

AMD-645[™] Peripheral Bus Controller

Data Sheet

Preliminary Information

AMD-645[™]

Peripheral Bus Controller

Data Sheet

© 1997 Advanced Micro Devices, Inc. All rights reserved.

Advanced Micro Devices, Inc. ("AMD") reserves the right to make changes in its products without notice in order to improve design or performance characteristics.

The information in this publication is believed to be accurate at the time of publication, but AMD makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication or the information contained herein, and reserves the right to make changes at any time, without notice. AMD disclaims responsibility for any consequences resulting from the use of the information included in this publication.

This publication neither states nor implies any representations or warranties of any kind, including but not limited to, any implied warranty of merchantability or fitness for a particular purpose. AMD products are not authorized for use as critical components in life support devices or systems without AMD's written approval. AMD assumes no liability whatsoever for claims associated with the sale or use (including the use of engineering samples) of AMD products except as provided in AMD's Terms and Conditions of Sale for such product.

Trademarks

AMD, the AMD logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.

AMD-640, AMD-645, K86, AMD-K5, and AMD-K6 are trademarks of Advanced Micro Devices, Inc.

Microsoft and Windows are registered trademarks, and Windows NT is a trademark of Microsoft Corporation.

Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

Contents

1	Features		1-1
		1.1	Enhanced IDE Controller1-1
		1.2	Universal Serial Bus Controller1-2
		1.3	Plug-N-Play Support1-2
		1.4	Sophisticated Power Management1-2
		1.5	PC97-Compliant PCI-to-ISA Bridge1-3
2	Overview		2-1
		2.1	PCI-to-ISA Bridge2-1
			2.1.1PCI Bus Master Mode2-12.1.2PCI Bus Slave Mode2-2
		2.2	ISA Controller2-3
		2.3	EIDE Controller2-5
		2.4	Universal Serial Bus2-6
		2.5	Power Management2-7
3	Ordering	nform	ation 3-1
4	Signal Des	criptio	ons 4-1
		4.1	PCI Bus Interface
		4.2	ISA Bus Interface
		4.3	Ultra DMA-33 Enhanced IDE Interface4-10
		4.4	XD Bus Interface
		4.5	Plug-N-Play Support4-14
		4.6	Universal Serial Bus Interface4-15

Preliminary Information

	4.7	Power Management4-15
	4.8	Power and Ground4-15
	4.9	Internal Real-Time Clock4-16
	4.10	Keyboard Interface4-17
	4.11	CPU Interface
	4.12	General-Purpose I/O4-19
Functional	Opera	ations 5-1
	5.1	PCI Bus-Initiated Accesses5-1
		5.1.1 Overview 5-1 5.1.2 Bus Cycle Decoder 5-2
	5.2	PCI Bus Commands5-2
		5.2.1Interrupt Acknowledge5-25.2.2Special Bus Cycles5-35.2.3I/O Read/Write5-35.2.4Memory Read/Write5-55.2.5Configuration Read/Write5-145.2.6Memory Read Multiple5-165.2.7Dual Address Line5-165.2.8Memory Read Line5-165.2.9Memory Write Invalidate5-16
	5.3	PCI Bus Features5-17
		5.3.1 Back-to-Back Cycles 5-17 5.3.2 Subtractive Decoding 5-17 5.3.3 ISA Bus Control Register 5-17
	5.4	ISA Bus-Initiated Cycles5-18
		5.4.1DMA-Initiated Cycles5-185.4.2ISA Bus Master Initiated Cycles5-20
	5.5	PCI Bus Arbitration5-23
	5.6	I/O and Memory Mapping5-23
		5.6.1 I/O Mapping 5-24 5.6.2 Memory Mapping 5-25 5.6.3 System ROM Memory Mapping 5-27

21095A/0-March 1997

••••	Clock Generation5-29
5.8	Direct Memory Access
	5.8.1DMA Controllers5-305.8.2DMA Controller Registers5-305.8.3Middle Address Bit Latches5-325.8.4Page Registers5-325.8.5DMA Address Generation5-335.8.6Type F DMA5-365.8.7DMA Channel Mapping Registers5-385.8.8Ready Control Logic5-385.8.9External Cascading5-395.8.10PCI Bus Request Arbiter5-395.8.11DMA Read and Write Buffers5-405.8.12PCI Target Retries5-40
5.9	Distributed DMA Support5-41
5.10	Ultra DMA Support5-41
	5.10.1 Ultra DMA Read Burst Command 5-43
	5.10.2 Ultra DMA Write Burst Command5-455.10.3 Slave DMA Channel5-485.10.4 DMA Control Registers5-495.10.5 DMA Software Commands5-515.10.6 DMA Addressing5-515.10.7 PCI Slave DMA Configuration Registers5-52
5.11	5.10.2 Ultra DMA Write Burst Command5-455.10.3 Slave DMA Channel5-485.10.4 DMA Control Registers5-495.10.5 DMA Software Commands5-515.10.6 DMA Addressing5-51
5.11 5.12	5.10.2 Ultra DMA Write Burst Command5-455.10.3 Slave DMA Channel5-485.10.4 DMA Control Registers5-495.10.5 DMA Software Commands5-515.10.6 DMA Addressing5-515.10.7 PCI Slave DMA Configuration Registers5-52
	5.10.2 Ultra DMA Write Burst Command5-455.10.3 Slave DMA Channel5-485.10.4 DMA Control Registers5-495.10.5 DMA Software Commands5-515.10.6 DMA Addressing5-515.10.7 PCI Slave DMA Configuration Registers5-52ISA Bus Refresh Cycle Types5-53

7

	5.14	Power Management Support5-65
		5.14.1 Power Management Subsystem5-655.14.2 Power Plane Management5-665.14.3 Power Management Events5-685.14.4 Legacy Management Timers5-705.14.5 System Primary and Secondary Events5-715.14.6 Peripheral Events5-73
Initializati	on	6-1
	6.1	Legacy I/O Registers6-1
	6.2	PCI Function 0 Registers—PCI-to-ISA Bridge6-5
	6.3	PCI Function 1 Registers—IDE Control6-8
	6.4	PCI Function 2 Registers—USB Controller6-10
	6.5	PCI Function 3 Registers—Power Management6-12
		 6.5.1 Power Management Configuration Space Registers 6-12 6.5.2 Power Management I/O Space Registers 6-13
Registers		7-1
	7.1	PCI Mechanism #1
	7.2	Legacy I/O Registers
		7.2.1Keyboard Controller Registers7-37.2.2DMA Controller I/O Registers7-77.2.3Interrupt Controller Registers7-107.2.4Interrupt Controller Shadow Registers7-107.2.5Timer/Counter Registers7-127.2.6CMOS/RTC Registers7-12
	7.3	Function 0 Registers (PCI-ISA Bridge)7-15
		7.3.1Function 0 PCI Configuration Space Header7-157.3.2ISA Bus Control7-177.3.3Plug-N-Play Control Registers7-247.3.4Distributed DMA Control7-28

9

7.4	Function 1 Registers (Enhanced IDE Controller)7-29
	7.4.1Function 1 PCI Configuration Space Header7-297.4.2IDE Controller-Specific Configuration Registers7-367.4.3IDE I/O Registers7-43
7.5	Function 2 Registers (USB Controller)7-44
	7.5.1Function 2 PCI Configuration Space Header7-457.5.2USB-Specific Configuration Registers7-487.5.3USB I/O Registers7-50
7.6	Function 3 Registers (Power Management)7-51
	 7.6.1 Function 3 PCI Configuration Space Header
Electrical Data	8-1
8.1	Absolute Ratings8-1
8.2	Operating Ranges8-2
8.3	DC Characteristics8-2
8.4	Power Dissipation8-3
Switching Char	acteristics 9-1
9.1	PCLK Switching Characteristics9-2
9.2	Valid Delay, Float, Setup, and Hold Timings9-5
9.3	PCI Interface Timing9-6
9.4	ISA Interface Timing9-7
9.5	DMA Interface Timing9-17
9.6	X-Bus Interface Timing9-23
9.7	EIDE Interface9-25
9.8	Ultra DMA-33 IDE Bus Interface Timing9-29

Preliminary Information

AMD-645 Peripheral Bus Controller Data Sheet

21095A/0—March 1997

10	IBIS Models	10-1
	10.1	I/O Buffer Model10-1
	10.2	I/O Model Application Note10-2
	10.3	I/O Buffer AC and DC Characteristics10-3
	10.4	References
11	Pin Designations	s 11-1
	11.1	Pin Designation Table11-1
	11.2	Pin Diagram11-3
12	Package Specific	ations 12-1

List of Figures

Figure 1-1.	AMD-640 Chipset System Block Diagram	1-4
Figure 2-1.	AMD-645 Peripheral Bus Controller Block Diagram	2-8
Figure 5-1.	I/O Access	5-4
Figure 5-2.	I/O Cycle 16-Bit to 8-Bit Conversion	5-5
Figure 5-3.	Non-Posted PCI-to-ISA Access	5-6
Figure 5-4.	Posted PCI-to-Memory Write	5-7
Figure 5-5.	ISA Bus Memory Access Cycle	5-8
Figure 5-6.	ISA Bus Memory Cycle: 16-Bit to 8-Bit Conversion	5-9
Figure 5-7.	Memory Cycle 32-Bit to 8-Bit Conversion 5	-10
Figure 5-8.	Memory Cycle 32-Bit to 16-Bit Conversion 5	-11
Figure 5-9.	ROM Access	-12
Figure 5-10.	ROM Cycle 32-Bit to 8-Bit Conversion 5	-13
Figure 5-11.	Configuration Read Cycle 5	-15
Figure 5-12.	Configuration Write Cycle 5	-15
Figure 5-13.	Subtractive Decode Timing 5	-17
Figure 5-14.	DMA Transfer Cycle 5	-20
Figure 5-15.	ISA Bus Master Arbitration Timing 5	-21
Figure 5-16.	ISA Bus Master-to-PCI Memory (Memory Read) 5	-22
Figure 5-17.	ISA Bus Master-to-PCI Memory (Memory Write) 5	-22
Figure 5-18.	Type F DMA Timing 5	-37
Figure 5-19.	DMA Ready Timing 5	-38
Figure 5-20.	Ultra DMA-33 IDE Read Burst 5	-43
Figure 5-21.	Pausing a DMA Burst 5	-44
Figure 5-22.	Drive Terminating a DMA Read Burst 5	
Figure 5-23.	Host Terminating DMA Burst During Read Command 5	-45
Figure 5-24.	Ultra DMA-33 IDE Write Burst 5	-46
Figure 5-25.	Drive Terminating DMA Burst During Write Command 5	-47
Figure 5-26.	Host Terminating DMA Burst During Write Command 5	-47
Figure 5-27.	PIO Cycle 5	-64
Figure 5-28.	IDE Multiword DMA Cycle 5	-65
Figure 7-1.	Strap Option Circuit	
Figure 9-1.	PCLK Waveform	
Figure 9-2.	Setup, Hold, and Valid Delay Timing Diagram	9-5
Figure 9-3.	ISA Master Interface Timing	9-8
Figure 9-4.	ISA 8-Bit Slave Interface Timing	-10
Figure 9-5.	ISA 16-Bit Slave Interface Timing	
Figure 9-6.	ISA Master-to-PCI Access Timing	
Figure 9-7.	Other ISA Master Timing	-16

Preliminary Information

Figure 9-8.	DMA Read Cycle Timing 9-18
Figure 9-9.	DMA Write Cycle Timing 9-20
Figure 9-10.	Type F DMA Interface Timing 9-22
Figure 9-11.	X-Bus Interface Timing
Figure 9-12.	EIDE PIO
Figure 9-13.	EIDE DMA 9-28
Figure 11-1.	AMD-645 Peripheral Bus Controller Pin Diagram 11-4
Figure 12-1.	208-Pin Plastic Quad Flat Pack Outline Drawing 12-2

List of Tables

T-1-1-2-1		2.4
Table 3-1. Table 4-1.	Valid Combinations	
Table 4-1. Table 5-1.	Connecting PIRQ Lines to PCI INT Lines	
Table 5-1. Table 5-2.	PCI Bus Command Encoding and Types ISA Byte and Word Accesses	
Table 5-3.	I/O Fixed Address Mapping.	
Table 5-4.	Memory Address Mapping	
Table 5-5.	ROM Decode Control Register	
Table 5-6.	ISA Bus Clock Select Bit Programming	
Table 5-7.	Ports 00h–0Fh Master DMA Controller	
Table 5-8.	Ports 80h–8Fh DMA Page Register Access	
Table 5-9.	DMA Addressing for ISA Bus Accesses (DMA/Slot Bus)	
	DMA Addressing for ISA Bus Accesses (DMA/PCI AD Bus)	
	Type F DMA Control	
Table 5-12.	Ultra DMA Interface Signals	5-41
Table 5-13.	Programming Model for Single Slave DMA Channel	5-48
	DMA Registers	
Table 5-15.	Data Steering: PCI Bus Master Writes	5-54
Table 5-16.	Data Steering: PCI Bus Master Reads	5-55
Table 5-17.	Data Steering: DMA/ISA Bus Master Reads PCI	5-56
Table 5-18.	Data Steering: DMA/ISA Bus Master Writes PCI	5-56
Table 5-19.	Data Steering: DMA/ISA Bus Master Reads ISA	5-57
Table 5-20.	Data Steering: DMA/ISA Bus Master Writes ISA	5-57
Table 5-21.	IDE Register Map	5-58
	PCI Cycles	
Table 5-23.	SCI/SMI/Resume Control for PM Events	5-70
	Suspend Resume Events and Conditions	
Table 5-25.	PRI_ACT_STS and PRI_ACT_EN Register Bits	5-72
Table 6-1.	Master DMA Controller Registers	
Table 6-2.	Master Interrupt Controller Registers	
Table 6-3.	Timer/Counter Registers	
Table 6-4.	Keyboard Controller Registers	
Table 6-5.	CMOS/RTC/NNI Registers	
Table 6-6.	DMA Page Registers	
Table 6-7.	System Control Registers	
Table 6-8.	Slave Interrupt Controller Registers	
Table 6-9.	Slave DMA Controller Registers	
	Configuration Space PCI-to-ISA Header Registers	
	ISA Bus Control Registers	
	Plug-n-Play Control Registers	
Table 6 12.	Distributed DMA	. 0-7
Table 0-13. Table 6 14	Configuration Space IDE Header Registers	. U-/
	Configuration Space IDE Registers	
1 able 6-16.	IDE Controller I/O Registers	ρ-10

Table 6-17.	Configuration Space USB Header Registers 6-10
Table 6-18.	Configuration Space USB Registers
	USB Controller I/O Registers
Table 6-20.	Configuration Space Power Management Header Registers 6-12
	Configuration Space Power Management Registers 6-13
Table 6-22.	Basic Power Management Control/Status Registers 6-13
Table 6-23.	Processor Power Management Registers
Table 6-24.	General Purpose Power Management Registers
Table 6-25.	Generic Power Management Registers 6-14
	General Purpose I/O 6-14
Table 7-1.	Keyboard Controller Command Codes
Table 7-2.	Traditional Port Pin Definition
Table 7-3.	Ports 00h–0Fh Master DMA Controller
Table 7-4.	Ports C0h–DFh Slave DMA Controller
Table 7-5.	Ports 80h–8Fh DMA Page Registers
Table 7-6.	Ports 20h–21h Master Interrupt Controller Registers 7-10
Table 7-7.	Ports A0h-A1h Slave Interrupt Controller Registers 7-10
Table 7-8.	Ports 40h–43h Timer/Counter Registers
Table 7-9.	CMOS Register Summary 7-13
Table 7-10.	Compatibility Mode vs. Native PCI Mode
Table 7-11.	FIFO Distribution
Table 8-1.	Absolute Maximum Ratings 8-1
Table 8-2.	Absolute Ratings 8-1
Table 8-3.	Operating Ranges
Table 8-4.	DC Characteristics 8-2
Table 8-5.	Typical and Maximum Power Dissipation 8-3
Table 9-1.	CLK Switching Characteristics for 33-MHz PCI Bus 9-2
Table 9-2.	USBCLK Switching Characteristics for 12-MHz USB Bus 9-3
Table 9-3.	USBCLK Switching Characteristics for 1.5-MHz USB Bus 9-3
Table 9-4.	BCLK Switching Characteristics for 8-MHz Bus
Table 9-5.	OSC Switching Characteristics for 14.3182-MHz Bus 9-4
Table 9-6.	PCI Interface Timing
Table 9-7.	ISA Master Interface Timing
Table 9-8.	ISA 8-Bit Slave Interface Timing
Table 9-9.	ISA 16-Bit Slave Interface Timing
	ISA Master-to-PCI Access Timing
	Other ISA Master Timing 9-15
	DMA Read Cycle Timing 9-17
Table 9-13.	DMA Write Cycle Timing 9-19
	Type F DMA Interface Timing 9-21
	X-BUS Interface Timing
	EIDE PIO
	EIDE DMA
	UltraDMA-33 IDE Bus Interface Timing 9-29
Table 11-1.	Functional Grouping 11-1

1 Features

The AMD-640[™] chipset is a highly integrated system solution designed to deliver superior performance for the AMD-K5[™] processor, AMD-K6[™] MMX processor, and other Socket 7compatible processors. The AMD-640 chipset consists of the AMD-640 System Controller in a 328-pin BGA package and the AMD-645[™] Peripheral Bus Controller in a 208-pin PQFP package. The AMD-645 Peripheral Bus Controller features an integrated ISA bus controller, enhanced master mode PCI IDE controller with ultra DMA-33 support, USB controller, keyboard/mouse controller, and real-time clock.

This document describes the features and operation of the AMD-645 Peripheral Bus Controller. For a description of the AMD-640 System Controller, see the AMD-640 System Controller Data Sheet, order# 21090. Key features of the AMD-645 Peripheral Bus Controller are provided in this section.

1.1 Enhanced IDE Controller

- Enhanced master mode PCI IDE controller with Ultra DMA-33 support
- Dual channel master mode PCI supporting four enhanced IDE devices
- Transfer rate up to 33 Mbytes per second to cover PIO mode 4 and multi-word DMA mode 2 drivers, and Ultra DMA-33/ ATA-33 interface
- Sixteen levels (doublewords) of prefetch and write buffers
- Interlaced commands between the two channels
- Bus master programming interface for SFF-8038i, rev. 1.0 and Microsoft Windows 95[®] compliance
- Full scatter-gather capability
- Supports ATAPI-compliant devices
- Supports PCI native and ATA compatibility modes
- Complete software driver support

1.2 Universal Serial Bus Controller

- USB v. 1.0 and Intel Universal HCI v. 1.1-compatible
- Eighteen-level (doubleword) data FIFOs
- Root hub and two function ports with built-in physical layer transceivers
- Legacy keyboard and PS/2 mouse support

1.3 Plug-N-Play Support

- PCI interrupts steerable to any interrupt channel
- Three steerable interrupt channels and DMA signal steering with Plug-N-Play control
- Microsoft Windows 95 and Plug-N-Play BIOS compliant

1.4 Sophisticated Power Management

- Supports both ACPI (Advanced Configuration and Power Interface) and legacy (APM) power management
- ACPI v.0.9 Compliant
- APM v.1.2 Compliant
- Supports soft-off and power-on suspend with hardware automatic wakeup
- One idle timer, one peripheral timer, and one general purpose timer, plus 24- and 32-bit APCI-compliant timer
- Dedicated input pin for external modem ring indicator for system wakeup
- Normal, doze, sleep, suspend, and conserve modes
- System event monitoring with two event classes
- Five multipurpose I/O pins plus support for up to 16 general purpose input ports and 16 output ports
- Primary and secondary interrupt differentiation for individual channels
- Clock throttling control
- Multiple internal and external SMI sources for flexible power management

1.5 PC97-Compliant PCI-to-ISA Bridge

- Dual cascaded AT-compatible 8259 interrupt controllers
- AT-compatible 8255 programmable interval timer
- Dual AT-compatible 8237 DMA controllers
- Distributed DMA support for ISA legacy DMA across the PCI bus
- Integrated keyboard controller with PS/2 mouse support
- Integrated real-time clock with extended 256-byte CMOS RAM
- PCI v. 2.1-compliant interface
- Eight double-word line buffer between PCI and ISA bus
- Supports type F DMA transfers
- Fast reset and gate A20 operation
- Edge-triggered or level-sensitive interrupts
- Flash, 2-Mbyte EPROM, and combined BIOS support
- Programmable ISA bus clock
- Supports external IOAPIC interface with symmetrical multiprocessor configurations

21095A/0-March 1997

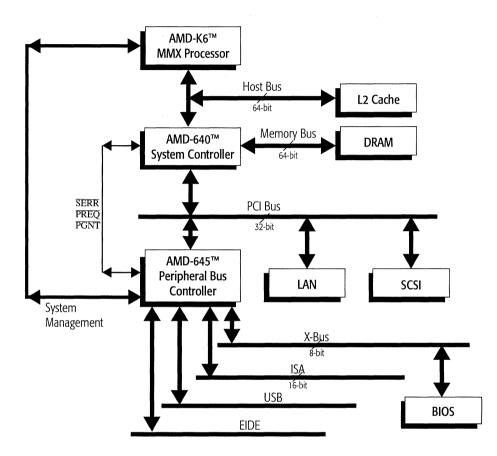


Figure 1-1. AMD-640 Chipset System Block Diagram

2 Overview

The AMD-645 Peripheral Bus Controller is responsible for converting between PCI and ISA bus cycles. The AMD-645 Peripheral Bus Controller PCI-to-ISA bridge contains eight double-word line buffers and supports Type F DMA transfers and delay transactions to streamline PCI bus operation and comply with PCI Specification version 2.1.

The AMD-645 Peripheral Bus Controller also integrates many AT-compatible and system control functions, including a keyboard controller with PS/2 mouse support, real-time clock with extended 256-byte CMOS RAM, master mode EIDE controller with full scatter and gather capability, and a USB interface with root hub and two function ports with built-in physical layer transceiver.

2.1 PCI-to-ISA Bridge

The AMD-645 Peripheral Bus Controller offers both a PCIcompatible bus interface and an ISA-compatible interface. These interfaces, which are fully compliant with the PCI 2.1 specification, control PCI/ISA bus communication. Two main blocks, the PCI bus master and slave blocks, make up the PCI interface control.

To become PCI bus master, the AMD-645 Peripheral Bus Controller must arbitrate for control of the bus with the AMD-640 System Controller. Once bus ownership has been granted, the AMD-645 Peripheral Bus Controller assumes PCI bus master responsibility. The AMD-645 Peripheral Bus Controller is in slave mode whenever it does not own the PCI bus.

2.1.1 PCI Bus Master Mode

The AMD-645 Peripheral Bus Controller arbitrates for bus ownership when an ISA bus resource requests a DMA-

controlled transfer between memory and an I/O device, or when an ISA bus master requests bus ownership for data transfers. In both DMA and ISA master mode, the data transfer takes place either between two ISA bus resources or between an ISA and a PCI bus resource.

To determine the destination of the bus master request, the AMD-645 Peripheral Bus Controller can sample an active DEVSEL input, which indicates that a particular target on the PCI bus is responding to the current request. The destination can also be determined by a positive decoding of the master-driven address.

A third alternative for determining the destination is subtractive decode. If the destination is not identified by either positive address decoding or an active DEVSEL input, the AMD-645 Peripheral Bus Controller assumes the access is occurring only between two ISA bus resources.

The AMD-645 Peripheral Bus Controller PCI interface translates all non-positive decoded ISA master requests to the PCI bus. In situations in which the request is forwarded to the PCI bus, the AMD-645 Peripheral Bus Controller ensures ISA and PCI bus synchronization by controlling the ISA-based IOCHRDY signal. If an active DEVSEL response is not received within the specified time, the AMD-645 Peripheral Bus Controller master interface assumes the requested cycle was between ISA resources and executes a PCI master abort cycle. In the event the DEVSEL signal is sampled active within the specified time, the AMD-645 Peripheral Bus Controller master interface executes a data transfer between the ISA and PCI buses.

2.1.2 PCI Bus Slave Mode

The AMD-645 Peripheral Bus Controller stays in PCI slave mode when it does not own the bus. The slave interface responds to any request from a PCI resource by asserting DEVSEL if it has positively decoded the current address as a destination for either the ISA bus or for on-chip I/O.

When the current address is not positively decoded, the AMD-645 Peripheral Bus Controller target interface is de-selected by an active DEVSEL input driven by another PCI resource.

If no active DEVSEL signal is received within a specified time, the AMD-645 Peripheral Bus Controller acts as the subtractive decode resource by claiming all otherwise unclaimed PCI bus requests and directing the request to the ISA bus.

To ensure correct data synchronization between the two buses on PCI-to-ISA write cycles, the ISA command sequence begins only after the current PCI master has indicated valid data on the bus by asserting IRDY.

The AMD-645 Peripheral Bus Controller responds to requests destined for the ISA bus or on-chip I/O by executing a single data transfer and signalling a target disconnect. If the AMD-645 Peripheral Bus Controller samples an active DEVSEL input within a specified time, it is de-selected, allowing the transfer to take place between the two PCI resources.

The AMD-645 Peripheral Bus Controller is capable of posting PCI-to-ISA memory write cycles. When posting is enabled, the PCI request is acknowledged immediately and the write data is latched to allow the ISA cycle to proceed independently from the PCI transaction.

2.2 ISA Controller

The integrated ISA system address latches and control logic allow the AMD-645 Peripheral Bus Controller user to design an extremely cost-effective system. In addition, the AMD-645 Peripheral Bus Controller contains the decode logic to select an external keyboard controller. This keyboard controller can be programmed for attachment on either the XD or SD bus.

The AMD-645 Peripheral Bus Controller controls accesses to 8bit BIOS ROM and to 8-bit or 16-bit ISA bus ROM. The BIOS ROM must be 8 bits and is accessed via an external XD bus. All other ROM is accessed as either 8-bit or 16-bit ROM residing on the ISA SD bus, either on-board or off-board via the slots. Accesses in the C0000h–CFFFFh and E0000h–EFFFFh ranges are optionally definable as on-board system ROM or off-board memory via the ROM relocation register. A special mode is supported for erasing and programming flash memories in areas where such devices are used as the BIOS ROMs.

The 82C37A-compatible DMA controllers control data transfers between an I/O channel and on-board or off-board memory. The DMA controllers can transfer data over a 24-bit (16- Mbyte) address range. Internal latches latch the middle address bits output by the 8237A megacells. A memory mapper generates the upper address bits.

As specified by the industry standard, distributed DMA offers support for seven DMA channels. The distributed DMA logic remaps I/O cycles from the distributed I/O target locations to the applicable DMA controller. When this remapping is enabled, accesses to the legacy DMA I/O addresses are disabled and ISA cycles are generated instead. DMA requests from the ISA bus that address PCI memory cause PCI master requests and cycles to be generated by the AMD-645 Peripheral Bus Controller.

The AMD-645 Peripheral Bus Controller generates synchronous ISA bus timing and synchronous IDE interface timing from the 33-MHz PCI bus clock.

The AMD-645 Peripheral Bus Controller performs all the data steering functions between the ISA bus and the PCI bus. PCI bus data accesses that are wider than those supported by the targeted ISA bus device are automatically split into two, three, or four ISA cycles. When PCI bus reads are split into several ISA bus reads, the data returned by the ISA devices is assembled by latches before being returned to the PCI bus. The AMD-645 Peripheral Bus Controller also performs low-tohigh and high-to-low byte swaps on the 16-bit SD bus.

As a PCI slave, the AMD-645 Peripheral Bus Controller is capable of expanding PCI accesses with non-contiguous byte enables into the appropriate discrete ISA cycles.

The AMD-645 Peripheral Bus Controller functions are programmable via a set of internal device-specific configuration registers. The state of various interface pins on reset is used to determine the default configuration.

2.3 EIDE Controller

	The AMD-645 Peripheral Bus Controller's enhanced IDE interface provides a variety of features to optimize system performance. A 16-doubleword write FIFO and look-ahead read buffer supports 32-bit PCI data transfers. The IDE-PCI interface operates at PCI speed and allows concurrent IDE and PCI operations to maximize system performance.
	Logically, the IDE drive interface can be viewed as being composed of six controller blocks.
CPU Command Processor	The CPU command processor receives input commands from the CPU, FIFO full/FIFO empty signals from the write-FIFO, and read-ahead full signals from the read-ahead buffer.
I/O Processor	The I/O processor is the IDE control signal block, containing all of the IDE bus control logic. It receives inputs from the IDE bus, command processor, and write FIFO. The I/O processor issues the IOR/IOW signals to the IDE bus, based on programmed address setup time, IOR/IOW precharge time, and IOR/IOW active duration. It also translates 16-bit cycles to two 8-bit cycles when necessary.
Write Buffer	The write buffer takes 32-bit CPU data and converts it to the proper 16-bit or 8-bit data format.
Read-Ahead/Posted- Write FIFO	This block functions as a read-ahead buffer during read accesses from I/O address 1F0h. During writes, this block stores 16-bit data in the 16-doubleword FIFO and passes control to the I/O processor or DMA state machine. Its direction is determined by commands and register programming.
IDE Arbiter	The arbiter arbitrates between IDE channels and multiplexes the IDE data bus, IDE address, and IDE chip selects.
DMA State Machine	The DMA bus mastering state machine controls IOW and IOR pulses for each IDE channel during DMA accesses.
	The AMD-645 Peripheral Bus Controller's enhanced IDE controller provides a data path and control interface to standard IDE drives. The block is fully compatible with the ANSI ATA specifications for IDE hard disk operation. The bus

mastering IDE interface supports transfer rates up to and beyond mode 4-programmed I/O and mode 2 DMA. Two channels are supported with the ability to connect to both with no external logic. Data is transferred over a shared 16-bit IDE data bus.

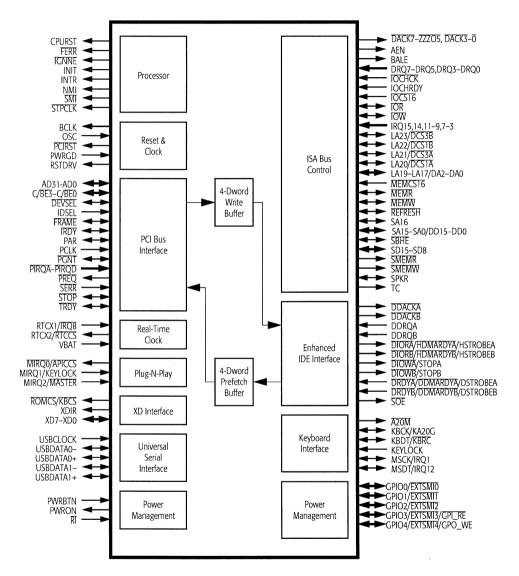
The AMD-645 Peripheral Bus Controller contains two IDE interfaces. Channel 0 is the primary interface, with target I/O addresses at 1F0h-1F7h and 3F6h. Its IRQ pin is mapped to IRQ14. Channel 1 is the secondary IDE interface, with target I/O addresses at 170h-177h and 376h. Its IRQ pin is mapped to IRQ15. Unless otherwise noted, discussions in this document referring to channel 0 resources apply equally to the respective channel 1 resources.

The master mode registers for both channels are contained in a single I/O block located at the I/O address specified by the contents of the Bus Master Control Registers Base Address register located at Function 1, offset 23h–20h. The first 8 bytes of the 16-byte block are associated with channel 0, and the second 8 bytes with channel 1. Independent configuration registers exist in PCI configuration space for each channel.

2.4 Universal Serial Bus

The AMD-645 Peripheral Bus Controller USB host controller interface is fully compatible with both the USB specification v.1.0 and the Intel Universal HCI specification v.1.1. There are two sets of software-accessible registers, the PCI configuration registers and the USB I/O registers.

The interface supports eighteen levels (doublewords) of data FIFOs, and a root hub and two function ports with built-in physical layer transceivers. The USB controller allows hot Plug-N-Play and isochronous peripherals to be inserted into the system with universal driver support.

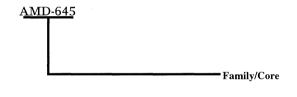

In addition, the AMD-645 Peripheral Bus Controller offers legacy (X-bus) keyboard and PS/2 mouse support.

2.5 Power Management

The AMD-645 Peripheral Bus Controller supports Advanced Configuration and Power Interface (ACPI) as well as legacy Advanced Power Management (APM). It complies with both ACPI specification v.0.9 and APM specification v.1.2. In addition, AMD-645 Peripheral Bus Controller power management is compatible with PC97 and OnNow.

The real-time clock with 256-byte extended CMOS includes a data alarm and other enhancements for compatibility with the ACPI standard. Two types of sleep states are provided, soft-off and power-on suspend, along with hardware automatic wake-up. Additional power management features includes event monitoring, CPU clock throttling, hardware and software-based event handling, general purpose IO, and external SMI.

21095A/0-March 1997



21095A/0-March 1997

AMD-645 Peripheral Bus Controller Data Sheet

3 Ordering Information

AMD standard products are available in several packages and operating ranges. The order number (valid combination) is formed by a combination of the elements below.

Table 3-1.Valid Combinations

OPN	Package Type	Operating Voltage	Case Temperature		
AMD-645	208-pin PQFP	4.75 V-5.25 V	70°C		
Note: Valid combinations are configurations that are or will be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.					

21095A/0-March 1997

4 Signal Descriptions

4.1 PCI Bus Interface

AD31-AD0	PCI Address/Data Bus	Bidirectional
	contain a physical address transaction, and data during	PCI address and data lines. They during the first clock of a PCI subsequent clocks. The address is red, and data is driven or received
	these lines are outputs du	eral Bus Controller is PCI master, ring the address and write data inputs during the read data phase.
		eral Bus Controller is PCI slave, the address and write data phases during the read data phase.
C3/BE3-C0/BE0	PCI Command / Byte Enable	Bidirectional
	asserted, these lines contain	PCI transaction, when FRAME is n the PCI bus command (C3–C0). e lines contain PCI byte enables supplied or requested data.
	-	s when the AMD-645 Peripheral master. They are inputs when it is
DEVSEL	PCI Bus Device Select	Bidirectional
	master, DEVSEL is an input has responded to the curren inactive in the fourth PCLK of	neral Bus Controller is PCI bus that determines whether a slave at address. If DEVSEL is sampled cycle after FRAME is asserted, the ntroller aborts the PCI bus cycle.

When the AMD-645 Peripheral Bus Controller is not PCI bus master it defaults to target mode, and DEVSEL is an output indicating that it claims a PCI transaction through either positive or subtractive decoding. In a positive decode, the AMD-645 Peripheral Bus Controller asserts DEVSEL one PCLK cycle after FRAME is sampled active and holds it Low through the end of the transaction. In a subtractive decode, DEVSEL is driven Low three PCLK cycles after FRAME is asserted. Positive and negative decoding are explained in Section 5.1 on page 5-1.

PCI Bus Cycle Frame Bidirectional

The assertion of FRAME indicates the address phase of a PCI transfer, while its negation indicates that one more data transfer is desired by the cycle initiator. While FRAME is asserted, data transactions can continue. When FRAME is deasserted, data transactions are in the final phase.

When the AMD-645 Peripheral Bus Controller is PCI bus master, FRAME is driven active for one clock cycle to start the current bus cycle. When the AMD-645 Peripheral Bus Controller is the slave, FRAME is an input indicating the beginning and duration of the current bus cycle.

PCI Initialization Device Select Input

IDSEL is used as a chip select during configuration read and write cycles.

PCI Bus Initiator Ready Bidirectional

IRDY is asserted by a PCI initiator from the first clock cycle after **FRAME** to the last clock of the transaction to indicate it is ready for data transfer.

When the AMD-645 Peripheral Bus Controller is PCI master, IRDY is an output that indicates the ability of the chip to complete the current data phase of the transaction. When the AMD-645 Peripheral Bus Controller is PCI slave, a read cycle cannot end and the write cycle cannot start until the IRDY input is sampled active.

IDSEL

IRDY

PAR	PCI Bus Parity		Bidirectio	nal	
	This signal provides even parity for AD31-AD0 and C3/BE3-C0/BE0. When the AMD-645 Peripheral Bus Controller is PCI bus master, it drives PAR one PCLK after the address and write data phases.				
				Controller is l r a read is con	
PCIRST	PCI Reset		Output		
	PCIRST is an active Low reset signal for the PCI bus. The AMD-645 Peripheral Bus Controller can assert reset during power-up. A PCI reset can be forced during normal operation by setting configuration register Function 0, offset 47h, bit 0.				
PCLK	PCI Bus Clock		Input		
	PCLK provides timing for all transactions on the PCI bus. It runs at half the CPU frequency, up to 33 MHz. PCLK can also be divided down to generate the ISA bus clock.				
PGNT	PCI Grant		Input		
		0 System Cor AMD-645 Pe		es <mark>PGNT</mark> to gr 6 Controller.	rant PCI bus
PIRQA-PIRQD	PCI Interrupt R	equests	Input		
	These pins are typically connected to the PCI bus INT lines as shown in Table 4-1. Table 4-1. Connecting PIRQ Lines to PCI INT Lines				
		PIRQA	PIRQB	PIRQC	PIRQD
	PCI Slot 1	INTA	INTB	INTC	INTD
	PCI Slot 2	INTB	INTC	INTD	INTA
	PCI Slot 3	INTC	INTD	INTA	INTB
	PCI Slot 4	INTD	INTA	INTB	INTC
PREQ	PCI Request The AMD-64	45 Peripher	<i>Output</i> al Bus Cont	roller asser	ts PREQ to

request control of the PCI bus.

SERR

STOP

TRDY

AMD-645 Peripheral Bus Controller Data Sheet

21095A/0-March 1997

System Error

Stop

Input

Any PCI device that detects a system error condition can alert the system by asserting SERR for one PCI clock. The AMD-645 Peripheral Bus Controller can be programmed to generate an NMI to the CPU if it samples SERR active.

Bidirectional

A PCI target asserts **STOP** to request that the master stop the current transaction. When the AMD-645 Peripheral Bus Controller is PCI master, **STOP** is an input that causes the AMD-645 Peripheral Bus Controller to terminate the transfer and abort or retry it depending on the state of **DEVSEL** and **TRDY**.

When the AMD-645 Peripheral Bus Controller is PCI slave, it asserts STOP and TRDY simultaneously to indicate a target disconnect following the data transfer or burst. It does not assert STOP if the transfer is a single, non-bursted transfer.

PCI Target Ready

Bidirectional

A PCI target asserts TRDY when it is ready for data transfer. When the AMD-645 Peripheral Bus Controller is the PCI master, TRDY is an input that indicates the ability of the target device to complete the data phase of the transaction. Once a PCI bus transaction is initiated, the AMD-645 Peripheral Bus Controller inserts wait cycles until TRDY is sampled active.

As the PCI slave, the AMD-645 Peripheral Bus Controller asserts TRDY to indicate it has sampled the data from the PCI address/data bus during a write phase, or presented valid data on the bus during a read phase.

4.2 ISA Bus Interface

AEN

Address Enable

Output

AEN is asserted during DMA transfer cycles to the I/O resources on the bus to prevent I/O slaves from misinterpreting DMA cycles as valid I/O cycles. It is asserted only when the DMA controller is the bus owner.

		·····	
BALE	Bus Address Latch Enable	Output	
	BALE is asserted for a bus clock at the beginning of any bus cycle initiated by a PCI master. It is asserted by the AMD-645 Peripheral Bus Controller to indicate that the address signal lines (SA19–SA0, LA23–LA17, and SBHE) are valid.		
BCLK	Bus Clock	Output	
	BCLK is the ISA bus clock	ς.	
DACK7-DACK5,	DMA Acknowledge	Output	
DACK3-DACKO	These lines indicate that service has been accompli	the corresponding request for DMA ished.	
DRQ7-DRQ5,	DMA Request	Input	
DRQ3-DRQ0	These asynchronous DMA request lines are used by external devices to request services from the AMD-645 Peripheral Bus Controller DMA controller. DRQ3–DRQ0 are used for transfers between 8-bit I/O adapters and system memory. DRQ7–DRQ5 are used for transfers between 16-bit I/O adapters and system memory. DRQ4 is not available externally.		
IOCHCK	I/O Channel Check	Input	
	IOCHCK is asserted by a device or memory on the ISA bus to indicate that a parity error or other uncorrectable error has occurred.		
	If I/O checking is enabled, the AMD-645 Peripheral Bus Controller generates an NMI to the processor when it samples IOCHCK asserted.		
IOCHRDY	I/O Channel Ready	Input	
	Devices on the ISA bus negate IOCHRDY to indicate that additional time is required to complete the cycle. The cycle can be generated by the CPU, DMA controllers, or refresh controller. The AMD-645 Peripheral Bus Controller responds by inserting wait states to add more time to the cycle.		
	The default number of w CPU is as follows:	ait states for cycles initiated by the	
	8-bit peripherals 4 w	wait states	
	16-bit peripherals 1	wait state	

Preliminary Information

21095A/0-March 1997

		ROM	cycles	3 wait states
--	--	-----	--------	---------------

One DMA wait state is inserted as the default for all DMA cycles. Any peripheral that cannot present read data or strobe in write data in this amount of time must assert IOCHRDY to extend these cycles.

The AMD-645 Peripheral Bus Controller always drives IOCHRDY Low in either DMA or Master Mode to allow for PCI bus latency.

IOCS16 16-Bit I/O Chip Select Input

IOCS16 is driven by I/O devices on the ISA bus to indicate that they support 16-bit I/O bus cycles.

The AMD-645 Peripheral Bus Controller samples IOCS16 to determine when a CPU access requires a 16-bit to 8-bit conversion. It also performs a conversion if it requests a 16-bit I/O cycle and samples IOCS16 High. In a conversion, the AMD-645 Peripheral Bus Controller inserts a command delay of one bus cycle and the cycle becomes four wait states long. If IOCS16 is sampled Low, the AMD-645 Peripheral Bus Controller performs an I/O access in one wait state, inserting one command delay.

I/O Read Bidirectional

IOR is the command to an ISA I/O slave device indicating the slave can drive data onto the ISA data bus.

IOR is an input when the AMD-645 Peripheral Bus Controller is bus master and an output at all other times. When the AMD-645 Peripheral Bus Controller is a PCI slave, IOR is driven by the internal ISA bus controller.

During DMA transfers, IOR is driven by the DMA controller. It is inactive during a refresh cycle.

I/O Write

Bidirectional

IOW is the command to an ISA I/O slave device indicating the slave can latch data from the ISA data bus.

IOW

IOR

IOW is an input when the AMD-645 Peripheral Bus Controller is bus master and an output at all other times. When the AMD-645 Peripheral Bus Controller is a PCI slave, IOW is driven by the internal ISA bus controller.

During DMA transfers, **IOW** is driven by the DMA controller. It is inactive during a refresh cycle.

IRQ15, IRQ14,Interrupt RequestInputIRQ11-IRQ9,The IRQ signals provide both system board components andIRQ7-IRQ3ISA bus I/O devices with a mechanism for asynchronously
interrupting the CPU.

LA23/DCS3B,	Multifunctional Pins	Bidirectional
LA22/DCS1B, LA21/DCS3A,	ISA Bus Cycles—Unlatched A The LA23–LA17 address li	<i>ddress</i> nes are bidirectional and allow
LA20/DCS1A, LA19–LA17/	accesses to physical memory	on the ISA bus up to 16 Mbytes.
DA2-DA0	PCI IDE Cycles — <i>Chip Select</i>	

DCS1A, DCS3A, DCS1B and DCS3B are for the ATA command register block and correspond directly to CS1FX, CSF3X, CS17X, and CS37X on the primary IDE connector, respectively.

PCI IDE Cycles—Disk Address

DA2–DA0 are used to indicate which byte in either the ATA command or control block is being accessed.

The value driven on the LA bus is the address stored in the AD address register during PCI-initiated cycles and the refresh counter during non-ISA bus master refresh cycles. The LA pins are outputs when MASTER is High and are inputs when it is Low.

MASTER / MIRQ2

ISA Master Cycle Indicator

Multifunctional Pin

An external bus master device asserts **MASTER** to indicate that it has control of the bus.

Input

Plug and Play Interrupt Request 2 MIRQ2 is a steerable interrupt request for on-board devices.

21095A/0-March 1997

MEMCS16	16-Bit Memory Chip Select	Input	
	support for 16-bit memory by determine when a 16-bit to 8- accesses. Conversion is p Peripheral Bus Controller re- MEMCS16 is sampled High. cycle is inserted and the cycle MEMCS16 is sampled Low, a one wait state with no comma	-	
	MEMCS16 is ignored for DM		
MEMR	Memory Read	Bidirectional	
	drive data onto the ISA data	memory slave that permits it to bus. This signal is an input when control and an output at all other	
MEMW	Memory Write	Bidirectional	
	latch data from the ISA data	memory slave that permits it to bus. This signal is an input when control and an output at all other	
REFRESH	Refresh	Bidirectional	
	As an output, REFRESH indicates a refresh cycle is is progress. It is asserted by the AMD-645 Peripheral Bu Controller whenever a refresh cycle is initiated. As an input REFRESH is driven by 16-bit ISA bus masters to indicate refresh cycle.		
RSTDRV	Reset Drive	Output	
	RSTDRV is the reset signal to the ISA bus. It is generated from the received RST signal and is synchronized to PCLK, though it is used for the ISA bus.		
SA15-SA0/	System Address Bus/IDE Data Bus	Bidirectional	
DD15-DD0	These pins serve as the addr data bus in IDE operation.	ess bus in ISA operation and the	

21095A/0-March 1997

SA16	System Address Bus	Bidirectional	
	This signal is ISA address bit	16.	
SBHE	System Byte High Enable	Bidirectional	
		es that a byte is being transferred A data bus (SD15–SD8). SBHE is S.	
SD15-SD8/	Multifunctional Pins	Bidirectional	
GPI15-GPI8 GPO15-GPO8	<i>ISA System Data</i> SD15–SD8 provide the high order data path for devices residing on the ISA bus.		
	General-Purpose Inputs If the GPIO3_CFG bit is cleared (Function 3, offset 40h, bit 6), these pins function as GPI15–GPI8 and pin 92 serves as read enable GPI_RE.		
		red (Function 3, offset 40h, bit 7), G-GPO8 and pin 92 serves as write	
SMEMR	Standard Memory Read	Output	
	SMEMR is the command that permits a slave to drive residing below the 1 MByte region onto the ISA data bus.		
SMEMW	Standard Memory Write	Output	
	SMEMW is the command the residing below the 1 MByte residence of the 1 MByte results of the 1 MByte results of the test of tes	at permits a slave to latch data egion from the ISA data bus.	
тс	Terminal Count	Output	
		is Controller asserts TC to DMA ne of the DMA channels has	
SPKR/	Multifunction Pin	Bidirectional	
Power-Up Strap	Speaker Drive After reset, this pin functions output of counter 2.	s as the SPKR signal, which is the	

Power-Up Strapping

At reset, if this pin is strapped Low, the IDE I/O base is fixed. If the pin is strapped High, the IDE I/O base is flexible.

4.3 Ultra DMA-33 Enhanced IDE Interface

Note: The IDE address, data, and drive select pins are multiplexed with the ISA bus LA and SA pins and are described in Section 4.2.

DDACKA Disk DMA Acknowledge A Output s

DDACKA is the primary IDE channel DMA acknowledge. The AMD-645 Peripheral Bus Controller responds to DDRQA either to acknowledge that data has been accepted or to inform that data is available.

DDACKB Disk DMA Acknowledge B Output

DDACKB is the secondary IDE channel DMA acknowledge. The AMD-645 Peripheral Bus Controller responds to DDRQB either to acknowledge that data has been accepted or to inform that data is available.

DDRQA Device DMA Request A Input

Multifunction Pin

DDRQA is the primary IDE channel DMA request. A device asserts DDRQA when it is ready to read or write DMA data.

DDRQB Device DMA Request B Input

DDRQB is the secondary IDE channel DMA request. A device asserts DDRQB when it is ready to read or write DMA data.

Output

DIORA/ HDMARDYA/ HSTROBEA

EIDE Mode—Device I/O Ready A DIORA is the primary IDE channel drive write strobe. The falling edge of DIORA enables the transfer of data from a register or data port of the drive onto the IDE data bus, DD15– DD0. The rising edge of DIORA latches the data.

Ultra DMA Mode—Host DMA Ready

HDMARDYA functions as the primary channel input flow control. The host can assert HDMARDYA to pause input data transfers.

AMD-645 Peripheral Bus Controller Data Sheet

	Ultra DMA Mode — <i>Host Strobe A</i> HSTROBEA functions as the primary channel output strobe. The host can stop HSTROBEA to pause output data transfers.		
DIORB/	Multifunction Pin	Output	
HDMARDYB/ HSTROBEB	falling edge of DIORB ena	E channel drive write strobe. The bles the transfer of data from a rive onto the IDE data bus, DD15–	
	Ultra DMA Mode — <i>Host DMA Ready B</i> HDMARDYB functions as the secondary channel input flo control. The host can assert HDMARDYB to pause input da transfers.		
	Ultra DMA Mode — <i>Host Strobe B</i> HSTROBEB functions as the secondary channel output strobe. The host can stop HSTROBEB to pause output data transfers.		
DIOWA/	Multifunction Pin	Output	
STOPA	rising edge of DIOWA clo	<i>te A</i> E channel drive read strobe. The cks data from the IDE data bus gister or the data port of the drive.	
	Ultra DMA Mode — <i>Stop A</i> STOPA halts data transfer in the primary channel. The host asserts STOPA before an Ultra DMA burst is initiated and negates STOPA before an Ultra DMA burst is transferred. The host asserts STOPA during or after data transfer in Ultra DMA mode to signal the termination of the burst.		
DIOWB/	Disk I/O Write B	Output	
STOPB	rising edge of DIOWA clo	<i>te B</i> E channel drive write strobe. The cks data from the IDE data bus gister or the data port of the drive.	

<i>{</i>	asserts STOPB before an U negates STOPB before an Ult	the secondary channel. The host ltra DMA burst is initiated and tra DMA burst is transferred. The after data transfer in Ultra DMA on of the burst.	
DRDYA/	Multifunction Pin	Input	
DDMARDYA/ DSTROBEA	EIDE Mode —Device Ready A DRDYA is the primary channel device ready indicator. A device negates DRDYA to extend the AMD-645 Peripheral Bus Controller read or write cycle when it is not ready to respond to a data transfer request. When DRDYA is negated, it is in a high impedance state.		
	Ultra DMA Mode — <i>Device DMA Ready A</i> DDMARDYA is the primary channel output flow control. A device can assert DDMARDYA to pause output transfers.		
	Ultra DMA Mode — <i>Device Strobe A</i> DSTROBEA is the primary channel input data strobe. A device can stop DSTROBEA to pause input data transfers.		
DRDYB/	Multifunction Pin	Input	
DDMARDYB/ DSTROBEB	device negates DRDYB to ex Controller read or write cycl	annel device ready indicator. A tend the AMD-645 Peripheral Bus e when it is not ready to respond Then DRDYB is negated, it is in a	
	Ultra DMA Mode — <i>Device DMA Ready B</i> DDMARDYB is the primary channel output flow control. A device can assert DDMARDYB to pause output transfers.		
	Ultra DMA Mode—Device Str DSTROBEB is the primary ch can stop DSTROBEB to pause	annel input data strobe. A device	

AMD-645 Peripheral Bus Controller Data Sheet

SOE System Address Transceiver Output Enable Output

SOE controls the output enables of the 74F245 transceivers that interface the IDE data bus (DD15–DD0) to the system address bus (SA15–SA0). MASTER drives the transceiver direction control with DD15–DD0 connected to the "A" side of the transceivers and SA15–SA0 connected to the "B" side.

4.4 XD Bus Interface

ROMCS/KBCS Multifunctional Pin Output

ROM Chip Select In ISA memory cycles, ROMCS is the chip select to the ROM BIOS.

Keyboard Chip Select In ISA I/O cycles, KBCS is the chip select to the external keyboard controller.

XD7-XD0/ EXTSMI7-EXTSMI3/ GPI7-GPI0/ GP07-GP00/ Power-Up Straps Multifunction PinsBidirectionalXD7-XD0Connection to external X-bus devices such as BIOS ROM.

EXTSMI7-EXTSMI3 External SCI/SMI ports.

GPI7-GPI0 General-purpose inputs if configuration register Function 3, offSet 40h, bit 6 is cleared.

GP07-GP00

General-purpose outputs if configuration register Function 3, offset 40h, bit 7 is cleared.

Power-Up Straps

Pins XD7-XD0 are used as strap options during power-up (see configuration register Function 0, offset 5Ah on page 7-27). Strapping Low disables and strapping High enables the following functions:

XDIR

AMD-645 Peripheral Bus Controller Data Sheet

21095A/0-March 1997

•	XDO	internal KBC
•	XD1	internal PS/2 Mouse
٠	XD2	internal RTC
•	XD4–XD7	RP13–RP16 for internal KBC

X-Bus Data Direction Output

XDIR is tied directly to the direction control of the 74F245 transceiver that buffers the X-bus data and ISA-bus data. SD0–SD7 connect to the "A" side of the transceiver and XD0–SD7 connect to the "B" side. The output enable of the transceiver should be grounded. A High signal on SDIR indicates that SD0–SD7 drives XD0–XD7.

4.5 Plug-N-Play Support

The AMD-645 Peripheral Bus Controller provides three interrupt request pins to support Plug-n-Play functions from non-PnP devices. These asynchronous interrupt requests are mappable to any of the interrupt channels. Each pin has an alternate function which is selected in configuration register Function 0, offset 59h (see page 7-26).

MIRQ2/MASTER	Multifunction Pin	Input	
	Plug-n-Play—Interrupt Request 2		
	ISA—Master Cycle Indicator (see page 4-7)	
MIRQ1/KEYLOCK	Multifunction Pin	Input	
	Plug-n-Play—Interrupt Request 1		
	KEYLOCK—Keyboard Lock In	nput	
MIRQQ0/APICCS	Multifunction Pin	Input	
	Plug-n-Play —Interrupt Request 0 APICCS —APIC Chip Select This signal is provided for external IO APIC devices in symmetric multiprocessor implementations.		

4.6 Universal Serial Bus Interface

USBCLK	Universal Serial Bus Clock	Input
USBDATA0+	USB Port 0 Data +	Bidirectional
USBDATA0-	USB Port 0 Data –	Bidirectional
USBDATA1+	USB Port 1 Data +	Bidirectional
USBDATA1-	USB Port 1 Data –	Bidirectional

4.7 Power Management

PWRBTN	Power Button	Input
	Referenced to V_{DD} -5VSB.	
PWRGD	Power Good	Input
	PWRGD is connected to the I supply.	POWERGOOD signal on the power
PWRON	Power Supply Control	Output
	Powered by V_{DD} -5VSB.	
RI	Ring Indicator	Input
	This signal can be connected to external modem circuitry to allow the system to be reactivated by a received phone call. Input referenced to V_{DD} -5VSB.	

4.8 **Power and Ground**

AGND	USB Differential Output Ground Power	
A _{VDD}	USB Differential Output Power Source	
V _{DD} 3	Power Supply for the CPU I/O VoltagePower	
	This pin should be connected to the same voltage as the CPU I/ O circuitry.	

Preliminary Information

AMD-645 Peripheral Bus Controller Data Sheet

21095A/0-March 1997

V _{DD}	Power Supply of 4.75 V to 5.25 V Power	
	This supply is turned on only when the mechanical switch on the power supply is turned on and the PWRON signal is conditioned high.	
V _{DD} -5SB	Power Supply	Power
	the power supply is turn	ble unless the mechanical switch of ed off. If the "soft-off" state is not n can be connected to $V_{\rm DD}$.
V _{DD} -PCI	PCI Voltage, 3.3 V or 5 V	Power
GND	Ground	Power

4.9 Internal Real-Time Clock

OSC	Oscillator	Input
	OSC is a 14.31818-MHz cloc Clock (RTC).	k used by the internal Real-Time
RTCX1/IRQ8	Multifunctional Pin	Input
	<i>RTCX1</i> When the internal RTC is en RTC crystal or oscillator inp	
	<i>IRQ8</i> When the internal RTC is d external keyboard controller	isabled, IRQ8 is an input from an r.
RTCX2/RTCCS	Multifunctional Pin	Output
	<i>RTCX2</i> When the internal RTC is crystal or oscillator output (3	enabled, this signal is the RTC 32.768 KHz.)
	<i>RTCCS</i> When the internal RTC is di RTC chip select.	isabled, this signal is the External
VBAT	RTC Battery	Input
	This signal is the battery inp	out for internal RTC.

AMD-645 Peripheral Bus Controller Data Sheet

4.10 Keyboard Interface

A20M	A20 Mask	Output
	The AMD-645 Peripheral Bus Controller $\overline{A20M}$ is a direct connection to $\overline{A20M}$ on the CPU.	
KBCK/KA20G	Multifunctional Pin	Bidirectional
	Keyboard Clock When the internal keyboard of clock to the keyboard interfa	controller is enabled, KBCK is the ce.
	<i>Keyboard Gate A20</i> When the internal keyboard controller is disabled, KA20G is the Gate A20 output from the external keyboard controller.	
KBDT/KBRC	Multifunctional Pin	Bidirectional
	 Keyboard Data When the internal keyboard controller is enabled, KBDT is the data line to the keyboard interface. Keyboard Reset When the internal keyboard controller is disabled, KBRC is a reset input from the external keyboard controller. 	
KEYLOCK	Keyboard Lock	Input
	KEYLOCK is the keyboard lock signal for the internal keyboard controller.	
MSCK/IRQ1	Multifunctional Pin	Bidirectional
	<i>Mouse Clock</i> When the PS/2 mouse is enabled, MSCK functions as the clock to the PS/2 mouse interface.	
		nd the internal KBC are disabled, request 1 from the external KBC.
MSDT/IRQ12	Multifunctional Pin	Bidirectional
	<i>Mouse Data</i> When the PS/2 mouse is ena the PS/2 mouse interface.	bled, MSDT functions as data to

AMD-645 Peripheral Bus Controller Data Sheet

IRQ12

When the PS/2 mouse is disabled, IRQ12 functions as interrupt request 12 from the external KBC.

4.11 CPU Interface

CPURST	CPU Reset	Output
	The AMD-645 Peripheral Burreset the CPU during power-u	us Controller asserts CPURST to up.
FERR	Numerical Coprocessor Error	Output
	FERR is tied to the coprocess	or error signal on the CPU.
IGNNE	Ignore Error	Output
	IGNNE is connected to the ig	nore error pin on the CPU.
INIT	Initialization	Output
	The AMD-645 Peripheral Bus Controller asserts INIT if it detects a shut-down special cycle on the PCI bus, or if a soft reset is initiated by the register.	
INTR	CPU Interrupt	Output
		645 Peripheral Bus Controller to upt request is pending and needs
NMI	Non-Maskable Interrupt	Output
		askable interrupt to the CPU. The ntroller generates an NMI when erted.
SMI	System Management Interrupt	Output
		645 Peripheral Bus Controller to to selected power management
STPCLK	Stop Clock	Output
		MD-645 Peripheral Bus Controller ected power management events.

4.12 General-Purpose I/O

GPIO0/	Multifunction Pin	Bidirectional
EXTSMIO		pin sits on the V_{DD} -5VSB power le soft-off state as well as regular
	<i>EXTSMI0</i> An external input signal to t	rigger an SMI/SCI to the CPU.
GPIO1/	Multifunction Pin	Bidirectional
EXTSMI1/ I ² CD1(Clock)	<i>GPIO1</i> General-purpose I/O.	
	<i>EXTSMI1</i> An external input signal to t	rigger an SMI/SCI to the CPU.
	<i>I²CD1</i> This pin can be used along w convention defines this pin a	rith GPIO2 as an I ² C pair (software as clock).
GPIO2/	Multifunction Pin	Bidirectional
EXTSMI2/ I ² CD2(Data)	<i>GPIO2</i> General-purpose I/O.	
	<i>EXTSMI2</i> An external input signal to t	rigger an SMI/SCI to the CPU.
	<i>I²CD1</i> This pin can be used along w convention defines this pin a	rith GPIO1 as an I ² C pair (software as data).
GP103/	Multifunction Pin	Bidirectional
EXTSMI3/ GPI_RE	<i>GPIO3</i> General-purpose I/O (if configuration register Function 3, offset 40h, bit 6 is set)	
	<i>EXTSMI3</i> An external input signal to t	rigger an SMI/SCI to the CPU.

AMD-645 Peripheral Bus Controller Data Sheet

GPI_RE

Read enable for general-purpose inputs (if configuration register Function 3, offset 40h, bit 6 is cleared). This pin connects to the output enable pin (\overline{OE}) of the external FS244 buffers connecting SD15–8 and XD7–0 for GPI15–0.

Multifunction Pin Bidirectional

GPIO4/ EXTSMI4/ GPI_WE

GPIO4

General-purpose I/O (if configuration register Function 3, offset 40h, bit 7 is set).

EXTSMI4

An external input signal to trigger an SMI/SCI to the CPU.

GPI_WE

Write enable for general-purpose inputs (if configuration register Function 3, offset 40h, bit 7 is cleared). This pin connects to the latch enable pin (\overline{OE}) of the external FS244 buffers connecting SD15-8 and XD7-0 for GPI15-0.

AMD-645 Peripheral Bus Controller Data Sheet

5 Functional Operations

5.1 PCI Bus-Initiated Accesses

The AMD-645 Peripheral Bus Controller is responsible for decoding PCI bus requests from PCI bus masters, initiating the requested actions, and responding in the manner required by the PCI bus protocol.

5.1.1 Overview

The AMD-645 Peripheral Bus Controller responds to PCI bus cycles in one of the two following ways.

- **Positive Decode** If the PCI address matches an address block defined in the AMD-645 Peripheral Bus Controller as positive ISA decode space, the AMD-645 Peripheral Bus Controller claims the cycle and asserts DEVSEL after the first clock following FRAME first sampled asserted. This same DEVSEL assertion time occurs during all configuration cycles when IDSEL is sampled active.
- **Subtractive Decode** The AMD-645 Peripheral Bus Controller is assumed to be the only agent responsible for any PCI cycles which are not claimed by other PCI targets. It determines if a PCI cycle is unclaimed by the process of subtractive decoding. If a PCI address does not match any address block defined in the AMD-645 Peripheral Bus Controller, and the DEVSEL input is sampled inactive for three clocks after FRAME is first sampled asserted, the AMD-645 Peripheral Bus Controller responds to the cycle. DEVSEL timing for subtractive decoding is fixed at medium time slot.

The AMD-645 Peripheral Bus Controller also generates an ISA bus cycle for any memory or I/O cycle claimed by the ISA function.

5.1.2 Bus Cycle Decoder

Table 5-1 shows how the AMD-645 Peripheral Bus Controller decodes the PCI command signals when an initiator generates a bus cycle.

	0 //			
C/BE3	C/BE2	C/BE1	C/BEO	Command Type
0	0	0	0	Interrupt Acknowledge
0	0	0	1	Special Cycles
0	0	1	0	I/O Read
0	0	1	1	I/O Write
0	1	0	0	Reserved
0	1	0	1	Reserved
0	1	1	0	Memory Read
0	1	1	1	Memory Write
1	0	0	0	Reserved
1	0	0	1	Reserved
1	0	1	0	Configuration Read
1	0	1	1	Configuration Write
1	1	0	0	Memory Read Multiple
1	1	0	1	Dual Address Line
1	1	1	0	Memory Read Line
1	1	1	1	Memory Write and Invalidate

Table 5-1. PCI Bus Command Encoding and Types

5.2 PCI Bus Commands

The AMD-645 Peripheral Bus Controller responds to the PCI bus commands according to the descriptions in the following sections.

5.2.1 Interrupt Acknowledge

The AMD-645 Peripheral Bus Controller ignores interrupt acknowledge cycles.

5.2.2 Special Bus Cycles

The AMD-645 Peripheral Bus Controller monitors all special bus cycles.

5.2.3 I/O Read/Write

All I/O accesses not claimed by other PCI targets through the assertion of DEVSEL are passed to the ISA bus controller and executed as standard ISA bus cycles. The AMD-645 Peripheral Bus Controller steers the data between the PCI AD bus and the ISA SD bus or the IDE data bus, as required by each cycle type. If the access is to an on-chip I/O location, then the data is steered between the AD bus, the SD bus, and the selected internal location, as required by the cycle type.

The AMD-645 Peripheral Bus Controller asserts TRDY upon completion of all ISA bus accesses. In the case of I/O reads, valid data is placed on the PCI AD bus before TRDY is asserted. The timing of a PCI cycle forwarded to the ISA bus is shown in Figure 5-3 on page 5-6.

The I/O-related ISA bus signals are IOR, IOW, and IOCS16. IOR is active during an I/O read cycle, while IOW is active during a write cycle. IOCS16 asserted indicates that a 16-bit slave is responding. A High level on IOCS16 indicates that an 8-bit slave is responding.

The AMD-645 Peripheral Bus Controller decodes the PCI commands and issues a command in the middle of TC or at the beginning of TW1, depending on the setting of bit 7 of the ISA Bus Control register, Function 0, offset 40h (see page 7-17). An 8-bit cycle is four wait states long while a 16-bit cycle has no wait states if the default configuration is used. Additional wait states can be inserted by setting bit 5 or bit 4 of the ISA Bus Control register, or by negating IOCHRDY.

Figure 5-1 illustrates I/O accesses for both read and write, including the insertion of wait states.

21095A/0-March 1997

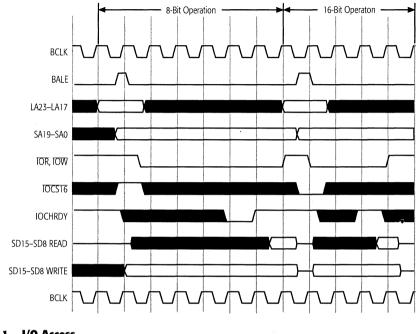


Figure 5-1. I/O Access

For 32-bit or 24-bit accesses to 16-bit ISA bus slaves, or for 32bit, 24-bit, or 16-bit accesses to 8-bit ISA bus slaves, the AMD-645 Peripheral Bus Controller generates multiple ISA bus cycles for each PCI bus cycle in order to match the size of the access requested by the PCI initiator. Requests for noncontiguous bytes are handled by converting the access to the appropriate ISA bus cycles. The conversion of a single PCI cycle to multiple ISA cycles is invisible to the PCI interface, except for the increased latency required to complete the operation. The AMD-645 Peripheral Bus Controller converts a CPU request for 16-bit data from an 8-bit peripheral into two 8bit cycles as depicted in Figure 5-2.

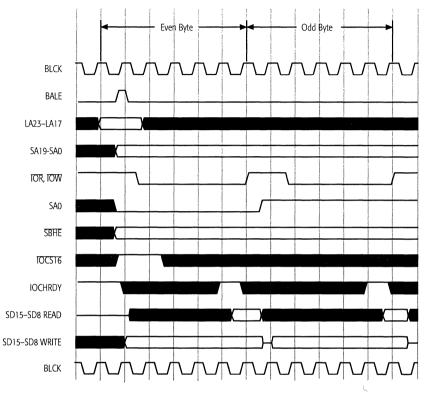
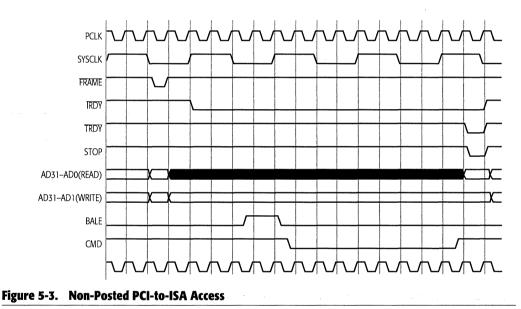


Figure 5-2. I/O Cycle 16-Bit to 8-Bit Conversion


The slot address lines SA1, SA0, and <u>SBHE</u> function the same for I/O reads and writes as they do for memory reads and writes.

5.2.4 Memory Read/Write

The AMD-645 Peripheral Bus Controller directs all memory accesses not claimed by other targets to the ISA bus. The AMD-645 Peripheral Bus Controller steers data between the PCI AD bus and the ISA data bus as required by the requested cycle.

The AMD-645 Peripheral Bus Controller supports bursting (multiple read or write transactions). If FRAME and IRDY are

asserted at the same time, the AMD-645 Peripheral Bus Controller will not disconnect if it is able to complete the data phase within specified latency requirements. Target latency is limited to 16 PCI clocks from the assertion of FRAME for initial accesses, and limited to eight PCI clocks from the end of the previous data phase for subsequent accesses of a burst cycle. All non-posted ISA writes and all ISA reads use delayed transactions to meet these latency requirements. Figure 5-3 shows the timing of a non-posted PCI cycle forwarded to the ISA bus.

If the AMD-645 Peripheral Bus Controller is unable to complete the initial data phase within the required initial latency, it begins a delayed transaction and terminates with retry by asserting STOP without asserting TRDY at the end of the initial data phase. If the next data phase in a burst cannot be completed within the required incremental latency, the AMD-645 Peripheral Bus Controller disconnects by asserting TRDY and STOP at the end of the current data phase.

Memory write posting in the AMD-645 Peripheral Bus Controller is enabled by setting the Post Memory Write Enable

bit, configuration register Function 0, offset 46h, bit 0 (see page 7-21). When write posting is enabled, TRDY is asserted one clock cycle after both FRAME and IRDY are sampled active. The AMD-645 Peripheral Bus Controller completes the access on the ISA bus. Attempts to access the ISA bus before the posted write is complete must wait for the ISA bus cycle to complete. The timing for a posted write cycle is shown in Figure 5-4.

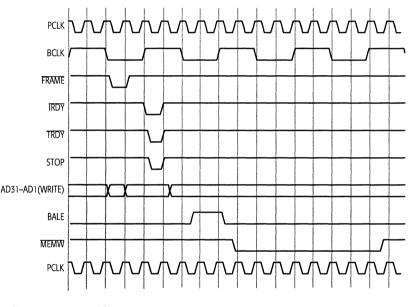


Figure 5-4. Posted PCI-to-Memory Write

The memory-related ISA bus control signals are MEMR, SMEMR, MEMW, SMEMW, and MEMCS16. SMEMR and SMEMW are active only if the access is within the first Mbyte of memory. The state of MEMCS16 at the beginning of bus cycle state TC determines whether the present cycle is 8-bit or 16-bit, as shown in Figure 5-5.

21095A/0-March 1997

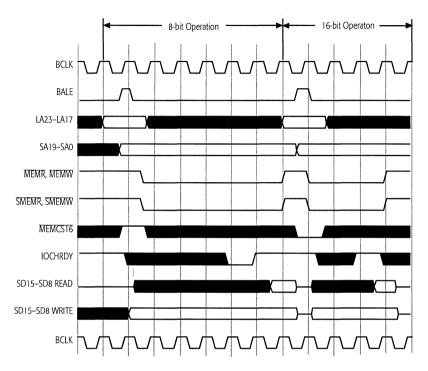


Figure 5-5. ISA Bus Memory Access Cycle

The command signals become active at the start of TC for 16bit cycles, or in the middle of TC for 8-bit cycles. The falling edge of a command signal can be delayed by one or two BCLKs by setting bit 7 of the ISA Bus Control register, Function 0, offset 40h (see page page 7-17). Under default settings, the command signals are negated at the beginning of TW5 for an 8bit operation, and at the beginning of TW2 in the case of a 16bit operation. It may be necessary to delay the rising edge of command signals by one BCLK. This delay can be achieved by setting bit 5 of the ISA Bus Control register. For slow peripherals, wait states may be inserted by pulling IOCHRDY Low by the middle of TW4 for 8-bit cycles and by the beginning of TW2 for 16-bit cycles.

The AMD-645 Peripheral Bus Controller converts a PCI bus master request for 16-bit, 24-bit, or 32-bit data from an 8-bit

ISA memory into two, three, or four 8-bit cycles, respectively. A request for 32 bits from a 16-bit ISA slave results in two 16-bit accesses. The AMD-645 Peripheral Bus Controller also converts requests for non-contiguous bytes by converting the access to the appropriate ISA bus cycles. These conversion cycles are shown in Figures 5-6, 5-7, and 5-8.

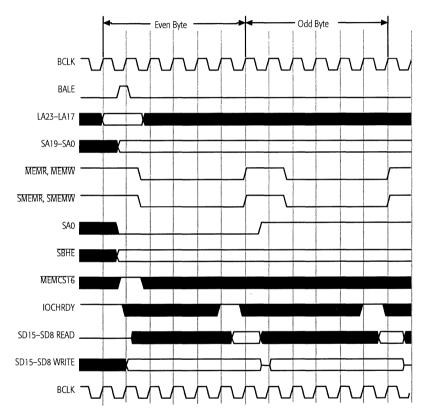


Figure 5-6. ISA Bus Memory Cycle: 16-Bit to 8-Bit Conversion

AMD-645 Peripheral Bus Controller Data Sheet

21095A/0-March 1997

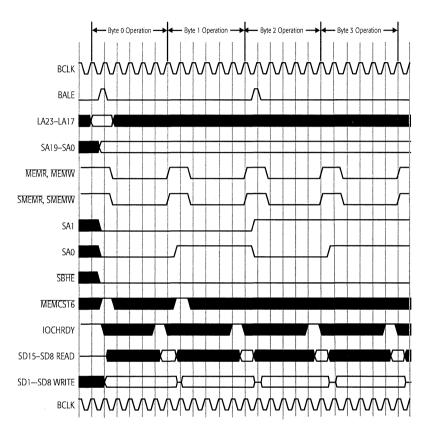


Figure 5-7. Memory Cycle 32-Bit to 8-Bit Conversion

AMD-645 Peripheral Bus Controller Data Sheet

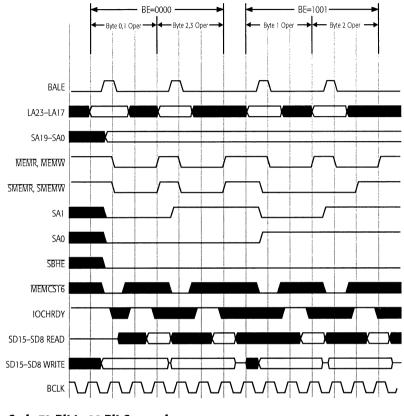


Figure 5-8. Memory Cycle 32-Bit to 16-Bit Conversion

If the memory accessed is ROM, the timing is different for command signals <u>MEMR</u> and <u>SMEMR</u>, which become active at the falling edge of BALE. Both 8-bit and 16-bit ROM access cycles are three wait states long. They can be programmed to be zero or one wait states using bit 1 of the ISA bus controller configuration register (see page 7-17). Figure 5-9 shows a ROM access. Figure 5-10 shows requests for 32 bits of data from 8-bit ROMs.

AMD-645 Peripheral Bus Controller Data Sheet

.

21095A/0-March 1997

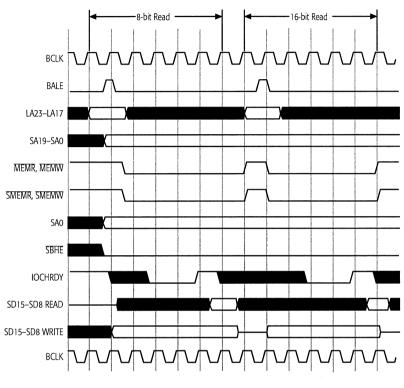


Figure 5-9. ROM Access

AMD-645 Peripheral Bus Controller Data Sheet

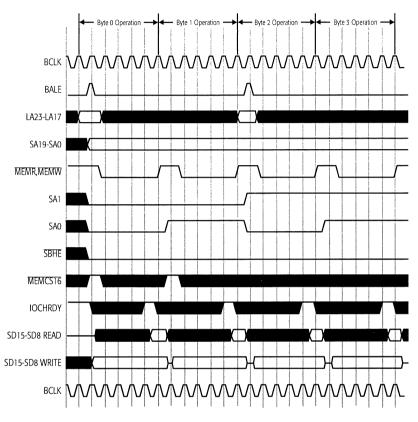
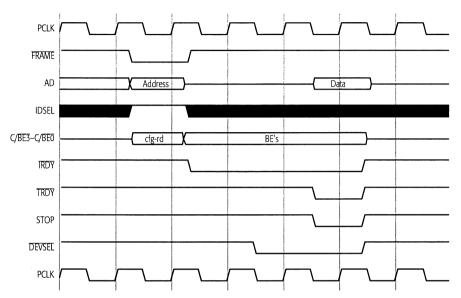


Figure 5-10. ROM Cycle 32-Bit to 8-Bit Conversion

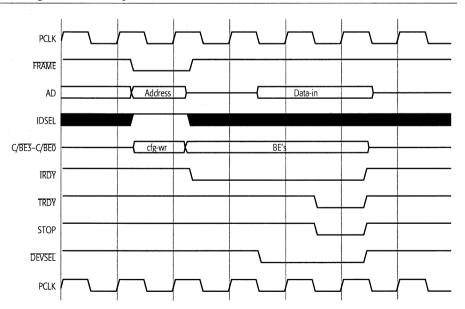
SA1, SBHE, and SA0 are a direct decode of the C/BE3-C/BE0 inputs from the PCI bus. During a conversion cycle, SBHE and SA0 are toggled so that the appropriate bytes are accessed, as shown in Table 5-2.

 Table 5-2.
 ISA Byte and Word Accesses

SBHE	SA0	Description
0	0	16-Bit
1	0	8-Bit, LSB
0	1	8-Bit, MSB
1	1	undefined


5.2.5 Configuration Read/Write

As a target, the AMD-645 Peripheral Bus Controller responds to both read and write configuration cycles. Access to the configuration address space requires device selection decoding to be done externally via the IDSEL pin, which functions as a chip select signal. The IDSEL signal associated with device number 0 is connected to AD16, IDSEL of device number 1 is connected to AD17, and so forth. The connection of the AMD-645 Peripheral Bus Controller IDSEL is system-specific, but the recommended connection is to AD18.


If the AMD-645 Peripheral Bus Controller is selected during a PCI master-initiated configuration cycle, DEVSEL is asserted two clocks after FRAME assertion. On PCI-to-configuration register reads, the AMD-645 Peripheral Bus Controller drives the requested configuration register data onto AD31-AD0, asserts TRDY four clocks after FRAME is asserted, and negates TRDY and DEVSEL one clock after IRDY is asserted. On PCI-to-configuration register writes, the AMD-645 Peripheral Bus Controller asserts TRDY four clocks after FRAME is asserted or two clocks after IRDY is asserted, whichever is later. Data is strobed into the configuration registers the cycle before TRDY is asserted.

The timing of these cycles is shown in Figures 5-11 and 5-12.

AMD-645 Peripheral Bus Controller Data Sheet

Figure 5-12. Configuration Write Cycle

5.2.6 Memory Read Multiple

The memory read multiple command is treated the same as a memory read command by the AMD-645 Peripheral Bus Controller.

5.2.7 Dual Address Line

The AMD-645 Peripheral Bus Controller supports 32-bit addressing only, so dual address line commands are ignored. There is no response.

5.2.8 Memory Read Line

The AMD-645 Peripheral Bus Controller treats the memory read line command just as it does the memory read command.

5.2.9 Memory Write Invalidate

The AMD-645 Peripheral Bus Controller treats the memory write invalidate command just as it does the memory write command.

5.3 PCI Bus Features

5.3.1 Back-to-Back Cycles

As a target, the AMD-645 Peripheral Bus Controller can respond to fast back-to-back cycles as described in the PCI specification. All back-to-back cycles by the same initiator require at least one turn-around cycle, except when both transactions are writes to the same target.

5.3.2 Subtractive Decoding

Subtractive decoding ensures that every PCI bus access gets a response. Any PCI cycle not claimed by other targets and whose address is not defined in the AMD-645 Peripheral Bus Controller address block is forwarded to the ISA bus. The timing for subtractive decoding is shown in Figure 5-13.

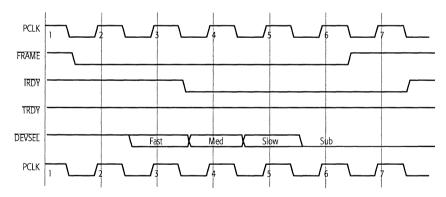


Figure 5-13. Subtractive Decode Timing

5.3.3 ISA Bus Control Register

Bus control options can be programmed via the ISA Bus Control register, Function 0, offset 40h (see page 7-17). This register controls the number of wait states to be inserted in the 8-bit and 16-bit slot cycles and determines the output drive of

the slot bus buffers. More than five wait states are possible if IOCHRDY is pulled Low before the last normal wait state.

5.4 ISA Bus-Initiated Cycles

The AMD-645 Peripheral Bus Controller is responsible for forwarding ISA bus cycles to the PCI bus. The only two initiators on the ISA bus are the DMA controller and the ISA bus master. The DMA controller can only generate memory read and write cycles, while an ISA master can generate I/O as well as memory cycles.

Masters must repeat a read or write transaction that is terminated with retry. Masters must assert IRDY within eight clocks during all data phases. Ideally, IRDY is asserted with no delay on all data phases.

5.4.1 DMA-Initiated Cycles

In the PC/AT, DMA transfers occur between peripherals and memory at a data width of either 8 bits or 16 bits. Of the seven external DMA channels available, four are used for 8-bit transfers and three for 16-bit transfers. One byte or word is transferred in each DMA cycle.

Normally, an add-on card issues a DMA request by asserting one of the DRQ7–DRQ5 or DRQ3–DRQ0 signals. When the AMD-645 Peripheral Bus Controller detects this request and the request is a read from memory, it generates a request to the PCI arbiter. When it receives a PCI grant, the AMD-645 Peripheral Bus Controller initiates a PCI memory read transaction using the current DMA address, prefetching all data within the addressed doubleword. When the transaction is complete, the AMD-645 Peripheral Bus Controller asserts the corresponding DACK line to indicate a DMA acknowledge. Prefetch data is transferred in response to subsequent DMA requests without further PCI bus accesses.

When the AMD-645 Peripheral Bus Controller detects a memory write request, it asserts the corresponding DACK line

to indicate the DMA acknowledge, reads the data from the DMA device, and merges the data into a single doubleword. When the last byte of the doubleword has been read, the AMD-645 Peripheral Bus Controller generates a request to the PCI arbiter. When it receives a PCI grant, it starts a PCI memory write transaction for the entire doubleword with appropriate byte enables.

AEN and BALE go High after the DMA is acknowledged and any pending ISA bus cycle has completed. The DMA address is placed on LA23-LA20 and SA19-SA0. Two DMACLK cycles later, either MEMR and IOW or MEMW and IOR are asserted, depending on the direction of the transfer. If the ISA Command Delay bit of the ISA Bus Control register is set, MEMR is asserted one DMACLK cycle earlier. The command remains active for three DMACLK cycles. The data transfer takes place on the rising edges of command signals. TC is activated before the end of the command if the transfer is from one 8-bit device to another or one 16-bit device to another. If the transfer is from a 16-bit device to an 8-bit device, the command signals are again asserted after a delay of two DMACLK cycles and the transfer is complete. Figure 5-14 shows the timing for a typical DMA transfer.

Due to concurrent PCI and ISA bus operation during DMA, the timing on each bus is independent of the state of the other bus. The state of the data buffers determines when PCI bus requests are generated and when DMA wait states are generated by negating IOCHRDY. PCI bus requests to the arbiter during memory reads are issued only when the memory read buffer is empty. During memory writes, PCI bus requests are issued when the MSB of the memory write buffer is full. IOCHRDY is negated when the memory read buffer is empty during memory reads, or when the memory write buffer is full during memory writes.

AMD-645 Peripheral Bus Controller Data Sheet

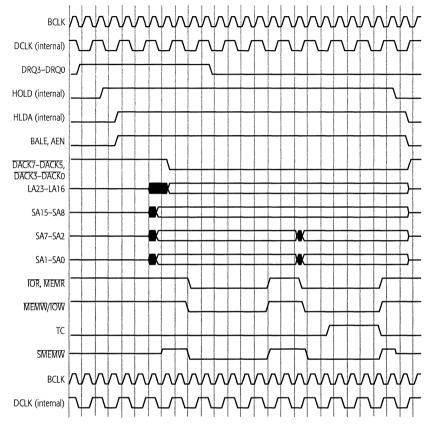
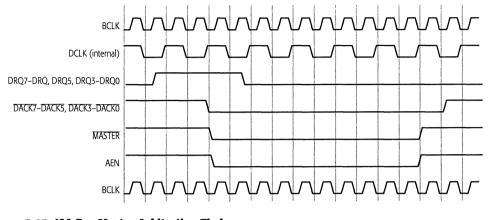



Figure 5-14. DMA Transfer Cycle

5.4.2 ISA Bus Master Initiated Cycles

An ISA bus master card issues a DMA request on the ISA bus, as shown in Figure 5-15, using a DMA channel which has been placed in the cascade mode. The AMD-645 Peripheral Bus Controller responds with an acknowledge signal in the same manner as for a DMA cycle. The add-on card then gains control of the ISA bus by asserting the MASTER signal. Unlike DMA cycles, there can be multiple data transfers in master mode. An ISA bus master can generate both memory and I/O accesses.

Figure 5-15. ISA Bus Master Arbitration Timing

When the AMD-645 Peripheral Bus Controller detects MEMR or MEMW active, it starts the PCI cycle, asserts FRAME, and negates IOCHRDY. This procedure guarantees that the ISA cycle will not complete before the PCI cycle has provided or accepted the data. IOCHRDY is asserted when IRDY and TRDY are sampled active. Figure 5-16 shows an ISA bus master memory read, and Figure 5-17 shows a ISA bus master memory write.

The ISA bus and PCI bus operate concurrently. A separate PCI bus request is issued for each ISA master command and the PCI bus ownership is relinquished after the transaction is completed. The AMD-645 Peripheral Bus Controller converts ISA bus master I/O cycles into PCI I/O cycles. The timing of these cycles is similar to that of the memory cycles shown in Figures 7-16 and 7-17, with the single substitution of IOR and IOW for MEMR and MEMW.

AMD-645 Peripheral Bus Controller Data Sheet

21095A/0-March 1997

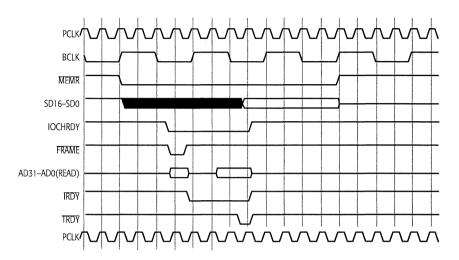
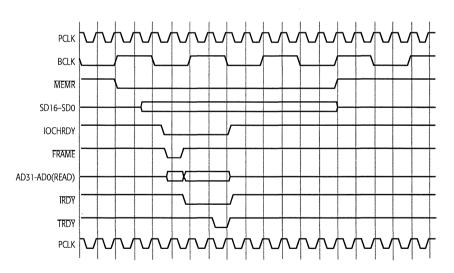



Figure 5-16. ISA Bus Master-to-PCI Memory (Memory Read)

5.5 PCI Bus Arbitration

The signals PREQ and PGNT are used to control requesting and granting of the PCI bus between the AMD-645 Peripheral Bus Controller ISA bridge and the AMD-640 System Controller. The AMD-640 System Controller write buffer control is also implemented in the bi-directional protocol to ensure data coherency during DMA and master mode operations. The AMD-645 Peripheral Bus Controller write poster is also disabled whenever the AMD-640 System Controller write buffers are disabled.

5.6 I/O and Memory Mapping

	The AMD-645 Peripheral Bus Controller decodes PCI bus addresses to determine the destination of a PCI memory or I/O request. The AMD-645 Peripheral Bus Controller address decoder distinguishes five general regions for memory or I/O accesses. The region selected is a function of the PCI address, the PCI cycle type, and the values placed in the configuration registers that control memory mapping. The five general regions are described in the following paragraphs.
IDE Bus I/O Location	The AMD-645 Peripheral Bus Controller generates an IDE bus access cycle via positive decoding and responds to the cycle when it recognizes an IDE target address.
Bus Master IDE Register I/O Location	An internal I/O access cycle is generated via positive decoding to the appropriate bus master IDE register I/O block, and is responded to by the AMD-645 Peripheral Bus Controller when it recognizes a bus master IDE register target address. The base address of the bus master IDE registers is set by the configuration base registers and the size is fixed at 16 bytes (8 bytes for each channel).
ISA Bus I/O Location (On-Chip)	An ISA bus I/O access cycle is generated via subtractive decoding and is responded to by the AMD-645 Peripheral Bus Controller when it recognizes an on-chip address during the ISA bus cycle.

AMD-645 Peripheral Bus Controller Data Sheet

21095A/0-March 1997

ISA Bus I/O Location (Off-Chip)	A standard ISA bus I/O access cycle is generated via subtractive decoding when no other PCI slave responds to a PCI I/O cycle. Data is passed between the PCI data bus (AD31– AD0) and the ISA data bus (SD15–SD0). ROMCS/KBCS is asserted to select the keyboard controller if the I/O address is port 60h or port 64h.
ISA Bus Off-Board Memory Location	Standard 8-bit or 16-bit ISA bus cycles are generated when the AMD-645 Peripheral Bus Controller detects a memory access in the ISA slot bus address range. Data is passed between the PCI data bus (AD31-AD0) and the ISA data bus (SD15-SD0). The AMD-645 Peripheral Bus Controller determines off-board memory locations through subtractive decoding of a PCI-to-ISA access (when none of the other targets asserts DEVSEL). If the ISA address is defined as a ROM region, ROMCS/KBCS is asserted.

5.6.1 I/O Mapping

I/O addresses that are not inhibited by DEVSEL are run as ISA bus cycles. The data steering is based on the actual I/O addresses, depending on whether the I/O location is on-chip or off-chip.

On-Chip I/O For on-chip centralized and distributed DMA devices, the ISA bus cycle is run normally. Only the steering on read cycles is affected. ISA bus masters have access to all on-chip registers. The centralized DMA I/O locations are at a fixed address, as shown in Table 5-3, while the distributed DMA I/O locations are at a programmable base address.

Table 5-3. I/O Fixed Address Mapping

Address	Device	Location
0000h-000Fh	DMA#1	On-chip or PCI bus
0080h–008Fh	DMA page registers	On-chip
00C0h-00DFh	DMA#2	On-chip or PCI bus
0170h–0177h	IDE channel 2	IDE bus
01F0h-01F7h	IDE channel 1	IDE bus
0376h	IDE channel 2	IDE bus
03F6h	IDE channel 1	IDE bus
0010h—007Fh, 0090h—00BFh, 00E0h—016Fh, 0178h—01EFh, 01F8h—0375h, 0378h—03F5h, 03F8h—FFFFh	General I/O Locations	PCI/ISA bus

SA Bus I/O

All I/O write cycles drive the data from the AD bus onto the SD bus and generate an IOW strobe. All I/O read cycles drive data from the SD bus onto the AD bus and generate an IOR strobe. The AMD-645 Peripheral Bus Controller drives data onto the SD bus during all on-chip reads, while the SD bus is the data source for all other I/O reads.

5.6.2 Memory Mapping

Memory accesses are divided into PCI memory, ROM, and ISA bus memory accesses. Table 5-4 shows the various memory regions and the destinations (PCI, ROM, or ISA) supported by the AMD-645 Peripheral Bus Controller.

Table 5-4. Memory Address Mapping

Range	Address	Destination	Comments
0 to 786Kbytes	00000h-BFFFFh	PCI bus space	Selected by active DEVSEL (By subtractive decode)
0 10 700 KDyles		ISA bus space	(By subtractive decode)
		PCI bus space	Selected by active DEVSEL (By subtractive decode) or
786Kbytes to 960Kbytes	C0000h–EFFFFh	ISA bus space	(By subtractive decode) or selected by ROM decode
soonbytes		ISA ROM space	control
960Kbytes to 1	F0000h-FFFFFh	ISA bus space	(By subtractive decode)
Mbyte		ISA ROM space	(by subilactive decode)
1 Mbyte to 15.875	100000h-FDFFFFh	PCI bus space	Selected by active DEVSEL (By subtractive decode)
Mbytés	100000n-FDFFFFn	ISA bus space	(By subtractive decode)
15.875 Mbytes to	FE0000h-FFFFFFh	PCI bus space	Selected by active DEVSEL (By subtractive decode)
16 Mbytes		ISA bus space	(By subtractive decode)
16 Mbytes t0 128	1000000h-7FFFFFh	PCI bus space	Selected by active DEVSEL (By subtractive decode)
Mbytes		Aliased ISA bus space	(By subtractive decode)
128 Mbytes to		PCI bus space	Selected by active DEVSEL
(4Gbytes - 512Kbyte)	80000000h-FFF7FFFh	Aliased ISA bus space	Selected by active DEVSEL By subtractive decode only
(4Gbytes - 512Kbytes) to 4G	FFF80000h—FFFFFFFFh	ISA ROM space	(By subtractive decode) or selected by ROM decode control

When a PCI memory access is generated, one of the following events will occur.

- If the DEVSEL input is sampled active within the fast, medium, or slow sample periods, the AMD-645 Peripheral Bus Controller is deselected and a PCI target device completes the cycle.
- If the DEVSEL input is not sampled active within the fast, medium, or slow sample periods, the AMD-645 Peripheral Bus Controller executes a subtractive decode which directs the access to the ISA bus.

When a master mode or DMA ISA memory access is generated, the AMD-645 Peripheral Bus Controller initiates a PCI cycle. IF DEVSEL is not asserted within the fast, medium, or slow sample periods, the AMD-645 Peripheral Bus Controller executes a subtractive decode which directs the access to the ISA bus, and IOCHRDY is re-asserted to allow the ISA cycle to complete.

Because the AMD-645 Peripheral Bus Controller subtractive decode method can be used to alias ISA memory space into the upper CPU/PCI address regions, ISA memory that is normally 'hidden' behind DRAM in the lower 16 Mbytes can be accessed via the aliased space. However, DMA and master mode cycles to the ISA memory areas in such configurations are not permitted, because conflicts with PCI bus slaves may arise.

ISA Memory All memory accesses below 16 Mbytes not accepted by PCI bus devices through the assertion of DEVSEL are directed to the ISA bus. The AMD-645 Peripheral Bus Controller asserts DEVSEL for the cycles and generates standard ISA cycles. It also provides the data latching and steering logic to allow the PCI initiator to perform 8-bit, 16-bit, 24-bit, or 32-bit accesses to either 8-bit or 16-bit ISA memory devices.

Accesses to the PCI bus performed subtractively above 16 Mbytes alias to the 24-bit ISA bus addresses. PCI accesses to these regions should be performed only if no DMA or master mode cycles ever access the referenced locations, because a slot bus memory device may occupy the same aliased address an PCI bus memory and bus contention would occur.

Access to system ROM is provided in the top 512 Kbytes of the aliased ISA bus address space for correct reset vectoring.

5.6.3 System ROM Memory Mapping

Setting of the bits in ROM decode control enable different address ranges to be included in the ROMCS decode. All PCI accesses in the highest 512 Kbytes of each 16 Mbyte memory space (XXF80000h to XXFFFFFh) are always system ROM accesses. System ROM accesses are a subset of ISA bus accesses. Standard ISA bus accesses are generated on system ROM accesses, with the following differences:

- ROMCS is always asserted on system ROM accesses. XDIR is set to reflect the cycle type, read or write.
- Additional ISA bus wait states can be programmed for system ROM accesses via the ROM Wait States bit of the ISA Bus Control register.

The AMD-645 Peripheral Bus Controller provides the data latching and steering logic to allow the initiators to perform 8bit, 16-bit, 24-bit, or 32-bit accesses to 8-bit system ROMs. It also performs the required ISA bus cycles to assemble and latch the appropriate data and to present it to the PCI initiator as requested. System ROM is also accessible by ISA bus masters and DMA cycles.

Video ROM and fixed disk ROM, memory range C0000h to CFFFFh, can be defined to be in the system ROM range using bits 7–0 of the ROM Decode Control register (Function 0, offset 43h). The programmable values of these bits are shown in Table 5-5. Setting the indicated bit enables the address range shown to be included in the ROMCS decode.

 Table 5-5.
 ROM Decode Control Register

Bit Value Address Range Enabled			
Bit 7 = 1	FFFE0000h—FFFEFFFh Enabled		
Bit 6 = 1	FFF80000h-FFFDFFFh Enabled		
Bit 5 = 1	000E8000h–000EFFFFh Enabled		
Bit 4 = 1	000E0000h-000E7FFFh Enabled		
Bit 3 = 1	000D8000h–000DFFFFh Enabled		
Bit 2 = 1	000D0000h–000D7FFFh Enabled		
Bit 1 = 1	000C8000h–000CFFFFh Enabled		
Bit 0 = 1	000C0000h–000C7FFFh Enabled		

Subtractive decodes are always performed, and the ROM access may be inhibited by a PCI target that is asserting DEVSEL and claiming the cycle.

Flash MemorySupport for programmable flash memory is provided by
enabling write cycles to the BIOS ROM regions that reside on
the X-bus. Bit 0 of the ISA Bus Control register (Function 0
offset 40h) is provided to enable write cycle generation.

Clock Generation 5.7

	The clocks described in the following paragraphs are used or generated by the AMD-645 Peripheral Bus Controller.						
PCLK	This input signal is the PCI clock used to synchronize the interface to all PCI bus devices.						
OSC				8-MHz clock comm ne internal RTC.	on to the ISA bus		
BCLK	This output signal is the ISA bus system clock. It is derived either by a division of PCLK by 2, 3, 4, 5, 6, 10, or 12, or by a division of OSC by 2. BCLK timing is controlled by programming the ISA Clock Control register, Function 0, offset 42h (see page 7-18). Bit 3 of this register, the ISA Clock Select Enable bit, is cleared at reset, forcing BCLK to default to a value of = PCLK/4.						
	To progr steps.	am a diff	erent tin	ne value for BCLK, a	take the following		
	-	bit 3 of 1	SA Clock	c Control register.			
	2. Progr	am bits	2–0, the	ISA Bus Clock S lue selected from T			
	3. Set bi	t 3 of ISA	A Clock C	Control register.			
	Table 5-6.	ISA Bus	Clock Sele	ct Bit Programming			
	Bit 2	Bit 1	Bit 0	BCLK Value			
	0	0	0	PCLK / 3 (default)]		
	0.	0	1	PCLK / 2			
	0	1	0	PCLK / 4			
	0	1	1	PCLK / 6			
	1	0	0	PCLK / 5	1		
	1	0	1	PCLK / 10			
	1 1 0 PCLK / 12						

1

1

1

OSC / 2

5.8 Direct Memory Access

The DMA controllers are 8237-compatible, have internal latches for latching the middle address bits output by the 8237 megacells on the data bus, and have 74LS612 memory mappers to generate the upper address bits.

The DMA logic controls transfers between an I/O channel and on-board or off-board memory. This logic generates a bus request to the PCI bus when an I/O channel requests a DMA operation. Once a bus grant has been issued, and any pending access to the ISA bus is completed, the DMA controller drives the PCI address bus and the slot address bus. DMA transfers can occur over the full 16 Mbyte range available on the slot bus and the entire 32-bit address range of the PCI bus.

5.8.1 DMA Controllers

The AMD-645 Peripheral Bus Controller supports seven DMA channels using two 8237 equivalent megacells capable of running at BCLK. This option is programmable via the Type F DMA Control register (Function 0, offset 45h). DMA controller 1 contains channels 0 through 3. These channels support 8-bit I/O adapters. They are used to transfer data between 8-bit peripherals and 8-bit or 16-bit memory. Each channel can transfer data in 64-Kbyte pages within the first 16 Mbytes of the PCI memory space.

DMA controller 2 contains channels 4 through 7. Channel 4 is used to cascade DMA controller 1, so it is not available externally. Channels 5 through 7 support 16-bit I/O adapters to transfer data between these adapters and 16-bit system memory. Each channel can transfer data in 128-Kbyte pages within the first 16 Mbytes of the PCI memory space. Channels 5, 6, and 7 are meant to transfer 16-bit words only and cannot address odd bytes in system memory.

5.8.2 DMA Controller Registers

The 8237 megacells can be programmed anytime PGNT is inactive, i.e., when DMA controllers are not in operation. Table 5-7 lists the I/O addresses of all slave and master DMA

controller registers that can be read or written in the 8237 megacells. Channels 0-3 of the master and slave DMA Controllers control system DMA Channels 0-3. There are 16 master and slave DMA controller registers.

Slave & MasterThe slave and master DMA controller ports are listed in TableDMA Controllers5-7.Ports C0h-DFh5-7.

Table 5-7. Ports 00h–0Fh Master DMA Controlle	Table 5-7.	Ports 00h-0Fh	Master DMA	Controller
---	------------	---------------	------------	------------

Slave I/O Address Bits	Master I/O Address Bits	Register Name	Access
0000 0000 1100 000x	0000 0000 000x 0000	Ch 0 Base/Current Address	RW
0000 0000 1100 001x	0000 0000 000x 0001	Ch 0 Base/Current Count	RW
0000 0000 1100 010x	0000 0000 000x 0010	Ch 1 Base/Current Address	RW
0000 0000 1100 011x	0000 0000 000x 0011	Ch 1 Base/Current Count	RW
0000 0000 1100 100x	0000 0000 000x 0100	Ch 2 Base/Current Address	RW
0000 0000 1100 101x	0000 0000 000x 0101	Ch 2 Base/Current Count	RW
0000 0000 1100 110x	0000 0000 000x 0110	Ch 3 Base/Current Address	RW
0000 0000 1100 111x	0000 0000 000x 0111	Ch 3 Base/Current Count	RW
0000 0000 1101 000x	0000 0000 000x 1000	Status/Command	RW
0000 0000 1101 001x	0000 0000 000x 1001	Write Request	WO
0000 0000 1101 010x	0000 0000 000x 1010	Write Single Mask	WO
0000 0000 1101 011x	0000 0000 000x 1011	Write Mode	WO
0000 0000 1101 100x	0000 0000 000x 1100	Clear Byte Pointer F/F	WO
0000 0000 1101 101x	0000 0000 000x 1101	Master Clear	WO
0000 0000 1101 110x	0000 0000 000x 1110	Clear Mask	WO
0000 0000 1101 111x	0000 0000 000x 1111	R/W All Mask Bits	RW
e:	•		
Not all address bits are decode	d.		

When writing to a channel's address or word count register, the data is written into both the base register and current register simultaneously. When reading a channel address or word count register, only the current address or word count can be read. The base address and base word count are not accessible for reading.

The address and word count registers for each channel are 16bit registers. The value on the data bus is written into the upper byte or lower byte, depending on the state of the internal addressing flip-flop. This flip-flop can be cleared by the Clear Byte Pointer Flip-Flop command. Following this command, the first read/write to an address or word count register will read or write to the least significant byte of the 16-

bit register and the byte pointer flip-flop will toggle back to zero.

The 8237 DMA controller megacells allow the user to program the active level of the DREQ and DACK signals to be Low or High. Because the two megacells are cascaded together internally on the chip, DREQ should always be programmed active High and DACK active Low.

When programming the 16-bit channels (DMA controller 2, channels 5, 6, and 7), the address written to the base register must be the real address divided by two. The base word count for these channels is the number of 16-bit words to be transferred, not the number of bytes, as is the case for the 8-bit channels (DMA controller 1, channels 0, 1, 2, and 3). It is recommended that all internal locations in the 8237 megacells, especially the mode registers, should be loaded with some valid value, even if the channels are not used.

5.8.3 Middle Address Bit Latches

The middle DMA address bits are held in an internal 8-bit register. The DMA controller drives the value to be loaded onto the internal data bus, then issues an address strobe signal to latch the data bus value into this register. An address strobe is issued at the beginning of a DMA cycle and any time the lower 8-bit address increments across the 8-bit subpage boundary during block transfers. This register cannot be read or written to externally. It is loaded only from the address strobe signals from the megacells, and the outputs go only to the AD16-AD8 pins.

5.8.4 Page Registers

The AMD-645 Peripheral Bus Controller uses two 74LS612 cells to generate the page registers for each DMA channel. The page registers provide the upper address bits during DMA cycles. DMA addresses do not increment or decrement across page boundaries. Page boundaries for the 8-bit channels (channels 0, 1, 2, and 3) are every 64 Kbytes. Page boundaries for the 16-bit channels (channels 5, 6, and 7) are every 128 Kbytes. There are 32 8-bit registers between the 612 megacells.

Page registers must be written at the I/O addresses shown in Table 5-8 to select the correct page for each DMA channel before any DMA operations are performed. Address locations between 080h and 08Fh other than those shown in the table are not used by the DMA channels, but can be read or written to by a PCI bus master.

Page Register Address	DMA Channel	I/O Address Bits 15–0	Register Name	
87h	0	0000 0000 1000 0111	Ch 0 DMA Page M[0]	RW
83h	1	0000 0000 1000 0011	Ch 1 DMA Page M[1]	RW
81h	2	0000 0000 1000 0001	Ch 2 DMA Page M[2]	RW
82h	3	0000 0000 1000 1101	Ch 3 DMA Page M[3]	RW
8Bh	5	0000 0000 1000 1111	Ch 5 DMA Page M[5]	RW
89h	6	0000 0000 1000 1011	Ch 6 DMA Page M[6]	RW
8Ah	7	0000 0000 1000 1001	Ch 7 DMA Page M[7]	RW
8Fh	4	0000 0000 1000 1010	Ch 4 DMA Page M[4]	RW

Table 5-8. Ports 80h–8Fh DMA Page Register Access

The page register is used to set the values for AD23-AD16 bus lines. In normal operation, zeroes are driven onto PCI address bits AD31-AD24 during DMA cycles, making the AMD-645 Peripheral Bus Controller backward-compatible with the PC/AT standard.

5.8.5 DMA Address Generation

DMA addresses are organized as upper, middle, and lower address portions.

The upper address portion selects a specific page, and is generated by the page registers in the 74LS612 megacells. The page registers for each channel must be set up by the system before a DMA operation. DMA addresses do not increment or decrement across page boundaries. Page sizes are 64 Kbytes for 8-bit channels 0 through 3, and 128 Kbytes for 16-bit channels 5 through 7. The DMA page register values are output on PCI address bus AD31-AD16 (8-bit channels) and AD31-AD17 (16-bit channels).

The middle address portion, which selects a block within the page, is generated by the 8237 megacells at the beginning of a

DMA operation and any time the DMA address increments or decrements through a block boundary. The block size of an 8bit channel is 256 bytes, while that of a 16-bit channel is 512 bytes. The middle address portion is output by the 8237 megacells onto the internal data bus during state S1. The internal middle address bit latches latch this value in. The middle address bit latches are output on PCI address bits AD15-AD8 for 8-bit channels and AD16-AD9 for 16-bit channels.

The lower address portion is generated directly by the 8237 megacells during DMA operations, and the lower address bits are output on PCI address bits AD7–AD0 for 8-bit channels and AD8–AD1 for 16-bit channels.

SBHE is configured as an output during all DMA operations It is driven as the inversion of AD0 during 8-bit cycles, and forced Low for all 16-bit DMA cycles. Table 5-9 shows the mapping from the DMA subsystem signals to slot bus signals. Table 5-10 shows the mapping of the AMD-645 Peripheral Bus Controller DMA subsystem signals to PCI address bus signals.

Page Register Outputs	Middle Address Latch Outputs	8237 Address Outputs	DMA1 ISA Address Bits	DMA2 ISA Address Bits
M[7]			LA[23]	LA[23]
M[6]			LA[22]	LA[22]
M[5]			LA[21]	LA[21]
M[4]			S/LA[20]	S/LA[20]
M[3]			S/LA[19]	S/LA[19]
M[2]			S/LA[18]	S/LA[18]
M[1]			S/LA[17]	S/LA[17]
M[0]		······································	S/LA[16]	
	D[7]		S/LA[15]	S/LA[16]
	D[6]		S/LA[14]	S/LA[15]
	D[5]		S/LA[13]	S/LA[14]
	D[4]		S/LA[12]	S/LA[13]
	D[3]		S/LA[11]	S/LA[12]
	D[2]		S/LA[10]	S/LA[11]

Table 5-9. DMA Addressing for ISA Bus Accesses (DMA/Slot Bus)

Page Register Outputs	Middle Address Latch Outputs	8237 Address Outputs	DMA1 ISA Address Bits	DMA2 ISA Address Bits
•••••••••••••••••••••••••••••••••••••••	D[1]	•	S/LA[9]	S/LA[10]
1	D[0]		S/LA[8]	S/LA[9]
		A[7]	S/LA[7]	S/LA[8]
		A[6]	S/LA[6]	S/LA[7]
· · · · · · · · · · · · · · · · · · ·		A[5]	S/LA[5]	S/LA[6]
		A[4]	S/LA[4]	S/LA[5]
		A[3]	S/LA[3]	S/LA[4]
		A[2]	S/LA[2]	S/LA[3]
		A[1]	S/LA[1]	S/LA[2]
		A[0]	S/LA[0]	S/LA[1]
		VSS		S/LA[0]
		A[0]	SBHE	
		VSS		SBHE

Table 5-9.	DMA Addressing	for ISA Bus Accesses	(DMA/Slot Bus) (continued)
	Pinner radie cooring	101 10/1 043 /1000303	

Page Register Outputs	Middle Address Latch Outputs	8237 Address Outputs	DMA1 ISA Address Bits	DMA2 ISA Address Bits
0			AD[31]	AD[31]
0			AD[30]	AD[30]
0			AD[29]	AD[29]
0			AD[28]	AD[28]
0			AD[27]	AD[27]
0			AD[26]	AD[26]
0			AD[25]	AD[25]
0			AD[24]	AD[24]
M[7]			AD[23]	AD[23]
M[6]			AD[22]	AD[22]
M[5]			AD[21]	AD[21]
M[4]			AD[20]	AD[20]
M[3]			AD[19]	AD[19]
M[2]			AD[18]	AD[18]
M[1]			AD[17]	AD[17]

Page Register Outputs	Middle Address Latch Outputs	8237 Address Outputs	DMA1 ISA Address Bits	DMA2 ISA Address Bits
M[0]			AD[16]	
	D[7]		AD[15]	AD[16]
	D[6]		AD[14]	AD[15]
	D[5]		AD[13]	AD[14]
	D[4]		AD[12]	AD[13]
	D[3]		AD[11]	AD[12]
	D[2]		AD[10]	AD[11]
	D[1]		AD[9]	AD[10]
	D[0]		AD[8]	AD[9]
		A[7]	AD[7]	AD[8]
		A[6]	AD[6]	AD[7]
		A[5]	AD[5]	AD[6]
		A[4]	AD[4]	AD[5]
		A[3]	AD[3]	AD[4]
		A[2]	AD[2]	AD[3]
		A[1]		AD[2]
		A[0]		BE[1], BE[0]
		A[0]		BE[3], BE[2]
		A[1] + A[0]	BE[0]	
		A[1] + A[0]	BE[1]	
		A[1] + A[0]	BE[2]	
		A[1] + A[0]	BE[3]	

Table 5-10. DMA Addressing for ISA Bus Accesses (DMA/PCI AD Bus) (continued)

5.8.6 Type F DMA

Type F DMA is supported on all channels. The channels may be individually enabled to provide Type F DMA timing, using the Type F DMA control register (Function 0, offset 45h) as shown in Table 5-11. Therefore, configuration software needs to detect Type F-capable devices and configure their channels only once after reset. 21095A/0-March 1997

Offset 45h	Type F DMA Control	Default			
Bit 7 = 1	ISA Master/DMA to PCI Line Buffer	0			
Bit 6 = 1	Enable DMA Type F Timing on Channel 7	0			
Bit 5 = 1	Bit 5 = 1 Enable DMA Type F Timing on Channel 6				
Bit 4 = 1	Sit 4 = 1 Enable DMA Type F Timing on Channel 5				
Bit 3 = 1	= 1 Enable DMA Type F Timing on Channel 3				
Bit 2 = 1	Bit 2 = 1 Enable DMA Type F Timing on Channel 2				
Bit 1 = 1	1 = 1 Enable DMA Type F Timing on Channel 1				
Bit 0 = 1	Enable DMA Type F Timing on Channel 0				

Table 5-11.	Type F	DMA	Control
-------------	--------	-----	---------

When Type F DMA is enabled for a channel, Type F DMA transfers occur during the DACK for that channel. That is, the programmed timing parameters are ignored, DMA cycles occur with zero wait states, and the DMA clock is set equal to BCLK.

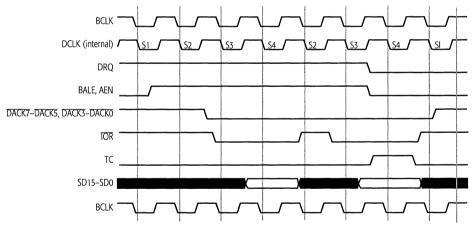
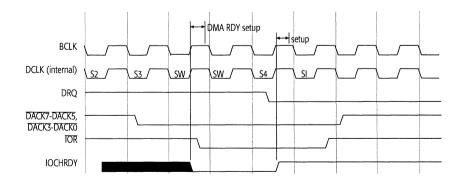


Figure 5-18. Type F DMA Timing


5.8.7 DMA Channel Mapping Registers

DMA channel mapping allows the selection of any DMA channel number for each Plug-N-Play DMA request/ acknowledge signal pair. The mapping register allows each Plug-N-Play DMA pin pair to be connected to any DMA channel. When a Plug-N-Play DMA pin pair is connected to a DMA channel, that channel's normal ISA pin pair is disabled so that the DRQ is ignored and the DACK is driven High.

5.8.8 Ready Control Logic

The Ready input to each of the 8237 megacells is driven from the same source within the ready control logic. The AMD-645 Peripheral Bus Controller ready control logic forces the preprogrammed number of wait states on every DMA transfer.

If needed, the external signal IOCHRDY goes into the ready control logic to extend transfer signals further. To add extra wait states, an external device should pull IOCHRDY Low within the setup time before the second phase of the internal DMA clock no later than the last forced wait state cycle. The current DMA cycle is then extended by inserting wait states until IOCHRDY is returned High. IOCHRDY going High must meet the setup time at the beginning of a wait state or an extra wait state will be inserted before the DMA controller transitions to state S4.

Figure 5-19. DMA Ready Timing

5.8.9 External Cascading

An external DMA controller or bus master can be attached to an AT-compatible design through the AMD-645 Peripheral Bus Controller DMA controllers. To add an external DMA controller, one of the seven available DMA channels must be programmed in the cascade mode. This channel's DRQ signal should then be connected to the external DMA controller's HLDA input. When one of the seven channels is programmed in the cascade mode and that channel is acknowledged, the AMD-645 Peripheral Bus Controller will not drive the data bus, the command signals, or the address bus.

An external device can become a bus master and control the system address, data, and command buses in much the same manner. To enable this control, one of the external channels must be programmed in the cascade mode. The external device then asserts the DRQ line for that channel. When that channel's DACK line goes active, the external device can then pull the MASTER signal Low. As in the DMA controller cascading, the AMD-645 Peripheral Bus Controller does not drive the address, data, and command signals while the cascade channel's DACK signal is active.

5.8.10 PCI Bus Request Arbiter

The PCI bus request arbiter is used to select between the three possible sources for a PCI bus request to the system controller. A PCI bus request can be generated under the following circumstances:

- The DMA read buffer is empty during DMA memory reads
- The most significant byte (MSB) of the DMA write buffer is full during DMA memory writes
- A DMA acknowledge for a cascaded channel is generated
- When the IDE dual channel controller issues a master bus request

The arbiter has the following four inputs:

- The ISA bus, due to DMA buffer requests or master mode acknowledge
- The primary IDE channel

- The secondary IDE channel
- The IDE master block

At the end of a PCI bus request from any of the sources, the arbiter checks to see if any of the other sources is still requesting the PCI bus. If so, the arbiter sends an acknowledge signal to that source and leaves the <u>PREQ</u> line active. This continues as long as one of the sources is requesting the PCI bus. Only if no source is generating a PCI bus request will the arbiter negate the PCI bus request signal and return control to the system controller. The three IDE bus request signals will go inactive for at least two PCI clocks at the end of each burst transfer.

5.8.11 DMA Read and Write Buffers

Write merging occurs when a sequence of individual DMA memory writes of bytes or words is merged into a single doubleword. DMA memory writes within a singular DMA acknowledge are merged in order to enhance PCI bus performance. Thus DMA writes are merged when the active channel is in demand or block transfer mode but are not merged when the active channel is in the single transfer mode.

Read prefetching occurs when a DMA memory read causes all of the PCI byte enables to be asserted for the request; that is, the entire doubleword for the requested address is fetched. DMA reads are always prefetched to enhance PCI bus performance.

5.8.12 PCI Target Retries

When the ISA interface is busy due to the ISA bus being owned by the DMA controller or an ISA bus master, PCI target requests to the ISA bus or DMA controller are retried.

5.9 Distributed DMA Support

Distributed DMA is PCI bus mastering with a legacycompatible programming mode. It offers upward compatibility for ISA legacy devices in PCI bus systems, providing a vast improvement in performance.

Each channel in the 8237 DMA controller is mapped to an individual DMA slice. The channel 0 base address register, current address, base count and current count, command, status, request etc. are mapped to DMA Slice DMA0. Each slice exists in a separate, non-overlapping I/O address space in the PCI bus space.

The Distributed DMA control register is located in Function 0, offset 60h–6Fh. Each channel base address can be individually programmed and enabled.

5.10 Ultra DMA Support

Ultra DMA is a data transfer protocol for ATA/ATAPI-4 to be used with READ DMA and WRITE DMA commands and data transfers for PACKET commands. The AMD-645 Peripheral Bus Controller supports Ultra DMA transfer mode 0, 1 and 2. Table 5-12 lists the Ultra DMA interface signals that appear on the IDE drive cable interface.

Signal	Source	Signal	Source
RESET	Host	CSEL	Host
DD15-DD0	Bidirectional	DMACK	Host
DMARQ	Device	INTRQ	Device
DIOR/HDMARDY/ HSTROBE	Host	DA2-DA0	Host
DIOW/STOP	Host	PDIAG	Device
IORDY/DDMARDY/ DSTROBE	Device	CS0, CS1	Host
CSEL	Host	DASP	Device

Table 5-12. Ultra DMA Interface Signals

HDMARDY is a flow control signal for Ultra DMA input data bursts. It is asserted by the host when it is ready to receive DMA data. The host negates **HDMARDY** to pause an Ultra DMA data in transfer.

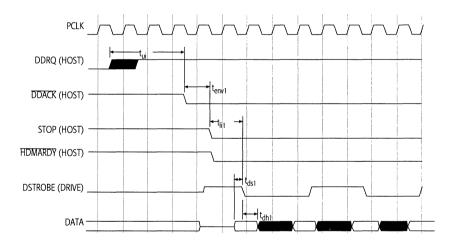
HSTROBE is the strobe signal from the host for an Ultra DMA output data transfer. Both edges of HSTROBE latch data from DD15-DD0 into the device. The host may stop toggling HSTROBE to pause an Ultra DMA output data transfer.

STOP can be asserted by the host during or after data transfer in an Ultra DMA mode to signal the termination of the burst.

DDMARDY is a flow control signal for output data bursts. It is asserted by the device when it is ready to receive DMA data. The device negates **DDMARDY** to pause an Ultra DMA output data transfer.

DSTROBE is the strobe signal from the device for an Ultra DMA input data transfer. Both edges of DSTROBE latch data from DD15–DD0 into the host. The device may stop toggling DSTROBE to pause an Ultra DMA data in transfer.

The Ultra DMA protocol has three timing modes—mode 0, mode 1, and mode 2. Only one Ultra DMA mode is active at any time. The IDENTIFY DEVICE data specifies the highest timing mode of which a device is capable. Devices reporting support for Ultra DMA transfer mode 2 must also support mode 0 and mode 1. The control signal STROBE that latches data from DD15-DD0 is generated by the same agent, either host or device, which drives the data onto the bus. Several signal lines assume new functions when the Ultra DMA protocol is active. These signal lines revert to the definitions used for multiword DMA transfers upon the termination of the Ultra DMA transfer. All control signals are unidirectional.


A READ DMA or WRITE DMA command or data transfer for a PACKET command is accomplished through a series of input or output data bursts. Each burst has three phases of operation, the burst initial phase, the data transfer phase, and the burst termination phase.

The burst initial phase begin with the assertion of DMARQ by the device and ends when the sender toggles STROBE to transfer the first data word. The data transfer phase is then in

effect until the burst termination phase, which begins either when the host asserts STOP or the device negates DMARQ.

5.10.1 Ultra DMA Read Burst Command

Initiating a Read Burst Figure 5-20 shows the timing for an Ultra DMA read burst. The device asserts DDRQ to initiate a burst. The host asserts DDACK when it is ready to begin the requested burst. The host releases DATA, the device asserts DSTROBE, and the host negates STOP and asserts DMARDY. The device then drives the first word of the data transfer onto DATA. The data is transferred when the device negates DSTROBE. The device continues to drive a data word onto DATA and toggles DSTROBE to latch the data until the data transfer is complete or the burst is paused.

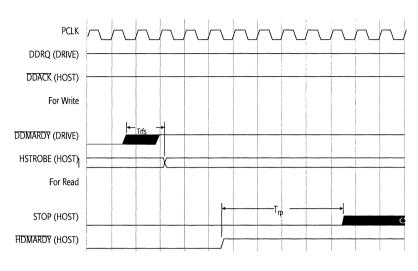
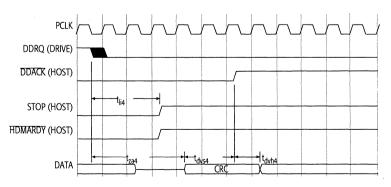


Figure 5-20. Ultra DMA-33 IDE Read Burst

Pausing a Read Burst Either the device or the host can pause a burst transfer, as shown in Figure 5-21. The device pauses the read DMA burst by halting DSTROBE toggling, and resumes the burst by toggling DSTROBE again. The host pauses a read burst by negating HDMARDY and resumes the burst by reasserting HDMARDY.


AMD-645 Peripheral Bus Controller Data Sheet

21095A/0-March 1997

Figure 5-21. Pausing a DMA Burst

Terminating a Read Burst. Either the device or the host can terminate a burst. The device initiates termination of a read burst by halting DSTROBE toggling and negating DMARQ. The host responds by asserting STOP and negating HDMARDY. The host then places the result of its CRC (Cyclic Redundancy Check) on DATA and negates DDACK. The data is latched in the device at the negating edge of DDACK. Figure 5-22 shows the timing for read burst termination initiated by a device.

Figure 5-22. Drive Terminating a DMA Read Burst

The host initiates a read burst termination by negating HDMARDY and asserting STOP, as shown in Figure 5-23. The device negates DDRQ. The host then places the result of its CRC (Cyclic Redundancy Check) on DATA and negates DDACK. The CRC is latched in the device at the negating edge of DDACK.

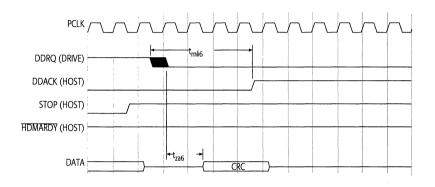
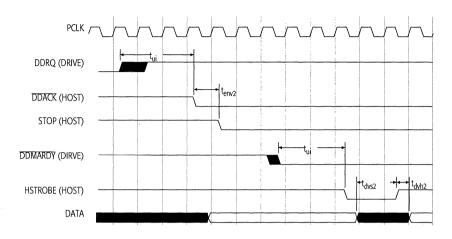
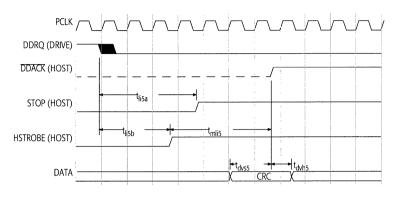



Figure 5-23. Host Terminating DMA Burst During Read Command

5.10.2 Ultra DMA Write Burst Command

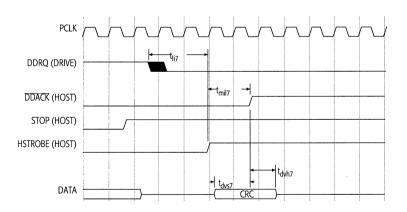
Initiating a WriteFigure 5-24 shows the timing for an Ultra DMA write burst.BurstThe device asserts DDRQ to initiate a write burst. The host
asserts DDACK when it is ready to begin the requested burst.
The device asserts DDMARDY after the host has negated
STOP. The host drives the first word of the data transfer onto
DATA. The data is transferred when the host toggles
HSTROBE. Data is transferred at both edges of HSTROBE
until data transfer is complete or the burst is paused.

21095A/0-March 1997


Figure 5-24. Ultra DMA-33 IDE Write Burst

Pausing a Write Burst Either the device or the host can pause a DMA write burst transfer, as shown in Figure 5-21 on page 5-44. The device pauses a write burst by negating DDMARDY and resumes the burst by reasserting DDMARDY. The host pauses a write burst by halting HSTROBE toggling and resumes the burst by toggling HSTROBE again.

Terminating a WriteEither the device or the host can terminate a write burst. The
device initiates burst termination by negating DDMARDY.
The host shall halts HSTROBE toggling. The device negates
DDRQ, and the host responds by asserting STOP. The host
asserts HSTROBE (if it is negated), places the result of its CRC
on DATA, and negates DDACK. The CRC is latched in the
device at the negating edge of DDACK. Figure 5-25 shows a the
timing for a drive terminating a write burst.


21095A/0-March 1997

AMD-645 Peripheral Bus Controller Data Sheet

Figure 5-25. Drive Terminating DMA Burst During Write Command

The host initiates burst termination by halting HSTROBE toggling and asserting STOP, as shown in Figure 5-26. The device responds by negating DDRQ and DDMARDY. The host asserts HSTROBE (if it is negated), places the result of its CRC (Cyclic Redundancy Check) on DATA, and negates DDACK. The CRC is latched in the device at the negating edge of DDACK.

Figure 5-26. Host Terminating DMA Burst During Write Command

5.10.3 Slave DMA Channel

Each slave DMA channel has a block of sixteen 8-bit registers which are defined in Table 5-13. This block is locatable anywhere in the Legacy 64K I/O space by programming the Slave DMA Configuration Register. All slave DMA channels must have an identical programming model. The master DMA is programmed with the base address of each slave DMA by having a matching base address register for each channel.

Slave Address	Read/ Write	Register Name	Byte DMA Address	Word DMA Address	POR Value
b + 0h	w	Base Address 0–7	CH0 = 0000h CH1 = 0002h Ch2 = 0004h CH3 = 0006h	CH4 = 00C0h CH5 = 00C4h CH6 = 00C8h CH7 = 00CCh	XXh
b + 0h	R	Current Address 0–7	CH0 = 0000h CH1 = 0002h Ch2 = 0004h CH3 = 0006h	CH4 = 00C0h CH5 = 00C4h CH6 = 00C8h CH7 = 00CCh	XXh
b + 1h	w	Base Address 8—15	CH0 = 0000h CH1 = 0002h Ch2 = 0004h CH3 = 0006h	CH4 = 00C0h CH5 = 00C4h CH6 = 00C8h CH7 = 00CCh	XXh
b + 1h	R	Current Address 8–15	CH0 = 0000h CH1 = 0002h Ch2 = 0004h CH3 = 0006h	CH4 = 00C0h CH5 = 00C4h CH6 = 00C8h CH7 = 00CCh	XXh
b + 2h	w	Base Address 16–23	Ch0 = 0087h CH1 = 0083h Ch2 = 0081h CH3 = 0082h	CH4 = N/A CH5 = 008Bh CH6 = 0089h Ch7 = 008Ah	XX
b + 2h	R	Current Address 16–23	Ch0 = 0087h CH1 = 0083h Ch2 = 0081h CH3 = 0082h	CH4 = N/A CH5 = 008Bh CH6 = 0089h Ch7 = 008Ah	XXh
b + 3h	w	Base Address 24–31	N/A	N/A	
b + 3h	R	Current Address 24–31	N/A	N/A	
b + 4h	w	Base Word Count 0-7	Ch0 = 0001h Ch1 = 0003h Ch2 = 0005h Ch3 = 0007h	CH4 = 00C2h CH5 = 00C6h Ch6 = 00CAh Ch7 = 00CEh	XXh
b +4h	R	Current Word Count 0-7	Ch0 = 0001h Ch1 = 0003h Ch2 = 0005h Ch3 = 0007h	CH4 = 00C2h CH5 = 00C6h Ch6 = 00CAh Ch7 = 00CEh	XXh

Table 5-13. Programming Model for Single Slave DMA Channel

Slave Address	Read/ Write	Register Name	Byte DMA Address	Word DMA Address	POR Value
b + 5h	w	Base Word Count 8–15	$\begin{array}{c} Ch0 = 0001h \\ Ch1 = 0003h \\ Ch2 = 0005h \\ Ch3 = 0007h \end{array}$	CH4 = 00C2h CH5 = 00C6h Ch6 = 00CAh Ch7 = 00CEh	XXh
b + 5h	R	Current Word Count 8–15	$\begin{array}{c} Ch0 = 0001h \\ Ch1 = 0003h \\ Ch2 = 0005h \\ Ch3 = 0007h \end{array}$	CH4 = 00C2h CH5 = 00C6h Ch6 = 00CAh Ch7 = 00CEh	XXh
b + 6h	W	Base Word Count 16-23	N/A	N/A	
b + 6h	R	Current Word Count 16-23	N/A	N/A	
b + 7h	N/A	Reserved (note 1)			
b + 8h	W	Command	0008h	00D0h	00h
b + 8h	R	Status	008h	00D0h	X0h
b + 9h	W	Request	0009h	00D2h	00h
b + Ah	N/A	Reserved (note 1)			
b + Bh	W	Mode	000Bh	00D6h	00h
b + Ch	W	Reserved (note 1)			
b + Dh	W	Master Clear	000Dh	00DAh	N/A
b + Eh	N/A	Reserved (note 1)	;		
b + Fh	W	Single-Channel Mask	000Ah	00D4h	00h
b + Fh	R	Single-Channel Mask	config CFh	config EFh	00h
Note: 1. Rea	ds return d	all zeroes. Writes have no effect.			•

 Table 5-13.
 Programming Model for Single Slave DMA Channel (continued)

5.10.4 DMA Control Registers

There are two physical DMA controllers in a Legacy PC system, one for byte transfers and one for word transfers, so there are at least two possible control registers for each register defined. The byte transfer channels are channels 0–3, and their registers are mapped to the byte DMA control registers. The word transfer channels are channels 4–7, and their registers are mapped to the word DMA control registers. Channel 4 is used to connect the two DMA devices together in an ISA system, so it is not available as a separate channel.

Command Register The functionality of this register is identical to the legacy DMA controller, so data is passed through unchanged.

21095A/0-March 1997

Mode Register	Data bits 1–0 are reserved. They are written undefined by the master DMA. The legacy DMA controller expects the channel number encoded in these bits. Each slave DMA channel encodes the lower two bits of its channel number into the lower two bits of the data, replacing the two undefined bits.
	The functionality of the remainder of this register is identical to the legacy DMA controller, so data is passed through unchanged.
Request Register	Data bits 1–0 are reserved. They are written undefined by the master DMA. The legacy DMA controller expects the channel number encoded in these bits. Each slave DMA channel encodes the lower two bits of its channel number into the lower two bits of the data, replacing the two undefined bits. The functionality of the remainder of this register is identical to the legacy DMA controller, so data is passed through unchanged.
Single-Channel Mask Register	In writes to this register, the master DMA writes the new mask value in data bit 0. Data bits 1, 2, and 3 are reserved and will be written undefined by the master DMA. The legacy DMA controller expects the channel number encoded in bits 1–0 and the mask bit passed in bit 2. Each slave DMA channel encodes the lower two bits of its channel number into the lower two bits of the data, replacing bits 1–0. The mask bit written in bit 0 is copied intact to bit 2 and bit 3 is cleared. The functionality of the remainder of this register is identical to the legacy DMA controller, so data is passed through unchanged.
	In reads of this register, the master DMA reads the current mask value in bit 0. The legacy DMA controller's single- channel mask register is write-only, therefore the multi- channel mask shadow register is read. It returns the mask bits for all four channels in the DMA controller in such a way that the channel 0 mask is returned in bit 0, the channel 1 mask in bit 1, the channel 2 mask in bit 2, and the channel 3 mask in bit 3. The bit corresponding to the slave channel number is copied to bit 0 and the remaining bits are cleared.
Status Register	The master DMA reads the current terminal count (TC) status value replicated four times in data bits 0–3 and the current channel request (DRQ) status value replicated four times in data bits 4–7. The legacy DMA controller's status register returns the terminal count status and request bits for all four

channels in the DMA controller. The TC bit corresponding to the slave channel number is copied to bits 0–3, and the DRQ bit corresponding to the slave channel number is copied to bits 4–7.

5.10.5 DMA Software Commands

Master ClearThe functionality of this register is identical to the legacy DMA
controller, so data is passed through unchanged.

5.10.6 DMA Addressing

Each legacy DMA channel has two legacy addresses defined to store the base memory address and count information. Located at these byte legacy addresses are 16-bit registers. The state of the first/last flip-flop determines which byte (High or Low) is being accessed. The slave DMA does not suffer this problem because it has fully decoded these registers. Table 5-14 shows the relationship between legacy DMA addressing for Base. Count, and Memory Page registers. It also shows where this information is programmed into the slave DMA. For the byte legacy DMA, bits 0-7 represent address 0-7. However, for the word legacy DMA, bits 0-7 represent address 1-8. This carries forward to the next address byte. The memory page register realigns the bit position to the address. This relationship is maintained in the slave DMA. A slave DMA can be programmed to be in 8-bit/16-bit transfer mode from its PCI configuration space. This mode information defines how the slave DMA treats the data in the registers. Table 5-14 also defines optional non-legacy addressing extensions for the slave.

21095A/0-March 1997

Legacy Channel	Base Address	Base Address	Memory Page	Count Address	Count Address
Channel 0	0000h	0000h	0087h	0001h	0001h
Channel 1	0002h	0002h	0083h	0003h	0003h
Channel 2	0004h	0004h	0081h	0005h	0005h
Channel 3	0006h	0006h	0082h	0007h	0007h
	Address 1-8	Address 9–16	Address 17–23	Address 1-8	Address 9–16
Channel 4	00C0h	00C0h	N/A	00C2h	00C2h
Channel 5	00C4h	00C4h	008Bh	00C6h	00C6h
Channel 6	00C8h	00C8h	0089h	00CAh	00CAh
Channel 7	00CCh	00CCh	008Ah	00CEh	00CEh
Above Channels Map to Slave Address	Base + 0h	Base + 1h	Base + 2h	Base + 4h	Base + 5h
8-Bit Mode	Address 07	Address 8–15	Address 16–23	Address 0–7	Address 8–15
16-Bit Mode	Address 1–8	Address 8–16	Address 17–23	Address 1–8	Address 8–16
Non-Legacy Slave DMA Addressing Extensions	Base Address Base + 3h			Count Address Base + 6h	
8-Bit Mode	Address 24-31			Address 16–23	
16-Bit Mode	Address 24-31			Address 17–23	

Table 5-14. DMA Registers

Notes:

1. Any slave DMA that does not support the non-legacy extensions must always return a value of 00h from these locations when read.

2. It is the responsibility of the master DMA to support the reserved memory page registers. Because the AMD-645 Peripheral Bus Controller implements subtractive decoding for these registers, master DMA blocks that implement them will behave as expected by the distributed DMA specification.

5.10.7 PCI Slave DMA Configuration Registers

There must be one slave configuration register for each slave channel in a device, with bit 0 being the channel enable bit. The slave base address, along with a matching base address in the master DMA indicates the DMA channel to which the slave DMA is mapped. No two slave DMA channels can be programmed with the same slave base address, because bits 6– 4 of the base address are read-only values that equal the channel number.

The slave DMA is only required to support at least one transfer size. The first four slave DMA channels only support 8-bit

21095A/0-March 1997

AMD-645 Peripheral Bus Controller Data Sheet

transfers, so bits 2 and 1 always read 00b. The second four slave DMA channels only support 16-bit transfers, so bits 2 and 1 always read 01b. No other transfer sizes are supported.

Non-legacy extended addressing is not supported. The DMA slave channel accepts writes to bits 31-24 of the address register and bits 23-16 of the count register, with reads from those bits returning zeroes for data.

5.11 ISA Bus Refresh Cycle Types

The AMD-645 Peripheral Bus Controller supports decoupled refresh mode only. The PC/AT-compatible refresh period of 15.625 microseconds is supported by dividing the OSC signal. The AMD-645 Peripheral Bus Controller supports only offboard refresh timing. Data in DRAM on the ISA bus is refreshed every 15.64 microseconds.

A refresh request can be generated by either the AMD-645 Peripheral Bus Controller in PCI bus master mode, or by an add-on card in ISA master mode. The only difference between the refresh requests is that the requester drives the REFRESH pin. The refresh address is put on SA8–SA0 by the AMD-645 Peripheral Bus Controller (regardless of which master currently owns the bus) in response to a Low REFRESH signal. The SA16–SA9 addresses are three-stated. SA19–SA17 are driven Low. MEMR is asserted by the AMD-645 Peripheral Bus Controller one BCLK cycle after REFRESH goes active. MEMR remains Low for two BCLK cycles. The REFRESH signal is negated one BCLK period after MEMR negates.

Decoupled Mode
RefreshThe decoupled mode refresh enables off-board cycles to run
with normal PCI bus accesses, allowing for maximum system
performance. In this mode, slot bus addresses are buffered
from the PCI address bus, allowing the refresh address to be
driven on the ISA bus while PCI bus transactions are
occurring. A refresh is requested by an OSC-based counter
from the system controller block. It is arbitrated with the DMA
request by sampling each line at opposite edges of BCLK and
synchronizing to PCLK. When an internal refresh request is
generated in decoupled mode, one of two possible sequences
occurs:

- 1. If the AMD-645 Peripheral Bus Controller is currently busy with a pending PCI cycle request, the off-board refresh cycle is postponed until the AMD-645 PCI interface completes its current cycle to the ISA bus.
- 2. If the PCI interface is idle, the off-board refresh cycle will proceed immediately, and any PCI cycle request for the AMD-645 Peripheral Bus Controller that occurs during the refresh cycle is serviced after the refresh cycle completes.

5.12 ISA Bus Data Steering

Table 5-15 through Table 5-20 describe ISA bus data steering for various data paths.

Data Type	Device Size	Data Steering	Notes
		D0 -> SDL or	1 slot access generated per byte written (supports non- contiguous byte accesses)
Byte, Word,	ISA (8)	D1 -> SDL or	2 slot accesses generated for word writes
Doubleword		D2 -> SDL or	4 slot accesses generated for doubleword writes
		D3 -> SDL	Also, all 8-bit on-chip I/O data bus writes performed in this data steering mode
	D0 -> SDL or		
Puto	ISA (16)	D1 -> SDH or	1 slot access generated per byte written (supports non-
Byte	ISA (16)	D2 -> SDL or	contiguous byte accesses)
		D3 -> SDH	
		D0 -> SDL and	1 slot access generated for aligned word writes
Word,	ISA (16)	D1 -> SDH or	2 slot accesses generated for aligned doubleword writes
Doubleword ISA (16)	D2 -> SDL and D3 -> SDH	2 slot accesses generated for misaligned word writes	
Byte, Word, Doubleword	PCI (32)	N/A	All AMD-645 Peripheral Bus Controller data paths—D0, D1, D2, D3, SDL and SDH—are three-stated during PCI bus device accesses

Table 5-15. Data Steering: PCI Bus Master Writes

Data Type	Device Size	Data Steering	Notes
		D0 -> SDL or	
		D1 -> SDL or	1 slot access generated per byte read (supports non-
		D2 -> SDL or	contiguous byte accesses)
Byte, Word,	ISA (8)	D3 -> SDL	2 slot accesses generated for word reads
Doubleword	ROM (8)	On-Chip Bus ->	4 slot accesses generated for doubleword reads
		D0, D1, D2, or D3 and	D0, D1, D2, D3 data are latched before re-driving onto the PCI data bus
		On-Chip Bus -> SDL, SDH +	
		SDL -> D0 or	1 slot access generated per byte read (supports non-
Duto	15A (10)	SDH -> D1 or	contiguous byte accesses)
Byte	ISA (16)	SDL -> D2 or	D0, D1, D2, D3 data are latched before re-driving onto the PCI
		SDH -> D3	data bus
			1 slot access generated for aligned word reads
Word.		SDL -> D0 and SDH -> D1 or	2 slot accesses generated for aligned doubleword reads
Doubleword	ISA (16)	SDL -> D2 and	2 slot accesses generated for misaligned word reads
		SDH -> D3	D0, D1, D2, D3 data are latched before re-driving onto the PCI data bus
Byte, Word, Doubleword	PCI (32)	N/A	All AMD-645 Peripheral Bus Controller data paths—D0, D1, D2 D3, SDL and SDH—are three-stated during PCI bus device accesses

Table 5-16. Data Steering: PCI Bus Master Reads

1. SDH is ignored during XD bus reads.

2. For 8-bit on-chip I/O data bus reads, data is read from on-chip I/O data bus instead of SDL. Data is available on the appropriate PCI data bus byte–D0, D1, D2, D3 and the SDL and SDH bus.

Data Type	Device Size	Data Steering	Notes
Byte, Word	DMA (8)	D0 -> SDL or D1 -> SDL or D2 -> SDL or D3 -> SDL	1 access required for byte reads 2 accesses required for word reads During PCI bus device accesses only, D0, D1, D2, and D3 are latched before data is driven on the slot data bus
Byte	DMA (16) MASTER (16)	D0 -> SDL or D1 -> SDH or D2 -> SDL or D3 -> SDH	1 access required for byte reads During PCI bus device accesses only, D0, D1, D2, and D3 are latched before re-driving onto the slot data bus
Word	DMA (16) MASTER (16)	D0 -> SDL and D1 -> SDH or D2 -> SDL and D3 -> SDH	1 access required for aligned word reads 2 accesses required for misaligned word reads During PCI bus device accesses only, D0, D1, D2, and D3 are latched before data is driven on the slot data bus

Data Type	Device Size	Data Steering	Notes
Byte, Word	DMA (8)	SDL -> D0 or SDL -> D1 or SDL -> D2 or SDL -> D3	1 access required for byte reads 2 accesses required for word reads
Byte	DMA (16) MASTER (16)	SDL -> D0 or SDH -> D1 or SDL -> D2 or SDH -> D3	1 access required for byte reads
Word	DMA (16) MASTER (16)	SDL -> D0 and SDH -> D1 or SDH -> D2 and SDL -> D3	1 access required for aligned word reads 2 accesses required for misaligned word reads

Data Type	Device Size	Data Steering	Notes
Byte	DMA (8)	SDH -> SDL	Byte swap required for odd byte 8-bit DMA read of 16-bit slot 1 access required for byte reads
Byte	MASTER (16)	SDL -> SDH	Byte swap required for odd byte add-on bus master read of 8-bit slot 1 access required for byte reads
Byte, Word	DMA (8) DMA (16) MASTER (16)	N/A On-Chip Bus -> SDL and SDH	Except for the above two cases and bus master reads of on-chip I/O data bus, the SDL and SDH data pads are three-stated pads for all DMA or master reads of 8-bit/16-bit ISA devices

Table 5-19. Data Steering: DMA/ISA Bus Master Reads ISA

Table 5-20. Data Steering: DMA/ISA Bus Master Writes ISA

Data Type	Device Size	Data Steering	Notes
Byte	DMA (8) ISA (16)	SDH -> SDL	Byte swap required for odd byte add-on bus master write to 8-bit slot
			1 access required for byte reads
Byte	MASTER (16) ISA (8)	SDL -> SDH	Byte swap required for odd byte 8-bit DMA write to 16-bit slot
			1 access required for byte reads
Byte, Word	DMA (8) DMA (16) MASTER (16)	N/A	Except for the above two cases, the SDL and SDH data pads are input pads for all DMA or master writes to 8-bit/16-bit ISA devices
			All bus master writes to 8-bit on-chip I/O data bus are performed in this data steering mode

5.13 Fast IDE/EIDE Interface

5.13.1 IDE Drive Registers

The IDE registers are 1F0h through 1F7h for the primary channel and 170h through 177h and 376h for the secondary channel. These registers are not resident in the AMD-645 Peripheral Bus Controller, but are incorporated into the actual drive mechanism. The contents of the IDE registers are relatively straightforward, but the legacy ATA registers are detailed here for completeness. The address map for these registers is shown in Table 5-21.

Channel 0	Channel 1	Туре	Description
1F0h	170h	Read/Write	Data register (16-bit)
1F1h	171h	Read-Only	Error Register (8-bit)
17111		Write-Only	Features Register (8-bit) (former Write Compensation Register)
1F2h	172h	Read/Write	Sector Count Register (8-bit)
1F3h	173h	Read/Write	Sector Number Register
1F4h	174h	Read/Write	Low Cylinder Number Register (8-bit)
1F5h	175h	Read/Write	High Cylinder Number Register (8-bit)
1F6h	176h	Read/Write	Drive/Head Register (8-bit)
1F7h	177h	Read-Only	Status Register (8-bit)
1670		Write-Only	Command Register (8-bit)
3F6h	376h	Read-Only	Alternate Status Register (8-bit)—Contains the same information as the status register at offset 1F7h but does not clear the interrupt or imply interrupt acknowledge
		Write-Only	Device Control Register (8-bit)—Bit 2 is the software reset bit. Bit 1 is the enable bit for the drive interrupt to the host.

5.13.2 PCI Cycles

The IDE controller supports 8-bit, 16-bit, and 32-bit PCI cycles with the appropriate conversions to the 8-bit or 16-bit IDE register, as shown in Table 5-22. The IDE data register is a 16-bit register located at 1F0h or 170h. The IDE control registers are 8-bit registers located at 1F1h–1F7h and 3F6h, or at 171h–177h and 376h.

Table 5-22. PCI Cycles

PCI Cycle	IDE Register	IDE Cycle	Comments
Byte	Data	Word	The upper byte is always transferred
Byte	Control	Byte	
Word	Data	Word	
Word	Control	2 Byte	Two sequential IDE accesses are generated
Doubleword	Data	2 Word	Two IDE accesses to the Data Register are generated
Doubleword	Control	4 Byte	Four sequential IDE accesses are generated

Non-FIFO IDE Writes	When the CPU issues a write access to the IDE, the command process issues the command to the I/O process. The I/O process then waits for the address setup time to satisfy the IOR/IOW precharge of the previous operation. IOW becomes active for the pre-set duration.
FIFO IDE Writes	In FIFO IDE writes, the IDE interface simply latches the data and decodes the address into the FIFO. If the FIFO is full, the IDE interface waits until the FIFO is empty due to the completion of one IDE write transfer. The IDE interface signals the PCI slave to disconnect and retry the IDE write.
Non-Read-Ahead IDE Reads	Read accesses to the IDE interface must wait until the write- FIFO is empty to ensure the proper execution order. If the write-FIFO is not empty, the read access is retried at the PCI interface and the write-FIFO is flushed. When the write-FIFO is empty, the IOR pre-charge and address setup time are satisfied and IOR becomes active for the programmed duration. Accesses to the control registers are not buffered, and any access to these addresses will invalidate data in the read-ahead buffer.
Read-Ahead IDE Reads	Read accesses to the IDE interface must wait until the write- FIFO is empty to ensure the proper execution order. If the write-FIFO is not empty, the read access is retried at the PCI interface and the write-FIFO is flushed. When the write-FIFO is empty, it issues the IOR command to the IDE, as in the case of a non-read-ahead read transfer.
	If the read is not to the data register, the cycle behaves as if it is a normal non-read-ahead operation. If the read is to the data register, then the read-ahead cycle begins operating. The I/O process block issues the IOR to the IDE until the read-ahead buffer is full, without CPU intervention. If the IDE is slow enough to let the CPU catch up, the PCI TRDY is returned after the IOR. In this case, read-ahead still helps since IOR starts before the CPU cycle.
	Read-ahead is intended for data register reads. It counts the number of words to be transferred from the data register. However, there might be applications that transfer control data from the data port, which might not work with the prediction. The IDE interface is designed to terminate the read-ahead cycle if it senses any of the following:

- Read or write accesses to IDE control registers (any register other than the data register)
- Write access to the data register
- Read-ahead count expires (normal read-ahead termination)

In addition, a read of any I/O space register (bus mastering configuration registers) causes a retry to the PCI and a flush of the FIFO. A 32-bit pipeline register on the PCI interface buffers data to the PCI bus. A 16-bit pipeline register buffers data to the IDE interface.

5.13.3 DMA Bus Mastering

IDE DMA is supported through the PCI IDE bus mastering logic. In a typical bus master command sequence, the bus master registers are initialized with the transfer address and count. The registers then they are started, causing the PCI interface to transfer long words to or from the FIFO in 32-byte bursts. A command to the drive is then issued, which causes the drive to transfer words to or from the internal FIFO using a DRQ/DACK handshake and IOR or IOW strobes. The transfer continues until the transfer count is exhausted or until the drive generates an interrupt.

Subject to arbitration, the DMA state machine asserts DACK upon receiving DRQ. After a threshold of 30 bytes is reached, the PCI bus master requests the PCI bus. During this request, the FIFO is filled with the data from the DMA transfer. The FIFO is flushed on any access to the channel's I/O registers, or when the channel interrupt occurs. A flush in process causes PCI accesses to that channel's I/O registers (including the I/O that instigated the flush) to be retried and the IDE DMA acknowledge to be removed until the flush is completed. An enabled interrupt from the IDE device (hard drive or CD ROM drive) is routed to the FIFO and causes the flush at the end of a DMA access. The interrupt is routed to the status register after the flush of the FIFO occurs. The DMA state machine must also determine whether an access is single-word or multi-word DMA. It does this by the programmed pulse timing.

The FIFO must be emptied before accepting any I/O access to the bus mastering IDE controller. Any PCI access to the IDE channel's I/O registers causes a flush of the channel's DMA

FIFO. PCI accesses to the channel's I/O registers are retried until the channel FIFO is flushed. PCI retries cause the IDE to re-issue the request with the retried address and data. PCI disconnects cause the IDE to re-issue the request with the next address and data.

An IDE arbiter state machine is required to handle all channel activity. The arbiter must arbitrate between the two channels. The PIO requests have priority over any DMA requests. Also, the primary channel has a higher priority than the secondary channel. The PCI arbiter must respond to the IDE arbiter for its arbitration scheme. The PCI arbiter must arbitrate between ISA DMA and IDE DMA requests. The ISA DMA has priority over IDE.

Each IDE channel has a bi-directional 32-byte FIFO. Only DMA accesses are put in this FIFO. The direction of the FIFO is controlled by registers. For PCI bus mastering DMA accesses, the bus master command and status registers determine the direction of the FIFO. Both channels cannot operate over the IDE interface simultaneously due to the 16-bit IDE data bus shared between two channels. Note, however, that a channel's FIFO may be connected to the PCI data bus while the other channel's FIFO is connected to the IDE data bus.

To initiate a bus master transfer between memory and an IDE DMA slave device, the following steps are required:

- 1. Software prepares a physical region descriptor (PRD) table in system memory. Each PRD is 8 bytes long and consists of an address pointer to the starting address and the transfer count of the memory buffer to be transferred. In any given PRD table, two consecutive PRDs are offset by eight bytes and are aligned on a 4-byte boundary.
- 2. Software provides the starting address of the PRD table by loading the PRD table pointer register. The direction of the data transfer is specified by setting the Read/Write Control bit. Clear the Interrupt bit and the Error bit in the Status register.
- 3. Software issues the appropriate DMA transfer command to the disk device.
- 4. Engage the bus master function by writing a "1" to the Start bit in the Bus Master IDE Command Register for the appropriate channel.

- 5. The controller transfers data to or from memory, responding to DMA requests from the IDE device.
- 6. At the end of the transfer the IDE device signals an interrupt. This interrupt is generated as ISA interrupt 14 for the primary channel or as ISA interrupt 15 for the secondary channel.
- 7. In response to the interrupt, software resets the Start/Stop bit in the Master Command register, then reads the controller status and drive status to determine whether the transfer completed successfully.

The physical memory transfer region is described by a physical region descriptor (PRD). The data transfer proceeds until all regions described by the PRDs in the table are transferred. Each PRD entry is eight bytes long. The first four bytes specify the byte address of a physical memory region. The next two bytes specify the count of the region in bytes, with a 64-Kbyte limit per region. A value of zero in these two bytes indicates 64 Kbytes. Bit 7 of the last byte indicates the end of the table.

Bus master operation terminates when the last descriptor has been retired.

5.13.4 IDE Channel Arbitration

The IDE channel arbiter controls the IDE data and address paths between the two IDE channels. The arbiter must determine which channel already has access to the bus and what type of access is occurring. On DMA accesses, the data bus is controlled and the address bus is not. For PIO accesses, both the data and address buses are controlled.

The arbiter grants data bus accesses to the first IDE channel to access the bus. Once the IDE bus has been granted, only a PIO request from the other channel for the IDE bus will cause a removal of the grant. Otherwise, the bus will not be rearbitrated until the access is finished. For large data transfers, this procedure allows the data transfer to complete without an interruption.

PIO Accesses The IDE arbiter monitors the address decode logic of each channel to determine when there is an access. On access, the data and address buses will be steered to the channel where

21095A/0-March 1997

AMD-645 Peripheral Bus Controller Data Sheet

the access occurred. The PIO access will be retried if the DMA FIFO is not empty, or if a DACK is active. The PIO access causes a flush of the DMA FIFO if it is not empty.

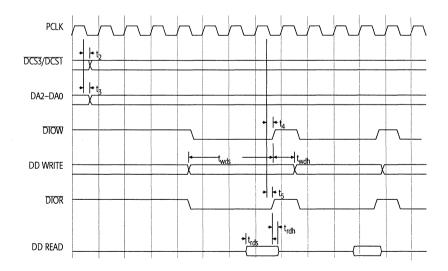
DMA Accesses The IDE arbiter monitors the DMA request from the drives. When the DRQ from a drive is detected, its channel receives the data bus. When the DRQ is de-asserted, the IDE arbiter rearbitrates for the IDE data bus. If a DMA access from a channel is in process during a PIO request from the same channel, the PCI bus access to the IDE will end in a retry. If a DMA access from a channel is in process during a PIO request from the other channel, the DMA grant is removed and the PCI bus access to the IDE ends in a retry with a delayed transaction implemented internally. The IDE arbiter notifies the PCI bus to retry the cycle.

The PCI arbiter follows a fixed priority:

- 1. PIO access to the primary channel
- 2. PIO access to the secondary channel
- 3. DMA request from the primary channel
- 4. DMA request from the secondary channel
- 5. Bus master controller accesses to memory.

5.13.5 Additional Features

Some of the additional IDE/EIDE features of the AMD-645 Peripheral Bus Controller are discussed in the following paragraphs.


- **IDE Reset Buffering** The AMD-645 Peripheral Bus Controller provides the buffered reset signal to the IDE drive, removing the need for motherboard logic to perform this function. The signal is driven Low during reset to the AMD-645 Peripheral Bus Controller, or when the proper bit of the Primary Channel Configuration register is set.
- Interrupt Routing The interrupt from the IDE drive is routed to the AMD-645 Peripheral Bus Controller. Two potential interrupt sources are made available to each IDE channel. One is a Plug-N-Play (PNP) interrupt and the other is the ISA IRQ input. The interrupt source is selected with the IDE Configuration register, Function 1, offset 9h, such that ISA Compatibility

Mode or Native PCI Mode can be selected. If the ISA IRQ is selected, the Interrupt Routing register in Function 0, offset 4Ah can be used to select the IDE interrupt source. The primary channel uses IRQ14 and can be set to IRQ15, IRQ10, or IRQ11, while the secondary channel uses IRQ15 and can be set to IRQ14, IRQ10, or IRQ11.

If the ISA IRQ is selected, the PNP IRQ has no effect on the IDE IRQ output. If the PNP IRQ is selected, the IDE interrupt output is ANDed with the ISA IRQ. If the IDE interrupt is disabled, the ISA IRQ is passed through with no change. This configuration allows the option of interrupt sharing on the IDE channel's interrupt level.

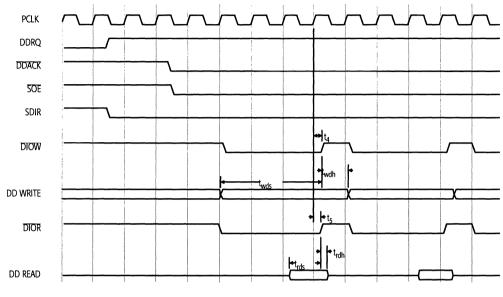
5.13.6 IDE Configuration Registers

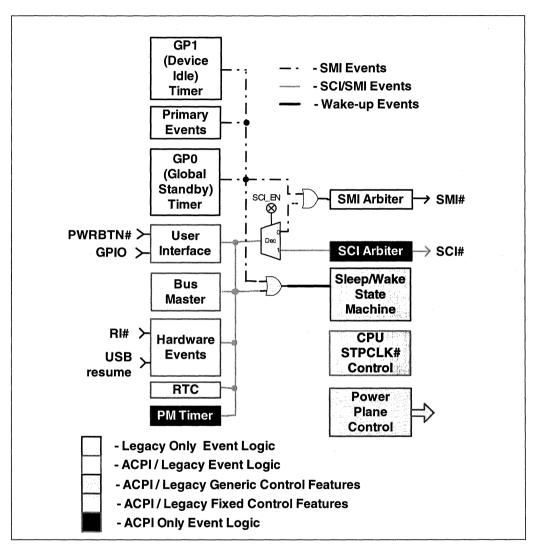
Each IDE channel has a complete and independent set of configuration registers. The registers for the primary channel and the secondary channel are identical except for their addresses in PCI configuration space Function 1. The primary channel registers are located at offset 10h–1Bh. The secondary channel registers are located at offset 18h–1Fh.

Figure 5-27. PIO Cycle

21095A/0-March 1997

AMD-645 Peripheral Bus Controller Data Sheet




Figure 5-28. IDE Multiword DMA Cycle

5.14 Power Management Support

5.14.1 Power Management Subsystem

The power management function of the AMD-645 Peripheral Bus Controller is indicated in the following block diagram. AMD-645 Peripheral Bus Controller Data Sheet

21095A/0-March 1997

5.14.2 Power Plane Management

There are three power planes inside the AMD-645 Peripheral Bus Controller. This scheme is optimal for systems with ATX power supplies, although it also works using non-ATX power supplies. The key feature of the ATX power supply is the 21095A/0-March 1997

AMD-645 Peripheral Bus Controller Data Sheet

availability of two sets of power sources. The first set is always on unless turned off by the mechanical switch. Only one voltage (5 V) is available for this set. The second set includes the normal 5 V and 12 V power supplies and is controlled by the input signal PWRON as well as a mechanical switch. This set of voltages is available only when both the mechanical switch is on and the PWRON signal is High. The power planes powered by the above two sets of supplies are referred to as V_{DD} -5VSB and V_{DD} , respectively. In addition to the two power planes, a third plane is powered by the combination of 5VSB and VBAT for the integrated real time clock. Most of the circuitry inside the AMD-645 Peripheral Bus Controller is powered by V_{DD} . Very little logic is powered by V_{DD} -5VSB and it remains functional as long as the mechanical switch of the power supply is turned on. The main function of this logic is to control the power supply of the V_{DD} plane.

General Purpose I/O
PortsAs ACPI-compliant hardware, the AMD-645 Peripheral Bus
Controller includes PWRBTN (pin 91) and RI (pin 93) pins to
implement power button and ring indicator functionality. In
addition, a PWRON pin (pin 107) is also available to control
the V_{DD} power plane by V_{DD}-5VSB-powered logic.
Furthermore, the AMD-645 Peripheral Bus Controller offers
many general purpose I/O ports with the following capabilities:

- I²C support
- Three GPIO ports without external logic in addition to the I²C port. Five GPIO ports are available if I2C functionality is not used. Every port can be used as inputs, outputs or I/O with external SCI/SMI capabilities.
- Sixteen GPI and sixteen GPO pins using external buffers (244 buffers for input and 373 latches for output)

Pins 87, 88, and 94 of the AMD-645 Peripheral Bus Controller are dedicated general purpose I/O pins that can be used as inputs, outputs, or I/O with external SMI capability. In particular, pins 87 and 88 can be used to implement a softwareimplemented I^2C port for system configuration and general purpose peripheral communication. Pins 92 and 136 can be configured either as dedicated general purpose I/O pins or as control signals for external buffers for implementing up to sixteen GPI and sixteen GPO ports. The GPI and GPO ports are connected to SD15–SD8 and XD7–0SD0. The configuration is

determined in the GPIO4_CFG and CPIO3_CFG bits of the PIN_CFG register.

GPIO4_CFG defaults to 1 to define pin 136 as GPIO4. Clear GPIO4_CFG to redefine the pin as GPO_WE latch enable.

GPIO3_CFG defaults to 1 to define pin 92 as GPIO3. Clear GPIO3_CFG to redefine the pin as GPI_RE buffer enable.

5.14.3 **Power Management Events**

Three types of power management events are supported:

- 1. ACPI-required fixed events defined in the PM1a_STS and PM1a_EN registers. These events can trigger the following SCI or SMI events depending on the SCI_EN bit:
 - **PWRBTN** Triggering
 - RTC alarm
 - ACPI power management timer carry (always SCI)
 - BIOS release (always SCI)
- 2. ACPI-aware general purpose function events defined in GP_STS and GP_SCI_EN, and GP_SMI_EN registers. These events can trigger the following SCI or SMI events depending on the setting of individual SMI and SCI enable bits:
 - EXTSMI triggering
 - USB resume
 - RI indicator
- 3. Generic global events defined in the GBL_STS and GBL_EN registers. These registers are used primarily for the following SMI events:
 - GP0 and GP1 timer time out
 - Secondary event timer time out
 - Occurrence of primary events (defined in register PACT_STS and PACT_EN)
 - Legacy USB accesses (keyboard and mouse)

Once enabled, each of the EXTSMI inputs triggers an SCI or SMI at either the rising or falling transition of the corresponding input pin signal. Software can check the status

of the input pins via register EXTSMI_VAL and take proper actions.

Among many possible actions, the SCI and SMI routine can change the processor state by programming the P_BLK registers. The routine can also set the SLP_EN bit to put the system into one of the following two suspend states:

- 1. Suspend to Disk (or Soft-Off)—The V_{DD} power plane is turned off while V_{DD} -5VSB and V_{DD} -RTC planes remain on.
- 2. Power-On-Suspend—All power planes remain on but the processor is put in the C3 state.

In either suspend state, there is minimal interface between powered and non-powered planes.

The AMD-645 Peripheral Bus Controller allows the following events to wake up the system from the two suspend states and from the C2 state to the normal working state (processor in C0 state):

- Activation of External Inputs—PWRBTN, RI, GPIO0 and other EXTSMI pins (see table below)
- RTC Alarm and ACPI Power Management Timer—(see table below)
- USB Resume Event—(see Table 5-23)
- Interrupt Events—Always resume independent of any register setting
- ISA Master or DMA Events—Always resume independent of any register setting

The AMD-645 Peripheral Bus Controller also provides flexible SCI/SMI steering and PWRON control for the events listed in Table 5-23.

Event	Global SCI/SMI Control	Individual Enable Bits for SCI & SMI	Separate Control for PWRON Resume
PWRBTN	SCI_EN bit	N	Y
RI	N	Y	Y
RTC Alarm	N	Y	N
GP1O0 (EXTSMI0)	N	Y	Y
External SCI/SMI (non-GPIO0)	N	Y	Y
ACPI PM Timer	Always SCI	N	N
USB Resume	N	N	Y

Table 5-23. SCI/SMI/Resume Control for PM Events

Table 5-24 shows the availability of resume events in each type of suspend state.

Input Trigger	Power Plane	Soft-Off	Power-On Suspend
PWRBTN	V _{DD} -5VSB	yes	yes
RI	V _{DD} -5VSB	yes	yes
RTC alarm	VBAT	yes	yes
GP1O0 (EXTSMIO)	V _{DD} -5VSB	yes	yes
External SCI/SMI (non-GPIO0)	V _{DD} -5V	no	yes
ACPI PM timer	V _{DD} -5V	no	yes
USB resume	V _{DD} -5V	no	yes
PCI/ISA interrupts	V _{DD} -5V	no	yes
PCI/ISA master/DMA	V _{DD} -5V	no	yes

Table 5-24. Suspend Resume Events and Conditions

5.14.4 Legacy Management Timers

In addition to the ACPI power management timer, the AMD-645 Peripheral Bus Controller includes the following four legacy power management timers:

■ GP0 Timer—General purpose timer with primary event

- GP1 Timer—General purpose timer with peripheral event reload
- Secondary Event Timer—To monitor secondary events
- Conserve Mode Timer—Not used in desktop applications

The normal sequence of operations for a general purpose timer (GP0 or GP1) is as follows:

- 1. Program the time base and timer value of the initial count (register GP_TIM_CNT).
- 2. Activate counting by setting the GP0_START or GP1_START bit to one: the timer will start with the initial count and count down towards 0.
- 3. When the timer counts down to zero, an SMI will be generated if enabled (GP0TO_EN and GP1TO_EN in the GBL_EN register) with status recorded (GP0TO_STS and GP1TO_STS in the GBL_STS register).
- 4. Each timer can also be programmed to reload the initial count and restart counting automatically after counting down to 0. This feature is not used in standard BIOS.

The GP0 and GP1 timers can be used just as the general purpose timers described above. However, they can also be programmed to reload the initial count by system primary events or peripheral events thus used as the primary event (global standby) timer and peripheral timer, respectively. The secondary event timer is solely used to monitor secondary events.

5.14.5 System Primary and Secondary Events

Primary system events are distinguished in the PRI_ACT_STS and PRI_ACT_EN registers. The bit controls in these registers are summarized in Table 5-25.

Bit	Event	Trigger
7	Keyboard Access	I/O port 60h
6	Serial Port Access	I/O ports 3F8h-3FFh, 2F8h-2FFh, 3E8h-3EFh, or 2E8h-2EFh
5	Parallel Port Access	I/O ports 378h-37Fh or 278h- 27Fh
4	Video Access	I/O ports 3B0h-3DFh or memory A/B segments
3	IDE/Floppy Access	I/O ports 1F0h-1F7h, 170h-177h, or 3F5h
2	Reserved	
1	Primary Interrupts	Each channel of the interrupt controller can be programmed as a primary or secondary interrupt
0	ISA Master/DMA Activity	

Table 5-25. PRI ACT STS and PRI ACT EN Register Bits

Each category can be enabled as a primary event by setting the corresponding bit of the PRI_ACT_EN register. If enabled, the occurrence of the primary event reloads the GP0 timer if the PACT_GP0_EN bit is also set. The cause of the timer reload is recorded in the corresponding bit of the PRI_ACT_STS register while the timer is reloaded. If no enabled primary event occurs during the count down, the GP0 timer will time out (count down to 0) and the system can be programmed (setting the GP0TO_EN bit in the GBL_EN register to one) to trigger an SMI to switch the system to a power down mode.

The AMD-645 Peripheral Bus Controller distinguishes two kinds of power management interrupt requests, primary and secondary interrupts. Like other primary events, the occurrence of a primary interrupt demands that the system be restored to full processing capability. Secondary interrupts are typically used for background housekeeping tasks that are unnoticeable to the user. The AMD-645 Peripheral Bus Controller allows each channel of interrupt request to be declared as either primary, secondary, or ignorable in the PIRQ_CH and SIRQ_CH registers. Secondary interrupts are the only system secondary events defined in the AMD-645 Peripheral Bus Controller.

Like primary events, primary interrupts can be made to reload the GP0 timer by setting the PIRQ_EN bit to 1. Secondary interrupts do not reload the GP0 timer. Therefore, the GP0 timer will time out and the SMI routine can put the system into power down mode if no events other than secondary interrupts occur periodically in the background.

Primary events can be programmed to trigger an SMI (setting of the PACT_EN bit). Typically, this SMI triggering is turned off during normal system operation to avoid degrading system performance. Triggering is turned on by the SMI routine before entering the power down mode so that the system may be returned to normal operation at the occurrence of primary events. At the same time, the GP0 timer is reloaded and the count down process is restarted.

5.14.6 Peripheral Events

Primary and secondary events define system events in general, and the response is typically expressed in terms of system events. Individual peripheral events can also be monitored by the AMD-645 Peripheral Bus Controller through the GP1 timer. The following four categories of peripheral events are distinguished (via register GP_RLD_EN):

- Bit 7—Keyboard access
- Bit 6—Serial Port access
- Bit 4—Video access
- Bit 3—IDE/Floppy access

The four categories are subsets of the primary events as defined in PRI_ACT_EN, and the occurrence of these events can be checked through a common register PRI_ACT_STS. As a peripheral timer, GP1 can be used to monitor one (or more than one) of the above four device types by programming the corresponding bit to one and the other bits to zero. Timeout of the GP1 timer indicates no activity of the corresponding device type and appropriate action can be taken as a result.

21095A/0-March 1997

6 Initialization

All programmable features in the AMD-645 Peripheral Bus Controller are controlled by the PCI configuration registers, which are normally programmed only during system initialization. This chapter summarizes the register functions, default values, access types, and addresses. For more detailed descriptions of the configuration registers, see Section 7.

Access types are indicated as follows:

- RW Read/Write
- RO Read Only
- WO Write Only
- RWC Read, Write 1's to Clear individual bits

6.1 Legacy I/O Registers

Port	Register Name	Access
00h	Ch 0 Base/Current Address	RW
01h	Ch 0 Base/Current Count	RW
02h	Ch 1 Base/Current Address	RW
03h	Ch 1 Base/Current Count	RW
04h	Ch 2 Base/Current Address	RW
05h	Ch 2 Base/Current Count	RW
06h	Ch 3 Base/Current Address	RW
07h	Ch 3 Base/Current Count	RW
08h	Status/Command	RW
09h	Write Request	WO
0Ah	Write Single Mask	WO
0Bh	Write Mode	WO
0Ch	Clear Byte Pointer F/F	WO
0Dh	Master Clear	WO
0Eh	Clear Mask	WO
0Fh	R/W All Mask Bits	RW

Table 6-1. Master DMA Controller Registers

Port	Register Name	Access
20h	Master Interrupt Control	note 1
21h	Master Interrupt Mask	note 1
20h	Master Interrupt Control Shadow	RW
21h	Master Interrupt Mask Shadow	RW

 Table 6-2.
 Master Interrupt Controller Registers

Table 6-3. Timer/Counter Registers

Port	Register Name	Access
40h	Timer/Counter 0	RW
41h	Timer/Counter 1	RW
42h	Timer/Counter 2	RW
43h	Timer/Counter Control	WO

Table 6-4. Keyboard Controller Registers

Port	Register Name	Access
60h	Keyboard Controller Data	RW
61h	Misc. Functions and Speaker Control	RW
64h	Keyboard Controller Command/Status	RW

Table 6-5. CMOS/RTC/NNI Registers

Port	Register Name	Access
70h	CMOS Memory Address & NMI Disable	WO
71h	CMOS Memory Data (128 bytes)	RW
72h	CMOS Memory Address	RW
73h	CMOS Memory Data (256 bytes)	RW
74h	CMOS Memory Address	RW
75h	CMOS Memory Data (256 bytes)	RW

21095A/0-March 1997

AMD-645 Peripheral Bus Controller Data Sheet

Port	Register Name	Access
87h	DMA Page–DMA Channel 0	RW
83h	DMA Page–DMA Channel 1	RW
81h	DMA Page–DMA Channel 2	RW
82h	DMA Page–DMA Channel 3	RW
8Fh	DMA Page–DMA Channel 4	RW
8Bh	DMA Page–DMA Channel 5	RW
89h	DMA Page–DMA Channel 6	RW
8Ah	DMA Page-DMA Channel 7	RW

Table 6-6. DMA Page Registers

Table 6-7.System Control Registers

Port	Register Name	Access
92h	System Control	RW

Table 6-8. Slave Interrupt Controller Registers

Port	Register Name	Access
A0h	Slave Interrupt Control	Note 1
A1h	Slave Interrupt Mask	Note 1
A0h	Slave Interrupt Control Shadow	RW
Alh	Slave Interrupt Mask Shadow	RW
Note: 1. RW if	shadow registers are disabled	

6-3

Port	Register Name	Access
C0h	Ch 0 Base/Current Address	RW
C2h	Ch 0 Base/Current Count	RW
C4h	Ch 1 Base/Current Address	RW
C6h	Ch 1 Base/Current Count	RW
C8h	Ch 2 Base/Current Address	RW
CAh	Ch 2 Base/Current Count	RW
CCh	Ch 3 Base/Current Address	RW
CEh	Ch 3 Base/Current Count	RW
D0h	Status/Command	RW
D2h	Write Request	WO
D4h	Write Single Mask	WO
D6h	Write Mode	WO
D8h	Clear Byte Pointer F/F	WO
DAh	Master Clear	WO
DCh	Clear Mask	WO
DEh	R/W All Mask Bits	RW

Table 6-9. Slave DMA Controller Registers

6.2 PCI Function 0 Registers–PCI-to-ISA Bridge

- ·			
Offset	PCI Header	Default	Access
01h-00h	Vendor ID	1106h	RO
03h-02h	Device ID	0586h	RO
05h-04h	Command	000Fh	RW
07h-06h	Status	0200h	RWC
08h	Revision ID (00h = first silicon)	-	RO
09h	Program Interface	00h	RO
0Ah	Sub Class Code	01h	RO
0Bh	Base Class Code	06h	RO
0Ch	Reserved (Cache Line Size)	00h	_
0Dh	Reserved (Latency Timer)	00h	-
0Eh	Header Type	80h	RO
0Fh	Built-In Self Test (BIST)	00h	RO
10h–3Fh	Reserved	00h	-

 Table 6-10.
 Configuration Space PCI-to-ISA Header Registers

Offset	Register	Default		Recommended	Access
			Setting	Result	
40h	ISA Bus Control	00h	00h	Normal ISA timing	RW
41H	ISA Test Mode	00h	01h	Refresh test mode	RW
42h	ISA Clock Control	00h	00h	ISA clock=PCICLK/4	RW
43h	ROM Decode Control	00h	00h	ROMCS F0000h-FFFFFh	RW
44h	Keyboard Controller Control	00h	01h	Disable mouse lock	RW
45h	Type F DMA Control	00h	00h	Set DMA type F if needed	RW
46h	Miscellaneous Control 1	00h	10h	Disable post memory write	RW
47h	Miscellaneous Control 2	00h	C0h	INIT as CPU reset Enable PCI delay transaction	RW
48h	Miscellaneous Control 3	01h	01h	Enable USB, IDE	RW
49h	Reserved	00h	00h		
4Ah	IDE Interrupt Routing	04h	C4h	Wait for PGNT before grant to ISA master/DMA	RW
				Access ports 00-FFh via SD	
				IDE primary channel IRQ14	
				Secondary channel IRQ 15	
4Bh	Reserved	00h	00h		. —
4Ch	DMA/Master Mem Access Ctrl 1	00h	00h	PCI memory hole bottom address HA23-HA16 = 0	RW
4Dh	DMA/Master Mem Access Ctrl 2	00h	00h	PCI memory hole top address HA23-HA16 = 0	RW
4Fh–4Eh	DMA/Master Mem Access Ctrl 3	0300h	F300h	Top of PCI memory for ISA=16M.	RW
				Forward 00000h-9FFFFh access to PCI	

Table 6-11. ISA Bus Control Registers

Offset	Register	Default		Recommended	Access
			Setting	Result	
50h	Reserved (do not program)	24h	24h		RW
53h-51h	Reserved	00h	00h		-
54h	PIC IRQ Edge/Level Selection	00h	00h	PIRQs inverted edge trigger/ Non-inverted level trigger	RW
55h	PnP Routing for External MIRQ0-1	00h	00h	MIRQs disabled	RW
56h	PnP Routing for PCI INTB-A	00h	B0h	INTB routes to IRQ11	RW
				INTA disabled	
57h	PnP Routing for PIC INTD-C	00h	57h	INTD routes to IRQ5	RW
				INTC routes to IRQ7	
58h	PnP Routing for External MIRQ2	00h	00h	MIRQ2 disabled	RW
59h	MIRQ Pin Configuration	04h	04h	Configure as MASTER	RW
5Ah	XD Power-On Strap Options	Note 1	F7h	Enable Int RTc, PS2 mouse, Int KBC	RW
5Bh	Internal RTC Test Mode	00h	00h	RTC reset enable, SRAM access enable, test enable	RW
5Ch–5Fh	Reserved	00h	00h		-

Table 6-12. Plug-n-Play Control Registers

Table 6-13. Distributed DMA

Offset	Register	Default	Recommended		Access
			Setting	Result	
61h-60h	Channel 0 Base Address/Enable	0000h	0000h	Disabled	RW
63h–62h	Channel 1Base Address/Enable	0000h	0000h	Disabled	RW
65h–64h	Channel 2 Base Address/Enable	0000h	0000h	Disabled	RW
67h–66h	Channel 3 Base Address/Enable	0000h	0000h	Disabled	RW
69h–68h	Reserved	0000h	0000h	Disabled	-
6Bh–6Ah	Channel 5 Base Address/Enable	0000h	0000h	Disabled	RW
6Dh–6Ch	Channel 6 Base Address/Enable	0000h	0000h	Disabled	RW
6Fh–6Eh	Channel 7 Base Address/Enable	0000h	0000h	Disabled	RW
70h–FFh	Reserved	00h	00h		-

6.3 PCI Function 1 Registers–IDE Control

Offset	PCI Header	Default	Access
01h-00h	Vendor ID	1106h	RO
03h–02h	Device ID	0571h	RO
05h–04h	Command	0080h	RW
07h–06h	Status	0280h	RW
08h	Revision ID (00h = first silicon)		RO
09h	Program Interface	8Ah	RW
0Ah	Sub Class Code	01h	RO
0Bh	Base Class Code	01h	RO
0Ch	Reserved (Cache Line Size)	00h	-
0Dh	Latency Timer	20h	RW
0Eh	Header Type	00h	RO
0Fh	Built-In Self Test (BIST)	00h	RO
13h–10h	Base Address–Primary Data/Command	0000_01F0h	RW
17h-14h	Base Address–Primary Control/Status	0000_03F4h	RW
1Bh-18h	Base Address-Secondary Data/Command	0000_0170h	RW
1Fh-1Ch	Base Address-Secondary Control/Status	0000_0374h	RW
23h-20h	Base Address–Bus Master Control	0000C_C01h	RW
24h–2Fh	Reserved (unassigned)	00h	
30h-33h	Reserved (expansion ROM base address)	00h	-
34h-3Ch	Reserved (unassigned)	00h	-
3Ch	Interrupt Lines	0Eh	RW
3Dh	Interrupt Pin	00h	RO
3Eh	Minimum Grant	00h	RO
3Fh	Maximum Latency	00h	RO

Table 6-14. Configuration Space IDE Header Registers

Offset	Register	Default		Recommended	Access
			Setting	Result	
40h	Chip Enable	04h	0Bh	Enable pri and sec channel	RW
41h	IDE Configuration	02h	E2h	Enable pri and sec read prefetch buffer	RW
				Enable pri post write buffer	
42h	Reserved (do not program)	09h	09h		RW
43h	FIFO Configuration	3Ah	3Ah	Allocate 8 word buffers in both pri and sec channel	RW
				Set threshold to 1/2	
44h	Miscellaneous Control 1	68h	68h	Master Read/Write cycle IRDY 1 wait state	RW
				FIFO output data 12 clock advance	
45h	Miscellaneous Control 2	00h	00h	No channel interrupts swap	RW
46h	Miscellaneous Control 3	C0h	C0h	Pri and Sec Ch Read DMA FIFO flush enabled	RW
				No limit in DRDY pulse width	
4Bh-48h	Drive Timing Control	A8A8A8A8h	A8A8A8A8h	DIOR and DIOW pulse width set to 11 PCI clocks	RW
				Recovery time set to 9 clocks	
4Ch	Address Setup Time	FFh	FFh	Address setup time 4T	RW
4Dh	Reserved (do not program)	00h	00h		RW
4Eh	Sec Non-1F0h Port Access Timing	FFh	FFh	Sec non-1F0 port access, DIOR and DIOW pulse width set to 17 PCI clocks	RW
4Fh	Pri Non-1F0h Port Access Timing	FFh	FFh	Pri non-1F0 port access, DIOR and DIOW pulse width set to 17 PCI clocks	RW
53h-50h	UltraDMA33 Extd Timing Control	03030303h	03030303h	Pri and sec Drive 0 and 1Mode enabled by Set Feature command	RW
				Disabled UltraDMA33-mode	
57h-54h	Reserved	00h	00h		
5Fh-58h	Reserved	A8A8A8A8h	A8A8A8A8h		_
61h–60h	Primary Sector Size	0200h	0200h	200h bytes per sector	RW
67h–62h	Reserved	00h	00h	Maria di Contra di Co	
69h68h	Secondary Sector Size	0200h	0200	200h bytes per sector	RW
6Ah–FFh	Reserved	00h	00		-

Table 6-15. Configuration Space IDE Registers

Offset	Register Name	Default	Access
00h	Primary Channel Command	00h	RW
01h	Reserved	00h	-
02h	Primary Channel Status	00h	RWC
03h	Reserved	00h	-
07h–04h	Primary Channel PRD Table Address	00h	RW
08h	Secondary Channel Command	00h	RW
09h	Reserved	00h	-
0Ah	Secondary Channel Status	00h	RWC
0Bh	Reserved	00h	-
0Fh–0Ch	Secondary Channel PRD Table Address	00h	RW

 Table 6-16.
 IDE Controller I/O Registers

6.4 PCI Function 2 Registers–USB Controller

Offset	PCI Header	Default	Access
01h-00h	Vendor ID	1106h	RO
03h–02h	Device ID	3038h	RO
05h–04h	Command	0000h	RW
07h–06h	Status	0200h	RWC
08h	Revision ID (00h = first silicon)	-	RO
09h	Program Interface	00h	RO
0Ah	Sub Class Code	03h	RO
0Bh	Base Class Code	0Ch	RO
0Ch	Reserved (Cache Line Size)	00h	RO
0Dh	Latency Timer	16h	RW
0Eh	Header Type	00h	RO
0Fh	Built-In Self Test (BIST)	00h	RO
10h-1Fh	Reserved	00h	-
23h–20h	Base Address	0000301h	RW
24h–3Bh	Reserved	00h	-
3Ch	Interrupt Line	00h	RW
3Dh	Interrupt Pin	04h	RW
3Eh–3Fh	Reserved	00h	-

Table 6-17. Configuration Space USB Header Registers

Offset	Register	Default		Recommended	Access
			Setting	Result	
40h	Miscellaneous Control 1	00h	00h	Support MRL, MRM, MWI ISB Data length 1280 Disable USB power management DMA 16 DW burst access PCI zero wait state	RW
41h	Miscellaneous Control 1	00h	00h	Always set trap 60/64 status bit A20GATE pass through	RW
42h–43h	Reserved	00h	00h		RO
44h-46h	Reserved (do not program)	00C2h	00C2h		RW
47h	Reserved	0Ch	0Ch		
48h–5Fh	Reserved	00h	00h		
60h	Serial Bus Release Number	10h	10h	Always read 10h	RO
61h–BFh	Reserved	00h	00h		
C1h-C0h	Legacy Support	2000h	2000h	Always read 2000h	RO
C2h-FFh	Reserved	00h	00h		

Table 6-18. Configuration Space USB Registers

Table 6-19.	USB Controller I/O Reg	isters
-------------	------------------------	--------

Offset	Register Name	Default	Access
01h00h	USB Command	0000h	RW
03h–02h	USB Status	0000h	RWC
05h–04h	USB Interrupt Enable	0000h	RW
07h–06h	Frame Number	0000h	RW
0Bh-08h	Frame List Base Address	0000000h	RW
0Ch	Start of Frame Modify	40h	RW
11h-10h	Port 1 Status/Control	0080h	RWC
13h–12h	Port 2 Status/control	0080h	RWC

6.5 PCI Function 3 Registers–Power Management

6.5.1 **Power Management Configuration Space Registers**

Offset	PCI Header	Default	Access
01h-00h	Vendor ID	1106h	RO
03h-02h	Device ID	3040h	RO
05h–04h	Command	0000h	RW
07h-06h	Status	0280h	RWC
08h	Revision ID (00h = first silicon)	-	RO
09h	Program Interface	00h	RO
0Ah	Sub Class Code	00h	RO
0Bh	Base Class Code	00h	RO
0Ch	Reserved	00h	RO
0Dh	Latency Timer	16h	RW
0Eh	Header Type	00h	RO
0Fh	Built-In Self Test (BIST)	00h	RO
10h-1Fh	Reserved	00h	-
23h–20h	I/O Register Base Address	0000001h	RW
24h–3Fh	Reserved	00h	-

 Table 6-20.
 Configuration Space Power Management Header Registers

Offset	Register	Default	Recommended						
			Setting	Result					
40h	Pin Configuration	C0h	C0h	Define pin 136 as GPIO4 Define pin 92 as GPIO4	RW				
41h	General Configuration	00h	00h	Disable PWRBTN debounce Disable ACPI timer reset ACPI 24-bit timer count 32us clock throttling	RW				
42h	SCI Interrupt Configuration	00h	00h	Disable SCI interrupt	RW				
43h	Reserved	00h	00h		RW				
45h–44h	Primary Interrupt Channel	0000h	0000h	Disable pri interrupt channel	RW				
47h–46h	Secondary Interrupt Channel	0000h	0000h	Disable sec interrupt channel	RW				
53h–50h	GP Timer Control	00000000h	00000000h	Disable conserve mode Disable sec event time Disable GP1 timer Disable GP0 timer	RW				
54h–60h	Reserved	00h	00h						
61h	Programming Interface Read Value	00h	00h	Value to be returned by register at offset 09h	WO				
62h	Sub Class Read Value	00h	00h	Value to be returned by register at offset 0Ah	WO				
63h	Base Class Read Value	00h	00h	Value to be returned by register at offset 0Bh	WO				
64h–FFh	Reserved	00h	00h		-				

Table 6-21. Configuration Space Power Management Registers

6.5.2 Power Management I/O Space Registers

Offset	Register Name	Default	Access
01h-00h	Power Management Status	00h	RWC
03h-02h	Power Management Enable	00h	RW
05h–04h	Power Management Control	00h	RW
0Bh-08h	Power Management Timer	00h	RW

Table 6-22.	Basic Power	Management	Control/Status	Registers
-------------	-------------	------------	-----------------------	-----------

Offset	Register Name	Default	Access
13h–10h	Processor Control	0000h	RW
14h	Processor Level 2	00h	RO
15h	Processor Level 3	00h	RO

Table 6-23. Processor Power Management Registers

Offset	Register Name	Default	Access
21h–20h	General Purpose Status	00h	RWC
23h–22h	General Purpose SCI Enable	00h	RW
25h–24h	General Purpose SMI Enable	00h	RW
27h–26h	Power Supply Control	00h	RW

Table 6-25. Generic Power Management Registers

Offset	Register Name	Default	Access
29h–28h	Global Status	00h	RWC
2Bh–2Ah	Global Enable	00h	RW
2Dh–2Ch	Global Control	00h	RW
2Fh	SMI Command	00h	RW
33h–30h	Primary Activity Detect Status	00h	RWC
37h–34h	Primary Activity Detect Enable	00h	RW
3Bh-38h	GP Timer Reload Enable	00h	RW

Table 6-26. General Purpose I/O

Offset	Register Name	Default	Access
40h	GPIO Direction Control	00h	RW
42h	GPIO Port Output Value	00	RW
44h	GPIO Port Input Value	input	RO
47h–46h	GPO Port Output Value	0000	RW
49h–48h	GPI Port Input Value	input	RO

7 **Registers**

This section summarizes the AMD-645 Peripheral Bus Controller configuration and I/O registers. Where applicable, they also document the power-on default value and access type for each register.

Access type definitions are as follows:

- RW (Read/Write)
- RO (Read Only)
- WO (Write Only)
- "—" Reserved
- RWC (Read, Write 1's to Clear individual bits)

Registers indicated as RW may have some read-only bits that always read back a fixed value (usually 0 if unused). Registers designated as RWC may have some read-only or read-write bits (see individual register descriptions for details).

7.1 PCI Mechanism #1

The AMD-645 Peripheral Bus Controller uses PCI configuration mechanism #1 to convey and receive configuration data to and from the host processor. This mechanism, described in *PCI Local Bus Specification Revision 2.1*, employs I/O locations 0CF8h to 0CFBh to specify the target address and locations 0CFCh to 0CFFh for data to the target address. The target address includes the specific PCI bus, device, function number, and register number within a PCI device.

Configuration Address Ports 0CFBh-0CF8h

31	bit 30	-	bit 24	bit 23	-	bit 16	bit 15	-	bit 11	10	-	8	bit 7	-	bit 2	1	0
En	En Reserved				Device Number			Function #			Register Number			0	0		
	I/O Address OCFBh			1/0	O Address OCFA	h	ļ	/0 A	ddress C	CF9h	1		I/	O Addre	ess OCF8	h	

Configuration Address is a read-write port that responds only to doubleword accesses. Byte or word accesses are passed on unchanged.

AMD-645 Peripheral Bus Controller Data Sheet

21095A/0-March 1997

Bit 31 Configuration Space Enable

1 = The targeted PCI device responds. 0 = The I/O access is passed on unchanged.

- **Bits 30–24 Reserved** (always reads 0)
- **Bits 23–16 PCI Bus Number -** These bits are used to choose a specific system PCI bus.
- **Bits 15–11 Device Number -** These bits are used to choose a specific system device.
- **Bits 10-8** Function Number These bits are used to choose the number of a specific function space in memory.
- **Bits 7-2 Register Number -** These bits are used to specify the offset number of a register within the chosen function space. The register number is a doubleword which, in conjunction with the PCI byte enable lines C/BE3-C/BE0, specifies the configuration register offset number.
- **Bits 1–0** Fixed (always reads 0)

Configuration Data Ports 0CFCh-0CFFh

_	-	-		_		_		_		_	_			_					_	_		_							_		
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															xxxx	xxxB															

Configuration Data is a read-write port that responds only to doubleword accesses. Byte or word accesses will be passed on unchanged.

7.2 Legacy I/O Registers

This group of I/O registers includes keyboard and mouse control, DMA controllers, interrupt controllers, and timer/ counters, as well as a number of miscellaneous ports originally implemented using discrete logic on the original PC/AT. These registers are implemented in a precise manner for backwards compatibility with previous generations of PC hardware.

These registers are listed for reference only. Detailed descriptions of the actions and programming of these registers are included in other industry publications. All of the registers reside in I/O space. They are grouped according to their AMD-645 Peripheral Bus Controller functions. The I/O port address and access type are given for each register. - -

AMD-645 Peripheral Bus Controller Data Sheet

7.2.1 Keyboard Controller Registers

The keyboard controller handles the keyboard and mouse interfaces using port 60h and port 64h. Reads from port 64h return a status byte. Writes to port 64h are command codes. Data is transferred via port 60h.

Keyboar	d/Mouse S	Status	Port 64h					RO					
	Bit 7	6	5	4	3	2	1	Bit 0					
Bit Name	PE	GRT	MOB	KS	CD	SF	IB	КОВ					
Reset	0	0	0	0	0	0	0	0					
Bit 7	Parity Er	ror											
	-	•	or occurred		•		m keybo	ard/mouse					
	0 = No p	arity ei	rror (odd pa	rity recei	ved = defa	ault)							
Bit 6	General I	Receive/	Transmit Time	eout									
	1 = Erro	-											
	0 = No e	rror (de	efault)										
Bit 5	Mouse O	-											
		-	ut buffer fu										
		-	ut buffer en	npty (defa	ault)								
Bit 4	Keylock												
	1 = Free		• • •										
	0 = Lock		ault)										
Bit 3	Comman												
			vas comman		14.)								
-			vas data wri	te (defau	lt)								
Bit 2	System F		c]										
			ccessful										
D!4 -	0 = Powe		ielault)										
Bit 1	input But		1	C									
	•		nput buffer		foult)								
Dil o	-		nput buffer	empty (de	erault)								
Bit O		-	Buffer Full	c 11									
	1 = Keyboard output buffer full 0 = Keyboard output buffer empty (default)												
	0 = reyt	Joard O	utput buffei	empty (uerault)								

AMD-645 Peripheral Bus Controller Data Sheet

Keyboard	/Mouse C	ommand	Port 64	lh				WO
[Bit 7	6	5	4	3	2	1	Bit 0
Bit Name			Value of Sp	ecific Keyboard	Command (See	Table 10-1)		
Reset	0	0	0	0	0	0	0	0

Port 64h—Keyboard/Mouse Command—is a write-only I/O register. This register, when written, is used to send commands to the keyboard/mouse controller. Keyboard/mouse command codes recognized by the AMD-645 Peripheral Bus Controller are listed in Table 7-1.

Note that the keyboard controller is compatible with industry-standard 82C42 keyboard controllers except that, because of its integration into a larger chip, many of the I/O port pins are not available for external use as general-purpose I/O pins, even if P13–P16 are set during power-up as strapping options. That is, many of the commands that follow are provided and work, but otherwise perform no useful function (e.g., commands that set P12–P17 high or low). Also note that setting P10–11, P22–23, P26–27, and T0–1 High or Low serve no useful purpose because these bits are used to implement the keyboard and mouse ports and are directly controlled by keyboard controller logic.

Command Code	Keyboard Command Code Description
20h	Read Control Byte (next byte is Control Byte)
60h	Write Control Byte (next byte is Control Byte)
9xh	Write low nibble (bits 0–3) to input ports P10–P13
A1h	Output Keyboard Controller Version #
A4h	Test if password is installed (returns F1h to indicate 'not installed')
A7h	Disable Mouse Interface
A8h	Enable Mouse Interface
	Mouse Interface Test (results in port 60h)
A9h	0 = OK, $1 = Clock$ stuck Low, $2 = Clock$ stuck High, $3 = Data$ stuck Low, $4 = Data$ stuck High, FF = General error
AAh	KBC Self Test (55h = OK, FCh = Not OK)
ADI	Keyboard Interface Test (results in port 60h)
ABh	0 = OK, $1 = Clock$ stuck Low, $2 = Clock$ stuck High, $3 = Data$ stuck Low, $4 = Data$ stuck High, FF = General error
ADh	Disable Keyboard Interface
AEh	Enable Keyboard Interface
AFh	Return Version #
C0h	Read Input Port (read ports P10–P17 input data to the output buffer)
C1h	Poll Input Port Low (read input data on input ports P11–P13 repeatedly and put results in bits 5–7 of status register)

Table 7-1.	Keyboard	Controller	Command	Codes
------------	----------	------------	---------	-------

AMD

AMD-645 Peripheral Bus Controller Data Sheet

Command Code	Keyboard Command Code Description
C2h	Poll Input Port High (read input data on input ports P15–P17 repeatedly and put results in bits 5–7 of status register)
C8h	Unblock P22–P23 (use before command D1 to change the active mode)
C9h	Reblock P22–P23 (protection mechanism for D1 command)
CAh	Read Mode (output KBC mode info to port 60 output buffer)
CAN	bit $0 = 0 = ISA$, bit $0 = 1 = PS/2$
D0h	Read Output Port (copy P10-P17 output values to port 60h)
D1h	Write Output Port (data byte following is written to keyboard output port as if it came from the keyboard)
D2h	Write Keyboard Output Buffer & clear status bit 5 (write following byte to keyboard)
D3h	Write Mouse Output Buffer & set status bit 5 (write the following byte to the mouse, and put the value in mouse input buffer so it appears to have come from the mouse)
D4h	Write Mouse (write the following byte to the mouse)
E0h	Read Test Inputs (T0–T1 read to bits 0–1 of respective byte)
Exh	Set input ports P23–P21 per command bits 3–1
Fxh	Pulse input ports P23–P20 low for 6 µsec per command bits 3–0
Note: Codes not listed ar	e undefined or their functions are eliminated by direct control of the keyboard controller logic.

Table 7-1. Keyboard Controller Command Codes (continued)

KBC Control Register Port 60h or 64h

RW

	Bit 7	6	5	4	3	2	1	Bit 0
Bit Name	Reserved	PCC	MD	KD	KLD	Flag	MIE	KIE
Reset	0	1	0	0	0	0	0	0

This register is accessible by writing commands 20h/60h to the command port (64h). The control byte is written by first sending a value of 60h to the command port, then sending the control byte value to 64h. The control register can be read by sending a command of 20h to port 64h, waiting for an "Output Buffer Full" status reading on bit 5 or bit 0 of 64h, then reading the control byte value from port 60h.

Bit 7 Reserved (always reads 0)

Bit 6 PC Compatibility

- 1 = Convert scan codes to PC format. Convert 2-byte break sequences to 1byte PC-compatible break codes (default)
- 0 = Disable scan conversion

Bit 5 Mouse Disable

- 1 = Disable mouse interface
- 0 = Enable mouse interface (default)

Bit 4 Keyboard Disable

- 1 = Disable keyboard interface
- 0 = Enable keyboard interface (default)

AMD-645 Peripheral Bus Controller Data Sheet

Bit 3 Keyboard Lock Disable

1 = Disable keyboard inhibit function

- 0 = Enable keyboard inhibit function (default)
- **Bit 2** System Flag (This bit can be read back as [Status Register] port 64h bit 2)

Bit 1 Mouse Interrupt Enable

- 1 = Generate interrupt on IRQ12 when mouse output buffer has been written
- 0 = Disable mouse interrupts (default)

Bit 0 Keyboard Interrupt Enable

- 1 = Generate interrupt on IRQ1 when keyboard output buffer has been written
- 0 = Keyboard output buffer empty (default)

Traditional Keyboard Controllers

Traditional (non-integrated) keyboard controllers have an input port and an output port with specific pins dedicated to certain functions and other pins available for general purpose I/O. Specific commands are provided to set these pins High and Low. All outputs are open-collector to allow the pins to function as inputs. The output value for that pin is set High (nondriving), and the desired input value is read on the input port. These ports are defined as shown in Table 7-2.

Bit	Input Port	LoCode	HiCode
0	P10 - Keyboard Data In	BO	B8
1	P11 - Mouse Data In	B1	B9
2	P12 - Turbo Pin (PS/2 mode only)	B2	BA
3	P13 - user defined	B3	BB
4	P14 - user defined	B6	BE
5	P15 - user defined	B7	BF
6	P16 - user defined	-	-
7	P17 - undefined	-	-
Bit	Output Port	LoCode	HiCode
0	P20 - SYSRST (1 = execute reset)	-	
1	P21 - GATEA20 (1 = A20 enabled)	-	
2	P22 - Mouse data out	B4	BC
3	P23 - Mouse clock out	B5	BD
4	P24 - Keyboard OBF Interrupt (IRQ1)	-	-
5	P25 - Mouse OBF Interrupt (IRQ12)	-	-
6	P26 - Keyboard clock out	-	-
7	P27 - Keyboard data out	-	-
Bit	Test Port	LoCode	HiCode
0	T0 - Keyboard Clock In	-	-
1	T1 - Mouse Clock In	-	-

Table 7-2. Traditional Port Pin Definition

21095A/0-March 1997

AMD-645 Peripheral Bus Controller Data Sheet

Keyboard	Controlle	er Input B	Buffer	Port 60h				WO
	Bit 7	6	5	4	3	2	1	Bit 0
Bit Name				Input E	Buffer			
Reset	0	0	0	0	0	0	0	0

This register should only be written when port 64h, bit 1 is 0. A value of 1 indicates that the input buffer is full.

Keyboard	Controlle	er Output	t Buffer	Port 60h				RO
	Bit 7	6	5	4	3	2	1	Bit 0
Bit Name				Outpu	t Buffer			
Reset	0	0	0	0	0	0	0	0

This register should only be read when port 64h, bit 0 is 1. A value of 0 indicates that the output buffer is empty.

7.2.2 DMA Controller I/O Registers

Master DMA Controller Ports 00h-0Fh

Channels 0–3 of the master DMA controller control system DMA channels 0–3. There are 16 master DMA controller registers, as shown in Table 7-3.

I/O Address Bits 15-0	Register Name	
0000 0000 000x 0000	Ch 0 Base/Current Address	RW
0000 0000 000x 0001	Ch 0 Base/Current Count	RW
0000 0000 000x 0010	Ch 1 Base/Current Address	RW
0000 0000 000x 0011	Ch 1 Base/Current Count	RW
0000 0000 000x 0100	Ch 2 Base/Current Address	RW
0000 0000 000x 0101	Ch 2 Base/Current Count	RW
0000 0000 000x 0110	Ch 3 Base/Current Address	RW
0000 0000 000x 0111	Ch 3 Base/Current Count	RW
0000 0000 000x 1000	Status/Command	RW
0000 0000 000x 1001	Write Request	WO
0000 0000 000x 1010	Write Single Mask	WO
0000 0000 000x 1011	Write Mode	WO
0000 0000 000x 1100	Clear Byte Pointer F/F	WO
0000 0000 000x 1101	Master Clear	WO
0000 0000 000x 1110	Clear Mask	WO
0000 0000 000x 1111	R/W All Mask Bits	RW
Note:		
Not all address bits are decoded.		

Table 7-3. Ports 00h–0Fh Master DMA Controller

Slave DMA Controller Ports C0h–DFh

Channels 0–3 of the slave DMA controller control system DMA channels 0–3. There are 16 slave DMA controller registers, as shown in Table 7-4.

21095A/0-March 1997

4D.A

I/O Address Bits 15-0	Register Name	
0000 0000 1100 000x	Ch 0 Base/Current Address	RW
0000 0000 1100 001x	Ch 0 Base/Current Count	RW
0000 0000 1100 010x	Ch 1 Base/Current Address	RW
0000 0000 1100 011x	Ch 1 Base/Current Count	RW
0000 0000 1100 100x	Ch 2 Base/Current Address	RW
0000 0000 1100 101x	Ch 2 Base/Current Count	RW
0000 0000 1100 110x	Ch 3 Base/Current Address	RW
0000 0000 1100 111x	Ch 3 Base/Current Count	RW
0000 0000 1101 000x	Status/Command	RW
0000 0000 1101 001x	Write Request	WO
0000 0000 1101 010x	Write Single Mask	WO
0000 0000 1101 011x	Write Mode	WO
0000 0000 1101 100x	Clear Byte Pointer F/F	WO
0000 0000 1101 101x	Master Clear	WO
0000 0000 1101 110x	Clear Mask	WO
0000 0000 1101 111x	R/W All Mask Bits	RW
Note:		
Not all address bits are decoded.		

Table 7-4. Ports C0h–DFh Slave DMA Controller

DMA Page Registers Ports 80h-8Fh

There are eight DMA page registers, one for each DMA channel. These registers provide bits 16–23 of the 24-bit address for each DMA channel. Bits 0–15 are stored in registers in the master and slave DMA controllers. The DMA Page Registers are located at the I/O port addresses shown in Table 7-5.

Table 7-5. Ports 80n-8Fn	DMA Page Registers	
I/O Address Bits 15–0	Register Name	
0000 0000 1000 0111	Ch 0 DMA Page (M–0)	RW
0000 0000 1000 0011	Ch 1 DMA Page (M–1)	RW
0000 0000 1000 0001	Ch 2 DMA Page (M–2)	RW
0000 0000 1000 0010	Ch 3 DMA Page (M–3)	RW
0000 0000 1000 1111	Ch 4 DMA Page (M–4)	RW
0000 0000 1000 1011	Ch 5 DMA Page (M–5)	RW
0000 0000 1000 1001	Ch 6 DMA Page (M–6)	RW
0000 0000 1000 1010	Ch 7 DMA Page (M–7)	RW

Table 7-5.	Ports 80h-8Fh	DMA Ρασ	e Registers
Table 7-J.		υπιλ Γαχ	e negisters

7.2.3 Interrupt Controller Registers

Master Interrupt Controller Ports 20h-21h

The Master Interrupt Controller controls system interrupt channels 0–7. The two registers are shown in Table 7-6.

	Table 7-6.	Ports 20h–21h Master Interrupt Controller Register	rs
--	------------	--	----

I/O Address Bits 15-0	Register Name	
0000 0000 001x xxx0	Master Interrupt Control	RW
0000 0000 001x xxx1	Master Interrupt Mask	RW
Note:		
Not all address bits are decoded.		

Slave Interrupt Controller Ports A0h–A1h

The Slave Interrupt Controller controls system interrupt channels 8–15. The slave system interrupt controller also occupies two register locations, as shown in Table 7-7.

I/O Address Bits 15–0	Register Name	
0000 0000 101x xxx0	Slave Interrupt Control	RW
0000 0000 101x xxx1	Slave Interrupt Mask	RW
Note:		
Not all address bits are decoded.		

7.2.4 Interrupt Controller Shadow Registers

The following shadow registers are enabled by setting bit 4 of offset 47h to 1. If the shadow registers are enabled, they are read back at the indicated I/O ports instead of the standard interrupt controller registers. Writes to the standard ports are directed to the standard interrupt controller registers.

master n	nterrupt C			ort 20h				R
	Bit 7	6	5	4	3	2	1	Bit 0
Bit Name		Reserved		OCW3-5	OCW2-7	ICW4-4	ICW4-1	ICW1-3
Reset	0	0	0			xxxxxB		
its 7–5	Reserved	l (always 1	reads 0)					
Sit 4	OCW3 bi	t 5						
Bit 3	OCW2 bi	t 7						
Bit 2	ICW4 bit	4						
Bit 1	ICW4 bit	1						
Bit O	ICW1 bit	3						
Master Ir	nterrupt N	Aask Shad	low Por	t 21h				R
	Bit 7	6	5	4	3	2	1	Bit 0
Bit Name		Reserved			T7–T3 of th	ne Interrupt Vec	tor Address	
Reset	0	0	0	xВ	xВ	xВ	xВ	xВ
Bits 4-0	Reserved T7-T3 of	l (always 1 the Interru	pt Vector					_
Sits 4–0 Silave Inte Bit Name Reset	Reserved T7–T3 of errupt Cor Bit 7	(always n the Interna ntrol Shac 6 Reserved 0	opt Vector A dow Por 5	Address rt AOh 4 OCW3-5 xB	3 OCW2-7 xB	2 ICW4–4 xB	1 ICW4–1 xB	Bit 0 ICW1-3 xB
Bits 4–0 Bilave Inte Bit Name Reset Bits 7–5	Reserved T7–T3 of errupt Cor Bit 7	I (always n the Internu ntrol Shad 6 Reserved 0 I (always n	opt Vector A dow Por 5	r t A0h 4 OCW3-5	OCW2-7	ICW4-4	ICW4-1	Bit 0 ICW1-3
Bits 4–0 Bits 4–0 Bit Name Reset Bits 7–5 Bit 4	Reserved T7-T3 of errupt Con Bit 7 0 Reserved	l (always n the Internu ntrol Shad 6 Reserved 0 l (always n t 5	opt Vector A dow Por 5	r t A0h 4 OCW3-5	OCW2-7	ICW4-4	ICW4-1	Bit 0 ICW1-3
Bits 4–0 Bit Name Reset Bits 7–5 Bit 4 Bit 3	Reserved T7-T3 of errupt Con Bit 7 0 Reserved OCW3 bi	l (always n the Interna ntrol Shad 6 Reserved 0 l (always n t 5 t 7	opt Vector A dow Por 5	r t A0h 4 OCW3-5	OCW2-7	ICW4-4	ICW4-1	Bit 0 ICW1-3
Bits 4–0 Slave Into Bit Name Reset Bits 7–5 Bit 4 Bit 3 Bit 2	Reserved T7-T3 of errupt Co Bit 7 0 Reserved OCW3 bi OCW2 bi	I (always n the Internu ntrol Shad 6 Reserved 0 I (always n t 5 t 7 4	opt Vector A dow Por 5	r t A0h 4 OCW3-5	OCW2-7	ICW4-4	ICW4-1	Bit 0 ICW1-3
Bits 4–0 Bits 4–0 Bit Name Reset Bits 7–5 Bit 4 Bit 3 Bit 2 Bit 1	Reserved T7-T3 of Bit 7 Bit 7 0 Reserved OCW3 bi OCW2 bi ICW4 bit	l (always n the Internu ntrol Shad 6 Reserved 0 l (always n t 5 t 7 4 1	opt Vector A dow Por 5	r t A0h 4 OCW3-5	OCW2-7	ICW4-4	ICW4-1	Bit 0 ICW1-3
Bits 4–0 Slave Into Bit Name Reset Bits 7–5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0	Reserved T7-T3 of errupt Cor Bit 7 0 Reserved OCW3 bi OCW2 bi ICW4 bit ICW4 bit ICW1 bit	l (always n the Internu ntrol Shad 6 Reserved 0 l (always n t 5 t 7 4 1	o treads 0)	4 OCW3-5 xB	OCW2-7	ICW4-4	ICW4-1	Bit 0 ICW1–3 xB
Bits 4–0 Slave Into Bit Name Reset Bits 7–5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0	Reserved T7-T3 of errupt Cor Bit 7 0 Reserved OCW3 bi OCW2 bi ICW4 bit ICW4 bit ICW1 bit	(always n the intern ntrol Shad 6 Reserved 0 (always n t 5 t 7 4 1 3	o treads 0)	4 OCW3-5 xB	OCW2-7	ICW4-4	ICW4-1	Bit 0 ICW1–3 xB
Bits 4–0 Bit Name Reset Bits 7–5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0	Reserved T7-T3 of errupt Cor Bit 7 0 Reserved OCW3 bi OCW2 bi ICW4 bit ICW4 bit ICW1 bit	l (always n the Internu ntrol Shad 6 Reserved 0 l (always n t 5 t 7 4 1 3 sk Shado	upt Vector A dow Pol 5 0 reads 0)	4 OCW3-5 xB	OCW2-7 xB	ICW4–4 xB	ICW4-1 xB	Bit 0 ICW1-3 xB
Bit Name Reset Bits 7–5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Slave Inte	Reserved T7-T3 of errupt Cor Bit 7 0 Reserved OCW3 bi OCW2 bi ICW4 bit ICW4 bit ICW1 bit	l (always n the Interna ntrol Shad 6 Reserved 0 l (always n t 5 t 7 4 1 3 sk Shado 6	upt Vector A dow Pol 5 0 reads 0)	4 OCW3-5 xB	OCW2-7 xB	ICW4-4 xB 2	ICW4-1 xB	ICW1-3 xB
Bits 4–0 Slave Into Bit Name Reset Bits 7–5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Slave Into Bit Name	Reserved T7-T3 of errupt Cor Bit 7 0 Reserved OCW3 bi OCW3 bi ICW4 bit ICW4 bit ICW4 bit ICW1 bit errupt Ma Bit 7	(always i the internation of Reserved 0 (always i t 5 t 7 4 1 3 sk Shado 6 Reserved	v Port A	4 OCW3-5 xB	OCW2-7 xB	ICW4-4 xB 2 ne Interrupt Vec	ICW4-1 xB	Bit 0 ICW1-3 xB

21095A/0—March 1997

7-11

7.2.5 Timer/Counter Registers

Timer/Counter Registers Ports 40h-43h

There are four timer/counter registers, as shown in Table 7-8.

I/O Address Bits 15–0	Register Name	•
0000 0000 010x xx00	Timer/Counter 0 Count	RW
0000 0000 010x xx01	Timer/Counter 1 Count	RW
0000 0000 010x xx10	Timer/Counter 2 Count	RW
0000 0000 010x xx11	Timer/Counter Command Mode	WO

 Table 7-8.
 Ports 40h-43h Timer/Counter Registers

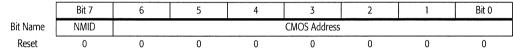
7.2.6 CMOS/RTC Registers

The system real-time clock (RTC) is part of the CMOS block. The RTC control registers are located at specific offsets in the CMOS data area (00h-0Dh and 7Dh-7Fh). Detailed descriptions of CMOS/RTC operation and programming can be obtained from several industry publications. For reference, the definition of the RTC register locations and bits are summarized in Table 7-9.

AMD-645 Peripheral Bus Controller Data Sheet

· · · · · · · · · · · · · · · · · · ·		T	·			
Offset	Description	Binary Range BCD Range				
00h	Seconds	00h-3BH	00h–59h			
01h	Seconds Alarm	00h-3Bh 00h-59l				
02h	Minutes	00h-3BH	00h–59h			
03h	Minutes Alarm	00h-3Bh	00h–59h			
	Hours am 12 hr:	01h-1Ch	01h-12h			
o4h	pm 12 hr:	81h-8Ch	81h–92h			
	24 hr:	00h-17h	00h–23h			
	Hours Alarmam 12 hr:	01h-1Ch	01h-12h			
05h	Hours pm 12 hr:	81h-8Ch	81h–92h			
	Hours 24 hr:	00h–17h	00h–23h			
06h	Day of the WeekSunday = 1:	01h-07h	01h-07h			
07h	Day of the Month	01h-1Fh	01h-31h			
08h	Month	01h-0Ch	01h-12h			
09h	Year	00h-63h	00h-99h			
·····	Bit 7	Update in progre				
0Ah	Bits 6–4	Divide (010 = enable oscillator and keep time)				
	Bits 3–0	Rate select for periodic interrupt				
	Bit 7	Inhibit update tra	ansfers			
	Bit 6	Periodic interrupt enable				
	Bit 5	Alarm interrupt enable				
0Bh	Bit 4	Update ended interrupt enable				
UDII	Bit 3	No function				
	Bit 2	Data mode $(0 = BCD, 1 = binary)$				
	Bit 1	Hours format (0	= 12, 1 = 24)			
	Bit O	Daylight saving e				
	Bit 7	Interrupt request	flag			
	Bit 6	Periodic interrup	t flag			
0Ch	Bit 5	Alarm interrupt f	Alarm interrupt flag			
	Bit 4	Update ended fla	ng			
	Bits 3–0	Unused (always				
	Bit 7	VRT (= 1 if VBAT				
0Dh	Bits 6-0	Unused (always	reads 0)			
0Eh–7Ch	Software-defined store	age registers (111	bytes)			
7Dh	Date alarm	01h-0Fh	01h-31h			
7Eh	Month alarm	01h-0Ch	01h-12h			
7Fh	Century Field	13h-14h	19h–20h			
80h-FFh	Software-defined store	age registers (128	bytes)			

Table 7-9. CMOS Register Summary	Table	7-9.	CMOS	Register	Summary	/
--	-------	------	------	----------	---------	---

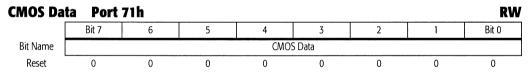

Ports 70h–71h are compatible with PC industry standards and can be used to access the lower 128 bytes of the 256-byte on-

WO

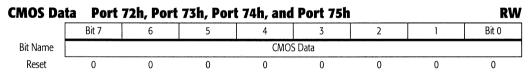
chip CMOS RAM. Ports 72h–73h can be used to access the full extended 256-byte space. These ports can be accessed only if Function 0, offset 5Ah, bit 2 is set to select the internal RTC. If this bit is cleared, accesses to port 70h–71h or 72h–73h will be directed to an external RTC.

Ports 74h–75h can be used to access the full on-chip extended 256-byte space when the on-chip RTC is disabled. These ports can be accessed only if Function 0, offset 5Bh, bit 1 is set to enable the internal RTC SRAM and if offset 48h, bit 3 is cleared to enable access to port 74h–75h.

CMOS Address Port 70h



Bit 7 NMI Disable


1 = Disable NMI Generation (default)

0 = Enable NMI Generation. NMI is asserted on encountering **IOCHCK** on the ISA bus or **SERR** on the PCI bus.

Bits 6-0 CMOS Address (128 bytes)

Bits 7–0 CMOS Data (128 bytes)

7.3 Function 0 Registers (PCI-ISA Bridge)

7.3.1 Function 0 PCI Configuration Space Header

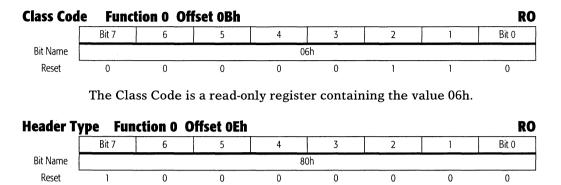
Vend	or ID	F	uncti	on 0	Offse	et 01h	1-00ł	1								RO
1	Bit 15	14	- 13	, 12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
								Ven	dor ID							
Reset	0	0	0	1	0	Ŏ	0	1	0	0	0	0	0	1	1	0
		The	Ven	dor I	D is a	read	-only	regi	ster c	ontai	ining	the v	alue	1106ł	1.	
Devie	e ID	Fu	Inctio	on 0 (Offse	t 03h	-02h									RO
	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
								Dev	ice ID							
Reset	0	0	0	0	0	1 -	0	1	1	0	0	0	0	1	1	0
		The	Dev	ice II) is a	read	only	regis	ter co	ontai	ning (he va	alue (586h	•	
Comi	nand	F	unctio	o n 0	Offse	t 05h	i-04h	1								RW
	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
			-	-		Rese	erved						SCE	BM	MS	IOS
Reset	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
Bits 1 Bit 3	5-4	Spec 1 = 1	erved tial Cy Enabl Disab	cie En led (d	able (Norma		W — s	ee not	e)						
Bit 2		1=1	Maste Enabl Disab	led (d			0)									
Bit 1		1=]	nory S Enabl Disab	led (d	•		O, rea	ds 1 -	- see r	ote)						
Bit 0		1=1	Space Enabl Disab	led (d	-		ids 1 -	- see 1	note)							
		Not	is	revers		it 3 al	bove i	becon	ies ree	ad on	ly (re	ading	e bits g back			

AMD-645 Peripheral Bus Controller Data Sheet

21095A/0-March 1997

Statu	is F	unct	ion 0	Offs	et 07	h-06	h									RWC
	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
	DPE	SSE	SMA	RTA	STA	DEV	/SEL	DPD	FBTB				Reserved	d		
Reset	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Bit 15	5	Dete	cted P	arity	Error	(writ	e 1 to	o clea	r)							
Bit 14	ļ	Signa	alled S	System	e Erro	r (alw	vays r	eads	0)							
Bit 13	Signalled Master Abort (always reads 0)															
Bit 12	2	Received Target Abort (always reads 0 - write 1 to clear)														
Bit 11		Signa	alled 1	arget	Abor	t (alw	ays r	eads	0)							
Bit 10	9 - 9	DEV	SEL Ti	ming (fixed	at 0	1 = m	ediur	n)							
Bit 8		Data	Parit	y Dete	cted (alwa	ys rea	ads 0)							
Bit 7		Fast	Back-	to-Bac	k (alv	ways	reads	s O)								
Bits 6	-0	Rese	rved (alwa	ys rea	ads 0))									
Revis	sion I	DI	Funct	ion 0	Offs	et 08	h									RO
		Bit	7	6		5		4		3		2		1	Bi	t 0
Bit N	ame							Revis	ion num	ber						
Res	set	n		n		n		n		n		n		n		n

The Revision ID is a read-only register containing the revision number.


Program	Interface	Functio	Function 0 Offset 09h									
	Bit 7	6	5	4	3	2	1	Bit 0				
Bit Name				0	0h							
Reset	0	0	0	0	0	0	0	0				

The Program Interface is a read-only register containing the value 00h.

Sub Class	Code	Function 0	Offset 0	Ah				RO
	Bit 7	6	5	4	3	2	1	Bit 0
Bit Name				0	1h			
Reset	0	0	0	0	0	0	0	1

The Sub Class Code is a read-only register containing the value 01h.

AMD-645 Peripheral Bus Controller Data Sheet

The Header Type is a read-only register containing the value 80h.

BIST Fur	nction 0 C	Offset OF	1					RO
	Bit 7	6	5	4	3	2	1	Bit 0
Bit Name				0	Oh			
Reset	0	0	0	0	0	0	0	0

BIST is a read-only register containing the value 00h.

7.3.2 ISA Bus Control

ISA Bus C	Control	Function 0	Offset 4	Oh				RW
	Bit 7	6	5	4	3	2	1	Bit 0
Bit Name	CD	BR	SWS	IOWS	IORT	EALE	RWS	ROMW
Reset	0	0	0	0	0	0	0	0
Bit 7	1 = Extr	mand Delay a delay mal delay (
Bit 6	1 = Ena	d ISA Bus Re ble ible (defau						
Bit 5	$1 = 5 W_{2}$	e Wait State ait states ait states (-					

7-18

Bit 5

Preliminary Information

AMD-645 Peripheral Bus Controller Data Sheet

Bit 4	Chipset I/O Wait States
	1=4 Wait states
	0 = 2 Wait states (default)
Bit 3	I/O Recovery Time
	1 = Enable
	0 = Disable (default)
Bit 2	Extend ALE
	1=Enable
	0 = Disable (default)
Bit 1	ROM Wait States
	1=0 Wait states
	0=1 Wait state (default)
Bit 0	ROM Write
	1=Enable
	0=Disable (default)

SA Test Mode Function 0 Offset 41h

	Bit 7	6	5	4	3	2	1	Bit O
Bit Name	Reserved		P92FR	Reserved	DDMAC		Reserved	
Reset	0	0	0	0	0	0	0	0

Bits 7–6 Reserved (always reads 0)

- Port 92 Fast Reset
 - 1 = Enable

0 = Disable (default)

Bit 4 Reserved (always reads 0)

Bit 3 Double DMA Clock

1 = Enable (DMA clock = ISA clock)

 $0 = Disable (DMA clock = \frac{1}{2}) (default)$

Bits 2–0 Reserved (always reads 0)

ISA Clock Control Function 0 Offset 42h

	Bit 7	6	5	4	3	2	1	Bit 0
Bit Name	LIO16		Reserved		ICSE		ISACS	
Reset	0	0	0	0	0	0	0	0

Bit 7 Latch 1016

1 = Disable

0 = Enable (recommended) (default)

Bits 6–4 Reserved (always reads 0)

1

RW

RW

Bit 3 ISA Bus Clock Select Enable

1 = ISA clock selected per bits 2-0 0 = ISA Clock = PCLK/4 (default)

Bits 2–0 ISA Bus Clock Select (when bit 3 = 1)

000 = PCLK/3 (default) 001 = PCLK/2 010 = PCLK/4 011 = PCLK/6 100 = PCLK/5 101 = PCLK/10 110 = PCLK/12 111 = OSC/2

Note: To switch the ISA Clock, take the following steps:

- 1. Clear bit 3 of this register.
- 2. Change the value of bits 2–0 to reflect the desired clock.
- 3. Set bit 3.

ROM Decode Control Function 0 Offset 43h RW Bit 7 6 5 4 3 2 1 Bit 0 Bit Name RD7 RD6 RD5 RD4 RD3 RD2 RD1 RDO 0 0 0 0 Reset 0 0 0 0

Setting the following bits enables the indicated address range to be included in the ROMCS decode:

Bit 7	FFFE0000h–FFFEFFFFh
	1 = Enable
	0=Disable (default)
Bit 6	FFF80000h-FFFDFFFFh
	1 = Enable
	0=Disable (default)
Bit 5	000E8000h-000EFFFFh
	1 = Enable
	0=Disable (default)
Bit 4	000E0000h-000E7FFFh
	1 = Enable
	0=Disable (default)
Bit 3	000D8000h-000DFFFFh
	1 = Enable
	0=Disable (default)

21095A/0-March 1997

RW

RW

Bit 2	000D0000h-000D7FFFh 1 = Enable 0 = Disable (default)							
Bit 1	000C8000 1 = Enab	h–000CFFF le	Fh					
Bit 0	000C0000 1 = Enab	ole (defau h–000C7FF le ole (defau	Fh					
Keyboard	d Controlle	er Contro	l Funct	ion 0 Offs	et 44h			R
-	Bit 7	6	5	4	3	2	1	Bit 0
Bit Name		Reser	rved		MLE		Reserved	
Reset	0	0	0	0	0	0	0	0
Bits 7–4 Bit 3	Mouse Lo 1 = Enab		·					
Bits 2–0	Reserved							
Type F D	MA Contro	ol Functi	ion 0 Of	fset 45h				R
	Bit 7	6	5	4	3	2	1	Bit O
Bit Name	LB	CH7	CH6	CH5	CH3	CH2	CH1	CH0
Reset	0	0	0	0	0	0	0	0

Setting the following bits enables DMA type F timing on the indicated DMA channels.

Bit 7	ISA Master/DMA to PCI Line Buffer
	1 = Enable
	0=Disable (default)
Bit 6	DMA Type F Timing on Channel 7
	1=Enable
	0=Disable (default)
Bit 5	DMA Type F Timing on Channel 6
	1=Enable
	0=Disable (default)
Bit 4	DMA Type F Timing on Channel 5
	1 = Enable
	0=Disable (default)

1.0

AMD-645 Peripheral Bus Controller Data Sheet

Bit 3	DMA Type F Timing on Channel 3
	1 = Enable
	0 = Disable (default)
Bit 2	DMA Type F Timing on Channel 2 1 = Enable
	0 = Disable (default)
Bit 1	DMA Type F Timing on Channel 1
	1 = Enable
	0=Disable (default)
Bit O	DMA Type F Timing on Channel 0
	1=Enable
	0 = Disable (default)

Miscellaneous Control 1 Function 0 Offset 46h

	Bit 7	6	5	4	3	2	1	Bit 0
Bit Name		Reserved		CC04	Rese	rved	BRI	PMWE
Reset	0	0	0	0	0		0	0

Bits 7–5 Reserved (always reads	0	I)
---------------------------------	---	----

Bit 4	Configure Command Register Offset 05h–04h Access (Test Only)									
	1 = Test Mode: Command register bits 0-1 are RW, Bit 3 is RO									
	0 = Normal Mode: Command register bits 0–1 are RO, Bit 3 is RW									

Bits 3–2 Re	served (always	reads 0)
-------------	-----------------------	----------

Bit 1	PCI	Burst	Read	Interru	ptability
-------	-----	-------	------	---------	-----------

1 = Disallow PCI burst read interrupting

0 = Allow burst reads to be interrupted (default)

Bit 0 Post Memory Write Enable 1 = Enable

0 = Disable (default)

Miscellaneous Control 2 Function 0 Offset 47h

	Bit 7	6	5	4	3	2	1	Bit 0
Bit Name	RS	DTE	PE	ICSRE	Reserved	WDTE	RDTE	PCIRST
Reset	0	0	0	0	0	0	0	0

Bit 7 CPU Reset Source

1 = Use INIT as CPU reset 0 = Use CPURST (default)

Bit 6 PCI DelayTransaction Enable

1 = Enable

0=Disable (default)

RW

RW

Preliminary Information

AMD-645 Peripheral Bus Controller Data Sheet

21095A/0-March 1997

Bit 5	EISA 4D0/4D1 Port EnableRW 1 = Enable (ports 4D0h-4D1h per EISA specification) 0 = Disable (ignore ports 4D0-4D1h) (default)
Bit 4	Interrupt Controller Shadow Register Enable 1 = Enable 0 = Disable (default)
Bit 3	Reserved (always reads 0)
Bit 2	Write Delay Transaction Time-Out Timer Enable 1 = Enable 0 = Disable (default)
Bit 1	Read Delay Transaction Time-Out Timer Enable 1 = Enable 0 = Disable (default)
Bit O	Software PCI Reset—Setting this bit causes a PCI reset by asserting the

PCIRST pin.

Miscellaneous Control 3 Function 0 Offset 48h

RW

	Bit 7	6	5	4	3	2	1	Bit 0			
Bit Name		Res	erved		Ex74/75	IUSBCD	IIDECD	PCIMD			
Reset	0	0	0	0	0	0	0	1			

- **Bits 7–4 Reserved** (always reads 0)
- Bit 3 Extra RTC Port 74/75 Enable 1 = Disable

0=Enable (default)

Bit 2 Integrated USB Controller Disable 1 = Disable

0 = Enable (default)

- Bit 1 Integrated IDE Controller Disable
 - 1 = Disable
 - 0 = Enable (default)

Bit 0 512K PCI Memory Decode

- 1 = Use the contents of bits 15–12 of offset 4Eh plus 512 Kbytes as the top of PCI memory (default)
- 0 = Use the contents of bits 15–12 of offset 4Eh as the top of PCI memory

DE inter	rupt Routi	ng runc		iiset 4An				R
	Bit 7	6	5	4	3	2	1	Bit O
Bit Name	WPGNT	BSIO	Rese	erved	IDE	SCH	IDE	EPCH
Reset	0	0	0	0	0	1	0	0
Bit 7	1 = Enab	PGNT befor le (must b ble (defau	be set)	ISA Master	r/ DMA			
Bit 6	Bus Selec 1 = Acces	t for I/O De ss ports 00	vices belo Dh-FFh v	w 100h via XD bus via SD bus				
Bits 5–4	Reserved	(always re	eads 0)					
3its 3-2	00 = IRQ	15 (defau 10		ng				
3its 1–0		10	•	ing				

ISA DMA/	Master M	emory A	ccess Con	Function 0	RW						
[Bit 7	6	5	4	3	2	1	Bit 0			
Bit Name	Bit Values Correspond to HA23-HA16 (default = 00h)										
Reset	0	0	0	0	0	0	0	0			

The bits in this register correspond to HA23-HA16.

Bits 7–0 PCI Memory Hole Bottom Address

ISA DMA/Master Memory Access Control 2 Function 0 Offset 4Dh											
	Bit 7	6	5	4	3	2	1	Bit 0			
Bit Name	Bit Values Correspond to HA23-HA16 (default = 00h)										
Reset	0	0	0	0	0	0	0	0			

The bits in this register correspond to HA23–HA16.

Bits 7–0 PCI Memory Hole Top Address

Note: Access to the memory defined in the PCI memory hole will not be forwarded to PCI. This function is disabled if the top address is less than or equal to the bottom address.

AMD-645 Peripheral Bus Controller Data Sheet

ISA DIMA/Master Memory					у Асс	ess c	οπτρ	01.5	runc	τιοπ	U UN	set 4	rn-4	EN 👘		
	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit O
Reset	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0

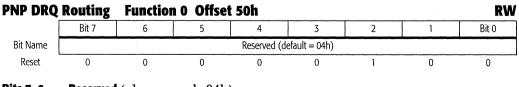
ISA DMA/Master Memory Access Control 3 Function 0 Offset 4Fh-4Eh

ISA DMA/Master Memory Access Control 3 is a RW register.

Bits 15–12 Top of PCI Memory for ISA DMA/Master Accesses

0000 = 1 Mbyte (default)

0001 = 2 Mbytes

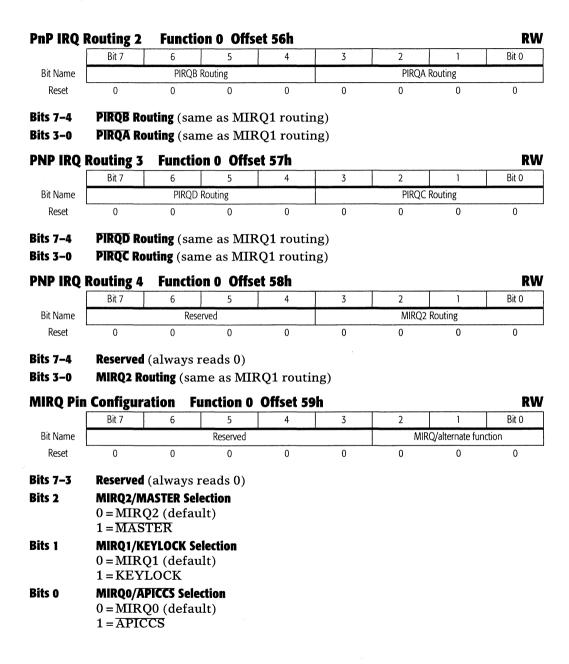

•••

1111 = 16 Mbytes

Note: ISA DMA/masters that access addresses higher than the top of PCI will not be directed to the PCI bus.

- **Bit 11** Forward E0000h–EFFFFh Accesses to PCI (default = 0)
- Bit 10 Forward A0000h–BFFFFh Accesses to PCI (default = 0)
- Bit 9 Forward 80000h–9FFFFh Accesses to PCI (default = 1)
- Bit 8 Forward 00000h-7FFFFh Accesses to PCI (default = 1)
- **Bit 7** Forward DC000h–DFFFFh Accesses to PCI (default = 0)
- Bit 6 Forward D8000h–DBFFFh Accesses to PCI (default = 0)
- Bit 5 Forward D4000h–D7FFFh Accesses to PCI (default = 0)
- Bit 4 Forward D0000h–D3FFFh Accesses to PCI (default = 0)
- Bit 3 Forward CC000h-CFFFFh Accesses to PCI (default = 0)
- Bit 2 Forward C8000h–CBFFFh Accesses to PCI (default = 0)
- Bit 1 Forward C4000h–C7FFFh Accesses to PCI (default = 0)
- Bit 0 Forward C0000h-C3FFFh Accesses to PCI (default = 0)

7.3.3 Plug-N-Play Control Registers



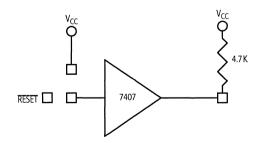
Bits 7–0 Reserved (always reads 04h)

	dge/Level	Select	Function	υ υπset	54n			RV					
[Bit 7	6	5	4	3	2	1	Bit 0					
Bit Name		Rese	rved		PIRQA	PIRQB	PIRQC	PIRQD					
Reset	0	0	0	0	0	0	0	0					
its 7-4	Reserved	(always r	eads 0)										
it 3	1 = Edge		/Non-inver	t (level)									
14 o		l (default	,	4.41									
sit 2	1 = Edge		/Non-inver	t (level)									
		l (default)										
lit 1		•	,	t /lovol)									
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	PIRQC Invert (edge)/Non-invert (level) 1 = Edge												
	0	l (default)										
Bit O		•	/ /Non-inver	t (level)									
	1 = Edge			• ()									
	0 = Level	l (default)										
NP IRQ I	Routing 1	Functio	n 0 Offse	et 55h				RV					
	Bit 7	6	5	4	3 ·	2	1	Bit 0					
Bit Name		MIRQD	Routing			MIRQ0	Routing						
Reset	0	0	0	0	0	0	0	0					
its 7–4	MIRQ1 Ra	uting											
			default)										
	0000 = Disabled (default) 0001 = IRQ1												
	0010 = R												
	0011 = I	RQ3											
	0100 = II												
	0101 = IRQ5												
	0110 = II	RQ6											
	0110 = II 0111 = II	RQ6 RQ7											
	0110 = II 0111 = II 1000 = R	RQ6 RQ7 Leserved											
	0110 = II 0111 = II 1000 = R 1001 = II	RQ6 RQ7 Seserved RQ9											
	0110 = II 0111 = II 1000 = R 1001 = II 1010 = II	RQ6 RQ7 Leserved RQ9 RQ10											
	0110 = II 0111 = II 1000 = R 1001 = II 1010 = II 1011 = II	RQ6 RQ7 Seserved RQ9 RQ10 RQ11											
	0110 = II 0111 = II 1000 = R 1001 = II 1010 = II 1011 = II 1100 = II	RQ6 RQ7 Seserved RQ9 RQ10 RQ11 RQ12											
	$\begin{array}{c} 0110 = II\\ 0111 = II\\ 1000 = R\\ 1001 = II\\ 1010 = II\\ 1011 = II\\ 1100 = II\\ 1101 = R\end{array}$	RQ6 RQ7 Reserved RQ9 RQ10 RQ11 RQ12 Reserved											
	0110 = II 0111 = II 1000 = R 1001 = II 1010 = II 1011 = II 1100 = II	RQ6 RQ7 Reserved RQ9 RQ10 RQ11 RQ12 RQ12 Reserved RQ14											

AMD-645 Peripheral Bus Controller Data Sheet

21095A/0-March 1997

AMD-645 Peripheral Bus Controller Data Sheet


XD Power	r-Up Straj	p Options	Functio	n 0 Offs	et 5Ah		RW			
	Bit 7	6	5	4	3	2	1	Bit 0		
Bit Name	KRP16	KRP15	KRP14	KRP13	Reserved	IRTCE	IPS2ME	IKBCE		
Reset	XD7	XD6	XD5	XD4	XD3	XD2	XD1	XD0		

The values in the bits of this register are latched from pins XD7–XD0 at power-up, but can be accessed after power-up to change the strapped settings.

- **Bit 7 Keyboard RP16** (latched from XD7)
- **Bit 6 Keyboard RP15** (latched from XD6)
- Bit 5 Keyboard RP14 (latched from XD5)
- **Bit 4 Keyboard RP13** (latched from XD4)
- **Bit 3 Reserved** (always reads 0)
- Bit 2 Internal RTC Enable (latched from XD2) 1 = Enable 0 = Disable
- Bit 1 Internal PS2 Mouse Enable (latched from XD1) 1 = Enable 0 = Disable

Bit 0 Internal KBC Enable (latched from XD0)

- 1 = Enable
- 0 = Disable
- **Note:** External strap option values can be set by connecting the indicated external pin to ground or through a 4.7-Kohm pullup to V_{CC} (for 1) or driving it Low with a 7407 TTL open-collector buffer (for 0) as shown in Figure 7-1.

Figure 7-1. Strap Option Circuit

AMD-645 Peripheral Bus Controller Data Sheet

Internal R	TC Test M	lode	Function 0	Offset 5Bh	Ì			RW
	Bit 7	6	5	4	3	2	1	Bit 0
Bit Name			Res	erved			RTCSAE	Reserved
Reset	0	0	0	0	0	0	0	0

Bits 7–2 Reserved (always reads 0)

Bit 1 RTC SRAM Access Enable—This bit is set to access the internal RTC SRAM via ports 74h/75h while the internal RTC is disabled. If the internal RTC is enabled, setting this bit has no effect, and the internal RTC SRAM should be accessed at either ports 70h/71h or ports 72h/73h. 1 = Enable

0 = Disable (default)

Bit 0 Reserved (always reads 0)

7.3.4 Distributed DMA Control

Distributed DMA Ch 0 Base/Enable	Function 0 Offset 61h–60h	RW
Distributed DMA Ch 1 Base/Enable	Function 0 Offset 63h–62h	RW
Distributed DMA Ch 2 Base/Enable	Function 0 Offset 65h–64h	RW
Distributed DMA Ch 3 Base/Enable	Function 0 Offset 67h–66h	RW
Distributed DMA Ch 5 Base/Enable	Function 0 Offset 6Bh–6Ah	RW
Distributed DMA Ch 6 Base/Enable	Function 0 Offset 6Dh–6Ch	RW
Distributed DMA Ch 7 Base/Enable	Function 0 Offset 6Fh–6Eh	RW

	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
					Channel	n Base A	Address I	Bits 15–4	ļ				CE		Reserved	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

- Bits 15-4 Channel n Base Address bits 15-4 0000 = default
- Bit 3 Channel n Enable 1 = Enable

0 = Disable (default)

Bits 2–0 Reserved (always reads 0)

7.4 Function 1 Registers (Enhanced IDE Controller)

All EIDE Controller registers are located in Function 1 of the AMD-645 Peripheral Bus Controller PCI configuration space and are accessed through PCI configuration mechanism #1 via address 0CF8h/0CFCh.

The AMD-645 Peripheral Bus Controller enhanced IDE controller interface is fully compatible with the SFF 8038i v.1.0 specification. There are two sets of software-accessible registers, the PCI configuration registers and the bus master IDE I/O registers.

7.4.1 Function 1 PCI Configuration Space Header

Vend	lor ID	F	unctio	o n 1	Offse	t 01h	-00h	l								RO
	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
								Vend	or ID							
Reset	0	0	0	1	0	0	0	1	0	0	0	0	0	1	1	0

The Vendor ID is a read-only register containing the value 1106h.

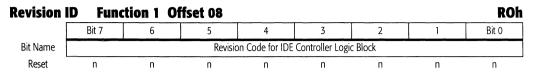
Devi	ce ID	Fu	nctio	n 1	Offset	03h-	-02h									RO
	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit O
								Value	0571h							
Reset	0	0	0	0	0	1	0	1	0	1	1	1	0	0	0	1

The Device ID is a read-only register containing the value 0571h.

Com	mand	Fu	inctio	on 1	Offse	t 05h	-04								1	RWh
	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
			Rese	erved			FBBC	SE	AS	PER	PS	MWI	SCE	BM	MS	IOS
Reset	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Bits 1	5-10			•	ys rea		,									
Bit 9		1 = F	Enabl	ed	ck Cyc defau	•	ixed a	ıt 0)								
Bit 8		1 = F	Enabl	ed	xed a defau	,										

AMD-645 Peripheral Bus Controller Data Sheet

21095A/0-March 1997


Bit 7	Address Stepping (fixed at 1)
	1 = Enabled (default) 0 = Disabled
Bit 6	Parity Error Response (fixed at 0) 1 = Enabled 0 = Disabled (default)
Bit 5	VGA Pallette Snoop (fixed at 0) 1 = Enabled 0 = Disabled (default)
Bit 4	Memory Write & Invalidate (fixed at 0) 1 = Enabled 0 = Disabled (default)
Bit 3	Special Cycles (fixed at 0) 1 = Enabled 0 = Disabled (default)
Bit 2	Bus Master (SG operation can be issued only when this bit is enabled.) 1 = Enabled 0 = Disabled (default)
Bit 1	Memory Space (fixed at 0) 1 = Enabled 0 = Disabled (default)
Bit 0	I/O Space (default = 0 = disabled) When this bit is disabled, the device does

Status	Functio	on 1	Offse	t 071	1-06ł	T		·····	r			RWC
	not r	• `	nd to							ative	mod	e.

	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
	DPE	SSE	RMA	RTA	STA	D	Т	DPD	FBTB				Reserved	I		
Reset	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Bit 15		Dete	cted P	arity	Error	(defa	ult =	0)								

- Divise D and D an
- Bit 14Signalled System Error (default = 0)
- Bit 13Signalled Master Abort (default = 0)
- Bit 12Received Target Abort (default = 0)
- Bit 11 Signalled Target Abort (RO—always reads 0)
- Bits 10–9 DEVSEL Timing
 - 00 = Fast
 - 01 = Medium (default)
 - 10 = Slow
 - 11 = Reserved
- Bit 8Data Parity Detected (default = 0)
- Bit 7 Fast Back-to-Back (RO—always reads 1)

Bits 6–0 Reserved (always reads 0)

The Revision ID is a read-only register containing the revision code for the IDE Controller logic block.

Program	ning Inte	rface	Function 1	Offset 09	h			RW
	Bit 7	6	5	4	3	2	1	Bit O
Bit Name	MIDEC		Reserved		SPI	SCOM	PPI	PCOM
Reset	1	0	0	0	1	X	1	x

Bit 7 Master IDE Capability (fixed at 1 - supported)

- **Bits 6–4 Reserved** (always reads 0)
- Bit 3 Secondary Programmable Indicator (fixed at 1)

1 = Supports both modes (mode is selected by writing bit 2)

0 = Fixed (compatibility or native PCI mode is determined by bit 2)

Bit 2 Secondary Channel Operating Mode

1 = Native PCI Mode (default when SPKR=1)

0 = Compatibility Mode (default when SPKR=0)

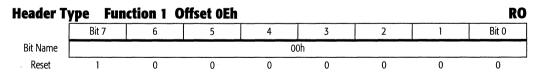
The default value for this bit is determined at power-up by the strapping at the SPKR pin, pin 134. The strapping determines whether IDE addressing is fixed (1) or flexible (0). (See Figure 7-1 on page 7-27 for a drawing of a strap circuit). After reset, bit 2 can be written to determine the channel operating mode. Table 7-10 summarizes the differences between native PCI and compatibility modes.

Table 7-10. Compatibility Mode vs. Native PCI Mode	Table 7-10.	Compatibility	y Mode vs.	Native PCI	Mode
--	-------------	---------------	------------	------------	------

Mode		Command Block Registers	Control Block Registers	IRQ
Compatibility	Primary	Fixed at I/O offset 1F7h-1F0h	Fixed at I/O offset 3F6h	14
Mode	Secondary	Fixed at I/O offset 177h-170h	Fixed at I/O offset 376h	15
Native PCI	Primary	Determined by offset 10h	Determined by offset 14h	-
Mode	Secondary	Determined by offset 18h	Determined by offset 1Ch	
Notes:				
Command reg	iister blocks are 8 b	ytes of I/O space, while control registers	s are 4 bytes of I/O space (only byte	2 is used).

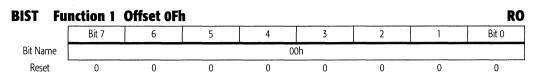
AMD-645 Peripheral Bus Controller Data Sheet

21095A/0-March 1997


Bit 1 Bit 0	1 = Supp 0 = Fixed 1 = Nativ 0 = Comp Primary 1 = Nativ	Primary Programmable Indicator (fixed at 1) 1 = Supports both modes (mode is selected by writing bit 0) 0 = Fixed (compatibility or native PCI mode is determined by bit 2) 1 = Native PCI mode (default when SPKR=1) 0 = Compatibility mode (default when SPKR=0) Primary Channel Operating Mode 1 = Native PCI mode (default when SPKR=1) 0 = Compatibility mode (default when SPKR=0)											
Sub Class	Code F	unction 1	Offset 0	Ah				RO					
	Bit 7	6	5	4	3	2	1	Bit 0					
Bit Name				0	1h								
Reset	0	0	0	0	0	0	0	1					
	The Sub	Class Cod	e is a re	ad-only re	egister co	ntaining t	he value (01h.					

Base Clas	s Code	Function	1 Offset	0Bh				RO
	Bit 7	6	5	4	3	2	1	Bit 0
Bit Name				0	1h			
Reset	0	0	0	0	0	0	0	1

The Base Class Code is a read-only register containing the value 01h.


Latency T	'imer	Function 1	Offset 0D	h .				RW
	Bit 7	6	5	4	3	2	1	Bit 0
Bit Name				()0h			
Reset	0	0	0	0	0	0	0	0

The Latency Timer is a read-write register that defaults to 0.

The Header Type is a read-only register containing the value 00h.

AMD-645 Peripheral Bus Controller Data Sheet

The BIST is a read-only register containing the value 00h.

Prim	ary D	ata/C	Comn	nand	Base	Addı	'ess	Fune	tion	1 Of	fset 1	3h-1	0h			RW
	Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	Bit 16
						•		Rese	rved							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	·		r									r	·	·	·····	
	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit O
	Port Address												Fixed			
Reset	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	1

The Primary Data/Command Base Address is a read-write register that specifies an 8-byte I/O address space.

- Bits 31-16 Reserved (always reads 0)
- **Bits 15–3 Port address** (default = 01F0h)
- Bits 2–0 Value fixed at 001 binary

Prim	ary C	ontr	ol/Sta	ntus E	Base /	Addro	ess	Funct	tion 1	Off	set 17	7h-14	۱h			RW
	Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	Bit 16
								Rese	erved							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
	Port Address											Fi	xed			
Reset	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	1

The Primary Control/Status Base Address is a read-write register that specifies a 4-byte I/O address space, of which only the third byte is active. For example, 3F6h is the active byte for the default base address of 3F4h.

- **Bits 31–16** Reserved (always reads 0)
- **Bits 15-2 Port address** (default = 03F4h)
- Bits 1–0 Value fixed at 01binary

AMD-645 Peripheral Bus Controller Data Sheet

21095A/0-March 1997

Seco	ndary	Data	a/Cor	nman	d Ba	se Ad	ldress	; Fu	Inctio	n 1	Offse	t 1Bh	-18h			RW
	Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	Bit 16
								Rese	erved	_						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
	Port Address													Fixed		
Reset	0	0	0	0	0	0	0	1	0	1	1	1	0	0	0	1

The Secondary Data/Command Base Address is a read-write register that specifies an 8-byte I/O address space.

- **Bits 31–16** Reserved (always reads 0)
- Bits 15–3 Port address (default = 0170h)

Bits 2–0 Value fixed at 001binary

Seco	ndary	Con	trol/!	Statu	s Bas	e Ado	iress	Fu	ictio	1 I O	ffset	1 Fh-	1 Ch			RW
	Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	Bit 16
								Rese	rved							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
	Port Address											Fi	xed			
Reset	0	0	0	0	0	0	1	1	0	1	1	1	0	- 1	0	1

The Secondary Control/Status Base Address is a read-write register that specifies a 4-byte I/O address space, of which only the third byte is active. For example, 376h is the active byte for the default base address of 374h.

- **Bits 31–16 Reserved** (always reads 0)
- **Bits 15–2 Port address** (default = 374h)

Bits 1–0 Value fixed at 01 binary

Bus I	Maste	r Coi	ntrol	Regis	sters	Base	Addr	'ess		RW	Fu	nctio	n 1 (Offset	23h	-20h
	Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	Bit 16
								Rese	erved							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
		ddress						Fix	ked							
Reset	1	1	0	0	1	1	0	0	0	0	0	0	0	0	0	1

The Bus Master Control Registers Base Address is a read-write register that specifies a 16-byte I/O address space which is compliant with the SFF 8038i rev. 1.0 specification.

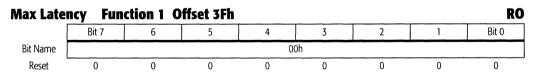
- Bits 31-16 Reserved (always reads 0)
- **Bits 15-4 Port address (**default = CC0h)
- Bits 3–0 Value fixed at 0001 binary

Interrupt	Line Fu	nction 10	ffset 3Ch					RW
	Bit 7	6	5	4	3	2	1	Bit 0
Bit Name				O	Eh			
Reset	0	0	0	0	1	1	1	0

The Interrupt Line is a read-write register containing the default value 0Eh.

Interrupt Pin Function 1 Offset 3Dh

			011500 55					
	Bit 7	6	5	4	3	2	1	Bit 0
Bit Name	IRC7	IRC6	IRC5	IRC4	IRC3	IRC2	IRC1	IRC0
Reset	0	0	0	0	0	0	0	0


The Interrupt Pin is a read-only register that defines the interrupt routing mode.

Bits 7–0 Interrupt Routing Mode

00h =Legacy mode interrupt routing (default) 01h =Native mode interrupt routing

Min Gnt	Function 1	Offset	3Eh					RO				
	Bit 7	6	5	4	3	2	1	Bit O				
Bit Name	OOh											
Reset	0	0	0	0	0	0	0	0				

Min Gnt is a read-only register containing the value 00h.

Max Latency is a read-only register containing the value 00h.

RO

7.4.2 IDE Controller-Specific Configuration Registers

Chip Enab	ole Funct	ion 1 Of	fset 40h					RW
	Bit 7	6	5	4	3	2	1	Bit 0
Bit Name				PCE	SCE			
Reset	0	0	0	0	0	1	0	0

Chip Enable is a read-write control register used to enable the primary or secondary channel.

- **Bits 7–2 Reserved** (always reads 000001 binary)
- Bit 1Primary Channel Enable1 = Enabled0 = Disabled (default)Bit 0Secondary Channel Enable
 - 1 = Enabled

0 = Disabled (default)

IDE Configuration Function 1 Offset 41h

Bit 7 6 5 4 3 2 Bit 0 1 PRPB **PPWB** SRPB SPWB Bit Name Reserved Reset 0 0 0 ٥ 0 1 1 0

IDE Configuration is a read-write control register that defaults to 06h.

- Bit 7Primary IDE Read Prefetch Buffer1 = Enabled0 = Disabled (default)Bit 6Primary IDE Post Write Buffer
- 1 = Enabled

 0 = Disabled (default)

 Bit 5
 Secondary IDE Read Prefetch Buffer

 1 = Enabled

 0= Disabled (default)

 Bit 4
 Secondary IDE Post Write Buffer

 1 = Enabled

 0= Disabled (default)
 - 1 = Enabled

0 = Disabled (default)

Bits 3-0 Reserved (always reads 0110 binary). Although they are read-write, the value of these bits should never be changed.)

Reserved (Do Not Program) Function 1 Offset 42h

The reserved register at Function 1, offset 42h is a read-write register that should not be programmed.

RW

RW

AMD-645 Peripheral Bus Controller Data Sheet

FIFO Conf	iguration	Functio	RW					
	Bit 7	6	5	4	3	2	1	Bit 0
Bit Name	Reserved.	FIFO Con	figuration	Reserved	TI	РС	T	SC
Reset	0	0 1		1	1	0	1	0

First-In-First-Out (FIF0) Configuration is a read-write control register.

Bit 7 Reserved (always reads 0)

Bits 6-5 FIFO Configuration—These bits determine FIFO distribution as shown in Table 7-11.

Table 7-11.FIFO Distribution

Bits 6, 5	Primary Channel	Secondary Channel
00	16	0
01(default)	8	8
10	8	8
11	0	16

Bit 4 Reserved (always reads 1)

Bits 3–2 Threshhold for Primary Channel

00 = 101 = 3/4

10 = 1/2 (default)

11 = 1/4

Bits 1–0 Threshhold for Secondary Channel

00 = 1 01 = 3/4 10 = 1/2 (default) 11 = 1/4

Miscellaneous Control 1 Function 1 Offset 44h

	Bit 7	6	5	4	3	2	2 1 Bit 0				
Bit Name	Rsvd.	MRCWS	MWCWS	CA	SRRR		Reserved				
Reset	0	1	1	0	1	0	0 0 0				

Bit 7 Reserved (always reads 0)

Bit 6 Master Read Cycle IRDY Wait States

1 = 1 wait state (default)

0 = 0 wait states

Bit 5	Master Write Cycle IRDY Wait States 1=1 wait state (default) 0=0 wait states
Bit 4	FIFO Output Data 1/2 Clock Advance 1 = Enabled 0 = Disabled (default)
Bit 3	Bus Master IDE Status Register Read Retry 1 = Enabled (default)

- 0 = Disabled
- **Bits 2–0 Reserved** (always reads 0)

Miscellaneous Control 2 Function 1 Offset 45h

	Bit 7	6	5 4 3 2 1 E							
Bit Name	Rsvd.	ISS			Rese	rved				
Reset	0	0	0	0	0	0	0	0		

Bit 7 Reserved (always reads 0)

Bit 6 Interrupt Steering Swap

1 = Swap interrupts between the two channels (default) 0 = Do not swap channel interrupts

Bits 5–0 Reserved (always reads 0)

Miscellaneous Control 3 Function 1 Offset 46h

Bit 7 3 2 Bit 0 6 5 4 1 Bit Name PCR SCR PCF SCE Reserved MPW Reset 1 1 0 0 0 0 0 0

Bit 7 **Primary Channel Read DMA FIFO Flush** 1 = Enable FIFO flush for read DMA when interrupt asserts primary channel (default) 0 = DisableBit 6 **Secondary Channel Read DMA FIFO Flush** 1=Enable FIFO flush for read DMA when interrupt asserts secondary channel (default) 0 = DisableBit 5 **Primary Channel End-of-Sector FIFO Flush** 1 = Enable FIFO flush at the end of each sector for the primary channel 0 = Disable (default) Bit 4 **Secondary Channel End-of-Sector FIFO Flush** 1 = Enable FIFO flush at the end of each sector for the secondary channel 0 = Disable (default)

RW

RW

Bits 3–2 Reserved (always reads 0)

Bits 1–0 Max DRDY Pulse Width

Maximum DRDY pulse width after the cycle count. Command will deassert in spite of DRDY status to avoid hanging the system.

- 00 = No limitation (default)
- 01 = 64 PCI clocks
- 10 = 128 PCI clocks
- 11 = 192 PCI clocks

Drive	e Timi	ing C	ontro	ol F	uncti	on 1	Offse	et 4Bl	1-48							RWh
	Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	Bit 16
	PDOAPW PDOR							RT PDIAPW PDIR							1RT	
Reset 1 0 1 0				1	0	0	0	1	0	1	0	1	0	0	0	
	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
		SD0	APW		SDORT				SD1APW				SD1RT			
Reset	1	0	1	0	1	0	0	0	1	0	1	0	1	0	0	0

Each field of this register defines the active pulse width and recovery time for a particular IDE DIOR or DIOW signal. The actual value for each field is the encoded value plus one, and indicates the number of PCI clocks.

Bits 31–28 Primary Drive 0 Active Pulse Width (default = 1010 binary)

Bits 27–24 Primary Drive 0 Recovery Time (default = 1000 binary)

Bits 23–20 Primary Drive 1 Active Pulse Width (default = 1010 binary)

- **Bits 19–16 Primary Drive 1 Recovery Time** (default = 1000 binary)
- **Bits 15–12** Secondary Drive 0 Active Pulse Width (default = 1010 binary)
- **Bits 11–8** Secondary Drive 0 Recovery Time (default = 1000 binary)
- **Bits 7-4** Secondary Drive 1 Active Pulse Width (default = 1010 binary)
- **Bits 3–0** Secondary Drive 1 Recovery Time (default = 1000 binary)

AMD-645 Peripheral Bus Controller Data Sheet

Address S	Setup Time	e Funct	ion 1 Off	set 4Ch				RW			
	Bit 7	6	5	4	3	2	1	Bit 0			
Bit Name	PD0/	\ ST	PD	IAST	SDC	AST	SD1AST				
Reset	0	1	1	0	1	0	0	0			
Bits 7-6	ts 7–6 Primary Drive 0 Address Setup Time										
Bits 5–4	Primary D	rive 1 Ad	dress Setup	Time							

Bits 3–2 Secondary Drive 0 Address Setup Time

Bits 1-0 Secondary Drive 1 Address Setup Time—Each of these bit pairs defines the corresponding address setup time as follows:

- 00 = 1T
- 01 = 2T
- 10 = 3T
- 11 = 4T (default)

Secondary	y Non-1F0	Port Ac	cess Timing	Function 1 Offset 4Eh							
[Bit 7	6	5	4	3	2	1	Bit 0			
Bit Name		Active P	ulse Width			Recover	y Time				
Reset	1	1	1	1	1	1	1	1			

The actual value in the field is the encoded value in the field plus one. This value indicates the number of PCI clocks.

- **Bits 7–4 DIOR/DIOW Active Pulse Width** (default = 1111 binary)
- **Bits 4–0 DIOR/DIOW Recovery Time** (default = 1111 binary)

Primary N	Non-1F0 P	ort Acces	ss Timing	Function 1 Offset 4Fh							
	Bit 7	6	5	4	3	2	1	Bit 0			
Bit Name		Active PL	ılse Width			Recove	ry Time				
Reset	1	1	1	1	· 1	1	1	1			

The actual value is the encoded value in the field plus one. This value indicates the number of PCI clocks.

Bits 7-4 DIOR/DIOW Active Pulse Width (default = 1111 binary)

Bits 4–0 DIOR/DIOW Recovery Time (default = 1111 binary)

ITA DIMA	\-33 I	Exter	ided T	iming	g Co	ntrol	Fur	ictior	110)ffset	53h-	-50h			RW
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	Bit 1
			Primary	Drive 0							Primary	/ Drive 1			
eset 0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	1
Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit C
			Secondar	/ Drive 0			-				Seconda	ry Drive	1		
eset 1	1	0	0	0	0	1	1	0	0	0	0	0	0	1	1
	indi	cated	te of 1 drive	e. The	e bit	defin	ition	s are	cons	sisten					r th
t 31	1 = E	Enabl	rive 0 le by s le by ι	ettin	g bit	: 6 of	this r	egist	er		ault)				
t 30	1 = F	Enabl	rive 0 le Ulti le (de	a DM	IA-3				on						
Bit 29 Primary Drive 0 Ultra DMA-33 Transfer Mode 1 = Transfer based on Ultra DMA-33 PIO mode 0 = Based on Ultra DMA-33 DMA mode (default)															
ts 28–26	Rese	rved ((alway	vs rea	ds 0)									
ts 25–24	00 = 01 = 10 =	2T 3T 4T	rive 0 defau	-	Time										
t 23	1 = E	Inabl	rive 1 le by s le by u	ettin	g bit	: 6 of	this r	egist	er		ault)				
t 22	1 = E	Enabl	rive 11 le Ultr le (de	a DM	IA-3				on						
t 21	1 = T	rans	rive 1 fer ba on U	sed o	n Ul	ltra D	MA-3	33 PIO) mo						
ts 20-18	Rese	rved ((alway	vs rea	ds 0)									
ts 17–16	Prim 00 =		rive 1 (Cycle	lime										

AMD-645 Peripheral Bus Controller Data Sheet

21095A/0-March 1997

Bit 15	Secondary Drive 0 Ultra DMA-33 Mode Enable Method
	1 = Enable by setting bit 6 of this register
	0 = Enable by using the Set Feature command (default)
Bit 14	Secondary Drive 0 Ultra DMA-33 Mode Enable
	1 = Enable Ultra DMA-33 mode operation
	0 = Disable (default)
Bit 13	Secondary Drive 0 Ultra DMA-33 Transfer Mode
	1 = Transfer based on Ultra DMA-33 PIO mode
	0 = Based on Ultra DMA-33 DMA mode (default)
Bits 12-10	Reserved (always reads 0)
Bits 9–8	Secondary Drive 0 Cycle Time
	00 = 2T
	01 = 3T
	10 = 4T
	11 = 5T (default)
D14 -	Cocondomy Drive 1 Ultre DNA 77 Neede Enchle Nethed
Bit 7	Secondary Drive 1 Ultra DMA-33 Mode Enable Method
DIL /	1 = Enable by setting bit 6 of this register
BIC /	
Bit 6	1 = Enable by setting bit 6 of this register
	1 = Enable by setting bit 6 of this register 0 = Enable by using the <i>Set Feature</i> command (default)
	1 = Enable by setting bit 6 of this register 0 = Enable by using the <i>Set Feature</i> command (default) Secondary Drive 1Ultra DMA-33 Mode Enable
	 1 = Enable by setting bit 6 of this register 0 = Enable by using the Set Feature command (default) Secondary Drive 1Ultra DMA-33 Mode Enable 1 = Enable Ultra DMA-33 mode operation
Bit 6	<pre>1 = Enable by setting bit 6 of this register 0 = Enable by using the Set Feature command (default) Secondary Drive 1Ultra DMA-33 Mode Enable 1 = Enable Ultra DMA-33 mode operation 0 = Disable (default) Secondary Drive 1 Ultra DMA-33 Transfer Mode 1 = Transfer based on Ultra DMA-33 PIO mode</pre>
Bit 6	<pre>1 = Enable by setting bit 6 of this register 0 = Enable by using the Set Feature command (default) Secondary Drive 1Ultra DMA-33 Mode Enable 1 = Enable Ultra DMA-33 mode operation 0 = Disable (default) Secondary Drive 1 Ultra DMA-33 Transfer Mode</pre>
Bit 6	<pre>1 = Enable by setting bit 6 of this register 0 = Enable by using the Set Feature command (default) Secondary Drive 1Ultra DMA-33 Mode Enable 1 = Enable Ultra DMA-33 mode operation 0 = Disable (default) Secondary Drive 1 Ultra DMA-33 Transfer Mode 1 = Transfer based on Ultra DMA-33 PIO mode</pre>
Bit 6 Bit 5	 1 = Enable by setting bit 6 of this register 0 = Enable by using the Set Feature command (default) Secondary Drive 1Ultra DMA-33 Mode Enable 1 = Enable Ultra DMA-33 mode operation 0 = Disable (default) Secondary Drive 1 Ultra DMA-33 Transfer Mode 1 = Transfer based on Ultra DMA-33 PIO mode 0 = Based on Ultra DMA-33 DMA mode (default)
Bit 6 Bit 5 Bits 4-2	1 = Enable by setting bit 6 of this register 0 = Enable by using the Set Feature command (default) Secondary Drive 1Ultra DMA-33 Mode Enable 1 = Enable Ultra DMA-33 mode operation 0 = Disable (default) Secondary Drive 1 Ultra DMA-33 Transfer Mode 1 = Transfer based on Ultra DMA-33 PIO mode 0 = Based on Ultra DMA-33 DMA mode (default) Reserved (always reads 0)
Bit 6 Bit 5 Bits 4-2	1 = Enable by setting bit 6 of this register 0 = Enable by using the Set Feature command (default) Secondary Drive 1Ultra DMA-33 Mode Enable 1 = Enable Ultra DMA-33 mode operation 0 = Disable (default) Secondary Drive 1 Ultra DMA-33 Transfer Mode 1 = Transfer based on Ultra DMA-33 PIO mode 0 = Based on Ultra DMA-33 DMA mode (default) Reserved (always reads 0) Secondary Drive 1 Cycle Time
Bit 6 Bit 5 Bits 4-2	<pre>1 = Enable by setting bit 6 of this register 0 = Enable by using the Set Feature command (default) Secondary Drive 1Ultra DMA-33 Mode Enable 1 = Enable Ultra DMA-33 mode operation 0 = Disable (default) Secondary Drive 1 Ultra DMA-33 Transfer Mode 1 = Transfer based on Ultra DMA-33 PIO mode 0 = Based on Ultra DMA-33 DMA mode (default) Reserved (always reads 0) Secondary Drive 1 Cycle Time 00 = 2T</pre>

Primary Sector Size Function 1 Offset 61h–60h

RW

	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
		Rese	rved						Numl	ber of By	tes per s	Sector		1.1	1.1	
Reset	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0

The Primary Sector Size is a read-write control register whose bits 11-0 determine the size of each primary sector. The value of these bits defaults to 200h.

Seco	ndary	Sect	or Si	ze	Funct	ion 1	Offs	et 69	h-68	h						RW
	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
		Rese	erved						Numb	per of By	tes per S	Sector				
Reset	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0

The Secondary Sector Size is a read-write control register whose bits 11-0 determine the size of each secondary sector. The value of these bits defaults to 200h.

7.4.3 IDE I/O Registers

The IDE I/O registers comply with the SFF 8038I v. 1.0 standard. The base address of these registers is determined by configuration register Function 1, offset 09h (see page 7-31). The command block primary channel is 1F0h-1F7h, while the secondary channel is 170H-177h. Refer to the specification for further details.

Primary Channel Command Function 1 Offset 00h

-	Bit 7	6	5	4	3	2	1	Bit 0
Bit Name				Primary Chan	nel Command			
Reset	L							

Primary Channel Command is an I/O register.

Primary Channel Status Function 1 Offset 02h

-	Bit 7	6	5	4	3	2	1	Bit 0
Bit Name				Primary Cha	annel Status			
Reset	0	0	0	0	0	0	0	0

Primary Channel Status is an I/O register.

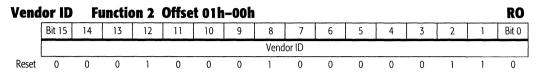
Primary Channel PRD Table Address Function 1 Offset 07h-04h

												-			
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Pr	rimary C	hannel F	PRD Tabl	e Addre	SS					
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
					Pr	rimary C	hannel F	PRD Tabl	e Addre	SS					
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0 0	0 0 0	0 0 0 0	0 0 0 0 0 Bit 15 14 13 12 11	Pi 0 0 0 0 0 0 Bit 15 14 13 12 11 10 Pi	Primary C 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Primary C	Primary Channel F 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 8 Primary Channel F	Primary Channel PRD Tabl 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 8 7 Primary Channel PRD Tabl	Primary Channel PRD Table Addres 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <th>Primary Channel PRD Table Address 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<!--</th--><th>Primary Channel PRD Table Address 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<!--</th--><th>Primary Channel PRD Table Address 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<!--</th--><th>Primary Channel PRD Table Address 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>Primary Channel PRD Table Address 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th></th></th></th>	Primary Channel PRD Table Address 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </th <th>Primary Channel PRD Table Address 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<!--</th--><th>Primary Channel PRD Table Address 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<!--</th--><th>Primary Channel PRD Table Address 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>Primary Channel PRD Table Address 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th></th></th>	Primary Channel PRD Table Address 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </th <th>Primary Channel PRD Table Address 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<!--</th--><th>Primary Channel PRD Table Address 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>Primary Channel PRD Table Address 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th></th>	Primary Channel PRD Table Address 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </th <th>Primary Channel PRD Table Address 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>Primary Channel PRD Table Address 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th>	Primary Channel PRD Table Address 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Primary Channel PRD Table Address 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The Primary Channel PRD Table Address is an I/O register.

AMD-645 Peripheral Bus Controller Data Sheet

Seco	ndary	/ Cha	nnel	Com	mand	Fu	Inctio	o n 1	Offse	t 08h						
	Ē	Bit	7	6		5		4		3		2		1	Bi	t 0
Bit N	lame 🛛						Sec	condary	Channel	Comma	nd					
Res	set															
		Seco	onda	ry Ch	anne	l Con	ıman	d is a	ın I/O	regis	ster.					
Seco	ndary	/ Cha	nnel	Statu	is F	uncti	on 1	Offse	et OAI	h						
		Bit	7	6		5		4		3		2		1	Bi	t 0
Bit N	lame 🛛						Ċ,	Secondai	y Chann	el Status						
Res	set	0		0		0		0		0		0		0	()
		Seco	onda	ry Ch	anne	l Stat	us is	an I/	0 reg	ister.						
Seco	ndary	/ Cha	nnel	PRD	Table	e Add	ress	Fun	ction	1 0	ifset (DFh-C)Ch			
	Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Se	condary	Channe	l PRD Ta	ble Addı	ess					
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
						Se	condary	Channe	l PRD Ta	ble Addı	ress					
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0


The Secondary Channel PRD Table Address is an I/O register.

7.5 Function 2 Registers (USB Controller)

All universal serial bus (USB) controller registers are located in Function 2 of the AMD-645 Peripheral Bus Controller PCI configuration space and are accessed through PCI configuration mechanism #1 via address 0CF8h/0CFCh.

This USB host controller interface is fully compatible with UHCI specification v. 1.1. There are two sets of software accessible-registers, PCI configuration registers and USB I/O registers.

7.5.1 Function 2 PCI Configuration Space Header

The Vendor ID is a read-only register containing the value 1106h.

Devi	ce ID	Fu	nctio	n 2 (Offset	: 03h-	-02h									RO
	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
								Value	3038h							
Reset	0	0	1	1	0	0	0	0	0	0	1	1	1	0	0	0

The Device ID is a read-only register containing the value 3038h.

Com	nand	F	unctio	on 2	Offse	t 05h	-04h									RW
	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
				Res	served				AS	Rese	erved	MWI	Rsvd.	BM	MS	IOS
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bits 1	5-8	Rese	erved (alwa	iys rea	ads ze	ero)									
Bit 7		1 = I	ress St Enabl Disab	ed	ng defau	lt)	·									
Bit 6					ty err	,	spons	se - fi	xed a	t 0)						
Bit 5		Rese	erved (VGA	A Palle	ette S	- Snoop	- fix	ed at	0)						
Bit 4		1 = I	Enabl	ed	& Inva l defau											
Bit 3 Bit 2		Bus 1 = F	Maste Enabl	r ed	cial cy defau		nonito	oring	- fixe	ed at i	0)					
Bit 1		1 = I	lory S Enabl Disabl	ed	defau	lt)										
Bit 0		1=I	Space Enabl Disabl		defau	lt)										

AMD-645 Peripheral Bus Controller Data Sheet

2 1 Bit
0 0 0
0 0 0
R
Bit O
-

Reset

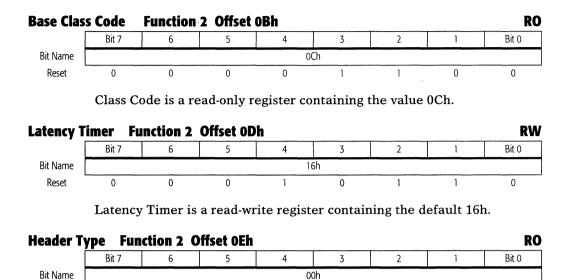
Revision ID is a read-only register containing the silicon revision code, where the value 00h indicates first silicon.

Program	ning Inter	face	Function 2	Offset 09	Dh			RO
	Bit 7	6	5	4	3	2	1	Bit 0
Bit Name				0	0h			
Reset	0	0	0	0	0	0	0	0

Programming Interface is a read-only register containing the value 00h.

Sub Class	Code	Function 2	Offset 0	DAh				RO
	Bit 7	6	5	4	3	2	1	Bit 0
Bit Name				()3h			
Reset	0	0	0	0	0	0	1	1

Sub Class Code is a read-only register containing the value 03h.


21095A/0-March 1997

Reset

0

0

AMD-645 Peripheral Bus Controller Data Sheet

Header Type is a read-only register containing the value 00h.

0

0

0

0

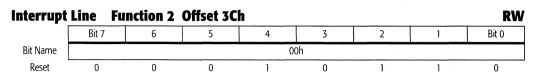
0

0

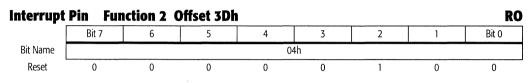
USB	I/O Re	egist	er Ba	se Ad	ldres	s Fi	unctio	on 2	Offse	t 23h	-20h					RW
	Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	Bit 16
								Res	erved							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit O
		USB I/O Register Base Address												Fixed		
Reset	1	1	0	0	1	1	0	0	0	0	0	0	0	0	0	1

Bits 15–5 of this register are used to set the port address for the base of the USB I/O register block, corresponding to AD15–AD5.

Bits 31–16 Reserved (always reads 0)


Bits 15–5 USB I/O Register Base Address

Bits 4–0 Fixed (value of these bits is set at 00001 binary)


Preliminary Information

AMD-645 Peripheral Bus Controller Data Sheet

21095A/0-March 1997

Interrupt Line is a read-write register containing the default 00h.

Interrupt Pin is a read-only register containing the value 04h.

7.5.2 USB-Specific Configuration Registers

Miscella	neous Cont	rol 1 F	unction 2	Offset 4	Dh			RM
	Bit 7	6	5	4	3	2	1	Bit 0
Bit Name	МСО	BO	PCO	Rsvd.	DLO	PM	DMAO	WS
Reset	0	0	0	0	0	0	0	0
Bit 7	PCI Memo	ory Comm	and Option			,		
	1 = Supp	ort mem	ory read a	nd memo	ory write c	ommand	s only	
	0 = Supp	ort mem	ory-read-l	ine, mem	ory-read-m	nultiple,		
	and n	nemory-	write-and-:	invalidate	e comman	ds (defau	ılt)	
Bit 6	Babble Op	otion						
			e babbled	port				
					babble oc	curs (def	ault)	
Bit 5	PCI Parity							
	-			d PERR a	generation	L		
					generatior		t)	
Bit 4	Reserved				0	,	,	
Bit 3	USB Data	Length O	ption					
			ength up t	o 1023				
	0 = Supp	ort TD le	ength up t	o 1280 (d	efault)			
Bit 2	USB Powe	er Manage	ement					
		-	oower man	agement				
	0 5 1	1 1100	power mai	-				

Bit 1 Bit 0	0 = 16 - DV PCI Wait 1 = 1 Wa	' burst acc W burst ac States	ccess (de	fault)				
Miscellan	eous Cont	trol 2 Fu	nction 2	Offset 4	1h			RW
	Bit 7	6	5	4	3	2	1	Bit 0
Bit Name			Reserved			TO	A20PTO	Reserved
Reset	0	0	0	0	0	0	0	0
Bits 7-3 Bit 2	Trap Opti 1 = Set tr	rap 60/64	bits only			able bits the enab		efault)
Bit 1	1 = Do not	-	rough I/O	port 64h		sequence	defined	in UHCI
Bit O	Reserved	(always r	eads 0)					
	-				-			

Serial Bus	s Release I	Number	Function	2 Offset	t 60h			RO						
[Bit 7	6	5	4	3	2	1	Bit 0						
Bit Name	Release Number													
Reset	0	0	0	1	0	0	0	0						

Serial Bus Release Number is a read-only register that defaults to a value of 10h.

Lega	cy Suj	pport	Fu	nctio	n 2 (Offse	t C1h	-C0h								RO
	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
	Fixed															
Reset	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0

Legacy Support is a read-only register. To achieve UHCI v. 1.1 compliance, the value of this register is fixed at 2000h.

7.5.3 USB I/O Registers

These registers are compliant with the UHCI v. 1.1 standard. The USB I/O Register Base Address register at Function 0, offset 23h-20h is used to program the base address to which each of the USB I/O registers is offset. Refer to the specification for further details.

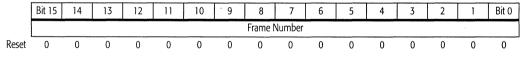
USB Command Function 2 Offset 01h–00h

	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
	USB Command															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

USB Command is an I/O register.

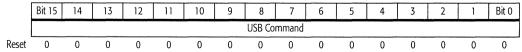
USB Status Function 2 Offset 03h-02h

	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
								USB S	Status							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

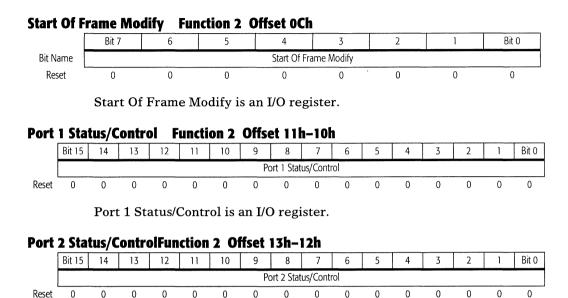

USB Status is an I/O register.

USB Interrupt Enable Function 2 Offset 05h-04h

1	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
	USB Interrupt Enable															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0


USB Interrupt Enable is an I/O register.

Frame Number Function 2 Offset 07h–06h



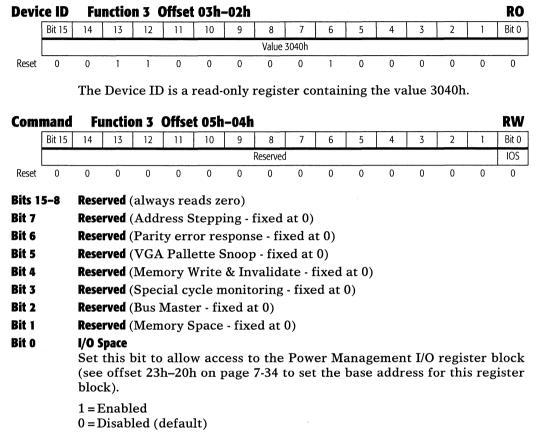
Frame Number is an I/O register.

Frame List Base Address Function 2 Offset 0Bh-08h

Frame List Base Address is an I/O register.

Port 2 Status/Control is an I/O register.

7.6 Function 3 Registers (Power Management)


This section describes the ACPI (Advanced Configuration and Power Interface) power management system of the AMD-645 Peripheral Bus Controller. This system supports both ACPI and legacy power management functions and is compatible with the APM v. 1.2 and ACPI v. 0.9 specifications.

7.6.1 Function 3 PCI Configuration Space Header

Vend	or ID	Fu	Inctio	on 3	Offse	t 01h	-00h									RO
	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
	Vendor ID															
Reset	0	0	0	1	0	0	0	1	0	0	0	0	0	1	1	0

The Vendor ID is a read-only register containing the value 1106h.

AMD-645 Peripheral Bus Controller Data Sheet

Status Function 3 Offset 07h–06h

	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
			Reserved	1		DEV	'SEL				l	Reserved	1			
Reset	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0
Bit 15 Bit 14			erved (erved (•					•		,)				
Bit 13		Rese	erved (Rece	ived	Mast	er Ab	ort -	alwa	ys rea	ads 0))				
Bit 12		Rese	erved (Rece	ived	Targe	et Ab	ort -	alway	vs rea	1ds 0)					
Bit 11		Rese	Reserved (Signalled Target Abort - always reads 0)													

RWC

Bit 10–9 DEVSEL Timing

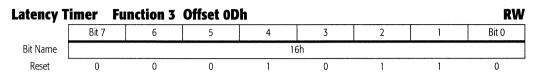
- 00 = Fast
- 01 = Medium (default)
 - 10 =Slow
- 11 = Reserved
- Bit 8 Reserved (Data Parity Detected always reads 0)
- Bit 7 Reserved (Fast Back-to-Back always reads 1)
- **Bits 6–0 Reserved** (always reads 0)

Revision	D Func	tion 3 Of	ifset 08h					RO			
	Bit 7	6	5	4	3	2	1	Bit O			
Bit Name	Silicon Revision Code										
Reset											

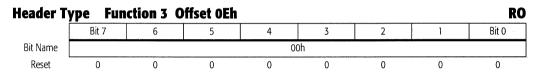
Revision ID is a read-only register containing the silicon revision code, where the value 00h indicates first silicon. The register defaults to the value of current silicon.

Program	ning Inter	face	Function 3	Offset 09	h			RO					
	Bit 7	6	5	4	3	2	1	Bit 0					
Bit Name		00h											
Reset	0	0	0	0	0	0	0	0					

The value returned by this register can be changed by writing the desired value to PCI Configuration Function 3, offset 61h.


Sub Class	Code	Function 3	Offset 0	Ah				RO
	Bit 7	6	5	4	3	2	1	Bit 0
Bit Name				0	3h			
Reset	0	0	0	0	0	0	1	1

The value returned by this register can be changed by writing the desired value to PCI Configuration Function 3, offset 62h.


Base Class	s Code	Function	3 Offset	0Bh				RO			
[Bit 7	6	5	4	3	2	1	Bit 0			
Bit Name	OCh										
Reset	0	0	0	0	1	1	0	0			

The value returned by this register can be changed by writing the desired value to PCI Configuration Function 3, offset 63h.

AMD-645 Peripheral Bus Controller Data Sheet

Latency Timer is a read-write register containing the default 16h.

Header Type is a read-only register containing the value 00h.

Powe	er Ma	nage	ment	: I/O I	Regis	ter B	ase A	ddre	SS	Functi	on 3	Offs	et 23	h-20	h	RW
	Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	Bit 16
								Rese	rved							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
	Power Management I/O Register Base Address Fixed															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Bits 31–16 Reserved (always reads 0)

- **Bits 15-8** USB I/O Register Base Address—These two bits determine the port address for the base of the 256-byte Power Management I/O Register block, corresponding to AD15-AD8. The "I/O Space" bit at offset 5h-4h bit 0 enables access to this register block.
- **Bits 7–0** Fixed (value of these bits is set at 00000001 binary)

7.6.2 Power Management-Specific Configuration Registers

Pin Confi	guration	Function	1 3 Offset	t 40h				RW			
	Bit 7	6	5	4	3	2	1	Bit O			
Bit Name	GPIO4	GPIO3	Reserved								
Reset	1	1	0	0	0	0	0	0			

Bit 7 GPIO4 Configuration

0 = Define pin 136 as GPO_WE 1 = Define pin 136 as GPIO4 (default)

Registers

AMD-645 Peripheral Bus Controller Data Sheet

Bit 6 GPIO3 Configuration

0 = Define pin 92 as GPI_RE 1 = Define pin 92 as GPIO3 (default)

Bits 5–0 Reserved (always reads 0)

General Configuration Function 3 Offset 41h RW Bit 7 6 5 4 3 2 1 Bit 0 PFA ATR PID ATCS CTCS Bit Name Reserved Reserved Reset 0 0 0 0 0 0 0 0 **PWRBTN Input Debounce** Bit 7 0 = Disable (default)1 = EnableBit 6 **ACPI Timer Reset** 0 = Disable (default)1 = EnableBits 5-4 **Reserved** (do not program) Bit 3 **ACPI Timer Count Select** 0 = 24-bit timer (default) 1 = 32-bit timer

Bit 2 PCI Frame Activation in C2 as Resume Event 0 = Disable (default) 1 = Enable

Bit 1 Clock Throttling Clock Selection 0=32 µsec (512 µsec cycle time) (default) 1=1 msec (16 msec cycle time)

Bit 0 Reserved (do not program)

SCI Intern	rupt Config	guration	Functio	n 3 Offse	et 42h			RW
	Bit 7	6	5	4	3	2	1	Bit 0
Bit Name		Rese	erved			SCI Interrupt	: Assignment	
Reset	0	0	0	0	0	0	0	0
Bits 7-4	Reserved	(always i	reads 0)					
Bits 3-10	0000 = d 0001 = I	Reserved RQ3 RQ4 RQ5 RQ6	default)	1000 = 1001 = 1010 = 1011 = 1100 = 1101 = 1110 = 11111 = 11111 = 11111 = 11111 = 11111 = 11111 = 11111 = 11111 = 11111 = 11111 = 11111 = 11111 = 11111 = 11111 = 11111 = 111111	IRQ9 IRQ10 IRQ11 IRQ12 IRQ13 IRQ14			

AMD-645 Peripheral Bus Controller Data Sheet

Prim	ary lı	iterr	upt C	hann	el F	uncti	on 3	Offs	et 45	h-44	h					RW
	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
	15P	14P	13P	12P	11P	10P	9P	8P	7P -	6P	5P	4P	3P	Rsvd	1P	OP
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Setting any bit except bit 2 enables the corresponding IRQ as the primary interrupt channel.

Seco	ndary	Inte	rrupt	t Cha	nnel	Fun	ction	3 0	ifset 4	47h-4	16h					RW
	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
	15S	14S	13	12S	11S	10S	9S	8S	7S	6S	· 5S	4S	3S	Rsvd	1S	0S
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Setting any bit except bit 2 enables the corresponding IRQ as the secondary interrupt channel.

GP T	imer	Cont	rol	Func	tion :	3 Of	iset 5	3h-5	Oh							RW
	Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	Bit 16
	CM	TCV	CMS	CME	SET	rcv	SEOS	SETE			GP	1 Timer	Count Va	alue	0	
Reset	0	0	0	0	0	0	0	0	0	0	0	0 .	0	0	0	0
	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
			GP	0 Timer (Count Va	alue			1TS	1AR	GP	1TB	OTS	OAR	GP	POTB
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Bits 3	1–30	00 = 01 = 10 =		2			t Valu	e								
Bit 29)	Cons	erve l	Mode :	Status	5										

This bit reads 1 when the system is in conserve mode.

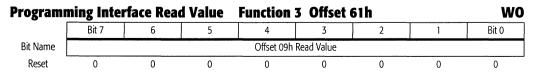
Bit 28 Conserve Mode Enable—Set this bit to enable conserve mode (not used in desktop applications).

Bits 27–26 Secondary Event Timer Count Value

00 = 2 msec (default) 01 = 64 msec 10 = 1/2 sec 11 = by EOI + 0.25 msec

Bit 25 Secondary Event Occurred Status—This bit is set when a secondary event has occurred (to resume the system from suspend) and that the secondary event timer is counting down.

21095A/0-March 1997


- Bit 24 Secondary Event Timer Enable 0 = Disable (default) 1 = Enable
- **Bits 23–16 GP1 Timer Count Value** (base defined by bits 5–4)
- **Bits 15–8 GPO Timer Count Value** (base defined by bits 1–0)
- **Bit 7 GP1 Timer Start**—When this bit is set, the GP1 timer loads the value defined by bits 23–16 of this register and starts counting down. The GP1 timer is reloaded at the occurrence of certain peripheral events enabled in the GP Timer Reload Enable register in Function 3 I/O Space, offset 38h (see page 7-69). If no such event occurs and the GP1 timer counts down to zero, then the GP1 Timer Timeout Status bit is set. This bit is located at Function 3 I/O Space, offset 28h, bit 3 (see page 7-65). In addition, an SMI is generated if the GP1 Timer Timeout Enable bit is set. This bit is located at Function 3 I/O Space, offset 2Ah, bit 3(see page 7-66).
- **Bit 6 GP1 Timer Automatic Reload**—Setting this bit enables the GP1 timer to reload automatically after counting down to 0.
- Bits 5–4 GP1 Timer Base

00 = disable (default) 01=32 μsec 10=1 second 11=1 minute

- **Bit 3 GPO Timer Start**—When this bit is set, the GPO timer loads the value defined by bits 15–8 of this register and starts counting down. The GPO timer is reloaded at the occurrence of certain peripheral events enabled in the GP Timer Reload Enable register in Function 3 I/O Space, offset 38h (see page 7-69). If no such event occurs and the GPO timer counts down to zero, then the GPO Timer Timeout Status bit is set. This bit is located at Function 3 I/O Space, offset 28h, bit 2 (see page 7-65). In addition, an SMI is generated if the GPO Timer Timeout Enable bit is set. This bit is located at Function 3 I/O Space, offset 2Ah, bit 2 (see page 7-66).
- **Bit 2 GPO Timer Automatic Reload**—Setting this bit enables the GPO timer to reload automatically after counting down to 0.
- Bits 1–0 GP0 Timer Base

00 = disable (default) 01=1/16 second 10=1 second

- 10=1 second
- 11=1 minute

AMD-645 Peripheral Bus Controller Data Sheet

Bits 7-0 Offset 09h Read Value—The value returned by the register at offset 09h (Programming Interface) can be changed by writing the desired value to this location.

Sub Class	Read Value	Function	13 Off	iset 62h				WO				
	Bit 7	6	5	4	3	2	1	Bit 0				
Bit Name	Offset 0Ah Read Value											
Reset	0	0	0	0	0	0	0	0				

Bits 7-0 Offset OAh Read Value—The value returned by the register at offset OAh (Sub Class Code) can be changed by writing the desired value to this location.

Base Clas	s Read Va	lue Fun	ction 3 O	ffset 63h				wo	
	Bit 7	6	5	4	3	2	1	Bit 0	

	Bit 7	6	5	4	3	2	1	Bit 0	
Bit Name				Offset 0Bh	Read Value				
Reset	0	0	0	0	0	0	0	0	

Bits 7-0 Offset OBh Read Value—The value returned by the register at offset OBh (Base Class Code) can be changed by writing the desired value to this location.

7.6.3 Power Management I/O Space Registers

Basic Power Management Control Status

Powe	er Ma	nage	ement	Stat	us (Offse	t 01h	-00h							l	RWC
	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit O
	WS		Reserved	1	PBOS	RTCS	Rsvd	PBS	Rese	rved	GS	BMS		Reserved		TCS
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

The bits in this register are set only by hardware and can be reset by software by writing a one to the desired bit position.

- **Bit 15** Wakeup Status (WAK_STS) (default = 0)—This bit is set when the system is in the suspend state and an enabled resume event occurs. Upon setting this bit, the system automatically transitions from the suspend state to the normal working state (from C3 to C0 for the processor).
- Bits 14–12 Reserved (always reads 0)
- **Bit 11 Power Button Override Status (PBOR_STS)** (default = 0)—This bit is set when the PWRBTN input pin is continuously asserted for more than 4 seconds. The setting of this bit will reset the PB_STS bit and transition the system into the soft off state.

21095A/0-March 1997

- **Bit 10 RTC Status (RTC_STS)** (default = 0)—This bit is set when the RTC generates an alarm in response to assertion of the RTC IRQ signal.
- **Bit 9 Reserved** (always reads 0)
- **Bit 8 Power Button Status (PB_STS)** (default = 0)—This bit is set when the **PWRBTN** signal is asserted Low. If the **PWRBTN** signal is held Low for more than four seconds, this bit is cleared, the PBOR_STS bit is set, and the system transitions into the soft off state.
- **Bit 7-6 Reserved** (always reads 0)
- **Bit 5 Global Status (GBL_STS)** (default = 0)—This bit is set by hardware when BIOS_RLS is set (typically by an SMI routine to release control of the SCI/SMI lock). When this bit is cleared by software (by writing a one to this bit position) the BIOS_RLS bit is simultaneously cleared by hardware.
- **Bit 4 Bus Master Status (BM_STS)** (default = 0)—This bit is set when any system bus master requests the system bus, including all PCI master, ISA master and ISA DMA devices.
- **Bits 3–1 Reserved** (always reads 0)

_ _

Bit 0 Timer Carry Status (TMR_STS) (default = 0)—This bit is set when the 23rd (31st) bit of the 24 (32) bit ACPI power management timer changes.

- --

. ...

Powe	er Ma	nage	ment	Enat	ble	Offse	t 3h-	2h								RW	
	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0	
			Reserved			RTCE	Rsvd	PBE	Rese	rved	GE		Rese	erved		ATE	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

The bits in this register correspond to the bits in the Power Management Status Register at Function 3, offset01h-00h.

- **Bit 15–11 Reserved** (always reads 0)
- **Bit 10 RTC Enable (RTC_EN)** (default = 0)—This bit can be set to trigger either an SCI or an SMI (depending on the setting of the SCI_EN bit) to be generated when the RTC_STS bit is set.

Bit 9 Reserved (always reads 0)

- **Bit 8 Power Button Enable (PB_EN)** (default = 0)—This bit can be set to trigger either an SCI or an SMI (depending on the setting of the SCI_EN bit) to be generated when the PB_STS bit is set.
- **Bits 7-6 Reserved** (always reads 0)
- **Bit 5** Global Enable (GBL_EN) (default = 0)—This bit can be set to trigger either an SCI or an SMI (depending on the setting of the SCI_EN bit) to be generated when the GBL_STS bit is set.
- Bits 4–1 Reserved (always reads 0)

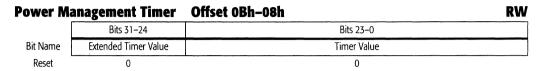
Bit 0 ACPI Timer Enable (TMR_EN) (default = 0)—This bit can be set to trigger either an SCI or an SMI (depending on the setting of the SCI_EN bit) to be generated when the TMR_STS bit is set.

Power Management C	Control	Offset	05h–04h
--------------------	---------	--------	---------

RW

	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
	Rese	rved	SE	S	Іеер Тур	e			l	Reserved				GR	BMR	SCIE
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0

- **Bits 15–14 Reserved** (always reads 0)
- **Bit 13** Sleep Enable (SLP_EN) (always reads 0)—This is a write-only bit. Reads from this bit always return zero. Writing a one to this bit causes the system to sequence into the sleep (suspend) state defined by the SLP_TYP field, bits 12–10.
- Bits 12–10 Sleep Type (SLP_TYP)
 - 000 = Soft Off (also called Suspend to Disk). The V_{DD5} power plane is turned off while the V_{DD} -5VSB and V_{DD} -RTC (VBAT) planes remain on.
 - 010 = Power On Suspend. All power planes remain on but the processor is put into the C3 state.
 - 0x1 = Reserved
 - 1xx = Reserved
 - Note: To facilitate hardware design, minimal interface exists between powered and non-powered planes in either sleep state.
- **Bits 9–3 Reserved** (always reads 0)
- **Bit 2 Global Release (GBL_RLS)** (default = 0)—This bit is set by ACPI software to indicate the release of the SCI/SMI lock. When this bit is set, hardware automatically sets the BIOS_STS bit. GBL_RLS is cleared by hardware when the BIOS_STS bit is cleared by software. Note that setting this bit will generate an SMI if the BIOS_EN bit is set (bit 5 of the Global Enable register at offset 2Ah).
- **Bit 1 Bus Master Reload (BMS_RLD)** (default = 0)—This bit is used to enable the occurrence of a bus master request to transition the processor from the C3 state to the C0 state.
- **Bit 0** SCI Enable (SCI_EN)—This bit determines whether a power management event generates an SCI or SMI.


0 = Generate SMI (default)

1 = Generate SCI

Note: Certain power management events can be programmed individually to generate an SCI or SMI independent of the setting of this bit. Refer to the General Purpose SCI Enable and General Purpose SMI Enable registers at Function 3, offsets 22h and 24h, on page 7-63. Also, 21095A/0-March 1997

AMD-645 Peripheral Bus Controller Data Sheet

TMR_STS & GBL_STS always generate an SCI and BIOS_STS always generates an SMI.

- **Bits 31-24** Extended Timer Value (ETM_VAL)—This field reads back 0 if the 24-bit timer option is selected in configuration register Function 3, offset 41h, bit 3 (see page 7-55).
- **Bits 23-0 Timer Value (TMR_VAL)**—This read-only field returns the running count of the power management timer. This timer is a 24-/32-bit counter driven by a 3.579545-MHz clock derived from an external 14.31818-MHz input when the system is in the S0 (working) state. The timer is reinitialized to zero during a reset and continues counting until the 14.31818 MHz input to the chip is stopped. The clock retains its value when the external timing source is stopped, and continues to count from that value when the clock is restarted without a reset.

Processor Power Management Registers

Processor Control Offset 13h-10h

	Bits 31–5	Bit 4	Bits 3–1	Bit 0
Bit Name	Reserved	TE	TDC	Reserved
Reset	0	0	0	0

Bits 31-5 Reserved (always reads 0)

Bit 4 Throttling Enable (THT_EN)—This bit determines the effect of reading the P_LVL2 port

0 = Reading the P_LVL2 port asserts **STPCLK** and suspends the processor

1 = Reading the P_LVL2 port enables clock throttling by modulating the STPCLK signal with a duty cycle determined by bits 3-1 of this register.

RW

AMD-645 Peripheral Bus Controller Data Sheet

Bits 3-1 Throttling Duty Cycle (THT_DTY)—This 3-bit field determines the duty cycle of the STPCLK signal when the system is in throttling mode (i.e., THT_EN is set to one and the register P_LVL2 is read). The duty cycle indicates the percentage of time the STPCLK signal is asserted while the THT_EN bit is set. The field is decoded as follows:

000 = Reserved 001 = 0-12.5% 010 = 12.5-25% 011 = 25-37.5% 100 = 37.5-50% 101 = 50-62.5% 110 = 62.5-75% 111 = 75-87.5%

Bit 0 Reserved (always reads 0)

Processor Level 2 (P_LVL2) Offset 14h RO Bit 7 6 5 4 3 2 1 Bit 0 Processor Level 2 Bit Name 0 Reset 0 0 0 0 0 0 0

Bits 7-0 LVL2 (always reads 0)—Reads from this register put the processor in the C2 clock state determined by the THT_EN bit. Reads from this register return all zeros; writes to this register have no effect.

Processor	Level 3 (P_LVL3)	Offset 1	5h				RO
	Bit 7	6	5	4	3	2	1	Bit 0
Bit Name				Processo	or Level 3			
Reset	0	0	0	0	0	0	0	0

Bits 7-0 LVL3 (always reads 0)—Reads from this register put the processor in the C3 clock state with the STPCLK signal asserted. Reads from this register return all zeros. Writes to this register have no effect.

General Purpose Power Management Registers

Gene	eral Pi	urpos	se Sta	ntus (GP_S	TS)	Offse	et 21	h-201	h					1	RWC
	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit O
			Rese	erved			USBS	RS	ES7	ES6	ES5	ES4	ES3	ES2	ES1	ES0
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits 15–10 Reserved (always reads 0)

- **Bit 9** USB Resume Status (USB_STS)—This bit is set when a USB peripheral generates a resume event.
- **Bit 8** Ring Status (RI_STS)—This bit is set when the RI input is asserted low.
- **Bit 7 EXTSMI7 Toggle Status (EXT7_STS)**—This bit is set when the EXTSMI7 pin is toggled.
- **Bit 6 EXTSMI6 Toggle Status (EXT6_STS)**—This bit is set when the EXTSMI6 pin is toggled.
- **Bit 5 EXTSMI5 Toggle Status (EXT5_STS)**—This bit is set when the EXTSMI5 pin is toggled.
- **Bit 4 EXTSMI4 Toggle Status (EXT4_STS)**—This bit is set when the EXTSMI4 pin is toggled.
- **Bit 3 EXTSMI3 Toggle Status (EXT3_STS)**—This bit is set when the **EXTSMI3** pin is toggled.
- **Bit 2 EXTSMI2 Toggle Status (EXT2_STS)**—This bit is set when the EXTSMI2 pin is toggled.
- **Bit 1 EXTSMI1 Toggle Status (EXT1_STS)**—This bit is set when the EXTSMI1 pin is toggled.
- **Bit 0 EXTSMIO Toggle Status (EXTO_STS)**—This bit is set when the EXTSMIO pin is toggled.
 - Note: Bits 9–0 correspond one-for-one with the bits of the General Purpose SCI Enable (offset 23h–22h) and General Purpose SMI Enable registers (offset 25h–24h). An SCI or SMI is generated if the corresponding bit of the General Purpose SCI or SMI Enable registers, respectively, is set. Bits 9–0 are set only by hardware and can be cleared only by writing a one to the desired bit.

General Purpose SCI Enable Offset 23h–22h

	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
			Rese	erved			EUSB	ERI	E7	E6	E5	E4	E3	E2	El	EO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit 15–10 Reserved	(always reads 0)
--------------------	------------------

Bit 9	Enable SCI on setting of the USB_STS bit $(default = 0)$
Bit 8	Enable SCI on setting of the RI_STS bit $(default = 0)$
Bit 7	Enable SCI on setting of the EXT7_STS bit $(default = 0)$
Bit 6	Enable SCI on setting of the EXT6_STS bit $(default = 0)$
Bit 5	Enable SCI on setting of the EXT5_STS bit $(default = 0)$
Bit 4	Enable SCI on setting of the EXT4_STS bit $(default = 0)$
Bit 3	Enable SCI on setting of the EXT3_STS bit $(default = 0)$
Bit 2	Enable SCI on setting of the EXT2_STS bit $(default = 0)$

RW

AMD-645 Peripheral Bus Controller Data Sheet

Bit 1 **Enable SCI on setting of the EXT1 STS bit** (default = 0)

Bit o **Enable SCI on setting of the EXTO STS bit** (default = 0)

These bits allow generation of an SCI using a separate set of conditions from those used for generating an SMI.

Gene	ral Pu	irpo	se SM	ll Ena	ble	Offs	Offset 25h–24h									
	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit O
			Rese	erved			EUSB	ERI	E7	E6	E5	E4	E3	E2	E1	EO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit 15–10 **Reserved** (always reads 0)

Bit 9	Enable SMI on setting of the USB_STS bit (default = 0)
-------	--

Bit 8 **Enable SMI on setting of the RI STS bit** (default = 0)

Bit 7 **Enable SMI on setting of the EXT7_STS bit** (default = 0)

Bit 6 **Enable SMI on setting of the EXT6 STS bit** (default = 0)

- Bit 5 **Enable SMI on setting of the EXT5 STS bit** (default = 0)
- Bit 4 **Enable SMI on setting of the EXT4** STS bit (default = 0)
- Bit 3 Enable SMI on setting of the EXT3_STS bit (default = 0)
- Bit 2 Enable SMI on setting of the EXT2 STS bit (default = 0).
- Bit 1 **Enable SMI on setting of the EXT1 STS bit** (default = 0)
- Bit o **Enable SMI on setting of the EXTO STS bit** (default = 0)

These bits allow generation of an SMI using a separate set of conditions from those used for generating an SCI.

Powe	er Sup	oply (Contr	ol	Offse	t 27h	-26h									RW
	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
			Reserved	1		RPSC	PBC	RSC				Reserved	1			ES0
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit 15-11 **Reserved** (always reads 0)

- Bit10 **Ring PS Control (RI PS CTL)** (default = 0)—This bit enables setting the RI_STS bit to turn on the V_{DD} _5V power plane by setting PWRON = 1.
- **Power Button Control (PB_CTL)** (default = 0)—This bit is used to set the Bit 9 PB_STS bit to resume the system from suspend (turn on the V_{DD} _5V power plane by setting PWRON = 1).
- Bit 8 **RTC PS Control (RTC PS CTL)** (default = 0)—This bit enables setting the RTC STS bit to resume the system from suspend (turn on the V_{DD} 5V power plane by setting PWRON = 1).
- Bit 7–1 **Reserved** (always reads 0)

21095A/0-March 1997

Bit 0 EXTSMIO Toggle PS Control (E0_PS_CTL) (default = 0)—This bit enables the setting of the EXT0_STS bit to resume the system from suspend (turn on the V_{DD} -5V power plane by setting PWRON = 1).

Generic Power Management Registers

Global Status Offset 29h-28h RWC Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0 SSS G2TS SETO PAS BS LUS GITS Reserved Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bit 15-7 **Reserved** (always reads 0) Software SMI Status (SW_SMI_STS) (default = 0)—This bit is set when the Bit 6 SMI CMD port (offset 2Fh) is written. Bit 5 **BIOS Status (BIOS STS)** (default = 0)—This bit is set when the GBL_RLS bit is set (typically by the ACPI software to release control of the SCI/SMI lock). When this bit is reset (by writing a one to this bit position) the GBL_RLS bit is reset at the same time by hardware. **Legacy USB Status (LEG_USB_STS)** (default = 0)—This bit is set when a legacy Bit 4 USB event occurs. Bit 3 **GP1 Timer Time Out Status (GP1TO_STS)** (default = 0)—This bit is set when the GP1 timer times out. Bit 2 **GPO Timer Time Out Status (GPOTO_STS)** (default = 0)—This bit is set when the GP0 timer times out. Bit 1 **Secondary Event Timer Time Out Status (STTO_STS)** (default = 0)—This bit is set when the secondary event timer times out. Bit 0 **Primary Activity Status (PACT_STS)** (default = 0)—This bit is set at the occurrence of any enabled primary system activity (see the Primary Activity Detect Status register at offset 30h, page 7-67, and the Primary Activity Detect Enable register at offset 34h, page 7-68). After checking this bit, software can check the status bits in the Primary Activity Detect Status register at offset 30h to identify the specific source of the primary event. Setting this bit can be enabled to reload the GP0 timer (see bit 0 of the GP Timer Reload Enable register at offset 38h, page 7-69). Note that an SMI can be generated based on the setting of any of the above bits (see the bit descriptions of the Global Enable register, offset 2Ah, page 7-66). The bits in this register are set only by hardware and can be cleared only

by writing a one to the desired bit position.

AMD-645 Peripheral Bus Controller Data Sheet

Glob	al En	able	Offs	et 21	3h-2/	۱h										RW
	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit O
					Reserve	1				SSE	BE	LUE	G1E	GOE	SETE	PAE
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit 15	5-7	Rese	rved (alwa	ys re	ads 0)									
Bit 6			ware S SMI w								–Thi	s bit o	can b	e set	to tri	gger
Bit 5		an SMI when the SW_SMI_STS bit is set. BIOS Enable (BIOS_EN) (default = 0)—This bit can be set to trigger an SMI when the BIOS_STS bit is set.														
Bit 4		-	cy US SMI w		-						-This	bit c	an b	e set	to tri	gger
Bit 3			Timer ger ai				•		• •)—-Th	is bi	t can	be s	et to
Bit 2		GPO Timer Time Out Enable (GPOTO_EN) (default = 0)—This bit can be set to trigger an SMI when the GPOTO_STS bit is set.														
Bit 1		Secondary Event Timer Time Out Enable (STTO_EN) (default = 0) This bit can be set to trigger an SMI when the STTO_STS bit is set.														
			_							•			-			

Bit 0 Primary Activity Enable (PACT_EN) (default = 0)—This bit can be set to trigger an SMI when the PACT_STS bit is set.

Global Control (GBL_CTL) Offset 2Dh-2Ch

	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
			1	Reserved				SA		Reserved	1	SMIL	Rsvd	BPT	BR	SMIE
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Bit 15-9 Reserved (always reads 0)

Bit 8 SMI Active (INSMI)

0 = SMI Inactive (default)

- 1 = SMI Active. If bit 4 (SMIIG) is set, bit 8 must be cleared by writing a 1 to it before the next SMI can be generated.
- **Bit 7–5 Reserved** (always reads 0)
- Bit 4 SMI Lock (SMIIG) (RWC)

0 = Disable SMI Lock (default)

1 = Enable SMI Lock (SMI low to gate for the next SMI)

Bit 3 Reserved (always reads 0)

Registers

RW

Bit 2 Power Button Triggering—Set this bit to prevent the situation in which PB_STS is set to wake up the system, then reset by PBOR_STS to switch the system into the soft-off state. Bit 2 must be cleared to comply with ACPI v. 0.9.

0 = SCI/SMI generated by **PWRBTN** low level

0

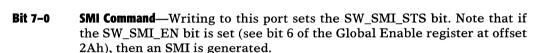
1 = SCI/SMI generated by PWRBTN rising edge

- **Bit 1 BIOS Release (BIOS_RLS)**—This bit is set by legacy software to indicate release of the SCI/SMI lock. Upon setting of this bit, hardware automatically sets the GBL_STS bit. This bit is cleared by hardware when the GBL_STS bit cleared by software.
 - Note: If the GBL_EN bit is set (bit 5 of the Power Management Enable register at offset 2h), then setting this bit causes an SCI to be generated (because setting this bit causes the GBL_STS bit to be set).

0

0

0


0

0

Reset

0

SMI Command (SMI_CMD) Offset 2Fh RW Bit 7 6 5 4 3 2 1 Bit 0 Bit Name SMI Command S

0

Prim	ary A	ctivi	ty De	tect S	Status	; 0 1	ifset :	33h-3	30h						I	RWC
	Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	Bit 16
								Rese	erved							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
				Rese	rved				KCAS	SPAS	PPAS	VAS	IFAS	Rsvd	PIAS	IDAS
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

These bits correspond to the Primary Activity Detect Enable bits in offset 37h–34h.

- **Bit 31–8 Reserved** (always reads 0)
- **Bit 7** Keyboard Controller Access Status (KBC_STS)—Set if the keyboard controller is accessed via I/O port 60h.
- **Bit 6** Serial Port Access Status (SER_STS)—Set if the serial port is accessed via I/O ports 3F8h-3FFh, 2F8h-2FFh, 3E8h-3EFh, or 2E8h-2Efh (COM1-4, respectively).

Bit 0 SMI Enable (SMI_EN) 0 = Disable all SMI generation 1 = Enable SMI generation

- **Bit 5 Parallel Port Access Status (PAR_STS)**—Set if the parallel port is accessed via I/ O ports 278h–27Fh or 378h–37Fh (LPT2 or LPT1).
- **Bit 4** Video Access Status (VID_STS)—Set if the parallel port is accessed via I/O ports 278h–27Fh or 378h–37Fh (LPT2 or LPT1).
- **Bit 3** IDE / Floppy Access Status (IDE_STS)—Set if the parallel port is accessed via I/O ports 278h–27Fh or 378h–37Fh (LPT2 or LPT1).
- **Bit 2 Reserved** (always reads 0)
- **Bit 1 Primary Interrupt Activity Status (PIRQ_STS)**—This bit is set when a primary interrupt occurs. Primary interrupts are enabled in the Primary Interrupt Channel register at Function 3, PCI configuration register offset 44h (see page 7-56).
- Bit 0 ISA Master / DMA Activity Status (DRQ_STS)—This bit is set by ISA master or DMA activity.

The bits in this register correspond to the bits in the Primary Activity Detect Enable register at offset 34h (page 7-67). If the corresponding bit is set in that register, setting the bit in this register will cause the PACT_STS bit to be set (bit 0 of the Global Status register at offset 28h, page 7-65). Setting of PACT_STS can be set up to enable a "Primary Activity Event", where an SMI will be generated if PACT_EN is set (bit 0 of the Global Enable register at offset 2Ah, page 7-66) and/or the GP0 timer will be reloaded if the GP0 Timer Reload on Primary Activity bit is set (bit 0 of the GP Timer Reload Enable register at offset 38h, page 7-69).

Bits 3-7 in this register also correspond to bits 3-7 of the GP Timer Reload Enable register at offset 38h. If the corresponding bit is set in that register, setting the bit in this register will cause the GP1 timer to be reloaded.

All bits of this register are set only by hardware and can be cleared only by writing a one to the desired bit. All bits default to 0.

	ai y A		.,					<i>37</i> II	9 - 11							
	Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	Bit 16
								Rese	erved							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
				Rese	erved				KCSE	SPSE	PPSE	VSE	IFSE	Rsvd	PISE	IDSE
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Primary Activity Detect Enable Offset 37h–34h

These bits correspond to the Primary Activity Detect Status bits in offset 33h–30h.

Bit 31–8 Reserved (always reads 0)

RW

21095A/0-March 1997

AMD-645 Peripheral Bus Controller Data Sheet

Bit 7	Keyboard Controller Status Enable (KBC_EN)
	0 = Don't set PACT_STS if KBC_STS is set (default)
	1 = Set PACT_STS if KBC_STS is set
Bit 6	Serial Port Status Enable (SER_EN)
	0 = Don't set PACT_STS if SER_STS is set (default)
	1 = Set PACT_STS if SER_STS is set
Bit 5	Parallel Port Status Enable (PAR_EN)
	0 = Don't set PACT_STS if PAR_STS is set (default)
	1 = Set PACT_STS if PAR_STS is set
Bit 4	Video Status Enable (VID_EN)
	0 = Don't set PACT_STS if VID_STS is set (default)
	1 = Set PACT_STS if VID_STS is set
Bit 3	IDE / Floppy Status Enable (IDE_EN)
	0 = Don't set PACT_STS if IDE_STS is set (default)
	1 = Set PACT_STS if IDE_STS is set
Bit 2	Reserved (always reads 0)
Bit 1	Primary INTR Status Enable (PIRQ_EN)
	0 = Don't set PACT_STS if PIRQ_STS is set (default)
	1 = Set PACT_STS if PIRQ_STS is set
Bit 0	ISA Master / DMA Status Enable (DRQ_EN)
511 0	0 = Don't set PACT_STS if DRQ_STS is set (default)
	1 = Set PACT_STS if DRQ_STS is set
	Note: Setting any of bits 7–0 also sets the PACT STS bit (bit

Jote: Setting any of bits 7–0 also sets the PACT_STS bit (bit 0 of offset 28h), which reloads the GP0 timer (if PACT_GP0_EN is set) or generates an SMI (if PACT_EN is set).

GP Timer Reload Enable Offset 3Bh-38h

	Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	Bit 16
								Rese	erved			_				
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
	Reserved								E1KA	K1SA	Rsvd	E1VA	E1IA	Rese	erved	IDSE
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

All bits in this register default to 0 on power up.

- **Bit 31-8 Reserved** (always reads 0)
- Bit 7 Enable GP1 Timer Reload on KBC Access
 - 1 = setting KBC_STS causes GP1 timer to reload

Bit 6 Enable GP1 Timer Reload on Serial Port Access 1 = setting SER_STS causes GP1 timer to reload

RW

AMD-645 Peripheral Bus Controller Data Sheet

RW

Bit 5	Reserved (always reads 0)
D14 #	Fuching CD4 Times Deland on Video

- Bit 4 Enable GP1 Timer Reload on Video Access 1 = setting VID_STS causes GP1 timer to reload
- Bit 3 Enable GP1 Timer Reload on IDE/Floppy Access 1 = setting IDE_STS causes GP1 timer to reload
- **Bit 2–1 Reserved** (always reads 0)

Bit 0 Enable GP0 Timer Reload on Primary Activity 1 = setting PACT_STS causes GP0 timer to reload. Primary activities are enabled via the Primary Activity Detect Enable register (offset 37h–34h) with status recorded in the Primary Activity Detect Status register (offset 33h–30h).

General Purpose I/O Registers

GPIO Direction Control (GPIO_DIR) Offset 40h

Bit 7 6 5 4 3 2 1 Bit 0 Bit Name Reserved G4D G3D G2D GID GOD 0 0 0 0 Reset 0 0 0 0

Bit 7–5 Reserved (always reads 0)

Bit 4 GPIO4_DIR

0 = Pin 136 is GPIO4 input (default)

1 = Pin 136 is GPIO4 output (if offset 40h bit 7 = 1)

If offset 40h bit 7 = 0 (PCI Configuration Function 3 offset 40h GPIO4_CFG bit), pin 136 is the GPO_WE output, independent of the state of this bit.

Bit 3 GPIO3_DIR

0 = Pin 92 is GPIO3 input (default) 1 = Pin 92 is GPIO3 output (if offset 40h bit 6 = 1) If offset 40h bit 6 = 0 (PCI Configuration Function 3 offset 40h GPIO3_CFG bit), pin 92 is the GPI_RE output, independent of the state of this bit.

Bit 2 GPIO2_DIR

0 = Pin 88 is GPIO2 / I2CD1 input (default) 1 = Pin 88 is GPIO2 / I2CD1 output

Bit 1 GPI01_DIR

0 = Pin 87 is GPIO1 / I2CD2 input (default) 1 = Pin 87 is GPIO1 / I2CD2 output 21095A/0-March 1997

AMD-645 Peripheral Bus Controller Data Sheet

Bit 0 GPIO0_DIR

0 = Pin 94 is GPIO0 input (default) 1 = Pin 94 is GPIO0 output

GPIO Por	t Output \	/alue (GP	IO_VAL)	Offset 4	RW			
	Bit 7	6	5	4	3	2	1	Bit 0
Bit Name		Reserved		G4V	G3V	G2V	GIV	GOV
Reset	0	0	0	0	0	0	0	0

Bit 7–5 Reserved (always reads 0)

Bit 4 GPI04_VAL—Write output value for the GPIO4 pin if the port is available (GPI04_CFG = 1 in PCI configuration register Function 3, offset 40h). The input state of the GPIO4 pin can be read from register EXTSMI_VAL bit 4.

- **Bit 3 GPI03_VAL**—Write output value for the GPIO3 pin if the port is available (GPIO3_CFG = 1 in PCI configuration register Function 3, offset 40h). The input state of the GPIO3 pin can be read from register EXTSMI_VAL bit 3.
- **Bit 2 GPIO2_VAL**—Write output value for the GPIO2 (I2CD2) pin. The input state of the GPIO2 pin can be read from register EXTSMI_VAL bit 2.
- **Bit 1 GPI01_VAL**—Write output value for the GPIO1 (I2CD1) pin. The input state of the GPIO1 pin can be read from register EXTSMI_VAL bit 1.
- **Bit 0 GPIO0_VAL**—Write output value for the GPIO0 pin. The input state of the GPIO0 pin can be read from register EXTSMI_VAL bit 0.

GPIO Por	t Input Va	lue (EXTS	SMI_VAL)	Offset 4	14h	RO			
	Bit 7	6	5	4	3	2	1	Bit 0	
Bit Name	E7IV	E6IV	E5IV	E4IV	E3IV	E2IV	ETIV	EOIV	
Reset	0	0	0	0	0	0	0	0	

Depending on the configuration, up to eight external SCI/SMI ports are available as indicated below. The state of inputs EXTSMI7-EXTSMI0 can be read in this register.

Bit 7	EXTSMI7 Input Value
	GPIO3_CFG = 0: EXTSMI7 on XD7 (pin 122)
	GPIO3_CFG = 1: EXTSMI7 function not available
Bit 6	EXTSMI6 Input Value
	GPIO3_CFG = 0: EXTSMI6 on XD6 (pin 121)
	GPIO3_CFG = 1: EXTSMI6 function not available
Bit 5	EXTSMI5 Input Value
	GPIO3_CFG = 0: EXTSMI5 on XD5 (pin 119)
	GPIO3_CFG = 1: EXTSMI5 function not available

AMD-645 Peripheral Bus Controller Data Sheet

21095A/0-March 1997

Bit 4	EXTSMI4 Input Value
	$GPIO4_CFG = 0$:
	GPIO3_CFG = 0: EXTSMI4 on XD4 (pin 118)
	GPIO3_CFG = 1: EXTSMI4 function not available
	GPIO4_CFG = 1: EXTSMI4 on GPIO4 (pin 136)
Bit 3	EXTSMI3 Input Value
	$GPIO3_CFG = 0$: EXTSMI3 on XD3 (pin 117)
	GPIO3_CFG = 1: EXTSMI3 on GPIO3 (pin 92)
Bit 2	EXTSMI2 Input Value (on GPIO2 pin 88)
Bit 1	EXTSMIT Input Value (on GPIO1 pin 87)
-	

Bit 0 EXTSMIO Input Value (on GPIO0 pin 94)

Note: GPIO3_CFG and GPIO4_CFG are located in PCI configuration register Function 3, offset 40h.

GPO	Port (Outp	ut Va	lue (GPO_	VAL)	Of	iset 4	7h-4	6h						RW
	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit O
				GPO15	-8 value							GPO7-	0 value			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Reads from this register return the last value written (held on chip).

- **Bit 15-8 GP015-8 Value.**—Output port value for the external GPO port connected to SD15-8. This port is available only if the GPIO4_CFG bit is cleared to define pin 136 as GPO_WE.
- **Bit 7-0 GP07-0 Value.**—Output port value for the external GPO port connected to XD7-0. This port is available only if the GPIO4_CFG bit is cleared to define pin 136 as GPO_WE.

Note: GPI04_CFG is in PCI register Function 3, offset 40h, page 7-54.

GPI F	Port II	nput	Value	e (GP	_VA	L) (ffset	49h-	·48h							RO
	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
				GPI15-	8 value							GPI7-() value			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Reads from this register are ignored (and return a value of 0).

- **Bit 15-8 GPI15-8 Value.** Input port value for the external GPI port connected to SD15-8. This port is available only if the GPIO3_CFG bit is cleared to define pin 92 as GPI_RE.
- **Bit 7-0 GP17-0 Value.** Input port value for the external GPI port connected to XD7-XD0. This port is available only if the GPIO3_CFG bit is cleared to define pin 92 as GPI_RE.

Note: GPI03_CFG is in *PCI* configuration register Function 3, offset 40h.

8 Electrical Data

8.1 Absolute Ratings

Long-term reliability and functional integrity of the AMD-645 Peripheral Bus Controller are guaranteed as long as it is not subjected to conditions exceeding the absolute ratings listed in Table 11-1.

Table 8-1. Absolute Maximum Ratings

Parameter	Minimum	Maximum	Unit
Ambient Operating Temperature	0	70	°C
Storage Temperature	-55	125	°C
Input Voltage	-0.5	5.5	Voltage
Output Voltage (V _{DD} = 5 V)	-0.5	5.5	Voltage
Output Voltage (V _{DD} = 3.1 V - 3.6 V)	-0.5	V _{DD} + 0.5	Voltage

Warning: Stress above the parameters listed can cause permanent damage to the device. Functional operation of this device should be restricted to the described conditions.

Table 8-2. Absolute Ratings

Parameter	Minimum	Maximum	Comments
V _{DD}	-0.5 V	5.5 V	
V _{DD3}	-0.5 V	3.6	
V _{PIN}	-0.5 V	V_{DD3} +0.5 V and \leq 4.0 V	note 1
T _{CASE} (under bias)	-65°C	+110°C	
T _{STORAGE}	-65°C	+150°C	
Note:	on any I/O pin) mu	st not be areater than 0.5 V abov	e the voltage being

 V_{PIN} (the voltage on any I/O pin) must not be greater than 0.5 V above the voltage being applied to V_{DD3} . In addition, the V_{PIN} voltage must never exceed 4.0 V.

8.2 **Operating Ranges**

The functional operation of the AMD-645 Peripheral Bus Controller is guaranteed if the voltage and temperature parameters are within the limits defined in Table 11-2.

Parameter	Minimum	Typical	Maximum	Comments
V _{DD}	4.75 V	5.0 V	5.25 V	(note 1)
V _{DD3}	3.135 V	3.3 V	3.465 V	(note 1)
T _{CASE}	0°C		70°C	

Table 8-3. Operating Ranges

8.3 DC Characteristics

Table 8-4.DC Characteristics

Symbol		Prelim	Preliminary Data				
	Parameter Description	Min	Max	Comments			
VIL	Input Low Voltage	-0.50 V	0.8 V				
VIH	Input High Voltage	2.0 V	V _{DD3} +0.5 V	note 1			
V _{OL}	Output Low Voltage		0.45 V	I _{OL} = 4.0-mA load			
V _{OH}	Output High Voltage	2.4 V		I _{OH} = 1.0-mA load			
I _{DD}	5 V Power Supply Current			33 MHz, Note 2			
I _{DD3}	3.3 V Power Supply Current			33 MHz, Note 3			
ILI	Input Leakage Current		±10 μA	note 4			
ILO	Output Leakage Current		±20 μA	note 4			

Notes:

1. V_{DD3} refers to the voltage being applied to V_{DD3} during functional operation.

2. $V_{DD} = 5.25 \text{ V} - \text{The maximum power supply current must be taken into account when designing a power supply.}$

3. $V_{DD3} = 3.465 V - The maximum power supply current must be taken into account when designing a power supply.$

4. Refers to inputs and I/O without an internal pullup resistor and $0 \le V_{IN} \le V_{DD3.}$

5. Refers to inputs with an internal pullup and $V_{IL} = 0.4 V$.

6. Refers to inputs with an internal pulldown and $V_{IH} = 2.4 V$.

Symbol		Prelim	Preliminary Data			
	Parameter Description	Min	Max	Comments		
I _{IL}	Input Leakage Current Bias with Pullup		-10 μA	note 5		
IIH	Input Leakage Current Bias with Pulldown		10 µA	note 6		
C _{IN}	Input Capacitance		10 pF			
COUT	Output Capacitance		15pF			
C _{OUT}	I/O Capacitance		20 pF			
C _{CLK}	CLK Capacitance		10 pF			
C _{TIN}	Test Input Capacitance (TDI, TMS, TRST)		10 pF			
C _{TOUT}	Test Output Capacitance (TDO)		15 pF			
C _{TCK}	TCK Capacitance		10 pF			
Notes:						

Table 8-4. **DC Characteristics (continued)**

1. V_{DD3} refers to the voltage being applied to V_{DD3} during functional operation.

2. $V_{DD} = 5.25 V - The maximum power supply current must be taken into account when designing a power supply.$

3. $V_{DD3} = 3.465 V - The maximum power supply current must be taken into account when designing a power supply.$

4. Refers to inputs and I/O without an internal pullup resistor and $0 \le V_{IN} \le V_{DD3}$

5. Refers to inputs with an internal pullup and $V_{II} = 0.4 V$.

6. Refers to inputs with an internal pulldown and $V_{IH} = 2.4 V$.

8.4 **Power Dissipation**

Table 11-4 shows typical and maximum power dissipation of the AMD-645 Peripheral Bus Controller during normal and reduced power states. The measurements are taken with PCLK = 33 MHz, V_{DD} = 5.0V and V_{DD} 3 = 3.3V.

Table 8-5. Typical and Maximum Power	Dissipation	
--------------------------------------	-------------	--

Clock Control State		Typical (Note 1)	Maximum (Note 2)	Comments	
Norm	al (Thermal Power)	2.3 W?	0.40 W?	Note 3	
Notes:	· · · · · · · · · · · · · · · · · · ·			L	
1.	Typical power is measu operation.	red during instruction sequ	uences or functions associ	ated with normal system	
2.	Maximum power is deterr states.	nined for the worst-case inst	ruction sequence or function	n for the listed clock contro	
3.	The maximum power diss a solution for thermal dis	ipated in the normal clock co sipation for the AMD-645 Pe	ontrol state must be taken in pripheral Bus Controller proj	to account when designing ressor	

21095A/0-March 1997

9

Switching Characteristics

This section summarizes the AMD-645 Peripheral Bus Controller signal switching characteristics. Valid delay, float, setup, and hold timing specifications are listed.

All signal timings are based on the following conditions:

- The target signals are input or output signals that are switching from logical 0 to 1, or from logical 1 to 0.
- Measurements are taken from the time the reference signal (CCLK, PCLK, or RESET) passes through 1.5 V to the time the target signal passes through 1.5 V.
- All signal slew rates are 1 V/ns, from 0 V to 3 V (rising) or 3 V to 0 V (falling).
- Parameters are within the operating range listed in Table 8-1 on page 8-1.
- The load capacitance (C_L) on each signal is 0 pF.

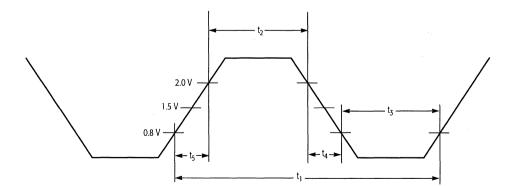

9.1 PCLK Switching Characteristics

Table 9-1 contains the switching characteristics of the PCLK input to the AMD-645 Peripheral Bus Controller as measured at the voltage levels indicated by Figure 9-1.

The PCLK period stability specifies the variance (jitter) allowed between successive periods of the CLK input measured at 1.5 V. This parameter must be considered as one of the elements of clock skew between the AMD-645 Peripheral Bus Controller and the system logic.

	Preliminary Data			
Parameter Description	Min	Max	Figure	Comments
CLK cycle	30 ns	∞		
CLK high time	11.0 ns		9-1	
CLK Low time	11.0 ns		9-1	
CLK fall time	1 V/ns	4V/ns	9-1	
CLK rise time	1 V/ns	4V/ns	9-1	
CLK period stability		± 250 ps		note 1
	CLK high time CLK Low time CLK fall time CLK rise time	Parameter DescriptionMinCLK cycle30 nsCLK high time11.0 nsCLK Low time11.0 nsCLK fall time1 V/nsCLK rise time1 V/ns	Parameter DescriptionMinMaxCLK cycle30 ns∞CLK high time11.0 nsCLK Low time11.0 nsCLK fall time1 V/ns4V/nsCLK rise time1 V/ns	Parameter DescriptionMinMaxCLK cycle30 ns∞CLK high time11.0 ns9-1CLK Low time11.0 ns9-1CLK fall time1 V/ns4V/nsCLK rise time1 V/ns4V/ns

1. Jitter frequency power spectrum peaking must occur at frequencies greater than (CCLK frequency)/3 or less than 500 KHz.

Figure 9-1. PCLK Waveform

Symbol	Parameter Description	Preliminary Data		F :	
		Min	Max	Figure	Comments
tı	Driver jitter		3 ns		
t ₂	Receiver jitter		25 ns	9-1	
t ₃	Output fall time	4 ns	20 ns	9-1	
t ₄	Output rise time	4 ns	20 ns	9-1	
Receiver differential	Source differential skew		5 ns	9-1	
	Receiver differential skew		10 ns		
	Single-ended driver skew		10 ns		
	Frequency	11.97 Mbps	12.03 Mbps		

 Table 9-2.
 USBCLK Switching Characteristics for 12-MHz USB Bus

Symbol	Parameter Description	Preliminary Data		F !	C
		Min	Max	Figure	Comments
tı	Driver jitter		3 ns		
t ₂	Receiver jitter		25 ns	9-1	
t3	Output fall time	75 ns	300 ns	9-1	
t ₄	Output rise time	75ns	300 ns	9-1	
Receiver differentia Single-ended driver	Source differential skew		5 ns	9-1	
	Receiver differential skew		10 ns		
	Single-ended driver skew		10 ns		
	Frequency	1.48 Mbps	1.52 Mbps		

Table 9-3. USBCLK Switching Characteristics for 1.5-MHz USB Bus

Jitter frequency power spectrum peaking must occur at frequencies greater than (CCLK frequency)/3 or less than 500 KHz.

.

Symbol	Parameter Description	Preliminary Data		r !	C
		Min	Max	Figure	Comments
	Frequency		8 MHz		
tı	Clock period	125 ns			
t ₂	Clock High time	49 ns		9-1	
t3	Clock Low time	49 ns	S	9-1	
t ₄	Clock rise time		4 ns	9-1	
t ₅	Clock fall time		4 ns	9-1	· · · ·

Table 9-4. BCLK Switching Characteristics for 8-MHz Bus

Symbol		Preliminary Data			. .
	Parameter Description	Min	Max	Figure	Comments
	Frequency		14.3182 MHz	9-1	
t ₁	Clock period	67 ns	70 ns	9-1	
t ₂	Clock High time	20 ns		9-1	
tz	Clock Low time	20 ns	s	9-1	

9.2 Valid Delay, Float, Setup, and Hold Timings

The following valid delay and float timings for output signals during functional operation are relative to the rising edge of the given clock. The maximum valid delay timings are provided to allow a system designer to determine if setup times can be met. Likewise, the minimum valid delay timings are used to analyze hold times.

The setup and hold time requirements for the AMD-645 Peripheral Bus Controller input signals presented here must be met by any device that interfaces with it to assure the proper operation of the AMD-645 Peripheral Bus Controller.

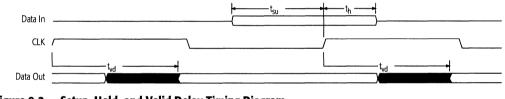


Figure 9-2. Setup, Hold, and Valid Delay Timing Diagram

9.3 PCI Interface Timing

Course of	Demonstern Description	Prelimin	ary Data	F 1	Commente
Symbol	Parameter Description	Min Max 7 ns 9-2	Comments		
	AD31–AD0 setup time	7 ns		9-2	
t _{su}	PREQ, REQD-REQA setup Time	12 ns		9-2	
-3u	Setup time for FRAME, STOP, TRDY, DEVSEL, IRDY, C/BE3-C/BE0	7 ns		9-2	
	AD31-AD0 hold Time	0 ns		9-2	
t _h	Hold time for FRAME, STOP, TRDY, DEVSEL, IRDY, C/BE3-C/BE0	0 ns		9-2	
	AD31–AD0 valid delay (address phase)	2 ns	11 ns	9-2	Pad 12 (note 1)
	AD31-AD0 valid delay (data phase)	2 ns	11 ns	9-2	Pad 12 (note 1)
t _{vd}	valid delay for FRAME, STOP, TRDY, DEVSEL, TRDY C/BE3-C/BE0	2 ns	11 ns	9-2	Pad 13 (note 1)
	PGNT valid delay	2 ns	12 ns	9-2	
t _{fd}	Float delay for FRAME, STOP, TRDY, DEVSEL, IRDY C/BE3-C/BE0		28 ns	9-2	(note 1)
t _{lat}	PREQ to PGNT Latency	2 clks	clks	9-2	
Note: 1. M	easurements are taken with a 50pF load, unless otherwise no	oted.	.		

Table 9-6.PCI Interface Timing

9.4 ISA Interface Timing

Cumhal	Devenuetor Description	Prelimin	ary Data	Figure	Comments
Symbol	Parameter Description	. Min	Max	Figure	
t _{su2a}	LA23-LA17 setup to BALE	150 ns		9-3	
t _{su2b}	LA23-LA17 setup to MEMx	173 ns		9-3	
t _{su3a}	SA19–SA0 setup to BALE	37 ns		9-3	
t _{su3b}	SA19–SA0 setup time to MEMx	34 ns		9-3	
t _{su9}	SD15-SD0 setup to MEMR	24 ns		9-3	
t _{su10}	SD15-SD0 setup to MEMW	-40 ns		9-3	
t _{h2}	BALE to LA23-LA17 hold time	26 ns		9-3	
t _{h3}	MEMx to SA19-SA0Hold	41 ns		9-3	
t _{h6}	LA23-LA17 to MEMCS16 hold	0 ns		9-3	
t _{h9}	MEMR to SD15-SD0 hold time	0 ns		9-3	
t _{h10}	MEMW to SD15-SD0 hold time	45 ns		9-3	an an Aller an Aller and
t _{vd1}	MEMx to BALE valid delay	44 ns		9-3	
t _{vd5}	MEMx to SMEMR & SMEMW		16 ns	9-3	
t _{vd6a}	SA19–SA0, SBHE to MEMCS16 valid delay		35 ns	9-3	
t _{vd6b}	LA23–LA17 to MEMCS16 valid delay		94 ns	9-3	
t _{vd7a}	SA19–SA0, SBHE to ZEROWS delay		200 ns	9-3	
t _{vd7b}	MEMW to ZEROWS delay		16 ns	9-3	
t _{vd8}	MEMx to IOCHRD valid delay		78 ns	9-3	
t _{vd9}	MEMR to SD15–SD0 valid delay		150 ns	9-3	
t _{pw1}	BALE pulse width	50 ns		9-3	
t _{pw4a}	MEMx active pulse width	225 ns		9-3	
t _{pw4b}	MEMx inactive pulse width	163 ns		9-3	
t _{pw8}	IOCHRDY inactive pulse width	120 ns		9-3	
t _{fd9}	MEMR to SD15-SD0 float delay		41 ns	9-3	
t _{fd10}	MEMW to SD15–SD0 float delay	·····	105 ns	9-3	

Table 9-7. ISA Master Interface Timing

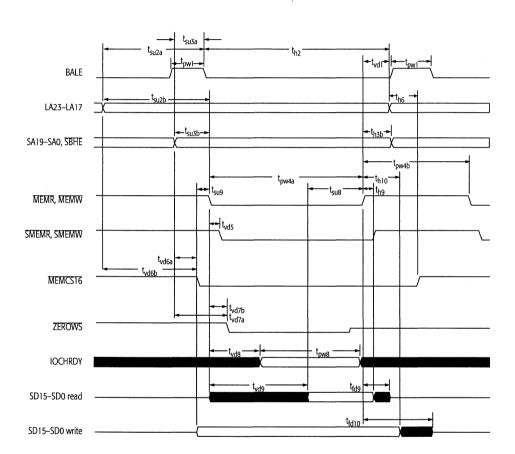
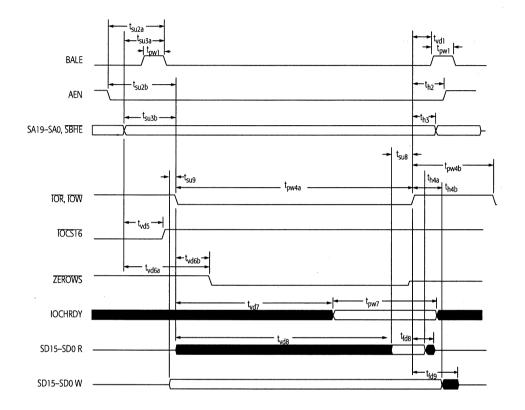
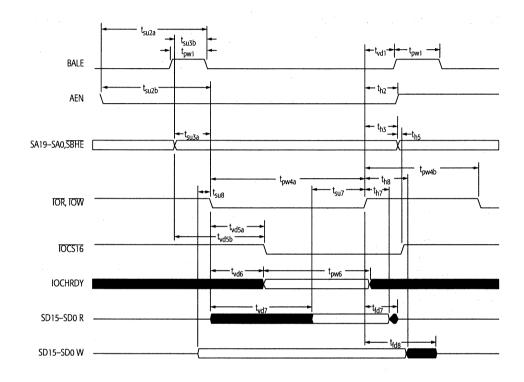



Figure 9-3. ISA Master Interface Timing

C	Demonster Descripti	Prelimin	ary Data	Figure	Commente
Symbol	Parameter Description	Min	Max	Figure	Comments
t _{su2a}	AEN setup to BALE	111 ns		9-4	
t _{su2b}	AEN setup to IOx	111 ns		9-4	
t _{su3a}	SA19-SA0 setup to BALE	37 ns		9-4	
t _{su3b}	SA19-SA0 setup to IOx	100 ns		9-4	
t _{su8}	SD15-SD0 setup to IOR	24 ns		9-4	
t _{su9}	SD15-SD0 setup to IOW	-40 ns		9-4	
t _{h2}	IOx to AEN hold	41 ns		9-4	and a character
t _{h3}	IOx to SA19-SA0Hold	41 ns		9-4	
t _{h4a}	IOR to SD15-SD0 hold	0 ns		9-4	- <u> 1186 - 119</u>
t _{h4b}	IOW to SD15-SD0 hold	45 ns		9-4	Danara - Babanara
t _{vd1}	TOx to BALE valid delay	44 ns		9-4	
t _{vd5}	SA19–SA0 to IOCS16 valid delay		91 ns	9-4	
t _{vd6}	SA19–SA0, SBHE to ZEROWS valid delay		200 ns	9-4	
t _{vd6b}	IOW to ZEROWS valid delay		80 ns	9-4	
t _{vd7}	IOx to IOCHRD valid delay		366 ns	9-4	
t _{vd8}	IOR to SD15–SD0 valid delay		500 ns	9-4	
t _{pw1}	BALE pulse width	50 ns		9-4	
t _{pw4a}	IOx active pulse width	160 ns		9-4	
t _{pw4a}	IOx inactive pulse width	163 ns		9-4	
t _{pw7}	IOCHRDY inactive pulse width	120 ns		9-4	
t _{fd8}	IOR to SD15–SD0 float delay		41 ns	9-4	
t _{fd9}	IOW to SD15–SD0 float delay		105 ns	9-4	

Table 9-8. ISA 8-Bit Slave Interface Timing

AMD-645 Peripheral Bus Controller Data Sheet



6	Demonster Description	Prelimin	ary Data	F ierra	Comm.c
Symbol	Parameter Description	Min	Max	Figure	Comments
t _{su2a}	AEN setup to BALE	150 ns		9-5	
t _{su2b}	AEN setup to IOx	150 ns		9-5	
t _{su3a}	SA19-SA0 setup to IOx	34 ns		9-5	
t _{su3b}	SA19-SA0 setup to BALE	37 ns		9-5	
t _{su7}	SD15-SD0 setup to IOR	24 ns		9-5	
t _{su8}	SD15–SD0 setup to IOW	-40 ns		9-5	
t _{h2}	IOx to AEN hold	26 ns		9-5	
t _{h3}	IOx to SA19–SA0 hold	41 ns		9-5	
t _{h5}	SA19-SA0 to IOCS16 hold	0 ns		9-5	<u> </u>
t _{h7}	IOR to SD15-SD0 hold	0 ns		9-5	
t _{h8}	IOW to SD15-SD0 hold	45 ns		9-5	
t _{vd1}	IOx to BALE valid delay	44 ns		9-5	
t _{vd5a}	IOx to IOCS16 valid delay		16 ns	9-5	
t _{vd5b}	SA19–SA0 to IOCS16 valid delay		35 ns	9-5	
t _{vd6}	IOx to IOCHRD valid delay		78 ns	9-5	
t _{vd7}	IOR to SD15-8 valid delay	1.5 ns	8.5 ns	9-5	
t _{pw1}	BALE pulse width	50 ns		9-5	
t _{pw4a}	IOx active pulse width	160 ns		9-5	
t _{pw4b}	IOx inactive pulse width	163 ns		9-5	
t _{pw6}	IOCHRDY inactive pulse width	120 ns		9-5	
t _{fd7}	IOR to SD15-SD0 float delay		41 ns	9-5	
t _{fd8}	IOW to SD15–SD0 float delay		105 ns	9-5	

Table 9-9. ISA 16-Bit Slave Interface Timing

AMD-645 Peripheral Bus Controller Data Sheet

-		Prelimin	ary Data		6
Symbol	Parameter Description	Min	Max	Figure	Comments
t _{su2}	LA23-LA17 setup to MEMx	23 ns		9-6	
t _{su3}	SA19-SA0 setup to MEMx	23 ns	and a second	9-6	
t _{su7}	SD15-SD0 setup to MEMR	ns		9-6	
t _{su8}	SD15-SD0 setup to MEMW	-54 ns		9-6	
t _{h2}	MEMx to LA23-LA17 hold	ns		9-6	
t _{h3}	MEMx to SA19-SA0 hold	30 ns		9-6	
t _{h7}	MEMR to SD15-SD0 hold time	0 ns		9-6	
t _{h8}	MEMW to SD15-SD0 hold Time	14 ns		9-6	
t _{vd5}	LA23–LA17 to MEMCS16 valid delay		31 ns	9-6	
t _{vd6}	MEMx to IOCHRDY valid delay		85 ns	9-6	
t _{vd7}	IOCHRDY to SD15-SD0 valid delay		69 ns	9-6	
t _{pw4a}	MEMx active pulse width	214 ns		9-6	
t _{pw4b}	MEMx inactive pulse width	92 ns		9-6	
t _{pw5}	IOCHRDY inactive pulse width	120 ns		9-6	
t _{fd7}	MEMR to SD15-SD8 float delay		55 ns	9-6	
t _{fd8}	MEMW to SD15-SD8 float delay		ns	9-6	

Table 9-10. ISA Master-to-PCI Access Timing

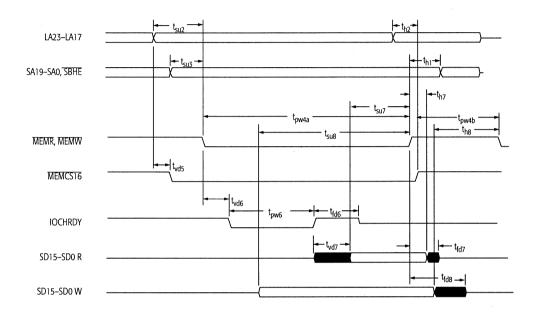


Figure 9-6. ISA Master-to-PCI Access Timing

AMD-645 Periphere	al Bus Control	ler Data Sheet
-------------------	----------------	----------------

		Prelimin	Preliminary Data		6
Symbol	Parameter Description	Min	Max	Figure	Comments
t _{vd1}	DREQ to DACK valid delay	240 ns		9-7	
t _{vd2}	DACK to Address, Data and Control valid delay	71 ns		9-7	
t _{fd}	DACK to Address, Data and Control float delay	0 ns		9-7	
Note: Measurer	nents are taken with no load.			.	

Table 9-11. Other ISA Master Timing

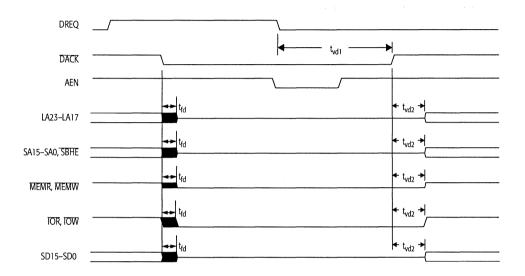


Figure 9-7. Other ISA Master Timing

9.5 DMA Interface Timing

Cumbal	Devenuetor Description	Prelimin	ary Data	Figure	Commente
Symbol	Parameter Description	Min	Max	Figure	Comments
t _{su2}	AEN setup to TOW	111 ns		9-8	
t _{su3}	DACK setup to IOW	312 ns		9-8	
t _{su4}	SA19–SA0,LA23–LA17 setup to MEMR	99 ns		9-8	
t _{su6}	MEMR setup to IOW	-26 ns		9-8	
t _{su10}	SD15-SD0 setup to IOW	225		9-8	
t _{su11}	TC setup to IOW	511		9-8	
t _{h2}	IOW to AEN hold	41 ns		9-8	
t _{h3}	IOW to DACK hold	155 ns		9-8	
t _{h4}	MEMR to SA19-SA0, LA23-LA17 hold	51 ns		9-8	
t _{h6}	IOW to MEMR hold	40 ns		9-8	
t _{h9}	IOCHRDY to MEMR hold	120 ns		9-8	· · · · · · · · · · · · · · · · · · ·
t _{h10}	IOW to SD15-SD0 hold	36 ns		9-8	······································
t _{h11}	IOW to TC hold	71 ns		9-8	
t _{vd1}	IOW to DRQ inactive valid delay		315 ns	9-8	
t _{vd7}	MEMR to SMEMR valid delay		15 ns	9-8	
t _{vd9}	MEMR to IOCDRY valid delay		315 ns	9-8	
t _{pw6a}	MEMR active pulse width	495 ns		9-8	
t _{pw6b}	MEMR inactive pulse width	465 ns		9-8	
t _{pw8a}	IOW active pulse width	495 ns		9-8	
t _{pw8b}	IOW inactive pulse width	465 ns		9-8	
t _{pw9}	IOCHRDY inactive pulse width	125 ns		9-8	
t _{pw11}	TC active pulse width	700 ns		9-8	

Table 9-12. DMA Read Cycle Timing

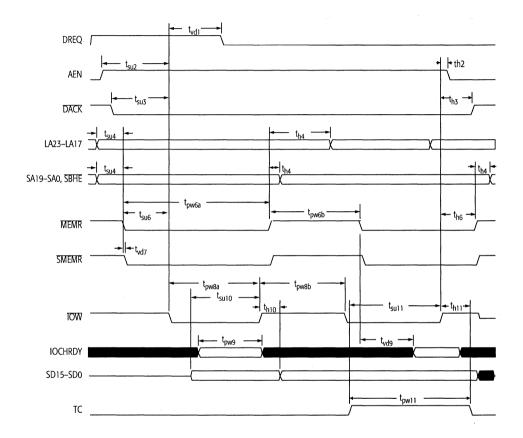


Figure 9-8. DMA Read Cycle Timing

C	Devenueter Description	Prelimin	ary Data	Fierres	Commercia-
Symbol	Parameter Description	Min	Max	Figure	Comments
t _{su2}	AEN setup to IOR	111 ns		9-9	
t _{su3}	DACK Setup to IOR	73 ns		9-9	
t _{su4}	SA19-SA0,LA23-LA17 setup to MEMW	99 ns		9-9	
t _{su10}	SD15-SD0 setup to IOR			9-9	······
t _{su11}	TC setup to IOR	511 ns		9-9	
t _{h2}	IOR to AEN hold	41 ns		9-9	
t _{h3}	IOR to DACK hold	100 ns		9-9	
t _{h4}	MEMW to SA19-SA0, LA23-LA17 hold	51 ns		9-9	
t _{h6}	IOR to MEMW hold	40 ns		9-9	
t _{h10}	IOR to SD15-SD0 hold	0 ns		9-9	
t _{h11}	IOR to TC hold	71 ns		9-9	
t _{vd1}	IOR to DRQ valid delay		558 ns	9-9	
t _{vd6}	IOR to MEMW valid delay	230 ns		9-9	
t _{vd7}	MEMW to SMEMW valid delay		15 ns	9-9	
t _{vd8}	IOR to SD15-SD0 valid delay		237 ns	9-9	,
t _{vd9}	MEMW to IOCDRY valid delay		315 ns	9-9	
t _{pw6a}	MEMW active pulse width	495 ns		9-9	
t _{pw6b}	MEMW inactive pulse width	465 ns		9-9	
t _{pw8a}	IOR active pulse width	760 ns		9-9	
t _{pw8b}	IOR inactive pulse width	160 ns		9-9	
t _{pw9}	IOCHRDY inactive pulse width	125 ns		9-9	
t _{pw11}	TC active pulse width	700 ns		9-9	

Table 9-13. DMA Write Cycle Timing

Cumbal	Demonster Description	Prelimin	ary Data	ri	Comments
Symbol	Parameter Description	Min	Max	Figure	
t _{h1a}	IOW to DREQ hold	82 ns		9-9	
t _{h1b}	IOR to DREQ hold	82 ns		9-9	
t _{h3a}	IOW to DACK hold	30 ns		9-9	
t _{h3b}	IOR to DACK hold	30 ns		9-9	
t _{h10}	IOW to TC hold	0 ns		9-9	
t _{vd4a}	AEN to IOW valid delay	111 ns		9-9	
t _{vd4b}	DACK to IOW valid delay	77 ns		9-9	
t _{vd7a}	AEN to TOR valid delay	111 ns		9-9	
t _{vd7b}	DACK to IOR valid delay	77 ns		9-9	
t _{pw4a}	IOW active pulse width	110 ns		9-9	
t _{pw4b}	IOW inactive pulse width	115 ns		9-9	
t _{pw7a}	IOR active pulse width	110 ns		9-9	
t _{pw7b}	IOR inactive pulse width	115 ns		9-9	, 10.010.0000000000000000000000000000000
t _{fd7}	IOR to SD15–SD8 float delay		61 ns	9-9	

Table 9-14. Type F DMA Interface Timing

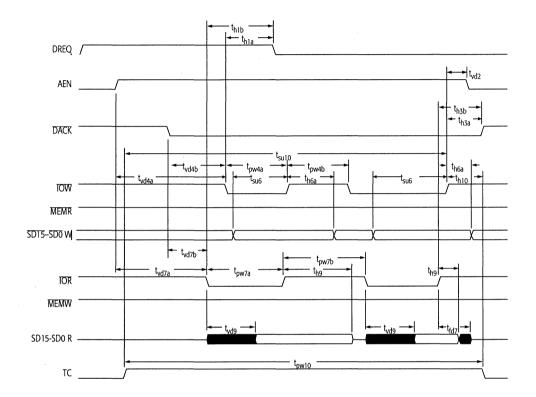


Figure 9-10. Type F DMA Interface Timing

9.6 X-Bus Interface Timing

	Devenueter Description	Prelimin	Preliminary Data		Commonto
Symbol	Parameter Description	Min	Max	Figure	Comments
t _{su7}	XOE1 setup to XDIR	-2 ns	8 ns	9-11	
t _{su8}	SD15-SD0R setup to MEMR, IOR	24 ns		9-11	
t _{su10}	SD15-SD0W setup to MEMW, IOW	24 ns		9-11	
t _{su11}	XOE setup to XDIR1	0 ns		9-11	
t _{h8}	MEMR, IOR to SD15-SD0R hold	0 ns		9-11	
t _{h10}	MEMW, IOW to SD15-SD0W hold			9-11	
t _{vd4}	LA23–LA17, SA19–SA0 to PCCS valid delay		35 ns	9-11	
t _{vd6}	MEMR, IOR to XOE1		29 ns	9-11	
t _{vd7}	MEMR, IOR to XDIR valid delay		25 ns	9-11	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
t _{vd8}	MEMR, IOR, to SD15–SD0R valid delay			9-11	
t _{vd10}	MEMW, IOW to SD15–SD0W valid delay			9-11	
t _{vd11}	MEMW, IOW to XOE		29 ns	9-11	
t _{vd12}	MEMW, IOW to XDIR1 valid delay		25 ns	9-11	

Table 9-15. X-BUS Interface Timing

21095A/0-March 1997

AMD-645 Peripheral Bus Controller Data Sheet

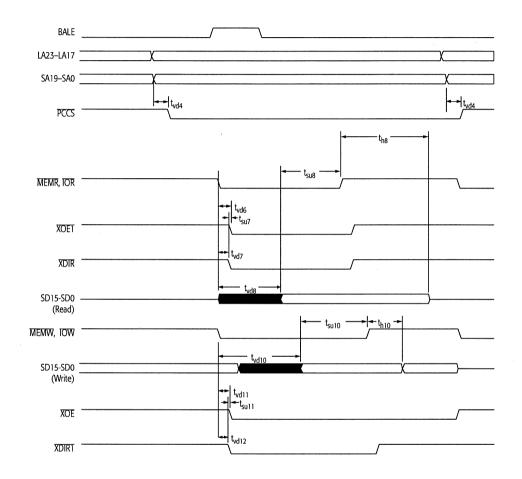


Figure 9-11. X-Bus Interface Timing

9.7 EIDE Interface

Table 9-16. EIDE PIO

Symbol	Description		Mode 0	Mode 1	Mode 2	Mode 3	Mode 4
t _{cyc}	Cycle time (DIOW/R to DIOW/R)	min	600	383	240	180	120
t _{su1}	IDE address setup DIOW/R	max	70	50	30	30	25
t _{pw1}	8-bit DIOW/R pulse width	min	290	290	290	80	70
t _{pw1}	16-bit DIOW/R pulse width	min	165	125	100	80	70
t _{rec}	DIOW/R recovery time	min	-	-	_	70	25
t _{su2}	Write data setup	min	60	45	30	30	20
t _{h2}	Write data hold	min	30	20	15	10	10
t _{su3}	Read data setup from drive	min	50	350	20	20	20
t _{h3}	Read data hold from drive	min	5	5	5	5	5
t _{vd1}	PCLK to DD15-DD0 valid delay	min	2	2	2	2	2
t _{vd1}	PCLK to DD15-DD0 valid delay	max	20	20	20	20	20
t _{su4}	DD15-DD0 to PCLK setup	min	10	10	10	10	10
t _{h4}	PCLK to DD15-DD0 hold	min	4	4	4	4	4
t _{vd2}	PCLK to DA2–DA0 valid delay	min	2	2	2	2	2
t _{vd2}	PCLK to DA2-DA0 valid delay	max	20	20	20	20	20
t _{vd3}	PCLKC to MASTER, SOE, DIOx, DCSxx valid delay	min	2	2	2	2	2
t _{vd3}	PCLKC to MASTER, SOE, DIOx, DCSxx valid delay	max	20	20	20	20	20
t _{su5}	IORDY setup	min	20	20	20	20	20
t _{h5}	PCLK to DRDYx hold	min	5	5	5	5	5
lote: All timing	gs are in nanoseconds.						

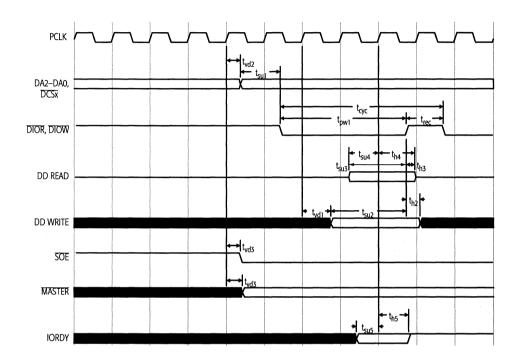


Figure 9-12. EIDE PIO

21095A/0-March 1997

AMD-645 Peripheral Bus Controller Data Sheet

Symbol	Description		Single-Word			Multi-Word		
			Mode 0	Mode 1	Mode 2	Mode 0	Mode 1	Mode 2
t _{cyc}	Cycle time (DMACK to DMACK)	min	960	480	240	480	150	120
t _{vd1}	DMACK to DMARQ valid delay	max	200	100	80			35
t _{pw1}	DIOW/R pulse width	min	480	240	120	215	80	70
t _{pw2}	DIOR deasserted pulse width	min	-	-	_	50	50	25
t _{pw3}	DIOW deasserted pulse width	min	-	-	_	215	50	25
t _{h1}	DIOR data hold time	min	5	5	5	5	5	5
t _{su1}	DIOW data setup time	min	250	100	35	100	30	20
t _{su2}	DMACK to DIOW/R setup	min	0	0	0	0	0	0
t _{h2}	DIOW data hold	min	5	5	5	5	5	5
t _{su2}	DMACK to DIOW/R	min	0	0	0	0	0	0
t _{h3}	DIOW/R to DMACK hold	min	0	0	0	20	5	5
t _{vd3}	DIOR to DMARQ valid delay	min				120	40	35
t _{vd4}	DIOW to DMARQ valid delay					40	40	35
t _{vd5}	PCLK to DD15-DD0 valid delay	min	2	2	2	2	2	2
t _{vd5}	PCLK to DD15-DD0 valid delay	max	20	20	20	20	20	20
t _{su4}	DD15-DD0 to PCLK setup	min	10	10	10	10	10	10
t _{h4}	PCLK to DD15-DD0 hold	min	4	4	4	4	4	4
t _{vd7}	PCLKC to MASTER, SOE, DIOx, DCSxx valid delay	min	2	2	2	2	2	2
t _{vd7}	PCLKC to MASTER, SOE, DIOx, DCSxx valid delay	max	20	20	20	20	20	20
t _{su5}	DDRQx to PCLK	min	10	10	10	10	10	10
t _{h5}	PCLK to DDRQx hold	min	2	2	2	2	2	2
t _{vd8}	DDACKx to PCLK valid delay	min	2	2	2	2	2	2
t _{vd8}	DDACKx to PCLK valid delay	min	20	20	20	20	20	20

Table 9-17. EIDE DMA

AMD-645 Peripheral Bus Controller Data Sheet

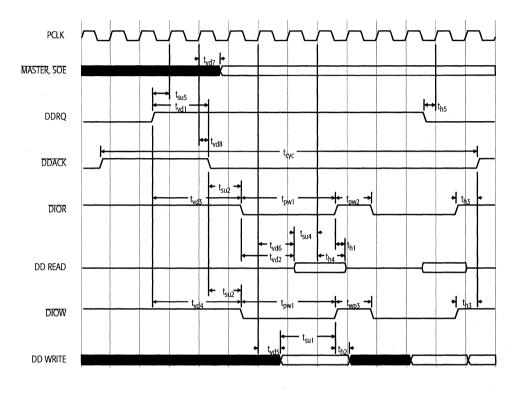


Figure 9-13. EIDE DMA

9.8 Ultra DMA-33 IDE Bus Interface Timing

c		Prelimin	ary Data	r:	Commonto
Symbol	Parameter Description	Min	Max	Figure	Comments
t _{env1}	Envelope time for read initial	20 ns	70 ns	5-20	11.11.07 <u>6.2 1 </u>
t _{ds1}	Data setup time for read initial	34 ns		5-20	
t _{dh1}	Data hold time for read initial (rise)	6 ns		5-20	
t _{env2}	Envelope time for write initial (rise)	20 ns	70 ns	5-24	
t _{dvs2}	Data setup time for write initial (fall)	34 ns		5-24	
t _{dvh2}	Data hold time for write initial (fall)	6 ns		5-24	
t _{dvs2}	Data setup time for write initial	34 ns		5-24	
t _{dvh2}	Data hold time for write initial	6 ns		5-24	
t _{rfs}	READY to final STROBE time		50 ns	5-21	
t _{rp}	READY to Pause time	100 ns		5-21	
t _{li4}	Limited interlock time (to STOP)	0 ns	150 ns	5-22	
t _{li4}	Limited interlock time (to Host DMARDY)	0 ns	150 ns	5-22	
t _{za4}	Delay time required for output drives turning on	20 ns		5-22	
t _{dvs4}	Data setup time for read terminating	34 ns		5-22	
t _{dvh4}	Data hold time for read terminating	6 ns		5-22	
t _{li5}	Limited interlock time (to STOP)	0 ns	150 ns	5-25	
t _{li5}	Limited interlock time (to Host STROBE)	0 ns	150 ns	5-25	
t _{mli5}	Limited interlock time with minimum	20 ns		5-25	
t _{dvs5}	Data setup time for write terminating	34 ns		5-25	
t _{dvh5}	Data hold time for write terminating	6 ns		5-25	
t _{mli6}	Limited interlock time with minimum	20 ns		5-23	
t _{za6}	Delay time required for output drives turning on	34 ns		5-25	
t _{li5}	Limited interlock time	0 ns	150 ns	5-27	
t ₂	Delay time of PCLK to DCS3, DCS1	2 ns	20 ns	5-27	
t3	Delay time of PCLK to DA2-DA0	2 ns	20 ns	5-27	
t ₄	Delay time of PCLK to DIOW	2 ns	20 ns	5-27	
t ₅	Delay time of PCLK to DIOR	2 ns	20 ns	5-27	ан на стана и се су стурите на селото на С
t _{wds}	Data setup time during PIO and DMA write	30 ns		5-27	
t _{wdh}	Data hold time during PIO and DMA write	20 ns		5-27	
t _{rds}	Data setup time during PIO and DMA read	30 ns		5-27	
t _{rdh}	Data hold time during PIO and DMA read	20 ns		5-27	

Table 9-18. UltraDMA-33 IDE Bus Interface Timing

10 IBIS Models

All of the AMD-645 Peripheral Bus Controller's inputs, outputs, and bidirectional buffers are implemented using a 3.3-V buffer design. In addition, a subset of the controller's I/O buffers includes a second, higher drive strength option.

AMD has developed several I/O buffer models that represent the characteristics of each of the possible drive strength configurations supported by the AMD-645 Peripheral Bus Controller.

AMD developed the models to allow system designers to perform analog simulations of AMD-645 Peripheral Bus Controller signals that interface with the rest of the system. Analog simulations are used to determine a signal's time of flight from source to destination and to ensure that the system's signal quality requirements are met. Signal quality measurements include overshoot, undershoot, slope reversal, and ringing.

10.1 I/O Buffer Model

AMD provides models of the AMD-645 Peripheral Bus Controller I/O buffers for system designers to use in boardlevel simulations. These I/O buffer models conform to the I/O Buffer Information Specification (IBIS), Version 2.1.

Each I/O model contains voltage versus current (V/I) and voltage versus time (V/T) data tables for accurate modeling of I/O buffer behavior.

The following list summarizes the properties of each I/O buffer model:

- All data tables contain minimum, typical, and maximum values to allow for worst-case, typical, and best-case simulations, respectively.
- The pullup, pulldown, power clamp, and ground clamp device V/I tables contain enough data points to accurately

represent the nonlinear nature of the V/I curves. In addition, the voltage ranges provided in these tables extend beyond the normal operating range of the AMD-645 Peripheral Bus Controller for those simulators that yield more accurate results based on this wider range.

- Rising and falling ramp rates are specified.
- The min/typ/max V_{CC3} operating range is specified as 3.135 V, 3.3 V, and 3.465 V, respectively.
- $V_{il} = 0.8 V$, $V_{ih} = 2.0 V$, and $V_{meas} = 1.5 V$.
- The R/L/C of the package is modeled.
- The capacitance of the silicon die is modeled.
- The model assumes 0 capacitance, resistance, inductance, and voltage in the test load.

10.2 I/O Model Application Note

For the AMD-645 Peripheral Bus Controller I/O Buffer IBIS Models and their application, refer to the AMD-645 Peripheral Bus Controller I/O Model (IBIS) Application Note, order# 21340.

The model is available at http://www.amd.com

10.3 I/O Buffer AC and DC Characteristics

Refer to Section 9 for the AMD-645 Peripheral Bus Controller AC timing specifications.

Refer to Section 8 for the AMD-645 Peripheral Bus Controller DC specifications.

10.4 **References**

Ease System Simulation With IBIS Device Models by Syed Huq, *Electronics Design*, Dec 2, 1996

IBIS 2.1 Specification at http://vhdl.org/

IBIS Forum I/O Buffer Modeling Cook Book

11 Pin Designations

11.1 Pin Designation Table

The 208 pins of the AMD-645 Peripheral Bus Controller are listed in the following tables, grouped according to their functions.

Table 11-1. Functional Grouping

EIDE I	nterface	USB II	nterface	Keyboar	d Interface	Intern	al RTC
Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name
50	DIORA HDMARDYA/ HSTROBEA	95 96 97	USBDATAO+ USBDATAO- USBDATA1+	108 109 110	KBCK/KA20G KBDT/KBRC MSCK/IRQ1	104 105 102	RTCX1/IRQ8 RTCX2/RTCCS VBAT
51	DIOWA/ STOPA	98 99	USBDATA1- USBCLK	111 147	MSDT/IRQ12 A20M		
54	DIORB/ HDAMRDYB/ HSTROBEB			106	KEYLOCK/MIRQ1		
55	DIOWB/ STOPB						
49	DRDYA/ DDMARDYA/ DSTROBEA						
89	DRDYB/ DDMARDYB DSTROBEB						
56	SOE						
45	DDRQA						
46	DDRQB						
47	DDACKA						
48	DDACKB						

Table 11-1. Functio	nal Grouping	(continued)
---------------------	--------------	-------------

ISA Bus Control				PCI Bus Interface		Reset & Clock		CPU Interface	
Pin No	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	
5 8 29 15 32 128 129 127 126 61 71 72 73 74 75 132 130 57 30 7 16 59 133 131 33 131 33 131 33 134	SA15/DD15 SA14/DD14 SA13/DD13 SA12/DD12 SA11/DD11 SA10/DD10 SA9/DD9 SA8/DD9 SA8/DD9 SA8/DD9 SA8/DD8 SA7/DD7 SA6/DD6 SA5/DD5 SA4/DD4 SA3/DD3 SA2/DD2 SA1/DD1 SA0/DD0 SA16 LA23/DC538 LA22/D22 SD14/ SD13/ SD12/ SD12/ SD14/ SD13/ SD12/ SD14/ SD13/ SD12/ SD14/ SD13/ SD12/ SD14/ SD14/ SD14/ SD14/ SD16/ SD17/ S	20 21 22 23 24 25 27 28 36 37 38 40 41 42 43 44 19 63 64 65 66 67 69 70 86 85 83 82 81 80 78 77 62 12 11 123 124 10 9 35 125 76	PCLK FRAME AD31 AD29 AD28 AD27 AD26 AD25 AD24 AD23 AD24 AD23 AD24 AD23 AD24 AD21 AD20 AD19 AD18 AD17 AD16 AD19 AD18 AD17 AD16 AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8 AD17 AD16 AD15 AD14 AD13 AD12 AD10 AD9 AD8 AD7 AD6 AD5 AD12 AD1 AD9 AD8 AD7 AD6 AD5 AD12 AD1 AD10 AD9 AD8 AD7 AD6 AD5 AD1 AD1 AD0 AD9 AD8 AD7 AD6 AD5 AD1 AD0 AD9 AD8 AD7 AD6 AD5 AD1 AD0 AD9 AD8 AD7 AD6 AD5 AD1 AD0 AD9 AD8 AD7 AD6 AD5 AD1 AD0 AD9 AD8 AD7 AD6 AD5 AD1 AD0 AD9 AD8 AD7 AD6 AD5 AD1 AD0 AD9 AD8 AD7 AD6 AD5 AD1 AD0 AD9 AD8 AD7 AD6 AD5 AD1 AD7 AD6 AD5 AD1 AD7 AD6 AD5 AD7 AD6 AD5 AD7 AD6 AD7 AD6 AD7 AD7 AD6 AD7 AD7 AD6 AD7 AD7 AD6 AD7 AD7 AD7 AD6 AD7 AD7 AD7 AD7 AD7 AD7 AD7 AD7 AD7 AD7	2 181 204 203 200 199 196 195 192 191 190 189 187 186 185 187 186 185 187 169 168 167 168 167 168 167 168 167 168 167 168 167 168 155 154 155 154 152 194 182 173 162 180 177 176 178 177 176 178 177 162 180 177 176 178 177 162 180 177 162 180 177 176 178 177 162 180 177 162 180 177 162 180 177 162 180 177 162 180 177 162 180 177 162 180 177 162 180 177 162 180 177 162 180 177 162 180 177 162 180 177 162 180 177 162 164 165 164 165 164 155 154 152 194 162 162 178 176 165 165 165 165 164 165 165 159 158 155 154 152 194 155 154 155 155 154 155 154 155 155	PWRCD PCIRST RSTDRV BCLK OSC	138 3 4 14 6	CPURST INTR NMI INIT STPCIK SMI FERR IGENN	142 145 146 143 148 149 141 139	

21095A/0-March 1997

Onboard Plug-N-Play		XD Interface		Power & Ground		Power Management/ General Purpose I/O	
Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name
90	MDRQ0/APICCS	122	XD7/EXTSMI7/	17	VDD5	91	PWRBTN
106	MIRQ1/KEYLOCK		GPI7/GPO7	34	VDD5	107	PWRON
137	MIRQ2/MASTER	121	XD6/EXTSMI6/	53	VDD5	93	RI
	.,		GPI6/GPO6	79	VDD5	94	GPIO0/EXTSMI0
		119	XD5/EXTSMI5/	115	VDD5	87	GPIO11/EXTSMI1
			GPI5/GPO5	103	VDD-5VSB		I2CD1
		118	XD4/EXTSMI4/	144	VDD3	88	GPIO12/EXTSMI2
			GPI4/GPO4	157	VDD PCI		I2CD2
		117	XD3/EXTSMI3/	171	VDD PCI	92	GPIO13/EXTSMI
			GPI3/GPO3	184	VDD PCI		GPI RE
		116	XD2/EXTSMI2/	198	VDD PCI	136	GPIO14/EXTSMI
			GPI2/GPO2	100	AVDD		GPO_WE
		114	XD1/EXTSMIT/	101	AGND		
			GPI1/GPO1	13	GND		
		113	XD0/EXTSMI0/	26	GND		
			GPI0/GPO0	39	GND		
		112	XDIR	52	GND		
		135	ROMCS/KBCS	68	GND		
				84	GND		
				120	GND		
				140	GND		
				156	GND		
				166	GND		
				177	GND		
				188	GND		
				197	GND		
				208	GND		

 Table 11-1.
 Functional Grouping (continued)

11.2 Pin Diagram

Figure 11-1 shows the pin arrangement of the AMD-645 Peripheral Bus Controller.

Figure 11-1. AMD-645 Peripheral Bus Controller Pin Diagram

21095A/0-March 1997

AMD-645 Peripheral Bus Controller Data Sheet

12 Package Specifications

The AMD-645 Peripheral Bus Controller is available as a 208pin plastic quad flat pack (PQFP). The thermal specifications are as follows:

 $\theta_{JA} = 37 \text{ °C/W}$

 $\theta_{\rm IC} = 4.7 \ {\rm ^oC/W}$

Figure 12-1 is a drawing of the 208-pin PQFP.

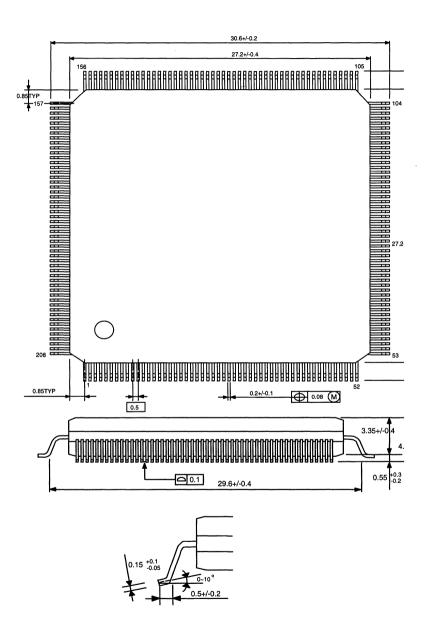


Figure 12-1. 208-Pin Plastic Quad Flat Pack Outline Drawing

Sales Offices

North American

	-
ALABAMA(205) 830-9192	
ARIZONA	
CALIFORNIA.	
Calabasas	
Irvine	
Sacramento (Roseville)	
San Diego	
San Diego	
CANADA, Ontario,	
Kanata	
Woodbridge	
COLORADO	
CONNECTICUT	
FLORIDA.	
Clearwater	
Ft. Lauderdale	
Orlando (Longwood)	
GEORGIA	
IDAHO	
ILLINOIS, Chicago (Itasca)	
KENTUCKY	
MARYLAND	
MASSACHUSETTS	
MINNESOTA	
NEW JERSEY.	
Cherry Hill	
Parsippany	
NEW YORK.	
Brewster	
Rochester	
NORTH CAROLINA.	
Charlotte	
Raleigh	
OHIO.	
Columbus (Westerville)	
Davton	
OREGON	
PENNSYLVANIA	
TEXAS.	
Austin	
Dallas	
Houston	

International

AUSTRALIA, N Sydney	TEL (61) 2 9959-1937
	FAX (61) 2 9959-1037
BELGIUM Antwerpen	TEL (03) 248-4300
BEEGION, Antholpon	FAX (03) 248-4642
A	FAX (03) 240-4042
CHINA,	
Beijing	TEL (8610) 501-1566
	FAX (8610) 465-1291
Shandhai	TEL (8621) 6267-8857
Changhai	
	TEL (8621) 6267-9883
	FAX (8621) 6267-8110
FINLAND, Helsinki	TEL (358) 9 881 3117
	FAX (358) 9 804 1110
EBANCE Paris	TEL (1) 49-75-1010
110.100E, 1 and	
	FAX (1) 49-75-1013
GERMANY,	
	TEL (06172) 92670
Bad Homburg	FAX (06172) 23195
Bad Homburg	FAX
Bad Homburg	FAX
Bad Homburg	FAX (06172) 23195 TEL (089) 450530 FAX (089) 406490 TEL (852) 2956-0388
Bad Homburg München HONG KONG, Kowloon	FAX (06172) 23195 TEL (089) 450530 FAX (089) 406490 TEL (852) 2956-0388 FAX (852) 2956-0588
Bad Homburg München HONG KONG, Kowloon	FAX (06172) 23195 TEL (089) 450530 FAX (089) 406490 TEL (852) 2956-0388 FAX (852) 2956-0588
Bad Homburg München HONG KONG, Kowloon	FAX (06172) 23195 TEL (089) 450530 FAX (089) 406490 TEL (852) 2956-0388 FAX (852) 2956-0588 TEL (02) 381961
Bad Homburg München HONG KONG, Kowloon ITALY, Milano	FAX (06172) 23195 TEL (089) 450530 FAX (089) 406490 TEL (852) 2956-0388 FAX (852) 2956-0588
Bad Homburg München HONG KONG, Kowloon ITALY, Milano JAPAN,	FAX
Bad Homburg München HONG KONG, Kowloon ITALY, Milano JAPAN,	FAX (06172) 23195 TEL (089) 450530 FAX (089) 406490 TEL (852) 2956-0388 FAX (852) 2956-0588 TEL (02) 381961 FAX (02) 3810-3458 TEL (06) 243-3250
Bad Homburg München HONG KONG, Kowloon ITALY, Milano JAPAN, Osaka	FAX (06172) 23195 TEL (089) 450530 FAX (089) 450530 FAX (089) 450530 TEL (852) 2956-0588 FAX (852) 2956-0588 TEL (02) 381961 FAX (02) 3810-3458 TEL (02) 3810-3458 TEL (06) 243-3250 FAX (06) 243-3253
Bad Homburg München HONG KONG, Kowloon ITALY, Milano JAPAN, Osaka	FAX (06172) 23195 TEL (089) 450530 FAX (089) 450530 FAX (089) 450530 TEL (852) 2956-0588 FAX (852) 2956-0588 TEL (02) 381961 FAX (02) 3810-3458 TEL (02) 3810-3458 TEL (06) 243-3250 FAX (06) 243-3253
Bad Homburg München HONG KONG, Kowloon ITALY, Milano JAPAN, Osaka	FAX (06172) 23195 TEL (089) 450530 FAX (089) 406490 TEL (852) 2956-0388 FAX (852) 2956-0588 TEL (02) 381961 FAX (02) 3810-3458 TEL (06) 243-3250

KOREA, Seoul		
SINGAPORE, Singapore	TEL	
SCOTLAND, Stirling	TEL	(65) 338-1611 (44) 7186-450024
SWITZERLAND, Geneva		(44) 1786-446188 (41) 22-788-0251
SWEDEN,	FAX	(41) 22-788-0617
Stockholm area (Bromma)		(08) 629-2850
TAIWAN, Taipei	TEL	
UNITED KINGDOM,		
London area (Woking)	FAX	(01483) 74-0440 (01483) 75-6196
Manchester area (Warrington)		(01925) 83-0380 (01925) 83-0204

North American Representatives

North American hepresentatives	
ARIZONA.	
Scottsdale - THORSON DESERT STATES	(602) 998-2444
CALIFORNIA.	(,
Chula Vista – SONIKA ELECTRONICA	(619) 498-8340
CANADA.	. ,
Burnaby, B.C. – DAVETEK MARKETING	(604) 430-3680
Dorval, Quebec - POLAR COMPONENTS	(514) 683-3141
Kanata, Ontario - POLAR COMPONENTS	(613) 592-8807
Woodbridge, Ontario - POLAR COMPONENTS	
ILLINOIS,	
Skokie – INDUSTRIAL REPS, INC.	(847) 967-8430
INDIANA,	
Kokomo – SCHILLINGER ASSOC	(317) 457-7241
IOWA,	
Cedar Rapids – LORENZ SALES	(319) 377-4666
KANSAS,	
Merriam – LORENZ SALES	
Wichita – LORENZ SALES	(316) 721-0500
MEXICO,	
Guadalajara – SONIKA ELECTRONICA	
Mexico City – SONIKA ELECTRONICA	
Monterrey – SONIKA ELECTRONICA	(528) 358-9280
MICHIGAN,	
Brighton – COM-TEK SALES, INC	
Holland – COM-TEK SALES, INC	(616) 335-8418
MINNESOTA,	
Edina – MEL FOSTER TECH. SALES, INC	(612) 941-9790
MISSOURI,	
St Louis – LORENZ SALES	(314) 997-4558
NEBRASKA,	
Lincoln – LORENZ SALES	(402) 475-4660
NEW YORK,	
Plainview – COMPONENT CONSULTANTS	
East Syracuse – NYCOM	
Fairport – NYCOM	(716) 425-5120
OHIO,	
Centerville – DOLFUSS ROOT & CO	
Powell – DOLFUSS ROOT & CO	
Middleburg Hts - DOLFUSS ROOT & CO	(216) 816-1660
PUERTO RICO,	
Caguas - COMP REP ASSOC, INC	(787) 746-6550
UTAH,	
Murray – FRONT RANGE MARKETING	(801) 288-2500
WASHINGTON,	(
Kirkland - ELECTRA TECHNICAL SALES	(206) 821-7442
WISCONSIN,	
Pewaukee – Industrial Representatives, Inc	(414) 574-9393

Advanced Micro Devices reserves the right to make changes in its product without notice in order to improve design or performance characteristics. The performance characteristics listed in this document are guaranteed by specific tests, guard banding, design and other practices common to the industry. For specific testing details, contact your local AMD sales representative. The company assumes no responsibility for the use of any circuits described herein.

One AMD Place P.O. Box 3453 Sunnyvale, California 94088-3453 408-732-2400 Toll Free 800-538-8450 TWX 910-339-9280 TELEX 34-6306

TECHNICAL SUPPORT &

LITERATURE ORDERING USA 800-222-9323 USA PC CPU Technical Support 408-749-3060

> JAPAN 03-3346-7550 Fax 03-3346-9628 FAR EAST Fax 852-2956-0599

EUROPE & UK 44-(0)-1276-803299 Fax 44-(0)-1276-803298 BBS 44-(0)-1276-803211 FRANCE 0590-8621 GERMANY 089-450-53199 ITALY 1678-77224

ARGENTINA 001-800-200-1111, after tone 888-263-8500 BRAZIL 000-811-718-5573 CHILE 800-570-048 MEXICO 95-800-263-4758

PC CPU Technical Support E-mail: hwsupt@brahms.amd.com Europe Technical Support E-mail: euro.tech@amd.com Europe Literature Request E-mail: euro.lit@amd.com http://www.amd.com

Printed in USA Con-5.4M-3/97-1 21095A