## TECHNICAL MANUAL FロR

## TM-11 TAPE TRANSPORT



## LIBT OF EFFECTIVE PAGES

All pages are original through revision $D$, except for page 5-24, which is a revision E page.

## TABLE OF CONTENTS

Section Paragraph ..... Page
I GENERAL DESCRIPTION
1-1 Scope ..... 1-1
1-2 General Description ..... 1-1
1-3 Performance Characteristics ..... 1-1
1-4 Major Assemblies ..... 1-4
1-5 Autotransformer Assembly ..... 1-4
1-6 Cabinet Blower Assembly ..... 1-4
1-7 Cable Assemblies ..... 1-4
1-8 Capstan Servo Assembly ..... 1-4
1-9 Control Electronics Assembly ..... 1-4
1-10 Data Electronics Assembly (Option) ..... 1-5
1-11 Electronics Frame ..... 1-5
1-12 Enclosures ..... 1-5
1-13 Input/Output Panel ..... 1-5
1-14 Logic Power Supply. ..... 1-5
1-15 Operator Control Panel ..... 1-5
1-16 Reel Servo Assembly ..... 1-6
1-17 Tape Deck. ..... 1-6
1-18 Magnetic Head Assembly ..... 1-6
1-19 Photosense Assembly ..... 1-6
1-20 Reel Retainers ..... 1-6
1-21 Tape Cleaners ..... 1-6
1-22 Write Enable Switch Assembly ..... 1-6
1-23 Vacuum Blower Housing Assembly ..... 1-6
1-24 Vacuum Control Assembly ..... 1-7
II INSTALLATION
2-1 Introduction. ..... 2-1
2-2 General ..... 2-1
2-3 Custom Installations ..... 2-1
2-4 Unpacking ..... 2-1
2-5 Physical Dimensions and Weights ..... 2-1
2-6 Power Requirements ..... 2-4
2-7. Input/Output Signals and Connections ..... 2-4
2-8 Input/Output Connectors ..... 2-4
2-9 Command Signals ..... 2-4
2-10 Select. ..... 2-10
2-11 Forward/Reverse. ..... 2-10
Section Paragraph ..... Page
II 2-12 Run/Stop ..... 2-13
2-13 Forward/Stop ..... 2-13
2-14 Reverse/Stop. ..... 2-13
2-15 Rewind ..... 2-13
2-16 Rewind and Lockout ..... 2-13
2-17 High/Low Density Select ..... 2-13
2-18 Status Signals ..... 2-13
2-19 Ready ..... 2-14
2-20 Unit Select ..... 2-14
2-21 Select and Remote Indicator ..... 2-14
2-22 Beginning-of-Tape ..... 2-14
2-23 End-of-Tape ..... 2-14
2-24 Rewinding ..... 2-14
2-25 High/Low Density ..... 2-14
2-26 Write Enable Status ..... 2-14
2-27 Data Signals ..... 2-14
2-28 Write Data ..... 2-15
2-29 Read Data ..... 2-15
2-30 Environment ..... 2-15
2-31 Operating Environment ..... 2-15
2-32 Storage and Shipping Environment ..... 2-15
III OPERATION
3-1 Introduction. ..... 3-1
3-2 Operator Control Panel Controls and Indicators ..... 3-1
3-3 POWER Switch ..... 3-1
3-4 FILE PROTECT Indicator. ..... 3-1
3-5 REMOTE Switch ..... 3-1
3-6 LOCAL Switch ..... 3-1
3-7 HIGH/LOW DENSITY Switch ..... 3-1
3-8 FORWARD Switch ..... 3-3
3-9 REVERSE Switch ..... 3-3
3-10 REWIND Switch ..... 3-3
3-11 STOP Switch ..... 3-3
3-12 Tape Load and Door Interlock Override Switches ..... 3-3
3-13 TAPE LOAD Switch ..... 3-3
3-14 DOOR INTERLOCK OVERRIDE Switch ..... 3-3
3-15 Interlocks ..... 3-3
3-16 Power On ..... 3-4
3-17 POWER Off ..... 3-4
3-18 Reel Access Door ..... 3-4
3-19 Vacuum Failure ..... 3-4
3-20 Photosense Tab Control ..... 3-4
3-21 Loading the Tape ..... 3-5

IV THEORY OF OPERATION
4-1 Scope ..... 4-1
4-2 Capstan Servo System ..... 4-1
4-3 Capstan Motor and Capstan ..... 4-1
4-4 Capstan Servo Control ..... 4-3
4-5 Capstan Servo System Operation ..... 4-3
4-6 Steady-State Operation ..... 4-3
4-7 Power Amplifier. ..... 4-3
4-8 Acceleration Control ..... 4-5
4-9 High Speed Control ..... 4-6
4-10 Reel Servo System ..... 4-7
4-11 Tape Reel and Reel Motor ..... 4-7
4-12 Reel Servo Control ..... 4-8
4-13 Tape Loop Position Sensing ..... 4-8
4-14 Reel Tachometer and Pulley ..... 4-8
4-15 Reel Servo System Operation ..... 4-8
4-16 Forward Operation, Tape Initially at Rest ..... 4-8
4-17 Reverse Operation ..... 4-14
4-18 Forward to Reverse Operation ..... 4-144-194-20Reverse to Forward Operation4-16
4-21 Reel Brake Operation ..... 4-174-16
4-22 Tape Loop Positioning ..... 4-17
4-234-24
Tape Tension ..... 4-17
4-25 Vacuum Pressure Control ..... 4-184-18
4-26 Control Electronics ..... 4-21
4-27 Printed Circuit Board (PCB) Assemblies ..... 4-22
4-28 Write Enable Switch Assembly ..... 4-23
4-29 Photosense Head
4-30 Power On Sequencing ..... 4-23
4-31 Local Mode Operation ..... 4-25
4-32 Forward ..... 4-25
4-33 Reverse ..... 4-25
4-34 Stop ..... 4-25
4-35 Rewind ..... 4-26
4-36 Density Control ..... 4-26
4-37 Remote Mode Operation ..... 4-27
4-38 Forward and Reverse (RUN/STOP and FWD/REV Inputs) ..... 4-27
4-39 Forward and Reverse (FWD/STOP and REV/STOP Inputs) ..... 4-28
4-40 Stop ..... 4-28
Section Paragraph ..... Page
IV 4-41 Rewind ..... 4-29
4-42 Rewind and Lockout ..... 4-29
4-43 Density Select Output ..... 4-30
4-44 Read/Write Head Assembly ..... 4-30
V MAINTENANCE
5-1 General ..... 5-1
5-2 Preventive Maintenance ..... 5-1
5-3 Cleaning the Tape Deck ..... 5-1
5-4 Cleaning the Tape Cleaner ..... 5-6
5-5 Cleaning the Cabinet ..... 5-6
5-6 Cleaning the Positive-Pressure Filter ..... 5-7
Cleaning the Capstan-Motor Filter Screen ..... 5-7
5 Removal and Replacement Procedures ..... 5-8
5-9 Upper Overlay Plate Removal and Replacement ..... 5-8
5-10 Capstan-Motor and Capstan Removal and Replacement ..... 5-8
5-11 Read/Write Head Removal and Replacement ..... 5-9
5-12 Photosense Head Removal and Replacement ..... 5-9
5-13 Reel Retainer Removal and Replacement ..... 5-10
5-14 Reel Motor Assembly Removal and Replacement ..... 5-10
5-15 Reel Motor Brake and Brake Lining
Removal and Replacement ..... 5-11
5-16 Vacuum Chamber Removal and Replacement ..... 5-12
5-17 Checking Reel Motor and Replacement of Brushes ..... 5-14
5-18 Vacuum -Blower Unit and Motor Brush
Removal and Replacement ..... 5-14
5-19 Reel Tachometer Assembly Removal and Replacement ..... 5-16
5-20 Reel Access Door Removal and Replacement ..... 5-17
5-21 Write-Enable Switch Assembly, Removal and Replacement ..... 5-17
5-22 Adjustments ..... 5-18
5-23 Vacuum Adjustment ..... 5-18
5-24 Logic Power Supply Adjustments ..... 5-19
5-25 Reel Brake Air-Gap Adjustment ..... 5-19
5-26 Positive-Pressure Adjustments ..... 5-21
5-27 Capstan Servo System Adjustments ..... 5-22
5-28 Reel Servo System Adjustments ..... 5-30
5-29 Preliminary Adjustments ..... 5-30
5-30 Final Adjustments ..... 5-30
5-31 Photosense Threshold Adjustment ..... 5-31
5-32 Write-Enable Switch Assembly Adjustment ..... 5-32
5-33 Checking Operational Parameters ..... 5-32
5-34 Start- and Stop-Time Checkout ..... 5-32
5-35 Start Time Definition ..... 5-32
Section Paragraph Page
V ..... 5-36
Stop Time Definition ..... 5-32
5-37 Checkout Procedure ..... 5-32
5-38 Interchannel Time Displacement Error (ITDE) Checkout ..... 5-33
5-39 Photosense Checkout ..... 5-36
5-40 Tools and Test Equipment ..... 5-36
VI CIRCUIT DESCRIPTIONS
6-1 Introduction ..... 6-1
VII DRAWINGS
7-1 Introduction ..... 7-1
LIST OFILLUSTRATIONS
Figure Title ..... Page
1-1 TM-11 Tape Transport ..... 1-2
2-1 Input/Output Panel ..... 2-5
3-1 Tape Transport Controls, Indicators, and Tape Loading Path ..... 3-2
3-2 Reflective Tab Placement Diagram ..... 3-4
4-1 Tape Drive, Flow Diagram ..... 4-2
4-2 Capstan Servo System, Flow Diagram ..... 4-4
4-3 Tape Drive Path and Reel Servo Sensors ..... 4-9
4-4 Reel Servo Control, Input and Preamplifier Flow Diagram ..... 4-10
4-5 Reel Servo Control, Driver and Output Flow Diagram ..... 4-11
4-6 File Reel Forward Drive, Simplified Schmitt Trigger Control Voltage Diagram ..... 4-13
4-7 File Reel Forward to Reverse Drive, Simplified Schmitt Trigger Control Voltage Diagram ..... 4-15
4-8 Motor-Speed Control, Block Diagram ..... 4-19
4-9 Motor-Speed Control, Waveforms ..... 4-20
4-10 TM-11 Interlock Circuits ..... 4-24
5-1 Tape Transport, Front View ..... 5-2
5-2 Tape Transport, Rear View ..... 5-3
5-3 Tape Transport Electronics Frame, Front View ..... 5-4
5-4 Reel Motor Brake, Exploded View ..... 5-13
Figure Title ..... Page
5-5 Vacuum-Blower Unit ..... 5-15
5-6 Control Electronics Assembly and Logic Power Supply ..... 5-20
5-7 Capstan Servo System, Flow Diagram ..... 5-23
5-8 Tape Drive Adjustment, Equipment Connection ..... 5-24
5-9 Read Amplifier Output Waveforms, Capstan Servo Adjustment ..... 5-28
5-10 Start- and Stop-Time Measurement, Test Setup. ..... 5-34
5-11 Start- and Stop-Time Measurement, Waveshape. ..... 5-34
5-12 Interchannel Time Displacement Error, Test Setup ..... 5-35
5-13 Interchannel Time Displacement Error, Typical Waveshape ..... 5-35
LIST OF TABLES
Table Title ..... Page
1-1 TM-11 Tape Transport Performance Characteristics ..... 1-3
2-1 Reference Designation Numbers of Assemblies ..... 2-2
2-2 Physical Dimensions and Weights ..... 2-3
2-3 Control Connections (Transport Without Data Electronics) ..... 2-6
2-4 Data Input Connections (Transport Without Data Electronics) ..... 2-7
2-5 Local Control Connections ..... 2-8
2-6 Typical Input Connections (Transport With Data Electronics) ..... 2-11
2-7 Typical Output Connections (Transport With Data Electronics) ..... 2-12
4-1 Printed Circuit Board Cross-Reference List ..... 4-22
5-1 Schedule of Preventive Maintenance ..... 5-5
5-2 Vacuum Vs Line Voltage ..... 5-19
5-3 Frequency Vs Tape Speed ..... 5-25
5-4 Capstan RPM Vs Tape Speed ..... 5-26
5-5 Suggested Tools ..... 5-37

## SECTION I

 GENERAL DESCRIPTION
## 1-1. SCOPE.

This technical manual describes the installation, operation, theory of operation, and maintenance of the Ampex TM-11 Tape Transport. (See Figure 1-1.) Section I includes a general description of the equipment and lists performance characteristics.

## 1-2. GENERAL DESCRIPTION.

The tape transport moves computer grade magnetic tape across a dual-stack magnetic read/write head assembly, in response to commands from either an operator control panel or from remote equipment. Tape is moved in either the forward or reverse direction, or held at a standstill by a servo-controlled direct-drive capstan.

The capstan draws tape from the storage loops in the vacuum chambers. The reel motors are servo-controlled to maintain the correct supply of tape within the chambers.

The tape is held in contact with the capstan by uniform tension derived from the vacuum columns. The vacuum columns remain active during the rewind operation to provide the tension required to ensure proper tape packing. Precision air-lubricated tape guides ensure accurate tape tracking; a positive pressure system provides the lubricating air-flow to the tape guides.

The read/write head assembly reads information from the tape (to external equipment or the optional data electronics) and writes information on the tape (from external equipment or the optional data electronics).

A two-channel photosense head detects reflective markers fixed to the tape. The photosense signals are amplified and are provided to the transport control electronics, the data electronics (option), and the external equipment.

Electro-mechanical interlocks protect the operator, the tape, and the equipment in the event of failure. Programming is inhibited while the equipment stabilizes and the vacuum and positive pressures build up.

The optional data electronics is described in the Data Electronics Technical Manual.

## 1-3. PERFORMANCE CHARACTERISTICS.

Performance characteristics for the tape transport are listed in Table 1-1. Performance characteristics for the optional data electronics are listed in the Data Electronics Technical Manual.


Figure 1-1
TM-11 Tape Transport

TABLE 1-1
TM-11 TAPE TRANSPORT PERFORMANCE CHARACTERISTICS

| TAPE WIDTH | $1 / 2$ inch tape <br> Ampex, IBM, or NAB reels |
| :---: | :---: |
| TAPE SPEEDS | 120 ips standard 75 and 112.5 ips optional |
| REWIND SPEED | 2400 ft in less than 100 seconds |
| START/STOP TIME | $120 \mathrm{ips}: 3.8 \mathrm{~ms}$ $112.5 \mathrm{ips}: 4.0 \mathrm{~ms}$ $75 \mathrm{ips}: 6.0 \mathrm{~ms}$ |
| START DISTANCE | 0.225 inch nominal |
| STOP DISTANCE | 0.225 inch nominal |
| LONG TERM SPEED VARIATION | $\pm 3 \%$ or less of operational speed |
| INSTANTANEOUS SPEED VARIATION SHORT TERM | ISV $= \pm 3 \%$ or less of operational speed 10 ms after start command |
| INTERCHANNEL TIME DISPLACEMENT (STATIC SKEW + 1/2 DYNAMIC SKEW) | $120 \mathrm{ips}: 4.11 \mu \mathrm{sec} \max$ $112.5 \mathrm{ips}: 4.40 \mu \mathrm{sec} \max$ 75 ips: $6.56 \mu \mathrm{sec} \max$ |
| STATIC SKEW (MAX) | $120 \mathrm{ips}=3.36 \mu \mathrm{sec}$ $112.5 \mathrm{ips}=3.60 \mu \mathrm{sec}$ $75 \mathrm{ips}=5.36 \mu \mathrm{sec}$ |
| DYNAMIC SKEW ( $\mathrm{P}-\mathrm{P}$ ) | $120 \mathrm{ips}=1.5 \mu \mathrm{sec}$ <br> $112.5 \mathrm{ips}=1.6 \mu \mathrm{sec}$ <br> $75 \mathrm{ips}=2.4 \mu \mathrm{sec}$ |
| POWER REQUIREMENTS | Voltage: 115 VAC nominal (standard) 230 VAC (optional) <br> Frequency: 48 to 62 cps |

The major assemblies of the TM-11 Tape Transport are the cabinet blower assembly, the cable assemblies, the capstan servo assembly, the control electronics assembly, the optional data electronics, the electronics frame, the enclosure, the input/output panel, the logic power supply, the optional operator control panel, the reel servo assembly, the tape deck, the vacuum blower housing assembly, and either the vacuum control assembly or the autotransformer assembly.

## 1-5. AUTOTRANSF ORMER ASSEMBLY.

The autotransformer assembly contains an autotransformer, a compressor unit, and two relays. The autotransformer provides operating power for the vacuum-blower motor; taps on the autotransformer provide for discrete adjustment of the tape-transport vacuum pressure by changing the voltage supplied to the vacuum-blower motor. The compressor unit provides the positive pressure used at the air-lubricated tape guides, the write-enableswitch assembly, and the magnetic head tape gate. One of the relays is used in the tape load circuit, the other is used in the door-interlock override circuit.

1-6. CABINET BLOWER ASSEMBLY.

The cabinet blower assembly provides cooling for the tape transport.

1-7. CABLE ASSEMBLIES.

Cable and harness assemblies are determined by transport mounting and by selection of optional features.

## 1-8. CAPSTAN SERVO ASSEMBLY.

The capstan servo assembly provides power for the capstan motor and contains the power components of the capstan servo system. Field excitation for electromagnetic-field capstan motors is provided by a field supply furnished in the capstan servo assembly when such motors are used.

## 1-9. CONTROL ELECTRONICS ASSEMBLY.

The control electronics assembly contains the printed circuit board (PCB) assemblies which control the tape transport.

## 1-10. DATA ELECTRONICS ASSEMBLY (OPTION).

The data electronics assembly contains the printed circuit board assemblies which control the writing and reading of data on the tape passing over the magnetic head assembly. The data electronics is an optional feature.

## 1-11. ELECTRONICS FRAME.

The electronics frame mounts into a standard 24 -inch rack-type mount or into the TM-11 console cabinet. The capstan servo assembly, the reel servo assembly, the control electronics assembly, the logic power supply, the optional data electronics, and the cabinet blower assembly are mounted on the electronics frame. The frame is hinged and provides access to the console cabinet and to the assemblies mounted on the frame.

## 1-12. ENCLOSURES.

The TM-11 Tape Transport is designed for vertical installation in a standard 24 -inch rack-type mount or for installation in the Ampex TM-11 console cabinet.

## 1-13. INPUT/OUTPUT PANEL.

The input/output panel provides receptacles for AC power input and distribution and for remote input and output lines. A circuit breaker on the panel provides overload protection for the AC power input to the tape transport. The panel also contains two AC convenience receptacles, which are connected directly to the AC power input. A fuse on the panel provides overload protection for the convenience receptacles. A second fuse on the panel provides overload protection for a voltage step-down transformer mounted on the input/output panel. The transformer supplies operating power for the control relay on the panel. The relay is used in the power on-off control circuit.

## 1-14. LOGIC POWER SUPPLY.

The logic power supply provides +24 V and -24 V unregulated DC voltages and +12 V , -12 V , and -6 V regulated DC voltages for the control electronics PCB assemblies and for the optional data electronics.

## 1-15. OPERATOR CONTROL PANEL.

The operator control panel (OCP) provides local control for the tape transport. The OCP is an optional feature, except when the data electronics option is taken; the OCP is then furnished as standard equipment.

The reel servo assembly provides power for the reel motors and reel brakes, and power for all 12 -volt DC relays used in the tape transport.

## 1-17. TAPE DECK.

The tape deck consists of all tape drive components mounted on a web-reinforced precision casting. A plenum is molded into the casting, and with the addition of a ported cover plate, serves as the positive-pressure manifold for the tape deck. Also mounted on the tape deck are the tape cleaners and the photosense, magnetic head, reel hub, and write-enable-switch assemblies.

1-18. Magnetic Head Assembly. The standard magnetic head assembly is either a 7-track dual-stack read/write unit capable of reading and writing in IBM compatible format, or a 9 -track unit capable of reading and writing in ASCII compatible format. An erase head is supplied as an optional feature.

1-19. Photosense Assembly. The photosense assembly provides IBM compatible BOT (beginning-of-tape; at load point) and EOT (end-of-tape) photosensing of reflective tabs on the back of the tape.

1-20. Reel Retainers. Reel retainers are a selective feature. IBM or NAB compatible screw-down reel retainers may be selected for either the fixed or the file reel. The fixed reel may be a permanently-mounted precision reel assembly.

1-21. Tape Cleaners. The tape cleaners provide for collection of shed materials from the oxide surface of the magnetic tape. A low-velocity air-flow through the tape cleaners deposits these particles in the vacuum-blower-housing plenum.

1-22. Write Enable Switch Assembly. A write enable switch assembly is provided for either the IBM or the NAB compatible file reel.

## 1-23. VACUUM BLOWER HOUSING ASSEMBLY.

The vacuum blower housing assembly contains the vacuum blower and a large capacity plenum, which reduces vacuum pressure fluctuation under rapid load changes. The vacuum blower provides the cooling for the capstan motor and the vacuum for the tape cleaners and the vacuum chambers.

## 1-24. VACUUM CONTROL ASSEMBLY.

The vacuum control assembly contains the vacuum-blower-motor speed control circuit, a compressor unit, and two relays. The vacuum-blower-motor speed control circuit provides operating power for the vacuum-blower motor and maintains a preset motor speed, independent of line voltage fluctuations and minor load changes. The compressor unit provides the positive pressure used at the air-lubricated tape guides, the write-enableswitch assembly, and the magnetic head tape gate. One of the relays is used in the tape load circuit, the other is used in the door-interlock override circuit.

## SECTION II INETALLATION

## 2-1. INTRODUCTION.

This section provides information for the installation of the tape transport.

## 2-2. GENERAL.

The TM-11 Tape Transport is designed for installation in the Ampex TM-11 cabinet or in a standard 24 -inch rack-type enclosure.

The TM-11 Cable Diagram in Section VII is the interconnecting cabling diagram for the basic transport. When the data electronics option is taken, the TM-11211 Cable Diagram in Section VII is used as the interconnecting cabling diagram.

## 2-3. CUSTOM INSTALLATIONS.

Tape reels and overlay panels must be removed to install mounting screws for standard 24 -inch rack-type tape transport installation. Table 2-1 lists the assemblies by reference designation number. See the applicable TM-11 cable diagram in Section VII for assembly locations.

## 2-4. UNPACKING.

Custom-built crates are designed for shipping Ampex equipment. When an enclosure is supplied with the equipment, the components are installed in the cabinet and are ready for installation and operation. When no cabinet is supplied, custom shipping crates are provided for the components.

Care should be exercised during unpacking and the equipment should be checked for shipping damage prior to application of power.

The input/output panel is installed with spacers to recess the front of the panel from the mounting frame during shipment. These spacers must be removed when the tape transport is installed.

## 2-5. PHYSICAL DIMENSIONS AND WEIGHTS.

Table 2-2 lists assembly dimensions and weights. The approximate weight of a system can be calculated by adding the weights of the selected assemblies.

TABLE 2-1
REFERENCE DESIGNATION NUMBERS OF ASSEMBLIES

| REFERENCE DESIGNATION NUMBER | ASSEMBLY |
| :---: | :---: |
| A 1 | Front frame |
| A1A1 | Tape deck |
| A1A 2 | Vacuum control assembly (or autotransformer assembly) |
| A1A3 | Vacuum blower housing assembly |
| A 2 | Electronics frame |
| A2A1 | Capstan servo assembly |
| A2A 2 | Reel servo assembly |
| A2A3 | Control electronics assembly |
| A2A4 | Logic power supply |
| A2A5 | Data electronics (option) |
| A2A6 | Cabinet blower assembly |
| A3 | Operator control panel (option)* |
| A4 | Input/output panel |

*The operator control panel is supplied as standard equipment when the data electronics option is taken.

TABLE 2-2
PHYSICAL DIMENSIONS AND WEIGHTS

| ASSEMBLY | HEIGHT <br> (INCHES) | DEPTH <br> (INCHES) | WIDTH <br> (INCHES) | WEIGHT <br> (POUNDS) |
| :---: | :---: | :--- | :--- | :---: |
| Tape Deck and Front Frame | $59-1 / 2$ | 14 | 24 | 169 |
| Vacuum Control Assy |  |  |  |  |
| (or Autotransformer Assy) | $16-1 / 4$ | $8-3 / 4$ | $21-1 / 2$ | 50 |
| Vacuum Blower Housing Assy | 9 | $8-3 / 4$ | $21-1 / 2$ | 70 |
| Electronics Frame | $56-7 / 8$ | 3 | 13 | $21-3 / 4$ |
| Capstan Servo Assy | $10-1 / 2$ | 9 | 24 | 21 |
| Reel Servo Assy | $5-1 / 4$ | 9 | 19 | 20 |
| Control Electronics Assy | 7 | 8 | 19 | 60 |
| Logic Power Supply | $5-1 / 4$ | 9 | 19 | 45 |
| Data Electronics | 14 | $6-1 / 2$ | 19 | 15 |
| Cabinet Blower Assy | $8-3 / 4$ | $9-1 / 2$ | 19 | 35 |
| Input/Output Panel | $3-1 / 2$ | 5 | 24 | 24 |
| Operator Control Panel | $1-3 / 4$ | $3-1 / 2$ | $11-7 / 8$ | 10 |
| TM-11 Cabinet Assy | $68-1 / 2$ | $29-1 / 2$ | 30 | 220 |

## 2-6. POWER REQUIREMENTS.

The TM-11 Tape Transport is wired for 115 volt operation unless otherwise specified. Maximum operating current at 115 VAC is 24 amperes. Tapped transformers in the vacuum control assembly (or the autotransformer assembly), the servo assemblies, the input/output panel, and the logic power supply provide for operation with either $115 \pm 11.5$ VAC or $230 \pm 23$ VAC input voltage. AC input power is applied at J1 on the input/output panel. (See Figure 2-1.)

## 2-7. INPUT/OUTPUT SIGNALS AND CONNECTIONS.

The input/output signals to the tape transport consist of remote control command and status signals and read/write data signals. Connector J4 on the Ampex input/output panel (Figure 2-1) provides connections for the customer-furnished transport control cable used for the command and status signals. Table 2-3 lists the command and status signals and pin designations for the connector. Connector J5 on the input/output panel provides the connections for the read-data output signals and the write-data input signals. This connector also provides the connections for the optional erase signal. Table 2-4 lists the read- and write-data pin designations and the erase-signal pin designations for the connector. If the operator control panel is not supplied, equivalent controls should be provided for local control during tape changes and maintenance. Connector J2 on the control electronics assembly provides connections for a customer-furnished operator-control-panel equivalent; the signal requirements and pin designations are listed in Table 2-5. Refer to Section III for the description of the operator control panel functions.

When the data electronics option is taken, connector J4 on the input/output panel provides connections for all input signals from the customer to the tape transport. Connector J5 on the input/output panel provides connections for all output signals from the tape transport to the customer. These input and output signals are described in the Data Electronics Technical Manual. Table 2-6 herein lists input signals and pin designations for connector J4. Table 2-7 lists output signals and pin designations for connector J5.

## 2-8. INPUT/OUTPUT CONNECTORS.

Mating connectors for customer fabricated cables are provided. (See Figure 2-1.)

## 2-9. COMMAND SIGNALS.

Command signals to the tape transport control electronics must fulfill the following requirements. The FALSE level must be $0 \pm 1.25$ volts. The TRUE level may be -10 to -14 volts. Input impedance shall not be less than 2000 ohms, nor more than 3000 ohms. Input lines from the remote source shall incorporate source ground. Command signals are listed in Table 2-3.


TABLE 2-3
CONTROL CONNECTIONS (TRANSPORT WITHOUT DATA ELECTRONICS)

| INPUT-OUTPUT PANEL <br> A4J4 PIN NO. | SIGNAL DESCRIPTION | TYPE |
| :---: | :---: | :---: |
| A | REWINDING STATUS (-) | STATUS |
| B | READY STATUS (-) | STATUS |
| C | HIGH/LOW DENSITY STATUS ( $-/+$ ) | STATUS |
| D | SELECT (-) | COMMAND |
| E | UNIT SELECT (-) | STATUS |
| F | SELECT AND REMOTE INDICATOR (+) | STATUS |
| H | HIGH/LOW DENSITY SELECT (-/+) | COMMAND (OUTPUT) |
| J | REWIND COMMAND (-) | COMMAND |
| K | REWIND AND LOCKOUT (-) | COMMAND |
| L | GROUND | -- |
| M | BEGINNING -OF -TAPE (-) | STATUS |
| N | END-OF-TAPE (-) | STATUS |
| P | GROUND | -- |
| R | FORWARD/REVERSE (-/+)* | COMMAND |
| S | RUN/STOP (-/+)** | COMMAND |
| T | GROUND | -- |
| U | WRITE ENABLE STATUS (NC) | STATUS |
| V | - WRITE ENABLE STATUS (C) | STATUS |
| W | WRITE ENABLE STATUS (NO) | STATUS |
| X | SHIELD | -- |

*REVERSE/STOP (-/+) when Fwd/Stop-Rev/Stop logic is supplied. **FORWARD/STOP ( $-/+$ ) when Fwd/Stop-Rev/Stop logic is supplied.

TABLE 2-4
DATA INPUT CONNECTIONS (TRANSPORT WITHOUT DATA ELECTRONICS)

| INPUT/OUTPUT PANEL A4J5 PIN NO. | SIGNAL DESCRIPTION |
| :---: | :---: |
| A | Write Data 1 Return |
| B | Write Data 2 Return |
| C | Write Data 1 |
| D | Write Data 2 |
| E | Write Data 3 |
| F | Write Data 4 |
| G | Write Data 5 |
| H | Write Data 6 |
| J | Erase Head |
| K | Erase Head Return |
| L | Write Head Ground (Grd Lug) |
| M | Write Head Center Tape (Option) |
| N | Write Data 9 Return |
| P | Write Data 8 |
| R | Write Data 3 Return |
| S | Write Data 8 Return |
| T | Write Data 4 Return |
| U | Write Data 5 Return |
| V | Write Data 6 Return |
| W | Write Data 7 Return |
| Y | Write Data 6 |
| Z | Write Data 7 |
| a | Read Data 1 |
| b | Read Data 2 |
| c | Read Data 1 Return |
| d | Write Cable Common Shield |
| e | Read Data 4 |
| f | Read Data 3 |
| g | Read Data 4 Return |
| h | Read Data 5 |
| j | Read Data 6 |
| k | Read Data 2 Return |
| 1 | Read Data 7 |
| m | Read Data 8 |
| n | Read Data 7 Return |
| p | Read Data 8 Return |
| r | Read Data 9 |
| S | Read Data 5 Return |
| t | Read Cable Common Shield |
| u | Read Data 3 Return |
| v | Read Data 9 Return |
| w | Read Head Ground |
| y | Read Data 6 Return |

TABLE 2-5
LOCAL CONTROL CONNECTIONS

| CONTROL ELECTRONICS A2A3J2 PIN NO. | FUNCTION | REQUIREMENTS |
| :---: | :---: | :---: |
| 1 and 17 | Power interlock | Pin 1 connected to pin 17 when power is on |
| 2 and 18 | Power on-off | Pin 2 connected to pin 18 for power on |
| 3 | Remote select | Momentarily connected to logic ground for remote select. Otherwise, open circuit. |
| 4 | Chassis ground | --- |
| 5 | Local select | Momentarily connected to logic ground for local select. Otherwise, open circuit. |
| 6 | OCP reset | Momentarily connected to logic ground during remote select, local select, or stop command. Otherwise, open circuit. |
| 7 | High/low density select | Connected to -12 volt logic bus for high density select. Connected to logic ground for low density select. |
| 8 | Forward command | Momentarily connected to OCP enable bus for forward command. Otherwise, open circuit. |
| 9, 21 , and 23 | Load tape into vacuum chambers (energizes reel servo ready relay) | Pin 9 connected to pin 23 ( +12 volt relay bus) when pin 8 is connected to OCP enable bus. Otherwise, connected to pin 21 ( +12 volt relay interlocked bus). |
| 10 | Reverse command | Momentarily connected to OCP enable bus for reverse command. Otherwise, open circuit. |

TABLE 2-5
LOCAL CONTROL CONNECTIONS (Continued)

| CONTROL ELECTRONICS A2A3J2 PIN NO. | FUNCTION | REQUIREMENTS |
| :---: | :---: | :---: |
| 11 | Rewind command | Momentarily connected to OCP enable bus for rewind command. Otherwise, open circuit. |
| 12 | Stop command | Momentarily connected to logic ground for stop command. Otherwise, open circuit. |
| 13 | Drives select-and-remote indicator lamp | 12 -volt indicator lamp connected between pin 13 and -12 volt logic bus. |
| 14 | Drives local indicator lamp | 12 -volt indicator lamp connected between pin 14 and -12 volt logic bus. |
| 15 | Drives remote indicator lamp | 12 -volt indicator lamp connected between pin 15 and -12 volt logic bus. |
| 16 | Drives file protect indicator lamp | 12 -volt indicator lamp connected between pin 16 and -12 volt logic bus. |
| 17 | Refer to pin 1 |  |
| 18 | Refer to pin 2 |  |
| 19 | -12 Volt logic bus | --- |
| 20 | Logic ground | --- |
| 21 | Refer to pin 9 |  |
| 22 | OCP enable bus | --- |
| 23 | Refer to pin 9 |  |

TABLE 2-5
LOCAL CONTROL CONNECTIONS (Continued)

| CONTROL ELECTRONICS A2A3J2 PIN NO. | FUNCTION | REQUIREMENTS |
| :---: | :---: | :---: |
| 24 | Shield connection (logic ground) | All cabling to connector A2A3J2 must be shielded. (Common shield satisfactory.) |
| 25 through 30 | Spares | --- |
| --- | High-density select indicator | 12 -volt indicator lamp connected between logic ground and -12 volt logic bus when pin 7 is connected to -12 volt logic bus. |
| --- | Low -density select indicator | 12 -volt indicator lamp connected between logic ground and -12 volt logic bus when pin 7 is connected to logic ground. |
| -- | Power -on indicator | 12 -volt indicator lamp connected between logic ground and -12 volt logic bus. |

2-10. Select. When FALSE, the select line disables tape motion inputs to the control electronics and also disables status outputs from the control electronics. A select TRUE level will enable the remote inputs if the transport is in the ready and remote status. Transport ready requires that all interlocks are closed. Remote is TRUE when the REMOTE pushbutton, on the operator control panel, has been pressed.

2-11. Forward/Reverse.* When TRUE, forward direction is selected. When FALSE, reverse direction is selected. The forward/reverse level must be established 5 usec prior to a RUN command. A change in level on this line, while the tape is in motion, will cause the tape to stop.

[^0]TABLE 2-6
TYPICAL INPUT CONNECTIONS (TRANSPORT WITH DATA ELECTRONICS

| INPUT/OUTPUT PANEL A4J4 PIN NO. | SIGNAL DESCRIPTION |
| :---: | :---: |
| A | Ground |
| B | Ground |
| C | Write Data $1(-)$ |
| D | Write Data $2(-)$ |
| E | Write Data 3 (-) |
| F | Write Data 4 (-) |
| G | Spare |
| H | Ground |
| J | Ground |
| K | Ground |
| L | Ground |
| M | Write Data 5 (-) |
| N | Write Data $6(-)$ |
| P | Write Data $7(-)$ |
| R | Write Data $8(-)$ |
| S | Write Data $9(-)$ |
| T | Ground |
| U | Ground |
| V | Ground |
| W | WRITE STROBE (-) |
| X | WRITE RESET (-) |
| Y | RUN/STOP (-/+)* |
| Z | REWIND and LOCKOUT (-) |
| a | Ground |
| b | Ground |
| c | WRITE PERMIT (-) |
| d | READ PERMIT (-) |
| e | FORWARD/REVERSE (-/+)** |
| f | REWIND COMMAND (-) |
| g | Ground |
| h | Ground |
| j | Spare |
| k | Spare |
| 1 | ODD/EVEN PARITY (-/+) |
| m | Shield Ground |

*FORWARD/STOP ( $-/+$ ) when Fwd/Stop-Rev/Stop logic is supplied. **REVERSE/STOP (-/+) when Fwd/Stop-Rev/Stop logic is supplied.

TABLE
2-7
TYPICAL OUTPUT CONNECTIONS (TRANSPORT WITH DATA ELECTRONICS)

| INPUT/OUTPUT PANEL A4J5 PIN NO. | SIGNAL DESIGNATION |
| :---: | :---: |
| A | Ground |
| B | Ground |
| C | Read Data $1(-)$ |
| D | Read Data 2 (-) |
| E | Read Data $3(-)$ |
| F | Read Data 4 (-) |
| G | Read Data $8(-)$ |
| H | Ground |
| J | Ground |
| K | Ground |
| L | Ground |
| M | Read Data $5(-)$ |
| N | Read Data $6(-)$ |
| P | Read Data $7(-)$ |
| R | READ CLOCK (-) |
| S | Ground |
| T | Ground |
| U | Ground |
| V | WRITE ENABLE STATUS (C) |
| W | BEGINNING -OF-TAPE (-) |
| X | END-OF-TAPE (-) |
| Y | REWINDING STATUS (-) |
| Z | READY STATUS (-) |
| a | WRITE ENABLE STATUS (NO) |
| b | WRITE ENABLE STATUS (NC) |
| c | WRITE CHECK ERROR (-) |
| d | Ground |
| e | HIGH/LOW DENSITY STATUS ( $-/+$ ) |
| f | Read Data 9 (-) |
| g | Ground |
| h | PARITY ERROR (-) |
| j | Spare |
| k | UNIT SELECT (-) |
| 1 | SELECT AND REMOTE INDICATOR (+) |
| m | Shield Ground |

2-12. Run/Stop.* A transition to the TRUE level will cause the capstan to move the tape. The direction of the tape motion is determined by the previously established forward/ reverse line. A FALSE level will cause tape motion to stop.

2-13. Forward/Stop** A transition to the TRUE level on the forward/stop line will cause the capstan to move the tape in the forward direction. A change in level on this line, while the tape is in motion, will cause the tape to stop.

2-14. Reverse/Stop** A transition to the TRUE level on the reverse/stop line will cause the capstan to move the tape in the reverse direction. A change in level on this line, while the tape is in motion, will cause the tape to stop.

2-15. Rewind. A TRUE level will initiate a high speed rewind cycle. The tape will rewind to the BOT photosense tab and the capstan will place the tape at the load point. The transport will remain in remote mode. High speed in the forward direction can be provided as an optional feature.

2-16. Rewind and Lockout. A TRUE level will initiate a high speed rewind cycle and return the transport to local mode. The tape will rewind to the BOT photosense tab and the capstan will place the tape at the load point. Unloading of tape from the BOT tab is done manually after operating the TAPE LOAD switch.

2-17. High/Low Density Select. This line is a command output from the operator control panel. The line is used to select the bit-packing density when the data electronics option is taken. When high-density packing is selected the line is at the TRUE level. When low density packing is selected the line is at the FALSE level.

## 2-18. STATUS SIGNALS.

Status signals are returned to the external equipment and are provided for the operator control panel. Output levels, with a 25 foot cable, are $-12 \pm 2$ volts ( 5 ma max to the load) and $0 \pm 1.25$ volts ( 5 ma max from the load) for TRUE and FALSE, respectively, unless otherwise indicated. Status signals to the external equipment are enabled when in the remote mode. The indicator outputs, to the operator control panel, are active in either remote or local mode. Status signals are listed in Table 2-3.

[^1]2-19. Ready. The Ready line remains at the FALSE level until all tape transport interlocks are closed. The ready output is active in the remote mode.

2-20. Unit Select. A TRUE level on the Unit Select line acknowledges that the tape transport has been selected by a TRUE level at the select input. The unit select output is active in the remote mode.

2-21. Select and Remote Indicator. This line is driven by a line driver having a passive output. The line driver must be terminated with an indicator lamp returned to -12 volts. When so terminated, the line driver output is 0 volts whenever the Unit Select line is at the TRUE level, otherwise, the line driver output is 125 ohms returned to ground.

2-22. Beginning-of-Tape (At Load-Point). A TRUE level indicates that the BOT photosense tab is being sensed. The BOT output is active in the remote mode.

2-23. End-of-Tape. A TRUE level indicates that the EOT photosense tab is being sensed. The EOT output is active in the remote mode.
$2-24$. Rewinding. A TRUE level indicates that the tape is rewinding. The rewind status output is active in the remote mode.
$2-25$. High/Low Density. The density status line acknowledges the density select level. A TRUE level indicates that high density has been selected. The density status line is active in the remote mode.

2-26. Write Enable Status. Three lines are provided to indicate the state of the write enable switch. When a file-protect condition exists, the normally closed contact is at logic ground level. When a write enable condition exists, the normally open contact is at logic ground level. These lines are active in both the remote and local mode.

## 2-27. DATA SIGNALS.

The magnetic head assembly is designed for writing and reading NRZI (non-return-to-zero, change on ONEs) digital type information. An instantaneous change in the direction of write current causes a ONE to be written on magnetic tape. A reversal of the magnetic flux direction on the tape will be sensed by the read head and will be interpreted as a ONE.

Write current requirements and read signal outputs are provided below for Ampex 838 tape at a tape speed of 120 ips and a bit-packing density of 800 bpi , using a 7 -track head. These requirements are for direct connection to the heads; refer to the Data Electronics Technical Manual for the data signal requirements when the data electronics option is taken.

2-28. Write Data. The amplitude of the write input signals shall be 60 ma peak. A DC current flow of 60 ma through the optional erase head coil will reduce all previously written data to less than 3 percent.

2-29. Read Data. The read head provides a 20 mv (peak-to-peak) output.

2-30. ENVIRONMENT.

2-31. OPERATING ENVIRONMENT.
The tape transport is designed for operation in a fixed position under the following conditions:

Ambient Air Temperature . . . . . . $32^{\circ}$ to $100^{\circ} \mathrm{F}$
Relative Humidity. . . . . . . . . . . . $20 \%$ to $80 \%$ (with no condensation)
Altitude . . . . . . . . . . . . . . . . . . 0 to 7500 feet

When enclosed, sufficient air must pass over the equipment in the enclosure to maintain the exhaust air temperature (above the transport at the top of the enclosure) at less than $120^{\circ} \mathrm{F}$. The inlet air temperature shall be less than $90^{\circ} \mathrm{F}$. Capstan motor and servo motor housing surface temperatures must not exceed $170^{\circ} \mathrm{F}$. Printed circuit boards and the servo power amplifier temperatures must not exceed $120^{\circ} \mathrm{F}$.

## 2-32. STORAGE AND SHIPPING ENVIRONMENT.

Sudden temperature changes which will cause condensation must be avoided.
Ambient Air Temperature . . . . . . $-30^{\circ}$ to $+150^{\circ} \mathrm{F}$
Relative Humidity. . . . . . . . . . . . . $95 \%$ maximum
Altitude . . . . . . . . . . . . . . . . . . . 0 to 40, 000 feet

## BECTION III OPERATION

## 3-1. INTRODUCTION.

This section lists controls and indicators. Controls and interlocks are explained and tape loading instructions are presented.

3-2. OPERATOR CONTROL PANEL CONTROLS AND INDICATORS.

All operator controls and indicators except the TAPE LOAD and DOOR INTERLOCK OVERRIDE switches are located on the operator control panel of the transport as shown in Figure 3-1.

3-3. POWER Switch. The POWER switch is an alternate-action (push ON, push OFF) pushbutton indicator switch. When the switch is ON and power is applied to the tape transport, the POWER indicator is lighted.

3-4. FILE PROTECT Indicator. The FILE PROTECT indicator is lighted when the write enable ring is not in place. This notifies the operator that the information presently on the tape or file is protected.

3-5. REMOTE Switch. The REMOTE switch is a momentary-ON pushbutton indicator switch that switches the transport to remote or automatic control. When the pushbutton is pressed, the REMOTE indicator lights "white" to indicate REMOTE ready condition. When the transport is operating in the remote mode, the REMOTE indicator lights "red".

3-6. LOCAL Switch. The LOCAL switch is a momentary-ON pushbutton indicator switch that switches the transport to local or manual control. When the transport is in the local or manual mode of operation, the LOCAL indicator is lighted.

3-7. HIGH/LOW DENSITY Switch. The HIGH/LOW DENSITY switch is used with the optional data electronics and is an alternate-action (push HIGH, push LOW) pushbutton indicator switch controlling the density of bit packing on the tape during the write mode of operation. When the transport is in the high-density mode of operation, the HIGH portion of the HIGH/LOW DENSITY indicator is lighted. When the transport is in the low-density mode, the LOW portion of the HIGH/LOW DENSITY indicator is lighted.


Figure 3-1
Tape Transport Controls, Indicators, and Tape Loading Path

3-8. FORWARD Switch. The FORWARD switch is a momentary-ON pushbutton switch which initiates movement of tape in the forward direction. The FORWARD switch also bypasses the short/long loop sensors in the vacuum chambers. Thus, if the tape is loaded in the chambers but is not in the normal operating position, the reel servos are enabled to move tape into the correct operating position in the chambers by pressing the FORWARD pushbutton.

3-9. REVERSE Switch. The REVERSE switch is a momentary-ON pushbutton switch which initiates movement of tape in the reverse direction at normal operation speed.

3-10. REWIND Switch. The REWIND switch is a momentary-ON pushbutton switch which initiates movement of tape in the reverse direction at a high speed until the load point is reached.

3-11. STOP Switch. The STOP switch is a momentary-ON pushbutton switch which stops all tape movement and resets the forward/reverse control circuits. Actuation of the switch returns the transport to local mode.

## 3-12. TAPE LOAD AND DOOR INTERLOCK OVERRIDE SWITCHES.

3-13. TAPE LOAD Switch. The TAPE LOAD switch is a latching-type pushbutton switch and is located on the tape ledge. When the switch is actuated to ON, the reel brakes are disengaged and the vacuum and positive pressures are turned off to facilitate tape loading and unloading. The switch must be actuated to OFF to resume normal operation of the tape transport.

3-14. DOOR INTERLOCK OVERRIDE Switch. The DOOR INTERLOCK OVERRIDE switch is a momentary-ON pushbutton switch and is located on the tape ledge. Actuating the switch energizes an override relay which bypasses the reel access door interlock, thus permitting the tape transport to be operated with the reel access door open. The override circuit is disabled when the reel access door is closed.

## 3-15. INTERLOCKS.

If the power supply fails, the vacuum system or positive pressure system fails, the reel access door is opened, or tape is improperly positioned in the vacuum chambers, power is removed from the servomotors and the reel brakes are applied.

3-16. Power On. The vacuum and positive pressure interlocks prevent operation of the tape transport until the equipment has stabilized and the vacuum and positive pressures have reached operating levels. This takes 3 to 4 seconds.

3-17. POWER Off. When the POWER switch is actuated to the OFF position, power is removed from the transport.

3-18. Reel Access Door. The reel access door is provided with an interlock which will stop the tape transport should the access door be opened during operation.

3-19. Vacuum Failure. If the extreme limits (long or short) of permissible tape position are exceeded in the vacuum storage chamber, the transport will stop.

## 3-20. PHOTOSENSE TAB CONTROL.

The two channel photosense unit automatically stops the tape transport and gives an output to remote equipment when reflective tabs on the tape are sensed. Placement of reflective tabs in two channels on the tape is shown in Figure 3-2.


Figure 3-2
Reflective Tab Placement Diagram

## 3-21. LOADING THE TAPE. (See Figure 3-1.)

## CAUTION

Follow the procedures of paragraph 5-3 for tape deck cleaning.

Use Ampex Part No. 087-007 head cleaner and a cotton swab to clean the head and the tape guides before starting to load the tape. As the tape reel brakes must be released while the tape is being loaded, power to the transport must be switched ON during the following steps.

Step 1: (NAB Compatible Reel Retainer) Slip the file reel over the reel retainer. Hold the reel firmly against the turntable surface and rotate the retainer handle approximately 120 degrees clockwise, at which point the reel retainer handle will lock into position. Ensure that the reel is snugly mounted on the retainer, and is flush against the turntable.
(IBM Compatible Reel Retainer) Slip the file reel over the reel retainer. Hold the reel firmly against the turntable surface and rotate the retainer knob clockwise to the mechanical stop. Ensure that the reel is snugly mounted on the retainer and is flush against the turntable.

Step 2: Actuate the TAPE LOAD switch to ON; wait for the vacuum and positive pressures to reach zero.

Step 3: Unwind 3 to 5 feet of tape leader from the reel.
Step 4: Starting where the tape leaves the file reel, place the tape around the file reel right tape guide, under the tape cleaner, and over the file reel servo tachometer pulley.

Step 5: Pass the tape across the top of the vacuum chamber on the file side of the transport, over the file center tape guide, across the photosense assembly, and across the read/write heads.

Step 6: Pass the tape under the capstan file tape guide, around the capstan, and under the capstan fixed reel tape guide.

Step 7: Pass the tape over the fixed reel center tape guide, across the top of the other vacuum chamber, over the fixed reel servo tachometer pulley, under the tape cleaner and the fixed reel left tape guide, and attach it to the fixed reel (the reel rotates clockwise during wind). Wind at least three extra turns of tape on the fixed reel.

Step 8: Actuate the TAPE LOAD switch to OFF and close the reel access door.


#### Abstract

NOTE At least three seconds should be allowed between Steps 8 and 9 to let the vacuum reach a level which will pull the tape into the vacuum chamber.


Step 9: Momentarily press the FORWARD pushbutton. This will enable the reel servos to form loops in the vacuum chambers. (Refer to paragraph 3-8.)

# SECTION IV THEORY OF OPERATION 

4-1. SCOPE.
This section includes details of the operation of the tape drive and the control electronics. The tape drive (Figure 4-1) is comprised of the capstan servo system and the reel servo system. Commands from the control electronics cause the tape drive to move tape forward, reverse, or keep tape at a standstill.

## 4-2. CAPSTAN SERVO SYSTEM.

In response to command from the control electronics, the capstan servo system controls the direction, acceleration, and velocity of capstan motion. The system is comprised of the capstan motor and the capstan servo control. The voltage appearing across the capstan motor is supplied to the reel servo system as a capstan direction and velocity reference (CAPSTAN VELOCITY input).

The servo system operates in two modes: steady-state or acceleration. In the steady-state mode, the capstan motor is either stopped, or running at a constant speed. In this mode, the servo system maintains constant voltage across the motor armature terminals. The induced armature voltage (back EMF) at constant speed is very large compared to the IR voltage drop in the armature windings, thus the speed of the motor under this condition is practically independent of normal load variations. In the acceleration mode, the servo system maintains constant current through the motor armature until the motor reaches the preset velocity; constant current through the motor armature provides a steady acceleration of motor speed. The armature current required to accelerate the armature and capstan inertial-mass is very large compared to the current required to overcome viscous and static friction losses, thus the acceleration of the motor speed under this condition is practically independent of normal load variations.

## 4-3. CAPSTAN MOTOR AND CAPSTAN.

The capstan motor is mounted on the tape deck casting and is a DC servomotor. The motor has a high-torque-to-low-inertia ratio which permits rapid acceleration. The capstan is mounted directly on the motor shaft. The motor is supplied with either a permanent-magnet field or electromagnetic field. Systems using the electromagnetic-field motor are provided with a constant-current field power supply which is located in the capstan servo assembly.


Figure 4-1
Tape Drive, Flow Diagram

## 4-4. CAPSTAN SERVO CONTROL.

The capstan servo control consists of a bi-polar power amplifier and three control PCB assemblies. The power amplifier is located in the capstan servo assembly and the three PCB assemblies are located in the control electronics card cage.

4-5. CAPSTAN SERVO SYSTEM OPERATION. (See Figure 4-2.)

4-6. Steady-State Operation. Speed of the capstan motor during steady-state operation is principally controlled by the reference generator on the capstan velocity PCB, the control summing amplifier on the capstan acceleration PCB, and the power amplifier. The OVERDRIVE input to the control summing amplifier is effectively at zero level, thus having no appreciable effect in the control circuit. When no forward or reverse command logic signals are applied to the reference generator, the generator outputs are at zero volts DC. When a forward command logic signal is applied at the input of the reference generator, the generator produces a REF ( + ) signal voltage proportional to the preset forward velocity. The voltage is approximately +0.013 volt/ips ( 1.56 volts at 120 ips ) and is amplified in the control summing and power amplifiers and applied to the capstan motor armature, which drives the capstan in the forward direction. When a reverse command logic signal is applied to the reference generator, the generator produces a REF (-) signal voltage (with negative polarity) proportional to the preset reverse velocity. This voltage is amplified in the control summing and power amplifiers and applied to the capstan motor armature, which drives the capstan in the reverse direction. Two potentiometers in the reference generator provide for speed control; one potentiometer controls the REF ( + ) signal voltage (forward speed), the other controls the REF (-) signal voltage (reverse speed).

4-7. Power Amplifier. The power amplifier consists of a capstan control preamplifier stage and nonlinear emitter-follower driver and power output stages. The CAPSTAN CONTROL signal from the control summing amplifier is amplified in the capstan control preamplifier and then applied to the reverse driver stage. The reverse driver is operated class A and controls the reverse output stage and the forward driver, which are operated class B. The forward driver controls the forward output stage, which also is operated class B.

When the CAPSTAN CONTROL signal is at zero level, the reverse driver conducts at a standby level that holds both the reverse output stage and the forward driver at cut-off. When the CAPSTAN CONTROL signal voltage goes positive (reverse command), current flow through the reverse driver is increased from standby to a level that biases on the reverse output stage, which provides a negative voltage output to the capstan motor. When the CAPSTAN CONTROL signal voltage goes negative (forward command), current flow through the reverse driver is decreased from standby to a level that biases on the forward driver, which biases on the forward output stage; the forward output stage then provides a positive voltage output to the capstan motor.


Figure 4-2
Capstan Servo System, Flow Diagram

4-8. Acceleration Control. During steady-state operation, the output from the limiting summing amplifier is essentially zero due to the balancing action of the integrating amplifier. A nonzero output from the limiting summing amplifier causes the integrating amplifier output to change toward a voltage that will return the limiting summing amplifier output to zero.

Prior to the start of acceleration, the limiting summing amplifier is balanced and the output of the integrating amplifier is a negative analog of the applied reference signal; when the applied reference signal changes, the limiting summing amplifier is unbalanced, producing an inverted and amplified output. This output is again inverted and amplified in the drive inverter, summed with the output from the dead-band amplifier, and fed back to the input of the control summing amplifier as the OVERDRIVE signal. The reference voltage and the large OVERDRIVE signal have the same polarity, thus the total input to the control summing amplifier is very large, driving the control summing amplifier and power amplifier towards saturation. The motor armature current is sensed by the current control circuit through the CURRENT SENSE signal, which is the voltage appearing across the shunt resistor in the capstan motor return line. When the CURRENT SENSE voltage matches the preset limits of the dead-band amplifier, the amplifier produces a nonzero output which is subtracted from the signal voltage; this feedback prevents the armature current from increasing further. The loop consisting of the control summing amplifier, the power amplifier, the capstan motor, and the dead-band amplifier is then balanced and the motor armature current is maintained at a preset value, causing a steady motor acceleration. The leading and trailing edges of the drive current pulse from the dead-band amplifier are step shaped to compensate for the spring-mass energy transfer between the motor armature and the capstan. This function is performed by the two pulse shapers on the capstan current control PCB, which operate whenever the DRIVE ( + ) or DRIVE ( - ) signal from the drive inverters on the capstan acceleration PCB changes level at the start or end of an acceleration period.

The FEEDBACK signal is applied to the noninverting input of the dead-band amplifier. The FEEDBACK signal is the summed REF ( + ), REF ( - ), and AC output from the control summing amplifier. The AC output is a phase-shifted feedback, and prevents oscillation in the capstan servo system during acceleration. The REF (+) and REF (-) summed signals cause an increase in the amplitude of the OVERDRIVE signal during starting acceleration to decrease start time.

The CURRENT SENSE voltage is also applied to the inverting input of the integrating amplifier; the DRIVE ( + ) and DRIVE ( - ) signals are summed with the DRIVE REF signal and the balancing input and applied to the noninverting input of the integrating amplifier. The balancing input to the integrating amplifier, from the limiting summing amplifier, is cancelled during acceleration by the summed DRIVE (+) and DRIVE (-) signals. The DRIVE REF signal compensates the integrator for the effects of tape friction. The output of the integrating amplifier during acceleration is proportional to the time integral of the motor armature current (which is in turn proportional to the instantaneous velocity of the motor armature) with the constant of integration continuously modified by the noninverting input to the integrating amplifier. The circuit constants are such that the output of the integrating
amplifier becomes equal to the negative of the reference voltage at the time that the motor velocity reaches the preset value. At that time the limiting summing amplifier becomes balanced, removing the OVERDRIVE signal from the input of the control summing amplifier. The motor armature current then decreases to a low value, since the output of the power amplifier is almost equal to the induced voltage in the motor. The capstan servo system then operates in the steady-state mode until the reference voltage is changed.

4-9. High Speed Control. The high-speed-control circuit operates in conjunction with the reference generator to increase the voltage of the REF ( + ) and REF (-) signals when high speed is programmed. When a REWIND logic command is applied, the high speed control is enabled. If either the REF ( + ) signal is positive or the REF ( - ) signal is negative, the control will supply timing signals to the reference generator to control the onset of a high speed condition so as not to exceed the capability of the reel servo system. The timing signals prevent high-speed motion until normal-speed reel servo motion has stabilized (about 400 ms after initiation of a tape forward or tape reverse command). At this time, the high-speed-control signal forward biases an associated transistor in the reference generator and causes the reference voltage to increase about five volts-per-second until the preset reference voltage for high speed motion has been reached; the relatively-slow increase allows the reel servo system to follow the tape motion. A potentiometer in the reference generator provides control of the rewind speed (on CVE PCB assemblies only).

When the REWIND logic command is removed (stop high-speed motion command), the high-speed-control signals immediately reverse bias the associated transistor in the reference generator to return the reference voltage to the preset level for normal speed. At the same time, discharge of the timing capacitor in the high speed control reverse biases the transistor controlling the inhibit circuit and the inhibit signal level goes negative; the negative signal is applied to the reference generator and causes the reference voltage to immediately drop to zero. The reference voltage change causes the capstan to stop with the highest permissible deceleration. The discharge of the timing capacitor causes the inhibit signal to remain negative for about 400 ms , inhibiting forward or reverse tape commands for that time to allow the reel servo system to stabilize.

When the FWD (-) or REV (+) logic signal at the input of the reference generator is changed from a forward or reverse command to a stop command during high-speed operation, the high-speed-control signal immediately reverse biases the associated transistor in the reference generator to return the reference voltage to zero, causing the capstan to stop with the highest permissible deceleration. At the same time, the inhibit signal goes negative as previously described, and remains negative for about 400 ms , inhibiting forward or reverse tape commands for that time to allow the reel servo system to stabilize.

4-10. REEL SERVO SYSTEM.
The reel servo system (Figure 4-1) consists of two separate reel servo systems. The file reel servo system includes the file reel, the file reel motor, and the file reel servo control. The fixed reel servo system includes the fixed reel, the fixed reel motor, and the fixed reel servo control. Since both systems operate identically, only one description is included. The function of the reel servo system is to maintain the proper amount of tape within the vacuum chambers at all times.

The capstan servo system accelerates or decelerates the tape from zero ips to 120 ips in 3.8 milliseconds. This high speed intermittent movement of the tape exceeds the response capability of the relatively-high-inertia reel motors, thus requiring a low-friction tape storage device at the capstan input and output. Vacuum storage chambers are used on the tape transport for this purpose and "store" sufficient tape to allow the reel motors to reach the speed required to follow capstan tape motion. Loop sensors are located along one side of each vacuum chamber and are used for tape loop position sensing.

When the tape is at a standstill, a tape loop will be formed in each vacuum chamber somewhere between the two middle loop sensors. The vacuum chamber lengths are such that when the tape is accelerated, the reel motor used for tape take-up can accelerate to the rotational speed corresponding to the final capstan tape velocity before the tape loop reaches the lower vacuum interlock port, and the reel motor used for tape feed can accelerate to the rotational speed corresponding to the final capstan tape velocity before the tape loop reaches the upper vacuum interlock port of the other vacuum chamber.

During transition from constant tape velocity in one direction to constant tape velocity in the opposite direction (e.g., forward to reverse) the vacuum chambers store sufficient tape to allow the reel motors to decelerate to zero velocity and accelerate to the required rotational speed in the opposite direction before the tape loop reaches the upper or lower vacuum interlock port, as determined by tape direction. The capstan servo system provides a 400 ms delay between high-speed commands, allowing the reel servo system to stabilize before a change in tape motion occurs.

## 4-11. TAPE REEL AND REEL MOTOR.

The tape reel is coupled to the shaft of the reel motor. The reel motor is a DC series split-phase motor. Separate field windings control forward and reverse motion. A brake is attached to the rear of each motor. When power is removed from the brake, the brake is applied, stopping tape motion.

## 4-12. REEL SERVO CONTROL.

The reel servo control consists of tape loop position sensing (Figure 4-3), the reel tachometer, the reel servo preamplifier, the reel servo driver, and the reel servo assembly. The function of the reel servo control is to control the motion of the reel motor.

## 4-13. TAPE LOOP POSITION SENSING.

Four photoconductive units (loop sensors) sense the position of the tape loop in each vacuum chamber. Two loop sensors in each chamber sense the tape loop position during forward operation; these are the FEED FWD and LOOP SENSE FWD loop sensors. The other two loop sensors in each chamber sense the tape loop position during reverse operation; these are the FEED REV and LOOP SENSE REV loop sensors. A separate excitation lamp provides the light source for each sensor. When the light source is exposed by the tape loop, the loop sensor resistance decreases, effectively providing a switching action by changing the bias level on an associated transistor switch located in the reel servo preamplifier. Depending on the transistor switch function, the illuminated loop sensor changes a forward bias to reverse bias, or a reverse bias to forward bias. In forward operation, a short loop is maintained in the file reel vacuum chamber and a long loop is maintained in the fixed reel vacuum chamber. In reverse or rewind operation, a long loop is maintained in the file reel vacuum chamber and a short loop is maintained in the fixed reel vacuum chamber.

## 4-14. REEL TACHOMETER AND PULLEY.

The reel tachometer pulley is mounted directly to the shaft of the reel tachometer, which is mounted between the vacuum chamber and the tape reel. The tachometer produces a DC output proportional to the speed of shaft rotation and monitors the velocity of tape passing between the tape reel and vacuum chamber. The high frequency component of the tachometer output is filtered out and the DC voltage is supplied to the reel servo preamplifier.

## 4-15. REEL SERVO SYSTEM OPERATION.

Operation of the 120 ips transport reel servo system is described. Operation of the 112.5 ips , and 75 ips transports is identical, except for speed and start/stop times.

4-16. Forward Operation, Tape Initially at Rest. (See Figures 4-4 and 4-5.) When the tape is at a standstill the tape loops in the vacuum chambers rest at some point between the FEED FWD and FEED REV loop sensors. When a forward command is applied to the capstan servo system, the capstan accelerates the tape rapidly to a velocity of 120 ips . The tape loop in the file reel vacuum chamber will be drawn towards the FEED FWD loop sensor as the capstan pulls tape. When the tape loop passes the FEED FWD loop sensor, the sensor


Figure 4-3
Tape Drive Path and Reel Servo Sensors

is illuminated and biases off the associated transistor switch in the reel servo preamplifier. When the transistor switch is cut off, a voltage divider circuit which had been effectively grounded by the transistor switch is enabled. The CAPSTAN VELOCITY input, which at this time is the positive voltage appearing across the capstan motor, is applied to the voltage divider as a reference of the capstan velocity. The output from the voltage divider is applied to the OUTPUT FILE summing junction. The relatively-high positive voltage at the summing junction causes a high current flow through the reel servo driver input in the positive direction. This high current flow is amplified in the reel servo driver amplifier and phase-splitter stage and applied to the input of the forward Schmitt trigger stage, where it exceeds the trigger level and turns on the Schmitt trigger. When the Schmitt trigger is on it gates on the forward output SCR in the reel servo assembly, which applies operating voltage to the file reel motor, accelerating the motor in the forward direction. The amplifier and phasesplitter stage also applies an inverted signal (negative polarity) to the input of the reverse Schmitt trigger stage, which remains cut off.

When the file reel motor starts rotating, tape is fed from the file reel into the file reel vacuum chamber. The tape passes over the file reel tachometer pulley, rotating the tachometer shaft; the tachometer produces a negative DC voltage output directly proportional to the speed of the tape being supplied from the file reel. This negative DC voltage is applied to the OUTPUT FILE summing junction, where it is summed with the output from the voltage divider circuit. Figure $4-6$ shows the control voltage appearing at the input of the Schmitt trigger during tape acceleration from a standstill to a constant velocity. The outputs from the reel tachometer and the FEED FWD voltage divider are summed and produce voltage curve 1. When the tape velocity reaches speed A, the sum of the reel tachometer output and FEED FWD voltage divider output is zero, and the forward Schmitt trigger is cut off, which allows the forward output SCR to turn off. When the forward output SCR turns off, operating power is removed from the reel motor and the inertia of the reel motor maintains the forward rotation. The tape velocity from the file reel at this time is approximately 90 percent of that of the capstan velocity.

Since the tape is being supplied to the vacuum chamber at a rate 10 percent slower than it is being removed, the tape loop will continue upwards and pass the LOOP SENSE FWD loop sensor, which will then be illuminated. The illuminated sensor biases off the associated transistor switch in the reel servo preamplifier, enabling the LOOP SENSE FWD voltage divider. The two voltage divider outputs (FEED FWD and LOOP SENSE FWD) are summed with the reel tachometer output and produce voltage curve 2 shown in Figure 4-6. The resultant voltage exceeds the trigger level of the forward Schmitt trigger, turning on that circuit. The Schmitt trigger then gates on the forward output SCR and the reel motor is accelerated in the forward direction. The acceleration continues until the tape velocity reaches speed $B$, at which time the resultant of the FEED FWD voltage divider output, the LOOP SENSE FWD voltage divider output, and the reel tachometer output reaches zero (as shown by voltage curve 3), which cuts off the forward Schmitt trigger. When the forward Schmitt trigger is cut off, the forward output SCR turns off, which removes operating power from the reel motor. The inertia of the reel motor maintains the forward rotation. The tape velocity from the file reel at this time is approximately 110 percent of the capstan velocity.


Figure 4-6
File Reel Forward Drive, Simplified Schmitt Trigger Control Voltage Diagram

Since the tape is being supplied to the vacuum chamber at a rate 10 percent faster than it is being removed, the tape loop moves downward and covers the LOOP SENSE FWD loop sensor, which biases on the associated transistor switch in the reel servo preamplifier. That transistor is then saturated and effectively grounds the LOOP SENSE FWD voltage divider, causing the control voltage to go negative, as shown by voltage curve 4. This negative voltage holds the forward Schmitt trigger cut off. Since the amplifier and phase-splitter stage also applies an opposite polarity signal to the input of the reverse Schmitt trigger, that circuit is triggered on and gates on the reverse output SCR in the reel servo assembly. When the reverse output SCR is gated on, operating power is applied to the reverse windings of the file reel motor and the motor is decelerated. This deceleration continues until the tape velocity drops to speed A, where the sum of the reel tachometer output and FEED FWD voltage divider output is again zero, which cuts off the reverse Schmitt trigger. This allows the reverse output SCR to turn off, which removes operating power from the reel motor. The inertia of the reel motor maintains the forward rotation. The tape velocity from the file reel at this time is again approximately 90 percent of the capstan velocity.

Since the tape is again being supplied to the vacuum chamber at a rate 10 percent slower than it is being removed, the tape loop will move upwards, pass the LOOP SENSE FWD loop sensor and initiate the previously described sequence of forward and reverse power application to the reel motor. Thus, at constant capstan velocity, the reel servo system 'hunts" as controlled by voltage curves 2, 3, 4, and 5 shown in Figure 4-6. This causes the tape loop to move above and below the LOOP SENSE FWD loop sensor.

The fixed reel servo control operates in the same manner as described for the file reel, except that the tape and tape loop move in the opposite direction to that described for the file reel.

4-17. Reverse Operation. (See Figures 4-4 and 4-5.) Operation of the reel servo control circuitry for reverse or rewind tape drive is identical to that described for forward operation, except that the CAPSTAN VELOCITY input voltage has a negative polarity, the tape loop position is sensed by the reverse loop sensors which control the reverse transistor switches, the reel tachometer output voltage is positive, and the tape and tape loops move in the opposite direction to that described for forward operation.

4-18. Forward to Reverse Operation. (See Figures 4-4 and 4-5.) When the tape is moving forward at a constant capstan velocity, the tape loops are moving above and below the LOOP SENSE FWD loop sensors. When the command to the capstan servo system is changed from forward to reverse, the capstan rapidly reverses direction. The CAPSTAN VELOCITY input voltage drops from the positive level to zero in 3.8 ms , then increases to the negative level in another 3.8 ms . The reel servo system changes from forward to reverse operation in the following manner (file reel servo operation will be described).

Initially, the tape velocity from the file reel is at speed B shown in Figure 4-7, and the forward output SCR has just turned off, removing operating power from the reel motor


Figure 4-7
File Reel Forward to Reverse Drive, Simplified Schmitt Trigger Control Voltage Diagram
(this condition was selected for description, the transfer from forward to reverse operation can occur at any time). The tape loop is above the LOOP SENSE FWD loop sensor. When the capstan motor reverses direction, the CAPSTAN VELOCITY input voltage goes negative, reducing the FEED FWD and LOOP SENSE FWD voltage divider outputs to a lower DC voltage, established by a biasing circuit. When this occurs, the principal input to the OUTPUT FILE summing junction will be the reel tachometer output, which is now a relatively-high negative voltage. This high negative voltage produces voltage curve 1, which triggers the reverse Schmitt trigger circuit. This in turn gates on the reverse output SCR, which applies operating power to the reverse windings of the reel motor. The reel motor then starts decelerating and the decreasing speed of the reel tachometer produces the output causing voltage curve 2. The capstan is feeding tape into the vacuum chamber at the preset velocity, causing the tape loop to move downward in the vacuum chamber (the reel motor is still rotating forward, also feeding tape into the vacuum chamber). When the reel tape velocity reaches zero, the output from the reel tachometer is zero, which cuts off the reverse Schmitt trigger. This allows the reverse output SCR to turn off, which removes operating power from the reel motor, thus allowing the reel motor to stop. The reel motor is stopped before the tape loop reaches the FEED REV loop sensor. When the tape loop moves downward past the FEED REV loop sensor, the reel servo system then operates in the same manner as previously described for reverse operation.

4-19. Reverse to Forward Operation. Reverse to forward operation of the reel servo control circuitry is identical to the forward to reverse operation previously described, with the exception of the voltage polarities of the loop sensors and transistor switches, and the tape and tape loop direction of motion.

4-20. Null Detector Circuit. (See the reel servo assembly schematic in Section VII.) Power to the reel motors is supplied from the +115 volt rms full-wave bridge rectifier circuit in the reel servo assembly. The output of the rectifier circuit is a pulsating DC voltage which has a peak value of approximately +163 volts. If a reel motor SCR is switched on when the instantaneous voltage is at or near the peak value, high frequency noise (RFI) will be generated. The amount of RFI generated can be minimized by allowing the SCR to switch on only when the pulsating DC voltage is at a low instantaneous value. A null detector circuit, consisting of Q5 and associated component parts in the reel servo assembly, performs this function.

Current flow through R4, CR14, and CR26 clamps the voltage at the emitter of Q5 to -1 volt. The base of Q5 is controlled by the pulsating DC voltage applied through R1. The voltage divider circuit consisting of R3 and R1 shifts the voltage level applied to the base of Q5 to provide a negative voltage at the base when the pulsating DC voltage is at a low positive instantaneous value. The threshold level of the null detector circuit is established by R1 and R3. CR 13 limits the negative base-to-emitter voltage differential to 0.5 volts.

When the instantaneous voltage of the +115 volt rectifier circuit is above the threshold level, the base-to-emitter voltage differential at Q5 is positive, and Q5 is saturated. CR21
is forward biased and clamps the voltage at the gate of each SCR to -0.5 volt, which reverse biases the gate-to-cathode junction of each SCR. (The cathode of each SCR is at +0.5 volt, established by current flow through CR19.) When a Schmitt trigger in the reel servo driver is triggered during the time Q5 is saturated, the SCR is prevented from conducting by the clamped gate-to-cathode negative voltage; the SCR will start conducting only when Q5 is cut off.

When the instantaneous voltage of the +115 volt rectifier circuit is below the threshold level, the base-to-emitter voltage differential at Q5 is negative, and Q5 is cut off. The collector of Q5 swings positive and CR21 is back biased. The SCR can then be gated on by the positive gate voltage from the Schmitt trigger. When the positive gate voltage is removed, the SCR stops conducting the next time the pulsating DC voltage returns to zero, since the current in the SCR is then reduced to zero.

4-21. Reel Brake Operation. During normal operation, the deenergized tape load relay (located in the autotransformer assembly) provides power to the reel brakes, causing the brakes to release. During tape loading or unloading, the tape load relay is energized, and the reel brakes are released by power provided by the deenergized reel servo ready relay (located in the reel servo assembly).

4-22. Tape Loop Positioning (Transport Stopped). When the tape transport is stopped, the tape loop is positioned between the FEED FWD and FEED REV loop sensors by the reel servo system. Since the capstan motor is not operating, the CAPSTAN VELOCITY input is zero volts, which would not trigger the Schmitt trigger circuits to start the servo action. Reel servo operation with the capstan motor stopped is provided by DC bias voltages applied to the transistor switch voltage dividers. The DC bias voltages are sufficient to trigger the Schmitt trigger circuits when the loop sensors are covered or uncovered. The bias voltages are provided by the resistance voltage dividers shown in Figure 4-4 adjacent to the CAPSTAN VELOCITY input isolation diodes. The servo action is the same as previously described, except that the tape loop is positioned and then remains stationary (no forward or reverse tape motion). When tape is loaded on the tape transport, the reel servo system will position the tape loop as described when the FORWARD pushbutton is pressed and held momentarily.

4-23. Tape Tension (Transport Stopped). Bias voltages are supplied to the reverse windings of the file reel motor and to the forward windings of the fixed reel motor to maintain a fixed tension on the tape against the vacuum pressure when the transport is stopped. The fixed tension prevents the tape loops in the vacuum chambers from moving downwards. The bias voltage is removed during tape loading and unloading when the TAPE LOAD switch is pressed.

## 4-24. VACUUM BUFFER STORAGE.

The vacuum buffer storage isolates the capstan servo system from the reel servo system. With the capstan servo system isolated from the reel servo system, the capstan servo system accelerates a minimum of tape mass. As tape is drawn from the vacuum buffer storage, it is replaced by the reel servo system. The vacuum provides proper tape tension on both sides of the capstan. The vacuum buffer storage consists of a vacuumblower assembly and two vacuum chamber assemblies. If the vacuum fails or the tape is in an abnormal position, the vacuum interlock switches interrupt the capstan servo system and the reel servo system, and the brakes are applied to the reel motors. If the tape loop is too short, the upper vacuum interlock switch orifice is exposed to the vacuum within the chamber, which actuates the switch. If the tape loop is too long, the lower vacuum interlock switch orifice is exposed to the air directly, which actuates the switch.

## 4-25. VACUUM PRESSURE CONTROL (VACUUM CONTROL ASSEMBLY ONLY).

The vacuum pressure is maintained at a preset level by the vacuum -blower motor, which is operated at a constant speed by the vacuum-blower-motor speed control circuit. An SCR speed control circuit, located in the vacuum control assembly, regulates the average power applied to the motor; with constant average power applied, the motor operates at a constant speed.

The motor is connected in series with the diode bridge and the bridge load circuits. (See the vacuum control schematic diagram in Section VII.) The diode bridge consists of CR1, CR2, CR3, and CR4. The bridge load circuits consist of SCR Q1 and the gate control circuits. When SCR Q1 is not conducting, current flow through the motor is limited to a low value by the relatively-high impedance of the gate control circuits. (See Figure 4-8.) When SCR Q1 is conducting, full line voltage, less the small voltage drop across two of the bridge diodes and Q1, is applied to the motor. The average power applied to the motor is determined by the peak value of the input voltage, the input-voltage phase angle at which Q1 is gated on, and the input-voltage phase angle at which Q1 is cut off. The motor-speed control circuit controls the phase angle at which Q1 is gated on. Q1 is cut off each time the input voltage goes through the zero-voltage point and the anode current drops below the holding level. An integrating circuit senses the average power applied to the motor and changes the phase angle at which Q1 is gated on to maintain the average power at a preset level. This phase angle change holds the motor speed constant over the normal input voltage range.

The output from the bridge is a full-wave rectified pulsating DC voltage. At the beginning of each half cycle, the DC voltage from the bridge establishes 18 volts across zener diode VR1. (See Figure 4-9B.) C4 starts to charge to that voltage through R3. (See Figure 4-9C.) When C4 charges to the firing voltage of unijunction transistor Q2, Q2 conducts and C4 discharges rapidly through R4 and base B1 to emitter of Q2. The rapid discharge of C4 produces a positive voltage spike at the gate of SCR Q1, and Q1 is triggered on. (See Figure 4-9E.) (Current flow through Q1 produces the positive voltage appearing at the gate of Q1 immediately after the voltage spike.) As C4 discharges, the emitter current of Q2 drops below the holding current level and Q2 stops conducting.


Figure 4-8
Motor-Speed Control, Block Diagram


Figure 4-9
Motor-Speed Control, Waveforms

When Q1 is gated on, the voltage across R1 and VR1 drops to a low value, and C4 remains in the discharged state. The input voltage is applied to the motor as previously described. During the positive half-cycles at the bridge input, rectifier diode CR5 is forward biased. When CR5 is forward biased, integrating capacitor C5 charges to a voltage proportional to the voltage across the motor. (See Figure 4-9D.) When Q1 is cut off, C5 starts to discharge slowly through R6 and R5.

The voltage level to which C5 charges affects the current flow through Q3, which, in turn, controls the rate at which C4 charges at the beginning of each half-cycle. When the input voltage is above the nominal value, C 5 charges to a relatively-high voltage, and current flow through Q3 is also relatively high. The current flow from Q3 flows through R3. The relatively-high current flow causes more voltage drop across R3 than during a nominal input voltage condition. Since the total voltage across C4 and R3 when SCR Q1 is cut off is regulated to 18 volts by VR1, any increase in the voltage drop across R 3 will reduce the voltage at C4, which causes an increase in the time required for C 4 to charge to the firing voltage of Q2. Similarly, the relatively-low current flow through R3 when the input voltage is below the nominal value allows C 4 to charge to the firing voltage of Q 2 faster than when the input voltage is at the nominal value. This control of the C 4 charging rate provides the average-power regulation that maintains a constant motor speed.

Since C5 is charged only during the Q1 on time in the positive half-cycle of the input voltage and then starts discharging through R6 and R5, the change in the voltage across C5 causes a greater current flow through Q3 at the beginning of the negative half-cycle of the input voltage than at the beginning of the positive half-cycle. This change causes the difference in the phase angle delays shown in Figure 4-9.

Potentiometer R6 is used to set the speed control circuit for an average power output corresponding to a specific motor speed. When R 6 is set for minimum resistance, less of the input voltage appears across C5 and the average power output from the speed control circuit is relatively high. When R6 is set for maximum resistance, more of the input voltage appears across C5 and the average power output from the speed control circuit is relatively low.

Zener diode VR2 is used to establish the required bias range for Q3. Capacitor C3 prevents transients from gating on Q1.

## 4-26. CONTROL ELECTRONICS.

The control electronics accepts tape input control signals from the external equipment, issues tape control commands to the tape drive system, and returns status signals to the external equipment. (See the control electronics schematic in Section VII.) Tape command interlocks are provided by the control electronics to ensure that erroneous command sequences will not cause tape damage or system malfunction. The control electronics also includes the necessary logic for rewind to load point and other computer-oriented functions. In the descriptions of the control electronics logic functions that follow, an UP
level indicates relatively positive as compared to the relatively-negative DOWN level. The operator control panel (optional equipment) provides switches and indicators to permit local operation of the tape transport for loading of tape and for maintenance.


#### Abstract

MOTE If the operator control panel option is not taken, equivalent circuitry should be connected to connector J2 of the control electronics. (See the operator control panel schematic in Section VII.)


## 4-27. PRINTED CIRCUIT BOARD (PCB) ASSEMBLIES.

The control electronics circuitry is on four PCB assemblies, which are located at J7, J8, J9, and J10 in the control electronics card cage. Table 4-1 lists typical printed circuit board assemblies used in the control electronics and the tape drive system. Two forward/ reverse logic PCB assemblies are listed; one is used with Run/Stop-Fwd/Rev logic, the other is used with Fwd/Stop-Rev/Stop logic. Refer to Section VI for a detailed description of the operation of the circuits on the boards.

TABLE 4-1
PRINTED CIRCUIT BOARD CROSS-REFERENCE LIST

| MNEMONIC | DESCRIPTION | ASSEMBLY* | SCHEMATIC* | LOCATION |
| :---: | :--- | :---: | :---: | :---: |
| CAC | Capstan Acceleration -C | $3114631-10$ | 3114632 | J13 |
| CIA | Capstan Current Control | $3114627-10$ | 3114626 | J12 |
| CVE | Capstan Velocity -E | $3119513-01$ | 3119515 | J14 |
| FLA | Forward/Reverse Logic |  |  | J10 |
| FLC | Fwd/Stop-Fwd/Rev | $3107082-10$ | 3107083 |  |
| LLA | Local/Remote Logic | $3112360-10$ | 3112361 |  |
| PHC | Photoamplifier Type C | $3110237-10$ | 3110238 | J9 |
| RLC | Rewind Logic -C | $3116167-10$ | 3116168 | J7 |
| RPB | Reel Servo Preamplifier | $3116172-10$ | 3116175 | J15 |
| RRA | Reel Servo Driver | $3110143-10$ | 3110144 | J16 |

[^2]
## 4-28. WRITE ENABLE SWITCH ASSEMBLY.

When no write enable ring is installed in the file reel, the write enable switch (S7) contacts are as shown in the tape deck schematic in Section VII and the write enable relay (K1) in the control electronics is deenergized. When the relay is deenergized, the FILE PROTECT indicator on the operator control panel is lighted. When the write enable ring is in place in the file reel, a sensor probe on the write enable switch assembly is forced back by the ring; a pneumatic actuator then retracts the sensor probe (when positive pressure is applied to the actuator) to prevent drag on the file reel. When the sensor probe is retracted, the write enable switch is actuated to the other position and the write enable relay is energized. Power is removed from the FILE PROTECT indicator lamp when the relay is energized.

When the positive pressure drops to ambient, the sensor probe returns to the sense position and the write enable switch contacts return to their original position.

## 4-29. PHOTOSENSE HEAD.

The photosense head consists of a light source and the necessary photoelectric elements to sense the light reflected from the reflective markers on the tape.

## 4-30. POWER ON SEQUENCING.

Circuit breaker CB1 on the input/output panel must be set to the ON position before the AC input power at J1 can be applied to the tape transport. When the POWER pushbutton switch on the operator control panel is in the ON position, AC relay K1 on the input/output panel is energized, and power is applied to the tape transport. The operating power for AC relay K 1 is provided by transformer T 1 on the input/output panel. Voltage limiter VR1 on the panel limits the peak voltage applied to the relay coil.

When power is applied to the tape transport, the transport is not ready for operation until the transport ready relay is energized through the transport-ready-relay interlock circuits. (See Figure 4-10.) The transport-ready-relay interlock circuit is complete when the power supplies are operating, the reel access door interlock switch is closed, and the vacuum and positive pressure switches sense proper vacuum and pressure. While the transport ready relay is not energized, an UP level is applied to the TRANSPORT READY input to the local/remote logic (LL) PCB. With the UP level applied to the TRANSPORT READY input, the MASTER RESET output from LL is at the UP level. The UP level MASTER RESET prevents any tape motion by resetting and inhibiting the outputs of the forward/reverse logic (FL) PCB and the rewind logic (RL) PCB. The UP level on the TRANSPORT READY input sets LL for local mode operation. When all interlocks are closed the transport ready relay is energized, applying a DOWN level to the TRANSPORT READY input of LL which causes the MASTER RESET signal to go to a DOWN level. The LOCAL pushbutton indicator is lighted, indicating


Figure 4-10
TM-11 Interlock Circuits
that the transport is ready for operation in the local mode. The transport ready relay is deenergized whenever an interlock is opened, stopping tape motion and returning the tape transport to the local mode.

## 4-31. LOCAL MODE OPERATION.

The local mode is selected by any of the following:
(a) Pressing the LOCAL pushbutton. When the LOCAL pushbutton is pressed, an UP level is applied to the LOCAL PB input to LL.
(b) Pressing the STOP pushbutton. When the STOP pushbutton is pressed, an UP level is applied to the STOP PB input to LL.
(c) Upon receipt of a DOWN level on the REWIND AND LOCKOUT input to RL, the GO LOCAL output from RL goes to the DOWN LEVEL, resetting LL to the local mode.
(d) When an interlock is opened or during power on sequencing, as described previously.

When the tape transport is in the local mode, the OCP ENABLE and REMOTE (-) outputs from LL go to the UP level and the LOCAL INDICATOR output is enabled. The OCP ENABLE output enables the FORWARD, REVERSE, and REWIND pushbutton switches on the operator control panel. The LOCAL INDICATOR output lights the LOCAL pushbutton indicator. The REMOTE (-) output enables the EOT input to FL. Inputs and outputs to the external equipment are disabled.

4-32. Forward. When the FORWARD pushbutton is pressed, an UP level is applied to the FORWARD PB input to FL. This sets the FWD (-) output from FL to the DOWN level, causing the tape drive system to move tape in the forward direction.

4-33. Reverse. When the REVERSE pushbutton is pressed, an UP level is applied to the REVERSE PB input to FL. This sets the REV ( + ) output from FL to the UP level, causing the tape drive system to move tape in the reverse direction.

4-34. Stop. Once initiated, tape motion will continue until the MASTER RESET goes to the UP level or a BOT or EOT tab is sensed. When the STOP, REMOTE, or LOCAL pushbutton is pressed, the respective PB input to LL goes to the UP level causing the MASTER RESET output to go to the UP level, which resets the FWD (-) and REV (+) outputs of FL, stopping tape motion. When the BOT tab is sensed, the BOT (+) output from the photoamplifier (PH)

PCB goes to the UP level, resetting the FWD ( - ) and REV ( + ) outputs from FL. When the EOT tab is sensed, the EOT (+) output from PH goes to the UP level, resetting the FWD (-) and REV ( + ) outputs from FL, stopping tape motion.

4-35. Rewind. When the REWIND pushbutton is pressed, an UP level is applied to the REWIND PB input to RL. If the BOT tab is not sensed, the UP level REWIND PB input sets the REWIND (-) output to the DOWN level. The DOWN level REWIND (-) output is applied to the tape drive system, enabling high speed tape rewind. The DOWN level REWIND (-) signal is inverted to produce an UP level REWIND ( + ) signal. The UP level REWIND ( + ) signal is coupled through diode A2A3CR3 to FL and sets the REV (+) output to the UP level, causing the tape drive system to move tape in the reverse direction at high speed. The UP level REWIND ( + ) signal also sets the REWINDING ( + ) output to the UP level, which enables the BOT (+) input to FL. Tape rewinding continues until the STOP pushbutton is pressed or the BOT tab is sensed by the photosense head. If the STOP pushbutton is pressed, tape motion is stopped as described in paragraph 4-34 (the MASTER RESET signal also resets the REWIND and REWINDING outputs from RL). As the BOT tab passes the photosense head, the BOT ( + ) output from PH applies an UP level to the BOT ( + ) inputs of RL and FL. The BOT ( + ) input to RL resets the REWIND outputs and triggers a time delay circuit (located on the reel servo preamplifier PCB) that will reset the REWINDING output approximately 500 milliseconds later. The 500 millisecond delay holds the REWINDING output TRUE while tape motion is stopped and the reel servo system stabilizes. The REWIND (-) output at the UP level initiates a rewind stop sequence in the tape drive system.

If the BOT tab does not overshoot the photosense head following rewind, the REWINDING output from RL is reset by the 500 -milisecond time delay circuit on the reel servo preamplifier PCB and rewind is complete.

If the BOT tab overshoots the photosense head, the negative-going BOT (+) signal produced when the BOT tab overshoots resets the REV (+) and REV (-) outputs and sets the FWD (-) output of FL to the UP level, which causes the tape drive system to reverse tape motion to the forward direction as soon as the tape drive system rewind stop sequence is completed. The UP level REV ( - ) output enables the TIME DELAY (+) input to RL (pin 22). When the BOT tab is returned to the photosense head, the BOT ( + ) output from PH goes to the UP level and resets the REWINDING output from RL (through the TIME DELAY input) and the FWD output from FL; this stops tape motion and rewind is complete.

4-36. Density Control. The HIGH/LOW DENSITY pushbutton switch controls the HI/LO DENSITY SELECT output which is applied to RL and to either the data electronics when supplied or to the external equipment when the data electronics is not supplied. The input to RL is not enabled during local operation and has no effect; the HI/LO DENSITY STATUS output from RL remains at the UP level during local operation. The HI/LO DENSITY SELECT output is supplied to the external equipment through pin H of J4 on the input/output panel when the data electronics is not supplied. When the HIGH/LOW DENSITY pushbutton switch is in the HIGH position, the HI/LO DENSITY SELECT output is -12 volts; the output is 0 volts when the switch is in the LOW position.

4-37. REMOTE MODE OPERATION.
Remote mode is selected when the REMOTE pushbutton is pressed. When the REMOTE pushbutton is pressed, an UP level is applied to the REMOTE PB input to LL. The REMOTE PB input disables the LOCAL INDICATOR output, resets the OCP ENABLE output to a DOWN level, and enables the REMOTE INDICATOR output and the SELECT (-) input of LL. The DOWN level OCP ENABLE output from LL removes control from the FORWARD, REVERSE, and REWIND pushbuttons on the operator control panel. The REMOTE INDICATOR output lights the REMOTE pushbutton indicator "white".

A DOWN level SELECT (-) input to LL causes the UNIT SELECT (-) and SELECT \& REMOTE (-) outputs from LL to go to the DOWN level and enables the SELECT \& REMOTE INDICATOR output of LL. The SELECT \& REMOTE INDICATOR output lights the REMOTE pushbutton indicator "red". The SELECT \& REMOTE (-) output is applied to RL and resets the UNIT SELECT ( + ) output from RL to an UP level. The SELECT \& REMOTE ( - ) input to RL also enables the REWIND COMMAND ( - ) and REWIND AND LOCKOUT ( - ) inputs to RL. The UNIT SELECT (+) output from RL performs the following functions:
(a) Enables the HI/LO DENSITY and READY (+) inputs to RL and the REWINDING (+) input to the REWINDING STATUS (-) circuit of RL. The READY (-) output from RL goes to the DOWN level when the READY ( + ) input is enabled.
(b) Enables the BOT (-) and EOT (-) outputs to the external equipment.
(c) Enables the RUN/STOP and FWD/REV inputs (or the FWD/STOP and REV/STOP inputs) to FL.

4-38. Forward and Reverse (RUN/STOP and FWD/REV Inputs). When the standard forward/ reverse logic PCB is supplied, a direction level must be established prior to the run transition to move tape at normal speed in either the forward or reverse direction. An interval of 5 microseconds (minimum) should separate the commands. A DOWN level on the FWD/ REV input line to FL, followed (after 5 microseconds) by a transition to the DOWN level on the RUN/STOP input line to FL, will cause the tape to run forward. An UP level on the FWD/ REV line, followed by a DOWN level on the RUN/ STOP line, will cause the tape to run in the reverse direction. A transition from 0 volts to -12 volts on the RUN/STOP line constitutes a run command. A transition from -12 volts to 0 volts constitutes a stop command. Forward and reverse are selected as follows:
(a) Forward. When the FWD/REV input to FL is set to -12 volts, the RUN/STOP input controls the forward run output. The transition of the RUN/STOP input to -12 volts sets the FWD (-) output from FL to the DOWN level. A DOWN level FWD (-) output from FL causes the tape drive system to move tape in the forward direction.
(b) Reverse. When the FWD/REV input to FL is set to 0 volts and the BOT tab is not sensed, the RUN/STOP input controls the REV ( + ) output from FL. If the BOT tab is sensed, the run command is ignored. The transition of the RUN/STOP input to -12 volts sets the REV ( + ) output from FL to the UP level. An UP level REV (+) output from FL causes the tape drive system to move tape in the reverse direction.

4-39. Forward and Reverse (FWD/STOP and REV/STOP Inputs). When the forward/reverse logic -C PCB is supplied, a level transition on one of the two direction lines establishes the direction and run command required to move tape at normal speed in either the forward or the reverse direction. A transition to the DOWN level on the FWD/STOP input line to FL will cause the tape to run forward. A transition to the DOWN level on the REV/STOP input line to FL will cause the tape to run in the reverse direction. A transition to the DOWN level on both lines will cause tape motion to stop (caused by improper input to logic circuits of the tape drive system). A transition from 0 volts to -12 volts constitutes a run command. A transition from -12 volts to 0 volts constitutes a stop command. Forward and reverse are selected as follows:
(a) Forward. A transition to -12 volts at the FWD/STOP input to FL sets the FWD (-) output from FL to the DOWN level. A DOWN level FWD (-) output from FL causes the tape drive system to move tape in the forward direction.
(b) Reverse. When the BOT tab is not sensed, a transition to -12 volts at the REV/STOP input to FL sets the REV (+) output from FL to the UP level. An UP level REV ( + ) output from FL causes the tape drive system to move tape in the reverse direction.

4-40. Stop. Once initiated, tape motion continues as long as the RUN/STOP input (or the FWD/STOP or REV/STOP input) remains at -12 volts unless the BOT tab is sensed or the STOP, REMOTE, or LOCAL pushbutton is pressed. The FWD (-) or REV (+) output from FL is reset by the BOT or MASTER RESET ( + ) input to FL. The FWD ( - ) or REV ( + ) output from FL is also reset by the transition of the RUN/STOP input (or the FWD/STOP or REV/ STOP input) to 0 volts. The MASTER RESET (+) input to FL is set to the UP level by the respective PB input to LL when the STOP, REMOTE, or LOCAL pushbutton is pressed. When the STOP or LOCAL pushbutton is pressed, the tape transport is set to local mode.

## MOTE

When the EOT tab is sensed in the remote mode, tape motion is not stopped. The EOT (-) output to the external equipment indicates the EOT tab is being sensed. The external equipment must set the RUN/STOP input (or the FWD/STOP input) to zero volts to stop tape motion. This is provided so that if an operation is being performed when the EOT tab is sensed, the operation can be completed before the tape is stopped.

4-41. Rewind. When the REWIND COMMAND (-) input to RL is at the DOWN level, the REWIND (-) output is set to the DOWN level, causing the tape drive system to initiate tape rewind as described in paragraph 4-35. Tape rewinding continues until the BOT tab passes the photosense head or the STOP pushbutton is pressed. If the STOP pushbutton is pressed, tape motion is stopped as described in paragraph 4-34; the MASTER RESET ( + ) signal also resets the tape transport to local mode. As the BOT tab passes the photosense head, the BOT ( + ) input from PH applies an UP level to the BOT (+) inputs of FL and RL. The BOT ( + ) input to RL resets the REWIND (-) outputs. The BOT (+) input to FL resets the FWD and REV outputs. This stops tape motion and rewind is complete, except as described in paragraph 4-35. The time delay circuit prevents the REWINDING (-) status signal from going FALSE for a period of 500 milliseconds after reverse tape motion stops, thus allowing the tape to be returned to the BOT tab. The BOT (-) status output is held FALSE during rewind by the REWINDING (-) signal from RL.

## note

The REWIND COMMAND (-) input must be disabled by the external equipment during forward and reverse commands. The RUN/ STOP input (or the FWD/STOP and REV/ STOP inputs) must be disabled by the external equipment during rewind.

4-42. Rewind and Lockout. When the REWIND AND LOCKOUT (-) input to RL is at the DOWN level, it causes the tape to be rewound as described in paragraph 4-41. The DOWN level REWIND AND LOCKOUT ( - ) input to RL causes the GO LOCAL ( - ) output to go to the DOWN level, which resets the tape transport to the local mode.

## NOTE

The REWIND AND LOCKOUT (-) input must be disabled by the external equipment during forward and reverse commands. The RUN/ STOP (or the FWD/STOP and REV/STOP inputs) must be disabled by the external equipment during the rewind and lockout operation.

4-43. Density Select Output. During remote mode operation, the HI/LO DENSITY input to RL is enabled by the SELECT \& REMOTE (-) input. When the HIGH/LOW DENSITY pushbutton switch is in the HIGH position, the HI/LO DENSITY STATUS output from RL is at the DOWN level; when the switch is in the LOW position, the output is at the UP level. The HI/LO DENSITY STATUS output is supplied to the external equipment through pin C of J4 (or pin Y of J4 when the optional data electronics is supplied) on the input/output panel.

4-44. READ/WRITE HEAD ASSEMBLY.
The tape transport uses a dual-stack head assembly for read and write functions. Head operation is electrically independent of other tape transport components (except when the optional data electronics is supplied) although accurate tape contact with the head assembly is derived mechanically from related transport parts. Read/write amplifiers and detectors are required to reproduce or deliver data signals to and from the head assembly when the optional data electronics is not supplied. An erase head may be incorporated as an optional feature.

## EECTION V MAINTENANCE

## 5-1. GENERAL.

The TM-11 Tape Transport is designed to require minimum maintenance and service. Figures 5-1, 5-2, and 5-3 assist in rapid identification of major components. A listing of the tools and test equipment used in maintenance of the tape transport will be found in Table 5-5 at the end of this section.

## 5-2. PREVENTIVE MAINTENANCE.

A program of planned preventive maintenance will prevent unscheduled down time. Maintenance procedures may be scheduled by either the number of eight hour shifts, or by the hours of running time. (Refer to Table 5-1.)

Lubriation of the tape transport is not necessary.

## 5-3. CLEANING THE TAPE DECK.

Check the tape deck as follows:

## CAUTION

Solvents such as carbon tetrachloride may dissolve the head lamination adhesive. Use Ampex Head Cleaner (Catalog No. 087-007) for the head and metal guides. Denatured alcohol may be used for the capstan, vacuum chambers, and all rubber components.

Ampex Head Cleaner shall not be used to clean rubber parts as its use will damage the rubber.

Cleaning agents must not come in contact with the tape. Cleaning agents must not be allowed to penetrate bearings.

Step 1: Use a clean, lint-free cloth or cotton swab moistened with Ampex Head Cleaner to carefully wipe off all oxide and dirt that may be gathered on or around head stacks, head cover, tape cleaner, and tape guides. Allow the cleaning agent to evaporate completely before loading tape on the transport; the fluid agent may damage the tape.


Figure 5-1
Tape Transport, Front View
(Access Door and Lower Overlay Door Removed)


Figure 5-2
Tape Transport, Rear View
(Electronics Frame in Open Position)


Figure 5-3
Tape Transport Electronics Frame, Front View
(Assemblies Mounted)

TABLE 5-1
SCHEDULE OF PREVENTIVE MAINTENANCE

| MAINTENANCE OPERATION | FREQUENCY |  | APPROX <br> MIN EA | QTY | $\begin{gathered} \text { TOTAL } \\ \text { TIME } \end{gathered}$ | $\begin{aligned} & \text { TEXT } \\ & \text { REF } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SHIFTS | HOURS |  |  |  |  |
| Clean tape deck | 1 | 8 | 3 | 1 | 3 | 5-3 |
| Clean positive-pressure filter | 15 | 120 | 5 | 1 | 5 | 5-6 |
| Clean capstan-motor filter screen | 15 | 120 | 5 | 1 | 5 | 5-7 |
| Clean tape cleaners | 100 | 800 | 3 | 2 | 6 | 5-4 |
| Clean cabinet | 200 | 1600 | 10 | 1 | 10 | 5-5 |
| Replace capstan motor and capstan | 300 | 2400 | 10 | 1 | 10 | 5-10 |
| Check vacuum-blower motor brushes | 1250 | 10,000 | 3 | 4 | 12 | 5-17 |
| Check reel motor brushes. | 625 | 5000 | 3 | 4 | 12 | 5-14 |
| Replace positive-pressure unit | 625 | 5000 | 15 | 1 | 15 | -- |
| Replace photosense head assembly | 1250 | 10,000 | 15 | 1 | 15 | 5-12 |
| Replace reel motor and reel brake | 1250 | 10,000 | 20 | 2 | 40 | 5-13 |
| Replace vacuum -blower unit | 1250 | 10,000 | 15 | 1 | 15 | 5-17 |
| Replace loop sensor assembly | 1250 | 10,000 | 5 | 8 | 40 | -- |
| Replace cabinet blower unit | 1250 | 10,000 | 15 | 1 | 15 | -- |
| Replace reel tachometers and pulleys | 3750 | 30,000 | 10 | 2 | 20 | 5-18 |

Step 2: Carefully place a clean, lint-free cloth or cotton swab moistened with alcohol against the capstan and tachometer pulley. Rotate the capstan and pulley by hand until all oxide and dirt are removed.

Step 3: Using a clean, lint-free cloth or cotton swab moistened with alcohol, throughly clean inside surfaces of the vacuum chambers. Remove oxide and dirt from the loop sensors and lamp windows.

Step 4: Clean vacuum chamber covers by repeating above procedure.
Step 5: Using a clean, lint-free dry cloth or cotton swab, thoroughly clean the surface of the photosense head.

Step 6: Using a clean, lint-free dry cloth, thoroughly clean the surface of the tape ledge.

5-4. CLEANING THE TAPE CLEANERS.
Clean the tape cleaners as follows:
Step 1: Remove the cleaner blades by loosening the blade retaining screws; the blades can then be removed from the cartridge.

Step 2: Using a clean, lint-free cloth or cotton swab moistened with Ampex Head Cleaner, carefully wipe off all oxide and dirt that may have gathered on or around the corners and mating surfaces.

Step 3: Reinstall blades and retaining screws, taking care that the blades are flush against the mating faces of the cartridge so that the tape path is not disturbed.

5-5. CLEANING THE CABINET.

The entire cabinet housing the tape transport, the tape transport units, and the cabinet blower filter should be thoroughly cleaned.

## CAUTION

The window of the reel access door is plastic. Clean with a soft cloth moistened with denatured alcohol. Do not clean window with dry cloth.

5-6. CLEANING THE POSITIVE-PRESSURE FILTER.
Clean the positive-pressure filter as follows:
Step 1: Remove the glass filter bowl by unscrewing the bowl from the filter body.

Step 2: Remove the felt filter element.
Step 3: Clean the filter element in alcohol and dry thoroughly.
Step 4: Reassemble by reversing the procedure followed during disassembly.

5-7. CLEANING THE CAPSTAN-MOTOR FILTER SCREEN.
Clean the capstan-motor filter screen as follows:
Permanent-Magnet-Field Motor.

CAUTION

Do not attempt to disassemble the capstan motor for any purpose. The field magnet is extremely powerful, and must be demagnetized before the motor can be disassembled. The motor should be returned to the manufacturer for any repairs requiring disassembly.

Using a vacuum cleaner with a small brush attachment, vacuum all dust from the 14 screened air-intake ports on the capstan motor.

## Electromagnetic-Field Motor.

Step 1: Remove the filter-screen cap from the motor air intake (located between the two cooling hose fittings).

Step 2: Wash the filter-screen cap in a mild detergent solution, rinse, and then dry thoroughly.

Step 3: Replace the filter-screen cap on the motor air intake.

## 5-8. REMOVAL AND REPLACEMENT PROCEDURES.

5-9. UPPER OVERLAY PLATE REMOVAL AND REPLACEMENT.
An upper overlay plate covers the mechanism of the tape deck. Remove the overlay plate as follows:

Step 1: Unload the tape from the transport.
Step 2: Remove the fixed reel and hub assembly. The reel and hub assembly is held in place by three screws.

Step 3: Remove the upper overlay plate. The overlay plate is held in place by four screws; two screws are located under each tape reel.

Step 4: Reassemble by reversing the procedure followed during disassembly .

5-10. CAPSTAN-MOTOR AND CAPSTAN REMOVAL AND REPLACEMENT.

## WARNING

Disconnect electrical power to prevent injury to personnel or damage to equipment.

Step 1: Remove the upper overlay plate by following the procedure of paragraph 5-9.

Step 2: Remove the capstan retaining screw .

## CAUTION

The capstan is a precision device which should be handled with extreme care. Handle the capstan by the hub to avoid contact with the peripheral surfaces of the capstan. A hub-type capstan puller should be used to remove the capstan.

Step 3: Remove the capstan from the capstan motor shaft.
Step 4: Disconnect the electrical wiring from the capstan motor.

Step 5: Remove the four screws holding the capstan motor to the tape deck casting (the motor must be supported while the screws are removed). Lift the capstan motor out of the tape deck casting from the rear.

Step 6: Reassemble by reversing the procedure followed during removal.

5-11. READ/WRITE HEAD REMOVAL AND REPLACEMENT.

## CAUTION

The head assembly is a precision instrument which should be handled with extreme care.

Step 1: Remove the overlay plate by following the procedure of paragraph 5-9.
Step 2: Remove the two screws securing the read/write head assembly to the tape deck casting.

Step 3: Pull the read/write head assembly out to disconnect the electrical connectors.

Step 4: Replace the read/write head assembly by reversing the procedure followed during removal.

5-12. PHOTOSENSE HEAD REMOVAL AND REPLACEMENT.

## WARNING

Disconnect electrical power to prevent injury to personnel or damage to equipment.

Step 1: Remove the three screws holding the tape ledge in place.
Step 2: Pull the tape ledge away from the tape deck to allow access to the two screws attaching the photosense mounting bracket to the deck. Remove the two screws.

Step 3: Disconnect the photosense head fanning-strip electrical connector from A1A1TB4.

Step 4: Pull the photosense head electrical cable through the tape deck casting to remove the photosense head and mounting bracket.

Step 5: Remove the two screws holding the photosense head to the mounting bracket and remove the photosense head from the bracket.

Step 6: Replace the photosense head by reversing the procedure followed during removal.

## 5-13. REEL RETAINER REMOVAL AND REPLACEMENT.

Remove the IBM Type reel retainer as follows.
Step 1: Remove the reel retainer cover assembly by rotating the locking knob counterclockwise.

Step 2: Remove the three Allen-head screws attaching the reel retainer base assembly to the reel motor turntable and remove the base assembly and turntable shims.

Step 3: Replace the reel retainer by reversing the procedure followed during removal. Do not install the turntable shims at this time.

Step 4: Apply power to the tape transport. Load a reel of tape on the transport.
Step 5: Program the tape transport for forward and reverse operation. Check tape tracking at the reel of the newly installed reel retainer. Install turntable shims (removed during Step 2) as necessary to obtain proper tape tracking.

5-14. REEL MOTOR ASSEMBLY REMOVAL AND REPLACEMENT.
Remove the reel motor assembly as follows:
Step 1: Remove the reel (file or fixed) from the reel motor to be replaced. If a permanently-mounted fixed reel is used, the reel is held in place by three screws located under the dust cap at the center of the reel. Remove the three screws; remove the fixed reel and hub assembly and the turntable shims.

Step 2: Where used, remove the reel retainer in accordance with the procedure of paragraph 5-13.

Step 3: Remove the reel brake in accordance with the procedure of paragraph 5-15.

Step 4: Disconnect the reel motor electrical cable from terminal board A1A1TB2.

Step 5: Remove the four nuts securing the reel motor to the tape deck casting. Remove the reel motor.

## NOTE

Note the position of any shims located under the flange of the reel motor; retain the shims for use during reassembly.

Step 6: Install the reel motor in the tape deck casting. Install the shims removed during Step 5 in the same position from which they were removed.

Step 7: Check that the turntable base is parallel within 0.002 -inch to the machined face of the tape deck casting. If necessary, relocate the shims installed in Step 6.

Step 8: Install the reel brake in accordance with the procedure of paragraph 5-15.

Step 9: Replace the permanently-mounted fixed reel removed in Step 1 (or the reel retainer removed in Step 2) by reversing the procedure followed during removal. Do not install the turntable shims at this time.

Step 10: Apply power to the tape transport. Load a reel of tape on the transport.
Step 11: Program the tape transport for forward and reverse operation. Check tape tracking at the reel of the newly installed reel motor. Install turntable shims as necessary to obtain proper tape tracking.

5-15. REEL MOTOR BRAKE AND BRAKE LINING REMOVAL AND REPLACEMENT.
Remove the reel motor brake and brake lining as follows.
Step 1: Apply power to the transport and operate the TAPE LOAD switch. Ensure that the brake is in the energized position so that the reel rotates freely.

To prevent loss of parts of the assembly due to spring action, the brake should not be removed in the deenergized condition.

Step 2: With power applied, remove the four screws from the rear of the brake housing. Remove the brake assembly from the reel motor. (See Figure 5-4.)

Step 3: Remove the reel brake lining assembly from the reel motor hub.
Step 4: To replace the brake lining assembly with a new part, place the new lining assembly onto the motor brake hub and reassemble the brake assembly, reversing the procedures outlined in Steps 2 and 3. Adjust the air gap in accordance with the procedure of paragraph 5-25.

Step 5: To replace the complete brake assembly, place the brake lining as sembly removed in Step 3 into the brake housing. Remove the four mounting screws from the end plate. Place the end plate on the brake housing and secure, using the four long screws removed in Step 2.

Step 6: Remove power from the transport.
Step 7: Disconnect the electrical cable of the brake from terminal board A1A1TB2.

Step 8: Connect the electrical cable of the new brake assembly to terminal board A1A1TB2.

Step 9: Apply power to the transport.
Step 10: Install the new brake assembly by reversing the procedures outlined in Steps 2 and 5. Adjust the air gap in accordance with the procedure of paragraph 5-25.

## CAUTION

Do not remove the four long screws from the rear of the brake assembly before applying power to the transport.

## 5-16. VACUUM CHAMBER REMOVAL AND REPLACEMENT.

Remove the vacuum chamber as follows.
Step 1: Remove the reel access door in accordance with the procedure of paragraph 5-20.

Step 2: Open the lower overlay door.


Figure 5-4
Reel Motor Brake, Exploded View

Step 3: Remove the vacuum chamber covers.
Step 4: Disconnect the electrical cables of the loop sensor assemblies at terminal board A1A1TB3.

Step 5: Disconnect the vacuum interlock tubing at the rear of the vacuum chamber.

Step 6: Loosen the screws securing the tape ledge.
Step 7: Remove the four screws attaching the vacuum chamber to the tape deck casting. Remove the screw at the bottom of the chamber securing the chamber bracket to the vacuum plenum. Pull the lower end of the chamber away from the tape deck to disconnect the vacuum-plenum supply tubing from the chamber outlet port.

Step 8: Remove the vacuum chamber.
Step 9: Replace the vacuum chamber by reversing the procedure followed during removal.

5-17. CHECKING REEL MOTOR AND REPLACEMENT OF BRUSHES.
Step 1: Remove reel.
Step 2: Grasp holddown knob firmly, move it in and out, checking for shaft end play.

Step 3: If any noticeable end play is felt, remove and replace reel motor in accordance with the procedure of paragraph 5-14.

Step 4: Remove the screws holding the end dust cap on the motor and remove the dust cap.

Step 5: Remove the brushes from the brush holders; install new brushes.
Step 6: Reinstall the end dust cap.

## 5-18. VACUUM-BLOWER UNIT AND MOTOR BRUSH REMOVAL AND REPLACEMENT. (See Figure 5-5.)

Steps 1 through 6 describe the procedure for removing and replacing the vacuumblower unit. Steps 7 and 8 are used for motor brush removal and replacement.

Step 1: Disconnect the power cable from the vacuum-blower unit.


Figure 5-5
Vacuum-Blower Unit
(One Brush Removed)

Step 2: Remove the power connector from the blower motor bracket by pressing the two nylon legs toward the center of the connector; then push the connector through to the inside.

Step 3: Remove the three screws securing the blower motor bracket to the bottom of the vacuum plenum.

Step 4: Remove the two nuts securing the blower motor bracket to the bracket support rods.

Step 5: Remove the blower motor bracket and the vacuum-blower unit.
Step 6: If the vacuum-blower unit is being replaced, reassemble by reversing the procedure followed during disassembly.

Step 7: Remove the screws holding the brush dust caps in place and remove the dust caps. Remove the copper clips holding the brushes in place by gently prying out with a screwdriver. Brushes will then pop out.

## NOTE

Replace the brush assembly when the brush does not extend at least 9/16inch (released condition) beyond the spring of the brush assembly.

Step 8: $\quad$ Replace the brushes by reversing the procedure of Step 7.

## 5-19. REEL TACHOMETER ASSEMBLY REMOVAL AND REPLACEMENT.

Remove and replace the tachometer assembly in the following manner.
Step 1: Disconnect the electrical connection at the rear of the tachometer.
Step 2: Remove the three screws holding the reel tachometer assembly to the tape deck casting. Lift the assembly out of the casting.

Step 3: Remove the reel tachometer pulley from the shaft of the tachometer.
Step 4: Replace the reel tachometer assembly by reversing the disassembly procedure.

Step 5: Check the tracking of tape on the transport and adjust the position of the reel tachometer pulley as necessary.

5-20. REEL ACCESS DOOR REMOVAL AND REPLACEMENT.
Remove the reel access door in the following manner:
Step 1: Remove the two screws attaching the reel access door lower stops to the side trim (one screw and stop on each side of the transport). Remove the stops.

Step 2: $\quad$ Slide the reel access door down until the door clears the notch cutout in side trim and remove the door.

5-21. WRITE-ENABLE SWITCH ASSEMBLY REMOVAL AND REPLACEMENT.
Remove and replace the write-enable switch assembly as follows (Step 5 is unique to switch replacement and Step 6 is unique to actuator assembly replacement):

Step 1: Disconnect the electrical cable of the write-enable switch from terminal board A1A1TB3 on the rear of the tape deck.

Step 2: Remove the two screws attaching the write-enable switch assembly to the tape deck casting and remove the assembly from the casting.

Step 3: Disconnect the positive-pressure supply tubing from the rear of the pneumatic actuator.

Step 4: Remove the two screws attaching the switch to the actuator assembly and remove the switch.

Step 5: Switch Replacement Only: Label each wire at switch to identify location, unsolder at terminals, and remove wires from switch. Attach the new switch to the actuator assembly using the two attaching screws removed in Step 4, but do not tighten the screws. Connect the wires removed from the old switch to the correct terminals on the new switch and solder the three connections.

Step 6: Actuator Assembly Replacement Only: Attach switch to the new actuator assembly, using the two attaching screws removed in Step 4, but do not tighten the screws.

Step 7: Position the switch to be actuated when the bottom (opposite the pivot end) of the sensor unit is moved toward the switch 2 to 5 degrees from a position parallel to the front of the assembly bracket. Tighten the two switch attaching screws.

Step 8: Replace the write-enable switch assembly by reversing the procedure followed during removal (Steps 1 through 3).

Step 9: Adjust the write-enable switch assembly in accordance with the procedure of paragraph 5-32.

5-22. ADJUSTMENTS.

5-23. VACUUM ADJUSTMENT.
Adjust the vacuum pressure as follows.
Step 1: Disconnect the tubing connecting the bottom interlock sense port of one of the vacuum chambers to the associated vacuum interlock switch at the switch end. Connect the loose end of the tubing to a vacuum gauge capable of measuring 0 to 35 in . -of-water to an accuracy of $\pm 5 \%$.

## CAUTION

Do not operate the tape transport in forward or reverse with the vacuum gauge connected.

Step 2: Adjust the tape loops in the file reel and fixed reel vacuum chambers so that the loops are halfway between the middle two loop sensors.

Step 3: Press the door interlock override pushbutton.
Step 4: Systems Using the Autotransformer Assembly: Measure the line voltage between terminals 11 and 12 of terminal board A1A2TB1 in the autotransformer assembly. Adjust the vacuum bleeder valves to obtain the vacuum shown in Table 5-2 for the line voltage measured. The bleeder valves are located at the back of the vacuum plenum adjacent to the capstan motor cooling hoses. (See Figure 5-2.)

Systems Using the Vacuum Control Assembly: Adjust potentiometer R6 in the vacuum control assembly for a vacuum pressure of $23 \pm 1$ inches-of-water, as indicated on the vacuum gauge. Potentiometer R6 is located adjacent to the fixed reel vacuum chamber. (See Figure 5-1.)

Step 5: Disconnect the vacuum gauge. Reconnect the tubing to the vacuum switch.

TABLE 5-2
VACUUM VS LINE VOLTAGE

| LINE VOLTAGE <br> (RMS) | VACUUM <br> (INCHES OF H2O) |
| :---: | :---: |
| $-10 \%$ | $19 \pm 1$ |
| NOMINAL | $23 \pm 1$ |
| $+10 \%$ | $27 \pm 1$ |

## 5-24. LOGIC POWER SUPPLY ADJUSTMENTS.

Perform the following steps. (See Figure 5-6 for potentiometer location.)
Step 1: $\quad$ Connect a DC digital voltmeter (DVM) between terminals 6 and 8 of terminal board A2A4TB1 on the logic power supply (use terminal 8 as the zero volt reference). Adjust R10 (bottom potentiometer) on the power-supply regulator PCB to obtain $+12.00 \pm 0.06$ volts at terminal 6 , as indicated on the DVM.

Step 2: $\quad$ Connect the DVM between terminals 2 and 4 of A2A4TB1 (use terminal 4 as the zero volt reference). Adjust R26 (top potentiometer) on the regulator PCB to obtain $-12.00 \pm 0.06$ volts at terminal 2 , as indicated on the DVM.

Step 3: Connect the DVM between terminals 10 and 12 of A2A4TB1 (use terminal 12 as the zero volt reference). Adjust R48 (middle potentiometer) on the regulator PCB to obtain $-6.00 \pm 0.03$ volts at terminal 10 , as indicated on the DVM.

5-25. REEL BRAKE AIR-GAP ADJUSTMENT.
Adjust the reel brake air-gap as follows. (See Figure 5-4.)
Step 1: Remove power from the brake coil.
Step 2: Measure the air-gap between the armature and the outer pole of the electromagnet. The gap should be $0.015 \pm 0.003$ inch. If required, reset the air-gap in accordance with the procedures of Steps 3 through 8 .

Step 3: Apply power to the brake coil.


* A FIFTH POTENTIOMETER (R42) IS LOCATED BETWEEN R36 AND R32 ON CVE CAPSTAN VELOCITY PCB ASSEMBLIES

Figure 5-6
Control Electronics Assembly and Logic Power Supply
(Potentiometer and Test Point Locations)

Step 4: Loosen the four screws securing the brake to the end plate.
Step 5: Rotate the adjusting sleeve to change the air-gap (one turn equals a 0.062 -inch change in the air-gap).

Step 6: Retighten the four screws loosened in Step 4.
Step 7: Remove power from the brake coil.
Step 8: Recheck the air-gap as described in Step 2. Repeat Steps 3 through 8 if required.

5-26. POSITIVE-PRESSURE ADJUSTMENTS.
Adjust the pressure settings of the positive-pressure interlock switch and the positive-pressure regulator as follows (Step 4 is unique to setting the interlock-switch low pressure point):

Step 1: Remove the machine screw which seals the test fitting located on the positive-pressure manifold plate. Connect a 0 to 30 psig ( $\pm 5$ percent accuracy) pressure gauge to the test fitting.

Step 2: Apply power to the transport and press the STOP pushbutton.
Step 3: Using a $15 / 16$-inch wrench, loosen the locknut on the positive-pressure regulator (hold the regulator body in place with a $3 / 4$-inch open-end wrench to prevent the regulator body from turning with the locknut).

Step 4: Interlock-Switch Adjustment: Rotate the knurled knob on the pressure regulator in the counterclockwise direction (viewed from the knob end) to obtain a positive pressure of $5 \pm 1 \mathrm{psig}$, as indicated on the pressure gauge. Rotate the milled-edge wheel on the interlock switch assembly, as required, to obtain a setting where the switch is just actuated. Clockwise rotation of the wheel (viewed from the switch side) causes the switch to be actuated at a higher pressure; counterclockwise rotation causes actuation at a lower pressure.

Step 5: Rotate the knurled knob on the pressure regulator, as required, to obtain a positive pressure of $12 \pm 1 \mathrm{psig}$, as indicated on the pressure gauge. Clockwise rotation of the knob (viewed from the knob end) causes an increase in pressure; counterclockwise rotation causes a decrease in pressure.

Step 6: Tighten the locknut on the positive-pressure regulator. Ensure that the pressure setting is the same after the locknut is tightened.

Step 7: Disconnect the pressure gauge from the manifold fitting. Reseal the fitting with the machine screw removed in Step 1. Remove power from the transport.

## 5-27. CAPSTAN SERVO SYSTEM ADJUSTMENTS.

The capstan servo system adjustments are accomplished by potentiometers on the capstan servo control PCB assemblies (CA, CI, and CV). See Figure 5-6. When an electromagnetic-field capstan motor is used, an additional potentiometer located in the capstan servo assembly is used for adjustment of the field current.

## MOTE

Verify that power supply outputs are within 0.5 percent of nominal value before making capstan servo system adjustments.

Adjust the capstan servo system as follows. (See Figure 5-7.)
Step 1: Remove the capstan current control PCB (CI, J12) from the control electronics card cage. Adjust R12 (top potentiometer) on CI fully counterclockwise.

CAUTION
Do not disconnect capstan-motor field-winding lead with armature voltage applied.

Step 2: Electromagnetic-Field Capstan Motors Only: Adjust R44 on the capstan servo assembly fully counterclockwise. Disconnect the capstan-motor field-winding lead at terminal A2A1TB1-2 on the capstan servo assembly. Connect a 0 to 5 ampere ( $\pm 5$ percent accuracy) ammeter between the disconnected lead and terminal A2A1TB1-2 (connect the positive terminal of the ammeter to terminal A2A1TB1-2).

Step 3: Connect an isolated DC voltmeter across the capstan-motor armature terminals (terminals A2A1TB1-3 and A2A1TB1-4 may be used).

Step 4: Apply power to the transport. Load a reel of tape on the transport, but do not place the tape around the capstan or capstan tape guides.

Step 5: Press the STOP pushbutton. Wait 30 seconds for the initial turn-on transient to disappear.


Figure 5-7
Capstan Servo System, Flow Diagram

TABLE 5-3
FREQUENCY VS TAPE SPEED

| TAPE SPEED | COUNTS-PER-SECOND (800 BPI)* |
| :---: | :---: |
| 120 ips | $48,000 \pm 480$ |
| 112.5 ips | $45,000 \pm 450$ |
| 75 ips | $30,000 \pm 300$ |

*Equation used: (Tape speed) $\times \frac{\text { (BPI of tape) }}{2}=$ counts-per-second
Tolerance: $\pm 1$ percent

Step A5: Recheck the speed in the forward direction and readjust R32, if necessary. Press the STOP pushbutton.

Step A6: CVE Capstan Velocity PCB Assemblies Only: Press the FORWARD pushbutton and transfer approximately 600 feet of tape to the fixed reel. Press the STOP pushbutton. Press the REWIND pushbutton. Adjust R42 (fourth-from-top potentiometer of five potentiometers) on CVE until the frequency counter indicates $120,000 \pm 6000$ counts-per-second (corresponding to a tape speed of $300 \pm 15 \mathrm{ips}$ ). Allow the tape to rewind completely.

Step A7: Remove power from the transport.

METHOD B. Using Stroboscope.
Step B1: Load a reel of tape on the transport.
Step B2: Press the FORWARD pushbutton. Adjust R32 (third-from-top potentiometer) on the capstan velocity PCB (CV, J14) until the capstan is rotating at the rpm (as measured with the stroboscope) listed in Table 5-4 for the applicable tape speed. Press the STOP pushbutton.

Step B3: Press the REVERSE pushbutton. Adjust R36 (bottom potentiometer) on CV as for R32, with the tape moving in the reverse direction. Press the STOP pushbutton.

Step B4: Recheck the speed in the forward direction and readjust R32, if necessary. Press the STOP pushbutton.

TABLE 5-4
CAPSTAN RPM VS TAPE SPEED (CAPSTAN SPEED ADJUSTMENT)

| TAPE SPEED | CAPSTAN RPM* |
| :---: | :---: |
| 120 ips | $918 \pm 10$ |
| 112.5 ips | $735 \pm 8$ |
| 75 ips | $574 \pm 6$ |

*Equation used: (7.65) x (tape speed) $=$ RPM Tolerance: $\pm 1$ percent (rounded off)

Step B5: CVE Capstan Velocity PCB Assembly Only: Press the FORWARD pushbutton and transfer approximately 600 feet of tape to the fixed reel. Press the STOP pushbutton. Press the REWIND pushbutton. Adjust R42 (fourth-from-top potentiometer of five potentiometers) on CVE until the capstan is rotating at $2295 \pm 115 \mathrm{rpm}$ (as measured with the stroboscope). This rpm corresponds to a tape speed of $300 \pm 15$ ips. Allow the tape to rewind completely.

Step B6: Remove power from the transport.
Step 9: Connect pin 10 of J13 to logic ground, using a clip lead. Insert the capstan current control PCB (CI) into J12 of the control electronics card cage. Apply power to the transport. Press the STOP pushbutton and wait 30 seconds.

Step 10: Jumper test points TP1 (top) and TP2 (center) on CI with a clip lead. Connect an oscilloscope to observe the waveform at test point TP3 (bottom) on CI. Adjust R32 (bottom potentiometer) on CI until the positive and negative peaks of the waveform at TP3 are equidistant from zero volts, as indicated on the oscilloscope.

Step 11: Remove the clip lead between TP1 and TP2 on CI. The voltage at TP3 should be $0.00 \pm 0.25$ volts, as indicated on the oscilloscope. Remove the clip lead between pin 10 of J13 and logic ground.

Step 12: Connect the oscilloscope to observe the waveform at test point TP2 (center) on CA. Adjust. R28 (bottom potentiometer) on CA for zero volts at TP2, as indicated on the oscilloscope.

Step 13: Load a master tape (all ONE's) on the tape transport. Press the FORWARD pushbutton. Adjust R15 (top potentiometer) on CV for zero volts at TP2 on CA, as indicated on the oscilloscope. Press the STOP pushbutton.

Step 14: Press the REVERSE pushbutton. Adjust R33 (second-from-top potentiometer) on CV for zero volts at TP2 on CA, as indicated on the oscilloscope. Press the STOP pushbutton.

Step 15: Press the REMOTE pushbutton. Using a programmer, program the transport to alternately drive forward for 20 ms , stop for 20 ms , drive reverse for 20 ms , and stop for 20 ms before repeating the cycle (a repetition rate of approximately 25 direction reversals per second). Connect the oscilloscope to a read head as shown in Figure 5-8. Adjust R23 (third-from-top potentiometer) on CA to obtain a waveform similar to that shown in Figure 5-9C.

Step 16: Adjust R26 (middle potentiometer) on CI to obtain the specified start time for the applicable tape speed, as indicated on the oscilloscope. The start times for the applicable tape speeds are as follows:
(a) 120 IPS: 3.8 ms .
(b) $112.5 \mathrm{IPS}: 4.0 \mathrm{~ms}$.
(c) 75 IPS: 6.0 ms

Step 17: Sync the oscilloscope with the reverse STOP command. Adjust R23 (third-from-top potentiometer) on CA for minimum amplitude of any satellites present during the reverse OFF time (following the reverse stop), as indicated on the oscilloscope. (See Figure 5-9C for example of satellites.)

Step 18: Sync the oscilloscope with the forward STOP command. Adjust R1 (second-from-top potentiometer) on CA for minimum amplitude of any satellites present during the forward OFF time (following the forward stop), as indicated on the oscilloscope.

Step 19: Sync the oscilloscope with the forward RUN command. Adjust R12 (top potentiometer) on CI to obtain an unmodulated leading-edge on the waveform during start time, as indicated on the oscilloscope. (See Figure 5-9B for example of modulation.) Stop the transport. Press the LOCAL pushbutton.


Figure 5-9
Read Amplifier Output Waveforms, Capstan Servo Adjustment

Step 20: Connect an isolated DC voltmeter across the capstan-motor armature terminals (terminals A2A1TB1-3 and A2A1TB1-4 on the capstan scrvo assembly may be used). If required, adjust R14 (top potentiometer) on the capstan acceleration PCB (CA) to obtain zero volts between the capstan-motor armature terminals, as inclicated on the voltmeter.

Step 21: Connect the oscilloscope to observe the waveform at test point TP2 (center) on CA. If required, adjust R28 (bottom potentiometer) on CA for zero volts at TP2, as indicated on the oscilloscope.

Step 22: Press the REMOTE pushbutton. Using the programmer, program the transport to alternately drive forward for 20 ms , stop for 20 ms , drive reverse for 20 ms , and stop for 20 ms before repeating the cycle (a repetition rate of approximately 25 direction reversals per second). Connect the oscilloscope to a read head as shown in Figure 5-8. Repeat Step 16, if required.

Step 23: Repeat Steps 17 and 18 with the addition of the following adjustment: Adjust R14 (top potentiometer) on CA for minimum amplitude of any satellites occurring approximately five milliseconds after the stop (R1 and R23 are adjusted for minimum amplitude of any satellites occurring immediately after the forward and reverse stops, respectively).

Step 24: Sync the oscilloscope with the forward RUN command. Adjust R15 (top potentiometer) on CV, if required, to obtain an instantaneous speed variation (ISV) of 10 percent or less during the 10 -millisecond period following the forward start command, as indicated on the oscilloscope. (See Figure 5-9C for example of ISV.)

Step 25: Sync the oscilloscope with the reverse RUN command. Adjust R33 (second-from-top potentiometer) on CV, if required, to obtain an ISV of 10 percent or less during the 10 -millisecond period following the reverse start command, as indicated on the oscilloscope. Stop the transport. Press the LOCAL pushbutton.

Step 26: Connect the oscilloscope to observe the voltage at test point TP2 on CA. Press the FORWARD pushbutton and monitor the voltage at TP2 on CA for several seconds. Press the STOP pushbutton. Press the reverse pushbutton and monitor the voltage at TP2 on CA for several seconds. Press the STOP pushbutton. Voltage in excess of $0.0 \pm 0.5$ volt during continuous run in either direction indicates excessive friction in the tape path. Remove power from the transport.

5-28. REEL SERVO SYSTEM ADJUSTMENTS.
The reel servo system adjustments are accomplished by potentiometers on the reel servo control PCB assemblies (RP and RR). See Figure 5-6.

## NOTE

Verify that power supply outputs are within 0.5 percent of nominal value before making reel servo system adjustments.

5-29. Preliminary Adjustments. This portion of the adjustment procedure is to be followed only when the reel servo preamplifier PCB (RP) has been replaced.

Step 1: Remove the reel servo preamplifier PCB (RP) from J15 of the control electronics card cage.

Step 2: Connect an ohmmeter between terminals 1 and 2 of R8 (top potentiometer) on the reel servo preamplifier PCB (RP). Adjust R8 to obtain a resistance of 5000 ohms, as indicated on the ohmmeter.

Step 3: Connect the ohmmeter between terminals 1 and 2 of R9 (bottom potentiometer) on the PCB. Adjust R9 to obtain a resistance of 5000 ohms, as indicated on the ohmmeter.

Step 4: Insert the reel servo preamplifier PCB (RP) into J15 of the control electronics card cage.

5-30. Final Adjustments. This portion of the procedure is followed after the capstan servo system has been properly adjusted.

Step 1: Apply power to the transport and load a reel of tape. Press the STOP pushbutton. Ensure that the tape loop in each vacuum chamber is between the FEED FWD and FEED REV loop sensors.

Step 2: Reel servo zero balance adjustment: Connect a DC voltmeter across test points 2TP1 and 2TP2 on the reel servo driver PCB (RR). Adjust 2R4 (top potentiometer) on RR for zero volts, as indicated on the voltmeter. Connect the voltmeter across test points 1 TP1 and 1TP2 on RR. Adjust 1R4 (bottom potentiometer) on RR for zero volts, as indicated on the voltmeter.

Step 3: Fixed reel servo speed adjustment: Jumper test points TP1 and TP2 (bottom test points) on the reel servo preamplificr PCB (RP) with a clip lead. Press the FORWARD pushbutton. Adjust R8 (top potentiometer) on RP so that the tape loop in the fixed reel vacuum chamber remains between the LOOP SENSE FWD and FEED FWD loop sensors (located at the lower end of the vacuum chamber). Press the STOP pushbutton. Remove the clip lead.

Step 4: File reel servo speed adjustment: Jumper test points TP3 and TP4 (top test points) on the reel servo preamplifier PCB (RP) with a clip lead. Press the REVERSE pushbutton. Adjust R9 (bottom potentiometer) on RP so that the tape loop in the file reel vacuum chamber remains between the LOOP SENSE REV and FEED REV loop sensors (located at the lower end of the vacuum chamber). Press the STOP pushbutton. Remove the clip lead.

## 5-31. PHOTOSENSE THRESHOLD ADJUSTMENT.

Adjust the photosense threshold as follows. (See Figure 5-6.)
Step 1: Apply power to the transport. Load a test tape (with BOT and EOT reflective tabs attached) on the transport. (See Figure 3-2 for correct tab placement.) Position the tape so that a BOT tab is over the outer section (away from the tape deck) of the photosense head.

Step 2: Connect a DC VTVM or an oscilloscope to measure the voltage at pin 17 of J9. Adjust 1R2 (bottom potentiometer) on the photoamplifier PCB ( $\mathrm{PH}, \mathrm{J} 9$ ) until the voltage measured at pin 17 just switches from a negative voltage (approximately -6 volts) to $0.0 \pm 0.2$ volts. Adjust $1 R 2$ two full turns clockwise from the transition point setting.

Step 3: Position the tape so that no reflective tab is over the photosense head. The voltage measured at pin 17 of J9 should switch from $0.0 \pm 0.2$ volts to a negative voltage when the BOT tab is moved off the photosense head.

Step 4: Position the tape so that an EOT tab is over the inner section (adjacent to tape deck) of the photosense head.

Step 5: Connect the DC VTVM or the oscilloscope to measure the voltage at pin 20 of J9. Adjust 2R2 (top potentiometer) on PH until the voltage measured at pin 20 just switches from a negative voltage (approximately -6 volts) to $0.0 \pm 0.2$ volts. Adjust 2 R 2 two full turns clockwise from the transition point setting.

Step 6: Position the tape so that no reflective tab is over the photosense head. The voltage measured at pin 20 of J9 should switch from $0.0 \pm 0.2$ volts to a negative voltage when the EOT tab is moved off the photosense head.

5-32. WRITE-ENABLE SWITCH ASSEMBLY ADJUSTMENT.
Adjust the write-enable switch assembly as follows:
Step 1: Loosen the two screws attaching the assembly to the tape deck casting. Adjust the assembly to position the sensor probe in the file reel write enable groove (ring removed). Tighten the two screws.

NOTE
The sensor probe used with an IBM type reel consists of a headless screw located in the forward face of the hinged sensor unit at reel groove level. This headless screw is removed when an NAB type reel is used and the lower section of the sensor unit (from which the screw is removed) serves as the sensor probe.

5-33. CHECKING OPERATIONAL PARAMETERS.

5-34. START-AND STOP-TIME CHECKOUT.

5-35. Start Time Definition. Start time is defined as the time from the application of a RUN command until the tape passing over the read/write head has obtained the nominal speed. Start time is 3.8 ms maximum for 120 ips .

5-36. Stop Time Definition. Stop time is defined as the time from the application of a STOP command until all tape motion over the read/write head has ceased. Stop time is 3.8 ms maximum for 120 ips .

5-37. Checkout Procedure. Start and stop times are checked by observing the output from a read head. The following equipment is required to check start and stop time.
(a) Calibrated oscilloscope (Tektronix 535 or equivalent).
(b) Master tape, recorded at 800 bpi.
(c) Read amplifier.
(d) Start-stop programmer.

Check the start and stop time as follows:
Step 1: Apply power to the transport. Load the test tape on the transport. Press the STOP pushbutton.

Step 2: Connect the equipment as shown in Figure 5-10.
Step 3: Using the programmer, program the transport to start-stop in the forward and reverse directions at a rate of approximately 50 cycles per second. ( 10 ms forward, 10 ms stop, 10 ms reverse, and 10 ms stop.)

Step 4: Trigger the oscilloscope with the programmer output to observe the start and stop characteristics. The leading edge of the read amplifier output must reach terminal voltage within $3.8 \mathrm{~ms}^{*}$ from initiation of RUN command, as shown in Figure 5-11. The trailing edge of the read amplifier output must intersect the zero axis within $3.8 \mathrm{~ms}^{*}$ from initiation of STOP command.

5-38. INTERCHANNEL TIME DISPLACEMENT ERROR (ITDE) CHECKOUT.

The following procedure permits measurement of interchannel time displacement error of any data track from any other data track or reference track. The procedure does not permit separation of errors introduced by write and read electronics.

The following equipment is required to measure ITDE:
(a) Master tape recorded at 800 bpi .
(b) Dual trace oscilloscope.
(c) Read amplifiers.

Check ITDE as follows:
Step 1: $\quad$ Connect the test equipment as shown in Figure 5-12.
Step 2: Load the tape on the transport.
Step 3: Press the FORWARD pushbutton. A display such as is shown in Figure 5-13 should appear on the oscilloscope.

[^3]

Figure 5-10
Start- and Stop-Time Measurement, Test Setup


NOTE: All start and stop times to be 3.0 ms max

Figure 5-11
Start- and Stop-Time Measurement, Waveshape


Figure 5-12
Interchannel Time Displacement Error, Test Setup


Figure 5-13
Interchannel Time Displacement Error, Typical Waveshape

Step 4: Switch the non-reference input of the oscilloscope to the other tracks in turn to measure the ITDE of each track with respect to the reference track. The ITDE must be as specified in Section I.

## 5-39. PHOTOSENSE CHECKOUT.

A test tape with reflective tabs attached is required to perform the following test.
Check the photosense as follows:
Step 1: Load the tape on the transport.
Step 2: Run the tape through completely. The tape transport should operate without interruption, but must stop whenever a tab passes over the photosense head.

5-40. TOOLS AND TEST EQUIPMENT.
Table 5-5 lists the general nature of tools and test equipment required to maintain the TM-11. Manufacturer's names and numbers are given only as a guide; any equivalent tool or test equipment may be used.

TABLE
5-5
SUGGESTED TOOLS

| TOOL | RECOMMENDED EQUIPMENT |
| :---: | :---: |
| Capstan puller, hub type <br> Gauge, thickness <br> Mirror, inspection <br> Penlight, heavy duty <br> Pliers, diagonal cutting, 5" | $\begin{aligned} & \text { Ampex \#3115577-10 } \\ & \text { Starrett \#66 } \\ & \text { G.C. \#5090 } \\ & \text { Eveready \#315 } \\ & \text { Klein \#202-5 } \end{aligned}$ |
| Pliers, internal ring, $45^{\circ}$ <br> Pliers, long nose, $6^{\prime \prime}$ <br> Pliers, needle nose, $6^{\prime \prime}$ <br> Pliers, 7-1/2" <br> Pressure gauge, 0 to 30 psig, $\pm 5 \%$ | Truarc \#21 <br> Klein \#303-6 <br> Utica \#777-6 <br> Proto \#242 <br> Ampex \#090-101 |
| Scale, steel, $6^{\prime \prime}$ <br> Scissors, 2-1/2" blade <br> Screwdriver, screw starter <br> Screwdriver set, Phillips <br> Screwdriver set, standard | Starrett \#384 <br> Wiss \#173 <br> Pearson \#3 <br> Proto \#9600A <br> Snap-On \#SD-130K |
| Screwdriver, stub, large <br> Screwdriver, stub, medium <br> Screwdriver, stub, small <br> Scribe <br> Soldering aid | Xcelite \#R-5166 <br> Xcelite \#R-3164 <br> Xcelite \#R-184 <br> Starrett \#70A <br> Walsco \#2530 |
| Soldering iron, low-voltage <br> Stripper, wire <br> Vacuum gauge, 0 to $35 \mathrm{in} . \mathrm{H}_{2} \mathrm{O}, \pm 5 \%$ <br> Wrench, adjustable, 6" <br> Wrench, bristol | Weller \#W-TCP <br> Miller \#100 <br> Ampex \#090-028 <br> Crescent \#AT16 <br> Allen \#DS-060 |
| Wrench set, Allen, handled, $0.35^{\prime \prime}$ through 9/64" Wrench set, open end, $15^{\circ}$ and $75^{\circ}$, <br> $3 / 16^{\prime \prime}$ through $3 / 4^{\prime \prime}$ | Allen \#DS6075 <br> Williams \#1143PR |

## SECTION VI <br> CIRCUIT DESCRIPTIONS

## 6-1. INTRODUCTION.

This section contains detailed circuit descriptions of typical printed circuit board assemblies used in the transport electronics. The circuit descriptions are in alphabetical sequence by the mnemonic code of the PCB. Block diagrams and logic diagrams are included as an aid to the detailed explanation of the operation of each circuit. Schematic diagrams and assembly drawings of the PCB assemblies are located in Section VII.

Circuit descriptions of special board assemblies, when required, are included in special addenda.

## 1. GENERAL DESCRIPTION.

The capstan acceleration -C PCB assembly contains a summing amplifier, a limiting summing amplifier, an integrating amplifier, and two inverter stages. (See Figure 1.) Signal levels used in the following circuit descriptions are nominal.

## 2. THEORY OF OPERATION.

Summing Amplifier. Transistors Q1, Q2, and Q3, and associated component parts form an operational summing amplifier. The REF ( + ) and REF ( - ) inputs are applied to the input summing junction of the amplifier through R6 and R7, respectively. The OVERDRIVE input is applied to the summing junction through R5, CR1, and CR2. Diodes CR1 and CR2 are used to isolate the summing junction from noise on the OVERDRIVE line. All the inputs are summed at the junction and balanced by inverse feedback through R10. The output of the summing amplifier is applied to an external power amplifier through isolating resistor R22. Potentiometer R14 is used to adjust the initial balance of the summing amplifier, and is adjusted for zero volts across the capstan motor armature in the stopped condition. Resistors R18 and R19 compensate the summing amplifier for the effects of supply voltage variations.

FEEDBACK Output (Pin 9). The FEEDBACK output signal is derived in a summing junction having three inputs: the REV ( + ) input applied through R4, the REF ( - ) input applied through R8, and an AC signal from the summing amplifier applied through C5 and R9. All the inputs are summed at the junction and form the FEEDBACK output signal.

Limiting Summing Amplifier. Transistors Q7, Q8, and Q9, zener diode VR1, and associated component parts form a limiting summing amplifier. Six inputs are applied to the input summing junction of the amplifier; the REF $(+)$ input through R1 and R2, the REF (-) input through R3, the DRIVE (+) feedback through R39, the DRIVE (-) feedback through R40, inverse feedback through R41, and the output from the integrating amplifier through R38. All the inputs are summed at the junction and applied to base B1 of Q8.

The amplifier has two outputs; one from the cathode of VR1, the other from the anode of VR1. The outputs are offset from each other by 4 volts. Diode CR5 prevents the output at the cathode of VR1 from going more negative than approximately 0.6 volts, by establishing heavy feedback through R42. Similarly, diode CR6 prevents the output at the anode of VR1 from becoming more positive than 0.6 volt. Resistors R53 and R54 form a voltage divider to establish a voltage between the two output voltages, which is used as the inverse feedback through R41. Resistor R41 establishes the gain of the amplifier at approximately 10 . The connection point between R53 and R54 is offset electrically from the static midpoint between the two outputs because the 4 volt offset between outputs varies slightly over the dynamic range of the amplifier, as the current through VR1 changes. This feedback is also applied to the non-inverting input of the integrating amplifier.

## 2. THEORY OF OPERATION. (Continued)

Potentiometer R1 is used to set the limiting summing amplifier output level produced by the REF ( + ) input signal. This effectively controls the constant of integration of the integrating amplifier during forward tape acceleration by setting the amplitude of the DRIVE $(+)$ signal feedback to the integrating amplifier.

Integrating Amplifier. Transistors Q4, Q5, and Q6, and associated component parts form an operational integrating amplifier. The integrating feedback network consists of R24 and C7. Resistor R24 represents motor damping torque, and capacitor C7 represents motor inertial load. Resistor R37 is used to prevent instability at high frequency by establishing adequate phase margins. The amplifier has two input points; one inverting, the other non-inverting. The CURRENT SENSE input is applied through R23 and R25 to the inverting input of the amplifier. Four inputs are applied to the summing junction at the non-inverting input of the amplifier; the DRIVE ( + ) signal through R33, the DRIVE ( - ) signal through R34, the DRIVE REF input through direct coupling, and the feedback from the limiting summing amplifier through R31 (the feedback signal is a non-inverting self-balancing input).

Inverter Stages. Transistors Q10 and Q11, and associated component parts form two separate inverter stages. When the output of the limiting summing amplifier at the anode of VR1 goes approximately 2 volts more positive than the quiescent point, CR8 is forward biased and Q11 is cut off. The DRIVE (-) output follows the collector of Q11 to - 12 volts. When the limiting summing amplifier is returned to a balanced condition, Q11 is biased on and the DRIVE (-) output goes to 0 volts.

When the output of the limiting summing amplifier at the cathode of VR1 goes approximately 2 volts more negative than the quiescent point, CR7 is forward biased and Q10 is cut off. The DRIVE (+) output follows the collector of Q10 to +12 volts. When the limiting summing amplifier is returned to a balanced condition, Q10 is biased on and the DRIVE (+) output goes to 0 volts.

## 3. POWER REQUIREMENTS.

| VOLTAGE | CURRENT |
| :---: | :---: |
| $+12 \mathrm{VDC}+3 \%$ | 60 ma max |
| $-12 \mathrm{VDC} \pm 3 \%$ | 45 ma max |



Figure 1
Capstan Acceleration -C, Block Diagram

## 1. GENERAL DESCRIPTION.

The capstan current control PCB assembly contains a dead-band amplifier and two pulse shaper circuits. (See Figure 1.) Signal levels used in the following circuit descriptions are nominal.

## 2. THEORY OF OPERATION.

The capstan current control produces the OVERDRIVE signal, which is summed with the REF ( + ) and REF (-) signals and applied to the control summing amplifier on the capstan acceleration PCB assembly. The OVERDRIVE signal regulates the shape (of the leading and trailing edges) and the amplitude of the driving current pulse used to accelerate and decelerate the capstan motor. Circuit operation will be discussed for the forward acceleration mode; operation in the other modes is identical, except as noted in the description.

Dead-Band Amplifier. The dead-band amplifier is comprised of Q9, Q10, Q11, and associated component parts. The amplifier is similar to a conventional operational amplifier with the addition of the dead-band circuit consisting of CR8, CR9, CR10, CR11, R21, R22, R23 and R24. The primary input junction of the dead-band amplifier is the junction at base B1 of Q10. In the quiescent state, CR8, CR9, CR10, and CR11 are forward biased and CR12 and CR13 are reverse biased; in this condition, no current flows through R25. The DRIVE $(+)$ and DRIVE ( - ) inputs are at zero volts, thus no current flows through R3. The OVER DRIVE output current is zero, since no current flows through R3 or R25.

Leading- and Trailing-Edge Pulse Shaper. The leading- and trailing-edge pulse shaper is comprised of Q1, Q2, Q3, and associated component parts. When the DRIVE (+) and DRIVE (-) inputs are at zero volts, Q1, Q2, and Q3 conduct. Current flow from Q1 through R4 establishes a negative voltage at the base of Q3, which causes Q3 to conduct. The voltage at the collector of Q3 swings positive and forward biases CR1. Q2 is driven to saturation by the positive base-to-emitter voltage differential; the collector of Q2 swings to a low negative voltage. Diodes CR2 and CR3 are reverse biased and no current flows to the junction at base B1 of Q10.

Trailing-Edge Pulse Shaper. The trailing-edge pulse shaper is comprised of Q4, Q5, Q6, Q7, Q8, and associated component parts. When the DRIVE (+) and DRIVE (-) inputs are at zero volts, Q4 and Q5 conduct. R15 has less resistance than R17, thus a negative base-to-emitter voltage differential is established at Q6. Q6 conducts and establishes a positive voltage at the base of Q8. Q8 is cut off by the positive voltage at the base which is limited to approximately +0.5 volt by CR7. When Q8 is cut off, no current can flow through Q7. When Q7 and Q8 are cut off, the trailing-edge pulse shaper is effectively out of the dead-band circuit.

## 2. THEORY OF OPERATION. (Continued)

Leading-Edge Shaping and Pulse Amplitude Control. When forward acceleration or reverse deceleration is programmed, the DRIVE ( + ) input goes to approximately +8 volts. The DRIVE (-) input remains at zero volts. The DRIVE (CT) signal is derived through the voltage divider circuit consisting of R1 and R2, which is connected between the DRIVE (+) and DRIVE (-) inputs. The DRIVE (CT) signal is approximately +4 volts at this time, which causes a 400-microampere current flow in the OVERDRIVE output (through R3).

When DRIVE (CT) goes positive, emitter-follower Q1 couples the positive pulse through C5 to the emitter of Q2; the positive pulse cuts off Q2. Q2 remains cut off until C5 discharges through R10 and R8. Potentiometer R10 is used to preset the cut-off time of Q2 to approximately 500 microseconds. When Q2 is cut off, CR2 is forward biased, and the current flowing through R13 is added to that at the junction at base B1 of Q10. This action generates a step in the leading edge of the driving current pulse to the capstan motor by reducing the amount of current flow in the OVERDRIVE signal for the 500 microsecond period.

The 400-microampere current flow in the OVERDRIVE output (through R3) causes the control summing amplifier on the capstan acceleration PCB to increase the amplitude of the CAPSTAN CONTROL signal, which causes an increase in the voltage applied to the capstan motor. The increased capstan-motor voltage results in increased armature current, which causes the CURRENT SENSE input to become positive. The CURRENT SENSE input is the voltage analog of the capstan-motor armature current, and is approximately 50 milli-volts-per-ampere. The positive-voltage CURRENT SENSE input causes a current to flow through R27 and R26 and the junction at base B1 of Q10. This, in turn, causes the voltage at TP3 to swing slightly more negative, which transfers conduction from CR8 to CR10 and from CR11 to CR9. When the current through R27 and R26 increases to the point at which it is equal to the current through R23 and R24, less the amount of current through R13, CR8 and CR11 become reverse biased and CR12 becomes forward biased. Current flows through R25, subtracting from the current through R3 at the OVERDRIVE output and preventing further increase in capstan-motor voltage and current.

When Q2 conducts after being cut off for 500 microseconds, CR2 is again reverse biased, and the current through R13 is removed from the junction at base B1 of Q10. Removal of this positive input produces a negative-going change at base Bl of Q 10 ; the dead-band amplifier inverts the negative-going signal, causing the voltage at TP3 to swing slightly positive. The positive voltage at TP3 causes CR8 and CR11 to conduct again and causes CR12 to become reverse biased. When CR12 is reverse biased, the current through R27 and R26 is removed from the OVERDRIVE output, which returns to the relatively-large 400 -microampere current flow supplied through R3. This high-current signal causes the capstan-motor voltage and current to increase, which causes the current through R27 and R26 to increase. When the current through R27 and R26 increases to the point at which it is equal to the current through R23 and R24, CR8 and CR11 become reverse biased and CR12 becomes forward biased. Current flows through R25, subtracting from the current through R3 at the OVERDRIVE output and preventing further increase in capstan-motor voltage and current. At this point, the

## 2. THEORY OF OPERATION. (Continued)

capstan-motor current is stabilized on the flat-top-portion of the pulse and the motor is undergoing constant acceleration. The amplitude of the pulse is controlled by the setting of potentiometer R26.

During generation of the driving current pulse, the summed FEEDBACK and STOP CONTROL inputs are applied at base B2 of Q10. The FEEDBACK input is a positive voltage during forward operation; the positive voltage causes the voltage at TP3 to swing slightly more positive during forward acceleration, thus causing an increase in the amplitude of the driving current pulse. The increased amplitude pulse increases the rate of acceleration, which causes the capstan-motor to reach forward speed faster than reverse speed.

The STOP CONTROL input is not presently used.

Trailing-Edge Shaping. At the end of the acceleration period, the DRIVE (+) input returns to zero volts. The DRIVE (CT) signal goes to zero volts, which stops the 400microampere current flow through R3 (and the OVERDRIVE output).

When the DRIVE ( + ) input goes to zero volts, Q1 is cut off by the negative base-toemitter voltage differential established by the charge on C5. Q1 remains cut off until C5 is discharged through R5, which takes approximately 500 microseconds. When Q1 is cut off, Q3 is cut off by the positive voltage at its base. When Q3 is cut off, CR1 is reverse biased, CR3 is forward biased, and the current through R14 is added to that at the junction at base B1 of Q10. This action generates a step in the trailing edge of the driving current pulse to the capstan-motor by providing an opposing current flow to that caused by the CURRENT SENSE input (the dead-band amplifier has no dead-band at this time).

When the DRIVE (+) input goes to zero volts, Q5 is cut off by the negative base-toemitter voltage differential established by the discharge of C6 through R18, CR4, Q4, and R15. Q5 remains cut off until C6 is discharged; the discharge time of C6 is fixed at approximately 1.5 milliseconds. When Q5 is cut off, Q6 is cut off by the positive voltage at the base. When Q6 is cut off, the voltage at the base of Q8 goes to a negative level, causing Q8 to be saturated, which establishes a positive base-to-emitter voltage differential at Q7. Q7 is saturated and the collectors of both Q8 and Q7 are at zero volts, which establishes a zero-voltage-drop condition across R22 and R23; CR8 and CR9 are reverse biased. When CR8 and CR9 are reverse biased, the dead-band amplifier functions as a normal operational amplifier, and establishes a current through R25 (and the OVERDRIVE output) that causes the current through R27 and R26 (caused by the CURRENT SENSE input) to balance the current through R14 at the junction at base B1 of Q10. The current through R27 and R26 is approximately one-half the magnitude of the dead-band current.

## 2. THEORY OF OPERATION. (Continued)

When Q1 conducts after being cut off for 500 microseconds, Q3 conducts, CR1 is forward biased, CR3 is reverse biased, and the current through R14 is removed from the junction at base B1 of Q10. The amplifier establishes a current through R25 (and the OVERDRIVE output) that causes the current through R27 and R26 to drop to zero (CURRENT SENSE input at zero volts). The amplifier causes the current through R27 and R26 to remain at zero for 1.0 millisecond, which is the discharge time remaining for C6 after Q1 conducts. When C6 is discharged, Q5 conducts, which causes Q6 to conduct. When Q6 conducts, Q8 and Q7 are cut off. All circuits are then in the quiescent state.

Potentiometer R32 is used to adjust the zero set of the dead-band amplifier, which, in turn, controls the zero current condition following a driving current pulse.

Reverse-Acceleration and Forward-Deceleration Operation. Operation of the circuits during reverse acceleration and forward deceleration is similar to that previously described except that most of the signal polarities are the opposite (the OVERDRIVE output is negative instead of positive), current flow through the dead-band diodes follows the opposite path, the cut off periods of Q1 and Q2 are reversed, and Q4 is cut off instead of Q5.

## 3. POWER REQUIREMENTS.

| VOLTAGE | CURRENT |
| :---: | :---: |
| +12 VDC $\pm 3 \%$ | 40 ma max |
| -12 VDC $\pm 3 \%$ | $25 \mathrm{ma} \max$ |



## 1. GENERAL DESCRIPTION.

The capstan velocity -D PCB assembly contains a reference generator having (+) and (-) reference sections, a high-speed-control circuit, an inhibit circuit, and a drive reference circuit. (See Figure 1.)

## 2. THEORY OF OPERATION.

Reference Generator, ( + ) Section. The ( + ) section of the reference generator is com prised of Q1, Q7, Q8, VR2, and associated component parts. Transistor Q1 is a logic gate which is normally saturated due to base current through R9. When the FWD (-) and REV (+) inputs are at the negative logic level, the current flow through R11, R10, and VR1 exceeds that through R9; turning Q1 off. When Q1 is cut off, emitter follower Q7 couples the voltage divider consisting of R38, R32, and R34 to ( + ) zener diode VR2, providing a positive ( + ) reference output at the adjustable contact of potentiometer R32.

The resistance of R 38 is selected to provide the $(+$ ) reference output required for the desired nominal capstan speed. Transistor Q8 is cut off unless biased on by the high-speedcontrol circuit. When Q8 is biased on, R38 is bypassed and the ( + ) reference output increases to the value required for high speed operation (approximately +4 volts). The ( + ) section of the reference generator has three possible steady state outputs; zero volts, forward run reference, and fast forward reference.

Reference Generator, (-) Section. The (-) section of the reference generator is comprised of Q2, Q9, Q10, VR3, and associated component parts. The ( - ) section is the complement of the ( + ) section and operates in the same way, except that it provides negative ( - ) rather than positive ( + ) outputs, and is used for reverse motion. Transistor Q2 is normally saturated, and is cut off when REV ( + ) and FWD (-) inputs are at the zero volt logic level. The (-) reference is enabled when Q 2 is cut off.

High-Speed-Control Circuit. The high-speed-control circuit is comprised of Q5, Q6, and associated component parts. When the FAST (-) input is at the zero volt logic level, CR19 and CR20 are back biased and Q5 is biased on to saturation. The collector of Q5 is at 0 volts, which holds the base of Q6 negative through voltage divider resistors R28 and R29, and Q6 is saturated. When Q5 and Q6 are saturated, C6 and C5 are discharged.

When the FAST (-) input is at the negative logic level, CR19 and CR 20 are forward biased and Q5 is cut off. When Q5 is cut off, Q6 is cut off by the positive voltage applied through voltage divider resistors R27, R28, and R29. If Q2 is conducting (reverse run not

## 2. THEORY OF OPERATION. (Continued)

programmed), CR8 is forward biased, holding one side of C5 at zero volts. CR21 is forward biased and clamps the collector of Q6 at approximately +1 volt, thus, the FAST ( - ) input has no effect on the reverse reference ( - ) circuit, since Q9 remains cut off. If Q2 is cut off (reverse run programmed), CR8 is back biased and timing capacitor C5 starts to charge to a negative level through R16 and CR7. This negative-going voltage is coupled through CR21 to the base of Q9. When the voltage at C5 reaches approximately -2 volts ( 400 -millisecond charge time), Q9 begins to conduct, which reduces the impedance between the anode of VR3 and the junction of R39 and R36. This action increases the reverse reference (-) output voltage. The reverse reference (-) output voltage then follows the charge voltage at C5 (approximately 5-volts-per-second increase) until Q9 is saturated. When Q9 is saturated, the reverse reference ( - ) output voltage is at the preset level for high-speed-reverse tape motion.

When high-speed-reverse tape motion is to be stopped, the FAST (-) input is changed to the zero volt logic level. This causes Q5 and Q6 to saturate; CR8 is forward biased and the negative side of C5 is clamped to near zero volts. This voltage is coupled through CR21 to the base of Q9 and Q9 is cut off; the reverse reference (-) output voltage drops to the normal speed level. At the same time, C5 starts to discharge through R17, producing a positive-going pulse. CR11 and CR13 couple the positive-going pulse to the base of Q4 to initiate inhibit circuit operation.

High speed in forward (optional) is controlled by the components associated with C6. If Q1 is conducting (forward run not programmed) when the FAST (-) input is at the negative logic level, CR9 is forward biased, holding one side of C6 at zero volts. CR17 is back biased and the positive voltage at the collector of Q5 has no effect on the forward reference $(+)$ circuit. If Q1 is cut off (forward run programmed), CR9 is back biased and timing capacitor C6 starts to charge to a positive level through CR16 and R22. This positive-going voltage is coupled through CR 22 to the base of Q8. When the voltage at C6 reaches approximately +2 volts ( 400 -millisecond charge time), Q8 begins to conduct, which reduces the impedance between the cathode of VR2 and the junction of R38 and R32. This action increases the forward reference $(+)$ output voltage. The forward reference $(+)$ output voltage then follows the charge voltage at C6 (approximately 5 -volts-per-second increase) until Q8 is saturated. When Q8 is saturated, the forward reference (+) output voltage is at the preset level for high-speed forward tape motion.

When the high-speed-forward tape motion is to be stopped, the FAST (-) input is changed to the zero volt logic level. This causes Q5 and Q6 to saturate; CR9 is forward biased and the voltage at the positive side of C 6 is clamped to near zero volts. This voltage is coupled through CR22 to the base of Q8 and Q8 is cut off; the forward reference (+) output voltage drops to the normal speed level. At the same time, C6 starts to discharge through R23 and a negative voltage is developed at the emitter of Q4 which initiates inhibit circuit operation.

## 2. THEORY OF OPERATION. (Continued)

Inhibit Circuit. The inhibit circuit is comprised of Q3, Q4, and associated component parts; and is controlled by the high-speed-control circuit. The inhibit circuit is in the quiescent state when capacitors C6 and C5 are discharged. Current flow through CR16 and CR17, respectively, produces +0.5 volt at the emitter of Q 4 and -0.5 volt at the base of Q4. Q4 is saturated and Q3 is cut off, which enables the input circuit to the reference generator.

When high-speed-forward tape motion is stopped, C6 discharges through R23, and the negative voltage produced at the emitter of Q4 causes Q4 to be cut off; Q3 conducts. When Q3 conducts, Q1 and Q2 are saturated regardless of the state of the FWD (-) and REV (+) logic inputs. The reference voltage output goes to zero volts. The discharge time of C6 is such that Q1 and Q2 are held saturated for approximately 400 -milliseconds following a stop from high speed. This delay inhibits forward or reverse commands for the 400 -millisecond period to allow reel servo recovery. When C6 is discharged, Q4 starts conducting and Q3 is cut off. Transistors Q1 and Q2 are again controlled by the FWD (-) and REV (+) logic input signals.

When high-speed-reverse tape motion is stopped, C5 discharges through R17, and the positive voltage produced is coupled through CR11 and CR13 to the base of Q4. Q4 is cut off and Q3 conducts, which inhibits the reference generator input as described for the discharge of C6. The discharge time of C5 is the same as for C6.

STOP CONTROL Output (Pin 13). When high-speed-forward tape motion is stopped, the negative voltage produced by the discharge of C6 through R 23 is coupled through CR15 and CR14 to pin 13 of the PCB. This provides a negative STOP CONTROL signal during the discharge time of C6.

When high-speed-reverse tape motion is stopped, the positive voltage produced by the discharge of C5 through R17 is coupled through CR10 and CR12 to pin 13 of the PCB. This provides a positive STOP CONTROL signal during the discharge time of C5.

The STOP CONTROL output is not presently used.

Drive Reference Circuit. The drive reference circuit produces the DRIVE REF signal, which is used to compensate for tape friction occurring in the tape path. Potentiometers R15 and R33 are connected to the outputs of forward gate Q1 and reverse gate Q2, respectively. This provides a positive voltage at R15 when forward drive is programmed and a negative voltage at R33 when reverse drive is programmed; otherwise, the voltage at R15 and R33 is at zero volts. The voltage at the wiper of R15 is applied through R3 to a

## 2. THEORY OF OPERATION. (Continued)

summing junction. The voltage at the wiper of R33 is applied through $R 6$ to the same summing junction. The output of the summing junction is the DRIVE REF signal. Separate gate circuits in parallel with R3 and R6 reduce the level of the signal applied to the summing junction when the DRIVE ( + ) and DRIVE ( - ) inputs are at zero volts.

During forward acceleration or reverse deceleration periods, the DRIVE ( + ) signal is approximately +8 volts and back biases CR1; when CR1 is back biased, the gate circuit through R1 and R2 is enabled and the level of the signal from R15 that is applied to the summing junction is increased. Enabling the gate circuit during reverse deceleration periods has no effect since the voltage at R15 is then zero volts.

During reverse acceleration or forward deceleration periods, the DRIVE (-) signal is approximately -8 volts and back biases CR2; when CR2 is back biased, the gate circuit through R5 and R4 is enabled and the level of the signal from R33 that is applied to the summing junction is increased. Enabling the gate circuit during the forward deceleration periods has no effect since the voltage at R33 is then zero volts.

## 3. POWER REQUIREMENTS.

| VOLTAGE | CURRENT |
| :---: | :---: |
| $+12 \mathrm{VDC} \pm 3 \%$ | $30 \mathrm{ma} \max$ |
| $-12 \mathrm{VDC}+3 \%$ | 30 ma max |



Fi.gure 1
Capstan Velocity -D, Block Diagram

## 1. GENERAL DESCRIPTION.

The capstan velocity -E PCB assembly contains a areference generator having ( + ) and ( - ) reference sections, a high-speed control circuit, an inhibit circuit, and a drive reference circuit. (See Figure 1.) Signal levels used in the following circuit descriptions are nominal.

## 2. THEORY OF OPERATION.

Reference Generator, ( + ) Section. The ( + ) section of the reference generator is comprised of Q1, Q7, Q8, VR2, and associated component parts. Transistor Q1 is a logic gate which is normally saturated due to the base current through R9. When the FWD (-) and REV (+) inputs are at the negative logic level, the current flow through R11, R10, and VR1 exceeds that through R9, turning Q1 off. When Q1 is cut off, emitter follower Q7 couples the voltage divider consisting of R38, R32, and R34 to (+) zener diode VR2, providing a positive ( + ) reference output at the wiper of potentiometer R32.

Transistor Q8 is cut off unless biased on by the high-speed-control circuit. When Q8 is biased on, R41 is added in parallel with R38 and part of R32 and the ( + ) reference output increases to the value required for high speed operation (approximately +4 volts). The ( + ) section of the reference generator has three possible steady state outputs: zero volts, forward run reference, and fast forward reference.

Reference Generator (-) Section. The (-) section of the reference generator is comprised of Q2, Q9, Q10, VR3, and associated component parts. The (-) section is the complement of the $(+)$ section and operates in the same way, except that it provides negative $(-)$ rather than positive ( + ) outputs, and is used for reverse motion. Transistor Q2 is normally saturated, and is cut off when REV ( + ) and FWD ( - ) inputs are at the zero volt logic level. The ( - ) reference is enabled when Q2 is cut off.

Transistor Q9 is cut off unless biased on by the high-speed-control circuit. When Q9 is biased on, potentiometer R42 is added in parallel with R39 and part of R36. Potentiometer R42 provides control of the rewind speed.

High-Speed-Control Circuit. The high-speed-control circuit is comprised of Q5, Q6, and associated component parts. When the REWIND (-) input is at the zero volt logic level, CR19 and CR20 are reverse biased and Q5 is biased on to saturation. The collector of Q5 is at 0 volts, which holds the base of Q6 negative through voltage divider resistors R28 and R29, and Q6 is saturated. When Q5 and Q6 are saturated, C6 and C5 are discharged.

## 2. THEORY OF OPERATION. (Continued)

When the REWIND ( - ) input goes to the negative logic level, CR19 and CR20 are forward biased and Q5 is cut off. When Q5 is cut off, Q6 is cut off by the positive voltage applied through voltage divider resistors R27, R28, and R29. If Q2 is conducting (reverse run not programmed) CR8 is forward biased, holding one side of C5 at zero volts. CR21 is forward biased and clamps the collector of Q6 at approximately +1 volt, thus the REWIND (-) input has no effect on the reverse reference (-) circuit, since Q9 remains cut off. If Q2 is cut off (reverse run programmed), CR8 is reverse biased and timing capacitor C5 starts to charge to a negative level through R16 and CR7. This negative-going voltage is coupled through CR21 to the base of Q9. When the voltage at C5 reaches approximately -2 volts ( 400 -millisecond charge time), Q9 begins to conduct, which reduces the impedance between the anode of VR3 and the wiper of R36. This action increases the reverse reference (-) output voltage. The reverse reference (-) output voltage then follows the charge voltage at C5 (approximately 5-volts-per-second increase) until Q9 is saturated. When Q9 is saturated, the reverse reference (-) output voltage is at the preset level for high-speed-reverse tape motion.

When high-speed-reverse tape motion is to be stopped, the REWIND (-) input is changed to the zero volt logic level. This causes Q5 and Q6 to saturate; CR8 is forward biased and the negative side of C5 is clamped to near zero volts. This voltage is coupled through CR21 to the base of Q9 and Q9 is cut off; the reverse reference ( - ) output voltage drops to the normal speed level. At the same time, C5 starts to discharge through R17, producing a positive-going pulse. CR11 and CR13 couple the positive-going pulse to the base of Q4 to initiate inhibit circuit operation.

High speed in forward (optional) is controlled by the components associated with C6. If Q1 is conducting (forward run not programmed) when the REWIND ( - ) input is at the negative logic level, CR9 is forward biased, holding one side of C6 at zero volts. CR17 is reverse biased and the positive voltage at the collector of Q5 has no effect on the forward reference ( + ) circuit. If Q1 is cut off (forward run programmed), CR9 is back biased and timing capacitor C6 starts to charge to a positive level through CR16 and R22. This positive-going voltage is coupled through CR22 to the base of Q8. When the voltage at C6 reaches approximately +2 volts ( 400 -millisecond charge time), Q8 begins to conduct, which reduces the impedance between the cathode of VR2 and the wiper of R32. This action increases the forward reference ( + ) output voltage. The forward reference ( + ) output voltage then follows the charge voltage at C6 (approximately 5 -volts-per-second increase) until Q8 is saturated. When Q8 is saturated, the forward reference $(+)$ output voltage is at the preset level for high-speedforward tape motion.

When high-speed-forward tape motion is to be stopped, the REWIND (-) input is changed to the zero volt logic level. This causes Q5 and Q6 to saturate; CR9 is forward biased and the voltage at the positive side of C6 is clamped to near zero volts. This voltage

## 2. THEORY OF OPERATION. (Continued)

is coupled through CR 22 to the base of Q8 and Q8 is cut off; the forward reference (+) output voltage drops to the normal speed level. At the same time, C6 starts to discharge through R23 and a negative voltage is developed at the emitter of Q4 which initiates inhibit circuit operation.

Inhibit Circuit. The inhibit circuit is comprised of Q3, Q4, and associated component parts; and is controlled by the high-speed-control circuit. The inhibit circuit is in the quiescent state when capacitors C6 and C5 are discharged. Current flow through CR16 and CR17, respectively, produces +0.5 volt at the emitter of Q 4 and -0.5 volt at the base of Q4. Q4 is saturated and Q3 is cut off, which enables the input circuit to the reference generator.

When high-speed-forward tape motion is stopped, C6 discharges through R23, and the negative voltage produced at the emitter of Q4 causes Q4 to be cut off; Q3 conducts. When Q3 conducts, Q1 and Q2 are saturated regardless of the state of the FWD (-) and REV ( + ) logic inputs. The reference voltage output goes to zero volts. The discharge time of C6 is such that Q1 and Q2 are held saturated for approximately 400 -milliseconds following a stop from high speed. This delay inhibits forward or reverse commands for the 400 -millisecond period to allow reel servo recovery. When C6 is discharged, Q4 starts conducting and Q3 is cut off. Transistors Q1 and Q2 are again controlled by the FWD (-) and REV (+) logic input signals.

When high-speed-reverse tape motion is stopped, C5 discharges through R17, and the positive voltage produced is coupled through CR11 and CR13 to the base of Q4. Q4 is cut off and Q3 conducts, which inhibits the reference generator input as described for the discharge of C6. The discharge time of C 5 is the same as for C 6 .

STOP CONTROL Output (Pin 13). When high-speed-forward tape motion is stopped, the negative voltage produced by the discharge of C6 through R23 is coupled through CR15 and CR14 to pin 13 of the PCB. This provides a negative STOP CONTROL signal during the discharge time of C6.

When high-speed-reverse tape motion is stopped, the positive voltage produced by the discharge of C5 through R17 is coupled through CR10 and CR12 to pin 13 of the PCB. This provides a positive STOP CONTROL signal during the discharge time of C5.

The STOP CONTROL output is not presently used.

## 2. THEORY OF OPERATION. (Continued)

Drive Reference Circuit. The drive reference circuit produces the DRIVE REF signal which is used to compensate for tape friction occurring in the tape path. Potentiometers R15 and R33 are connected to the outputs of forward gate Q1 and reverse gate Q2, respectively. This provides a positive voltage at R15 when forward drive is programmed and a negative voltage at R33 when reverse drive is programmed; otherwise, the voltage at R15 and R33 is at zero volts. The voltage at the wiper of R15 is applied through R3 to a summing junction. The voltage at the wiper of R33 is applied through R6 to the same summing junction. The output of the summing junction is the DRIVE REF signal. Separate gate circuits in parallel with R3 and R6 reduce the level of the signal applied to the summing junction when the DRIVE $(+)$ and DRIVE (-) inputs are at zero volts.

During forward acceleration or reverse deceleration periods, the DRIVE (+) signal is approximately +8 volts and reverse biases CR1; when CR1 is reverse biased, the gate circuit through R1 and R2 is enabled and the level of the signal from R15 that is applied to the summing junction is increased. Enabling the gate circuit during reverse deceleration periods has no effect since the voltage at R15 is then zero volts.

During reverse acceleration or forward deceleration periods, the DRIVE (-) signal is approximately -8 volts and reverse biases CR2; when CR2 is reverse biased, the gate circuit through R5 and R4 is enabled and the level of the signal from R33 that is applied to the summing junction is increased. Enabling the gate circuit during the forward deceleration periods has no effect since the voltage at R33 is then zero volts.

## 3. POWER REQUIREMENTS.

| VOLTAGE | CURRENT |
| :---: | :---: |
| +12 VDC $\pm 3 \%$ | 30 ma max |
| -12 VDC $\pm 3 \%$ | 30 ma max |



Figure 1
Capstan Velocity -D, Block Diagram

1. GENERAL DESCRIPTION.

The forward/reverse logic PCB provides all logic necessary to perform the forward/ reverse function. Nine input signals are mechanized to provide four output signals for forward/reverse operation. Signal levels used in the following circuit descriptions are nominal. Tables 1 and 2 list operating signal levels. FWD/REV input signals are programmed to be selected 5 microseconds before RUN/STOP input signals.
2. THEORY OF OPERATION. (See Figure 1.)

FWD (-) Output (Pin 28). FWD (-) output can be affected by FORWARD PB input, MASTER RESET input, BOT input, or mechanization of one of the following logic equations:
(a) FWD (-) = (FWD) (RUN) (UNIT SELECT)
(b) FWD $(-)=$ (BOT going off tab) (REWINDING)
(c) $\overline{\mathrm{FWD}}(-)=(\mathrm{STOP})$ (UNIT SELECT)
(d) $\overline{\mathrm{FWD}}(-)=(E O T)($ LOCAL $)$

When the FORWARD PB input momentarily goes to zero volts, CR9 is forward biased and the voltage at the base of Q4 swings positive, which causes Q 4 to be cut off. The negative-going voltage at the collector of Q4 is coupled through R10 to the base of Q5; the negative-going voltage drives Q5 to saturation. The forward flip-flop, consisting of Q4 and Q5, is then in the set state. The FWD ( - ) output is at -6 volts.

When the MASTER RESET input momentarily goes to zero volts, CR6 is forward biased and the voltage at the base of Q5 swings positive, which causes Q5 to be cut off. The negative-going voltage at the collector of Q5 is coupled through R11 to the base of Q4; the negative-going voltage drives Q 4 to saturation. The forward flip-flop is then in the reset state. The FWD (-) output is at zero volts.

When the BOT input makes a positive transition from -6 volts to 0 volts, a +6 volt pulse is produced by the differentiator circuit comprised of R18 and C12 and is coupled through OR gate diode CR13 to the base of Q5; the positive pulse resets the forward flipflop. The FWD (-) output is at zero volts.

[^4]
## 2. THEORY OF OPERATION. (Continued)

For mechanization of logic equation (a), the FWD/REV input must be at -12 volts, the UNIT SELECT input must be at 0 volts, and the RUN/STOP input must make a negative transition from 0 volts to -12 volts. With the FWD/REV input at -12 volts, Q9 is cut off. When Q9 is cut off, AND gate transistor Q10 is cut off, which allows control of the AND gate output by the input to AND gate diode CR21. When the RUN/STOP input goes to -12 volts, Q6 and Q7 are cut off; CR21 is forward biased and Q8 is biased to saturation. The UNIT SELECT input at 0 volts enables the differentiator AND gate circuit comprised of R20 and C14 and a +6 volt pulse is coupled through OR gate diode CR 11 to the base of Q4; the positive pulse sets the forward flip-flop. The FWD (-) output is at -6 volts. The negative pulse from C13 back biases OR gate diode CR12 and has no effect on the forward flip-flop circuit. When Q9 is cut off, AND gate diode CR 23 is forward biased, which causes Q11 to be cut off. The negative pulse from C15 back biases CR19 and has no effect on the reverse flip-flop circuit.

For mechanization of logic equation (b), the REWINDING input must be at 0 volts and the BOT input must make a negative transition from 0 volts to -6 volts. When the BOT input goes to -6 volts, Q3 is biased to saturation. The REWINDING input at 0 volts enables the differentiator AND gate circuit comprised of R14 and C10 and a +6 volt pulse is coupled through OR gate diode CR10 to the base of Q4; the positive pulse sets the forward flip-flop. The FWD (-) output is at -6 volts.

For mechanization of logic equation (c), the UNIT SELECT input must be at 0 volts and the RUN/STOP input must make a positive transition from -12 volts to 0 volts. When the RUN/STOP input goes to 0 volts, Q6 and Q7 are biased to saturation and Q8 is cut off. The UNIT SELECT input at 0 volts enables the differentiator AND gate circuit comprised of R19 and C13 and a +6 volt pulse is coupled through OR gate diode CR12 to the base of Q5; the positive pulse resets the forward flip-flop. The FWD (-) output is at 0 volts. The negative pulse from C14 back biases OR gate diode CR11 and has no effect on the forward flip-flop circuit.

For mechanization of logic equation (d), the LOCAL input must be at 0 volts and the EOT input must make a positive transition from -6 volts to 0 volts. The LOCAL input at 0 volts enables the differentiator AND gate circuit comprised of R15 and C11 and a +6 volt pulse is coupled through OR gate diode CR 14 to the base of Q5; the positive pulse resets the forward flip-flop. The FWD (-) output is at 0 volts.

FWD (+) Output (Pin 26). FWD (+) output is the complement signal of FWD (-). Output voltages and their derivations are the same.


Figure 1
Forward/Reverse Logic, Logic Diagram
(3107082-10)

FLA-3

## 2. THEORY OF OPERATION. (Continued)

REV (+) Output (Pin 34). REV (+) output can be affected by REVERSE PB input, MASTER RESET input, BOT input, or mechanization of one of the following logic equations:
(a) $\operatorname{REV}(+)=(\mathrm{REV})(\mathrm{RUN})(\mathrm{UNIT}$ SELECT $)(\overline{\mathrm{BOT}})$
(b) $\overline{\mathrm{REV}}(+)=($ STOP $)($ UNIT SELECT)
(c) $\overline{\mathrm{REV}}(+) \doteq(\mathrm{EOT})(\mathrm{LOCAL})$

When the REVERSE PB input momentarily goes to zero volts, CR4 is forward biased and the voltage at the base of Q1 swings positive, which causes Q1 to be cut off. The negative-going voltage at the collector of Q1 is coupled through R2 to the base of Q2; the negative-going voltage drives Q2 to saturation. The reverse flip-flop, consisting of Q1 and Q2, is then in the set state. The REV ( + ) output is at zero volts.

When the MASTER RESET input momentarily goes to zero volts, CR1 is forward biased and the voltage at the base of Q2 swings positive, which causes Q2 to be cut off. The negative-going voltage at the collector of Q2 is coupled through R3 to the base of Q1; the negative-going voltage drives Q 1 to saturation. The reverse flip-flop is then in the reset state. The REV (+) output is at -6 ,volts.

When the BOT input makes a positive transition from -6 volts to 0 volts, a +6 volt pulse is produced by the differentiator circuit comprised of R18 and C12 and is coupled through OR gate diode CR16 to the base of Q2; the positive pulse resets the reverse flipflop. The REV ( + ) output is at -6 volts.

For mechanization of logic equation (a), the FWD/REV input must be at 0 volts, the UNIT SELECT input must be at 0 volts, the BOT input must be at -6 volts, and the RUN/ STOP input must make a negative transition from 0 volts to -12 volts. With the FWD/REV input at 0 volts, Q9 is biased to saturation. When Q9 is saturated, AND gate diode CR23 is back biased, and AND gate transistor Q10 is biased to saturation. When Q10 is saturated, the AND gate c omprised of Q10 and CR21 is disabled and Q8 is cut off. The BOT input at -6 volts back biases AND gate diode CR 24 ; since CR23 is also back biased, the AND gate output is controlled by the input to AND gate diode CR22. When the RUN/STOP input goes to -12 volts, Q6 and Q7 are cut off; CR 22 is back biased, which causes Q11 to be biased to saturation. The UNIT SELECT input at 0 volts enables the differentiator AND gate circuit comprised of R21 and C15 and a +6 volt pulse is coupled through CR19 to the base of Q1; the positive pulse sets the reverse flip-flop. The REV (+) output is at zero volts. The negative pulse from C13 back biases OR gate diode CR 15 and has no effect on the reverse flip-flop circuit. The negative pulse from C14 back biases OR gate diode CR11 and has no effect on the reverse flip-flop circuit.

## 2. THEORY OF OPERATION. (Continued)

For mechanization of logic equation (b), the UNIT SELECT input must be at 0 volts and the RUN/STOP input must make a positive transition from -12 volts to 0 volts. When the RUN/ STOP input goes to 0 volts, Q6 and Q7 are biased to saturation and Q11 is cut off. The UNIT SELECT input at 0 volts enables the differentiator AND gate circuit comprised of R19 and C13 and a +6 volt pulse is coupled through OR gate diode CR15 to the base of Q2; the positive pulse resets the reverse flip-flop. The REV ( + ) output is at -6 volts. The negative pulse from C15 back biases CR19 and has no effect on the reverse flip-flop circuit.

For mechanization of logic equation (c), the LOCAL input must be at 0 volts and the EOT input must make a positive transition from -6 volts to 0 volts. The LOCAL input at 0 volts enables the differentiator AND gate circuit comprised of R15 and C11 and a +6 volt pulse is coupled through OR gate diode CR17 to the base of Q2; the positive pulse resets the reverse flip-flop. The REV (+) output is at -6 volts.

REV (-) Output (Pin 32). REV (-) output is the complement signal of REV (+). Output voltages and their derivations are the same.
3. POWER REQUIREMENTS.

| VOLTAGE | CURRENT |
| :---: | :---: |
| +12 VDC $\pm 3 \%$ | 32 ma max |
| -12 VDC $\pm 3 \%$ | 82 ma max |
| $-6 \mathrm{VDC} \pm 4 \%$ | 40 ma max |

TABLE 1
FORWARD/REVERSE LOGIC, INPUT SIGNAL LEVELS

| $\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$ | SIGNAL DESIGNATION | HIGH <br> LEVEL | $\begin{aligned} & \text { LOW } \\ & \text { LEVEL } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| 10 | Fwd/Rev ( $/$ /+) | 0 to -1 volt | -8.5 to -12 volts |
| 12 | Run/Stop (-/+) | 0 to -1 volt | -8.5 to -12 volts |
| 14 | Rewinding ( + ) | 0 to -0.5 volt | -5.8 to -7 volts |
| 16 | Unit Select ( + ) | 0 to -0.5 volt | -5 to -6.2 volts |
| 18 | BOT (+) | 0 to -1 volt | -5.9 to -6.6 volts |
| 20 | EOT (+) | 0 to -1 volt | -5.9 to -6.6 volts |
| 22 | Local (+) | 0 to -0.5 volt | -5 to -6.2 volts |
| 24 | Reverse PB (+) | 0 volts | Open circuit |
| 30 | Master Reset ( + ) | 0 to -0.5 volt | -7 to -12.36 volts |
| 35 | Forward PB (+) | 0 volts | Open circuit |

TABLE 2
FORWARD/REVERSE LOGIC, OUTPUT SIGNAL LEVELS

| PIN | SIGNAL | HIGH <br> NO. | DESIGNATION |
| :---: | :---: | :---: | :---: |$\quad$| LOW |
| :---: |
| LEVEL |

## 1. GENERAL DESCRIPTION.

The forward/reverse logic PCB provides all logic necessary to perform the forward/ reverse function. Ten input signals are mechanized to provide four output signals for forward/reverse operation. Signal levels used in the following circuit descriptions are nominal. Tables 1 and 2 list operating signal levels.

## 2. THEORY OF OPERATION. (See Figure 1.)

FWD (-) Output (Pin 28). FWD (-) output can be affected by FORWARD PB input, MASTER RESET input, BOT input, or mechanization of one of the following logic equations:
(a) FWD $(-)=($ FWD $)$ (UNIT SELECT)
(b) FWD $(-)=$ (BOT going off tab) (REWINDING)
(c) $\overline{\mathrm{FWD}}(-)=(\mathrm{STOP})$ (UNIT SELECT)
(d) $\overline{\mathrm{FWD}}(-)=(\mathrm{EOT})(\mathrm{LOCAL})$

When the FORWARD PB input momentarily goes to zero volts, CR13 is forward biased and the voltage at the base of Q1 swings positive, which causes Q1 to be cut off. The negativegoing voltage at the collector of Q1 is coupled through R2 to the base of Q2, causing Q2 to saturate. The forward flip-flop, consisting of Q1 and Q2, is then in the set state. The FWD (-) output is at -6 volts.

When the MASTER RESET input momentarily goes to zero volts, CR1 is forward biased and the voltage at the base of Q2 swings positive, which causes Q2 to be cut off. The negativegoing voltage at the collector of Q2 is coupled through R3 to the base of Q1, causing Q1 to saturate. The forward flip-flop is then in the reset state. The FWD (-) output is at zero volts.

When the BOT input makes a positive transition from -6 volts to 0 volts, a +6 volt pulse is produced by the differentiator circuit comprised of C12 and R23 and is coupled through OR gate diode CR12 to the base of Q2; the positive pulse resets the forward flip-flop. The FWD (-) output is at zero volts.

For mechanization of logic equation (a), the UNIT SELECT input must be at 0 volts and the FWD/STOP input must make a negative transition from 0 volts to -12 volts. When the FWD/STOP input goes to -12 volts, Q6 and Q7 are cut off and Q8 is saturated. The UNIT SELECT input at 0 volts enables the differentiator circuit comprised of C14 and R21 and a

[^5]
## 2. THEORY OF OPERATION. (Continued)

+6 volt pulse is coupled through OR gate diode CR9 to the base of Q1; the positive pulse sets the forward flip-flop. The FWD (-) output is at -6 volts. The negative pulse from C13 back biases OR gate diode CR10 and has no effect on the forward flip-flop circuit.

For mechanization of logic equation (b), the REWINDING input must be at 0 volts and the BOT input must make a negative transition from 0 volts to -6 volts. When the BOT input goes to -6 volts, Q3 is biased to saturation. The REWINDING input at 0 volts enables the differentiator circuit comprised of C10 and R18 and a +6 volt pulse is coupled through OR gate diode CR8 to the base of Q1; the positive pulse sets the forward flip-flop. The FWD (-) output is at -6 volts.

For mechanization of logic equation (c), the UNIT SELECT input must be at 0 volts and the FWD/STOP input must make a positive transition from -12 volts to 0 volts. When the FWD/STOP input goes to 0 volts, Q6 and Q7 are saturated and Q8 is cut off. The UNIT SELECT input at 0 volts enables the differentiator circuit comprised of C13 and R19 and a +6 volt pulse is coupled through OR gate diode CR10 to the base of Q2; the positive pulse resets the forward flip-flop. The FWD (-) output is at zero volts. The negative pulse from C14 back biases OR gate diode CR9 and has no effect on the forward flip-flop circuit.

For mechanization of logic equation (d), the LOCAL input must be at 0 volts and the EOT input must make a positive transition from -6 volts to 0 volts. The LOCAL input at 0 volts enables the differentiator circuit comprised of C11 and R22 and a +6 volt pulse is coupled through OR gate diode CR11 to the base of Q2; the positive pulse resets the forward flip-flop. The FWD (-) output is at zero volts.

FWD (+) Output (Pin 26). FWD (+) output is the complement signal of FWD (-). Output voltages and their derivations are the same.

REV (+) Output (Pin 34). REV ( + ) output can be affected by REVERSE PB input, MASTER RESET input, BOT input, or mechanization of one of the following logic equations:
(a) $\operatorname{REV}(+)=($ REV $)(\operatorname{UNIT} \operatorname{SELECT} \overline{(\mathrm{BOT})}$
(b) $\overline{\mathrm{REV}}(+)=(\mathrm{STOP})$ (UNIT SELECT)
(c) $\overline{\mathrm{REV}}(+)=(\mathrm{EOT})(\mathrm{LOCAL})$

FLC-2


Figure 1
Forward/Reverse Logic -C, Logic Diagram
(3112360-10)

## 2. THEORY OF OPERATION. (Continued)

When the REVERSE PB input momentarily goes to zero volts, CR6 is forward biased and the voltage at the base of Q4 swings positive, which causes Q 4 to be cut off. The negative-going voltage at the collector of Q 4 is coupled through R 9 to the base of Q 5 , causing Q5 to saturate. The reverse flip-flop, consisting of Q4 and Q5, is then in the set state. The REV (+) output is at zero volts.

When the MASTER RESET input momentarily goes to zero volts, CR4 is forward biased and the voltage at the base of Q5 swings positive, which causes Q5 to be cut off. The negative-going voltage at the collector of Q5 is coupled through R10 to the base of Q4, causing Q4 to saturate. The reverse flip-flop is then in the reset state. The REV ( + ) output is at -6 volts.

When the BOT input makes a positive transition from -6 volts to 0 volts, a +6 volt pulse is produced by the differentiator circuit comprised of C12 and R23 and is coupled through OR gate diode CR13 to the base of Q5; the positive pulse resets the reverse flipflop. The REV (+) output is at -6 volts.

For mechanization of logic equation (a), the UNIT SELECT input must be at 0 volts, the BOT input must be at -6 volts, and the REV/STOP input must make a negative transition from 0 volts to -12 volts. The BOT input at -6 volts back biases AND gate diode CR22, which allows the input at AND gate diode CR21 to control Q11. When the REV/STOP input goes to -12 volts, Q9 and Q10 are cut off. CR21 is back biased, which allows the voltage at the base of Q11 to go positive; Q11 becomes saturated. The UNIT SELECT input at 0 volts enables the differentiator circuit comprised of C16 and R24 and a +6 volt pulse is coupled through CR16 to the base of Q4; the positive pulse sets the reverse flip-flop. The REV (+) output is at zero volts. The negative pulse from Cl5 back biases OR gate diode CR15 and has no effect on the reverse flip-flop circuit.

For mechanization of logic equation (b), the UNIT SELECT input must be at 0 volts and the REV/STOP input must make a positive transition from -12 volts to 0 volts. When the REV/STOP input goes to 0 volts, Q 9 and Q10 are saturated. The UNIT SELECT input at 0 volts enables the differentiator circuit comprised of C15 and R20 and a +6 volt pulse is coupled through OR gate diode CR15 to the base of Q5 the positive pulse resets the reverse flip-flop. The REV $(+)$ output is at -6 volts. If CR 22 is back biased, Q11 is cut off. The negative pulse from C16 back biases CR16 and has no effect on the reverse flipflop circuit.

## 2. THEORY OF OPERATION. (Continued)

For mechanization of logic equation (c), the LOCAL input must be at 0 volts and the EOT input must make a positive transition from -6 volts to 0 volts. The LOCAL input at 0 volts enables the differentiator circuit comprised of C11 and R22 and a +6 volt pulse is coupled through OR gate diode CR14 to the base of Q5; the positive pulse resets the reverse flip-flop. The REV ( + ) output is at -6 volts.

REV (-) Output (Pin 32). REV (-) output is the complement signal of REV (+). Output voltages and their derivations are the same.

## 3. POWER REQUIREMENTS.

| VOLTAGE | CURRENT |
| :---: | :---: |
| +12 VDC $\pm 3 \%$ | $32 \mathrm{ma} \max$ |
| $-12 \mathrm{VDC} \pm 3 \%$ | $82 \mathrm{ma} \max$ |
| $-6 \mathrm{VDC} \pm 4 \%$ | $40 \mathrm{ma} \max$ |

TABLE 1
FORWARD/REVERSE LOGIC -C, INPUT SIGNAL LEVELS

| PIN <br> NO. | SIGNAL <br> DESIGNATION | LOW <br> LEVEL | HIGH <br> LEVEL |
| :--- | :--- | :--- | :--- |
| 10 | Rev/Stop (-/+) | 0 to -1 volt | -8.5 to -12 volts |
| 12 | Fwd/Stop (-/+) | 0 to -1 volt | -8.5 to -12 volts |
| 14 | Rewinding (+) | 0 to -0.5 volt | -5.6 to -6.6 volts |
| 16 | Unit Select ( + ) | 0 to -0.5 volt | -5 to -6.2 volts |
| 18 | BOT $(+)$ | 0 to -1 volt | -5.9 to -6.6 volts |
| 20 | EOT $(+)$ | 0 to -1 volt | -5.9 to -6.6 volts |
| 22 | Local $(+)$ | 0 to -0.5 volt | -5 to -6.2 volts |
| 24 | Reverse PB $(+)$ | 0 volts | Open circuit |
| 30 | Master Reset $(+)$ | 0 to -0.5 volt | -7 to -12.36 volts |
| 35 | Forward PB $(+)$ | 0 volts | Open circuit |

TABLE 2
FORWARD/REVERSE LOGIC -C, OUTPUT SIGNAL LEVELS

| PIN <br> NO. | SIGNAL <br> DESIGNATION | LOW <br> LEVEL | HIGH <br> LEVEL |
| :---: | :---: | :---: | :---: |
| 26 | Fwd (+) | 0 to -1 volt | -5.9 to -6.6 volts |
| 28 | Fwd $(-)$ | 0 to -1 volt | -5.9 to -7 volts |
| 32 | Rev ( - ) | 0 to -1 volt | -5.9 to -6.6 volts |
| 34 | Rev (+) | 0 to -1 volt | -5.9 to -7 volts |

## 1. GENERAL DESCRIPTION.

The local/remote logic PCB provides all logic necessary to perform the local/remote functions. Seven input signals are mechanized to provide ten output signals for local/remote operation. REMOTE PB input is the only input which permits transfer from local to remote operation. Transfer from remote to local is accomplished in several ways as explained in the text. Signal levels used in the following circuit descriptions are nominal. Refer to Tables 1 and 2 for operating signal levels.
2. THEORY OF OPERATION. (See Figure 1.)

TRANSPORT READY (-) Input (Pin 13). The TRANSPORT READY (-) input must be at -12 volts before normal tape drive will be enabled. When the TRANSPORT READY (-) input is at 0 volts, Q4 conducts and -6 volts is applied through forward biased CR10 to the base of Q6. The READY ( + ) output is -6 volts. Q6 conducts and the MASTER RESET ( + ) output goes to 0 volts. The MASTER RESET ( + ) output sets the flip-flops in the forward/reverse logic PCB to the stop condition, preventing tape motion. The 0 volt output from Q6 also forward biases CR9 and CR12, which disables the LOCAL INDICATOR ( + ) and REMOTE INDICATOR ( + ) outputs.

When the TRANSPORT READY ( - ) input is at -12 volts, Q4 is cut off and the READY ( + ) output goes to +6 volts, developed by voltage divider resistors R31 and R30. Q6 is cut off and the MASTER RESET ( + ) output goes to -12 volts. CR 9 and CR 12 are back biased, enabling the input to the LOCAL INDICATOR ( + ) and REMOTE INDICATOR (+) circuits. CR7 is back biased, enabling the local/remote flip-flop circuit.

When the TRANSPORT READY ( - ) input goes to 0 volts, Q 4 conducts and -6 volts is applied through CR7 and R10 to the base of Q1 and Q1 conducts. When Q1 conducts, Q2 is cut off and Q3 conducts. The OCP ENABLE ( + ) and the LOCAL ( + ) outputs go to 0 volts. CR14 is forward biased and disables the SELECT (-) input.

LOCAL PB Input (Pin 30). When the LOCAL PB input is at 0 volts and TRANSPORT READY (-) input is at -12 volts, Q 2 is cut off by the voltage applied through CR3 and R4. With Q2 cut off, Q1 and Q3 are conducting, and the OCP ENABLE ( + ) and LOCAL (+) outputs go to 0 volts. CR8 and CR9 are back biased and enable the local indicator driver circuit. Q7 and Q8 are conducting and the LOCAL INDICATOR $(+)$ output is 0 volts. CR14 is forward biased and disables the SELECT (-) input. Q14 conducts and the SELECT \& REMOTE (-) output is 0 volts. The SELECT \& REMOTE INDICATOR (+) output driver circuits are disabled. Q12 conducts and Q13 is cut off. The UNIT SELECT (-) output goes to 0 volts. The LOCAL (-) output goes to -6 volts. CR11 is forward biased and disables the REMOTE INDICATOR (+) driver circuit.

## 2. THEORY OF OPERATION. (Continued)

RESET PB Input (Pin 28). When the RESET (STOP) PB input is at 0 volts and the TRANSPORT READY ( - ) input is at -12 volts, Q2 is cut off by the voltage applied through CR5 and R4. The circuit then operates the same as described for LOCAL PB input.

GO LOCAL (-) Input (Pin 22). When the GO LOCAL (-) input is at -6 volts and the TRANSPORT READY ( - ) input is at -12 volts, Q1 is biased on by the voltage applied through CR6 and R10. The circuit then operates the same as described for LOCAL PB input.

REMOTE PB Input (Pin 26). When the REMOTE PB input is at 0 volts and the TRANSPORT READY ( - ) input is at -12 volts, Q1 is cut off by the voltage applied through CR4 and R5. When Q1 is cut off, Q2 conducts and Q3 is cut off. The OCP ENABLE (+) output goes to 0 volts. CR8 is forward biased and disables the LOCAL INDICATOR driver circuit. CR11 and CR12 are back biased and enable the REMOTE INDICATOR circuit. Q9 and Q10 are conducting and the REMOTE INDICATOR (+) output is 0 volts. CR14 is back biased and the SELECT ( - ) input is enabled.

SELECT (-) Input (Pin 9). When the circuits are in the condition described for REMOTE PB input and the TRANSPORT READY ( - ) is at -12 volts, a SELECT ( - ) input at -12 volts cuts off Q11. When Q11 is cut off, Q12 is cut off and Q13 conducts. The UNIT SELECT (-) output goes to -6 volts. Q14 is cut off and Q15 and Q16 are conducting. The SELECT \& REMOTE (-) output goes to -12 volts and the SELECT \& REMOTE INDICATOR (+) output goes to 0 volts.

OCP RESET ( + ) Input (Pin 11). When the OCP RESET ( + ) input is at 0 volts, Q5 conducts and the READY ( + ) output goes to -6 volts. Q6 conducts and the MASTER RESET ( + ) output goes to 0 volts. CR9 and CR12 are forward biased and disable the local and remote indicator driver circuits.

When the OCP RESET ( + ) input is at -12 volts, Q5 is cut off.
3. POWER REQUIREMENTS.

| VOLTAGE | CURRENT |
| :---: | :---: |
| +12 VDC $\pm 3 \%$ | 8 ma max |
| -12 VDC $\pm 3 \%$ | 43 ma max |
| $-6 \mathrm{VDC} \pm 4 \%$ | $11 \mathrm{ma} \max$ |

TABLE 1
LOCAL/REMOTE LOGIC, INPUT SIGNAL LEVELS

| PIN | SIGNAL <br> NO. | HIGH <br> LEVEL | LOW <br> LEVEL |
| ---: | :--- | :--- | :--- |
| 9 | Select ( - ) | $0 \pm 1.25$ volts | $-12 \pm 2$ volts |
| 11 | OCP Reset (+) | 0 volts | Open circuit |
| 13 | Transport Ready (-) | Open circuit | -10.0 to -12.36 volts |
| 22 | Go Local ( - ) | 0 to -1 volt | -5.8 to -7 volts |
| 26 | Remote $\mathrm{PB}(+)$ | 0 volts | Open circuit |
| 28 | Reset $\mathrm{PB}(+)$ | 0 volts | Open circuit |
| 30 | Local $\mathrm{PB}(+)$ | 0 volts | Open circuit |

TABLE 2
LOCAL/REMOTE LOGIC, OUTPUT SIGNAL LEVELS

| PIN |  |  |  |
| :--- | :--- | :--- | :--- |
| NO, | SIGNAL <br> DESIGNATION | HIGH <br> LEVEL | LOW <br> LEVEL |
| 15 | Ready ( + ) | +4 to +6 volts | -4 to -6.2 volts |
| 16 | Unit Select ( - ) | 0 to -1 volt | -5 to -6.2 volts |
| 17 | Select \& Remote $(-)$ | 0 to -0.5 volt | $1.15 \mathrm{~K}+10 \%$ returned to |
|  |  |  | -11 volts $\pm 3$ volts |
| 18 | Select \& Remote Indicator $(+)$ | 0 to -0.5 volt | 125 ohms $\pm 3 \%$ returned to ground |
| 19 | Local Indicator $(+)$ | 0 to -0.5 volt | 125 ohms $\pm 3 \%$ returned to ground |
| 20 | Remote Indicator $(+)$ | 0 to -0.5 volt | 125 ohms $\pm 3 \%$ returned to ground |
| 24 | Local $(+)$ | 0 to -0.5 volt | -5 to -6.2 volts |
| 32 | Local $(-)$ | 0 to -0.5 volt | -5 to -6.2 volts |
| 34 | OCP Enable $(+)$ | 0 to -0.5 volt | -10 to -12.36 volts |
| 35 | Master Reset $(+)$ | 0 to -0.5 volt | -7 to -12.36 volts |



Figure 1
Local/Remote Logic, Logic Diagram

## 1. GENERAL DESCRIPTION.

The photoamplifier PCB assembly contains two identical circuits; one circuit is used in the BOT tab sense circuit, the second circuit is used in the EOT tab sense circuit. Each circuit comprises an input amplifier, a Schmitt trigger, an output driver, and a NAND gate/ driver. (See Figure 1.) The NAND gate/driver is used with positive-logic input.

In the following circuit description, the BOT circuit is described. Operation of the EOT circuit is identical. Signal voltages used in the circuit description are nominal; refer to Tables 1 and 2 for operating voltage levels.

## 2. THEORY OF OPERATION.

Input Amplifier. Transistor Q1 is used in a common base configuration and operates class A, with the emitter voltage clamped to approximately -0.6 volt. The current through R3 is determined by the setting of potentiometer R2 since the common base configuration maintains constant voltage across R2 and R3. The current through R2 and R3 is provided by two parallel sources, Q1 and the photovoltaic cell (BOT sensor). As the amount of light striking the sensor increases, the current through it increases proportionally, thus decreasing the current demand on Q1 and decreasing the current through R1.

The back of the tape reflects a small amount of light, producing an off-tab or "gray" current. Potentiometer R2 is adjusted to provide output voltage levels from the input amplifier that will trigger the Schmitt trigger during the on-tab input condition, and permit the Schmitt trigger to return to the quiescent state during the off-tab input condition.

The output of transistor Q1 appears across collector load resistor R1 and is directly coupled to the base of Q2. Q2 isolates and amplifies the output of Q1. Capacitor C1 filters noise spikes from the output of Q1. The output of Q2 is coupled through R6 to the base of transistor Q3 in the Schmitt trigger.

Schmitt Trigger. When the current from the sensor is at the off-tab level, Q3 is saturated and Q4 is cut off. When the current increases to the on-tab level, Q3 is cut off by the negative-going voltage from Q2. Q4 is saturated and biases on Q5, the output driver. When Q5 conducts, the BOT ( + ) output goes to 0 volts. Q5 is cut off when the photocell current is at the off-tab level and the BOT (+) output is at -6 volts.

## 2. THEORY OF OPERATION. (Continued)

NAND Gate/Driver. CR1, CR2, and CR5 are the NAND gate/driver inputs. When the inputs to the NAND gate/driver are all 0 volts, Q6 is cut off and Q7 is saturated. The BOT ( - ) output is at -12 volts. When any of the NAND gate/driver inputs goes to -6 volts, Q6 conducts and Q7 is cut off. The BOT ( - ) output is at 0 volts.

An open-circuit input to the NAND gate/driver has the same effect as a' 0 volt input.

Exciter Lamp (Pins 34 and 35). R1 is used as a dropping resistor when a 5 -volt photocell exciter lamp is used. The lamp is driven by the -6 volt supply.
3. POWER REQUIREMENTS.

| VOLTAGE | CURRENT |
| :---: | :--- |
| +12 VDC $\pm 3 \%$ | 25 ma max |
| -12 VDC $\pm 3 \%$ | 50 ma max |

TABLE 1
PHOTOAMPLIFIER TYPE C, INPUT SIGNAL LEVELS

| PIN NO: | SIGNAL DESIGNATION | HIGH LEVEL | LOW LEVEL |
| :---: | :---: | :---: | :---: |
| 9 10 | BOT Sensor (+) BOT Sensor Return | $90 \mu \mathrm{amin}$ increase over low level (on tab) | $\begin{aligned} & 0 \text { to } 100 \mu \mathrm{a} \\ & \text { (off tab) } \end{aligned}$ |
| 11 | REWINDING (-) | 0 to -1 volt | -5.8 to -7 volts |
| 12 | UNIT SELECT (+) | 0 to -1 volt | -5 to -6.2 volts |
| 25 | --** | 0 to -1 volt | -5 to -12 volts |
| 26 | UNIT SELECT (+) | 0 to -1 volt | -5 to -6.2 volts |
| 28 30 | EOT Sensor ( $(+)$ EOT Sensor Return | $90 \mu \mathrm{amin}$ increase over low level (on tab) | $\begin{aligned} & 0 \text { to } 100 \mu \mathrm{a} \\ & \text { (off tab) } \end{aligned}$ |

*Not presently used

TABLE 2
PHOTOAMPLIFIER TYPE C, OUTPUT SIGNAL LEVELS

| PIN NO. | SIGNAL DESIGNATION | HIGH LEVEL | LOW LEVEL |
| :---: | :---: | :---: | :--- |
| 17 | BOT (+) | 0 to -0.5 volt | -6.5 volts min with $865 \pm 86.5$ <br> ohm source impedance |
| 18 | BOT (-) | 0 to -1.5 volts | -9.6 to -12.5 volts |
| 19 | EOT ( - ) | 0 to -1.5 volts | -9.6 to -12.5 volts |
| 20 | EOT (+) | 0 to -0.5 volt | -6.5 volts min with $865 \pm 86.5$ <br> ohm source impedance |



Figure 1
Photoamplifier -C, Logic Diagram

## 1. GENERAL DESCRIPTION.

The rewind logic PCB assembly provides the logic necessary to perform the rewind function. Several unit select logic circuits are also located on the PCB assembly. (See Figure 1.) Signal levels used in the following circuit descriptions are nominal. Refer to Tables 1 and 2 for operating signal levels.

## 2. THEORY OF OPERATION.

REWIND (-) Output (Pin 28). The REWIND (-) output can be affected by the REWIND PB input, the MASTER RESET input, the BOT input, or the mechanization of one of the following logic equations.
(a) REWIND $(-)=$ (REWIND COMMAND) (SELECT \& REMOTE)
(b) REWIND (-) = (REWIND \& LOCKOUT) (SELECT \& REMOTE)

When the REWIND PB input momentarily goes to zero volts, CR6 is forward biased and the voltage at the base of Q1 swings positive, which causes Q1 to be cut off. The negative-going voltage at the collector of Q1 is coupled through R2 to the base of Q2, causing Q2 to saturate. The rewind flip-flop, consisting of Q1 and Q2, is then in the set state. The REWIND ( - ) output is at -6 volts.

When the MASTER RESET input momentarily goes to zero volts, OR gate diode CR2 is forward biased and the voltage at the base of Q2 swings positive, which causes Q2 to be cut off. The negative-going voltage at the collector of Q2 is coupled through R4 to the base of Q1, causing Q1 to saturate. The rewind flip-flop is then in the reset state. The REWIND (-) output is at zero volts.

When the BOT input goes to zero volts, OR gate diode CR3 is forward biased and the rewind flip-flop is reset as described for the MASTER RESET input. The REWIND (-) output is at zero volts.

For mechanization of logic equation (a), the REWIND COMMAND and SELECT \& REMOTE inputs must be at -12 volts. When the REWIND COMMAND input is at -12 volts, Q6 is cut off; AND gate transistor Q8 is also cut off. The SELECT \& REMOTE input at -12 volts reverse biases AND gate diode CR13, thus allowing the collector voltage of Q8 to swing negative. The negative voltage is coupled through OR gate diode CR14 to the base of Q2; the negative voltage sets the rewind flip-flop. The REWIND (-) output is at -6 volts.
2. THEORY OF OPERATION. (Continued)

For mechanization of logic equation (b), the REWIND \& LOCKOUT and SELECT \& REMOTE inputs must be at -12 volts. When the REWIND \& LOCKOUT input is at -12 volts, Q7 and Q9 are cut off. AND gate diode CR17 is reverse biased. The SELECT \& REMOTE input at -12 volts reverse biases AND gate diode CR15, thus allowing negative voltage to be coupled through R32, OR gate diode CR16, and R31 to the base of Q2. The negative voltage sets the rewind flip-flop. The REWIND (-) output is at -6 volts.

REWIND ( + ) Output (Pin 26). The REWIND ( + ) output is the complement signal of the REWIND ( - ) output, and is derived by applying the REWIND (-) signal through inverter Q3. The output from Q3 is either 0 volts or -6 volts.

REWINDING (-) Output (Pin 32). The REWINDING (-) output can be affected by the MASTER RESET input, the transition to the set state of the rewind flip-flop, or the mechanization of the following logic equation.

$$
\overline{\text { REWINDING }(-)}=(\text { FORWARD) (TIME DELAY) }
$$

When the MASTER RESET input momentarily goes to zero volts, CR8 is forward biased and the voltage at the base of Q5 swings positive, which causes Q5 to be cut off. The negative-going voltage at the collector of Q5 is coupled through R15 to the base of Q4, causing Q4 to saturate. The rewinding flip-flop, consisting of Q4 and Q5, is then in the reset state. The REWINDING (-) output is at zero volts.

When the rewind flip-flop goes from the reset to the set state, the positive-going voltage swing at the collector of Q3 is coupled (as a positive pulse) through C8 and CR9 to the base of Q 4 . The positive pulse cuts off Q 4 . The negative-going voltage at the collector of Q4 is coupled through R13 to the base of Q5, causing Q5 to saturate. The rewinding flipflop is then in the set state. The REWINDING ( - ) output is at -6 volts.

For mechanization of the logic equation, the FORWARD ( + ) input must be at 0 volts and the TIME DELAY input must make a positive transition from -6 volts to 0 volts. The FORWARD (+) input at 0 volts enables the differentiator AND gate circuit comprised of R18 and C4 and a +6 volt pulse is coupled through CR12 to the base of Q5; the positive pulse resets the rewinding flip-flop. The REWINDING (-) output is at zero volts.

REWINDING ( + ) Output (Pin 30). The REWINDING ( + ) output is the complement signal of REWINDING (-). Output voltages and their derivations are the same.

## 2. THEORY OF OPERATION. (Continued)

GO LOCAL (-) Output (Pin 9). The GO LOCAL (-) output is affected by mechanization of the following logic equation.

$$
\text { GO LOCAL }(-)=\text { (REWIND \& LOCKOUT) (Rewind FF set) }
$$

For mechanization of the logic equation, the REWIND \& LOCKOUT input must be at -12 volts and the rewind flip-flop must be in the set state. The REWIND \& LOCKOUT input at -12 volts cuts off Q7 and Q9. When Q9 is cut off, AND gate diode CR18 is reverse biased. When the rewind flip-flop is in the set state, AND gate diode CR19 is reverse biased. With both AND gate diodes reverse biased, the GO LOCAL ( - ) output goes to -6 volts.

UNIT SELECT ( + ) Output (Pin 17). The UNIT SELECT ( + ) output is controlled by the SELECT \& REMOTE input. When the SELECT \& REMOTE input is at -12 volts, Q10 is biased to saturation and the UNIT SELECT ( + ) output is at 0 volts. When the SELECT \& REMOTE input is at 0 volts, Q10 is cut off and the UNIT SELECT ( + ) output goes to -6 volts.

REWINDING STATUS (-) Output (Pin 34), The REWINDING STATUS (-) output is affected by mechanization of the following logic equation.

## REWINDING STATUS ( - ) = (SELECT \& REMOTE) (Rewinding FF set)

For mechanization of the logic equation, the SELECT \& REMOTE input must be at -12 volts and the rewinding flip-flop must be in the set state. The SELECT \& REMOTE input at -12 volts causes Q10 to be saturated and 0 volts to be applied to AND gate diode CR21. When the rewinding flip-flop is in the set state, 0 volts is applied to AND gate diode CR20. With 0 volts applied to both AND gate diodes, Q12 is cut off and line-driver Q15 is biased to saturation. The REWINDING STATUS (-) output is -12 volts (through 125 ohm resistor R48).

When the input to either AND gate diode is negative, Q12 is biased to saturation and Q15 is cut off. The REWINDING STATUS (-) output is zero volts (through CR26).

HI/LO DENSITY STATUS (-/+) Output (Pin 19). The HI/LO DENSITY STATUS output is affected by the SELECT \& REMOTE input and the HI/LO DENSITY input.

When the SELECT \& REMOTE input is at -12 volts, Q10 is biased to saturation and 0 volts is applied to AND gate diode CR25. When the HI/LO DENSITY input is at -12 volts,

## 2. THEORY OF OPERATION. (Continued)

AND gate transistor Q11 is cut off. With the AND gate transistor cut off and 0 volts applied to the AND gate diode, Q14 is cut off and line driver Q17 is biased to saturation. The HI/LO DENSITY STATUS output is -12 volts (through 125 ohm resistor R50).

When either the SELECT \& REMOTE input or the HI/LO DENSITY input is at 0 volts, Q14 is biased to saturation and Q17 is cut off. The HI/LO DENSITY STATUS output is zero volts (through CR28).

READY (-) Output (Pin 20). The READY (-) output is controlled by a three-input AND gate, consisting of diodes CR22, CR23, and CR24. When the inputs to the three AND gate diodes are all at 0 volts, Q13 is cut off and line driver Q16 is biased to saturation. The READY (-) output is -12 volts (through 125 ohm resistor R 49 ).

When the input to any of the three AND gate diodes is at -6 volts (or more negative), Q13 is biased to saturation and Q16 is cut off. The READY (-) output is 0 volts (through CR27).

The input to CR22 is from the collector of Q10, which is at 0 volts when the SELECT \& REMOTE input is at -12 volts. The input to CR 23 is the READY ( + ) input. The input to CR24 is the READY INHIBIT ( - ) input.

## 3. POWER REQUIREMENTS.

| VOLTAGE | CURRENT |
| :---: | :---: |
| $+12 \mathrm{VDC} \pm 3 \%$ | 8 ma max |
| $-12 \mathrm{VDC} \pm 3 \%$ | 81 ma max |
| $-6 \mathrm{VDC} \pm 4 \%$ | 18 ma max |

TABLE 1
REWIND LOGIC -C, INPUT SIGNAL LEVELS

| $\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$ | SIGNAL DESIGNATION | HIGH LEVEL | $\begin{gathered} \text { LOW } \\ \text { LEVEL } \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| 11 | REWIND \& LOCKOUT (-) | $0 \pm 1.25$ volts | -12 $\pm 2$ volts |
| 12 | REWIND COMMAND (-) | $0 \pm 1.25$ volts | -12 $\pm 2$ volts |
| 14 | REWIND PB (+) | 0 volts | Open circuit |
| 15 | READY INHIBIT (-) | 0 to -1 volt | -5.9 to -12 volts |
| 16 | SELECT \& REMOTE (-) | 0 to -1 volt | -10 to -12.36 volts |
| 18 | HI/LO DENSITY (-/+) | 0 volts | -12 volts |
| 21 | BOT (+) | 0 to -0.5 volt | -5.9 to -6.6 volts |
| 22 | TIME DELAY (+) | 0 to -0.5 volt | -5.9 to -6.6 volts |
| 24 | FWD (+) | 0 to -1 volt | -5.9 to -6.6 volts |
| 33 | READY (+) | +4 to +6.2 volts | -4.6 to -6.3 volts |
| 35 | MASTER RESET ( + ) | 0 to -1 volt | -7 to -12.36 volts |

TABLE 2
REWIND LOGIC -C, OUTPUT SIGNAL LEVELS

| PIN <br> NO. | SIGNAL <br> DESIGNATION | HIGH <br> LEVEL | LEV <br> LEVEL |
| :---: | :--- | :---: | :---: |
| 9 | GO LOCAL ( - ) | 0 to -1 volt | -5.8 to -7 volts* |
| 17 | UNIT SELECT (+) | 0 to -1 volt | -5 to -6.2 volts |
| 19 | HI/LO DENSITY STATUS ( $-/+$ ) | 0 to -1 volt | -10 to -12.36 volts |
| 20 | READY ( - ) | 0 to -1 volt | -10 to -12.36 volts |
| 26 | REWIND (+) | 0 to -1 volt | -5.8 to -7 volts |
| 28 | REWIND ( - ) | 0 to -1 volt | -5.8 to -7 volts |
| 30 | REWINDING (+) | 0 to -1 volt | -5.8 to -7 volts |
| 32 | REWINDING ( - ) | 0 to -1 volt | -5.8 to -7 volts |
| 34 | REWINDING STATUS ( -$)$ | 0 to -1 volt | -10 to -12.36 volts |

[^6]

Figure 1
Rewind Logic -C, Logic Diagram

## 1. GENERAL DESCRIPTION.

The reel servo preamplifier PCB assembly contains two similar preamplifiers and a time-delay circuit. (See Figure 1.) Each preamplifier consists of four switching circuits, a tachometer input circuit, and an output summing junction. The switching circuits are controlled by photoconductive cells located external to the PCB. One preamplifier functions in the file reel servo loop; the other functions in the fixed reel servo loop. In the following circuit descriptions, only the file reel servo circuit is discussed. Operation of the fixed reel servo circuit is identical except for reversal of the switching circuit input polarities.

## 2. THEORY OF OPERATION.

Photoconductive Cell Inputs (Pins 9, 10, 28, and 29). The inputs at pins 9, 10, 28, and 29 consist of separate photoconductive cells returned to -12 volts. The cell resistance is high or low depending on whether the cell is dark or illuminated. When the cell is dark, the resistance is 22 K min. When the cell is illuminated, the resistance is 8.2 K max.

FILE REEL TACH Input (Pin 15). The FILE REEL TACH input is a DC voltage that is proportional to the speed of the tape being supplied or taken up by the file reel. The voltage is negative for forward tape motion and positive for reverse tape motion. The input is approximately 0.08 volt/ips. Potentiometer R9 on the PCB assembly provides for adjustment of the current supplied to the output summing junction, thus providing speed control of the file reel tape motion.

CAPSTAN VELOCITY Input (Pin 19). The CAPSTAN VELOCITY input is a DC voltage directly proportional to the capstan velocity. The voltage is positive for forward tape motion and negative for reverse tape motion. The input voltage range is 0 to 24 volts. The CAPSTAN VELOCITY input is applied to the forward and reverse transistor switching circuits through isolation diodes CR2 and CR3.

Forward and Reverse Bias Voltage. Bias voltages are applied to the forward and reverse transistor switching circuits to provide a controlling output from the PCB assembly when the CAPSTAN VELOCITY and FILE REEL TACH inputs are at 0 volts. The bias voltages are provided by voltage divider resistors R4, R5, R7, and R12. R4 and R5 provide a positive voltage to the forward control circuits; R7 and R12 provide a negative voltage to the reverse control circuits.
2. THEORY OF OPERATION. (Continued)

Transistor Switching Circuits. Transistors Q10, Q11, Q14, and Q15 are the file reel transistor switches. Each transistor applies 0 volts at the center of a separate voltage divider circuit when the transistor conducts, effectively grounding the voltage applied to the input of the voltage divider circuit. Q10 and Q14 control voltage dividers that are supplied voltage by the positive CAPSTAN VELOCITY input and the forward bias circuit. Q11 and Q15 control voltage dividers that are supplied voltage by the negative CAPSTAN VELOCITY input and the reverse bias circuit.

Forward Operation. During forward operation, the FILE FEED REV (-) and FILE LOOP SENSE REV (-) inputs are at the low level (photocells illuminated) and Q11 and Q15 are biased on, disabling their respective voltage dividers. The FILE REEL TACH input is a negative voltage applied to the OUTPUT FILE output summing junction. The CAPSTAN VELOCITY input voltage is positive, and is applied through CR2 to R45 and R56, which are voltage divider resistors associated with Q10 and Q14, respectively. When both the FILE FEED FWD (-) and FILE LOOP SENSE FWD (-) inputs are at the high level (photocells dark), Q10 and Q14 are biased on, disabling their respective voltage dividers. The only input to the OUTPUT FILE output summing junction is the negative voltage from the FILE REEL TACH input, which produces a negative current flow from the summing junction to the external load (input circuit of reel servo driver).

When the FILE FEED FWD (-) input is at the low level (photocell illuminated), Q14 is cut off, enabling the associated voltage divider circuit. The CAPSTAN VELOCITY input voltage is then applied through the voltage divider circuit to the OUTPUT FILE output summing junction, where it is summed with the negative voltage from the FILE REEL TACH input. The voltage divider associated with Q14 provides an output voltage from the CAPSTAN VELOCITY input that is approximately equal to the voltage produced by the reel tachometer at a speed corresponding to 90 percent of the capstan tape velocity. Thus, when the reel tachometer tape speed is equal to 90 percent of the capstan tape velocity, the summed signal at the OUTPUT FILE output summing junction is zero, with no current flow into or out of the junction. When the reel tachometer tape speed is less than 90 percent of the capstan tape velocity, the summed signal at the OUTPUT FILE output summing junction is positive, with current flow into the junction from the external load; when the reel tachometer tape speed is greater than 90 percent of the capstan tape velocity, the summed signal is negative, with current flow out of the junction to the external load.

When the FILE LOOP SENSE FWD (-) input is also at the low level (photocell illuminated), Q10 is cut off, enabling the associated voltage divider circuit. The voltage dividers associated with Q10 and Q14 provide an output voltage from the CAPSTAN VELOCITY input that is approximately equal to the voltage produced by the reel tachometer at a tape speed

## 2. THEORY OF OPERATION. (Continued)

corresponding to 110 percent of the capstan tape velocity. Thus, when the reel tachometer tape speed is equal to 110 percent of the capstan tape velocity, the summed signal at the OUTPUT FILE output summing junction is zero, with no current flow into or out of the junction. When the reel tachometer tape speed is less than 110 percent of the capstan tape velocity, the summed signal at the OUTPUT FILE output summing junction is positive, with current flow into the junction from the external load; when the reel tachometer tape speed is greater than 110 percent of the capstan tape velocity, the summed signal is negative, with current flow out of the junction to the external load.

Reverse Operation. Reverse operation is identical to forward operation, except that Q11 and Q15 are the controlling transistor switches, with the voltage polarities reversed. Thus, reel tachometer tape speed less than the applicable 90 or 110 percent of capstan tape velocity produces a negative summed signal, with current flow out of the junction to the external load; reel tachometer tape speed greater than the applicable 90 or 110 percent of capstan tape velocity produces a positive summed signal, with current flow into the junction from the external load. The reel tachometer input is positive.

Stop Operation. When the CAPSTAN VELOCITY and FILE REEL TACH inputs are at zero volts, the forward and reverse bias voltages applied to the transistor switch voltage divider circuits allows the transistor switches to control the output voltage. When the FILE FEED FWD (-) input is at the low level, the voltage at the OUTPUT FILE output summing junction is positive; when the FILE FEED REV (-) input is at the low level, the voltage at the OUTPUT FILE output summing junction is negative. Current flow at the junction is not less than 40 microamperes in either direction.

OUTPUT FILE Output. When loaded by the input circuit of the reel servo driver PCB, the output current is between -400 and +400 microamperes, depending on the state of the transistor switches, the CAPSTAN VELOCITY input, and the FILE REEL TACH input. A current of 40 microamperes or more is required to "switch on" circuits in the reel servo driver PCB assembly. Zero current flow "switches off" the circuits in the reel servo driver PCB assembly.

Time-Delay Circuit. The time-delay circuit is comprised of an input buffer, a timing circuit coupled to a Schmitt trigger stage, a positive-level bypass circuit around the timing circuit and Schmitt trigger stage, and an output buffer stage.

## 2. THEORY OF OPERATION. (Continued)

When the REWIND (-) input at pin 8 is at -6 volts, input buffer Q1 is biased on. When Q1 conducts, Q2 and Q5 are biased on. Conduction through bypass circuit transistor Q2 es tablishes a negative voltage at the base of Q12; the negative voltage causes Q12 to conduct. When Q12 conducts, Q13 is cut off. The DELAYED REWIND ( - ) output at pin 14 is at -12 volts.

When Q5 conducts, timing capacitor C6 discharges rapidly through the relatively-lowresistance path of CR9, CR8, Q5, and R22. When C6 is discharged, the Schmitt trigger stage, consisting of Q8 and Q9 and component parts, is in the off condition; Q8 is cut off and Q9 is conducting.

When the input at pin 8 goes to zero volts, Q1, Q2, and Q5 are cut off. Q12 is held in conduction by the negative voltage established at its base by current flow through Q9. When Q5 is cut off, timing capacitor C6 starts charging through R28. After approximately 500 milliseconds, C 6 is charged to the trigger voltage level of the Schmitt trigger stage. Diode CR12 is forward biased and diode CR13 is reversed biased, thus establishing a positivevoltage base-to-emitter condition at Q8. Q8 is biased on and cuts off Q9. When both Q9 and Q2 are cut off, Q12 is cut off and Q13 is biased to saturation. Thus, the DELAYED REWIND (-) output at pin 14 goes to zero volts approximately 500 milliseconds after the REWIND ( - ) input at pin 8 goes to zero volts.

## 3. POWER REQUIREMENTS.

| VOLTAGE | CURRENT |
| :---: | :---: |
| +12 volts $\pm 3 \%$ | 22 ma max |
| -12 volts $\pm 3 \%$ | 22 ma max |



Figure 1
Reel Servo Preamplifier, Block Diagram (Typical)

## 1. GENERAL DESCRIPTION.

The reel servo driver PCB assembly contains two identical sections; each section consists of a differential feedback amplifier stage and two trigger stages. (See Figure 1.)

## 2. THEORY OF OPERATION.

Differential Feedback Amplifier. The differential feedback amplifier consists of Q1, Q2, Q3, Q4, Q5, Q6, and associated component parts. The input circuit consists of dual transistor Q1, which is used in an emitter-coupled phase splitter configuration. Potentiometer R4 is adjusted for 0 volts between TP1 and TP2 with the input grounded ( 0 volt level). The input signal consists of a dc voltage varying from the zero volt level to a positive or negative voltage level. Emitter followers Q2 and Q6 isolate amplifier driver transistors Q3 and Q5 from the differential input circuit. R2 and R7 are the feedback resistors. Q4 stabilizes driver transistors Q3 and Q5 against drift caused by temperature variations and component aging. Capacitors C1 and C2 prevent high-frequency oscillation in the amplifier stage.

When the input signal is positive, current through emitter El of Q1 increases from the quiescent level. Collector C1 swings negative; collector C2 swings positive due to the emitter-coupled input change. Conduction through Q6 is decreased; conduction through Q2 is increased. Q5 conducts harder and the amplifier output at TP2 (forward drive) swings positive; Q3 conducts less and the output at TP1 (reverse drive) swings negative. The output at TP1 is applied to the input of the reverse trigger stage. The output at TP2 is applied to the input of the forward trigger stage.

When the input signal is negative, the output at TP1 swings positive and the output at TP2 swings negative.

Trigger Stages. The forward trigger stage consists of Q9, Q10, and associated component parts. The reverse trigger stage consists of Q7, Q8, and associated component parts. R17 and R25 in the input circuits establish the dead zone of the trigger stages and are selected to stabilize the loop gain of the reel servo system, thus preventing oscillation in the system.

When a positive input signal causes the current through R1 to exceed 40 microamperes (approximate) in the forward direction, the voltage at TP2 swings positive over the dead zone level and Q9 conducts. When Q9 conducts, Q10 is cut off and the voltage at output B goes up. The voltage at TP1 swings negative and Q7 remains cut off. When Q7 is cut off, Q8 conducts and the voltage at output A is zero volts.

## 2. THEORY OF OPERATION. (Continued)

When a negative input signal causes the current through R1 to exceed 40 microamperes (approximate) in the reverse direction, the reverse trigger is triggered on in the same manner as described for the forward trigger and the output A voltage goes up. Output B voltage remains at zero volts.

The input signal must return to zero volts (no current through R1) to cut off Q9 or Q7 once they have been conducting. When this occurs, output A or output B returns to the zero volt level.
3. POWER REQUIREMENTS.

| VOLTAGE | CURRENT |
| :--- | :--- |
| $+12 \mathrm{VDC} \pm 3 \%$ | 250 ma max |
| $-12 \mathrm{VDC} \pm 3 \%$ | $250 \mathrm{ma} \max$ |


Figure 1
Reel Servo Driver, Block Diagram

## 7-1. INTRODUCTION.

Drawings in this section are located in the sequence shown in the following list. The control electronics logic diagrams are located at the end of the section.

## LIST OF DRAWINGS

SCHEMATIC ASSY DWG
Assemblies
Autotransformer ..... 3110227 ..... 3110226
Blower (Specification) ..... 3110287
Capstan Servo Supply
Part No. 3110038-10 ..... 31100423110039
Part No. 3110037-10 3110041 ..... 3110039
Capstan Control Preamp CBA*3110049
Part No. 3110296-10 ..... ** ..... 3110296
Control Electronics ..... 3110105Input/Output Panel31102233110102
Logic Power Supply31172423110124
***Regulator Board PCB3117241
Operator Control Panel ..... 31100353109853
Reel Servo Electronics ..... 3110138 ..... 3110218
Transport, Basic (Tape Deck) ..... 3110036 ..... 3110020
Vacuum Blower ..... 3115546 ..... 3115546
Vacuum Control ..... 3114694 ..... 3114693
Vacuum Control Heat Sink **** ..... 3114515
Cable Diagrams
TM-11 (Without Data Electronics) ..... 3110277
TM-11211 (With Data Electronics) ..... 3110013

[^7]LIST OF DRAWINGS
(Continued)
DESCRIPTION SCHEMATIC ..... ASSY DWG
Outline and Installation Diagram
TM-11 \& TM-12 ..... --- ..... 3110012
Printed Circuit Board Assemblies
CAC Capstan Acceleration -C ..... 3114632 ..... 3114630
CIA Capstan Current Control ..... 3114626 ..... 3116813
CVD Capstan Velocity -D ..... 3114638 ..... 3114639
CVE Capstan Velocity -E ..... 3119515 ..... 3119514
FLA Forward/Reverse Logic ..... 3107083 ..... 3119599
FLC Forward/Reverse Logic -C ..... 3112361 ..... 3118158
LLA Local/Remote Logic ..... 3107103 ..... 3107260
PHC Photoamplifier -C ..... 3110238 ..... 3110237
RLC Rewind Logic -C ..... 3116168 ..... 3116183
RPB Reel Servo Preamplifier ..... 3116175 ..... 3116174
RRA Reel Servo Driver ..... 3110144 ..... 3113161
Schematic Diagrams
TM-11 (Without Data Electronics) ..... 3110023 ..... ---TM-11211 (With Data Electronics) 3115575---
Control Electronics Logic Diagrams
Run/Stop-Fwd/Rev Logic ..... 3110107
Fwd/Stop-Rev/Stop Logic ..... 3115572








$13110041 \mid$



3110049
(8) MARK PART NO. \& NAMEPLATE INFORMATION

8 MARK PART NO. \&
PER MIL-STD-130.
7. PART NO. TO BE 3110049-10
6. SEAL PRINTED CIRCUIT SIDE ONLY WITH HUMI-SEAL

TYPE IBIS COLUMBIA TECH. OR EQUIV.
4. COMPONENT DESIGNATIONS ARE FOR REFERENCE ONLY
3. ASSEMBLE PER PRODUCTION PRACTICES MANUAL.
2. FOR ASSEMBLY SPECIFICATION SEE

FOR SChematic SEe 3110042
notes:
































 COLOR WHITE, PER MIL-STD-130.
DO NOT IMPRESSION STAMP.
(0) MARK PART NO.\&NAMEPLATE INFORMATION PER MIL-STD-I
9. PART NO. TO BE AS SHOWN ON BILL OF MATERIAL
(8) TRIMPOTS NOT TO BE SUBMERGED IN WATER.
7. SEAL PRINTED CIRCUIT SIDE ONLY WITH HUMI-SEAL
6. plus sign on capacitor indicates positive.
5. heavy line on diode indicates cathode.
4. COMPONENT DESIGNATIONS ARE FOR REFERENCE ONLY

3 ASSEMBLE PER PRODUCTION PRACTICES MANUAL.

REFERENCE
FOR ASSEMBIY SPECIFICATION SEE 314635




10. PART No. to be AS SHOWN ON B/M
9. SEAL PRINTED CIRCUIT SIDE ONLY WITH or EQuiv.
7. Trimpots not to be submerged in wate 6. COMPONENT DESIGNATIONS ARE FOR REF. ONLY. 5. PLUS SIGN ON CAPACITOR INDICATES POSITIVE 4. HEAVY LINE ON DIODES INDICATES CATHODE 3. ASSEMBLE PER PRODUCTION PRACTICES MANUAL 2. FOR ASSEMBLY SPECIFICATION SEE $3 / / 95 / 6$. . FOR SCHEMATIC SEE $31 / 9515$.




(ili) Instal paris a, b \& C 3119599



- Part no. to be AS Shown on $\mathrm{B} / \mathrm{M}$.
. heary lime on diode indicates cathoos.

6. Plus sign on capacitior inolcates positive.
7. couponent desicgations are for refinence onl
bele per manuacturimg peuctice ma
8. FOR ASSERSLY SPECIFICATION SEE 3107084 .
9. FOR SCHEUTIC SEE 3107093 .

Horss, inutiss orrenise specirio




| emsans |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 Issus |  |  | Dontswn | arr | Nmmorn |
| A | ECN 5060 | PROD, REL | An mict | \%1/1/6 |  |
| $B$ | ECN 5074 |  | Amm | \%/2/16 | youn |
| $c$ | ECN 7341 |  | 2, $2 \times 0$ | 2//4/61 | cunter |
| $\bigcirc$ | ECN 7588 |  | A-mot | \%\%\%\% |  |



TYPICAL TRANSISTOR INSTALLATION



|  |  |  |  |  | AMPEX COMPUTER PRODUCTS COMPANYsun Jurrasen bur.Cuver crr, aurown |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | CIRCUIT BOARD ASSYFWD/REV $\angle O G I C-0$ |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  | Come | siz | m no. |  |
| FVNAC O/M | 7M-7 |  |  |  | D | 3/18/58 | D |
| Notatss. | ist use or |  |  |  |  |  |  |




6) PARTIAL REFERENCE DESIGNATIONS ARE SHOWN. PREFIX THE REFERENCE NUMBER WITH THE CIRCUT NO. FOR COMPLETE DESIGNATION
5. ALL TRANSISTORS TO BE 3201104-10
4. ALL DIODES TO BE O13-599.(CD458).
3. ALL RESISTOR VALUES ARE IN OHMS $\pm 5 \%, 1 / 4 \mathrm{~W}$
2. all capacitor values are in microfarads
.
I. FOR ASSEMBLY SEE 3110237

NOTES: UNLESS OTHERWISE SPECIFIED



(0) MARK PART NO. \& NAMEPLATE
9. PART NO. TO BE 3IILO237-IO.
B. TRIMPOTS NOT TO BE SUBMERGED IN WATER
7. SEAL PRINTED CIRCUIT SIDE ONLY WITH HUMI-SEAL
6. PLUS SIG ON CAPACITOR
5. HEAVY LINE ON DIODE INDICATES CATHODE.
4. COMPONENT DESIGNATIONS ARE FOR REFERENCE ONI
(il) MARK ALLTEST POINT REF.NUMBERS MARK ALL HEST PCH CARACERS, COLOR; WHITE PER
MIL-STD-I3O. DO NOT IMPRESSION STAMP
3. ASSEMBLE PER PRODUCTION PRACTICES MANUAL.
2. FOR ASSEMBLY SPECIFICATION SEE 3110239, ISS. $A^{\prime}$ FOR SCHEMATIC SEE 3llO238, ISSUE C.
NOTES



$\downarrow$












[^0]:    *Used when Run/Stop-Fwd/Rev logic is supplied.

[^1]:    *Used when Run/Stop-Fwd/Rev logic is supplied. **Used when Fwd/Stop-Rev/Stop logic is supplied.

[^2]:    *Typical for TM-11 tape transports.

[^3]:    *For 120 ips.

[^4]:    *Run/Stop and Fwd/Rev inputs.

[^5]:    *Fwd/Stop and Rev/Stop inputs.

[^6]:    *Established by current flow through external circuits.

[^7]:    *Circuit shown in Capstan Servo Supply schematic 3110042.
    **Circuit shown in Capstan Servo Supply schematic 3110041. ***Circuit shown in Logic Power Supply schematic 3117242.
    ****Circuit shown in Vacuum Control schematic 3114694.

