DAP Series

General Support Library

GSLIB

AMT endeavours to ensure that the information in this document is correct, but does not accept responsibility for any error or omission.

Any procedure described in this document for operating AMT equipment should be read and understood by the operator before the equipment is used. To ensure that AMT equipment functions without risk to safety or health, such procedures should be strictly observed by the operator.

The development of AMT products and services is continuous and published information may not be up to date. Any particular issue of a product may contain part only of the facilities described in this document or may contain facilities not described here. It is important to check the current position with AMT.

Specificationis and statements as to performance in this document are AMT estimates intended for general guidance. They may require adjustment in particular circumstances and are therefore not formal offers or undertakings.

Statements in this document are not part of a contract or program product licence save in so far as they are incorporated into a contract or licence by express reference. Issue of this document does not entitle the recipient to access to or use of the products described, and such access or use may be subject to separate contracts or licences.

Technical publication man010.02
First edition 20 October 1987
Second edition 22 April 1988

Copyright © 1988 by Active Memory Technology
No part of this publication may be reproduced in any form without written permission from Active Memory Technology.

AMT will be pleased to receive readers' views on the contents, organisation, etc of this publication. Please make contact at either of the addresses below:

Publications Manager Active Memory Technology Ltd 65 Suttons Park Avenue Reading
Berks, RG6 1AZ, UK
Tel: 0734661111

Publications Manager
Active Memory Technology Inc
16802 Aston St Suite 103
Irvine
California, 92714, USA
Tel: (714) 2618901

Contents

1 Introduction 1
1.1 Background 1
1.2 Arrangement of Documentation 1
1.3 Validation 1
1.4 Full-form Documentation 2
1.4.1 Purpose 2
1.4.2 Specification 2
1.4.3 Description 2
1.4.4 References 2
1.4.5 Arguments 2
1.4.6 Error Indicators 3
1.4.7 Auxiliary routines 3
1.4.8 Accuracy 3
1.4.9 Further Comments 3
1.4.10 Keywords 3
1.4.11 Example 3
1.5 Access to the Library 3
1.5.1 Using the library under UNIX 4
1.5.2 Using the library under VAX/VMS 4
1.6 Other AMT subroutine libraries 4
2 GSLIB quick-reference catalogue 5
3 A03 - Variable precision arithmetic 15
3.1 A03_ADD_PLANES_I1 16
4 C06 - Summation of series 19
4.1 C06_FFT_ESS 20
4.2 C06_FFT_LV 24
5 F01 - Matrix Operations 29
5.1 F01_G_MM 30
5.2 F01_M_INV 34
5.3 F01_MM_STRASSEN 37
6 F02-Eigenvalues and eigenvectors 41
6.1 F02_ALL_EIG_VALS_TD_ES 42
6.2 F02_ALL_EIG_VALS_TD_LV 46
6.3 F02_EIG_VALS_TD_LV 50
6.4 F02_JACOBI 54
7 F04 - Simultaneous linear equations 59
7.1 F04_BIGSOLVE 60
7.2 F04_GJ_NLE _ES 66
7.3 F04_QR_GIVENS_SOLVE 71
7.4 F04 _TRIDS_ES 75
7.5 F04_TRIDS_ES_SQ 78
7.6 F04_TRIDS_LV 82
8 G05 - Random numbers 85
8.1 G05_MC_BEGIN 86
8.2 G05_MC_I4 88
8.3 G05_MC_I8 90
8.4 G05_MC_NORMAL_R4 92
8.5 G05_MC_R4 94
8.6 G05_MC_R8 96
8.7 G05_MC_REPEAT 98
9 H01 - Operations research, graph structures, networks 101
9.1 H01_L_ASSIGN 102
10 J06 - Plotting 107
10.1 J06_CHAR_CONT 108
10.2 J06_ZEBRA_CHART 111
11 M01 - Sorting 113
11.1 M01_BSORT_LV 114
11.2 M01_INV_PERMUTE _COLS 117
11.3 M01_INV_PERMUTE _LV_32 121
11.4 M01_INV_PERMUTE _ROWS 124
11.5 M01_PERMUTE _COLS 128
11.6 M01 _PERMUTE _LV_32 132
11.7 M01_PERMUTE _ROWS 135
11.8 M01 _SORT_V_I4 139
11.9 M01_SORT_V_R4 142
12 S - Special functions 147
12.1 S04_ARC_COS 148
12.2 S04_ARC_SIN 152
12.3 S04_ATAN2_M 156
12.4 S04_ATAN2_V 159
12.5 S04_COS_INT 162
12.6 S04_MOD_BES_IO 166
12.7 S04_MOD_BES_I 1 170
12.8 S04_SIN_INT 174
12.9 S15_ ERF 178
12.10S15_ERFC 182
13 X01 - Mathematical constants 187
13.1 X01_PI 188
14 X02-Machine constants 191
14.1 X02_EPSILON 192
14.2 X02_MAXDEC 194
14.3 X02_MAXINT 196
14.4 X02_MAXPW2 198
14.5 X02_MINPW2 200
14.6 X02_RMAX 202
14.7 X02_RMIN 204
14.8 X02_TOL 206
15 X05 - Other utilities 209
15.1 X05_ALT_LV 211
15.2 X05_CRINKLE 213
15.3 X05_EAST_BOUNDARY 215
15.4 X05_E_MAX _PC 217
15.5 X05_ E_MAX_PR 219
15.6 X05_E_MAX _VC 221
15.7 X05_E_MAX_VR 223
15.8 X05_E_MIN _PC 225
15.9 X05_ E_MIN_PR 227
15.10X05_ E_MIN _VC 229
15.11X05_E_MIN _VR 231
15.12X05_EXCH_P 233
15.13X05_GATHER_V_32 236
15.14X05_I_MAX_PC 239
15.15X05_I_MAX_PR 241
15.16X05_I_MAX_VC 243
15.17X05_I_MAX_VR 245
15.18X05_I_MIN _PC 247
15.19X05_I_MIN_PR 249
15.20X05_I_MIN _VC 251
15.21X05_I_MIN _VR 253
15.22 X 05 _LOG2 255
15.23X05_LONG_INDEX 258
15.24X05_NORTH _BOUNDARY 260
15.25X05_PATTERN 262
15.26X05_SCATTER_V_32 264
15.27X05_SHLC_LV 267
15.28X05_SHLP_LV 269
15.29X05_SHORT_INDEX 271
15.30X05_SHRC_LV 273
15.31X05_SHRP_LV 275
15.32X05_SOUTH _ BOUNDARY 277
15.33X05_STRETCH _ 4 279
15.34X05_STRETCH _ 8 281
15.35X05_STRETCH _ N 283
15.36X05_SUM_LEFT_I2 285
15.37X05_SUM_RIGHT_I2 288
15.38X05_UNCRINKLE 29115.39X05_WEST_BOUNDARY293

Chapter 1

Introduction

1.1 Background

The General Support subroutine library was developed at Queen Mary College (QMC) in London and is jointly owned by AMT and QMC. The library is a set of 93 routines which can be called from FORTRAN-PLUS. The contents of the library are based on those of the DAP Fortran library at QMC, which grew in response to user requests for specific routines. The routines were provided by members of the DAP Support Unit (DAPSU) at QMC, or were written at the suggestion of DAPSU members, or were submitted by users themselves. Many of the algorithms used by these routines have been in regular use on a first generation DAP at QMC since 1980.

1.2 Arrangement of Documentation

The routines described in this manual are classified by chapter, arranged in a NAG-like manner, covering such areas as solution of linear equations, Fourier transforms, and so on. The next chapter in this manual provides a full listing of the contents of the library, chapter by chapter, and gives a brief description of the area covered by each routine.

1.3 Validation

Before being added to the library all routines undergo validation tests, designed and written at DAPSU. These tests have been collected together in a validation suite, which is used to check installation of the library.

1.4 Full-form Documentation

The full description of each routine has eleven sections, covering the following areas:
1 Purpose
2 Specification
3 Description
4 References
5 Arguments
6 Error Indicators
7 Auxiliary Routines
8 Accuracy
9 Further Comments
10 Keywords
11 Example

1.4.1 Purpose

The purpose of the routine is given, and where relevant, details of the area covered by the routine.

1.4.2 Specification

The calling sequence to be used when you invoke the routine. If the routine is written in FORTRANPLUS, Specification gives the declaration statements at the head of the routine; if the routine is written in APAL, the equivalent statements are given.

1.4.3 Description

The description of the algorithm used by the routine is given.

1.4.4 References

Any references used in connection with the routine are given.

1.4.5 Arguments

The significance of each argument used by the routine is explained.

1.4.6 Error Indicators

The significance of any error indicators returned by the routine is explained.

1.4.7 Auxiliary routines

The names of any auxiliary routines used by the routine are given. The auxiliary routines are kept in the same library as the subroutine library routines but are not, in general, available to users.

1.4.8 Accuracy

Some indication is given of the expected accuracy of any result returned by the routine as a result of the method used to calculate it. No information is given about results with respect to the word length used; for such information have a look at the routines in chapter 12 (X02-Machine constants).

1.4.9 Further Comments

Any information which does not fall under any other heading is included here.

1.4.10 Keywords

This section is intended for use with an information retrieval system and gives a list of subjects to which the operation of the routine may be relevant.

1.4.11 Example

An example program is given (both Host and DAP programs) for each of the routines, showing the use of the routine and any expected results.

WARNING

You should follow closely the specification of the calling sequence given in section 2 of the details of each routine in the following chapters, otherwise you may get unexpected results.

1.5 Access to the Library

The subroutine library is linked in at the consolidation stage of the compiling process. For more details than are included below, see the relevant AMT publication: Program Development Under UNIX (man003), or Program Development Under VAX/VMS (man004).

1.5.1 Using the library under UNIX

The library resides within the UNIX system as:

```
/usr/lib/dap/sulib.dl
```

and you can use it in a call to dapa or dapf by means of the -l flag, as in:

```
dapf -o myfile.dd myfile.df -l sulib
```

This call will compile the DAP section myfile.df, linking in any routines from the library and produce a DOF file myfile.dd.

1.5.2 Using the library under VAX/VMS

The library resides within the VMS system as:
SYS\$LIBRARY: GSLIB.DLB
and you can use it in a call to DLINK using the /LIBRARY qualifier, as in:
\$ DLINK MYFILE,SYS\$LIBRARY:GSLIB/LIBRARY
This call links the DAP object code in file MYFILE.DOB with any library routines you might specify in your source code, producing an executable DAP program in file MYFILE.DEX.

Alternatively, you can use the DAP_LIBRARY logical name, as in:
\$ DEFINE DAP_LIBRARY SYS\$LIBRARY:GSLIB
This call will cause the library to be searched automatically in all subsequent DLINK operations. If you use the library frequently, you may find it convenient to include the above line in your LOGIN.COM file. . If there are several DAP users on your system, your system manager could include the line:
\$ DEFINE/SYSTEM DAP_LIBRARY SYS\$LIBRARY:GSLIB
in the system startup command file, to give all users automatic access to the library.

1.6 Other AMT subroutine libraries

This General Support subroutine library forms one of a series of libraries available from AMT. Other libraries include:

- Low level graphics library
- Signal processing library
- Image Processing library
details of which can be obtained from your local AMT representative.

Chapter 2

GSLIB quick-reference catalogue

Listed below are the groups of subroutines in release 1 of GSLIB, the General Support subroutine library, and the subroutines in each group; each group is allocated a chapter in this manual. Release 1 of the library is targetted at the DAP 500 series of machines, those with an edge size of 32 .

You may find this chapter helpful in the initial selection of suitable routines for the job in hand.

Chapter 3: A03 - Variable precision arithmetic

1 A03_ADD_PLANES_I1 adds bit planes together by performing an addition of n consecutive bits under each processing element. It returns the result of this addition as an INTEGER*1 MATRIX. Any overflow past bit 7 is discarded and the result is given modulo 128.

Chapter 4: C06 - Summation of series, including fast Fourier transformations

1 C06_LFT_LV performs a one dimensional finite Fourier transform of 1024 complex points.

2 C06_LFT_ESS calculates the two dimensional discrete Fourier transform of 32^{2} complex points.

Chapter 5: F01 - Matrix operations, including inversion

1 F01_G_MM performs a general matrix multiply of two matrices A and B where A is a P by Q matrix and B is a Q by R matrix with P, Q and R in the range 1 to 32 .

2 F01_M_INV calculates, in place, the inverse of a given N by N matrix with N in the range 1 to 32 .

3 F01_MM_STRASSEN uses Strassen's algorithm to multiply two (partitioned) 64^{2} matrices.

Chapter 6: F02 - Eigenvalues and eigenvectors

1 F02_ ALL_EIG_VALS_TD_LV finds all the eigenvalues of a symmetric tridiagonal matrix of order up to 1024 using Sturm sequences.

2 F02_ALL_EIG_VALS_TD_ES finds all the eigenvalues of a symmetric tridiagonal matrix of order up to 32 using Sturm sequences.

3 F02_EIG_VALS_TD_LV finds up to 32 selected eigenvalues of a symmetric tridiagonal matrix of order up to 1024 using Sturm sequences.

4 FO2_JACOBI calculates the eigenvalues and eigenvectors of a real symmetric matrix. The method is based on the classical Jacobi algorithm using plane rotations.

Chapter 7: F04 - Simultaneous linear equations

1 FO4_ BIGSOLVE solves large sets of linear equations. The maximum size of the system depends on the size of the DAP store. The matrix of the coefficients of the equations is of size SIZE by SIZE and the right hand side is assumed to be held in column SIZE +1 . The whole matrix is held in the DAP partitioned in DAPSIZE blocks. This routine is not recommended for systems of order 32 or less - in this case, you should use the routine F04_GJN_LE_ES.

2 'F04_GJ_NLE_ES solves for x the system of linear equations $A x=b$, where A is a non-sparse matrix of order N (in the range 1 to 32), using the Gauss Jordan method.

3 F04_QR_GIVENS_SOLVE solves for x the linear system $A x=b$, where A is an N by N matrix with $2<\mathrm{N}<33$. The routine may be used to solve up to 32 different right hand side vectors b simultaneously.

4 F04_TRIDS_ES returns the solution of a tridiagonal linear system of equations of order up to 32. It finds vector x, where:

$$
M x=y
$$

and M is a tridiagonal matrix.
5 F04_TRIDS_ES_SQ returns the solution of a set of up to 32 tridiagonal linear systems of equations each of order up to 32 . It solves up to 32 systems of the form:

$$
M x=y
$$

where M is a tridiagonal matrix.
6 F04_TRIDS_LV returns the solution of a tridiagonal linear system of equations of order up to 1024. It finds vector x, where:

$$
M x=y
$$

and M is a tridiagonal matrix.

Chapter 8: G05 - Random numbers

1 GO5_MC_BEGIN sets the basic generator routine Z_G05_MC_INT to an initial state.

2 G05_MC_I4 returns an INTEGER*4 MATRIX containing 1024 pseudo-random integer numbers taken from a uniform distribution between 0 and $2^{31}-1$.

3 G05_MC_I8 returns an INTEGER*8 MATRIX containing 1024 pseudo-random integer numbers taken from a uniform distribution between 1 and $2^{59}-1$.

4 G05_MC_NORMAL_R4 returns a REAL*4 MATRIX of 1024 normal pseudorandom variates from the distribution $N(0,1)$.

5 G05_MC_R4 returns a REAL*4 MATRIX of 1024 pseudo-random real numbers taken from a uniform distribution between 0 and 1.

6 G05_MC_R8 returns a REAL*8 MATRIX of 1024 pseudo-random real numbers taken from a uniform distribution between 0 and 1 .

7 G05_MC_REPEAT sets the basic generator routine Z_G05_MC_INT to a repeatable initial state.

Chapter 9: H-Operations research, graph structures, networks

1 H01_L_ASSIGN solves the linear assignment problem with a minimum objective function and a real cost matrix of order N by N , where $\mathrm{N}<=32$.

Chapter 10: J06 - Plotting

1 J06_CHAR_CONT returns a character matrix containing a rough contour map of a real matrix. You can control the number of contours and contour levels.

2 JO6_ZEBRA_CHART returns a contour map of a real matrix suitable for output to a printing device. The output is called a ZEBRA chart as it consists of alternating bands of blanks and a given character.

Chapter 11: M01 - Sorting

1 M01_BSORT_LV is based on bitonic sorting. Data is sorted according to a key, or the key alone may be sorted.

2 M01_INV_PERMUTE_COLS permutes the first M columns of a matrix according to a permutation vector (IV). The routine is equivalent to the FORTRAN-PLUS statements:

$$
\begin{array}{ll}
& \text { DO } 10 \mathrm{I}=1, \mathrm{M} \\
10 & \text { A. } \operatorname{PERMUTED}(, \operatorname{IV}(\mathrm{I}))=\mathrm{A}(, \mathrm{I})
\end{array}
$$

3 M01_INV_PERMUTE_LV_32 permutes the values in an INTEGER*4 or REAL*4 matrix using an INTEGER*4 matrix key. The result is written to a new matrix and the original data is unaffected. The data shuffling implemented is ANSWER (KEY(I)) = START (I), for $I=1,1024$, using long vector indexing. Hence the key matrix must contain values in the range 1-1024, but the values need not be distinct.

4 M01_INV_PERMUTE_ROWS permutes the first M rows of a matrix according to a permutation vector (IV). The routine is equivalent to the FORTRAN-PLUS statements:

DO $10 \mathrm{I}=1, \mathrm{M}$
10 A_PERMUTED (, IV (I)) $=\mathrm{A}(, \mathrm{I})$
5 M01_PERMUTE_COLS permutes the first M columns of a matrix according to a permutation vector (IV). The routine is equivalent to the FORTRAN-PLUS statements:

DO $10 \mathrm{I}=1, \mathrm{M}$
10 A_PERMUTED $(, \mathrm{I})=\mathrm{A}(, \operatorname{IV}(\mathrm{I}))$
6 M01_PERMUTE_LV_32 permutes the values in an INTEGER*4 or REAL* ${ }_{4}$ matrix using an INTEGER*4 matrix key. The result is written to a new matrix and the original data is unaffected. The data shuffling implemented is ANSWER (I) = START (KEY(I)), for $\mathrm{I}=1,1024$, using long vector indexing. Hence the key matrix must contain values in the range 1-1024, but the values need not be distinct.

7 M01_PERMUTE_ROWS permutes the first M rows of a matrix according to a permutation vector (IV). The result is equivalent to the FORTRAN-PLUS statements:

DO $10 \mathrm{I}=1, \mathrm{M}$
10 A_PERMUTED $(\mathrm{I})=,\mathrm{A}(\operatorname{IV}(\mathrm{I})$,
8 M01_SORT_V_I 4 sorts the first N elements of an integer vector into ascending or descending order. The permutation required to perform the sort is returned to the calling routine.

9 M01_SORT_V_R4 sorts the first N elements of a real vector into ascending or descending order. The permutation required to perform the sort is returned to the calling routine.

Chapter 12: S - Special functions

1 S04_ARC_COS returns the value of the inverse cosine function $\arccos (x)$ for a matrix argument. The result lies in the range $[0, \pi]$.

2 SO4_ARC_SIN returns the value of the inverse sine function $\arcsin (x)$ for a matrix argument. The result lies in the range $[-\pi / 2, \pi / 2]$.

3 S04_ATAN2_M is a matrix function similar to the standard FORTRAN ATAN2 function. It calculates arc-tangent(matrix-1/matrix-2), and returns a matrix of values in the range $-\pi$ to π, in the correct quadrant, and with divide-by-zero errors avoided. If a zero divided by zero is attempted then a zero is returned.

4 SO4_ATAN2_V is a vector function similar to the standard FORTRAN ATAN2 function. It calculates arc-tangent(vector-1/vector-2), and returns a vector of values in the range $-\pi$ to π, in the correct quadrant, and with divide-by-zero errors avoided. If a zero divided by zero is attempted then a zero is returned.

5 S04_COS_INT returns the value of the cosine integral $C_{i} x$ for a matrix argument.

6 SO4_MOD_BES_I0 returns the value of the modified Bessel function I0 for a matrix argument.

7 S04_MOD_BES_I1 returns the value of the modified Bessel function I1 for a matrix argument.

8 S04_SIN_INT returns the value of the sine integral $S_{i} x$ for a matrix argument.
9 S15_ERF returns the value of the error function.
10 S15_ERFC returns the value of the complement of the error function.

Chapter 13: X01 - Mathematical constants

1 X01_PI determines the value of π for any of the real precision lengths available on the DAP.

Chapter 14: X02 - Machine constants

1 X02_EPSILON determines the smallest positive real (EPS) such that $1.0+$ EPS differs from 1.0, for any of the real precision lengths available on the DAP.

2 X02_MAXDEC determines the value of MAXDEC for the different precision lengths available on the DAP. MAXDEC is the maximum number of decimal digits which can be represented accurately over the whole range of floating point numbers.

3 X02_MAXINT determines the value of MAXINT for the different precision lengths available on the DAP. MAXINT is the largest integer such that MAXINT and -MAXINT can both be represented accuratetly.

4 X02_MAXPW2 determines the value of MAXPW2 for the different precision lengths available on the DAP. MAXPW2 is the largest integer power to which 2.0 may be raised without overflow.

5 X02_MINPW2 determines the value of MINPW2 for the different precision lengths available on the DAP. MINPW2 is the largest negative integer power to which 2.0 may be raised without underflow.

6 XO2_RMAX determines the largest real (RMAX) such that RMAX and -RMAX can both be represented exactly, for any of the real precision lengths available on the DAP.

7 XO2_RMIN determines the smallest real (RMIN) such that RMIN and -RMIN can both be represented exactly, for any of the real precision lengths available on the DAP.

8 X02_TOL determines the value of TOL ($=$ RMIN/EPSILON) for any of the precision lengths available on the DAP.

Chapter 15: X05 - Other utilities

1 X05_ALT_LV produces a long vector of alternating groups of N false values followed by N true values and so on, until all components of the vector have a value. If the value of N lies outside the range 1 to 1024 all components will have the value false.

2 X05_CRINKLE effects a transformation in data storage format for vertical mode data occupying an array of matrices - from 'sliced' to 'crinkled' storage.

3 X05_EAST_BOUNDARY returns a logical matrix containing at most one .TRUE. in each row corresponding to the last. TRUE. (if any) in each row of the logical matrix parameter. The routine is equivalent to the FORTRAN-PLUS code:

$$
\begin{array}{ll}
& \text { DO } 10 \mathrm{I}=1,32 \\
& \operatorname{IF}(. \operatorname{NOT} . \operatorname{ANY}(\operatorname{LM}(\mathrm{I},))) \operatorname{GOTO} 10 \\
& \operatorname{KM}(\mathrm{I},)=\operatorname{REV}(\operatorname{FRST}(\operatorname{REV}(\operatorname{LM}(\mathrm{I},)))) \\
10 & \operatorname{CONTINUE}
\end{array}
$$

4 X05_E_MAX_PC returns a logical matrix whose $i^{\text {th }}$ row has the value.TRUE. in the position(s) corresponding to the position(s) in the $i^{\text {th }}$ row of the real matrix argument holding the maximum value in that row, and FALSE. elsewhere.

5 X05_E_MAX_PR returns a logical matrix whose $i^{i^{t h}}$ column has the value .TRUE. in the position(s) corresponding to the position(s) in the $i^{t h}$ column of the real matrix argument holding the maximum value in that column, and .FALSE. elsewhere.

6 XO5_E_MAX_VC returns a real vector whose $i^{t h}$ component is the maximum value in the $i^{\text {th }}$ row of the real matrix argument.

7 X05_E_MAX_VR returns a real vector whose $i^{\text {th }}$ component is the maximum value in the $i^{t h}$ column of the real matrix argument.

8 X05_E_MIN_PC returns a logical matrix whose $i^{\text {th }}$ row has the value .TRUE. in the position(s) corresponding to the position(s) in the $i^{\text {th }}$ row of the real matrix argument holding the minimum value in that row, and FALSE. elsewhere.

9 X05_E_MIN_PR returns a logical matrix whose $i^{\text {th }}$ column has the value .TRUE. in the position(s) corresponding to the position(s) in the $i^{t h}$ column of the real matrix argument holding the minimum value in that column, and .FALSE. elsewhere.

10 X05_ E_MIN_VC returns a real vector whose $i^{\text {th }}$ component is the minimum value in the $i^{\text {th }}$ row of the real matrix argument.

11 X05_ E_MIN_VR returns a real vector whose $i^{\text {th }}$ component is the minimum value in the $i^{\text {th }}$ column of the real matrix argument.

12 X05_ EXCH_P exchanges L planes starting at X with L planes starting at Y under activity control indicated by M. The planes are exchanged in increasing order; you are cautioned about the strange effects which will occur if the two sets of planes overlap.

13 X05_GATHER_V_32 assigns to the components of a vector the values of those components of a vector array designated by corresponding components of an indexing vector. The index values are interpreted as reduced rank indices to the vector array.

14 X05_I_MAX_PC returns a logical matrix whose $i^{\text {th }}$ row has the value. TRUE. in the position(s) corresponding to the position(s) in the $i^{\text {th }}$ row of the integer matrix argument holding the maximum value in that row, and .FALSE. elsewhere.

15 X05_I_MAX_PR returns a logical matrix whose $i^{\text {th }}$ column has the value .TRUE. in the position(s) corresponding to the position(s) in the $i^{t h}$ column of the integer matrix argument holding the maximum value in that column, and .FALSE. elsewhere.

16 X05_I_MAX_VC returns an integer vector whose $i^{\text {th }}$ component is the maximum value in the $i^{\text {th }}$ row of the integer matrix argument.

17 X05_I_MAX_VR returns an integer vector whose $i^{t^{t h}}$ component is the maximum value in the $i^{\text {th }}$ column of the integer matrix argument.

18 X05_I_MIN_PC returns a logical matrix whose $i^{\text {th }}$ row has the value .TRUE. in the position(s) corresponding to the position(s) in the $i^{\text {th }}$ row of the integer matrix argument holding the minimum value in that row, and .FALSE. elsewhere.

19 XO5_I_MIN_PR returns a logical matrix whose $i^{\text {th }}$ column has the value .TRUE. in the position(s) corresponding to the position(s) in the $i^{\text {th }}$ column of the integer matrix argument holding the minimum value in that column, and .FALSE. elsewhere.

20 X05_I_MIN_VC returns an integer vector whose $i^{\text {th }}$ component is the minimum value in the $i^{\text {th }}$ row of the integer matrix argument.

21 XO5_I_MIN_VR returns an integer vector whose $i^{\text {th }}$ component is the minimum value in the $i^{\text {th }}$ column of the integer matrix argument.

22 X05_LOG2 returns the value:

$$
[\log (N-1)]+1
$$

where square brackets indicate 'integer part of', and N is the input argument. The routine returns the number of steps required in a $\log _{2}$, recursive doubling, algorithm.

23 X05_LONG_INDEX generates an integer matrix whose $i^{\text {th }}$ element in long vector order is $(i+\mathrm{N}-1)$, where N is a parameter to the routine.

24 X05_NORTH_BOUNDARY returns a logical matrix containing at most one .TRUE. in each column corresponding to the first .TRUE. (if any) in each column of the logical matrix parameter. The routine is equivalent to the FORTRAN-PLUS code:

```
        DO 10I = 1, 32
        IF (.NOT.ANY (LM (,I))) GOTO 10
        KM(,I)= FRST (LM (,I))
10 CONTINUE
```

25 X05_PATTERN produces four user-selectable patterns, each of which is returned as a logical matrix. The four patterns available are:

0 - The main diagonal
1 - The minor diagonal
2 - A matrix, the rows of which correspond to the rows generated by ALTC
3 - The unit lower triangular matrix
26 X05_SCATTER_V_32 takes components of a vector and assigns the values to components of a vector array designated by corresponding components of an indexing vector. The index values are interpreted as reduced rank indices to the vector array.

27 X05_SHLC_LV performs a cyclic long vector shift to the left on up to 128 bit planes.
28 XO5_SHLP_LV performs a planar long vector shift to the left on up to 128 bit planes.
29 XO5_SHORT_INDEX generates an integer vector whose $i^{\text {th }}$ element is $(i+\mathrm{N}-1)$, where N is a parameter to the routine.

30 X05_SHRC_LV performs a cyclic long vector shift to the right on up to 128 bit planes.
31 X05_SHRP_LV performs a planar long vector shift to the right on up to 128 bit planes.

32 X05_SOUTH_BOUNDARY returns a logical matrix containing at most one .TRUE. in each column corresponding to the last. TRUE. (if any) in each column of the logical matrix parameter. The routine is equivalent to the FORTRAN-PLUS code:

```
    DO 10I = 1, 32
    IF (.NOT. ANY (LM (,I))) GOTO 10
    KM(,I) = REV (FRST (REV (LM (,I))))
10 CONTINUE
```

33 X05_STRETCH_4 stretches the first quarter of a real matrix A (considered as a long vector), such that each element is repeated four times consecutively.

34 X05_STRETCH_8 stretches the first eighth of a real matrix A (considered as a long vector), such that each element is repeated eight times consecutively.

35 XO5_STRETCH_N stretches the first $\mathrm{N}^{\text {th }}$ of a real matrix A (considered as a long vector), such that each element is repeated N times consecutively, N being 2 raised to a positive integer power.

36 XO5_SUM_LEFT_I2 takes as input the long vector A (an INTEGER*2 vector) and returns an INTEGER*2 long vector each of whose elements is the sum of all the elements on the left of, but not including, the corresponding element of A.

37 X05_SUM_RIGHT_I2 takes as input the long vector A (an INTEGER*2 vector) and returns an INTEGER*2 long vector each of whose elements is the sum of all the elements on the right of, but not including, the corresponding element of A.

38 X05_UNCRINKLE effects a transformation in data storage format for vertical mode data occupying an array of matrices - from 'crinkled' to 'sliced' storage.

39 X05_WEST_BOUNDARY returns a logical matrix containing at most one TRUE. in each row corresponding to the first .TRUE. (if any) in each row of the logical matrix parameter. The routine is equivalent to the FORTRAN-PLUS code:

DO $10 \mathrm{I}=1,32$
IF (.NOT. ANY (LM, (I,))) GOTO 10
$\operatorname{KM}(\mathrm{I})=,\operatorname{FRST}(\mathrm{LM}(\mathrm{I})$,
10 CONTINUE

GSLIB quick-reference catalogue

Chapter 3

A03 - Variable precision arithmetic

Contents:

Subroutine Page
A03_ADD_PLANES_I1 16

3.1 A03_ADD_PLANES_I1

1 Purpose

A03_ADD_PLANES_I1 adds bit planes together, that is, it performs an addition of n consecutive bits of each PE.
A03_ADD_PLANES_I1 returns the result of this addition so that the corresponding element of the result is the sum of the n consecutive bits of the corresponding PE.
The result is calculated to an accuracy of integer* ${ }^{*}$, therefore any overflow past bit 7 is thrown away and the result is modulo 128 .

2 Specification

INTEGER*1 MATRIX FUNCTION A03_ADD_PLANES_I1 (STARTPLANE ,
$+\quad$ NRPLANES)
INTEGER NRPLANES
<any type> STARTPLANE (,)

3 Description

The DAP can add the contents of a store plane and the Q and C planes simultaneously ; this routine uses that ability to add pairs of planes. The resulting carry is then rippled up the answer.

4 References

None

5 Arguments

STARTPLANE - <any type> MATRIX
On entry STARTPLANE contains the address of the first plane to be added. The function adds NRPLANES consecutive planes starting at STARTPLANE.STARTPLANE may, in FORTRAN-PLUS, be any variable represented by a plane address. None of the planes added are changed by the function, but you are warned against allowing the destination of the result to overlap the planes to be added. If you do try overlapping the planes, the program will still work, but you will have overwritten your arguments before you accessed them!

NRPLANES - INTEGER

On entry NRPLANES specifies the number of planes to be added. Unchanged on exit.

6 Error Indicators

None

7 Auxiliary Routines

None

8 Accuracy

The results are calculated mod 128 - overflow is not detected.

9 Further Comments

None

10 Keywords

Bit summation, integer addition.

11 Example

The example adds the bit planes which define a long index vector, thus counting the number of bits set.TRUE. in the binary representation of the integers 0 to 1023.

Host program

PROGRAM MAIN

INTEGER IM (1024)
COMMON /IM/IM

CALL DAPCON('ent.dd')
CALL DAPENT('ENT')
CALL DAPREC('IM',IM, 1024)
WRITE $(6,1000)$
1000 FORMAT(6X,'I',3X,'No. of bits set'//)
DO 10 II=1, 1024
$I=I I-1$
$10 \operatorname{WRITE}(6,2000) \mathrm{I}, \mathrm{IM}(\mathrm{II})$
2000 FORMAT(I7,10X,I2)
CALL DAPREL
STOP
END

DAP program
ENTRY SUBROUTINE ENT
INTEGER*1 IM1 (,)
INTEGER IM(,)
LOGICAL LM $(,, 32)$
COMMON /IM/IM
EQUIVALENCE (IM,LM)
EXTERNAL INTEGER*1 MATRIX FUNCTION A03_ADD_PLANES_I1

```
CALL XO5LONGINDEX(IM,0)
IM1=A03_ADD_PLANES_I1(LM(, ,21),10)
IM=IM1
CALL CONVMFI(IM)
RETURN
END
```


Results

I No. of bits set

0	0
1	1
2	1
3	2
\cdot	\cdot
\cdot	\cdot
\cdot	\cdot
1020	8
1021	9
1022	9
1023	10

Chapter 4

C06 - Summation of series

(including fast fourier transformations)

Contents:

Subroutine	Page
C06_FFT_ESS	.
C0_FFT_LV	.

4.1 C06_FFT_ESS

1 Purpose

C06_ FFT_ESS calculates the two dimensional discrete Fourier transform of 32×32 complex points.

2 Specification

SUBROUTINE C06_FFT_ESS (X , Y , INVERS , FIRST)
REAL X (,) , Y(,)
LOGICAL INVERS , FIRST

3 Description

The 2D transform is calculated by performing independent sets of row and column 32-point transforms.
The data is then in bit reversed order independently in rows and columns and a final shuffle is performed to reorder the data.
For a description of the general theory of FFTs see [1].

4 References

[1] BRIGHAM E.O.
The Fast Fourier Transform: Prentice-Hall, 1974

5 Arguments

X - REAL MATRIX

On entry X contains the real part of the data to be transformed. On exit X contains the real part of the transformed data.

Y - REAL MATRIX

On entry Y contains the imaginary part of the data to be transformed. On exit Y contains the imaginary part of the transformed data.

INVERS - LOGICAL

If INVERS is set to .FALSE. the transform:

$$
X_{j k}+i Y_{j k}=\sum_{m} \sum_{n}\left(A_{m n}+i B_{m n}\right) \exp \left(2 \pi i \frac{(j-1)(m-1)}{32}+\frac{(k-1)(n-1)}{32}\right)
$$

is calculated, where $j=1,2, \ldots, 32 ; k=1,2, \ldots, 32$ and the summations are also over $m=1,2, \ldots, 32$ and $n=1,2, \ldots, 32$; and where $i=\sqrt{-1}$.
If INVERS is set to .TRUE. the transform:

$$
A_{m n}+i B_{m n}=\sum_{j} \sum_{k}\left(X_{j k}+Y_{j k}\right) \exp \left(-2 \pi i \frac{(m-1)(j-1)}{32}+\frac{(n-1)(k-1)}{32}\right)
$$

is calculated, where $m=1,2, \ldots, 32 ; n=1,2, \ldots, 32$ and the summations are also over $j=1,2, \ldots, 32$ and $k=1,2, \ldots, 32 ;$ and where $i=\sqrt{-1}$.

FIRST - LOGICAL

If FIRST is set to .TRUE. the exponential coefficients for the transform are calculated. Consequently FIRST must be set to .TRUE. the first time this routine is called within a program, but may be set to .FALSE. for all subsequent calls.

6 Error Indicators

None

7 Auxiliary Routines

This routine calls the DAP library routines Z_C06_F2DCOEFF, Z_C06_ROWFFT, Z_C06_COLFFT and Z_C06_F2DBREV.

8 Accuracy

Accuracy will be data dependent. Some indication of the accuracy may be obtained by performing a subsequent inverse transform and comparing the results with the original data.

9 Further Comments

This routine uses a common block with the name CC06FFTESSQ. Consequently the user program must not use a common block with this name.

10 Keywords

Fast Fourier Transform

11 Example

The example given sets up an initial array of complex points in which the real and imaginary parts are simple functions of a real variable. A forward transform is then performed followed by a back transform of the transformed data. The first 32 complex values of the first row of the initial data, transformed data and back transformed data are printed.

Host program

PROGRAM HTFFTESS
REAL $\mathrm{X}(32,32), \mathrm{Y}(32,32), \mathrm{XT}(32,32), \mathrm{YT}(32,32), \mathrm{XB}(32,32), \mathrm{YB}(32,32)$
COMMON /BDATA/X,Y,XT,YT,XB,YB
CALL dapcon('tfftess.dd')
CALL dapent('TFFTESS')
CALL daprec('BDATA', X, 6*1024)
DO $100 i=1,1$
$\operatorname{WRITE}(6,6001)$
WRITE $(6,6002)$
$\$(X(J, i), Y(J, I), X T(J, I), Y T(J, I), X B(J, I), Y B(J, I), J=1,32)$
6001 FORMAT (2 X, 'DATA TO BE TRANSFDRMED', 9 X, 'TRANSFORMED DATA'
\$9X,'BACK TRANSFORMED DATA'//3(9X,'REAL', 9X,'IMAG') /)
6002 FORMAT(6(1X,F12.6))
100 CONTINUE
CALL daprel
STOP
END

DAP program
ENTRY SUBROUTINE TFFTESS
REAL $X(),, Y(),, X T(),, Y T(),, X B(),, Y B($,
INTEGER IM(,)
LOGICAL INVERS,FIRST
COMMON /BDATA/X,Y,XT,YT, XB,YB
CALL LONG_INDEX(IM)
$\mathrm{X}=6.28318 *(\mathrm{IM}-1) / 1023.0$
$\mathrm{Y}=\mathrm{SIN}(\mathrm{X})$
$\mathrm{X}=\cos (\mathrm{X}) * \cos (\mathrm{X})$
$\mathrm{XT}=\mathrm{X}$
$\mathrm{YT}=\mathrm{Y}$
INVERS=.FALSE.
FIRST=.TRUE.
CALL CO6_FFT_ESS (XT,YT,INVERS,FIRST)
$X B=X T$
$Y B=Y T$
FIRST=.FALSE.
INVERS = . TRUE .
CALL CO6_FFT_ESS (XB, YB, INVERS,FIRST)
$\mathrm{XB}=\mathrm{XB} / 1024.0$
$Y B=Y B / 1024.0$
CALL CONVMFE (X)
CALL CONVMFE(Y)
CALL CONVMFE(XT)
CALL CONVMFE(YT)
CALL CONVMFE (XB)
CALL CONVMFE (YB)
RETURN
END

Results

DATA TO BE TRANSFORMED

REAL	IMAG	REAL	IMAG	REAL	IMAG
1.000000	.000000	512.499512	-.000001	1.000000	.000000
.999962	.006142	.029227	-.002885	.999962	.006142
.999848	.012284	.014964	-.002954	.999849	.012284
.999661	.018425	.009909	-.002994	.999661	.018425
.999397	.024565	.007302	-.003027	.999397	.024565
.999057	.030705	.005657	-.002998	.999057	.030705
.998642	.036843	.004522	-.003013	.998642	.036843
.998152	.042980	.003741	-.003100	.998152	.042980
.997588	.049116	.003037	-.003032	.997588	.049115
.996947	.055249	.002486	-.003049	.996948	.055249
.996232	.061381	.002015	-.003077	.996232	.061380
.995442	.067510	.001615	-.003032	.995441	.067510
.994578	.073636	.001249	-.003026	.994577	.073636
.993638	.079760	.000901	-.003026	.993638	.079760
.992624	.085881	.000625	-.003057	.992624	.085881
.991536	.091999	.000311	-.003093	.991536	.091999
.990374	.098113	.000000	-.003080	.990374	.098113
.989138	.104223	-.000266	-.003058	.989137	.104223
.987827	.110329	-.000591	-.003060	.987828	.110329
.986444	.116432	-.000956	-.003115	.986444	.116432
.984986	.122530	-.001285	-.003113	.984986	.122530
.983456	.128623	-.001659	-.003107	.983457	.128623
.981852	.134711	-.002083	-.003071	.981853	.134711
.980176	.140795	-.002545	-.003089	.980176	.140795
.978428	.146873	-.003098	-.003093	.978428	.146873
.976608	.152945	-.003736	-.003047	.976608	.152945
.974715	.159012	-.004658	-.003119	.974715	.159012
.972751	.165073	-.005815	-.003132	.972751	.165073
.970715	.171127	-.007510	-.003113	.970715	.171127
.968608	.177175	-.010330	-.003156	.968608	.177175
.966431	.183217	-.015892	-.003190	.966431	.183217
.964184	.189251	-.033177	-.003261	.964183	.189251

4.2 C06_FFT_LV

release 1

1 Purpose

C06_FFT_LV performs a one dimensional finite Fourier transform of 1024 complex points.

2 Specification

SUBROUTINE C06_FFT_LV (X , Y , INVERS , FIRST)
REAL X(,) Y (,)
LOGICAL INVERS, FIRST

3 Description

The data is considered as 1024 complex points in long vector order, and the transform is calculated by performing linked row and column transforms. The first step is to calculate 32-point transforms along each row of complex data. The results of the row transforms are multiplied by a second set of exponential factors and then 32 -point transforms are calculated along each column in a similar way to the row transforms but using different exponential factors. The exponential factors are set up in such a way as to ensure that the row and column transforms are linked correctly to give the required 1D transform. The final step re-orders the data which is in bit reversed order.
For a description of the general theory of FFTs see [1].

4 References

[1] BRIGHAM E.O.
The Fast Fourier Transform: Prentice-Hall, 1974

5 Arguments

X - REAL MATRIX

On entry X contains the real part of the data to be transformed. On exit X contains the transformed real part of the data.

Y - REAL MATRIX

On entry Y contains the imaginary part of the data to be transformed. On exit Y contains the transformed imaginary part of the data.

INVERS - LOGICAL

If INVERS is set to .FALSE. the transform:

$$
X_{j}+i Y_{j}=\sum_{k+1}^{1024}\left(A_{k}+i B_{k}\right) \exp \left(2 \pi i \frac{(j-1)(k-1)}{1024}\right)
$$

is calculated, where $\mathrm{j}=1,2, \ldots, 1024$ and the summation is over $\mathrm{k}=1,2, \ldots, 1024$; and where $i=\sqrt{-1}$.

If INVERS is set to .TRUE. the transform:

$$
A_{k}+i B_{k}=\sum_{j+1}^{1024}\left(X_{j}+i Y_{j}\right) \exp \left(-2 \pi i \frac{(j-1)(k-1)}{1024}\right)
$$

is calculated, where $k=1,2, \ldots, 1024$ and the summation is over $j=1,2, \ldots, 1024$; and where $i=\sqrt{-1}$.

The argument is unchanged on exit.

FIRST - LOGICAL

If FIRST is set to .TRUE. the exponential coefficients for the transform are calculated. Consequently FIRST must be set to .TRUE. the first time this routine is called within a program, but may be set to .FALSE. for all subsequent calls.

The argument is unchanged on exit.

6 Error Indicator

None
7 Auxiliary Routines
The routine calls the DAP library routines Z_C06FFT1DCOEFF, Z_C06ROWFFT, Z_C06COLFFT, Z_C06FFT1DBREV.

8 Accuracy

Accuracy will be data dependent. You can get some idea of the accuracy by carrying out the transform, then carrying out the inverse transform and comparing the results with the original data.

9 Further Comments

The routine uses a common block with name CC06FFTLV. Consequently your program must not use a common block with this name.

10 Keywords

Fast Fourier Transform

11 Example

The example given sets up initial data in which the real and imaginary parts are simple functions of a real variable. A forward transform is then performed, followed by a back transform of the transformed data. The first ten complex values of the initial data, transformed data and back transformed data are printed in long vector order.

Host program

```
PROGRAM HTFFTLV
REAL X(32,32),Y(32,32),XT(32, 32),YT(32,32),XB(32,32),YB(32,32)
COMMON /BDATA/X,Y,XT,YT,XB,YB
CALL DAPCON('tfftlv.dd')
CALL DAPENT('TFFTLV')
CALL DAPREC('BDATA',X,6*1024)
WRITE(6,6001)
WRITE (6,6002) (X(I, 1),Y(I,1),I=1,10)
WRITE (6,6003)
WRITE (6,6002) (XT(I,1),YT(I, 1), I=1,10)
WRITE (6,6004)
WRITE(6,6002) (XB(I, ) , YB(I, 1), I=1,10)
6001 FORMAT(2X,'DATA TO BE TRANSFORMED'//7X,'REAL',9X,'IMAG'/)
6002 FORMAT(2(1X,F12.6))
6003 FORMAT(//2X,'TRANSFORMED DATA'//7X,'REAL',9X,'IMAG'/)
6004 FORMAT(//2X,'BACK TRANSFORMED DATA'//7X,'REAL',9X,'IMAG')
STOP
END
```


DAP Program

```
ENTRY SUBROUTINE TFFTLV
REAL X(,),Y(,),XT(,),YT(,),XB(,),YB(,)
INTEGER IM(,)
LOGICAL INVERS,FIRST
COMMON /BDATA/X,Y,XT,YT,XB,YB
CALL LONG_INDEX(IM)
X=6.28318*(IM-1)/1023.0
Y=SIN(X)
x=\operatorname{cos}(x)*\operatorname{cos}(x)
XT=X
YT=Y
INVERS=.FALSE.
FIRST=.TRUE.
CALL C06_FFT_LV(XT,YT,INVERS,FIRST)
XB=XT
YB=YT
FIRST=.FALSE.
INVERS=.TRUE.
CALL C06_FFT_LV(XB,YB,INVERS,FIRST)
XB=XB/1024.0
YB=YB/1024.0
```

```
CALL CONVMFE(X)
CALL CONVMFE(Y)
CALL CONVMFE(XT)
CALL CONVMFE(YT)
CALL CONVMFE(XB)
CALL CONVMFE(YB)
RETURN
END
```

Results

DATA TO BE TRANSFORMED
REAL IMAG

1.000000	.000000
.999962	.006142
.999848	.012284
.999661	.018425
.999397	.024565
.999057	.030705
.998642	.036843
.998152	.042980
.997588	.049116
.996947	.055249

TRANSFORMED DATA

REAL	IMAG
512.499512	-.000001
-511.081055	1.567145
256.785889	-1.574793
-.025975	.000161
.099694	-.001184
.113036	-.001728
.108699	-.002016
.101061	-.002178
.093657	-.002353
.086534	-.002373

BACK TRANSFORMED DATA	
REAL	IMAG
.999999	.000000
.999961	.006134
.999847	.012277
.999661	.018417
.999397	.024560
.999058	.030699
.998641	.036837
.998152	.042973
.997588	.049111
.996948	.055240

Chapter 5

F01 - Matrix Operations

(including inversion)

Contents:

Subroutine Page
F01_G_MM 30
F01_M_INV 34
F01_MM_STRASSEN 37

5.1 F01_G_MM

release 1

1 Purpose

F01_G_MM performs a general matrix multiply of two matrices A and B, where A is a P by Q matrix and B is a Q by R matrix, with P, Q and R in the range 1 to 32 .

2 Specification

REAL MATRIX FUNCTION F01_G_MM (A, B, P, Q , R, IFAIL)
REAL A (,) , B(,)
INTEGER P, Q, R, IFAIL

3 Description

The routine is an optimised general matrix multiply using one of the following three procedures, depending on the relative sizes of P, Q and R (see [1]).

Procedure 1
F01_G_MM $=0.0$
DO $10 \mathrm{I}=1, \mathrm{Q}$
10 F01_G_MM $=$ F01_G_MM $+\operatorname{MATC}(A(, I)) * \operatorname{MATR}(B(I)$,
Procedure 2
DO $10 \mathrm{I}=1, \mathrm{P}$
10 F01_G_MM $(\mathrm{I})=,\operatorname{SUMR}\left(\operatorname{MATC}(\mathrm{A}(\mathrm{I},))^{* B}\right)$
Procedure 3
DO $10 \mathrm{I}=1, \mathrm{R}$
10 F01_G_MM $(, \mathrm{I})=\operatorname{SUMC}\left(\mathrm{A}^{*} \operatorname{MATR}(\mathrm{~B}(, \mathrm{I}))\right)$
If $\mathrm{P} / \mathrm{Q}>0.75$ and $\mathrm{R} / \mathrm{Q}>0.75$ procedure 1 is used, otherwise if $\mathrm{P}>=\mathrm{R}$ procedure 3 is used or if $\mathrm{P}<\mathrm{R}$ procedure 2 is used; the number 0.75 was determined empirically.

4 References

[1] MCKEOWN J J

Multiplication of non-standard matrices on DAP: DAP newsletter no 7: available from the DAP Suppoprt Unit, Queen Mary College, Mile End Road, London E1 4NS

5 Arguments

A - REAL MATRIX

On entry A contains the first of the two matrices to be multiplied together - array elements outside the matrix to be multiplied must be set to zero. The contents of A are unchanged on exit.

B - REAL MATRIX

On entry B contains the second of the two matrices to be multiplied together - array elements outside the matrix to be multiplied must be set to zero. The contents of B are unchanged on exit.

P - INTEGER

The number of rows in the first matrix. Unchanged on exit.

Q - INTEGER
The number of columns in the first matrix and the number of rows in the second matrix. Unchanged on exit.

R - INTEGER
The number of columns in the second matrix. Unchanged on exit.
IFAIL - INTEGER
Unless the routine detects an error (see Error indicators below) IFAIL contains zero on exit.

6 Error Indicators

Errors detected by the routine:

$$
\text { IFAIL }=1
$$

At least one of P, Q or R is not in the range 1 to 32 .
7 Auxiliary Routines
None
8 Accuracy
You can expect six significant figures.

9 Further Comments

None
10 Keywords
Matrix multiply.
11 Example
The example given multiplies a 3 by 5 matrix of 1 s by a 5 by 4 matrix of 1 s .

Host program

PROGRAM HTGMM
INTEGER P, Q, R
REAL $A(32,32), B(32,32), C(32,32)$
COMMON /BN/P,Q,R
COMMON /BIFAIL/IFAIL
COMMON /BDATA/A,B,C
$\operatorname{READ}(5, *) P, Q, R$
CALL dapcon('tgmm.dd')
CALL dapsen('BN',p,3)
CALL dapent('TGMM')

```
CALL daprec('BDATA',A,3*1024)
WRITE(6,6000) IFAIL
WRITE(6,6001) ((A(I,J),J=1,6), I=1,6)
WRITE(6,6002)
WRITE (6,6001) ((B(I,J),J=1,6),I=1,6)
WRITE(6,6002)
WRITE (6,6001) ((C(I,J),J=1,6),I=1,6)
6 0 0 0 ~ F O R M A T ( 3 X , I 1 / / ) ~
6001 FORMAT(6(1X,F5.2)/)
6 0 0 2 ~ F O R M A T ( / ) ~
CALL DAPREL
STOP
END
```

DAP program

ENTRY SUBROUTINE TGMM
REAL $A(),, B(),, C($,
INTEGER P, Q, R
COMMON /BN/P,Q,R
COMMON /BIFAIL/IFAIL
COMMON /BDATA/A,B,C
EXTERNAL REAL MATRIX FUNCTION FO1_G_MM
CALL CONVFSI $(P, 3)$
$A=0.0$
$\mathrm{B}=0.0$
$\operatorname{A}(\operatorname{ROWS}(1, P) \cdot \operatorname{AND} \cdot \operatorname{COLS}(1, Q))=1.0$
$B(\operatorname{ROWS}(1, Q) \cdot \operatorname{AND} \cdot \operatorname{COLS}(1, R))=1.0$
$\mathrm{C}=0.0$
C=F01_G_MM (A,B,P,Q,R,IFAIL)
CALL CONVMFE(A)
CALL CONVMFE (B)
CALL CONVMFE(C)
CALL CONVSFI (IFAIL,1)
RETURN
END

Data

$3 \quad 5 \quad 4$

Results

1.00	1.00	1.00	1.00	1.00	0.00
1.00	1.00	1.00	1.00	1.00	0.00
1.00	1.00	1.00	1.00	1.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00
1.00	1.00	1.00	1.00	0.00	0.00
1.00	1.00	1.00	1.00	0.00	0.00
1.00	1.00	1.00	1.00	0.00	0.00
1.00	1.00	1.00	1.00	0.00	0.00
1.00	1.00	1.00	1.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00
5.00	5.00	5.00	5.00	0.00	0.00
5.00	5.00	5.00	5.00	0.00	0.00
5.00	5.00	5.00	5.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00

5.2 F01_M_INV

1 Purpose

F01_M_INV calculates, in place, the inverse of a given N by N matrix with N in the range 1 to 32 .

2 Specification
SUBROUTINE F01_M_INV (A , N , IFAIL)
REAL A (,)
INTEGER N , IFAIL

3 Description

The matrix is inverted using Gauss-Jordan elimination with full pivoting.

4 References

None

5 Arguments

A - REAL MATRIX
On entry A contains the matrix to be inverted, which is assumed to be located in the top left of A and array elements outside the input matrix must be set to zero. On exit A contains the inverse of that matrix.

N - INTEGER

On entry N must be set to the order of the matrix to be inverted. N is unchanged on exit.

IFAIL - INTEGER

Unless the routine detects an error (see Error indicators below) IFAIL contains zero on exit.

6 Error Indicators

Errors detected by the routine:
$\operatorname{IFAIL}=1 \quad \mathrm{~N}$ is not in the range 1 to 32.
IFAIL $=2 \quad$ A pivot element is equal to zero - the matrix is singular.

7 Auxiliary Routines

None

8 Accuracy

You can expect five or six significant figures for well conditioned problems.

9 Further Comments

None

10 Keywords

Matrix inversion, Gauss-Jordan elimination.

11 Example

The example given inverts an N by N matrix, with $\mathrm{N}=5$ in this case. The matrix is generated as pseudo-random numbers in the range $0.0,1.0, \ldots, 9.0$ and then the diagonal elements are set to the sum of the elements in each row, thus ensuring a diagonally dominant, and so well conditioned matrix. The inverse matrix is multiplied by the original matrix as a check.

The results consist of the original matrix, the inverse matrix and their product.

Host program

program htminv
REAL A(32,32), $\mathrm{B}(32,32), \mathrm{C}(32,32)$
COMmON /bN/N
COMMON /bdata/a,b,C
COMMON /BIFAIL/IFAIL
$\operatorname{READ}(5, *) \mathrm{N}$
CALL dapcon('tmin.dd')
CALL DAPSEN('BN', $\mathrm{N}, 1$)
CALL DAPENT('TMINV')
CALL DAPREC('BDATA',A,3*1024)
CALL DAPREC('BIFAIL',IFAIL,1)
$\operatorname{URITE}(6,6000)$ IFAIL
$\operatorname{WRITE}(6,6001)((A(I, J), J=1,5), I=1,5)$
WRITE $(6,6002)$
$\operatorname{HRITE}(6,6001)((B(I, J), J=1,5), I=1,5)$
WRITE $(6,6002)$
$\operatorname{WRITE}(6,6001)((C(I, J), J=1,5), I=1,5)$
6000 FORMAT $(2 X, 12)$
$6001 \operatorname{FORMAT}(5(2 X, F 10.6))$
6002 FORMAT(/)
Call daprel
STOP
END

DAP progam

ENTRY SUBROUTINE TMINV
c
REAL $A(),, B(),, C($,
Integer Im (,)
COMMON /BN/w
COMMON /BDATA/A,B,C
COMMON /BIFAIL/IFAIL
EXTERNAL REAL MATRIX FUNCTION GO5MCR4
EXTERNAL LDGICAL MATRIX FUNCTION XO5Pattern
external real matrix function foigmm
CALL $\operatorname{CONVFSI}(\mathbb{N}, 1)$

CALL GO5MCBEGIN
IM=10.0*G05MCR4 (X)
$\mathrm{A}=0.0$
$\operatorname{A}(\operatorname{ROWS}(1, N) \cdot \operatorname{AND} \cdot \operatorname{COLS}(1, N))=I M$
$A(\operatorname{XO5PATTERN}(0))=\operatorname{MaTC}(\operatorname{SUMC}(A())$,
$B=A$
C
CALL F01_M_INV(B,N,IFAIL)
C
$\mathrm{C}=0.0$
C=F01_G_MM(A, B , N,N,N,IERR)
C
CALL CONVMFE(A)
CALL CONVMFE (B)
CALL CONVMFE(C)
CALL CONVSFI (IFAIL, 1) RETURN
END

Data

5

Results

0

35.000000	8.000000	3.000000	8.000000	8.000000
2.000000	21.000000	7.000000	3.000000	5.000000
4.000000	1.000000	19.000000	4.000000	5.000000
4.000000	6.000000	.000000	25.000000	9.000000
6.000000	9.000000	1.000000	7.000000	32.000000
.030777	-.007744	-.001791	-.007485	-.004099
.000214	.050931	-.018557	-.001932	-.004569
-.004507	.003413	.052401	-.005672	-.005999
-.003178	-.006852	.003615	.044393	-.011185
-.004995	-.011480	.003127	-.007587	.035938
1.000000	.000000	.000000	.000000	.000000
.000000	.999999	.000000	.000000	.000000
.000000	.000000	.999999	.000000	.000000
.000000	.000000	.000000	1.000001	.000000
.000000	.000000	.000000	.000000	1.000000

5.3 F01_MM_STRASSEN

release 1

1 Purpose

F01_MM_STRASSEN uses Strassen's algorithm to multiply two (partitioned) 64 by 64 matrices.

2 Specification

SUBROUTINE F01_MM_STRASSEN (A , B , C)
REAL A $(,, 2,2), \mathrm{B}(,, 2,2), \mathrm{C}(,, 2,2)$

3 Description

There is a well known result due to Strassen showing that 2 by 2 matrices may be multiplied using seven multiplications and fifteen additions instead of the eight multiplications and four additions required by the 'normal' method. This result is applied to the multiplication of 64 by 64 matrices partitioned into 2 by 2 sub-matrices of size 32 by 32 . [1].

4 References

[1] PARKINSON D
Some interesting and useful results from complexity theory: DAP Newsletter no 2, p 8, August 1979: available from the DAP Support Unit, Queen Mary College, Mile End Road, London E1 4NS

5 Arguments

A - REAL MATRIX array of dimension (, , 2,2)
On exit the 64 by 64 elements of the matrix set A contain the values of the matrix product

B - REAL MATRIX array of dimension (, , 2, 2)
Before entry the elements of B must be set to the first of the 64 by 64 matrices to be multiplied. Unchanged on exit.

C - REAL MATRIX array of dimension (, , 2,2)
Before entry the elements of C must be set to the second of the 64 by 64 matrices to be multiplied. Unchanged on exit. All the matrices must be partitioned into four equal sub-matrices.

The matrix (, ,I, J) is occupied by the data area shown as I J above.

6 Error Indicators

None

7 Auxiliary Routines

This routine calls the DAP library routine Z_F01_MM_N.

8 Accuracy

Depends on the data; you can normally expect six significant figures.

9 Further Comments

None
10 Keywords
Matrix multiplication, partitioned matrices, Strassen's algorithm.
11 Example
Host program
PROGRAM STRASSENTEST

REAL A(32, 32), B(32,32), D, E LOGICAL FLAG COMMON/TEST/A,B COMMON/FLAG/FLAG

DO $1 \mathrm{~J}=1,32$
DO 1 I $=1,32$
$\mathrm{D}=\mathrm{I}$
$E=J$
$A(I, J)=D * E-2$. $B(I, J)=(D+E) * 3$.
1 CONTINUE
CALL dapcon('testmult.dd')
CALL dapsen('TEST', A,2*1024)
CALL dapent('TESTMULT')
CALL daprec('FLAG', FLAG,1)
CALL daprel
IF(.NOT.FLAG) GO TO 2
WRITE $(6,100)$
100 FORMAT(20X,37HSUCCESSFUL RESULTS FROM FO1MMSTRASSEN) STOP
$2 \operatorname{WRITE}(6,101)$
101 FORMAT (20X,17HINCORRECT RESULTS)
STOP

END

DAP program

ENTRY SUBROUTINE TESTMULT
$\operatorname{REAL} U(,, 2,2), V(,, 2,2), W(, 2,2), X(, 2,2), \operatorname{RELDIFF}(,, 2,2)$
LOGICAL FLAG

COMMON/TEST/A(,), B(,)
COMMON/FLAG/FLAG

EXTERNAL REAL MATRIX FUNCTION E
C
C CALL CONVERSION ROUTINES
C
CALL CONVFME (A)
CALL CONVFME (B)
FLAG $=$. TRUE.
C
C GENERATE ENLARGED MATRIX DATA
C
$V(,, 1,1)=A$
$W(,, 1,1)=B$
$V(,, 1,2)=V(,, 1,1) * 3.1$
$W(,, 1,2)=W(,, 1,1)+6.3$
$V(,, 2,1)=W(,, 1,1) * 0.9$
$W(,, 2,1)=V(,, 1,1) * 2.4$
$V(,, 2,2)=V(,, 1,2)+5.6$
$W(, 2,2)=W(, 1,2) * 1.3$
C
C CALL THE STRASSEN ROUTINE AND ANOTHER ROUTINE FOR
C MATRIX MULTIPLICATION
C
CALL F01_MM_STRASSEN(U,V,W)
CALL MM2N (X, V, W)

C
C CHECK THE TWO SETS OF RESULTS CALCULATED
C
DO $11 \mathrm{~L}=1,2$
DO $11 \mathrm{~K}=1,2$
$\operatorname{RELDIFF}(,, K, L)=E(U(,, K, L), X(,, K, L))$
$\operatorname{IF}(\operatorname{ANY}($ RELDIFF $(,, K, L) . G T .0 .0001)) F L A G=. F A L S E$.
CONTINUE
C
C CONVERT DATA AND RETURN TO THE HOST
C
CALL CONVSFL(FLAG,1)
RETURN
END

REAL MATRIX FUNCTION E(X,Y)
C
C FUNCTION TO COMPARE RELATIVE VALUES OF TWO MATRICES
C
DIMENSION X(,),Y(,)
$E=X-Y$
$X(\operatorname{ABS}(X) . L T .1 .0 E-50)=1.0$
$E(A B S(Y) . G E \cdot 1.0 E-50)=\operatorname{ABS}(E / X)$
$X(A B S(X-1.0) . L T .1 .0 E-50)=0.0$

RETURN
END
SUBROUTINE MM2N(A,B,C)
C
C THIS SUBROUTINE IS DESIGNED TO MULTIPLY TWO 64×64
C MATRICES TOGETHER.THE METHOD USED TO PERFORM THIS TASK
C IS THE "INTUITIVE" METHOD, THAT IS ,IMPLEMENTING THE
C 32×32 MATRIX MULTIPLICATION 8 TIMES TO COMPUTE EACH
C PARTITION SEPARATELY.
C
DIMENSION $A(, 2,2), B(, 2,2), C(, 2,2)$
INTEGER K
C
C INITIALISE THE RESULTANT ARRAY.
C
$A(,, 1,1)=0.0$
$A(, 1,1,2)=0.0$
$A(, 2,1)=0.0$
$A(,, 2,2)=0.0$
C
C PERFORM THE MATRIX MULTIPLICATION FOR EACH PARTITION
C IN TURN.
C
DO $1 \mathrm{~K}=1,32$
$A(,, 1,1)=A(,, 1,1)+\operatorname{MATC}(B(, K, 1,1)) * \operatorname{MATR}(C(K, 1,1))$
$A(,, 1,1)=A(,, 1,1)+\operatorname{MATC}(B(, K, 1,2)) * \operatorname{MATR}(C(K, 2,1))$
$A(,, 1,2)=A(,, 1,2)+\operatorname{MATC}(B(, K, 1,1)) * \operatorname{MATR}(C(K, 1,2))$
$A(,, 1,2)=A(,, 1,2)+\operatorname{MATC}(B(, K, 1,2)) * \operatorname{MATR}(C(K, 2,2))$
$A(,, 2,1)=A(,, 2,1)+\operatorname{MATC}(B(, K, 2,1)) * \operatorname{MATR}(C(K, 1,1))$
$A(, 2,1)=A(,, 2,1)+\operatorname{MATC}(B(, K, 2,2)) * \operatorname{MATR}(C(K, 2,1))$
$A(, 2,2)=A(,, 2,2)+\operatorname{MATC}(B(, K, 2,1)) * \operatorname{MATR}(C(K, 1,2))$
$A(, 2,2)=A(,, 2,2)+\operatorname{MATC}(B(, K, 2,2)) * \operatorname{MATR}(C(K, 2,2))$
CONTINUE
RETURN
END
Results

Chapter 6

F02 - Eigenvalues and eigenvectors

Contents:
Subroutine Page
F02_ALL_EIG_VALS_TD_ES 42
F02_ALL_EIG_VALS_TD_LV 46
F02_EIG_VALS_TD_LV $\quad 50$
F02_JACOBI 54

6.1 F02_ALL_EIG_VALS_TD_ES

1 Purpose
F02_ALL_EIG_VALS_TD_ES uses Sturm sequences to find all the eigenvalues of a symmetric tridiagonal matrix of order up to 32 .

2 Specification.

SUBROUTINE F02_ALL_EIG_VALS_TD_ES (ALPHA, GAMMA , N , EVALS
IC , IFAIL)
INTEGER N , IC , IFAIL
REAL ALPHA (), GAMMA (), EVALS()

3 Description

The algorithm uses the following theorem:
Given a symmetric tridiagonal matrix with diagonal elements c_{1}, \ldots, c_{n} and off diagonal elements b_{2}, \ldots, b_{n}, then let the sequence $q_{1}(\lambda), \ldots, q_{n}(\lambda)$ be defined for any real λ by:

$$
\begin{aligned}
& q_{1}(\lambda)=c_{1}-\lambda \\
& q_{i}(\lambda)=\left(c_{i}-\lambda\right)-\frac{b_{i}^{2}}{q_{i-1}(\lambda)} \quad(i=2, \ldots, n)
\end{aligned}
$$

If $a(\lambda)$ is the number of negative $q_{i}(\lambda)$ then this number is equal to the number of eigenvalues less than λ. If $q_{i-1}(\lambda)=0$ for any i, then it can be replaced in (4.2) by a suitably small non-zero value (see [1]). Also see [1] for an example of another use of this theorem.

For each eigenvalue, an initial interval is determined which is known to contain the eigenvalue. Each such interval is then repeatedly subdivided until further refinements produce no improvement in the corresponding eigenvalue or the subinterval width becomes less than 10^{-35}.

4 References

[1] BARTH W, MARTIN R.S and WILKINSON J H
Calculation of the eigenvalues of a symmetric tridiagonal matrix by the method of bisection: Numer Math 9, pp 386-393, 1967.

5 Arguments

ALPHA - REAL VECTOR
On entry ALPHA specifies the components of the main diagonal of the tridiagonal matrix, that is, ALPHA (I) = A (I, I) $(\mathrm{I}=1,2, \ldots, \mathrm{~N})$. Elements $(\mathrm{N}+1)$ to 32 may be undefined; the argument is unchanged on exit from the sub-routine.

GAMMA - REAL VECTOR

On entry GAMMA specifies the components of the off diagonal of the tridiagonal matrix, that is, GAMMA $(\mathrm{I})=\mathrm{A}(\mathrm{I}, \mathrm{I}+1)=\mathrm{A}(\mathrm{I}+1, \mathrm{I}) \quad(\mathrm{I}=2,3, \ldots, \mathrm{~N})$. Elements not in the range 2 to N may be undefined; the argument is unchanged on exit from the sub-routine.

N - INTEGER

On entry, N specifies the order of the tridiagonal matrix. N must lie in the range 2 to 32 , and is unchanged on exit.

EVALS - REAL VECTOR
On exit, EVALS contains the N eigenvalues of the matrix in components 1 to N .
IC - INTEGER
On exit, IC contains the number of calls to the Sturm sequence evaluation routine required to isolate all the eigenvalues. Note: for each such call the Sturm sequence is evaluated at 1024 points simultaneously.

IFAIL - INTEGER

Unless the routine detects an error (see section 6) IFAIL contains zero on exit.

6 Error Indicators

Errors detected by the routine:
IFAIL $=1 \quad \mathrm{~N}$ not in the range 2 to 32 inclusive
IFAIL $=2 \quad$ After 10 calls to the Sturm sequence evaluation routine some eigenvalues have not converged

7 Auxiliary Routines

This routine calls the GS lbrary routines X02_EPSILON, X05_LONG_INDEX, X05_SHORT_INDEX and Z_F02_STURM_SEQ_1.

8 Accuracy
In general, you can expect at least 6 significant figures of accuracy in the computed eigenvalues.

9 Further Comments

None

10 Keywords

Eigenvalues, Sturm sequences, symmetric tridiagonal matrices

11 Example

The matrix used in the example is a tridiagonal matrix of the form:
a b
b a b
b a b
the eigenvalues of which are given by:

$$
\lambda_{s}=a+2 b \cos \left(\frac{s \pi}{n+1}\right) \quad(s=1,2, \ldots, n)
$$

The largest error in the computed solution is 6 parts in 10^{7}.

Host program

```
    PROGRAM MAINES
    REAL ALPHA (32), GAMMA (32), Y(32)
    COMMON /ALPHA/ALPHA /GAMMA/GAMMA /Y/Y
    COMMON/SCALARS/N,IC,IFAIL
    N = 32
    DO 10 I = 1,32
    ALPHA (I) = 5.0
    GAMMA (I) = 10.0
    CALL DAPCON('entes.dd')
    CALL DAPSEN('SCALARS',N,1)
    CALL DAPSEN('ALPHA',ALPHA,32)
    CALL DAPSEN('GAMMA',GAMMA,32)
    CALL DAPENT('ENTES')
    CALL DAPREC('Y',Y,32)
    CALL DAPREC('SCALARS',N,3)
    CALL DAPREL
    WRITE(6,100) IFAIL,IC, (Y(I), I = 1,32)
100 FORMAT(' IFAIL =',I5/' IC =',I5/ ' EIGENVALUES'/(G14.7))
STOP
END
```

DAP program

```
ENTRY SUBROUTINE ENTES
REAL ALPHA(), GAMMA(), Y()
COMMON /ALPHA/ALPHA /GAMMA/GAMMA /Y/Y
COMMON /SCALARS/ N,IC,IFAIL
CALL CONVFVE(ALPHA,32,1)
CALL CONVFVE(GAMMA,32,1)
CALL CONVFSI(N,1)
CALL F02ALL_EIG_VALS_TD_ES(ALPHA,GAMMA,N,Y,IC,IFAIL)
CALL CONVVFE (Y,32,1)
CALL CONVSFI(N,3)
RETURN
END
```


Results

> IFAIL $=0$
> IC $=6$
> EIGENVALUES
> -14.97665
> -14.90632
> -14.79012

6.2 F02_ALL_EIG_VALS_TD_LV

1 Purpose

F02_ALL_EIG_VALS_TD_LV uses Sturm sequences to find all the eigenvalues of a symmetric tridiagonal matrix of order up to 1024.

2 Specification

SUBROUTINE F02_ALL_EIG_VALS_TD_LV (ALPHA , GAMMA , N, EVALS , + IC, IFAIL)

INTEGER N , IC , IFAIL
REAL ALPHA (,), GAMMA (,) , EVALS (,)

3 Description

The algorithm uses the following theorem:
Given a symmetric tridiagonal matrix with diagonal elements c_{1}, \ldots, c_{n} and off diagonal elements b_{2}, \ldots, b_{n}, then let the sequence $q_{1}(\lambda), \ldots, q_{n}(\lambda)$ be defined for any real λ by:

$$
\begin{align*}
& q_{1}(\lambda)=c_{1}-\lambda \tag{1}\\
& q_{i}(\lambda)=\left(c_{i}-\lambda\right)-\frac{b_{i}^{2}}{q_{i-1}(\lambda)} \quad(i=2, \ldots, n) \tag{2}
\end{align*}
$$

If $a(\lambda)$ is the number of negative $q_{i}(\lambda)$ then this number is equal to the number of eigenvalues less than λ. If $q_{i-1}(\lambda)=0$ for any i, then it can be replaced in (2) by a suitably small non-zero value (see [1]). Also see [1] for an example of another use of this theorem.

For each eigenvalue, an initial interval is determined which is known to contain the eigenvalue. Each such interval is then repeatedly subdivided until further refinements produce no improvement in the corresponding eigenvalue or the subinterval width becomes less than 10^{-35}.

4 References

[1] BARTH W, MARTIN R S and WILKINSON J H

Calculation of the eigenvalues of a symmetric tridiagonal matrix by the method of bisection: Numer Math, 9, pp 386-393, 1967.

5 Arguments

ALPHA - REAL VECTOR

On entry ALPHA specifies the components of the main diagonal of the tridiagonal matrix, that is, ALPHA $(\mathrm{I})=\mathrm{A}(\mathrm{I}, \mathrm{I}) \quad(\mathrm{I}=1,2, \ldots, \mathrm{~N})$. Elements $(\mathrm{N}+1)$ to 1024 may be undefined; the argument is unchanged on exit from the sub-routine.

GAMMA - REAL VECTOR

On entry GAMMA specifies the components of the off diagonal of the tridiagonal matrix, that is, GAMMA(I) $=A(I, I+1)=A(I+1, I) \quad(I=2,3, \ldots, N)$. Elements not in the range 2 to N may be undefined; the argument is unchanged on exit from the sub-routine.

N - INTEGER

On entry, N specifies the order of the tridiagonal matrix. N must lie in the range 2 to 1024 , and is unchanged on exit.

EVALS - REAL VECTOR
On exit, EVALS contains the N eigenvalues of the matrix in components 1 to N .
IC - INTEGER
On exit, IC contains the number of calls to the Sturm sequence evaluation routine required to isolate all the eigenvalues. Note: for each such call the Sturm sequence is evaluated at 1024 points simultaneously.

IFAIL - INTEGER
Unless the routine detects an error (see section 6) IFAIL contains zero on exit.

6 Error Indicators

Errors detected by the routine:
IFAIL $=1 \quad \mathrm{~N}$ not in the range 2 to 1024 inclusive
IFAIL $=2 \quad$ After 30 calls to ther Sturm sequence evaluation routine some eigenvalues have not converged

7 Auxiliary Routines

This routine calls the GS library routines X02_EPSILON, X05_LONG_INDEX, X05_SHORT_INDEX and Z_F02_STURM_SEQ_2.

8 Accuracy

In general, you can expect about 5 or 6 significant figures of accuracy in the computed eigenvalues.

9 Further Comments

None

10. Keywords

Eigenvalues, Sturm sequences, symmetric tridiagonal matrices

11 Example

The matrix used in the example is a tridiagonal matrix of the form:
a b
b a b
b a b
. . .
. . .
. . .
the eigenvalues of which are given by:

$$
\lambda_{s}=a+2 b \cos \left(\frac{s \pi}{n+1}\right) \quad(s=1,2, \ldots, n)
$$

Host program
PROGRAM MAIN
REAL ALPHA (1024), GAMMA(1024), EVALS (1024)
COMMON /MATS/ALPHA, GAMMA, EVALS
COMMON /SCALARS/N,IC,IFAIL
$\mathrm{N}=128$
DO $10 \mathrm{I}=1,128$
ALPHA (I) $=5.0$
$10 \quad \operatorname{GAMMA}(I)=10.0$
CALL DAPCON('ent.dd')
CALL DAPSEN('SCALARS',N,1)
CALL DAPSEN ('MATS', ALPHA, 2*1024)
CALL DAPENT('ENT')
CALL DAPREC('MATS', ALPHA, $3 * 1024$)
CALL DAPREC('SCALARS',N,3)
CALL DAPREL
WRITE (6,1000) IFAIL, IC, (EVALS (I) , $I=1,128$)
1000 FORMAT(' IFAIL =',I5/' IC = ',I5/' EIGENVALUES'/(G14.7))
STOP
END

DAP program

```
ENTRY SUBROUTINE ENT
REAL ALPHA(,),GAMMA(,),EVALS(,)
COMMON /MATS/ALPHA,GAMMA,EVALS
COMMON /SCALARS/N,IC,IFAIL
CALL CONVFME (ALPHA)
CALL CONVFME (GAMMA)
CALL CONVFSI (N,1)
CALL FO2_ALL_EIG_VALS_TD_LV(ALPHA,GAMMA,N,EVALS,IC,IFAIL)
CALL CONVMFE (EVALS)
CALL CONVSFI (N,3)
RETURN
END
```

Results
IFAIL $=0$ IC $=20$ EIGENVALUES
-14.99412
-14.97626
-14.94660

6.3 F02_EIG_VALS_TD_LV

release 1

1 Purpose

F02_EIG_VALS_TD_LV uses Sturm sequences to find up to 32 selected eigenvalues of a symmetric tridiagonal matrix of order up to 1024.

2 Specification

SUBROUTINE F02_EIG_VALS_TD_LV (ALPHA , GAMMA , N , I_EIGS , $+\quad$ NUM_EIGS , EVALS , IC , IFAIL)

INTEGER N, I_EIGS() , NUM_EIGS , IC , IFAIL
REAL ALPHA (,), GAMMA (,), EVALS()

3 Description

The algorithm uses the following theorem:
Given a symmetric tridiagonal matrix with diagonal elements $c_{1}, \ldots c_{n}$ and off diagonal elements $b_{2}, \ldots b_{n}$, then let the sequence $q_{1}(\lambda), \ldots q_{n}(\lambda)$ be defined for any real λ by:

$$
\begin{align*}
& q_{1}(\lambda)=c_{1}-\lambda \tag{1}\\
& q_{i}(\lambda)=\left(c_{i}-\lambda\right)-\frac{b_{i}^{2}}{q_{i-1}(\lambda)} \quad(i=2, \ldots ; n) \tag{2}
\end{align*}
$$

If $a(\lambda)$ is the number of negative $q_{i}(\lambda)$ then this number is equal to the number of eigenvalues less than λ. If $q_{i-1}(\lambda)=0$ for any i, then it can be replaced in (4.6) by a suitably small non-zero value (see [1]). Also see [1] for an example of another use of this theorem.

For each eigenvalue, an initial interval is determined which is known to contain the eigenvalue. Each such interval is then repeatedly subdivided until further refinements produce no improvement in the corresponding eigenvalue or the subinterval width becomes less than 10^{-35}.

4 References

[1] BARTH W, MARTIN R S and WILKINSON J H
Calculation of the eigenvalues of a symmetric tridiagonal matrix by the method of bisection. Numer. Math. 9 pp 386-393 (1967).

5 Arguments

ALPHA - REAL VECTOR
On entry ALPHA specifies the components of the main diagonal of the tridiagonal matrix, that is, $\operatorname{ALPHA}(\mathrm{I})=\mathrm{A}(\mathrm{I}, \mathrm{I}) \quad(\mathrm{I}=1,2, \ldots, \mathrm{~N})$. Elements $(\mathrm{N}+1)$ to 1024 may be undefined; the argument is unchanged on exit from the sub-routine.

GAMMA - REAL VECTOR

On entry GAMMA specifies the components of the off diagonal of the tridiagonal matrix, that is, $\operatorname{GAMMA}(\mathrm{I})=\mathrm{A}(\mathrm{I}, \mathrm{I}+1)=\mathrm{A}(\mathrm{I}+1, \mathrm{I}) \quad(\mathrm{I}=2,3, \ldots, \mathrm{~N})$. Elements not in the range 2 to N may be undefined; the argument is unchanged on exit from the sub-routine.
N - INTEGER
On entry, N specifies the order of the tridiagonal matrix. N must lie in the range 2 to 0124 , and is unchanged on exit.

I_EIGS - INTEGER VECTOR

I_EIGS is used to indicate which eigenvalues of the matrix are required. If the eigenvalues are $l(1)<=l(2)<=\ldots<=l(N)$ then to determine the subset $l\left(j_{1}\right), l\left(j_{2}\right), \ldots, l\left(j_{p}\right)$ the first p (equals NUM _EIGS) components of I_EIGS must be set to $j_{1}, j_{2}, \ldots, j_{p}$ and the condition $j_{1}<j_{2}<\ldots<j_{p}$ must hold. Components $(p+1)$ to 32 may be undefined; the argument is unchanged on exit.

NUM _ EIGS - INTEGER
On entry NUM _ EIGS specifies the number of eigenvalues required and must be in the range 1 to 32 ; it is unchanged on exit.

EVALS - REAL VECTOR
On exit, EVALS contains the NUM_EIGS eigenvalues of the matrix in components 1 to NUM_EIGS.

IC - INTEGER
On exit, IC contains the number of calls to the Sturm sequence evaluation routine required to isolate all the eigenvalues. Note: for each. such call the Sturm sequence is . evaluated at 1024 points simultaneously.

IFAIL - INTEGER

Unless the routine detects an error (see section 6) IFAIL contains zero on exit.

6 Error Indicators

Errors detected by the routine:
IFAIL $=1 \quad \mathrm{~N}$ not in the range 2 to 1024 inclusive
IFAIL $=2 \quad$ Entries 1 to NUM_EIGS of I_EIGS are not strictly increasing or lie outside the range 1 to 1024

IFAIL $=3 \quad$ After 10 calls to the Sturm sequence evaluation routine some eigenvalues have not converged

7 Auxiliary Routines

This routine calls the GS library routines X02_EPSILON, X05_LONG_INDEX, X05_SHORT_INDEX and Z_F02_STURM_SEQ_2.

8 Accuracy

In general, you can expect about 6 significant figures of accuracy in the computed eigenvalues.

9 Further Comments

None

10 Keywords
Eigenvalues, Sturm sequences, symmetric tridiagonal matrices

11 Example

The matrix used in the example is a tridiagonal matrix of the form:
$\begin{array}{llll}a & b & & \\ b & a & b & \\ & b & a & b\end{array}$
. . .
the eigenvalues of which are given by:

$$
\lambda_{s}=a+2 b \cos \left(\frac{s \pi}{n+1}\right) \quad(s=1,2, \ldots, n)
$$

The eigenvalues requested are spread throughout the spectrum and the largest error in the computed solution was 7 parts 10^{7}.

Host program
program main
REAL ALPHA(1024), GAMMA(1024), Y(32)
INTEGER IEIGS(32)
COMMON /MATS/ALPHA, GAMMA
common /IEIGS/IEIGS /Y/Y
COMMON /SCALS/N, NUMEIGS,IC, IFAIL
$\mathrm{N}=1024$
DO $10 I=1,1024$
$\operatorname{ALPHA}(I)=5.0$
GAMMA (I) $=10.0$
NUMEIGS = 32
DO $20 \mathrm{I}=1,32$
IEIGS (I) $=32 * I$
CALL DAPCON('ent.dd)
CALL DAPSEN('MATS', ALPHA, 2*1024)
CALL DAPSEN('IEIGS', IEIGS,32)
CALL DAPSEN('SCALS',N,2)
Call dapent ('ent')
CaLl Daprec ('SCALS',N,4)
CALL DAPREC('Y', Y,32)
CALL DAPREL
$\operatorname{WRITE}(6,100)$ IFAIL, IC, ($\operatorname{IEIGS}(I), Y(I), I=1,32)$
100 FORMAT(' IFAIL =',I5/' IC =', I5/
*'EIGENVALUES'/(I5,5X,G14.7))
STOP
END

DAP program

```
ENTRY SUBROUTINE ENT
INTEGER IEIGS()
REAL ALPHA(,), GAMMA(,), Y()
COMMON /MATS/ALPHA,GAMMA
COMMON /IEIGS/IEIGS /Y/Y
COMMON /SCALS/N, NUMEIGS,IC,IFAIL
CALL CONVFME(alPHA)
CALL CONVFME(GAMMA)
CALL CONVFVI(IEIGS,32,1)
CALL CONVFSI(N,2)
CALL F02_EIG_VALS_TD_LV(ALPHA,GAMMA,N,IEIGS, NUMEIGS,Y,IC,IFAIL)
CALL CONVVFE(Y,32,1)
CALL CONVSFI(N,4)
RETURN
END
```


Results

IFAIL $=0$
IC $=6$
EIGENVALUES
32
:---
96
128

6.4 F02_JACOBI

release 1

1 Purpose

F02_JACOBI calculates the eigenvalues and eigenvectors of a real symmetric matrix of order 32×32.
The method is based on the classical Jacobi algorithm using plane rotations.

2 Specification

SUBROUTINE F02_JACOBI (C , EVALUES , Q , BOOL)
REAL C (,) , EVALUES () , Q(,)
LOGICAL BOOL

3 Description

The cyclic Jacobi method is a well known technique for determining the eigensolution of a matrix [4]. A real symmetric matrix A is reduced to diagonal form by application of plane rotations. Full details can be found in [2].

4 References

[1] MODI J J

Error analysis for the parallel Jacobi method: QMC internal report, Department of Computer Science and Statistics, Queen Mary College, Mile End Road, London, E1 4NS: available on request from the DAP Suppost Unit at Queen Mary College.

[2] MODI J J

Jacobi methods for eigenvalue and related problems in a parallel computing environment: Ph D thesis, University of London.

[3] SAMEH A H

On Jacobi and Jacobi-like algorithms for the parallel computer: Mathematics of Computation, v 25, no 115, pp 579-590, July 1971.
[4] WILKINSON J H
The Algebraic Eigenvalue Problem: Clarendon Press, Oxford, 1965.

5 Arguments

C - REAL MATRIX
On entry C contains the real symmetric matrix whose eigenvalues are required, and is unchanged on exit.

EVALUES - REAL VECTOR

On exit EVALUES will contain the eigenvalues of C, in ascending order.
Q - REAL MATRIX
If BOOL was set to .TRUE. on entry then on exit the columns of Q will contain the eigenvectors of C .
The eigenvector in column I corresponds to the $I^{\text {th }}$ element of EVALUES.

BOOL - LOGICAL

If BOOL is set to .TRUE. on entry, the eigenvectors of C will be calculated as well as the eigenvalues; BOOL is unchanged on exit.

6 Error Indicators

None
7 Auxiliary Routines
This routine calls the GS lbrary routines M01_PERMUTE_COLS, M01_SORT_V_R4 and X05_PATTERN.

8 Accuracy

The method is numerically very stable (see [1]). Tests show that the routine agrees with EISPACK routines, run on a 60 bit word computer, to 4 or 5 significant figures.

9 Further Comments

None

10 Keywords

Disjoint Rotations, Jacobi Method, Parallel Algorithm.

11 Example

The example finds the eigensolution of a 32×32 matrix.

Host program

```
PROGRAM MAINJACOBI
LOGICAL BOOL
COMMON /A/A (32,32) /EV/EIGENVALUES(32)
COMMON /Q/Q(32,32) /BOOL/BOOL
BOOL = .TRUE.
DO 20 J = 1,32
DO 20 I = 1,32
A(I,J) = 0.0
IF ((I + 1).EQ.J) A(I,J) = 1.0
IF ((J + 1).EQ.I) A(I,J) = 1.0
CONTINUE
CALL DAPCON('v3.dd')
CALL DAPSEN('A',a,1024)
CALL DAPSEN('BOOL',BOOL,1)
CALL DAPENT('V3')
CALL DAPREC('EV', eigenvalues,32)
WRITE (6,1000) (EIGENVALUES(I),I = 1,32)
```

```
1000 FORMAT (' Eigenvalues '/(1X,F14.5))
    WRITE (6,1500)
1500 FORMAT(' Eigenvectors')
    CALL DAPREC('Q',Q,1024)
    CALL DAPREL
    J=1
    DO 40 I = 1,32
40 WRITE (6,2000) Q(I,J)
2000 FORMAT(1X,F14.5)
    STOP
    END
```

DAP program

```
ENTRY SUBROUTINE V3
REAL A(,) , Q(,) ,EIGENVALUES()
LOGICAL BOOL
COMMOŃ/A/A /EV/EIGENVALUES
COMMON /Q/Q /BOOL/BOOL
CALL CONVFME(A)
CALL CONVFSL(BOOL,1)
CALL F02_JACOBI(A, EIGENVALUES,Q,BOOL)
CALL CONVVFE(EIGENVALUES, 32,1)
CALL CONVMFE(Q)
RETURN
END
```

Results

Eigenvalues
-1. 99084
-1.96374
-1.91889
-1. 85665
-1.77758
-1.68242
-1.57204
-1.44740
-1. 30967
-1.16006
$-.99995$
-. 83079
-. 65410
$-.47150$
-. 28462
$-.09516$
.09516
.28462
.47150
.65410
.83079
.99995
1.16006
1.30967
1.44740
1.57204
1.68242
1.77758
1.85665
1.91889
1.96374
1.99084
Eigenvect.rs
-.02315
.04610
-.06866
.09063
-.11182
.13204
-.15109
.16879
-.18499
.19953
-.21228
.22313
-.23198
.23876
-.24338
.24582
-.24603
. .044901
-.09397
-.17093
.

Chapter 7

F04 - Simultaneous linear equations

Contents:

Subroutines Page
F04_BIGSOLVE 60
F04_GJ_NLE_ES 66
F04_QR_GIVENS_SOLVE 71
F04_TRIDS_ES 75
F04_TRIDS_ES_SQ 78
F04_TRIDS_LV 82

7.1 F04_BIGSOLVE

1 Purpose

F04 _ BIGSOLVE is a routine for solving large sets of linear equations. The maximum size of the system depends on the size of the DAP store - for a 32 by 32 DAP with a 4 Mbyte store this maximum size is 1023 , whereas for a 32 by 32 DAP with an 8 Mbyte store the maximum size is 1407 . The method used was developed by D Hunt; it consists of a block form of Gauss Elimination with column pivoting. The matrix of the coefficients of the equations is of size 'SIZE' by 'SIZE' and the right hand side is assumed to be held in column 'SIZE' +1 . The whole matrix is held in the DAP partitioned in DAPSIZE blocks.
You are not recommended to use this routine for systems of order 32 or less - for which you should use the routine F04_GJ_NLE_ES.

2 Specification

SUBROUTINE F04_BIGSOLVE (BIGM , SIZE , ALLBLKS , IFAIL)
REAL BIGM (, , ALLBLKS, ALLBLKS)
INTEGER SIZE , IFAIL , ALLBLKS

3 Description

You can use this routine to solve a system of equations of maximum size $N=1023$ on the 4 Mbyte 32 by 32 DAP, ($N=1407$ on the 8 Mbyte 32 by 32 DAP) using a block form of Gauss elimination with column pivoting [2]. After the forward step, the matrix is conceptually of the form: (illustrated for a hypothetical 4 by 4 DAP and for $\mathrm{N}=11$)

Gauss Jordan elimination is used for the diagonal blocks (see [1]). In practice, the diagonal and below diagonal blocks are not needed and are therefore left undefined.
On DAP the relevant part of the pivot column will in general be spread over several sheets. In DAP 500 that part of the pivot column is extracted in order to find the maximum in a single operation.

The factors by which the rows of the large matrix are multiplied are obtained by dividing the pivot column by the pivot element. This is done in a single matrix division operation on the extracted data.
The solution time is ultimately $\mathrm{O}\left(m^{3} \times d\right)$, where the matrix is partitioned into m by m sheets each of size d by d to match the DAP 500 array. (In terms of the parameters below, $N=\operatorname{SIZE},((m-1) d<N<m d)$ and $m=$ ALLBLKS $)$.

4 References

[1] FOX, L
Numerical Linear Algebra: Chapters 3, 7, Oxford University Press, Oxford,1964
HUNT, D J
[2] Solution of a large system of equations on DAP using a hybrid Gauss/Gauss Jordan method: DAPSU Technical Report 7.27: available on request from The DAP Support Unit, Queen Mary Collge, Mile End Road, London E1 4NS
[3] PARKINSON, D and LIDDELL, H M
The measurement of performance on a highly parallel system: IEEE Trans on Computers, Special Issue, Nov 1982

5 Arguments

BIGM - REAL MATRIX array of dimension (, ,ALLBLKS,ALLBLKS)
On entry the first SIZE rows and columns must be set to the elements of the matrix of coefficients of the equations defining the linear system. The right-handside of the equations is stored in column SIZE +1 . The values in BIGM are changed during execution of the subroutine, and on exit column SIZE +1 contains the solution of the system.

SIZE - INTEGER

On entry SIZE must be set to the order of the system. Unchanged on exit. SIZE must not be less than 2.

ALLBLKS - INTEGER

On entry ALLBLKS must be set to the number of DAP partitions needed to store the complete system (i.e. including the RHS). Unchanged on exit.

IFAIL - INTEGER

Unless the routine detects an error (see Error Indicators below) IFAIL contains zero on exit.

6 Error Indicators

Errors detected by the routine:

IFAIL $=1$	SIZE is less than 2
IFAIL $=2$	One of the conditions:

$32^{*}($ ALLBLKS -1$)<$ SIZE
32*ALLBLKS - $1>=$ SIZE
has been violated

6 Error Indicators - continued
IFAIL $=3 \quad$ A zero pivot has been found during the back substitution process. The calculation is terminated

IFAIL $=4 \quad$ A very small pivot has been found during the back substitution process and the matrix is probably singular.

Computation proceeds anyway, but the results should be treated with caution

7 Auxiliary Routines

None

8 Accuracy

The accuracy depends on the conditioning of the system; during extensive testing of this single precision implementation of the routine the maximum residual was approximately 10^{-3}.

9 Further Comments

None

10 Keywords

Gauss elimination, Gauss-Jordan, linear solver.

11 Example

Host program

```
PROGRAM HOSTBIGSOLVER
COMMON/INPUT1/A(32,32,5,5)
COMMON/STATS/FNMONE,FNMTWO,FNMINF
COMMON/IFAIL/IFAIL
DATA N,IX/32,1111111/
CALL DAPCON('bigtest.dd')
CALL INITDATA(N,IX)
CALL DAPSEN('INPUT1',A,25*1024)
CALL DAPENT('BIGSOLVETEST')
CALL DAPREC('IFAIL',IFAIL,1)
CALL DAPREC('STATS',FNMONE,3)
CALL DAPREL
WRITE(6,99)IFAIL
99 FORMAT(10X,7HIFAIL =,I3)
IF(IFAIL.EQ.1.OR.IFAIL.EQ.2.OR.IFAIL.EQ.3)STOP
WRITE(6,100)FNMONE, FNMTWO, FNMINF
```

```
100 FORMAT(20H SUM OF RESIDUALS = ,E10.4//
    131H SUM OF SQUARES OF RESIDUALS = ,E10.4//
    220H MAXIMUM RESIDUAL = ,E10.4)
    STOP
    END
DAP program
    SUBROUTINE INITDATA(N,IX)
    COMMON/INPUT1/A(32,32,5,5)
C
C THIS SUBROUTINE CREATES THE INITIAL SEEDS THAT THE DAP CAN USE TO
C CALCULATE EXACTLY THE REQUIRED SET OF PSEUDO-RANDOM NUMBERS.
C THIS IS DONE IN ORDER TO BE ABLE TO MAKE FAIR COMPARISONS IN
C RESPECT OF RUNTIME AS WELL AS NUMERICAL RESULTS
C
    DO 1 L = 1,5
    DO 1 K = 1,5
    DO 1 J = 1,N
    DO 1 I = 1,N
            IY =FLOAT(IX)/22369.624
            IX=125*IX-2796203*IY
            A(I,J,K,L) = FLOAT(IX)/2796203.
1 CONTINUE
    RETURN
    END
    ENTRY SUBROUTINE BIGSOLVETEST
    COMMON/INPUT1/A(, ,5,5)
    COMMON/STATS/FNMONE,FNMTWO,FNMINF
    COMMON/IFAIL/IFAIL
    REAL BIGM(,,5,5),QSAVE(,5),TRHS(,5),RESIDU(,5),MAXIMUM(,5)
    REAL MULT(,),X(,5)
    INTEGER N, IFAIL, DAPSIZE,RHSCOL
    NDAPS = 5
    DO 700 L = 1,NDAPS
    DO 700 K = 1,NDAPS
    CALL CONVFME (A( , ,K,L))
700 CONTINUE
```

```
    DAPSIZE = 32
    N = 150
    RHSCOL = N - (NDAPS - 1)*DAPSIZE + 1
    DO 400 L = 1,NDAPS
    DO 400 K = 1,NDAPS
    BIGM( , ,K,L) = A( , ,K,L)
400 CONTINUE
    DO 500 L = 1,NDAPS
    QSAVE( ,L) = A( , RHSCOL,L,NDAPS)
    CONTINUE
    CALL F04_BIGSOLVE(BIGM,N,NDAPS,IFAIL)
    IF(IFAIL.EQ.O.OR.IFAIL.EQ.4)GO TO 200
    CALL CONVSFI(IFAIL,1)
    RETURN
    CONTINUE
    DO 300 K = 1,NDAPS
    X( ,K) = BIGM( ,RHSCOL,K,NDAPS)
300 CONTINUE
FNMONE = 0.
FNMTWO = 0.
FNMINF = 0.
DO 60 K = 1,NDAPS
TRHS ( ,K) = 0.
DO 70 L = 1,NDAPS
    MULT = MATR( X ( , L))
    TRHS( ,K) = TRHS( ,K) + SUMC(MULT**A(, ,K,L))
    CONTINUE
RESIDU( ,K) = ABS(TRHS( ,K) - QSAVE( ,K))
IF(K .NE. NDAPS) GO TO 80
DO 90 I = RHSCOL,DAPSIZE
        RESIDU(I,NDAPS) = 0.0
        QSAVE(I,NDAPS) = 0.0
        TRHS(I,NDAPS) = 0.0
    CONTINUE
    CONTINUE
FNMONE = FNMONE + SUM(RESIDU( ,K))
FNMTWO = FNMTWD + SUM( RESIDU( ,K)**2)
MAXIMUM( ,K) = 0.
MAXIMUM(RESIDU( ,K) .GT.MAXIMUM( ,K) ,K) = RESIDU( ,K)
IF (MAXV(MAXIMUM( ,K)).GT.FNMINF) FNMINF = MAXV (MAXIMUM( ,K))
6 0 ~ C O N T I N U E ~
6 0 0 ~ C O N T I N U E ~
CALL CONVSFE(FNMONE,3)
CALL CONVSFI(IFAIL,1)
RETURN
END
```


Results

IFAIL $=0$
SUM OF RESIDUALS $=0.9086 \mathrm{E}-01$
SUM OF SQUARES OF RESIDUALS $=0.7045 E-06$
MAXIMUM RESIDUAL $=0.1943 E-03$

7.2 F04_GJ_NLE _ ES

release 1

1 Purpose

F04_GJ_NLE _ES is a routine for solving the system of linear equations $A x=b$ for x, where A is a non sparse matrix of order N in the range 1 to 32 , using the Gauss Jordan method. It is not particularly efficient for small values of N.

2 Specification

SUBROUTINE F04_GJ_NLE_ES(A, X, Q, N, IFAIL)
REAL A(,), X(), Q()
INTEGER N, IFAIL

3 Description

The Gauss Jordan method $[1,2]$ can be considered as a variant of Gauss elimination, but the elimination is also applied to terms above the diagonal at each stage.
For example, for a 4 by 4 system:

> Step $0 \quad \mathrm{XXXXX}=\mathrm{X}$
> $X X X X=X$
> $\mathrm{XXXX}=\mathrm{X}$
> $X X X X=X$
> Step $1 \quad \mathrm{XXXXX}=\mathrm{X}$
> $0 \times X X=X$
> $0 \times X X=X$
> $0 \times X X=X$
(This is the same as in Gauss elimination)

(X represents a non zero value)

Thus the parallelism at each step is maximised and there is no need to perform the back substitution. On a computer with $m x m$ parallel processors, where m exceeds the number of equations, N, the operation count for Gauss Jordan is N divisions, multiplications and subtractions, which is the same number of operations required by the elimination phase of Gauss elimination. However, the latter also requires $N-1$ multiplies and subtractions for the back substitution phase. On a serial machine, the operation count for Gauss Jordan is $O\left(\frac{N^{3}}{2}\right)$, which is greater than that for Gauss elimination $-O\left(\frac{N^{3}}{3}\right)$. The back substitution phase takes $O\left(N^{2}\right)$ operations and is therefore negligible for large systems.

4 References

[1] FLANDERS P M , HUNT D J, REDDAWAY S F and PARKINSON D

Efficient high speed computing with the distributed array processor, in High Speed Computer and Algorithm Organisation: Academic Press, London, 1977

[2] WEBB S J

Solution of elliptic partial differential equations on the ICL Distributed Array Processor: ICL Technical Journal, vol 2, 175-189 (1980)

5 Arguments

A - REAL MATRIX

On entry, elements $A_{(i, j)}(i, j=1, \ldots, N)$ must be set to the elements of the matrix defining the linear system. The argument is unchanged on exit.

X - REAL VECTOR

On exit the first N elements of X will contain the solution of the system.
Q - REAL VECTOR
On entry, the first N elements of Q should contain the values of the right hand side (b) of the system. The argument is unchanged on exit.

N - INTEGER
On entry, N must be set to the order of the system; it is unchanged on exit.

IFAIL - INTEGER

Unless the routine detects an error (see Error Indicators below) IFAIL contains zero on exit.

6 Error Indicators

Errors detected by the routine:

$$
\begin{array}{ll}
\text { IFAIL }=1 & N \text { is not in the range } 1 \text { to } 32 . \\
\text { IFAIL }=2 & \text { A zero pivot has been found. The calculation is terminated. } \\
\text { IFAIL }=3 & \begin{array}{l}
\text { A very small pivot has been found and the matrix is probably } \\
\text { singular. Computation proceeds anyway, but the results should } \\
\text { be treated with caution. }
\end{array}
\end{array}
$$

7 Auxiliary Routines

None

8 Accuracy

Accuracy depends on the conditioning of the system; during testing of this single precision implementation, the maximum residual was less than 10^{-3}.

9 Further Comments

None

10 Keywords

Gauss Jordan, linear system solver
11 Example

Host program

PROGRAM HOSTSOLVER
COMMON/INPUTD1/A $(32,32)$
COMMON/INPUTD2/Q(32), X (32)
COMMON/STATS/FNMONE, FNMTWO, FNMINF
COMMON /IFAIL/IFAIL

DATA N,IX/32,1111111/
CALL INITDATA (N,IX)
CALL DAPCON('gjtest.dd')
CALL DAPSEN('INPUTDATA1', a, 1024)
CALL DAPSEN('INPUTDATA2', Q,32)
CALL DAPENT ('GJTEST')
CALL DAPREC('IFAIL', IFAIL,1)
CALL DAPSEN('INPUTDATA2', $x, 32$)
$\operatorname{WRITE}(6,200)$ IFAIL
200 FORMAT (10X,8H IFAIL $=, 12$)
IF (IFAIL.NE.0)STOP
CALL DAPREC('STATS', FNMONE,3)
CALL DAPREL
WRITE $(6,100)$ FNMONE , FNMTWO, FNMINF
100 FORMAT (20H SUM OF RESIDUALS $=$, E10.4 $/ /$
131H SUM OF SQUARES OF RESIDUALS $=$,E10.4//
220H MAXIMUM RESIDUAL $=$,E10.4)
STOP
END
SUBROUTINE INITDATA(N,IX)
COMMON/INPUTD1/A $(32,32)$
COMMON/INPUTD2/Q(32), X(32)

C
C THIS SUBROUTINE CREATES THE INITIAL SEEDS THAT THE DAP CAN USE
C TO CALCULATE EXACTLY THE REQUIRED SET OF PSEUDO-RANDOM NUMBERS.
C THIS IS DONE IN ORDER TO BE ABLE TO MAKE FAIR COMPARISONS IN
C RESPECT OF RUNTIME AS WELL AS NUMERICAL RESULTS
C
DO $1 \mathrm{I}=1, \mathrm{~N}$
DO $1 \mathrm{~J}=1, \mathrm{~N}$
IY =FLOAT(IX)/22369.624
IX=125*IX-2796203*IY
$A(I, J)=F L O A T(I X) / 2796203$
1 CONTINUE
DO 2 I $=1, \mathrm{~N}$
$I Y=F L O A T(I X) / 22369.624$
IX=125*IX-2796203*IY
$Q(I)=F L O A T(I X) / 2796203$
2 CONTINUE
RETURN
END

DAP program
ENTRY SUBROUTINE GJTEST
COMMON/INPUTDATA1/A(,)
COMMON/INPUTDATA2/Q(),X()
COMMON/STATS/FNMONE, FNMTWD, FNMINF
COMMON/IFAIL/IFAIL

REAL ASAVE(,), QSAVE(), TRHS(), RESIDU(), MAXIMUM(), MULT(,)

+ , QSAVE1()
LOGICAL MASK(,), VMASK()
CALL CONVFME (A)
CALL CONVFVE (Q,32,1)
ASAVE $=\mathrm{A}$
QSAVE = Q
QSAVE1 = QSAVE
$\mathrm{N}=27$
$\operatorname{MASK}=\operatorname{ROWS}(1, N) \cdot \operatorname{AND} \cdot \operatorname{COLS}(1, N)$
VMASK $=\operatorname{ELS}(1, \mathrm{~N})$
QSAVE = QSAVE1
Q(VMASK) = QSAVE
$Q($. NOT. VMASK $)=0$.
$A($ MASK $)=$ ASAVE
$A($. NOT.MASK $)=0$.

```
    CALL F04_GJ_NLE_ES(A,X,Q,N,IFAIL)
    X(.NOT.VMASK) = 0.
    QSAVE(.NOT.VMASK) = 0.
    IF(IFAIL.NE.O)GO TO 100
    TRHS =0.
    MULT=MATR(X)
    TRHS = SUMC(MULT*ASAVE)
    TRHS(.NOT.VMASK) = 0.
    RESIDU = ABS(TRHS - QSAVE)
    FNMONE=SUM(RESIDU)
    FNMTWO= SUM(RESIDU**2)
    MAXIMUM = 0.
    MAXIMUM(RESIDU.GT.MAXIMUM) = RESIDU
    FNMINF = MAXV (MAXIMUM)
    CALL CONVVFE(X,32,1)
    CALL CONVSFE(FNMONE,3)
100 CONTINUE
CALL CONVSFI(IFAIL,1)
RETURN
END
```


Results

IFAIL $=0$
SUM OF RESIDUALS $=0.3069$

SUM OF SQUARES OF RESIDUALS $=0.3604 \mathrm{E}-06$

MAXIMUM RESIDUAL $=0.1466 \mathrm{E}-03$

7.3 F04_QR_GIVENS_SOLVE

1 Purpose

F04_QR_GIVENS_SOLVE solves the linear system $A x=b$ for x, where A is an n by n matrix with $2<n<33$. The routine may be used to solve simultaneously for up to 32 different right hand side vectors b.

2 Specification
SUBROUTINE F04_QR_GIVENS_SOLVE (A, X , B , N , NB , IFAIL)
INTEGER N, NB, IFAIL
REAL A(,), X (,) , B(,)

3 Description

The routine factorizes the given n by n matrix A as:

$$
Q A=R
$$

where Q is an orthogonal matrix and r is upper triangular.
Givens method of plane rotations is used to annihilate elements of A below the leading diagonal until the matrix R remains. This leaves an upper triangular system which is solved by back substitution. Row i of A is used to annihilate the element in position $(i+1, j)$ by pre-multiplying A by a matrix of the form:

$$
p_{(i, i+1)}^{j}=\operatorname{diag}\left(I_{(i-1)}, U_{(i, i+1)}, I_{(n-i-1)}\right) \quad 1 \leq j \leq n-1
$$

where $U_{(i, i+1)}=\left(\begin{array}{cc}c_{i} & s_{i} \\ -s_{i} & c_{i}\end{array}\right), \quad$ with $c_{i}^{2}+s_{i}^{2}=1$
In the usual serial application, these rotations are applied sequentially, but on the DAP you can perform up to $\frac{n}{2}$ rotations simultaneously [1].

4 References

[1] SAMEH A H and KUCK D J
On stable parallel linear system solvers: Journal of the Association of Computing Machinery, vol 25, no 1, pp 81-91.

5 Arguments

A - REAL MATRIX

On entry, elements $A_{(i, j)}(i=1,2, \ldots, N ; j=1,2, \ldots, N)$ must be set to the elements of the matrix defining the linear system. A is unchanged on exit.

X - REAL MATRIX

On exit, column i of X will contain the solution of the system corresponding to the $i^{\text {th }}$ column of B.

5 Arguments - continued
B - REAL MATRIX
On entry, columns 1 to $N B$ must give the $N B$ right hand side vectors. B is unchanged on exit.

N - INTEGER

On entry, N must be set to the order of the matrix $A . N$ is unchanged on exit.

NB - INTEGER

On entry, $N B$ must be set to the number of right hand side vectors for which the system is to be solved. $N B$ is unchanged on exit.

IFAIL - INTEGER

Unless the routine detects an error (see Error Indicators below) IFAIL contains zero on exit.

6 Error Indicators

Errors detected by the routine:
IFAIL $=1 \quad N$ is not in the range 3 to 32 or $N B$ is not in the range 1 to 32
IFAIL $=2 \quad$ A zero pivot has been found during the back substitution process, that is, the matrix is singular
IFAIL $=3 \quad$ A very small pivot has been found during the back substitution process and the matrix is probably singular. Computation proceeds anyway, but you should treat the results with caution

7 Auxiliary Routines

This routine calls the DAP library routines Z_F04_BACK_SUBST, Z_FO4_SPREAD_LMAT_EAST, Z_FO4_SPREAD_RMAT_EAST and Z_FO4_UPDATE.

8 Accuracy

Empirical results indicate that errors may be expected in the $6^{\text {th }}$ or $7^{\text {th }}$ significant digit. The routine will return IFAIL = 3 (see Error Indicators above) if the condition:

$$
\frac{M A X_{i, j}\left|R_{i j}\right|}{M I N_{i}\left|R_{i i}\right|}>5 \times 10^{5}
$$

is satisfied, where $\mathrm{R}_{i j}$ is the upper triangular matrix defined in Description above.

9 Further Comments

You must not use common blocks with the names:
C_F04_QR1 and C_F04-QR2

10 Keywords

Givens' rotation, linear equations

11 Example

The example solves a 5 by 5 linear system with one right hand side. The true solution vector is $[1,1,1,1,1]^{T}$.

Host program

```
PROGRAM MAINGIVEN
REAL A(32,32), X ( 32, 32), B(32,32)
COMMON /MATS/A,X,B
COMMON /SCALARS/ N,NB,IFAIL
READ (5,*) N,NB
READ (5,*) ((A(I, J), J=1,N), I=1,N)
READ (5,*) ((B(I, J),J=1,NB),I=1,N)
CALL DAPCON('entgiven.dd')
CALL DAPSEN('SCALARS',N,3)
CALL DAPSEN('MATS',A,3*1024)
CALL DAPENT('ENTGIVEN')
CALL DAPREC('SCALARS',N,3)
CALL DAPREC('MATS',A,2*1024)
CALL DAPREL
WRITE (6,1000) IFAIL
1000 FORMAT( ' IFAIL = ',I5)
IF (IFAIL.NE.O .AND. IFAIL.NE.3) STOP
WRITE(6,2000) ((X (I, J),J=1,NB),I=1,N)
2000 FORMAT(/' Solution:'/(1X,F12.7))
STOP
END
```

DAP program

```
ENTRY SUBROUTINE ENTGIVEN
REAL A(,),X(,),B(,)
COMMON /MATS/A,X,B
COMMON /SCALARS/N,NB,IFAIL
CALL CONVFME(A)
CALL CONVFME(B)
CALL CONVFSI(N,3)
CALL FO4_QR_GIVENS_SOLVE(A,X,B,N,NB,IFAIL)
CALL CONVMFE(X)
CALL CONVSFI(N,3)
RETURN
END
```


Data

51
$\begin{array}{lllll}3.0 & -7.0 & 1.5 & 2.5 & 6.1\end{array}$
$\begin{array}{lllll}8.0 & 1.6 & 0.0 & -3.0 & 2.8\end{array}$
$\begin{array}{lllll}-0.5 & 1.6 & 2.3 & 7.4 & -8.5\end{array}$
$\begin{array}{lllll}0.0 & -1.0 & -2.3 & 1.7 & 5.8\end{array}$
$\begin{array}{lllll}2.7 & 1.3 & -3.5 & 0.0 & 4.1\end{array}$
$\begin{array}{lllll}6.1 & 9.4 & 2.3 & 4.2 & 4.6\end{array}$

Results

IFAIL $=0$

Solution: 0.9999998 0.9999985 0.9999961 0.9999998 0.9999990

7.4 F04_TRIDS_ES

1 Purpose

F04_TRIDS_ES returns the solution of a tridiagonal linear system of equations of order up to 32 . That is, it finds vector x where:

$$
M x=y
$$

and M is a tridiagonal matrix.

2 Specification

REAL VECTOR FUNCTION F04_TRIDS_ES (A, B , C , Y, N, IFAIL)
INTEGER N , IFAIL
REALA(), B(), C(), Y()

3 Description

The algorithm used is of the recursive doubling type. At each step the distance of the outer diagonals from the main diagonal is doubled. When only a diagonal matrix remains the solution is obtained by a simple division. Full details may be found in [1].

4 References

[1] WHITEWAY J
A parallel algorithm for solving tridiagonal systems: DAPSU Newsletter, 3 December 1979: available on request from the DAP Support Unit, Queen Mary College, Mile End Road, London E1 4NS

5 Arguments

A - REAL VECTOR

On entry, elements 2 to N of A must be set to the values of the lower diagonal of the tridiagonal matrix. That is, if the matrix is $M=m(i, j)$ then $A(I)$ must be set to $M(I, I-1) \quad(I=2, \ldots, N)$. Elements with subscripts not in the range 2 to N are ignored. A is unchanged on exit.

B - REAL VECTOR
On entry, elements 1 to N of B must be set to the values of the main diagonal of the tridiagonal matrix. That is, if the matrix is $M=m(i, j)$ then $B(I)$ must be set to $M(I, I)(I=1, \ldots, N)$. Elements with subscripts not in the range 1 to N are ignored. B is unchanged on exit.

C - REAL VECTOR

On entry, elements 1 to $N-1$ of C must be set to the values of the upper diagonal of the tridiagonal matrix. That is, if the matrix is $M=m(i, j)$ then $C(I)$ must be set to $M(I, I+1)(I=1, \ldots, N-1)$. Elements with subscripts not in the range 1 to $N-1$ are ignored. C is unchanged on exit.

Y - REAL VECTOR
On entry, elements 1 to N of Y must be set to the values of the RHS vector. Elements with subscripts not in the range 1 to N are ignored. Y is unchanged on exit.

5 Arguments - continued
N - INTEGER
On entry, N must specify the size of the system (in the range 2 to 32). That is, for $M x=y, M$ must be N by N.

IFAIL - INTEGER

Unless the routine detects an error (see Error Indicators below) IFAIL contains zero on exit.

6 Error Indicators

Errors detected by the routine:
IFAIL $=1 \quad$ At some stage during the calculation, an element on the leading diagonal is zero. This implies the original matrix was singular. The contents of F04_TRIDS_ES in this case are undefined
IFAIL $=2 \quad$ At some stage during the calculation, the matrix has ceased to be diagonally dominant. Note: this is only a warning and the routine continues to completion (if possible)
IFAIL $=3 \quad N$ is not in the range 2 to 32

7 Auxiliary Routines

None

8 Accuracy

General results seem to indicate that the more diagonally dominant the system is the more accurate the results. IFAIL $=1$ is possible for non-diagonally dominant systems even if the system is non-singular.

9 Further Comments

None

10 Keywords

Tridiagonal linear systems

11 Example

The example given is such that the solution vector should be 1 . The system is diagonally dominant.

Host program

```
PROGRAM MAINTRIDSES
REAL ANS(32)
COMMON /ANS/ANS/IFAIL/IFAIL
CALL DAPCON('tridses.dd')
CALL DAPENT('ENTTRIDSES')
CALL DAPREC('ANS',ANS,32)
Call daprec('IFaIL', IFaIL,1)
CALL DAPREL
WRITE (6,1000) IFAIL
```

```
1000 FORMAT(' IFAIL =',I5)
            IF (IFAIL.NE.0) STOP
            WRITE(6,2000) (ANS(I), I=1,15)
2000 FORMAT(' RESULTS'//(F12.7))
        STOP
        END
```


DAP program

```
ENTRY SUBROUTINE ENTTRIDSES
REAL LOWER(), UPPER(), DIAG(), ANS(), RHS()
COMMON /ANS/ANS/IFAIL/IFAIL
EXTERNAL REAL VECTOR FUNCTION FO4_TRIDS_ES
N = 15
LOWER = 0.5
UPPER = 0.5
DIAG = 2.0
RHS = 3.0
RHS(1) = 2.5
RHS(N) = 2.5
ANS = F04_TRIDS_ES(LOWER,DIAG,UPPER,RHS,N,IFAIL)
CALL CONVVFE(ANS,32,1)
CALL CONVSFI(IFAIL,1)
RETURN
END
```

Results
IFAIL $=0$
RESULTS
. 9999999
. 9999999
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
. 9999999
. 9999999

7.5 F04_TRIDS_ES_SQ

release 1

1 Purpose

F04_TRIDS_ES_SQ returns the solution of a set of up to 32 tridiagonal linear systems of equations each of order up to 32 . That is, it solves up to 32 systems of the form:

$$
M x=y
$$

where M is a tridiagonal matrix.

2 Specification

REAL MATRIX FUNCTION F04_TRIDS_ES_SQ (A, B, C, Y, N, K, IFAIL)
INTEGER N , K , IFAIL
REAL A (,) , B(,) , C(,) , Y(,)

3 Description

The algorithm used is of the recursive doubling type. At each step the distance of the two outer diagonals from the main diagonal is doubled. When only a diagonal matrix remains the solution is obtained by a simple division. Each system is stored down the columns of the matrix arguments and so, many systems can be solved simultaneously. Full details can be found in [1].

4 References

[1] WHITEWAY J

A parallel algorithm for solving tridiagonal systems: DAPSU Newletter 3, December 1979: available from the DAP Support Unit, Queen Mary College, Mile End Road, London E1 4NS.

5 Arguments

A - REAL MATRIX

On entry, elements 2 to N of columns 1 to K of A must be set to the values of the lower diagonal of each of the K systems That is, if the $K^{\text {th }}$ matrix is $M=m(i, j)$ then $A(I, K)$ must be set to $M(I, I-1)(I=2,3, \ldots, N)$. Elements with row subscripts not in the range 2 to N or columns subscripts not in the range 1 to K are ignored. A is unchanged on exit.
B - REAL MATRIX
On entry, elements 1 to N of columns 1 to K of B must be set to the values of the main diagonal of each of the K systems. That is, if the $K^{\text {th }}$ matrix is $M=m(i, j)$ then $B(I, K)$ must be set to $M(I, I)(I=1,2, \ldots, N)$. Elements with row subscripts not in the range 1 to N or column subscripts not in the range 1 to K are ignored. B is unchanged on exit.

C - REAL MATRIX
On entry, elements 1 to $N-1$ of columns 1 to K of C must be set to the values of the upper diagonal of each of the K systems. That is, if the $K^{\text {th }}$ matrix is $M=m(i, j)$ then $C(I, K)$ must be set to $M(I, I+1)(I=1,2, \ldots, N-1)$. Elements with row subscripts not in the range 1 to $N-1$ or column subscripts not in the range 1 to K are ignored. C is unchanged on exit.

Y - REAL MATRIX
On entry, elements 1 to N of columns 1 to K of Y must be set to the values of the K RHS vectors. Elements with row subscripts not in the range 1 to N or column subscripts not in the range 1 to K are ignored. Y is unchanged on exit.

N - INTEGER

On entry, N must specify the order of the tridiagonal systems (in the range 1 to 32).
K - INTEGER
On entry, K must specify the number of tridiagonal systems to be solved (in the range 1 to 32).

IFAIL - INTEGER
Unless the routine detects an error (see Error Indicators below) IFAIL contains zero on exit.

6 Error Indicators

Errors detected by the routine:
IFAIL $=1 \quad$ At some stage during the calculation, an element on one of the leading diagonals is zero. This implies that, at least, one of the systems was singular. The contents of F04_TRIDS_ES_SQ in this case are undefined
IFAIL $=2 \quad$ As a minimum, at some stage during the calculation, one matrix has ceased to be diagonally dominant. Note : this is only a warning and the routine continues to completion (if possible)
$\operatorname{IFAIL}=3 \quad \mathrm{~N}$ is not in the range 1 to 32 or K is not in the range 1 to 32

7 Auxiliary Routines

None

8 Accuracy

General results seem to indicate that the more diagonally dominant the systems are the more accurate the results. IFAIL $=1$ is possible for non-diagonally dominant systems even if the system is non-singular.

9 Further Comments

None

10 Keywords

Tridiagonal linear systems

11 Example

The example given solves 2 tridiagonal systems of order 15 . The solutions are 1 and 2 respectively.

```
Host program
    PROGRAM MAINTRIDSESSQ
    REAL ANS (32,32)
    COMMON /ANS/ANS/IFAIL/IFAIL
    CALL DAPCON('tridsessq.dd')
    CALL DAPENT('ENTTRIDSESSQ')
    CALL DAPREC('ANS',ANS,1024)
    CALL DAPREC('IFAIL',IFAIL,1)
    CALL DAPREL
    WRITE(6,1000) IFAIL
1000 FORMAT (' IFAIL =',I5)
    IF (IFAIL.NE.O.AND.IFAIL.NE.2) STOP
    WRITE(6,2000) (ANS(I,1), ANS(I,2), I = 1,15)
2000 FORMAT(' RESULTS'//(2F12.7))
    STOP
END
```


DAP program

```
ENTRY SUBROUTINE ENTTRIDSESSQ
REAL LOWER(,), UPPER(,), DIAG(,), RHS(,), ANS(,)
COMMON /ANS/ANS/IFAIL/IFAIL
EXTERNAL REAL MATRIX FUNCTION FO4_TRIDS_ES_SQ
N = 15
K = 2
LOWER = 0.5
UPPER = 0.5
DIAG = 2.0
RHS (,1) = 3.0
RHS (,2) = 6.0
RHS (1,1) = 2.5
RHS(N,1) = 2.5
RHS (1,2) = 5.0
RHS (N,2) = 5.0
ANS = F04_TRIDS_ES_SQ (LOWER,DIAG,UPPER,RHS,N,K,IFAIL)
CALL CONVMFE(ANS)
CALL CONVFSI(IFAIL,1)
RETURN
END
```


Results

IFAIL $=$	
RESULTS	
.	
1.0000019	2.0000019
1.0000019	2.0000019
1.0000019	2.0000019
1.0000019	2.0000019
1.0000019	2.0000019
1.0000019	2.0000048
1.0000019	2.0000019
1.0000019	2.0000019
1.0000019	2.0000019
1.0000019	2.0000019
1.0000019	2.0000019
1.0000019	2.0000019
1.0000019	2.0000019
1.0000019	2.0000019
1.0000019	2.0000019

7.6 F04_TRIDS_LV

release 1

1 Purpose

F04_TRIDS_LV returns the solution of a tridiagonal linear system of equations of order up to 1024 . That is, it finds vector x where:

$$
M x=y
$$

and M is a tridiagonal matrix.

2 Specification

REAL MATRIX FUNCTION F04_TRIDS_LV (A , B , C , Y , N, IFAIL) INTEGER N , IFAIL
REAL A $(),, B(),, C(),, Y($,

3 Description

The algorithm used is of the recursive doubling type. At each step the distance of the two outer diagonals from the main diagonal is doubled. When only a diagonal matrix remains the solution is obtained by a simple division. Full details may be found in [1].

4 References

[1] WHITEWAY J

A parallel algorithm for solving tridiagonal systems: DAPSU Newsletter 3, December 1979: available from the DAP Support Unit, Queen Mary College, Mile End Road, London E1 4NS.

5 Arguments

A - REAL MATRIX

On entry, elements 2 to N of A (treated as a long vector) must be set to the values of the lower diagonal of the tridiagonal matrix. That is, if the matrix is $M=m(i, j)$ then $A(I)$ must be set to $M(I, I-1)(I=2,3, \ldots, N)$. Elements with subscripts not in the range 2 to N are ignored. A is unchanged on exit.

B — REAL MATRIX

On entry, elements 1 to N of B (treated as a long vector) must be set to the values of the main diagonal of the tridiagonal matrix. That is, if the matrix is $M=m(i, j)$ then $B(I)$ must be set to $M(I, I) \quad(I=1,2, \ldots, N)$. Elements with subscripts not in the range 1 to N are ignored. B is unchanged on exit.
C - REAL MATRIX
On entry, elements 1 to $N-1$ of C (treated as a long vector) must be set to the values of the upper diagonal of the tridiagonal matrix. That is, if the matrix is $M=m(i, j)$ then $C(I)$ must be set to $M(I, I+1)(I=1,2, \ldots, N-1)$. Elements with subscripts not in the range 1 to $N-1$ are ignored. C is unchanged on exit.
Y - REAL MATRIX
On entry, elements 1 to N of Y (treated as a long vector) must be set to the values of the RHS vector. Elements with subscripts not in the range 1 to N are ignored. Y is unchanged on exit.

N - INTEGER

On entry, N must specify the size of the system (in the range 2 to 1024). That is, for $M x=y, M$ must be N by N.

IFAIL - INTEGER
Unless the routine detects an error (see Error Indicators below) IFAIL contains zero on exit.

6 Error Indicators

Errors detected by the routine:
IFAIL $=1 \quad$ At some stage during the calculation, an element on the leading diagonal is zero. This implies the original matrix was singular. The contents of $\mathrm{FO} 4_{\text {_ TRIDS_LV in this case }}$ are undefined
IFAIL $=2 \quad$ At some stage during the calculation, the matrix has ceased to be diagonally dominant. Note: this is only a warning and the routine continues to completion (if possible)
IFAIL $=3 \quad \mathrm{~N}$ is not in the range 2 to 1024

7 Auxiliary Routines

None

8. Accuracy

General results seem to indicate that the more diagonally dominant the system is the more accurate the results. IFAIL $=1$ is possible for non-diagonally dominant systems even if the system is non-singular.

9 Further Comments

None

10 Keywords

Tridiagonal linear systems

11 Example

The example given is such that the solution vector should be 1 . The system is diagonally dominant.

Host program

PROGRAM MAINTRIDS_LV
REAL ANS (1024)
COMMON/ANS/ANS/IFAIL/IFAIL
CALL DAPCON('tridslv.dd')
CALL DAPENT('ENTTRIDS_LV')
CALL DAPREC('ANS',ANS, 1024)
CALL DAPREC('IFAIL', IFAIL,1)
CALL DAPREL

WRITE $(6,1000)$ IFAIL
1000 FORMAT (' IFAIL =', I5)
IF (IFAIL.NE.0) STOP
$\operatorname{WRITE}(6,2000)(\operatorname{ANS}(I), I=1,15)$
2000 FORMAT(' RESULTS'// (F12.7))
STOP
END

DAP program

```
ENTRY SUBROUTINE ENTTRIDS_LV
REAL LOWER(,), UPPER(,), DIAG(,), ANS(,), RHS(,)
COMMON /ANS/ANS/IFAIL/IFAIL
EXTERNAL REAL MATRIX FUNCTION FO4_TRIDS_LV
    N = 15
    LOWER = 0.5
    UPPER = 0.5
    DIAG = 2.0
    RHS = 3.0
    RHS(1) = 2.5
    RHS(N) = 2.5
    ANS = F04_TRIDS_LV(LOWER,DIAG,UPPER,RHS,N,IFAIL)
    CALL CONVMFE(ANS)
    CALL CONVSFI(IFAIL,1)
    RETURN
    END
```


Results

```
                IFAIL = 0
RESULTS
    1.00000020
    1.00000020
    1.00000020
    .
```

All other results are also equal to 1.0000020

Chapter 8

G05 - Random numbers

Contents:
Subroutine Page
G05_MC_BEGIN 86
G05_ MC_I4 88
G05_ MC_I8 90
G05_MC_NORMAL_R4 92
G05_MC_R4 94
G05_MC_REPEAT 96

8.1 G05_MC_BEGIN

release 1

1 Purpose

G05_MC_BEGIN sets the basic generator routine G05_MC_I8 to an initial state.
2 Specification
SUBROUTINE G05_MC_BEGIN

3 Description

This routine sets the internal variable N used by G05_MC_I8 to the value $123456789 \times\left(2^{32}+1\right)$.

4 References

[1] SMITH K A, REDDAWAY S F and SCOTT D M
Very High Performance Pseudo-Random Number Generator on DAP: Computer Physics Communications, vol 37, pp 239-244 (1985)

5 Arguments
None
6 Error Indicators
None
7 Auxiliary Routines
None

8 Accuracy

Not applicable

9 Further Comments

The routine uses a labelled COMMON block C_G05_MC.
10 Keywords
Initialisation, random numbers
11 Example
The example program prints the first five pseudo-random real numbers from a uniform distribution between 0 and 1, generated by G05_MC_R4 after initialization by G05_MC_BEGIN.

Host program
program main
REAL*4 RAND(1024)
COMMON/RESULT/RAND

```
    CALL DAPCON('ent.dd')
    CALL DAPENT('ENT')
    CALL DAPREC('RESULT',RAND,1024)
    CALL DAPREL
    WRITE(6,1000)(RAND (I),I=1,5)
1000 FORMAT('G05_MC_BEGIN EXAMPLE PROGRAM RESULTS'/1X/
    *5(1X,F10.4/))
    STOP
    END
DAP Program
    ENTRY SUBROUTINE ENT
    REAL*4 RAND(,)
    COMMON/RESULT/RAND
    EXTERNAL REAL*4 MATRIX FUNCTION G05_MC_R4
    CALL G05_MC_BEGIN
    RAND=G05_MC_R4(0.0)
    CALL CONVMFE(RAND)
    RETURN
    END
```


Results

```
GO5_MC_BEGIN EXAMPLE PROGRAM RESULTS
    0.6149
    0.8745
    0.1511
    0.0734
    0.2451
```


8.2 G05_MC_I4

1 Purpose

G05_MC_I4 returns an INTEGER*4 MATRIX containing 1024 pseudo-random integer numbers taken from a uniform distribution between 0 and $2^{31}-1$.

2 Specification

INTEGER*4 MATRIX FUNCTION G05_MC_I4 (I)
INTEGER*4 I

3 Description

The routine calls G05_MC_I8 which uses the multiplicative congruential method:

$$
N=13^{13} \mathrm{~N} \bmod 2^{59}
$$

G05_MC_I4 $=\mathrm{N} / 2^{28}$
where N is a variable, internal to G05_MC_I8, whose value is preserved between calls of the routine. Its initial value is set by a call to either G05_MC_BEGIN or G05_MC_REPEAT.

4 References

[1] SMITH K A, REDDAWAY S F and SCOTT D M
Very High Performance Pseudo-Random Number Generator on DAP: Computer Physics Communications, vol 37, pp 239-244, 1985

5 Arguments

I - INTEGER*4
A dummy argument required by FORTRAN-PLUS syntax

6 Error Indicators

None

7 Auxiliary Routines

The routine calls the General Support library routine G05_ MC_I8.
8 Accuracy
Not applicable

9 Further Comments

None

10 Keywords

Pseudo-random number, random number, rectangular distribution, uniform distribution

11 Example

The example program prints the first five pseudo-random numbers from a uniform distribution between 0 and $2^{31}-1$, generated by G05_MC_I 4 after initialization by G05_MC_BEGIN.

```
Host Program
    PROGRAM MAIN
    INTEGER*4 RAND(1024)
    COMMON/RESULT/RAND
    CALL DAPCON('ent.dd')
    CALL DAPENT('ENT')
    CALL DAPREC('RESULT',RAND,1024)
    CALL DAPREL
    WRITE (6, 1000)(RAND (I), I=1,5)
1000 FORMAT(/' GO5_MC_I4 EXAMPLE PROGRAM RESULTS'/1X/
    * 5(1X,I20/))
    STOP
    END
```

DAP program

ENTRY SUBROUTINE ENT
INTEGER*4 RAND (,) COMMON/RESULT/RAND

EXTERNAL INTEGER*4 MATRIX FUNCTION GO5_MC_I4
CALL GO5_MC_BEGIN
RAND=G05_MC_I4(0)
CALL CONVMFI (RAND)

RETURN
END

Results

```
G05_MC_I4 EXAMPLE PROGRAM RESULTS
        1815152335
            436969313
            976973459
        1028379600
        1443266400
```


8.3 G05_MC_I8

release 1

1 Purpose

G05_MC_I8 returns an INTEGER*8 MATRIX containing 1024 pseudo-random integer numbers taken from a uniform distribution between 10 and $2^{59}-1$.

2 Specification
INTEGER*8 MATRIX FUNCTION G05_MC_I8 (I)
INTEGER*8 I

3 Description

The routine uses the multiplicative congruential method:
$\mathrm{N}=13^{13} \mathrm{~N} \bmod 2^{59}$
G05_MC_I8 $=\mathrm{N}$
where N is a variable, internal to G05_MC_I8, whose value is preserved between calls of the routine. Its initial value is set by a call to either G05_MC_BEGIN or G05_MC_REPEAT.

4 References

[1] SMITH K A, REDDAWAY S F and SCOTT D M
Very High Performance Pseudo-Random Number Generator on DAP: Computer Physics Communications, vol 37, pp 239-244, 1985

5 Arguments

I - INTEGER*8
A dummy argument required by FORTRAN-PLUS syntax
6 Error Indicators
None
7 Auxiliary Routines
None

8 Accuracy

Not applicable

9 Further Comments

The routine uses labelled COMMON block C_G05_MC.

10 Keywords

Pseudo-random number, random number, rectangular distribution, uniform distribution

11 Example

This FORTRAN-PLUS fragment traces the pseudo-random numbers from a uniform distribution between 0 and $2^{59}-1$ generated by G05_ MC_I8 after initialization by G05_MC_BEGIN.

```
DAP program
    ENTRY SUBROUTINE ENT
    INTEGER*8 RAND(,)
    EXTERNAL INTEGER*8 MATRIX FUNCTION GO5_MC_I8
    CALL GO5_MC_BEGIN
    RAND=G05_MC_I8(0)
    TRACE 1(RAND)
    RETURN
    END
```


Results

```
FORTRAN-PLUS Trace
```

FORTRAN-PLUS Subroutine: ENT at Line 9
Integer Matrix Local Variable RAND in 64 bits - addressed by Stack +0.09
(Row O1 Col 01) 487251244993469717, 476067912847080853,
(Col 03) 190484975398149653, 493464185425411733,
(Col 05) 517514364922158869, 463547216227221397,

There are 512 lines of detailed output altogether.

8.4 G05_MC_NORMAL_R4

release 1

1 Purpose
G05_MC_NORMAL_R4 provides a REAL*4 matrix containing normal pseudo-random variates from the distribution $N(0,1)$.

2 Specification
REAL*4 MATRIX FUNCTION G05_MC_NORMAL_R4 (D)
REAL* 4 D

3 Description

The real matrix G05_MC_NORMAL_R4 is set equal to 1024 of either of:

$$
\operatorname{SQRT}\left(-2.0 \operatorname{LOG}\left(\mathrm{U}_{1}\right)\right) \operatorname{SIN}\left(2 \pi \mathrm{U}_{2}\right)
$$

$$
\operatorname{SQRT}\left(-2.0 \operatorname{LOG}\left(\mathrm{U}_{1}\right)\right) \operatorname{COS}\left(2 \pi \mathrm{U}_{2}\right)
$$

where U_{1} and U_{2} are uniform pseudo-random numbers generated by G05_MC_R4 (see Atkin$\operatorname{son}[1])$.

4 References

[1] ATKINSON A C and PEARCE M C
The computer generation of Beta, Gamma and Normal random variables: J R Statist Soc 139, pp 431-461, 1976

5 Arguments
D - REAL* 4
D is a dummy argument required by FORTRAN-PLUS syntax.
6 Error Indicators
None
7 Auxiliary Routines
The routine calls the General Support library routine G05_MC_R4.
8 Accuracy
Not applicable
9 Further Comments
The routine uses the labelled COMMON block C_G05_N_NORM.

10 Keywords

Gaussian distribution, normal distribution, random numbers

11 Example

This example program prints the first five pseudo-random normal variates from a normal distribution with mean 0 and standard deviation 1, generated by G05_MC_NORMAL_R4 after initialization by G05_MC_BEGIN.

Host program
PROGRAM MAIN
REAL*4 RAND(1024)
COMMON/RESULT/RAND
CALL DAPCON('ent.dd')
CALL DAPENT('ENT')
CALL DAPREC('RESULT', RAND,1024)
CALL DAPREL
$\operatorname{WRITE}(6,1000)(\operatorname{RAND}(I), I=1,5)$
1000 FORMAT(/,' GO5_MC_NORMAL_R4 EXAMPLE PROGRAM RESULTS'/1X/
*5(1X,F10.4/))
STOP
END

DAP program
ENTRY SUBROUTINE ENT
REAL*4 RAND(,)
COMMON/RESULT/RAND

EXTERNAL REAL*4 MATRIX FUNCTION GO5_MC_NORMAL_R4
CALL GO5_MC_BEGIN
RAND=G05_MC_NORMAL_R4 (0.0)
CALL CONVMFE(RAND)

RETURN
END

Results

GO5_MC_NORMAL_R4 EXAMPLE PROGRAM RESULTS
-1.4384
1.7104
. 1361
. 1528
$-.8427$

8.5 G05_MC_R4

release 1

1 Purpose

G05_MC_R4 returns a REAL*4 MATRIX of 1024 pseudo-random real numbers taken from a uniform distribution between 0 and 1 .

2 Specification

REAL*4 MATRIX FUNCTION G05_MC_R4 (X)
REAL* 4 X

3 Description

The routine returns the matrix of values:
$\mathrm{N} / 2^{59}$
where N is the result of a call to G05_MC_I8.
4 References
[1] SMITH K A, REDDAWAY S F and SCOTT D M
Very High Performance Pseudo-Random Number Generator on DAP: Computer Physics Communications, vol 37, pp 239-244, 1985

5 Arguments
X - REAL* 4
A dummy argument required by FORTRAN-PLUS syntax
6 Error Indicators
None

7 Auxiliary Routines

The routine calls the General Support library routine G05_MC_ R8.

8 Accuracy

Not applicable

9 Further Comments

None

10 Keywords

Pseudo-random number, random number, rectangular distribution, uniform distribution

11 Example

The example program prints the first five pseudo-random real numbers from a uniform distribution between 0 and 1, generated by G05_MC_R4 after initialization by G05_MC_BEGIN.

```
Host program
    PROGRAM MAIN
    REAL*4 RAND(1024)
    COMMON/RESULT/RAND
    CALL DAPCON('ent.dd')
    CALL DAPENT('ENT')
    CALL DAPREC('RESULT',RAND,1024)
    CALL DAPREL
    WRITE(6,1000)(RAND(I),I=1,5)
1000 FORMAT(/,' G05_MC_R4 EXAMPLE PROGRAM RESULTS'/1X/
    *5(1X,F10.4/))
    STOP
    END
```

DAP program
ENTRY SUBROUTINE ENT
REAL*4 RAND(.,)
COMMON/RESULT/RAND
EXTERNAL REAL*4 MATRIX FUNCTION GO5_MC_R4
CALL GO5_MC_BEGIN
RAND=G05_MC_R4(0.0)
CALL CONVMFE(RAND)
RETURN
END

Results

G05_MC_R4 EXAMPLE PROGRAM RESULTS
.8452
. 2035
.4549
.4789
.6721

8.6 G05_MC_R8

release 1

1 Purpose
G05_MC_R8 returns a REAL*8 MATRIX of 1024 pseudo-random real numbers taken from a uniform distribution between 0 and 1 .

2 Specification

REAL*8 MATRIX FUNCTION G05_MC_R8 (X) REAL*8 X

3 Description

The routine returns the matrix of values:
$\mathrm{N} / 2^{59}$
where N is the result of a call to G05_MC_I8.

4 References

[1] SMITH K A, REDDAWAY S F and SCOTT D M
Very High Performance Pseudo-Random Number Generator on DAP: Computer Physics Communications, vol 37, pp 239-244, 1985

5 Arguments
X - REAL* 8
A dummy argument required by FORTRAN-PLUS syntax
6 Error Indicators
None

7 Auxiliary Routines

The routine calls the General Support library routine G05_MC_I8.
8 Accuracy
Not applicable
9 Further Comments
None

10 Keywords

Pseudo-random number, random number, rectangular distribution, uniform distribution

11 Example

The example program prints the first five pseudo-random real numbers from a uniform distribution between 0 and 1, generated by G05_MC_R8 after initialization by G05_MC_BEGIN.

```
Host program
    PROGRAM MAIN
    DOUBLE PRECISION RAND(1024)
    COMMON/RESULT/RAND
    CALL DAPCON('ent.dd')
    CALL DAPENT('ENT')
    CALL DAPREC('RESULT',RAND,2048)
    CALL DAPREL
    WRITE (6,1000)(RAND (I), I=1,5)
1000 FORMAT(/,' G05_MC_R8 EXAMPLE PROGRAM RESULTS'/1X/
    *5(1X,F10.4/))
    STOP
    END
```

DAP program
ENTRY SUBROUTINE ENT
DOUBLE PRECISION RAND(,)
COMMON/RESULT/RAND
EXTERNAL REAL*8 MATRIX FUNCTION G05_MC_R8
CALL G05_MC_BEGIN
RAND $=$ G05_MC_R8(0.0)
CALL CONVMFD (RAND)
RETURN
END

Results

G05_MC_R8 EXAMPLE PROGRAM RESULTS
.8452
.2035
. 4549
. 4789
.6721

8.7 G05_MC_REPEAT

1 Purpose
G05_MC_REPEAT sets the basic generator routine G05_MC_I8 to a repeatable initial state.
2 Specification
SUBROUTINE G05_MC_REPEAT(I)
INTEGER*4 I

3 Description

The routine sets the internal variable N used by G05_MC_I8 to a value calculated from the parameter I, where:

$$
\mathrm{N}=2 \operatorname{ABS}(\mathrm{I})+1
$$

The routine will yield different subsequent sequences of random numbers if called with different values of I, but the sequences will be repeatable in different runs of the calling program.

4 References

[1] SMITH K A, REDDAWAY S F and SCOTT D M
Very High Performance Pseudo-Random Number Generator on DAP: Computer Physics Communications, vol 37, pp 239-244, 1985

5 Arguments

I - INTEGER*4
On entry I specifies a number from which the new internal generator is calculated; I is unchanged on exit.

6 Error Indicators

None
7 Auxiliary Routines
None
8 Accuracy
Not applicable

9 Further Comments

The routine uses a labelled COMMON block C_G05_MC.

10 Keywords

Pseudo-random number, random number, rectangular distribution, uniform distribution
11 Example
The example program prints the first five pseudo-random real numbers from a uniform distribution between 0 and 1, generated by G05_MC_R4 after initialization by G05_MC_REPEAT.

```
Host program
    PROGRAM MAIN
    REAL*4 RAND(1024)
    COMMON/RESULT/RAND
    CALL DAPCON('ent.dd')
    CALL DAPENT('ENT')
    CALL DAPREC('RESULT',RAND,1024)
    CALL DAPREL
    WRITE (6, 1000)(RAND (I), I=1,5)
1000 FORMAT(/,' GO5_MC_REPEAT EXAMPLE PROGRAM RESULTS'/1X/
    *5(1X,F10.4/))
    STOP
    END
```

DAP program
ENTRY SUBROUTINE ENT
REAL*4 RAND (,)
COMMON/RESULT/RAND
EXTERNAL REAL*4 MATRIX FUNCTION GO5_MC_R4
CALL G05_MC_REPEAT(10)
RAND=G05_MC_R4(0.0)
CALL CONVMFE(RAND)
RETURN
END

Results

G05_MC_REPEAT EXAMPLE PROGRAM RESULTS
.6178
.6430
. 5399
. 3852
. 1947

Chapter 9

H01 - Operations research, graph structures, networks

Contents:

Subroutine Page
H01 _L_ASSIGN 102

9.1 H01_L_ASSIGN

1 Purpose

H01_L_ASSIGN solves the linear assignment problem with a minimum objective function and a real cost matrix of order $\mathrm{N} x \mathrm{~N}$, where $\mathrm{N} \leq 32$.

2 Specification

SUBROUTINE H01_L_ASSIGN (C, X , N , MIN , IFAIL)
REAL C(,), MIN
INTEGER X () , N , IFAIL

3 Description

The algorithm used is that of Ford and Fulkerson, [1], [2], which uses the Primal-Dual method. After dualizing the Primal problem, the routine aims to find a pair $X,(U, V)$ of Primal and Dual solutions respectively which satisfy the complimentary slackness condition.
To find the appropriate solutions, a network $G(U, V)$ is set up. There is an arc (i, j) in the graph whenever $u_{i}+v_{j}=c_{i j}$, where $c_{i j}$ is the cost of assigning i to j. Next, the labelling algorithm of Ford and Fulkerson is appplied to find a maximum flow in $G(U, V)$. If the maximum flow saturates the sink or (source), the problem is solved, otherwise the dual solutions are updated and the process restarts.

4 References

[1] DANTZIG G B
Linear Programming and Extensions: Princeton University Press, 1963
[2] FORD L R and FULKERSON D R
Flows in Networks: Princeton University Press, 1962

5 Arguments

C - REAL MATRIX

On entry C contains the $N \times N$ assignment cost matrix; C is unchanged on exit.

X - INTEGER VECTOR

On exit, X specifies the assignment solution; that is, if $\mathrm{X}(\mathrm{I})=\mathrm{J}$, for $\mathrm{I}, \mathrm{J} \leq \mathrm{N}$, then I is assigned to J.

N - INTEGER

On entry N is the order of the cost matrix C. N must lie between 2 and 32 , and is unchanged on exit.
MIN - REAL
On exit MIN contains the assignment value.

IFAIL - INTEGER

Unless the routine detects an error (see Error Indicators below) IFAIL contains zero on exit.

6 Error Indicators

Errors detected by the routine:
$\operatorname{IFAIL}=1 \quad \mathrm{~N}$ does not lie in the range 2 to 32
7 Auxiliary Routines
The routine calls the GS library routines X05_E_MIN_VC and X05_E_MIN_VR.
8 Accuracy
You can expect the computed value of the objective function MIN to be accurate to about 6 significant digits.

9 Further Comments

None

10 Keywords

Labelling algorithm, linear assignment, maximum flow, Primal-Dual algorithms

11 Example

The example is a 5×5 assignment problem, where the cost matrix is as follows:

$$
\mathrm{C}=\left|\begin{array}{lllll}
3 & 2 & 3 & 4 & 1 \\
4 & 1 & 2 & 4 & 2 \\
1 & 0 & 5 & 3 & 2 \\
7 & 5 & 0 & 1 & 3 \\
0 & 4 & 1 & 2 & 3
\end{array}\right|
$$

Hence $N=5$

Host program

PROGRAM LASP

REAL C(32,32), MIN
INTEGER X (32) , N, IFAIL
COMMON/A1/C
соmmon/a2/X
COMMON/A3/N, IFAIL
COMMON/A4/MIN
$\operatorname{READ}(*, *)$ N
DC 10 I=1, N
$10 \operatorname{READ}(*, *)(C(I, J), J=1, N)$
CALL DAPCON('initial.dd')
CALL DAPSEN('A1', C,1024)
CALL DAPSEN('A3',N,1)

CALL DAPENT('INITIAL')

CALL DAPREC('A1', C,1024)
CALL DAPREC('A2', $X, 32$)
CALL DAPREC('A3', $N, 2$)
CALL DAPREC('A4',MIN,1)

CALL DAPREL

WRITE (*,*) 'IFAIL = ',IFAIL
IF (IFAIL .NE. O) STOP
$\operatorname{WRITE}(6,30) \mathrm{MIN},(\mathrm{X}(\mathrm{I}), \mathrm{I}=1, \mathrm{~N})$
30 FORMAT(/,' MINIMUM VALUE OF ASP. =', F12.5,//,' THE ASSIGNMENTS',

* ' ARE AS FOLLDWS:',//, (1X,16I4))

STOP
END

DAP program

ENTRY SUBROUTINE INITIAL

REAL C(,), MIN
INTEGER X(),N,IFAIL COMMON/A1/C
COMMON/A2/X
COMMON/A3/N, IFAIL
COMMON/A4/MIN

CALL CONVFSI (N,1)
CALL CONVFME (C)

CALL HO1_L_ASSIGN(C,X,N,MIN,IFAIL)

CALL CONVMFE (C)
CALL CONVVFI (X, 32,1)
CALL CONVSFI $(N, 2)$
CALL CONVSFE(MIN,1)

RETURN
END

Data

$$
\begin{array}{lllll}
5 & & & & \\
3 & 2 & 3 & 4 & 1 \\
4 & 1 & 2 & 4 & 2 \\
1 & 0 & 5 & 3 & 2 \\
7 & 5 & 0 & 1 & 3 \\
0 & 4 & 1 & 2 & 3
\end{array}
$$

Results

IFAIL $=0$
MINIMUM VALUE OF ASP. $=4.00000$

THE ASSIGNMENTS ARE AS FOLLOWS:
$\begin{array}{lllll}5 & 3 & 2 & 4 & 1\end{array}$

Chapter 10

J06 - Plotting

Contents:
Subroutine Page
J06_CHAR_CONT . 108
J06_ZEBRA _CHART . . 111

10.1 J06_CHAR _CONT

1 Purpose
J06_CHAR_CONT returns a character matrix containing a rough contour map of a real matrix. You can control the number of contours and contour levels.

2 Specification
SUBROUTINE J06_CHAR_CONT (A , MAP , CODE , LEVELS , NUM_LEVELS ,

+ IFAIL)
INTEGER NUM_LEVELS , IFAIL
REAL A (,) , LEVELS ()
CHARACTER MAP (,) , CODE ()

3 Description

The routine adds contours one by one in order of descending height. For each contour the routine finds the area of the map which is less than the contour height. The border of this area is then found by eliminating any elements lying entirely within the area. This border is then taken as the contour.

4 References

None

5 Arguments

A - REAL MATRIX

On entry, A contains the matrix for which a contour map is required. A is unchanged on exit.

MAP - CHARACTER MATRIX

On exit, MAP contains the required contour map.
CODE - CHARACTER VECTOR
On entry, CODE must either have been set to all spaces or the first NUM_LEVELS entries must contain the characters required to represent the contour levels. If CODE is all spaces then the default character sequence of 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ will be used. CODE is unchanged on exit.

LEVELS - REAL VECTOR

On entry, LEVELS must contain the NUM-LEVELS contour height values required (if NUM_LEVELS is positive), or may be undefined if NUM_LEVELS is negative.
If NUM_LEVELS is positive, successive entries in LEVELS must be strictly increasing.
On exit, elements 1 to ABS(NUM-LEVELS) of LEVELS contain the contour height values used in the contour plot, (other elements of LEVELS are undefined).
NUM_LEVELS - INTEGER
On entry, NUM_LEVELS specifies the number of contour lines required. NUM_ LEVELS must not be zero or greater than 36 in absolute magnitude.
If NUM_LEVELS is positive, the contour heights will be taken from the vector LEVELS. If NUM_LEVELS is negative, $\operatorname{ABS}($ NUM_LEVELS $)$ contours will be drawn equally spaced between the maximum and minimum values of A. NUM_LEVELS is unchanged on exit.

IFAIL - INTEGER
Unless the routine detects an error (see Error Indicators below) IFAIL contains zero on exit.

6. Error Indicators

Errors detected by the routine:
IFAIL $=1 \quad$ NUM_LEVELS is zero or not in the ranges -36 to -1 or 1 to 36
IFAIL $=2 \quad$ The first NUM_LEVELS entries of LEVELS are not in strictly ascending order
IFAIL $=3 \quad$ NUMLLEVELS is negative and all the entries in A are identical

7 Auxiliary Routines

None

8 Accuracy

Not applicable

9 Further Comments

None

10 Keywords

Contour plots

11 Example

The example generates two maps of the function $x^{2}+y^{2}$, the first using the default character set and equally spaced contour heights and the second using heights and characters you define. The maps are output using the FORTRAN-PLUS TRACE statement.

Host program

```
PROGRAM MAIN
CALL DAPCON('example.dd')
CALL DAPENT('EXAMPLE')
CALL DAPREL
STOP
END
```


DAP program

```
ENTRY SUBROUTINE EXAMPLE
REAL A(,),CLEVELS()
INTEGER IV()
CHARACTER MAP(,),MYCODE()
CALL X05_SHORT_INDEX(IV,0)
A=FLOAT(MATR(IV-32)**2 + MATC(IV-32)**2)
CALL J06_CHAR_CONT(A,MAP,VEC(' '),CLEVELS,-10,IFAIL)
TRACE 1 (MAP,IFAIL,CLEVELS)
CLEVELS(1)=100.0
```

```
CLEVELS(2)=500.0
CLEVELS (3)=1000.0
CLEVELS (4)=1200.0
MYCODE(1)='A'
MYCODE(2)='B'
MYCODE (3)='C'
MYCODE (4)='D'
CALL JO6_CHAR_CONT(A,MAP,MYCODE,CLEVELS,4,IFAIL)
TRACE 1 (MAP,IFAIL,CLEVELS)
RETURN
END
```


10.2 J06_ZEBRA _CHART

release 1

1 Purpose

J06_ZEBRA _CHART returns a contour map suitable for output to a printing device of a real matrix. The output is called a ZEBRA chart; it consists of alternating bands of blanks and a given character.

2 Specification
CHARACTER MATRIX FUNCTION J06_ZEBRA _CHART (X , STEPS , CHAR)
INTEGER STEPS
REAL X (,)
CHARACTER CHAR

3 Description

The method used is straightforward: the input variable is scaled and divided into STEPS levels, and the least significant bit of the level number is used as a mask to create the output.

4 References

None
5 Arguments
X - REAL MATRIX
On entry, X contains the matrix to be plotted, and is unchanged on exit.
STEPS - INTEGER
On entry, STEPS specifies the number of bands in the chart (between the minimum and maximum of X), and is unchanged on exit.

CHAR - CHARACTER
On entry, CHAR specifies the character to be used in the bands, and is unchanged on exit.

6 Error Indicators
Errors detected by the routine:
If STEPS is less than 2 or the range of X is less than 1.0E-5 then a chart of all ' E 's is produced.

7 Auxiliary Routines
None
8 Accuracy
Not applicable

9 Further Comments

None

10 Keywords
Contour map, Zebra chart
11 Example
The example calculates a simple function and uses the FORTRAN-PLUS TRACE facility to output the Zebra chart generated.

Host program
PROGRAM MAIN
CALL DAPCON('example.dd')
CALL DAPENT('EXAMPLE')
CALL DAPREL
STOP
END

DAP program
ENTRY SUBROUTINE EXAMPLE
EXTERNAL CHARACTER MATRIX FUNCTION JO6_ZEBRA_CHART
REAL X(,)
CHARACTER OUT(,)
INTEGER I()
$F=3.14159 / 32$.
G=2.0*F
CALL SHORT_INDEX (I)
$X=\operatorname{MATR}(\operatorname{SIN}(F * I))+\operatorname{MATC}(\operatorname{Cos}(G * I))$
OUT=J06_ZEBRA_CHART $\left(X, 10,{ }^{\prime} *^{\prime}\right)$
TRACE 1 (OUT)
RETURN
END

Chapter 11

M01 - Sorting

Contents:
Subroutine Page
M01_BSORT_LV 114
M01 _INV_PERMUTE _COLS 117
M01_INV_PERMUTE_LV_32 121
M01_INV_PERMUTE _ROWS 124
M01 _PERMUTE _COLS 128
M01_PERMUTE_LV_32 132
M01 _PERMUTE _ ROWS 135
M01_SORT_V_I4 139
M01_SORT_V_R4 142

11.1 M01_BSORT_LV

1 Purpose

M01_BSORT_LV is a sorting routine based on bitonic sorting. Data is sorted according to a key, or the key alone may be sorted.

2 Specification
SUBROUTINE M01_BSORT_LV (KEY, L, X , D)
INTEGER KEY (,) , L , D
LOGICAL X (, , D)

3 Description

The routine uses Batcher's bitonic sorting algorithm. For a description see [1].

4 References

[1] KNUTH D E
The Art of Computer Programming, Vol 3 (Sorting and Searching): p 232 AddisonWesley, 1973

5 Arguments

KEY - INTEGER MATRIX
On entry, KEY (considered as a long vector) must be defined as the key to the sort; on exit the contents of KEY will have been sorted.
L - INTEGER
On entry, L must have been set to zero if only the KEY is to be sorted; any other value will cause the data to be sorted as well. L is unchanged on exit.

X - <any type> MATRIX (or MATRIX array)
On entry, X contains the data to be sorted. On exit, X contains the sorted data.
D - INTEGER
On entry, D specifies the number of bit planes in the data, and is unchanged on exit.

6 Error Indicators
 None

7 Auxiliary Routines

None
8 Accuracy
Not applicable

9 Further Comments

None

10 Keywords

Batcher sort, bitonic sort, data sort, key sort

11 Example

The example sorts 6 real values according to an integer key. Key entries beyond the data of interest are set to a large number to prevent them being involved in the sort.

Host program

```
            PROGRAM MAIN
            REAL DATA(1024)
            INTEGER KEY(1024)
            COMMON /KEY/KEY /DATA/DATA
            DO 10 J=1,1024
        10 KEY(J)=10000
            READ(*,*) (KEY(I), I=1,6)
    READ(*,*) (DATA(I), I=1,6)
    WRITE(6, 1000) (DATA(I),I=1,6),(KEY(I), I=1,6)
1000 FORMAT(' INPUT VALUES:'//' DATA:',6F10.3/' KEY:',6I10)
    CALL DAPCON('ent.dd')
    CALL DAPSEN('KEY',KEY,1024)
    CALL DAPSEN('DATA',DATA,1024)
    CALL DAPENT('ENT')
    CALL DAPREC('KEY',KEY,1024)
    CALL DAPREC('DATA',DATA,1024)
    CALL DAPREL
    WRITE(6,2000) (DATA(I), I=1,6),(KEY(I), I=1,6)
2000 FORMAT(//' OUTPUT VALUES:'//' DATA:',6F10.3/' KEY:',6I10)
    STOP
    END
```


DAP program

 ENTRY SUBROUTINE ENT
 INTEGER KEY(,)
 REAL DATA(,)
 COMMON /KEY/KEY /DATA/DATA
    ```
CALL CONVFMI(KEY)
CALL CONVFME(DATA)
CALL MO1_BSORT_LV(KEY,1,DATA,32)
CALL CONVMFI(KEY)
CALL CONVMFE(DATA)
RETURN
END
```


Data

$$
\begin{array}{rrrrrr}
8 & -1 & 7 & 16 & 2 & -3 \\
7.5 & 22 & -81 & -2 & 3 & 19
\end{array}
$$

Results

INPUT VALUES:

| DATA: | 7.500 | 22.000 | -81.000 | -2.000 | 3.000 | 19.000 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| KEY: | 8 | -1 | 7 | 16 | 2 | -3 |
| | | | | | | |
| | | | | | | |
| OUTPUT VALUES: | | | | | | |
| | | | | | | |
| DATA: | 19.000 | 22.000 | 3.000 | -81.000 | 7.500 | -2.000 |
| KEY: | -3 | -1 | 2 | 7 | 8 | 16 |

11.2 M01_INV_PERMUTE _COLS

release 1

1 Purpose

M01_INV_PERMUTE_COLS permutes the first M columns of a matrix according to a permutation vector (IV). The result is equivalent to the FORTRAN-PLUS statements:

DO $10 \mathrm{I}=1, \mathrm{M}$
10 A_PERMUTED $(, \operatorname{IV}(\mathrm{I}))=\mathrm{A}(, \mathrm{I})$

2 Specification

SUBROUTINE M01_INV_PERMUTE _COLS (A, AP , IV , N , M)
INTEGER IV () , N, M
<any type> A(,), AP (,)

3 Description

Columns are permuted according to the integer index vector IV, such that column I is moved to column IV(I).

4 References

None

5 Arguments

A - <any type> MATRIX

On entry, A contains the matrix whose columns are to be permuted. A may be of any type, and is unchanged on exit.

AP - <any type> MATRIX

On exit, AP contains the columns of A permuted according to the index vector IV. AP should usually be of the same type as A. If M is less than 32 , columns $\mathrm{M}+1$ to 32 are unchanged on exit.

IV - INTEGER VECTOR

On entry, IV contains the required permutation, that is, column I of A will be moved to column IV(I) of AP. Elements 1 to M of IV must be in the range 1 to 32 . If the entries of IV are not all distinct - for example, if IV(I) $=$ IV(J) with $\mathrm{J}>\mathrm{I}-$ then column $\operatorname{AP}(, \operatorname{IV}(\mathrm{J})$) will have the value $\mathrm{A}(, \mathrm{J})$ on exit. IV is unchanged on exit.

N - INTEGER

On entry, N contains the number of planes in the matrix to be permuted; possible values for N are:

$$
\begin{array}{ll}
\mathrm{N}=1 & \text { for permuting a logical matrix } \\
\mathrm{N}=8 & \text { for permuting a character matrix } \\
\mathrm{N}=8^{*} n & \text { for permuting an INTEGER }{ }^{*} n \text { or } \operatorname{REAL}^{*} n \text { matrix }
\end{array}
$$

N should be less than 257, and is unchanged on exit.

5 Arguments - continued
M - INTEGER
On entry, M must contain a value in the range 1 to 32 ; only the first M index values of IV are used. M is unchanged on exit. .

6 Error Indicators
None

7 Auxiliary Routines

The routine references the General Support library routine Z_m01_AUX.
8 Accuracy
Not applicable

9 Further Comments

The parameters given as A and AP may be single arrays or part of a matrix set. For example, in:

CALL M01 _INV_PERMUTE _COLS (L (, 5), LL(, ,10), IV,1,32)
L and LL are logical matrix sets of size (at least) 5 and 10 respectively.
You must not use a common block with the names of CZ _ M01 _ HEX1F or CZ _ M01 _REVERSE.
10 Keywords
Permutation

11 Example

The following FORTRAN-PLUS fragment reverses the order of the columns of a real matrix, that is, $\mathrm{AP}=\operatorname{REVR}(\mathrm{A})$.

ENTRY SUBROUTINE ENT
REAL A(,), AP(,)
INTEGER IV()
DO $10 \mathrm{I}=1,32$
$10 \operatorname{IV}(I)=33-I$
DO $20 I=1,32$
DO $20 \mathrm{~J}=1,32$
$20 \mathrm{~A}(\mathrm{I}, \mathrm{J})=$ FLOAT ($\mathrm{I}+\mathrm{J}$)
CALL M01_INV_PERMUTE_COLS (A, AP, IV, 32, 32)
TRACE 1 (AP)
RETURN
END

Results

FORTRAN-PLUS Trace
FORTRAN-PLUS Subroutine: ENT at Line 10
Real Matrix Local Variable AP in 32 bits -- addressed by Stack +0.10

| (Row | 01 Col 01) | $3.3000000 \mathrm{E}+01$, | 3.2000000E+01, | $3.1000000 \mathrm{E}+01$, |
| :---: | :---: | :---: | :---: | :---: |
| | (Col 04) | 3.0000000E+01, | $2.9000000 \mathrm{E}+01$, | $2.8000000 \mathrm{E}+01$, |
| | (Col 07) | 2.7000000E+01, | $2.6000000 \mathrm{E}+01$, | $2.5000000 \mathrm{E}+01$, |
| | (Col 10) | $2.4000000 \mathrm{E}+01$, | $2.3000000 \mathrm{E}+01$, | $2.2000000 \mathrm{E}+01$, |
| | (Col 13) | 2.1000000E+01, | 2.0000000E+01, | 1.9000000E+01, |
| | (Col 16) | 1.8000000E+01, | 1.7000000E+01, | 1.6000000E+01, |
| | (Col 19) | 1.5000000E+01, | $1.4000000 \mathrm{E}+01$, | 1.3000000E+01, |
| | (Col 22) | 1.2000000E+01, | 1.1000000E+01, | $1.0000000 \mathrm{E}+01$, |
| | (Col 25) | $9.0000000 \mathrm{E}+00$, | 8.0000000E+00, | $7.0000000 \mathrm{E}+00$, |
| | (Col 28) | $6.0000000 \mathrm{E}+00$, | $5.0000000 \mathrm{E}+00$, | 4.0000000E+00, |
| | (Col 31) | $3.0000000 \mathrm{E}+00$, | 2.0000000E+00 | |
| (Row 0 | $02 \mathrm{Col} \mathrm{01)}$ | 3.4000000E+01, | $3.3000000 \mathrm{E}+01$, | 3.2000000E+01, |
| | (Col 04) | $3.1000000 \mathrm{E}+01$, | 3.0000000E+01, | 2.9000000E+01, |
| | (Col 07) | 2.8000000E+01, | $2.7000000 \mathrm{E}+01$, | 2.6000000E+01, |
| | (Col 10) | $2.5000000 \mathrm{E}+01$, | 2.4000000E+01, | 2.3000000E+01, |
| | (Col 13) | $2.2000000 \mathrm{E}+01$, | 2.1000000E+01, | $2.0000000 \mathrm{E}+01$, |
| | (Col 16) | 1.9000000E+01, | 1.8000000E+01, | 1.7000000E+01, |
| | (Col 19) | 1.6000000E+01, | 1.5000000E+01, | 1.4000000E+01, |
| | (Col 22) | 1.3000000E+01, | 1.2000000E+01, | 1.1000000E+01, |
| | (Col 25) | 1.0000000E+01, | $9.0000000 \mathrm{E}+00$, | 8.0000000E+00, |
| | (Col 28) | $7.0000000 \mathrm{E}+00$, | $6.0000000 \mathrm{E}+00$, | $5.0000000 \mathrm{E}+00$, |
| | (Col 31) | $4.0000000 \mathrm{E}+00$, | $3.0000000 \mathrm{E}+00$ | |
| (Row 0 | $03 \mathrm{Col} \mathrm{01)}$ | $3.5000000 \mathrm{E}+01$, | 3.4000000E+01, | 3.3000000E+01, |
| | (Col 04) | 3.2000000E+01, | $3.1000000 \mathrm{E}+01$, | $3.0000000 \mathrm{E}+01$, |
| | (Col 07) | 2.9000000E+01, | 2.8000000E+01, | 2.7000000E+01, |
| | (Col 10) | $2.6000000 \mathrm{E}+01$, | $2.5000000 \mathrm{E}+01$, | 2.4000000E+01, |
| | (Col 13) | 2.3000000E+01, | 2.2000000E+01, | 2.1000000E+01, |
| | (Col 16) | $2.0000000 \mathrm{E}+01$, | 1.9000000E+01, | 1.8000000E+01, |
| | (Col 19) | 1.7000000E+01, | 1.6000000E+01, | 1.5000000E+01, |
| | (Col 22) | $1.4000000 \mathrm{E}+01$, | 1.3000000E+01, | 1.2000000E+01, |
| | (Col 25) | 1.1000000E+01, | 1.0000000E+01, | $9.0000000 \mathrm{E}+00$, |
| | (Col 28) | $8.0000000 \mathrm{E}+00$, | $7.0000000 \mathrm{E}+00$, | $6.0000000 \mathrm{E}+00$, |
| | (Col 31) | $5.0000000 \mathrm{E}+00$, | $4.0000000 \mathrm{E}+00$ | |

| (Row | $30 \mathrm{Col} \mathrm{O1)}$ | $6.2000000 \mathrm{E}+01$, | $6.1000000 \mathrm{E}+01$, | $6.0000000 \mathrm{E}+01$, |
| :---: | :---: | :---: | :---: | :---: |
| | (Col 04) | $5.9000000 \mathrm{E}+01$, | $5.8000000 \mathrm{E}+01$, | $5.7000000 \mathrm{E}+01$, |
| | (Col 07) | 5.6000000E+01, | $5.5000000 \mathrm{E}+01$, | $5.4000000 \mathrm{E}+01$ |
| | (Col 10) | 5.3000000E+01, | $5.2000000 \mathrm{E}+01$, | $5.1000000 \mathrm{E}+01$ |
| | (Col 13) | $5.0000000 \mathrm{E}+01$, | $4.9000000 \mathrm{E}+01$, | $4.8000000 \mathrm{E}+01$ |
| | (Col 16) | $4.7000000 \mathrm{E}+01$, | $4.6000000 \mathrm{E}+01$, | $4.5000000 \mathrm{E}+01$ |
| | (Col 19) | 4.4000000E+01, | $4.3000000 \mathrm{E}+01$, | $4.2000000 \mathrm{E}+01$ |
| | (Col 22) | 4.1000000E+01, | $4.0000000 \mathrm{E}+01$, | $3.9000000 \mathrm{E}+01$ |
| | (Col 25) | $3.8000000 \mathrm{E}+01$, | $3.7000000 \mathrm{E}+01$, | $3.6000000 \mathrm{E}+01$ |
| | (Col 28) | $3.5000000 \mathrm{t}+01$, | 3.4000000E+01, | $3.3000000 \mathrm{E}+0$ |
| | (Col 31) | 3.2000000E+01, | $3.1000000 \mathrm{E}+01$ | |
| (Row | 31 Col 01) | 6.3000000E+01, | 6.2000000E+01, | 6.1000000E+01, |
| | (Col 04) | $6.0000000 \mathrm{E}+01$, | 5.9000000E+01, | $5.8000000 \mathrm{E}+$ |
| | (Col 07) | 5.7000000E+01, | $5.6000000 \mathrm{E}+01$, | $5.5000000 \mathrm{t}+01$ |
| | (Col 10) | $5.4000000 \mathrm{E}+01$, | 5.3000000E+01, | $5.2000000 \mathrm{E}+01$ |
| | (Col 13) | 5.1000000E+01, | 5.0000000E+01, | $4.9000000 \mathrm{E}+01$ |
| | (Col 16) | 4.8000000E+01, | $4.7000000 \mathrm{E}+01$, | $4.6000000 \mathrm{E}+01$ |
| | (Col 19) | 4.5000000E+01, | 4.4000000E+01, | $4.3000000 \mathrm{E}+01$ |
| | (Col 22) | 4.2000000E+01, | 4.1000000E+01, | $4.0000000 \mathrm{E}+01$ |
| | (Col 25) | 3.9000000E+01, | $3.8000000 \mathrm{E}+01$, | $3.7000000 \mathrm{E}+01$ |
| | (Col 28) | 3.6000000E+01, | $3.5000000 \mathrm{E}+01$, | $3.4000000 \mathrm{E}+01$ |
| | (Col 31) | $3.3000000 \mathrm{E}+01$, | $3.2000000 \mathrm{E}+01$ | |
| (Row | $32 \mathrm{Col} \mathrm{01)}$ | 6.4000000E+01, | $6.3000000 \mathrm{E}+01$, | $6.2000000 \mathrm{E}+01$, |
| | (Col 04) | $6.1000000 \mathrm{E}+01$, | $6.0000000 \mathrm{E}+01$, | $5.9000000 \mathrm{E}+01$ |
| | (Col 07) | $5.8000000 \mathrm{E}+01$, | 5.7000000E+01, | 5.6000000E+01, |
| | (Col 10) | $5.5000000 \mathrm{E}+01$, | $5.4000000 \mathrm{E}+01$, | $5.3000000 \mathrm{E}+01$, |
| | (Col 13) | 5.2000000E+01, | 5.1000000E+01, | $5.0000000 \mathrm{E}+01$, |
| | (Col 16) | 4.9000000E+01, | 4.8000000E+01, | $4.7000000 \mathrm{E}+01$, |
| | (Col 19) | 4.6000000E+01, | 4.5000000E+01, | $4.4000000 \mathrm{E}+01$, |
| | (Col 22) | 4.3000000E+01, | 4.2000000E+01, | $4.1000000 \mathrm{E}+01$, |
| | (Col 25) | 4.0000000E+01, | 3.9000000E+01, | $3.8000000 \mathrm{E}+01$, |
| | (Col 28) | 3.7000000E+01, | $3.6000000 \mathrm{E}+01$, | $3.5000000 \mathrm{E}+01$, |
| | (Col 31) | 3.4000000E+01, | $3.3000000 \mathrm{E}+01$ | |

11.3 M01_INV_PERMUTE _LV_32

1 Purpose

M01_INV_PERMUTE_LV_32 permutes the values in a long vector of 4-byte values using an INTEGER*4 long vector key. The result is written to a new long vector; the original data is unaffected. The data shuffling implemented is:

ANSWER (KEY(I)) $=\operatorname{START}(\mathrm{I}), \mathrm{I}=1,1024$
using long vector indexing. Hence the key long vector must contain values in the range $1-1024$, but the values need not be distinct.

2 Specification

SUBROUTINE M01_INV_PERMUTE_LV_32 (ANSWER, START , KEY)
INTEGER* 4 or REAL* 4 ANSWER (,) , START (,)
INTEGER* 4 KEY (,)

3 Description

Local copies of the data and answer long vectors are made, and converted to vector mode. The keys are copied and changed to zero-based offsets, and converted to vector mode. Each row of this key vector set then contains an index of a row in the destination vector set. The data rows are processed in turn and the contents of the addressed row are copied to the (copy of the) destination vector set, indexed by the value in the same row position of the key row. This result vector set is then copied to the answer long vector and converted to matrix mode.

4 References

None

5 Arguments

ANSWER - INTEGER*4 or REAL*4 MATRIX
On exit, ANSWER contains the shuffled version of the input matrix START.

START - INTEGER*4 or REAL*4 MATRIX

On entry, START should contain the data to be shuffled; START is unchanged on exit.

KEY - INTEGER*4 MATRIX

On entry, KEY should contain values in the range 1 - 1024 (not necessarily distinct) describing the required shuffle; KEY is unchanged on exit.

6 Error Indicators
 None

7 Auxiliary Routines

The routine references routines Z_M01_PLV_CONV_ONLY and Z_M01_PLV_COPY_AND_CONV from the General Support library.

8 Accuracy

Not applicable

9 Further Comments

Because of the way that the routine is coded, you should not assume that the start and key long vectors are processed with an index that increases in a simple way.

10 Keywords

Data movement, permutation, rearrange data, shuffle.

11 Example
The following FORTRAN-PLUS fragment reverses a long vector of integer values.

```
ENTRY SUBROUTINE ENT
INTEGER DATA(,), KEY(,), RESULT(,)
DO 10 I = 1, 1024
DATA(I) = 3 * I
10 KEY(I) = 1025 -- I
CALL M01_PERMUTE_LV_32(RESULT, DATA, KEY)
TRACE 1 (RESULT)
RETURN
END
```

Results

```
FORTRAN-PLUS Trace
FORTRAN-PLUS Subroutine: ENT at Line 7
```

Integer Matrix Local Variable RESULT in 32 bits -- addressed by Stack +0.10

| (Row 01 Col 01) | 3072, | 2976, | 2880, | 2784, |
| ---: | ---: | ---: | ---: | ---: |
| $($ Col 05) | 2688, | 2592, | 2496, | 2400, |
| $($ Col 09) | 2304, | 2208, | 2112, | 2016, |
| $($ Col 13) | 1920, | 1824, | 1728, | 1632, |
| $($ Col 17) | 1536, | 1440, | 1344, | 1248, |
| $($ Col 21) | 1152, | 1056, | 960, | 864, |
| $($ Col 25) | 768, | 672, | 576, | 480, |
| $($ Col 29) | 384, | 288, | 192, | 96 |
| (Row 02 Col 01) | 3069, | 2973, | 2877, | 2781, |
| $($ Col 05) | 2685, | 2589, | 2493, | 2397, |
| $($ Col 09) | 2301, | 2205, | 2109, | 2013, |
| (Col 13) | 1917, | 1821, | 1725, | 1629, |
| $($ Col 17) | 1533, | 1437, | 1341, | 1245, |
| $($ Col 21) | 1149, | 1053, | 957, | 861, |
| $($ Col 25) | 765, | 669, | 573, | 477, |
| $($ Col 29) | 381, | 285, | 189, | 93 |

11.4 M01_INV_PERMUTE _ROWS

1 Purpose

M01_INV_PERMUTE_ROWS permutes the first M rows of a matrix according to a permutation vector (IV). The result is equivalent to the FORTRAN-PLUS statements:

DO $10 \mathrm{I}=1, \mathrm{M}$
10 A. PERMUTED (IV (I),) $=$ A(I,)

2 Specification

SUBROUTINE M01_INV_PERMUTE _ ROWS (A , AP , IV , N , M)
INTEGER IV () , N , M
<any type> A(,), AP(,)

3 Description

Rows are permuted according to the integer index vector IV such that row I is moved to row IV(I).

4 References

None

5 Arguments

A - <any type> MATRIX
On entry, A should contain the matrix whose rows are to be permuted. A may be of any type and is unchanged on exit.

AP - <any type> MATRIX

On exit, AP contains the rows of A permuted according to the index vector IV. AP should usually be of the same type as A. If M is less than 32 , rows $\mathrm{M}+1$ to 32 are unchanged on exit.

IV - INTEGER VECTOR

On entry, IV should contain the required permutation; that is, row I of A will be moved to row IV(I) of AP. Elements 1 to M of IV must be in the range 1 to 32 . If the entries of IV are not all distinct - for example, if $\operatorname{IV}(\mathrm{I})=\operatorname{IV}(\mathrm{J})$ with $\mathrm{J}>\mathrm{I}-$ then row $\operatorname{AP}(\operatorname{IV}(\mathrm{J})$, will have the value $A(J$,$) on exit. IV is unchanged on exit.$

N - INTEGER
On entry, N contains the number of planes in the matrix to be permuted; possible values for N are:

$$
\begin{array}{ll}
\mathrm{N}=1 & \text { for permuting a logical matrix } \\
\mathrm{N}=8 & \text { for permuting a character matrix } \\
\mathrm{N}=8^{*} n & \text { for permuting an INTEGER*} n \text { or REAL* } n \text { matrix }
\end{array}
$$

N should be less than 257 , and is unchanged on exit.
M - INTEGER

On entry M must contain a value in the range 1 to 32 . Only the first M index values of IV are used. M is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines

The routine references the General Support library routine Z_M01_AUX.
8 Accuracy
Not applicable

9 Further Comments

The parameters given as A and AP may be single arrays or part of a matrix set. For example, in:

CALL M01_INV_PERMUTE_COLS (L (, 5), LL (, , 10), IV , 1, 32)
L and LL are logical matrix sets of size (at least) 5 and 10 respectively.
You must not use a common block with the names of CZ _ M01_HEX1F or CZ _ M01_REVERSE.
10 Keywords
Permutation
11 Example
The following FORTRAN-PLUS fragment reverses the order of the rows or a real matrix, that is $\mathrm{AP}=\operatorname{REVC}(\mathrm{A})$

```
    ENTRY SUBROUTINE ENT
    REAL A(,), AP(,)
    INTEGER IV()
    DO 10 I = 1, 32
10 IV (I) = 33-I
    DO 20 I = 1, 32
    DO 20 J = 1, 32
20 A(I,J) = FLOAT (I + J)
    CALL MO1_INV_PERMUTE_ROWS (A, AP, IV, 32, 32)
    TRACE 1 (AP)
    RETURN
    END
```


Results

```
FORTRAN-PLUS Trace
FORTRAN-PLUS Subroutine: ENT at Line 10
```

Real Matrix Local Variable AP in 32 bits -- addressed by Stack + 0.10
(Row 01 Col 01) 3.3000000E+01, 3.4000000E+01, 3.5000000E+01,
(Col 04) 3.6000000E+01, 3.7000000E+01, 3.8000000E+01,
(Col 07) 3.9000000E+01, 4.0000000E+01, 4.1000000E+01,
(Col 10) 4.2000000E+01, 4.3000000E+01, 4.4000000E+01,
(Col 13) 4.5000000E+01, 4.6000000E+01, 4.7000000E+01,
(Col 16) $4.8000000 \mathrm{E}+01, \quad 4.9000000 \mathrm{E}+01, \quad 5.0000000 \mathrm{E}+01$,
(Col 19) 5. 1000000E+01, 5.2000000E+01, 5.3000000E+01,
(Col 22) $5.4000000 \mathrm{E}+01,5.5000000 \mathrm{E}+01,5.6000000 \mathrm{E}+01$,
(Col 25) 5.7000000E+01, 5.8000000E+01, 5.9000000E+01,
(Col 28) 6.0000000E+01, 6.1000000E+01, 6.2000000E+01,
(Col 31) 6.3000000E+01, 6.4000000E+01

(Col 04) $3.5000000 \mathrm{E}+01, \quad 3.6000000 \mathrm{E}+01, \quad 3.7000000 \mathrm{E}+01$,
(Col 07) 3.8000000E+01, 3.9000000E+01, 4.0000000E+01,
(Col 10) 4.1000000E+01, 4.2000000E+01, 4.3000000E+01,
(Col 13) 4.4000000E+01, 4.5000000E+01, 4.6000000E+01,
(Col 16) 4.7000000E+01, 4.8000000E+01, 4.9000000E+01,
(Col 19) $5.0000000 \mathrm{E}+01,5.1000000 \mathrm{E}+01,5.2000000 \mathrm{E}+01$,
(Col 22) $5.3000000 \mathrm{E}+01,5.4000000 \mathrm{E}+01,5.5000000 \mathrm{E}+01$,
(Col 25) 5.6000000E+01, 5.7000000E+01, 5.8000000E+01,
(Col 28) $5.9000000 \mathrm{E}+01,6.0000000 \mathrm{E}+01,6.1000000 \mathrm{E}+01$,
(Col 31) 6.2000000E+01, 6.3000000E+01
(Row 03 Col 01) 3.1000000E+01, 3.2000000E+01, 3.3000000E+01,
(Col 04) $3.4000000 \mathrm{E}+01, \quad 3.5000000 \mathrm{E}+01, \quad 3.6000000 \mathrm{E}+01$,
(Col 07) 3.7000000E+01, 3.8000000E+01, 3.9000000E+01,
(Col 10) 4.0000000E+01, 4.1000000E+01, 4.2000000E+01,
(Col 13) $4.3000000 \mathrm{E}+01,4.4000000 \mathrm{E}+01,4.5000000 \mathrm{E}+01$,
(Col 16) $4.6000000 \mathrm{E}+01,4.7000000 \mathrm{E}+01,4.8000000 \mathrm{E}+01$,
(Col 19) 4.9000000E+01, $5.0000000 \mathrm{E}+01,5.1000000 \mathrm{E}+01$,
(Col 22) $5.2000000 \mathrm{E}+01,5.3000000 \mathrm{E}+01,5.4000000 \mathrm{E}+01$,
(Col 25) $5.5000000 \mathrm{E}+01,5.6000000 \mathrm{E}+01,5.7000000 \mathrm{E}+01$,
(Col 28) $5.8000000 \mathrm{E}+01,5.9000000 \mathrm{E}+01,6.0000000 \mathrm{E}+01$,
(Col 31) 6.1000000E+01, $6.2000000 \mathrm{E}+01$

| (Row 30 | 30 Col 01) | 4.0000000E +00 , | $5.0000000 \mathrm{E}+00$, | $6.0000000 \mathrm{E}+00$, |
| :---: | :---: | :---: | :---: | :---: |
| | (Col 04) | $7.0000000 \mathrm{E}+00$, | $8.0000000 \mathrm{E}+00$, | $9.0000000 \mathrm{E}+00$, |
| | (Col 07) | $1.0000000 \mathrm{E}+01$, | $1.1000000 \mathrm{E}+01$, | 1.2000000E+01, |
| | (Col 10) | $1.3000000 \mathrm{E}+01$, | $1.4000000 \mathrm{E}+01$, | 1.5000000E+01, |
| | (Col 13) | $1.6000000 \mathrm{E}+01$, | 1.7000000E+01, | 1.8000000E+01, |
| | (Col 16) | $1.9000000 \mathrm{E}+01$, | $2.0000000 \mathrm{E}+01$, | 2.1000000E+01, |
| | (Col 19) | $2.2000000 \mathrm{E}+01$, | $2.3000000 \mathrm{E}+01$, | $2.4000000 \mathrm{E}+01$, |
| | (Col 22) | $2.5000000 \mathrm{E}+01$, | $2.6000000 \mathrm{E}+01$, | 2.7000000E+01, |
| | (Col 25) | $2.8000000 \mathrm{E}+01$, | 2.9000000E+01, | $3.0000000 \mathrm{E}+01$, |
| | (Col 28) | $3.1000000 \mathrm{E}+01$, | $3.2000000 \mathrm{E}+01$, | 3.3000000E+01, |
| | (Col 31) | $3.4000000 \mathrm{E}+01$, | $3.5000000 \mathrm{E}+01$ | |
| (Row 3 | 31 Col 01) | $3.0000000 \mathrm{E}+00$, | $4.0000000 \mathrm{E}+00$, | 5.0000000E+00, |
| | (Col 04) | $6.0000000 \mathrm{E}+00$, | $7.0000000 \mathrm{E}+00$, | $8.0000000 \mathrm{E}+00$, |
| | (Col 07) | $9.0000000 \mathrm{E}+00$, | $1.0000000 \mathrm{E}+01$, | 1.1000000E+01, |
| | (Col 10) | 1.2000000E+01, | 1.3000000E+01, | $1.4000000 \mathrm{E}+01$, |
| | (Col 13) | 1.5000000E+01, | $1.6000000 \mathrm{E}+01$, | 1.7000000E+01, |
| | (Col 16) | $1.8000000 \mathrm{E}+01$, | $1.9000000 \mathrm{E}+01$, | 2.0000000E+01, |
| | (Col 19) | 2.1000000E+01, | 2.2000000E+01, | 2.3000000E+01, |
| | (Col 22) | $2.4000000 \mathrm{E}+01$, | $2.5000000 \mathrm{E}+01$, | 2.6000000E+01, |
| | (Col 25) | $2.7000000 \mathrm{E}+01$, | 2.8000000E+01, | 2.9000000E+01, |
| | (Col 28) | 3.0000000E+01, | 3.1000000E+01, | 3.2000000E+01, |
| | (Col 31) | $3.3000000 \mathrm{E}+01$, | $3.4000000 \mathrm{E}+01$ | |
| (Row 3 | 32 Col 01) | $2.0000000 \mathrm{E}+00$ | 3.0000000E+00, | 4.0000000E+00, |
| | (Col 04) | $5.0000000 \mathrm{E}+00$, | $6.0000000 \mathrm{t}+00$, | 7.0000000E+00, |
| | (Col 07) | $8.0000000 \mathrm{E}+00$, | 9.0000000E+00, | 1.0000000E+01, |
| | (Col 10) | 1.1000000E+01, | 1.2000000E+01, | 1.3000000E+01, |
| | (Col 13) | 1.4000000E+01, | $1.5000000 \mathrm{E}+01$, | $1.6000000 \mathrm{E}+01$, |
| | (Col 16) | 1.7000000E+01, | $1.8000000 \mathrm{E}+01$, | 1.9000000E+01, |
| | (Col 19) | $2.0000000 \mathrm{E}+01$, | 2.1000000E+01, | 2.2000000E+01, |
| | (Col 22) | 2.3000000E+01, | $2.4000000 \mathrm{E}+01$, | 2.5000000E+01, |
| | (Col 25) | 2.6000000E+01, | 2.7000000E+01, | 2.8000000E+01, |
| | (Col 28) | 2.9000000E+01, | $3.0000000 \mathrm{E}+01$, | 3.1000000E+01, |
| | (Col 31) | $3.2000000 \mathrm{E}+01$, | 3.3000000E+0 | |

11.5 M01_PERMUTE _COLS

1 Purpose

M01_PERMUTE _COLS permutes the first M columns of a matrix according to a permutation vector(IV). The result is equivalent to the FORTRAN-PLUS statements:

DO $10 \mathrm{I}=1, \mathrm{M}$
10 A_PERMUTED $(, \mathrm{I})=\mathrm{A}(, \operatorname{IV}(\mathrm{I}))$

2 Specification

SUBROUTINE M01_PERMUTE_COLS (A , AP , IV , N , M)
INTEGER IV () , N, M
<any type> A (,), AP (,)

3 Description

Columns are permuted according to the integer index vector IV, such that column IV(I) is moved to column I.

4 References

None

5 Arguments

A - <any type> MATRIX

On entry, A contains the matrix whose columns are to be permuted. A may be of any type, and is unchanged on exit.
AP - <any type> MATRIX
On exit, AP contains the columns of A permuted according to the index vector IV. AP should usually be of the same type as A . If M is less than 32 , columns $\mathrm{M}+1$ to 32 are unchanged on exit.

IV - INTEGER VECTOR

On entry, IV contains the required permutation, that is column IV(I) of A will be moved to column I of AP. Elements 1 to M of IV must be in the range 1 to 32 (but need not be distinct). IV is unchanged on exit.

N - INTEGER
On entry, N contains the number of planes in the matrix to be permuted; possible values for N are:

$$
\begin{array}{ll}
\mathrm{N}=1 & \text { for permuting a logical matrix } \\
\mathrm{N}=8 & \text { for permuting a character matrix } \\
\mathrm{N}=8^{*} n & \text { for permuting an INTEGER }{ }^{*} n \text { or } \text { REAL }^{*} n \text { matrix }
\end{array}
$$

N should be less than 257, and is unchanged on exit.

M - INTEGER

On entry M must contain a value in the range 1 to 32 . Only the first M index values of IV are used; M is unchanged on exit.

6 Error Indicators
 None

7 Auxiliary Routines

The routine references the General Support library routine Z_M01_AUX.

8 Accuracy

Not applicable

9 Further Comments

The parameters given as A and AP may be single arrays or part of a matrix set. For example, in:

CALL M01_PERMUTE _COLS (L (,, 5$)$, LL (, , 10), IV $, 1,32$)
L and LL are logical matrix sets of size (at least) 5 and 10 respectively.
You must not use a common block with the name of CZ_M01_HEX1F.
10 Keywords
Permutation
11 Example
The following FORTRAN-PLUS fragment reverses the order of the columns of a real matrix, that is, $\mathrm{AP}=\operatorname{REVC}(\mathrm{A})$.

```
    ENTRY SUBROUTINE ENT
    REAL A(,), AP(,)
    INTEGER IV()
    DO 10 I = 1,32
10 IV (I) = 33-I
    DO 20 J = 1, 32
    DO 20 I = 1, 32
20 A(I,J) = FLOAT (I + J)
    CALL MO1_PERMUTE_COLS(A, AP, IV, 32, 32)
    TRACE 1 (AP)
    RETURN
    END
```


Results
 FORTRAN-PLUS Trace
 FORTRAN-PLUS Subroutine: ENT at Line 10

Real Matrix Local Variable AP in 32 bits -- addressed by Stack +0.10
(Row 01 Col 01) 3.3000000E+01, 3.2000000E+01, 3.1000000E+01,
(Col 04) . 3.0000000E+01, 2.9000000E+01, 2.8000000E+01,
(Col 07) 2.7000000E+01, 2.6000000E+01, 2.5000000E+01,
(Col 10) $2.4000000 \mathrm{E}+01,2.3000000 \mathrm{E}+01,2.2000000 \mathrm{E}+01$,
(Col 13) 2.1000000E+01, 2.0000000E+01, 1.9000000E+01,
(Col 16) $1.8000000 \mathrm{E}+01,1.7000000 \mathrm{E}+01,1.6000000 \mathrm{E}+01$,
(Col 19) $1.5000000 \mathrm{E}+01,1.4000000 \mathrm{E}+01,1.3000000 \mathrm{E}+01$,
(Col 22) $1.2000000 \mathrm{E}+01,1.1000000 \mathrm{E}+01,1.0000000 \mathrm{E}+01$,
(Col 25) $9.0000000 \mathrm{E}+00,8.0000000 \mathrm{E}+00,7.0000000 \mathrm{E}+00$,
(Col 28) 6.0000000E+00, 5.0000000E+00, 4.0000000E+00,
(Col 31) 3.0000000E+00, 2.0000000E+00
(Row $02 \mathrm{Col} \mathrm{01)} 3.4000000 \mathrm{E}+01,3.3000000 \mathrm{E}+01,3.2000000 \mathrm{E}+01$,
(Col 04) $3.1000000 \mathrm{E}+01, \quad 3.0000000 \mathrm{E}+01, \quad 2.9000000 \mathrm{E}+01$,
(Col 07) $2.8000000 \mathrm{E}+01,2.7000000 \mathrm{E}+01,2.6000000 \mathrm{E}+01$,
(Col 10) $2.5000000 \mathrm{E}+01,2.4000000 \mathrm{E}+01,2.3000000 \mathrm{E}+01$,
(Col 13) $2.2000000 \mathrm{E}+01,2.1000000 \mathrm{E}+01,2.0000000 \mathrm{E}+01$,
(Col 16) $1.9000000 \mathrm{E}+01,1.8000000 \mathrm{E}+01,1.7000000 \mathrm{E}+01$,
(Col 19) 1.6000000E+01, 1.5000000E+01, 1.4000000E+01,
(Col 22) 1.3000000E+01, 1.2000000E+01, 1.1000000E+01,
(Col 25) 1.0000000E+01, 9.0000000E+00, 8.0000000E+00,
(Col 28) $7.0000000 \mathrm{E}+00,6.0000000 \mathrm{E}+00,5.0000000 \mathrm{E}+00$,
(Col 31) $4.0000000 \mathrm{E}+00,3.0000000 \mathrm{E}+00$

(Col 04) 3.2000000E+01, 3.1000000E+01, 3.0000000E+01,
(Col 07) 2.9000000E+01, 2.8000000E+01, 2.7000000E+01,
(Col 10) $2.6000000 \mathrm{E}+01,2.5000000 \mathrm{E}+01,2.4000000 \mathrm{E}+01$,
(Col 13) $2.3000000 \mathrm{E}+01,2.2000000 \mathrm{E}+01,2.1000000 \mathrm{E}+01$,
(Col 16) $2.0000000 \mathrm{E}+01,1.9000000 \mathrm{E}+01,1.8000000 \mathrm{E}+01$,
(Col 19) $1.7000000 \mathrm{E}+01,1.6000000 \mathrm{E}+01,1.5000000 \mathrm{E}+01$,
(Col 22) 1.4000000E+01, 1.3000000E+01, 1.2000000E+01,
(Col 25) $1.1000000 \mathrm{E}+01,1.0000000 \mathrm{E}+01,9.0000000 \mathrm{E}+00$,
(Col 28) $8.0000000 \mathrm{E}+00,7.0000000 \mathrm{E}+00,6.0000000 \mathrm{E}+00$,
(Col 31) $5.0000000 \mathrm{E}+00,4.0000000 \mathrm{E}+00$

| (Row 30 Col 01) | 6.2000000E+01, | $6.1000000 \mathrm{E}+01$, | $6.0000000 \mathrm{E}+01$, |
| :---: | :---: | :---: | :---: |
| (Col 04) | 5.9000000E+01, | $5.8000000 \mathrm{E}+01$, | $5.7000000 E+01$, |
| (Col 07) | $5.6000000 \mathrm{E}+01$, | $5.5000000 \mathrm{E}+01$, | $5.4000000 \mathrm{E}+01$, |
| (Col 10) | $5.3000000 \mathrm{E}+01$, | $5.2000000 \mathrm{E}+01$, | $5.1000000 \mathrm{E}+01$, |
| (Col 13) | 5.0000000E+01, | 4.9000000E+01, | 4.8000000E+01, |
| (Col 16) | 4.7000000E+01, | 4.6000000E+01, | 4.5000000E+01, |
| (Col 19) | 4.4000000E+01, | 4.3000000E+01, | 4.2000000E+01, |
| (Col 22) | 4.1000000E+01, | 4.0000000E+01, | 3.9000000E+01, |
| (Col 25) | $3.8000000 \mathrm{E}+01$, | 3.7000000E+01, | 3.6000000E+01, |
| (Col 28) | 3.5000000E+01, | 3.4000000E+01, | $3.3000000 \mathrm{E}+01$, |
| (Col 31) | 3.2000000E+01, | $3.1000000 \mathrm{E}+01$ | |
| (Row 31 Col 01) | 6.3000000E+01, | 6.2000000E+01, | $6.1000000 \mathrm{E}+01$, |
| (Col 04) | 6.0000000E+01, | $5.9000000 \mathrm{E}+01$, | 5.8000000E+01, |
| (Col 07) | 5.7000000E+01, | 5.6000000E+01, | $5.5000000 \mathrm{E}+01$, |
| (Col 10) | 5.4000000E+01, | 5.3000000E+01, | $5.2000000 \mathrm{E}+01$, |
| (Col 13) | 5.1000000E+01, | 5.0000000E+01, | 4.9000000E+01, |
| (Col 16) | 4.8000000E+01, | 4.7000000E+01, | 4.6000000E+01, |
| (Col 19) | 4.5000000E+01, | 4.4000000E+01, | 4.3000000E+01, |
| (Col 22) | 4.2000000E+01, | 4.1000000E+01, | 4.0000000E+01, |
| (Col 25) | $3.9000000 \mathrm{E}+01$, | 3.8000000E+01, | 3.7000000E+01, |
| (Col 28) | 3.6000000E+01, | 3.5000000E+01, | $3.4000000 \mathrm{E}+01$, |
| (Col 31) | 3.3000000E+01, | 3.2000000E+01 | |
| (Row 32 Col 01) | $6.4000000 \mathrm{E}+01$, | $6.3000000 \mathrm{E}+01$, | 6.2000000E+01, |
| (Col 04) | $6.1000000 \mathrm{E}+01$, | $6.0000000 \mathrm{E}+01$, | $5.9000000 \mathrm{E}+01$, |
| (Col 07) | $5.8000000 \mathrm{E}+01$, | $5.7000000 \mathrm{E}+01$, | 5.6000000E+01, |
| (Col 10) | $5.5000000 \mathrm{E}+01$, | $5.4000000 \mathrm{E}+01$, | 5.3000000E+01, |
| (Col 13) | $5.2000000 \mathrm{E}+01$, | $5.1000000 \mathrm{E}+01$, | $5.0000000 \mathrm{E}+01$, |
| (Col 16) | 4.9000000E+01, | 4.8000000E+01, | 4.7000000E+01, |
| (Col 19) | 4.6000000E+01, | 4.5000000E+01, | 4.4000000E+01, |
| (Col 22) | 4.3000000E+01, | 4.2000000E+01, | 4.1000000E+01, |
| (Col 25) | 4.0000000E+01, | 3.9000000E+01, | 3.8000000E+01, |
| (Col 28) | $3.7000000 \mathrm{E}+01$, | 3.6000000E+01, | 3.5000000E+01, |
| (Col 31) | $3.4000000 \mathrm{E}+01$, | $3.3000000 \mathrm{E}+01$ | |

11.6 M01_PERMUTE _LV_ 32

release 1

1 Purpose

M01_PERMUTE_LV_32 permutes the values in a long vector of 4-byte values using an INTEGER*4 long vector key. The result is written to a new long vector and the original data is unaffected. The data shuffling implemented is:

ANSWER (I) $=\operatorname{START}(\operatorname{KEY}(\mathrm{I})), \quad \mathrm{I}=1,1024$
using long vector indexing. Hence the key long vector must contain values in the range $1-1024$, but the values need not be distinct.

2 Specification

SUBROUTINE M01_PERMUTE _LV_ 32 (ANSWER, START, KEY) INTEGER*4 or REAL*4 ANSWER (,) , START(,) INTEGER*4 KEY(,)

3 Description

A local copy of the data is made, and converted to vector mode. The keys are copied and changed to zero-based offsets, then converted to vector mode. Each row of this key vector set then contains an index of a row in the data vector set. The key rows are processed in turn and the contents of the addressed row are copied to another vector set in the same row position as the key row. This result vector set is then copied to the answer long vector, and converted to matrix mode.

4 References

None

5 Arguments

ANSWER - INTEGER*4 or REAL* 4 MATRIX
On exit, ANSWER contains the shuffled version of the input matrix START.

START - INTEGER*4 or REAL*4 MATRIX

On entry, START should contain the data to be shuffled; START is unchanged on exit.

KEY - INTEGER*4 MATRIX

On entry, KEY should contain values in the range $1-1024$ (not necessarily distinct) describing the required shuffle; KEY is unchanged on exit.

6 Error Indicators

None

7 Auxiliary Routines

This routine references routines Z_M01_PLV_CONV_ONLY and Z_M01_PLV_COPY_AND_CONV from the General Support library.

8 Accuracy

Not applicable

9 Further Comments

None
10 Keywords
Data movement, permutation, rearrange data, shuffle

11 Example

The following FORTRAN-PLUS fragment reverses a long vector of integer values.

```
ENTRY SUBROUTINE ENT
INTEGER DATA(,), KEY(,), RESULT(,)
DO 10 I = 1, 1024
DATA(I) = 3 * I
10 KEY(I) = 1025 - I
CALL M01_PERMUTE_LV_32(RESULT, DATA, KEY)
TRACE 1 (RESULT)
RETURN
END
```

Results
FORTRAN-PLUS Trace
FORTRAN-PLUS Subroutine: ENT at Line 7

Integer Matrix Local Variable RESULT in 32 bits -- addressed by Stack + 0.10

| (Row 01 Col 01) | 3072, | 2976, | 2880, | 2784, |
| ---: | ---: | ---: | ---: | ---: |
| $($ Col 05) | 2688, | 2592, | 2496, | 2400, |
| $($ Col 09) | 2304, | 2208, | 2112, | 2016, |
| $($ Col 13) | 1920, | 1824, | 1728, | 1632, |
| $($ Col 17) | 1536, | 1440, | 1344, | 1248, |
| $($ Col 21) | 1152, | 1056, | 960, | 864, |
| $($ Col 25) | 768, | 672, | 576, | 480, |
| $($ Col 29) | 384, | 288, | 192, | 96 |
| (Row 02 Col 01) | 3069, | 2973, | 2877, | 2781, |
| $($ Col 05) | 2685, | 2589, | 2493, | 2397, |
| $($ Col 09) | 2301, | 2205, | 2109, | 2013, |
| $($ Col 13) | 1917, | 1821, | 1725, | 1629, |
| $($ Col 17) | 1533, | 1437, | 1341, | 1245, |
| $($ Col 21) | 1149, | 1053, | 957, | 861, |
| $($ Col 25) | 765, | 669, | 573, | 477, |
| $($ Col 29) | 381, | 285, | 189, | 93 |

11.7 M01_PERMUTE _ ROWS

release 1

1 Purpose

M01_PERMUTE _ ROWS permutes the first M rows of a matrix according to a permutation vector (IV). The result is equivalent to the FORTRAN-PLUS statements:

DO $10 \mathrm{I}=1, \mathrm{M}$
1010 A_PERMUTED (I,) = A (IV(I),)

2 Specification

SUBROUTINE M01_PERMUTE_ROWS (A , AP, IV , N, M)
INTEGER IV () , N , M
<any type> A(,), AP(,)

3 Description

Rows are permuted according to the integer index vector IV such that row IV(I) is moved to row I.

4 References

None

5 Arguments

A - <any type> MATRIX

On entry, A should contain the matrix whose rows are to be permuted. A may be of any type and is unchanged on exit.

AP - <any type> MATRIX

On exit, AP contains the rows of A permuted according to the index vector IV. AP should usually be of the same type as A. If M is less than 32 , rows $M+1$ to 32 are unchanged on exit.

IV - INTEGER VECTOR

On entry, IV should contain the required permutation; that is, row I of A will be moved to row IV(I) of AP. Elements 1 to M of IV must be in the range 1 to 32 . If the entries of IV are not all distinct - for example, if $\operatorname{IV}(\mathrm{I})=\operatorname{IV}(\mathrm{J})$ with $\mathrm{J}>\mathrm{I}-$ then row AP $(\operatorname{IV}(\mathrm{J})$, $)$ will have the value $A(J$,$) on exit. IV is unchanged on exit.$

N - INTEGER
On entry, N contains the number of planes in the matrix to be permuted; possible values for N are:

$$
\begin{array}{ll}
\mathrm{N}=1 & \text { for permuting a logical matrix } \\
\mathrm{N}=8 & \text { for permuting a character matrix } \\
\mathrm{N}=8^{*} n & \text { for permuting an INTEGER*} n \text { or } \text { REAL }^{*} n \text { matrix }
\end{array}
$$

N should be less than 257 , and is unchanged on exit.

M - INTEGER

On entry M must contain a value in the range 1 to 32 . Only the first M index values of IV are used. M is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines

The routine references the General Support library routine Z_M01_AUX.

8 Accuracy

Not applicable

9 Further Comments

The parameter given as A and AP may be single arrays or part of a matrix set. For example, in:

CALL M01_PERMUTE _ ROWS (L(, ,5),LL (, , 10), IV, 1, 32)
L and LL are logical matrix sets of size (at least) 5 and 10 respectively.
You must not use common blocks with name CZ_ M01_HEX1F.
10 Keywords
Permutation
11 Example
The following FORTRAN-PLUS fragment given reverses the order of the rows of a real matrix that is, $A P=\operatorname{REVC}(\mathrm{A})$.

```
    ENTRY SUBROUTINE ENT
    REAL A(,), AP (,)
    INTEGER IV()
    DO. \(10 \mathrm{I}=1,32\)
\(10 \mathrm{IV}(\mathrm{I})=33-\mathrm{I}\)
    DO \(20 \mathrm{I}=1,32\)
    DO \(20 \mathrm{~J}=1,32\)
\(20 \mathrm{~A}(\mathrm{I}, \mathrm{J})=\mathrm{FLOAT}(\mathrm{I}+\mathrm{J})\)
    CALL M01_PERMUTE_ROWS (A, AP, IV, 32, 32)
    TRACE 1 (AP)
    RETURN
    END
```

| Results | | | | |
| :---: | :---: | :---: | :---: | :---: |
| FORTRAN-PLUS Trace | | | | |
| FORTRAN-PLUS Subroutine: ENT at Line 10 | | | | |
| Real Matrix Local Variable AP in 32 bits -- addressed by Stack | | | | |
| (Row 0 | 01 Col 01 | $3.3000000 \mathrm{E}+01$, | $3.4000000 \mathrm{E}+01$, | 3.5000000E+01, |
| | (Col 04 | $3.6000000 \mathrm{E}+01$, | $3.7000000 \mathrm{E}+01$, | 3.8000000E+01, |
| | (Col 07 | $3.9000000 \mathrm{E}+01$, | 4.0000000E+01, | 4.1000000E+01, |
| | (Col 10) | $4.2000000 \mathrm{E}+01$, | 4.3000000E+01, | 4.4000000E+01, |
| | (Col 13) | $4.5000000 \mathrm{E}+01$, | 4.6000000E+01, | 4.7000000E+01, |
| | (Col 16) | $4.8000000 \mathrm{E}+01$, | 4.9000000E+01, | $5.0000000 \mathrm{E}+01$, |
| | (Col 19) | $5.1000000 \mathrm{E}+01$, | $5.2000000 \mathrm{E}+01$, | 5.3000000E+01, |
| | (Col 22) | $5.4000000 \mathrm{E}+01$, | 5.5000000E+01, | 5.6000000E+01, |
| | (Col 25 | $5.7000000 \mathrm{E}+01$, | 5.8000000E+01, | 5.9000000E+01, |
| | (Col 28 | $6.0000000 \mathrm{E}+01$, | 6.1000000E+01, | 6.2000000E+01, |
| | (Col 31) | $6.3000000 \mathrm{E}+01$, | $6.4000000 \mathrm{E}+01$ | |
| (Row 0 | 02 Col 01 | $3.2000000 \mathrm{E}+01$, | 3.3000000E+01, | $3.4000000 \mathrm{E}+01$, |
| | (Col 04 | $3.5000000 \mathrm{E}+01$, | $3.6000000 \mathrm{E}+01$, | 3.7000000E+01, |
| | (Col 07) | $3.8000000 \mathrm{E}+01$, | 3.9000000E+01, | 4.0000000E+01, |
| | (Col 10) | 4.1000000E+01, | 4.2000000E+01, | $4.3000000 \mathrm{E}+01$, |
| | (Col 13 | $4.4000000 \mathrm{E}+01$, | 4.5000000E+01, | 4.6000000E+01, |
| | (Col 16 | $4.7000000 \mathrm{E}+01$, | 4.8000000E+01, | 4.9000000E+01, |
| | (Col 19 | $5.0000000 \mathrm{E}+01$, | 5.1000000E+01, | $5.2000000 \mathrm{E}+01$, |
| | (Col 22 | $5.3000000 \mathrm{E}+01$, | 5.4000000E+01, | 5.5000000E+01, |
| | (Col 25 | $5.6000000 \mathrm{E}+01$, | 5.7000000E+01, | $5.8000000 \mathrm{E}+01$, |
| | (Col 28 | $5.9000000 \mathrm{E}+01$, | $6.0000000 \mathrm{E}+01$, | 6.1000000E+01, |
| | (Col 31) | $6.2000000 \mathrm{E}+01$, | $6.3000000 \mathrm{E}+01$ | |
| (Row | 03 Col 01 | $3.1000000 \mathrm{E}+01$, | 3.2000000E+01, | 3.3000000E+01, |
| | (Col 04 | $3.4000000 \mathrm{E}+01$, | 3.5000000E+01, | 3.6000000E+01, |
| | (Col 07) | $3.7000000 \mathrm{E}+01$, | 3.8000000E+01, | 3.9000000E+01, |
| | (Col 10) | $4.0000000 \mathrm{E}+01$, | 4.1000000E+01, | 4.2000000E+01, |
| | (Col 13) | $4.3000000 \mathrm{E}+01$, | 4.4000000E+01, | 4.5000000E+01, |
| | (Col 16 | $4.6000000 \mathrm{E}+01$, | 4.7000000E+01, | 4.8000000E+01, |
| | (Col 19) | $4.9000000 \mathrm{E}+01$, | 5.0000000E+01, | $5.1000000 \mathrm{E}+01$, |
| | (Col 22) | $5.2000000 \mathrm{E}+01$, | 5.3000000E+01, | 5.4000000E+01, |
| | (Col 25 | $5.5000000 \mathrm{E}+01$, | 5.6000000E+01, | 5.7000000E+01, |
| | (Col 28 | $5.8000000 \mathrm{E}+01$, | 5.9000000E+01, | $6.0000000 \mathrm{E}+01$, |
| | (Col 31 | 6.1000000E+01, | $6.2000000 \mathrm{E}+01$ | |

| (Row 3 | $30 \mathrm{Col} \mathrm{01)}$ | 4.0000000E+00, | $5.0000000 \mathrm{E}+00$, | $6.0000000 \mathrm{E}+00$, |
| :---: | :---: | :---: | :---: | :---: |
| | (Col 04) | $7.0000000 \mathrm{E}+00$, | 8.0000000E+00, | $9.0000000 \mathrm{E}+00$, |
| | (Col 07) | 1.0000000E+01, | 1.1000000E+01, | 1.2000000E+01, |
| | (Col 10) | 1.3000000E+01, | 1.4000000E+01, | 1.5000000E+01, |
| | (Col 13) | 1.6000000E+01, | 1.7000000E+01, | 1.8000000E+01, |
| | (Col 16) | 1.9000000E+01, | 2.0000000E+01, | 2.1000000E+01, |
| | (Col 19) | 2.2000000E+01, | 2.3000000E+01, | $2.4000000 E+01$, |
| | (Col 22) | 2.5000000E+01, | 2.6000000E+01, | 2.7000000E+01, |
| | (Col 25) | 2.8000000E+01, | 2.9000000E+01, | $3.0000000 E+01$, |
| | (Col 28) | 3.1000000E+01, | 3.2000000E+01, | $3.3000000 \mathrm{E}+01$, |
| | (Col 31) | $3.4000000 \mathrm{E}+01$, | $3.5000000 \mathrm{E}+01$ | |
| (Row 3 | 31 Col 01) | $3.0000000 E+00$, | $4.0000000 \mathrm{E}+00$, | 5.0000000E+00, |
| | (Col 04) | $6.0000000 \mathrm{E}+00$, | $7.0000000 \mathrm{E}+00$, | 8.0000000E+00, |
| | (Col 07) | 9.0000000E+00, | 1.0000000E+01, | 1.1000000E+01, |
| | (Col 10) | 1.2000000E+01, | 1.3000000E+01, | 1.4000000E+01, |
| | (Col 13) | 1.5000000E+01, | 1.6000000E+01, | 1.7000000E+01, |
| | (Col 16) | 1.8000000E+01, | 1.9000000E+01, | 2.0000000E+01, |
| | (Col 19) | 2.1000000E+01, | 2.2000000E+01, | 2.3000000E+01, |
| | (Col 22) | $2.4000000 \mathrm{E}+01$, | 2.5000000E+01, | 2.6000000E+01, |
| | (Col 25) | $2.7000000 \mathrm{E}+01$, | 2.8000000E+01, | 2.9000000E+01, |
| | (Col 28) | $3.0000000 E+01$, | $3.1000000 \mathrm{E}+01$, | 3.2000000E+01, |
| | (Col 31) | 3.3000000E+01, | $3.4000000 \mathrm{E}+01$ | |
| (Row 3 | $32 \mathrm{Col} \mathrm{01)}$ | 2.0000000E+00, | $3.0000000 \mathrm{E}+00$, | 4.0000000E+00, |
| | (Col 04) | $5.0000000 \mathrm{E}+00$, | $6.0000000 \mathrm{E}+00$, | 7.0000000E+00, |
| | (Col 07) | 8.0000000E+00, | 9.0000000E+00, | 1.0000000E+01, |
| | (Col 10) | 1.1000000E+01, | 1.2000000E+01, | 1.3000000E+01, |
| | (Col 13) | $1.4000000 \mathrm{E}+01$, | 1.5000000E+01, | 1.6000000E+01, |
| | $(\operatorname{Col} 16)$ | 1.7000000E+01, | 1.8000000E+01, | 1.9000000E+01, |
| | (Col 19) | 2.0000000E+01, | 2.1000000E+01, | 2.2000000E+01, |
| | (Col 22) | 2.3000000E+01, | 2.4000000E+01, | 2.5000000E+01, |
| | (Col 25) | 2.6000000E+01, | 2.7000000E+01, | 2.8000000E+01, |
| | (Col 28) | 2.9000000E+01, | 3.0000000E+01, | 3.1000000E+01, |
| | (Col 31) | 3.2000000E+01, | $3.3000000 \mathrm{E}+01$ | |

11.8 M01 _SORT_V_I4

1 Purpose

M01_SORT_V_I4 sorts the first N elements of an integer vector into ascending or descending order. The permutation required to perform the sort is returned to the calling routine.

2 Specification
SUBROUTINE M01_SORT_V_I4 (IV , N , UP , PERM , IFAIL)
INTEGER *1 PERM ()
INTEGER IV(), N , IFAIL
LOGICAL UP

3 Description

The sort is carried out by spreading the vector, IV, across the DAP and counting the number of elements less than or equal to each particular element. Comparing this count with an index vector and selecting the relevant element from each column of the DAP completes the sort when all elements of IV are distinct. If there are repeated elements in IV, a $\log _{2}$ duplication process is carried out to regenerate the multiple values.

4 References

None

5 Arguments

IV - INTEGER VECTOR

On entry, components 1 to N of IV contain the elements to be sorted. On exit, components 1 to N will have been sorted as required. Elements $\mathrm{N}+1$ to 32 are unchanged on exit.

N - INTEGER
On entry, N specifies how many components of IV are to be sorted. N must lie in the range 1 to 32 , and is unchanged on exit.

UP - LOGICAL

If UP is .TRUE. on entry, then IV is sorted into ascending order, otherwise IV is sorted into descending order. UP is unchanged on exit.

PERM - INTEGER *1 VECTOR

On exit, PERM contains the permutation required to perform the sort, that is, the sort was equivalent to:

DO $10 \mathrm{I}=1, \mathrm{~N}$
$10 \mathrm{JV}(\mathrm{I})=\operatorname{IV}(\operatorname{PERM}(\mathrm{I}))$
Elements $\mathrm{N}+1$ to 32 of PERM are zero on exit.
IFAIL - INTEGER
Unless the routine detects an error (see Error Indicators below) IFAIL contains zero on exit.

6 Error Indicators
Errors detected by the routine:
$\operatorname{IFAIL}=1 \mathrm{~N}$ is not in the range 1 to 32

7 Auxiliary Routines

The routine calls the General Support library routines X05_NORTH _BOUNDARY, X05_PATTERN and X05_SHORT_INDEX.

8 Accuracy
Not applicable
9 Further Comments
None
10 Keywords
Sorting
11 Example
The vector to be sorted consists of the numbers 1 to 8 , each repeated 4 times. The vector is sorted into ascending order.

Host program
INTEGER IV(32), PERM(32)
COMMON /VEC1/IV /VEC2/PERM
COMMON /SCALAR/N,IFAIL
$\mathrm{N}=32$
DO $10 \mathrm{I}=1,32$
$10 \operatorname{IV}(I)=\operatorname{MOD}(I-1,8)+1$

CALL DAPCON('ent.dd')
CALL DAPSEN('SCALAR',N,1)
CALL DAPSEN('VEC1',IV,32)
CALL DAPENT('ENT')

CALL DAPREC('SCALAR',N,2)
CALL DAPREC('VEC1',IV,32)
CALL DAPREC('VEC2',PERM,32)

CALL DAPREL

WRITE (6, 100) IFAIL, (IV(I), $I=1,32$)
100 FORMAT ('IFAIL = ', II, //, 'SORTED DATA', //, (4I5))
WRITE $(6,200)(\operatorname{PERM}(I), I=1,32)$
200 FORMAT (/,'PERMUTATION', //, (4I5))
STOP
END

DAP program

```
    ENTRY SUBROUTINE ENT
    INTEGER IV(), PERM4()
    INTEGER *1 PERM()
    COMMON /VEC1/IV /VEC2/PERM4
    COMMON /SCALAR/N,IFAIL
    CALL CONVFSI(N,1)
    CALL CONVFVI(IV,32,1)
    CALL M01_SORT_V_I4(IV,N, .TRUE., PERM, IFAIL)
    PERM4 = PERM
    CALL CONVVFI(IV,32,1)
    CALL CONVVFI(PERM4,32,1)
    CALL CONVSFI(N,2)
    RETURN
    END
```


Results

IFAIL $=0$

SORTED DATA

| 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- |
| 2 | 2 | 2 | 2 |
| 3 | 3 | 3 | 3 |
| 4 | 4 | 4 | 4 |
| 5 | 5 | 5 | 5 |
| 6 | 6 | 6 | 6 |
| 7 | 7 | 7 | 7 |
| 8 | 8 | 8 | 8 |

PERMUTATION

| 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- |
| 2 | 2 | 2 | 2 |
| 3 | 3 | 3 | 3 |
| 4 | 4 | 4 | 4 |
| 5 | 5 | 5 | 5 |
| 6 | 6 | 6 | 6 |
| 7 | 7 | 7 | 7 |
| 8 | 8 | 8 | 8 |

11.9 M01_SORT_V_R4

release 1

1 Purpose

M01 _SORT_V_R4 sorts the first N elements of a real vector into ascending or descending order. The permutation required to perform the sort is returned to the calling routine.

2 Specification
SUBROUTINE M01_SORT_V_R4 (RV , N, UP , PERM, IFAIL)
INTEGER *1 PERM ()
INTEGER N , IFAIL
REAL RV()
LOGICAL UP

3 Description

The sort is carried out by spreading the vector RV across the DAP, and counting the number of elements less than or equal to each particular element; comparing this with an index vector and selecting the relevant element from each column of the DAP completes the sort when all elements of RV are distinct. If there are repeated elements in RV, a $\log _{2}$ duplication process is carried out to regenerate the multiple values.

4 References

None

5 Arguments

RV - REAL VECTOR

On entry, components 1 to N of RV contain the elements to be sorted. On exit, components 1 to N will have been sorted as required. Elements $\mathrm{N}+1$ to 32 are unchanged on exit.

N - INTEGER

On entry N specifies how many components of RV are to be sorted. N must lie in the range 1 to 32 , and is unchanged on exit.

UP - LOGICAL
If UP is .TRUE. on entry, then RV is sorted into ascending order, otherwise RV is sorted into descending order. UP is unchanged on exit.

PERM - INTEGER *1 VECTOR
On exit PERM contains the permutation required to perform the sort, that is, the sort was equivalent to:

$$
\text { DO } 10 \mathrm{I}=1, \mathrm{~N}
$$

$10 \quad \operatorname{SV}(\mathrm{I})=\operatorname{RV}(\operatorname{PERM}(\mathrm{I}))$
Elements $N+1$ to 32 of PERM are zero on exit.

5 Arguments - continued
IFAIL - INTEGER
Unless the routine detects an error (see Error Indicators below) IFAIL contains zero on exit.

6 Error Indicators
Errors detected by the routine:
IFAIL $=1 \mathrm{~N}$ is not in the range 1 to 32

7 Auxiliary Routines

The routine calls the General Support library routines X05_NORTH _ BOUNDARY, X05_PATTERN and X05_SHORT_INDEX.

8 Accuracy
Not applicable

9 Further Comments

None
10 Keywords
Sorting

11 Example
The vector to be sorted consists of the numbers 1.0 to 8.0 , each repeated 4 times. The vector is sorted into ascending order.

Host program

```
INTEGER PERM (32)
REAL RV(32)
COMMON /VEC1/RV /VEC2/PERM
COMMON /SCALAR/N,IFAIL
    N = 32
    DO 10 I = 1,32
10 RV(I) = MOD(I-1,8)+1
CALL DAPCON('ent.dd')
CALL DAPSEN('SCALAR',N,1)
CALL DAPSEN('VEC1',RV,32)
CALL DAPENT('ENT')
```

```
    CALL DAPREC('SCALAR',N,2)
    CALL DAPREC('VEC1',RV,32)
    CALL DAPREC('VEC2',PERM,32)
    CALL DAPREL
    WRITE (6, 100) IFAIL, (RV(I), I = 1,32)
100 FORMAT ('IFAIL = ', I1, //, 'SORTED DATA', //, (4F5.0))
    WRITE (6,200) (PERM(I), I = 1,32)
200 FORMAT (/,'PERMUTATION', //, (4I5))
    STOP
    END
```

DAP program

ENTRY SUBROUTINE ENT

INTEGER PERM4()
INTEGER *1 PERM ()
REAL RV()
COMMON /VEC1/RV /VEC2/PERM4
COMMON /SCALAR/ N,IFAIL

CALL CONVFSI $(\mathrm{N}, 1)$
CALL CONVFVE (RV, 32,1)

CALL M01_SORT_V_R4(RV, N, .TRUE., PERM, IFAIL)

PERM4 = PERM

CALL CONVVFE (RV, 32, 1)
CALL CONVVFI (PERM4, 32, 1)
CALL CONVSFI $(N, 2)$

RETURN
END

Results

IFAIL $=0$

SORTED DATA

1. 2. 3. 4.
1. 2. 2. 2 .
1. 3. 3. 3.
1. 4. 4. 4 .
1. 5. 5. 5 .
1. 6. 6. 6 .
1. 7. 7. 7.
1. 8. 8. 8.

PERMUTATION

| 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- |
| 2 | 2 | 2 | 2 |
| 3 | 3 | 3 | 3 |
| 4 | 4 | 4 | 4 |
| 5 | 5 | 5 | 5 |
| 6 | 6 | 6 | 6 |
| 7 | 7 | 7 | 7 |
| 8 | 8 | 8 | 8 |

Chapter 12

S - Special functions

Contents:
Subroutine Page
S04_ARC_COS 148
S04_ARC_SIN 152
S04_ATAN2_M 156
S04_ATAN2_V 159
S04_COS_INT 162
S04_MOD_BES_IO 166
S04_MOD_BES_I 1 170
S04_SIN_INT 174
S15_ERF 178
S15_ERFC 182

12.1 S04_ARC_COS

1 Purpose

S04_ARC_COS returns the value of the inverse cosine function $\arccos (x)$ for a matrix argument. The result lies in the range $[0, \pi]$.

2 Specification

REAL MATRIX FUNCTION S04_ARC_COS (X , EMASK)
REAL X (,)
LOGICAL EMASK (,)

3 Description

Arccos is approximated using a Tschebyshev polynomial expansion of the form:

$$
\arcsin (x) \simeq p(x)=x \sum a_{r} T_{r}(t) \quad \text { where } \quad t=4 x^{2}-1
$$

where \sum^{\prime} is a series equal, term for term, to \sum, except that the first term in \sum^{\prime} is half the first term in \sum.

The approximation for different values of the argument x is as follows:

$$
\begin{aligned}
& \arccos (x) \simeq \pi / 2-p(x) \quad \text { for } \quad x \in[-1 / \sqrt{2}, 1 / \sqrt{2}) \\
& \arccos (x) \simeq \pi-p\left(\sqrt{1-x^{2}}\right) \quad \text { for } \quad x \in[-1,-1 / \sqrt{2}) \\
& \arccos (x) \simeq p\left(\sqrt{1-x^{2}}\right) \quad \text { for } \quad x \in(1 / \sqrt{2}, 1]
\end{aligned}
$$

For $|x|>1$ the result is undefined.

4 References

[1] ABRAMOWITZ M and STEGUN I A
Handbook of Mathematical Functions; chapter 4 section 4, p 79: Dover Publications 1968.
[2] FOX L and PARKER I
Chebyshev Polynomials in Numerical Analysis: Oxford University Press; 1968.

5 Arguments

X - REAL MATRIX

On entry, X contains the points at which the evaluation of arccos is required. All elements of X must be defined on entry. X is unchanged on exit.

EMASK - LOGICAL MATRIX

On exit, EMASK is set .TRUE. at positions corresponding to invalid arguments (see Error Indicators below).

6 Error Indicators

$\operatorname{Arccos}(x)$ is undefined for $|x|>1$. The routine returns zero for any such arguments and the corresponding bit in EMASK is set .TRUE.

7 Auxiliary Routines
None

8 Accuracy

The accuracy is better than 20 parts in 10^{7} except for $|x|$ very close to unity, when only 3 or 4 significant figures can be guaranteed.

9 Further Comments

None

10 Keywords

Arccosine, special function

11 Example

The example calculates $\arccos (x)$ for 1024 values of x between -1 and 1 .

Host program

```
            PROGRAM MAIN
            REAL X(1024), Y(1024)
            COMMON /XY/X,Y
C
C Initialise data for testing function
C
            DO 1 I = 1,1024
            X (I) = FLOAT(I-1)*2.0 / 1023.0 -1.0
    1 CONTINUE
C
C Connect to DAP module
C
                            CALL DAPCON('ent.dd')
C
C Send testdata to the DAP
C
        CALL DAPSEN('XY',X,1024)
C
C Call the DAP ENTRY subroutine
C
    CALL DAPENT('ENT')
C
C Retrieve data and results from the DAP
C
    CALL DAPREC('XY', X,2048)
```

```
C
C Release the DAP
C
    CALL DAPREL
C
C Write out a sample selection of the data and results for inspection
C
    WRITE (6,2)
    2 FORMAT(6X, 'X', 11X,'Arccos(X)'/)
    DO 3 I = 1,1024,32
    3 WRITE (6,4) X (I), Y(I)
    4 FORMAT(1X,2G15.7)
    STOP
    END
```


DAP program

ENTRY SUBROUTINE ENT
REAL X(,), Y(,)
LOGICAL EMASK (,)
COMMON /XY/X,Y
C
C Note the EXTERNAL statement for this function
C
EXTERNAL REAL MATRIX FUNCTION_SO4_ARC_COS
C
C Convert input data
C
CALL CONVFME (X)
$Y=$ S04_ARC_COS (X,EMASK)
IF (ANY (EMASK)) TRACE 1 (EMASK)
C
C Convert input data and results back to host format C

CALL CONVMFE (X)
CALL CONVMFE(Y)
RETURN
END

Results

| X | Arccos (X) |
| :---: | ---: |
| -1.0000000 | 3.141593 |
| -.9374389 | 2.785996 |
| -.8748778 | 2.635980 |
| -.8123167 | 2.518910 |
| -.7497556 | 2.418489 |
| -.6871945 | 2.328417 |
| -.6246334 | 2.245458 |
| -.5620723 | 2.167686 |
| -.4995112 | 2.093831 |
| -.4369501 | 2.023001 |
| -.3743891 | 1.954534 |
| -.3118280 | 1.887913 |
| -.2492669 | 1.822720 |
| -.1867058 | 1.758604 |
| -.1241447 | 1.695262 |
| $-.6158358 \mathrm{e}-01$ | 1.632419 |
| $.9775162 \mathrm{e}-03$ | 1.569818 |
| $.6353867 \mathrm{e}-01$ | 1.507215 |
| .1260997 | 1.444360 |
| .1886609 | 1.380998 |
| .2512219 | 1.316854 |
| .3137830 | 1.251621 |
| .3763441 | 1.184949 |
| .4389052 | 1.116416 |
| .5014663 | 1.045503 |
| .5640274 | .9715414 |
| .6265885 | .8936281 |
| .6891496 | .8104811 |
| .7517107 | .7201442 |
| .8142718 | .6193231 |
| .8768328 | .5015618 |
| .9393940 | .3499371 |

12.2 S04_ARC_SIN

release 1

1 Purpose

S04_ARC_SIN returns the value of the inverse sine function $\arcsin (x)$ for a matrix argument. The result lies in the range $[-\pi / 2, \pi / 2]$.

2 Specification

REAL MATRIX FUNCTION S04_ARC_SIN (X , EMASK)
REAL X (,)
LOGICAL EMASK (,)

3 Description

Arcsin is approximated using a Tschebyshev polynomial expansion. Since $\arcsin (-x)=$ $-\arcsin (x)$ it is only necessary to consider positive arguments. In the evaluation of arcsin, an expansion is used of the form:

$$
p(x)=x \sum a_{r} T_{r}(t) \quad \text { where } \quad t=4 x^{2}-1
$$

where \sum^{\prime} is a series equal, term for term, to \sum, except that the first term in \sum^{\prime} is half the first term in \sum.

The approximation for different value of the argument x is as follows:

$$
\begin{aligned}
& \arcsin (x) \simeq p(x) \quad \text { where } \quad x \in[0,1 / \sqrt{2}] \\
& \arcsin (x) \simeq \pi / 2-p\left(\sqrt{1-x^{2}}\right) \quad \text { where } \quad x \in(1 / \sqrt{2}, 1]
\end{aligned}
$$

For $|x|>1$ the result is undefined.

4 References

[1] ABRAMOWITZ M and STEGUN I A
Handbook of Mathematical Functions; chapter 4 section 4, p 79: Dover Publications 1968.
[2] FOX L and PARKER I
Chebyshev Polynomials in Numerical Analysis: Oxford University Press, 1968.

5 Arguments

X - REAL MATRIX
On entry, X contains the points at which the evaluation of arccos is required. All elements of X must be defined on entry. X is unchanged on exit.

EMASK - LOGICAL MATRIX
On exit, EMASK is set .TRUE. at positions corresponding to invalid arguments (see Error Indicators below).

6 Error Indicators

$\operatorname{Arccos}(x)$ is undefined for $|x|>1$. The routine returns zero for any such arguments and the corresponding bit in EMASK is set.TRUE.

7 Auxiliary Routines
None
8 Accuracy
The accuracy is better than 20 parts in 10^{7} except for $|x|$ very close to unity, when only 3 or 4 significant figures can be guaranteed.

9 Further Comments

None
10 Keywords
Arccosine, special function

11 Example

The example calculates $\arcsin (x)$ for 1024 values of x between -1 and 1 .

Host program

PROGRAM MAIN
REAL X(1024), Y(1024) COMMON /XY/X,Y
C
C Initialise data for testing function
C
DO $1 \mathrm{I}=1,1024$
$X(I)=$ FLOAT $(I-1) * 2.0 / 1023.0-1.0$
1 CONTINUE
C
C Connect to DAP module
C
CALL DAPCON('ent.dd')
C
C Send testdata to the DAP
C
CALL DAPSEN('XY', X,1024)
C
C Call the DAP ENTRY subroutine
C
CALL DAPENT('ENT')
C
C Retrieve data and results from the DAP
C
CALL DAPREC('XY', X,2048)

```
C
C Release the DAP
C
    CALL DAPREL
C
C Write out a sample selection of the data and results for inspection.
C
    WRITE (6,2)
    2 FORMAT(6X,'X',11X, 'Arcsin(X)'/)
    DO 3 I = 1,1024,32
    W WRITE (6,4) X(I),Y(I)
    4 FORMAT (1X, 2G15.7)
    STOP
    END
```

DAP program
ENTRY SUBROUTINE ENT
REAL $X(),, Y($,
LOGICAL EMASK (,)
COMMON /XY/X,Y
C
C Note the EXTERNAL statement for this function
C
EXTERNAL REAL MATRIX FUNCTION SO4_ARC_SIN
C
C Convert input data
C
CALL CONVFME (X)
$Y=$ S04_ARC_SIN ($X, E M A S K$)
IF (ANY (EMASK)) TRACE 1 (EMASK)
C
C Convert input data and results back to host format
C

CALL CONVMFE (X)
CALL CONVMFE (Y)
RETURN
END

Results

| X | $\mathrm{Arcsin}(\mathrm{X})$ |
| :---: | :--- |
| -1.0000000 | -1.570796 |
| -.9374389 | -1.215199 |
| -.8748778 | -1.065183 |
| -.8123167 | -.9481134 |
| -.7497556 | -.8476925 |
| -.6871945 | -.7576209 |
| -.6246334 | -.6746613 |
| -.5620723 | -.5968893 |
| -.4995112 | -.5230349 |
| -.4369501 | -.4522050 |
| -.3743891 | -.3837375 |
| -.3118280 | -.3171163 |
| -.2492669 | -.2519231 |
| -.1867058 | -.1878080 |
| -.1241447 | -.1244658 |
| $-.6158358 \mathrm{e}-01$ | $-.6162257 \mathrm{e}-01$ |
| $.9775162 \mathrm{e}-03$ | $.9775162 \mathrm{e}-03$ |
| $.6353867 \mathrm{e}-01$ | $.6358147 \mathrm{e}-01$ |
| .1260997 | .1264364 |
| .1886609 | .1897984 |
| .2512219 | .2539426 |
| .3137830 | .3191746 |
| .3763441 | .3858470 |
| .4389052 | .4543798 |
| .5014663 | .5252929 |
| .5640274 | .5992549 |
| .6265885 | .6771679 |
| .6891496 | .7603152 |
| .7517107 | .8506517 |
| .8142718 | .9514732 |
| .8768328 | 1.069234 |
| .9393940 | 1.220859 |

1 Purpose

S04_ATAN2_M is a matrix function similar to the standard FORTRAN ATAN2 function. It returns a matrix of values in the range $-\pi$ to π for arc-tangent(matrix- $1 /$ matrix- 2), in the correct quadrant, and with divide-by-zero errors avoided. If both arguments are zero, zero is returned.

2 Specification

REAL MATRIX FUNCTION S04_ATAN2_M (A , B)
REAL A(,) , B(,)

3 Description

A logical mask is set up, where each element is defined by the relative magnitudes of the arguments to ATAN2_M. Where the absolute value of an element of matrix A is greater than that of B, the logical mask element is set to .TRUE.; for all other cases the logical mask element is set to FALSE.

ATAN2_M takes the value:
$\operatorname{ATAN}\left(\frac{\operatorname{ABS}(\mathrm{B})}{\operatorname{ABS}(\mathrm{A})}\right) \quad$ where $\operatorname{ABS}(\mathrm{A})>\operatorname{ABS}(\mathrm{B}) \quad$ (the logical mask is .TRUE.)
$\pi / 2-\operatorname{ATAN}\left(\frac{\operatorname{ABS}(\mathrm{A})}{\mathrm{ABS}(\mathrm{B})}\right) \quad$ where $\operatorname{ABS}(\mathrm{A}) \leq \mathrm{ABS}(\mathrm{B}) \quad$ (the logical mask is .FALSE.)
Thus the built-in ATAN function is always presented with arguments whose values are in the range zero to one, and divide-by-zero errors are avoided, except when the corresponding elements in each argument are zero. After the ATAN operation, the results are corrected to put their values into the correct quadrants, from $-\pi$ to π, according to the signs of the arguments.

4 References

None

5 Arguments

A - REAL MATRIX

On entry, A contains values proportional to the sines of the angles to be returned by the function, and is unchanged on exit.

B - REAL MATRIX

On entry, B contains values proportional to the cosines of the angles to be returned by the function, and is unchanged on exit.

6 Error Indicators
 None

7 Auxiliary Routines

None

8 Accuracy

Over most of the range the results are accurate to within one part in 10^{6}. Under worst case conditions, where the resultant angle is $\pi / 4,3 \pi / 4$, and so on, the error may approach two parts in 10^{6}.

9 Further Comments

A program interrupt will occur if corresponding elements of A and B are both zero.

10 Keywords

Arc-tangent, inverse tangent

11 Example

In the following example the host routine sets up array ANGLES to contain the radian equivalents of $0,0.1,0.2 \ldots$ degrees. The DAP routine calculates the sines and cosines of these angles, and then calls S04_ATAN2_M to return the original angles. In this example ANGLES is treated as a long vector.

Host program

PROGRAM MATTESTHOST
REAL ANGLES(1024)
COMMON/DAP/ANGLES
C
C Conversion factor from degrees to radians
C
$\mathrm{F}=3.14159265 / 180.0$
C
C Initialise data for testing function
C
DO $1 \mathrm{~J}=1,1024$
1 ANGLES (J$)=\operatorname{FLOAT}(\mathrm{J}-1) * F * 0.1$
C
C Connect to DAP module
C
CALL DAPCON('mattest.dd')
C
C Send testdata to the DAP
C
CALL DAPSEN('DAP',ANGLES, 1024)
C
C Call the DAP ENTRY subroutine
C
CALL DAPENT('MATTESTDAP')
C
C Retrieve the results from the DAP
C

CALL DAPREC('DAP',ANGLES,1024)
C
C Release the DAP
C
CALL DAPREL
C
C Write out a sample selection of the data and results for inspection C
$\operatorname{WRITE}(6,2)(J, \operatorname{ANGLES}(J), J=1,1024,32)$
2 FORMAT(4(', ,I4,', F9.6))
STOP
END

DAP program

ENTRY SUBROUTINE MATTESTDAP REAL*4 SINVALS (,), COSVALS (,), ANGLES (,) COMMON/DAP/ANGLES
C
C Note the EXTERNAL statement for this function
C
EXTERNAL REAL*4 MATRIX FUNCTION SO4_ATAN2_M
C
C Convert input data
C
CALL CONVFME (ANGLES)
C
C Calculate sine and cosine components
C
SINVALS=SIN (ANGLES)
COSVALS=COS (ANGLES)
ANGLES=S04_ATAN2_M (SINVALS, COSVALS)
C
C Convert input results back to host format
C
CALL CONVMFE(ANGLES)
RETURN
END

Results

| 1 | .000000 | 33 | .055851 | 65 | .111701 | 97 | .167552 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 129 | .223402 | 161 | .279253 | 193 | .335103 | 225 | .390954 |
| 257 | .446804 | 289 | .502655 | 321 | .558506 | 353 | .614356 |
| 385 | .670206 | 417 | .726058 | 449 | .781908 | 481 | .837757 |
| 513 | .893608 | 545 | .949459 | 577 | 1.005308 | 609 | 1.061160 |
| 641 | 1.117010 | 673 | 1.172861 | 705 | 1.228711 | 737 | 1.284562 |
| 769 | 1.340412 | 801 | 1.396263 | 833 | 1.452113 | 865 | 1.507964 |
| 897 | 1.563814 | 929 | 1.619666 | 961 | 1.675517 | 993 | 1.731367 |

12.4 S04_ATAN2_V

1 Purpose

S04_ATAN2_V is a vector function similar to the standard FORTRAN ATAN2 function. It returns a vector of values in the range $-\pi$ to π for arc-tangent(vector-1/vector- 2), in the correct quadrant, and with divide-by-zero errors avoided. If both arguments are zero, zero is returned.

2 Specification

REAL VECTOR FUNCTION S04_ATAN2_V (A , B)
REAL A () , B()

3 Description

A logical mask is set up, where each element is defined by the relative magnitudes of the arguments to S04_ATAN2_V. Where the absolute value of an element of vector A is greater than that of B, the logical mask element is set to .TRUE.; for all other cases the logical mask element is set to .FALSE.

S04_ATAN2_V takes the value:
$\operatorname{ATAN}\left(\frac{\operatorname{ABS}(\mathrm{B})}{\operatorname{ABS}(\mathrm{A})}\right) \quad$ where $\operatorname{ABS}(\mathrm{A})>\operatorname{ABS}(\mathrm{B}) \quad$ (the logical mask is .TRUE.)
$\pi / 2-\operatorname{ATAN}\left(\frac{\operatorname{ABS}(\mathrm{A})}{\operatorname{ABS}(\mathrm{B})}\right) \quad$ where $\operatorname{ABS}(\mathrm{A}) \leq \operatorname{ABS}(\mathrm{B}) \quad$ (the logical mask is.FALSE.)
Thus the built-in ATAN function is always presented with arguments whose values are in the range zero to one, and divide-by-zero errors are avoided, except when the corresponding elements in each argument are zero. After the ATAN operation the results are corrected to put their values into the correct quadrants, from $-\pi$ to π, according to the signs of the arguments.

4 References

None

5 Arguments

A - REAL MATRIX

On entry, A contains values proportional to the sines of the angles to be returned by the function, and is unchanged on exit.

B - REAL MATRIX
On entry, B contains values proportional to the cosines of the angles to be returned by the function, and is unchanged on exit.

6 Error Indicators
 None

7 Auxiliary Routines

None

8 Accuracy

Over most of the range the results are accurate to within one part in 10^{6}. Under worst case conditions, where the resultant angle is $\pi / 4,3 \pi / 4$, and so on, the error may approach two parts in 10^{6}.

9 Further Comments

A program interrupt will occur if corresponding elements of A and B are both zero.

10 Keywords

Arc-tangent, inverse tangent

11 Example

In the following example the host routine sets up array ANGLES to contain the radian equivalents of $0,6,12,18 \ldots$ degrees. The DAP routine calculates the sines and cosines of these angles, and then calls S04_ATAN2_V to return the original angles.

Host program

PROGRAM VECTESTHOST
REAL ANGLES(32)
COMMON/DAP/ANGLES
C
C Conversion factor from degrees to radians
C
$\mathrm{F}=3.14159265 / 180.0$
C
C Initialise data for testing function
C
DO $1 \mathrm{~J}=1,32$
$1 \operatorname{ANGLES}(\mathrm{~J})=\operatorname{FLOAT}(\mathrm{J}-1) * \mathrm{~F} * 6.0$
C
C Connect to DAP module
C
CALL DAPCON('vectest.dd')
C
C Send testdata to the DAP
C
CALL DAPSEN('DAP',ANGLES,32)
C
C Call the DAP ENTRY subroutine
C
CALL DAPENT('VECTESTDAP')
C
C Retrieve the results from the DAP
C
CALL DAPREC('DAP',ANGLES,32)

```
C
C Release the DAP
C
    CALL DAPREL
C
C Write out a sample selection of the data and results for inspection
C
    WRITE(6,2)(J, ANGLES(J), J=1,32)
2 FORMAT(5(' ',I2,', ,F9.6))
    STOP
    END
```

DAP program
ENTRY SUBROUTINE VECTESTDAP
REAL*4 SINVALS(), COSVALS(),ANGLES()
COMMON/DAP/ANGLES
C
C Note the EXTERNAL statement for this function
C
EXTERNAL REAL*4 VECTOR FUNCTION SO4_ATAN2_V
C
C Convert input data
C
CALL CONVFVE(ANGLES,32,1)
C
C Calculate sine and cosine components
C
SINVALS=SIN (ANGLES)
COSVALS=COS (ANGLES)
ANGLES=S04_ATAN2_V (SINVALS, COSVALS)
C
C Convert input results back to host format
C
CALL CONVVFE(ANGLES,32,1)
RETURN
END

Results

| 1 | .000000 | 2 | .104720 | 3 | .209440 | 4 | .314159 | 5 | .418879 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 6 | .523599 | 7 | .628318 | 8 | .733039 | 9 | .837757 | 10 | .942478 |
| 11 | 1.047197 | 12 | 1.151917 | 13 | 1.256637 | 14 | 1.361357 | 15 | 1.466076 |
| 16 | 1.570796 | 17 | 1.675517 | 18 | 1.780236 | 19 | 1.884956 | 20 | 1.989675 |
| 21 | 2.094396 | 22 | 2.199116 | 23 | 2.303835 | 24 | 2.408554 | 25 | 2.513275 |
| 26 | 2.617993 | 27 | 2.722714 | 28 | 2.827433 | 29 | 2.932153 | 30 | 3.036873 |
| 31 | 3.141592 | 32 | -3.036874 | | | | | | |

12.5 S04_COS_INT

release 1

1 Purpose

S04_COS_INT returns the value of the cosine integral $C_{i}(x)$ for a matrix argument.

2 Specification

REAL MATRIX FUNCTION S04_COS_INT (X , EMASK)

REAL X (,)
LOGICAL EMASK (,)

3 Description

$C_{i}(x)$ is approximated using one of three Tschebyshev expansions. Since $C_{i}(x)$ is imaginary for $x<0$, only positive arguments are considered. The expansions (and the ranges over which they are valid) are of the form:

$$
\begin{aligned}
& C_{i}(x) \simeq \ln (x)+\sum^{\prime} a_{r} D_{r}(t) \text { for } x \in[0,9] \text { and where } t=2\left(\frac{x}{9}\right)^{2}-1 \\
& C_{i}(x) \simeq \ln (x)+\sum \sum_{r} T_{r}(t) \text { for } x \in(9,16] \text { and where } t=2\left(\frac{x-9}{7}\right)-1 \\
& C_{i}(x) \simeq f(x) \sin (x)-g(x) \cos (x) \text { for } x \in(16, \infty)
\end{aligned}
$$

where:

$$
\begin{aligned}
& f(x)=\sum^{\prime} c_{r} T_{r}(t) \\
& g(x)=\sum^{\prime} d_{r} T_{r}(t)
\end{aligned}
$$

$$
t=2\left(\frac{16}{x}\right)-1
$$

where \sum^{\prime} is a series equal, term for term, to \sum, except that the first term in \dot{S}^{\prime} is half the first term in \sum.

In the third approximation f and g are asymptotic expansions of the form:

$$
\begin{aligned}
& f(z) \sim\left(\frac{1}{z}\right)\left\{1-\left(\frac{2!}{z^{2}}\right)+\left(\frac{4!}{z^{4}}\right)-\left(\frac{6!}{z^{6}}\right) \ldots\right\} \\
& g(z) \sim\left(\frac{1}{z^{2}}\right)\left\{1-\left(\frac{3!}{z^{2}}\right)+\left(\frac{5!}{z^{4}}\right)-\left(\frac{7!}{z^{6}}\right) \ldots\right\}
\end{aligned}
$$

As $x \rightarrow \infty, C_{i}(x) \rightarrow 0$; this fact is used by the routine for very large arguments.

4 References

[1] ABRAMOWITZ M and STEGUN I A
Handbook of Mathematical Functions; chapter 4 section 4, p 79: Dover Publications, 1968.
[2] FOX L and PARKERI
Chebyshev Polynomials in Numerical Analysis: Oxford University Press, 1968.

5 Arguments

X - REAL MATRIX
On entry, X contains the points at which the evaluation of C_{i} is required. All elements of X must be defined on entry, and are unchanged on exit.

EMASK - LOGICAL MATRIX

On exit, EMASK indicates the positions for which the argument was non-positive (see Error Indicator below).

6 Error Indicators

$C_{i}(x)$ is undefined if x is zero, and is imaginary for negative x. In either case the result returned by S04_COS_INT is zero and the corresponding bit in EMASK is set.TRUE.

7 Auxiliary Routines

None

8 Accuracy

In general 6 significant figures of accuracy may be expected in the result. However, close to the zeros of $C_{i}(x)$ all relative accuracy may be lost. For very large arguments, the result is set to zero as the true value of $C_{i}(x)$ is less than the possible inaccuracy inherent in 32 bit precision.

9 Further Comments

None

10 Keywords

Cosine integral function, special function

11 Example

The example calculates $C_{i}(x)$ for 1024 values of x between about 0.005 and 20 .

Host program

PROGRAM MAIN
REAL X(1024), Y(1024)
COMMON /XY/X,Y
C
C Initialise data for testing function
C

```
        DO 1 I = 1,1024
    1 X(I) = FLOAT (I) * 20.0/1024.0
C
C Connect to DAP module
C
    CALL DAPCON('ent.dd')
C
C Send testdata to the DAP
C
    CALL DAPSEN('XY',X,1024)
C
C Call the DAP ENTRY subroutine
C
    CALL DAPENT('ENT')
C
C Retrieve the results from the DAP
C
    CALL DAPREC('XY',X,2048)
C
C Release the DAP
C
    CALL DAPREL
C
C Write out a sample selection of the data and results for inspection
C
        WRITE (6,2)
    2 FORMAT (6X, 'X', 14X, 'Ci(X) '/)
    DO 3 I = 1,1024, 32
WRITE (6,4) X(I),Y(I)
4 FORMAT (1X,2G15.7)
    STOP
    END
```


DAP program

ENTRY SUBROUTINE ENT
REAL X(,), Y(,)
LOGICAL EMASK (,)
COMMON /XY/X,Y
C
C Note the EXTERNAL statement for this function
C
EXTERNAL REAL MATRIX FUNCTION SO4_COS_INT
C
C Convert input data
C
CALL CONVFME (X)
$Y=$ SO4_COS_INT(X, EMASK)
C
C Trace out any components that may be $<=0$
C

IF (ANY (EMASK)) TRACE 1 (EMASK)
C
C Convert input data and results back to host format
C
CALL CONVMFE (X)
CALL CONVMFE(Y)
RETURN
END

Results
$X \quad \operatorname{Ci}(X)$

| $.1953125 e-01$ | -3.358611 |
| :--- | :--- |
| .6445313 | $.3590578 \mathrm{e}-01$ |
| 1.269531 | .4390500 |
| 1.894531 | .4428694 |
| 2.519531 | .2795894 |
| 3.144531 | $.7273293 \mathrm{e}-01$ |
| 3.769531 | $-.9733582 \mathrm{e}-01$ |

4.394531 -. 1872826
5.019531 -. 1888952
5.644531 -. 1224203
$6.269531-.2474308 \mathrm{e}-01$
6.894531 .6474495e-01
7.519531 . 1165104
8.144531 . 1185551
8.769531 . $7754135 \mathrm{e}-01$
9.394531 . 1383400e-01
$10.01953-.4708195 \mathrm{e}-01$
10.64453 -. 8390427e-01
11.26953 -. 8623505e-01
11.89453 -. $5696487 \mathrm{e}-01$
12.51953 -. $9857178 \mathrm{e}-02$
13.14453 . $3642845 \mathrm{e}-01$
13.76953 . $6525517 \mathrm{e}-01$
14.39453 . $6775570 \mathrm{e}-01$
15.01953 . $4528236 \mathrm{e}-01$
15.64453 .7996559e-02
16.26953 -. $2936367 \mathrm{e}-01$
16.89453 -. 5321791e-01
$17.51953-.5584693 e-01$
18.14453 -. $3777995 e-01$
$18.76953-.7019278 \mathrm{e}-02$
19.39453 . $2435225 e-01$

12.6 S04_MOD_BES_I0

1 Purpose

S04_MOD_BES_I0 returns the value of the modified Bessel function I0 for a matrix argument.

2 Specification
REAL MATRIX FUNCTION S04_MOD_BES_I0 (X , EMASK)
REAL X (,)
LOGICAL EMASK (,)

3 Description

I0 is approximated using one of three Tschebyshev polynomial expansions. Since the function is even it is only necessary to consider positive arguments. The expansions (and the ranges over which they are valid) are of the form:
$\mathrm{I} 0(x) \simeq \exp (x) \sum^{\prime} a_{i} T_{i}(t) \quad$ for $x \in[0,4]$ and where $t=x / 2-1$
$\mathrm{I} 0(x) \simeq \exp (x) \sum^{\prime} b_{i} T_{i}(t) \quad$ for $\quad x \in(4,12]$ and where $t=x / 4-2$
$\mathrm{I} 0(x) \simeq \frac{\exp (x)}{\sqrt{x}} \sum^{\prime} c_{i} T_{i}(t) \quad$ for $x \in(12, \infty)$ and where $t=24 / x-1$
where \sum is a series equal, term for term, to \sum, except that the first term in \sum is half the first term in \sum.

4 References

[1] ABRAMOWITZ M and STEGUN I A
Handbook of Mathematical Functions; chapter 9 , p 374: Dover Publications, 1968.
FOX L and PARKER I
[2] Chebyshev Polynomials in Numerical Analysis: Oxford University Press, 1968.

5 Arguments

X - REAL MATRIX

On entry, X contains the points at which the evaluation of I 0 is required. All elements of X must be defined on entry, and are unchanged on exit.

EMASK - LOGICAL MATRIX
On exit, EMASK indicates the positions for which the argument was too large (see Error Indicator below).

6 Error Indicators

Since $\mathrm{IO}(x)$ increases rapidly with x, the result could easily overflow even for modest values of x. To prevent this overflow, large values are detected and the corresponding bit in EMASK is set .TRUE. The value returned by the function for such large arguments is that returned by the largest valid argument (that is, an argument of about 174).

7 Auxiliary Routines

None

8 Accuracy

The accuracy depends on the size of the argument. For small arguments (say $|x|<12$) the error is less than about 20 parts in 10^{7}, but the error will increase rapidly as $|x|$ increases.

9 Further Comments

None

10 Keywords

Modified Bessel function, special function

11 Example

The example calculates $\mathrm{I} 0(x)$ for 1024 values of x between 0 and 20 .

Host program

```
        PROGRAM MAIN
        REAL X(1024) , Y(1024)
        COMMON /XY/X,Y
C
C Initialise data for testing function
C
    DO 1 I=1,1024
    1 X(I) = FLOAT(I-1)*20.0/1023.0
C
C Connect to DAP module
C
    CALL DAPCON('ent.dd')
C
C Send testdata to the DAP
C
    CALL DAPSEN('XY',X,1024)
C
C Call the DAP ENTRY subroutine
C
    CALL DAPENT('ENT')
C
C Retrieve the results from the DAP
C
    CALL DAPREC('XY',X,2048)
C
```

```
C Release the DAP
C
    CALL DAPREL
C
    WRITE (6,2)
    FORMAT(6X, 'X' 14X, 'IO(X)'/)
C
C Write out a sample selection of the data and results for inspection
C
    DO 3 I = 1, 1024 , 32
W WRITE (6,4)X(I),Y(I)
4 FORMAT(1X, 2G15.7)
    STOP
    END
```

DAP program
ENTRY SUBROUTINE ENT
REAL $X(),, Y($,
LOGICAL EMASK(,)
COMMON /XY/X,Y
C
C Note the EXTERNAL statement for this function
C
EXTERNAL REAL MATRIX FUNCTION SO4_MOD_BES_IO
C
C Convert input data
C
CALL CONVFME (X)
Y = SO4_MOD_BES_IO(X, EMASK)
C
C Trace out a mask to show where arguments were too large
C
IF (ANY (EMASK))TRACE 1 (EMASK)
C
C Convert input data and results back to host format
C
CALL CONVMFE (X)
CALL CONVMFE(Y)
RETURN
END

Results

| X | $\mathrm{I}(\mathrm{X})$ |
| :--- | :---: |
| | |
| $.0000000 \mathrm{e}+00$ | 1.0000000 |
| .6256109 | 1.100267 |
| 1.251222 | 1.431391 |
| 1.876832 | 2.094550 |
| 2.502443 | 3.295993 |
| 3.128055 | 5.417401 |
| 3.753665 | 9.147502 |
| 4.379276 | 15.72208 |
| 5.004888 | 27.35907 |
| 5.630498 | 48.04684 |
| 6.256109 | 84.97379 |
| 6.881721 | 151.1240 |
| 7.507331 | 269.9973 |
| 8.132942 | 484.2058 |
| 8.758554 | 871.1418 |
| 9.384164 | 1571.584 |
| 10.00978 | 2841.946 |
| 10.63539 | 5149.855 |
| 11.26100 | 9349.078 |
| 11.88661 | 16999.96 |
| 12.51222 | 30957.04 |
| 13.13783 | 56446.73 |
| 13.76344 | 103046.5 |
| 14.38905 | 188319.1 |
| 15.01466 | 344494.9 |
| 15.64027 | 630757.9 |
| 16.26588 | 1155853. |
| 16.89149 | 2119699. |
| 17.51711 | 3890039. |
| 18.14272 | 7143643. |
| 18.76833 | $.1312658 \mathrm{e}+08$ |
| 19.39394 | $.2413416 \mathrm{e}+08$ |
| | |

12.7 S04_MOD_BES_I 1

release 1

1 Purpose

S04_MOD_BES_I 1 returns the value of the modified Bessel function I 1 for a matrix argument.

2 Specification

REAL MATRIX FUNCTION S04_MOD_BES_I 1 (X , EMASK)
REAL X (,)
LOGICAL EMASK (,)

3 Description

I1 is approximated using 3 Tschebyshev polynomial expansions. Since $\mathrm{I} 1(-x)=-\mathrm{I} 1(x)$ it is only necessary to consider positive arguments. The expansions (and the ranges over which they are valid) are of the form:

$$
\begin{aligned}
& \mathrm{I} 1(x) \simeq x \sum^{\prime} a_{i} T_{i}(t) \quad \text { for } \quad x \in[0,4] \text { and where } t=x / 2-1 \\
& \stackrel{.}{\mathrm{I} 1(x) \simeq \exp (x) \sum^{\prime} b_{i} T_{i}(t) \quad \text { for } x \in(4,12] \text { and where } t=x / 4-2} \\
& \mathrm{I} 1(x) \simeq \frac{\exp (x)}{\sqrt{x}} \sum^{\prime} c_{i} T_{i}(t) \text { for } x \in(12, \infty) \text { and where } t=24 / x-1
\end{aligned}
$$

where \sum^{\prime} is a series equal, term for term, to \sum, except that the first term in \sum^{\prime} is half the first term in \sum.

4 References

[1] ABRAMOWITZ M and STEGUN I A
Handbook of Mathematical Functions; chapter 9, p 374: Dover Publications
[2] FOX L and PARKER I
Chebyshev Polynomials in Numerical Analysis: Oxford University Press, 1968

5 Arguments

X - REAL MATRIX

On entry X contains the points at which the evaluation of I 1 is required. All elements of X must be defined on entry. X is unchanged on exit.

EMASK - LOGICAL MATRIX

On exit EMASK indicates the positions for which the argument was too large (see Error Indicators below).

6 Error Indicators

Since I $1(x)$ increases rapidly with x, the result could easily overflow even for modest values of x. To prevent this, large values are detected and the corresponding bit in EMASK is set .TRUE. The value returned by the function for such large arguments is that returned by the largest valid argument (that is, an argument of about 174).

7 Auxiliary Routines

None

8 Accuracy

The accuracy depends on the size of the argument. For small arguments (say $|x|<12$) the error is less than about 20 parts in 10^{7}, but the error will increase rapidly as $|x|$ increases.

9 Further Comments

None

10 Keywords

Modified Bessel function, special function

11 Example

The example calculates I $1(x)$ for 1024 values of x between 0 and 20.

```
Host program
    PROGRAM MAIN
    REAL X(1024),Y(1024)
    COMMON /XY/X,Y
C
C Initialise data for testing function
C
    DO 1 I = 1,1024
    1 X(I) = FLOAT(I1)*20.0/1023.0
C
C Connect to DAP module
C
    CALL DAPCON('ent.dd')
C
C Send testdata to the DAP
    CALL DAPSEN('XY',X,1024)
C
C Call the DAP ENTRY subroutine
C
    CALL DAPENT('ENT')
C
C Retrieve the results from the DAP
C
    CALL DAPREC('XY',X,2048)
```

```
C
C Release the DAP
C
    CALL DAPREL
C
    WRITE (6,2)
    2 FORMAT(6X,'X',14X,'I1(X)'/)
C
C Write out a sample selection of the data and results for inspection.
C
    DO 3 I = 1,1024,32
    W WRITE (6,4) X (I) , Y(I)
    4 FORMAT (1X,2G15.7)
    STOP
    END
```


DAP program

```
ENTRY SUBROUTINE ENT
REAL X(,),Y(,)
LOGICAL EMASK (,)
COMMON /XY/X,Y
C
C Note the EXTERNAL statement for this function C
EXTERNAL REAL MATRIX FUNCTION SO4_MOD_BES_II
C
C Convert input data
C
CALL CONVFME (X)
Y=S04_MOD_BES_I1 (X,EMASK)
C
C Trace out a mask to show where arguments were too large C
IF (ANY (EMASK)) TRACE 1 (EMASK)
C
C Convert input data and results back to host format
C
CALL CONVMFE ( \(X\) )
CALL CONVMFE (Y)
RETURN
END
```

Results

| X | $I 1(\mathrm{X})$ |
| :--- | :--- |
| | |
| $.0000000 \mathrm{e}+00$ | $.0000000 \mathrm{e}+00$ |
| .6256109 | .3283606 |
| 1.251222 | .7562914 |
| 1.876832 | 1.416910 |
| 2.502443 | 2.522305 |
| 3.128055 | 4.436992 |
| 3.753665 | 7.805889 |
| 4.379276 | 13.78311 |
| 5.004888 | 24.44524 |
| 5.630498 | 43.54034 |
| 6.256109 | 77.84995 |
| 6.881721 | 139.6668 |
| 7.507331 | 251.3122 |
| 8.132942 | 453.3796 |
| 8.758554 | 819.7910 |
| 9.384164 | 1485.328 |
| 10.00978 | 2696.016 |
| 10.63539 | 4901.422 |
| 11.26100 | 8923.789 |
| 11.88661 | 16268.36 |
| 12.51222 | 29692.97 |
| 13.13783 | 54254.05 |
| 13.76344 | 99229.38 |
| 14.38905 | 181652.6 |
| 15.01466 | 332817.7 |
| 15.64027 | 610248.1 |
| 16.26588 | 1119740. |
| 16.89149 | 2055966. |
| 17.51711 | 3777319. |
| 18.14272 | 6943891. |
| 18.76833 | $.1277195 \mathrm{e}+08$ |
| 19.39394 | $.2350347 \mathrm{e}+08$ |

12.8 S04_SIN_INT

1 Purpose

S04_SIN_INT returns $S i(x)=\int_{0}^{x} \frac{\sin (u)}{u} d u$ for a matrix argument.

2 Specification

REAL MATRIX FUNCTION S04_SIN_INT (X)
REAL X (,)

3 Description

$S_{i}(x)$ is approximated using one of three Tschebyshev polynomial expansions.
$S_{i}(-x)=S_{i}(x)$, so it is only necessary to consider positive arguments. The expansions (and the ranges over which they are valid) are of the form:

$$
\begin{aligned}
& S_{i}(x) \simeq x \sum^{\prime} a_{r} T_{r}(t) \quad \text { for } x \in[0,9] \text { and where } t=2\left(\frac{x}{9}\right)^{2}-1 \\
& S_{i}(x) \simeq x \sum^{\prime} b_{r} T_{r}(t) \text { for } x \in(9,16] \text { and where } t=2\left(\frac{x-9}{7}\right)-1 \\
& S_{i}(x) \simeq \pi / 2-f(x) \cos (x)-g(x) \sin (x) \text { for } x \in(16, \infty)
\end{aligned}
$$

where:

$$
\begin{aligned}
& f(x)=\sum^{\prime} c_{r} T_{r}(t) \\
& g(x)=\sum^{\prime} d_{r} T_{r}(t) \\
& t=2\left(\frac{16}{x}\right)^{-1} \\
& \sum_{\text {the first term in }} \text { is a series equal, term for term, to } \sum, \text { except that the first term in } \sum^{\prime} \text { is half }
\end{aligned}
$$

In the third approximation f and g are asymptotic expansions of the form:

$$
\begin{aligned}
& f(z) \sim\left(\frac{1}{z}\right)\left\{1-\left(\frac{2!}{z^{2}}\right)+\left(\frac{4!}{z^{4}}\right)-\left(\frac{6!}{z^{6}}\right) \ldots\right\} \\
& g(z) \sim\left(\frac{1}{z^{2}}\right)\left\{1-\left(\frac{3!}{z^{2}}\right)+\left(\frac{5!}{z^{4}}\right)-\left(\frac{7!}{z^{6}}\right) \ldots\right\}
\end{aligned}
$$

As $x \rightarrow \pm \infty, S_{i}(x) \rightarrow \pm \pi / 2$; this fact is used by the routine for very large arguments.

4 References

[1] ABRAMOWITZ M and STEGUN I A
Handbook of Mathematical Functions; chapter 5 section 2, p 231: Dover Publications, 1968.
[2] FOX L and PARKER I
Chebyshev Polynomials in Numerical Analysis: Oxford University Press; 1968.
5 Arguments

X - REAL MATRIX

On entry, X contains the points at which the evaluation of S_{i} is required. All elements of X must be defined on entry, and are unchanged on exit.

6 Error Indicators

None

7 Auxiliary Routines
None
8 Accuracy
The maximum error should be less than about 20 parts in 10^{7}.
9 Further Comments
None
10 Keywords
Sine integral function, special function

11 Example
The example calculates S_{i} for 1024 values of x between -10 and 10 .

Host program

PROGRAM MAIN
REAL X(1024) , Y(1024)
COMMON /XY/X,Y
C
C Initialise data for testing function
C
DO 1 I = 1, 1024
$1 \quad \mathrm{X}(\mathrm{I})=\mathrm{FLOAT}(\mathrm{I}-1) * 20.0 / 1023.0-10.0$
C
C Connect to DAP module
C
CALL DAPCON('ent.dd')

```
C
C Send testdata to the DAP
C
    CALL DAPSEN('XY',X,1024)
C
C Call the DAP ENTRY subroutine
C
    CALL DAPENT('ENT')
C
C Retrieve the results from the DAP
C
    CALL DAPREC('XY',X,2048)
C
C Release the DAP
C
    CALL DAPREL
C
    WRITE (6,2)
    FORMAT(6X, 'X', 14X, 'Si(X)'/)
C
C Write out a sample selection of the data and results for inspection
C
    DO 3 I = 1,1024,32
WRITE (6,4) X(I), Y(I)
4 FORMAT(1X, 2G15.7)
    STOP
    END
```


DAP program

ENTRY SUBROUTINE ENT
REAL $X(),, Y($,
COMMON /XY/X,Y
C
C Note the EXTERNAL statement for this function C

EXTERNAL REAL MATRIX FUNCTION SO4_SIN_INT
C
C Convert input data
C
CALL CONVFME (X)
$\mathrm{Y}=$ S04_SIN_INT (X)
C
C Convert input data and results back to host format C

CALL CONVMFE (X)
CALL CONVMFE(Y)
RETURN
END

Results

| X | $\mathrm{Si}(\mathrm{X})$ |
| :---: | :---: |
| -10.000000 | -1.658348 |
| -9.374389 | -1.674626 |
| -8.748778 | -1.650258 |
| -8.123167 | -1.589128 |
| -7.497556 | -1.510376 |
| -6.871944 | -1.443393 |
| -6.246334 | -1.418261 |
| -5.620723 | -1.454368 |
| -4.995112 | -1.550871 |
| -4.369501 | -1.682421 |
| -3.743890 | -1.802158 |
| -3.118279 | -1.851851 |
| -2.492668 | -1.776752 |
| -1.867058 | -1.541133 |
| -1.241446 | -1.139938 |
| -.6158361 | -.6030076 |
| $.9775162 \mathrm{e}-02$ | $.9775121 \mathrm{e}-02$ |
| .6353865 | .6213064 |
| 1.260997 | 1.154774 |
| 1.886608 | 1.551066 |
| 2.512219 | 1.781414 |
| 3.137830 | 1.851934 |
| 3.763441 | 1.799163 |
| 4.389051 | 1.678203 |
| 5.014663 | 1.547130 |
| 5.640274 | 1.452258 |
| 6.265884 | 1.418175 |
| 6.891495 | 1.444993 |
| 7.517107 | 1.512826 |
| 8.142717 | 1.591439 |
| 8.768328 | 1.651638 |
| 9.393940 | 1.674711 |
| | |

12.9 S15_ERF

release 1

1 Purpose

S15_ ERF returns the value of the error function.

2 Specification

REAL*8 MATRIX FUNCTION S15_ERF (X)
REAL*8 X (,)

3 Description

The function is calculated by one of three algorithms. The algorithms used (and the ranges over which they are valid) are:

$$
\begin{aligned}
& |\operatorname{erf}(x)|=|x| \mathrm{T}_{1}(\mathrm{~T}) \quad \text { for } \quad|x| \in[0,2] \text { and where } \mathrm{T}=\frac{x^{2}}{2}-1 \\
& |\operatorname{erf}(x)|=1-\frac{\exp \left(-x^{2}\right)}{|x| \sqrt{\pi}} \mathrm{T}_{2}(\mathrm{~T}) \text { for }|x| \in(2, \text { XHIGH }) \text { and where } T=\frac{x-7}{x+3} \\
& |\operatorname{erf}(x)|=1 \quad \text { for } \quad|x| \in[\text { XHIGH, } \infty]
\end{aligned}
$$

where XHIGH is the value above which $\operatorname{erf}(x)=1$, to the machine's accuracy; XHIGH is machine-dependent, and is 6.25 for the DAP

The sign of erf x) is the same as that of $x ; T_{1}(T)$ and $T_{2}(T)$ are Tschebychev polynomial expansions. They are evaluated using recursive descent by the function 'ZTSCHEB', which has as parameters the dimension and array of coefficients for the expansion. The argument ' T ' is passed in the named common block 'CTSCHEBARG'.

4 References

[1] ABRAMOWITZ M and STEGUN I A
Handbook of Mathematical Functions; chapter 7 section 1, p 297: Dover Publications, 1968.

5 Arguments

X - REAL*8 MATRIX

On entry, X contains the points at which the function is to be evaluated. All elements of X must be assigned on entry; X is unchanged on exit.

6 Error Indicators

None

7 Auxiliary Routines

The routine calls the General Support library routine ZTSCHEB.

8 Accuracy

The DAP works to a precision of about 17 significant figures in REAL* 8 arithmetic. S15_ERF was checked against S15_ERFC according to the relation:

$$
\operatorname{erf}(x)+\operatorname{erfc}(x)=1
$$

The worst error was 7 E-16, and the median error was about 2 E-16.

9 Further Comments

The routine uses the common block 'CTSCHEBARG' to pass a parameter to the function 'ZTSCHEB', so you must not use a block of that name.

10 Keywords

Error function, special function

11 Example

The following example program reads and prints a caption and then reads pairs of numbers from the data stream. The program assumes that the first number of each pair indicates whether the second number in the pair is a valid argument of the function. Reading of the pairs of numbers continues until the first number in a pair is negative.
The program packs the arguments into the first column of a 32 by 32 array, X , which is passed by the named common block COM1 to the DAP entry subroutine DAPSUB. The subroutine converts the values into DAP storage mode, then calls S15_ERF. The result is assigned to matrix Y, which is also in common block COM1. Both matrices are converted back into host storage mode and the results printed.

Host program

program main

INTEGER INUM $(32,32)$
CHARACTER*40 TITLE
COMMON /COM1/X $(32,32), Y(32,32)$ DOUBLE PRECISION X, Y
c
C Initialise X to avoid 'UNASSIGNED VARIABLE'
C
DO $2 \mathrm{~J}=1,32$
DO $1 I=1,32$
$X(I, J)=0.0$
1 continue
2 continue
C

```
    READ (*,5) TITLE
    WRITE (*,6) TITLE
    WRITE (*,7)
```

```
C
C Read data
C
    J=0
3. J=J+1
    READ (*,8) INUM(J,1), X(J,1)
    IF (INUM(J,1).GE.0)GOTO3
C
C Connect to DAP module
C
    CALL DAPCON('dapsub.dd')
C
C Send test data to DAP
C
    CALL DAPSEN('COM1',X,2048)
C
C Call DAP routine
C
    CALL DAPENT('DAPSUB')
C
C Receive test data and results from DAP
C
    CALL DAPREC('COM1',X,4096)
C
C Release the DAP
C
    CALL DAPREL
C
C Write out results
C
    J = J - 1
    DO 4 I=1,J
|RITE (*,9) X(I,1),Y(I,1), INUM(I,1)
    STOP
    FORMAT (A)
    FORMAT (4(1X/), 1H , A, 8H RESULTS/1X)
    FORMAT (18X, 'X', 25X, 'Y', 13X, 'INUM')
    FORMAT (I5, F20.5)
    FORMAT (4X, 1PD20.3, 1X, 1PD20.3, 14X, I2)
    END
```


DAP program

```
    ENTRY SUBROUTINE DAPSUB
C
C Note the use of the external statement for this function
C
    EXTERNAL REAL*8 MATRIX FUNCTION S15_ERF
        COMMON /COM1/ X(,),Y(,)
        REAL*8 X,Y
```

```
C
C Convert input data
C
    CALL CONVFMD(X)
C
    Y(,) = S15_ERF(X)
C
C Convert input data and results back to host mode
C
    CALL CONVMFD(X)
    CALL CONVMFD(Y)
    RETURN
    END
```

Data

S15ERF EXAMPLE PROGRAM DATA

| 1 | -6.0 |
| ---: | ---: |
| 2 | -4.5 |
| 3 | -1.0 |
| 4 | 1.0 |
| 5 | 4.5 |
| 6 | 6.0 |
| -1 | 0.0 |

Results

S15ERF EXAMPLE PROGRAM DATA
RESULTS

| Y | INUM |
| ---: | :---: |
| $-1.000 \mathrm{e}+00$ | 1 |
| $-1.000 \mathrm{e}+00$ | 2 |
| $-8.427 \mathrm{e}-01$ | 3 |
| $8.427 \mathrm{e}-01$ | 4 |
| $1.000 \mathrm{e}+00$ | 5 |
| $1.000 \mathrm{e}+00$ | 6 |

12.10 S15_ERFC

1 Purpose

S15_ERFC returns the value of the complement of the error function.

2 Specification

REAL*8 MATRIX FUNCTION S15_ERFC(X)

REAL*8 X (,)

3 Description

S15_ERFC returns the complement of the error fucntion S15_ ERC. S15_ERFC is calculated by one of four algorithms. The algorithms used (and the ranges over which they are valid) are:

$$
\begin{array}{ll}
\operatorname{erfc}(x)=2.0(\text { to machine accuracy }) & \text { for } x \in(-\infty, \text { XLOW }) \\
\operatorname{erfc}(x)=2.0-\exp \left(-x^{2}\right) \operatorname{POLY}(\mathrm{T}) & \text { for } x \in[\text { XLOW }, 0) \\
\operatorname{erfc}(x)=\exp \left(-x^{2}\right) \operatorname{POLY}(\mathrm{T}) & \text { for } \\
\operatorname{erfc}(x)=0.0 \text { (to machine accuracy) } & \text { for } \quad x \in[\text { XHIGH }) \\
\end{array}
$$

where:
XLOW and XHIGH are values that are machine-dependent; for the DAP they are -6.25 and 13.0 respectively

POLY(T) is a Tschebychev polynomial function of T, where:

$$
\mathrm{T}=\frac{|x|-3.75}{|x|+3.75}
$$

and is calculated by conversion to an ordinary polynomial, which is then evaluated by Horner's method.

4 References

[1] ABRAMOWITZ M and STEGUN I A
Handbook of Mathematical Functions; chapter 7 section 1, p 297: Dover Publications, 1968.

5 Arguments

X - REAL* 8 MATRIX

On entry, X contains the points at which the function is to be evaluated. All elements of X must be assigned on entry; X is unchanged on exit.

6 Error Indicators

None

7 Auxiliary Routines

None

8 Accuracy

If E and D are the relative errors in result and argument respectively, they are in principle related by:

$$
|E|=\left|\frac{2 x \exp \left(-x^{2}\right)}{\sqrt{\pi} \operatorname{erfc}(x)}\right| D
$$

You should note that near $x=0$ the amplification factor behaves as $\frac{2 x}{\sqrt{\pi}}$, hence the accuracy is also largely determined by machine precision.
For large negative x, where the factor is $x \frac{\exp \left(-x^{2}\right)}{\sqrt{\pi}}$, accuracy is mainly limited by machine precision.
For large positive x,the factor behaves like $2 x^{2}$ and hence to a certain extent relative accuracy is unavoidably lost. However the absolute error in the result, E , is given by:

$$
|\mathrm{E}|=\left|\frac{2 x \exp \left(-x^{2}\right)}{\sqrt{\pi}}\right| \mathrm{D}
$$

so absolute accuracy can be guaranteed for all x.

9 Further Comments

None

10 Keywords

Complementary error function, special function.

11 Example

The following example program reads and prints a caption and then reads pairs of numbers from the data stream. The program assumes that the first number of each pair indicates whether the second number in the pair is a valid argument of the function. Reading of the pairs of numbers continues until the first number in a pair is negative.
The program packs the arguments into the first column of a 32 by 32 array, X , which is passed by the named common block COM1 to the DAP entry subroutine DAPSUB. The subroutine converts the values into DAP storage mode, then calls S15-ERFC. The result is assigned to matrix Y , which is also in common block COM1. Both matrices are converted back into host storage mode and the results printed.

```
Host program
    PROGRAM MAIN
C
C S15_ERFC example program
C
    INTEGER IFAIL(32,32)
    CHARACTER*40 TITLE
    COMMON /COM1/X(32,32),Y(32,32)
    DOUBLE PRECISION X,Y
```

```
C
C Initialise X to avoid
C 'UNASSIGNED VARIABLE'
C
        DO 2 J = 1,32
        DO 1 I = 1,32
        X(I,J) = 0.0
    1 CONTINUE
    2 CONTINUE
C
        READ (*,5) TITLE
        WRITE (*,6) TITLE
        WRITE (*,7)
C
C Read data
C
J=0
3 J=J+1
    READ (*,8) IFAIL(J,1), X(J,1)
    IF (IFAIL(J,1).GE.0)GOTO3
C
C Connect to DAP module
C
    CALL DAPCON('dapsub.dd')
C
C Send test data to DAP
C
    CALL DAPSEN('COM1',X,2048)
C
C Call DAP routine
C
    CALL DAPENT('DAPSUB')
C
C Receive test data and results from DAP
C
    CALL DAPREC('COM1',X,4096)
C
C Release the DAP
C
CALL DAPREL
```

```
C
C Write out results
C
    J = J - 1
    DO 4 I=1,J
    4. WRITE (*,9) X(I,1), Y(I,1), IFAIL(I,1)
5 FORMAT (A)
6 FORMAT (4(1X/), 1H , A, 8H RESULTS/1X)
7 FORMAT (18X, 'X', 25X, 'Y',13X, 'INUM')
8 FORMAT (I5, F20.5)
9 FORMAT (4X, 1PD20.3, 1X, 1PD20.3, 14X, I2)
STOP
END
```


DAP program

ENTRY SUBROUTINE DAPSUB
C
C Note the use of the external statement for this function
C
EXTERNAL REAL*8 MATRIX FUNCTION S15_ERFC
COMMON /COM1/ $X(),, Y($,
REAL*8 X,Y
C
C Convert input data
C
CALL CONVFMD (X)
C
$Y()=,S 15 _\operatorname{ERFC}(X)$
C
C Convert input data and results back to host mode C

CALL CONVMFD (X)
CALL CONVMFD (Y)
RETURN
END

Data

| S15ERFC EXAMPLE | PROGRAM DATA |
| :---: | :---: |
| 1 | -10.0 |
| 2 | -1.0 |
| 3 | 0.0 |
| 4 | 1.0 |
| 5 | 15.0 |
| -1 | 0.0 |

Results

S15ERFC EXAMPLE PROGRAM DATA

| X | Y | |
| :---: | ---: | :---: |
| $-1.000 \mathrm{e}+01$ | $2.000 \mathrm{e}+00$ | |
| $-1.000 \mathrm{e}+00$ | $1.843 \mathrm{e}+00$ | |
| $0.000 \mathrm{e}+00$ | $1.000 \mathrm{e}+00$ | |
| $1.000 \mathrm{e}+00$ | $1.573 \mathrm{e}-01$ | |
| $1.500 \mathrm{e}+01$ | $0.000 \mathrm{e}+00$ | |

Chapter 13

X01 - Mathematical constants

Contents:
Subroutine Page
X01_PI 188

1 Purpose

X01_PI provides the value of pi for any of the real precision lengths available on the DAP.
2 Specification
SUBROUTINE X01_PI (PI , LEN)
REAL* < LEN > PI
INTEGER LEN

3 Description

The relevant value is picked out from a table of values.

4 References

None

5 Arguments

PI - REAL* <LEN>
On exit, PI contains the value of π for reals of length LEN bytes.
LEN - INTEGER
On entry, LEN must contain the length in bytes of PI (in the range 3 to 8). If LEN is outside the range 3 to 8 the results are unpredictable. LEN is unchanged on exit.

6 Error Indicators

None

7 Auxiliary Routines

This routine references the General Support library routine Z_X01_X02_AUX.
8 Accuracy
The results are to machine accuracy for the precision required.
9 Further Comments
None
10 Keywords
Machine constants, pi
11 Example
The following FORTRAN-PLUS fragment traces out the REAL* 4 value for π.

```
ENTRY SUBROUTINE ENT
REAL*4 PI
CALL X01_PI(PI,4)
TRACE 1 (PI)
RETURN
END
```

```
Results
FORTRAN-PLUS Trace
FORTRAN-PLUS Subroutine: ENT at Line 4
Real Scalar Local Variable PI in 32 bits - on Stack at 0.09
    3.1415930E+00
```

End of Report

Chapter 14

X02 - Machine constants

Contents:

Subroutine Page
X02_EPSILON 192
X02_MAXDEC 194
X02_MAXINT 196
X02_MAXPW2 198
X02_MINPW2 200
X02_RMAX 202
X02_RMIN 204
X02_TOL 206

14.1 X02_EPSILON

1 Purpose

X02_EPSILON provides the smallest positive real (EPS) such that $1.0+$ EPS differs from 1.0 , for any of the real precision lengths available on the DAP.

2 Specification
SUBROUTINE X02_EPSILON (EPSILON, LEN)
REAL* <LEN > EPSILON
INTEGER LEN

3 Description

The relevant value is picked out from a table of values.
4 References
None

5 Arguments

EPSILON - REAL* <LEN>
On exit, EPSILON contains the value of EPS for reals of length LEN bytes.
LEN - INTEGER
On entry, LEN must contain the length in bytes of EPSILON (in the range 3 to 8). If LEN is outside the range 3 to 8 the results are unpredictable. LEN is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines

The routine references the General Support library routine Z_X01_X02_AUX.
8 Accuracy
The results are to machine accuracy for the precision required.

9 Further Comments

None

10 Keywords

Machine constants, machine precision

11 Example

The following FORTRAN-PLUS fragment traces out the REAL* 4 value of ϵ.

```
ENTRY SUBROUTINE ENT
REAL*4 EPS
CALL X02_EPSILON(EPS,4)
TRACE 1 (EPS)
RETURN
END
```

```
Results
FORTRAN-PLUS Trace
FORTRAN-PLUS Subroutine: ENT at Line 4
Real Scalar Local Variable EPS in 32 bits - on Stack at 0.09
    9.5367432E-07
```

End of Report

14.2 X02_MAXDEC

1 Purpose

X02_MAXDEC provides a value for MAXDEC for the range of reals of different precision available on the DAP; MAXDEC is the maximum number of decimal digits which can be accurately represented over the whole range of floating point numbers.

2 Specification

SUBROUTINE X02_MAXDEC (M, LEN)
INTEGER M , LEN

3 Description

The relevant value is picked out from a table of values.

4 References

None

5 Arguments

M - INTEGER
On exit, M contains the value of MAXDEC for reals of length LEN bytes.
LEN - INTEGER
On entry LEN must contain the length in bytes of the reals for which MAXDEC is required (in the range 3 to 8). If LEN is outside the range 3 to 8 the results are unpredictable. Unchanged on exit.

6 Error Indicators

None

7 Auxiliary Routines

None

8 Accuracy

Whilst the results given are accurate for any particular real number, precision may be lost after a sequence of arithmetic operations.

9 Further Comments

None

10 Keywords

Machine constants, real precision

11 Example

The following FORTRAN-PLUS fragment traces out the maximum number of decimal digits which can be accurately represented over the whole range of REAL*4 precision floating point numbers.

```
ENTRY SUBROUTINE ENT
INTEGER MAXD
CALL XO2_MAXDEC(MAXD,4)
TRACE 1 (MAXD)
RETURN
END
```


Results

FORTRAN-PLUS Subroutine: ENT at Line 4
Integer Scalar Local Variable MAXD in 32 bits - on Stack at 0.09
6

End of Report

14.3 X02_MAXINT

release 1

1 Purpose

X02_MAXINT provides a value for MAXINT for the range of integers of different precision available on the DAP; MAXINT is the largest integer such that MAXINT and -MAXINT can both be represented exactly.

2 Specification

SUBROUTINE X02_MAXINT (M, LEN)
INTEGER* <LEN> M
INTEGER LEN

3 Description

The relevant value is picked out from a table of values.

4 References

None
5 Arguments
M - INTEGER* <LEN>
On exit, M contains the value of MAXINT for integers of length LEN bytes.
LEN - INTEGER
On entry, LEN must contain the length in bytes of M (in the range 1 to 8). If LEN is outside the range 1 to 8 the results are unpredictable. LEN is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines

The routine references the General Support library routine Z_X01_X02_AUX.

8 Accuracy

The results returned are to machine accuracy for the precision required.

9 Further Comments

None

10 Keywords

Machine constants, maximum integer

11 Example

The following FORTRAN-PLUS fragment traces out the value of MAXINT for INTEGER*4 precision.

```
ENTRY SUBROUTINE ENT
INTEGER MAXI
CALL XO2_MAXINT(MAXI,4)
TRACE 1 (MAXI)
RETURN
END
```


Results

FORTRAN-PLUS Trace FORTRAN-PLUS Subroutine: ENT at Line 4

Integer Scalar Local Variable MAXI in 32 bits - on Stack at 0.09 2147483647

End of Report

14.4 X02_MAXPW2

release 1

1 Purpose

X02_MAXPW2 provides a value for MAXPW2 for the range of reals of different precision available on the DAP; MAXPW2 is the largest integer power to which 2.0 may be raised without overflow.

2 Specification
SUBROUTINE X02_MAXPW2 (M)
INTEGER* <2-4> M
3 Description
The relevant value is picked out from a table of values.
4 References
None
5 Arguments
M - INTEGER* <2-4>
On exit, M contains the value of MAXPW2 for reals of any length
6 Error Indicators
None
7 Auxiliary Routines
None
8 Accuracy
The accuracy does not depend on the precision used.

9 Further Comments

None

10 Keywords

Machine constants," maximum power of 2

11 Example

The following FORTRAN-PLUS fragment traces out the largest integer power to which 2.0 may be raised without overflow for any real precision length.

```
ENTRY SUBROUTINE ENT
INTEGER MAXPW2
CALL X02_MAXPW2(MAXPW2)
TRACE 1 (MAXPW2)
RETURN
END
```

```
Results
FORTRAN-PLUS Trace
FORTRAN-PLUS Subroutine: ENT at Line 4
Integer Scalar Local Variable MAXPW2 in 32 bits - on Stack at 0.09
    251
```

End of Report

14.5 X02_MINPW2

1 Purpose
X02_MINPW2 provides a value for MINPW2 for the range of reals of different precision available on the DAP; MINPW2 is the largest negative integer power to which 2.0 may be raised without underflow.

2 Specification
SUBROUTINE X02_MINPW2 (M)
INTEGER* <2-4> M
3 Description
The relevant value is picked out from a table of values.
4 References
None
5 Arguments
M - INTEGER* <2-4>
On exit, M contains the value of MINPW2 for reals of any length.
6 Error Indicators
None
7 Auxiliary Routines
None
8 Accuracy
The accuracy does not depend on the precision used.
9 Further Comments
None
10 Keywords
Machine constants, maximum negative power of 2
11 Example
The following FORTRAN-PLUS fragment traces out the largest negative integer power to which 2.0 may be raised without underflow for any real precision length.

```
ENTRY SUBROUTINE ENT
INTEGER MINPW2
CALL XO2_MINPW2(MINPW2)
TRACE 1 (MINPW2)
RETURN
END
```

```
Results
FORTRAN-PLUS Trace
FORTRAN-PLUS Subroutine: ENT at Line 4
Integer Scalar Local Variable MINPW2 in 32 bits - on Stack at 0.09
251
End of Report
```


14.6 X02_RMAX

release 1

1 Purpose

X02_RMAX provides the largest real (RMAX) such that RMAX and -RMAX can both be represented exactly, for the range of reals of different precision available on the DAP.

2 Specification
SUBROUTINE X02_RMAX (R , LEN)
REAL* <LEN>R
INTEGER LEN

3 Description

The relevant value is picked out from a table of values.

4 References

None

5 Arguments

R - REAL* <LEN>
On exit, R contains the value of RMAX for reals of length LEN bytes.
LEN - INTEGER
On entry, LEN must contain the length in bytes of R (in the range 3 to 8). If LEN is outside the range 3 to 8 the results are unpredictable. LEN is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines

The routine references the General Support library routine Z_X01_X02_AUX.

8 Accuracy

The results returned are as accurate as possible for the precision required.
9 Further Comments
None

10 Keywords
Machine constants, maximum real value.
11 Example
The following FORTRAN-PLUS fragment traces out the value of RMAX for REAL*4 precision.

```
ENTRY SUBROUTINE ENT
REAL*4 RMAX
CALL X02_RMAX(RMAX,4)
TRACE 1 (RMAX)
RETURN
END
```


Results

FORTRAN-PLUS Trace
FORTRAN-PLUS Subroutine: ENT at Line 4

Real Scalar Local Variable RMAX in 32 bits - on Stack at 0.09

$7.2370051 \mathrm{E}+75$

End of Report

14.7 X02_RMIN

1 Purpose

X02_RMIN provides the smallest real (RMIN) such that RMIN and -RMIN can both be represented exactly, for the range of reals of different precision available on the DAP.

2 Specification
SUBROUTINE X02_RMIN (R, LEN)
REAL* <LEN> R
INTEGER LEN

3 Description

The relevant value is picked out from a table of values.

4 References

None

5 Arguments

R - REAL* <LEN>
On exit, R contains the value of RMIN for reals of length LEN bytes.
LEN - INTEGER
On entry, LEN must contain the length in bytes of R (in the range 3 to 8). If LEN is outside the range 3 to 8 the results are unpredictable. LEN is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines

The routine references the General Support library routine Z _X01_X02_AUX.

8 Accuracy

The results returned are as accurate as possible for the precision required.

9 Further Comments

None

10 Keywords

Machine constants, minimum real value.

11 Example

The following FORTRAN-PLUS fragment traces out the value of RMIN for REAL*4 precision.

```
ENTRY SUBROUTINE ENT
REAL*4 RMIN
CALL X02 RMIN(RMIN,4)
TRACE 1 (RMIN)
RETURN
END
```

```
Results
FORTRAN-PLUS Trace
FORTRAN-PLUS Subroutine: ENT at Line 4
Real Scalar Local Variable RMIN in 32 bits - on Stack at 0.09
    5.3976053E-79
End of Report
```


14.8 X02_TOL

release 1

1 Purpose
X02_TOL provides the value of TOL (= RMIN/EPSILON) for the range of reals of different precision available on the DAP.

2 Specification

SUBROUTINE X02_TOL (R , LEN)
REAL* <LEN> R
INTEGER LEN

3 Description

The relevant value is picked out from a table of values.

4 References

None

5 Arguments

R - REAL* <LEN>
On exit, R contains the value of TOL for reals of length LEN bytes.
LEN - INTEGER
On entry, LEN must contain the length in bytes of R (in the range 3 to 8). If LEN is outside the range 3 to 8 the results are unpredictable. LEN is unchanged on exit.

6 Error Indicators
None
7 Auxiliary Routines
The routine references the General Support library routine Z _X01_X02_AUX.

8 Accuracy

The results returned are as accurate as possible for the precision required.

9 Further Comments

None

10 Keywords

Machine constants

11 Example

The following FORTRAN-PLUS fragment traces out the value of TOL for REAL*4 precision.

```
ENTRY SUBROUTINE ENT
REAL*4 TOL
CALL X02_TOL(TOL,4)
TRACE 1(TOL)
RETURN
END
```

```
Results
FORTRAN-PLUS Trace
FORTRAN-PLUS Subroutine: ENT at Line 4
Real Scalar Local Variable TOL in 32 bits - on Stack at 0.09
    5.6597994E-73
End of Report
```


Chapter 15

X05 - Other utilities

Contents:
Subroutine Page
X05_ALT_LV 211
X05_CRINKLE 213
X05_EAST_BOUNDARY 215
X05_E_MAX_PC 217
X05_E_MAX_PR 219
X05_E_MAX_VC 221
X05_E_MAX_VR 223
X05_E_MIN_PC 225
X05_E_MIN_PR 227
X05_E_MIN_VC 229
X05_E_MIN_VR 231
X05_EXCH_P 233
X05_GATHER_V_32 236
Subroutine Page
X05_I_MAX_PC 239
X05_I_MAX_PR 241
X05_I_MAX_VC 243
X05_I_MAX _VR 245
X05_I_MIN_PC 247
X05_I_MIN_PR 249
X05_I_MIN_VC 251
X05_I_MIN_VR 253
X05_LOG2 255
X05_LONG_INDEX 258
X05_NORTH_BOUNDARY 260
X05_PATTERN 262
X05_SCATTER_V_32 264
X05_SHLC_LV 267
X05_SHLP_LV 269
X05_SHORT_INDEX 271
X05_SHRC_LV 273
X05_SHRP_LV 275
X05_SOUTH_BOUNDARY 277
X05_STRETCH _4 279
X05_STRETCH _ 8 281
X05_STRETCH _ N 283
X05_SUM_LEFT_I2 285
X05_SUM_RIGHT_I2 288
X05_UNCRINKLE 291
X05_WEST_BOUNDARY 293

15.1 X05_ALT_LV

1 Purpose

X05_ALT_LV produces a long vector of alternating groups of N false values followed by N true values and so on until all components of the vector have a value. If the value of N lies outside the range 1 to 1024 all components will have the value. FALSE.

2 Specification
 LOGICAL MATRIX FUNCTION X05_ALT_LV (N) INTEGER N

3 Description
The required pattern is set up by first producing a long vector containing the values 0 to 1023 in long vector order. The vector is divided by N and the required pattern supplied by the least significant bit plane of the resulting vector.

4 References

None
5 Arguments
N - INTEGER
On entry, N specifies the number of false and true values to be repeated alternately. N is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines

The routine calls the DAP library routine X05_LONG_INDEX.

8 Accuracy

Not applicable
9 Further Comments
None
10 Keywords
None

11 Example

This FORTRAN-PLUS fragment demonstrates the use of the function X05_ALT-LV to initialise alternate groups of five elements of the long vector X with different values.

```
SUBROUTINE TLVA
REAL X(,)
LOGICAL LM(,)
EXTERNAL LOGICAL MATRIX FUNCTION XO5_ALT_LV
LM=X05_ALT_LV(5)
X=0.0
X(LM)=1.0
RETURN
END
```


15.2 X05_CRINKLE

1 Purpose

X05_CRINKLE effects a transformation in data storage format for vertical mode data occupying an array of matrices - from 'sliced' to 'crinkled' storage.

2 Specification

SUBROUTINE X05_CRINKLE (S, L, NR, NC, IFAIL)
<any type, any length> S (, NR, NC)
INTEGER L, NR, NC, IFAIL

3 Description

The data is conceptually considered to occupy an array C of components of size 32 NR by 32 NC. (NR or NC are positive integers, not excluding 1). The storage area, S, is an NR by NC array of matrices. In the 'sliced' format:

$$
\mathrm{S}\left(i_{r}, i_{c}, j_{r}, j_{c}\right)=\mathrm{C}\left(i_{r}+32\left(j_{r}-1\right), i_{c}+32\left(j_{c}-1\right)\right)
$$

that is, each value of j_{r} selects a contiguous group of 32 rows of C , and so on.
In the 'crinkled' format:

$$
\mathrm{S}\left(i_{r}, i_{c}, j_{r}, j_{c}\right)=\mathrm{C}\left(j_{r}+\mathrm{NR} i_{r-1}, j_{c}+\mathrm{NC}\left(i_{c}-1\right)\right)
$$

that is, each value of i_{r} selects a contiguous group of $N R$ rows of C, and so on.
In the 'sliced' format the conceptual array is divided into subarrays of size 32 by 32 . In the 'crinkled' format the conceptual array is divided into subarrays of size NR by NC.
To carry out the transformation, first a mapping transformation is done on East - West vertical sections of the data area. Each section is regarded as an array of 32 NC data items; each item is of length L by NR (vertical) bits. The transformation reverses the mapping order so that succesive horizontal sets of NC data items are rethreaded vertically.
Then a similar transformation is done on NC separate groups of North - South vertical sections of the data area. Each section of each group is regarded as an array of 32 NR data items; each item is of length L (vertical) bits. The transformation reverses the mapping order so that successive horizontal sets of NR data items are rethreaded vertically.

4 References

None

5 Arguments

S - <any type, any length> MATRIX array of dimension (, ,NR, NC)
On entry, S contains the sliced data to be reformatted. On exit, S contains the data in crinkled form.
L - INTEGER
On entry, L specifies the length in bits of the components of $S ; L$ is unchanged on exit.

NR - INTEGER

On entry, NR specifies the first unconstrained dimension of S; NR is unchanged on exit.

5 Arguments - continued
NC - INTEGER
On entry, NC specifies the second unconstrained dimension of S; NC is unchanged on exit.
IFAIL - INTEGER
Unless the routine detects an error (see Error Indicators below) IFAIL contains zero on exit.

6 Error Indicators
Errors detected by the routine:
IFAIL $=1 \quad$ either NR or NC was less than 1
IFAIL $=2 \quad \mathrm{~L}$ was less than 1
7 Auxiliary Routines
None
8 Accuracy
Not applicable
9 Further Comments
None

10 Keywords

Crinkled data storage, data formatting, data movement, sliced data storage

11 Example

This FORTRAN-PLUS fragment shows how the routine can be used in an entry subroutine to convert a matrix set from sliced to crinkled form.

ENTRY SUBRDUTINE ENT
REAL A(, 2,2)
Common /a/a
DO $10 \mathrm{I}=1,2$
DO $10 \mathrm{~J}=1,2$
CALL CONVFME(A (, I, J $)$)
10 CONTINUE
CALL X05_CRINKLE (A,32,2,2,IFAIL)
IF (IFAIL.NE.O) RETURN
C DAP processing
RETURN
END

15.3 X05_EAST_BOUNDARY

1 Purpose parameter. That is, the subroutine is equivalent to the FORTRAN-PLUS code:
 ```KM = .FALSE. \\ DO 10I=1,32 \\ IF (.NOT.ANY(LM(I,))) GOTO 10 \\ KM(I,) = REV (FRST (REV (LM (I,)))) \\ 10 CONTINUE```

X05_EAST_BOUNDARY returns a logical matrix containing at most one. TRUE. element in each row, corresponding to the last .TRUE. (if any) in each row of the logical matrix

2 Specification

LOGICAL MATRIX FUNCTION X05_EAST_BOUNDARY (LM) LOGICAL LM(,)

3 Description

The DAP store plane (logical matrix LM) passed to the routine is treated as a set of 32 logical vectors, arranged so that each vector occupies a complete row. Each of these vectors is dealt with independently, but in parallel.
To each vector is ripple-added a row of all true bits; the easternmost bit of the vector is treated as least significant. The addition is thrown away; the row of carry bits from the addition, and a shifted-west version of the row of carries, are XORed to give a vector with only one true element: the easternmost .TRUE. element in each input vector. The 32 resultant vectors, produced in parallel, form the required east boundary matrix.

4 References
 None

5 Arguments
 LM - LOGICAL MATRIX

On entry, LM is the logical matrix whose east boundary is required. LM is unchanged on exit.

6 Error Indicators

None

7 Auxiliary Routines

None
8 Accuracy
Not applicable

9 Further Comments

None

10 Keywords

Boundary
11 Example
This FORTRAN-PLUS fragment takes a 'black and white' logical matrix (a chess board pattern) as input and returns the east boundary.

```
ENTRY SUBROUTINE ENT
LOGICAL LM(,),KM(,)
EXTERNAL LOGICAL MATRIX FUNCTION XO5_EAST_BOUNDARY
LM=ALTR(1).LEQ.ALTC(1)
KM=XO5_EAST_BOUNDARY(LM)
TRACE 1 (KM)
RETURN
END
```

The result in this case is simply LM .AND. COLS(31,32)

15.4 X05_E_MAX_PC

1 Purpose

X05_E_MAX_PC returns a logical matrix marking the maximum value(s) in each row of the real matrix argument. The $i^{t h}$ row of the argument contains one or more elements whose value is the maximum value for the row. The corresponding element(s) of the $i^{t h}$ row of the logical matrix are set to .TRUE. to mark that maximum value, with all other elements of the logical matrix set to .FALSE.

2 Specification

LOGICAL MATRIX FUNCTION X05_E_MAX_PC (RM) REAL RM(,)

3 Description

In each row of the argument which contains at least one positive number the position(s) of the maximum positive number is found, and the corresponding output logical mask element(s) set to .TRUE. If a row of the argument contains only negative numbers, the position(s) of the elements with smallest absolute value are found, and the corresponding logical mask elements set to .TRUE.; all other elements of the output mask are set to .FALSE.

4 References

None
5 Arguments
RM - REAL MATRIX
On entry, RM contains the matrix whose row-wise maximum positions are required. RM is unchanged on exit.

6 Error Indicators

None
7 Auxiliary Routines
None
8 Accuracy
Not applicable

9 Further Comments

None

10 Keywords

Maximum

11 Example

In each row of the matrix processed in the following FORTRAN-PLUS fragment the maximum value(s) in that row are replaced by the value 0.0 .

```
SUBROUTINE EXAMPLE(RM)
REAL RM(,)
LOGICAL LM(,)
EXTERNAL LOGICAL MATRIX FUNCTION XO5_E_MAX_PC
LM = XO5_E_MAX_PC(RM)
RM(LM) = 0.0
RETURN
END
```


1 Purpose

X05_E_MAX_PR returns a logical matrix marking the maximum value(s) in each column of the real matrix argument. The $i^{\text {th }}$ column of the argument contains one or more elements whose value is the maximum value for the column. The corresponding element(s) of the $i^{\text {th }}$ column of the logical matrix are set to .TRUE. to mark that maximum value, with all other elements of the logical matrix set to .FALSE.

2 Specification

LOGICAL MATRIX FUNCTION X05_E_MAX_PR (RM)
REAL RM(,)

3 Description

In each column of the argument which contains at least one positive number the position(s) of the maximum positive number is found, and the corresponding output logical mask element(s) set to .TRUE. If a column of the argument contains only negative numbers, the position(s) of the elements with smallest absolute value are found, and the corresponding logical mask elements set to .TRUE.; all other elements of the output mask are set to .FALSE.

4 References

None
5 Arguments
RM - REAL MATRIX
On entry, RM contains the matrix whose column-wise maximum positions are required. RM is unchanged on exit.

6 Error Indicators
None
7 Auxiliary Routines
None
8 Accuracy
Not applicable
9 Further Comments
None

10 Keywords

Maximum

11 Example

In each column of the matrix input to the following FORTRAN-PLUS fragment the maximum values(s) in that column are replaced by the value 0.0 .

```
SUBROUTINE EXAMPLE(RM)
REAL RM(,)
LOGICAL LM(,)
EXTERNAL LOGICAL MATRIX FUNCTION XO5_E_MAX_PR
LM = X05_E_MAX_PR(RM)
RM(LM) = 0.0
RETURN
END
```


15.6 X05_E _MAX_VC

1 Purpose

X05_E_MAX_VC returns a real vector whose $i^{t h}$ component is the maximum value in the $i^{t h}$ row of the real matrix argument.

2 Specification
REAL VECTOR FUNCTION X05_E_MAX_VC(RM)
REAL RM(,)

3 Description

The maximum values are found by locating the position(s) of the maximum value in each row and then taking the value in the first of these positions in each row. These maximum values are then used to construct the required output vector.

4 References

None
5 Arguments
RM - REAL MATRIX
On entry, RM contains the matrix whose row-wise maximum values are required. RM is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines

The routine calls the routines X05_WEST_BOUNDARY and X05_E_MAX_PC from the General Support library.

8 Accuracy

Not applicable

9 Further Comments

None
10 Keywords
Maximum

11 Example

In each row of the real matrix input to the following FORTRAN-PLUS fragment the maximum value in the row is subtracted from all the values in the row.

SUBROUTINE EXAMPLE(RM)
REAL RM(,)

EXTERNAL REAL VECTOR FUNCTION XO5_E_MAX_VC

RM=RM - MATC(XO5_E_MAX_VC(RM))
RETURN
END

15.7 X05_E _MAX_VR

1 Purpose

X05_E_MAX_VR returns a real vector whose $i^{t h}$ component is the maximum value in the $i^{t h}$ column of the real matrix argument.

2 Specification

REAL VECTOR FUNCTION X05_ E_MAX_VR (RM)
REAL RM(,)

3 Description

The maximum values are found by locating the position(s) of the maximum value in each column and then taking the value in the first of these position(s) in each column. These maximum values are then used to construct the required output vector.

4 References

None

5 Arguments

RM - REAL MATRIX
On entry, RM contains the matrix whose column-wise maximum values are required. RM is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines

The routine calls the routines X05_E_MAX_PR and X05_NORTH_BOUNDARY from the General Support library.

8 Accuracy

Not applicable
9 Further Comments
None
10 Keywords
Maximum

11 Example

In each column of the real matrix input to the following FORTRAN-PLUS fragment the maximum value in the column is subtracted from all the values in the column.

```
SUBROUTINE EXAMPLE(RM)
REAL rm(,)
external real vector function X05_E_max_vr
RM=RM - MATR(XO5_E_MAX_VR(RM))
RETURN
END
```

15.8 X05_E _MIN _PC
release 1

1 Purpose

X05_E_MIN _PC returns a logical matrix marking the minimum value(s) in each row of the real matrix argument. The $i^{t h}$ row of the argument contains one or more elements whose value is the minimum value for the row. The corresponding element(s) of the $i^{\text {th }}$ row of the logical matrix are set to .TRUE. to mark that minimum value, with all other elements of the logical matrix set to .FALSE.

2 Specification

LOGICAL MATRIX FUNCTION X05_E_MIN _ PC (RM) REAL RM(,)

3 Description

In each row of the argument which contains only positive numbers the position(s) of the minimum number is found, and the corresponding output logical mask element(s) set to .TRUE. If a row of the argument contains at least one negative number, the position(s) of the negative number with greatest absolute value are found, and the corresponding logical mask elements set to .TRUE.; all other elements of the output mask are set to .FALSE.

4 References

None
5 Arguments
RM - REAL MATRIX
On entry, RM contains the matrix whose row-wise minimum positions are required. RM is unchanged on exit.

6 Error Indicators

None
7 Auxiliary Routines
None
8 Accuracy
Not applicable

9 Further Comments

None

10 Keywords

Minimum

11 Example

In each row of the matrix input to the following FORTRAN-PLUS fragment the minimum value(s) in that row are replaced by the value 0.0 .

```
SUBROUTINE EXAMPLE (RM)
REAL RM(,)
LOGICAL LM(,)
EXTERNAL LOGICAL MATRIX FUNCTION XO5_E_MIN_PC
LM = XO5_E_MIN_PC(RM)
RM(LM) = 0.0
RETURN
END
```


15.9 X05_E _ MIN _PR

release 1

1 Purpose

X05_E_MIN_PR returns a logical matrix marking the minimum value(s) in each column of the real matrix argument. The $i^{t h}$ column of the argument contains one or more elements whose value is the minimum value for the column. The corresponding element(s) of the $i^{\text {th }}$ column of the logical matrix are set to .TRUE. to mark that minimum value, with all other elements of the logical matrix set to .FALSE.

2 Specification

LOGICAL MATRIX FUNCTION X05_E_MIN _ PR (RM) REAL RM(,)

3 Description

In each argument column which contains only positive numbers the position(s) of the minimum number is found, and the corresponding output logical mask element(s) set to .TRUE. If a column of the argument contains at least one negative number, the position(s) of the negative number with greatest absolute value are found, and the corresponding logical mask elements set to .TRUE.; all other elements of the output mask are set to .FALSE.

4 References
None
5 Arguments
RM - REAL MATRIX
On entry, RM contains the matrix whose column-wise minimum positions are required. RM is unchanged on exit.

6 Error Indicators
None
7 Auxiliary Routines
None

8 Accuracy

Not applicable

9 Further Comments

None
10 Keywords
Minimum

11 Example

In each column of the matrix input to the following FORTRAN-PLUS fragment the minimum value(s) in that column are replaced by the value 0.0 .

```
SUBROUTINE EXAMPLE(RM)
REAL RM(,)
LOGICAL LM(,)
EXTERNAL LOGICAL MATRIX FUNCTION X05_E_MIN_PR
LM=X05_E_MIN_PR(RM)
RM(LM)=0.0
RETURN
END
```


15.10 X05_E _MIN _VC

1 Purpose

X05_E_MIN_VC returns a real vector whose $i^{t^{t h}}$ component is the minimum value in the $i^{t h}$ row of the real matrix argument.

2 Specification

REAL VECTOR FUNCTION X05_ E_MIN _VC (RM)
REAL RM(,)

3 Description

The minimum values are found by locating the positions of the minimum values in each row and then taking the value in the first of these positions in each row. The minimum values so found are used to construct the output vector.

4 References
None
5 Arguments
RM - REAL MATRIX
On entry, RM contains the matrix whose row-wise minimum values are required. RM is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines

The routine calls the routines X05_E_MIN_PC and X05_WEST_BOUNDARY from the General Support library.

8 Accuracy
Not applicable
9 Further Comments
None

10 Keywords

Minimum

11 Example

In each row of the real matrix input to the following FORTRAN-PLUS fragment the minimum value in the row is subtracted from all the values in the row.

SUbroutine example (rm)
real rm(,)
external real vector function xob_e_min_vc
RM = RM - MATC(XO5_E_MIN_VC(RM))
RETURN
END

15.11 X05_E_MIN _VR

release 1

1 Purpose
X05_E_MIN_VR returns a real vector whose $i^{t h}$ component is the minimum value in the $i^{\text {th }}$ column of the real matrix argument.

2 Specification

REAL VECTOR FUNCTION X05_ E_MIN _VR (RM)
REAL RM(,)
3 Description
The minimum values are found by locating the positions of the minimum values in each column and then taking the value in the first of these positions in each column. The minimum values so found are used to construct the output vector.

4 References

None

5 Arguments

RM - REAL MATRIX
On entry, RM contains the matrix whose column-wise minimum values are required. RM is unchanged on exit.

6 Error Indicators
None
7 Auxiliary Routines
The routine calls the routines X05_E_MIN_PR and X05_NORTH _ BOUNDARY from the General Support library.

8 Accuracy

Not applicable
9 Further Comments
None
10 Keywords
Minimum

11 Example

In each column of the real matrix input to the following FORTRAN-PLUS fragment the minimum value in the column is subtracted from all the values in the column.

SUBROUTINE EXAMPLE(RM)
REAL RM(,)
EXTERNAL REAL VECTOR FUNCTION X05_E_MIN_VR
$R M=R M-M A T R\left(X 05 _E _M I N _V R(R M)\right)$
RETURN
END

15.12 X05_EXCH _P

1 Purpose

X05_EXCH_P exchanges L planes starting at X with L planes starting at Y , under activity control specified by M. The planes are exchanged in increasing order; you are cautioned about the strange effects which will occur if the two sets of planes overlap.

2 Specification

SUBROUTINE X05_EXCH_P (X , Y, M , L)
INTEGER L
LOGICAL M (,
<any type> $\mathrm{X}(),, \mathrm{Y}($,

3 Description

The areas are exchanged under activity control using a machine code loop.

4 References

None

5 Arguments

X - <any type> MATRIX (or MATRIX array)
On entry, X contains the data to be exchanged with Y . On exit, X contains the data originally held in Y .

Y - <any type> MATRIX (or MATRIX array)
On entry, Y contains the data to be exchanged with X . On exit, Y contains the data originally held in X .

M - LOGICAL MATRIX
On entry, M defines the mask; .TRUE. indicates elements to be exchanged. M is unchanged on exit.
L - INTEGER
On entry, L specifies the number of planes to be exchanged and must be less than the maximum number of times that a machine code DO-loop may be executed (2^{30} times on the DAP 500). L is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines

None

8 Accuracy

Not applicable

9 Further Comments

None

10 Keywords

Data exchange, planar exchange

11 Example

This FORTRAN-PLUS fragment shows how the routine could be used to exchange two one byte matrices.

```
ENTRY SUBROUTINE SWAP
INTEGER*1 A(,),B(,)
A = 13
B = 25
CALL XO5_EXCH_P(A,B,MAT(.TRUE.), 8)
TRACE 1 (A, B)
RETURN
END
```


Results

```
FORTRAN-PLUS Trace
```

FORTRAN-PLUS Subroutine: SWAP at Line 8
Integer Matrix Local Variable A in 8 bits - addressed by Stack +0.09

| (Row 01 Col 01) | $25(* 32)$ |
| :--- | :--- | :--- |
| (Row 02 Col 01) | $25(* 32)$ |
| (Row 03 Col 01) | $25(* 32)$ |

(Row 30 Col 01) 25 (* 32)
(Row 31 Col 01) 25 (* 32)
(Row 32 Col 01) 25 (* 32)
Integer Matrix Local Variable B in 8 bits - addressed by Stack + 0.10
(Row 01 Col 01) 13 (* 32)
(Row $02 \mathrm{Col} \mathrm{01)} \mathrm{13(*32)}$
(Row 03 Col 01) 13 (* 32)

```
(Row 30 Col 01) 13(* 32)
(Row 31 Col 01) 13(* 32)
(Row 32 Col 01) 13(* 32)
End of Report
```


15.13 X05_GATHER _V_32

release 1

1 Purpose

X05_GATHER_V_ 32 assigns to the components of a vector the values of those components of a vector array designated by corresponding components of an indexing vector. The index values are interpreted as reduced rank indices to the vector array.

2 Specification

SUBROUTINE X05_GATHER_V_32 (TO , FROM , NFROM , SELECT , IFAIL)
TO and FROM must agree in type and length. They may be INTEGER* $<1-4>$, REAL* $<3-4>$ or CHARACTER. For example:
INTEGER TO () , FROM (, NFROM)
INTEGER NFROM , SELECT () , IFAIL

3 Description

The gathering is performed in a machine code DO loop.

4 References

None

5 Arguments

TO - INTEGER* < $1-4\rangle$, REAL* $\langle 3-4\rangle$ or CHARACTER VECTOR
On exit, TO contains 32 values from array FROM, as selected by SELECT; that is, $\mathrm{TO}(\mathrm{I})=\operatorname{FROM}(\operatorname{SELECT}(\mathrm{I}))$ for $\mathrm{I}=1,32$

FROM - INTEGER, REAL or CHARACTER VECTOR array
The dimensions of the array are (,NFROM), agreeing with TO in type and length. FROM is unchanged on exit.
NFROM - INTEGER
The second dimension of array FROM. NFROM is unchanged on exit

SELECT - INTEGER VECTOR

The values are applied as reduced rank indices to array FROM to select values to be assigned to corresponding components of TO. SELECT is unchanged on exit.
IFAIL - INTEGER
Unless the routine detects an error (see Error indicators below) IFAIL contains zero on exit.

6 Error Indicators

Errors detected by the routine:

$$
\begin{array}{ll}
\text { IFAIL }=1 & \text { NFROM was not positive } \\
\text { IFAIL }=2 & \text { Values of SELECT were not in range } 1 \text { to } 32 \text { NFROM }
\end{array}
$$

7 Auxiliary Routines

None
8 Accuracy
Not applicable

9 Further Comments

None

10 Keywords

Data manipulation, gather, scatter

11 Example

This FORTRAN-PLUS fragment gathers alternate indexed elements of a 64 element vector into a 32 element vector.

```
    ENTRY SUBROUTINE ENT
    INTEGER FROM(,2),TO(),SELECT()
    DO 10 I=1,64
10 FROM(I)=10*I
    DO 20 I=1,32
20 SELECT(I)=2*I
    CALL X05_GATHER_V32(TO,FROM,2,SELECT,IFAIL)
    TRACE 1 (IFAIL)
    TRACE 1 (TO)
    RETURN
    END
```

Results
FORTRAN-PLUS Trace
FORTRAN-PLUS Subroutine: ENT at Line 8
Integer Scalar Local Variable IFAIL in 32 bits - on Stack at 0.13
0

End of Report

```
FORTRAN-PLUS Trace
FORTRAN-PLUS Subroutine: ENT at Line 9
Integer Vector Local Variable TO in 32 bits - addressed by Stack + 0.10
\begin{tabular}{lrrrr} 
(Component 01) & 20, & 40, & 60, & 80, \\
(Component 05) & 100, & 120, & 140, & 160, \\
(Component 09) & 180, & 200, & 220, & 240, \\
(Component 13) & 260, & 280, & 300, & 320, \\
(Component 17) & 340, & 360, & 380, & 400, \\
(Component 21) & 420, & 440, & 460, & 480, \\
(Component 25) & 500, & 520, & 540, & 560, \\
(Component 29) & 580, & 600, & 620, & 640
\end{tabular}
```


End of Report

15.14 X05_I_MAX_PC

1 Purpose

X05_I_MAX_PC returns a logical matrix marking the maximum value(s) in each row of the integer matrix argument. The $i^{t h}$ row of the argument contains one or more elements whose value is the maximum value for the row. The corresponding element(s) of the $i^{t h}$ row of the logical matrix are set to .TRUE. to mark that maximum value, with all other elements of the logical matrix set to .FALSE.

2 Specification

LOGICAL MATRIX FUNCTION X05_I_MAX_PC (IM , N)
INTEGER* < N > IM (,
INTEGER N

3 Description

In each row of the argument which contains at least one positive number the position(s) of the maximum positive number is found, and the corresponding output logical mask element(s) set to. TRUE. If a row of the argument contains only negative numbers, the position(s) of the elements with smallest absolute value are found, and the corresponding logical mask elements set to .TRUE.; all other elements of the output mask are set to .FALSE.

4 References

None

5 Arguments

IM - INTEGER* < N > MATRIX
On entry, IM contains the matrix whose row-wise maximum positions are required. IM is unchanged on exit.

N - INTEGER
On entry, N specifies the length of the matrix IM in bytes. N is unchanged on exit.

6 Error Indicators
 None

7 Auxiliary Routines

None

8 Accuracy

Not applicable

9 Further Comments

None
10 Keywords
Maximum

11 Example

In each row of the matrix input to the following FORTRAN-PLUS fragment the maximum value(s) in that row are set to zero.

```
SUBROUTINE EXAMPLE(IM)
INTEGER*2 IM(,)
LOGICAL LM(,)
EXTERNAL LOGICAL MȦTRIX FUNCTION X05_I_MAX_PC
LM=X05_I_MAX_PC(IM, 2)
IM(LM)=0
RETURN
END
```


15.15 X05_I_MAX_PR

1 Purpose

X05_I_MAX_PR returns a logical matrix marking the maximum value(s) in each column of the integer matrix argument. The $i^{t h}$ column of the argument contains one or more elements whose value is the maximum value for the column. The corresponding element (s) of the $i^{t h}$ column of the logical matrix are set to .TRUE. to mark that maximum value, with all other elements of the logical matrix set to .FALSE.

2 Specification

LOGICAL MATRIX FUNCTION X05_I_MAX_PR(IM, N)
INTEGER* < N > IM (,)
INTEGER N

3 Description

In each argument column which contains at least one positive number the position(s) of the maximum positive number is found, and the corresponding output logical mask element(s) set to .TRUE. If a column of the argument contains only negative numbers, the position(s) of the elements with smallest absolute value are found, and the corresponding logical mask elements set to :TRUE.; all other elements of the output mask are set to .FALSE.

4 References

None

5 Arguments
IM - INTEGER* < N > MATRIX
On entry, IM contains the matrix whose column-wise maximum positions are required. IM is unchanged on exit.

N - INTEGER
On entry, N specifies the length of the matrix IM in bytes. N is unchanged on exit.

6 Error Indicators

None

7 Auxiliary Routines

None

8 Accuracy
Not applicable
9 Further Comments
None

10 Keywords
 Maximum

11 Example

In each column of the matrix input to the following FORTRAN-PLUS fragment the maximum value(s) in that column are set to zero.

```
SUBROUTINE EXAMPLE(IM)
INTEGER*2 IM(,)
LOGICAL LM(,)
EXTERNAL LOGICAL MATRIX FUNCTION X05_I_MAX_PR
LM=XO5_I_MAX_PR(IM,2)
IM(LM)=0
RETURN
END
```


15.16 X05_I_MAX_VC

1 Purpose

X05_I_MAX_VC returns an integer vector whose $i^{t h}$ component is the maximum value in the $i^{\text {th }}$ row of the integer matrix argument.

2 Specification
INTEGER VECTOR FUNCTION X05_I_MAX_VC (IM) INTEGER IM (,) .

3 Description

The maximum values are found by locating the positions of the maximum values in each row and then taking the value in the first of these positions in each row. These maximum values are then used to construct the required output vector.

4 References

None

5 Arguments
IM - INTEGER MATRIX
On entry, IM contains the matrix whose row-wise maximum values are required. IM is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines

The routine calls the routines X05_I_MAX_PC and X05_WEST_BOUNDARY from the General Support library.

8 Accuracy

Not applicable

9 Further Comments

None

10 Keywords

Maximum

11 Example

In each row of the integer matrix argument in this FORTRAN-PLUS fragment the maximum value in that row is subtracted from all the values in that row.

SUBROUTINE EXAMPLE(IM)
INTEGER IM(,)

EXTERNAL INTEGER VECTOR FUNCTION X05_I_MAX_VC
$I M=I M-M A T C\left(X O 5 _I _M A X _V C(I M)\right)$
RETURN
END

15.17 X05_I_MAX_VR

1 Purpose

X05_I_MAX_VR returns an integer vector whose $i^{\text {th }}$ component is the maximum value in the $i^{\text {th }}$ column of the integer matrix argument.

2 Specification

INTEGER VECTOR FUNCTION X05_I _ MAX_VR (IM) INTEGER IM (,)

3 Description

The maximum values are found by locating the positions of the maximum values in each column and then taking the value in the first of these positions in each column. These maximum values are then used to construct the required output vector.

4 References
None

5 Arguments

IM - INTEGER MATRIX
On entry, IM contains the matrix whose column-wise maximum values are required. IM is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines

This routine calls the routines X05_I_MAX_PR and X05_NORTH_BOUNDARY from the General Support library.

8 Accuracy

Not applicable
9 Further Comments
None

10 Keywords

Maximum

11 Example

In each column of the integer matrix input to the following FORTRAN-PLUS fragment the maximum value in that column is subtracted from all the values in that column.

SUBROUTINE EXAMPLE(IM)
INTEGER IM(,)

EXTERNAL INTEGER VECTOR FUNCTION XO5_I_MAX_VR
IM=IM-MATR(X05_I_MAX_VR(IM))
RETURN
END

15.18 X05_I_MIN _ PC

1 Purpose

X05_I_MIN_PC returns a logical matrix marking the minimum value(s) in each row of the integer matrix argument. The $i^{t h}$ row of the argument contains one or more elements whose value is the minimum value for the row. The corresponding element(s) of the $i^{t h}$ row of the logical matrix are set to .TRUE. to mark that minimum value, with all other elements of the logical matrix set to .FALSE.

2 Specification

LOGICAL MATRIX FUNCTION X05_I_MIN _PC (IM , N)
INTEGER* < N > IM (,)
INTEGER N

3 Description

In each argument row which contains only positive numbers the position(s) of the minimum number is found, and the corresponding output logical mask element(s) set to.TRUE. If a row of the argument contains at least one negative number, the position(s) of the negative number with greatest absolute value are found, and the corresponding logical mask elements set to .TRUE.; all other elements of the output mask are set to .FALSE.

4 References

None

5 Arguments

IM - INTEGER* < N > MATRIX
On entry, IM contains the matrix whose row-wise minimum positions are required. IM is unchanged on exit.

N - INTEGER

On entry, N specifies the length of the matrix IM in bytes. N is unchanged on exit.

6 Error Indicators

None
7 Auxiliary Routines
None

8 Accuracy

Not applicable

9 Further Comments
 None

10 Keywords

Minimum

11 Example

In each row of the matrix input to the following FORTRAN-PLUS fragment the minimum value(s) in that row are set to zero.

```
SUBROUTINE EXAMPLE(IM)
INTEGER*2 IM(,)
LOGICAL LM(,)
EXTERNAL LOGICAL MATRIX FUNCTION XO5_I_MIN_PC
LM=X05_I_MIN_PC(IM,2)
IM(LM)=0
RETURN
END
```


15.19 X05_I_MIN_PR

1 Purpose

X05_I_MIN_PR returns a logical matrix marking the minimum value(s) in each column of the integer matrix argument. The $i^{\text {th }}$ column of the argument contains one or more elements whose value is the minimum value for the column. The corresponding element(s) of the $i^{\text {th }}$ column of the logical matrix are set to .TRUE. to mark that minimum value, with all other elements of the logical matrix set to .FALSE.

2 Specification

LOGICAL MATRIX FUNCTION X05_I_MIN_PR (IM , N)
INTEGER* < N > IM (,)
INTEGER N

3 Description

In each argument column which contains only positive numbers the position(s) of the minimum number is found, and the corresponding output logical mask element(s) set to .TRUE. If a column of the argument contains at least one negative number, the position(s) of the negative number with greatest absolute value are found, and the corresponding logical mask elements set to.TRUE.; all other elements of the output mask are set to .FALSE.

4 References

None

5 Arguments

IM - INTEGER* <N > MATRIX
On entry, IM contains the matrix whose column-wise minimum positions are required. IM is unchanged on exit.

N - INTEGER
On entry, N specifies the length of the matrix IM in bytes. N is unchanged on exit.

6 Error Indicators

None
7 Auxiliary Routines
None
8 Accuracy
Not applicable

9 Further Comments

None

10 Keywords
 Minimum

11 Example

In each column of the input matrix in this FORTRAN-PLUS fragment the minimum value(s) in that column are set to zero.

```
SUBROUTINE EXAMPLE(IM)
INTEGER*2 IM(,)
LOGICAL LM(,)
EXTERNAL LOGICAL MATRIX FUNCTION XO5_I_MIN_PR
LM=X05_I_MIN_PR(IM, 2)
IM(LM)=0
RETURN
END
```


15.20 X05_I_MIN _VC

release 1

1 Purpose

X05_I_MIN _VC returns an integer vector whose $i^{\text {th }}$ component is the minimum value in the $i^{t h}$ row of the integer matrix argument.

2 Specification

INTEGER VECTOR FUNCTION X05_I_MIN _VC (IM) INTEGER IM (,)

3 Description

The minimum values are found by locating the positions of the minimum values in each row and then taking the value in the first of these positions in each row. The minimum values so found are used to construct the output vector.

4 References

None

5 Arguments

IM - INTEGER MATRIX

On entry, IM contains the matrix whose row-wise minimum values are required. IM is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines

The routine calls routines X05_I_MIN _PC and X05_WEST_BOUNDARY from the General Support library.

8 Accuracy

Not applicable

9 Further Comments

None

10 Keywords

Minimum

11 Example

In each row of the integer matrix input to the following FORTRAN-PLUS fragment the minimum value in that row is subtracted from all the values in that row.

SUBRDUTINE EXAMPLE(IM)
INTEGER IM(,)
EXTERNAL INTEGER VECTOR FUNCTION XO5_I_MIN_VC
IM=IM-MATC(X05_I_MIN_VC(IM)) RETURN
END

15.21 X05_I_MIN _VR

release 1
1 Purpose
X05_I_MIN_VR returns an integer vector whose $i^{t h}$ component is the minimum value in the $i^{\text {th }}$ column of the integer matrix argument.

2 Specification

INTEGER VECTOR FUNCTION X05_I_MIN _VR (IM)
INTEGER IM (,)

3 Description

The minimum values are found by locating the positions of the minimum values in each column and then taking the value in the first of these positions in each column. The minimum values so found are used to construct the output vector.

4 References

None
5 Arguments

IM - INTEGER MATRIX

On entry, IM contains the matrix whose column-wise minimum values are required. IM is unchanged on exit.

6 Error Indicators

None

7 Auxiliary Routines

The routine calls the General Support library routines X05_I_MIN_PR and X05_NORTH _ BOUNDARY.

8 Accuracy

Not applicable

9 Further Comments

None
10 Keywords
Minimum

11 Example

In each column of the integer matrix input to the following FORTRAN-PLUS fragment the minimum value in that column is subtracted from all the values in the column.

SUBROUTINE EXAMPLE(IM)
INTEGER IM(,)

EXTERNAL INTEGER VECTOR FUNCTION XO5_I_MIN_VR
IM $=$ IM-MATR (XO5_I_MIN_VR(IM))
RETURN
END

15.22 X05_LOG2

release 1

1 Purpose

X05_LOG2 returns the number of steps required in a recursive doubling algorithm.

2 Specification

INTEGER FUNCTION X05_LOG2 (N)
INTEGER N

3 Description

The value returned by the routine is:

$$
\left[\log _{2}(N-1)\right]+1
$$

where square brackets indicate 'integer part of', and N is the input argument.
The routine subtracts 1 from N, then scans the bit pattern of $N-1$ serially, starting at the most significant bit, to find the first .TRUE. bit. The required output value equals (11 - the number of serial steps taken).
For N greater than 1024, X05_LOG2 returns an incorrect value, as the routine takes (N modulo 1024) as its argument.

4 References

None
5 Arguments
N - INTEGER
On entry, the value in N should lie in the range $1-1024 . \mathrm{N}=0$ will return the result 10 ; for $\mathrm{N}<0$ the result is undefined. N is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines

None

8 Accuracy

Not applicable

9 Further Comments
 None

10 Keywords

Logarithmic algorithm, recursive doubling

11 Example

The example calculates the number of steps required by a recursive doubling algorithm for a problem of size 1001.

Host program

```
    PROGRAM MAIN
    INTEGER N,LOG2N
    COMMON /LOG2N/ N,LOG2N
C
C Initialise data for function
C
    N = 1001
C
C Connect to DAP module
C
    CALL DAPCON('ent.dd')
C
C Send test data to the DAP
C
    CALL DAPSEN('LOG2N',N,1)
C
C Call the DAP ENTRY subroutine
C
    CALL DAPENT('ENT')
C
C Send test data and result from the DAP
C
    CALL DAPREC('LOG2N',N,2)
C
C Release the DAP
C
    CALL DAPREL
C
C Write out the data and result for inspection.
C
    WRITE(6,1) N,LOG2N
1 FORMAT( 'VALUE OF N = ',I6/'STEPS REQUIRED = ',I6)
    STOP
    END
```


DAP program

ENTRY SUBROUTINE ENT
INTEGER N,LOG2N
COMMON /LOG2N/ N,LOG2N
C
C Note the EXTERNAL statement for this function C

EXTERNAL INTEGER SCALAR FUNCTION X05_LOG2

```
C
C Convert input data
C
```

 CALL CONVFSI (N, 1)
 LOG2N \(=\) XO5_LOG2 (N)
 C
C Convert input data and results back to host format
C
CALL CONVSFI $(N, 2)$
RETURN
END

Results

VALUE OF N = 1001
STEPS REQUIRED $=10$

15.23 X05_LONG_INDEX

release 1

1 Purpose

X05_LONG_INDEX generates an integer matrix whose $i^{t h}$ element in long vector order is ($i+\mathrm{N}-1$), where N is a parameter to the routine.

2 Specification

SUBROUTINE X05_LONG_INDEX (IMAT , N)
INTEGER IMAT(,) , N
3 Description
The routine calls the FORTRAN-PLUS intrinsic 'Long-Index', and is provided for backwards compatability with existing code.

4 References
None

5 Arguments

IMAT - INTEGER MATRIX
On exit, the $i^{\text {th }}$ component in long vector order of IMAT will contain ($\mathrm{i}+\mathrm{N}-1$).
N - INTEGER
On entry, N specifies the value that is required in IMAT(1). N is unchanged on exit.
6 Error Indicators
None
7 Auxiliary Routines
None
8 Accuracy
Not applicable
9 Further Comments
Overflow is not detected for large values of N .
10 Keywords
Indexing

11 Example

The example generates a vector indexed from 1 to 1024 .

```
Host program
            PROGRAM MAIN
            INTEGER IM (32,32)
            COMMON /IM/IM
            CALL DAPCON('ent.dd')
            CALL DAPENT('ENT')
            CALL DAPREC('IM',IM,1024)
            CALL DAPREL
            DO 10 I=1,32
            DO 10 J=1,32
        10 WRITE(6,1000) IM(J,I)
    1000 FORMAT(1X,I6)
        STOP
        END
```


DAP program

ENTRY SUBROUTINE ENT
INTEGER IM(,)
COMMON /IM/IM
CALL X05_LONG_INDEX (IM, 1)
CALL CONVMFI(IM)
RETURN
END

Results

1
2
3
.
-
1024

15.24 X05_NORTH _BOUNDARY

1 Purpose

X05_NORTH_BOUNDARY returns a logical matrix containing at most one .TRUE. in each column corresponding to the first .TRUE. (if any) in each column of the logical matrix parameter. That is, the routine is equivalent to the FORTRAN-PLUS code:

$$
\mathrm{KM}=. \mathrm{FALSE} .
$$

DO $10 \mathrm{I}=1,32$
IF (.NOT.ANY (LM (, I))) GOTO 10
$K M(, \mathrm{I})=\operatorname{FRST}(\mathrm{LM}(, \mathrm{I}))$
10 CONTINUE

2 Specification

LOGICAL MATRIX FUNCTION X05_NORTH _ BOUNDARY (LM) LOGICAL LM (,)

3 Description

The DAP store plane (logical matrix LM) passed to the routine is treated as a set of 32 logical vectors, arranged so that each vector occupies a complete column. Each of these vectors is dealt with independently, but in parallel.

To each vector is ripple-added a column of all-true bits; the northernmost bit of the vector is treated as least significant. The addition column is thrown away; the column of carry bits from the addition, and a shifted-south version of the column of carries, are XORed to give a vector with only one true element: the northernmost. TRUE. element in each input vector. The 32 resultant vectors, produced in parallel, form the required north boundary matrix.

4 References
 None

5 Arguments

LM - LOGICAL MATRIX

On entry, LM is the logical matrix whose north boundary is required. LM is unchanged on exit.

6 Error Indicators
 None

7 Auxiliary Routines

None

8 Accuracy

Not applicable

9 Further Comments
 None

10 Keywords

Boundary

11 Example

The following FORTRAN-PLUS fragment takes a 'black and white' logical matrix (a chess board pattern) as input, and returns the north boundary.

```
ENTRY SUBROUTINE ENT
LOGICAL LM(,),KM(,)
EXTERNAL LOGICAL MATRIX FUNCTION XO5_NORTH_BOUNDARY
LM=ALTR(1).LEQ.ALTC(1)
KM=X05_NORTH_BOUNDARY(LM)
TRACE 1 (KM)
RETURN
END
```

The result in this case is simply LM .AND. ROWS $(1,2)$

15.25 X05_PATTERN

1 Purpose

X05_PATTERN produces four user-selectable patterns, each of which is returned as a logical matrix. The four patterns available are:

0 - The main diagonal
1 - The minor diagonal
2-A matrix, the rows of which correspond to the rows generated by the built-in function ALTC
3 - The unit lower triangular matrix

2 Specification

LOGICAL MATRIX FUNCTION X05_PATTERN (I)
INTEGER I

3 Description

The routine is provided for backwards compatability with existing code.
4 References
None

5 Arguments

I - INTEGER

On entry I specifies the pattern required. Four values are catered for:

$$
\begin{aligned}
& \mathrm{I}=0: \underset{. \operatorname{FALSE} .}{\operatorname{RESULT}(\mathrm{J}, \mathrm{~J})=. \text { TRUE. where } 0<\mathrm{J}<33 ; \text { all other elements are }} \\
& \mathrm{I}=1: \underset{\text {.FALSE. }}{\operatorname{RESULT}(\mathrm{J}, 33-\mathrm{J})=. \text { TRUE. where } 0<\mathrm{J}<33 ; \text { all other elements are }} \\
& \mathrm{I}=2: \operatorname{RESULT}(\mathrm{J},) \text { is set equal to the row which generates } \operatorname{ALTC}(\mathrm{J}-1) \\
& \mathrm{I}=3: \operatorname{RESULT}(\mathrm{J}, \mathrm{~K})=. \text { TRUE. if } \mathrm{J} . \text { GE. } \mathrm{K} \text { where } 0<\mathrm{J}, \mathrm{~K}<33
\end{aligned}
$$

I is unchanged on exit.

6 Error Indicators

If $\mathrm{I}<0$ or $\mathrm{I}>3$ X05_ PATTERN returns a logical matrix with all entries .FALSE.

7 Auxiliary Routines

None

8 Accuracy

Not applicable

9 Further Comments

None

10 Keywords

Pattern generation

11 Example

In the following FORTRAN-PLUS fragment the patterns produced by the routine are used to set up an integer identity matrix and a second matrix having 1 (.TRUE.) below the main diagonal and 0 (.FALSE.) everywhere else.

```
ENTRY SUBROUTINE ENT
INTEGER IDENT(,), LOWER(,)
LOGICAL DIAG(,)
EXTERNAL LOGICAL MATRIX FUNCTION XO5_PATTERN
DIAG = XO5_PATTERN (0)
IDENT = 0
IDENT (DIAG) = 1
LOWER = O
LOWER(XO5_PATTERN(3).AND..NOT.DIAG) = 1
RETURN
END
```


1 Purpose

X05_SCATTER_V_32 takes components of a vector and assigns the values to components of a vector array designated by corresponding components of an indexing vector. The index values are interpreted as reduced rank indices to the vector array.

2 Specification

SUBROUTINE X05_SCATTER_V_32 (FROM , TO , NTO , SELECT , IFAIL)
FROM and TO must agree in type and length. They may be INTEGER* $<1-4>$, REAL* $<3-4>$ or CHARACTER. For example:
INTEGER FROM () , TO (, NTO)
INTEGER NTO, SELECT (), IFAIL

3 Description

The scattering is performed in a machine code DO loop.

4 References

None

5 Arguments

FROM - INTEGER* $<1-4>$, REAL* $<3-4>$ or CHARACTER VECTOR
Contains the 32 values to be scattered; it is unchanged on exit.
TO - INTEGER, REAL or CHARACTER VECTOR array
The dimensions of the array are (, NTO), agreeing with FROM in type and length. On exit, TO contains 32 values from FROM, as selected by SELECT;
that is, $\operatorname{TO}(\operatorname{SELECT}(\mathrm{I}))=\operatorname{FROM}(\mathrm{I})$ for $\mathrm{I}=1,32$

NTO - INTEGER

The second dimension of array TO; NTO is unchanged on exit

SELECT - INTEGER VECTOR

The values are applied as reduced rank indices to TO, to select components as destinations for corresponding values from array FROM. SELECT is unchanged on exit.

IFAIL - INTEGER

Unless the routine detects an error (see Error indicators below) IFAIL contains zero on exit.

6 Error Indicators

Errors detected by the routine:

$$
\begin{array}{ll}
\text { IFAIL }=1 & \text { NTO was not positive } \\
\text { IFAIL }=2 & \text { Values of SELECT were not in range } 1 \text { to } 32 \text { NTO }
\end{array}
$$

7 Auxiliary Routines

None
8 Accuracy
Not applicable

9 Further Comments

None

10 Keywords

Data manipulation, gather, scatter

11 Example

The following FORTRAN-PLUS fragment scatters a 32 element vector to alternate positions in a 64 element vector.

```
    ENTRY SUBROUTINE ENT
    INTEGER FROM(),TO(,2),SELECT()
    DO 10 I=1,64
10 TO(I)=0
    DO 20 I=1,32
    FROM(I)=I
20 SELECT(I)=2*I
    CALL X05_SCATTER_V32(FROM,TO,2,SELECT,IFAIL)
    TRACE 1 (IFAIL)
    TRACE 1 (TO)
    RETURN
    END
```

Results

```
FORTRAN-PLUS Trace
```

FORTRAN-PLUS Subroutine: ENT at Line 9
Integer Scalar Local Variable IFAIL in 32 bits - on Stack at 0.13

0

End of Report
FORTRAN-PLUS Trace
FORTRAN-PLUS Subroutine: ENT at Line 10

Integer Vector Local Variable TO in 32 bits - addressed by Stack +0.10
Unconstrained dimensions - 2

| (Element 1) | | | | |
| :---: | :---: | :---: | :---: | :---: |
| (Component 01) | 0, | 1, | 0, | 2, |
| (Component 05) | 0, | 3, | 0, | 4, |
| (Component 09) | 0, | 5, | 0, | 6, |
| (Component 13) | 0, | 7, | 0, | 10, |
| (Component 17) | 0, | 9, | 0, | 12, |
| (Component 21) | 0, | 11, | 0, | 14, |
| (Component 25) | 0, | 13, | 0, | 16 |
| (Component 29) | 0, | 15, | 0, | 18, |
| (Element 2) | | | 0, | 20, |
| (Component 01) | 0, | 17, | 0, | 22, |
| (Component 05) | 0, | 19, | 0, | 24, |
| (Component 09) | 0, | 21, | 0, | 28, |
| (Component 13) | 0, | 23, | 0, | 30, |
| (Component 17) | 0, | 25, | 0, | 32 |

End of Report

15.27 X05_SHLC_LV

release 1

1 Purpose

X05_SHLC_LV performs a cyclic long vector shift to the left on a number of bit planes, up to a maximum of 256 planes.

```
2 Specification
    SUBROUTINE X05_SHLC_LV (V , W , DEPTH, DIST)
    INTEGER DEPTH , DIST
    LOGICAL V (,,DEPTH), W(, ,DEPTH)
```


3 Description

The shift is carried out in two stages. If the shift distance is D , then North/South shifting is used for that part of the shift given by D modulo 32, and a West shift is used to handle the remaining multiples of 32 .

4 References
 None

5 Arguments

V - LOGICAL MATRIX array of dimension (, ,DEPTH)
On entry, V contains the data to be shifted; V is unchanged on exit.
W - LOGICAL MATRIX array of dimension (, , DEPTH)
On exit, W contains the shifted version of the data in V.
DEPTH - INTEGER
On entry, DEPTH specifies the dimension of V; that is, the number of planes to be shifted (taken modulo 256). DEPTH is unchanged on exit.

DIST - INTEGER
On entry, DIST specifies the magnitude of the shift (taken modulo 1024). DIST is unchanged on exit.

6 Error Indicators
 None

7 Auxiliary Routines

None

8 Accuracy

Not applicable

9 Further Comments

None

10 Keywords

Shifting

11 Example

The example compares the result from X05_SHLC_LV with that from the built-in function SHLC. The number of positions at which the two results disagree is counted and displayed.

```
Host program
    PROGRAM MAIN
    COMMON /ICOUNT/ICOUNT
    CALL DAPCON('ent.dd')
    CALL DAPENT('ENT')
    CALL DAPREC('ICOUNT',ICOUNT,1)
    CALL DAPREL
    WRITE(6,1000) ICOUNT
    1000 FORMAT(' ICOUNT = ',I5)
    STOP
    END
```


DAP program

ENTRY SUBROUTINE ENT

 INTEGER \(\operatorname{IM}(),, \mathrm{JM}(),, \mathrm{KM}(\),
 COMMON /ICOUNT/ICOUNT
 CALL X05_LONG_INDEX(IM,1)
 CALL X05_SHLC_LV(IM, JM, 32,99)
 KM=SHLC (IM, 99)
 ICOUNT \(=\) SUM (KM.NE.JM)
 CALL CONVSFI (ICOUNT,1)
 RETURN
 END

Results

ICOUNT $=0$

15.28 X05_SHLP_LV

1 Purpose

X05_SHLP_LV performs a planar long vector shift to the left on a number of bit planes, up to a maximum of 256 planes.

2 Specification

SUBROUTINE X05_SHLP_LV (V , W , DEPTH , DIST)
INTEGER DEPTH, DIST
LOGICAL V (, , DEPTH) , W (, , DEPTH)

3 Description

The shift is carried out in two stages. If the shift distance is D, then North/South shifting is used for that part of the shift given by D modulo 32 , and a West shift is used to handle the remaining multiples of 32 .

4 References
None

5 Arguments

V - LOGICAL MATRIX array of dimension (, , DEPTH)
On entry, V contains the data to be shifted; V is unchanged on exit.
W - LOGICAL MATRIX array of dimension (, , DEPTH)
On exit, W contains the shifted version of the data in V.
DEPTH - INTEGER
On entry, DEPTH specifies the dimension of V; that is, the number of planes to be shifted (taken modulo 256). DEPTH is unchanged on exit.

DIST - INTEGER
On entry DIST specifies the magnitude of the shift (taken modulo 1024). DIST is unchanged on exit.

6 Error Indicators
None
7 Auxiliary Routines
None
8 Accuracy
Not applicable

9 Further Comments
 None

10 Keywords

Shifting

11 Example

The example compares the result from X05_SHLP_LV with that from the built-in function SHLP. The number of positions at which the two results disagree is counted and displayed.

Host program

program main
COMMON /ICOUNT/ICOUNT
CALL DAPCON('ent.dd')
CALL DAPENT('ENT')
CALL DAPREC('ICOUNT', ICOUNT, 1)
CALL DAPREL
WRITE $(6,1000)$ ICOUNT
1000 FORMAT(' ICOUNT =', I5)
STOP
END

DAP program

ENTRY SUBROUTINE ENT
$\operatorname{INTEGER} \operatorname{IM}(),, \operatorname{JM}(),, \operatorname{KM}($,
COMMON /ICOUNT/ICOUNT
CALL XO5_LONG_INDEX (IM,1)
CALL X05_SHLP_LV(IM, JM, 32,99)
KM=SHLP (IM, 99)
ICOUNT $=$ SUM (KM.NE.JM)
CALL CONVSFI(ICOUNT,1)
RETURN
END

Results

ICOUNT $=0$

15.29 X05_SHORT_INDEX

release 1
1 Purpose
X05_SHORT_INDEX uses the FORTRAN-PLUS intrinsic routine 'Short_Index', and is provided for backwards compatibility.

2 Specification
SUBROUTINE X05_SHORT_INDEX (IVEC , N)
INTEGER IVEC(), N

3 Description

The routine is based on the FORTRAN-PLUS intrinsic 'Short_Index'.
4 References
None
5 Arguments
IVEC - INTEGER VECTOR
On exit, the $i^{\text {th }}$ component of IVEC will contain ($\mathrm{i}+\mathrm{N}-1$).
N - INTEGER
On entry, N specifies the value that is required in IVEC (1); N is unchanged on exit.
6 Error Indicators
None
7 Auxiliary Routines
None
8 Accuracy
Not applicable

9 Further Comments

Overflow is not detected for extremely large values in N.
10 Keywords
Indexing

11 Example

The example generates a vector indexed from 1 to 32 .

Host program

PROGRAM MAIN
INTEGER IV(32)
COMMON /IV/IV
CALL DAPCON('ent.dd')
CALL DAPENT('ENT')
CALL DAPREC('IV',IV,32)
CALL DAPREL
DO $10 \mathrm{I}=1,32$
10 WRITE $(6,1000)$ IV (I)
1000 FORMAT $(1 X, I 6)$
STOP
END

DAP program

```
ENTRY SUBROUTINE ENT
INTEGER IV()
COMMON /IV/IV
CALL XO5_SHORT_INDEX_(IV,1)
CALL CONVVFI(IV,32,1)
RETURN
END
```


Results

15.30 X05_SHRC_LV

release 1

1 Purpose

X05_SHRC_LV performs a cyclic long vector shift to the right on bit planes, up to a maximum of 256 planes.

```
2 Specification
    SUBROUTINE X05_SHRC_LV (V , W , DEPTH , DIST)
    INTEGER DEPTH, DIST
    LOGICAL V (,,DEPTH) , W(, ,DEPTH)
```


3 Description

The shift is carried out in two stages. If the shift distance is D, then North/South shifting is used for that part of the shift given by D modulo 32, and an East shift is used to handle the remaining multiples of 32 .

4 References
 None

5 Arguments

V - LOGICAL MATRIX array of dimension (, , DEPTH)
On entry, V contains the data to be shifted; V is unchanged on exit.
W - LOGICAL MATRIX array of dimension (, , DEPTH)
On exit, W contains the shifted version of the data in V .
DEPTH - INTEGER
On entry, DEPTH specifies the dimension of V; thgat is, the number of planes to be shifted (taken modulo 256). DEPTH is unchanged on exit.

DIST - INTEGER
On entry, DIST specifies the magnitude of the shift (taken modulo 1024). DIST is unchanged on exit.

6 Error Indicators

None
7 Auxiliary Routines
None
8 Accuracy
Not applicable
9 Further Comments
None

10 Keywords

Shifting

11 Example

The example compares the result from X05_SHRC_LV with that from the built-in function SHRC. The number of positions at which the two results disagree is counted and displayed.

Host program

```
    PROGRAM MAIN
    COMMON /ICOUNT/ICOUNT
    CALL DAPCON('ent.dd')
    CALL DAPENT('ENT')
    CALL DAPREC('ICOUNT',ICOUNT,1)
    CALL DAPREL
    WRITE(6,1000) ICOUNT
    1000 FORMAT(' ICOUNT =',I5)
    STOP
    END
```

DAP program
ENTRY SUBROUTINE ENT
INTEGER IM(,),JM(,),KM(,)
COMMON /ICOUNT/ICOUNT
CALL XO5_LONG_INDEX (IM, 1)
CALL XO5_SHRC_LV (IM, JM, 32,99)
KM=SHRC (IM,99)
ICOUNT=SUM (KM.NE.JM)
CALL CONVSFI (ICOUNT,1)
RETURN
END

Results

```
ICOUNT = 0
```


15.31 X05_SHRP_LV

1 Purpose
X05_SHRP_LV performs a planar long vector shift to the right on a number of bit planes, up to a maximum of 256 planes.

2 Specification

SUBROUTINE X05_SHRP_LV (V , W , DEPTH, DIST)
INTEGER DEPTH, DIST
LOGICAL V (, , DEPTH) , W (, , DEPTH)

3 Description

The shift is carried out in two stages. If the shift distance is D, then North/South shifting is used for that part of the shift given by D modulo 32, and an East shift is used to handle the remaining multiples of 32 .

4 References

None

5 Arguments

V - LOGICAL MATRIX array of dimension (, , DEPTH)
On entry, V contains the data to be shifted; V is unchanged on exit.
W - LOGICAL MATRIX array of dimension (, , DEPTH)
On exit, W contains the shifted version of the data in V .
DEPTH - INTEGER
On entry, DEPTH specifies the dimension of V; that is, the number of planes to be shifted (taken modulo 256). DEPTH is unchanged on exit.

DIST - INTEGER
On entry DIST specifies the magnitude of the shift (taken modulo 1024). DIST is unchanged on exit.

6 Error Indicators

None
7 Auxiliary Routines
None
8 Accuracy
Not applicable

9 Further Comments
 None

10 Keywords

Shifting

11 Example

The example compares the result from X05_SHRP_LV with that from the built-in function SHRP. The number of positions at which the two results disagree is counted and displayed.

Host program

```
PROGRAM MAIN
COMMON /ICOUNT/ICCOUNT
CALL DAPCON('ent.dd')
CALL DAPENT('ENT')
CALL DAPREC('ICOUNT',ICOUNT,1)
CALL DAPREL
WRITE(6,1000) ICOUNT
1000 FORMAT(' ICOUNT =',I5)
STOP
END
```


DAP program

ENTRY SUBROUTINE ENT
INTEGER IM (,), JM (,), KM (,)
COMMON /ICOUNT/ICOUNT
CALL X05_LONG_INDEX (IM,1)
CALL X05_SHRP_LV (IM, JM, 32,99)
KM=SHRP (IM, 99)
ICOUNT=SUM (KM.NE.JM)
CALL CONVSFI (ICOUNT, 1)
RETURN
END

Results

```
ICOUNT = 0
```


15.32 X05_SOUTH _BOUNDARY

release 1

1 Purpose

X05_SOUTH_BOUNDARY returns a logical matrix containing at most one .TRUE. in each column, corresponding to the last .TRUE. (if any) in each column of the logical matrix parameter. That is, the routine is equivalent to the FORTRAN-PLUS code:

$$
\mathrm{KM}=. \mathrm{FALSE} .
$$

$$
\text { DO } 10 \mathrm{I}=1,32
$$

$$
\text { IF (.NOT. ANY }(L M(, I))) \text { GOTO } 10
$$

$$
\operatorname{KM}(, \mathrm{I})=\operatorname{REV}(\operatorname{FRST}(\operatorname{REV}(\operatorname{LM}(, \mathrm{I}))))
$$

10 CONTINUE

2 Specification

LOGICAL MATRIX FUNCTION X05_SOUTH _ BOUNDARY (LM)
LOGICAL LM (,)

3 Description

The DAP store plane (logical matrix LM) passed to the routine is treated as a set of 32 logical vectors, arranged so that each vector occupies a complete column. Each of these vectors is dealt with independently, but in parallel.
To each vector is ripple-added a column of all-true bits; the southernmost bit of the vector is treated as least significant. The addition is thrown away; the column of carry bits from the addition, and a shifted-north version of the column of carries, are XORed to give a vector with only one true element: the southernnmost .TRUE. element in each input vector. The 32 resultant vectors, produced in parallel, form the required south boundary matrix.

4 References

None

5 Arguments

LM - LOGICAL MATRIX

On entry, LM is the logical matrix whose south boundary is required. LM is unchanged on exit.

6 Error Indicators
 None

7 Auxiliary Routines

None

8 Accuracy

Not applicable

9 Further Comments
 None

10 Keywords

Boundary

11 Example

The following FORTRAN-PLUS fragment takes a 'black and white' logical matrix (a chess board pattern) as input, and returns the south boundary.

```
ENTRY SUBROUTINE ENT
LOGICAL LM(,),KM(,)
EXTERNAL LOGICAL MATRIX FUNCTION X05_SOUTH_BOUNDARY
LM=ALTR(1).LEQ.ALTC(1)
KM=XO5_SOUTH_BOUNDARY (LM)
TRACE 1 (KM)
RETURN
END
```

The result in this case is simply LM .AND. ROWS $(31,32)$

15.33 X05_STRETCH_4

release 1

1 Purpose

X05_STRETCH _ 4 stretches the first quarter of a real matrix A (considered as a long vector), such that each element is repeated four times consecutively.

2 Specification

REAL MATRIX FUNCTION X05_STRETCH _4 (A)
REAL A (,)

3 Description

The routine uses a recursive doubling algorithm to re-arrange the data.

4 References

None
5 Arguments
A - REAL MATRIX
On entry, the first 256 elements of A must be defined. On exit, the 1024 elements of A contain 256 groups of 4 identical elements, the groups being one elements repeated 4 times, from each of the first 256 elements of the input matrix; long vector order is used.

6 Error Indicators
None

7 Auxiliary Routines

None

8 Accuracy

Not applicable

9 Further Comments

None

10 Keywords

Data manipulation

11 Example

The following FORTRAN-PLUS fragment sets up an index matrix such that A(I) =I ($I=1,2, \ldots 256$), with other elements being undefined. This matrix is then 'stretched' so that:

$$
A(I)=\frac{(I-1)}{4}+1 \quad \text { for } \quad I=1,2, \ldots 1024
$$

```
ENTRY SUBROUTINE ENT
REAL A(,)
INTEGER IM(,)
EXTERNAL REAL MATRIX FUNCTION XO5_STRETCH_4
CALL XO5_LONG_INDEX(IM,1)
A(ELSL(1,256)) = FLOAT(IM)
A = XO5_STRETCH_4(A)
RETURN
END
```


15.34 X05_STRETCH _ 8

release 1
1 Purpose
X05_STRETCH_8 stretches the first eighth of a real matrix A (considered as a long vector), such that each element is repeated eight times consecutively.

2 Specification
REAL MATRIX FUNCTION X05_STRETCH _ 8(A)
REAL A (,)

3 Description

The routine uses a recursive doubling algorithm to re-arrange the data.

4 References

None
5 Arguments
A - REAL MATRIX
On entry, the first 128 elements of A must be defined. On exit, the 1024 elements of A contain 128 groups of 8 identical elements, the groups being one elements repeated 8 times, from each of the first 128 elements of the input matrix; long vector order is used.
6 Error Indicators
None

7 Auxiliary Routines

None
8 Accuracy
Not applicable
9 Further Comments
None

10 Keywords

Data manipulation

11 Example

The following FORTRAN-PLUS fragment sets up an index matrix such that $\mathrm{A}(\mathrm{I})=\mathrm{I}$ $(I=1,2, \ldots 128)$, with other elements being undefined. This matrix is then 'stretched' so that:

$$
A(I)=\frac{(I-1)}{8}+1 \quad \text { for } \quad I=1,2, \ldots 1024
$$

```
ENTRY SUBROUTINE ENT
REAL A(,)
INTEGER IM(,)
EXTERNAL REAL MATRIX FUNCTION XO5_STRETCH_8
CALL XO5_LONG_INDEX(IM,1)
A(ELSL(1, 128)) = FLOAT(IM)
A = X05_STRETCH_8(A)
RETURN
END
```


15.35 X05_STRETCH _ N

1 Purpose

X05_STRETCH_N stretches the first $n^{\text {th }}$ of a real matrix A (considered as a long vector), such that each element is repeated n times consecutively ($n=2^{\mathrm{I}}$), I being a positive integer.

2 Specification

REAL MATRIX FUNCTION X05_STRETCH _ N (A, I, IFAIL)
REAL A (,)

3 Description

The routine uses a recursive doubling algorithm to re-arrange the data.

4 References

None

5 Arguments

A - REAL MATRIX

On entry, the first $1024 / n$ elements of A must be defined. On exit, the 1024 elements of A contain 1024/ n groups of n identical elements, the groups being one element repeated n times, from each of the first $1024 / n$ elements of the input matrix; long vector order is used.
I - INTEGER
I is the power of 2 , such that $n=2^{I}$. I is unchanged on exit
IFAIL - INTEGER
On exit, IFAIL $=1$ if the implied value of n is greater than 32

6 Error Indicators

None

7 Auxiliary Routines

None

8 Accuracy

Not applicable

9 Further Comments

None

10 Keywords

Data manipulation

11 Example

The following FORTRAN-PLUS fragment sets up an index matrix such that $A(I)=I$ ($I=1,2, \ldots 128$), with other elements being undefined. This matrix is then 'stretched' so that:

$$
A(I)=\frac{(I-1)}{8}+1 \quad \text { for } \quad I=1,2, \ldots 1024
$$

ENTRY SUBROUTINE ENT
REAL A(,)
INTEGER IM(,)
EXTERNAL REAL MATRIX FUNCTION XO5_STRETCH_N
CALL X05_LONG_INDEX (IM, 1)
$\mathrm{A}(\operatorname{ELSL}(1,128))=\operatorname{FLOAT}(\mathrm{IM})$
$A=X 05 _S T R E T C H _N(A, 3, I F A I L)$
trace 1(a)
RETURN
END

Results

FORTRAN-PLUS Trace
FORTRAN-PLUS Subroutine: ENT at Line 8

Real Matrix Local Variable A in 32 bits - addressed by Stack +0.09

| Col 01) | 0000E+00, | 5 | 0, |
| :---: | :---: | :---: | :---: |
| On $02 \mathrm{Col} \mathrm{01)}$ | $1.0000000 \mathrm{E}+00$, | $5.0000000 \mathrm{E}+00$, | $9.0000000 \mathrm{E}+00$, |
| Row $03 \mathrm{Col} \mathrm{01)}$ | $1.0000000 \mathrm{E}+00$, | $5.0000000 \mathrm{E}+00$, | $9.0000000 \mathrm{E}+00$, |
| ow $04 \mathrm{Col} \mathrm{01)}$ | $1.0000000 \mathrm{E}+00$, | $5.0000000 \mathrm{E}+00$, | $9.0000000 \mathrm{E}+00$, |
| (Row $05 \mathrm{Col} \mathrm{01)}$ | $1.0000000 \mathrm{E}+00$, | $5.0000000 \mathrm{E}+00$, | $9.0000000 \mathrm{E}+00$, |
| (Row $06 \mathrm{Col} \mathrm{01)}$ | $1.0000000 \mathrm{E}+00$, | $5.0000000 \mathrm{E}+00$, | $9.0000000 \mathrm{E}+00$, |
| (Row $07 \mathrm{Col} \mathrm{01)}$ | $1.0000000 \mathrm{E}+00$, | $5.0000000 \mathrm{t}+00$, | $9.0000000 \mathrm{E}+00$, |
| (Row $08 \mathrm{Col} \mathrm{01)}$ | $1.0000000 \mathrm{E}+00$, | $5.0000000 \mathrm{E}+00$, | $9.0000000 \mathrm{E}+00$, |
| (Row $09 \mathrm{Col} \mathrm{01)}$ | $2.0000000 \mathrm{E}+00$, | $6.0000000 \mathrm{E}+00$, | 1.0000000E+01, |
| (Row $10 \mathrm{Col} \mathrm{01)}$ | $2.0000000 \mathrm{E}+00$, | $6.0000000 \mathrm{E}+00$, | 1.0000000E+01, |
| (Row $11 \mathrm{Col} \mathrm{01)}$ | $2.0000000 \mathrm{E}+00$, | $6.0000000 \mathrm{E}+00$, | $1.0000000 \mathrm{E}+01$ |

plus rest of TRACE output...

15.36 X05_SUM_LEFT_I2

1 Purpose

X05_SUM_LEFT_I2 takes as input the long vector A (INTEGER* 2) and returns an (INTEGER* 2) long vector, each of whose elements is the sum of all the elements to the left of the corresponding element of A , excluding the element itself.

2 Specification

INTEGER* 2 MATRIX FUNCTION X05_SUM_LEFT_I2 (A)
INTEGER* 2 A (,)

3 Description

Let $A\left(=A_{i j}\right.$ be the given long vector. The required long vector result $S\left(=S_{i j}\right)$ is given by:

$$
S_{i j}=\sum_{k=1}^{j-1} \sum_{l=1}^{32} A_{l k}+\sum_{k=1}^{i-1} A_{k j}
$$

The sum is broken down into the following steps:
$1 \quad B_{i j}=\sum_{k=1}^{i} A_{k j}$ the cumulative sums down each column
$2 \quad C_{i j}=B_{32, j-1}$ for each i, where $B_{32,0}=0$
$3 \quad D_{i j}=\sum_{k=1}^{j} C_{i k}$ the cumulative sums of C along each row
$4 \quad S_{i j}=D_{i j}+B_{i-1, j} \quad$ where $B_{0, j}=0$
The summations (1) and (3) are performed using standard parallel algorithms (6 steps). The remaining operations consist of shifts and a matrix add.

4 References

None

5 Arguments

A - INTEGER* 2
On entry, A contains the long vector on which the sum left is to be performed. A is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines

None

8 Accuracy

The results are accurate provided there is no overflow.

9 Further Comments

None

10 Keywords
None

11 Example

In the example, a sum-left is performed on an integer long vector with all components equal to 1 . The first five and last five values of the input and resulting long vectors are printed, in long vector order.

```
Host program
    PROGRAM HTSL2
    INTEGER*2 ILV1(32,32),ILV2(32,32)
    COMMON /BDATA/ILV1,ILV2
    CALL DAPCON('tsl2.dd')
    CALL DAPENT('TSL2')
    CALL DAPREC('BDATA',ILV1,1024)
    CALL DAPREL
    WRITE (6,6001)
    WRITE(6,6002) (ILV1(I,1),I=1,5),(ILV1(I, 32),I=28,32)
    WRITE(6,6003)
    WRITE(6,6004) (ILV2(I,1),I=1,5),(ILV2(I, 32),I=28,32)
6001 FORMAT('INPUT VECTOR'/)
6002 FORMAT(5(1X,I1),' . . .',5(1X,I1))
6003 FORMAT(//,'RESULT'/)
6004 FORMAT(5(1X,I1),' . . .',5(1X,I4))
    STOP
    END
```

```
DAP program
    ENTRY SUBROUTINE TSL2
    INTEGER*2 ILV1(,),ILV2(,)
    COMMON /BDATA/ILV1,ILV2
    EXTERNAL INTEGER*2 MATRIX FUNCTION X05_SUM_LEFT_I2
    ILV1=1
    ILV2=X05_SUM_LEFT_I2(ILV1)
    CALL CONVMF2(ILV1)
    CALL CONVMF2(ILV2)
    RETURN
    END
```


Results

INPUT VECTOR

11111 . . . 111111

RESULT

01234 . . . 10191020102110221023

1 Purpose

X05_SUM_RIGHT_I2 takes as input the long vector A (INTEGER* 2) and returns an (INTEGER* 2) long vector each of whose elements is the sum of all the elements on the right of the corresponding element of A. The sum is strict in the sense that the element itself is not included.

2 Specification

INTEGER* 2 MATRIX FUNCTION X05_SUM_RIGHT_I2 (A) INTEGER* 2 A (,)

3 Description

Let $A\left(=A_{i j}\right)$ be the given long vector. The required long vector result $S\left(=S_{i j}\right)$ is given by:

$$
S_{i j}=\sum_{k=j+1}^{32} \sum_{l=i+1}^{32} A_{l k}+\sum_{k=j+1}^{32} A_{k j}
$$

The sum is broken down into the following steps:
$1 \quad B_{i j}=\sum_{l=i+1}^{32} A_{l j}$ the cumulative sums up each column
$2 \quad C_{i j}=B_{32, j+1} \quad$ for each i, where $B_{i, 33}=0$
$3 \quad D_{i j}=\sum_{k=j+1}^{32} C_{i k}$ the cumulative sums of C along each row (right to left)
$4 \quad S_{i j}=D_{i j}+B_{i, j+1} \quad$ where $B_{i, 33}=0$
The summations (1) and (3) are performed using the standard parallel algorithms (6 steps). The remaining operations consist of shifts and a matrix add.

4 References

None

5 Arguments

A - INTEGER* 2

On entry, A contains the long vector on which the sum-right is to be performed. A is unchanged on exit.

6 Error Indicators
 None

7 Auxiliary Routines

None

8 Further Comments

None

9 Keywords

None

10 Example

In the example, a sum-right is performed on an integer vector with all components equal to 1. The first five and last five values of the input and resulting long vectors are printed in long vector order.

Host program

```
    PROGRAM HTSR2
    INTEGER*2 ILV1(32,32),ILV2(32,32)
    COMMON /BDATA/ILV1,ILV2
    CALL DAPCON('tsr2.dd')
    CALL DAPENT('TSR2')
    CALL DAPREC('BDATA',ILV1,1024)
    CALL DAPREL
    WRITE(6,6001)
    WRITE(6,6002)(ILV1(I,1),I=1,5),(ILV1(I, 32),I=28,32)
    WRITE (6,6003)
    WRITE(6,6004)(ILV2(I,1),I=1,5),(ILV2(I, 32), I=28,32)
6001 FORMAT('INPUT VECTOR'/)
6002 FORMAT(5(1X,I1),' . . .',5(1X,I1))
6003 FORMAT(//,'RESULT'/)
6004 FORMAT(5(1X,I4),' . . .',5(1X,I1))
STOP
END
```

```
DAP program
    ENTRY SUBROUTINE TSR2
    INTEGER*2 ILV1(,),ILV2(,)
    COMMON /BDATA/ILV1,ILV2
    EXTERNAL INTEGER*2 MATRIX FUNCTION XO5_SUM_RIGHT_I2
    ILV1=1
    ILV2=X05_SUM_RIGHT_I2(ILV1)
    CALL CONVMF2(ILV1)
    CALL CONVMF2(ILV2)
    RETURN
    END
```


Results

INPUT VECTOR

11111 . . 11111

RESULT

10231022102110201019 . . . 43210

1 Purpose
X05_UNCRINKLE effects a transformation in data storage format for vertical mode data occupying an array of matrices from 'crinkled' to 'sliced' storage.

2 Specification

SUBROUTINE X05_UNCRINKLE (S, L, NR, NC, IFAIL)
<any type, any length>S (, , NR, NC)
INTEGER BL, NR, NC, IFAIL

3 Description

The data is conceptually considered to occupy an array C of components of size 32 NR by 32 NC. (NR or NC are positive integers, not excluding 1). The storage area, S , is an NR by NC array of matrices. In the 'sliced' format:

$$
\mathrm{S}\left(i_{r}, i_{c}, j_{r}, j_{c}\right)=\mathrm{C}\left(i_{r}+32\left(j_{r}-1\right), i_{c}+32\left(j_{c}-1\right)\right)
$$

that is, each value of j_{r} selects a contiguous group of 32 rows of C , and so on.
In the 'crinkled' format:

$$
\left.\left.\mathrm{S}\left(i_{r}, i_{c}, j_{r}, j_{c}\right)=\mathrm{C}\left(j_{r}+\mathrm{NR} i_{r}-1\right), j_{c}+\mathrm{NC}\left(i_{c}-1\right)\right)\right)
$$

that is, each value of i_{r} selects a contiguous group of NR rows of C , and so on.
In the 'sliced' format the conceptual array is divided into subarrays of size 32 by 32 . In the 'crinkled' format the conceptual array is divided into subarrays of size NR by NC.
To carry out the transformation, first a mapping transformation is done on East - West vertical sections of the data area. Each section is regarded as an array of 32 NC data items; each item is of length L by NR (vertical) bits. The transformation reverses the mapping order so that succesive horizontal sets of NC data items are rethreaded vertically.
Then a similar transformation is done on NC separate groups of North - South vertical sections of the data area. Each section of each group is regarded as an array of 32 NR data items; each item is of length L (vertical) bits. The transformation reverses the mapping order so that successive horizontal sets of NR data items are rethreaded vertically.

4 References

None

5 Arguments

S - <any type, any length > MATRIX array of dimension (, , NR, NC)
On entry, S contains the sliced data to be reformatted. On exit, S contains the data in crinkled form.

L - INTEGER

On entry, L specifies the length in bits of the components of S; L is unchanged on exit.

NR - INTEGER

On entry, NR specifies the first unconstrained dimension of S; NR is unchanged on exit.

5 Arguments - continued NC - INTEGER

On entry, NC specifies the second unconstrained dimension of S; NC is unchanged on exit.
IFAIL - INTEGER
Unless the routine detects an error (see Error Indicators below) IFAIL contains zero on exit.

6 Error Indicators
Errors detected by the routine:
IFAIL $=1 \quad$ either NR or NC was less than 1
IFAIL $=2 \quad$ L was less than 1

7 Auxiliary Routines

to be supplied ...

8 Accuracy

Not applicable

9 Further Comments

None

10 Keywords

Crinkled data storage, data formatting, data movement, sliced data storage

11 Example

The following FORTRAN-PLUS fragment shows how the routine can be used in an entry subroutine to convert a matrix set from crinkled to sliced form.

```
    ENTRY SUBROUTINE ENT
    REAL A(, ,2,2)
    COMMON /A/A
    DO 10 I=1,2
    DO 10 J=1,2
    CALL CONVFM4(A(,,I,J))
10 CONTINUE
    CALL XO5_UNCRINKLE(A,4,2,2,IFAIL)
    IF (IFAIL.NE.0) RETURN
C DAP processing
    RETURN
    END
```


1 Purpose

X05_WEST_BOUNDARY returns a logical matrix containing at most one.TRUE. element in each row corresponding to the first .TRUE. (if any) in each row of the logical matrix parameter. That is, the subroutine is equivalent to the FORTRAN-PLUS code:

$$
\begin{array}{ll}
& \text { KM }=\text { FALSE. } \\
& \text { DO } 10 \mathrm{I}=1,32 \\
& \text { IF }(. \text { NOT. ANY }(\operatorname{LM}(\mathrm{I},))) \text { GOTO } 10 \\
& \mathrm{KM}(\mathrm{I},)=\text { FRST }(\mathrm{LM}(\mathrm{I},)) \\
10 & \text { CONTINUE }
\end{array}
$$

2 Specification
LOGICAL MATRIX FUNCTION X05_WEST_BOUNDARY (LM)
LOGICAL LM (,)

3 Description

The DAP store plane (logical matrix LM) passed to the routine is treated as a set of 32 logical vectors, arranged so that each vector occupies a complete row. Each of these vectors is dealt with independently, but in parallel.
To each vector is ripple-added a row of all-true bits; the westernmost bit of the vector is treated as least significant. The addition is thrown away; the row of carry bits from the addition, and a shifted-east version of the row of carries, are XORed to give a vector with only one true element: the westernnmost.TRUE. element in each input vector. The 32 resultant vectors, produced in parallel, form the required west boundary matrix.

4 References

None
5 Arguments
LM - LOGICAL MATRIX
On entry, LM is the logical matrix whose west boundary is required. LM is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines

None

8 Accuracy

Not applicable

9 Further Comments
 None

10 Keywords

Boundary

11 Example

The following FORTRAN-PLUS fragment takes a 'black and white' logical matrix (a chess board pattern) as input and returns the west boundary.

```
ENTRY SUBROUTINE ENT
LOGICAL LM(,),KM(,)
EXTERNAL LOGICAL MATRIX FUNCTION XO5_WEST_BOUNDARY
LM=ALTR(1).LEQ.ALTC(1)
KM=X05_WEST_BOUNDARY(LM)
TRACE 1 (KM)
RETURN
END
```

The result in this case is simply LM .AND. COLS $(1,2)$

E

\because

