inactive-to-active transition occurs on the interrupt line. The ADSP-2100 
recognizes a transition by comparing the state of the request line in 
processor state seven on two successive cycles. Therefore, to guarantee 
recognition of an asynchronous interrupt, the request must be greater 
than one processor cycle in duration. The request is latched internal to the 
processor so that the request line may be held at any level for an 
arbitrarily long period between interrupts. This latch is automatically 
cleared when the interrupt is serviced. 
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Edge-triggered interrupts require less external hardware compared to 
level-sensitive requests since there is never a need to hold or negate the 
request. However, level-sensitive interrupts provide improved noise 
immunity. Furthermore, many interrupting devices may share a single 
level-sensitive request line on a wired-OR basis which allows for easy 
system expansion. 

An interrupt request is deemed valid if it is not masked (determined by 
IMASK) and a higher priority request is not pending. Valid requests 
invoke an interrupt service sequence that vectors the processor to address 
0000 through 0003 for IRQO through IRQ3 respectively. The interrupt 
request is recognized at the end of state seven of the processor cycle. There 
is a synchronization delay associated with the interrupt request lines. 

If an interrupt occurs during the two cycles required to execute a program 
memory data access with invalid cache, it is not recognized between the 
two cycles, only before or after. Interrupts are latched, but not serviced, 
during HALT, TRAP, bus grant (BG) and while waiting for DMACK. 
Remember that in order to service an interrupt, the processor must be 
running and executing instructions. 

The masking of interrupts upon entering the interrupt service routine is 
determined solely by bit 4 of the ICNTL register; see the discussion and 
Table 4.2 in Chapter 4. 

Figure 5.11 shows the interrupt service timing. Edge-sensitive and level
sensitive interrupt requests are serviced similarly except that in the former 
case, the request line state must be compared on two successive processor 
cycles to determine the occurrence of an edge. Edge-sensitive interrupts 
may remain low indefinitely, while level-sensitive interrupts must be 
removed before executing the RTI instruction. 

IRQ \ I'l'li1'N'l 
PMA Address of Instruction N + 1 X Address of Instruction N + 2 X INTERRUPT VECTOR ADDRESS X 

PROCESSOR EXECUTE INSTRUCTION N EXECUTE INSTRUCTION N + 1 IGNORE INSTRUCTION N+2 EXECUTE INSTRUCTION AT 
OPERATION VECTOR ADDRESS 

FETCH INSTRUCTION N + 1 FETCH INSTRUCTION N + 2 

(will be ignored) 

Figure 5.11 Interrupt Service Timing 
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5.7 PIN DESCRIPTION 
This section summarizes the pin description of the processor by interface. 
When groups of pins are identified with subscripts, as in PMD23-0, the 
highest numbered pin (PMD23) is the MSB. 

Pin Name Type 

Clocks: 

CLKIN Input 

CLKOUT Output 

Interrupt Request Lines: 

Input 

Control Interface: 

Input 

Input 

Tristate? Function 

No 

No 

No 

No 

No 

Master input clock operating at 
four times the processor 
instruction rate. Nominally 50% 
duty cycle. The phases of CLKIN 
define the eight internal 
processor states making up one 
instruction cycle. 

Output clock operating at the 
processor instruction rate with a 
50% duty cycle. Synchronized to 
the internal processor states. 

Interrupt Request lines that may 
be either edge triggered or level 
sensitive. Interrupts are 
prioritized and individ ually 
maskable. 

Master Reset must be asserted for 
at least four CLKIN cycle~ 
assure proper reset. When RESET 
is released, execution begins at 
program memory loca tion 0004. 

Used to halt the processor. All 
control signals become inactive 
and the address and data buses 
are driven for observation. 
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Pin Name Type Tristate? 

TRAP Output No 

BR Input No 

Ie Output No 

Program Memory Interface: 

PMA13-0 Output Yes 

PMD23-0 Bidirectional Yes 

Il\.£ Output Yes 

5-18 

Function 

Used to indicate the execution of 
a Trap instruction. Remains 
asserted until HAL T is asserted by 
an external device. 

Bus Request used by an external 
device to request control of the 
program and data memo~ 
interface. Upon receiving BR the 
processor halts execution at the 
completion of the current cycle 
and relinquishes the program 
and data memory interface by 
tristating PMA, PMD, PMS, 
PMWR,PMRD,PMDA,DMA, 
DMD,DMS,DMRDandDMWR. 
The processor regains control 
when BR is released. 

Bus Grant. Acknowledges a bus 
request (BR), indicating that the 
external device may take control. 
BG is held asserted until BR is 
released. 

Program Mem~ Address Bus; 
tristated when BG is asserted. 

Program Mem~ Data Bus; 
tristated when BG is asserted. 

Program Memory Select signals a 
program memory access on the 
PM interface. Also usable as a 
chip select signal for external 
memories. Tristated when BG is 
asserted. 
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Pin Name Type Tristate? Function 

I-MIID Output Yes Program Memory Read indicates 
a read operation on the PM 
interface. Also usable as a read 
strobe or output enable signal. 
Tristated when BG is asserted. 

IMWR Output Yes Program Memory Write 
establishes the direction of data 
transfer on the PM interface. 
Also usable as a write strobe. 
Tristated when BG is asserted. 

PMDA Output Yes Program Memory Data Access 
used to distinguish instruction 
and data fetches from PM. 
Asserted high when data, as 
opposed to instruction, is 
accessed. Also usable as a 
fifteenth PM address bit. 
Tristated when BG is asserted. 

Data Memory Interface: 

DMA13-0 Output Yes Data Memory Address Bus; 
tristated when BG is asserted. 

DMDlS-0 Bidirectional Yes Data Memory Data Bus; tristated 
when BG is asserted. 

I1\£ Output Yes Data Memory Select signals the a 
Data Memory Access on the Data 
Memory interface. Also usable as 
a chip select signal for external 
memories. Tristated when BG is 
asserted 
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Pin Name Type 

IMRD Output 

LMWR Output 

DMACK Input 

Supply Rails: 

VDD Supply 

GND Ground 

Tristate? Function 

Yes Data Memory Read indicates a 
read operation on the Data 
Memory interface. Also usable as 
a read strobe or output enable 
signal. Tristated when BG is 
asserted. 

Yes Data Memory Write indicates a 
write operation on the Data 
Memory interface. Also usable as 
a write strobe. Tristated when BG 
is asserted 

No Data Memory Acknowledge 
signal used for asynchronous 
transfers across the DM interface. 
Indicates that data memory or 
memory-mapped peripherals are 
ready for data transfer. If 
DMACK is not asserted when 
checked by the processor, wait 
states are automatically 
generated until DMACK is 
asserted. 

Power supply rail nominally 
+5VDC. There are four VDD pins 

Power supply return. There are 
nine GND pins 

The ADSP-2100 has 100 pins plus an Index pin. Refer to Figure 5.12 and 
5.13 for a detailed pinout. 
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13 12 11 10 9 8 7 6 5 4 3 2 

N PMD18 PMD20 PMD21 PMD23 SG VDD GND GND PMS TRAP HALT RESET DMAO N 

M PMD16 PMD17 PMD19 PMD22 PMRD SR DMRD DMWR DMS PMDA DMACK GND DMA2 M 

L PMD14 PMD15 ClKO ClKI PMWR DMA1 DMA3 L 

K PMD12 PMD13 DMA4 DMA5 K 

J PMD10 PMD11 DMA6 GND J 

H GND PMD8 PMD9 DMA7 DMAS VDD H 

G VDD PMD7 PMD6 DMA10 DMA11 DMA9 G 

F PMD5 PMD4 PMD3 DMD15 DMA13 DMA12 F 

E GND PMD2 DMD13 DMD14 E 

D PMD1 PMDO DlVID11 DMD12 o 

IR02 I ROO 
INDEX 

PMAO PMA2 PMA11 PIN DMD9 DMD10 c c 

B PMA1 PMA4 PMA6 PMA7 PMA9 PMA12 iRQ3 rnm DMD1 DMD3 DMD6 DMD7 DMD8 B 

A PMA3 PMA5 GND PMA8 PMA10 PMA13 VDD GND DMDO DMD2 DMD4 DMD5 GND A 

13 12 11 10 9 8 7 6 5 4 3 2 

Figure 5.12 ADSP·2100 Pins, Top View, Pins Down 
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2 3 4 5 6 7 8 9 10 11 12 13 

N DMAO RESET HALT TRAP PMS GND GND VDD BIT PMD23 PMD21 PMD20 PMD18 N 

M DMA2 GND DMACK PMDA ~ DMWR DMRD BR PMRD PMD22 PMD19 PMD17 PMD16 M 

l DMA3 DMA1 f5iiiWiiFj" ClKI ClKO PMD15 PMD14 L 

K DMA5 DMA4 PMD13 PMD12 K 

J GND DMA6 PMD11 PMD10 J 

H VDD DMA8 DMA7 PMD9 PMD8 GND H 

G DMA9 DMA11 DMA10 PMD6 PMD7 VDD G 

F DMA12 DMA13 OM015 PM03 PM04 PM05 F 

E DMD14 DMD13 PMD2 GND E 

o DMD12 DMD11 PMDO PMDl o 

INDEX c DMD10 DMD9 PIN IROO IR02 PMA11 PMA2 PMAO c 

B DMD8 DMD7 DMD6 DMD3 DMDl IROl IR03 PMA12 PMA9 PMA7 PMA6 PMA4 PMAl B 

A GND DMD5 DMD4 DMD2 DMDO GNO VDD PMA13 PMA10 PMA8 GND PMA5 PMA3 A 

2 3 4 5 6 7 8 9 10 11 12 13 

Figure 5.13 ADSP-2100 Pins, Bottom View, Pins Up 
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Instruction Set Overview 

6.1 INTRODUCTION 
This chapter provides an overview of the instruction set used to program 
the ADSP-2100 and the ADSP-2100 development system software. It 
provides enough information to understand the nature of programming 
the ADSP-2100 and the capabilities of the instruction set itself including a 
programming example at the end of the chapter. This chapter is not a 
complete programmer's reference section. 

For actual software development, you must have the ADSP-2100 Cross
Software Manual which contains a detailed instruction reference section 
and a complete guide to the development tools: System Builder, 
Assembler, Linker, Simulator, PROM Splitter and C Compiler. The two 
volume ADSP-2100 Applications Handbook presents many program 
examples with source code and discussion; these programs are also 
available on IBM PC diskettes. 

The chip's instruction set is tailored to the computation-intensive 
algorithms common in DSP applications. For example, sustained single
cycle multiplication I accumulation operations are possible. The 
instruction set provides full control of the ADSP-2100's three 
computational units: the ALU, MAC and Shifter. Arithmetic instructions 
can process single-precision 16-bit operands directly with provisions for 
multiprecision operations. 

The high-level syntax of the ADSP-2100 source code is both efficient and 
readable. Unlike many assemblers, the ADSP-2100 source code uses an 
algebraic notation for arithmetic operations and for data moves. There is 
no performance penalty for this easy-to-read source code. Each program 
statement assembles into one 24-bit opcode which executes in a single 
cycle. There are no multicycle instructions in the ADSP-2100 instruction 
set. 

In addition to JUMP and CALL, the control instructions support 
conditional execution of most arithmetic and a DO UNTIL looping 
instruction. Two addressing modes are supported for external memory 
fetches. Direct addressing uses immediate values; indirect addressing uses 
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the two data address generators (DAGs). All immediate instructions 
provide the full width for an immediate data (16 bits) or address (14 bits) 
field. 

The 24-bit instruction word allows a high degree of parallelism in 
performing operations. The instruction set allows for a single-cycle 
execution of any of the following combinations: 

• any ALU, MAC or Shifter operation (may be conditional) 

• any register to register move 

• any data memory read or "vrite 

• a computation with any register to register move 

• a computation with any memory read or write 

• a computation with a read from both of the two external memories. 

The ADSP-2100 instruction set provides the programmer with maximum 
flexibility. The instruction set provides unrestricted moves from any 
register to any other register, or from almost any register to/from either 
external memory. For combining operations, almost any ALU, MAC or 
Shifter operation may be combined with any register-to-register move or 
with a register move to or from either external memory. 

6.2 INSTRUCTION TYPES 
The ADSP-2100 instruction set is grouped into the following categories: 

• Multifunction 
• Computational: ALU, MAC, Shifter 
• Move 
• Program Flow /Control 
• Miscellaneous 

The multifunction instructions best illustrate the power of the ADSP-2100 
architecture. In this overview, we begin by examining this group of 
instructions. 

In each section of this chapter are find tables summarizing the syntax of 
each instruction group. Here is the notation used in those tables. 
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Square Brackets [ ] 

Parallel Lines I 

CAPITAL LETTERS 

parameters 

<data> 

<reg> 

<dreg> 

<address> 

Anything within square brackets is an optional 
part of the instruction statement. 

Lists of parameters enclosed by parallel vertical 
lines require the choice of one parameter from 
among the operands listed. 

denote reserved words. These are instruction 
words, register names and operand selections. 

are shown in small letters and denote an operand 
in the instruction for which there are numerous 
choices. For example, the parameter yop might 
have as its choices in the actual instruction: MYO, 
MY10rMF. 

denotes an immediate value. Immediate data 
values may be symbolic names for constants or 
literal numeric values in binary, octal, 
hexadecimal or decimal format. The default is 
decimal. 

refers to any accessible register; see Table 6.6. 

refers to any data register; see Table 6.6. 

denotes an immediate value of an address to be 
coded in the instruction. The address may be 
either an immediate value or a LABEL. 

6.2.1 Multifunction Instructions 
Multifunction operations exploit the inherent parallelism of the ADSP-
2100 architecture by providing combinations of data moves, memory 
reads and memory writes and computation in a single-cycle. 

6.2.1.1 ALUlMAC with Data & Program Memory Read 
Perhaps the most common single operation in DSP algorithms is the sum 
of products, like the following: 

• Fetch two operands (such as a coefficient and a data point) 

• Multiply them and sum the result with previous products 

6 
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The ADSP-2100 can execute both data fetches and the multiplication/ 
accumulation in a single-cycle. Typically, such a repetitive series can be 
expressed in ADSP-2100 source code in just a few program lines. Since the 
cache memory stores up to sixteen contiguous instructions, most loops of 
this type can execute with sustained single-cycle throughput. An example 
of such an instruction is: 

MR=MR+MXO*MYO (UU), MXO=DM(IO,Ml), MYO=PM(I4,M5); 

The first clause of this instruction (up to the first comma) says that MR, the 
MAC result register, gets the sum of its previous value plus the product of 
the (current) X and Y input registers of the MAC (MXO and MYO) both 
treated as unsigned (LTLT). Note the simple assignment statement form of 
the source code. 

In the second and third clauses of this multifunction instruction two new 
operands are fetched. One is fetched from the data memory (OM) pointed 
to by index register zero (IO, post modified by the value in Ml) and the 
other is fetched from the program memory location (PM) pointed to by 14 
(post-modified by M5 in this instance). Note that indirect memory 
addressing uses a syntax similar to array indexing, with DAG registers 
providing the index values. Any I register may be paired with any M 
register within the same DAG. 

As discussed in Chapter 2, "Computational Units," registers are read at 
the beginning of the cycle and written at the end of the cycle. The 
operands present in the MXO and MYO registers at the beginning of the 
instruction cycle are multiplied and added to the MAC result register, MR. 
The new operands fetched at the end of this same instruction overwrite 
the old operands after the multiplication has taken place and are available 
for computation on the following cycle. You may, of course, load any data 
registers in conjunction with the computation, not just MAC registers with 
a MAC operation as in our example. 

The computational part of this multifunction instruction may be any 
unconditional ALU instruction except division or any MAC instruction. 
Certain other restrictions apply. The X operand must come from Data 
Memory and the Y operand must come from Program Memory. The result 
of the computation must go to the result register (MR or AR) not to the 
feedback register (MF or AF). 
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6.2.1.2 Data & Program Memory Read 
This instruction is a special case of the instruction above, in which the 
computation is left out. It executes only the dual fetch as shown below. 

AXO=OM(I2,MO), AYO=PM(I4,M6); 

In this example, we have used the ALU input registers as the destination. 
As with the previous multifunction instruction, X operands must come 
from Data Memory and Y operands from Program Memory. 

6.2.1.3 Computation With Memory Read 
If a single memory read is performed, instead of the dual memory read of 
the previous two multifunction instructions, a wider range of 
computations can be executed. The legal computations include all ALU 
operations except division, all MAC operations and all Shifter operations 
except SHIFT IMMEDIATE. Computation must be unconditional. 

An example of this instruction is: 

AR=AXO+AYO, AXO=OM(IO,M3); 

Here an addition is performed in the ALU while a single operand is 
fetched from Data Memory. Similar restrictions apply to this instruction 
as applied to previous multifunction instructions. The value of AXO, used 
as a source for the computation, is the value at the beginning of the cycle. 
The data read operation loads a new value into AXO by the end of the 
cycle. For this same reason, the destination register (AR in the example 
above) cannot be the destination for the memory read. If that were legal, 
the result of the computation would be overwritten by the memory read. 

6.2.1.4 Computation With Memory Write 
This instruction is quite similar to the immediately preceding one: the 
order of the clauses in the instruction line, however, is reversed. First the 
memory write is performed, then the computation as shown below. 

OM (IO,MO) =AR, AR=AXO+AYO; 

Again, the value of the source register for the memory write (AR in the 
example) is the value at the beginning of the instruction. The computation 
loads a new value into the same register; this is the value in AR at the end 
of this instruction. Reversing the order of the clauses of the instruction is 
illegal; it would imply that the result of the computation is written to 
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memory when, in fact, the previous value of the register is what is written. 
There is no requirement that the same register be used in this way 
although this will usually be the case in order to pipeline operands to the 
computation. 

The restrictions on computation operations are identical to those above. 
All ALU operations except division, all MAC operations and all Shifter 
operations except SHIFT IMMEDIATE are legal. Computation must be 
unconditional. 

6.2.1.5 Computation With Data Register Move 
This final multifunction instruction performs a data register to data 
register move in parallel with a computation. Most of the restrictions 
applying to the previous two instructions apply to this instruction. 

AR=AXO+AYO, AXO=MR2; 

Here an ALU addition operation occurs while a new value is loaded into 
AXO from MR2. As before, the value ofAXO at the beginning of the 
instruction is the value used in the computation. The move may be from or 
to all ALU, MAC and Shifter input and output registers except the 
feedback registers (AF and MF). 

The move loads the same register with the new value by the end of the 
cycle. All ALU operations except division, all MAC operations and all 
Shifter operations except SHIFT IMMEDIATE are legal. Computation 
must be unconditional. A complete list of data registers is in Table 6.6. 

Here is a table showing the legal combinations for multifunction 
instructions. 

Unconditional Computations 

None or any ALU (except Division) or MAC 

Any ALU except Division 
Any MAC 
Any Shift except Immediate } { 

Data Move 
DM=DAGl 

DM read 

DM read 

DM write 

Data Move 
PM=DAG2 

PM read 

PM read 

PM write 
Register To Register 

Table 6.1 Summary of Valid Combinations For Multifunction Instructions 



Instruction 

Multifunction Instructions 

<ALU*> 
<MAC> 

AXO 
AXI 
MXO 
MXl 

= DM( 

AXO = DM ( 10 
11 
12 
13 

AXI 
MXO 
MXl 

I 
<ALU> 
<MAC> 
<SHIFT*> 

DM( 

PM( 

I 
<ALU> 
<MAC> 
<SHIFT> 

10 
II 
12 
13 

, dreg 

MO 
Ml 
M2 
M3 

14 M4 
15 M5 
16 M6 
17 M7 

14 
15 
16 
17 

, dreg 

M4 
M5 
M6 
M7 

10 
II 
12 
13 

MO ), 
Ml 
M2 
M3 

DM( 

PM( 

= dreg, 

dreg; 

Table 6.2 Multifunction Instructions 
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MO ), 
Ml 
M2 
M3 

AYO = PM ( 14 
AYI 15 
MYO 16 
MYI 17 

AYO = PM ( 14 
AYI 15 
MYO 16 
MYI 17 

10 
11 
12 
13 

MO ) ; 
Ml 
M2 
M3 

14 M4 
15 M5 
16 M6 
17 M7 

14 
15 
16 
17 

M4 ); 
M5 
M6 
M7 

<ALU> 
<MAC> 
<SHIFT> 

M4 ); 
M5 
M6 
M7 

• All computation is unconditional; ALU Division and Shift I mmediate operations prohibited 

--- --- -----~ 

6 

M4 ); 
M5 
M6 
M7 
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6.2.2 ALU, MAC and Shifter Instructions 
This group of commands execute all the computation. All of these 
instructions can be executed conditionally except the ALU division 
instructions and the Shifter SHIff IMMEDIATE instructions. 

6.2.2.1 ALU Group 
Here is a example of one of the ALU instructions, Add/Add with Carry: 

IF AC AR=AXO+AYO+C; 

The (optional) conditional expression, IF AC, tests the ALU Carry bit (AC); 
if there is a carry from the previous instruction, this instruction executes, 
otherwise a NOP occurs and execution continues with the next instruction. 
The algebraic expression, AR=AXO+AYO+C, means that the ALU result 
register (AR) gets the value of the ALU X input and Y input registers plus 
the value of the carry-in bit. 

Here is a summary list of all ALU instructions. In this list, condition stands 
for all the possible conditions that can be tested and xop and yop stand for 
the registers that can be specified as input for the ALU. The conditional 
clause is optional and is enclosed in square brackets to show this. 

ALU Instructions 

[IF condition] AR xop +yop 
AF +C 

+yop+C 

[IF condition] I AR xop -yop 
AF -yop+C-1 

[IF condition] I AR yop -xop 
AF -xop+C-1 

[IF condition] 
I AR 

xop AND I yop AF OR 
XOR 

[IF condition] I AR 
I 

PASS xop 
AF yop 

-1 
0 
1 
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[IF condition] AR xop 
AF yop 

[IF condition] AR NOT xop 
AF yop 

[IF condition] AR ABS xop 
AF 

[IF condition] AR yop +1 
AF 

[IF condition] AR yop -1 
AF 

DIVS yop, xop ; 
DIVQ xop; 

Table 6.3 ALU Instructions 

6.2;2.2 MAC Group 
Here is an example of one of the MAC instructions, Multiply / 
Accumulate: 

IF NOT MV MR=MR+MXO*MYO (UU) ; 

The conditional expression, IF NOT MV, tests the MAC overflow bit. If 
the condition is not true, a NOP is executed. The expression 
MR=MR+MXO*MYO is the multiply / accumulate operation: the multiplier 
result register (MR) gets the value of itself plus the product of the X and Y 
input registers selected. The modifier in parentheses (UU) treats the 
operands as unsigned. There can be only one such modifier selected from 
the available set. (55) means both are signed, while (U5) and (5U) mean 
that either the first or second operand is signed; (RND) means to round 
the result. 

6 
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Here is a summary list of all MAC instructions. In this list, condition stands 
for all the possible conditions that can be tested and xop and yop stand for 
the registers that can be specified as input for the MAC. 

MAC Instructions 

[IF condition] 

[IF condition] 

[IF condition] 

[IF condition] 

[IF condition] 

IFMV5ATMR; 

I MR 
MF 

MR 
MF 

MR 
MF 

MR 
MF 

MR 
MF 

Table 6.4 MAC Instructions 

xop *yop 

MR + xop * yop 

MR-xop *yop 

0; 

MR[ (RND)]; 

55 ); 
5U 
U5 
UU 
RND 

55 ); 
5U 
U5 
UU 
RND 

55 ); 
5U 
U5 
UU 
RND 
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6.2.2.2 Shifter Group 
Here is an example of one of the Shifter instructions, Normalize: 

IF NOT CE SR = SR OR NORM SI (HI); 

The conditional expression, IF NOT eE, tests the counter. If the condition 
is not true, a NOP is executed. The destination of all shifting operations is 
the Shifter Result register, SR. In this example, 51, the Shifter Input regis
ter, is the operand. The amount and direction of the shift is controlled by 
the signed value in the SE register in all shift operations except an imme
diate shift. 

The "SR OR" modifier (which is optional) logically ORs the result with the 
current contents of the SR register; this allows you to construct a 32-bit 
value in SR from two 16-bit pieces. "NORM" is the operator and "(HI)" is 
the modifier that determines whether the shift is relative to the HI or LO 
half ofSR. 

The "SR OR" modifier may be omitted. Omitting it is the "PASS" option, 
although there is no actual PASS modifier. 

Here is a summary list of all Shifter instructions. In this list, condition 
stands for all the possible conditions that can be tested. 

Shifter Instructions 

[IF condition] SR [SR OR] ASHIFf xop ( HI ); 
LO 

[IF condition] SR [SR OR] LSHIFf xop ( HI ); 
LO 

[IF condition] SR [SR OR] NORM xop HI ); 
LO 

[IF condition] SE EXP xop 

( I ~b I 
); 

HIX 

[IF condition] SB EXPADJ xop; 

SR [SR OR] ASHIFf xop BY <data> ( I HI ); 
LO 

SR [SR OR] LSHIFf xop BY <data> ( I HI ); 

LO 
Table 6.5 Shifter Instructions 

6 
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6.2.3 MOVE: Read & Write 
MOVE instructions move data to and from data registers and external 
memory. ADSP-2100 registers may be viewed as divided into two groups, 
referred to as reg which includes almost all registers and dreg or data 
registers, which is a subset. Only the program counter (PC) and the ALU 
and MAC feedback registers (AF and MF) are not accessible. 

The Table 6.1 shows which registers belong to these groups. 

Accessible Registers: reg 

SB 
PX 
10 - 17, MO - M7, LO - L7 
CNTR 
ASTAT, MSTAT, SSTAT 
1MASK,ICNTL 

Data Registers: dreg 

AXO, AXl, A YO, AYl, AR 
MXO, MXl, MYO, MYl, MRO, MRl, MR2 
SI, SE, SRO, SRI 

Table 6.6 ADSP·2100 Register Set: reg & dreg 

MOVE Instructions 

reg 

reg 

dreg 

DM( 10 
11 
12 
13 

14 
15 
16 
17 

reg; 

DM «address»; 

DM( 10 
11 
12 
13 

14 
15 
16 
17 

MO 
Ml 
M2 
M3 

M4 
M5 
M6 
M7 

MO ); 
Ml 
M2 
M3 

M4 
M5 
M6 
M7 

dreg 
<data> 
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DM «address» = reg; 

reg 

dreg 

PM ( 

<data>; 

PM ( 14 

14 M4 
15 M5 
16 M6 
17 M7 

15 
16 
17 

Table 6.7 MOVE Instructions 

6.2.4 Program Flow Control 

M4 ); 
M5 
M6 
M7 

dreg; 

II 
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Program Flow Control on the ADSP-2100 is simple and powerful. The 
discussion of the Program Sequencer in this manual gives an example of 
each type of control statement. Here is an example of one such statement. 

IF EQ JUMP my_label; 

JUMP, of course, is a familiar construct from many other processors. 
My_label is any identifier you wish to use as a label for the entry point of 
the code jumped to. Instead of the label, an index register in DAG2 may 
be explicitly used. 

If the counter condition (CE, NOT CE) is to be used, an assignment to 
CNTR must be executed to initialize the counter value. 

The default scope for any label is the module in which it is declared. The 
Assembler directive .ENTRY makes a label"visible" as an entry point for 
routines outside the module. Conversely, the .EXTERNAL directive 
makes it possible to use a label declared in another module. 

On the next page is the summary of all program flow control instructions. 

6 
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Program Flow Control Instructions 

[IF condition] JUMP 

[IF condition] CALL 

[IF condition] RTS; 

[IF condition] RTI ; 

(I4) 
(IS) 
(I6) 
(I7) 
<address> 

(I4) 
(IS) 
(16) 
(I7) 
<address> 

00 <address> [UNTIL termination] ; 

[IF condition] TRAP; 

Table 6.8 Program Flow Control Instructions 

6.2.5 Miscellaneous Instructions 
There are four Miscellaneous instructions. Nap, of course, is a no 
operation instruction. The PUSH/POP instruction allows you to explicitly 
set or control the status, counter, PC and loop stacks; interrupt servicing 
automatically pushes and pops some of these stacks. 

The Enable/Disable instruction turns on and off four modes of operation: 
bit-reversal on DAGl, latching ALU overflow, saturating ALU results and 
choosing the primary or shadow register set. 

The MODIFY instruction modifies the address pointer in the I register 
selected with the value in the selected M register, without performing any 
actual memory access. As always, the I and M registers must be from the 
same DAG; any of 10-13 may be used only with one from MO-M3 and the 
same for 14-17 and M4-M7. 
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Miscellaneous Instructions 

NOP; 

I PUSH I STS [, POP CNTR) [, POP PC) [, POP LOOP) ; 
POP 

I 
ENAI BIT_REV 
DIS 

MODIFY ( IO 
11 
12 
13 

14 
IS 
16 
17 

,I ENAIAV_LATCH 
DIS 

MO ) ; 
Ml 
M2 
M3 

M4 
M5 
M6 
M7 

Table 6.9 Miscellaneous Instructions 

6.3 DATA STRUCTURES 

,I ENAI AR_SAT 
DIS 

,I ENAI SEC_REG ; 
DIS 

The ADSP-2100 Cross-Software supports the declaration and use of a 
simple set of data structures: one-dimensional arrays and ports. The array 
may be a single value or multiple values. In addition, the array may be 
used as a circular buffer. Here is a brief discussion of each instance with 
an example of how they are declared and used. Complete syntax for these 
and other directives is given in the ADSP-2100 Cross-Software Manual. 

6.3.1 Arrays 
Arrays are the basic data structure in the ADSP-2100 instruction set. In 
ADSP-2100 literature, the words "array" and the expression "data buffer" 
are used interchangeably. Arrays are declared with Assembler directives 
and can be referenced indirectly and by name, can be initialized from 
immediate values in a directive or from external data files and can be 
linear or circular with automatic wraparound. 

An array is declared with a directive such as 

. VAR!DM coefficients [128] ; 

6 
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This declares an array of 12816-bit values located in data memory (DM). 
The special operators 1\ and % reference the address and length, 
respectively, of the array. It could be referenced as shown below. 

IO = "coefficients; 
MXO=DM(IO,MO) ; 

{point to address of buffer} 
{load MXO from buffer} 

These instructions load a value into MXO from the beginning of the 
coefficients buffer in data memory. With the automatic post-modify of the 
DAGs, you could execute the second of these instructions in a loop and 
continuously advance through the buffer. 

Alternatively, when you only need to address the first location, you can 
directly use the buffer name as a label in many circumstances, such as 

MXO=DM(coefficients); 

The Linker substitutes the actual address for the label. It is also possible to 
initialize a complete array /buffer from a data file, using the INIT 
directive . 

. INIT coefficients: <filename.dat>; 

This reads the values from the file filename.dat into the array at link time. 

An array or data buffer with a length of one behaves like a simple single
word variable. 

6.3.2 Circular Arrays/Buffers 
A common requirement in DSP is the circular buffer. This is directly 
implemented by the ADSP-2100 DAGs, using the L (length) registers. 
First, you must declare the buffer as circular: 

.VAR/DM/CIRC coefficients [128]; 

This identifies it to the Linker for placement on the proper address 
boundary. Next, you must initialize the L register, typically using the % 
operator (or a constant) and, in the example below, the I register. 

La = %coefficients; 
IO = "coefficients; 

{length of circular buffer} 
{point to address of buffer} 
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Now a statement like 

MXO=DM (10, MO) ; {load MXO from buffer} 

in a loop, cycles continuously through coefficients and wraps around 
automatically. L registers should be initialized to zero for buffers of any 
length that are not circular. 

6.3.3 Ports & Memory-Mapping 
The .PORT directive in the System Builder module allows you to refer to a 
specific hardware address with an identifier of your choosing as shown 
here. This capability makes it easy to interface to memory-mapped 
peripherals, such as converters . 

• PORT /ABS=16382 converter in; 

After declaring the same identifier in the Assembler, a value can be read 
directly from the port with a statement like 

SI = DM(converter_in); 

This loads the S1 register with the value present at the address specified in 
the System Builder. (The Linker reads the Architecture Description file 
produced by the System Builder to obtain the actual address for the label.) 
You can change the hardware address of the port without having to 
rewrite your program. 

6 
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6.4 PROGRAM EXAMPLE 
Below are three listings, showing an example of an FIR filter program 
written for the ADSP-2100 with discussion of each section of the program. 
This FIR filter program demonstrates much of the conceptual power of the 
ADSP-2100 architecture and instruction set. More complex programs 
would, of course, exercise many additional features of the language . 

. MODULE!ROM!ABS=O 
A . INCLUDE 

main routine; 
<const .h>; {include file of constants} 

B { . VAR!DM!RAM!CIRC 
.VAR!PM!RAM!CIRC 
. GLOBAL 

data buffer[taps]; {length -taps" defined in const.h} 
coefficient[tapsl; 
data buffer, coefficient; {these buffers are global} 

c 

o 

.EXTERNAL fir start; - {external routine entry label} 

.INIT - coefficient: <coeff. dat>; {initialize with values in file} 

{start code section} 
{load interrupt vector addresses} 

{initializations} 

clear: 

mainloop: 

.ENDMOD; 

Setup and Main Loop Routine 

JUMP fir_start; 
RT1; 
RTI; 
RTI; 

LO=%data_buffer; 
Ll=O; 
L2=0; 
L3=0; 
L4=%coefficient; 
L5=0; 
L6=0; 
L7=0; 
MO=l; 
M4=1; 

10 = Adata buffer; 
14 = Acoefficient; 

CNTR = %data buffer; 
DO clear UNTIL CE; 

DM(10,MO)=O; 

1MASK = B#l1l1; 
JUMP mainloop; 

.CONST taps 

Include File, Constant Initialization 

{vectored address of interrupt O} 
{no interrupt I} 
{no interrupt 2} 
{no interrupt 3} 

{setup circular buffer length} 

{setup circular buffer length} 

{set modifier registers} 

{point to buffer start} 
{point to table start} 

{set CNTR with buffer length} 
{setup loop} 
{initialize data buffer} 

{now activate interrupts} 
{infinite loop, waits for interrupts} 

14; 

Figure 6.10 Program Example Listing 1, Main Routine & Constants File 
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6.4.1 Example Program: Setup Routine Discussion 
The setup and main loop routine, Figure 6.10, does initialization and then 
loops continuously. The filter itself is interrupt-driven. When an interrupt 
occurs (this example uses interrupt zero) control shifts to the subroutine. 

Line A shows that the constant declarations are contained in a separate 
file. 

Section B shows the directives defining the two circular buffers: one in 
data memory RAM (used to hold a delay line of samples) and one in 
program memory RAM (used to store coefficients for the filter). The 
coefficients are actually loaded from an external file by the Linker. These 
values can be changed without reassembling; only another linking pass is 
required. 

Section C shows the setup of the interrupts. Interrupt vectors are the first 
four memory locations in the ADSP-2100 program memory space. Since 
this module (first line) is located at absolute address zero, the first four 
instructions occupy these interrupt vector locations. Only the first location 
is used; it jumps to the subroutine. The other three are placeholders; 
program execution begins at address 004. 

Section 0 sets up the Index, Length and Modify registers used to address 
the circular buffer. A non-zero value for length activates the modulus 
logic. Each time the interrupt occurs, the pointers advance one position 
"around" the buffer. 

6 
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.MODULE/ROM fir_routine; {relocatable fir interrupt module} 

. INCLUDE 

.PORT 

.PORT 

. ENTRY 

. EXTERNAL 

<const.h>; 
ad sample; 
da-data; 
fir start; 
data_buffer, 

{include constant declaration file} 
{AD port you defined in Systm Bldr} 
{DA port you defined in Systm Bldr} 
{make label visible outside module} 

coefficient; {make globals accessible in module} 

{interrupt service routine code section} 

FIR START: CNTR = taps less one; {N-l passes within DO UNTIL} 
SI = DM(ad_sample); {read from port} 
DM(IO,MO) = SI; {transfer data to buffer} 
MR=O, MYO=PM(I4,M4), MXO=DM(IO,MO); 

{set up multiplier for loop} 
DO convolution UN'rTT, CF.; {CE = counter expired} 

I convolution: MR=MR+MXO*MYO(SS), MYO=PM(I4,M4), MXO=DM(IO,MO); 
{MAC these, fetch next} 
{Nth pass with rounding} 
{saturate if overflowed} 
{write to port} 

.ENDMOD; 
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MR=MR+MXO*MYO(RND); 
IF MV SAT MR; 
DM(da_data) = MR1; 

RTI; {return from interrupt} 

Figure 6.11 Program Example Listing 2, Interrupt Routine 

6.4.2 Example Program: Interrupt Routine Discussion 
This subroutine reads the sample and transfers it to the next location in the 
circular buffer (overwriting the oldest sample). Then all samples and 
coefficients are multiplied and the products are accumulated to produce 
the next output value. The subroutine checks for overflow and saturates 
the output value to the appropriate full scale then writes the result to the 
converter out port and returns. 

The lines labelled with E declare the symbolic names used to reference the 
AID and D I A ports. You select these names and define their hardware 
locations with the System Builder, a tool described in detail in the ADSP-
2100 Cross-Software Manual. 

The subroutine begins by loading the counter register CNTR. The new 
sample is read from the port into the 51 register; the choice of 51 is of no 
particular significance. Then, the data is written into the data buffer. 
Because of the automatic circular buffer addressing, the new data 
overwrites the oldest sample. The N most recent samples are always in the 
buffer. 
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Line F zeroes the multiplier result register (MR) and fetches the first two 
operands. Because this instruction access both memories, a one-cycle 
overhead occurs to fetch the next instruction. 

G labels the loop itself, consisting of only two lines, one setting up the 
loop and one instruction "inside" the loop. The MAC instruction 
multiplies and accumulates the previous set of operands while fetching 
the next ones from each memory. This instruction also accesses both 
memories and so another one cycle penalty will be incurred. However, 
since the loop fits entirely the cache, this overhead penalty happens only 
once. The loop executes out of cache after the instruction has been loaded 
once. 

The last MAC instruction (the first one outside the loop) performs the 
final multiplication/ accumulation using the round modifier (RND) 
instead of the signed-by-signed modifier (55). 

6 
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Instruction Coding 

A.1 OPCODES 
Here is a summary of the complete instruction set of the ADSP-2100. 
Following the list of types and codes shown immediately below is a key to 
the abbreviations used. Any instruction codes not shown are reserved for 
future use. 

Type 1: ALU / MAC with Data & Program Memory Read 

Type 2: Data Memory Write (Immediate Data) 

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 
DATA 

Type 3: Read !Write Data Memory (Direct Address) 

17 16 15 14 13 12 11 10 
ADDR 

Type 4: ALU / MAC with Data Memory Read / Write 

17 16 15 14 13 
AMF 

Type 5: ALU / MAC with Program Memory Read / Write 

1716151413 
AMF 

A 
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Type 6: Load Data Register Immediate 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 
010 0 DATA 

Type?: Load Non-Data Register Immediate 

23 22 21 20 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 
o 0 1 1 DATA 

Type 8: ALU / MAC with Internal Data Register Move 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 321 0 
0 0 1 0 

11 z 1 
AMF 

1 Yop 1 Xop 1 Dest 1 Source 
DREG DREG 

Type 9: Conditional ALU / MAC 

23 22 21 20 19 18 17 16 15 14 13 
0 0 1 0 0 Z AMF 

Type 10: Conditional Jump (Direct Address) 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 
0 0 0 1 1 S ADDR 

Type 11: Do Until 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 
0 0 0 1 0 1 ADDR 

Type 12: Shift with Data Memory Read / Write 

23 22 21 20 19 18 17 14 l3 12 11 
0 0 0 1 0 0 1 SF 
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Type 13: Shift with Program Memory Read / Write 

23 22 21 20 19 18 17 16 15 14 13 12 11 
o 0 0 1 0 0 OlD SF 

Type 14: Shift with Internal Data Register Move 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

o 0 0 1 0 0 0 0 x I SF I Xop I Dest Isource 
DREG DREG 

Type 15: Shift Immediate 

23 22 21 20 19 18 17 16 15 14 13 12 11 6543210 
o 0 0 0 1 1 1 1 0 SF exponent 

Type 16: Conditional Shift 

23 22 21 20 19 18 17 16 15 14 13 12 11 
o 0 0 0 1 1 1 0 0 SF 

Type 17: Internal Data Move 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

o 0 0 0 1 1 0 1 0 0 0 0 I DST ISRC I Dest I Source 
RGP RGP REG REG 

Type 18: Mode Control 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

o 0 0 0 1 1 0 0 0 0 0 0 I M~~ IM~~ ~~~ ~~~ 1
0 0 0 0 

Type 19: Conditional Jump (Indirect Address) 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 
o 0 0 0 1 0 1 1 0 0 0 0 0 000 
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Type 20: Conditional Return 

23 22 21 20 19 18 17 16 15 14 13 12 11 
0 0 0 0 1 0 1 0 0 0 0 0 0 

Type 21: Modify Address Register 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 
0 0 0 0 1 0 0 1 0 0 0 0 0 0 o 0 0 

Type 22: Conditional Trap 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 
0 0 0 0 1 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 

Type 23: DIVQ 

23 22 21 20 19 18 17 16 15 14 13 12 11 7 6 5 4 3 2 1 0 
0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 o 0 0 0 

Type 24: DIVS 

23 22 21 20 19 18 17 16 15 14 13 7 6 5 4 321 0 
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 o 0 0 0 

Type 25: SaturateMR 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 321 0 
0 0 0 0 0 1 0 1 0 0 0 0 0 0 o 0 0 000 o 0 0 0 

Type 26: Stack Control 

23 22 21 20 19 18 17 16 15 14 13 12 11 

0 0 0 0 0 1 0 0 0 0 0 0 0 o 0 0 0 0 0 
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Type 27: Reserved 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
o 0 0 0 0 0 1 1 x x x x x x x x x x x x x x x x 

Type 28: Reserved 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
o 0 0 0 001 0 x x x x x x x x x x x x x x x x 

Reserved 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
o 0 0 0 0 0 0 1 x x x x x x x x x x x x x x x x 

Type 30: No Operation 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
00000 0 0 0 0 0 0 000 000 0 0 0 0 0 0 0 

A.2 ABBREVIATION CODING 

AMF ALU / MAC Function codes 

o 0 0 0 0 No operation 

MAC Function codes 

0 0 0 0 1 X*Y (RNO) 
0 0 0 1 0 MR+X*Y (RNO) 
0 0 0 1 1 MR-X*Y (RNO) 
0 0 1 0 0 X*Y (SS) Clear when y = 0 
0 0 1 0 1 X*Y (SU) 
0 0 1 1 0 X*Y (US) 
0 0 1 1 1 X*Y (UU) 
0 1 0 0 0 MR+X*Y (SS) 
0 1 0 0 1 MR+X*Y (SU) 
0 1 0 1 0 MR+X*Y (US) 
0 1 0 1 1 MR+X*Y (UU) 
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o 1 1 0 0 MR-X*Y (SS) 
0 1 1 0 1 MR-X*Y (SU) 
0 1 1 1 0 MR-X*Y (US) 
o 1 1 1 1 MR-X*Y (UU) 

ALU Function codes 

1 0 0 0 0 Y Clear when y = a 
1 0 0 0 1 Y + 1 
1 0 0 1 0 X+Y+C 
1 0 0 1 1 X+Y X when y = a 
1 o 1 0 0 NOTY 
1 0 1 0 1 -y 
1 0 1 1 0 X-Y+C-1 
1 0 1 1 1 X-V 
1 1 0 0 0 Y-1 
1 1 0 0 1 V-X -x when y = a 
1 1 o 1 0 Y-X+C-1 
1'1 0 1 1 NOTX 
1 1 1 0 0 XANDY 
1 1 1 0 1 XORY 
1 1 1 1 0 XXORY 
1 1 1 1 1 ABSX 

COND Status Condition codes 

0 0 0 0 Equal EO 
0 0 0 1 Not equal NE 
0 0 1 0 Greater than GT 
0 0 1 1 Less than or equal LE 
0 1 0 0 Less than LT 
0 1 0 1 Greater than or equal GE 
0 1 1 0 ALU Overflow AV 
0 1 1 1 NOT ALU Overflow NOTAV 
1 0 0 0 ALU Carry AC 
1 0 0 1 Not ALU Carry NOTAC 
1 0 1 0 X input sign negative NEG 
1 0 1 1 X input sign positive POS 
1 1 0 0 MAC Overflow MV 
1 1 0 1 Not MAC Overflow NOTMV 
1 1 1 0 Not counter expired NOTCE 
1 1 1 1 Always TRUE 
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CP Counter Stack Pop codes 

0 No change 
1 Pop 

D Memory Access Direction codes 

0 Read 
1 Write 

DO Double Data Fetch Data Memory Destination codes 

0 0 AXO 
0 1 AX1 
1 0 MXO 
1 1 MX1 

DREG Data Register codes 

0 0 0 0 AXO 
0 0 0 1 AX1 
0 0 1 0 MXO 
0 0 1 1 MX1 
o 1 0 0 AYO 
0 1 0 1 AY1 
0 1 1 0 MYO 
0 1 1 1 MY1 
1 0 0 0 SI 
1 0 0 1 SE 
1 0 1 0 AR 
1 0 1 1 MRO 
1 1 0 0 MR1 
1 1 0 1 MR2 
1 1 1 0 SRO 
1 1 1 1 SR1 

G Data Address Generator codes 

o 
1 

DAG1 
DAG2 

odi 
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Index Register codes 

G= 0 

0 0 10 14 
0 1 11 15 
1 0 12 16 
1 1 13 17 

LP Loop Stack Pop codes 

0 No Change 
1 Pop 

M Modify Register codes 

G= 0 

0 0 MO M4 
0 1 M1 M5 
1 0 M2 M6 
1 1 M3 M7 

MCC Mode Control codes 

SR: Secondary register bank mode 
BR: Bit-reverse mode 
OL: ALU overflow latch mode 
AS: AR register saturate mode 

o 0 No change 
o 1 No change 
1 0 Deactivate 
1 1 Activate 

PO Double Data Fetch Program Memory Destination codes 

o 0 AVO 
o 1 AV1 
1 0 MVO 
1 1 MV1 
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pp PC Stack Pop codes 

0 No Change 
1 Pop 

REG Register codes 

RGP= 00 01 10 11 

0 0 o 0 AXO 10 14 ASTAT 
0 0 0 1 AX1 11 15 MSTAT 
0 0 1 0 MXO 12 16 SSTAT 
0 0 1 1 MX1 13 17 IMASK 
0 1 0 0 AYO MO M4 ICNTL 
0 1 0 1 AY1 M1 M5 CNTR 
0 1 1 0 MYO M2 M6 S8 
0 1 1 1 MY1 M3 M7 PX 
1 0 0 0 SI LO L4 
1 0 0 1 SE L1 L5 
1 0 1 0 AR L2 L6 
1 0 1 1 MRO L3 L7 
1 1 0 0 MR1 
1 1 0 1 MR2 
1 1 1 0 SRO 
1 1 1 1 SR1 

5 Jump Type codes 

0 Jump 
1 Jump Subroutine 
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SF Shifter Function codes 

o 0 o 0 LSHIFT (HI, PASS) 
0 0 0 1 LSHIFT (HI, OR) 
0 0 1 0 LSHIFT (LO, PASS) 
0 0 1 1 LSHIFT (LO, OR) 
0 1 0 0 ASHIFT (HI, PASS) 
o 1 0 1 ASHIFT (HI,OR) 
0 1 1 0 ASHIFT (LO, PASS) 
0 1 1 1 ASHIFT (LO, OR) 
1 0 0 0 NORM (HI, PASS) 
100 1 NORM (HI, OR) 
1 r. 1 " P\1f""\nI.JI (LO, PASS) .L v .L v I'lvnlVI 

1 0 1 1 NORM (LO, OR) 
1 1 0 0 EXP (HI) 
1 1 0 1 EXP (HIX) 
1 1 1 0 EXP (LO) 
1 1 1 1 Block Exponent Adjust 

Spp Status Stack Push/Pop codes 

o 0 No change 
0 1 No change 
1 0 Push 
1 1 Pop 

T Return Type codes 

0 Return from Subroutine 
1 Return from Interrupt 

TERM Termination codes for DO UNTIL 

0 0 0 0 Not equal NE 
0 0 0 1 Equal EQ 
0 0 1 0 Less than or equal LE 
0 0 1 1 Greater than GT 
0 1 0 0 Greater than or equal GE 
o 1 0 1 Less than LT 
0 1 1 0 Not ALU Overflow NOTAV 
0 1 1 1 ALU Overflow AV 
1 0 0 0 Not ALU Carry NOTAC 
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1 o 0 1 ALU Carry AC 
1 0 1 0 X input sign positive POS 
1 0 1 1 X input sign negative NEG 
1 1 0 0 Not MAC Overflow NOTMV 
1 1 0 1 MAC Overflow MV 
1 1 1 0 Counter expired CE 
1 1 1 1 Always FOREVER 

X X Operand codes 

0 o 0 XO (SI for Shifter) 
0 0 1 X1 (Not for Shifter) 
0 1 0 AR 
0 1 1 MRO 
1 0 0 MR1 
1 0 1 MR2 
1 1 0 SRO 
1 1 1 SR1 

V ALU/MAC Y Operand codes 

o 0 YO 
0 1 Y1 
1 0 F (feedback register) 
1 1 zero 

Z ALU/MAC Result Register codes 

0 Result register 
1 Feedback register 
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Division Exceptions 

B.1 DIVISION FUNDAMENTALS 
The ADSP-21 00' s instruction set contains two instructions for 
implementing a non-restoring divide algorithm. These instructions take as 
their operands twos-complement or unsigned numbers, and in 16 cycles 
produce a truncated quotient of 16 bits. For most numbers and 
applications, these primitives produce the correct results. However, there 
are certain situations where results produced will be off by one LSB. This 
appendix documents these situations, and presents alternatives for 
producing the correct results. 

Computing a 16-bit fixed point quotient from two numbers is accom
plished by 16 executions of the DIVQ instruction for unsigned numbers. 
Signed division uses the DIVS instruction first, followed by 15 DIVQs. 
Whichever division you perform, both input operands must be of the 
same type (signed or unsigned) and produce a result of the same type. 

These two instructions are used to implement a conditional add/ subtract, 
non-restoring division algorithm. As its name implies, the algorithm 
functions by adding or subtracting the divisor to/from the dividend. The 
decision as to which operation is perform is based on the previously 
generated quotient bit. Each add/ subtract operation produces a new 
partial remainder, which will be used in the next step. 

The phrase non-restoring refers to the fact that the final remainder is not 
correct. With a restoring algorithm, it is possible, at any step, to take the 
partial quotient, multiply it by the divisor, and add the partial remainder 
to recreate the dividend. With this non-restoring algorithm, it is necessary 
to add two times the divisor to the partial remainder if the previously 
determined quotient bit is zero. It is easier to compute the remainder 
using the multiplier than in the ALU. 

B.1.1 Signed Division 
Signed division is accomplished by first storing the 16-bit divisor in an X 
register (AXO, AXl, AR, MR2, MRl, MRO, SRI, or SRO). The 32-bit divi
dend must be stored in two separate 16-bit registers. The lower 16-bits 
must be stored in AYO, while the upper 16-bits can be in A Yl or AF. 

B 
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The DIVS primitive is executed once, with the proper operands (ex. DIVS 
A Yl, AXO) to compute the sign of the quotient. The sign bit of the quotient 
is determined by XORing (exclusive-or) the sign bits of each operand. The 
entire 32-bit dividend is shifted left one bit. The lower 15 bits of the 
dividend with the recently determined sign bit appended are stored in 
A YO, while the lower 15 bits of the upper word, with the MSB of the lower 
word appended is stored in AF. 

To complete the division, 15 DIVQ instructions are executed. Operation of 
the DIVQ primitive is described below 

8.1.2 Unsigned Division 
Computing an unsigned division is done like signed division, except the 
first instruction is not a DIVS, but another DIVQ. The upper word of the 
dividend must be stored in AF, and the AQ bit of the ASTAT register must 
be set to zero before the divide begins. 

The DIVQ instruction uses the AQ bit of the ASTA T register to determine 
if the dividend should be added to, or subtracted from the partial 
reminder stored in AF&A YO. If AQ is zero, a subtract occurs. A new value 
for AQ is determined by XORing the MSB of the divisor with the MSB of 
the dividend. The 32-bit dividend is shifted left one bit, and the inverted 
value of AQ is moved into the LSB. 

8.1.3 Output Formats 
As in multiplication, the format of a division result is based on the format 
of the input operands. The division logic has been designed to work most 
efficiently with fully fractional numbers, those most commonly used in 
fixed-point DSP applications. A signed, fully fractional number uses one 
bit before the binary point as the sign, with 15 (or 31 in double precision) 
bits to the right, for magnitude. 

If the dividend is in M.N format (M bits before the decimal point, N bits 
after), and the divisor is O.P format, the quotient's format wiIl be (M
O+1).(N-P-1). As you can see, dividing a 1.31 number by a 1.15 number 
wiIl produce a quotient whose format is (1-1 + 1).(31-15-1) or 1.15. 
Before dividing two numbers, you must ensure that the format of the 
quotient wiIl be valid. For example, if you attempted to divide a 32.0 
number by a 1.15 number the result would attempt to be in (32-1 + 1).(0-15-
1) or 32.-16 format. This cannot be represented in a 16-bit register! 

In addition to proper output format, you must insure that a divide 
overflow does not occur. Even if a division of two numbers produces a 



legal output format, it is possible that the number will overflow, and be 
unable to fit within the constraints of the output. For example, if you 
wished to divide a 16.16 number by a 1.15 number, the output format 
would be (16-1 + 1).(16-15-1) or 16.0 which is legal. Now assume you 
happened to have 16384 (H#4000) as the dividend and .25 (H#2000) as the 
divisor, the quotient would be 65536, which does not fit in 16.0 format. 
This operation would overflow, producing an erroneous results. 

Input operands can be checked before division to ensure that an overflow 
will not result. If the magnitude of the upper 16 bits of the dividend is 
larger than the magnitude of the divisor, an overflow will result. 

8.1.4 Integer Division 
One special case of division that deserves special mention is integer divi
sion. There may be some cases where you wish to divide two integers, 
and produce an integer result. It can be seen that an integer-integer divi
sion will produce an invalid output format of (32-16+ 1).(0-0-1), or 17.-1. 

To generate an integer quotient, you must shift the dividend to the left 
one bit, placing it in 31.1 format. The output format for this division will 
be (31-16+ 1).(1-0-1), or 16.0. You must ensure that no significant bits are 
lost during the left shift, or an invalid result will be generated. 

8.2 ERROR SITUATIONS 
Although the ADSP-2100 divide primitives work in most instances, there 
are two cases where an invalid, or inaccurate result can be generated. The 
first case involves signed division by a negative number. If you attempt to 
use a negative number as the divisor, the quotient generated may be one 
LSB less than the correct result. The other case concerns unsigned division 
by a divisor greater than h#7FFF. If the divisor in an unsigned division 
exceeds H#7FFF, an invalid quotient will be generated. 

8.2.1 Negative Divisor Error 
The quotient produced during a divide involving a negative divisor will 
generally be one LSB less than the correct result. The divide algorithm 
implement in ADSP-2100 hardware does not correctly compensate for the 
twos-complement format of a negative number, causing this inaccuracy. 

There is one case where this discrepancy does not occur. If the result of 
the division operation should equal H#8000, then it will be correctly 
represented, and not be one LSB off. 
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There are several ways to correct for this error. But before changing any 
code, you should determine if one LSB error in you quotient is significant 
problem. In some cases, the LSB is small enough to be insignificant. If you 
find it necessary have exact results, two solutions are apparent. 

One way would be to avoid division by a negative number. If your divisor 
is negative, take its absolute value, and invert the sign of the quotient after 
division. This will produce the correct result. 

Another technique would be to check the result by multiplying the 
quotient by the divisor. Compare this value with the dividend, if they are 
off by more than the value of the divisor, increase the quotient by one. 

B.2.2 Unsigned Division Error 
Unsigned divisions can produce erroneous results if the divisor is greater 
than H#7FFF. You should not attempt to divide two unsigned numbers if 
the divisor has a one in the MSB. If it is necessary to perform a such a 
division, both operands should be shifted right one bit. This will maintain 
the correct orientation of operands. 

Shifting both operands may result in a one LSB error in the quotient. This 
can be solved by multiplying the quotient by the original (not shifted) 
divisor. Subtract this value from the original dividend to calculate the 
error. If the error is greater than the divisor, add one to the quotient, if it is 
negative, subtract one from the quotient. 

B.3 SOFTWARE SOLUTION 
Each of the problems mentioned in this Appendix can be compensated for 
in software. Listing 1 shows the module divide_solution. This code can be 
used to divide two signed or unsigned numbers to produce the correct 
quotient, or an error condition. 

In addition to correcting the problems mentioned, this module provides a 
check for division overflow and computes the remainder following the 
division. 

Since many applications do not require complete error checking, the code 
has been designed so you can remove tests that are not necessary for your 
project. This will decrease memory requirements, as well as increase 
execution speed. 

The module signed_div expects the 32-bit dividend to be stored in 
AYl&AYO, and the divisor in AXO. Upon return either the AR register 



III III l1li 

IVI I pti 

holds the quotient and MRO holds the remainder, or the overflow flag is 
set. The entire routine takes at most 27 cycles to execute. If an exception 
condition exists, it may return sooner. The first two instructions store the 
dividend in the MR registers, the absolute value of the dividend's MSW in 
AF, and the divisor's absolute value in AR. 

The code block labeled test_1 checks for division by H#8000. Attempting 
to take the absolute value of H#8000 produces an overflow. If the A V flag 
is set (from taking the absolute value of the divisor), then the quotient is 
-A Yl. This can produce an error if A Yl is H#8000, so after taking the 
negative of A Yl, the overflow flag is checked again. If it is set control is 
returned to the calling routine, otherwise the remainder is computed. If it 
is not necessary to check for a divisor of H#8000, this code block can be 
removed. 

The code block labeled test_2 checks for a division overflow condition. 
The absolute value of the divisor is subtracted from the absolute value of 
the dividend's MSW. If the divisor is less then the dividend, it is likely an 
overflow will occur. If the two are equal in magnitude, but different in 
sign, the result will be H#8000, so this special case is checked. If your 
application does not require an overflow check, this code block can be 
removed. If you decide to remove test_2 be sure to change the JUMP 
address in test_1 to do_divs, instead of test_2. 

After error checking, the actual division is performed. Since the absolute 
value of the divisor has been stored in AR, this is used as the X-operand 
for the DIVS instruction. Fifteen DIVQ instructions follow, computing the 
rest of the quotient. The correct sign for the quotient is determined, based 
on the AS flag of the ASTAT register. Since the MR register contains the 
original dividend, the remainder can be determine by a multiply subtract 
operation. The divisor times the quotient is subtracted from MR to 
produce the remainder in MRO. 

The last step before returning is to clear the ASTAT register which may 
contain an overflow flag produced during the divide. 

The subroutine unsigned_div is very similar to signed_div. MRI and AF are 
loaded with the MSW of the dividend, MRO is loaded with the dividend 
LSW and the divisor is passed into AR. Since unsigned division with a 
large divisor (>H#7FFF) is prohibited, the MSB of the divisor is checked. 
If it contains a one, the overflow flag is set, and the routine returns to the 
caller. Otherwise test_II checks for a standard divide overflow. 
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In test_ll the divisor is subtracted from the MSW of the dividend. 1£ the 
result is less then zero division can proceed, otherwise the overflow flag is 
set. 1£ you wish to remove test_ll, be sure to change the JUMP address in 
test_l0 to do_divq. 

The actual unsigned division is performed by first clearing the AQ bit of 
the ASTAT register, then executing 16 DIVQ instructions. The remainder 
is computed, after first setting MR2 to zero. This is necessary since MR1 
automatically sign-extends into MR2. Also, the multiply must be executed 
with the unsigned switch. To ensure that the overflow flag is clear, ASTAT 
is set to zero before returning. 

In both subroutines, the computation of the remainder requires only one 
extra cycle, so it is unlikely you would need to remove it for speed. If it is a 
problem to have the multiply registers altered, remove the multiply / 
subtract instruction just before the return, and remove the register 
transfers to MRO and MR1 in the first two multifunction instructions. Be 
sure to remove the MR2=O; instruction in the unsigned_div subroutine also . 

. MODULE/ROM Divide solution; 
{ 

This module can be used to generate correct results when using the divide primitives of 
the ADSP-2100. The code is organized in sections. This entire module can be used to 
handle all error conditions, or individual sections can be removed to increase 
execution speed. 

Entry Points 
signed_div Computes 16-bit signed quotient 
unsigned_div Computes 16-bit unsigned quotient 

Calling Parameters 
AXO 16-bit divisor 
AYO = Lower 16 bits of dividend 
AYI = Upper 16 bits of dividend 

Return Values 
AR = 16-bit quotient 
MRO = 16-bit remainder 
AV flag set if divide would overflow 

Altered Registers 
AXO, AXl, AR, AF, AYO, AYl, MR, MYO 

Computation Time: 30 cycles 

Listing B.1 Division Error Routine (continues on next page) 
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. ENTRY 

test 1: 

test 2: 

test 3: 

test 4: 

Divi ion Exceptions B 

MRO=AYO,AF=AXO+AY1; 
MR1=AY1, AR=ABS AXO; 

IF NE JUMP test 2; 
ASTAT=H#4; 
RTS; 

{Take divisor's abso1rite value} 
{See if divisor and dividend have} 
{same magnitude, different sign} 
{If divisor non-zero, do test 2} 
{Divide by zero, so overflow} 
{Return to calling program} 

IF NOT AV JUMP test_3; {If divisor H#8000, then the} 
AYO=AY1, AF=ABS MR1; {quotient is simply -AY1} 
IF NOT AV JUMP recover sign; 
ASTAT=H#4; {H#8000 divided by H#8000,} 
RTS; 

AF=PASS AF; 
IF NE JUMP test 4; 
AYO=H#8000; 
ASTAT=H#O; 
JUMP recover sign; 

AF=ABS MR1; 
AR=ABS AXO; 
AF=AF-AR; 
IF LT JUMP do_divs; 
ASTAT=H#4; 
RTS; 

{so overflow} 

{Check for division overflow} 
{Not equal, jump test 4} 
{Quotient equals -1} 
{Clear AS bit of ASTAT} 
{Compute remainder} 

{Get absolute of dividend} 
{Restore AS bit of ASTAT} 
{Check for division overflow} 
{If Divisor>Dividend do divide} 
{Division overflow} 

Listing B.1 Division Error Routine (continues on next page) 
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B ivision Exceptions 

do divs: DIVS AY1, AR; DIVQ AR; 
DIVQ AR; DIVQ AR; 
DIVQ AR; DIVQ AR; 
DIVQ AR; DIVQ AR; 
DIVQ AR; DIVQ AR; 
DIVQ AR; DIVQ AR; 
DIVQ AR; DIVQ AR; 
DIVQ AR; DIVQ AR; 

recover sign: MYO=AXO,AR=PASS AYO; 
IF NEG AR=-AYO; 
MR=MR-AR*MYO (SS); 
RTS; 

unsigned_div: MRO=AYO, AF=PASS AY1; 
MR1=AY1, AR=PASS AXO; 

test 10: IF GT JUMP test_11; 
ASTAT=H#4; 
RTS; 

test 11: AR=AYI-AXO; 

uremainder: 

.ENDMOD; 

IF LT JUMP do_divq; 
ASTAT=H#4; 
RTS; 

ASTAT=O; 
DIVQ AXO; DIVQ AXO; 
DIVQ AXO; DIVQ AXO; 
DIVQ AXO; DIVQ AXO; 
DIVQ AXO; DIVQ AXO; 
DIVQ AXO; DIVQ AXO; 
DIVQ AXO; DIVQ AXO; 
DIVQ AXO; DIVQ AXO; 
DIVQ AXO; DIVQ AXO; 

MR2=0; 
MYO=AXO, AR=PASS AYO; 
MR=MR-AR*MYO (UU); 
RTS; 

{Compute sign of quotient} 

{Put quotient into AR} 
{Restore sign if necessary} 
{compute remainder dividend neg} 
{Return to calling program} 

{Move dividend MSW to AF} 
{Is MSB set?} 

{No, so check overflow} 
{Yes, so set overflow flag} 
{Return to caller} 

{Is divisor<dividend?} 
{No, so go do unsigned divide} 
{Set overflow flag} 

{Clear AQ flag} 
{Do the divide} 

{MRO and MRI previous set} 
{Divisor in MXO, Quotient in AR} 
{Determine remainder} 
{Return to calling program} 

Listing B.1 Division Error Routine 
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GUIDE 
Boldface, in this index, denotes the major entry for the item indexed. The 
notation" &c" means "and following pages." Figures and tables appear in 
italics. 

A 
AC (ALU Carry; see also ASTAD 

2-2,2-6,2-8,2-13,2-24,2-34, 
Tables 4.1 & 4.3 

Addresses, 
see DAG, PMA, DMA, Arrays, Bit-reversal 

ADSP-2100 1-2 
General Architecture 1-5 
General Description 1-1 
Instruction set 6-1, Appendix A 
Internal Architecture 1-5 
Internal Architecture Block Diagram 1-4 
Key Features 1-2 
Program examples 4-28,6-18 

AF register 2-6,2-8,6-4,6-12 
Alternate registers, see Shadow registers 
ALU, block diagram 2-5 

functions 2-7, 4-21, 6-8, Table 6.3 
General 2-5 
Overflow, see also AV 2-9,6-14 
Registers 2-8 
Saturation, see Saturation 

AN (ALU Negative; see also ASTAD 
2-2, 2-6, 2-13, Tables 4.1 & 4.3 

AND, see ALU junctions 
AQ (ALU quotient; see also ASTAD 

2-6, 2-9, 2-13 
AR register 2-6,2-8,2-18,2-28,2-34,6-4 
Architecture Description File 6-17 
Arithmetic 2-1,2-8,2-9,2-12,2-17,2-21, 

2- 24, 3-2, 6-4, 6-9 
Arrays, see also Circular buffers 

Initializing 
Length operator (%) 

6-15, 6-19 
6-16 

AS (ALU input sign; see also ASTAD 

Assembler 
2-6, 2-13, Tables 4.1 & 4.3 

1-8, 6-1, 6-13, 6-15 

ASTAT (Arithmetic Status) 
2-6,2-10,2-13,2-18,2-34,4-10,4-14, 

4-20, 4-21, 4-26, Tables 4.1 
& 4.3, 6-12 

Asynchronous inputs 
see also DMACK,RESET, HALT, BR, 

IRQ, 5-3 
A V (ALU Overflow; see also AST AD 

2-2,2-6,2-9,2-13,2-24,4-23, Tables 4.1 & 
4.3,5-13,6-14 

AXO, AXI registers 2-6,2-8,6-12 
AYO, AYI registers 2-6,2-8,6-12 
AZ (ALU Zero; see also AST AD 

2-2,2-6,2-13, Tables 4.1 & 4.3 

B 
BG (Bus Grant) 1-1, 5-3, 5-13, 5-18 
Binary Arithmetic, see Arithmetic 
Binary string 2-1 
Bit-reversal, see also DAGl 

3-2,3-5,4-22,5-13,6-14 
Block Exponent 2-26 
Block Floating-Point 2-1, 2-26 
BR (Bus Request) 1-1,5-3,5-9,5-13,5-18 
Buffers, see Arrays, Circular Buffers 

c 
C Compiler 
Cache Memory 

Example 
CALL instruction 
CE (counter expired) 
CI (carry in) 

1-9, 2-3, 6-1 
4-26, 5-13, 6-4, 6-21 

4-28,6-21 
4-1, 4-7, 4-13 

4-4 
2-6 

CIRC directive, see Circular Buffers 
Circular buffers 3-3, 6-16, 6-19&c 
CLKIN 1-1,5-2,5-13,5-17 
CLKOUT 1-1, 5-2, 5-13, 5-17 
CNTR register 4-4,6-12,6-13,6-20 
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X-2 

Index 

Conditional 
4-4,4-25, Tables 4.1 & 4.3, 6-8, 6-10 

Constants 6-19 
Context switching, see Shadow Registers 
Control interface 5-12 

see also RESET, HALT, TRAP 
Counter stack 4-4, 4-5 
Cycle, beginning/end 

2-6, 2-15, 2-23, 4-21, 4-26, 5-2, 6-2, 6-4 

o 
DAGs 3-1,6-4,6-14 
DAGs, Block Diagram 3-2 
DAGs, DAG1, see also Bit-reversal 3-1,6-14 
DAGs, DAG2 4-3, 4-20, 6-13 
Data Address Generators (DAGs) 3-1 
Data Bus, see DMD, PMD 
Denormalization 
Development System 
Division, see also Arithmetic 
DIVQ instruction, see Division 
DIVS instruction, see Division 
DM, see DMD bus, 

Multifunction instructions 

2-26,2-30 
1-8 

2-9, App. B 

DMA bus 5-19 
DMA bus, bit-reversed addresses 3-5 
DMACK 5-1,5-3,5-9,5-14,5-20 
DMD bus 2-6,2-15,2-21,3-1,3-6,4-4,4-16, 

5-1,5-19 
DMD-PMD exchange, see PMD-DMD 
DMRD 5-9,5-20 
DMS 5-9,5-19 
DMWR 5-9, 5-20 
DO UNTIL 4-1,4-4,4-5, 4-16&c, 4-27 
DO UNTIL, restrictions 4-8 
Down counter 4-4 

E 
Emulator 
ENTRY directive 
EQ (equal condition) 
Evaluation Board 

1-9 
6-13 

Tables 4.1 & 4.3 
1-8 

2-26,2-28 
2-3,2-26 

6-13 

EXP ADJ instruction 
Exponent, see also Arithmetic 
EXTERNAL directive 

F 
FFTs 3-2,3-6 

4-28, 6-18 FIR Filter examples 
Fixed-Point, see Arithmetic 
Floating-Point 

see Arithmetic, Block Floating-Point 
FOREVER (No condition) Tables 4.1 
Fractional, see also Arithmetic Figure 2.6 

G 
GE (greater than/equal condition) 

Tables 4.1 & 4.3 
GND (ground pins) 5-20 
GT (greater than condition) 

Tables 4.1 & 4.3 

H 
HALT 1-1, 5-3, 5-6, 5-9, 5-13,5-14,5-17 
HIILO reference 2-21,2-29,6-11 
HIX (Shifter) 2-24, 2-34 

IJK 
I (Index) registers 3-1,6-4,6-12,6-14,6-19 
ICNTL register 4-9,4-20,4-23,5-13,5-16, 

6-12 
IMASK register 4-9,4-10,4-14,4-20,4-24, 

5-13, 5-16, 6-12 
In-Circuit Emulator 1-9 
INIT directive, see also Arrays 6-15,6-16 
Input Sign, see AS, SS, Tables 4.1 & 4.3 
Instruction register 4-1 
Interrupts 

Controller 4-1,4-8 
Edge sensitive 4-8,4-23,5-15 
Level sensitive 4-8,4-23,5-15 
Operation 4-14,5-9,5-13,5-15, 6-19&c 
Priority 4-8,4-23&c 
Request 4-3,4-10 
Vector location 4-3 

IRQ 4-9,4-23,5-16,5-17 
JUMP instruction 4-1,4-7,4-12,4-15,4-27, 

6-13 



L 
L (Length) registers 3-1, 6-12, 6-16, 6-19 
LE (less than/equal condition) 

Tables 4.1 & 4.3 
Linker 1-8,3-3,5-7,6-1,6-17,6-19 
Logical operators, see ALU functions 
Loop Comparator 4-5,4-18 
Loops 4-4,4-16,4-27 
Loops, last instruction 4-7 
Loops, termination 4-19 
L T (less than condition) Tables 4.1 & 4.3 

M 
M (modify) registers 

3-1,6-4,6-12,6-14,6-19 
MAC 

Block diagram 
Functions 
General 

2-14 
2-16, 6-9, Table 6.4 

2-13 
Input output registers 

Mantissa, see Arithmetic 
Memory read 

see Multifunction, PMRD, DMRD 
Memory select, see PMS, DMS 
Memory write 

see Multifunction, PMWR, DMWR 
Memory-mapped peripherals 

2-18 

5-1,5-9,6-17 
MF register 2-15,2-18,6-4 
Miscellaneous instructions 6-14, Table 6.9 
MODE CONTROL instruction 4-8, 4-23, 

6-14 
MODIFY instruction 6-14 
Modulo addressing 3-3 
MOVE instructions 6-12, Table 6.7 
MR register 2-2,2-8,2-13,2-18,2-28,6-4, 

MRO, seeMR 
MR1, seeMR 
MR2, seeMR 

6-12 

MSTAT (mode status) 2-7/9,2-16,3-2,3-5, 
4-10,4-14,4-20,4-22,5-13, 
6-12 

Multifunction instructions 
6-2, 6-3, Table 6.1 & 6.2 

Index 

Multifunction instructions 
6-3&c, Tables 6.1 & 6.2 

Multiplier / Accumulator, see MAC 
MV (multiplier overflow; see also ASTAT) 

2-13, 2-18, Tables 4.1 & 4.3 
MXO, MX1 registers 2-15,2-18,6-4,6-12 
MYO, MY1 registers 2-15,2-18,6-4,6-12 

N 
NE (not equal condition) 
NEG (negative condition) 
NOP instruction 
NORM instruction 
Normalization 

Tables 4.1 & 4.3 
Tables 4.1 & 4.3 

6-8,6-14 
2-26,2-32 
2-26,2-32 

NOT AC (no carry condition) 
Tables 4.1 & 4.3 

NOT A V (no ALU overflow condition) 
Tables 4.1 & 4.3 

NOT MV (no MAC overflow condition) 
Tables 4.1 & 4.3 

NOT, see ALU Functions 

o 
OR, see ALU Functions 
OR/PASS 2-21, 2-31, 6-11 
Overflow, ALU, see AV 
Overflow, MAC, see MV 

p 
P Output (MAC) 
Package, PGA 
Package, PLCC 
Parallel, see Multifunction 
PASS (Shifter), see OR/PASS 
PC (program counter) 
PC stack 
Pin configuration 
PM 

2-16, Fig.2.6 
1-3,5-21/22 

1-3 

4-1, 4-3, 6-12 
4-1,4-3,4-15 

5-21/22 

see PMD bus, Multifunction instructions 
PMA bus 4-10,4-12,4-15,4-20,4-27,5-13, 

5-14,5-18 
PMD bus 3-6,4-26,5-1,5-18 
PMD-DMD bus exchange 2-6, 2-15, 3-6 
PMD-DMD bus exchange diagram 3-7 
PMDA 5-6,5-19 
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Index 

PMRD 5-6, 5-19 
PMS 5-6,5-18 
PMWR 5-6,5-19 
Pointer operator (A) 6-16 
Pointer wraparound, see Circular Buffers 
PORT directive 6-17 
Ports, see also Memory-Mapped 6-15,6-17 
POS (positive condition) Tables 4.1 & 4.3 
Primary registers, see Shadow registers 
Program Sequencer, see Sequencer 
PROM Splitter 1-9,5-7,6-1 
PUSH/POP 6-14 
PX register 3-6, 6-12 

Q 
Quotient, see Division, Arithmetic 

R 
R Bus (internal) 2-6,2-15,2-21 
Register indirect addressing 4-20 
Register, move 6-6,6-12 
Registers Table 6.6 
RESET 1-1,4-22,5-3,5-6,5-13,5-17 
Rounding, MAC 2-19,6-9 
RTI instruction 4-1,4-7,4-10,5-16 
RTS instruction 4-1,4-7 

S 
Saturation 

ALU 2-8,4-23,5-13,6-14 
MAC 2-18 

SB register 2-21, 2-28, 6-12 
SE register 2-21, 2-29, 2-30, 6-12 
Sequencer, block diagram 4-2 

functions 4-10&c, 5-13, 6-13, Table 6.3 
Shadow registers 

ALU 2-7 
General 4-8,4-22,5-13,6-14 
MAC 2-15 
Shifter 2-23 

Shifter, block diagram 2-22 
Functions 2-26, 4-21, 6-11, Table 6.3 
General 2-20 
Input/ output registers 2-28 

SI register 2-21, 2-28, 6-12 

Signed numbers, see Arithmetic 
Simulator 1-8,4-10,5-7,6-1 
SR (Shifter result register) 

2-8, 2-18, 2-28, 6-12 
SRO, see SR 
SRI, see SR 
SS (Shifter Input Sign, see also AST AD 

2-24,4-21 
SSTAT (Stack status) 4-10,4-15,4-20,4-22, 

5-13,6-12 
Stack 

count 
loop 
overflovv'" 
PC 

Stack, status, see SST AT 

4-16,5-13,6-14 
4-16,5-13,6-14 

4-5,4-22,6-14 
4-16,5-13,6-14 

Synchronization Delay 5-3,5-6,5-14 
Syntax notation 6-2 
System Builder 1-8,5-7,6-1,6-1,6-17,6-20 

T 
Termination conditions 

TRAP 
4-4, Table 4.1, Appendix A 

1-1,5-6,5-14,5-18 
Tristate, see also BR 
TRUE (Always true) 
Twos-Complement, see Arithmetic 

u-z 
Unsigned numbers, see Arithmetic 
V AR directive 
Vdd 
XOR, see ALU functions 

5-5,5-13 
Table 4.3 

6-15 
5-20 




