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Preface

This manual describes the enhanced implementation of FORTRAN-PLUS, the version of the FOR
TRAN Language implemented for the AMT DAP. The DAP (standing for ‘Distributed Array of
Processors’) is a massively parallel computer which attaches to a host computer as a peripheral pro
cessor. FORTRAN-PLUS enhanced has removed the restrictions in earlier versions of the language
on the sizes of parallel dimensions of data objects.

FORTRAN-PLUS enhanced contains many new features which supersede some of the features of
earlier versions. However, for the sake of compatibility, all superseded features are still available
and referred to in this manual.

The manual you are now reading is a reference document. The manual is organised so that
chapters 1 to 5 provide a brief summary of the syntax of FORTRAN-PLUS and are a source
of quick reference. Subsequent chapters describe in greater detail the syntax and semantics of
FORTRAN-PLUS enhanced procedures, data manipulation, control, computational error manage
ment and the process of executing a FORTRAN-PLUS enhanced program. Appendix A describes
how FORTRAN-PLUS enhanced data is mapped on the DAP. Appendix B refers to the superseded
features of the language.

You are assumed to be familiar with the principles of FORTRAN-PLUS enhanced, as described in
the AMT publication:

DAP Series: Introduction to FORTRAN-PLUS enhanced manlOl.02

The compilation and execution of FORTRAN-PLUS programs are described in the AMT publica
tion DAP Series: Program Development; for further information you should consult the version ofthat publication which is appropriate to your system.

For convenience, throughout this manual, FORTRAN-PLUS enhanced is referred to simply as
FORTRAN-PLUS and the term FORTRAN is used as an abbreviation for FORTRAN 77.

The publication you are now reading is the first edition.

Other relevant publications are:

DAP Series: Program Development under UNIX manOO3.03

DAP Series: Program Development under VAX/VMS manOO4.03

DAP Series: APAL Language manOO5.03

DAP Series: DAP System Calls manO23.O1

FORTRAN-PLUS enhanced man 102.01 iii
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Chapter 1

FORTRAN-PLUS programs

1.1 Introduction

FORTRAN-PLUS enhanced is a high level language with parallel processing facilities for pro
gramming the AMT DAP. The enhanced implementation of FORTRAN-PLUS removes restrictions
in earlier versions of the language on the sizes of data objects intended for parallel processing; that
is, the language now supports the declaration of vectors and matrices with arbitrarily sized parallel
dimensions.

FORTRAN-PLUS enhanced has many new features which supersede some of the features of
earlier implementations of FORTRAN-PLUS. However, for the sake of compatibility, all superseded
features are still available and referred to in this manual.

For convenience, throughout this manual, FORTRAN-PLUS enhanced is referred to simply as
FORTRAN-PLUS.

The DAP (standing for Distributed Array of Processors) is a massively parallel SIMD-type com
puter (single instruction, multiple data), which attaches to a host computer as a peripheral pro
cessor.

The DAP differs from a conventional serial processor in that it can perform the same operation on
many items in the data memory simultaneously. This parallel processing capability is provided by
a matrix of processors (processor elements, or PEs), each of which usually operates on the data in
its own local memory.

The processors are arranged in a square matrix; for example 32 x 32 in the case of the DAP 500
range, and 64 x 64 for the DAP 600. The number of processors on one side of the square gives
the edge-size of the DAP.

The DAP has separate code and data memories. The DAP data memory is the total of the local
memories of all the processor elements, and is referred to as the array memory or array store.

Matrices and vectors that contain more components than there are processors are automatically
partitioned into DAP-sized sections for processing. The effect is the same as if the entire data
object had been processed simultaneously. For convenience most of this manual refers to such
operations as being performed ‘in parallel’, ignoring any partitioning of matrices or vectors that

FORTRAN-PLUS enhanced manlO2.O1 1



2 Chapter 1: FORTRAN-PLUS programs

the compiler might make and that the programmer need not be aware of.

Any program which runs on a DAP is called a DAP program, and is started by user software which
runs on the host. The host program is entered first; it controls the start of the DAP program
and can transfer data between the host and the DAP using special interface subroutines. The
preparation of a DAP program, and its running either on DAP hardware or using the simulation
system, is described in DAP Series: Program Development.

You can write a DAP program in FORTRAN-PLUS or in the assembly level language APAL or in
a mixture of the two. The host program can be written in any language or mixture of languages
supported by the host operating system.

Facilities also exist for a DAP program to read or write host filestore, and to communicate with
peripherals connected directly to the DAP; consult DAP Series: DAP System Calls for more details.

1.2 FORTRAN-PLUS program units

A DAP program can contain one or more FORTRAN-PLUS program units called FORTRAN-
PLUS subprograms. There are three classes of FORTRAN-PLUS subprogram:

• SUBROUTINE

These program units begin with a SUBROUTINE statement, followed by lines of FORTRAN-
PLUS source, concluded by an END statement.

Control enters a FORTRAN-PLUS subroutine via a CALL statement naming the subroutine,
in the same or another program unit.

If the calling routine is in the host program, the called routine must be a FORTRAN-PLUS
ENTRY subroutine, and the call is made via the special interface subroutine DAPENT (see
DAP Series: Program Development).

A FORTRAN-PLUS program unit can call only another FORTRAN-PLUS or APAL program
unit; it cannot call a host routine.

Control leaves the subprogram when a RETURN, CALL or STOP statement, or a function
call, is reached

• FUNCTION

These program units begin with a FUNCTION statement, followed by lines of FORTRAN-
PLUS source, concluded by an END statement.

Control enters a FORTRAN-PLUS function via a function reference to the function name
in another FORTRAN-PLUS program unit, and leaves the subprogram when a RETURN,
CALL or STOP statement, or a function call, is reached

• BLOCK DATA SUBPROGRAM

These program units begin with a BLOCK DATA statement, followed by lines of FORTRAN-
PLUS source, concluded by an END statement.

There are no executable statements in a block data subprogram; its use is to give initial
values to data in named COMMON blocks

2 man 102.01 AMT



1.2. FORTRAN-PLUS program units 3

The term procedure is used to refer to a user written FORTRAN-PLUS function or subroutine,
and a built-in FORTRAN-PLUS function or subroutine. User written procedures are described in
chapter 10 and built-in procedures are described in chapter 11.

1.2.1 Data and program units

Values are transmitted between FORTRAN-PLUS program units in the following ways:

• A function call invokes a function which returns a result (see section 10.1.2)

• A procedure shares values with the FORTRAN-PLUS program unit that invokes it by argu
ment association (see section 10.4.2)

• Values can be communicated via named COMMON blocks (see chapter 12)

You can transmit values between a host program and a FORTRAN-PLUS program only if the
values reside in the FORTRAN-PLUS program in named COMMON blocks (see section 12.2.2).

1.2.2 Statement order within program units

The various types of FORTRAN-PLUS statements and their formats are described in chapter 2.

The order of statements in a FORTRAN-PLUS procedure must be as follows:

1. FUNCTION, SUBROUTINE or ENTRY SUBROUTINE statement

2. Optional COMMON, DATA, DIMENSION, EQUIVALENCE, EXTERNAL, GEOMETRY,
IMPLICIT, PARAMETER, or type statement(s)

3. At least one executable statement

4. END statement

The order of statements in a FORTRAN-PLUS block data subprogram must be as follows:

1. BLOCK DATA statement

2. At least one COMMON statement and one statement initialising variables and optional
DIMENSION, EQUIVALENCE or type statement(s)

3. END statement

FORTRAN-PLUS enhanced manlO2.O1 3
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Chapter 2

Source program format

A FORTRAN-PLUS source program consists of text input from one or more files. The source can
contain file include statements, which cause text to be inserted from named files at the point in
the source at which they appear. File include statements are not regarded as part of the source
program; they are described in DAP Series: Program Development.

A FORTRAN-PLUS source program consists of lines of text. The first 72 characters on each line
are significant to the compiler; for shorter lines the effect is the same as if they were extended
on the right with spaces up to a total of 72 characters. Lines can be longer than 72 characters,
in which case any text in character positions 72 to 80 will be printed in any listing output that
the compiler produces, but is otherwise ignored; any text in the character positions beyond 80 is
ignored by the compiler, and will not be printed in any listing output.

The lines of a FORTRAN-PLUS source program are an ordered set, the order being the order in
which they are presented to the FORTRAN-PLUS compiler.

The character positions within a line are called columns, and are numbered from 1 to 72. Columns
1 to 5 are used to hold statement labels (see section 2.2); column 6 is used to indicate whether or
not the line is a continuation line (see section 2.1); columns 7 to 72 contain the text of FORTRAN-
PLUS statements (see section 2.3),

2.1 Lines and statements

A FORTRAN-PLUS statement is written in columns 7 to 72 of up to 20 consecutive lines. The first
line of the statement is the initial line, and any following lines of that statement are continuation
lines. Column 6 of the initial line of a statement must contain either a space or zero; colunni 6 of
any continuation line(s) must contain some character other than space or zero (continuation lines
of the same statement need not have the same character in column 6). The character set that can
be used in a FORTRAN-PLUS program is described in section 3.1.

You can intersperse lines of program text with comment or blank lines. A comment line contains
the character C in column 1 and any text in columns 2 to 72; you can use comment lines to hold text
that you want to appear in the compiler output listing. A blank line contains spaces in columns 1
to 72; you can use it to improve the readability of the compiler output listing by separating blocks

FORTRAN-FL US enhanced man 102.01 5



6 Chapter 2: Source program format

of program text, Comment and blank lines can appear before or between continuation lines.

Each FORTRAN-PLUS subprogram has to end with an END statement. An END statement
contains the keyword END within columns 7 to 72 of an initial line and spaces in all other columns
of that line.

2.2 Statement labels

A statement label is a string of from ito 5 digits (see section 3.1) that can be written in columns
1 to 5 of the initial line of any statement. Spaces and leading zeros are not significant within
statement labels.

Hence the labels:

056
56
56

are equivalent. The order of statement labels within a program is not significant, but no two
statements in the same program unit can be given the same statement label.

If you declare a statement label, then you can reference the label in GO TO, arithmetic IF, and
DO statements (see chapter 14). A reference to a statement label within these statements tells the
compiler that the sequence of execution of statements is to depart from the physical sequence of
the statements.

2.3 FORTRAN-PLUS statement format

FORTRAN-PLUS statements are of two main classes: executable and non-executable. An exe
cutable statement is one that specifies some action to be performed during the execution of the
program. A non-executable statement gives information to the FORTRAN-PLUS compiler con
cerning the organisation of data and the structure of the program.

This section gives a brief summary of the syntax of the various forms of FORTRAN-PLUS state
ment. The summary makes reference to the following syntactic entities which are described else
where.

6 man 102.01 AMT



2.3, FORTRAN-PLUS statement format 7

Syn tactic entity reference

actual argument section 10.4.2
arithmetic expression section 8.2
array name section 6.2
array declarator section 6.2
array element name section 6.4
basic integer constant section 5.1
built-in subroutine chapter 11
character expression section 8.3
constant chapter 5
data-length section 4.4
dummy argument section 10.4.1
function name section 10.1.2
indexing expression chapter 7
label section 2.2
logical expression section 8.5
name section 3.2
type chapter 4
variable name chapter 6
variable declarator section 6.1

The conventions used in sections 2.3.1 and 2.3.2 for describing the syntax of the various forms of
executable and non-executable statements are:

• Statement keywords are shown in upper case in BOLD TYPE

• The names of syntactic entities are shown in lower case italics

• Where it helps to avoid ambiguity, a phrase used to denote a single entity is linked with
hyphens — for example, basic-integer-constant

• Where a statement can be formed in a number of ways, the various forms are listed one
underneath another

• Parentheses and commas, where they appear in a statement form, are an essential part of
the statement syntax

2.3.1 Executable statements

FORTRAN-PLUS executable statements can be further divided into assignment statements and
control statements. An assignment statement gives an initial or new value to a variable or array
element; a control statement determines, in some way, the sequence in which statements are to be
executed.

FORTRAN-PLUS enhanced manlO2.O1 7



8 Chapter 2: Source program format

2.3.1.1 Assignment statements

Assignment statements in FORTRAN-PLUS can be either simple or indexed assignment state
ments.

A simple assignment statement can have any of the following forms:

• name = arithmetic expression where name is a variable name of type integer or real

• name = logical expression where name is a variable name of type logical

• name = character expression where name is a variable name of type character

An indexed assignment statement can have any of the following forms:

• name (indexing expression list) = arithmetic expression where name is a variable name or
an array name of type integer or real

• name (indexing expression list) = logical expression where name is a variable name or an
array name of type logical

• name (indexing expression list) = character expression where name is a variable name or an
array name of type character

The modes of the left and right-hand sides of a simple or indexed assignment statement have to
be assignment-compatible, as defined in Chapter 9. Simple and indexed assignments are described
in detail in Chapter 9.

2.3.1.2 Control statements

• CALL name
CALL name (actual-argument-list)

— name is the name of a user written or built-in subroutine

see section 10.3

• CONTINUE

see section 14.5.4

• DO label name = start, terminator, increment
DO label name = start, terminator

— label is a reference to a statement label in the same program unit

— name is the name of an integer scalar variable of data-length 4 bytes

— start, terminator, and increment are arithmetic expressions

see section 14.5.1

8 manlO2.Ol AMT



2.3. fORTRAN-PLUS statement format 9

• GO TO label
GOTO label
GO TO (label1, label2, ... label1, ... label), arithmetic-expression
GOTO (label1, label2, ... label1, ... labeI), arithmetic-expression

— label and each label1 are references to statement labels in the same program unit, or in
the case of label1 zero or null

— The comma preceding arithmetic-expression is optional

— arithmetic-expression must yield an integer scalar object

see section 14.4.1

• The block IF construct has the following general form:

IF (logical-expressioni) THEN
IF-block

ELSEIF (logical-expression2) THEN
ELSE IF-block

ELSE
ELSE- block

ENDIF

— (logical-expression1) and (logical-expression2) produce logical scalar results
— IF-block, ELSE IF-block and ELSE-block consist of zero or more executable statements
— the ELSEIF statement and its associated ELSE IF-block can be omitted as can the

ELSE statement and its associated ELSE-block

— the ELSEIF statement and its associated ELSE IF-block can be repeated any number
of times

see section 14.4.2

• IF (arithmetic_expression) label1, label2, label3
IF (logical_expression) executable-statement

— labelj, label2 and label3 are references to the labels of executable statements in the
same program unit, zero, or null

— arithmetic-expression and logical-expression must yield scalar objects
— executable-statement can be any executable statement other than a DO statement or

another IF statement

see section 14.4.3

• PAUSE basic-integer-constant

— basic-integer_constant is in the range 0 to 99999

see section 14.3

• RETURN

see section 10.6

FORTRAN-FL US enhanced man 102.01 9



10 Chapter 2: Source program format

• STOP basic-integer-constant

— basic-integer-constant is in the range 0 to 99999

see section 14.3

• TRACE basic-integer-constant (namei, name2, ... name1, ... name)

— basic_integer-constant is in the range 1 to 5

— Each name1 is the name of a variable, PARAMETER constant or array

see section 15.1

2.3.2 Non-executable statements

• BLOCK DATA name
BLOCKDATA name

— name is the name of a block data subprogram

see section 12.2.1

• COMMON /namei/listi/name2/]ist2/ ... /name1/listt ... /name/list

— Each name1 is the name of a COMMON block

— Each list1 has the form:

item1, item2, ... item1, ... itemm

where each item1 can be a variable name, array name, variable declarator or array
declarator

see chapter 12

• DATA name i/valuelist /, name2/valuelist2/, ... name1/valuelist1/, ... name/valuelist/

— Each name1 is a variable name or an array name

— Each valuelist2 has the form:
value1, value2, ... vaiue1, ... valuem

where each value1 is either a constant or a construct of the form:
basic-integer-constant * constant

see section 6.5

• DIMENSION declarator1, declarator2, ... dec]arator1, ... declarator,

— Each declarator1 can be a vector or matrix variable declarator, an array declarator, or
a function declarator

see sections 6.1.2, 6.2 and 10.1.2.2

• END

see section 10.1.3
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2.3. FORTRAN-PLUS statement format 11

• EQUIVALENCE (namelisti), (namelist2), ... (namelist2), ... (name1ist)

— Each namelist1 has the form:
name1, name2, ... name, ... namem

where m is greater than or equal to 2. Each namelist is a variable name, array name
or array element name

see section 13.1

• EXTERN AL name1, name 2, ... name , ... name ,

EXTERNAL type *data4ength FUNCTION name1, name2, ... names, ... name
EXTERNAL FUNCTION name1, name2, ... name1, ... name,,
EXTERNAL type FUNCTION name1, name2, ... name,, ... name,

— In the first form of the EXTERNAL statement, each name1 is the name of a user
written subroutine, function, or block data subprogram.

— In the remaining forms of the EXTERNAL statement, each name1 is the name of a
user written function subprogram

see section 10.1.4

• type *data4ength FUNCTION name (dummy-argument-list)
FUNCTION name (dummy-argument-list)
type FUNCTION name (dummy-argument-list)

— name is the name to be given to a user written function subprogram

see section 10.1.2.1

• GEOMETRY (ns-option, ew-option)
GEOMETRY (ns-option)

— ns-option and ew-option can be either PLANE or CYCLIC independently

see section 7.6

• IMPLICIT type *data_length (letters)

— A symbolic name that begins with one of letters is given the specified type and data
length by default

see section 6.1.1

FORTRAN-PLUS enhanced manlO2.O1 11



12 Chapter 2: Source program format

• PARAMETER(name; =expression1 ,name2 =expression2,

.,name1=expressiont ...,name=expression)

— name1 is a symbolic name

— expression1 is a constant expression (see chapter 8), the value of which becomes associ
ated with the corresponding symbolic name

see section 5.2

• SUBROUTINE name
SUBROUTINE name (dummy-argument-list)
ENTRY SUBROUTINE name

— name is the name to be given to a user written subroutine subprogram

see chapter 10

• type *datalength itemy, item2, ... item, ... item,
type item1, item2, ... item, ... item,

- type is one of INTEGER, REAL, LOGICAL, CHARACTER or DOUBLE PRECISION
(DOUBLE PRECISION, although not strictly a FORTRAN-PLUS type, is retained for
compatibility with other versions of FORTRAN)

— If type is LOGICAL or DOUBLE PRECISION the second form must be used

— Each item can have any of the following forms:

variable-n ame/value-list/
variable_declarator/value_lis t/
array-n ame/value-lis t/
array- declarator/value_list/
function-name

where value-list has the form:
value;, value2, ... value1, ... vaiuem

where each value1 is either a constant or a construct of the form:

basic-integer-constant * constant

You can omit /va]ue-list/.

function-name must be the name of a user written function subprogram.

see sections 6.1.2, 6.2, 10.1.2.1 and 10.1.2.2
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Chapter 3

Characters and identifiers

3.1 Characters

3.1.1 The FORTRAN-PLUS character set

You can use the following characters in writing FORTRAN-PLUS programs. They constitute the
76-character set. Other characters can be used only in character constants (see chapter 5); these
characters are listed in section 3.1.2.

letters ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklnmopqrstuvwxyz
digits 0123456789
special characters = * +

— / ( ) , .
‘ $ - #(or £) and the space character.

Upper and lower case characters are treated as equivalent except within character constants. Let
ters and digits are referred to collectively as alphanumeric characters. The ten digits together
with the six letters ABCDEF (or abcdef) are referred to as hexadecimal digits, and are the oniy
characters that can appear in hexadecimal constants (see chapter 5).

Spaces can appear without significance anywhere in program text, except in character constants
(where they form part of the text) and in keywords. However, certain keywords can include a
separating space which has no significance to the compiler — these keywords are BLOCKDATA
(BLOCK DATA), DOUBLEPRECISION (DOUBLE PRECISION) and GOTO (GO TO). Inter
vening spaces are not needed when a keyword (other than FUNCTION) is directly followed by a
name or another keyword.

You can use the underscore character only in names (see section 3.2) or character constants, but
you cannot make it the first character of a name. The underscore character is ignored by the
compiler when used in a name; the following names are therefore equivalent:

COUNTONE
COUNTONE
count_ONE
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14 Chapter 3: Characters and identifiers

3.1.2 Other characters

This section lists characters that can appear in character constants in FORTRAN-PLUS program
units. The character set is ASCII.

The 76-character set is as follows:

Character Hexadecimal Character Hexadecimal
space 20 Q 51
#(or.t) 23 R 52
$ 24 S 53

(apostrophe) 27 T 54

( 28 U 55

) 29 V 56
* 2A W 57
+ 23 X 58

(comma) 2C Y 59
- (minus) 2D Z 5A
• 2E - (underscore) 5F

/ 2F a 61
0 30 b 62
1 31 c 63
2 32 d 64
3 33 e 65
4 34 f 66
5 35 g 67
6 36 h 68
7 37 1 69
8 38 j 6A
9 39 k 6B
= 3D I 6C
A 41 m 6D
B 42 n 6E
C 43 o 6F
D 44 p 70
E 45 q 71
F 46 r 72
G 47 s 73
H 48 t 74
I 49 u 75
J 4A v 76
K 43 w 77
L 4C x 78
M 4D y 79
N 4E z 7A
0 4F
P 50
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3.2. Symbolic names 15

The following characters, in conjunction with those above, constitute the 95-character set:

Character Hexadecimal Character Hexadecimal
21 [ 53
22 \ 5C

¾ 25 1 SD
& 26 5E

3A 60
33 { 73

< 3C I 7C
> 3E } ZD
? 3F 7E

40

The hexadecimal equivalents are given to facilitate comparison of character expressions (see sec
tion 8.4.2). You should note, however, that programs that rely on hexadecimal equivalents will be
machine dependent and can be difficult to transfer from one computer system to another. You are
recommended to restrict character comparisons to groups such as upper case letters (A to Z) and
digits (0 to 9), which have a universally defined sequence.

You are strongly recommended to use in FORTRAN-PLUS programs only the characters that are
in the 95 character graphic set defined above.

3.2 Symbolic names

A symbolic name referred to as name consists of up to 32 alphanumeric characters, the first of
which must be alphabetic. However, a symbolic name that identifies a COMMON block or a user
written subroutine, function, or block data subprogram cannot be longer than 30 characters. If
compatibility with other versions of FORTRAN is important, symbolic names should be restricted
to six characters.

The compiler does not distinguish between upper and lower case letters when they occur in names.

You can use the character $ in a symbolic name, provided that:

• it is not the first character in the name

• the name does not identify a COMMON block or a user written subroutine, function, or
block data subprogram

You can use the character - (underscore) in a symbolic name, provided that you do not make it
the first character in the name. The underscore character is ignored in a symbolic name and does
not count towards the count of characters within a symbolic name.

You can use a symbolic name to identify a variable, array, function, subroutine, block data sub
program, or a COMMON block. You can also use as a dummy argument, a name which identifies
a variable, array, function, or subroutine (see section 10.4.1)

FORTRAN-PL US enhanced man 102.01 15



16 Chapter 3: Characters and identifiers

3.2.1 Classes of symbolic names

All FORTRAN-PLUS symbolic names fall into one of the following classes, depending on their
context in a FORTRAN-PLUS program unit:

1. Array names

2. Variable names

3. Built-in function names

4. User written function names

5. User written subroutine names

6. Built-in subroutine names

7. COMMON block names

8. Block data subprogram names

9. External names

10. PARAMETER constants

External names (class 9) are external to the program unit in which they appear; they are specified
in other program units.

3.2.2 Restrictions on usage of symbolic names

Within a particular FORTRAN-PLUS program unit a symbolic name can only identify a single
entity from any one of the classes described in section 3.2.1. There is however, one exception to
this rule; you can also use a COMMON block name (class 7) as an array name (class 1) or as a
variable name (class 2) or a dummy procedure name (class 4, 5 or 9).

You can use the same symbolic name to identify entities in different classes in different FORTRAN-
PLUS program units, with the following exceptions:

• If you use a symbolic name anywhere within a DAP program as a user written function name
(class 4), a user written subroutine name (class 5) a block data subprogram name (class 8),
a COMMON block name (class 7), or as an external name (class 9), you must not use the
name elsewhere in the DAP program to identify another entity in any of these classes (unless
you use the name as a dummy argument in a program unit)

• If you use an external name (class 9) you must either associate the name with a user written
function name (class 4), or a user written subroutine name (class 5), or associate it with a
block data subprogram name (class 8) somewhere within the program

FORTRAN-PLUS arrays, variables, and functions all have a type associated with them (see chap
ter 4). The type is determined by the first letter of the symbolic name (either by default or by use
of the IMPLICIT statement — see section 6.1.1), unless it is explicitly specified in a FUNCTION,
EXTERNAL, or type specification statement. The appearance of a name in a type specification
statement determines that the name is an array name (class 1), a variable name (class 2), a built-in
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3.3. FORTRAN-PLUS keywords 17

function name (class 3), a user written function name (class 4) or a PARAMETER constant (class
10) — it cannot belong to any of the other classes. The name of a built-in function (see chapter 8)
can be used for the name of a data object or user written function, provided it is explicitly spec
ified in a type specification, FUNCTION or EXTERNAL statement; to avoid confusion you are
recommended not to use a built-in function name that way. If you do use a built-in function name
that way, then you cannot use that built-in function in the procedure concerned.

3.3 FORTRAN-PLUS keywords

FORTRAN-PLUS keywords are words that have a special significance in FORTRAN-PLUS. It is
possible to use symbolic names that are the same as these keywords but, to avoid confusion, you
are recommended not to do so to. The FORTRAN-PLUS keywords are:

BLOCK DIMENSION ENTRY IMPLICIT REAL
BLOCKDATA DO EQUIVALENCE INTEGER RETURN
CALL DOUBLE EXTERNAL LOGICAL SCALAR*
CHARACTER DOUBLEPRECISION FUNCTION MATRIX* STOP
COMIION ELSE GEOMETRY PARAMETER SUBROUTINE
CONTINUE ELSEIF GO PAUSE TEEN
CYCLIC END GOTO PLANE TO
DATA ENDIF IF PRECISION TRACE

VECTOR *

* Note that the keywords SCALAR, MATRIX and VECTOR are retained only for compatibility
with previous versions of FORTRAN-PLUS.
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Chapter 4

FORTRAN-PLUS data

4.1 Data elements

A FORTRAN-PLUS data element has one or more components processed in parallel. A data
element has an associated mode, a type and a data-length.

• The mode of a data element is related to the number and arrangement of components which
make up the element.

FORTRAN-PLUS modes are scalar, vector and matrix. The characteristics of the modes are
described in section 4.2

• The type of a data element is a category characterised by the nature of the various values a
data element can take together with ways to denote and interpret these values.
FORTRAN-PLUS types are:

Integer — representing whole numbers
Real — representing an approximation to real numbers
Logical — having only the values .TRUE. and .FALSE.
Character — representing a single character

• The data-length of an element is the number of bytes used to represent a single component
of the element. The data-length also determines the range of values an element can take.
Data elements of type integer and real can be specified with a wide range of data-lengths

4.2 Modes

4.2.1 Scalar

A FORTRAN-PLUS scalar mode element consists of a single component which can be of type
integer, real, logical, or character. Note that all constants are scalar objects.
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20 Chapter 4: FORTRAN-PLUS data

4.2.2 Vector

A FORTRAN-PLUS vector mode element, normally simply referred to as a vector, consists of
a one-dimensional ordered set of components. Every component of a vector can be processed in
parallel — hence a vector is said to have a single parallel dimension. Alternatively you can process
in parallel a single component or a group of components from a single vector. Each component of
a vector is a single scalar. A vector mode object can be of type integer, real, logical, or character.
The total number of components in a vector is known as its size.

The jth component of a vector is said to have an index of i, where i can take any value between 1
and the size of the vector.

Every component of a vector except the first has a left neighbour, which is the component with
an index one less. Every component of a vector except the last has a right neighbour, which is the
component with an index one greater. Thus, if us not 1, or the size of the vector, component i of
a vector has a left neighbour component (i-I) and a right neighbour component (i+1).

4.2.3 Matrix

A FORTRAN-PLUS matrix mode element, normally simply referred to as a matrix, consists of a
two-dimensional ordered set of components. Each component of a matrix is a single scalar. Every
component of a matrix can be processed in parallel — hence each dimension of a matrix is described
as a parallel dimension and a matrix is said to have two parallel dimensions. Alternatively, you can
process in parallel a single component or a group of components from a single matrix. A matrix
mode object can be of type integer, real, logical, or character.

Each component of a matrix is said to have a row index and a column index. The general component
can be described as component (i,j), that is, the component at the intersection of the i’ row and
the Jf1 column in a matrix.

The range of i is said to be the size of the first dimension, or the number of rows. The range of j
is said to be the size of the second dimension or the number of columns. The shape of a matrix is
described by the ordered pair of sizes of its first and second dimensions.

Every component of a matrix except those in row 1 (or row r where r is the maximum in the range
of i) has a north (or a south) neighbour, which is the component having the same column index
and a row index one less (or one greater). Every component of a matrix except those in column
1 (or column c where c is the maximum in the range of j) has a west (or east) neighbour, which
is the component having the same row index and a column index one less (or one greater). Thus,
if i and j are not 1 or the maximum value, component (1, j) of a matrix has a north neighbour
component (i-1,j) a south neighbour component (i+1,j), an east neighbour component (1, j+1),
and a west neighbour component (i, j-1).

4.2.4 Size, shape and conforming data

For convenience the term shape (see section 4.2.3) is sometimes applied to both vectors and ma
trices. The shape of a vector means the size of that vector.

Two elements of the same mode and the same shape are said to conform.
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4.3. Arrays 21

4.3 Arrays

You can declare arrays (see chapter 6) of data elements in FORTRAN-PLUS; arrays are known as
scalar, vector or matrix arrays according to the mode of their elements. Note that the elements of
an array are not processed in parallel, only the components within each element.

4.4 Types

4.4.1 Integer

Integer data are whole numbers represented in two’s complement form. The range of values that
can be held is dependent on the number of bytes used to represent the data item; that is the
data-length of the item: if n bits (1 byte = 8 bits) are used, the range of permissible values is:

—2’) to + (2(’) — 1).

The following table gives the range of permissible values for each data-length:

Data-length Range of values
in bytes

1 -128 to +127

2 -32,768 to +32,767

3 -8,388,608 to +8,388,607

4 -2,147,483,648 to +2,147,483,647

5 -549,755,813,888 to +549,755,813,887

6 -140,737,488,355,328 to + 140,737,488,355,327

7 -36,028,797,018,963,968 to +36,028,797,018,963,967

8 -9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

4.4.2 Real

Real data are approximate representations of decimal values in one of the ranges —7.24 x 10 to
—5.40 x i0 and 5.40 x 10 to 7.24 x l0 (all figures approximate) or of the value zero. Values
in the range —5.40 x iO to 5.40 x are too small to be represented; if a calculation would
result in such a value, then the result value is taken to be zero.
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22 Chapter 4: FORTRAN-PLUS data

If the number of bits used to represent a real value is n, then:

• Bit zero, the most significant of the n bits, is the sign bit

• Bits ito 7 represent the base 16 exponent biased by 64

• Bits 8 to n-i hold the mantissa, preceded by a conceptual binary point

The magnitude of such a real number is therefore:

16(exponent—64) x mantissa

with the sign determined by the sign bit (positive for 0, negative for 1).

Valid real data has a mantissa that is normalised such that the first four bits are not all zero,
unless the value itself is zero.

The precision to which real data is held is dependent on the number of bytes used to represent it:

Data-length Number of Potential Average
in bytes mantissa bits inaccuracy approximate precision

in mantissa (decimal digits)

3 16 0.1x103 4
4 24 0.5x106 7
5 32 0.2x i0 9
6 40 0.7 x 101l H
7 48 0.4 x iO3 14
8 56 0.1 x 10—15 16

Note — the third column in this table gives the largest possible inaccuracy introduced by having
to represent a real number within the given precision. The inaccuracy is given as a fraction of the
actual value represented.

4.4.3 Logical

Logical data are exact representations of truth values. The only values that logical data can take
are .TRUE. and .FALSE.. Logical data is represented in one bit; 1 represents .TRUE., and 0
represents .FALSE..

4.4.4 Character

Character data are exact representations of single characters. Any character that is capable of
representation on the input device used for program or data can be used as the value of character
data. Character data is represented as one byte; lists of valid characters and the corresponding bit
patterns, represented as a pair of hexadecimal digits, are given in section 3.1.
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4.5. Data-length specifiers 23

4.5 Data-length specifiers

The data-length of an element is the number of bytes used to represent a single component. The
data-length can take various values according to the type, as shown in the table below. The data-
length is determined by a data-length specifier optionally appended to the type keyword in type
specification statements (see chapter 6), FUNCTION statements (see chapter 10) or EXTERNAL
statements (see chapter 10).

Type Data-length Number of bits used
specifier in representation

INTEGER *1 8
INTEGER *2 16
INTEGER *3 24
INTEGER *4 32
INTEGER *1 32
INTEGER *5 40
INTEGER *6 48
INTEGER *7 56
INTEGER *$ 64
REAL *3 24
REAL *4 32
REAL *E 32
REAL *5 40
REAL *6 48
REAL *7 56
REAL *8 64
CHARACTER *1 8
LOGICAL None 1
DOUBLE PRECISION None 64

• For types INTEGER and REAL, where no data-length specifier is present, a default of
*4 (data-length 4 bytes) is assumed

• For type CHARACTER, where no data-length specifier is present, a default of *1 (data-length
1 byte) is assumed

• Note that DOUBLE PRECISION is not a type in its own right, but is identical with type
REAL of data-length 8 bytes; that is, REAL*8. It is included for compatibility with other
versions of FORTRAN
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Chapter 5

Constants

A constant is a data element which has the same value whenever it is accessed by the program.
Constants have associated type and mode (see Chapter 4); the type of a constant is determined
by the way in which it is written, and its mode is always scalar.

5.1 Types of constant

5.1.1 Integer constants

An integer constant can take one of two forms:

1. A basic integer constant. This is a string of one or more decimal digits interpreted as a
decimal whole number

2. A basic integer constant followed by an integer exponent. An integer exponent consists of the
letter I followed by a basic integer constant. The value represented by an integer constant of
the form:

n Im

is n x 1O

An optionally signed integer constant is an integer constant optionally preceded by a plus sign or
a minus sign.

The range of permissible values of an integer constant (see section 4.3.1) depends on the number
of bytes used to represent it. In an arithmetic expression (see section 8.2) an integer constant can
be followed by a data-length specifier of the form:

(

where data-length is a basic integer constant in the range 1 to 8 and represents the number of
bytes used to represent the constant. A data-length specifier is only allowed in the context of
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26 Chapter 5: Constants

an arithmetic expression. Note that the construct (*1) is not a valid data-length specifier for an
integer constant.

Where an integer constant is written without a data-length specifier the number of bytes used to
represent the constant is normally 4 except:

• In DATA and type specification statements where it is the data-length of the variable or
array elements being initialised

• In expression evaluation where it depends on the composition of the expression and the
context in which the expression is used (see section 8.2)

The following are examples of valid integer constants:

15 6 (representing 156; spaces are not significant within integer constants)
318 (representing 300,000,000)
007

The construct:

—3

is not a valid integer constant, although it is a valid signed integer constant, and can only be used
at points in a program where an integer constant can be optionally signed. The construct:

100 (*1)

is an example of a valid primary of an expression.

5.1.2 Real constants

A real constant can be:

1. A basic real constant denoted by one of:

n.
n.m

where n and m are strings of one or more decimal digits which are are interpreted as decimal
values. Note that spaces are not significant within real constants

2. A basic real or integer constant followed by a real exponent. A real exponent consists of the
letter E followed by an optionally signed basic integer constant. The value represented by a
real constant with an exponent is n x 10m, where n is the value of the basic real or integer
constant and m is the value of the integer constant exponent

An optionally signed real constant is a real constant optionally preceded by a plus sign or a minus
sign.
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5.1. Types of constant 27

A real constant must be within the range of values defined in section 4.3.2. Note that values in
the range -5.40 x i0— to 5.40 x i0— (figures approximate) are too small to be represented and
are replaced by zeroes.

The precision to which a real constant is held (see section 4.3.2) depends on the number of bytes
used to represent it. In an arithmetic expression (see section 8.2) a real constant can be followed
by a data-length specifier of the form:

(* data-length)

where data-length is a basic integer constant in the range 3 to 8 and represents the number of
bytes used to represent the constant. In all other contexts a data-length specifier is not allowed.
Note that the construct (*E) is not a valid data-length specifier for a real constant.

Where a real constant is written without a data_length specifier the number of bytes used to
represent the constant is normally 4 except:

• In DATA and type specification statements where it is the data-length of the variable or
array elements being initialised

• In expression evaluation where it depends on the composition of the expression and the
context in which it is used (see section 8.2)

The following are examples of valid real constants:

1.5
4.56789E3 (representing 4567.89)
2.1097E-2 (representing 0.021097)
1E2 (representing 100.0)
.47 2 (representing 0.472; spaces are not significant

within real constants)

The construct:

0.123456789 (*5)

is an example of a valid primary of an expression.

5.1.3 Logical constants

A logical constant can take either of the forms:

TRUE.
.FALSE.

representing logical truth and falsity respectively.
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28 Chapter 5: Constants

5.1.4 Character constants

A character constant can take either of two forms:

1. The Hollerith constant, written as:

nHc1c2c3...cj...cn

where n is a basic integer constant in the range 1 to 512, giving the length of the constant.
Each c1 is a single character, and can be any of the characters listed in section 3.1. The value
represented by the constant consists of the n characters following the letter H, including any
space characters

2. The apostrophe constant or literal constant, written as:

where each c is either a single character other than ‘ or two apostrophe characters in con
secutive columns, and n is in the range 1 to 512. The value represented by the constant
is the character string enclosed within the two apostrophes, except that two consecutive
apostrophes are replaced by a single apostrophe

Except for the special case of initialising consecutive components of a character array, or vector or
matrix, character constants can only consist of a single character; that is, the Hollerith constant
must be of the form:

lHc1

and the literal constant must be of the form:

Space characters are always significant within character constants. You should be aware that the
compiler treats each source line as being of length 72 characters regardless of the actual line length
(see section 2.1).

The following are valid character constants, although constants of length greater than 1 are only
valid when initialising in type specification statements or data statements (see section 6.5, point 3).

4HRATE
‘RATE’
‘JOIIN”S’ (this has the value JOHN’S)
1HB

5.1.5 Hexadecimal constants

Note — you can only use hexadecimal constants for data initialisation (see chapter 6) and their
use is recommended only for initialising large logical arrays.
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5.2. Named constants 29

A hexadecimal constant consists of the character # (or £) followed by up to 1024 hexadecimal
digits (see section 3.1.1). Each hexadecimal digit is taken as a four bit binary representation of
one of the numbers zero to 15. The value of a hexadecimal constant is the bit pattern formed by
concatenating the bit patterns represented by each individual hexadecimal digit in the constant.

For example, the constant:

#F0

represents the bit pattern:

11110000

5.2 Named constants

You can use the PARAMETER statement to give a symbolic name to a constant which is active
in the subprogram in which it is declared. The statement has the form:

PARAMETER(name1 =expression1 ,name2 =expression2,

,name =expressioni, ... ,name =expression)

where:

• namej is a symbolic name. You can use the symbolic name (a named constant) instead of
the constant itself in DATA statements and in expressions, but you cannot change its value

• expression1 is a constant expression (that is, an expression composed of literals; an expression
fully known at compile-time), the value of which becomes associated with the corresponding
symbolic name. You are not allowed to use the exponential operator in a PARAMETER
statement

A PARAMETER statement is a non-executable statement and you must place it before the first
executable statement in a program unit.

You can specify the type and data-length of name1 in a preceding type declaration (having the
same form as a scalar variable declaration — see section 6.1.2). If you make no such declaration,
then the type and data-length of namej is implicit, as for variables — see section 6.1.1.

An example of a PARAMETER statement is:

PARAMETER (P1=3.141592564)
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30 Chapter 5: Constants

5.3 Use of constants

You can use constants in DATA and type specification statements to give initial values to variables
and arrays. You can use all types of constant in this way (see chapter 6).

You can use unsigned integer or real constants and character and logical constants as primaries of
expressions (see chapter 8) and as actual arguments (see section 10.4.2).

You use basic integer constants in STOP, TRACE and PAUSE statements and in declarators.
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Chapter 6

Variables and arrays

A variable is a data element of a specified type, data-length and mode (see chapter 4). You identify
a variable within a particular program unit by giving it a symbolic name - the variable name. A
variable is thus of mode scalar, vector or matrix; of type integer, real, logical or character; and
one of the range of data-lengths defined in chapter 4. If it is a vector or matrix it will also have a
shape (see section 4.2).

An array is a set of a specified number and arrangement of elements each of the same type,
data-length, mode and (where relevant) shape. An array is a regular structure with one or more
dimensions, each of which can have any given size. You identify an array within a program unit
by giving it a symbolic name, the array name. Each of the elements within an array is referred
to as an array element and is identified by an array element name, consisting of the array name
subscripted to identify a particular element (see chapter 7). An array element can be of scalar,
vector or matrix mode and in usage is exactly the same as a variable of the same mode. The
term shape (see section 4.2) only applies to vector or matrix variables or to the vector or matrix
elements of an array — it is not meaningful to talk about the shape of an array or to say that one
array has the same shape as another.

Note the distinction between the term element and the term component (see section 4.2) which is
a single scalar (of type integer, real, logical or character) selected from a matrix or vector or array.

6.1 Declaring variables

6.1.1 Implicit type, data-length and mode specification

You do not need to declare scalar variables explicitly within a FORTRAN-PLUS program unit; the
variable name can simply appear in an executable statement within the program unit, provided
that you do not use the same name for any other item in the program unit other than a COMMON
block. If the program unit is a function subprogram, the function name (see section 10.1.2.;) is
treated, within the program unit, as a variable name.

You can use the same name as a variable name in another fORTRAN-PLUS program unit, in which
case it will refer to a different variable, unless you have associated the variables by COMMON
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association (see chapter 12) or argument association (see section 10.4.3).

If a variable name appears in an executable statement without an explicit type declaration, the
type of the variable is determined by the first letter of the variable name. If this is I, J, K, L, M or
N, the variable is assumed to be of type integer, otherwise it is assumed to be of type real, unless
the IMPLICIT statement has been used. The data-length of the variable is assumed to be 4 bytes,
and the mode is assumed to be scalar.

You can use the IMPLICIT statement to change the default type and data-length associated with
the initial letter of a variable name. An IMPLICIT statement applies only to the program unit
in which it appears and has no effect on the types of any built-in functions or the types of any
variables where type is specified explicitly. The statement has the form:

IMPLICIT type *data..length (letters)

where:

• type can be INTEGER, LOGICAL, REAL or CHARACTER

• *data_length indicates the number of bytes used to represent real or integer objects (see
section 4.4) and can be omitted. *data4ength cannot be used for logical objects and character
objects can only have a data-length of 1.

• letters can be a single letter, or a list of letters separated by commas, or a range of letters
(which has to appear in alphabetical order, separated by a minus sign). Single letters can be
combined with a range

You cannot specify the same initial letter in more than one IMPLICIT statement in the same
program unit. If you intend an IMPLICIT statement to affect the type of a name in a PARAME
TER statement, the IMPLICIT statement has to come before the PARAMETER statement. The
IMPLICIT statement has to appear before the first executable statement in the program unit.

For example:

IMPLICIT REAL*3 (A-H,X,Y)

6.1.2 Explicit declaration

This section describes explicit declaration of variables — declaration of arrays is described in section
6.2.

You can specify explicitly the type, data-length and mode of a variable only once in a program
unit, although you can specify each attribute in separate non-executable statements. You can
specify type, data-length and mode in the following ways:

1. In a type specification statement of the form:

type*data_length item1 ,item2,

where type and data-length are as given in section 4.4.
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Each item is one of the following:

(a) name/value-list/

(b) vec tor-variable-declarator/value-list/

(c) matrix- variable-declarator/value-list/

where:

• name is the name of the variable

• /value-list/, which is optional, gives the variable or its components initial values and
has the format as described in section 6.5 on the DATA statement.

Vector and matrix declarators show that the variable is a vector or matrix and specify the
shape (that is, the size of each parallel dimension) of the variable.
A vector-variable-declarator has the form:

n ame(dim1)

A matrix-variable-declarator has the form:

name(*dimi, *dim2)

A vector is declared with dim1 components and a matrix with dim1 rows and dim2 columns.
*dimi and *dim9 are referred to as parallel dimension subscripts and each occupies a parallel
subscript position.

Each parallel dimension subscript can be:

• the * symbol followed by an integer constant
• the * symbol followed by an integer scalar variable
• the * symbol followed by a SIZE function call (see sections 10.4.5 and 11.2)
• the * symbol alone (that is, an assumed size dimension)

Unless each dim1 is an integer constant, the size of the vector or matrix is determined only
at run-time; the vector or matrix is said to be dynamically-sized.
The * symbol indicates a parallel dimension (that is, the object is a vector or matrix). The
non-parallel dimensions in an array declaration (see section 6.2) do not have the * symbol.
The * symbol alone indicates an assumed size parallel dimension; that is, a parallel dimension
whose size is determined in the declaration of the actual variable elsewhere. A vector or
matrix with an assumed size dimension must be in the dummy argument list (see section
10.4.1) of the subprogram in which the declarator appears.
An integer scalar variable used as dim1 has to be of data-length 4 bytes and has to refer
either to an item in the dummy argument list (see section 10.4.1) of the subprogram in
which the array declarator appears or to entries in a COMMON block in that subprogram,
If any parallel dimension is of assumed size the declarator has to refer to an object itself
in the dummy argument list; at run-time the actual sizes will be determined from those
of the passed matrix or vector. Dynamically-sized vectors and matrices cannot appear in
COMMON, DATA or EQUIVALENCE statements or be given initial values with a value
list.
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Examples:

INTEGER*1 I1/1/,VEC1(*100),VEC2(*N)

REAL MAT1(*50,*500), MAT2(*SIZE(MAT3, 1) ,*SIZE(MAT3,2)),MAT3(*,*)

MAT3 has to be a dummy argument because its dimensions are assumed size (that is, each is
denoted by the * symbol alone). N is either a dummy argument or an entry in a COMMON
block.

2. In a DIMENSION statement of the form:

DIMENSION declarator1, ... declarator

where any declarator1 can be either of:

vector variable declarator
matrix variable declarator

as defined above.

Note that you specify only the mode of the variable in the DIMENSION statement; you
determine the type and data-length of the variable either by a type specification statement
see 1(a) above, or implicitly (see section 6.1.1).

You cannot give a variable initial values when declared in this context

3. In a COMMON statement of the form:

COMMON /namei/listi ... /name/list,

where each name1 is a COMMON block name.

Each list has the form:

item1, item2, ... itemj

and each item3 can be any of:

variable name
vector variable declarator
matrix variable declarator

If you define the mode in a COMMON statement by a vector or matrix declarator then
the name of the object cannot appear in a DIMENSION statement, or as a declarator with
dimension subscripts in a type specification statement.

Note that you can specify explicitly only the mode in this context; you determine the type
and data-length of the variable either by the appearance of its name (without dimension
subscripts) in a type specification statement, or implicitly, using the first letter of its name
(see section 6.1.1).

Vectors or matrices in a COMMON statement cannot be dynamically sized; thus the values
of the subscripts in the vector variable declarator or matrix variable declarator have to be
integer constants.

You cannot give a variable initial values when declared in this context. If a name does not
appear in a vector or matrix declarator, it is taken as a scalar. It cannot appear in more
than one such declarator in a program unit.

for example:

COMMON/GLOBAL/IMAGE(*512,*512), LINE(*512)
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6.2 Declaring arrays

Within a program unit you have to explicitly declare FORTRAN-PLUS arrays. You cannot use
an array name as the name of other items in the program unit except as a COMMON block name.
You can use an array name as an array name in a different program unit, in which case the name
refers to a different array unless you have associated the names by COMMON association (see
chapter 12) or argument association (see chapter 10).

You specify in an array declarator the number of elements in an array and the mode of each element.
An array declarator has one of three forms, depending on whether it is an array of scalars, an array
of vectors or an array of matrices:

name(dimi, dim2 ...dim) (scalar array declarator)
name(*dimi,dim2,...dim) (vector array declarator)
name(*dimi , *Jj2,jj3 ...dim) (matrix array declarator)

where:

name is the name of the array and n cannot be greater than 7.

A vector array declarator has one parallel subscript and a matrix array declarator has two parallel
subscripts. The remaining dimensions are non-parallel dimensions. The form of parallel subscripts
is as defined in 6.1.2. The form of non-parallel subscripts must be:

either

an integer constant

or

an integer scalar variable

If any of the non-parallel subscripts is an integer scalar variable, the array is said to be dynamically-
sized. The integer scalar variable has to be of data-length 4 bytes and has to be either an item in
the dummy argument list or an entry in a COMMON block in that subprogram; in the latter case,
the array has to be in the dummy argument list of the subprogram.

The total number of dimensions, parallel and non-parallel, cannot exceed 7. The total number of
dimensions is known as the rank of the array. The number of elements in an array is the product
of the non-parallel dimensions. The number of components in an array is the product of all the
dimensions. The extent of a dimension is, in the case of a parallel dimension, the number of
components along that dimension, and, in the case of a non-parallel dimension, the number of
elements along that dimension.

You determine the type and data-length of each array element by the context in which you place
the array declarator:

• a type specification of the form:

type *data_length item1, item2, ... item

where type *data4ength is as described for variable declarations in section 6.1.2.
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Each item1 has the form:

array declarator/value list/

where / value list! is optional and gives initial values to one or more elements of the array
(see section 6.5)

• a DIMENSION statement of the form:

DIMENSION array declarator1, array declarator2 array declarator

The type of an array declared only in this context is determined by the first letter of the
array name (see section 6.1.1); the data-length of the array is 4 bytes. However, the array
name can also appear, without its associated dimensions, in a type specification statement,
where you can optionally specify the data-length of the array and give initial values to one
or more elements of the array

• a COMMON statement of the form:

COMMON /namei /list1 ... /name lust,.,

where each name1 is a COMMON block name.

Each list2 has the form:

item1, item2, ... itemk

where any item2 can be an array declarator. The type of an array declared only in this way
is determined by the first letter of the array name (see section 6.1.1); the data-length of the
array is 4 bytes. However the array name can also appear, without its associated dimensions,
in a type specification statement, where you can optionally give initial values to one or more
elements of the array.

You cannot have dynamically-sized arrays in COMMON blocks and you cannot initialise
such arrays with a value list in a type specification statement or DATA statement

6.3 Use of variables

You use variable names within a program unit in two ways:

1. The value of a variable is required; in this case the variable is said to be selected. When
selected it has to have a defined value. Values are used in expressions (see chapter 8) or are
passed as arguments to subroutines and functions (see chapter 10).

In the case of a vector variable, the value could be the whole vector or one component, in
which case it is a scalar. In the case of a matrix it could be the whole variable, or one
component in which case it is a scalar, or a row or column (or in some circumstances some
other set of components) which can be regarded as a vector. Chapter 7 describes the indexing
mechanisms which select values from vectors and matrices

36 manlO2.Ol AMT



6.4. Use of array and array element names 37

2. The variable is required to be updated so the variable name denotes the location of the
variable rather than its value. In this case the variable is said to be referenced. Updating
occurs when a variable is used on the left hand side of an assignment statement. In the case
of vector and matrix variables, you can identify for updating either the whole data object
or various subsets of its components. Chapter 7 describes the indexing mechanisms you can
use to update subsets of vectors and matrices

6.4 Use of array arid array element names

You specify a single element (which could be a scalar, vector or matrix) of an array by subscripting
the array name as described in chapter 7. The array element name thus obtained specifies a single
object and in usage is equivalent to a variable name. You can use an array element name in the
two contexts of selection and referencing just as described in 6.3.

You use array names rather than array element names in certain contexts when you need to specify
an entire array. The contexts are DATA statements (see section 6.5), COMMON and DIMENSION
statements (see section 6.2), EQUIVALENCE statements (see chapter 13), and actual and dummy
argument lists (see section 10.4).

6.5 Initialisation using the DATA statement

You use the DATA statement to give initial values to variables and arrays of any type and mode.

The DATA statement has the form:

DATA name1 /value-listi /, ... name, /value-list., /
where:

• name1 is the name of a scalar, vector or matrix variable or array of any type

• value-list1 has the form:

value1 , value , ... valuek

where each value, is either a constant of the appropriate type, or a construct of the form:
basic-integer-constant * constant

where basic-integer-constant is non-zero. This form of value1 is equivalent to writing the
constant m times, where m is the value of the basic-integer-constant. The constant has to
be of the same type as the variable or array to which the constant gives an initial value,
or the constant has to be a hexadecimal value. Unless the constant is a hexadecimal value,
the number of bytes used to represent it is the data-length of the variable or array being
initialised (see chapter 5)

The effect of the DATA statement is to initialise the values in the value lists to the corresponding
variables or arrays. If name1 is a scalar variable, value-list1 should be a single constant; if name1
is a vector or matrix variable or an array, there should, in general, be sufficient items in value
list to initialise all components (see items 1 to 4 on the next page for hexadecimal and character
initialisation).
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The following considerations apply to initialisation within both DATA statements and type speci
fication statements (see sections 6.1 and 6.2)

• The components of an array are initialised in the order used in reduced rank indexing (see
section 7.5); that is, such that lower numbered (or leftmost) dimensions are varied most
frequently. In the case of a matrix or matrix array this type of ordering is also known as
column major ordering.

• You cannot initialise within a subprogram variables and arrays that appear as dummy argu
ments in that subprogram

• You cannot initialise in a subprogram dynamically-sized variables or arrays

The considerations which apply to hexadecimal and character initialisation are:

1. You can use a string of hexadecimal digits supplied by one or more hexadecimal constants to
initialise a logical scalar, vector or matrix array, or a logical vector or matrix variable (but
not a logical scalar variable). A string of n hexadecimal digits is interpreted as a string of 4n
bits, where each bit is treated as a single logical value (one is TRUE., zero is .FALSE.). If
there are more than 4n components in the variable or array, the string is effectively extended
to the right with hexadecimal digits having zero value; if there are fewer than 4n components,
the string is effectively truncated from the right. You are not permitted to mix hexadecimal
constants and logical constants (.TRUE. and .FALSE.) when initialising logical arrays or
vector matrix variables

2. If you use a hexadecimal constant to initialise character variables or arrays, the constant
has to consist of pairs of hexadecimal digits that constitute valid characters as defined in
section 3.1. Hexadecimal constants and character constants can be mixed in the same value
list

3. The value list for a character variable or array can include a character constant in Hollerith
or literal format of data-length greater than one; this is the only case in which a character
constant can consist of more than one character. Successive characters in the constant are
used to initialise successive scalar array elements or successive vector or matrix components;
if the value list does not supply sufficient characters to initialise all components of a character
variable or array, remaining components are initialised with the space character

4. When you use a hexadecimal constant to initialise a variable of type other than logical or
character, one constant is used to initialise each scalar variable or each scalar array element or
each vector or matrix component. If the constant is longer than the variable or component, it
is effectively truncated from the left; if the constant is shorter than the variable or component,
it is effectively extended with zeros to the left
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Chapter 7

Indexing vectors, matrices and
arrays

7.1 Introduction

You use indexing to identify (that is, select or reference — see section 6.3) one or more, and possibly
all, components of a vector or matrix variable or array element. You also use indexing to identify
a single element from an array. A single indexing construct can both identify an array element
and identify component(s) within that element; that is, part of the indexing construct identifies an
element from a vector or matrix array, and the remainder of the construct identifies one or more
components of that array element. Note that an indexing construct either selects or references
depending on the context in which it is used. Selection is associated with obtaining a value from
a variable or variable array; referencing is associated with updating variables or variable arrays.

An indexing construct has the general form:

name(indexing expression1, ... indexing expression )

where:

• name is the name of a vector or matrix variable or array. If the indexing construct appears in a
context where a variable or array element is being selected by value rather than referenced for
updating (see section 6.3) then name can also be a vector or matrix expression in parentheses
(see section 8.6)

• An indexing expressioni has to be one of the following: null, +, —, or an expression evaluating
to an integer scalar, an integer vector, a logical vector, or a logical matrix. However, certain
subscript positions can only contain certain types of indexing expression. The permissible
combinations of indexing expressions in an indexing construct are described in the relevant
sections of this chapter. If the type of the expression is integer then its data-length will be
converted to 4 bytes if it is not that already. Indexing expressions in positions corresponding
to non-parallel dimensions (see section 7.1.1) must evaluate to an integer scalar

• n should be in the range 1 to 7. n is normally the same as the number of dimensions in
the declaration of the variable or variable array but where an indexing construct selects or
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references a matrix variable or a scalar, vector or matrix array, all indexing expressions in
the construct can be replaced by a single integer scalar expression; this type of indexing is
known as reduced rank indexing (see section 7.5)

7.1.1 Parallel subscript positions

In an indexing construct the parallel subscript positions are:

• The single subscript position if name denotes a vector

• The two subscript positions if name denotes a matrix

• The first subscript position if name denotes a vector array

• The first two subscript positions if name denotes a matrix array

where name is the name of a variable.

Any other subscript positions in an indexing construct are non-parallel subscript positions.

7.1.2 Selecting indexed variables or array elements

The following types of indexing construct can appear wherever the value of a variable or array
element is required:

Type of construct Selection performed

Indexed variable Selects a scalar or vector object from a vector variable
(see section 7.2.1), or a scalar, vector or matrix object
from a matrix variable (see section 7.3.1)

Indexed expression Selects a scalar or vector object from a parenthesised
vector expression (see section 7.2.1), or a scalar, vector
or matrix object from a parenthesised matrix expression
(see section 7.3.1)

Array element Contains sufficient indexing expressions to select a single
array element from an array, and can also specify addi
tional indexing expressions to select components from
the array element so selected (see section 7.4.1)

Complete array element Selects a single array element from an array as above,
but performs no further selections on the components of
the selected array element

Reduced rank construct Selects a scalar object from a matrix variable or expres
sion or from a scalar, vector or matrix array by replacing
all indexing expressions with a single integer scalar ex
pression (see section 7.5.1)
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7.1.3 Updating indexed variables or array elements

The following types of indexing construct can appear wherever a variable or array element is to be
referenced for updating on the left hand side of an assignment statement:

Type of construct Effect

Indexed variable reference Some subset of components of a vector or matrix vari
able are identified for updating (see sections 7.2.2 and
7.3.2)

Array element reference Sufficient indexing expressions are specified to identify a
single element of an array, and further indexing expres
sions can be specified to identify some subset of com
ponents of that array element for updating (see section
7.4.2)

Complete array element reference A single array element is identified as above, but no
further indexing expressions are specified

Reduced rank reference A single component of a matrix variable or a scalar, vec
tor or matrix array is identified, by replacing all indexing
expressions with a single integer scalar expression (see
section 7.5.2)

7.1.4 Constraints on index values

Sections 7.2 and 7.3 describe the significance of the various types of index which can appear in
parallel subscript positions. The types of index are:

Type of index Description

Null The index is left blank

Integer scalar expression The value of an integer scalar expression is denoted by
IS in sections 7.2 and 7.3 below.

IS should always be between 1 and the size of the dimen
sion of the subscript position in which it occurs, that is,
in the indexing construct:

M( ,I+2)

where M is a matrix, 1+2 cannot be more than the num
her of columns of M
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Logical vector expression The value of this is denoted by LV in sections 7.2 and
7.3 below.

The number of components in LV has to be the same
as the size of the dimension of the subscript position in
which this index occurs.

Thus, in the example:

M(Vi.EQ.V2,)

the value of the logical expression Vi.EQ.V2 (and there
fore both Vi and V2 — see section 8.5) must have the
same number of components as the number of rows in
M

Integer vector expression Applies only in matrix indexing.

The value of an integer vector expression is denoted by
IV in section 7.3. The number of components in IV has
to be equal to the size of the other parallel dimension.

Thus in the expression:

M(IV,)

IV has to have the same number of components as the
number of columns in M. Also the value of each com
ponent in the integer vector has to be between 1 and
the size of the dimension it is in; that is, in the example
above, each component in IV has to be between 1 and
the number of rows of M

Logical matrix expression Applies only in matrix indexing.

The value of a logical matrix expression is denoted LM
in section 7.3. LM has to be the same shape as the
matrix being indexed.

7.2 Vector indexing

This section describes the meaning of the various types of index which you can use in the single
parallel subscript position of a vector (denoted by V).

7.2.1 Indexed vector selection

When you index a vector variable, or vector expression in parentheses, to obtain a value in an
expression, either a single component of the vector object or the entire vector object is selected
according to the type of index in the single parallel subscript position:
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Type of index Selection performed

Null The entire vector is selected. The same effect is ob
tained by specifying the vector name or expression with
no following parentheses.

For example:

V

Vt)

Integer scalar expression (IS) The ISt component of the vector is selected as a scalar

For example:

V(N-f-2)

selects the (N+2)th component of V

Logical vector expression (LV) LV can have only one TRUE. component. If i is the
index of this component, the i component of V is se
lected as a scalar

+ The entire vector V is selected and is shifted one place
to the left; that is component i of the selected vector is
equal to V(i+1). If vector V has only one component
then no shift is done. The value of the last component of
the selected vector is determined by the north-south op
tion specified in the local GEOMETRY statement (see
section 7.6)

As +, but the vector V is shifted one place to the right
and the value of the first component is determined by
the GEOMETRY statement

7.2.2 Indexed vector referencing

Where you reference a vector for updating on the left hand side of an assignment statement, you can
identify zero, one or more components for updating, depending on the type of indexing expression:

Type of indexing expression Effect

Null The entire vector is referenced for updating. The same
effect is obtained by specifying the vector name or ex
pression with no parentheses

Integer scalar expression (IS) The IS’ component of the vector is identified for up
dating
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Logical vector expression (LV) Each component of the vector which corresponds to a
.TRUE. component in LV is identified for updating.
Other components are not affected.

For example:

V(V.GT.O)

identifies just the positive components of V.

7.3 Matrix indexing

This section describes the meaning of various types of index which you can use in the two parallel
subscript positions of a matrix (denoted by M).

7.3.1 Indexed matrix selection

When you select in an expression, a matrix variable, or a matrix expression in parentheses, a scalar,
vector or matrix object could be selected according to the type of the indexing expressions in the
two parallel subscript positions.

Type of indexing expression Selection performed

Null, Null The entire matrix is selected. The same effect is ob
tained by giving the matrix name with no following
parentheses.

For example:

M(,)

or simply

M
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Null, Integer scalar expression (IS) A vector is selected corresponding to the IS’ column
(Integer scalar expression (IS), Null) (row) of M. For example:

M(,3)
M(I+J,)

In the first example a vector which is a copy of the third
column of the matrix M is selected.

In the second example a vector which is a copy of the
(I+J)th row of the matrix M is selected

Null, Logical vector expression (LV) LV has to have one .TRUE. component. A vector is Se-
(Logical vector expression (LV), Null) lected corresponding to the ith column (row) of M, where

LV(i) is the .TRUE. component of LV. For example:

M( ,IV.EQ.3)

would be valid if a single component of the integer vec
tor IV had the value 3; in this case, the column of M
corresponding to this component would be selected

Null, Integer vector expression (IV) A vector is selected made up of one component from
(Integer vector expression (IV), null) each row (column) of M. The component selected from

the i1’ row (column) is that in the j’ column (row)
where j=IV(i)

Null, Logical matrix expression (LM) LM has to have one and only one .TRUE. component in
(Logical matrix expression (LM), Null) each row (column). A vector is selected whose i1 com

ponent is M(i,j) (or M(j, 1)) where LM(i,j) (or LM(j, 1))
is the single .TRUE. component

Null, + The entire matrix is selected and shifted one place to
(+, Null) the west (north); that is, column (row) i of the selected

matrix is equal to column (row) 1+1 of M. No shift is
performed if the relevant dimension has a size of 1. The
value of the last column (row) of the selected matrix is
determined by the options specified in the local GEOM
ETRY statement (see section 7.6)

Null, — The entire matrix is selected and shifted one place to
(—, Null) the east (south); that is, column (row) i of th selected

matrix is equal to column (row) i-i of M. No shift is
performed if the relevant dimension has a size of 1. The
value of the first column (row) of the selected matrix is
determined by the options specified in the local GEOM
ETRY statement (see section 7.6)
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In any of the above cases, you can replace the null indexing expression by a non-null indexing
expression, with the following effects:

• If the other indexing expression is either + or —, you can replace the null indexing expression
by an integer scalar, logical vector, integer vector, or logical matrix expression. The selec
tions performed by the replacement indexing constructs are as described above, except that
the indexed matrix variable or expression is shifted in the appropriate direction before the
selections are performed

• If the other indexing expression is either + or —, you can also replace the null indexing
expression by + or —, in which case the indexed matrix variable or expression is shifted twice,
in the appropriate directions, to select its value, The order in which the shifts are performed
is immaterial

• If the other indexing expression is anything other than + or —, you can replace the null
indexing expression by either an integer scalar expression or a logical vector expression. The
indexing expression that replaces the null indexing expression will perform the appropri
ate vector indexing (see section 7.2.1) on the vector object selected by the other indexing
expression

7.3.2 Indexed matrix referencing

When a matrix, M, is updated on the left hand side of an assignment statement, you can identify
the whole or a subset of the components of matrix M for updating, by specifying particular types
of index in its two parallel subscript positions.

Type of index Effect

Null, Null The entire matrix is referenced for updating. The same
effect is obtained by giving the matrix name or expres
sion with no following parentheses

Null, Integer scalar expression (IS) Components in the IS” column (row) of M are identified
(Integer scalar expression (IS), Null) for updating.

If the expression (on the right hand side of the assign
ment statement) being used to assign to M is a vector,
the vector is implicitly expanded by columns (rows) be
fore indexed assignment is performed; that is, the vector
is implicitly expanded to a matrix of the same shape as
M and each of whose columns (rows) is a copy of the
vector. The size of the vector has to be the same as the
number of rows (columns) in M
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Null, Logical vector expression (LV) Components in each column (row) of M corresponding
(Logical vector expression (LV), Null) to a .TRUE. component in LV are identified for updat

ing.

If the expression (on the right hand side of the assign
ment statement) being used to assign to M is a vector,
the vector is implicitly expanded by columns (rows) be
fore indexed assignment is performed; that is, the vector
is implicitly expanded to a matrix of the same shape as
M and each of whose columns (rows) is a copy of the
vector. The size of the vector has to be the same as the
number of rows (columns) in M

Null, Integer vector expression (IV) One component in each row (column) of M is identi
(Integer vector expression (IV), Null) fled for updating. The component identified from row

(column) i is that in column (row) j where j=IV(i).

If the expression (on the right hand side of the assign
ment statement) being used to assign to M is a vector,
the vector is implicitly expanded by columns (rows) be
fore indexed assignment is performed; that is, the vector
is implicitly expanded to a matrix of the same shape as
M and each of whose columns (rows) is a copy of the
vector. The size of the vector has to be the same as the
number of rows (columns) in M

Null, Logical matrix expression (LM) Each component of the indexed matrix variable that cor
(Logical matrix expression (LM), Null) responds to a .TRUE. component in LM is identified for

updating.

If the expression (on the right hand side of the assign
ment statement) being used to assign to M is a vector,
the vector is implicitly expanded by columns (rows) be
fore indexed assignment is performed; that is, the vector
is implicitly expanded to a matrix of the same shape as
M and each of whose columns (rows) is a copy of the
vector. The size of the vector has to be the same as the
number of rows (columns) in M

Integer scalar expression (IS1), Integer scalar expression (1S2)

The single component M(IS1,1S2) is identified for up
dating

Integer scalar expression (IS), Integer vector expression (IV)
(Integer vector expression (IV), Integer scalar expression (IS))

The single component (IS,j) (component (j,IS)) of M is
identified for updating, where j=IV(IS)
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Integer scalar expression (IS), Logical matrix expression (LM)
(Logical matrix expression (LM), Integer scalar expression (IS))

Each component in row (column) IS of M correspond
ing to a .TRUE. component in the corresponding row
(column) of LM is identified for updating

Integer vector expression (IV), Logical vector expression (LV)
(Logical vector expression (LV), Integer vector expression (IV))

For each i, IV identifies one component from the i1
column (row) of M namely the jr” component where
jIV(i). Of these components, only those corresponding
to .TRUE. values in LV are identified for updating

Logical vector expression (Lvi), Logical vector expression (LV2)

Components M(i,j) such that LV1(i) and LV2(j) are
.TRUE. are identified for updating

Logical matrix expression (LM), Logical vector expression (LV)
(Logical vector expression (LV), Logical matrix expression (LM))

The logical matrix expression identifies those elements
of M corresponding to .TRUE. values in LM. Of those,
the components identified for updating are just those in
columns (rows) corresponding to .TRUE. components
in the logical vector expression

You can identify for updating zero, one, or more matrix variable components by replacing both
indexing expressions with a single indexing expression, as follows:

Indexing expression Effect

Logical matrix expression Each component of the indexed matrix variable that cor
responds to a .TRUE. component in the logical matrix
expression is identified for updating

Integer scalar expression A single component of the indexed matrix variable is
identified for updating. This is the technique of reduced
rank indexing (see section 7.5)

All components identified for updating in any of the indexing constructs described in this section
are processed in parallel.

a

48 manlO2.O1 AMT



7.4. Array indexing 49

7.4 Array indexing

7.4.1 Indexed array selection

When you index an array to obtain a value, as in an expression or a single array element, you can
select a scalar, vector or matrix object that forms part or all of the array element by an indexing
construct of the form:

name (indexing expression1, ... indexing expression)

where:

• name is the name of a scalar, vector or matrix array

• n indexing expressions can be supplied, where n is the number of subscript positions defined
in the array declarator (see section 6.2). n cannot be greater than 7.

If name refers to a scalar array, all subscript positions have to contain integer scalar expressions
which select a particular scalar array element.

If name refers to a vector array, the parallel subscript position (that is, the first) can contain any of
the indexing expressions described in section 7.2.1; all other (non_parallel) subscript positions have
to contain integer scalar expressions. The integer scalar indexing expressions in the non-parallel
subscript positions select a particular vector array element. The indexing expression in the parallel
subscript position then selects a scalar or vector object from the array element, as described in
section 7.2.1.

If name refers to a matrix array, the parallel subscript positions (that is, the first two) can contain
any of the indexing expression pairs described in section 7.3.1; note that this indexing expres
sion pair can be replaced by a single logical matrix indexing expression. All other (non-parallel)
subscript positions have to contain integer scalar expressions. The integer scalar indexing expres
sions in the non-parallel subscript positions select a particular matrix array element. The indexing
expression pair in the parallel subscript positions (or the logical matrix expression in the first sub
script position) then selects a scalar, vector, or matrix object from the array element as described
in section 7.3.1.

You can replace all indexing expressions in the indexing construct by a single integer scalar ex
pression; this is the technique of reduced rank indexing (see section 7.5). Such a construct selects
a single component from a scalar, vector or matrix array.

7.4.2 Indexed array referencing

When you reference an array for updating, as in the left-hand side of an assignment statement, you
can identify zero, one, or more components of a single array element for updating by an indexing
construct of the form:

name (indexing expression1, ... indexing expressionn)
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where:

• name is the name of a scalar, vector or matrix array

• n indexing expressions can be supplied, where n is the number of subscript positions defined
in the array declarator (see section 6.2). n cannot be greater than 7

If name refers to a scalar array, all subscript positions have to contain integer scalar expressions
which identify a particular scalar array element.

If name refers to a vector array, the parallel subscript position (that is, the first) can contain any
of the indexing expressions described in section 7.2,2; all other (non-parallel) subscript positions
have to contain integer scalar expressions. The integer scalar indexing expressions in the non
parallel subscript positions identify a particular vector array element for updating. The indexing
expression in the parallel subscript position then identifies zero, one, or more components of the
array element for updating, as described in section 7.2.2.

If name refers to a matrix array, the parallel subscript positions (that is, the first two) can contain
any of the indexing expression pairs described in section 7.3.2; note that this indexing expression
pair can be replaced by a single logical matrix indexing expression. All other (non-parallel) sub
script positions have to contain integer scalar expressions. The integer scalar indexing expressions
in the non-parallel subscript positions identify a particular matrix array element for updating.
The indexing expression pair in the two parallel subscript positions (or the single logical matrix
indexing expression in the first subscript position) then identifies zero, one, or more components
of the array element for updating, as described in section 7.3.2.

7.5 Reduced rank indexing

You can replace the set of indexing expressions in an indexing construct by a single integer scalar
expression; this is the technique of reduced rank indexing. Such a construct selects or identifies a
single component of the scalar vector or matrix array for processing.

The ordering in which the components of an array are stored is such that the first index varies
most rapidly, then the second and so on. Thus if the dimensions (parallel or non-parallel) are:

dim1, dim2 dim

(see section 6.2) then the positions within the array of an element indexed by:

(d1, d2 d)

is given by the formula:

d1 + dim1 * (d2_1) + dim1 * dim2 * (cia—i) +
+.. dim1 * * dim_1 * (d—1)

You can index any array or matrix variable by a single integer scalar expression which replaces all
the subscripts. This expression identifies a scalar element. The index is applied to the ordering
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above. (For matrices and matrix arrays this method of ordering is also referred to as column major
ordering.)

Thus, given the declaration:

INTEGER VA(*20,3)

then

VA(21)

identifies the element VA(1,2)

7.6 The GEOMETRY statement

If either or both parallel subscript positions of a vector or matrix variable or array reference contain
the indexing expression + or —, you determine the values shifted in at the end of a vector — or the
edge of a matrix — by the GEOMETRY statement.

This statement can have either of the following forms:

• GEOMETRY (option)

• GEOMETRY (ns-option, ew-option)

where option, ns-option, and ew-option can be either PLANE or CYCLIC.

In the first form of the GEOMETRY statement, option specifies the type of shift to be used for
all vector, north-south matrix and east-west matrix shifting. With the second form, ns-option
specifies the type of shift for vector or north-south matrix shifting; ew-option specifies the type of
shift for east-west matrix shifting. ns-option and ew-option could be different.

A FORTRAN-PLUS procedure can contain only one GEOMETRY statement. If no GEOMETRY
statement appears within a procedure, PLANE geometry is assumed for all vector and matrix
shifts.

When a shift for which PLANE geometry has been specified is performed, the value(s) shifted in
at the end of a vector or at the end or edge of a matrix are as follows:

Type of object shifted Value shifted in at vector end or matrix edge

Integer 0
Real 0.0
Character Null (hexadecimal 00)
Logical .FALSE.

When a shift for which CYCLIC geometry has been specified is performed, the value(s) shifted off
one end or edge are shifted in at the opposite end or edge.
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Chapter 8

Expressions

An expression consists of either a single primary or a combination of primaries and operators.
Each primary is an object of a particular type, data-length and mode with a defined value and the
operators specify the operations to be performed on these objects in order to obtain the value of
the expression.

The primaries of an expression depend on the class of the expression which can be: arithmetic,
character, relational or logical. The result of an expression has type, data-length, and mode and
these also depend on the class of the expression and the objects from which it was formed. These
concepts are described in detail in the following sections.

When all primaries are constants, the expression is known as a constant expression.

8.1 The mode of an expression

The modes of the primaries in an expression determine the mode of the result of that expression.

The effect of a unary operator on a primary is to give a result of the same mode as the primary.

When a unary operator is applied to a vector or matrix mode primary, the operation is performed
in parallel on every component of the primary.

The effect of binary operators on primaries of various modes is summarised in the following table,
in which ® can be any binary operator:

Mode of Mode of Mode of Remarks
primary1 primary2 primary1®

primary2

Scalar Scalar Scalar

Scalar Vector Vector The FORTRAN-PLUS compiler automatically
expands the scalar primary1 to a vector of the
same size as primary2, each component of which
has the value of primary1
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Scalar Matrix Matrix The FORTRAN-PLUS compiler automatically
expands the scalar primary1 to a matrix of the
same shape as primary2, each component of
which has the value of primary1

Vector Scalar Vector See scalar-vector

Vector Vector Vector The vectors have to conform, that is have the
same number of components

Vector Matrix Invalid combination

Matrix Scalar Matrix See scalar-matrix

Matrix Vector Invalid combination

Matrix Matrix Matrix The matrices have to conform, that is have the
same shape

When an expression contains a valid combination of primaries, one of which is a vector or matrix
object, the operation represented by the operator is performed in parallel on corresponding com
ponents of each primary (if one primary is a scalar, then that primary will have been implicitly
expanded to match the other vector or matrix primary).

8.2 Arithmetic expressions

8.2.1 Format

A primary of an arithmetic expression can be:

• An unsigned constant or named constant (see chapter 5)

• A selected variable (see section 6.3)

• A selected array element (see section 6.4)

• A function call (see section 10.2)

• An arithmetic expression enclosed in parentheses

The primaries all have to be of type integer or real, and their modes have to conform to the rules
in section 8.1.
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The arithmetic operators and the operations that they represent are as follows:

Unary operators Effect Binary operators Effect

+ No effect + Addition

Negation Subtraction

* Multiplication

/ Division

** Exponentiation

An arithmetic expression consists of a single arithmetic primary or a string of arithmetic primaries,
each separated from any preceding or following primary by a single arithmetic operator, the whole
being optionally preceded, in either case, by one of the operators + or —.

For example:

assuming the declarations:

INTEGER I, VI( *100), MI(*100,*50), VIA(*100, 5)
REAL R, MRA(*100,*50, 3)

then the following are valid expressions:

—23.2
VI— 10 + (VIA(,3)/2)
R*SIN(MRA(,,1))

— MI

8.2.2 Type, data-length and mode

The types and data-lengths of the primaries involved in an arithmetic operation determine the type
and data-length of the result of that operation. If a primary is a constant which is not followed
by a data-length specifier, the primary has a non-fixed data-length. Any other type of primary
has a fixed data-length. The data-length of the result of an arithmetic operation is fixed if the
data-length of at least one of the primaries is fixed. If neither primary is of fixed data-length, the
data-length of the result is 4 bytes.

If both primaries are of fixed data-length, and one is shorter, then the shorter primary will be
lengthened before the operation takes place (see section 8.2.4.1). The result will have the data-
length of the longer primary.

For unary operations (+ or —) the type and data-length of the result are the same as the type and
data-length of the primary.

For binary operations the type of the result is integer if and only if both primaries are of type
integer, otherwise the result is of type real. For binary operations where one of the primaries is
of type integer and the other is of type real, the integer primary is converted to type real before
the operation is performed — the only case when the conversion does not take place is where the
left-hand primary is of type real, the operator is **, and the right-hand primary is of type integer.
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If oniy one of the primaries is of fixed data-length, then the data-length of the result is equal to
that of the fixed data-length primary subject to the following constraint: if the fixed data-length
primary is an integer of data-length 1 or 2 bytes and the other primary is type real (hence the
result is of type real), then the data-length of the result is 3 bytes.

For example, the operation:

1(*1)+17.3

gives a real result of data-length 3 bytes.

The primary which is not of fixed data-length is converted into a temporary variable to be used
only for the purposes of this operation and with the data-length of the result (if it is not 4 bytes).
Note that this can cause overflow (for example, in the operation 500+50(*1)) or loss of accuracy
(for example, in the operation 1(*1)+1.23456).

You obtain the type and data-length of an expression by applying the above rules to each operation,
following the order of evaluation given in section 8.2.3.

You obtain the mode of the result of an expression by applying the rules given in section 8.1 to
each operation, following the order of evaluation given in the next section.

8.2.3 Order of evaluation

Arithmetic expressions are evaluated, in general, from the innermost set of parentheses outwards.
Within each set of parentheses or within an expression with no parentheses, the order of evaluation
is:

1. Evaluation of primaries, including function references, expressions in parentheses, and vector,
matrix, or array subscripts. This stage can also include the automatic expansion of scalars
into vectors or matrices, as required (see section 8.1)

2. Exponentiations

3. Multiplications and divisions

4. Additions and subtractions

Consecutive exponentiations are evaluated from right to left. Thus, the expressions A**B**C and
A**(B**C) have the same meaning, and differ from (A**B)**C.

An exponentiation operates on the primary that immediately precedes it. Thus, the expressions
_A**B and _(A**B) have the same meaning, and differ from (_A)**B.

Consecutive multiplications and divisions are evaluated in any order that is mathematically equiv
alent to evaluation from left to right. Thus, the expression A/B*C could be evaluated as (A/B)tC
or as (A*C)/B, but not as A/(B*C).

Where integer divisions are involved, evaluation is always from left to right. For example X*IfJ is
evaluated as (X*I)/J, and I/J*X is evaluated as (I/J)*X; these expressions can produce different
results.
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Consecutive additions and subtractions are evaluated in any order that is mathematically equivalent
to evaluation from left to right. A leading minus sign (—) also acts according to the rules of
precedence.

The order of evaluation of primaries is entirely under the control of the FORTRAN-PLUS compiler.
Functions referenced in an expression should not alter the values of any variables or array elements
referenced in that expression, otherwise the result of the expression will depend on the order of
evaluation of the primaries. If a function is referenced more than once in an expression, the results
should be independent of the order of evaluation; in particular, two references with the same
argument should produce the same results. Violation of these rules will lead to unpredictable
results.

In general, the effects of data-length changing operations and conversions between integer and real
types depend on the order of evaluation. In such cases you are advised to use parentheses to force
a particular order.

8.2.4 Arithmetic considerations

8.2.4.1 Data-length conversion

When the data-length of an integer object is increased its representation is extended at the most
significant end with copies of the sign bit. When the data-length of an integer object is decreased
its representation is truncated at the most significant end until the correct data-length is obtained.
Overflow will occur if anything other than copies of the sign bit are truncated, or if the sign bit of
the truncated object differs from its original value.

When the data-length of a real object is increased its mantissa is extended at the least significant
end with zero bits. When the data-length of a real object is decreased it is truncated at the least
significant end of the mantissa; the value is rounded up or down depending on whether the most
significant truncated bit is 1 or 0.

8.2.4.2 Integer arithmetic

An integer result is defined to be the integer with the greatest magnitude not exceeding the
magnitude of the mathematically correct value and having the same sign as the mathematically
correct value (except that the sign bit is zero where the result is the integer zero); thus the result
is effectively truncated at the decimal point.

for example:

15/4 gives the result 3
— 15/4 gives the result —3
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6.2.4.3 Exponentiation

When evaluating the expression A**B the following restrictions apply:

• A and B cannot both be zero

• If A is negative B has to be of type integer

• If A is of type integer B cannot be a negative integer

8.2.4.4 Computational errors and overflow

If your program attempts to perform an inappropriate operation, such as division by zero, or if an
operation cannot be completed (for example, arithmetic overflow or underflow occurs during the
evaluation of an expression), a computational error occurs. Facilities for handling computational
errors are described in chapter 15; the effects of computational errors themselves are described in
DAP Series: Program Development.

Note that you can treat arithmetic underfiow separately from other computational errors; under-
flowed results are set to zero.

Arithmetic results will overflow, causing an error, if the result of a calculation has a magnitude
which is out of range. Sections 4.3.1 and 4.3.2 give details of the ranges of integer and real values.

Overflow will occur if the value of an expression is too large, and can also occur if some intermediate
result in the expression is too large. You can sometimes overcome this latter problem by using
parentheses to control the order in which parts of the expression are evaluated. For example, if
the value of the expression:

A/C*B

is required, and A,B, and C are all very large numbers, you can avoid overflow (but only if the
final result is in range) by writing the expression as:

(A/C)tB

thus forcing the division to be performed first.

You can suppress computational errors by using the FORTRAN-PLUS computational error man
agement facilities (see chapter 15). There are also compile-time options to ignore computational
errors — see DAP Series: Program Development relevant to your host.
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8.2.5 Use of arithmetic expressions

You can use arithmetic expressions in the following contexts:

• The right-hand side of an arithmetic assignment statement can be an arithmetic expression.
The value of the arithmetic expression is assigned to an integer variable, real variable or
array element. The type and data-length of the result of the expression can be altered prior
to assignment (see chapter 9)

• An arithmetic expression can appear in the actual argument list of CALL statements and
function references (see chapter 10). The value is passed as an actual argument to the
subroutine or function. The data-length of an expression will be altered in the following
cases:

1. Some of the built-in functions and subroutines require one or more actual arguments to
be expressions of data-length 4 bytes (see chapter 11)

2. Where the expression appears in the actual argument list of a user written function or
subroutine, and the data-length of the expression is not fixed, a data-length of 4 bytes
is used

• You can index an arithmetic expression of vector or matrix mode in parentheses in order
that one or more components can be selected for processing (see section 8.6)

• You can use an arithmetic expression of scalar mode in an arithmetic IF or computed GO
TO statement - and in a DO statement, where it is used to control the sequence of execution
(see chapter 14)

• You can use integer expressions of scalar mode in array indexing to select a particular array
element (see section 7.4.1). Integer expressions of scalar or vector mode can be used in
vector or matrix indexing to select one or more components for processing. In either case the
data-length of the expression will be converted to 4 bytes if it is not already that data-length

• Arithmetic expressions can appear as the primaries of relational expressions (see section 8.4)

8.3 Character expressions

8.3.1 Format

A character expression takes the form of a single primary only, which could be:

• A constant (see chapter 5)

• A selected variable (see section 6.3)

• A selected array element (see section 6.4)

• A function call (see section 10.2)

The primary has to be of type character.
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8.3.2 Type, data-length and mode

The type of the result of a character expression is character, the data-length is one byte and the
mode is the same mode as the primary.

8.3.3 Use of character expressions

You can use character expressions in the following contexts:

• The right-hand side of a character assignment statement can be a character expression. The
value of the character expression is assigned to a character variable or array element (see
chapter 9)

• The actual argument list of CALL statements and function calls (see section 10.4.2) can
include character expressions. The value is passed as an actual argument to the subroutine
or function

• Character expressions can appear as the primaries of relational expressions (see section 8.4)

• You can index a character expression of vector or matrix mode in parentheses in order to
select one or more components for processing (see section 8.6)

8.4 Relational expressions

8.4.1 Format

A relational expression consists of either two arithmetic expressions or two character expressions
separated by a relational operator. The relational operator represents the operation of comparison
between the values of the two expressions that it separates.

The relational operators and the operations that they represent are as follows:

.LT. Less than

.LE. Less than or equal to

.EQ. Equal to

.NE. Not equal to

.GE. Greater than or equal to

.GT. Greater than

Spaces are permitted in relational operators.

For example:

VAR .NE. 13
CHARM1 .EQ. CHARM2
CHARM3(16,19) .NE. CHARV(12)
25 .LT.3
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The mode of a relational expression is determined by the mode of its two arithmetic or character
primaries as described in section 8.1.

If the primaries of a relational expression are vectors or matrices, each component of the result will
have the value .TRUE or .FALSE., depending on the truth or falsity of the relationship represented
by the expression for corresponding components of the primaries.

8.4.2 Character comparisons

Where character quantities are compared, one character is considered to be greater than another
if it is higher in the collating sequence; that is, if it has a higher hexadecimal value according to
the list in section 3.1.

For example, the relational expression:

‘J ‘.LE.’a’

has the value .TRUE..

8.4.3 Type, data-length and mode

The type of the result of a relational expression is always logical and its data-length is always one
bit. Its mode is determined by the rules in section 8.1, where the relational operator is considered
as a binary operator whose operands are the two arithmetic or character expressions.

If the operands are arithmetic expressions, the data-length of one or both expressions might be
altered before the relational operation takes place, using the rules for primaries of an arithmetic
operation (see section 8.2.2).

8.4.4 Use of relational expressions

A relational expression can be a primary of a logical expression, or can constitute a logical expres
sion by itself (see section 8.5). You can only use a relational expression within logical expressions
or wherever a logical expression is needed.

8.4.5 Real comparisons

In general, a real number is an approximate representation of some value. Thus you are not
recommended to apply the operators .EQ. and .NE. to real expressions.
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8.5 Logical expressions

8.5.1 Format

Each primary of a logical expression has to be of type logical, and can be:

• A constant (see chapter 5)

• A selected variable (see section 6.3)

• A selected array element (see section 6.4)

• A function call (see section 10.2)

• A relational expression (see section 8.4)

• A logical expression enclosed in parentheses

The logical operators and the operations that they represent are:

Unary operators Effect of operation Binary operators Effect of operation

.NOT. Logical negation .OR. Logical disjunction
AND. Logical conjunction
.LEQ. Logical equivalence
.NOR. Negates the resu1t of .OR.

.NAND. Negates the result of .AND.
.LNEQ. Negates the result of .LEQ.

A logical expression consists of a single logical primary, a single logical primary preceded by the
.NOT. operator, or a string of such optionally negated logical primaries separated by binary logical
operators.

For example:

LVAR
.NOT. LM(3,16)
(LM1.OR.LM2) AND. (LM3.LNEQ.LM4)

You should obey the following rules when writing logical expressions:

• Logical primaries have to be separated by logical operators

• No two logical operators can be adjacent unless the first is one of .AND., .OR., .LEQ.,
.NAND., .NOR., or .LNEQ., and the second is .NOT.

• The logical operator .NOT. has to be followed by, but not preceded by, a logical primary; all
other logical operators have to be both preceded and followed by logical primaries

• Arithmetic and character expressions can only appear in logical expressions as function ar
guments, subscripts, or as relational expressions
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The result of a FORTRAN-PLUS logical expression is a scalar, vector, or matrix mode object,
depending on the modes of the primaries (see section 8.1). In cases where vector or matrix mode
objects are produced, the logical operations represented by the operators are performed in parallel
on corresponding components of vector or matrix primaries.

Note that a logical expression used in an IF statement (see section 14.4.3) has to be of scalar mode;
you can often apply the built-in functions ANY or ALL (see chapter 11) to reduce such logical
vector or matrix expressions to scalar mode.

8.5.2 Type, data-length and mode

The type of the result of a logical expression is always logical and thus has no data-length specified.
The mode of the result is determined by the rules given in section 8.1.

8.5.3 Order of evaluation

Logical expressions are evaluated from the innermost set of parentheses outwards. Within each set
of parentheses or expression without parentheses the order of evaluation is as follows:

1. Evaluation of primaries, including relational expressions, expressions in parentheses, function
references, and array or vector/matrix variable subscripting. This stage can also include the
expansion of logical scalar primaries to vector or matrix mode, as required section 8.1)

2. All .NOT. operations

3. All .AND. and .NAND. operations

4. All .OR., .NOR., .LEQ., and .LNEQ. operations

Within each group evaluation takes place from left to right. Any functions referenced in a log
ical expression should not alter the values of any variables or array elements referenced in that
expression. If a function is referenced more than once in a logical expression the results should
be independent of the order of evaluation; in particular, two references with the same arguments
should produce the same results. Violation of these rules will lead to unpredictable results.

8.5.4 Use of logical expressions

You can use logical expressions in the following contexts:

• The right hand side of a logical assignment statement (see chapter 9) which is used to give
a new value to a variable or array element of type logical

• A logical expression can appear as an actual argument in a CALL statement or function
reference. The corresponding dummy argument has to be a logical variable and cannot be
updated within the referenced subroutine or function if the actual argument is a constant or
proper expression (see chapter 10)

• Logical expressions producing scalar mode objects are used in block IF and ELSE IF state
ments and logical IF statements (see chapter 14)
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• A logical expression producing a vector or matrix mode object can appear as an indexing
expression in any parallel subscript position of a vector or matrix variable or any element
reference (see chapter 7)

8.6 Indexing a vector or matrix expression

When the mode of the result of an expression is vector or matrix, you can index the expression;
that is, you can select one or more components of the expression using any of the vector or matrix
indexing techniques described in sections 7.2.1 and 7.3.1.

You enclose the expression to be indexed in parentheses, use the result as the name in the indexing
construct defined in section 7.1 and follow this name with the appropriate indexing expressions,
also in parentheses. To index such expressions, you can use any form of vector or matrix indexing
that is valid on the right-hand side of an assignment statement. An indexed expression can appear
wherever an expression of the same type can appear.

For example:

INTEGER A(*50,*100), IV(*50)

IV = (A(+,+) + A(-,-)) ( ,IV)
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Chapter 9

Assignment

Assignment is the process whereby a named variable or array element, or a group of compo
nents of either, acquires a defined or redefined value. There are two basic forms of assignment
in FORTRAN-PLUS: simple assignment and indexed assignment. In both cases the expression
on the right hand side is evaluated before any assignment takes place; this expression can involve
previous values of components on the left hand side.

9.1 Simple assignment

A simple assignment has the form:

name = expression

where name is a variable name of any type, data-length and mode, and expression is assignment
compatible. The type and mode of expression are subject to the following restrictions:

• If expression is of type integer or real, name has to be of type integer or real. The type and
data-length of the expression is converted to that of the left hand side (see section 8.2.4)
before the assignment takes place

• If expression is of type logical, name has to be of type logical

• If expression is of type character, name has to be of type character

• If the mode of expression is scalar, the mode of name can be scalar, vector, or matrix with
the following effects:

— If the mode of name is scalar, the value of expression is assigned to name
— If the mode of name is vector, expression is automatically expanded to a vector of the

same size, each component of which is equal to the value of expression. Each component
of this vector is then assigned in parallel to the corresponding component of name

— If the mode of name is matrix, expression is automatically expanded to a matrix of
the same shape, each component of which is equal to the value of expression. Each
component of this matrix is then assigned in parallel to the corresponding component
of name
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• If the mode of expression is vector, the mode of name must also be vector and both vec
tors must be the same size. Each component of expression is assigned in parallel to the
corresponding component of name

• If the mode of expression is matrix, the mode of name must also be matrix and both ma
trices must be the same size. Each component of expression is assigned in parallel to the
corresponding component of name

9.2 Indexed assignment

An indexed assignment has the form:

indexing construct = expression

where indexing construct (see section 7.1) is a vector or matrix variable name or array name of any
type followed by one of the indexing expressions appropriate to the left-hand side of an assignment
described in Chapter 7.

The effect of an indexed assignment is to assign the value of expression to the identified group of
the components on the left-hand side. The indexing expression which follows the variable or array
name (see chapter 7) determines the identification of components to be assigned. Where more
than one component is identified the assignments take place in parallel.

The same type restrictions apply to an indexed assignment as to a simple assignment (see sec
tion 9.1). The following restrictions apply to the modes of indexing construct and expression:

• If the array name in indexing construct is of scalar mode, the mode of expression has to be
scal ar

• If the variable or array name in indexing construct is of vector mode, the mode of expression
can be either of:

— scalar, in which case the value of expression is assigned to every vector component
identified by the indexing expression

— vector, in which case each identified component of the left-hand side vector has the
corresponding component of expression assigned to it. The vectors have to be the same
size

• If the variable or array name in indexing construct is of matrix mode, the mode of expression
can be any of:

— scalar, in which case the value of expression is assigned to every matrix component
identified by the indexing expression

— vector, provided that the indexing on the left-hand side is such that just one parallel
subscript position is null. If the first subscript is null each identified component of the
left-hand side matrix is assigned the value of the corresponding component of the matrix
of the same shape formed by expanding the vector value of expression (which must have
a size equal to the number of rows in the left hand side matrix) to a matrix with the
appropriate number of identical columns. If the second subscript is null each identi
fied component of the left-hand side matrix is assigned the value of the corresponding
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component of the matrix of the same shape formed by expanding the vector value of
expression (which must have a size equal to the number of columns in the left hand side
matrix) to a matrix with the appropriate number of identical rows

— matrix, in which case each identified component of the left-hand side is assigned the
value of corresponding component of expression. The matrices must be the same shape

Those components of the left-hand side variable or array element that are not identified by the
indexing expression are unchanged after the assignment.
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Chapter 10

Subroutines and functions

A procedure is a self-contained body of code used to perform a specific part of a programming
task. A DAP program consists of one or more FORTRAN-PLUS procedures (function or subroutine
subprograms), or procedures written in APAL, the assembly language of the DAP.

Normally, a procedure is entered, some or all of its statements are executed and then a return is
made to the program unit from which the procedure was called. The statements concerned with
entering and leaving procedures are described in sections 10.2, 10.3 and 10.6.

By using COMMON blocks (see Chapter 12), function results (see section 10.6), and argument
association (see section 10.4.2) you can transfer values between program units.

FORTRAN-PLUS procedures fall into the following categories:

• User-written functions

• Built-in functions

• User-written subroutines

• Built-in subroutines

Built-in functions and subroutines are listed in chapter 11.

10.1 Procedure declaration

10.1.1 Subroutine subprograms

A subroutine subprogram is a separate FORTRAN-PLUS program unit — it is not contained within
another FORTRAN-PLUS program unit. A subroutine begins with a SUBROUTINE statement,
which can take either of the forms:

ENTRY SUBROUTINE name

SUBROUTINE name(dummy argument list)
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where:

• name is the subroutine name which has to be distinct from the name of any other FORTRAN-
PLUS program unit, or COMMON block name (see section 3.2.1)

• dummy argument list, which is optional, has the form:

item1, item2, ... item,1

where each item1 is used within the subroutine as a variable name, array name, function
name or subroutine name (see section 10.4.1). If dummy argument list is omitted, then so
are the enclosing parentheses

You can call an ENTRY SUBROUTINE, that is, the first form of the SUBROUTINE statement,
from a program unit within your DAP program or from the associated host program — it is the
only form of FORTRAN-PLUS subroutine that you can call from the host program and your
DAP program must have at least one such subroutine. You use the second form of the subroutine
statement for a subroutine that can only be called from another FORTRAN-PLUS program unit
and can optionally have values passed to it by argument association (see section 10.4). In either
form a subroutine can call itself recursively.

The statements in a subroutine subprogram have to occur in the following order:

1. Either form of the SUBROUTINE statement

2. Optional COMMON, DATA, DIMENSION, EQUIVALENCE, EXTERNAL, GEOMETRY,
IMPLICIT, PARAMETER, or type specification statement(s)

3. At least one executable statement

4. An END statement (see section 10.1.3)

The final executable statement should be a RETURN, GOTO or STOP; you will get a run-time
error if the END statement is reached during execution.

A subroutine can contain a CALL statement that refers to itself directly, or it can contain an
indirect reference to itself. For example, subroutine SUBR can contain a CALL statement or
function call that refers to another subroutine or function subprogram which in turn contains a
call to subroutine SUBR.

10.1.2 Function subprograms

Functions in FORTRAN-PLUS can return scalar, vector or matrix values.

10.1.2.1 Function header

A function subprogram is a separate FORTRAN-PLUS program unit; that is, it is not contained
within another FORTRAN-PLUS program unit. A function begins with a FUNCTION state
ment, which has the form:

type *datalength FUNCTION name (dummy argument list)
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where:

• type denotes the type of the object returned by the function and can be INTEGER, REAL,
DOUBLE PRECISION, LOGICAL or CHARACTER. type can be omitted in which case
*data..length should also be omitted and the type and data-length of the object returned by
the function are determined as shown in section 10.1.2.2

• *data..length, which can be omitted, denotes the number of bytes used to represent the object
returned by the function. data-length can take the range of values given in section 4.5

• name is the function name, and has to be distinct from the name of any other FORTRAN-
PLUS program unit or COMMON block name. name is used within the function subprogram
as the name of a variable with the type, data-length and mode of the object returned by
the function; this variable has to be assigned a value (that is, become defined) within the
function subprogram

• dummy argument list takes the form:

name1, name2, ... name,

where each names is used within the function subprogram as a variable name, array name,
function name, or subroutine name (see section 10.4.1). There has to be at least one item in
the list

10.1.2.2 Type and data-length of a function

Any subprogram that calls a particular user-written function must also specify that function using
an EXTERNAL statement (see section 10.1.4).

You specify the type and data-length of a user-written function (that is the type of object returned
by the function) in one of the following ways:

• In the function definition as part of the FUNCTION statement (see section 10.1.2.1)

• By the appearance of the function name in a type specification statement within the definition
of that function (see next paragraph)

• If you have not specified the type and data-length in one of the above ways, then the first
letter of the function name (by default, or by use of the IMPLICIT statement) determines
the type and data-length in exactly the same way as for variables (see section 6.1.1)

Where the name of a function appears in place of a variable name in a type specification statement
or a DIMENSION statement (see section 6.1.2), the format is as described in section 6.1.2 except
that you cannot use /value list! to give values to the function name.

10.1.2.3 Mode of a function

A function can return a value of scalar, vector or matrix mode. A function is called a scalar, vector
or matrix function according to the mode of the value returned by the function. Functions cannot
return array values.
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You determine the mode of a function and (if it is a vector or matrix function) its shape either
by a DIMENSION statement or by a type specification which has the form of a vector or matrix
declarator (see section 6.L2). If there is no mode specification in this form, the mode of the
function is taken to be scalar.

for example:

FUNCTION MYFUN(VEC1,1)
REAL VEC1(*)

INTEGER I

REAL MYFUN(*I,*SIZE(VEC1))

The last statement declares MYFUN to return a real matrix result with a number of rows equal
to the value of I, and the number of columns equal to the number of components in VEC1. lithe
last statement was:

DIMENSION MYFUN(*I,*SIZE(VEC1))

the function would return an integer matrix (since MYFUN begins with M) of a similar size. If
the last statement was absent, the function would return a 4 byte integer scalar.

10.1.2.4 Body of function subprogram

The statements in a function subprogram have to occur in the following order:

1. FUNCTION statement

2. Optional IMPLICIT, DIMENSION, COMMON, EQUIVALENCE, PARAMETER, DATA,
GEOMETRY, EXTERNAL, or type specification statement(s)

3. At least one executable statement. For the function to be meaningful, at least one statement
must assign a value to name

4. An END statement (see section 10.1.3)

The final executable statement should be a RETURN, GOTO or STOP; you will get a run-time
error if the END statement is reached during execution.

Within a given function the occurrence of the name of that same function within an expression
is interpreted as referring to the current value of that function, rather than a further call (or
recursion) of the function. A function can however call itself recursively by indirect means; for
example, function FN can contain a call to some other subroutine or function, which in turn
contains a call to FN.

Note that you can only invoke a FORTRAN-PLUS function subprogram through a function call
(see section 10.2) in another FORTRAN-PLUS program unit — a FORTRAN-PLUS function sub
program cannot be called from the host program.

The function name can be used like any other variable within the function. The function name is
used to return the value of the function and therefore has to be assigned a value before a RETURN
statement is executed.
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10.1.3 The END statement

The END statement is the last statement of a program unit and has to be present in every program
unit. It contains END within columns 7 to 72 of an initial line and spaces in all other columns
of that line. The next statement, if any, has to be a SUBROUTINE, FUNCTION, or BLOCK
DATA statement. By convention, any comment or blank lines that follow an END statement but
precede the next program unit, if any, are considered to belong to the same program unit as that
END statement.

10.1.4 The EXTERNAL statement

The EXTERNAL statement is used within a subprogram to declare another subprogram and
has either of the following forms:

EXTERNAL name1, name2, ... names

EXTERNAL type *data1ength FUNCTION name1, name2, ... name

In the first form of the statement, each name2 can be either of:

• A user-written subroutine or function name

• The name of a block data subprogram

In the second form of the statement, each named is the name of a user-written function subprogram
that is to be called within the program unit. You can omit type and *data.4ength; if you omit
type you must also omit *datalength, but you can include type and omit *data4ength. You can
give type and *data.length in a separate type specification statement.

You declare the mode of an EXTERNAL function in the same way as described in section 10.1.2.3.
The type, data-length and mode should correspond with those in the function definition itself.
Where the shape is not fully known, you use the assumed size form of parallel dimension for either
or both dimensions (see section 6.1.2).

For example:

EXTERNAL MATMULT
REAL MATMULT(*,*)

declares a user-written function MATMULT which returns a real matrix.
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The EXTERNAL statement has one of three uses, corresponding to the class of name referred to
and the form of the statement used:

1. If name1 is the name of a user-written function that is called within a subprogram, name1
should appear in an EXTERNAL statement of the second form in that subprogram. If name
is the same as the name of a built-in function (see chapter 11) any call to name within the
subprogram will be taken as a call to the user-written function rather than the built-in
function

2. If name1 is the name of a user-written function or subroutine that appears in the actual
argument list of a CALL statement or function call within a subprogram, name1 should
appear in an EXTERNAL statement in that subprogram. Note that built-in function or
subroutine names cannot be passed as actual arguments

3. If named is the name of a block data subprogram that is to be included in the DAP program,
name1 can appear in an EXTERNAL statement in some program unit in the DAP program.
Block data subprograms are described in chapter 12

10.2 Calling functions

Functions, both user-written and built-in (see chapter 11), are entered when a statement containing
an expression in which a function call is evaluated, is executed.

A function call is used as an expression primary and has the form:

name (actual argument list)

where:

• name is the name of a user-written or built-in function

• actual argument list is defined in section 10.4.1

The function is entered at the first executable statement and control passes through the function
until a RETURN statement is executed (see section 10.6).

A function call can only occur in an expression of the appropriate type (see chapter 8).

If the function call refers to a user-written function, the name (and also the type, data-length and
mode) of the function must appear in an EXTERNAL statement in the program unit in which the
function reference occurs.

A user-written function can have the same name as one of the built-in functions listed in chapter 11.
The function name must appear in an EXTERNAL statement in the program unit in which the
user-written function is required otherwise the built-in function will be assumed.

A function call to a FORTRAN-PLUS user-written or built-in function can occur only in a DAP
program unit; that is, a FORTRAN-PLUS function cannot be directly called from a host program
unit.

A function cannot contain an explicit call of itself. However indirect recursion is allowed (see
section 10.1.1).
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103 Calling subroutines

A subroutine is entered whenever a CALL statement referTing to that subroutine is executed. The
CALL statement has the form:

CALL name (actual argument list)

where:

• name is the name of a user-written or built-in subroutine

• actual argument list is a list of expressions, array names, and procedure names separated by
commas (see section 10.4); actual argument list is omitted if the called subroutine has no
arguments. If actual argument list is omitted, then so are its enclosing parentheses

The subroutine is entered at the first executable statement and control passes through the subrou
tine until a RETURN statement is executed (see section 10.6).

A call to a FORTRAN-PLUS subprogram can appear in a program unit in either the DAP program
or the host program, but in the latter case the CALL statement has to refer to a FORTRAN-PLUS
ENTRY subroutine (see section 10.1.1) as the argument to the interface subroutine DAPENT which
initiates processing in the DAP (see DAP Series: Program Development).

A subroutine can call itself, or it can call a subroutine or function that in turn calls the original
subroutine. A FORTRAN-PLUS subroutine can therefore be either directly or indirectly recursive,

10.4 Procedure arguments

10.4.1 Dummy arguments

The declaration of a user-written subroutine can have, whereas the declaration of a user-written
function must have, a dummy argument list of the form:

name1, name2, ... name,

where each names (see section 3.2.1) is used within the procedure as one of:

• A variable name — see chapter 6

• An array name — see chapter 6

• A function name — see sections 10.1.2.1 and 10.4.6

• A subroutine name — see sections 10.1,1 and 10.4.6

In general, each dummy argument has to be declared within the procedure and thus given type,
data-length, mode and dimension(s).
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Dummy arguments which are variables (known as dummy variables) cannot appear in COMMON,
EQUIVALENCE, or DATA statements within the procedure; they can appear in type specification
statements, but cannot be initialised in them.

The implications of the various forms for dimensions of vector and matrix variable and array
arguments are discussed in section 10.4.5.

Dummy arguments which are arrays (known as dummy arrays) have to appear in DIMENSION
or type specification statements within the procedure, but cannot be given initial values. They
cannot appear in COMMON, EQUIVALENCE, or DATA statements. The non-parallel dimensions
of a dun-u-ny array have to be either integer constants or integer scalar variables; in the latter case,
the integer scalar variable has to be either a dummy argument or an item in a COMMON block
declared in the procedure. This form of array declaration allows a dummy array to have non
parallel dimensions of different sizes on different executions of the procedure, although the number
of dimensions has to remain constant.

10.4.2 Actual arguments

When a subroutine or function is entered, the actual argument list in the CALL statement or
function call has the form:

item1, item2, ... item,,

where each itemk can be an expression or a function or subroutine name. The different forms
which itemk can take are classified as follows in order to differentiate between those parameters
which return values and those which do not:

1. A variable name used to identify a variable (which can be scalar, vector or matrix (see
chapter 6))

2. A complete array element (see section 7.1.2) — this is an array element where any parallel
subscripts in the indexing construct are null; that is, a scalar has been selected from an array
of scalars, a vector from an array of vectors or a matrix from an array of matrices

3. An indexed variable (see section 7.1.2).

This construct is one of the indexed vector selection constructs (see section 7.2.1) or indexed
matrix selection constructs (see section 7.3.1) which selects a scalar from a vector variable
or array element, or a scalar or vector from a matrix variable or array element. Constructs
which use + or — indexing subscripts are not classified as ‘indexed variable constructs’.

4. A proper expression. A proper expression is any expression other than those described above,
and is a reference to a value calculated when the called procedure is entered.
A proper expression can be:

• An expression consisting of a single constant

• An expression containing any of the following, except in a subscript position:
— Unary or binary operators
— Variable or array element names with + or — indexing expressions
— Grouping parentheses
— Function calls
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Thus a variable name or a complete array element name enclosed in parentheses is a proper
expression

5. An array name used to identify an array

6. A function name used to identify a user-written function

7. A subroutine name used to identify a user-written subroutine

The actual argument list in a CALL statement or function reference has to contain the same
number of actual arguments as there are dummy arguments in the dummy argument list of the
SUBROUTINE or FUNCTION statements that declare the called procedure.

10.4.3 Argument association

On entry to the called subprogram, actual arguments are associated with dummy arguments ac
cording to their respective positions in the argument lists; that is, the jth actual argument is
associated with the dummy argument.

This association is used to pass values into procedures and, in some circumstances, to return values
from procedures (see section 10.4.4).

Actual arguments are also referred to as parameters.

For each class of dummy argument, the corresponding actual argument must be one of:

Dummy argument Actual argument

Variable name Variable name, complete array element, indexed variable or proper ex
pression

Array name Array name or complete array element

Function name Function name that appears in an EXTERNAL statement in the calling
subprogram

Subroutine name Subroutine name that appears in an EXTERNAL statement in the call
ing subprogram

• If the dummy argument is a variable, array, or function name, the corresponding actual
argument has to be of the same type, data-length and mode. Shapes of vectors and matrices
have to conform (see section 10.4.5)

• If a proper expression is used as an actual argument, the corresponding dummy argument
has to be a variable name

• If a dummy argument is a dummy array and the corresponding actual argument is an array
name, the first element of the dummy array maps onto the first element of the actual array.
If the actual argument is a complete array element (see section 10.4.2), the first element of
the dummy array maps onto the specified element of the actual array, the second element
onto the next, and so on. The actual array has to contain at least as many elements as the
dummy array
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Dummy variables and dummy arrays acquire defined values in the following ways:

• Dummy variables are given a defined value either by association with an actual argument on
entry to the procedure or by assignment during the execution of the procedure

• If the actual argument is a proper expression, the expression will be evaluated once on entry
to the procedure and that value becomes the value of the dummy variable

• A dummy array element can be given a defined value either by association with an actual
array or by assignment during the execution of the procedure

If a dummy variable is selected (by value) during the execution of a procedure, it has to have a
defined value at that time.

If an element of a dummy array is selected (by value) during the execution of a procedure, it has
to have a defined value at that time.

10.4.4 Parameter write-back

During the execution of a procedure, a dummy argument can have its value defined or redefined
and hence, by argument association, a (new) value can be meaningfully written back to an actual
argument on return from the procedure. However there are occasions when, although a dummy
argument has been given a (new) value no writing to the corresponding actual argument takes place,
or defining or redefining the value of a dummy argument leads to results which are unreliable or
unmeaningful:

• If the actual argument associated with a dummy variable is a proper expression, then no
value can be written back — although the value of the dummy variable can be redefined
during execution of the procedure, there is nowhere for the new value to be written back to

• If actual arguments are variable names, complete array elements, indexed variables or array
names, then COMMON or EQUIVALENCE associations between such actual arguments
and other variables within the procedure can lead to unreliable results if their corresponding
dummy arguments are redefined during the execution of the procedure

• An actual argument should not be associated with storage that overlaps the storage repre
senting another actual argument

• In the case where the actual argument is an indexed variable, a copy of the value of the subset
of components selected by the indexing construct from a variable, array or array element is
taken on entry to the procedure. This copy is used for processing within the procedure until
a RETURN is made to the calling procedure, at which point the copy is written back to the
variable, array, or array element from which it was taken. This process does not allow the
called procedure to perceive the effects of any association of the argument with any variable
of the called procedure — hence, if there is such an association, the results are unpredictable

• Some other implications are mentioned in section 10.4.7
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10.4.5 Shape of vector and matrix arguments

If a dummy argument is a vector or a matrix or an array with vector or matrix elements, you
specify the size of each parallel dimension in the parallel subscript position(s) of the vector, matrix
or array declarator (see section 6.1.2).

You can generalise subprograms if you use the assumed size form (that is, there is simply a * in the
parallel subscript position) for parallel dimensions of vector and matrix dummy arguments rather
than making the sizes of the dimensions explicit.

For example, the declarations:

SUBROUTINE COMPRESS(VEC1, MAT1, MATSET,I,J)
REAL VEC1(*)

INTEGER MAT1(*,*)
LOGICAL MATSET(*,*,I,J)

specify that the vector and matrix dummy arguments, VEC1 and MAT1 can have any value
for the sizes of their dimensions; the values of those dimensions are inherited from those in the
actual parameters. The matrix array, MATSET, can also have any value for the sizes of its parallel
dimensions, but its non-parallel dimensions are passed as further parameters. Note that you cannot
specify non-parallel dimensions of arguments as being of assumed size; this syntax applies only to
parallel dimensions.

You can also use the SIZE function in declarations to let local variables (or function results) have
parallel subscripts dependent on the parallel subscripts of arguments:

SUBROUTINE SUMMPYIMM(A,B)
INTEGER A(*,*), B(*,*)
INTEGER D(*SIZE(A,1) ,*5IZE(B ,2))

and

FUNCTION IM(P)
LOGICAL IM(*SIZE(P,1),*SIZE(P,2)),P(*,*)

You cannot, however, use this notation for any statically declared variables or arrays — that is, those
declared in COMMON or DATA statements. Also the dimensions of all objects in EQUIVALENCE
statements must be known at compile-time.

If you use SIZE to dimension a variable or array in a declaration statement, then the relevant
dimension(s) of the argument to that use of SIZE must not itself have been dimensioned using
SIZE. In other words, you cannot nest SIZEs in declaration statements.
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For example:

REAL BM(*SIZE(A,l),*SIZE(B,1))

INTEGER AV(*SIZE(BM,2))

is invalid, but

REAL BM(*SIZE(A,1),*56)

INTEGER AV(*SIZE(BM,2))

is valid.

Unless parallel subscripts of dummy arguments are integer constants, it is not possible to determine

their values until run-time. A run-time error is then given if there is a mismatch between these

values, and the corresponding sizes of the dimensions of the actual argument passed into the

procedure. Note that, by default, no checks are made on non-parallel dimensions.

If you give an assumed size for a parallel dimension, no check is made; the value is taken as that

in the actual argument. You can use the SIZE function call (see chapter 11) to establish a check

against a dimension of another vector or matrix (or another dimension of this one).

For example:

FUNCTION MATMUL(ARRAY,B,N)
REAL ARRAY(*,*,N)
REAL B(*SIZE(ARRAY,2),*)

REAL MATMUL(*SIZE(ARRAY,1),*SIZE(B,2))

REAL C(*SIZE(ARRAY,1) ,*SIZE(ARRAY,2))

The input ARRAY is an array of N matrices; each matrix element is of a shape not known at
compile time. B is declared to have its first dimension equal to the second dimension of a matrix
element in ARRAY; the system would give a run-time error if this were not the case.

The function MATMUL returns a matrix with a number of rows equal to the first dimension of
ARRAY and number of columns equal to the second dimension of B.

Finally C is declared as a local matrix of the same shape as a matrix element in ARRAY.

10.4.6 Dummy procedure names

Dummy procedure names are another form of parameter to a subroutine or function. Within the
called procedure they are used as subroutine names in CALL statements or function names in
function calls; a dummy procedure name can also appear in the actual argument list of a CALL
statement or function call within the procedure.

The corresponding actual argument has to be the name of a user-written function or subroutine; a
built-in function or subroutine cannot be used as an actual argument. The name of a function or
subroutine that is to be used as an actual argument has to appear in an EXTERNAL statement
in the program unit in which the actual argument list appears.
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Note that if a function name appears on its own in an actual argument list, the corresponding
dummy argument will be treated as a dummy function name. If the function name is immediately
followed by an actual argument list in parentheses it is treated as a proper expression; the function
is called and the value returned by the function is passed to the dummy argument, which is used
as a dummy variable.

Examples

1. If subroutine A is to be passed by subroutine C as the second of two arguments expected by
subroutine B, then the following statements occur in subroutine C:

SUBROUTINE C
EXTERNAL A

CALL B(X,A)

END

subroutine B can then be written as:

SUBROUTINE B(X,Y)
EXTERNAL Y

CALL Y(X)

END

2. If function F was to be evaluated in subroutine H and the result passed to a further subroutine
or function, its mode and type have to be declared there:

SUBROUTINE H
EXTERNAL FUNCTION F
REAL F(**)

X = MAX (F(1.9,o.o))

END

F returns a matrix with a shape determined at run-time

3. If function F is to be passed to subroutine E, subroutine D would contain:

SUBROUTINE D
EXTERNAL F (the type and mode of F would have to be
CALL ECX,F) specified if F is used as a

function reference in D)
END
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E has to declare the function, giving its mode and type:

SUBROUTINE E(XX ,FF)
REAL XX

EXTERNAL FUNCTION FF
REAL FF(*,*)

XX = MAXVCFF(1.9,O.O))

END

10.4.7 Functions and side-effects

When a user-written function or subroutine is executed it can change the value of an actual
argument passed to it, a variable in COMMON storage or a preset variable in the function or
subroutine. In such cases the function or subroutine is said to cause side effects, In general this
does not cause a problem for subroutine calls. However with function calls, the side effects can
change the result of a function in an unpredictable way if the function is called more than once in
a single expression. Also the result of an expression will be unpredictable if it contains a function
call which alters the value of one of its arguments and you have used that argument elsewhere in
the expression.

For example, given the following function definition:

INTEGER FUNCTION MCI)
DATA J/2/
11= I+J

J=J+M
RETURN

END

the expression:

MCi) + MC2)

will yield unpredictable results because it depends on the evaluation order (which is not defined,
see section 8.2.3) - if M(1) is evaluated first, the result will be 10; if M(2) is evaluated first the
result will be 11.

Similarly the expression

X+ FUN(X)

will have unpredictable values if FUN alters the value of X.
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10.5 Storage allocation in procedures

There is no restriction in FORTRAN-PLUS on recursion of procedure calls except the space avail
able for the run-time stack (that is, the temporary work-space needed by a FORTRAN-PLUS
program — see DAP Series: Program Development).

Data in FORTRAN-PLUS procedures can be classified in the following ways:

• Dummy arguments

These are associated on each call with actual arguments

• Variables or arrays in COMMON blocks or in association with variables or arrays in COM
MON blocks

Each recursion of a procedure references the same occurrence of such data; that is, storage
for such data is allocated only once. The values of such data are preserved while control is
not in the procedure, unless associated values are changed

• Variables or arrays which are initialised in DATA or type specification statements, that is
preset data, or are in association with variables or arrays in preset data

Each recursion of a procedure references the same occurrence of such data; that is, storage
for such data is allocated only once. The values of such data are preserved while control is
not in the procedure, unless associated values are changed

• Variables or arrays that are EQUIVALENCEd to other variables or arrays and are neither
initialised nor in COMMON.

In the current implementation of FORTRAN-PLUS each recursion of a procedure references
the same occurrence of such data; that is, storage for such data is allocated only once.
However, for this case, you must not rely on the values of such data being preserved between
successive calls to the procedure

• Local variables and arrays. These are all the other variables or arrays declared explicitly or
implicitly in a subprogram unit.

It is these variables which are allocated storage on the run-time stack on every CALL to
the procedure. Their values become undefined when control leaves the procedure through a
RETURN statement.

In general, FORTRAN-PLUS cannot work out the stack space requirements because it cannot
forecast:

• If your program is recursive

• How large are the dynamically-sized local vectors or matrices (defined either with a *SIZE
subscript or with *N where N is a integer scalar dummy argument)

Although the compilation system makes an estimate of stack space by adding together the needs
of each subprogram and guessing at the value of any dynamically-sized dimension, you could run
out of space; in some circumstances, the compilation system over-estimates the stack space needed.
The size of run-time stack can be specified or adjusted to solve these problems (see DAP Series:
Program Development).
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10.6 Entering and leaving procedures

Control passes from a procedure when either a CALL statement is executed or a statement is
executed in which a function call occurs. Control passes to the first executable statement of
the called subroutine or function and eventually returns to the same invocation of the original
procedure, either to the statement following the CALL statement or to the statement in which the
function call occurred. Control is passed back to the calling procedure when a RETURN statement
is executed; every procedure should therefore contain at least one RETURN statement.

In the case of the ENTRY SUBROUTINE at which the DAP program was entered, the RETURN
statement returns control to the host program.

You should therefore label the executable statement, if any, following a RETURN statement,
otherwise it will never be executed.

When a RETURN statement is executed within a function subprogram, the value currently asso
ciated with the function name, which is used within the procedure as though it were a variable, is
passed back to the function reference as the result. This variable has to be given an appropriate
defined value before a RETURN statement is executed.
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Chapter 11

Built-in procedures

Built-in procedures are subroutines or functions which are defined as part of the language; they
are supplied automatically as part of the compilation process and no EXTERNAL statements are
required to declare them.

The typographical conventions used in this chapter are

• Procedure names are shown in upper case BOLD TYPE

• Text that would be replaced by other text in what you actually write is shown in lower case
italics

• Parentheses, where they appear in a procedure call, are an essential part of the syntax of the
call

11.1 Componental functions

FORTRAN-PLUS built-in componental functions perform a set of standard arithmetic operations
on FORTRAN-PLUS data objects.

Componental functions return a result of the same mode and shape, and usually the same type and
data-length, as the argument. In the case of non-scalar arguments, the operation represented by
the function is performed on each component of the argument in parallel. Componental functions
leave their arguments unchanged.

ABS ABS(a)

where:

• a is an integer or real object of any data-length and mode

ABS returns the absolute value of a. The result of the function has the
same type, data-length and mode as a.
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ATAN ATAN(a)

where:

• a is a real object of any data-length and mode

ATAN returns the inverse trigonometric tangent of a, which is expressed
in radians. The result of the function is a real object in the range —ir/2
to ir/2 having the same data-length and mode as a.

COS COS(a)

where:

• a is a real object of any data-length and mode

COS returns the trigonometric cosine of a, which is assumed to be ex
pressed in radians. The result of the function is a real object of the same
data-length and mode as a.

EXP EXP(a)

where:

• a is a real object of any data-length and mode

EXP returns the exponential of a; that is, e to the power of a. The
result of the function is a real object of the same data-length and mode
as a.

FIX FIX(a)

where:

• a is a real or logical object of any data-length and mode

FIX returns the equivalent value of a converted to type integer. A
logical argument is treated as a real with the value 1.0 or 0.0 depending
on whether it has the value .TRUE. or FALSE. respectively. If the
argument is of type real the result has the same data-length; if the
argument is of type logical the result has data-length 4 bytes. The result
of the function has the same mode as a.

Where a component of a real argument is not a whole number, the
fractional part is ignored.
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FLOAT FLOAT(a)

where:

a is an object of any mode and type logical or integer with, in the
latter case, a data-length in the range 3 bytes to 8 bytes

FLOAT returns the equivalent value of a converted to type real. A
logical argument is treated as an integer with the value 1 or 0 depending
on whether it has the value .TRUE. or .FALSE. respectively. If the
argument is of type integer the result has the same data-length; if the
argument is of type logical the result has data-length 4 bytes. The result
of the function is of the same mode as a.

LENGTH LENGTH(a,n)

where:

• a is an integer or real object of any data-length and mode

• n is a basic integer constant

LENGTH returns a value equivalent to a but with its data-length con
verted to the number of bytes given by n. If a is of type integer, n has
to be in the range ito 8 and if a is of type real, n has to be in the range
3 to 8. The result of the function has the same type and mode as a.

LOG LOG(a)

where:

• a is a real object of any data-length and mode

LOG returns the logarithm, to base e, of a. The result of the function
is a real object of the same data-length and mode as a.

SIN SIN(a)

where:

• a is a real object of any data-length and mode

SIN returns the trigonometric sine of a, which is assumed to be expressed
in radians. The result of the function is a real object of the same data-
length and mode as a.
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SQRT SQRT(a)

where:

• a is a real object of any data-length and mode

SQRT returns the positive square root of a. The result of the function
is a real object of the same data-length and mode as a.

11.2 Non-componental procedures

Non-componental procedures are a set of built-in subroutines and functions which perform a wide
variety of operations on scalars, vectors and matrices.

See appendix B for information on superseded procedures and alternative syntax for some of
the procedures listed below which have been retained for compatibility with earlier versions of
FORTRAN-PLUS.

The vector, and matrix shift functions (from SHEC to SHWP in this chapter) specify a geometry
that applies to a shift. The geometry of a shift can be plane or cyclic: plane geometry implies that
the values shifted in at an end or edge are zero, ,FALSE., or null characters depending on the type
of vector, or matrix being shifted; cyclic geometry implies that values shifted oft one end or edge
are shifted in at the opposite end or edge. The type of shift is determined by the function name
and is independent of any GEOMETRY statement within the calling procedure.

In addition to the typographical conventions listed at the beginning of this chapter, the conventions
used in the following descriptions of procedures are:

• Optional arguments are enclosed in square brackets []
• A choice of arguments is listed vertically and enclosed in curly brackets { }

The procedures listed below are all functions unless stated otherwise.

ALL ALLJ
lv

lmj

where:

• lv is a logical vector of any shape

• Im is a logical matrix of any shape

ALL takes a single logical vector, lv, or matrix, Im, argument, and
returns a logical scalar object that is the logical AND of the values of
all components of the argument.

88 manlO2.O1 AMT



11.2. J%,Toncomponen tal procedures 89

ALT ALT(i,r)

where:

i and r are 4-byte integer scalars

ALT returns a logical vector with as many components as the value of
r. The first i components of the result have the value FALSE. followed
by i components of value .TRUE. and so on, until all components of the
vector are assigned. The value of I is taken modulo r when determining
the numbers of components in each group with the same value. If the
value of I modulo r is zero (that is, us an integral multiple of r), all
components of the result vector will be set .FALSE..

(see also appendix B)

ALTC ALTC(i,r,c)

where:

• I, r and c are 4-byte integer scalars

ALTC returns a logical matrix with alternating groups of .FALSE.
columns and .TRUE. columns (that is, each column has all components
with a .FALSE. value or all components with a .TRUE. value).

r and c give the row and column dimensions of the result matrix. If the
value of I, modulo c, is j the matrix will have all components in the first j
columns .FALSE., all the components in the next j columns .TRUE., and
so on, until the matrix is full. Ifj is zero (that is, i is an integral multiple
of c) all the components of the result matrix will be set .FALSE..

(see also appendix B)

ALTR ALTR(i, r, c)

where:

• I, r and c are 4-byte integer scalars

ALTR returns a logical matrix with alternating groups of .FALSE. rows
and .TRUE. rows (that is, each row has all components with a. FALSE.
value or all components with a .TRUE. value).

r and c give the row and column dimensions of the result matrix. If
the value of I, modulo r, is j the matrix will have all components in the
first j rows .FALSE.,all components in the next j rows .TRUE. until the
matrix is full. If j is zero (that is, i is an integral multiple of r) all the
components of the result matrix will be set .FALSE..

(see also appendix B)
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ANDCOLS ANDCOLS(Im)

where:

• Im is a logical matrix of any shape

ANDCOLS returns a logical vector which has as many components as
there are rows in Jim The value of component i of the result is the logical
AND of the values of all components in row i of im.

ANDROWS ANDROWS(lm)

where:

• im is a logical matrix of any shape

ANDROWS returns a logical vector which has as many components
as there are columns in Jim The value of component i of the result is the
logical AND of the values of all components in column i of Jm.

ANY ANY({ /, }
where:

• lv is a logical vector of any shape

• im is a logical matrix of any shape

ANY takes a single logical vector, lv, or matrix, un, argument, and
returns a logical scalar object that is the logical OR of the values of all
the components of the argument.
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COL COL(r)
t 2v,c J

where:

• i, r and c are 4-byte integer scalars

• iv is a 4-byte integer vector

COL returns a logical matrix whose dimensions depend on the argu
ments. If the first argument is a scalar, r and c give the row and column
dimensions of the resulting matrix. If the first argument is vector v, the
size of v gives the number of rows while c gives the number of columns
of the resulting matrix.

If the first argument is scalar i with value s, all components in column s
of the matrix result are set .TRUE.; all other components of the result
are set .fALSE..

If the first argument is vector iv, then for each component in the vector
(say component k , having the value j) there will be a corresponding
component of the matrix result that is TRUE. (component ( k , j )); all
other components of the result are .FALSE..

If the value of i is not in the range 1 to c inclusive, all components of the
result are .FALSE.; if the value of a component of iv is not in the range
1 to c inclusive, all components in the corresponding row of the matrix
are .FALSE..

(see also appendix B)

COLN COLN(lm)

where:

• Im is a logical matrix of any shape

COLN returns an integer vector with as many components as there are
rows in the matrix. The n component of the vector result takes as its
value the lowest column number of any .TRUE. components in the
row of the matrix.

If all the components in a row of im are .FALSE. then the corresponding
component of the result is zero.
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COLS COLS(i,j, r, c)

where:

• 1, j, r and c are 4-byte integer scalars

COLS returns a logical matrix with all components in columns i to j
inclusive set .TRUE. and all other components set .FALSE..

r and c give the row and column dimensions of the logical matrix result.

If either i or j is not in the range 1 to c or if i is greater than j then all
the components of the result are .FALSE..

(see also appendix B)

EL EL(n,r)

where:

• n and r are 4-byte integer scalars

EL returns a logical vector result with r components. If n is not in the
range 1 to r all components of the result are .FALSE., otherwise the

component of the result is set .TRUE. with all other components
.FALSE

(see also appendix B)

ELN ELN({ ! }
where:

• lv is a logical vector of any shape

• im is a logical matrix of any shape

ELN returns an integer scalar of 4 byte data-length. If you specify a
vector argument the result will be the index of the first component of
the argument which has a .TRUE. value.

If you specify a matrix argument the result will be the index of the first
.TRUE. component of the matrix viewed in column-major order.

In either case, if no component of the argument is .TRUE, the result will
be zero.
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ELS ELS(i,j,r)

where:

• I , j and r are 4-byte integer scalars

ELS returns a logical vector whose number of components is specified
by r.

If either i or j is not in the range 1 to r or i is greater than j then all
components of the resulting logical vector are set .FALSE.. Otherwise
components i to j inclusive of the result vector are set .TRUE. and all
other components .FALSE..

(see also appendix B)

FRST FRST(I
lv

HmJ

where:

• lv is a logical vector of any shape

• im is a logical matrix of any shape

FRST returns either a logical vector or a logical matrix result according
to the mode of the argument.

If you specify logical vector Iv as argument, the result will be a logical
vector of the same shape as lv with a component set TRUE. in the
position corresponding to the position of the first .TRUE. component —

if any — of lv. All other components of the result will be set .FALSE..

If you specify logical matrix Im as argument, the result will be a logical
matrix of the same shape as Im with one component set .TRUE., the rest
.FALSE.. The position of the .TRUE. component is determined by the
position of the first .TRUE. component of im when viewed in column-
major order. If Im has no .TRUE. components then every component of
the result is set .FALSE..

GET...BIT GETBIT(object, n)

where:

• object is a scalar, vector or matrix of any type, shape and data-
length

• n is an integer scalar which takes a value between 1 and the data-
length in bits of the first argument

GET... BIT returns a logical result which has the same mode as object.
Each component in the result is set .TRUE. or .FALSE. according to
whether the ni” bit of the correspnnding component of object is 1 or 0.
Bit 1 is the most significant.
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GET.MAT GETMAT(a, ri, ci, r2, c2)

where:

• a is a matrix of any shape, type and data-length

• ri, ci, r2, and c2 are 4-byte integer scalars

GET... MAT returns a matrix with dimensions (r2, c2) which is a sub-
matrix selected from matrix a with its ‘top-left’ co-ordinate (ri, ci). The
result matrix has the same type and data-length as matrix a.

The result has to be wholly contained within the matrix a so you have
to make sure that:

1 ri < SIZE(a, 1)
1 ci < SIZE(a,2)
r2 1
c2 1
ri + r2 — 1 < SIZE(a, 1)
ci + c2 — 1 < SIZE(a , 2)

GET...VEC GET..VEC(a, ri, r2)

where:

• a is a vector of any size, type and data-length

• ri and r2 are 4-byte integer scalars

GET_VEC returns a vector with dimension r2 selected from vector a
starting at co-ordinate a(ri). The result vector has the same type and
data-length as vector a.

The result has to be wholly contained within the vector a so you have
to make sure that:

1 ri < SIZE(a)
r2 1
ri + r2 — 1 < SIZE(a)

INDEX.NEC CALL INDEXVEC(v)

where:

• v is a 4-byte integer vector

INDEX_VEC is a subroutine taking as its single argument a 4-byte in
teger vector, v, which can have any number of components. On return,
component i of the vector will contain the value i; that is, the compo
nents of the returned vector will contain the numbers 1, 2, 3, 4

• SIZE(v).
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LMATC LMATC(s, r, c)

where:

• s is a scalar of any type and data-length

• r and c are 4-byte integer scalars

LMATC returns a logical matrix with row and column dimensions of r
and c.

The matrix result has identical columns, each containing a copy of the
internal representation of s (possibly padded or truncated as discussed
below). Component i of each column of the result is set .TRUE. if bit I
of s is a 1 (bit 1 of s being at the most significant end), or set .FALSE.
if bit lisa 0.

Section 4.3 describes the internal representation of scalars.

The internal representations are padded with zeros or truncated at the
most significant end, as necessary, to give a representation r bits long.

(see also appendix B)

LMATR LMATR(s, r, c)

where:

• s is an scalar of any type and data-length

• r and c are 4-byte integer scalars

LMATR returns a logical matrix with row and column dimensions of r
and c.

The matrix result has identical rows, each containing a copy of the in
ternal representation of s (possibly padded or truncated as discussed
below). Component i of each row of the result is set .TRUE. if bit i of s
is a 1 (bit 1 of s being at the most significant end), or set .FALSE. if bit
i is a 0.

Section 4.3 describes the internal representation of scalars.

The above internal representations are padded with zeros or truncated
at the most significant end, as necessary, to give a representation c bits
long.

(see also appendix B)
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MAT MAT(s,r,c)

where:

• s is an scalar of any type and data-length

• r and c are 4-byte integer scalars

MAT returns a matrix object with r rows and c columns. The result
matrix is of the same type and data-length as the scalar argument. Each
component of the result takes the same value as that of the scalar argu
ment.

(see also appendix B)

MATC MATC(v,c)

where:

• v is a vector object of any type and data-length

• c is an 4-byte integer scalar

MATC returns a matrix of the same type and data-length as v and
which has c columns and the same number of rows as there are compo
nents in v. Each column of the result matrix is a copy of v.

(see also appendix B)

MATR MATR( v, r)

where:

• v is a vector object of any type and data-length

• r is an 4-byte integer scalar

MATR returns a matrix of the same type and data-length as v and
which has r rows and the same number of columns as there are compo
nents in v. Each row of the result matrix is a copy of v.

(see also appendix B)
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MAXP MAXP(
V [ lv]

m[,tm] j

where:

• v is a vector of type integer or real and of any data-length and
shape

• m is a matrix of type integer or real and of any data-length and
shape

• lv is an optional logical vector of the same shape as v

• Im is an optional logical matrix of the same shape as in

MAXP returns a logical object of the same mode and shape as the
first argument. The result has .TRUE. component(s) corresponding to
the component(s) with maximum value in the first argument. All other
components of the result are set .FALSE..

The second argument acts as a mask. The choice of maximum value is
determined only from those values in the first argument corresponding
to TRUE. values in the second.

If you omit the second argument, the effect is as if you had specified it
with all components .TRUE.; that is, the result gives the positions of all
components in the first argument which have the maximum value.

MAXV MAXV(.I
V {‘ Iv]

m[, 1771] j

where:

• v is a vector of type integer or real and of any data-length and
shape

• m is a matrix of type integer or real and of any data-length and
shape

• lv is an optional logical vector of the same shape as v

• Im is an optional logical matrix of the same shape as in

MAXV returns a scalar object of the same type and data-length as the
first argument. The result is the maximum value in the first argument.

The second argument acts as a mask. The choice of maximum value is
determined only from those values in the first argument corresponding
to .TRUE. values in the second.

If you omit the second argument, the effect is as though you had specified
it with all components .TRUE.; that is, the result gives the maximum
value of any component in the first argument.

If every component of the second argument is .FALSE., the minimum
possible value for the given type and data-length is returned (see section
4.3).
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MERGE MERGE(a, b, c)

where:

• c is a logical vector or matrix

• a and b are independently either scalars or objects (vectors or
matrices) of the same mode and shape as c, the third argument. a
and b must be of the same type and data-length

MERGE returns a vector or matrix object. Its third argument is a
logical vector or matrix, and the mode and shape of the result is the
same as the mode and shape of the third argument. Components of
the result are selected from the first argument if the value of the cor
responding component of the third argument is .TRUE. and from the
second argument if the value is .FALSE..

The first and second arguments can be of any type but they have to be
either of scalar mode, or the same mode and shape as the third argument.
If scalar, they are implicitly expanded to be of the same mode and shape
as the third argument.

If the first and second arguments are of fixed data-lengths, their data
lengths must be equal. If you give only one of these two arguments a
fixed data-length, the data-length of the other argument is converted to
that fixed data-length.

The type and data-length of the result are the same as the type and
data-length of the first and second argument.
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MINP MINP(I
v[,tv]
m[,lm]j

where:

• v is a vector of type integer or real and of any data-length and
shape

• m is a matrix of type integer or real and of any data-length and
shape

• Iv is an optional logical vector of the same shape as v

• Im is an optional logical matrix of the same shape as m

MINP returns a logical object of the same mode and shape as the
first argument. The result has .TRUE. component(s) corresponding to
component(s) in the first argument with the minimum value. All other
components of the result are set .FALSE..

The second argument acts as a mask. The choice of minimum value is
determined only from those values in the first argument corresponding
to .TRUE. values in the second.

If you omit the second argument, the effect is as though you had sped
fled it with all components .TRUE.; that is, the result has components
set .TRUE. at positions corresponding to all components in the first
argument with the minimum value.
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MINV MINV(f
V [ lv] 1;)

m[, tin] j

where:

• v is a vector of type integer or real and of any data-length and
shape

• m is a matrix of type integer or real and of any data-length and
shape

• lv is an optional logical vector of the same shape as v

• Im is an optional logical matrix of the same shape as m

MINV returns a scalar object of the same type and data-length as the
first argument. The result is equal to the smallest component value in
the first argument.

The second argument acts as a mask. The choice of minimum value is
determined only from those values in the first argument corresponding
to .TRUE. values in the second.

If you omit the second argument, the effect is as though you had specified
it with all components .TRUE.; that is, the result gives the minimum
value of any component in the first argument.

If every component in the second argument is FALSE., the maximum
possible value for the given type and data-length is returned (see sec
tion 4.3).

ORCOLS ORCOLS(lm)

where:

• im is a logical matrix of any shape

ORCOLS returns a logical vector which has as many components as
there are rows in Im. The value of component i of the result is the
logical OR of the values of all the components in row i of im.

ORROWS ORROWS(lm)

where:

• Im is a logical matrix of any shape

ORROWS returns a logical vector which has as many components as
there are columns in Im. The value of component i of the result is the
logical OR of the values of all components in column i of lm.
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PAT1JNIT... DIAG PAT...UNIT... DIAG(n)

where:

ii is a 4 byte integer scalar

PAT_UNIT_DIAG returns a square logical matrix with the size of
each dimension equal to n. Every component in the leading diagonal is
set .TRUE., every other component is set .FALSE..

PAT...TRAIL. DIAG PAT...TRAIL. DIAG(n)

where:

• n is a 4 byte integer scalar

PAT_TRAIL_DIAG returns a square logical matrix with the size of
each dimension equal to n. Every component in the trailing diagonal is
set TRUE., every other component is set .FALSE..

PAT.. LOWER..TRI PAT... LOWER..TRI(n)

where:

• n is a 4 byte integer scalar

PAT_ LOWER_Till returns a square logical matrix with the size of
each dimension equal to ii. Every component in the lower triangle in
cluding the leading diagonal is set .TRUE., every other component is set
.FALSE..

RANK RANK(object)

where:

• object is a data object of any mode, type or data-length

RANK returns a 4 byte integer scalar which is the total number of
dimensions, parallel and non-parallel, in its argument. For a scalar ar
gument which is not the name of a scalar array the result is zero.

REVC REVC(m)

where:

• m is a matrix object of any type, data-length and shape

REVC returns a matrix object of the same type and data-length as m
but with its column ordering reversed; that is, component (i,j) of the
result is equal to component (1, (SIZE(m, 2) + 1) - j) of the argument.
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REVR REVR(m)

where:

• m is a matrix object of any type, any data-length and any shape

REVR returns a matrix object of the same type and data-length as m
but with its row ordering reversed; that is, component (i,j) of the result
is equal to component ((SIZE(m, 1) + 1) — i, j) of the argument.

REV REV(v)

where:

• v is a vector object of any type, any data-length and any shape

REV returns a vector of the same type, data-length, mode and shape
as v.

The result consists of the components of v in reverse order.

ROW ROW(
5?’ ‘Li)

tv,r J

where:

• s, r and c are 4-byte integer scalars

• v is a 4-byte integer vector

ROW returns a logical matrix whose dimensions depend on the argu
ments you have given. If the first argument is a scalar, r and c give the
row and column dimensions of the resulting matrix, lithe first argument
is vector v, the size of v gives the number of columns while r gives the
number of rows of the resulting matrix,

If the first argument is scalar s with value i, components in row i of
the matrix result are .TRUE.; all other components of the result are set
.FALSE..

If the first argument is vector v then for each component in the vector
(say component k, having value j) there will be a corresponding compo
nent of the matrix result that is .TRUE. (component (j, k)); all other
components of the result are .FALSE..

If the value of s is not in the range 1 to r, all components of the result
are .FALSE.; if the value of a component of v is not in the range 1 to r,
all components in the corresponding column of the result are .FALSE..

(see also appendix B)
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ROWN ROWN(]m)

where:

• im is a logical matrix of any shape

ROWN returns an integer vector object of data-length 4 bytes with as
many components as there are columns in the matrix argument. The
n1 component of the vector result takes the lowest row number of any
.TRUE. components in the column of the matrix.

If all the components in a column of im are .FALSE. then the corre
sponding component of the result is zero.

ROWS ROWS(i,j,r,c)

where:

• i, j, r and c are 4-byte integer scalars

ROWS returns a logical matrix object with all components in rows ito
j inclusive set .TRUE. and all other components set .FALSE..

r and c give the row and column dimensions of the logical matrix result.

If either i or j is not in the range 1 to r or if i is greater than j then all
the components of the result are .FALSE..

(see also appendix B)

SET_BIT CALL SET_BIT(object, n, value)

where:

• object is a data object of any mode, type, shape and data-length

• n is an integer scalar which takes a value between 1 and the data-
length in bits of the first argument

• value is a logical object of the same mode and shape as the first
argument, or is a logical scalar (in which case it is implicitly ex
panded to match object)

This subroutine has the inverse effect of GET_BIT. Its purpose is to
assign a value to a particular bit of each component in a data object.

The third argument, value, is used to set the n bit of each component
of the first argument to 1 or 0 according to whether the correspond
ing component of value is set .TRUE. or .FALSE.. Bit 1 is the most
significant. All other bits in the first argument are unchanged.
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SET.MAT CALL SET...MAT(a, r, c, b)

where:

• a is a matrix of any shape, type and data-length

• r and c are 4-byte integer scalars

• b is a matrix object of the same type and data-length as the first
argument

This subroutine places the contents of matrix b, as a submatrix, into
matrix a starting at position a( r, c) as the ‘top-left’ corner. All other
components of matrix a are unchanged.

The submatrix has to be wholly contained within the matrix a so you
have to make sure that:

1 < r SIZE(a, 1)
1 < c SIZE(a,2)

+ SIZE(b, 1) — 1 SIZE(a, 1)
c + SIZE(b, 2) — 1 < SIZE(a , 2)

SET..VEC CALL SETVEC(a, r, b)

where:

• a is a vector of any shape, type and data-length

• r is a 4-byte integer scalar

• b is a vector of the same type and data-length as the first argument.

This subroutine places the contents of vector b into vector a starting at
position a( r). All other components of vector a are unchanged.

The subvector has to be wholly contained within the vector v so you
have to make sure that:

1 r < SIZE(a)
r + SIZE(b) — 1 SIZ?(a)
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SHEC SHEC(m [,{ }])
where:

• m is a matrix object of any type, data-length and shape

• s is an optional 4-byte integer scalar

• v is an optional 4-byte integer vector object with the same number
of components as there are rows in the matrix argument, m

SHEC returns a matrix object of the same type, data-length and shape
as the first argument, but shifted a number of places to the east, using
CYCLIC geometry: the value(s) shifted out on the eastern edge are
shifted in on the western edge. The number of places by which the
matrix is to be shifted is determined by the second argument.

If the second argument is scalar s, the number of places to be shifted is
the value of s taken modulo the number of columns in m.

If the second argument is vector v, each row of the matrix is shifted by
the number of places given by the value of the corresponding component
of v taken modulo the number of columns in m.

If you omit the second argument, the matrix is shifted one place to the
east.

No shift occurs if the matrix has just one column.

SHEP SHEP(m [,{ }]
As for SHEC except that the shift uses PLANE geometry. The value(s)
shifted in at the western edge will be zero(s), .FALSE.(s), or null(s)
depending on the type of m.

SHLC SHLC(v[,i])

where:

• v is a vector object of any type, data-length and shape

• i is an optional 4-byte integer scalar

SHLC returns a vector of the same type and data-length as the first
argument, but shifted a number of places to the left, using CYCLIC
geometry: the number of places by which the vector is to be shifted is
given by the second argument. The number of places shifted is the value
i taken modulo the size of v.

If you omit the second argument, the number of places shifted is one.

No shift occurs if the vector has just one component.
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SHLP SHLP(v[,iJ)

As for SHLC except that the shift uses PLANE geometry. The value(s)
shifted in at the right-hand end will be zero(s), .FALSE.(s) or null(s)
dependent on the type of v.

SHNC SHNC(m [,{ }])
where:

• m is a matrix object of any type, data-length and shape

• s is an optional 4-byte integer scalar

• v is an optional 4-byte integer vector object with the same number
of components as there are columns in the matrix argument, m

As for SHEC, except that the matrix is shifted to the north.

SHNP SHNP(m [, { ‘

As for SHNC except that the shift uses PLANE geometry.

SHRC SHRC(v[,i])

As for SHIC except that the vector is shifted to the right.

SHRP SHRP(v[,iJ)

As for SHRC except that the shift uses PLANE geometry.

SHSC SHSC(m [, {
As for SHNC except that the matrix is shifted to the south.

SHSP SHSP(m [, {
As for SHSC except that the shift uses PLANE geometry.

SHWC SHWC(m [,{
As for SHEC except that the matrix is shifted to the west.
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SHWP SHWP(m [, {
As for SHWC except that the shift uses PLANE geometry.

SIZE SIZE(object [, dim ])
where:

• object is a variable or array of mode vector or matrix and of any
type, shape or data-length

• dim is an optional 4 byte integer scalar in the range 1 to the number
of dimensions of object inclusive

With just one argument, object, SIZE returns the total number of com
ponents in object. If you specify dim, its value is taken to select a
dimension of object. In this case SIZE returns the extent of that di
mension. If dim is outside the range (1 to the number of dimensions
of object) then either an error will be detected, depending on the level
of error checking enabled (see DAP Series: Program Development), or
the result is undefined. If object is a scalar, an error will occur. The
function returns a 4-byte integer scalar value.

Thus, given the declaration:

INTEGER MA(*50,*100,3)

then:

SIZE(MA) gives the result 15000
SIZE(MA,1) gives the result 50
SIZE(MA,3) gives the result 3

Unlike other built-in functions SIZE can be used in declarations (see
sections 6.1.2, 10.4.5).
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SUM SUM({
v })

where:

• v is a vector object of type integer, real or logical, of any data-
length and shape

• m is a matrix object of type integer, real or logical, of any data-
length and shape

SUM returns a scalar object of type integer or real. The result is the sum
of the values of all the components of the argument. If the argument
is of type logical, its components are treated as integers of value of 1
or 0, depending on whether the components are .TRUE. or .FALSE.
respectively.

If the argument is of type real the result will be a real scalar of the
same data-length as the argument; if the argument is of type logical the
result is an integer scalar of data-length 4 bytes; if the argument is of
type integer the result is an integer scalar of data-length 4 bytes (for
arguments of data-length 4 bytes and less) or 8 bytes (for arguments of
data-length greater than 4 bytes).

SUMC SUMC(m)

where:

• m is a matrix object of type integer, real or logical, of any data-
length and shape

SUMC returns a vector object of type integer or real. The number of
components in the result vector is the same as the number of rows in m.

Each component of the vector result is the sum of the values of all
components in the corresponding row of m. If m is of type logical, its
components are treated as integers of value 1 or 0, depending on whether
they are .TRUE. or .FALSE. respectively.

If m is of type real the result is a real vector of the same data-length as
m. If m is of type logical the result is an integer vector of data-length 4
bytes; if m is of type integer the result is an integer vector of data-length
4 bytes (for arguments of data-length 4 bytes and less) or 8 bytes (for
arguments of data-length greater than 4 bytes).
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SUMR SUMR(m)

where:

• m is a matrix object of type integer, real or logical, of any data-
length and shape

SUMR returns a vector object of type integer or real. The number of
components in the result vector is the same as the number of columns
in m.

Each component of the vector result is the sum of the values of all
components in the corresponding column of m. If m is of type logical, its
components are treated as integers of value 1 or 0, depending on whether
they are .TRUE. or FALSE. respectively.

If m is of type real the result is a real vector of the same data-length as
m. If m is of type logical the result is an integer vector of data-length 4
bytes; if m is of type integer the result is an integer vector of data-length
4 bytes (for arguments of data-length 4 bytes and less) or 8 bytes (for
arguments of data-length greater than 4 bytes).

TRAN TRAN(m)

where:

• m is a matrix object of any type, data-length and shape

TRAN returns a matrix object of the same type and data-length, which
is the transpose of m. That is, a matrix of shape r rows and c columns
is transposed to a matrix of c rows and r columns with component (i,j)
in the result equal to component (j, i) in m for all values of i and j.

VEC VEC(s,r)

where:

• s is a scalar object of any type and data-length

• r is an 4-byte integer scalar

VEC returns a vector object of the same type and data-length as s and
the same size as r. Each component of the vector result is a copy of s.

(see also appendix B)

11.3 Computational error management procedures

FORTRAN-PLUS allows you to suppress interrupts caused by a certain class of run-time errors
called computational errors, and also to report the positions of vector or matrix components where
such errors have occurred. This is achieved through a number of built-in procedures summarised
here. Chapter 15 describes computational error management.
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NOM....EMSK CALL NOM...EMSK(1)

where:

• I is a logical variable of any shape and mode

The NOM..EMSK subroutine establishes 1 as the error mask for the
corresponding mode. I remains in force until either:

• another call of NOM_EMSK having an argument of the mode as

• the calling procedure returns (when the mask in force when the
calling procedure was entered is reinstated)

• a call of RST?MSKS is made

The significance of the error mask is described in Chapter 15.

RST..EMSKS CALL RST..EMSKS

The RST..EMSKS subroutine which takes no arguments, reinstates all
the error interrupt masks (ie. those for scalar, vector and matrix mode)
in force at entry to the current procedure (see chapter 15).

NOM..ERPT CALL NOM...ERPT(I)

where:

• I is a logical variable of any mode and shape

The NOM_ERPT subroutine establishes I as the error reporting mask
for the corresponding mode. I remains in force until either:

• another call of NOM...ERPT having an argument of the same
mode as I

• the calling procedure returns (when the mask in force when the
calling procedure was entered is reinstated)

• a call of RST.,.ERPTS is made

The significance of the error reporting mask is described in chapter 15.

RST..ERPTS CALL RSTERPTS

The RST..ERPTS subroutine which takes no arguments, reinstates all
the error reporting masks (ie. those for scalar, vector and matrix mode)
in force at entry to the current procedure (see chapter 15).
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GET...ERPT CALL GET...ERPT(ls)

where:

Is is a logical scalar

The GET_ERPT subroutine sets is to the value of the global error
status flag. The value of the flag is .TRUE. if any computational error
(regardless of the mode, shape or size of the operands) has occurred since
the last call of CL1LERPT (or since the beginning of the program if
CLR...ERPT has not been called). Otherwise it is .FALSE.

CLR.ERPT CALL CLRERPT

The CLR...ERPT subroutine clears the global error status flag (see
GETERPT).

SETSTATE SET.STATE(i)

where:

• i is a 4 byte integer scalar

The SET..STATE function sets the global error interrupt switch to the
value of its argument i, and thus specifies how subsequent computa
tional errors are to be handled. SET..STATE returns a 4 byte integer
scalar giving the value that the global error interrupt switch had when
SETSTATE was called.

A summary of the meaning of the switch values is given below. See
chapter 15 for full details.

State Error interrupt switch settings

0 Ignore arithmetic underfiow only

1 All errors interrupt

2 No errors interrupt, all reported

3 As 2 but underfiow not reported

4 As 2 but only underfiow reported

11.4 Mode conversion routines

11.4.1 Host — DAP conversion routines

Data areas in a DAP program are independent of those in an associated host program, so if there
is a need to share data between host and DAP, you have to pass the data explicitly between the
machines. You pass the data by calling the host routines DAPSEN and DAPREC (described in the
DAP Series: Program Development manual for the appropriate host computer) from within your
host program. In general, both the layout of data and its number representation differ between the

FORTRAN-PL US enhanced manl 02.01 111



112 Chapter 11: Built-in procedures

host and the DAP. Thus, after sending data to the DAP you normally need to convert it to DAP
format; similarly any DAP data that is to read and interpreted by the host needs to be converted
to host format. You perform these conversions by calling routines within the FORTRAN-PLUS
program. Host data is always transferred to or from a COMMON area in the DAP program. The
routines described below will normally only be meaningful if a conversion is being done to or from
the beginning of such a COMMON area. Any other use will demand a careful understanding of
how data is mapped in DAP memory (see appendix A).

The routines to do this conversion are described on the next two pages:

CONVHTOD CONVHTOD(variable[, n])

where:

• variable is a variable, array element name or array name; it thus
denotes a scalar, vector or matrix (or an array of one of these)

• n is an optional integer scalar

The CONVHTOD subroutine converts from host to DAP format. If
n is not specified, the routine will convert from host format as many
elements as there are in variable. The conversion is done in situ, that
is the host data is assumed to start at the same address as variable.
(Normally this will be the beginning of the COMMON area into which
host data has been sent).

If n is present, it specifies the number of elements (scalars, vectors or
matrices) of the mode of variable which are converted. Generally variable
will be an array and n will be used to limit the number of elements which
are converted. n can be greater than the number of elements of variable,
in which case it is assumed that further elements of the same mode follow
variable in consecutive memory locations. This will be the case if there
are declarations following in a COMMON area.

There are certain constraints on the alignment of scalars used as first
arguments to CONVHTOD; you are recommended to use as an argu
ment to CONVHTOD a scalar that is at the beginning of a COMMON
block. The advanced user may wish to consult the details of data map
ping in appendix A.

Examples

Assuming the declarations:

COMMON/HOST! VS(*50,3)
COMMON/IIOST1/A(*40,*40),B(*40,*40)
INTEGER VS
REAL A,B
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then:

CALL CONVHTOD(VS)
converts 150 integers in VS

CALL CONVHTOD(VS,1)
converts 50 integers in the first vector of VS

CALL CONVHTOD(A,2)
converts 3200 reals in the two matrices A and B

CONVDTOH CONVDTOH(variable[, nj)

where:

• variable is a variable, array element name or array name; it thus
denotes a scalar, vector or matrix (or array of one of these) with a
defined type, data-length and size

• n is an optional integer scalar

The CONVDTOH subroutine converts from DAP to host format. If a
is not specified, the routine will convert to host format as many elements
as there are in variable. The conversion is done in situ, that is the host
data will be left at the same address as variable. (Normally this will
be the beginning of the COMMON area from which host data will be
received by the host program).

If a is present, it specifies the number of elements (scalars, vectors or
matrices) of the mode of variable which are converted. Generally variable
will be an array and n will be used to limit the number of elements which
are converted. a can be greater than the number of elements of variable,
in which case it is assumed that further elements of the same mode follow
variable in consecutive memory locations. This will be the case if there
are declarations following in a COMMON area.

There are certain constraints on the alignment of scalars used as first
arguments to CONVDTOH; you are recommended to use as an argu
ment to CONVDTOH a scalar that is at the beginning of a COMMON
block. The advanced user may wish to consult the details of data map
ping in appendix A.
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In one case, there can be more space occupied by converted host data
than by the DAP data and care must be taken not to overwrite other
variables in memory. This case is where variable is a logical vector or
logical matrix. In host format each converted component will occupy
one 4 byte word. The easiest way to ensure there are no problems is to
declare a scalar array equivalanced to variable:

LOGICAL LV(*500)
INTEGER DUMMY(500)
EQUIVALENCE(LV, DUMMY)

DUMMY is declared with the same number of elements as LV, ensuring
that as much space as necessary is reserved for the host format data.

11.4.2 DAP to DAP mode conversion routine

A routine is provided to convert data between scalar mode and either vector or matrix mode.

CONVDTOD CONVDTOD(variable1 , variable2 [,n])

where:

• variable1 and variable2 are variables, array elements or array
names, of which one must be of scalar mode and the other must
be of vector or matrix mode (the parallel argument)

• n is an optional integer scalar

variable1 and variable2 must be of the same rank, type and datalength,
with corresponding values of each dimension equal. If n is absent, the
routine converts all the components of variable1 to the appropriate mode
in variable2.

If n is present, it specifies the number of vectors or matrices (according to
the mode of the parallel argument) which are to be converted. Generally
n will be less than or equal to the number of elements in the parallel
argument, but it can be more; in this case the routine assumes that
further objects of the appropriate mode follow variable1 and variable2
in consecutive memory locations.

variable1 and variable2 can be storage associated to each other, but
only if they have coincident starting addresses; there cannot be a partial
overlap.



11.4. Mode conversion routines 115

Examples

Assuming the declarations:

INTEGER*1 A(50,3), 3(*50,3)

REAL M(*50,*50), S(50,5o)

then:

CALL CONVDTOD(M,S)
converts the components of matrix M into the scalar array S

CALL CONVDTOD(A,B,2)
converts the first two columns of the scalar array A into the
first two vectors in B
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Chapter 12

COMMON blocks

COMMON storage allows storage to be shared between different program units, so that you can
pass values between program units by means other than argument association (see section 10.4.3).
Objects in COMMON storage are arranged in COMMON blocks, and the arrangement of data
within each COMMON block is under the control of the user. Each COMMON block is identified
by a name, the COMMON block name (see section 3.2.1).

COMMON blocks also provide a means whereby you can transmit values in the host program
to the DAP program, and vice versa. There is no argument association between a host program
unit and a DAP program unit, since the DAP program is entered from the host program at a
FORTRAN-PLUS ENTRY SUBROUTINE (see Chapter 14), which has no arguments.

If a particular program unit is to use a particular COMMON block, you have to specify in COM
MON statements in the program unit, the order in which objects from the program unit are to be
stored in the COMMON block.

12.1 COMMON blocks

Within a program unit you can declare that any of the variables or arrays in that program unit are
to be held in a particular area of storage — a COMMON block — which you refer to by a COMMON
block name. If you then declare a COMMON block of the same name in another DAP program
unit, both program units will refer to the same area of storage and will therefore share the values
held in that area, although you can use different names in each program unit to refer to the same
part of the COMMON block.

Any COMMON block that you refer to in a FORTRAN-PLUS program unit will be allocated
storage in array store.

You insert variables and arrays into a COMMON block by COMMON statements or by equivalenc
ing an object with an object already inserted into a COMMON block by a COMMON statement
(see chapter 13). There is no type or mode associated with a COMMON block, and it can contain
any number of objects of different types and modes.
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12.1.1 The COMMON statement

The COMMON statement has the form:

COMMON/name1 lust /name2/list2/ ... /name, /1ist,

where:

• each name1 is a COMMON block name, and can be the same as any variable or array name
in any program unit that references the COMMON block. The same COMMON block name
can appear more than once in COMMON statements in the same program unit, in which
case the variables and/or arrays in the associated list are added to the end of the specified
COMMON block in the order in which they appear. The only restriction on COMMON
block names is that they have to be distinct from all FORTRAN-PLUS program unit names

• each list has the form:

object1, object2, ... object

where each object2 is a variable name, array name or declarator (which can declare the mode
and dimensions of an array or a vector or matrix variable). An object that appears in the
dummy argument list of the subprogram in which the COMMON statement occurs cannot
appear in the list of names in that COMMON statement

The effect of the COMMON statement is to map the variable and arrays in each list onto the area
of storage identified by the COMMON block name. Items are mapped onto the COMMON block
in the order in which they appear in the list, and are stored contiguously, except where the need
to align variables on certain boundaries (see appendix A) forces a gap to be created (see section
13.1).

You can insert an object into a COMMON block by equivalencing it with an object already held
in the COMMON block.

For example:

INTEGER I, J, K, M, N, P, Q
LOGICAL L(30)
COMMON/BLK2/I, J, K, M, N, P, Q
EQUIVALENCE(N, L(2))

The COMMON block BLK2 now contains the integer scalars I, J, K, M, N, P, Q and the logical
array L, where the second element of L shares storage with N and other areas of store are shared.

An EQUIVALENCE statement can extend a COMMON block beyond its end, as in the above
example, but cannot extend it beyond its beginning.

Hence, the statement:

EQUIVALENCE(J ,L(3))

would have been illegal, as it would have attempted to extend the COMMON block beyond its
beginning, to ‘accommodate’ the first elements of L.

a.
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Although the example shows a storage association between data of types integer and logical,
because of the various ways in which different types and modes of data are mapped on the DAP,
you should generally avoid using COMMON blocks to associate storage between objects of different
types, modes or shapes (see section 13.2). However, if you decide to attempt it, you need to know
how data is mapped onto DAP memory (see appendix A).

12.1.2 Initialising COMMON blocks

You can initialise variables and arrays in COMMON blocks in type specification statements, DATA
statements, or by means of a block data subprogram.

You can initialise a COMMON block from any program unit that refers to it, but any particular
item in a COMMON block should only be initialised once.

Note that COMMON blocks with the same name in DAP and host program units are not associated
and variables initialised in one are not automatically initialised in the other.

12.2 Using COMMON blocks

COMMON blocks allow the sharing of storage between program units. You need to specify in each
program unit that uses a COMMON block, the individual objects in that block. A variable, array,
or component in one program unit is in COMMON association with a variable, array, or component
in another program unit if the positions you have assigned to each in the same COMMON block
coincide or overlap. Respective positions within the COMMON block, and not the names of the
objects concerned, entirely determine the association.

12.2.1 Block data subprograms

Although you can initialise objects in named COMMON blocks as described in section 12.1.2
and chapter 6, a particular class of program unit, the block data subprogram, is available for the
sole purpose of initialising named COMMON blocks. Block data subprograms are provided for
compatibility with other versions of FORTRAN in which they provide the only means of initialising
COMMON blocks.

A block data subprogram begins with a BLOCK DATA statement, which can take either of the
following forms:

BLOCK DATA name
BLOCKDATA name

where name is the name of the block data subprogram.

The BLOCK DATA statement is followed by the required COMMON, DIMENSION, EQUIVA
LENCE, IMPLICIT, PARAMETER and type specification statements, and the DATA statements
to perform the initialisations. The subprogram finishes with an END statement.
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12.2.2 Communicating between host and DAP programs

An important use of COMMON blocks in FORTRAN-PLUS is in passing values between a DAP
program and the host program. Named COMMON blocks are the only means by which such a
transfer can take place, since argument association is not possible between a host program and a
DAP program unit.

You can transfer data to be passed between a host and a DAP program into or out of COM
MON blocks in the latter. By making calls from the host program to the interface subroutines
DAPSEN and DAPREC, you can pass data explicitly between the host program and the DAP
program (or vice versa). For further information on the use of these interface subroutines see
DAP Series: Program Development.

Particular attention should be paid to the alignment of objects in COMMON blocks. When a host
program unit sends data to a FORTRAN-PLUS COMMON block, the objects transmitted are
held in array store in host storage mode (see chapter 13). Before the values of these objects can be
correctly interpreted by a FORTRAN-PLUS program unit you have to convert them into scalar,
vector or matrix storage mode, as appropriate, using the storage mode conversion subroutines
listed in section 11.4.1.
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Storage association

Two or more data objects (that is, variables, arrays or components) are said to be associated if
the storage locations to which they refer overlap completely or partially.

There are three circumstances under whIch data can become associated:

1. EQUIVALENCE association. You can associate two or more objects by putting them to
gether in an EQUIVALENCE statement (see section 13.1)

2. COMMON association. Objects occupying the same or overlapping areas in the same COM
MON block used in different program units are said to be in common association. COMMON
association is described in chapter 12

3. Argument association. Association takes place between the objects in the actual argument
list of a CALL statement or function reference and the corresponding items in the dummy
argument list of a subroutine or function subprogram. Argument association is described in
section 10.4

Otherwise all data objects occupy distinct storage locations.

13.1 The EQUIVALENCE statement

You can make two or more data objects share the same storage location by naming them in an
EQUIVALENCE statement of the form:

EQUIVALENCE (namelisti), (namelist2), ... (name1ist,)

where each namelist1 has the form:

name1,name2, ... flamej

and has to contain at least two entries. None of the names in any namelist can appear in the
dummy argument list of the subprogram in which the EQUIVALENCE statement appears.
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Each name3 can be the name of a scalar, vector, or matrix variable or array or array element of any
type and each variable or array named must have every dimension specified by an integer constant.

Selection of an array element from an array has to have basic integer constants in the non-parallel
subscript positions and null in any parallel subscript positions.

If any of these name3 objects are also in COMMON or are EQUIVALENCEd to an object in
COMMON, then further restrictions can apply:

• If you have EQUIVALENCEd an array (or variable) to an object declared in a COMMON
block then the array (or variable) is also held in that COMMON block. If the EQUIV
ALENCEd array (or variable) occupies more storage than the object then it will overlap
subsequent variables in the COMMON block, or extend the COMMON block beyond its
last entry or both. You cannot extend a COMMON block at the beginning by means of
equivalencing variables into that COMMON block

• You are not permitted to equivalence two objects whose relative storage positions have al
ready been fixed within the program unit; that is, objects that are already linked by a chain
of association and assignments to COMMON blocks

• You are not permitted to equivalence an object in a COMMON block to any object that is
already in a COMMON block

• You are not permitted to alter the alignment of an object in a COMMON block by the use
of EQUIVALENCE

13.2 Effect of EQUIVALENCE

The effect of EQUIVALENCE is to map each data object in namelistj onto array store in such
a way that, if the data object is an array, each element of the array, or, if the data object is a
variable or array element, each begins in the same word of storage, although the objects can be of
different sizes. The reasons for doing this are:

• To conserve storage

• To allow stored data to be interpreted in different ways

Subject to the above rules, you can equivalence objects of any type, data-length and mode to
reduce storage needed, although you have to take care not to overwrite needed data.

In order to use storage association to address data in different ways, you need to understand how
FORTRAN-PLUS data objects are stored in DAP memory. Storage mappings are given in detail
in chapter 17. However there are certain straightforward cases:

• Equivalencing two objects of identical mode, type, data-length and shape simply makes both
objects occupy exactly the same storage

• Equivalencing scalar variables results in coincidence at the least significant end unless one
object is less than 4 bytes and the other is greater, when coincidence is at the most significant
end
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• Arrays can be meaningfully equivalenced with each other or with vectors or matrices, provided
that the array elements and vectors or matrices are of identical mode, type, data-length and
shape. Ordering of the elements of an array is the normal FORTRAN ordering (the first
index varies most quickly)

For example:

INTEGER VI(*5,3), V(*5),VIA(*5,2,4)

EQUIVALENCE(VI( ,2) ,V)

EQUIVALENCE(VI,VIA( ,1,3))

The three vectors in VI are respectively associated with VIA(,1,3), VIA(,2,3) and VIA(,1,4) and
the vector V is the same as VIA(,2,3).

13.3 Definition of values

Within FORTRAN-PLUS all variables have type, data-length and mode, and, in the case of vector
or matrix variables, shape. The ways in which you can use variables are clearly defined and checked
in some aspects at compile-time, in other aspects during run-time. For example, in a subroutine or
function dummy argument list, you can declare a variable as type real, and there is a check at run-
time that the actual argument passed is also of type real. Because FORTRAN-PLUS data objects
can be dynamically-sized, checks for conformance (that is, the circumstances in which the shapes of
different variables should match) are made, in general, during run-time. There are options within
the compilation system and at run-time to disable some or all of the checks which are made by
default (see DAP Series: Program Development). Hence it is important that you understand the
language rules and the implications of not following the rules in certain circumstances.

FORTRAN-PLUS variables can be divided into four classes:

• Preset variables

• COMMON variables

• Local (on stack) variables

• Static non-preset variables (that is, EQUIVALENCEd but not in COMMON or preset)

Variables can acquire defined values in a number of ways:

• Preset variables are given initial values in DATA or type specification statements or COM
MON variables can be preset by means of a BLOCK DATA subprogram

• All variables can be given defined values by assignment during the execution of a procedure
or by association which could be argument association, COMMON association or EQUIVA
LENCE association

When the DAP program is loaded, space is allocated for preset variables and they are initialised
as specified in the program. Space allocated for COMMON variables which are not initialised
and static non-preset variables will contain random bit patterns. When a subroutine or function
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is entered its local variables are allocated space on a stack but are not initialised. Attempting
to select a variable before it has been initialised will lead to unpredictable results and often to a
run-time error.

A vector or matrix variable can contain a mixture of initialised and un-initialised components if
assignment to the variable is masked by an indexing construct. You are recommended to fully
initialise all vector and matrix variables before use.

The FORTRAN-PLUS EQUIVALENCE statement allow two or more variables to occupy the
same location in array store. It is also possible for one variable to occupy part of the storage
used by another variable. In such cases, assigning a value to one variable will alter the value to
EQUIVALENCEd variable(s) in a consistent (but not necessary meaningful) way.

For example, consider the code fragment:

INTEGER I
REAL R
EQUIVALENCE (I,R)
1=1

The value 1 is assigned to I, but R will now contain un-normalised real value (see section 4.3.2).
Any attempt to select R before re-assigning it will result in a run-time error.

A similar effect can occur through argument association if the type, length and mode of an actual
argument do not match exactly with those of the corresponding dummy argument.

Due to data alignment, some objects occupy more space than they actually use (see appendix A).
You should not make any assumptions about unused bits being defined when the variable is given
a value.

When data is transmitted from the host to the DAP, it arrives in host storage mode and you
have to convert to scalar, vector or matrix storage mode as appropriate, before referring to the
data from your FORTRAN-PLUS program (see section 11.4.1). Any attempt to refer to such data
before conversion will probably result in a run-time error. Similarly, once you have converted to
host storage mode, data which is to be sent to the host from the DAP, you should not refer to that
data again in FORTRAN-PLUS unless you re-convert it to DAP format.
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Chapter 14

Control flow statements

This chapter considers the sequence of execution of the various program units that constitute a
FORTRAN-PLUS program, the means by which control is passed to or from a program unit, the
sequence of execution within a program unit, and the FORTRAN-PLUS control statements with
which you can alter, suspend or terminate the sequence of execution.

The typographical conventions used in this chapter for describing the form and syntax of statements
are the same as the conventions used in chapter 2.

14.1 Start of execution

The host program is entered first, and, when it wants to use the DAP, has to explicitly load
the DAP object program into the DAP code store by calling the interface subroutine DAPCON.
When the subroutine DAPENT is called control passes to a specific FORTRAN-PLUS ENTRY
subroutine. Data transfer to the DAP is performed by a call to the interface subroutine DAPSEN
before control passes to the DAP, and data is received from the DAP by a call to DAPREC after
control has passed back to the host program. Use of the interface subroutines is described in
DAP Series: Program Development.

14.2 Execution within the DAP program

Normally control passes from an executable statement to the executable statement that follows
it physically in the sequence of statements making up a program unit. However, you can modify
this normal sequence by the control statements described in this chapter, which transfer control
conditionally or unconditionally to labelled statements within the same program unit or to the
first executable statement in another program unit.

When a CALL statement or any statement involving the evaluation of a call to a FORTRAN
PLUS function is executed, control passes to the first executable statement of either the called
FORTRAN-PLUS subroutine or function. Control proceeds through this program unit as normal
until a RETURN statement is executed, at which point control passes back to the executable
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statement following to the CALL statement or back to the executable statement containing the
function call in the invoking program unit.

Control returns from the DAP program to the host program when a RETURN statement is exe
cuted in the procedure directly called by DAPENT in the host program. The statement following
the call to DAPENT in the host program is then executed. Control proceeds from this point
through the host program until either the host program terminates, or another call to an interface
subroutine is executed.

The STOP statement causes control to be passed back to the host. The PAUSE statement tem
porarily suspends execution of the program while control passes to the program state analysis
mode (PSAM). The TRACE statement passes control temporarily to the host for the output from
the statement on the host.

If at any time during execution of the DAP program a STOP statement is executed, the execu
tion of the DAP program and the associated host program is terminated. For the effect of the
PAUSE statement, see DAP Series: Program Development. The TRACE statement is described
in Chapter 15.

The CONTINUE statement is a dummy executable statement; it can appear wherever an exe
cutable statement can appear but it has no effect.

14.2.1 End of a program unit

The last executable statement of a program unit should be a GO TO, computed GO TO, arithmetic
IF, RETURN or STOP statement.

If the last executable statement of a program unit is a computed GO TO statement or arithmetic
IF statement, then it must always transfer control to a labelled statement elsewhere in the program
unit.

14.3 Unconditional transfers of control

You can unconditionally transfer control to a point within a different DAP program unit in one of
two ways:

1. Through a CALL statement referring to a subroutine subprogram in the DAP program

2. Through a function call referring to a function subprogram in the DAP program

Note that a CALL statement can refer to the same subprogram in which that CALL statement
occurs, in which case control remains within the same program unit, but in a new invocation.
Entry to and exit from procedures are described in chapter 10.

You can unconditionally transfer control to a labelled executable statement in the same program
unit using the unconditional GO TO statement, which has either of the forms:

GO TO label
GOTO label
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where:

label is a reference to the label of an executable statement in the same program unit; control
transfers to this statement on execution of the GO TO statement.

You must label the executable statement, if any, following the GO TO statement, since otherwise
it could never be executed.

You can label a GO TO statement, although you cannot make its label the one referred to within
the statement. The label given in the statement cannot be within the range of a DO loop (see
section 14.3), unless the GO TO statement is within the range of the same DO loop.

You can terminate the execution of the entire FORTRAN-PLUS program and its associated host
program from within a DAP program unit by using the STOP statement, or suspend execution by
using the PAUSE statement:

• The STOP statement has the form:

STOP basic-integer-constant

where:

basic-integer-constant is in the range 0 to 99999

When STOP is executed it produces an error message including the constant and then
abandons the DAP and host programs.

• The PAUSE statement has the form:

PAUSE basic-integer-constant

where:

basic-integer-constant is in the range 0 to 99999

When a PAUSE statement is executed the DAP program is suspended and program state
analysis mode (PSAM) is entered. Depending on the run-time options you have selected, the
DAP program can be restarted at the statement after the PAUSE. Therefore, you should
not make the PAUSE statement the last executable statement in a subprogram if you intend
to restart the program (see DAP Series: Program Development).

14.4 Conditional transfers of control

A number of control statements are available in which you can make the occurrence or the desti
nation of a transfer of control dependent on some condition.

14.4.1 The computed GO TO statement

• The computed GO TO statement has either of the forms:

GO TO (label1, label2, ... label), arithmetic-expression
GOTO (label1, label2, ... label,,), arithmetic-expression
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where:

— each labe1 is a reference to the label of an executable statement in the same program
unit, or is the digit 0, or is null (that is, only the associated comma appears). The labe1
need not be distinct

— arithmetic expression produces an integer scalar object which is converted to 4 bytes
if it is not already that data-length. The comma preceding arithmetic expression is
optional

When a computed GO TO statement is executed, the integer value of arithmetic expression,
say k is calculated. Control then transfers to the executable statement labelled by labelk. If
k is not in the range 1 to n, or if labelk is 0 or null, control passes to the next executable
statement. Consequently, if the computed GO TO statement is the last executable statement
in a program unit, labelk should not be null or zero — if labelk is null or zero, the effects are
undefined.

If you have labelled the GO TO statement, you cannot refer to its label within the same
statement.

None of the labels in the label list can be in the range of a DO loop (see section 14.5), unless
the GO TO statement is within the range of the same DO loop.

14.4.2 The block IF construct

• The block IF construct has the form:

IF (logical-expressioni) THEN
IF-block

ELSE IF (logical-expression2) THEN
ELSE IF-block

ELSE
ELSE-block

END IF

where:

— (logical-expression1) and (logical-expression2) produce logical scalar results

— IF-block, ELSE IF-block and ELSE-block consist of zero or more executable statements

— there can be zero or one ELSE statement with a corresponding ELSE-block which is
valid only after the IF statement and before the END IF statement

— there can be zero or more ELSE IF statements each with a corresponding ELSE IF-
block. They have to appear after the IF statement and before the ELSE statement (if
it appears) and before the END IF statement

— the end of the entire block IF construct is marked by an END IF statement

— ELSE IF and END IF can each be written without the separating space

When a block IF construct is executed, if logical-expression1 is .TRUE. then the statements
within the IF-block are executed and then control passes to the END IF statement. If logical
expression; is .FALSE. and there are one or more ELSE IF statements present then their
logical expressions are evaluated in turn. If a logical expression is .TRUE. then evaluation of
the expressions ceases, the statements within the corresponding ELSE IF-block are executed
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and control passes to the END IF statement. If there are no ELSE IF statements or their
logical expressions are all .FALSE. then control passes to the ELSE-block, or if there is no
such block, to the END If statement.

You can nest block IF constructs by enclosing them within the IF-block, ELSE IF-block or
ELSE-block of another block IF construct.

You have to observe the following restrictions on transferring control:

— If an IF-block, ELSE-block or ELSE IF-block contains a DO statement the the DO-loop
must be wholly contained within the IF-block, ELSE-block or ELSE IF-block

— If a DO loop contains a block If statement the corresponding END IF statement must
also be contained in the same DO loop

— Control cannot be transferred by using GOTO, computed GOTO or arithmetic IF state
ments:

* into an IF-block, ELSE-block or ELSE IF-block from outside that IF-block, ELSE-
block or ELSE IF-block

* to an END IF, an ELSE or an ELSE IF statement

14.4.3 The arithmetic and logical IF statements

• The arithmetic IF statement has the form:

IF (arithmetic-expression) label1, label2, label3

where:

— arithmetic-expression produces an integer or real scalar object
— label1, label2 and label3 are references to labels of executable statements in the same

program unit, or zero, or null (that is, only the associated comma appears); they need
not be distinct

When the IF statement is executed, arithmetic-expression is evaluated. Control then transfers
to the executable statement labelled by label1 label2, or label3, depending on whether the
value is less than, equal to, or greater than zero respectively. If the referenced label is zero
or null control passes to the next executable statement.
If you have labelled the IF statement, you cannot refer to its label within the same IF
statement. None of the labels in the IF statement can be in the range of a DO loop (see
section 14.5), unless the IF statement is in the range of the same DO loop.
You are not recommended to test real objects against zero, due to the potential inaccuracy
inherent in the representation of real values.

• The logical IF statement has the form:

IF (logical-expression) executable-statement

where:

— logical-expression produces a scalar object
— executable-statement is any executable statement other than a DO statement or another

logical IF statement
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When a logical IF statement is executed, logical-expression is evaluated. If the value is
.TRUE., executable-statement is executed, otherwise control passes to the next executable
statement.

If executable-statement is an unconditional GO TO statement, a computed GO TO state
ment, or an arithmetic IF statement, the logical IF statement becomes a conditional transfer
of control, dependent on the value of logical-expression (and also on the value of the arith
metic expression in the computed GO TO or arithmetic IF statement).

14.5 Loops

A loop is a series of executable statements that are to be executed a number of times in succession.
A loop is initiated by a DO statement, which specifies the extent of the loop and the number of
times the ioop is to be executed. The last statement in the loop is the terminal statement (see
section 14.5.1.1); the range of the ioop is the sequence of executable statements from the statement
following the DO statement up to and including the terminal statement. If all the statements in
the range of the ioop are executed the number of times specified by the control parameters, the
DO statement is said to be satisfied; alternatively, you can transfer control out of the range of the
loop before the DO statement is satisfied,

14.5.1 The DO statement

• The DO statement has the form:

DO label name = start, terminator[, increment]

where:

— label is the label of the terminal statement of the DO statement (see section 14.5.1.1)

— name is the name of the control variable of the DO statement (see section 14.5.1.2)

— start, terminator, and increment are the control parameters of the DO statement (see
section 14.5.1.3). increment, and its preceding comma, can be omitted, in which case
an increment of 1 is assumed

14.5.1.1 The terminal statement

The terminal statement is the last executable statement in the range of a DO statement, and is
identified by the label in the DO statement. label has to be the label of an executable state
ment in the same program unit that physically follows the DO statement, though not necessarily
immediately. The terminal statement cannot be any of the following statements:

GO TO (unconditional or computed)
RETURN
STOP
DO
CALL
Block IF
ELSE IF
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Arithmetic IF
Logical IF containing any of the above statements

To overcome this restriction you can use a CONTINUE statement (see section 14.5.4) as the
terminal statement.

14.5.1.2 The control variable

The control variable, given by name, controls the number of times the loop is executed. name has
to be the name of an integer scalar variable of data-length 4 bytes.

lThen control reaches a DO statement, the control variable is set to the value of the control
parameter start, and any previous value of name is lost. If the value of the control variable is
within the range start to terminator inclusive, the statement physically following the DO statement
is then executed, and control passes through the range of the DO statement normally. When the
terminal statement has been executed, the value of the control parameter increment is added to
value of the control variable. If the value of the control variable is now outside the range start to
terminator, the DO statement is satisfied and control passes to the statement physically following
the terminal statement. Thus a DO loop is executed at least once before being satisfied.

When a DO statement is satisfied, the control variable becomes undefined and you should not
reference it outside the loop before redefining it. If you transfer control out of the range of a DO
statement before it is satisfied, the control variable retains its current value.

You can reference the control variable within the range of the DO statement but you should not
redefine it within that range; if the control variable is redefined within that range, then the effects
are unpredictable.

14.5.1.3 The control parameters

The control parameters start, terminator, and increment control the number of times the loop is
executed:

1. start is the value assigned to the control variable on initial entry to the DO loop

2. terminator is the maximum or minimum value (depending on whether increment is positive
or negative) that the control variable can have before the DO statement is satisfied

3. increment is the value which is added to the control variable at the end of each execution
of the loop, increment can be positive or negative but cannot be zero. increment and its
preceding comma can be omitted, in which case its value is assumed to be 1

Each of start, terminator, and increment can be an arithmetic expression that produces an integer
or real scalar result; real values are converted to integers before use. The data-lengths of the values
will be converted to 4 bytes if they are not already that data-length.

The control parameters are evaluated once only, when the DO statement itself is executed; they
are not re-evaluated unless the DO statement is executed again.
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14.5.2 Nested DO loops

The statements in the range of a DO statement can include other DO statements; the DO loops
are then said to be nested. In a system of nested DO loops the range of any inner DO statement

has to be completely contained in the range of any outer DO statements; however, DO statements

can share the same terminal statement. If two or more DO statements share the same terminal
statement, the control variable for any outer DO statement is not increased until all inner DO
statements have been satisfied for the current value of the outer control variable.

Thus, for example:

00 1 3 = 1,23
DO 1 I = 1,27

1 A(I,J) = 0.0

will zeroise the array A in the order A(1,1) ... A(27,1), A(1,2) ... A(27,2) and so on.

14.5.3 Transfer of control in DO loops

Any transfer of control can occur within the range of a DO statement with the following exception:

if a terminal statement terminates more than one DO loop, you can only transfer control to it from
the range of the innermost DO statement. You can insert a CONTINUE statement (see section
14.5.4) as a terminal statement to get round this restriction.

Transfer of control from within the range of a DO statement to any executable statement outside
the range is valid provided the statement to which control transfers is not within the range of any
other DO statement. You can transfer control to an outer DO loop from an inner DO loop and the
control variable will retain its current value. A DO statement does not form part of its own range;
therefore, if control transfers from within the range of a DO statement to the DO statement itself,
the entire ioop will be restarted with the control variable set to the value of the control parameter
start.

You cannot transfer control from outside the range of a DO statement to within the range of that
statement,

14.5.4 Use of the CONTINUE statement

The CONTINUE statement is a dummy executable statement; it can appear wherever any other
executable statement can appear, but it has no effect. Control simply passes to the next executable
statement in the execution sequence. The CONTINUE statement is most commonly used as the
terminal statement of a DO loop.

• The CONTINUE statement has the form:

CONTINUE
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You must label the CONTINUE statement if you use it as the terminal statement of a DO loop.

You can use the CONTINUE statement if the terminal statement of a DO loop would otherwise
be one that does not always have to be executed; for example:

00 1 I = 1 10
IF (A(I).EQ.0) GO TO 2
B = B*ACI)
GO TO 1

2 C = C+1
1 CONTINUE

You can also use the CONTINUE statement to overcome the restrictions on transfer of control in
nested DO loops (see section 14.5.3); for example:

00 1 I = 1, 100
IF (A(1,I).EQ.0) GO TO 1
00 2 3 = 1, 100

2 X = X+A(J,I)
1 CONTINUE

You can also use the CONTINUE statement if the preceding statement is one of the statements
that cannot appear as the terminal statement of a DO loop (see section 14.5.1.1); for example:

00 1 I = 1, 100
IF (A(I).LT.o) GO TO 2

1 CONTINUE

2 CONTINUE
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Chapter 15

TRACE and computational error
management

15.1 The TRACE statement

Although FORTRkN-PLUS has no formal input/output facilities the TRACE statement provides
a means whereby you can specify variables so that their values can be output at run-time. You
would normally use this facility only for diagnostic purposes; it is not recommended that you
use TRACE as a standard output facility since, unlike host input/output facilities, it offers little
flexibility of layout.

The TRACE statement has the form:

TRACE level (namei, name2, ... names)

where:

• level is a basic integer constant in the range 1 to 5

• each names is a variable or array name (expressions cannot be used in this context)

When compiling FORTRAN-PLUS procedures, you can specify a TRACE option with a value in
the range 0 to 5. The effect of this option is that any TRACE statement in the procedure with a
level greater than the value specified will not be compiled, and will therefore not be executed when
the program is run. You can control the output of compiled TRACE statements for a particular
run by using the options detailed in DAP Series: Program Development.

When a TRACE statement is executed, the value of each variable or array in the list will be output
on the host. Variables and arrays specified in TRACE statements can be of scalar, vector, or matrix
mode. All components of a vector, matrix or array will be output. It is not possible to specify a
subset of values to be displayed. Within a function, the variable represented by the function name
cannot be TRACEd. Execution then continues at the statement following the TRACE statement.
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15.2 Computational error management

Operations on data objects in FORTRAN-PLUS are classified as scalar, vector or matrix operations
depending on the mode of the object which the operation produces.

Among the errors that can occur during the execution of FORTRAN-PLUS procedures is a class
of errors called computational errors. A computational error occurs during the execution of an
operation as a result of an invalid combination of an arithmetic or mathematical operation and its
operands; for example, division by zero or when a mathematical operation cannot be completed
(say, due to an arithmetic overflow during evaluation of an expression).

Normally, the occurrence of a computational error during the execution of the program will cause
control to be passed to the run-time diagnostics system which will output an error message and
diagnostic information. The exact response will depend on the run-time options you have selected.
(See DAP Series: Program Development).

However FORTRAN-PLUS provides facilities that enable you to:

• Suppress interrupts due to computational errors so that the program will continue executing.
In the case of vector and matrix operations you can specify that computational error inter
rupts are suppressed when errors are detected as a result of operations on certain components
and that they are not suppressed when they are detected in other components

• Report through a logical variable the position of components in which computational errors
have been detected (in the case of scalar operations since there is only one value involved,
this is merely an indication that a computational error has been detected). A computational
error is reported irrespective of whether or not the error interrupt is suppressed unless the
value of the global error interrupt switch (see section 15.2.1.1) is greater than 2

• Suppress the detection of overflow errors by a compile-time option which, if selected, means
that such errors will not necessarily be detected. This option is provided for when you need
to bypass error detection in the interests of peak performance (see DAP Series: Program De
velopmen t)

15.2.1 Suppression of computational error interrupts

Two factors control the handling of computational errors during the execution of a FORTRAN-
PLUS program unit:

1. A global error interrupt switch, which is a system variable whose value specifies whether,
and for which errors, interrupts are to occur

2. Error interruption masks. These are logical variables which you nominate. Their components
indicate whether or not computational errors in the corresponding component positions of a
data object are to cause interrupts (depending also on the state of the global error interrupt
switch)
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15.2.1.1 Global error interrupt switch

The global error interrupt switch is a system variable whose value (referred to as its state) de
termines how computational errors are dealt with during the execution of a FORTRAN-PLUS
program. You cannot access this variable in the way that you access variables declared within
the program but you can reference or redefine its state using the built-in integer scalar function
SETSTATE. This function takes a single integer scalar argument, which is the value to which
the state of the switch will be set. The switch can have the following states:

State Meaning

0 All arithmetic underfiow errors are ignored; all other detected computational errors
cause
interrupts, subject to any error interruption masks in use (see section 15.2.1.2)

1 All detected computational errors cause interrupts, subject to any error interrup
tion masks in use

2 No computational errors cause interrupts; error interruption masks are ignored;
all detected computational errors are reported, provided the user has specified
appropriate error reporting variable(s) (see section 15.2.2)

3 As state 2, except that arithmetic underfiow errors are not reported

4 As state 2, except that only arithmetic underfiow errors are reported

The integer scalar object returned by SETSTATE is the state of the switch prior to its alteration
by this reference to SETSTATE. Therefore, if the state of the switch is zero, the statement:

I = SETSTATE (2)

alters the state of the switch to 2 and assigns the value zero to the variable I.

Each time the DAP program is entered the state of the global error interrupt switch is set to zero.

15.2.1.2 Error interrupt masks

If the state of the global error interrupt switch is zero or one (that is, at least some interrupts
allowed), the effect of computational errors is governed by error interrupt masks. Each mode
- scalar, vector or matrix - can have one associated error interrupt mask which governs what
happens when errors occur in operations on that mode of object. The masks are logical variables
in the program. In the case of vectors and matrices, the mask has a certain shape and will affect
operations only on objects of that shape.

If a computational error is detected in a scalar operation and is not turned off by the global error
interrupt switch, that error causes an interrupt unless the scalar interrupt mask is .FALSE. in which
case it is suppressed and execution continues. A computational error detected on an element in a
matrix operation causes an interrupt unless the matrix error interrupt mask is of the same shape
as the matrix being operated on and the value of the corresponding element in it is .FALSE. The
same principle applies to vector operations and the vector mask.
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You nominate error interrupt masks by:

CALL NOM.EMSK(L)

where L is a logical scalar, vector or matrix.

L will become the current mask for that mode. When a program begins, there are no masks
established. When a procedure exits, the mask for each mode reverts to what it was in the calling
environment. Within a procedure, L will remain established until a further call of the NOM.EMSK
subroutine or until:

CALL RST...EMSKS

This subroutine, which has no arguments, re-establishes those error masks which were in force at
entry to the current procedure.

15.2.2 Reporting Computational Errors

Independently of any interrupt action or suppression, you can set variables so that detected com
putational errors will be reported for later examination:

• There is a global error status flag which is set to .TRUE. whenever a computational error
is detected (regardless of the mode and shape of the operands causing the error). You can
examine the global flag by:

CALL GET...ERPT(L)

which sets the logical scalar L to the value of the global error flag. The latter is reset to
.TRUE. by:

CALL CLR..ERPT

• In an exactly similar way to error interrupt masks, you can establish one error reporting
mask for each mode — scalar, vector or matrix. Whenever a computational error is detected
involving a scalar or an element of a vector or matrix, if a mask (of the same shape) exists
for an operand of that mode, the corresponding element of the mask is set to .TRUE.

The subroutine

CALL NOMERPT(L)

where L is a logical scalar, vector or matrix, establishes L as the current error reporting
mask for operands of that mode. This remains in place until the current procedure exits
(when the previous set of masks which were in force at entry are established), a further call
of NOM...ERPT, or:

CALL RST..ERPTS

This subroutine which has no arguments, re-establishes the error masks to those in force
when the current procedure was entered
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15.2.3 Computational errors under activity control

In general, an indexed assignment (see section 9.2) has the form:

name (indexing expression 1, ... indexing expressionn) = expression

where:

• name is the name of a vector or matrix variable or array

• each indexing expressionj is one of the indexing expressions described in chapter 7 appropriate
to the left-hand side of an assignment

• expression is an expression of appropriate type and mode

The effect of the assignment is to assign to the components of name, as selected by the indexing
expressions, the values of the corresponding components of expression, leaving the unselected
components of name unchanged. The evaluation of expression is said to be performed under
activity control.

When a vector or matrix operation is performed under activity control, computational errors in
component positions that are not to take part in the assignment have no effect; that is, they are
not tested against the appropriate error interruption mask or reported in the appropriate error
reporting variable. Note that only the last operation in the evaluation of expression is regarded as
being under activity control.

for example, in the assignment:

RES (LM) = A + B * C

only the addition is performed under activity control implied by the matrix LM; computational
errors in the multiplication are subject to the facilities described in sections 15.2.1 and 15.2.2.

Note that the last operation might not always be explicit: it could be an implicit type, data-length
or mode conversion inserted automatically by the compiler; in this case, it is only the implicit
operation which is done under activity control.
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Appendix A

Mapping FORTRAN-PLUS data
on the DAP

You do not normally need to be aware of the ways in which data is mapped onto the array store
of the DAP. However there are occasions when you can take advantage of a knowledge of the
mappings. This appendix describes how FORTRAN-PLUS data is mapped and summarises some
features of the language which relate specifically to DAP array storage. There is also a brief
discussion of an example of how you can exploit the knowledge of such mappings.

The mappings described cannot be guaranteed to remain unchanged for future DAP models and
use of features described in this appendix is likely to make programs non-portable.

For this reason you are recommended NOT to make your programs rely on the mapping of data
unless there are exceptional circumstances for doing so.

The edge size of the DAP is referred to in this appendix as ES.

A.1 DAP array memory

The processors of the DAP are arranged in a square matrix, 32 x 32 in the case of the DAP 500
series, 64 x 64 for the DAP 600; that is, ES is 32 for the DAP 500, 64 for the DAP 600. The DAP
array memory (or array store) is the total of the local memories for all the processor elements.

The PE matrix and array store are illustrated in figure A.1 on the next page. Each array store plane
is a matrix of bits; each bit in the plane is associated with the corresponding PE in the matrix
of PEs; all bits in a plane have the same plane address. You can therefore consider each plane as
a slice of memory parallel to the matrix of PEs it serves. As shown in figure A.1, a store plane
consists of rows and columns, and the directions North, South, East and West are associated with
the edges of the plane.
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A.2 Storage modes

As explained in the previous section, you can regard the DAP array store as a succession of bit-
planes. The DAP word is 4 bytes and within a bit-plane, there is a conventional ordering for 4 byte
words. On the DAP 500, each row is a word (most significant end to the west) with word zero
being at the North edge. There are thus 32 words in a bit-plane. On the DAP 600, there are two
words per row (see figure A.2 on the next page), giving 128 words in a bit-plane.

The ordering of 4 byte words within a bit-plane, combined with the ordering of successive planes,
defines what is referred to as the ‘standard’ word ordering within DAP array store.

A.2.1 Scalars

Scalar INTEGERs and REALs with a data-length not greater than 4 bytes are stored one per word,
as are LOGICALS, even though only one bit is used to represent a LOGICAL scalar. Where data-
length is less than 4 bytes, they are stored at the less significant end of the word, any remaining bits
being undefined. Scalar INTEGERs and REALs greater than 4 bytes are stored in two contiguous
words (there is no requirement to start on an even boundary).

Scalar arrays of these items will be stored in successive words using standard word ordering.
Ordering of the elements of a scalar array of two or more dimensions is the normal FORTRAN
ordering (the first index varies most quickly). This ordering is sometimes referred to as column-
major ordering.

Storage of scalars is called horizontal because the bits of each scalar are stored across a DAP
bit-plane.

A.2.2 Vertical storage

To facilitate massively parallel operations, vectors and matrices are stored vertically: this means
that the bits of each component are stored at the same position in successive bit-planes (see
figure A.3 on the next page). Therefore the bits of each component are within the memory of the
same processing element (PE). A variable with data-length p bits will thus straddle p bit-planes
(components of logical vectors or matrices, although only one bit is used in their representation,
are each stored in 4 bytes (32 bits); that is, as if logical vectors or matrices had data-lengths of 4
bytes). A vector or matrix begins on a plane boundary — its first element will be in the top left
hand corner, i.e. within the memory of PE with coordinates (1,1). A vector or matrix of elements
with data-length p bits will always occupy one or more sets of p bit-planes. Any unused space
in these planes (due to the size not matching with the DAP edge size — see figure A.4) will be
undefined.

Note that the host — DAP conversion routines (see section 11.4.1) need any scalar argument to be
plane-aligned, which you can achieve by placing a scalar argument at the beginning of a COMMON
area, or equivalencing a scalar argument to a vector or matrix.
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A.2.3 Vectors

The components of a vector with data-length p bits are stored within each set of p bit-planes in
row major order (see figure A.4 on the next page). Thus if there are not more than ESx ES
elements, the vector will fit into a single set of p bit-planes. Vectors larger than this will occupy
successive sets of bit-planes.

For example:

INTEGER*1 VECT(*2000)

On a DAP 500 series this would occupy 16 bit-planes. The first 1024 elements would fill the first
8 planes (since the elements are 1 byte integers), the remaining elements would fill all but the last
row and a half (48 elements) of each of the next set of 8 planes. On a DAP 600 series, VECT
would occupy only the first 31 and a quarter rows of a single set of 8 bit-planes.

A.2.4 Matrices

The mapping of a matrix on to DAP array memory is known as sheet mapping. The matrix is
conceptually overlaid by a square grid of sheets, each of size ESxES. The example in figure A.5
assumes a declaration:

REAL RMAT(*140,*112)

on a 32 x 32 DAP. Since, in this example, neither the number of rows nor the number of columns
is a multiple of the DAP edge size, there is unused space in the last row of sheets and the last
column of sheets.

Taking the sheets in column major order (as numbered in figure A.5) each is mapped on successive
sets of p bit-planes (p is again the data-length of the array elements — 4 bytes ü this case since
RMAT is REAL). Thus the first 32 bit-planes contain RMAT(I,J), I = 1 ... 32, 3 1 ... 32. The
next 32 planes contain RMAT(I,J), I = 33 ... 64, J=1 ... 32; that is, the sheet numbered 2 in
figure A.5. And so on.

Within each sheet, the elements of the array are arranged in the obvious way with array rows
corresponding to DAP rows and array columns corresponding to DAP columns.

The matrix RMAT thus occupies 20 sets of 32 bit-planes of which the 5th, 10th and 15 to 20th
sets are not full.
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A.2.5 Matrix and vector arrays

Matrix or vector elements within an array are stored using the normal FORTRAN ordering — for
MATS declared in the following code:

INTEGER*1 VECT(*1024,10)
REAL MATS(*140,*112,3,5)

the ordering would be MATS(,,1,1), MATS(,,2,1) etc. Each matrix element is mapped on to array
store exactly as described in A.2.3 or A.2.4. For example since each matrix element occupies 20 x
32 bit-planes (as shown in A.2.4), MATS in total will occupy 15 times this, i.e. 9600 bit-planes.

Note that this mapping means that you can equivalence vectors or matrices which have sides which
are multiples of ES to sets of DAP-size objects.

For example, you can equivalence:

INTEGER A(*64,*96)

(on a 32 x 32 DAP) to:

INTEGER DAPA(*32,*32,3,2)

This equivalence works because there are no unused gaps in the mapping of the arrays and each of
the sheets overlaid onto A corresponds exactly to one of the matrices in DAPA. Equivalent items
are, for example:

A(1,1) corresponds to DAPA(1,1,1,1)
A(32,32) corresponds to DAPA(32,32, 1,1)
A(33,32) corresponds to DAPA(1,1,2,1)
A(33,33) corresponds to DAPA(1,1,2,2)

Equivalencing under these conditions is sometimes exploited in high-performance, DAP-size de
pendent programming.

A.2.6 Host storage mode

Data received from the host program into a FORTRAN-PLUS COMMON block is normally in
host storage mode. In host storage mode array memory is regarded as consecutive 4 byte words;
that is, 4 byte integer, real and logical objects are held one per DAP word, 2 byte integer objects
are held two per DAP word and 1 byte character objects are held four per DAP word. 8 byte real
objects are held in two consecutive DAP words.

Before your FORTRAN-PLUS program unit can correctly interpret the data received from the
host, you have to convert the data from host storage mode into the appropriate FORTRAN-PLUS
storage mode, using the storage mode conversion subroutines described in section 11.4.1.
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Superseded features of
FORTRAN-PLUS

This appendix refers to the superseded features of the FORTRAN-PLUS language which depend
on the parallel dimensions of data objects being ‘edge-size’. These superseded features, which
are still available for the sake of compatibility with earlier versions of the language, include the
concept of treating a matrix as a )ong vector, the former syntax for declaration of parallel data
objects, various built-in procedures, host — DAP data conversion routines and computational error
management facilities.

Constrained parallel data objects can only have ‘edge-size’ parallel dimension(s). Parallel data
objects which can have arbitrarily-sized parallel dimension(s) are said to be unconstrained. The
superseded features of the language can only work with constrained parallel data objects.

You can work with a mixture of old and new language features — the current compilation system
will recognise both — but you are not recommended to do so.

The edge size of the DAP is referred to in this appendix as ES.

There have also been some changes in terminology:

• The length of a data object is now referred to as its data-length

• In indexing, the terms referencing and naming have been replaced by selecting and updating
respectively (see section 6.3)

The typographical conventions used in this appendix are the same as the conventions used in earlier
chapters of this publication.

B.1 Declarations

Previously, for data objects and indexing constructs, parallel dimensions, which occupy just the
first (for vectors or vector arrays) or the first and second (for matrices and matrix arrays) subscript
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positions, were specified with null subscripts, that is, just commas separating the subscript positions
where appropriate.

For example:

DIMENSION C( ),D(,)
INTEGER A(,)
LOGICAL FLAGS()
REAL X( ,4),Y( , ,7)

would have declared in a DAP 500 program:

1. A 32 component real vector C and a 32 x 32 real matrix D

2. A 32 x 32 integer matrix A

3. A 32 component logical vector FLAGS

4. An array X of 4 vectors, each with 32 components and an array Y of 7 matrices, each 32 x
32 in size

B.2 Long vectors

A long vector is an ES x ES matrix viewed with its components arranged in a one-dimensional
set in column-major order. Various built-in procedures and indexing operations, in particular some
of the shift operations, treated ES x ES matrices as long vectors.

B.3 Built-in procedures

Some built-in procedures, listed in section B,3.1, have been entirely supplanted by new built-
in procedures for unconstrained data objects; other built-in procedures have a revised syntax
for operations with unconstrained objects. These latter procedures and their former syntax are
listed in section B.3.2. Built-in procedures which are the shift functions which formerly treated a
constrained matrix argument as a long vector are listed in section B.3.3.

B.3.1 Supplanted procedures

• ELL(i)

where:

— i is a 4 byte integer scalar

The ELL function returns a logical ES x ES matrix whose i component (viewed in a
long vector order) is .TRUE.; all other components are .FALSE.. If I is not in the range 1 to
ES, all components of the result are .FALSE.

S
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• ELSL(i,j)

where:

— i and j are 4 byte integers

The ELSL function returns a logical ES x ES matrix. Components of the result matrix
(viewed in long vector order) in the range i to j are set .TRUE.; all other components are
.FALSE.. If either i or j are not in the range 1 to ES2 or i is greater than j, then all
components of the result matrix are .FALSE.

• CALL SHORT.INDEX(v)

where:

— v is a 4-byte integer vector with ES components

On return from the SHORT_ INDEX subroutine, the component of v contains the value
I where i is in the range 1 to ES inclusive; that is, v contains the numbers 1, 2, 3 ES.

• CALL LONGINDEX(m)

where:

— m is a 4-byte integer matrix of shape ES x ES

On return from the LONG_INDEX subroutine, the th component of m, where mis viewed
in long vector order, contains value i where i is in the range 1 to ES3 inclusive; that is, m
contains the numbers 1, 2, 3 ES3

B.3.2 Functions returning constrained arguments

Some functions which return matrix or vector results were used in previous versions of FORTRAN-
PLUS with fewer arguments: since the results had to be of constrained size, the arguments giving
the number of rows or number of columns or both were not necessary. These functions are:

ALT (I)
ALT C (I)
ALTR(i)
COL(i) or COL(v)
CO LS (1, j)
EL(i)
ELS (I, j)
LMATC(i)
LMATR(i)
MAT(i)
MATC(i)
MATR(i)
ROW(i) or ROW(v)
ROWS(i,j)
VEC(i)

where:

• i and j are scalars and v is a vector
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The types, data-lengths and values of the arguments are as described for the corTesponding argu
ments in the descriptions of the current forms of the procedures in chapter 11 (adjust any arbitrary
sizes of parallel dimensions to ES where necessary).

B.3.3 Operating on long vectors

Some existing functions which operate on vectors can also take constrained matrix arguments —

the matrix is then regarded as a long vector.

The functions are:

REV(m)
SHLC(m [,i])
SHLP(m [,i])
SHRC(m [,iJ)
SHRP(m {,iJ)

where:

• m is a constrained matrix

• us a 4 byte integer scalar

Also a constrained matrix variable or expression can be indexed by a single + or — as described
in section 7.2.1. The matrix is then treated as a long vector.

B.4 Computational error management

This section contains a list of the computational error management functions which are now su
perseded. Each function takes a single argument whose mode determines the middle letters of
the function name. Each function either NOMinates an Error MaSK, or NOMinates an Error
RePorTing variable, or ReSTores an Error MasK or RePorTing variable for the mode of the
argument.

The functions are:

N OMMAT...EMSK
N OM...MAT..ERPT
NOM...SCA..EMSK
NOM...SCA....ERPT
NOM..VEC.EMSK
NOM...VEC..ERPT
RST...MAT...EMSK
RSTJb4ATERPT
RST...SCA..EMSK
RST.SCA..ERPT
RST...VEC..EM SK
RST.VEC...ERPT
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B5 Conversion routines

This section lists the host — DAP data conversion routines which are now superseded:

CONVHM1 CONVHM2 CONVHM4 CONVHM8
CONVHMD CONVHME CONVHMI CONVHML
CONVHS1 CONVHS2 CONVHS4 CONVHS8
CONVHSD CONVHSE CONVUSI CONVHSL
CONVHV1 CONVHV2 CONVHV4
CONVHVD CONVHVE CONVUVI CONVHVL
CONVMH1 CONVMH2 CONVMH4
CONVMHD CONVMHE CONVMHI CONVMHL
CONVMV1 CONVMV2 CONVMV3 CONVMV4
CONVMV5 CONVMV6 CONVMV7 CONVMVS
CONVMVD CONVMVE CONVMVI CONVMVL
CONVSH1 CONVSH2 CONVSH4
CONVSHD CONVSHE CONVSHI CONVSHL
CONVSV1 CONVSV2 CONVSV3 CONVSV4
CONVSV5 CONVSV6 CONVSV7 CONVSVS
CONVSVD CONVSVE CONVSVI CONVSVL
CONVVH1 CONVVH2 CONVVH4
CONVVHD CONVVHE CONVVHI CONVVHL
CONVVM1 CONVVM2 CONVVM3 CONVVM4
CONVVM5 CONVVM6 CONVVMZ CONVVMS
CONVVMD CONVVME CONVVMI CONVVML
CONVVS1 CONVVS2 CONVVS3 CONVVS4
CONVVS5 CONVVS6 CONVVS7 CONVVS8
CONVVSD CONVVSE CONVVSI CONVVSL
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Control statements 7, 8, 125
CONVDTOD subroutine 114
CONVDTOH subroutine 113
Conversion routines — superseded 153
CONVHTOD subroutine 112
COS function $6
CYCLIC geometry 51

D

DAP 500 1
DAP 600 1
DAP program 2
DAP to DAP mode conversion 114

CONVDTOD 114
DAP word 143, 14$

ordering 143
DAPCON subroutine 125
DAPENT subroutine 2, 125, 126
DAPREC subroutine 125
DAPSEN subroutine 125
Data association 121

by arguments 121
by COMMON blocks 121
by EQUIVALENCE 121

Data conversion 124
Data elements 19
Data in FORTRAN-PLUS 19
Data mappings 141
DATA statement 10, 37
Data transfer between host and DAP 120
Data-length 19
Data-length specifiers 23
Declarators 33
Declaring arrays 35
Declaring variables 31, 32
Definition of values 78, 123
DIMENSION statement 10, 34, 36
Dimension 20, 35

assumed size 33
DO loops 130

nested 132
transfer of control 132

DO loop number 131
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DO statement 8, 130
control parameters 130, 131
control variable 131
terminal statement 130

Dummy argument 34, 35, 38, 71, 75, 77, 79,
83

Dummy procedure names 80
Dynamic sizing 33, 34, 35, 36, 38

E

East neighbour 20
Edge size 1, 141, 149
EL function 92
Elements 19, 31, 35
ELL function 150
ELS function 93
ELSL function 151
END statement 6, 10, 70, 73
ENTRY subroutine 2, 70, 75, 84, 125
ENTRY SUBROUTINE statement 69
EQUIVALENCE association 121
EQUIVALENCE - effect of 122
EQUIVALENCE statement 11, 118, 121, 124
EQUIVALENCEd data $3
Equivalence 148
Errors 136

see also Computational error management
Error interrupt mask 110, 136, 137

NOM_EMSK 138
RST_EMSKS 138

Error interrupt switch 111, 137
see also Global error interrupt switch

Error interrupt switch settings 111
Error reporting mask 110, 138

NOMERPT 138
RST..ERPTS 138

Executable statement 6, 7
Execution control

conditional 127
unconditional transfer 126

Execution sequence 6
EXP function 86
Explicit declaration 32
Expressions 53

arithmetic 54
character 59
classes of 53

indexing 64
logical 62
mode of 53
operator 53
primary 53
relational 60

Extent of a dimension 35
EXTERNAL statement 11, 73

F

File include statements 5
FIX function 86
FLOAT function 87
FORTRAN-PLUS

character set 13
data 19
program units 2
superseded features 149

FBST function 93
function call 74
Function name 31
FUNCTION statement 11, 70, 77
Functions 2, 70

built-in 85, 150
unpredictable effects 82
user-written 69

body of 72
calling 74
header 70
mode 71

G

name 71
type and data-length 71

GEOMETRY $8
CYCLIC 51, 88
PLANE 51, 88

GEOMETRY statement 11, 51
GETERPT subroutine 111, 138
GETVEC function 94
GET_BIT function 93
GET MAT function 94
Global error interrupt switch 136

states 137
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Global error status flag 111, 138
GO TO statement 9, 126

computed 127
label 127

H

Hexadecimal constants 13, 29
Hexadecimal digits 13
High performance programming 148
Hollerith constant 28
Host — DAP conversion 111

CONVDTOH 113
CONVHTOD 112

Host — DAP program communication 120
Host storage mode 120, 148

I

Identifier 15
IF statement 9

arithmetic 126, 129
block IF 128
logical 129

IMPLICIT statement 11, 32
Indexed assignment 65, 66
Indexed assignment statements 8
Indexing 39

constraints in index values 41
array referencing 49
array selection 49
matrix referencing 46
matrix selection 44
vector referencing 43
vector selection 42
left hand side 41, 46, 49
reduced rank 40, 49, 50
selection 36, 40, 42, 44, 49
shift 43, 45, 51
subscript positions 40
updating 36, 41, 43, 46, 49
+ 43, 45, 77, 152
— 43, 45, 77, 152

Indexing construct 39, 66
Indexing expression 39
INDEXNEC function 94

Initial line 5
Initial values 34, 36
Initialisation 37, 123
Input/output facilities 135
Integer constant 25
Integer data 21
Interface subroutines 120, 125

DAPCON 125
DAPENT 2, 125, 126
DAPREC 125
DAPSEN 125

K

Keywords 17

L

Label 6, 125
Left neighbour 20
LENGTH function 87
Literal constant 28
LMATC function 95
LMATR function 95
Local variables and arrays 83
Logical constant 27
Logical expressions 62

format 62
order of evaluation 63
type, data-length and mode 63

Logical data 22
Long vector 149, 150

operations 152
LONGJNDEX subroutine 151
Loops 130

see also DO loops

M

Mapping data on the DAP 141
MAT function 96
MATC function 96
MATR function 96
Matrix array storage 148
Matrix array 21, 35

158 manlO2.O1 AMT



INDEX 159

Matrix indexing 44 INDEX_VEC 94
Matrix mode 19, 20 LMATC 95
Matrix operations 136 LMATR 95
Matrix storage mode 145 MATC 96
Matrix variable declarator 33 MATR 96
Matrix variable 36, 39, 44 MAT 96
MAXP function 97 MAXP 97
MAXV function 97 MAXV 97
MERGE function 98 MERGE 98
MINP function 99 MINP 99
MINV function 100 MINV 100
Mode conversion 111, 124 ORCOLS 100

DAP to DAP 114 ORROWS 100
Host - DAP 111 PAT..TRAIL.DIAG 101

Mode 19 PAT...UNITJJIAG 101
Mode of an expression 53 PATLOWEfLTRJ 101

RANK 101
REVC 101N REVR 102
REV 102, 152
ROWN 103

Names — symbolic 16 ROWS 103
Named constants 29 ROW 102
Neighbouring components 20 SET_BIT 103
Nested DO loops 132 SET_MAT 104
NOM_EMSK subroutine 110, 138 SET_VEC 104
NOM_ERPT subroutine 110, 138 SHEC 105
NOM.MAT_EMSK function 152 SHEP 105
NOM_MAT_ERPT function 152 SHLC 105, 152
NOM_SCA_EMSK function 152 SHLP 106, 152
NOM_SCA..ERPT function 152 SHNC 106
NOM_VEC_EMSK function 152 SHNP 106
NOM_VEC_ERPT function 152 SHRC 106, 152
Non-componental built-in procedures 8$, 150 SHRP 106, 152

ALL 88 SHSC 106
ALTC 89 SHSP 106
ALTR $9 SHWC 106
ALT 89 SHWP 107
ANDCOLS 90 SIZE 107
ANDROWS 90 SUMC 108
ANY 90 SUMR 109
COLN 91 SUM 10$
COLS 92 TRAN 109
COL 91 VEC 109
ELS Non-executable statement 6, 10
EL 92 Non-parallel dimension 33
FRST Non-parallel subscript 35
GET_BIT 93 Non-parallel subscript positions 40
GET_MAT 94 North neighbour 20
GETVEC 94
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Null subscript 150

0

Operations 136
ORCOLS function 100
ORROWS function 100

P

Parallel dimension 33
Parallel subscript 35
Parallel subscript positions 40
PARAMETER statement 12, 29
Parameters 77
Parameter write-back 78
PATJRAIL.DIAG function 101
PAT..UNITDIAG function 101
PAT.LOWER_TRI function 101
PAUSE statement 9, 126
PE matrix 1, 141
Plane alignment 143
PLANE geometry 51
Preset data 83, 123
Procedures 2, 69

built-in 85, 150
componental $5
non-componental 8$

user-written 69
arguments 75
entering and leaving 84
function subprogram 69
storage allocation 83
subroutine subprogram 69
written in APAL 69

Processor elements 1, 141
Program execution

control transfer 125
ending 126
start 125
statement sequence 125
within DAP program 125

Program portability 141
Program state analysis mode (PSAM) 126
Program statements 5

blank lines 5

comment lines 5
continuation lines 5
labels 6

Program units 2
Proper expression 76, 77
PSAM 126

R

RANK function 101
Rank 35
Real constant 26
Real data 21
Recursion 70, 74, 75, 83

indirect 72, 74, 75
Reduced rank indexing 40, 49, 50
Referencing 37, 39, 41, 43, 46, 49
Relational expressions 60

format 60
type, datalength and mode 61
use 61

Restrictions on usage of symbolic names 16
RETURN statement 9, 84, 125, 126
REV function 102, 152
REVC function 101
REVR function 102
Right neighbour 20
ROW function 102
Row index 20
ROWN function 103
ROWS function 103
RSTEMSKS subroutine 110, 138
RST.ERPTS subroutine 110, 138
RSTJvIAT.EMSK function 153
RST.MATERPT function 153
RST.SCAIMSK function 153
RST.SCA.ERPT function 153
RST_VEC..EMSK function 153
RSTXEC.ERPT function 153
Run-time checks 123
Run-time stack 83

$

Scalar array 21, 35, 143
Scalar mode 19
Scalar operations 136

160 manlO2.O1 AMT



INDEX 161

Scalar storage mode 143
Scalar variable 31
Selection 37, 39, 40, 42, 44, 49
SETSTATE function 111, 137
SET_ BIT subroutine 103
SET MAT subroutine 104
SET.. VEC subroutine 104
Shape 20, 31
SHEC function 105
Sheet mapping 145
SHE? function 105
Shift functions 88, 105, 152
Shift indexing 43, 45, 51, 152
SHLC function 105, 152
SilL? function 106, 152
SHNC function 106
SHNP function 106
SHORT_INDEX subroutine 151
SHRC function 106, 152
SHR? function 106, 152
SHSC function 106
SHSP function 106
SHWC function 106
SHWP function 107
Simple assignment 65
Simple assignment statements 8
SIN function $7
SIZE function 33, 79, 107

use of 79, 80
Size 20
Source programs 5
Source program lines 5
South neighbour 20
SQRT function $8
Statements

executable 6
non-executable 6

Statement format 6
Statement labels 6
Statement order 3
STOP statement 10, 126
Storage of arrays 148
Storage allocation in procedures $3
Storage association 121
Storage modes 143

host 148
matrix 145
scalars 143
vectors 145

Storage mode conversion 120
Store plane 141
Subprograms 2

block data 2
functions 2, 69
subroutines 2, 69

SUBROUTINE statement 12, 69, 77
Subroutines 2, 69, 85

built-in $5
calling 75
user-written 69

SUM function 108
SUMC function 108
SUMR function 109
Symbolic names 15, 16

restrictions on usage 16

T

TRACE levels 135
TRACE statement 10, 126, 135

output 135
TRAN function 109
Type 19, 21

character 22
integer 21
logical 22
real 21

Type keyword 23
Type specification 35
Type specification statement 12
Typographical conventions 7, 85, 8$

U

Underscore character usage 13
Unused storage space 124
Updating 36, 41, 43, 46, 49
User-written subroutines 69
User-written functions 69
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V

Value transfer in procedures 77
Values 3
Variables 31

COMMON 123
declaring 31
local (on stack) 123
preset 123
selection 36
use of 36
value 36

Variable name 31, 32
VEC function 109
Vector array storage 148
Vector array 21, 35
Vector indexing 42
Vector mode 19, 20
Vector operations 136
Vector storage mode 145
Vector variable declarator 33
Vector variable 36, 39, 42
Vertical storage 143

w
West neighbour 20
Word ordering 143
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