
DAP 500

Image Processing
Library

(manOl 4.03)

AMT

AMT endeavours to ensure that the information in this doc
ument is correct but does not accept responsibility for any
error or omission.

Any procedure described in this document for operating AMT
equipment should be read and understood by the operator
before the equipment is used. To ensure that AMT equipment
functions without risk to safety or health, such procedures
should be strictly observed by the operator.

The development of AMT products and services is continuous
and published information may not be up to date. Any partic
ular issue of a product may contain part only of the facilities
described in this document or may contain facilities not de
scribed here. It is important to check the current position
with AMT.

Specifications and statements as to performance in this docu
ment are AMT estimates intended for general guidance. They
may require adjustment in particular circumstances and are
therefore not formal offers or undertakings.

Statements in this document are not part ot a contract or
program product Licence save in s fat as they are incorporated
into a contract or licence by express reference. Issue of this
document does not entitle the recipient to access to or use of
the products described, and such access or use may be subject
to separate contracts or licences.

Technical publication manOl4.03

First Edition Feb 1988
second Edition November 1936
Third Edition February 1989

AMT filename:/cnm/image/ed3

Copyright © 1989 by Active Memory Technology

No part of this publication may be reproduced in any form
without written permission from Active Memory Technology.

AMT will be pleased to receive readers’ views on the contents,
organisation, etc of this publication. Please make contact at
either of the addresses below:

Publications Manager Publications Manager
Active Memory Technology Ltd Active Memory Technology Inc
65 Suttons Park Avenue 16802 Aston St Suite 103
Reading Irvine
Berks, RG6 AZ, UK California, 92714, USA

Tel: 0734 661111 Tel: (714) 261 8901

W t
manOl4.03 AMT

Preface

This manual describes the routines in release 2.0 of the Image Processing Library, which have been
developed to facilitate image processing on AMT DAP Series machines. The routines are mainly
written in FORTRAN-PLUS, and users are assumed to be familiar with this language.

The principles of FORTRAN-PLUS are outlined in:

DAP Series: Introduction to FORTRAN-PLUS (manOOl)

Detailed information on writing FORTRAN-PLUS programs is supplied in the AMT reference
publication:

DAP Series: FORTRAN-PLUS Language . (manOO2)

Developing and running programs on the DAP is described in the following publications:

DAP Series: Program Development under UNIX (manOO3)

DAP Series: Program Development under VAX!VMX (man004)

This is the third edition of the Image Processing Library.

Image Processing Library manOl4.03 iii

.

.
iv manOl4.03 AMT

.
.

.
.

.

Contents

1 Introduction 1

1.1 Overview 1

1.2 Access to the library 7

1.2.1 Using the library under UNIX 7

1.2.2 Using the library under VAX/VMS 7

2 Alphabetical listing of routines 9

3 Image Conversion Routines 15

3.1 CRINK.RASTER 16

3.2 CRINK..SHEET 18

3.3 RASTER.. ClUNK 20

3.4 RASTER...SHEET 22

3.5 SHEET..CfflNK 24

3.6 SHEETRASTER 26

3.7 TWO... UNSIG 28

3.8 UNSIG.. TWO 30

4 Image Processing Primitives 33

4.1 ADD_8 34

4.2 SCALADD8 36

4.3 SU&8 38

Image Processing Library manOl4.03 v

CONTENTS CONTENTS

4.4 MULT8T016 40

4.5 SCALMULT8TO16 42

4.6 SCAL_ DIV_s 44

4.7 SHIFTIMAGE...NORTHP 46

4.8 SHIFTIMAGENORTHC 48

4.9 SHIFTROWNORTHP 50

4.10 SHIFTROWNORTHC 52

4.11 SHIFTCOLNORTHP 54

4.12 SHIFTCOLNORTHC 56

4.13 SHIFT...SREETNORTHP 58

4.14 SHIFTSHEETNORTHC 60

5 Low Level Image Processing Routines 63

5.1 ABSTHRESHS 64

5.2 AVERAGE8 66

5.3 BOXINBOX..8 68

5.4 C06_FFT_ESS 70

5.5 C06FFTLV 72

5.6 COMP..FFT2D$T08 74

5.7 COMP..FFT2D..&T016 77

5.8 COMP....FFT2DJT024 80

5.9 COMP..FFT2D16T016 $3

5.10 COMP..FFT2D16T024 $6

5.11 COMPFFT2D..24T024 $9

5.12 COMP.,.FFT...2D..REAL.3 92

5.13 CONVOLVES 94

5.14 DIFFOFGAUSS$ 96

5.15 F01_G_MM 98

vi rnanOl4.03 AMT

CONTENTS

5.16 F01_M_INV.

5.17 F0&QR.GIVENSSOLVE

5.18 FILL_IN_i

HISTOGRAMC8

HISTOGRAMS8

KIRSCH8

LAPLACE8

LINEDET8

NORMALIZE 8

PERCTHRESH8

PREWITT8

PSEUDOMEDIAN8...

PUREMEDIAN8

ROBERTS8

SOBEL8

ZfROX8

100

102

104

106

108

110

112

114

116

118

120

122

124

126

128

130

6 Image Analysis Routines

6.1 SEGMENT8

6.2 LABEL16

6.3 FEATURES8

6.4 CLASSIF

CONTENTS

5.19

5.20

5.21

5.22

5.23

5.24

5.25

5.26

5.27

5.28

5.29

5.30

5.31

133

134

136

138

142

Image Processing Library rnanOi4.03 vii

CONTENTS CONTENTS

.

.

.
viii manOl4.03 AMT

Chapter 1

Introduction

1.1 Overview

The Image Processing Library has been designed to facilitate image processing on the AMT DAP.
The DAP (standing for ‘Distributed Array of Processors’) is a massively parallel computer which
attaches to a host as a peripheral processor.

The processors in the DAP are arianged in a square matrix; for example 32 x 32 in the case of the
DAP 500 range and 64 x 64 in the DAP 600. The number of processors on one side of the square
is called the edge-size of the DAP. ESis used as an abbreviation for edge-size in this manual.

This manual describes the routines included in the AMT Image Processing Library. The routines
are divided into four chapters: Image Conversion Routines, Image Processing Primitives, Low
Level Image Processing Routines and Image Analysis Routines, a summary of their contents is
listed below. How to access the library is described in section 1.2. This is followed by a list of the
routines in alphabetical order in chapter 2.

Chapter 3 Image Conversion Routines

There are three standard ways of storing images in DAP store: raster, sheet and crinkled mappings.

• By raster images we mean that the pixels of the image have been assigned a row-major
ordering. Raster images are mapped into the DAP store by imposing long-vector (column-
major) ordering on each DAP matrix and then column-major ordering on the set of matrices.
Each pixel in the image is stored in the corresponding position in DAP store, the first pixel
in the first position etc..

• A sheet mapped image is divided into tiles — each tile fills one DAP matrix. A set of tiles is
stored in column-major ordering in DAP memory.

• A crinkle mapped image is conceptually divided into ES x ES tiles. The size of each tile is:
height of the image width of the image

ES ES

Image Processing Library manGl4.03 1

OVERVIEW introduction

Each tile is then ‘crinkled’ up and stored in column-major order under the corresponding
processor element. Thus each DAP matrix holds one pixel value from each tile.

Image conversion routines convert between these three ways of mapping the image in DAP store.
The image must be of size 2M x 2’ where 5 N, M 10, and may be any (positive) number of
bits deep, restricted only by storage considerations. Most of the routines in the following chapters
assume that the image is held in DAP store using a crinkled mapping. Conversions between two’s
complement and unsigned formats are also included, since calculations in the library routines are
performed using two’s complement arithmetic.

CRINK_ RASTER — converts an image from crinkled to raster ordering in DAP store.

CRINK_ SHEET — converts an image from crinkled to sheet ordering in DAP store.

RASTER.. ClUNK — converts an image from raster to crinkled ordering in DAP store.

RASTER.. SHEET — converts an image from raster to sheet ordering in DAP store.

SHEET.. ClUNK — converts an image from sheet to crinkled ordering in DAP store.

SHEET.. RASTER — converts an image from sheet to raster ordering in DAP store.

TWO.. UNSIG — converts an image from from two’s complement to unsigned integer
format maintaining the ordering of the grey-scale values.

UNSIG_ TWO — converts an image from from unsigned to two’s complement integer
format maintaining the ordering of the grey-scale values.

Chapter 4 Image Processing Primitives

Image processing primitives are routines for adding, subtracting, and shifting entire images. Rnu
tines specified as 8-bits per pixel routines may also be used for 16-bits per pixel images by replacing
the 8 in the routine name by 16 (and 16 if present by 32). For example:

MULT_ 8.. TO.. 16 — multiplies two 8-bit two’s complement images to form a 16-bit
image.

MULT.. 16..TO_ 32 — multiplies two 16-bit two’s complement images to form a 32-bit
image.

The routines ADD..8, SCAL_ADD_8 and SUB..8 return their results modulo 256. The routines
ADD.. 16, SCAL_ADD_ 16 and SUB.. 16 return their results modulo 65536.

Arithmetic operations

ADD_ 8 — adds together two 8-bit two’s complement images. The result is
returned modulo 256.

2 rnanOi4.03 AMT

Introduction OVERVIEW

Chapter 4 Image Processing Primitives (continued)

SCAL_ADD..8 — adds an 8-bit two’s complement scalar to an 8-bit two’s comple
ment image. The result is returned modulo 256.

SUB_ 8 — subtracts one 8-bit two’s complement image from another. The
result is returned modulo 256.

MULT_8_TO_16 — multiplies two 8-bit two’s complement images to form a 16-bit
image.

SCAL_MULT_8_TO_ 16 — multiplies an 8-bit two’s complement image by an 8-bit two’s com
plement scalar to form a 16-bit image.

SCAL_DIV_8 — divides an 8-bit two’s complement image by an 8-bit two’s com
plement scalar to form an 8-bit image.

Shifting operations

The shifting routines are for crinkled mapped images only. Shifts north are documented here but
shifts to other directions can be made by replacing NORTH in the routine name by SOUTH, EAST
or WEST as required.

SHIFT_IMAGE_NORTH_P — shifts an entire image north with planar boundary conditions. Ze
roes are introduced at the boundaries.

SHIFT_IMAGE_NORTH_C — shifts an entire image north with cyclic (wrap-around) boundary
conditions.

SHIFT..ROW_NORTH_P — shifts a row of matrices of an image north with planar boundary
conditions. Zeroes are introduced at the boundaries,

SHIFT_ ROW_ NORTIL C — shifts a row of matrices of an image north with cyclic (wrap
around) boundary conditions.

SHIFT_ COL_NORTH_ P — shifts a column of matrices of an image north with planar bound
ary conditions. Zeroes are introduced at the boundaries.

SHIFT_COL_NORTH_C — shifts a column of matrices of an image north with cyclic (wrap
around) boundary conditions.

SHIFT_SHEET_NORTH_P — shifts a matrix of an image north with planar boundary conditions.
Zeroes are introduced at the boundaries.

SHIFT_SHEET_NORTH_C — shifts a matrix of an image north with cyclic (wrap-around)
boundary conditions.

Image Processing Library manOl4.03 3

OVERVIEW Introduction

Chapter 5 Low Level Image Processing Routines

Low-level image processing routines perform tasks such as edge detection routines, convolutions
and Fast Fourier Transforms (FFTs). Routines specified as 8-bits per pixel may be used for 16-bits
per pixel images by replacing the 8 in the name by 16, except for the COMPFFT...2D routines
which perform FFTs on images with 8, 16 and 24 bits per pixel.

ABS.. THRESH_8 — thresholds an 8-bit two’s complement image.

AVERAGE_s — convolves a square averaging mask with an 8-bit two’s complement
image.

BOX_IN_BOX_8 — applies box-in-a-box prescreening to an 8-bit per pixel two’s com
plement image. The result is compared with a user supplied
threshold and a binary result returned.

C06_FFT_ESS — calculates the two dimensional discrete Fourier transform of
ES xES complex points.

C06_ FFT_ LV — performs a one dimensional Fast Fourier Transform of ES2 com
plex points.

COMP_ FfT_ 2D_ s_TO_s — calculates the two dimensional fast Fourier transform of an 8-
bit two’s complement complex image producing an 8-bit two’s
complement complex image. The input data may be scaled; the
output transform is scaled automatically.

COMP_FFT_2D_8_T016 — calculates the two dimensional fast Fourier transform of an 8-
bit two’s complement complex image producing a 16-bit two’s
complement complex image. The input data may be scaled; the
output transform is scaled automatically.

COMP_FFT_2D_8_TO_24 — calculates the two dimensional fast Fourier transform of an 8-
bit two’s complement complex image producing a 24-bit two’s
complement complex image. The input data may be scaled; the
output transform is scaled automatically.

COMP_FFT_2D_16_TO_16 — calculates the two dimensional fast Fourier transform of a 16-
bit two’s complement complex image producing a 16-bit two’s
complement complex image. The input data may be scaled; the
output transform is scaled automatically.

COMP_FFT_2D_16_TO_24 — calculates the two dimensional fast Fourier transform of a 16-
bit two’s complement complex image producing a 24-bit two’s
complement complex image. The input data may be scaled; the
output transform is scaled automatically.

4 manOl4.03 AMT

ThtToduCtiOfl OVERVIEW

Chapter 5 Low Level Image Processing Routines (continued)

COMP_FFT_2D_24_TO_24 — calculates the two dimensional fast Fourier transform of a 24-
bit two’s complement complex image producing a 24-bit two’s
complement complex image. The input data may be scaled; the
output transform is scaled automatically.

COMP_FFT_2D_REAL_3 — calculates the two dimensional fast Fourier transform of a 24-bit
floating point complex image producing a 24-bit floating point
complex image. The input data may be scaled; the output trans
form is scaled automatically.

CONVOLVE_S — calculates the convolution of an 8-bit per pixel two’s complement
image with a square mask. The result may be scaled to avoid
overflow.

DIFF_OF_GAUSS_8 — convolves one of a set of nine difference-of-Gaussian masks with
an 8-bit two’s complement image.

FOi_ G_MM — performs a general matrix multiply of two matrices A and 3 where
A is a PxQ matrix and B is a QxR matrix with P,Q and R in
the range ito ES.

FOi_M_INV — calculates, in place, the inverse of a given NxN matrix with N in
the range 1 to ES.

F04_QR_GIVENS_SOLVE — solves the linear system Ax = b for z where A is an nxn matrix
with 2.<n<ES+i. The routine may be used to simultaneously
solve for up to ES different right hand side vectors b.

FILL_IN_i — performs a region growing process on a logical image starting from
input seed points. The region growing is constrained by the input
image — it can only grow where the image is .TRUE..

HISTOGRAM_C_S — calculates the histogram for an 8-bit two’s complement crinkle
mapped image or tiles thereof.

HISTOGRAM_S_s — calculates the histogram for an 8-bit two’s complement sheet
mapped image or tiles thereof.

KIRSCH_8 — applies a user-selected Kirsch compass gradient mask to an 8-bit
per pixel two’s complement image. The result may be scaled to
avoid overflow.

LAPLACE_ 8 — applies a user-selected Laplacian mask to an 8-bit per pixel two’s
complement image. The result may be scaled to avoid overflow.

LINE_ DET_ 8 — applies a user-selected line detection mask to an 8-bit per pixel
two’s complement image. The result may be scaled to avoid over
flow.

NORMALIZE_ 8 — expands the range of grey-scale values used within an 8-bit two’s
complement image to the full range.

Image Processing Library manOl4. 03 5

OVERVIEW Introduction

Chapter 5 Low Level Image Processing Routines (continued)

PERC_THRESH..8 — performs thresholding on an 8-bit two’s complement image.

PREWITT_8 — applies a user-selected Prewitt compass gradient mask to an 8-bit
per pixel two’s complement image. The result may be scaled to
avoid overflow.

PSEUDO.. MEDIAN_ 8 — calculates the pseudo-median at each pixel in an 8-bit two’s com
plement image for a rectangular neighbourhood centred on the
image.

PURE.. MEDIAN...8 — calculates the true median at each pixel in an 8-bit two’s com
plement image for a rectangular neighbourhood centred on the
image.

ROBERTS_8 — applies a user-selected Roberts edge detection mask to an 8-bit
per pixel two’s complement image. The result may be scaled to
avoid overflow.

SOBEL_8 — sums the convolution of an 8-bit per pixel two’s complement image
with the 3x3 Sobel vertical and horizontal edge detection masks.
The result may be scaled to avoid overflow.

ZERO_X_8 — finds the zero crossings in an 8-bit two’s complement image.

Chapter 6 Image Analysis Routines

Image analysis routines allow the interesting features on an image to found and identified auto
matically. SEGMENT_ 16 and FEATURES.. 16 are available for analysing 16-bit images.

SEGMENT_8 — extracts the most ‘interesting’ blob or related set of blobs from an
8-bit two’s complement image by successively applying difference-
of-Gaussian convolution operators to the image.

LABEL.. 16 — labels the distinct ‘blobs’ in a binary image, returning a 16-bit
two’s complement image with all the pixels in each blob having
one value, different for each blob.

FEATURES..8 — calculates invariant moments and other features for use in classifi
cation of ‘blobs’ of each blob in an 8-bit two’s complement labelled
image (see LABEL.. 16).

CLASSIF — calculates the class expectation index (how likely a ‘blob’ is to be
in a given class) for each set of input blob features.

6 rnanOl4.03 AMT

Introduction ACCESS TO THE LIBRARY

1.2 Access to the library

Routines in the image processing library are linked in at the consolidation stage of the compiling
process. For details of compiling and linking see DAP Series: Program Development Under UNIX,
or DAP Series: Program Development Under VAX/VMS.

1.2.1 Using the library under UNIX

Routines are linked in by specifying iplib with the -1 (for library) flag in either dapa or dapf. For
example:

dapf -o mytile.dd my±ile.df -1 iplib

dapf will compile the FORTRAN-PLUS program myffle.df, linking in any routines from the
image processing library which are required and produce a DOF file myffle.dd. dapf and dapa
will automatically find the version of the library to match the size of DAP that the program is
being produced for.

1.2.2 Using the library under VAX/VMS

You can link routines from the image processing library into a program by using the /LIBRARY
qualifier to the DLINK command. Two versions of the image processing library are supplied,
IPLIB5 for DAP 500, and IPLIB6 for DAP 600; when linking routines from the image processing
library into your program you need to specify the appropriate version of IPLIB.

For example, to compile and link a FORTRAN-PLUS program in the file PICTURE.DFP for a
DAP 600 you can use the following commands:

$ DFORTRAN/DAPSIZE=64 PICTURE
$ DLINK/DAPSIZE=64 TURE,SYS$LIBRARY: IPLIB6/LIBRARY

To compile and link the FORTRAN-PLUS program in file IMAGES.DFP for a DAP 500 the
commands would be:

$ DFORTRAN/DAPSIZE=32 IMAGES
$ DLINK/DAPSIZE=32 IMAGES, SYS$LIBRARY: IPLIBS/LIBRARY

You can define the logical name DAPn.LIBRARY by using the command:

$ DEFINE DAPn.IIBBARY SYS$LIBRARY:IPLIBn

where n is 5 (for DAP 500) or 6 (for DAP 600). This will cause DLINK to search IPLIBn
automatically for unsatisfied external references. If you are going to use IPLIBn frequently, you
could insert the DEFINE command above into your LOGIN.COM file. If there are several DAP
users on the system, linked to a DAP 600 say, the system manager could include the command:

Image Processing Library manOl4.03 7

ACCESS TO THE LIBRARY Introduction

$ DEFINE/SYSTEM DAP6_LIBRARY SYS$LIBRARY:IPLIB6.DLB

into the site system start-up command file which would give all users automatic access to the
library.

Similarly, the command:

$ DEFINE/SYSTEM DAP5_LIBRARY SYS$LIBRARY:I?LIBS.DLB

would do the same thing for a DAP 500 system.

On a system that has both DAP 500 and DAP 600, then both DAP5IIBRARY and DAP6IIBRARY
can be defined, and users would pick up the version of IPLIB to match the /DAPSIZE that had
been specified.

8 manOl4.03 AMT

Chapter 2

Alphabetical listing of routines

Name Function Page

ABS_THRESH_8 — thresholds an 8-bit two’s complement image. 64

ADD_s — adds together two 8-bit two’s complement images. The result 34
is returned modulo 256.

AVERAGE... 8 — convolves a square averaging mask with an 8-bit two’s comple- 66
ment image.

3O)LIN_BOX_8 — applies box-in-a-box prescreening to an 8-bit per pixel two’s 68
complement image. The result is compared with a user sup
plied threshold and a binary result returned.

C06_FFT_ESS — calculates the two dimensional discrete Fourier transform of 70
ES xE$ complex points.

C06_FFT_LV — performs a one dimensional Fast Fourier Transform of ES2 72
complex points.

CLASSIF — calculates the class expectation index (how likely a ‘blob’ is to 142
be in a given class) for each set of input blob features.

COMP..FFT_2D..8_TQ_8 — calculates the two dimensional fast Fourier transform of an 8- 74
bit two’s complement complex image producing an 8-bit two’s
complement complex image. The input data may be scaled;
the output transform is scaled automatically.

COMP_FFT_2D_8_TQ..16 — calculates the two dimensional fast Fourier transform of an 8- 77
bit two’s complement complex image producing a 16-bit two’s
complement complex image. The input data may be scaled;
the output transform is scaled automatically.

Image Processing Library manOl4.03 9

Alphabetical listing of routines

Name Function Page

COMP_ FFT_ 2D_ 8_ TO_ 24 — calculates the two dimensional fast Fourier transform of an 8- 80
bit two’s complement complex image producing a 24-bit two’s
complement complex image. The input data may be scaled;
the output transform is scaled automatically.

COMP_FFT_2D..16...TO_16 — calculates the two dimensional fast Fourier transform of a 16- 83
bit two’s complement complex image producing a 16-bit two’s
complement complex image. The input data may be scaled;
the output transform is scaled automatically.

COMPFFT_2D_16_TO_24 — calculates the two dimensional fast Fourier transform of a 16- 86
bit two’s complement complex image producing a 24-bit two’s
complement complex image. The input data may be scaled;
the output transform is scaled automatically.

COMP_fFT_2D_24_TO_24 — calculates the two dimensional fast Fourier transform of a 24- 89
bit two’s complement complex image producing a 24-bit two’s
complement complex image. The input data may be scaled;
the output transform is scaled automatically.

COMP_FFT_2D_REAL_3 — calculates the two dimensional fast Fourier transform of a 24- 92
bit floating point complex image producing a 24-bit floating
point complex image. The input data may be scaled; the out-
put transform is scaled automatically.

CONVOLVE_S — calculates the convolution of an 8-bit per pixel two’s comple- 94
ment image with a square mask. The result may be scaled to
avoid overflow.

CfflNK_ RASTER — converts an image from crinkled to raster ordering in DAP 16
store.

CRINK_ SHEET — converts an image from crinkled to sheet ordering in DAP 18
store.

DIFF_ Qf_ GAUSS_ 8 — convolves one of a set of nine difference-of-Gaussian masks with 96
an 8-bit two’s complement image.

F01_G...MM — performs a general matrix multiply of two matrices A and B 98
where A is a P x Q matrix and B is a Q x R matrix with P,Q
and R in the range 1 to ES.

FOL M_INV — calculates, in place, the inverse of a given N x N matrix with N 100
in the range 1 to ES.

FOLQR_GIVENS_SOLVE — solves the linear system Ax = b for x where A is an nxn matrix 102
with 2<n<ES+1. The routine may be used to simultaneously
solve for up to ES different right hand side vectors b.

10 manOl4.03 AMT

Alphabetical listing of routines

Name Function Page

FEATURES_8 — calculates invariant moments and other features for use in clas- 138
sification of ‘blobs’ of each blob in an 8-bit two’s complement
labelled image (see LABEL_ 16).

FILL_IN_i — performs a region growing process on a logical image starting 104
from input seed points. The region growing is constrained by
the input image — it can only grow where the image is .TRUE..

HISTOGRAM_C_8 — calculates the histogram for an 8-bit two’s complement crinkle 106
mapped image or tiles thereof.

HISTOGRAM_S_8 — calculates the histogram for a 8-bit two’s complement sheet 108
mapped image or tiles thereof.

KIRSCH_ 8 — applies a user-selected Kirsch compass gradient mask to an 110
8-bit per pixel two’s complement image. The result may be
scaled to avoid overflow.

LABEL_ 16 — labels the distinct ‘blobs’ in a binary image, returning a 16-bit 136
two’s complement image with all the pixels in each blob having
one value, different for each blob.

LAPLACE_8 — applies a user-selected Laplacian mask to an 8-bit per pixel 112
two’s complement image. The result may be scaled to avoid
overflow.

LINE_DET..8 — applies a user-selected line detection mask to an 8-bit per pixel 114
two’s complement image. The result may be scaled to avoid
overflow.

MULT_8..TO_16 — multiplies two 8-bit two’s complement images to form a 16-bit 40
image.

NORMALIZE_s — expands the range of grey-scale values used within an 8-bit 116
two’s complement image to the full range.

PERC_THRESH_8 — performs thresholding on an 8-bit two’s complement image. 118

PREWITT_ 8 — applies a user-selected Prewitt compass gradient mask to an 120
8-bit per pixel two’s complement image. The result may be
scaled to avoid overflow.

PSEUDO_ MEDIAN_ 8 — calculates the pseudo-median at each pixel in an 8-bit two’s 122
complement image for a rectangular neighbourhood centred
on the image.

PURE_MEDIAN_8 — calculates the true median at each pixel in an 8-bit two’s com- 124
plement image for a rectangular neighbourhood centred on the
image.

Image Processing Library znanOl4. 03 11

Alphabetical listing of routines

Name Function Page

RASTER. CRINK — converts an image from raster to crinkled ordering in DAP 20
store.

RASTER. SHEET — converts an image from raster to sheet ordering in DAP store. 22

ROBERTS_8 — applies a user-selected Roberts edge detection mask to an 8-bit 126
per pixel two’s complement image. The result may be scaled
to avoid overflow.

SCAL_ADD_8 — adds an 8-bit two’s complement scalar to an 8-bit two’s corn- 36
plement image. The result is returned modulo 256.

SCAL_DIV_8 — divides an 8-bit two’s complement image by an 8-bit two’s 44
complement scalar to form an 8-bit image.

SCAL_MULT_8_TO_ 16 — multiplies an 8-bit two’s complement image by an 8-bit two’s 42
complement scalar to form a 16-bit image.

SEGMENT_8 — extracts the most ‘interesting’ blob or related set of blobs 134
from an 8-bit two’s complement image by successively applying
difference-of-Gaussian convolution operators to the image.

SHEET... CRINK — converts an image from sheet to crinkled ordering in DAP 24
store.

SHEET_RASTER — converts an image from sheet to raster ordering in DAP store. 26

SHIFT_ COL_ NORTH_C — shifts a column of matrices of an image north with cyclic (wrap- 56
around) boundary conditions.

SHIFT_COL_NORTH_P — shifts a column of matrices of an image north with planar 54
boundary conditions. Zeroes are introduced at the boundaries.

SHIFT_IMAGE_NORTH_C — shifts an entire image north with cyclic (wrap-around) bound- 48
ary conditions.

SHIFT_IMAGE_NORTH_P — shifts an entire image north with planar boundary conditions. 46
Zeroes are introduced at the boundaries.

SHIFT_ROW_NORTH_C — shifts a row of matrices of an image north with cyclic (wrap- 52
around) boundary conditions.

SHIFT_ROW_NORTH_P — shifts a row of matrices of an image north with planar bound- 50
ary conditions. Zeroes are introduced at the boundaries.

SHIFT_SHEET_NORTH_C — shifts a matrix of an image north with cyclic (wrap-around) 60
boundary conditions.

SHIFT_SHEET_NORTH_P — shifts a matrix of an image north with planar boundary con- 58
ditions. Zeroes are introduced at the boundaries.

SOBEL_ 8 — sums the convolution of an 8-bit per pixel two’s complement 128
image with the 3 x 3 Sobel vertical and horizontal edge detec
tion masks. The result may be scaled to avoid overflow.

12 manOl4.03 AMT

Alphabetical listing of routines

Name Function Page

SUB_8 — subtracts one 8-bit two’s complement image from another. The 38
result is returned modulo 256.

TWO_UNSIG — converts an image from from two’s complement to unsigned in- 28
teger format maintaining the ordering of the grey-scale values.

UNSIG_ TWO — converts an image from from unsigned to two’s complement in- 30
teger format maintaining the ordering of the grey-scale values.

ZERO_X_8 — finds the zero crossings in an 8-bit two’s complement image. 130

Image Processing Library manOl4.03 13

Alphabetical listing of routines

.

.

.
14 manOl4.03 AMT

Chapter 3

Image Conversion Routines

There are three standard ways of storing images in DAP store: raster, sheet and crinkled mappings.

• By raster images we mean that the pixels of the image have been assigned a row-major
ordering. Raster images are mapped into the DAP store by imposing long-vector (column
major) ordering on each DAP matrix and then column-major ordering on the set of matrices.
Each pixel in the image is stored in the corresponding position in DAP store, the first pixel
in the fifst position etc..

• A sheet mapped image is divided into tiles — each ES x ES pixel tile is stored in one DAP
matrix. A set of tiles is stored in column-major ordering in DAP memory.

• A crinkle mapped image is conceptually divided into ES2 tiles of size (height/ES) x (width/ES).
Each tile is then ‘crinkled’ up and stored in column-major order under the corresponding
processing element. Thus each DAP matrix holds one pixel value from each tile.

Image conversion routines convert between these three ways of mapping the image in DAP store.
The image must be of size 2M x2N where 5 < N, M 10, and may be any (positive) number of
bits deep, restricted only by storage considerations. Most of the routines in the following chapters
assume that the image is held in DAP store using a crinkled mapping. Conversions between two’s
complement and unsigned formats are also included, since calculations in the library routines are
performed using two’s complement arithmetic.

Image Processing Library manOl4.03 15

CRINK.. RASTER Image Con version Rou tines

3.1 CRINK RASTER

1 Purpose
This routine converts an image from crinkled to raster ordering in DAP stoTe.

2 Specification

CRINK.. RASTER (IMAGE, BITS , NS..SIZE , WE.. SIZE)

LOGICAL IMAGE(, ,BITS , NS..SIZE ,WE.SIZE)

INTEGER *4 BITS, NS...SIZE, WE...SIZE

3 Description
This routine converts images (in place) from crinkled to raster ordering in DAP store where:

crinkled mapping divides up an image into ES2 tiles of size (height/ES) x (width /ES)
each of which is then ‘crinkled up’ and stored under one processing element. Thus each
DAP matrix in which the image is stored holds one pixel value from each tile. The number
of bits per pixel is specified in BITS. Here DAP matrix refers to BITS consecutive bit
planes

raster images are mapped into DAP store by imposing long-vector (column-major) or
dering on each DAP matrix of pixel values and then column-major ordering on the set
of matrices

4 References
None.

5 Arguments
IMAGE

IMAGE is the image to be remapped into DAP store.

BITS

On entry BITS is the number of bits per pixel in IMAGE. Unchanged on exit.

NS.. SIZE

On entry NS_SIZE contains the height of the image in pixels divided by ES. NS_SIZE
must be one of 1, 2, 4, 8, 16, 32. Unchanged on exit.

WESIZE

On entry WE_SIZE contains the width of the image divided by ES. WE_SIZE must be
one of 1, 2, 4, 8, 16, 32. Unchanged on exit.

6 Errors
No explicit error checking is done.

7 Auxiliary Routines
LOG2, XO5LOG2

16 manOl4.03 AMT

Image Conversion Routines CRINIL RASTER

8 Accuracy
Not applicable.

9 Further Comments
This routine uses Parallel Data Transforms.

10 Keywords
Parallel Data Transforms

Image Processing Library manOl4.03 17

ClUNK.. SHEET Image Conversion Routines

3.2 CRINK SHEET

1 Purpose
This routine converts an image from crinkled to sheet ordering in DAP store.

2 Specification

CRINIL SHEET (IMAGE, BITS , NS..SIZE ,WE.. SIZE)

LOGICAL IMAGE(,, BITS, NS..SIZE ,WE..SIZE)

INTEGER *4 BITS, NS..SIZE, WE..SIZE

3 Description
This routine converts images (in place) from crinkled to sheet ordering in DAP store where:

crinkled mapping divides up an image into ES2 tiles of size (height/ES) x (width /ES)
each tile is then ‘crinkled up’ and stored under one processing element. Thus each DAP
matrix in which the image is storedholds one pixel value from each tile. The number
of bits per pixel is specified in BITS. Here DAP matrix refers to BITS consecutive bit
planes

sheet mapping divides the image up into tiles of ES x ES pixels, each of which occupies
one DAP matrix. The set of DAP matrices are stored in column-major order

4 References
None.

5 Arguments
IMAGE

IMAGE is the image to be remapped into DAP store.

BITS

On entry BITS is the number of bits per pixel in IMAGE. Unchanged on exit.

NS..SIZE

On entry NS_ SIZE contains the height of the image in pixels divided by ES. NS_ SIZE
must be one of 1, 2, 4, 8, 16, 32. Unchanged on exit.

WE SIZE

On entry WE_SIZE contains the width of the image divided by ES. WE_SIZE must be
one of 1, 2, 4, 8, 16, 32. Unchanged on exit.

6 Errors
No explicit error checking is done.

7 Auxiliary Routines
LOG2, XO5LOG2

18 manOl4.03 AliT

Image Conversion Routines CRINK.. SHEET

8 Accuracy
Not applicable.

9 Further Comments
This routine uses the Parallel Data Transforms.

10 Keywords
Parallel Data Transforms

Image Processing Library manOl4.03 19

RASTER.. ClUNK image Conversion Routines

3.3 RASTER... CRINK

1 Purpose
This routine converts an image from raster to crinkled ordering in DAP store.

2 Specification

RASTER. CRINK (IMAGE, BITS , NS..SIZE, WE.. SIZE)

LOGICAL IMAGE (,, BITS , NS..SIZE ,WE.. SIZE)

INTEGER *4 BITS, NS..SIZE, WE...SIZE

3 Description
This routine converts images (in place) from raster to crinkled ordering in DAP store where:

raster images are mapped into DAP store by imposing long-vector (column-major) or
dering on each DAP matrix of pixel values and then column-major ordering on the set
of matrices. Here DAP matrix refers to BITS consecutive bit planes

crinkled mapping divides up an image into ES2 tiles of size (height/ES) x (width /ES)
each tile is then ‘crinkled up’ and stored under one processing element. Thus each DAP
matrix in which the image is stored holds one pixel value from each tile. The number of
bits per pixel is specified in BITS

4 References
None.

5 Arguments
IMAGE

IMAGE is the image to be remapped into DAP store.

BITS

On entry BITS is the number of bits per pixel in IMAGE. Unchanged on exit.

NSSIZE

On entry NS_ SIZE contains the height of the image in pixels divided by ES. NS_ SIZE
must be one of 1, 2, 4, 8, 16, 32. Unchanged on exit.

WE.. SIZE

On entry WE_SIZE contains the width of the image divided by ES. WE_SIZE must be
one of 1, 2, 4, 8, 16, 32. Unchanged on exit.

6 Errors
No explicit error checking is done.

7 Auxiliary Routines
LOG2, XO5LOG2

20 manOl4.03 AMT

Image Conversion Routines RASTER ClUNK

8 Accuracy
Not applicable.

9 Further Comments
This routine uses Parallel Data Transforms.

10 Keywords
Parallel Data Transforms

Image Processing Library manOl4.03 21

RASTER..SHEET Image Conversion Routines

3.4 RASTER SHEET

1 Purpose
This routine converts an image from raster to sheet ordering in DAP store.

2 Specification

RASTER SHEET (IMAGE, BITS , NS SIZE , WE.. SIZE)

LOGICAL IMAGE(,, BITS , NS...SIZE , WESIZE)

INTEGER *4 BITS, NS.SIZE, WESIZE

3 Description
This routine converts images (in place) from raster to sheet ordering in DAP store where:

raster images are mapped into DAP store by imposing long-vector (column-major) or
dering on each DAP matrix of pixel values and then column-major ordering on the set
of matrices. Here DAP matrix refers to BITS consecutive bit planes

sheet mapping divides the image up into tiles of ES x ES pixels, each tile occupies one
DAP matrix. The set of DAP matrices are stored in column-major order

4 References
None.

5 Arguments
IMAGE

IMAGE is the image to be remapped into DAP store.

BITS

On entry BITS is the number of bits per pixel in IMAGE. Unchanged on exit.

NS.. SIZE

On entry NS...SIZE contains the height of the image in pixels divided by ES. NS_ SIZE
must be one of 1, 2, 4, 8, 16, 32. Unchanged on exit.

WL SIZE

On entry WE_ SIZE contains the width of the image in pixels divided by ES. WE.. SIZE
must be one of 1, 2, 4, 8, 16, 32. Unchanged on exit.

6 Errors
No explicit error checking is done.

7 Auxiliary Routines
LOG2, XO5LOG2

22 manOl4.03 AMT

Image Conversion Routines RASTER...SHEET

8 Accuracy
Not applicable.

9 Further Comments
This routine uses Parallel Data Transforms.

10 Keywords
Parallel Data Transforms

Image Processing Library manOl4.03 23

SHEET_ CRINK Image Conversion Routines

3.5 SHEEr.... CHINK

1 Purpose
This routine converts an image from sheet to crinkled ordering in DAP store.

2 Specification

SHEET.. CRINK (IMAGE, BITS , NS..SIZE , WE... SIZE)

LOGICAL IMAGE(,, BITS, NSSIZE , WE.. SIZE)

INTEGER *4 BITS, N&SIZE, WE...SIZE

3 Description
This routine converts images (in place) from sheet to crinkled ordering in DAP store where:

sheet mapping divides the image up into tiles of ES x ES pixels, each of which occupies
one DAP matrix. The set of DAP matrices are stored in column-major order. Here DAP
matrix refers to BITS consecutive bit planes

crinkled mapping divides up an image into ES2 tiles of size (height/ES) x (width /ES)
each of which is then ‘crinkled up’ and stored under one processing element. Thus matrix
in which the image is stored holds one pixel value from each tile. The number of bits per
pixel is specified in BITS

4 References
None.

5 Arguments
IMAGE

IMAGE is the image to be remapped into DAP store.

BITS

On entry BITS is the number of bits per pixel in IMAGE. Unchanged on exit.

NS SIZE

On entry NS_SIZE contains the height of the image in pixels divided by ES. NS_ SIZE
must be one of 1, 2, 4, 8, 16, 32. Unchanged on exit.

WE.. SIZE

On entry WE.. SIZE contains the width of the image divided by ES. WE_ SIZE must be
one of 1, 2, 4, 8, 16, 32. Unchanged on exit.

6 Errors
No explicit error checking is done.

7 Auxiliary Routines
LOG2, XO5LOG2

24 manOl4.03 AMT

Image Conversion Routines SHEET.. ClUNK

8 Accuracy
Not applicable.

9 Further Comments
This routine uses the Parallel Data Transforms.

10 Keywords
Parallel Data Transforms

Image Processing Library manOl4.03 25

SHEET.. RASTER Image Con version Routines

3.6 SHEET... RASTER

1 Purpose
This routine converts an image from sheet to raster ordering in DAP store.

2 Specification

SHEET.. RASTER (IMAGE, BITS , NS.. SIZE , WE.. SIZE)

LOGICAL IMAGE(,, , NS..SIZE ,WE.. SIZE)

INTEGER *4 BITS, NS...SIZE, WE...SIZE

3 Description
This routine converts images (in place) from sheet to raster ordering in DAP store where:

sheet mapping divides the image up into tiles of ES x ES pixels, each tile occupies one
DAP matrix. The set of DAP matrices are stored in column-major order. Here DAP
matrix refers to BITS consecutive bit planes

raster images are mapped into DAP store by imposing long-vector (column-major) or
dering on each DAP matrix of pixel values and then column-major ordering on the set
of matrices

4 References
None.

5 Arguments
IMAGE

IMAGE is the image to be remapped into DAP store.

BITS

On entry BITS is the number of bits per pixel in IMAGE. Unchanged on exit.

NS.. SIZE

On entry NS_ SIZE contains the height of the image in pixels divided by ES. NS_ SIZE
must be one of 1, 2, 4, 8, 16, 32. Unchanged on exit.

WESIZE

On entry WE_SIZE contains the width of the image divided by ES. WE_SIZE must be
one of 1, 2, 4, 8, 16, 32. Unchanged on exit.

6 Errors
No explicit error checking is done.

7 Auxiliary Routines
LOG2, XO5LOG2

8 Accuracy
Not applicable.

26 manOl4.03 AMT

Image Conversion Routines SHEET.. RASTER

9 Further Comments
This routine uses the Parallel Data Transforms.

10 Keywords
Data Transformation

Image Processing Library manOl4.03 27

TWO.. UNSIG Image Conversion Routines

3.7 TWO.UNSIG

1 Purpose
This routine converts an image from from two’s complement to unsigned integer format
maintaining the ordering of the grey-scale values.

2 Specification

TWO UNSIG (IMAGE, BITS ,NS.. SIZE ,WE SIZE)

LOGICAL IMAGE (, , BITS,NS...SIZE,WE SIZE)

INTEGER *4 BITS, NS...SIZE, WE..SIZE

3 Description
This routine converts images from two’s complement to unsigned format by flipping the most
significant bit of the pixel value.

4 References
None.

5 Arguments -

IMAGE

IMAGE is the image to be format converted.

BITS

On entry BITS is the number of bits per pixel in IMAGE. Unchanged on exit.

NS_SIZE

On entry NS_ SIZE contains the height of the image in pixels divided by ES. Unchanged
on exit.

wE.. SIZE

On entry WE_SIZE contains the width of the image divided by ES. Unchanged on exit.

6 Errors
No explicit error checking is done.

7 Auxiliary Routines
None.

8 Accuracy
Not applicable.

9 Further Comments
None.

28 manOl4.03 AMT

Image Conversion Routines TWO_ UNSIG

10 Keywords
Image Processing

Image Processing Library manOl4.03 29

UNSIG.. TWO Image Conversion Routines

3.8 UNSIG_ TWO

1 Purpose
This routine converts an image from from unsigned integer format to two’s complement
integer format maintaining the ordering of the grey-scale values.

2 Specification

UNSIG TWO (IMAGE,BITS,N& SIZE,WE SIZE)

LOGICAL IMAGE(, ,BITS,NSSIZE,WESIZE)

INTEGER *4 BITS, NS..SIZE, WESIZE

3 Description
This routine converts images from unsigned to two’s complement format by flipping the most
significant bit of the pixel value.

4 References
None.

5 Arguments

IMAGE

IMAGE is the image to be format converted.

BITS

On entry BITS is the number of bits per pixel in IMAGE. Unchanged on exit.

N& SIZE

On entry NS_ SIZE contains the height of the image in pixels divided by ES. Unchanged
on exit.

W&. SIZE

On entry WE_SIZE contains the width of the image divided by ES. Unchanged on exit.

6 Errors
No explicit error checking is done.

7 Auxiliary Routines
None.

8 Accuracy
Not applicable.

9 Further Comments
None.

30 manOl4.03 AMT

Image Conversion Routines UNSIG_ Two

10 Keywords
Image Processing

Image Processing Library manOl4. 03 31

UNSIG_ TWO Image Conversion Routines

.

.
32 manOl4.03 AMT

Chapter 4

Image Processing Primitives

These routines provide image processing primitives such as image shifting and addition of two
images. Routines specified as 8-bits per pixel routines may also be used for 16-bits per pixel
images by replacing the 8 in the routine name by 16 (and 16 if present by 32). For example:

MULT_8_TO_16 — multiplies two 8-bit two’s complement images to form a 16-bit
image.

MULT_16_TO_32 — multiplies two 16-bit two’s complement images to form a 32-bit
image.

The routines ADD..8, SCAL_ADD_8 and SUB..8 return their results modulo 256. The routines
ADD_ 16, SCAL_ADD_ 16 and SUB_ 16 return their results modulo 65536.

The shifting routines are for crinkled mapped images only. Shifts north are documented here but
shifts to other directions can be made by replacing NORTH in the routine name by SOUTH, EAST
or WEST as required.

Image Processing Library manOl4.03 33

ADD_ 8 Image Processing Primitives

Arithmetic Operations

4.1 ADD_8

1 Purpose
This routine adds together two 8-bit two’s complement images. The result is returned modulo
256.

2 Specification

ADD.. 8 (IMAGE 1 ,IMAGE2,NS..SIZE,WL SIZE,IMAGE.. SUM)

INTEGER*1 IMAGE1 (,,NSSIZE,WESIZE),
& IMAGE2 (,,NSSIZE,WESIZE),
& IMAGE... SUM (,,N&SIZE,WE..SIZE)

INTEGER*4 NS..SIZE,WE.. SIZE

3 Description
IMAGE1 is added modulo 256 to IMAGE2 pixel-by-pixel to form IMAGE_SUM

4 References
None.

5 Arguments
IMAGE1

On entry IMAGE1 is one of the 8-bit images to be added together. Each dimension of
the image size must be ES and a multiple of ES. IMAGE 1 may be overwritten by the
sum if desired.

IMAGE2

On entry IMAGE2 is the other image to be added. The dimensions of IMAGE2 must be
identical to those of IMAGE1. IMAGE2 may be overwritten by the sum if desired.

NS.. SIZE

On entry NS_SIZE contains the height in pixels of the images divided by ES. Unchanged
on exit.

wE.. SIZE

On entry WE.. SIZE contains the width in pixels of the image divided by ES. Unchanged
on exit.

IMAGE.. SUM

On exit IMAGE.. SUM is the sum of IMAGE1 and IMAGE2 modulo 256.

6 Errors
No explicit error checking is done.

34 manOl4.03 AMT

Image Processing Primitives ADD_ 8

7 Auxiliary Routines
None.

8 Accuracy
Not applicable.

9 Further Comments
None.

10 Keywords
Image Processing

Image Processing Library manOl4.03 35

SCAL_ADD_ & Image Processing Primitives

4.2 SCALADLL8

1 Purpose
This routine adds an 8-bit two’s complement scalar to an 8-bit two’s complement image.
The result is returned modulo 256.

2 Specification

SCAL ADIX. 8 (IMAGE,SCAL,N& SIZE,WE... SIZE,IMAGE SUM)

INTEGER*1 IMAGE (,,NS...SIZE,WE.SIZE),
& SCAL,
& IMAGE... SUM (, , N&SIZE,WESIZE)

INTEGER*4 NS... SIZE,WE.. SIZE

3 Description
SCAL is added modulo 256 to each pixel of IMAGE to form IMAGE.. SUM.

4 References
None.

5 Arguments

IMAGE

On entry IMAGE is the 8-bit image to be added to a scalar. Each dimension of the
image size must be ESand a multiple of ES. IMAGE may be overwritten by the sum
if desired.

N&SIZE

On entry NS_ SIZE contains the height in pixels of the image divided by ES. Unchanged
on exit.

WE.. SIZE

On entry WE_SIZE contains the width of the image divided by ES. Unchanged on exit.

IMAGE.. SUM

On exit IMAGE SUM is the sum of IMAGE and SCAL modulo 256.

6 Errors
No explicit error checking is done.

7 Auxiliary Routines
None.

8 Accuracy
Not applicable.

36 manOl4.03 AMT

Image Processing Primitives SCAL ADIX 8

9 Further Comments
None.

10 Keywords
Image Processing

Image Processing Library manOl4. 03 37

$U3_ 8 Image Processing Primitives

4.3 SUB_8

1 Purpose
This routine subtracts two &.bit two’s complement images. The result is returned modulo
256.

2 Specification

SU& 8 (IMAGE1 ,IMAGE2,NS.. SIZE,WE.. SIZE,IMAGE DIFF)

INTEGER*1 IMAGE1 (,,NSSIZE,WE SIZE),
& IMAGE2 (,,NSSIZE,WESIZE),
& IMAGEJJIFF (, ,NSSIZE,WE...SIZE)

INTEGER*4 NS.. SIZE,WE. SIZE

3 Description
IMAGE2 is subtracted modulo 256 from IMAGE1 pixel-by-pixel to form IMAG&.DIFF.

4 References
None.

5 Arguments

IMAGE 1

On entry is one of the 8-bit images to be subtracted. Each dimension of the image
size must be E$and a multiple of ES. IMAGE1 may be overwritten by the result if
desired.

IMAGE2

On entry IMAGE2 is the other image to be subtracted. The dimensions of IMAGE2
must be identical to those of IMAGE1. IMAGE2 may be overwritten by the result if
desired.

N& SIZE

On entry NS_ SIZE contains the height in pixels of the images divided by ES. Unchanged
on exit.

WE...SIZE

On entry WE_ SIZE contains the width of the images divided by ES. Unchanged on
exit.

IMAGEJJIFF

On exit IMAGE... DIFF is IMAGE1 minus IMAGE2 modulo 256.

6 Errors
No explicit error checking is done.

7 Auxiliary Routines
None.

38 manOl4.03 AMT

Image Processing Primitives SU3_ 8

8 Accuracy
Not applicable.

9 Further Comments
None.

10 Keywords
Image Processing

Image Processing Library manOl4.03 39

MULT_ 8_ TO.. 16 Image Processing Primitives

4.4 MULT..&TO..16

1 Purpose
This routine multiplies two 8-bit two’s complement images to form a 16-bit image.

2 Specification

MULT... 8TO.. 16 (IMAGE1 ,IMAGE2 ,NS.. SIZE,WE.. SIZE,IMAGE.. PROD)

INTEGER*1 IMAGE1 (,,NSSIZE,WE..SIZE),
& IMAGE2 (,,NSSIZE,WESIZE)

INTEGER*2 IMAGE... PROD (, ,NS..SIZE,WE SIZE)

INTEGER*4 NS... SIZE,WE.. SIZE

3 Description
IMAGE1 is multiplied by IMAGE2 pixel-by-pixel to form IMAGE.. PROD.

4 References
None.

5 Arguments

IMAGE1

On entry is one of the 8-bit images to be multiplied together. Each dimension of the
image size must be ESand a multiple of ES. Unchanged on exit.

IMAGE2

On entry IMAGE2 is the other image to be multiplied. The dimensions of IMAGE2 must
be identical to those of IMAGE1. Unchanged on exit.

N& SIZE

On entry NS_SIZE contains the height in pixels of the images divided by ES. Unchanged
on exit.

WE SIZE

On entry WE_SIZE contains the width of the images divided by ES. Unchanged on
exit.

IMAGE PROD

On exit IMAGE..PROD is the product of IMAGE1 and IMAGE2.

6 Errors
No explicit error checking is done.

7 Auxiliary Routines
None.

40 manOl4.03 AMT

Image Processing Primitives MULT., 8.. TO_ 16

8 Accuracy
Not applicable.

9 Further Comments
None.

10 Keywords
Image Processing

Image Processing Library manOl4. 03 41

SCAL...MULT.8.. TQ.16 Image Processing Primitives

4.5 SCALMULT&T016

1 Purpose
This routine multiplies an 8-bit two’s complement image by an 8-bit two’s complement scalar
to form a 16-bit image.

2 Specification

SCAL.. MULT.. &. TO.. 16 (IMAGE,SCAL,NS SIZE,WE.. SIZE,IMAGE.. PROD)

INTEGER*1 IMAGE (,,NS..SIZE,WE..SIZE),
& SCAL

INTEGER*2 IMAGE... PROD(, , NS..SIZE,WE.. SIZE)

INTEGER*4 NS.. SIZE,WE.. SIZE

3 Description
IMAGE is multiplied by SCAL pixel-by-pixel to form IMAGE..PROD.

4 References
None.

5 Arguments

IMAGE

On entry IMAGE is the 8-bit image to be multiplied by SCAL. Each dimension of the
image size must be ESand a multiple of ES. Unchanged on exit.

SCAL

On entry SCAL is the scalar that multiplies IMAGE. Unchanged on exit.

NS SIZE

On entry NS_ SIZE contains the height in pixels of the image divided by ES. Unchanged
on exit.

WE..SIZE

On entry WE_SIZE contains the width of the image in pixels divided by ES. Unchanged
on exit.

IMAGE PROD

On exit IMAGE_PROD is the product of IMAGE and SCAL.

6 Errors
No explicit error checking is done.

7 Auxiliary Routines
None.

42 manOl4.03 AMT

Image Processing Primiiives SCAL.MULT.. & TO.. 16

S Accuracy
Not applicable.

9 Further Comments
None.

10 Keywords
Image Processing

Image Processing Library manOl4.03 43

SCAL_DW_ 8 Image Processing Primitives

4.6 $CALJJIV8

1 Purpose
This routine divides an 8-bit two’s complement image by an 8-bit two’s complement scalar
to form an 8-bit image.

2 Specification

SCAL.DIV...8 (IMAGE,SCAL,NS..SIZE,WE..SIZE,IMAGE.. QUOT)

INTEGER*1 IMAGE (,,NS..SIZE,WE SIZE),
SCAL,

& IMAGLQUOT(, ,NS...SIZE,WESIZE)

INTEGER*4 NS SIZE,WE.. SIZE

3 Description
IMAGE is divided by SCAL pixel-by-pixel to form IMAGE_QUOT.

4 References
None.

5 Arguments

IMAGE

On entry IMAGE is the 8-bit image to be divided by SCAL. Each dimension of the image
size must be ESand a multiple of ES. Unchanged on exit.

SCAb

On entry SCAL is the scalar that divides IMAGE. Unchanged on exit.

NS SIZE

On entry NS_ SIZE contains the height in pixels of the image divided by ES. Unchanged
on exit.

WE SIZE

On entry WE_SIZE contains the width of the image divided by ES. Unchanged on exit.

IMAGE QUOT

On exit IMAGE.QUOT is the quotient of IMAGE and SCAL.

6 Errors
No explicit error checking is done.

7 Auxiliary Routines
None.

44 manOl4.03 AMT

Image Processing Primitives SCAL..DW..8

8 Accuracy
Not applicable.

9 Further Comments
None.

10 Keywords
Image Processing

Image Processing Library manOl4.03 45

SHIFT... IMAGE.. NORTH.. p Image Processing Primitives

Shifts

4.7 SHIFTIMAGENORTILP

1 Purpose
SHIFT...IMAGE_NORTH_P shifts an entire image north with planar boundary conditions.
Zeroes are introduced at the boundaries.

2 Specification

SUBROUTINE SHIFTIMAGE..NORTH..P (IMAGE, BITS, NS...SIZE, WE..SIZE,
SHIFT.. IMAGE, DIST)

LOGICAL IMAGE (,,BITS,NSSIZE,WLSIZE),
& SHIFTIMAGE (,,BITS,NSSIZE,WESIZE)

INTEGER*4 NSSIZE, WE..SIZE, DIST, BITS

3 Description
All of IMAGE is shifted north by DIST pixels with planar boundary conditions. The precision
of IMAGE is specified in BITS.

4 References
None.

5 Arguments
IMAGE

On entry IMAGE is the image to be shifted. Each dimension of the image size must be
in the range ES to 32E$ and a multiple of ES. The image is assumed to be stored in
IMAGE using a crinkled mapping where the third and fourth co-ordinates of IMAGE
are vertical and horizontal co-ordinates of each crinkled tile. Unchanged on exit, unless
IMAGE and SHIFT_IMAGE occupy the same area of store.

BITS

On entry BITS is the precision in bits of the image. Unchanged on exit.

NS SIZE

On entry NS_ SIZE contains the height of IMAGE in pixels divided by ES. NS_ SIZE
must be in the range 1 to 32. Unchanged on exit.

WE.. SIZE

On entry WE_SIZE contains the width of IMAGE in pixels divided by ES. WE_SIZE
must be in the range 1 to 32. Unchanged on exit.

SHIFT IMAGE

On exit SHIFT.. IMAGE contains the shifted version of IMAGE. SHIFT_IMAGE may
occupy the same area of store as IMAGE. (They must occupy identical or disjoint but
not overlapping areas of store.)

46 manOl4.03 AMT

Image Processing Primitives SHIFT.. IMAGE.. NORTH.. P

DIST

On entry DIST is the distance IMAGE is to be moved. DIST must be non-negative.
Unchanged on exit.

6 Errors
No explicit error checking is done.

7 Auxiliary Routines
None.

8 Accuracy
Not applicable.

9 Further Comments

260 stack planes are allocated. BITS x DISTmodutoNS...SIZE planes will be needed.
For east or west shifts BITS x DISTmodu1oWE_ SIZE planes will be needed. For large
shifts to be performed you will need to increase the program’s stack allocation (see stack size
in DAP Series: Program Development under UNIX or DAP Series: Program Development
under VAX/VMS).

10 Keywords
Shifting, Image Processing

Image Processing Library manOl4.03 47

SHIFT.. IMAGE.. NORTH.. C Image Processing Primitives

4.8 SHIFT.JMAGENORTILC

1 Purpose
SHIFT_IMAGE_NORTH_C shifts an entire image north with cyclic (wrap-around) bound
ary conditions.

2 Specification

SUBROUTINE SHIFT.. iMAGE.. NORTH C (IMAGE, BITS, NS SIZE, WE.. SIZE,
& SHIFTIMAGE, DIST)

LOGICAL IMAGE (,,3ITS,NSSIZE,WE..SIZE),
& SHIFTIMAGE (,,BITS,NSSIZE,WE SIZE)

INTEGER*4 NSSIZE, WESIZE, DIST, BITS

3 Description
All of IMAGE is shifted north by DIST pixels with cyclic boundary conditions. The precision
of IMAGE is specified in BITS.

4 References
None.

5 Arguments

IMAGE

On entry IMAGE is the image to be shifted. Each dimension of the image size must be
in the range ES to 32ES and a multiple of ES. The image is assumed to be stored in
IMAGE using a crinkled mapping where the third and fourth co-ordinates of IMAGE
are vertical and horizontal co-ordinates of each crinkled tile. Unchanged on exit, unless
IMAGE and SHIFT_IMAGE occupy the same area of store.

BITS

On entry BITS is the precision in bits of the image. Unchanged on exit.

NSSIZE

On entry NS_ SIZE contains the height in pixels of IMAGE divided by ES. NS_ SIZE
must be in the range 1 to 32. Unchanged on exit.

WE.. SIZE

On entry WE_SIZE contains the width in pixels of IMAGE divided by ES. WE_SIZE
must be in the range 1 to 32. Unchanged on exit.

SHIFT IMAGE

On exit SHIFT_IMAGE contains the shifted version of IMAGE. SHIFT_IMAGE may
occupy the same area of store as IMAGE. (They must occupy identical or disjoint but
not overlapping areas of store.)

DIST

On entry DIST is the distance IMAGE is to be moved. DIST must be non-negative.
Unchanged on exit.

48 manOl4.03 AMT

Image Processing Primitives SHIFT.. iMAGE.. NORTH.. C

6 Errors
No explicit error checking is done.

7 Auxiliary Routines
None.

8 Accuracy
Not applicable.

9 Further Comments
260 stack planes are allocated. BITS x DISTmodutoNS_ SIZE planes will be needed.
For east or west shifts BITS x DISTmoduloWE_ SIZE planes will be needed. For large
shifts to be performed you will need to increase the program’s stack allocation (see stack size
in DAP Series: Program Development under UNIX or DAP Series: Program Development
under VAX/VMS).

10 Keywords
Shifting, Image Processing

Image Processing Library manOl4.03 49

SHIFT.. ROW.. NORTH.. P Image Processing Primitives

4.9 SHIFT... ROW. NORTIL P

1 Purpose
SfflFT_ ROW_ NORTH.. P shifts a row of matrices of an image north with planar boundary
conditions. Zeroes are introduced at the boundaries.

2 Specification

SUBROUTINE SHIFT.. ROW.. NORTH.. P (IMAGE, BITS, NS. SIZE, WE.. SIZE,
& SHIFT..ROW, ROW, DIST)

LOGICAL IMAGE (,,BITS,NS...SIZE,WE..SIZE),
& SHIFTROW (,,BITS,WESIZE)

INTEGER*4 NSSIZE, WE..SIZE, ROW, DIST, BITS

3 Description
SHIFT_ ROW is the ROWth row of DAP matrices from the version of IMAGE shifted north
by DIST pixels with planar boundary conditions. Thus if IMAGE1 were the (imaginary)
shifted version of IMAGE, then SHIFT_ ROW(, , J)=IMAGE1 (, , ROW, J) for J1,2,...WE_SIZE.

4 References
None.

5 Arguments

IMAGE

On entry IMAGE is the image to be shifted. Each dimension of the image size must be
in the range ES to 32E$ and a multiple of ES. The image is assumed to be stored in
IMAGE using a crinkled mapping where the third and fourth co-ordinates of IMAGE
are vertical and horizon- tal co-ordinates of each crinkled tile. Unchanged on exit.

BITS

On entry BITS is the precision in bits of the image. Unchanged on exit.

NS.. SIZE

On entry NS_ SIZE contains the height in pixels of IMAGE divided by ES. NS_ SIZE
must be in the range 1 to 32. Unchanged on exit.

WE.. SIZE

On entry WE_SIZE contains the width in pixels of IMAGE divided by ES. WE_SIZE
must be in the range 1 to 32. Unchanged on exit.

SHIFT ROW

On exit SHIFT_ROW contains the ROWS” row of DAP matrices of the shifted version
of IMAGE.

ROW

ROW is the row of the shifted image to be calculated.

50 manOl4.03 AMT

Image Processing Primitives SHIFT.. ROW NORTH.. C

DIST

On entry DIST is the distance IMAGE is to be moved. DIST must be non-negative.
Unchanged on exit.

6 Errors
No explicit error checking is done.

7 Auxiliary Routines
None.

8 Accuracy
Not applicable.

9 Further Comments
260 stack planes are allocated. BITS x DISTmoduloNS_ SIZE planes will be needed.
For east or west shifts BITS x DISTmodutoWE_ SIZE planes will be needed. For large
shifts to be performed you will need to increase the program’s stack allocation (see stack size
in DAP Series: Program Development under UNIX or DAP Series: Program Development
under VAX/VMS).

10 Keywords
Shifting, Image Processing

4.10 SHIFT ROW... NORTIL C

1 Purpose
SHIFT_ ROW_ NORTH.. C shifts a row of matrices of an image north with cyclic (wrap
around) boundary conditions.

2 Specification

SUBROUTINE SHIFT.. ROW... NORTL C (IMAGE, BITS, NS.. SIZE, WE SIZE,
& SHIFT... ROW, ROW, DIST)

LOGICAL IMAGE (, , BITS,NS..SIZE,WE SIZE), sHIFT.. ROW (, , BITS ,WE.. SIZE)

INTEGER*4 NS..SIZE, WE...SIZE, ROW, DIST, BITS

3 Description
SHIFT_ ROW is the ROW” row of DAP matrices from the version of IMAGE shifted north
by DIST pixels with cyclic boundary conditions. Thus if IMAGE1 were the (imaginary)
shifted version of IMAGE, then SHIFT.. ROW(, ,J)=IMAGE1 (, , ROW,J) for J=1,2,...WE..SIZE.

4 References
None.

Image Processing Library man 014.03 51

SHIFT.. ROW.. NORTH.. C Image Processing Primitives

5 Arguments

IMAGE

On entry IMAGE is the image to be shifted. Each dimension of the image size must be
in the range ES to 32E$ and a multiple of ES. The image is assumed to be stored in
IMAGE using a crinkled mapping where the third and fourth co-ordinates of IMAGE
are vertical and horizontal co-ordinates of each crinkled tile. Unchanged on exit.

BITS

On entry BITS is the precision in bits of the image. Unchanged on exit.

N&SIZE

On entry NS..SIZE contains the height in pixels of IMAGE divided by ES. NS_SIZE
must be in the range 1 to 32. Unchanged on exit.

WE SIZE

On entry WE_ SIZE contains the width in pixels of IMAGE divided by ES. WE_ SIZE
must be in the range 1 to 32. Unchanged on exit.

SHIFT.. ROW

On exit SHIFT.. ROW contains the ROW row of DAP matrices of the shifted version
of IMAGE.

.

52 manOl4.03 AMT

Image Processing Primitives SHIFT ROW NORTIL C

ROW

ROW is the row of the shifted image to be calculated.

DIST

On entry DIST is the distance IMAGE is to be moved. DIST must be non-negative.
Unchange1 on exit.

6 Errors
No explicit error checking is done.

7 Auxiliary Routines
None.

8 Accuracy
Not applicable.

9 Further Comments
260 stack planes are allocated. BITS x DISTmoduloNS_ SIZE planes will be needed.
For east or west shifts BITS x DISTmoduloWE..SIZE planes will be needed. For large
shifts to be performed you will need to increase the program’s stack allocation (see stack size
in DAP Series: Program Development under UNIX or DAP Series: Program Development
under VAX/VMS).

10 Keywords
Shifting, Image Processing

Image Processing Library manOl4.03 53

SHIFT.. COL NORTH.. P Image Processing Primitives

4.11 SHIFTCOLNORTILP

1 Purpose
SHIFT_COL_NORTH_P shifts a column of matrices of an image north with planar boundary
conditions. Zeroes are introduced at the boundaries.

2 Specification

SUBROUTINE SHIFT.. COL.NORTFL P (IMAGE, BITS, NS SIZE, wE.. SIZE,
& SHIFTCOL, COL, DIST)

LOGICAL IMAGE(, , BITS,NS...SIZE,WESIZE), SHIFT COL (, , BITS,NS..SIZE)

INTEGER*4 NS..SIZE, WLSIZE, COL, DIST, BITS

3 Description
SHIFT...COL is the COLtl column of DAP matrices from IMAGE shifted north by DIST
pixels with planar boundary conditions. Thus if IMAGE1 were the (imaginary) shifted
version of IMAGE, then SHIFT_COL (, , I)=IMAGE1 (, , I,COL) for 1=1, 2,...NS_SIZE.

4 References
None.

5 Arguments
IMAGE

On entry IMAGE is the image to be shifted. Each dimension of the image size must be
in the range ES to 32ES and a multiple of ES. The image is assumed to be stored in
IMAGE using a crinkled mapping where the third and fourth co-ordinates of IMAGE
are vertical and horizontal co-ordinates of each crinkled tile. Unchanged on exit.

BITS

On entry BITS is the precision in bits of the image. Unchanged on exit.

NS_ SIZE

On entry NS_ SIZE contains the height in pixels of IMAGE divided by ES. NS SIZE
must be in the range 1 to 32. Unchanged on exit.

WE..SIZE

On entry WE_SIZE contains the width in pixels of IMAGE divided by ES. WE_SIZE
must be in the range 1 to 32. Unchanged on exit.

SHIFT COL

On exit SHIFT.. COL contains the COLA column of DAP matrices of the shifted version
of IMAGE,

COL

COL is the column of the shifted image to be calculated.

DIST

On entry DIST is the distance IMAGE is to be moved. DIST must be non-negative.
Unchanged on exit.

54 manOl4.03 AMT

Image Processing Primitives SHIFT.. COL NORTIL P

6 Errors
No explicit error checking is done.

7 Auxiliary Routines
None.
Not available.

8 Accuracy
Not applicable.

9 Further Comments
260 stack planes are allocated. BITS x DISTmodutoNS_ SIZE planes will be needed.
For east or west shifts BITS x DISTmodutoWE..SIZE planes will be needed. For large
shifts to be performed you will need to increase the program’s stack allocation (see stack size
in DAP Series: Program Development under UNIX or DAP Series: Program Development
under VAX/VMS).

10 Keywords
Shifting, Image Processing

Image Processing Library manOl4.03 55

SEIFT..COL..NORTH.. C Image Processing Primitives

4.12 SHIFT..COL..NORTH..C

1 Purpose
SHIFT_COL_NORTH_C shifts a column of matrices of an image north with cyclic (wrap
around) boundary conditions.

2 Specification

SUBROUTINE SHIFT..COL..NORT&C (IMAGE, BITS, NS..SIZE, WE..SIZE,
SHIFT.. COL, COL, DIST)

LOGICAL IMAGE (, , BITS,NS..SIZE,WE..SIZE), SHIFT.. COL(, ,BITS,NS.. SIZE)

INTEGER*4 NSSIZE, WE..SIZE, COL, DIST, BITS

3 Description
SHIFT.. COL is the COLtJI column of DAP matrices from IMAGE shifted north by DIST
pixels with cyclic boundary conditions. Thus if IMAGE1 were the (imaginary) shifted version
of IMAGE, then SHIFT_COLt,, I)=IMAGE1 (, , I,COL) for I=1,2,...NS_ SIZE.

4 References
None.

5 Arguments
IMAGE

On entry IMAGE is the image to be shifted. Each dimension of the image size must
be ES and a multiple of ES. The image is assumed to be stored in IMAGE using
a crinkled mapping where the third and fourth co-ordinates of IMAGE are vertical and
horizontal co-ordinates of each crinkled tile. Unchanged on exit.

BITS

On entry BITS is the precision in bits of the image.Unchanged on exit.

NS SIZE

On entry NS_SIZE contains the height in pixels of IMAGE divided by ES. NS_ SIZE
must be in the range 1 to 32. Unchanged on exit.

WE..SIZE

On entry WE_SIZE contains the width in pixels of IMAGE divided by ES. WE_SIZE
must be in the range 1 to 32. Unchanged on exit.

SHIFT COL

On exit SHIFT.. COL contains the COT)” column of DAP matrices of the shifted version
of IMAGE.

COL

COL is the column of the shifted image to be calculated.

DIST

On entry DIST is the distance IMAGE is to be moved. DIST must be non-negative.
Unchanged on exit.

56 manOl4.03 AMT

Image Processing Primitives SHIFT.. COL. NORTH.. C

6 Errors
No explicit error checking is done.

7 Auxiliary Routines
None.

8 Accuracy
Not applicable.

9 Further Comments
260 stack planes are allocated. BITS x DISTmodutoNS.SIZE planes will be needed.
For east or west shifts BITS x DISTmodutoWE_ SIZE planes will be needed. For large
shifts to be performed you will need to increase the program’s stack allocation (see stack size
in DAP Series: Program Development under UNIX or DAP Series: Program Development
under VAX/VMS).

10 Keywords
Shifting, Image Processing

Image Processing Library manOl4. 03 57

SHIFT.. SHEET.. NORTH.. P Image Processing Primitives

4.13 SHIFTSHEET.NORTILP

1 Purpose
SHIFT_SHEET_NORTH_P shifts a matrix of an image north with planar boundary condi
tions. Zeroes are introduced at the boundaries.

2 Specification

SUBROUTINE SHIFT.. SHEET... NORTIL P (IMAGE, BITS, NS SIZE, WE.. SIZE,
SHIFT.. SHEET, ROW, COL, DIST)

LOGICAL IMAGE (,,BITS,NS..SIZE,WE..SIZE), SHIFT.. SHEET (, ,BITS)

INTEGER*4 NS..SIZE, WE..SIZE, ROW, COL, DIST, BITS

3 Description
SHIFT...SHEET is the (ROWl,COLthI) DAP matrix from IMAGE if it were shifted north
by DIST pixels with planar boundary conditions. Thus if IMAGE1 were (the imaginary)
shifted version of IMAGE, then SHIFT..SHEET(,)=IMAGE1 (,,ROW, COL).

4 References
None.

5 Arguments
IMAGE

On entry IMAGE is the image to be shifted. Each dimension of the image size must be
in the range ES to 32E$ and a multiple of ES. The image is assumed to be stored in
IMAGE using a crinkled mapping where the third and fourth co-ordinates of IMAGE
are vertical and horizontal co-ordinates of each crinkled tile. Unchanged on exit.

BITS

On entry BITS is the precision in bits of the image. Unchanged on exit.

N&SIZE

On entry NS_ SIZE contains the height in pixels of IMAGE divided by ES. NS_ SIZE
must be in the range 1 to 32. Unchanged on exit.

WE.. SIZE

On entry WE SIZE contains the width in pixels of IMAGE divided by ES. WE.. SIZE
must be in the range 1 to 32. Unchanged on exit.

SHIFT.. SHEET

On exit SHIFT_SHEET contains the (ROW,COV’) DAP matrix of the shifted version
of IMAGE.

58 manOl4.03 AMT

Image Processing Primitives SHIFT.. SHEET.. NORTH.. P

ROW

ROW is the row of the shifted image to be calculated.

DIST

On entry DIST is the distance IMAGE is to be moved. DIST must be non-negative.
Unchanged on exit.

6 Errors
No explicit error checking is done.

7 Auxiliary Routines
None.

8 Accuracy
Not applicable.

9 Further Comments
None.

10 Keywords
Shifting, Image Processing

Image Processing Library manOl4. 03 59

SHIFT.SHEET...NORTH C Image Processing Primitives

4.14 SHIFT.. SHEET. NORTIL C

1 Purpose
SHIFT_SHEET_NORTH_C shifts a matrix of an image north with cyclic (wrap-around)
boundary conditions.

2 Specification

SUBROUTINE SHIFTSHEETNORTHC (IMAGE, BITS, NS..SIZE, WESIZE,
& SHIFT SHEET, ROW, COL, DIST)

LOGICAL IMAGE (, , BITS,NSSIZE,WESIZE), SHIFT SHEET (, , BITS)

INTEGER*4 NSSIZE, WE..SIZE, ROW, COL, DIST, BITS

3 Description
SHIFT_SHEET is the (ROW,COLth) DAP matrix from IMAGE if it were shifted north by
DIST pixels with cyclic boundary conditions. Thus if IMAGE1 were the (imaginary) shifted
version of IMAGE, then SHIFTSHEET (,)=IMAGE1 (,,ROW, COL).

4 References
None.

5 Arguments
IMAGE

On entry IMAGE is the image to be shifted. Each dimension of the image size must be
in the range ES to 32ES and a multiple of ES. The image is assumed to be stored in
IMAGE using a crinkled mapping where the third and fourth co-ordinates of IMAGE
are vertical and horizontal co-ordinates of each crinkled tile. Unchanged on exit.

BITS

On entry BITS is the precision in bits of the image. Unchanged on exit.

NS_ SIZE

On entry NS_ SIZE contains the height in pixels of IMAGE divided by ES. NSSIZE
must be in the range 1 to 32. Unchanged on exit.

WE SIZE

On entry WE_SIZE contains the width in pixels of IMAGE divided by ES. WE_SIZE
must be in the range 1 to 32. Unchanged on exit.

SHIFT SHEET

On exit SHIFT_SHEET contains the (ROWtJ,COL) DAP matrix of the shifted version
of IMAGE.

ROW

ROW is the row of the shifted image to be calculated.

DIST

On entry DIST is the distance IMAGE is to be moved. DIST must be non-negative.
Unchanged on exit.

60 manOl4.03 AMT

Image Processing Primitives SHIFT.. SHEET... NORTIL C

6 Errors
No explicit error checking is done.

7 Auxiliary Routines
None.

8 Accuracy
Not applicable.

9 Further Comments
None,

10 Keywords
Shifting, Image Processing

Image Processing Library manOl4.03 61

SHIFtSHEEt NORT& C Image Processing Primitives

.

.

.
62 manOl4.03 AM?’

Chapter 5

Low Level Image Processing
Routines

These routines perform low level image processing tasks such as convolutions and FFT’s. Routines
specified as 8-bits per pixel may be used for 16-bits per pixel images by replacing the 8 in the name
by 16. For example:

AVERAGE_ 8 — convolves a square averaging mask with an 8-bit two’s complement
image.

AVERAGE_ 16 — convolves a square averaging mask with a 16-bit two’s complement
image.

The COMP_FFT_2D routines which perform FfTs on images with 8, 16 and 24 bits per pixel,
are listed in full.

Image Processing Library manOl4. 03 63

ABS_THRESE_8 Low Level Image Processing Routines

5.1 AB&THRESH.8

1 Purpose
ABS_ THRESH_ 8 thresholds an 8-bit two’s complement image.

2 Specification

SUBROUTINE ABS.THRESIL8(IMAGE ,NS.SIZE, WESIZE, THRESH,
& HIGILTIDE, FLIP, IFAIL)

INTEGER*1 IMAGE(, , NSSIZE,WE..SIZE)

INTEGER*4 NS...SIZE, W&.SIZE, HIGILTIDE, IFAIL

LOGICAL THRESH (, , N&SIZE, WE...S1ZE), FLIP

3 Description
THRESH is a logical bit-map of the image which has .TRUE. values where the IMAGE
grey-scale values exceed HIGH_TIDE and .FALSE. otherwise. (This is reversed if FLIP is
.FALSE. instead of .TRUE.)

4 References
None.

5 Arguments
IMAGE

On entry IMAGE contains the image to be thresholded. Each dimension of the image
size must be in the range ESto 32ESin multiples of ES. The image is assumed to be
stored in IMAGE using a crinkled mapping where the third and fourth co-ordinates of
IMAGE are the vertical and horizontal co-ordinates of each crinkled tile. Unchanged on
exit.

NSSIZE

On entry NS_ SIZE contains the height in pixels of the image divided by ES. NS_ SIZE
must be in the range 1-32. Unchanged on exit.

W&. SIZE

On entry WE_ SIZE contains the width of the image in pixels divided by ES. WE_ SIZE
must be in the range 1-32. Unchanged on exit,

THRESH

On exit THRESH contains a logical bit-map of from the thresholding of IMAGE.
THRESH stores the bit-map using a crinkled mapping (see IMAGE above).

HIGH TIDE

HIGH_TIDE is the threshold with which IMAGE is compared.

FLIP

If FLIP is .TRUE., THRESH is .TRUE. when IMAGE is greater than HIGH..TIDE. If
FLIP is .FALSE., THRESH is .FALSE. when IMAGE is greater than HIGRTIDE.

64 manOl4.03 AMT

Low Level Image Processing Routines ABS_ THRESH_ 8

IFAIL

IFAIL has the value 0 on exit unless an error occurs. (See 6 below.)

6 Errors

IFAIL=0 Successful exit
IFAIL=1 N&.SIZE out of range
IFAIL=2 WE_ SIZE out of range
IFML=13 RIGH..TIDE out of range —128 to 127

7 Auxiliary Routines
None.

8 Accuracy
Not applicable.

9 Further Comments
None.

10 Keywords
Thresholding, Image Processing

Image Processing Library manOl4.03 65

AVERAGE_8 Low Level Image Processing Routines

5.2 AVERAGE8

1 Purpose
AVERAGE_S convolves a square averaging mask with an 8-bit two’s complement image.

2 Specification

SUBROUTINE AVERAGE... 8 (IMAGE,NS. SIZE, WE.. SIZE, AVG,
& MASK.. SIZE, IFAIL)

INTEGER*1 IMAGE(, , NSSIZE,WESIZE), AVG (, , NSSIZE,WESIZE)

INTEGER*4 N&SIZE, WESIZE, MASK..SIZE, IFAIL

3 Description
AVG is the convolution of IMAGE and a centred square averaging mask. IMAGE is assumed
to be extended by a field of zeros for the convolution.

4 References
None.

5 Arguments
IMAGE

On entry IMAGE contains the image to be convolved with the averaging mask. Each
dimension of the image size must be in the range ES to 32ES in multiples of ES. The
image is assumed to be stored in IMAGE using a crinkled mapping where the third
and fourth co-ordinates of IMAGE are the vertical and horizontal co-ordinates of each
crinkled tile.

IMAGE is overwritten.

NSSIZE

On entry NS_ SIZE contains the height in pixels of the image divided by ES. NS_ SIZE
must be in the range 1-32. Unchanged on exit.

WE.. SIZE

On entry WE_ SIZE contains the width of the image divided by ES. WE_ SIZE must be
in the range 1-32. Unchanged on exit.

AVG

On exit AVG contains the convolution of IMAGE with an averaging mask. AVG stores
the convolution using a crinkled mapping (see IMAGE above).

MASK SIZE

On entry MASK_SIZE must be one of 3, 5, 7,...,31. This is length of the side of the
averaging mask. Unchanged on exit.

IFAIL

IFAIL has the value 0 on exit unless an error occurs. (See 6 below.)

66 manOl4.03 AMT

Low Level Image Processing Routines AVERAGE8

6 Errors

IFAIL=O Successful exit
IFML=1 NS_ SIZE out of range
IFAIL=2 WE_SIZE out of range
IFAIL=3 MASK SIZE invalid

7 Auxiliary Routines
Image Processing Library routines SHIFT COL WEST P, SHIFT COL EAST P,
SHIFTROWWESTP and SHIFTROWEASTP are called.

8 Accuracy
Not available.

9 Further Comments
None.

10 Keywords
Convolution, Local Averaging, Image Processing

Image Processing Library manOl4.03 67

BOX_IN..BOX_8 Low Level Image Processing Routines

5.3 BOXINBOX.8

1 Purpose
BOX_IN_BOX_8 applies box-in-a-box prescreening to an 8-bit per pixel two’s complement
image. The result is compared with a user supplied threshold and a binary result returned.

2 Specification

SUBROUTINE BO)LIN..BO)L8(IMAGE, N&SIZE, WE..SIZE, BOX,
BOXSIZE, THRESH, Wi, W2, IFAIL)

INTEGER*1 IMAGE(, ,NS.SIZE,WE...SIZE),
& Wi (, , NS..SIZE,WE SIZE),
& W2 (, , NSSIZE,WE SIZE)

LOGICAL BOX (, , NS...SIZE, WE..SIZE)

INTEGER*4 N&SIZE, WESIZE, BOX.SIZE, THRESH, IFAIL

3 Description
For each pixel in IMAGE the grey-scale values in a square box centred on the pixel are
averaged. An average of the grey-scale values is also calculated for a box of approximately
one-half the area of the first box. The average over the large box is subtracted from the
average over the small box and the result is compared with THRESH. If the result is greater
than THRESH, BOX will be .TRUE otherwise BOX will be .FALSE..

4 References
None.

5 Arguments

IMAGE

On entry IMAGE contains the image to be pre-screened. Each dimension of IMAGE
must be in the range ES to 32ES in multiples of ES. The image is assumed to be stored
using a crinkled mapping where the third and fourth co-ordinates of IMAGE are the
vertical and horizontal co-ordinates of each crinkled tile.

IMAGE is overwritten.

NSSIZE

On entry NS_SIZE contains the height in pixels of the image divided by ES. NS.. SIZE
must be in the range 1 to 32. Unchanged on exit.

WE SIZE

On entry WE_SIZE contains the width of the image in pixels divided by ES. WE_ SIZE
must be in the range 1 to 32. Unchanged on exit.

68 manOl4.03 AMT

Low Level Image Processing Routines 30X IN_ BOX_ 8

BOX

On exit BOX contains the result the thresholding operation stored using a crinkled
mapping.

BO)L SIZE

On entry BOX_SIZE is the size of the square outer box in pixels. It must be one of 5, 7,
9,...,31. Unchanged on exit.

THRESH

On entry THRESH is the threshold with which the difference of the two averages is
compared. Unchanged on exit.

Wi

Workspace.

W2

Workspace.

IFAIL

IFAIL equals 0 on exit unless an error occurs. (See 6 below)

6 Errors
IFAIL=0 Successful exit
IFML=1 NSSIZE out of range
IFAIL=2 WE_SIZE out of range
IFML=3 BOX.. SIZE out of range

7 Auxiliary Routines
The Image Processing Library routines AVERAGE..8, SHIFTCOL..WEST..P,
SHIFTCOL..EASTP, SHIFT..ROWWESTP and SHIFTROWEASTP are called.

8 Accuracy
Not available.

9 Further Comments
None.

10 Keywords
Prescreening, Image Processing

Image Processing Library manOl4.03 69

C06_ FFT.. ESS Low Level Image Processing Routines

5.4 C06_FFT_ESS

1 Purpose
C06_ FFT_ ESS calculates the two dimensional discrete Fourier transform of ES x ES complex
points.

2 Specification

SUBROUTINE CO&FFTESS (X , Y , INVERS , FIRST)

REALX(,),Y(j

LOGICAL INVERS , FIRST

3 Description
The two dimensional transform is calculated by performing independent sets of row and
column ES-point transforms.

The data is then in bit reversed order independently in rows and columns, and a final shuffle
is performed to reorder the data.

For a description of the general theory of FFTs see [t].

4 References

[1] BRIGHAM E.O.
The Fast Fourier Transform.
Prentice-Hall, 1974

5 Arguments

X - REAL MATRIX

On entry X contains the real part of the data to be transformed. On exit X contains the
real part of the transformed data.

Y - REAL MATRIX

On entry Y contains the imaginary part of the data to be transformed. On exit Y
contains the imaginary part of the transformed data.

INVERS - LOGICAL

If INVERS is set to .FALSE. the transform:

Xk + iY E(Amn + iBmn)exp2iri
— lXrn — 1)

+
(k — 1)(n — 1)

is calculated, where j = 1, 2, ... , ES; k = 1, 2, ... , ES and the summations are also
overm=1,2,...,ESandn=1,2,...,ES,

.
70 manOl4.03 AMT

Low Level Image Processing Routines C06..FfT..ESS

If INVERS is set to .TRUE. the transform:

Amn + iBmn + Yk)eXP27ti
—

1)
+

— 1 — 1)

is calculated, where m = 1, 2, ... ,ES; n = 1, 2, ... , ES and the summations are also
overj=1,2,... ,E$andk=1,2,... ,E$.

FIRST - LOGICAL

If FIRST is set to .TRUE. the exponential coefficients for the transform are calculated.
Consequently FIRST must be set to .TRUE. the first time this routine is called within
a program, but may be set to .FALSE. for all subsequent calls.

6 Errors
None.

7 Auxiliary Routines
This routine calls the DAP library routines Z..C0&F2DCOEFF, Z..CO&ROWFFT,
Z...C0&.COLFFT and Z...C0&F2DBREV.

8 Accuracy
Accuracy will be data dependent. Some indication of the accuracy may be obtained by
performing a subsequent inverse transform and comparing the results with the original data.

9 Further Comments
This routine uses a common block with the name CCO6FFTESSQ. Consequently the user
program must not use a common block with this name.

10 Keywords
Fast Fourier Transform

11 Example
Not available.

Image Processing Library manOl4.03 71

C06_FFT...LV Low Level Image Processing Routines

5.5 C06..FFTLV

1 Purpose
C06..FFT..LV performs a one dimensional finite Fourier transform of ES2 complex points.

2 Specification

SUBROUTINE C06..FFT.LV(X , Y INVERS , FIRST)

REAL X(,) , Y(,)

LOGICAL INVERS , FIRST

3 Description
The data is considered as ES2 complex points in long vector order, and the transform is
calculated by performing linked row and column transforms. The first step is to calculate
ES-point transforms along each row of complex data. The results of the row transforms
are multiplied by a second set of exponential factors and then ES-point transforms are
calculated along each column in a similar way to the row transforms but using different
exponential factors. The exponential factors are set up in such a way as to ensure that
the row and column transforms are linked correctly to give the required one dimensional
transform. The final step reorders the data which is in bit reveded order.

For a description of the general theory of FFTs see [1].

4 References

[1] BRIGHAM E.O.
The Fast Fourier Transform.
Prentice-Hall, 1974

5 Arguments

I - REAL MATRIX

On entry X contains the real part of the data to be transformed. On exit I contains the
transformed real part of the data.

Y - REAL MATRIX

On entry Y contains the imaginary part of the data to be transformed. On exit Y
contains the transformed imaginary part of the data.

INVERS - LOGICAL

If INVERS is set to .FALSE. the transform

ES2
X1 +i = E(Ak

—Xk _1))

is calculated, where j = 1, 2, ... , ES2 and the summation is over k = 1, 2, ... ,E52.

72 manOl4.03 AMT

Low Level Image Processing Routines C06.. FFT.. LV

If INVERS is set to .TRUE. the transform

ES
Ak+iBk (X +i)exp(—27r

1 1))

is calculated,where k = 1, 2, ... , ES2 and the summation is over j = 1, 2, ... , ES2.
The argument is unchanged on exit.

FIRST - LOGICAL

if FIRST is set to .TRUE. the exponential coefficients for the transform are calculated.
Consequently FIRST must be set to .TRUE. the first time this routine is called within
a program,but may be set to .FALSE. for all subsequent calls.

The argument is unchanged on exit.

6 Error Indicators
None.

7 Auxiliary Routines
The routine calls the DAP library routines Z..CO6FFT1DCOEFF, Z..QO6ROWFFT,
Z...CO6COLFFT, Z...CO6FFT1DBREV.

8 Accuracy
Accuracy will be data dependent. You can get some idea of the accuracy by carrying out
the transform, then carrying out the inverse transform and comparing the results with the
original data.

9 Further Comments
The routine uses a common block with name CCO6FFTLV. Consequently the your program
must not use a common block with this name.

10 Keywords
Fast Fourier Transform

11 Example
Not available.

Image Processing Library man 014.03 73

COMP_FFT.2D..8_TO..8 Low Level Image Processing Rou tines

5.6 COMP...FFT2D&T08

1 Purpose
CQMP_FFT_2D_8_TO_8 calculates the two dimensional fast Fourier transform of an 8-bit
two’s complement complex image producing an 8-bit two’s complement complex image. The
input data may be scaled; the output transform is scaled automatically.

2 Specification

SUBROUTINE COMPFFT.2]i.&TO...8 (DATA.JN, DATA..OUT, WORK,
& NSSIZE, wE.. SIZE,
& SCALE..FACTOR, INVERS, IFAIL)

INTEGER*1 DATAIN (, ,NS..SIZE,WE..SIZE,2)
& DATA.. OUT(, , NS..SIZE,WE...SIZE,2)

REAL*3 WORK(,,NS...SIZE,WESIZE,2)

INTEGER*4 NS.SIZE, WE.,SIZE, SCALEFACTOR, IFAIL

LOGICAL INVERS

3 Description
The two dimensional transform is calculated by performing independent row and column
transforms on the image. The forward Fourier transform is defined to be:

Ni—iN2—;

X(kr,k2) E
ezp{22(kiji

+ k2j2)} X(j;,j2)
3O j=O

where:

N1 = NS..SIZE x ES
N2 = WE..SIZE x ES

If INVERS is .TRUE. then the complex conjugate of the exponential is used. Normalisation
is not performed for either the forward or the inverse transform.

4 References
None.

5 Arguments

DATA IN

On entry DATA_IN contains the image to be transformed. The dimensions of the image
must be specified in NS_SIZE and WE_SIZE. The image is assumed to be stored in
DATA_IN using a crinkled mapping where the third and fourth co-ordinates of DATA_IN
are the vertical and horizontal co-ordinates of each crinkled tile. The real part of the
image is stored in the first half of DATA_IN, and the imaginary part in the second half.
Unchanged on exit, unless DATA..IN has been EQUIVALENCEd to DATA..OUT or
WORK.

74 manOl4.03 AMT

Low Level Image Processing Routines COMR.FFT_2D..&TO_8

DATA.. OUT

On exit DATA_ OUT contains the two dimensional Fourier transform of DATA.. IN.

WORK

Used as work space.

NS SIZE

On entry NS_ SIZE contains the height in pixels of the image, divided by ES. NS_ SIZE
must be in the range 1 to 32 and a power of two. Unchanged on exit.

WE.. SIZE

On entry WE_ SIZE contains the width of the image in pixels divided by ES. WE_ SIZE
must be in the range 1 to 32 and a power of two. Unchanged on exit.

SCALE.. FACTOR

On entry SCALE_FACTOR contains the scale-factor by which the input data has been
scaled. (positive if multiplied by; negative if divided by). On exit SCALE_FACTOR
contains the factor by which the result has been scaled.

INVERS

If INVERS is set to .TRUE. the inverse discrete Fourier transform is performed. Un
changed on exit.

IFAIL

IFML equals 0 on exit unless an error occurs. (See 6 below)

6 Errors

IFAIL=0 Successful exit
IFAIL=1 NS_ SIZE out of range
IFML=2 wE.. SIZE out of range

7 Auxiliary Routines
This routine calls the Image Processing Library subroutines COMPFFT2DREAL3,
XO5LOG2 and XO5PI, and the parallel data transform library is also used.

8 Accuracy
Not available.

9 Further Comments
The transform is calculated in place; DATAIN, DATA_OUT and WORK may all occupy
disjoint areas of DAP store or any two may be EQUIVALENCEd or all three may be EQUIV
ALENCEd to start at the same address. For example:

EQUIVALENCE (DATA..IN,DATAOUT)
EQUIVALENCE (DATAIN,DATAOUT,WORK)

would both work. But

EQUIVALENCE (DATAIN,WORK) ,(DATA OUT,WORK(,,NS SIZE,3))
would not work.

Image Processing Library manOl4. 03 75

COMP..FfZ2D...8_TO..8 Low Level Image Processing Routines

10 Keywords
Fast Fourier Transform, Image Processing

.
76 manOl4.03 AMT

Low Level Image Processing Routines COMP_FfT2D..&TO_1 6

5.7 COMRIFT2D&T0116

1 Purpose
COMP_FFT_2D_8_TO_16 calculates the two dimensional fast Fourier transform of an 8-bit
two’s complement complex image producing a 16-bit two’s complement complex image. The
input data may be scaled; the output transform is scaled automatically.

2 Specification

SUBROUTINE COMPFFT.2D..&.TO...16 (DATAIN, DATA.OUT, WORK,
& NSSIZE, WESIZE,
& SCALE. FACTOR, INVERS, IFAIL)

INTEGER*1 DATAIN (, , NS..SIZE,WESIZE,2)

INTEGER*2 DATA.. OUT (, , N&SIZE,WESIZE,2)

REAL*3 WORK(, ,NSSIZE,WESIZE,2)

INTEGER*4 NSSIZE, WESIZE, SCALEFACTOR, IFML

LOGICAL INVERS

3 Description
The two dimensional transform is calculated by performing independent row and column
transforms on the image. The forward Fourier transform is defined to be:

N1—1N2—1

(ki,k2) = exp {2(klyl + k232)} X(j;,j2)
21=0 j0

where:

N1 = NS..SIZE x ES
N2 = WE..SIZE x ES

If INVERS is .TRUE. then the complex conjugate of the exponential is used. Normalisation
is not performed for either the forward or the inverse transform.

4 References
None.

5 Arguments
DATA... IN

On entry DATA_IN contains the image to be transformed. The dimensions of the image
must be specified in NS_SIZE and WE_SIZE. The image is assumed to be stored in
DATA_ IN using a crinkled mapping where the third and fourth co-ordinates of DATA_IN
are the vertical and horizontal co-ordinates of each crinkled tile. The real part of the
image is stored in the first half of DATA_IN, and the imaginary part in the second half.
Unchanged on exit, unless DATAIN has been EQUIVALENCEd to DATA..OUT or
WORK.

Image Processing Library manOl4.03 77

COMP_FFT2D_&TO_16 Low Level Image Processing Routines

DATA.. OUT

On exit DATA.. OUT contains the two dimensional Fourier transform of DATA_ IN.

WORK

Used as work space.

N& SIZE

On entry NS_SIZE contains the height in pixels of the image divided by ES. NS_ SIZE
must be in the range 1 to 32 and a power of two. Unchanged on exit.

WE.. SIZE

On entry WE_SIZE contains the width of the image in pixels divided by ES. WE.. SIZE
must be in the range 1 to 32 and a power of two. Unchanged on exit.

ScALE.. FACTOR

On entry SCALE_FACTOR contains the scale-factor by which the input data has been
scaled. (positive if multiplied by; negative if divided by). On exit SCALEFACTOR
contains the factor by which the result has been scaled.

INVERS

If INVERS is set to .TRUE. the inverse discrete Fourier transform is performed. Un
changed on exit.

IFAIL

IFAIL equals 0 on exit unless an error occurs. (See 6 below)

6 Errors

IFAIL=O Successful exit
IFAIL=1 NS_SIZE out of range
IFAIL=2 WE_SIZE out of range

7 Auxiliary Routines
This routine calls the Image Processing Library subroutines COMP_FFT.2D_REAL_3,
XO5LOG2 and XO5PI, and the parallel data transform library is also used.

8 Accuracy
Not available.

9 Further Comments
The transform is calculated in place; DATA..IN, DATAOUT and WORK may all occupy
disjoint areas of DAP store or any two may be EQUIVALENCEU or all three may be EQUIV
ALENCEd to start at the same address. For example:

EQUIVALENCE (DATA IN ,DATA.. OUT)

EQUIVALENCE (DATAIN,DATAOUT,WORK)

would both work. But

EQUIVALENCE (DATA IN,WORK) ,(DATA OUT,WORK(,,NS SIZE,3))

would not work.

78 manOl4.03 AMT

Low Level Image Processing Routines COMPYFT.2D..&TO.J6

10 Keywords
Fast Fourier Transform, Image Processing

Image Processing Library man 014.03 79

COMP_FFT..2D&TO.24 Low Level Image Processing Routines

5.8 COMPFT.2D&TO.24

1 Purpose
COMP..FFT_2D_8_TO_24 calculates the two dimensional fast Fourier transform of an 8-bit
two’s complement complex image producing a 24-bit two’s complement complex image. The
input data may be scaled; the output transform is scaled automatically.

2 Specification

SUBROUTINE COMPFFT..2D8TO24 (DATAIN, DATA..OUT, WORK,
& NS..SIZE, WE..SIZE,
& SCALEFACTOR, INVERS, IFAIL)

INTEGER*1 DATA..IN (, ,NS...SIZE,WESIZE,2)

INTEGER*3 DATA.. OUT (, ,NSSIZE,WESIZE,2)

REAL*3 WORK(, , NSSIZE,WESIZE,2)

INTEGER*4 NSSIZE, WESIZE, SCALEFACTOR, IFAIL -

LOGICAL INVERS

3 Description
The two dimensional transform is calculated by performing independent row and column
transforms on the image.The forward Fourier transform is defined to be:

N1—1N-—1

2(k1,k2) = ex?{NN(k11 + k232)} X(ji,j2)
j=O =O

where:

N1 = NS..SIZE x ES
N2=WE...SIZExES

If INVERS is .TRUE. then the complex conjugate of the exponential is used. Normalisation
is not performed for either the forward or the inverse transform.

4 References
None.

5 Arguments

DATAIN

On entry DATA_IN contains the image to be transformed. The dimensions of the image
must he specified in NS_SIZE and WE_SIZE. The image is assumed to be stored in
DATA_IN using a crinkled mapping where the third and fourth co-ordinates of DATA_IN
are the vertical and horizontal co-ordinates of each crinkled tile. The real part of the
image is stored in the first half of DATA_IN, and the imaginary part in the second half.
Unchanged on exit, unless DATAIN has been EQUIVALENCEd to DATA OUT or
WORK.

80 manOl4.03 AMT

Low Level Image Processing Routines COMP_FFT2D..&T024

DATA.. OUT

On exit DATA_OUT contains the two dimensional Fourier transform of DATAIN.

WORK

Used as work space.

NS..SIZE

On entry NS_ SIZE contains the height in pixels of the image divided by ES. NSSIZE
must be in the range 1 to 32 and a power of two. Unchanged on exit.

WE SIZE

On entry WE_SIZE contains the width of the image in pixels divided by ES. WE_SIZE
must be in the range 1 to 32 and a power of two. Unchanged on exit.

SCALE FACTOR

On entry SCALE_FACTOR contains the scale-factor by which the input data has been
scaled. (positive if multiplied by; negative if divided by). On exit SCALE_FACTOR
contains the factor by which the result has been scaled.

INVERS

if INVERS is set to .TRUE. the inverse discrete Fourier transform is performed. Un
changed on exit.

IFML

IFAIL equals 0 on exit unless an error occurs. (See 6 below)

6 Errors

IFAIL=0 Successful exit
IFML=1 NSSIZE out of range
IFAIL=2 WE_SIZE out of range

7 Auxiliary Routines
This routine calls the Image Processing Library subroutines COMPFFT2DREAL3,
XO5LOG2 and XO5PI, and the parallel data transform library is also used.

8 Accuracy
Not available.

9 Further Comments
The transform is calculated in place; DATAIN, DATA...OUT and WORK may all occupy
disjoint areas of DAP store or any two may be EQUIVALENCEd or all three may be EQUIV
ALENCEd to start at the same address. For example:

EQUIVALENCE (DATAIN ,DATA OUT)
EQUIVALENCE (DATAIN,DATAOUT,WORK)

would both work. But

EQUIVALENCE (DATAIN,WORK),(DATA OUT,WORK(,,NS.. SIZE,3))
would not work.

Image Processing Library rnanOl4.03 81

COMPFFT.2DA.TO24 Low Level Image Processing Routines

10 Keywords
Fast Fourier Transform, Image Processing

82 manOl4.03 AMT

Low Level Image Processing Routines COMP.YFT_2D2&T026

5.9 COMPIFT2fl..16TOll6

1 Purpose
COMP_ FFT_ 2D_ 16_TO_ 16 calculates the two dimensional fast Fourier transform of a 16-
bit two’s complement complex image producing a 16-bit two’s complement complex image.
The input data may be scaled; the output transform is scaled automatically.

2 Specification

SUBROUTINE COMP FFT... 2]X. 1&.TO.. 16 (DATA. IN, DATA.. OUT, WORK,
& NSSIZf, WESIZE,

SCALE..FACTOR, INVERS, IFAIL)

INTEGER*2 DATA..IN (, , NS..SIZE,WE..SIZE,2)
DATA.. OUT (,,NS..SIZE,WESIZE,2)

REAL*3 WORK (, , NS.. SIZE,WE SIZE,2)

INTEGER*4 N& SIZE, WE... SIZE, SCALE.. FACTOR, IFAIL

LOGICAL INVERS

3 Description
The two dimensional transform is calculated by performing independent row and column
transforms on the image.The forward Fourier transform is defined to be:

N1—1N3—1

.(k1,k2)
=

exp {22(kljl + k22)} X(ji,j2)
J=° 32=0

where:

N1 = NS.SIZE x ES
N2 = WE..SIZE x ES

If INVERS is .TRUE. then the complex conjugate of the exponential is used. Normalisation
is not performed for either the forward or the inverse transform.

4 References
None.

5 Arguments

DATA_IN

On entry DATA_IN contains the image to be transformed. The dimensions of the image
must be specified in NS_SIZE and WE_SIZE. The image is assumed to be stored in
DATA_IN using a crinkled mapping where the third and fourth co-ordinates of DATA..IN
are the vertical and horizontal co-ordinates of each crinkled tile. The real part of the
image is stored in the first half of DATA_IN, and the imaginary part in the second half.
Unchanged on exit, unless DATA_IN has been EQUIVALENCEd to DATA_OUT or
WORK.

Image Processing Library manOl4.03 83

COMPJFT2D_16T0J6 Low Level Image Processing Routines

DATA.. OUT

On exit DATA_OUT contains the two dimensional Fourier transform of DATA_IN.

WORK

Used as work space.

NS SIZE

On entry NS_SIZE contains the height in pixels of the image divided by ES. NS_ SIZE
must be in the range 1 to 32 and a power of two. Unchanged on exit.

WE SIZE

On entry WE_ SIZE contains the width of the image in pixels divided by ES. WE_ SIZE
must be in the range 1 to 32 and a power of two. Unchanged on exit.

SCALE FACTOR

On entry SCALE_FACTOR contains the scale-factor by which the input data has been
scaled. (positive if multiplied by; negative if divided by). On exit SCALE_FACTOR
contains the factor by which the result has been scaled.

INVERS

if INVERS is set to .TRUE. the inverse discrete Fourier transform is performed. Un
changed on exit.

IFAIL

IFAIL equals 0 on exit unless an error occurs. (See 6 below)

6 Errors

IFAIL=0 Successful exit
IFML=1 NS_SIZE out of range
IFAIL=2 WE_ SIZE out of range

7 Auxiliary Routines
This routine calls the Image Processing Library subroutines COMP_FFT_2D_REAL_3,
XO5LOG2 and XO5PI, and the parallel data transform library is also used.

8 Accuracy
Not available.

9 Further Comments
The transform is calculated in place; DATA_IN, DATA_OUT and WORK may all occupy
disjoint areas of DAP store or any two may be EQUIVALENCEd or all three may be EQUIV
ALENCEd to start at the same address. For example:

EQUIVALENCE (DATA.AN,DATA OUT)

EQUIVALENCE (DATAIN,DATA_ OUT,WORK)

would both work. But

EQUIVALENCE (DATAIN,WORK) ,(DATA OUT,WORK(,,NS SIZE,3))

would not work.

84 manOl4.03 AMT

Low Level Image Processing Routines COMF.YFT2DJ 6J0..1 6

10 Keywords
Fast Fourier Transform, Image Processing

Image Processing Library manOl4.03 85

COMPJ’FT...2D26..T024 Low Level Image Processing Routines

5.10 COMPFFT..2D11&.T0..24

1 Purpose
COMP_FFT_2D_16_TO_24 calculates the two dimensional fast Fourier transform of a 16-
bit two’s complement complex image producing a 24-bit two’s complement complex image.
The input data may be scaled; the output transform is scaled automatically.

2 Specification

SUBROUTINE COMP.. FFT.. 2D... 16 TO.. 24 (DATA.. IN, DATA. OUT, WORK,
& NSSIZE, WE SIZE,
& SCALE.FACTOR, INVERS, IFAIL)

INTEGER*2 DATA.JN (, ,NSSIZE,WE.SIZE,2)

INTEGER*3 DATA... OUT(, ,NS..SIZE,WE..SIZE,2)

REAL*3 WORK (, , NSSIZE,WESIZE,2)

INTEGER*4 NS...SIZE, WE..SIZE, SCAL&.FACTOR, IFAIL

LOGICAL INVERS

3 Description
The two dimensional transform is calculated by performing independent row and column
transforms on the image. The forward Fourier transform is defined to be:

N1—1N—1

2(k1,k2) = ezp{NN(klj; + k2f2)} X(j;,j2)
jiO =O

where:

N1 = NSSIZE x ES
N2 = WE..SIZE x ES

If INVERS is .TRUE. then the complex conjugate of the exponential is used. Normalisation
is not performed for either the forward or the inverse transform.

4 References
None.

5 Arguments

DATA.JN

On entry DATA_IN contains the image to be transformed. The dimensions of the image
must be specified in NS_ SIZE and WE_SIZE. The image is assumed to be stored in
DATA_IN using a crinkled mapping where the third and fourth co-ordinates of DATA_IN
are the vertical and horizontal co-ordinates of each crinkled tile. The real part of the
image is stored in the first half of DATA_IN, and the imaginary part in the second half.
Unchanged on exit, unless DATAIN has been EQUIVALENCEd to DATA OUT or
WORK.

86 manOl4.03 AMT

Low Level Image Processing Routines COMPFFT2D..16..TO_24

DATA.. OUT

On exit DATA_ OUT contains the two dimensional Fourier transform of DATA_IN.

WORK

Used as work space.

NS..SIZE

On entry NS_SIZE contains the height in pixels of the image divided by ES. NS..SIZE
must be in the range 1 to 32 and a power of two. Unchanged on exit.

WE.. SIZE

On entry WE_SIZE contains the width of the image in pixels divided by ES. WE..SIZE
must be in the range 1 to 32 and a power of two. Unchanged on exit.

SCALE.. FACTOR

On entry SCALE_FACTOR contains the scale-factor by which the input data has been
scaled. (positive if multiplied by; negative if divided by). On exit SCALE_FACTOR
contains the factor by which the result has been scaled.

INVERS

If INVERS is set to .TRUE. the inverse discrete Fourier transform is performed. Un
changed on exit.

IFML

IFAIL equals 0 on exit unless an error occurs. (See 6 below)

6 Errors

IFAJL=0 Successful exit
IFAIL=1 NS_SIZE out of range
IFAIL=2 WE_SIZE out of range

7 Auxiliary Routines
This routine calls the Image Processing Library subroutines COMP_FFT_2D_REAL_3,
XO5LOG2 and XO5PI, and the parallel data transform library is also used.

$ Accuracy
Not available.

9 Further Comments
The transform is calculated in place; DATA_IN, DATA_OUT and WORK may all occupy
disjoint areas of DAP store or any two may be EQUIVALENCEd or all three may be EQUIV
ALENCEd to start at the same address. For example:

EQUIVALENCE (DATA IN ,DATA.. OUT)
EQUIVALENCE (DATA.. IN ,DATA OUT,WORK)

would both work. But

EQUIVALENCE (DATA IN ,WORK) ,(DATA OUT,WORK(, ,NS.. SIZE ,3))
would not work.

Image Processing Library manOl4.03 87

CQMP..FFT.2DJ6JO.24 Low Level Image Processing Routines

10 Keywords
Fast Fourier Transform, Image Processing

88 manOl4.03 AMT

Low Level hnage Processing Routines COMP.YFT2D.24..TO.24

5.11 C0MPFFT2D24T024

1 Purpose
COMP_FFT...2D_24_TO_24 calculates the two dimensional fast FouTier transform of a 24-
bit two’s complement complex image producing a 24-bit two’s complement complex image.
The input data may be scaled; the output transform is scaled automatically.

2 Specification

SUBROUTINE COMP... FFT. 211.24.. TO... 24 (DATA IN, DATA OUT, WORK,
& NS...SIZE, WE..SIZE,
& SCALE .. FACTOR, INVERS, IFAIL)

INTEGER*3 DATA...IN (, , NSSIZE,WESIZE,2)
& DATA OUT (, , NS.SIZE,Wf..SIZE,2)

REAL*3 WORK(, , N&SIZE,WE..SIZE,2)

INTEGER*4 NS..SIZE, WE..SIZE, SCALE...FACTOR, IFAIL

LOGICAL INVERS

3 Description
The two dimensional transform is calculated by performing independent row and colurrm
transforms on the image. The forward Fourier transform is defined to be:

Ni—i N2—1

.(k11k2) = exp{22(k;j; + k222)} X(j11j2)
ji=O 33=0

where:

N1 = NS..SIZE x ES
N2 = WESIZE x ES

If INVERS is .TRUE. then the complex conjugate of the exponential is used. Normalisation
is not performed for either the forward or the inverse transform.

4 References
None.

5 Arguments

DATA IN

On entry DATA_IN contains the image to be transformed. The dimensions of the image
must be specified in NS_SIZE and WE_SIZE. The image is assumed to be stored in
DATA.. IN using a crinkled mapping where the third and fourth co-ordinates of DATA IN
are the vertical and horizontal co-ordinates of each crinkled tile. The real part of the
image is stored in the first half of DATA_IN, and the imaginary part in the second half.
Unchanged on exit, unless DATAIN has been EQUIVALENCEd to DATAOUT or
WORK.

Image Processing Library manOl4.03 89

COMP...FFT2D24T034 Low Level Image Processing Routines

DATA... OUT

On exit DATA_OUT contains the two dimensional Fourier transform of DATA_IN.

WORK

Used as work space.

NS_ SIZE

On entry NS_SIZE contains the height in pixels of the image divided by ES. NS_ SIZE
must be in the range 1 to 32 and a power of two. Unchanged on exit.

WESIZE

On entry WE_ SIZE contains the width of the image in pixels divided by ES. WE. SIZE
must be in the range 1 to 32 and a power of two. Unchanged on exit.

SCALE FACTOR

On entry SCALE_FACTOR contains the scale-factor by which the input data has been
scaled. (positive if multiplied by; negative if divided by). On exit SCALE. FACTOR
contains the factor by which the result has been scaled.

INVERS

If INVERS is set to .TRUE. the inverse discrete Fourier transform is performed. Un
changed on exit.

IFAIL

IFAIL equals 0 on exit unless an error occurs. (See 6 below)

6 Errors

IFAIL=0 Successful exit
IFML=1 NS_ SIZE out of range
IFAIL=2 WE_SIZE out of range

7 Auxiliary Routines
This routine calls the Image Processing Library subroutines COMP_FFT_2D_REAL_3,
XO5LOG2 and XO5PI, and the parallel data transform library is also used.

8 Accuracy
Not available.

9 Further Comments
The transform is calculated in place; DATAIN, DATA.OUT and WORK may all occupy
disjoint areas of DAP store or any two may be EQUIVALENCEd or all three may be EQUIV.
ALENCEd to start at the same address. For example:

EQUIVALENCE (DATAIN,DATA.OUT)

EQUIVALENCE (DATAIN,DATA.OUT,WORK)

would both work. But

EQUIVALENCE (DATA IN ,WORK) ,(DATA OUT,WORK(,NS. SIZE,3))

would not work.

90 manOl4.03 AMT

Low Level Image Processing Routines COMPYFT2D.2&TQ..24

10 Keywords
Fast Fourier Transform, Image Processing

Image Processing Library mauOl4. 03 91

COMP..FFT2D..REAL..3 Low Level Image Processing Routines

5.12 COMPYFT..2D.REAL.3

1 Purpose
CQMP_FFT_2D_REAL_3 calculates the two dimensional fast Fourier transform of a 24-bit
floating point complex image producing a 24-bit floating-point complex image. The input
data may be scaled; the output transform is scaled automatically.

2 Specification

SUBROUTINE COMP.. FFT 2D... REAL3 (DATA, NS.. SIZE, WE SIZE,
INVERS, IFAIL)

REAL*3 DATA (, , NS SIZE,WE.. SIZE ,2)

INTEGER*4 NS...SIZE, WE..SIZE, SCALEFACTOR, IFAIL

LOGICAL INVERS

3 Description
The two dimensional transform is calculated by performing independent row and column
transforms on the image. The forward Fourier transform is defined to be:

N1-1N3-1

t(ki,k2)
=

ezP{22(kij; + k2j2)} X(j17j2)

where:

N1 = NSSIZE x ES
N2 = WE...SIZE x ES

If INVERS is .TRUE. then the complex conjugate of the exponential is used. Normalisation
is not performed for either the forward or the inverse transform.

4 References
None.

5 Arguments

DATA

On entry DATA contains the image to be transformed. The dimensions of the image
must be specified in NS_ SIZE and WE_SIZE. The image is assumed to be stored using a
crinkled mapping where the third and fourth co-ordinates of DATA are the vertical and
horizontal co-ordinates of each crinkled tile. The real part of the image is stored in the
first half of DATA, and the imaginary part in the second half. On exit, DATA contains
the transformed image.

NSSIZE

On entry NS_ SIZE contains the height in pixels of the image divided by ES. NS_ SIZE
must be in the range 1 to 32 and a power of two. Unchanged on exit.

92 manOl4.03 AMT

Low Level Image Processing Routines COMP_FFT2DREAL3

WE SIZE

On entry WE_SIZE contains the width of the image in pixels divided by ES. WE_SIZE
must be in the range 1 to 32 and a power of two. Unchanged on exit.

INVERS

If INVERS is set to .TRUE. the inverse discrete Fourier transform is performed. Un
changed on exit.

IFAIL

IFAIL equals 0 on exit unless an error occurs. (See 6 below)

6 Errors

IFAIL=O Successful exit
IFAIL=1 NS_SIZE out of range
IFAIL=2 WE_SIZE out of range

7 Auxiliary Routines
This routine calls the Image Processing Library subroutines XO5LOG2 and XO5PI, and the
parallel data transform library is also used.

8 Accuracy
Not available.

9 Further Comments
None.

10 Keywords
Fast Fourier Transform, Image Processing

Image Processing Library manOl4.03 93

CONVOLVE_ 8 Low Level Image Processing Routines

5.13 CONVOLVE.8

1 Purpose
CONVOLVE_8 calculates the convolution of an 8-bit per pixel two’s complement image with
a square mask. The result may be scaled to avoid overflow.

2 Specification

SUBROUTINE CONVOLVE8(IMAGE,NS. SIZE, WE.. SIZE, CONV,
& SCALE... FACTOR,MASK.. SIZE,MASK,IFAIL)

INTEGER*1 IMAGE(, ,NSSIZE,WESIZE), CONV(, , NS.SIZE,WE..SIZE)
& MASK (MASK... SIZE,MASK.. SIZE)

INTEGER’4 NSSIZE, WE..SIZE, MASKSIZE, SCALE.. FACTOR, IFAIL

3 Description
CONVOLVE_8 calculates the convolution of a square user-supplied mask with an image.
Here, by convolution we mean in the image processing sense, that is a correlation. The
image is assumed to be extended with the grey-scale value 0 for calculating the convolution.
Each value returned in CONV is calculated the mask centred over the corresponding pixel.

4 References
None.

5 Arguments

IMAGE

On entry IMAGE contains the image to be convolved. Each dimension of the image size
must be in the range ES to 32ES in multiples of ES. The image is assumed to be stored
using a crinkled mapping where the third and fourth co-ordinates of IMAGE are the
vertical and horizontal co-ordinates of each crinkled tile.

N& SIZE

On entry NS_SIZE contains the height in pixels of the image divided by ES. NS_ SIZE
must be in the range 1 to 32. Unchanged on exit.

Wi.. SIZE

On entry WE_SIZE contains the width of the image divided by ES. WE_SIZE must be
in the range 1 to 32. Unchanged on exit.

CONV

On exit CONV contains the result of convolving IMAGE with MASK divided by
SCALE.. FACTOR.

SCALE FACTOR

On entry SCALE_FACTOR contains the scale-factor which the result is scaled down by
to avoid overflow. SCALE_FACTOR must be in the range _215 to 215

— 1 for CON
VOLVE_s and in the range _231 to 231

— 1 for CONVOLVE_16. Unchanged on exit.

94 manOl4.03 AMT

Low Level Image Processing Routines CONVOLVE. 8

MASK. SIZE

On entry MASK_SIZE contains the size of the convolving mask. MASK. SIZE must be
one of 3,5,7,.. .31. Unchanged on exit.

MASK

On entry MASK contains the mask that is to be convolved with IMAGE. Unchanged on
exit.

IFAIL

IFAIL equals 0 on exit unless an error occurs. (See 6 below)

6 Errors

IFAIL=0 Successful exit
IFAIL=1 NS_SIZE out of range
IFAIL=2 WE_SIZE out of range
IFML=3 MASK SIZE out of range
IFAIL=4 Overflow in 16-bit to 8-bit conversion

7 Auxiliary Routines
The Image Processing Library routines ADD_ic, SCAL_MULT,$_16, SCAL_DIV_16,
SHIFT COL. NORTH. P, SHIFT.. COL. SOUTH. P, SHIFT,COL. WEST, P,
SHIFTCOL.EAST.P, and CONTRA.CT16.TO,8 are called.

8 Accuracy
Not available.

9 Further Comments
None.

10 Keywords
Convolution, Image Processing

Image Processing Library manOl4. 03 95

DIFF_ OF_ GA USS.. 8 Low Level Image Processing Routines

5.14 DIFFOF..GAUSS..8

1 Purpose
DIFF... OF_ GAUSS_ 8 convolves one of a set of nine difference-of-Gaussian masks with an
8-bit two’s complement image.

2 Specification

SUBROUTINE DIFF...OF.GAUS&8 (IMAGE,NS.SIZE, WE.SIZE, DOG,
CHANNEL, IFAIL)

INTEGER*1 IMAGE(, ,N&SIZE,WE.SIZE), DOG(, , NS.SIZE,WE...SIZE)

INTEGER*4 NS..SIZE, WE..SIZE, CHANNEL, IFAIL

3 Description
DOG is twice the convolution (in the image processing sense) of IMAGE with the selected
difference-of-Gaussian mask which is specified in CHANNEL. IMAGE is assumed to be
extended by a field of zeros for the convolution. The difference-of-Gaussian mask is:

1 1 (z2+y2)J r (x2+y2)1
— .5 exp i}2iro2 2o] I 4o j

where o takes the following values depending on the value of CHANNEL:

CHANNEL = 1 2 3 4 5 6 7 8 9
a. = v’ 2 2/ 4 4’ 8 8/ 16 16’

The mask is taken to be zero foi x2 + y2 > (3u)2; thus a square mask of linear size 6a. + 1
is used. For the large mask sizes IMAGE is scaled down by averaging 2x2, 4x4 and 8x8
blocks of pixels so that the largest mask size actually used in the computation is 19.

4 References

[1] Marr, D. and Hildreth, E.
1980 Theory of Edge Detection.
Proc. R. Soc. Lond. B 207 187-217

5 Arguments

IMAGE

On entry IMAGE contains the image to be convolved with the difference-of-Gaussian
mask. Each dimension of the image size must be in the range ES to 32E5 in multiples
of ES. The image is assumed to be stored in IMAGE using a crinkled mapping where
the third and fourth co-ordinates of IMAGE are the vertical and horizontal co-ordinates
of each crinkled tile. Unchanged on exit.

96 manOl4.03 AMT

Low Level Image Processing Routines DIFF OF.. GA USS.. 8

NS.. SIZE

On entry NS_SIZE contains the height in pixels of the image divided by ES. NSSIZE
must be in the range 1 to 32. Unchanged on exit.

WE.. SIZE

On entry WE_SIZE contains the width of the image divided by ES. WE_SIZE must be
in the range 1 to 32. Unchanged on exit.

DOG

On exit DOG contains twice the convolution of IMAGE with the difference-of-Gaussian
mask selected by CHANNEL. DOG stores the convolution using a crinkled mapping (see
IMAGE above).

CHANNEL

On entry CHANNEL contains an integer in the range 1 to 9 which selects the difference-
of-Gaussian mask which is to be used. If CHANNEL is 4 or 5, then NS_SIZE and
WE_SIZE must be divisible by 2, if CHANNEL is 6 or 7 NS_ SIZE and WE_SIZE must
be divisible by 4, or if CHANNEL is 8 or 9, NS_ SIZE and WESIZE must be divisible
by 8. Unchanged on exit.

IFAIL

IFAIL has the value 0 on exit unless an error occurs. (See 6 below.)

6 Errors

IFAIL=0 Successful exit
IFAIL=1 NS_SIZE out of range
IFML=2 WE_SIZE out of range
IFAIL=6 CHANNEL out of range
IFAIL=19 NSSIZE incompatible with CHANNEL
IFAIL=20 WESIZE incompatible with CHANNEL

7 Auxiliary Routines
This routine uses the Image Processing Library routines ApPLY.. DOG...8, EXPAND..IMAGE8,
REDUCE IMAGE 8 and SHIfT.. IMAGE 8.

8 Accuracy
Not available.

9 Further Comments
None.

10 Keywords
Convolution, Difference-of-Gaussians, Image Processing

Image Processing Library manUl4.03 97

FO1_ G_MM Low Level Image Processing Routines

5.15 FO1_G_MM

1 Purpose
FOLG.MM performs a general matrix multiply of two matrices A and B where A is a PxQ
matrix and B is a Q x R matrix with P,Q and R in the range 1 to ES.

2 Specification

REAL MATRIX FUNCTION FOLG...MM(A, B , P , Q , B., IFAIL)

REALA(,) ,B(,)

INTEGER P , Q , R , IFML

3 Description
The routine is an optimized general matrix multiply using one of the following three proce
dures,depending on the relative sizes of P,Q and R (see [1]).

Procedure 1

FO1GMM=0.0
DO 10I=1,Q

10 FO1GMM=FO1GMM+MATC(A(,I))*MATR(B(I,))

Procedure 2

DO 10 I=1,P
10 FO1GMM(I,)=SUMR(MATC(A(I,))*3)

Procedure 3

DO 10 I=1,R
10 FO1GMM(,I)=SUMC(A*MATR(B(,I)))

If P/Q > 0.75 and R/Q > 0.75 procedure liz used, otherwise if P R procedure 3 is used
or if P< R procedure 2 is used; the number 0.75 was determined empirically.

4 References

[1] MCKEOWN J.J.
Multiplication of non-standard matrices on DAP.
DAP newsletter no. 7.

5 Arguments

A - REAL MATRIX

On entry A contains the first of the two matrices to be multiplied together - array
elements outside the matrix to be multiplied must be set to zero. The contents of A are
unchanged on exit.

98 manOl4.03 AMT

Low Level Image Processing Routines FO1_ G_ MM

B - REAL MATRIX

On entry B contains the second of the two matrices to be multiplied together - array
elements outside the matrix to be multiplied must be set to zero. The contents of B are
unchanged on exit.

P - INTEGER

The number of rows in the first matrix. Unchanged on exit.

Q - INTEGER

The number of columns in the first matrix and the number of rows in the second matrix.
Unchanged on exit.

R - INTEGER

The number of columns in the second matrix. Unchanged on exit.

IFAIL - INTEGER

Unless the routine detects an error (see 6 below) IFAIL contains zero on exit.

6 Errors
Errors detected by the routine:

IFAIL = 1 At least one of P, Q or R is not in the range ito ES.

7 Auxiliary Routines
None.

8 Accuracy
You can expect six significant figures.

9 Further Comments
None.

10 Keywords
Matrix multiply.

Image Processing Library manOl4.03 99

FOLM_INV Low Level Image Processing Routines

516 FO1_M_INV

1 Purpose
FO1_M_INV calculates, in place, the inverse of a given N x N matrix with N in the range 1
to ES.

2 Specification

SUBROUTINE FOLM...INV(A , N , IFAIL)

REALA(,)

INTEGER N , IFAIL

3 Description
The matrix is inverted using Gauss-Jordan elimination with full pivoting.

4 References
None.

5 Arguments
A - REAL MATRIX

On entry A contains the matrix to be inverted ,which is assumed to be located in the top
left of A and array elements outside the input matrix must be set to zero. On exit A
contains the inverse of that matrix.

N - INTEGER

On entry N must be set to the order of the matrix to be inverted. N is unchanged on
exit.

IFAIL - INTEGER

Unless the routine detects an error (see 6 below) IFAIL contains zero on exit.

6 Errors
Errors detected by the routine:

IFAIL=1 N is not in the range 1 to ES.
IFAIL=2 A pivot element is equal to zero — the matrix is singular

7 Auxiliary Routines
None.

8 Accuracy
You can expect five or six significant figures for well conditioned problems.

100 manOl4.03 AMT

Low Level Image Processing Routines fOLM_INV

9 Further Comments
None.

10 Keywords
Matrix inversion, Gauss-Jordan elimination.

Image Processing Library manOl4.03 101

F04_ QR. GWENS. SOLVE Low Level Image Processing Rou tines

5.17 FO&. QR.. GIVEN&. SOLVE

1 Purpose
FO& QR. GIVENS_ SOLVE solves the linear system Ax = b for x Where A is an n x n matTuc

with 2<n<33. The routine may be used to simultaneously solve for up to ES different right
hand side vectors b.

2 Specification

SUBROUTINE FOLQR.GIVENSSOLVE(A , X, B , N , NB , IFAIL)

INTEGER N , NB ,IFAIL

REAL A(j,X(,) ,3(,)

3 Description
The routine factorizes the given nxn matrix A as:

QA=R

where Q is an orthogonal matrix and r is upper triangular.

Givens method of plane rotations is used to annihilate elements of A below the leading
diagonal until the matrix R remains. This leaves an upper triangular system which is solved
by back substitution. Row i of A is used to annihilate the element in position (i + 1, j) by
pre-multiplying A by a matrix of the form:

= diag (1(1_i), U(j,I+l), 1 i n — 1

where
= (‘) , with c+s? = 1

In the usual serial application, these rotations are applied sequentially, but on the DAP you
can perform up to . rotations simultaneously [1].

4 References
[1J SAMEH A H and KUCK D J

On stable parallel linear system solvers
Journal of the Association of Computing Machinery, Vol 25, No 1, pp 81—9 1.

5 Arguments

A - REAL MATRIX

On entry, elements A(,1) (i = 1, 2, ..., N; j = 1,2, ..., N) must be set to the elements
of the matrix defining the linear system. A is unchanged on exit.

102 manOl4.03 AMT

Low Level Image Processing Routines F04..QILGIVENS..SOLVE

X - REAL MATRIX

On exit, column i of X will contain the solution of the system corresponding to the th
column of B.

B - REAL MATRIX
V

On entry, columns 1 to NB must give the NB right hand side vectors. B is unchanged
on exit.

N - INTEGER

On entry, N must be set to the order of the matrix A. N is unchanged on exit.

NB - INTEGER

On entry, NB must be set to the number of right hand side vectors for which the system
is to be solved. NB is unchanged on exit.

IFAIL - INTEGER

Unless the routine detects an error (see section 6) IFAIL contains zero on exit.

6 Errors
Errors detected by the routine:

IFAIL = 1 N is not in the range 3 to ESor NB is not in the range 1 to ES
IFAIL = 2 A zero pivot has been found during the back substitution process,

that is, the matrix is singular
IFAIL = 3 A very small pivot has been found during the back substitution process

and the matrix is probably singular. Computation proceeds anyway,
but you should treat the results with caution

7 Auxiliary Routines
This routine calls library routines Z...F04..BACK.SUBST,
Z F04. SPREAD.. LMAT.. EAST, Z.. F04..SPREAD... RMAT. EAST and 1.. FO& UPDATE.

8 Accuracy
Empirical results indicate that errors may be expected in the 6th or 7th significant digit.
The routine will return IFAIL = 3 (see 6 below) if the condition:

MAX, IR,I
>5 x i05

MINE lRil

is satisfield, where 1?,, is the upper triangular matrix defined in section 3.

9 Further Comments
You must not use common blocks with the names:

C..F04.QR1 and C...F04...QR2

10 Keywords
Givens’ Rotation, Linear Equations.

Image Processing Library manOl4.03 103

FILL.JN_1 Low Level Image Processing Routines

5.18 FILL_IN_i

1 Purpose
FILL.JN..1 performs a region growing process on a logical image starting from input seed
points. The region growing is constrained by the input image — it can oniy grow where the
image is .TRUE..

2 Specification

SUBROUTINE FILL 1N 1(BLOBS ,NS.. SIZE, WE SIZE, SEED,
FILLED, PASSES, IFAIL)

LOGICAL BLOBS (, , NSSIZE,WL SIZE), SEED (, , N&SIZE,WESIZE)
FILLED (, , NS SIZE,WE SIZE)

INTEGER*4 NS..SIZE, WESIZE, PASSES, IFAIL

3 Description
FILLIN_1 grows out a .TRUE. region from each .TRUE. point in SEED. The nearest
neighbours of each .TRUE. point in the growing region are also set to be .TRUE. provided
the equivalent point in BLOBS is also .TRUE.. This process is iterated until no further
growth occurs (or PASSES iterations have been made). Thus FILLED is identical to BLOBS
for all ‘blobs’ with seed points in them marked in SEED (provided no more than PASSES
iterations are required to do this).

4 References
None.

5 Arguments

BLOBS

On entry BLOBS contains logical bit-map image. Each dimension of the image size must
be in the range ESto 32ESiñ multiples of ES. The image is assumed to be stored in
IMAGE using a crinkled mapping where the third and fourth co-ordinates of BLOBS are
the vertical and horizontal co-ordinates of each crinkled tile. Unchanged on exit.

NS_ SIZE

On entry NS_SIZE contains the height in pixels of the image divided by ES. NS_ SIZE
must be in the range 1 to 32. Unchanged on exit.

WE... SIZE

On entry WE_ SIZE contains the width of the image in pixels divided by ES. WE_ SIZE
must be in the range 1 to 32. Unchanged on exit.

SEED

On entry SEED contains a logical bit-map of the same size as BLOBS. SEED must be
set to .TRUE. at each seed point to be grown from. SEED is assumed to be stored using
a crinkled mapping (see BLOBS above). Unchanged on exit.

104 manOl4.03 AMT

Low Level Image Processing Routines FILL IN_i

FILLED

On exit FILLED is identical to BLOBS for all ‘blobs’ with .TRUE. seeds in them.
FILLED is stored using a crinkled mapping (see BLOBS above).

PASSES

On entry PASSES contains the number of iterations of the growing process allowed.
Unchanged on exit.

IFAIL

IFAIL has the value 0 on exit unless an error occurs. (See 6 below.)

6 Errors

IFML=O Successful exit
IFML=1 NS_SIZE out of range
IFAIL=2 WE_SIZE out of range
IFAIL=8 PASSES not positive
IFAIL=1O Area fill incomplete after PASSES iterations

7 Auxiliary Routines
None.

8 Accuracy
Not applicable.

9 Further Comments
None.

10 Keywords
Area Fill, Image Processing

Image Processing Library manOl4.03 105

HISTOGRAM... C_ 8 Low Level Image Processing Routines

5.19 HISTOGRAM.C8

1 Purpose
HISTOGRAM... C_s calculates the histogram for an 8-bit two’s complement crinkle mapped
image or tiles thereof.

2 Specification

SUBROUTINE HISTOGRAM.. C..8 (IMAGE, NS.. SIZE, WE SIZE, HISTS,
& HIST_SIZE, NOHISTS, BINS, IFAIL)

INTEGER*1 IMAGE (, , NS.SIZE,WESIZE)

INTEGER*4 NS.. SIZE, WE.. SIZE, HISTS (BINS ,NO.. lISTS), HIST SIZE,
& NO.HISTS, BINS, IFAIL

3 Description
HISTS is divided into a number of bins, each of which will contain the number of pixels
with grey-scale values within its range. The number of bins is specified in BINS, and the
number of grey-scale values in each range is 256 divided by BINS. For example, if BINS
is 32, pixels with grey-scale values from —128 to —121 will be counted in BIN1, those with
grey-scale values from —120 to —113 will be counted in BIN2, etc.

The sub-images histogrammed are square tiles with sides of ES x HIST_ SIZE.

4 References
None.

5 Arguments

IMAGE

On entry IMAGE contains the image to be histogrammed. Each dimension of the image
size must be in the range ES to 32ES in multiples of ES. The image is assumed to be
stored in IMAGE using a crinkled mapping where the third and fourth co-ordinates of
IMAGE are the vertical and horizontal co-ordinates of each crinkled tile. Unchanged on
exit.

NS.. SIZE

On entry NS_ SIZE contains the height in pixels of the image divided by ES. NS_ SIZE
must be in the range 1 to 32. If local histograms are required then only powers of two
are allowed. Unchanged on exit.

WE.. SIZE

On entry WE.. SIZE contains the width of the image in pixels divided by ES. WE_ SIZE
must be in the range 1 to 32. If local histograms are required then only powers of two
are allowed. Unchanged on exit.

lISTS

On exit lISTS contains the histogram results for each sub-image.

106 manOl4.03 AMT

Low Level Image Processing Routines HISTOGRAIkL C.. 8

lIST.. SIZE

On entTy HIST_ SIZE contains the size of side of the square sub-images to be his
togrammed, divided by ES. HIST_ SIZE must be a power of two unless a global his
togram is required. Unchanged on exit.

NO.. lISTS

On entry NO.. lISTS contains the number of histograms to be calculated. NO.. RuSTS
must be equal to (NS.SIZE x WE..SIZE)/HIST...SIZE2 , unless NO.HISTS is 1, in
which case a global histogram is calculated. Unchanged on exit.

BINS

On entry BINS is the number of ranges of grey-scale values into which the image is to
be divided. BINS must be one of 32, 64, 128 or 256 for both HISTOGRAM_C_8 and
HISTOGRAM_C_16. Unchanged on exit.

IFAIL

IFAIL has the value 0 on exit unless an error occurs. (See 6 below)

6 Errors

IFAIL=0 Successful exit
IFAIL=1 Invalid NS_SIZE
IFAIL=2 Invalid WE..SIZE
IFAIL=14 Invalid lIST.. SIZE
IFAIL=15 HIST_ SIZE incompatible with NO_ lISTS
IFAIL=16 Invalid BINS

7 Auxiliary Routines
None.

8 Accuracy
Not applicable.

9 Further Comments
None.

10 Keywords
Histogram, Image Processing

Image Processing Library manOI4.03 107

HISTOGRAM.. S_ 8 Low Level Image Processing Rou tines

5.20 HISTOGRAM_S_8

1 Purpose
HISTOGRAM_S_8 calculates the histogram for an 8-bit two’s complement sheet mapped
image or tiles thereof.

2 Specification

SUBROUTINE HISTOGRAM.. S.. 8 (IMAGE, NS SIZE, WE.. SIZE, lISTS,
& HIST_SIZE, NOHISTS, BINS, IFAIL)

INTEGER*1 IMAGE (, , NS..SIZE,WE SIZE)

INTEGER*4 NS..SIZE, WESIZE, HISTS (BINS,NOHISTS), HISTSIZE,
& NO... HISTS, BINS, IFAIL

3 Description
HISTS is divided into a number of bins, each of which will contain the number of pixels
with grey-scale values within its range. The number of bins is specified in BINS, and the
number of grey-scale values in each range is 256 divided by BINS. For example, if BINS
is 32, pixels with grey-scale values from —128 to —121 will be counted in BIN1, those with
grey-scale values from —120 to —11 will be counted in BIN2, etc.

The sub-images histogrammed are square tiles with sides of ES x HIST_ SIZE.

4 References
None.

5 Arguments

IMAGE

On entry IMAGE contains the image to be histograrmned. Each dimension of the image
size must be in the range ES to 32E5 in multiples of ES. The image is assumed to
be stored in IMAGE using a sheet mapping where the third and fourth co-ordinates of
IMAGE label the sheets in the vertical and horizontal directions. Unchanged on exit.

NS.. SIZE

On entry NS_ SIZE contains the height in pixels of the image divided by ES. NS..SIZE
must be in the range 1 to 32. Unchanged on exit.

wE.. SIZE

On entry WE_SIZE contains the width of the image divided by ES. WE_SIZE must be
in the range 1 to 32. Unchanged on exit.

lISTS

On exit HISTS contains the histogram results for each sub-image.

108 manOl4.03 AMT

Low Level Image Processing Routines EISTOGRAMS_8

HIST SIZE

On entry HIST_ SIZE contains the size of side of the square sub-images to be his
togrammed, divided by ES. HIST_ SIZE must be a factor of NS_ SIZE and WE_SIZE
unless a global histogram is required. Unchanged on exit.

NO lISTS

On entry NO_lISTS contains the nurther of histograms to be calculated. NOHISTS
must be equal to (NS_SIZE x WESIZE)/HIST_SIZE2, unless NO_lISTS is 1, in
which case a global histogram is calculated. Unchanged on exit.

BINS

On entry BINS is the number of ranges of grey-scale values into which the image is to
be divided. BINS must be one of 32, 64, 128 or 256 for both EISTOGRAMS8 and
HISTOGRAM..S_16. Unchanged on exit.

IFAIL

IFAIL has the value 0 on exit unless an error occurs. (See 6 below.)

6 Errors

IFML=0 Successful exit
IFAIL=1 NS_SIZE out of range
IFAIL=2 WE_SIZE out of range
IFAIL=14 Invalid HIST_ SIZE
IFAIL=15 NS_SIZE not divisible by HIST_ SIZE
IFAIL=16 WE_SIZE not divisible by HIST_SIZE
IFAIL=17 lIST_SIZE incompatible with NO_lISTS
IFAIL=18 Invalid BINS

7 Auxiliary Routines
None.

8 Accuracy
Not applicable.

9 Further Comments
None.

10 Keywords
Histogram, Image Processing

Image Processing Library manOl4.03 109

KIRSCH...8 Low Level Image Processing Routines

5.21 KIRSCH....8

1 Purpose
KIRSCH_8 applies a user-selected Kirsch compass gradient mask to an 8-bit per pixel two’s
complement image. The result may be scaled to avoid overflow.

2 Specification

SUBROUTINE KIRSCH.. 8(IMAGE,NS SIZE, WE.. SIZE, MASK.. NO,
& KIRSCH, ScALE.. FACTOR, IFAIL)

INTEGER*1 IMAGE (, , NS SIZE,WE.. SIZE),
& KIRSCH (, ,NS...SIZE,WE..SIZE)

INTEGER*4 NSSIZE, WLSIZE, MASK..NO, SCALE FACTOR, IFAIL

3 Description
The possible Kirsch compass gradient masks to be convolved (in the image processing sense)
with IMAGE are:

MASK..NO =1: 3 3 3 MASK.N0 = 2: 3 3 3
(North) 3 0 3 (Northeast) —5 0 3

—5 —5 —5 —5 —5 3

MASK..NO =3: -5 3 3 MASK.N0 =4: -5 -5 3
(East) —5 0 3 (Southeast) —5 0 3

—5 3 3 3 3 3

MASK..NO =5: —5 -5 -5 MASK.NO =6: 3 -5 -5
(South) 3 0 3 (Southwest) 3 0 —5

3 3 3 3 3 3

MASK...NO =7: 3 3 -5 MASKNO =8: 3 3 3
(West) 3 0 —5 (Northwest) 3 0 —5

3 3 —5 3 —5 —5

4 References
None.

5 Arguments
IMAGE

On entry IMAGE contains the image to be convolved with the Kirsh compass gradient
mask. Each dimension of the image size must be in the range ESto 32ESin multiples
of ES. The image is assumed to be stored in IMAGE using a crinkled mapping where
the third and fourth co-ordinates of IMAGE are the vertical and horizontal co-ordinates
of each crinkled tile. Unchanged on exit,

110 manOl4.03 AMT

Low Level Image Processing Routines KIRSCH_ 8

N& SIZE

On entry NS_SIZE contains the height in pixels of the image divided by ES. NSSIZE
must be in the range 1 to 32. Unchanged on exit.

WE SIZE

On entry WE_SIZE contains the width of the image divided by ES. WE_SIZE must be
in the range 1 to 32. Unchanged on exit.

KIRSCH

On exit KIRSCH contains the convolution of IMAGE with the Kirsch compass gradient
mask selected by MASK..NO divided by SCALEFACTOR.

MASK.. NO

On entry MASK_NO contains an integer in the range 1 to 8 which selects the mask to
be used. Unchanged on exit.

SCALE FACTOR

On entry SCALE_ FACTOR contains the scale-factor which the result is scaled down by
to avoid overflow. SCALE_ FACTOR must be in the range _215 to 215 1 for KIRSCH_ 8,
and in the range _231 to 231

— 1 for KIRSCH_16. Unchanged on exit.
IFAIL

IFAIL equals 0 on exit unless an error occurs. (See 6 below)

6 Errors

IFAIL=O Successful exit
IFML=1 NS_SIZE out of range
IFAIL=2 WE_SIZE out of range
IFAIL=3 MASK_ NO out of range

7 Auxiliary Routines
Not available.

8 Accuracy
Not available.

9 Further Comments
None.

10 Keywords
Kirsch, Compass Gradient, Edge Detection, Image Processing

Image Processing Library manOl4.03 111

LAPLACE_ 8 Low Level Image Processing Routines

5.22 LAPLACE.8

1 Purpose
LAPLACE_8 applies a user-selected Laplacian mask to an 8-bit per pixel two’s complement
image. The result may be scaled to avoid overflow.

2 Specification

SUBROUTINE LAPLAC&. 8 (IMAGE,NS.. SIZE, WE SIZE, MASK NO,
& LAP,SCALE.. FACTOR, IFAIL)

INTEGER*1 IMAGE(, , NSSIZE ,WE SIZE), LAP (, ,NSSIZE,WE SIZE)

INTEGER*4 NS...SIZE, WE..SIZE, MASKNO, SCALE.. FACTOR, IFAIL

3 Description
The possible Laplacian masks to be convolved (in the image processing sense) with IMAGE
are:

MASK..NO=1: 0 —1 0 MASKJ’IO=2: —1 —1 -1
—1 4 —1 —1 8 —1

0 —1 0 —1 —1 —1

MASK..NO=3: 1 —2 1
—2 4 —2

1 —2 1

4 References
None.

5 Arguments
IMAGE

On entry IMAGE contains the image to be convolved with the Laplacian masks. Each
dimension of the image size must be in the range ES to 32E5 in multiples of ES. The
image is assumed to be stored using a crinkled mapping where the third and fourth
co-ordinates of IMAGE are the vertical and horizontal co-ordinates of each crinkled tile.
Unchanged on exit.

NS_ SIZE

On entry NS_SIZE contains the height in pixels of the image divided by ES. NS_ SIZE
must be in the range 1 to 32. Unchanged on exit.

WE.. SIZE

On entry WE_SIZE contains the width of the image divided by ES. WE_SIZE must be
in the range 1 to 32. Unchanged on exit.

LAP

On exit LAP contains the convolution of IMAGE with the Laplacian mask selected by
MASKNO divided by SCALL. FACTOR.

112 manOl4.03 AMT

Low Level Image Processing Routines LAPLACE.. 8

MASK NO

On entry MASK_NO contains 1, 2, or 3 which selects the Laplacian mask to be used.
Unchanged on exit.

SCALE.. FACTOR

On entry SCALE_ FACTOR contains the scale-factor which the Tesult is scaled down by to
avoid overflow. SCALE_FACTOR must be in the range _215 to 2’s— 1 for LAPLACE_8,
and in the range —2’ to 2’ — 1 for LAPLACE.. 16. Unchanged on exit.

IFAIL

IFAIL equals 0 on exit unless an error occurs. (See 6 below)

6 Errors

IFAIL=O Successful exit
IFAIL=1 NS_ SIZE out of range
IFAIL=2 WE_SIZE out of range
IFAIL=3 MASK.. NO out of range

7 Auxiliary Routines
Not available.

8 Accuracy
Not available.

9 Further Comments
None.

10 Keywords
Laplacian Smoothing, Filtering, Image Processing

Image Processing Library manOl4.03 113

LINE_ DET_ 8 Low Level Image Processing Routines

5.23 LINEJJET..8

1 Purpose
LINE..DET_8 applies a user-selected line detection mask to an 8-bit per pixel two’s comple
ment image. The result may be scaled to avoid overflow.

2 Specification

SUBROUTINE LINE.. DET.. 8(IMAGE,NS.. SIZE, WE... SIZE, MASK.. NO,
& LINEJDET, SCALE.. FACTOR, IFAIL)

INTEGER*1 IMAGE (,
, NS.. SIZE,WE SIZE),

& LINE... DET(, , NS..SIZE,WE..SIZE)

INTEGER*4 NS.. SIZE, WL SIZE, MASK.. NO, SCALE... FACTOR, IFAIL

3 Description
The possible line detection masks that can be convolved (in the image processing sense) with
IMAGE are:

MASK..NO=1: -1 -1 —1 MASK..NO=2: —1 —1 2
2 2 2 —1 2—1

—1 —1 —1 2 —1 —1

MASK..NO =3: -1 2 -1 MASK.N0 =4: 2 -1 -1
—1 2 —1 —1 2 —1
—1 2 —1 —1 —1 2

4. References
None.

5 Arguments
IMAGE

On entry IMAGE contains the image to be convolved with the line detection mask. Each
dimension of the image size must be in the range ES to 32ES in multiples of ES. The
image is assumed to be stored in IMAGE using a crinkled mapping where the third
and fourth co-ordinates of IMAGE are the vertical and horizontal co-ordinates of each
crinkled tile. Unchanged on exit.

NS..SIZE

On entry NS..SIZE contains the height in pixels of the image divided by ES. NS_ SIZE
must be in the range 1 to 32. Unchanged on exit.

WE.. SIZE

On entry WE_ SIZE contains the width of the image in pixels divided by ES. WE_SIZE
must be in the range 1 to 32. Unchanged on exit.

LINE.. DET

On exit LINE.. DET contains the convolution of IMAGE with the line detection mask
selected by MASK_NO divided by SCALE.. FACTOR.

114 manOl4.03 AMT

Low Level Image Processing Routines LINE_ DET_ 8

MASK.. NO

On entry MASK_NO contains an integer in the range 1 to 4 which selects the mask to
be used. Unchanged on exit.

sCALE.. FACTOR

On entry SCALE_ FACTOR contains the scale-factor which the result is scaled down by to
avoid overflow. SCALE_FACTOR must be in the range —2’s to 215_i foT LINE.. DET_8,
and in the range —2’ to 231

— i for LINE_DET.. 16. Unchanged on exit.

IFAIL

IFAIL equals 0 on exit unless an error occurs. (See 6 below)

6 Errors

IFAIL=0 Successful exit
IFAIL=1 .NS_SIZE out of range
IFAIL=2 WE.. SIZE out of range
IFML=3 MASK NO out of range

7 Auxiliary Routines
Not available.

8 Accuracy
Not available.

9 Further Comments
None.

10 Keywords
Line Detection, Image Processing

Image Processing Library manOl4.03 115

NORMALIZE_ 8 Low Level Image Processing Routines

5.24 NORMALIZE.8

1 Purpose
NORMALIZE_S expands the range of grey-scale values used within an 8-bit two’s comple
ment image to the full range.

2 Specification

SUBROUTINE NORMALIZE 8 (IMAGE,NS SIZE, WE SIZE, NORM, IFAIL)

INTEGER*1 IMAGE(, , NSSIZE,WE SIZE), NORM (, ,NSSIZE,WESIZE)

INTEGER*4 NSSIZE, WESIZE, IFAIL

3 Description
The grey-scale range of IMAGE is expanded by scaling linearly to fill the entire range -128
to 127.

4 References
None.

5 Arguments
IMAGE

On entry IMAGE contains the image to be normalized. Each dimension of the image
size must be in the range ES to 32E$ in multiples of ES. The image is assumed to be
stored in IMAGE using a crinkled mapping where the third and fourth co-ordinates of
IMAGE are the vertical and horizontal co-ordinates of each crinkled tile. Unchanged on
exit.

NS SIZE

On entry NS_SIZE containa the height in pixels of the image divided by ES. NS_ SIZE
must be in the range 1 to 32. Unchanged on exit.

Wf SIZE

On entry WE_ SIZE contains the width of the image divided by ES. WE_ SIZE must be
in the range 1 to 32. Unchanged on exit.

NORM

On exit NORM contains the normalization of IMAGE. NORM stores the convolution
using a crinkled mapping (see IMAGE above).

IFAIL

IFAIL has the value 0 on exit unless an error occurs. (See 6 below)

6 Errors

IFAIL=0 Successful exit
IFAIL=1 NS_SIZE out of range
IFAIL=2 WE_ SIZE out of range

116 manOl4.03 AMT

Low Level Image Processing Routines NORMALIZE_ 8

7 Auxiliary Routines
None.

8 Accuracy
Not available.

.9 Further Comments
None.

10 Keywords
Normalization, Image Processing

Image Processing Library manOl4.03 117

PERC..THRESH_8 Low Level Image Processing Routines

5.25 PERC. THRESH 8

1 Purpose
PERC...THRESH_8 performs thresholding on an 8-bit two’s complement image.

2 Specification

SUBROUTINE PERC...THRESH.8(IMAGE, NS.. SIZE, WE SIZE, PTHRESH,
& HIGH.. TIDE, PERCENTILE, FLIP, IFAIL)

INTEGER*1 IMAGE(, , NS..SIZE,WE..SIZE)

INTEGER*4 N&SIZE, WESIZE, HIGILTIDE, PERCENTILE, IFAIL

LOGICAL P.JHRESH (, , NSSIZE,WE SIZE), FLIP

3 Description
P..THRESH is a logical bit-map of the image which has .TRUE. values where the IMAGE
grey-scale values exceed HIGH_TIDE and .FALSE. otherwise. (This is reversed if FLIP is
.FALSE. instead of .TRUE..) HIGH_TIDE is determined by the requirement that PER
CENTILE per cent of the values in P...TH.RESH must be .TRUE..

4 References
None.

5 Arguments
IMAGE

On entry IMAGE contains the image to be thresholded. Each dimension of the image
size must be in the range ES to 32ES in multiples of ES. The image is assumed to be
stored in IMAGE using a crinkled mapping where the third and fourth co-ordinates of
IMAGE are the vertical and horizontal co-ordinates of each crinkled tile. Unchanged on
exit.

N&SIZE

On entry NS_ SIZE contains the height in pixels of the image divided by ES. NS_ SIZE
must be in the range 1 to 32. Unchanged on exit.

WE.. SIZE

On entry WE.. SIZE contains the width of the image in pixels divided by ES. WE_ SIZE
must be in the range 1 to 32. Unchanged on exit.

P.. THRESH

On exit P_THRESH contains a logical bit-map of from the thresholding of IMAGE.
P_THRESH stores the bit-map using a crinkled mapping (see IMAGE above).

HIGHTIDE

On exit HIGHTIDE is the threshold with which IMAGE is compared.

118 manOl4.03 AMT

Low Level Image Processing Routines PERC THRESIL 8

PERCENTILE

HIGH_TIDE is adjusted so PERCENTILE percent of the pixel grey-scale values exceed
HIGHTIDE (for FLIP .TRUE.).

FLIP

if FLIP is .TRUE., PTHRESH is .TRUE. when IMAGE is greater than HIGHTIDE.
If FLIP is .FALSE., PTHRESH is .FALSE. when IMAGE is greater than HIGHTIDE.

IFAIL

IFAIL has the value 0 on exit unless an error occurs. (See 6 below.)

6 Errors

IFAIL=0 Successful exit
IFML=1 NSSIZE out of range
IFML=2 WE_SIZE out of range
IFAIL=17 PERCENTILE out of range 0 to 100

7 Auxiliary Routines
AES_THRESH_8 from the Image Processing Library is called.

8 Accuracy
Not applicable.

9 Further Comments
None.

10 Keywords
Thresholding, Image Processing

Image Processing Library manOl4.03 119

PREWITT_ 8 Low Level Image Processing Rou tines

5.26 PREWITT8

1 Purpose
PREWITT8 applies a user-selected Prewitt compass gradient mask to an 8-bit per pixel
two’s complement image. The result may be scaled to avoid overflow.

2 Specification

SUBROUTINE PREWITT... 8 (IMAGE,NSSIZE, WE.. SIZE, MASK.. NO,
& PREW, SCALE. FACTOR, IFAIL)

INTEGER*1 IMAGE (, , N&SIZE,WESIZE), PREW (, , NSSIZE,WE SIZE)

INTEGER*4 N&SIZE, WE...SIZE, MASK..NO, SCALE.. FACTOR, IFAIL

3 Description
The possible Prewitt compass gradient masks that can be convolved (in the image processing
sense) to IMAGE are:

MASK..NO=1: 1 1 1 MASK.NO=2: 1 1 1
(North) 1 —2 1 (Northeast) —1 —2 1

—1 —1 —1 —1—1 1

MASK..NO=3: —1 1 1 MASKNO=4: -1 -1 1
(East) —1 —2 1 (Southeast) —1 —2 1

—1 1 1 1 1 1

MASK..NO =5: —1 —1 —1 MASK..NO =6: 1 -1 —1
(South) 1 —2 1 (Southwest) 1 —2 —1

1 1 1 1 1 1

MASKNO=7: 1 1 -1 MASKNO=8: 1 1 1
(West) 1 —2 —1 (Northwest) 1 —2 —1

1 1 —1 1 —1 —1

4 References
None.

5 Arguments
IMAGE

On entry IMAGE contains the image to be convolved with the Prewitt compass gradient
mask. Each dimension of the image size must be in the range ES to 32ES in multiples
of ES. The image is assumed to be stored in IMAGE using a crinkled mapping where
the third and fourth co-ordinates of IMAGE are the vertical and horizontal co-ordinates
of each crinkled tile. Unchanged on exit.

120 manOl4.03 AMT

Low Level Image Processing Routines PREWITT.. 8

N& SIZE

On entry NS_SIZE contains the height in pixels of the image divided by ES. NSSIZE
must be in the range 1 to 32. Unchanged on exit.

WE.. SIZE

On entry WE_SIZE contains the width of the image divided by ES. wE.. SIZE must be
in the range 1 to 32. Unchanged on exit.

PREW

On exit PREW contains the convolution of IMAGE with the Prewitt compass gradient
mask selected by MASK..NO divided by SCALE..FACTOR.

MAsK.. NO

On entry MASK_NO contains an integer in the range 1 to 8 which selects the mask to
be used. Unchanged on exit.

SCALE.. FACTOR

On entry SCALE_ FACTOR contains the scale-factor which the result is scaled down by to
avoid overflow. SCALE_ FACTOR must be in the range _215 to 215_i for PREWITT.. 8,
and in the range —2 to 2’ — 1 for PREWITT_ 16. Unchanged on exit.

IFAIL

IFAIL equals 0 on exit unless an error occurs. (See 6 below)

6 Errors

IFAIL=0 Successful exit
IFAIL=1 NS_SIZE out of range
IFAIL=2 WE_SIZE out of range
IFAIL=3 MASK.. NO out of range

7 Auxiliary Routines
Not available.

8 Accuracy
Not available.

9 Further Comments
None.

10 Keywords
Prewitt, Compass Gradient, Image Processing

Image Processing Library manOl4.03 121

PSEUDO_MEDL4N_8 Low Level Image Processing Routines

5.27 PSEUDOMEDIAN8

1 Purpose
PSEUDO.. MEDIAN_8 calculates the pseudo-median at each pixel in an 8-bit two’s comple
ment image for a rectangular neighbourhood centred on the image.

2 Specification

SUBROUTINE PSEUDO... MEDIAN.. 8 (IMAGE,NS.. SIZE, WE.. SIZE, PS.. MED,
NSMED, WEMED, IFAIL)

INTEGER*1 IMAGE(, , NSSIZE,WE SIZE),
& PS MED (, , NS..SIZE,WESIZE)

INTEGER*4 NS..SIZE, WE...SIZE, N&MED, WE..MED, IFAIL

3 Description
The pseudo-median is calculated by first calculating the median of the rows or columns of
the rectangular neighbourhood about each point defined by NS_MED and WE_MED and
then calculating the median of the results. The longer dimension is calculated first.

4 References
None.

5 Arguments

IMAGE

On entry IMAGE contains the image for which the local pseudo-medians are to be cal
culated. Each dimension of the image size must be in the range ES to 32ES in multiples
of ES. The image is assumed to be stored in IMAGE using a crinkled mapping where
the third and fourth co-ordinates of IMAGE are the vertical and horizontal co-ordinates
of each crinkled tile. Unchanged on exit.

NS_ SIZE

On entry NS_SIZE contains the height in pixels of the image divided by ES. NS_ SIZE
must be in the range 1 to 32. Unchanged on exit.

wE.. SIZE

On entry WE_SIZE contains the width of the image divided by ES. WE_ SIZE must be
in the range 1 to 32. Unchanged on exit.

PS MED

On exit PS.. MED contains the pseudo-median for a rectangular region about each pixel.
PS_MED is stored using a crinkled mapping (see IMAGE above).

NS.. MED

On entry NS_ MED contains the height of the pseudo-median rectangle which must be
one of 1, 3, 7, 15, 31. Unchanged on exit.

122 manOl4.03 AMT

Low Level Image Processing Routines PSEUDOJvIEDIAN..8

WE.. MED

On entry WE_MED contains the width of the pseudo-median rectangle which must be
one of 1, 3, 7, 15, 31. Unchanged on exit.

IFAIL

IFAIL has the value 0 on exit unless an error occurs. (See 6 below)

6 Errors

IFAIL=0 Successful exit
IFAIL=1 NS_SIZE out of range
IFAIL=2 WE_SIZE out of range
IFAIL=11 Invalid NSMED
IFAIL=12 Invalid WE.MED

7 Auxiliary Routines
The Image Processing Library routines PURE.MEDIAN_8, SHIFT_IMAGE_8 are called.

8 Accuracy
Not applicable.

9 Further Comments
None.

10 Keywords
Pseudo-median, Median, Image Processing

Image Processing Library man 014.03 123

PURE_MEDMN_ 8 Low Level Image Processing Routines

5.28 PURE... MEDIAI’L 8

1 Purpose
PURE_MEDIAN_s calculates the true median at each pixel in an 8-bit two’s complement
image for a rectangular neighbourhood centred on the image.

2 Specification

SUBROUTINE PURE.. MEDIAN.. 8 (IMAGE,NS.. SIZE, WE.. SIZE, MED,
& NS.MED, WE..MED, IFAIL)

INTEGER*1 IMAGE (, , NS.. SIZE,WE SIZE),
& MED (, ,NS..SIZE,WE SIZE)

INTEGER*4 NS..SIZE, WE..SIZE, NS..MED, WE..MED, IFAIL

3 Description
MED is the median grey-scale value of the pixels in the rectangular neighbourhood about
each point defined by NS_MED andWE...MED.

4 References
None.

5 Arguments
IMAGE

On entry IMAGE contains the image for which the local medians are to be calculated.
Each dimension of the image size must be in the range ES to 32E5 in multiples of ES.
The image is assumed to be stored in IMAGE using a crinkled mapping where the third
and fourth co-ordinates of IMAGE are the vertical and horizontal co-ordinates of each
crinkled tile. Unchanged on exit.

NS.. SIZE

On entry NS_ SIZE contains the height in pixels of the image divided by ES. NS_ SIZE
must be in the range 1 to 32. Unchanged on exit.

WE.. SIZE

On entry WE_SIZE contains the width of the image divided by ES. WE_SIZE must be
in the range 1 to 32. Unchanged on exit.

MED

On exit MED contains the median of a rectangular region about each pixel. MED is
stored using a crinkled mapping (see IMAGE above).

NS.. MED

On entry NS_ MED contains the height of the median rectangle which must be one of 1,
3, 7, 15, 31. Unchanged on exit.

124 manOl4.03 AMT

Low Level Image Processing Routines PURE.. MEDIAN.. 8

WE... MED

On entry WE_MED contains the width of the median rectangle which must be one of 1,
3, 7, 15, 31. Unchanged on exit.

IFAIL

IFML has the value 0 on exit unless an error occurs. (See 6 below.)

6 Errors

IFAIL=0 Successful exit
IFAIL=1 NS_ SIZE out of range
IFAIL=2 WE_SIZE out of range
IFML=11 Invalid NS..MED
IFAIL=12 Invalid WEMED

7 Auxiliary Routines
The Image Processing Library routine SHIFT_IMAGE_8 is called.

8 Accuracy
Not applicable.

9 Further Comments
15 x 31, 31 x 15 and 31 x 31 medians cannotbe performed by PURE_MEDIAN16.

10 Keywords
Median, Image Processing

Image Processing Library manOl4.03 125

ROBERTS_S Low Level Image Processing Routines

5.29 ROBERTS8

1 Purpose
ROBERTS_8 applies a user-selected Roberts edge detection mask to an 8-bit per pixel two’s
complement image. The result may be scaled to avoid overflow.

2 Specification

SUBROUTINE ROBERTS 8 (IMAGE,NS SIZE, WE.. SIZE, MASK NO,
& ROB, sCALE.. FACTOR, IFAIL)

INTEGER*1 IMAGE (, , N& SIZE,WE SIZE), ROB (, , NS SIZE,WE SIZE)

INTEGER*4 NSSIZE, WE...SIZE, MASK..NO, SCALEFACTOR, IFAIL

3 Description
The possible Roberts masks that can be convolved (in the image processing sense) with
IMAGE are:

MASKNO =1: 1 0 MASKNO =2: 0 1
0 —1 —1 0

The masks are extended by zeros to the left and up and then applied as centred 3 x 3 masks.

4 References
None.

5 Arguments
IMAGE

On entry IMAGE contains the image to be convolved with the Roberts edge detection
mask. Each dimension of the image size must be in the range ESto 32ESin multiples
of ES. The image is assumed to be stored in IMAGE using a crinkled mapping where
the third and fourth co-ordinates of IMAGE are the vertical and horizontal co-ordinates
of each crinkled tile. Unchanged on exit.

NS SIZE

On entry NS_ SIZE contains the height in pixels of the image divided by ES. NS_ SIZE
must be in the range 1 to 32. Unchanged on exit.

WE.. SIZE

On entry WE_SIZE contains the width of the image divided by ES. WE_ SIZE must be
in the range 1 to 32. Unchanged on exit.

ROB

On exit ROB contains the convolution of IMAGE with the Roberts

edge detection mask selected by MASK_ NO divided by SCALE_ FACTOR.

MASL. NO

On entry MASK_NO contains an integer in the range 1 to 2 which selects the mask to
be used. Unchanged on exit.

126 manOl4.03 AMT

Low Level Image Processing Routines ROBERTS_ 8

SCALE.. FACTOR

On entry SCALE.. FACTOR contains the scale-factoT which the result is scaled down byto
avoid overflow. SCALE_FACTOR must be in the range —2’s to 2’ —1 for ROBERTS.. 8,
and in the range _231 to 2’ — 1 for RO3ERTS_16. Unchanged on exit.

IFAIL

IFAIL equals 0 on exit unless an error occurs. (See 6 below)

6 Errors

IFAIL=0 Successful exit
IFAIL=1 NS_ SIZE out of range
IFAIL=2 WE.. SIZE out of range
IFML=3 MASK NO out of range

7 Auxiliary Routines
Not available.

8 Accuracy
Not available.

9 Further Comments
None.

10 Keywords
Roberts, Edge Detection, Image processing

Image Processing Library manOl4.03 127

SOBEL_8 Low Level Image Processing Routines

5.30 SOBEL_8

1 Purpose
SOBEL_$ applies a user-selected Sobel edge detection mask to an 8-bit per pixel two’s
complement image. If MASK_ NO= 1 the horizontal edge detection mask is used and if
MASK_NO= 2 the vertical edge detection mask is used. The result may be scaled to avoid
overflow.

2 Specification

SUBROUTINE SOBEL.8(IMAGE, NSSIZE, WESIZE, MASKNO, SOB,
& ScALE... FACTOR, IFAIL)

INTEGER*1 IMAGE(,,NS_SIZE,WESIZE), SOB (, ,NSSIZE,WESIZE)

INTEGER NS..SIZE, WE...SIZE, MASK...NO, SCALE...FACTOR, IFAIL

3 Description
The vertical and horizontal masks convolved (in the image processing sense) with image are:

Horizontal: 1 0 —1 Vertical: 1 2 1

——— .
4 References

None.

5 Arguments
IMAGE

On entry IMAGE contains the image to be convolved with the edge detection masks.
The image is assumed to be stored using a crinkled mapping where the third and fourth
co-ordinates of IMAGE are the vertical and horizontal co-ordinates of each crinkled tile.
Unchanged on exit.

NS.. SIZE

On entry NS_ SIZE contains the height of the image in pixels divided by ES. NS_ SIZE
must be in the range 1 to 32. Unchanged on exit.

WE SIZE

On entry WE_ SIZE contains the width of the image in pixels divided by ES. WE_ SIZE
must be in the range 1 to 32. Unchanged on exit.

MASK NO

On entry MASK_NO, contains 1 if the horizontal edge detection mask is to be used and
MASK_NO, contains 2 if the vertical edge detection mask is to be used. Unchanged on
exit.

SOB

On exit SOB contains the the convolution of IMAGE with either the vertical or horizontal
Sobel edge detection mask divided by SCALE_FACTOR.

128 manOl4.03 AMT

Low Level Image Processing Routines SOBEL_ 8

SCALE FACTOR

On entry SCALE_FACTOR contains the scale-factor which the result is scaled down by
to avoid overflow. SCALE_FACTOR must be in the range _215 to 215_i for SOBEL8,
and in the range _231 to 231

— 1 for SOBEL_16. Unchanged on exit.

IFAIL

IFAIL equals 0 on exit unless an error occurs. (See 6 below)

6 Errors

IFML=0 Successful exit
IFAIL=1 NS_SIZE out of range
IFAIL=2 WE_SIZE out of range
IFML=3 MASK_ NO not in range

7 Auxiliary Routines
Not available.

8 Accuracy
Not available.

9 Further Comments
None.

10 Keywords
Sobel, Edge Detection, Image Processing

Image Processing Library manOl4.03 129

ZERO_X_8 Low Level Image Processing Routines

5.31 ZERO.X.8

1 Purpose
ZERO_X_8 finds the zero crossings in an 8-bit two’s complement image.

2 Specification

SUBROUTINE ZERO...X.. 8 (IMAGE,NS SIZE, WESIZE, ZERO, IFAIL)

INTEGER*1 IMAGE (, , NSSIZE,WESIZE)

INTEGER*4 NSSIZE, WE..SIZE, IFAIL

LOGICAL ZERO (, , NSSIZE,WE SIZE)

3 Description
ZERO is a logical bit-map of the image which has .TRUE. values where the IMAGE changes
between positive and negative values.

4 References
None. -

5 Arguments

IMAGE

On entry IMAGE contains the image to be searched for zero crossings. Each dimension
of the image size must be in the range ESto 32ESin multiples of ES. The image is
assumed to be stored in IMAGE using a crinkled mapping where the third and fourth
co-ordinates of IMAGE are the vertical and horizontal co-ordinates of each crinkled tile.
Unchanged on exit.

NS SIZE

On entry NS_ SIZE contains the height of the image in pixels divided by ES. NS_ SIZE
must be in the range 1 to 32. Unchanged on exit.

WESIZE

On entry WE_SIZE contains the width of the image divided by ES. WE_SIZE must be
in the range 1 to 32. Unchanged on exit.

ZERO

On exit ZERO contains a logical bit-map of zero crossings in IMAGE. ZERO stores the
bit-map using a crinkled mapping (see IMAGE above).

IFAIL

IFAIL has the value 0 on exit unless an error occurs. (See 6 below.)

.
130 manOl4.03 AMT

Low Level Image Processing Routines ZERO_X_ 8

6 Errors

IFAIL=O Successful exit
IFAIL=1 NS_ SIZE out of range
IFML=2 WE_SIZE out of range
IFAIL=7 No zero crossings found

7 Auxiliary Routines
None.

8 Accuracy
Not applicable.

9 Further Comments
None.

10 Keywords
Zero Crossing, Image Processing

Image Processing Library manOl4.03 131

ZERO_X_8 Low Level Image Processing Routines

.

4

.
132 manOl4.03 AMT

Chapter 6

Image Analysis Routines

These image analysis routines allow the interesting features on an image to found and identified
automatically. SEGMENT... 16 and FEATURES.. 16 are available for analysing 16-bit images.

Image PTocessing Library manOl4.03 133

LABEL_ 16 Image Analysis Routines

6.2 LABEL.A6

1 Purpose
LA3EL_ 16 labels the distinct ‘blobs’ in a binary image, returning a 16-bit two’s complement
image with aU the pixels in a blob having the same value, but each blob is given a different
value.

2 Specification

SUBROUTINE LABEL. 16 (BINIMAGE, NS..SIZE, WE.SIZE, LA&IMAGE,
& IFAIL)

LOGICAL BINJMAGE(, , NSSIZE,WE SIZE)

INTEGER*2 LAB... IMAGE (, ,NS.SIZE,WE..SIZE)

INTEGER*4 NS... SIZE,, WE.. SIZE, IFAIL

3 Description
A unique value is assigned to each .TRUE. pixel in BIN_IMAGE. These values are copy-
propagated to ,TRUE. nearest neighbours. When two or more values are assigned to a pixel
it is the highest value which is assigned to that pixel.

4 References
None.

5 Arguments

BiN.. IMAGE

On entry IMAGE contains the image on which the blob labelling is to be performed.
Each dimension of the image size must be in the range ES to 32ES in multiples of ES.
The image is assumed to be stored in IMAGE using a sheet mapping where the third
and fourth co-ordinates of IMAGE are the vertical and horizontal co-ordinates of each
sheet. Unchanged on exit.

NS SIZE

On entry NS_SIZE contains the height of the image in pixels divided by ES. NS_ SIZE
must be in the range 1 to ES. Unchanged on exit.

WE SIZE

On entry WE_SIZE contains the width of the image divided by ES. WE_SIZE must be
in the range 1 to ES. Unchanged on exit.

LAB IMAGE

On exit LAB_IMAGE contains a sheet-mapped (see IMAGE above) 16-bit image la
belling the blobs in BIN_IMAGE.

IFAIL

IFAIL has the value 0 on exit unless an error occurs. (See 6 below)

136 manOl4.03 AMT

Image Analysis Routines LABEL. 16

6 Errors

IFAIL=O Successful exit
IFAIL=1 NS...SIZE out of range
IFAIL=2 WE... SIZE out of range

7 Auxiliary Routines
The Image Processing Library routine LABEL_16_SUB is called.

S Accuracy
Not applicable.

9 Further Comments
None.

10 Keywords
Image Feature Generation, Labelling, Image Processing

Image Processing Library manOl4.03 137

FEATURE$_ 8 Image Analysis Rou tines

7 Auxiliary Routines
None.

8 Accuracy
Not available.

9 Further Comments
None.

10 Keywords
Image FeatuTe Generation, Image Processing

Table 1

The following formulae are extracted from Digital Image Processing by Gonzalez and Wintz.

1. Invariant moment number 2

:m2 = (7120 — 7702)2 + 4

2. Invariant moment number 5

:m5 = (7o — 37712)0730 + 7712) {0?3o + ‘712) — 30i + 7703)}

+(31721 7703)0721 + 7703) {3(’73o + 7112)2
— (7721 + lloa)2}

3. Invariant moment number 6

1m6 = (‘720 — 7102){0130+7712)2
— (7721 + 773)2}

+47111(7730 + 7712)0121 + ‘103)

4. Invariant moment number 7

:m7 = (3’ii — 7730)0130 + 1712){(’73o + 7712)2
— 3(7721 + 77o3)2}

+(3’712 1130)0121 + 7703){3(773o + 7712)2
— (‘721 + ,7o3)2}

.
140 manOl4.03 AMT

Image Analysis Routines FEATURES.. 8

Where:

— Upq

— a(p+q+2)12

and a = uoo so that the i are invariant to scale, translation and intensity.

And where:

Upq = — — y)f(x y)]dxdy

f(x, y) is the grey-scale value at position x , y.

y is the position of the centroid of the blob, as defined by:

xf(x,y)dxdy
— f(z,y)dzdy

yf(x,y)dzdy
U— f(w,y)dxdy

Image Processing Library manOl4. 03 141

CLASSIF Image Analysis Routines

.

.
144 manOl4.03 AMT

.
.

.

