1984 MOS Products Catalog Second Edition

\# \#

O
$\$$ GOULD AMI Semiconductors

Information furnished by Gould AMI in this publication is believed to be accurate. Devices sold by Gould AMI are covered by the warranty and patent indemnification provisions appearing in its Terms of Sale only. Gould AMI makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. Gould AMI makes no warranty of merchantability or fitness for any purposes. Gould AMI reserves the right to discontinue production and change specifications and prices at any time and without notice.

Advanced Product Description means that this product has not been produced in volume, the specifications are preliminary and subject to change, and device characterization has not been done. Therefore, prior to programming or designing this product into a system, it is necessary to check with Gould AMI for current information.

Preliminary means that this product is in limited production, the specifications are preliminary and subject to change. Therefore, prior to programming or designing this product into a system, it is necessary to check with Gould AMI for current information.

These products are intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by Gould AMI for such application.

A Subsidiary

1984 MOS Products Catalog Second Edition

Introduction

American Microsystems, Inc. headquartered in Santa Clara, California is the semiconductor industry leader in the design and manufacture of custom MOSIVLSI (metal-oxide-silicon very-large-scale-integrated) circuits. It manufactures special circuits for the leading computer manufacturers, telecommunications companies, automobile manufacturers and consumer product companies worldwide. AMI is a wholly owned subsidiary of Gould, Inc.

Along with being the leading designer of custom VLSI, AMI is a major alternate source for the S6800 8-bit microprocessor family and the S80 Family of microprocessors, which are integrated systems in silicon based on the popular Z80 ${ }^{\text {TM }}$ microprocessor. This microprocessor family combines advanced microprocessor, memory, and custom VLSI technologies on a single chip.

The company provides the market with selected low power CMOS Static RAMs, and 16K, 32K, 64K, 128K and 256K ROMs for all JEDEC pinouts or as EPROM replacements.

The most experienced designer of systems-oriented MOS/VLSI communication circuits, AMI provides components for station equipment, PABX and Central Office Switching systems, data communications and advanced signal processing applications.

AMI is a leading innovator in combining digital and analog circuitry on a single silicon chip, and is a recognized leader in switched capacitor filter technology.

Processing technologies range from the advanced, small geometry, high performance silicon gate CMOS to mature PMOS metal gate and to silicon gate N-Channel. Over 27 variations are available.
AMI has design centers in Santa Clara; Pocatello, Idaho; and Swindon, England. Wafer fabrication plants are in Santa Clara and Pocatello, and assembly facilities are in Seoul, Korea and the Philippines. A joint venture company in Graz, Austria Microsystems International, serves the European semiconductor market with complete design and manufacturing capabilities. A recently formed joint venture company in Japan, Asahi Microsystems Inc., designs and will in the future produce integrated circuits for the Japanese and Pacific Basin market.

Field sales offices are located throughout the United States, in Europe and in the Far East. Their listing, plus those of domestic and international representatives and distributors appear on pages B. 39 through B. 47 of this publication.

Z80 is a registered trademark of Zilog, Inc.
A．Indices
Numerical
\square Functional
\square Cross－Reference
1．Gate Arrays
2．Standard Cells
3．Spectrum of Custom Solutions
4．Communication Products
5．Consumer Products
6．Memories
Microprocessors／Microcomputers
7．S6800 Family
8．S80 Family
9．S9900 Family
10．Future Products
11．Application Note Summary
B．General Information
\square MOS Handling
\square MOS Processes
\square Product Assurance
\square Packaging
\square Ordering Information
\square Terms of Sale
\square AMI Sales Offices
\square Domestic Representatives
\square Domestic Distributors
\square International Representatives and Distributors篭歇娈

Numerical Index

Device	Page	Device	Page
S10110	5.51	S28215	4.124
S10430	5.55	S2859	5.23
S1602	7.76	S3506	4.87
S23128A	6.43	S3507	4.87
S23128B	6.43	S3507A	4.87
S2333	6.21	S3522	4.128
S2350	7.84	S3524	4.138
S2364A	6.31	S35212	4.134
S2364B	6.31	S3525A	4.141
S23256B	6.47	S3525B	4.141
S23256C	6.47	S3526	4.148
S25089	4.58	S3526M	4.155
S2550A	4.3	S3528	4.156
S2559A	4.10	S3529	4.166
S2559B	3.10	S3530	4.175
S2559E	4.10	S3620	5.3
S2559F	4.10	EVK3620	5.14
S2560A	4.25	S36128	5.10
S2560G	4.32	S4003	5.66
S25601	4.32	S4036	5.73
S2561A	4.34	S44230	4.89
S2561C	4.34	S44231	4.89
S25610	4.64	S44232	4.89
S25610E	4.72	S44233	4.89
S2563A	4.42	S44234	4.89
S2569	4.43	S4520	5.15
S2569A	4.43	S4521	5.23
S2369B	4.50	S4534	5.29
S2369C	4.50	S4535	5.26
S2579	4.21	S50240	5.63
S25910	4.80	S50241	5.63
S25912	4.80	S50242	5.63
S2600	5.36	S5101	6.2
S2601	5.36	S5101L-1	6.2
S2604	5.39	S6364	6.35
S2605	5.39	S6464	6.38
S2688	5.61	S6501	6.2
S2709A	5.69	S6501L	6.2
S2742	5.45	S6501L-1	6.2
S2743	5.45	S6514	6.3
S2747	5.48	S6516	6.7
S2748	5.48	S6551	7.87
S2809	5.32	S6551A	7.87
SSPCP/M-1	4.96	S6800	7.3
S28211	4.97	S68A00	7.3
S28212A	4.99	S68B00	7.3
S28212B	4.99	S6801	7.9
S28214	4.104	S6802	7.44

Device	Page
S68A02	7.44
S68B02	7.44
S6303	7.9
S6303N/R	7.2
S68045	7.105
S6805	7.52
S6808	7.44
S68A08	7.44
S68B08	7.44
S6809	7.70
S68A09	7.70
S68B09	7.70
S6809(E)	7.71
S68A09(E)	7.71
S68B09(E)	7.71
S6810	7.137
S68A10	7.137
S68B10	7.137
S6821	7.95
S68A21	7.95
S68B21	7.95
S68A316	6.15
S68A332	6.18
S68A364	6.24
S68B364	6.24
S68A365	6.27
S6840	7.101
S68A40	7.101
S68B40	7.101
S6846	7.119
S6850	7.123
S68A50	7.123
S68B50	7.123
S6852	7.131
S68A52	7.131
S68B52	7.131
S6854	7.134
S68A54	7.134
S68B54	7.134
S83	8.3
S9900	9.3
S9901	9.15
S9901-4	9.15
S9902	9.26
S9902-4	9.26

Indices

Functional Index

Device	Page
Communications Products	
Station Products	
S2550A	4.3
S2559A	4.10
S2559B	4.10
S2559E	4.10
S2559F	4.10
S2859	4.23
S2560A	3.25
S2560G	4.32
S2560G/I	4.32
S2561	4.34
S2561A	4.34
S2561C	4.34
S2563A	4.42
S2569	4.43
S2569A	4.43
S2569B	4.50
S2569C	4.50
S25089	4.58
S25610	4.64
S25610E	4.72
S2579	4.21
S25910	4.80
S25912	4.80
PCM Products	
S3506	4.87
S3507	4.87
S3507A	4.87
S44230	4.89
S44231	4.89
S44232	4.89
S44233	4.89
S44234	4.89
Signal Processors	
S28211	4.97
S28212A	4.99
S28212B	4.99
S28214	4.104
S28215	4.124
SSPC/PM/1	4.96
Modems and Filters	
S3522	4.128
S35212	4.134
S3524	4.138
S3525	4.141

Device	Page	Device	Page
Modems and Filters		Memory Products	
S3525A	4.141	RAMs	
S3525B	4.141	S6810	7.137
S3526	4.148	S68A10	7.137
S3526M	4.155	S68B10	7.137
S3528	4.156	S6810-1	6.2
S3529	4.166	S5101L	6.2
S3530	4.175	S5101L-1	6.2
Consumer Products		S6501L	6.2
Driver Circuits		S6514	6.3
S2809	5.32	S6516	6.7
S4520	5.15	ROMs	
S4521	5.23	S68A316	6.15
S4535	5.26	S68A332	6.18
S4534	5.29	S2333	6.21
Speech Products		S68A364	6.24
S36128		S68B364	6.24
$\begin{aligned} & \text { S36128 } \\ & \text { EVK3620 } \end{aligned}$	5.10 5.14	S68A365	5.27
		S2364A	6.31
Remote Control Circuit		S2364B	6.31
S2600	5.36	S6364	6.35
S2601	5.36	S6464	6.38
S2604	5.39	S23128A	6.43
S2605	5.39	S23128B	6.43
S2742	5.45	S23256B	6.47
S2743	5.45	S23256C	6.47
S2747	5.48	Microprocessors/	
S2748	5.48	Microcomputers	
Organ Circuits		S6800 Family	
S10110	5.51	S6800	7.3
S2688	5.61	S68A00	7.3
S50240	5.63	S68B00	7.3
S50241	5.63	S6801	7.9
S50242	5.63	S6802	7.44
Clock Circuits		S68A02	7.44
S4003	5.66	S68B02	7.44 7.44
S2709A	5.69	S68A08	7.44
AID Converter and Digital Scale Circuit		S68B08	7.44
		S6803	7.9
S4036	5.73	S6803N/R	7.2
Gate Arrays	1.2	S6809	7.70
		S68A09	7.701
		S68B09	7.70

Indices

Functional Index

Device	Page	Device	Page	Device	Page
Microprocessorl Microcomputers (Continued)		S68B40	7.101	S80 Family	
		S68045	7.105	S83	8.3
6800 Family		S6846	7.119	9900 Family	
S6809(E)	7.71	S6850	7.123	S9900	
S68A09(E)	7.71	S68A50	7.123	S9900	9.10
S68B09(E)	7.71	S68B50	7.123	S9901	9.15
S1602	7.76	S6852	7.131	S9901-4	9.15
S2350	7.84	S68A52	7.131	S9902	9.26
S6551	7.87 7.87	S68B52	7.131	S9902-4	9.26
S68821	7.95	S6854	7.134	Standard Cell Circuits	
S68A21	7.95	S68A54	7.134		2
S68B21	7.95	S68B54	7.134	Standard Cells	2
S6840	7.101	S6810	7.137		
S68A40	7.101	S68A10	7.137		
		S68B10	7.137		
		S6810-1	6.2		

Cross Reference Guide

Communication Products

Cross Reference by Manufacturer

Manufacturer	Part Number	AMI Functional Equivalent Part
Mostek	MK 5089	25089
Mostek	MK 50981	2560A
Mostek	MK 50982	2560A
Mostek	MK 50991	2560A
Mostek	MK 50992	2560A
Mostek	MK 5116	3507
Mostek	MK 5151	3507
Mostek	MK 5170	2562/2563
Mostek	MK 5175	25610
Mostek	MK 5387	2559
Mostek	MK 5389	25089
Mostek	5091	2559
Mostek	5092	2559
Mostek	5094	2559
Mostek	5382	2569
Mostek	5170	2563A
Mostek	5175	S25610
Mostek	5380	2559
Motorola	MC 14400	3507
Motorola	MC 14401	3507
Motorola	MC 14402	3507
Motorola	MC 14408	2560A
Motorola	MC 14409	2560A
Motorola	MC14412	S3530
Motorola	MC6170	S35212
Motorola	MC145433	S3526/S3526M
Motorola	MC145432	S3526M*
Motorola	MC14413	S3526/S3526M
National	TP53130	S2579
National	TP5088	S2579
National	MF10	S3528/S3529

Cross Reference Guide

Communication Products

Cross Reference by Manufacturer

Manufacturer	Part Number	AMI Functional Equlvalent Part
National	MF6	S3528/S3529
National	MM74HC942	S3530
National	MM74HC943	S3530
National	MM 5393	2560 A
National	MM 5395	2559
National	TP5700	S2550
NEC	μ PD 7720	2811
Nitron	NC 320	2560 A
Phillips	TDA 1077	2559
RCA	CD 22859	2559
Reticon	R5632	S35212*
Reticon	R5612	S3526/S3526M
Reticon	R5604	S3528/S3529
Reticon	R5605	S3528/S3529
Reticon	R5606	S3528/S3529
Reticon	R5609	S3528/S3529
Reticon	R5611	S3529
Reticon	R5612	S3528/S3529
Reticon	R5614	S3528/S3529
Reticon	R5615	S3528/S3529
Reticon	R5616	S3528/S3529
Reticon	R5620	S3528/S3529
Reticon	R5621	S3528/S3529
Reticon	R5622	S3528/S3529
Sanyo	7350	S2560A
Sanyo	7351	S2560A
Seiko	S7220A	S2560A
Seiko	STC2560	S2560A
Seiko	S7210A	S25610
Sharp	25859	
Sonix	$2560 A$	

[^0]
Cross Reference Guide

Memory Products

CMOS RAMs				
Vendor	256×4	$1 \mathrm{~K} \times 1$	1K $\times 4$	$4 \mathrm{~K} \times 1$
AMI	S5101		S6514	
FUJITSU	-	-	6514/8414	8404
HARRIS	6561	6508	6514	6504
HITACHI	435101	-	4334	4315
INTERSIL	6551	6508	6514	6504
MOTOROLA	145101	146508	-	146504
NATIONAL	746920	$74 \mathrm{C929}$	6514	6504
NEC	5101	6508	444/6514	-
OKI	573	574	5115	-
RCA	5101	1821	1825	5104
SSS	5101	5102	-	-
TOSHIBA	5101	5508	5514	5504

BYTE WIDE NMOS ROMs							
Vendor	$2 \mathrm{~K} \times 8$	$4 \mathrm{~K} \times 8$	$4 \mathrm{~K} \times 8^{*}$	$8 \mathrm{~K} \times 8.24$ Pin	$8 \mathrm{~K} \times 8.28$ Pin	$16 \mathrm{~K} \times 8$	$32 \mathrm{~K} \times 8$
AMI	S68A316	S68A332	S2333	S68A364	S2364A	S23128A	S23256B
AMD	AM9218	9232	9233	AM9264	AM9265	AM92128	
NEC/EA	$\mu \mathrm{PD2316}$	$\mu \mathrm{PD} 2332 \mathrm{~A}$	μ PD2332B	μ PD8364	$\mu \mathrm{PD} 2364$	μ PD23128	$\mu \mathrm{PD} 23256$
FAIRCHILD	F68316	F3532	F3533	F3564			
FUJITSU							
GI	R03-9316		R03-9333	R03-9364	R03-9365	SPR-128	
GTE	2316	2332		2364			
MOS				MPS2364			
MOSTEK	MK34000			MK36000	MK37000		MK38000
MOTOROLA	MCM68A316	MCM68A332		MCM68365			MCM65256
SIGNETICS	2616	2632		2664A	2664AM	23128	23256
SYNERTEK	SY2316	SY2332	SY2333	SY2364	SY2365	SY23128	SY23256
OKI	MSM2916						
ROCKWELL	R2316	R2332		R2364A	R2364B		
SGS	M2316						
TOSHIBA	TSU2316		TSU333-2				
NATIONAL		MM52132		MM52164			
VTI		VT2332	VT2333		VT2365A	VT23129	VT23256

[^1]
Microprocessor Family

Gate Arrays

Gate Arrays

I. Introduction

As the semiconductor industry has marched into the new era of VLSI, a new market has appeared-fast turn custom or, as it is now called, semicustom. AMI, a leader in custom MOS since 1966, is also a leader in this new semicustom market. AMI has introduced CAD software and hardware
tools to allow customers to design, simulate, and layout circuits using AMI gate array and standard cell families. Figure 1-3 show the economic tradeoffs between gate array, standard cell, and full custom, all of which are offered by AMI. The best solution for your needs will depend upon your volume requirements and circuit complexity.

Figure 1. Cost vs. Volume Alternatives

Figure 2. Cost vs. Volume Alternatives

Figure 3. Cost vs. Volume Alternatives

Gate Arrays

The simplest semicustom ICs are gate arrays. A gate array consists of uncommitted component matrices of transistors (usually P. and N-type for CMOS) that allow userdefined Interconnections through a single or double layer of metal. Since arrays employ fixed component locations and geometries, AMI can process the wafers up to the metallization stage and inventory the wafers for future customizatlon. Thus gate arrays look like late mask programmable ROMs and benefit from this large-volume production because they appear to be a standard product. AMI can offer them at an economical price and with fast prototyping and production turn on spans.
The second semicustom product group is standard cells. Standard cells employ fully customized process/mask sets and must pass through all process steps before a userspecified circuit is completed. To design such chips, AMI customers use precharacterized functional cells from AMI cell libraries. Placing and routing the cells is done on AMI computers using specially developed software. Standard cell designs usually result in smaller chips since only the component structures required for the user specified circuit are included, thus chips designed with cells are less expensive than gate array designed chips.
The key to success in this new market is flexibility. Flexibility to the user entails: low risk circuit implementation, short
development span, lower development cost, lower plece part cost (over discrete implementations), easy to change or modify, enhanced product features, etc. For the manufacturer, flexibility means: ease of manufacture, economies of scale, and easy interface with customers. One last point: AMI offers the user the opportunity to migrate at a low cost, from a gate array to a standard cell (or possibly full custom) to further enhance his/her product. By using analog cells, significant advances in chip function integration are at the user's disposal.
In addition, AMI offers a wide selection of packages to meet specific user needs. AMI offers the CAD tools needed to work in the new market. AMI also offers the training required to move customers quickly and easily into this new technology. See the "Custom Solutions" section in this catalog for more details.

2 Micron Products

AMI is developing 2 micron CMOS technology to support the next generation of gate arrays and standard cells. These products will offer size and performance improvements of up to 50% from their 3 micron counterparts.
Introduction of the first 2 micron gate array family is planned for fourth quarter 1984 and is expected to offer capabilities of up to 10,000 gates.

II. Gate Arrays

- Arrays of Uncommitted CMOS Transistors Programmed by Metal Layer Interconnect to Implement Arbitrary Digital Logic Functions
- Multiple Developmental Interfaces: AMI or Customer Designed
- Three Array Families-5-Micron Single Metal CMOS, 3-Micron Single Metal CMOS, and 3-Micron Double Metal Versions
- Multiple Array Configurations-From 300 to 1260 Gates for 5-Micron Devices, and 500 to 4000 Gates for 3-Micron Devices
- Quick Turn Prototypes and Short Production Turn-On Time
- Economical Semicustom Approach for Low-to-Medium Production Volume Requirements
- Advanced Oxide-Isolated Silicon Gate CMOS Technology
- High Performance-2 to 3ns Typical Gate Delay for 3Micron Devices
- Broad Power Supply Range
- TTL or CMOS Compatible I/O
- Up to 124 I/O Connections
- Numerous Package Options
- Full Military Temperature Range ($-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$) and MIL-STD-883 Class B Screening Available

Five-Micron Gate Array Family

The family of 5 -micron CMOS products is offered in six configurations with circuit complexities equivalent to 300 , $400,540,770,1000$, and 1260 two-input gates, respectively. All pads can be individually configured as inputs, outputs, or I/O's. Input switching characteristics can be programmed for either CMOS or TTL compatibility. LS buffer output drivers will support CMOS levels of two low power schottky TTL loads. TTL buffer outputs will also provide CMOS levels and are capable of driving up to six LS TTL loads. All output drivers can be programmed for tri-state or open drain (open collector) operation as required.

General Description

AMI's gate array products consist of arrays of CMOS devices whose interconnections are initially unspecified. By "programming" interconnect at the metal layer mask level, virtually arbitrary configurations of digital logic can be realized in an LSI implementation.
AMI gate array designs are based on topological cells-i.e., groups of uncommitted silicon-gate N-Channel and P-Channel transistors - that are placed at regular intervals along the X and Y axes of the chip with intervening polysilicon underpasses. Pads, input protection circuitry, and uncommitted output drivers are placed around the periphery.
Compared to SSI/MSI logic implementations, AMI's gate array approach offers lower system cost and, in addition, all the benefits of CMOS LSI. The lower system cost is due to significant reductions in component count, board area and power consumption. Product reliability, a strong function of component count, is thereby greatly enhanced. And compared to fully custom LSI circuits, the gate array offers several advantages: low development cost; shorter development time; shorter production turn-on time; and low unit costs for small to moderate production volumes.
AMI's CMOS gate arrays are offered in three families: the 5 -micron UA series, the 3 -micron single metal GA series, and the 3 -micron double metal GA-D series. The 5 -micron UA series has been in production since 1980 and well over one hundred circuits have been produced in that technology. The 3 -micron GA and GA-D series are the highspeed high-density devices fabricated in AMI's state-of-the-art 3 -micron CMOS processes.
The CMOS technology used for these products is AMI's 5 -micron, oxide-isolated, silicon gate CMOS process. This process offers all the conventional advantages of CMOS-i.e., very low power consumption, broad power supply voltage range (3 V to $12 \mathrm{~V} \pm 10 \%$), and high noise im-munity-as well as dense circuits with high performance. Gate propagation delays are in the five to ten ns range for 5 volt operation at room temperature. AMI gate array products can be supplied in versions intended for operation over the standard commercial temperature range $\left(0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$), the industrial range ($-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$), or the full military range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$. MIL-STD-883 Class B screening, including internal visual inspection and

Gate Arrays

high temperature burn-in, is offered. Similarly, customerspecified high reliability screening is available for commercial and industrial applications.

Table 1. Gate Array SSI Functional Macros

DESCRIPTION	TTL FUNCTIONAL EQUIVALENCE	$\begin{aligned} & \text { GATE } \\ & \text { COUNT } \end{aligned}$
INVERTER	1/6 LS04	1
DUAL-INVERTER DRIVER	1/6 LS04	1
TRIPLE-INVERTER DRIVER	1/6 LS04	2
QUADRUPLE-INVERTER DRIVER	1/6 LS04	2
QUINTUPLE-INVERTER DRIVER	1/6 LS04	3
2-INPUT NAND	1/4 LS00	1
3-INPUT NAND	1/3 LS10	1.5
4-INPUT NAND	1/2 LS20	2
5-INPUT NAND	-	2.5
2-INPUT AND	1/4 LS08	1.5
3-INPUT AND	1/3 LS11	2
4-INPUT AND	1/2 LS21	2.5
2-INPUT NOR	1/4 LS02	1
3-INPUT NOR	1/3 LS27	1.5
4-INPUT NOR	-	2
5-INPUT NOR	1/2 S260	2.5
2-INPUT OR	1/4 LS32	1.5
3-INPUT OR	-	2
4-INPUT OR	-	2.5
EXCLUSIVE OR	1/4 LS86	2.5
EXCLUSIVE NOR	-	2.5
2-IN AND/2-IN NOR	-	1.5
2-WIDE AND-OR-INVERT	1/2 S51	2
2-IN OR/2-IN NAND	-	1.5
2-WIDE OR-AND-INVERT	-	2
INTERNAL TRI-STATE DRIVER	-	2
2 TO 1 MULTIPLEXER	-	1
SET-RESET LATCH	1/4 LS279	2
CLOCKED LATCH	1/4 LS75*	2.5
CLOCKED LATCH WITH SET	-	3
D FLIP-FLOP WITH RESET	1/4 LS175**	5
D FLIP-FLOP WITH SET	-	5
D FLIP-FLOP SET AND RESET	-	6
TTL LEVEL TRANSLATOR	-	2

* Both polarities of the enable signal are required for CMOS CLK
** CLK and CLK are required for CMOS. The 74LS175 is reset on a positive going transition of the control signal whereas the CMOS implementation resets on a negative going transition of the same signal.

The current AMI array family, 300 gates to 1260 gates, is run in a3-12V CMOS process (internally coded as CVA process).
In conjunction with these arrays, AMI has developed a set of "functional overlays." Theseare basic logic element building blocks - e.g. two input and larger gates of various types, flipflops, and so forth - from which complete logic designs can
D.C. characteristics for the 5 micron gate array family are summarized in Table 4.

Table 2. Gate Array MSI/LSI Functional Macros

DESCRIPTION	TTL FUNCTIONAL EQUIVALENCE	GATE COUNT
3 TO 8 DECODER	LS138	23
4 TO 16 DECODER	LS154	56
8 T0 1 MULTIPLEXER	LS151	28
4-BIT FULL ADDER	LS283	60
8-BIT FULL ADDER		120
12-BIT FULL ADDER		180
16-BIT FULL ADDER		240
LOOK-AHEAD CARRY GENERATOR	LS182	34
4-BIT PRESETTABLE AND EXPANDABLE		
BINARY COUNTER	LS163	52
4-BIT EXPANDABLE BINARY COUNTER	LS163*	39
4-BIT PRESETTABLE BINARY COUNTER	LS163*	47
4-BIT BINARY COUNTER	LS163*	34
8-BIT PRESETTABLE BINARY COUNTER		104
12-BIT PRESETTABLE BINARY COUNTER		156
16-BIT PRESETTABLE BINARY COUNTER		208
4-BIT EXPANDABLE \& PRESETTABLE		
BINARY UP/DOWN COUNTER	LS169	62
4-BIT EXPANDABLE BINARY		
UP/DOWN COUNTER	LS169*	49
4-BIT PRESETTABLE BINARY		
UP/DOWN COUNTER	LS169*	58
4-BIT BINARY UP/DOWN COUNTER	LS169*	44
4-BIT EXPANDABLE \& PRESETTABLE		
DECADE COUNTER	LS162	56
4-BIT EXPANDABLE DECADE COUNTER	LS162*	43
4-BIT PRESETTABLE DECADE COUNTER	LS162*	51
4-BIT DECADE COUNTER	LSt62*	38
4-BIT EXPANDABLE \& PRESETTABLE		
DECADE UP/DOWN COUNTER	LS168	66
4-BIT EXPANDABLE DECADE UP/DOWN		
COUNTER	LS168*	53
4-BIT PRESETTABLE DECADE UP/DOWN		
COUNTER	LS168*	62
4-BIT DECADE UP/DOWN COUNTER	LS168*	48
4-BIT BIDIRECTIONAL SHIFT REGISTER	LS194	62
4-BIT PARALLEL-ACCESS SHIFT		
REGISTER	LS195	42
8-BIT PARALLEL LOAD SHIFT REGISTER	LS165	88
8-BIT SHIFT/STORAGE SHIFT REGISTER	LS299	137
8-BIT SERIAL-IN/PARALLEL-OUT SHIFT		
REGISTER	LS164	49
8-BIT PARALLEL IN/SERIAL-OUT SHIFT		
REGISTER	LS166	78
8-BIT SYNCHRONOUS-LOAD SHIFT		
REGISTER	LS166	78
8-BIT SERIAL-IN/SERIAL-OUT SHIFT		
REGISTER	LS 91	48

* Simplified version of the TTL function
be developed. Each functional overlay corresponds to a metal interconnect pattern that is superimposed on a set of uncommitted transistors (and polysilicon underpasses) in the array to implement the logic element. Typical functional overlay logic elements and the number of equivalent two-Input gates are shown in Table 2.
Currently over 75 functional cells exist for this family.

Three-Micron Gate Array Family

As part of AMI's long range semi-custom strategy in MOSIVLSI, AMI will continue to introduce new gate array products. These new products will offer performance and cost advantages not currently realizable. In conjunction with these new array products, AMI has introduced computer-aided design tools to automate the entire gate array design process.

Table 3. AMI Gate Array Configurations 3μ Double Metal Family

Part No.	Eg. 2. Input Gates	Total Pads	General VO	Power Only
GA-1000D	1152	68	64	4
GA-2000D	2070	88	84	4
GA-3000D	3080	106	102	4
GA-4000D	4012	124	120	4

3μ Single Metal Family

Part No.	Eg. 2. Input Gates	Total Pads	General V0
GA-500	540	40	40
GA-1000	1040	54	52
GA-1500	1500	64	64
GA-2000	2025	74	74
GA-2500	2500	84	84

5μ Single Metal Family
$\left.\begin{array}{lccccc}\hline & \begin{array}{c}\text { Eg. 2. } \\ \text { Part No. }\end{array} & & \begin{array}{c}\text { Low } \\ \text { Power } \\ \text { Input Gates }\end{array} & \text { Total Pads } & \begin{array}{c}\text { High } \\ \text { Power } \\ \text { V0 }\end{array}\end{array} \begin{array}{c}\text { Input } \\ \text { Only }\end{array}\right]$

The newest gate array family is the high-performance GA and GA-D series which is based on AM1's 3 -micron CMOS silicon gate process technology.
The AMI GA and GA-D series are designed for 5 V operation over military temperature range (-55 to $125^{\circ} \mathrm{C}$). Besides high speed (2 to 3 ns typical delay) and high density (up to 4 K gates), it features total I/O flexibility

Total Flexibility of IIO Options

Peripheral cell design offers total flexibility in determining pin-out configurations and maximizes the number of options associated with each pad. Each pin in the 3-micron gate array can serve any of the following functions:

- TTL Output Driver
- LSTTL Output Driver
- CMOS Output Driver
- Open Drain Output
- Tristate Output
- Analog Switch
- CMOS Input
- VDD Supply
- VSS Supply

Furthermore, the peripheral cell also contains high impedance transistors that can be used as pull-ups or pulldowns if required.
The single metal version provides up to 2500 gates and the double metal GA-D version 4000 gates. See Table 3 for configurations.
In conjunction with these new array products, AMI offers a complete powerful set of design automation software to allow users complete design flexibility. Using a terminal tied to a central AMI owned or customer owned minicomputer or mainframe, the user has access to a complete set of design automation tools including:

- Schematic capture

- Logic simulation
- Circuit simulation
- Interactive or autoplace and route
- Automated placement and routing

AMI Service Makes It Simple

AMI is committed to providing service which makes getting your gate arrays nearly as simple as buying off-theshelf, standard circuits. From your logic description, net list, database tape, or whatever format in which you choose to supply us the design information, AMI has proven procedures designed to assure that you'll get circuits on time and that they work the first time.

- You supply logic and specifications and we'll complete the VLSI implementation for you.
- You supply logic using AMI macros and we'll complete schematic capture, logic simulation, placement and routing, and the fabrication process.
- You do your own schematic capture on any of several AMI approved workstations and give us a net list and we'll complete the process.
- You supply the database tape and we'll fabricate, package and test your gate array circuits.
Regardless of how or at what stage you supply your design data, you can be confident that your completed ICs are only a short time away. Why? Because AMI's entire manufacturing cycle, including planning and tracking procedures, has been developed during 17 years of experience

Gate Arrays

in delivering customized solutions for our customers. Producing small volumes of a large number of different designs is our standard way of doing business.

Our commitment to you won't get lost in the shuffle as is often the case with large producers of commodity circuits. Best yet, you get service and AMI's total MOS/VLSI capability.

You Get State-of-the-Art CMOS Technology

The advanced CMOS process technology used for AMi gate array products offers all of the conventional advantages of CMOS - very low power consumption, broad power supply voltage range, high noise immunity-as well as dense circuits with high performance. Arrays are currently available in 5 -micron single metal, 3 -micron single and double metal, and in 1984, 2-micron double metal processes.

You Get Leading Edge Design Support

AMI's CAD Technology is the most advanced integrated software system for MOS/VLSI circuit design available in the industry. It uses a common database for logic simulation, mask layout and test program generation. The common database approach eliminates errors due to data file transcription steps and allows a gate array design to be converted into a standard cell or a full custom circuit without entering the same logic description again.
The heart of the system is BOLT ${ }^{\text {TM }}$ (Block Oriented Logic Translator) which is a hardware description language and a compiler for the language. It allows the system designer to describe the logic network in a hierarchical fashion due to an unlimited macro nesting capability.
The logic description database is created by compiling a BOLT description of the logic network into the HOLD ${ }^{\text {TM }}$ (see below) database format. Figure 4 shows a simple logic network and the corresponding BOLT syntax.

Figure 4. Logic Network \& BOLT Syntax

HOLD ${ }^{\text {TM }}$ (Hierarchically Organized Logic Database) is created by the BOLT compiler using the AMI macro library and the BOLT description of the circuit. HOLD contains the description of the circuit for AMI CAD programs and is updated after mask layout to include key performance information, e.g. net capacitance after routing.
SIMAD ${ }^{\text {TM }}$ is an event and table driven, MOS logic simulator that creates a logic model of the circuit to be validated from the HOLD database. Nodes may assume any one of six logic states $0,1, X, L, H$, and Z, thus allowing accurate simulation of transmission gates.
Since each logic device in the model can be assigned propagation delays, SIMAD also allows timing verification, including race detection.
GAPAR ${ }^{\text {TM }}$ is the software package that does automatic placement and routing of arrays. GAPAR will complete at least 98% of the wiring connections on a 100% utilized array. The GAPAR system's correct-by-construction interactive editor can be used to manually connect any unrouted connections or to manually route critical delay paths.

DELAY ${ }^{\top M}$ updates the HOLD database after routing with propagation delay parameters based on actual capacitance data.

TESTFORM ${ }^{\text {TM }}$ generates compressed functional test patterns from the SIMAD logic simulation results.

TESTPRO ${ }^{\text {M }}$ allows off-line generation of D.C. parametric tests in the Factor ${ }^{T M}$ test language used in Fairchild test systems. Its output is merged with the compressed functional patterns from TESTFORM, and the result is a test program that can be tailored for use in any Sentry ${ }^{\top M}$ tester.

AMI's software makes it reasonably simple to convert a gate array to a standard cell or full custom circuit, resulting in lower circuit costs when your volume warrants it. Plus you get even more.

- We offer design training classes with full-time instructors.
- AMI has design centers to allow you to do your design with our engineers available to assist you.
- AMI's software is available on a variety of computer systems and workstations.
- Through volume purchase agreements we can help you get discounts on the hardware/software configuration that best fits your needs.

Packages

Pinout or lead count varies with die size and array complexity. The arrays are offered in standard plastic and ceramic dual-in-line packages with pin counts ranging from

16 to 64, JEDEC-Standard leadless and leaded chip carriers, miniflat packs to 84 pins, and pin grid arrays to 144 pins. AMI gate array products are also available in wafer or unpackaged die form.

Table 4. D.C. Electrical Characteristics, 5-Micron Gate Arrays
Specified @ $V_{D D}=5 \mathrm{~V} \pm 10 \%$ or $10 \mathrm{~V} \pm 10 \%, V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{A}=-55^{\circ}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	$V_{\text {DD }}$	Min.	Тур.	Max.	Units	Conditions
V ${ }_{\text {OL }}$	Low Level Output Voltage High Power Output High Power Output Low Power Output Low Power Output	$\begin{gathered} 5 \\ 10 \\ 5 \\ 10 \end{gathered}$			$\begin{gathered} 0.05 \\ 0.4 \\ 0.5 \\ 0.4 \\ 0.5 \end{gathered}$	V V V V V	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=1.0 \mu \mathrm{~A} \\ & \mathrm{O}_{\mathrm{OL}}=2.4 \mathrm{~mA} \\ & \mathrm{O}_{\mathrm{OL}}=4.8 \mathrm{~mA} \\ & \mathrm{IOL}_{\mathrm{OL}}=0.8 \mathrm{~mA} \\ & \mathrm{IOL}_{\mathrm{OL}}=1.6 \mathrm{~mA} \end{aligned}$
V_{OH}	High Level Output Voltage High Power Output High Power Output Low Power Output Low Power Output	$\begin{gathered} 5 \\ 10 \\ 5 \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} V_{D D}-.05 \\ 2.4 \\ 9.5 \\ 2.4 \\ 9.5 \\ \hline \end{gathered}$			$\begin{aligned} & \hline V \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1.0 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-1.6 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-0.8 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA} \\ & \hline \end{aligned}$
$V_{\text {IL }}$	Input Low Voltage	$\begin{gathered} \hline 5 \\ 5 \\ 10 \end{gathered}$	$\begin{aligned} & 0.0 \\ & 0.0 \\ & 0.0 \end{aligned}$		$\begin{aligned} & 0.8 \\ & 1.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	TTL Input CMOS Input CMOS Input
$\mathrm{V}_{1 H}$	Input High Voltage	$\begin{gathered} 5 \\ 5 \\ 10 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 3.5 \\ & 7.0 \end{aligned}$		$V_{D D}$ $V_{D D}$ $V_{D D}$	$\begin{aligned} & \text { V } \\ & V \\ & V \end{aligned}$	TTL Input CMOS Input CMOS Input
In	Input Leakage Current	5	-1		1	$\mu \mathrm{A}$	$V_{I N}=V_{D D}$ or $V_{S S}$
102	High Impedance Output Leakage Current	5	-10	0.001	10	$\mu \mathrm{A}$	$V_{O H}=V_{D D}$ or $V_{S S}$
${ }_{\text {CIN }}$	Input Capacitance			5		pF	Any Input

Standard Cells

Standard Cells

AMI's Standard Cell Capabilities
 What are Standard Cells?

Standard cells are circuit "building blocks" which have been previously designed, characterized and stored in a computer database. These building block cells can range from simple digital circuit elements such as logic gates (AND, NAND, NOR, OR, etc.) to more complex digital subsystems such as UARTs, CPU cells, memory cells, etc. The cells can also include basic analog circuit elements (operational amplifiers, comparators, etc.), as well as complicated analog subsystems (analog-to-digital converters, switched capacitor filters, etc.). Both the digital and analog cells are available, in a standard cell library, to be integrated into various application specific circuits.
Two basic types of circuits can be constructed from a standard cell library. The first type, Semicustom Standard Cell Circuits, utilizes only those cells which exist in the standard cell library. The semicustom designer selects the necessary cells from the library and, the circuit design is completed by automatically "placing" the cells and "routing" the interconnections between cells.
The second type of standard cell circuit, Interactive Custom Standard Cell Circuits, is distinguished by either of two characteristics: 1) interactive placement and routing or 2) integration of custom circuitry. Interactive layout is used to minimize the die size and/or to optimize overall circuit performance. With this technique, an experienced circuit designer uses an interactive CAD (Computer Aided Design) system to "manually" place the cells and route the necessary interconnections. If specialized functions cannot be efficiently implemented with the available cells or if rigorous performance criteria must be met, custom circuitry can be used in conjunction with the standard cells, to meet the requirements of a given circuit. This sort of custom standard cell circuit can be placed and routed interactively or, if the custom circuit elements can be grouped into one or more custom cells, automatic layout can be performed.

Standard Cells Benefits

Standard Cell Benefits Standard cell circuits offer a simple, low-cost, low-risk method of designing a semicustom or custom circuit for a specific application.
Compared to optimized full custom circuits, standard cell circuits offer substantial savings in both development cost and time span. Also, because the cells have been individually simulated and characterized, it is more likely that a standard cell circuit will work properly the first time. In exchange for these benefits, the production unit prices of a standard cell circuit are slightly higher than the prices of a comparable optimized custom circuit.
At the other end of the custom spectrum, standard cell circuits compare favorably with gate arrays. Although the development cost and time span are not as low as those of a gate array, standard cell circuits can offer significant advantages in unit pricing, functional capabilities, and circuit performance.

By combining the advantages of optimized full custom circuits and gate arrays, standard cell circuits provide a cost effective custom solution for medium production volumes of ten to fifty thousand units per year. In addition to their relative advantages, standard cell circuits offer all of the expected benefits of any custom or semicustom designlow cost, high reliability, reduced space and power requirements, superior performance and proprietary protection.

Standard Cells at AMI

AMI's standard cells are presently designed for use with a state-of-the-art 3 -micron, silicon-gate CMOS process. Although the drawn geometries in this process are 3 microns, the effective channel lengths are typically less than 2 microns. AMI will introduce their fourth generation standard cell families, in 2-micron CMOS, during the second half of 1984.
There are two broad categories of standard cells, in AMI's present 3 -micron cell families. The first category, Standard Cells, are characterized by their fixed cell heights and variable cell widths. These Standard Cells have been designed with horizontal power and ground busses running through each cell, in order to eliminate the need for separate power supply connections to each cell. Also, the need for inefficient route-through cells is minimized, by providing all signal inputs and outputs at both the top and bottom edges of each cell.

The second category of standard cells, Macro Cells, are recognized by their high degree of cell complexity, variable cell heights and variable cell widths. Macro Cells are circuit subsystems which have been designed as relatively large, internally customized cells. Possible Macro Cells include CPU, UART, memory, A/D converter and display driver cells.

AMI Standard Cell Design

From a design point of view, both Standard Cells and Macro Cells are treated in the same manner. Each cell is initially designed on a color graphics terminal, with the help of AMI's SIDS ${ }^{\text {TM }}$ (Symbolic Interative Design System). SIDS is a custom circuit CAD system developed by AMI and proven in the design of over 100 Optimized Full Custom and Interactive Custom Standard Cell circuits. Once the cell's SIDS layout has been completed and satisfactory electrical performance has been verified (using ASPEC and AMI's proprietary circuit models), the cell can be stored in a standard cell library database.
A standard cell chip is designed by selecting cells from the standard cell library and then using CAD tools, such as CIPAR ${ }^{\text {TM }}$ (Circuit Interactive Place And Route), to arrange the desired cells and perform the necessary interconnections. If the circuit requires any unique cells or custom circuitry, the SIDS-based design approach facilitates the integration of the special circuitry with the standard cells. With 18 years of experience in the design of over 3000 circuits, AMI is uniquely qualified to offer the best solution to

Standard Cells

your Semicustom and Interactive Custom Standard Cell Circuit needs.

Standard Cell Familles

AMI's present generation of standard cells contains three different 3 -micron CMOS cell families. Two of these families are best suited for high-performance, high-density digital circuits, with limited analog functions. The third family is capable of higher operating voltages and, it offers extensive analog, digital and high-voltage capabilities. For a summary of AMI's standard cell families, please refer to Table 3, at the end of this section.

Single-Metal Standard Cells

The single-metal cell family is used for primarily digital circuits, with an operating voltage range of 2.5 volts to 6.0 volts. At the cell level, the single-metal cells can operate at speeds of up to 35 MHz . However, the resistivity of the polysilicon interconnect limits the overall circuit performance to around 20 MHz .

Double-Metal Standard Cells

The double-metal cell family also operates at 2.5 V to 6.0 V and, its functional capabilities are similar to those of the single-metal cell family. The double-metal cell level performance is also 35 MHz but, significantly higher performance can be achieved at the circuit level. Because a second layer of metal is available for cell interconnection, circuit density can be improved and, the entire circuit can operate at 35 MHz .

High-Voltage/Analog Standard Cells

This single-metal cell family offers extensive analog design capability (as well as digital) and can operate at voltages up to 10 volts. In addition, a patented design technique allows the construction of 30 -volt output buffers. This 30 -volt output capability is used in AMI's CSDD ${ }^{\text {TM }}$ (Custom Smart Display Driver) Macro Cells.

Standard Cell Development Flexibility

AMI offers four basic options for developing a standard cell circuit. These options are summarized in Table 1.

Table 1.
$\left.\begin{array}{lcccc}\hline & \begin{array}{c}\text { AMI } \\ \text { DESIGNED } \\ \text { DEVELOPMENT }\end{array} & \begin{array}{c}\text { SHARED } \\ \text { DEVELOPMENT }\end{array} \\ \hline \text { FUNCTIONAL SPECIFICATION } & \mathrm{C} & \mathrm{C} & \mathrm{C} \\ \text { WORKSTATION } \\ \text { DEVELOPMENT }\end{array} \begin{array}{c}\text { CUSTOMER } \\ \text { DESIGNED } \\ \text { DEVELOPMENT }\end{array}\right]$

```
A = AMI
TASK C = CUSTOMER TASK
O = OPTIONAL - CUSTOMER OR AMI TASK
```


AMI Designed Development

For an AMI designed development, the customer provides a functional description, logic schematic and complete electrical specification. AMI will use this input to perform all of the other design activities, including standard cell/MOS logic design, development of any special cells,
logic simulation, critical path analysis, layout, mask generation, wafer fabrication, assembly and test development. This development option allows the customer to draw upon AMI's vast MOS circuit design experience, when the customer does not wish to be an active participant in the entire design process.

Standard Cells

Shared Development

In a shared development, certain intermediate tasks can either be done by AMI or by the customer. These tasks include logic simulation, critical path analysis, layout planning, test vector generation and test program generation. The customer can decide whether to do one of these tasks, several tasks or all of them.

To assist in a shared development, AMI can provide the customer with a Standard Cell Design Manual. The Design Manual is a complete technical reference for AMI Standard Cell Design. It contains general information on designing with AMI's standard cells, including how to estimate the circuit's AC performance, power consumption and die size. The Design Manual also includes a complete set of detailed data sheets for each of the individual cells. In order to keep the Design Manual current, an update subscription is available.

Workstation Development

AMI's standard cells are supported on several commercially available engineering workstations, including DAISY and MENTOR. AMI will provide a standard cell library database for use with the workstation. The customer can use the workstation to perform schematic capture, netlist generation and logic simulation. AMI will accept a netlist and will complete the development from that point.

Customer Designed Development

For customers who wish to perform the entire circuit design, AMI will license the use of all cell families. The standard cell tooling database may be used in conjunction with the customer's own CAD tools or, the customer may license the necessary circuit design tools directly from AMI.
In a customer designed development, the customer is responsible for the entire circuit design, up to the creation of a pattern generator tape. The PG tape will be used to make the wafer processing masks. This type of development allows interested customers to use their own MOS design capabilities, without having to build a mask making or wafer fabrication facility.

Development Schedule

One of the primary objectives of standard cell circuits is to design a high-performance MOS/VLSI chip in the shortest time span possible.
With standard cells, circuit design can be almost eliminated because the functional and performance characteristics of the individual cells have already been determined. Most of the remaining circuit design is devoted to verifying that the overall circuit's timing and power requirements have been met.
When standard cells are used, layout can be done automatically, with a CAD place and route program such as CIPAR. Because most of the layout only involves the interconnection of previously designed cells, the possibility of
error is greatly reduced. All of these factors combine to decrease the development span and increase the likelihood that the first silicon will work properly.

Development Cost

Most AMI standard cell developments cost between $\$ 20,000$ and $\$ 75,000$. Several factors affect this development cost, including die size, circuit complexity, speed requirements, development task responsibilities and test development responsibilities.
The most obvious factor affecting the development cost is the die size and number of cells required to implement the desired circuit functions. The " 2 -input gate equivalence" given in Table 3 can be used as a shortcut method to determine the die size, without performing a detailed analysis of the circuit. With a larger die size, development costs will rise.
Similarly, development costs are increased if special layout is required to meet critical timing requirements, if new cells are required, or if the circuit contains very little repetitive logic.
Because of the flexibility of AMI's design interface, development costs can vary widely, depending on how many of the development tasks are performed by the customer. For instance, a development that starts with a functional circuit description will be more expensive than a development from a customer's netlist.
One of the most important development tasks is the test development. Not only does the quality of the production parts depend upon a thorough test program, the test development also accounts for fifteen to forty percent of the total development cost. If a customer is able to provide detailed testing information, the test development cost can be substantially reduced.
Table 2 provides a summary of the high- and low-cost development options for several different circuit sizes. The first column is based upon an AMI designed development, where the customer has provided a functional description, logic schematic and complete electrical specification. The second column assumes a shared (or workstation) development with a netlist input, completed logic simulation, and customer-supplied test program. In this example, AMI is responsible for the basic development tasks of automatic layout, mask-making, wafer fabrication, assembly and test program review.

Table 2. AMI Standard Cell Development Cost

3-Micron, Single-Metal CMOS Standard Cells

Number of 2-Input Equivalent Gates	Netlist Input (Automatic Layout)	Logic Diagram Input (Interactive Layout)		
200	1.00	9 weeks	1.80	13 weeks
1000	1.25	10 weeks	2.50	17 weeks
1500	1.35	10 weeks	2.95	19 weeks
2000	1.50	11 weeks	3.35	21 weeks
2500	1.60	11 weeks	3.75	23 weeks

Standard Cells

Table 3. Single-Metal CMOS Standard Cell Summary

Cell Name	Description	2-Input Gate Equivalent	CMOS 4000 Functional Equivalent	TTL 74LS00 Functional Equivalent
AA025	2-Input AND	1.5	1/4 4081	1/4 74LS08
AA027	2-Input AND	1.5	1/44081	1/4 74LS08
AA035	3-Input AND	2.0	1/3 4073	1/3 74LS11
AA045	4-Input AND	2.5	1/2 4082	1/2 74LS21
A0015	1x2-Input AND into 2-Input OR	2.5		
A0025	2×2 - Input AND into 2 -Input OR	3.0	1/44019	
A0035	3×2-Input AND into 3-Input OR	4.5		
A0045	2x3-Input AND into 2-Input OR	4.0		
A0055	1×3-Input AND $+1 \times 2$-Input AND into 2 -input OR	3.5		
A0065	1×3-Input AND $+1 \times 2$-Input AND into 3 -input OR	4.5		
A0075	1x2-Input AND into 3-input OR	3.5		
A0085	1×3-Input AND into 2 -Input OR	3.0		
A0095	1x3-Input AND into 3-Input OR	4.0		
DF0F5	D-Type Flip-Flop, without Set or Reset	6.0		
DF105	D-Type Flip-Flop, with Set	7.0		
DF115	D-Type Flip-Flop, with Reset	7.0		1/4 74LS175
DF125	D-Type Flip-Flop, with Set and Reset	8.0	1/2 4013 ${ }^{1}$	1/2 74LS74
DF127	D-Type Flip-Flop, with Set and Reset	8.0	1/2 4013 ${ }^{1}$	1/2 74LS74
DF205	D-Type Flip-Flop, only Q Out	5.5		
DF207	D-Type Flip-Flop, only Q Out	5.5		
DF3F5	D-Type Flip-Flop, with Synchronous Load	8.5		
DL115	Data Latch, with Reset	4.5		
DL117	Data Latch, with Reset	4.5		
DL245	Data Latch, with only Q Out, GT/GTN	2.5		
EN015	Exclusive NOR	2.5	1/4 4077	1/4 74LS266
E0015	Exclusive OR	2.5	1/4 4070	1/4 74LS86
IB01C5	Input Pad, CMOS, Core Limited	1.0		
IB01P5	Input Pad, CMOS, Pad Limited	1.0		
IB09C5	Input Pad, TTL, Core Limited	1.25		
IB09P5	Input Pad, TTL, Pad Limited	1.25		
IN015	Inverter	0.5	1/64069	1/6 74LS04
IN017	inverter	0.5	1/64069	1/6 74LS04
$1003 \mathrm{C5}$	1/0 Pad, CMOS, Core Limited	4.5		
$1003 \mathrm{P5}$	1/0 Pad, CMOS, Pad Limited	4.5		
IT015	Internal Tri-State Buffer, Non-Inverting	2.0		
1 I017	Internal Tri-State Buffer, Non-Inverting	2.75		
1 I025	Internal Tri-State Buffer, Inverting	1.5		
IT027	Internal Tri-State Buffer, Inverting	3.25		
MC015	Static Power-On-Reset	2.5		
MU215	2:1 Digital Multiplexer	3.0	1/4 40257	1/4 74LS157
NA025	2-Input NAND	1.0	1/4 4011	1/4 74LS00
NA027	2-Input NAND	1.0	1/4 4011	1/4 74LS00
NA035	$3-I n p u t ~ N A N D ~$	1.5	1/3 4023	1/3 74LS10
NA037	$3-$ Input NAND	1.5	1/3 4023	1/3 74LS10
NA045	4-Input NAND	2.0	1/24012	1/2 74LS20
NA055	5-Input NAND	2.5		

Standard Cells

Table 3. Single-Metal CMOS Standard Cell Summary (Continued)

Cell Name	Description	2-Input Gate Equivalent	$\begin{aligned} & \text { CMOS } \\ & 4000 \end{aligned}$ Functional Equivalent	TTL 74LS00 Functional Equivalent
N0025	2-Input NOR	1.0	1/4 4001	1/4 74LS02
N0027	2-Input NOR	1.0	1/4 4001	1/4 74LS02
N0035	3-Input NOR	1.5	1/3 4025	1/3 74LS27
N0045	4-Input NOR	2.0	1/2 4002	
0B03C5	Output Pad, TTL/CMOS, Core Limited	1.0		
0B03P5	Output Pad, TTL/CMOS, Pad Limited	1.0		
0B09C5	Output Pad, TS, Core Limited	3.5		
0B09P5	Output Pad, TS, Pad Limited	3.5		
OR025	2-Input OR	1.5	1/4 4071	1/4 74LS32
OR027	2-Input O R	1.5	1/4 4071	1/4 74LS32
OR035	$3-$ Input OR	2.0	1/3 4075	
OR045	4-Input OR	2.5	1/24072	
PP01C	$\mathrm{V}_{\text {SS }}$ Power Pad, Core Limited	n/a		
PP01P	$V_{\text {SS }}$ Power Pad, Pad Limited	n/a		
PP02C	$V_{D D}$ Power Pad, Core Limited	n/a		
PP02P	$V_{D D}$ Power Pad, Pad Limited	n/a		
RA015	RAM 0 Configuration $1(16 \times 8)$	568.5		
RAOA5	RAM Core Cell	60.0		
RAOB5	RAM Write Address Decode	52.5		
RAOC5	RAM Read Address Decode	36.0		
SC105	Synchronous Counter, with Ripple Carry and Set	10.5		
SC115	Synchronous Counter, with Ripple Carry and Reset	10.5		
SC125	Synchronous Counter, with Ripple Carry and Reset	11.5		
SC925	Up/Down Counter with Ripple Carry and Set	17.5		
TF105	Toggle Flip-Fiop, with Set	7.0		
TF115	Toggle Flip-Flop, with Reset	7.0		
TF125	Toggle Flip-Flop, with Set/Reset	8.0		
ZZ01	Vertical Route Through	n/a		
ZZ02	Right P-Well End Cell	n/a		
ZZ03	Left P-Well End Cell	n/a		

${ }^{1}$ DF125: Reset and Set are asserted Low
4013: Reset and Set are asserted High

Table 3. 3μ Double-Metal CMOS Standard Cell Summary

Cell Name	Description	2-Input Gate Equivalent	CMOS 4000 Functional Equivalent	TTL 74LS00 Functional Equivalent
AA025	2-Input AND	1.5	1/4 4081	1/4 74LS08
AA027	2-Input AND	1.5	1/4 4081	1/4.74LS08
AA035	$3-$ Input AND	2.0	1/3 4073	1/3 74LS11
AA045	4-Input AND	2.5	1/2 4082	1/2 74LS21
A0015	1x2-Input AND into 2-Input OR	2.5		
A0025	2×2-Input AND into 2 -Input OR	3.0	1/4 4019	
A0035	3×2-Input AND into 3-Input OR	4.5		
A0045	2×3-Input AND into 2 -Input OR	4.0		
A0055	1×3-Input AND $+1 \times 2$-Input AND into 2 -Input OR	3.5		
A0065	1×3-Input AND $+1 \times 2$-Input AND into 3-Input OR	4.5		
A0075	1x2-Input AND into 3-Input OR	3.5		
A0085	1×3-input AND into 2 -Input OR	3.0		
A0095	1x3-Input AND into 3-Input OR	4.0		
DF0F5	D-Type Flip-Flop, without Set or Reset	6.0		
DF105	D-Type Flip-Flop, with Set	7.0		
DF115	D-Type Flip-Flop, with Reset	7.0		1/4 74LS175
DF125	D-Type Flip-Flop, with Set and Reset	8.0	1/2 $4013{ }^{1}$	1/2 74LS74
DF127	D-Type Flip-Fiop, with Set and Reset	8.0	1/2 4013 ${ }^{1}$	1/2 74LS74
DF205	D-Type Flip-Flop, only Q Out	5.5		
DF207	D-Type Flip-Flop, only Q Out	5.5		
DL115	Data Latch, with Reset	4.5		
DL117	Data Latch, with Reset	4.5		
DL245	Data Latch, with only Q Out, GT/GTN	2.5		
EN015	Exclusive NOR	2.5	1/4 4077	1/4 74LS266
E0015	Exclusive OR	2.5	1/4 4070	1/4 74LS86
IB01C5	Input Pad, CMOS, Core Limited	1.0		
1B01P5	Input Pad, CMOS, Pad Limited	1.0		
IB09C5	Input Pad, TTL, Core Limited	1.25		
IB09P5	Input Pad, TTL, Pad Limited	1.25		
IN015	Inverter	0.5	1/6 4069	1/6 74LS04
IN017	Inverter	0.5	1/64069	1/6 74LS04
1003C5	1/0 Pad, CMOS, Core Limited	4.5		
1003 P5	$1 / 0$ Pad, CMOS, Pad Limited	4.5		
IT015	Internal Tri-State Buffer, Non-Inverting	2.0		
1 T017	Internal Tri-State Buffer Non-Inverting	2.75		
1 T025	Internal Tri-State Buffer, Inverting	1.5		
1 T027	Internal Tri-State Buffer, Inverting	3.25		
MC015	Static Power-On-Reset	2.5		
MU215	2:1 Digital Multiplexer	3.0	1/4 40257	1/4 74LS157
NA025	2-Input NAND	1.0	1/4 4011	1/4 74LS00
NA027	2-Input NAND	1.0	1/4 4011	1/4 74LS00
NA035	3-Input NAND	1.5	1/3 4023	1/3 74LS10
NA037	3-Input NAND	1.5	1/3 4023	1/3 74LS10
NA045	4-Input NAND	2.0	1/2 4012	1/2 74LS20
NA055	5-Input NAND	2.5		

Standard Cells

Table 3. 3μ Double-Metal CMOS Standard Cell Summary (Continued)

Cell Name	Description	2-Input Gate Equivalent	CMOS 4000 Functional Functional Equivalent	TTL 74LS00 Functional Equivalent
N0025	2-Input NOR	1.0	1/4 4001	1/4 74LS02
N0027	2-Input NOR	1.0	1/4 4001	1/4 74LS02
N0035	3-Input NOR	1.5	1/3 4025	1/3 74LS27
N0045	4-Input NOR	2.0	1/2 4002	
0B03C5	Output Pad, TTL/CMOS, Core Limited	1.0		
0B03P5	Output Pad, TTL/CMOS, Pad Limited	1.0		
0B09C5	Output Pad, TS, Core Limited	3.5		
0B09P5	Output Pad, TS, Pad Limited	3.5		
OR025	2-Input OR	1.5	1/4 4071	1/4 74LS32
OR027	2-Input OR	1.5	1/4 4071	1/4 74LS32
OR035	$3-$ Input OR	2.0	1/3 4075	
ORO45	4-Input OR	2.5	1/2 4072	
PP01C	$\mathrm{V}_{\text {SS }}$ Power Pad, Core Limited	n/a		
PP01P	$V_{S S}$ Power Pad, Pad Limited	n/a		
PP02C	$V_{D D}$ Power Pad, Core Limited	n/a		
PP02P	$V_{D D}$ Power Pad, Pad Limited	n/a		
RA015	RAM 0 Configuration $1(16 \times 8)$	568.5		
RAOA5	RAM Core Cell	60.0		
RA0B5	RAM Write Address Decode	52.5		
RAOC5	RAM Read Address Decode	36.0		
SC105	Synchronous Counter, with Ripple Carry, Set	10.5		
SC115	Synchronous Counter, with Ripple Carry, Reset	10.5		
SC125	Synchronous Counter, with Ripple Carry, Reset	11.5		
SC925	Up/Down Counter, with Ripple Carry, Set, Reset	17.5		
TF105	Toggle Flip-Flop, with Set	7.0		
TF115	Toggle Flip-Flop, with Reset	7.0		
TF125	Toggle Flip-Flop, with Set, Reset	8.0		
ZZ01	Vertical Route Through	n/a		
ZZ02	Right P-Well End Cell	n/a		
ZZ03	Left P-Well End Cell	n/a		

${ }^{1}$ DF125: Reset and Set are asserted Low
4013: Reset and Set are asserted High

Spectrum of Custom Solutions

No other company can match AMI's track record in developing state-of-the-art custom MOS products. With more than 2000 custom devices designed and manufactured since 1966, AMI has more experience than any other integrated circuit company in bullding a wide variety of custom integrated circuits.
AMI not only has the experience, but the design engineering organization and the advanced production and testing facilities to produce the highest quality MOS/VLSI circuits. And because AMI also offers standard memory, microprocessor, telecommunication and consumer products and the widest variety of custom VLSI processes in the industry, we're able to be objective in helping customers determine their most cost effective approach.

The Spectrum of Solutions

The decision to use a custom circuit depends on your system design requirements - such things as complexity, features, size and power limitations. But no longer is your custom decision limited by low volume or short development time - not when you come to AMI.

AMI has a full spectrum of custom solutions to assure you get that solution which meets your system performance and time-to-market requirements at the lowest possible cost.

AMI's spectrum of solutions bridges the total span of volume, timing and interface needs of our customers. From semicustom designs, to full custom design - somewhere on the spectrum, your development time and volume requirements can be met. For customers who already have their designs, AMI can provide custom fabrication from the customer's tooling. We will teach custom design if that's what the customers need. And we can even go a step further and license the technology for a customer to set up his own fabrication capability. No other company offers such a spectrum of solutions. And no other company has more experience at helping you pick the best solution for your needs.

Semicustom Gate Arrays

Gate arrays are the best solution for circuits of moderate complexity in low-to-medium volume applications or where the shortest possible development time is required. AMI offers both gate arrays and standard cell design methods for semicustom circuit development.
AMI CMOS semicustom gate arrays are standard logic layouts of everything except the final metal interconnect pattern. Since only the final pattern needs to be developed to customize your circuits, both development time spans and development costs are dramatically reduced. Because wafers containing arrays are preprocessed and inventoried, production lead times are short.

For more details on AMI's gate arrays, refer to the "Gate Array" section of this catalog.

Standard Cell Custom

Standard cells are custom circuits which are designed from computer stored modular cells. The computer assembles the cells into a collection of functional blocks to form a custom circuit. Since standard cells utilize predesigned cells, development time is reduced dramatically and development costs are cut 30 to 50 percent over conventional custom design. Circuit size is likely to be slightly larger than a conventional custom circuit, so they are most appropriate where rapid development is more important than minimal size. Standard cells are cost effective in volume levels beginning around 10,000 circuits.
For more details on AMI standard cells refer to the "Standard Cell" section of this catalog.

The Advantages of Custom Circuits

Since a single custom MOSIVLSI chip can replace expensive electromechanical devices, discrete logic components, or less efficient general purpose LSI circuits, it offers a number of benefits not available with standard logic.
Custom circuits save money. Grouping functions onto a single chip lowers production and inventory costs dramatically. That reduces your product manufacturing costs as well.
Custom circuits are more reliable. Putting a complete system on a chip trims component count, improving both product reliability and production yields. Rework, repair and replacements are minimized.
Custom circuits reduce space and power requirements. Fewer components means both space and power requirements are reduced.
Custom circuits offer superior performance. Since the circuit is designed to your requirements, features and functions can be incorporated which are not available in general purpose chips. Special tailoring reduces test requirements as well.
Custom circuits offer proprietary protection. Being tailored exactly to your requirements, a custom circuit cannot be easily duplicated. This can help put you ahead - and keep you ahead - of your competition.

Optimized Custom Design

Where end product volume is high - beyond 50,000 units per year - or where special requirements for lowest power, minimal space or highest performance exist, the solution is likely to be conventional custom design. By optimizing circuit elements and layout for a specific part, die size is substantially smaller than using semicustom design methods. In high volume applications, a smaller die size results in lower unit cost to the customer.

Spectrum of Custom Solutions

In addition, custom designs allow you to combine logic elements, memory, and analog circuits in a single device. This design flexibility is not available in gate arrays and only available to a limited extent in standard cells.

Digital and Analog Combinations

AMI is a leading innovator in combining digital and analog functions on a single chip. We can combine any of the functions below into an optimum circuit configuration to meet your needs. Unique combinations of these functions are already used in many applications in the communications, consumer, and industrial marketplace.

DIGITAL	ANALOG
PLA	OP AMP
ALU	Oscillator
Inverter	Comparator
RAM and ROM	Voltage Reterence
Shift Register	A/D and D/A Converters
Interface Driver	Switched Capacitor Filters
Automatic Power Down	Programmable Power Down
	Phase Locked Loops

Instrumental in the design of custom circuits is our Symbolic Interactive Design System (SIDS). The design is done primarily with SIDS where a layout designer works with symbols directly at a large screen alphanumeric color CRT. After the SIDS circuit design has been completed and verified, the symbols are converted to polygons and a 10 X reticle tape is prepared.
With SIDS, error correction, circuit modification and area relocations take only minutes. That significantly reduces design cycle time and development costs.
Computer-aided hand-drawn layouts are used to reduce extremely complex circuits to the absolute smallest size. Development time and costs are higher, but in certain cases, size or complexity requirements may require the hand-drawn approach.

Customer Owned Tooling (Silicon Foundry)

For customers who require the support of AMI's silicon foundry, we offer vast production capacity and a large engineering staff. Over the past decade, AMI has produced over 1200 circuits from customer designs-everything from standard products to gate arrays, standard cells, and full (interactive) custom circuits. When you use AMI's foundry services, you'll receive experienced support and a broad line of processes to choose from. AMI has full in-house manufacturing capability so none of our work is subcontracted. In addition, since AMI produces no systems, we won't be competing with you in your markets.

- AMI offers flexible design input options:
- Referral to qualified AMI-subcontracted design houses
- Customer generated workstation designs
- Pattern generator tapes
- Database tapes
- Working plates
- World's broadest process capability—over 27 processes
- PMOS
- CMOS: 7.5μ to 3.0μ
- NMOS: 6.0μ to 3.0μ
- Packaging Flexibility
- Wafers
- Dice
- Broad range of IC packages
- Additional resources for the customer in design/ development/production
- Advanced technology
- Low cost
- Short design-to-production cycle-4-5 weeks
- Best quality (currently 0.04%)
- Multiple source security for critical customer devices
- Design security with non-disclosure agreements
- Control of design/development/production

Semicustom Group

One of the most innovative approaches to AMI's IC business has been the organization of specialized departments for marketing, training, technology interfaces and applications support. Because of AMI's experience in the semicustom business, many customers depend upon AMI to provide the leadership in these areas.
The Corporate Training Department provides seven different training courses which are the best in our industry. Training courses which cover Gate Array and Standard Cell Design, CAD Software, Workstation Interface Training, and the usage of AMI Family Cells are offered on a monthly basis. As a result of this training, customer learning and personal productivity is enhanced which produces excellent results in first time circuit successes.
TIS Marketing is responsible for the licensing of AMI's CAD Technology. The CAD System is composed of 56 different software programs which cover the applications of Schematic Entry, Logic Simulation and layout of Standard Cells, Gate Arrays and Full Custom Circuits. AMI's CAD System is the only portable integrated CAD package in the world which has been developed, tested, and utilized and tested internally by a silicon foundry.
The Technology Interface Department is the consulting arm of the Semicustom Group. If you desire to build a manufacturing facility, install a new process line for manufacturing, or just ask questions, the Technology Interface Department is ready to support you.

Spectrum of Custom Solutions

AMI CAD Technology

AMI provides advanced computer-aided design tools for MOS/VLSI circuit design in an integrated system that supports the full continuum of design styles, from semicustom gate arrays to custom standard cells, macro cells, and handcrafted circuitry.

The complete system includes programs for design capture, design verification, mask design using automatic and interactive placement and routing techniques, symbolic mask design, and test program development.
All of AMI's design tools operate from a common database, HOLD ${ }^{\text {TM }}$. This logic database is accessed by all AMI CAD tools requiring a logic description of the circuit being designed. Since the circuit description is entered into the computer only once, time is saved and the possibility of transcription errors is eliminated.
Customers using major workstations can interface with AMI's CAD system at several points during the design cycle. You can perform schematic capture on your workstation, then turn the netlist over to AMI and we'll complete the design process for you. Or you can go a step further and do the logic simulation and timing verification on your workstation and then let AMI take it from there. If your workstation has the capability you can also do the physical layout yourself and provide AMI with a database tape.
AMI will also license its software for you to use on your own computer system. AMI's CAD system can easily be configured on small computer systems to support just one user (a workstation) or on large computer systems to support an entire design department (time-sharing). All AMI CAD software has been developed in portable programming languages, primarily FORTRAN and PASCAL, thereby minimizing the difficulty of installing the software on different computer systems.

Design Capture

- Schematic Entry (EAZELTM)

Permits designer to create and edit circuit schematics interactively, using a monochrome or color graphics terminal. Creates a logic database (HOLD).

- Hardware Description Language Compilation (BOLT ${ }^{\text {TM }}$)

Compiles the hardware description of a circuit into a common logic database (HOLD) file used by other AMI CAD tools.

- HOLD to BOLT Decompilation (UNBOLT ${ }^{\text {TM }}$)

Converts a HOLD file created by EAZEL or BOLT and possibly modified during mask design, back into a hardware description language file, for inspection purposes.

- Electrical Rules Checking (CHEER ${ }^{\text {TM }}$)

Verifies that the circuit description stored in a HOLD file does not violate any common electrical rules.

Logic Design

- Logic Simulation (SIMAD ${ }^{\text {TM }}$)

Digitally simulates logic network behavior for both logic design verification and functional test pattern development.

- Test Vector Language Compilation (TESS ${ }^{\text {TM }}$)

Allows designers to enter and generate tests for validating chip designs.

- Propagation Delay Calculation (DLAY ${ }^{T M}$)

Provides accurate propagation delay parameters based on mask layout information.

Circuit Simulation/Analysis

- Circuit Simulation (AMISPICE ${ }^{\text {TM }}$)

Determines transistor level circuit behavior in terms of node voltages, branch currents and component power dissipations.

- Switched Capacitor Filter Analysis (SCARIITM)

Provides simulation and optimization of switched capacitor circuits.

- Pole-Zero Analysis (PZSLIC ${ }^{\text {TM }}$)

Calculates the location of poles and zeros in the S-plane during frequency domain analysis of linear ICs.

- Manufacturing Statistical Analysis (MSAS ${ }^{\text {TM }}$)

Analyzes parametric test data to obtain component model parameter data for use in circuit design.

Mask Design

- Standard Cell Placement and Routing (CIPAR ${ }^{\text {TM }}$)

Automatically/interactively creates a chip floor plan, a complete standard cell circuit layout, or a macro cell chip.

- Gate Array Placement and Routing (GAPAR ${ }^{\text {TM }}$)

Automatically creates a complete single or double metal gate array layout (some interactive editing is required).

- Symbolic Interactive Design (SIDS ${ }^{\text {TM }}$)

Permits symbolic design and checking of custom cells and circuits, using a color alphanumerics terminal.

- Mask Layout Editing (GLIDE ${ }^{\text {TM }}$)

Permits manual entry and editing of geometric database (GDB) files.

- Symbolic Design Rule Checking (SDRC ${ }^{\text {TM }}$)

Performs design rule checking of symbolic mask files.

- Symbolic Trace and Netlist Extraction (STRACE ${ }^{\text {TM }}$)

Extracts netlists from symbolic mask (SIDS) files for use in continuity checking.

- Symbol to Polygon Conversion (STPTM)

Converts a file containing a symbolic layout to one containing an equivalent geometric layout.

Spectrum of Custom Solutions

- Symbolic Printer (SPRINT ${ }^{\text {TM }}$)

Prints/plots a symbolic layout file.

- Gate Array Design Rule Checking (GADRC ${ }^{\text {TM }}$)

Performs design rule checking of gate array mask (GDB) files.

- Gate Array Trace and Netlist Extraction (GATRACE ${ }^{\text {TM }}$)

Extracts netlist from gate array mask (GDB) files for use in continuity checking.

- Geometrical Mask Plotting (GPLOT ${ }^{\text {TM }}$)

Creates a Versatec plot of a geometric database (GDB) file.

- Logic Database Netlist Extraction (HOLDNET ${ }^{\text {TM }}$)

Extracts netlists from logic (HOLD) databases for use in continuity checking.

- Continuity Checking (COMPARE ${ }^{\text {TM }}$)

Compares the logic description to the circuit traced from the mask layout.

- Netlist File Dump Utility (DUMPNETTM)

Produces an easy-to-read listing of the transistors and their interconnections contained in a netlist file.

- Mask Capacitance Extraction (GCAPTM)

Produces a nodal capacitance report from geometrical mask data.

- Polygon to Rectangle Conversion (SMASH ${ }^{T M}$)

Fractures polygon mask data into rectangles for further processing by pattern generators.

- Pattern Generation (PATGEN ${ }^{\top M}$)

Prepares PG tapes from fractured geometric mask data files.

- Calma Stream Format Conversion (STREAMTOGDB ${ }^{\text {TM }}$)

Converts Calma stream format files to AMI geometric database (GDB) format.

- CIF Format Conversion (CIFTOGDB ${ }^{\text {TM }}$)

Converts Caltech Intermediate Form data files to AMI geometric database (GDB) format.

- Pattern Generator Tape Conversion (PGTOGDB ${ }^{\text {TM }}$)

Converts pattern generator tapes to AMI geometric database (GDB) format so the PG data can be examined on a graphics system.

Test Design

Test Program Generation (TESTPRO ${ }^{\text {TM }}$)

Automatically generates parametric test programs.

- Test Pattern Formatting (TESTFORM ${ }^{\text {TM }}$)

Generates a compressed functional test pattern based on stimuli/response bit patterns obtained during logic simulation.

- TDX Format Tape Reading (READTDXTM)

Permits reading a TDX format tape on host computer.

- TDX Format Tape Writing (WRITETDX ${ }^{\text {TM }}$)

Permits writing a TDX format tape from host computer.

User Interface

Background Mode Execution (RUN)
Allows program to be executed in background mode, thereby freeing up the user's terminal for other uses.

- Background Mode Job Cancellation (CANCEL)

Permits users to inspect lists of background jobs they are currently executing and individually cancel any or all of them.

- Template Editor (TED)

Provides forms entry capability for entry and saving of information needed to run various AMI CAD tools.

- Online Assistance (HELP)

Provides a listing of all AMI CAD tools with brief descriptions, and/or more complete information on a specific tool selected by the user.

State of the Art Packaging

AMI's packaging capability spans a broad spectrum, beginning with plastic, ceramic and CERDIP and going on to chip carriers, die bonding to PC boards and, most recently, miniflat packs. As well as being a leader in plastic packaging for the high volume, low cost consumer industry, AMI's high reliability plastic packages and chip carriers are accepted under the stringent requirements in the Telecom and Automotive industries. For more detailed information see the "Packaging" section in the back of this catalog.

AMI Delivers Quality

AMI quality controls for in-process wafer inspection and final assembly and test are the best in the industry. Our care in fabrication, assembly and test mean that you get products that meet your specifications for reliability. In fact, our own in-house standards are tougher than most of our customers require. Most importantly, AMI is committed to making sure that everything we do is done right, every time we do it.

The Industry's Highest Standard

AMI has consistently pursued product excellence and has reached for higher quality levels in finished products shipped. Circuits are inspected to 0.04% AQL or your specifications, whichever is more stringent.
This 0.04% AQL can put you in a superior competitive position. Your incoming test and assembly costs come down since there is less reworking on the line. And your customers receive a more reliable product.

Spectrum of Custom Solutions

Quality Checks

Among the routine quality controls exercised over every product at AMI are:

- Full logic design checks against system specifications
- Circuit simulation to verify performance against objectives
- Working plates check on automatic checkers
- Automated mask fabrication checks
- in-process wafer fabrication checks
- Wafer sort tests
- 100% optical inspection at dicing
- 100\% die attach checking
- 100% lead bonding inspection prior to package sealing
- Seal checks, fine and gross leak tests
- Final digital and analog tests
- Customer specified environmental tests

Meticulous in-process checks are performed on design and workmanship at every step, to ensure a full manufacturable device. In manufacture, lot process and yield data are captured and examined as a matter of routine.
For more information, see the "Product Assurance" section at the back of this catalog.

Communication Products

For more information on those data sheets which are not included in their entirety refer to AMI's Telecom Design Manual or contact Telecom Marketing at (408) 554-2070

Communication Products Selection Guide

STATION PRODUCTS

Part No.	Description	Process	Power Supplies	Packages
S2550A	Speech Network with Tone Ringer	CMOS	Line Powered	18 Pin
S2559A/B	DTMF Generator	CMOS	3.5 V to 13 V	16 Pin
S2559E/F	DTMF Generator	CMOS	2.5 V to 10 V	16 Pin
S2579	BCD input DTMF Dialer	CMOS	3.0 V to 10 V	16 Pin
S2859	DTMF Generator	CMOS	3.0 V to 10.0 V	16 Pin
S2560A	Pulse Dialer	CMOS	1.5 V to 3.5 V	18 Pin
S2560G/I	Pulse Dialer	CMOS	2.0 V to 3.5 V	18 Pin
S2561, S2561C	Tone Ringer	CMOS	4.0 V to 12.0 V	18 Pin
S2561A	Tone Ringer	CMOS	4.0 V to 12.0 V	8 Pin
S2563A	Pulse Repertory Dialer, Line Powered	CMOS	2 V to 5.5 V	40 Pin
S2569/A	DTMF Generator with Redial	CM0S	2.0 V to 3.5 V	16 Pin
S2569B/C	DTMF Generator with Redial	CMOS	2.0 V to 3.5 V	18 Pin
S25089	DTMF Generator	CMOS	2.5 V to 10 V	16 Pin
S25610	Repertory Dialer	CMOS	1.5 V to 3.5 V	18 Pin
S25610E	DTMF Repertory Dialer	CMOS	2.0 V to 3.5 V	18 Pin
S25910/S25912	DTMF Repertory Dialer	CMOS	Line Powered	16 Pin

PCM PRODUCTS

53506	A-Law Combo Codec with Filters	CMOS	$\pm 5 \mathrm{~V}$	22 Pin
S3507/A	μ-Law Combo Codec with Filters	CMOS	$\pm 5 \mathrm{~V}$	$22 / 28$ Pin
$544230 / 31 / 32 /$	Hitachi Second Source Codecs with Filters	CMOS	+5 V	16 Pin
$33 / 34$				

SIGNAL PROCESSORS

SSPCP/M-1	Software Simulator/Assembler Program Package			
S28211	Signal Processing Peripheral (ROM Programmed)	NMOS	5 V	28 Pin
S28212A/B	Signal Processing Peripheral (Externally Programmed)	NMOS	5 V	64 Pin
S28214	Fast Fourier Transformer	NMOS	5 V	28 Pin
S28215	Digital Filter/Utility Peripheral	NMOS	5 V	28 Pin

MODEM AND FILTER PRODUCTS

S3522	Bell 212/V.22 Modem Filter	CMOS	9 V to 11 V	16 Pin
S35212	Bell 212/V.22 Modem Filter with 1/0 Filtering	CMOS	8 V to 12 V	24 Pin
S3524	Digital Frequency Detector	CMOS	$\pm 5 \mathrm{~V}$	8 Pin
S3525A/B	DTMF Bandsplit Filter	CMOS	10.0 V to 13.5 V	18 Pin
S3526	2600 Hz Band-Pass/Notch Filter	CMOS	9 V to 13.5 V	14 Pin
S3526M	2600 Hz Band-Pass/Notch Filter	CMOS	9.0 V to 13.5 V	16 Pin
S3528	Programmable Low Pass Filter	CMOS	9 V to 13.5 V	18 Pin
S3529	Programmable High Pass Filter	CMOS	9.0 V to 13.5 V	18 Pin
S3530	Single Chip Bell 103/V.21 Modem	CMOS	9.5 V to 10.5 V	28 Pin

TWO TO FOUR WIRE TELEPHONE HYBRID WITH TONE RINGER

Features

Monolithic IC Consisting of the Speech Network and Tone Ringer
\square Interfaces With Inexpensive Condenser Electret Microphone, Electromagnetic Receiver and a Piezoelectric Ringer Transducer
\square Automatic Gain Adjustment for Loop Loss Compensation
\square Low Voltage CMOS Process for Operation Over Varying Loop Lengths and Currents

Uses Inexpensive and Non-Critical External Components

General Description

The S2550A is a monolithic CMOS IC consisting of a hybrid circuit for telephone speech functions and a tone ringer circuit. The hybrid circuit performs the $2 / 4$ wire conversion for transmission and reception of speech in a telephone handset. The tone ringer circuit generates an audible tone coincident with the incoming ringing signal through a piezoelectric transducer or a high impedance speaker.

Circuit Description

The s2550A consists of the following functional blocks.

1. Transmitting transconductance amplifier with AGC. The transconductance is programmed by an external resistor to R-set.
2. Receiving transconductance amplifier with AGC. The output current level is adjusted on pin "DC".
3. Hybrid circuit. An external RC circuit must be added to compensate the phase shift for different line length and line impedance.
4. Line current sensing circuit for automatic gain control.
5. Tone ringer with output stage capable of driving a piezoelectric transducer or a high impedance speaker.
Voltage gain of the first stage of transmitting amplifier
can be adjusted by the ratio of the negative feedback resistors R11, R12. Current gain and current level is programmed by R13.
The Inhibit Input 1 turns off the speech part of the circuit and activates the tone ringer if it is set to logical " 1 ". Setting it to logical " 0 " activates the speech circuit and puts the tone ringer output to a high impedance state. AGC input is active when connected to pin AGC T_{T} via capacitor. The side tone cancelling current is connected to the receiver input pin $\mathrm{R}_{\mathbf{I N}}$.
The automatic gain control of the receiver amplifier is provided by connection of input $R_{\mathbb{I N}}$ to $A G C_{R}$ via a cap. acitor.
Tone ringer frequency is set by RC time constant on pins R1, R2 and C. The Inhibit Input 2 is provided to inhibit the oscillator by setting the necessary delay to avoid false ringing.

Absolute Maximum Ratings

S2550A Electrical Characteristics (@ $25^{\circ} \mathrm{C}$. Measured Using Circuits of Figures 1 and 2.)

Parameter	Min.	Typ.	Max.	Test Conditions
Sending Gain $G_{S}=20 \log \frac{V_{L}}{V_{T}}$	$\begin{array}{r} 28 \mathrm{~dB} \\ 27 \mathrm{~dB} \\ \hline \end{array}$	$\begin{aligned} & 40 \mathrm{~dB} \\ & 33 \mathrm{~dB} \end{aligned}$	$\begin{array}{r} 43 \mathrm{~dB} \\ 37 \mathrm{~dB} \\ \hline \end{array}$	$\begin{aligned} & f=1000 \mathrm{~Hz} \\ & V_{T}=10 \mathrm{mV} \cdot \mathrm{P} \\ & I_{L}=20 \mathrm{~mA} \\ & L_{L}=60 \mathrm{~mA} \end{aligned}$
Sending Gain Flatness		$\pm 0.5 \mathrm{~dB}$		$\begin{aligned} & \mathrm{L}=20 \mathrm{to} 80 \mathrm{~mA} \\ & \mathrm{f}=300 \text { to } 3400 \mathrm{~Hz} \end{aligned}$
Sending Distortion @ 20mA L_{L}		2.5\%	5\%	$\begin{aligned} & f=1000 \mathrm{~Hz} \\ & V_{T}=10 \mathrm{mV}-\mathrm{P} \end{aligned}$
Receiving Gain $G_{R}=20 \log \frac{V_{R}}{V_{L}}$	$\begin{gathered} -7 \mathrm{~dB} \\ -13 \mathrm{~dB} \end{gathered}$	$\begin{aligned} & -1 d B \\ & -6 d B \end{aligned}$	$\begin{array}{r} +3 \mathrm{~dB} \\ -2 \mathrm{~dB} \\ \hline \end{array}$	$\begin{aligned} & f=1000 \mathrm{~Hz} \\ & V_{L}=100 \mathrm{mV}-\mathrm{P} \\ & \mathrm{~L}=20 \mathrm{~mA} \\ & \mathrm{~L}=60 \mathrm{~mA} \end{aligned}$
Receiving Gain Flatness		$\pm 0.5 \mathrm{~dB}$		$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=20 \text { to } 80 \mathrm{~mA} \\ & \mathrm{f}=300 \text { to } 3400 \mathrm{~Hz} \end{aligned}$
Receiving Distortion @ $20 \mathrm{~mA} \mathrm{I}_{\mathrm{L}}$		2\%	5\%	$\begin{aligned} & f=1000 \mathrm{~Hz} \\ & V_{R}=100 \mathrm{mV} \text { P-P } \end{aligned}$
Side Tone $G_{L}=20 \log \frac{V_{R}}{V_{T}}$	$\begin{aligned} & 18 \mathrm{~dB} \\ & 12 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 29 \mathrm{~dB} \\ & 21 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 36 \mathrm{~dB} \\ & 28 \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & f^{\prime}=1000 \mathrm{~Hz} \\ & V_{T}=10 \mathrm{mV}-\mathrm{P} \\ & \mathrm{~L}_{\mathrm{L}}=20 \mathrm{~mA} \\ & \mathrm{~L}_{\mathrm{L}}=60 \mathrm{~mA} \end{aligned}$

S2550A Electrical Characteristics (continued)

Parameter	Min.	Typ.	Max.	Test Conditions
Sending Noise		20dBrnC0		$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=60 \mathrm{~mA} \\ & \mathrm{~V}_{T}=0 \mathrm{~V} \end{aligned}$
$V_{\text {IL }}$ Logic "0, Input Voltage			. 3 V Max.	
$V_{\text {IH }}$ Logic '1" Input Voltage		V_{00}		
I_{L} (Operating Current)	20 mA	$10 \mathrm{~mA} \mathrm{Min}$.		Note 1
$\mathrm{V}_{D D}$ (Operating Voltage)	2.0 V		12 V	Note 2

Note 1. Although the S 2550 is tested to a 20 mA minimum loop current, it will normally work down to a 10 mA loop current.
Note 2. This is a voltage guideline, not a tested specification. The S2550A is tested at specific loop currents, not voltages.

Table 1. S2550A Pin/Function Descriptions

Pin \#	Name	Function
1	TR $_{0 U T}$	Tone ringer output. 2
This input selects the tone ringer or the speech network depending on the input level. A high level		
inhibits speech network but enables the tone ringer. A low level enables the speech network but in-		
hibits the tone ringer.		
For normal operation this pin can be left open. It has an internal pull-up resistor. To avoid false ring-		
ing, a capacitor can be connected to VSS from this pin to create a delay in response time to ringing		
signal.		

Figure 1. Test Set-Up Using Loop Simulator Shown in Figure 2 to Test Hybrid Functions

Figure 2. Loop Simulator

Figure 3. Typical Application Circuit for a Rotary Dial Telephone

NOTES: CIRCUIT SHOWN WITH CONTACT POSITIONS IN THE ON-HOOK STATE. S1, S2 and S3 ARE HOOKSWITCH CONTACTS. S4 AND S5 ARE ROTARY DIAL CONTACIS.

Parts List for Application Circuit of Figures 1, 3, 4, 5

Figure 4. A Typical Application Circuit for an Electronic Telephone (Circuit Shown With Hookswitch Contact Position S1-S5 in the On-Hook State.)

Figure 5. A Typical Application Circuit for an Electronic Telephone With DTMF (Circuit Shown With Hookswitch Contact Position S1-S3 in the On-Hook State.)

DTMF TONE GENERATOR

Features

\square Wide Operating Supply Voltage Range: 3.5 to 13.0 Volts (A,B) 2.5 to 10 Volts (E, F)
\square Low Power CMOS Circuitry Allows Device Power to be Derived Directly from the Telephone Lines or from Small Batteries, e.g., 9 VUses TV Crystal Standard (3.58 MHz) to Derive all Frequencies thus Providing Very High Accuracy and StabilityMute Drivers On-ChipInterfaces Directly to a Standard Telephone PushButton or Calculator Type X-Y Keyboard
\square The Total Harmonic Distortion is Below Industry Specification

Oscillator Resistor On Chip (2559E,F)On-Chip Generation of a Reference Voltage to Assure Amplitude Stability of the Dual Tones Over the Operating Voltage and Temperature RangeSingle Tone as Well as Double Tone CapabilityFour Options Available:

> A:3.5 to 13.0 V Mode Select
> B:3.5 to 13.0 V Chip Disable
> E:2.5 to 10 V Mode Select
> F:2.5 to 10 V Chip Disable

General Description

The S2559 DTMF Generator is specifically designed to implement a dual tone telephone dialing system. The device can interface directly to a standard pushbutton

General Description (Continued)

telephone keyboard or calculator type X-Y keyboard and operates directly from the telephone lines. All necessary dual-tone frequencies are derived from the widely used TV crystal standard providing very high accuracy and stability. The required sinudsoidal waveform for the individual tones is digitally synthesized on the chip. The waveform so generated has very low total harmonic distortion. A voltage reference is generated on the chip which is stable over the operating voltage
and temperature range and regulates the signal levels of the dual tones to meet the recommended telephone industry specifications. These features permit the S2559 to be incorporated with a slight modification of the standard 500 type telephone basic circuitry to form a pushbutton dual-tone telephone. Other applications of the device include radio and mobile telephones, remote control, Point-of-Sale, and Credit Card Verification Terminals and process control.

Absolute Maximum Ratings (2559A,B)

Operating Temperature .. $0^{\circ} 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
Storage Temperature .. - $5^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$	
Power Dissipation at $25^{\circ} \mathrm{C}$	500 mW
ut Voltage	$\leqslant \mathrm{V}_{\text {D }}$

S2559A \& B Electrical Characteristics:

(Specifications apply over the operating temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ unless otherwise noted. Absolute values of measured parameters are specified.)

Symbol	Parameter/Conditions		$\underset{\left(V_{D D}-V_{S S}\right)}{\text { Volts }}$	Min.	Typ.	Max.	Units
Supply Voltage							
$V_{D D}$	Tone Out Mode (Valid Key Depressed)			3.5		13.0	V
	Non Tone Out Mode (No Key Depressed)			3.0		13.0	V
Supply Current							
$1 D_{D}$	Standby (No Key Selected, Tone, XMIT and MUTE Outputs Unloaded)		3.5		0.4	40	$\mu \mathrm{A}$
			13.0		1.5	130	$\mu \mathrm{A}$
	Operating (One Key Selected, Tone, XMIT and MUTE Outputs Unloaded)		3.5		0.95	2.9	mA
			13.0		11	33	mA
Tone Output							
Vor	Single Tone Mode Output Voltage	Row Tone, $\mathrm{R}_{\mathrm{L}}=390 \Omega$	5.0	417	596	789	mVrms
$V_{0 C}$		Row Tone, $\mathrm{R}_{\mathrm{L}}=240 \Omega$	12.0	378	551	725	mVrms
		Column Tone, $\mathrm{R}_{\mathrm{L}}=390 \Omega$	5.0	534	781	1022	mVrms
		Column Tone, $\mathrm{R}_{\mathrm{L}}=240_{2}$	12.0	492	722	955	mVrms
$\mathrm{dB}_{\text {CR }}$	Ratio of Column to Row Tone		3.5-13.5	1.75	2.54	3.75	dB
\%DIS	Distortion*		3.5-13.5			10	\%

S2559A \& B Electrical Characteristics: (Continued)

Symbol	Parameter/Conditions		$\begin{gathered} \left(V_{D D}-V_{S S}\right) \\ \text { Volts } \end{gathered}$	Min.	Typ.	Max.	Units
XMIT, MUTE Outputs							
V_{OH}	XMIT, Output Voltage (No Key Depressed)(Pin 2)	$\mathrm{I}_{\mathrm{OH}}=15 \mathrm{~mA}$	3.5	2.0	2.3		V
		$1 \mathrm{IOH}^{2}=50 \mathrm{~mA}$	13.0	12.0	12.3		V
$\mathrm{I}_{0 \mathrm{~F}}$	XMIT, Output Source Leakage Current $\mathrm{V}_{0}=0 \mathrm{~V}$		13.0			100	$\mu \mathrm{A}$
$\mathrm{V}_{0 \mathrm{~L}}$	MUTE (Pin 10) Output Voitage, Low, (No Key Depressed) No Load		3.5		0	0.4	V
			13.0		0	0.5	V
V_{OH}	MUTE, Output Voltage, High, (One Key Depressed) No Load		3.5	3.0	3.5		V
			13.0	13.0	13.5		V
10	MUTE, Output Sink Current	$V_{0 L}=0.5 \mathrm{~V}$	3.5	0.66	1.7		mA
			13.0	3.0	8.0		mA
$\mathrm{IOH}^{\text {O}}$	MUTE, Output Source Current	$\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{~V}$	3.5	0.18	0.46		mA
		$\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{~V}$	13.0	0.78	1.9		mA
Oscillator Input/Output							
IOL	Output Sink Current One Key Selected	$\mathrm{V}_{0 \mathrm{~L}}=0.5 \mathrm{~V}$	3.5	0.26	0.65		mA
		$\mathrm{V}_{0 \mathrm{~L}}=0.5 \mathrm{~V}$	13.0	1.2	3.1		mA
$\mathrm{IOH}^{\text {O }}$	Output Source Current One Key Selected	$\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{~V}$	3.5	0.14	0.34		mA
		$\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{~V}$	13.0	0.55	1.4		mA
Input Current							
IIL	Leakage Sink Current, One Key Selected	$\mathrm{V}_{\mathrm{IL}}=13.0 \mathrm{~V}$	13.0			1.0	$\mu \mathrm{A}$
I_{H}	Leakage Source Current One Key Selected	$\mathrm{V}_{1 H}=0.0 \mathrm{~V}$	13.0			1.0	$\mu \mathrm{A}$
IIL	Sink Current No Key Selected	$\mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V}$	3.5	24	93		$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V}$	13.0	27	130		$\mu \mathrm{A}$
${ }_{\text {t START }}$	Oscillator Startup Time		3.5		3	6	ms
			13.0		0.8	1.6	ms
$\mathrm{C}_{1 / 0}$	Input/Output Capacitance				12	16	pF
					10	14	pF
Input Currents							
IIL	 Column Inputs	Sink Current, $V_{\text {IL }}=3.5 \mathrm{~V} \text { (Pull-down) }$	3.5	7	17		$\mu \mathrm{A}$
		Sink Current $\mathrm{V}_{\mathrm{IL}}=13.0 \mathrm{~V}$ (Pull-down)	13.0	150	400		$\mu \mathrm{A}$
I_{IH}		Source Current, $\mathrm{V}_{\mathrm{IH}}=3.0 \mathrm{~V}$ (Pull-up)	3.5	90	230		$\mu \mathrm{A}$
		Source Current, $\mathrm{V}_{\mathrm{IH}}=12.5 \mathrm{~V}$ (Pull-up)	13.0	370	960		$\mu \mathrm{A}$

[^2]
S2559A \& B Electrical Characteristics: (Continued)

Symbol	Parameter/Conditions		$\left(V_{D D}-V_{S S}\right)$	Min.	Typ.	Max.	Units
${ }_{1 H}$	Mode Select Input (S2559A)	Source Current, $\mathrm{V}_{\mathrm{IH}}=0.0 \mathrm{~V}$ (Pull-up)	3.5	1.5	3.6		$\mu \mathrm{A}$
		Source Current, $\mathrm{V}_{\mathrm{IH}}=0.0 \mathrm{~V}$ (Pull-up)	13.0	23	74		$\mu \mathrm{A}$
IIL	Chip Disable Input (S2559B)	Source Current, $\mathrm{V}_{\mathrm{IL}}=3.5 \mathrm{~V}$ (Pull-down)	3.5	4	10		$\mu \mathrm{A}$
		Sink Current, $V_{\mathrm{IL}}=13.0 \mathrm{~V} \text { (Pull-down) }$	13.0	90	240		$\mu \mathrm{A}$

Absolute Maximum Ratings

Operating Temperature . $-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . $30^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Power Dissipation at $25^{\circ} \mathrm{C}$. 1000 mW
Digital Input $V_{S S}-0.3 \leqslant V_{I N} \leqslant V_{D D}+0.3$
Analog Input $V_{S S}-0.3 \leqslant V_{I N} \leqslant V_{D D}+0.3$

S2559E/F Electrical Characteristics:

(Specifications apply over the operating temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted. Absolute values of measured parameters are specified.)

Symbol	Parameter/Conditions			$\begin{gathered} \left(V_{\mathrm{DD}} \cdot V_{\mathrm{ss}}\right) \\ V_{\text {olt }} \end{gathered}$	Min.	Typ.	Max.	Units
Supply Voltage								
$V_{D D}$	Tone Out Mode (Valid Key Depressed)				2.5		10.0	V
	Non Tone Out Mode (No Key Depressed)				1.6		10.0	V
Supply Current								
${ }^{\text {D D }}$	Standby (No Key Selected, Tone, XMIT and MUTE Outputs Unloaded)			3.0		0.3	30	$\mu \mathrm{A}$
				10.0		1.0	100	$\mu \mathrm{A}$
	Operating (One Key Selected, Tone, XMIT and MUTE Outputs Unloaded)			3.0		1.0	2.0	mA
				10.0		8	16.0	mA
Tone Output								
$\begin{aligned} & \mathrm{S} 2559 \mathrm{E} / \mathrm{F} \\ & \mathrm{~V}_{\mathrm{OR}} \end{aligned}$	Single Tone Mode Output Voltage	Row Tone,	$\mathrm{R}_{L}=390 \Omega$	3.5	335	465	565	mVrms
				5.0	380	540	710	mVrms
		Row Tone,	$\mathrm{R}_{\mathrm{L}}=240 \Omega$	10.0	380	550	735	mVrms
$\mathrm{dB}_{\mathrm{CR}}$	Ratio of Column to Row Tone (Dual Tone Mode) 2559E/F			3.5-10.0	1.0	2.0	3.0	dB
\%DIS	Distortion*	$\begin{aligned} & 2559 E \\ & 2559 G \end{aligned}$		$\begin{aligned} & 3.5-10.0 \\ & 4.0-10.0 \end{aligned}$			$\begin{aligned} & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & \% \\ & \% \end{aligned}$

S2559E/F Electrical Characteristics: (continued)

Symbol	Parameter/Conditions		$\begin{gathered} \left(V_{D D}-V_{S S}\right) \\ \text { Volts } \end{gathered}$	Min.	Typ.	Max.	Units
XMIT, MUTE Outputs							
V_{OH}	XMIT, Output Voltage, High (No Key Depressed)(Pin 2)	$\left(1_{O H}=15 \mathrm{~mA}\right)$	3.0	1.5	1.8		V
		$\left(\mathrm{I}_{\mathrm{OH}}=50 \mathrm{~mA}\right)$	10.0	8.5	8.8		V
IOF	XMIT, Output Source Leakage Current, $\mathrm{V}_{\text {OF }}=0 \mathrm{~V}$		10.0			100	$\mu \mathrm{A}$
V_{OL}	MUTE (Pin 10) Output Voltage, Low, (No Key Depressed), No Load		2.75		0	0.5	V
			10.0		0	0.5	V
V_{OH}	MUTEE, Output Voltage, High, (One Key Depressed) No Load		2.75	2.5	2.75		V
			10.0	9.5	10.0		V
10 L	MUTE, Output Sink Current	$\mathrm{V}_{0 \mathrm{~L}}=0.5 \mathrm{~V}$	3.0	0.53	1.3		mA
			10.0	2.0	5.3		mA
${ }^{1} \mathrm{OH}$	MUTE, Output Source Current	$\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{~V}$	3.0	0.17	0.41		mA
		$\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{~V}$	10.0	0.57	1.5		mA

*Distortion is defined as "the ratio of the total power of all extraneous frequencies, in the VOICE and above 500 Hz , to the total power of the DTMF frequency pair".

Table 1. Comparisons of Specified vs Actual Tone Frequencies Generated by S2559

ACTIVE INPUT	OUTPUT FREQUENCY Hz		\% ERROR
	ACTUAL	SEE NOTE	
R1	697	699.1	+0.30
R2	770	766.2	-0.49
R3	852	847.4	-0.54
R4	941	948.0	+0.74
C1	1,209	$1,215.9$	+0.57
C2	1,336	$1,331.7$	-0.32
C3	1,477	$1,417.9$	-0.35
C4	1,633	$1,645.0$	+0.73

NOTE: \% Error does not include oscillator drift.

Table 2. XMIT and MUTE Output Functional Relationship

OUTPUT RELEASED	'DIGIT' KEY DEPRESSED	'DIGIT' KEY	COMMENT
XMIT	$V_{D D}$	High Impedance	Can source at least 50 mA at 10V with 1.5 V max. drop
MUTE	$V_{S S}$	$V_{D D}$	Can source or sink current

Figure 1. Standard Telephone Push Button Keyboard

Circuit Description

The S2559 is designed so that it can be interfaced easily to the dual tone signaling telephone system and that it will more than adequately meet the recommended telephone industry specifications regarding the dual tone signaling scheme.

Design Objectives

The specifications that are important to the design of the DTMF Generator are summarized below: the dual tone signal consists of linear addition of two voice frequency signals. One of the two signals is selected from a group of frequencies called the "Low Group" and the other is selected from a group of frequencies called the "High Group". The low group consists of four frequencies 697, 770, 852 and 941 Hz . The high group consists of four frequencies 1209, 1336, 1477 and 1633 Hz . A keyboard arranged in a row, column format (4 rows $\times 3$ or 4 columns) is used for number entry. When a push button corresponding to a digit (0 thru 9) is pushed, one appropriate row (R1 thru R4) and one appropriate column (C1 thru C4) is selected. The active row input selects one of the low group frequencies and the active column input selects one of the high group frequencies. In standard dual tone telephone systems, the
highest high group frequency of 1633 Hz (Col. 4) is not used. The frequency tolerance must be $\pm 1.0 \%$. However, the S2559 provides a better than $.75 \%$ accuracy. The total harmonic and intermodulation distortion of the dual tone must be less than 10% as seen at the telephone terminals. (Ref. 1.) The high group to low group signal amplitude ratio should be $2.0 \pm 2 \mathrm{~dB}$ and the absolute amplitude of the low group and high group tones must be within the allowed range. (Ref. 1.) These requirements apply when the telephone is used over a short loop or long loop and over the operating temperature range. The design of the S2559 takes into account these considerations.

Oscillator

The device contains an oscillator circuit with the necessary parasitic capacitances on chip so that it is only necessary to connect a $10 \mathrm{M} \Omega$ feedback resistor and the standard 3.58 MHz TV crystal across the OSC and $\mathrm{OSC}_{\mathrm{O}}$ terminals to implement the oscillator function. The oscillator functions whenever a row input is activated. The reference frequency is divided by 2 and then drives two sets of programmable dividers, the high group and the low group.

Keyboard Interface

The S2559 employs a calculator type scanning circuitry to determine key closures. When no key is depressed, active pull-down resistors are "on" on the row inputs and active pull-up resistors are "on" on the column inputs. When a key is pushed a high level is seen on one of the row inputs, the oscillator starts and the keyboard scan logic turns on. The active pull-up or pull-down resistors are selectively switched on and off as the keyboard scan logic determines the row and the column inputs that are selected. The advantage of the scanning technique is that a keyboard arrangement of SPST switches are shown in Figure 2 without the need
for a common line, can be used. Conventional telephone push button keyboards as shown in Figure 1 or X-Y keyboards with common can also be used. The common line of these keyboards can be left unconnected or wired "high".

Logic Interface

The S2559 can also interface with CMOS logic outputs directly. The S2559 requires active "High" logic levels. Since the active pull-up resistors present in the S2559 are fairly low value (500Ω typ), diodes can be used as shown in Figure 3 to eliminate excessive sink current flowing into the logic outputs in their "Low" state.

Figure 2. SPST Matrix Keyboard Arranged in the 2 of 8 Row, Column Format

Tone Generation

When a valid key closure is detected, the keyboard logic programs the high and low group dividers with appropriate divider ratios so that the output of these dividers cycle at 16 times the desired high group and low group frequencies. The outputs of the programmable dividers drive two 8 -stage Johnson counters. The symmetry of the clock input to the two divide by 16 Johnson counters allows 32 equal time segments to be generated within each output cycle. The 32 segments
are used to digitally synthesize a stair-step waveform to approximate the sinewave function (see Figure 3). This is done by connecting a weighted resistor ladder network between the outputs of the Johnson counter, $V_{D D}$ and $\mathrm{V}_{\text {REF }}$. $\mathrm{V}_{\text {REF }}$ closely tracks V_{DD} over the operating voltage and temperature range and therefore the peak-to-peak amplitude $V_{P}\left(V_{D D}-V_{R E F}\right)$ of the stairstep function is fairly constant. $\mathrm{V}_{\mathrm{REF}}$ is so chosen that V_{P} falls within the allowed range of the high group and low group tones.

Figure 3. Logic Interface for Keyboard Inputs of the S2559

Figure 4. Stairstep Waveform of the Digitally Synthesized Sinewave

The individual tones generated by the sinewave synthesizer are then linearly added and drive a bipolar NPN transistor connected as emitter follower to allow proper impedance transformation, at the same time preserving signal level.

Dual Tone Mode

When one row and one column is selected dual tone output consisting of an appropriate low group and high group tone is generated. If two digit keys, that are not either in the same row or in the same column, are depressed, the dual tone mode is disabled and no output is provided.

Single Tone Mode

Single tones either in the low group or the high group can be generated as follows. A low group tone can be generated by activating the appropriate row input or by depressing two digit keys in the appropriate row. A high group tone can be generated by depressing two digit keys in the appropriate column, i.e., selecting the appropriate column input and two row inputs in that column.

Mode Select

S2559A and S2559C have a Mode Select (MDSL) input (Pin 15). When MDSL is left floating (unconnected) or connected to V_{DD}, both the dual tone and single tone modes are available. If MDSL is connected to V_{SS}, the single tone mode is disabled and no output tone is produced if an attempt for single tone is made. The S2559B and S2559D do not have the Mode Select option.

Chip Disable

The S2559B and S2559F have a Chip Disable input at Pin 15 instead of the Mode Select input. The chip disable for the S2559B and S2559F is active "high." When the chip disable is active, the tone output goes to V_{SS}, the row, column inputs go into a high impedance state, the oscillator is inhibited and the MUTE and XMIT outputs go into active states. The effect is the device essentially disconnects from the keyboard. This allows one keyboard to be shared among several devices.

Crystal Specification

A standard television color burst crystal is specified to have much tighter tolerance than necessary for tone generation application. By relaxing the tolerance specification the cost of the crystal can be reduced. The recommended crystal specification is as follows:

Frequency: $3.579545 \mathrm{MHz} \pm 0.02 \%$
$\mathrm{R}_{\mathrm{S}} \leqslant 100 \Omega, \mathrm{~L}_{\mathrm{M}}=96 \mathrm{MHY}$
$\mathrm{C}_{\mathrm{M}}=0.02 \mathrm{pF}, \mathrm{C}_{\mathrm{h}}=5 \mathrm{pF}$

MUTE, XMIT Outputs

The S2559A, B, E, F have a CMOS buffer for the MUTE output and a bipolar NPN transistor for the XMIT output. With no keys depressed, the MUTE output is "Iow" and the XMIT output is in the active state so that substantial current can be sourced to a load. When a key is depressed, the MUTE output goes high, while the XMIT output goes into a high impedance state. When Chip Disable is "high" the MUTE output is forced "low" and the XMIT output is in active state regardless of the state of the keyboard inputs.

Amplitude/Distortion Measurements

Amplitude and distortion are two important parameters in all applications of the Digital Tone Generator. Amplitude depends upon the operating supply voltage as well as the load resistance connected on the Tone Output pin. The on-chip reference circuit is fully operational when the supply voltage equals or exceeds 5 volts and as a consequence the tone amplitude is regulated in the supply voltage range above 5 volts. The load resistor value also controls the amplitude. If R_{L} is low the reflected impedance into the base of the output transistor is low and the tone output amplitude is lower. For R_{L} greater than $5 \mathrm{k} \Omega$ the reflected impedance is sufficiently large and highest amplitude is produced. Individual tone amplitudes can be measured by applying the dual tone signal to a wave analyzer (H-P type 3581A) and amplitudes at the selected frequencies can be noted. This measurement also permits verification of the preemphasis between the individual frequency tones.
Distortion is defined as "the ratio of the total power of all extraneous frequencies in the voiceband above 500 Hz accompanying the signal to the power of the frequency pair." This ratio must be less than 10% or when expressed in dB must be lower than - 20dB.
(Ref. 1.) Voiceband is conventionally the frequency band of 300 Hz to 3400 Hz . Mathematically distortion can be expressed as:

$$
\text { Dist. }=\frac{\sqrt{\left(V_{1}\right)^{2}+\left(V_{2}\right)^{2}+\ldots+\left(V_{N}\right)^{2}}}{\sqrt{\left(V_{L}\right)^{2}+\left(V_{H}\right)^{2}}}
$$

where $\left(V_{1}\right) \ldots\left(V_{N}\right)$ are extraneous frequency (i.e., intermodulation and harmonic) components in the 500 Hz to

3400 Hz band and V_{L} and V_{H} are the individual frequency components of the DTMF signal. The expression can be expressed in dB as:

$$
\begin{array}{r}
\operatorname{DIST}_{d B}=20 \log \frac{\sqrt{\left(V_{1}\right)^{2}+\left(V_{2}\right)^{2}+\ldots\left(V_{N}\right)^{2}}}{\sqrt{\left(V_{L}\right)^{2}+\left(V_{H}\right)^{2}}} \\
=10\left\{\log \left[\left(V_{1}\right)^{2}+. .\left(V_{N}\right)^{2}\right]-\log \left[\left(V_{L}\right)^{2}+\left(V_{L}\right)^{2}+\left(V_{H}\right)^{2}\right]\right\} . \tag{1}
\end{array}
$$

An accurate way of measuring distortion is to plot a spectrum of the signal by using a spectrum analyzer (H-P type 3580A) and an X-Y plotter (H-P type 7046A). Individual extraneous and signal frequency components are then noted and distortion is calculated by using the expression (1) above. Figure 6 shows a spectrum plot of a typical signal obtained from a S2559 device operating from a fixed supply of 4 Vdc and $R_{L}=10 \mathrm{k} \Omega$ in the test circuit of Figure 5. Mathematical analysis of the spectrum shows distortion to be $-30 \mathrm{~dB}(3.2 \%)$. For quick estimate of distortion, a rule of thumb as outlined below can be used.
"As a first approximation distortion in dB equals the difference between the amplitude (dB) of the extraneous component that has the highest amplitude and the amplitude ($d B$) of the low frequency signal." This rule of thumb would give an estimate of -28 dB as distortion for the spectrum plot of Figure 6 which is close to the computed result of -30 dB .

In a telephone application amplitude and distortion are affected by several factors that are interdependent. For detailed discussion of the telephone application and other applications of the 2559 Tone Generator, refer to the applications note "Applications of Digital Tone Generator."

Figure 5. Test Circuit for Distortion Measurement

Figure 6. A Typical Spectrum Plot

DTMF Tone Generator With Binary Input

Features

Low Voltage CMOS ProcessUses Binary Input or Standard 3×4 X-Y Keyboard With Common TerminalUses Standard TV Crystal (3.58 MHz)On-Chip Reference VoltageThe Total Harmonic Distortion is Below Industry Specification
General Description

The S2579 DTMF Generator is specifically designed to interface with External Logic or microprocessors. The S2579 can interface directly to a standard 3×4 keyboard with common terminal. Capable of generating 16 dual tone standard frequencies, it can operate from 3.0 to 10 volts. The electrical specifications for both S2579 and S2859 devices are identifical; please refer to S2859 data sheet for details.

Table 1. Functional Truth Table for Logic Interface

$\begin{array}{c}\text { Keyboard } \\ \text { Inputs }\end{array}$	C1	C2	R1	R2	R3	R4	Frequencies Generated	
F1								

* Indicates Normally Open.

Figure 1.

DTMF TONE GENERATOR

Features

\square Wide Operating Supply Voltage Range: 3.0 to 10 Volts
\square Low Power CMOS Circuitry Allows Device Power to be Derived Directly from the Telephone Lines or from Small Batteries, e.g., 9V
\square Uses TV Crystal Standard (3.58 MHz) to Derive All Frequencies thus Providing Very High Accuracy and Stability
\square
Timing Sequence for XMIT, REC MUTE Outputs

Interfaces Directly to a Sfandard Telephone PushButton or Calculator Type X-Y Keyboard with Common Terminal
\square The Total Harmonic Distortion is Below Industry Specification
\square On Chip Generation of a Reference Voltage to Assure Amplitude Stability of the Dual Tones Over the Operating Voltage and Temperature Range
\square Single Tone as Well as Dual Tone Capability \square Darlington Configuration Tone Output

General Description

The S2859 DTMF Generator is specifically designed to implement a dual tone telephone dialing system. The device can interface directly to a standard pushbutton telephone keyboard or X-Y keyboard with common terminal connected to $V_{S S}$ and operates directly from the telephone lines. All necessary dual-tone frequencies are derived from the widely used TV crystal standard providing very high accuracy and stability. The required sinusoidal waveform for the individual tones is digitally synthesized on the chip. The waveform so generated has very low total harmonic distortion. A voltage refer-
ence is generated on the chip which is stable over the operating voltage and temperature range and regulates the signal levels of the dual tones to meet the recommended telephone industry specifications. These features permit the S2859 to be incorporated with a slight modification of the standard 500 type telephone basic circuitry to form a pushbutton dual-tone telephone. Other applications of the device include radio and mobile telephones, remote control, point-of-sale, and credit card verification terminals and process control.

Absolute Maximum Ratings:

DC Supply Voltage (VDD - VSS) .. + 10.5V	
Operating Temperature ... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
Storage Temperature ... - $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
Power Dissipation at $25^{\circ} \mathrm{C}$... 500 mW	
Input Voltage	$V_{S S}-0.6 \leqslant V_{I N} \leqslant V_{D D}+0.6$
Input/Output Current (except tone output)	15 mA
Tone Output Current	50mA

Electrical Characteristics:

(Specifications apply over the operating temperature range of $-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted. Absolute values of measured parameters are specified.)

Symbol	Parameter/Conditions	$\begin{gathered} \left(V_{D D} \cdot V_{S S}\right) \\ V_{\text {olts }} \end{gathered}$	Min.	Typ.	Max.	Units
Supply Voltage						
	Tone Out Mode (Valid Key Depressed)		3.0	-	10.0	V
$V_{D D}$	Non Tone Out Mode (Mute Outputs Toggle With Key Depressed)		2.2	-	10.0	V
V_{Z}	Internal Zener Diode Voltage, $I_{Z}=5 \mathrm{~mA}$	-	-	12.0	-	V
Supply Current						
	Standby (No Key Selected, Tone and Mute Outputs Unloaded)	$\begin{gathered} 3.0 \\ 10.0 \\ \hline \end{gathered}$	-	$\begin{aligned} & 0.001 \\ & 0.003 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.3 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
ID	Operating (One Key Selected, Tone and Mute Outputs Unloaded)	$\begin{gathered} 3.0 \\ 10.0 \\ \hline \end{gathered}$	-	$\begin{aligned} & 1.3 \\ & 11 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Tone Output						
$\mathrm{V}_{0 R}$	Single Tone Row $R_{L}=100 \Omega$ Mode Output Tone $R_{L}=100 \Omega$ Voltage	$\begin{gathered} \hline 5.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & 366 \\ & 370 \end{aligned}$	$\begin{aligned} & 462 \\ & 482 \end{aligned}$	$\begin{aligned} & 581 \\ & 661 \end{aligned}$	mVrms mVrms
$\mathrm{dB}_{\mathrm{CR}}$	Ratio of Column to Row Tone	3.0-10.0	1.0	2.0	3.0	dB
\%DIS	Distortion*	3.0-10.0	-	-	10	\%
REC, XMIT MUTE Outputs						
I_{OH}	Output Source Current $\mathrm{V}_{\mathrm{OH}}=1.2 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{OH}}=2.5 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{OH}}=9.5 \mathrm{~V}$	$\begin{gathered} \hline 2.2 \\ 3.0 \\ 10.0 \end{gathered}$	$\begin{gathered} \hline 0.43 \\ 1.3 \\ 4.3 \end{gathered}$	$\begin{aligned} & \hline 1.1 \\ & 3.1 \\ & 11 \end{aligned}$	-	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$

[^3]
S2560A

PULSE DIALER

Features

\square Low Voltage CMOS Process for Direct Operation from Telephone Lines
\square Inexpensive R-C Oscillator Design Provides Better than $\pm 5 \%$ Accuracy Over Temperature and Unit to Unit Variations
\square Dialing Rate Can be Varied by Changing the Dial Rate Oscillator Frequency
\square Dial Rate Select Input Allows Changing of the Dialing Rate by a $2: 1$ Factor Without Changing Oscillator ComponentsTwo Selections of Mark/Space Ratios (331/3/662/3 or 40/60)
\square Twenty Digit Memory for Input Buffering and for Redial with Access Pause Capability
\square Mute and Dial Pulse Drivers on Chip

Accepts DPCT Keypad with Common Arranged in a 2 of 7 Format; Also Capable of Interface to SPST Switch Matrix

General Description

The S2560A Pulse Dialer is a CMOS integrated circuit that converts pushbutton inputs to a series of pulses suitable for telephone dialing. It is intended as a replacement for the mechanical telephone dial and can operate directly from the telephone lines with minimum interface. Storage is provided for 20 digits, therefore, the last dialed number is available for redial until a new number is entered. IDP is scaled to the dialing rate such as to produce smaller IDP at higher dialing rates. Additionally, the IDP can be changed by a $2: 1$ factor at a given dialing rate by means of the IDP select input.

Absolute Maximum Ratings:

Supply Voltage
Operating Temperature Range
Storage Temperature Range ... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage at any Pin $V_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Lead Temperature (Soldering, 10 sec)
$300^{\circ} \mathrm{C}$

Electrical Characteristics:

Specifications apply over the operating temperature and $1.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{S S} \leqslant 3.5 \mathrm{~V}$ unless otherwise specified.

Symbol	Parameter	$V_{D 0} \cdot v_{S S}$ (Volts)	Min.	Max.	Units	Conditions
	Output Current Levels					
loLDP	DP Output Low Current (Sink)	3.5	125		$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$
${ }^{1} \mathrm{HODP}$	DP Output High Current (Source)	$\begin{aligned} & 1.5 \\ & 3.5 \end{aligned}$	$\begin{gathered} 20 \\ 125 \end{gathered}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & V_{\text {OUT }}=1 \mathrm{~V} \\ & V_{\text {OUT }}=2.5 \mathrm{~V} \end{aligned}$
loLM	MUTE Output Low Current (Sink)	3.5	125		$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$
1онм	MUTE Output High Current (Source)	$\begin{aligned} & \hline 1.5 \\ & 3.5 \end{aligned}$	$\begin{gathered} 20 \\ 125 \end{gathered}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & V_{\text {OUT }}=1 \mathrm{~V} \\ & V_{\text {OUT }}=2.5 \mathrm{~V} \end{aligned}$
lolt	Tone Output Low Current (Sink)	1.5	20		$\mu \mathrm{A}$	$V_{\text {OUT }}=0.4 \mathrm{~V}$
$\mathrm{IOHT}^{\text {I }}$	Tone Output High Current (Source)	1.5	20		$\mu \mathrm{A}$	$V_{\text {OUT }}=1 \mathrm{~V}$
$V_{\text {DR }}$	Data Retention Voltage		1.0		V	"On Hook' $\overline{H S}=V_{D D}$. Keyboard open, all other input pins to $V_{D D}$ or $V_{S S}$
$l_{\text {do }}$	Quiescent Current	1.0		750	nA	
${ }^{\text {DD }}$	Operating Current	$\begin{aligned} & 1.5 \\ & 3.5 \end{aligned}$		$\begin{aligned} & 100 \\ & 500 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\overline{\mathrm{DP}}, \overline{\text { MUTE }}$ open, $\overline{\mathrm{HS}}=\mathrm{V}_{\mathrm{SS}}$ ("Off Hook') Keyboard processing and dial pulsing at 10 pps at conditions as above
fo	Oscillator Frequency	1.5		10	kHz	
\io/fo	Frequency Deviation	1.5 to 2.5 2.5 to 3.5	$\begin{aligned} & -3 \\ & -3 \end{aligned}$	$\begin{aligned} & +3 \\ & +3 \end{aligned}$	\% \%	Fixed R-C oscillator components $\begin{aligned} & 50 \mathrm{~K} \Omega \leqslant R_{D} \leqslant 750 \mathrm{KK} \Omega ; 100 \mathrm{pF} \leqslant \mathrm{C}_{D}{ }^{*} \leqslant 1000 \mathrm{pF} ; \\ & 750 \mathrm{k} \Omega \leqslant R_{E} \leqslant 5 \mathrm{M} \Omega \\ & { }^{3} 300 \mathrm{pF} \text { most desirable value for } \mathrm{C}_{D} \end{aligned}$
	Input Voltage Levels					
$V_{1 H}$	Logical "1"		$\begin{gathered} 80 \% \text { of } \\ \left(v_{00}-v_{S S}\right) \end{gathered}$	$\begin{gathered} V_{D D} \\ +0.3 \end{gathered}$	V	
$V_{\text {IL }}$	Logical " 0 "		$\begin{gathered} \mathrm{V}_{\mathrm{SS}} \\ -0.3 \end{gathered}$	$\begin{gathered} 20 \% \text { of } \\ \left(v_{D D}-v_{S S}\right) \end{gathered}$	v	
$\mathrm{C}_{\text {IN }}$	Input Capacitance Any Pin			7.5	pF	

The device power supply should always be turned on before the input signal sources, and the input signals should be turned off before the power supply is turned off ($V_{S S} \leqslant$ $V_{1} \leqslant V_{D D}$ as a maximum limit). This rule will prevent over-dissipation and possible damage of the input-protection diode when the device power supply is grounded. When power is first applied to the device, the device should be in " $O n$ Hook' condition ($\mathrm{H} \overline{\mathrm{S}}=1$). This is necessary because there is no internal power or reset on chip and for proper operation all internal latches must come up in a known state. In applications where the device is hard wired in "Off Hook' ($\mathrm{HS}=0$) condition, a momentary ' $O n$ Hook'' condition can be presented to the device during power up by use of a capacitor resistor network as shown in Figure 6.

Functional Description

The pin function designations are outlined in Table 1.

Oscillator

The device contains an oscillator circuit that requires three external components: two resistors (R_{D} and R_{E}) and one capacitor (C_{D}). All internal timing is derived from this master time base. To eliminate clock interference in the talk state, the oscillator is only enabled during key closures and during the dialing state. It is disabled at all other times including the "on hook" condition. For a dialing rate of 10pps the oscillator should be adjusted to 2400 Hz . Typical values of external components for this are R_{D} and $R_{E}=750 \mathrm{k} \Omega$ and $\mathrm{C}_{\mathrm{D}}=270 \mathrm{pF}$. It is recommended that the tolerance of resistors to be 5% and capacitor to be 1% to insure a 10% tolerance of the dialing rate in the system.

Keyboard Interface (S2560A)

The S2560A employs a scanning technique to determine a key closure. This permits interface to a DPCT keyboard with common connected to $V_{D D}$ (Figure 1), logic interface (Figure 2) and interface to a SPST switch matrix (Figure 7). A high level on the appropriate row and column inputs constitutes a key closure for logic interface. When using a SPST switch matrix, it is necessary to add small capacitors (30 pF) from the column inputs to V_{SS} to insure that the oscillator is shut off after a key is released or after the dialing is complete.

OFF Hook Operation: The device is continuously powered through a $150 \mathrm{k} \Omega$ resistor during Off hook operation. The DP output is normally high and sources base drive to transistor Q_{1} to turn $O N$ transistor Q_{2}. Transistor Q_{2} replaces the mechanical dial contact used in the rotary dial phones. Dial pulsing begins when the user enters a number through the keyboard. The $\overline{\mathrm{DP}}$ output goes low shutting the base drive to Q_{1} OFF causing Q_{2} to open during the pulse break. The MUTE output also goes low during dial pulsing allowing muting of the receiver through transistors Q_{3} and Q_{4}. The relationship of dial pulse and mute outputs are shown in Figure 3.
ON Hook Operation: The device is continuously powered through a $10-20 \mathrm{M} \Omega$ resistor during the ON hook operation. This resistor allows enough current from the tip and ring lines to the device to allow the internal memory to hold and thereby providing storage of the last number dialed.

The dialing rate is derived by dividing down the dial rate oscillator frequency. Table 2 shows the relationship of the dialing rate with the oscillator frequency and the dial rate select input. Different dialing rates can be derived
by simply changing the external resistor value. The dial rate select input allows changing of the dialing rate by a factor of 2 without the necessity of changing the external component values. Thus, with the oscillator adjusted to 2400 Hz , dialing rates of 10 or 20pps can be achieved. Dialing rates of 7 and 14pps similarly can be achieved by changing the oscillator frequency to 1680 Hz .
The Inter-Digit Pause (IDP) time is also derived from the oscillator frequency and can be changed by a factor of 2 by the IDP select input. With IDP select pin wired to V_{SS}, an IDP of 800 ms is obtained for dial rates of 10 and 20 pps . IDP can be reduced to 400 ms by wiring the IDP select pin to V_{DD}. At dialing rates of 7 and 14 pps , IDP's of 1143 ms and 572 ms can be similarly obtained. If the IDP select is connected to the dial rate select pin, the IDP is scaled to the dial rate such that at 10 pps an IDP of 800 ms is obtained and at 20 pps an IDP of 400 ms is obtained.
The user can enter a number up to 20 digits long from a standard 3×4 double contact keypad with common (Figure 1). It is also possible to use a logic interface as shown in Figure 2 for number entry. Antibounce protection circuitry is provided on chip (min. 20 ms) to prevent false entry.
Any key depressions during the on-hook condition are ignored and the oscillator is inhibited. This insures that the current drain in the on-hook condition is very low and used to retain the memory.

Normal Dialing

The user enters the desired numbers through the keyboard after going off hook. Dial pulsing starts as soon as the first digit is entered. The entered digits are stored sequentially in the internal memory. Since the device is designed in a FIFO arrangement, digits can be entered at a rate considerably faster than the output rate. Digits can be entered approximately once every 50 ms while the dialing rate may vary from 7 to 20pps. The number entered is retained in the memory for future redial. Pauses may be entered when required in the dial sequence by pressing the " $\#$ " key, which provides access pauses for future redial. Any number of access pauses may be entered as long as the total entries do not exceed twenty.

Auto Dialing

The last number dialed is retained in the memory and therefore can be redialed out by going off hook and pressing the "\#" key. Dial pulsing will start when the key is depressed and finish after the entire number is dialed out unless an access pause is detected. In such a case, the dial pulsing will stop and will resume again only after the user pushes the "\#" key.

Table 1. S2560A/S2560B Pin/Function Descriptions

Pin	Number	Function
Keyboard $\left(R_{1}, R_{2}, R_{3}, R_{4}, C_{1}, C_{2}, C_{3}\right)$	$\begin{gathered} 2,3,4, \\ 1,16, \\ 17,18 \end{gathered}$	These are 4 row and 3 column inputs from the keyboard contacts. These inputs are open when the keyboard is inactive. When a key is pushed, an appropriate row and column input must go to $V_{D D}$ or connect with each other. A logic interface is also possible as shown in Figure 2. Active pull up and pull down networks are present on these inputs when the device begins keyboard scan. The keyboard scan begins when a key is pressed and starts the oscillator. Debouncing is provided to avoid false entry (typ. 20 ms).
Inter-Digit Pause Select (IDP)	15	One programmable line is available that allows selection of the pause duration that exists between dialed digits. It is programmed according to the truth table shown in Table 3. Note that preceding the first dialed pulse is an inter-digit time equal to the selected IDP. Two pauses either 400 ms or 800 ms are available for dialing rates of 10 and 20 pps. IDP's corresponding to other dialing rates can be determined from Tables 2 and 3.
Dial Rate Select (DRS)	14	A programmable line allows selection of two different output rates such as 7 or 14 pps , 10 or 20 pps, etc. See Tables 2 and 3.
Mark/Space (M/S)	12	This input allows selection of the mark/space ratio, as per Table 3.
Mute Out (MUTE)	11	A pulse is available that can provide a drive to turn on an external transistor to mute the receiver during the dial pulsing.
Dial Pulse Out ($\overline{\mathrm{DP}}$)	9	Output drive is provided to turn on a transistor at the dial pulse rate. The normal output will be "low" during "space" and "high" otherwise.
Dial Rate Oscillator $\left(R_{E}, C_{D}, R_{D}\right)$	6, 7, 8	These pins are provided to connect external resistors R_{D}, R_{E} and capacitor C_{D} to form an R-C oscillator that generates the time base for the Key Pulser. The output dialing rate and IDP are derived from this time base.
Hook Switch ($\overline{\mathrm{HS}}$)	5	This input detects the state of the hook switch contact; "off hook" corresponds to $V_{S S}$ condition.
Power ($\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{S S}$)	13, 10	These are the power supply inputs. The device is designed to operate from $1.5 \mathrm{~V}-3.5 \mathrm{~V}$.

Figure 1. Standard Telephone Pushbutton Keyboard

Figure 2. Logic Interface for the $\mathbf{S} 2560$

Figure 3. Timing

Table 2. Table for Selecting Oscillator Component Values for Desired Dialing Rates and Inter-Digit Pauses

Dial Rate Desired	Osc. Freq. (Hz)	$\begin{gathered} R_{D} \\ (k \Omega) \end{gathered}$	$\begin{gathered} \mathbf{C}_{\mathrm{D}} \\ (\mathrm{PF}) \end{gathered}$	Dial Rate (pps)		IDP (ms)	
				DRS $=\mathrm{V}_{\text {Ss }}$	DRS $=\mathrm{V}_{\mathrm{DD}}$	IPS $=\mathrm{V}_{\text {SS }}$	IPS $=V_{\text {DD }}$
5.5/11	1320	Select components in the ranges indicated in table of electrical specifications		5.5	11	1454	727
6/12	1440			6	12	1334	667
6.5/13	1560			6.5	13	1230	615
7/14	1680			7	14	1142	571
7.5/15	1800			7.5	15	1066	533
8/16	1920			8	16	1000	500
8.5/17	2040			8.5	17	942	471
9/18	2160			9	18	888	444
9.5/19	2280			9.5	19	842	421
10/20	2400	750	270	10	20	800	400
$\begin{gathered} \left(f_{d} / 240\right) / \\ \left(f_{d} / 120\right) \end{gathered}$	f_{d}			$\left(\mathrm{f}_{\mathrm{d}} / 240\right)$	($\mathrm{f}_{\mathrm{d}} / 120$)	$\frac{1920}{f_{i}} \times 10^{3}$	$\frac{960}{f_{i}} \times 10^{3}$

NOTE: IDP is dependent on the dialing rate selected. For example, for a dialing rate of 10 pps , an IDP of either 800 ms or 400 ms can be selected. For a dialing rate of 14 pps , and IDP of either 1142 ms or 571 ms can be selected.
Table 3.

Function	Pin Designation	Input Logic Level	Selection
Dial Pulse Rate Selection	DRS (14)	$\begin{aligned} & V_{S S} \\ & V_{D D} \end{aligned}$	($\mathrm{f} / 240$)pps ($\mathrm{f} / 120$) pps
Inter-Digit Pause Selection	IDP (15)	$V_{D D}$ $V_{S S}$	$\begin{gathered} \frac{960}{f} \mathrm{~s} \\ \frac{1920}{f} \mathrm{~s} \end{gathered}$
Mark/Space Ratio	M/S (12)	$\begin{aligned} & V_{S S} \\ & V_{D D} \end{aligned}$	$\begin{gathered} 331 / 3 / 662 / 3 \\ 40 / 60 \end{gathered}$
On Hook/Off Hook	$\overline{\mathrm{HS}}$ (5)	$\begin{aligned} & V_{D D} \\ & V_{S S} \end{aligned}$	On Hook Off Hook

NOTE: f is the oscillator frequency and is detemined as shown in Figure 5.

Figure 4. Pulse Dialer Circuit with Redial
$R_{0}=10-20 \mathrm{M} \Omega, \mathrm{R}_{1}=150 \mathrm{k} \Omega, \mathrm{R}_{2}=2 \mathrm{k} \Omega$
$R_{3}=470 \mathrm{k} \Omega, R_{4}, R_{5}=10 \mathrm{k} \Omega, R_{10}=47 \mathrm{k} \Omega$
$R_{6}, R_{8}=2 \mathrm{k} \Omega, R_{7}, R_{9}=30 \mathrm{k} \Omega, R_{11}=20 \Omega, 2 \mathrm{~W}$

$\mathrm{Z}_{1}=3.9 \mathrm{~V}, \mathrm{D}_{1}-\mathrm{D}_{4}=1 \mathrm{~N} 4004, \mathrm{D}_{5}, \mathrm{D}_{6}, \mathrm{D}_{7}=1 \mathrm{~N} 914, \mathrm{C}_{1}=15 \mu \mathrm{~F}$
$R_{E}=R_{D}=750 \mathrm{k} \Omega, C_{D}=270 \mathrm{pF}, C_{2}=0.01 \mu \mathrm{~F}$
$Q_{1}, Q_{4}=2 N 5550$ TYPE $Q_{2}, Q_{3}=2 N 5401$ TYPE
$\mathrm{Z}_{2}=$ IN5379 110V ZENER OR 2XIN4758

Figure 5. Pulse Dialer Circuit with Redial (Single Hook Switch Contact Application for PABX)
$R_{1}=10.20 \mathrm{M} \Omega, R_{2}=2 \mathrm{k} \Omega$
$R_{3}=470 \mathrm{k} \Omega, R_{4}, R_{5}=10 \mathrm{k} \Omega$
$\mathrm{R}_{6}, \mathrm{R}_{8}=2 \mathrm{k} \Omega, \mathrm{R}_{7}, \mathrm{R}_{9}=30 \mathrm{k} \Omega$
$R_{10}=47 \mathrm{k} \Omega, R_{11}=20 \Omega, 2 \mathrm{~W}$
$\mathrm{Z}_{1}=3.9 \mathrm{~V}, \mathrm{D}_{1}-\mathrm{D}_{4}=\mathrm{IN} 4004$
$\mathrm{D}_{5}, \mathrm{D}_{6}, \mathrm{D}_{7}=1 \mathrm{~N} 914, \mathrm{C}_{1}=15 \mu \mathrm{~F}$

$R_{E}, R_{D}=750 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{D}}=270 \mathrm{pF}$
$C_{2}=0.01 \mu \mathrm{~F}, Q_{1}, Q_{4}=2 N 5550$
$\mathrm{Q}_{2}, \mathrm{Q}_{3}=2 \mathrm{~N} 5401$
$Z_{2}=150 \mathrm{~V}$ ZENER OR VARISTOR TYPE GE MOV150

Figure 6. Circuit for Applying Momentary "ON Hook" Condition During Power Up

Figure 7. SPST Switch Matrix Interface

PULSE DIALER

General Description

The S2560G is a modified version of the S2560A Pulse Dialer with complete pin/function compatibility. It is recommended to be used in all new and existing designs. Most electrical specifications for both devices are identical. Please refer to S2560A data sheet for details. S2560G1 is low voltage version of S2560G.

Differences between the two devices are summarized below:

	2560G	$2560 \mathrm{G1}$	2560A
Operating Voltage, Dialing:	2.0 V to 3.5 V	1.5 V to 3.5 V	1.5 V to 3.5 V
Operating Voltage, Voice Mode:	1.5 V to 3.5 V	1.5 V to 3.5 V	1.5 V to 3.5 V
Data Retention Voltage (Minimum):	1.0 V	1.0 V	1.0 V
	200رA @ 2.0V	100رA $@ 1.5 \mathrm{~V}$	100رA $@ 1.5 \mathrm{~V}$
$I_{\text {DD }}$ Operating Current:	1000んA@3.5V	500 A @ 3.5 V	500 A @ 3.5 V
$I_{\text {DD }}$ Standby Current:	$2 \mu \mathrm{~A}$ @ 1V	$750 \mu \mathrm{~A}$ @ 1V	750nA@1V
Keyboard Debounce Time:	10 msec		16 msec
$X-Y$ Keyboard Interface:	Does not need capacitors		Capacitors required between column inputs and $V_{S S}$
Redial Buffer:	22 digits		20 digits
Dialing Characteristics:	Can dial more than 22 digits. Redial disabled if more than 22 digits are entered. Follows dial pulses.		Accepts a maximum of 20 digits. Will not dial additional digits.
Inter-digit pause timing			Precedes dial pulses

Application Suggestions

1) In most existing designs, the S2560G will work in place of S2560A without any modifications. Problems may arise however, if the keyboard bounce time exceeds 10 ms . In such a case, the device may interpret a single key entry as a double key. To avoid this false detection, the keyboard debounce time can be easily increased from 10 ms to 20 ms by changing the Oscillator Frequency from 2400 Hz down to 1200 Hz . This is done by changing the value of the capacitor connected to pin 7 from 270 pF to 470 pF . To preserve the dialing rate at 10pps and IDP at 800 ms the DRS and IDP pins now must be connected to V_{DD} instead of V_{Ss}. Figure 1 shows the implementation details. Note, that interfacing with $X \cdot Y$ keyboard no longer requires capacitors to $V_{\text {SS }}$ from column pins.
2) The hookswitch input pin (pin 5) must be protected from spikes that can occur when the phone goes from offhook condition to on-hook. Voltage exceeding $V_{D D}$ on this pin can cause the device to draw excessive current. This will discharge the capacitor across $V_{D D}$ and $V_{S S}$ causing the supply voltage to drop. If the voltage drops below 1 volt (data retention voltage) the device could lose redial memory. To prevent the voltage on the hookswitch pin from exceeding V_{DD}, an external diode must be added on the hookswitch pin as shown in Figure 1.

Figure 1. Transient Protection Technique Using Diode Between $V_{D D}$ and $\overline{H S}$

TONE RINGER

Features

CMOS Process for Low Power OperationOperates Directly from Telephone Lines with Simple Interface\square Also Capable of Logic Interface for Non-Telephone Applications
\square Provides a Tone Signal that Shifts Between Two Predetermined Frequencies at Approximately 16 Hz to Closely Simulate the Effects of the Telephone Bell
\square Push-Pull Output Stage Allows Direct Drive, Eliminating Capacitive Coupling and Provides Increased Power Output
$\square 50 \mathrm{~mW}$ Output Drive Capability at 10 V Operating Voltage

Auto Mode Allows Amplitude Sequencing such that the Tone Amplitude Increases in Each of the First Three Rings and Thereafter Continues at the Maximum Level
\square Single Frequency Tone Capability

General Description

The S2561 Tone Ringer is a CMOS integrated circuit that is intended as a replacement for the mechanical telephone bell. It can be powered directly from the telephone lines with minimum interface and can drive a speaker to produce sound effects closely simulating the telephone bell.
Data Subject to change at any time without notice. These sheets transmitted for information only.

S2561/S2561A/S2561C

Absolute Maximum Ratings:

*This device incorporates a 12 V internal zener diode across the VDD to VSS pins. Do NOT connect a low impedance power supply directly across the device unless the supply voltage can be maintained below 12 V or current limited to $<25 \mathrm{~mA}$.

Electrical Characteristics:

Specifications apply over the operating temperature and $3.5 \mathrm{~V} \leqslant \mathrm{~V}_{D D}$ to $\mathrm{V}_{S S}<12.0 \mathrm{~V}$ unless otherwise specified.

Symbol	Parameter	Min.	Max.	Units	Conditions
$V_{D S}$	Operating Voltage ($V_{D D}$ to $V_{S S}$)	8.0	12.0	V	Ringing, THC pin open
$V_{D S}$	Operating Voitage	4.0		V	"Auto' ' mode, non-ringing
${ }^{\text {IDS }}$	Operating Current		500	$\mu \mathrm{A}$	Non-ringing, $V_{D D}=10 \mathrm{~V}$, THC pin open, DI pin open or $\mathrm{V}_{S S}$
IOHC	Output Drive Output Source Current (OUT ${ }_{H}$, OUT $_{C}$ outputs)	5		mA	$V_{\text {DD }}=10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=8.75 \mathrm{~V}$
IOLC	Output Sink Current (OUTH, OUTC outputs)	5		mA	$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.75 \mathrm{~V}$
$\mathrm{I}_{\text {OHM }}$	Output Source Current (Out ${ }_{\text {M output) }}$	2		mA	$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=8.75 \mathrm{~V}$
IOLM	Output Sink Current (OUTM Output)	2		mA	$V_{\text {DD }}=10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.75 \mathrm{~V}$
$\mathrm{I}_{\mathrm{OHL}}$	Output Source Current (OUT ${ }_{\text {L }}$ output)	1		mA	$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=8.75 \mathrm{~V}$
10 LL	Output Sink Current (OUTL output)	1		mA	$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.75 \mathrm{~V}$
CMOS to CMOS					
$\mathrm{V}_{\text {IH }}$	Input Logic "1" Level	$0.7 \mathrm{~V}_{D D}$	$V_{D D}+0.3$	V	All inputs
$V_{\text {IL }}$	Input Logic ' 0 ' Level	$\mathrm{V}_{\text {SS }}-0.3$	$0.3 \mathrm{~V}_{\mathrm{DD}}$	V	All inputs
$\mathrm{V}_{\text {OHR }}$	Output Logic "1" Level (Rate output)	0.9 VDD		V	$\mathrm{I}_{0}=10 \mu \mathrm{~A}$ (Source)
$\mathrm{V}_{\text {OLR }}$	Output Logic ' 0 "' Level (Rate output)		0.5	V	$\mathrm{I}_{0}=10 \mu \mathrm{~A}$ (Sink)
$V_{0 Z}$	Output Leakage Current (OUT ${ }_{H}$, OUT ${ }_{M}$ outputs in high impedance state)		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & V_{D D}=10 \mathrm{~V}, V_{O U T}=0 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V}, V_{O U T}=10 \mathrm{~V} \end{aligned}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance		7.5	pF	Any pin
$\Delta \mathrm{fo} / \mathrm{fo}$	Oscillator Frequency Deviation	-5	+5	\%	Fixed RC component values $1 \mathrm{M} \Omega \leqslant \mathrm{R}_{\mathrm{ri}}, \mathrm{R}_{\mathrm{ti}} \leqslant 5 \mathrm{M} \Omega$; $100 \mathrm{k} \Omega \leqslant R_{\mathrm{rm}}, \mathrm{R}_{\mathrm{tm}} \leqslant 750 \mathrm{k} \Omega ; 150 \mathrm{pF} \leqslant \mathrm{C}_{\mathrm{ro}}, \mathrm{C}_{\mathrm{t} 0} \leqslant 3000 \mathrm{pF} ; 330 \mathrm{pF}$ recommended value of C_{r} and C_{to}, supply voltage varied from $9 \mathrm{~V} \pm 2 \mathrm{~V}$ (over temperature and unit-unit variations)
R LOAD	Output Load Impedance Connected Across OUT $_{H}$ and OUT $_{C}$	600		Ω	Tone Frequency Range $=300 \mathrm{~Hz}$ to 3400 Hz
$\mathrm{I}_{\mathrm{H},}, \mathrm{I}_{\mathrm{L}}$	Leakage Current, $\mathrm{V}_{1 N}=\mathrm{V}_{\text {DD }}$ or $\mathrm{V}_{S S}$		100	nA	Any input, except DI pin $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$
$\mathrm{V}_{\text {TH }}$	POE Threshoid Voltage	6.5	8	V	
V_{Z}	Internal Zener Voltage	11	13	V	$\mathrm{I}_{\mathrm{z}}=5 \mathrm{~mA}$

The device power supply should always be turned on before the input signal sources, and the input signals should be turned off before the power supply is turned off $\left(V_{S S} \leqslant V_{1} \leqslant V_{D D}\right.$ as a maximum limit). This rule will prevent over-dissipation and possible damage of the input-protection diode when the device power supply is grounded.

S2561/S2561A/S2561C

Functional Description

The S2561 is a CMOS device capable of simulating the effects of the telephone bell. This is achieved by producing a tone that shifts between two predetermined frequencies (512 and 640 Hz) with a frequency ratio of $5: 4$ at a 16 Hz rate.
Tone Generation: The output tone is derived from a tone oscillator that uses a 3 pin R-C oscillator design consisting of one capacitor and two resistors. The oscillator frequency is divided alternately by 4 or 5 at the shift rate. Thus, with the oscillator adjusted for 5120 Hz , a tone signal is produced that alternates between 512 Hz and 640 Hz at the shift rate. The shift rate is derived from another 3 pin R-C oscillator which is adjusted for a nominal frequency of 5120 Hz . It is divided down to 16 Hz which is used to produce the shift in the tone frequency. It should be noted that in the special case where both oscillators are adjusted for 5120 Hz , it is only necessary to have one external R-C network for one oscillator with the other oscillator driven from it. The oscillators are designed such that for fixed R-C component values an accuracy of $\pm 5 \%$ can be obtained over the operating supply voltage, temperature and unit-unit variations. See Table 1 for component and frequency selections. In the single frequency mode, activated by connecting the $\overline{\mathrm{SFS}}$ input to $\mathrm{V}_{\text {SS }}$ only the higher frequency continuous tone is produced by using a fixed divider ratio of 4 and by disabling the shift operation.

Ring Signal Detection: In the following description it is assumed that both the tone and rate oscillators are adjusted for a frequency of 5120 Hz . Ringing signal (nominally 42 to $105 \mathrm{VAC}, 20 \mathrm{~Hz}, 2 \mathrm{sec}$ on/4 sec off duty cycle) applied by the central office between the telephone line pair is capacitively coupled to the tone ringer circuitry as shown in Figure 2. Power for the device is derived from the ringing signal itself by rectification (diodes D1 thru $D 4$) and zener diode clamping (Z_{2}). The signal is also applied to the EN input after limiting and clamping by a resistor $\left(\mathrm{R}_{2}\right)$ and internal diodes to V_{DD} and V_{SS} supplies. Internally the signal is first squared up and then processed thru a 2 ms filter followed by a dial pulse reject filter. The 2 ns filter is a two-stage register clocked by a 512 Hz signal derived from the rate oscillator by a divide by 10 circuit. The squared ring signal (typically a square wave) is applied to the D input of the first stage and also to reset inputs of both stages. This provides for rejection of spurious noise spikes. Signals exceeding a duration of 2 ms only can pass through the filter.

The dial pulse reject filter is clocked at 8 Hz derived from the rate oscillator by divide by 640 circuit. This circuit is designed to pass any signal that has at least two transitions in a given 125 ms time period. This insures that signals below 8 Hz will be rejected with certainty. Signals over 16 Hz will be passed with certainty and between 8 Hz and 16 Hz there is a region of uncertainty. By adjusting the rate oscillator to a different frequency the break points of 10 Hz and 20 Hz the rate oscillator can be adjusted to 6400 Hz . Of course this also increases the tone shift rate to 20 Hz . The action of the dial pulse reject filter minimizes the dial pulse interference during dialing although it does not completely eliminate it due to the rather large region of uncertainty associated with this type of discrimination circuitry. The dial pulse filter also has the characteristic that an input signal is not detected unless its duration exceeds 125 ms . This insures that the tone ringer will not respond to momentary bursts of ringing less than 125 milliseconds in duration (Ref. 1).
In logic interface applications, the 2 ms filter and the dial pulse reject filter can be inhibited by wiring the Det. INHIBIT pin to $V_{D D}$. This allows the tone ringer to be enabled by a logic ' 1 ' level applied at the "ENABLE" input without the necessity of a 20 Hz ring signal.
Voltage Sensing: The S2561 contains a voltage sensing circuit that enables the output stage and the rate and tone oscillators, only when the supply voltage exceeds a predetermined value. Typical value of this threshold is 7.3 volts. This prduces two benefits. First, it insures that the audible intensity of the output tone is fairly constant throughout the ringing period; and secondly, it insures proper circuit operation during the "auto" mode operation by reducing the power consumption to a minimum when the supply voltage drops below 7.3 volts. This extends the supply voltage decay time beyond 4 seconds (off period of the ring signal) with an adequate filter capacitor and insures the proper functioning of the "amplitude sequencing" counter. It is important to note that the operating supply voltage should be well above the threshold value during the ringing period and that the filter capacitor should be large enough so that the ripple on the supply voltage does not fall below the threshold value. A supply voltage of 10 to 12 volts is recommended.
In applications where the tone ringer is continuously powered and below the threshold level, the internal threshold can be bypassed by connecting the THC pin to $V_{D D}$. The internal threshold can also be reduced by
connecting an external zener diode between the THC and $V_{D D}$ pins.
Auto Mode: In the "auto" mode, activated by wiring the "auto/manual" input to V_{SS}, an amplitude sequencing of the output tone can be achieved. Resistors R_{L} and R_{M} are inserted in series with the Out ${ }_{\mathrm{L}}$ and $\mathrm{Out}_{\mathrm{M}}$ outputs, respectively, and paralleled with the Out ${ }_{H}$ output (Figure 1). Load is connected across Out ${ }_{H}$ and Out ${ }_{C}$ pins. R_{L} is chosen to be higher than R_{M}. In this manner the first ring is of the lowest amplitude, second ring is of medium amplitude and the third and consecutive

Figure 1-A. Output Stage Connected for Auto Mode Operation

Figure 2-A. Typical Telephone Application of the S2561

rings thereafter are at maximum amplitude. For the proper functioning of the "amplitude sequencing" counter the device must have at least 4.0 volts across it throughout the ring sequence. The filter capacitor is so chosen that the supply voltage will not drop below 4.0 volts during the off period. At the end of a ring sequence when the off period substantially exceeds the 4 second duration, the counter will be reset. This will insure that the amplitude sequencing will start correctly beginning a new ring sequence. The counter is held in reset during the "manual" mode operation. This produces a maximum ring amplitude at all times.

Figure 1-B. Output Stage Connected for Manual Mode Operation

Figure 2-B. Typical Telephone Application of the S2561A

S2561/S2561A/S2561C

Output Stage: The output stage is of push-pull type consisting of buffers $\mathrm{L}, \mathrm{M}, \mathrm{H}$ and C . The load is connected across pins Out ${ }_{H}$ and Out ${ }_{C}$ (Figure 2). During ringing, the Out ${ }_{H}$ and Out ${ }_{c}$ outputs are out of phase with each other and pulse at the tone rate. During a non-ringing state, all outputs are forced to a known level such as ground which insures that there is no DC component in the load. Thus, direct coupling can be used for driving the load. The major benefit of the push-pull arrangement is increased power output. Four times as much power can be delivered to the load for the same operating voltage. Buffers M and H are three-state. In the "auto" mode buffer M is active only during the second
ring and in the "high impedance" state at all other times. Buffer H is active beginning the third ring. In the "manual" mode buffers H, L and C are active at all times while buffer M is in a high impedance state. The output buffers are so designed that they can source or sink 5 mA at a V_{DD} of 10 volts without appreciable voltage drop. Care has been taken to make them symmetrical in both source and sink configurations. Diode clamping is provided on all outputs to limit the voltage spikes associated with transformer drive in both directions $V_{D D}$ and $V_{S S}$.
Normal protection circuits are present on all inputs.

Table 1. S2561/S2561C Pin/Function Descriptions (S2561A)

Pin	Number	Function
Power ($V_{D D}{ }^{*}, V_{S S}^{*}$)	18,9 8,4	These are the power supply pins. The device is designed to operate over the range of 3.5 to 12.0 volts. A range of 10 to 12 volts is recommended for the telephone application.
Ring Enable (EN*, EN)		

Table 1. (Continued)

Pin	Number	Function
Detector Inhibit (DI)	16	When this pin is connected to $V_{D D}$, the dial pulse reject filter is disabled to allow $D C$ level enabling of the tone ringer. This pin should be hard- wired to $V_{S S}$ in normal telephone-type applications.
Single Frequency Select (SFS)	1	When this pin is connected to $V_{S S}$, only a single frequency continuous tone is produced as long as the tone ringer is enabled. In normal appli- cations this pin should be hardwired to $V_{D D}$.

*Pinouts of 8 pin S2561A package.

Table 2. Selection Chart for Oscillator Components and Output Frequencies

Tone/Rate Oscillator	Oscillator Components				
Frequency (Hz)	$\begin{gathered} \mathbf{R}_{1} \\ (k \Omega) \end{gathered}$	$\begin{gathered} \mathbf{R}_{\mathbf{M}} \\ (\mathrm{k} \Omega) \end{gathered}$	$\begin{gathered} C_{0} \\ (\mathrm{pF}) \end{gathered}$	Rate (Hz)	Tone (Hz)
5120	1000	200	330	16	512/640
6400	Select components in the ranges indicated in the table of electrical characteristics			20	640/800
3200				10	320/400
8000				25	800/1000
fo				$\frac{10}{320}$	$\frac{\mathrm{fo}}{10} \frac{\mathrm{fo}}{8}$

Applications

Typical Telephone Application: Figure 2 shows the schematic diagram of a typical telephone application for the S2561 tone ringer. Circuit power is derived from the telephone lines by the network formed by capacitor C_{1}, resistor R_{1}, diode bridge D_{1} through D_{4}, and filter capacitor $C_{2} . C_{2}$ is chosen to be large enough so as to insure that the power supply ripple during ringing does not fall below the internal threshold level (typ. 7.3 volts) and to provide large enough decay time during the off period. A typical value of C_{2} may be $.47 \mu \mathrm{~F} . \mathrm{C}_{1}$ and R_{1} are chosen to satisfy the Ringer Equivalence Number (REN) specification (Ref. 1). For REN $=1$ the resistor should be a minimum of $8.2 \mathrm{k} \Omega$. It must be noted that the amount of power that can be delivered to the load depends upon the selection of C_{1} and R_{1}.
The device is enabled by limiting the incoming ring signal through resistors R_{2}, R_{3} and diodes d_{5} and d_{6}. Zener diode Z_{1} (typ. 9-27 volts) may be required in certain applications where large voltage transients may
occur on the line during dial pulsing. The internal 2 ms filter and the dial pulse reject filter will suppress any undesirable components of the signal and will only respond to the normal 20 Hz ring signal. Ring signals with frequencies above 16 Hz will be detected.

The configuration shown will produce a tone with frequency components of 512 Hz and 540 Hz with a shift rate of approximately 16 Hz and deliver at least 25 mW to an 8Ω speaker through a $2000 \Omega: 8 \Omega$ transformer. If "manual" mode is used, a potentiometer may be inserted in series with the transformer primary to provide volume control. If "automatic" mode is used, resistors R_{L} and R_{M} can be chosen to provide desired amplitude sequencing. Typically, signal power
will be down $20 \log \frac{R_{\text {LOAD }}}{R_{L}+R_{\text {LOAD }}} \quad d B$ during the
first ring, and down $20 \log \frac{R_{L O A D}}{R_{M}+R_{L O A D}} \quad d B$ during the

Figure 3-A. Simulation of the Telephone Bell in Non-Telephone Applications

Figure 3-B. Single Frequency Tone Application in Alarms, Buzzers, Etc.

second ring with maximum power delivered to the load beginning the third and consecutive rings.
In applications where dial pulse rejection is not necessary, such as in DTMF telephone systems, the ENABLE pin may be connected directly to $V_{D D}$. Det. Inh pin must
be connected to $V_{D D}$ to allow DC level enabling of the ringer.
Non-Telephone Applications: The configuration shown in Figure 3-A may be used in non-telephone applications where it is desired to simulate the telephone bell.

S2561／S2561A／S2561C

The internal threshold is bypassed by wiring THC to V_{DD} ．The rate output（ 16 Hz ）is divided down by a 7 －stage divider type 4024 to produce two signals：a 2 second on／ 2 second off signal and a 4 second on $/ 4$ second off signal．The first signal is connected to the EN pin and the second to the DI pin to produce a 2 second on／4 se－ cond off telephone－type ring signal．The ring sequence is initiated by removing the reset on the divider．If ＂auto＂mode is used，a reset signal must be applied to the＂amplitude sequencing＂counter at the end of a ring sequence so that the circuit will respond correctly to a new ring sequence．This is done by temporarily connecting the＂auto／manual＂input to $V_{S S}$ ．
Figure 3－B shows a typical application for alarms， buzzers，etc．Single frequency mode is used by connec－
ting the $\overline{\mathrm{SFS}}$ input to V_{SS} ．A suitable on／off rate can be determined by using the 7 －stage divider circuit．If tin－ uous tone is not desired，the 16 Hz output can be used to gate the tone on and off by wiring it into the ENABLE input．
Many other configurations are possible depending upon the user＇s specific application．

Reference 1．Bell system communications technical reference：

PUB 47001 of August 1976.
＂Electrical Characteristics of Bell System Network Data Equipment＂－2．6．1 and 2．6．3

REPERTORY DIALER

Features

Specifically Designed for Telephone Line Powered ApplicationsCMOS Process Achieves Low Power Operation8 or 16 Digit Number Capability (Pin Programmable) Dial Pulse and Mute OutputTone Outputs Obtained by Interfacing With Standard AMI S2859 Tone GeneratorTwo Selections of Dial Pulse RateTwo Selections of Inter-Digit PauseTwo Selections of Mark/Space RatioMemory Storage of 298 -Digit Numbers or 16-Digit Numbers with Standard AMI S5101 RAM
\square 16-Digit Memory for Input Buffering and for Redial with Access Pause Capability
\square Accepts the Standard Telephone DPCT Keypad or SPST Switch X-Y Matrix Keyboards; Also Capable of Logic InterfaceCan Use Standard 3×4 or 4×4 KeyboardsInexpensive, but Accurate R-C Oscillator Design BCD Output with Update for Single Digit Display

General Description

The S2563A is an improved version of the S2562 repertory dialer and can replace the S2562 in existing applications using local power. It is however specifically designed for applications that will only use teiephone line power. To achieve this following changes were made to the $\mathbf{S} 2562$ design.
a. $\overline{\text { PF }}$ output was replaced by a level reset input which allows the device to be totally powered down in the on-hook state of the telephone.
b. To reduce power consumption in the associated S5101 memory in the standby mode, the interface was changed so that its CE_{2} input rather than the the $\overline{C E}_{1}$ input is controlled by the device.
c. Process was changed to a lower voltage CMOS pro-cess. Additionally a mark/space selection input (M/S) was added to allow selection of either $40 / 60$ or $33 / 67$ ratio. Provision was also made to allow the device to work with a standard 3×4 or 4×4 keyboard.

Data subject to change at any time without notice. These sheets transferred for information only.

DTMF TONE GENERATOR WITH REDIAL

Features

\square Wide Operating Supply Voltage Range (2.50-10V)
\square Low Power CMOS Circuitry Allows Device Power to be Derived Directly from the Telephone Lines
$\square 21$ Digit Memory for Redial
\square Uses Standard 3×4 (S2569A) or 4×4 (S2569) SPST or X-Y Matrix Keyboard
\square The Total Harmonic Distortion is Below Industry Specification (Max. 7\% Over Typical Loop Current Range)
\square Separate Control Keys (S2569) for Disconnect, Pause, Redial and Flash in Column Four
\square Allows Dialing of * and \# Keys on S2569. For S2569A Redial Initiated by * or \# Key as First Key Offhook, * or \# can be Dialed After First Key Offhook.

General Description

The S2569/S2569A are members of the S2559 Tone Generator family with the added features of Redial, Disconnect, Pause and Flash. They produces the 12 dual tones corresponding to the 12 keys located on the conventional Touch-Tone ${ }^{\bullet}$ telephone keypad. The S2569 has separate keys, located in column four, which initiate the Disconnect(D), Pause(P), Redial(R), and Flash(F) functions. (Note: column four keys do not generate tones.) Only the redial feature is available on the S2569A. Redial on the S2569A is initiated by pressing * or\# as the first key offhook.
A voltage reference generated on the chip regulates the signal levels of the dual tones to meet the recommended telephone industry specifications.

Absolute Maximum Rating:

DC Supply Voltage ($\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{S S}$)	+13.5V
Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+140^{\circ} \mathrm{C}$
Power Dissipation at $25^{\circ} \mathrm{C}$	500 mW
Input Voltage	$\mathrm{V}_{S S}-0.6<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\mathrm{DD}}+0.6 \mathrm{~V}$

S2569A Electrical Characteristics: Specifications apply over the operating temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted. Absolute values of measured parameters are specified.

Symbol	Parameter/Conditions	$\begin{gathered} \left(V_{\mathrm{DO}}-v_{\mathrm{SS}}\right) \\ V_{\text {olts }} \end{gathered}$	Min.	Max.	Unit
Supply Voltage					
$V_{D D}$	Tone Out Mode (Valid Key Depressed)		2.50	10.0	V
	Non Tone Out Mode (No Key Depressed)		1.50	10.0	V
$V_{\text {DR }}$	Data Retention Voltage		1.0		V
Supply Current					
$1{ }^{\text {D }}$	STANDBY (NO Key Depressed, Tone, Mute and Flash Outputs Unloaded, $\mathrm{CE}=$ low	$\begin{aligned} & 2.00 \\ & 5.00 \end{aligned}$		$\begin{gathered} 1 \\ 20 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
	Operating (One Key Selected, Tone, Mute and Flash Outputs Unloaded). Operating During Flash	$\begin{aligned} & 3.00 \\ & 3.0 \end{aligned}$		$\begin{aligned} & 2.5 \\ & 300 \\ & \hline \end{aligned}$	mA $\mu \mathrm{A}$
Tone Output					
$V_{0 R}$	Low Group Frequency Voltage ($\mathrm{R}_{\mathrm{L}}=390 \mathrm{k} \Omega$)	5.0	330	690	mVrms
dBcr	Ratio Of Column To Row Tone	2.5-5.0	1.0	3.0	dB
\% DIS	Distortion*	2.5-10.0		7	\%
Mute and Flash Outputs					
${ }^{1} \mathrm{OH}$	Output Source Current $\quad \mathrm{V}_{\mathrm{OH}}=2.7 \mathrm{~V}$	3.0	1.0		mA
102	Output Sink Current $\quad \mathrm{V}_{0 \mathrm{~L}}=0.3 \mathrm{~V}$	3.0	1.0		mA

[^4]
Basic Chip Operation

The dual tone signal consists of linear addition of two voice frequency signals. One of four signals is selected from a group of frequencies called "low group" and the other is selected from a group of frequencies called "high group". The low group consists of four frequencies; $697,770,852$ and 941 Hz . The high group consists of three frequencies; 1209, 1336 and 1477 Hz .
When a push button corresponding to a digit (0 thru 9, *, \#) is pushed, one appropriate row (R_{1} thru R_{4}) and one appropriate column $\left(\mathrm{C}_{1}\right.$ thru $\left.\mathrm{C}_{3}\right)$ is selected. The active row input selects one of the low group frequencies and active column input selects one of the high group frequencies.

Tone Generation

When a valid key closure is detected, the keyboard logic programs the high and low group dividers with appropriate divider ratios so that the output of these dividers cycle at 16 times the desired high group and low group frequencies. The outputs of the programmable dividers drive two 8 -stage Johnson counters. The symmetry of the clock input to the two divide-by- 16 Johnson counters allows 32 equal time segments to be generated within each output cycle. The 32 segments are used to digitally synthesize a stair-step waveform to approximate the sinewave function. This is done by connecting a weighted resistor ladder network between the outputs of the Johnson counter, $V_{D D}$ and $\mathrm{V}_{\text {REF }}$. $\mathrm{V}_{\text {REF }}$ closely tracks V_{DD} over the operating voltage and temperature range and therefore the peak-to-peak amplitude $\mathrm{V}_{\mathrm{P}}\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {REF }}\right)$ of the stairstep function is fairly constant. $V_{\text {REF }}$ is chosen so that V_{P} falls within the allowed range of the high group and low group tones.

Normal Dialing

Tone dialing starts as soon as the first digit is entered and debounced. The entered digits are stored sequentially in the internal memory. Pauses may be entered when required in the dial sequence by pressing the " P " key, which provides access pause for future redial. Any number of access pauses may be entered as long as the total entries do not exceed the total number of available digits. Numbers up to 21 digits can be redialed. Numbers exceeding 21 digits will clear redial buffer. Note that only the S2569 has "Pause" capability and the access pause is included in the 21 digit maximum number.

Redial

The last number dialed is retained in the memory and therefore can be redialed by going off hook and pressing the "R" key on the S2569 (located at column 4 and row 3). The S2569A does not use column four and Redial is initiated by "\#" or "*" key as the first key offhook. Tone dialing will start when the key is depressed and finish after the entire number is dialed out unless an access pause is detected. In such a case, the tone dialing output will stop and will resume only after the user pushes any key except Flash and Disconnect keys. During redial all keys are ignored until 70 ms after the last digit is dialed (except Disconnect). (Note that the "Pause" function is not available on the S2569A.)

Disconnect/Flash Functions

The S2569 has a push-pull buffer for Disconnect output. With no keys depressed the Disconnect output is high. When the Disconnect key is depressed the Disconnect output goes low until the key is released. Disconnect output can also be used to implement a "Flash" function. When the Flash key is depressed the Disconnect output goes low for 608 ms .

Figure 1

1	2	3	D
4	5	6	P
7	8	9	R
$*$	0	$\#$	F

S2569 Keypad

1	2	3
4	5	6
7	8	9
$*$	0	$\#$

S2569A Keypad

Keyboard Interface

The S2569/A employs a scanning circuitry to determine key closures. When no key is depressed active pull down resistors are on on the row inputs and active pull up resistors are on on the column inputs. When a key is pushed a high level is seen on one of the row inputs, the oscillator starts and the keyboard scan logic turns on. The active pull up or pull down resistors are selectively switched on and off as the keyboard scan logic determines the row and the column inputs that are selected. The value of pull down and pull up resistors will vary with supply voltage. Typical values of pull up and pull down resistors are shown in Table 1.

S2569/S2569A

Table 1. Typical Resistance Values

$\mathbf{V}_{\mathbf{D D}}$	PULL UP RESISTANCE (TYP.)
2.0 V	3.3 K ohm
5.0 V	1.5 K ohm
10.0 V	1.3 K ohm
$\mathbf{V}_{\mathbf{D D}}$	PULL DOWN RESISTANCE (TYP.)
2.0 V	340 K ohm
5.0 V	36.6 K ohm
10.0 V	16.6 K ohm

Table 2. Comparisons of Specified Vs. Actual Tone Frequencies Generated by S2569/A

| $\begin{array}{c}\text { ACTIVE } \\ \text { INPUT }\end{array}$ | $\begin{array}{c}\text { OUTPUT FREQUENCY HZ } \\ \text { SPECIFIED }\end{array}$ | | ACTUAL |
| :---: | :---: | :---: | :---: |\(\left.) \begin{array}{c}\%

ERROR\end{array}\right]\)

NOTE: \% error does not include oscillator drift.

Figure 2. Typical Timing
Normal Dialing

Disconnect

t_{5} : OSC START UP:3ms
t_{6} : OSC MNN. ON TIME: 142 ms
i_{7} : TONE OUTPUT DELAY TIME:21m
MIN. TONE OUT TIME:70ms
MIN. OFF TIME:70ms
t_{10} : DASC DELAY TIME:4ms
H_{11} : MAX. OUTPUT PULSE:608ms
t_{12} : MIN. DISC OFF TIME:50ms
I_{13} : TONE ON TLME:70ms

Logic Interface

The S2569/A can also interface with CMOS logic outputs directly. The S2569/A requires active high logic levels. Since the pull up resistors present in the S2569/A are fairly low values, diodes can be used as shown in Figure 3 to eliminate excessive sink current flowing into the logic outputs in their low logic state.

Figure 3a. Typical Application Circuit for Line Powered DTMF Dialer With Redial S2569

Figure 3b. Typical Application Circuit for Line Powered DTMF Dlaler With Redial S2569A

Chip Enable

The S2569/A has a Chip Enable input at pin 2. The Chip Enable for the S2569/A is an active "high". When the Chip Enable is "low", the Tone output goes to V_{SS}, the oscillator is inhibited and the Mute and Disconnect outputs will go into a low state.

Mute Output

The S2569/A has a push-pull buffer for Mute output. With no keys depressed the Mute output is low, when a key is depressed the Mute output goes high until the key is released. Note that minimum mute pulse width is 70 ms .

Oscillator

The device contains an oscillator circuit with the neces-
sary parasitic capacitances and feedback resistor ($1 \mathrm{M} \Omega$) on chip so that it is only necessary to connect a standard 3.58 MHz TV crystal across the OSC_{i} and OSC ${ }_{0}$ terminals to implement the oscillator function.

Oscillator Crystal Specifications

Frequency $3.579545 \mathrm{MHz} \pm .02 \%$, Rs $<100 \Omega$, $\mathrm{Lm}=96 \mathrm{Mhy}, \mathrm{Cm}=.02 \mathrm{pF} \mathrm{Ch}=5 \mathrm{pF}$

Test Mode

The S2569/A will enter the test mode if all rows are pulled high momentarily. 16 times the low group frequency will appear at mute output depending on which row is selected. Also, 16 times the high group frequency will appear at disconnect output depending upon which column is selected.

DTMF TONE GENERATOR WITH REDIAL

Features

\square Wide Operating Supply Voltage Range (2.50-10V)
\square Low Power CMOS Circuitry Allows Device Power to be Derived Directly from the Telephone Lines
$\square 21$ Digit Memory for Redial
\square Uses 4x5 SPST or X-Y Matrix Keyboard
\square The Total Harmonic Distortion is Below Industry Speciflcation (Max. 7\% Over Typical Loop Current Range)
\square Separate Control Keys for Flash and Redial
\square Allows Dialing of *, \# and A Through D Keys

General Description

The S2569B and S2569C are members of the S2559 Tone Generator family with the added features of Redial and Flash. The devices produce 16 dual tones corresponding to the 16 -digit keys located on the conventional Touch-Tone ${ }^{\bullet}$ telephone keypad. Function keys for Redial(R) and Flash(F) are located in column five. A voltage reference generated on the chip regulates the signal levels of the dual tones to meet the recommended telephone industry specifications. The S2569B and S2569C versions differ in the duration of the flash output.

DC Supply Voltage ($\mathrm{V}_{D D}-\mathrm{V}_{S S}$)	8.0 V
Operating Temperature, 2569B	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Operating Temperature, 2569C	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+140^{\circ} \mathrm{C}$
Power Dissipation at $25^{\circ} \mathrm{C}$	500 mW
Input Voltage	$-0.6<V_{I N}<V_{D D}+0.6 V$

S2569B/C Electrical Characteristics: (Specifications apply over the operating temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ unless otherwise noted. Absolute values of measured parameters are specified.)

Symbol	Parameter/Conditions	$\begin{gathered} \left(V_{D D}-V_{S S}\right) \\ V_{\text {olts }} \end{gathered}$	Min.	Max.	Unit
Supply Voltage					
V_{00}	Tone Out Mode (Valid Key Depressed)		2.50	5.0	V
	Non Tone Out Mode (No Key Depressed)		1.50	5.0	V
Supply Current					
	STANDBY (NO Key Depressed, Tone, Mute and Flash Outputs Unloaded, CE = low	$\begin{aligned} & 2.00 \\ & 5.00 \end{aligned}$		$\begin{gathered} 1 \\ 20 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
ID	Operating (One Key Selected, Tone, Mute and Flash Outputs Unloaded). Operating During Flash	$\begin{aligned} & 3.00 \\ & 3.0 \end{aligned}$		$\begin{aligned} & 2.5 \\ & 300 \end{aligned}$	mA $\mu \mathrm{A}$
Tone Output					
$V_{0 R}$	Low Group Frequency Voltage ($\mathrm{L}_{\mathrm{L}}=1 \mathrm{k} \Omega$)	3.0	246	310	mVrms
dBcr	Ratio Of Column To Row Tone: $\begin{aligned} & \text { 2569B } \\ & 2569 \mathrm{C}\end{aligned}$	$\begin{aligned} & 2.5-5.0 \\ & 2.5-5.0 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
\% DIS	Distortion*	2.5-10.0		7	\%
Mute and Flash Outputs					
$\mathrm{IOH}^{\text {H }}$	Output Source Current $\quad \mathrm{V}_{0 \mathrm{H}}=2.7 \mathrm{~V}$	3.0	1.0		mA
10 L	Output Sink Current $\quad \mathrm{V}_{0 \mathrm{~L}}=0.3 \mathrm{~V}$	3.0	1.0		mA

* Distortion measured in accordance with the specifications described as "ratio of total power of all extraneous frequencies in the voiceband above 500 Hz accompanying the signal to the total power of the frequency pair' '.
NOTE: $R_{L}=$ load resistor connected from output to $V_{S S}$.

Basic Chip Operation

The dual tone signal consists of linear addition of two voice frequency signals. One of two signals is selected from a group of frequencies called "low group" and the other is selected from a group of frequencies called "high group". The low group consists of four frequencies; $697,770,852$ and 941 Hz . The high group consists of four frequencies; 1209, 1336, 1477 and 1633 Hz .

When a push button corresponding to a digit (0 thru D, *, \#) is pushed, one appropriate row (R_{1} thru R_{4}) and one appropriate column (C_{1} thru C_{4}) is selected. The active row input selects one of the low group frequencies and active column input selects one of the high group frequencies.

Tone Generation

When a valid key closure is detected, the keyboard logic programs the high and low group dividers with appropriate divider ratios so that the output of these dividers cycle at 16 times the desired high group and low group frequencies. The outputs of the programmable dividers drive two 8 -stage Johnson counters. The symmetry of the clock input to the two divide-by-16 Johnson counters allows 32 equal time segments to be generated within each output cycle. The 32 segments are used to digitally synthesize a stair-step waveform to approximate the sinewave function. This is done by connecting a weighted resistor ladder network between the outputs of the Johnson counter, V_{DD} and $\mathrm{V}_{\text {REF }}$. $\mathrm{V}_{\text {REF }}$ closely tracks $V_{D D}$ over the operating voltage and temperature range and therefore the peak-to-peak amplitude $V_{P}\left(V_{D D}-V_{\text {REF }}\right)$ of the stair-step function is fairly constant. $\mathrm{V}_{\text {REF }}$ is chosen so that V_{P} falls within the allowed range of the high group and low group tones.

Normal Dialing

Tone dialing starts as soon as the first digit is entered and debounced. The entered digits are stored sequentially in the internal memory. Numbers up to 21 digits can be redialed. Numbers exceeding 21 digits will clear redial buffer. Note that the S2569B/C will not accept roll over entries.

Redial

The last number dialed is retained in the memory and therefore can be redialed by going offhook and pressing the " R " key (located at column 5 and row 3). Tone dialing will start when the key is depressed and finish after the entire number is dialed out.
If the redial key is held down, tone dialing will stop after the first digit is dialed, and will resume again when the key is released. This provides for single digit access codes. During Redial the S2569B/C will ignore any keyboard entry. Keys will be accepted 70 ms after last number is dialed.

Redial Inhibit

Redial can be inhibited by dialing (*), (\#), and Flash, in normal dialing sequence. Numbers exceeding 21 digits and single tones will also inhibit redial.

Flash Output

The S2569B/C has a push-pull buffer for Flash output. With no keys depressed the Flash output is low. When
the Flash key is depressed, the Flash output goes high for 90 ms (S2569B) or 608ms (S2569C).

Keyboard Interface

The S2569B employs a scanning circuitry to determine key closures. The active pull up or pull down resistors are selectively switched on and off as the keyboard scan logic determines the row and the column inputs that are selected. The values of pull down and pull up resistors will vary with supply voltage. Typical values of pull up and pull down resistors are shown in Table 1.

Table 1. Typical Resistance Values

$\mathbf{V}_{\mathbf{D O}}$	PULL UP RESISTANCE (TYP.)
2.0 V	3.3 K ohm
5.0 V	1.5 K ohm
$\mathbf{V}_{\mathbf{D D}}$	PULL DOWN RESISTANCE (TYP.)
2.0 V	340 K ohm
5.0 V	36.6 K ohm

Table 2. Comparisons of Specified Vs. Actual Tone Frequencies Generated by S2569B/C

ACTIVE INPUT	OUTPUT FREQUENCY HZ SPECIFIED		$\%$ ACTUAL
ERROR			
R1	697	699.1	+0.30
R2	770	766.2	-0.49
R3	852	847.4	-0.54
R4	941	948.0	+0.74
C1	1209	1215.9	+0.57
C2	1339	1331.7	-0.32
C3	1477	1471.9	-0.35
C4	1633	1645.0	+0.73

NOTE: \% error does not include oscillator drift:

Figure 1. Standard Telephone Push Button Keyboard

Figure 2. SPST Matrix Keyboard Arranged in the 2 of 8 Row, Column Format

Logic Interface

The S2569B can also interface with CMOS logic outputs directly. The S2569B/C requires active high logic levels. Since the pull up resistors present in the S2569B/C are fairly low values, diodes can be used as shown in Figure 3 to eliminate excessive sink current flowing into the logic outputs in their low logic state.

Figure 3. Logic Interface for Keyboard Inputs of the S2569B

G_{1} THRU G_{g} ANY TYPE CMOS GATE D_{1} THRU Dg DIODES TYPE IN914 (OPTIONAL)

Chip Enable

The S2569B/C has a Chip Enable input at pin 2. The Chip Enable for the S2569B/C is an active "high". When the Chip Enable is "low", the tone output goes to V_{SS}, the oscillator is inhibited and the Mute and Disconnect outputs will go into a low state.

Mute Outputs (M1, M2)

The S2569B/C has push-pull buffers for Mute outputs. With no keys depressed the Mute outputs are low. When a key is depressed the outputs go high until the key is released. M1 will stay high for additional 250 ms . Note that minimum mute pulse width is 70 ms for M2 and 320 ms for M1.

Oscillator

The device contains an oscillator circuit with the necessary parasitic capacitances and feedback resistor ($1 \mathrm{M} \Omega$) on chip so that it is only necessary to connect a standard 3.58 MHz TV crystal across the OSC_{i} and OSC_{0} terminals to implement the oscillator function.

Oscillator Crystal Specifications

Frequency $3.579545 \mathrm{MHz}+.02 \% \mathrm{Rs}<100$ ohm, LM $=96$

Mhy, $\mathrm{Cm}=.02 \mathrm{pF} \mathrm{Ch}=5 \mathrm{pF}$.

Single Tone Mode

The S2569B/C is capable of dialing single as well as dual tones. Single tones in either the low group or the high group can be generated as follows. A low group tone can be generated by depressing two digit keys in the appropriate row. A high group tone can be generated by depressing two digit keys in the appropriate column.

Note that two keys have to be depressed simultaneously or the output will be the normal dual tones. If the keys are depressed within 10 msec of each other, the single tone will be generated. If not, the standard dual tone representing the first key depressed will be sent and the second button will be ignored.

Test Mode

The S2569B/C will enter the test mode if all rows are pulled high momentarily. 16 times the low group frequency will appear at the M2 output depending on which row is selected. Also 16 times high group frequency will appear at the Flash output depending on which column is selected.

Figure 4. Stairstep Waveform of the Digitally Synthesized Sinewave

Figure 5. Typical Timing
Normal Dlailing

Flash

[^5]Figure 7. Typical Applications Circuit for Line Powered DTMF Dialer With Redial

S25089

DTMF TONE GENERATOR

Features

Wide Operating Voltage Range: 2.5 to 10 VoltsOptimized for Constant Operating Supply Voltages, Typically 3.5 VTone Amplitude Stability is Within $\pm 1.5 \mathrm{~dB}$ of Nominal Over Operating Temperature RangeLow Power CMOS Circultry Allows Device Power to to be Derived Directly From the Telephone Lines or From Small BatteriesUses TV Crystal Standard (3.58 MHz) to Derive All Frequencies Thus Providing Very High Accuracy and Stability\square Specifically Designed for Electronic Telephone Applications
\square Interfaces Directly to a Standard Telephone Push-Button Keyboard With Common TerminalLow Total Harmonic DistortionSingle Tone as Well as Dual Tone CapabilityDirect Replacement for Mostek MK5089 Tone Generator

General Description

The S25089 DTMF Generator is specifically designed to implement a dual tone telephone dialing system in applications requiring fixed supply operation and high stability tone output level, making it well suited for electronic telephone applications. The device can interface directly to a standard pushbutton telephone keyboard with common terminal connected to $V_{S S}$ and operates directly from the telephone lines. All necessary dual-tone frequencies are derived from the widely used TV crystal standard providing very high accuracy and stability. The required sinusoidal waveform for the individual tones is digitally synthesized on the chip. The waveform so generated has very low total harmonic distortion. A voltage reference is generated on the chip which is very stable over the operating temperature range and regulates the signal levels of the dual tones to meet the recommended telephone industry specifications.

Absolute Maximum Ratings:

Electrical Characteristics: (Specifications apply over the operating temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted. Absolute values of measured parameters are specified.)

Symbol	Parameter/Conditions		$\begin{gathered} \left(\mathrm{V}_{\mathrm{op}} \cdot \mathrm{~V}_{\mathrm{ss}}\right) \\ \text { Volts } \end{gathered}$	Min.	Typ.	Max.	Units
Supply Voltage							
$V_{D D}$	Tone Out Mode (Valid Key Depressed)			2.5	-	10.0	V
	Non Tone Out Mode ($\overline{\text { AKD }}$ Outputs toggle with key depressed)			1.6	-	10.0	V
Supply Current							
$I_{D D}$	Standby (No Key Selected, Tone and AKD Outputs Unloaded)		$\begin{gathered} 3.0 \\ 10 \end{gathered}$	-	1	$\begin{gathered} \hline 20 \\ 100 \end{gathered}$	$\mu \mathrm{A}$ A
	Operating (One Key Selected, Tone and AKD Outputs Unloaded)		3.0	-	. 9	1.25	mA
			10.0	-	4.5	10.0	mA
Tone Output							
$V_{0 R}$	Dual Tone Row Tone Mode Output Amplitude	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	3.0	-11.0		-8.0	dBm
		$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$	3.5	-10.0		-7.0	dB
$\mathrm{dB}_{\text {CR }}$	Ratio of Column to Row Tone**		2.5-10.0	2.4	2.7	3.0	dB
\% DIS	Distortion*		2.5-10.0	-	-	10	\%
NKD	Tone Output-No Key Down					-80	dBm
AKD Output							
10 L	Output On Sink Current $V_{0 L}=0.5 \mathrm{~V}$		3.0	0.5	1.0	-	mA
${ }^{\text {OH }}$	Output Off Leakage Current		10.00		1	10	$\mu \mathrm{A}$
	Oscillator Input/Output						
${ }^{1} \mathrm{~L}$	One Key Selected Output Sink Current	$\mathrm{V}_{0 \mathrm{~L}}=0.5 \mathrm{~V}$	3.0	0.21	0.52	-	mA
		$\mathrm{V}_{0 \mathrm{~L}}=0.5 \mathrm{~V}$	10.0	0.80	2.1	-	mA
${ }_{\mathrm{OH}}$	Output Source Current One Key Selected	$\mathrm{V}_{\text {OH }}=2.5 \mathrm{~V}$	3.0	0.13	0.31	-	mA
		$\mathrm{V}_{\text {OH }}=9.5 \mathrm{~V}$	10.0	0.42	1.1	-	mA
tstart	Oscillator Startup Time with Crystal as Specified		3.0-10.0	-	2	5	ms
$\mathrm{C}_{1 / 0}$	Input/Output Capacitance		$\begin{gathered} \hline 3.0 \\ 10.00 \end{gathered}$	-		$\begin{aligned} & 16 \\ & 14 \end{aligned}$	$\begin{aligned} & \hline \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

[^6]Electrical Characteristics: (Continued)

Symbol	Parameter/Conditions		$\begin{gathered} \left(V_{D D}-V_{S S}\right) \\ \text { Volts } \end{gathered}$	Min.	Typ.	Max.	Units
	Row, Column and Chip Enable Inputs						
VIL	Input Voltage, Low		-	$v_{s s}$		$\begin{aligned} & .2\left(V_{D D}\right. \\ & \left.-V_{S S}\right) \end{aligned}$	V
$V_{\text {IH }}$	Input Voltage, High		-	$\begin{aligned} & .8\left(V_{D D}\right. \\ & -V_{S S} \end{aligned}$	-	$V_{D D}$	V
${ }_{1} \mathrm{H}$	Input Current (Pull up)	$\mathrm{V}_{1 H}=0.0 \mathrm{~V}$	3.0	30	90	150	$\mu \mathrm{A}$
		$\mathrm{V}_{1 H}=0.0 \mathrm{~V}$	10.0	100	300	500	$\mu \mathrm{A}$

Oscillator

The S25089 contains an oscillator circuit with the necessary parasitic capacitances and feedback resistor on chip so that it is only necessary to connect a standard 3.58 MHz TV crystal across the OSC $_{j}$ and OSC $_{0}$ terminals to implement the oscillator function. The oscillator functions whenever a row input is activated. The reference frequency is divided by 4 and then drives two sets of programmable dividers, the high group and the low group.

Crystal Specification

A standard television color burst crystal is specified to have much tighter tolerance than necessary for tone generation application. By relaxing the tolerance specification the cost of the crystal can be reduced. The recommended crystal specification is as follows:

Frequency: $3.579545 \mathrm{MHz} \pm 0.02 \%$
$R_{S} 100 \Omega, L_{M}=96 \mathrm{mH}$

$$
\mathrm{C}_{\mathrm{M}}=0.02 \mathrm{pF} \mathrm{C}_{\mathrm{H}}=5 \mathrm{pFC} \mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}
$$

Keyboard Interface

The S25089 can interface with the standard telephone pushbutton keyboard (see Figure 1) with common. The common of the keyboard must be connected to V_{SS}.

Logic Interface

The S25089 can also interface with CMOS logic outputs directly (see Figure 2). The $\mathbf{S 2 5 0 8 9}$ requires active "Low" logic levels. Low levels on a row and a column input corresponds to a key closure. The pull-up resistors present on the row and column inputs are in the range of $20 \mathrm{k} \Omega-100 \mathrm{k} \Omega$.

Figure 1. Standard Telephone Push Button Keyboard

Tone Generation

When a valid key closure is detected, the keyboard logic programs the high and low group dividers with appropriate divider ratios so that the output of these dividers cycle at 16 times the desired high group and low group frequencies. The outputs of the programmable dividers drive two 8 -stage Johnson counters. The symmetry of the clock input to the two divided by 16 Johnson counters allows 32 equal time segments to be generated within each output cycle. The 32 segments are used to digitally synthesize a stair-step waveform to approximate the sinewave function (see Figure 3). This is done by connecting a weighted resistor ladder network between the outputs of the Johnson
counter, V_{DD} and $\mathrm{V}_{\text {REF. }} \mathrm{V}_{\mathrm{REF}}$ closely tracks V_{DD} over the operating voltage and temperature range and therefore the peak-to-peak amplitude VP ($\left.V_{D D}-V_{R E F}\right)$ of the stairstep function is fairly constant. $V_{\text {REF }}$ is so chosen that VP falls within the allowed range of the high group and low group tones.
The individual tones generated by the sinewave synthesizer are then linearly added and drive an NPN transistor connected as an emitter follower to allow proper impedance transformation at the same time preserving signal level. This allows the device to drive varying resistive loads without significant variation in tone amplitude. For example, a load resistor change from $10 \mathrm{k} \Omega$ to $1 \mathrm{k} \Omega$ causes a decrease in tone amplitude of less than 1dB.

Dual Tone Mode

When one row and one column is selected, dual tone output consisting of an appropriate low group and high group tone is generated. If two digit keys that are not either in the same row or in the same column are depressed, the dual tone mode is disabled and no output is provided.

Single Tone Mode

Single tones either in the low group or the high group can be generated as follows. A low group tone can be generated by depressing two digit keys in the appropriate row. A high group tone can be generated by depressing two digit keys in the appropriate column, i.e., selecting the appropriate column input and two row inputs in that column. This is slightly different from the MK5089 which requires a low to a single column pin to get a column tone.

Inhibiting Single Tones

The STI input (pin 15) is used to inhibit the generation of other than dual tones. It has an internal pull down to $V_{S S}$ supply. When this input is left unconnected or connected to $V_{S S}$, single tone generation as described in the preceding paragraph (Single Tone Mode) is suppressed with all other functions operating normally. When this input is connected to $V_{D D}$ supply, single or dual tones may be generated as previously described (Single Tone Mode, Dual Tone Mode).

Chip Enable Input (CE, Pin 2)

The chip enable input has an internal pull-up to $V_{D D}$ supply. When this pin is left unconnected or connected to $V_{D D}$ supply the chip operates normally. When connected to $\mathrm{V}_{\text {SS }}$ supply, tone generation is inhibited. All other chip functions operate normally.

Table 1. Comparison of Specified Vs. Actual Tone Frequencies Generated by $\mathbf{S 2 5 0 8 9}$

ACTIVE INPUT	OUTPUT FREQUENCY Hz		\% ERROR SEE NOTE
	697	699.1	
R2	770	766.2	-0.49
R3	852	847.4	-0.54
R4	941	948.0	+0.74
C1	1209	1215.9	+0.57
C2	1336	1331.7	-0.32
C3	1477	1471.9	-0.35
C4	1633	1645.0	+0.73

NOTE: \%ERROR DOES NOT INCLUDE OSCILLATOR DRIFT

Figure 2. Logic Interface for Keyboard Inputs of the S25089

G1 THRU G8 ANY TYPE CMOS GATE

Figure 3. Stairstep Waveform of the Digitally Synthesized Sinewave

Reference Voltage

The structure of the reference voltage employed in the S25089 is shown in Figure 4. It has the following characteristics:
a) $V_{\text {REF }}$ is proportional to the supply voltage. Output tone amplitude, which is a function of ($V_{D D}-V_{R E F}$), increases with supply voltage (Figure 5).
b) The temperature coefficient of $\mathrm{V}_{\text {REF }}$ is low due to a single V_{BE} drop. Use of a resistive divider also provides an accuracy of better than 1%. As a result, tone amplitude variations over temperature and unit to unit are held to less than $\pm 1.0 \mathrm{~dB}$ over nominal.
c) Resistor values in the divider network are so chosen that $\mathrm{V}_{\text {REF }}$ is above the V_{BE} drop of the tone output transistor even at the low end of the supply voltage range. The tone output clipping at low supply voltages is thus eliminated, which improves distortion performance.

AKD (Any Key Down or Mute) Output

The $\overline{\text { AKD output (pin 10) consists of an open drain } N}$ channel device (see Figure 6.) When no key is depressed the $\overline{\text { AKD }}$ output is open. When a key is depressed
the $\overline{\mathrm{AKD}}$ output goes to $\mathrm{V}_{S S}$. The device is large enough to sink a minimum of $500 \mu \mathrm{~A}$ with voltage drop of 0.2 V at a supply voltage of 3.5 V .

Figure 4. Structure of the Reference Voltage

Figure 5. Typical Single Tone Output Amplitude Vs Supply Voltage ($\mathrm{R}_{\mathrm{L}}=\mathbf{1 0 k}$)

Figure 6. AKD output Structure

10 MEMORY PULSE DIALER

Features

\square Complete Pin Compatibility With S2560A and S2560G Pulse Dialer Allowing Easy Upgrading of Existing Designs.
\square Ten 18-Digit Number Memories Plus Last Number Redial (22 Digit) Memory On Chip.Low Voltage CMOS Process for Direct Operation From Telephone Lines.
\square Inexpensive R-C Oscillator Design With Accuracy Better Than $\pm 5 \%$ Over Temperature and Unit-Unit Variations.
\square Independent Select Inputs for Variation of Dialing Rates (10pps/20pps), Mark/Space Ratio (331/3-662/3/ $40-60$), Interdigit Pause ($400 \mathrm{~ms} / 800 \mathrm{~ms}$).
\square Can Interface With Inexpensive XY Matrix or Standard 2 of 7 Keyboard With Common. Also Capable of Logic Interface (Active High).
\square Mute and Pulse Drivers On Chip.
\square Call Disconnect by Pushing * and \# Keys Simultaneously.

Pin Configuration

Absolute Maximum Ratings:

Electrical Characteristics:

Specifications apply over the operating temperature and $1.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{S S} \leqslant 3.5 \mathrm{~V}$ unless otherwise specified.

Symbol	Parameter	$V_{D D}-V_{S S}$ (Volts)	Min.	Max.	Units	Conditions
Operating Voltage						
$V_{D D}$	Data Retention		1.0		V	On Hook, ($\mathrm{HS}=\mathrm{V}_{\mathrm{DO}}$)
$V_{\text {DD }}$	Non Dialing State		1.5	3.5	V	Off Hook, Oscillator Not Running
$V_{D D}$	Dialing State		2.0	3.5	V	Off Hook, Oscillator Running
Operating Current						
$I_{D D}$	Data Retention	1.0		2.0	$\mu \mathrm{A}$	On Hook, ($\mathrm{HS}=\mathrm{V}_{\text {DD }}$) (Note 1)
I_{00}	Non Dialing	1.5		10	$\mu \mathrm{A}$	Off Hook ($\mathrm{HS}=\mathrm{V}_{\mathrm{SS}}$), Oscillator Not Running, Outputs Not Loaded
$I_{\text {DD }}$	Dialing	$\begin{aligned} & 2.0 \\ & 3.5 \end{aligned}$		$\begin{aligned} & 100 \\ & 500 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$	Off Hook, Oscillator Running, Outputs Not Loaded
Output Current Levels						
IOLDP	DP Output Low Current (Sink)	3.5	125		$\mu \mathrm{A}$	$V_{\text {OUT }}=0.4 \mathrm{~V}$
$\mathrm{I}_{\text {OHDP }}$	DP Output High Current (Source)	$\begin{aligned} & 1.5 \\ & 3.5 \end{aligned}$	$\begin{gathered} 20 \\ 125 \end{gathered}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & V_{\text {OUT }}=1 \mathrm{~V} \\ & V_{\text {OUT }}=2.5 \mathrm{~V} \end{aligned}$
IOLM	MUTE Output Low Current (Sink)	3.5	125		$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$
$\mathrm{IOHM}^{\text {I }}$	MUTE Output High Current (Source)	$\begin{aligned} & 1.5 \\ & 3.5 \end{aligned}$	$\begin{gathered} 20 \\ 125 \end{gathered}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & V_{\text {OUT }}=1 \mathrm{~V} \\ & V_{\text {OUT }}=2.5 \mathrm{~V} \end{aligned}$
fo	Oscillator Frequency	2.0		10	kHz	
$\Delta \mathrm{fo} / \mathrm{fo}$	Frequency Deviation	$\begin{gathered} 2.0 \text { to } \\ 2.75 \\ 2.75 \text { to } \\ 3.5 \end{gathered}$	$\begin{aligned} & -3 \\ & -3 \end{aligned}$	$\begin{aligned} & +3 \\ & +3 \end{aligned}$	\%	$\begin{aligned} & \text { Fixed R-C oscillator components } \\ & 50 \mathrm{k} \Omega \leqslant R_{D} \leqslant 750 \mathrm{k} \Omega ; 100 \mathrm{pF} \leqslant \mathrm{C}_{D}{ }^{*} \leqslant 1000 \mathrm{pF} \text {; } \\ & 750 \mathrm{k} \Omega \leqslant R_{E} \leqslant 5 \mathrm{M} \Omega \\ & { }^{3} 00 \mathrm{pF} \text { most desirable value for } \mathrm{C}_{D} \\ & \hline \end{aligned}$

Input Voltage Levels

V_{IH}	Logical "1"		80% of $\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{S S}\right)$	$V_{D D}$ +0.3	V
$\mathrm{~V}_{\mathrm{IL}}$	Logical " 0 '"		$V_{S S}$ -0.3	20% of $\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{S S}\right)$	V
C_{IN}	Input Capacitance Any Pin			7.5	pF

Note 1: 750nA max. data retention part available. $V_{D D}=1.0$ Voit

Functional Description

The pin function designations are outlined in Table 1.

Oscillator

The device contains an oscillator circuit that re-
quires three external components; two resistors (R_{D} and R_{E}) and one capacitor (C_{D}). All internal timing is derived from this master time base. To eliminate clock interference in the talk state, the oscillator is only enabled during key closures and during the dialing state. It is disabled at all other times including
the "on hook" condition. For a dialing rate of 10pps the oscillator should be adjusted to 2400 Hz . Typical values of external components for this are $\mathrm{R}_{\mathrm{D}}, \mathrm{R}_{\mathrm{E}}=750 \mathrm{k} \Omega$ and $C_{D}=270 \mathrm{pF}$. It is recommended that the tolerance of resistors to be 1% and capacitor to be 5% to insure a $\pm 10 \%$ tolerance of the dialing rate in the system.

Keyboard Interface

The S25610 employs a scanning technique to determine a key closure. This permits interface to a DPCT (Double Pole Common Terminal) keyboard with common connected to $V_{D D}$ (Figure 1), logic interface (Figure 2), or a XY matrix. A high level on the appropriate row and column inputs constitutes a key closure for logic interface.

Figure 1. SPST Matrix Keyboard Arranged in a Row, Column Format

On Hook Operation: The device is continuously powered through a $10-20 \mathrm{M} \Omega$ resistor during the on hook operation. This resistor allows enough current from the tip and ring lines to the device to allow the internal memory to hold and thereby providing storage of the last number dialed. DP and mute outputs are low in the on hook state.
Any key depressions during the on-hook condition are ignored and the oscillator is inhibited. This insures that the current drain in the on-hook condition is very low and used to retain the memory.

Figure 2. Standard Telephone Pushbutton Keyboard

RON (CONTACT RESISTANCE) $<1 \mathrm{k} \Omega$

Off Hook Operations: The device is continuously powered through a $150 \mathrm{k} \Omega$ resistor during off hook operation. The DP output is normally high and sources base drive to transistor Q_{1} to turn $O N$ transistor Q_{2}. Transistor Q_{2} replaces the mechanical dial contact used in the rotary dial phones. Dial pulsing begins when the user enters a number through the keyboard. The DP output goes low shutting the base drive to Q_{1} OFF causing Q_{2} to open during this pulse break. The MUTE output also goes low during dial pulsing allowing muting of the receiver through transistors Q_{3} and Q_{4}. The relationship of dial pulse and mute outputs are shown in Figure 3.
The dialing rate is derived by dividing down the dial rate oscillator frequency. Table 2 shows the relationship of the dialing rate with the oscillator frequency and the dial rate select input. Different dialing rates can be derived by simply changing the external resistor value. The dial rate select input allows changing of the dialing rate by a factor of 2 without the necessity of changing the external component values. Thus, with the oscillator adjusted to 2400 Hz , dialing rates of 10 or 20pps can be achieved. Dialing rates of 7 and 14pps similarly can be achieved by changing the oscillator frequency to 1680 Hz .

Figure 3. Timing (Off Hook)

The Inter-Digit Pause (IDP) time is also derived from the oscillator frequency and can be changed by a factor of 2 by the IDP select input. With IDP select pin wired to $V_{\text {Ss }}$, an IDP of 800 ms is obtained for dial rates of 10 and 20pps. IDP can be reduced to 400 ms by wiring the IDP select pin to $V_{D D}$. At dialing rates of 7 and 14 pps , IDP's of 1143 ms and 572 ms can be similarly obtained. If the IDP select pin is connected to the dial rate select pin, the IDP is scaled to the dial rate such that at 10pps an IDP of 800 ms is obtained and at 20pps an IDP of 400 ms is obtained.
The user can enter a number up to 22 digits long from a standard $3 \times 4 \mathrm{XY}$ matrix keypad (Figure 1). It is also possible to use a logic interface or a keyboard with common (Figure 2) for number entry. Antibounce protection circuitry is provided on chip (min. 9ms) to prevent false entry.

Normal Dialing

The user enters the desired numbers through the keyboard after going off hook. Dial pulsing starts as soon as the first digit is entered. The entered digits are stored sequentially in the internal memory. Digits can
be entered at a rate considerably faster than the output rate. Digits can be entered approximately once every 50 ms while the dialing rate may vary from 7 to 20 pps . The number entered is retained in the memory for future redial. Pauses may be entered when required in the dial sequence by pressing the "\#" key, which provides access pauses for future redial. Any number of access pauses may be entered as long as the total entries do not exceed 22.

Redialing

The last number dialed is retained in the memory and therefore can be redialed out by going off hook and pressing the "\#" key twice. Dial pulsing will start when the key is depressed and finish after the entire number is dialed out unless an access pause is detected. In such a case, the dial pulsing will stop and will resume again only after the user pushes the "\#" key.

Memory Dialing

Dialing of a number stored in memory is initiated by going OFF hook and pushing the "\#" key followed by the single digit address. Numbers can be cascaded after dialing of the first number is completed.

Table 1. S25610 Pin/Function Descriptions

Pin Functions	Pin Number	Function
Keyboard $\left(R_{1}, R_{2}, R_{3}, R_{4}, C_{1}, C_{2}, C_{3}\right)$	$2,3,4,1,16,17,18$	These are 4 row and 3 column inputs from the keyboard contacts. These inputs are open when the keyboard is inactive. When a key is pushed, an appropriate row and column input must go to $V_{D D}$ or connect with each other. A logic interface is also possible as shown in Figure 2. Active pull up and pull down networks are present on these inputs when the device begins keyboard scan. The keyboard scan begins when a key is pressed and starts the oscillator. Debouncing is provided to avoid false entry (typ. 10 ms).
Inter-Digit Pause Select (IPS)	15	One programmable line is available that allows selection of the pause duration that exists between dialed digits. It is programmed according to the truth table shown in Table 4. Two pauses either 400 ms or 800 ms are available for dialing rates of 10 and 20 pps . IDP's corresponding to other dialing rates can be determined from Tables 2 and 4.
Dial Rate Select (DRS)	14	A programmable line allows selection of two different output rates such as 7 or $14 \mathrm{pps}, 10$ or 20 pps , etc. See Tables 2 and 4 .
Mark/Space (M/S)	12	This input allows selection of the mark/space ratio, as per Table 4.
Mute Out (MUTE)	11	A pulse is available that can provide a drive to turn on an external transistor to mute the receiver during the dial pulsing.
Dial Pulse Out ($\overline{\mathrm{DP}}$)	9	Output drive is provided to turn on a transistor at the dial pulse rate. The normal output will be 'low' during "space'" and 'high'' otherwise.
Dial Rate Oscillator ($\mathrm{R}_{\mathrm{E}}, \mathrm{C}_{\mathrm{D}}, \mathrm{R}_{\mathrm{D}}$)	6, 7, 8	These pins are provided to connect external resistors R_{D}, R_{E} and capacitor C_{D} to form an R-C oscillator that generates the time base for the Key Pulser. The output dialing rate and IDP are derived from this time base.
Hook Switch ($\overline{\mathrm{HS}}$)	5	This input detects the state of the hook switch contact; "off hook"' corresponds to $V_{S S}$ condition.
Power ($\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{S S}$)	13, 10	These are the power supply inputs. The device is designed to operate from 1.5 V to 3.5 V .

Table 2. Table for Selecting Oscillator Component Values for Desired Dialing Rates and Inter-Digit Pauses

Dial Rate Desired	Osc. Freq. (Hz)	$\begin{gathered} R_{D} \\ (k \Omega) \end{gathered}$	$\begin{gathered} \mathrm{R}_{\mathrm{E}} \\ (\mathrm{k} \Omega) \end{gathered}$	$\begin{gathered} \mathbf{C}_{\mathrm{D}} \\ (\mathrm{pF}) \end{gathered}$	Dial Rate (pps)		IDP (ms)	
					DRS $=\mathrm{V}_{\text {SS }}$	DRS $=V_{\text {DD }}$	IPS $=\mathrm{V}_{\text {SS }}$	IPS $=\mathrm{V}_{\text {D }}$
5.5/11	1320	Select components in the ranges indicated in table of electrical specifications			5.5	11	1454	727
6/12	1440				6	12	1334	667
6.5/13	1560				6.5	13	1230	615
7/14	1680				7	14	1142	571
7.5/15	1800				7.5	15	1066	533
8/16	1920				8	16	1000	500
8.5/17	2040				8.5	17	942	471
9/18	2160				9	18	888	444
9.5/19	2280				9.5	19	842	421
10/20	2400	750	750	270	10	20	800	400
$\begin{gathered} \left(f_{\mathrm{d}} / 240\right) / \\ \left(\mathrm{f}_{\mathrm{d}} / 120\right) \end{gathered}$	f_{d}				$\left(f_{d} / 240\right)$	($\mathrm{f}_{\mathrm{d}} / 120$)	$\frac{1920}{f_{i}} \times 10^{3}$	$\frac{960}{f_{i}} \times 10^{3}$

Notes:

1. IDP is dependent on the dialing rate selected. For example, for a dialing rate of 10 pps , an IDP of either 800 ms or 400 ms can be selected. For a dialing rate of 14 pps , an IDP of either 1142 ms or 571 ms can be selected.

Operating Characteristics

Normal Dialing

Dial pulsing to start as soon as first digit is entered (debounced and detected on chip). Pause may be entered in the dialing sequence by pressing the "\#" key. Total number of digits entered not to exceed 22. Numbers exceeding 22 digits can be dialed but only after the first 22 digits have been completely dialed out. In this case redialing function is inhibited.

Storing of a Telephone Number(s)

Numbers can be stored as follows:
Off Hook,

etc.
Earpiece is muted in this operation to alert the user that a store operation is underway.

Memory Dialing

Off Hook,

\square
Numbers can be cascaded repeating
 sequence after completion of dialing of present sequence. If an access pause has been stored in "LOC", dialing will halt until the "\#" key is pushed again.

Redialing

Last number dialed can be redialed as follows:
Off Hook,

Last number for this purpose is defined as the last number remaining in the buffer. Access pause is terminated by pushing the "\#" key as usual.

Special Sequences

There are some special sequences that provide for
mixed dialing or other features such as call disconnect, redial inhibit or memory clear as follows:
a. Normal dialing followed by repertory dialing

(wait for dialing to complete before pressing star
key)
b. Normal dialing after memory dialing or redialing

(wait for dialing to complete before pressing D1 key)
c. Disconnecting call

Off hook, $\cdots \cdots,{ }^{*}$ \#
Pushing * and \# keys simultaneously causes DP and mute outputs to go low and remain low until the keys are released. This causes a break in the line. If the keys are held down for a sufficiently long time (approx. 400 ms), the call will be disconnected and new dial tone will be heard upon release of the keys. This feature is convenient when disconnecting calls by the normal method, i.e., hanging up the phone or depressing hookswitch is cumbersome.
d. Inhibiting future redialing of a normally dialed number

(wait for dialing to complete before pressing star
key)
Pushing * key twice after normal dialing is completed instructs the device to clear the redial buffer.
e. To clear a memory location(s)

Essentially this operation is equivalent to storing a pause in the memory location.
The various operating characteristics are summarized in Table 3.

Table 3. Summary of Operating Characteristics

1) Normal Dialing:
2) Inhibit Redialing:

3) Redialing:
4) Storing of Number(s):
5) Memory Dialing:
6) Normal Dialing + Memory Dialing:
7) Recall + Normal Dialing:
8) Call Disconnect:
9) Clear Memory Location(s):

off hook, \#, \# or LOC, $\square_{\text {fwait tor dialing to complete betore pressing D1 key) }}$
off hook , $\cdots,{ }^{*}$ \#

Figure 4. Memory Dialer Circuit with Redial

$$
\begin{aligned}
& R_{0}=10-20 \mathrm{M} \Omega, R_{1}=150 \mathrm{k} \Omega, R_{2}=2 \mathrm{k} \Omega \\
& R_{3}=470 \mathrm{k} \Omega, R_{4}, R_{5}=10 \mathrm{k} \Omega, R_{10}=47 \mathrm{k} \Omega \\
& R_{6}, R_{8}=2 \mathrm{k} \Omega, R_{7}, R_{9}=30 \mathrm{k} \Omega, R_{11}=20 \Omega, 2 \mathrm{~W} \\
& Z_{1}=3.9 \mathrm{~V}, D_{1}-D_{4}=1 \mathrm{~N} 4004, D_{5}, D_{6}, D_{7}=1 \mathrm{~N} 914, C_{1}=15 \mu \mathrm{~F}
\end{aligned}
$$

$R_{E}=R_{0}=750 \mathrm{k} \Omega, \mathrm{C}_{0}=270 \mathrm{pF}, \mathrm{C}_{2}=0.01 \mu \mathrm{~F}$
$Q_{1}, Q_{4}=2 N 5550$ TYPE $Q_{2}, Q_{3}=2$ N5401 TYPE
$Z_{2}=$ IN5379 110V ZENER OR 2XIN4758

Table 4.

Function	Pin Designation	Input Logic Level	Selection
Dial Pulse Rate Selection	DRS	$V_{S S}$	$(f / 240) \mathrm{pps}$ $(f / 120) \mathrm{pps}$
Inter-Digit Pause Selection	IPS	$V_{D D}$	$\frac{960}{\mathrm{f}} \mathrm{s}$
		$V_{D D}$	$\frac{1920}{\mathrm{f}} \mathrm{s}$
Mark/Space Ratio	$V_{S S}$	$33 / 3 / 66^{2 / 3}$ On Hook/Off Hook M / S	$V_{S S}$

NOTE: f is the oscillator frequency and is detemined as shown in Figure 5.
Figure 5. Memory Dialer Circuit with Redial (Single Hook Switch Contact Application for PABX)

10 MEMORY PULSE DIALER

FeaturesModified Version of the S25610 Repertory Dialer. Optimized for European ApplicationsTen 18-Digit Number Memories Plus Last Number Redial (22 Digit) Memory On Chip.Low Voltage CMOS Process for Direct Operation From Telephone Lines.Inexpensive R-C Oscillator Design With Accuracy Better Than $\pm 5 \%$ Over Temperature and Unit-Unit Variations.

Independent Select Inputs for Variation of Dialing Rates (10pps/20pps), Mark/Space Ratio (331/3-662/3l 40-60)
\square Can Interface With Inexpensive XY Matrix or Standard 2 of 7 Keyboard With Common. Also Capable of Logic Interface (Active High).
\square Mute and Pulse Drivers On Chip.
\square Call Disconnect by Pushing * and \# Keys Simultaneousiy.Pin Selectable Access Pause/Wait Functions
\square Auto Pause Insertion

Pin Configuration

Absolute Maximum Ratings:

S	5.5V
Operating Temperature Range .. - $\mathbf{2 5}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
Storage Temperature Range .. - $40^{\circ} \mathrm{C}$ 的 0 + $125^{\circ} \mathrm{C}$	
Voltage at any Pin	$V_{S S}-0.3 V$ to $V_{D D}+0.3 V$
Lead Temperature	$300^{\circ} \mathrm{C}$

Electrical Characteristics:

Specifications apply over the operating temperature and $1.5 \mathrm{~V} \leqslant \mathrm{~V}_{D D}-\mathrm{V}_{S S} \leqslant 3.5 \mathrm{~V}$ unless otherwise specified.

Symbol	Parameter	$V_{D D} \cdot V_{S S}$ (Volts)	Min.	Max.	Units	Condilions
Operating Voltage						
$V_{D D}$	Data Retention		1.0		V	On Hook, ($\overline{\mathrm{HS}}=\mathrm{V}_{\mathrm{DD}}$)
$V_{D D}$	Non Dialing State		1.5	3.5	V	Off Hook, Oscillator Not Running
$V_{D D}$	Dialing State		2.0	3.5	V	Off Hook, Oscillator Running
Operating Current						
I_{DD}	Data Retention	1.0		750	mA	On Hook, ($\overline{H S}=V_{\text {DO }}$)
100	Non Dialing	1.5		10	$\mu \mathrm{A}$	Off Hook ($\overline{\mathrm{HS}}=\mathrm{V}_{\mathrm{SS}}$), Oscillator Not Running, Outputs Not Loaded
I_{DD}	Dialing	$\begin{aligned} & 2.0 \\ & 3.5 \end{aligned}$		$\begin{aligned} & 100 \\ & 500 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	Off Hook, Oscillator Running, Outputs Not Loaded

Output Current Levels						
$\mathrm{I}_{\text {OLOP }}$	DP Output Low Current (Sink)	3.5	125		$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$
IOHDP	DP Output High Current (Source)	$\begin{aligned} & 1.5 \\ & 3.5 \end{aligned}$	$\begin{gathered} 20 \\ 125 \end{gathered}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & V_{\text {OUT }}=1 \mathrm{~V} \\ & V_{\text {OUT }}=2.5 \mathrm{~V} \end{aligned}$
IOLM	MUTE Output Low Current (Sink)	3.5	125		$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$
IOHM	MUTE Output High Current (Source)	$\begin{aligned} & 1.5 \\ & 3.5 \end{aligned}$	$\begin{gathered} 20 \\ 125 \end{gathered}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & V_{\text {OUT }}=1 \mathrm{~V} \\ & V_{\text {OUT }}=2.5 \mathrm{~V} \end{aligned}$
fo	Oscillator Frequency	2.0		10	kHz	
$\Delta \mathrm{fo} / \mathrm{fo}$	Frequency Deviation	$\begin{gathered} 2.0 \text { to } \\ 2.75 \\ 2.75 \text { to } \\ 3.5 \end{gathered}$	$\begin{aligned} & -3 \\ & -3 \end{aligned}$	+3 +3	\%	$\begin{aligned} & \text { Fixed } R-C \text { oscillator components } \\ & 50 \mathrm{k} \Omega \leqslant R_{D} \leqslant 750 \mathrm{k} \Omega ; 100 \mathrm{pF} \leqslant C_{D} \leqslant 1000 \mathrm{pF} ; \\ & 750 \mathrm{k} \Omega \leqslant R_{E} \leqslant 5 \mathrm{M} \Omega \\ & { }^{3} 30 \mathrm{pF} \text { most desirable value for } C_{D} \end{aligned}$

Input Voltage Levels

V_{IH}	Logical "1"'		80% of $\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{S S}\right)$	$V_{D D}$ +0.3	V	
$\mathrm{~V}_{\mathrm{IL}}$	Logical "0",		$V_{S S}$ -0.3	20% of $\left(V_{D D}-V_{S S}\right)$	V	
C_{IN}	Input Capacitance Any Pin			7.5	pF	

Functional Description

The pin function designations are outlined in Table 1.

Oscillator

The device contains an oscillator circuit that re-
quires three external components; two resistors (R_{D} and R_{E}) and one capacitor (C_{D}). All internal timing is derived from this master time base. To eliminate clock interference in the talk state, the oscillator is only enabled during key closures and during the dialing state. It is disabled at all other times including
the "on hook" condition. For a dialing rate of 10pps the oscillator should be adjusted to 2400 Hz . Typical values of external components for this are $R_{D}, R_{E}=750 \mathrm{k} \Omega$ and $C_{D}=270 \mathrm{pF}$. It is recommended that the tolerance of resistors to be 1% and capacitor to be 5% to insure a $\pm 10 \%$ tolerance of the dialing rate in the system.

Keyboard Interface

The S25610 employs a scanning technique to determine a key closure. This permits interface to a DPCT (Double Pole Common Terminal) keyboard with common connected to $V_{D D}$ (Figure 1), logic interface (Figure 2), or a XY matrix. A high level on the appropriate row and column inputs constitutes a key closure for logic interface.

Figure 1. SPST Matrix Keyboard Arranged in a Row, Column Format

On Hook Operation: The device is continuously powered through a $10-20 \mathrm{M} \Omega$ resistor during the on hook operation. This resistor allows enough current from the tip and ring lines to the device to allow the internal memory to hold and thereby providing storage of the last number dialed. DP and mute outputs are low in the on hook state.
Any key depressions during the on-hook condition are ignored and the oscillator is inhibited. This insures that the current drain in the on-hook condition is very low and used to retain the memory.

Figure 2. Standard Telephone Pushbutton Keyboard

Off Hook Operations: The device is continuously powered through a $150 \mathrm{k} \Omega$ resistor during off hook operation. The DP output is normally high and sources base drive to transistor Q_{1} to turn $O N$ transistor Q_{2}. Transistor Q_{2} replaces the mechanical dial contact used in the rotary dial phones. Dial pulsing begins when the user enters a number through the keyboard. The DP output goes low shutting the base drive to Q_{1} OFF causing Q_{2} to open during this pulse break. The MUTE output also goes low during dial pulsing allowing muting of the receiver through transistors Q_{3} and Q_{4}. The relationship of dial pulse and mute outputs are shown in Figure 3.
The dialing rate is derived by dividing down the dial rate oscillator frequency. Table 2 shows the relationship of the dialing rate with the oscillator frequency and the dial rate select input. Different dialing rates can be derived by simply changing the external resistor value. The dial rate select input allows changing of the dialing rate by a factor of 2 without the necessity of changing the external component values. Thus, with the oscillator adjusted to 2400 Hz , dialing rates of 10 or 20 pps can be achieved. Dialing rates of 7 and 14pps similarly can be achieved by changing the oscillator frequency to 1680 Hz .

Figure 3. Timing (Dial, Redial)

: KEY DEBOUNCE TMME: 10 ms
t_{2} : KEY RELEASE TIME: 2 ms
δ : PULSE TURNOFF TO MUTE TURNOFF DELAY TIME: 200 $\mu \mathrm{s}$
to : OFF HOOK TO KEYBOARO INPUT DELAY TIME: 2 ms

NOTE: TYPICAL WAVEFORMS DURING NORMAL DIALING AND REDIALING (ASSUMES PAUSE OPTION IS SELECTED) (TIME BASED ON OSCILLATOR FREQUENCY OF $\mathbf{2 4 0 0 H z}$)

The Inter-Digit Pause (IDP) time is also derived from the oscillator frequency and it is a function of the dialing rate selected by the dial rate select input. If the oscillator is set to 2400 Hz so that a dialing rate of 10pps is obtained with DRS $=\mathrm{V}_{\mathrm{SS}}$. Then an IDP of 800 ms is automatically selected. Switching the dialing rate to $20 \mathrm{pps}\left(\mathrm{DRS}=\mathrm{V}_{\mathrm{DD}}\right)$ will lower the IDP to 400 ms .

The user can enter a number up to 22 digits long from a standard $3 \times 4 \mathrm{XY}$ matrix keypad (Figure 1). It is also possible to use a logic interface or a keyboard with common (Figure 2) for number entry. Antibounce protection circuitry is provided on chip (min. 9 ms) to prevent false entry.

Table 1. S25610E Pin/Function Descriptions

Pin Functions	Pin Number	Function
Keyboard $\left(R_{1}, R_{2}, R_{3}, R_{4}, C_{1}, C_{2}, C_{3}\right)$	$2,3,4,1,16,17,18$	These are 4 row and 3 column inputs from the keyboard contacts. These inputs are open when the keyboard is inactive. When a key is pushed, an appropriate row and column input must go to $V_{D D}$ or connect with each other. A logic interface is also possible as shown in Figure 2. Active pull up and pull down networks are present on these inputs when the device begins keyboard scan. The keyboard scan begins when a key is pressed and starts the oscillator. Debouncing is provided to avoid talse entry (typ. 10 ms)
Wait-Pause Select (WPS)	15	This is a Tri-Function input pin. Leaving it open selects the access wait function. Connect to $V_{D D}$ selects access pause duration of 3.2 sec . and connection to $V_{S S}$ selects the access pause duration of 6.4 sec . For detailed description of wait/pause functions see Operating Characteristics.
Dial Rate Select (DRS)	14	A programmable line allows selection of two different output rates such as 7 or $14 \mathrm{pps}, 10$ or 20pps, etc. See Tables 2 and 4. Interdigit Pause (IDP) is a function of the selected dialing rate.
Mark/Space (M/S)	12	This input allows selection of the mark/space ratio, as per Table 4.
Mute Out ($\overline{\mathrm{MUTE}}$)	11	A pulse is available that can provide a drive to turn on an external transistor to mute the receiver during the dial pulsing. Normally it is "high"' and "low" during dialing. It is "low' on hook.
Dial Pulse Out ($\overline{\mathrm{DP}}$)	9	Output drive is provided to turn on a transistor at the dial pulse rate. The normal output will be "low' during 'space' and "high"' otherwise. On hook it is "low"
Dial Rate Oscillator	6, 7, 8	These pins are provided to connect external resistors R_{D}, R_{E} and capacitor C_{D} to form an R-C oscillator that generates the time base for the Key Pulser. The output dialing rate and IDP are derived from this time base.
Hook Switch ($\overline{\mathrm{HS}}$)	5	This input detects the state of the hook switch contact; "off hook" corresponds to V_{SS} condition.It is debounced during dialing. An interruption of 150 ms or less will be ignored while that excess of 300 ms will cause the device to go into standby condition.
Power ($\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{S S}$)	13, 10	These are the power supply inputs. The device is designed to operate from 1.5 V to 3.5 V .

Table 2. Table for Selecting Oscillator Component Values for Desired Dialing Rates and Inter-Digit Pauses

Dial Rate Desired	Osc. Freq. (Hz)	$\begin{gathered} R_{0} \\ (k \Omega) \end{gathered}$	R_{E}	$\begin{gathered} \mathrm{C}_{\mathrm{D}} \\ (\mathrm{pF}) \end{gathered}$	Dial Rate (pps)		IDP (ms)
			(kS)		DRS $=\mathrm{V}_{\text {SS }}$	DRS $=\mathrm{V}_{\mathrm{DD}}$	
5.5/11	1320	Select components in the ranges indicated in table of electrical specifications			5.5	11	1454/727
6/12	1440				6	12	1334/667
6.5/13	1560				6.5	13	1230/615
7/14	1680				7	14	1142/571
7.5/15	1800				7.5	15	1066/533
8/16	1920				8	16	1000/500
8.5/17	2040				8.5	17	$942 / 471$
9/18	2160				9	18	$888 / 444$
9.5/19	2280				9.5	19	$842 / 421$
10/20	2400	750	750	270	10	20	$800 / 400$
$\begin{gathered} \left(f_{d} / 240\right) / \\ \left(f_{d} / 120\right) \end{gathered}$	f_{d}				($\mathrm{fd} / 240$)	$\left(f_{d} / 120\right)$	$\frac{1920}{f_{i}} \times 10^{3} / \frac{960}{f_{i}} \times 10^{3}$

Notes:

1. IDP is dependent on the dialing rate selected. For example, for a dialing rate of 10 pps , an IDP of either 800 ms or 400 ms can be selected. For a dialing rate of 14 pps , an IDP of either 1142 ms or 571 ms can be selected.

Operating Characteristics

Normal Dialing

$$
\text { Off Hook, } \quad 01, \cdots \cdots \cdots
$$

Dial pulsing to start as soon as first digit is entered and debounced on the chip. Total number of digits entered not to exceed 22. Numbers exceeding 22 digits can be dialed but only after the first 22 digits have been completely dialed out. Access wait or pause can be inserted by pressing the "\#" key. Any number of waits or pauses can be entered as long as the total number of digits does not exceed 22. Additionally in the "pause" mode, pause is inserted automatically (two maximum) if no further digits are entered by the time mute turns off. (Figure 3.)

Storing of a Telephone Number(s)

Numbers can be stored as follows:
Off Hook,

Access wait/pause can be inserted in the stored sequence by pushing the "\#" key. Any number of waits/pauses may be stored as long as the total number of digits does not exceed 22.
Memory Dialing
Off Hook,

Numbers can be cascaded repeating
 sequence after completion of dialing of present sequence. If an access pause has been stored in "LOC", dialing will halt until the "\#" key is pushed again. If an access pulse is detected dialing will stop for the selected duration.

Redialing

Last number dialed can be redialed as follows:
Off Hook,

Last number for this purpose is defined as the last number remaining in the buffer. Access pause is terminated by pushing the "\#" key as usual. If the device is operated in the "pause" mode and if an access pause was automatically inserted during normal dialing, during redialing the dialing will be stopped for the pause duration selected.

Special Sequences

There are some special sequences that provide for mixed dialing or other features such as call disconnect, redial inhibit or memory clear as follows:
a. Normal dialing followed by repertory dialing

(wait for dialing to complete before pressing star
key)
b. Normal dialing after memory dialing or redialing

c. Disconnecting call

Pushing * and \# keys simultaneously causes DP and mute outputs to go low and remain low until the keys are released. This causes a break in the line. If the keys are held down for a sufficiently long time (approx. 400 ms), the call will be disconnected and new dial tone will be heard upon release of the keys. This feature is convenient when disconnecting calls by the normal method, i.e., hanging up the phone or depressing hookswitch is cumbersome.
d. Inhibiting future redialing of a normally dialed number

Pushing * key twice after normal dialing is completed instructs the device to clear the redial buffer.
e. To clear a memory location(s)

Essentially this operation is equivalent to storing a pause in the memory location.
The various operating characteristics are summarized in Table 3.

Table 3. Summary of Operating Characteristics

Figure 4. Memory Dialer Circuit with Redial

$$
\begin{aligned}
& R_{0}=10-20 \mathrm{M} \Omega, R_{1}=150 \mathrm{k} \Omega, R_{2}=2 \mathrm{k} \Omega \\
& R_{3}=470 \mathrm{k} \Omega, R_{4}, R_{5}=10 \mathrm{k} \Omega, R_{10}=47 \mathrm{k} \Omega \\
& R_{6} . R_{8}=2 \mathrm{k} \Omega, R_{7}, R_{9}=30 \mathrm{k} \Omega, R_{11}=20 \Omega, 2 \mathrm{~W} \\
& Z_{1}=3.9 \mathrm{~V}, D_{1}-D_{4}=1 \mathrm{~N} 4004, D_{5}, D_{6} . D_{7}=1 \mathrm{~N} 914, C_{1}=15 \mu \mathrm{~F}
\end{aligned}
$$

$$
R_{E}=R_{D}=750 \mathrm{k} \Omega, C_{0}=270 p F, C_{2}=0.01 \mu \mathrm{~F}
$$

$$
Q_{1}, Q_{4}=2 N 5550 \text { TYPE } Q_{2} \cdot Q_{3}=2 N 5401 \mathrm{TYPE}
$$

$$
Z_{2}=\text { IN5379 110V ZENER OR } 2 \text { XIN4758 }
$$

Table 4.

Function	Pin Designation	Input Logic Level	Selection
Dial Rate Selection and	DRS	$V_{D D}$	$\frac{960}{f} \mathrm{~s}$ IDP
			$(f / 120) \mathrm{pps}$ $(f / 240) \mathrm{pps}$ Inter-Digit Pause Selection
		$V_{S S}$	$\frac{1920}{\mathrm{f}} \mathrm{s}$ IDP

Figure 5. Memory Dialer Circuit with Redial (Single Hook Switch Contact Application for PABX)

10 MEMORY DTMF DIALER

Features

Ten 16- Digit Numbers Stored on Chip Plus 16 Digit Redial Buffer
\square Operates with 4×4 Keyboard (S25910) or 3×4 Keyboard (S25912)
\square S25910 Has Separate Keys for Store, Redial, Memory Dial and Hold Functions
\square S25912 uses \# and * Keys for Storage and Retrieval of Numbers in Memory
\square Low Data Retention Current: $1 \mu \mathrm{~A}$ Max.
\square S25912 Pin Compatible with AMI's S2559 Tone Generator Family
\square Telephone Line Powered Operation

General Description

The S25910/S25912 are monolithic CMOS integrated circuits intended for DTMF memory dialer applications. They provide normal DTMF dialing functions and the capability to store and retrieve ten 16 -digit numbers, plus last number dialed, from on-chip memory.

The S25910 has separate key inputs to activate store, redial, memory dial, and hold functions. The S25912 interfaces to a 3×4 keyboard and uses the \# and * keys for memory storage and retrieval. The low data retention current of $1 \mu \mathrm{~A}$ maximum for both the S25910/S25912 eliminate battery backup requirements and allow operation from telephone line power.

Absolute Maximum Rating:

DC Supply Voltage ($\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{S S}$)	+13.5V
Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+140^{\circ} \mathrm{C}$
Power Dissipation at $25^{\circ} \mathrm{C}$	500 mW
Input Voltage	$-0.6<V_{I N}<V_{D D}+0.6 \mathrm{~V}$

Electrical Characteristics: Specifications apply over the operating temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ unless otherwise noted. Absolute values of measured parameters are specified.

Symbol	Parameter/Conditions	$\begin{gathered} \left(V_{D D}-v_{S S}\right) \\ \text { Volts } \end{gathered}$	Min.	Typ.	Max.	Unit
Supply Voitage						
$V_{D D}$	Tone Out Mode (Valid Key Depressed)		2.50		10.0	V
	Non Tone Out Mode (No Key Depressed)		1.50		10.0	V
Supply Current						
$I_{\text {D }}$	STANDBY (NO Key Depressed, Tone, Mute and Flash Outputs Unloaded, HS HIGH	$\begin{aligned} & 1.0 \\ & 10.0 \end{aligned}$			$\begin{gathered} 1 \\ 100 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
	Operating (One Key Selected, Tone, Mute Unloaded)	2.5			2.5	mA
	Data Retention	1.0			1	$\mu \mathrm{A}$
Tone Output						
$\mathrm{V}_{\text {OR }}$	Low Group Frequency Amplitude ($\mathrm{L}_{\mathrm{L}}=1 \mathrm{k} \Omega$)	3.0		278		mVrms
dBCr	Ratio Of Column To Row Tone	2.5-10.0	1.0		3.0	dB
\% DIS	Distortion*	2.5-10.0			7	\%
Mute Output						
$\mathrm{IOH}^{\text {O }}$	Output Source Current $\quad \mathrm{V}_{\mathrm{OH}}=2.25 \mathrm{~V}$	2.5	0.5			mA
l_{0}	Output Sink Current $\quad \mathrm{V}_{\mathrm{OL}}=0.25 \mathrm{~V}$	2.5	0.5			mA

[^7]
Functional Description

Basic Chip Operation

The dual tone signal consists of linear addition of two voice frequency signals. One of four signals is selected from a group of frequencies called "low group" and the other is selected from a group of frequencies called "high group". The low group consists of four frequencies; $697,770,852$ and 941 Hz . The high group consists of three frequencies; 1209, 1336 and 1477 Hz .

When a push button corresponding to a digit (0 thru 9 , *, \#) is pushed, one appropriate row (R_{1} thru R_{4}) and one appropriate column (C_{1} thru C_{4}) is selected. The active row input selects one of the low group frequencies and active column input selects one of the high group frequencies. In addition to generating DTMF tones, the $\mathbf{S} 25910$ has special function push buttons in column 4 which do not generate tones.

S25910/S25912

Tone Generation

When a valid key closure is detected, the keyboard logic programs the high and low group dividers with appropriate divider ratios so that the output of these dividers cycle at 16 times the desired high group and low group frequencies. The outputs of the programmable dividers drive two 8 -stage Johnson counters. The symmetry of the clock input to the two divide-by-16 Johnson counters allows 32 equal time segments to be generated within each output cycle. The 32 segments are used to digitally synthesize a stair-step waveform to approximate the sinewave function. This is done by connecting a weighted resistor ladder network between the outputs of the Johnson counter, V_{DD} and $\mathrm{V}_{\text {REF }}$. $\mathrm{V}_{\text {REF }}$ closely tracks $V_{D D}$ over the operating voltage and temperature range and therefore the peak-to-peak amplitude $V_{P}\left(V_{D D}-V_{R E F}\right)$ of the stair-step function is fairly constant. $\mathrm{V}_{\mathrm{REF}}$ is chosen so that V_{P} falls within the allowed range of the high group and low group tones.

Normal Dialing

Tone dialing starts as soon as the first digit is entered and 10 ms debounce is complete. Entered digits are stored sequentially in the internal buffer. Numbers up to 16 digits can be redialed. Numbers exceeding 16 digits will clear the redial buffer and inhibit the memory dialing of these numbers.

Memory Dialing

Dialing a number stored in memory on the $\mathbf{S} 25910$ is initiated by going off hook and pushing the " M " button followed by the single digit address. Tone dialing will start after the address key is depressed and debounced by 10 ms . Memory dialing sequence is complete after the entire number stored in memory has been dialed. Cascading of numbers is possible with the S25910. Memory dialing with the S25912 is initiaited by going off hook and pressing the " $*$ " key followed by the address location. Cascading of numbers on the S25912 is not possible.

Keyboard Interface

The S25910/S25912 employ a scanning circuitry to determine key closures. When no key is depressed, active pull down resistors are on on the row inputs and active pull up resistors are on on the column inputs. When a key is pushed a high level is seen on one of the row inputs, the oscillator starts and the keyboard scan logic turns on. The active pull up or pull down resistors
are selectively switched on and off as the keyboard scan logic determines the row and the column inputs that are selected. The values of pull down and pull up resistors will vary with supply voltage. Typical values of pull up and pull down resistors are shown in Table 1.

Chip Enable ($\overline{\mathrm{HS}}$)

The S25910/S25912 have a $\overline{\mathrm{HS}}$ input (chip enable) at pin 15. The $\overline{\mathrm{HS}}$ pin is an active "low". When the HS pin is "high," the tone output goes to V_{SS}, the oscillator is inhibited, keyboard scanning is disconnected, and the mute and hold outputs will go to a low state.

Mute Output

The S25910/S25912 have a push-pull buffer for Mute output. With no keys depressed the Mute output is low, when a key is depressed the Mute output goes high and stays high until the key is released.

Table 1. Typical Resistance Values

$\mathbf{V}_{\mathbf{D D}}$	PULL UP RESISTANCE (TYP.)
2.0 V	3.3 K ohm
5.0 V	1.5 K ohm
10.0 V	1.3 K ohm
$\mathbf{V}_{\mathbf{D D}}$	PULL DOWN RESISTANCE (TYP.)
2.0 V	340 K ohm
5.0 V	36.6 K ohm
10.0 V	16.6 K ohm

Table 2. Comparisons of Specified Vs. Actual Tone
Frequencies Generated by S25910/S25912

ACTIVE INPUT	OUTPUT FREQUENCY Hz		\% ERROR
	SPECIFIED	ACTUAL	
R2	697	699.1	+0.30
R3	770	766.2	-0.49
R4	941	847.4	-0.54
C1	1209	948.0	+0.74
C2	1339	1215.9	+0.57
C3	1477	1471.9	-0.35

NOTE: \% error does not include oscillator drift.

Operating Characteristic Symbol Definition

D1	Dn - Digits of stored number.
R	- Redial button.
s	- Memory store button.
Ln	- Memory location storage number (0 through 9).
M	- Memory recall button.
H	- Hold button.

Summary of Operations (S25910)

Normal Dialing

	Off Hook 01	\cdots	Dn

Number length can exceed 16 digits. In such a case redial will be inhibited.
Redial

Cascading of numbers is permitted as indicated above.
Mixed Dialing
Off Hook Normal dialing, memory dialing.
Off Hook Redial, memory dial.
Off Hook Memory dial, memory dial

a. On the first depression of hold key both hold and mute outputs go high. These outputs stay high until the hold mode is cleared by a second depression of hold key.
b. An alternating alerting single tone appears on the tone out pin (pin 16) during hold mode with a repetition rate of approximately 800 ms on/off.

Table 4. Summary of Operating Characteristics (S25912)
Normal Dialing
Off Hook 0 Dr $\cdots D_{0}$
Number length can exceed 16 digits. In such a case redial will be inhibited.

First key cannot be $\quad *$ or $\#$
Redial
Off Hook \# \#
Memory Store

NOTE: Cascading or mixing of operations is not possible.

Figure 1. Block Diagram of Hold Input Circuitry (S25912)

Description of Hold Operation (S25912)

When "hold" key is first depressed, a flip-flop is set internally. Mute and hold outputs go "high". Tone output goes into a single tone mode with a repetition rate of 800 ms on/off. Hold input will have a repetition rate of 100 ms on/off to facilitate flashing of the "hold" indicator. "Hold" key must be debounced for 10 ms . Second depression of the "hold" key resets the flip-flop and clears out the hold mode. Mute and hold outputs return to V_{SS}. Tone output returns to V_{SS} and hold input returns to open drain condition. See waveform details (Figure 5).

Figure 2. S25910 Memory Dialer Applications Circuit

Figure 3. S25910 Timing Diagram Hold Waveform Details

$t_{1}: 10 \mathrm{~ms}$ MIN
t_{2}, t_{3} : APPROXIMATELY 800 ms

Figure 4. S25912 Memory Dialer Applications Circuit

Figure 5. S25912 Timing Diagram Hold Operation

$t_{1}: 10 \mathrm{~ms} \mathrm{MIN} t_{2}: 100 \mathrm{~ms}$ TYP $t_{3}: \mathbf{8 0 0} \mathrm{ms}$ TYP

CMOS SINGLE CHIP μ-LAWIA-LAW SYNCHRONOUS COMBO CODECS WITH FILTERS

Features

\square Independent Transmit and Receive Sections With 75 dB Isolation
\square Low PowerCMOS 80 mW (Operating) 8 mW (Standby)
\square Stable Voltage Reference On-Chip
\square Meets or Exceeds AT\&T D3, and CCITT G.711, G. 712 and G. 733 Specifications
\square Input Analog Filter Eliminates Need for External Anti-Aliasing Prefilter
\square Input/Output Op Amps for Programming Gain
\square Output Op Amp Provides $\pm 3.1 \mathrm{~V}$ into a 600Ω Load or Can Be Switched Off for Reduced Power (70 mW)
\square Special Idle Channel Noise Reduction Circuitry for Crosstalk Suppression

Encoder has Dual-Speed Auto-Zero Loop for Fast Acquisition on Power-Up
\square Low Absolute Group Delay $=450 \mu \mathrm{sec}$. @ 1 kHz

General Description

The S3506 and S3507 are monolithic silicon gate CMOS Companding Encoder/Decoder chips designed to implement the per channel voice frequency Codecs used in PCM systems. The chips contain the band-limiting filters and the analog \leftrightarrow digital conversion circuits that conform to the desired transfer characteristic. The S3506 provides the European A-Law companding and the S3507 provides the North American μ-Law companding characteristic.

A Digital Telephone Application

Most new PABX designs are using PCM techniques for voice switching with an increasing trend toward applying them at the telephone level. The simplest form of a digital telephone design uses four wire pairs to interface to the switch. Two pairs carry transmit and receive PCM voice data. One pair supplies an 8 kHz synchronizing clock signal and the remaining pair supplies power to the telephone. More sophisticated designs reduce costs by time-division-multiplexing and superimposition techniques which minimize the number of wire pairs. The AMI Single-chip Codec is ideally suited for this application because of the low component count
and its simplified timing requirements. Figure 6 shows a schematic for a typical digltal telephone design.
Since asynchronous time slot operation is not necessary, transmit and receive timing signals are common. A phase-lock-loop derives the 256 kHz system clock and 64 kHz shift clock from the 8 kHz synchronizing signal received from the switch. The synchronizing signal also serves as the transmit/receive strobe signal since its duty cycle is not important for Codec operation. Microphone output feeds directly into the coder input while the decoder output drives the receiver through an impedance transformer to complete the design.

Figure 6. Voice Processing in a Digital Telephone Application

A Subsidiary of Gould Inc.

S44231 A-Law Synchronous Codec S44233 A-Law Asynchronous Codec

Features

\square Synchronous or Asynchronous Operation for 2048/1544/1536 KHz PCM Rate
\square Precision Voltage Reference
\square Meets or Exceeds AT\&T D3, CCITT G.711, G. 712 and G. 733 Specifications
\square Low Power Dissipation: 60mW Typical

- Auto-Zero Cancel Circuitry Requires No External Components
\square Input Op Amp for Gain Adjustment
\square Anti-aliasing Filter
\square Licensed Second Source for Hitachi

General Description

The S44231/2/3/4 are monolithic silicon gate CMOS

Single Chip Codecs With Filters
 S44232 μ-Law Synchronous Codec S44234 μ-Law Asynchronous Codec

chips designed to perform the per channel voice frequency encoding/decoding used in PCM systems. The chips contain the band limiting filters and analog \leftrightarrow digital circuits necessary to conform to A-Law/ μ Law companding characteristics called out in CCITT specifications.
These circuits provide the interface between the analog signals of the subscriber loop and the digital signals of the PCM highway in a digital telephone switching system. The devices operate from dual power supplies of $\pm 5 \mathrm{~V}$.
For a sampling rate of 8 kHz, PCM input/output data rate can be selected from $1536 / 1544 / 2048 \mathrm{MHz}$ in synchronous operation. This selection is achieved automatically.

Pin Configuration

Table 1A. Pin Descriptions (S44231/S44232)

No.	Symbol	Function	Remarks
1	$\mathrm{A}_{\text {IN }}$	Analog Input	
2	GA1	Gain Adjust1	Feed-Back Input
3	GA2	Gain Adjust2	$10 \mathrm{~K} \Omega \leqslant \mathrm{RL} \leqslant 20 \mathrm{k} \Omega \mathrm{CL}<100 \mathrm{pF}$
4	A GND	Analog Ground	
5	A OUT	Analog Output	RL $\geqslant 3 \mathrm{k}$ ¢, CL $\leqslant 100 \mathrm{pF}$
6	$V_{\text {REF }}$	External $\mathrm{V}_{\text {REF }}$	Open or (2-3V)
7	$V_{D D}$	Positive Power Supply	$5 \mathrm{~V} \pm 5 \%$
8	(N.C.)		
9	$\mathrm{PCM}_{\text {IN }}$	PCM Data Input	(TTL)
10	CLOCK	PCM Bit Clock	(TTL) 2048/1544/1536kHz
11	SYNC	Synchronization	(TTL) 8 kHz
12	(N.C.)		
13	D GND	Digital Ground	
14	PD	Power Down	(TTL) " 0 " = down
15	$\mathrm{PCM}_{\text {OUT }}$	PCM Data Output	Open Drain
16	$V_{S S}$	Negative Power Supply	$-5 \mathrm{~V} \pm 5 \%$

Table 1B. Pin Descriptions (S44233/S44234)

No.	Symbol	Function	Remarks
1	$\mathrm{A}_{\text {IN }}$	Analog Input	
2	GA1	Gain Adjust1	Feed-Back Input
3	GA2	Gain Adjust2	$10 \mathrm{k} \Omega \leqslant \mathrm{RL} \leqslant 20 \mathrm{k} \Omega \mathrm{CL}<100 \mathrm{pF}$
4	A GND	Analog Ground	
5	A OUT	Analog Output	RL $\geqslant 3 \mathrm{k}$, $\mathrm{CL} \leqslant 100 \mathrm{pF}$
6	$V_{\text {REF }}$	External $\mathrm{V}_{\text {REF }}$	Open or (2-3V)
7	$V_{D D}$	Positive Power Supply	$5 \mathrm{~V} \pm 5 \%$
8	(N.C.)		
9	RCV CLK	RCV PCM Bit Clock	(TTL) 2048/1544/1536kHz
10	TX CLK	TX PCM Bit Clock	(TTL) 2048/1544/1536kHz
11	RCV SYNC	Synchronization	(TTL) 8 kHz
12	TX SYNC	Synchronization	(TTL) 8 kHz
13	D GND	Digital Ground	
14	PD	Power Down	(TTL) ' 0 " = down
15	$\mathrm{PCM}_{\text {OUT }}$	PCM Data Output	Open Drain
16	$V_{S S}$	Negative Power Supply	$-5 \mathrm{~V} \pm 5 \%$

Absolute Maximum Rating

No.	Item	Rating
1	$V_{D D}$	-0.3 to +6 V
2	$V_{S S}$	+0.3 to +6 V
3	Storage Temperature	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
4	Power Dissipation	0.5 W
5	Digital Input Voltage	$-0.3 \mathrm{~V}<\mathrm{V}_{I N}<\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
6	Analog Input Voltage	$\mathrm{V}_{S S}-0.3 \mathrm{~V}<\mathrm{V}_{\mathbb{I}}<\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$

Electrical Characteristics

1) Static Characteristics ($\mathrm{V}_{\mathrm{DD}}=5 \pm 0.25 \mathrm{~V}, \mathrm{~V}_{S S}=-5 \pm 0.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \pm 0.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}$)

Symbol	Pin	Descriptions	Specifications				Note/Conditions
			Min.	Typ.	Max.	Unit	
$l_{\text {DO }}$	7	$V_{\text {DD }}$ Current (Open)		6.0	10.0	mA	
$\mathrm{I}_{\text {SS }}$	16	$V_{\text {SS }}$ Current (Open)	-10.0	-6.0		mA	
$\mathrm{I}_{\text {DSST }}$	7	$V_{D D}$ Current (Standby)		0.6	1.0	mA	
ISSST	16	$V_{\text {SS }}$ Current (Standby)	-0.2			mA	
L	$\begin{aligned} & 1,2,9 \\ & 10,14 \end{aligned}$	Leak Current	$\begin{aligned} & -10.0 \\ & -10.0 \end{aligned}$		$\begin{aligned} & 10.0 \\ & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} V M & =0.8 \mathrm{~V} \\ V M & =2.0 \mathrm{~V} \\ V_{D D} & =V M=5.25 \mathrm{~V} \end{aligned}$
$\mathrm{IPL}^{\text {P }}$	6,11	Pull Up Current	-100		100	$\mu \mathrm{A}$	
$l_{\text {DL }}$	15	Leak Current	-10		10.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DD}}=\mathrm{VM}=5.25 \mathrm{~V}$
$\mathrm{C}_{\text {AIN1 }}$	1,2	Analog Input Capacitance		100	200	pF	at 1 kHz Vbias $=0$
$\mathrm{CaIN2}^{\text {a }}$	1,2	Analog Input Capacitance			40	pF	at 1 MHz Vbias $=0$
$\mathrm{CD}_{\text {N }}$	$\begin{aligned} & 6,9,10 \\ & 11,14 \end{aligned}$	Input Capacitance			10	pF	at 1 MHz Vbias $=0$
Routa	5	AOUT Resistance			30	Ω	
Routa	3	GA2 Resistance			30	Ω	
$\mathrm{V}_{\text {GSW }}$		GA2 Output Swing	-3.0		3.0	V	$\mathrm{RL}=10 \mathrm{k} \Omega$
$V_{\text {OFFIN }}$		Analog Offset Input	-500		500	mV	Note 1
$V_{\text {OFFG }}$		GA2 Offset Output	-50		50	mV .	Note 1
$V_{\text {OFFA }}$		AOUT Offset Output	-50		50	mV	$\mathrm{PCM}_{\text {IN }}=+0$-Code
CDout	15	$\mathrm{PCM}_{\text {OUT }}$ Capacitance			15.0	pF	at 1 MHz Vbias $=0$
$\mathrm{V}_{0 \mathrm{~L}}$	15	PCM ${ }_{\text {Out }}$ Low Voltage			0.4	V	$\mathrm{RL}=500 \Omega+\mathrm{l}_{0 \mathrm{~L}}=0.8 \mathrm{~mA}$
V_{OH}	15	PCM ${ }_{\text {OUT }}$ High Voltage	$\mathrm{V}_{\mathrm{cc}}-0.3$			V	$\mathrm{IOH}^{\text {O }}=-150 \mu \mathrm{~A}$
V_{H}	$\begin{gathered} 10,11 \\ 2,14 \end{gathered}$	Digital Input High Voltage	2.4			V	
VIL	$\begin{gathered} 10,11 \\ 2,14 \end{gathered}$	Digital Input Low Voltage			0.8	V	
$\mathrm{R}_{\text {AIN }}$	1	Analog Input Resistance	50	200		k Ω	at 1 MHz

[^8]2) Dynamic Characteristics ($\mathrm{V}_{\mathrm{DD}}=5 \pm 0.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5+0.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \pm 0.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}$, See Figure 4)

Symbol	Descriptions	Specifications				Notes
		Min.	Typ.	Max.	Unit	
FS	Synchronization Rate		8		kHz	
FC	PCM Bit Clock Rate		$\begin{gathered} \hline 1536 / 1544 / \\ 2048 \end{gathered}$		kHz	
twc	Clock Pulse Width	200			ns	
twSH	SYNC Pulse High Width	200			ns	
$t_{\text {wSL }}$	SYNC Pulse Low Width	8			$\mu \mathrm{S}$	
tr_{r}	Logic Input Rise Time			50	ns	
tf	Logic Input Fall Time			50	ns	
tsc	SYNC to Clock Delay	-50		100	ns	NOTE 1
tcd	Clock to PCM ${ }_{\text {Out }}$ Delay			220	ns	NOTE 1, 2, 3
tsu	$\mathrm{PCM}_{\text {IN }}$ Setup Time			65	ns	NOTE 1
thd	PCM ${ }_{\text {iN }}$ Hold Time			120	ns	NOTE 1

NOTE 1) t_{r}, I_{f} of digital input or clock is assumed 5ns for timing measurement.

3) tcd Specification is permitted in all of the region of the specification TSC and also it specifies the go-high timing from 8th bit-low-state.
3) System Related Characteristics ($\mathrm{V}_{\mathrm{DD}}=5 \pm 0.25 \mathrm{~V}, \mathrm{~V}_{S S}=5 \pm .025 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \pm 0.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}$, Input Amplifier Gain $=0 \mathrm{~dB}, \mathrm{~V}_{\text {REF }}$-pin remains open, GA2 Load $=10 \mathrm{~K} \Omega$, $\mathrm{A}_{\text {OUT }}$ Load $=3 \mathrm{~K} \Omega$)

Symbol	Descriptions	Test Conditions		Specilications				Notes
				Min.	Typ.	Max.	Unit	
SDA	Signal to Dist. (A to A)	820Hz tone	$\begin{aligned} & -45 \mathrm{dBm0} \\ & -40 \\ & -30 \text { to } 3 \end{aligned}$	$\begin{aligned} & 24 \\ & 29 \\ & 35 \end{aligned}$			$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$	p-wgt Note 1
SNA	Signal to Dist. (A to A)	Noise	$\begin{aligned} & -55 \mathrm{dBm0} \\ & -40 \\ & -34 \\ & -27 \text { to }-6 \\ & -3 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 28.5 \\ & 33.5 \\ & 35.5 \\ & 27.5 \end{aligned}$			$\begin{aligned} & \hline d B \\ & d B \\ & d B \\ & d B \\ & d B \end{aligned}$	
SDX	Signal to Dist. (A to D)	820 Hz tone	$\begin{aligned} & -45 \mathrm{dBm0} \\ & -40 \\ & -30 \text { to } 3 \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \\ & 35 \end{aligned}$			$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$	p-wgt Note 1
SDR	Signal to Dist. (D to A)	820 Hz tone	$\begin{aligned} & -45 \mathrm{dBm0} \\ & -40 \\ & -30 \text { to } 3 \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \\ & 35 \end{aligned}$			$\begin{aligned} & \hline \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$	p-wgt Note 1
GTA	Gain Track. (A to A)	820 Hz tone	$\begin{aligned} & -55 \text { to }-50 \mathrm{dBm0} \\ & -50 \text { to }-40 \\ & -40 \text { to }+3 \end{aligned}$	$\begin{aligned} & -2.0 \\ & -0.8 \\ & -0.4 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 0.8 \\ & 0.4 \end{aligned}$	$\begin{aligned} & \hline \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$	Note 1
GNA	Gain Track. $(A \text { to } A)$	Noise	$\begin{aligned} & -60 \text { to }-55 \mathrm{dBm0} \\ & -55 \text { to }-10 \end{aligned}$	$\begin{aligned} & -1.0 \\ & -0.5 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	

3) System Related Characteristics (continued)

Symbol	Descriptions	Test Conditions		Specifications				Notes
				Min.	Typ.	Max.	Unit	
GTX	Gain Track. (A to D)	820 Hz tone	$\begin{aligned} & -55 \text { to }-50 \\ & -50 \text { to }-40 \\ & -40 \text { to }+3 \mathrm{dBmo} \end{aligned}$	$\begin{aligned} & -0.8 \\ & -0.4 \\ & -0.2 \end{aligned}$		$\begin{aligned} & 0.8 \\ & 0.4 \\ & 0.2 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$	Note 1
GTR	Gain Track. (D to A)	820 Hz tone	$\begin{aligned} & -55 \text { to }-50 \\ & -50 \text { to }-40 \\ & -40 \text { to }+3 \mathrm{dBmO} \end{aligned}$	$\begin{aligned} & -0.8 \\ & -0.4 \\ & -0.2 \end{aligned}$		$\begin{aligned} & 0.8 \\ & 0.4 \\ & 0.2 \end{aligned}$	$\begin{aligned} & \hline \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$	Note 1
FRX	Freq. Response (A to D) (Loss)	Relative to 820 Hz 0 dBmO	$\begin{aligned} & \hline 0.06 \mathrm{kHz} \\ & 0.2 \\ & 0.3 \text { to } 3 \\ & 3.3 \\ & 3.4 \\ & 4.0 \end{aligned}$	$\begin{array}{\|c\|} \hline 24 \\ -0.15 \\ -0.15 \\ -0.15 \\ -0.15 \\ 14 \end{array}$		$\begin{gathered} 2.5 \\ 0.2 \\ 0.65 \\ 0.9 \end{gathered}$	dB	Note 1
FRR	$\begin{aligned} & \text { Freq. Response } \\ & (\mathrm{D} \text { to } \mathrm{A}) \text { (Loss) } \end{aligned}$	$\begin{aligned} & \hline \text { Relative to } \\ & 820 \mathrm{~Hz} \\ & \mathrm{OdBm0} \end{aligned}$	$\begin{aligned} & \hline 0 \text { to } 3 \mathrm{kHz} \\ & 3.3 \\ & 3.4 \\ & 4.0 \end{aligned}$	$\begin{array}{\|l} -0.15 \\ -0.15 \\ -0.15 \end{array}$	14	$\begin{gathered} 0.2 \\ 0.65 \\ 0.9 \end{gathered}$	dB	Note 1
AlL	Analog Input Level	$820 \mathrm{~Hz} \mathrm{OdBm0}$	$25^{\circ} \mathrm{C}$ nom. P.S.	1.217	1.231	1.246	Vrms	Note 1
AOL	Analog Output Level	820 Hz OdBmO	$25^{\circ} \mathrm{C}$ nom. P.S.	1.217	1.231	1.246	Vrms	Note 1
AT	AIL, AOL Variation with temp.	Relative to	$5^{\circ} \mathrm{C}$ nominal P.S.		0.001		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$	
AP	AIL, AOL Variation with P.S.	$25^{\circ} \mathrm{C}$	plies $\pm 5 \%$		± 0.05		dB	
ALS	GAIN Variation over Temp. P.S.	$\begin{aligned} & \mathrm{A} \text { to } \mathrm{D} \\ & \mathrm{D} \text { to } \mathrm{A} \end{aligned}$	INITIAL	-0.15		0.15	dB	
AIP	Peak Analog Input			3.0			V	
AOP	Peak Analog Output			2.5			V	
PDL	Propagation Delay	A to A	OdBm0			540	$\mu \mathrm{s}$	
DD	Delay Distortion	A to A OdBmo	$\begin{aligned} & 0.5 \text { to } 0.6 \mathrm{kHz} \\ & 0.6 \text { to } 1.0 \\ & 1.0 \text { to } 2.6 \\ & 2.6 \text { to } 2.8 \end{aligned}$			$\begin{gathered} \hline 1.4 \\ 0.7 \\ 0.25 \\ 1.4 \end{gathered}$	$\mu \mathrm{s}$	rel. to \min. delay
PSRR	PSRR	A to A $A_{I N}=A G N D$	$\begin{aligned} & \hline V_{D D}+100 \mathrm{mV} \text { op } \\ & 1 \mathrm{kHz} \\ & \mathrm{~V}_{S S}+100 \mathrm{mV} \text { op } \\ & 1 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{DD}}+100 \mathrm{mV} \text { op } \\ & 3 \mathrm{kHz} \\ & \mathrm{~V}_{S S}+100 \mathrm{mV} \text { op } \\ & 3 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 20 \\ & 20 \end{aligned}$			dB	

3) System Related Characteristics (continued)

Symbol	Descriptions	Test Conditions		Specifications				Notes
				Min.	Typ.	Max.	Unit	
ICNA	Idle Channel Noise	A to A	$A_{\text {IN }}=$ A GND			-70	dBmOP	A-Law
ICNX	Idle Channel Noise	A to D	$A_{\text {IN }}=\mathrm{A}$ GND			-72	dBmOP	A-Law
ICNR	Idie Channel Noise	D to A	$\mathrm{PCM}_{\text {IN }}=+0$-Code			-78	dBmOP	A-Law
ICNA	Idle Channel Noise	A to A	$A_{\text {IN }}=A$ GND			20	dBmrnco	μ-Law
ICNX	Idle Channel Noise	A to D	$\mathrm{A}_{\mathrm{IN}}=\mathrm{A}$ GND			18	dBrnco	μ-Law
ICNR	Idle Channel Noise	D to A	$\mathrm{PCM}_{\text {IN }}=+0$-Code			12	dBrnco	μ-Law
IM1	Intermodulation	$\begin{aligned} & \mathrm{A} \text { to } \mathrm{A}(2 \mathrm{a}-\mathrm{b}) \\ & \mathrm{a} ; 0.47 \mathrm{kHz},-4 \\ & \mathrm{~b} ; 0.32,-4 \end{aligned}$				-38	dBm0	
IM2	Intermodulation	$\begin{aligned} & \mathrm{A} \text { to } \mathrm{A}(\mathrm{a}-\mathrm{b}) \\ & \mathrm{a} ; 1.02 \mathrm{kHz},-4 \mathrm{a} \\ & \mathrm{~b} ; 0.05,-23 \\ & \hline \end{aligned}$				-52	dBm0	
ICS	Single Freq. Noise	$\begin{aligned} & A \text { to } A \\ & A_{I N}=A \text { GND } \end{aligned}$	$\begin{aligned} & 8,16,24,32, \\ & 40 \mathrm{kHz} \end{aligned}$			-50	dBm0	
DIS	Discrimination	A to A OdBm0	4.6 to 200 kHz	30			dB	
XTKA	$A_{\text {IN }}$ to AOUT Crosstalk	$820 \mathrm{~Hz} \mathrm{OdBm0}$				-65	dB	Note 1
XTKD	$\mathrm{PCM}_{\text {IN }}$ to $\mathrm{PCM}_{\text {OUT }}$	$820 \mathrm{~Hz} 0 \mathrm{dBm0}$				-65	dB	Note 1

Note 1. Test conditions for S44231/S44232 versions are referenced to 1020 Hz tone.

Timing Diagram

Software Simulator/Assembler Program Package

Features

Provides Exact Simulation of Operation of AMI S28211 Signal Processing Peripheral
\square Runs on Systems Using CP/M-80 2.2 Operating SystemSupplied on Standard 1Bm 8" Single Density (3740) Format DiscAllow Continuous or Step-by-Step OperationAllows Setting of Breakpoints on All Major Flags
\square Trace Buffer Allows Storage and Display of Status of Previous 50 Instructions During Continuous Operation

Fully Documented

General Description

The SSP CP/M-1 is a software simulator for the AMI S28211 Signal Processing Peripheral (SPP). For information on the SPP chip please refer to the S28211 Advanced Product Description.
The SSP CP/M-1 package allows the user to simulate operation of the S28211 chip on any host computer which supports the following minimum hardware configuration.

1. Z80, 8080, 8085 CPU
2. 64 K of Memory
3. CP/M-80 2.2 Operating System

The SSP CP/M-1 package allows the user to simulate the operation of the S28211 chip either in a step mode or free running, with or without breakpoints. Data I/O for the simulation may be provided by means of files or directly from the terminal. An assembler allows the user to input the SPP program (in SPP Assembly Language) and the memory data either from a file or from the keyboard. The assembly listing may be dumped to file which can then be used to generate the ROM mask for the S28211 by AMI. During simulation a trace buffer may be used to store the last 50 (maximum) instructions executed. This greatly facilitates continuous simulation in conjunction with the breakpoints which may be set on (1) any individual instruction (2) the input flag (3) the output flag (4) overflow in the accumulator. The trace feature, either using the trace buffer or in the step-by-step mode, gives the user the complete status of the simulation, including the last instruction executed and the conditions of all internal registers, counters, latches, and busses.

A Subsidiary of Gould Inc.

SIGNAL PROCESSING PERIPHERAL

Features

\square Single-Chip Programmable Digital Signal Processor
\square May Be Customized (ROM Programmed) With Customer Generated Routines
\square Self-Emulation Capability
\square Standard Preprogrammed Processors Available
\square Fetch/Multiply/Add/Store Cycle
$\square 512$ Word $\times 18$ Bit Instruction Memory
\square Unique Three Port Data Memory

256×16 RAM $/ 128 \times 16$ ROM

$\square 12 \times 12$ Pipelined Multiplier With 16 Bit Product
$\square 16$ Bit Accumulator With Overflow Detect/Protect
\square Double Buffered Asynchronous Serial I/O Port
$\square \mu$ P-Compatible I/O Port i.e. 6800 (A Version), 8080 (B Version), etc.
\square External Instruction Memory Version Available For Program Development (S28212)

General Description

The S28211 is a single-chip microcomputer which has been optimized to execute digital signal processing algorithms commonly used in applications such as telecommunications speech processing, industrial process control instrumentation, etc. It may be used as a stand alone unit, or may be operated as a peripheral in a microprocessor based system. The latter configuration allows arrays of S28211s to be used together for increased processing throughput. The S28211's multibus, pipelined architecture and powerful multioperation instructions make it possible to write very compact algorithms. This allows the available memory to be used efficiently and increases the execution speed of a given algorithm. The S28211 may be custo-

customized with user generated algorithms (Factory ROM Programmed). A selection of support tools (Assembler, Simulator, Real-time Emulator) are available for this task. In addition, a family of preprogrammed S28211s are available for standard applications.

Functional Description

The main functional elements of the S28211 (see Block Diagram) are:

1. a 512×18 ROM which contains the user program.
2. a 3-port 384×16 data memory (one input and two output ports) which allows simultaneous readout of two words.
3. a 12 -bit $\times 12$-bit high-speed parallel multiplier with 16 -bit rounded product.
4. an Arithmetic/Logic Unit (ALU).
5. I/O and control circuits.

The S28211 is implemented in a combination of clocked and static logic which allows complete overlap of the multiply operation with the read, accumulate, and write operations. The basic instruction cycle is Read, Modify, Write, where the "Read" brings the operands from the data memory to the multiplier and/or the ALU, the "modify" operates on those operands and/or the product of the previous operands, and the "Write" stores the result of the "Modify." The cycle time for the instruction is 300 nanoseconds. This results in an arithmetic throughput of about 3.3 multiply and accumulate operations per microsecond.
The S28211 is intended to be used as a microprocessor peripheral. The S 28211 control interface is directly compatible with the 6800 microprocessor bus (A version) or 8080/8085/Z80 microprocessor bus (B version), but can be adapted to other 8 -bit microprocessors with
the addition of a few MSI packages.
Operating in a microprocessor system, the S28211 can be viewed as a "hardware subroutine" module. The microprocessor can call up a "subroutine" by giving a command to the S28211. A powerful instruction set (including conditional branching and one level of subroutine) permits the S28211 to function independently of the microprocessor once the initial command is given. The S28211 will interrupt the microprocessor upon completion of its task. The microprocessor is free to perform other operations in the interim.
The S28211 contains a high-speed serial port for direct interface to an analog-to-digital (A/D) converter. In many applications, real-time processing of sampled analog data can be performed within the S28211 without tying up the main microprocessor. Data transfer to the microprocessor occurs upon completion of the S28211 processing.
Separate input and output registers exchange data with the S28211 data ports. Serial interface logic optionally converts the parallel 2's complement data to serial 2's complement or sign + magnitude format. Data format and source (serial or parallel port) is software selectable.
The S28211 is a memory-mapped peripheral, occupying 16 locations of the microprocessor memory space. Selecting the correct S28211 address will activate the corresponding control mode.
The control modes and the LIBL instruction enable realtime modification of the S28211 programs. This permits a single S28211 program to be used in several different applications. For example, an S28211 might be programmed as a "universal" digital filter, with cutoff frequency, filter order, and data source (serial or parallel port) selected at execution time by the control microprocessor.

SIGNAL PROCESSING PERIPHERAL

Features

Programmable Digital Signal ProcessorExecutes S28211 Functions From External Memory At Full Speed- Fetch/Multiply/Add/Store In Single 300 nanosec. CycleAddressing Capability Of 512 InstructionsUnique Three Port Data Memory With 256 Words Of RAM And 128 Words Of ROM12×12 Multiplier With 16 Bit Product
16 Bit Accumulator With Overflow Detect/ProtectDouble Buffered Asynchronous Serial I/O Port Microprocessor Compatible I/O Port For 6800 Family (A Version) or 8080/85/Z80 etc. (B Version)

General Description

The S28212 is an external instruction memory version of the S28211 Signal Processing Peripheral. The internal program counter and instruction bus are made accessible via dedicated pins on the 64 -pin package to allow the device to operate from an external instruction
 memory at full speed. This device may be used in place of the mask-programmed S28211 in development or small medium production run applications. In addition to the externally accessible program counter and instruction bus, the device also features a sync output to synchronize the external circuitry to the internal instruction cycle, and a single-step capability. This allows the device to execute programs one step at a

S28212A/B

General Description (Continued)

time, to simplify the debugging process. To aid the designer in writing software for this device a mnemonic assembler and simulation program (SSPCP/M-1) is available. For information regarding the main architecture and programming of the device, please refer to the S28212 full Data Sheet.

Functional Description

The main functional elements of the S28212 (see Block Diagram) are:

1. A dedicated interface to an external program memory with a 9 -bit address drive capability.
2. A 3 -port 384×16 data memory (one input and two output ports) which allows simultaneous readout of two words.
3. A 12-bitx12-bit high-speed parallel multiplier with 16-bit rounded product.
4. An Arithmetic/Logic Unit (ALU).
5. I/O and control circuits.

The S28212 is implemented in a combination of clocked and static logic which allows complete overlap of the multiply operation with the read, accumulate, and write operations. The basic instruction cycle is Read, Modify, Write, where the "Read" brings the operands from the data memory to the multiplier and/or the ALU, the "Modify" operates on those operands and/or the product of the previous operands, and the "Write" stores the result of the "Modify". The cycle time for the instruction is 300 nanoseconds. This results in an arithmetic throughput of about 3.3 multiply and accumulate operations per microsecond.
The S28212 is intended to be used as a microprocessor peripheral. The S28212 control interface is directly compatible with the 6800 microprocessor bus (A Version) or 8080/8085/Z80 microprocessor bus (B Version) but can be adapted to other microprocessors with the addition of a few SSI packages.
Operating in a microprocessor system, the S28212 can be viewed as a "hardware subroutine" module. The microprocessor can call up a "subroutine" by giving a command to the S28212. A powerful instruction set (including conditional branching and one level of subroutine) permits the S28212 to function independently of the microprocessor once the initial command is
given. The S28212 will interrupt the microprocessor upon completion of its task. The microprocessor is free to perform other operations in the interim.
The S28212 contains a high speed serial port for direct interface to an analog-to-digital (A/D) converter or Codec. In many applications, real time processing of sampled analog data can be performed with the S28212 without tying up the main microprocessor. Data transfer to the microprocessor occurs upon completion of the S28212 processing.
Separate input and output registers exchange data with the S28212 data ports. The serial interface logic optionally converts the parallel 2's complement data to serial 2's complement or sign + magnitude format. Data format and source (serial or parallel port) is software selectable.
The S28212 is a memory mapped peripheral, occupying 16 locations of the microprocessor memory space. Selecting the correct S28212 address will activate the corresponding control mode. The control modes and the LIBL instruction enable real-time modification of the S28212 programs. This permits a single S28212 program to be used in several different applications. For example, an S28212 might be programmed as a "universal" digital filter, with cut-off frequency, filter order, and data source (serial or parallel port) selected at execution time by the control microprocessor.
The S28212 allows the user:
-Sixteen control junctions
-three page modes for data memory

- four addressing modes
and a powerful double op-code instruction set* for compact real time DSP algorithm development.
For further details see the final data sheet.
* See Tables 1 and 2

S28211 Object Code Instruction Formats

SPP ADDRESSING MODES	18 kits					
	$\mathrm{I}_{17} \mathrm{l}_{13}$				4	10
Ofiset Addressin (UVIUS)	$\begin{gathered} \hline \text { OP2 } \\ 5 \text { Bits } \end{gathered}$	$\begin{aligned} & \text { OP1 } \\ & 5 \text { Bits } \end{aligned}$	$\begin{gathered} \mathbf{O}_{1} \\ 3 \mathrm{Bits} \end{gathered}$	$\begin{gathered} \mathrm{O}_{2} \\ 3 \text { Bits } \end{gathered}$	$\begin{aligned} & 0-u s \\ & 1-w v \end{aligned}$	0
Direct Addressing (${ }^{\text {(})}$	$\begin{gathered} \hline 0 P 2 \\ 5 \text { Bits } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Op1 } \\ & 5 \text { Bits } \end{aligned}$	Direct Address 7 Bits			1
Difect Transier (DT)	$\begin{aligned} & \text { OP2 } \\ & 5 \text { Bits } \end{aligned}$	$\begin{aligned} & \text { OP1* } \\ & 4 \text { Bits } \end{aligned}$	Transter Addrass 9 Bits			
Literal (L)	$\begin{aligned} & \text { OP2 } \\ & 5 \text { Bits } \end{aligned}$	$\begin{aligned} & \text { Literal Data Word } \\ & 13 \text { Bits } \end{aligned}$				

*Ba 0 of OP1 (18) is set to zero in this address mode.

Table 1. SSPP Instruction Set-OP1 Instructions

Type	Mnemonic	Hex Code I12-I8	Address Modes	Operations

Table 1. SSPP Instruction Set-OP1 Instructions (continued)

Type	Mnemonic	Hex Code $\mathbf{1 1 2 - 1 8}$	Address Modes	Operations	Description
No Operation	NOP	00	$\cdots-$	None	No OPeration
	XVA	05	UV/US.D	(V/S) EXOR $(A) \rightarrow A$	Logical eXclusive or V/S and Accumulator con- tents. Result is placed in accumulator. Logical eXclusive OR RAM outputs U and V / S. Resuft is placed in accumulator.

Table 2. SSPP Instruction Set-OP2 Instructions

Type	Mnemonic	$\begin{gathered} \text { Hex Code } \\ 116-112 \\ \hline \end{gathered}$	Address Modes	Operations	Description
No Operation	NOP	00		None	No OPeration
Load Instructions	LLTI	15	Literal	$\mathrm{HHH} \rightarrow \mathrm{I}$	Load LiTeral in Input register. A 12-bit (3 hex digits) literal is transferred to the input register. This instruction cannot be used with an OP1 instruction or with a specified addressing mode. Literal is left justified to occupy bits $4-15$ in register.
	LIBL	OC	- .	$\begin{aligned} & (I R) \rightarrow B A S \\ & (I R) \rightarrow L C \\ & (A) \rightarrow 0 R \end{aligned}$	Load Input contents to Base register and Loop counter.
	LACO	03	--		See Figure 4. Clears input flag (LOW). Load ACcumulator contents into the Output Register. This is the basic data output instruction. Sets output flag (HIGH). The IRQ line will be set low if the SRO mode is not set.
	LAXV	09	UV/US, D	$\begin{aligned} & (A) \rightarrow \mid X, V / S \\ & (A) \rightarrow A \end{aligned}$	Load Accumulator contents into index register and RAM location V/S. Accumulator is truncated to 5 most significant bits after the operation. See Figure 4.
	LALV	OD	UV/US, D	$(\mathrm{A}) \rightarrow \mathrm{LC}, \mathrm{V} / \mathrm{S}$	Load Accumulator to Loop counter and RAM location V/S. See Figure 4.
	LABV	08	UV/US, D	$\begin{aligned} & (A) \rightarrow B A S, V / S \\ & (A) \rightarrow A \end{aligned}$	Load Accumulator to Base and RAM location V/S. Truncate accumulator contents to most significant 5 bits after the operation. See Figure 4.
Data Transfer Instructions	TACU	1A	UV/US	$(\mathrm{A}) \rightarrow \mathrm{U}$	Transfer Accumulator Contents into RAM location U. Transfer Accumulator Contents into RAM location V/S. Transfer Input Register Contents to RAM location V / S. This is the basic data input instruction. Clears input flag (LOW). Transfer contents of VP register (equals previous value of output V) to RAM location \mathbf{V} / S. Transfer Accumulator contents into RAM location U using Index register as base.
	TACV	1 D	UV/US, D	(A) $\rightarrow \mathrm{V} / \mathrm{S}$	
	TIRV	1 C	UV/US, D	$(\mathrm{IR}) \rightarrow \mathrm{V} / \mathrm{S}$	
	TVPV	09	UV/US, D	$\mathrm{VP} \rightarrow \mathrm{V} / \mathrm{S}$	
	TAUI	1E	UV/US	$(\mathrm{A}) \rightarrow \mathrm{U}$	
Register Manipulation Instruction	INIX	12		(IX) $+1 \rightarrow \mathrm{X}$	INcrement the IndeX register.
	DECB	07	-- -	(BAS) $-1 \rightarrow$ BAS	DECrement the Base register.
	INCB SWAP	$\begin{aligned} & 11 \\ & 11 \\ & 0 F \end{aligned}$	--.	$\begin{aligned} & (\mathrm{BAS})+1 \rightarrow \mathrm{BAS} \\ & \mathrm{BAS} \leftrightarrow \mathrm{IX} \end{aligned}$	INCrement the Base register. SWAP the roles of Base and Index registers.
Unconditional Branch Instruction	JMUD	14	DT	$\mathrm{HH} \rightarrow \mathrm{PC}$	JuMp Unconditionally Direct to location indicated by 8 -bit two hex digits) literal HH. Cannot be used with an OP1 instruction requiring specific addr. mode.
	JMUI	16	UV/US, D	$[(1 X)] \rightarrow P C$	JuMp Unconditionally Indirect to location indicated by contents of RAM address pointed to by index and displacement indicated by V / S. $[\mathrm{V} / \mathrm{S})_{0-7} \rightarrow \mathrm{PC} .$

Table 2. SSPP Instruction Set-OP2 Instructions (continued)

Type	Mnemonic	Hex Code I16-I12	Address Modes	Operations	Description

NOTES:

1. Whenever the Index register is selected by an instruction $O P 2$ it controls the entire line of code.
2. Loop Counter cannot underflow.
3. S refers to scratchpad.
4. Input flag is low if SPP has not received a new input word.
5. (A) represents truncation of the accumulator to 5 most significant bits (sign and 4 MSB).
6. Multiplier input latches and the VP register are not updated when either the DT or L addressing modes are used in conjunction with an OP2 instruction.
7. . . - indicates don't care address mode.
8. When D address mode is used, accumulator contents as a resuit of previous instruction replace U input to multiplier.

FAST FOURIER TRANSFORMER

Features

Performs 32 Complex Point Forward or Inverse FFT in 1.3 msec , Using Decimation in Frequency (DIF)Transform Expandable either by Using Multiple S28214s (for Minimum Processing Time) or by a Single S28214 (for Minimum Hardware)Operates with any 8- or 16-Bit Microprocessorμ P-Compatible I/O Port i.e., 6800 (A version), Z80 (B version)Basic Resolution of 57 dB . Optional Conditional Array Scaling (CAS) Routine Increases Dynamic Range to 70 dBOptional Windowing Routine Incorporated to Permit Use of Arbitrary Weighting FunctionCoefficient Generation On Chip, with Rotation Algorithm for Transform Expansion up to 512 Points\square Optional Power Spectrum Computation

General Description

The AMI S28214 Fast Fourier Transformer is a preprogrammed version of the S28211 Signal Processing Peripheral.

For further information on the internal operation of the S28211, please refer to the S28211 Product Description.
It calculates FFTs and IFFTs using a decimation in frequency (DIF) technique for minimum distortion. The S28214 calculates a 32 complex point FFT using internally generated coefficients in a single pass. A coefficient rotation algorithm allows larger FFTs to be implemented (in blocks of 32 points). This implementation may be carried out by successive passes of the data through the two main routines in the S28214, allowing larger transforms to be carried out with a single S28214. Alternatively, an array of S28214s may be used to increase the transformation speed by parallel processing.

S28214 Pin Functions/Descriptions

Pin	Number	Function
$\mathrm{D}_{0}-\mathrm{D}_{7}$	4-11	(Input/Output) Bi-directional 8-bit data bus. Data is Two's Complement coded.
$\mathrm{F}_{0}-\mathrm{F}_{3}$	20-17	(Input) Control Function bus. Four Microprocessor address lines (typically $A_{0}-A_{3}$) are used to control the S28214.
$\overline{\mathrm{E}}$ or ($\overline{\mathrm{RD}})$	15	IE (S28214A): (Input) Interface Enable. A low level on this line enables data transfer on the data bus and control functions on the F -bus. Usually generated by microprocessor address decode logic. RD (S28214B): (Input) Read Data Strobe. A low level indicates a valid read cycle.
($\overline{\mathrm{CS}}$)	2	(Input) Chip Select. LOW active.
$\mathrm{R} / \overline{\mathrm{W}}$ or ($\overline{\mathrm{WR}})$	12	R/W (S28214A): (Input) Read/Write Select. When HIGH, output data from the S28214 may be read, and when LOW data may be written into the S28214.
$\overline{\mathrm{R} Q}$	13	WR (S28214B): (Input) Write Data Strobe. A low level indicates a valid write cycle. (Output) Interrupt Request. This open drain output goes low when the S28214 has completed the execution of a routine and output data is available.
$\overline{\mathrm{RST}}$	16	(Input) When LOW all registers and counters will be cleared, including the program counter, and all control functions cleared.
OSC C_{i}, OSC $_{0}$	22, 21	Oscillator input and output. For normal operation a crystal is connected between these pins to generate the internal clock signals. Alternatively, an external square wave signal may be connected to $0 \mathrm{SC}_{\mathrm{i}}$ pin with OSC $_{0}$ pin left open.
$V_{C C}$	28	Positive power supply connection.
$V_{S S}$	14	Negative power supply connection. Normally connected to ground.

In addition to the above, pins $\mathbf{2 4 - 2 7}$ and 1 are connected to $V_{S S}$ and Pin 23 is left open.

Absolute Maximum Ratings

Supply Voltage ...

Electrical Specifications ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
V_{IH}	Input High Logic "1" Voltage	2.0		$V_{\text {cc }}+0.3$	V	$V_{C C}=5.0 \mathrm{~V}$
$V_{\text {IL }}$	Input LOW Logic '0' Voltage	-0.3		0.8	V	$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}$
IN	Input Logic Leakage Current		1.0	2.5	mA	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to 5.25 V
C_{1}	Input Capacitance			7.5	pF	
V_{OH}	Output HIGH Voltage	2.4			V	$\begin{aligned} & \mathrm{I}_{\mathrm{LOAD}}=-100 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=\min , \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage			0.4	V	$\begin{aligned} & \mathrm{I}_{\mathrm{LOAD}}=1.6 \mathrm{~mA}, \\ & V_{C C}=\min , C_{L}=30 \mathrm{pF} \end{aligned}$
$\mathrm{f}_{\text {CLK }}$ XSTAL	Max. Crystal Clock Frequency	5		16.66	MHz	$\mathrm{V}_{C C}=5.0 \mathrm{~V}$
P_{D}	Power Dissipation			800	mW	$V_{C C}=5.0 \mathrm{~V}$

Figure 1. F-Control Bus and Read/Write Data Timing (S28214)

S28214 Timing Specifications ($5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$)
Refer to Figure 1

Symbol	Min.	Typ.	Max.	Units	Comment
$t_{\text {WW }}$	100			ns	
$t_{\text {REC }}$	100 or 12 $T_{\text {XSTAL }}$			ns	See Notes
$\mathrm{t}_{\text {SU1 }}$	25				
$\mathrm{t}_{\text {SU2 }}$	25			ns	
$\mathrm{t}_{\text {SU3 }}$	30			ns	
$\mathrm{t}_{\text {H }}$	10			ns	
$\mathrm{t}_{\text {H } 2}$	10			ns	
$t_{\text {H3 }}$	10			ns	

Functional Description

The S28214 is a high speed microcomputer organized for efficient signal processing and contains a data memory, instruction memory, an arithmetic unit incorporating a 12 -bit parallel multiplier, as well as control registers and counters.
The Instruction ROM contains the various routines; the names and starting addresses of which are shown in Table 1A.
The Data ROM contains the coefficients required to execute the functions. 256×16 of Data RAM is provided, (128×16) of RAM to be used at a time; to hold the 32 point complex signal data during processing, as well as the power spectrum of the output and various other parameters, including the total number of points in the desired transform. The memory is organized as a 32×4 matrix, with the data arranged in columns, as shown in Table 1B. Refer to Table 2 for various page mode selections between the two (128×16) Data RAM sections and coefficient ROM.
The word length used in the S28214 gives the transformed data a resolution of up to 57 dB , but the total dynamic range can be increased up to 70 dB by using the Conditional Array Scaling (CAS) routine incorporated
The S28214 is intended to be used in a microprocessor
system using an 8- or 16-bit microprocessor, ROM, RAM and an optional DMA Controller or Address Generator. The S28214 is used as a memory mapped peripheral, and should be assigned a block of 16 addresses. It is used as a "hardware subroutine" function. The microprocessor controls the flow of data, including I/O, and calls the routines in the S28214 to cause the FFT to be executed. The $\mathbf{S 2 8 2 1 4}$ responds to the microprocessor with the IRQ line when the processing of each routine is completed. In the case of a 32 point transform this signifies the completion of the transform, and in larger transforms it signifies that the microprocessor should unload the output data, load the next input data and call te next routine to be executed. The data is stored externally in RAM. Input data to be transformed is loaded into displacements 0 and 1 of the S28214 data memory. At the end of the FFT routine output data overwrites the input data. If power spectrum flag (PSF) is set, the S28214 computes the sum of the squares of the real and imaginary components of the output data and places the result in displacement 3 of the data memory. Both complex FFT data and power spectrum data are thus available. Windowing weights may be loaded into the S28214 prior to processing if the windowing routine is to be used. A 6800 compatible source listing of a suitable control program is available to the S28214 user at no charge.

Figure 2. Simplified Block Diagram of S28214

Table 1. Software Model of S28214
A. Routine Locations in Instruction Memory

LOC (HEX)	FUNCTION
00	IDLE STATE
01	ENTRY PT. "INIT" ROUTINE
04	ENTRY PT. "FFT32' ROUTINE
D3	ENTRY PT. ''COMPAS'; ROUTINE
EA	ENTRY PT. "SCALE" ROUTINE
DC	ENTRY PT. 'WINDOW' ROUTINE
E4	ENTRY PT. 'cONJUG' ROUTINE

C. Control Functions

F-BUS

(HEX)	MNEMONIC	FUNCTION
1	RST	RESETS CHIP
2	DUH	SELECTS MSBYTE
3	DLH	SELECTS LSBYTE
4	XEQ	STARTS EXECUTION
9	BLK	SELECTS BLOCK MODE
F	NOR	SET PAGE MODES (SEE TABLE 2)
F	ROM	
E	RAM	

B. Data Memory Map
(Note: Address [Base AB, Displacement C] is written as AB.C)

D. Input and Output Registers

15	0
DUH (MSBYTE)	DLH (LSBYTE)
INPUT REGISTER	

87	
DUH (MSBYTE)	DLH (LSBYTE)

CODE IS TWO'S COMPLEMENT.

NOTE: A DUH BYTE MAY BE LOADED WITHOUT A DLH, BUT THE REVERSE CANNOT BE DONE.

The Control Functions

The S28214 is controlled by the host microprocessor by means of the F-bus, Interface Enable ($\overline{\bar{E}}$) and the ReadWrite ($R \bar{W}$) lines.
The 12 most significant address lines decode a group
of 16 addresses to activate the \bar{E} line each time an address in the group is called, and the S28214 is controled by reading to or writing from those addresses. Only 8 of these addresses are used as described in Table 2. Throughout this Product Description these addresses will be referred to as NNNX $(X=0-F)$.

Table 2: S28214 Control Functions

MNEMONIC	$\begin{aligned} & \text { F-BUS } \\ & \text { HEX } \end{aligned}$	DATA	TYPE OF OPERATION	FUNCTION
RST	1	XX	READ/WRITE	CLEARS ALL REGISTERS. STARTS PROGRAM EXECUTION AT LOCATION OO. THIS IS THE IDLE STATE. THIS INSTRUCTION SHOULD PRECEDE BLOCK READ, BLOCK WRITE AND EXECUTE COMMANDS.
DUH	2	HH	READ/WRITE	READS FROM OR WRITES INTO S28214 THE UPPER HALF OF THE DATA WORD. (SEE TABLE 1.D.)
DLH	3	HH	READ/WRITE	READS FROM OR WRITES INTO S28214 THE LOWER HALF OF THE DATA WORD. (SEE TABLE 1.D)
XEQ	4	HH	WRITE	STARTS EXECUTION AT LOCATION HH
BLK	9	XX	READ/WRITE	INITIATES A BLOCK READ OR BLOCK WRITE OPERATION. THE ENTIRE DATA RAM CAN BE ACCESSED SEQUENTIALLY BEGINNING WITH VALUES OF BASE AND DISPLACEMENT INITIALIZED USING "BLOCK TRANSFER SET UP'' ROUTINE. IF A RESET OPERATION IS PERFORMED PRIOR TO BLOCK COMMAND THE DATA MEMORY ADDRESS IS INITIALIZED TO BASE O, DISPLACEMENT O. BLOCK READ OR WRITE OPERATION CAN BE TERMINATED ANY TIME BY PERFORMING A RESET OPERATION. THE INDEX REGISTER IS USED TO ADDRESS THE MEMORY DURING BLOCK TRANSFER AND INTERNAL ADDRESSING IS SEQUENCED AUTOMATICALLY.
NOR	F	XX	READ	SET PAGE MODE NORMAL. RAM1 + ROM. THIS IS ALSO DEFAULT MODE AT RESET.
ROM	F	XX	WRITE	SET PAGE MODE TO RAM2 + ROM.
RAM	E	XX	READ	SET PAGE M0DE T0 RAM1 + RAM2

NOTE: XX = Don't care
$H H=2$ Hex characters (8-bit data)

Initial Set-Up Procedure

After power up, the $\overline{\operatorname{RST}}$ line should be held low for a minimum of 300 nsec . If this line is connected to the reset line of the microprocessor this condition will be met easily. This will clear the Base and Index Registers, which are used for memory addressing, the Loop Counter and the Program Counter. Address zero in the Instruction ROM contains a Jump to Zero instruction, and thus the S 28214 will remain in an idle state after being reset. Every routine in the memory is also terminated with a Jump to Zero instruction, and thus the S28214 will also remain in this same idle state after the execution of each routine. The $\overline{\mathrm{RQ}}$ line will signal this condition each time (except after the initial reset).

The Block Transfer Operation

Block transfer is the mode used to load and unload the main data blocks into the S 28214 at up to 4Mbytes/sec. In this mode the data memory is addressed by the Index Register, and after initialization the internal addressing is sequential and automatic. The sequence generated is that after each word transfer (16 -bit words as 2 bytes, or 8 -bit words as MSbyte (DUH) only) the base is incremented. After base $1 F$ (31) has been reached, the base resets to 00 and the displacement increments. After base $1 F$ displacement 3 has been reached (i.e., the highest address in the RAM, 1F.3), both base and displacement reset to zero. Note that when the BLK command is given the Read/Write line is latched internally, and remains latched until the RST command is given. The block transfer sequence and timing are shown in Figure 3.

Figure 3. Block Transfer Sequence and Timing

NOTES: (1) $x=$ oon't care or not valid, $v=$ valid
(2) TIMING SHOWN ABOVE IS NOT NECESSARILY TO SCALE, REFER TO FIGUAE 1 FOR SPECIFICATIONS.
(3) PULL UP RESISTOR ON IHC PIN ASSUMED IN THE ABOVE ILLUSTRATION.
(4) IF WTERRUPT HA NDSHAKE IS USED BETWEEN S28214 AND PROCESSOR, INTERRUPT MASK MAY BE
CLEARED HEFE.

(5) Th TAANSITIGNS OUE TO ANTERMAL STATUS OF IRIOR M S28214.
(6) READ OR WRITE CYCLES TO CONTIUUE UNTM RESET (USIMG F $=1$).

In 6800 Assembly Language a Block Write would be executed with the following code:

LDX	OFFST	;LOAD MEMORY START ADDRESS INTO INDEX REG.
STA	A BLK	;WRITE DUMMY DATA TO ADDRESS \$NNN9,BLOCK MODE.
LDA	A $0, X$;READ FIRST BYTE FROM MEMORY.
STA	A DLH	;WRITE INTO S28214 AS LSBYTE. ADDRESS \$NNN3
LDA	A $1, \mathrm{X}$;READ SECOND BYTE FROM MEMORY.
STA	A DUH	;WRITE INTO S28214 AS MSBYTE.ADDRESS \$NNN2
LDA	A $2, \mathrm{X}$;SECOND WORD.
:	:	:
:	$:$:
LDA	A 62, X	;32ND. WORD,LSBYTE.
STA	A DLH	
LDA	A 63, X	;32ND. WORD, MSBYTE.
STA	A DUH	;END OF TRANSFER.
STA	A RST	;WRITE DUMMY DATA TO ADDRESS \$NNN1.RESET.

Block Read would be executed by substituting LDA A for STA A, and vice versa.
where:

RST	EQU \$NNN1
DLH	EQU \$NNN3
DUH	EQU \$NNN2
BLK	EQU \$NNN9

The above code assumes that the block transfer is controlled by the host processor, not using DMA. Note that DLH must always precede DUH. 8-bit data may be transferred using DUH only, assuming that the significance of the data is correct.

The FFT Routines

Six individual routines are stored in the S28214 Instruction memory. Two or more of these are used in the computation of an FFT, depending on the transform size and the options selected. The starting addresses of the routines are shown in Table 3.

1. Block Transfer Set-Up (INIT) Presets the Index Register which controls addressing of the data memory.
2. FFT32
3. COMPAS
4. SCALE
5. WINDOW
6. CONJUG

Selection of a particular sequence of routines will depend on the user's transform requirements and the function of each routine is covered later in this section. However general outline of the routines is given below.

Table 3. FFT Routines and Their Starting Addresses

NOTE: ABOVE EXECUTION TIMES DO NOT INCLUDE DATA TRANSFER.

1. Block Transfer Set-Up (INIT). Entry Address 01.

This routine presets the Index Register to allow block transfer to commence at any location other than 00.0 in the S28214 data RAM. An eight-bit word is loaded into the upper half of the input register and the routine executed as shown:

```
DUH EQU $HHH2
XEQ EQU $HHH4
LDA A #$XX ; Load start address for block transfer
STA A DUH ; Write into S28214 as MS Byte
LDA A #1 ; Load start address for 'INIT' Routine
STA A XEQ ; Execute INIT
```

where XX represents the start address for block transfer. The routine will be executed in 3 instruction cycles (0.9 msec .) and the S 28214 will return to the idle state. Block transfer may then commence immediately.

2. FFT32. Entry Address $=04$.

This is the basic 32 complex point FFT routine. For a 32 point FFT this routine is called once only and the output of the routine is the FFT. Larger FFTs are computed by decimating them into 32 point arrays before final processing of these arrays using FFT32 to obtain the final outputs. The following data is loaded into the S28214, using block write starting at address 00.0, i.e., INIT is not used.

```
32 words of real input data (addresses 00.0 - 1F.0)
32 words of imaginary input data
    (addresses 00.1F - 1F.1)
    3 dummy words (to skip addresses)
        (addresses 00.2-02.2)
    SCIN (input scaling parameter) (address 03.2)
    CASEN (CAS Enable) (address 04.2)
    PSF (Power spectrum flag) (address 05.2)
```

Note that CASEN (Conditional array scaling enable) and PSF are not modified during processing, and need only be loaded once. CASEN should be positive to inhibit CAS (e.g. 0000) and negative to enable CAS (e.g. 8000). Note that SCIN is not needed if CAS is not enabled. PSF should be zero if the power spectrum output is not needed, any non-zero value (e.g. 0100) will cause the power spectrum to be computed. The block transfer should be terminated with the RST command, and the FFT32 routine called. Flow charts for loading and dumping the data are shown in Figure 4. The following sequence will cause the execution of the entire function:

CLR	B		;CLEAR B ACC.
STA	A	RST	;RESET S28214 REGISTERS.
SEI			;SET INT. MASK.
STA	A	BLK	;SET UP BLOCK WRITE.
JSR		BLKWT	;WRITE 64 WORDS OF DATA.
STA	A	DUH	;WRITE DUMMY DATA TO 00.0
STA	A	DUH	; TO 00.1
STA	A	DUH	TO 00.2
LDA	A	SCIN	;FETCH SCIN.
STA	A	DLH	;WRITE TO ADDRESS 00.3
STA	B	DUH	;COMPLETE WORD XFER.
LDA	A	CASEN	;FETCH CAS ENABLE.
STA	A	DUH	;WRITE TO ADDRESS 00.4
LDA	A	PSF	;FETCH PS FLAG.
STA	A	DUH	;WRITE TO ADDRESS 00.5
STA	A	RST	;RESET S28214.
LDA	A	\#4	;FFT32 START ADDRESS.
STA	A	XEQ	;START EXECUTING.
CLI			;CLEAR INT. MASK.
WAI			;WAIT FOR ROUTINE END.
LDA	A	DLH	;START OF INT. ROUTINE.
LDA	B	DUH	;(DUMMY).READ SCOUT.
LDA	B	SCIN	;FETCH SCIN.
STA	A	SCIN	;SCOUTJSCIN
SBA			;COMP.SCOUT WITH SCIN.
BEQ		READ	;JUMP IF NO CHANGE.
STA	A	SCLP	;(SCOUT-SCIN)] SCLP
LDA	A	PASSN	;FETCH PASS \#
CMP	A	\#1	;IS THIS 1ST.PASS?
BEQ		READ	;IF SO, JUMP
JSR		SKOUT	;SCALE PREVIOUS ARRAYS
LDA	A	\#3	;(ASSUME PSF SET.)
STA	A	DUH	;PRESET TO ADDRESS 00.3
LDA	A	\#1	
STA	A	XEQ	;EXECUTE INIT.
STA	A	BRV	;TURN ON BIT REV.MUX.
LDA	A	BLK	;SET UP BLOCK READ.
JSR		BLKRD	;READ DATA.
STA	A	RST	;END

The routine execution time is variable, depending on whether CASEN and PSF are set. The times are:

1. CAS-OFF. PSF-OFF 3730 instruction cycles (1.119msec.)
2. CAS-OFF. PSF-ON 3862 instruction cycles (1.159msec.)
3. CAS-ON . PSF-OFF 5867max. instruction cycles (1.760msec.)
4. CAS-ON . PSF-ON 5999max. instruction cycles

When CAS is enabled, the time depends on the number of times overflow is corrected. At the end of the routine the complex output data will have overwritten the input data in the memory (addresses 00.0 to 1F.1) and the power spectrum data will be in displacement 3 (addresses 00.3 - 1F.3). The output scaling factor (SCOUT) will be loaded in the output register, generating the $\overline{\mathrm{RQ}}$ to signify to the host processor that the routine has completed processing.

Figure 4A. Flowchart for Subroutine FT32IN

-assumes power spectrum OHLY IS READ OUT.
Figure 4B. Flowchart for Subroutine FT32OT

3. Combination Pass Routine, COMPAS.

Entry Address = D3.
This is the decomposition routine that breaks up larger transforms into a number of 32 point transforms to be executed by FFT32. The N data points are split into N/16 blocks of 16 points, and pairs of blocks are passed through COMPAS. The procedure is repeated one or more times if N is greater than 64, but for a 64 point FFT the resulting data is ready for processing using FFT32. The procedure is explained in greater detail in the section "Executing Larger Transforms". The following data is loaded into the S 28214 before execution:
32 words of real input data (addresses 00.0-1F.0) 32 words of imaginary input data (addresses 00.1-1F.1) Δ WORD (address 00.2)
Δ STEP Set up parameters (address 01.2)
NT (address 02.2)

SCIN (address 03.2)
CASEN (address 04.2)
PSF (address 05.2)
The new parameters required, D WORD, D STEP and NT are dependent on the size of the transform and D WORD changes with each pass through the COMPAS routine. The values required are shown in the tables in sections "Executing 64 Point Transforms" and "Executing Larger Transforms". Flow charts for loading and dumping the data are shown in Figure 5. The routine execution time varies with transform size and depends on whether CAS is enabled or not, as shown:

| TRANSFORM SIZE
 Without CAS, Inst. cycles,
 (msec.)
 With CAS. (Max.) Inst. cycles
 (msec.)
 64 POINT | 128 POINT | 256 POINT | 512 POINT |
| :--- | :---: | :---: | :---: | :---: |
| $776(233)$ | $828(248)$ | $842(253)$ | $949(255)$ |
| $1172(352)$ | $1224(367)$ | $1238(371)$ | $1245(374)$ |

4. Data Point Scaling Routine, SCALE. Entry location = EA.

If CAS is enabled, then routines COMPAS, and FFT32 will scale all 32 data points being processed if an overflow occurs during that pass. The value of SCOUT allows the data during subsequent passes to be scaled automatically during the pass. However, data points which have already been processed must also be scaled, so that all the data is scaled by the same factor during each processing step. SCALE is a routine that allows this to be done at high speed. Each block to be
scaled is block loaded into the S2814A, the routine SCALE executed, and the block dumped back into the original locations in memory.
Care must be taken to keep track of which blocks have already been processed during each step, so that blocks do not get missed or scaled twice. The execution time depends on the scaling factor (SCOUT), as shown below:

Scaling Factor (SCOUT)	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
Execution time. Inst. Cycles, (msec.)		$170(51)$	$336(101)$	$502(151)$	$668(200)$

Figure 5A. Flowchart for Subroutine CSIN

Figure 5B. Flowchart for Subroutine CSOT

5. Windowing Routine, WINDOW. Entry Address = DC

In order to allow the input data points to be windowed, a routine is provided to multiply the 32 real or complex points loaded in the S28214 by 32 window points. This is done on each block of 32 points prior to commencing the actual FFT processing. The input data required, in addition to the normal input data, are the 32 points of the window. They should be loaded into displacement 3 of the S28214 RAM and the routine WINDOW executed. The windowed data points will be returned to their original positions in the memory, so that COMPAS or

FFT32 may then be executed immediately without further processing. The entire data can be loaded in a single block transfer operation by using INIT to preset the start address to 00.3. The 32 point window data is then loaded, followed by the signal data. This is possible because after loading the window the memory address will automatically reset to 00.0, the start address for the real data. The parameters are then loaded into displacement 2 addresses in the usual way. They will not be affected by the windowing operation. The total execution time is 163 instruction cycles, 49 msec .

S28214

Executing FFTs

Executing the FFTs consists of loading data blocks, executing routines in the $\mathbf{S} 28214$ and dumping the data. However, the sequence of the FFT output data is scrambled, and in order to use the results meaningfully, it must be unscrambled. This is done by reversing the order of the bits of the address lines for the final output data. Thus, for a 2^{N} point FFT the N address lines A_{0}, $A_{1}, A_{2} \ldots . A_{N-1}$ must be reversed to the sequence $A_{N-1}, A_{N-2} \ldots . A_{1}, A_{0}$ to address the output buffer memory. This is most conveniently done as the data points are being dumped out of the S28214 after the processing of the FFT32 routine(s). The bit reversal can be done either by software or hardware. The hardware realization is shown in Figure 6, and an example of software bit reversal is given in the section "Executing 32 Point Transforms."

Figure 6. Bit Reversal Hardware

WRITING A1 TO ADDRESS BRV TURNS ON BIT-REVERSAL WRITING A O CLEARS BIT REVERSAL

Executing 32 Point Transforms

The basic 32 point transform is easily implemented with the S28214 since it simply requires the loading of the 32 real or complex data points and the 3 parameters SCIN, CASEN and PSF, executing FFT32 once only and dumping the data using bit reversal. The flowchart for this sequence is shown in Figure 7. It is assumed that the loading of data from the source into the input buffer and dumping of data from the output buffer to destination is carried out by the microprocessor NMI (nonmaskable interrupt) routine. The parameter SCIN should be set to zero, and the output data should be scaled (multiplied) by 2 (SCOUT) if absolute levels are

Figure 7. Flowchart for 32 Point FFT

Executing 64 Point Transforms

This is the simplest expansion of the FFT. The first step is to use COMPAS (twice) to decimate the data into two 32 point transforms, and then use FFT32 (twice) to produce the transforms. This is shown in the signal flow graph in Figure 8. The flow graph is independent of whether one or two S28214s are used, since the two passes through each of the 2 routines (COMPAS and FFT32) can be carried out sequentially or in parallel.

The set up parameters for the 64 point FFT are:
For COMPAS 0: \triangle WORD $=8070$
For COMPAS 1: $\triangle W O R D=C 070$

The treatment of SCIN and SCOUT is dealt with in the next section.
Note: All values in Hex.

Figure 8. 64 Point FFT Flowgraph

Executing Larger Transforms

The execution of larger transforms follows the same sequence as the 64 point transforms: namely the decimation of the data into a series of 32 point blocks that can be processed using FFT32. For a 2 N point FFT this involves N-5 steps of processing using COMPAS, and each step requires $2(\mathrm{~N} \cdot 5)$ passes through the COMPAS routine. This is followed by $2(\mathrm{~N}-5)$ passes through the FFT32 routine. Within each step, each pass may be carried out sequentially using a single S28214, or in parallel using 2 ($\mathrm{N} \cdot 5$) chips. There are also intermediate sequential + parallel combinations possible, of course, using fewer chips. A signal flow graph for 1 step is shown in Figure 9.
At the start of each step, SCIN should be set to zero. For the remaining passes in that step the value of SCOUT for the current pass should be used for SCIN for the next pass. The outputs of previously computed passes must be scaled using routine SCALE each time SCOUT increases during a pass. The maximum value of

SCOUT after executing COMPAS is 1 , and after executing FFT32 it is 5 .
A flow chart for an N point transform control program is shown in Figure 10. The routine is called NFFT and uses the following subroutines:

$$
\begin{gathered}
\text { CSIN - } \begin{array}{c}
\text { procedure for loading S28214 with } \\
\text { COMPAS input data (Figure 5A) }
\end{array} \\
\text { CSOT - } \begin{aligned}
\text { procedure for dumping COMPAS output } \\
\text { data (Figure 5B) }
\end{aligned} \\
\text { SCLPRV - } \begin{array}{l}
\text { procedure for scaling previously compu- } \\
\\
\begin{array}{l}
\text { ted blocks of data in each step. }
\end{array} \\
\text { See Figure 10. }
\end{array} \\
\text { FT32IN - } \begin{array}{l}
\text { procedure for loading S28214 with } \\
\text { FFT32 input data (Figure 4A) }
\end{array} \\
\text { FT32OT - } \begin{array}{l}
\text { procedure for dumping FFT32 output } \\
\text { data (Figure 4B) }
\end{array}
\end{gathered}
$$

The values of \triangle WORD, \triangle STEP and NT are shown in Tables 4 and 5 .

Figure 9. N Point FFT Flowgraph

Figure 10. Flow Chart for N Point FFT, Routine "NFFT",

Figure 11. Flow Chart for Subroutine "SCLPRV"

Table 4. (Δ WORD)
ENTRY

PT for	K	value	COMMENTS
$\begin{aligned} & 512 \rightarrow \\ & \text { point } \\ & \text { x'form } \end{aligned}$	0	00	(\triangle WORD L)
	1	80	(\triangle WORD H)
	2	00	
	3	88	
	4.	00	
	5	90	
	6	00	
	7	98	
	8	00	
	9	A0	
	10	00	
	11	A8	
	12	00	
	13	B0	
	14	00	
	15	B8	
	16	00	
	17	CO	
	18	00	
	19	C8	
	20	00	
	21	D0	
	22	00	
	23	D8	
	24	00	
	25	E0	
	26	00	
	27	E8	
	28	00	
	29	F0	
	30	00	
	31	F8	
$\begin{aligned} & 256 \rightarrow \\ & \text { point } \\ & \text { x'form } \end{aligned}$	32	10	
	33	80	
	34	10	
	35	90	
	36	10	

Table 4. (Continued)

$\begin{aligned} & \text { ENTRY } \\ & \text { PT for } \end{aligned}$	K	Value
	37	AO
	38	10
	39	B0
	40	10
	41	C0
	42	10
	43	D0
	44	10
	45	E0
	46	10
	47	F0
$\begin{aligned} & 128 \rightarrow \\ & \text { point } \\ & \text { x'form } \end{aligned}$	48	30
	49	80
	50	30
	51	AO
	52	30
	53	CO
	54	30
	55	E0
$\begin{aligned} & 64 \rightarrow- \\ & \text { point } \\ & \times \text { form } \end{aligned}$	56	70
	57	80
	58	70
	59	CO

Table 5. (\triangle STEP, NT)

Entay PT for	J	value	COMMENTS
512 point x'form	0	08	\triangle TEP(DUH)
	1	OF	NT(DLH)
256	2	10	''
	3	07	',
128	4	20	"
	5	03	''
64	6	40	'
	7	01	''

NOTE: FOLLOWING LOADING OF THE N.T. BYTE, A DUMMY DUH MUST BE LOADED TO COMPLETE WORD LOADING, OTHERWISE THE S28214 DOES NOT RECOGNIZE THE COMPLETION OF THE TRANSFER.

Hardware

Hardware for a 32 point FFT is shown in Figure 12. All data transfer and control is handled by the S6802. A suitable analog interface is shown in Figure 13. The sampling clock is derived from the microprocessor clock, and the NMI signal is generated by the EOC (end of conversion) output of the AID converter. The availability of the next input sample is signalled with the NMI line.This system may be expanded simply by adding more memory. The memory requirements are shown in Table 6. A word may be up to 16 bits long. In order to speed up the complete procedure it is necessary to use DMA for block transfer of data. The S28214 will transfer data at up to 4Mbytes/sec.

Table 6. Memory Requirements for Data Point Storage

TRANSFORM SIZE (POINTS)	WORD LENGTH (BITS)	MEMORY REQUIREMENTS
32	8	64 bytes
	$10 / 12$	See Note 1
	16	128 bytes
64	8	128 bytes
	$10 / 12$	See Note 1
	16	256 bytes
128	8	256 bytes
	$10 / 12$	768 nibbles
	16	1024 bytes
256	8	512 bytes
	$10 / 12$	1536 nibbles
	16	1024 bytes
512	8	1024 bytes
	$10 / 12$	3072 nibbles
	16	2048 bytes

Note 1: in practice the memory realization for these cases will be the same as for 16-bit systems.

Figure 12. 32/64 Joint FFT Hardware

Data Bus Interface

Figure 14 shows how to interface the S28214 with a typical 6800 family microprocessor data bus. Note that the data bus must be isolated from the microprocessor system data bus by use of a PIA as in Figure 12 or a 74LS245 or 74LS645 type data transceiver as shown in

Figure 14, since the S28214 drive capability is only one TTL load. The bus isolation may be omitted in some small systems. A simplified interface between S28214B with a Z-80 microprocessor type bus is shown in Figure 15 (see page 20).

Figure 13. Analog Interface

Figure 14. Interfacing the S28214A with a Microprocessor

Figure 15. Interfacing S28214B to Z80 Microprocessors

FFT Resolution and Dynamic Range

The use of the Decimation in Frequency (DIF) algorithm in the S28214 ensures optimum signal to noise ratio, (SNR) for the architecture used. The use of the Conditional Array Scaling (CAS) gives a total dynamic range of approximately 70 dB on all sizes of Transforms. The maximum resolution obtainable is approximately 57 dB . CAS operates by detecting overflow in the butterfly computation routine. As soon as an overflow is detected the two points being combined in that butterfly are halved in magnitude (both the real and imaginary portions) and the butterfly recomputed. A flag is set, all previously computed butterfly outputs are then scaled,
and all the inputs to subsequent butterflies are scaled before computation begins, so that at the end of the pass all points have been scaled equally. A scale factor is made available (SCOUT) so that the remaining data points in larger transforms, i.e., those other than the 32 in the S28214 when the overflow occurred, may also be scaled to keep them all in line. Thus, CAS operates as a discrete AGC, halving the signal levels each time an overflow is detected. By using SCOUT after executing the FFT the output may be expanded, so that the levels displayed in the spectrum will increase monotonically as the input increases.

DIGITAL FILTER/UTILITY PERIPHERAL

Features

S28211 Signal Processing Peripheral Programmed With Filter and Utility RoutinesMicroprocessor Compatible Interface Plus Asynchronous Serial InterfaceTwo Independent 32 Tap Transversal Filter Routines, Cascadable into a Single 60 Tap FilterTwo Recursive (biquadratic) Filters Providing a Total of 16 Filter SectionsComputation Functions: Two integrating, Two Rectifying, Squaring, and Block Multiply Routines\square Conversion Functions: $\mu 255$ Law-to-Linear, Linear-to- $\mu 255$ Law, and Linear-to-dB Transformations

Generator Functions: Sine and Pseudo-Random Noise Patterns
$\square \mu$ P-Compatible I/O Port; i.e. 6800 (A Version), 8080 (B Version)

General Description

The AMI S28215 Digital Filter/Utility (DFUP) is a pre-programmed version of the S28211. Architectural and internal operating details of the S28211 may be found in the S28211 Advanced Product Description. The S28215 has been programmed with a collection of filter, computational, conversion, and generator routines which may be selected individually, or cascaded under control of

General Description (Continued)

of the host processor. This arrangement allows a wide range of signal processing functions frequently required in application areas such as telecommunications, test and instrumentation, industrial automation, process control, etc., to be satisfied by a single S28215 DFUP.

The I/O structure of the S28215 provides flexibility and easy interfacing in microprocessor based systems. Input and output data transfers may be accomplished
serially, as shown in the block diagram, using a $\mu 255$-law Codec such as the S3507, or using linear A/D and D/A converters. Data may also be transferred in parallel under control of a host processor, such as the S6802. Routines may be executed individually, completely under control of the host processor, or internal transfer addresses may be set up by the host, allowing routines to be cascaded internally. The ability to cascade routines allows complicated functions to be completed without intervention by the host processor.

Absolute Maximum Ratings

Operating Temperature Range ...	

Electrical Specifications: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=\mathrm{OV}, \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, unless otherwise specified

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$\mathrm{V}_{\text {IH }}$	Input HIGH Logic "1" Voltage	2.0		$V_{C C}+0.3$	V	$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}$
$V_{\text {IL }}$	Input LOW Logic '0' Voltage	-0.3		0.8	V	$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}$
IIN	Input Logic Leakage Current		1.0	2.5	$\mu \mathrm{Adc}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to 5.25 V
C_{1}	Input Capacitance			7.5	pF	
V_{OH}	Output HIGH Voltage	2.4			V	$\begin{aligned} & \mathrm{I}_{\mathrm{LOAD}}=-100 \mu \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{CC}}=\min , \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage			0.4	V	$\begin{aligned} & \mathrm{I}_{\mathrm{LOAD}}=1.6 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=\min , \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{aligned}$
${ }^{\text {f CLK }}$	Clock Frequency	5.0	20		MHz	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$P_{\text {D }}$	Power Dissipation		700		mW	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
${ }^{\mathrm{f}_{\text {LK }}(\text { max }}$)	Maximum Clock Frequency		20.0		MHz	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

S28215 Pin Functions/Descriptions Microprocessor Interface (16 Pins)

$\mathrm{D}_{0} \cdot \mathrm{D}_{7}$	(Input/Output) Bi-directional 8-bit data bus.
$\mathrm{F}_{0}-\mathrm{F}_{3}$	(Input) Control Mode/Operation Decode. Four Microprocessor address leads are used for this purpose. See "CONTROL MODES AND OPERATIONS." (Table 2)
$\overline{\mathrm{I}}$	(Input) Interface Enable. A low level on this pin enables the SPP microprocessor interface. Generated by microprocessor address decode logic.
(RD)	Read Data Pin. HIGH active. Used when interfacing to $8080 / 280 \mu$ P .
$\mathrm{R} / \bar{W}(\bar{W} / \mathrm{R})$	(Input) Read/Write Select. When HIGH, output data from the SPP is available on the data bus. When LOW, data can be written into SPP. WR used when interfacing with 8080/Z80 μ P.
$\overline{\text { IRQ }}$	(Output) Interrupt Request. This open drain output goes LOW when the SPP needs service from the microprocessor.
$\overline{\mathrm{RST}}$	(Input) When LOW, clears all internal registers and counters, clears all modes and initiates program execution at location 00.
$\overline{C S}$	Chip Select pin. LOW active. Used when interfacing with a $8080 / 280 \mu \mathrm{P}$.
Serial Interface (6 pins)	
SICK, SOCK	(Input) Serial Input/Output clocks. Used to shift data into/out of the serial port.
ST	(Input) Serial Input. Serial data input port. Data is entered MSB first and is inverted.
SIEN	(Input) Serial Input Enable. A HIGH on this input enables the serial input port. The length of the serial input word (16 bits maximum) is determined by the width of this strobe.
So	(Output) Serial Output. Three-state serial output port. Data is output MSB first and is inverted.
SOEN	(Input) Serial Output Enable. A HIGH on this input enables the serial output port. The length of the serial output (16 bits maximum) is determined by the width of this strobe.
Miscellaneous	
OSC $\mathrm{C}_{\text {, }}$ OSC ${ }_{0}$	An external crystal with suitable capacitors to ground can be connected across these pins to form the time base for the SPP. An external clock can also be applied to $\mathrm{OSC}_{\mathrm{i}}$ input if the crystal is not used.
$\mathrm{V}_{\text {cc }}, \mathrm{V}_{\text {SS }}$	Power supply pins $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0$ volt (Ground)

Functional Description

The S28215 is a pre-programmed version of AMI's Signal Processing Peripheral. This is a high speed microcomputer organized for efficient signal processing and contains a data memory, instruction memory, an arithmetic unit incorporating a 12 -bit parallel multiplier, as well as control registers and counters. For more detailed information about the chip, please refer to the S28211 Advanced Product Description.
The S28215 Instruction ROM contains the various
routines which make up the DFUP package. The routines together with their starting addresses in the Instruction ROM, are shown in Table 1A.
The Data ROM contains the parameters required to execute the functions. 128 words of Data RAM and an 8 word scratchpad are provided to hold the signal data and the jump addresses for cascading routines. The Data memory is arranged as a matrix of 32×8 words, as shown in Table 1B. The RAM utilization is routine dependent and is illustrated in the routine descriptions.

Table 1. Software Model of S28215

A. Routine Locations in Instruction Memory

(LOC (HEX)	FUNCTION
00	IDLE STATE
01	ENTRY POINT 'INIT'' ROUTINE
04	ENTRY POINT "SETUP" ROUTINE
18 or 19*	ENTRY POINT ' L LINIP"' ROUTINE
1 B or 1C*	ENTRY POINT 'MULIP', ROUTINE
34	ENTRY POINT "LINO1"' ROUTINE
36	ENTRY POINT '"LINO2' ROUTINE
38	ENTRY POINT "MULOP'' ROUTINE
65	ENTRY POINT '"DBOP', ROUTINE
80	ENTRY POINT "'BMPY'" ROUTINE
87	ENTRY POINT ''IIR1', ROUTINE
96,97 or 98*	ENTRY POINT "IIR2', ROUTINE
	ENTRY POINT "FIR1', ROUTINE
AF, B0 or B1*	ENTRY POINT "FIR2", ROUTINE
BC	ENTRY POINT ' R RECT', ROUTINE
BF	ENTRY POINT "'SQUAR' ROUTINE
C4	ENTRY POINT 'FINT', ROUTINE
CA	ENTRY POINT ''RINT"' ROUTINE
CE	ENTRY POINT ' 'SQUINT'' ROUTINE
D6	ENTRY POINT ' 'SINE" ROUTINE
E5	ENTRY POINT ' 'NSET', ROUTINE
E9	ENTRY POINT " ${ }^{\text {NOISE', ROUTINE }}$

*See Routine descriptions for explanation of alternative entry points
D. Input and Output Registers

Code is Two's Complement
B. Data Memory Map

NOTE: Address [Base AB, Displacement C] is writen as AB.C
C. Control Functions

F-Bus (HEX)	MNEMONIC
0	CLR
1	RST
2	DUH
3	DLH
4	XEQ
5	SRI
6	SRO
7	SMI
8	SMO
9	BLK
B	SOP
C	COP

See Table 2 for descriptions

Figure 1. Connection of S28215 as a Memory Mapped Peripheral

TO MEMORY AND OTHER PERIPHERALS.

BELL 212ACCITT V. 22 COMPATIBLE MODEM FILTER WITH EQUALIZER

Features

\square CCITT V. 22 CompatibleUsable for Bell 103/113 Applications
\square High and Low Band Filters with Compromise Group Delay Equalizers
\square Originate/Answer Operating Modes
\square Buffered Clock Output
\square Excellent Rejection of CCITT Guard Tones
\square Low Power CMOS 50 mW Typ.
$\square \pm 5$ Volt Operation
\square Low Cost 16-Pin Package

General Description

The AMI S3522 Modem Filter is a 16 -pin monolithic CMOS integrated circuit designed to implement both the filtering and equalizing functions required in Bell 212A and CCITT V. 22 Modems. The S3522 includes both the transmit signal shaping filter and the receive signal separation filter and features on-chip originate/ answer mode selection logic. In addition, half-channel compromise amplitude and group delay equalization is included, giving full compromise equalization through the transmit and receive filter pair. The S3522 features excellent rejection of the CCITT Guard Tones at 550 Hz : Low-Band (56 dB), High-Band (61 dB) and 1800 Hz : LowBand (48 dB), High-Band (28 dB).

Functional Description

The S3522 is shown in simplified form in the block diagram. It consists of a low-band filter ($800-1600 \mathrm{~Hz}$), a high-band filter ($2000-2800 \mathrm{~Hz}$), and half-channel compromise group delay equalizers for both bands (see Figure 1). A changeover switch selects the routing of the input signals into the 2 filters, and another changeover switch routes the filter outputs to the appropriate output pins. The switches are controlled by the MODE selector, allowing the chip to be used in both the ORIGINATE and ANSWER modes without external switching. The outputs of both filters are brought out on separate pins, LBF and HBF. This allows the user to bypass the group delay equalizers if desired. Note that in this mode the filter outputs are not routed through the changeover switch, and external switching must be provided if mode changing is required. The filters are implemented using CMOS Switched Capacitor Filter technology, using a clocking frequency of 104.7 kHz . The internal clocks are derived from the externally supplied 2.304 MHz clock signal.
NOTE: External buffering is required for the LBF and HBF outputs.

Low-Band Filter

The characteristics of the low-band filter are shown in Figure 2. The in-band response rises slightly near the top end of the pass-band, to compensate for typical line characteristics. The out-of-band attenuation ensures adequate rejection of the high-band signal and pilot tones at either 550 Hz or 1800 Hz . The weighted adjacent channel rejection exceeds 60 dB . The group delay response of the filter is compensated by the compromise equalizer, which also compensates for the group delay distortion of typical lines. Only half the line characteristic is compensated in the filter, since 2 filters will always be connected in tandem in an end-to-end application. The group delay characteristic of the low-band filter is shown in Figure 3.

High-Band Filter

The characteristics of the high-band filter are shown in Figure 4. The in-band response has a slope of approximately 1.5 dB from edge-to-edge, to compensate for typical line characteristics in this region. The out-of-band attenuation ensures adequate rejection of the low-band signal and pilot tones at either 550 Hz or 1800 Hz . The weighted adjacent channel rejection exceeds 60 dB . Group delay compensation for the filter and halfchannel characteristics is provided, as with the low-
band filter. The group delay characteristic of the highband filter is shown in Figure 5.

Figure 1. Typical Amplitude Response

Input and Output Considerations

The input signals to the S 3522 should ideally be symmetrical about ground (0 volts). However D.C. offset existing at the input pins will not be transmitted to the outputs, since both filters have transmission zeroes at D.C. Since switched capacitor filters are sampled data circuits, care must be taken to avoid aliasing problems caused by signals around the sampling frequency. In the S3522 this means that an anti-aliasing filter should be used at the Receive Input if there is any possibility of input signal components lying in the region of $205.4 \pm 3 \mathrm{kHz}$ and multiples of this frequency. A smoothing filter may be required at the Transmit Output where the signal is to be transmitted over a telephone line. Care must be taken to avoid distorting the group delay characteristics of the system if a smoothing filter is used. See Figure 6 for Typical Anti-Aliasing Circuit.

Clock Considerations

The S3522 is designed to operate with an externally

Figure 2. Typical Low-Band Amplitude

Figure 4. Typical High-Band Amplitude

Figure 3. Typical Low-Band Group Delay

Figure 5. Typical High-Band Group Delay

Figure 6. Anti-Aliasing L.P. Filter for S3522
at T_{X} (OUT) and R_{X} (IN)

supplied 2.304 MHz clock. The accuracy and stability of this frequency will directly affect the accuracy and stability of the filter characteristics. The center frequency and bandwidth may be scaled directly in proportion to
the clock frequency if desired to modify them for other applications. The 2.305 MHz frequency may be derived from the more commonly available 2.4576 MHz by dividing this frequency by $15 / 16$, using a binary rate multiplier (BRM). The BRM will generate an uneven pulse train, since it does the frequency division by eliminating one pulse out of each group of sixteen. This does modify the performance of the S3522, since it effectively modulates the sampling frequency. However, the only consequence is the generation of low level out-of-band signals, the largest of which is more than 50 dB below the signal level. The in-band performance is not measureably affected. The BRM can be either TTL (7497), using the 0 and +5 volt supplies, or CMOS (4089) using the -5 and +5 volt supplies. The 4089 requires a 10 volt supply for guaranteed operation at this frequency. The S3522 will operate with a clock " 0 " level anywhere between +1.4 and -5 volts. Both 7497 and 4089 circuits are shown in Figure 7.

Figure 7. Connections for Clock Divider Circuits

7497 Circuit

4089 Circuit

Pin/Function Descriptions

Pin	Name	Function
1	TX ${ }_{\text {(IN) }}$	Transmit Signal Input.
2	$V_{D D}$	Positive Voltage Supply (4.5 to 5.5 Volts).
3	$\mathrm{HBF}_{\text {(OUT) }}$	Output from high-band filter without delay equalizer circuit. NOTE that the signal appearing at this pin depends on the state of the MODE input. See text for further information.
4.	$\mathrm{D}_{\text {GND }}$	Digital Ground. Connect to the ground line common to other digital circuits in system.
5	$0 \mathrm{SC}_{(\text {IN })}$	2.304 MHz Clock Input. This input is TTL and CMOS compatible.
6	$\mathrm{CLK}_{\text {(OUT) }}$	104.7 kHz Buffered Clock Output. This reference output is available to drive other circuitry. The frequency is the Input Clock Frequency divided by 22. The output will drive one CMOS load.
7	$R X_{\text {(OUT) }}$	Receive Signal Output. This output will drive a $20 \mathrm{k} \Omega$ load.
8	TX ${ }_{(0 U T)}$	Transmit Signal Output. This output will drive a $20 \mathrm{k} \Omega$ load.

Pin/Function Descriptions (Continued)

Pin	Name	Function
9, 10	N.C	No Connection.
11	$V_{S S}$	Negative Voltage Supply (-4.5 to -5.5 Volts).
12	$L^{\text {LBF }}{ }_{\text {(OUT) }}$	Output from low-band filter without delay equalizer circuit. NOTE that the signal appearing at this pin depends on the state of the MODE input. See text for further information.
13	MODE	Originate Answer Mode Control Input. A logic ' 0 ' on this pin sets the device to the ORIGINATE mode, with the transmit signal in the low-band and the receive signal in the high-band. A logic ' 1 ' sets the device to the ANSWER mode, with the transmit signal in the high-band and the receive signal in the low-band. This input is CMOS and open collector TTL compatible.
14	N.C.	No Connection.
14	$\mathrm{A}_{\mathrm{GND}}$	Analog Ground. Connect to the ground line common to other analog circuitry in the system.
16	$\mathrm{RX}_{(\text {IN })}$	Receive Signal Input.

Absolute Maximum Ratings:

DC Supply Voltage ($V_{D D}-V_{S S}$) $+15.0 \mathrm{~V}$
Operating Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $-55^{\circ} \mathrm{C}$ to $+115^{\circ} \mathrm{C}$
Analog Input $V_{S S}-0.3 V \leqslant V_{I N} \leqslant V_{D D}+0.3 V$
D.C. Electrical Operating Characteristics: $T_{A}=0^{\circ}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V}$ unless otherwise specified

Symbol	Parameter/Conditions	Min.	Typ.	Max.	Units
$V_{D D}$	Positive Supply Voltage	4.5	5	5.5	V
$\mathrm{V}_{S S}$	Negative Supply Voltage	-4.5	-5	-5.5	V
$V_{\text {IH }}$ (MODE)	High Level Logic Input	4			V
$\mathrm{V}_{\text {IH }}$ (OSC-IN)	High Level Logic Input		2.8		V
$V_{\text {IL }}$ (MODE, OSC-IN)	Low Level Logic Input	$V_{\text {SS }}$		+0.8	V
$\mathrm{V}_{\text {OL }}$ (CLK OUT)	Low Level Logic Output (1 CMOS Load)	$V_{S S}$		$\mathrm{V}_{\text {SS }}+0.5$	V
$\mathrm{V}_{\text {OH }}$ (CLK OUT)	High Level Logic Output (1 CMOS Load)	$V_{D D}-0.5$		$V_{D D}$	V
$\mathrm{R}_{\text {IN }}(T X \mathrm{IN}, \mathrm{RXX}$ IN)	Input Resistance		5		M_{1}
$\mathrm{C}_{\text {IN }}(T X \mathrm{IN}, \mathrm{RX}$ IN $)$	Input Capacitance		10		pF
R OUT (TX OUT, RX OUT)	Output Resistance		2		$\mathrm{k}_{\boldsymbol{Q}}$
I_{DD}, $\mathrm{ISS}^{\text {S }}$	Supply Currents		5	10	mA

A.C. System Specifications: $T_{A}=0^{\circ}$ to $-70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{S S}=-5 \mathrm{~V}$ unless otherwise specified

Symbol	Parameter/Conditions	Min.	Typ.	Max.	Units
$\mathrm{f}_{0 \mathrm{~L}}$	Low-Band Center Frequency		1200		Hz
f_{OH}	High-Band Center Frequency		2400		Hz
BW	Bandwidth (both bands) (-1 dB)		800		Hz
$A_{\text {FO }}$	Gain at Center Frequencies	-0.5	0	+0.5	dB
$A_{\text {FREL }}$	Gain Relative to Center Frequency: See Figures 2 and 3 @	$\begin{gathered} -1.0 \\ -0.5 \\ 0 \\ +0.25 \\ -2.0 \\ -1.30 \\ 0 \\ +0.25 \end{gathered}$	$\begin{gathered} -0.25 \\ 0 \\ +0.50 \\ +0.75 \\ -1.5 \\ -0.8 \\ +0.50 \\ +0.75 \end{gathered}$	$\begin{gathered} +0.5 \\ +0.5 \\ +1.0 \\ +1.25 \\ 0 \\ 0 \\ +1.0 \\ +1.25 \end{gathered}$	dB $d B$
$G D_{\text {REL }}$	Group Delay Relative to Center Frequency: See Figures 4 and 5		$\begin{array}{r} -70 \\ -80 \\ +90 \\ +70 \\ +190 \\ +50 \\ -80 \\ -210 \end{array}$		$\mu \mathrm{sec}$
$\mathrm{R}_{\text {AC }}$	Adjacent Channel Rejection	50			dB
V_{0} (Peak-to-Peak)	Output Voltage Swing		6		V
$\left.\begin{array}{l} V_{N L} \\ V_{N H} \end{array}\right\} \text { C-Message Weighted }$	Noise Level, Low-Band Noise Level, High-Band		$\begin{aligned} & 240 \\ & 240 \end{aligned}$		μV RMS $\mu \mathrm{V}$ RMS

MI
A Subsidiary of Gould Inc.

212A/V. 22 MODEM FILTER WITH EQUALIZERS

Features

Bell 212A/v. 22 Compatible
Usable for Bell 103/113 Applications
High and Low Band Filters With Compromise
Group Delay Equalizers and Smoothing Filters
\square Guard Tone Notch Filters for
CCITT V. 22 Applications
\square Originate/Answer Operating Modes
\square
Low Power CMOS: 75 mW Typ.
\square Wide Supply Operation ($\pm 4 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$) Two Uncommitted Operational Amps. Choice of Clocking Frequencies: 2.4576 MHz , 1.2288 MHz , or 153.6 kHz
\square Detection of Call Progress Tones

General Description

The AMI S35212 Modem Filter is a monolithic CMOS integrated circuit designed to implement both the filtering and equalizing functions required in Bell 212A and CCITT V. 22 modems. The S35212 includes both the transmit signal shaping filter and the receive signal separation filter and features on-chip originate/answer mode selection. In addition, half-channel compromise amplitude and group delay equalizers are included giving full compromise equalization through the transmit and receive filter pair. For CCITT V. 22 applications a notch filter is included. It can be programmed to provide rejection at 1800 Hz or 550 Hz . Two uncommitted operational amplifiers are provided which can be used

General Description (continued)

for gain control or anti-aliasing filters. A continuous low pass filter is also included on the RX(OUT) which acts as a smoothing filter. Provision is made (via SEL2) to
switch the filter between the Call Progress Tone Detection mode and the normal Data Transmission mode. For maximum flexibility the S35212 may be operated from a $2.4576 \mathrm{MHz}, 1.2288 \mathrm{MHz}$, or 153.6 kHz clock.

Pin/Function Description

Pin Name	Pin Number	Function
SEL2	1	Logic ' 0 ' for normal operation. Logic ' 1 ' scales down the frequency response by a factor of 6 for Call Progress Tone Detection through the high group tilter.
$V_{S S}$	2	Negative Supply Voltage (typically - 5 Volts).
RX (IN)	3	Receive Signal Input.
CLK1	4	2.4576 MHz or 1.2288 MHz Clock Input. This input is TTL and CMOS compatible. Leave open when using CLK2.
R (OUT)	5	Receive Uncommitted Op Amp Output.
R-	6	Receive Uncommitted Op Amp Negative Input.
R +	7	Receive Uncommitted Op Amp Positive Input.
$V_{D D}$	8	Positive Supply Voltage (typically +5 Volts).
SEL1	9	Logic '0' selects 1.2288MHz. Logic ' 1 ' selects 2.4576 MHz clock into Pin 4.
AGND	10	Analog Ground.
MODE	11	Originate/Answer Mode Control Input. A logic ' 0 ' sets the device in originate mode with the transmit signal in the low-band and receive signal in the high-band. A logic ' 1 ' reverses the connections.
NC	12	No Connection.
NC	13	No Connection.
NC	14	No Connection.
TX (OUT)	15	Transmit Signal Output. This output will drive a 20k load.
NFO	16	Notch Filter Output. This output will drive a 20 k load.
NSEL	17	A logic ' 0 ' on this input programs the notch filter to reject 550 Hz . A logic ' 1 ' programs it to reject 1800 Hz .
TX (IN)	18	Transmit Signal Input.
T (OUT)	19	Transmit Uncommitted Op Amp Output.
T+	20	Transmit Uncommitted Op Amp Positive Input.
T-	21	Transmit Uncommitted Op Amp Negative Input.
CLK2	22	153.6 kHz Clock Input. This input is TTL and CMOS compatible. Leave open when using CLK1.
DGND	23	Digital Ground.
RX (OUT)	24	Receive Signal Output. This output will drive a 20 k load.

Absolute Maximum Ratings

DC Supply Voltage $\left(V_{D D}-V_{S S}\right)$Operating Temperature .. $\mathrm{V}^{\circ} \mathrm{C}$

D.C. Electrical Operating Characteristics: $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$; $\mathrm{V}_{\mathrm{SS}}=-5 \mathrm{~V}$ unless otherwise specified

Symbol	Parameter/Conditions	Min.	Typ.	Max.	Units
$\mathrm{V}_{I H}$	High Level Logic Input (Pins 1, 9, 11, 17)	4		$\mathrm{~V}_{\mathrm{DD}}$	V
$\mathrm{V}_{\text {IH }}$	High Level Logic Input (Pins 4 and 22)	2.0		$\mathrm{~V}_{D D}$	V
$\mathrm{~V}_{\mathrm{IL}}$	Low Level Logic Input (Pins 1, 4, 9, 11, 17, 22)	$\mathrm{V}_{S S}$		$\mathrm{~V}_{S S}+0.8$	V
R_{IN}	Input Resistance (Pins 3 and 18)		5		$\mathrm{M} \Omega$
$\mathrm{C}_{I N}$	Input Capacitance (Pins 3 and 18)		10		pF
P_{D}	Power Dissipation @ $\pm 6 \mathrm{~V}$		75	150	mW

A.C. System Specifications: $T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=-5 \mathrm{~V}$ unless otherwise specified

Symbol	Parameter/Conditions	Min.	Typ.	Max.	Units
V_{0}	Reference Signal Level Input		1		VRMS
$V_{\text {MAX }}$	Maximum Signal Level Input		1.4		VRMS
BW	Bandwidth (both bands; -3dB)		960		Hz
$\mathrm{~A}_{\text {FO }}$	Gain at Center Frequencies		0		dB
$\mathrm{ICN}_{\mathrm{L}}$	Idle Channel Noise-Low Band Filter		22	33	$\mathrm{dBrnC0}$
ICN_{H}	Idle Channel Noise-High Band Filter		23	33	$\mathrm{dBrnC0}$
$\mathrm{~N}_{\mathrm{FT}}$	Clock Feedthrough with Respect to Signal Level	TX	-23	-60	dB

Frequency (Hz)		Relative Gain (dB)	
		Min.	Max.
Low Band	400		-35
	800	-1	+1
	1200	-1	+1
	1600	-1.5	+1
	1800		-18
	2000		-48
	2400		-55
	2800		-50
800		-50	
High Band			-53
	1200		-50
	1600		+0.5
	2000	-2.5	+1
	2400	-1	+2.5
	2800		
	3200		-10
3500			-20

Figure 1. Typical Amplitude vs. Frequency Plot

Call Progress Mode Operation

By switching Pin 1 (SEL2) the center frequencies of the filters will shift down to one-sixth of their original values. This is done by dividing the clock frequency by 6. As a result, the 1200 Hz filter will be centered around 200 Hz and the 2400 Hz filter will be centered around 400 Hz when Pin 1 is switched high.
With the high group filter centered at 400 Hz , its passband will be approximately 300 Hz to 480 Hz . This allows

Figure 2. Typical Low-Band Amplitude

Figure 3. Typical Low-Band Group Delay vs. Frequency Plot

the precision dial tone of $350 / 440 \mathrm{~Hz}$ to pass, as well as audible ringing at $440 / 480 \mathrm{~Hz}$. Half of the busy or reorder tone of $480 / 620 \mathrm{~Hz}$ will also pass through the high group filter in this mode.
By using a suitable detector circuit combined with a method of timing determination it is possible to build a more intelligent MODEM that can communicate back to its terminal or computer the status of the phone call.

Figure 4. Typical High-Band Amplitude vs. Frequency Plot

Figure 5. Typical High-Band Group Delay vs. Frequency Plot

2600Hz Digital Frequency Detector

Features
$\square 2600 \mathrm{~Hz}$ Center Frequency With 70 Hz Bandwidth.
\square Small 8-Pin Minidip Package
\square Operation From a Low Cost 3.58MHz TV Colorburst Crystal or External Clock
\square Input Comparator for Squaring and Sensitivity AdjustmentLow Power CMOS Technology

Description

The S3524 is a digital Frequency Detector used to accurately determine if an incoming tone is within a set of predefined limit frequencies. It checks every period of the incoming signal, giving a true output for each period falling within the desired bandwidth.
The S3524A, using a 3.582 MHz clock, will detect a 2600 Hz frequency within 70 Hz bandwidth. It is primarily designed to follow the S3526B 2600 Hz bandpass filter as shown in Figure 2.

Absolute Maximum Ratings

DC Electrical Operating Characteristics: $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Symbol	Parameter Conditions	Min.	Typ.	Max.	Units
$V_{D D}$	Positive Supply (Ref. to GND)	4.75	5	5.25	V
$V_{S S}$	Negative Supply (Ref. to GND)	-4.75	-5	-5.25	V
$P D$	Power Dissipation			100	mW
$V_{\mathbb{I N}}$	Input Signal Level	43			$\mathrm{mV}(\mathrm{RMS})$
R_{0}	Load Resistance	6			$\mathrm{k} \Omega$

Pin Description

Name	Number	Description
$V_{D D}$	8	Positive Power Supply. Typically +5 V.
$V_{S S}$	4	Negative Power Supply. Typically -5 V.
$I N-$	1	Input comparator for setting sensitivity and squaring of analog signals. Signal sensitivity is
IN+	2	controlled by selecting external resistors.
FB	3	The detector output. Open drain type output for ease of interface. DET OUT will be high after DET OUT
	5	one full cycle of valid signal is detected, and will remain high until an out of frequency cycle
OSC IN	6	Oscillator terminals for 3.58 MHz reference crystal or clock. Uses standard TV crystal or a
OSC OUT	7	rail-to-rail CMOS clock may be used.

Operation and Applications Information

Figure 1.

Figure 2. Representative Circuit

Figure 3. Effective Response of S3526 Bandpass Filter Followed by S3524A Digital Detector

In SINGLE SUPPLY SITUATION THE GROUND FOR THE SENSITIVITY ADJUSTMENT WOULD BE $1 / 2$ (Vor VSS) AS DETERMINED BY A REGULATOR OR RESISTIVE VBLTAGE DIVIGER. OFFSET COMPENSA TON WOULD BE DONE BY VAhYING THE HALF VOLTAGE PONT SLGGHTLY IF DESIRED.

Figure 5. A Typical Detection Bandwidth 2600 for Application Circuit in Figure 4 at 10V

Figure 4. Circuit Example Showing S3526B and S3524A Combined to Provide Narrow Detection Bandwidth

S3525A/S3525B

DTMF BANDSPLIT FILTER

Features

\square CMOS Technology for Wide Operating Single Supply Voltage Range (7.0 V to 13.5 V). Dual Supplies ($\pm 3.5 \mathrm{~V}$ to $\pm 6.75 \mathrm{~V}$) Can Also Be Used.
\square Uses Standard 3.58 MHz Crystal as Time Base. Provides Buffered Clock to External Decoder Circuit.
\square Ground Reference Internally Derived and Brought Out.
\square Uncommitted Differential Input Amplifier Stage for Gain Adjustment
\square Filter and Limiter Outputs Separately Available Providing Analog or Digital Outputs of Adjustable Sensitivity.
\square Can be Used with Variety of Available Decoders to Build 2-Chip DTMF Receivers.

General Description

The S3525 DTMF (Touch Tone ${ }^{\oplus}$) Bandsplit Filter is an 18 -pin monolithic CMOS integrated circuit designed to implement a high quality DTMF tone receiver system when used with a suitable decoder circuit. The device includes a dial tone filter, high group and low group separation filters and limiters for squaring of the filtered signals. An uncommitted input amplifier allows a programmable gain stage or anti-aliasing filter. The dial tone filter is designed to provide a rejection of at least 52 dB in the frequency band of 300 Hz to 500 Hz . The difference between the S3525A and the S3525B is the frequency of output clock signal at the CKOUT pin. In the S3525B, it is a 894.89 kHz square wave while in the S3525A, it is a 3.58 MHz buffered oscillator signal. The S3525A can be used with digital DTMF decoder chips that need the TV crystal time base allowing use of only one crystal between the filter and decoder chips.

Absolute Maximum Ratings:

DC Supply Voltage ($\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {SS }}$)	+15.0V
	$\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$

DC Electrical Operating Characteristics: $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Symbol	Parameter/Conditions		Min.	Typ.	Max.	Units
$V_{D D}$	Positive Supply (Ref to $\mathrm{V}_{\text {SS }}$)		9.6	12.0	13.5	V
$V_{\text {OL(ckоut) }}$	Logic Output 'Low' Voltage $\mathrm{I}_{0 \mathrm{~L}}=160 \mu \mathrm{~A}$			$\mathrm{V}_{S S}+0.4$		V
$\mathrm{V}_{\text {OH(CKOUT }}$	Logic Output "High" Voltage $\mathrm{I}_{\mathrm{OH}}=4 \mu \mathrm{~A}$			$V_{D D}-1.0$		V
$\left.\mathrm{V}_{\text {OL(}} \mathrm{FH}, \mathrm{FL}\right)$	Comparator Output Voltage Low	500pF Load 10k Ω Load			$\begin{aligned} & V_{S S}+0.5 \\ & v_{S S}+2.0 \end{aligned}$	V V
$\left.\mathrm{V}_{\text {OH(}} \mathrm{FH}, \mathrm{FL}\right)$	Comparator Output Voltage High	$\begin{aligned} & 500 \mathrm{pF} \text { Load } \\ & 10 \mathrm{k} \Omega \text { Load } \end{aligned}$	$\begin{aligned} & V_{D D}-0.5 \\ & V_{D D}-2.0 \\ & \hline \end{aligned}$			V
$\mathrm{R}_{\text {INA (IN-, IN +) }}$	Analog Input Resis		8			M Ω
$\mathrm{C}_{\text {INA (}} \mathrm{NA}-\mathrm{IN+)}$	Anaiog Input Capa				15	pF
$V_{\text {REF }}$	Reference Voltage		$\begin{gathered} 0.49 \\ \left(V_{D D}-V_{S S}\right) \end{gathered}$	$\begin{gathered} 0.50 \\ \left(V_{D D}-V_{S S}\right) \end{gathered}$	$\begin{gathered} 0.51 \\ \left(V_{D D}-V_{S S}\right) \end{gathered}$	V
$V_{\text {OR }}=\left[B V_{\text {REF }}-V_{\text {REF }}\right]$	Offset Reference V				50	mV
P_{0}	Power Dissipation	$V_{D D}=10 \mathrm{~V}$		170		mW
		$V_{D D}=12.5 \mathrm{~V}$		400		mW
		$\mathrm{V}_{\mathrm{DD}}=13.5 \mathrm{~V}$			650	mW

AC System Specifications:

Symbol	Parameter/Conditions		Min.	Typ.	Max.	Units
A_{F}	Pass Band Gain		5.5	6	6.5	dB
DTR ${ }_{\text {L }}$	Dial Tone Rejection Dial Tone Rejection is measured at the output of each filter with respect to the passband		55	59		dB wrt 700 Hz
		440 Hz	50	53		dB wrt 700 Hz
DTR $_{H}$	High Group Rejection	Either Tone	55	68		$\begin{aligned} & \text { dB wrt } \\ & 1200 \mathrm{~Hz} \end{aligned}$

AC System Specifications (Continued)

Symbol	Parameter/Conditions	Min.	Typ.	Max.	Units
$G A_{L}$ $G A_{H}$	Attenuation Between Groups Attenuation of the nearest frequency of the opposite group is measured at the output of each filter with respect to the passband Attenuation of 1209 Hz Attenuation of 941 Hz	50 40	$\begin{gathered} >60 \\ 42 \end{gathered}$		dB wrt 700 Hz dB wrt 1200 Hz
THD	Total Harmonic Distortion Total Harmonic Distortion (dB). Dual tone of 770 Hz and 1336 Hz sinewave applied at the input of the filter at a level of 3 dBm each. Distortion measured at the output of each filter over the band of 300 Hz to 10 kHz $\left(V_{D D}=12 \mathrm{~V}\right)$			-40	dB
ICN	Idle Channel Noise Idle Channel Noise measured at the output of each filter with C-message weighting. Input of the filter terminated to $B V_{\text {REF }}$			1	mV rms
GD_{L}	Group Delay (Absolute) Low Group Filter Delay over the band of 50 Hz to 3 kHz		4.5	6.0	ms
$G D_{H}$	High Group Filter Delay over the band of 50 Hz to 3 kHz		4.5	6.0	ms

Pin \#	Function	Descriptions
16,17	${ }^{0 S C_{\text {IN }}}$, OSC $_{\text {OUT }}$	These pins are for connection of a standard 3.579545 MHz TV crystal and a $10 \mathrm{M} \Omega$ $\pm 10 \%$ resistor for the oscillator from which all clocking is derived. Necessary capacitances are on-chip, eliminating the need for external capacitors.
18	CKOUT (S3525A)	Oscillator output of 3.58 MHz is buffered and brought out at this pin. This output drives the oscillator input of a decoder chip that uses the TV crystal as time base. (Only one crystal between the filter and decoder chips is required.)
18	CKOUT (S3525B)	This is a divide by 4 output from the oscillator and is provided to supply a clock to decoder chips that use 895 kHz as time base.
11,12,13	$\underline{N}-, \ldots N+$, Feedback	These three pins provide access to the differential input operational amplifier on chip. The feedback pin in conjunction with the $I N$ - and $I N+$ pins allows a programmable gain stage and implementation of an anti-aliasing filter if required.
15,14	FH OUT, FL OUT	These are outputs from the high group and low group filters. These can be used as inputs to analog receiver circuits or to the on-chip limiters.
9,10,5,6	$\begin{aligned} & \text { HI IN -, HI IN + } \\ & \text { LO IN -, LO IN + } \end{aligned}$	These are inputs of the high group and low group limiters. These are used for squaring of the respective filter outputs. (See Figure 2.)
8,7	FHSQ, FLSQ	These are respectively the high group and low group square wave outputs from the limiters. These are connected to the respective inputs of digital decoder circuits.
1,4	$V_{D D}, V_{S S}$	These are the power supply voltage pins. The device can operate over a range of $7 \mathrm{~V} \leqslant\left(\mathrm{~V}_{D D}-\mathrm{V}_{S S}\right) \leqslant 13.5 \mathrm{~V}$.
2	$V_{\text {REF }}$	An internal ground reference is derived from the $V_{D D}$ and $V_{S S}$ supply pins and brought out to this pin. $V_{\text {REF }}$ is $1 / 2\left(V_{D D}-V_{S S}\right)$ above $V_{S S}$.
3	$B V_{\text {REF }}$	Buffered $V_{\text {REF }}$ is brought out to this pin for use with the input and limiter stages.

Figure 1. Typical S3525 DTMF Bandsplit Filter Loss/Delay Characteristics

Input Configurations

The applications circuits show some of the possible input configurations, including balanced differential and single ended inputs. Transformer coupling can be used if desired. The basic input circuit is a CMOS op amp which can be used for impedance matching, gain adjustment, and even filtering if desired. In the differential mode, the common mode rejection is used to reject power line-induced noise, but layout care must be taken to minimize capacitive feedback from pin 13 to pin 12 to maintain stability.
Since the filters have approximately 6dB gain, the in-
puts should be kept low to minimize clipping at the analog outputs ($\mathrm{FL}_{\text {OUt }}$ and $\mathrm{FH}_{\mathrm{OUT}}$).

Output Considerations

The S3525 has both analog and digital outputs available. Most integrated decoder circuits require digital inputs so the on-chip comparators are used with hysteresis to square the analog outputs. The sensitivity of the receiver system can be set by the ratio of R1 and R2, shown in Figure 2. The amount of hysteresis will set the basic sensitivity and eliminate noise response below that level.

Figure 2. Typical Squaring Circuit

S3525 BANDSPLIT FILTER

$$
\begin{aligned}
& \text { ASSUMING BV } \\
& V_{\text {REF }}=0 \text { OR } \\
& \text { UTP } \left.=E_{D(S A T} \cdot V_{S S}\right) \text { then } \\
& \frac{R_{1}}{R_{1}+R_{2}} \\
& \text { LTP }=-E_{O(S A T)} \frac{R_{1}}{\mathbf{R}_{1}+R_{2}}
\end{aligned}
$$

Crystal Oscillator

The S3525 crystal oscillator circuit requires a 10 Meg ohm resistor in parallel with a standard 3.58 MHz television colorburst crystal. For this application, however, crystals with relaxed tolerances can be used. Specifications can be as follows:

$$
\begin{array}{ll}
\text { Frequency } & 3.579545 \pm .02 \% \\
\text { RS } \leqslant 180 \Omega & L_{M} \sim 96 \mathrm{MH} \\
C_{L}=18 \mathrm{pF} & \mathrm{C}_{\mathrm{h}}=7 \mathrm{pF}
\end{array}
$$

Alternate Clock Configurations

If 3.58 MHz is already available in the system it can be applied directly as a logic level to the OSC $_{1 N}$ (pin 16). [Max. zero~30\% VDD, min. one~70\% VDD]. Waveforms not satisfying these logic levels can be capacitively coupled to $O S C_{I N}$ as long as the 10 Meg ohm feedback resistor is installed.
The S3525A provides a buffered 3.58 MHz signal from the on-chip oscillator to external decoders or other devices requiring 3.58 MHz . The S 3525 B provides a buffered $\div 4$ output at 895 kHz to drive certain tone decoders and microprocessors. If both frequencies are required in a system, the 3.58 MHz can be capacitively coupled as shown in Figure 2A.

Applications

The circuits shown are not necessarily optimal but are intended to be good starting points from which an opti-
mal design can be developed for each individual application.

Companion decoders to be used with the S3525 vary in performance and features. Nitron's NC2O30 and MOSTEK's MK5102/03 are available units that can be used with the S3525.

Figure 2A. S3525B Driving MK5103

Typical Applications

\square Wireline DTMF Signal ReceiversRadio DTMF Signal Receivers
\square Dial Tone Detectors
\square Offsite Data Collectors/Test Instruments
-
Security Alarms
\square Remote Command Receivers

- Phone Message Playback
- Camera Controllers
- Robot Arm Controllers

Figure 3. DTMF Keyboard

Figure 4. AMI/Mostek 2 Chip DTMF Receiver

Figure 5. AMI/Nitron 2 Chip DTMF Receiver

Figure 6. DTMF End-to-end Signaling Using the Telephone Network

Remote Control

In some systems, a telephone set is used to do remote controlling. A remote device to be signalled is interconnected to the telephone network with its own number (see Figure 6). When that number is dialed, the connection is established. The calling party continues to push the buttons on his telephone, sending command codes.* The DTMF Receiver at the central office is disconnected once the line connection is established, so no-problem arises in the telephone network. Now the DTMF Receiver in the answering device is detecting and responding to the dialed digits, performing the control functions.

Dial Tone Detector

Since the frequency response of switched capacitor filters can be varied directly by varying the clock frequency, the S3525 can be used for other Telecommunications applications.

One application is a dial tone detector for telephone accessory equipment to determine the presence or absence of dial tone. Precision dial tone is a combination of 350 and 440 Hz . By using a crystal of 1.758 MHz the 3dB points of the low group filter output will be 334 to 496 Hz . Thus, all the energy from precision dial tone will be available at the low group output.

[^9]
SINGLE FREQUENCY TUNEABLE BANDPASS/NOTCH FILTER/TONE GENERATOR

Features

Center Frequency of Filters Match and Track Frequency of Generated Tone
\square Tone Frequency Adjustable Over a 100 Hz to 5 kHz Range
\square Unfiltered Input, Input with Notched Tone, Input Tone and Tone Generator Outputs
\square Operation from a Crystal or External CMOS/TTL Clock
\square Operation at 2600 Hz from a Low Cost 3.58 MHz TV Color Burst Crystal or 256 kHz Ext. Clock
\square Buffered Output Drives 6002 Loads
\square Single or Split Supply Operation
\square Low Power CMOS Technology

General Description

The S3526 is a low power CMOS Circuit which may be used in a variety of single frequency (SF) communication applications such as SF-Tone Receivers, Tone Remote Control in Mobile systems, Loopback Diagnostics in Modems, control of Echo Cancellers, dialing and privacy functions in Common Carrier Radio Telephone, etc. The main functional blocks of the S3526 include a low distortion tone (sinewave) generator whose frequency may be programmed using a crystal (i.e. 2600 Hz using a low cost TV color burst crystal) or external clock time base; a bandpass filter used to extract tone information from the input signal; a band reject filter which is used to "Notch" out tone information from the input signal; and a buffer amplifier with selectable input (unfiltered input signal, or input signal with tone notched) capable of driving a 600Ω load.

Absolute Maximum Ratings

Supply Voltage (VD ${ }_{\text {D }}$	
Operating Temperature Storage Temperature Input Voltage, All Pins	

D.C. Electrical Operating Characteristics: $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C},\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right)=10 \mathrm{~V}$ unless otherwise specified

Symbol	Parameter/Conditions	Min.	Typ.	Max.	Units
V_{DD}	Positive Supply (Ref. to $\mathrm{V}_{S S}$)	9.0	10	13.5	V
P_{D}	Power Dissipation (Maximum @13.5V)		100	275	mW
$\mathrm{R}_{\text {IN }}$	Input Resistances (Except Input)	8			$\mathrm{M} \Omega$
C_{IN}	Input Capacitances			15.0	pF

General Analog Signal Parameters: $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C},\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right)=10 \mathrm{~V}$

Symbol	Parameter/Conditions	Min.	Typ.	Max.	Units
$\mathrm{A}_{\text {F }}$	Straight Through Gain (Measured at - 10dBm0)	-0.5	0	0.5	dB
$\mathrm{Z}_{\text {IN }}$	Input Impedance (Input, Pin 1)		2.5		M Ω
TLP	Transmission Level Point (0dBm0)		1.5		VRMS
$\mathrm{V}_{\text {FS }}$	Maximum Input Signal Level (+ 3dBm0)		2.1		VRMS
R_{L}	Load Resistance (BPF, NOTCH)	10			k Ω
R_{L}	Load Resistance (BUFF)	600			ohms
$V_{\text {OSB }}$	Buffer Output Offset Voltage		± 50	± 150	mV
$\mathrm{ICN}_{\mathrm{p}}$	Idle Channel Noise in Pass Condition		2		dBrnC0
$\mathrm{V}_{\text {OUT }}$	Output Signal Level into R ${ }_{\text {L }}$ for NOTCH, BPF, BUFF	2.0	2.1		VRMS
$V_{\text {OT }}$	Sine Wave (Tone) Output (Load $=10 \mathrm{~K} \Omega$)	$0.6\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{S S}\right) \pm 0.5 \mathrm{~dB}$			Vpk-pk
$V_{\text {TD }}$	Sine Wave Distortion ($\mathrm{f}_{\text {OSC }}=3.58 \mathrm{MHz}$) (See Figure 4)		-35		dB

Filter Performance Specifications

Band Pass Filter Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C},\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{S S}\right)=10 \mathrm{~V}, \mathrm{f}_{\mathrm{OSC}}=3.58 \mathrm{MHz}$

Symbol	Parameter/Conditions	Min.	Typ.	Max.	Units
$\mathrm{V}_{\text {FS }}$	Maximum Input Voltage (+ 3dBm0)		2.1		VRMS
$A_{\text {BP }}$	Passband Gain @ - 10dBm0	-0.8	0	+0.8	dB
${ }_{\text {CN }}$	Idle Channel Noise		24		dBrnC0
$V_{0 S}$	Output Offset		± 50	± 150	mV
	2600 Hz Bandpass Filter Response (referenced from $2600 \mathrm{~Hz}+3 \mathrm{dBmO}$) (See Figures 1 and 2) 0 C to 1600 Hz 2100 Hz 2400 Hz 2540 Hz 2560 Hz 2640 Hz 2660 Hz 2800 Hz 3100 Hz 3600 Hz	$\begin{aligned} & -3 \\ & -3 \end{aligned}$	$\begin{aligned} & -80 \\ & -63 \\ & -37 \\ & -7.0 \\ & -1.8 \\ & -1.0 \\ & -5.4 \\ & -35 \\ & -58 \\ & -74 \end{aligned}$	$\begin{aligned} & -50 \\ & -30 \\ & -3 \\ & \\ & -3 \\ & -30 \\ & -50 \end{aligned}$	
DR	Dynamic Range (VFS to ICN)		70		dB

Notch Filter Characteristics $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C},\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right)=10 \mathrm{~V}$ (Symmetrical Supplies), fosC $=3.58 \mathrm{MHz}$

Symbol	Parameter/Conditions	Min.	Typ.	Max.	Units
$V_{\text {FS }}$	Maximum Input Voltage ($+3 \mathrm{dBm0}$)		2.1		VRMS
$A_{B R}$	Passband Gain @ - 10dBm0)	-0.5	0	+0.5	dB
ICN	Idie Channel Noise		18		dBrnC0
V_{0}	Output Offset		± 100	± 225	mV
DR	Dynamic Range (V $\mathrm{V}_{\text {FS }}$ to ICN)		75		dB
	2600 Hz Notch Filter Response (referenced from 1000 Hz , $(+3 \mathrm{dBm} 0)$ (See Figures 1 and 3) 250 Hz to 2200 Hz 2200 Hz to 2400 Hz 2585 Hz to 2615 Hz 2800 Hz to 3000 Hz 3000 Hz to 3400 Hz	$\begin{aligned} & -0.5 \\ & -5.0 \\ & -5.0 \\ & -0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 0.1 \\ & -70 \\ & \pm 0.1 \end{aligned}$	$\begin{gathered} 0.5 \\ 0.5 \\ -53 \\ 0.5 \\ 0.5 \end{gathered}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$

Digital Electrical Parameters $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C},\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right)=10 \mathrm{~V}$

Symbol	Mode Control Logic Levels	Min.	Typ.	Max.	Units
$V_{I H}$	C / T CMOS Operation (Pin 14)	$V_{D D}-0.5$		$V_{D D}$	V
$V_{I L}$	C / T TTL Operation (Pin 14)	$V_{S S}$		$V_{D D}-4$	V
$V_{I H}$	CS for Low Speed Clock Input	$V_{D D}-0.5$		$V_{D D}$	V
$V_{I L}$	CS for Crystal or High Speed Clock	$V_{S S}$		$V_{A G}$	V

CMOS Logic Levels

$V_{I H}$	Input Voltage " 1 ' ' Level	$V_{A G}+2$		$V_{D D}$	V
$V_{I L}$	Input Voltage ' 0 '" Level	$V_{S S}$		$V_{A G}-2$	V

Control Pin Definitions

Pin\#	Name	Connection	Operation	Note
14	C/T	$V_{D D}$ to ($V_{D D}-0.5 \mathrm{~V}$)	CMOS Logic Levels	1
		$\left(V_{D D}-4 V\right)$ to $V_{S S}$	TTL Logic Levels	
4	CS	$V_{D D}$	Ext. Low Speed Sq. Wave Clock @ Pin 3	2
		$V_{S S}$ or $V_{A G}$	Crystal Connected Between Pins 2 and 3 or High Speed Clock to Pin 2	
10	$\overline{N E}$	$V_{D D}$ to $7\left(V_{D D}-V_{S S}\right)$	Buffer Out = Input Signal	
		$V_{S S}$ to $3\left(V_{D D}-V_{S S}\right)$	Buffer Out = Notch Filter Out	

NOTES: 1) CMOS logic levels are same as $V_{D D}$ and $V_{S S}$ supply voltage levels. For TTL interface ground of TTL logic must be connected to $V_{S S}$ supply pin.
2) For ext. low speed clock operation pin 2 must be connected to $V_{D D}$. For ext. high speed clock, drive pin 2, leave pin 3 open.
3) The performance specifications are guaranteed with $\pm 5 \%$ power supplies for normal operation.

Pin Function Description

Pin	No.	Function
Input	1	This pin is the analog input to the filters and the buffer. It is a high impedance input ($\mathrm{Z} \cong 2.5 \mathrm{M}$)).
$\begin{aligned} & { }^{0 S C_{1}} \\ & { }^{0 S C} \end{aligned}$	2 3	These pins are the timing control for the entire chip. A crystal may be connected across these two pins in parallel with a $10 \mathrm{M} \Omega$ resistor. Another option is to provide an ext clock at pin 3 and connect pin 2 to $V_{D D}$. TTL or CMOS may be used. As a third choice, a CMOS level external clock may be applied to pin 2 directly leaving pin 3 open.
CS	4	Clock Select-This pin when tied to $V_{D D}$ configures the chip to operate from a low speed clock. When tied to $\mathrm{V}_{A G}$ or $\mathrm{V}_{S S}$ the chip operates from external crystal or high speed clock.
TONE	5	This is an output pin providing a sine wave with a frequency of fosc $\div 1376$ if CS is low or fosc $\div 98$ if CS is high.
$V_{S S}$	6	Negative supply voltage pin. Typically $-5 \mathrm{~V} \pm 5 \%$
$V_{\text {DD }}$	7	Positive supply voltage pin. Typically $+5 \mathrm{~V} \pm 5 \%$.
NOTCH	8	Band Reject (Notch) Filter-This is the output of the filter that notches the tone information from the input signal. It is capable of driving a load $\geqslant 10 \mathrm{k} \Omega$.
BUFF	9	Buffer Output-The buffer is capable of driving a 600Ω load and provides from its output either the signal input without filtering, or the signal input with the tone frequency notched out.
$\overline{\mathrm{NE}}$	10	Notch Enable-This pin controls which signal is presented to the buffer input. A logic high ($V_{D D}$) connects the input signal. A logic low ($V_{S S}$) connects the output of the band reject (notch)filter.
INV	11	Inverting-This is the inverting input of the buffer.
BPF	12	Band Pass Filter-This is the output of the band pass filter which will pass any energy at the tone frequency present in the input signal. It is capable of driving a load $\geqslant 10 \mathrm{k} \Omega$.
$V_{\text {AG }}$	13	Analog Ground-This is the analog ground pin. When used with a single supply, this pin is $1 / 2\left(V_{D D}-V_{S S}\right) \pm 100 \mathrm{mV}$. When used with $\pm 5 \mathrm{~V}$ supplies, this point is at ground. The $\$ 3526$ has internal voltage divider resistors to $V_{D D}$ and $V_{S S}$ of $\cong 20 \mathrm{k} \Omega$.
C/T	14	CMOS/TTL-This pin determines whether CMOS or TTL levels will be accepted at pin 3 for a clock input. When tied to $V_{D D}$, the chip accepts CMOS logic levels. When tied to a point $\leqslant\left(V_{D D}-4 V\right)$, the chip accepts TTL levels. For crystal operation pin 14 should be at $V_{D D}$.

Application Information

The S3526 device is a very versatile filter chip. Although it was designed for the telephone market SF signaling application when used with the commonly available TV colorburst crystal, it will work over a wide range of frequencies. Typically, it will cover from 100 Hz to 5 kHz providing coverage of the entire voice band for in-band signaling.

Because it is a very high Q filter the transient response time must be considered when determining the maximum data rate for a particular frequency. This response is illustrated in Figure 5 and shows that it is quite adequate for 10 pulse-per-second (50% duty cycle) data rate at 2600 Hz . But the same data rate could not be used at 500 Hz , for example, as a detector could not differentiate between tone on and tone off conditions.

Figure 1. Typical Filter Performance Curves at $\mathbf{2 6 0 0 H z}$

Figure 3. Typical Notch Response

Figure 2. Typical Bandpass Response

Figure 4. Typical Sine Wave
Output Spectrum from Pin 5

Figure 5. Typical Delay Characteristics at +3 dBmO with 2600 Hz Pulsed at 10pps with 50% Duty Cycle

The combination of tone generator, notch filter, and bandpass filter allows one to generate a signaling tone at the sending end and notch it out at the receiving end, as well as detect it through the bandpass filter. For reliable detection the output of the bandpass filter can be compared with the output of the bandreject filter. If the output of the BR filter is within a fixed ratio of the BP filter (such as 10 dB) then the signal present may be considered voice rather than signaling and ignored.
In situations where the entire voice band is desired except during signaling the buffer output can be switched straight through to the input. When the output of the filters indicates that a signaling tone is present, the $\overline{\mathrm{NE}}$ pin can be switched low, switching the notch filter into the signal path to prevent the tone from reaching the listener or from being passed further down the system to another signaling receiver.
By using the notch filter with telephone accessories it can be guaranteed that the accessory will not violate the telephone company specifications about transmitting 2600 Hz into the lines, causing disconnected calls.

Power Supplies

The S3526 will work with either single or dual power supplies. When used with dual power supplies ($\pm 5 \mathrm{~V}$) the analog inputs and outputs will be referenced to ground. If an external clock signal is provided, rather

Figure 6. Typical Filter Performance Curves at $\mathbf{1 0 0 0 H z}$

than using a crystal, it must be swinging from $V_{S S}$ to $V_{A G}$ for TTL swings or from $V_{S S}$ to $V_{D D}$ for CMOS swings. If this is not convenient the signal can be capacitively coupled into pin 3 as illustrated in Figure 7. In the dual supply mode, the power supplies should track or maintain close tolerances for maximum accuracy. If the supplies should skew, the filter characteristics will change very slightly and in most applications, will have no effect at all but can be seen if the curves are plotted on high accuracy equipment.
When using the S3526 on a single power supply the analog inputs and outputs will be referenced to $V_{A G}$ which is $1 / 2\left(V_{D D}-V_{S S}\right)$. This means that the analog signals may need to be capacitively coupled in and out if they are normally ground referenced. For example, the input may appear as in Figure 8. But when an external clock is used in the single supply situation it can be direct coupled TTL levels referenced to ground.

Selecting Clocking Sources

The switched capacitor filter design allows the S3526 to be easily tuned by varying the clock frequency. This makes it useful for many applications in telephone signaling, data communications, medical telemetry, test equipment, automatic slide projectors, etc. The necessary clock frequency can be determined by multiplying the desired center frequency by 1376. This frequency
can then be provided from a crystal, an external clock, or a rate multiplier chip. With Clock Select (CS), pin 4 tied low the TONE, pin 5 , will provide the desired frequency and the filters will be centered around that frequency. There are many common, low cost microprocessor frequency crystals available that might be very close to a desired frequency. Table 1 illustrates some possible application frequencies. For example, by using a standard 3.00 MHz crystal the 2175 Hz tone would be 2180 Hz or $.23 \%$ high.

Figure 7. External Clock Drive

If it is desired to use a lower frequency clock and precision tone generation is not required the external clock can be determined by multiplying the center frequency by 98.4 , and tying Clock Select (CS) pin 4 high. Note that the TONE, pin, 5 , is not accurate in this situation, being $.41 \%$ higher than the filter center frequency, although it will fall well within the passband of both filters and be perfectly usable.

Figure 8.

Table 1. Tone and Clock Frequencies for Various Applications

Tone In Hertz	Application	XTAL or HIGH Freq. Clock (MHz)	Ext. Clock Input (Hz)
550	Pilot Tone-Data Comm	.756800	54,120
1000	Test Tone	1.376000	98,400
1020	Test Tone	1.403520	100,368
1400	Medical Telemetry	1.926400	137,760
1600	SF Signaling-Military	2.201600	157,440
1800	Pilot Tone-Data Comm	2.476800	177,120
1850	Pilot Tone-Radio	2.545600	182,040
1950	Pilot Tone-Radio	2.683200	191,880
2125	Echo Suppressor Disable	2.924000	209,100
2150	Echo Suppressor Disable	2.958400	211,560
2175	Guard Tone-Radio	2.992800	214,020
2280	SF Signaling-Telephone	3.137280	224,352
2400	SF Signaling-Telephone	3.302400	236,160
260	SF Signaling-Telephone	3.579545	256,000
2713	Loopback Tone Datacom	3.733088	266,959
2800	SF Signaling-Telephone	3.852800	275,520
2805	Signaling Tone-Radio	3.859680	276,012
3825	SF Signaling-European	5.263200	376,380

SINGLE FREQUENCY TUNABLE BANDPASS/NOTCH FILTER/TONE GENERATOR

Features

\square Center Frequency of Filters Match and Track Frequency of Generated Tone
\square Clock Tunable Tone Frequency, Adjustable Over a 100 Hz to 5 kHz Range
\square Available Outputs: Bandpass, Notch, Straight
Through Switchable to Notch, and Center Frequency Tone
\square Operation from a Crystal or External CMOS/TTL Clock
\square Operation at 2600 Hz from a Low Cost 3.58 MHz TV
Color Burst Crystal or 2.048 MHz or 1.536 MHz External Clocks
\square Buffered Output Drives 600s Loads
Single or Split Supply Operation
Low Power CMOS Technology

Typical Applications for the S3526M Bandpass/Notch Filter

Telecommunications:
$\square 2600 \mathrm{~Hz}$ Telephone Signaling
\square Pilot Tone Filtering for Mobile Radio
\square Telephone Loopback Line Testing
\square Single Frequency Detection and/or Removal Filtering

Instrumentation
Data Communications
\square Medical Telemetry
\square Portable Instrumentation
\square Test Tone Generation and Notching

Block Diagram

Pin Configuration

PROGRAMMABLE LOW PASS FILTER

Features

\square Cutoff Frequency Selectable in 64 Steps Via Six Bit Control Word
\square Continuously Tuneable Cutoff Frequency Variable Via External Clock (Crystal, Resonator, or TTUCMOS Clock)
\square Cutoff Frequency (f_{c}) Range of 10 Hz to 20 kHz , 40 Hz to 20 kHz Via Popular 3.58 MHz TV Crystal
\square Seventh Order Ellipitical Ladder Filter with Cosine Prefiltering Stage
\square Passband Ripple: <0.1dB
\square Stopband Attenuation: $>51 \mathrm{~dB}$ for $\mathrm{f}>1.3 \mathrm{f}_{\mathrm{c}}$
\square Uncommitted Input and Output Op Amps for AntiAliasing and Smoothing Functions
\square Steps May Be Custom Programmed from a Set of 2,048 Discrete Points Via Internal ROMLow Power CMOS Technology

Typical Applications for the S3528 and S3529 Programmable Filters

Telecommunications

PBX and Trunk Line Status Monitoring
Automatic Answering/Forwarding/Billing Systems
Anti-Alias Filtering
Adaptive Filtering

Remote Control

\square Alarm Systems
\square Heating Systems
\square Acoustic Controllers
Test Equipment/Instrumentation
\square Spectrum Analyzers
\square Computer Controlled Analog Circuit Testers
\square Medical Telemetry/Filtering
\square ECG Signal Filtering
\square Automotive Command Selection and Filtering

Typical Applications for the S3528 and S3529
 Programmable Filters (continued)

Audio

\square Electronic Organs
\square Speech Analysis and Synthesis
\square Speaker Crossovers
\square Sonabuoys
\square Spectrum Selection
\square Low Distortion Digitally Tuned Audio Oscillators

General Description

The S3528's CMOS design using switched-capacitor techniques allows easy programming of the filter's cutoff frequency (f_{c}) in 64 steps via a six-bit control word. For dynamic control of cutoff frequencies, the S3528 can operate as a peripheral to a microprocessor system with the code for the cutoff frequency being latched in from the data bus. When used with the companion high pass filter, the S3529, a bandpass or a bandreject filter with a variable center frequency is obtained. For special applications the S3528's internal ROM can be customized to accommodate a specific set of cutoff frequencies from a choice of 2,048 possibilities.

Absolute Maximum Ratings

D.C. Electrical Operating Characteristics: $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C},\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{S S}\right)=10 \mathrm{~V}$ unless otherwise specified

Symbol	Parameter/Conditions	Min.	Typ.	Max.	Units
$V_{D D}$	Positive Supply (Ref. to $\mathrm{V}_{\text {SS }}$)	9.0	10	13.5	V
P_{D}	Power Dissipation $\begin{array}{r}\text { @ 10V } \\ \text { @13.5V }\end{array}$		$\begin{aligned} & 60 \\ & 135 \end{aligned}$	$\begin{aligned} & 110 \\ & 225 \end{aligned}$	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$
$\mathrm{R}_{\text {t }}$	Input Resistance (Pins 1-4, 8, 12, 13, 16-18)	8			MS
$\mathrm{C}_{\text {IN }}$	Input Capacitance (Pins 1-4, 8, 12, 13, 16-18)			15.0	pF

General Analog Signal Parameters: $\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right)=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{clock}}=3.58 \mathrm{MHz}$

Symbol	Parameter/Conditions	Min.	Typ.	Max.	Units
A_{F}	Pass Band Gain at $0.6 \mathrm{f}_{\mathrm{C}}$	-0.5	0	0.5	dB
V_{0}	Reference Level Point (0dBm0)		1.5		VRMS
V_{FS}	Maximum Input Signal Level ($+3 \mathrm{dBm0}$)		2.1		VRMS
R_{L}	Load Resistance FLT OUT, Pin 9	10			k Ω
R_{L}	Load Resistance BUFF OUT, Pin 7	600			ohms
$\mathrm{V}_{\text {OUT }}$	Output Signal Level into R_{L} for FLT OUT, BUFF OUT, $\mathrm{V}_{\text {IN }}=2.1 \mathrm{~V}$	2.0	2.1		VRMS
THD	Total Harmonic Distortion at . $3 \mathrm{f}_{\mathrm{C}}$. 3		\%
WBN	Wideband Noise (to 30 kHz) $\mathrm{f}_{\mathrm{C}}=3.2 \mathrm{kHz}$. 15		mVRMS
WBN	Wideband Noise (to 80 kHz) $\mathrm{f}_{\mathrm{C}}=15 \mathrm{kHz}$. 13		mvRMS
ICN	Idle Channel Noise $f_{C}=3200 \mathrm{~Hz}$		8	23	dBrnC0
V_{0}	Buffer Output (Pin 7) Offset Voltage		± 10	± 30	mV
$\mathrm{V}_{\text {OFS }}$	Filter Output (Pin 9) Offset Voltage		± 80	± 200	mV

Filter Performance Specifications

Low Pass Filter Characteristics: $\mathrm{f}_{\text {clock }}=3.58 \mathrm{MHz},\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right)=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Symbol	Parameter/Conditions	Min.	Typ.	Max.	Units
	Pass Band Ripple (Ref. $0.6 \mathrm{f}_{\mathrm{C}}$)	-0.5	± 0.05	0.5	dB

Filter Response(1): $\mathrm{F}_{\mathrm{c}}=\mathbf{3 2 0 0 H z}$ (Pin 9)

	(See Figure 5)	(fc) 3200 Hz	-0.5	± 0.1	0.5	dB
		(1.06fc) 3372 Hz	-5.5	-3.0	-0.5	dB
		(1.27fc) 4060		-42		dB
		(1.3fc) 4155		-51	-48	dB
		(1.32fc) 4235		-65	-48	dB
		(1.62fc) 5175		-75	-48	dB
	(1.3fc Upward)	4155 to $100,000 \mathrm{~Hz}$		<-51		dB
DR	Dynamic Range (VFS to ICN)			82		dB

Digital Electrical Parameters: $V_{D D}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise specified

Symbol	Parameter/Conditions	Min.	Typ.	Max.	Units
$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.0		$\mathrm{~V}_{D D}$	Volts
V_{IL}	Input Low Voltage	$\mathrm{V}_{S S}$		0.8	Volts
I_{N}	Input Leakage Current $\left(\mathrm{V}_{\text {IN }}=0\right.$ to 4 VDC$)$			10	$\mu \mathrm{ADC}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance			15	pF

Digital Timing Characteristics

$t_{\text {CE }}$	Chip Enable Pulse Width	200	300		nsec
$t_{\text {AS }}$	Address Setup Time		300		nsec
$t_{\text {AH }}$	Address Hold Time		20		nsec
$\mathrm{f}_{\text {OSC }}$	Crystal Oscillator Frequency(2)		3.58		MHz
$\mathrm{t}_{\text {SET }}$	Settling Time from CE to Stable $\mathrm{f}_{\mathrm{C}}\left(\mathrm{f}_{\mathrm{C}}=3200\right)(3)$		6		msec

1.) Filter Response Referenced to $f=1,920 \mathrm{~Hz}$
2.) The tables are based on common TV crystal. See paragraph on "Clock Fre-
3.) $t_{\mathrm{SET}}=\frac{10,000}{f_{\mathrm{c}}}+3 \mathrm{msec}$

Pin Function Description

Pin Name	Number	Function
$V_{D D}$	6	Positive supply voltage pin. Normally $+5 \mathrm{~V} \pm 10 \%$.
$V_{S S}$	5	Negative supply voltage pin. Normally $-5 \mathrm{~V} \pm 10 \%$.
$\mathrm{A}_{\text {GND }}$	11	Analog ground reference point for analog input and output signals. Normally connected to ground.
$\mathrm{D}_{\text {GND }}$	15	Digital ground reference point for digital input signals. Normally connected to ground.
D_{0} D_{1} D_{2} D_{3} D_{4} D_{5} $\overline{C E}$	$\left.\begin{array}{l}3 \\ 2 \\ 1 \\ 18 \\ 17 \\ 16 \\ 4\end{array}\right\}$	Control word Inputs: The set of six bits allows selection of one of sixty-four cutoff frequencies. The 6 bit control word is latched on the rising edge of $\overline{\mathrm{CE}}$. The high-impedance inputs may be bridged directly across a microprocessor data bus. These inputs are TTL or CMOS compatible. A ' 1 '' is 2.0 V to $V_{D D}$, and a ' 0 ' is 0.8 V to V_{SS}. Chip Enable: This pin has 3 states. When $\overline{C E}$ is at $V_{D D}$ the data in the latch is presented to the ROM and the inputs have no effect. When $\overline{\mathrm{CE}}$ is at ground the data presented on the inputs is read into the latch but the previous data is still in the ROM. Returning $\overline{C E}$ to $V_{D D}$ presents the new data to the ROM and f_{C} changes. When $\overline{\mathrm{CE}}$ is at $V_{S S}$ the inputs go directly to the ROM, changing f_{C} immediately. This is the configuration for a fixed filter; $\overline{C E}$ is at $V_{S S}$ and the D_{0} through D_{5} are tied to $V_{D D}$ or $V_{S S} / D_{G R N D}$ depending on the desired f_{C}.

Pin Function Description（continued）

Pin Name	Number	Function
OSC $_{1}$	13	Oscillator In and Oscillator Out：Placing a crystal and a $10 \mathrm{M} \Omega$ resistor across these pins creates the time OSC
SIG IN	12	Sase oscillator．An inexpensive choice is to use the 3.58 MHz TV colorburst crystal． Signal Input：This is the inverting input of the input op amp．The non－inverting input is internally connected to Analog Ground．
FB	10	Feedback：This is the feedback point for the input op amp．The feedback resistor should be $\geqslant 10 \mathrm{k} \Omega$ for proper operation．
FLT OUT	9	Filter Out：This is the high impedance output of the programmable low pass filter．Loads must be $\geqslant 10 \mathrm{k} \Omega$. Buffer Input：The inverting input of the buffer amplifier． Buffer Out：The buffer amplifier output to drive low impedance loads．This pin may drive as low as 600Ω loads．
BUFF OUT	7	

Example of Circuit Connection for S3528
Figure 1．Stand Alone Operation

Figure 2．Microprocessor Interface

Operation

S3528 Filter is a CMOS Switched Capacitor Filter device designed to provide a very accurate，very flat， programmable filter that can be used in fixed applica－ tions where only one cutoff frequency is used，or in dynamic applications where logic or a microprocessor can select any one of 64 different cutoff frequencies．It is normally clocked by an inexpensive TV color burst crystal and provides the cutoff frequencies seen in Table 1 when the Data Bus pins are programmed．

All that is required for fixed operation is a $10 \mathrm{M} \Omega$ resistor，the 3.58 MHz TV crystal，and some resistors and capacitors around the input and output amplifiers to set the gain，anti－aliasing，and smoothing．The Data Bus pins are programmed from the table to either a＂ 1 ＂ $(+5 \mathrm{~V})$ or a＂ 0 ＂（ground or -5 V ）for the desired cutoff frequency．The $\overline{C E}$ pin is tied low，to $V_{S S}$ ．

Operation (continued)

The ROM is addressed by the contents of the latch and presents an 11-bit word to the programmable divider which divides fclk.
The FILTER OUT pin is capable of driving a $10 \mathrm{k} \Omega$ load directly or, for smoothing and driving a 600Ω load, the output buffer amplifier can be used for impedance matching.

As illustrated in the curves of Figures 3, and 5 through 7 , the passband ripple (for fc $<18 \mathrm{kHz}$) is less than $\pm 0.1 \mathrm{~dB}$ and the stop band rejection is better than 50 dB , as measured on a network analyzer.

For microprocessor controlled operation, the Data Bus can be bridged across a regular TTL bus and when CE is strobed, the data present will be latched in and the filter will settle down to its new cutoff frequency. In CMOS systems, the Data Bus and $\overline{\mathrm{CE}}$ can be swung rail-to-rail. $A_{G N D}$ and $D_{G N D}$ must be at $1 / 2$ the supply voltage.
The following table illustrates the available cutoff frequencies based on using a 3.58 MHz TV crystal for a time base, by approximately 100 Hz steps through the voice band from 100 Hz to 3900 Hz . Note that the hex input code for each frequency in the voice band is onehundredth of the cutoff frequency. For 3200 Hz , the hex code is 32 , for 900 Hz it is 09 . Additional frequencies are listed with their codes on the right side of the Table 1.0.

Table 1.0—Standard Frequency Table: Programmable Filter S3528. $\mathrm{f}_{\mathrm{CLOCK}}=3.58 \mathrm{MHz}$

Voice Band

Input Code (HEX) $D_{5}-D_{0}$	Divider Ratio	$\underset{\text { Actual }}{\mathrm{f}_{\mathrm{c}}}$ (Hz)
00	2048	44
01 02	895 447	100 200
03	298	300
04	224	399
05	179	500
06	149	601
07	128	699
08	$\begin{array}{r}112 \\ \hline 9\end{array}$	799
09	99	904
10	89	1005
11 12	81 74	1105 1209
13	69	1297
14	64	1398
15	60	1491
16	56 53	1598
17 18	53 50	1688 1790
19	47	1904
20	45	1989
21 22	43 41	2081
${ }_{23}^{22}$	41 39	2183 2295
24	37	2418
25	${ }_{34}^{36}$	2486
26 27	34 33	2632 2711
28	32	2797
29	31	2887
30	30	2983
31 32	29 28	3086 3196
${ }^{33}$	27	3314
34	26	3442
${ }_{37}^{36}$	25 24	$\begin{array}{r}3579 \\ 3728 \\ \hline\end{array}$
39	23	3891

Additional Points Available

\begin{tabular}{|c|c|c|}
\hline Input Code (HEX) \(D_{5}-D_{0}\) \& Divider Ratio \& \begin{tabular}{l}
\(\underset{\text { Actual }}{\mathbf{i}_{\mathbf{c}}}\) \\
(Hz)
\end{tabular} \\
\hline \({ }^{08}\) \& \({ }^{188}\) \& 476 \\
\hline OB

$0 C$ \& 358
90 \& 250
994

\hline ${ }_{00}$ \& 87 \& 1028

\hline 0 E \& 85 \& 1053

\hline OF \& 78 \& 1147

\hline 1 A \& 61 \& 1467

\hline 18 \& 58 \& 1542

\hline 10 \& 52 \& 1721

\hline ${ }_{1}^{10}$ \& 46
44 \& 1945
2034

\hline 1 F \& 40 \& 2237

\hline ${ }_{2}^{2 A}$ \& 38
35 \& 2350
2557

\hline ${ }_{2}^{28}$ \& 22 \& 4067

\hline 2 D \& 20 \& 4474

\hline ${ }_{2}^{2 \mathrm{E}}$ \& 18
16 \& 4971

\hline ${ }_{35}^{2 F}$ \& 16
15 \& 5959

\hline 38 \& 14 \& 6392

\hline 3 A \& 12 \& 7457

\hline ${ }_{3 C}^{3 B}$ \& 10 \& 8949
9943

\hline ${ }^{30}$ \& ${ }_{5}^{6}$ \& 14915

\hline ${ }_{3 \mathrm{SF}}^{3 \mathrm{~F}}$ \& 5
4 \& 17897
22372

\hline \& \& 22372

\hline
\end{tabular}

$\mathrm{f}_{\text {cutoff }}=\frac{\mathrm{f}_{\text {CLOCK }}}{40 \text { (Divider Ratio) }}$

Figure 3. Family off Loss Curves for 4 Different Control Codes

Figure 4. Address and Chip Enable Timing

Figure 5. Loss Curve, Control $=110010, \mathrm{f}_{\mathrm{C}}=3200 \mathrm{~Hz}$

Figure 6. Passband Control Detail,
Control $=110010, \mathrm{f}_{\mathrm{c}}=3200 \mathrm{~Hz}$

Figure 7. Family of Loss Curves for 4 Different Control Codes

Figure 8. Loss and Group Delay, $\mathrm{Fc}=\mathbf{3 2 0 0 H z}$

Applications Information

Many filter applications can benefit from the S3528, particularly if extremely flat passband response with precise, repeatable cutoff frequencies are required. Or, if the same performance is required at different frequencies it can be switched or microprocessor controlled. The circuits (Figures 1 and 2) illustrate how the S3528 might be connected for two different uses. The "stand alone" drawing (Figure 1) shows how it would be programmed as a fixed, 3200 Hz low pass filter. The other drawing (Figure 2) shows a microprocessor driven application that lets the cutoff frequency be varied on command.
Some fields that can use such a filter are speech analysis and scrambling, geo-physical instrumentation, under water accoustical instrumentation, two-way radio, telecommunications, electronic music, remotely programmable test equipment, tracking filter, etc.

Anti-Aliasing

In planning an application the basic fundamentals of sampling devices must be considered. For example, aliasing must be taken into consideration. If a frequency close to the sampling frequency is presented to the input it can be aliased or folded back into the pass-

Figure 9. Group Delay, Control $=110010, \mathrm{FC}=3.2 \mathrm{kHz}$

$$
\mathrm{GD}_{\mathrm{f}}=\mathrm{x} \doteq \mathrm{GD}_{\mathrm{f}_{\mathrm{c}}=3.2 \mathrm{kHz}}\left(\frac{3.2 \mathrm{kHz}}{\times \mathrm{kHz}}\right)
$$

band. Because the S3528 has an input cosine filter the effective sample frequency is twice the filter clock frequency of 40 times the cutoff frequency. If $f_{C}=1000 \mathrm{~Hz}$ and a signal of $79,200 \mathrm{~Hz}$ is put into the filter, it will alias the 80 kHz effective sampling frequency of the input cosine filter and appear as an 800 Hz signal at the output. This means that for some applications the input op amp must be used to construct a simple one or two pole RC anti-aliasing filter to insure performance. In many situations, however, this will not be necessary since the input signal will already be band-limited.

Smoothing

In addition, all sampling devices will have aliased components near the clock frequency in the output. For example, there will be small components at $f_{\text {clk }} \pm f_{i n}$ in the output waveform. This can be reduced by constructing a simple smoothing filter around the output buffer amplifier. Because of the $\sin x / x$ characteristics of a sample and hold stage the aliasing components are already better than 30 dB down. The clock feed through is approximately -50 dBV . This means that a simple one pole filter can provide another 20 dB of rejection to keep the aliasing below 50dB down. In the case of a $3 \mathrm{kHz} \mathrm{f}_{\text {CUTOFF }}$ and the smoothing filter designed for a 3 dB point at 4 f Cutoff the smoothing filter will affect

Smoothing (continued)

the 3 kHz point by .25 dB . If this is not desirable then the smoothing filter might be constructed as a second order filter.

For a fixed application, anti-aliasing and smoothing are straight forward. For a dynamic operation, the desired operating range of frequencies must be considered carefully. It may be necessary to switch in or out additional components in the RC filters to move cutoff frequencies. The S 3528 has a ratio of cutoff frequencies of $550: 1$ and to use the full range would require some switching.

Notch Rejection

The filter is designed to have 51 dB of rejection at $1.3 f_{\text {CUTOFF }}$ and greater. If greater rejection of a specific tone or signal frequency is desired, the cutoff frequency can be selected to position the undesired tone at $1.325 f_{\text {CUTOFF }}$ or $1.62 f_{\text {CUTOFF }}$. This will place it in a notch as illustrated in Figure 5.

The S3529 (High Pass Filter) and the S3528 (Low Pass Filter) can be used together to make either Band Pass or Band Reject/Notch filters. The control code selection determines the bandwidth of the resulting filter.

It should be noted that with the S3528 and S3529 data pins connected in parallel and their analog inputs and outputs in series a bandpass filter of approximately 10% bandwidth is created.

Figure 10. S3528 and S3529 in Parallel Notch Configuration—Narrow Bandwidth

Figure 11. Cascaded S3528 and S3529 Control = 100001
Bandpass Configuration-10\% Bandwidth

Figure 12. S3528 and S3529 in Parallel Notch Configuration-Wide Bandwidth

Figure 13. Bandpass Application: General Case Configuration

Note:

- Anti-aliasing and smoothing filters on both chips A1, A2, S1, S2
- Lowpass after highpass to remove higher harmonics, unless cosine input filter of lowpass needed to clean noisy input signal
- For wider band width two different oscillators can be used.
- If filter clock (fclock) for lowpass is an integer multiple of the fclock for highpass, then S1 and A2 may be removed without causing beat frequencies.

> For same digital logic code
> $\mathrm{N}=$ multiple of clock\#1 to clock\#2
> $\mathrm{f}_{\mathrm{cL}}=\frac{.9 f_{\mathrm{cu}}}{\mathrm{N}}$

Figure 14. Notch Applications: General Case Configuration

Figure 15. Low Distortion Digitally Tuned Audio Oscillator Application Circuit

Crystal Oscillator

The S3528 crystal oscillator circuit requires a 10 Meg ohm resistor in parallel with a standard 3.58 MHz television colorburst crystal. For this application, however, crystals with relaxed tolerances can be used. Specifications can be as follows:

$$
\begin{array}{ll}
\text { Frequency } & 3.579545 \pm .02 \% \\
R S \leqslant 180 \Omega & \mathrm{~L}_{\mathrm{M}}{ }^{2} 96 \mathrm{MH} \\
\mathrm{C}_{\mathrm{L}}=18 \mathrm{pF} & \mathrm{C}_{\mathrm{h}}=7 \mathrm{pF}
\end{array}
$$

Alternate Clock Configurations

If 3.58 MHz is already available in the system it can be applied directly as a logic level to the OSC $_{\mathbb{N}}$ (pin 13). [Max. zero~30\% ($\left.V_{D D}-V_{S S}\right)$, min. one~ $70 \%\left(V_{D D}-V_{S S}\right)$]. Waveforms not satisfying these logic levels can be capacitively coupled to $\mathrm{OSC}_{\mathrm{IN}_{\mathrm{N}}}$ as long as the 10 Meg ohm feedback resistor is installed as shown in Figure 16.

Although the tables are constructed around the TV colorburst crystal, other clock frequencies can be used from crystals or external clocks to achieve any cutoff frequency in the operating range. For example, by using a rate multiplier and duty-cycle restorer circuit between the system clock and the S3528, and switching the inputs to the S3528, almost any cutoff frequency between 40 Hz and 35 kHz can be selected. The clock input frequency can be anywhere between 500 kHz and 5 MHz .

In addition to crystals or external clocks the S3528 can be used with ceramic resonators such as the Murata CSA series "Ceralock" devices. All that is required is the resonator and 2 capacitors to V_{SS}. Although the resonators are not quite as accurate as crystals they can be less expensive.

Figure 16. S3528 Driving Additional S3528 or S3529 Devices

PROGRAMMABLE HIGHPASS FILTER

Features
\square Cutoff Frequency Selectable in 64 Steps Via Six-Bit Control Word
\square Cutoff Frequency (fc) Range of 10 Hz to 20 kHz , 40 Hz to 20 kHz Via 3.58 MHz TV CrystalSeventh Order Elliptical FilterPassband Ripple: 0.1 dBStopband Attenuation: 51 dB for $\mathrm{f}<.77 \mathrm{fc}$Clock Tunable Cutoff Frequency Continuously Variable Via External Clock (Crystal, Resonator, or TTUCMOS Clock)Uncommitted Input and Output Op Amps for AntiAliasing and Smoothing Functions
\square Low Power CMOS Technology

Typical Applications for the S3528 and S3529
Programmable Filters
Telecommunications
PBX \& Trunk Line Status MonitoringAutomatic Answering/Forwarding/Billing Systems Adaptive Filtering

Remote Control

Alarm Systems
\square Heating SystemsAcoustic Controllers

Test Equipment/Instrumentation

Spectrum AnalyzersComputer Controlled Analog Circuit TestersMedical Telemetry Filtering
\square ECG Signal Filtering
Automotive Command Selection and Filtering

Pin Configuration

General Description

The S3529's CMOS design using switched-capacitor techniques allows easy programming of the filter's cutoff frequency (fc) in 64 steps via a six-bit control word. For dynamic control of cutoff frequencies, the S3529 can operate as a peripheral to a microprocessor system with the code for the cutoff frequency being latched in
from the data bus. When used with the companion low pass filter, the S3528, a bandpass filter with a variable center frequency is obtained. For special applications the S3529's internal ROM can be customized to accomodate a specific set of cutoff frequencies from a choice of 2,048 possiblities.

D.C. Electrical Operating Characteristics: $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C},\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right)=10 \mathrm{~V}$ unless otherwise specified

Symbol	Parameter/Conditions	Min.	Typ.	Max.	Units
$V_{D D}$	Positive Supply (Ref. to $V_{S S}$)	9.0	10	13.5	V
P_{D}	Power Dissipation @10V		60	110	mW
		m 13.5 V	135	225	mW
R_{IN}	Input Resistance (Pins 1-4, 7, 12, 14, 16-18)	8			$\mathrm{M} \Omega$
C_{IN}	Input Capacitance (Pins 1-4, 7, 12, 14, 16-18)			15.0	pF

Digital Electrical Parameters: $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise specified

Symbol	Parameter/Conditions	Min.	Typ.	Max.	Units
V_{IH}	Input High Voltage	2.0		$\mathrm{~V}_{\mathrm{DD}}$	V
V_{IL}	Input Low Voltage	$\mathrm{V}_{S S}$		0.8	V
I_{N}	Input Leakage Current $\left(\mathrm{V}_{\mathrm{IN}}=0\right.$ to 4 VDC$)$			10	$\mu \mathrm{ADC}$
C_{IN}	Input Capacitance			15	pF

Digital Timing Characteristics

Symbol	Parameter/Conditions	Min.	Typ.	Max.	Units
$t_{C E}$	Chip Enable Pulse Width	200	300		ns
$t_{\text {AS }}$	Address Setup Time		300		ns
$t_{\text {AH }}$	Address Hold Time		20		ns
$f_{\text {OSC }}$	Crystal Oscillator Frequency (1)		3.58		
$t_{\text {SET }}$	Settling Time From CE to Stable $\mathrm{f}_{\mathrm{C}}\left(\mathrm{f}_{\mathrm{C}}=3200\right)^{(2)}$		6	MHz	

Notes:

[^10]General Analog Signal Parameters: $\left(V_{D D}-V_{S S}\right)=10 \mathrm{~V}, T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, fosc $=3.58 \mathrm{MHz}$

Symbol	Parameter/Conditions	Min.	Typ.	Max.	Units
A_{F}	Pass Band Gain at 2.2 fc	-0.5	0	0.5	dB
$V_{\text {MAX }}$	Reference Level Point (0dBm0)		1.5		VRMS
$\mathrm{V}_{\text {FS }}$	Maximum Input Signal Level (+ 3dBm0)		2.1		VRMS
R_{L}	Load Resistance (FLT ${ }_{\text {Out }}$, Pin 9)	10			k Ω
R_{L}	Load Resistance (BUF ${ }_{\text {OUT }}$, Pin 7)	600			Ω
$\mathrm{V}_{\text {OUT }}$	Output Signal Level into $\mathrm{R}_{\text {L }}$ for $\mathrm{FLT}_{\text {OUT }}$, BUF ${ }_{\text {OUT }}$	2.0	2.1		VRMS
THD	Total Harmonic Distortion: Input code 22, Frequency $=2 \mathrm{kHz}$; Bandlimited to fclk/2		. 15		\%
WBN	Wideband Noise: Input code 22, Bandlimited to 15kHz		25		mVRMS
V_{0}	Buffer Output (Pin 7) Offset Voltage		± 10		mV
$\mathrm{V}_{\text {OES }}$	Filter Output (Pin 9) Offset Voltage		± 80		mV

Filter Performance Specifications: High Pass Filter Characteristics (fosc $=3.58 \mathrm{MHz})\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right)=10 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Symbol	Parameter/Conditions		Min.	Typ.	Max.	Units
	Passband ripple (Ref. $2.2 \mathrm{f}_{\mathrm{C}}$) $\mathrm{f}_{\mathrm{C}} \leqslant f<7 f_{\mathrm{C}}$		-0.5	± 0.05	0.5	dB
Filter Response: $\mathrm{f}_{\mathrm{C}}=\mathbf{1 0 0 5 H z}$						
	(fc)	1005 Hz	-0.5	± 0.1	0.5	dB
	$(0.96 \mathrm{fc}$)	960	-5	-3.0	-1	db
	$(0.768 \mathrm{fc})$	772		-53	-43	db
	$(.754 \mathrm{fc}$)	758		-85	-43	db
	$(.614 \mathrm{fc}$)	617		-70	-43	db
	Stopband $\quad \mathrm{f}<.768 \mathrm{f}_{\mathrm{C}}$			<-53		db
DR	Dynamic Range ($\mathrm{V}_{\text {FS }}$ to WBN)			78		dB

Pin Description

Pin Name	Pin\#	
$V_{D D}$	8	Positive supply voitage pin. Normally +5 volts.
$V_{S S}$	5	Negnction
$A_{G N D}$	11	Analog ground reference point for analog input signals. Normally connected to ground.
$D_{G N D}$	13	Digital ground reference point for digital input signals. Normally connected to ground.
D_{0}	3	
D_{1}	2	The input bus to allow selection of the desired cutoff frequency. The value of the word presented to these pins
D_{2}	1	
D_{3}	18	
D_{4}	17	
D_{5}	16	

Pin Description (Continued)

Pin Name	Pin\#	Function
$\overline{\mathrm{CE}}$	4	$\overline{\text { Chip }} \overline{\text { Enable: }}$ This pin has 3 states. When $\overline{\mathrm{CE}}$ is at $V_{D D}$ the data in the latch is presented to the ROM and the inputs have no effect. When $\overline{\mathrm{CE}}$ is at ground the data presented on the inputs is read into the latch but the previous data is still in the ROM. Returning $\overline{C E}$ to $V_{D D}$ presents the new data to the ROM and $f_{\text {cutoff }}$ changes. When $\overline{C E}$ is at $V_{S S}$ the inputs go directly to the ROM, changing $f_{\text {cutoff }}$ immediately. The configuration for a fixed filter is: $\overline{C E}$ at $V_{S S}$ and the D_{0} through D_{5} are tied to $V_{D D}$ or $V_{S S} / D_{G N D}$ depending on the desired $f_{\text {cutoff }}$.
OSC $_{\text {i }}$	14	Oscillator In and Oscillator Out. Placing a crystal and a 10M
${ }^{0} \mathrm{SC}_{0}$	15	oscillator. An inexpensive choice is to use the 3.58 MHz TV crystal.
SIG ${ }_{\text {N }}$	12	Signal Input. This is the inverting input of the input op amp. The non-inverting input is internally connected to Analog Ground.
FB	10	Feedback. This is the feedback point for the input op amp. The feedback resistor should be $\geqslant 10 \mathrm{k} \Omega$ for proper operation.
$\mathrm{FLT}_{\text {OUT }}$	9	The high impedance output of the high pass filter. Load should be $10 \mathrm{~K} \Omega$.
$\mathrm{BUF}_{\text {IN }}$	7	The inverting input of the buffer amplifier.
BUF ${ }_{\text {OUT }}$	6	The buffer amplifier output to drive low impedance loads. Load should be $\geqslant 600 \Omega$.

Example of Circuit Connection for S3529

Figure 1. Stand Alone Operation
Figure 2. Microprocessor Interface

Table 1. Standard Frequency Table: Programmable Filter S3529, $\mathrm{f}_{\text {clock }}=3.58 \mathrm{MHz}$

Alternate Clock Configurations

If 3.58 MHz is already available in the system it can be applied directly as a logic level to the OSC $_{\text {IN }}$ (pin 14). (Max. zero~30\% V_{DD}, min. one $\sim 70 \% \mathrm{~V}_{\mathrm{SS}}$). Waveforms not satisfying these logic levels can be capacitively coupled to $\mathrm{OSC}_{\mathrm{IN}}$ as long as the $10 \mathrm{M} \Omega$ feedback resistor is installed as shown in Figure 3.

Figure 3. External Driving S3529 Pin OSC ${ }_{i}$

Figure 4. Passband Detail, Control $=110010$, $\mathrm{f}_{\mathrm{c}}=1005 \mathrm{~Hz}$

Figure 6. Loss Response, DC to Clock Detail, Control $=110010, \mathrm{f}_{\mathrm{c}}=1005 \mathrm{~Hz}$

Figure 5. Loss Curve, Control $=110010$, $\mathrm{f}_{\mathrm{c}}=1005 \mathrm{~Hz}$

Figure 7. Cascaded S3528 And S3529 Control=100001 Bandpass Configuration-10\% Bandwidth

Figure 8. S3528 and S3529 in Parallel
Notch Configuration-Narrow Bandwidth

Figure 9. S3528 and S3529 in Parallel
Notch Configuration-Wide Bandwidth

Applications Information

The S3529 (High Pass Filter) has a very sharp 50dB drop off at fc . The Passband Ripple is less than 0.5 dB . Note that unlike passive element filters, attenuation increases for sampled-data filters at the higher frequencies due to the sample and hold effect. (fCLOCK $=44 \times f_{\text {CUTOFF }}$).
The S3529 (High Pass Filter) and the S3528 (Low Pass Filter) can be used together to make either Band Pass or Band Reject filters. The control code selection determines the bandwidth of the resulting filter.

Figure 10. Bandpass Application: General Case Configuration

Note:

- Anti-aliasing and smoothing filters on both chips A1, A2, S1, S2
- Lowpass after highpass to remove higher harmonics, unless cosine input filter of lowpass needed to clean noisy input signal
- For wider band width two different oscillators can be used.
- If filter clock (ficlock) for lowpass is an integer multiple of the fclock for highpass, then S1 and A2 may be removed without causing beat frequencies.
- For same digital logic code
$N=$ multiple of clock\#1 to clock\#2
$f_{c L}=\frac{.9 f_{C u}}{N}$

Figure 11. Notch Applications: General Case Configuration

Figure 12. Sampling Theory

Figure 13. Avoiding Aliasing

Note that critical sampling avoids aliasing, but in the above example no real life filter can separate the message from the image. One must oversample in real life.

Figure 14. Implementation

Applications Information

Anti-Aliasing

fs = sampling frequency
$\mathrm{fm}=$ frequency bandwidth of message
In planning an application the fundamentals of sampling devices must be considered.
\square Make certain the harmonic image does not fold into the desired pass band. i.e, Oversample.
\square Bandlimit the input so that the input frequencies, noise, and tails will not come too close to the clock and be folded back into the pass band.
\square Bandlimit the output so that the image is sufficiently attenuated and the switched capacitor output is smoothed. i.e., kill the higher order terms in the Fourier Series.
\square. For dynamic operation check for aliasing at each cutoff frequency.

BELL 103/V. 21 SINGLE CHIP MODEM

Features

\square Single-Chip 300 bps, Full Duplex, Asynchronous FSK Modem
\square Bell 103/113 \& CCITT V. 21 Operation (Selectable)Auto Answer/Originate Operating Modes
Manual ModeNo External Filtering RequiredPhase Continuous Transmit Carrier Frequency SwitchingRS-232 Control InterfacePassthru Mode for Protocol Independence
Low Cost 3.58 MHz (TV Crystal) Time Base
\square Digital \& Analog Loopback Modes
\square UART Clock Output (4.8KHz)
V. 25 Tone Generation

General Description

The S3530 is a Monolithic CMOS Single-Chip Full Duplex FSK Modem integrated circuit which may be operated in Bell 103/113 or CCITT V. 21 applications. The S3530 features on-chip transmit and receive filtering; answer/originate mode selection; RS-232 control interface; digital and analog loopback test modes; and generation of both the 4.8 KHz UART clock and V. 25 Answer Tone. The S3530 is designed for use in standalone modem applications and in applications in which the modem function is designed directly into the DTE.

Pin Configuration

Absolute Maximum Ratings

Operating Temperature . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature .. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Input Voltage, All Pins .. $\mathrm{V}_{\text {SS }}-0.3 \mathrm{~V} \leqslant \mathrm{~V}_{\mathbb{I N}} \leqslant \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
D.C. Electrical Operating Characteristics: $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ;\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right)=10 \mathrm{~V} ;(\pm 5.0 \mathrm{~V})$

Symbol	Parameter/Conditions	Min.	Typ.	Max.	Unit
V_{DD}	Positive Supply Voltage (ref. to DGND and AGND, both at 0 Volts)	+4.75	+5.0	+5.25	VDC
$\mathrm{V}_{S S}$	Negative Supply Voltage (ref. to DGND, AGND)	-4.75	-5.0	-5.25	VDC
P_{D}	Power Dissipation, Operating (@ $\pm 5 \mathrm{~V})$		110		mW
$\mathrm{R}_{I N}$	Input Resistance	8			$\mathrm{M} \Omega$
$\mathrm{C}_{I N}$	Input Capacitance			15	pF

Analog Signal Parameters: $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \pm 5 \mathrm{VDC}$. fosc $=3.58 \mathrm{MHz}$

Symbol	Parameter/Conditions	Min.	Typ	Max.	Unit
fosc	Oscillator Frequency		$3.579545 \pm 0.02 \%$		MHz
ft_{t}	Transmit Frequency Tolerance		± 1.2		Hz
t_{0}	Transmit 2nd Harmonic Attenuation with respect to Carrier Level		50		dB
$\mathrm{T}_{\text {OUT }}$	Transmit Output Level into 10K Ω min., 25pF max.		-9		dBm
	Carrier Input Range (CDT open)	-48		0	dBm
DNR	Dynamic Range (CDT open)		48		dB
	Bit Jitter (Input $=-30 \mathrm{dBm})$ Bit Bias Bias Distortion		$\begin{gathered} 100 \\ 1 \\ 3 \end{gathered}$		$\begin{gathered} \mu \mathrm{Sec} \\ \% \\ \% \end{gathered}$

Signal Input and Output Compatibility Table

Pin Name	No.	Input	Output	Voltage Level		Logic Family	$\begin{gathered} \text { IOL } \\ \text { Milliamps } \end{gathered}$
				Low	High		
SH	18	X		-3	+3	CMOS	
$\overline{\text { RI }}$	19	X		-3	+3	CMOS	
TEST ${ }_{0}$	7	X		-3	+3	CMOS	
TEST ${ }_{1}$	6	X		-3	+3	CMOS	
$\overline{\mathrm{OH}}$	24		X	+0.4	+2.4	LSTTL	0.4
CLK	28		X	+0.4	+2.4	LSTTL	0.4
$\overline{C D}$	21		X	+0.4	+2.4	LSTTL	0.4
$\overline{\mathrm{RD}}$	22		X	+0.4	+2.4	TTL	1.6
$\overline{\text { CTS }}$	23		X	+0.4	+2.4	TTL	1.6
$\overline{\text { DSR }}$	14		X	+0.4	+2.4	TTL	1.6
RTS	20	X		+0.8	+2.0	TTL	
TD	27	X		+0.8	+2.0	TTL	
DTR	25	X		+0.8	+2.0	TTL	
AL	26	X		+0.8	+2.0	TTL	
DL	1	X		+0.8	$+2.0$	TTL	
SL	11	X		+0.8	+2.0	TTL	

Pin/Function Descriptions

Pin \#	Name	Function
25	DTR (Data Terminal Ready)	A high level on this input enables all the other inputs and outputs and must be present before the device will enter the data mode either manually or automatically. The device will enter an irreversible disconnect sequence if the input is turned off (low level) for more than 14 mSec during a data call. A pulse duration of less than 6 mSec will not be detected.
20	RTS (Request to Send)	A high level on this input with the DTR input in the on condition causes the device to enter the originate mode. $\overline{\mathrm{OH}}$ will go low to seize the phone line. Auto dialing can be performed by turning the RTS input on and off to effect dial pulsing. This input must remain high for the duration of data transmission. (Auto answer will not function if RTS is high)
23	$\frac{\overline{\text { CTS }}}{\text { (Clear to Send) }}$	This output goes to a low level at the completion of the handshaking sequence and turns off when the modem disconnects. It is always turned off if the device is in the digital loopback mode. Data to be transmitted should not be applied at the TD input until this output turns on.
21	$\frac{\overline{C D}}{(\text { Carrier Detect) }}$	This output goes to a low level to indicate that the receive data carrier has been received at a level of at least -43 dBm . It turns off if the received data carrier falls below the carrier detection threshold of -48 dBm . During the off state, the Receive Data is clamped to the MARK state.
27	$\begin{gathered} \text { TD } \\ \text { (Transmit Data) } \end{gathered}$	Data bits to be transmitted are presented to this input serially by the data terminal. A high level is considered a binary ' 1 ' or MARK and a low level is considered a binary ' 0 ' or SPACE. The data terminal should hold this input in the MARK state when data is not being transmitted. During handshaking this input is ignored.
22	$\frac{\overline{\mathrm{RD}}}{\text { (Received Data) }}$	The device presents data bits demodulated from the received data carrier at this output. This output is forced high if the DTR input or the carrier detect output is off.
14	$\frac{\overline{\text { DSR }}}{\overline{\text { Data Set Ready }}}$	This output, when low, indicates to the data terminal that the modem is ready to transmit data.
19	$\frac{\overline{\operatorname{Ri}}}{(\overline{\text { Ring Indicator) }}}$	This input when high permits auto answer capability. The data access arrangement should apply a low level to $\overline{\mathrm{RI}}$ when a ringing signal is detected. The level should be low for at least 107 msec . The input can remain low until reset by DTR or loss of carrier. Similarly, in manual mode, the answer mode is entered by applying a low level to this input, unless RTS is high.
26	$\begin{gathered} \mathrm{AL} \\ \text { (Analog Loopback) } \end{gathered}$	This input allows the data terminal to make the telephone line busy (off hook) and implement the analog loopback mode. A high level on this input while DTR is high causes the device to make the $\overline{\mathrm{OH}}$ output low and to enter the analog loopback mode. The receive filter center frequency is switched to correspond to the transmit filter center frequency and the transmit data carrier output is internally connected to the receive data carrier input, as well as being available at TC.
11	SL (Select)	A high level on this input selects the CCITT V. 21 data transmission format. Applying a low level selects the Bell 103 data transmission format.
16	CDT (Carrier Detect Threshold)	Applying a variable voltage level between 0 and -5 V at this pin allows control of the receiver carrier detection threshold. This will override the internaily determined threshold. If CDT is set to a voltage between +1.5 and +2.0 V the AGC will be disabled during the test modes of pins $6 \& 7$.
28	$\begin{aligned} & \text { CLK } \\ & \text { (Clock) } \end{aligned}$	A 4.8 KHz LSTTL compatible square wave output is provided for supplying the 16 X clock signal required by a UART for 300 bits/sec. data rate. This output facilitates the integration of the modem function in the data terminal.

Pin/Function Descriptions (Continued)

Pin \#	Name	Function
24	$\frac{\overline{\mathrm{OH}}}{(\mathrm{Off}-\mathrm{Hook})}$	This output goes to a low level when either the $\overline{S H}$ or the RTS input is on in the originate mode, and when a valid ring signal is detected on the $\overline{R I}$ input in the answer mode. This output is off if DTR is off or if the disconnect sequence has been completed.
10	TC (Transmit Carrier)	This analog output is the modulated transmit data carrier. Its frequency depends upon whether the modem is in the answer or originate mode and if a mark or space condition is being sent (Table 1). Typically, the output level is at -9 dBm .
6	Test 0 Test 1	These are test inputs and must be tied to $V_{S S}$ for normal applications. See table under Passthru Mode.
5	$\begin{gathered} \text { RC } \\ \text { (Receive Carrier) } \end{gathered}$	This analog input is the data carrier received by the data access arrangement from the line. The modem demodulates this signal to generate the receive data bits.
17	DGND (Digital Ground)	Digital ground (0 Volts).
9	AGND (Analog Ground)	Analog ground (0 Volts).
8	NC	No connect.
4,15	$V_{\text {DD }}, V_{S S}$	Positive and negative power pins, respectively ($\pm 5 \mathrm{~V}$).
18 RI	$\begin{aligned} & \frac{\overline{\text { SH }}}{\text { has }} \text { been } \\ & \text { haok } \end{aligned}$	This input is used to manually place the device in the originate mode. The device will make the $\overline{\mathrm{OH}}$ output low and start the originate sequence if $\overline{\mathrm{SH}}$ input is low and DTR is on. This can be a level or a momentary low-going pulse input (min .54 mS). A pulse duration of less than 27 mS will not be detected. $\overline{\mathrm{RI}}$ should be high if $\overline{\mathrm{SH}}$ is to be exercised. Once RI has been activated then RTS has no effect.
13,12	OSC ${ }_{0}, 0 \mathrm{OSC}$	These are terminals for connecting an external 3.579545 MHz TV crystal. All internal clock signals are derived from this time base. An external clock signal may instead be applied at the OSC ${ }_{\xi}$ input. Feedback resistor and capacitors are integrated on the chip but additional 20 pF caps to V_{SS} from each pin are required.
1	$\begin{gathered} \text { DL } \\ \text { (Digital Loopback) } \end{gathered}$	A high level on this input causes the device to enter the digital loopback mode. In this mode, the received data from the remote end is internally looped back to $T D$ and $\overline{\mathrm{DSR}}$ is forced high to signal to the DTE that the modem is not ready for transmission. The received data is not available on $\overline{\mathrm{RD}}$ during the DL mode.
2	$\begin{gathered} \text { TP } \\ \text { (Test Point) } \end{gathered}$	Test Pin. Must be connected to either $V_{S S}$ or $V_{D D}$ for normal operations.
3	$\begin{gathered} \text { EP } \\ \text { (Eye Pattern) } \end{gathered}$	Output (analog) of the demodulator prior to slicing. Do not load.

Table 1. 103/V.21 Mark and Space Frequencies

Mode	Transmit Frequency (Hz)		Receive Frequency (Hz)	
	Mark	Space	Mark	Space
Bell 103 Originate	1270	1070	2225	2025
Bell 103 Answer	2225	2025	1270	1070
CCITT V.21 Originate	980	1180	1650	1850
CCCTT V.21 Answer	1650	1850	980	1180
CCITT V.25 Answer Tone	2100			

Operation of S3530 Modem Chip

A. Bell 103/113 Mode

In the answer mode the S3530 stands idle waiting for an incoming call. As long as DTR is true, when a low from the ring detector is presented to $\overline{\mathrm{RI}}$ the S 3530 sets $\overline{\mathrm{OH}}$ and $\overline{\mathrm{DSR}}$ low which enables the hookswitch relay, connecting the modem to the phone line in the answer mode. The S 3530 waits 2.1 seconds, and then sends carrier at 2225 Hz (mark) to the originate modem. When the originate modem returns with 1270 Hz (mark) the S3530 carrier detect circuit turns on within 106 msec and sets $\overline{\mathrm{CD}}$ and $\overline{\mathrm{CTS}}$ both low indicating the handshaking sequence is completed. Data can be be sent and received.

Originate Mode

In the originate mode a call is initiated, if DTR is high, by applying a high to the RTS input in auto mode or a negative pulse or low to $\overline{\mathrm{SH}}$ in manual mode. This will cause $\overline{\mathrm{OH}}$ to go low pulling in the hookswitch relay to connect the telephone line, and putting the S3530 in the originate mode. After a suitable time, or when dial tone is detected, RTS can be pulsed off to provide dial pulses*. The $\overline{\mathrm{OH}}$ will go on and off, pulsing the line with the desired digits. When the answering modem comes on line it will wait 2.1 seconds ("billing delay") and then send the 2225 Hz answer tone. 106 milliseconds later the $\overline{C D}$ pin will go low indicating received carrier. 190 msec later the S 3530 will respond with 640 msec of 1270 Hz . At the end of that time CTS (Clear-to-Send) will go low indicating to the terminal side that the communications link has been established.

Abort Mode

There is an automatic abort feature in the S3530 to avoid tying up a system should there be difficulty in establishing the link. If no carrier is detected within 14 seconds after the device has been put into the answer or originate mode it will abort the call by turning off $\overline{\mathrm{OH}}$ and disconnecting the telephone line. $\overline{\text { DSR }}$ will also go off (high). This abort time can be extended by pulsing RTS low for about 1 msec before the 14 seconds have elapsed. This will reset the abort timer. If it does time out DTR will need to be pulsed off to reset the S3530.

Shutdown Mode

Should the received carrier fall below - 48 dBm during data exchange for more than 213 msec the S 3530 will terminate the call and go on-hook, disconnecting the telephone line.

Manual Operation

The S3530 can be operated manually as well as automatically. To put it in the Answer Mode apply a negative pulse (-5 V) on $\overline{\mathrm{RI}}$ of greater than 107 msec . If $\overline{\mathrm{RI}}$ is tied low then the device will go into the Answer Mode whenever DTR is enabled.
Similarly, to put it in the Originate Mode, $\overline{\mathrm{SH}}$ can be pulled low for more than 54 msec . By tying SH low, the S3530 will go into the Originate Mode whenever DTR is enabled.

Passthru Mode

Through the "Test 0" and "Test 1" lines the S3530 can be put into the Passthru Mode. in this mode the protocol handshake is disabled, i.e., the transmit and receive functions are enabled but become independent of timing and control. $\overline{C D}$ works as usual. The Answer or Originate modes are selected in the same manner with $\overline{\mathrm{SH}}$ or $\overline{\mathrm{RI}}$.

TEST 0 PIN 7	TEST1 PIN 6	S3530 STATUS	$1=+5 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{DD}}\right)$
0	0	NORMAL	
1	0	PASSTHRU	

B. V. 21 Mode

The S3530 will perform the same operations described above in the CCITT V. 21 mode if the SL pin is tied high. The basic principle is the same but the frequencies and the timings are switched to conform to V. 21 specifications. See the timing charts and Table 1 for additional details. When in V. 21 mode the V. 25 answer tone of 2100 Hz will be generated upon answering.

Diagnostic Modes

The S3530 has two diagnostic modes available to the operator. By putting the AL pin high while DTR is high, the device enters the Analog Loopback Mode. $\overline{\mathrm{OH}}$ goes low to busy out the phone line. The receive filter center frequency moves to the transmit center frequency and the TC signal is internally connected to the RC input. The transmit signal also remains available on the TC pin. Thus any digital data input at TD is coded and sent out via TC, and at the same time back through the analog input, decoded, and out on the $\overline{R D}$ pin.
By putting the DL pin high the S3530 enters the Digital Loopback mode. In this mode any data received from the remote end of the telephone line is retransmitted back to its source and $\overline{\mathrm{DSR}}$ is forced high. The digital or decoded data is not available at the RD output in this mode.
*(Note that $\overline{\mathrm{OH}}$ only follows RTS. The proper timing for dialing must come from the terminal on the RTS line.)

S3530 Modem Timing Chart for 103 Operating Mode

S3530 Modem Timing Chart for V. 21 Operating Mode

Application Circuits

Two applications circuits are illustrated. The first circuit is for a stand-alone RS-232 interface modem to be used as a peripheral accessory to a terminal or computer. Plugging into an RS-232 serial port on one side and into a standard modular telephone jack on the other side it is a stand-alone direct connect modem for operation at rates up to 300 bps .
The second circuit is an add-on modem for building into a computer and connecting to the internal parallel buss structure. The ACIA or UART does the parallel-toserial and serial-to-parallel conversion required. The edge connector is numbered for an Apple Il application but the same interface applies to most $\mu \mathrm{P}$ systems.
Both circuits are intended for direct connection to the telephone line. This requires meeting FCC Part 68 requirements for network protection as well as protection of the modem. No suppression components are illustrated on these examples as the design of the interface will vary depending on the needs of the designer. After a design is completed it must be subjected to Part 68 certification before sale to the public.
If one wants to avoid the protection/certification details then a certified DAA (Data Access Arrangement) such as the Cermetek CH1810 can be used instead. The DAA is designed to handle the telephone line interface including the 4 wire to 2 wire function and is already registered with the FCC.
Whether using a DAA or not, the $\mathbf{S 3 5 3 0}$ requires very few external components.

Hybrid Functions

In the stand-alone circuit the hybrid 4 wire to 2 wire converter utilizing the dual op amp was configured to provide 1:1 conversion in each direction. A -9dBm voltage level from the Transmit Carrier pin on the S3530 is
amplified by the op amp to compensate for the losses in the 300Ω matching resistor and the coupling transformer. The transmit carrier is delivered to the line at -9 dBm .
In the receive direction the loss in the coupling transformer is compensated for by the other half of the op amp. If there is a -20 dBm signal across Tip and Ring then a -20 dBm signal is delivered to the Receive Carrier pin on the S3530.
The 300s resistor is to provide the proper termination so that Tip and Ring look like a 600Ω AC impedance to the line. The $16 \mathrm{~K} \Omega$ resistor from the Transmit Carrier pin to the inverting input of the receive op amp is to provide sidetone suppression. The transmit carrier is provided through the $16 \mathrm{~K} \Omega$ resistor 180° out of phase from the transmit carrier presented to the line. Thus, the transmit carrier is cancelled out and not presented to the Receive Carrier pin on the S3530. Under ideal conditions 20 dB or more of cancellation might be achieved, but because telephone lines vary considerably, a cancellation of around 10 dB is a more realistic number. The 20Ω resistors in series with Tip and Ring increase the DC impedance of the modem to the line. This is because the transformer is very close to the 100Ω minimum DC impedance specification in the off-hook condition.
NOTE once again, that only minimal transient protection is illustrated in these examples. This must be added to meet the needs of the application and the FCC Part 68 requirements.

Also, the transformer listed is rated to 75 mA loop current. To go to the maximum loop current the Microtran number would be $T 5115$ for 120 mA loop current capability. The DC resistance may be slightly different and the various components will need to be adjusted to retain the necessary levels of $A C$ and $D C$ specifications.

Consumer Products

Contact factory for complete data sheets

Consumer Products Selection Guide

SPEECH PRODUCTS

Part No.	Description	Process	Power Supplies	Packages
S3620	Speech Synthesizer	CMOS	+5 V	22 Pin
S36128	131,072 Bit Female Speech ROM	NMOS	+5 V	28 Pin
EVK3620	Speech Synthesis Evaluation Board			

DRIVERS

Part No.	Description	Process	Power Supply	Outputs	Packages
S4520	30-Volt Dichroic LCD Driver	CMOS	+3 V to $+16 \mathrm{~V} /$ -30 V to -5 V	$30 / 32 / 38$	40 Pin
S4521	32 Bit Driver	CMOS	+3 V to +13 V	32	40 Pin
S4535	32 Bit, High Voltage, Driver	CMOS	$+5 \mathrm{~V} /+20-+60$	32	40 Pin
S4534	10 Bit, High Voltage, High Current Driver	CMOS	$+5 \mathrm{~V}-12 \mathrm{~V} /$ +20 to +60	10	18 Pin
S2809	Universal Driver	PMOS	+8 V to +22 V	32	40 Pin

REMOTE CONTROL CIRCUITS

Part No.	Description	Process	Power Supply	Commands	Packages
S2600	Remote Control Encoder	CMOS	+7 V to 10 V	31	16 Pin
S2601	Remote Control Decoder	PMOS	+10 V to 18 V	31	22 Pin
S2604	Remote Control Encoder	CMOS	+9 V	18	16 Pin
S2605	Remote Control Decoder	CMOS	+9 V	18	22 Pin
S2742	Remote Control Decoder	PMOS	+15 V	512	18 Pin
S2743	Remote Control Encoder	PMOS	+9 V	512	16 Pin
S2747	Remote Control Encoder	CMOS	+9 V	512	16 Pin
S2748	Remote Control Decoder	CMOS	+12 V	512	16 Pin

ORGAN CIRCUITS

Part No.	Description	Process	Packages
S10110	Anaiog Shift Register	PMOS	8 Pin
S10430	Divider-Keyer	PMOS	40 Pin
S2688	Noise Generator	PMOS	8 Pin
S50240	Top Octave Synthesizer	PMOS	16 Pin
S50241	Top Octave Synthesizer	PMOS	16 Pin
S50242	Top Octave Synthesizer	PMOS	$\mathbf{1 6 ~ P i n ~}$

CLOCK CIRCUITS

Part No.	Description	Process	Power Supply	Digits	Packages
S4003	Fluorescent Automotive Digital Clock (12 Hour + Date + Rally Timer)	PMOS	+12 V	4	40 Pin
S2709A	Vacuum Fluorescent Digital Clock	PMOS	+12 V	4	22 Pin

AID CONVERTER AND DIGITAL SCALE CIRCUIT

Part No.	Description	Process	Power Supply	Digits	Packages
S4036	General Purpose A/D Converter and Digital Scale Circuit	CMOS	+9 V	4	24 Pin

LPC-10 SPEECH SYNTHESIZER

Features

Simple Microprocessor Interface\square CMOS Switched-Capacitor Filter TechnologyAutomatic Powerdown
$\square 5-8$ Volts Single Power Supply OperationDirect Loudspeaker Drive20mW Audio Output
\square Low Data Rate

General Description

The S3620 LPC-10 Speech Synthesizer generates speech of high quality and intelligibility from LPC (Linear Predictive Coding) data stored in an external memory. The digital interface circuitry is fully microprocessor compatible and allows the processor to load the data with or without a DMA controller. The loading takes place on a handshake basis, and in the absence of a response from the processor the synthesizer automatically shuts down and goes into the powerdown mode. A busy signal allows the processor to sense the status of the synthesizer. The input data

rate is 2.0 K bits/sec. max., but typically the average data rate will be reduced to about 1.4 K bits $/ \mathrm{sec}$. by means of the data rate reduction techniques used internally.
The synthesizer is realized using analog switchedcapacitor filter technology and operates at 8K samples/ sec. An output interpolating filter and bridge power amplifier give 20 mW output power at 5 volts supply and
allow the device to be connected directly to a 100Ω loudspeaker.
The S3620 also features an on-chip oscillator, requiring only a 640 kHz ceramic resonator and a 120 pF capacitor for normal operation.
AMI is able to provide a speech analysis service to generate the LPC parameters from customers' word lists.

Absolute Maximum Ratings*

Supply Voltage

Operating Temperature Range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
\qquadLead Temperature (soldering, 10 sec .)$200^{\circ} \mathrm{C}$
Power Dissipation 1W
*COMMENT: Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Electrical Specifications: ($\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S}=\mathrm{OV}, \mathrm{C}_{\mathrm{AG}}=0.047 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=0^{\circ}$ to $70^{\circ} \mathrm{C}$, unless otherwise specified) D.C. Characteristics

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$\mathrm{V}_{I H}$	Input High Logic "1" Voltage	2.4		$\mathrm{~V}_{D D}$	V	
$\mathrm{~V}_{\mathrm{IL}}$	Input Low Logic "'0" Voltage	0		0.8	V	
I_{IN}	Input Leakage Current			10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0$ to $\mathrm{V}_{D D}$
$\mathrm{~V}_{0 \mathrm{~L}}$	Output Low Voltage ($\overline{\mathrm{BU}, \mathrm{TRQ})}$			0.4	V	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$
$\mathrm{~V}_{O S}$	DC Offset Voltage, Audio Output		$0.5 \mathrm{~V}_{D D}$		V	$\mathrm{R}_{\text {LOAD }}=100 \Omega$
I_{DD}	Supply Current, Operating			35	mA	
$\mathrm{I}_{\mathrm{DDL}}$	Supply Current, Powerdown			4	mA	

AC Characteristics

P_{0}	Audio Output Power		20		mW	$\mathrm{R}_{\text {LOAD }}=100 \Omega$
tos	Data Set-up Time	100			nsec	See Figure 1
$\mathrm{t}_{\text {DH }}$	Data Hold Time	10			nsec	See Figure 1
tws	Strobe Pulse Width	3.2		100	$\mu \mathrm{sec}$	See Figure 1
$\mathrm{t}_{\text {S }}$	1st Strobe to Busy Delay		100	500	nsec	See Figure 1
t_{BO}	1st Strobe to 1st IRQ Delay		19		msec	See Figure 1
$t_{\text {REP }}$	IRQ Repetition Rate		250		$\mu \mathrm{Sec}$	See Figure 1
two	IRQ Pulse Width	3		3.5	$\mu \mathrm{sec}$	See Figure 1
tos	IRQ to Strobe Delay[see Note 1]			200	$\mu \mathrm{sec}$	See Figure 1
Fosc	Oscillator Resonator Frequency	-1\%	640	+1\%	KHz	See Figure 1
$\mathrm{R}_{\text {LOAD }}$	Audio Output Load Impedance		100		Ω	
$\mathrm{C}_{\text {INOSC }}$	Input Capacitance, Oscillator		100		pF	
$\mathrm{C}_{\text {IN }}$	Input Capacitance, Digital Interface		7		pF	

NOTE 1: Failure to respond to an IRQ with a new strobe within the specified period results in the chip going into the power down mode.

Figure 1. Timing Requirements

Pin Function/Description

D_{0} through $\mathrm{D}_{7} \quad$ Data Inputs. The speech data (in quantized form is loaded on these line in 8-bit bytes.)
ST Strobe Input. A rising edge on this input strobes in the data bytes. Enunciation will commence after the first frame of data has been loaded. If no strobe is received by the chip in response to an IRQ output then enunciation stops immediately and the chip goes into power down mode.
$\overline{\mathrm{BU}} \quad$ Busy Output. This open drain output signals that enunciation is in progress by going low.
$\overline{\mathrm{IRQ}}$

LS1 and 2 Loudspeaker Outputs. These pins are used to connect the chip to the loudspeaker. They are D.C. coupled and have an offset of half the supply voltage. The audio output is balanced on the two outputs.
OSC $_{\mathrm{i}}$, OSC $_{0} \quad$ Oscillator Input and Output. A 640 KHz ceramic resonator (MuRata CSB640A or equivalent) should be connected between these pins for normal operation, or an external 640 KHz signal may be fed into $0 S C_{i}$. When a resonator is used, a 120pF capacitor should be connected between OSC $_{i}$ input and ground.
$T_{1}, T_{2}, T_{3} \quad$ Test Inputs and Outputs. These inputs should be left unconnected for normal operation.
$V_{S S} \quad$ Most negative supply input. Normally connected to OV .
Most positive supply input.
Analog Ground. An internally generated level approximately half way between $V_{S S}$ and $V_{D D}$. A $0.047 \mu \mathrm{~F}$ decoupling capacitor $C_{A G}$ should be connected from this pin to $V_{S S}$. Do not connect this pin to a voltage supply.

Circuit Description

The main components of the S3620 LPC-10 Speech Synthesizer are shown in the block diagram.
Input Latch-This 8 -bit latch stores the input data after the strobe pulse and loads it into the Coefficient Address Registers.
End of Word Decoder-This circuit detects the special code indicating that the last byte loaded in the Input Latch denotes the end of the speech word data and initiates the power down routine after the previous frame has been enunciated.
Buffer Registers-The data from the Speech Data ROM is assembled into frames and then decimated into the 12 parameters required for LPC-10 synthesis: pitch, gain and the 10 lattice filter coefficients. The parameters are stored in an encoded format and the decoding is done in the parameter value ROM. The coefficient address registers are used to store the assembled frame data and address this ROM.
Bit Allocation PLA - A programmable logic array is used to control the allocation of bits in the Buffer Register to the 12 parameters. The allocation and permissible variations are shown in Figure 2.
Parameter Value ROM-This ROM is used as a look-up table to decode the stored parameters into the LPC coefficients.
Interpolation Logic-The coefficients for each frame of speech, normally 20 msec . are interpolated four times per frame to generate smoother and more natural sounding speech. Hence, the interpolation period is one quarter of a frame period, normally 5 msec . After interpolation, the coefficients are used to drive the pitch-pulse source, the voiced/unvoiced switch, the lattice filter and the gain control. Interpolation is inhibited when a change from voiced to unvoiced speech, or vice versa, is made.
Pitch Register and Counter-This register stores the pitch parameter used to control the pitch counter.
Pitch-pulse Source-This is the signal source for voiced speech (vowel sounds). It is realized in switchedcapacitor technology and generates symmetrical bipolar pulses at the rate specified by the pitch parameter and controlled by the pitch counter.
Pseudo-random Noise Source-This is the signal source for unvoiced speech (fricatives and sibilants) and consists of a 15 -bit linear code generator giving a periodi-
city of 32767 sampling periods (4.096 sec .). The output of this generator is scaled to a lower value and used as a random sign, constant amplitude signal.
Voiced/Unvoiced Speech Selector Switch—This switch determines whether the voiced or unvoiced signal source is used to drive the filter during a given frame.
LPC-10 Parameter Stack-This stack of 10 filter coefficients is used to control the lattice filter. The coefficients have an accuracy of 8 -bits plus sign.
10 Stage Lattice Filter-The filter which simulates the effect of the vocal tract on the sound source (glottis) in the human speaker is realized here as a switchedcapacitor (analog sampled data) 10 stage lattice filter. The filter parameters are determined dynamically by the time varying coefficients in the Parameter Stack and the filter operates at a sampling frequency of 8 KHz (clock frequency/80).
Gain Controller-This controls the input signal level to the lattice filter to vary the sound level, and is an integral part of the lattice filter.
Interpolation Filter-The output signal from the lattice filter is sampled at 8 KHz , and consequently its spectrum is rich in aliasing (foldover) distortion components above 4 KHz (See Figure 3). The signal is cleaned up by passing it through a 4 KHz low pass filter sampled at 160 KHz . The spectrum of the output signal contains no aliasing distortion components below 156 KHz , making the output suitable for feeding directly into a loudspeaker after amplification. This filter is also realized using switched-capacitor filter technology.
Power Amplifier-The amplifier brings up the level of the signal to give an output level of 20 mW RMS into a 100Ω load. The output is a balanced bridge configuration with anti-phase signals on the 2 output pins.
Clock Generators and Power-down Control-This block contains the oscillator and timing circuits and also generates the analog ground reference voltage.

Speech Data Compression

The speech data rate of the synthesizer is reduced to less than $2000 \mathrm{bits} / \mathrm{sec}$ for storage by means of a nonlinear quantization technique. Each of the 12 coefficients is constrained to have a fixed set of values in an optimized manner. The actual values are dependent on the speech data and generated automatically in the analysis process. The parameters used to specify the coefficients are stored in the speech data ROM and

Figure 2. Packed Quantized Data Formats

*NOTE: $\mathbf{0}=$ SINGLE (OR LAST) REPEAT. 1 = MULTIPLE REPEAT.
Figure 3.

(a) SPECTRUM OF SIGNAL OUTPUT OF LATTICE FILTER

(b) SPECTRUM OF SIGNAL AT OUTPUT OF INTERPOLATION FILTER.

NOTE: IN BOTH CASES A SIN X/x CHARACTERISTIC MODULATES THE SPECTRA.
THIS IS OMITTED FOR SIMPLICITY.
used to address the coefficient look-up table ROM. The packing formats for the speech data are shown in Figure 2.
The speech data rate is further reduced by two other techniques shown in Figure 2. A substantial reduction is achieved by reducing the order of the lattice filter (the LPC order) to 4 during periods of unvoiced
speech. This allows a 40% data reduction during these periods, which themselves typically account for $30-40 \%$ of speech (in the English language). A second reduction is obtained by detecting periods during which the filter parameters may be the same as those in the previous frame. Only the gain and pitch parameters are updated in such a frame, allowing an 80% data reduction.

Generation of Speech Data for the S3620

The speech data input to the S3620 is in a compressed format as explained in the previous section. AMI is able to provide a complete speech analysis service for this purpose and can supply the data programmed into EPROMs or mask programmed ROMs up to 128k bits. Customers who have LPC speech analysis facilities and wish to generate their own data should contact AMI for further details of the quantization technique used and the availability of software to accomplish this.

Interfacing

The S3620 is designed to be easily interfaced to an 8-bit microprocessor system such as the S 6800 family. The timing requirements are shown in Figure 1. The first data byte should be present at the data input lines when the strobe line is taken to a logic 1 to begin enunciation and in response to each $\overline{\mathrm{RQ} Q}$. The busy output may be used to identify the $\overline{\mathrm{RQ}}$ source during polling in a multiple interrupt system. A typical system configuration is shown in Figure 4. The S3620 occupies a single address in the microprocessor's memory space and data is loaded by writing it into that address after read-
ing it from memory. The Address decode function may be realized using a PIA. An alternative interface technique is to write the data directly into the S3620 while reading it from the memory. This can be accomplished by mapping the S3620 into the entire address space of the speech data portion of the memory, so that the strobe is generated each time a byte of data is read from the speech memory. This can save hardware, as well as microprocessor instructions, since the loading of each byte is now accomplished in a single Read cycle instead of a Read cycle followed by a Write cycle. An example of this interfacing is shown in Figure 5, where the speech data occupies the memory addresses 0000 to 7FFF.

Applications

Toys and Games
EDP
Instrumentation
Communications
Industrial Controls
Automotive
Appliances

Figure 4. Typical System Configuration

Figure 5.

息这

131,072 BIT NMOS FEMALE SPEECH ROM

Features

\square Approximately 100 Seconds of Stored Speech
\square Vocabulary for Telecommunications, Industrial and Numeric Applications
\square High Quality and Natural Sounding Female Voice
\square Used with Gould AMI's S3620 LPC-10 Speech Synthesizer
\square Ideal for Evaluation and Prototyping

General Description

The S36128 is a 131,072 bit (organized as 16,384 words by 8 -bits) static NMOS ROM mask programmed with
speech data.
The S36128 speech ROM is fully TTL compatible on all inputs and outputs and has a single +5 V power supply.

The speech data programmed in the S36128 contains words and phrases suitable for telecommunications and industrial applications, such as telephone answering, status announcements, timekeeping and emergency messages.

The S36128 is pin and electrically compatible with the Gould AMI S23128, a 131,072 bit static mask programmable NMOS ROM. The S23128 can be used by customers who want to program in their own vocabularies.

D.C. Characteristics: $V_{C C}=+5 \mathrm{~V} \pm 10 \%, T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$\mathrm{V}_{0 \mathrm{~L}}$	Output LOW Voltage			0.4	V	$\mathrm{I}_{\text {OL }}=3.2 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	2.4			V	$\mathrm{IOH}=-400 \mu \mathrm{~A}$
$V_{\text {IL }}$	Input LOW Voltage	-0.5		0.8	V	
$V_{\text {IH }}$	Input HIGH Voltage	2.0		$\mathrm{V}_{\text {cC }}$	V	
l_{LI}	Input Leakage Current	-10		10	$\mu \mathrm{A}$	$\mathrm{V}_{1 N}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$
Lo	Output Leakage Current	-10		10	$\mu \mathrm{A}$	$\mathrm{V}_{0}=0.4 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$ Chip Deselected
ICC	Power Supply Current-Active			40	mA	Chip Enabled
$I_{\text {SB }}$	Power Supply Current-Standby			20	mA	Chip Disabled

Capacitance: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
C_{IN}	Input Capacitance			7	pF	$\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitance			10	pF	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

Operating Description

The S36128 is to be used with the AMI S3620 female parameter LPC (Linear Predictive Coding) speech synthesizer. Words are listed (see page 3) with their beginning address. Word data ends at the last byte before the following word. The speech data is packed into 8 -bit bytes. These bytes are fed in parallel by the user's controller to the S 3620 speech synthesizer which performs all of the unpacking and decoding of the formatted data. This unpacking is transparent to the user.

Rom Data Format

The ROM data begins with an address field which gives the starting address of each word in the vocabulary list in sequence. The addresses are given next to the appropriate word in the vocabulary listing also. The starting address upper half (SUH) is given first and the starting address lower half (SLH) follows. A section of data for internal use follows. The actual speech data begins immediately afterwards.

Address Field Format

LOCATION (DECIMAL)	CONTENTS								WORD
	67	b6	b5	64	b3	b2	b1	b0	
0	0	0	SUH						1
1	SLH								
2	0	0	SUH						2
3	SLH								
i	!								I
2n-2	0 O 0 [SUH								n
$2 \mathrm{n}-1$	SLH								
2 n	0	0	EUH						END ADDRESS OF LAST WORD
$2 \mathrm{n}+1$	ELH								
$2 \mathrm{n}+2$	1	0	0	0	0	0	0	0	END OF
$2 \mathrm{n}+3$	0	0	0	0	0	0	0	0	$\begin{gathered} \text { ADDRESS } \\ \text { FIELD } \end{gathered}$

n	$=$ NUMBER OF WORDS STORED IN THE SPEECH ROM
SUH	$=$ STARTING ADDRESS:UPPER HALF
SLH	$=$ STARTING ADDRESS:LOWER HALF
EUH	$=$ ENO ADDRESS:UPPER HALF
ELH	$=$ END ADDRESS:LOWER HALF

Actual Data

Address
Data
000001 1D 01 A4 021002890304038803 D9 04 5F 001004 AE 05 3D 05 A6 063806 C3 077208 2E 08 E4 00200995 OA 6D OB 1108 D9 OC 50 OC C3 OD 38 OD A6 0030 OE 24 OE C1 OF 2 F OF C3 104310 DD 117411 F7
 005016 EB 177817 EO 189 g 18 DE 19 BO 18681 BEE 00601016 1D 9F 1E 68 1E E9 1F 5F 1F CF 204720 D3 00702153224 A 22 FF 233723 A9 243624 CB 2530 008025 9D 26 OC 2653271327 CF 28 7A 28 FE 2977 009029 C 82 CE 2 C C3 2C 482 CA 2 D 382 C C1 2E CB 00 AO 2 F AB 2F F7 30 1F 31 3E 31 CF 325 F 32993557 00B0 36 3B 368 8 37 A9 39 E7 3A A0 3B 3C 3B 5A 3B 69 00 CO 3 B 75 3B 7 B 3B $9 7 8 0 0 0 \longdiv { \mathrm { AO } } \mathrm { D } 3 2 1 5 3$ 3B 3C $3 \mathrm{~B} \mathrm{5A}$ 00D0 19 B0 1B 68 3B 3C 38 5A 22 4A 22 FF B7 A9 39 E7 00 E 0 9B EE 1D 16 1F 5F 1F CF 04 AE 05 3D 16 EB 177 B 00F0 3B 75 3B 7B 2F F7 30 1F 030403883 B 75387 B 0100 A8 7A 28 FE AD C1 2E CB 3B 3C 3B 5A AO 4720 D3 0110 BO 1F 313 BE 3 B 69 3B 75 AA CE 2 BC C3 $0 0 \longdiv { 0 6 7 0 6 E }$ Speech 012026 F0 2 B 93 A6 27 E0 28 8D BD 27 F0 26 8D C5 26 Data 0130 F0 05 DB B6 28 F0 03 E2 B6 69 F1 02 E8 A6 EA F1 Begins at 0140027 E 91 E8 D2 08 7B 9A ED C3 07 B8 91 AE A4 07 Address 0150 BC 902 AE A5 167395 EE 95157 C 95 2E 862674 011D 0160 A4 AE 762674 B4 2E 774235 C5 AD 757267 D1

Word List of Telephone Application Vocabulary Guide:

Items terminating with a single period (.) are intended for use at the end of a sentence or are a complete sentence themselves.

Items terminating with three periods (. . .) are intended for use at the beginning of a sentence.
All other words carry no restrictions.
"6،"،6‘Numbers',",',"'

Word	Beginning Address	Word	Beginning Address
1. One	011 D	16. Sixteen	$08 E 4$
2. Two	$01 \mathrm{A4}$	17. Seventeen	0995
3. Three	0210	18. Eighteen	OA6D
4. Four	0289	19. Nineteen	$0 B 11$
5. Five	0304	20. Twenty	$0 B D 9$
6. Six	0388	21. Thirty	$0 C 50$
7. Seven	$03 D 9$	22. Forty	OCC3
8. Eight	045 F	23. Fifty	00338
9. Nine	$04 A E$	24. Sixty	$0 D A 6$
10. Ten	$053 D$	25. Seventy	OE24
11. Eleven	$05 A 6$	26. Eighty	$0 E C 1$
12. Tweive	0638	27. Ninety	OF2F
13. Thirteen	$06 C 3$	28. Hundred	OFC3
14. Fourteen	0772	29. Thousand	1043
15. Fifteen	$082 E$	30. Million	100D

"،‘،"'‘Days of The Week"',"'"

31. Monday	1174	35. Friday	$138 B$
32. Tuesday	$11 F 7$	36. Saturday	1408
33. Wednesday	127 E	37. Sunday	1493
34. Thursday	1306		

"،،"،"'Words and Phrases" ",,","

38. After	1509
39. After the tone.	157C
40. Again	1663
41. A.M.	16EB
42. And	177B
43. Area code	17E0
44. At	189D
45. At this number.	18DE
46. This is an automatic message.	19B0
47. Before	1868
48. Business hours are	1BEE
49. Connected.	1D16
50. Emergency	1D9F
51. Error.	1E68
52. Fire	1EE9
53. From	1F5F
54. Function	1 FCF
55. Good-by.	2047
56. Hello.	2003
57. Identification	2153
58. I'm sorry.	224A
59. Is	22FF
60. Later	2337
61. Medical	2349
62. Number	2436
63. Oh	24 CB
64. Off.	2530
65. On. (opposite of off)	2590
66. On	260C

،'،'،'‘'Words and Phrases', ,',", (Continued)		Words can be concatenated to form phrases or
67. Please call.	2653	ences. Some examples are:
68. Please enter	2713	Sample One:
69. Please wait.	27CF	
70. P.M.	287 A	Hello. $/ 200 \mathrm{~ms}$ / This is an automatic message./
71. Police	28 FE	You are listening to Natural Voice from AMI. I
72. Port	2977	/ 200ms / Thank you for calling. / 200ms / Good-by.
73. Press the pound key.	29 CB	Sample Two:
75. Status	2 BC 3	Business hours are / Monday / thru / Friday / from / 9 /
76. Switch	2 C 48	A.M. / to / 7 / 40 ms / P.M. /
77. Terminated.	2 CAB	
78. Thank you.	2038	Sample Three:
79. Thank you for calling. 80. The time is..	20 Cl	Please call / your party / before / 3 / P.M.
81. Through	2 FAB	Sample Four:
82. To	$2 \mathrm{FF7}$	
83. To change your entry	3017	Please enter / your call back number / with / 40 ms /
84. To exit	313 E	area code / after the tone. / 200ms / tone /
85. Warning! 86. With	${ }^{31 \mathrm{CF}}$	Sample Five:
86. With 87. You are listening to Natural Voice from AMI	325 F 3299	
87. You are lis tening to Natural Voice from AMI 88. You have dialed	3299 3557	To exit / 80ms / press the pound key.
89. Your	363B	
90. Your call back number	368A	
91. Your call cannot be answered at this time.	37A9	
92. Your party	$39 E 7$	
93. Zero	3AAO	
94. 200 ms pause	3 B 3 C	
95. 100 ms pause	3B5A	
96. 80 ms pause	3869	
97. 40ms pause	3875	
98. Tone	$3 \mathrm{B7B}$	

SPEECH SYNTHESIS EVALUATION BOARD

Features

- Needs only a +5 V source and either an 8 ohm or 100 ohm loudspeaker for complete operation. (With the addition of a 7805 regulator and a capacitor it can be run by a 9 V battery eliminator similar to calculators and video games.)
- Large speech vocabulary (up to 100 seconds of speech stored in a 128 K bit ROM).
- Demonstrates the wide application range of the S3620 speech synthesis chip.
- Programmed microcomputer (S3605) provides several modes of operation such as:
- Play a single word
- Build and play a phrase
- Repeat word or phrase
- Play preprogrammed messages
- Play the entire vocabulary
- Edge connector for interfacing with user system for product prototyping.
- Onboard audio amplifier.

EVK 3620 Speech Board Block Diagram

Edge Connector Assignments

Ground	A	1	GROUND
$+5 v$	B	2	$+5 \mathrm{~V}$
$\geqslant+8 \mathrm{~V}$	C	3	$\geqslant+8 \mathrm{~V}$
	0	4	
8 OHM OUT	E	5	BU
100 OHM OUT	F	6	100 OHM OUT
D4	H	7	D_{0}
D_{5}	J	8	D_{1}
D_{6}	K	9	D_{2}
D_{7}	L	10	D_{3}
	M	11	
A_{7}	N	12	A_{0}
A_{8}	P	13	A_{1}
A_{g}	R	14	A_{2}
A_{10}	S	15	A_{3}
A_{11}	T	16	A_{4}
A_{12}	U	17	A_{5}
A_{13}	V	18	A_{6}
OE	W	19	DA
St	x	20	
	Y	21	IRO
	Z	22	CE

30-Volt Dichroic LCD Driver

Features

High Voltage Outputs Capable of a 32 -Volt SwingDrives Up to 38 DevicesCascadableOn-Chip OscillatorRequires Only 4 Control LinesCMOS Construction For:
Wide Supply Range
Low Power Consumption
High Noise Immunity
Wide Temperature Range

Applications

Liquid Crystal Displays

Flat Panel Displays
Print Head Drives

General Description

The AMI S4520 is a CMOS/LSI circuit that drives highvoltage dichroic liquid crystal displays, usually under microprocessor control. The S4520 requires only four control inputs (CLOCK, DATA IN, LOAD and CHIP SELECT) due to its serial input construction. It can latch the data to be output, relieving the microprocessor from the task of generating the required waveforms, or it may be used to bring data directly to the drivers. The A.C. frequency of the backplane output can be generated by the internal oscillator or, the user has the option of supplying this signal from an external source. If the internal oscillator is used to generate the backplane signal, the frequency will be determined by an external resistor and capacitor. One S4520 circuit can drive 38 segments. Other packaging options can provide 30 or 32 segment drivers.

Absolute Maxiumum Ratings

Electrical Characteristics: $3 \mathrm{~V} \leqslant \mathrm{~V}_{D D} \leqslant 16 \mathrm{~V},-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+85^{\circ} \mathrm{C}$, unless otherwise noted

Symbol	Parameter	Min.	Max.	Units	Test Condition
$V_{D D}$	Power Supply Logic Supply Voltage	3	16	V	
$V_{B B}$	Display Supply Voltage	$\begin{aligned} & V_{D D}-32 \\ & V_{D D}-32 \end{aligned}$	$\begin{aligned} & V_{D D}-15 \\ & V_{D D}-22 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & V_{D D} \leqslant 11 \mathrm{~V} \\ & V_{D D} \geqslant 11 \mathrm{~V} \end{aligned}$
$\mathrm{I}_{\text {D }}$	Supply Current (external oscillator) Supply Current (internal oscillator)		$\begin{aligned} & 200 \\ & 200 \\ & 750 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$	CMOS input leveis. No loads. $V_{D D} \leqslant 5 \mathrm{~V}$ $V_{D D}=16 \mathrm{~V}$; CMOS input levels. No loads.
$I_{B B}$	Display Driver Current		-200	$\mu \mathrm{A}$	$\mathrm{f}_{\mathrm{BP}}=100 \mathrm{~Hz}$. No loads.
$V_{\text {IH }}$	Inputs (CLK, DATA IN, LOAD, C(S) Input High Level	$0.5 \mathrm{~V}_{D D}$	$V_{D D}$	V	$V_{D D} \geqslant 5 \mathrm{~V}$
V_{LL}	Input Low Level	$\mathrm{V}_{\text {SS }}$	$0.2 V_{D D}$	V	
I_{L}	Input Leakage Current		5	$\mu \mathrm{A}$	
C_{1}	Input Capacitance		5	pF	
$v_{0 \text { AVG }}$	DC Bias (Average) Any Segment Output to Backplane		± 25	mV	$\mathrm{f}_{\mathrm{BP}} \leqslant 100 \mathrm{~Hz}$
$V_{\text {IH }}$	LCD ϕ Input High Level	$0.9 \mathrm{~V}_{\text {DD }}$	$V_{D D}$	V	Externally Driven
V_{lL}	LCD Input Low Level	$V_{B B}$	$0.1 V_{D D}$	V	Externally Driven
$C_{\text {LSEG }}$	Capacitance Loads (typical) Segment Output		1000	pF	$\mathrm{f}_{\mathrm{BP}} \leqslant 100 \mathrm{~Hz}$
$\mathrm{C}_{\mathrm{L}_{\text {BP }}}$	Backplane Output		40000	pF	$\mathrm{f}_{\mathrm{BP}} \leqslant 100 \mathrm{~Hz}$
$\mathrm{R}_{\text {SEG }}$	Segment Output Impedance		10	K Ω	$\mathrm{L}_{\mathrm{L}}=10 \mu \mathrm{~A}$
$\mathrm{R}_{\text {BP }}$	Backplane Output Impedance		312	Ω	$\mathrm{I}_{\mathrm{L}}=10 \mu \mathrm{~A}$
R_{DO}	Data Out Output Impedance		3	K Ω	$\mathrm{I}_{\mathrm{L}}=10 \mu \mathrm{~A}$

Operating Notes

1. The shift register loads and shifts on the falling edge of CLK. DATA OUT changes on the rising edge of CLK.
2. The buffer number corresponds to how many clock pulses have occurred since its data was present at the input (e.g., the data on Q_{10} was input 10 clock pulses earlier). DATA is shifted into Segment 1 and shifted out from Segments 30,32 or 38 , depending on bonding option used.
3. A logic 1, shifted into the shift register (through DATA IN), causes the corresponding segment's output to be out of phase with the backplane.
4. A logic 1 on LOAD causes a parallel load of the data in the shift register, into the latches that control the output drivers.
5. LOAD may also be held high while clocking. In this case, the latch is transparent and, the falling edge of LOAD will latch the data.
6. To cascade units, (a) connect the DATA OUT of one chip to the DATA IN of the next chip, and (b) either connect the backplane of one chip to LCD ϕ of all other chips (thus one RC provides frequency control for all chips) or connect LCD ϕ of all chips to a common driving signal. If the former is chosen, the backplane that is tied to the LCD ϕ of the other chips should not also be connected to the backplanes of those chips.
7. The LCD ϕ pin can be used in two modes, driven or self-oscillating. If LCD ϕ is driven, the circuit will sense this condition. If the LCD ϕ pin is allowed to oscillate, its frequency is determined by an external capacitor. The Backplane frequency is a divide by 256 of the LCD ϕ frequency, in the self-oscillating mode.
8. If LCD ϕ is driven externally, it is in phase with the backplane output.
9. Backplanes can be tied together, if they have the same signal applied to their LDC ϕ inputs.
10. In the self-oscillating mode, the backplane frequency is approximately defined by the relationship $\mathrm{f}_{\mathrm{BP}}(\mathrm{Hz})=10 \div \mathrm{R}(\mathrm{C}+.0002)$ at $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$, R in $\mathrm{K} \Omega, \mathrm{C}$ in $\mu \mathrm{F}$.

$$
\begin{array}{lll}
\text { examples: } & R=56 \mathrm{~K} \Omega, \mathrm{C}=.0015 \mu \mathrm{~F}: & \mathrm{f}_{\mathrm{BP}}=100 \mathrm{~Hz} \\
& \mathrm{R}=110 \Omega, \mathrm{C}=.00068 \mu \mathrm{~F}: & f_{B P}=100 \mathrm{~Hz}
\end{array}
$$

11. Minimum value of R for $R C$ oscillator is 50 K .
12. Power consumption increases for clock rise or fall times greater than 100 ns .

Pin Description

Pin \#*	Pin \#**	Name	Description
22	23	$V_{D D}$	Logic Supply Voltage
39	40	$V_{B B}$	Display Supply Voltage
16	17	$V_{\text {SS }}$	Ground Connection
17	18	CS	Chip Select Inverse Input
18	19	CLOCK	System Clock Input
19	20	LOAD	Input Signal to Latch Shift Register Data
21	22	LCD ϕ	LCD Oscillator Input
21	22	LCD\$ OPTION	LCD Oscillator Option (S4520A, S4520C)
20	21	dATA IN	Data Input to Shift Register
46	47	D038	Data Output from Shift Register (after bit 38)—Primarily used for cascading
45	46	BP	Backplane Drive Output
1-15, 23-38	1-16,24-39,		
40-44,	41-45,	$Q_{1}-Q_{38}$	Segment Outputs
47,48	48		
*S4520A-Internal Oscillator, 48-Pin Plastic DIP S4520B-External Oscillator, 48-Pin Plastic DIP			
**S4520C-Int	rnal Oscillator	-Lead Ceramic	Ship Carrier S4520D-External Oscillator, 48-Lead Ceramic Chip Carrier

Timing Characteristics:

Symbol	Parameter	Min.	Max.	Units	$V_{\text {D }}$
toyc	Cycle time (noncascaded)	$\begin{array}{r} 1000 \\ 500 \\ 320 \end{array}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{array}{r} 3.0 \mathrm{~V} \\ 5.0 \mathrm{~V} \\ \geqslant 7.5 \mathrm{~V} \end{array}$
$\mathrm{t}_{\text {cyc }}$	Cycle time (cascaded)	$\begin{array}{r} \hline 1300 \\ 600 \\ 350 \end{array}$		$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{array}{r} 3.0 \mathrm{~V} \\ 5.0 \mathrm{~V} \\ \geqslant 7.5 \mathrm{~V} \end{array}$
$\mathrm{t}_{\mathrm{OL}}, \mathrm{t}_{\mathrm{OH}}$	Clock pulse width low/high	$\begin{aligned} & 450 \\ & 220 \\ & 140 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{array}{r} 3.0 \mathrm{~V} \\ 5.0 \mathrm{~V} \\ \geqslant 7.5 \mathrm{~V} \end{array}$
t_{OH}	Clock pulse width high (cascaded)	$\begin{aligned} & 750 \\ & 320 \\ & 180 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{array}{r} 3.0 \mathrm{~V} \\ 5.0 \mathrm{~V} \\ \geqslant 7.5 \mathrm{~V} \end{array}$
$\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{f}$	Clock rise, fall (Note 12)		1	$\mu \mathrm{S}$	
tos	Data In setup	$\begin{aligned} & 300 \\ & 150 \\ & 120 \end{aligned}$		$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{array}{r} 3.0 \mathrm{~V} \\ 5.0 \mathrm{~V} \\ \geqslant 7.5 \mathrm{~V} \end{array}$
tcsc	$\overline{\mathrm{CS}}$ setup to Clock	$\begin{array}{r} 200 \\ 100 \\ 50 \end{array}$		$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{array}{r} 3.0 \mathrm{~V} \\ 5.0 \mathrm{~V} \\ \geqslant 7.5 \mathrm{~V} \end{array}$
$t_{\text {DH }}$	Data hold	10		ns	
tccs	$\overline{\text { CS }}$ hold	$\begin{aligned} & \hline 450 \\ & 220 \\ & 140 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{array}{r} 3.0 \mathrm{~V} \\ 5.0 \mathrm{~V} \\ \geqslant 7.5 \mathrm{~V} \end{array}$
t_{CL}	Load pulse setup (Note 5)	$\begin{aligned} & 500 \\ & 280 \\ & 180 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{array}{r} 3.0 \mathrm{~V} \\ 5.0 \mathrm{~V} \\ \geqslant 7.5 \mathrm{~V} \end{array}$
tlcs	$\overline{\text { CS }}$ hold (rising LOAD to rising $\overline{C S}$)	$\begin{aligned} & 300 \\ & 200 \\ & 150 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{array}{r} 3.0 \mathrm{~V} \\ 5.0 \mathrm{~V} \\ \geqslant 7.5 \mathrm{~V} \end{array}$
t LW	Load pulse width (Note 5)	$\begin{aligned} & 500 \\ & 220 \\ & 140 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{array}{r} 3.0 \mathrm{~V} \\ 5.0 \mathrm{~V} \\ \geqslant 7.5 \mathrm{~V} \end{array}$
tLC	Load pulse delay (Falling load to falling clock)	0		ns	
tcoo	Data Out valid from Clock		$\begin{aligned} & 550 \\ & 220 \\ & 110 \end{aligned}$	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{array}{r} 3.0 \mathrm{~V} \\ 5.0 \mathrm{~V} \\ \geqslant 7.5 \mathrm{~V} \end{array}$
${ }_{\text {t }}^{\text {cSL }}$	$\overline{\text { CS }}$ setup to LOAD	0		ns	

Figure 1. Signal Timing Diagram

Logic Truth Table

Chip Select Inverse Input

The $\overline{\mathrm{CS}}$ input is used to enable clocking of the shift register. When $\overline{\mathrm{CS}}$ is low, the chip will be selected and the shift register will be enabled. When $\overline{C S}$ is high, the shift register will be disabled and the output buffers will be driven by the data in the latches.

Clock Input

The CLOCK input is used to clock data serially, into the shift register. A clock signal may be continuously present, because the shift register is enabled only when $\overline{\mathrm{CS}}$ is low.

Load Input

The LOAD input controls the operation of the data latches and allows new data to be loaded into the shift register, without changing the appearance of the display. When LOAD is high, the values in the shift register will be loaded into the data latches. If desired, LOAD can be held high and the data latches will be transparent. The LOAD input is disabled when $\overline{\mathrm{CS}}$ is high.

LCD Oscillator Input

When used with an external oscillator, the LCD oscillator is driven by the input voltage level. In this configuration, the backplane output will be in phase with the input waveform. In the self-oscillating mode, an external resistor and capacitor are connected to the oscillator input pin, and the backplane frequency will be a divide by 256 of the internal oscillator frequency.

LCD Oscillator Option

When the internal oscillator is used, the LCD oscillator option is internally (or externally) connected to the LCD oscillator input and, it provides the oscillator feedback. When used with an external oscillator, the LCD oscillator option is not connected (i.e. LCD ϕ OPTION is grounded).

Data Input

Data present at DATA IN will be clocked into the shift register, when $\overline{\mathrm{CS}}$ is low. Data is loaded into the shift register on the falling edge of the clock and shifts to the output on the rising clock edge.

Data Output

Depending on the packaging option selected, DO30, DO32 and DO38 are buffered outputs driven by the corresponding element of the shift register. The value of DOxx will be the same as the value of the matching shift register bit (i.e. the value at DO32 will be the same as bit 32 of the shift register). The data output is typically used to drive the data input of another S4520. By cascading S 4520 circuits in this manner, additional display elements can be driven.

Backplane Output

The backplane output provides the voltage waveform for the LCD backplane. When used with the internal oscillator, the backplane frequency will be equal to the oscillator frequency divided by 256 :

$$
f_{B P}=f_{\text {osc }}(\text { int }) \div 256
$$

With an external oscillator, the backplane frequency will be in phase with and equal in magnitude to the input signal.

Segment Drive Outputs

The segment drive outputs provide the segment drive voltage to the LCD. With a logic level " 1 " in the latch associated with the segment drive output, the output voltage will be out of phase with the backplane (i.e the segment will be ON). A logic level " 0 " will cause the segment drive to be in phase with the backplane output voltage.

Figure 2. Typical Application

Figure 3. 48-Lead Ceramic Chip Carrier

NOTE: VIEWED FROM THE BOTTOM SIDE OF THE PACKAGE

Ordering Instructions

1. All orders must specify a package type (i.e. S4520A, 48-pin plastic DIP)
2. All orders must specify whether an internal oscillator or external oscillator will be used (i.e. S4520B, external oscillator).
3. A set-up charge or minimum order quantity may apply for packaging options not shown. Please contact factory for further information.

32 BIT DRIVER

Features

Drives Up to 32 Devices

CascadableOn Chip OscillatorRequires Only 3 Control LinesCMOS Construction For:Wide Supply Range
High Noise Immunity
Wide Temperature Range

Applications:

Liquid Crystal Displays
LED and Incandescent Displays
SolenoidsPrint Head Drives
\square DC and Stepping Motors
\square Relays.

General Description

The AMI S4521 is an MOS/LSI circuit that drives a varlety of output devices, usually under microprocessor control. This device requires only three control lines due to its serial input construction. It latches the data to be output, relieving the microprocessor from the task of generating the required waveform, or it may be used to bring data directly to the drivers. The part acts as a versatile peripheral to drive displays, motors, relays and solenoids within its output limitations. It is especially well suited to driving liquid crystal displays, with a backplane A.C. signal option that is provided. The A.C. frequency of the backplane output that can be user supplied or generated by attaching a capacitor to the LCD ϕ input, which controls the frequency of the internal oscillator. One circuit will drive up to 32 devices and more can be driven by cascading several drivers together. The S4521F version is available in a surfacemountable plastic mini-flat pack.

Pin Configuration

Absolute Maximum Ratings

V_{DD}	-0.3 to +17 V
Inputs (CLK, DATA IN, LOAD, LCD ϕ)	$\mathrm{V}_{S S}-0.3$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Power Dissipation 250 mW
Storage Temperature	. $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature	.. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Electrical Characteristics: $3 \mathrm{~V} \leqslant \mathrm{~V}_{D D} \leqslant 13 \mathrm{~V}$, unless otherwise noted

Symbol	Parameter	Min.	Max.	Units	Test Condition
$V_{D D}$	Supply Voltage	3	13	V	
$\begin{aligned} & I_{D D 1} \\ & I_{D D 2} \end{aligned}$	Supply Current Operating Quiescent		$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$f_{B P}=120 \mathrm{~Hz}$, No Load, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ LCD ϕ High or Low, $\mathrm{f}_{\mathrm{BP}}=0$ Load @ Logic $0, V_{D D}=5 \mathrm{~V}$
$\begin{aligned} & V_{H} \\ & V_{I L} \\ & I_{L} \\ & C_{i} \end{aligned}$	Inputs (CLK, DATA \mathbb{N}, LOAD) High Level Low Level Input Current Input Capacitance	$0.6 \mathrm{~V}_{\mathrm{DD}}$ $0.5 \mathrm{~V}_{\mathrm{DD}}$ $V_{S S}$	$\begin{gathered} V_{D D} \\ V_{D D} \\ 0.2 V_{D D} \\ 5 \\ 5 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mu \mathrm{~A} \\ \mathrm{pF} \\ \hline \end{gathered}$	$\begin{aligned} & 3 V \leqslant V_{D D}<5 \mathrm{~V} \\ & 5 \mathrm{~V} \leqslant V_{D D} \leqslant 13 \mathrm{~V} \end{aligned}$
${ }_{\text {flı }}$	CLK Rate	DC	2	MHz	50\% Duty Cycle
t_{DS}	Data Set-Up Time	100		ns	Data Change to CLK Falling Edge
t_{DH}	Data Hold Time	10		ns	Falling CLK Edge to Data Change
$\mathrm{t}_{\text {PW }}$	Load Pulse Width	200		ns	
$\mathrm{t}_{\text {PD }}$	Data Out Prop. Delay		220	ns	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$, From Rising CLK Edge
t_{LC}	Load Pulse Set-Up	300		ns	Falling CLK Edge to Rising Load Pulse
$\mathrm{t}_{\text {LCD }}$	Load Pulse Delay	0		ns	Falling Load Pulse to Falling CLK Edge
$V_{\text {OAVG }}$	DC Bias (Average) Any Q Output to Backplane		± 25	mV	$\mathrm{f}_{\mathrm{BP}}=120 \mathrm{~Hz}$
V_{H}	LCD ϕ Input High Level	. $9 \mathrm{~V}_{\text {DD }}$	$V_{D D}$	V	Externally Driven
V_{LL}	LCD ϕ Input Low Level	$\mathrm{V}_{\text {SS }}$. $1 \mathrm{~V}_{\text {DD }}$	V	Externally Driven
$\begin{aligned} & \mathrm{C}_{\mathrm{LQ}} \\ & \mathrm{C}_{\mathrm{LBP}} \end{aligned}$	Capacitance Loads Q Output Backplane		$\begin{gathered} 50,000 \\ 1.5 \end{gathered}$	$\begin{aligned} & \mathrm{pF} \\ & \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & f_{\mathrm{BP}}=120 \mathrm{~Hz} \\ & f_{\mathrm{BP}}=120 \mathrm{~Hz} \text {, See Note } 8 \end{aligned}$
$\mathrm{R}_{\text {ON }}$	Q Output Impedance		3.0	K Ω	$\mathrm{I}_{\mathrm{L}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$
RoN	Backplane Output Impedance		100	Ω	$\mathrm{L}_{L}=10 \mu \mathrm{~A}, \mathrm{~V}_{D D}=5 \mathrm{~V}$
R_{ON}	Data Out Output Impedance		3.0	K Ω	$\mathrm{L}_{\mathrm{L}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {DD }}=5 \mathrm{~V}$

Operating Notes

1. The shift register shifts on the falling edge of CLK. It outputs on the rising edge of the CLK.
2. The buffer number corresponds to how many clock pulses have occurred since its data was present at the input (e.g., the data on Q10 was input 10 clock pulses earlier).
3. A logic 1 on Data In causes a Q output to be out of phase with the Backplane.
4. A logic 1 on Load causes a parallel load of the data in the shift register, into the latches that control the Q output drivers.
5. To cascade units, (a) connect the Data Out of one chip to Data In of next chip, and (b) either connect Backplane of one chip to LCD ϕ of all other chips (thus one RC provides frequency control for all chips) or connect LCD ϕ of all chips to a common driving signal. If the former is chosen, the Backplane that is tied to the LCD ϕ inputs of the other chips should not also be connected to the Backplanes of those chips.
6. If $\operatorname{LCD} \phi$ is driven, it is in phase with the Backplane output.
7. The LCD ϕ pin can be used in two modes, driven or self-oscillating. If LCD ϕ is driven, the circuit will
sense this condition. If the LCD ϕ pin is allowed to oscillate, its frequency is determined by an external capacitor. The Backplane frequency is a divide by 32 of the LCD ϕ frequency, in the self-oscillating mode.
8. In the self-oscillating mode, the backplane frequency is approximately defined by the relationship $\mathrm{f}_{\mathrm{BP}}(\mathrm{Hz})=0.2 \div \mathrm{C}(\mathrm{in} \mu \mathrm{F})$ at $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$.
9. If the total display capacitance is greater than 100,000 pF , a decoupling capacitor of $1 \mu \mathrm{~F}$ is required across the power supply (pins 1 and 36).

Pin Description

Pin \#	Name	Description
1	$V_{D D}$	Logic and Q Output Supply Voltage
2	LOAD	Signal to Latch Data from Registers
30	BP	Backplane Drive Output
31	LCD ϕ	Backplane Drive Input
34	DATA IN	Data Input to Shift Register
35	DATA OUT	Data Output from Shift Register-
		primarily used in cascading
36	$V_{S S}$	Ground Connection
40	CLOCK	System Clock Input
$3-29$,		
$32-33$,	$Q_{1}-Q_{32}$	Direct Drive Outputs
$37-39$		

Signal Timing Diagrams

32 BIT, HIGH VOLTAGE DRIVER

Features

High Voltage Outputs Capable of 60 Volt Swing Drives Up to 32 Devices
CascadableRequires Only 4 Control Lines

Applications:

Vacuum Fluorescent Displays
LED and Incandescent Displays
Solenoids
Print Head Drives
DC and Stepping Motors
Relays

General Description

The AMI S4535 is a high voltage MOS/LSI circuit that drives a variety of output devices, usually under microprocessor control, by converting low level signals such as TTL, and CMOS to high voltage, high current drive signals. This device requires only four control lines due to its serial input construction. It latches the data to be output, or it may be used to bring data directly to the driver. The part acts as a versatile peripheral to drive displays, motors, relays and solenoids within its output limitations of a 60 volt swing and up to 25 mA per drive. It is especially well suited to drive vacuum fluorescent displays due to its high voltage output capability. One circuit will drive up to 32 devices and more can be driven by cascading several drivers together.

Functional Block Diagram

Output Buffer (Functional Diagram)

Pin Configuration

Absolute Maximum Ratings at $25^{\circ} \mathrm{C}$	
$V_{B B}$.. 65V
$V_{D D}$.. 12V
$V_{\text {IN }}$	$V_{S S}-.3 V$ to $V_{D D}+.3 \mathrm{~V}$
$V_{\text {OUT }}$ (Logic)	$V_{S S}-.3 V$ to $V_{D D}+.3 V$
$V_{\text {OUT }}$ (Display)	$V_{S S}-.3 \mathrm{~V}$ to $\mathrm{V}_{B B}+.3 \mathrm{~V}$
Power Dissipation 1.6W
Operating Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} *$
Storage Temperature ...	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

* Extended temperature range available. Please contact AMI for price and delivery information.

Operational Specification: $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C}$ (unless otherwise noted)

Symbol	Parameter	Min.	Max.	Units	Test Condition
$V_{\text {IL }}$	Input Zero Level	-0.3	0.8	V	
$V_{\text {IH }}$	Input One Level	3.5	$V_{D D}+0.3$	V	
$V_{\text {SL }}$	Signal Out Zero Level	$V_{\text {SS }}$	0.5	V	$\mathrm{I}_{50}=-20 \mu \mathrm{~A}$
$\mathrm{V}_{\text {SH }}$	Signal Out One Level	$V_{D D}-0.5$	$V_{D D}$	V	$\mathrm{I}_{\mathrm{SO}}=20 \mu \mathrm{~A}$
$V_{D D}$	Logic Voltage Supply	4.5	5.5	V	
$V_{B B}$	Display Voltage Supply	20	60	V	
$l_{D D}$	Logic Supply Current		35	mA	No Loads, $\mathrm{T}=25^{\circ} \mathrm{C}$
${ }_{\text {IBB }}$	Display Supply Current		$\begin{gathered} 10 \\ 168 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	No Loads, $T=25^{\circ} \mathrm{C}$ With Load
$\mathrm{V}_{0 \mathrm{~L}}$	Output Zero Level	$\mathrm{V}_{\text {SS }}$	1.0	V	$\mathrm{I}_{0}=-20 \mu \mathrm{~A}$
V_{OH}	Output One Level	$\begin{aligned} & V_{B B}-2.5 \\ & V_{B B}-3.2 \end{aligned}$	$\begin{aligned} & V_{B B} \\ & V_{B B} \end{aligned}$	$\begin{aligned} & V \\ & V \end{aligned}$	$\begin{aligned} & I_{0}=5 \mathrm{~mA} \\ & I_{0}=25 \mathrm{~mA}, \text { One Output } \end{aligned}$
tSD	Serial Out Prop. Delay		500	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
tpD	Parallel Out Prop. Delay		5	$\mu \mathrm{S}$	$C_{L}=50 \mathrm{pF}$
tw	Input Pulse Width	500		ns	
tsu	Data Set-Up Time	150		ns	
t_{H}	Data Hold Time	50		ns	

Functional Description

Serial data present at the input is transferred to the shift register on the Logic " 0 " to Logic " 1 " transition of the clock input signal. On succeeding clock pulses, the registers shift data information towards the serial data output. The input serial data must be presented prior to the rising edge of the clock input waveform.

Information present at any register is transferred to its respective latch when the strobe signal is high (serial-
to-parallel conversion). The latches will continue to accept new data as long as the strobe signal is held high.
When the output disable input is high, all of the high voltage buffers are disabled without affecting the information stored in the latches or shift register. With the output disable signal low, the high voltage outputs are controlled by the state of the latches.

Pin Description

Pin \#	Name	Description
20	$V_{S S}$	Ground Connection
2	$D 0$	Output of Shift Register—primarily used for cascading
19	$0 D$	Output Disable
1	$V_{B B}$	Q Output Drive Voltage
21	CLK	System Clock Input
40	$V_{D D}$	Logic Supply Voltage
22	STR	Strobe to Latch Data from Registers
39	DI	Data Input to Shift Register
$3-18$ and 23-38	$Q_{1}-Q_{32}$	Direct Drive Outputs

Signal Timing Diagrams

Data Read

Output Inhibit

10 BIT, HIGH VOLTAGE HIGH CURRENT DRIVER

Features

Outputs Capable of 60 Volt Swings at 25 mADrives Up to 10 DevicesCascadableRequires Only 4 Control Lines

Applications:

Vacuum Fluorescent DisplaysLED and Incandescent DisplaysSolenoidsPrint Head DrivesDC and Stepping Motors
\square Relays

General Description

The AMI S4534 is a high voltage, high current MOS/LSI circuit that drives a variety of output devices, usually under microprocessor control, by converting low level signals such as TTL, and CMOS to high voltage, high current drive signals. This device requires only four control lines due to its serial input construction. It latches the data to be output, or it may be used to bring data directly to the driver. The part acts as a versatile peripheral to drive displays, motors, relays and solenoids within its output limitations of a 60 volt swing and up to 50 mA per drive. It is especially well suited to drive vacuum fluorescent displays due to its high voltage output capability. One circuit will drive up to 10 devices and more can be driven by cascading several drivers together.

Output Buffer (Functional Diagram)

Pin Configuration

Absolute Maximum Ratings at $25^{\circ} \mathrm{C}$

$V_{B B}$	65 V
$V_{D D}$	4.5 to 15 V
$\mathrm{V}_{\text {IN }}$	$\mathrm{V}_{\mathrm{SS}}-.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+.3 \mathrm{~V}$
$V_{\text {Out }}$ (Logic)	$\mathrm{V}_{\mathrm{SS}}-.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+.3 \mathrm{~V}$
$\mathrm{V}_{\text {Out }}$ (Display)	$\mathrm{V}_{\mathrm{SS}}-.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{BB}}+.3 \mathrm{~V}$
Power Dissipation	1.2 W
Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Operational Specification: $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C}$ (unless otherwise noted)

Symbol	Parameter	Min.	Max.	Units	Test Condition
$V_{\text {IL }}$	Input Zero Level	-0.3	1.1	V	
$V_{\text {IH }}$	Input One Level	$\begin{aligned} & 3.4 \\ & 3.6 \\ & \hline \end{aligned}$	$\begin{array}{r} V_{D D}+0.3 \\ V_{D D}+0.3 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4.75 \mathrm{~V} \leqslant=\mathrm{V}_{D D}<5.25 \mathrm{~V} \\ & 5.25 \mathrm{~V} \leqslant \mathrm{~V}_{D D} \leqslant 12.0 \mathrm{~V} \\ & \hline \end{aligned}$
IN	Input Leakage Current		1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$
$\mathrm{V}_{\text {SL }}$	Signal Out Zero Level	$\mathrm{V}_{\text {SS }}$	0.7	V	$\mathrm{I}_{\text {S }}=-20 \mu \mathrm{~A}$
$V_{\text {SH }}$	Signal Out One Level	$\begin{gathered} \hline V_{D D}-.95 \\ 4.3 \end{gathered}$	$\begin{aligned} & \hline V_{D D} \\ & V_{D D} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline V \\ & V \end{aligned}$	$\begin{aligned} & I_{\mathrm{I}_{0}}=20 \mu \mathrm{~A}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{DD}}<5.25 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{SO}}=20 \mu \mathrm{~A}, 5.25 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{DD}} \leqslant 12.0 \mathrm{~V} \\ & \hline \end{aligned}$
$V_{D D}$	Logic Voltage Supply	4.75	12	V	
$V_{B B}$	Display Voltage Supply	20	60	V	
$\mathrm{I}_{\text {D }}$	Logic Supply Current		$\begin{aligned} & 20 \\ & 30 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	No Loads, $V_{D D}=5 \mathrm{~V}$ No Loads, $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$
$\mathrm{I}_{\text {BB }}$	Display Supply Current		6	mA	No Loads, $\mathrm{T}=25^{\circ} \mathrm{C}$
V_{0}	Output Zero Level	$\mathrm{V}_{\text {SS }}$	1.0	V	$\mathrm{I}_{0}=-20 \mu \mathrm{~A}$
V_{OH}	Output One Level	$V_{B B}-2.5$	$V_{B B}$	V	$\mathrm{I}_{0}=25 \mathrm{~mA}$
$\mathrm{t}_{\text {SD }}$	Serial Out Prop. Delay	60	375	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
tPD	Parallel Out Prop. Delay		5	$\mu \mathrm{s}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
tw	Input Pulse Width	375		ns	
$\mathrm{t}_{\text {SU }}$	Data Set-Up Time	150		ns	
tH_{H}	Data Hold Time	40		ns	

Functional Description

Serial data present at the input is transferred to the shift register on the Logic " 0 " to Logic " 1 " transition of the clock input signal. On succeeding clock pulses, the registers shift data information towards the serial data output. The input serial data must be presented prior to the rising edge of the clock input waveform.
Information present at any register is transferred to its respective latch when the strobe signal is high (serial-to-parallel conversion). The latches will continue to accept new data as long as the strobe signal is held high.

When the output disable input is high, all of the high voltage buffers are disabled without affecting the information stored in the latches or shift register. With the output disable signal low, the high voltage outputs are controlled by the state of the latches.
At low logic supply voltages, it is possible that the serial data output (DO) may be unstable for up to $2 \mu \mathrm{~s}$, after the rising edge of the strobe (STR) or output disable (OD) inputs.

Table 1.

NUMBER OF OUTPUTS ON	MAX. ALLOWABLE DUTY CYCLE AT AMBIENT TEMPERATURE OF				
$(\mathrm{IOUT}=25 \mathrm{~mA})$	$25^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
10	100\%	97\%	85\%	73\%	62\%
9	4	100\%	94\%	82\%	69\%
8		4	100\%	92\%	78\%
7			4	100\%	89\%
6	\downarrow	\checkmark	\checkmark	\pm	100\%
1	100\%	100\%	100\%	100\%	100\%

Pin Description

Pin \#	Name	Description
5	$V_{S S}$	Ground Connection
16	DO	Output of Shift Register- primarily used in cascading
		Output Disable
13	$0 D$	Q Output Drive Voltage
15	$V_{B B}$	System Clock Input
4	CLK	Logic Supply Voltage
6	$V_{D D}$	Strobe to Latch Data from Registers
7	STR	Data Input to Shift Register
14	D\|	
$1-3$,		Direct Drive Outputs
$8-12$,	$Q_{1}-Q_{10}$	
$17-18$		

Signal Timing Diagrams

Data Write

Data Read

Output Inhibit

OUTPUT DISABLE

Parallel outputs

UNIVERSAL DISPLAY DRIVER

Features

$\square 32$ Bit Storage Register
$\square 32$ Output Buffers
\square Expansion Capability for More Bits
\square Reduced RFI Emanation
\square Wired OR Capability for Higher Current

General Description

The S2809 Universal Driver is a P-Channel MOS integrated circuit. Data is clocked serially into a 32 -bit masterslave static shift register. This provides static parallel drive to the output bits through drive buffers. To reduce RFI emanation, capacitors have been integrated on the circuit for reduction of output switching speeds. Serial interconnection of circuits is made possible by the Data Out Output, allowing additional bits to be driven.
Two or more outputs may be wired together for higher sourcing currents; useful in applications such as triac triggering or low voltage incandescent displays. The S2809 can also be used as a parallel output device for $\mu \mathrm{C}$'s such as AMI's S2000 series single chip microcomputer.

Absolute Maximum Ratings

Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$V_{\text {SS }}$ Supply Voltage +25 V
Positive Voltage on Any Pin .. $V_{\text {Ss }}+0.3 \mathrm{~V}$

Electrical Characteristics ($\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}, 8 \mathrm{~V}<\mathrm{V}_{\mathrm{SS}}<22 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$\mathrm{V}_{\text {IH }}$	Logic 1 Level (Data, Clock, Invert, Chip Select Inputs)	$V_{S S}-0.7$		$\mathrm{V}_{\text {SS }}+0.3$	V	
VIL	Logic 0 Level (Data, Clock Invert, Chip Select Inputs)	$V_{D D}$		$\mathrm{V}_{S S}-7$	V	
$V_{\text {BH }}$	Logic 1 Level (Blank Input)	$V_{S S}-4.0$		$\mathrm{V}_{S S}+0.3$	V	
$V_{B L}$	$\begin{aligned} & \hline \text { Logic } 0 \text { Level } \\ & \text { (Blank Input) } \end{aligned}$	$V_{D D}$		$\mathrm{V}_{S S}-7$	V	
I_{B}	Current Sinked or Sourced by Blank Input			1.0	$\mu \mathrm{A}$	Voltage applied to $\overline{\text { Blank }}$ Input between $V_{D D}$ \& $V_{S S}$
C_{B}	Capacitance of Blank Input			12	pF	
l_{OH}	Output Source Current	9.0			mA	$V_{\text {OUT }}=V_{S S}-3$
l_{OH}	Output Source Current	4.0			mA	$V_{\text {OUT }}=V_{\text {SS }}-1.5$
Ios	Sink Current Output Load Device			50	$\mu \mathrm{A}$	Output voltage $=V_{\text {SS }}$
los	Sink Current Output Load Device	10			$\mu \mathrm{A}$	Output voltage $=\mathrm{V}_{\mathrm{DD}}+3 \mathrm{~V}$
L_{L}	Output Leakage Current (Output Off)			10.0	$\mu \mathrm{A}$	
I_{DD}	Supply Current			3.0	mA	Not including output source and sink current
$\mathrm{IOM}^{\text {a }}$	Maximum Total Output Loading			300	mA	All outputs on
f_{c}	Clock Frequency	DC		100K	Hz	
t_{ON}	Clock Input Logic I Level Duration	3.0			$\mu \mathrm{S}$	
$\mathrm{t}_{\text {OFF }}$	Clock Input Logic 0 Level Duration	6.5			$\mu \mathrm{S}$	
$t_{\text {ro, }} \mathrm{t}_{\text {fo }}$	Display Output Current Rise and Fall Times	10		150	$\mu \mathrm{S}$	*Measured between 10\% and 90% of output current $\mathrm{V}_{\mathrm{SS}}<+11 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=9 \mathrm{ma}$

* NOTE: With supply voltages higher than 11 volts, delay exists before an output rise or fall. This delay will not exceed $100 \mu 5$ with a 22 volt supply.

Functional Description

The 32－bit static shift register stores data to be used for driving 32 output buffers．Data is clocked serially into the register by the signal applied to the Clock Input whenever a logic 1 level is applied to the Chip Select In－ put；during this time，outputs are not driven by the shift register but will go to the logic level of the invert input． With a logic 0 level applied to the Chip Select Input，the 32 outputs are driven in parallel by the 32 －bit register．It is possible to connect $\mathbf{S} 2809$ circuits in series to drive additional bits by use of the Data Output．

Clock Input

The Clock Input is used to clock data serially into the 32－bit shift register．The signal at the Clock Input may be continuous，since the shift register is clocked only when a logic 1 level is applied to the Chip Select Input． As indicated in Table 1，data is transferred from QN－1 to QN on the negative transition of the Clock Input．

Data Input

Whenever a logic 1 level is applied to the Chip Select In－ put，data present at the the Data Input is clocked into the 32 －bit master－slave shift register．Data present at the input to the register is clocked into the master ele－ ment during the logic 1 clock level and thus must be valid for the duration of the positive clock pulsewidth． This information is transferred to the slave section of each register bit during the clock logic 0 level．

Chip Select

The Chip Select Input is used to enable clocking of the shift register．When a logic 1 level is applied to this in－ put，the register is clocked as described above．During this time，the output buffers are not driven by the register outputs，but will be driven to the logic level pre－ sent at the Invert Input．With a logic 0 level at the Chip Select Input，clocking of the register is disabled，and the output buffers are driven by the 32 shift register elements．

Blank Input

This input may be used to control display intensity by varying the output duty cycles．With a logic 0 level at the Blank Input，all outputs will turn off（i．e．，outputs will go to the logic level of the Invert Input）．With a logic 1 level at the Blank Input，outputs are again driven in parallel by the 32 shift register elements（assuming the Chip Select Input is at logic 0 ）．
The Blank Input has been designed with a high thres－ hold to allow the use of a simple RC time constant to control the display intensity．This has been shown in Figure 1.

Invert Input

The Invert Input is used to invert the state of the out－ puts，if required．With a logic 0 level on this input，the logic level of the outputs is the same as the data clock－ ed into the 32－bit shift register．A logic 1 level on the In－ vert Input causes all outputs to invert．
This input may also be used when driving liquid crystal displays，as shown in Figure 5.

Data Output

The Data Out signal is a bufferered output driven by ele－ ment 32 of the shift register．It is of the same polarity as this last register bit and may be used to drive the Data Input of another S2809．In this manner，S2809 circuits may be cascaded to drive additional bits．
Table 1．Logic Truth Table

$\begin{aligned} & \text { 를 } \\ & \frac{1}{\mathbf{x}} \end{aligned}$	$$	氙	葆	$\begin{aligned} & \text { 点 } \\ & \text { 롤 } \end{aligned}$	$\bar{\square}$	z	㐍产
X	X	0	0	0			0
X	X	0	0	1		NO CHANGE	1
X	X	0	1	0		NO CHANGE	QN
X	X	0	1	1			$\overline{Q N}$
0	\checkmark	1	x	0	0	$Q N-1 \rightarrow Q N$	0
1	5	1	X	0	1	$Q N-1 \rightarrow Q N$	0
0	\bigcirc	1	x	1	0	$Q N-1 \rightarrow Q N$	1
1	5	1	X	1	1	$Q N-1 \rightarrow Q N$	1

Figure 1．Typical Dịsplay Intensity Control

Figure 2. LED Drive - Series

Figure 4. Vacuum Fluorescent Drive

Figure 6. Clock Input Waveform

$$
\underset{\text { DATA }}{\text { DAT }} \longrightarrow \text { VALIO } \longrightarrow-1
$$

Figure 5. Liquid Crystal Drive

Advanced Product Description

ENCODER/DECODER REMOTE-CONTROL 2-CHIP SET

Features

Small Parts Count - No Crystals RequiredEasily Used in LED, Ultrasonic, RF, or Hardwire Transmission SchemesVery Low Reception Error\square Low Power Drain CMOS Transmitter for Portable and Battery Operation
$\square 31$ Commands - 5-bit Output Bus With Data Valid3 Analog (LP Filterable PWM) OutputsMuting (Analog Output Kill/Restore)
\square Indexing Output $-21 / 2 \mathrm{~Hz}$ Pulse Train
\square Toggle Output (On/Off)
\square Mask-Programmable Codes

Functional Description

The S2600/S2601 is a set of two LSI circuits which allows a complete system to be implemented for remote control of televisions, toys, security systems, industrial controls, etc. The choice of transmission medium is up to the user and can be ultrasonic, infrared radio frequency, or hardwire such as twisted pair or telephone.
The use of a synchronizing marker technique has eliminated the need for highly accurate frequencies generated by crystals. The S2600 Encoder typically generates a 40 kHz carrier which it amplitudemodulates with a base-band message of 12 bits, each bit preceded by a synchronizing marker pulse.
Bits 1 and 12 denote sync and end-of-message, respectively, bits 2 thru 6 constitute a fixed preamble which must be received correctly for the command bits to be received, and bits 7 through 11 contain the command data. The S2601 Decoder produces an output only after two complete, consecutive, identical, 12-bit transmissions. Marker pulses, preamble bits, and redundant transmissions, have given the S2600/S2601 system a very high immunity to noise, without a large number of discrete components.

S2600 Encoder

The S2600 is a CMOS device with an on-chip oscillator, 11 keyboard inputs, a keyboard encoder, a shift register, and some control logic. The oscillator requires only an external resistor and capacitor, and to conserve power, runs only during transmission. Keyboard inputs are active-low, and have internal pull-up resistors to $V_{D D}$. When one keyboard input from the group A through E is activated with one from the group F through K , the keyboard encoder generates a 5-bit code, as given in the table entitled "S2600/S2601 CODING," below. This code is loaded into a shift register in parallel with the sync, preamble, and end bits, to form the 12-bit message.

The transmitter output is a 40 kHz square wave of 50% duty factor which has been pulse-code-modulated by (i.e., ANDed with) a signal having a recurring pattern, a bit frame of 3.2 millisecond duration. This bit frame is comprised of three signals: the Start signal which is 0.4 milliseconds of logic "1"; followed by the Data signal which is 1.2 milliseconds of the lowest-order shift register bit; followed by the Mark signal which is 1.6 milliseconds of logic " 0 " (except in the first bit frame where Mark $=1$ to facilitate receiver synchronization).

The shift register is clocked once per bit frame, so that its 12-bit message is transmitted once in a 38.4 milliseconds. The minimum number of transmissions that can occur is two, but if the keyboard inputs are active after the first 3.6 milliseconds of any 12-bit transmission, one more 12-bit transmission will result. Transmissions are always complete, never truncated, regardless of the keyboard inputs.
The Test input is used for functional testing of the device. A low level input will cause the oscillator frequency to be gated to the Data Output pin. This input has an internal pull-up resistor to $V_{D D}$.

S2601 Decoder

The S2601 is a PMOS LSI device with an on-chip oscillator, five keyboard inputs, a 40 kHz signal input, and 11 outputs. The oscillator requires only an external R and C. The five keyboard inputs are active-low with internal pull-up resistors to $V_{S S}$; activation of any two causes one of 10 possible 5 -bit codes to be generated and fed to the outputs of the S2601, overriding any 40 kHz signal input.
Two counters, the signal counter and the local counter, are clocked respectively by the signal input and a 40 kHz signal from the local RC oscillator timing chain. A 40 kHz input lasting 3.2 milliseconds (i.e., an initial bit frame) causes the signal counter to overrun and reset both itself and the local counter. At specific intervals thereafter, the local counter generates pulses used to interrogate the contents of the signal counter. Resynchronization of the counters occurs every bit frame so that the interrogation yields valid data bits even if the transmitter oscillator frequency has deviated up to $\pm 24 \%$ with respect to the receiver oscillator frequency. Decoded data bits from the next five bit frames following the initial synchronizing frame are compared with the fixed preamble code. The next five decoded bits, the command bits, are converted to a parallel format and are compared against the command bits saved from the prior transmission. If they match, and if the preamble bits are correct, the command bits are gated to the receiver outputs. However, a mismatch causes the receiver outputs to be immediately disabled, and the new command bits are saved for comparison against the command bits from the next 12-bit transmission. In the case where 2 identical, proper, 12-bit transmissions are immediately followed either by transmissions with erroneous preamble codes or by

S2600/S2601

nothing, the receiver outputs will be activated during the end-frame of the second transmission, and will be disabled 45 milliseconds thereafter. In the rest (disabled) state the five Binary Outputs are at a " 1 " logic level; when not in the rest state, one or more of the opensourced output transistors will conduct to $V_{D D}$. The Data Valid output is low during the rest state, and high whenever data is present at the Binary Outputs.
The S2601 has five other outputs: Pulse Train, On/Off, Analog A, Analog B, and Analog C. The states of these outputs are controlled by the 10 particular Binary Output codes which the receiver Keyboard Inputs can cause to be generated. The Pulse Train output provides a 2.44 Hz square wave (50% duty factor) whenever 11011 appears at the Binary Outputs, but otherwise it remains at a logic " 0 ". This pulse train can be used for indexing, e.g., for stepping a TV channel selector.

The On/Off ("mains") output changes state each time 01111 appears at the Binary Outputs. In TV applications the On/Off output is most often used to kill and restore the main power supply.
Analog Outputs A, B and C are 10 kHz pulse trains whose duty factors are independently controllable. With a simple low-pass filter each of these outputs can
provide 64 distinct DC levels suitable for control of volume, color saturation, brightness, motor speed, etc. Each Analog Output increases its duty factor in response to a particular Binary Output code and decreases its duty factor in response to another code-6 codes in all. The entire range of 0% to 100% duty factor can be traversed in 6.5 seconds or at a rate of the oscillator frequency divided by 212. All three Analog Outputs are set to 50% duty factor whenever 01011 appears at the Binary Outputs. Analog A is mutable; 01100 sets it to 0% duty factor. If 01100 then disappears and reappears, the original duty factor is restored. This of course implements the TV "sound killer' feature.

The S2601 has an on-chip power-on reset (POR) circuit which sets the Pulse Train and On/Off Outputs to " 0 ", sets the Analog Outputs at 50% duty factor, and insures that Analog A is muted. No external components are required to implement POR, but a POR input has been provided for applications where externally controlled reset is desirable, e.g., where the power supply voltage rise time is extremely slow. The POR input has an internal resistor pull-up to V_{SS}; pulling it low causes a reset.

ENCODER/DECODER REMOTE-CONTROL 2-CHIP SET

Features

Accurate Data Transmission - No Frequency Trimming Required
\square Easily Used in LED, Ultrasonic, RF, or Hardwire Transmission Schemes
\square Very Low Reception Error

Functional Description

The S2604/S2605 is a set of two LSI circuits which allows a complete system to be implemented for remote control of televisions, toys, security systems, industrial controls, etc. The choice of transmission medium is up to the user and can be ultrasonic, infrared radio frequency, or hardwire such as twisted pair or telephone.
The use of a ceramic resonator with the S2604 Encoder eliminates the need to trim the S2605 decoder oscillator.
The S2604 Encoder typically generates a 40 kHz carrier which it amplitude-modulates with a base-band message of 12 bits, each bit preceded by a synchronizing marker pulse.
Bits 1 and 12 denote sync and end-of-message, respectively, bits 2 through 6 constitute a fixed preamble which must be received correctly for the command bits to be received, and bits 7 through 11 contain the command data. The S2605 Decoder produces an output only after two complete, consecutive, identical transmissions. Marker pulses, preamble bits, and redundant transmissions, have given the S2604/S2605 system a very high immunity to noise, without a large number of discrete components.

S2604 Encoder

The S2604 is a CMOS device with an on-chip oscillator, 9 keyboard inputs, a keyboard encoder, a shift register, and some control logic. The oscillator uses an external ceramic resonator, and to conserve power, runs only during transmission. Keyboard inputs are active-low, and have internal pull-up resistors to V_{DD}. When one keyboard input from the group C through E is activated with one from the group F through K , the keyboard encoder generates a 5-bit code, as given in the table entitled "S2604/S2605 CODING," below. This code is loaded into a shift register in parallel with the sync and end bits to form the message.
The transmitter output is a 40 kHz square wave of 50% duty factor which has been pulse-code-modulated by (i.e., ANDed with) a signal having a recurring pattern, a bit frame of 3.2 millisecond duration. This bit frame is comprised of three signals: the Start signal which is 0.4 milliseconds of logic " 1 "; followed by the Data signal which is 1.2 milliseconds of the lowest-order shift register bit; followed by the Mark signal which is 1.6 milliseconds of logic " 0 " (except in the first bit frame where Mark $=1$ to facilitate receiver synchronization).
The shift register is clocked once per bit frame, so that its 12 -bit message is transmitted once in 38.4 milliseconds. The minimum number of transmissions that can occur is two, but if the keyboard inputs are active
after the first 3.6 milliseconds of any 12 -bit transmission, one more 12 -bit transmission will result. Transmissions are always complete, never truncated, regardless of the keyboard inputs.
The S2604 Encoder is, however, silenced automatically by an on-chip duration limiter if a transmission persists for $61 / 2$ seconds ($F O S C=320 \mathrm{kHz}$). The absence of a keyboard closure will reset the duration limiter so that a new $61 / 2$ second interval starts with the next key closure.

S2605 Decoder

The S2605 is a PMOS LSI device with an on-chip oscillator, five keyboard inputs, a 40 kHz signal input, and 8 outputs. The oscillator requires only an external R and C. The five keyboard inputs are active-low with internal pull-up resistors to $V_{s s}$; activation of any two causes one of 10 possible 5 -bit codes to be generated and fed to the outputs of the S 2605 , overriding any 40 kHz signal input.
Two counters, the signal counter and the local counter, are clocked respectively by the signal input and a 40 kHz signal from the local RC oscillator timing chain. A 40 kHz input lasting 3.2 milliseconds (i.e., an initial bit frame) causes the signal counter to overrun and reset both itself and the local counter. At specific intervals thereafter, the local counter generates pulses used to interrogate the contents of the signal counter. Resynchronization of the counters occurs every bit frame so that the interrogation yields valid data bits even if the transmitter oscillator frequency has deviated up to $\pm 24 \%$ with respect to the receiver oscillator frequency.
Decoded data bits from the next five bit frames following the initial synchronizing frame are compared with the fixed preamble code. The next five decoded bits, the command bits, are converted to a parallel format and are compared against the command bits saved from the prior transmission. If they match, and if the preamble bits are correct, the command bits are gated to the receiver outputs. However, a mismatch causes the receiver outputs to be immediately disabled, and the new command bits are saved for comparison against the command bits from the next 12-bit transmission. In the case where 2 identical, proper, 12 -bit transmissions are immediately followed either by transmissions with erroneous preamble codes or by nothing, the receiver outputs will be activated during the end-frame of the second transmission, and will be disabled 45 milliseconds thereafter. In the rest (disabled) state the five Binary Outputs are at a " 1 " logic level; when not in the rest state, one or more of the opensourced output transistors will conduct to V_{DD}. The Data Valid output is low during the rest state, and high whenever data is present at the Binary Outputs.

S2604/S2605

The S2605 has two other outputs: On/Off, and Analog. The states of these outputs are controlied by the 10 particular Binary Output codes which the receiver Keyboard Inputs can cause to be generated.
The On/Off ("mains") output changes state each time 10011 appears at the Binary Outputs. In TV applications the On/Off output is most often used to kill and restore the main power supply.
The Analog Output is a 10 kHz pulse trains whose duty factors are independently controllable. With a simple low-pass filter each of these outputs can provide 64 distinct DC levels suitable for control of volume, color saturation, brightness, motor speed, etc. Each Analog Output increases its duty factor in response to a par-
ticular Binary Output code and decreases its duty factor in response to another code. The Analog Output is mutable; 11110 sets it to 0% duty factor. If 11110 then disappears and reappears while the On/Off output is "On", the original duty factor is restored. This of course implements the TV "sound killer" feature.
The S2605 has an on-chip power-on reset (POR) circuit which sets the On/Off Outputs to " 0 ", sets the Analog Outputs at 50\% duty factor, and insures that Analog is not muted. No external components are required to implement POR, but a POR input has been provided for applications where externally controlled reset is desirable, e.g., where the power supply voltage rise time is extremely slow. The POR input has an internal resistor pull-up to V_{SS}; pulling it low causes a reset.

Message Bit Format

Message Format

S2604/S2605 Coding							
TRANSMITTER KEYBOARD INPUT PINS TIED TO VSS	RECEIVER KEYBOARD INPUT PINS TIED TO VD (Note 1)	RESULTING RECEIVER BINARY OUTPUTS					RECEIVER DEDICATED FUNCTIONS
		1	2	3	4	5	
- (Note 2)		1	1	1	1	1	
D1		0	1	1	1	1	
CF		0	1	1	1	0	
DF		0	1	1	0	1	
EF		0	1	1	0	0	
CG		0	1	0	1	1	
DG		0	1	0	1	0	
EG		0	1	0	0	1	
CH		0	1	0	0	0	
DH		0	0	1	1	1	
EH		0	0	1	1	0	
El	AE	1	0	1	0	0	
EJ	BE	1	1	0	0	0	
Cl	A	1	1	1	0	0	INCREASE ANALOG (Note 5)
CJ	B	1	1	1	0	1	DECREASE ANALOG (Note 5)
CK	E	1	1	1	1	0	MUTE TOGGLE (Note 4)
EK	C	0	0	0	0	1	
DK	D	1	0	0	1	1	TOGGLE ON/OF OUTPUT
DJ	EC	0	0	0	0	0	
INVALID (Note 3)		1	1	1	1	1	(Note 3)
	AC	1	0	0	0	1	INCREASE ANALOG (Note 5)
	BC	1	0	0	1	0	DECREASE ANALOG (Note 5)

NOTES:

1. RECEIVER KEYBOARD INPUTS OVERRIDE ANY REMOTE SIGNAL
2. REST STATE, "DATA VALID' OUTPUT INACTIVE
3. ANY SINGLE CLOSURE, INVALID COMBINATION OF 2 CLOSURES, OR COMBINATION OF 3 OR MORE CLOSURES OF S2604 TRANSMITTER INPUTS C, D, E, F,
4. THE MUTE TOGGLE WILL FUNCTION ONLY WHEN THE "ON/OFF" OUTPUT IS ON. HOWEVER MUTE IS CLEARED BY TURNING "ON/OFF' OFF, THEN ON AGAIN.
5. THE PULSEWIDTH OF THE ANALOG OUTPUT MAY BE CHANGED ONLY WHEN THE "ON/OFF"' OUTPUT IS ON.

Electrical Specifications-2604 Encoder- All voltages measured with respect to $V_{S S}$ Absolute Maximum Ratings

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Positive Voltage on any Pin $+14 \mathrm{~V}$
Negative Voltage on any Pin . -0.3 l
Electrical Characteristics: Unless otherwise noted, $\mathrm{V}_{\mathrm{DD}}=8.5 \pm 1.5 \mathrm{~V}$ and $\mathrm{T}_{A}=0$ to $+70^{\circ} \mathrm{C}$.

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
10	Oscillator Frequency	50	320	2000	kHz	
$1{ }^{\text {D }}$	Supply Current			2	mA	During Transmission, Data Output $=1 \mathrm{~mA}$
	Standby			10	μ	No transmission ($25^{\circ} \mathrm{C}$)
$\mathrm{V}_{\text {IH }}$	Input "1" Threshold	20			\% $V_{D D}$	
$\mathrm{V}_{\text {iL }}$	Input " 0 " Threshold			80	\% $V_{\text {DD }}$	
ILL	Input Source Current	50		300	$\mu \mathrm{A}$	$V_{1}=0 \mathrm{~V}$
I_{OH}	Output Source Current	1	1.5		mA	$V_{0}=V_{D D}-3 V$
10 L	Output Sink Current	-. 2	-. 5		mA	$\mathrm{V}_{0}=+0.5 \mathrm{~V}$

Note: Circuit operates with $\mathrm{V}_{\text {DD }}$ from 3.0V to 12.0 V .

Electrical Specifications-2605 Decoder—All voltages measured with respect to $V_{D D}$ Absolute Maximum Ratings

Operating Ambient Temperature T_{A}	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$V_{\text {SS }}$ Power Supply Voltage	+31V
Positive Voltage on any Pin	$\mathrm{V}_{\text {SS }}+0.3 \mathrm{~V}$
Negative Voltage on any Pin	$\mathrm{V}_{\text {SS }}-31 \mathrm{~V}$

Electrical Characteristics: Unless otherwise noted, $\mathrm{V}_{S S}=12 \pm 2 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$.

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
50	Oscillator Frequency	512	640	768	kHz	
$\Delta 50 / \mathrm{f0}$	Frequency Deviation	-10		+10	$\%$	Fixed RoSc, $C_{\text {OSC }}, V_{S S}$
ISS	Supply Current		34	50	mA	No Loads, $\mathrm{V}_{D D}=14 \mathrm{~V}$
			28		mA	$\mathrm{~V}_{D D}=10 \mathrm{~V}$

Signal Input:

$V_{I H}$	"1"' Threshold			85	$\% V_{S S}$
$V_{I L}$	" 0 " ' Threshold	30			$\% V_{S S}$
$V_{I H}-V_{I L}$	Voltage Hysteresis	5		35	$\% V_{S S}$

Keyboard and POR Inputs:

$V_{I H}$	"1"' Voltage	$V_{S S}-.5$	$V_{S S}-3.0$		V	
$V_{I L}$	" 0 "' Voltage			$V_{S S}-5.5$	V	
LL	Source Current	50	150	300	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{S S}-10 \mathrm{~V}$
	Debounce Delay (Keyboard Inputs Oniy)	1.45		2.2	msec	

Binary Outputs (open source):

$\mathrm{I}_{0 \mathrm{~L}}$	Sink Current	-0.7			mA	$\mathrm{~V}_{0}=\mathrm{V}_{\text {SS }}-5.2 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=16 \mathrm{~V}$
	Duration	-0.50	-0.60		mA	$\mathrm{~V}_{0}=\mathrm{V}_{\text {SS }}-5.2 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=10 \mathrm{~V}$
				msec	$\mathrm{f} 0=704 \mathrm{kHz}$	

Analog Output (open drain):

$\Delta \mathrm{V}_{\text {step }}$	Step Voltage Change		$\mathrm{V}_{\text {SS }} / 64$		V	
I_{OH}	Source Current		1.04		mA	$\mathrm{V}_{0}=\mathrm{V}_{\text {SS }}-0.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=10 \mathrm{~V}$
			1.15		mA	$V_{0}=V_{S S}-0.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=14 \mathrm{~V}$
		1.0	1.2		mA	$\mathrm{V}_{0}=\mathrm{V}_{\text {SS }}-1 \mathrm{~V}$
$\mathrm{f}_{\text {step }}$	Analog Step Rate		10		kHz	(f0 $\div 64$)

Data Valid and On/Off Outputs:

IOH	Source Current	1	1.5		mA	$\mathrm{V}_{0}=\mathrm{V}_{\text {SS }}-2 \mathrm{~V}$
l_{0}	Sink Current	-30	-50		$\mu \mathrm{A}$	$\mathrm{V}_{0}=.7 \mathrm{~V}$
tr	Risetime ($.1 \mathrm{~V}_{\text {SS }}$ to $9 \mathrm{~V} \mathrm{~V}_{\text {S }}$)			10	$\mu \mathrm{sec}$	$\mathrm{R}_{\mathrm{L}}={ }^{\infty}, \mathrm{C}_{\mathrm{L}} 50 \mathrm{pF}$
tf	Falltime ($.9 \mathrm{~V}_{\mathrm{SS}}$ to $0.1 \mathrm{~V}_{\mathrm{SS}}$)			10	$\mu \mathrm{sec}$	$\mathrm{R}_{\mathrm{L}}={ }^{\infty}, \mathrm{C}_{\mathrm{L}} 50 \mathrm{pF}$

[^11]Typical Bench Test Setup, Using a 320kHz Ceramic Resonator with S2604

$\underset{\rightarrow}{\mathrm{A}}$

A Subsidiary of Gould Inc.

S2743/S2742

ENCODER/DECODER REMOTE CONTROL 2-CHIP SET

Features

RC Oscillator Used-No Crystal RequiredPhase Locked Loop on Decoder for Reliable Operation
$\square 512$ User Selectable Address CodesEncoder Operates on a Single Rail 9 Volt Supply Suitable for Inexpensive and Convenient Battery Operation
\square User can Determine the Type of Transmission Medium to Use

Applications

Entry Access Systems
\square Remote Engine Starting for Vehicles and Standby Generators
\square Security Systems
\square Traffic ControlPaging SystemsRemote Control of Domestic Appliances

Block Diagram 2742 Decoder

Pin Configuration 2743

General Description-Encoder/Decoder

This two-chip PMOS set includes a user-programmable serial data encoder for use in a simple low-power transmitter and a serial data decoder for use in a user addressable receiver. The user can select the transmission medium (RF, infrared, or hardwire). The externally selectable message allows up to 512 codes or addresses; this is done with the nine binary inputs on each device. An additional 3 bits of address can be programmed on chip as a fixed preamble.
The serial data encoder encodes by means of a frequency-shift-keyed trinary data pattern composed of 16 data bits. Each data bit will have a length equivalent to 32 cycles of high frequency clock (20 kHz typical). Each trinary data pattern will be 512 cycles of $1 / 2$ the oscillator frequency length. The encoder frequency oscillator reference is controlled with an external RC network. The encoder transmitter can be powered by a single 9 volt battery so that a single momentary push button will activate the encoder and transmitter. In the off position there is no current flow.
The serial data decoder in conjunction with a receiver amplifier decodes the transmitted 16 -bit coded signal. The on-chip phase-locked-loop locks in on the 20 kHz signal even if the transmitted frequency differs from the receiver by up to $\pm 15 \%$. The coded signal input is compared with the externally selected code. The serial decoder looks at the transmitted signal a minimum of three times before validating a good message. A 3 -bit "good" code counter or a 3 -bit "bad" code counter accumulates the number of successive good and bad codes being received.

The decoder has an on-chip one-shot which is user programmed by an external RC combination. Whenever three complete good codes are received in the "good" counter a signal enables the one-shot which controls the signal valid output. If a series of three sequential bad codes enter the "bad" code counter the "bad" counter resets the "good" code counter and one-shot period and will not allow an active output until the end of the one-shot period. Any "good" code resets the "bad" code counter. If the "good" counter has accumulated three good codes and activated the output one shot, any occasional "good" code (occurring within the one-shot period) will maintain the output by retriggering the one-shot. The output appears like a single switch, on when "good" codes are received, off when not, with the minimum total period being determined by
twice the one-shot period. The one-shot can be used to prevent the output from switching on and off too rapidly due to system noise. The typical RC components shown in the block diagram give a period of about one second.

Functional Description-Serial Data Encoder

The AMI serial data encoder is comprised of three sections: Oscillator, Programming Logic, and Control Logic. Specifically it will provide logical ones " 1 ", logical zeroes " 0 ", and synchronization pulses " S " and arrange them into a trinary data pattern composed of 16 data bits. Each data bit will be 32 cycles of the high frequency (HF-1/2 Oscillator Frequency) in length. Each trinary data pattern will be 512 cycles of $1 / 2$ the Oscillator Frequency length.

A logical " 1 " is represented by 32 cycles of the high frequency.

A logical " 0 " is represented by 16 cycles of the high frequency followed directly by 8 cycles of the low frequency ($\mathrm{LF}=1 / 2 \mathrm{HF}$).

A synchronization pulse " S " is represented by 16 cycles of the low frequency.

A 16-bit data pattern will be encoded in the device in such a manner as to have three (3) bits programmed internally and nine (9) bits programmed externally.
The Oscillator Frequency equals twice that of the High Frequency, and the High Frequency equals twice that of the Low Frequency.
The Oscillator circuit will require a maximum of three (3) external components.

External programming inputs connected to the device $-V_{D D}$ supply will be considered as a logical " 1 ". The bit programming current will not exceed $50 \mu \mathrm{~A}$. The programming resistance should not exceed $1 \mathrm{k} \Omega$. Unconnected external bit programming inputs will be considered at a logical " 0 ".
$\mathrm{A} " 1$ " $\left(-5 \mathrm{~V} \leqslant " 1 " \leqslant \mathrm{~V}_{\mathrm{DD}}\right)$ presented to the "Test" input sets the Internal counter and maintains the output of the device "On." The input impedance of the test input is greater than $5 \mathrm{M} \Omega$.
For portable operation a 9 V transistor battery can be used for the DC voltage supply. Proper circuit polarity must be observed ($-\mathrm{V}_{\mathrm{DD}},+\mathrm{V}_{\mathrm{SS}}$).

S2743 Absolute Maximum Ratings

$$
\begin{aligned}
& \text { DC Supply Voltage... } 15 \mathrm{~V} \\
& \text { Input Voltage. ... } \mathrm{V}_{\mathrm{SS}}+.3 \mathrm{~F} \text { to } \mathrm{V}_{\mathrm{SS}}-15 \mathrm{~V} \\
& \text { Operating Temperature Range. .. }-40^{\circ} \mathrm{C} \text { to }+100^{\circ} \mathrm{C} \\
& \text { Storage Temperature Range. }-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
& \text { Lead Temperature (During Soldering). ... } 300^{\circ} \mathrm{C} \text { for Max. 10sec. }
\end{aligned}
$$

S2743 Electrical Characteristics $\left(25^{\circ} \mathrm{C}\right.$ Air Temperature Unless Otherwise Specified)

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
	Operating Supply Voltage	-6.65	-9.5	-15	V	$V_{D D} ; V_{S S}=0 V$
	Operating Power Dissipation		27	40	MW	-8V, - 5mA, Max.
	Operating Frequency	2	40	60	kHz	Oscillator
	Programming Bits 1-9, Current			50	$\mu \mathrm{A}$	Programming Input, R $1 \mathrm{k} \Omega$
	External Programming Resistance			1	k \%	Bits 1-9
	(DC Bits 1-9) Program Logical "1"	$\mathrm{V}_{\text {SS }}-5 \mathrm{~V}$		$V_{D D}$	V	
	Input Levels Logical '0'"	$\mathrm{V}_{S S}-1 \mathrm{~V}$		$\mathrm{V}_{S S}$	V	
	Bits 1-9 Current		55		$\mu \mathrm{A}$	Input R 9V>1.5M @ 5V
	Test and R + C Input Impedance	5		75	M Ω	
	(DC) Test Input Levels Test ON	$\mathrm{V}_{\text {SS }}-5 \mathrm{~V}$		V_{DD}	V	Maintains Output Device ON
	Test 0FF (See Note 1)	$\mathrm{V}_{S S}-1 \mathrm{~V}$		$\mathrm{V}_{S S}$	V	Permits Normal Operation
	R, C Resistance Logical ' 1 "'		12		k Ω	$\begin{aligned} & \text { Resistance to } V_{D D} \\ & \pm 20 \% \end{aligned}$
	R, C Resistance Logical " 0 " (See Figure 1)		3		ks	Resistance to V_{SS} $+20 \%-30 \%$
	Output Current (See Note 2)	5			mA	$\begin{aligned} & \text { Output Voltage }=.8 \mathrm{~V} \\ & \mathrm{~W} / \mathrm{V}_{D D}=-7 \mathrm{~V} \end{aligned}$

Notes: 1. Effect noted at Pin 15 to $V_{S S}$. 2. Output Voltage Pin 15 to $V_{S S}$. 3. All Voltages measured with respect to $V_{S S}$.

Figure 1. Serial Data Encoder

ENCODER/DECODER REMOTE CONTROL 2-CHIP SET

FeaturesRC Oscillator Used-No Crystal Required512 User Selectable Address Codes
Low Power CMOS Encoder Operates on a Single Rail 9 Volt Supply
\square Low Power CMOS Decoder Operates on a Single Rail 12 Volt Supply

Applications

Entry Access SystemsRemote Engine Starting for Vehicles and Standby GeneratorsSecurity SystemsTraffic ControlPaging Systems
Remote Control of Domestic Appliances

General Description—Encoder/Decoder

This two-chip CMOS set includes a user-addressable serial data encoder for use in a simple low-power transmitter and a serial data decoder for use in a useraddressable low-power receiver. This chip set may be used with a variety of transmission media (RF, infrared, or hardwire). Up to 512 codes or addresses are externally selectable; this is done with the nine binary inputs on each device.
The serial data encoder outputs a train of ten pulses. The first pulse is a "marker" bit used to signal the decoder that a message is coming. The following nine pulses represent the encoded nine bits of binary information. The duration of the pulses output from the encoder is determined by a simple RC clock network. The encoder transmitter can be powered by a single 9 -volt battery so that a single momentary push button will activate the encoder and transmitter. In the off position, there is no current flow.
The serial data decoder, in conjunction with a receiver amplifier, decodes the transmitted signal. The coded signal input is compared with the decoder's externally selected address. The serial decoder looks at the transmitted signal a minimum of four times before validating a good message and turning the receiver's detection output on.
The decoder has an on-chip output one-shot which is user programmed by an external RC combination. This one-shot is used to prevent the detection output from switching on and off too rapidly due to system noise.

Functional Description-Serial Data Encoder

The Serial Data Encoder is comprised of three sections: Oscillator, Programming Logic, and Control Logic. Specifically, it will provide a marker pulse and nine data pulses. This 10 -bit message will be output from the encoder, then a DC logic " 0 " pulse will be output for a time corresponding to the length of the 10 -bit message.
The encoder will continue to cycle the message and the logic " 0 " silence period as long as power is applied to it.
Each bit of the 10 -bit message is four RC oscillator periods wide. The format of each bit is the same. First, a Logic " 1 " is output for one oscillator period. Then, the data (or marker) value is output for the next two oscillator periods. Lastly, a logic " 0 " is output for one oscillator period. Thus, Logic " 1 " for one period, data for two periods, and Logic " 0 " for the last period. After a

10-bit message (40 oscillator periods) has elapsed, there will be an equivalent period of silence (Logic " 0 ") output from the encoder, as mentioned previously.
The marker bit is equivalent to a data bit with a value of Logic " 1 ".
The RC oscillator circuit requires a maximum of three external components (see Figure 1). To directly drive the oscillator, let encoder Pins 3 and 4 float, and apply the direct drive signal to encoder Pin 5.
The typical $\mathrm{R}_{1}, \mathrm{R}_{2}$, and C components shown in Figure 2 provide an oscillator frequently of about 1 ms .
External programming inputs connected to the device will be considered as a Logic " 0 ". Unconnected external bit programming inputs are pulled up by the chip to a Logic " 1 ".
A Logic " 1 " applied to "test detect", Pin 2, resets the internal logic and forces the encoder output to a Logic " 0 ". After the "test detect" pin is back at a Logic " 0 ", the encoder output will be a Logic " 0 " for 40 RC oscillator clock periods, then the 10 -bit message will begin.
For portable operation, a 9 V transistor battery with a 6 V zener diode may be used for the DC voltage supply.

Functional Description-Serial Data Decoder

The Serial Data Decoder is comprised of four sections: Data Entry One-Shot, 9-Bit Digital Comparator, Good Detection Control Logic, and the Retriggerable Output One-Shot.
The Decoder is always on, looking for a "marker" pulse from the encoder. When a pulse is detected at the data input, the data entry one-shot clocks it into the first stage of a 10 -bit shift register, after a user-selectable delay. As successive pulses are detected, they are similarly shifted into the shift register, with preceding shift register information shifted over one bit. As the marker bit is shifted into the tenth bit of the shift register, a comparison is made with the first nine bits of shift register information and the nine externally programmed address inputs. If a comparison is valid, a clock pulse is sent to the good detection counter logic. As mentioned in the Encoder Functional Description, a message lasts 40 encoder oscillator clock periods followed by 40 encoder oscillator clock periods of DC Logic " 0 ". In the Decoder, it is necessary to clear the 10 -bit shift register and associated logic after the message has been received and compared with the Decoder's external address bits. This is done using the

Figure 1. Serial Data Encoder RC Oscillator

data frame one-shot. The data frame one-shot provides a user-selectable delay from the end of a message until the shift register is reset. The typical RC components shown in Figure 2 provide data frame one-shot pulse width of about 10 mS , while the components for the data entry one-shot will generate a 2 ms pulse width clock delay during data entry.
The good detection counter circuit and the retriggerable output one-shot work together. Initially, as data begins to enter the Decoder, the output one-shot is refreshed to a Logic " 1 "; the detect output is off. As the output one-shot decays toward a Logic " 0 ", the initial message is compared with the nine external address bits. If the comparison is true, a clock will increment the good detection control circuit. If four such comparisons occur, the detect output will turn on and the output one-shot will again be refreshed to a Logic " 1 ". If less than four comparisons occur before the output
one-shot decays to a Logic " 0 ", the detect output will remain off, the output one-shot will not be refreshed to a Logic "1", and the good detection counter circuit will be reset. Once the detect output is turned on by four message detections in a single output one-shot period, it requires only one message detection per output oneshot period thereafter to keep the detect output continuously turned on. If no message detection occurs in a subsequent output one-shot period, the one-shot will decay to a Logic " 0 ", turn off the detect output and reset the good detection counter circuit. The typical RC components shown in Figure 2 give an output oneshot period of about one second.
Also note that a logic inversion must take place external to the output of the Encoder before it is presented to the data input of the Decoder. Figure 2 shows a typical circuit to accomplish this.

S2747 Encoder Absolute Maximum Ratings

DC Supply Voltage	$\mathrm{V}_{\mathrm{DD}}=+9 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$
Input Voltage	$\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Operating Temperature Range (Ambient)	$-35^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range (Ambient)	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (During Soldering)	$300^{\circ} \mathrm{C}$ for Max. 10 sec.

ANALOG SHIFT REGISTER

Features

185 Stage "Bucket Brigade" Delay LineDelays Audio SignalsAccepts Clock inputs up to 500 kHzVariable DelayAlternate to TCA 350
General Description

The S10110 analog shift register is a monolithic circuit fabricated with P-Channel ion-implanted MOS technology. The part differs from a digital shift register, which is capable of only digital input and output information, in that an audio signal is typically supplied as the data input to the analog register, and the output is the same audio signal delayed in time. The amount of signal delay is dependent on the number of bits of delay (185) and the frequency of the two symmetrical clock inputs. Since each negative-going clock edge transfers data from one stage to the next, the analog signal delay equals $185 \div 2 \times$ clock frequency.

Operation

Device operation may be understood by referring to Figure 1. This is an actual schematic diagram of the analog shift register, or "bucket brigade," showing typical external bias techniques.

Data In Input:

The analog signal, or audio signal, to be delayed is applied to pin 3. This input must be biased to a negative voltage of approximately -8 volts, and two resistors may be used as a voltage divider to provide this bias. They must be chosen so that $\left(R_{1}\right) \pm\left(R_{2}\right) \div\left(R_{1}+R_{2}\right)$ is less than $20 \mathrm{k} \Omega$. The input signal applied to this input through series capacitor $C_{\mathbb{N}}$ may be as high as 6 volts peak-to-peak.

Clock 1 and Clock 2 Inputs:

Applied respectively to pins 5 and 2, Clock 1 and Clock 2 are two symmetrical non-overlapping negative-going clocks used to transfer the analog data along the 185 bit delay line. Although these clocks may have a duty cycle as low as 25% (i.e., each clock signal is at a negative level for 25% of its period), better output signals will be obtained with both clock duty cycles closer to 50%. It is important, however, that no overlap of the clock signals occurs at a level more negative than $V_{S S}-0.8$ volts.
Referring again to Figure 1, it can be seen that when Clock 1 is negative, data is transferred from the data input to capacitor C1; likewise, data is transferred from each even-numbered capacitor to the capacitor to its
right. When Clock 2 is negative, data is transferred from C1 to C 2 and from each other odd-numbered capacitor to the capacitor to its right. In this manner, data is shifted from the input to C185 after a total of 185 negative clock pulses has occurred (i.e., 93 periods of Clock 1 and 92 periods of Clock 2).

Data Out Output:

The output of the S10110 analog shift register is a single device, T 187 , with its drain at V_{DD} and its source connected to pin 6 . If a 47 K resistor to $\mathrm{V}_{\text {SS }}$ is supplied at this pin, T187 functions as a source follower.
Referring to Figure 3, it can be seen that the output potential during Clock 2 is a constant value near - 10 volts. When Clock 1 switches on (negative), the output instantaneously drops to a level of approximately - 30 volts; this is caused by the 20 volt swing of Clock 1 and C185. As Clock 1 remains on, device T185 transfers charge from C184 to C185, and the output voltage becomes more positive, depending on the charge previously stored on C184. It is during this part of Clock 1 that the output reflects the analog data stored on C1 185 bits earlier. Since the clock signal now appears on the output, it is necessary to apply the appropriate filtering to obtain the delayed analog signal.

Applications

\square Delay of Audio Signals
Rotating Speaker Simulation
Electronic Chorus
Electronic Vibrato
String Ensemble
Reverberation

Figure 1. Schematic Diagram and Pinouts of S10110

Voltage on any pin relative to $V_{S S}$ Operating temperature range ... Storage temperature (ambient)						$\begin{aligned} & \ldots \ldots . .+0.3 \mathrm{~V} \text { to }-30 \mathrm{~V} \\ & \cdots \cdots \cdots 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \ldots .-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \end{aligned}$
Electrical Characteristics$\left(0^{\circ} \mathrm{C}<T_{A}<70^{\circ} \mathrm{C} ; \mathrm{V}_{D D}=-24 \mathrm{~V} \pm 2 \mathrm{~V} ; \mathrm{V}_{S S}=0 \mathrm{~V}\right)$						
Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$V_{\text {CLK }}$	CLOCK 1 and CLOCK 2 Inputs Logic Level " 0 "	$\mathrm{V}_{\text {SS }}$		$V_{S S}-0.8$	V	No Overlap of Signals More Negative than $\mathrm{V}_{\mathrm{SS}}-0.8 \mathrm{~V}$
$V_{\text {CLK }}$	CLOCK 1 and CLOCK 2 Inputs Logic Level " 1 "	-18		-20	V	See Figure 2
$\mathrm{tcLK}_{\mathrm{H}}$	Duration of CLOCK Logic "1" Level	$0.2 \times$ tclk				See Figure 2
$\mathrm{f}_{\text {CLK }}$	CLOCK Input Frequency	5		500	kHz	
$V_{\text {BIN }}$	Input Bias Voltage	-7.5		-8.5	V	See Figure 1
$\mathrm{R}_{\mathrm{BIN}}$	Resistance of the Bias Voltage Source at Input			20	$\mathrm{K} \Omega$	$R_{B I N}=(R 1) \times(R 2) \div(R 1+R 2)$ See Figure 1
$\mathrm{V}_{\text {DIN }}$	Signal Level at Data In In			6	$V(P-P)$	
a	Analog Signal Attenuatio			4	dB	
t_{0}	Signal Delay		$\frac{185}{\times f_{\text {CLK }}}$			
$\mathrm{f}_{3 \mathrm{~dB}}$	2dB Response Point		$1 \times \mathrm{f}_{\text {ck }}$			

Figure 1. Timing Diagram of Clock 1 and Clock 2 Signals

Figure 3. S10110 Output Waveform

Preliminary Data Sheet

Features

$\square 22$ Keyboard Inputs
$\square 88$ DC Keyer Circuits
$\square 34$ Binary Dividers
\square Provides Four Pitch Outputs
\square All Key Inputs Sustainable for Percussion
\square All Dividers Resettable
\square Provides＂Any Key Down＂Indication
\square Eliminates Multiple－Contact Key Switches

Typical Applications

\square Generation and Keying of Musical Tones
\square Standard Spinet Organ Keying（37 or 44 note keyboards）
\square Keying of Sustained Tones
\square Percussive Effects
\square Generating Stair－stepped Waveforms
\square Electronic Piano

General Description

The S10430 divider－keyer is a monolithic integrated cir－ cuit fabricated with P－Channel ion－implanted MOS tech－ nology．It is intended for use in spinet organs or other electronic musical instruments having keyboards of up to 44 keys．This device has 22 key inputs，allowing all keying functions for a 44 note manual to be performed by two S 10430 circuits．Each S 10430 accepts six fre－ quencies from a top octave synthesizer，such as an S50240，and provides squarewave outputs at 16 foot， 8 foot， 4 foot，and 2 foot pitches．For example，if a C key is depressed by itself a low C frequency appears at the 16 foot output，and a C frequency one octave higher appears at the 8 foot output；similarly，the 4 foot and 2 foot outputs provide C frequencies one and two octaves higher，respectively，than the C frequency of the 8 foot output．All appropriate frequency division is performed by the S10430，eliminating the need for external dividers．

Block Diagram

Pin Configuration

$v_{s s}$			40	$\square \text { N2 }$
K5			39	曰 K4
K6			38	$\square \mathrm{K} 3$
$k 7$			37	$\square \mathrm{K} 2$
K8			36	$\square \mathrm{K} 1$
N6			35	صN1
K20			34	日 ${ }^{\text {K }}$
K21			33	$\square \mathrm{reset}$
K22		S10430	32	$\square \mathrm{B}^{\prime}$ РІтсн
V_{00}	t		31	］16＇PITCH
K19	1		30	$\square \mathrm{NC}$
K18	12		29	\square^{\prime}＇ PITCH
K17	13		28	$\square_{\text {NC }}$
N5	14		27	$\square_{\text {NC }}$
K12	15		26	ص4．PItch
K11	16		25	v_{KEY}
$K 10$	17		24	صN4
к9	18		23	口к13
N3	19		22	－k14
K16	20		21	صк15

General Description (Continued)

The circuit also eliminates the need for multiplecontact key switches and discrete diode or transistor keyers. Because of the high input impedance of the

MOS keyers used in this circuit, long sustain envelopes may be obtained by connecting low-value capacitors to the keying inputs.

Absolute Maximum Ratings

Voltage on Any Pin Relative to $V_{S S}$... +0.3 F to -27.0 V
Operating Temperature (ambient) . .. $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Electrical Characteristics

$$
0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 70^{\circ} \mathrm{C} ; \mathrm{V}_{S S}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=-12.6 \mathrm{~V} \text { to }-15.4 \mathrm{~V} ; \mathrm{V}_{\mathrm{KEY}}=-4.75 \mathrm{~V} \text { to }-5.25 \mathrm{~V} \text { (unless otherwise specified) }
$$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$V_{\text {ll }}$	Logic Low Level TOS and Reset Inputs	0.0		0.8	V	
V_{HH}	Logic High Level TOS and Reset Inputs	-4.2		$V_{D D}$	V	
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Rise and Fall Times TOS Inputs			50	$\mu \mathrm{sec}$	Measured between 10% and 90\% points
$\mathrm{V}_{0 \mathrm{~L}}$	Logic Low Level AK Output		-0.5	-1.0	V	100 K gload to $\mathrm{V}_{\text {D }}$
t_{o}	Transition of AK Output to 10% of V_{DD}			10	$\mu \mathrm{S}$	100 pF and 100 K Sload to V_{DD}
F_{T}	Operating Frequency TOS Inputs	DC		50 K	Hz	
D_{0}	Output Duty Factor	48		52	\%	Measured between 10% and 90% points
$l_{\text {PA }}$	Peak Output Current Absolute (any pitch output with 1 keyer on)	350		650	$\mu \mathrm{A}$	$\begin{aligned} & V_{D D}=-14 \mathrm{~V} \\ & V_{\text {KEY }}=-5 \mathrm{~V} \\ & V_{\text {EN }}=-25 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$
Ip	Peak Output Current	85		115	\% ave $^{\text {a }}$	$\begin{aligned} & V_{D D}=-14 \mathrm{~V} \\ & V_{\text {KEY }}=-5 \mathrm{~V} \\ & V_{\text {EN }}=-25 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
Ip	Peak Output Current	50		75	\% lave*	$\begin{aligned} & V_{\mathrm{DD}}=-14 \mathrm{~V} \\ & V_{\mathrm{KEY}}=-5 \mathrm{~V} \\ & V_{\mathrm{EN}}=-15 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
Ip	Peak Output Current	0.5			$\mu \mathrm{A}$	$\begin{aligned} & V_{D D}=-14 \mathrm{~V} \\ & V_{K E Y}=-5 \mathrm{~V} \\ & V_{E N}=-3.0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$
Ip	Peak Output Current			0.5	$\mu \mathrm{A}$	$\begin{aligned} & V_{\mathrm{DD}}=-14 \mathrm{~V} \\ & V_{\mathrm{KEY}}=-5 \mathrm{~V} \\ & V_{\mathrm{EN}}=-1.0 \mathrm{~V} \\ & T_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$

[^12]
Functional Description

The S10430 Divider-Keyer circuit accepts six frequencies as inputs and uses these to clock six binary divider chains. Four of these chains consist of six binary dividers each and the remaining two have five. The six chains generate all frequencies necessary to obtain 2^{\prime}, $4^{\prime}, 8^{\prime}$, and 16^{\prime} pitches for half of a 44 key keyboard.

Figure 1:

Typical Time Constants For Sustain Keying

N Inputs

Six of the twelve tempered scale frequencies are applied to the inputs N1 through N6. Typically, these frequencies would be six of the outputs of a top octave synthesizer, such as an S50240. In general, it doesn't matter which frequencies are applied to the N inputs, although this affects which keyboard keys should be connected to the K inputs. One exception to this arises from the fact that a 44 note keyboard contains more of some keys than others. Specifically, there are only three each of the keys, C\#, D, D\#, and E, but there

The outputs of the divider chains are routed to chopper keyer circuits like the one shown in figure 2. When a negative voltage is applied to any " K " input, four of these keyer circuits are turned on to route the appropriate frequencies to each of the four pitch outputs.

Figure 2:
Schematic Diagram of Chopper Keyer Circuit

are four each of the keys $F, F \#, G, G \#, A, A \#$, and C. This results in the requirement that each of the two S10430 divider keyers in a system take two frequencies from the first group, and four from the second group. Stating this another way, the N1, N2, N3, and N4 inputs must have frequencies chosen from the group, F, F\#, G, G\#, A, A\#, B, and C. The N5 and N6 inputs are chosen from the group, C\#, D, D\#, and E. The example in Figure 4 shows one divider keyer handling the notes, $\mathrm{A}, \mathrm{A} \#, \mathrm{~B}, \mathrm{C}, \mathrm{C} \#$, and D while the other does the keying for D\#, E, F, F\#, G, and G\#.

Table 1: Relationship between K and N Inputs

INPUT	PIN NO.	OUTPUT (8' PITCH)* PIN 32	INPUT	PIN NO.	OUTPUT ($\mathbf{8}^{\prime}$ PITCH)* PIN 32
K1	36	$\mathrm{N} 1 \div 4$	K12	15	N3 $\div 32$
K2	37	$\mathrm{N} 1 \div 8$	K13	23	$\mathrm{N} 4 \div 4$
K3	38	$\mathrm{N} \div 16$	K14	22	$\mathrm{N} 4 \div 8$
K4	39	$\mathrm{N} 1 \div 32$	K15	21	$\mathrm{N} 4 \div 16$
K5	2	$\mathrm{N} 2 \div 4$	K16	20	$\mathrm{N} 4 \div 32$
K6	3	$\mathrm{N} 2 \div 8$	K17	13	N5 $\div 4$
K7	4	$\mathrm{N} 2 \div 16$	K18	12	N5 $\div 8$
K8	5	$\mathrm{N} 2 \div 32$	K19	11	$\mathrm{N} 5 \div 16$
K9	18	N $3 \div 4$	K20	7	$\mathrm{N} 6 \div 4$
K10	17	N3 $\div 8$	K21	8	$\mathrm{N} 6 \div 8$
K11	16	$\mathrm{N} 3 \div 16$	K22	9	N $6 \div 16$

*To determine outputs for 4^{\prime} pitch: multiply 8^{\prime} pitch output by 2. To determine outputs for 2^{\prime} pitch: multiply 8^{\prime} pitch output by 4 . To determine outputs for 16^{\prime} pitch: multiply 8^{\prime} pitch output by

K Inputs

The twenty-two inputs are connected either directly to key switches or to an attack/decay circuit, such as the one shown in Figure 1. When a negative voltage is applied to any K input, four chopper keyer circuits are turned on, and the appropriate frequencies appear at the four pitch outputs. The amount of current at the output is determined by the voltage at the K input. As the voltage becomes more negative, more current appears at the output. This will be discussed further in the section on "Pitch Outputs."
Connection of the K inputs to the key switches is dependent on which frequencies are applied to which N inputs. Table 1 shows the relationship between the K and N inputs. If, for example, the top octave frequency $F, 5588 \mathrm{~Hz}$, is applied to the N2 input, K5 should then be connected to the highest F key on the keyboard, K6 to the next highest, K7 to the next, and K8 to the lowest F. If the highest F key is depressed, then $\mathrm{N} 2 \div 4$, or 1397 Hz would appear at the 8^{\prime} Pitch Output. At the same time, the 16^{\prime} pitch, 4^{\prime} pitch and 2^{\prime} pitch outputs would provide, respectively, $699 \mathrm{~Hz}, 2794 \mathrm{~Hz}$, and 5588 Hz . An example of K and N input connections is given in Figure 4.
To control attack, decay, and sustain times, a circuit such as the one shown in Figure 1 may be used. When a keyswitch is closed, the K input charges to - 25 volts through the time constant of R2 and C1. This
causes the attack time to be about 1 ms . If the sustain is on (sustain switch open), when the keyswitch is opened, the K input will charge slowly back to $V_{S S}$ through the time constant of C1, R1, and R2. This results in a sustain envelope of 271 ms . Longer sustains can be obtained with larger capacitors. If the sustain switch is closed, then the decay time is governed by the time constant of C1, R2, and R3\|R1. In this example, this non-sustain decay is about 3 ms .

Pitch Outputs

The outputs labeled 2^{\prime} pitch, 4^{\prime} pitch, 8^{\prime} pitch, and 16^{\prime} pitch provide the appropriate frequencies for these four pitches depending on which K inputs have been selected. The selected frequencies of the outputs are shown in Table 1. The highest octave of frequencies is obtained directly from the N inputs. Although these top octave frequencies are buffered internally, their duty cycle depends on the duty cycle of the N inputs.
Each output is connected to the outputs of 22 of the chopper keyer circuits shown in Figure 2. The chopper device, D1, is much lower in impedance than the keyer device D2. The output voltage amplitude is dependent, therefore, on the ratio of D2 to the output load. Higher output sink resistor values result in higher output signal amplitudes. However, it is important to keep the output sink resistor low in order to minimize the effects of intermodulation distortion between keyers. Figure 3 shows a typical output waveform with a 100 sink resistor. Because of the need for a low value sink
resistor and the usual desirability of a high signal amplitude, it may be advisable in some cases to load the pitch outputs with operational amplifiers instead of resistors.

$\mathbf{V}_{\text {KEY }}$ Input

This supply input is used exclusively for the chopper keyer circuits (Figure 2). It is important that this be a low impedance supply in order to minimize intermodulation distortion between keyer circuits.
The voltage on the supply is kept low relative to $V_{D D}$ and the K inputs to insure linear operation of the MOS keying circuits.

Reset Input

Applying a $V_{S S}$ level to this input causes all binary
dividers to be held in the reset state. A logic 1 applied to Reset causes the dividers to function normally. To prevent possible phase cancellation between upper and lower manual systems, it is suggested that an RC network be connected to this input so that the musical instrument will be locked into proper phase relationships when power is first applied. When in the reset condition, all chopper devices are turned on to facilitate testing.

AK Output

Whenever any key input is selected, the AK output is actively pulled to $V_{S S}$ to indicated that a key is played. This output is open ended (i.e., no pull-up device is provided), and may be left unconnected if not needed.

Figure 3: Typical Keyer Output

Figure 4: Schematic Diagram of Typical Divider-Keyer Application

DIGITAL NOISE GENERATOR

Features

Internal OscillatorConsistent Noise Quality
\square Consistent Noise Amplitude
\square Zero State Lockup Prevention
\square Zeros Can Be Externally Forced Into the Register
\square Oscillator Can Be Driven Externally
\square Operates With Single or Dual Power Supplies
\square Eliminates Noise Preamps
\square Alternate to MM5837

General Description

The S2688 noise generator circuit is fabricated in P-Channel ion implanted MOS technology and supplied in an eight-lead dual in-line plastic package. The device contains a 17 -bit shift register which is continuously clocked by an internal oscillator. Exclusive OR feedback from the 14th and 17th stages causes the register to generate a pseudo-random noise pattern, and an internal gate is included to prevent the register from reaching an all zero lockup state. To facilitate testing, the device can be easily clocked by an external source.

Absolute Maximum Ratings

Negative Voltage On $_{\mathrm{GG}}$ Vupply Pin.. V $_{\text {SS }}-33 \mathrm{~V}$

Electrical Specifications $\left(0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Volts} ; \mathrm{V}_{\mathrm{DD}}=-14.0 \mathrm{~V} \pm 1.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{GG}}=27.0 \mathrm{~V} \pm 2 \mathrm{~V}\right.$; unless otherwise noted)

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
V_{OH}	Output Logic 1 Level	$\mathrm{V}_{\text {SS }}-1.5$		$\mathrm{V}_{\text {SS }}$	Volts	20KS Load to $\mathrm{V}_{\text {D }}$
V_{0}	Output Logic 0 Level	$V_{D D}$		$\mathrm{V}_{\mathrm{DD}}+1.5$	Volts	$20 \mathrm{~K} \Omega$ Load to $\mathrm{V}_{\text {S }}$
$V_{0 L}$	Output Logic 0 Level	$V_{D D}$		$\mathrm{V}_{\mathrm{DD}}+3.5$	Volts	20KR Load to $V_{S S}$ $V_{G G}=V_{D D}=-14 \mathrm{~V} \pm 1.0 \mathrm{~V}$
$\mathrm{Z}_{\text {IN }}$	Input Impedance (Test Inputs)		10		pF	
I	Leakage Current (Test Inputs)			500	nA	
f_{0}	Frequency of Internal Oscillator		100		kHz	
${ }_{\text {DD }}$	$V_{\text {DD }}$ Supply Current			4.0	mA	No Output Load
$I_{G G}$	$V_{G G}$ Supply Current			500	$\mu \mathrm{A}$	
$\mathrm{f}_{\text {TEST }}$	Test Frequency	80		105	kHz	

Operation

The S2688 is a 17-bit digital shift register driven by an internal oscillator circuit. Outputs from the 14th and 17th stages are connected to an Exclusive OR circuit whose output provides the data input for the register. The 17th stage of the register is connected to a pushpull buffer, which is the circuit's output. This output provides continuous constant amplitude pseudorandom noise; that is, for any time slot, ones and zeroes have an almost equal probability of occurrence.

Typical Applications

\square Percussion Instrument Voice Generators for Rhythm Units
\square Electronic Music Synthesizers
\square Simulated Pipe "Wind" Noise
\square Acoustics Testing

Power Supplies

The S2688 noise generator may be operated with either one or two power supplies. In applications where a high output drive level is not critical, or where the output is loaded with a resistive load connected to $V_{D D}$, it is possible to operate the device from a single supply voltage; in this case, the V_{GG} supply pin is connected to the $V_{D D}$ supply voltage. If a low impedance logic " 0 "
level output is required, this can be achieved by connecting the V_{GG} supply pin to a more negative voltage.

Zero State Lockup Prevention

If the outputs of all 17 stages of the shift register were simultaneously to reach a " 0 " logic level, and no logic were provided to prevent this state from occurring, then the register would remain in the "all-zero" state.
In this condition, the output would lockup and remain at a logic " 0 " level. This situation could occur when power is initially applied, or when triggered by noise spikes. To prevent this condition, a 17 input NOR gate is provided internally to decode the "all-zero" state and feed a logic " 1 " level into the register's data input.

Test Inputs

The S2688 has been designed to facilitate testing of the part. In the normal mode of operation, pins 6 and 7 are not used and appear to be open circuits. However, when the V_{GG} pin is connected to V_{SS}, these pins become test pins. Pin 7 (Test A) is used to force zeroes into the register, and pin 6 (Test B) becomes the clock input, driving the internal oscillator network. During the entire test period a $20 \mathrm{~K} \Omega$ load must be tied to $V_{D D}$.

S50240/S50241/S50242

TOP OCTAVE SYNTHESIZER

Features
\square Single Power Supply
\square Broad Supply Voltage Operating Range
\square Low Power Dissipation
\square High Output Drive Capability
\square S50240 - 50\% Output Duty Cycle
\square S50241 - 30\% Output Duty Cycle
\square S50242 - 50\% Output Duty Cycle

General Description

The S5024 is one of a family of ion-implanted, P-Channel MOS, synchronous frequency dividers.
Each output frequency is related to the others by a multiple $12 \sqrt{ } 2$ providing a full octave plus one note on the equal tempered scale.
Low threshold voltage enhancement-mode, as well as depletion mode devices, are fabricated on the same chip allowing the S5024 family to operate from a single, wide tolerance supply. Depletion-mode technology also allows the entire circuit to operate on less than 360 mW of power. The circuits are packaged in 16-pin plastic dual-in-line packages.

S50240/S50241/S50242

RFI emination and feed-through are minimized by placing the input clock between the V_{DD} and V_{SS} pins. Internally the layout of the chip isolates the output buffer circuitry from the divisor circuit clock lines. Also, the
output buffers limit the minimum rise time under no load conditions to reduce the R.F. harmonic content of each output signal.

Absolute Maximum Ratings

Recommended Operating Conditions ($0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 50^{\circ} \mathrm{C}$)

Symbol	Parameter	Min.	Typ.	Max.	Units	Figure
$V_{S S}$	Supply Voltage	0		0	V	
$V_{D D}$	Supply Voltage	-11.0	-14.0	-16.0	V	

Electrical Characteristics $\left(0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 50^{\circ} \mathrm{C} ; \mathrm{V}_{D D}=-11\right.$ to -16 V unless otherwise specified)

Symbol	Parameter	Min.	Typ.	Max.	Units	Figure
$V_{\text {IL }}$	Input Clock, Low	0		-1.0	V	Figure 1
V_{iH}	inpui Clock, Hign	-10.0		$V_{D D}$	V	Figure 1
f_{1}	Input Clock Frequency	100	2000.240	2500	kHz	
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Clock Rise and Fall Times 10% to 90% @ 2.5 MHz			50	nsec	Figure 1
$\mathrm{t}_{\text {ON }}$, tofF	Input Clock On and Off times @ 2.5 MHz		200		nsec	Figure 1
C_{1}	Input Capacitance		5	10	pF	
V_{OH}	Output, High @ 1.0mA	$V_{D D}+1.5$		$V_{D D}$	V	Figure 2
V_{0}	Output, Low @ 1.0mA	$V_{\text {SS }}-1.0$		$V_{S S}$	V	Figure 2
tro, tfo	Output Rise and Fall Times, 500pF Load 10% to 90%	250		2500	nsec	Figure 3
$\mathrm{t}_{\mathrm{O}} \mathrm{N}$	$\begin{aligned} & \text { Output Duty Cycle—S50240, S50242 } \\ & \text { S50241 } \end{aligned}$		$\begin{aligned} & 50 \\ & 30 \\ & \hline \end{aligned}$		$\begin{aligned} & \% \\ & \% \\ & \hline \end{aligned}$	
$I_{\text {D }}$	Supply Current		14	22	mA	Outputs Unloaded

Figure 1. Input Clock Waveform

Figure 2. Output Signal DC Loading

Figure 3. Output Rise and Fall Times

AUTO CLOCK

Features
12 Hour, 4 Digit Auto ClockElapsed Time Counter (resettable, range to 99 hours)Calendar (4-year calendar with pin option for European date/month reversal)
\square Ignition-Sensing Display Cut-off (to reduce battery drain when the auto is not operating)
\square Crystal Input Accuracy (uses inexpensive 4.194 mHz crystal)Direct Display Drive (4-digit vacuum fluorescent displays, 24 Volts)

Applications/Markets

Automotive
Avionics
Marine
Portable Clocks
Industrial

General Description

The S4003 Auto Clock is a PMOS integrated circuit which has found wide application in auto, avionic and marine applications as a portable or dashboard clock and as an industrial timer.

Pin Configuration

A functional description of the inputs/outputs and registers follows:

1. Set Inputs—Left digits set and right digits set will index the selected register at a 2 Hz rate. Indexing either input will not upset the unselected digits.
2. Time Set Select-Enables set inputs to the timekeeping register. When updating hours, the minutes display will blank out and MX1 digit will display A or P. Minutes will update in a normal manner and reset seconds to zero. Seconds will restart on release of the time set select line. When deselected, the time will continue to be displayed for 5 seconds ± 1 seconds. AM and PM indications will switch on the transfer from 11:59 to 12:00.
3. Elapsed Time Select-Displays contents of elapsed time register while active. Left set will stop E.T. accumulation, right set or E.T. reset will restart accumulation of E.T.
4. Elapsed Time Reset-Displays, zeros, and restarts the elapsed time register.
5. Date Select-Displays the contents of the calendar register and enables set inputs. When deselected, the date will continue to be displayed for 5 ± 1 seconds. If elapsed time select is true, the 5 seconds counter shall be inhibited.
6. Ignition Off-When ignition is off, all set inputs will be inactive and display outputs will be turned off. When ignition is turned on, the date will display for 5 seconds then revert to time.
7. Time Register-The time register is a 12 hour register. The time register shall be normally selected with no control inputs selected. When time set select and ignition sense are both true, the 5 seconds date counter shall be inhibited.
8. Elapsed Time Register-The elapsed time register shall be capable of accumulating time up to 99 hours and 59 minutes. The display shall be minutes and seconds to 59 minutes and 59 seconds then switch automatically to hours and minutes format. After 99 hours and 59 minutes, the elapsed time will reset to 00:00 and continue accumulation in minutes and se-
conds format as detailed above. All leading zeros shall be displayed.
9. Date Register-The date register will be a 4 year "smart" calendar. A month/date and date/month format will be pin selectable. The set inputs shall index the appropriate left or right digits regardless as to which format is selected. Date will advance on the transfer from PM to AM.

Date Setting-When date of month is set, the number will advance to the maximum allowed for the particular month being displayed. Further advance will reset the date to " 01 " and continue advancing as before. When the month is being set and the date is greater than that allowed for that month, (i.e., 0230), the next timekeeping switch from PM to AM will advance the month and set the date to " 01 " (i.e., 0301).
10. All registers are to be independent, i.e., setting time will not index calendar.
11. All registers will continue to accumulate while ignition is off.
12. Colons shall be non-flashing and displayed in the time display and elapsed time modes. Colons shall be extinguished in the date display mode.
13. On initial power up or in case of battery disconnect, the display shall read 0:00 on all functions until time is set. Voltage rise time to 10 volts will be greater than 10 mseconds.
14. Register Preference-If more than one register for display is selected at one time, time will have preference over date, date will have preference over elapsed time.
15. Illegal Conditions-If either date, time, or E.T. reset inputs are true at the same time, the clock display shall blank. All set inputs will be disabled while the clock is in an illegal mode.
16. Test Condition-When date select, elapsed time select, time set select, and both right and left set inputs are true, the clock may enter a test mode.
17. Switch Debounce Protection-All setting inputs shall be protected against switch debounce for a period of 13 mseconds min .

Absolute Maximum Ratings

Positive voltage on any pin...

S4003 Electrical Specifications

Parameter	Min.	Typ.	Max.	Units	Conditions
$\mathrm{V}_{\text {SS }}$ Supply Voltage Outputs Operational	9	20	24	Volts	$\mathrm{V}_{\mathrm{DD}}=\mathrm{GND}$
$V_{S S}$ Supply Voltage No Loss of Memory	7		24	Voits	$V_{D D}=G N D$
$V_{S S}$ Supply Voltage	7		24	Volts	Voltage to be ramped up from 0 volts (time constant 10 ms from 0 to 10 volts)
Iss Supply Current		5	6.5	mA	$V_{\text {SS }}=12 \mathrm{~V} 25^{\circ} \mathrm{C}$
No Output Loads		10	15	mA	$V_{S S}=20 \mathrm{~V}$
F0 Crystal Frequency		4.194304		MHz	
Fc Converter Frequency		65.536		KHz	
Converter Frequency Start w/Ignition Sense Off		8		Volts	$\mathrm{V}_{\mathrm{DD}}=\mathrm{GND}$
Input Voliage					
$\begin{aligned} & V_{\text {IH }} \\ & V_{I L} \text { (Except Ignition Sense) } \\ & \text { Ignition Sense (0n) } \\ & (0 \mathrm{ff}) \end{aligned}$	$\begin{aligned} & V_{S S}-1 \\ & V_{D D} \\ & +5.0 \end{aligned}$		$\begin{gathered} V_{S S} \\ V_{D D}+1 \\ +1.0 \\ \hline \end{gathered}$	Volts Volts Volts Volts	$\begin{aligned} & V_{S S}=9 \text { to } 20 \mathrm{~V} \\ & V_{D D}=G N D \end{aligned}$
Output Currents					
Segment (Single) $l_{0 L}$ I_{OH}	$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$			${ }_{\mu \mathrm{A}}$	$V_{\mathrm{OH}}=\mathrm{V}_{\mathrm{SS}}-1$ Leakage to $V_{D D}$ (Output Off)
(A\&D MX10) IOL $\mathrm{IOH}_{\mathrm{OH}}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			$\mathrm{mA}_{\mu \mathrm{A}}$	$\begin{aligned} & V_{O H}=V_{S S}-1 \\ & \text { Leakage to } V_{D D} \text { (Output Off) } \end{aligned}$
Converter I_{OH}	$\begin{aligned} & 3.0 \\ & 1.0 \end{aligned}$			$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & V_{S S}-2, V_{S S}=18 \mathrm{~V} \\ & V_{S S}-2, V_{S S}=7 \mathrm{~V} \end{aligned}$

A Subsidiary of Gould Inc.

VACUUM FLUORESCENT DIGITAL CLOCK FOR AUTOMOTIVE APPLICATIONS

Features

Uses Inexpensive 4MHz Crystal\square Direct Drive to Green or Blue Vacuum Fluorescent Display
\square Low Standby Power Dissipation When Display is Switched Off With Ignition
\square Variable Brightness Tracks Other Dash Lights

Applications

In Dash Automobile Clocks
Tape Players, CB Radio Units
Automotive After Market Clocks
\square Aircraft, Marine Panel ClocksPortable Instrumentation Clocks

Functional Description

The S2709A vacuum fluorescent clock is a monolithic MOS integrated circuit utilizing P.Channel low threshold, enhancement mode and ion-implanted depletion mode devices. The circuit interfaces directly with 4 digit multiplexed vacuum fluorescent displays and requires only a single nominal 12 V power supply. The timekeeping function operates from a 4 MHz crystal controlled input. The display format is 12 hours with colon and leading zero blanking. An up-converter output is provided by the circuit to generate increased display driving voltage. A brightness control input allows variation of the display intensity. An ignition monitor input controls the upconverter operation and inhibits time setting. The S2709A is normally supplied in a 22 -lead plastic dual-in-line package.

Block Diagram

Pin Configuration

Operational Description

Refer to the block diagram and Figure 1, Typical Application.
Oscillator Input (Pin 21) and Output (Pin 22) - The crystal controlled oscillator operates at a frequency of 4.194304 MHz to increase accuracy and reduce external component costs due to the less expensive quartz crystal. The frequency is controlled by a quartz crystal and fixed capacitor upconverter output (pin 13). This method allows accurate frequency tuning of the crystal oscillator without loading down the oscillator circuit. The feedback and phase shift resistors are integrated to further reduce external component costs. The internal oscillator inverter drives a counter chain that performs the timekeeping function.
Time Setting Input (Pin 20) - To prevent tampering, time setting is inhibited until the ignition monitor (pin 16) is held at a logic high level (V_{SS}).
Normal timekeeping is provided by allowing the time set pin to float externally. (Unloaded, this pin will alternate between $V_{D D}$ and $V_{S S}$ in phase with the unit minutes digit strobe [pin 12] during normal timekeeping.) If the time set pin is held at a logic high level ($V_{S S}$), the minutes counter advances at a 2 Hz rate without carry to hours. If the time set pin is held at a logic low level ($V_{D D}$) the hours counter advances at a 2 Hz rate.
It is possible to reset the hours, minutes and internal seconds counter by applying a logic low level (V_{DD}) to the test input (pin 18) during the time that the ignition monitor input is at a logic low level (V_{SS}). This reset state (time 1:00) is used for testing purposes.
Upconverter Pulse Output (Pin 13) - The clock circuit and vacuum fluorescent display drive normally operate at 25 V when the ignition monitor pin is held at a logic high level (V_{SS}). The automobile battery voltage (12 V) is doubled by an external upconverter circuit triggered by an 8 kHz output pulse having a 28% duty cycle. The voltage, whether 12 V or 25 V , is applied to the circuit via the $V_{\text {SS }}$ input (pin 17).
When the ignition monitor pin is held at a logic low level $\left(V_{D D}\right)$ the upconverter is disabled. This drops the $V_{S S}$: supply to 12 V allowing the clock to operate while the display drive is decreased, lowering power dissipation. As the battery voltage drops (due to engine starting, cold temperature, or aging) timekeeping is maintained down to approximately 7 V with no loss of the memory down to 5 V . However, below 10 V the upconverter will not be inhibited by the ignition monitor input.

Note that low standby power dissipation (60 mW typical @ $V_{S S}=12 \mathrm{~V}$, and no output loads) is accomplished by turning off the filament voltage to the display when the auto ignition switch is off.
Ignition Monitor (Pin 16) - Along with preventing the already mentioned time setting function, the ignition monitor when held at a logic low level ($V_{D D}$) inhibits the 8 kHz upconverter output pulse (pin 13) as long as the supply (V_{SS}) is above 10 V . This pin is normally connected to the auto accessory switch.
The ignition monitor input can be protected against power supply transients by using $47 \mathrm{~K} \Omega$ external series resistance (See Figure 1).
Day/Night Display Control Input (Pin 15) - As seen in Figure 2, the display brightness is controlled via both pin 15 and the dimming control input (pin 14). The day/night input is connected to the automobile parking or headlights switch such that when these lights are off ($\mathrm{V}_{\text {IN }}$ low) the decoded segment and the digit outputs are from $V_{S S}$ to $V_{S S}-2.0$ volts. When the parking or headlights are switched on ($\mathrm{V}_{\text {IN }}$ high) the internal day/night logic enables the dimming input to control the segment and digit output voltage and brightness by allowing adjustable current to flow as controlled by the dash lights rheostat.
The day/night input can be protected from power supply transients by using $47 \mathrm{~K} \Omega$ external series resistance (See Figure 1).
Display Dimming Control Input (Pin 14) - The display dimming input is connected to the automobile dashboard light dimming rheostat through a series resistor. This allows the fluorescent display to track the dimming characteristics of the incandescent dashboard light (See Figure 2). The display dimming control is inhibited unless the day/night input (pin 15) is held at a logic high level (V_{SS}).
Display Drivers (Pins 1 through 12) - The 12 hour display format is comprised of four digits with leading zero blanking and a flashing colon. Each digit contains 7 segments with individual segments coded in the conventional manner (See Figure 1). The display is multiplexed with each digit output (G1, G2, G3 and G4) being strobed for a time period of approximately 0.5 mS . Figure 3 shows the minimum output current as a function of output voltage for the digit (grid) and segment outputs.
The colon output (pin 11) is designed to have an unobtrusive flash while still indicating that the clock is functioning normally. The colon flash is accomplished in a 2 second period of $1-1 / 2$ seconds on the $1 / 2$ second off.

Abstract

Electrical Characteristics

Symbol	Characteristics/Conditions	$\begin{gathered} \hline v_{\mathrm{DO}} \\ \mathrm{~V} \end{gathered}$	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$			Unit
			Min.	Typ.	Max.	
$\mathrm{V}_{\text {SS }}$	Operating Supply Range $V_{D D}=0.0 \mathrm{~V}$ (Reter to Upconverter Pulse Output)		7.0		28	v
Iss	Supply Current (No Loads On Outputs)	$\begin{aligned} & 12 \\ & 25 \end{aligned}$			$\begin{aligned} & 12 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
	Oscillator Frequency			4.194304		MHz
Display Outputs						
$\begin{aligned} & \mathrm{I}_{\mathrm{OH}} \\ & \mathrm{I}_{\mathrm{OL}} \\ & \mathrm{IOH}_{\mathrm{OH}} \\ & \hline \end{aligned}$	Multiplex Rate Duty Cycle (Each Digit Per Cycle) Output Current (Day/Night = LOW) Digits, $V_{O H}=24 \mathrm{~V}$ $V_{O L}=2 \mathrm{~V}$ Segments \& Colon, $\mathrm{V}_{\mathrm{OH}}=24 \mathrm{~V}$ $V_{0 L}=2 \mathrm{~V}$	$\begin{aligned} & 25 \\ & 25 \\ & 25 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 10 \end{aligned}$	$\begin{gathered} 512 \\ 18.8 \end{gathered}$	$\begin{array}{r} -6.0 \\ -1.5 \end{array}$	$\begin{aligned} & \mathrm{Hz} \\ & \% \\ & \mathrm{~mA} \\ & \mu \mathrm{~A} \\ & \mathrm{~mA} \\ & \mu \mathrm{~A} \end{aligned}$

Output Voltage (V[Pin 14]-V(Digit or Seg)

$\begin{aligned} & \Delta V_{0} \\ & \Delta V_{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Day } / \text { Night }=\text { High, } V(\text { Pin } 14 \geqslant / 4 \mathrm{~V}) \\ & \text { Digits }\left(R_{L}=8.2 \mathrm{~K} \Omega \text { to } V_{D D}\right) \\ & \text { Segment }\left(R_{L}=100 \mathrm{~K} \Omega \text { to } V_{D D}\right) \\ & \hline \end{aligned}$	25 25				V
Upconverter Pusse Output						
$\begin{aligned} & \mathrm{I}_{\mathrm{OH}} \\ & \mathrm{I}_{\mathrm{OH}} \\ & \mathrm{I}_{\mathrm{OL}} \end{aligned}$	Pulse Frequency Duty Cycle Output Current $\begin{aligned} & \mathrm{V}_{\mathrm{OH}}=8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=23 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OL}}=1 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 25 \\ & 25 \end{aligned}$	6.0	$\begin{gathered} 8192 \\ 25 \end{gathered}$	-1.5 -3.0	$\begin{aligned} & \hline \mathrm{Hz} \\ & \% \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
Time Set Input/Output						
$\begin{aligned} & V_{\mathrm{IH}} \\ & V_{\mathrm{IL}} \end{aligned}$	Input Voltage (No Load) High Low	25 25	24 0		1 1	V

Output Current

I_{OH}	$\mathrm{V}_{\mathrm{OH}}=18 \mathrm{~V}$	25	-6.0		-2.0	mA
	Output Frequency			512		Hz
	Duty Cycle			25		$\%$

Ignition Monitor Input and Day/Night Input

	Input Voltage					
$V_{I H}$	High	9.0 to 25	6.5		$V_{S S}$	V
$V_{I L}$	Low	9.0 to 25	0		2.0	V
$I_{I H}$	Input Current (Pull Down) $V_{I H}=12 \mathrm{~V}$	25	2		20	$\mu \mathrm{~A}$

Figure 1. Typical Application

GENERAL PURPOSE A/D CONVERTER AND DIGITAL SCALE CIRCUIT

Features

On-Chip Voltage RegulatorOn-Chip Low Supply DetectionOn-Chip LED Display Drivers
Pin Selectable Sensitivity
Linearity ± 5 LSB/3000 Bits
\square Repeatability ± 3 LSB/3000 Bits

Applications:

Low Cost ADC
Digital ScaleDigital Thermometer
Digital Voltmeter
Digital Light Meter

General Description

The S4036 General Purpose A/D Converter and Digital Scale Circuit provides a one chip solution to many Analog/Digital applications. Few external parts are needed as the S 4036 provides an on-chip voltage reference, low supply detector, pin selectable sensitivity logic, and drivers for a multiplexed LED display.
The S4036 can begin to process analog data immediately upon presentation, or it can wait to sample the data after two seconds of settling time at user discretion.

In the sampled data mode of operation, a short pulse applied to the $V_{D D}$ input signals the $S 4036$ to start the

Figure 1. Typical ADC Application

Figure 2. Typical Digital Scale Application

sample interval counter. The display clears to " 000 ," with the most significant digit blanked. After two seconds, approximately, the S4036 begins to process the analog input. The display "rolls-up" from " 000 " to the digital value of the analog input. This "roll-up" process takes one second. The value on the display at the end of the conversion is held fixed until the $V_{D D}$ line is pulsed to restart the process.
Here, a switch $\left(S_{1}\right)$ pulses the $V_{D D}$ input of the $S 4036$ to begin the conversion process. When the analog voltage is more positive than the LVR voltage level, a non-zero reading will occur. If the analog voltage is more negative than the LVR level (underflow), a zero value reading will occur. If the analog voltage is more positive than the HVR voltage level (overflow), the S 4036 will output a maximum value reading (2999 or 1360, depending on state of Pin 20). LVR is 1.5 V to 2.5 V , HVR is 4.5 V to 5.5 V .
The analog voltage is applied to Pins 22 and 23 . Pins 16 (T_{1}), $17\left(\mathrm{~T}_{2}\right)$, and 18 (RCT) are not connected. Notice the 390Ω resistors off Pins 3-9; these are used to limit the output current of the S4036.
A feature which can be user-programmed is the HVR and LVR voltages used by the ADC. The chip supplies a
regulated voltage (Pin 19) which can be divided down and picked off via a potentiometer. Thus, the user can specify the lower reference (" 0 " value display point) and the upper reference (maximum value display point) merely by resistively dividing the regulated voltage output. This feature allows the S 4036 to perform in many "non-standard" ADC situations.
A capacitor is required on Pin 24 to implement the Analog-to-Digital Converter. For most applications, the value of this capacitor is nominally $1 \mu \mathrm{~F}$, but this value is not critical to the conversion process.
Here, a mechanical input from the scale pulses the $V_{D D}$ input of the $S 4036$ to begin the conversion process. The same mechanical input from the scale also displaces the core of the Linear Variable Differential Transformer (LVDT) proportional to the weight of the object being measured. The LVDT primary is driven by 2 NPN transistors controlled by $\$ 4036$ timing outputs T_{1} and T_{2}, which are 180° out of phase at a 50% duty cycle. The output (RCT) is used to bias the center tap of the LVDT secondary. The LVDT secondary presents an output which varies linearly with core position. This voltage is rectified, filtered, and presented to the analog inputs (LPR and LPC). (See Figure 3 for internal connection of S4036 pins RCT, LPR, and LPC.)

The S4036 has two pin-selectable modes of sensitivity. A Logic " 0 " on Pin 20 allows 3000 possible readings (0 to 2999), while a Logic " 1 " on Pin 20 allows 1361 possible readings (0 to 1360). This feature allows the sensitivity of the S4036 to be adapted to meet a wide range of ADC applications. In most digital scale applications, the pin-selectable sensitivity of the S4036 can be used
to provide pounds (3000 readings) or kilograms (1361 readings) by providing a Logic " 0 " or " 1 " on Pin 20 , respectively.
The chip also contains an RC oscillator amplifier which interfaces with an external resistor and capacitor to provide the timing for the Analog-to Digital Converter and multiplexed LED display drivers.

Absolute Maximum Ratings

Electrical Characteristics

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$\mathrm{T}_{\text {ACC }}$	Accurate Operation Temperature Range	10		35	${ }^{\circ} \mathrm{C}$	
$V_{D D}$	Operating Supply Voltage	$V_{\text {LS }}$		9.50	VDC	
$\mathrm{f}_{\text {osc }}$	Oscillator Frequency	91	104	117	KHz	$\mathrm{R}=100 \mathrm{~K}, \mathrm{C}=82 \mathrm{pF}$
100	Operating Supply Current			12	mA	Outputs Unloaded
$\mathrm{t}_{\text {sam }}$	2 Sec Data Sample Time	2.24	2.52	2.88	Sec	
$\mathrm{t}_{\text {ADC }}$	ADC Calculation Internal	0.82	0.92	1.05	Sec	
$\mathrm{f}_{\text {DiSP }}$	Display MUX Frequency	355	406	457	Hz	
\% MUX	Each Digit Minimum MUX Duty Cycle	20			\%	
V_{R}	Regulated Voltage	5.5	6.00	6.5	V	Into 242 0hm
$V_{\text {SEG }}$	$V_{\text {Out }}$, Segment Drivers	7.2			V	Into 720 Ohm
$V_{\text {DIGIT }}$	$\mathrm{V}_{\text {Out }}$, Digit Drivers			1.2	V	From 91 Ohm
$\mathrm{V}_{\text {LS }}$	Low Supply Detection \& A/D Shutdown	6.3		7.3	V	
LVR	Low Voltage Reference	1.5		2.5	V	
HVR	High Voltage Reference	4.5		5.5	V	
$\mathrm{f}_{\text {LVDT }}$	T_{1} and T_{2} Freq.	11	13	151$\pm 5$$\pm 5$	KHz	
$\mathrm{V}_{\text {LVDT }}$	T_{1} and T_{2} Output Voltages @ $\mathrm{V}_{D D}=8 \mathrm{~V}$	0.75			V	From 70K Ohm Into 15000 hm
	Linearity from Best Straight Line, $V_{D O}=8 \mathrm{~V}$				Bits	$\begin{aligned} & 2.3 V \leqslant L P R \leqslant 4.7 V \\ & L V R=2 V, H V R=5 V \end{aligned}$
	Reading Change Over Range of $V_{D D}$				Bits	$\begin{aligned} & 7.3 V \leqslant V_{D D} \leqslant 9.0 V \\ & L V R=2 V, H V R=5 V \\ & L P R=3.5 V \end{aligned}$
	Display Change Over Consecutive Readings			± 3	Bits	$\begin{aligned} & V D=8 V, L V R=2 V, \\ & H V R=5 V, L P R=3.5 V \end{aligned}$

Figure 3. Internal Connection of S4036 Pins RCT, LPR, \& LPC

Figure 4. S4036 State Machine to Obtain an Immediate A/D Conversion Sequence

Immediate A/D Conversion Sequence

This sequence eliminates the analog data sample time, resets the S4036, and then proceeds directly with Analog-to-Digital conversion. This approach should be used for data which is steady when the S4036 is signaled to begin processing. It may be exercised by presenting the following logic series to LVR (Pin 2) and HVR (Pin 21):

Sequence Step	LVR	HVR
1	0	1
2	0	0
3	0	1
4	1	1
5	1	0
6	1	1
7	0	1

At the end of the signal sequence, the S4036 will sample the analog data input and "roll-up" the display to the digital value of the analog input. The sequence frequency should be greater than the oscillator frequency.

$$
\begin{array}{rlrl}
\text { Logic ' } 0 \text { '": } & & \text { LVR } \leqslant 2.5 \mathrm{~V} & \text { Logic " } 1 \text { '": } \\
& & L V R \geqslant 1.0 \mathrm{~V} & \\
& H V R \geqslant 4.5 \mathrm{~V}
\end{array}
$$

Memories

Memory Products Selection Guide

STATIC MOS RANDOM ACCESS MEMORIES

Part No.	Organization	Process	Max. Access Time(ns)	Max. Active Power (mW)	Max. Standby Power(mW)	Power Supplies	Package
S68B10	128×8	NMOS	250	420	N/A	+5 V	
S68A10	128×8	NMOS	360	420	N/A	+5 V	
S6810	128×8	NMOS	450	400	N/A	+5 V	24 Pin
S6810-1	128×8	NMOS	575	500	N/A	+5 V	

STATIC CMOS RANDOM ACCESS MEMORIES

Part No.	Organization	Max. Access Time(ns)	Max. Active Power(mW)	Max. Standby Power(mW)	Power Supplies	Package
S5101L-1	256×4	450	115	. 055	$+5 \mathrm{~V}$	22 Pin
S5101L	256×4	650	115	. 055	$+5 \mathrm{~V}$	22 Pin
S6501L-1	256×4	450	115	. 055	$+5 \mathrm{~V}$	22 Pin
S6501L	256×4	650	115	. 055	$+5 \mathrm{~V}$	22 Pin
S6514	1024×4	300	75	0.25	$+5 \mathrm{~V}$	18 Pin
S6516	2048×8	230	55 MHz	5.5	$+5 \mathrm{~V}$	24 Pin

MOS READ ONLY MEMORIES

Part No.	Description	Organization	Process	Max. Access Time(ns)	Max. Active Power(mW)	Power Supplies	Package
S68A316	16,384 Bit Static ROM	2048×8	NMOS	350	370	+ 5	24 Pin
S68A332	32,768 Bit Static ROM	4096×8	NMOS	350	370	+5	24 Pin
S2333	32,768 Bit Static ROM	4096×8	NMOS	350	385	+ 5	24 Pin
S68A364	65,536 Bit Static ROM	8192×8	NMOS	350	385	+ 5	24 Pin
S68B364	65,536 Bit Static ROM	8192×8	NMOS	250	495	+5	24 Pin
S68A365	65,536 Bit Bank Switch ROM	8192×8	NMOS	450	415	+5	24 Pin
S2364A	65,536 Bit Static ROM	8192×8	NMOS	350	385	+ 5	28 Pin
S2364B	65,536 Bit Static ROM	8192×8	NMOS	250	385	+ 5	28 Pin
S6364	65,536 Bit Static ROM	8192×8	cmos	250	55	-5	28 Pin
S6464	65,536 Bit Static ROM with On-Board RAM	$8 \times 1024 \times 8$	NMOS	450	440	+ 5	24 Pin
S23128A	131,072 Bit Static ROM	16384×8	NMOS	350	385	+5	28 Pin
S23128B	131,072 Bit Static ROM	16384×8	NMOS	250	385	+ 5	28 Pin
S23256B	262,144 Bit Static ROM	32768×8	NMOS	250	220	+ 5	28 Pin
S23256C	262,144 Bit Static ROM	32768×8	NMOS	150	220	+5	28 Pin

4096 BIT (1024x4) STATIC CMOS RAM

Features

Address Access Time-300ns MaximumRead and Write Cycle Time-420ns MaximumLow Power Operation-39mW Maximum @ 1 MHzLow Power Standby-28 $\mu \mathrm{W}$ MaximumOn-Chip Address RegistersLow Voltage Data Retention-2 VoltsTTL Compatible Inputs and OutputsThree-State Outputs\square Military Temperature/Voltage Range
\square 883-B Processing
The S6514 is fabricated using AMI's CMOS Technology. This permits the manufacture of very high density, high performance CMOS RAMs.

General Description

The AMI 66514 is a 4096 bit static CMOS RAM organized as 1024 words by 4 bits per word. The device offers low power and static operation from a single +5 Volt supply. All inputs and three-state outputs are TTL compatible. The common data I/O pins allow direct interface with common bus systems.
Data is latched into the on-chip Address Registers on the negative going edge of the Chip Enable signal. The data is then written into the cells on the negative going edge of Write Enable signal. The device is disabled and goes into a low power standby mode when the Chip Enable is High. Data in the memory will be maintained in this mode when V_{CC} is reduced to 2.0 Volts.

MILITARY 6514

Absolute Maximum Ratings*

Ambient Temperature Under Bias	$55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage - $\mathrm{V}_{\text {cc }}$	0.3 V to +7.0 V
Input/Output Voltage Applied	-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Storage Temperature $-\mathrm{T}_{\text {stg }}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.
D.C. Electrical Characteristics: $T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
I_{LI}	Input Leakage Current	-1		1	$\mu \mathrm{~A}$	$\mathrm{~V}_{\text {IN }}=\mathrm{GND}$ to V_{CC}
I_{LO}	Output Leakage Current	-1		1	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{GND}$ to V_{CC}
I_{SB}	Standby Supply Current			50	$\mu \mathrm{~A}$	$\mathrm{~V}_{\text {IN }}=\mathrm{GND}$ or V_{CC}
I_{CC}	Operating Supply Current			7	mA	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{f}=\mathrm{MHz}$
V_{IL}	Input Voltage LOW	-0.3		0.8	V	
$\mathrm{~V}_{\mathrm{IH}}$	Input Voltage HIGH	2.4		$\mathrm{~V}_{\mathrm{CC}}+0.3$	V	
$\mathrm{~V}_{\text {OL }}$	Output Voltage LOW			0.4	V	$\mathrm{I}_{0 L}=1.6 \mathrm{~mA}$
$\mathrm{~V}_{\text {OH }}$	Output Voltage HIGH	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$

Capacitance: $T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$. Capacitance is sampled and guaranteed.

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$\mathrm{C}_{\text {IN }}$	Input Capacitance			8	pF	GND to $V_{\text {CC }}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitance			10	pF	GND to $\mathrm{V}_{\text {CC }}$

Low Vcc Data Retention Characteristics:

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$I_{\text {CCOR }}$	$I_{\text {CC }}$ for Data Retention			50	$\mu \mathrm{A}$	See Test Conditions and Waveforms
$\mathrm{V}_{\text {CCDR }}$	$V_{C C}$ for Data Retention	2.0			V	
$\mathrm{t}_{\text {Cor }}$	Chip Deselect to Data Retention Time	0			ns	
t_{R}	Operation Recovery Time	TELEL			ns	

Low \mathbf{V}_{CC} Data Retention Wave Form

dATA RETENTION

A.C. Test Conditions

Input Pulse Levels trise/tfall	$\begin{aligned} & \ldots .0 .8 \mathrm{~V} \text { and } 2.0 \mathrm{~V} \\ & \ldots \ldots . . . \quad \leq 20 \mathrm{~ns} \end{aligned}$
Output Load	1 TTL Load and 50pF
Timing Levels 1.5V

A.C. Electrical Characteristics: $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
TELQV	Chip Enable Access Time			300	ns	See A.C. Test Conditions and Waveforms
tavov	Adress Access Time			320	ns	
TWLQZ	Write Enable Output Disable Time			100	ns	
TEHQZ	Chip Enable Output Disable Time			100	ns	
TELEH	Chip Enable Pulse Negative Width	300			ns	
TEHEL	Chip Enable Pulse Positive Width	120			ns	
TAVEL	Address Setup Time	20			ns	
TELAX	Address Hold Time	50			ns	
TWLWH	Write Enable Pulse Width	300			ns	
TWLEH	Write Enable Pulse Setup Time	300			ns	

Read Cycle: $\overline{\mathrm{WE}}=$ HIGH

Write Cycle

*

A Subsidiary
of Gould Inc.

16,384 BIT (2048x8) STATIC CMOS RAM

Features

\square High Speed-150ns MaximumLow Power Standby - 1.38 mW Maximum
Low Power Operation-83mW/MHz Maximum
On-Chip Address Registers
Fully TTL Compatible Inputs
Three-State TTL Outputs
Low Voltage Data Retention -2V
Standard 24 Pin Package
EPROM and ROM Compatible Pinouts

General Description

The AMI S6516 is a 16,384 bit static CMOS RAM organized as 2048 words by 8 bits. It offers low standby and operating power dissipation from a single +5 V power supply. All inputs and outputs are TTL compatible. The common data I/O pins allow direct interface with common bus systems. The output enable function facilitates memory expansion by allowing the outputs to be OR-tied to other devices. The device operates synchronously with address registers provided on-chip. The data is latched into the registers during the high to low transition of the chip enable pulse.

MILITARY 6516

Absolute Maximum Ratings*

```Ambient Temperature Under Bias\(-0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
```

Storage Temperature $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Power Supply Voltage -0.3 V to 7 V
Voltage on Any Pin with Respect to Ground -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Power Dissipation 1W
*COMMENT: Stresses above those listed under "Absolute Maximum Rating' may cause permanent damage to the device.
D.C. Electrical Characteristics: $T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
IL	Input Leakage Current	-1		1	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$ to $\mathrm{V}_{\text {c }}$
Lo	Output Leakage Current	-1		1	$\mu \mathrm{A}$	$V_{\text {OUT }}=G N D$ to $V_{\text {CC }}$
$\mathrm{I}_{\text {SB }}$	Standby Supply Current			250	$\mu \mathrm{A}$	$V_{\text {IN }}=$ GND or $V_{C C}$
ICC	Operating Supply Current			15	mA	$\begin{aligned} & V_{I N}=G N D \text { or } V_{C C}, \\ & f=1 \mathrm{MHz} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Input Voltage LOW	-0.3		0.8	V	
$\mathrm{V}_{\text {IH }}$	Input Voltage HIGH	2.2		$\mathrm{V}_{C C}+0.3$	V	
$\mathrm{V}_{0 \mathrm{~L}}$	Output Voltage LOW			0.4	V	$\mathrm{l}_{0 \mathrm{~L}}=3.2 \mathrm{~mA}$
$\mathrm{V}_{\text {OH }}$	Output Voltage HIGH	2.4			V	$\mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}$

Capacitance: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{t}=1 \mathrm{MHz}$. Capacitance is sampled and guaranteed.

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
C_{IN}	Input Capacitance			8	pF	GND to V_{CC}
$\mathrm{C}_{\text {OUT }}$	Output Capacitance			10	pF	GND to V_{CC}

Low Vcc Data Retention Characteristics:

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$I_{C C D R}$	$I_{C C}$ for Data Retention			250	$\mu \mathrm{~A}$	
$V_{C C D R}$	$V_{C C}$ for Data Retention	2.0			V	
$t_{C D R}$	Chip Deselect to Data Retention Time	0			ns	
t_{R}	Operation Recovery Time	TELEL			ns	

Low \mathbf{V}_{CC} Data Retention Wave Form
data retention

1. 4.50 V
2. $V_{D R}(2 \mathrm{~V}$ MIN $)$
3. V_{IL}
4. $V_{C C}-0.2 V$

$\overline{\mathbf{C E}}$
(3) $7 \rightarrow$ (4)

A.C. Test Conditions

Input Pulse Levels	0.8V to 2.2V
Input Rise and Fall Times	$\leqslant 10 \mathrm{~ns}$
Input Timing Level	0.8 V and 2.2 V
Output Timing Levels	0.6V and 2.2 V
Output Load	1 TTL Load and 100pF

A.C. Electrical Characteristics: $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
telov	Chip Enable Access Time			150	ns	
tavav	Address Access Time			150	ns	
twlaz $^{\text {chen }}$	Write Enable Output Disable Time			50	ns	
$\mathrm{t}_{\text {EHQZ }}$	Chip Enable Output Disable Time			50	ns	
$t_{\text {ELEH }}$	Chip Enable Pulse Negative Width	150			ns	
$\mathrm{t}_{\text {EHEL }}$	Chip Enable Pulse Positive Width	60			ns	
$\mathrm{t}_{\text {AVEL }}$	Address Setup Time	0			ns	
telax	Address Hold Time	25			ns	
twLWH	Write Enable Pulse Width	140			ns	
$t_{\text {WLEH }}$	Write Enable Pulse Setup Time	140			ns	
$\mathrm{t}_{\text {ELWH }}$	Write Enable Pulse Hold Time	140			ns	
t DVWH	Data Setup Time	90			ns	
t WHDZ	Data Hold Time	-10			ns	
twhel	Write Enable Read Setup Time	0			ns	
$\mathrm{t}_{\text {QVWL }}$	Output Data Valid to Write Time	-10			ns	
tWLDV	Write Data Delay Time	40			ns	
$\mathrm{t}_{\text {ELWL }}$	Early Output High-Z Time	-10			ns	
$\mathrm{t}_{\text {WHEH }}$	Late Output High-Z Time	10			ns	
$\mathrm{t}_{\text {ELEL }}$	Read or Write Cycle time	230			ns	
$\mathrm{t}_{\text {EHWL }}$, Write Enable Read Hold Time . Ons MIN. $\mathrm{t}_{\text {DVEH }}$, Data Setup Time to Chip Enable 140ns MIN.			$\mathrm{t}_{\text {GLQV }}$, Output Enable to Output Valid $\mathrm{t}_{\text {GHaz }}$, Output Enable to Output High-Z			

Write Cycle

ROM Ordering Information

ROM Ordering Information

Ordering Information

The following information should be included in the purchase order when ROM devices are being ordered.
\square Part number
\square Number of ROM patterns
\square Quantity of prototypes for each pattern (if none, so state)
\square Total quantity of each pattern
\square Special marking (if required)
\square *Method of ROM code entry (EPROM, punched paper tape, etc.)
\square *Chip select definition -
\square Pricing and delivery (pricing and delivery quotes can be obtained from any AMI Sales Office)
*If ordering a previously supplied pattern, the order should refer to the AMI C number (CXXXXX). This C number can be obtained from previous AMI billing or acknowledgement.

Unit Quantity Variance

AMI manufactures ROMs in a fully proven silicon gate N -Channel process. However, as in any semi-conductor production, yield variations do occur. Because of these normal yield variations a policy has been established that requires the customer to accept a small variation from the nominal quantity ordered.
Unit Quantity Variance $\pm 5 \%$ or 50 units (whichever is greater)

Part Number

An AMI ROM part number consists of a device number followed by a single letter designating the package type.
P - designates plastic package
C - designates ceramic package (hermetic seal)

Device Numbers

S6831B/S68A316	$2 \mathrm{~K} \times 8$	
S68A332/S68332	$4 \mathrm{~K} \times 8$	Standard Pinout
S2333	$4 \mathrm{~K} \times 8$	(Pin compatible with 2732 EPROM)
S68A364/S68B364	$8 \mathrm{~K} \times 8$	(24 Pin)
S2364A/B	$8 \mathrm{~K} \times 8$	(28 Pin-Compatible W/2764 EPROM)
S23128A/B	$16 \mathrm{~K} \times 8$	$(28 \mathrm{Pin})$
S23256B/C	$32 K \times 8$	$(28 \mathrm{Pin})$

ROM Sales Policy

Minimum Order Quantity

Capacity	Part No.	Architecture	Units/Pattern
16 K	S6831B, S68A316	$2 \mathrm{~K} \times 8$	1,000
32 K	S68332, S68A332	$4 \mathrm{~K} \times 8$	1,000
32 K	S2333 (Alternate Pinout)	$4 \mathrm{~K} \times 8$	1,000
64 K	S68A364/S68B364 (24-Pin)	$8 \mathrm{~K} \times 8$	500
64 K	S2364A/B (28-Pin)	$8 \mathrm{~K} \times 8$	500
128 K	S23128A/B (28-Pin)	$16 \mathrm{~K} \times 8$	250
256 K	S23256B/C	$32 \mathrm{~K} \times 8$	250

Unless otherwise requested by the customer, approximately 5 units will be assembled in a ceramic package for verification of the ROM pattern by the customer. These 5 units will be considered as part of the total quantity ordered.

Mask Charges*

Most ROM suppliers charge a mask charge to cover the expense of generating tooling that is unique to each ROM pattern. Current AMI mask charges are as follows.

		Min. Qty/Mask Charges		
Part No.	Architecture	499 Pcs.	999 Pcs.	$\mathbf{1 5 0 0}$ Pcs.
S6831B, S68A316	$2 \mathrm{~K} \times 8$	$\mathrm{~N} / \mathrm{A}$	N / A	$\$ 500$
S68332, S68A332, S2333	$4 \mathrm{~K} \times 8$	$\mathrm{~N} / \mathrm{A}$	N / A	$\$ 750$
S68A364, S2364	$8 \mathrm{~K} \times 8$	$\mathrm{~N} / \mathrm{A}$	$\$ 2000$	$\$ 1500$
S23128A/B	$16 \mathrm{~K} \times 8$	$\$ 2500$	$\$ 2000$	$\$ 1500$
S23256B/C	$32 \mathrm{~K} \times 8$	$\$ 2500$	$\$ 2000$	$\$ 1500$
*Subject to Change				

Reorder Policy

If a customer wishes to reorder the same ROM pattern, the following policy applies. If finished inventory exists, no minimum quantity limits will be imposed. However, if new wafer starts are required, the same minimum quantity as for a new pattern will apply. The 5 prototypes (supplied with new patterns) will not be supplied. No mask charge is applied to a reorder of a previously supplied ROM pattern.

ROM Ordering Information

ROM Package Marking

Unless otherwise specified, AMI ROMs are marked with a C number (the letter C followed by a 5 digit number) and a date code. This C number identifies both the device type and the specific pattern. This C number will be used on all AMI documents concerning the ROM.
A ROM can also be marked with a number supplied by the customer. A single number of up to 10 alpha numeric characters can be marked on the device without extra charge. Other customer markings are possible, but must be approved before the order is entered.

ROM Code Data

AMI's preferred method of receiving ROM CODE DATA is in EPROM. Two EPROMs should be submitted. One is programmed to the desired code and the other is blank. AMI will read the programmed EPROM, transfer this data to diskette and then program the blank EPROM from the stored information. This procedure guarantees that the EPROM has been properly entered into the AMI computer system. The AMI programmed EPROM is returned to the customer for verification of the ROM program. Unless otherwise requested, AMI will not proceed until the customer verifies the program in the returned EPROM.

EPROM Requirements

The following EPROMs should be used for submitting ROM Code Data:

ROM
EPROM

PREFERRED	OPTIONAL
$2716 / 2516$	$2-2708$
2532	$2-2716 / 2516$
2732	$2-2716 / 2516$
68764	$2-2532$
2764	$2-2732$
27128	$2-2764$

If two EPROM's are used to specify one ROM pattern, (i.e., 216 K EPROMs for one 32K ROM) two blank EPROMs must be submitted. In this instance, the programmed EPROMs must clearly state which of the two EPROMs is for lower and upper address locations in the ROM. The preferred method is to mark the EPROM with the ROM address (in Hex) where the EPROM data is to be located.
Example: Two 2716 EPROMs for $\mathbf{S 6 8 3 3 2}$ ROM
Marking: EPROM \# 1 000-7FF
EPROM \# 2 800-FFF

Pattern Data From ROMs

If a customer has ROMs produced by another supplier, these ROMs can be submitted for ROM pattern data instead of EPROMs. Obviously, these ROMs must be pin compatible with the AMI device. The programmable chip selects must be defined. (NOTE: In some cases a competitor's ROM may have a chip select or enable that is not customer defined. However, if this pin is customer defined for the AMI ROM, the required active logic level for this input must be specified.)

Optional Method of Supplying ROM Code Data

If an EPROM or ROM cannot be supplied, the following other methods are acceptable.

- 9 Track NRZ Magnetic Tape (2 each) odd parity, 800 BP1
\square Paper Tape (AMI Hex format)
\square Card Deck (AMI Hex format)

ROM Ordering Information

The AMI Hex format is described below. With its built-in address space mapping and error checking, this format is produced by the AMI Assembler.

Position	Description 1
Start of record (Letter S) Type of record 0-Header record (comments)	
1- Data record	
9-End of file record	

Paper tape format is the same as the card format above except:
a. The record should be a maximum of 80 characters.
b. Carriage return and line feed after each record followed by another record.
c. There should NOT be any extra line feed between records at all.
d. After the last record, four (4) $\$ \$ \$ \$$ (dollar) signs should be punched with carriage return and line feed indicating end of file.

Preliminary Data Sheet
S68A316

16,384 BIT (2048X8) STATIC NMOS ROM

Features

Fast Address Access Time: S68A316-350ns Max.\square EPROM Pin Compatible
\square Fully Static Operation
\square Three Programmable Chip Selects
\square TTL Compatible Inputs
\square Three-State TTL Compatible Outputs
\square Late Mask Programmable

Absolute Maximum Ratings*

Ambient Temperature Under Bias	$10^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$
Storage Temperature	$65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Output or Supply Voltage	0.5 V to 7 V
Input Voltage	0.5V to 5.5 V
Power Dissipation	1W

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may effect device reliability.
D.C. Characteristics: $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage			0.4	V	$\mathrm{I}_{\text {OL }}=3.2 \mathrm{~mA}$
$\mathrm{~V}_{\text {OH }}$	Output HIGH Voltage	2.4			V	$\mathrm{I}_{\text {OH }}=-220 \mu \mathrm{~A}$
$\mathrm{~V}_{\text {LL }}$	Input LOW Voltage	-0.5		0.8	V	
$\mathrm{~V}_{\text {HH }}$	Input HIGH Voltage	2.0		$\mathrm{~V}_{\text {CC }}$	V	
I_{LI}	Input Leakage Current			10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\text {IN }}=0$ to $\mathrm{V}_{\text {CC }}$
$\mathrm{I}_{\text {LO }}$	Output Leakage Current			10	$\mu \mathrm{~A}$	$V_{\text {OUT }}=0.4 \mathrm{~V}$ to $V_{\text {CC }}$ Chip Deselected
$I_{\text {CC }}$	Power Supply Current S68A316			80	mA	

Capacitance: $\mathrm{f}=1.0 \mathrm{MHz} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$\mathrm{C}_{\mathbb{I N}}$	Input Capacitance			7.5	pF	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitance			10	pF	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

A.C. Characteristics: $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Symbol	Parameter		Min.	Typ.	Max.	Units	Conditions
$t_{\text {AA }}$	Address Access Time	S68A316			350	ns	See A.C. Test Conditions and Waveforms
$t_{\text {ACS }}$	Chip Select Access Time	S68A316			120	ns	
$\mathrm{t}_{\text {OFF }}$	Chip Deselect Time	S68A316			120	ns	

1. Only positive logic formats for $\mathrm{CS}_{1}-\mathrm{CS}_{3}$ are accepted. $1=\mathrm{V}_{\text {HIGH }} ; 0=\mathrm{V}_{\text {LOW }}$
2. A ' 0 " indicates the chip is enabled by a logic 0 .

A " 1 " indicates the chip is enabled by a logic 1.

A.C. Test Conditions

Input Pulse Levels	0.8 V to 2.0 V
Input Timing Level .. 0.8V and 2.0V	
Output Timing Levels ... 0.4V and 2.4V	
Output Load	ad and 100pF

Waveforms

ROM Code Data

AMI's preferred method of receiving ROM CODE DATA is in EPROM. Two EPROMs should be submitted. One is programmed to the desired code and the other is blank. AMI will read the programmed EPROM, transfer this data to disk and then program the blank EPROM from the stored information. This procedure guarantees that the EPROM has been properly entered into the AMI computer system. The AMI programmed EPROM is returned to the customer for verification of the ROM program. Unless otherwise requested AMI will not proceed until the customer verifies the program in the returned EPROM.

EPROM Requirements

The following EPROMs should be used for submitted ROM Code Data:

PREFERRED 2716; Optional (2) 2708

If two EPROMs are used to specify one ROM pattern, two blank EPROMs must be submitted. In this instance, the programmed EPROMs must clearly state which of the two EPROMs is for lower and upper
address locations in the ROW. The preferred method is to mark the EPROM with the ROM address (in Hex) where the EPROM data is to be located.

Pattern Data from ROMS

If a customer has ROMs produced by another supplier, these ROMs can be submitted for ROM pattern data instead of EPROMs. Obviously, these ROMs must be pin compatible with the AMI device. The programmable chip selects must be defined. (NOTE: In some cases a competitors ROM may have a chip select or enable that is not customer defined. However, if this pin is customer defined for the AMI ROM, the required active logic level for this input must be specified.)

Optional Method of Supply ROM Data*

If an EPROM or ROM cannot be supplied the following, other methods are acceptable.
$\square 9$ Track NRZ Magnetic Tape
\square Paper Tape

- Card Deck

[^13]
32,768 BIT (4096X8) STATIC NMOS ROM

Features

Fast Access Time:S68A332: 350ns Maximum
\square Fully Static Operation
\square Single $+5 \mathrm{~V} \pm 5 \%$ Power Supply
\square Directly TTL Compatible Inputs
\square Three-State TTL Compatible Outputs
\square Two Programmable Chip Selects
\square EPROM Pin Compatible-2532
\square Extended Temperature Range Available

General Description

The AMI S68332 is a 32,768 bit static mask programmable NMOS ROM organized as 4096 words by 8 bits. The device is fully TTL compatible on all inputs and outputs and has a single +5 V power supply. The three state outputs facilitate memory expansion by allowing the outputs to be OR-tied to other devices.
The S68332 is pin compatible with UV EPROMs making system development much easier and more cost effective. It is fully static, requiring no clocks for operation. The two chip selects are mask programmable, the active level for each being specified by the user.
The S68332 is fabricated using AMI's N-Channel MOS technology. This permits the manufacture of very high density, high performance mask programmable ROMs.

S68A332

Absolute Maximum Ratings*

COMMENT: Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may effect device reliability.
D.C. Characteristics: $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (Standard part);

$$
-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \text { (Industrial temp part) }
$$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$\mathrm{V}_{0} \mathrm{~L}$	Output LOW Voltage			0.4	V	$\mathrm{I}_{0 \mathrm{~L}}=3.2 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-220 \mu \mathrm{~A}$
VIL	Input LOW Voltage	-0.5		0.8	V	
V_{IH}	Input HIGH Voltage	2.0		V_{CC}	V	
l_{LI}	Input Leakage Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$
'L0	Output Leakage Current			10	$\mu \mathrm{A}$	$V_{0}=0.4 V \text { to } V_{C C}$ Chip Deselected
ICC	Power Supply Current			70	mA	

Capacitance: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Parameter	Min.	Typ.	Max.	Units
$C_{I N}$	Input Capacitance		7	pF	$\mathrm{V}_{\mathbb{I N}}=0 \mathrm{~V}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitance		10	pF	$\mathrm{V}_{O U T}=0 \mathrm{~V}$

A.C. Characteristics: $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (Standard part);
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Industrial temp part)

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions	
$t_{\text {AA }}$	Address Access Time	S68A332			350	ns	See A. C. Test
$t_{\text {ACS }}$	Chip Select Access Time	S68A332			150	ns	Conditions
$\mathrm{t}_{\text {OFF }}$	Chip Deselect Time	S68A332			150	ns	Waveforms

Waveforms

Propagation From Chip Select

Propagation From Address

S68A332/S68B332

A.C. Test Conditions

Input Pulse Levels
Input Timing Level
1.5 V

Output Timing Levels . 0.4V and 2.4V
Output Load . 1 TTL Load and 100pF

Custom Programming

The preferred method of pattern submission is the AMI Hex format as described below, with its built-in address space mapping and error checking. This is the format produced by the AMI Assembler. The format is as follows and may be on paper tape, punched cards or other media readable by AMI.

Example:

S113000049E9F10320FO49339F72000F5EOFOO126
S 9030000 F

NOTES:

1. Only positive logic formats for $C S_{1}$ and $C S_{2}$ are accepted. $1=V_{\text {HIGH }} ; 0=V_{\text {LOW }}$
2. A ' 0 '" indicates the chip is enabled by a logic 0 .

A " 1 "' indicates the chip is enabled by a logic 1.
3. Paper tape format is the same as the card format above except:
a. The record should be a maximum of 80 characters.
b. Carriage return and line feed after each record followed by another record.
c. There should NOT be any extra line feed between records at all.
d. After the last record, four (4) $\$ \$ \$ \$$ (dollar) signs should be punched with carraige return and line feed indicating end of file.

32,768 BIT (4096x8) STATIC NMOS ROM

FeaturesFast Access Time: 350ns MaximumFully Static OperationSingle $+5 \mathrm{~V} \pm 5 \%$ Power SupplyDirectly TTL Compatible InputsThree-State TTL Compatible OutputsTwo Programmable Chip SelectsEPROM Pin Compatible (2732)Extended Temperature Range Available

General Description

The AMI S2333 is a 32,768 bit static mask programmable NMOS ROM organized as 4096 words by 8 bits. The device is fully TTL compatible on all inputs and outputs and has a single +5 V power supply. The three state outputs facilitate memory expansion by allowing the outputs to be OR-tied to other devices.
The S2333 is pin compatible with UV EPROMs making system development much easier and more cost effective. The fully static $\mathbf{S} 2333$ requires no clocks for operation. The two chip selects are mask programmable with the active level for each being specified by the user.
The S2333 is fabricated using AMI's N-Channel MOS technology. This permits the manufacture of very high density, high performance mask programmable ROMs.

Absolute Maximum Ratings*

D.C. Characteristics: $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (Standard part); $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Industrial temp part)

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$V_{O L}$	Output LOW Voltage			0.4	V	$I_{\mathrm{OL}}=3.2 \mathrm{~mA}$
$\mathrm{~V}_{\text {OH }}$	Output HIGH Voltage	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-220 \mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{IL}}$	Input LOW Voltage	-0.5		0.8	V	
$\mathrm{~V}_{\mathrm{IH}}$	Input HIGH Voltage	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V	
I_{LI}	Input Leakage Current			10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ to V_{CC}
I_{LO}	Output Leakage Current			10	$\mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$ to V_{CC} Chip Deselected
I_{CC}	Power Supply Current			70	mA	

Capacitance: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
C_{N}	Input Capacitance			7	pF	$\mathrm{V}_{\mathbb{I N}}=0 \mathrm{~V}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitance			10	pF	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

A.C. Characteristics: $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (Standard part); $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Industrial temp part)

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions See A.C. Test
$\mathrm{t}_{\text {AA }}$	Address Access Time			350	ns	
$\mathrm{t}_{\text {ACS }}$	Chip Select Access Time			120	ns	
$\mathrm{t}_{\text {OFF }}$	Chip Deselect Time			120	ns	Conditions and
Waveform						

Waveforms

Propagation From Chip Select

Propagation From Address

A.C. Test Conditions

Input Timing Level 1.5 V
Output Timing Levels .. 0.4 V and 2.4 V
Output Load ... 1 TTL Load and 100pF

ROM Code Data

AMI's preferred method of receiving ROM CODE DATA is in EPROM. Two EPROMs should be submitted. One is programmed to the desired code and the other is blank. AMI will read the programmed EPROM, transfer this data to disk and then program the blank EPROM from the stored information. This procedure guarantees that the EPROM has been properly entered into the AMI computer system. The AMI programmed EPROM is returned to the customer for verification of the ROM program. Unless otherwise requested AMI will not proceed until the customer verifies the program in the returned EPROM.

EPROM Requirements

The following EPROMs should be used for submitted ROM Code Data:

PREFERRED 1-2732; Optional 2-2716
If two EPROMs are used to specify one ROM pattern, two blank EPROMs must be submitted. In this instance, the programmed EPROMs must clearly state which of the two EPROMs is for lower and upper
address locations in the ROW. The preferred method is to mark the EPROM with the ROM address (in Hex) where the EPROM data is to be located.

Pattern Data from ROMS

If a customer has ROMs produced by another supplier, these ROMs can be submitted for ROM pattern data instead of EPROMs. Obviously, these ROMs must be pin compatible with the AMI device. The programmable chip selects must be defined. (NOTE: In some cases a competitors ROM may have a chip select or enable that is not customer defined. However, if this pin is customer defined for the AMI ROM, the required active logic level for this input must be specified.)

Optional Method of Supply ROM Data*

If an EPROM or ROM cannot be supplied the following, other methods are ácceptable.
$\square 9$ Track NRZ Magnetic Tape
\square Paper Tape
\square Card Deck

* Consult AMI sales office for format.

65,536 BIT (8192x8) STATIC NMOS ROM

Features

Fast Access Time: S68A364-350ns Maximum S58B364-250ns MaximumLow Standby Power: 85mW MaximumLate Mask ProgrammableFully Static OperationSingle $+5 \mathrm{~V} \pm 10 \%$ Power SupplyDirectly TTL Compatible Inputs\square Three-State TTL Compatible OutputsProgrammable Chip Enable

General Description

The AMI S68364 family are 65,536 bit static mask programmable NMOS ROMs organized as 8192 words by 8 bits. The devices are fully TTL compatible on all inputs and outputs and have a single +5 V power supply. The three-state outputs facilitate memory expansion by allowing the outputs to be OR-tied to other devices.
The devices are fully static, requiring no clocks for operation. The chip enable is mask programmable, the active level being specified by the user. When not enabled, power supply current is reduced to a maximum of 15 mA .
The S68364 family of devices are fabricated using AMI's NMOS ROM technology. This permits the mask programmable ROMs.

Absolute Maximum Ratings*

Ambient Temperature Under Bias ... - $10^{\circ} \mathrm{C}$ to + $80^{\circ} \mathrm{C}$	
Storage Temperature ... -65 ${ }^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Output or Supply Voltages	-0.5 V to 7 V
Input Voltages	-0.5 V to 7V
Power Dissipation	1W

*COMMENT: Stresses above those listed under "Absolute Maximum Rating' may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may effect device reliability.
Electrical Characteristics: $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
V_{0}	Output LOW Voltage			0.4	V	$\mathrm{I}_{0 \mathrm{~L}}=3.2 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	2.4			V	$\mathrm{l}_{\mathrm{OH}}=-220 \mu \mathrm{~A}$
$V_{\text {IL }}$	Input LOW Voltage	-0.5		0.8	V	
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	2.0		$\mathrm{V}_{C C}$	V	
\|lul	Input Leakage Current			10	mA	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$
\| $\mathrm{L}^{\text {o }}$	Output Leakage Current			10	mA	$V_{0}=0.4 \mathrm{~V} \text { to } V_{C C}$ Chip Deselected
${ }_{\text {I Co }}$	Power Supply Current			90	mA	See Note \#3
				90	mA	
$I_{\text {SB }}$	Power Supply Current			15	mA	Chip Deselected (See Note\#4)

Capacitance: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$ (See Note \#4)

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$\mathrm{C}_{\text {IN }}$	Input Capacitance			7	pF	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitance			10	pF	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

Switching Characteristics: $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Symbol	Parameter		Min.	Typ.	Max.	Units	Conditions See Waveforms and Test Load
$t_{A A}$ $t_{\text {ACE }}$	Address Access Time Chip Enable Access Time	S68A364			350	ns	See Waveforms and Test Load
		S68B364			250	ns	
		S68A364			350	ns	
		S68B364			250		
$\mathrm{t}_{\text {ACS }}$	Chip Select Access Time	S68A364			150	ns	
		S68B364			120	ns	
$\mathrm{t}_{\text {OFF }}$	Chip Deselect Time	S68A364			200	ns	See Note \#5
		S68B364			100	ns	

[^14]

ROM Code Data

AMI's preferred method of receiving ROM CODE DATA is in EPROM. Two EPROMs should be submitted. One is programmed to the desired code and the other is blank. AMI will read the programmed EPROM, transfer this data to disk and then program the blank EPROM from the stored information. This procedure guarantees that the EPROM has been properly entered into the AMI computer system. The AMI programmed EPROM is returned to the customer for verification of the ROM program. Unless otherwise requested AMI will not proceed until the customer verifies the program in the returned EPROM.

EPROM Requirements

The following EPROMs should be used for submitted ROM Code Data:

PREFERRED 68A764
If two EPROMs are used to specify one ROM pattern, two blank EPROMs must be submitted. In this instance, the programmed EPROMs must clearly state which of the two EPROMs is for lower and upper
address locations in the ROM. The preferred method is to mark the EPROM with the ROM address (in Hex) where the EPROM data is to be located.

Pattern Data from ROMS

If a customer has ROMs produced by another supplier, these ROMs can be submitted for ROM pattern data instead of EPROMs. Obviously, these ROMs must be pin compatible with the AMI device. The programmable chip selects must be defined. (NOTE: In some cases a competitors ROM may have a chip select or enable that is not customer defined. However, if this pin is customer defined for the AMI ROM, the required active logic level for this input must be specified.)

Optional Method of Supply ROM Data*

If an EPROM or ROM cannot be supplied the following, other methods are acceptable.
9 Track NRZ Magnetic Tape
\square Paper Tape
\square Card Deck

* Consult AMI sales office for format.

65,536 BIT (8192x8) STATIC BANK SWITCH NMOS ROM

Features

\square Access Time $=450 \mathrm{~ns}$
\square Late Mask Programmable
\square Fully Static Operation
\square Single $+5 \mathrm{~V} \pm 5 \%$ Power Supply
\square Directly TTL Compatible Inputs and Outputs
\square Programmable Chip Selects*
\square Latch Up Circuitry
\square Two Banks, Selected by FF8 and FF9
\square Address Skew Protection
*User defined mask programmble Chip Select-may be defined as active high, active low, or no connect.

General Description

The AMI S68A365 is a 65,536 bit static bank select mask programmable NMOS ROM organized as 8192 words by 8 bits. The device is fully TTL compatible on all inputs and outputs with a single +5 V power supply. The three state outputs facilitate memory expansion by allowing the outputs to be OR-tied to other devices.
The device is fully static, requiring no clocks for operation. The two chip selects are mask programmable with the active level being specified by the user.

The S68A365 features two bank selects selected by hex codes FF8 and FF9, provided the chip selects are active.

The device also incorporates in its design, debounce logic which provides protection against address skew.

Absolute Maximum Ratings*

Ambient Temperature Under Bias ... - $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Storage Temperature ... $-40^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$ Output or Supply Voltages ... - 0.5 V to +7 V Input Voltages Power Dissipation	

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specication is not implied., Exposure to absolute maximum rating conditions for extended periods may effect device reliability.
Electrical Characteristics: $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$,

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$\mathrm{V}_{0 \mathrm{~L}}$	Output LOW Voltage			0.4	V	$\mathrm{I}_{0 \mathrm{~L}}=1.6 \mathrm{~mA}$
$\mathrm{~V}_{\text {OH }}$	Output HIGH Voltage	2.4			V	$\mathrm{I}_{0 \mathrm{H}}=-100_{m} \mathrm{~A}$
$\mathrm{~V}_{\mathrm{IL}}$	Input LOW Voltage	-0.5		0.8	V	
$\mathrm{~V}_{\mathrm{IH}}$	Input HIGH Voltage	2.2		$\mathrm{~V}_{\mathrm{CC}}$	V	
$\left\|\mathrm{I}_{\mathrm{LI}}\right\|$	Input Leakage Current			10	${ }_{m} \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0$ to +5.25 V
$I_{\text {LO }} \mid$	Output Leakage Current			10	${ }_{m} \mathrm{~A}$	$\mathrm{V}_{0}=0.4 \mathrm{~V}$ to 5.25 V Chip Deselected
I_{CC}	Power Supply Current					

Capacitance: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$\mathrm{C}_{\text {IN }}$	Input Capacitance			7	pF	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitance			10	pF	$\mathrm{V}_{\text {OUT }}$

Switching Characteristics: $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$,

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$t_{\text {AA }}$	Address Access Time			450		See A.C. Test Conditions and Waveforms
$\mathrm{t}_{\text {ACS }}$	Chip Select Access Time			450		
$\mathrm{t}_{\text {bav }}$	Bank Switching Address Valid			500		
$\mathrm{t}_{\text {AS }}$	Address Skew			150		
$\mathrm{t}_{\text {OFF }}$	Chip Deselect Time			150		
$\mathrm{t}_{\mathrm{BAA}}$	Bank Switching Access Time			820		

Functional Description

The S68A365 contains two banks of memory locations, each being 4096 words by 8 bits. The $\mathrm{A}_{0}-\mathrm{A}_{11}$ inputs normally access only 4096 words of data. However, the S68A365 has a special bank-switching mode of operation which allows this device to effectively use the $\mathrm{A}_{0}-\mathrm{A}_{11}$ addresses to access 8192 words of data. The timing diagrams illustrate this feature.

In order to switch banks, both chip selects must be in a valid state. Also, the address inputs must be hex address FF8 for a period $t_{\text {BAV }}$ to an internal latch and thereby switch to Bank ' 0 '. Likewise, for memory data to be read from Bank ' 1 ', both chip selects and Hex address FF9 must be held valid for $t_{b a v}$ to set the internal latch.
The bank switching action occurs only with addresses

S68A365

Functional Description (Continued)

FF8 and FF9. Further, if either FF8 or FF9 is valid for less than $t_{A S}$, the bank switching is guaranteed not to

Switching Test Conditions

Input Timing Level .. 0.8V to 2.2V	
Output Timing Levels	0.4 V and 2.4 V
Output Load	1 TTL Load and 100pF
Input Rise and Fall Times	1 ns per Volt

Figure 1. Timing Diagram

Figure 2. Timing Diagram

ROM Code Data

AMI's preferred method of receiving ROM CODE DATA is in EPROM. Four EPROMs should be submitted. Two are programmed to the desired code and the remaining two are to be blank. AMI will read the programmed EPROMs, transfer this data to disk and then program the blank EPROMs from the stored information. This procedure guarantees that the EPROMs has been properly entered into the AMI computer system. The AMI programmed EPROMs are returned to the customer for verification of the ROM program. Unless otherwise requested AMI will not proceed until the customer verifies the program in the returned EPROMs.

EPROM Requirements

The following EPROMs should be used for submitted ROM Code Data:

PREFERRED: Two 2732

Two EPROMs will be used to specify one ROM pattern. The programmed EPROMs must clearly state which of the two EPROMs is for Bank ' 0 ' and which is for Bank ' 1 '. The preferred method is to mark the EPROM with the ROM address (in Hex) for selecting the appropriate Bank.

Optional Method of Supplying ROM Data*
If EPROMs cannot be supplied, the following other methods are acceptable.
ROM 9 Track NRZ Magnetic Tape
Paper Tape
Card Deck
*Consult AMI sales office for format.

Preliminary Data Sheet

65,536 BIT (8192x8) STATIC NMOS ROM

Features

Fast Access Time: S2364A 350ns MaximumS2364B 250ns Maximum
Low Standby Power: 85mW Maximum
Fully Static Operation
Single $+5 \mathrm{~V} \pm 10 \%$ Power Supply
Directly TTL Compatible Inputs
Three-State TTL Compatible Outputs
Three Programmable Chip Enables/Selects
EPROM Pin Compatible (2764)
Late Mask Programmable

General Description

The AMI S2364 is a 65,536 bit static mask programmable NMOS ROM organized as 8192 words by 8 bits.

The device is fully TTL compatible on all inputs and outputs and has a single +5 V power supply. The three state outputs facilitate memory expansion by allowing the outputs to be OR-tied to other devices.
The S2364 is pin compatible with the 2764 UV EPROM making system development much easier and more cost effective. It is fully static, requiring no clocks for operation. The three chip enables are mask programmable; the active level for each being specified by the user. When not enabled, power supply current is reduced to a 15 mA maximum.

The S2364 is fabricated using AMI's N-Channel MOS technology. This permits the manufacture of very high density, high performance mask programmable ROMs.

Absolute Maximum Ratings*

Ambient Temperature Under Bias .. - $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
Storage Temperature .. $6.65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Voltage on Any Pin With Respect to Ground	-0.5 V to 7 V
Input Voltages	-0.5V to 7 V
wer Dissipation	

"COMMENT: Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may effect device reliability.
Electrical Characteristics: $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions	
V_{0}	Output LOW Voltage			0.4	V	$\mathrm{I}_{0 \mathrm{~L}}=3.2 \mathrm{~mA}$	
V_{OH}	Output HIGH Voltage	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-220 \mu \mathrm{~A}$	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-0.5		0.8	V		
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	2.0		$V_{C C}$	V		
\| LI		Input Leakage Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}$ to 5.5 V
\|lol	Output Leakage Current			10	$\mu \mathrm{A}$	$\begin{aligned} & V_{0}=0.4 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \text { Chip Deselected } \end{aligned}$	
Icc	Power Supply Current-Active			90	mA	See Note \#1	
ISB	Power Supply Current-Standby			15	mA	See Note \#2	

Capacitance: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$ (See Note \#3)

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
C_{IN}	Input Capacitance			7	pF	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitance			10	pF	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

Switching Characteristics: $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Symbol	Parameter		Min.	Typ.	Max.	Units	Conditions
$t_{A A}$	Address Access Time	$\begin{aligned} & \text { S2364A } \\ & \text { S2364B } \end{aligned}$			$\begin{aligned} & 350 \\ & 250 \end{aligned}$	ns	See Waveforms and Testload
$t_{\text {ACE }}$	Chip Enable Access Time	$\begin{aligned} & \text { S2364A } \\ & \text { S2364B } \end{aligned}$			$\begin{aligned} & 350 \\ & 250 \end{aligned}$	ns	
$t_{\text {ACS }}$	Chip Select Access Time	$\begin{aligned} & \hline \text { S2364A } \\ & \text { S2364B } \end{aligned}$			$\begin{aligned} & 120 \\ & 120 \end{aligned}$	ns	
$\mathrm{t}_{0 \text { EA }}$	Output Enable Access Time	$\begin{aligned} & \hline \text { S2364A } \\ & \text { S2364B } \end{aligned}$			$\begin{aligned} & 100 \\ & 100 \end{aligned}$	ns	
${ }^{\text {CHEO }}$	Disable Time From Chip Enable	$\begin{aligned} & \hline \text { S2364A } \\ & \text { S2364B } \end{aligned}$			200 80	ns	See Note \#3
$t_{\text {OEO }}$	Disable Time From Output Enable	$\begin{aligned} & \hline \text { S2364A } \\ & \text { S2364B } \end{aligned}$			100 80	ns	
$t_{\text {OFF }}$	Chip Deselect Time	$\begin{aligned} & \text { S2364A } \\ & \text { S2364B } \end{aligned}$			120 80	ns	See Note \#3
t_{OH}	Output Hold Time	$\begin{aligned} & \text { S2364A } \\ & \text { S2364B } \end{aligned}$	10 0			ns	See Note \#3

ROM Code Data

AMI's preferred method of receiving ROM CODE DATA is in EPROM. Two EPROMs should be submitted. One is programmed to the desired code and the other is blank. AMI will read the programmed EPROM, transfer this data to disk and then program the blank EPROM from the stored information. This procedure guarantees that the EPROM has been properly entered into the AMI computer system. The AMI programmed EPROM is returned to the customer for verification of the ROM program. Unless otherwise requested AMI will not proceed until the customer verifies the program in the returned EPROM.

EPROM Requirements

The following EPROMs should be used for submitted ROM Code Data:

PREFERRED 1-2764; Optional 2-2732
If two EPROMs are used to specify one ROM pattern, two blank EPROMs must be submitted. In this instance, the programmed EPROMs must clearly state which of the two EPROMs is for lower and upper Notes:

1. Active Power Conditions: $V_{C C}=V_{C C}$ Max, $C E / C S=$ Active Level (a) V_{1}, Address Pins $=\mathrm{V}_{\mathrm{IL}}$, Output Load Disconnected
address locations in the ROM. The preferred method is to mark the EPROM with the ROM address (in Hex) where the EPROM data is to be located.

Pattern Data from ROMS

If a customer has ROMs produced by another supplier, these ROMs can be submitted for ROM pattern data instead of EPROMs. Obviously, these ROMs must be pin compatible with the AMI device. The programmable chip selects must be defined. (NOTE: In some cases a competitors ROM may have a chip select or enable that is not customer defined. However, if this pin is customer defined for the AMI ROM, the required active logic level for this input must be specified.)

Optional Method of Supply ROM Data*

If an EPROM or ROM cannot be supplied the following, other methods are acceptable.
$\square 9$ Track NRZ Magnetic Tape
\square Paper Tape
\square Card Deck

* Consult AMI sales office for format.

2. Standby Power Conditions: Same as active except CE=Deselect Level @ V_{1}
3. Guaranteed by Design

Package Outlines

28-Pin Ceramic

Truth Table: (For simplicity, all control functions in the Truth Table are defined as active high.)

CS/CE1	CS/CE2	CS/CE3	OE/ $/ \mathrm{E}$	OUTPUTS	POWER		
$\overline{\mathrm{CE}}$	X	X	X	HI-Z	STANDBY		
X	$\overline{\text { CE2 }}$	X	X	$\mathrm{HI}-\mathrm{Z}$	STANDBY		
X	X	$\overline{\text { CE3 }}$	X	HI-Z	STANDBY	Pins	Control Functions Available
$\overline{\text { CS1 }}$	CS/CE2	CS/CE3	X	$\mathrm{HI}-\mathrm{Z}$	ACTIVE	27	CS2, $\overline{\mathrm{CS2}}, \mathrm{CE} 2, \overline{\mathrm{CE} 2}, \mathrm{DC}$
CS/CE1	$\overline{\text { CS2 }}$	CS/CE3	x	$\mathrm{HI}-\mathrm{Z}$	ACTIVE	26	CS3, ${ }^{\text {CS3 }}$, CE3, $\mathrm{CE} 3, \mathrm{DC}$
CS/CE1	CS/CE2	$\overline{C S} 3$	X	HI-Z	ACTIVE	22	OE, $\overline{O E}, ~ D C ~$
CS/CE1	CS/CE2	CS/CE3	$\overline{\mathrm{OE}} / \mathrm{OE}$	HI-Z	ACTIVE	20	CS1, $\overline{\mathrm{CS} 1}, \mathrm{CE1}, \overline{\mathrm{CE1}}, \mathrm{DC}$
CS/CE1	CS/CE2	CS/CE3	OE/ $\overline{O E}$	DATA OUT	ACTIVE		

The user decides between a CS or CE function and then defines the active level. The functions may also be defined as Don't Care (DC). The chip is enabled when the inputs match the user defined states. Don't Care pins are still connected to input protection diodes and are subject to the "Absolute Maximum Ratings".

65,536 BIT (8192x8) STATIC CMOS ROM

Features

Fast Access Time:250ns MaximumLow Standby Power 5.5 mW Maximum
\square Fully Static OperationSingle $+5 \mathrm{~V} \pm 10 \%$ Power SupplyDirectly TTL Compatible InputsThree-State TTL Compatible OutputsThree Programmable Chip Enables/Selects
\square EPROM Pin Compatible (2764)
\square Programmable Output/Chip Enable

General Description

The AMI S6364 device is a 65,536 bit static mask programmable CMOS ROM organized as 8192 words by 8 bits. The device is fully TTL compatible on all inputs and outputs and has a single +5 V power supply. The three state outputs facilitate memory expansion by allowing the outputs to be OR-tied to other devices.
The S6364 is pin compatible with the 2764 UV EPROM making system development much easier and more cost effective. It is fully static, requiring no clocks for operation. The three chip enables are mask programmable; the active level for each being specified by the user. When not enabled, the power supply current is reduced to a 10 mA maximum.
The S6364 is fabricated using AMI's CMOS technology. This permits the manufacture of very high density, high performance mask programmable ROMs.

Absolute Maximum Ratings*

Ambient Temperature Under Bias	$40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Output or Supply Voltages	-0.3 V to 6 V
Input Voltages	-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Power Dissipation	1W

*COMMENT: Stresses above those listed under "Absolute Maximum Rating' may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability
D.C. Characteristics: $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
V_{0}	Output LOW Voltage			0.45	V	$\mathrm{I}_{\mathrm{OL}}=2.1 \mathrm{~mA}$
$\mathrm{V}_{\text {OH }}$	Output HIGH Voltage	2.4			V	$\mathrm{l}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
$V_{\text {IL }}$	Input LOW Voltage	-0.1		0.8	V	
$\mathrm{V}_{\text {H }}$	Input HIGH Voltage	2.2		V_{CC}	V	
$\|\mathrm{LLI}\|$	Input Leakage Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to V_{CC}
\|Lol	Output Leakage Current			10	$\mu \mathrm{A}$	$\begin{aligned} & V_{0}=0.4 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \text { Chip Deselected } \end{aligned}$
$l_{\text {cc }}$	Power Supply Current-Active			10	mA	$\mathrm{f}=1.0 \mathrm{MHz}$
$\mathrm{I}_{\text {S }}$	Power Supply Current-Standby			1	mA	Chip Disabled

Capacitance: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$\mathrm{C}_{\mathbb{I N}}$	Input Capacitance			7	pF	$\mathrm{V}_{\mathbb{I N}}=0 \mathrm{~V}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitance			10	pF	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

A.C. Characteristics: $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$t_{A A}$	Address Access Time			250	ns	See A.C.Test Conditions
$\mathrm{t}_{\text {ACE }}$	Chip Enable Access Time			250	ns	
$\mathrm{t}_{0 \mathrm{E}}$	Output Enable Access Time	0		80	ns	and Waveforms
$\mathrm{tacs}^{\text {a }}$	Chip Select Access Time	0		80	ns	
$\mathrm{t}_{\text {ceo }}$	Disable Time From Chip Enable	0		80	ns	
$\mathrm{t}_{\text {OFF }}$	Chip Deselect Time	0		80	ns	
$\mathrm{t}_{\text {OEO }}$	Disable Time From Output Enable	0		80	ns	
t_{OH}	Output Hold Time	0			ns	

TRUTH TABLE					
CS/CE1	CS/CE2	CS/CE3	OE/CE	OUTPUTS	POWER
$\overline{\text { CET }}$	X	X	X	HI-Z	STANDBY
X	$\overline{\text { CE2 }}$	X	x	HI-Z	Standby
X	X	$\overline{\text { CE3 }}$	X	H-Z	STANDBY
X	X	\times	$\overline{C E}$	Hi-Z	Standyb
$\overline{\text { CS1 }}$	CS/CE2	CS/CE3	OE/CE	Hı-Z	active
CS/CE1	CS2	CS/CE3	OE/CE	Hi-Z	ACTIVE
CS/CE1	CS/CE2	Cs3	OE/CE	HI-Z	active
CS/CE1 CS/CE1	$\begin{aligned} & \text { CS/CE2 } \\ & \text { CS/CE? } \end{aligned}$	$\begin{aligned} & \text { CS/CE3 } \\ & \text { CS/CE3 } \end{aligned}$	$\begin{aligned} & \overline{O E} \\ & 0 E / C E \end{aligned}$	HI-Z DATA OUT	ACTIVE ACTIVE

The user decides between a CS/CE and OE/CE function and then defines the active level. The functions may also be defined as a NO CONNECT NC). The chip is enabled when the inputs match the user defined states.

A.C. Test Conditions

Input Timing Level . .. 1.0. . 1.0 V and 2.0V
Output Timing Levels 0.65 V and 2.2 V
Output Load ... 1 TTL Load and 100pF

ROM Code Data

AMI's preferred method of receiving ROM CODE DATA is in EPROM. Two EPROMs should be submitted. One is programmed to the desired code and the other is blank. AMI will read the programmed EPROM, transfer this data to disk and then program the blank EPROM from the stored information. This procedure guarantees that the EPROM has been properly entered into the AMI computer system. The AMI programmed EPROM is returned to the customer for verification of the ROM program. Unless otherwise requested AMI will not proceed until the customer verifies the program in the returned EPROM.

EPROM Requirements

The following EPROMs should be used for submitted ROM Code Data:

PREFERRED 2764

If two EPROMs are used to specify one ROM pattern, two blank EPROMs must be submitted. In this instance, the programmed EPROMs must clearly state which of the two EPROMs is for lower and upper
address locations in the ROM. The preferred method is to mark the EPROM with the ROM address (in Hex) where the EPROM data is to be located.

Pattern Data from ROMs

If a customer has ROMs produced by another supplier, these ROMs can be submitted for ROM pattern data instead of EPROMs. Obviously, these ROMs must be pin compatible with the AMI device. The programmable chip selects must be defined. (NOTE: In some cases a competitors ROM may only have a chip select or enable that is not customer defined. However, if this pin is customer defined for the AMI ROM, the required active logic level for this input must be specified.)

Optional Method of Supply ROM Data*

If an EPROM or ROM cannot be supplied the following, other methods are acceptable.
$\square 9$ Track NRZ Magnetic Tape
\square Paper Tape
\square Card Deck

* Consult AMI sales office for format.

65,536 Bit $(8 \times 1024 \times 8)$ NMOS Static ROM With On-Board RAM

Features

Access Times:
Address to Data - 450 ns Maximum Enable Time From A_{12} - 150 ns Minimum Disable Time From A_{12} - 225 ns MaximumPower Dissipation 440 mW MaximumFully Static Operation
\square Single +5 V Power Supply
\square Internally Generated Control Lines
Late Mask Programmable

General Description

The AMI S6464 is a ROM/RAM device with 65,536 bits of static mask programmable NMOS ROM and 512 bits of NMOS RAM. The ROM is organized as eight $1 \mathrm{~K} \times 8$ blocks of data while the RAM organization is 64×8.

The S6464 is fabricated using AMI's Late Mask Programmable NMOS technology. This permits the manufacture of very high density, high performance mask programmable ROMs.

Designed for systems that can access only 4 K bytes of ROM, the S6464 contains a 32×3 user programmable mapping ROM that allows access to the full 8 K of the main ROM. A single 5 V supply is required; all inputs and outputs are fully TTL compatible. The outputs can be tri-stated for write operations with an output enable generated internally from the address inputs. No external clocks or control signals are necessary. Deskewing circuitry is also included to prevent false mode selection caused by address skew.

Absolute Maximum Ratings*

Ambient Temperature	$0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Output or Supply Voltages	-0.5V to 7 V
Input Voltages	-0.5 V to 7V
Power Dissipation 440 mW

*COMMENTS: Stresses above those lised under "Absolute Maximum Ratings"' may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may effect device reliability.
D.C. Characteristics: $V_{C C}=+5 \mathrm{~V} \pm 10 \%, T_{A}=+10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
V_{0}	Output LOW Voltage			0.4	V	$\mathrm{IOL}=+1.6 \mathrm{~mA}$
$\mathrm{V}_{\text {OH }}$	Output HIGH Voltage	2.4			V	$\mathrm{IOH}^{\text {O }}=-220 \mu \mathrm{~A}$
$V_{\text {IL }}$	Input LOW Voltage	-0.5		0.8	V	
V_{H}	Input HIGH Voltage	2.4		V_{CC}	V	
$l_{\text {LI }}$	Input Leakage Current			± 10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{SS}} \leqslant \mathrm{V}_{\mathrm{IN}} \leqslant \mathrm{V}_{\text {CC }}$
Lo	Output Leakage Current			± 10	$\mu \mathrm{A}$	$V_{0}=0.4 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$ Chip Deselected
${ }_{\text {c }}$	Power Supply Current			80	mA	$\mathrm{V}_{\text {CC }}=5.5$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Switching Characteristics: $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=+10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$

Symbol	Parameters	Min.	Typ.	Max.	Units	Conditions
$t_{\text {AA }}$	Access Time			450	nsecs	See A.C. Test Conditions and Waveforms
t_{N}	A_{12} to Data Active	120			nsecs	
$\mathrm{t}_{\text {AH }}$	Address to Data Hold	0			nsecs	
toff	Address Deselect Time			225	nsecs	
tow	Valid Data Pulse Width	300			nsecs	
t_{DH}	Valid Data to Address Hold			100	nsecs	
$\mathrm{t}_{\text {DS }}$	Valid Data to Address Set Up	300			nsecs	
tcyc	Cycle Time	550	820		nsecs	

Capacitance: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$\mathrm{C}_{\text {IN }}$	Input Capacitance			7	pF	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitance			12.5	pF	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

A.C. Test Conditions

Input Pulse Levels	0.8V and 2.4 V
Input Rise and Fall Times	$\leqslant 20 \mathrm{~ns}$
Input Timing Level	0.8 V and 2.4 V
Output Timing Levels	0.4 V and 2.4V
Output Load	Load and 40pF

Waveforms

A: READ CYCLE (ROM OR RAM)

B: WRITE CYCLE (RAM ONLY)

Device Features

A. Internal Organization

General: The two basic components of the S6464 are a 65,536 bit ROM, with its associated mapping ROM, and a 512 bit RAM. The ROM is organized as eight pages of $1 \mathrm{~K} \times 8$ bits each. External addresses $A_{0}-A_{9}$ control access to the data, within a selected $1 \mathrm{~K} \times 8$ page. The 1 -of-8 page selection is controlled by the outputs from the 32×3 mapping ROM.
Mapping ROM: The mapping ROM has 32 words, which are user programmable to allow optional use of the eight pages in the main ROM. These 32 words are accessed by two external addresses, A_{10} and A_{11}, and three internal signals as stored in the map address latches (see Figure 1).
The 32 words are subdivided into eight maps of four words each as shown in Figure 1. The three internal signals, corresponding to the previously latched data from $A_{0}-A_{2}$ control the map selection. A_{10} and A_{11} control 1-of-4 selection within each map. Each word in the mapping ROM can be programmed independently of all other words. Each word contains three programmable bits corresponding to eight pages (0-7) in the main ROM.
RAM: The RAM is organized as 64×8, with addresses $\mathrm{A}_{0}-\mathrm{A}_{5}$ controlling the byte selection and A_{6} controlling the read/write selection. All other addresses must be applied as shown in Figure 2, for selecting the RAM. Note that the RAM address space overlays some of the ROM address space controlled by the mapping ROM

Figure 1.

		$\begin{gathered} \mathrm{MAP} \\ 0 \end{gathered}$	$\underset{1}{\text { MAP }}$	$\begin{gathered} \text { MAP } \\ 2 \end{gathered}$	$\begin{gathered} \mathrm{MAP} \\ 3 \end{gathered}$	$\begin{gathered} \text { MAP } \\ 4 \end{gathered}$	$\begin{gathered} \text { MAP } \\ 5 \end{gathered}$	$\begin{gathered} \text { MAP } \\ 6 \end{gathered}$	$\begin{gathered} \text { MAP } \\ 7 \end{gathered}$
	A_{2}	0	0	0	0	1	1	1	1
	A_{1}	0	0	1	1	0	0	1	1
	A_{0}	0	1	0	1	0	1	0	1
$\begin{array}{\|c\|} \hline A_{11} \\ 0 \end{array}$	$\begin{gathered} A_{10} \\ 0 \end{gathered}$	$\begin{gathered} \hline \text { WORD } \\ 0 \end{gathered}$	4	8	12	16	20	24	28
0	1	1	5	9	13	17	21	25	29
1	0	2	6	10	14	18	22	'26	30
1	1	3	7	11	15	19	23	27	$\begin{gathered} 31 \\ \text { WORD } \end{gathered}$

[^15]for the case of $A_{10}=A_{11}=0$. These "masked" ROM bytes are uncovered by simply programming the mapping ROM to access the appropriate $1 \mathrm{~K} \times 8$ page in an additional mapping ROM location, for which either A_{10} or $\mathrm{A}_{11}=1$.

B. Operation

Address Space: Six modes of operation are active on the S6464. These modes are selected only by the external address signals (see Figure 2). No other control signals (CS, CE, OE, R/W, etc) are needed. All other addresses within the total address space of 0000 - 1FFF have no effect except of placing the device into an output High-Z condition.
Load Map Latch Immediate: External addresses $A_{0}-A_{2}$ are stored in the address map latches. During the next ROM Read cycle, the new latched data controls the map selection within the mapping ROM. Note that A_{10} and A_{11} can freely access one of the four pages within the selected map, but one of the Load Map Latch operations has to be used to change maps.
Load Map Latch Delayed: This operation is the same as the Load Map Latch Immediate one, in that the addresses $A_{0}-A_{2}$ are loaded immediately. However, the change on the mapping ROM is effective not in the next address cycle, but rather in the fourth cycle following the Load Map Latch Delayed cycle. This allows the three intervening cycles to be used for an additional microprocessor operation such as a jump instruction.

Figure 2.

Address (Hexadecimal Notation) $0030-0037$	Mode
	Load Map Latch Immediate (with $A_{0}-A_{2}$ Load Map Latch Delayed (with $\left.A_{0}-A_{2}\right)$
$0038-003 F$	RAM Read
	RAM Write
$1000-103 F$	ROM Read
$1040-107 F$	Clear Map Latch
$1080-1$ FFF	
1FFC	

RAM Read or Write: Addresses $A_{0}-A_{5}$ access 1 of 64 bytes of RAM storage. A_{6} determines whether the operation is Read ($A_{6}=0$) or Write ($A_{6}=1$). A RAM Write operation must be followed by any operation other than "RAM Write"; RAM read is allowed.
ROM Read: Addresses A_{10} and A_{11} determine the selection of one of the four possible pages within a preselected map. Within the selected page, $A_{0}-A_{g}$ select the desired byte. For any particular map selected within the mapping ROM, any one of the possible 4 K bytes can be read out by a ROM Read operation. The only exception is that the first 128 bytes in each map are "masked" by the RAM Read or RAM Write address locations.
Clear Map Latch: This operation initializes all internal logic, primarily for ease of reset during power on of a system. As $A_{10}=A_{11}=1$ and the outputs of the map address latches are all at ' 0 ', the last page in the first map of the mapping ROM is selected. The outputs of the mapping ROM correspond to Word 3 in Figure 1.

ROM Code Data

AMI's preferred method of receiving ROM Code Data is in EFROM. Two sets of EPROMs should be submitted. One is programmed to the desired code and the other is blank. AMI will read the programmed EPROMs, transfer this data to disk and then program the blank EPROMs from the stored information. This procedure guarantees that the EPROMs have been properly entered into the AMI computer system. The AMI programmed EPROMs are returned to the customer for verification of the ROM program. Unless otherwise requested, AMI
will not proceed until the customer verifies the program in the returned EPROMs.

EPROM Requirements

The following EPROMs should be used for submitted ROM Code Data:

PREFERRED 2-68A764

If multiple EPROMs are used to specify one ROM pattern, an equal number of blank EPROMs must be submitted. In this instance, the programmed EPROMs must clearly state which of the EPROMs is for lower and upper address locations in the ROM. The preferred method is to mark each EPROM with the ROM address (in Hex) where the EPROM data is to be located.
For the EPROM containing the data for the mapping ROM, the data should be the first 32 bytes of the EPROM.

Pattern Data From ROMs

If a customer has ROMs produced by another supplier, these ROMs can be submitted for ROM pattern data instead of EPROMs. Obviously, these ROMs must be pin compatible with the AMI device.

Optional Method of Supply ROM Data*

If an EPROM or ROM cannot be supplied the following, other methods are acceptable.

9 Track NRZ Magnet Tape
Paper Tape
Card Deck
*Consult AMI sales for format.

Preliminary Data Sheet

131,072 BIT (16384x8) STATIC NMOS ROM

Features

\square Fast Access Time: S23128A-350ns Maximum S23128B-250ns MaximumLow Standby Power: 110 mW Max.Fully Static Operation
Single $+5 \mathrm{~V} \pm 10 \%$ Power Supply
Directly TTL Compatible Outputs
Three-State TTL Compatible Outputs
Two Programmable Chip Enables/Selects
EPROM Pin Compatible (27128)Late Mask Programmable
Programmable Output/Chip Enable

General Description

The AMI S23128 is a 131,072 bit static mask programmable NMOS ROM organized as 16,384 words by 8 bits.

The device is fully TTL compatible on all inputs and outputs and has a single +5 V power supply. The three state outputs facilitate memory expansion by allowing the outputs to be OR-tied to other devices.
The S23128 is pin compatible with the 27128 EPROM making system development easier and more cost effective. The fully static $\mathbf{S} 23128$ requires no clocks for operation. The three control pins are mask programmable with the active level and function being specified by the user. The pins can also be programmed as no connections. If CE functions are selected, automatic powerdown is available. The power supply current is reduced to 20 mA when the chip is disabled.
The S23128 is fabricated using AMI's NMOS technology. This permits the manufacture of high density, high performance ROMs.

Abstract

Absolute Maximum Ratings* Ambient Temperature Under Bias $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Storage Temperature $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Voltage on Any Pin With Respect to Ground -0.5 V to 7 V Input Voltages -0.5 V to 7 V Power Dissipation ... 1W *COMMENT: Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may effect device reliability.

Electrical Characteristics: $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$\mathrm{V}_{0 \mathrm{~L}}$	Output LOW Voltage			0.4	V	$\mathrm{l}_{0 \mathrm{~L}}=3.2 \mathrm{~mA}$
$\mathrm{V}_{\text {OH }}$	Output HIGH Voltage	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
$V_{\text {IL }}$	Input LOW Voltage	-0.5		0.8	V	
V_{H}	Input HIGH Voltage	2.0		$\mathrm{V}_{\text {CC }}$	V	
l_{LI}	Input Leakage Current	-10		10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$
Lo	Output Leakage Current	-10		10	$\mu \mathrm{A}$	$\mathrm{V}_{0}=0.4 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$ Chip Deselected
${ }_{\text {ICC }}$	Power Supply Current-Active			40	mA	See Note \#1
${ }_{\text {SB }}$	Power Supply Current-Standby			20	mA	See Note \#2

Capacitance: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$ (See Note \#3)

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$\mathrm{C}_{\text {IN }}$	Input Capacitance			7	pF	$\mathrm{V}_{\mathbb{I N}}=0 \mathrm{~V}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitance			10	pF	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

Switching Characteristics: $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Symbol	Parameter		Min.	Тур.	Max.	Units	Conditions See Waveforms
$t_{\text {AA }}$	Address Access Time	$\begin{aligned} & \hline \text { S23128A } \\ & \text { S23128B } \end{aligned}$			$\begin{aligned} & 350 \\ & 250 \end{aligned}$	nS	
$t_{\text {ACE }}$	Chip Enable Access Time	$\begin{aligned} & \hline \text { S23128A } \\ & \text { S23128B } \end{aligned}$			$\begin{aligned} & 350 \\ & 250 \end{aligned}$	ns	and Test Load
$t_{\text {ACS }}$	Chip Select Access Time	$\begin{aligned} & \text { S23128B } \\ & \text { S23128B } \end{aligned}$			120 80	ns	
$t_{0 E A}$	Output Enable Access Time	$\begin{aligned} & \hline \text { S23128A } \\ & \text { S23128B } \end{aligned}$			$\begin{array}{r} 120 \\ 80 \end{array}$	ns	
$t_{0 F F}$	Chip Deselect Time	$\begin{aligned} & \text { S23128A } \\ & \text { S23128B } \end{aligned}$			$\begin{array}{r} 120 \\ 80 \end{array}$	ns	See Note \#3
${ }^{\text {CEEO }}$	Disable Time From Chip Enable	$\begin{aligned} & \hline \text { S23128A } \\ & \text { S23128B } \end{aligned}$			$\begin{array}{r} 120 \\ 80 \end{array}$	ns	
$t_{\text {OEO }}$	Disable Time From Output Enable	$\begin{aligned} & \hline \text { S23128A } \\ & \text { S23128B } \end{aligned}$			$\begin{array}{r} 120 \\ 80 \end{array}$	ns	See Note \#3
${ }^{\text {toH }}$	Output Hold Time	$\begin{aligned} & \text { S23128A } \\ & \text { S23128B } \end{aligned}$	0			ns	See Note \#3

ROM Code Data

AMI's preferred method of receiving ROM CODE DATA is in EPROM. Two EPROMs should be submitted. One is programmed to the desired code and the other is blank. AMI will read the programmed EPROM, transfer this data to disk and then program the blank EPROM from the stored information. This procedure guarantees that the EPROM has been properly entered into the AMI computer system. The AMI programmed EPROM is returned to the customer for verification of the ROM program. Unless otherwise requested AMI will not proceed until the customer verifies the program in the returned EPROM.

EPROM Requirements

The following EPROMs should be used for submitted ROM Code Data:

PREFERRED 1-27128; Optional 2-2764

Notes:

1. Power Test Active Conditions: $V_{c c}=V_{c c}$ Max, $C E / C S=$ Active Level @ V_{1} Address Pins = V_{IL}, Output Load Disconnected

If two EPROMs are used to specify one ROM pattern, two blank EPROMs must be submitted. In this instance, the programmed EPROMs must clearly state which of the two EPROMs is for lower and upper address locations in the ROM. The preferred method is to mark the EPROM with the ROM address (in Hex) where the EPROM data is to be located.

Pattern Data from ROMS

If a customer has ROMs produced by another supplier, these ROMs can be submitted for ROM pattern data instead of EPROMs. Obviously, these ROMs must be pin compatible with the AMI device. The programmable chip selects must be defined. (NOTE: In some cases a competitor's ROM may have a chip select or enable that is not customer defined. However, if this pin is customer defined for the AMI ROM, the required active logic level for this input must be specified.)

[^16]
Package Outlines

Truth Table: (For simplicity, all control functions in the Truth Table are defined as active high).

CS/CE1	CS/CE2	OECE	Outputs	Power		
CE1	X	X	$\mathrm{Hi}-\mathrm{Z}$	Standby		
X	CE2	X	Hi-Z	Standby		
\underline{X}	$\stackrel{\mathrm{X}}{ }$	$\overline{\mathrm{CE}}$	Hi-Z	Standby		
$\overline{\text { CS1 }}$	CS/CE2	OE/CE	Hi-Z	Active	Pins	Control Functions Available
CS/CE1	CS2	OE/CE	Hi-Z	Active	27	CS2, $\overline{\mathrm{CS} 2}, \mathrm{CE} 2, \overline{\mathrm{CE} 2}, \mathrm{DC}$
CS/CE1	CS/CE2	$\overline{\mathrm{O}}$	Hi-Z	Active	22	$\bigcirc \mathrm{OE}, \overline{\mathrm{OE}, ~ C E, ~} \overline{C E}, \mathrm{DC}$
CS/CE1	CS/CE2	OE/CE	Data Out	Active	20	CS1, $\overline{\mathrm{CS} 1}, \mathrm{CE1}, \mathrm{CE1}, \mathrm{DC}$

The user decides between a CS/CE and OE/CE function and then defines the active level. The functions may also be defined as Don't Care (DC). The chip is enabled when the inputs match the user defined states. Don't Care pins are still connected to input protection diodes and are subject to the "Absolute Maximum Ratings"

262,144 BIT (32,768x8) STATIC NMOS ROM

Features

\square Fast Access Time:
S23256B: 250ns Maximum
S23256C: 150ns Maximum
\square Low Power Dissipation Active Current:

40mA Maximum
Standby Current: 10mA Maximum
\square Fully Static Operation
\square Two User-Defined and Programmable
Control Lines: CE/CS, OE/CE
\square EPROM Pin Compatible
\square Late Mask Programmable
\square Three-State TTL Compatible Outputs

General Description

The AMI S23256 is a 262,144 bit static mask programmable NMOS ROM organized as 32,768 words by 8 bits. The devices are fully TTL compatible on all inputs and outputs and operate from a single $+5 \mathrm{~V} \pm 10 \%$ power supply. The three state outputs facilitate memory expansion by allowing the outputs to be ORtied to other devices.
The S23256 is pin compatible with the 27128 UV EPROM making system development much easier and more cost effective. It is fully static, requiring no clocks for operation.
The S23256 is fabricated using AMI's N-Channel MOS ROM technology. This permits the manufacture of very high density, high performance mask programmable ROMs.

[^17]
Absolute Maximum Ratings*
Ambient Temperature Under Bias $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Output or Supply Voltages .. -0.5 V to 7 V
Input Voltages
-0.5 V to 7 V
PowerDissipation 1W
*COMMENT: Stresses above those listed under "Absolute Maximum Rating'' may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may effect device reliability.
D.C. Characteristics: $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$\mathrm{V}_{0 \mathrm{~L}}$	Output LOW Voltage			0.4	V	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$
$\mathrm{~V}_{\text {OH }}$	Output HIGH Voltage	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-220 \mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{IL}}$	Input LOW Voltage	-0.5		0.8	V	
$\mathrm{~V}_{\mathrm{IH}}$	Input HIGH Voltage	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V	
$\left\|\mathrm{I}_{\mathrm{LI}}\right\|$	Input Leakage Current			10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC}
$\mathrm{I}_{\mathrm{LO}} \mid$	Output Leakage Current			10	$\mu \mathrm{~A}$	$V_{0}=0.4 \mathrm{~V}$ to V_{CC} Chip Deselected
I_{CC}	Power Supply Current—Active			40	mA	Chip Enabled
I_{SB}	Power Supply Current—Standby			10	mA	Chip Disabled

Capacitance: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
C_{IN}	Input Capacitance			7	pF	$\mathrm{V}_{\text {IN }}=\mathrm{OV}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitance			10	pF	$\mathrm{V}_{\text {OUT }}=\mathrm{OV}$

A.C. Characteristics: $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
	Address Access Time S23256B S23256C			$\begin{aligned} & 250 \\ & 150 \end{aligned}$	ns	See A.C. Test Conditions and Waveforms
tevav	 Chip Enable Access Time S23256B S23256C			$\begin{aligned} & 250 \\ & 150 \end{aligned}$	ns	
tsvav	Chip Select Access Time S23256B S23256C			$\begin{array}{r} 120 \\ 80 \end{array}$	ns	
$\mathrm{t}_{\text {gvav }}$	Output Enable Access Time S23256B S23256C			$\begin{array}{r} 120 \\ 80 \end{array}$	ns	
$t_{\text {Axax }}$	Output Hold/Address Change S23256B S23256C	$\begin{aligned} & 10 \\ & 10 \end{aligned}$			ns	
$\begin{aligned} & \text { texaz } \\ & \mathrm{t}_{\mathrm{x} \times 0 \mathrm{Z}} \\ & \mathrm{t}_{\mathrm{txaOz}} \end{aligned}$	Deselect Times $\begin{array}{ll} \\ & \\ & \text { S23256B } \\ \text { S23256C }\end{array}$			$\begin{array}{r} 120 \\ 80 \end{array}$	ns	

A.C. Test Conditions

Output Load .. 1 TTL Load and 100pF

Waveforms

ROM Code Data

AMI's preferred method of receiving ROM CODE DATA is in EPROM. Two EPROMs should be submitted. One is programmed to the desired code and the other is blank. AMI will read the programmed EPROM, transfer this data to disk and then program the blank EPROM from the stored information. This procedure guarantees that the EPROM has been properly entered into the AMI computer system. The AMI programmed EPROM is returned to the customer for verification of the ROM program. Unless otherwise requested AMI will not proceed until the customer verifies the program in the returned EPROM.

EPROM Requirements

The following EPROMs should be used for submitted ROM Code Data:

PREFERRED 2-27128
If two EPROMs are used to specify one ROM pattern, two blank EPROMs must be submitted. In this instance, the programmed EPROMs must clearly state which of the two EPROMs is for lower and upper
address locations in the ROM. The preferred method is to mark the EPROM with the ROM address (in Hex) where the EPROM data is to be located.

Pattern Data from ROMS

If a customer has ROMs produced by another supplier, these ROMs can be submitted for ROM pattern data instead of EPROMs. Obviously, these ROMs must be pin compatible with the AMI device. The programmable chip selects must be defined. (NOTE: In some cases a competitors ROM may have a chip select or enable that is not customer defined. However, if this pin is customer defined for the AMI ROM, the required active logic level for this input must be specified.)

Optional Method of Supply ROM Data*

If an EPROM or ROM cannot be supplied the following, other methods are acceptable.
$\square 9$ Track NRZ Magnetic Tape
\square Paper Tape
\square Card Deck

* Consult AMI sales office for format.

Truth Table	CE/CS	OE/CE	OUTPUTS	POWER
	CE/CS	OE/CE	DATA OUT	ACTIVE
	$\overline{\mathrm{CE}}$	X	HIGH Z	STANDBY
	$\overline{C S}$	\underline{X}	HIGH Z	ACTIVE
	X	$\overline{\overline{O E}}$	HIGH Z	ACTIVE
	X	$\overline{C E}$	HIGHZ	STANDBY
	THE DEVICE IS ENABLED WHEN THE CONTROL LINES MATCH THE USER DEFINED STATES.			

> MICROPROCESSOR COMPONENT FAMILY

Contact factory for complete data sheet

S6800 Family Selection Guide

MICROPROCESORS

S6800/S68A00/S68B00	8-Bit Microprocessor (1.0/1.5/2.0MHz Clock)
S6801/S6803	Single Chip Microcomputer 2K ROM, 128×8 RAM, 31 I/O Lines, Enhanced Instruction. S6803 is a S6801 Without ROM (N/R Model-No ROM and RAM)
S6802/A/B/S6808/A/B	Microprocessor with Clock and RAM (1.0/1.5/2.0MHz Clock (S6808 Models - No RAM)
S6803/S6803N/R	S6801 Without ROM (N/R Model-No ROM and RAM)
S6805	Single Chip Microcomputer 1.1K $\times 8$ ROM, 64×8 RAM, Timer, Pre-scaler, Bit Level Instructions.
S6809(E)/S68A09(E)/S68B09(E)	Pseudo 16-Bit Microprocessor (1.0/1.5/2.0MHz Clock) (E Models-External Clock Mode)

PERIPHERALS

S1602	Universal Asynchronous Receiver/Transmitter (UART)
S2350	Universal Synchronous Receiver/Transmitter (USRT)
S6551/S6551A	UART With Baud Rate Generator
S6821/S68A21/S68B21	Peripheral interface Adapter (PIA) (1.0/1.5/2.0MHz Clock)
S6840/S68A40/S68B40	Programmable Timer (1.0/1.5/2.0MHz)
S68045	CRT Controller (CRTC)
S6846	2K ROM, Parallel I/O, Programmable Timer
S6850/S68A50/S68B50	Asynchronous Communication Interface Adapter (ACIA)
S6852/S68A52/S68B52	Synchronous Serial Data Adapter (SSDA) (1.0/1.5/2.0MHz Clock)
S6854/S68A54/S68B54	Advanced Data Link Controller (ADLC) (1.0/1.5/2.0MHz Clock)

MEMORIES
S6810/S68A10/S68B10 128×8 Static RAM (450/360/250ns Access Time)

8-BIT
 MICROPROCESSOR

Features

\square Eight-Bit Parallel Processing
\square Bi-Directional Data Bus
\square Sixteen-Bit Address Bus - 65536 Bytes
of Addressing
$\square 2$ Instructions - Variable Length
\square Seven Addressing Modes - Direct, Relative
Immediate, Indexed, Extended, Implied
and Accumulator
\square Variable Length Stack
\square Vectored Restart
$\square 2$ Microsecond Instruction Execution
\square Maskable Interrupt Vector
\square Separate Non-Maskable Interrupt - Internal Registers Saved in Stack
\square Six Internal Registers - Two Accumulators, Index Register, Program Counter, Stack Pointer and Condition Code Register
\square Direct Memory Access (DMA) and Multiple Processor Capability
\square Clock Rates - S6800 - 1.0MHz
$-\mathrm{S} 68 \mathrm{~A} 00-1.5 \mathrm{MHz}$

- S68B00 - 2.0 MHz
\square Simple Bus Interface Without TTL
\square Halt and Single Instruction Execution Capability

Block Diagram

Pin Configuration

GND - 10		40	- $\overline{\text { RESET }}$
HALT - 2		39	TSC
$01-3$		38	
TRO-4		37	- $\quad 12$
VMA - 5		36	DBE
NMI -6		35	-
BA ${ }^{7}$		34	- R/w
$\mathrm{V}_{\mathrm{CC}}-8$		33	D0
A0 -9	S6800	32	- D1
A1 - 10	S68A00	31	- D2
A2 - 11	S68B00	30	- D3
A3 -12		29	- D4
A4 - 13		28	- D5
A5 - 14		27	- D6
A6 - 15		26	- D7
A7 - 16		25	- A15
A8 - 17		24	- A14
A9 - 18		23	- A13
A10-19		22	- A12
A11-20		21	- GND

Absolute Maximum Ratings

Input Voltage V_{iN}... - 0.3 V to +7.0 V	
Operating Temperature Range T_{A}	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $\mathrm{T}_{\text {stg }}$	$55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Electrical Characteristics

$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol \& Characteristics \& \& Min. \& Typ. \& Max. \& Unit

\hline $$
\begin{aligned}
& V_{I H} \\
& V_{I H C}
\end{aligned}
$$ \& Input High Voltage (Normal Operating Levels) \& $$
\begin{aligned}
& \text { Logic } \\
& \phi 1, \$ 2
\end{aligned}
$$ \& $$
\begin{aligned}
& V_{S S}+2.0 \\
& V_{C C}-0.6
\end{aligned}
$$ \& - \& $$
\begin{gathered}
V_{C C} \\
V_{C C}+0.3
\end{gathered}
$$ \& Vdc

\hline $$
\begin{aligned}
& V_{\mathrm{IL}} \\
& v_{\mathrm{ILC}} \\
& \hline
\end{aligned}
$$ \& Input Low Voltage (Normal Operating Levels) \& $$
\begin{aligned}
& \hline \text { Logic } \\
& \phi 1, \phi 2
\end{aligned}
$$ \& $$
\begin{aligned}
& V_{S S}-0.3 \\
& V_{S S}-0.3
\end{aligned}
$$ \& \& $$
\begin{aligned}
& V_{S S}+0.8 \\
& V_{S S}+0.4 \\
& \hline
\end{aligned}
$$ \& Vdc

\hline IN \& $$
\begin{aligned}
& \text { Input Leakage Current } \\
& \left(V_{I N}=0 \text { to } 5.25 \mathrm{~V}, V_{C C}=M a x\right) \\
& \left(V_{I N}=0 \text { to } 5.25 \mathrm{~V}, V_{C C}=0.0 \mathrm{~V}\right)
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { Logic }^{*} \\
& \$ 1, \$ 2
\end{aligned}
$$ \& \& $$
1.0
$$ \& $$
\begin{aligned}
& 2.5 \\
& 100
\end{aligned}
$$ \& $\mu \mathrm{Adc}$

\hline $I_{\text {TSI }}$ \& Three-State (Off State) Input Current $\mathrm{V}_{\text {IN }}=0.4$ to $2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}$ \& $$
\begin{array}{r}
D 0-D 7 \\
A 0-\mathrm{A} 15, \mathrm{R} / \mathrm{W}
\end{array}
$$ \& - \& 2.0 \& $$
\begin{gathered}
10 \\
100 \\
\hline
\end{gathered}
$$ \& $\mu \mathrm{AdC}$

\hline V_{OH} \& Output High Voltage
$$
\begin{aligned}
& \left(I_{\text {LOAD }}=205 \mu \mathrm{Adc}, V_{C C}=\mathrm{Min}\right) \\
& \left(\text { LOOAD }=145 \mu \mathrm{Adc}, V_{C C}=\mathrm{Min}\right) \\
& \left(\text { LOAAD }^{2}=-100 \mu A d c, V_{C C}=\mathrm{Min}\right)
\end{aligned}
$$ \& $$
\begin{array}{r}
D 0-D 7 \\
A 0-A 15, \mathrm{R} / \mathrm{W}, \mathrm{VMA} \\
\mathrm{BA}
\end{array}
$$ \& $$
\begin{aligned}
& V_{S S}+2.4 \\
& V_{S S}+2.4 \\
& V_{S S}+2.4
\end{aligned}
$$ \& - \& - \& Vdc

\hline $\mathrm{V}_{\text {OL }}$ \& Output Low Voltage ($\mathrm{I}_{\text {LOAD }}=1.6 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$) \& \& - \& - \& $V_{S S}+0.4$ \& Vdc

\hline $P_{\text {D }}$ \& Power Dissipation \& \& - \& 0.5 \& 1.0 \& W

\hline $\mathrm{C}_{\text {IN }}$

$\mathrm{C}_{\text {OUT }}$ \& Capacitance\#

$$
\left(V_{\text {IN }}=0, T_{A}=25^{\circ} \mathrm{C}, f=1.0 \mathrm{MHz}\right)
$$ \& \[

$$
\begin{array}{r}
\phi 1 \\
\text { D } 2 \\
\text { Logic Inputs } \\
\text { AO - A15, R } \mathrm{B}, \mathrm{VMA}
\end{array}
$$

\] \& - \& \[

$$
\begin{gathered}
\overline{10} \\
6.5
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
35 \\
70 \\
12.5 \\
10 \\
12
\end{gathered}
$$
\] \& pF

\hline \dagger \& Frequency of Operation \& \[
$$
\begin{array}{r}
\text { S6800 } \\
\text { S68A00 } \\
\text { S68B00 }
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 0.1 \\
& 0.1 \\
& 0.1
\end{aligned}
$$

\] \& - \& \[

$$
\begin{aligned}
& 1.0 \\
& 1.5 \\
& 2.0
\end{aligned}
$$
\] \& MHz

\hline $\mathrm{t}_{\mathrm{cyC}}$ \& Clock Timing (Figure 1) Cycle Time \& S6800 S68A00 S68B00 \& \[
$$
\begin{aligned}
& 1.000 \\
& 0.666 \\
& 0.50 \\
& \hline
\end{aligned}
$$

\] \& - \& \[

$$
\begin{aligned}
& 10 \\
& 10 \\
& 10
\end{aligned}
$$
\] \& $\mu \mathrm{S}$

\hline $\mathrm{PW}_{\text {¢ }}$ \& | Clock Pulse Width |
| :--- |
| Measured at $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$ | \& \[

$$
\begin{array}{r}
\phi 1, \phi 2-S 6800 \\
\phi 1, \$ 2-S 68 A 00 \\
\phi 1, \phi 2-S 68 B 00
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 400 \\
& 230 \\
& 180
\end{aligned}
$$

\] \& - \& \[

$$
\begin{aligned}
& 9500 \\
& 9500 \\
& 9500 \\
& \hline
\end{aligned}
$$
\] \& ns

\hline $t_{\text {UT }}$ \& Total $\$ 1$ and \$2 Up Time \& \[
$$
\begin{array}{r}
\text { S6800 } \\
\text { S68A00 } \\
\text { S68B00 }
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 900 \\
& 600 \\
& 440
\end{aligned}
$$
\] \& - \& - \& ns

\hline $-t_{\phi r}, t_{\phi i}$ \& Measured between $\mathrm{V}_{S S}+0.4$ and $\mathrm{V}_{\mathrm{CC}}-0.6$ \& Rise and Fall Times \& \& - \& 100 \& ns

\hline t_{d} \& Measured at $\mathrm{V}_{\mathrm{OV}}=\mathrm{V}_{\mathrm{SS}}+0.6 \mathrm{~V}$ \& Time or Clock Separation \& 0 \& - \& 9100 \& ns

\hline
\end{tabular}

* Except $\overline{\mathrm{IRQ}}$ and $\overline{\mathrm{NMI}}$, Which require $\mathrm{k} \Omega$ pullup load resistor for wire-OR capability at optimum operation.
\#Capacitances are periodically sampled rather than 100% tested.

Read/Write Timing

Symbol	Characteristics	$\mathbf{5 6 8 0 0}$			S68A00			S68B00			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$t_{\text {AD }}$	$\begin{array}{ll} \hline \text { Address Delay } & \\ & C=90 \mathrm{pF} \\ & C=30 \mathrm{pF} \end{array}$			$\begin{aligned} & 270 \\ & 250 \end{aligned}$	-		$\begin{aligned} & 180 \\ & 165 \end{aligned}$	-	-	$\begin{aligned} & 150 \\ & 135 \end{aligned}$	ns
$\mathrm{t}_{\text {ACC }}$	Periph. Read Access Time $t_{A C}=t_{U T}-\left(t_{A D}+t_{D S R}\right)$	530	-		360	-		250	-		ns
$\mathrm{t}_{\text {DSR }}$	Data Setup Time (Read)	100	-	-	60	-	-	40	-	-	ns
t_{H}	Input Data Hold Time	10	-	-	10	-	-	10	-	-	ns
t_{H}	Output Data Hold Time	10	25	-	10	25	-	10	25	-	ns
$t_{\text {AH }}$	Address Hold Time (Address, R/W, VMA)	30	50	-	30	50	-	30	50	-	ns
$\mathrm{t}_{\text {EH }}$	Enable High Time for DBE Input	450	-	-	280	-	-	220	-	-	ns
tow	Date Delay Time (Write)	-	-	225	-	165	200	-	-	160	ns
tpCS $t_{P C ;} ; t_{P C}$ $t_{B A}$ $\mathrm{t}_{\text {TSE }}$ $\mathrm{t}_{\text {TSD }}$ $t_{\overline{B E}}$ $t_{\text {DBE }}$, $t_{D B E f}$	Processor Controls Proc. Control Setup Time Processor Control Rise and Fall Time Bus Available Delay Three-State Enable Three-State Delay Data Bus Enable Down Time During $\$ 1$ Up Time Data Bus Enable Rise and Fall Times	200 - - -	- - - - - -	$\begin{gathered} 100 \\ 250 \\ 40 \\ 270 \\ - \\ 25 \end{gathered}$	140 - - - - 120	- - - - - - -	100 165 40 270 - 25	110 - - - 75	- - - - - -	100 135 40 270 - 25	ns ns ns ns ns ns ns ns

Figure 1. Clock Timing Waveform

Measurement point for $\phi 1$ and $\phi 2$ are shown above. Other measurements are the same as for MC6800.

Figure 3. Read Data from Memory or Peripherals

Figure 4. Write Data in Memory or Peripherals

Figure 5. Initialization of MPU After Restart

S6800/S68A00/S68B00

Interface Description

Label	Pin	Function
$\begin{aligned} & \phi 1 \\ & \phi 2 \end{aligned}$	$\begin{gathered} (3) \\ (37) \end{gathered}$	Clocks Phase One and Phase Two - Two pins are used for a two-phase non-overlapping clock that runs at the $V_{C C}$ voltage level.
$\overline{\text { RESET }}$	(40)	$\overline{\text { Reset }}$ - this input is used to reset and start the MPU from a power down condition, resulting from a power failure or an initial start-up of the processor. If a positive edge is detected on the input, this will signal the MPU to begin the restart sequence. This will start execution of a routine to initialize the processor from its reset condition. All the higher order address lines will be forced high. For the restart, the last two (FFFE, FFFF) locations in memory will be used to load the program that is addressed by the program counter. During the restart routine, the interrupt mask bit is set and must be reset before the MPU can be interrupted by $\overline{\mathrm{RQ}}$. $\overline{\text { Reset }}$ must be held low for at least eight clock periods after $V_{C C}$ reaches 4.75 volts (Figure 4). If $\overline{\text { Reset }}$ goes high prior to the leading edge of $\phi 2$, on the next $\phi 1$ the first restart memory vector address (FFFE) will appear on the address lines. This location should contain the higher order eight bits to be stored into the program counter. Following, the next address FFFF should contain the lower order eight bits to be stored into the program counter.
VMA	(5)	Valid Memory Address - This output indicates to peripheral devices that there is a valid address on the address bus. In normal operation, this signal should be utilized for enabling peripheral interfaces such as the PIA and ACIA. This signal is not three-state. One standard TTL load and 30pF may be directly driven by this active high signal.
${ }^{\text {AO }}$	(9)	Address Bus - Sixteen pins are used for the address bus. The outputs are three-state bus drivers capable of driving one standard TTL load and 130 pF . When the output is turned off, it is essentially an open circuit. This permits the MPU to be used in DMA applications.
A15	(25)	
TSC	(39)	Three-State Control - This input causes all of the address lines and the Read/Write line to go into the off or high impedance state. This state will occur 500 ns after TSC $=2.4 \mathrm{~V}$. The Valid Memory Address and Bus Available signals will be forced low. The data bus is not affected by TSC and has its own enable (Data Bus Enable). In DMA applications, the Three-State Control line should be brought high on the leading edge of the Phase One Clock. The $\phi 1$ clock must be held in the high state and the $\phi 2$ in the low state for this function to operate properly. The address bus will then be available for other devices to directly address memory. Since the MPU is a dynamic device, it can be held in this state for only 50μ S or destruction of data will occur in the MPU.
DO	(33)	Data Bus - Eight pins are used for the data bus. It is bi-directional, transferring data to and from the memory and peripheral devices. It also has three-state output buffers capable of driving one standard TTL load at 130 pF .
D7	(26)	
DBE	(36)	Data Bus Enable - This input is the three-state control signal for the MPU data bus and will enable the bus drivers when in the high state. This input is TTL compatible; however in normal operation, it can be driven by the phase two clock. During an MPU read cycie, the data bus drivers will be disabled internaily. When it is desired that another device control the data bus such as in Direct Memory Access (DMA) applications, DBE should be held low.
R/W	(34)	Read/Write - This TTL compatible output signals the peripherals and memory devices whether the MPU is in a Read (high) or Write (low) state. The normal standby state of this signal is Read (high). Three-State Control going high will Read/Write to the off (high-impedance) state. Also, when the processor is halted, it will be in the off state. This output is capable of driving one standard TTL load and 130 pF .
HALT	(2)	$\overline{H a l t}$ - When this input is in the low state, all activity in the machine will be halted. This input is level sensitive. In the halt mode, the machine will stop at the end of an instruction. Bus Available will be at a one level, Valid Memory Address will be at a zero, and all other three-state lines will be in the three-state mode.

S6800/S68A00/S68B00

Label Pin Function

Transition of the Halt line must not occur during the last 250 ns of phase one. To insure single instruction operation, the Falt line must go high for one Phase One Clock cycle.

BA (7) Bus Available - The Bus Available signal will normally be in the low state; when activated, it will go to the high state indicating that the microprocessor has stopped and that the address bus is available. This will occur if the Halt line is in the low state or the processor is in the WAIT state as a result of the execution of a WAIT instruction. At such time, all three-state output drivers will go to their off state and other outputs to their normally inactive level. The processor is removed from the WAIT state by the occurrence of a maskable (mask bit I $=0$) or nonmaskable interrupt. This output is capable of driving one standard TTL load and 30pF.
(4) $\overline{\text { Interrupt }} \overline{R e q u e s t}$ - This level sensitive input requests that an interrupt sequence be generated within the machine. The processor will wait until it completes the current instruction that is being executed before it recognizes the request. At that time, if the interrupt mask bit in the Condition Code Register is not set, the machine will begin an interrupt sequence. The Index Register, Program Counter, Accumulators, and Condition Code Register are stored away on the stack. Next the MPU will respond to the interrupt request by setting the interrupt mask bit high so that no further interrupts may occur. At the end of the cycle, a 16-bit address will be loaded that points to a vectoring address which is located in memory locations FFF8 and FFF9. An adress loaded at these locations causes the MPU to branch to an interrupt routine in memory.
The $\overline{H a l t}$ line must be in the high state for interrupts to be recognized.
The $\overline{\mathrm{RQ}}$ has a high impedance pullup device internal to the chip; however a $3 \mathrm{k} \Omega$ external resistor to Vcc should be used for wire-0R and optimum control of interrupts.
$\overline{\text { NM1 }}$ (6) Non-Maskable Interrupt $-A$ low-going edge on this input requests that a non-mask interrupt sequence be generated within the processor. As with the Interrupt Request signal, the processor will complete the current instruction that is being executed before it recognizes the $\overline{N M I}$ signal. The interrupt mask bit in the Condition Code Register has no effect on $\overline{\mathrm{NMI}}$. The Index Register, Program Counter, Accumulators, and Condition Code Register are stored away in the stack. At the end of the cycle, a 16-bit address will be loaded that points to a vectoring address which is located in memory locations FFFC and FFFD. An address loaded at these locations causes the MPU to branch to a non-maskable interrupt routine in memory.
$\overline{\text { NMI }}$ has a high impedance pullup resistor internal to the chip; however a $3 \mathrm{k} \Omega$ external resistor to $V_{C C}$ should be used for wire-OR and optimum control of interrupts.
Inputs $\overline{\mathrm{IRQ}}$ and $\overline{\mathrm{NMI}}$ are hardware interrupt lines that are acknowledged during $\phi 2$ and will start the interrupt routine on the $\phi 1$ following the completion of an instruction.
INTERRUPTS - As outlined in the interface description the S6800 requires a 16-bit vector address to indicate the location of routines for Restart, Non-maskable Interrupt, and Maskable Interrupt. Additionally an address is required for the Software Interrupt Instruction (SWI). The processor assumes the uppermost eight memory locations, FFF8 - FFFF, are assigned as interrupt vector addresses as defined in Figure 6.
After completing the current instruction execution the processor checks for an allowable interrupt request via the $\overline{\mathrm{IRQ}}$ or $\overline{\mathrm{NMI}}$ inputs as shown by the simplified flow chart in Figure 7. Recognition of either external interrupt request or a Wait for Interrupt (WAI) or Software Interrupt (SWI) instruction causes the contents of the Index Register, Program Counter, Accumulators and Condition Code Register to be transferred to the stack as shown in Figure 8.

SINGLE CHIP MICROCOMPUTER

Features

\square Instruction and Addressing Compatible
\square Object Code Compatible
\square 16-Bit Programmable Timer
\square Single Chip or Expandable to 65K Words
\square On-Chip Serial Communications Interface (SCI)

- Simplex
- Half Duplex Mark/Space (NRZ) Biphase (FM)
- Port Expansion Full/Half Duplex
Four Internal Baud Rates Available $\phi 2 \div 16,128,1024,4096$
\square 2K Bytes of ROM
$\square 128$ Bytes of RAM
(64 Bytes Power Down Retainable)
$\square 31$ Parallel I/O Lines
\square Divide-by-Four Internal Clock
\square Hardware 8×8 Multiply
\square Three Operating Modes
- Single Chip
- Expanded Multiplex (up to 65K Addressing)
- Expanded Non-Multiplex
\square Expanded Instruction Set
\square Interrupt Capability
\square Low Cost Versions
- S6803-No ROM Version
- S6803NR - No ROM or RAM
\square TTL-Compatible with Single 5 Volt Supply

Block Diagram

Pin Configuration

General Description

The S6801 MCU is an 8-bit single-chip microcomputer system which is compatible with the S 6800 family of parts. The S6801 is object code compatible with the S6800 instruction set.
The 56801 features improved execution times of key S6800 instructions including Jump to Subroutine (JSR) and all Conditioned Branches (BRA, etc.). In addition, several new 16 -bit and 8 -bit instructions have been added including Push/Pull to/from Stack, Hardware 8×8 Multiply, and store concatenated A and B accumulators (D accumulator).
The S6801 MCU can be operated in three modes: Single-Chip, Expanded Multiplex (up to 65 K Byte Addressing), and Expanded Non-Multiplex. In addition, the S6801 is available with two mask options: an on-chip ($\div 4$) Clock, or an external $(\div 1)$ Clock. The external mode is especially useful in Multiprocessor Applications. The S6801E can be configured as a peripheral by using the Read/Write (R/W), Chip Select (CS), and Register Select (RS). The Read/Write line controls the direction of data on Port 3 and the Register Select (RS) allows for access to either Port 3 data register or control register.
The S6801 Serial Communications Interface (SCI) permits full serial communication using no external com-
ponents in several operating modes - Full and/or Half Duplex operation - and two formats - Standard Mark/ Space for typical Terminal/Modem interfaces and the Bi-Phase (FM, F2F, and Manchester) Format primarily for use between processors. Four software addressable registers are provided to configure the Serial Port; to provide status information; and as transmit/receive data buffers.
The S6801 includes a 16 -bit timer with three effectively independent timing functions: (1) Variable pulse width measurement, (2) Variable pulse width generation, and (3) A Timer Overflow - Find Time Flag. This makes the S6801 ideal for applications such as Industrial Controls, Automotive Systems, A/D or D/A Converters, Modems, Real-Time Clocks, and Digital Voltage Controlled Oscillators (VCO).
The S6801 is fully TTL-compatible and requires only a single +5 volt supply.
The S6803 can be thought of as an S6801 operating in expanded multiplexed mode with no ROM. The S6803NR is comparable to the S6801 operating in expanded multiplexed mode with no RAM and no ROM.

Absolute Maximum Ratings

Supply Voltage, $\mathrm{V}_{\text {CC }}$	-0.3 V to +7.0 V
Input Voltage, $\mathrm{V}_{\text {IN }}$	-0.3 V to +7.0 V
Operating Temperature Range, T_{A}	0° to $+70^{\circ} \mathrm{C}$
Storage Temperature Range, $\mathrm{T}_{\text {Stg }}$	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Thermal Resistance, $\theta_{\text {JA }}$	
Plastic	$100^{\circ} \mathrm{C} / \mathrm{W}$
Ceramic	$50^{\circ} \mathrm{C} / \mathrm{W}$

This device contains circuitry to protect the inputs against damage due to high static voltage or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that $V_{I N}$ and $V_{O U T}$ be constrained to the range $V_{S S}\left(V_{\mathbb{N}}\right.$ or $\left.V_{O U T}\right) V_{D D}$.
Electrical Operating Characteristics ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Characteristic	Min.	Typ.	Max.	Unit
$V_{I H}$	$\frac{\text { Input High Voltage* }}{\text { Reset }}$	$\begin{aligned} & \mathrm{V}_{S S}+2.0 \\ & \mathrm{~V}_{S S}+4.0 \end{aligned}$		$\begin{aligned} & V_{C C} \\ & V_{C C} \end{aligned}$	Vdc
VIL	Input Low Voltage	$\mathrm{V}_{S S}-0.3$		$V_{S S}+0.8$	Vdc
$\begin{aligned} & \left.\right\|_{\text {TSI }} \\ & \left.\right\|_{T S I} \end{aligned}$	Three-State (Off State) Input Current P10-P17, P30-P37 $\left(\mathrm{V}_{\text {IN }}=0.5\right.$ to 2.4 Vdc) P20-P24		$\begin{gathered} 2.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & 10 \\ & 100 \end{aligned}$	$\mu \mathrm{Adc}$ $\mu \mathrm{Adc}$
V_{OH}	$\begin{aligned} & \text { Output High Voltage } \\ & \text { All Outputs Except XTAL } 1 \text { and EXTAL } 2 \\ & \text { I LOAD }=-65 \mu A \text { P40-P47, E, SC1, SC2 } \\ & \text { LOAD }=-100 \mu \mathrm{~A} \text { all others } \end{aligned}$	$V_{S S}+2.4$			Vdc

[^18]
Electrical Operating Characteristics (Continued)

Symbol	Characteristic	Min.	Typ.	Max.	Unit
V_{OL}	Output Low Voltage All Outputs Except XTAL 1 and EXTAL 2 $\mathrm{I}_{\mathrm{LOAD}}=2.0 \mathrm{~mA}$			$V_{S S}+0.4$	Vdc
P_{D}	Power Dissipation			1200	mW
$\mathrm{C}_{\text {IN }}$	Capacitance $V_{I N}=0, T_{A}=25^{\circ} \mathrm{C}, f=1.0 \mathrm{MHz}$ P40-P47, P30-P37, SC1 Other Inputs			$\begin{gathered} 12.5 \\ 10 \end{gathered}$	pF
$t_{\text {posu }}$	Peripheral Data Setup Time (Figure 3)	200			ns
tPDH	Peripheral Data Hold Time (Figure 3)	200			ns
$\mathrm{t}_{\text {OSD1 }}$	Delay Time, Enable Negative Transition to 0 S3 Neg. Trans.			1.0	$\mu \mathrm{S}$
tos02	Delay Time, Enable Neg. Trans. to OS3 Positive Transition			1.0	$\mu \mathrm{s}$
tpwo	Delay Time, Enable Negative Transition to Peripheral Data Valid (Figure 4)			350	ns
$t_{\text {cmos }}$	Delay Time, Enable Negative Transition to Peripheral Data Valid (. $7 \mathrm{~V}_{\mathrm{CC}}$, P20-P24 (Figure 4)			2.0	$\mu \mathrm{S}$
I_{OH}	Darlington Drive Current $\mathrm{V}_{0}=1.5 \mathrm{Vdc}-\mathrm{P} 10-\mathrm{P} 17$	-1.0	-2.5	-10	mAdc
$\begin{aligned} & \hline V_{\text {SBB }} \\ & V_{S B} \end{aligned}$	Standby Voltage (Not Operating) (Operating)	$\begin{array}{r} 4.00 \\ 4.75 \\ \hline \end{array}$		$\begin{aligned} & 5.25 \\ & 5.25 \\ & \hline \end{aligned}$	Vdc

NOTE: The above electricals satisfy Ports 1 and 2 always, and Ports 3 and 4 in the single chip mode only.
Bus Timing (Figure 7)

Symbol	Characteristic	Min.	Typ.	Max.	Unit
toyc	Cycle Time	1000			ns
$\mathrm{P}_{\text {WASH }}$	Address Strobe Pulse Width High	220			ns
$t_{\text {ASR }}$	Address Strobe Rise Time			25	ns
$t_{\text {ASF }}$	Address Strobe Fall Time			25	ns
$\mathrm{t}_{\text {ASD }}$	Address Strobe Delay Time	100			ns
$t_{E R}$	Enable Rise Time			25	ns
$\mathrm{t}_{\text {EF }}$	Enable Fall Time			25	ns
$\mathrm{P}_{\text {WEH }}$	Enable Pulse Width High Time	450			ns
$\mathrm{P}_{\text {WEL }}$	Enable Pulse Width Low Time	430			ns
$\mathrm{t}_{\text {ASED }}$	Address Strobe to Enable Delay Time	90			ns
$t_{A D}$	Address Delay Time			270	ns
todw	Data Delay Write Time			225	ns
tDSR	Data Set-up Time	80			ns
t_{HR}	Hold Time Read	10			ns
thw	Hold Time Write	20			ns
$t_{A D L}$	Address Delay Time for Latch			200	ns
$\mathrm{t}_{\text {AHL }}$	Address Hold Time for Latch	20			ns
$t_{\text {AH }}$	Address Hold Time	20			ns
tut	Total Up Time	750			ns

MCU Signal Description

This section gives a description of the MCU signals for the various modes. General pin assignments for the signals are shown on page 1. SC1 and SC2 are signals which vary with the mode that the chip is in. Table 1 gives a summary of their function.

Table 1. Mode and Port Summary

MODE	PORT 1 EIGHT LINES	PORT 2 FIVE LINES	PORT 3 EIGHT LINES	PORT 4 EIGHT LINES	SC1	SC2
SINGLE CHIP	$1 / 0$	$1 / 0$	I/0	$1 / 0$	$\mathrm{IS} 3(I)$	OS3(0)
EXPANDED MUX	$1 / 0$	$1 / 0$	ADDRESS BUS $\left(A_{0}-A_{7}\right)$ DATA BUS $D_{0}-D_{7}$	ADDRESS BUS* $\left(A_{8}-A_{15}\right)$	AS (0)	R/W(0)
EXPANDED NON-MUX	$1 / 0$	$1 / 0$	DATA BUS $D_{0}-D_{7}$	ADDRESS BUS* $\left(A_{0}-A_{7}\right)$	IOS (0)	R/W(0)

* THESE LINES CAN BE SUBSTITUTED FOR I/O (INPUT ONLY) STARTING WITH THE MOST SIGNIFICANT ADDRESS LINE
$1=$ INPUT
IS = INPUT STROBE
SC = STROBE CONTROL
$0=$ OUTPUT
OS = OUTPUT STROBE
AS $=$ ADDRESS STROBE
R/W = READ/WRITE
IOS $=1 / 0$ SELECT

Read/Write Timing for Ports 3 and 4 (Figures 1-2)

Symbol	Characteristic	Min.	Typ.	Max.	Unit
$t_{A D}$	Address Delay			270	ns
$t_{A C C}$	Peripheral Read Access Time $t_{A C C}=t_{U T}-\left(t_{A D}+t_{D S R}\right)$			530	ns
toSR	Data Setup Time (Read)	100			ns
$t_{H R}$	Input Data Hold Time	10			ns
thw $^{\text {He }}$	Output Data Hold Time	20			ns
$t_{\text {AH }}$	Address Hold Time (Address, R/W)	20			ns
$t_{\text {DDW }}$	Data Delay Time (Write)		165	225	ns
$\begin{aligned} & t_{P C S} \\ & t_{P C r}, \\ & t_{\text {PCf }} \\ & \hline \end{aligned}$	Processor Controls Processor Control Setup Time Processor Control Rise and Fall Time (Measured between 0.8 V and 2.0 V)	200	-	100	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

Port 3 Strobe Timing (Figure 5-6)

Symbol	Characteristic	Min.	Typ.	Max.	Unit
$\mathrm{t}_{\text {DSD1 }}$	Output Strobe Delay 1			100	$\mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{OSD2}}$	Output Strobe Delay 2			100	$\mu \mathrm{~s}$
$\mathrm{PW}_{\text {IS }}$	Input Strobe Pulse Width	200			ns
t_{IH}	Input Data Hold Time	20			ns
t_{IS}	Input Data Setup Time	100		ns	

Figure 1. Read Data From Memory or Peripherals Expanded Non-Multiplexed

Figure 2. Write Data in Memory or Peripherals

Ports 1 and 2, and Ports 3 and 4 in the Single Chip Mode
Figure 3. Peripheral Data Setup and Hold Time (Read Mode)

Figure 4. Peripheral CMOS Data Delay Times (Write Mode)

Figure 5. Output Strobe Timing - Single Chip Mode

Figure 6. Input Strobe Timing - Single Chip Mode

Figure 8. CMOS Load

Figure 9. Bus Timing Test Load and Ports 1, 3 and 4 for Single Chip Mode

C = 90pF FOR P30-P37, P40-P47, E, SC1, SC2
$R=16.5 \mathrm{~K} \Omega$ FOR P30.P37, P40.P47, E, SC1, SC2
C -

Figure 11. Typical Data Bus Output Delay versus Capacitive Loading

Figure 11. Typical Data Bus Output Delay versus Capacitive Loading

Signal Descriptions

\mathbf{V}_{CC} and \mathbf{V}_{SS}

These two pins are used to supply power and ground to the chip. The voltage supplied will be +5 volts $\pm 5 \%$.

XTAL1 and EXTAL2

These connections are for a parallel resonant fundamental crystal, AT cut. Divide by 4 circuitry is included with the internal clock, so a 4 MHz crystal may be used to run the system at 1 MHz . The divide by 4 circuitry allows for use of the inexpensive 3.56 MHz Color TV
crystal for non-time critical applications. Two 27pF capacitors are needed from the two crystal pins to ground to insure reliable operation. EXTAL2 may be driven by an external clock source at a 4 MHz rate to run at 1 MHz with a $40 / 60 \%$ duty cycle. It is not restricted to 4 MHz . XTAL1 must be grounded if an external clock is used. The following are the recommended crystal parameters:

AT = Cut Parallel Resonance Crystal
$\mathrm{C}_{0}=7 \mathrm{pF}$ Max
$\mathrm{FREQ}=4.0 \mathrm{MHz} @ \mathrm{C}_{\mathrm{L}}=24 \mathrm{pF}$
$\mathrm{R}_{\mathrm{S}}=50$ ohms Max
Frequency Tolerance $= \pm 5 \%$ to $\pm 0.02 \%$
The best E output "Worst Case Design" tolerance is $\pm 0.05 \%$ (500 ppM) using a $\pm 0.02 \%$ crystal.

\mathbf{V}_{Cc} Standby

This pin will supply +5 volts $\pm 5 \%$ to the standby RAM on the chip. The first 64 bytes of RAM will be maintained in the power down mode with 8 mA current max in the ROM version. The circuit of Figure 15 can be utilized to assure that V_{CC} Standby does not go below $V_{\text {SBB }}$ during power down.
To retain information in the RAM during power down the following procedure is necessary:

1) Write " 0 " into the RAM enable bit, RAM E. RAM E is bit 6 of the RAM Control Register at location $\$ 0014$. This disables the standby RAM, thereby protecting it at power down.
2) Keep $V_{C C}$ Standby greater than $V_{S B B}$.

Figure 13. Battery Backup for V_{CC} Standby

Reset

This input is used to reset and start the MPU from a power down condition, resulting from a power failure or
an initial startup of the processor. On power up, the reset must be held low for at least 20 ms . During operation, $\overline{R e s e t}$, when brought low, must be held low at 3 clock cycles.
When a high level is detected, the MPU does the following:
a) All the higher order address lines will be forced high.
b) I/O Port 2 bits, 2, 1, and 0 are latched into programmed control bits PC2, PC1 and PC0.
c) The last two (FFFE, FFFF) locations in memory will be used to load the program addressed by the program counter.
d) The interrupt mask bit is set, must be cleared before the MPU can recognize maskable interrupts.

Enable (E)

This suplies the external clock for the rest of the system when the internal oscillator is used. It is a single phase, TTL compatible clock, and will be the divide by 4 result of the crystal frequency. It will drive one TTL load and 90 pF .

Non-Maskable Interrupt ($\overline{\mathrm{NMI})}$

A low-going edge on this input requests that a nonmaskable interrupt sequence be generated within the processor. As with the Interrupt Request signal, the processor will complete the current instruction that is being executed before it recognizes the $\overline{\mathrm{NMI}}$ signal. The interrupt mask bit in the Condition Code Register has no effect on $\overline{\mathrm{NM}}$.
In response to an $\overline{\mathrm{NM}}$ interrupt, the Index Register, Program Counter, Accumulators, and Condition Code Register are stored on the stack. At the end of the sequence, a 16 -bit address will be loaded that points to a vectoring address located in memory locations FFFC and FFFD. An address loaded at these locations causes the MPU to branch to a non-maskable interrupt service routine in memory.
A $3.3 \mathrm{~K} \Omega$ external resistor to V_{CC} should be used for wire-OR and optimum control of interrupts.
Inputs $\overline{\mathrm{RQ}}$ and $\overline{\mathrm{NMI}}$ are hardware interrupt lines that are sampled during E and will start the interrupt routine on the clock bar following the completion of an instruction.

Interrupt Request ($\overline{\mathbf{R Q} \mathbf{Q}})$

This level sensitive input requests that an interrupt sequence be generated within the machine. The pro-

S6801/S6803

cessor will wait until it completes the current instruction that is being executed before it recognizes the request. At that time, if the interrupt mask bit in the Condition Code Register is not set, the machine will begin an interrupt sequence. The Index Register, Program Counter, Accumulators, and Condition Code Register are stored on the stack. Next the MPU will respond to the interrupt request by setting the interrupt mask bit high so that no further maskable interrupts may occur. At the end of the cycle, a 16-bit address will be loaded that points to a vectoring address which is located in memory locations FFF8 and FFF9. An address loaded at these locations causes the MPU to branch to an interrupt routine in memory.
The IRQ requires a $3.3 \mathrm{~K} \Omega$ external resistor to $\mathrm{V}_{C C}$ which should be used for wire-OR and optimum control of interrupts. Internal Interrupts will use an internal interrupt line (IRQ2). This Interrupt will operate the same as IRQ except that it will use the vector address of FFFO and FFF7. IRQ1 will have priority over IRQ2 if both occur at the same time. The Interrupt Mask Bit in the condition mode register masks both interrupts. (See Figure 23.)

The following pins are available in the Single Chip Mode, and are associated with Port 3 only.
Input Strobe (IS3) (SC1)
This sets an interrupt for the processor when the IS3 Enable bit is set. As shown in Figure 6 Input Strobe Timing, IS3 will fall $\mathrm{T}_{\text {IS }}$ minimum after data is valid on Port 3. If IS3 Enable is set in the I/O Port Control/Status Register, an interrupt will occur. If the latch enable bit in the I/O Control Status Register is set, this strobe will latch the input data from another device when that device has indicated that it has valid data.

Output Strobe ($\overline{\mathrm{OS} 3}$) (SC2)

This signal is used by the processor to strobe an external device, indicating valid data is on the I/O pins. The timing for the Output Strobe is shown in Figure 5. I/O Port Control/Status Register is discussed in the following section.
The following pins are available in the Expanded Modes.

Read Write (R/W) (SC2)

This TTL compatible output signals the peripherals and memory devices whether the MPU is in a Read (high) or a Write (low) state. The normal standby state of this signal is Read (high). This output is capable of driving one TTL load and 90pF.

I/O Strobe (IOS) (SC1)

In the expanded non-multiplexed mode of operation, $\overline{\overline{O S}}$ internally decodes A_{9} through A_{15} as zero's and A_{8} as a one. This allows external access of the 256 locations from $\$ 0100$ to $\$ 01 F F$. The timing diagrams are shown as Figures 1 and 2.

Address Strobe (AS) (SC1)

In the expanded multiplexed mode of operation address strobe is output on this pin. This signal is used to latch the 8 LSBs of address which are multiplexed with data on Port 3. An 8-bit latch is utilized in conjunction with Address Strobe, as shown in Figure 19. Address strobe signals the latch when it is time to latch the address lines so the lines can become data bus lines during the E pulse. The timing for this signal is shown in the MC6801 Bus Timing, Figure 7.This signal is also used to disable the address from the multiplexed bus allowing a deselect time, $\mathrm{T}_{\text {ASD }}$ before the data is enabled to the bus.

S6801 Ports

There are four I/O ports on the S6801 MCU; three 8-bit ports and one 5-bit port. There are two control lines associated with one of the 8-bit ports. Each port has an associated write only Data Direction Register which allows each I/O line to be programmed to act as an input or an output. *A "1" in the corresponding Data Direction Register bit will cause that I/O line to be an output. A " 0 " in the corresponding Data Direction Register bit will cause the l/O line to be an input. There are four ports: Port 1, Port 2, Port 3, and Port 4. Their addresses and the addresses of their Data Direction registers are given in Table 2.

[^19]Table 2. Port and Data Direction Register Addresses

Ports	Port Address	Data Direction Register Address
I/0 Port 1	$\$ 0002$	$\$ 0000$
I/0 Port 2	$\$ 0003$	$\$ 0001$
I/0 Port 3	$\$ 0006$	$\$ 0004$
I/0 Port 4	$\$ 0007$	$\$ 0005$

I/O Port 1

This is an 8-bit port whose individual bits may be defined as inputs or outputs by the corresponding bit in its data direction register. The 8 output buffers have three-state capability, allowing them to enter a high impedance

S6801/S6803

state when the peripheral data lines are used as inputs. In order to be read properly, the voltage on the input lines must be greater than 2.0 volts for a logic " 1 " and less than 0.6 volt for a logic " 0 ". As outputs, these lines are TTL compatible and may also be used as a source of up to 1 mA at 1.5 volts to directly drive a Darlington base. After Reset, the I/O lines are configured as inputs. In all three modes, Port 1 is always parallel I/O.

I/O Port 2

This port has five lines that may be defined as inputs or outputs by its data direction register. The 5 output buffers have three-state capability, allowing them to enter a high impedance state when used as an input. In order to be read properly, the voltage on the input lines must be greater than 2.0 volts for a logic " 1 " and less than 0.8 volt for a logic " 0 ". As outputs, this port has no internal pullup resistors but will drive TTL inputs directly. For driving CMOS inputs, external pullup resistors are required. After Reset, the I/O lines are configured as inputs. Three pins on Port 2 (pins 10, 9 and 8 of the chip) are used to program the mode of operation during reset. The values of these pins at reset are latched into the three MSBs (bits 7, 6 , and 5) of Port 2 which are read only. This is explained in the Mode Selection Section.

In all three modes, Port 2 can be configured as I/O and provides access to the Serial Communications Interface and the Timer. Bit 1 is the only pin restricted to data input or Timer output.

I/O Port 3

This is an 8 -bit port that can be configured as $/ / 0$, as data bus, or an address bus multiplexed with the data bus - depending on the mode of operation hardware programmed by the user at reset. As a data bus, Port 3 is bidirectional. As an input for peripherals, it must be supplied regular TTL levels, that is, greater than 2.0 volts for a logic " 1 " and less than 0.5 volt for a logic " 0 ".

Its TTL compatible three-state output buffers are capable of driving one TTL load and 90 pF. In the Expanded Modes, after reset, the data direction register is inhibited and data flow depends on the state of the R/W line. The input strobe (IS3) and the output strobe (OS3) used for handshaking are explained later.
In the three modes Port 3 assumes the following characteristics:
Single Chip Mode: Parallel Inputs/Outputs as programmed by its associated Data Direction Register. There are two control lines associated with this port in this mode,
an input strobe and an output strobe, that can be used for handshaking. They are controlled by the I/O Port Control/Status Register explained at the end of this section.

Expanded Non-Multiplexed Mode: In this mode Port 3 become the data bus ($\mathrm{D}_{7}-\mathrm{D}_{0}$).
Expanded Multiplexed Mode: In this mode Port 3 becomes both the data bus ($\mathrm{D}_{7}-\mathrm{D}_{0}$) and lower bits of the address bus $\left(\mathrm{A}_{7} \cdot \mathrm{~A}_{0}\right)$. An address strobe output is true when the address is on the port.

I/O Port 3 Control/Status Register

| 7 | 6 | 5 | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| fis3 | IS3 | x | oss | Latch | x | x | x |
| Enable | | | enable | | | | |

Bit 0 Not used.
Bit 1 Not used.
Bit 2 Not used.
Bit 3 Latch Enable. This controls the input latch for I/O Port 3. If this bit is set high the input data will be latched with the falling edge of the input Strobe, IS3. This bit is cleared by reset, or CPU Read Port 3.
Bit 4 (OSS) Output Strobe Select. This bit will select if the Output Strobe should be generated by a write to I/O Port 3 or a read of I/O Port 3. When this bit is cleared the strobe is generated by a read Port 3. When this bit is set the strobe is generated by a write Port 3.
Bit 5 Not used.
Bit 6 IS3 ENABLE. This bit will be the interrupt caused by IS3. When set to a low level the IS3 FLAG will be set by input strobe but the interrupt will not be generated. This bit is cleared by reset.
Bit 7 IS3 FLAG. This is a read only status bit that is set by the failing edge of the input strobe, IS3. It is cleared by a read of the Control/Status Register followed by a read or write of I/O Port 3. Reset will clear this bit.

VO Port 4

This is an 8-bit port that can be configured as I/O or as address lines depending on the mode of operation. In order to be read properly, the voltage on the input lines must be greater than 2.0 volts for a logic " 1 " and less than 0.8 volt for a logic " 0 ". As outputs, each line is TTL compatible and can drive 1 TTL load and 90pF. After reset, the lines are configured as inputs. To use the pins as addresses, therefore, they should be pro-
grammed as outputs in the three modes. Port 4 assumes the following characteristics.
Single Chip Mode: Parallel Inputs/Outputs as programmed by its associated Data Direction Register.

Expanded Non-Multiplexed Mode: In this mode Port 4 is configured as the lower order address lines ($A_{7}-A_{0}$) by writing one's to the data direction register. When all eight address lines are not needed, the remaining line starting with the most significant bit, may be used as I/O (inputs only).
Expanded Multiplexed Mode: In this mode Port 4 is configured as the high order address lines ($\mathrm{A}_{15}-\mathrm{A}_{8}$) by writing one's to the data direction register. When all eight address lines are not needed, the remaining line, starting with the most significant bit, may be used as I/O (inputs only).

Mode Selection

The mode of operation that 6801 will operate in after Reset is determined by hardware that the user must wire on pins 10,9 , and 8 of the chip. These pins are the three LSBs (//O2, I/O1, and I/OO respectively) of Port 2. They are latched into programmed control bits PC2, PC1, and PC0 when reset goes high. I/O Port 2 Register is shown below.
$\$ 0003$

7	6	5	4	3	2	1	0
$P C C 2$	$P C 1$	$P C D$	$V 04$	$V 03$	$V 02$	$V 01$	$V 00$

An example of external hardware that could be used in the Expanded Non-Multiplexed Mode is given in Figure 14. In the Expanded Non-Multiplexed Mode, pins 10, 9 and 8 are programmed Hi , Lo, Hi respectively as shown.
Couplers between the pins on Port 2 and the peripherals attached may be required. If the lines go to devices which require signals at power up differing from the signals needed to program the 6801's mode, couplers are necessary.
The 14066B can be used to provide this isolation between the peripheral device and the MCU during reset. Figure 15 shows the logic diagram and $x x x x x$? for the MC14066B. It is bidirectional and requires no external logic to determine the direction of the information flow. The logic shown insures that the data on the peripheral will not change before it is latched into the MCU and the MCU has started the reset sequence.

Figure 14. Diode Configuration for the Expanded Non-Multiplexed Mode

Figure 15. Quad Analog, Switch/Multiplexer in a Typical S6801 Circuit

$V_{\text {CONTRDL }}$	$V_{\text {W }}$ TO $V_{\text {OUT }}$ RESISTANCE
$V_{S S}$	>109 OHMS TYP.
$V_{D O D}$	300 OHMS TYP.

S6801 Basic Modes

The S6801 is capable of operating in three basic modes, (1) Single Chip Mode, (2) Expanded Multiplexed Mode (compatible with S 6800 peripheral family), (3) Expanded Non-Multiplexed Mode.

Single Chip Mode

In the Single Chip Mode the ports are configured for I/O. In this mode, Port 3 has two associated control lines, an input strobe and an output strobe for handshaking data.

Figure 16. S6801 MCU Single Chip Mode

Expanded Non-Multiplexed Mode

In this mode the S6801 will directly address S6800 peripherals with no external logic. In this mode Port 3 becomes the data bus. Port 4 becomes the $A_{7}-A_{0}$ address bus or partial address and I/O (inputs only). Port 2 can be parallel I/O, serial only. In this mode the S6801 is expandable to 256 locations. The eight address lines associated with Port 4 may be substituted for I/O (inputs only) if a fewer number of address lines will satisfy the application.
The Internal Clock requires only the addition of a crystal for operation. This input will also accept an external TTL or CMOS input, but in either case, the clock frequency will be divided by four for this mask option. (Figure 17)

Expanded Multiplexed Mode

In this mode Port 4 becomes higher order address lines with an alternative of substituting some of the address
lines for $1 / O$ (inputs only). Port 3 is the data bus multiplexed with the lower order address lines differentiated by an output called Address Strobe. Port 2 is 5 lines of Parallel I/O, SC1, Timer, or any combination thereof. Port 1 is 8 Parallel I/O lines. In this mode it is expandable to 65 K words. (Figure 18)
Internal Clock/Divide-by-Four - This mask option is shown in Figure 18. Only an external crystal is required for operation.

Figure 17. S6801 MCU Expanded Non-Multiplexed Mode

Figure 18. S6801 MCU Expanded Multiplexed Mode

Table 3. Mode Selects

MODE		PROGRAM CONTROL			ROM	RAM	Interrupt vectors	BUS
7	Single Chip	Hi	Hi	Hi	1	1	1	1
6	Expanded Multiplexed	Hi	Hi	Lo	1	1	I	Ep/M
5	Expanded Non-Multiplexed	Hi	Lo	Hi	1	1	1	Ep
4	Single Chip Test	Hi	Lo	Lo	(12)	I(1)	1	1
3	64 K Address 1/0	Lo	Hi	Hi)	E	E	Ep/M
2	Ports 3 \& External	Lo	Hi	Lo	E	1	E	Ep/M
1		Lo	Lo	Hi	1	1	E	Ep/M
0	Test Data Outputted from ROM \& ROM to I/O Port 3	Lo	Lo	Lo	1	1	।*	Ep/m
$\begin{aligned} & \mathrm{E}-\mathrm{E} \\ & \mathrm{I}-\mathrm{I} \\ & \text { Ep- } \\ & \text { MULT } \end{aligned}$	NAL all vectors are external NAL NDED XED	*First two addresses read from external after reset (1) Address for RAM XX80-XXFF	*First two addresses read from external after reset (1) Address for RAM XX80-XXFF (2) ROM disabled					

Lower Order Address Bus Latches

Since the data is multiplexed with the lower order address bus in Port 3, latches are required to latch those address bits. The SN74LS373 Transparent octal

D-type latch can be used with the S6801 to latch the least significant address byte. Figure 19 shows how to connect the latch to the S6801. The output control to the LS373 may be connected to ground.

Figure 19. Latch Connection

FUNCTION TABLE				
OUTPUT	ENABLE		OUTPUT	
CONTROL	0	D	0	
L	H	H	H	
L	H	L	L	
L	L	X	Q_{0}	
H	X	X	Z	

A Subsidiary of Gould Inc.

Programmable Timer

The S 6801 contains an on-chip 16 bit programmable timer which may be used to perform measurements on an input waveform while independently generating an output waveform. Pulse widths for both input and output signals may vary from a few microseconds to many seconds. The timer hardware consists of:

- an 8-bit control and status register
- a 16 -bit free running counter
- a 16-bit output compare register, and
- a 16 -bit input capture register

A block diagram of the timer registers is shown in Figure 20.

Figure 20. Block Diagram of Timer Registers

- the characters above the registers represent their adoress in hex.

Free Running Counter (\$0009:000A)

The key element in the programmable timer is a 16 -bit free running counter which is driven to increasing values by the MPU\$. The counter value may be read by the MPU software at any time. The counter is cleared to zero on RESET and may be considered a read-only register with one exception. Any MPU write to the counter's address (\$09) will always result in a preset value of \$FFF8 being loaded into the counter regardless of the value involved in the write. The preset feature is intended for testing operation of the part, but may be of value in some applications.
Output Compare Register ($\$ 000 \mathrm{~B}: 000 \mathrm{C}$)
The Output Compare Register is a 16 -bit read/write register which is used to control an output waveform. The contents of this register are constantly compared with the current value of the free running counter. When a match is found a flag is set (OCF) in the Timer Control and Status Register (TCSR) and the current value of the Output Level bit (OLVL) in the TCSR is
clocked to the output level register. Providing the Data Direction Register for Port 2, Bit 1 contains a "1" (output), the output level register value will appear on the pin for Port 2 Bit 1. The values in the Output Compare Register and Output level bit may then be changed to control the output level on the next compare value. The Output Compare Register is set to \$FFFF during RESET. The Compare function is inhibited for one cycle following a write to the high byte of the Output Compare Register to insure a valid 16 -bit value is in the register before a compare is made.

Input Capture Register (\$000D:000E)

The Input Capture Register is a 16-bit read-only register used to store the current value of the free running counter when the proper transition of an external input signal occurs. This input transition change required to trigger the counter transfer is controlled by the input Edge bit (EDG) in the TOSR. The Data Direction Register bit for Port 1 Bit 0 should *be clear (zero) in order to gate in the external input signal to the edge defect unit in the timer.
*With Port 2 Bit 0 configured as an output and set to "1", the external input will still be seen by the edge detect unit.

Timer Control and Status Register (TCSR) (\$0008)

The Timer Control and Status Register consists of an 8 -bit register of which all 8 bits are readable but only the low order 5 bits may be written. The upper three bits contain read-only timer status information and indicate that:

- a proper transition has taken place on the input pin with a subsequent transfer of the current counter value to the input capture register.
- a match has been found between the value in the free running counter and the output compare register, and
- when $\$ 0000$ is in the free running counter.

Each of the flags may be enabled onto the $\mathbf{S 6 8 0 1}$ internal bus (RO2) with an individual Enable bit in the TCSR. If the 1-bit in the $\mathbf{S 6 8 0 1}$ Condition Code Register has been cleared, a priority vectored interrupt will occur corresponding to the flag bit(s) set. A description for each bit follows:

TIMER CONTROL AND STATUS REGISTER

Bit 0 OLVL. Output Level - This value is clocked to the output level register on an output compare. If the DDR for Port 2 Bit 1 is set, the value will appear on the output pin.
Bit 1 IEDG Input Edge - This bit controls which transition of an input will trigger a transfer of the counter to the input capture register. The DDR for Port 2 Bit 0 must clear for this function to operate.
IEDG $=0$ Tranfer takes place on a negative (high-to-low transition).
IEDG $=1$ Transfer takes place on a positive edge (low-to-high transition).
Bit 2 ETOI Enable Timer Overflow Interrupt - When set, this bit enables IRQ2 to occur on the internal bus for a TOF Interrupt; when clear the interrupt is inhibited.
Bit EOCI Enable Output Compare Interrupt - When set, this bit enables IRQ2 to appear on the internal bus for an input capture interrupt; when clear the interrupt is inhibited.
Bit 4 EICI Enable Input Capture Interrupt - When set, this bit enables IRQ2 to occur on the internal bus for an input capture interrupt; when clear the interrupt is inhibited.
Bit 5 TOF Timer Overflow Flag - This read-only bit is set when the counter contains $\$ 0000$. It is cleared by a read of the TCSR (with TOF set) followed by an MPU read of the Counter (\$09).
Bit 6 OCF Output Compare Flag - This read-only bit is set when a match is found between the output compare register and the free running counter. It is cleared by a read of the TCSR (with ODF set) followed by an MPU write to the output compare register (\$0B or \$0C).
Bit 7 CF Input Capture Flag - This read-only status bit is set by a proper transition on the input to the edge detect unit; it is cleared by a read of the TCSR (with ICF set) followed by an MPU read of the input Capture Register (\$0D).

Serial Communications Interface

The S6801 contains a full-duplex asynchronous serial communications interface (SCI) on board. Two serial data formats (standard mark/space [NRZ] or Bi-phase) are provided at several different data rates. The controller comprises a transmitter and a receiver which operate independently of each other but in the same data format and at the same data rate. Both transmitter
and receiver communicate with the MPU via the data bus and with the outside world via pins 2,3 , and 4 of Port 2. The hardware, software, and registers are explained in the following paragraphs.

Wake-up Feature

In a typical multi-procesor application, the software protocol will usually contain a destination address in the initial byte(s) of the message. In order to permit non-
selected MPU's to ignore the remainder of the message, a wake-up feature is included whereby all further interrupt processing may be optionally inhibited until the beginning of the next message. When the next message appears, the hardware re-enables (or "wakesup') for the next message. The "wake-up" is automatically triggered by a string of ten consecutive 1's which indicates an idle transmit line. The software protocol must provide for the short idle period between any two consecutive messages.

Programmable Options

The following features of the S6801 serial I/O section have programmable:

- format - standard mark/space (NRZ) or Bi-phase
- clock - external or internal
- Baud rate - one of 14 per given MPU\$2 clock frequency or external clock X8 input
- wake-up feature - enabled or disabled
- interrupt requests - enabled or masked individually for transmitter and receiver data registers
- clock output - internal clock enabled or disabled to Port 2 (Bit 2)
- Port 2 (Bits 3 and 4) - dedicated or not dedicated to serial I/O individually for transmitter and receiver

Serial Communications Hardware

The serial communications hardware is controlled by 4 registers as shown in Figure 21. The registers include:

- an 8-bit control and status register
- a 4-bit rate and mode control register (write only)
- an 8-bit read-only receive data register and
- an 8-bit write-only transmit data register

In addition to the four registers, the serial I/O section utilizes Bit 3 (serial input) and Bit 4 (serial output) or Port 2. Bit 2 of Port 2 is utilized if the internal-clock-out or external-clock-in options are selected.

Figure 21. Serial I/O Registers
CONTROL AND STATUS REGISTER \$0011, READ/WRITE EXCEPT "*" (READ ONLY)

7	6	5	4	3	2	1	0
RDRF	ORFE	TDRE	RIE	RE	TIE	TE	WU

RATE AND MODE REGISTER \$0010, WRITE ONLY

PORT 2 BIT 2
P22
PORT 2 BIT 4
(NOT USER ADDRESSABLE)

Transmit/Receive Control and Status (TRCS) Register

The TRCS register consists of an 8-bit register of which all 8 bits may be read while only bits 0-4 may be written. The register is initialized to $\$ 20$ on $\overline{\text { RESET }}$. The bits in the TRCS register are defined as follows:

7	6	5	4	3	2	1	0
RDRE	ORFE	TDRE	RIE	RE	TIE	TE	WU

ADDR. \$0011

Bit 0 WU "Wake-up on Next Message - set by S6801 software cleared by hardware on receipt of ten consecutive 1's.
Bit 1 TE Transmit Enable - set by S6801 to produce preamble of nine consecutive 1's and to enable gating of transmitter output to Port 2, Bit 4 regardless of DDR value corresponding to this bit; when clear, serial $1 / 0$ has no effect on Port 2 Bit 4.

Bit 2 TIE Transmit Interrupt Enable - when set, will permit an $\overline{\mathrm{RQ2}}$ interrupt to occur when Bit 5 (TDRE) is set; when clear, the TDRE value is masked from the bus.

Bit 3 RE Receiver Enable - when set, gates Port 2 Bit 3 to input of receiver regardless of DDR value for this bit; when clear, serial I/O has no effect on Port 2 Bit 3.

Bit 4 RIE Receiver Interrupt Enable - when set, will permit an $\overline{\mathrm{RQ2}}$ interrupt to occur when Bit 7 (RDRF) or Bit 6 (OR) is set; when clear, the interrupt is masked.

Bit 5 TDRE Transmit Data Register Empty - set by hardware when a transfer is made from the transmit data register to the output shift register. The TDRE bit is cleared by reading the status register, then writing a new byte into the transmit data register, TDRE is initialized to 1 by $\overline{\text { RESET }}$.

Bit 6 ORFE Over-Run-Framing Error - set by hardware when an overrun or framing error occurs (receive only). An overrun is defined as a new byte received with last byte still in Data Register/Buffer. A framing error has occurred when the byte boun-

Bit 7 RDRF Receiver Data Register Full - set by hardware when a transfer from the input shift register to the receiver data register is made. The RDRF bit is cleared by reading the status register, then reading the Receive Data Register, or by RESET.

Rate and Mode Control Register

The Rate and Mode Control register controls the following serial I/O variables:

- Baud rate
- format
- Clock source, and
- Port 2 Bit 2 configuration

The register consists of 4 bits all of which are write-only and cleared on $\overline{R E S E T}$. The 4 bits in the register may be considered as a pair of 2-bit fields. The two low order bits control the bit rate for internal clocking and the remaining two bits control the format and clock select logic. The register definition is as follows:

7	6	5	4	3	2	1	0
X	X	X	X	CC 1	CCO	S 1	SO

ADDR. \$0010

Bit 0 SO Speed Select - These bits select the Baud rate for the internal clock. The four rates which may be selected are a function Bit 1 S1 of the MPU $\$ 2$ clock frequency. Table 4 lists the available Baud rate.
Bit 2 CCO Clock Control and Format Select - This 2-bit field controls the format and clock select logic. Table 5 defines the bit field.
Bit 3 CC1

Table 4. SCI Internal Baud Rates

S1, s0	XTAL	$\mathbf{4 . 0 M H z}$	$\mathbf{4 . 9 1 5 2 \mathrm { MHz }}$	$\mathbf{2 . 5 4 7 6 \mathrm { MHz }}$
00	$\phi 2 \div 16$	$62.5 \mathrm{~K} \mathrm{BITS} / \mathrm{S}$	$76.8 \mathrm{~K} \mathrm{BITS} / \mathrm{S}$	$38.4 \mathrm{~K} \mathrm{BITS} / \mathrm{S}$
00	$\phi 2 \div 128$	$7,812.5 \mathrm{BITS} / \mathrm{S}$	$9,600 \mathrm{BITS} / \mathrm{S}$	$4,800 \mathrm{BITS} / \mathrm{S}$
01	$\phi 2 \div 1024$	$976.6 \mathrm{BITS} / \mathrm{S}$	$1,200 \mathrm{BITS} / \mathrm{S}$	$600 \mathrm{BITS} / \mathrm{S}$
10	$\phi 2 \div 4096$	$244.1 \mathrm{BITS} / \mathrm{S}$	$300 \mathrm{BITS} / \mathrm{S}$	$150 \mathrm{BITS} / \mathrm{S}$
11				

Table 5. Bit Field

CC1, CCO	FORMAT	CLOCK SOURCE	PORT 2 BTT 2	PORT 2 BIT 3	PORT 2 BIT 4
00	BI-PHASE	INTERNAL	NOT USED	$* *$	$* *$
01	NRZ	INTERNAL	NOT USED	$* *$	$* *$
10	NRZ	INTERNAL	OUTPUT*	SERIAL INPUT	SERIAL OUTPUT
11	NRZ	EXTERNAL	INPUT	SERIAL INPUT	SERIAL OUTPUT

*CLOCK OUTPUT IS AVAILABLE REGAROLESS OF VALUES FOR BITS RE AND TE.
**BIT 3 IS USED FOR SERIAL INPUT IF RE = " 1 " IN TRCS; BIT 4 IS USED FOR SERIAL OUTPUT IF TE = " 1 " IN TRCS.

Internally Generated Clock

If the user wishes for the serial I/O to furnish a clock, the following requirements are applicable:

- the values of RE and TE are immaterial
- CC1, CC0 must be set to 10
- the maximum clock rate will be $\phi \# 16$
- the clock will be at $1 \times$ the bit rate and will have a rising edge at mid-bit

Externally Generated Clock

If the user wishes to provide an external clock for the serial I/O, the following requirements are applicable:

- the CC1, CC0, field in the Rate and Mode Control Register must be set to 11
- the external clock must be set to 8 times $(\times 8)$ the desired baud rate and
- the maximum external clock frequency is 1.2 MHz .

Serial Operations

The Serial I/O hardware should be initialized by the S6801 software prior to operation. This sequence will normally consists of:

- writing the desired operation control bits to the Rate and Mode Control Register and
- writing the desired operational control bits in the Transmit/Receive Control and Status Register.

The Transmitter Enable (TE) and Receiver Enable (RE) bits may be left set for dedicated operations.

Transmit Operations

The transmit operation is enabled by the TE bit in the Transmit/Receive Control and Status Register. This bit

S6801/S6803

when set, gates the output of the serial transmit shift register to Port 2 Bit 4 and takes unconditional control over the Data Direction Register value for Port 2, Bit 4.
Following a $\overline{\text { RESET, }}$, the user should configure both the Rate and Mode Control Register and the Transmit/ Receiver Control and Status Register for desired operation. Setting the TE bit during this procedure initiates the serial output by first transmitting a ten-bit preamble of 1 s . Following the preamble, internal synchronization is established and the transmitter section is ready for operation.
At this point one of two situations exist:
a) if the Transmit Data Register is empty (TDRE = 1), a continuous string of ones will be sent indicating an idle line, or
b) if data has been loaded into the Transmit Data Register (TDRE $=0$), the word is transferred to the output shift register and transmission of the data word will begin.
During the transfer itself, the 0 start bit is first transmitted. Then the 8 data bits (beginning with bit 0) followed by the stop bit, are transmitted. When the Transmitter Data Register has been emptied, the hardware sets the TDRE flag bit.
If the S6801 fails to respond to the flag within the proper time, (TDRE is still set when the next normal transfer from the parallel data register to the serial output register should occur) then a 1 will be sent (instead of a 0) at "Start" bit time, followed by more is until more data is supplied to the data register. No 0s will be sent while TDRE remains a 1.
The Bi-phase mode operates as described above except that the serial output toggles each bit time, and on $1 / 2$ bit times when a 1 is sent.

Receiver Operation

The receive operation is enabled by the RE bit which gates in the serial input through Port 2 Bit 3. The receiver section operation is conditioned by the contents of the Transmit/Receive Control and Status Register and the Rate and Mode Control Register.
The receiver bit interval is divided into 8 sub-intervals for internal synchronization. In the standard, non-Biphase mode, the received bit stream is synchronized by the first 0 (space) encountered.
The approximate center of each bit time is strobed during the next 10 bits. If the tenth bit is not a 1 (stop bit) a
framing error is assumed, and bit ORFE is set. If the tenth bit is 1 , the data is transferred to the Receiver Data Register, and interrupt flag RDRF is set. If RDRF is still set at the next tenth bit time, ORFE will be set, indicating an over-run has occurred. When the S6801 responds to either flag (RDRF or ORFE) by reading the status register followed by reading the Data Register RDRF (or ORFE) will be cleared.

Ram Control Register

This register, which is addressed at $\$ 0014$, gives status information about the standby RAM. An 0 in the RAM enable bit (RAM E) will disable the standby RAM, thereby protecting it at power down if V_{Cc} is held greater than $V_{\text {SBB }}$ volts, as explained previously in the signal description for $V_{C C}$ Standby.

Stand- BY bit	ram E	X	X	X	X	X	X

Bit 1 Not used.
Bit 2 Not used.
Bit 3 Not used.
Bit 4 Not used.
Bit 5 Not used.
Bit 6 The RAM ENABLE control bit allows the user the ability to disable the standby RAM. This bit is set to a logic "one" by reset which enables the standby RAM and can be written to or zero under program control. When the RAM is disabled, logic "zero", data is read from external memory.
Bit 7 The STANDBY BIT of the control register, $\$ 0014$, is cleared when the standby voltage is removed. This bit is a read/write status flag that the user can read which indicates that the standby RAM voltage has been applied, and the data in the standby RAM is valid.
The 66801 provides up to 65 K bytes of memory for program and/or data storage. The memory map is shown in Figure 22.
Locations $\$ 0020$ through $\$ 007 \mathrm{~F}$ access external RAM or I/O Internal RAM is accessed at $\$ 0080$ through $\$ 00 F F$. The RAM may be alternately selected by mask programming at location \$A000. However, if the user desires to access external RAM at those locations he may do so by clearing the RAM ENABLE control bit of the RAM Control Register. In this way an extra 126

S6801/S6803

bytes of external RAM are available. The first 64 bytes of the 128 bytes of on-chip RAM are provided with a separate power supply. This will maintain the 64 bytes of RAM in the power down mode as explained in the pin description for V_{CC} Standby.

Figure 22. Memory Map

Locations $\$ 0100$ through $\$ 01$ FF are available in the Expanded Non-Multiplexed Mode. The eight address lines of Port 4 make this 256 word expandability possible. Those not needed for address lines can be used as input lines instead.
The full range of addresses available to the user is in the Expanded Multiplexed Mode. Locations $\$ 0200$ through \$F7FF can be used as external RAM, external ROM, or I/O. Any higher order bit not required for addressing can be used as I/O as in the Expanded NonMultiplexed Mode.
The internal ROM is located at $\$$ F800 through \$FFFF. The decoder for the ROM may be mask programmed on
A_{12} and A_{13} as zeros or ones to provide for $\$ \mathrm{C} 800$, $\$ D 800, \$ E 800$ for the ROM address. A_{12} and A_{13} may also be don't care in this decoder. The primary address for the ROM will be \$F800.
The first 32 bytes are for the special purpose registers as shown in Table 6.

Table 6. Special Registers

HEX ADDRESS	REGISTER
00	DATA DIRECTION 1
01	DATA DIRECTION 2
02	I/O PORT 1
03	1/O PORT 2
04	DATA DIRECTION 3
05	DATA DIRECTION 4
06	$1 / 0$ PORT 3
07	I/O PORT 4
08	TCSR
09	COUNTER HIGH BYTE
OA	COUNTER LOW BYTE
OB	OUTPUT COMPARE HIGH BYTE
0 C	OUTPUT COMPARE LOW BYTE
0 D	INPUT CAPTURE HIGH BYTE
OE	INPUT CAPTURE LOW BYTE
OF	I/O PORT 3 C/S REGISTER
10	SERIAL RATE AND MODE REGISTER
11	SERIAL CONTROL AND STATUS REGISTER
12	SERIAL RECEIVER DATA REGISTER
13	SERIAL TRANSMIT DATA REGISTER
14	RAM/EROM CONTROL REGISTER

Figure 23. Memory Map for Interrupt Vectors

Highest Priority	VECTOR		DESCRIPTION
	MS	LS	
	FFFE,	FFFF	Restart
	FFFC,	FFFD	Non-Maskable Intermupt
	FFFA,	FFFD	Software Intemupt
	FFF8,	FFF9	IRQ1/natemupt Strobe S
	FFF6,	FFF7	IRO2/Timer Input Capture
	FFF4,	FFF5	IRQ2/Timer Output Compare
	FFF2,	FFF3	IRQ2/Timer Overfiow
Lowest Priority	FFFO,	FFF1	IRO2/Serial VO Intemupt

General Description of Instruction Set

The S6801 is upward object code compatible with the S6800 as it implements the full S6800 instruction set. The execution times of key instructions have been reduced to increase throughput. In addition, new instructions have been added; these include 16 -bit operations and a hardware multiply.
Included in the instruction set section are the following:

- MPU Programming Model (Figure 24)
- Addressing modes
- Accumulator and memory instructions-Table 7
- New instructions
- Index register and stack manipulations-Table 8
- Jump and branch instructions-Table 9
- Special operations-Figure 25
- Condition code register manipulation instructionsTable 10
- Instruction Execution times in machine cyclesTable 11
- Summary of cycle by cycle operation-Table 12

MPU Programming Model

The programming model for the S 6801 is shown in Figure 24. The double (D) accumulator is physically the same as the A Accumulator concatenated with the B Accumulator so that any operation using accumulator D will destroy information in A and B.

Figure 24. MCU Programming Model

MPU Addressing Modes

The S6801 eight-bit microcomputer unit has seven address modes that can be used by a programmer, with the addressing mode a function of both the type of instruction and the coding within the instruction. A summary of the addressing modes for a particular instruction can be found in Table 11 along with the associated instruction execution time that is given in machine cycles. With a clock frequency of 4 MHz , these times would be microseconds.
Accumulator (ACCX) Addressing-In accumulator only addressing, either accumulator A or accumulator B is specified. These are one-byte instructions.
Immediate Addressing-In immediate addressing, the operand is contained in the second byte of the instruction except LDS and LDX which have the operand in the second and third bytes of the instruction. The MCU addresses this location when it fetches the immediate instruction for execution. These are two or three-byte instructions.
Direct Addressing - In direct addressing, the address of the operand is contained in the second byte of the instruction. Direct addressing allows the user to directly address the lowest 256 bytes in the machine i.e., locations zero through 255. Enhanced execution times are achieved by storing data in these locations. In most configurations, it should be a random access memory. These are two-byte instructions.
Extended Addressing-In extended addressing, the address contained in the second byte of the instruction is used as the higher eight-bits of the address of the operand. The third byte of the instruction is used as the lower eight-bits of the address for the operand. This is an absolute address in memory. These are three-byte instructions.
Indexed Addressing-In indexed addressing, the address contained in the second byte of the instruction is added to the index register's lowest eight bits in the MCU. The carry is then added to the higher order eight bits of the index register. This result is then used to address memory. The modified address is held in a temporary address register so there is no change to the index register. These are two-byte instructions.
Implied Addressing-In the implied addressing mode the instruction gives the address (i.e., stack pointer, index register, etc.). These are one-byte instructions.
Relative Addressing-In relative addressing, the address contained in the second byte of the instruction is added to the program counter's lowest eight bits plus two. The carry or borrow is then added to the high eight bits. This allows the user to address data within a range of -125 to +120 bytes of the present instruction. These are two-byte instructions.

Table 7. Accumulator \& Memory Instructions

ACCUMULATOR AND MEMORY		IMMED.			$\begin{aligned} & \text { ADDR } \\ & \text { DIRECT } \end{aligned}$			RESSING INDEX				EXTEND			INHERENT				5	4	3	2	1	0
Operations	MNEMONIC	OP	\sim	\#	OP	\sim	\#	OP	\sim		\#	OP	\sim	\#	OP	\sim	\#	Boolean/Arithmetic Operation	H	1	N	2	V	C
ADD	ADDA	8B	2	2	9B	3	2	AB	4		2	BB	4	3				$A+M \rightarrow A$	1	-	\uparrow	\downarrow	\uparrow	\uparrow
	ADDB	CB	2	2	DB	3	2	EB	4		2	FB	4	3				$B+M \rightarrow B$	1	-	\uparrow	\downarrow	\uparrow	\uparrow
ADD DOUBLE	ADDD	C3	4	3	D3	5	2	E3	6		2	F3	6	3				$A: B+M: M+1 \rightarrow A: B$	-	-	\uparrow	\downarrow	\uparrow	\uparrow
ADD ACCUMULATORS	ABA														1 B	2	1	$A+B \rightarrow A$	\downarrow	\bullet	\uparrow	\downarrow	\downarrow	\uparrow
ADD WITH CARRY	ADCA	89	2	2	99	3	2	A9	4		2	B9	4	3				$A+M+C \rightarrow A$		-	\downarrow	1	\uparrow	1
	ADCB	C9	2	2	D9	3	2	E9	4		2	F9	4	3				$B+M+C \rightarrow B$		-	1	1	\uparrow	\ddagger
AND	ANDA	84	2	2	94	3	2	A4	4		2	B4	4	3				$A M \rightarrow A$	\bullet	-	\pm	\dagger	R	\bullet
	ANDB	C4	2	2	D4	3	2	E4	4		2	F4	4	3				$B M \rightarrow B$	-	-	\pm	1	R	-
BIT TEST	BIT A	85	2	2	95	3	2	A5	4		2	B5	4	3				A M	-	-	1	1	R	\bullet
	BIT B	C5	2	2	D5	3	2	E5	4		2	F5	4	3				B M	-	-	\uparrow	\ddagger	R	\bullet
CLEAR	CLR							6 F	6		2	7 F	6	3				$00 \rightarrow \mathrm{M}$	-	-	R	S	R	R
	CLRA														4 F	2	1	$00 \rightarrow A$	-	-	R	S	R	R
	CLRB														5 F	2	1	$00 \rightarrow B$	-	-	R	S	R	R
COMPARE	CMPA	81	2	2	91	3	2	A1	4		2	B1	4	3				$A-M$	\bullet	-	1	1	\pm	\uparrow
	CMPB	C1	2	2	D1	3	2	E1	4		2	F1	4	3				$B-M$	\bullet	-	\uparrow	\uparrow	\ddagger	1
COMPARE ACCUMULATORS	CBA														11	2	1	$A-B$	-	-	\uparrow	\dagger	\downarrow	\uparrow
COMPLEMENT, 1'S	COM							63	6		2	73	6	3				$M \rightarrow M$	-	-	\uparrow	\downarrow	R	S
	COMA														43	2	1	$A \rightarrow A$	-	-	1	\ddagger	R	S
	COMB														53	2	1	$B \rightarrow B$	\bullet	-	\uparrow	\ddagger	R	S
COMPLEMENT, 2'S	NEG							60	6		2	70	6	3				$O C-M \rightarrow M$	-	-	\uparrow	\uparrow	(1)	(2)
(NEGATE)	NEGA														40	2	1	$00-A \rightarrow A$	\bullet	\bullet	1	\uparrow	(1)	(2)
NEGB															50	2	1	$00-B \rightarrow B$	-	-	\uparrow	\ddagger	(1)	(2)
DECIMAL ADJUST, A	DAA														19	2	1	Converts binary add of BCD characters into BCD format	-	-	\uparrow	\downarrow	\downarrow	(3)
DECREMENT	DEC							6 A	6		2	7A	6	3				$\mathrm{M}-1 \rightarrow \mathrm{M}$	-	-	1	\uparrow	(4)	-
	DECA														4A	2	1	$A-1 \rightarrow A$	-	-	1	\uparrow	(4)	-
	DECB														5A	2	1	$B-1 \rightarrow B$	\bullet	-	1	\uparrow	(4)	-
EXCLUSIVE OR	EORA	88	2	2	98	3	2	A8	4		2	B8	4	3				$A \oplus M \rightarrow A$	-	-	\uparrow	\uparrow	R	-
	EORB	C8	2	2	D8	3	2	E8	4		2	F8	4	3				$B \oplus M \rightarrow B$	-	-	\downarrow	\uparrow	R	-
INCREMENT	INC							9 C	6		2	7 C	6	3				$M+1 \rightarrow M$	-	-	\ddagger	\uparrow	(5)	\bullet
	INCA														4C	2	1	$A+1 \rightarrow A$	-	-	1	\uparrow	(5)	-
	INCB														5 C	2	1	$B+1 \rightarrow B$	-	-	\uparrow	\uparrow	(5)	\bullet
LOAD ACCUMULATOR	LDAA	86	2	2	96	3	2	A6	4		2	B6	4	3				$\mathrm{M} \rightarrow \mathrm{A}$	-	-	\downarrow	\dagger	R	-
	LDAB	C6	2	2	D6	3	2	E6	4		2	F6	4	3				$\mathrm{M} \rightarrow \mathrm{B}$	\bullet	\bullet	1	\downarrow	R	-
LOAD DOUBLE ACCUMULATOR	LDAD	CC	3	3	DC	4	2	EC	5		2	FC	5	3				$M+A M+1 \rightarrow B$	-	-	1	\downarrow	R	-
MULTIPLY UNSIGNED	MUL														30	10	1	$A \times B \rightarrow A B$	-	-	-	-	-	(12)
OR, INCLUSIVE	ORAA	8A	2	2	9A	3	2	AA	4		2	BA	4	3				$A+M \rightarrow A$	\bullet	-	\downarrow	\downarrow	R	-
	ORAB	CA	2	2	DA	3	2	EA	4		2	FA	4	3				$B+M \rightarrow B$	-	-		\downarrow	-	-

The Condition Code Register notes are listed after Table 10.

Table 7. Accumulator \& Memory Instructions (Continued)

ACCUMULATOR AND MEMORY		IMMED.			DIRECT			ESSING INDEX			MODES EXTEND			INHERENT				5	4	3	2	1	0
Operations	MNEMONIC	OP	\sim	\#	Boolean/Arithmetic Operation	H	1	N	Z	V	C												
PUSH DATA	PSHA													36	3	1	$A \rightarrow M_{\text {Sp }} \mathrm{SP}-1 \rightarrow \mathrm{SP}$	-	\bullet	\bullet	-	\bullet	\bullet
	PSHB													37	3	1	$B \rightarrow M_{S p} \mathrm{SP}-1 \rightarrow \mathrm{SP}$	-	-	-	-	-	-
PULL DATA	PULA													33	4	1	$S P+1 \rightarrow S P . M_{S P} \rightarrow A$	-	-	-	-	\bullet	-
	PULB													33	4	1	$S P+1 \rightarrow S P, M_{S p} \rightarrow B$	-	-	\bullet	-	\bullet	\bullet
ROTATE LEFT	ROL							69	6	2	79	6	3					\bullet	\bullet	\ddagger	\downarrow	(6)	1
	ROLA													49	2	1		-	\bullet	\downarrow	\downarrow	(6)	\uparrow
	ROLB													59	2	1		-	\bullet	\downarrow	\downarrow	(6)	\uparrow
ROTATE RIGHT	ROR							66	6	2	76	6	3					-	-	\downarrow	\downarrow	(6)	\downarrow
	RORA													46	2	1		-	-	\ddagger	1	(6)	\uparrow
	RORB													56	2	1		-	\bullet	\downarrow	\downarrow	(6)	\ddagger
SHIFT LEFT Arithmetic	ASL							66	6	2	78	6	3					\bullet	-	\uparrow	\uparrow	(6)	\downarrow
	ASLA													48	2	1		-	-	\uparrow	\downarrow	(6)	\uparrow
	ASLB													58	2	1		-	-	\uparrow	\uparrow	(6)	\uparrow
DOUBLE SHIFT LEFT, Arithmetic	ASLD													05	3	1		-	-	\uparrow	\downarrow	(6)	\bullet
SHIFT RIGHT Arithmetic	ASR							67	6	2	77	6	3					-	-	\downarrow	\downarrow	(6)	\uparrow
	ASRA													47	2	1		-	-	\downarrow	\downarrow	(6)	1
	ASRB													57	2	1		-	-	\uparrow	\downarrow	(6)	\downarrow
SHIFT RIGHT, LOGICAL	LSR							64	6	2	74	6	3					-	-	\uparrow	\downarrow	(6)	\downarrow
	LSRA													44	2	1		-	-	\uparrow	\downarrow	(6)	\downarrow
	LSRB													54	2	1				\downarrow	\uparrow		\ddagger
DOUBLE SHIFT RIGHT LOGICAL	LSRD													04	3	1		-	-	R	\downarrow \downarrow	(6) 6	\downarrow
STORE ACCUMULȦTOR	STAA				97	3	2	A7	4	2	B7	4	3				$A \rightarrow M$	-	-	\uparrow	\downarrow	R	\bullet
	STAB				D7	3	2	E7	4	2	B7	4	3				$B \rightarrow M$	-	-	\downarrow	\downarrow	R	\bullet
STORE DOUBLE ACCUMULATOR	STAD				DD	4	2	ED	5	2	FD	5	3				$\begin{gathered} A \rightarrow M \\ B \rightarrow M+1 \end{gathered}$	-	-	\downarrow \downarrow	\uparrow	R	-
SUBTRACT	SUBA	80	2	2	90	3	2	A0	4	2	B0	4	3				$A \rightarrow M \rightarrow A$	-	\bullet	\uparrow	\uparrow	\uparrow	\downarrow
	SUBB	CO	2	2	00	3	2	E0	4	2	FO	4	3				$B-M \rightarrow B$	-	-	\downarrow	\uparrow	\downarrow	\downarrow
DOUBLE SUBTRACT	SUBD	83	4	3	93	5	2	A3	6	2	B3	6	3				$A: B-M: M+1 \rightarrow A B$	-	-	\downarrow	\downarrow	\downarrow	\downarrow
SUBTRACT ACCUMULATORS	SBA													10	2	1	$A-B \rightarrow A$	-	-	\uparrow	\uparrow	\downarrow	\uparrow
SUBTRACT WITH CARRY	SBCA	82	2	2	92	3	2	A2	4	2	B2	4	3				$A-M-C \rightarrow A$	-	-	\uparrow	\uparrow	\downarrow	\uparrow
	SBCD	C2	2	2	D2	2	2	E2	4	2	F2	4	3				$B-M-C \rightarrow B$	-	-	\uparrow	\uparrow	\downarrow	\uparrow
TRANSFER ACCUMULATORS	TAB													16	2	1	$A \rightarrow B$	-	-	\uparrow	\uparrow	R	-
	TBA													16	2	1	$A \rightarrow B$	-	-	\uparrow	\uparrow	R	-
TEST ZERO OR MINUS	TST							6D	6	2	7 D	6	3				$\mathrm{M}-00$	-	-	\downarrow	\downarrow	R	R
	TSTB													50	2	1	B-00	-	-	\downarrow	\uparrow	R	R

Added Instructions

In addition to the existing S6800 Instruction Set, the following new instructions are incorporated in the S6801 Microcomputer.

ABX Adds the 8 -bit unsigned accumulator B to the 16 -bit X-Register taking into account the possible carry out of the low order byte of the X -Register
ADDD Adds the double precision $A C C D^{*}$ to the double precision value $M: M+1$ and places the results in ACCD.

ASLD Shifts all bits of ACCAB one place to the left. Bit 0 is loaded with zero. The C bit is loaded from the most significant bit of ACCD.
LDD Loads the contents of double precision memory location into the double accumulator $A: B$. The condition codes are set according to the data.
LSRD Shifts all bits of ACCD one place to the right. Bit 15 is loaded with zero. The C bit is loaded from the least significant bit to ACCD.
MUL Multiplies the 8 bits in accumulator A with the 8 bits in accumulator B to obtain a 16 -bit unsigned number in $A: B$. ACCA contains MSB of result.
PSHX The contents of the index register is pushed onto the stack at the address contained in the stack pointer. The stack pointer is decremented by 2.
PULX The index register is pulled from the stack beginning at the current address contained in the stack pointer +1 . The stack pointer is incremented by 2 in total.
STD Stores the contents of double accumulator $A: B$ in memory. The contents of $A C C D$ remain unchanged.

$I X \leftarrow I X \quad+A C C B$
 $A C C D \leftarrow(A C C D)+(M: M+1)$

ACCD \leftarrow ACCA *ACCB
$\downarrow(1 X L), S P \leftarrow(S P)-1$
$\downarrow(1 X L), S P \leftarrow(S P)-1$
$S P \leftarrow(S P)+1 ; I X H$
$S P \leftarrow(S P)+1 ; 1 H L$
$M: M+1 \leftarrow(A C C D)$

* ACCD is the 16 -bit register $(A: B)$ formed by concatenating the A and B accumulators. The A-accumulator is the most significant byte.

Table 8. Index Register and Stack Manipulation Instructions

POINTER OPERATIONS	MNEMONIC	IMMED.			DIRECT			INDEX			EXTEND			IMPLIED			Boolean/Arithmetic Operation	COND. CODE REG.											
					5	4	3				2	1	0																
		OP	\sim	\#				OP	\sim	\#				OP	\sim	\#		OP	\sim	\#	OP	\sim	\#	H	1	N	Z	V	C
Compare Index Reg	CPX	8C	4	3	9C	5	2	AC	6	2	BC	6	3				$X_{H}-M, X_{L}-(M+1)$	\bullet	\bullet	(7)	\uparrow	(8)	-						
Decrement Index Reg	DEX													09	3	1	$X-1 \rightarrow X$	-	-	-	\uparrow	-	-						
Decrement Stack Pointer	DES													34	3	1	SP-1 \rightarrow SP	\bullet	-	-	-	-	-						
Increment Index Reg	INX													08	3	1	$X+1 \rightarrow X$	\bullet	-	-	\uparrow	-	-						
Increment Stack Pointer	INS													31	3	1	$1 \mathrm{SP}+1 \rightarrow \mathrm{SP}$	-	-	-	-	-	-						
Load Index Reg	LDX	CE	3	3	DE	4	2	EE	5	2	FE	5	3				$M \rightarrow X_{H},(M+1) \rightarrow X_{L}$	\bullet	-	(9)	t	R	-						
Load Stack Pointer	LDS	8E	3	3	9E	4	2	AE	5	2	BE	5	3				$M \rightarrow S P_{H},(M+1) \rightarrow S P_{L}$	-	-	(9)	\downarrow	R	-						
Store index Reg	STX				DF	4	2	EF	5	2	FF	5	3				$X_{H} \rightarrow M, X_{L} \rightarrow(M+1)$	-	-	(9)	\downarrow	R	-						
Store Stack Pointer	STS				9F	5	2	AF	7	2	BF	6	3				$S P_{H} \rightarrow M, S P_{L} \rightarrow(M+1)$	\bullet	-	(9)	\uparrow	R	-						
Index Reg \rightarrow Stack Pointer	TXS													35	3	1	$X-1 \rightarrow$ SP	-	-	-	-	-	-						
Stack Pointer \rightarrow Index Reg	TSX													30	3	1	$S P+1 \rightarrow X$	-	-	-	-	-	-						
Add	ABX													3A	3	1	$B+X \rightarrow X$	\bullet	-	-	-	-	-						
Push Data	PSHX													3 C	3	1	$X_{L} \rightarrow M_{S P}, S P-1 \rightarrow S P$	-	-	-	-	-	-						
Pull Data	PULX													30	5	1	$\begin{aligned} & X_{H} \rightarrow H_{S P}, S P-1 \rightarrow S P \\ & S P+1 \rightarrow S P, M_{S P} \rightarrow X_{H} \\ & S P+1 \rightarrow S P, M_{S P} \rightarrow X_{L} \end{aligned}$	-	-	-	-	-	-						

[^20]Table 9. Jump and Branch Instructions

Table 10. Condition Code Register Manipulation Instructions

OPERATIONS	MNEMONIC	IMPLIED			BOOLEAN OPERATION	COND. CODE REG.						
					5	4	3	2	1	0		
		OP	\sim	\#		H	1	N	Z	V	C	
Clear Carry	CLC	OC	2	1		$0 \rightarrow C$	-	-	-	-	-	R
Clear Interrupt Mask	CLI	OE	2	1	$0 \rightarrow 1$	-	R	-	-	-	-	
Clear Overflow	CLV	OA	2	1	$0 \rightarrow V$	-	-	-	-	R	-	
Set Carry	SEC	OD	2	1	$1 \rightarrow \mathrm{C}$	-	-	-	-	-	S	
Set Interrupt Mask	SEI	OF	2	1	$1 \rightarrow 1$	-	S	-	-	-	-	
Set Overflow	SEV	OB	2	1	$1 \rightarrow V$	-	-	-	-	S	-	
Accumulator $\mathrm{A} \rightarrow \mathrm{CCR}$	TAP	06	2	1	$A \rightarrow C C R$							
CCR \rightarrow Accumulator A	TPA	07	2	1	$\mathrm{CCR} \rightarrow \mathrm{A}$	-	-	-	-	-	-	

CONDITION CODE REGISTER NOTES: (Bit set if test is true and cleared otherwise).

1	(Bit V)	Test Result $=10000000$?
2	(Bit C)	Test Result $=00000000$?
3	(Bit C)	Test: Decimal value of most significant BCD Character greater
		than nine? (Not cleared if previously set.)
4	(Bit V)	Test: Operand $=10000000$ prior to execution?
5	(Bit V)	Test: Operand $=01111111$ prior to execution?
6	(Bit V)	Test: Set equal to result of $N \oplus C$ after shift has occurred.

[^21]Figure 25. Special Operations

JSR, JUMP TO SUBROUTINE:

BSR, BRANCH TO SUBROUTINE:

JMP, JUMP;

RTS, RETURN FROM SUBROUTINE:

RTI, RETURN FROM INTERRUPT:

Table 11. Instruction Execution Times in Machine Cycle

Summary of Cycle by Cycle Operation

Table 12 provides a detailed description of the information present on the Address Bus, Data Bus, and the Read/Write line (R/W) during each cycle for each instruction.
This information is useful in comparing actual with expected results during debug of both software and hardware as the control program is executed. The information is categorized in groups according to addressing mode and number of cycles per instruction. (In general, instructions with the same addressing mode and number of cycles execute in the same manner; exceptions are indicated in the table).
Table 12. Cycle by Cycle Operation

ADDRESS MODE \& INSTRUCTIONS	CYCLE	CYCLE \#	ADDRESS BUS	$\begin{aligned} & \text { R/W } \\ & \text { LINE } \end{aligned}$	DATA BUS
IMMEDIATE					
ADC EOR ADD LDA AND ORA BIT SBC CMP SUB	2	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	OP CODE OPERAND DATA
$\begin{aligned} & \text { LDS } \\ & \text { LDX } \end{aligned}$	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 OP CODE ADDRESS + 2	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	OP CODE OPERAND DATA (High Order Byte) OPERAND DATA (Low Order Byte)
$\begin{aligned} & \hline \text { CPX } \\ & \text { SUBD } \\ & \text { ADDD } \end{aligned}$	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 OP CODE ADDRESS + 2 ADDRESS BUS FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	OP CODE OPERAND DATA (High Order Byte) OPERAND DATA (Low Order Byte) LOW BYTE OF RESTART VECTOR
DIRECT					
ADC EOR ADD LDA AND ORA BIT SBC CMP SUB	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 ADDRESS OF OPERAND	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	OP CODE ADDRESS OF OPERAND OPERAND DATA
STA	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 DESTINATION ADDRESS	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	OP CODE DESTINATION ADDRESS DATA FROM ACCUMULATOR
$\begin{aligned} & \text { LDS } \\ & \text { LDX } \\ & \text { LDD } \end{aligned}$	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 ADDRESS OF OPERAND OPERAND ADDRESS + 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	OP CODE ADDRESS OF OPERAND OPERAND DATA (High Order Byte) OPERAND DATA (Low Order Byte)
$\begin{aligned} & \text { STS } \\ & \text { STX } \\ & \text { STD } \end{aligned}$	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 ADDRESS OF OPERAND ADDRESS OF OPERAND + 1	$\begin{array}{r} 1 \\ 1 \\ 0 \\ \hline \quad 0 \\ \hline \end{array}$	OP CODE ADDRESS OF OPERAND REGISTER DATA (High Order Byte) REGISTER DATA (Low Order Byte)
$\begin{aligned} & \text { CPX } \\ & \text { SUBD } \\ & \text { ADDD } \end{aligned}$	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 OPERAND ADDRESS OPERAND ADDRESS + 1 ADDRESS BUS FFFF	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	OP CODE ADDRESS OF OPERAND OPERAND DATA (High Order Byte) OPERAND DATA (Low Order Byte) LOW BYTE OF RESTART VECTOR
JSR	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 SUBROUTINE ADDRESS STACK POINTER STACK POINTER + 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	OP CODE IRRELEVANT DATA FIRST SUBROUTINE OP CODE RETURN ADDRESS (High Order Byte) RETURN ADDRESS (Low Order Byte)

Table 12. Cycle by Cycle Operation (continued)

ADDRESS MODE \& INSTRUCTIONS	CYCLE	CYCLE \#	ADDRESS BUS	R/W LNE	DATA BUS
NDEXED					
JMP	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 ADDRESS BUS FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	```OP CODE OFFSET LOW BYTE OF RESTART VECTOR```
ADC EOR ADD LDA AND ORA BIT SBC CMP SUB	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 ADDRESS BUS FFFF INDEX REGISTER PLUS OFFSET	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	OP CODE OFFSET LOW BYTE OF RESTART VECTOR OPERAND DATA
STA	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 ADDRESS BUS FFFF INDEX REGISTER PLUS OFFSET	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	OP CODE OFFSET LOW BYTE OF RESTART VECTOR OPERAND DATA
$\begin{aligned} & \text { LDS } \\ & \text { LDX } \\ & \text { LDD } \end{aligned}$	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 ADDRESS BUS FFFF INDEX REGISTER PLUS OFFSET INDEX REGISTER + 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	OP CODE OFFSET LOW BYTE OF RESTART VECTOR OPERAND DATA (High Order Byte) OPERAND DATA (Low Order Byte)
$\begin{aligned} & \text { STS } \\ & \text { STX } \\ & \text { STD } \end{aligned}$	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 ADDRESS BUS FFFF INDEX REGISTER PLUS OFFSET INDEX REGISTER PLUS OFFSET	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	OP CODE OFFSET LOW BYTE OF RESTART VECTOR OPERAND DATA (High Order Byte) OPERAND DATA (Low Order Byte)
ASL LSR ASR NEG CLR ROL COM ROR DEC TST (1) INC	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 ADDRESS BUS FFFF INDEX REGISTER PLUS OFFSET ADDRESS BUS FFFF INDEX REGISTER PLUS OFFSET	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	OP CODE OFFSET LOW BYTE OF RESTART VECTOR CURRENT OPERAND DATA CURRENT OPERAND DATA NEW OPERAND DATA
$\begin{aligned} & \hline \text { CPX } \\ & \text { SUBD } \\ & \text { ADDD } \end{aligned}$	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 ADDRESS BUS FFFF INDEX REGISTER + OFFSET INDEX REGISTER + OFFSET ADDRESS BUS FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	OP CODE OFFSET LOW BYTE OF RESTART VECTOR OPERAND DATA (High Order Byte) OPERAND DATA (Low Order Byte) LOW BYTE OF RESTART VECTOR
JSR	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 ADDRESS BUS FFFF INDEX REGISTER + OFFSET STACK POINTER STACK POINTER + 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	OP CODE OFFSET LOW BYTE OF RESTART VECTOR FIRST SUBROUTINE OP CODE RETURN ADDRESS (Low Order Byte RETURN ADDRESS (High Order Byte)
EXTENDED					
JMP	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { OP CODE ADDRESS } \\ & \text { OP CODE ADDRESS + } 1 \\ & \text { OP CODE ADDRESS } \end{aligned}$	1 1 1	OP CODE JUMP ADDRESS (High Order Byte) JUMP ADDRESS (Low Order Byte)

Table 12. Cycle by Cycle Operation (continued)

ADDRESS MODE \& NSTRUCTIONS	CYCLE	CYCLE \#	ADDRESS BUS	$\begin{aligned} & \text { R/W } \\ & \text { LINE } \end{aligned}$	DATA BUS
EXTENDED					
ADC EOR ADD LDA AND ORA BIT SBC CMP SUB	4	$\overline{1}$	OP CODE ADDRESS OP CODE ADDRESS + 1 OP CODE ADDRESS + 2 ADDRESS OF OPERAND	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	OP CODE ADDRESS OF OPERAND ADDRESS OF OPERAND (Low Order Byte) OPERAND DATA
$\begin{aligned} & \text { STA A } \\ & \text { STA B } \end{aligned}$	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 OP CODE ADDRESS + 2 OPERAND DESTINATION ADDRESS	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	OP CODE DESTINATION ADDRESS (High Order Byte) DESTINATION ADDRESS (Low Order Byte) DATA FROM THE ACCUMULATOR
$\begin{aligned} & \text { LDS } \\ & \text { LDX } \\ & \text { LDD } \end{aligned}$	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 OP CODE ADDRESS + 2 ADDRESS OF OPERAND ADDRESS OF OPERAND +1	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	OP CODE ADDRESS OF OPERAND (High Order Byte) ADDRESS OF OPERAND (Low Order Byte) OPERAND DATA (High Order Byte) OPERAND DATA (Low Order Byte)
$\begin{aligned} & \text { STS } \\ & \text { STX } \\ & \text { STD } \end{aligned}$	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 OP CODE ADDRESS + 2 ADDRESS OF OPERAND ADDRESS OF OPERAND	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	OP CODE ADDRESS OF OPERAND (High Order Byte) ADDRESS OF OPERAND (Low Order Byte) OPERAND DATA (High Order Byte) OPERAND DATA (Low Order Byte)
ASL LSR ASR NEG CLR ROL COM ROR DEC TST (1) INC	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 OP CODE ADDRESS + 2 ADDRESS OF OPERAND ADDRESS BUS FFFF ADDRESS OF OPERAND	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	OP CODE ADDRESS OF OPERAND (High Order Byte) ADDRESS OF OPERAND (Low Order Byte) CURRENT OPERAND DATA LOW BYTE OF RESTART VECTOR NEW OPERAND DATA
$\begin{aligned} & \hline \text { CPX } \\ & \text { SUBD } \\ & \text { ADDD } \end{aligned}$	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 OP CODE ADDRESS + 2 OPERAND ADDRESS OPERAND ADDRESS + 1 ADDRESS BUS FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	OP CODE OPERAND ADDRESS OPERAND ADDRESS (Low Order Byte) OPERAND DATA (High Order Byte) OPERAND DATA (Low Order Byte) LOW BYTE OF RESTART VECTOR
JSR	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 OP CODE ADDRESS + 2 SUBROUTINE STARTING ADDRESS STACK POINTER STACK POINTER - 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	OP CODE ADDRESS OF SUBROUTINE (High Order Byte) ADDRESS OF SUBROUTINE (High Order Byte) OP CODE OF NEXT INSTRUCTION RETURN ADDRESS (Low Order Byte ADDRESS OF OPERAND (High Order Byte)
INHERENT					
ABA DAA SEC ASL DEC SEI ASR INC SEV CBA LSR TAB CLC NEG TAP CLI NOP TBA CLR ROL TPA CLV ROR TST COM SBA	2	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { OP CODE } \\ & \text { OP CODE OF NEXT INSTRUCTION } \end{aligned}$

Table 12. Cycle by Cycle Operation (continued)

ADDRESS MODE \& INSTRUCTIONS	CYCLE	CYCLE \#	ADDRESS BUS	$\begin{aligned} & \text { R/W } \\ & \text { LINE } \end{aligned}$	DATA BUS
INHERENT					
ABX	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	OP CODE ADDRESS OP COOE ADDRESS + 1 ADDRESS BUS FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	OP CODE IRRELEVANT DATA LOW BYTE OF RESTART VECTOR
$\begin{aligned} & \text { ASLD } \\ & \text { LSRD } \end{aligned}$	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { OP CODE ADDRESS } \\ & \text { OP CODE ADDRESS }+1 \\ & \text { ADDRESS BUS FFFF } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	OP CODE IRRELEVANT DATA LOW BYTE OF RESTART VECTOR
$\begin{aligned} & \hline \text { DES } \\ & \text { INS } \end{aligned}$	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 PREVIOUS REGISTER CONTENTS	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	OP CODE OP CODE OF NEXT INSTRUCTION IRRELEVANT DATA
$\begin{aligned} & \operatorname{INX} \\ & \text { DEX } \end{aligned}$	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 ADDRESS BUS FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	OP CODE OP CODE OF NEXT INSTRUCTION LOW BYTE OF RESTART VECTOR
$\begin{aligned} & \hline \text { PSHA } \\ & \text { PSHB } \end{aligned}$	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 STACK POINTER	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	OP CODE OP CODE OF NEXT INSTRUCTION ACCUMULATOR DATA
ISX	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 STACK POINTER	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \end{aligned}$	OP CODE OP CODE OF NEXT INSTRUCTION IRRELEVANT DATA
TXS	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 ADDRESS BUS FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	OP CODE OP CODE OF NEXT INSTRUCTION LOW BYTE OF RESTART VECTOR
$\begin{aligned} & \hline \text { PULA } \\ & \text { PULB } \end{aligned}$	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 STACK POINTER STACK POINTER	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	OP CODE OP CODE OF NEXT INSTRUCTION IRRELEVANT DATA
PSHX	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 STACK POINTER STACK POINTER - 1	$\begin{aligned} & \hline 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	OP CODE IRRELEVANT DATA INDEX REGISTER (Low Order Byte) INDEX REGISTER (High Order Byte)
PULX	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & \hline \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 STACK POINTER STACK POINTER + 1 STACK POINTER + 2	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	OP CODE IRRELEVANT DATA IRRELEVANT DATA INDEX REGISTER (High Order Byte) INDEX REGISTER (Low Order Byte)
BCC BHT BNE BCS BLE BPL BEQ BLS BRA BGE BLT BVC BGT BMT BVS	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 ADDRESS BUS FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	OP CODE BRANCH OFFSET LOW BYTE OF RESTART VECTOR
BSR	6	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 ADDRESS BUS FFFF SUBROUTINE STARTING ADDRESS STACK POINTER STACK POINTER - 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	OP CODE BRANCH OFFSET LOW BYTE OF RESTART VECTOR RETURN ADDRESS (Low Order Byte) RETURN ADDRESS (Low Order Byte) RETURN ADDRESS (High Order Byte)

Figure 26. S6801E MCU Single-Chip Mode

Figure 27. S6801 MCU Single-Chip Dual Processor Configuration

Figure 28. S6801 MCU Expanded Nor-Multiplexed Mode

Figure 29. S6801E Expanded
Non-Multiplexed Mode

Figure 30. S6801 MCU Expanded Multiplexed Mode

Figure 31. S6801E Expanded Multiplexed Mode

Table 13. Mode and Port Summary

*These lines can be $\substack{\text { Input }}$	for I/0 (Input Only) s	the most signiticant	$10 S=1 / 0$ Select	
$0=$ Output	CC=Crystal Control	OS = Output Strobe	CS = Chip Select	SC = Strobe Control
$\mathrm{BA}=$ Bus Available				

MICROPROCESSOR WITH CLOCK AND RAM

Features

On-Chip Clock Circuit
128×8-Bit On-Chip RAM (S6802)
32 Bytes of RAM Are Retainable (S6802)
Software-Compatible With the S6800
Expandable to 64 K Words
Standard TTL-Compatible Inputs and Outputs
8-Bit Word Size
16-Bit Memory Addressing
Interrupt Capability
Clock Rates:
S6802/S6808-1.0MHz
S68A02/S68A08-1.5MHz
S68B02/S68B08-2.0MHz

General Description

The S6802/S6808 are monolithic 8-bit microprocessors that contain all the registers and accumulators of the present S6800 plus an internal clock oscillator and driver on the same chip. In addition, the S6802 has 128 bytes of RAM on board located at hex addresses 0000 to 007E. The first 32 bytes of RAM, at addresses 0000 to 001F, may be retained in a low power mode by utilizing V_{CC} standby, thus facilitating memory retention during a power-down situation. The S 6808 is functionally identical to the $\mathbf{S 6 8 0 2}$ except for the 128 bytes of RAM. The S6808 does not have any RAM.

The S6802/S6808 are completely software compatible with the S6800 as well as the entire S6800 family of parts. Hence, the S6802/S6808 are expandable to 64 K words. When the S6802 is interfaced with the S6846 ROM-I/O-Timer chip, as shown in the Block Diagram below, a basic 2-chip microcomputer system is realized.

Absolute Maximum Ratings

Supply Voltage, VCC ... - 0.3V to + 7.0V
Input Voltage, $\mathrm{V}_{\mathbb{I N}}$.. -0.3 V to +7.0 V

Operating Temperature Range, T_{A}.. 0° to $+70^{\circ} \mathrm{C}$
Storage Temperature Range, $\mathrm{T}_{\text {stg }}$... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Thermal Resistance, θ_{JA}
Plastic
$100^{\circ} \mathrm{C} / \mathrm{W}$
Ceramic ... 500 CW
This device contains circuitry to protect the inputs against damage due to high static voltage or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

D.C. Characteristics:

($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.)

Symbol	Parameter		Min.	Typ.	Max.	Units
$V_{\text {IH }}$	Input High Voltage	$\text { Logic, } \frac{\text { EXtal }}{\text { RESET }}$	$\begin{aligned} & V_{S S}+2.0 \\ & V_{S S}+4.0 \end{aligned}$	-	$\begin{aligned} & \hline V_{c c} \\ & V_{c c} \\ & \hline \end{aligned}$	V
V_{IL}	Input Low Voltage	Logic, EXtal, $\overline{\text { RESET }}$	$\mathrm{V}_{S S}-0.3$	-	$\mathrm{V}_{\text {SS }}+0.8$	V
$I_{\text {N }}$	Input Leakage Current $\left(V_{\text {IN }}=0\right.$ to $\left.5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}\right)$	Logic*	-	1.0	2.5	$\mu \mathrm{A}$
V_{OH}	Output High Voltage $\begin{aligned} & \left(I_{\text {LOAD }}=-205 \mu \mathrm{~A}, V_{C C}=M i n\right) \\ & \left(\mathrm{L}_{\text {LOAD }}=-145 \mu \mathrm{~A}, V_{C C}=\mathrm{Min}\right) \\ & \left(I_{\text {LOAD }}=-100 \mu \mathrm{~A}, \quad V_{C C}=\mathrm{Min}\right) \end{aligned}$	$\begin{aligned} & \text { DO-D7 } \\ & \text { A0-A15, R/W, VMA, E } \\ & \text { BA } \end{aligned}$	$\begin{aligned} & V_{S S}+2.4 \\ & V_{S S}+2.4 \\ & V_{S S}+2.4 \\ & \hline \end{aligned}$	-	-	$\begin{aligned} & \hline V \\ & V \\ & V \\ & V \end{aligned}$
V_{0}	Output Low Voltage $\left(\mathrm{L}_{\text {LOAD }}=1.6 \mathrm{~mA}, V_{C C}=\mathrm{Min}\right.$)		-	-	$\mathrm{V}_{S S}+0.4$	V
P_{D}	Power Dissipation	(Measured at $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$)	-	0.600	1.2	W
$\mathrm{Cl}_{\text {IN }}$ $\mathrm{C}_{\text {OUT }}$	Capacitance \# $\left(V_{I N}=0, T_{A}=25^{\circ} \mathrm{C}, f=1.0 \mathrm{MHZ}\right.$	D0-D7 Logic Inputs, EXtal A0-A15, R/W, VMA	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 12.5 \\ & 10 \\ & 12 \end{aligned}$	pF pF
$V_{c c}$ Standby	$V_{C C}$		4.0	-	5.25	V
$I_{D D}$ Standby	I_{DD} Standby		-	-	8.0	mA

Clock Timing ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter	S6802/S6808			S68A02/S68A08			S68B02/S68B08			Unit
		Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.	
$f_{x \text { tal }}^{1}$	Frequency of Operation Input Clock $\div 4$ Crystal Frequency	$\begin{aligned} & 0.1 \\ & 1.0 \end{aligned}$	-	$\begin{aligned} & 1.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 1.0 \end{aligned}$	-	1.5 6.0	$\begin{array}{r} 1 \\ 1.0 \end{array}$	-	2 8	MHz
${ }_{\text {t }}^{\text {YYC }}$	Cycle Time	1.0	-	10	6.7	-	10	50	-	10	$\mu \mathrm{S}$
${ }_{\text {t }}{ }^{\text {d }}$	Fall Time Measured between $\mathrm{V}_{S S}+0.4 \mathrm{~V}$ and $\mathrm{V}_{S S}-2.4 \mathrm{~V}$	-	-	25	-	-	25	-	-	25	ns

*Except IRQ and NMI, which require $3 \mathrm{~K} \Omega$ pull-up load resistors for wire-OR capability at optimum operation. Does not include Extal and Xtal, which are crystal inputs. \#Capacitance are periodically sampled rather than 100% tested.

Read/Write Timing (Figures 1 through 5; Load Circuit of Figure 3.)
($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter	S6802/S6808			S68A02/S68A08			S68B02/S68B08			Unit
		Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.	
$t_{\text {AD }}$	$\begin{gathered} \text { Address Delay } \\ \mathrm{C}=90 \mathrm{pF} \\ \mathrm{C}=30 \mathrm{pF} \end{gathered}$		100	270			$\begin{aligned} & 180 \\ & 165 \end{aligned}$			$\begin{aligned} & 150 \\ & 135 \end{aligned}$	ns
$\mathrm{t}_{\text {ACC }}$	Peripheral Read Access Time	575			360			250			ns
$\mathrm{t}_{\text {DSR }}$	Data Setup Time Read	100			70			60			ns
$\mathrm{t}_{\text {DHR }}$	Data Hold Time Read	10	30		10			10			ns
$\mathrm{t}_{\text {AH }}$	Address Hold Time (Address, R/W, VMA)	20.			20			20			ns
$t_{\text {DDW }}$	Data Delay Time Write Processor Controls			225			170			160	ns
$t_{\text {DHW }}$	Data Hold Time Write	30			20			20			ns
tpCs	Processor Control Setup Time	200			140			110			ns
$t_{\text {PCr }}, \mathrm{tPCf}$	Processor Control Rise and Fall Time			100			100			100	ns

Figure 1. Read Data from Memory or Peripherals

Figure 2. Write Data in Memory or Peripherals

Figure 3. Bus Timing Test Load

$C=130 \mathrm{pF}$ FOR DO $-\mathrm{D7}, \mathrm{E}$
$=90 p F$ FOR AO $-A 15, R / \bar{W}$, AND VMA
$=30 \mathrm{pFFORBA}$
$R=11.7 \mathrm{~K} \Omega$ FOR DO $-\mathrm{D7}, \mathrm{E}$
$=16.5 \mathrm{~K} \Omega$ FOR AO - A15, $\mathrm{A} / \overline{\mathrm{W}}$, ANO VMA
$=24 \mathrm{~K} \Omega$ FOR BA

Figure 4. Typical Data Bus Output Delay Versus Capacitive Loading

Figure 5. Typical Read/Write, VMA, and Address Output Delay Versus Capacitive Loading

Figure 6. Expanded Block Diagram

S6802/A/B/S6808/A/B

Functional Description

MPU Registers

A general block diagram of the $\mathbf{S 6 8 0 2}$ is shown in Figure 6. As shown, the number and configuration of the registers are the same as for the S6800. The 128×8 bit RAM has been added to the basic MPU. The first 32 bytes may be operated in a low power mode via a V_{CC} standby. These 32 bytes can be retained during powerup and power-down conditions via the RE signal.
The MPU has three 16 -bit registers and three 8 -bit registers available for use by the programmer (Figure 7).
Program Counter-The program counter is a two byte (16 bits) register that points to the current program address.
Stack Pointer-The stack pointer is a two byte register that contains the address of the next available location in an external push-down/pop-up stack. This stack is normally a random access Read/Write memory that may have any location (address) that is convenient. In
those applications that require storage of information in the stack when power is lost, the stack must be nonvolatile.

Index Register-The index register is a two byte register that is used to store data or a sixteen-bit memory address for the Indexed mode of memory addressing.
Accumulators-The MPU contains two 8 -bit accumulators that are used to hold operands and results from an arithmetic logic unit (ALU).
Condition Code Register-The condition code register indicates the results of an Arithmetic Logic Unit operation: Negative (N), Zero (Z), Overflow (V), Carry from bit 7 (C), and Half Carry from bit $3(\mathrm{H})$. These bits of the Condition Code Register are used as testable conditions for the conditional branch instructions. Bit 4 is the interrupt mask bit (l). The used bits of the Condition Code Register (b 6 and b 7) are ones.
Figure 8 shows the order of saving the microprocessor status within the stack.

Figure 7. Programming Model of the Microprocessing Unit

Figure 8. Saving the Status of the Microprocessor in the Stack

S6802/S6808 MPU Description

Proper operation of the MPU requires that certain control and timing signals be provided to accomplish specific functions and that other signal lines be monitored to determine the state of the processor. These control and timing signals for the S6802/ S6808 are identical to those of the S6800 except that TSC, DBE, $\$ 1, \phi 2$ input, and two unused pins have been eliminated, and the following signal and timing lines have been added:

```
RAM Enable (RE)
Crystal Connections EXtal and Xtal
Memory Ready (MR)
\(\mathrm{V}_{\mathrm{CC}}\) Standby
Enable \$2 Output (E)
```

The following is a summary of the S6802/S6808 MPU signals:
Address Bus (A0-A15)-Sixteen pins are used for the address bus. The outputs are capable of driving one standard TTL load and 130 pF .

Data Bus (DO-D7)—Eight pins are used for the data bus. It is bi-directional, transferring data to and from the memory and peripheral devices. It also has three-stateoutput buffers capable of driving one standard TTL load and 130 pF .
Halt-When this input is in the low state, all activity in the machine will be halted. This input is level sensitive. In the halt mode, the machine will stop at the end of an instruction, Bus Available will be at a high state, Valid Memory Address will be at a low state, and all other three-state lines will be in the three-state mode. The address bus will display the address of the next instruction.
To insure single instruction operation, transition of the Halt line must not occur during the last 200ns of E and the Halt line must go high for one Clock cycle.
Read $/ \overline{\text { Write }}(\mathrm{R} / \overline{\mathrm{W}}$) -This TTL compatible output signals the peripherals and memory devices whether the MPU is in a Read (high) or Write (low) state. The normal standby state of this signal is Read (high).

Figure 9. Power-up and Reset Timing

S6802/A/B/S6808/A/B

When the processor is halted, it will be in the logical one state. This output is capable of driving one standard TTL load and 90pF.
Valid Memory Address (VMA)—This output indicates to peripheral devices that there is a valid address on the address bus. In normal operation, this signal should be utilized for enabling peripheral interfaces such as the PIA and ACIA. This signal is not three-state. One standard TTL load and 90pF may be directly driven by this active high signal.
Bus Available (BA)-The Bus Available signal will normally be in the low state; when activated, it will go to the high state indicating that the microprocessor has stopped and that the address bus is available. This will occur if the Falt line is in the low state or the processor is in the WAIT state as a result of the execution of a WAIT instruction. At such time, all three-state output drivers will go to their off state and other outputs to their normally inactive level. The processor is removed from the WAIT state by the occurrence of a maskable (mask bit $\mathrm{I}=0$) or non-maskable interrupt. This output is capable of driving one standard TTL load and 30pF.
$\overline{\text { Interrupt }}$ Request ($\overline{\mathrm{IRQ}}$) - This level sensitive input requests that an interrupt sequence be generated within the machine. The processor will wait until it completes the current instruction that is being executed before it recognizes the request. At that time, if the interrupt mask bit in the Condition Code Register is not set, the machine will begin an interrupt sequence. The Index Register, Program Counter, Accumulators, and Condition Code Register are stored away on the stack. Next the MPU will respond to the interrupt request by setting the interrupt mask bit high so that no further interrupts may occur. At the end of the cycle, a 16 -bit address will be loaded that points to a vectoring address which is located in memory locations FFF8 and FFF9. An address loaded at these locations causes the MPU to branch to an interrupt routine in memory.
The Halt line must be in the high state for interrupts to be serviced. Interrupts will be latched internally while Halt is low.
The $\overline{\mathrm{RQ}}$ has a high impedance pull-up device internal to the chip; however a 3kת external resistor to V_{CC} should be used for wire-OR and optimum control of interrupts.
Reset-This input is used to reset and start the MPU from a power down condition, resulting from a power failure or an initial start-up of the processor. When this line is low, the MPU is inactive and the information in
the registers will be lost. If a high level is detected on the input, this will signal the MPU to begin the restart sequence. This will start execution of a routine to initialize the processor from its reset condition. All the higher order address lines will be forced high. For the restart, the last two (FFFE, FFFF) locations in memory will be used to load the program that is addressed by the program counter. During the restart routine, the interrupt mask bit is set and must be reset before the MPU can be interrupted by IRQ. Power-up and reset timing and power-down sequences are shown in Figures 9 and 10, respectively.

Figure 10. Power-Down Sequence

When $\overline{\text { RESET }}$ is released it must go through the low to high threshhold without bouncing, oscillating, or otherwise causing an erroneous $\overline{\text { RESET }}$ (less than 3 clock cycles). This may cause improper MPU operation.
Reset, when brought low, must be held low at least 3 clock cycles. This allows the S6802/S6808 adequate time to respond internally to reset. This function is independent of the 20 ms power up reset that is required.

S6802/A/B/S6808/A/B

Non-Maskable Interrupt (NMI)—A low-going edge on this input requests that a non-mask-interrupt sequence be generated within the processor. As with the Interrupt Request signal, the processor will complete the current instruction that is being executed before it recognizes the $\overline{\text { NMI }}$ signal. The interrupt mask bit in the Condition Code Register has no effect on NMI.
The Index Register, Program Counter, Accumulators, and Condition Code Register are stored away on the stack. At the end of the cycle, a 16 -bit address will be loaded that points to a vectoring address which is located in memory locations FFFC and FFFD. An address loaded at these locations caused the MPU to branch to a non-maskable interrupt routine in memory. $\overline{\text { NMI }}$ has a high impedance pull-up resistor internal to the chip; however a 3k』 external resistor to V_{CC} should be used for wire-OR and optimum control of interrupts. Inputs $\overline{\mathrm{RQ}}$ and $\overline{\mathrm{MMI}}$ are hardware interrupt lines that are sampled when E is high and will start the interrupt routine on a low E following the completion of an instruction.
Figure 12 is a flow chart describing the major decision paths and interrupt vectors of the microprocessor. Table 2 gives the memory map for interrupt vectors.
RAM Enable (RE)-A TTL-compatible RAM enable input controls the on-chip RAM of the S6802. When placed in the high state, the on-chip memory is enabled to respond to the MPU controls. In the low state, RAM is disabled. This pin may also be utilized to disable reading and writing the on-chip RAM during power-down situation. RAM enable must be low three clock cycles before V_{CC} goes below 4.75 V during power-down to retain the on board RAM contents during V_{CC} standby.
The Data Bus will be in the output mode when the internal RAM is accessed, which prohibits external data from entering the MPU. Note that the internal RAM is fully decoded from $\$ 0000$ to $\$ 007 \mathrm{~F}$ and these locations must be disabled when internal RAM is accessed.
Extal and Xtal-The S6802/S6808 has an internal oscillator that may be crystal controlled. These connections are for a parallel resonant fundamental crystal.
(AT cut) A divide-by-four circuit has been added to the S6802 so that a 4 MHz crystal may be used in lieu of a 1 MHz crystal for a more cost effective system. Pin 39 of the S6802/S6808 may be driven externally by a TTL input signal if a separate clock is required. Pin 38 is to be left open in this mode. If the external clock is used it may not be halted for more than $4.5 \mu \mathrm{~s}$. The $\mathrm{S} 6802 / \mathrm{S} 6808$ is a dynamic part except for internal RAM, and requires the external clock to retain information. Figure 11a shows the crystal parameters. In applications where other than a 4.0 MHz crystal is used, Table 1 gives the designer the crystal parameters to be specified. The table contains the entire spectrum of usable crystals for the S6802/S6808. Crystal frequencies not shown (that lie between 1.0 MHz and 4.0 MHz) may be interpolated from the table. Figure 11b shows the crystal connection.
Table 1. Crystal Parameters

Y1 CRYSTAL FREQUENCY	 C2	C LOAD	R1 (MAX)	$\mathbf{C}_{\mathbf{0}}$ (MAX)
4.0 MHz	27 pF	24 pF	50 ohms	7.0 pF
3.58 MHz	27 pF	20 pF	50 ohms	7.0 pF
3.0 MHz	27 pF	18 pF	75 ohms	6.7 pF
2.5 MHz	27 pF	18 pF	74 ohms	6.0 pF
2.0 MHz	33 pF	24 pF	100 ohms	5.5 pF
1.5 MHz	39 pF	27 pF	200 ohms	4.5 pF
1.0 MHz	39 pF	30 pF	250 ohms	4.0 pF

Table 2. Memory Map for Interrupt Vectors

VECTOR		DESCRIPTION
MS	LS	
FFFE	FFFF	RESTART
FFFC	FFFD	NON-MASKABLE INTERRUPT
FFFA	FFFB	SOFTWARE INTERRUPT
FFF8	FFF9	INTERRUPT REQUEST

Note: Memory Read (MR), Halt, RAM Enable (RE) and Non-Maskable interrupt should always be tied to the correct high or low state if not used.

Figure 11a. Crystal Parameters

AT - Cut Paraliel Resonance Crystal $C 0=7 \mathrm{pF}$ Max.
FREO $=4.0 \mathrm{MHz} @ C_{L}=24 \mathrm{pF}$
$\mathbf{R}_{\mathbf{S}}=\mathbf{5 0}$ ohms Max
Frequency Tolerance - $\pm 5 \%$ to $\pm 0.02 \%$
The best E output "Worst Case Design"
tolerance is $\pm 0.05 \%(500 \mathrm{ppM})$ using $\mathrm{A} \pm 0.02$ crystal

Figure 11b. Crystal Connection

Tolerance Note:
Critical timing loops may require a better tolerance than $\pm 5 \%$. Because of production deviations and the Temperature Coefficient of the S6802, the best "worst case design" tolerance is $\pm 0.05 \%$. (500 ppm) using a $\pm 0.02 \%$ crystal. H the $\mathbf{S 6 8 0 2}$ is not going to be used over its entire temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, a much tighter overall tolerance can be achieved.

MICROCOMPUTER

Features

Hardware

- 8 -Bit Architecture
- 64 Bytes RAM
- 1100 Bytes ROM
- 116 Bytes of Self Check ROM
- 28-Pin Package
- Memory Mapped I/O
- Internal 8-Bit Timer with 7-Bit Prescaler
- Vectored Interrupts-External, Timer, Software, Reset
- 20 TTLCMOS Compatible I/O Line 8 Lines LED Compatible
- On-Chip Clock Circuit
- Self-Check Capability
- Low Voltage Inhibit
- 5 Vdc Single Supply

Software

- Similar to 6800
- Byte Efficient Instruction Set
- Versatile Interrupt Handling
- True Bit Manipulation
- Bit Test and Branch Instruction
- Indexed Addressing for Tables
- Memory Usable as Registers/Flags
- 10 Addressing Modes
- Powerful Instruction Set
- All 6800 Arithmetic Instructions
- All 6800 Logical Instructions
- All 6800 Shift Instructions
- Single Instruction Memory Examine/Change
- Full Set of Conditional Branches

General Description

The S6805 is an 8 -bit single chip microcomputer. It is the first member of the growing microcomputer family that contains a CPU, on-chip clock, ROM, RAM, I/O and timer. A basic feature of the 6805 is an instruction set
very similar to the S6800 family of microprocessors. Although the 6805 is not strictly source nor object code compatible, an experienced 6800 user can easily write 6805 code. Also a 6805 user will have no trouble moving up to the 6801 or 6809 for more complex tasks.

Absolute Maximum Ratings

Supply Voltage, V_{CC}... - 0.3 V to +7.0 V
Input Voltage, $\mathrm{V}_{\mathbb{I N}}$.. - 0.3 V to +7.0 V
Operating Temperature Range, T_{A}.. 0° to $+70^{\circ} \mathrm{C}$
Storage Temperature Range, $\mathrm{T}_{\text {stg }}$... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Thermal Resistance, θ_{JA}
Plastic .. 85º CW
Ceramic .. 500 CW
Cerdip ... $51^{\circ} \mathrm{CW}$
This device contains circuitry to protect the inputs against damage due to high static voltage or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that $V_{\text {IN }}$ and $V_{\text {OUT }}$ be constrained to the range $V_{S S} \quad\left(V_{\text {IN }}\right.$ or $\left.V_{\text {OUT }}\right)+V_{C C}$
Electrical Characteristics: $\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=0^{\circ}-70^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Characteristic		Min.	Typ.	Max.	Unit
$V_{1 H}$	Input High Voltage	$\overline{\text { RESET }}$	4.0	-	$V_{C C}$	Vdc
$V_{\text {IH }}$		$\overline{\text { INT }}$	4.0		$V_{C C}$	Vdc
$\mathrm{V}_{\text {IH }}$		All Other	$\mathrm{V}_{S S}+2.0$	-	$V_{\text {CC }}$	Vdc
$\mathrm{V}_{\text {IH }}$	Input High Voltage Timer	Timer Mode	$\mathrm{V}_{\text {SS }}+2.0$	-	$V_{C C}$	Vdc
V_{IH}		Self-Check Mode	-	9.0	15.0	Vdc
VIL	Input Low Voltage	$\overline{\text { RESET }}$	$V_{S S}-0.3$	-	0.8	Vdc
$V_{\text {IL }}$		$\overline{\text { INT }}$	$V_{S S}-0.3$		1.5	Vdc
$\mathrm{V}_{\text {IL }}$		All Other	$V_{S S}-0.3$	-	$V_{S S}+0.8$	Vdc
V_{H}	$\overline{\text { INT }}$ Hysteresis		-	100	-	mV CC
$P_{\text {D }}$	Power Dissipation		-	350	-	mW
$\mathrm{C}_{\text {IN }}$	Input Capacitance	EXTL	-	25	-	pF
$\mathrm{ClN}_{\text {I }}$		All Other	-	10	-	pF
LVR	Low Voltage Recover		-	-	4.75	Vdc
LVI	Low Voltage Inhibit		-	3.5	一	

Switching Characteristics: $\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{~V} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=0^{\circ}-+70^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Characteristic	Min.	Typ.	Max.	Unit
f_{Cl}	Clock Frequency	0.4	-	4.0	MHz
$\mathrm{t}_{\mathrm{CYC}}$	Cycle Time	1.0	-	10	$\mu \mathrm{~S}$
$\mathrm{t}_{\mathrm{IWL}}$	$\overline{\text { INT }}$ Pulse Width	$\mathrm{t}_{\mathrm{CYC}}+250$	-	-	ns
$\mathrm{t}_{\mathrm{RWL}}$	$\overline{\mathrm{RESET}}$ Pulse Width	$\mathrm{t}_{\mathrm{CYC}}+250$	-	-	ns
$\mathrm{t}_{\mathrm{RHL}}$	Delay Time Reset (External Cap. $=0.47 \mu \mathrm{~F})$	20	50	-	ms

Port Electrical Characteristics: $\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=0^{\circ}-+70^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Characteristic	Min.	Typ.	Max.	Unit	Condition
Port A						
V_{0}	Output Low Voitage	-	-	0.4	Vdc	$L_{\text {LOAD }}=1.6 \mathrm{mAdc}$
$\mathrm{V}_{\text {OH }}$	Output High Voltage	2.4	-	-	Vdc	$\mathrm{L}_{\text {LOAD }}=100 \mu \mathrm{Adc}$
$\mathrm{V}_{\text {OH }}$	Output High Voltage	3.5	-	-	Vdc	$\mathrm{I}_{\text {LOAD }}=-10 \mu \mathrm{Adc}$
V_{H}	Input High Voltage	$\mathrm{V}_{\text {SS }}+2.0$	-	$V_{C C}$	Vdc	$\mathrm{L}_{\text {LOAD }}=-300 \mu \mathrm{Adc}$ (max)
VIL	Input Low Voltage	$V_{S S}-0.3$	-	$\mathrm{V}_{\text {SS }}+0.8$	Vdc	$\mathrm{L}_{\text {LOAD }}=500 \mu \mathrm{Adc}(\max)$
Port B						
V_{0}	Output Low Voltage	-	-	0.4	Vdc	$L_{\text {LOAD }}=3.2 \mathrm{mAdc}$
$\mathrm{V}_{0 \mathrm{~L}}$	Output Low Voltage	-	-	1.0	Vdc	${ }_{\text {LOAD }}=10 \mathrm{mAdc}($ sink $)$
V_{OH}	Output High Voltage	2.4	-	-	Vdc	$\mathrm{L}_{\text {LOAD }}=-200 \mu \mathrm{Adc}$
${ }^{1} \mathrm{HH}$	Darlington Current Drive (Source)	-1.0	-	-10	mAdc	$\mathrm{V}_{0}=1.5 \mathrm{Vdc}$
V_{H}	Input High Voltage	$V_{S S}+2.0$	-	V_{CC}	Vdc	
VIL	Input Low Voltage	$V_{S S}-0.3$	-	$\mathrm{V}_{\text {SS }}+0.8$	Vdc	
Port C						
$\mathrm{V}_{0 \mathrm{~L}}$	Output Low Voltage	-	-	0.4	Vdc	$\mathrm{L}_{\mathrm{LOAD}}=1.6 \mathrm{mAdc}$
V_{OH}	Output High Voltage	2.4	-	-	Vdc	LIOAD - - 100 μ Adc
$\mathrm{V}_{\text {iH }}$	Input High Voltage	$\mathrm{V}_{\text {SS }}+2.0$	-	$\mathrm{V}_{\text {c }}$	Vdc	
$V_{\text {IL }}$	Input Low Voltage	$V_{S S}-0.3$	-	$\mathrm{V}_{\text {SS }}+0.8$	Vdc	
Off-State Input Current						
${ }_{\text {TS }}$	Three-State Ports B \& C	-	2	20	$\mu \mathrm{AdC}$	
Input Current						
$1 \times$	Timer at $V_{I N}=(0.4$ to 2.4 Vdc)	-	-	20	$\mu \mathrm{Adc}$	

Figure 1. TTL Equiv. Test Load (Port B)

Figure 2. CMOS Equiv. Test Load (Port A)

Figure 3. TTL Equiv. Test Load (Ports A and C)

Pin Description

Pin	Symbol
1 and 3	$V_{C C}$ and $V_{S S}$
2	$\overline{I N T}$
4 and 5	XTL and EXTL
6	NUM
7	TIMER
$8-11$	CO-C3
$12-19$	B0-B7
$20-27$	AO-A7
28	RESET

Description

Power is supplied to the MCU using these two pins. $V_{C C}$ is $5.25 \mathrm{~V} \pm .5 \mathrm{~V}$, and $V_{S S}$ is the ground connection.
External Interrupt provides capability to apply an external interrupt to the MCU.
Provide control input for the on-chip clock circuit. The use of crystal (at cut 4 MHz maximum), a resistor or a wire jumper is sufficient to drive the internal oscillator with varying degrees of stability. (See Internal Oscillator Options for recommendations) An internal divide by 4 prescaler scales the frequency down to the appropriate f2 clock rate (1 MHz maximum).

This pin is not for user application and should be connected to ground.
Allows an external input to be used to decrement the internal timer circuitry. See TIMER for detailed information about the timer circuitry.
Input/Output lines (A0-A7, B0-B7, CO-C3). The 20 lines are arranged into two 8-bit ports (A and B) and one 4 -bit port (C). All lines are programmed as either inputs or outputs under software control of the data direction registers. See Inputs/Outputs for additional information.

This pin allows resetting of the MCU. A low voltage detect feature responds to a dip in voltage by forcing a RESET condition to clear all Data Direction Registers, so that all I/0 pins are set as inputs.

Memory

The MCU memory is configured as shown in Figure 4. During the processing of an interrupt, the contents of the MCU registers are pushed onto the stack in the order shown in Figure 5. Since the stack pointer decrements during pushes, the low order byte (PCL) of the program counter is stacked first, then the high order

Figure 4. MCU Memory Configuration

three bits (PCH) are stacked first, then the high order three bits (PCH) are stacked. This ensures that the program counter is loaded correctly as the stack pointer increments when it pulls data from the stack. A subroutine call will cause only the program counter (PCH, PCL) contents to be pushed onto the stack.

Figure 5. Interrupt Stacking Order

Figure 6. Programming Model

Registers

The S6805 MCU contains two 8 -bit registers (A and X), one 11-bit register (PC), two 5-bit registers (SP and CC) that are visible to the programmer (see Figure 6).

Accumulator (A)

The A-register is an 8 -bit general purpose accumulator used for arithmetic calculations and data manipulation.

Index Register (X)

This 8 -bit register is used for the indexed addressing mode. It provides an 8 -bit address that may be added to an offset to create an effective address. The index register can also be used for limited calculations and data manipulations when using the read/modify/write instructions. In code sequences not employing the index register it can be used as a temporary storage area.

Program Counter (PC)

This 11-bit register contains the address of the next instruction to be executed.

Stack Pointer (SP)

The stack pointer is an 11-bit register that contains the address of the next free location on the stack. Initially, the stack pointer is set to location \$07F and is decremented as data is being pushed onto the stack and incremented as data is being pulled from the stack. The
six most significant bits of the stack pointer are permanently set to 000011. During an MCU reset or the reset stack pointer (RSP) instruction, the stack pointer is set to location \$07F. Subroutines and interrupts may be nested down to location $\$ 061$ which allows the programmer to use up to 15 levels of subroutine calls. A 16th subroutine call would save the return address correctly, but the stack pointer would not remain pointing into the stack area and there would be no way to return from any of the subroutines.

Condition Code Register (CC)

The condition code register is a 5 -bit register in which each bit is used to indicate or flag the results of the instruction just executed. These bits can be individually tested by a program and specific action taken as a result of their state. Each individual condition code register bit is explained in the following paragraphs.
HALF CARRY (H)-Used during arithmetic operations (ADD and ADC) to indicate that a carry occurred between bits 3 and 4.
INTERRUPT (I)-This bit is set to mask the timer and external interrupt (INT). If an interrupt occurs while this bit is set it is latched and will be processed as soon as the interrupt bit is reset.
NEGATIVE (N)—USED TO INDICATE that the result of the last arithmetic, logical or data manipulation was negative (bit 7 in result equal to a logical one).
ZERO (Z)—Used to indicate that the result of the last arithmetic, logical or data manipulation was zero.
CARRYIBORROW (C)—Used to indicate that a carry or borrow out of the arithmetic logic until (ALU) occurred during the last arithmetic operation. This bit is also affected during bit test and branch instructions, shifts and rotates.

Timer

The MCU timer circuitry is shown in Figure 7. The 8-bit counter is loaded under program control and counts down toward zero as soon as the clock input is applied. When the timer reaches zero the timer interrupt request bit (bit 7) in the timer control register is set. The MCU responds to this interrupt by saving the present MCU state in the stack, fetching the timer interrupt vector from locations \$7F8 and \$7F9 and executing the interrupt routine. The timer interrupt can be masked by setting the timer interrupt mask bit (bit 6) in the timer control register. The interupt bit (bit 1) in the condition code register will also prevent a timer interrupt from being processed.

The clock input to the timer can be from an external source applied to the TIMER input pin or it can be the internal $\phi 2$ signal. Note that when $\phi 2$ signal is used as the source it can be gated by an input applied to the TIMER input pin allowing the user to easily perform pulse-width measurements. The source of the clock input is one of the options that has to be specified before manufacture of the MCU. A prescaler option can be applied to the clock input that extends the timing interval up to a maximum of 128 counts before being applied to the counter. This prescaling option must also be specified before manufacturing begins. The timer continues to count past zero and its present count can be monitored at any time by monitoring the timer data register. This allows a program to determine the length of time since a timer interrupt has occurred and not disturb the counting process.
At power up or reset the prescaler and counter are initialized with all logical ones; the timer interrupt request bit (bit 7) is cleared and the timer request mask bit (bit 6) is set.

Self Check Mode:

The MCU includes a non-user mode pin that replaces the normal operating mode with one in which the internal data and address buses are available at the I/O ports. The ports are configured as follows in the test mode (some multiplexing of the address and data lines is necessary):

- The internal ROM and RAM are disabled and Port A becomes the input data bus on the $\phi 2$ of the clock and can be used to supply instructions of data to the MCU.
- Port B is also multiplexed. When $\phi 2$ is high, Port B is the output data bus, and when $\phi 2$ is low Port B is the address lines. The output data bus can be used to monitor the internal ROM or RAM.
- Port C becomes the last three address lines and a read/write control line.
The MCU incorporates a self test program within a 116 byte non-user accessable test program and some control logic on-chip. These 116 bytes of ROM test every addressing mode and nearly every CPU instruction (95% of the total microprocessor capability) while only adding 1% to the total overall die size.
To perform the self test, the MCU output lines of Port A and B must be externally interconnected (Figure 7) and LED's are connected to Port C to provide both a pass/ fail indication (3 Hz square wave).
The flowchart for the self test program (Figure 8) runs four tests:
- I/O TEST: Tests for I/O lines that are stuck in high, low, shorted state, or are missing a connection. The I/O lines are all externally wired together so that the program can look for problems by testing for the correct operation of the lines as inputs and outputs and for shorts between two adjacent lines.
- ROM ERROR: (Checksum wrong). The checksum value of the user program must be masked into the self check ROM when the microcomputer is built. The self check program then tests the user ROM by computing the checksum value, which should be equal to the masked checksum if all the bits in the ROM are prop-

Figure 7. Timer Block Diagram

erly masked. Address and data lines that are stuck high, low or to each other are also detected by this test. An inoperable ROM will (in most cases) prevent the running of the self check program.

- RAM Bits Non-Functional: The RAM is tested by the use of a walking bit pattern that is written into memory and then verified. Every in RAM is set to one and then to zero by using 9 different patterns as shown in Figure 9.

Figure 8. Interconnected Ports for Self Check Mode. Port C Gives Go/No Go and Diagnostic Information.

Self Test Routines

Program performs four main tests in the major loops and provides an output signal to indicate that the part is functional.
Interrupt Logic Failure: Using an I/O line the interrupt pin is toggled to create an interrupt. The main program runs long enough to allow the timer to underflow and causes the timer interrupt to be enabled.
If all of these tests are successful the program, then loops back to the beginning and starts testing again.
The self check program initially tries to get the MCU out of the reset state to indicate that the processor is at least working. The non-functional parts are thus immediately eliminated, and if the part fails at this first stage the program provides a means of determining the faulty section.

To place the MCU in the self check mode the voltage on the timer input (Figure 7) is raised to 8 volts which causes several operations to take place:

Figure 9. Flowchart of Self Test Routine

Figure 10. RAM Test Pattern

- The clocking source for the timer is shunted to the MCU internal clock to insure that the timer will run an underflow during the course of the program, no matter which clocking rate is masked.
- The address of the interrupt vectors (including the reset vector) are mapped into the self check ROM area. This allows the self check to test the interrupt structure.
The self check program is started by the reset signal instead of the normal program because the vectors (including the reset vector) have been overlaid. The self check program runs in an endless loop testing and retesting the processor as long as there are no errors. Signals on the I/O lines indicate that the test has passed, and if any test fails, the program stops by executing a branch to self instruction. The output lines then cease to toggle and two of the I/O lines will indicate the cause of failure.

RAM Test Pattern

"Walking bit" patterns test sequence sets and resets every bit in memory. (See Figure 10.)

Low Voltage Inhibit

As soon as the voltage at pin $3\left(\mathrm{~V}_{\mathrm{CC}}\right)$ falls to 4.5 volts, all $1 / O$ lines are put into a high impedance state. This prevents erroneous data from being given to an external device. When V_{CC} climbs back up to 4.6 volts a vectored reset is performed.
Table 1. Cause of Chip Failure as Shown in Bits 0 and 1 of I/O Port C

BIT $\mathbf{1}$	BIT 0	REASON FOR FAILURE
0	0	INTERRUPTS
0	1	I/ PORTS A OR B
1	0	RAM
1	1	ROM

Figure 11. Power Up and Reset Timing

Figure 12. Power Up Reset Delay Circuit

Resets

The MCU can be reset three ways; by the external reset input ($\overline{R E S E T}$), by the internal low voltage detect circuit already mentioned, and during the power up time. (See Figure 11.)
Upon power up, a minimum of 20 milliseconds is needed before allowing the reset input to go high. This time allows the internal oscillator to stabilize. Connecting a capacitor to the RESET input as shown in Figure 12 will provide sufficient delay.

Internal Oscillator Options

The internal oscillator circuit has been designed to require a minimum of external components. The use of a crystal (AT cut, 4 MHz max) or a resistor is sufficient to drive the internal oscillator with varying degrees of stability. A manufacturing mask option is available to provide better matching between the external components and the internal oscillator.
The different connection methods are shown in Figure 13. Crystal specifications are given in Figure 14. A resistor selection graph is given in Figure 15.

Figure 13. Internal Oscillator Options

Figure 14. Crystal Parameters

at-CUT Paballel resonance crystal.
$\mathrm{C}_{0}=7 \mathrm{pf}$ MAX
FREO $=4.0 \mathrm{MHz}\left(\Omega C_{L}=24 \mathrm{pF}\right.$
$\mathrm{R}_{\mathrm{S}}=50$ OHMS MAX

Figure 15. Typical Resistor Selection Graph

Interrupts

The MCU can be interrupted three different ways; through the external interrupt (INT) input pin, the internal timer interrupt request, and a software interrupt instruction (SWI). When any interrupt occurs, processing is suspended, the present MCU state is pushed onto the stack, the interrupt bit (I) in the condition code register is set, the address of the interrupt routine is obtained from the appropriate interrupt vector address, and the interrupt routine is executed. The interrupt service routines normally end with a return from interrupt (RTI) instruction which allows the MCU to resume processing of the program prior to the interrupt. Table 2 provides a listing of the interrupts, their priority, and the vector address that contain the starting address of the appropriate interrupt routine.

A sinusodial signal (1 kHz maximum) can be used to generate an external interrupt ((INT) as shown in Figure 16.

A flowchart of the interrupt processing sequence is given in Figure 17.

Table 2. Interrupt Priorities

Interrupt	Priority	Vector Address
$\overline{\text { RESET }}$	1	\$7FE AND \$7FF
SWI	2	\$7FC AND \$7FD
INT	3	\$7FA AND \$7FB
TIMER	4	\$7F8 AND \$7F9

Input/Output

There are 20 input/output pins. All pins are programmable as either inputs or outputs under software control of the data direction registers. When programmed as outputs, all I/O pins read latched output data regardless of the logic level at the output pin due to output loading (see Figure 18). When port B is programmed for outputs, it is capable of sinking 10 milliamperes on each pin (one volt maximum). All input/output lines are TTL compatible as both inputs and outputs. Port A lines are CMOS compatible as outputs while Port B and C lines are CMOS compatible as inputs. Figure 19 provides some examples of port connections.

Figure 16. Typical Sinusodial Interrupt Circuits

Figure 17. Interrupt Processing Flowchart

Figure 18. Typical Port I/O Circuitry

Figure 19. Typical Port Connections

Bit Manipulation

The MCU has the ability to set or clear any single random access memory or input/output bit (except the data direction registers) with a single instruction (BSET, BCLR). Any bit in the page zero read only memory can be tested, using the BRSET and BRCLR instructions, and the program branches as a result of its state. This capability to work with any bit in RAM, ROM or I/O allows the user to have individual flags in RAM or to handle single I/O bits as control lines. The example in Figure 20 illustrates the usefulness of the bit manipulation and test instructions. Assume that bit 0 of port A is connected to a zero crossing detector circuit and that bit 1 of port A is connected to the trigger of a TRIAC which powers the controlled hardware.
This program, which uses only seven ROM locations, provides turn-on of the TRIAC within 14 microseconds of the zero crossing. The timer could also be incorporated to provide turn-on at some later time which would permit pulse-width modulation of the controlled power.

Addressing Modes

The MCU has ten addressing modes available for use by the programmer. They are explained and illustrated briefly in the following paragraphs.

Figure 20. Bit Manipulation Example

SELF 1 bRCLR 0, PORTA, SELF 1
BSET 1, PORTA
BCLR 1, PORTA
-
-
-
-
\bullet

Immediate—Refer to Figure 21. The immediate addressing mode accesses constants which do not change during program execution. Such instructions are two bytes long. The effective address (EA) is the PC and the operand is fetched from the byte following the opcode.
Direct-Refer to Figure 22 in direct addressing, the address of the operand is contained in the second byte of the instruction. Direct addressing allows the user to directly address the lowest 256 bytes in memory. All RAM space, I/O registers and 128 bytes of ROM are located in page zero to take advantage of this efficient memory addressing mode.
Extended-Refer to Figure 23. Extended addressing is used to reference any location in memory space. The EA is the contents of the two bytes following the opcode. Extended addressing instructions are three bytes long.
Relative—Refer to Figure 24. The relative addressing mode applies only to the branch instructions. In this mode the contents of the byte following the opcode is added to the program counter when the branch is taken. $E A=(P C)+2+$ Rel. Rel is the contents of the location following the instruction opcode with bit 7 being the sign bit. If the branch is not tken Rel $=0$, when a branch takes place, the program goes to somewhere within the range of +129 bytes to -127 of the present instruction. These instructions are two bytes long.
Indexed (No Offset)—Refer to Figure 25. This mode of addressing accesses the lowest 256 bytes of memory. These instructions are one byte long and their EA is the contents of the index register.
Indexed (8-Bit Offset)-Refer to Figure 26. The EA is calculated by adding the contents of the byte following
the opcode to the contents of the index register. In this mode, 511 low memory locations are accessable. These instructions occupy two bytes.
Indexed (16-Bit Offset)-Refer to Figure 27. This addressing mode calculates the EA by adding the contents of the two bytes following the opcode to the index register. Thus, the entire memory space may be accessed. Instructions which use this addressing mode are three bytes long.
Bit Set/Clear-Refer to Figure 28. This mode of addressing applies to instructions which can set or clear any bit on page zero. The lower three bits in the opcode specify the bit to be set or cleared while the byte following the opcode specifies the address in page zero
Bit Test and Branch-Refer to Figure 29. This mode of addressing applies to instructions which can test any bit in the first 256 locations ($\$ 00-\$ F F$) and branch to any location relative to the PC. The byte to be tested is addressed by the byte following the opcode. The individual bit within that byte to be tested is addressed by the lower three bits of the opcode. The third byte is the relative address to be added to the program counter if the branch condition is met. These instructions are three bytes long. The value of the bit tested is written to the carry bit in the condition code register.
Inherent-Refer to Figure 30. The inherent mode of addressing has no EA. All the information necessary to execute an instruction is contained in the opcode. Direct operations on the accumulator and the index register are included in this mode of addressing. In addition, control instructions such as SWI. RTI belong to this group. All inherent addressing instructions are one byte long.

Figure 21. Immediate Addressing Example

Figure 22. Direct Addressing Example

Figure 23. Extended Addressing Example

Figure 24. Relative Addressing Example

Figure 25. Indexed (No Offset) Addressing Example

Figure 26. Indexed (8-Bit Offset) Addressing Example

Figure 27. Indexed (16-Bit Offset) Addressing Example

Figure 28. Bit Set/Clear Addressing Example

Figure 29. Bit Test and Branch Addressing Example

Figure 30. Inherent Addressing Example

Instruction Set

The MCU has a set of 59 basic instructions. They can be divided into five different types: register/memory, read/ modify/write, branch, bit manipulation, and control. The following paragraphs briefly explain each type. All the instructions within a given type are presented in individual tables.
Register/Memory Instructions-Most of these instructions use two operands. One operand is either the accumulator or the index register. The other operand is obtained from memory using one of the addressing modes. The jump unconditional (JMP) and jump to subroutine (JSR) instructions have no register operand. Refer to Table 3.
Read/Modify/Write Instructions-These instructions read a memory location or a register, modify or test its contents, and write the modified value back to memory or to the register. The test for negative or zero (TST) instruction is an exception to the read/modify/write
instructions since it does not perform the write. Refer to Table 4.
Branch Instructions-The branch instructions cause a branch from the program when a certain condition is met. Refer to Table 5.
Bit Manipulation Instructions-These instructions are used on any bit in the first 256 bytes of the memory. One group either sets or clears. The other group performs the bit test and branch operations. Refer to Table 6.

Control Instructions-The control instructions control the MCU operations during program execution. Refer to Table 7.
Alphabetical Listing-The complete instruction set is given in alphabetical order in Table 8.
Opcode Map-Table 9 is an opcode map for the instructions used on the MCU.

Table 3. Register/Memory Instructions

		ADDRESSING MODES																	
		IMMEDIATE			DIRECT			EXTENDED			INDEXED (No Offset)			$\begin{aligned} & \text { INDEXED } \\ & \text { (8-Bit Offset) } \end{aligned}$			$\begin{aligned} & \text { INDEXED } \\ & \text { 16-Bit Offset) } \end{aligned}$		
Function	Mnemonic	$\begin{gathered} \text { OP } \\ \text { Code } \end{gathered}$	"	$\begin{gathered} \\ \text { cycles } \end{gathered}$	$\begin{gathered} \mathrm{OP} \\ \text { code } \end{gathered}$	Bytes	$\begin{array}{\|c} \# \\ \text { Cycles } \end{array}$	$\begin{gathered} \text { OP } \\ \text { code } \end{gathered}$	${ }_{\text {Bytes }}^{"}$	$\underset{\text { Cycles }}{\prime \prime}$	$\begin{gathered} \text { OP } \\ \text { Code } \end{gathered}$	"	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	$\begin{gathered} \text { OP } \\ \text { code } \end{gathered}$	$\begin{gathered} " \\ \text { Bytes } \end{gathered}$	$\begin{gathered} " \\ \text { Cycles } \end{gathered}$	$\begin{aligned} & \text { OP } \\ & \text { code } \end{aligned}$	$\begin{gathered} " \\ \text { Bytes } \end{gathered}$	$\begin{gathered} " \\ \text { Cycles } \end{gathered}$
LOAD A FROM MEMORY	LDA	A6	2	2	86	2	4	C6	3	5	F6	1	4	E6	2	5	06	3	6
LOAD X FROM MEMORY	LDX	AE	2	2	BE	2	4	CE	3	5	FE	1	4	EE	2	5	DE	3	6
STORE A IN MEMORY	STA	-	-	-	B7	2	5	C7	3	6	F7	1	5	E7	2	6	07	3	7
STORE X IN MEMORY	STX	-	-	-	BF	2	5	CF	3	6	FF	1	5	EF	2	6	DF	3	7
ADD MEMORY TO A	ADD	AE	2	2	BB	2.	4.	CB	3	5	FB	1	4	EB	2	5	DB	3	6
ADD MEMORY AND CARRY TO A	ADC	$\mathrm{Ag}^{\text {a }}$	2	2	B9	2	4	C9	3	5	F9	1	4	E9	2	5	D9	3	6
SUBTRACT MEMORY	SUB	A0	2	2	B0	2	4	C0	3	5	F0	1	4	E0	2	5	D0	3	6
SUBTRACT MEMORY FROM A WITH BORROW	SBC	A2	2	2	B2	2	4	C2	3	5	F2	1	4	E2	2	5	D2	3	6
AND MEMORY TO A	AND	A4	2	2	B4	2	4	C4	3	5	F4	1	4	E4	2	5	D4	3	6
OR MEMORY WITH A	ORA	AA	2	2	BA	2	4	CA	3	5	FA	1	4	EA	2	5	DA	3	6
EXCLUSIVE OR MEMORY WITH A	EOR	A8	2	2	B8	2	4	C8	3	5	F8	1	4	E8	2	5	D8	3	6
ARITHMETIC COMPARE A WITH MEMORY	CMP	A1	2	2	B1	2	4	C1	3	5	F1	1	4	E1	2	5	D1	3	6
ARITHMETIC COMPARE X WITH MEMORY	CPX	A3	2	2	B3	2	4	C3	3	5	F3	1	4	E3	2	5	D3	3	6
BIT TEST MEMORY WITH A (Logical Compare)	BIT	A5	2	2	B5	2	4	C5	3	5	F5	1	4	E5	2	5	D5	3	6
JUMP UNCONDITIONAL	JMP	-	-	-	BC	2	3	CC	3	4	FC	1	3	EC	2	4	DC	3	5
JUMP TO SUBROUTINE	JSR	-	-	-	BD	2	7	CD	3	8	FD	1	7	ED	2	8	DD	3	9

Table 4. Read/Modify/Write Instructions

Table 5. Branch Instructions

8-BIT
 MICROPROCESSING UNIT

Features
\square Interfaces With All S6800 Peripherals
\square Upward Compatible Instruction Set and Addressing Modes
\square Upward Source Compatible Instruction Set and Addressing Modes
\square Two 8-Bit Accumulators Can Be Concatenated Into One 16-Bit Accumulator
\square On-Chip Crystal Oscillator (4 times XTAL)

General Description

The S6809 is an advanced processor within the S6800 family offering greater throughput, improved byte efficiency, and increased adaptability to various software disciplines. These include position independence, reentrancy, recursion, block structuring, and high level language generation.

Because the S 6809 generates position-independent code, software can be written in modular form for easy user expansion as system requirements increase. The S6809 is hardware compatible with all $\mathbf{S} 6800$ peripherals, and any assembly language code prepared for the $\mathbf{S 6 8 0 0}$ can be passed through the S6809 assembler to produce code which will run on the S 6809 .

S6809E/S68A09E/S68B09E

8-BIT
 MICROPROCESSING UNIT

Features

\square Interfaces With All S6800 Peripherals
\square Upward Compatible Instruction Set and Addressing Modes
\square Upward Source Compatible Instruction Set and Addressing Modes
\square Two 8-Bit Accumulators Can Be Concatenated Into One 16-Bit Accumulator
\square External Clock Inputs, E and Q, Allow System Synchronization

General Description

The S6809E is an advanced processor within the S6800 family offering greater throughput, improved byte efficiency, and increased adaptability to various software disciplines. These include position independence, reentrancy, recursion, block structuring, and high level language generation.

Because the S6809E supports position-independent code, software can be written in modular form for easy user expansion as system requirements increase. The S6809E is hardware compatible with all S6800 peripherals, and any assembly language code prepared for the S6800 can be passed through the S6809 assembler to produce code which will run on the S6809E.

Block Diagram

Pin Configuration

S6809E Hardware Features

\square Fast Interrupt Request Input: Stacks Only Program Counter and Condition Code
\square Interrupt Acknowledge Output Allows Vectoring by Devices
\square Three Vectored Priority Interrupt Levels
\square SYNC Acknowledge Output Allows for Synchronization to External Event
\square NMI Blocked After RESET Until After First Load of Stack Pointer
\square Early Address Valid Allows Use With Slow Memories
\square Last Instruction Cycle Output (LIC) for Signalling Opcode Fetch
\square Busy Output Eases Multiprocessor Design

Instruction Set

\square Extended Range Branches
\square Load Effective Address
\square 16-Bit Arithmetic
$\square 8 \times 8$ Unsigned Multiply (AccumulatorA*B)
\square SYNC Instruction-Provides Software Sync With an External Hardware Process
\square Push and Pull on 2 Stacks
\square Push/Pull Any or All Registers
\square Index Registers May be Used as a Stack Pointer
\square Transfer/Exchange all Registers

Addressing Modes

\square All S6800 Modes Plus PC Relative Extended Indirect, Indexed Indirect, and PC Relative Indirect
\square Direct Addressing Available Anywhere in Memory Map
\square PC Relative Addressing: Byte Relative ($\pm 32,768$ Bytes From PC)
\square Complete Indexed Addressing Including Automatic Increment and Decrement, Register Offsets, and Four Indexable Register ($\mathrm{X}, \mathrm{Y}, \mathrm{U}$ and S)
\square Expanded Index Addressing
$\square 0,5,8,16$-Bit Constant Offset8, 16-Bit Accumulator Offsets

The S6809E gives the user 8 - and 16 -bit word capability with several hardware enhancements in the design such as the Fast Interrupt Request (FIRQ), Memory Ready (MRDY), and Quadrature (Qout) and System Clock Outputs ($\mathrm{E}_{\text {OUt }}$). With the Fast Interrupt Request (FIRQ) the S6809E places only the Program Counter and Condition Code Register on the stack prior to accessing the FIRQ vector location. The Memory Ready ($\overline{\text { MRDY }}$) input allows extension of the data access time for use with slow memories. The System Clock ($\mathrm{E}_{\mathrm{OUT}}$) operates at the basic processor frequency and can be as the synchronization signal for the entire system. The Quadrature Output ($\mathrm{Q}_{\mathrm{OUT}}$) provides additional system timing by signifying that address and data are stable.
The External Clock mode of the S6809E is particularly useful when synchronizing the processor to an externally generated signal. The Three-State Control input (TSC) places the Address and R/W line in the high impedance state for DMA or Memory Refresh. The last Instruction Cycle (LIC) is activated during the last cycle of any instruction. This signifies that the next instruction cycle is the opcode fetch. The Processor Busy signal (BUSY) facilitates multiprocessor applications by allowing the designer to insure that flags being modified by one processor are not accessed by another simultaneously.
The S6809E features a family of addressing capabilities which can use any of the four index registers and stack pointers as a pointer to the operand (or the operand address). This pointer can have a fixed or variable signed offset that can be automatically incremented or decremented. The eight-bit direct page register permits a user to determine which page of memory is accessed by the instructions employing "page zero" addressing. This quick access to any page is especially useful in multitasking applications.
The S6809E has three vectored priority-interrupt levels, each of which automatically disables the lower priority interrupt while leaving the higher priority interrupt enabled.
The S6809E gives the system designer greater flexibility (through modular relocatable code) to enable the user to reduce system software costs while at the same time increasing software reliability and efficiency.

S6809E/S68A09E/S68B09E

E and Q Clock Inputs. The E and Q inputs are the clock signals required by the S 6809 E . The E signal is similar to the ϕ_{2} signal of the S6800. Data is latched on the trailing edge of the E signal. The Q is a Quadrature clock, and is used to signal the validity of the addresses on the address bus. The Q input is TTL compatible, the E input however, directly drives the internal MOS circuitry. As a result, the E signal's levels must be higher than TTL levels, to minimize internal skew. The required signals are shown in Figures 1 and 2. Figure 11 shows the circuitry required to generate the proper signals. A 74LS73 is required, as the other 7473 series are level triggered rather than edge-triggered, and will not generate the proper waveforms.
BUSY. The BUSY output is used for arbitration of the MPU bus. The BUSY signal signifies that the S6809E will need the bus for at least the next cycle, as it is in the middle of a multiple-byte data access. The BUSY signal will be high for the first two cycles of the operand fetch of any Read-Modify-Write instruction, high during the first operand fetch of any double-byte instructions (LDD, STD) and high during the first byte access of any indirect access or vector fetch operation. BUSY is not active during pushes or pulls from the stack (PUL, PSH). Figure 12 shows the timing for the BUSY signal for a

Read-Modify-Write operation (ASL @6300).
AVMA. The AVMA output is an advanced Valid Memory Address signal. This output goes HIGH one cycle before the MPU performs a memory access. The advanced nature of this signal allows bus arbitration logic an advanced warning of potential bus conflict.
LIC. The LIC output is the Last Instruction Cycle signal. This signal's HIGH to LOW transition signals that the current MPU cycle is an opcode fetch. The LIC signal will be held HIGH when the MPU is Halted at the end of an instruction (i.e., not in CWAI or RESET), when the MPU is in the SYNC state or while it is stacking during interrupts.
TSC. The TSC input is a Tri-State-Control for the S6809E's Address, data and R / \bar{W} buffers. To force the MPU into the High-impedance state, the TSC line should be brought HIGH tpCST before the end of the current cycle. The clocks for the MPU are then stopped in the first quarter ($\mathrm{E}=0, \mathrm{Q}=0$) of the next cycle. To regain the bus, the TSC line should be brought low, and the clocks re-started.
The TSC HIGH state is latched on the trailing edge of E , and therefore should be timed accordingly.

Figure 10. E/Q Relationship

Figure 11. S6809E Clock Generator

A Subsidiary

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER

Features

\square Full or Half Duplex Operation
Transmits and Receives Serial Data Simultaneously or at Different Baud Rates
\square Completely Programmable-Data Word Length, Number of Stop Bits, Parity
\square Automatic Start Bit Generation
\square Data and Clock Synchronization Performed Automatically
 Double Buffered-Eliminates Timing Difficulties
 Completely Static Circuitry
 Fully TTL Compatible
 Three-State Output Capability
 Single Power Supply: + 5 V
 Standard 40-Pin Dual-in-Line Package
 Plug In Compatible with Western Digital TR1602A, TR1863, Fujitsu 8868A
}

General Description

The AMI S1602 is a programmable Universal Asynchronous Receiver/Transmitter (UART) fabricated with N -Channel silicon gate MOS technology. All control pins, input pins and output pins are TTL compatible, and a single +5 volt power supply is used. The UART interfaces asynchronous serial data from terminals or other peripherals, to parallel data for a microprocessor, computer, or other terminal. Parallel data is converted by the transmitter section of the UART into a serial
word consisting of the data as well as start, parity, and stop bit(s). Serial data is converted by the receiver section of the UART into parallel data. The receiver section verifies correct code transmission by parity checking and receipt of a valid stop bit. The UART can be programmed to accept word lengths of $5,6,7$, or 8 bits. Even or odd parity can be set. Parity generation checking can be inhibited. The number of stop bits can be programmed for one, two, or one and one half when transmitting a 5 -bit code.

Absolute Maximum Ratings*

V_{CC} Pin Potential to $\mathrm{V}_{\text {SS }}$ Pin ... -0.3 V to +7.0 V	
Input Voltage	
Operating Temperature ... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
Storage Tempera	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

*Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detalled in the operational sections of this data sheets. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Capacitance: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$

Symbol	Parameter	Typ.	Max.	Unit
C_{IN}	Input Capacitance for all Inputs	10		pF

Guaranteed Operating Conditions (Referenced to V_{SS})

Symbol	Parameter	Operating Temperature	Min.	Typ.	Max.	Unit
$V_{C C}$	Supply Voltage	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	4.75	5.0	5.25	V
$V_{\text {SS }}$			0.0	0.0	0.0	V
$V_{\text {IH }}$	Logic Input High Voltage	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	2.2		$V_{C C}$	V
$V_{\text {IL }}$	Logic Input Low Voltage	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	-0.3		+0.8	V

D.C. Characteristics (Guaranteed Operating Ranges Unless Otherwise Noted.)

Symbol	Parameter	Min.	Typ.	Max.	Unit
IIL	Input Leakage Current ($\mathrm{V}_{\mathrm{IN}}=0$ to $5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}$)			1.4	mA
ILZ	Output Leakage Current for 3-State ($\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to V_{CC}, $S F D=R R D=V_{I H}$	-20		+20	$\mu \mathrm{A}$
V_{0}	Output Low Voltage ($l_{\text {OL }}=1.8 \mathrm{~mA}$)			0.4	V
V_{OH}	Output High Voltage ($1_{0 L}=-200 \mu \mathrm{~A}$)	2.4			V
${ }_{\text {c }}$	$V_{C C}$ Supply Current		70		mA

A.C. Characteristics (Guaranteed Operating Ranges Unless Otherwise Noted)

Symbol	Parameter	Min.	Typ.
f_{C}	Clock Frequency for RRC and TRC (Duty Cycle $=50 \%)$	Max.	Unit
$t_{\text {PWC }}$	CRL Pulse Width, High	DC	800
$t_{\text {PWT }}$	THRL Pulse Width, Low	kHz	
$t_{\text {PWR }}$	DRR Pulse Width, Low	180	ns
$t_{\text {PWM }}$	MR Pulse Width, High	180	ns
t_{C}	Coincidence Time (Figure 3 and Figure 8)	150	ns
$t_{\text {HOLD }}$	Hold Time (Figure 3 and Figure 8)	180	ns
$t_{\text {SET }}$	Setup Time (Figure 3 and Figure 8)	20	ns
$t_{\text {PDO }}$	Propagation Delay Time High to Low, Output $\left(C_{L}=130 p F+1 T T L\right)$	ns	
$t_{\text {PD1 }}$	Propagation Delay Time Low to High, Output $\left(C_{L}=130 \mathrm{pF}+1 \mathrm{TTL}\right)$	ns	

Pin Description

Pin	Label	Function
1	$V_{\text {CC }}$	Power Supply-normally at +5 V .
2	N.C.	No Connection. On the S 1602 this is an unconnected pin. On the TR1602A this is a -12 V supply. -12 V is not needed on the S 1602 and thus the N.C. pin allows the S 1602 to be compatible with the TR1602A.
3	$V_{S S}$	This is normally at OV or ground.
4	RRD	Receive Register Disconnect. A high logic level, $\mathrm{V}_{1 H}$, on this pin disconnects the Receiver Holding Register outputs from the data outputs $\mathrm{RR}_{8}-\mathrm{RR}_{1}$ on pin 5-12.
5-12	$\mathrm{RR}_{8}-\mathrm{RR}_{1}$	Receiver Holding Register Data. These are the parallel outputs from the Receiver Holding Register, if the RRD input is low (VIL). Data is (LSB) right justified for character formats of less than eight bits, with RR_{1} being the least significant bit. Unused MSBs are forced to a low logic output level, $\mathrm{V}_{0 L}$.
13	PE	Parity Error. This output pin goes to a high level if the received parity does not agree with that programmed by the Even Parity Enable input (pin 39). This output is updated as each character is transferred to the Receiver Holding Register. The Status Flag Disconnect input (pin 16) allows additional PE lines to be tied together by providing an output disconnect capability.
14	FE	Framing Error. This output pin goes high if the received character has no valid stop bit. Each time a character is transferred to the Receiver Holding Register, this output is updated. The Status Flag Disconnect input (pin 16) allows additional FE lines to be tied together by providing an output disconnect capability.
15	OE	Overrun Error. This output pin goes high if the Data Received Flag (pin 19) did not get reset before the next character was transferred to the Receive Holding Register. The Status Flag Disconnect input (pin 16) allows additional $0 E$ lines to be tied together providing an output disconnect capability.
16	SFD	Status Flag Disconnect. When this input is high, PE, FE, OE, DR and THRE outputs are forced to high impedance Three-State allowing bus sharing capability.
17	RRC	Receive Register Clock. This clock input is 16 x the desired receiver shift rate.
18	$\overline{\text { DRR }}$	Data Received Reset. A low level input, V_{IL}, clears the Data Received (DR) line.
19	DR	Data Received. When a complete character has been received and transferred to the Receiver Holding Register, this output goes to the high level, V_{OH}.
20	RI	Receiver Input. Serial input data enters on this line. It is transferred to the Receiver Register as determined by the character length, parity and number of stop bits. When data is not being received, this input must remain high, V_{IH}.

Pin Description

Pin	Label	Function
21	MR	Master Reset. A high level pulse, V_{H}, on this input clears the internal logic. The transmitter and Receive Registers, Receiver Holding Register, FE, OE, PE, DRR are reset. In addition, the serial output line is set to a high level, V_{OH}.
22	THRE	Transmitter Holding Register Empty. This output will go high when the Transmitter Holding Register completes transfer of its contents to the Transmitter Register. The high level indicates a new character may be loaded into the Transmitter Holding Register.
23	$\overline{\text { THRL }}$	Transmitter Holding Register Load. When a low level, V_{VL}, is applied to this input, a character is loaded into the Transmitter Holding Register. The character is transterred to the Transmitter Register on a low to high level, V_{H}, transition as long as the Transmitter Register is not currently in the process of transmitting a character. If a character is being transmitted, the transfer is delayed until the transmission is completed. The new character is then transferred simultaneously with the start of the serial transmission of the new character.
24	TRE	Transmitter Register Empty. Goes high when the Transmitter Register has completed the serial transmission of a full character including the required number of stop bits. A high will be maintained until the start of transmission of the next character.
25	TRO	Transmitter Register Output. Transmits the Transmitter Register contents (Start bit, Data bits, Parity bit and Stop bit(s) serially. Remains high, V_{OH}, when no data is being transmitted. Therefore, start of transmission is determined by transition of the Start bit from high to low level voltage, $\mathrm{V}_{0 \mathrm{~L}}$.
26-33	$T R_{1}-T R_{8}$	Transmitter Register Data Inputs. The THRL strobe loads the character on these lines into the Transmitter Holding Register. If $W L S_{1}$ and $W L S_{2}$ have selected a character of less than 8 bits, the character is right justified to the least significant bit, TR_{1} with the excess bits not used. A high input level, $V_{H H}$, will cause a high output level, $V_{O H}$, to be transmitted.
34	CRL	Control Register Load. The control bits, (WLS 1, WLS S_{2}, EPE, PI, SBS), are loaded into the Control Register when the input is high. This input may be either strobed or hard wired to the high level.
35	PI	Parity Inhibit. Parity generation and verification circuitry are inhibited when this input is high. The PE output will be held low as well. When in the inhibit condition the Stop bit(s) will follow the last data bit on transmission.
36	SBS	Stop Bit(s) Select. A high level will select two Stop bits, and a low level selects one Stop bit. If 5-bit words are selected, a high level will generate one and one-half Stop bits.
37, 38	WLS ${ }_{2}, W_{L S}$	Word Length Select. The state of these two (2) inputs determines the character length (exclusive of parity) as follows:
		$\mathrm{WLS}_{2} \mathrm{WLS}_{1}$ WORD LENGTH
		LOW LOW 5 bits
		LOW HIGH 6 bits
		HIGH LOW 7 bits
		HIGH HIGH 8 bits
39	EPE	Even Parity Enable. A high voltage level, V_{IH}, on this input will select even parity, while a low voltage level, V_{IL}, selects odd parity.
40	TRC	Transmitter Register Clock. The frequency of this clock input should be 16 times the desired baud rate.

Figure 1. Receiver Operator Timing

Figure 2. Timing for Status Flags, $\mathbf{R R}_{1}$ thru $\mathbf{R R}_{8}$ and $\mathbf{D R}$

Figure 3. Transmitter Operator Timing

SEE FIG. 5
FOR DETAIL

Figure 4. Data Input Load Cycle

Figure 5. Transmitter Output Timing $(\mathbf{(1)}$

NOTES:

1. When the positive transition of THRL is 500 ns or more before the falling edge of TRC (CF2 in the figure), TRE is enabled at CF2. But, when $500 \mathrm{~ns}>(1)>0 \mathrm{~ns}$, TRE is invalid between CF2 and CF3.
2. THRE goes to low during 500 ns Max. from the positive transition of THRL.
3. TRE goes to low during $\mathbf{5 0 0 n s}$ Max. from the first falling edge of TRC after THRE goes to low with TRE high.
4. TRO goes to low (START BIT) during 500 ns Max. from the first rising edge of TRC after TRE goes to low.
5. THRE goes to high during 500 ns Max. from the falling edge of TRC after START BIT is enabled.

Figure 6. Transmitter Output Timing $_{(2)}$

2.5, refer to Figure 5.
6. TRANSMITTER REGISTER EMPTY goes to high during 500ns Max. from the 15th rising edge of TRC after STOP BIT is enables.

Figure 7. Input After Master Reset

Figure 8. Control Register Load Cycle

Figure 9. Status Flag Output

Figure 10. Data Output

A Subsidiary of Gould Inc.

UNIVERSAL SYNCHRONOUS RECEIVERITRANSMITTER

Features

$\square 500 \mathrm{kHz}$ Data Rates
\square Internal Sync Detection
\square Fill Character Register
\square Double Buffered Input/Output
\square Bus Oriented Outputs
$\square 5-8$ Bit Characters
\square Odd/Even or No Parity
\square Error Status Flags
\square Single Power Supply (+5 V)
\square Input/Output TTL-Compatible

General Description

The S2350 Universal Synchronous Receiver Transmitter (USRT) is a single chip MOS/LSI device that totally replaces the serial-to-parallel and parallel-toserial conversion logic required to interface a word parallel controller or data terminal to a bit-serial, synchronous communication network.
The USRT consists of separate receiver and transmitter sections with independent clocks, data lines and status. Common with the transmitter and receiver are word length and parity mode. Data is transmitted and received in a NRZ format at a rate equal to the respective input clock frequency.

Pin Configuration

Data messages are transmitted as a contiguous character stream, bit synchronous with respect to a clock and character synchronous with respect to framing or "sync" characters initializing each message. The USRT receiver compares the contents of the internal Receiver Sync Register with the incoming data stream in a bit transparent mode. When a compare is made, the receiver becomes character synchronous formatting a $5,6,7$, or 8 -bit character for output each character time. The receiver has an output buffer register allowing a full character time to transfer the data out. The receiver status outputs indicate received data available (RDA), receiver overrun (ROR), receive parity error (RPE) and sync character received (SCR). Status bits are available on individual output lines and can also be multiplexed onto the output data lines for bus organized systems. The data lines have tri-state outputs.
The USRT transmitter outputs $5,6,7$, or 8 -bit characters
with correct parity at the transmitter serial output (TSO). The transmitter is buffered to allow a full character time to respond to a transmitter buffer empty (TBMT) request for data. Data is transmitted in a NRZ format changing on the positive transition of the transmitter clock (TCP). The character transmitter fill register is inserted into the data message if a data character is not loaded into the transmitter after a TBMT request.

Typical Applications

\square Computer Peripherals
\square Communication Concentrators
\square Integrated Modems
\square High Speed Terminals
\square Time Division Multiplexing
\square Industrial Data Transmission

Absolute Maximum Ratings

Ambient Temperature Under Bias	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Positive Voltage on Any Pin With Respect to GROUND	+ 7 V
Negative Voltage on Any Pin With Respect to GROUND	-0.5V
Power Dissipation	0.75W

D.C. (Static) Electrical Characteristics* ($V_{C C}=5.0 \mathrm{~V} \pm 5 \% ; T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter	Min.	Typ.	Max.	Unit	Condition
$\mathrm{V}_{\text {H }}$	Input High Voltage	2.0		$V_{C C}$	V	
$V_{\text {IL }}$	Input Low Voltage	-0.5		+0.8	V	
ILL	Input Leakage Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0_{\text {TO }} \mathrm{V}_{\text {cO }} \mathrm{V}$
V_{OH}	Output High Voltage	2.4			V	$\mathrm{IOH}=-100 \mu \mathrm{~A}$
$\mathrm{V}_{0 \mathrm{~L}}$	Output Low Voltage			+0.4	V	$\mathrm{l}_{0 \mathrm{~L}}=1.6 \mathrm{~mA}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance			10	pF	$\mathrm{V}_{\text {iN }}=0 \mathrm{~V} ; \mathrm{f}=1.0 \mathrm{MHz}$
$\mathrm{C}_{\text {OUt }}$	Output Capacitance			12	pF	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} ; \mathrm{f}=1.0 \mathrm{MHz}$
${ }_{\text {cc }}$	VCC Supply Current			100	mA	No Load; $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$

* Electrical Characteristics included in this advanced product description are objective specifications and may be subject to change.
A.C. (Dynamic) Electrical Characteristics* $\left(V_{C C}=5.0 \mathrm{~V} \pm 5 \% ; T_{A}=0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter	Min.	Typ.	Max.	Unit	Condition
TCP, RCP	Clock Frequency	DC		500	kHz	

A.C. (Dynamic) Electrical Charcteristics* (Continued)

Symbol	Parameter	Min.	Typ.	Max.	Unit	Condition
Input Pulse Width	900					
$P_{\text {TCP }}$	Transmit Clock	900			nsec	CL = 20pF
$P_{\text {RCP }}$	Receive Clock	500			nsec	1TTL Load
$P_{\text {RST }}$	Reset	200			nsec	
$P_{\text {TDS }}$	Transmit Data Strobe	200			nsec	
$P_{\text {TFS }}$	Transmit Fill Strobe	200			nsec	
$P_{\text {RSS }}$	Receive Sync Strobe	200		nsec		
$P_{\text {CS }}$	Control Strobe	400			nsec	
$P_{\text {RDE }}$	Receive Data Enable	400			nsec	Note 1
$P_{\text {SWE }}$	Status Word Enable	500			nsec	Note 1
$P_{\text {RR }}$	Receiver Restart			nsec		

Switching Characteristics

TTS0	Delay, TCP Clock to Serial Data Out		700	nsec	
$T_{\text {TBM }}$	Delay, TCP Clock to TBMT Output		1.4	$\mu \mathrm{sec}$	
$T_{\text {TBM }}$	Delay, TDS to TBMT		700	nsec	
TSTS	Delay, SWE to Status Reset		700	nsec	
$\mathrm{T}_{\text {RDO }}$	Delay, SWE, RDE to Data Output		400	nsec	1 TTL Load
THRDO	Hold Time SWE, RDE to Off State		400	nsec	$C_{L}=130 \mathrm{pF}$
T DTS	Data Set Up Time TDS, TFS, RSS, CS	0		nsec	
$\mathrm{T}_{\text {DTH }}$	Data Hold Time TDS	700		nsec	
$\mathrm{T}_{\text {DTI }}$	Data Hold time TFS, RSS	200		nsec	
$\mathrm{T}_{\text {CNS }}$	Control Set Up Time NDB1, NDB2, NPB, P0E	0		nsec	
$\mathrm{T}_{\text {CNH }}$	Control Hold Time NDB1, NDB2, NPB, POE	200		nsec	
$\mathrm{T}_{\text {RDA }}$	Delay RDE to RDA Output	700		nsec	

NOTE 1: Required to reset status and flags.

ASYNCHRONOUS COMMUNICATION INTERFACE ADAPTER

Features

\square On-Chip Baud Rate Generator: 15 Programmable Baud Rates Derived from a Standard 1.8432MHz External Crystal (50 to 19,200 Baud)
\square Programmable Interrupt and Status Register to Simplify Software Design
\square Single +5 Volt Power Supply
\square Serial Echo Mode
\square False Start Bit Detection8-Bit Bi-Directional Data Bus for Direct Communication With the Microprocessor

- External 16X Clock Input for Non-Standard Baud Rates (Up to 125 K Baud)
\square Programmable: Word Lengths; Number of Stop Bits; and Parity Bit Generation and DetectionData Set and Modem Control Signals Provided
Parity: (Odd, Even, None, Mark, Space)Full-Duplex or Half-Duplex Operation
5, 6, 7, 8 and 9-Bit Transmission

General Description

The S6551/S6551A is an Asynchronous Communication Adapter (ACIA) intended to provide interfacing for the microprocessors to serial communication data sets and modems. A unique feature is the inclusion of an on-chip programmable baud rate generator, with a crystal being the only external component required.

Absolute Maximum Ratings

Supply Voltage $V_{C C}$ -0.3 V to +7.0 V
Input/Output Voltage $\mathrm{V}_{\text {IN }}$ -0.3 V to +7.0 V
Operating Temperature Range T_{A} $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $\mathrm{T}_{\text {stg }}$ $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

All inputs contain protection circuitry to prevent damage to high static charges. Care should be exercised to prevent unnecessary application of voltages in excess of the allowable limits.
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Operating Characteristics ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Min.	Typ.	Max.	Units
$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.0	-	$\mathrm{V}_{\text {c }}$	V
$V_{\text {IL }}$	Input Low Voltage	-0.3	-	0.8	V
I_{N}	Input Leakage Current: $V_{I N}=0$ to 5 V ($\phi 2, \mathrm{R} / \mathrm{W}$, RES, $\left.\mathrm{CS}_{0}, \mathrm{CS}_{1}, \mathrm{RS}_{0}, \mathrm{RS}_{1}, \mathrm{CTS}, \mathrm{RxD}, \mathrm{DCD}, \mathrm{DSR}\right)$	-	± 1.0	± 2.5	$\mu \mathrm{A}$
$1_{\text {TSI }}$	Input Leakage Current for High Impedance State (Three State)	-	± 2.0	± 10.0	$\mu \mathrm{A}$
V_{OH}	Output High Voltage: $\mathrm{I}_{\mathrm{LOAD}}=-100 \mu \mathrm{~A}\left(\mathrm{DB}_{0}-\mathrm{DB}_{7}, \mathrm{TxD}\right.$, $R \times C, R T S, D T R)$	2.4	-	-	V
V_{01}	$\begin{aligned} & \text { Output Low Voltage: } \mathrm{I}_{\text {LOAD }}=1.6 \mathrm{~mA}\left(\mathrm{DB}_{0}-\mathrm{DB}_{7}, \mathrm{~T} \times \mathrm{D},\right. \\ & \mathrm{R} \times \mathrm{C}, \mathrm{RTS}, \mathrm{DTR}, \mathrm{IRQ}) \end{aligned}$	-	-	0.4	V
I_{OH}	$\text { Output High Current (Sourcing): } \mathrm{V}_{0 \mathrm{H}}=2.4 \mathrm{~V}\left(\mathrm{DB}_{0}-\mathrm{DB}_{7}\right. \text {, }$ $T \times D, R \times C, R T S, D T R)$	-	-	-100	$\mu \mathrm{A}$
101	Output Low Current (Sinking): $V_{0 L}=0.4 \mathrm{~V}\left(\mathrm{DB}_{0}-\mathrm{DB}_{7}\right.$, $T \times D, R \times C, R T S, D T R, I R Q)$	-	-	1.6	mA
$\mathrm{I}_{\text {OFF }}$	Output Leakage Current (0ff State): $\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$ (IRQ)	-	1.0	10.0	$\mu \mathrm{A}$
$\mathrm{C}_{\text {clk }}$	Clock Capacitance (\$2)	-	-	20	pF
$\mathrm{C}_{\text {IN }}$	Input Capacitance (Except XTAL1 and XTAL2)	-	-	10	pF
$\mathrm{Cout}^{\text {O }}$	Output Capacitance	-	-	10	pF
P_{D}	Power Dissipation (See Graph) ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$)	-	170	300	mW

Write Cycle ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, unless otherwise noted)

		S6551		S6551A		Unit
Symbol	Parameter	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\mathrm{CYC}}$	Cycle Time	1.0	-	0.5	-	$\mu \mathrm{S}$
t_{C}	\$2 Pulse Width	400	-	200	-	ns
$\mathrm{t}_{\text {ACW }}$	Address Set-Up Time	120	-	70	-	ns
$\mathrm{t}_{\text {cah }}$	Address Hold Time	0	-	0	-	ns
$t_{\text {wcw }}$	R/W Set-Up Time	120	-	70	-	ns
$\mathrm{t}_{\text {CWH }}$	R/W Hold Time	0	-	0	-	ns
$\mathrm{t}_{\mathrm{DCW}}$	Data Bus Set-Up Time	150	-	60	-	ns
t_{HW}	Data Bus Hold Time	20	-	20	-	ns

Figure 1. Power Dissipation vs. Temperature

Figure 2. Write Timing Characteristics

Read Cycle ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	S6551		S6551A		Unit
		Min.	Max.	Min.	Max.	
${ }^{\text {CHC }}$	Cycle Time	1.0	-	0.5	-	$\mu \mathrm{S}$
t_{C}	\$2 Pulse Width	400	-	200	-	ns
$t_{\text {ACR }}$	Address Set-Up Time	120	-	70	-	ns
$\mathrm{t}_{\text {CAR }}$	Address Hold Time	0	-	0	-	ns
$t_{\text {WCR }}$	R/WW Set-Up Time	120	-	70	-	ns
${ }^{\text {char }}$	Read Access Time (Valid Data)	-	200	-	150	ns
t_{HR}	Read Hold Time	20	-	20	-	ns
$t_{\text {CDA }}$	Bus Active Time (Invalid Data)	40	-	40	-	ns

Figure 3. Clock Generation

Figure 4. Read Timing Characteristics

Transmit/Receive Characteristics

Symbol	Parameter	S6551		S6551A		Unit
		Min.	Max.	Min.	Max.	
$\mathrm{t}_{\mathrm{CCY}}$	Transmit/Receive Clock Rate	400*	-	400*	-	ns
t_{CH}	Transmit/Receive Clock High Time	175	-	175	-	ns
$t_{\text {cL }}$	Transmit/Receive Low Time	175	-	175	-	ns
$t_{D D}$	EXTAL1 to TxD Propagation Delay	-	500	-	500	ns
$\mathrm{t}_{\text {DLY }}$	Propagation Delay ($\overline{\mathrm{RTS}}$, DTR)	-	500	-	500	ns
${ }_{1}^{1 / R O}$	$\overline{\mathrm{IRQ}}$ Propagation Delay (Clear)	-	500	-	550	ns

(t_{r} and $\mathrm{t}_{\mathrm{f}}=10$ to 30 ns)
*The baud rate with external clocking is: Baud Rate $=\frac{1}{16 \times t_{C C Y}}$

Figure 5. Test Load for Data Bus ($\mathrm{DB}_{0}-\mathrm{DB}_{7}$), $\overline{\mathrm{TxD}}$, $\overline{\text { DTR, RTS Outputs }}$

Figure 6b. Transmit Timing with External Clock

Pin Description

$\overline{\text { RES }}$ (Reset). During system initialization a low on the RES input will cause internal registers to be cleared.
\$2 Input Clock. The input clock is the system $\$ 2$ clock and is used to trigger all data transfers between the system microprocessor and the S6551.
$\mathrm{R} / \overline{\mathrm{W}}$ (Read/Write). The $\mathrm{R} \overline{\mathrm{W}}$ is generated by the microprocessor and is used to control the direction of data transfers. A high on the $\mathrm{R} \overline{\mathrm{W}}$ pin allows the processor to read the data supplied by the S6551. A low on the R \bar{W} pin allows a write to the S 6551 .
$\overline{\mathrm{IRQ}}$ (Interrupt Request). The $\overline{\mathrm{RQ}}$ pin is an interrupt signal from the interrupt control logic. It is an open drain output, permitting several devices to be connected to the common $\overline{\mathrm{RQ}}$ microprocessor input. Normally a high level, $\overline{I R Q}$ goes low when an interrupt occurs.
$\mathrm{DB}_{0}-\mathrm{DB}_{7}$ (Data Bus). The $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ pins are the eight data lines used for transfer of data between the processor and the S6551. These lines are bi-directional and are normally high-impedance except during Read cycles when selected.

Figure 6a. Interrupt and Output Timing

Figure 6c. Receive External Clock Timing

$\mathbf{C S}_{0}-\overline{\mathbf{C S}_{1}}$ (Chip Selects). The two chip select inputs are normally connected to the processor address lines either directly or through decoders. The $\mathbf{S 6 5 5 1}$ is selected when CS_{0} is high and CS_{1} is low.
$\mathbf{R S}_{\mathbf{0}}, \mathbf{R S}_{1}$ (Register Selects). The two register select lines are normally connected to the processor address lines to allow the processor to select the various S 6551 internal registers. The following table indicates the internal register select coding:
Table 1

$\mathbf{R S}_{\mathbf{1}}$	$\mathbf{R S}_{\mathbf{0}}$	WRITE	READ
0	0	Transmit Data Register	Receiver Data Register
0	1	Programmed Reset (Data is "Don't Care'')	Status Register
1	0	Command Register	
1	1	Control Register	

The table shows that only the Command and Control registers are read/write. The Programmed Reset operation does not cause any data transfer, but is used to clear the S 6551 registers. The Programmed Reset is slightly different from the Hardware Reset (RES) and these diferences are described in the individual register definitions.

S6551/S6551A

XTAL1, XTAL2 (Crystal Pins). These pins are normally directly connected to the external crystal $(1.8432 \mathrm{MHz}$ M-Tron MP-2 recommended) used to derive the various baud rates. Alternatively, an externally generated clock may be used to drive the XTAL1 pin, in which case the XTAL2 pin must float.
TxD (Transmit Data). The TxD output line is used to transfer serial NRZ (non-return-to-zero) data to the modem. The LSB (least significant bit) of the Transmit Data Register is the first data bit transmitted and the rate of data transmission is determined by the baud rate selected.
RxD (Receive Data). The RxD input line is used to transfer serial NRZ data into the ACIA from the modem, LSB first. The receiver data rate is either the programmed baud rate or the rate of an externally generated receiver clock. This selection is made by programming the Control Register.
RxC (Receive Clock). The RxC is a bi-directional pin which serves as either the receiver 16xclock input or the receiver 16 xclock output. The latter mode results if the internal baud rate generator is selected for receiver data clocking.
$\overline{\operatorname{RTS}}$ (Request to Send). The $\overline{\mathrm{RTS}}$ output pin is used to control the modem from the processor. The state of the RTS pin is determined by the contents of the Command Register.
CTS (Clear to Send). The CTS input pin is used to control the transmitter operation. The enable state is with CTS low. The transmitter is automatically disabled if CTS is high.
DTR (Data Terminal Ready). This output pin is used to indicate the status of the $\mathbf{S 6 5 5 1}$ to the modem. A low on $\overline{\text { DTR }}$ indicates the 66551 is enabled and a high indicates it is disabled. The processor controls this pin via bit 0 of the Command Register.
$\overline{\text { DSR (Data Set Ready). The DSR input pin is used to indi- }}$ cate to the S6551 the status of the modem. A low indicates the "ready" state and a high, "not-ready." DSR is a high-impedance input and must not be a no-connect. If unused, it should be driven high or low, but not switched.
Note: If Command Register Bit $0=1$ and a change of state on $\overline{\mathrm{DSR}}$ occurs, $\overline{\mathrm{RQ}}$ will be set, and Status Register Bit 6 will reflect the new level. The state of DSR does not affect either Transmitter or Receiver operation.
$\overline{\mathrm{DCD}}$ (Data Carrier Detect). The $\overline{\mathrm{DCD}}$ input pin is used to indicate to the S6551 the status of the carrier-detect output of the modem. A low indicates that the modem carrier signal is present and a high, that it is not. $\overline{D C D}$, like $\overline{\text { DSR }}$, is a high-impedance input and must not be a no-connect.
Note: If Command Register Bit $0=1$ and a change of state on $\overline{\mathrm{DCD}}$ occurs, IRQ will be set, and Status Register Bit 5 will reflect the new level. The state of $\overline{D C D}$ does not affect Transmitter operation, but must be low for the Receiver to operate.

Figure 7. Transmitter/Receiver Clock Circuits

Figure 8. Control Register Format control пegisten

[^22]-THES ALLOWS FOR 9-BT TRAMSMISSYON (8 DATA BTS PLUS PARITY).

Internal Organization

The Transmitter/Receiver sections of the S6551 are depicted by the block diagram in Figure 7.
Bits 0.3 of the Control Register select the divisor used to generate the baud rate for the Transmitter. If the Receiver clock is to use the same baud rate as the Transmitter, then RxC becomes an output pin and can be used to slave other circuits to the $\mathbf{S 6 5 5 1}$.

Control Register

The Control Register is used to select the desired mode for the S6551. The word length, number of stop bits, and clock controls are all determined by the Control Register, which is depicted in Figure 8.

Command Register

The Command Register is used to control Specific Transmit/Receive functions and is shown in Figure 9.

Figure 9. Command Register Format
command hegister

5	4	3	2	1	0

$=$ EMABLE RECEIVER AND ALL

- receiver interrupt emable

		$\begin{aligned} & 0=\overline{\text { IRG INTERRUPT ENABLED FROM BIT } 3} \\ & 1=\overline{\text { OF STATUS REGISTER }} \\ & \mathbf{I R G I N T E R R U P T} \text { DISABLED } \end{aligned}$		
			-	SMITTER CONTR
BIT		thansmit INTERRUPT	$\begin{gathered} \text { HTS } \\ \text { LEVEL } \end{gathered}$	TRANSMITTER
3	2			
0	0	DISABLED	HIGH	OFF
0	1	ENABLED	LOW	ON
1	0	DISABLED	LOW	ON
1	1	DISABLED	10w	TRANSMIT BRK

NORMALJECHO MODE
FOR RECEIVER
FOR RECEIVER
$0=$ normal
$1=$ ECHO (BITS 2 AND 3 MUST BE " 0 ")

Figure 10. Status Register Format

Status Register

The Status Register is used to indicate to the processor the status of various $\mathbf{S 6 5 5 1}$ functions and is outlined in Figure 10.

Transmit and Receive Data Registers

These registers are used as temporary data storage for the S6551 Transmit and Receive circuits. The Transmit Data Register is characterized as follows:
\square Bit 0 is the leading bit to be transmitted.
\square Unused data bits are the high-order bits and are "don't care" for transmission.
The Receive Data Register is characterized in a similar fashion:
\square Bit 0 is the leading bit received.
\square Unused data bits are the high-order bits and are " 0 " for the receiver.
\square Parity bits are not contained in the Receive Data Register, but are stripped-off after being used for external parity checking. Parity and all unused highorder bits are " 0 ".

Figure 11 illustrates a single transmitted or received data word, for the example of 8 data bits, parity, and 1 stop bit.

Figure 11. Serial Data Stream Example

PERIPHERAL INTERFACE ADAPTER (PIA)

Features

8-Bit Bidirectional Bus for Communication with the MPUTwo Bidirectional 8-Bit Buses for Interface to Peripherals\square Two Programmable Control RegistersTwo Programmable Data Direction RegistersFour Individually-Controlied Interrupt Input Lines: Two Usable as Peripheral Control OutputsHandshake Control Logic for Input and Output Peripheral OperationHigh-Impedance Three-State and Direct Transistor Drive Peripheral LinesProgram Controlled Interrupt and Interrupt Disable CapabilityCMOS Compatible Peripheral Lines

Two TTL Drive Capability on all A and B Side Buffers
\square TTL Compatible
\square Static Operation

General Description

The S6821/S68A21/S68B21 are peripheral Interface Adapters that provide the universal means of interfacing peripheral equipment to the S6800/S68A00/S68B00 Microprocessing Units (MPU). This device is capable of interfacing the MPU to peripherals through two 8 -bit bidirectional peripheral data buses and four control lines. No external logic is required for interfacing to most peripheral devices.
The functional configuration of the PIA is programmed by the MPU during system initialization Each of the

Pin Configuration

General Description (Continued)

peripheral data lines can be programmed to act as an input or output, and each of the four control/interrupt lines may be programmed for one of several control modes. This allows a high degree of flexibility in the overall operation of the interface.
The PIA interfaces to the S6800/S68A00/S68B00 MPUs
with an eight-bit bidirectional data bus, three chip select lines, two register select lines, two interrupt request lines, read/write line, enable line and reset line. These signals, in conjunction with S6800/S68A00/ S68B00 VMA output, permit the MPU to have complete control over the PIA. VMA may be utilized to gate the input signals to the PIA.

Absolute Maximum Ratings:

Symbol	Rating	Value	Unit
V_{CC}	Supply Voltage	-0.3 to +7.0	VdC
V_{IN}	Input Voltage	-0.3 to +7.0	Vdc
T_{A}	Operating Temperature Range	0° to $+70^{\circ}$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{Stg}}$	Storage Temperature Range	-55° to $+150^{\circ}$	${ }^{\circ} \mathrm{C}$
θ_{ja}	Thermal Resistance	82.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note: This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of anv voltage higher than maximum rated voltages to this high impedance circuit.

Electrical Characteristics

$V_{C C}=5.0 \mathrm{~V} \pm 5 \%, V_{S S}=0, T_{A}=0$ to $70^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Characteristic	Min.	Typ.	Max.	Unit	Conditions
Bus Control Inputs (R/W, Enable, $\overline{\text { Reset, }}$ RSO, RS1, CS0, CS1, $\overline{\mathrm{CS}}$)						
V_{H}	Input High Voltage	$\mathrm{V}_{\mathrm{SS}}+2.0$	-	$V_{C C}$	Vdc	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	$\mathrm{V}_{S S}-0.3$	-	$\mathrm{V}_{S S}+0.8$	Vdc	
$\mathrm{I}_{\text {IN }}$	Input Leakage Current	-	1.0	2.5	$\mu \mathrm{Adc}$	$\mathrm{V}_{\text {IN }}=0$ to 5.25 Vdc
$\mathrm{C}_{\text {IN }}$	Capacitance	-	-	7.5	pF	$\begin{aligned} & V_{\text {IN }}=0, T_{A}=25^{\circ} \mathrm{C}, \\ & f=1.0 \mathrm{MHz} \end{aligned}$

Interrupt Outputs ($\overline{\mathrm{IRAA}}, \overline{\mathrm{IROB}})$

$\mathrm{V}_{\text {OL }}$	Output Low Voltage	-	-	$\mathrm{V}_{\mathrm{SS}}+0.4$	VdC	$\mathrm{I}_{\text {LOAD }}=3.2 \mathrm{mAdc}$
$\mathrm{I}_{\text {LOH }}$	Output Leakage Current (Off State)	-	1.0	10	$\mu \mathrm{Adc}$	$\mathrm{V}_{\text {OH }}=2.4 \mathrm{Vdc}$
$\mathrm{C}_{\text {OUT }}$	Capacitance	-	-	5.0	pF	$\mathrm{V}_{\text {IN }}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $\mathrm{f}=1.0 \mathrm{MHz}$ l

Data Bus (D0-D7)

V_{IH}	Input High Voltage	$\mathrm{V}_{\mathrm{SS}}+2.0$	-	V_{CC}	Vdc	
V_{IL}	Input Low Voltage	$\mathrm{V}_{\mathrm{SS}}-0.3$	-	$\mathrm{V}_{\mathrm{SS}}+0.8$	Vdc	
$\mathrm{I}_{\mathrm{TSI}}$	Three State (Off State) Input Current	-	2.0	10	$\mu \mathrm{Adc}$	$\mathrm{V}_{\mathrm{IN}}=0.4$ to 2.4 Vdc
$\mathrm{V}_{O H}$	Output High Voltage	$\mathrm{V}_{\mathrm{SS}}+2.4$	-	-	VdC	$\mathrm{I}_{\mathrm{LOAD}}=-205 \mu \mathrm{Adc}$
$\mathrm{V}_{0 \mathrm{~L}}$	Output Low Voltage	-	-	$\mathrm{V}_{\mathrm{SS}}+0.4$	VdC	$\mathrm{I}_{\mathrm{LOAD}}=1.6 \mathrm{mAdc}$
C_{IN}	Capacitance	-	-	12.5	pF	$\mathrm{V}_{\mathrm{IN}}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $\mathrm{f}=1.0 \mathrm{MHz}$

S6821/S68A21/S68B21

Electrical Characteristics (Continued)

Symbol	Characteristic		Min.	Typ.	Max.	Unit	Conditions
Peripheral Bus (PAO-PA7, PBO-PB7, CA1, CA2, CB1, CB2)							
1 N	Input Leakage Current	R/ $\bar{W}, \overline{\text { Reset, }}$ RSO, CSO, CS1, $\overline{\text { CS2 }}$, CA1, CB1, Enable		1.0	2.5	μ Adc	$\mathrm{V}_{1 \mathrm{~N}}=0$ to 5.25 Vdc
$I_{\text {TS }}$	Three-State (Off State) Input Current	PB0-PB7, CB2		2.0	10	μ Adc	$V_{\text {IN }}=0.4$ to 2.4 Vdc
I_{H}	Input High Current	PA0-PA7, CA2	-200	-400		$\mu \mathrm{Adc}$	$\mathrm{V}_{1 H}=2.4 \mathrm{Vdc}$
$\mathrm{IOH}^{\text {r }}$	Darlington Drive Current	PB0-PB7, CB2	-1.0		-10	mAdc	$V_{0}=1.5 \mathrm{Vdc}$
$\mathrm{I}_{\text {IL }}$	Input Low Current	PAO-PA7, CA2		-1.3	-2.4	mAdc	$\mathrm{V}_{\text {IL }}=0.4 \mathrm{Vdc}$
V_{OH}	Output High Voltage	PAO-P7, PB0-PB7, CA2, CB2 PAO-PA7, CA2	$\begin{aligned} & V_{S S}+2.4 \\ & V_{C C}-1.0 \end{aligned}$			Vdc	$\begin{aligned} & I_{\text {LOAD }}=-200 \mu \mathrm{Adc} \\ & \mathrm{I}_{\text {LOAD }}=-10 \mu \mathrm{Adc} \end{aligned}$
$\mathrm{V}_{0 \mathrm{~L}}$	Output Low Voltage				$V_{S S}+0.4$	Vdc	$\mathrm{I}_{\text {LOAD }}=3.2 \mathrm{mAdc}$
$\mathrm{C}_{\text {IN }}$	Capacitance				10	pF	$\begin{aligned} & V_{I N}=0, T_{A}=25^{\circ} \mathrm{C}, \\ & f=1.0 \mathrm{MHz} \end{aligned}$

Power Requirements

P_{D}	Power Dissipation			550	mW	

A.C. (Dynamic) Characteristics Loading $=30 \mathrm{pF}$ and one TTL load for PA0-PA7, PB0-PB7, CA2, CB2 $=130 \mathrm{pF}$ and one TTL load for DO-D7, $\overline{\operatorname{IRQA},} / \overline{\mathrm{RQB}}\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{S S}=0, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$ unless otherwise specified)

Peripheral Timing Characteristics: $V_{C C}-5.0 \mathrm{~V} \pm 5 \%, V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise specified

Symbol	Parameter	S6821		S68A21		S68B21		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {POSU }}$	Peripheral Data Setup Time	200		135		100		ns
$\mathrm{t}_{\text {PDH }}$	Peripheral Data Hold Time	0		0		0		ns
$t_{\text {CA2 }}$	Delay Time, Enable Negative Transition to CA2 Negative Transition		1.0		0.670		0.5	$\mu \mathrm{S}$
$t_{\text {RS1 }}$	Delay Time, Enable Negative Transition to CA2 Positive Transition		1.0		0.670		0.50	$\mu \mathrm{S}$
$t_{r}, t_{\text {f }}$	Rise and Fall Times for CA1 and CA2 Input Signals	1.0		1.0		1.0	$\mu \mathrm{S}$	
$t_{\text {RS2 }}$	Delay Time from. CA1 Active Transition to CA2 Positive Transition		2.0		1.35		1.0	$\mu \mathrm{S}$
$t_{\text {PDW }}$	Delay Time, Enable Negative Transition to Peripheral Data Valid		1.0		0.670		0.5	$\mu \mathrm{S}$
$t_{\text {CMOS }}$	Delay Time, Enable Negative Transition to Peripheral CMOS Data Valid PAO-PA7, CA2		2.0		1.35		1.0	$\mu \mathrm{S}$

Peripheral Timing Characteristics (Continued)

Symbol	Parameter	S6821		S68A21		S68821		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
${ }^{\text {c }}$ C82	Delay Time, Enable Positive Transition to CB2 Negative Transition		1.0		0.670		0.5	$\mu \mathrm{S}$
$t_{\text {DC }}$	Delay Time, Peripheral Data Valid to CB2 Negative Transition	2.0		20		20		ns
$t_{\text {RS1 }}$	Delay Time, Enable Positive Transition to CB2 Positive Transition		1.0		0.670		0.5	$\mu \mathrm{S}$
PWCT	Peripheral Control Output Pulse Width, CA2/CB2	550		550		550		ns
t_{r}, t_{f}	Rise and Fall Times for CB1 and CB2 Input Signals		1.0		1.0		1.0	$\mu \mathrm{S}$
$t_{\text {RS2 }}$	Delay Time, CB1 Active Transition to CB2 Positive Transition		2.0		1.35		1.0	$\mu \mathrm{S}$
$\mathrm{t}_{\text {IR }}$	Interrupt Release Time, $\overline{\mathrm{RQAA}_{1}}$ and $\overline{\mathrm{RQB}}$		1.60		1.1		0.85	$\mu \mathrm{S}$
$\mathrm{t}_{\text {RS3 }}$	Interrupt Response Time		1.0		1.0		1.0	$\mu \mathrm{S}$
PW 1	Interrupt Input Pulse Width	500		500		500		ns
$\mathrm{t}_{\text {RL }}$	Reset Low Time*	1.0		0.66		0.5		$\mu \mathrm{S}$

*The Reset line must be high a minimum of $1.0 \mu \mathrm{~s}$ before addressing the PIA.

Figure 1. Enable Signal Characteristics

Figure 3. Bus Write Timing Characteristics (Write Information into PIA)

Figure 2. Bus Read Timing Characteristics (Read Information from PIA)

Figure 4. Bus Timing Test Loads

Bus Timing Characteristics ($V_{C C}=+5.0 \mathrm{~V} \pm 5 \%, V_{S S}=0, T_{A}=T_{L}$ to T_{H} unless otherwise noted.)

Symbol	Parameter	56821		S68A21		S68821		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {cyc }}(\mathrm{E})$	Enable Cycle Time	1000		666		500		ns
$\mathrm{PW}_{\text {EH }}$	Enable Pulse Width, High	450		280		220		ns
PW EL	Enable Pulse Width, Low	430		280		210		ns
$\mathrm{t}_{\text {Er }}, \mathrm{t}_{\text {Ef }}$	Enable Pulse Rise and Fall Times		25		25		25	ns
t_{AS}	Setup Time, Address and R/W Valid to Enable Positive Transition	160		140		70		ns
$t_{\text {AH }}$	Address Hold Time	10		10		10		ns
$\mathrm{t}_{\text {DOR }}$	Data Delay Time, Read		320		220		180	ns
$\mathrm{t}_{\text {DHR }}$	Data Hold Time, Read	10		10		10		ns
$\mathrm{t}_{\text {dSW }}$	Data Setup Time, Write	195		80		60		ns
$\mathrm{t}_{\text {DHW }}$	Data Hold Time, Write	10		10		10		ns

Figure 5. TTL Equiv. Test Load

Figure 8. Peripheral Data Setup and Hold Times (Read Mode)

Figure 6. CMOS Equiv. Test Load

Figure 7. NMOS Equiv. Test Load

Figure 9. CA2 Delay Time
(Read Mode; CRA-5 = CRA-3 = 1, CRA-4 $=0$)

*Assumes part was deselected during the previous E pulse.

Figure 10. CA2 Delay Time
(Read Mode; CRA-5 =1, CRA-3 $=$ CRA-4 $=0$)

Figure 12. Peripheral Data and CB2 Delay Times (Write Mode; CRB-5 $=C R B-3=1, C R B-4=0$)

CB2 Note:
CB2 goes low as a result of the positive transition of Enable.
Figure 14. Delay Time
(Write Mode; CRB-5 = 1, CRB-3 $=C R B-4=0$)

*Assumes part was deselected during any previous E pulse.

Figure 16. $\overline{\operatorname{IRQ}}$ Release Time

Figure 11. Peripheral CMOS Delay Times
(Write Mode; CRA $-5=C R A-3=C R A-4=0$)

Figure 13. CB2 Delay Time
(Read Mode; CRB-5 = CRB-3 = 1, CRB-4 = 0)

Figure 15. Interrupt Pulse Width and IRQ Response

*Assumes Interrupt Enable Bits are set.
Figure 17. $\overline{\text { Reset }}$ Low Time

*The $\overline{\text { Reset }}$ line must be a $V_{I H}$ for a minimum of $1.0 \mu \mathrm{~s}$ before addressing the PIA.

PROGRAMMABLE
 TIMER

Features

Operates from a Single 5 Volt SupplyFully TTL CompatibleSingle System Clock Required (Enable)
Selectable Prescaler on Time 3 Capable of 4 MHz for the S6840, 6 MHz for the S68A40 and 8MHz for the S68B40Programmable Interrupts (IRQ) Output to MPUReadable Down Counter Indicates Counts to Go to Time-Out
\square Selectable Gating for Frequency or Pulse-Width ComparisonRESET InputThree Asynchronous External Clock and Gatel Trigger Inputs Internally Synchronized
\square Three Maskable Outputs

General Description

The S6840 is a programmable subsystem component of the S6800 family designed to provide variable system time intervals.

The S6840 has three 16 -bit binary counters, three corresponding control registers and a status register. These counters are under software control and may be used to cause system interrupts and/or generate output signals. The $\mathbf{S} 6840$ may be utilized for such tasks as frequency measurements, event counting, interval measuring and similar tasks. The device may be used for square wave generation, gated delay signals, single pulses of controlled duration, and pulse width modulation as well as system interrupts.

S6840/S68A40/S68B40

Absolute Maximum Ratings

Storage Temperature Range $\mathrm{T}_{\text {stg }}$.. -55° to $+150^{\circ} \mathrm{C}$
Thermal Resistance $\theta_{\text {JA }}$. $82.5^{\circ} \mathrm{C} / \mathrm{W}$
Note: This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

Electrical Characteristics: $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.)

Symbol	Parameter		Min.	Typ.	Max.	Unit	Conditions
$\mathrm{V}_{1 H}$	Input High Voltage		$V_{S S}+2.0$		$V_{c c}$		v
$V_{\text {IL }}$	Input Low Voltage		$\mathrm{V}_{S S}-0.3$		$\mathrm{V}_{\text {SS }}+0.8$	V	
$\mathrm{I}_{\text {IN }}$	Input Leakage Current			1.0	2.5	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0$ to 5.25 V
$\mathrm{I}_{\text {TS }}$	Three-State (Off State) Input Current	$\mathrm{D}_{0}-\mathrm{D}_{7}$		2.0	10	$\mu \mathrm{A}$	$\mathrm{V}_{1 \times}=0.4$ to 2.4 V
V_{OH}	Output High Voltage	$\begin{array}{r} D_{0}-D_{7} \\ \text { All Others } \end{array}$	$\begin{aligned} & V_{S S}+2.4 \\ & V_{S S}+2.4 \\ & \hline \end{aligned}$			$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\text {LAAD }}=-205 \mu \mathrm{~A} \\ & \mathrm{I}_{\text {LOAD }}=-200 \mu \mathrm{~A} \end{aligned}$
V_{0}	Output Low Voltage	$\begin{array}{r} D_{0}-D_{7} \\ 01-03, \frac{\mathrm{RQ}}{} \end{array}$			$\begin{aligned} & V_{S S}+0.4 \\ & V_{S S}+0.4 \end{aligned}$	$\begin{aligned} & \hline v \\ & v \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{LOAD}}=1.6 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{LOAD}}=3.2 \mathrm{~mA} \end{aligned}$
$\mathrm{I}_{\mathrm{LOH}}$	Output Leakage Current (Off State)	$\overline{\text { IRQ }}$		1.0	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$
P_{D}	Power Dissipation				550	mW	
$\mathrm{C}_{1 N}$	Capacitance	$\begin{array}{r} \mathrm{D}_{0}-\mathrm{D}_{7} \\ \text { All others } \end{array}$			$\begin{aligned} & 12.5 \\ & 7.5 \end{aligned}$	pF	$\begin{aligned} & V_{I_{N}=0, T_{A}=25^{\circ} \mathrm{C},}^{f=1.0 \mathrm{MHz}} \end{aligned}$
$\mathrm{C}_{\text {OUt }}$		$\begin{array}{r} \hline \overline{\operatorname{RQ}} \\ 01,02,03 \end{array}$			$\begin{aligned} & 5.0 \\ & 10 \end{aligned}$	pF	$\begin{aligned} & V_{I N}=0, T_{A}=+25^{\circ} \mathrm{C}, \\ & f=1.0 \mathrm{MHz} \end{aligned}$

Bus Timing Characteristics

Read (See Figure 1)

Symbol	Characteristic	S6840		S68A40		S68B40		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {CYCE }}$	Enable Cycle Time	1.0	10	0.666	10	0.5	10	$\mu \mathrm{s}$
$\mathrm{PW}_{\text {EH }}$	Enable Puise Width, High	0.45	4.5	0.280	4.5	0.22	4.5	$\mu \mathrm{S}$
$\mathrm{PW}_{\text {EL }}$	Enable Pulse Width, Low	0.43		0.280		0.21		$\mu \mathrm{S}$
$t_{\text {AS }}$	Setup Time, Address and R/W Valid to Enable Positive Transition	160		140		70		ns
$\mathrm{t}_{00 \mathrm{R}}$	Data Delay Time		320		220		180	ns
t_{H}	Data Hold Time	10		10		10		ns
$t_{\text {AH }}$	Address Hold Time	10		10		10		ns
t_{Er}, t_{Et}	Rise and Fall Times for Enable Input		25		25		25	ns

Bus Timing Characteristics (Continued)

Write (See Figure 2)

Symbol	Characteristic	S6840		S68A40		S68B40		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {CYCE }}$	Enable Cycle Time	1.0	10	0.666	10	0.5	10	$\mu \mathrm{S}$
$\mathrm{PW}_{\mathrm{EH}}$	Enable Pulse Width, High	0.45	4.5	0.280	4.5	0.22	4.5	$\mu \mathrm{S}$
$\mathrm{PW}_{\mathrm{EL}}$	Enable Pulse Width, Low	0.43		0.280		0.21		$\mu \mathrm{S}$
$t_{\text {AS }}$	Setup Time, Address and R/W Valid to Enable Positive Transition	160		140		70		ns
$t_{\text {DSW }}$	Data Setup Time	195		80		60		ns
t_{H}	Data Hold Time	10		10		10		ns
$\mathrm{t}_{\text {AH }}$	Address Hold Time	10		10		10		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{Er}}, \\ & \mathrm{t}_{\mathrm{Ef}} \end{aligned}$	Rise and Fall Times for Enable Input		25		25		25	ns

AC Operating Characteristics (See Figures 3 and 7)

Symbol	Characteristic	S6840		S68A40		S68B40		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
$\begin{aligned} & t_{r}, \\ & t_{f} \end{aligned}$	Input rise and Fall Times (Figures 4 and 5) $\overline{\mathrm{C}}, \overline{\mathrm{G}}$ and $\overline{\text { Reset }}$		1.0		0.666*		0.500*	$\mu \mathrm{S}$
PW ${ }_{\text {L }}$	Input Pulse Width (Figure 4) (Asynchronous Mode) \bar{C}, \bar{G} and $\overline{\text { Reset }}$	$t_{\text {cyCE }}+t_{\text {Su }}+t_{\text {hd }}$		$\mathrm{t}_{\text {cYCE }}+\mathrm{t}_{\text {Su }}+t_{\text {hd }}$		$\mathrm{t}_{\text {CYCE }}+\mathrm{t}_{\text {su }}+t_{\text {hd }}$		ns
PW_{H}	Input Puise Width (Figure 5) (Asynchronous Mode) $\overline{\mathrm{C}}, \overline{\mathrm{G}}$ and Reseit	$\mathrm{t}_{\text {CYCE }}+t_{\text {su }}+t_{\text {hd }}$		$\mathrm{t}_{\text {CYCE }}+\mathrm{t}_{\text {Su }}+\mathrm{t}_{\text {hd }}$		$\mathrm{t}_{\text {CYCE }}+\mathrm{t}_{\text {Su }}+\mathrm{t}_{\text {hd }}$		ns
$t_{\text {su }}$	Input Setup Time (Figure 6) (Synchronous Mode) C, \bar{G} and $\overline{\text { Reset }}$ $\overline{\mathrm{C3}}(\div 8$ Prescàler Mode only)	200		120		75		ns
$t_{\text {nd }}$	Input Hold Time (Figure 6) (Synchronous Mode) $\overline{\mathrm{C}}, \overline{\mathrm{G}}$ and $\overline{\text { Reset }}$ $\overline{\mathrm{C}} \overline{3}$ ($\div 8$ Prescaler Mode only)	50		50		50		ns
$\begin{aligned} & \mathrm{PW} \\ & \mathrm{PW} \\ & \mathrm{PW} \end{aligned}$	Input Pulse Width (Synchronous Mode) $\overline{\mathrm{C3}}$ ($\div 8$ Prescaler Mode only)	125		84		62.5		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{co}} \\ & \mathrm{t}_{\mathrm{cm}} \end{aligned}$ $\mathrm{t}_{\mathrm{cmos}}$	Output Delay, 01-03 (Figure 7) $\left(\mathrm{V}_{\text {OH }}=2.4 \mathrm{~V}\right.$, Load B) TLL $\left(\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}\right.$, Load D) MOS $\left(\mathrm{V}_{\mathrm{OH}}=0.7 \mathrm{~V}_{\text {DD }}\right.$, Load D) CMOS		$\begin{aligned} & 700 \\ & 450 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 460 \\ & 450 \\ & 1.35 \\ & \hline \end{aligned}$		$\begin{aligned} & 340 \\ & 340 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mu \mathrm{~s} \\ & \hline \end{aligned}$
t_{18}	Interrupt Release Time		1.2		0.9		0.7	$\mu \mathrm{S}$

$*_{t_{r}}$ and $t_{r} \leqslant t_{\text {CYCE }}$

Figure 1. Bus Read Timing Characteristics
(Read Information from PTM)

Figure 3. Input Pulse Width Low

Figure 5. Input Setup and Hold Time

Figure 2. Bus Write Timing Characteristics
(Write Information into PTM)

Figure 4. Input Pulse Width High

Figure 6. Output Delay

of Gould Inc.

S68045/S68A045/S68B045

CRT CONTROLLER (CRTC)

FeaturesGenerates Refresh Addresses and Row Selects
\square Generates Video Monitor Inputs: Horizontal and Vertical Sync and Display EnableLow Cost; MC6845/SY6545 Pin Compatible
Text Can Be Scrolled on a Character, Line or Page Basis
\square Addresses 16K Bytes of MemoryScreen Can Be Up to 128 Characters Tall By 256 Wide
\square Character Font Can Be 32 Lines High With Any Width
\square Two Complete ROM Programs
Cursor and/or Display Can Be Delayed 0, 1 or 2

Clock Cycles
\square Four Cursor Modes:

- Non-Blink
- Slow Blink
- Fast Blink
- Reverse Video With Addition of a Single TTL Gate

Three Interlace Modes

- Normal Sync
- Interlace Sync
- Interlace Sync and Video
\square Full Hardware Scrolling
\square NMOS Silicon Gate Technology
\square TTL-Compatible, Single +5 Volt Supply

General Description

The S68045 CRT Controller performs the complex interface between an S6800 Family microprocessor and a raster scan display CRT system. The S68045 is designed to be flexible yet low cost. It is configured to both simplify the development and reduce the cost of equipment such as intelligent terminals, word processing, and information display devices.
The CRT Controller consists of both horizontal and vertical counting circuits, a linear address counter, and control registers. The horizontal and vertical counting circuits generate the Display Enable, HSYNC, VSYNC, and RAO-RA4 signals. The RAO-RA4 lines are scan line count signals to the external character generator ROM. The number of characters per character row, scan lines per character row, character rows per screen, and the
horizontal and vertical SYNC position and width are all mask programmable. The S68045 is capable of addressing 16K of memory for display. The CRT may be scrolled or paged through the entire display memory under MPU control. The cursor control register determines the cursor location on the screen, and the cursor format can be programmed for fast blink, slow-blink, or nonblink appearance, with programmable size. By adding a single TTL gate, the cursor can even be reversed video. The device features two complete, independent programs implemented in user-specified ROM. Either set of programmable variables $(50 / 60 \mathrm{~Hz}$ refresh rate, screen format, etc.) is available to the user at any time. The S68045 is pin compatible with the MC6845, operates from a single 5 -volt supply, and is designed using the latest in minimum-geometry NMOS technology.

Absolute Maximum Ratings

Bus Timing Characteristics

Symbol	Parameter	S68045		S68A045		S68B045		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {cyc (E) }}$	Enable Cycle Time	1000		666		500		ns
PW ${ }_{\text {EH }}$	Enable Pulse Width, High	450		280		220		ns
PWEL	Enable Pulse Width, Low	430		280		210		ns
$t_{\text {Er }}, \mathrm{t}_{\mathrm{E} f}$	Enable Pulse Rise and Fall Times		25		25		25	ns
$t_{\text {AS }}$	Setup Time, Address and R/W Valid to Enable Positive Transition	160		140		70		ns
$t_{\text {AH }}$	Address Hold Time	10		10		10		ns
$\mathrm{t}_{\text {DSW }}$	Data Setup Time, Write	195		80		60		ns
$\mathrm{t}_{\text {DHW }}$	Data Hold Time, Write	10		10		10		ns

Electrical Characteristics

$V_{C C}=5.0 \mathrm{~V} \pm 5 \% ; V_{S S}=0, T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Min.	Typ.	Max.	Unit	Condition
V_{IH}	Input High Voltage (except CLK)	2.0		$V_{\text {cc }}$	Vdc	
VIL	Input Low Voltage (except CLK)	-0.3		0.8	Vdc	
$\mathrm{V}_{\mathrm{IHC}}$	Input High Voltage Clock	2.2		$V_{C C}$	Vdc	
VILC	Input Low Voltage Clock	-0.3		45	Vdc	
I_{iN}	Input Leakage Current		1.0	2.5	$\mu \mathrm{Adc}$	
$\mathrm{V}_{\text {OH }}$	Output High Voltage	2.4			Vdc	$\mathrm{I}_{\text {LOAD }}=-100 \mu \mathrm{~A}$
$V_{0 L}$	Ouput Low Voltage			0.4	Vdc	$\mathrm{I}_{\text {LOAD }}=1.6 \mathrm{~mA}$
P_{D}	Power Dissipation		600		mW	
$\mathrm{C}_{\text {IN }}$				$\begin{gathered} 12.5 \\ 10 \end{gathered}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	
$\mathrm{C}_{\text {OUT }}$	Output Capacitance-All Outputs			10	pF	
PWCL	Minimum Clock Pulse Width, Low	160			ns	
$\mathrm{P}_{\text {WCH }}$	Clock Pulse Width, High	200		10,000	ns	
f_{C}	Clock Frequency			2.5	MHz	
tcr, tcf	Rise and Fall Time for Clock Input			20	ns	
$\mathrm{t}_{\text {MAD }}$	Memory Address Delay Time			200	ns	
$\mathrm{t}_{\text {RAD }}$	Raster Address Delay Time			200	ns	
$t_{\text {DTD }}$	Display Timing Delay Time			300	ns	
$\mathrm{t}_{\text {HSD }}$	Horizontal Sync Delay Time			300	ns	
tVSD	Vertical Sync Delay Time			300	ns	
tCDD	Cursor Display Timing Delay Time			300	ns	

Systems Operation

The S68045 CRTC generates all of the signals needed for the proper operation of a CRT system including HSYNC, VSYNC, Display Enable, Cursor control signals (refer to Figure 1), the refresh memory addresses (MAO-MA13) and row addresses (RAO-RA4). The CRTC's timing is derived from the CLK input, which is divided down from the dot rate counter.
The CRTC, which is compatible with the 6800 family, communicates with the MPU by means of the standard 8 -bit data bus. This primary data bus uses a buffered interface for writing information to the display refresh RAM by means of a separate secondary data bus. This arrangement allows the MPU to forget about the display except for those time periods when data is actually being changed on the screen. The address bus for the refresh RAM is continuously multiplexed between the MPU and the CRTC.
Since the MPU is allowed transparent read/write
access to the display memory, the refresh RAM appears as just another RAM to the processor. This means that the refresh memory can also be used for program storage. Care should be taken by the system designer, however, to insure that the portion of memory being used for program storage is not actively displayed.

Displayed Data Control

Display Refresh Memory Addresses (MAO-MA13) - 14 bits of address provide the CRTC with access of up to 16 K of memory for use in refreshing the screen.
Row Addresses (RAO-RA4) - 5 bits of data that provide the output from the CRTC to the character generator ROM. They allow up to 32 scan lines to be included in a character.
Cursor - This TTL compatible, active high output indicates to external logic that the cursor is being displayed.

Figure 1. Typical CRT Controller System

The character address of the cursor is held in a register, so the cursor's position is not lost even when scrolled off the screen.

CRT Control

All three CRT control signals are TTL compatible, active high outputs.
Display Enable - Indicates that valid data is being clocked to the CRT for the active display area.
Vertical Sync (VSYNC) - Makes certain the CRTC and the CRT's vertical timing are synchronized so the picture is vertically stable.
Horizontal Sync (HSYNC) - Makes certain the CRTC and the CRT's horizontal timing are synchronized so the picture is horizontally stable.

Processor Interface

All processor interface lines are three state, TTLMOS compatible inputs.
Chip Select ($\overline{\mathbf{S S}}$)-The $\overline{\mathrm{CS}}$ line selects the CRTC whenlow to write to the internal Register File. This signal should only be active when there is a valid stable address being decoded from the processor.

Register Select - The RS line selects either the Address Register (RS = " 0 ') or one of the Data Registers (RS = " 1 ") of the internal Register File.
To address one of the software programmable registers (R12, R13, R14 or R15 in Table 2) first access the Address Register ($\overline{\mathrm{CS}}=0, \mathrm{RS}=0$) and write the number of the desired register. Then write into the actual register by addressing the data register section ($\overline{C S}=0$, $R S=1$) and enter the appropriate data.
Write $(\overline{\mathrm{W}})$ - The $\overline{\mathrm{W}}$ line allows a write to the internal Register File.
Data Bus (D0-D7) - The data bus lines (D0-D7) are write-only and allow data transfers to the CRTC internal register file.
Enable (E) - The Enable signal enables the data bus input buffers and clocks data to the CRTC. This signal is usually derived from the processor clock, and the high to low transition is the active edge.
S68045 Control Clock (CLK) - The clock signal is a high impedance, TTLMOS compatible input which assures the CRTC is synchronized with the CRT itself. The CLK signal is divided down by external circuitry from the dot rate counter. The CLK frequency is equal

S68045/S68A045/S68B045

to the dot rate frequency divided by the width of a single character block (including framing) expressed in dots, CLK is equal to the character rate.
Program (PROG) - The voltage on this pin determines whether the screen format in ROM 0 (PROG LOW) or ROM 1 (PROG HIGH) is being used.
Reset ($\overline{\mathrm{RES}}$) - The $\overline{\mathrm{RES}}$ input resets the CRTC. An (active) low input on this line forces these actions:
a) MA0-MA13 are loaded with the contents of R12/R13 (the start address register).
b) The horizontal, vertical, and raster address counter are reset to the first raster line of the first displayed character in the first row.
c) All other outputs go low.

Note that none of the internal registers are affected by RES.
$\overline{R E S}$ on the CRTC differs from the reset for the rest of the 6800 family in the following aspects:
a) MAO-MA13 and RA0-RA4 go to the start addresses, instead of FFFF.
b) Display recommences immediately after $\overline{\text { RES }}$ goes high.

Internal Register Description - There is a bank of 15
control registers in the 68045, most of which are mask programmed. The exceptions are the Address Register, the two Start Address Registers (R12 \& R13) and the Cursor Location Registers (R14 \& R15). All software programmable registers are write only. The Address Register is 5 bits long. The software programmable registers are made available to the data lines whenever the chip select ($\overline{\mathrm{CS}}$) goes low. When $\overline{\mathrm{CS}}$ goes high, the data lines show a high impedance to the microprocessor.
Horizontal Total Register (R0) - The full horizontal period, expressed in character times, is masked in RO. (See Figure 2a).
Horizontal Displayed Register (R1) - This register contains the number of characters to be actually displayed in a row. (See Figure 2a).

Horizontal SYNC Position Register (R2) - The contents of R2 (also in character times) should be slightly larger than the value in R1 to allow for a non-displayed right border. (See Figure 2a.)

Sync Width Register (R3) - The width of the HSYNC pulse expressed in character times is masked into the lower four bits of R3. The width of the HSYNC pulse has to be non-zero.
The width of the VSYNC pulse is masked into the upper

Figure 2a. Approximate Timing Diagram

FOR MORE EXACT DIAGRAMS REFER TO THE BACK OF THE DATA SHEET. THE HORIZONTAL DISPLAY ENABLE IS ANDED WITH THE VERTICAL DISPLAY ENABLE TO PRODUCE THE OISPLAY ENABLE AT PIN 18. NOTE THE (a) FIGURE IS TMED IN TERMS OF INOIVIDUAL CHARACTERS, WHEREAS THE (b) FIGURE IS timed in terms of character rows.

S68045/S68A045/S68B045

four bits of R3 without any modification, with the exception that all zeroes will make VSYNC 16 characters wide.

Vertical Total Register (R4) - This register contains the total number of character rows - both displayed and non-displayed - per screen. This number is just the total number of scan lines used divided by the number of scan lines in a character row. If there is a remainder, it is placed in R5. (See Figure 2b).
Vertical Total Adjust Register (R5) - See description of R4. A fractional number of character row times is used to obtain a refresh rate which is exactly $50 \mathrm{HZ}, 60 \mathrm{HZ}$, or some other desired frequency. (See Figure 2b).
Vertical Displayed Register (R6) - This register contains the total number of character rows that are actually displayed on the CRT screen. (See Figure 2b).

Vertical SYNC Position (R7) - R7 contains the position of the vertical SYNC pulse in character row times with respect to the top character row. Increasing the value shifts the data up. (See Figure 2b).
Interlace Mode Register (R8) - R8 controls which of the three available raster scan modes will be used (See Figure 3).

- Non-interlace or Normal sync mode
- Interlaced sync mode
- Interlaced sync and Video mode

The Cursor and Display Enable outputs can be delayed (skewed) 0,1 or 2 clock cycles with respect to the refresh memory address outputs (MAO-MA13). The
amount the cursor is delayed is independent of how much the Display Enable signal is delayed. This feature allows the system designer to account for memory address propagation delay through the RAM, ROM, etc.
Maximum Scan Line Register (R9) - Determines the number of scan lines per character row including top and bottom spacing.
Cursor Start Register (R10) - Contains the raster line where the cursor start (see Figure 4). The cursor start line can be anywhere from line 0 to line 31.
The cursor can be in one of the following formats.

- Non-blinking
- Slow blinking (1/16 the vertical refresh period)
- Fast blinking ($1 / 32$ the vertical refresh period)
- Reverse video (non-blinking, slow blinking, or fast
- blinking)

The reverse video cursor needs an external TTL XOR gate to be placed in the video circuit.
To implement the reverse video cursor, the cursor start line (R10) should be set to line 0 and the cursor end line (R11) should be set to whatever is in R9 so that the cursor covers the entire block. On the circuit level, the output from the Cursor pin (pin 19) should be taken through the XOR gate along with the output from the shift register. (See Figure 5.) With this setup the character whose memory address is in the cursor register (R14/ R15) will have its background high (because Cursor alone is high) but the character itself will be off (because both cursor and the character are both high.

Figure 2b. Approximate Timing Diagram

Figure 3. Interface Control

Figure 4. Cursor Control

MODE	CUASOR DISPLAY MOOE
1	Non-Blink
2	Cursor Non-Display
3	Blink, $1 / 16$ Field Rate
4	Blink, $1 / 32$ Field Rate

Memory Start Address Register (R12/R13) - These two software programmable, write-only registers taken together contain the memory address of the first character displayed on the screen. Register R12 contains the upper six bits of the fourteen refresh memory address bits, while R13 contains the lower eight bits. The Linear Address Generator begins counting from the address in R12/R13. By changing the starting ad: dress, the display can be scrolled up or down through the 16 K memory block by character, line or page. If the
value in R12/R13 is near the end of the 16 K block the display will wrap around to the front.

Cursor Address Register (R14/R15) - These two software programmable, write-only registers, taken together, contain the address in memory of the cursor character. Register R14 contains the upper six bits and register R15 contains the lower eight bits of the character. Cursor position is associated with an address in memory rather than with a position on the screen. This

S68045/S68A045/S68B045

Figure 5. Implementation of a Reversed Video Cursor

way cursor position is not lost when the display is scrolled.
Address Register - The five bit address register is unique in that it does not store any CRT-related information, but is used as the address storage register in an indirect access of the other registers. When the Register Select pin (RS) is low, the address register is accessed by DO-D4. When RS is high, the register whose address is in the address register is accessed.

CRTC Internal Description

There are four counters which determine what the CRTC's output will be (see Block Diagram):

1) Horizontal Counter
2) Vertical Counter
3) Row Address Counter
4) Linear Address Counter

The first two counters, and to some extent the third, take care of the physical operation of the monitor. The Linear Address Counter, on the other hand, is responsible for the data that is displayed on the screen.
Surrounding these counters are the registers RO-R15. Coincidence logic continuously compares the contents of each counter with the contents of the register(s) associated with it. When a match is found, appropriate action is taken; the counter is reset to a fixed or dynamic value, or a flag (such as VSYNC) is set, or both.

Two sets of registers - The start Address Register (R12/R13) and the Cursor Position Register (R14/R15) - are programmable via the Data lines (DO-D7). The other registers are all mask programmed. There are two ROM programs available on each chip. Selection of which ROM program will be accessed is performed by the PROG pin.

Horizontal Counter

The Horizontal Counter produces four output flags: HSYNC, Horizontal Display Enable, Horizontal Reset to the Linear Address Counter, and the horizontal clock.
The Horizontal Counter is driven by the character rate clock, which was derived from the dot rate clock (see Table 1). Immediately after the valid display area is entered the Horizontal Counter is reset to zero but continues incrementing.
HSYNC is the only one of the four signals which is fed to an external device (the CRT). The Horizontal Counter is compared to registers R0, R2 and R3 to give an HSYNC of the desired frequency (R0), position (R2) and width (R3). (See Figure 2a.)
Horizontal Display Enable is an internal flag which, when ANDed with Vertical DE, is output at the Display Enable pin. The Horizontal Counter determines the proper frequency (R0), and width (R1).
The Horizontal Reset and the horizontal clock are actually identical signals: the only difference is the way they are used. Both are pulsed once for each scan line,

Table 1. Comparison of all CRTC Clocks

NAME	LOCATION OF CLOCK	DIVIDED BY:	CONTROLLING REGISTER	PRODUCES
DOT RATE CLOCK	EXTERNAL	TOTAL WIDTH OF A CHARACTER BLOCK IN DOTS	EXTERNAL	CHARACTER RATE CLOCK
CHARACTER RATE CLOCK	EXTERNAL INPUT	TOTAL NUMBER OF CHARACTERS IN A ROW	RO	HORIZONTAL CLOCK
HORIZONTAL CLOCK	INTERNAL	TOTAL NUMBER OF SCAN LINES IN A CHARACTER ROW	R9	ROW ADDRESS CLOCK
ROW ADDRESS CLOCK	INTERNAL	TOTAL NUMBER OF CHARACTER ROWS PER SCREEN	R4, R5	VERTICAL CLOCK

Table 2. CRTC Internal Register Assignment

*For Interlace Sync and Video operation, R9 should contain $\mathrm{N}_{\mathrm{r}}-1$ CURSOR SKEW

BIT 7	BIT 6	RESULT
0	0	NO SKEW
0	1	1 CHARACTER SKEW
1	0	2 CHARACTER SKEW
1	1	ILLEGAL

INTERLACE CONTROL

BIT 1	BIT 0	MODE
0	0	NON-INTERLACE
1	0	NON-INTERLACE
0	1	INTERLACE SYNC
1	1	INTERLACE SYNC \& VIDEO

BIT 5	BIT 4	RESULT
0	0	NO SKEW
0	1	1 CHARACTFR SKEW
1	0	2 CHARACTER SKEW
1	1	ILLEGAL

CURSOR CONTROL

MOOE	BT 6	BIT 5
NON-BLINK	0	0
NON-BLINK	0	1
BLINK @ 1/16 FIELD PERIOD	1	0
BLINK @ 1/32 FIELD PERIOD	1	1

Figure 6. Bus Write Timing

so their frequency is equal to the character rate clock frequency divided by the entire horizontal period (display, non-display and retrace) expressed in character times (which is stored in RO). The horizontal clock drives the Vertical and Row address Counters. The horizontal reset is discussed with the Linear Address Counter.

Vertical Counter

The Vertical Counter produces three output flags: VSYNC, Vertical Display Enable, and Vertical Reset to the Linear Address Counter. The Vertical Counter is driven by the horizontal clock. Immediately after vertical retrace the Vertical Counter is reset to zero but continues incrementing.
VSYNC is the only one of the three signals which is fed to an external device (the CRT). The Vertical Counter is compared to registers R3, R4, R5 and R7 to give a VSYNC of the desired frequency (R4, R5), position (R7) and width (R3). (See Figure 2b.)
Vertical Display Enable is an internal flag which, when ANDed with Horizontal DE, is output at the Display Enable pin. The Vertical Counter determines the proper frequency (R4, R5) and width (R6).
Vertical Reset is pulsed once for each screen. The frequency of Vertical Reset is equal to the horizontal clock frequency divided by the total number of scan lines in a screen (which is equal to (R4×R9) + R5). It will be discussed with the Linear Address Counter.

Row Address Counter

The Row Address Counter produces three sets of output: the five Row Address lines (RA0-RA4), the Row Address Cursor Enable flag and the Row Address Reset flag. The Row Address Counter is driven by the horizontal clock. Immediately after a full character row has been completed by the Row Address Counter is reset to zero but continues incrementing. Note that the Row Address Counter actually counts scan lines, which are different from character rows. A full character row consists of however many scan lines are in register R9.
The Row Address Lines, RA0-RA4, are the only data lines from the Row Address Counter that are fed to an external device (the character generator ROM). The Row Address lines just carry the count that is currently in the Row Address Counter. The counter is reset whenever the count equals the contents of the Maximum Scan Line Register (R9.)
Row Address Cursor Enable is a flag going to the Cursor output AND gate. The Row Address Cursor Enable flag goes high whenever the count in the Row Address Counter is greater than or equal to the Cursor Start Register (R10) but less than or equal to the Cursor End Register (R11). The other input to the Cursor output AND gate goes high whenever the address in the Linear Address Counter is equal to the address in the Cursor Position Register (R14/R15).
Row Address Reset is pulsed whenever the Row Ad-

Figure 7. Bus Timing Character

dress Counter is reset. It will be discussed with the Linear Address Counter.

Linear Address Counter

The Linear Address Counter (LAC) produces only one set of outputs: The Refresh Memory Address lines (MA0-MA13). These fourteen bits are fed externally to the Refresh RAM and internally to the Cursor Position coincidence circuit. The LAC is driven by the character rate clock and continuously increments during the display, non-display and retrace portions of the screen. It contains an internal read/write register which stores the memory address of the first displayed character in the current row.
When any of the three Reset flags already mentioned (Horizontal, Row Address and Vertical) is pulsed, the value in the internal register is loaded into the counter.

If the reset is a Horizontal Reset the value in the internal register is not modified before the load. If the reset is a Row Address Reset, the value in the internal "first character" register is first increased by the number of characters displayed on a single character row (register R1). The new contents of the internal register are then loaded into the Linear Address Counter.

If the reset is a Vertical Reset, the value in Start Address Register. (R12/R13) is first loaded into the internal register, and then into the Linear Address Counter.

The fourteen output lines allow 16K of memory to be accessed. By incrementing or decrementing the number in the Start Address Register, the screen can be scrolled forward or backward through Display Refresh RAM on a character, line, or page basis.

Figure 8. Refresh Memory Addressing (MA0-MA13) State Chart

		HORRONTAL DSSPLAY				HORIZONTAL Retrace (NOHDISPLLAN)		
		character						
	$0\left\{\begin{array}{l} 0 \\ \vdots \\ N_{a} \end{array}\right.$	i_{0}^{0}	$\underset{1}{1}$		$\left.\right\|_{N_{\text {hd }}-1} ^{N_{\text {hd }}-1}$	$\left.\right\|_{\text {Nind }} ^{1}$		$\left.\right\|_{\mathrm{Nmt}} ^{\mathrm{Nmt}^{2}}$
	$1\left\{\begin{array}{l} 0 \\ 1 \\ 1 \\ 1 \\ \mathrm{~N}_{\mathrm{s}} \end{array}\right.$		$\left.\right\|_{N_{n d d}+1} ^{N_{n d}+1}$			$\sum_{2 \times \mathrm{Nhd}}^{2 \times \mathrm{Nhd}}$		
	$2\left\{\begin{array}{l} 0 \\ 1 \\ 1 \\ N_{s t} \end{array}\right.$					$\left.\right\|_{3 \times N \mathrm{Nnd}} ^{3 \times \mathrm{Na}}$		
						\mid		\mid
	$N_{y d}-1\left\{\begin{array}{c} 0 \\ \sum_{N_{s}}^{1} \\ \vdots \end{array}\right.$							
	$\mathrm{Nvd}_{\mathrm{vd}}\left\{\begin{array}{l} 0 \\ 1 \\ 1 \\ \mathrm{~N}_{\mathrm{st}} \end{array}\right.$							
	$N_{\mathrm{Nt}}\left\{\begin{array}{l} 0 \\ \vdots \\ \sum_{\mathrm{Ns}} \end{array}\right.$							
	$N_{\mathrm{v}}+1\left\{\begin{array}{c} 0 \\ 1 \\ 1 \\ \mathrm{Naxj}^{1} \\ -1 \end{array}\right.$							

note 1: the ntial ma is determaneo by the content
OF START ADDRESS REGISTER, R12/R13. TMMHG IS
SHOWN FOR R12/R13 $=0$. ONLY NON-NTERFACE AND
WTERFACE SYNC MODES ARE SHOWN.

Figure 9. CRTC Horizontal Timing

- Timing is shown for first displayed scan row only.

See Chart in Figure 16 for other rows. The initial
$M A$ is determined by the contents of Start Address
Register, R12/R13. Timing is shown for R12/R13 $=0$.

Figure 10. CRTC Vertical Timing

* Nht - there must be an even number of character times for both interlace modes.
** hitial MA is determined by R12/R13 (Start Address Register), which is zero in this timing example.
** Nht must be an even number of scan lines for Interlace Sync and Video Mode.

Figure 11. Cursor Timing

Timing is shown for non-interlace and interlace sync modes.
Example shown has cursor programmed as:
Cursor Register $=$ Nhd +2
Cursor Start $=1$
$\begin{aligned} \text { Cursor End } & =3\end{aligned}$

* The initial MA is determined by the contents of Start

Address Register, R12/R13. Timing is shown for
R12/R13 $=0$.

ROM-I/O-TIMER

Features

2048×8-Bit Bytes of Mask-Programmable ROM
\square 8-Bit Bidirectional Data Port for Parallel Interface Two Control Lines
\square Programmable Interval Timer-Counter Functions
\square Programmable I/O Peripheral Data, Control and Direction Registers
\square Compatible With the Complete S6800 Microcomputer Product FamilyTTL-Compatible Data and Peripheral Lines
\square Single 5 Volt Power Supply

General Description

The S6846 combination chip provides the means, in conjunction with the S6802, to develop a basic 2-chip microcomputer system. The S6846 consists of 2048 bytes of mask-programmable ROM, an 8 -bit bidirectional data port with control lines, and a 16-bit programmable timer-counter.
This device is capable of interfacing with the S6802 (basic S6800, clock and 128 bytes of RAM) as well as the S 6800 if desired. No external logic is required to interface with most peripheral devices.

General Description (Continued)

The S6846 combination chip may be partitioned into three functional operating sections: read-only memory, timer-counter functions, and a parallel I/O port.

Read-Only Memory (ROM)

The mask-programmable ROM section is similar to other AMI ROM products. The ROM is organized in a 2048 by 8 -bit array to provide read-only storage for a minimum microcomputer system. Two mask-programmable chip selects are available for user definition.
Address inputs $\mathrm{A}_{0}-\mathrm{A}_{10}$ allow any of the 2048 bytes of ROM to be uniquely addressed. Internal registers associated with the I/O functions may be selected with A_{0}, A_{1} and A_{2}. Bidirectional data lines ($D_{0}-D_{7}$) allow the transfer of data between the MPU and the S6846.

Timer-Counter Functions

Under software control this 16 -bit binary counter may be programmed to count events, measure frequencies and time intervals, or similar tasks. It may also be used for square wave generation, single pulses of controlled duration, and gated delayed signals. Interrupts may be generated from a number of conditions selectable by software programming.

The timer-counter control register allows control of the interrupt enables, output enables, and selection of an internal or external clock source. Input pin CTC (counter-timer clock) will accept an asynchronous pulse to be used as a clock to decrement the internal register for the counter-timer. If the divide-by-8 prescaler is used, the maximum clock rate can be four times the master clock frequency with a maximum of 4 MHz . Gate input ($\overline{\mathrm{CTG}}$) accepts an asynchronous TTLcompatible signal which may be used as a trigger or gating function to the counter-timer. A counter-timer output (CTO) is also available and is under software control via selected bits in the timer-counter control register. This mode of operation is dependent on the control register, the gate input, and the clock source.

Parallel I/O Port

The parallel bidirectional I/O port has functional operational characteristics similar to the B port on the S6821 PIA. This includes 8 bidirectional data lines and two handshake control signals. The control and operation of these lines are completely software programmable. The interrupt input (CP1) will set the interrupt flags of the peripheral control register. The peripheral control (CP2) may be programmed to act as an interrupt input (set CSR2) or as a peripheral control output.

Figure 1. Typical Microcomputer

Absolute Maximum Ratings

Supply Voltage	-0.3 Vdc to +7.0 Vdc
Input Voltage	-0.3 Vdc to +7.0 Vdc
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Thermal Resistance θ_{JA}	
Ceramic	$50^{\circ} \mathrm{C} / \mathrm{W}$
Plastic	.. $100^{\circ} \mathrm{C} / \mathrm{W}$
Cerdip	. $60^{\circ} \mathrm{C} / \mathrm{W}$

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either $V_{S S}$ or $V_{C C}$).

Power Considerations

The average chip-junction temperature, T_{J}, in ${ }^{\circ} \mathrm{C}$ can be obtained from:

$$
\begin{equation*}
T_{J}=T_{A}+\left(P_{D}{ }^{\circ} \dot{\theta}_{J A}\right) \tag{1}
\end{equation*}
$$

Where:

$$
\begin{aligned}
& T_{A}=\text { Ambient Temperature, }{ }^{\circ} \mathrm{C} \\
& \theta_{J A}=\text { Package Thermal Resistance, } \\
& \text { Junction-to-Ambient, }{ }^{\circ} \mathrm{C} / \mathrm{W} \\
& P_{D}=P_{\text {INT }}+P_{\text {PORT }} \\
& P_{\text {INT }}=I_{C C} \times V_{C C} \text {, Watts-Chip Internal Power } \\
& \mathrm{P}_{\text {PORT }}=\text { Port Power Dissipation, } \\
& \text { Watts-User Determined }
\end{aligned}
$$

For most applications $P_{\text {PORT }} \leftarrow P_{\text {INT }}$ and can be neglected. $\mathrm{P}_{\text {PORT }}$ may become significant if the device is configured to drive Darlington bases or sink LED loads.

An approximate relationship between P_{D} and T_{J} (if $P_{\text {PORT }}$ is neglected) is:

$$
\begin{equation*}
P_{D}=K+\left(T_{J}+273^{\circ} C\right) \tag{2}
\end{equation*}
$$

Solving equations 1 and 2 for K gives

$$
\begin{equation*}
K=P_{D} \bullet\left(T_{A}+273^{\circ} \mathrm{C}\right)+\theta_{J A} \bullet P_{D}{ }^{2} \tag{3}
\end{equation*}
$$

Where K is a constant pertaining to the particular part, K can be determined from equation 3 by measuring PD_{D} (at equilibrium) for a known T_{A}. Using this value of K the values of P_{D} and T_{J} can be obtained by solving equations (1) and (2) iteratively for any value of T_{A}.

Electrical Characteristics: $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.)

Symbol	Parameter	Min.	Typ.	Max.	Unit	Conditions
$V_{\text {IH }}$	Input High Voltage All Inputs	$V_{S S}+2.0$		$V_{c c}$	Vdc	
$V_{\text {IL }}$	Input Low Voitage All Inputs	$\mathrm{V}_{\text {SS }}-0.3$		$\mathrm{V}_{\text {SS }}+0.8$	Vdc	
$\mathrm{V}_{0 \mathrm{~S}}$	Clock Overshoot/Undershoot - Input High Level - Input Low Level	$\begin{aligned} & \mathrm{v}_{\mathrm{cC}}-0.5 \\ & \mathrm{~V}_{\mathrm{SS}}-0.5 \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}+0.5 \\ & \mathrm{v}_{\mathrm{SS}}+0.5 \end{aligned}$	Vdc	
IN	Input Leakage Current $\left.\begin{array}{r}\text { R/W, Reset, } C S_{0}, C_{1} \\ \\ C P_{1}, C T G, ~ C T C, ~ E, ~ \\ 0\end{array}\right)-A_{11}$		1.0	2.5	$\mu \mathrm{Adc}$	$\mathrm{V}_{\mathrm{IN}}=0$ to 5.25 Vdc
${ }_{\text {TSI }}$	Three-State (Off State) Input Current $\begin{array}{r}\mathrm{D}_{0}-\mathrm{D}_{7} \\ \mathrm{PP}_{0}-\mathrm{PP}_{7}, \mathrm{CR}_{2}\end{array}$		2.0	10	$\mu \mathrm{Adc}$	$\mathrm{V}_{\text {IN }} 0.4$ to 2.4 Vdc
V_{OH}	Output High Voltage $D_{0}-D_{7}$ Other Outputs	$\begin{aligned} & V_{S S}+2.4 \\ & V_{S S}+2.4 \end{aligned}$			Vdc	$\begin{aligned} & \mathrm{I}_{\text {LOAD }}=-205 \mu \mathrm{Adc}, \\ & \mathrm{I}_{\text {LOAD }}=-100 \mu \mathrm{Adc} \end{aligned}$
$\mathrm{V}_{0 \mathrm{~L}}$	Output Low Voltage $D_{0}-D_{7}$ Other Outputs			$\begin{aligned} & V_{S S}+0.4 \\ & V_{S S}+0.4 \end{aligned}$	Vdc	$\begin{aligned} & \mathrm{I}_{\mathrm{LOAD}}=1.6 \mathrm{mAdC} \\ & \mathrm{I}_{\mathrm{LOAD}}=3.2 \mathrm{mAdc} \end{aligned}$

Electrical Characteristics: ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.)

Symbol	Parameter	Min.	Typ.	Max.	Unit	Conditions
I_{OH}	Output High Current (Sourcing) $\begin{array}{r} \mathrm{D}_{0}-\mathrm{D}_{7} \\ \text { Other Outputs } \\ \mathrm{CP}_{2}, \mathrm{PP}_{0}-\mathrm{PP}_{7} \end{array}$	$\begin{aligned} & -205 \\ & -200 \\ & -1.0 \end{aligned}$		- 10	$\mu \mathrm{Adc}$ mADC	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{Vdc}$ $\mathrm{V}_{0}=1.5 \mathrm{Vdc}$, the current for driving other than TTL, e.g., Darlington Base
I_{0}	Output Low Current (Sinking) $D_{0}-D_{7}$ Other Outputs	$\begin{aligned} & 1.6 \\ & 3.2 \end{aligned}$			mAdc	$\mathrm{V}_{0 \mathrm{~L}}=0.4 \mathrm{Vdc}$
ILOH	Output Leakage Current (Off State) IRQ			10	μ Adc	$\mathrm{V}_{\text {OH }}=2.4 \mathrm{Vdc}$
$\mathrm{P}_{\text {INT }}$	Internal Power Dissipation (measured at $T_{A}=0^{\circ} \mathrm{C}$)			1000	mW	
$\mathrm{C}_{\text {IN }}$	Capacitance $\mathrm{D}_{0}-\mathrm{D}_{7}$ $\mathrm{AP}_{0}-\mathrm{A}_{10}, \mathrm{R} / \mathrm{W}$, Reset $, C \mathrm{CS}_{0}, C \mathrm{CS}_{1}, C P_{1}, \mathrm{CTC}, \mathrm{CTG}$ IRQ			$\begin{gathered} \hline 20 \\ \\ \hline 12.5 \\ 10 \\ 7.5 \end{gathered}$	pF	$\begin{aligned} & V_{\mathrm{IN}}=0, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}, \\ & f=1.0 \mathrm{MHz} \end{aligned}$
$\mathrm{C}_{\text {OUT }}$	$\mathrm{PP}_{0}-\mathrm{PP}_{7}, \mathrm{CP}_{2}, \mathrm{CTO}$			$\begin{aligned} & 5.0 \\ & 10 \end{aligned}$	pF	
f	Frequency of Operation	0.1		1.0	MHz	
$\begin{aligned} & \mathrm{t}_{\text {cyce }} \\ & \mathrm{t}_{\mathrm{RL}} \\ & \mathrm{t}_{\mathrm{RR}} \end{aligned}$	Clock Timing Cycle Time Reset Low Time interrupt Release	$\begin{gathered} 1.0 \\ 2 \end{gathered}$		1.6	$\begin{aligned} & \mu \mathrm{S} \\ & \mu \mathrm{~S} \\ & \mu \mathrm{~S} \end{aligned}$	

ASYNCHRONOUS COMMUNICATION INTERFACE ADAPTER (ACIA)

Features

\square 8-Bit Bi-directional Data Bus for Communication with MPU
\square False Start Bit Deletion
\square Peripheral/Modem Control Functions
\square Double Buffered Receiver and Transmitter
\square One or Two Stop Bit Operation
\square Eight and Nine-Bit Transmission With Optional Even and Odd Parity
\square Parity, Overrun and Framing Error Checking
\square Programmable Control Register
\square Optional $\div 1, \div 16$, and $\div 64$ Clock Modes
\square Up to 500,000 bps Transmission

Functional Description

The S6850 Asynchronous Communications Interface Adapter (ACIA) provides the data formatting and control to interface serial asynchronous data communications to bus organized systems such as the $\mathbf{S 6 8 0 0}$ Microprocessing Unit.
The S6850 includes select enable, read/write, interrupt and bus interface logic to allow data transfer over an 8 -bit bi-directional data bus. The parallel data of the bus system is serially transmitted and received by the asynchronous data interface, with proper formatting and error checking. The functional configuration of the ACIA is programmed via the data bus during system initialization. Word lengths, clock division ratios and transmit control through the Request to Send output may be programmed. For modem operation three control lines are provided. These lines allow the ACIA to interface directly with the $\mathrm{S} 6860 \quad 0-600 \mathrm{bps}$ digital modem.

Absolute Maximum Ratings*

Supply Voltage ..
*NOTE: This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.
DC (Static) Characteristics: ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Symbol	Characteristic	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {HT }}$	Input High Threshold Voltage	+2.0	-	-	Vdc
$\mathrm{V}_{\text {ILT }}$	Input Low Threshold Voltage	-	-	+0.8	Vdc
IN	Input Leakage Current ($\mathrm{V}_{\text {IN }}=0$ to 5.0 Vdc) R/W, RS, $\mathrm{CS}_{0}, \mathrm{CS}_{1}, \overline{C S}_{2}$, Enable	-	1.0	2.5	μ Adc
ITSI	Three-State (Off State) Input Current $\left(V_{\text {IN }}=0.4\right.$ to $\left.2.4 \mathrm{Vdc}, V_{C C}=\max \right) \mathrm{D}_{0}, \mathrm{D}_{7}$	-	2.0	10	$\mu \mathrm{Adc}$
$\mathrm{V}_{\text {OH }}$	Output High Voltage ($L_{\text {LOAD }}=100 \mu \mathrm{Adc}$, Enable Pulse Width $\quad 25 \mu \mathrm{~S}$) All Outputs Except $\overline{\mathrm{RQ}}$	+2.4	-	-	Vdc
$V_{0 L}$	Output Low Voltage ($\mathrm{L}_{\mathrm{OAD}}=1.6 \mathrm{mAdC}$) Enable Pulse Width $25 \mu \mathrm{~S}$	-	-	+0.4	Vdc
LOH	Output Leakage Current (0ff State) $\overline{\mathrm{RQ}}$	-	1.0	10	$\mu \mathrm{AdC}$
P_{D}	Power Dissipation	-	300	525	mW
$\mathrm{C}_{\text {IN }}$	$\begin{aligned} & \text { Input Capacitance } \\ & \left(V_{I N}=0, T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right) \\ & \mathrm{D}_{0}-\mathrm{D}, \\ & \text { R/W, RS, } \mathrm{CS}_{0}, \mathrm{CS}_{1}, \overline{\mathrm{CS}}{ }_{2}, \mathrm{RXD}, \overline{\mathrm{CTD}}, \overline{\mathrm{DCD}}, \mathrm{CTX}, \mathrm{CRX} \\ & \text { Enable } \end{aligned}$		-	$\begin{aligned} & 10 \\ & 7.0 \\ & 7.0 \end{aligned}$	$\begin{gathered} \hline \mathrm{pF} \\ \\ 12.5 \\ 7.5 \\ 7.5 \end{gathered}$
Cout	$\begin{aligned} & \text { Output Capacitance } \\ & \left(V_{I N}=0, T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right) \end{aligned}$	-	-	10	pF

Figure 1. Enable Signal Characteristics

Figure 2. Bus Read Timing Characteristics

AC (Dynamic) Characteristics

Loading $=130 \mathrm{pF}$ and one $T T L$ load for $D_{0}-D_{7}=20 \mathrm{pF}$ and 1 TTL load for $R T S$ and $T X D=100 \mathrm{pF}$ and $3 \mathrm{~K} \Omega$ to V_{CC} for IRQ.

Symbol	Parameter	S6850		S68A50		S68B50		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {cyc(E) }}$	Enable Cycle Time	1000		666		500		ns
$\mathrm{PW}_{\text {EH }}$	Enable Pulse Width, High	450		280		220		ns
PW EL	Enable Pulse Width, Low	430		280		210		ns
$\mathrm{t}_{\text {Er, }} \mathrm{t}_{\text {Ef }}$	Enable Pulse Rise and Fall Times		25		25		25	ns
$\mathrm{t}_{\text {AS }}$	Setup Time, Address and R/W Valid to Enable Positive Transition	160		140		70		ns
${ }_{\text {th }}$	Address Hold Time	10		10		10		ns
$\mathrm{t}_{\text {DDR }}$	Data Delay Time, Read		320		220		180	ns
$\mathrm{t}_{\text {OHR }}$	Data Hold Time, Read	10		10		10		ns
$\mathrm{t}_{\text {DSW }}$	Data Setup Time, Write	195		80		60		ns
$\mathrm{t}_{\text {DHW }}$	Data Hold Time, Write	10		10		10		ns

Transmit/Receive Characteristics

Symbol	Characteristic	Min.	Typ.	Max.	Unit
f_{C}	$\div 1$ mode $\div 16$ mode $\div 64$ mode			$\begin{aligned} & 500 \\ & 800 \\ & 800 \\ & \hline \end{aligned}$	KHz KHz KHz
PW ${ }_{\text {CL }}$	Clock Pulse Width, Low State	600			nsec
$\mathrm{PW}_{\mathrm{CH}}$	Clock Pulse Width, High State	600			nsec
ttdD	Delay Time, Transmit Clock to Data Out			1.0	$\mu \mathrm{sec}$
$t_{\text {RDSU }}$	Set Up Time, Receive Data	500			nsec
$\mathrm{t}_{\text {RDH }}$	Hold Time, Receive Data	500			nsec
$\mathrm{t}_{\text {IRQ }}$	Delay Time, Enable to $\overline{\mathrm{IRQ}}$ Reset			1.2	$\mu \mathrm{sec}$
$\mathrm{t}_{\text {RTS }}$	Delay Time, Enable to $\overrightarrow{\text { RTS }}$			1.0	$\mu \mathrm{sec}$

Figure 3. Bus Write Timing Characteristics

Figure 4. Bus Timing Test Loads

$\mathrm{C}=130 \mathrm{pF}$ FOR $\mathrm{D}_{0} \cdot \mathrm{D}_{7} \quad \mathrm{~A}=11.7 \mathrm{k} \Omega$ FOR $\mathrm{D}_{7} \cdot \mathrm{D}_{7}$ $=30 \mathrm{pF}$ FOR RTS AND TX DATA $\quad=24 \mathrm{kS}$ FOR RTS AND TX DATA

Figure 5. Transmit/Receive Timing

MPU/ACIA Interface

Pin	Label	Function
(22)	D_{0}	ACIA Bi-directional Data Lines-The bi-directional data lines ($\mathrm{D}_{0}-\mathrm{D}_{7}$) allow for data transfer be-
(21)	D_{1}	tween the ACIA and the MPU. The data bus output drivers are three-state devices that remain
(20)	D_{2}	in the high-impedance (off) state except when the MPU performs an ACIA read operation. The
(19)	D_{3}	Read/Write line is in the read (high) state when the ACIA is selected for a read operation.
(18)	D_{4}	
(17)	D_{5}	
(16)	D_{6}	
(15)	D_{7}	
(14)	E	ACIA Enable Signal-The Enable signal (E) is a high impedance TTL compatible input that enables the bus input/output data buffers and clocks data to and from the ACIA. This signal will normally be a derivative of the $\mathbf{S 6 8 0 0} 02$ clock.
(13)	R/W	Read/Write Control Signal-The Read/Write line is a high impedance input that is TTL compatible and is used to control the direction of data flow through the ACIA's input/output data bus interface. When Read/Write is high (MPU Read cycle), the ACIA output driver is turned on and a selected register is read. When it is low, the ACIA output driver is turned off and the MPU writes into a selected register. Thus, the Read/Write signal is used to select the Read Only or Write Only registers within the ACIA.

MPU/ACIA Interface (Continued)

Pin (8) (10) (9)	Label CS_{0} $\frac{\mathrm{CS}_{1}}{\mathrm{CS}_{2}}$	Function Chip Select Signals-These three high impedance TTL compatible input lines are used to address an ACIA. A particular ACIA is selected when CS_{0} and CS_{1} are high and CS_{2} is low. Transfers of data to and from ACIA are then performed under the control of Enable, Read/Write, and Register Select.
(11)	RS	Register Select Signal - The Register Select line is a high impedance input that is TTL compatible and is used to select the Transmit/Receive Data or Control/Status registers in the ACIA. The Read/Write signal line is used in conjunction with Register Select to select the Read Only or Write Only register in each register pair.
(7)	$\overline{\mathrm{RQ}}$	Interrupt Request Signal - Interrupt request is a TTL compatible, open drain active low output that is used to interrupt the MPU. The Interrupt Request remains low as long as the cause of the interrupt is present and the appropriate interrupt enable within the ACIA is set.
ACIA/Modem or Peripheral Interface		
Pin	Label	Function
(4)	CTX	Transmit Clock - The Transmit Clock is a high impedance TTL compatible input used for the clocking of transmitted data. The transmitter initiates data on the negative transition of the clock. Clock frequency of 1,16 , or 64 times the data rate may be selected.
(3)	CRX	Receive Clock-The Receive Clock is a high impedance TTL compatible input used for synchronization of received data. (In the $\div 1$ mode, the clock and data must be synchronized externally.) The receiver strobes the data on the positive transition of the clock. Clock frequency of 1,16 , or 64 times the data rate may be selected.
(2)	RXD	Received Data-The Received Data line is a high impedance TTL compatible input through which data is received in a serial NRX (Non Return to Zero) format. Synchronization with a clock for detection of data is accomplished internally when clock rates of 16 or 64 times the bit rate are used. Data rates are in the range of 0 to 500 Kbps when external synchronization is utilized.
(6)	TXD	Transmit Data-The Transmit Data output line transfers serial NRZ data to a modem or other peripheral device. Data rates are in the range of 0 to 500 Kbps when external synchronization is utilized.
(24)	$\overline{\text { CTS }}$	Clear-to-Send-This high impedance TTL compatible input provides automatic control of the transmitting end of a communications link via the modem's "clear-to-send" active low output by inhibiting the Transmitter Data Register Empty status bit (TDRE).
(5)	RTS	Request-to-Send-The Request-to-Send output enables the MPU to control a peripheral or modem via the data bus. The active state is low. The Request-to-Send output is controlled by the contents of the ACIA control register.
(23)	$\overline{D C D}$	Data Carrier Detected-This high impedance TTL compatible input provides automatic control of the receiving end of a communications link by means of the modem "Data-Carrier-Detect" or "Received-Line-Signal Detect" output. The $\overline{D C D}$ input inhibits and initializes the receiver section of the ACIA when high. A low to high transition of the Data Carrier Detect initiates an interrupt to the MPU to indicate the occurrence of a loss of carrier when the Receiver Interrupt Enable (RIE) is set.
(12)	$V_{C C}$	+ 5 volts $\pm 5 \%$
(1)	GND	Ground

Application Information

Internal Registers - The ACIA has four internal registers utilized for status, control, receiving data, and transmitting data. The register addressing by the R/W and RS lines and the bit definitions for each register are shown in Table 1.

Table 1. Definition of ACIA Registers

	BUFFER ADDRESS			
	RS $\cdot \overline{\mathrm{R} / \mathrm{W}}$	RS•R/W	$\overline{\mathrm{RS}} \cdot \overline{\mathrm{A} / \mathrm{W}}$	$\overline{\mathrm{AS}} \cdot \mathrm{R} / \mathrm{W}$
DATA BUS LINE NUMBER	$\begin{gathered} \hline \text { TRANSMIT } \\ \text { DATA } \\ \text { REGISTER } \end{gathered}$	RECEIVER DATE REGISTER	CONTROL REGISTER	STATUS REGISTER
	(WRITE ONLY)	(READ ONLY)	(WRITE ONLY)	(READ ONLY)
0	DATA BIT 0*	DATA BIT 0*	CLK, DIVIDE SEL. (CRO)	RX DATA REG. FULL (RDRF)
1	DATA BIT 1	DATA BIT 1	CLK. DIVIDE SEL. (CR1)	TX DATA REG. EMPTY (TDRE)
2	DATA BIT 2	DATA BIT 2	WORD SEL. 1 (CR2)	DATA CARRIER DET. LOSS (DCD)
3	DATA BIT 3	DATA BIT 3	WORD SEL. 2 (CR3)	$\begin{aligned} & \text { CLEAR-TO-SEND } \\ & \text { (CTS) } \end{aligned}$
4	DATA BIT 4	DATA BIT 4	WORD SEL. 3 (CR4)	FRAMING ERROR (FE)
5	DATA BIT 5	DATA BIT 5	$\begin{aligned} & \text { TX CONTROL } 1 \\ & \text { (CR5) } \\ & \hline \end{aligned}$	OVERRUN (OVRN)
6	DATA BIT 6	DATA BIT 6	$\begin{aligned} & \text { TX CONTROL } 2 \\ & \text { (CR6) } \end{aligned}$	PARITY ERROR (PE)
7	DATA BIT 7***	DATA BIT 7**	RX INTERRUPT ENABLE (CR7)	INTERRUPT REQUEST (IRQ)

Notes: * Leading bit = LSD = Bit 0
**** Unused data bits in received character will be " 0 's."
*** Unused data bits for transmission are "don't care's."

ACIA Status Register-Information on the status of the ACIA is available to the MPU by reading the ACIA Status Register. This Read Only register is selected when RS is low and R/W is high. Information stored in this register indicates the status of: transmitting data register, the receiving data register and error status and the modem status inputs of the ACIA.

Receiver Data Register Full (RDRF) [Bit 0]-Receiver Data Register Full indicates that received data has been transferred to the Receiver Data Register. RDRF is cleared after an MPU read of the Receiver Data Register or by a Master Reset. The cleared or empty state indicates that the contents of the Receiver Data Register are not current. Data Carrier Detect being high also causes RDRF to indicate empty.
Transmit Data Register Empty (TDRE) [Bit 1]—The Transmit Data Register Empty bit being set high indicates that the Transmit Data Register contents have
been transferred and that new data may be entered. The low state indicates that the register is full and that transmission of a new character has not begun since the last write data command.
Data Carrier Detect ($\overline{\mathrm{DCD}}$) [Bit 2]-The Data Carrier Detect bit will be high when the $\overline{\mathrm{DCD}}$ input from a modem has gone high to indicate that a carrier is not present. This bit going high causes an Interrupt Request to be generated if the Receiver Interrupt Enable (RIE) is set. It remains high until the interrupt is cleared by reading the Status Register and the Data Register or a Master Reset occurs. If the $\overline{D C D}$ input remains high after Read Status and Read Data or Master Reset have occurred, the $\overline{D C D}$ Status bit remains high and will follow the $\overline{D C D}$ input.
Clear-to-Send ($\overline{C T S}$) [Bit 3]-The Clear-to-Send bit indicates the state of the Clear-to-Send input from a modem. A low $\overline{\mathrm{CTS}}$ indicates that there is a Clear-to-

S6850/S68A50/S68B50

Send from the modem. In the high state, the Transmit Data Register Empty bit is inhibited and the Clear-toSend status bit will be high. Master Reset does not affect the Clear-to-Send status bit.

Framing Error (FE) [Bit 4]—Framing error indicates that the received character is improperly framed by the start and stop bit and is detected by the absence of the first stop bit. This error indicates a synchronization error, faulty transmission, or a break condition. The framing error flag is set or reset during the receiver data transfer time. Therefore, this error indicator is present throughout the time that the associated character is available.

Receiver Overrun (OVRN) [Bit 5]-Overrun is an error flag that indicates that one or more characters in the data stream were lost. That is, a character or a number of characters were received but not read from the Receiver Data Register (RDR) prior to subsequent characters being received. The overrun condition begins at the midpoint of the last bit of the second character received in succession without a read of the RDR having occurred. The Overrun does not occur in the Status Register until the valid character prior to Overrun has been read. The RDRF bit remains set until Overrun is reset. Character synchronization is maintained during the Overrun condition. The overrun indication is reset after the reading of data from the Receive Data Register. Overrun is also reset by the Master Reset.

Parity Error (PE) [Bit 6]-The parity error flag indicates that the number of highs (ones) in the character does not agree with the preselected odd or even parity. Odd parity is defined to be when the total number of ones is odd. The parity error indication will be present as long as the data character is in the RDR. If no parity is selected, then both the transmitter parity generator output and the receiver parity check results are inhibited.
Interrupt Request (IRQ) [Bit 7]-The IRQ bit indicates the state of the $\overline{\mathrm{RQQ}}$ output. Any interrupt that is set and enabled will be indicated in the status register. Any time the IRQ output is low the IRQ bit will be high to indicate the interrupt or service request status.

Control Register-The ACIA control Register consists of eight bits of write only buffer that are selected when RS and R/W are low. This register controls the function of the receiver, transmitter, interrupt enables, and the Request-to-Send modem control output.
Counter Divide Select Bits (CRO and CR1)-The Counter Divide Select Bits (CR0 and CR1) determine the divide ratios utilized in both the transmitter and receiver sections of the ACIA. Additionally, these bits are used to provide a Master Reset for the ACIA which clears the Status Register and initializes both the receiver and
transmitter. Note that after a power-on or a power-fail restart, these bits must be set High to reset the ACIA. After resetting, the clock divide ratio may be selected. These counter select bits provide for the following clock divide ratios:

CR1	CRO	Function
0	0	$\div 1$
0	1	$\div 16$
1	0	$\div 64$
1	1	Master Reset

Word Select Bits (CR2, CR3, and CR4)-The Word Select bits are used to select word length, parity, and the number of stop bits. The encoding format is as follows:

CR4	CR3	CR2	Function
0	0	0	7 Bits + Even Parity + 2 Stop Bits
0	0	1	7 Bits + Odd Parity + 2 Stop Bits
0	1	0	7 Bits + Even Parity + 1 Stop Bit
0	1	1	7 Bits + Odd Parity + 1 Stop Bit
1	0	0	8 Bits + 2 Stop Bits
1	0	1	8 Bits + 1 Stop Bit
1	1	0	8 Bits + Even Parity + 1 Stop Bit
1	1	1	8 Bits + Odd Parity + 1 Stop Bit

Word length, Parity Select, and Stop Bit changes are not double-buffered and therefore become effective immediately.
Transmitter Control Bits (CR5 and CR6)-Two Transmitter Control bits provide for the control of the Transmitter Buffer Empty interrupt output, the Request-toSend output and the transmission of a BREAK level (space). The following encoding format is used:

CR6	CR5	Function
0	0	$\overline{\text { RTS }}=$ low, Transmitting Interrupt Disabled
0	1	$\overline{\text { RTS }}=$ low, Transmitting Interrupt Enabled
1	0	$\overline{\text { RTS }}=$ high, Transmitting Interrupt Disabled
1	1	$\overline{\text { RTS }}=$ low, Transmitting Interrupt Disabled
		and Transmits a BREAK level on the Transmit
	Data Output	

Receiver Interrupt Enable Bit (RIE) (CR7)—Interrupt will be enabled by a high level in bit position 7 of the Control Register (CR7). Interrupts caused by the Receiver Data Register Full being high or by a low to high transition on the Data Carrier Detect signal line are enabled or disabled by the Receiver Interrupt Enable Bit.
Transmit Data Register (TDR)—Data is written in the Transmit Data Register during the peripheral enable time (E) when the ACIA has been addressed and RS•R/W is selected. Writing data into the register causes the Transmit Data Register Empty bit in the status register to go low. Data can then be transmitted. If the transmitter is idling and no character is being transmitted, then the transfer will take place within one

S6850/S68A50/S68B50

bit time of the trailing edge of the Write command. If a character is being transmitted, the new data character will commence as soon as the previous character is complete. The transfer of data causes the Transmit Data Register Empty (TDR) bit to indicate empty.
Receive Data Register (RDR)—Data is automatically transferred to the empty Receive Data Register (RDR) from the receiver deserializer (a shift register) upon receiving a complete character. This event causes the Receive Data Register Full bit (RDRF) (in the status buffer) to go high (full). Data may then be read through the bus by addressing the ACIA and selecting the Receive Data Register with RS and R/W high when the ACIA is enabled. The non-destructive read cycle causes the RDRF bit to be cleared to empty although the data is retained in the RDR. The status is maintained by RDRF as to whether or not the data is current. When the Receive Data Register is full, the automatic transfer of data from the Receiver Shift Register to the Data Register is inhibited and the RDR contents remain valid with its current status stored in the Status Register.

Operational Description

From the MPU Bus interface the ACIA appears as two addressable RAM memory locations. Internally, there are four registers; two read-only and two write-only registers. The read-only registers are status and receive data, and the write only registers are control and transmit data. The serial interface consists of serial transmit and receive lines and three modem/ peripheral control lines.
During a power-on sequence, the ACIA is internally latched in a reset condition to prevent erroneous output transitions. This power-on reset latch can only be released by the master reset function via the control register; bits b_{0} and b_{1} are set "high" for a master reset. After master resetting the ACIA, the programmable control register can be set for a number of options such as variable clock divider ratios, variable word length, one or two stop bits, parity (even, odd, or none) and etc.
Transmitter-A typical transmitting sequence consists of reading the ACIA status register either as a result of an interrupt or in the ACIA's turn in a polling sequence.

A character may be written into the Transmitter Data Register if the status read operation has indicated that the Transmit Data Register is empty. This character is transferred to a shift register where it is serialized and transmitted from the Tx Data output preceded by a start bit and followed by one or two stop bits. Internal parity (odd or even) can be optionally added to the character and will occur between the last data bit and the first stop bit. After the first character is written in the data register, the status register can be read again to check for a Transmit Data Register Empty condition and current peripheral status. If the register is empty, another character can be loaded for transmission even though the first character is in the process of being transmitted. This second character will be automatically transferred into the shift register when the first character transmission is completed. The above sequence continues until all the characters have been transmitted.
Receiver-Data is received from a peripheral by means of the Rx Data input. A divide by one clock ratio is provided for an externally synchronized clock (to its data) while the divide by 16 and 64 ratios are provided for internal synchronization.
Bit synchronization in the divide by 16 and 64 modes is obtained by the detection of the leading mark-to-space transition of the start bit. False start bit deletion capability insures that a full half bit of a start bit has been received before the internal clock is synchronized to the bit time. As a character is being received, parity (odd or even) will be checked and the error indication will be available in the status register along with framing error, overrun error, and receiver data register full. In a typical receiving sequence, the status register is read to determine if a character has been received from a peripheral. If the receiver data register is full, the character is placed on the 8-bit ACIA bus when a Read Data command is received from the MPU. The status register can be read again to determine if another character is available in the receiver data register. The receiver is also double buffered so that a character can be read from the data register as another character is being received in the shift register. The above sequence continues until all characters have been received.

SYNCHRONOUS SERIAL DATA ADAPTER (SSDA)

Features

Programmable Interrupts From Transmitter, Receiver, and Error Detection LogicCharacter Synchronization on One or Two Sync CodesExternal Synchronization Available for ParallelSerial OperationProgrammable Sync Code Register
Up to 600k bps Transmission
Peripheral/Modem Control Functions
Three Bytes of FIFO Buffering on Both Transmit and Receive
Seven, Eight, or Nine Bit Transmission
\square Optional Even and Odd Parity
Parity, Overrun, and Underflow Status
Clock Rates:
1.0 MHz
1.5 MHz
2.0 MHz

General Description

The S6852 Synchronous Serial Data Adapter provides a bi-directional serial interface for synchronous data information interchange. It contains interface logic for simultaneously transmitting and receiving standard synchronous communications characters in bus organized systems such as the S6800 Microprocessor systems.
The bus interface of the S6852 includes select, enable, read/write, interrupt, and bus interface logic to allow data transfer over an 8 -bit bi-directional data bus. The parallel data of the bus sytem is serially transmitted and received by the synchronous data interface with synchronization, fill character insertion/deletion, and error checking. The functional configuration of the SSDA is programmed via the data bus during system initialization. Programmable control registers provide control for variable word lengths, transmit control,

Block Diagram

Pin Configuration

General Description (Continued)

receive control, synchronization control, and interrupt control. Status, timing and control lines provide peripheral or modem control.

Typical applications include floppy disk controllers, cassette or cartridge tape controllers, data communications terminals, and numerical control systems.

Absolute Maximum Ratings:

Supply Voltage	-0.3 to +7.0 V
Input Voltage	-0.3 to +7.0 V
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	-55° to $+150^{\circ} \mathrm{C}$
Thermal Resistance	$+70^{\circ} \mathrm{C} / \mathrm{W}$

Note: This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

Electrical Characteristics ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{S S}=0, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ unless otherwise noted.)

Symbol	Characteristics	Min.	Typ.	Max.	Unit
V_{IH}	Input High Voltage	$\mathrm{V}_{S S}+2.0$			$V_{\text {dc }}$
$\mathrm{V}_{\text {IL }}$	Input Low Voltage			$V_{S S}+0.8$	$V_{\text {dc }}$
1 N	Input Leakage Current $\left(\mathrm{V}_{1 \mathrm{~N}}=0\right.$ to 5.25 VdC$)$ $\frac{\text { Tx CIk, Rx CIk, Rx Data, Enable }}{\text { Reset, RS }, \mathrm{R} / \overline{\mathrm{W}}, \overline{\mathrm{CS}}, \overline{\mathrm{DCD}}, \overline{\mathrm{CTS}}}$		1.0	2.5	$\mu \mathrm{Adc}$
$I_{\text {TS }}$	Three State (Off State) Input Current $\left(\mathrm{V}_{\mathrm{IN}}=0.4 \text { to } 2.4 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{Vdc}\right) \quad \mathrm{D}_{0}-\mathrm{D}_{7}$		2.0	10	$\mu \mathrm{Adc}$
V_{OH}	Output High Voltage $I_{\text {LOAD }}=-205 \mu \mathrm{Adc} \text {, Enable Pulse Width }<25 \mu \mathrm{~S} \quad \mathrm{D}_{0}-\mathrm{D}_{7}$ $\mathrm{I}_{\text {LOAD }}=-100 \mu \mathrm{Adc} \text {, Enable Pulse Width }<25 \mu \mathrm{~s} \text { Tx Data, DTR, TUF }$	$\begin{aligned} & V_{S S}+2.4 \\ & V_{S S}+2.4 \\ & \hline \end{aligned}$		Vdc	Vdc
$V_{0 L}$	Output Low Voltage $l_{\text {LOAD }}=1.6 \mathrm{mAdc}$, Enable Pulse Width $<25 \mu \mathrm{~s}$			$V_{S S}+0.4$	Vdc
$\mathrm{I}_{\mathrm{LOH}}$	Output Leakage Current (Off State) $\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{Vdc}$		1.0	10	$\mu \mathrm{Adc}$
$P_{\text {D }}$	Power Dissipation		300	525	mW
$\mathrm{C}_{\text {IN }}$	Input Capacitance $D_{0}-D_{7}$ $\left(V_{I N}=0, T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$ All 0ther Inputs			$\begin{gathered} 12.5 \\ 7.5 \\ \hline \end{gathered}$	pF
$\mathrm{C}_{\text {Out }}$	Output Capacitance $\left(V_{I N}=0, T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$ Tx Data, SM/DTR, TUF $\overline{\text { IRQ }}$			$\begin{gathered} 10 \\ 5.0 \end{gathered}$	pF

Electrical Characteristics ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$ unless otherwise noted.)

Symbol	Characteristic	S6852		S68A52		S68B52		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
PW CL	Minimum Clock Pulse Width, Low	700		400		280		ns
$\mathrm{PW}_{\mathrm{CH}}$	Minimum Clock Pulse Width, High	700		400		280		ns
f_{c}	Clock Frequency		600		1000		1500	kHz
$\mathrm{t}_{\text {RDSU }}$	Receive Data Setup Time	350		200		160		ns

[^23]Electrical Characteristics (Continued) $\left(V_{C C}=5.0 \mathrm{~V} \pm 5 \%, T_{A}=0\right.$ to $70^{\circ} \mathrm{C}$ unless otherwise noted.)

Symbol	Characteristic	S6852		S68A52		S68B52		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
$t_{\text {RDH }}$	Receive Data Hold Time	350		200		160		ns
$\mathrm{t}_{\text {SM }}$	Sync Match Delay Time		1.0		0.666		0.500	$\mu \mathrm{S}$
${ }_{\text {tidd }}$	Clock-to-Data Delay for Transmitter		1.0		0.666		0.500	$\mu \mathrm{s}$
$t_{\text {tuF }}$	Transmitter Underflow		1.0		0.666		0.500	$\mu \mathrm{S}$
$t_{\text {DTR }}$	DTR̈ Delay Time		1.0		0.666		0.500	$\mu \mathrm{S}$
t_{IR}	Interrupt Request Release Time		1.2		0.800		0.600	$\mu \mathrm{S}$
$\mathrm{t}_{\text {Res }}$	$\overline{\text { Reset }}$ Minimum Pulse Width	1.0		0.666		0.500		$\mu \mathrm{S}$
$\mathrm{t}_{\text {CTS }}$	$\overline{\text { CTS Setup Time }}$	200		150		120		ns
$\mathrm{t}_{\text {DCD }}$	$\overline{\text { DCD }}$ Setup Time	500		350		250		ns
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\text {f }}$	Input Rise and Fall Times (except Enable) (0.8 V to 2.0 V)		1.0		1.0		1.0	$\mu \mathrm{S}$

Bus Timing Characteristics

Symbol	Characteristic	S6852		S68A52		S68B52		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
Read								
$\mathrm{t}_{\text {CYCE }}$	Enable Cycle Time	1.0		0.666		0.5		$\mu \mathrm{s}$
$\mathrm{PW}_{\text {EH }}$	Enable Pulse Width, High	0.45	25	0.28	25	0.22	25	$\mu \mathrm{S}$
PWEL	Enable Pulse Width, Low	0.43		0.28		0.21		$\mu \mathrm{S}$
$t_{\text {AS }}$	Setup Time, Address and R/W Valid to Enable Positive Transition	160		140		70		ns
$\mathrm{t}_{\text {DDR }}$	Data Delay Time		320		220		180	ns
t_{H}	Data Hold Time	10		10		10		ns
$t_{\text {AH }}$	Address Hold Time	10		10		10		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{Er}}, \\ & \mathrm{t}_{\mathrm{Et}} \end{aligned}$	Rise and Fall Time for Enable Input		25		25		25	ns
Write								
$\mathrm{t}_{\text {CYCE }}$	Enable Cycle Time	1.0		0.666		0.5		$\mu \mathrm{s}$
PW ${ }_{\text {EH }}$	Enable Pulse Width, High	0.45	25	0.28	25	0.22	25	$\mu \mathrm{S}$
PW ${ }_{\text {EL }}$	Enable Puise Width, Low	0.43		0.28		0.21		$\mu \mathrm{S}$
$\mathrm{t}_{\text {AS }}$	Setup Time, Address and R/W Valid to Enable Positive Transition	160		140		70		ns
$\mathrm{t}_{\text {DSW }}$	Setup Time	195		80		60		ns
t_{H}	Data Hold Time	10		10		10		ns
t_{AH}	Address Hoid Time	10		10		10		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{Er}}, \\ & \mathrm{t}_{\mathrm{Er}} \end{aligned}$	Rise and Fall Time for Enable Input		25		25		25	ns

ADVANCED DATA LINK CONTROLLER

Features
\square S6800 CompatibleProtocol Features
\square Automatic Flag Detection and Synchronization
\square Zero Insertion and Deletion
\square Extendable Address, Control and Logical Control Fields (Optional)
\square Variable Word Length Info Field - 5, 6, 7, or 8 -bits
\square Automatic Frame Check Sequence Generation and Check
\square Abort Detection and Transmission
\square Idle Detection and Transmission
\square Loop Mode Operation
\square
Loop Back Self-Test Mode
NRZ/NRZI Modes

Quad Data Buffers for Each Rx and Tx
Prioritized Status Register (Optional)MODEM/DMA/Loop Interface

General Description

The S6854 ADLC performs the complex MPU/data communication link function for the "Advanced Data Communication Control Procedure" (ADCCP), High Level Data Link Control (HDLC) and Synchronous Data Link Control (SDLC) standards. The ADLC provides key interface requirements with improved software efficiency. The ADLC is designed to provide the data communications interface for both primary and secondary stations in stand-alone, polling, and loop configurations.

S6854/S68A54/S68B54

Absolute Maximum Ratings*

Supply Voltage	-0.3 to +7.0 V
Input Voltage	-0.3 to +7.0 V
Operating Temperature Range	0° to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	-55° to $+150^{\circ} \mathrm{C}$
Thermal Resistance	$70^{\circ} \mathrm{C} / \mathrm{W}$

* This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

Electrical Characteristics: $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{S S}=0, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.)

Symbol	Parameter	Min.	Typ.	Max.	Unit	Conditions
$\mathrm{V}_{\text {H }}$	Input High Voltage	$\mathrm{V}_{\text {SS }}+2.0$		Vdc		
$\mathrm{V}_{\text {LL }}$	Input Low Voltage			$\mathrm{V}_{\text {SS }}+0.8$	Vdc	
$\mathrm{I}_{\text {IN }}$	Input Leakage Current \quad All Inputs Except $\mathrm{D}_{0}-\mathrm{D}_{7}$		1.0	2.5	$\mu \mathrm{Adc}$	$\mathrm{V}_{\text {IN }}=0$ to 5.25 Vdc
$\mathrm{I}_{\text {TS } 1}$	Three-State (0ff State) Input Current $\quad \mathrm{D}_{0}-\mathrm{D}_{7}$		2.0	10	$\mu \mathrm{Adc}$	$\begin{aligned} & V_{\text {IN }}=0.4 \text { to } 2.4 \mathrm{Vdc} \\ & V_{C C}=5.25 \mathrm{Vdc} \end{aligned}$
V_{OH}	Output High Voltage $\begin{array}{r}\text { all }{ }^{\text {d }} \text { - } \mathrm{D}_{7} \\ \text { All Others }\end{array}$	$\begin{aligned} & \hline V_{S S}+2.4 \\ & V_{S S}+2.4 \\ & \hline \end{aligned}$			$\begin{aligned} & \mathrm{Vdc} \\ & \mathrm{Vdc} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{LOAD}}=-205 \mu \mathrm{Adc} \\ & \mathrm{I}_{\mathrm{LOAD}}=-100 \mu \mathrm{Adc} \end{aligned}$
V_{0}	Output Low Voltage			$\mathrm{V}_{\text {SS }}+0.4$	Vdc	$\mathrm{I}_{\text {LOAD }}=1.6 \mathrm{mAdc}$
$\mathrm{I}_{\mathrm{LOH}}$	Output Leakage Current (Off State) $\overline{\text { IRQ }}$		1.0	10	$\mu \mathrm{Adc}$	$\mathrm{V}_{\text {OH }}=2.4 \mathrm{Vdc}$
P_{D}	Power Dissipation			850	mW	
$\mathrm{C}_{\text {IN }}$	Capacitance $D_{0}-D_{7}$ All Other Inputs			$\begin{gathered} 12.5 \\ 7.5 \end{gathered}$	$\begin{aligned} & \hline \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	$\begin{aligned} & V_{\mathbb{N}}=0, T_{A}=25^{\circ} \mathrm{C}, \\ & f=1.0 \mathrm{MHz} \end{aligned}$
$\mathrm{C}_{\text {OUt }}$	All Others			$\begin{aligned} & 5.0 \\ & 10 \end{aligned}$	$\begin{aligned} & \hline \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	

Symbol	Characteristic	S6854		S68A54		S68854		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
PW ${ }_{\text {CL }}$	Minimum Clock Pulse Width, Low	700		450		280		ns
$\mathrm{PW}_{\text {ch }}$	Minimum Clock Pulse Width, High	700		450		280		ns
f_{c}	Clock Frequency		0.66		1.0		1.5	MHz
$\mathrm{t}_{\text {RoSU }}$	Receive Data Setup Time	250		200		120		ns
$\mathrm{t}_{\text {ROH }}$	Receive Data Hold Time	120		100		60		ns
$\mathrm{t}_{\text {RTS }}$	Request-to-Send Delay Time		680		460		340	ns
$\mathrm{t}_{\text {TOD }}$	Clock-to-Data Delay for Transmitter		460		320		250	ns
t_{FD}	Flag Detect Delay Time		680		460		340	ns
$\mathrm{t}_{\text {DTR }}$	DTR Delay Time		680		460		340	ns
$\mathrm{t}_{\text {LOC }}$	Loop On-Line Control Delay Time		680		460		340	ns
$\mathrm{t}_{\text {ROSR }}$	RDSR Delay Time		540		400		340	ns
$\mathrm{t}_{\text {TJSR }}$	TDSR Delay Time		540		400		340	ns
t_{IR}	Interrupt Request Release Time		1.2		0.9		0.7	$\mu \mathrm{s}$
$\mathrm{t}_{\text {RES }}$	Reset Minimum Pulse Width	1.0		0.65		0.40		$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Times (except Enable) (0.8 V to 2.0 V)		1.0*		1.0*		1.0*	$\mu \mathrm{S}$

[^24]Bus Timing Characteristics ($\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{S S}=0, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $++70^{\circ} \mathrm{C}$ unless otherwise noted.)

Symbol	Characteristic	S6854		S68A54		S68B54		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
Read								
$\mathrm{t}_{\text {CYC }}$	Enable Cycle Time	1.0		0.666		0.50		$\mu \mathrm{s}$
$\mathrm{PW}_{\text {EH }}$	Enable Pulse Width, High	0.45		0.28		0.22	25	$\mu \mathrm{S}$
PWEL	Enable Pulse Width, Low	0.43		0.28		0.21		$\mu \mathrm{s}$
$t_{\text {AS }}$	Setup Time, Address and R/W Valid to Enable Positive Transition	160		140		70		ns
$t_{\text {DDR }}$	Data Delay Time		320		220		180	ns
t_{H}	Data Hold Time	10		10		10		ns
t_{AH}	Address Hold Time	10		10		10		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{Er}}, \\ & \mathrm{t}_{\mathrm{Ef}} \end{aligned}$	Rise and Fall Time for Enable Input		25		25		25	ns
Write								
$\mathrm{t}_{\text {CYCE }}$	Enable Cycle Time	1.0		0.666		0.50		$\mu \mathrm{S}$
$\mathrm{PW}_{\text {EH }}$	Enable Pulse Width, High	0.45		0.28		0.22		$\mu \mathrm{s}$
PWEL	Enable Pulse Width, Low	0.43		0.28		0.21		$\mu \mathrm{s}$
$t_{\text {AS }}$	Setup Time, Address and R/W Valid to Enable Positive Transition	160		140		70		ns
$\mathrm{t}_{\text {DSW }}$	Setup Time	195		80		60		ns
t_{H}	Data Hold Time	10		10		10		ns
$\mathrm{t}_{\text {AH }}$	Address Hold Time	10		10		10		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{Er}}, \\ & \mathrm{t}_{\mathrm{Ef}} \end{aligned}$	Rise and Fall Time for Enable Input		25		25		25	ns

128x8 STATIC READ/WRITE MEMORY

Features

\square Organized as 128 Bytes of 8 Bits
\square Static Operation
\square Bidirectional Three-State Data Input/Output
\square Six Chip Enable Inputs (Four Active Low, Two Active High
\square Single 5 Volt Power Supply
\square TTL Compatible
\square Maximum Access Time
450ns for S6810
360ns for S68A10
250ns for S68B10

General Description

The S6810/S68A10 and S68B10 are static 128×8 Read/Write Memories designed and organized to be compatible with the S6800/S68A00 and S68B00 Microprocessors. Interfacing to the S6810/S68A10 and S68B10 consists of an 8 -bit bidirectional data bus, seven address lines, s single Read/Write control line and six chip enable lines, four negative and two positive.
For ease of use, the S6810/S68A10 and S68B10 are a totally static memory requiring no clocks or cell refresh. The S6810/S68A10 and S68B10 are fabricated with N -Channel silicon gate depletion load technology to be fully DTLTTL compatible with only a single +5 volt power supply required.

S6810/S68A10/S68B10

Absolute Maximum Ratings

Supply Voltage .. - 0.3 V to +7.0 V
Input Voltage ... - 0.3 V to +7.0 V
Operating Temperature Range ... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

D.C. Characteristics:

$\left(V_{C C}=+5.0 \mathrm{~V} \pm 5 \%, V_{S S}=0, T_{A}=0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.)

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
IN	Input Current $\left(A_{n}, R / W, C S_{n}, \overline{C S_{n}}\right)$			2.5	$\mu \mathrm{AdC}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to 5.25 V
V_{OH}	Output High Voltage	2.4			Vdc	$\mathrm{I}_{\mathrm{OH}}=-205 \mu \mathrm{~A}$
$V_{0 L}$	Output Low Voltage			0.4	Vdc	$\mathrm{I}_{0 \mathrm{~L}}=1.0 \mathrm{~mA}$
ILO	Output Leakage Current			10	$\mu \mathrm{Adc}$	$\begin{aligned} & C S=0.8 \mathrm{~V} \text { or } C S=2.0 \mathrm{~V} \text {, (Three State) } \\ & \mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V} \text { to } 2.4 \mathrm{~V} \end{aligned}$
${ }^{\text {c }}$ C	Supply Current 56810 S68A10/S68B10			$\begin{gathered} 80 \\ 100 \end{gathered}$	mAdc mAdc	$V_{C C}=5.25 \mathrm{~V}$, all other pins grounded, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$

A.C. Characteristics:

Read Cycle

$\left(V_{C C}=+5.0 \mathrm{~V} \pm 5 \%, V_{S S}=0, T_{A}=0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.)

Symbol	Parameter	S6810		S68A10		S68B10		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {cyc }(\mathrm{R})}$	Read Cycle Time	450		360		250		ns
tacc	Access Time		450		360		250	ns
t_{AS}	Address Setup Time	20		20		20		ns
$t_{\text {AH }}$	Address Hold Time	0		0		0		ns
todr	Data Delay Time (Read)		230		220		180	ns
$t_{\text {RCS }}$	Read to Select Delay Time	0		0		0		ns
$\mathrm{t}_{\text {DHA }}$	Data Hold from Address	10		10		10		ns
tH_{H}	Output Hold Time	10		10		10		ns
$\mathrm{t}_{\text {dhe }}$	Data Hold from Read	10	60	10	60	10	60	ns
$t_{\text {RH }}$	Read Hold from Chip Select	0		0		0		ns

Write Cycle

$\left(V_{C C}=+5.0 \mathrm{~V} \pm 5 \%, V_{S S}=0, T_{A}=0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.)

Symbol	Parameter	S6810		S68A10		S68B10		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\mathrm{cyc}}(\mathrm{W})$	Write Cycle Time	450		360		250		ns
$t_{\text {AS }}$	Address Setup Time	20		20		20		ns
$t_{\text {AH }}$	Address Hold Time	0		0		0		ns
tos	Chip Select Pulse Width	300		250		210		ns
twCs	Write to Chip Select Delay Time	0		0		0		ns
tosw	Data Setup Time (Write)	190		80		60		ns
t_{H}	Input Hold Time	10		10		10		ns
$t_{\text {WH }}$	Write Hold Time from Chip Select	0		0		0		ns

Read Cycle Timing

WIUTMDTV
OONT CARE

NOTE: CS ANO CS CAN BE ENABLED FOR CONSECUTIVE READ CYCLES PROVIDED R W REMAINS AT $V_{I H}$

Write Cycle Timing

NOTE: CS AND CS CAN BE ENABLED FOR CONSECUTIVE WRITE CYCLES PROVIDED RW IS STROBED TO $V_{I H}$ BEFORE OR COINCIDENT WITH THE ADDRESS CHANGE, AND REMAINS HIGH FOR TIME $t_{\text {AS }}$


```
AC Test Load
```


*Includes Jig Capacitance

S80 Family Selection Guide of Gould incy

Preliminary Data Sheet

OPERATING SYSTEM PROCESSOR (OSP)

Features

Z80TM CPU Internal ArchitectureZ80 Instruction SetOn-board 8K Byte ROMInternal/External ROM ModesAddress, Data, and Bus Control Signals Function Identically to the Original Z80
\square Dynamic RAM Interface Including Address Multiplexing and Row and Column Address Strobe Signals.

Functional Description

The OS Processor chip is a single-chip microcomputer system with a core $Z 80 \mathrm{CPU}$ and on-chip $8 \mathrm{~K} \times 8(64 \mathrm{~K}$ bit) ROM. This chip possesses all of the hardware capabilities present in the standard Z80 chip. All con-
trol, address, and data signals are functionally identical to the standard Z80, making it completely hardware compatible with all $\mathbf{Z 8 0}$ peripheral chips. All Z80 instructions are present including the 8080 subset, providing software compatibility as well.
Additional logic has been incorporated to allow the OS Processor to be directly connected to 64 K Dynamic RAMs.

ROM select logic is incorporated to allow the internal ROM to be selectively enabled or disabled under software control.
The OS Processor is fabricated in a NMOS process, uses a single 5 volt power supply, and will be packaged in a 48-pin DIP package.

Z80 is a registered trademark of Zilog, Inc.

ROM Select Logic

This functional block controls access to the internal ROM and also determines whether the processor will be brought up in an internal or external mode.
When the $\overline{R E S E T}$ signal goes high and EXT/ $\overline{\mathrm{OS}}$ is high, the ROM enable latch is disabled, thereby turning off the internal ROM, and the processor begins execution at address 0000 H just as a standard Z 80 CPU would after reset. This is referred to as EXTERNAL MODE. In the external mode, the processor behaves identically to a standard Z80 CPU, except that the upper 16 memory addresses, FFFOH to FFFFH, are reserved. Address FFFFH is used for ROM control. The other 15 locations have been reserved for further expansion of system control functions.
When the RESET signal goes high and the mode pin EXT/OS is low, the internal ROM is switched on by enabling the ROM enable latch, and the processor is forced to execute NOP instructions until it reaches address FFOOH in the internal ROM, where it begins execution. Any internal bootstrap program code should start at address FFOOH. This is referred to as INTERNAL MODE.
In the internal mode, the $8 \mathrm{~K} \times 8$ internal ROM is switched on and is effectively overlayed on top of external memory. This ROM occupies the upper 8 K bytes of the full 64 K byte $\mathrm{Z80}$ address space. When data is read from the internal ROM, this data appears on the external data bus. Data written to this address space does appear on the external data bus, however, and will be written to any RAM that occupies that space. This RAM data cannot be read by the processor until the internal ROM has been turned off. The internal ROM may be switched on or off by writing a zero to bit 0 of memory address FFFFH. The ROM may be switched back on at any time by writing a one to bit 0 of memory address FFFFH.
Memory locations FFFOH through FFFFH are reserved. No code should be written in this area. Any accesses to these sixteen addresses will be treated as external memory accesses.
While the EXT/ŌS pin serves as an input on reset to set the initial operating mode of the processor, it serves a different purpose during normal operation. After reset, the EXT/OS pin becomes an output, and reflects the state of the internal $\overline{O S}$ signal. This signal indicates that a memory read is being made to the internal ROM address space (addresses EOOOH - FFEFH) and that the internal ROM enable latch is set. This signal is used
to control the addressing of external memory that resides in the same address space as the internal ROM. Its use will be covered later under "Prototyping With the S83".

Dynamic RAM Interface

In addition to the refresh circuitry inherent to the Z80 CPU, the $\mathbf{S 8 3}$ features circuitry that enables the 8 high order address bits to be multiplexed onto the low order 8 address lines for row and column addressing of 64 K dynamic RAMs. Row address and column address strobes are also generated by the $\mathbf{S 8 3}$.

Bus Selection: For each memory cycle, the user may determine whether or not the addresses will be multiplexed by use of the BUSSEL (BUS SELect) input. BUSSEL is sampled slightly after the rising edge of each T_{2} clock state. If BUSSEL is low, the memory access is a standard $\mathbf{Z 8 0}$ access with non-multiplexed addresses, and CAS is not generated, however RAS is generated. If BUSSEL is high, the multiplexing process and generation of CAS is allowed to continue. A short time after RAS goes low, the low byte of the address bus will begin changing over to reflect the upper 8 bits of the address the $\mathbf{Z 8 0}$ has generated. After the new address (the column address) is stable, CAS goes low. These two strobes clock the row and column addresses into the dynamic RAMs.
Because only the upper 8 bits of the address bus remain stable throughout the entire memory access, selection of BUSSEL should be done with the upper 8 address lines only unless some form of address latching is used. If it is desired to use any of the lower 8 address lines $\left(A_{0}-A_{7}\right)$, they must be latched on the falling edge of MREQ, otherwise false decoding may occur when the address lines are multiplexed.
$\overline{B U S S E L}$ is qualified with $\overline{M R E Q}$ internally, so it is not necessary to include MREQ in decoding for BUSSEL, and the RAS/CAS logic and BUSSEL sampling circuitry only operates during memory accesses. It is inoperative for I/O and interrupt cycles.
$\overline{\text { BUSSEL }}$ is also used to selectively block accesses to the internal ROM, and this usage will be discussed under "Prototyping With the S83".
Wait States: Because of the tighter access times required by the $\mathrm{Z8O} \mathrm{CPU}$ during an opcode fetch (M1 cycle), the S 83 automatically inserts a wait state on $\overline{\mathrm{M}} 1$ cycles if the user has selected a multiplexed memory
cycle with the BUSSEL input. This wait state is not added if a standard non-multiplexed bus cycle has been selected.
The user may insert additional wait states if desired, however care must be exercised not to hold the processor in a wait state so long that refresh requirements are violated, as the S83, like the Z80, does not generate any refresh signals while in a wait state.
Also, during an $\overline{M 1}$ cycle, if the user adds additional wait states beyond the one the processor has inserted, $\overline{\text { RAS }}$ will go high on the third rising clock edge after $\overline{M R E Q}$ goes low, regardless of whether or not clock state T_{3} has been reached yet. This does not violate dynamic RAM timing constraints, as CAS will always go high before RAS is generated again.
Bus Request (DMA) Cycles: When the $Z 80$ is bus requested and an external device gains control of the bus, the address multiplexers do not function. The $\overline{R A S}$ and $\overline{\mathrm{CAS}}$ logic, however, does continue to function. If an external DMA device generates a $\overline{M R E Q}$ signal, $\overline{R A S}$ will be generated. Depending on the state of BUSSEL, $\overline{\mathrm{CAS}}$ may or may not be generated. This feature allows a DMA device to refresh dynamic RAMs while it performs its DMA task.

Prototyping With the $\mathbf{S 8 3}$

While the main purpose of BUSSEL is to control the dynamic RAM interface logic, it also controls access to the internal ROM. If an access to the internal ROM is attempted and BUSSEL is low, that access will be blocked, and instead the processor will access the external data bus using a non-multiplexed $Z 80$ address. This input, together with the EXT/OS output, allows an external EPROM to be substituted for the internal ROM and still have its accesses controlled by the ROM enable latch. This is accomplished by using the EXT/何 output as the chip select for the EPROM, and also feeding this signal into the BUSSEL input. Since EXT/ $\overline{O S}$ can only become low when the ROM enable latch is on, the functionality of internal vs. external memory spaces is still preserved. If it is desired to have an external ROM or EPROM in the address range EOOOH

- FFFFH (not substituting for the internal ROM), its address decoding should include EXT/OS $=\mathrm{HIGH}$. This will ensure that when an external EPROM is chip selected and BUSSEL pulled low to select nonmultiplexed addresses, the user is not inadvertantly decoding an internal ROM access. The inclusion of the EXT/ $\overline{O S}$ signal in chip decoding provides the distinguishing factor between internal and external memory spaces.

General CPU Operation

The core of the $\mathbf{S 8 3}$ is a Z80 CPU. It contains 208 bits of read/write memory that are accessible to the programmer. These registers include two sets of six generalpurpose registers which may be used individually as either 8-bit registers or as 16 -bit register pairs. In addition there are two sets of accumulator and flag registers. A group of "Exchange" instructions makes either set of main or alternate registers accessible to the programmer. The alternate set allows operation in foreground-background mode or it may be reserved for very fast interrupt response. The Z80 also contains a Stack Pointer, Program Counter, two index registers, a Refresh register (counter), and an Interrupt register.
Figure 1 shows three groups of registers within the $\mathbf{Z 8 0}$ CPU. The first group consists of duplicate sets of 8-bit registers: a principal set and an alternate set (designated by ' [prime], e.g., A'). Both sets consist of the Accumulator Register, the Flag Register, and six general-purpose registers. Transfer of data between these duplicate sets of registers is accomplished by use of "Exchange" instructions. The result is faster response to interrupts and easy, efficient implementation of such versatile programming techniques as background-foreground data processing. The second set of registers consists of six registers with assigned functions. These are the I (Interrupt Register), the R (Refresh Register), the IX and IY (Index Registers), the SP (Stack Pointer), and the PC (Program Counter). The third group consists of two interrupt status flip-flops, plus an additional pair of flip-flops which assists in identifying the interrupt mode at any particular time. Table 1 provides further information on these registers.

Figure 1. CPU Registers

MAIN REGISTER SET			ALTERNATE REGISTER SET			
A ACCUMULATOR		FLAG REGISTER	A^{\prime}	ACCUMULATOR	F^{\prime}	FLAG REGISTER
B GENERAL PURPOSE		GENERAL PURPOSE	B^{\prime}	GENERAL PURPOSE	C^{\prime}	GENERAL PURPOSE
D GENERAL PURPOSE	E	GENERAL PURPOSE	D'	GENERAL PURPOSE	E'	GENERAL PURPOSE
H GENERAL PURPOSE		GENERAL PURPOSE		GENERAL PURPOSE	L'	GENERAL PURPOSE

IX INDEX REGISTER	
IY INDEX REGISTER	
SP STACK POINTER	
PC PROGRAM COUNTER	
I INTERRUPT VECTOR	R MEMORY REFRESH

INTERRUPT FLIP-FLOPS STATUS

IFF1	
0	IFF2
$1=$	INTERRUPTS DISABLED
STORES IFF1	
DURING NMI	
SERVICE	

INTERRUPT MODE FLIP-FLOPS

$\mathrm{IMF}_{\mathrm{a}}$	$\mathrm{IMF}_{\mathrm{b}}$	
0	0	INTERRUPT MODE 0
0	1	NOT USED
1	0	INTERRUPT MODE 1
1	1	INTERRUPT MODE 2

Table 1. Z80 CPU Registers

Register		Size (Bits)	Remarks
A, A^{\prime}	Accumutator	8	Stores an operand or the results of an operation.
F, F'	Flags	8	See instruction Set.
B, B^{\prime}	General Purpose	8	Can be used separately or as a 16-bit register with C.
C, C'	General Purpose	8	See B, above.
D, D^{\prime}	General Purpose	8	Can be used separately or as a 16 -bit register with E .
E, E'	General Purpose	8	See D, above.
H, H^{\prime}	General Purpose	8	Can be used separately or as a 16-bit register with L.
L, L'	General Purpose	8	See H, above.
			Note: The (B, C), (D, E), and (H, L) sets are combined as follows: H - High byte L- Low byte
1	Interrupt Register	8	Stores upper eight bits of memory address for vectored interrupt processing.
R	Refresh Register	8	Provides user-transparent dynamic memory refresh. Lower seven bits are automatically incremented and all eight are placed on the address bus during each instruction fetch cycle refresh time. The eighth bit appearing on the bus during a refresh cycle is incremented, but is not readable or writable by the user.
IX	Index Register	16	Used for indexed addressing.
IY	Index Register	16	Same as IX, above.
SP	Stack Pointer	16	Holds address of the top of the stack. See Push or Pop in instruction set.
PC	Program Counter	16	Holds address of next instruction.
$\mathrm{IFF}_{1}-\mathrm{IFF}_{2}$	Interrupt Enable	Flip-Flops	Set or reset to indicate interrupt status (see Figure 4).
$1 \mathrm{MF}_{\mathrm{a}}-1 \mathrm{MF}_{\mathrm{b}}$	Interrupt Mode	Flip-Flops	Reflect Interrupt mode (see Figure 4).

Interrupts: General Operation

The CPU accepts two interrupt input signals: $\overline{\mathrm{NMI}}$ and $\overline{\mathrm{INT}}$. The $\overline{\mathrm{NMII}}$ is a non-maskable interrupt and has the highest priority. INT is a lower priority interrupt and it requires that interrupts be enabled in software in order to operate. $\overline{\mathrm{INT}}$ can be connected to multiple peripheral devices in a wired-OR configuration.
The Z 80 has a single response mode for interrupt service for the non-maskable interrupt. The maskable interrupt, $\overline{\mathrm{INT}}$, has three programmable response modes available. These are:

- Mode 0 - similar to the 8080 microprocessor.
- Mode 1 - Peripheral Interrupt service, for use with non-8080/Z80 systems.
- Mode2-a vectored interrupt scheme, usually daisychained, for use with Z80 Family and compatible peripheral devices.
The CPU services interrupts by sampling the $\overline{\mathrm{NMI}}$ and $\overline{\mathrm{NNT}}$ signals at the rising edge of the last clock of an instruction. Further interrupt service processing depends upon the type of interrupt that was detected. Details on interrupt responses are shown in the CPU Timing Section.
Non-Maskable Interrupt (NMI). The non-maskable interrupt cannot be disabled by program control and therefore will be accepted at all times by the CPU. $\overline{\mathrm{NM}}$ is usually reserved for servicing only the highest priority type interrupts, such as that for orderly shutdown after power failure has been detected. After recognition of the $\overline{\text { NMI }}$ signal (providing BUSREQ is not active), the CPU jumps to restart location 0066H. Normally, software starting at this address contains the interrupt service routine. $\overline{\text { NMI }}$ is negative edge triggered and need not be low at the time interrupts are sampled (see Pin Descriptions).
Maskable Interrupt (INT). Regardless of the interrupt mode set by the user, the Z 80 response to a maskable interrupt input follows a common timing cycle. After the interrupt has been detected by the CPU (provided that interrupts are enabled and BUSREQ is not active) a special interrupt processing cycle begins. This is a special fetch ($\overline{\mathrm{M} 1}$) cycle in which $\overline{\mathrm{ORQQ}}$ becomes active rather than $\overline{M R E Q}$, as in normal $\overline{\mathrm{M1}}$ cycle. In addition, this special $\overline{\mathrm{M1}}$ cycle is automatically extended by two $\overline{\text { WAIT }}$ states, to allow for the time required to acknowledge the interrupt request.
Mode 0 Interrupt Operation. This mode is similar to the 8080 microprocessor interrupt service procedures. The
interrupting device places an instruction on the data bus. This is normally a Restart (RST) instruction, which will initiate a call to the selected one of eight restart locations in page zero of memory. Unlike the 8080, the Z80 CPU responds to the Call instruction with only one interrupt acknowledge cycle followed by two memory read cycles.

Mode 1 Interrupt Operation. Mode 1 operation is very similar to that for the $\overline{\mathrm{NMI}}$. The principal difference is that the Mode 1 interrupt has a restart location of 0038 H only.
Mode 2 Interrupt Operation. This interrupt mode has been designed to utilize most effectively the capabilities of the Z 80 microprocessor and its associated peripheral family. The interrupting peripheral device selects the starting address of the interrupt service routine. It does this by placing an 8 -bit vector on the data bus during the interrupt acknowledge cycle. The CPU forms a pointer using this byte as the lower 8 -bits and the contents of the I register as the upper 8 bits. This points to an entry in a table of addresses for interrupt service routines. The CPU then jumps to the routine at that address. This flexibility in selecting the interrupt service routine address allows the peripheral device to use several different types of sevice routines. These routines may be located at any available location in memory. Since the interrupting device supplies the low-order byte of the 2 -byte vector, bit $0\left(\mathrm{~A}_{0}\right)$ should be a zero.

Interrupt Priority (Daisy Chaining and Nested Interrupts). The interrupt priority of each peripheral device is determined by its physical location within a daisy-chain configuration. Each device in the chain has an interrupt enable input line (IEI) and an interrupt enable output line (IEO), which is fed to the next lower priority device. The first device in the daisy chain has its IEl input hardwired to a High level. The first device has highest priority, while each succeeding device has a corresponding lower priority. This arrangement permits the CPU to select the highest priority interrupt from several simultaneously interrupting peripherals.
The interrupting device disables the IEO line to the next lower priority peripheral until it has been serviced. After servicing, its IEO line is raised, allowing lower priority peripherals to demand interrupt servicing.
The Z80 CPU will nest (queue) any pending interrupts or interrupts received while a selected peripheral is being serviced.

Interrupt Enable/Disable Operation. Two flip-flops, IFF 1 and $I F F_{2}$, referred to in the register description are used to signal the CPU interrupt status. Operation of the two flip-flops is described in Table 2. For more details, refer to the Z80 CPU Technical Manual and Z80 Assembly Language Manual (available from Zilog, Inc.).

Table 2. State of Flip-Flops

Action	IFF $_{\mathbf{1}}$	$\mathbf{I F F}_{\mathbf{2}}$	Comments
CPU Reset	0	0	Maskable interrupt INT disabled
DI instruction	0	0	Maskable interrupt INT disabled
EI instruction execution LD A, I instruction execution LD A, R instruction execution	1	1	Maskable interrupt INT enabled
Accept NMI			

Instruction Set

The Z80 microprocessor has one of the most powerful and versatile instruction sets available in any 8 -bit microprocessor. It includes such unique operations as a block move for fast, efficient data transfers within memory or between memory and I/O. It also allows operations on any bit in any location in memory.

The following is a summary of the $\mathrm{Z80}$ instruction set
and shows the assembly language mnemonic, the operation, the flag status, and gives comments on each instruction. The Z80 CPU Technical Manual (03-0029-01) and Assembly Language Programming Manual (03-0002-01) contain significantly more details for programming use (available from Zilog, Inc.).
The instructions are divided into the following categories.
\square 8-bit loads
\square 16-bit loads
\square Exchange, block transfers, and searches
\square 8-bit arithmetic and logic operations
\square General-purpose arithmetic and CPU control
16-bit arithmetic operations
\square Rotates and shifts
\square Bit set, reset, and test operations
Jumps
\square Calls, returns, and restarts
\square Input and output operations
A variety of addressing modes are implemented to permit efficient and fast data transfer between various registers, memory locations, and input/output devices. These addressing modes include:
\square Immediate
\square Immediate extended
\square Modified page zero
Relative
Extended
\square Indexed
\square Register
\square Register indirect
\square Implied
\square Bit

8-Bit Load Group

8-Bit Load Group (continued)

Mnemonic	Symbolic Operation	S	Z				P/V	N	C	76	Opcode 543	210	Hex	No. of Bytes	No. of M Cycles	No. of T States	Comments
$\overline{L D}(\mathrm{HL}), \mathrm{n}$	(HL L$) \leftarrow \mathrm{n}$	-	-	X	-	X	-	-	-	00	110		36	2	3	10	
$L D(I X+d), n$	$(I X+d) \leftarrow n$	\bullet	-	X	\bullet	X	\bullet	-	\bullet	$\begin{aligned} & 11 \\ & 00 \end{aligned}$	$\begin{aligned} & 011 \\ & 110 \\ & \leftarrow d \rightarrow \end{aligned}$		$\begin{aligned} & D D \\ & 36 \end{aligned}$	4	5	19	
$L D(I Y+d), n$	$(I Y+d) \leftarrow n$	-	\bullet	X	-	X	-	\bullet	-	$\begin{aligned} & 11 \\ & 00 \end{aligned}$	$\begin{gathered} \leftarrow n \rightarrow \\ \leftarrow 111 \\ 110 \\ \leftarrow d \rightarrow \\ \leftarrow n \rightarrow \end{gathered}$	$\begin{aligned} & 101 \\ & 110 \end{aligned}$	$\begin{aligned} & \text { FD } \\ & 36 \end{aligned}$	4	5	19	
LD A, (BC)	$A \leftarrow(B C)$	-	-	x	-	x	-	-	-	00	001	010	OA	1	2	7	
LD A, (DE)	$A \leftarrow(D E)$	-	\bullet	X	-	X	-	-	-	00	011	010	1A	1	2	7	
LD A, (nn)	$A \leftarrow(\mathrm{nn})$	\bullet	\bullet	X	\bullet	X	-	-	-	00	$\begin{gathered} 111 \\ \leftarrow n \rightarrow \\ \leftarrow n \rightarrow \end{gathered}$	010	3A	3	4	13	
LD (BC), A	$(\mathrm{BC}) \leftarrow \mathrm{A}$	-	-	x	-	x	\bullet	-	-	00	000	010	02	1	2	7	
LD (DE), A	$(\mathrm{DE}) \leftarrow \mathrm{A}$	\bullet	\bullet	x	-	x	-	\bullet	-	00	010	010	12	1	2	7	
LD (nn), A	$(\mathrm{nn}) \leftarrow \mathrm{A}$	\bullet	-	X	-	X	-	\bullet	-	00	$\begin{gathered} 110 \\ \leftarrow \\ \leftarrow \\ \leftarrow \end{gathered}$	010	32	3	4	13	
LD A, I	$A \leftarrow 1$	\downarrow	\uparrow	X	0	X	IFF	0	-	11 01	$\begin{aligned} & 101 \\ & 010 \end{aligned}$	$\begin{aligned} & 101 \\ & 111 \end{aligned}$	ED	2	3	9	
LD A, R	$A \leftarrow R$	\uparrow	\downarrow	χ	0	X	IFF	0	-	11 01	101	101 111	ED	2	2	9	
LD I, A	$1 \leftarrow A$	-	-	X	-	X	-	-	\bullet	11 01	$\begin{aligned} & 101 \\ & 000 \end{aligned}$	101 111	ED	2	2	9	
LD R, A	$R \leftarrow A$	-	\bullet	X	-	X	\bullet	-	-	11 01	101	$\begin{aligned} & 101 \\ & 111 \end{aligned}$	ED	2	2	9	

NOTES: r, r^{\prime} means any of the registers A, B, C, D, E, H, L
IFF the content of the interrupt enable flip-flop, (IFF) is copied into the P/V flag.

16-Bit Load Group

MI
A Subsidiary of Gould Inc.

16-Bit Load Group (continued)

NOTES: dd is any of the register pairs BC, DE, HL, SP
$q q$ is any of the register pairs $A F, B C, D E, H L$.
$(P A \mid R)_{H},(P A \mid R)_{1}$, refer to high order and low order eight bits of the register pair respectively, e.g., $B C_{L}=C, A F_{H}=A$.
Exchange, Block Transfer, Block Search Groups

Mnemonic	Symbolic Operation	S	Z				P/V	N	C	76	$\begin{gathered} \text { Opcode } \\ 543 \end{gathered}$	210	Hex	$\begin{aligned} & \hline \text { No. of } \\ & \text { Bytes } \end{aligned}$	$\begin{aligned} & \text { No. of M } \\ & \text { Cycles } \end{aligned}$	No. of T States	Comments
$\begin{aligned} & \text { EX DE, HL } \\ & \text { EX AF, AF' } \\ & \text { EXX } \end{aligned}$	$D E \leftrightarrow H L$	\bullet	-	X	\bullet	X	\bullet	-	\bullet	11	101	011	EB	1	1	4	Register band and auxiliary register bank exchange
	$A F \leftrightarrow A F$,	-	-	X	-	X	-	-	-	00	001	000	08	1	1	4	
	$\mathrm{BC} \leftrightarrow \mathrm{BC}^{\prime}$	\bullet	-	X	-	X	-	\bullet	-	11	011	001	D9	1	1	4	
	$\mathrm{DE} \leftrightarrow \mathrm{DE}^{\prime}$																
	$H L \leftrightarrow H L^{\prime}$ $H \leftrightarrow(S P+1)$	\bullet		X	-					11			E3				
EX (SP), HL	$\begin{aligned} & H \leftrightarrow(S P+1) \\ & L \leftrightarrow(S P) \end{aligned}$	-	-			X	-	-	-		100	011		1	5	19	
EX (SP), IX	$\begin{aligned} & X_{H} \leftrightarrow(S P+1) \\ & \mid X_{L} \leftrightarrow(S P) \end{aligned}$		-	X	-	x	-	-	-	11	011	101		2	6	23	
			\bullet						-	11	100	$\begin{aligned} & 011 \\ & 101 \\ & 011 \end{aligned}$	DD				
EX (SP), IY	$\mid Y_{H}^{L} \leftrightarrow(S P+1)$ $\mid Y_{L} \leftrightarrow(S P)$	-			-	X		-		$\begin{aligned} & 11 \\ & 11 \end{aligned}$	$\begin{aligned} & 111 \\ & 100 \end{aligned}$		$\begin{aligned} & \text { FD } \\ & \text { E3 } \end{aligned}$	2	6	23	
	$\mathrm{Y}_{\mathrm{L}} \leftrightarrow(\mathrm{SP})$						-										
		\bullet		X	- $\quad \mathrm{X} 0 \mathrm{X}$		(1)		-			$\begin{aligned} & 101 \\ & 000 \end{aligned}$	$\begin{aligned} & \text { ED } \\ & \text { AO } \end{aligned}$		4		
LDI	$\begin{aligned} & (D E) \leftarrow(H L) \\ & D E \leftarrow D E+1 \\ & H L \leftarrow H L+1 \\ & B C \leftarrow B C-1 \end{aligned}$	\bullet		X	0	X	1	0		$\begin{aligned} & 11 \\ & 10 \end{aligned}$	$\begin{aligned} & 101 \\ & 100 \end{aligned}$			2		16	Load (HL) into (DE), increment the pointers and decrement the byte counter (BC)
L.DIR	$\begin{aligned} & (D E) \leftarrow(H L) \\ & D E \leftarrow D E+1 \\ & D E \leftarrow D E+1 \\ & H L \leftarrow H L+1 \\ & B C \leftarrow B C-1 \\ & \text { Repeat until } \\ & B C=0 \end{aligned}$	-	\bullet	X	0	X	$\begin{aligned} & \text { (2) } \\ & 0 \end{aligned}$	0	-	$\begin{aligned} & 11 \\ & 10 \end{aligned}$	$\begin{aligned} & 101 \\ & 110 \end{aligned}$	$\begin{aligned} & 101 \\ & 000 \end{aligned}$	$\begin{aligned} & \mathrm{ED} \\ & \mathrm{BO} \end{aligned}$	2	$\begin{aligned} & 5 \\ & 4 \end{aligned}$	$\begin{aligned} & 21 \\ & 26 \end{aligned}$	$\begin{aligned} & \text { If } B C \neq 0 \\ & \text { If } B C=0 \end{aligned}$
LDD	$\begin{aligned} & (D E) \leftarrow(H L) \\ & D E \leftarrow D E-1 \end{aligned}$	-	\bullet	X	0	X	1	0	-	11	101	101	ED	2	4	16	
										10	101	000	A8				

NOTE: $\begin{array}{ll}1 & P / V \text { flag is } 0 \text { if the result of } B C-1=0, \text { otherwise } P / V=1 . \\ & 2 P / V \text { flag is } 0 \text { at completion of instruction. }\end{array}$
2 P/V flag is 0 at completion of instruction.

Exchange, Block Transfer, Block Search Groups (continued)

Mnemonic	Symbolic Operation	S	Z				P/V	N	C	76	$\begin{gathered} \hline \text { Dpcode } \\ 543 \end{gathered}$	210	Hex	$\begin{aligned} & \text { No. of } \\ & \text { Bytes } \end{aligned}$	No. of M Cycles	No. of T States	Comments
$\begin{aligned} & \overline{L D D} \\ & \text { (cont) } \end{aligned}$	$\begin{aligned} & \mathrm{HLL} \leftarrow \mathrm{HL}-1 \\ & \mathrm{BC} \leftarrow \mathrm{BC}-1 \end{aligned}$						(2)										
LDDR	$\begin{aligned} & (D E) \leftarrow(H L) \\ & D E \leftarrow D E-1 \\ & H L \leftarrow H L-1 \\ & B C \leftarrow B C-1 \\ & \text { Repeat until } \\ & B C=0 \end{aligned}$	-	\bullet	x	0	X	0	0	-	$\begin{aligned} & 11 \\ & 10 \end{aligned}$	$\begin{aligned} & 101 \\ & 111 \end{aligned}$	$\begin{aligned} & 101 \\ & 000 \end{aligned}$	$\begin{aligned} & \text { ED } \\ & \text { B8 } \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 5 \\ & 4 \end{aligned}$	$\begin{aligned} & 21 \\ & 16 \end{aligned}$	$\begin{aligned} & \text { If } B C \neq 0 \\ & \text { if } B C=0 \end{aligned}$
			(3)				(1)										
CPI	$\begin{aligned} & A-(H L) \\ & H L \leftarrow H L+1 \\ & B C \leftarrow B C-1 \end{aligned}$	1	1	x	\uparrow	X	\downarrow	1	-	$\begin{aligned} & 11 \\ & 10 \end{aligned}$	$\begin{aligned} & 101 \\ & 100 \end{aligned}$	$\begin{aligned} & 101 \\ & 001 \end{aligned}$	$\begin{aligned} & \text { ED } \\ & \text { A1 } \end{aligned}$	2	4	16	
			(3)				(1)										
CPIR	$\begin{aligned} & A-(H L) \\ & H L \leftarrow H L+1 \\ & B C \leftarrow B C-1 \\ & \text { Repeat until } \\ & A=(H L) \text { or } \\ & B C=0 \end{aligned}$	\ddagger	\ddagger	x	\uparrow	X	\uparrow	1	-	11	101	101	ED	2	5	21	$\begin{aligned} & \text { If } B C \neq 0 \text { and } \\ & A \neq(\mathrm{HL}) \end{aligned}$
										10	110	001	B1	2	4	16	$\begin{aligned} & \text { If } B C=0 \text { or } \\ & A=(H L) \end{aligned}$
			(3)				(1)										
CPD	$\begin{aligned} & A-(H L) \\ & H L \leftarrow H L-1 \\ & B C \leftarrow B C-1 \end{aligned}$	\downarrow	\uparrow	x	\ddagger	X	1	1	-	$\begin{aligned} & 11 \\ & 10 \end{aligned}$	$\begin{aligned} & 101 \\ & 101 \end{aligned}$	$\begin{aligned} & 101 \\ & 001 \end{aligned}$	$\begin{aligned} & \text { ED } \\ & \text { A9 } \end{aligned}$	2	4	16	
			(3)				(1)										
CPDR	$\begin{aligned} & A-(H L) \\ & H L \leftarrow H L-1 \\ & B C \leftarrow B C-1 \\ & \text { Repeat until } \\ & A=(H L) \text { or } \\ & B C=0 \end{aligned}$	\downarrow	\uparrow	x	\uparrow	X	1	1	\bullet	11	101	101	$E D$	2	5	21	$\begin{aligned} & \text { If } \mathrm{BC} \neq 0 \text { and } \\ & A \neq(\mathrm{HL}) \end{aligned}$
										10	111	001	B9	2	4	16	$\begin{aligned} & \text { If } B C=0 \text { or } \\ & A=(H L) \end{aligned}$

NOTES: $1 \mathrm{P} / \mathrm{V}$ flag is 0 if the result of $\mathrm{BC}-1=0$, otherwise $\mathrm{P} / \mathrm{V}=1$.
2 P/V flag is 0 at completion of instruction only.
3 Z flag is 1 if $\mathrm{A}=(\mathrm{HL})$, otherwise $\mathrm{Z}=0$.
8-Bit Arithmetic and Logical Group

S83

8-Bit Arithmetic and Logic Group (continued)

Mnemonic	Symbolic Operation	S	Z		Flags H	P/V	N	C	76	$\begin{gathered} \text { Opcode } \\ 543 \end{gathered}$	210	Hex	$\begin{aligned} & \text { No. of } \\ & \text { Bytes } \end{aligned}$	$\begin{aligned} & \text { No. of M } \\ & \text { Cycles } \end{aligned}$	$\begin{aligned} & \hline \text { No. of T } \\ & \text { States } \end{aligned}$	Comments
$\overline{\text { DEC m }}$	$m \leftarrow m-1$	\uparrow	\downarrow	X	$\ddagger \times$	V	1	-			401					$\begin{aligned} & \hline m \text { is any of } r,(\mathrm{HL}), \\ & (I X+d),(I Y+d) \\ & \text { as shown for INC. } \\ & \text { DEC same format } \\ & \text { and states as INC. } \\ & \text { Replace } 100 \text { with } \\ & 101 \text { in opcode. } \end{aligned}$

General-Purpose Arithmetic and CPU Control Groups

Mnemonic	Symbolic Operation	S	Z				P/V	N	C	76	$\begin{gathered} \text { Opcode } \\ 543 \end{gathered}$	210	Hex	No. of Bytes	No. of M Cycles	No. of T States	Comments
DAA	Converts acc, content into packed BCD following add or subtract with packed BCD	\uparrow	\uparrow	X	\uparrow	X	P	\bullet	\ddagger	00	100	111	27	1	1	4	Decimal adjust accumulator.
CPL	$A \leftarrow A$	-	-	X	1	X	\bullet	1	-	00	101	111	$2 F$	1	1	4	Complement accumulator (one's complement)
NEG	$A<0-A$	\uparrow	\uparrow	X	\uparrow	X	V	1	\uparrow	$\begin{aligned} & 11 \\ & 01 \end{aligned}$	$\begin{aligned} & 101 \\ & 000 \end{aligned}$	$\begin{aligned} & 101 \\ & 100 \end{aligned}$	$\begin{aligned} & \text { ED } \\ & 44 \end{aligned}$	2	2	8	Negate acc, (two's complement).
CCF	$C Y \leftarrow C Y$	-	-	X	X	X	-	0	\ddagger	00	111	111	3F	1	1	4	Complement carry flag.
SCF	$C Y \leftarrow 1$	-	-	x	0	x	\bullet	0	1	00	110	111	37	1	t	4	Set carry flag.
NOP	No operation	-	-	X	-	x	\bullet	-	-	00	000	000	00	1	1	4	
HALT	CPU halted	-	-	X	\bullet	x	-	\bullet	\bullet	01	110	110	76	1	1	4	
DI *	IFF $\leftarrow 0$	-	-	x	\bullet	x	-	\bullet	-	11	110	011	F3	1	1	4	
El*	IFF $\leftarrow 1$	\bullet	-	x	\bullet	x	-	\bullet	-	11	111	011	FB	1	1	4	
1 M 0	Set interrupt mode 0	-	-	X	-	X	-	-	-	11	101	$\begin{aligned} & 101 \\ & 110 \end{aligned}$	ED 46	2	2	8	
IM 1	Set interrupt mode 1	-	-	X	\bullet	X	\bullet	-	-	11 01	101	101 110	ED 56	2	2	8	
1 M 2	Set interrupt mode 2	-	-	X	-	X	-	-	-	11 01	$\begin{aligned} & 101 \\ & 011 \end{aligned}$	$\begin{aligned} & 101 \\ & 110 \end{aligned}$	SD	2	2	8	

NOTES: IFF indicates the interrupt enable flip-flop.
CY indicates the carry flip-flop.

* indicates interrupts are not sampled at the end of EI or DI.

16-Bit Arithmetic Group

Mnemonic	Symbolic Operation	S	Z				P/V	N	C	76	$\begin{gathered} \hline \text { Opcodi } \\ 543 \end{gathered}$	210	Hex	$\begin{aligned} & \text { No. of } \\ & \text { Bytes } \end{aligned}$	No. of M Cycies	$\begin{aligned} & \text { No. of T } \\ & \text { States } \end{aligned}$	Comments	
ADD HL, ss	$\mathrm{HL} \leftarrow \mathrm{HL}+\mathrm{SS}$	-	-	X	X	X	\bullet	0	\downarrow	00	ss1	001		1	3	11	$\frac{\mathrm{ss}}{00}$	$\frac{\operatorname{Reg} .}{B C}$
ADC HL, ss	$\begin{aligned} & \mathrm{HL} \leftarrow \mathrm{HL}+ \\ & \mathrm{SS}+\mathrm{CY} \end{aligned}$	\uparrow	\uparrow	X	x	X	V	0	\ddagger	$\begin{aligned} & 11 \\ & 01 \end{aligned}$	$\begin{aligned} & 101 \\ & \text { ss1 } \end{aligned}$	$\begin{aligned} & 101 \\ & 01.0 \end{aligned}$	ED	2	4	15	$\begin{aligned} & 01 \\ & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & \text { DE } \\ & \text { HL } \\ & S P \end{aligned}$
SBC HL, ss	$\mathrm{HL} \leftarrow \mathrm{HL}-\mathrm{ss}$	\uparrow	\$	x	X	X	V	1	\uparrow	$\begin{aligned} & 11 \\ & 01 \end{aligned}$	$\begin{aligned} & 101 \\ & \text { ss0 } \end{aligned}$	$\begin{aligned} & 101 \\ & 010 \end{aligned}$	ED	2	4	15		
ADD IX, pp	$1 X \leftarrow I X+p p$	\bullet	\bullet	X	X	X	-	0	\downarrow	$\begin{aligned} & 11 \\ & 01 \end{aligned}$	011 pp1	$\begin{aligned} & 101 \\ & 001 \end{aligned}$	DD	2	4	15	$\begin{aligned} & \frac{p p}{00} \\ & 01 \\ & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & \text { Reg. } \\ & \hline B C \\ & D E \\ & I X \\ & S P \end{aligned}$
ADD IY, rr	$I Y \leftarrow I Y+r r$	\bullet	-	x	X	X	-	0	\downarrow	$\begin{aligned} & 11 \\ & 00 \end{aligned}$	$\begin{aligned} & 111 \\ & r r 1 \end{aligned}$	$\begin{aligned} & 101 \\ & 001 \end{aligned}$	FD	2	4	15	$\begin{aligned} & \frac{1 r}{00} \\ & 01 \\ & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & \text { Reg. } \\ & \hline B C \\ & D E \\ & \text { IY } \\ & S P \end{aligned}$
INC ss INC IX	$\begin{aligned} & s s \leftarrow s s+1 \\ & \|X \leftarrow\| X+1 \end{aligned}$	-	\bullet	${ }^{x}$	\bullet	x X	\bullet	\bullet	-	$\begin{aligned} & 00 \\ & 11 \\ & 00 \end{aligned}$	$\begin{aligned} & \text { ss0 } \\ & 011 \\ & 100 \end{aligned}$	$\begin{aligned} & 011 \\ & 101 \\ & 011 \end{aligned}$	$\begin{aligned} & D D \\ & 23 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{gathered} 6 \\ 10 \end{gathered}$		

16-Bit Arithmetic Group (continued)

Mnemonic	Symbolic Operation	S	Z		Flags H	P/V	N	C	76	$\begin{gathered} \text { Opcode } \\ 543 \end{gathered}$	210	Hex	No. of Bytes	No. of M Cycles	$\begin{gathered} \hline \text { No. of T } \\ \text { Siates } \end{gathered}$	Comments
INC IV	$I Y \leftarrow I Y+1$	-	-	X	- X	-	\bullet	-	11	111	101	FD	2	2	10	
									00	100	011	23				
DEC ss	SS \leftarrow SS - 1	-	-	x	- $\quad \mathrm{x}$	-	-	-	00	ss1	011		1	1	6	
DEX IX	$\mathrm{IX} \leftarrow \mathrm{IX}-1$	\bullet	-	X	- X	-	-	-	11	011	101	DD	2	2	10	
									00	101	011	2 B				
DEC IY	$I Y \leftarrow I Y-1$	\bullet		x	- X	-	\bullet	-	11	111	101	FD	2	2	10	
									00	101	011	2 B				

NOTES: s s is any of the register pairs $B C, D E, H L, S P$.
$p p$ is any of the register pairs $B C, D E, I X, S P$
rr is any of the register pairs $B C, D E, I Y$. $S P$.
Rotate and Shift Group

Rotate and Shift Group (continued)

Bit Set, Reset and Test Group (continued)

Mnemonic	Symbolic Operation	S	Z		$\mathrm{H}^{\text {Flags }}$	P/V	N	C	76	$\begin{gathered} \hline \text { Opcode } \\ 543 \end{gathered}$	210	Hex	No. of Bytes	No. of M Cycles	No. of T States	Comments
SET b, (IX + d)	$(\mathrm{I} X+\mathrm{d})_{\mathrm{b}} \leftarrow 1$	-	-	X	- X	-	-	-	$\begin{aligned} & 11 \\ & 11 \end{aligned}$	$\begin{array}{r} 011 \\ 001 \\ \leftarrow d- \end{array}$	$\begin{aligned} & 101 \\ & 011 \end{aligned}$	$\begin{aligned} & \mathrm{DD} \\ & \mathrm{CB} \end{aligned}$	4	6	23	
SET b, (IY + d)	$(I Y+d)_{b}-1$	-	-	X	- X	-		-	$\begin{aligned} & 11 \\ & 11 \\ & 11 \end{aligned}$	$\begin{gathered} b \\ 111 \\ 001 \\ \leftarrow d- \end{gathered}$	$\begin{aligned} & 110 \\ & 101 \\ & 011 \end{aligned}$	$\begin{aligned} & \mathrm{FD} \\ & \mathrm{CB} \end{aligned}$	4	6	23	
RES b, m	$\begin{aligned} & m_{b} \leftarrow 0 \\ & m \quad(H L), \\ & (I X+d), \\ & (I Y+d) \end{aligned}$	-		X	- X	-		-	$\begin{aligned} & 11 \\ & 10 \end{aligned}$	b						To form new opcode replace 11 of SET b, s with 10 Flags and time states for SET instruction.

NOTES: The notation m_{b} indicates bit $b(0$ to 7$)$ or location m.

Jump Group

NOTES: e represents the extension in the relative addressing mode.
e is a signed two's complement number in the range $<-126,129>$
$\mathrm{e}-2$ in the opcode provides an effective address of $\mathrm{pc}+\mathrm{e}$ as PC is incremented by two prior to the addition of e .

Call and Return Group

Mnemonic	Symbolic Operation	S	z		$\begin{aligned} & \text { Flags } \\ & H^{\prime} \end{aligned}$	P/V	N	c	76	$\begin{aligned} & \text { Opcode } \\ & 543210 \end{aligned}$	Hex	No. of Bytes	$\begin{gathered} \hline \text { No. of M } \\ \text { Cycles } \\ \hline \end{gathered}$	No. of T States	Comments
CALL nn	$\begin{aligned} & (S P-1) \leftarrow P C_{H} \\ & (S P-2) \leftarrow P C_{L} \\ & P C \leftarrow n n \end{aligned}$	-	-	X	X	\bullet	-	-	11	$\begin{aligned} & 001101 \\ & \leftarrow n \rightarrow \\ & \leftarrow n \rightarrow \end{aligned}$	CD	3	5	17	

Call and Return Group (continued)

NOTE: ${ }^{1}$ RETN loads $\mathrm{IFF}_{2} \rightarrow \mathrm{IFF}_{1}$
Input and Output Group

Mnemonic	Symbolic Operation	S	Z				P/V	N	C	76	Opcode 543	210	Hex	No. of Bytes	No. of M Cycles	No. of T States	Comments
IN A, (n)	$A \leftarrow(n)$	-	-	X	-	X	-	\bullet	-	11	$\begin{gathered} 011 \\ \leftarrow \mathrm{n} \rightarrow \end{gathered}$	011	DB	2	3	11	n to $\mathrm{A}_{0}-\mathrm{A}_{7}$ Acc. to $\mathrm{A}_{8}-\mathrm{A}_{15}$
IN r, (C)	$\begin{aligned} & r \leftarrow(C) \\ & \text { if } r=110 \text { only } \\ & \text { the flags will } \\ & \text { be affected } \end{aligned}$	\uparrow	\uparrow	X	1	X	P	0	-	$\begin{aligned} & 11 \\ & 01 \end{aligned}$	$\begin{gathered} 101 \\ \mathrm{r} \end{gathered}$	$\begin{aligned} & 101 \\ & 000 \end{aligned}$	ED	2	3	12	$\begin{aligned} & C \text { to } A_{0}-A_{7} \\ & B \text { to } A_{8}-A_{15} \end{aligned}$
			(1)														
INI	$\begin{aligned} & (H L) \leftarrow(C) \\ & B \leftarrow B-1 \end{aligned}$	X	\uparrow	X	X	X	X	1	X	$\begin{aligned} & 11 \\ & 10 \end{aligned}$	$\begin{aligned} & 101 \\ & 100 \end{aligned}$	$\begin{aligned} & 101 \\ & 010 \end{aligned}$	$\begin{aligned} & \text { ED } \\ & \text { AD } \end{aligned}$	2	4	16	$\begin{aligned} & C \text { to } A_{0}-A_{7} \\ & B \text { to } A_{8}-A_{15} \end{aligned}$
INIR	$H L \leftarrow H L+1$ $(\mathrm{HL}) \leftarrow(\mathrm{C})$ $\mathrm{B} \leftarrow \mathrm{B}-1$ $H L \leftarrow H L+1$ Repeat until $B=0$	X	$\begin{aligned} & \text { (2) } \\ & \hline \end{aligned}$	X	X	X	X	1	X	$\begin{aligned} & 11 \\ & 10 \end{aligned}$	$\begin{aligned} & 101 \\ & 110 \end{aligned}$	$\begin{aligned} & 101 \\ & 010 \end{aligned}$	$\begin{aligned} & \text { ED } \\ & \text { B2 } \end{aligned}$	2 2	$\begin{gathered} 5 \\ \text { (If } B \neq 0) \\ 4 \\ (\text { If } B=0) \end{gathered}$	21 16	$\begin{aligned} & C \text { to } A_{0}-A_{7} \\ & B \text { to } A_{8}-A_{15} \end{aligned}$
IND	$\begin{aligned} & (H L) \leftarrow(C) \\ & B \leftarrow B-1 \\ & H L \leftarrow H L-1 \end{aligned}$	X	(1) 1 (2)	X	X	X	X	1	X	$\begin{aligned} & 11 \\ & 10 \end{aligned}$	$\begin{aligned} & 101 \\ & 101 \end{aligned}$	$\begin{aligned} & 101 \\ & 010 \end{aligned}$	$\begin{aligned} & E D \\ & A A \end{aligned}$	2	4	16	$\begin{aligned} & C \text { to } A_{0}-A_{7} \\ & B \text { to } A_{8}-A_{15} \end{aligned}$
INDR	$\begin{aligned} & (\mathrm{HL}) \leftarrow(\mathrm{C}) \\ & \mathrm{B} \leftarrow \mathrm{~B}-1 \\ & \mathrm{HL} \leftarrow \mathrm{HL}-1 \end{aligned}$ Repeat until $B=0$	X	1	X	X	X	X	1	X	$\begin{aligned} & 11 \\ & 10 \end{aligned}$	$\begin{aligned} & 101 \\ & 111 \end{aligned}$	$\begin{aligned} & 101 \\ & 010 \end{aligned}$	$\begin{aligned} & E D \\ & B A \end{aligned}$	2 2	$\begin{gathered} 5 \\ \text { (If } B \neq 0 \text {) } \\ 4 \\ \text { (If } B=0 \end{gathered}$	21 16	$\begin{aligned} & C \text { to } A_{0}-A_{7} \\ & B \text { to } A_{8}-A_{15} \end{aligned}$
OUT (n), A	$(\mathrm{n}) \leftarrow \mathrm{A}$	-	\bullet	x	-	X	-	-	-	11	$\stackrel{010}{\stackrel{n}{\leftarrow}}$		D3	2	3	11	n to $A_{0}-A_{7}$ Acc. to $A_{8}-A_{15}$
OUT (C), r	(C) $\leftarrow \mathrm{r}$	-	(1)	X	\bullet	X	-	-	-	$\begin{aligned} & 11 \\ & 01 \end{aligned}$	101	$\begin{aligned} & 101 \\ & 001 \end{aligned}$	ED	2	3	12	$\begin{aligned} & C \text { to } A_{0}-A_{7} \\ & B \text { to } A_{8}-A_{15} \end{aligned}$
OUTI	$\begin{aligned} & (C) \leftarrow(H L) \\ & B \leftarrow B-1 \\ & H L \leftarrow H L+1 \end{aligned}$	X	\uparrow	X	, X	X	X	1	X	$\begin{aligned} & 11 \\ & 10 \end{aligned}$	$\begin{aligned} & 101 \\ & 100 \end{aligned}$	$\begin{aligned} & 101 \\ & 011 \end{aligned}$	$\begin{aligned} & \text { ED } \\ & \text { A3 } \end{aligned}$	2	4	16	$\begin{aligned} & C \text { to } A_{0}-A_{7} \\ & B \text { to } A_{8}-A_{15} \end{aligned}$

Input and Output Group (continued)

Mnemonic	Symbolic Operation	S	2	$\mathbf{H}^{\text {Flags }}$			P/V	N	C	76	$\begin{gathered} \text { Opcode } \\ 543 \end{gathered}$	210	Hex	No. of Bytes	No. of M Cycles	No. of T States	Comments
(2)																	
OTIR	$\begin{aligned} & (C) \leftarrow(H L) \\ & B \leftarrow B-1 \\ & H L \leftarrow H L+1 \end{aligned}$ Repeat until $B=0$	X	1	X	X	X	X	1	X	$\begin{aligned} & 11 \\ & 10 \end{aligned}$	$\begin{aligned} & 101 \\ & 110 \end{aligned}$	$\begin{aligned} & 101 \\ & 011 \end{aligned}$	$\begin{aligned} & E D \\ & \text { B3 } \end{aligned}$	2 2	$\begin{gathered} 5 \\ \text { (If } B \neq 0 \text {) } \\ 4 \\ \text { (if } B=0 \text {) } \end{gathered}$	21 16	$\begin{aligned} & C \text { to } A_{0}-A_{7} \\ & B \text { to } A_{8}-A_{15} \end{aligned}$
(1)																	
OUTD	$\begin{aligned} & (\mathrm{C}) \leftarrow(\mathrm{HL}) \\ & \mathrm{B} \leftarrow \mathrm{~B}-1 \\ & \mathrm{HL} \leftarrow \mathrm{HL}-1 \end{aligned}$	X	\ddagger	X	x	X	x	1	X	$\begin{aligned} & 11 \\ & 10 \end{aligned}$	$\begin{aligned} & 101 \\ & 101 \end{aligned}$	$\begin{aligned} & 101 \\ & 011 \end{aligned}$	$\begin{aligned} & E D \\ & A B \end{aligned}$	2	4	16	$\begin{aligned} & C \text { to } A_{0}-A_{7} \\ & B \text { to } A_{8}-A_{15} \end{aligned}$
(2)																	
OTDR	$\begin{aligned} & (C) \leftrightarrow(H L) \\ & B \leftarrow B-1 \\ & H L \leftarrow H L-1 \end{aligned}$ Repeat until $B=0$	X	1	x	X	x	X	1	X	$\begin{aligned} & 11 \\ & 10 \end{aligned}$	$\begin{aligned} & 101 \\ & 111 \end{aligned}$	$\begin{aligned} & 101 \\ & 011 \end{aligned}$	ED	2 2	$\left.\begin{array}{c} 5 \\ (\text { If } B \neq 0) \\ 4 \\ \text { (If } B=0 \end{array}\right)$	21 16	$\begin{aligned} & C \text { to } A_{0}-A_{7} \\ & B \text { to } A_{8}-A_{15} \end{aligned}$

NOTE: (1) If the result of $B-1$ is zero the Z tlag is set, otherwise it is reset.
2 Z fiag is set upon instruction completion only.

Summary of Flag Operation

Instruction	D_{7}							D_{0}	Comments
ADD A, s; ADC A, s	\uparrow	\downarrow	X	\uparrow	X	V	0	1	8 -bit add or add with carry.
SUB s; SBC A, s; CP s; NEG	\ddagger	\uparrow	X	\uparrow	x	V	1	\uparrow	8 -bit subtract, subtract with carry, compare and negate accumulator.
AND s	\uparrow	\uparrow	X	1	x	P	0	0	Logical operations.
OR s, XOR s	\downarrow	1	X	0	x	P	0	0	Logical operaions.
INC s	\downarrow	\downarrow	X	\uparrow	X	V	0	-	8 -bit increment.
DEC s	\uparrow	\downarrow	X	\downarrow	X	V	1	-	8 -bit decrement.
ADD DD, ss	-	-	X	x	x	-	0	\dagger	16-bit add.
ADC HL, ss	\dagger	\downarrow	x	x	x	V	0	\dagger	16-bit add with carry.
SBC HL, ss	\uparrow	1	X	X	X	V	1	\uparrow	16-bit subtract with carry.
RLA, RLCA, RRA; RRCA	-	-	x	0	x	-	0	\downarrow	Rotate accumulator.
RL m; RLC m; RR m; RRC m; SLA m; SRA m; SRL m	\uparrow	1	x	0	X	p	0	\uparrow	Rotate and shift locations.
RLD; RRD	\downarrow	\downarrow	x	0	x	p	0	\bullet	Rotate digit left and right.
DAA	\uparrow	1	X	\uparrow	X	P	-	\uparrow	Decimal adjust accumulator.
CPL	-	-	X	1	X	-	1	-	Complement accumulator.
SCF	-	-	x	0	x	-	0	1	Set carry.
CCF	\bullet	-	x	X	X	-	0	\uparrow	Complement carry.
IN r (C)	1	\dagger	X	0	x	P	0	-	Input register indirect.
INI, IND, OUTI; OUTD	x	1	x	x	x	x	1	\bullet	Block input and output. $Z=0$ if $B \neq 0$, otherwise $Z=0$.
INIR; INDR; OTIR; OTDR	x	1	x	x	X	x	1	-	
LDI; LDD	x	X	x	0	X	\uparrow	0	-	Block transfer instuctions. $P / V=1$ if $B C \neq 0$, otherwise $P / V=0$.
LDIR; LDDR	x	X	X	0	x	0	0	-	
CPI; CPIR; CPD; CPDR	X	\downarrow	X	X	X	\dagger	1	-	Block search instructions. $Z=1$ if $A=(H L)$, otherwise $Z=0, P / V=1$ if $B C \neq 0$, otherwise $P / V=0$.
LD A, I, LD A, R	\ddagger	\uparrow	X	0	X	IFF	0	-	The content of the interrupt enable flip-flop (IFF) is coupled into the P/V flag.
BIT b, s	X	\dagger	X	1	X	X	0	-	The state of bit b of location s is copied into the Z flag.

Symbolic Notation

Pin Descriptions

Pin Name	Description
$A_{0}-A_{15}$	ADDRESS BUS. Tri-state output, active high.
$\mathrm{D}_{0}-\mathrm{D}_{7}$	DATA BUS. Tri-state input/output, active high.
$\overline{\mathrm{M1}}$	MACHINE CYCLE ONE. Output, active low. Indicates current machine cycle is the OP code fetch cycle. $\overline{\mathrm{M} 1}$ together with $\overline{O R Q}$ indicates an interrupt acknowledge cycle.
$\overline{\text { MREQ }}$	MEMORY REQUEST. Tri-state input/output, active low. Indicates that the address bus holds a valid memory address for a memory read or write operation. Functions as an input only during Bus Request cycles for $\overline{R A S} /$ CAS generation.
$\overline{10 R Q}$	INPUT/OUTPUT REQUEST. Tri-state output, active low. Indicates that the lower half of the address bus holds a valid I/O address. Also generated with M1 when an interrupt is being acknowledged to indicate that a response vector can be placed on the data bus.
$\overline{R D}$	READ. Tri-state output, active low. Indicates that the CPU wants to read data from memory or an I/ 0 device. The addressed memory or I/O device should use this signal to gate data onto the CPU data bus.
$\overline{W R}$	WRIE. Tri-state output, active low. Indicates that CPU data bus holds valid data to be stored in memory or an $\mathrm{V} / 0$ device.
$\overline{\mathrm{RFSH}}$	REFRESH. Output, active low. $\overline{\text { RFSH, together with } \overline{M R E Q} \text {, indicates that the lower } 8 \text { bits of the address bus contain a }}$ refresh address for dynamic memories.
$\overline{\text { HALT }}$	HALT STATE. Output, active low. Indicates that the CPU has executed a software halt instruction and is awaiting either a non-maskable interrupt or a maskable interrupt (if enabled) before operation can resume. While halted, the CPU executes NOP's to maintain memory refresh activity.
$\overline{\text { WAIT }}$	WAr. Input, active low. Indicates that the addressed memory or $1 / 0$ devices are not ready for data transfer. The CPU continues to enter a Wait state as long as this signal is active. Extended WAIT periods can prevent the CPU from refreshing dynamic memory properly.
$\overline{\text { INT }}$	INTERRUPT REQUEST. Input, active low. Generated by I/O devices. Will be honored at the end of the current instruction if the internal software controlled interrupt enable flip-flop is enabled, removing the interrupt mask. INT is normally wireORed and requires an external pullup for these applications.

Pin Descriptions (continued)	
Pin Name	Description
$\overline{\text { NMI }}$	NON-MASKABLE INTERRUPT. Input negative edge triggered. Has higher priority than $\overline{N T T}$ and is always recognized at the end of the current instruction and cannot be masked by the interrupt enable flip-fliop as with a normal interrupt. Automatically forces CPU to restart at location 0066 H .
RESET	RESET. Input, active low. Initializes CPU as follows: reset interrupt enable flip-flop, clear PC, clear registers I and R, and set interrupt to 8080A similar mode. During reset, the address and data bus go to a high impedance state and all control output signals go to the inactive state. The processor will be vectored to either address 0000 H or address FFOOH depending on the state of the EXT $/ \overline{\mathrm{OS}}$ input. Note that $\overline{\mathrm{RESET}}$ must be active for a minimum of three full clock cycles before the reset operation is complete.
BUSREQ	BUS REQUEST. Input, active low. Has higher priority than $\overline{\text { NMI }}$ and is always recognized at the end of the current machine cycle. Used to request that the CPU address bus, data bus, and $\overline{\mathrm{MREQ}}, \overline{10 R \mathrm{Q}}, \overline{\mathrm{RD}}$, and $\overline{\mathrm{WR}}$ control signals to go to a high impedance state so that other devices can control these lines. BUSREQ is normally wire-ORed and requires an external pullup for these applications. Extended BUSREQ periods may cause refresh problems.
$\overline{\text { BUSACK }}$	BUS ACKNOWLEDGE. Output, active low. Indicates to the requesting device that the CPU address bus, data bus, and $\overline{\mathrm{MREQ}}, \overline{\mathrm{ORQ}}, \overline{\mathrm{RD}}$, and $\overline{\mathrm{WR}}$ control signals have been set to their high impedance state and the external device can control these signals.
$\overline{\text { RAS }}$	ROW ADDRESS STROBE. Output, active low. Indicates that the lower 8 bits of the CPU address bus contain a valid row address for dynamic RAMs providing the CPU has not been bus requested. Strobes row address into dynamic RAM address latch.
$\overline{\text { CAS }}$	COLUMN ADDRESS STROBE. Output, active low. Indicates that the lower 8 bits of the CPU address bus contain a valid column address for dynamic RAMs providing the CPU has not been bus requested. Strobes column address into dynamic RAM address latch.
BUSSEL	BUS SELECT. Input, active low. Determines whether address bus will be multiplexed for dynamic RAMs. When active, addresses will not be multiplexed and $\overline{\mathrm{CAS}}$ will not be generated for that particular memory cycle. In addition, an active low level on $\overline{\mathrm{BUSSEL}}$ during an access to the internal ROM (as indicated by EXT/ $\overline{\mathrm{OS}}$) will cause the CPU to read data from the external data bus rather than from the internal ROM. $\overline{B U S S E L}$ also controls the generation of $\overline{\mathrm{AS}}$ during DMA cycles.
EXT/ $/ \overline{0 S}$	EXTERNAL MODE SELECT. Input/output. Determines whether processor comes up in the internal or external mode on the rising edge of reset. When high on reset, the internal ROM is disabled and the CPU performs a normal Z80 reset operation. When low on reset, the internal ROM is enabled and the CPU is vectored to ROM address FFOO. After reset, this pin is an output indicating an access to the internal ROM address space with the ROM enable latch set.

System Timing

The S83 executes instructions by proceeding through a specific sequence of operations:

- Memory read or write
- I/O device read or write
- Interrupt acknowledge

The basic clock period is referred to as a T time or cycle, and three or more T cycles make up a machine cycle (M1, M2, or M3 for instance). Machine cycles can be extended either by the CPU automatically inserting one or more Wait states or by the insertion of one or more wait states by the user.

Instruction Op Code Fetch

The program counter content (PC) is placed on the address bus immediately at the start of the cycle. One half clock time later $\overline{M R E Q}$ goes active. $\overline{\text { RD }}$ when active indicates that the memory data should be enabled onto the CPU data bus. The CPU samples data with the rising edge of the clock state T_{3}. Clock state T_{3} and T_{4} of a CPU is internally decoding and executing the instruction. The refresh control signal RFSH indicates that a refresh read of all dynamic memories is in progress.
Figure 2a shows an opcode fetch in which BUSSEL is low. This cycle is no different from a standard Z 80 CPU , except that a Row Address Strobe will be generated during both the opcode fetch and during the refresh operation.

Figure 2 b shows an opcode fetch in which BUSSEL is high. In this case, the upper byte of the address bus will remain stable throughout the entire memory access cycle, however, the lower byte of the address bus is multiplexed for interfacing to dynamic RAMs. Initially, the low byte of the address bus will contain a row address, and $\overline{\text { RAS }}$ will be generated. The falling edge of $\overline{\text { RAS }}$ is used to strobe the row address into the dynamic RAMs. After the address multiplexers have switched, CAS is generated, and is used to strobe the column address into the dynamic RAMs.
One wait state is inserted automatically by the processor. Additional user wait states may be inserted, however $\overline{R A S}$ will go high on the third rising clock edge after $\overline{M R E Q}$ goes low regardless of how many wait states are used. $\overline{C A S}$, however, will not go high until $\overline{M R E Q}$ goes high at the end of the opcode fetch. In interfacing to dynamic RAMs, it is permissible for $\overline{\text { RAS }}$ to go high before $\overline{\text { CAS }}$ goes high so long as both signals are high before $\overline{\text { RAS }}$ goes low again.
BUSSEL must remain stable from the rising edge of T_{2} until after the rising edge of T_{2}. Decoding address lines to generate BUSSEL will fulfill this requirement. It is not necessary to include MREQ in the generation of BUSSEL.

Figure 2a. Opcode Fetch (Non-Multiplexed)

Figure 2b. Opcode Fetch (Multiplexed)

NOTE: $T_{W}^{*}=$ ONE WAIT STATE AUTOMATICALLY INSERTED BY CPU

* NOTE: BAS WILL 60 HIGH ON THE THIRD RISWG CLOCK EDGE AFTER MRED GOES LOW. THIS MAY BE BEFORE T3 IF ADDTMONAL WAIT STATES HAVE BEEN INSERTED.

Memory Read or Write Cycles

Illustrated here is the timing of memory read or write cycles other than an OP code fetch cycle (M1 cycle). The $\overline{M R E Q}$ and $\overline{\operatorname{RD}}$ signals are used exactly as in the fetch cycle. In the case of a memory write cycle, the $\overline{\mathrm{MREQ}}$ also becomes active when the address bus is stable. The $\overline{W R}$ line is active when data on the data bus is stable so that it can be used directly as a R / \bar{W} pulse to virtually any type of semiconductor memory.

Figure 3a illustrates a memory read or write where BUSSEL is low. This is the same as a standard Z80 memory read or write cycle, except that RAS goes low during the cycle, effectively performing a refresh read operation to any dynamic RAMs in the system.
Figure 3b illustrates a memory read or write where BUSSEL is high. The operating of the address multiplexing and the two address strobes, $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$, is the same as for a multiplexed instruction opcode fetch, except that no automatic wait states are generated.

Figure 3a. Memory Read/Write (Non-Multiplexed)

Figure 3b. Memory Read/Write (Multiplexed)

Input or Output Cycles

Figure 4 illustrates the timing for an I/O read or I/O write operation. Notice that during I/O operations a single wait state is automatically inserted (Tw *). The reason
for this is that during I/O operations this allows sufficient time for an I/O port to decode its address and activate the $\overline{\text { WAIT }}$ line if a wait is required.

Figure 4. Input or Output Cycles

NOTE: Tw* = ONE WAIT CYCLE AUTOMATICALLY INSERTED BY CPU.

Interrupt Request/Acknowledge Cycle

The interrupt signal is sampled by the CPU with the rising edge of the last clock at the end of any instruction. When an interrupt is accepted, a special $\overline{M 1}$ cycle is generated. During this $\overline{M 1}$ cycle, the $\overline{\overline{O R Q}}$ signal becomes active (instead of MREQ) to indicate that the
interrupting device can place an 8-bit vector on the data bus. Two wait states (Tw*) are automatically added to this cycle so that a ripple priority interrupt scheme, such as the one used in the $\mathbf{Z 8 0}$ peripheral controllers, can be easily implemented (Figure 5).

Figure 5. Interrupt Request/Acknowledge Cycle

NOTE: 1) $T_{L}=$ LAST STATE OF PREVIOUS INSTRUCTION 2) TWO WAIT CYCLES AUTOMATICALLY HSERTED BY CPU(*).

Non-Maskable Interrupt Request Cycle

$\overline{\mathrm{NMI}}$ is sampled at the same time as the maskable interrupt input INT but has higher priority and cannot be disabled under software control. The subsequent timing is similar to that of a normal instruction fetch except that data put on the bus by the memory is ignored. The CPU instead executes a restart (RST) address 0066H (Figure
6). The $\overline{\text { RAS }}, \overline{\text { CAS }}$ and address multiplexing functions operate the same as for a regular instruction opcode fetch, including the disabling of address multiplexing and $\overline{\text { CAS }}$ with BUSSEL. Refer to the opcode fetch timing diagram for further timing information on these signals.

Figure 6. Non-Maskable Interrupt Request Operation
 must occur no later than the rising edge of the clock cycle PRECEDING Tlast.

NOTE: $\overline{\operatorname{RAS}}, \overline{\text { CAS }}$, AND ADORESS MULTIPLEXING FUNCTION AS FOR NORMAL OPCODE FETCH DEPENDING ON THE STATE OF BUSSEL.

Bus Request Acknowledge Cycle

The CPU samples $\overline{B U S R E Q}$ with the rising edge of the last clock period of any machine cycle (Figure 7). If $\overline{B U S R E Q}$ is active, the CPU sets its address, data, and $\overline{M R E Q}, \overline{O R Q}, \overline{R D}$, and $\overline{W R}$ lines to a high-impedance state with the rising edge of the next clock pulse. At that time, any external device can take control of these lines, usually to transfer data between memory and I/O devices. While an external device has control of the
bus, address multiplexing is inhibited, however the ROM select logic for the internal ROM and the $\overline{\text { RAS }} / \overline{C A S}$ generation logic is functional. $\overline{B U S S E L}$ is still sampled, and will enable/disable the generation of $\overline{\text { CAS }}$. Using these features, a DMA device may access the internal ROM, switch it on or off, and may use the S83 internal logic to generate $\overline{\text { RAS }}$ and $\overline{\text { CAS, }}$, however address multiplexing must be done external to the S 83 .

Figure 7. BUS Request/Acknowledge Cycle

NOFE: $T_{1}=$ LAST STATE OF ANY M CYCLE
TX = AN ARBITRARY CLOCK CYCLE USED BY REQUESTING DEVICE.

Halt Acknowledge Cycle

When the CPU receives a Halt instruction, it executes When in the Halt state, the HALT output is active and NOP states until either an INT or $\overline{N M I}$ input is received. remains so until an interrupt is received (Figure 8).

Figure 8. Halt Acknowledge Cycle

NOTE: INT WILL ALSO FORCE A $\overline{\text { HALT }}$ EXIT.

Reset Cycle

$\overline{\text { RESET }}$ must be active for at least three clock cycles for the CPU to properly perform its reset operation. As long as RESET remains active, the address and data buses float, and the control outputs are inactive. Once RESET goes inactive, three internal T cycles are consumed before the CPU resumes normal processing operation (Figure 9). EXT/ $\overline{\mathrm{OS}}$ is sampled on the rising edge of RESET. If EXT/OS is high, the ROM enable latch is
reset, and the S 83 performs a reset to location 0000 H identical to a standard $\mathrm{Z8O}$. If EXT/ $\overline{\mathrm{OS}}$ is low, the internal ROM enable latch is set, enabling the internal 8 K byte ROM. The processor is then forced to execute NOP instructions until it reaches address FFOOH , where it begins execution. In essence, a reset operation with EXT/OS low causes the processor to begin operation at address FFOOH in the internal ROM.

Figure 9. Reset Cycle

AC Characteristics

Number	Symbol	Parameter	S83-4 (4.0MHz)	
			Min. (ns)	Max. (ns)
1	TcC	Clock Cycle Time	250*	
2	TwCh	Clock Pulse Width (High)	110	2000
3	TwCl	Clock Pulse Width (Low)	110	2000
4	TfC	Clock Fall Time	-	30
5	TrC	Clock Rise Time		30
6	$\operatorname{TdCr}(\mathrm{A})$	Clock \uparrow to Address Valid Delay	-	110
7	TdA(MREQf)	Address Valid to $\overline{\text { MREQ }} \downarrow$ Delay	65*	-
8	TdCf(MREOf)	Clock \downarrow to $\overline{\text { MREQ }} \downarrow$ Delay	-	85
9	TdCr(MREOr)	Clock \uparrow to $\overline{\text { MREQ }} \uparrow$ Delay	-	85
10	TwMREQh	MREQ Pulse Width (High)	110*	
11	TwMREQ1	MREQ Pulse Width (Low)	$220 *$	-
12	TdCf(MREQr)	Clock \downarrow to $\overline{\text { MREQ }} \uparrow$ Delay	-	85
13	TdCt(RDf)	Clock \downarrow to $\overline{\mathrm{RD}} \downarrow$ Delay	-	95
14	$\operatorname{TdCr}(\mathrm{RDr})$	Clock \uparrow to $\overline{\mathrm{RD}} \uparrow$ Delay	-	85
15	TsD(Cr)	Data Setup Time to Clock \uparrow	35	
16	ThD(RDr)	Data Hold Time to $\overline{\mathrm{RD}} \uparrow$	-	0
17	TsWAIT(Cf)	WAIT Setup Time to Clock \downarrow	70	-
18	ThWAIT(Cf)	WAIT Hold Time after Clock \downarrow	-	0
19	$\mathrm{TdCr}(\mathrm{M1f})$	Clock \uparrow to $\overline{\mathrm{M1}} \downarrow$ Delay	-	100
20	$\mathrm{TdCr}(\mathrm{M} 1 \mathrm{r})$	Clock \uparrow to $\overline{\mathrm{M} 1} \uparrow$ Delay		100
21	TdCr(RFSHf)	Clock \uparrow to $\overline{\text { RFSH }} \downarrow$ Delay	-	130
22	TdCr(RFSHr)	Clock \uparrow to $\overline{\mathrm{RFSH}} \uparrow$ Delay	-	120
23	TdCf(RDr)	Clock \downarrow to $\overline{\mathrm{RD}} \uparrow$	-	85
24	TdCr(RDf)	Clock \uparrow to $\overline{\mathrm{RD}} \downarrow$ Delay	-	85
25	TsD(Cf)	Data Setup to Clock \downarrow during M_{2}, M_{3}, M_{4} or M_{5} Cycles	50	
26	TdA(IORQf)	Address Stable prior to ORQ \downarrow	180*	-
27	TdCr(10ROf)	Clock \uparrow to $\overline{\overline{O R Q}} \downarrow$ Delay	-	75
28	TdCf(10ROr)	Clock \downarrow to $\overline{10 R Q} \uparrow$ Delay	-	85
29	TdD(WRi)	Data Stable prior to $\overline{\mathrm{WR}} \downarrow$	80*	-
30	TdCf(WRf)	Clock \downarrow to $\overline{W R} \downarrow$ Delay		80
31	TwWR	$\overline{\text { WR Pulse Width }}$	220*	-
32	TdCt(WRr)	Clock \downarrow to $\overline{\mathrm{WR}} \uparrow$ Delay	-	80
33	TdD(WRf)	Data Stable prior to $\overline{W R} \downarrow$	-10^{*}	-
34	TdCr (WRt)	Clock \uparrow to $\overline{W R} \downarrow$ Delay	-	65
35	TdWRr(D)	Data Stable from $\overline{\mathrm{WR}} \uparrow$	60*	
36	TdCf(HALT)		-	300
37	TwNMI	$\overline{\text { NMI Pulse Width }}$	80	-
38	TsBUSREQ(Cr)	BUSREQ Setup Time to Clock \uparrow	50	-
39	ThBUSREQ(Cr)	BUSREQ Hold Time atter Clock \uparrow	0	-
40	TdCr(BUSACKf)	Clock \uparrow to BUSACK \downarrow Delay		100
41	TdCt(BUSACKr)	Clock \downarrow to BUSACK \uparrow Delay	-	100
42	TdCr(Dz)	Clock \uparrow to Data Float Delay	-	90
43	$\mathrm{TdCr}(\mathrm{CTz})$	Clock \uparrow to Control Outputs Float Delay ($\overline{\mathrm{MREQ}}, \overline{\mathrm{O} \overline{\mathrm{RO}}}$, $\overline{\mathrm{RD}}$, and $\overline{\mathrm{WR}}$)	-	80

[^25]

AC Characteristics (continued)

Number	Symbol	Parameter	S83-4 (4.0MHz)	
			Min. (ns)	Max. (ns)
44	TdCr(Az)	Clock \uparrow to Address Float Delay	-	90
45	$\operatorname{TdCTr}(\mathrm{A})$		80*	
		Hold Time		
46	TsRESET(Cr)	RESET to Clock \uparrow Setup Time	60	-
47	ThRESET(Cr)	RESET to Clock \uparrow Hold Time	-	0
48	TsinTt(Cr)	$\underline{\mathbb{N T}}$ to Clock \uparrow Setup Time	80	-
49	ThiNTr(Cr)	INT to Clock \uparrow Hold Time	-	0
50	TdM1f(IORQf)	$\overline{\mathrm{M1}} \downarrow$ to $\overline{\mathrm{ORQ}} \downarrow$ Delay	565*	
51	TdCf(10 ROf)	Clock \downarrow to $\overline{\text { ORQ }} \downarrow$ Delay	-	85
52	TdCf(IOROr)	Clock \uparrow to $\overline{\text { ORQ }} \uparrow$ Delay	-	85
53	TdCf($\mathrm{D}_{\text {) }}$	Clock \downarrow to Data Valid Delay	-	150
54	TsBUSSELf(Cr)	BUSSEL \downarrow to CLK \uparrow Setup	0	
55	ThCr(BUSSEL)	CLK \downarrow to BUSSEL Hold Time	25	
56	TwRASh	RAS Precharge Time (High State)	120	
57	TwRASI	RAS Low Pulse Width (Refresh)	220	
58	TdMREQf(RASf)	$\overline{\text { MREQ }} \downarrow$ to $\overline{\text { RAS }} \downarrow$ Delay		65
59	TsRAd(RASf)	Row Address Valid to RAS \downarrow Setup Time	65	
60	ThRASf(RAd)	$\overline{\text { RAS }} \downarrow$ to Row Address Hold Time	20	
61	TdCf(CASf)	CLK \downarrow to $\overline{C A S} \downarrow$ Delay		75
62	TsCAd(CASt)	Column Address to $\overline{\text { CAS }} \downarrow$ Setup Time	35	
63	$\mathrm{TdCr}(\mathrm{CAd})$	CLK \uparrow to Column Address Valid Delay		160
64	TsRFAd(RASf)	Refresh Address to $\overline{\text { ASS }} \downarrow$ Setup Time	0	
65	TdMREQr(CASr)	$\overline{\text { MREQ }} \uparrow$ to $\overline{\mathrm{CAS}} \uparrow$ Delay		85
66	TsEXT(RESETr)	EXT to RESET \uparrow Setup Time	60	
67	ThEXT(RESETr)	EXT to $\overline{\text { RESET }} \uparrow$ Hold Time	0	
68	TdCr(RASr)	CLK \uparrow to $\overline{\mathrm{RAS}} \uparrow$ Delay (M1 Cycle)		85
69	TdMREQr(RASr)			85

* For clock periods other than the minimums shown in the table, calculate parameters using the expressions in the table on the following page.

Footnotes to AC Characteristics

Number	Symbol	S83-4
1	TcC	TwCh + TwC1 + TrC + TfC
7	TdA(MREQf)	TwCh + TfC - 65
10	TwMREQh	TwCh + TfC - 20
11	TwMREQ1	TcC - 30
26	TdA(IORQf)	TCC - 70
29	TdD(WRf)	TcC - 170
31	TwWR	TCC - 30
33	TdD(WRf)	TwC1 + TrC - 140
35	TdWRr(D)	TwC1 + TrC - 70
45	$\operatorname{TdCTr}(\mathrm{A})$	TwC1 + TrC - 50
50	TdM1f(IORQf)	$2 \mathrm{TcC}+\mathrm{TwCh}+\mathrm{TfC}-65$

[^26]
Absolute Maximum Ratings

Storage Temperature ... $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature under Bias . Specified Operating Range
Voltages on all inputs and outputs with respect to ground -0.3 V to +7 V
Power Dissipation ... 1.5 W
Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Standard Test Conditions

The characteristics below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to GND (OV). Positive current flows into the referenced pin. Available operating temperature ranges are:
■ $\mathrm{S}^{*}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C},+4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}}<+5.25 \mathrm{~V}$
All ac parameters assume a load capacitance of 100 pF . Add 10 ns delay for each 50 pF increase in load up to a maximum of 200 pF for the data bus and 100pF for address and control lines.

DC Characteristics

Symbol	Parameter	Min.	Max.	Unit	Test Condition
$V_{\text {ILC }}$	Clock Input Low Voltage	-0.3	0.45	V	
V_{HC}	Clock Input High Voltage	$V_{C C}-.6$	$V_{C C}+.3$	V	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-0.3	0.8	V	
V_{IH}	Input High Voltage	2.0	$\mathrm{V}_{\text {CC }}$	V	
$\mathrm{V}_{0 L}$	Output Low Voltage		0.4	V	$\mathrm{I}_{0 \mathrm{~L}}=2.0 \mathrm{~mA}$
V_{OH}	Output High Voltage	2.4		V	$\mathrm{I}_{0 \mathrm{H}}=-250 \mu \mathrm{~A}$
ICC	Power Supply Current		200	mA	
$l_{\text {LI }}$	Input Leakage Current		10	$\mu \mathrm{A}$	$V_{\text {IN }}=0$ to $V_{C C}$
$l_{\text {LEAK }}$	3-State Output Leakage Current in Float	-10	101	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0.4$ to $\mathrm{V}_{\text {CC }}$

1. $A_{15}-A_{0}, D_{7}-D_{0}, \overline{M R E}, \overline{O R} \bar{O}, \overline{\widetilde{R}}$, and \bar{W}.

Capacitance

Symbol	Parameter	Min.	Max.	Unit	Note
$C_{\text {CLOCK }}$	Clock Capacitance		35	pF	
C_{IN}	Input Capacitance		10	pF	Unmeasured pins returned to ground
$\mathrm{C}_{\text {OUT }}$	Output Capacitance		10	pF	

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{i}=1 \mathrm{MHz}$.

HIGH PERFORMANCE MICROPROCESSOR FAMILY

Contact factory for complete data sheets

S9900 Family Selection Guide

Microprocessors

S9900	16-Bit Microprocessor
S9980A	16-Bit Microprocessor 8-Bit Data Bus

Peripherals

S9901/S9901-4	Programmable Systems Interface (PSI)
S9902/S9902-4	UART/Asynchronous Communications Controller (USRT/ACC)

16-BIT
 MICROPROCESSOR

Features

16-Bit Instruction WordFull Minicomputer Instruction Set Capability Including Multiply and Divide\square Up to 65,536 Bytes of Memory
3.3MHz Speed
\square Advanced Memory-to-Memory Architecture
\square Separate Memory, I/O and Interrupt-Bus Structures
16 General Registers
$\square 16$ Prioritized Interrupts
\square Programmed and DMA I/O Capability
\square N-Channel Silicon-Gate Technology

General Description

The S9900 microprocessor is a single-chip 16-bit central processing unit (CPU) produced using N -Channel silicon-gate MOS technology. The instruction set of the S9900 includes the capabilities offered by full minicomputers. The unique memory-to-memory architecture features multiple register files, resident in memory, which allow faster response to interrupts and increased programming flexibility. The separate bus structure simplifies the system design effort. AMI provides a compatible set of MOS memory and support circuits to be used with an S 9900 system. The system is fully supported by software and complete prototyping systems.

S9900 Electrical and Mechanical Specifications
 Absolute Maximum Ratings Over Operating Free-Air Temperature Range (unless otherwise noted)*

Supply Voltage, $\mathrm{V}_{\text {CC }}$ (See Note 1)
-0.3 V to +20 V
Supply Voltage, VD (See Note 1) ... - 0.3 V to +20 V
Supply Voltage, VSS (See Note 1) ... - 0.3 V to +20 V
All Input Voltages (See Note 1) .. - 0.3 V to +20 V
Output Voltage, (With Respect to VSS) .. - 2 V to +7 V
Continuous Power Dissipation ... 1.2W
Operating Free-Air Temperature Range .. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range .. - $55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
*Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: Under absolute maximum ratings voltage values are with respect to the most negative supply, V_{BB} (substrate), unless otherwise noted. Throughout the remainder of this section, voltage values are with respect to V_{SS}.

Recommended Operating Conditions

Symbol	Parameter	Min.	Nom.	Max.	Unit	Conditions
$V_{B B}$	Supply voltage	-5.25	-5	-4.75	V	
$V_{C C}$	Supply voltage	4.75	5	5.25	V	
$V_{D D}$	Supply voltage	11.4	12	12.6	V	
$V_{S S}$	Supply voltage		0		V	
$V_{I H}$	High-level input voltage (all inputs except clocks)	2.2	2.4	$V_{C C}+1$	V	
$V_{H(\phi)}$	High-level clock input voltage	$V_{D D}=11.4$	10.0		$V_{D D}$	V
$V_{\mathrm{IL}}=12.6$	10.6					
$V_{I L(\phi)}$	Low-level input voltage (all inputs except clocks)	-1	0.4	0.8	V	
T_{A}	Low-level clock input voltage	-0.3	0.3	0.6	V	

Timing Requirements Over Full Range of Recommended Operating Conditions (See Figures 1 and 2)

Symbol	Parameter	Min.	Nom.	Max.	Unit	Conditions
$\mathrm{t}_{\mathrm{c}}(\phi)$	Clock Cycle time	0.3	0.333	0.5	$\mu \mathrm{S}$	
$\operatorname{tr}(\phi)$	Clock rise time	10	12		ns	
tf (ϕ)	Clock fall time	10	12		ns	
tw (ϕ)	Pulse width, any clock high	40	45	100	ns	
$t_{\phi+1}, \phi_{2 L}$	Delay time, clock 1 low to clock 2 low**	0	5		ns	
Tф2L, \$3L	Delay time, clock 2 low to clock 3 low**	0	5		ns	
t\$3L, ¢4L	Delay time, clock 3 low to clock 4 low**	0	5		ns	
	Delay time, clock 4 low to clock 1 low**	0	5		ns	
$\mathrm{t}_{\mathrm{t} 1 \mathrm{H}, \phi_{2} \mathrm{H}}$	Delay time, clock 1 high to clock 2 high***	73	83		ns	
	Delay time, clock 2 high to clock 3 high***	73	83		ns	
tф3H, ϕ_{4}	Delay time, clock 3 high to clock 4 high***	73	83		ns	
$t_{\phi 4 H} \phi_{1 / \mathrm{H}}$	Delay time, clock 4 high to clock 1 high***	73	83		ns	
tsu	Data or control setup time before clock 1	30			ns	
th	Data hold time after clock 1	10			ns	

[^27]Electrical Characteristics Over Full Range of Recommended Operating Conditions (unless otherwise noted)

Symbol	Parameter		Min.	Typ. \dagger	Max.	Unit	Conditions
1	Input Current	Data Bus during DBIN		± 50	± 100	$\mu \mathrm{A}$	$\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}$ to $\mathrm{V}_{\text {CC }}$
		$\overline{\text { WE, }} \overline{\text { MEMEN }}$, DBIN, Address bus, Data bus during HOLDA		+50	± 100		$V_{1}=V_{S S}$ to $V_{C C}$
		Clock*		± 25	± 75		$V_{1}=-0.3$ to 12.6 V
		Any other inputs		± 1	± 10		$\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}$ to $\mathrm{V}_{\text {CC }}$
V_{OH}	High-level output voltage		2.4		$\mathrm{V}_{\text {c }}$	V	$\mathrm{I}_{0}=-0.4 \mathrm{~mA}$
$V_{0 L}$	Low-level output voltage				$\begin{aligned} & \hline 0.65 \\ & 0.50 \\ & \hline \end{aligned}$	V	$\begin{aligned} & I_{0}=3.2 \mathrm{~mA} \\ & I_{0}=2 \mathrm{~mA} \end{aligned}$
$\mathrm{I}_{\text {BB }}$	Supply current from V_{B}			0.1	1	mA	
$\mathrm{I}_{\text {C }}$	Supply current from $\mathrm{V}_{\text {CC }}$			50	75	mA	
$I_{D D}$	Supply current from $V_{D D}$			25	45	mA	
C_{i}	Input capacitance (any inputs except clock and data bus)			10	15	pF	$\begin{aligned} & V_{B B}=-5, f=1 \mathrm{MHz}, \\ & \text { unmeasured pins at } V_{S S} \end{aligned}$
$C_{i(\$ 1)}$	Clock-1 input capacitance			100	150	pF	$V_{B B}=-5, f=1 \mathrm{MHz},$ $\text { unmeasured pins at } V_{S S}$
$\mathrm{C}_{1}(\$ 2)$	Clock-2 input capacitance			150	200	pF	$\begin{aligned} & V_{B B}=-5, f=1 \mathrm{MHz}, \\ & \text { unmeasured pins at } V_{S S} \end{aligned}$
$\mathrm{C}_{1}(\$ 3)$	Clock-3 input capacitance			100	150	pF	$\begin{aligned} & V_{B B}=-5, f=1 \mathrm{MHz}, \\ & \text { unmeasured pins at } V_{S S} \end{aligned}$
$\mathrm{C}_{j}(\$ 4)$	Clock-1 input capacitance			100	150	pF	$\begin{aligned} & V_{B B}=-5, f=1 \mathrm{MHz}, \\ & \text { unmeasured pins at } V_{S S} \end{aligned}$
$\mathrm{C}_{\text {DB }}$	Data bus capacitance			15	25	pF	$V_{B B}=-5, f=1 \mathrm{MHz},$ unmeasured pins at $V_{S S}$
C_{0}	Output capacitance (any output except data bus)			10	15	pF	$V_{B B}=-5, f=1 \mathrm{MHz},$ $\text { unmeasured pins at } V_{S S}$

\dagger All typical values are at $T_{A}=25^{\circ} \mathrm{C}$ and nominal voltages

* D.C. Component of Operating Clock

Switching Characteristics Over Full Range of Recommended Operating Conditions (See Figure 2)

Symbol	Parameter	Min.	Typ.	Max.	Unit	Conditions
tpLH $^{\text {or } t_{P H L}}$	Propagation delay time, clocks to outputs					$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$
	CRUCLK, WE, MEMEN, WAIT, DBIN			30	ns	
	All other outputs		20	40	ns	

Figure 1. Clock Timing

Note: All timing and voltage levels shown on $\phi 1$ apply to $\phi 2, \phi 3$, and $\phi 4$ in the same manner.

Figure 2. Signal Timing

tThe number of cycles over which input/output data must/will remain valid can be determined from the number of wait states required for memory access. Note that in all cases data should not change during $\phi \mathbf{1}$.

Pin Description

Table 1 defines the S9900 pin assignments and describes the function of each pin.
Table 1. S9900 Pin Assignments and Functions

Signature	Pin	1/0	Description
			ADDRESS BUS
AO (MSB)	24	OUT	A0 through A14 comprise the address bus. This 3 -state bus provides the memory-address vector to the external-memory system when MEMEN is active and I/O-bit addresses and externalinstruction addresses to the I/O system when $\overline{M E M E N}$ is inactive. The address bus assumes the high-impedance state when HOLDA is active.
A1	23	OUT	
A2	22	OUT	
A3	21	OUT	
A4	20	OUT	
A5	19	OUT	
A6	18	OUT	
A7	17	OUT	
A8	16	OUT	
A9	15	OUT	
A10	14	OUT	
A11	13	OUT	
A12	12	OUT	
A13	11	OUT	
A14 (LSB)	10	OUT	
			DATA BUS
D0 (MSB)	41	1/0	D0 through D15 comprise the bidirectional 3 -state data bus. This bus transters memory data
D1	42	1/0	to (when writing) and from (when reading) the external-memory system when MEMEN is
D2	43	1/0	active. The data bus assumes the high-impedance state when HOLDA is active.
D3	44	1/0	
D4	45	1/0	
D5	46	I/0	
D6	47	1/0	
D7	48	1/0	
D8	49	1/0	
D9	50	1/0	
D10	51	1/0	
D11	52	1/0	
D12	53	1/0	
D13	54	1/0	
D14	55	1/0	
D15 (LSB)	56	1/0	
			POWER SUPPLIES
, $V_{B B}$	1		Supply voltage (-5V NOM)
${ }^{\text {V }}$ C	2,59		Supply voltage (5V NOM). Pins 2 and 59 must be connected in parallel.
$V_{D D}$	27		Supply volage (12V NOM)
$\mathrm{V}_{\text {SS }}$	26,40		Ground reference. Pins 26 and 40 must be connected in parallel.
			CLOCKS
$\phi 1$	8	IN	Phase-1 clock
$\phi 2$	9	IN	Phase-2 clock
$\phi 3$	28	IN	Phase-3 clock
$\phi 4$	25	IN	Phase-4 clock

Table 1. S9900 Pin Assignments and Functions (Continued)

Table 1. S9900 Assignments and Functions (Continued)

Signature	Pin	I/O	Description HOLDA READY
WAIT	OUT	Hold acknowledge. When active (high), HOLDA indicates that the processor is in the hold state and the address and data buses and memory control outputs (WE, MEMEN, and DBIN) are in the high-impedance state.	
LOAD			
Ready. When active (high), READY indicates that memory will be ready to read or write dur-			
ing the next clock cycle. When not-ready is indicated during a memory operation, the S9900			
enters a wait state and suspends internal operation until the memory systems indicate ready.			
Wait. When active (high), WAIT indicates that the S9900 has entered a wait state because of a			
not-ready condition from memory.			

[^28]

16-BIT
 MICROPROCESSOR

Features

16-Bit Instruction WordFull Minicomputer Instruction Set Capability Including Multiply and DivideUp to 16,384 Bytes of Memory8-Bit Memory Data BusAdvanced Memory-to-Memory ArchitectureSeparate Memory, I/O and Interrupt-Bus Structures16 General Registers4 Prioritized InterruptsProgrammed and DMA I/O Capability
\square On-Chip 4-Phase Clock Generator40-Pin PackageN -Channel Silicon-Gate Technology

General Description

The S9980A microprocessor is a software-compatible member of AMI's 9900 family of microprocessors. Designed to minimize the system cost for smaller systems, the S9980A is a single-chip 16-bit central processing unit (CPU) which has an 8 -bit data bus, on-chip clock, and is packaged in a 40 -pin package. The instruction set of the S9980A includes the capabilities offered by full minicomputers and is exactly the same as the 9900 s . The unique memory-to-memory architecture features multiple register files, resident in memory, which allow faster response to interrupts and increased programming flexibility. The separate bus structure simplifies the system design effort.

S9980A Electrical and Mechanical Specifications

Absolute Maximum Ratings Over Operating Free-Air Temperature Range (unless otherwise noted)*

Supply Voltage, VCC (See Note 1)
-0.3 V to +15 V
Supply Voltage, $V_{D D}$ (See Note 1) .. to +15 V
Supply Voltage, V_{BB} (See Note 1) .. - 5.25 V to +0 V
All Input Voltages (See Note 1) .. -0.3 V to +15 V
Output Voltage, (See Note 1). $-2 V$ to +7 V
Continuous Power Dissipation ... 1.4W
Operating Free-Air Temperature Range ... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

[^29]
Recommended Operating Conditions

Symbol	Parameter	Min.	Nom.	Max.	Unit	Conditions
$V_{B B}$	Supply voltage	-5.25	-5	-4.75	V	
$V_{C C}$	Supply voltage	4.75	5	5.25	V	
$\mathrm{~V}_{\mathrm{DD}}$	Supply voltage	11.4	12	12.6	V	
$\mathrm{~V}_{\mathrm{SS}}$	Supply voltage		0		V	
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.2	2.4	$\mathrm{~V}_{\mathrm{CC}}+1$	V	
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage	-1	0.4	0.8	V	
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature	0	20	70	${ }^{\circ} \mathrm{C}$	

Electrical Characterisitcs Over Full Range of Recommended Operating Conditions (unless otherwise noted)

Symbol	Parameter		Min.	Typ.*	Max.	Unit	Conditions
1	Input Current	Data Bus during DBIN			± 75	$\mu \mathrm{A}$	$V_{1}=V_{S S}$ to $V_{C C}$
		$\bar{W} \bar{W}, \overline{M E M E N}, \overline{D B I N}$, during HOLDA			± 75	$\mu \mathrm{A}$	$V_{1}=V_{S S}$ to $V_{C C}$
		Any other inputs			± 10	$\mu \mathrm{A}$	$V_{1}=V_{S S}$ to $V_{C C}$
V_{OH}	High-level output voltage		2.4			V	$\mathrm{I}_{0}=-0.4 \mathrm{~mA}$
$\mathrm{V}_{0 \mathrm{~L}}$	Low-level output voltage				$\begin{aligned} & 0.5 \\ & 0.65 \end{aligned}$	V	$\begin{aligned} & I_{0}=2 \mathrm{~mA} \\ & I_{0}=3.2 \mathrm{~mA} \end{aligned}$
$I_{B B}$	Supply current from V VB				1	mA	
$I_{C C}$	Supply current from $\mathrm{V}_{\text {CC }}$			$\begin{aligned} & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & 60 \\ & 50 \end{aligned}$	mA	$\begin{aligned} & 0^{\circ} \mathrm{C} \\ & 70^{\circ} \mathrm{C} \end{aligned}$
100	Supply current from $V_{\text {D }}$			$\begin{aligned} & 70 \\ & 65 \end{aligned}$	$\begin{aligned} & 80 \\ & 75 \end{aligned}$	mA	$\begin{aligned} & 0^{\circ} \mathrm{C} \\ & 70^{\circ} \mathrm{C} \end{aligned}$
C_{i}	Input capacitance (any inputs except data bus)			15		pF	$f=1 \mathrm{MHz}$, unmeasured pins at $V_{S S}$
$C_{\text {DB }}$	Data bus capacitance			25		pF	$\begin{aligned} & f=1 \mathrm{MHz} \text {, unmeasured } \\ & \text { pins at } V_{S S} \end{aligned}$
C_{0}	Output capacitance (any output except data bus)			15		pF	$f=1 \mathrm{MHz}$, unmeasured pins at $V_{S S}$

[^30]
External Clock

The external clock on the S9980 uses the CKIN pin. The external clock source must conform to the following specifications:

Symbol	Parameter	Min.	Typ.	Max.	Unit	Conditions
$f_{\text {ext }}$	External source frequency*	6		10	MHz	
V_{H}	External source high level	2.2			V	
$\mathrm{~V}_{L}$	External source low level			0.8	V	
$\mathrm{t}_{\boldsymbol{r} / \mathrm{ff}}$	External source rise/fall time		10		ns	
t_{WH}	External source high level pulse width	40			ns	
t_{WL}	External source low level pulse width	40			ns	

*This allows a system speed of 1.5 MHz to 2.5 MHz

Switching characteristics Over Full Range of Recommended Operating Conditions

The timing of all the inputs and outputs is controlled by the internal 4 phase clock; thus all timings are based on the width of one phase of the internal clock. This is $1 / f_{\text {(CKIN) }}$ (whether driven or from a crystal). This is also $1 / 4 / f_{\text {system }}$. In the following table this phase time is denoted t_{w}.
All external signals are with reference to $\phi 3$ (see Figure 1).

Symbol	Parameter	Min.	Typ.	Max.	Unit	Conditions
$\operatorname{tr}(\phi 3)$	Rise time of $\phi 3$	3	5	10	ns	$\begin{gathered} t_{w}=1 / f_{(\mathrm{CKIN})} \\ =1 / 4 \mathrm{f}_{\text {system }} \\ \mathrm{C}_{\mathrm{L}}=200 \mathrm{pF} \end{gathered}$
tr $(\phi 3)$	Fall time of $\phi 3$	5	7.5	15	ns	
$\mathrm{tw}_{\mathrm{w}}(\phi 3)$	Pulse width of $\phi 3$	$t_{w}-15$	$t_{w}-10$	$t_{w}+10$	ns	
tsu	Data or control setup time*	$t_{w}-30$			ns	
th	Data hold time*	2 t tw +10			ns	
$t_{\text {PHL }}(\overline{W E})$	Propagation delay time WE high to low	$t_{w}-10$	tw	$t w+20$	ns	
$t_{\text {PLH }}(\overline{\mathrm{WE}})$	Propagation delay time WE low to high	tw	$t_{w}+10$	$t_{w}+30$	ns	
$\mathrm{t}_{\text {PHL (CRUCLK) }}$	Propagation delay time, CRUCLK high to low	-20	-10	+ 10	ns	
$t_{\text {PHL(CRUCLK) }}$	Propagation delay time, CRUCLK low to high	$2 t_{w}-10$	$2 t_{w}$	$2 t_{w}+20$	ns	
tov	Delay time from output valid to $\$ 3$ low	$\mathrm{t}_{\mathrm{w}}-50$	$\mathrm{t}_{\mathrm{w}}-30$		ns	
tox	Delay time from output invalid to $\phi 3$ low		$t_{w}-20$	t_{w}	ns	

[^31]Figure 1. External Signal Timing

Pin Description

Table 1 defines the S9980A pin assignments and describes the function of each pin.
Table 1. S9980A Pin Assignments and Functions

Signature	Pin	vo	Description
A0 (MSB)	17	OUT	ADDRESS BUS
A1	16	OUT	A0 through A13 comprise the address bus. This 3 -state bus provides the memory-address
A2	15	OUT	vector to the external-memory system when MEMEN is active and 1/0-bit addresses and
A3	14	OUT	external-instruction addresses to the I/O system when MEMEN is inactive. The address bus
A4	13	OUT	assumes the high-impedance state when HOLDA is active.
A5	12	OUT	
A6	11	OUT	
A7	10	OUT	
A8	9	OUT	
A9	8	OUT	
A10	7	OUT	
A11	6	OUT	
A12	5	OUT	
A13/CRUOUT	4	OUT	CRUOUT Serial I/0 data appears on A13 when an LDCR, SBZ and SB0 instruction is executed. This data should be sampled by the I/O interface logic when CRUCLK goes active (high). One bit of the external instruction code appears on A13 during external instruction execution.
D0 (MSB)	26	1/0	dATA BUS
D1	27	$1 / 0$	D0 through D7 comprise the bidirectional 3-state data bus. This bus transfers memory data
D2	28	$1 / 0$	to (when writing) and from (when reading) the externai-memory system when MEMEN is ac-
D3	29	$1 / 0$	tive. The data bus assumes the high-impedance state when HOLDA is active.
D4	30	$1 / 0$	
D5	31	1/0	
D6	32	1/0	
D7 (LSB)	33	1/0	

Table 1. S9980A Pin Assignments and Functions (Continued)

Signature	Pin	vo	Description
			POWER SUPPLIES
$V_{B B}$	21		Supply voltage (-5 V NOM)
$V_{C C}$	20		Supply voltage (5 V NOM)
$V_{D D}$	36		Supply voltage (12V NOM)
$V_{S S}$	35		Ground reference
CKIN	34	IN	clocks Clock in. A TTL compatible input used to generate the internal 4-phase clock. CKIN frequency is 4 times the desired system frequency.
$\bar{\phi} 3$	22	OUT	Clock phase $3(\phi 3)$ inverted; used as a timing reference.
DBIN	18	OUT	BUS CONTROL
			Data bus in. When active (high), DBIN indicates that the S9980A has disabled its output butfers to allow the memory to place memory-read data on the data bus during MEMEN. DBIN remains low in all other cases except when HOLDA is active at which time it is in the highimpedance state.
MEMEN	40	OUT	Memory enable. When active (low), MEMEN indicates that the address bus contains a memory address. When HOLDA is active, $\overline{M E M E N}$ is in the high impedance state.
$\overline{W E}$	38	OUT	Write enable. When active (low). WE indicates that memory-write data is available from the S9980 to be written into memory. When HOLDA is active. $\overline{\text { WE }}$ is in the high-impedance state
CRUCLK	37	OUT	CRU clock. When active (high), CRUCLK indicates that external interface logic should sample the output data on CRUOUT or should decode external instructions on A0. A1. A13
CRUIN	19	IN	CRU data in. CRUIN. normally driven by 3 -state or open-collector devices. receives input data from external interface logic. When the processor executes a STCR or TB instruction. it samples CRUIN for the level of the CRU input bit specified by the address bus (A2 through A12).
INT2	23	IN	Interrupt code. Refer to interrupt discussion for detailed description.
INT1	24	IN	
INT0	25	IN	
			MEMORY CONTROL
$\overline{\text { HOLD }}$	1	iN	Hold. When active (low), $\overline{H O L D}$ indicates to the processor that an external controller (e.g. DMA device) desires to utilize the address and data buses to transter data to or trom memory. The S9980A enters the hold state following a hoid signal when it has completed its present memory cycle.* The processor then places the address and data buses in the high impedance state (along with $\overline{W E}$. $\overline{M E M E N}$, and $D B I N$) and responds with a holdacknowiedge signal (HOLDA). When $\overline{H O L D}$ is removed. the processor returns to normal operation.
HOLDA	2	OUT	Hold acknowledge. When active (high). HOLDA indicates that the processor is in the hold state and the address and data buses and memory control outputs ($\overline{W E}, \overline{M E M E N}$. and DBIN) are in the high-impedance state.
READY	39	IN	Ready. When active (high). READY indicates that memory will be ready to read or write during the next clock cycle. When not-ready is indicated during a memory operation, the S9980A enters a wait state and suspends internal operation until the memory systems indicated ready.
IAQ	3	OUT	TIMING AND CONTROL Instruction acquisition. IAQ is active (high) during any memory cycle when the S9980A is ac quiring an instruction. IAQ can be used to detect illegal op codes. It may also be used to synchronize LOAD stimulus.

[^32]
PROGRAMMABLE SYSTEMS INTERFACE CIRCUIT

Features

N-Channel Silicon-Gate Process9900 Series CRU PeripheraPerforms Interrupt and I/O Interface Functions6 Dedicated Interrupt Input Lines
7 Dedicated I/O Ports
9 Ports Programmable as Interrupts or I/O
Easily Stacked for Interrupt and I/O ExpansionInterval and Event Timer
Single 5V Supply

General Description

The S9901 Programmable Systems Interface is a multifunctioned component designed to provide low cost interrupts and I/O ports in a 9900/9980 microprocessor system. It is fabricated with N -channel silicon-gate technology and is completely TTL compatible on all inputs including the power supply (+5 V) and single-phase clock. The Programmable Systems Interface provides a 9900/9980 system with interrupt control, I/O ports, and a real-time clock as shown on page 1.

S9901 Pin Configuration

$\overline{\mathrm{R} S T 1}$	$\widetilde{ }$	40	$\mathrm{v}_{\text {cc }}$
cruout		39	so
crucle [3		38	po
cruin		37	P1
CE		36	s1
- ${ }^{1+5} 5$		35	s2
INTS ${ }^{\text {C }}$		34	$7{ }^{1 \times 17 / P 15}$
INT4 ${ }^{\text {a }}$		33	$]^{1 \times 18 / P 14}$
INT3		32	[$1 \times 19 / 913$
¢ 10	S9901	31	- $\overline{\text { NT10/P12 }}$
INTREX 11	S9901	30	$\overline{\text { int11/P11 }}$
1 Ca -12		29	$]^{\overline{\text { NTT12/P10 }}}$
IC2 Cl^{13}		28	$7 \mathrm{NT} 13 / \mathrm{Pg}$
$1 \mathrm{CL} 1^{14}$		27	$]^{1 \times T 14 / P 8}$
IC0 15		26	- ${ }^{\text {2 }}$
$\mathrm{v}_{\text {S }}{ }^{16}$		25	S3
INT1 17		24	¢ s 4
TNT2 ${ }^{\text {a }}$		23	$\overline{\text { INT15/P7 }}$
P6 19		22	$\square^{\text {P3 }}$
${ }^{25}$		21	$]^{\text {P4 }}$

S9900/9980 System

S9901 Electrical Specifications

Absolute Maximum Ratings Over Operating Free Air Temperature Range (Unless Otherwise Noted)*

Supply Voltages, V_{CC} and V_{SS}
-0.3 V to +10 V
All Input and Output Voltages . -0.3 V to +10 V
Continuous Power Dissipation 0.75 W
Operating Free-Air Temperature Range ... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range ... $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
"Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute maximum rated conditions for extended period may affect device reliability.

Recommended Operating Conditions

Parameter	Min.	Nom.	Max.	Unit
Supply Voltage, V_{CC}	4.75	5	5.25	V
Supply Voltage, $\mathrm{V}_{\text {SS }}$		0		V
High-Level Input Voltage, $\mathrm{V}_{\text {IH }}$		2		V
Low-Level Input Voltage, V_{IL}		0.8		V
Operating Free-Air Temperature, T_{A}	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

Over Full Range of Recommended Operating Conditions (Unless Otherwise Noted)

Symbol	Parameter	Min.	Typ.	Max.	Unit	Conditions
I_{1}	Input Current (Any Input)		± 10		$\mu \mathrm{A}$	$\mathrm{V}_{1}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\text {OH }}$	High Level Output Voltage		$\begin{gathered} 2.4 \\ 2 \end{gathered}$		$\begin{aligned} & \bar{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & I_{O H}=100 \mu \mathrm{~A} \\ & \mathrm{I}_{O H}=-400 \mu \mathrm{~A} \end{aligned}$
$\mathrm{V}_{0 \mathrm{~L}}$	Low Level Output Voltage		0.4		V	$\mathrm{I}_{0 \mathrm{~L}}=3.2 \mathrm{~mA}$
$\mathrm{I}_{\text {CC }}$	Supply Current from V CC		100		mA	
$\mathrm{I}_{\text {SS }}$	Supply Current from V ${ }_{\text {SS }}$		200		mA	
ICC(av)	Average Supply Current from V ${ }_{\text {CC }}$		60		mA	$\mathrm{tc}(0)=333 \mathrm{~ns}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Ci_{i}	Capacitance, Any Input		10		pF	$f=1 \mathrm{MHz}$,
C_{0}	Capacitance, Any Output		20		pF	All Other Pins at OV

Timing Requirements
Over Full Range of Operating Conditions

Symbol	Parameter	59901			S9901-4			Unit
		Min.	Nom.	Max.	Min.	Nom.	Max.	
$\mathrm{t}_{\mathrm{C}(0)}$	Clock Cycle Time	300	333	2000	240	250	667	ns
$t r(0)$	Clock Rise Time	5	10	40	5		40	ns
$t f(0)$	Clock Fall Time	5	10	40	10		40	ns
tw(0L)	Clock Pulse Low Width	45	55	300	40		300	ns
tw(OH)	Clock Pulse High Width	225	240		180			ns
tsu_{1}	Setup Time for $\mathrm{S}_{0}-\mathrm{S}_{4}$, CE , or $\mathrm{CRU}_{\text {OUT }}$ Before CRU $_{\text {CLK }}$	100	200		80	80		ns
tsu_{3}	Setup Time, Input Before Valid $\mathrm{CRU}_{\text {IN }}$	200	200		180	180		ns
tsu_{2}	Setup Time, Interrupt Before 0 Low	60	80		50	50		ns
$\mathrm{t}_{\text {W, }}$ Crucik)	CRU Clock Pulse Width	100			80			ns
th	Address Hold Time	60	80		50			ns

Switching Characteristics

Over Full Range of Recommended Operating Conditions

Symbol	Parameter	59901			S9901-4			Unit	Test Conditions
		Min.	Typ.	Max.	Min.	Typ.	Max.		
$t_{\text {PD }}$	Propagation Delay, 0 Low to Valid INTREQ, $I_{C 0}{ }^{-I_{C 3}}$		110	110		80	80	ns	$\begin{aligned} & C_{L}=100 \mathrm{pF}, \\ & 2 \mathrm{TTL} \text { Loads } \end{aligned}$
$t_{\text {PD }}$	Propagation Delay, $\mathrm{S}_{0}-\mathrm{S}_{4}$ or $\overline{\mathrm{CE}}$ to Valid $C R U_{\text {IN }}$		320	320		240	240	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$

Figure 1. Switching Characteristics

Pin Definitions

Table 1 defines the $\mathbf{S 9 9 0 1}$ pin assignments and describes the function of each pin.
Table 1.S9901 Pin Assignments and Functions

Signature	Pin	I/0	Description
$\overline{\text { INTREQ }}$	11	OUT	INTERRUPT Request. When active (low) NTTREQ indicates that an enabled interrupt has been received. INTREQ will stay active until all enabled interrupt inputs are removed.
1 CO (MSB)	15	OUT	Interrupt Code lines. ICO-IC3 output the binary code corresponding to the highest priority enabled inter-
IC1	14	OUT	rupt. If no enabled interrupts are active ICO-IC3 $=(1,1,1,1)$
IC2	13	OUT	
IC3 (LSB)	12	OUT	
CE	5	IN	Chip Enable. When active (low) data may be transferred through the CRU interface to the CPU. CE has no effect on the interrupt control section.
S0	39	IN	Address select lines. The data bit being accessed by the CRU interface is specified by the 5-bit code appear-
S1	36	IN	ing on S0-S4
S2	35	IN	
S3	25	IN	
S4	24	IN	
CRUIN	4	OUT	CRU data in (to CPU). Data specified by $\mathrm{SO}-\mathrm{S} 4$ is transmitted to the CPU by CRUIN. When $\overline{\mathrm{CE}}$ is not active CRUIN is in a high-impedance state.
CRUOUT	2	IN	CRU data out (from CPU). When $\overline{\mathrm{CE}}$ is active, data present on the CRUOUT input will be sampled during CRUCLK and written into the command bit specified by $\mathrm{SO}-\mathrm{S} 4$.
CRUCLK	3	IN	CRU Clock (from CPU). CRUCLK specifies that valid data is present on the CRUOUT line.
RST1	1	IN	Power Up Reset. When active (low) $\overline{\operatorname{RST}} 1$ resets all interrupt masks to " 0 ', disables the clock, and programs all I/ 0 ports to inputs. RST1 has a Schmitt-Trigger input to aliow implementation with an RC circuit as shown in Figure 6.
$V_{C C}$	40		Supply Voltage. + 5V nominal.
$V_{\text {SS }}$	16		Ground Reference.
ϕ	10		System Clock ($\phi 3$ in S9900 system, $\overline{\text { CKOUT }}$ in S9980 system).
INT1	17	IN	Group 1, interrupt inputs. When active (low) the signal is ANDed with its corresponding mask bit and if en-
INT2	18	IN	abled sent to the interrupt control section. INT1 has highest priority.
INT3	9	IN	
INT4	8	IN	
INT5	7	IN	
INT6	6	IN	
INT7/P15	34	1/0	Group 2. Programmable interrupt (active low) or $\mathrm{l} / 0$ pins (true logic). Each pin is individually programmable
INT8/P14	33	1/0	as an interrupt, as input port, or an output port.
INT9/P13	32	1/0	
INT10/P12	31	1/0	
INT11/P11	30	1/0	
INT12/P10	29	1/0	
INT13/P9	28	1/0	
INT14/P8	27	1/0	
INT15/P7	23	1/0	
P0	38	1/0	Group 3, 1/0 ports (true logic). Each pin is individually programmable as an input port or an output port.
P1	37	1/0	
P2	26	1/0	
P3	22	1/0	
P4	21	1/0	
P5	20	1/0	
P6	19	1/0	

S9901/S9901-4

Functional Description

CPU Interface

The S9901 interfaces to the CPU through the Communications Register Unit (CRU) and the interrupt control lines as shown on page 1. The CRU interface consists of 5 address select lines ($\mathrm{S}_{0}-\mathrm{S}_{4}$), chip enable ($\overline{\mathrm{CE}}$), and 3 CRU lines (CRU ${ }_{\text {IN }}, C R U_{\text {OUT }}, ~ C R U_{\text {CLK }}$). When $\overline{C E}$ becomes active (low), the 5 select lines point to the CRU bit being accessed (see Table 2). In the case of a write, the datum is strobed off the CRUOUT line by the $C R U_{\text {CLK }}$ signal. For a read, the datum is sent to the CPU on the $C R U_{\text {IN }}$ line. The interrupt control lines consist of an interrupt request line (INTREQ) and 4 code lines (IC C_{0} $\left.-\mathrm{IC}_{3}\right)$. The interrupt section of the S 9901 prioritizes and encodes the highest priority active interrupt into the proper code to present to the CPU, and outputs this code on the $\mathrm{IC}_{0}-\mathrm{IC}_{3}$ code lines along with an active INTREQ. Several S9901's can be used with the CPU by connecting all CRU and address lines in parallel and providing a unique chip select to each device.

System Interface

The system interface consists of $\mathbf{2 2}$ pins divided into 3 groups. The 6 pins in Group $1\left(\overline{N T}_{1}-\overline{N T}_{6}\right)$ are normally dedicated to interrupt inputs (active low), but may also be used as input ports (true data in). Group $2\left(\mathrm{INT}_{7} / \mathrm{P}_{15}\right.$ $\overline{\mathrm{INT}}_{15} / \mathrm{P}_{7}$) consists of 9 pins which can be individually programmed as interrupt inputs (active low), input ports (true data in), or output ports (true data out). The remaining 7 pins which comprise Group 3 ($\mathrm{P}_{0}-\mathrm{P}_{6}$) are dedicated as individually programmable I/O ports (true data).

Interrupt Control

A block diagram of the interrupt control section is shown in Figure 2. The interrupt inputs (6 dedicated, 9 programmable) are sampled by \emptyset (active low) and are ANDed with their respective mask bits. If an interrupt input is active (low) and enabled (MASK = 1), the signal is passed through to the priority encoder where the
highest priority signal is encoded into a 4-bit binary code as showr in Table 3. The code along with the interrupt request is then output via the CPU interface on the leading edge of the next $\bar{\phi}$ to ensure proper synchronization to the processor.
The output signals will remain valid until the corresponding interrupt input is removed, the interrupt is disabled (MASK $=0$), or a higher priority enabled interrupt becomes active. When the highest priority enabled interrupt is removed, the code corresponding to the next highest priority enabled interrupt is output. If no enabled interrupt is active, all CPU interface lines (NTREQ, $\mathrm{IC}_{0}-\mathrm{IC}_{3}$) are held high. $\overline{\mathrm{RST}_{1}}$ (power-up-reset) will force the output code to ($0,0,0,0$) with INTREQ held high and will reset all mask bits low (interrupts disabled). Individual interrupts can be subsequently enabled (disabled) by programming the appropriate command bits. Unused interrupt inputs may be used as datum inputs by disabling the interrupt (MASK $=0$).
Input/Output
A block diagram of the I/O section is shown in Figure 3. Up to 16 individually controlled I/O ports are available (7 dedicated, 9 programmable). ${\overline{\operatorname{RST}_{1}} \text { or } \overline{\mathrm{RST}_{2}} \text { (a command }}^{2}$ bit) will program all ports to the input mode. Writing a datum to any port will program that port to the output mode and latch out the datum. The port will then remain in the output mode until either RST_{1} or $\overline{\mathrm{RST}}_{2}$ is executed. Data present on the Group 2 pins can be read by either the Read Interrupt Commands or the Read Input Commands. Group 2 pins being used as input ports should have their respective Interrupt Mask values reset (low) to prevent false interrupts from occurring. In applications where Group 1 pins are not required as interrupt inputs, they may be used as input ports and read using the Read Input commands. As with Group 2 ports, any pins being used as input ports should have their respective Interrupt Masks disabled.

Table 2. CRU Bit Assignments

CRU Bit	S_{0}	S_{1}	S_{2}	S_{3}	S_{4}	CRU Read Data	CRU Write Data
0	0	0	0	0	0	CONTROL BIT(1)	CONTROL BIT(1)
1	0	0	0	0	1	$\overline{\mathrm{NT}}_{1} /$ CLK $_{1}(2)$	Mask 1/CL.K ${ }_{1}$ (3)
2	0	0	0	1	0	$\underline{-\mathrm{NT}_{2}} / \mathrm{CLK}_{2}$	Mask 2/CLK 2
3	0	0	0	1	1	$\overline{\mathrm{NNT}}_{3} / \mathrm{CLK}_{3}$	Mask 3/CLK 3
4	0	0	1	0	0	$\overline{-N T}_{4} /$ CLK $_{4}$	Mask 4/CLK ${ }_{4}$
5	0	0	1	0	1	$\overline{-N T}_{5} /$ CLK $_{5}$	Mask 5/CLK ${ }_{5}$
6	0	0	1	1	0	$\overline{\mathrm{NT}}_{6} / \mathrm{CLK}_{6}$	Mask 6/CLK 6
7	0	0	1	1	1	$\overline{\mathrm{NT}}_{7} / \mathrm{CLK}_{7}$	Mask 7/CLK ${ }_{7}$
8	0	1	0	0	0	$\overline{\mathrm{INT}}_{8} / \mathrm{CLK}_{8}$	Mask 8/CLK 8
9	0	1	0	0	P1	$\overline{I N T}_{9} / \mathrm{CLK}_{9}$	Mask 9/CLK ${ }_{9}$
10	0	1	0	1	0	$\overline{\mathrm{INT}}_{10} /$ CLK $_{10}$	Mask 10/CLK 10
11	0	1	0	1	1	$\overline{\mathrm{NT}}_{11} /$ CLK $_{11}$	Mask 11/CLK ${ }_{11}$
12	0	1	1	0	0	${\overline{\mathrm{NT}}{ }_{12} / \mathrm{CLK}_{12} \text { }}^{\text {d }}$	Mask 12/CLK ${ }_{12}$
13	0	1	1	0	1	$\overline{\mathrm{NT}}_{13} /$ CLK $_{13}$	Mask 13/CLK ${ }_{13}$
14	0	1	1	1	0	$\overline{\mathrm{INT}}_{14} / \mathrm{CLK}_{14}$	Mask 14/CLK 14
15	0	1	1	1	1	$\overline{\mathrm{INT}}_{15} / \overline{\text { INTREQ }}$	Mask 15/ $\overline{\mathrm{RST}}_{2}(4)$
16	1	0	0	0	0	$\mathrm{P}_{0} \mathrm{INPUT}(5)$	P_{0} Output(6)
17	1	0	0	0	1	P_{1} Input	P_{1} Output
18	1	0	0	1	0	P_{2} Input	P_{2} Output
19	1	0	0	1	1	P_{3} Input	P_{3} Output
20	1	0	1	0	0	P_{4} Input	P_{4} Output
21	1	0	1	0	1	P_{5} Input	P_{5} Output
22	1	0	1	1	0	P_{6} Input	P_{6} Output
23	1	0	1	1	1	P_{7} Input	P_{7} Output
24	1	1	0	0	0	P_{8} Input	P_{8} Output
25	1	1	0	0	1	P_{9} Input	P_{9} Output
26	1	1	0	1	0	P_{10} Input	P_{10} Output
27	1	1	0	1.	1	P_{11} Input	P_{11} Output
28	1	1	1	0	0	P_{12} Input	P_{12} Output
29	1	1	1	0	1	P_{13} Input	P_{13} Output
30	1	1	1	1	0	P_{14} Input	P_{14} Output
31	1	1	1	1	1	P_{15} Input	P_{15} Output

NOTES:
(1) $0=$ Interrupt Mode $1=$ Clock Mode
(2) Data present on INT input pin (or clock value) will be read regardless of mask value.
(3) While in the Interrupt Mode (Control Bit $=0$) writing a " 1 ' into mask will enable interrupt; a ' 0 ' ' will disable.
(4) Writing a zero to bit 15 while in the clock mode (Control Bit $=1$) executes a software reset of the $1 / 0$ pins.
(5) Data present on the pin will be read. Output data can be read without affecting the data.
(6) Writing data to the port will program the port to the output mode and output the data.

Figure 2. Interrupt Control Logic

Table 3. Interrupt Code Generation

Interrupt/State	Priority	IC_{0}	IC_{1}	IC_{2}	IC_{3}	INTREQ
	1 (HIGHEST)	0	0	0	1	0
$\overline{\mathrm{INT}}{ }_{2}$	2	0	0	1	0	0
${\overline{\mathrm{NN}} \mathrm{T}_{3} / \mathrm{CLOCK}}^{\text {d }}$	3	0	0	1	1	0
NTT_{4}	4	0	1	0	0	0
$\overline{\mathrm{NNT}}_{5}$	5	0	1	0	1	0
	6	0	1	1	0	0
$\overline{\mathrm{N}} \mathrm{T}_{7}$	7	0	1	1	1	0
$\underline{\mathrm{N}} \mathrm{T}_{8}$	8	1	0	0	0	0
$\overline{\mathrm{N}} \mathrm{T}_{2}$	2	0	0	1	0	0
$\underline{\mathrm{N}} \mathrm{T}_{9}$	9	1	0	0	1	0
$\mathbb{N T}_{10}$	10	1	0	1	0	0
TNT_{11}	11	1	0	1	1	0
NNT_{12}	12	1	1	0	0	0
$\overline{N N T}_{13}$	13	1	1	0	1	0
NNT_{14}	14	1	1	1	0	0
$\overline{\mathrm{N}} \mathrm{T}_{15}$	15 (LOWEST)	1	1	1	1	0
NO INTERRUUT	-	1	1	1	1	1

S9901/S9901-4

Programmable Real Time Clock

A block diagram of the programmable real time clock section is shown in Figure 4. The clock consists of a 14-bit counter that decrements at a rate of $F(\phi) 64$ (at 3 MHz this results in a maximum interval of 349 ms with a resolution of $21.3 \mu \mathrm{~s}$) and can be used as either an interval timer or as an event timer.
The clock is accessed by writing a one into the control bit (address 0) to force CRU bits $1-15$ to clock mode (See Table 1). Writing a nonzero value into the clock register then enables the clock and sets its frequency. During system set up this entire operation can be accomplished with one additional I/O instruction (LCDR) as shown in Table 4. The clock functions as an interval timer by decrementing to zero, issuing an interrupt, and restarting at the programmed start value. When the clock interrupt is active, the clock mask (mask bit 3) must be written into (with either a " 1 ' or a " 0 ") to clear the interrupt.
If a value other than that initially progammed is required, a new 14-bit clock start value is similarly programmed by executing a CRU write operation to the
same locations. During programming the decrementer is restarted with the current start value after each start value bit is written. A timer restart can be easily implemented by writing a single bit to any of the clock bits.
The clock is disabled by $\overline{\mathrm{RS}}_{1}$ (power-up-clear) or by writing a zero value into the clock register. Enabling the clock programs the third priority interrupt ($\overline{\mathrm{NT}}_{3}$) as the clock interrupt and disables generation of interrupts from the $\overline{\mathrm{INT}}_{3}$ input pin. When accessing the clock, all interrupts should be disabled to ensure that system integrity is maintained.
The clock can also function as an event timer since whenever the device is switched to the clock mode, by writing a one to the control bit, the current value of the clock is stored in the clock read register. Reading this value, and thus the elapsed event time, is accomplished by executing a 14 -bit CRU read operation (addresses 1-14). The software example (Table 3) shows a read of the event timer.
The current status of the machine can always be obtained by reading the control (address zero) bit. A " 0 " indicates the machine is in an interrupt mode. Bits 1

Figure 3. I/O Interface

through 15 would normally be the interrupt input lines in this mode, but if any are not needed for interrupts, they may also be read with a CRU input command and interpreted as normal data inputs. A "1" read on the control bit indicates that the 9901 is in the clock mode. Reading bits 1 through 14 completes the event timer
operation as described above. Reading bit 15 indicates whether the interrupt request line is active.

A software reset $\overline{\operatorname{RST}}_{2}$ can be performed by writing a " 1 " to the control bit followed by writing a " 1 " to bit 15 , which forces all I/O ports to the input mode.

Table 4. Software Examples

Assumptions

-System uses clock at maximum interval

- Total of 6 interrupts are used
-8 bits are used as output port

System	LI	R12,PSIBAS	Setup CRU Base Address to point 9901
Setup for	LDCR	@X,0	Program Clock with maximum interval
Interrupt	LDCR	@Y,7	Re-enter interrupt mode and enable top 6 interrupts
System	LI	R12,PSIBAS + 16	Move CRU Base to point I/0 port
Setup for	LDCR	R1,8	Move most significant byte of R_{1} to output port
Output			
Ports			

Read Programmed Inputs	LI STCR	$\text { R12,PSIBAS + } 24$	Move CRU Base to point to input ports
	STCR	$\mathrm{R} 2,8$	Move input port to most significant byte of R2
	$\begin{aligned} & (X) \\ & (Y) \end{aligned}$	$\begin{aligned} & \text { FFFF } \\ & 7 F X X \end{aligned}$	
Don't cares			
	BLWP	CLKVCT	Save Interrupt Mask
CLKPC	LIMI	0	Disable INTERRUPTS
	LI	R12,PSIBAS + 1	Set up CRU Base
	SB0	-1	Set 9901 into Clock Mode, Latch Clock Value
	STCR	R4,14	Store Read Register Latch Value into R_{4}
	SBZ	-1	Reenter Interrupt Mode and Restarting Clock
	RTWP \circ		Restore Interrupt Mask
	-		
CLKVCT	DATA	CLKWP, CLKPC	

Figure 4. Real Time Clock

System Operation

During power up, $\overline{\mathrm{RST}}_{1}$ must be activated (low) for a minimum of 2 clock cycles to force the S 9901 into a known state. $\overline{\mathrm{RST}}_{1}$ will disable all interrupts, disable the clock, program all I/O ports to the mode, and force $\mathrm{IC}_{0^{-}}$ $1 C_{3}$ to $(0,0,0,0)$ with INTREQ held high. System software must then enable the proper interrupts, program the clock (if used), and configure the I/O ports as required (see Table 4 for an example). After initial power up, the S9901 will be accessed only as needed to service the clock, enable (disable) interrupts, or read (write) data to
the I/O ports. The I/O ports can be reconfigured by use of the $\overline{\mathrm{RST}}_{2}$ command bit.
Figure 5 illustrates the use of an S9901 with an S9900. The S9904 is used to generate RST to reset the 9900 and the 9901 (connected to $\overline{\mathrm{RST}}_{1}$). Figure 6 shows an S 9980 system using the S9901. The reset function, load interrupt, and 4 maskable interrupts allowed in a 9980 are encoded as shown in Table 5. Connecting the system as shown ensures that the proper reset will be applied to the 9980.

Table 5. 9980 Interrupt Level Data

Interrupt Code $\left(I_{0}-C_{2}\right)$	Function	Vector Location (Memory Address In Hex)	Device Assignment	Interrupt Mask Values To Enable (ST_{12} through ST_{15})
110	Level 4	$\begin{array}{llll}0 & 0 & 1 & 0\end{array}$	External Device	4 Through F
101	Level 3	0 0 0 0 C	External Device	3 Through F
100	Level 2	$0 \quad 008$	External Device	2 Through F
011	Level 1	$0 \begin{array}{llll}0 & 0 & 0 & 4\end{array}$	External Device	1 Through F
001	Reset	0000	Reset Stimulus	Don't Care
010	Load	$3 \mathrm{~F} F \mathrm{C}$	Load Stimulus	Don't Care
000	Reset	0000	Reset Stimulus	Don't Care
111	No-Op	-	-	Don't Care

Figure 5. S9900-S9901 Interface

Figure 6. S9980-S9901 Interface

ASYNCHRONOUS COMMUNICATIONS CONTROLLER (ACC)

Features

5- to 8-Bit Character Length1, $11 / 2$, or 2 Stop BitsEven, Odd, or No ParityFully Programmable Data Rate GenerationInterval Timer with Resolution from 64 to $16,320 \mu \mathrm{~s}$Fully TTL Compatible, Including Single Power Supply

General Description

The S9902 Asynchronous Communication Controller (ACC) is a peripheral device for the $\$ 9900$ family of microprocessors. The ACC provides an interface between the microprocessor and a serial asynchronous communication channel, performing the timing and data serialization and deserialization, thus facilitating the control of the asynchronous channel by the microprocessor.

S9902 Electrical Specifications
Absolute Maximum Ratings Over Operating Free Air Temperature Range (Unless Otherwise Noted)*

All Input and Output Voltages .. -0.3 V to +10 V
Continuous Power Dissipation ... 0.7. 0. .
Operating Free-Air Temperature Range ... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
"Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute maximum rated conditions for extended period may affect device reliability.

Recommended Operating Conditions

Parameter	Min.	Nom.	Max.	Unit
Supply Voltage, $V_{\text {CC }}$	4.75	5	5.25	V
Supply Voltage, $V_{S S}$		0		V
High-Level Input Voltage, $\mathrm{V}_{\text {IH }}$	2.2	2.4	$\mathrm{~V}_{\mathrm{CC}}$	V
Low-Level Input Voltage, V_{IL}		0.4	0.8	V
Operating Free-Air Temperature, T_{A}	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

Over Full Range of Recommended Operating Conditions (Unless Otherwise Noted)

Symbol	Parameter	Min.	Typ.	Max.	Unit	Conditions
1	Input Current (Any Input)			± 10	$\mu \mathrm{A}$	$V_{1}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$
V_{OH}	High Level Output Voltage	$\begin{aligned} & \hline 2.2 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$		V	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{aligned}$
$V_{0 L}$	Low Level Output Voltage		0.4	0.85	V	$\mathrm{I}_{0 \mathrm{~L}}=3.2 \mathrm{~mA}$
${ }^{\text {I CC(AV) }}$	Average Supply Current from $V_{\text {CC }}$		2.5	100	mA	$\mathrm{t}_{\mathrm{C}(0)}=250 \mathrm{~ns}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\begin{aligned} & \mathrm{C}_{\mathrm{i}} \\ & \mathrm{C}_{0} \end{aligned}$	Capacitance, Any Input Capacitance, Any Output		$\begin{aligned} & 10 \\ & 20 \end{aligned}$		pF	$f=1 \mathrm{MHz},$ All other pins at 0 V

Timing Requirements
Over Full Range of Operating Conditions

Symbol	Parameter	\$9902			\$9902-4			Unit
		Min.	Typ.	Max.	Min.	Typ.	Max.	
$\mathrm{t}_{\mathrm{C}(0)}$	Clock Cycle Time	300	333	2000	240	250	667	ns
trio)	Clock Rise Time	5	10	12	8		40	ns
$\mathrm{tf}_{(0)}$	Clock Fall Time	225	10	12	10		40	ns
$\mathrm{t}_{\mathrm{H}}(0)$	Clock Pulse Low Width (High Level)		225	240	180			ns
$\mathrm{t}_{\text {L }}$)	Clock Pulse Width (Low Level)	45	45	55	40			ns
tsu(ad)	Setup Time for Address and $\mathrm{CRU} \mathrm{OuT}_{\text {T }}$ Before CRU CLK	180	220		150	150		ns
tsu(CE)	Setup Time for CE Before CRU CLK	100	185		110	110		ns
tho	Hold Time for Address, CE and $C R U_{\text {OUT }}$ After ${ }^{\text {CRU }}$ CLK	60	90		50	50		ns
twce	$\mathrm{CRU}_{\text {clk }}$ Pulse Width	100	120		80			ns

Switching Characteristics

Over Full Range of Recommended Operating Conditions

Symbol	Parameter	Min.	Typ.	Max.	Unit	Conditions
tpCl(cd)	Propagation Delay, Address-to-Valid $\mathrm{CRU}_{\text {IN }}$			400	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$,
$\mathrm{tPCl}^{\text {(CE) }}$	Propagation Delay, $\overline{\mathrm{CE}-\text {-to-Valid }} \mathrm{CRU} \mathrm{IN}^{\text {N }}$			400	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
t_{H}	CRU ${ }_{\text {IN }}$ Hold Time After Address			20	ns	

Figure 3. Switching Characteristics

S9902 Pin Description

Table 1 defines the $\mathbf{S} 9902$ pin assignments and describes the function of each pin as shown on page 1.
Table 1.

Signature	Pin	V/0	Description
$\overline{\text { INT }}$	1	0	Interrupt-when active (low), the INT output indicates that at least one of the interrupt conditions has occurred.
$\mathrm{X}_{\text {OUT }}$	2	0	Transmitter serial data output line-X $\mathrm{X}_{\text {OUT }}$ remains inactive (high) when S 9902 is not transmitting.
RIN	3	1	Receiver serial data input line-RCV—must be held in the inactive (high) state when not receiving data. A transition from high to low will activate the receiver circuitry.
$\mathrm{CRU}_{\text {IN }}$	4	0	Serial data output pin from S 9902 to $\mathrm{CRU}_{\text {IN }}$ input pin of the CPU .
$\overline{\text { RTS }}$	5	0	Request-to-send output from S9902 to modem. This output is enabled by the CPU and remains active (low) during transmission from the $\$ 9902$.
$\overline{\text { CTS }}$	6	1	Clear-to-send input from modem to S9902. When active (low), it enables the transmitter section of S9902.
$\overline{\text { DSR }}$	7	1	Data set ready intput from modem to S9902. This input generates an interrupt when going on or Off.
$\mathrm{CRU}_{\text {OUT }}$	8	1	Serial data input line to $\mathrm{S9902}$ from $\mathrm{CRU}_{\text {OUt }}$ line of the CPU.
$V_{S S}$	9	1	Ground reference voltage.
S_{4} (LSB)	10	1	
S_{3}	11	1	
S_{2}	12	1	
S_{1}	13	1	Address bus $\mathrm{S}_{0}-\mathrm{S}_{4}$ are the lines that are addressed by the CPU to select a particular S9902 function.
S_{0}	14	1	
${ }_{\text {CRU }}^{\text {CLK }}$	15	1	CRU Clock. When active (high), 59902 from CRU_{0} Ot line of the CPU
ϕ	16	1	TTL Clock.
CE	17	1	Chip enable-when CE is inactive (high), the $\$ 9902$ address decoding is inhibited which prevents execution of any S 9902 command function. $\mathrm{CRU}_{\mathrm{IN}}$ remains at high-impedance when $\overline{\mathrm{CE}}$ is inactive (high).
$V_{c c}$	18	1	Supply voltage (+5 V nominal).

Device Interface

The relationship of the ACC to other components in the system is shown in Figures 2 and 3. The ACC is connected to the asynchronous channel through level shifters which translate the TTL inputs and outputs to the appropriate levels (e.g., RS-232C, TTY current loop, etc.). The microprocessor transfers data to and from the ACC via the Communication Register Unit (CRU).

CPU Interface

The ACC interfaces to the CPU through the Communication Register Unit (CRU). The CRU interface consists of five address-select lines ($\mathrm{S}_{0}-\mathrm{S}_{4}$), chip enable (CE), and three CRU control lines ($\mathrm{CRU}_{\text {IN }}, \mathrm{CRU}_{\text {OUT }}$, and $C R U_{\text {CLK }}$). When $\overline{\mathrm{CE}}$ becomes active (low), the five select lines address the CRU bit being accessed. When data is being transferred to the ACC from the CPU, CRU OUT contains the valid datum which is strobed by $C R U_{\text {cLK. }}$. When $A C C$ data is being read, $C R U_{\text {IN }}$ is the datum output by the ACC.

Figure 4. S9902 ACC In a S9900 System

Figure 5. S9902 ACC in a S9980 System

Asynchronous Communication Channel Interface

The interface to the asynchronous communication channel consists of an output control line ($\overline{\mathrm{RTS}}$), two input status lines ($\overline{\mathrm{DSR}}$ and $\overline{\mathrm{CTS}}$), and serial transmit ($\mathrm{X}_{\text {OUT }}$) and receive (RIN) data lines. The request-to-send line (RTS) is active (low) whenever the transmitter is activated. However, before data transmission begins, the clear-to-send (CTS) input must be active. The data set ready ($\overline{\mathrm{DSR}}$) input does not affect the receiver or transmitter. When $\overline{\mathrm{DSR}}$ or $\overline{\mathrm{CTS}}$ changes level, an interrupt is generated.

Interrupt Output

The interrupt output ($\overline{\mathrm{INT}}$) is active (low) when any of the following conditions occurs and the corresponding interrupt has been enabled by the CPU:
(1) $\overline{\mathrm{DSR}}$ or $\overline{\mathrm{CTS}}$ changes levels (DSCH $=1$);
(2) a character has been received and stored in the Receiver Buffer Register (RBRL = 1);
(3) the Transmit Buffer Register is empty (XBRE = 1); or
(4) the selected time interval has elapsed (TIMELP $=1$).

The logical relationship of the interrupt output is shown below.

$\overline{\mathrm{NT}}$ Output Generation

Clock Input

The clock input to the ACC $(\bar{\phi})$ is normally provided by the $\overline{\phi 3}$ output of the clock generator (9900 systems) or the S9980 (9980 systems). This clock input is used to generate the internal device clock, which provides the time base for the transmitter, receiver, and interval timer of the ACC.

Device Operation

Control and Data Output

Data and control information is transferred to the ACC using $\overline{C E}, \mathrm{~S}_{0}-\mathrm{S}_{4}, \mathrm{CRU} \mathrm{U}_{\text {OUT }}$, and $\mathrm{CRU} \mathrm{U}_{\text {CLK }}$. The diagrams on page 7 show the connection of the ACC to the S 9900 and S9980 CPUs. The high-order CPU address lines are used to decide the $\overline{\mathrm{CE}}$ signal when the device is being selected. The low-order address lines are connected to the five address-select lines $\left(\mathrm{S}_{0}-\mathrm{S}_{4}\right)$. Table 2 describes the output bit address assignments for the ACC.

Connection of the ACC to the S9900

Connection of the ACC to the S9980 CPU's

Table 2. S9902 ACC Output Bit Address Assigignments

Address $_{\mathbf{2}}$							
$\mathbf{S}_{\mathbf{0}}$	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{3}}$	$\mathbf{S}_{\mathbf{4}}$	Address $_{\mathbf{1 0}}$	Name	Description
1	1	1	1	1	31	RESET	Reset Device
					$30-22$		Not used
1	0	1	0	1	21	DSCENB	Data Set Status Change Interrupt Enable
1	0	1	0	0	20	TIMENB	Timer Interrupt Enable
1	0	0	1	1	19	XBIENB	Transmitter Interrupt Enable
1	0	0	1	0	18	RIENB	Receiver Interrupt Enable
1	0	0	0	1	17	BRKON	Break On
1	0	0	0	0	16	RTSON	Request to Send On
0	1	1	1	1	15	TSTMD	Test Mode
0	1	1	1	0	14	LDCTRL	Load Control Register
0	1	1	0	1	13	LDIR	Load Interval Register
0	1	1	0	0	12	LRDR	Load Receiver Data Rate Register
0	1	0	1	1	11	LXDR	Load Transmit Data Rate Register
					$10-0$		Control, Interval, Receive Data Rate, Transmit Data Rate, and
							Transmit Buffer Registers

Bit 31 (RESET) - Writing a one or zero to Bit 31 causes the device to be reset, disabling all interrupts, initializing the transmitter and receiver, setting $\overline{R T S}$ inactive (high), setting all register load control flags (LDCTRL, LDIR, LRDR, and LXDR) to a logic one level, and resetting the BREAK flag. No other input or output operations should be performed for $11 \varnothing$ clock cycles after issuing the RESET command.
Bit 30 -Bit 22

- Not used.

Bit 21 (DSCENB) - Data Set Change Interrupt Enable. Writing a one to Bit 21 causes the $\overline{\mathrm{NT}}$ output to be active (low) whenever DSCH (Data Set Status Change) is a logic one. Writing a zero to Bit 21 causes DSCH interrupts to be disabled. Writing either a one or zero to Bit 21 causes DSCH to be reset.
Bit 20 (TIMENB) - Timer Interrupt Enable. Writing a one to Bit 20 causes the INT output to be active whenever TIMELP (Timer Elapsed) is a logic one. Writing a zero to Bit 20 causes TIMELP interrupts to be disabled. Writing either a one or zero to Bit 20 causes TIMELP and TIMERR (Timer Error) to be reset.
Bit 19 (XBIENB) - Transmit Buffer Interrupt Enable. Writing a one to Bit 19 causes the INT output to be active whenever XBRE (Transmit Buffer Register Empty) is a logic one. Writing a zero to Bit 19 causes XBRE interrupts to be disabled. The state of XBRE is not affected by writing to Bit 19.
Bit 18 (RIENB) - Receiver Interrupt Enable. Writing a one to Bit 18 causes the INT output to be active whenever RBRL (Receiver Buffer Register Loaded) is a logic one. Writing a zero to Bit 18 disables RBRL interrupts. Writing either a one or zero to Bit 18 causes RBRL to be reset.
Bit 17 (BRKON)

- Break On. Writing a one to Bit 17 causes the XOUT (Transmitter Serial Data Output) to go to a logic zero whenever the transmitter is active and the Transmit Buffer Register (XBR) and the Transmit Shift Register (XSR) are empty. While BRKON is set, loading of characters into the XBR is inhibited. Writing a zero to Bit 17 causes BRKON to be reset and the transmitter to resume normal operation.
Bit 16 (RTSON)

Bit 15 (TSTMD)

- Request-to-Send On. Writing a one to Bit 16 causes the RTS output to be active (low). Writing a zero to Bit 16 causes $\overline{R T S}$ to go to a logic one after the XSR and XBR are empty, and BRKON is reset. Thus, the $\overline{R T S}$ output does not become inactive (high) until after character transmission has been completed.
- Test Mode. Writing a one to Bit 15 causes $\overline{\mathrm{RTS}}$ to be internally connected to $\overline{\mathrm{CTS}}$, XOUT to be internally connected to RIN, $\overline{\operatorname{DSR}}$ to be internally held low, and the Interval Timer to operate at 32 times its normal rate. Writing a zero to Bit 15 re-enables normal device operation.

Bit 14-11 \quad - Register Load Control Flags. Output Bits 14-11 control which of the five registers will be loaded by writing to Bits 10-0. The flags are prioritized as shown in Table 3.
Table 3. S9902 ACC Register Load Selection

Register Load Control Flag Status				Register Enabled
LDCTRL	LDIR	LDR	LXDR	
1	X	X	X	Control Register
0	1	X	X	Interval Register
0	0	1	X	Receive Data Rate Register
0	0	X	1	Transmit Data Rate Register
0	0	0	0	Transmit Buffer Register

Bit 14 (LDCTRL)

Bit 13 (LDIR) - Load Interval Register, Writing a one to Bit 13 causes LDIR to be set to a logic one. When LDIR $=1$ and LDCTRL $=0$, any data written to Bits $0-7$ are directed to the Interval Register. Note that LDIR is also set to a logic one when a datum is written to Bit 31 (RESET); however, Interval Register loading is not enabled until LDCTRL is set to a logic zero. Writing a zero to Bit 13 causes LDIR to be reset to logic zero, disabling loading of the internal Register. LDIR is also automatically reset to logic zero when a datum is written to Bit 7 of the Interval Register, which normally occurs as the last bit written when loading the Interval Register with a LDCR instruction.
Bit 12 (LRDR) - Load Receive Data Rate Register. Writing a one to Bit 12 causes LRDR to be set to a logic one. When $\operatorname{LRDR}=1, \operatorname{LDIR}=0$, and $\operatorname{LDCTRL}=0$, any data written to Bits $0-10$ are directed to the Receive Data Rate Register. Note that LRDR is also set to a logic one when a datum is written to Bit 31 (RESET); however, Receive Data Rate Register loading is not enabled until LDCTRL and LDIR have been set to a logic zero. Writing a zero to Bit 12 causes LRDR to be reset to a logic zero, disabling loading of the Receive Data Rate Register. LRDR is also automatically reset to logic zero when a datum is written to Bit 10 of the Receive Data Rate Register, which normally occurs as the last bit written when loading the Receive Data Rate Register with a LDCR instruction.
Bit 11 (LXDR) - Load Transmit Data Rate Register. Writing a one to Bit 11 causes LXDR to be set to a logic one. When $\operatorname{LXDR}=1$, $\operatorname{LDIR}=0$, and $\operatorname{LDCTRL}=0$, any data written to Bits $0-10$ are directed to the Transmit Data Rate Register. Note that loading of both the Receive and Transmit Data Rate Registers is enabled when $\operatorname{LDCTRL}=0 ; \operatorname{LDIR}=0, \operatorname{LRDR}=1$, and $\operatorname{LXDR}=1$; thus these two registers may be loaded simultaneously when data are received and transmitted at the same rate. LXDR is also set to a logic one when a datum is written to Bit 31 (RESET); however, Transmit Data Rate Register loading is not enabled until LDCTRL and LDIR have been reset to logic zero. Writing a zero to Bit 11 causes LXDR to be reset to logic zero, disabling loading of the Transmit Data Rate Register. Since Bit 11 is the next bit addressed after loading the Transmit Data Rate Register, the register may be loaded and the LXDR flag reset with a single LDCR instruction where 12 bits (Bits 0-11) are written, with a zero written to Bit 11 .

Control Register

The Control Register is loaded to select character length, device clock operation, parity, and the number of stop bits for the transmitter. Table 4 shows the bit address assignments for the Control Register.

Table 4. Control Register Bit Address Assignments

Address $_{\mathbf{1 0}}$	Name	Description
7	SBS1	
6	SBS2	
5	PENB	Stop Bit Select
4	PODD	Parity Enable
3	CLK4M	Odd Parity Select
2	-	O Input Divide Select
1	RCL1	Not Used
0	RCL0	

7	6	5	4	3	2	1	0
SBS1	SBS2	PENB	PODD	CLK4M	NOT USED	RCL1	RCL0
MSB							

Bits 7 and 6
(SBS1 and SBS2)

Bits 5 and 4
(PENB and PODD)

- Stop Bit Selection. The number of stop bits to be appended to each transmitter character is selected by Bits 7 and 6 of the Control Register as shown below. The receiver only tests for a single stop bit, regardless of the status of Bits 7 and 6 .

Stop Bit Selection

SBS1 Bit $\mathbf{7}$	SBS2 Bit $\mathbf{6}$	Number of Transmitted Stop Bits
0	0	$11 / 2$
0	1	2
1	0	1
1	1	1

- Parity Selection. The type of parity to be generated for transmission and detected for reception is selected by Bits 5 and 4 of the Control Register as shown below. When parity is enabled (PENB $=1$), the parity bit is transmitted and received in addition to the number of bits selected for the character length. Odd parity is such that the total number of ones in the character and parity bit, exclusive of stop bit(s), will be odd. For even parity, the total number of ones will be even.

Parity Selection

PENB Bit 5	PODD Bit 4	PARITY
0	0	None
0	1	None
1	0	Even
1	1	Odd

Bit 3 (CLK4M) $\quad-\quad \phi$ input Divide Select. The ϕ input to the S9902 ACC is used to generate internal dynamic logic clocking and to establish the time base for the Interval Timer, Transmitter and Receiver. The ϕ input is internally divided by either 3 or 4 to generate the two-phase internal clocks required for MOS logic, and to establish

S9902/S9902-4

the basic internal operating frequency (fint) and internal clock period (tint). When Bit 3 of the Control Register is set to a logic one (CLK4M $=1$), ϕ is internally divided by 4 , and when CLK4M $=0, \phi$ is divided by 3 . For example, when $\phi=3 \mathrm{MHz}$, as in a standard 3 MHz S 9900 system, and CLK4M $=0, \phi$ is internally divided by 3 to generate an internal clock period tint of $1 \mu \mathrm{~s}$. The figure below shows the operation of the internal clock divider circuitry. The internal clock frequency should be no greater than 1.1 MHz ; thus, when $f \phi>3.3 \mathrm{MHz}$, CLK4M should be set to a logic one.

Internal Clock Divider Circuitry

Bits 1 and 0
$\left(\mathrm{RCL}_{1}\right.$ and $\left.\mathrm{RCL}_{0}\right)$ - Character Length Select. The number of data bits in each transmitted and received character is determined by Bits 1 and 0 of the Control Register as shown below.

Character Length Selection

RCL1 Bit 1	RCLO Bit 0	Character Length
0	0	5 Bits
0	1	6 Bits
1	0	7 Bits
1	1	8 Bits

Interval Register

The Interval Register is enabled for loading whenever LDCTRL $=0$ and LDIR $=1$. The Interval Register is used for selecting the rate at which interrupts are generated by the Interval Timer of the ACC. The figure below shows the bit address assignments for the Interval Register when enabled for loading.

Interval Register Bit Address Assignments

7	6	5	4	3	2	1	0
TMR7	TMR6	TMR5	TMR4	TMR3	TMR2	TMR1	TMR0
MSB							

The figure below illustrates the establishment of the interval for the Interval Timer. As an example, if the Interval Register is loaded with a value of $80_{16}\left(128_{10}\right)$ the interval at which Timer Interrupts are generated is $\mathrm{t}_{\mathrm{ITVL}}=$ tint $^{\circ} 64^{\circ}$ $\mathrm{M}=(1 \mu \mathrm{~s})(\cdot 64)(\cdot 128)=8.192 \mathrm{~ms}$. when tint $=1 \mu \mathrm{~s}$.

Time Internal Selection

Receive Data Rate Register

The Receive Data Rate Register is enabled for loading whenever LDCTRL = $0, \operatorname{LDIR}=0$, and LRDR $=1$. The Receive Data Rate Register is used for selecting the bit rate at which data is received. The diagram shows the bit address assignments for the Receive Data Rate Register when enabled for loading.

Receive Data Rate Register Bit Address Assignments

10	9	8	7	6	5	4	3	2	1	0
RDV8	RDR9	RDR8	RDR7	RDR6	RDR5	RDR4	RDR3	RDR2	RDR1	RDR0
MSB										

The following diagram describes the manner in which the receive data rate is established. Basically, two programmable counters are used to determine the interval for one-half the bit period of receive data. The first counter either divides the internal system clock frequency (fint) by either 8 (RDV8 =1) or 1 (RDV8 = 0). The second counter has ten stages and may be programmed to divide its input signal by any value from 1 (RDR9-RDRO $=0000000001$) to 1023 (RDR8-RDR0 $=1111111111$). The frequency of the output of the second counter ($f_{\text {RHBT }}$) is double the receive-data rate. Register is loaded with a value of 11000111000, RDV8 $=1$, and RDR9-RDRO $=1000111000=238_{16}=56810$. Thus, for fint $=1 \mathrm{MHz}$, the receive-data rate $=1 \times 106 \div 8 \div 568 \div 2=110.04$ bits per second.

Receive Data Rate Selection

Quantitatively, the receive data rate $f_{\text {RCV }}$ may be described by the following algebraic expression:

$$
\mathrm{f}_{\mathrm{RCV}}=\frac{\mathrm{f}_{\mathrm{RHBT}}}{2}=\frac{\text { fint }}{2 \mathrm{mn}}=\frac{\mathrm{fint}}{(2)(8 \mathrm{RDV} 8)(\text { RDR9-RDRO })}
$$

Transmit Data Rate Register

The Transmit Data Rate Register is enabled for loading whenever LDCTRL $=0$, LDIR $=0$, and LXXDR $=1$. The Transmit Data Rate Register is used for selecting the data rate for the transmitter. The figure below shows the bit address assignments for the Transmit Data Rate Register.

| 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XDV8 | XDR9 | XDR8 | XDR7 | XDR6 | XDR5 | XDR4 | XDR3 | XDR2 | XDR1 | XDR0 |

Selection of transmit data rate is accomplished with the Transmit Data Rate Register in the same way that the receive data rate is selected when the Receive Data Rate Register. The algebraic expression for the Transmit Data Rate f_{XMT} is:

$$
f_{\text {XMT }}=\frac{f_{\text {XHBT }}}{2}=\frac{\text { fint }}{(2)(8 \times D V 8)(\times D R 9-X D R 0)}
$$

For example, if the Transmit Data Rate Register is loaded with a value of 00110100001 , XDV8 $=0$, and XDR9XDRO $=1 \mathrm{~A} 1_{16}=417$, the transmit data rate $=1 \times 106 \div 2 \div 1 \div 417=1199.04$ bits per second.

Transmlt Buffer Register

The Transmit Buffer Register is enabled for loading when LDCTRL $=0$, LDIR $=0, \operatorname{LRDR}=0, L X D R=0$, and BRKON $=0$. The Transmit Buffer Register is used for storage of the next character to be transmitted. When the transmitter is active, the contents of the Transmit Buffer Register are transferred to the Transmit Shift Register each time the previous character has been completely transmitted. The bit address assignments for the Transmit Buffer Register are shown below:

Transmit Buffer Register Blt Address Assignments

7	6	5	4	3	2	1	0
XBR7	XBR6	XBR5	XBR4	XBR3	XBR2	XBR1	XBR0
MSB							LSB

All 8 bits should be transferred into the register, regardless of the selected character length. The extraneous highorder bits will be ignored for transmission purposes; however, loading of bit 7 is internally detected to cause the Transmit Buffer Register Empty (XBRE) status flag to be reset.

Status and Data Input

Status and data information is read from the ACC using $\overline{\mathrm{CE}}, \mathrm{S}_{0}-\mathrm{S}_{4}$, and CRU IN . The following figure illustrates the relationship of the signals used to access data from the ACC. Table 6 describes the input bit address assignments for the ACC.

Table 5. CRU Output Bit Address Assignments

Table 6. S9902 ACC Input Bit Address Assignments

Address ${ }_{9}$					Address $_{10}$	Name	Description
S_{0}	S_{1}	S_{2}	S_{3}	S_{4}			
1	1	1	1	1	31	INT	Interrupt
1	1	1	1	0	30	FLAG	Register Load Control Flag Set
1	1	1	0	1	29	DSCH	Data Set Status Change
1	1	1	0	0	28	CTS	Clear to Send
1	1	0	1	1	27	DSR	Data Set Ready
1	1	0	1	0	26	RTS	Request to Send
1	1	0	0	1	25	TIMELP	Timer Elapsed
1	1	0	0	0	24	TIMERR	Timer Error
1	0	1	1	1	23	XSRE	Transmit Shift Register Empty
1	0	1	1	0	22	XBRE	Transmit Buffer Register Empty
1	0	1	0	1	21	RBRL	Receive Buffer Register Loaded
1	0	1	0	0	20	DSCINT	Data Set Status Charge Interrupt (DSCH-DSCENB)
1	0	0	1	1	19	TIMINT	Timer Interrupt (TIMELP-TIMENB)
1	0	0	1	0	18	-	Not used (always $=0$)
1	0	0	0	1	17	XBINT	Transmitter Interrupt (XBRE-XBIENB)
1	0	0	0	0	16	RBINT	Receiver Interrupt (RBRL-RIENB)
0	1	1	1	1	15	RIN	Receive Input
0	1	1	1	0	14	RSBD	Receive Start Bit Detect
0	1	1	0	1	13	RFBD	Receive Full Bit Detect
0	1	1	0	0	12	RFER	Receive Framing Error
0	1	0	1	1	11	ROVER	Receive Overrun Error
0	1	0	1	0	10	RPER	Receive Parity Error
0	1	0	0	1	9	RCVERR	Receive Error
0	1	0	0	0	8	-	Not used (always $=0$)
					7-0	RBR7-RBRO	Receive Buffer Register (Received Data)

Bit 31 (INT) $\quad-\quad$ INT $=$ DSCINT + TIMINT + XBINT + RBINT. The interrupt output $(\overline{\mathrm{INT}})$ is active when this status signal is a logic 1.
Bit 30 (FLAG) $\quad-\quad F L A G=L D C T R L+L R D R+L X D R=B R K O N$. When any of the register load control flags or BRKON is set, $\mathrm{FLAG}=1$.
Bit 29 (DSCH) - Data Set Status Change Enable. DSCH is set when the $\overline{\mathrm{DSR}}$ or $\overline{\mathrm{CTS}}$ input changes state. To ensure recognition of the state change, $\overline{\text { DSR }}$ or CTS must remain stable in its new state for a minimum of two internal clock cycles. DSCH is reset by an output to bit 21 (DSCENB).
Bit 28 (CTS) - Clear to Send. The CTS signal indicates the inverted status of the $\overline{\text { CTS }}$ device input.
Bit 27 (DSR) - Data Set Ready. The DSR signal indicates the inverted status of the $\overline{\operatorname{DSR}}$ device input.
Bit 26 (RTS)

- Request to Send. The RTS signal indicates the inverted status of the $\overline{\mathrm{RTS}}$ device output.

Bit 25 (TIMELP)

- Timer Elapsed. TIMELP is set each time the Interval Timer decrements to 0 . TIMELP is reset by an output to bit 20 (TIMENB).

S9902/S9902-4

Bit 24 (TIMERR)	-	Timer Error. TIMERR is set whenever the Interval timer decrements to 0 and TIMELP is already set, indicating that the occurrence of TIMELP was not recognized and cleared by the CPU before subsequent intervals elapsed. TIMERR is reset by an output to bit 20 (TIMENB).
Bit 23 (XSRE)	-	Transmit Shift Register Empty. When XSRE $=1$, no data is currently being transmitted and the XOUT output is at logic 1 unless BRKON is set. When XSRE $=0$, transmission of data is in progress.
Bit 22 (XBRE)	-	Transmit Buffer Register Empty. When XBRE = 1, the transmit buffer register does not contain the next character to be transmitted. XBRE is set each time the contents of the transmit buffer register are transferred to the transmit shift register. XBRE is reset by an output to bit 7 of the transmit buffer register (XBR7), indicating that a character has been loaded.
Bit 21 (RBRL)	-	Receive Buffer Register Loaded. RBRL is set when a complete character has been assembled in the receive shift register and the character is transferred to the receive buffer register. RBRL is reset by an output to bit 18 (RIENB).
Bit 20 (DSCINT).	-	Data Set Status Change Interrupt. DSCINT $=$ DSCH (input bit 29) • DSCENB (output bit 21). DSCINT indicates the presence of an enabled interrupt caused by the changing of state of $\overline{D R S}$ or $\overline{C T S}$.
Bit 19 (TIMINT)	-	Timer Interrupt. TIMINT = TIMELP (input bit 25) • TIMENB (output bit 20). TIMINT indicates the presence of an enabled interrupt caused by the interval timer.
Bit 17 (XBINT)	-	Transmitter Interrupt. XBINT = XBRE (input bit 22) • XBIENB (outpuit bit 19). XBINT indicates the presence of an enabled interrupt caused by the transmitter.
Bit 16 (RBINT)	-	Receiver Interrupt. RBINT = RBRL (input bit 21•RIENB (output bit 18). RBINT indicates the presence of an enabled interrupt caused by the receiver.
Bit 15 (RIN)	-	Receive Input. RIN indicates the status of the RIN input to the device.
Bit 14 (RSBD)	-	Receive Start Bit Detect. RSBD is set one-half bit time after the 1 -to-0 transition of RIN indicating the start bit of a character. If RIN is not still 0 at this point in time, RSBD is reset. Otherwise, RSBD remains true until the complete character has been received. This bit is normally used for testing purposes.
Bit 13 (RFBD)	-	Receive Full Bit Detect. RFBD is set one bit time after RSBD is set to indicate the sample point for the first data bit of the received character. RSBD is reset when the character has been completely received. This bit is normally used for testing purposes.
Bit 12 (RFER)	-	Receive Framing Error. RFER is set when a character is received in which the stop bit, which should be a logic 1 , is a logic 0 . RFER should only be read when RBRL (input bit 21) is a 1 . RFER is reset when a character with a correct stop bit is received.
Bit 11 (ROVER)	-	Receive Overrun Error. ROVER is set when a new character is received before the RBRL flag (input bit 21) is reset, indicating that the CPU failed to read the previous character and reset RBRL before the present character is completely received. ROVER is reset when a character is received and RBRL is 0 when the character is transferred to the receive buffer register.
Bit 10 (RPER)	-	Receive Parity Error. RPER is set when a character is received in which the parity is incorrect. RPER is reset when a character with correct parity is received.
Bit 9 (RCVERR)	-	Receive Error. RCVERR = RFER + ROVER + RPER. RCVERR indicates the presence of an error in the most recently received character.
Bit 7-Bit 0 (RBR7-RBRO	-	Receive Buffer Register. The receive buffer register contains the most recently received character. For character lengths of fewer than 8 bits the character is right justified, with unused most significant bit(s) all zero(es). The presence of valid data in the receive buffer register is indicated when RBRL is a logic 1.

Transmitter Operation

Transmitter Initialization

The operation of the transmitter is described in Figure 7. The transmitter is initialized by issuing the RESET command (output to bit 31), which causes the internal signals XSRE and XBRE to, be set, and BRKON to be reset. Device outputs RTS and XOUT are set, placing the transmitter in its idle state. When RTSON is set by the CPU, the RTS output becomes active and the transmitter becomes active when $\overline{\text { CTS }}$ goes low.

Data Transmission

If the Transmit Buffer Register contains a character, transmission begins. The contents of the Transmit Buffer Register are transferred to the Transmit Shift Register, causing XSRE to be reset and XBRE to be set. The first bit transmitted (start bit) is always a logic 0. Subsequently, the character is shifted out, LSB first. Only the number of bits specified by RCL_{1} and RCL_{0} (character length select) of the Control Register are shifted. If parity is enabled, the correct parity bit is next transmitted. Finally the stop bit(s) selected by SBS_{1} and SBS_{0} of the Control Register are transmitted. Stop bits are always logic one. XSRE is set to indicate that no transmission is in progress, and the transmitter again tests XBRE to determine if the CPU has yet loaded the next character. The waveform for a transmitted character is shown below.

Transmitted Character Waveform

BREAK Transmission

The BREAK message is transmitted only if $\mathrm{XBRE}=1$, $\overline{C T S}=9$, and $B R K O N=1$. After transmission of the BREAK message begins, loading of the Transmit Buffer Register is inhibited and XOUT is reset. When BRKON is reset by the CPU, XOUT is set and normal operation continues. It is important to note that characters loaded into the Transmit Buffer Register are transmitted prior to the BREAK message regardless of whether the character has been loaded into the Transmit Shift Register before BRKON is set. Any character to be transmitted subsequent to transmission of the BREAK
message may not be loaded into the Transmit Buffer Register until after BRKON is reset.

Transmission Termination

Whenever XSRE $=1$ and BRKON $=0$, the transmitter is idle, with XOUT set to one. If RTSON is reset at this time, the $\overline{\text { RTS }}$ device output will go inactive, disabling further data transmission until RTSON is again set. $\overline{\text { RTS }}$ will not go inactive, however, until any characters loaded into the Transmit Buffer Register prior to resetting RTSON are transmitted and BRKON $=0$.

Receiver Operation

Receiver Initialization

Operation of the S 9902 receiver is described in Figure 8. The receiver is initialized any time the CPU issues the RESET command. The RBRL flag is reset to indicate
that no character is currently in the Receive Buffer Register, and the RSBD and RFBD flags are reset. The receiver remains in the inactive state until a 1 to 0 transition is detected on the RIN device input.

S9902 Receiver Operation

Start Bit Detection

The receiver delays one-half bit time and again samples RIN to ensure that a valid start bit has been detected. If RIN $=0$ after the half-bit delay, RSBD is set and data reception begins. If RIN $=1$, no data reception occurs.

Data Reception

In addition to verifying the valid start bit, the half-bit delay after the 1 -to-0 transition also establishes the sample point for all subsequent data bits in this character. Theoretically, the sample point is in the center of each bit cell, thus maximizing the limits of acceptable distortion of data cells. After the first full bit delay, the least significant data bit is received and RFBD is set. The receiver continues to delay one-bit intervals and sample RIN until the selected number of bits is received. If parity is enabled, one additional bit is read for
parity. After an additional bit delay, the received character is transferred to the Receive Buffer Register, RBRL is set, ROVER and RPER are loaded with appropriate values, and RIN is tested for a valid stop bit. If RIN = 1, the stop bit is valid. RFER, RSBD, and RFBD are reset and the receiver waits for the next start bit to begin reception of the next character.
If RIN = 0 when the stop is sampled, RFER is set to indicate the occurrence of a framing error. RSBD and RFBD are reset but sampling for the start bit of the next character does not begin until RIN $=1$.

Character Reception Timing

Interval Timer Operation

A flowchart of the operation of the Interval Timer is shown in Figure 9. Execution of the RESET command by the CPU causes TIMELP and TIMERR to be reset and LDIR to be set. Resetting LDIR causes the contents of the Interval Register to be loaded into the Interval Timer, thus beginning the selected time interval. The timer is decremented every 64 internal clock cycles (every 2 internal clock cycles when in Test Mode) until it reaches zero, at which time the Interval Timer is reloaded by the Interval Register and TIMELP is set. If TIMELP was already set, TIMERR is set to indicate that TIMELP was not cleared by the CPU before the next time period elapsed. Each time LDIR is reset the contents of the Interval Register are loaded into the Interval Timer, thus restarting the time.

Device Application

This section describes the software interface between the CPU and the S9902 ACC and discusses some of the design considerations in the use of this device in asynchronous communications applications.

Interval Timer Operation

S9902/S9902-4

Device Initialization

The ACC is initialized by the CPU issuing the RESET command, followed by loading the Control, Interval, Receive Data Rate, and Transmit Data Rate registers. Assume that the value to be loaded into the CRU Base Register (register 12) in order to point to bit 0 is 0040_{16}. In this application, characters will have 7 bits of data plus even parity and one stop bit. The 0 input to the ACC is a 3 MHz signal. The ACC will divide this signal frequency by 3 to generate an internal clock frequency of 1 MHz . An interrupt will be generated by the Interval Timer every 1.6 milliseconds when timer interrupts are enabled. The transmitter will operate at a data rate of 300 bits per second and the receiver will operate
at 1200 bits per second. Had it been desired that both the transmitter and receiver operate at 300 bits per second, the "LDCR @RDR,11" instruction would have been deleted, and the "LDCR @XDR, 12 " instruction would have caused both data rate registers to be loaded and LRDR and LXDR to have been reset.

Initialization Program

The initialization program for the configuration previously described is as shown below. The RESET command disables all interrupts, initializes all controllers, sets the four register load control flags (LDCTRL, LDIR, LRDR, and LXDR). Loading the last bits of each of the registers causes the load control flag to be automatically reset.

LI	R12,>40	INITIALIZE CRU BASE
SBO	31	RESET COMMAND
LDCR	@CNTRL, 8	LOAD CONTROL AND RESET LDCTRL
LDCR	@INTVL, 8	LOAD INTERVAL AND RESET LDIR
LDCR	@RDR, 11	LOAD RDR AND RESET LRDR
LDCR	@XDR,12	LOAD XDR AND RESET LXDR

CNTRL	BYTE	$>$ A2
INTVL	BYTE	$1600 / 64$
RDR	DATA	>1 A1
XDR	DATA	$>4 D O$

The RESET command initializes all subcontrollers, disables interrupts, and sets LDCTRL, LDIR, LRDR, and LXDR, enabling loading of the control register.

Control Register

The options described previously are selected by loading the value shown below.

Interval Register

The interval register is to be set up to generate an interrupt every 1.6 milliseconds. The value loaded into the interval register specifies the number of 64 microsecond increments in the total interval.

25×64 MICROSECONDS $=1.6$ MILLISECONDS

Receive Data Rate Register

The data rate for the receiver is to be 1200 bits per second. The value to be loaded into the Receive Data Rate Register is as shown:

$10^{6} \div 1 \div 417 \div 2=1199.04$ BITS PER SECOND

Transmit Data Rate Register

The data rate for the transmitter is to be 300 bits per second. The value to be loaded into the Transmit Data Rate Register is:

$1 \times 10^{6} \div 8 \div 208 \div 2=300.48$ BITS PER SECOND

Data Transmission

The subroutine shown below demonstrates a simple loop for the transmitting of a block of data.

	LI	RO, LISTAD	INITIALIZE LIST POINTER
	LI	R1, COUNT	INITIALIZE BLOCK COUNT
	LI	R12, CRUBAS	INITIALIZE CRU BASE
	SBO	16	TURN OFF TRANSMITTER
XMTLP	TB	22	WAIT FOR XBRE $=1$
	JNE	XMTLP	
	LDCR	*RO +8	LOAD CHARACTER INCREMENT POINTER RESET XBRE
	DEC	R1	DECREMENT COUNT
JNE	XMTLP	LOOP IF NOT COMPLETE	
	SBZ	16	TURN OFF TRANSMITTER

After initializing the list pointer, block count, and CRU base address, RTSON is set to cause the transmitter and the RTS output to become active. Data transmission does not begin, however, until the CTS input becomes active. After the final character is loaded into the transmit buffer register. RTSON is reset. The transmitter and the RTS output do not become inactive until the final character has been completely transmitted.

Data Reception

The software shown below will cause a block of data to be received and stored in memory.

CARRET	BYTE	>OD	
RCVBLK	LI	R2, RCVLST	INITIALIZE LIST COUNT
	LI	R3, MXRCNT	INITIALIZE MAX COUNT
	LI	R4, CARRET	SET UP END OF BLOCK CHARACTER
RCVLP	TB	21	WAIT FOR RBRL = 1
	JNE	RCVLP	
	STCR	$* R 2,8$	STORE CHARACTER
	SBZ	18	RESET RBRL
	DEC	R3	DECREMENT COUNT
	JEQ	RCVEND	END IF COUNT =0
	CB	$* R 2+$, R4	COMPARE TO EOB CHARACTER, INCREMENT POINTER
	JNE	RCVLP	LOOP IF NOT COMPLETE
RCVEND	RT		END OF SUBROUTINE

Register Loading After Initialization

The control, interval, and data rate registers may be reloaded after initialization. For example, it may be desirable to change the interval of the timer. Assume, for sample, that the interval is to be changed to 10.24 milliseconds. The instruction sequence is as follows:

	SBO	13
LDCR	@INTVL2,8	SET LOAD CONTROL FLAG
	•	
	-	
IOAD REGISTER, RESET FLAG		

Caution should be exercised when transmitter interrupts are enabled to ensure that the transmitter interrupt does not occur while the load control flag is set. For example, if the transmitter interrupts between execution of the "SBO 13" and the next instruction, the transmit buffer is not enabled for loading when the transmitter interrupt service routine is entered because the LDIR flag is set. This situation may be avoided by the following sequence:

	BLWP	@INTVCHG	CALL SUBROUTINE
	$\bullet \bullet$		
	\bullet		MASK ALL INTERRUPTS
ITV CPC	$\bullet \cdot$	0	LOAD CRU BASE ADDRESS
	MOV	@24(R13), RIZ	SET FLAG
	SBO	13	LOAD REGISTER AND RESET FLAG
	LDCR	@INTVL2,8	RESTORE MASK AND RETURN

In this case all interrupts are masked, ensuring that all interrupts are disabled while the load control flag is set.

Future Products

Communication Products

S2579	BCD Input DTMF Generator
S2575	Pulse/DTMF Switchable Dialer With Three Number Repertory Memory
S2552	Telephone Hybrid Plus Pulse Dialer Single Chip Phone
S2553	Telephone Hybrid Plus DTMF Dialer Single Chip Phone
S2567	DTMF Generator With Microprocessor Bus Interface
S35213	Bell 212A Modem
S3559	Call Progress Monitor With DTMF and Pulse Dialer
S7720	Second Source For NEC7720 Digital Signal Processor
S28216	Echo Canceller Processor

Consumer Products

S3620 M/F LPC-10 Speech Synthesizer. Designed As Macro Cell To Allow For Easy Customization.

ROMs

680XX High Speed Family of NMOS ROMs Including 32K, 64K Bi-Polar PROM Pin-Outs

Semi-Custom Products

Two Micron Family of Gate Arrays and Standard Cells
1.25 Micron Family of Gate Arrays and Standard Cells

Microprocessors/Microcomputers

S750X	CMOS 4-Bit Single Chip Microcomputers
S78XX	CMOS High-End 8-Bit Single Chip Microcomputers
S80	Operating System Processor Family

Application Note Summary

Communications Products

S2559 DTMF Tone Generator

Describes design considerations, test methods, and results obtained using the S2559 Tone Generator family in DTMF pushbutton telephones. Interface with type 500 and 2500 networks are discussed. Use in ancillary equipment is also covered.

Using the S3525A/B
DTMF Bandsplit Filter

Consumer Products

MOS Music

MOS Music is a primer on the application of standard MOS/LSI circuits in creating electronic music. This note discusses the key elements of music production in an electronic organ.

S6800 Family

A Minimal S6802/S6846 Systems Design

Details how to make an S6802/S6846 version of the EVK in a minimal systems application.

S68045 Compared with Motorola MC 6845

Describes the fundamental differences between the two devices.

S9900 Family

S9900 Minimum System Design with the S9900 16-Bit Microprocessor
This design uses just the CPU, a 1K ROM, a 2 K RAM, a clock and six smaller IC's.

S9900 Controlled Dot Matrix Printer

S9900 shows how to control a 7040 series dot matrix printer in a minimal systems application.
\cdots

Guide to MOS Handling

At AMI we are continually searching for more effective methods of providing protection for MOS devices. Present configurations of protective devices are the result of years of research and review of field problems.

Although the oxide breakdown voltage may be far beyond the voltage levels encountered in normal operation, excessive voltages may cause permanent damage. Even though AMI has evolved the best designed protective device possible, we recognize that it is not 100% effective.

A large number of failed returns have been due to misapplication of biases. In particular, forward bias conditions cause excessive current through the protective devices, which in turn will vaporize metal lines to the inputs. Careful inspection of the device data sheets and proper pin designation should help reduce this failure mode.
Gate ruptures caused by static discharge also account for a large percentage of device failures in customers' manufacturing areas. Precautions should be taken to minimize the possibility of static charges occurring during handling and assembly of MOS circuits.

To assist our customers in reducing the hazards which may be detrimental to MOS circuits, the following guidelines for handling MOS are offered. The precautions listed here are used at AMI.

1. All benches used for assembly or test of MOS circuits are covered with conductive sheets. WARNING: Never expose an operator directly to a hard electrical ground. For safety reasons, the operator must have a resistance of at least 100 K Ohms between himself and hard electrical ground.
2. All entrances to work areas have grounding plates on door and/or floor, which must be contacted by people entering the area.
3. Conductive straps are worn inside and outside of employees' shoes so that body charges are grounded when entering work area.
4. Anti-static neutralized smocks are worn to eliminate the possibility of static charges being generated by friction of normal wear. Two types are available; Dupont anti-static nylon and Dupont neutralized 65% polyester/ 35% cotton.
5. Cotton gloves are worn while handling parts. Nylon gloves and rubber finger cots are not allowed.
6. Humidity is controlled at a minimum of 35% to help reduce generation of static voltages.
7. All parts are transported in conductive trays. Use of plastic containers is forbidden. Axial leaded parts are stored in conductive foam, such as Velofoam\#7611.
8. All equipment used in the assembly area must be thoroughly grounded. Attention should be given to equipment that may be inductively coupled and generate stray voltages. Soldering irons must have grounded tips. Grounding must also be provided for solder posts, reflow soldering equipment, etc.
9. During assembly of ICs to printed circuit boards, it is advisable to place a grounding clip across the fingers of the board to ground all leads and lines on the board.
10. Use of carpets should be discouraged in work areas, but in other areas may be treated with anti-static solution to reduce static generation.
11. MOS parts should be handled on conductive surfaces and the handler must touch the conductive surface before touching the parts.
12. In addition, no power should be applied to the socket or board while the MOS device is being inserted. This permits any static charge accumulated on the MOS device to be safely removed before power is applied.
13. MOS devices should not be handled by their leads unless absolutely necessary. If possible, MOS devices should be handled by their packages as opposed to their leads.
14. In general, materials prone to static charge accumulation should not come in contact with MOS devices.

These precautions should be observed even when an MOS device is suspected of being defective. The true cause of failure cannot be accurately determined if the device is damaged due to static charge build-up.

It should be remembered that even the most elaborate physical prevention techniques will not eliminate device failure if personnel are not fully trained in the proper handling of MOS.

This is a most important point and should not be overlooked.

More information can be obtained by contacting the Product Assurance Department.

American Microsystems, Inc. 3800 Homestead Road
Santa Clara, California 95051
Telephone (408) 246-0330
TWX 910-338-0024 or 910-338-0018

MOS Processes

Process Descriptions

Each of the major MOS processes is described on the following pages. First, the established production proven processes are described, followed by those advanced processes, which are starting to go into volume production now. In each case, the basic processes is described first, followed by an explanation of its advantages, applications, etc.

P-Channel Metal Gate Process

Of all the basic MOS processes, P-Channel Metal Gate is the oldest and the most completely developed. It has served as the foundation for the MOS/LSI industry and still finds
use today in some devices. Several versions of this process have evolved since its earliest days. A thin slice (8 to 10 mils) of lightly doped N -type silicon wafer serves as the substrate or body of the MOS transistor. Two closely spaced, heavily doped P-type regions, the source and drain, are formed within the substrate by selective diffusion of an impurity that provides holes as majority electrical carriers. A thin deposited layer of aluminum metal, the gate, covers the area between the source and drain regions, but is electrically insulated from the substrate by a thin layer (1000-15000A) of silicon dioxide. The P-Channel transistor is turned on by a negative gate voltage and conducts current between the source and the drain by means of holes as the majority carriers.

Figure B.1. Summary of MOS Process Characteristics

on Implanted p.Channel metal gate

1. With enhancement and depletion mode devices on same chip
$\begin{aligned} \text { MATERIALS: } & \text { N.SILICON SUBSTRATE - [111] FOR HIGH } V_{T}, \text { [100] FOR } \\ & \text { LOW } V_{T} . \\ & \text { ALUMINUM GATE, SOURCE, AND DRAIN CONTACTS. }\end{aligned}$
PERFORMANCE: POOR SPEED-POWER PRODUCT: $V_{T} / V_{T F}$ TRADEOFF.
COMPLEXITY: TYPICALLY 15 OR LESS PROCESS STEPS.

MATERIALS: SAME AS ABOVE, ALWAYS [111] SILICON.
PERFORMANCE: LOWER V_{T} BY ALTERING a_{B} TERM; HIGH $V_{T F}$ OF [111] SILICON; ENHANCEMENT AND DEPLETION MODE TRAN. SISTORS POSSIBLE
COMPLEXITY: OVER 15, LESS THAN 20 PROCESS STEPS.
(MATERIALS: [111] SUBSTRATE, DOPED POLYCRYSTALLINE SILICON GATE
PERFORMANCE: LOWER V_{T} THROUGH $\phi_{M S}$ TERM, BUT HIGH $V_{T F}$ OF [111] SILICON
COMPLEXITY: $15-20$ PROCESS STEPS, BUT OVER 25 WITH COMBINED ENHANCEMENT AND DEPLETION MODE DEVICES
MATERIALS: [100] P-SILICON SUBSTRATE, DOPING POLYSILICON GATE, ION IMPLANTED FIELD
PERFORMANCE: FAST CIRCUITS, THROUGH HIGH MOBILITY (μ) OF ELECTRONS
COMPLEXITY: SAME AS P-CHANNEL SIGATE FOR OLDER PROCESSES. 20-25 PROCESS STEPS FOR NEWER PROCESSES.

PERFORMANCE: LOW POWER, high SPEEd. HIGH VOLTAGE PROCESSES FOR POWER SUPPLIES UP TO 13.5 V ; LOW VOLTAGE PROCESSES FOR POWER SUPPLIES UP TO 5.5V.
MATERIALS: [100] N-SILICON SUBSTRATE, ION IMPLANTED P-WELL COMPLEXITY: OVER 25 PROCESS STEPS
SPECIAL PROCESS: LINEAR CAPACITORS FOR SWITCHED CAPACITOR
LINEAR INTEGRATED CIRCUITS. NAND ROM OPTION FOR DENSE, LOW SPEED ROM.

The basic P-Channel metal gate process can be subdivided into two general categories: High-threshold and lowthreshold. Various manufacturers use different techniques (particularly so with the low threshold process) to achieve similar results, but the difference between them always rests in the threshold voltage V_{T} required to turn a transistor on. The high threshold V_{T} is typically -3 to -5 volts and the low threshold V_{T} is typically -1.5 to -2.5 volts.

The original technique used to achieve the difference in threshold voltages was by the use of substrates with different crystalline structures. The high V_{T} process used [111] silicon whereas, the low V_{T} process used [100] silicon. The difference in the silicon structure causes the surface charge between the substrate and the silicon dioxide to change in such a manner that it lowers the threshold voltages.

One of the main advantages of lowering V_{T} is the ability to interface the device with TTL circuitry. However, the use of [100] silicon carries with it a distinct disadvantage also. Just as the surface layer of the [100] silicon can be inverted by a lower V_{T}, so it also can be inverted at other random locations - through the thick oxide layers - by large voltages that may appear in the metal interconnections between circuit components. This is undesirable because it creates parasitic transistors, which interfere with circuit operation. The maximum voltage that can be carried in the interconnections is called the parasitic field oxide threshold voltage V_{TF}, and generally limits the overall voltage at which a circuit can operate. This, then, is the main factor that limits the use of the [100] low V_{T} process. A drop in V_{TF} between a high V_{T} and low V_{T} process may, for example, be from -28 V to -17 V .

The low V_{T} process, because of its lower operating voltages, usually produces circuits with a lower operating speed than the high V_{T} process, but is easier to interface with other circuits, consumes less power, and therefore is more suitable for clocked circuits. Both P-Channel metal gate processes yield devices slower in speed than those made by other MOS processes, and have a relatively poor speed/power product. Both processes require two power supplies in most circuit designs, but the high V_{T} process, because it operates at a high threshold voltage, has excellent noise immunity.

Ion Implanted P-Channel Metal Gate Process

The P-Channel Ion Implanted process uses essentially the same geometrical structure and the same materials as the high V_{T} P-Channel process, but includes the ion implantation step. The purpose of ion implantation is to introduce P-type impurity ions into the substrate in the limited area under the gate electrode. By changing the characteristics of the substrate in the gate area, it is possible to lower the threshold voltage V_{T} of the transistor, without influencing any other of its properties.

Figure B.2. shows the ion implantation step in a diagrammatic manner. It is performed after the gate oxide is grown, but before the source, gate, and drain metallization deposition. The wafer is exposed to an ion beam which penetrates through the thin gate oxide layer and implants ions into the silicon substrate. Other areas of the substrate are protected both by the thicker oxide layer and sometimes also by other masking means. Ion implantation can be used with any process and, therefore could, except for the custom of the industry, be considered a special technique, rather than a process in itself.

Figure B.2. Diagram of Ion Implantation Step

The implantation of P -type ions into the substrate, in effect, reduces the effective concentration of N -type ions in the channel area and thus lowers the V_{T} required to turn the transistor on. At the same time, it does not alter the N-type ion concentration elsewhere in the substrate and therefore, does not reduce the parasitic field oxide threshold voltage V_{TF} (a problem with the Iow V_{T} P-Channel Metal Gate process, described above). The [111] silicon usually is used in ion-implanted transistors.

In fact, if the channel area is exposed to the ion beam long enough, the substrate in the area can be turned into P-type silicon (while the body of the substrate still remains N -type) and the transistor becomes a depletion mode device. In any circuit some transistors can be made enhancement type, while others are depletion type, and the combination is a very useful circuit design tool.

The Ion-implanted P-Channel Metal Gate process is very much in use today. Among all the processes, it represents a good optimization between cost and performance and thus is the logical choice for many common circuits, such as memory devices, data handling (communication) circuits, and others.

MOS Processes

Because of its low V_{T}, it offers the designer a choice of using low power supply voltages to conserve power or increase supply voltages to get more driving power and thus increase speed. At low power levels it is more feasible to implement clock generating and gating circuits on the chip. In most circuit designs only a single power supply voltage is required.

N -Channel Process

Historically, N-Channel process and its advantages were known well at the time when the first P-Channel devices were successfully manufactured; however, it was much more difficult to produce N -Channel. One of the main reasons was that the polarity of intrinsic charges in the materials combined in such a way that a transistor was on at OV and had a V_{T} of only a few tenths of a volt (positive). Thus, the transistor operated as a marginal depletion mode device without a well-defined onloff biasing range. Attempts to raise V_{T} by varying gate oxide thickness, increasing the substrate doping, and back biasing the substrate, created other objectionable results and it was not until research into materials, along with ion implantation, silicon gates, and other improvements came about that N -Channel became practical for high density circuits.
The N -Channel process gained its strength only after the P-Channel process, ion implantation, and silicon gate all were already well developed. N-Channel went into volume productions with advent of the 4 K dynamic RAM and the microprocessor, both of which required speed and high density. Because P-Channel processes were nearing their limits in both of these respects, N -Channel became the logical answer.

The N -Channel process is structurally different from any of the processes described so far, in that the source, drain, and channel all are N -type silicon, whereas the body of the substrate is P-type. Conduction in the N -Channel is by means of electrons, rather than holes.

The main advantage of the N -Channel process is that the mobility of electrons is about three times greater than that of holes and, therefore, N-Channel transistors are faster than P-Channel. In addition, the increased mobility allows more current flow in a channel of any given size, and therefore N-Channel transistors can be made smaller. The positive gate voltage allows an N-Channel transistor to be completely compatible with TTL.

Although metal gate N-Channel processes have been used, the predominant N -Channel process is a silicon gate process. Among the advantages of silicon gate is the possibility of a buried layer of interconnect lines, in addition to the normal aluminum interconnnections deposited on the surface of the chip. This gives the circuit designer more latitude in layout and often allows the reduction of the total chip size. Because the polysilicon gate electrode is deposited in a
separate step, after the thick oxide layer is in place, the simultaneous deposition of additional polysilicon interconnect lines is only a matter of masking. These interconnect lines are buried by later steps, as shown in Figure B.3.

Figure B.3. Crossection of an N-Channel Silicon Gate MOS Transistor

(a) TRANSISTOR READY FOR SOURCE AND ORAN DIFFUSIINS

(b) FINISHED TRANSISTOR

One minor limitation associated with the buried interconnect lines is their location. Because the source and drain diffusions are done after the polysilicon is deposited [see (a) of Figure B.3] the interconnect lines cannot be located over these diffusion regions.

A second advantage of a silicon gate is associated with the reduction of overlap between the gate and both the source and drain. This reduces the parasitic capacitance at each location and improves speed, as well as power consumption characteristics. Whereas in the metal gate process, the Pregion source and drain diffusion must be done prior to deposition of the gate electrode, in silicon gate process, the electrode is in place during diffusion, see (a) of Figure B.3. Therefore, no planned overlap for manufacturing tolerance purposes need exist and the gate is said to be self-aligned. The only overlap that occurs is due to the normal lateral extension of the source and drain regions during the diffusion process.

The silicon-gate process produces devices that are more compact than metal gate, and are slightly faster because of the reduced gate overlap capacitance. Because the basic silicon gate process is relatively simple, it is also economical. It is a versatile process that is used in memory devices and most any other circuit.

MOS Processes

In addition to its use in large memory chips and microprocessors, N -Channel has become a good general purpose process for circuits in which compactness and high speed are important.

CMOS

The basic CMOS circuit is an inverter, which consists of two adjacent transistors - one an N-Channel, the other a P-Channel, as shown in Figure B.4. The two are fabricated on the same substrate, which can be either N or P type.

The CMOS inverter in Figure B. 4 is fabricated on an N-type silicon substrate in which a P"tub" is diffused to form the body for the N-Channel transistor. All other steps, including the use of silicon gates and ion implantation, are much the same as for other processes.

The main advantage of CMOS is extremely low power consumption. When the common input to both gate electrodes is at a logic 1 (a positive voltage) the N-Channel transistor is biased on, the P-Channel is off, and the output is near ground potential. Conversely, when the input is at a logic 0 level, its negative voltage biases only the P-Channel transistor on and the output is near the drain voltage $+\mathrm{V}_{\mathrm{DD}}$. In either case, only one of the two transistors is on at a time and thus, there is virtually no current flow and no power consumption. Only during the transition from one logic level to the other are both transistors on and current flow increases momentarily.
Silicon Gate CMOS is also fast approaching speeds of bipolar TTL circuits. On the other hand, the use of two transistors in every gate makes CMOS slightly more complex and costly, and requires more chip size. For these reasons, the original popularity of CMOS was in SSI logic elements and MSI circuits-logic gates, inverters, small shift registers, counters, etc. These CMOS devices constitute a logic family in the same way as TTL, ECL, and other bipolar circuits do; and in the areas of very low power consumption, high noise immunity, and simplicity of operation, are still widely accepted by discrete logic circuit designers.

Low power CMOS circuits made the watch circuit possible and also have been used in space exploration, battery operated consumer products, and automotive control devices. As experience was gained with CMOS, tighter design rules and reduced device sizes have been implemented and now VLSI circuits, such as 16K RAM memories and microprocessors, are being manufactured in volume.

CMOS circuits can be operated on a single power supply voltage, which can be varied from +2.5 to about +13.5 volts with the high voltage processes, with a higher voltage giving more speed and higher noise immunity. Low voltage
processes allow single power supply voltages from +1.5 to +5.5 volts.

The first implementation of an inverting gate is a process that uses both $n+$ to $p+$ polysilicon. The basic structure is a first-generation approach to which a selective fieldoxidation process has been added.

Figure B. 5 shows the plan and section views of the threedevice gate portion. Because the P-Well in the top view spans both N-Channel devices, it is referred to as ubiquitous, and the process is called Ubiquitous P-Well.

In this planar process, $p+$ guard rings are used to reduce surface leakage. Polysilicon cannot cross the rings, however, so that bridges must be built. Note the use of $p+$ polysilicon in the P-Channel areas. The plan view shows the construction of the bridges linking p+ to metal to $n+$. (Were the process to be used for a low-voltage, firstgeneration application like a watch circuit, the guard rings would not be necessary and polysilicon could directly connect N-Channel and P-Channel devices; however, to ensure good ohmic contact from one type of polysilicon to another, polysilicon-diode contacts must be capped with metal.)

This process provides a buried contact ($n+$ polysilicon to $n+$ diffusion) that can yield a circuit-density advantage. However, neither of the other two second-generation approaches provides buried contacts. Therefore, if a layout in this process is to be compatible with the others, the buried contact must be eliminated. Though there will be a penalty in real estate, the gain for custom applications is a great increase in the number of available CMOS vendors.

The $\mathbf{n}+$-Only Polysilicon Approach

Both of the second-generation CMOS processes that follow are variants of the $\mathrm{n}+$-only, selective-field-oxide approach. One closely resembles the $p+n+$ Ubiquitous-P-Well process, since it, too, has a Ubiquitous P-Well that is implanted before the field oxidation and thus runs under the field oxide. The other, called isolated P-Well, has separate wells for each N -Channel device that are implanted after field oxidation.

Figure B .6 shows the section and plan views of the $\mathrm{n}+$-only Ubiquitous-P-Well approach used to build the gate of Figure B.4. This is the $5 \mu \mathrm{~m}$ process recommended by AMI and others for new, high-performance CMOS designs. The layout is simpler than with the $n+/ p+$ polysilicon UbiquitousWell approach (there are no buried contacts and no polysilicon-diode contacts), and it occupies less area for the same line widths. Also, since the process permits implanting in the field region, no guard rings are required.

Polysilicon can thus cross directly from P- to N-Channel device areas without the need for bridges or polysilicondioxide contacts.

A variant of the all $n+$ (See Figure B.7) polysilicon process just discussed uses basically the selective field-oxide approach except that the P-Wells are not continuous under the field-oxide areas; they are instead bounded by field-
oxide edges. Since the P-Wells are naturally isolated from one another, the process is called $n+$ poly-isolated P-Well. The isolated wells must all be connected to ground; if they are left floating, circuit malfunctions are bound to occur. The grounding is done either with $p+$ diffusions or with top-side metalization that covers a $p+$-to-P-Well contact diffusion.

Figure B.4. Crossection and Schematic Diagram of a CMOS Inverter

Figure B.5. $\mathbf{n}+/ \mathbf{p}+$ Polysilicon Approach

THE FIRST HIGH-PERFORMANCE COMPLEMENTARY-MOS PLANAR
PROCESS. ITS DRAWBACKS: TWO TYPES OF POLYSILICON ARE
USED, AND THE UNAVAILABILITY OF FIELD IMPLANT DOPING TIES FIELD THRESHOLO TO DEVICE THRESHOLDS.

Figure B.6. n + - Only Polysilicon Approach

Figure B.7. Isolated Wells
 IN SEPARATE P-WELLS, SINCE THE ISOLATED WELLS MUST BE DOPED MUCH MORE HEAVILY THAN THOSE OF THE UBIOUITOUS. WELL APPROACH, $n+-$ TO P-WELL CAPACITANCE IS GREATER
AND SWITCHING SPEEDS LOWER. THIS IS AN $n+$-ONLY
POLYSILICON PROCESS.

MOS Processes

In the Isolated-Well process, the P-Wells must be doped much more heavily than in the Ubiquitous-Well process. One result is a higher junction capacitance between the $n+$ areas and the wells that both slows switching speeds and raises the power dissipation of a device. Even though the speed loss could be compensated for by slightly shorter channel lengths, the operating power still remains high.

Although currently available from AMI and other manufacturers, the Isolated-Well process is in fact not recommended for new designs by AMI. Its layout takes up more area than does one using the Ubiquitous-Well approach, even though its P-Well to $p+$-area spacing is slightly less.

Table 1. Layout Compatibility Concerns for CMOS Processes

Layout Feature	$n+/ p+$ Polysilicon Ubiquitous P-Well	n+ Only Polysilicon Ubiquitous P.Well	n+ - Only Polysiicon Isolated P.Well
Buried Contact	X	No	No
Polysilicon Diode Contact	Yes	x	X
P-Well Isolation With Diffusion Mask	No	No	Yes
Tight P-Well-To-p + Spacing	No	No	Yes
Layout Care Required For P-Well Electrical Contacts	No	No	Yes

Figure B.8. Comparative Data on Major MOS Processes

MOS Processes

7.5 Micron CMOS Process Parameters

	Low V_{T}		High VT		
Parameter	Min.	Max.	MIn.	Max.	Comments
$V_{\text {TN }}$. 55	. 85	1.0	1.5	N-Channel Threshold at $1 \mu \mathrm{~A} 50 \times 7.5 \mu$ Device (Volts)
$V_{\text {TP }}$	-. 4	-. 95 .	-8	-1.4	P-Channel Threshold at $1 \mu \mathrm{~A} 50 \times 7.5 \mu$ Device (Volts)
$V_{\text {TF }}$	8		15		Poly Field Threshold at $1 \mu \mathrm{~A} 50 \times 10 \mu$ Device (Volts)
Bvoss	24	-	28	-	Drain-Source Breakdown (Volts)
$\begin{array}{ll} \hline \text { RIIFF } & \mathrm{P}+ \\ & \mathrm{N}+ \\ \hline \end{array}$	$\begin{array}{r} 30 \\ 9 \\ \hline \end{array}$	$\begin{aligned} & 39 \\ & 15 \end{aligned}$	$\begin{array}{r} 28 \\ 9.1 \\ \hline \end{array}$	$\begin{array}{r} 33 \\ 12.6 \\ \hline \end{array}$	Diffusion Resistivity Ω / \square Diffusion Resistivity Ω / \square
$\begin{array}{ll} \text { RPOLY } & \mathrm{P}+ \\ & \mathrm{N}+ \\ \hline \end{array}$	$\begin{array}{r} 118 \\ 30 \\ \hline \end{array}$	$\begin{array}{r} 172 \\ 60 \\ \hline \end{array}$	$\begin{aligned} & 80 \\ & 29 \\ & \hline \end{aligned}$	$\begin{array}{r} 140 \\ 39 \\ \hline \end{array}$	Poly Resistivity $\Omega /$ Poly Resistivity $\Omega /$
Tox	1300		1200		Gate Oxide Thickness, In Angstroms
$\begin{array}{ll} \mathrm{X}_{\mathrm{j}} & \mathrm{P}+ \\ & \mathrm{N}+ \\ \hline \end{array}$	$\begin{aligned} & 1.8^{*} \\ & 2.0^{*} \\ & \hline \end{aligned}$		$\begin{aligned} & 1.8^{*} \\ & 2.0^{*} \end{aligned}$		Junction Depth, in μ Junction Depth, In μ
Operating Voltage	-	5	5	12	In Volts
Max Rating	-	5.5	-	13.2	In Volts
Process Designator	CTA	CTA	CTE	CTE	

(*Typical)

CMOS I Process Parameters

	General Purpose				Double Poly				NAND ROM				
	High . V		Low V		High V		Low V		High V		Low V		
Parameter	M1n.	Max.	MIn.	Max.	Comments								
VTN	0.7	1.3	0.5	1.1	0.7	1.3	0.5	1.1	0.7	1.3	0.5	1.1	N-Channel Threshold $50 \times 5 \mu$ Device (Volts)
$V_{T P}$	-0.7	-1.3	-0.5	-1.1	-0.7	-1.3	-0.5	-1.1	-0.7	-1.3	-0.5	-1.1	P-Channel Threshold $50 \times 5 \mu$ Device (Volts)
$V_{\text {TF }}$	17	-	7	-	17	-	7	-	17	-	7	-	Poly Field Threshold (Volts)
BVOSS	17	-	7	-	17	-	7	-	17	-	7	-	Drain-Source Breakdown (Volts)
$\begin{array}{ll} \hline \text { RDIFF } & \mathrm{P}+ \\ & \mathrm{N}+ \\ \hline \end{array}$	$\begin{aligned} & \hline 15 \\ & 35 \\ & \hline \end{aligned}$	$\begin{aligned} & 35 \\ & 80 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 35 \end{aligned}$	$\begin{aligned} & 35 \\ & 80 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 35 \end{aligned}$	$\begin{aligned} & 35 \\ & 80 \end{aligned}$	$\begin{aligned} & 15 \\ & 35 \end{aligned}$	$\begin{aligned} & 35 \\ & 80 \end{aligned}$	$\begin{aligned} & 15 \\ & 35 \\ & \hline \end{aligned}$	$\begin{aligned} & 35 \\ & 80 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 35 \end{aligned}$	$\begin{aligned} & 35 \\ & 80 \\ & \hline \end{aligned}$	Diffusion Resistivity $\Omega /$ Diffusion Resistivity $\Omega /$
RPOLY	15	45	15	45	15	45	15	45	15	45	15	45	Poly Resistivity Ω / \square (All poly is $\mathrm{N}+$)
Tox	750	850	750	850	750	850	750	850	750	850	750	850	Gate Oxide Thickness. In Angstroms
$\begin{array}{ll} \mathrm{X}_{\mathrm{j}} & \mathrm{P}+ \\ & \mathrm{N}+ \end{array}$	$\begin{aligned} & 1.2^{*} \\ & 1.5^{*} \end{aligned}$		$\begin{aligned} & 1.2^{*} \\ & 1.5^{*} \end{aligned}$		$\begin{aligned} & 1.2^{*} \\ & 1.5^{*} \end{aligned}$		$\begin{aligned} & 1.2^{*} \\ & 1.5^{*} \end{aligned}$		$\begin{aligned} & 1.2^{*} \\ & 1.5^{*} \end{aligned}$		$\begin{aligned} & 1.2^{*} \\ & 1.5^{*} \end{aligned}$		Junction Depth, In μ Junction Depth, In μ
Operating Voltage	2.2	13.2	1.5	5.5	2.2	13.2	1.5	5.5	2.2	13.2	1.5	5.5	In Volts
Max Rating	-	13.2	-	5.5	-	13.2	-	5.5	-	13.2	-	5.5	In Volts
Process Designator	CVA	CVA	CVH	CVH	CVB	CVB	CVE	CVE	CVD	CVD	CVC	CVC	

("Typical)

CMOS II Process Parameters (P-Well)

	Single Metal		Double Metal .		
Parameter	Min.	Max.	Min.	Max.	Comments
$\mathrm{V}_{\text {T }}$	0.6	1.0	0.6	1.0	N -Channel Threshold (Volts)
$V_{\text {TP }}$	-0.6	-1.0	-0.6	-1.0	P-Channel Threshold (Volts)
$\mathrm{V}_{\text {TF }}$	14.0	-	14.0	-	Poly Field Threshold (Volts)
BVDSS	14.0	-	14.0	-	Drain-Source Breakdown (Volts)
$\begin{array}{ll} \hline \mathrm{R}_{\text {IIFF }} & \mathrm{P}+ \\ & \mathrm{N}+ \\ \hline \end{array}$	$\begin{aligned} & 35 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 80 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 35 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 80 \\ & 40 \\ & \hline \end{aligned}$	Diffusion Resistivity $\Omega /$ Diffusion Resistivity $\Omega /$
Rpoly	15	30	15	30	Poly Resistivity, Ω / \square (All Poly is $\mathrm{N}+$)
Tox	450	550	450	550	Gate Oxide Thickness, In Angstroms
$\begin{array}{ll} \hline \mathrm{X}_{\mathrm{j}} & \mathrm{P}+ \\ & \mathrm{N}+ \\ \hline \end{array}$	$\begin{aligned} & 0.3 \\ & 0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	Junction Depth, In μ Junction Depth, In μ
Operating Voltage	5.0	10.0	5.0	10.0	In Voits
Max Rating	-	10.0	-	10.0	In Volts
Process Designator	CCB	CCB	CCD	CCD	

MOS Processes

6 \& 5 Micron SIGate NMOS Process Parameters

NMOS I \& NMOS II Process Parameters

	NMOS I				NMOS II				
	4 ${ }^{\text {T }}$		Std.		$4^{4} \mathrm{~V}_{\mathrm{T}}$		Std.		
Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Comments
$V_{\text {TE }}$	0.6	1.0	0.6	1.0	0.6	1.0	0.6	1.0	Extrapolated Enhancement Threshold Voltage on a $50 \times 4 \mu$ Transistor (4μ Processes) or $50 \times 3 \mu$ Transistor (3μ Processes) (Volts)
$V_{\text {TD }}$	-3.5	-2.5	-3.5	-2.5	-3.5	-2.5	-3.5	-2.5	Extrapolated Threshold $50 \times 50 \mu$ Device (Volts)
$V_{\text {TN }}$	-0.15	+0.15	N/A	N/A	-0.15	+0.15	N/A	N/A	Extrapolated Threshold $50 \times 6 \mu$ Device (Volts)
$V_{\text {TDD }}$	-4.35	-3.65	N/A	N/A	-4.85	-4.15	N/A	N/A	Extrapolated Threshoid $50 \times 50 \mu$ Device (Volts)
$V_{\text {TF }}$	7.5	-	7.5	-	7.5	-	7.5	-	Poly Field Threshold (Volts)
Bvoss	7.5	-	7.5	-	7.5	-	7.5	-	Punch Through Voltage $50 \times 4 \mu$ Device (4μ Processes) or $50 \times 3 \mu$ Device (3μ Processes) (Volts)
RDIFF	15	30	15	30	15	30	15	30	Diffusion Resistivity Ω / \square
Rpoly	20	50	20	50	20	40	20	40	Poly Resistivity Ω / \square
Tox	650	750	650	750	450	550	450	550	Gate Oxide Thickness, In Angstroms
X_{j}	0.3	0.5	0.3	0.5	0.3	0.5	0.3	0.5	$N+$ Junction Depth, in μ
Operating Voltage	-	5/12	-	5/12	-	5	-	5	In Volts
Max Rating	-	5.5/13.2	-	5.5/13.2	-	5.5	-	5.5	In Volts
Process Designator	NDD	NDD	NDE	NDE	NCC	NCC	NCA	NCA	

7.5 Micron Metal Gate PMOS Process Parameters

			0 Implant				1 Implant		2 Implant		
	High V_{T}		Med $\mathrm{V}_{\boldsymbol{T}}$		Low VT						
Parameter	Min.	Max.	Comments								
$V_{T E}$	-3.25	-4.95	-2.8	-4.2	-1.8	-2.5	-1.0	-1.8	-1.2	-2.0	$\mathrm{I}_{\text {DS }}=1 \mu \mathrm{~A}$
$V_{\text {TD }}$	N/A	4.0	5.0	Depletion Measurement on a 50μ Transistor (Volts)							
$V_{\text {TF }}$	30	-	25	-	17	-	25	-	25	-	Field Threshold (Volts)
BVDSS	30	-	30	-	30	-	22	-	22	-	Drain-Source Breakdown (Voits)
RDIFF	30	60	30	60	30	60	30	60	30	60	Sheet Resistivity Ω / \square
$1 \mathrm{ds} / \mathrm{mA}$	1.25	2.55	0.8	2.2	0.8	2.0	2.8	4.0	2	4	Drain-Source Current (mA)
Bvoxg	120	-	80	-	100	-	90	-	90	-	Gate Oxide Breakdown (Volts)
X ${ }^{\text {j }}$	1.7	1.9	1.7	1.9	1.7	1.9	1.7	1.9	1.7	1.9	Junction Depth, In μ
Process Designator	PMC	PMC	PMT	PMT	PMD	PMD	PNR	PNR	POG	POG	

CMOS II Process Parameters (N-Well)

	Single Meta!		Double Metal		
Parameter	Min.	Max.	Min.	Max.	Comments
$V_{\text {TN }}$	0.6	1.0	0.6	1.0	N-Channel Threshold Voltage (Volts)
$V_{\text {TP }}$	-0.6	-1.0	-0.6	-1.0	P-Channel Threshold Voltage (Volts)
$V_{\text {TF }}$	15	-	+15	-	Poly Field Threshold (Volts)
Bvoss	15	-	+15	-	Drain-Source Breakdown (Volts)
$\begin{array}{ll} \mathrm{R}_{\text {DIFF }} & \mathrm{P}_{+} \\ & \mathrm{N}+ \\ \hline \end{array}$	$\begin{aligned} & 50 \\ & 15 \\ & \hline \end{aligned}$	$\begin{array}{r} 100 \\ 40 \\ \hline \end{array}$	$\begin{aligned} & 50 \\ & 15 \\ & \hline \end{aligned}$	$\begin{array}{r} 100 \\ 40 \\ \hline \end{array}$	Diffusion Resistivity Ω / \square Diffusion Resistivity Ω / \square
Tox	390	460	390	460	Gate Oxide Thickness, In Angstroms
$\begin{array}{ll} \hline \mathrm{X}_{\mathrm{I}} & \mathrm{P}+ \\ & \mathrm{N}+ \\ \hline \end{array}$	$\begin{aligned} & 0.3 \\ & 0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.3 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	Junction Depth, in μ Junction Depth, In μ
Operating Voltage	9	10		10	In Volts
Max Rating		11		11	In Volts
Process Designator	CCN/CCO		CCP		In Volis

Product Assurance Program

Introduction

Quality is one of the most used, least understood, and variously defined assets of the semiconductor industry. At AMI we have always known just how important effective quality assurance, quality control, and reliability monitoring are in the ability to deliver a repeatably reliable product. Particularly, through the manufacture of custom MOS/LSI, experience has proved that one of the most important tasks of quality assurance is the effective control and monitoring of manufacturing processes. Such control and monitoring has a twofold purpose: to assure a consistently good product, and to assure that the product can be manufactured at a later date with the same degree of reliability.
To effectively achieve these objectives, AMI has developed a Product Assurance Program consisting of three major functions:

> - Quality Control
> - Quality Assurance
> - Reliability

Each function has a different area of concern, but all share the responsibility for a reliable product.

The AMI Product Assurance Program

The program is based on MIL-STD-883, MIL-M-38510, and MIL-Q-9858A methods. Under this program, AMI manufactures highest quality MOS devices for all segments of the commercial and industrial market and, under special adaptations of the basic program, also manufactures high reliability devices to full military specifications for specific customers.
The three aspects of the AMI Product Assurance Pro-gram-Quality Control, Quality Assurance, and Reliabil-ity-have been developed as a result of many years of experience in MOS device design and manufacture.
Quality Control establishes that every method meets or fails to meet, processing or production standards- QC checks methods.
Quality Assurance establishes that every method meets, or fails to meet, product parameters - QA checks results.
Reliability establishes that QA and QC are effec-tive-Rellability checks device performance.
One indication that the AMI Product Assurance Program has been effective is that NASA has endorsed AMI products for flight quality hardware since 1967. The Lunar Landers and Mars Landers all have incorporated AMI circuits, and AMI circuits have also been utilized in the Viking and Vinson programs, as well as many other military airborne and reconnaissance hardware programs.

Quality Control

The Quality Control function in AMI's Product Assurance Program involves constant monitoring of all aspects of materials and production, starting with the raw materials purchased, through all processing steps, to device ship-
ment. There are three major areas of Quality Control:

- Incoming Materials Control
- Microlithography Control
- Process/Assembly Control

Incoming Materials Control

All purchased materials, including raw silicon, are checked carefully to various test and sampling plans. The purpose of incoming materials inspection is to ensure that all items required for the production of AMI MOS circuits meet such standards as are required for the production of high quality, high reliability devices.
Incoming inspection is performed to specifications agreed to by suppliers of all materials. The Quality Control group continuously analyzes supplier performance, performs comparative analysis of different suppliers, and qualifies the suppliers.
Tests are performed on all direct material, including packages, wire, lids, eutectics, and lead frames. These tests are performed using a basic sampling plan in accordance with MIL-S-19500, generally to a Lot Tolerance Percent Defective (LTPD) level of 10%. The AQL must be below 1\% overall.
Two incoming material inspection sequences illustrate the thoroughness of AMI Quality Control:

- Purchased packages are first inspected visually. Then, dimensional inspections are performed, followed by a full functional inspection, which subjects the packages to an entire production run simulation. Finally, a full electrical evaluation is made, including checks of the insulation, resistance, and lead-to-lead isolation. A package lot which passes these tests to an acceptable LTPD level is accepted.
- Raw silicon must also pass visual and dimensional checks. In addition, a preferential etch quality inspection is performed. For this inspection, the underlayers of bulk silicon are examined for potential anomalies such as dislocation, slippage or etch pits. Resistivity of the silicon is also tested.

Microlithography Control

Microlithography involves the processes which result in finished working plates, used for the fabrication of wafers. These processes are pattern or artwork generation, photoreduction, and the actual printing of the working plates.
Pattern generation now is the most common practice at AMI. The circuit layout is digitized and stored on a tape, which then is read into an automated pattern generator which prints a highly accurate $10 x$ reticle directly.
In cases where the more traditional method of artwork generation is used whether Rubylith, Gerber Plots, AMI generated or customer generated-the artwork is thoroughly inspected. It is checked for level-to-level registration and dimensional tolerances. Also, a close visual inspection of the workmanship is made. AMI artwork is usually produced at 200 x magnification and must con-

Product Assurance Program

form to stringent design rules, which have been developed over a period of years as part of the process control requirements.
Acceptable artwork is photographically reduced to a $20 x$ magnification, and then further to a 10x magnification. The resulting $10 x$ reticles are then used for producing $1 x$ masters. The masters undergo severe registration comparisons to a registration master and all dimensions are checked to insure that reductions have been precise. During this step, image and geometry are scrutinized for missing or faded portions and other possible photographic omissions.
For a typical N -Channel silicon gate device, master sets are checked at all six geometry levels in various combinations against each other and against a proven master set. Allowable deviations within the die are limited to 0.5 micron, deviations within a plate are limited to 1 micron, and all plate deviations are considered cumulatively.
Upon successful completion of a device master set, it is released to manufacturing where the $1 x$ plates are printed. A sample inspection is performed by manufacturing on each 30-plate lot and the entire lot is returned to Quality Control for final acceptance. Quality Control performs audits on each manufacturing inspector daily, by sample inspection techniques.
The plates can be rejected first by manufacturing when the 30 -plate lots are inspected, or by Quality Control when the lots are submitted for final acceptance. If either group rejects the plates, they are rescreened and then undergo the same inspection sequence. In the rescreening process, the plates undergo registration checks; visual checks for pin holes, protrusions, and faded or missing images, as well as all critical dimension checks.

Process Control

Once device production has started in manufacturing, AMI Quality Control becomes involved in one of the most important aspects of the Product Assurance Program - the analysis and monitoring of virtually all production processes, equipment, and devices.
Process controls are performed in the fabrication area, by the Quality Control Fabrication Group, to assure adherence to specifications. This involves checks on operators, equipment and environment. Operators are tested for familiarity with equipment and adherence to procedure. Equipment is closely checked both through calibration and maintenance audits. Environmental control involves close monitoring of temperature, relative humidity, water resistivity and bacteria content, as well as particle content in ambient air. All parameters are accurately controlled to minimize the possibility of contamination or adverse effects due to temperature or humidity excesses. Experience has proven that such close control of the operators, equipment, and environment is highly effective towards improved quality and increased yields.
In addition to the specification adherence activities of the

Figure 1. Flowchart of Product Assurance
Program Implementation

Product Assurance Program

QC Fabrication Group, A QC Laboratory performs constant process monitoring of virtually every step of all processes. Specimens are taken from all production steps and critically evaluated. Sampling frequency varies, depending on the process, but generally, oxidation, diffusion, masking and evaporization are the most closely monitored steps.
Results are supplied both to manufacturing and engineering. When evidence of a problem occurs, QC provides recommendations for corrections and follows up the corrective action taken.
Optical Inspections are performed at several steps; quality control limits are based on a 10\% LTPD. The chart in Figure 1 shows process steps and process control points.

Quality Assurance

The Quality Assurance function in thè Product Assurance Program involves checking the ability of manufactured parts to meet specifications. In addition, the QA group also is responsible for calibration of all equipment, and for the maintenance of AMI internal product specifications, to assure that they are always in conformance with customer specifications or other AMI specifications.
After devices undergo 100\% testing in manufacturing, they are sent to Quality Assurance for acceptance. Lots are defined, and using the product specifications, sample sizes are determined, along with the types of tests to be performed and the test equipment to be used. Lots must pass QA testing to a 0.04% AQL.
Three types of tests are performed on the samples: visual/mechanical, parametric, and functional. All tests are performed both at room temperature and at elevated temperature. In addition, a number of other special temperature tests may be performed if required by the specification.
To perform the tests, QA uses AMI PAFT test systems, ROM test systems, Macrodata testers, Fairchild Sentry, LTX Sentinel, XINCOM systems, Teradyne test systems, and various bench test units. In special instances a part may also be tested in a real life environment in the equipment which is to finally utilize it.
If a lot is rejected during QA testing, it is returned to the production source for an electrical rescreening. It is then returned to QA for acceptance but is identified as a resubmitted lot. If it fails again, corrective action in engineering is initiated. As evidence of the problem is detected, the parts may also be traced all the way back to the wafer run to analyze the cause.
When a lot is acceptable, it is sent to packaging and then to finished goods. When parts leave finished goods, they are again checked by the QA group to a 10% LTPD with visual/mechanical tests. Also, all supporting documentation for the parts is verified, including QA acceptance, special customer specifications, certificates of compliance, etc. Only after this last check are devices considered ready for plant clearance.

If there are customer returns, they are first sample tested by QA to determine the cause of the return. (Many times an invalid customer test will incorrectly cause returns.) Selected return samples are sent to Reliability for failure analysis.

Reliability

The Reliability function in the Product Assurance Program involves process qualification, device quallication, package qualification, reliability program qualification and failure analysis. To perform these functions AMI Reliability group is organized into two major areas:

> - Reliability Laboratory
> - Failure Analysis

Reliability Laboratory

AMI Reliability Laboratory is responsible for the following functions.

- New Process Qualification
- Process Change Qualification
- Process Monitoring
- New Device Qualification
- Device Change Qualification
- New Package Qualification
- Device Monitoring
- Package Change Qualification
- Package Monitoring
- High Reliability Prógrams

There are various closely interrelated and interactive phases involved in the development of a new process, device, package or reliability program. A process change may affect device performance, a device change may affect process repeatability, and a package change may affect both device performance and process repeatability. To be effective, the Reliability Laboratory must monitor and analyze all aspects of new or changed processes, devices, and packages. It must be determined what the final effect is on product reliability, and then evaluate the merits of the innovation or change.

Process Qualification

For example, AMI Research and Development group recommends a new process or process alteration when it feels that the change can result in product improvement. The Reliability Laboratory then performs appropriate environmental and electrical evaluations of a new process. Typically, a special test vehicle, or "rel chip", generated by R\&D during process development, is used to qualify the recommended new process or process change.
The rel chip is composed of circuit elements similar to those that may be required under worst-case circuit design conditions. The rel chip elements are standard for any given process, and thus allow precise comparisons between diffusion runs. The following is an example of what is included on a typical rel chip:

- A discrete inverter and an MOS capacitor

Product Assurance Program

- A large P-N junction covered by an MOS capacitor.
- A large P-N junction area (identical to the junction area above, but without the MOS capacitor)
- A large area MOS capacitor over substrate
- Several long contact strings with different contact geometries
- Several long conductor geometries, which cross a series of eight deeply etched areas
Each circuit element of a rel chip allows a specific test to be performed. As an example, the discrete inverter and MOS load device accommodate power life tests. As a consequence, any type of parameter drift can be observed. The MOS capacitor, covering the large P-N junction, can serve to indicate the presence of contamination in the oxide, under the oxide, or in the bulk silicon. If unusual drift is evidenced, the location of contamination can be determined through analysis of the additional MOS capacitor and the large P-N junction area. The metal conductor interconnecting contacts is useful for life testing under relatively high current conditions. It facilitates the detection of metal separation when moisture or other contaminants are present.
The conductors crossing deeply etched areas allow the checking of process control. Rather than depending upon optical inspection of metal quality, burned out areas caused by high currents are readily identified and provide a quantitative measure of metal quality.
If the Reliability Laboratory determines that a recommended new process or process change is viable for manufacturing purposes, further analysis is necessary to determine that production devices can be manufactured in high volume, in a repeatable and reliable manner.

Process Monitoring

In addition to process qualification, the Reliability group also conducts ongoing process monitoring programs. Once every 90 days each major production process is eval-
uated using rel chips as test vehicles. The resulting test data is analyzed for parameter limits and process stability. In this manner AMI can help assure repeatability and high product quality.

Package Qualifications

New packages are also qualified before they are adopted. To analyze packages, a qualification matrix is designed, according to which the new package and an established package (used for control) are tested concurrently. The test matrix consists of a full spectrum of electrical and environmental stress tests, in accordance with MIL-STD-883.

Failure Analysis

Another important function of the Reliability group is failure analysis. Scanning electron microscopes, high power optical microscopes, diagnostic probe stations, and other equipment is used in failure analysis of devices submitted from various sources. It is the function of the Reliability group to determine the cause of failure and recommend corrective action.
The Reliability group provides a failure analysis service for the previously mentioned in-house programs and for the evaluation of customer returns. All AMI customers are provided a failure analysis service for any part that fails within one year from date of purchase and the results of the analysis are returned in the form of a written report.

Summary

The Product Assurance Program at AMI is oriented towards process control and monitoring, and the evaluation of devices. The Program consists of three major functions: Quality Control, Quality Assurance, and Reliability. Constant monitoring of all phases of production, with information feedback at all levels, allows fast and efficient detection of problems, evaluation and analysis, correction, and verification of the correction. The overall result is a line of products which are highly repeatable and reliable, with a very low reject level.

Introduction

Plastic Packages

AMI is excelling in the use of transfer molding of plastic packages. All of our plastic packages are produced by mounting the die on a lead frame, gold wire bonding, transfer molding and tin plating the external leads. Many of the packages utilize a copper leadframe which combines low cost with high heat dissipation characteristics. We are proud of our plastic packaging capabilities.

Plastic Package

The AMI plastic dual-in-line package is the equivalent of the widely accepted industry standard, refined by AMI for MOS/LSI applications. The package consists of a plastic body, transfer-molded directly onto the assembled lead frame and die. The lead frame is copper alloy, with external pins tin plated. Internally, there is a $150 \mu \mathrm{in}$. silver spot on the die attach pad and on each bonding fingertip. Gold bonding wire is attached with the thermosonic gold ball bonding technique.
Materials of the lead frame, the package body, and the die attach are all closely matched in thermal expansion coefficients, to provide optimum response to various thermal conditions. During manufacture every step of the process is rigorously monitored to assure maximum quality of the AMI plastic package.
Available in: 8, 14, 16, 18, 22, 24, 28, 40, 48 and 64 pin configurations.

Packaging

Plastic Chip Carrier

As in the ceramic chip carrier, the plastic chip carrier As all AMI plastic packages, it is transfer molded and (P.C.C.) provides excellent packaging density for high pin thermosonically wire bonded. Die is mounted on a copper count packages, but is an excellent cost alternative to cer- lead frame and extenal leads are tin plated. amic. The P.C.C. is both surface and socket mountable, and has high lead strengths.

Available in: 44, 68 and 84 pin configurations.

Mini-Flatpack

The mini-flatpack is a cost effective, transfer molded plastic package that provides high package density, surface mounting capabilities. It is a four sided alternative to the plastic dual-in-line package provided by AMI.

It is processed with a lead frame of alloy 42 gold thermosonic wire bonding, and tin plated external leads.
Available in $18,22,24,28,40,44$ and 80 pin configurations.

Packaging

S.O.I.C.

The small outline integrated circuit (S.O.I.C) package is another of the low cost plastic packages in the AMI repertoire. Utilizing the dual-in-line configuration, a small dense, surface mountable package is originated, which maximizes the use of board space.
Available in: 16 and 28 pin configurations.

Pin Grid Array

Built on the same concept as the ceramic side brazed package, the Pin Grid Array is also suitable for high reliability applications but provides the opportunity for high density packaging with very high pin counts. The unique lead design makes it compatible with socket insertion mounting.
Most commonly supplied with an $\mathrm{Al}_{2} \mathrm{O}_{3}$ ceramic body, gold plating on the lead and die cavity, and sealed with a goldtin eutectic solder on a Kovar/alloy 42 lead.
Available in: 68, 84, 100, 144 pin configurations.

Packaging

Introduction

Ceramic Packages

The ceramic and cerdip packages provided by AMI are commonly used for high reliability applications. Glass or solder eutectic sealing and ceramic body yields excellent hermeticity characteristics, thereby insuring against device failure from moisture penetration. AMI supplies a full range of ceramic packages to meet many applications.

Ceramic Package

Industry standard high performance, high reliability package, made of three layers of $\mathrm{Al}_{2} \mathrm{O}_{3}$ ceramic and nickelplated refractory metal. Either a low temperature glass sealed ceramic lid or a gold tin eutectic sealed Kovar lid is used to form the hermetic cavity of this package. Package leads are available with goid or tin plating for socket insertion or soldering.
Available in 14, 16, 18, 22, 24, 2840 and 64 pin configurations.

Cerdip Package

The Cerdip dual-in-line package has the same high performance characteristics as the standard three-layer ceramic package yet is a cost-effective alternative. It is a military approved type package with excellent reliability characteristics.
The package consists of an Alumina $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.$ base and the same material lid, hermetically fused onto the base with Iow temperature solder glass.
Available in 14, 16, 18, 20, 22, 24, 28 and 40 pin configurations.

Packaging

Chip Carrier Package

Chip carriers are the new industry standard in reducing package size. Built on the same concept as the highly reliable side-braze ceramic package, it is made of three layers of $\mathrm{AL}_{2} \mathrm{O}_{3}$ ceramic, refractory metallization and gold plating. The chip carrier also offers contact pads equally spaced on all four sides of the carrier resulting in increased package density, better electrical characteristics, and a more cost effective way of packaging IC devices.
The package comes with a gold tin eutectic sealed metal lid or the low cost glass sealed ceramic lid creating a standard hermetic cavity.
Available in 20, 24, 28, 40, 44, 68 and 84 LD standard 3-layer versions and 24, 28, 44 LD slam style on 50 mil center lines to the JEDEC standards.

8-Pin Plastic

14-Pin Plastic

Packaging

14-Pin Ceramic	16-Pin Plastic
16-Pin Cerdip	16-Pin Ceramic
16-Lead Plastlc S.O.I.C.	18-Pin Ceramic

Packaging

Packaging

22-Pin Ceramic	22-Pin Cerdip
22-Lead Mini-Flat Pack	24-Lead Chip Carrier

Packaging

24-Lead MInl-Fiat Pack	24-Pin Ceramic
24-Pin Cerdip	24-Pin Plastic

Packaging

28-Pin Ceramic

Packaging

28-Pin Cerdip	28-Lead Chip Carrier
36-Lead Ceramic Chip Carrier	40-Pin Ceramic

Packaging

40-Pin Plastic	40-Pin Cerdip
40-Lead Chip Carrier	40 Lead Plastic Mini-Flat Package

Packaging

44-Lead Mini-Flat Pack	44-Lead Plastic Chip Carrier 44-Lead Pin P.C.C. Outline TOP VIEW BOTTOM VIEW sa. -. 000
48-Lead Ceramic	52-Lead Chip Carrier

64-Pin Plastic	64-Pin Ceramic NOTE A. Each pin centerine is localed within $\mathbf{D . 0 1 0}$ at its true langitudinal position.
68-Pin Grid Array	68-Lead Plastic Chip Carrier

Packaging

68-Lead Chip Carrier	68-Lead Minl-Flat Pack
84-Pin Grid Array Outline	84-Lead Plastic Chip Carrier TOP VIEW Botrom Yiew

Packaging

84-Lead Chip Carrier	100-Pin Array Outilne
120-Pin Grid Array Outline	144-Pin Grid Array Outline

Ordering Information

Standard Products

Any product in this MOS Products Catalog can be ordered using the simple system described below. With this system it is possible to completely specify any standard device in this catalog in a manner that is compatible with AMI's order processing methods. The example below shows how this ordering system works and will help you to order your parts in a manner that can be expedited rapidly and accurately.

All orders (except those in sample quantities) are normally shipped in plastic containers or aluminum tube containers,
which protect the devices from static electricity damage under all normal handling conditions. Elther container is compatible with standard automatic IC handling equipment.
Any device described in this catalog is an AMI Standard Product. However, ROM devices that require mask preparatlon or programming to the requirements of a particular user, devices that must be tested to other than AMI Quality Assurance standard procedures, or other devices requiring special masks are sold on a negotiated price basis.

Device Number-prefix S, followed by four (or five*) numeric digits that define the basic device type. Versions to the basic device are indicated by an additional alpha or numeric digit as shown in the above examples.

[^33]Package Type-a single letter designation which identifies the basic package type. The letters are coded as follows:
P — Plastic package
D - Cerdip package
C - Ceramic (three-layer) package

TERMS OF SALE

1. ACCEPTANCE: THE TERMS OF SALE CONTAINED HEREIN APPLY TO ALL QUOTATIONS MADE AND PURCHASE ORDERS ENTERED INTO BY THE SELLER. SOME OF THE TERMS SET OUT HERE MAY differ from those in buyer's purchase order and some may be new. This ACCEPTANCE IS CONDITIONAL ON BUYER'S ASSENT TO THE TERMS SET OUT HERE IN LIEU OF THOSE IN BUYER'S PURCHASE ORDER. SELLER'S FAILURE TO OBJECT TO PROVISIONS CON TAINED IN ANY COMMUNICATION FROM BUYER SHALL NOT BE DEEMED A WAIVER OF THE PROVISIONS OF THIS ACCEPTANCE. ANY CHANGES IN THE TERMS CONTAINED HEREIN MUST SPECIFICALLY BE AGREED TO IN WRITING BY AN OFFICER OF THE SELLER BEFORE BECOM ING BINDING ON EITHER THE SELLER OR THE BUYER. All orders or contracts must be approved and accepted by the Seller at its home office. These terms shall be applicable whether or not they are attached to or enclosed with the products to be soid or sold hereunder. Prices for the items called for hereby are not subject to audit.

2. Payment:

(a) Unless otherwise agreed, all invoices are due and payable thirty (30) days from date of in voice. No discounts are authorized. Shipments, detiveries, and performance of work shall at all times be subject to the approval of the Seller's credit department and the Seller may at any time decline to make any shipments or deliveries or perform any work except upon recelpt of payment or upon terms and conditions or security satisfactory to such department.
(b) If, in the Judgment of the Seller, the financial condition of the Buyer at any time does not justify continuation of production or shipment on the terms of payment originally specified, the Seller may require full or partial payment in advance and, in the event of the bankruptcy or insolvency of the Buyer or in the event any proceeding is brought by or against the Buyer under the bankruptcy or insolvency laws, the Seller shall be entitled to cancel any order then outstanding and shall receive reimbursement for its cancellation charges.
(c) Each shipment shall be considered a separate and independent transaction, and payment therefore shall be made accordingly. If shipments are delayed by the Buyer, payments shall become due on the date when the Seller is prepared to make shipment. If the work covered by the purchase order is delayed by the Buyer, payments shall be made based on the purchase price and the percen tage of completion. Products held for the Buyer shall be at the risk and expense of the Buyer.
3. TAXES: Unless otherwise provided herein, the amount of any present or future sales, tevenue, excise or other taxes, fees, or other charges of any nature, imposed by any public authority, (national, state, local or other) applicable to the products covered by this order, or the manufacture or sale thereof, shall be added to the purchase price and shall be paid by the Buyer, or in lieu thereof, the Buyer shall provide the Seller with a tax exemption certificate acceptable to the taxing authority.
4. F.O.B. POINT: All sales are made F.O.B. point of shipment. Seller's title passes to Buyer, and Seller's liability as to delivery ceases upon making delivery of material purchased hereunder to carrier at shipping point, the carrier acting as Buyer's agent. All claims for damages must be filed with the carrier. Shipments will normally be made by Parcel Post, United Parcel Service (UPS), Air Express, or Air Freight. Unless specific instructions from Buyer specify which of the foregoing methods of shipment is to be used, the Seller will exercise his own discretion.
5. DELIVERY: Shipping dates are approximate and are based upon prompt receipt from Buyer of all necessary Information. In no event will Selter be llable for any re-procurement costs, nor for delay or non-delivery, due to causes beyond its reasonable control including, but not limited to, acts of God, acts of civil or military authority, priorities, fires, strikes, lockouts, slow-downs, shortages, factory or labor conditions, yield problems, and inability due to causes beyond the Seller's reasonable control to obtain necessary labor, materials, or manufacturing facilities. In the event of any such delay, the date of delivery shall, at the request of the Seller, be deferred for a period equal to the time lost by reason of the delay.
In the event Seller's production is curtalled for any of the above reasons so that Seller cannot deliver the full amount relessed hereunder, Seller may allocate production deliveries among its various customers then under contract for similar goods. The allocation will be made in a commercially fair and reasonable manner. When allocation has been made, Buyer will be notified of the estimated quota made available.
6. PATENTS: The Buyer shall hold the Seller harmless against any expense or loss resuiting from in fringement of patents, trademarks, or unfair competition arising from compliance with Buyer's designs, specifications, or instructions. The sale of products by the Seller does not convey any
license, by implication, estoppel, or otherwise, under patent claims covering combinations of said products with other devices or elements.
Except as otherwise provided in the preceding paragraph, the Seller shall defend any sult or proceeding brought against the Buyer, so far as based on a claim that any product, or any part thereof, furnished under this contract constitutes an infringement of any patent of the United States, If notified promptly in writing and given authority, information, and assistance (at the Seller's expense) for defense of same, and the Seller shall pay all damages and costs awarded therein against the Buyer. In case said product, or any part thereof, is, in such suit, held to constitute infringement of patent, and the use of said product is enjoined, the Seller shall, at its own expense, elther procure for the Buyer the right to continue using said product or part, replace same with non-infringing product, modify it so it becomes non-infringing, or remove sald product and refund the purchase price and the transportation and installation costs thereof. In no event shall Seller's total liability to the Buyer under or as a result of compliance with the provisions of this paragraph exceed the aggregate sum paid by the Buyer for the allegedly infringing product. The foregoing states the entire llability of the Seller for patent infringement by the said products or any part thereof. THIS PROVISION IS STATED IN LIEU OF ANY OTHER EXPRESSED, IMPLIED, OR STATUTORY WARRANTY AGAINST INFRINGEMENT AND SHALL BE THE SOLE AND EXCLUSIVE REMEDY FOR PATENT INFRINGEMENT OF ANY KIND.
7. INSPECTION: Unless otherwise specifled and agreed upon, the material to be furnished under this order shall be subject to the Seller's standard inspection at the place of manufacture. If it has been agreed upon and specified in this order that Buyer is to inspect or provide for inspection at place of manufacture such inspection shall be so conducted as to not interfere unreasonably with Seller's operations and consequent approval or rejection shall be made before shipment of the material. Notwithstanding the foregoing, if, upon receipt of such material by Buyer, the same shall appear not to conform to the contract, the Buyer shall Immediately notity the Seller of such conditions and afford the Seller a reasonable opportunity to inspect the material. No material shall be returned without Seller's consent. Selier's Return Material Authorization form must accompany such returned material.
8. LIMITED WARRANTY: The Seller warrants that the products to be dellvered under this purchase order will be free from defects in material and workmanship under normal use and service. Seller's obligations under this Warranty are limited to replacing or repalring or giving credit for, at its option, at Its factory, any of sald products which shali, within one (1) year after shipment, be returned to the Seller's factory of origin, transportation charges prepaid, and which are, after examination, disclosed to the Seller's satisfaction to be thus defective. THIS WARRANTY IS EXPRESSED IN LIEU OF ALL OTHER WARRANTIES EXPRESSED, STATUTORY, OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND OF ALL OTHER OBLIGATIONS OR LIABILITIES ON THE SELLER'S PART, AND IT NEITHER ASSUMES NOR AUTHORIZES ANY OTHER PERSON TO ASSUME FOR THE SELLER ANY OTHER LIABILITIES IN CONNECTION WITH THE SALE OF THE SAID ARTICLES. This Warranty shall not apply to any of such products which shall have been repalred or aitered, except by the Seller, or wo no extend the been subjected to misuse, negligence, or accident. The atorementioned provisions
original warranty period of any product which has elther been repaired or replaced by Selier.
it is understood that if this order calls for the delivery of semiconductor devices which are not finished and fully encapsulated, that no warranty, statutory, expressed or implied, including the implied warranty of merchantability and fitness for a particular purpose, shall apply. All such devices are sold as is where is.
9. PaODUCTS NOT WARRANTED BY SEiLER: The second paragraph of Paragraph 6, Patents, and Paragraph B, Limited Warranty, above apply only to integrated circuits of Seller's own manufacture. IN THE CASE OF PRODUCTS OTHER THAN INTEGRATED CIRCUITS OF SELLER'S OWN MANUFAC TURE, SELLER MAKES NO WARRANTIES EXPRESSED, STATUTORY OR IMPLIED INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY, FREEDOM FROM PATENT INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE. Such products may be warranted by the original manufacturer of such products. For further information regarding the possible warranty of such products contact Seller.
10. PRICE ADJUSTMENTS: Seller's unit prices are based on certain material costs. These materials include, among other things, gold packages and silicon. Adjustments shall be as follows:
(a) Gold. The price at the time of shipment shall be adjusted for Increases in the cost of gold in accordance with Seller's current Gold Price Adjustment List. This adjustment will be shown as a separate line item on each invoice.
(b) Other Materials. In the event of significant increases in other materiais, Seller reserves the right to renegotiate the unit prices. If the parties cannot agree on such increase, then neither party shall have any further obligations with regard to the delivery or purchase of any units not then scheduled for production.
11. VARIATION IN QUANTITY: If this order calls for a product not listed in Seller's current catalog, or for a product which is specially programmed for Buyer, it is agreed that Seller may ship a quantity which Is five percent (5%) more or less than the ordered quantity and that such quantity shipped will be accepted and paid for in full satisfaction of each party's obligation hereunder for the quantity order.
12. CONSEQUENTIAL DAMAGES: In no event shail Seller be liable for special, incidental or consequen. tial damages.

13. GENERAL:

(a) The validity, performance and construction of these terms and all sales hereunder shall be governed by the laws of the State of California
(b) The Seller represents that with respect to the production of articles and/or performance of the services covered by this order it will fully comply with all requirements of the Fair Labor Standards Act of 1938, as amended, Williams-Steiger Occupational Safety and Health Act of 1970, Executive Orders 11375 and 11246, Section 202 and 204.
(c) The Buyer may not unilaterally make changes in the drawings, designs or specifications for the Items to be furnished hereunder without Seller's prior consent.
(d) Except to the extent provided in Paragraph 14; below, this order is not subject to cancellation or (d) Except to the extent provion for convenience.
(e) If Buyer is in breach of its obligations under this order, Buyer shall remain llable for all unpaid charges and sums due to Selier and will reimburse Seller for all damages suffered or incurred by charges and sums due to Selier and will reimburse Seiler for all damages suffered or incurred by Seller as a result of Buyer's breach. The re
means and remedies available to Seller.
(f) Buyer acknowledges that all or part of the products purchased hereunder may be manufactured andior assembled at any of Seller's facilities domestic or foreign.
(g) Unless otherwise agreed in a writing signed by both Buyer and Seller, Seller shali retain title to (g) Unless otherwise agreed in a writing signed by both Buyer and Seller, Seller shall retain title to
and possession of all tooling of any kind (including but not limited to masks and pattern generator and possession of all tooling of any kind (including but not limit
tapes) used in the production of products furnished hereunder.
(h) Buyer, by accepting these products, certifies that he will not export or reexport the products furnished hereunder unless he complies fully with all laws and regulations of the United States relating to such export or reexport, including but not limited to the Export Administration Act of 1979 and the Export Administration Regulations of the U.S. Department of Commerce.
(i) Seller shall own all copyrights in or relating to each product developed by Seller whether or not such product is developed under contract with a third party.
14. GOVERNMENT CONTRACT PROVISIONS: If Buyer's original purchase order indicates by contract number, that it is placed under a government contract, only the following provisions of the current Defense Acquisition Regulations are applicable in accordance with the terms thereof, with an appropriate substitution of parties, as the case may be - l.e., "Contracting Officer" shall mean "Buyer", "Contractor" shall mean "Seller", and the term "Contract" shall mean this order:
7.103.1, Definitions; 7.103.3, Extras; 7-103.4, Variation in Quantity; 7-103.8, Assignment of Claims; 7-103.9, Additional Bond Security; 7-103.13, Renegotlation; 7-103.15, Rhodesia and Certain Communist Areas; 7-103.16, Contract Work Hours and Safety Standards Act - Overtime Compensation; nist Areas; 7-103.16, Contract Work Hours and Safety Standards Act - Overtime Compensation;
$7-103.17$, Walsh-Healey Public Contracts Act; 7-103.18, Equal Opportunity Clause; 7-103.19, Officlals Not to Benefit; 7-103.20, Covenant Against Contingent Fees; $7-103.21$, Termination for Convenlence of the Government (only to the extent that Buyer's contract is terminated for the convenlence of the Government (only to the extent that Buyer's contract is terminated for the conve-
nience of the government); $7-103.22$, Authorization and Consent; $7-103.23$, Notice and Assistance nience of the government); 7-103.22, Authorization and Consent; 7-103.23, Notice and Assistance Regarding Patent infringement; ;-103.24, Responsibility for Inspection; 7-103.25, Commercial Bilis
of Lading Covering Shipments Under FOB Origin Contracts; 7.103.27, Listing of Employment of Lading Covering Shipments Under FOB Origin Contracts; 7.103.27, Listing of Employment
Openings; 7-104.4, Notice to the Government of Labor Disputes; 7-104.11, Excess Profit; 7.104.15, Openings; 7-104.4, Notice to the Government or Labor Disputes; 7.104 .11 , Excess Profit; $7 \cdot 104.15$, Examina
cerns.

Worldwide Sales Offices

United States
Northwest Region
HEADQUARTERS-3800 Homestead Road, Santa Clara, California 95051 (408) 246-0330
TWX: 910-338-0018
or 910-338-0024
CALIFORNIA, 2960 Gordon Avenue, Santa Clara 95051 (408) $738-4151$
WASHINGTON, 20709 N.E. 232nd Avenue, Battle Ground 98604 (206) 687-3101
WASHINGTON, 10655 N.E. 4th Street, Suite 400, Bellevue 98004 (206) 462-8870
Southwest Region
CALIFORNIA, 2900 Bristol Street, Suite A-202, Costa Mesa 92626 (714) 751-1634
CALIFORNIA, 2850 Pio Pico Drive, Suite L, Carlsbad 92008 619) 434-6031
ARIZONA, 7950 E. Redfield Road, Scottsdale 85260 (602) $996-5638$
Central RegionILLINOIS, 500 Higgins Road, Suite 210, Elk Grove Village 60007(312) 437-6496
MICHIGAN, 29200 Vassar Avenue, Suite 221, Livonia 48152 (313) 478-4220
COLORADO, 7346A So. Alton Way, Englewood 80112 (303) 694-0629
Southeastern Region
FLORIDA, 139 Whooping Loop, Altamonte Springs 32701 (305) 830-8889
NORTH CAROLINA, 5711 Six Forks Road, Suite 210, Raleigh 27609 (919) 847-9468
ALABAMA, 555 Sparkman Drive, Suite 822, Huntsville 35805 (205) 830-1435
TEXAS, 725 South Central Expressway, Suite A-9, Richardson 75080 (214) 231-5721
TEXAS, Austin 78746 214) $231-5285$
Mid-Atlantic Area
PENNSYLVANIA, Axewood East, Butler \& Skippack Pikes, Suite 230, Ambler 19002 (215) 643-0217
VIRGINIA, Northway Building, 500 Westfield Road, Suite 26, Charlottesville 22906 (804) 973-1213INDIANA, 408 South 9th Street, Suite 201, Noblesville 46060(317) 773-6330
OHIO, 100 East Wilson Bridge Road, Suite 225, Worthington 43085 (614) 436-0330
Northeastern Region
NEW YORK, 20F Robert Pitt Drive, Suite 208, Monsey 10952 (914) 352-5333
MASSACHUSETTS, 24 Muzzey Street, Lexington 02173 (617) 861-6530
Europe
HEADQUARTERS-Austria Microsystems International GmbH, Schloss Premstätten 8141 Unterpremstätten, Austria (43)3136/3666
Sales OfficesENGLAND, AMI Microsystems, Ltd., Princes House, Princes St., Swindon SN1 2HU(0793) 37852
FRANCE, AMI Microsystems, S.A.R.L., 124 Avenue de Paris, 94300 Vincennes (01) 3740090
WEST GERMANY, AMI Microsystems GmbH, Suite 237, Rosenheimer Strasse 30/32, 8000 Munich 80 (089) 483081ITALY, AMI Microsystems S.R.L., Piazzale Lugano, 9, 20158 Milano(02) 3761275or 3763022
Japan and Pacific Basin
JAPAN, Asahi Microsystems, Inc., 17F, Imperial Tower, 1-1-1, Uchisaiwai-Cho, Chiyoda-Ku, Tokyo 100 (81) 3-507-2371

Domestic Representatives

CANADA, Burnaby B.C.	Woodber	(604) 430-3302
CANADA, Mississauga, Ontario	Vitel Electronics	(416) 676-9720
CANADA, Ottowa, Ontario	Vitel Electronics	(613) 592-0090
CANADA, St. Laurent, Quebec	Vitel Electronics	(514) 331.7393
CANADA, Stittsville, Ontario	Vitel Electronics	(613) 582-0090
IOWA, Cedar Rapids	Comstrand, Inc.	(319) 377-1575
MASSACHUSETTS, Tyngsboro	Comptech.	(617) 649-3030
MINNESOTA, Minneapolis	Comstrand, Inc.	(612) 788-9234
NEW YORK, Clinton.	Advanced Components	(315) 853-6438
PUERTO RICO, San Juan	Electronic Tech. Sales, Inc.	(809) 790-4300

Domestic Distributors

A	ics	(205) 882-2200
ARIZONA, Phoenix	Kierulff Electronics	(602) 243-4101
ARIZONA, Scottsdale	Western Microtechnology	(602) 948-4240
ARIZONA, Tempe.	Anthem Electronics	(602) 244-0900
ARIZONA, Tucson	Kierulff Electronics	(602) 624-9986
CALIFORNIA, Canoga Park	Schweber Electronics	(213) 999-4702
CALIFORNIA, Chatsworth	Anthem Electronics	(213) 700-1000
CALIFORNIA, Cupertino	Western Microtechnology	(408) 725-1660
CALIFORNIA, Irvine	Schweber Electronics	(714) 863-0220
CALIFORNIA, Los Angeles	Kierulff Electronics	(213) 725-0325
CALIFORNIA, Palo Alto	Kierulff Electronics	(415) 968-6292
CALIFORNIA, Sacramento	Schweber Electronics	(916) 929-9732
CALIFORNIA, San Dlego	Anthem Electronics	(619) 453-4871
CALIFORNIA, San Diego	Kierulff Electronics	(619) 278-2112
CALIFORNIA, San Jose	Anthem Electronics	(408) 946-8000
CALIFORNIA, Santa Clara	Schweber Electronics	(408) 748-4700
CALIFORNIA, Tustin	Anthem Electronics	(714) 730-8000
CALIFORNIA, Tustin	Kierulff Electronics	(714) 731-5711
CANADA, Alberta, Calgary	Future Electronics	(403) 259-6408
CANADA, British Columbia, Vancouver	Future Electronics, Inc.	(604) 438-5545
CANADA, Ontario, Downsview	Cesco Electronics, Ltd.	(416) 661-0220
CANADA, Ontario, Downsview	Future Electronics, Inc.	(416) 663-5563
CANADA, Ottawa	Future Electronics, Inc.	(613) 820-8313
CANADA, Quebec, Montreal	Cesco Electronics, Ltd.	(514) $735-5511$
CANADA, Quebec, Point Claire	Future Electronics, Inc.	(514) 694-7710
CANADA, Quebec	Cesco Electronics, Ltd.	(418) 687-4231
COLORADO, Englewood	Anthem Electronics	(303) 790-4500
COLORADO, Englewood	Kierulff Electronics	(303) 790-4444
CONNECTICUT, Danbury	Schweber Electronics	(203) 792-3742
CONNECTICUT, Wallingford	Kierulff Electronics	(203) 265-1115
FLORIDA, Altamonte Springs	Schweber Electronics	(305) 331-7555
FLORIDA, Ft. Lauderdale	Kierulff Electronics	(305) 486-4004
FLORIDA, Hollywood	Schweber Electronics	(305) 927-0511
FLORIDA, St. Petersburg	Kierulff Electronics	(813) 576-1966
GEORGIA, Norcross	Kierulff Electronics	(404) 447-5252
GEORGIA, Norcross	Schweber Electronics	(404) 449-9170
ILLINOIS, Elk Grove Village	Kierulff Electronics	(312) 640-0200
ILLINOIS, Elk Grove Village	Schweber Electronics	(312) 364-3750
IOWA, Cedar Rapids	Schweber Electronics	(319) 373-1417
KANSAS, Overland Park	Schweber Electronics	(913) 492-2921
MARYLAND, Baltimore.	Kierulff Electronics.	(301) 247-5020
MARYLAND, Gaithersburg	Schweber Electronics	(301) 840-5900
MASSACHUSETTS, Bedford	Schweber Electronics	(617) 275-5100
MASSACHUSETTS, Billerica	Kierulff Electronics	(617) 935-5134
MICHIGAN, Livonia	Schweber Electronics	(313) 525-8100
MINNESOTA, Eden Prairie	Schweber Electronics	(612) 941-5280
MINNESOTA, Edina	Kierulff Electronics	(612) 941-7500
MISSOURI, Earth City.	Scheweber	(314) 739-0526
MISSOURI, Maryland Heights	Kierulff Electronics	(314) 739-0855
NEW HAMPSHIRE, Manchester.	Schweber Electronics	(603) 625-2250
NEW JERSEY, Fairfield	Kierulff Electronics	(201) 575-6750
NEW JERSEY, Fairfield	Schweber Electronics	(201) 227-7880
NEW YORK, Rochester	Schweber Electronics	(716) 424-2222
NEW YORK, Westbury L.I.	Schweber Electronics	(516) 334-7474
NORTH CAROLINA, Raleigh	Kierulff Electronics	(919) 872-8410
NORTH CAROLINA, Raleigh	Schweber Electronics	(919) 867-0000

Domestic Distributors

OHIO, Beachwood	Schweber Electronics	(216) 464-2970
OHIO, Cleveland	Kierulff Electronics	(216) 587.6558
OHIO, Dayton.	Schweber Electronics.	(513) 439-1800
OKLAHOMA, Tulsa	Kierulff Electronics	(918) 252-7537
OKLAHOMA, Tulsa.	Schweber Electronics.	(918) 622-8000
OREGON, Portland	Kierulff Electronics	(503) 641-9150
PENNSYLVANIA, Horsham	Schweber Electronics	(215) 441-0600
PENNSYLVANIA, Pittsburgh.	Schweber Electronics.	(412) 782-1600
TEXAS, Austin	Kierulff Electronics	(512) 835-2090
TEXAS, Austin	Schweber Electronics	(512) 458-8253
TEXAS, Dallas	Kierulff Electronics	(214) 343-2400
TEXAS, Dallas	Schweber Electronics	(214) 661-5010
TEXAS, Houston	Kierulff Electronics	(713) 530-7030
TEXAS, Houston	Schweber Electronics	(713) 784-3600
UTAH, Salt Lake City	Kierulff Electronics	(801) 973-6913
WASHINGTON, Redmond	Anthem Electronics.	(206) 881-0850
WASHINGTON, Tukwila	Kierulff Electronics	(206) 575-4420
WISCONSIN, Brookfield.	Schweber Electronics.	(414) 784-9020
WISCONSIN, Waukesha	Kierulff Electronics	(414) 784-8160

International Representatives \& Distributors

ARGENTINA, Buenos Aires	YEL S.R.L.	(54) 1-46 2211
AUSTRALIA, Preston, Victoria	Rifa Pty. Ltd.	61 (3) 4801211
BRAZIL, Sao Paulo	Datatronix Electronica Ltda.	11-826-0111
CHILE	Victronics Ltda.	56(2)36440-30237
DENMARK,	Semicap A/S	(01) 22150
ENGLAND, Derby	Quarndon Electronics Ltd.	(0332) 32651
ENGLAND, Harlow, Essex	VSI Electronics (UK) Ltd.	(0279) 2935477
FINLAND, Espoo	OY Atomica AB	(80) 423533
FRANCE, Sevres	Tekelec Airtronic	(01) 534-75-35
HONG KONG, Kowloon	Electrocon Products Ltd.	3-687214-6
IndIA, Nagar, Punjab	Semiconductor Complex Ltd.	91 (172) 87495
ISRAEL, Tel Aviv	Professional Elect. Ltd.(P.E.L.)	410656
ITALY	International Commerce Co.	
JAPAN, Tokyo	Internix, Inc.	(81) 3-369-1101
MEXICO	Dicopel S.A.	(903) 561-3211
NETHERLANDS, Badhoevedere	Techmation Elec. NV	(04189) 2222
NETHERLANDS, Rotterdam	DMA Nederland, BV	010-361288
NEW ZEALAND, Auckland	David P. Reid (NZ) Ltd.	(9) 488049
NORWAY, Oslo	Rifa-Hoyem A/S	47-413755
SINGAPORE, Singapore	Dynamar Int'l. Ltd.	(65) 7466188
SOUTH AFRICA, Transvaal	Promilect	(011) 485712
SOUTH KOREA, Seoul	Kortronics Enterprise	$2634-5497$
SPAIN, Madrid	Actron	(00341) 4026085
SWEDEN, Spanga	A.B. Rifa	(08) 7522500
SWITZERLAND, Zurich	W. Moor AG	(01) 8406644
TAIWAN, Taipai	Promotor Co., Ltd.	(02) 767-0101
WEST GERMANY, Berlin	Aktiv Elektronik GmbH	(030) 6845088
WEST GERMANY, Frankenthal	Gleichman	
WEST GERMANY, Munich	Dema Electronic GmbH	(89) 288018
WEST GERMANY, Schleswig	Ing. Bruo Dreyer	(04621) 24055
WEST GERMANY, Stuttgart	Ditronic GmbH	0711/724844
WEST GERMANY, Viersen	Mostron Halbieitervertriebs	(0216) 17024
YUGOSLAVIA, Ljubljana	ISKRA/Standard/Iskra IEZE	(051) 551-353

(2)

444. 4440

 Mas a

\qquad
 What

[^34]
[^0]: * For Direct Replacement

 Note: X Denotes any number

[^1]: *Pin compatible with 2732 EPROM

[^2]: *Distortion measured in accordance with the specifications described in Ref. 1 as the "ratio of the total power of all extraneous frequencies in the voiceband above 500 Hz accompanying the signal to the total power of the frequency pair".

[^3]: *Distortion measured in accordance with the specifications described in Ref. 1 as the "ratio of the total power of all extraneous frequencies in the voiceband above 500 Hz accompanying the signal to the total power of the frequency pair"'

[^4]: * Distortion measured in accordance with the specifications described as "ratio of total power of all extraneous frequencies in the voiceband above 500 Hz accompanying the signal to the total power of the frequency pair'
 NOTE: $R_{L}=$ load resistor connected from output to $V_{S S}$.

[^5]: 111 : MW TME TO ENTER KEY:50ms
 112 FLASH PULSE WIDTH:90ms (S2569B) OR 608ms (52569C)

[^6]: *Distortion measured in accordance with the specifications described in REF. 1 as the "ratio of the total power of all extraneous frequencies in the voiceband above 500 Hz accompanying the signal to the total power of the frequency pair".
 **S25089-2 available with range of 1.0 dB to 3.0 dB .
 S25088 available with 0dB ratio (column and row amplitude equal).

[^7]: * Distortion measured in accordance with the specifications described as "ratio of total power of all extraneous frequencies in the voiceband above 500 Hz accompanying the signal to the total power of the frequency pair' ${ }^{\prime}$.
 NOTE: $R_{L}=$ load resistor connected from output to $V_{S S}$.

[^8]: NOTE 1) Analog Input Amplifire Gain $=O \mathrm{~dB}$ (GA1 is connected to GA2)

[^9]: * Need "Polarity Guard" or non-reversing central office so encoder stays enabled.

[^10]: 1. The tables are based on the common 3.58 MHz color burst TV crystal.
 2. $\mathrm{t}_{\mathrm{SET}}=\frac{10,000}{\mathrm{~T}_{\mathrm{C}}}+3 \mathrm{msec}$
[^11]: Note: Circuit operates with $V_{\text {SS }}$ from 7.0 V to 30.0 V

[^12]: *IAVE is the average of all peak output current values within one circuit.

[^13]: * Consult AMI sales office for format.

[^14]: NOTES:

 1. Only positive logic formats for CE/CE are accepted. $1=V_{\text {HIGH }} ; 0=V_{\text {LOW }}$
 2. A ' 0 ' ' indicates the chip is enabled by a logic $0 ; A$ " 1 ' indicates the chip is enabled by a logic 1
 3. Power Test: $\mathrm{V}_{C C}=\mathrm{V}_{C C}$ Max; $C S / C E=$ active Output loads disconnected; Address pin inputs all held at V_{IL}
 4. Standby Power Conditions: Same as active except $C E=$ Deselect Level at V
 5. Guaranteed by design.
[^15]: NOTE: Decimal numbers 0-31 represent 'Words'

[^16]: 2. Power Test Standby Conditions: Same as active except CE Deselected
 3. Guaranteed by Design
[^17]: * THE USER DECIDES BETWEEN a CE OR CS AND OE OR CE FUNCTION AND THEN DEFINES THE ACtive level

[^18]: * Except mode programming levels

[^19]: * The only exception is bit 1 of Port 2 , which can either be data input or Timer output.

[^20]: The Condition Code Register notes are listed after Table 10

[^21]: 7 (Bit N) Test: Sign Bit of most significant (MS) byte $=1$?
 8 (Bit V) Test: 2's complement overflow from subtraction of MS bytes?
 9 (Bit N) Test: Result less than zero? (Bit $15=1$)
 10 (All) Load Condition Code Register from Stack. (See Special Operations)
 11 (Bit I) Set when interrupt occurs. If previously set, a Non-Maskable Interrupt as required to exit the wait state.
 12 (All) Set according to the contents of Accumulator A.

[^22]: hardware reset
 phogram reset

[^23]: * $10 \mu \mathrm{~s}$ or 10% of the pulse width, whichever is smaller.

[^24]: * $1.0 \mu \mathrm{~s}$ or 10% of the pulse width, whichever is smaller.

[^25]: * For clock periods other than the minimums shown in the table, calculate parameters using the expressions in the table on the following page.

[^26]: AC Test Conditions:
 $\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$
 $V_{\text {IL }}=0.8 \mathrm{~V}$
 $V_{0 L}=0.8 \mathrm{~V}$
 $V_{\text {IHC }}=V_{C C}-0.6 \mathrm{~V} \quad F L O A T= \pm 0.5 \mathrm{~V}$
 $V_{\text {ILC }}=0.45 \mathrm{~V}$

[^27]: ${ }^{* *}=$ Time between clock pulses $\quad *^{* *}=$ Time between leading edges

[^28]: *If the cycle following the present memory cycle is also a memory cycle it, too, is completed before the S 9900 enters the hold state. The maximum number of consecutive memory cycles is three.

[^29]: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.
 NOTE 1: Under absolute maximum ratings voltage values are with respect to the most negative supply, V_{BB} (substrate), unless otherwise noted. Throughout the remainder of this section, voltage values are with respect to $V_{S S}$.

[^30]: * All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal voltages

[^31]: *All inputs except ICO-IC2 must be synchronized to meet these requirements. IC0-IC2 may change synchronously.

[^32]: *If the cycle following the present memory cycle is also a memory cycle it. too. is completed before S 9980 enters hold state

[^33]: *Organ Circuits

[^34]:

 促

