END.ITEM MODEL NO
END.ITEM PART NO.

SALES ORDER NO

\qquad
SERIAL NO \qquad
DATE

8500 Series Disc Memory Unit OPERATION \& MAINTENANCE MANUAL

DATAPOINT CORPORATION

REVISION RECORD	
REVISION	DESCRIPTION
A	Manual released
$(7-31-77)$	
B	Pages affected: Title, ii, iii, 6-2, 6-9, 6-10, 6-13, 6-63, mailer
$(1-31-78)$	

Address comments concerning this manual to:
AMCOMP, INC.
Technical Publications
686 WEST MAUDE AVENUE
SUNNYVALE, CALIFORNIA 94086
or use mailer in the back of this manual

LIST OF EFFECTIVE PAGES

Changes, deletions, and additions to information in this manual are indicated by bars in the margins or by an asterisk near the page number if the entire page is affected. A bar by the page number indicates pagination rather than change of page content.

PREFACE

This manual describes the AMCOMP 8500 Series Disc Memory Unit with the AMCODE adapter PC board. The disc memory unit is a fixed-head, head-per-track digital disc recording device of random access and high performance.

This manual is divided into six chapters as follows:

Chapter 1-General Information
Chapter 2 - Installation and Checkout
Chapter 3 - Operation and Interface
Chapter 4-Theory of Operation
Chapter 5 - Maintenance
Chapter 6 - Drawings and Parts Lists

TABLE OF CONTENTS

CHAPTER 1 - GENERAL INFORMATION

Paragraph Page
1-1 Introduction 1-1
1-2 General Description 1-1
1-3 Functional Description 1-1
1-4 Physical Description 1-6
1-5 Mechanical Organization 1-6
1-6 Electronic Packaging 1-7
CHAPTER 2 - INSTALLATION AND CHECKOUT
2-1 Introduction 2-1
2-2 Equipment Location 2-1
2-3 Daisy-Chain Configuration 2-1
2-4 Unpacking and Inspection 2-1
2-5 Disc Unit Selection 2-7
2-6 Shipment Protection 2-7
2-7 Disc Unit Mounting 2-7
2-8 Checkout 2-7
2-9 Voltage Selection 2-9
2-10 Packing for Reshipment 2-9
CHAPTER 3 - OPERATION AND INTERFACE
3-1 Introduction 3-1
3-2 Operation and Timing Considerations 3-1
Basic Timing 3-1
3-3
Timing and Control 3-1
Write Clock Timing 3-2
3-5
Track Selection and Timing 3-3
3-6
Write Mode of Operation and Timing 3-4
3-7
Read Mode of Operation and Timing
Read Mode of Operation and Timing 3-4 3-4
3-8
3-8
Interface Signals 3-5
3-10 Unit Select 3-5
3-11 Write 3-7
3-12 Read 3-7
3-13 Write Data 3-7
3-14 Write Clock In 3-7
3-15 Track Address 3-7
3-16 Sector Write 3-7
3-17 Track Origin 3-7

TABLE OF CONTENTS (continued)
Paragraph Page
3-18 Read Data 3-7
3-19 Read Clock 3-8
3-20 Write Clock Out 3-8
3-21 Sector Clock 3-8
3-22
Disc Ready 3-83-23
3-24 Bus Terminated 3-8Illegal Address3-8
3-25
Interface Logic Levels 3-8
CHAPTER 4 - THRORY OF OPERATION
4-1
Introduction 4-1
4-2 Logic Diagram and Signal Information 4-1
4-3 Key to Basic Symbology 4-2
4-4 Functional Description 4-2
4-5
Data Recording 4-2
4-6
Data Recording by the AMCODE Method 4-5
4-7
Circuit Descriptions 4-6
4-8 Timing and Control Circuits 4-6
4-9 C lock Amplifier Circuits 4-64-10
Phase Locked Loop 4-7
Clock Decoder 4-7

Selection Matrix

Selection Matrix 4-7 4-7
Write Mode (Write Encoder)
Write Mode (Write Encoder) 4-8 4-8
4-12
4-12Read Mode4-12
4-15 Read Mode (Data Amplifier and Threshold Sampler) 4-14
4-16 Ready Circuit 4-15
4-17 Power Supply Circuits 4-16
4-18 Write Lockout Circuits (Optional) 4-16
CHAPTER 5 - MAINTENANCE
5-1 Introduction 5-1
5-2 Preventive Maintenance 5-1
5-3 Troubleshooting 5-2
5-4 Checkout and Alignment 5-4
5-5 Printed Circuit Board Checkout 5-4
5-6 5-55-7
C lock Frequency Duty Cycle Check 5-7
Data Amplitude Check 5-7
5-8
Data Threshold Check 5-7
Clock and Sector Writing 5-7 5-10 5-11
Power Supply Checkout 5-8
5-12
Removal and Replacement Procedures 5-9
Memory Board Removal and Replacement 5-9
Amcode Adapter Board Removal and Replacement 5-9 5-14 5-15
Drive Belt Replacement 5-10
Paragraph Page
5-16 Motor Assembly Replacement 5-10
5-17 Static Ground Brush Replacement 5-11
5-18 Motor Ground Brush Replacement 5-11
5-19 Pre-Filter Replacement 5-12
5-20 Write Lockout Assembly Replacement Procedure 5-12
5-21 Power Supply Heatsink Assembly Replacement 5-12
5-22 Head Sparing Procedure 5-13
5-23 Clock Head Sparing 5-13
5-24 Data Head Sparing 5-13
CHAPTER 6 - DRAWINGS AND PARTS LISTS
6-1 Introduction 6-1
6-2 Drawings 6-1
6-3 Recommended Site Level Spare Parts 6-3
6-4 Replaceable Parts List 6-4
LIST OF TABLES
Table Page
1-1 Specifications and Characteristics 1-3
2-1 Interface Input/Output Signals and Pin Assignments 2-5
4-1 Write Lockout Logic Inputs and Switch Assignments 4-16
5-1 Subassembly Recommended Replacement Intervals 5-2
5-2 Troubleshooting Procedures 5-3
5-3 Recommended Test Equipment 5-4
5-4 Disc Unit Jumper Chart 5-5
5-5 Power Supply Voltage Specifications 5-8
6-1 Disc Memory Unit Drawings 6-1
6-2 Recommended Site Level Spares 6-3
6-3 Replaceable Parts List 6-4

LIST OF ILLUSTRATIONS

Figure Page
1-1 8500 Series Disc Memory Unit 1-2
2-1 8500 Series Disc Memory Outline and Mounting 2-2
2-2 Typical Daisy-Chain Cabling Arrangement 2-3
2-3 Physical Location of Terminating Resistor Networks and UnitSelection Points2-4
2-4 8500 Disc Memory Unit Cabling 2-8
2-5 Voltage Selecting Connector 2-10
2-6 Disc Memory Unit Shipping Carton 2-11
3-1 Write Clock Timing Diagram 3-2
3-2 Basic System Timing Diagram 3-3
3-3
Write Mode Timing Diagram 3-4
3-4 Read Mode Timing Diagram 3-5
3-5 Disc Interface Signals 3-6
3-6
Typical Interface Driver Terminating Resistor Network Schematic Diagram 3-9
4-1 Logic Symbols 4-2
4-2 8500 Series Disc Memory Unit Functional Block Diagram 4-3
4-3 Magnetic Recording Details 4-4
4-4 C onstruction of AMCODE Logic 0 and Logic 1 Data Bits 4-5
4-5 C lock Decoder Schematic Diagram 4-8
4-6 C lock Decoder Timing Diagram 4-9
4-7 Address Selection Matrix Block Diagram 4-9
4-8 Write Mode Circuits Logic Block Diagram 4-10
4-9 Writ e Mode Timing Diagram 4-11
4-10 AMCODE Write Encode, Timing Diagram 4-12
4-11 Data Separators, Simplified Diagram 4-13
4-12 Read Circuit Amplifier 4-15
5-1 Spare-Track Label 5-13
5-2 Address Decode Matrix and Spare Track Connector (J6) 5-14
6-1 8500 Series Disc Memory Unit, Drawing Tree 6-2

Chapter 1

GENERAL INFORMATION

1-1 INTRODUCTION

This chapter contains general information pertaining to the AMCOMP 8500 Series Disc Memory Unit (figure 1-1). The information in this chapter consists of general description, functional description, and physical description, including the description of major components within the disc memory unit. Table 1-1 lists the performance, electrical, environmental, and physical characteristics of the 8500 Series Disc Memory Unit.

1-2 GENERAL DESCRIPTION

The 8500 Series Disc Memory Unit is available in two models: the Model 8510 and Model 8530. The 8510 model is an 1800 -rpm unit with an average access time of 16.7 milliseconds, and data transfer rate of $4.5 \mathrm{M} \mathrm{bits} / \mathrm{sec}$. (See table $1-1$ for details.) Model 8530 is a $3600-\mathrm{rpm}$ unit with an average access time of 8.3 milliseconds and data transfer rate of 9 M bits $/ \mathrm{sec}$. Both models are capable of storing up to 154,000 bits per track. One to four units may be used (daisy-chained) and individually addressed by a single external controller which may be supplied either by AMPCOMP or by the customer.

1-3 FUNCTIONAL DESCRIPTION

Data is recorded on both sides of the disc in addressable tracks with a single read/ write head assigned to each track. Each disc may contain up to 256 tracks (16 tracks minimum). Track selection is accomplished by eight input address lines. When the input address bits from the controller are decoded, three of them yield the eight X -coordinates and four (least significant bits) the 16 Y -coordinates. Bit 7 of the input address is used for disc surface selection. The 8 X 16 addressing matrix (for each disc side) provides for the selection of one of 128 tracks.

Data on the tracks is recorded in sectors. The sector is defined as the minimum addressable record on the disc. Complete format flexibility permits variations in the size and number of sectors per track (t able 1-1). Sectors are recorded on the disc with the customer specified format at the factory prior to shipment.

A write lockout assembly, a vailable as a standard option, has 16 switches each of which protects a different group of 16 tracks. The lockout assembly is mounted on the front of the chassis directly behind the front, removable panel of the disc.

Figure 1-1. 8500 Series Disc Memory Unit

Performance		
Data Tracks	maximum minimum	256 plus 32 spares 16 plus 1 spare
Clock Tracks		1 set plus 1 spare jumper selectable
Bits per Track (unformatted)	maximum minimum	154, 000 (Model 8530, option -01*) 146, 000
	maximum minimum	146, 000 (Model 8530, option $-02 *$) 134, 000
	maximum minimum	$\begin{aligned} & 134,000\left(\text { Model } 8530, \text { option }-03^{*}\right) \\ & 125,000 \end{aligned}$
	maximum minimum	$\begin{aligned} & 125,000\left(\text { Model } 8530, \text { option }-04^{*}\right) \\ & 103,000 \end{aligned}$
	maximum minimum	$\begin{aligned} & 152,000 \text { (Model } 8510, \text { option }-05 * \text {) } \\ & 140,700 \end{aligned}$
	maximum minimum	140, 700 (Model 8510, option -06*) 119, 900
Storage capacity	maximum	40.2×10^{6} bits (unformatted)
Recording Density (at 157, 000 bits/track)	maximum	7795 bits/inch (innermost data track)
Rotational Speed		$\begin{gathered} 1816 \begin{array}{c} +27 \\ -45 \\ 3632 \\ -53 \\ -89 \end{array} \mathrm{rpm} \text { (Model 8530) } \end{gathered}$
Average Access Time		$\begin{array}{r} 16.6 \pm 0.4 \mathrm{~ms} \text { (Model 8510) } \\ 8.3 \pm 0.2 \mathrm{~ms} \text { (Model 8530) } \end{array}$
Data Transfer Rate	maximum minimum	$\begin{aligned} & \text { 9. } 93 \mathrm{MHz} \text { (Model 8530, option }-01 \text {) } \\ & 8.20 \end{aligned}$
	maximum minimum	$\begin{aligned} & 9.30 \mathrm{MHz} \text { (Model } 8530 \text {, option -02) } \\ & \text { 7.50 MHz } \end{aligned}$

[^0]TABLE 1-1. SPECIFICATIONS AND CHARACTERISTICS (continued)

Performance (Cont'd.)

Data Transfer Rate	maximum minimum	8.65 MHz(Model 8530, option -03) 7.00 MHz
	maximum	8.06 MHz(Model 8530, option -04)
	minimum	5.80 MHz
	maximum	4.90 MHz (Model 8510 , option -05)
	minimum	3.97 MHz
	maximum	4.50 MHz (Model 8510, option -06,
	minimum	3.36 MHz
Error Rate	recovable	1 error in $10{ }_{12}^{11}$ bits read
	non-recovable**	1 error in $10{ }^{12}$ bits read

Physical

Dimensions	panel height width width behind panel depth depth behind panel	8.72 in. (22.15 cm) $19.00 \mathrm{in} .(48.26 \mathrm{~cm})$ $16.88 \mathrm{in} .(42.88 \mathrm{~cm})$ $23.00 \mathrm{in} .(58.42 \mathrm{~cm})$ $22.19 \mathrm{in} .(56.36 \mathrm{~cm})$
Weight		$95 \mathrm{lbs} .(42.8 \mathrm{~kg}$)
Bearing Design Life		10 years
MTBF (Mean Time Between	Failure)	10,000 hours for $8510 \& 8530$, 256-track models
MTTR (Mean Time to Repair		60 minutes
Motor Start Time (to READY)	maximum	20 seconds

[^1]TABLE 1-1. SPECIFICATIONS CHARACTERISTICS (continued)

Power		
AC	voltage	$\begin{aligned} & 100,120,220,240 \mathrm{Vac} \pm 5 \% \\ & -10 \% \end{aligned}$
	frequency	50 or $60 \mathrm{~Hz} \pm 5 \%$, single phase
	start current (at 120-volt)	8.3 amps maximum
	run current (at 120 -volt)	2.7 amps maximum
Environmental		
Temperature	operating	0 to $55^{\circ} \mathrm{C}$
	```non-operating on-site shipping/storage (properly packed)```	$\begin{aligned} & 0 \text { to } 65^{\circ} \mathrm{C} \\ & -30 \text { to }+65{ }^{\circ} \mathrm{C} \end{aligned}$
Temperature Change	operating maximum for data reliability	$10^{\circ} \mathrm{C}$ per hour maximum
Relative Humidity	operating non-operating	$10 \%$ to $90 \%$ without condensation $0 \%$ to $90 \%$ without condensation
Vibration	operating and non-operating	0.080 -inch ( 2.03 mm ) double amplitude displacement, 5 to $35 \mathrm{~Hz} ; 5 \mathrm{~g}$ acceleration maximum, 35 to 500 Hz
Shock	operating and non-operating	$15 \mathrm{~g}, 11 \mathrm{~ms}, 1 / 2$ sine wave
Altitude	operating and non-operating	$\begin{aligned} & 10,000 \mathrm{ft} . \\ & 25,000 \mathrm{ft} . \\ & (3,048 \mathrm{~m}) \\ & (7,620 \mathrm{~m}) \end{aligned}$
Atmosphere		non-corrosive

All components of the basic 8500 Series Disc Memory Unit are mounted on a precision machined base casting (base plate). All the disc rotational components (disc, spindle, bearings), the read/write heads, and the clock preamplifier card are contained in a dust sealed enclosure which provides a clean, controlled operating environment.

The disc memory assembly, including the pulleys and belt, are mounted on the tray with four tough and rigid shock mounts. Mounted on the tray also are the input ac connector and the voltage selecting connector. The back panel mounts on the tray also and holds the I/O connectors and the mini mother board with connectors J1 and J2 (one spare) into which the interface logic board is plugged. A radio frequency interference (RFI) cover is used to enclose the electronics and thus reduce the possibility of emissions of stray magnetic fields and also susceptibility to them.

The basic disc electronics are packaged on two fiberglass printed circuit boards. One of them (AMCODE adapter board) mounts vertically at the back panel and plugs into a connector. The other (memory board) is mounted above the dust sealed enclosure. The memory board connects to the AMCODE board via an interconnection cable.

A label is located on the rear of the disc memory unit that identifies the type of power supply, number of sectors per track, maximum number of bits per sector, and the gap ( in microseconds) between track origin and the first sector clock signal. The label format is shown below.

| 60 | $-\frac{1440}{60 \mathrm{~Hz}}$ | $-\underline{256}$ | $-\frac{40}{\text { sectors }}$per <br> track |
| :--- | :---: | :---: | :---: | | bits |
| :---: |
| per |
| sector |$\quad$ gap

## 1-5 MECHANICAL ORGANIZATION

The disc is recorded on both sides as it rotates in a fixed horizontal plane between two head plates. Mounted on these plates are the read/write heads fixed in a head-pertrack arrangement. The two head plates contain a maximum of $256 \mathrm{read} / \mathrm{write}$ heads, a clock head, and a maximum of 32 spare read/write heads of which 16 are guaranteed at time of shipment. Each head plate contains $48 \mathrm{read} / \mathrm{write}$ head assemblies. The top head plate contains, in addition to its read/write head assemblies, the clock head ass embly. Mounted on each head assembly is a 3-point (3-head) transducer that is gimballed in order to be aerodynamically stable when in flight. These transducers contact the disc (on both sides) when the disc is not rotating and fly $12 \pm 5$ micro inches away from the disc surface by the air produced when the disc reaches operating speed. The closeness of the heads to the disc results in recording sharp, well-defined magnetic regions and in reproducing strong, clean signals. The disc plating is nickel-cobalt with rhodium overcoat, making the disc surface impervious to contact damage.

The triple transducer head assembly used for the clock detects the recorded bit clock, sector clock, and track origin (timing signals). These clocks are recorded on two tracks simultaneously for the purpose of having one identical spare. Changing from one track to the next (spare) is accomplished by changing a wire wrap jumper.

The basic memory assembly consists of the base plate, spindle, disc, head plates, and motor. The memory assembly is supported by four shock mounts. The rotating assembly consists of the motor, a set of stepped pulleys, a seemless mylar belt, the spindle, and a 12 -inch disc platter. The spindle and disc, together with the two head plates and clock preamplifier card, are in a dust sealed enclosure which is pressurized through a filtering system. The minimum required pressure for the $1800-\mathrm{rpm}$ disc (model 8510 ) is 0.05 inches of water, and the pressure for the $3600-\mathrm{rpm}$ disc (model 8530 ) is 0.20 inches of water. The maximum allowable particle count in the rotating assembly is less than five particles, 0.5 microns or larger over ten-minute period and a flow rate of 0.01 cubic feet/ minute. The rotating assembly is driven by non-synchronous, capacitor start motor the features of which are small size, high reliability, maximum efficiency, and low starting current drain. It is capable of operating on 115 Vac at a frequency of either 50 Hz or $60-\mathrm{Hz}$. By using the stepped pulley, 3600 rpm or 1800 rpm rotation is provided at either the 50 Hz or $60-\mathrm{Hz}$ input frequency. The motor is $1 / 15$ horsepower either 1800 rpm or 3600 rpm . The $1800-\mathrm{rpm}$ motor is used with the $1800-\mathrm{rpm}$ disc unit, and the $3600-\mathrm{rpm}$ motor is used with the $3600-\mathrm{rpm}$ disc unit.

## 1-6 ELECTRONIC PACKAGING

The interface electronics and read/write electronics are contained in the AMCODE printed circuit (PC) board and the memory PC board, respectively. All electronic components are mounted on the circuit boards in generally functional groups of integrated circuits and discrete components. The memory PC board is modular and lends itself to easier field service.

In addition to AMCODE andmemory PC boards, there are the clock preamplifier PC board and the mini mother PC board. The clock preamplifier board, located inside the dust sealed enclosure, amplifies and buffers the clock signals (bit clock, sector clock and track origin). The mini mother board (figure 1-1) contains the logic through which the binary address from the controller is decoded into octal and inputted to connector J3. The track capacity plug connects to connector J3 on the mini mother board. Each track capacity plug is specifically wired for only one disc size; the number of tracks for which the plug is patched appears on the plug itself.

Internal lead lengths are kept as short as possible to prevent noise pickup. Also. sensitive circuits are located as close as possible to the signal source so that stray pickup is eliminated. Substitution of data head with a spare is accomplished by two jumper wires on the spare track connector which connects to the memory board (paragraph 5-24).

## Chapter 2

INSTALLATION AND CHECKOUT

## 2-1 INTRODUCTION

This chapter contains the information required to install and checkout the 8500 Series Disc Memory Unit. Included are instructions and data required to plan the installation, unpack and inspect the unit, complete installation, checkout the disc unit, and prepare it for normal operation. Instructions for packing the disc unit for reshipment are also included.

## 2-2 EQUIPMENT LOCATION

The 8500 Series Disc Memory Unit may be located adjacent to any other electronic data processing equipment provided the temperature, humidity and other environmental characteristics are within specified limits. Table 1-1 provides performance specifications and characteristics for the disc unit. The disc unit must not be located in a strong magnetic field since the disc may become magnetized and cause interference with the read/write operation.

The disc units are designed to be mounted in an adequate 19 -inch electronic rack cabinet. Each disc unit requires approximately 8.75 inches of vertical rack space. When a disc unit is mounted, the rack should be located on a firm surface. (Refer to figure 2-1 for mounting dimensions of the 8500 Series Disc Memory Unit.)

## 2-3 DAISY-CHAIN CONFIGURATION

Where more than one disc unit is to be connected in a daisy-chain configuration, the cabling is as shown in figure $2-2$. The total length of any daisy-chain I/O cable must not exceed 30 feet. Signal line terminating networks, in resistor packs located on the memory circuit board, must be removed from each disc unit in the daisy-chain except the last one. The resistors are mounted in sockets to facilitate removal for daisy-chain operation. Refer to figure 3-6 for a schematic of resistor networks and line drivers, and to figure 2-3 for the physical location of resistor (terminating) networks and unit select jumper table. Where daisy chaining is done subsequent to the original installation by the acquisition of additional disc units, the daisy-chain I/O cabling must be purchased from AMCOMP, INC. or fabricated directly by the customer in the field. (Refer to table 2-1 for the input/output cable signal and pin assignments.)

## 2-4 UNPACKING AND INSPECTION

The disc unit is shipped in a special double packing case. The front panel is shipped separately from the disc unit but it is packed in the same packing case. As the equipment is unpacked, care should be exercised to prevent damage to the finished surfaces of the


1520006

Figure 2-1. 8500 Series Disc Memory Outline and Mounting


NOTES: 1) TERMINATORS U8 and U9 MUST BE REMOVED FROM ALL BUT THE LAST DISC MEMORY UNIT IN DAISY-CHAIN
2) MAXIMUM I/O CABLE LENGTH BETWEEN CONTROLLER AND LAST DISC MEMORY UNIT IN DAISY-CHAIN IS 30 FEET
3) POWER TO THE DISC MEMORY UNIT WITH TERMINATORS (LAST UNIT) MUST BE ON WHILE THE OTHER DISC UNITS ARE IN OPERATION

Figure 2-2. Typical Daisy-Chain Cabling Arrangement

AMCODE ADAPTER BOARD ASSEMBLY (1040077)

AMCODE ADAPTER BOARD SCHEMATIC (1940077, SHEET 2)


UNIT SELECT JUMPER        CONNECTION TABLE		
FROM	TO	FUNCTION
TP 21	TP 22	Unit 0 Selected
TP 21	TP 23	Unit 1 Selected
TP 21	TP 24	Unit 2 Selected
TP 21	TP 25	Unit 3 Selected

Figure 2-3. Physical Location of Terminating Resistor Networks \& Unit Selection Test Points

TABLE 2-1. INTERFACE INPUT/OUTPUT SIGNALS AND PIN ASSIGNMENTS (BACKPLANE CONNECTORS J1, J2)

PIN No.	SIGNAL DEFINITION	SIGNAL MNEMONIC	$\begin{gathered} \text { INPUT TO } \\ \text { DISC } \end{gathered}$	OUTPUT   FROM DISC
1	Return			
18	Disc Ready	DISC RDY		X
34	Not connected			
35	Track Address 7	T7	X	
2	Track Address 6	T6	X	
19	Track Address 5	T5	X	
3	Track Address 4	T4	X	
20	Track Address 3	T3	X	
36	Track Address 2	T2	X	
37	Track Address 1	T1	X	
4	Track Address 0	T0	X	
21	Unit Select 3	UNIT 3	X	
5	Unit Select 2	UNIT 2	X	
22	Unit Select 1	UNIT 1	X	
38	Unit Select 0	UNIT 0	X	
39	Return			
6 23	Illegal Address	ILIEGAL ADD		X
23	Return			
7	Not Used			
24 40	Return ${ }_{\text {Track Origin }}$			
40	Track Origin Return	TRACK ORIGIN or TO		X
8	Sector Clock	SECTOR CLK		X
25	Return			
9	Sector Write	SWD	X	
26	Return			
42	Read	READ	X	
43	Return			
10	Write	WRITE	X	
27	Return			
11	Read Data	RD DATA		X
28	Return			
44	Bus Terminated Return	BUS TERMINATED		X
12	Write Data	WR DATA	X	
29	Return			
13	Spare 1			
30	DC Ground			
46	Read Clock	RD CLK		X
47	Return			
14	Spare 2			
15	Write Clock in	WR CLK IN	X	
32	Return			

TABLE 2-1. INTERFACE INPUT/OUTPUT SIGNALS AND PIN ASSIGNMENTS (BACKPLANE CONNECTORS J1, J2) (continued)

PIN No.	SIGNAL DEFINITION	SIGNAL   MNEMONIC	INPUT TO   DISC	OUTPUT   FROM DISC
48	Spare 3			
49	Return			
16	Write Clock out	WR CLK OUT		
33	Return			
17	Shield Ground			
50	Shield Ground			

disc unit. All parts should be inspected for evidence of damage during shipment. If the packing case or any disc unit parts are damaged, advise AMCOMP, INC. and file a claim with the transfer company. The crated weight of the disc unit is approximately 115 pounds. The following procedure should be followed for unpacking and inspecting the disc unit.
a. Inspect the packing case for evidence of in-transit damage. Contact the transfer company and AMCOMP, INC. if damage is evident. Specify nature and extent of damage.

## CAUTION

The disc unit weighs approximately 95 lbs., and should be lifted by at least two persons.
b. Open the outer and inner packing case and remove the contents. Check items removed against the shipping list to verify packing case contents. Contact AMCOMP, INC. in the event of a packing shortage.
c. Remove additional packing material and verify that the serial number of the unit corresponds to that shown on the shipping invoice. The serial number can be observed at the rear panel of the disc unit on the AMCOMP product label. The product label also shows the disc unit part number and track format.

## NOTE

The special packing case used br AMCOMP, INC. for shipment of the 8500 Disc Memory Unit is designed for one-time use only and should be discarded. If reshipment of the disc unit becomes necessary, a new packing case designed specifically for the 8500 Series Disc Memory Unit may be acquired from AMCOMP, INC. AMCOMP, INC. is not responsible for damage due to faulty packing which may occur to the 8500 Disc Memory Unit during reshipment.
d. Visually inspect the exterior of the disc unit for evidence of any physical damage that may have occurred in transit. Inspect the cover for dents or abrasions.
e. Check for broken or damaged switches and broken or loose wires on connectors. Check the power supply and front panel.
f. Remove the top RFI shield cover and check the printed circuit wiring boards. Ensure that the board is unbroken and properly seated with all components mounted. Ensure that the mounting screws are tightened down.

## NOTE

If any damage is discovered, notify AMCOMP, INC. and the transfer company immediately. Failure to notify AMCOMP, INC. of damage to the disc unit, and subsequent operation of the disc unit under these conditions, may void the warranty.

Before replacing the RFI shield cover, verify that the resistive termination networks are in place and that the select jumpers are installed properly.

## 2-5 DISC UNIT SELECTION

Disc units are normally shipped with the unit select 0 jumper installed. Refer to figure 2-3 for the physical location of the unit select test points and resistor network chips as well as for the jumper table and schematic of the unit select wiring. If another unit select line is desired, remove the installed jumper and install another jumper between the desired test points using a wire-wrap tool. When the proper unit select jumper is installed, replace the RFI shield and mount the front panel on the unit.

## 2-6 SHIPMENT PROTECTION

To aid in preventing shipment damage, the disc unit is equipped with three 5/16$18 \times 2 \frac{1}{2}$-inch lock-down bolts in order to prevent movement within the shipping case during shipment. These lock-down bolts must be removed before the disc unit is placed in operation. The lock-down bolts are accessible from the bottom of the chassis assembly.

## WARNING

Never attempt to operate the disc unit without first removing the three lock-down bolts.

## 2-7 DISC UNIT MOUNTING

When the disc unit is received it may be installed into an equipment cabinet using the supplied slides and mounting hardware. Remove the unit from the shipping frame and refer to figure 2-1 for mounting dimensions. Install the unit using appropriate mounting hardware. Connect the I/O cables (to/from external controller) and ac power line (figure $2-4)$. If the optional write lockout circuit is provided, make the appropriate switch settings and install the protective cover over the front panel switches.

## 2-8 CHECKOUT

Preoperational adjustments or alignments to the 8500 Disc Memory Units are not necessary. All adjustments and alignments are made at the factory prior to shipment. If


Figure 2-4. 8500 Disc Memory Unit Cabling
the procedures described in the preceding paragraphs have been followed carefully, the disc unit is ready to be put into operation.

Before applying primary power to the disc unit, ensure that the lock-down bolts have been removed, resistive terminating networks are installed correctly, the unit select jumper is installed properly, and the selected voltage matches the line voltage. Also ensure that all cables are connected properly and that the disc unit is mounted firmly.

The 8500 Series Disc Memory Unit is equipped with a lever action power switch on the front panel. The switch applies power to the disc drive motor and to the dc power supply. After the unit ịs installed, according to the instructions in the preceding paragraphs, turn on the power switch. Approximately 10 seconds later the disc will be at operating speed.

## NOT E

Before turning power on, check line voltage. If voltage is not correct, make proper selection according to the following paragraph.

## 2-9 VOLTAGE SELECTION

Line voltages of $100,120,220$, and 240 volts can be selected through a voltage selector PC board (figure $2-5$ ) located in rear panel of the disc memory unit. To select an operating voltage perform the following steps:

1. Open cover door and rotate fuse-pull to left.
2. Select operating voltage by orienting PC board to position desired voltage on top left side. (Selected voltage should be visible when PC board is installed.)
3. Rotate fuse-pull back into normal position and re-insert fuse into holders, careful to install a fuse with correct value. (See value on label at back panel.)

## 2-10 PACKING FOR RESHI PMENT

When reshipment of the 8500 Series Disc Memory Unit becomes necessary, the disc unit should be packed in a packing case that is of identical or of similar construction to the packing case in which the disc unit was delivered (figure 2-6). Specially designed packing cases for the 8500 Series Disc Memory Unit can be acquired from AMCOMP, INC., 686 West Maude Avenue, Sunnyvale, California 94086. Pack the disc unit for reshipment in accordance with the following procedure.

## NOTE

It is not recommended that the disc unit be shipped in an equipment cabinet configuration. Reshipment must be in a container.
a. Disconnect the input/output interface cable and power cord.
b. Remove the disc unit from the equipment cabinet.


Operating voltage is shown in Connector window.


Figure 2-5. Voltage Selecting Connector
c. Attach plywood to disc unit with screws using one backing plate at each screw location.
d. Place a package of fresh dessicant on the plywood alongside the unit and wrap loosely the unit and plywood with a polyethylene sheet and tape. Avoid sliding the wrapped assembly across a surface to prevent the plywood mounting screws from cutting the polyethylene sheet.


Figure 2-6. Disc Memory Unit Shipping Carton
e. Place wrapped assembly inside inner carton. Place box liner inside carton on top of plywood and polyethylene sheet.
f. After closing and taping the inner carton, place inside water tight bag, With a heating source, seal water tight bag except for one corner. With a vacuum cleaner or other vacuum source, suck air out of water tight bag so that bag collapses onto inner carton. Complete sealing the bag with heating source.
g. Place the sealed package inside the outer carton using cushion corners Enclose manuals or other items as required.
h. Place CAUTION label onto inner carton before sealing outer carton.

NOTE
AMCOMP, INC. is not responsible for damage, due to faulty packing, which may occur to the 8500 Series Disc Memory Unit during reshipment.

## Chapter 3

## OPERATION AND INTERFACE

## 3-1 INTRODUCTION

This chapter provides information concerning the interface requirements of the 8500 Series Disc Memory Unit. This information includes operation and timing considerations, interface signals, and interface logic levels.

## 3-2 OPERATION AND TIMING CONSIDERATIONS

The operation and timing considerations include basic timing, timing and control, write clock timing, track selection and timing, write mode and timing, and read mode and timing.

## 3-3 BASIC TIMING

When the track format for the 8500 Series Disc Memory Unit is being established, the following guidelines must be observed to ensure proper system operation:

1. Signal relationships with respect to the clocks are not variable.
2. Sector length can be same as track length.
3. A minimum of 32 bits of overhead is required per sector. This is controlled by the disc unit. No controller compensation is required. The controller transfers and receives only the actual number of data bits specified.
4. Spacing between sector clock $N$ and track origin is as exact as it is between sector clock $\mathrm{N}-1$ to sector clock N .
5. The disc unit is able to reliably read data 40 microseconds following a write operation, or track switching, or both simultaneously.
6. The gap between track origin and first sector clock signals are 40 microseconds.
7. Write clocks between track origin and first sector clock signals cannot be guaranteed with respect to number and phase.

3-4 TIMING AND CONTROL
Two types of timing and control signals are utilized in the 8500 Series Disc Memory Unit. These are the internal and the external timing and control signals. Internally generated signals are used within the disc unit and they are output from the disc unit to be used by
the controller. Externally generated signals are input to the disc unit to control track addressing, write, and read operations. The timing and control signals developed directly from the internal operation of the disc unit are track origin (TRACK ORIGIN), sector clock (SECTOR CLK), and write clock out (WR CLK OUT).

All internally generated timing and control signals are derived from a single clock track permanently recorded on the disc. Each recorded clock pulse on the disc is represented by a change in flux direction from the previously recorded clock immediately preceding it. The clock track is recorded at one half the data bit rate. The amplified, squared signal feeds a phase locked loop which multiplies the input signal frequency by a factor of two. This signal is identified as write clock out and it is sent to the external controller only to be returned to the disc unit. Write data (WR DATA) signal from the controller is clocked with the write clock in (WR CLK IN) signal which is the write clock out signal after being returned from the controller. The signal is processed to compensate for transmission line time delay between the disc unit and the controller (figure 3-1). Total distance between controller and disc unit must not exceed 30 feet.

The sector clock signal is detected from a single missing flux change on the disc clock track. This signal is output to the external controller and it is generated prior to each data sector on a disc track.

The track origin signal is produced once in each revolution of the disc by detecting the absence of two or more flux changes on the disc clock track.

## 3-5 WRITE CLOCK TIMING

The write clock out and write clock in signals are continuous clocks used to define each bit cell location. The write clock out signal is transmitted to the external controller and returned to the disc unit as write clock in. This feature allows the disc unit to be insensitive to cable and circuit delays. The timing relationships of the two clocks are shown in figure 3-1.

(1) ROUND TRIP CABLE, DRIVER/RECEIVER DELAY. ONCE ESTABLISHED MUST REMAIN CONSTANT $\pm 25$ NSEC.

Figure 3-1. Write Clock Timing Diagram

Prior to any write or read operation, the appropriate track or head must be selected by the external controller. This process, known as addressing, is accomplished by eight binary address lines from the external controller to the disc unit. The read/write heads are organized logically, if not physically, in an 8 X by 16 Y matrix for each disc surface. The X-coordinates of the address are represented by the 8 -line side of the matrix while the $Y$-coordinates of the address are represented by the 16 -line side. At the junction of each $X$ and $Y$ line is a single addressable head.

To achieve the selection, three of the input address lines, T4, T5, and T6 are assigned to the X lines. These three lines are decoded to provide the eight X -coordinates; four of the input address lines, T 0 through T 3 , are decoded to provide the 16 Y -coordinates. One input address line (bit 7) is used for disc surface selection. The address lines must remain stable for as long as the WRITE or READ signals are active (logical 0 ). If fewer than 128 tracks on each disc side are used the full addressing matrix is still valid and operational. If an address is given that is greater than the number of installed data tracks, the disc unit will output an illegal address command. In addition, provision is made in the internal X and Y select circuit so that a simple jumpering operation permits the selection of spare heads. A minimum of one spare ( 2 maximum) is provided for each 16 heads.

The track origin (TRACK ORIGIN) and sector clock (SECTOR CLK) output signals provide accurately the position of the rotating disc. The track origin signal occurs once per revolution to indicate the start of a disc revolution. The sector clock signal is recorded according to customer requirements and occurs at the beginning of each sector of data. Figure 3-2 provides the detailed timing relationship of the track origin and sector clock signals with respect to the write clock out signal.


Figure 3-2. Basic System Timing Diagram

The WRITE signal is generated by the external controller immediately upon receipt of the chosen sector clock signal. The WRITE signal is received by the disc unit with the falling edge of the write clock in (WR CLCK IN) signal. Simultaneously, upon generation of the WRITE command, the first data bit is placed on the write data line. Subsequent data bits will be generated synchronously with the write clock in signal. The write data is received by the disc unit with the falling edge of the write clock in signal. The WRITE command remains activated (logical 0 ) until the last data bit has been transferred, at which time the command is reset to a logical 1. If writing on more than one sequential sector is desired, the operation may be repeated at the next sector clock. Figure $3-3$ provides the timing relationships for the writing. All operation timing shown is at the disc unit interface connector.


Figure 3-3. Write Mode Timing Diagram

## 3-8 READ MODE OF OPERATION AND TIMING

The READ command is generated by the external controller immediately upon receipt of the chosen sector clock signal. The READ command is received by the disc unit with the trailing edge of the write clock in signal. Typically, 20-bit times after receipt of the READ command, the disc unit generates the first read data bit and the read clock. The read data is received at the external controller with the rising edge of the read clock. The READ command remains activated (logical 0 ) until the last read data bit is received at the external controller, at which time the command is set to a logical 1. Depending upon signal turnaround delays, additional read clock signals are transmitted but they are ignored by the external controller. If more than one sequential sector is to be read, the operation is repeated at the next sector clock. Figure 3-4 provides the detailed timing relationships for the read mode. All timing shown is at the disc unit interface connector.

(1) 25 NSEC. MIN.; 1 BIT - 25 NSEC MAX.
(2) TURN AROUND DELAY <4 BITS. ONCE ESTABLISHED MUST BE CONSTANT $\pm 25$ NSEC.
(3) $24 \pm 5$ BITS.
(4) $1 / 2 \mathrm{BIT}+0 /-20$ NSEC

NOTE: 1) FOLLOWING RECEIPT OF DBN AND READ CLOCK N ADDITIONAL READ CLOCKS may occur due to turn around delay of read reset. these clocks SHOULD BE IGNORED.

Figure 3-4. Read Mode Timing Diagram

## 3-9 INTERFACE SIGNALS

The following paragraphs contain functional descriptions of the interface signals between the 8500 Disc Unit and external controller. These input/output signals are routed to and from the disc unit via a 50 -pin connector. Figure 3-5 shows these signals between the controller and the disc unit.

## 3-10 UNIT SELECT

Four unit select lines are provided to support chaining up to four disc units on a single cable assembly. One line is assigned to a disc unit. Selection is made by the installation of a jumper according to figure 2-3. All disc units will be shipped with the unit select 0 jumper installed. The proper unit select line must be set to logical 0 to allow the disc unit to write, read or change track address. Following the end of a read operation, the unit stays selected for at least $1 \mu \mathrm{sec}$. By adding a jumper from TP27 to TP28, when the unit is deselected, signals write clock out (WR CLK OUT), sector clock (SECTOR CLK), disc ready (DISC RDY), and TRACK ORIGIN are disabled (normal operation).


Figure 3-5. Disc Interface Signals

When this signal to the disc is set to a logic 0, data on the write data (WR DATA) line is recorded on the selected disc track. The write (WRITE) signal must be set to a logic 0 synchronized with the sector clock (SECTOR CLK) signal (figure 3-3). The write signal remains at a logic 0 until the last bit of data has been transmitted and then is reset to a logic 1.

## 3-12 READ

When this signal to the disc is set to a logic 0 , the read data (RD DATA) signal along with the read clock (RD CLK) signal are transmitted from the selected data head. The read (READ) signal is set to a logic 0 synchronized with sector clock (SECTOR CLK) signal (figure 3-4). The READ signal remains at a logic 0 until the last bit has been received and then is reset to a logic 1.

3-13 WRITE DATA (WR DATA)
This signal is input to the disc and carries the serial NRZ data to be recorded on the selected data head when the WRITE signal is a logic 0 . The write data is transmitted with the write clock out (WR CLK OUT) signal and is received in the disc unit electronics with the write clock in (WR CLK IN) signal.

## 3-14 WRITE CLOCK IN (WR CLK IN)

This signal is the cable delayed version of the write clock out (WR C LK OUT) signal. Write data is received by the disc with this continuous clock. The write clock in signal must be present for a minimum of 36 -bit period after sending the last write data (WR DATA) bit.

## 3-15 TRACK ADDRESS (TR A)

Eight lines to the disc unit provide the 8-bit binary address of the data head to which a write or read operation is to be performed. These lines must be present and stable as long as a write or read operation is performed. All eight lines are used regardless of the specific number of heads installed in the disc ( 256 maximum, 16 minimum).

## 3-16 SECTOR WRITE (SWD)

The clock format can be written with this line after the disc unit has been properly set up for initialization by a qualified customer engineer.

## 3-17 TRACK ORIGIN

The TRACK ORIGIN is a single pulse, one bit wide, defining the start of a disc revolution. This signal line, normally a logical 1 , is pulsed to a logic 0 to indicate track origin.

3-18 READ DATA (RD DATA)
When READ signal is a logic 0 , this signal line provides serial NRZ data from the selected data head in synchronism with the read clock (RD CLK) signal.

This signal from the disc defines each bit of data to be read on the read data (RD DATA) output line. The read clock signal is present only when actual data is present on the read data line.

## 3-20 WRITE CLOCK OUT (WR CLK OUT)

The write clock out is a continuous clock signal defining each bit cell on the track. This signal is used to transmit write data to the disc unit and it is returned to the disc unit as write clock in (WR CLK IN) signal. The write clock out signal can be used to strobe the sector and track origin clocks into the controller.

## 3-21 SECTOR CLOCK (SECTOR CLK)

The sector clock is a single pulse, one bit wide signal that defines the start of a sector. All write and read commands are timed from the sector clock. This signal line, normally a logic 1 , is pulsed to a logic 0 to indicate sector clock.

3-22
DISC READY (DISC RDY)
When this signal is a logic 0 , the disc unit is ready to reliably transmit or receive data. In order to prevent a false disc-ready condition when the disc unit power is off, the DISC RDY signal is not terminated at the disc unit. The DISC RDY signal is set to a logic 1 under the following conditions:

- DC voltages below acceptable limits.
- Disc rotational speed below reliable operating range.
- BUS TERMINATED signal a logic 0 .

3-23 ILLEGAL ADDRESS (ILLEGAL ADD)
This signal is set to a logic 1 when the received address exceeds the maximum address of the disc unit. In units equipped with write lockout feature, the ILLEGAL ADD signal is set to a logic 1 when the received address coincides with locked-out address as set by the lockout switches. When ILLEGAL ADD signal is a logic 1 , it inhibits a write operation.

## 3-24 BUS TERMINATED

The BUS TERMINATED line senses the power to the disc interface terminations. A logic 0 on this line indicates a loss of power to the signal line terminations. All other interface lines should be considered invalid. The signal is not terminated in the controller.

## 3-25 INT ERFACE LOGIC LEVELS

The logic is either 14-pin or 16 -pin in-line packages with industrial operating temperatures ranging from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. All logic circuits are constructed with TTL integrated circuit chips of the small-scale and medium-scale integration type.

The signals to and from the disc are negative true except bus terminated (BUS TERMINATED) signal and illegal address (ILLEGAL ADD) signal. All signal lines are
terminated at both the controller and dise unit (figure 3-6) except the BUS TERMINATED signal which is terminated at the disc unit, and the DISC RDY signal which is terminated at the controller.

Interface logic levels are as follows:
Logic $0 \quad 0$ vde nominal
${ }^{+} 0.4$ vde maximum
Logic $1 \quad+2.4$ vde minimum
+2.7 vde nominal
+5.25 vdc maximum
Every line is driven to ground by an NPN transistor collector that is capable of sinking 48 ma and maintaining a maximum saturated output voltage of 0.4 volts.


Figure 3-6. Typical Interface Driver Terminating Resistor Network Schematic Diagram

## Chapter 4

## THEORY OF OPERATION

## 4-1 INTRODUCTION

This section provides a detailed functional description of the circuits within the 8500 Series Disc Memory Unit. Individual electronic circuits are discussed only to the level of their contribution to overall functional data flow. For a detailed explanation of the theory of operation of discrete circuits or IC 's, consult the appropriate source documentation. The material in this chapter must be read by maintenance personnel to gain a working understanding of the disc unit prior to performing any of the maintenance procedures contained in chapter 5. A brief description of disc and NRZI recording is also provided.

## 4-2 LOGIC DIAGRAM AND SIGNAL INFORMATION

Generally, all logic symbols appearing in the logic diagrams contained in this manual are drawn in compliance with MIL-STD-806 (latest revision). All logic units are identified by a reference designator, such as U1, U2, etc., indicating the integrated circuit where the element is located. In text, the pin number of the integrated circuit package follows its reference designator (i.e., U2-6). The assembly schematic and logic diagrams should be referred to when reading this chapter.

The signals from/to controller are low-true except for the BUS TERMINATED and ILLEGAL ADDRESS which are high-true. The signals within the disc unit are either lowtrue or high-true, depending upon the particular signal.

The low-true signals carry a bar across the top of the signal term (i.e., $\overline{\mathrm{WR} \text { DATA) }}$, while the high-true signals are presented plainly (i.e., WR DATA).

## NOTE

The interface signals and their logic levels are described in chapter 3 ; their origin and destination are listed in table 2-1.

The disc unit internal logic is standard positive having the following levels:
Logic 0 (low) $=0$ to +0.4 volts
Logic 1 (high) $=2.3$ to +5.0 volts
The AMCODE adapter uses ECL logic in some of its circuits (1940077, Sheet 5). ECL logic levels are as follows:

Logic 0 (low) $=-1.8$ volts
Logic 1 (high) $=-0.9$ volts

Figure 4-1 shows the gate as well as the JK and D-Type flip-flop symbols together with their truth tables.


Figure 4-1. Logic Symbols

## 4-4 FUNCTIONAL DESCRIPTION

The 8500 Series Disc Memory Unit functional block diagram (figure 4-2) shows the relationship between the functional elements of the disc unit.

All functions of the disc unit are selected and controlled by the external controller. Track addresses are input to select the appropriate track/head combination by signals on the eight track address lines TR-A-0 through TR-A-7. Read operations are initiated by the external controller utilizing basic timing signals derived from the disc unit.

## 4-5 DATA RECORDING

To write data on the disc, current is passed through the magnetic recording heads which are positioned near the surface of the disc. As the magnetic recording medium on the disc surface passes by the gap in the head (see figure 4-3), that portion of the disc surface becomes magnetized in a direction corresponding to the direction of the current in the head, and thus the data is encoded magnetically on the disc surface. When the current is reversed in the head, the direction of the magnetization is also reversed and there are therefore two possible states of magnetization on the disc surface. Note that in either direction the current in the head is sufficiently high to saturate the magnetic particles on the disc and erase all previous data.


Figure 4-2. 8500 Series Disc Memory Unit Functional Block Diagram

In reading the stored data, any flux changes on the surface of the disc induce a voltage in the head as the disc surface passes under the head gap. There is no output from the head until a change in flux passes under the head. Each flux direction transition produces a Gaussian shaped voltage pulse, as shown in figure 4-3.

Each data bit is stored in a "bit cell" on the disc. The bit cell is the angular portion on the surface of the disc within which a data bit is stored and is normally measured in units of time. The time it takes the disc to rotate one bit cell is measured by the bit clock. In the $1800 \mathrm{rpm}, 150,000$ bit-per-track disc unit, this time is 222 nsec and in the $3600 \mathrm{rpm}, 150,000$ bit-per-track disc unit this time is 111 nsec .

Although all disc memories operate on these principles, there are several methods of encoding data bits into magnetic flux changes and vice-versa. One such method is the AMCODE method, described in the following paragraph.


Figure 4-3. Magnetic Recording Details

The AMCODE method of data recording is basically MFM (modified frequency modulation) and allows data to be written on the disc such that the read data will be self clocked. AMCODE data recording also allows the maximum sector length to be unrestricted. Minimum sector length is 28 data bits.

The AMCODE data recording method (figure 4-4) causes the magnetization of the disc track to change polarity in the center of a bit cell for logic 1 data. A logic 0 causes the magnetization to change polarity at the end of a bit cell if the next bit is a logic 0 (if the next data bit is a logic 1 no change in polarity occurs).


Figure 4-4. Construction of AMCODE Logic 0 and Logic 1 Data Bits.

As a result of writing the AMCODE pattern the maximum spacing between changes in magnetization is no greater than two clock periods, providing self clocking of the read data.

## 4-7 CIRCUIT DESCRIPTIONS

The electronics of the 8500 Series Disc Memory Unit are functionally divided into the timing and control circuits, track address circuits, write circuits, read circuits, and status monitor circuits. Figure $4-2$ shows the relationship between the functional elements of the unit. The following paragraphs provide a detailed functional description of these circuits. Also included are descriptions of the power supply and the optional write lockout circuit.

## 4-8 TIMING AND CONTROL CIRCIITTS

The timing and control circuits consist of the clock amplifier and a phase locked loop (PLL) that is used to extract the write clock out (WR CLK OUT), the track origin (TO) and sector marks (SM) signals from the recorded bit clock. The clock amplifier accepts the recorded bit clock from the disc clock track, processes the bit clock and applies the clock as a pulse train (CLK PLS) to the remainder of the timing and control circuits. CLK PLS is used to control the phase locked loop by comparing the CLK PLS with a $1 / 4$ frequency feedback from the phase locked loop. This adjusts the WR CLK OUT and RD CLK frequencies to exactly twice that of the recorded bit clock regardless of the speed of the disc. RD CLK is output only during a read operation. Signals TO and SM are detected from the CLK PLS as an absence of flux changes on the recorded disc clock track. Signals TO and SM are output to the external controller to provide accurate position data on the disc. The following paragraphs provide a detailed description of the timing and control circuits.

## 4-9 CLOCK AMPLIFIER CIRCUITS

1040077
Refer to diagram sheet 5. The bit clock, recorded on the disc at one-half the data frequency, is read directly from the disc and fed to the memory board circuit. Voltage induced in the clock track head is fed to the AC coupled amplifier, A1, on the clock preamplifier card. The clock preamplifier amplifies the bit clock by a factor of approximately 100 and also provides common mode noise rejection.

The amplified bit clock signal output of the clock preamplifier is then fed through connector J 4 to the clock amplifier circuits located on the memory board. The bit clock is applied through a low pass filter network to the input of variable gain amplifier A1. Amplifier A1 on the memory circuit board is a differential amplifier with a variable gain that can be set between 10 and 100. The analog output of the variable gain amplifier is adjusted to provide 5 volts peak at TP9.

The analog outputs of differential amplifier A1 on the memory circuit board are applied to a differential a mplifier consisting of Q5 and Q2. The outputs of Q5 and Q2 are applied thr sugh emitter followers Q4 and Q3 to rectifiers CR3 and CR1. The rectifier output is differentiated by C20 and R29 and applied to comparator U1 pin 1. The comparator output, internal to the chip, is allowed for high transition for every peak of the rectified signal. Also the comparator switches on noise peaks and when no signal pulses are present. To discriminate legitimate input pulses from noise a window is generated by the second comparator of U1. A noise threshold is established by the comparison of the ground reference versus the rectified signal at TP9 whose baseline is shifted to -2.1 Vdc . The threshold is then an effective $40 \%$ of the peak value. The discriminated peaks appear at TP10 as high to low transitions. They trigger an output pulse at TP10 whose width is adjusted by R35. Refer to chapter 5 for adjustment procedure.

## 4-10 PHASE LOCKED LOOP

Refer to diagram 1940077 sheet 2. The phase locked loop (PLL) is used to generate write clock out (WR CLK OUT), track origin (TO) and sector clock (SC) from the information recorded on the clock track.

The PLL consists of a phase detector (PD), low pass filter (LP), voltage controlled oscillator (VCO), and a divide-by-4 counter.

The PD will generate a positive or negative error signal whenever the phase of the feedback frequency ( Ffb ) lags or leads that of the reference frequency ( Fref ) respectively. The error signal will be integrated by the LP and applied to the VCO which in turn will adjust its frequency output such that when divided by 8 the resulting frequency ( Ffb ) will exactly follow the Fref and reduce the error voltage to zero. If the data frequency which is the same as the WR CLK OUT frequency is defined $F$, the reference frequency Fref or CLK PLS will be F/2, the VCO output frequency will be F4 and the RD CLK frequency will also be F .

The frequency of VCO, U9, is controlled by the control voltage from filter and integrator 48 .

The output of the VCO is applied to frequency divider, U18, which divides the F2 output of the VCO to 1 F , generating the write clock signal, WR CLK OUT. The $\mathrm{F} / 2$ output of the frequency divider is applied to phase detector, U7, and the clock decode circuits.

## 4-11 CLOCK DECODER

Refer to figures 4-5 and 4-6, and to diagram 1940047 sheet 3 . The phase locked loop (PLL) aligns the leading edge of feedback frequency ( Ffb ) and reference frequency (Fref) placing the leading edge of the input to U16-3 and U16-11 (B7) approximately in the middle of the negative going pulse of CLK PLS. Thus, U28 can detect the presence or absence of a pulse in CLK PLS well before the leading edges of Ffb . When a missing pulse is detected, the phase detector is disabled to prevent a false error signal from being generated at the output of the phase detector. The detected missing pulse is loaded in a 2 -bit shift register to generate a track origin mark (TO) or a sector clock (SC), the former being encoded as two consecutive missing pulses and the latter as one missing pulse.

Being encoded at half frequency, TO or SC signals are decoded as 2-bit wide pulses and U27 limits them to a one-bit wide pulse centered about the leading edge of WR CLK OUT.

The clock track is recorded in such a way that closure or splicing occurs following a TO mark. Hence when TO has been detected, a one-shot (U26) is fired for $30 \mu \mathrm{sec}$ inhibiting any invalid sector clock (SC) or track origin (TO) from being decoded while the PLL is recovering from a possible phase change resulting from the splicing.

## 4-12 SELECTION MATRIX

The heads in both sides of the disc are arranged in an XY-matrix fashion made up of 16 differential head lines and 36 centertrap $Y$ lines for a maximum of 288 heads of which 32 are used as spares. The Y lines are divided into 16 regular lines and 2 spare Y's for each disc side. Refer to schematic diagram 1940046 sheets 2 and 3 and block diagram, figure 4-7.

The heads are addressed from the input in binary form through 8 lines, TR-A-0 through TR-A-7. During a write operation, the address lines or bits are latched.

Track address bits T $0, \mathrm{~T} 1, \mathrm{~T} 2$, and T 3 are decoded into the $16-\mathrm{Y}$ matrix lines and bits T4, T5 and T6 are decoded into the 8-X lines (sheet 3 of 190046). These constitute the normal decode path of address in order to select the read/write heads. Bit T7 is used for disc surface selection for both the normal and spare lines. If no spare is selected, the decoded $X$ and $Y$ outputs drive their respective lines. If a spare head is selected, the normal decode path is disabled and the spare matrix logic addresses the proper spare X and Y lines. (The wire-wrap jumpering of sparing connector J6 is described in chapter 5.) To spare a particular head, its X and Y addresses are first obtained (figure 5-2).

## 4-13 WRITE MODE (WRITE ENCODER)

Refer to AMCODE adapter logic diagram 1940077 sheet 4 and figures 4-8, 4-9 and 4-10. The write circuitry, upon command from the external controller, causes preamble information to proceed the recorded data. The circuitry also converts the NRZ information to a current signal of appropriate strength in AMCODE form to be channelled by the addressing circuits to the proper head. At the end of the data recording, the circuitry adds the fivebit postamble.


Figure 4-5. Clock Decoder Schematic Diagram


Figure 4-6. Clock Decoder Timing Diagram


Figure 4-7. Address Selection Matrix Block Diagram


Figure 4-8. Write Mode Circuits Logic Block Diagram

The controlling signals, WR DATA, WR CLK IN and WRITE are gated by the write select line in sheet 3 of the AMCODE adapter board schematic (1940077). The preamble is used for threshold setting and phasing of the data seperator VCO during a read operation. The preamble is generated by a shift register (1940077, Sheet 4) consisting of IC's, U31, U 22 , and U13 (the output at $\mathrm{U} 13-3$ is low for logic 1 and high for logic 0 ). The postamble bits are generated by delaying the write enable (WEN) for a longer period than is required to write the data bits on the disc. The write enable is delayed by a shift register consisting of IC's, U30, U39, and U40.

The output of the preamble shift register is applied to the AMCODE write encoder consisting of flip-flops U31 and U32 and gates U23-6, U23-8, and U23-12. Depending on the pattern, the two flip-flops gate one phase of the $\overline{1 X O S C}$ clock to flip-flop U32-2. When a 1 bit is to be written an output appears at DATA output U23-8 at the center of the bit cell. A 0 bit causes an output at CLK, U23-6 at the end of the cell. These outputs are clocked into flip-flop U32-2 by the 2XOSC clock which causes the flip-flop to generate an MFM pulse from U32-5 to the write driver.

A not ready condition will reset the write delay and shut off write current to the write driver. An illegal condition determined by the write lockout option will also disable the write driver.


Figure 4-9. Write Mode Timing Diagram


Refer to AMCODE adapter board diagram 1940077, sheets 4 and 5 and figure 4-11. The read mode logic contains a read control section and a data separator. The read control section inhibits the preamble information originally written at the beginning of the sector from being sent to the controller. The data separator extracts NRZ data from the AMCODE data pattern and generates a read clock that is synchronized to the data. The read clock is continuously corrected in phase and frequency by the data.


Figure 4-11. Data Separators, Simplified Diagram

When the read command signal READ is received, the DGAT and FETON signals are generated from shift register U15 and U24. DGAT and FETON are used to preset the read amplifier threshold current. After a delay of 9 bits, the data separator enable signal (SEPEN) is generated from shift register U15. Prior to the generation of the SEPEN signal, the data separator VCO was synchronized to the write clock by the WR CLK TO SEP signal to allow it to oscillate at the data frequency.

When the SEPEN signal is active, the OSC CONTROL signal is generated, which causes the VCO to be momentarily stopped. Since the VCO can be restarted in phase with a pulse train, it is restarted by the read data pulses which are the same frequency as the write clock but at a different phase. The VCO is now synchronized in phase and frequency with the read data. The output of the VCO, 4 XOSC. is four times the input frequency and is divided to two times the frequency ( 2 XOSC ) and one times the frequency (IXOSC) by divider U29. The read data pulses (DATA PLS) are applied to delay line U2 and to anticipation logic circuit U19. The 2XOSC clock from the divider is applied to phase detector U37. The delay line delays the data pulses by one-half the bit cell time and applies them to latch data flip-flop U11. Delayed data pulses from the data latch are also applied to the phase detector.

Since a read data pulse does not occur for each 2 XOSC pulse, the anticipation logic circuit allows the phase detector to sample a 2XOSC pulse only when a delaved data pulse from data latch flip-flop U11 is present. The delayed data pulses from the data latch flipflop are also applied to STD DATA flip-flop U20 along with the $\overline{2 X O S C}$ pulses from the divider. The STD DATA flip-flop removes the effects of jitter in the data pulses and applies the data to NRZ data flip-flop U20.

The $\overline{1 X O S C}$ pulses strobe the data from the NRZ data flip-flop in NRZ form. The NRZ data is applied to ECL to TTL translator U21 which transmits the RD DATA to the external interface and to flag decoder U41 (1940077, sheet 4). The flag decoder detects the 0 bit that is written at the end of the preample to generate the read clock enable (RD CLK EN) signal. The RD CLK EN signal enables read clock ( $\overline{\mathrm{RD}} \mathrm{CLK}$ ) signal which is sent to the internal interface from gate U42-11 (1940077, sheet 2).

## 4-15 READ MODE (DATA AMPLIFIER AND THRESHOLD SAMPLER)

Refer to memory board diagram 1940046 sheet 4 and figure 4-12. Once selected by the matrix decoder, the desired head voltage is applied to the input of the data amplifier. At the amplifier, the head signal is first preamplified by a factor of 100 and then passed through a low pass filter. ( $\mathrm{F} 3 \mathrm{db}==8 \mathrm{MHz}$ typical at 3600 rpm .) After the low pass filter, the signal is further amplified by an amplifier which has a variable gain. The differentiator produces an output signal which crosses zero volts whenever the input signal reaches a peak value. The resulting signal is applied to a comparator or squaring amplifier, whose output signals change states whenever their inputs are at zero. To discriminate the desired peaks from the undesired ones due to noise and no-signal conditions, the output of


Figure 4-12. Read Circuit Amplifier
third amplifier is rectified and compared against a threshold by the threshold comparators. The outputs of the latter form a window about each peak and allows each to be captured by the output gates.

To obtain a threshold reference, which will remain a fixed percentage of the nominal peak values of the head signals, a peak sampling and holding circuit is used and it operates as follows: each data block is preceded by a preamble as discussed in the write mode section, which begins with a series of "ones". For a five-bit time period, a diode gate and an FET switch are turned on. Since current flow is to one direction by the diode gate, holding capacitor will charge up to the peak of the input signal and remain there. During the remainder of the preamble and data block, the charge on the capacitor through a buffer will be divided to $30 \%$ typically and used as a threshold. At the end of the read operation, the bottom half of the diode gate is turned on allowing current to flow in both directions and the capacitor is allowed to discharge.

## 4-16 READY CIRCUIT

Refer to schematic diagram 1940046 sheet 6 and figure 4-13. The ready circuit provides a disc-ready status whenever five conditions are met. These are the three DC power supplies which must be above their minimum tolerances, the disc must be up to speed and the I/O bus must be properly terminated. Five discrete comparators are used; their outputs are collector-ORed and level shifted. A voltage reference is developed and used, through appropriate attenuators, for trip point settings. The clock pulse (CLK P) frequency is converted to a voltage and compared against a reference for the monitoring speed. All comparators use hystersis to protect against transient switching noise. The circuit outputs a $\overline{\mathrm{RDY}}$ signal to the interface logic and I/O bus, and also inhibits power to the write driver. The ILLEGAL ADD signal also inhibits power to the write driver but does not generate a not-ready condition.


Figure 4-13. Ready Circuit

## 4-17

## POWER SUPPLY CIRCUITS

The power supply provides +24 Vdc at $0.6 \mathrm{amps},+5 \mathrm{~V}$ dc at $4.5 \mathrm{amps},-5.2 \mathrm{Vdc}$ at 1.5 amps , and -12 Vdc at 0.6 amps . The +5 Vdc output of the power supply is adjustable to $\pm 1 \%$ by a potentiometer on the pwer supply printed circuit board. Refer to the power supply schematic in chapter 6 . The $24 \mathrm{Vdc},-12 \mathrm{Vdc}$, and -5.2 V dc outputs of the power supply are not adjustable. The +24 Vdc and -5.2 V dc outputs are regulated within $\pm 3 \%$ and the -12 V dc output is regulated within $\pm 4 \%$. The power supply circuit consists of transformer T1 and the heatsink assembly. Four regulator circuits and one rectifier are contained on a printed circuit board located on the heatsink assembly. Two rectifiers are mounted directly on the heatsink assembly.

A temperature sensitive switch located on the heatsink assembly will turn off the $+5 \mathrm{Vdc},+24 \mathrm{Vdc},-12 \mathrm{~V}$ dc, and -5.2 Vdc voltages in the event of a blower failure or if the disc unit overheats.

## 4-18 WRITE LOCKOUT CIRCUITS (OPTIONAL)

The optional write lockout feature circuits consist of 16 switches, mounted on the front panel of the chassis assembly, and 2-line to 4 -line decoder/demultiplexer chips U1 and U2 mounted on the mini mother board (logic diagram 1040060). The inputs to the write lockout circuits are T4, T5, T6 and T7 from the address decode circuits U1 and U2 in the mini mother board. Each of the switches S1 through S16 protects a specific group of 16 tracks on the disc. Table 4-1 contains the assignments of the lockout switches according to the logic state of the inputs. For example, if switch $S 5$ were on and any of tracks 64 through

79 were addressed by the external controller, the write lockout circuits would supply an illegal address command to the voltage monitor circuits in the disc unit. This would cause the voltage monitor circuits to inhibit writing on the disc by shutting off write current to the write amplifier circuits and would also provide an illegal address output to the external controller.

TABLE 4-1. WRITE LOCKOUT L.OGIC INPUTS AND SWITCH ASSIGNMENTS

		T 7	T 6	T 5	T 4	SWITCH
				TRACKS PROTECTED		
0	0	0	0	OCTAL	DECIMAL	
0	0	0	1	S1	$0-17$	$0-15$
0	0	1	0	S2	$20-37$	$16-31$
0	0	1	1	S3	$40-57$	$32-47$
0	1	0	0	S5	$60-77$	$48-63$
0	1	0	1	S6	$100-117$	$64-79$
0	1	1	0	S7	$120-137$	$80-95$
0	1	1	1	S8	$160-157$	$96-111$
1	0	0	0	S9	$200-217$	$112-127$
1	0	0	1	S10	$220-237$	$144-143$
1	0	1	0	S11	$240-257$	$160-175$
1	0	1	1	S12	$260-277$	$176-191$
1	1	0	0	S13	$300-317$	$192-207$
1	1	0	1	S14	$320-337$	$208-223$
1	1	1	0	S15	$340-357$	$224-239$
1	1	1	1	S16	$360-377$	$240-255$

## Chapter 5

## MAINTENANCE

## 5-1 INTRODUCTION

This chapter contains the information required to perform maintenance on the AMCOMP 8500 Series Disc Memory Unit. The chapter contains preventive maintenance information, checkout and alignment procedures, component replacement instructions, and troubleshooting procedures for isolation of malfunctions. Before using the information in this chapter, the maintenance technician must have a thorough knowledge of the material contained in chapter 4. Maintenance procedures described in this chapter are designed for use by experienced electronics equipment maintenance technicians. Any maintenance required on the 8500 Series Disc Memory Unit that is not described in this chapter should be performed only by a trained AMCOMP Customer Service representative or by experienced maintenance technicians who have received factory instruction on maintenance of the disc unit.

The disc unit is designed to operate at maximum capability with as little maintenance as possible. This chapter describes only the replacement of parts that are external to the sealed disc/head enclosure. The use of test equipment is kept to a minimum and only common tools are required in most cases. Recommended test equipment for checkout and alignment a re listed in table 5-3.

## 5-2. PREVENTIVE MAINT ENANCE

Diagnostic test routines should be employed as frequently as necessary to performance test the disc unit. Each 8500 Series Disc Memory Unit shipped from AMCOMP, INC. has had extensive diagnostic testing in the AMCOMP Quality Assurance Department.

No electronic preventive maintenance is required on the 8500 Disc Memory Unit. Cleaning and periodic replacement of various electromechanical subassemblies should be performed in accordance with the recommended mean time to failure (MTTF) replacement intervals (MILHDBK-217B). Table 5-1 lists the various electromechanical subassemblies along with their MTTF and recommended replacement intervals. Replacement procedures for each of the subassemblies are described in paragraph 5-12 in this chapter.

## CAUTION

Turn off all power to the disc unit before attempting any cleaning procedures.

The 8500 Series Disc Memory Unit must be cleaned and the pre-filter be replaced as often as operating conditions require. In normal computer environments cleaning may not be necessary, but the disc unit should be inspected periodically for cleanliness. The

TABLE 5-1. SUBASSEMBLY RECOMMENDED REPLACEMENT INTERVALS

SUBASSEMBLIES	MEANTIME TO FAILURE	REPLACEMENT INTERVAL
Motor	19,000 hours	16,000 hours
Belt	19,000 hours	16,000 hours
Ground Brush	25,000 hours	16,000 hours
Pre-Filter	-	16,000 hours or
when dirty		

The 8503 Series Sealed Disc Memory Unit must be cleaned and the pre-filter be replaced as often as operating conditions require. In normal computer environments cleaning may not be necessary, but the disc unit should be inspected periodically for cleanliness. The pre-filter should be inspected at regular intervals and replaced if necessary (paragraph 5-20). Accumulations of dirt on the electronics or in the duct work can cause overheating and provide conducting paths for electricity. The exterior panels and painted or metal surfaces of the disc may be washed with mild detergent and a soft cloth. Abrasive cleaners should not be used. No cleaning of the interior of the disc unit should be attempted.

The drive belt may become dirty and may be cleaned using a soft cloth wet with isopropyl alcohol, or detergent and water. The following steps should be performed when cleaning the drive belt.
a. Turn off the power to the disc unit, disconnect all power connectors and set the disc unit on a firm surface such as a work bench. Remove the RFI shield cover.
b. Loosen the three 7/16-inch nuts holding the four shock mounts on the disc unit baseplate and remove the disc unit from the chassis assembly.
c. Carefully, set the disc unit on its side and remove the seven screws holding the belt guard and remove the belt guard.
d. Clean the drive belt using the soft cloth and the prescribed cleaning fluids. Precaution should be taken to rotate the disc in only the normal direction of rotation (counterclockwise when observing disc unit from bottom). The drive need not be removed.
e. Replace the belt guard and remount the disc unit in its normal position by reversing the previous steps.

5-3 TROUBLESHOOTING
Table 5-2 is provided as a troubleshooting guide for correcting malfunctions and may be entered at any step.

TABLE 5-2. TROUBLESHOOTING PROCEDURES

SYMPTOM	PROBABLE CAUSE	TESTING AND REMEDY
1. Disc not rotating	a. No ac power   b. Power switch   c. Drive motor   d. Drive belt	a. Check ac power input.   b. Check ac output at J3 pins 3, 8, and 9. If power is present, replace switch.   c. Check rotation of drive motor. If motor is not rotating, replace according to para. 5-16.   d. If motor is rotating, replace drive belt according to para. 5-15.
2. Disc is rotating properly but disc unit is not operating properly	a. No ac power to power supply   b. Faulty power supply   c. Faulty clock track input	a. Pull heatsink assy out and unplug P4 (para. 5-21) and check ac input to power supply PC board. If power is not present, check connector J4 pins and transformer windings. If power is present, proceed to the next step.   b. Remove and replace the heatsink assembly (with power supply card) according to para. 5-21.   c. Spare clock and test preamp output (from sealed enclosure) at J3. If reading is good, replace memory board according to para. 5-13. If reading is false, call Customer Service.
3. Data errors	a. Incorrect timing input or output   b. Memory board	a. Check I/O test points according to table 5-4. If timing outputs are correct, check data amplitude according to para. 5-8 and 5-11. If signal amplitude on any track drifts to $25 \%$ of maximum amplitude (in largest amplitude head seen), substitute spare data head. If errors still occur, call Customer Service.   b. Check for inputs to the board. If they are correct, but the outputs are incorrect, replace memory board according to para. 5-13.

TABLE 5-2. TROUBLESHOOTING PROC EDURES (continued)

SYMPTOM	PROBABLE CAUSE	TESTING AND REMEDY
	c. Static ground brush	c. Check for excessive noise, carbon   on bottom of disc unit, or intermit-   tent data error. If any of these con-   ditions exist, replace static ground   brush according to para. 5-17. If   errors persist call Customer   Service.

## 5-4 CHECKOUT AND ALIGNMENT

Checkout and alignment procedures for the 8500 Series Disc Memory Unit consist primarily of the checkout procedures necessary after replacing a logic board, sparing heads or replacing the power supply assembly. All spare memory board assemblies and power supplies have been factory adjusted; therefore, only verification of proper operation should be necessary. Acceptable limits for measurements are defined in each of the procedures. Recommended test equipment is listed in table $5-3$. When the measured value of any parameter is within the specified acceptable limits, no adjustment should be made. Adjustments to any of the electronics should be performed only when absolutely necessary. If the measured value falls outside the specified acceptable limits, adjustment should be made in accordance with the relevant procedure. When any adjustment is made, the value set should be the exact value specified (to the best of the operator's ability) in the procedure. If the specified acceptable limits cannot be attained, call AMCOMP Customer Service.

TABLE 5-3. RECOMMENDED TEST EQUIPMENT

EQUIPMENT	FUNCTION
8584 Disc Test Unit	AMCOMP I/O simulator to the 8400/8500 Disc Unit
Dual-T racc Oscilloscope	Necessary for checkout and alignment.

## 5-5 PRINTED CIRCUIT BOARD CHECKOUT

The following paragraphs describe the checkout procedures used to check the memory board or AMCODE adapter board for proper operation after replacement. Each PC board should be replaced using the replacement procedure contained in paragraph 5-13 or 5-14. Before starting the checkout procedures, verify that all the necessary jumpers are connected properly. Table 5-4 is a jumper chart for the disc unit functions and for unit select lines. (Refer to chapter 2, figure 2-3 also for illustration on connection of unit select lines.) If any heads were spared on the previous memory board, this information
should be indicated on the spare track label for the disc memory unit attached at the rear of the disc unit (figure 5-1). Refer to paragraph 5-22 for head sparing procedures. After all the required jumpers have been properly installed, perform the following checkout procedures.

## 5-6 Clock Amplitude Check

When the clock track is written on the disc, in accordance with specified customer format at the AMCOMP factory, clock tracks accessible at TP7 and TP6 are written simultaneously. TP5 is a spare track. Only one clock track is used at a time for normal operation (table 5-4). Verify that either TP7 or TP6 is jumpered to ground (TP8) and perform the following checkout procedure.
a. Connect an oscilloscope to TP9.
b. Check for 5 volts peak-to-peak minimum clock track amplitude.
c. If necessary adjust R13 for the correct clock track amplitude at TP9.

TABLE 5-4. DISC UNIT JUMPER CHART

AMCODE ADAPTER PC BOARD		
FROM (LOC ATION)	TO (LOC ATION)	FUNCTION
TP1 (18D)	TP2 (D18)	Connects MFM data to write driver
	TP3 (D18)	Connects write data to write driver
	TP4 (D18)	Connects sector write data to write driver
TP5 (23C)	TP6 (23C)	Write enable (WEN) reset by sector marks (SM)
	GND (23C)	WEN not reset by SM
TP8 (19C)	TP9 (19C)	Write encoder enabled.
	GND (19C)	Write encoder disabled.
TP10 (12B)	TP11 (12B)	Connects settling time one-shot (clock decode)
	GND (12B)	Inhibits pulse insertion in PLL (clock decode)
TP13 (4D)	TP12 (4D)	Connects 2X OSC (std data clk) to $\overline{\text { RD CLK }}$
	TP14 (4D)	Connects 1X OSC (RD DATA CLK) to RD CLK
TP16 (4D)	TP15 (4D)	Connects Standard data to $\overline{\text { RD DATA }}$
	TP17 (4D)	Connects Read data to RD DATA
TP18 (21C)	GND (21C)	Disables WEN delay at end of write.
TP19 (20B)	TP20 (20B)	Disables RD CLK EN circuit.

TABLE 5-4. DISC UNIT JUMPER CHART (continued)

AMCODE ADAPTER PC BOARD		
FROM (LOCATION)	TO (LOCATION)	FUNCTION
TP21 (7D)   TP26 (4C)   TP27 (4C)   J4-2 (28B)	TP22 (7D) TP23 (7D) TP24 (7D) TP25 (7D) GND (4C) TP28 (4C) J4-4 (28B)	Unit 0 selected   Unit 1 selected   Unit 2 selected   Unit 3 selected   Forces legal address   $\overline{\text { WR CLK OUT }}, \overline{\text { SECTOR CLK }}, \overline{\text { DISC RDY }}$, and TRACK ORIGIN gated by unit select.   Connects separator latch to $\overline{2 \mathrm{XOSC}}$
MEMORY PC BOARD		
FROM (LOCATION)	TO (LOCATION)	FUNCTION
TP3 (C39)   TP4 (C39)   TP5 (C39)   TP6 (C39)   TP7 (C39)   TP15 (C45)   Resistor between   TP17 and TP18   (D50)   TP19 (B50)   TP22 (C50)	TP20 (B50)   TP21 (C50)   TP8 (C39)   TP8 (C39)   TP8 (C 39)   TP GND (C46)   TP20 (B50)   TP21 (C50)	Connects write current   To clock bus   Clock head 3 selected   Clock head 2 selected   Clock head 1 selected   Forces ready (RDY) condition   Alters write current   Connects write current to data bus   Connects write current to data bus

## 5-10 Clock and Sector Writing

The writing of clocks and sectors requires the use of 8584 Disc Test Unit. If a disc test unit is not available the following procedure should not be attempted. Connect the test unit to the disc unit and perform the following steps. The information in parenthesis is the location of the test point on the logic diagrams.
a. Remove the following jumpers on memory board assembly:

1. TP19 to TP20 (B50)
2. TP21 to TP22 (C50)
3. TP 8 to TP7 (C 39 )

## 4. TPftoIP5-(C89)

b. Add the following jumpers on memory board assembly.

1. $\mathrm{TP}_{22}^{21}$ (C50) to TP3 (C39) 20
2. TP筑 (B50) to TP4
3. TP15 (C45) to TP GND (C46)
4. TP8 (C39) to TP7 (C39) to TP6 (C39)
c. If the disc unit is a Model 8510 ( 1800 rpm ), connect a 100 -ohm, $1 / 2-\mathrm{W}$ resistor between TP17 (D50) and TP18 (D50). If the disc unit is a Model 8530 3600 rpm ), connect a $56-\mathrm{ohm}, 1-\mathrm{W}$ resistor between TP17 and TP18 (D50).
d. Remove the following jumpers on AMCODE adapter board assembly.
5. TP1 (18D) to TP2 (18D)
e. Add the following jumpers on AMCODE adapter board assembly.
6. TP1 (18D) to TP4 (18D)
7. TP18 TO GRMD.

## 5-11 POWER SUPPLY CHECKOUT

When the power supply assembly is replaced, the power supply output voltages must be checked prior to returning the disc unit to normal operation. Check the power supply voltages at connector P5 on the memory board as indicated in table 5-5.

TABLE 5-5. POWER SUPPLY VOLTAGE SPECIFICATIONS

MEMORY BOARD CONNECTOR   (PLUG P5) PINS	VOLTAGE OUTPUT
1	$\div 24 \mathrm{Vdc} \pm 3 \%(23-28 \mathrm{~V}$ to 24.72 V$)$
2	Ground $-42 \mathrm{Vdc} \pm 3 \%(11.64 \mathrm{~V}$ to 12.36 V$)$
4	Ground
5	Ground
6	Ground
7	-5 Vdc $\pm 3 \%(4.85 \mathrm{~V}$ to 5.15 V$)$
8	

The following paragraphs provide procedures for removing and replacing the various components of the 8500 Series Disc Memory Unit. Only those components which may be reached without entering the dust sealed enclosure may be replaced by other than a factory trained technician. (See figure 1-1 for assembly location.) Before attempting any of the procedures, they should be read thoroughly. When performing these procedures the maintenance technician should refer to the mechanical assembly drawings. Refer to the drawing list in chapter 6.

## NOTE

The replacement of components which are contained within the sealed dust enclosure should be performed by factory trained maintenance technicians only.

5-13 MEMORY BOARD REMOVAL AND REPLACEMENT
To remove and replace the memory printed circuit board perform the following:
a. Turn off all power to disc unit and disconnect all power cables.
b. Release the two latches holding the RFI cover to chassis and pull out RFI cover.
c. Disconnect the power connector P5, clock pre-amp connector J 4 and I/O connector $\mathrm{J}_{1}$ from memory board assembly.
d. Loosen five standoffs holding memory board assembly and carefully lift memory board assembly from I/O connector side until data head cable is visible. The memory board assembly may be raised to approximately $45^{\circ}$ angle.
e. Carefully disconnect two data cables from memory board assembly and remove memory board assembly from disc unit.
f. Replace memory board assembly by reversing previous steps and perform checkout procedures as in paragraph 5-5.

## NOTE

When replacing the memory board assembly make sure that the board is securely bolted down to the mounting standoffs. This is required for analog ground continuity to the base casting and subsequently to the disc.

## 5-14 AMCODE ADAPTER BOARD REMOVAL AND REPLACEMENT

To remove and replace the AMCODE adapter printed circuit board disconnect I/O connector P3, unfasten the extractor tabs that hold the board in place, and pull board upward to disconnect from connectors J1 and J3.

## DRIVE BELT REPLACEMENT

To remove and replace the drive belt perform the following:
a. Turn off all power to disc unit and disconnect all power connectors.
b. Remove disc unit from electronics cabinet and place on flat stable surface such as work bench. Remove the disc unit from the tray assembly by unscrewing the four screws on each of the shock mounts and separating the disc unit from the tray assembly.
c. Carefully set the disc unit on its side.
d. Remove four mounting screws holding drive belt guard in place and remove drive belt guard from the disc unit.
e. Rotate belt and pulley in a clockwise direction and slide belt off motor pulley.
f. Remove grounding brush retainer bracket and free belt.
g. Replace drive belt by placing belt over spindle pulley and reversing steps $e$ and $f$.
h. Verify motor pulley adjustment by turning motor pulley in clockwise direction, by hand, and observing belt tracking. Drive belt should nominally track in center of face of each pulley. Motor pulley should be adjusted if drive belt tracks off either edge of either pulley.
i. If drive belt does not track properly, loosen motor pulley set screw and adjust motor pulley up and down until drive belt tracks at least 0.010 - inch from either edge of both pulleys.
j. Place disc unit back in operation by performing steps a through d in reverse order.

MOTOR ASSEMBLY REPLACEMENT
a. Turn off all power to disc unit and disconnect all power connectors.
b. Remove disc unit from electronics cabinet and place on flat stable surface such as work bench. Remove the disc unit from the tray assembly by unscrewing the four screws on each of the shock mounts and separating the disc unit from the tray assembly.
c. Carefully set the disc unit on its side.
d. Loosen four flat head screws holding motor to disc assembly and remove motor from mounting.
e. Rotate belt and pulley in clockwise direction and slide belt off motor pulley.

## CAUTION

The grounding brush and spring may pop out when the grounding brush retaining bracket is removed.
f. Remove grounding brush retainer bracket and belt is free.
g. Loosen motor pulley allen set screw with appropriate wrench and remove pulley from motor shaft.
h. Disconnect motor power plug P2 from front panel.
i. Unscrew four flat head screws holding motor to disc base assembly and remove motor from mounting.
j. To replace drive motor, reverse steps $g$ through $i$ and perform the following steps for replacing drive belt.
k. To determine initial setting for motor pulley, measure distance between edge of spindle pulley and baseplate. Use the spindle pulley height as a reference. DO NOT ATTEMPT TO ADJUST SPINDLE PULLEY HEIGHT.

1. Adjust motor pulley to same height as spindle pulley and tighten motor pulley.
m. Replace drive belt by placing belt over spindle pulley and reversing steps e and f. (Rotate disc in counterclockwise direction only when viewed from bottom side.)

5-17 STATIC GROUND BRUSH REPLACEMENT
a. Perform steps a through d of drive belt replacement procedure. Do not remove drive belt from pulleys.
b. Remove two flat head screws in grounding brush retaining bracket.
c. Remove grounding brush and spring and replace with new parts. The rounded end of grounding brush sits against retaining bracket.
d. Replace two flat head screws.
e. Replace drive belt guard by reversing steps a through d drive belt replacement procedure above.

## 5-18 MOTOR GROUND BRUSH REPLACEMENT

To remove and replace the motor ground brush perform the following:
a. Remove four flat heat screws and brass screw in large retaining plate on top of drive motor.
b. Remove large retaining plate and small retaining plate underneath.
c. Remove grounding brush and spring and replace with new parts. The rounded end of the grounding brush sits against the brass screw in the center of the large retaining plate.
d. Replace retaining plates, the four flat head screws, and the brass screw.

## 5-19 PRE-FILTER REPLACEMENT

The pre-filter is mounted in a housing located under the memory board. Perform steps a through e of paragraph 5-13 and remove polyurethane foam filter element by pulling the used filter from the filter housing and replacing with a new filter. Perform steps a through e of paragraph 5-13 in reverse order.

5-20 WRITE LOCKOUT ASSEMBLY REPLACEMENT PROCEDURE
On the rear of the disc unit remove the four mounting screws on the write lockout assembly, pull the assembly from the disc unit, and disconnect the lockout connector. To replace the write lockout printed circuit assembly, reconnect the lockout connector and mount the assembly on the rear of the disc unit using the four mounting screws.

5-21 POWER SUPPLY HEATSINK ASSEMBLY REPLACEMENT
The power supply heatsink assembly contains the power supply PC board, power supply regulators, and the heatsink. To replace the heatsink assembly perform the following procedure.
a. Turn off power to the disc unit and disconnect all power and signal cables from the unit.
b. Remove disc unit chassis assembly from electronics cabinet and place it on stable surface such as work bench.
c. Remove front cover from disc unit by pulling ball studs mounted on front cover from clip fasteners on front panel assembly.
d. Disconnect the connectors and loosen six screws on the dust cover behind the front panel and remove cover.
e. Loosen the four screws holding the heatsink and power supply printed circuit board assembly and pull out assembly.
f. Disconnect connector J5 (to electronics) and plug P4 (to transformer) and remove heatsink and card assembly.
g. Reverse steps a through f to replace the heatsink assembly.

## 5-23

## CLOCK HE AD SPARING

Three clock tracks are provided on the 8500 Series Disc Memory Unit. When the clock track is written either at the AMCOMP factory or by using the procedure in paragraph 5-10 of this chapter, the customer clock format is written on the TP 7 and TP6 clock tracks. Only one of the recorded clock tracks is used for normal operation. This allows data recorded on the disc to be recovered if the clock head in use becomes faulty during normal operations. The TP5 clock track is a spare. If the clock head in use becomes faulty, remove the ground jumper (TP7 or TP6 to TP8) from the clock track in use and jumper the other clock head to ground. (Consult the label in figure $5-1$ for the proper spare clock head.) Perform the procedure in paragraphs 5-6 and 5-7 prior to resuming normal operation.

## 5-24 DATA HEAD SPARING

Two spare data heads are assigned for each 16 data heads in use at the time of manufacture. The factory can use 1 per 16 before shipment. Available spare data heads are listed on figure 5-1. If data heads have been spared, this information should also be indicated on the label.

When a data head from the upper or lower head plate is faulty, first determine the XY address from the octal address of the faulty head (chart of figure 5-2). On the spare track connector (figure 5-2) locate the XY address of the upper or lower plate and wirewrap them to the selected spare ( 1 through 16 spares for each side). After making use of a spare head perform the checkout procedures in paragraph 5-5 prior to returning the disc unit to normal operation.

NEW

CLOCK SPARES					TH				TP					TP				
8400-8500 UPPER					8500 LOWER				8400-8500 UPPER					8500 LOWER				
NO.	AVAILABLE	USED		$\begin{aligned} & \text { OCT } \\ & A D D \end{aligned}$	AVAILABLE	USED		$\begin{array}{\|l\|} O C T \\ A D D \end{array}$	NO.	AVAILABLE	USED		$\begin{aligned} & \text { OCT } \\ & \text { ADD } \end{aligned}$	AVAILABLE	USED		$\begin{array}{\|c\|} O C T \\ \text { ADD } \end{array}$	
		$\times$	$Y$			X	$Y$				X	Y			X	Y		
51									S9									${ }^{\circ} 5$
S2									S10									$\stackrel{\sim}{\sim}$
53									S11									-1
S4									512									$\geq 11$
S5									513									2.
S6									514									-
S7									S15									8
S8		-							516									0

Figure 5-1. Spare-Track Label

There are a total of 32 spare heads for a 256 -track disc, or 16 spares maximum per surface. Spare heads for the lower disc surface cannot be used for the upper disc surface or vice versa.

UPPER HEAD PLATE								LOWER HEAD PLATE								$\begin{gathered} \mathrm{r} \\ \text { ADDRES } \end{gathered}$
  OCTAL    ADDRESS    ADORESS	$\begin{gathered} \text { OCTAL } \\ \text { ADDRESS } \end{gathered}$	$\begin{gathered} x \\ \text { ADDRESS } \end{gathered}$	$\begin{aligned} & \text { OCTAL } \\ & \text { ADDRESS } \end{aligned}$	ADDRESS	OCTAL ADDRESS	$\stackrel{x}{x}$	ADDRESS	OCTAL ADDRESS	ADDRESS	OCTAL ADDRESS		OCTAL ADDRESS		OCTAL ADDRESS	X ADDRESS	
$000 \times$ xou	040	$\times 2 \mathrm{U}$	100	X4U	140	$\times 6$	You	200	$\times 1$	240	$\times 2 \mathrm{~L}$	300	$\times 4 \mathrm{~L}$	340	$\times 61$	YOL
$001-1$	041	4	101	4	141	4	Yiu	201	4	241	4	301	4	341	1	Yil
002	042		102		142	,	Y2U	202		242		302		342		Y2L
003	043		103		143		Y30	203		243		303		343		Y3L
004	044		104		144		Y4u	204		244	\|	304		344		Y4L
005	045		105		145		Y5U	205		245		305		345		Y5L
006	046		106	+	146		Y6U	206		246		306		346		Y6L
007	047		107		147		Y7u	207		247.		307		347		Y7L
010	050		110		150		Y10u	210		250		310		350		Y 10 L
011	051		111		151		rıiu	211		251		311		351		Y11L
012	052		112		152		Y12U	212	-	252		312		352		Y12L
- 013	053		113		153		vi3u	213		253		313		353		Y13L
014	054		114		154		V14u	214		254		314		354		Y 14 L
015	055		115		155		Y15U	215		255		315		355		Y15L
016	056		116		156		Y16u	216		256	:	316		356		Y16L
017	057		117.		157		Y17U	217		257		317		357		Y17L
s1 $\downarrow$	s5	- $\downarrow$	s9	$\checkmark$	S13	1	sriu	S1	$\dagger$	55	$\dagger$	s9	1	. 513	1	SY12
s2 - xou	56	$\times 20$	S10	$\times 40$	514	$\times 6 \mathrm{u}$	sr2u	S2	$\times 0 \mathrm{~L}$	56	$\times 22$	S10	$\times 4 \mathrm{~L}$	S14	$\times 6 \mathrm{~L}$	SY2L
020 - $\times 10$	060	$\times 34$	120	$\times 50$	160	$\times 74$	you	220	X 14	260	. $\times 3 \mathrm{~L}$	320	$\times 5 \mathrm{~L}$	360	+... $\times 7 \mathrm{~L}$	Yol
$021 \quad 4$	061	4	121	4	161	- 4	viu	221	4	261	- 4	321	4	361	4	Y1L
- 022	062		122		162		Y20	222		262		322		362		Y2L
023	063		123		163		-3i)	223		263		323		363		Y3L
024	064		124		164		Y4U	224		264		324		364		Y4L
025	065		125		165	.	Y5U	225		265		325		365		Y5L
026	066		126		166		Y6u	- 226		266		326		366		Y6L
027	067		127	,	167	.	y ${ }^{\text {r }}$	227	.	267		327		367		Y7L
030	070	+	130	.	170	.	Y10u	230	.	270		330		370		V10L
031	071	+	131		171	.	v11u	231		271		331		371		Y111
032	072	$\dagger$	132		172	.	Y12U	232		272	-	332		372		$\bigcirc 12 \mathrm{~L}$
033	073		133		173		Y13U	233		273	-	333		373		Y 131
034	074		134		174		r14u	234		274		334		374		Y 141
035	075		135		175	.	r15u	235		275		335		375		Y15L
036	076		136		176		Y16U	236		276		336		376		Y16L
037	077		137		177		vilu	237		277		337		377		Yılı
s3	S7	$\downarrow$	si1	$\downarrow$	S15	$\downarrow$	sriu	s3	$\dagger$	57	-	sil	1	S15	1	SY1L
54 - $\times 10$	s8	$\times 30$	S12	$\times 50$	516	$x 70$	sr2u	S4	$\times 12$	58	$\times 3 \mathrm{~L}$	s12	$\times 5 \mathrm{~L}$	516	$\times 74$	SY2L


UPPER			LOWER	
Y	X	SPARES	X	$Y$
1          $\bullet$ 3 5 7 11 13 15 17	${ }^{1} 3^{3} 5 \cdot{ }^{5}$			
			${ }_{6}^{6} 4_{6}^{4} 2_{0}^{0}$	

Figure 5-2. Address Decode Matrix and Spare-Track Connector (J6)

## Chapter 6

DRAWINGS AND PARTS LISTS

## 6-1 INTRODUCTION

This chapter contains the drawings required to maintain the 8500 Series Disc Memory Unit. Lists of recommended site level spare parts and replaceable parts are also included in this chapter.

## 6-2 DRAWINGS

Table 6-1 lists the drawings contained in this chapter. All assembly diagrams, wiring diagrams, schematic diagrams and inter-connection diagrams required to maintain the 8500 Series Disc Memory Unit are contained in this chapter. Newer versions will always replace earlier versions of any element listed. Drawings applicable to the optional write lockout assembly are also included. If the disc memory unit this manual accompanies does not include these assemblies, the drawings for these assemblies should be ignored. All drawings listed in table 6-1 are also contained in the drawing tree shown in figure 6-1.

TABLE 6-1. DISC MEMORY UNIT DRAWINGS

DRAWING NUMBER	DRAWING TITLE
1040077	AMCODE Adpater PC Board Assembly
1940077	AMCODE Adapter PC Board Schematic
1040046	Memory PC Board Assembly
1940046	Memory PC Board Schematic
1040060	Mini Mother PC Board Assembly
1940060	Mini Mother PC Board Schematic
1240056	Rear Panel Interconnect PC Board Assembly
1940056	Rear Panel Interconnect PC Board Schematic
1930009	System Interconnect Diagram
1020085	Drive Motor Assembly
1020059	Front Panel and Power Supply Assembly
1930008	Octal Address Diagram
1040094	Power Supply PC Board Assembly
1940094	Power Supply PC Board Schematic
1020138	Heatsink Assembly
1930032	Heatsink Wire Diagram
1040003	Clock Preamp PC Board Assembly
1940003	Clock Preamp PC Board Schematic
1040070	Write Lockout PC Board Assembly
1940070	Write Lockout PC Board Schematic
1930019	Power Supply Wiring Diagram



Figure 6-1. 8500 Series Disc Memory Unit, Drawing Tree

## 6-3 RECOMMENDED SITE LEVEL SPARE PARTS

Recommended site level spare parts are listed in table 6-2. The table includes the AMCOMP, INC. part number of each part, a description, and the recommended quantity of spares that should be maintained on site for each disc memory unit model.

TABLE 6-2. RECOMMENDED SITE LEVEL SPARES

PART NUMBER	DESCRIPTION	QUANTITY	
		MODEL   8510	MODEL   8530
$1040046-\mathrm{XX}$	Memory PC Board Assembly (1)		
$1040047-\mathrm{XX}$	AMCODE Adapter PC Board Assembly (2)	1	1
$1040003-01$	Clock Preamplifier PC Board (3)	1	
$1020085-\mathrm{XX}$	Drive Motor Assembly (4)	1	1
$1260058-02$	Drive Belt (5)	1	1
$1020138-01$	Heatsink Assembly (power supply)	1	1
$09220004-01$	Fuse, 2.5A SLO BLO/F1 (6)	1	1
$09230005-01$	Fuse, 5A SLO BLO/F1 (7)	1	1
$3070044-01$	Ground Brush (8)	1	1
$3070045-01$	Ground Brush Spring (8)	1	1
$1260064-01$	Pre-filter	1	1
$1040070-01$	Write Lockout PC Board (9)	1	1
$1260079-01$	Track Sparing Connector	1	1
$1040060-01$	Mini Mother Board	1	1
$1020104-$ XX	Filter (10)	1	1
1040078	Board Extender	1	1

(1) Select assembly applicable to disc unit model; -01 for Model 8530, - 02 for Model 8510.
(2) Select assembly with desired speed and data transfer rate as follows: Frequency options -05, -06 for Model 8510 ( 1800 rpm ); frequency options 01 through - 04 for Model 8530 ( 3600 rpm ). For these option selections, see table 1-1 and AMCODE PC board schematic diagram 1940077, sheet 1.
(3) Can be replaced by factory trained technician only.
(4) Select assembly applicable to disc unit model: -01 for Model 8510 ( 1800 rpm ), -02 for Model 8530 ( 3600 rpm ).
(5) Part applicable to both models of disc unit.
(6) Part applicable to input voltages of 200 Vac and 240 Vac .
(7) Part applicable to input voltages of 100 Vac and 120 Vac .
(8) Ground brush and spring may be used as one unit also. Part number is 1060095.
(9) Only is disc unit is equipped with write lockout option.
(10) Filters air from cooling fan to power supply: -01 plate and filter only, -02 write lockout switch assembly included.

Table 6-3 lists the parts that may become defective and thus be replaced. The table includes lists for the memory PC board, the AMCODE PC board, mini mother PC board, clock preamplifier PC board, heatsink assembly (power supply), power supply PC board, write lockout assembly and miscellaneous components.

TABLE 6-3. REPLACEABLE PARTS LIST

PART NUMBER	DESCRIPTION/LOCATION	QUANTITY	
		$\begin{gathered} \text { MODEL } \\ 8510 \end{gathered}$	$\begin{aligned} & \text { MODEL } \\ & 8530 \end{aligned}$
MEMORY PC BOARD COMPONENTS			
01383680-01	Capacitor, Mica, $68 \mathrm{pF}, 500 \mathrm{~V}, 5 \% / \mathrm{C42}$		1
01383680-01	Capacitor, Mica, 68 pF, $500 \mathrm{~V}, 5 \% / \mathrm{C} 42, \mathrm{C} 20, \mathrm{C} 22$	3	
01383101-01	Capacitor, Mica, $100 \mathrm{pF}, 300 \mathrm{~V}, 5 \% / \mathrm{C} 62$		1
01383221-01	Capacitor, Mica, Silver, $220 \mathrm{pF}, 500 \mathrm{~V}, 5 \% / \mathrm{C} 46$, C50	2	2
01383681-01	Capacitor, Mica, $680 \mathrm{pF}, 500 \mathrm{~V}, 5 \% / \mathrm{C} 2, \mathrm{C} 6, \mathrm{C} 10$, C16	4	4
01400105-02	Capacitor, Fxd, Cer, $01 \mu \mathrm{~F}, 100 \mathrm{~V}, 20 \% / \mathrm{C} 5, \mathrm{C} 15$, C17, C18, C19, C21, C23-C25, C27, C28, C30, C31, C33-C41, C51-C54, C56, C58, C59, C77C79, C81, C82	34	34
01383331-01	Capacitor, Mica, $330 \mathrm{pF}, 500 \mathrm{~V}, 5 \% / \mathrm{C} 67, \mathrm{C} 68$, C73, C74	4	
01383331-01	Capacitor, Mica, $330 \mathrm{pF}, 500 \mathrm{~V}, 5 \% / \mathrm{C} 2, \mathrm{C} 6$, C10, C16		4
01400109-25	Capacitor, Fxd, Mold, $001 \mu \mathrm{~F}, 200 \mathrm{~V}, 10 \% / \mathrm{C} 60$, C61	2	2
01400111-17	Capacitor, Fxd, Mold, $01 \mu \mathrm{~F}, 200 \mathrm{~V}, 10 \% / \mathrm{C} 4$, C8, C9, C11, C65, C71	6	6
01444104-01	Capacitor, Fxd, Mold, $01 \mu \mathrm{~F}, 100 \mathrm{~V}$, $10 \% / \mathrm{C} 1, \mathrm{C} 3$, C7, C12-C14, C26, C29, C43, C55, C57, C66, C69, C70, C72, C75, C76	17	17
01500107-01	Capacitor, Fxd, Tant, $50 \mu \mathrm{~F}, 25 \mathrm{~V}, 10 \% / \mathrm{C} 47$	1	1
01200103-23	Capacitor, Fxd, Tant, $6.8 \mu \mathrm{~F}, 35 \mathrm{~V}, 10 \% / \mathrm{C} 48, \mathrm{C} 49$	2	2
01200103-13	Capacitor, Fxd, Mold, $1 \mu \mathrm{~F}, 35 \mathrm{~V}, 10 \% / \mathrm{C} 32, \mathrm{C} 44$, C80	3	3
01383220-01	Capacitor, Mica, $22 \mathrm{pF}, 500 \mathrm{~V}, 5 \% / \mathrm{C} 20, \mathrm{C} 22$		2
01383181-01	Capacitor, Mica, $180 \mu \mathrm{~F}, 300 \mathrm{~V}, 5 \% / \mathrm{C} 67$, C68, C73, C74		4
01383470-01	Capacitor, Mica, $47 \mathrm{pF}, 500 \mathrm{~V}, 5 \% / \mathrm{C} 62$		1
04122560-01	Resistor, Fxd, Comp, 56 ohms, 1/4W, 5\%/R7, R8, R14, R15, R17, R26, R34, R36, R38, R40, R50, R52, R54, R115, R119, R127R129, R137, R149, R150, R166, R172, R179, R180-R182, R184-R186, R187	31	31
04122391-01	Resistor, Fxd, Comp, 390 ohms, 1/4W, 5\%/R29, R31-R33, R157, R169, R183	7	7

TABLE 6-3. REPLACEABLE PARTS LIST (continued)

PART NUMBER	DESCRIPTION/LOCATION	QUANTITY	
		$\begin{aligned} & \hline \text { MODEL } \\ & 8510 \end{aligned}$	$\begin{gathered} \text { MODEL } \\ 8530 \end{gathered}$
MEMORY PC BOARD COMPONENTS (continued)			
04122681-01	Resistor, Fxd, Comp, 680 ohms, $1 / 4 \mathrm{~W}, 5 \% / \mathrm{R} 49$, R131, R132, R156, R158, R163, R178, R223	8	8
04122182-01	Resistor, Fxd, Comp, 1.8K, 1/4W, 5\%/R9, R11, R12, R16, R19, R23, R41, R46, R53, R79, R120, R122, R134-R136, R138, R147, R148, R151, R155, R159, R162, R164, R165, R201	25	
04122182-01	Resistor, Fxd, Comp, $1.8 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \% / \mathrm{R} 9$, R11, R12, R16, R19, R23, R41, R46, R53, R79, R120, R122, R134-R136, R138, R147, R148, R151, R155, R159, R162, R164, R165, R191, R197, R201		27
04122392-01	Resistor, Fxd, Comp, $3.9 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \% / \mathrm{R} 30$, R39, R65, R69, R74, R80-R113, R121, R123, R126, R144-R146, R153, R154, R191, R196R198, R205-R221, R225-R261, R264	105	
04122392-01	Resistor, Fxd, Comp, $3.9 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \% / \mathrm{R} 30$, R39, R65, R69, R74, R80-R113, R121, R123, R126, R144-R146, R153, R154, R196, R198, R205-R221, R225-R261, R264		103
04122153-01	Resistor, Fxd, Comp, $15 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \% / \mathrm{R} 42$, R44, R47, R61, R63, R77, R114, R118, R124, R139, R140, R152, R200, R262	14	14
04122273-01	Resistor, Fxd, Comp, 27K, 1/4W, 5\%/R141-R143, R202, R222, R224	6	6
04122124-01	Resistor, Fxd, Comp, 120K, 1/4W, 5\%/R66, R70	2	2
04122184-01	Resistor, Fxd, Comp, 180K, 1/4W, 5\%/R48, R55	2	2
04132151-01	Resistor, Fxd, Comp, 150 ohms, 1/2W, 5\%/R199	1	1
04132561-01	Resistor, Fxd, Comp, 560 ohms, 1/2W, 5\%/R263	1	1
04132681-01	Resistor, Fxd, Comp, 680 ohms, $1 / 2 \mathrm{~W}, 5 \% / \mathrm{R} 25$, R27, R125	3	3
04132271-01	Resistor, Fxd, Comp, 270 ohms, 1/2W, 5\%/R130	1	1
04250101-01	Resistor, Mtl, Film, 56.2 ohms, 1/2W, 1\%/ R116, R117		2
04220097-01	Resistor, Mtl, Film, 100 ohms, 1/4W, 1\%/R189, R190, R194, R195		4
04734202-01	$\begin{aligned} & \text { Resistor, Var, } 2 \mathrm{~K}, 1 / 2 \mathrm{~W}, 4 \text { Turns/R13, R133, } \\ & \text { R193 } \end{aligned}$	3	3
04400101-01	Resistor, Var, 5K, 1/2W, 4 Turns/R35	1	1
04132222-01	Resistor, Fxd, Comp, 2. $2 \mathrm{~K}, 1 / 2 \mathrm{~W}, 5 \% / \mathrm{R} 203$, R204	2	2
04220097-01	Resistor, Mtl, Film, 100 ohms, $1 / 4 \mathrm{~W}, 1 \% /$ R4, R10, R18, R24	4	4

TABLE 6-3. REPLACEABLE PARTS LIST (continued)

PART NUMBER	DESCRIPTION/LOCATION	QUANTITY	
		$\begin{array}{\|l\|} \hline \text { MODEL } \\ 8510 \end{array}$	$\begin{gathered} \text { MODEL } \\ \mathbf{8 5 3 0} \end{gathered}$
MEMORY PC BOARD COMPONENTS (continued)			
04220129-01	Resistor, Mtl, Film, 215 ohms, 1/4W, 1\%/R5, R22, R28, R175	4	4
04220169-01	Resistor, Mtl, Film, 562 ohms, 1/4W, 1\%/R167, R171, R173, R177	4	4
04220193-01	Resistor, Mtl, Film, 1K, 1/4W, 1\%/R6, R20, R57, R168, R170, R174, R176, R188, R192	9	9
04220209-01	Resistor, Mtl, Film, 1.47K, 1/4W, 1\%/R43, R45, R62, R75	4	4
04220225-01	Resistor, Mtl, Film, 2.15K, 1/4W, 1\%/R51, R64, R78	3	3
04220265-01	Resistor, Mtl, Film, 5.62K, 1/4W, 1\%/R1, R2, R3, R21, R37, R58, R76, R160, R161	9	9
04220269-01	Resistor, Mtl, Film, 6.19K, 1/4W, 1\%/R67, R73	2	2
04220285-01	Resistor, Mtl, Film, 9.09K, 1/4W, 1\%/R56, R59, R60, R68, R72	5	5
04220101-01	Resistor, Mtl, Film, 110 ohms, 1/4W, 1\%/R189, R190, R194, R195	4	
04220297-01	Resistor, Mtl, Film, 12.1K, 1/4W, 1\%/R71	1	1
04250101-02	Resistor, Mtl, Film, 110 ohms, 1/2W, 1\%/ R116, R117	2	
06100101-24	Inductor, Fxd, 8.2 H, 10\%/L5, L6, L8	3	
06100101-24	Inductor, Fxd, 8.2 H, 10\%/L1, L2		2
06100101-20	Inductor, Fxd, $3.9 \mathrm{H}, 10 \% / \mathrm{L} 5, \mathrm{~L} 6, \mathrm{~L} 8$		3
06100101-27	Inductor, Fxd, $15 \mathrm{H}, 10 \% / \mathrm{L} 1, \mathrm{~L} 2$	2	
06151000-20	Inductor, Shielded, 100 H/L3, L4, L7	3	3
02100102-01	Diode, IN 4454/CR1-CR5, CR9-CR25, CR27, CR28, CR30-CR119	114	114
02200108-12	Diode, Zener, IN 752A, 5.6V, 5\%/CR8, CR26, CR29	3	3
02200109-01	Diode, Zener, $5.6 \mathrm{~V}, 1 \%, .04 \mathrm{~W} / \mathrm{CR} 7$	1	1
05202905-01	Transistor, PNP 2N2905/ Q19, Q20, Q62	3	3
05202906-01	Transistor, PNP 2N2906/Q13, Q14	2	2
05203906-01	Transistor, PNP 2N3906/Q11, Q22, Q26, Q43, Q61	5	5
05100104-01	Transistor, PNP 2 N3646/Q15, Q25, Q28, Q42, Q60	5	5
05100101-01	Transistor, PNP 2N2222A/Q1-Q10, Q12, Q16-Q18, Q21, Q23, Q24, Q29-Q41, Q44-Q59	46	46
05300102-01	Transistor, Fet, 2N4393/Q27	1	1
03207400-01	IC, $7400 / \mathrm{U} 20, \mathrm{U} 25, \mathrm{U} 29, \mathrm{U} 30$	4	
03207402-01	IC, 7402/U13-U16, U23, U27	6	6
03207442-01	IC, $7442 / \mathrm{U} 19, \mathrm{U} 21$	2	2

TABLE 6-3. REPLACEABLE PARTS LIST (continued)

PART NUMBER	DESCRIPTION/LOCATION	QUANTITY	
		$\begin{array}{\|c} \text { MODEL } \\ 8510 \end{array}$	$\begin{gathered} \text { MODEL } \\ 8530 \end{gathered}$
MEMORY PC BOARD COMPONENTS (continued)			
03207405-01	IC, 7405/U6, U24, U26, U28	4	4
03200102-01	IC, $74 \mathrm{H00} / \mathrm{U} 2$	1	1
03105453-01	IC, 75453/U31-U34, U36-U53	22	22
03204122-01	IC, 74122/U4	1	1
03200124-01	IC, 74S74/U7	1	1
03200239-01	IC, 74156/U10-U12, U17, U18, U22	6	6
03000102-01	IC, CA3046/U8, U9	2	2
03020733-01	IC, 733/A1-A3	3	3
03000105-01	IC, LM310/U35	1	1
03000114-01	IC, $521 / \mathrm{U} 1$, U3, U5	3	3
AMCODE PC BOARD COMPONENTS			
1040077-xx	AMCODE Adapter PC Board*		
01383330-01	Capacitor, Mica, $33 \mathrm{pF}, 500 \mathrm{~V}, \pm 5 \% / \mathrm{C} 12$	1	
01383220-01	Capacitor, Mica, 22pF, 500V, $\ddagger 5 \% / \mathrm{C} 41, \mathrm{C} 12$	2	
01383220-01	Capacitor, Mica, $22 \mathrm{pF}, 500 \mathrm{~V}, \mp 5 \% / \mathrm{C} 12, \mathrm{C} 41, \mathrm{C} 42$		3(-03)
01200101-20	Capacitor, Tant, $39 \mu \mathrm{~F}, 10 \mathrm{~V}, \pm \overline{1} 0 \% / \mathrm{C} 13, \mathrm{C} 46-\mathrm{C} 48$	4	(
01200103-23	Capacitor, Tant, $6.8 \mu \mathrm{~F}, 35 \mathrm{~V},{ }^{-} 10 \% / \mathrm{C} 45$	1	1
01383101-01	Capacitor, Mica, $100 \mathrm{pF}, 500 \mathrm{~V}, \pm 5 \% / \mathrm{C} 33, \mathrm{C} 35, \mathrm{C} 36$	3	3
01383102-01	$\text { Capacitor, Mica, } 1000 \mathrm{pF}, 100 \mathrm{~V}, \pm 5 \% / \mathrm{C} 7, \mathrm{C} 9, \mathrm{C} 18 \text {, }$ $\mathrm{C} 32, \mathrm{C} 34, \mathrm{C} 40$	6	6
013¢3120-01	Capacitor, Mica, $12 \mathrm{pF}, 500 \mathrm{~V}, \pm 5 \% / \mathrm{C} 5, \mathrm{C} 6$	2	$2(-83)$
01383120-01	Capacitor, Mica, $12 \mathrm{pF}, 500 \mathrm{~V}, \pm 5 \% / \mathrm{C} 5, \mathrm{C} 6, \mathrm{C} 12$		$3(-81)$
01383181-01	Capacitor, Mica, $180 \mathrm{pF}, 500 \mathrm{~V},{ }_{-}^{-}+5 \% / \mathrm{C} 1$	1	${ }^{1}$
01383050-01	Capacitor, Mica, $5 \mathrm{pF}, 500 \mathrm{~V}, \pm 5 \% / \mathrm{C} 50$	1	$2(-81)$
01383050-01	Capacitor, Mica, $5 \mathrm{pF}, 500 \mathrm{~V}, \pm 5 \% / \mathrm{C} 43, \mathrm{C} 44$		$2(-02)$
01416103-01	```Capacitor, Cer, . }01\mu\textrm{F},25\textrm{V},\stackrel{+}{+}80%/\textrm{C}2-\textrm{C}4,\textrm{C}8 C10, C11, C14-C17, C19-C21, C23-C31, C37, C49```	26	26
01400108-12	Capacitor, Cer, . $01 \mu \mathrm{~F}, 100 \mathrm{~V},+10 \% / \mathrm{C} 22$	1	1
01383560-01	Capacitor, Mica, $56 \mathrm{pF}, 500 \mathrm{~V}, \pm 5 \% / \mathrm{C} 43, \mathrm{C} 44$	$2(-05)$	
01383620-01	Capacitor, Mica, $62 \mathrm{pF}, 500 \mathrm{~V}, \pm 5 \% / \mathrm{C} 43, \mathrm{C} 44$	$2(-06)$	
* Select assembly with desired speed and data transfer rate as follows: Frequency options -05, -06 for Model 8510 ( 1800 rpm ); frequency options 01 through -04 for Model 8530 ( 3600 rpm ). For these option selections, see table 1-1 and AMCODE PC board schematic diagram 1940077, sheet 1.			
Note: The shown components and quantities are construed to be applicable to each option within the particular model. If this is not the case, the number in parenthesis indicates which option that particular component and quantity are applicable to.			

TABLE 6-3. REPLACEABLE PARTS LIST (continued)

PART NUMBER	DESCRIPTION/LOCATION	QUANTITY	
		$\begin{array}{\|c\|} \hline \text { MODEL } \\ 8510 \end{array}$	$\begin{gathered} \text { MODEL } \\ 8530 \end{gathered}$
AMCODE PC BOARD COMPONENTS (continued)			
01383270-01	Capacitor, Mica, $27 \mathrm{pF}, 500 \mathrm{~V}, \pm 5 \% / \mathrm{C} 41, \mathrm{C} 42$		2
01383100-01	Capacitor, Mica, $10 \mathrm{pF}, 500 \mathrm{~V}, \mp 5 \% / \mathrm{C} 43, \mathrm{C} 44$		2-03)
01383240-01	Capacitor, Mica, $24 \mathrm{pF}, 500 \mathrm{~V}, \pm 5 \% / \mathrm{C} 12$		1-04)
01383300-01	Capacitor, Mica, $30 \mathrm{pF}, 500 \mathrm{~V}, \mp 5 \% / \mathrm{C} 41, \mathrm{C} 42$		$2(-04)$
04122100-01	Resistor, Fxd, Comp, 10 ohms, 1/4W, 5\%/R7	1	1
04122102-01	Resistor, Fxd, Comp, 1K, $1 / 4 \mathrm{~W}, 5 \% / \mathrm{R} 3-\mathrm{R} 5, \mathrm{R} 8$, R9, R16, R18, R21, R29-R32	12	12
04122181-01	Resistor, Fxd, Comp, 180 ohms, $1 / 4 \mathrm{~W}, 5 \% / \mathrm{R} 1$, R25	2	2
04122221-01	Resistor, Fxd, Comp, 220 ohms, 1/4W, 5\%/R2	1	1
04122331-01	Resistor, Fxd, Comp, 330 ohms, $1 / 4 \mathrm{~W}, 5 \% / \mathrm{R} 15$, R22, R23	3	3
04122392-01	Resistor, Fxd, Comp, $3.9 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \% / \mathrm{R} 6, \mathrm{R} 12$, R19, R20, R33	5	5
04220257-01	Resistor, Mtl, Film, $4.64 \mathrm{~K}, 1 / 8 \mathrm{~W}, 1 \% / \mathrm{R} 13$, R14, R17, R27, R28	5	5
04220273-01	Resistor, Mtl, Film, 6.81K, 1/8W, 1\%/R24, R26	2	2
04220349-01	Resistor, Mtl, Film, $42.2 \mathrm{~K}, 1 / 8 \mathrm{~W}, 1 \% / \mathrm{R} 10, \mathrm{R} 11$	2	2
04741231-01	Resistor, Pack, 898-5-R220/330/U43, U44, U48	3	3
04501145-01	Resistor, Pack, 470/TN1-TN10	10	10
06151000-20	Inductor, $100 \mu \mathrm{H} / \mathrm{L} 1, \mathrm{~L} 2, \mathrm{~L} 3$	3	3
02104454-01	Diode, IN4454/CR1-CR6	6	6
05203906-01	Transistor, 2N3906/Q1	1	1
12300004-01	Socket, 16-pin DIP/U43, U44, U48	3	3
03052741-01	IC, 74IC/U8, U46	2	2
03200101-01	IC, 74S00/U5, U17	2	2
03200104-01	IC, 74S02/U14	1	1
03200106-01	IC, 74S04/U6, U25	2	2
03200108-01	IC, 74S10/U23	1	1
03200124-01	IC, 74S74/U7, U16, U18, U27, U31, U32, U41	7	7
03200190-01	IC, 7428/U33, U34	2	2
03200201-01	IC, 7475/U35, U36	2	2
03200219-01	IC, 74164/U13, U15, U22, U24, U30, U39, U40	7	7
03204121-01	IC, $74121 / \mathrm{U} 26$	1	
03207438-01	IC, 7438/U42, U45	2	2
03200251-01	IC, 74S124/U9	1	1
03200122-01	IC, 74S51/U4	1	1
03400106-01	IC, 10104/U1, U12, U2 8, U38	4	4

TABIE 6-3. REPLACEABLE PARTS LIST (continued)

PART NUMBER	DESCRIPTION/LOC ATION	QUANTITY	
		$\begin{gathered} \text { MODEL } \\ 8510 \end{gathered}$	$\begin{gathered} \hline \text { MODEL } \\ 8530 \end{gathered}$
AMCODE PC BOARD COMPONENTS (continued)			
$\begin{aligned} & \text { 03400107-01 } \\ & 03400109-01 \\ & 03400110-01 \\ & 03400108-01 \\ & 55000101-01 \\ & \\ & 55000104-01 \\ & 55000103-01 \end{aligned}$	IC, 10116/U47   IC, $10125 /$ U 21   IC, 10231/U10, U11, U19, U20, U29, U37   IC, 10124/U3   IC, Delay Line, $50 \mathrm{~ns}, 100 \mathrm{ohms} / \mathrm{U} 2$   IC, Delay Line, $100 \mathrm{~ns}, 100 \mathrm{ohms} / \mathrm{U} 2$   IC, Delay Line, $125 \mathrm{~ns}, 100$ ohms/U2	$\begin{aligned} & 1 \\ & 1 \\ & 6 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 6 \\ & 1 \\ & 3(01 \\ & -02 \\ & -03) \\ & 1(-04) \end{aligned}$
MINI MOTHER BOARD COMPONENTS			
$\begin{aligned} & 1240060-04 \\ & 01446103-01 \\ & 04122391-01 \\ & 07189065-01 \\ & 07100113-01 \\ & 03200239-01 \end{aligned}$	Mini Mother Assembly   Cap, Cer, . $01 \mu \mathrm{~F}, 100 \mathrm{~V}, 10 \% / \mathrm{C} 1, \mathrm{C} 2$   Res, Fxd, Comp, 390 ohms, 1/4W, 5\%/R1   Connector, Header, $34 \mathrm{Pin} / \mathrm{J} 3$   Connector, 56 Pin/J1, J2   IC, 74156/U1, U2	$\begin{aligned} & 1 \\ & 2 \\ & 1 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 1 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$
HEATSINK ASSEMBLY (P/N 1020138)			
$\begin{aligned} & 1040094-01 \\ & 02509622-01 \\ & 08900103-02 \end{aligned}$	Power Supply PC Board Assembly Diode, Rectifier, 100V, 25A Switch, Thermostat/S1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
POWER SUPPLY PC BOARD (P/N 1040094)			
$\begin{aligned} & 1020137-01 \\ & 1020143-01 \\ & 1020144-01 \\ & \\ & 01200103-13 \\ & 01200103-23 \\ & 01400101-52 \\ & 01416103-01 \\ & \\ & 02204753-01 \\ & 02400101-01 \end{aligned}$	Transistor Sub-Assembly (NON TO-3)   Transistor Sub-Assembly (Dual TO-3)   Transistor Sub-Assembly (Single TO-3)   Capacitor, Tant, $1.0 \mu \mathrm{~F}, 35 \mathrm{~V}, 10 \% / \mathrm{C} 8-\mathrm{C} 10$   Capacitor, Tant, $6.8 \mu \mathrm{~F}, 35 \mathrm{~V}, 10 \% / \mathrm{C} 7$   Capacitor, Cer, $1000 \mathrm{pF}, 1000 \mathrm{~V}, 10 \% / \mathrm{C} 1, \mathrm{C} 3, \mathrm{C} 5$   Capacitor, Cer, . $01 \mu \mathrm{~F},+80-20 \% / \mathrm{C} 2, \mathrm{C} 4, \mathrm{C} 6$   Diode, Zener - IN4753/CR3   Diode, IN4720/CR1, CR2	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \\ & 3 \\ & 1 \\ & 3 \\ & 3 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 3 \\ & 1 \\ & 3 \\ & 3 \\ & \\ & 1 \\ & 2 \end{aligned}$

TABLE 6-3. REPLACEABLE PARTS LIST (continued)

PART NUMBER	DESCRIPTION/LOCATION	QUANTITY	
		$\begin{gathered} \text { MODEL } \\ 8510 \\ \hline \end{gathered}$	$\begin{gathered} \text { MODEL } \\ 8530 \end{gathered}$
POWER SUPPLY PC BOARD (continued)			
03052741-01	IC, 741/U1	1	1
03420723-01	IC, 723/U2, U3, U4	3	3
04122102-01	Resistor, Carbon, 1K, 1/4W, 5\%/R2, R19	2	2
04122162-01	Resistor, Carbon, 1.6K, 1/4W, 5\%/R14	1	1
04122362-01	Resistor, Carbon, $3.6 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \% / \mathrm{R} 6$	1	1
04142471-01	Resistor, Carbon, 470 ohms, 1W, 5\%/R34	1	1
04122512-01	Resistor, Carbon, $5.1 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \% / \mathrm{R} 9$, R25, R39, R40	4	4
04122751-01	Resistor, Carbon, 750 ohms, 1/4W, 5\%/R5	1	1
04122821-01	Resistor, Carbon, 820 ohms, $1 / 4 \mathrm{~W}, 5 \% / \mathrm{R} 33$	1	1
04122911-01	Resistor, Carbon, 910 ohms, 1/4W, 5\%/R13	1	1
04122562-01	Resistor, Carbon, $5.6 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \% / \mathrm{R} 32$	1	1
04122514-01	Resistor, Carbon, 510 ohms, $1 / 4 \mathrm{~W}, 5 \% / \mathrm{R} 22$	1	1
04230185-01	Resistor, Mtl Film, 825 ohms, 1/4W, 1\%/R30	1	1
04230193-01	Resistor, Mtl Film, 1K, 1/4W, 1\%/R4, R15, R2		3
04230209-01	Resistor, Mtl Film, 1.47K, 1/4W, 1\%/R16, R20	2	2
04230225-01	Resistor, Mtl Film, 2.1K, 1/4W, 1\%/R17	1	1
04230245-01	Resistor, Mtl Film, 3.48K, 1/4W, 1\%/R21	1	1
04230257-01	Resistor, Mtl Film, 4.64K, 1/4W, 1\%/R11	1	1
04230269-01	Resistor, Mtl Film, 6.19K, 1/4W, 1\%/R36	1	1
04230277-01	Resistor, Mtl Film, $7.5 \mathrm{~K}, 1 / 4 \mathrm{~W}, 1 \% / \mathrm{R} 28, \mathrm{R} 29$	2	2
04230281-01	Resistor, Mtl Film, 8.25K, 1/4W, 1\%/R31	1	1
04230289-01	Resistor, Mtl Film, 10K, 1/4W, 1\%/R24, R35, R3'	7	3
04230261-01	Resistor, Mtl Film, 5.11K, 1/4W, 1\%/R3	1	1
04230293-01	Resistor, Mtl Film, 11K, 1/4W, 1\%/R18, R41	2	2
04230301-01	Resistor, Mtl Film, 13.3K, 1/4W, 1\%/R38	1	1
04230329-01	Resistor, Mtl Film, 26.1K, 1/4W, 1\%/R23	1	1
04230309-01	Resistor, Mtl Film, 16.2K, 1/4W, 1\%/R10	1	1
04370101-04	Resistor, Wire Wound, . $56 \mathrm{ohm}, 5 \mathrm{~W}, 1 \% / \mathrm{R} 1, \mathrm{R} 8$	2	2
04370101-06	Resistor, Wire Wound, . 68 ohm, 5W, 1\%/R12	1	1
04370101-11	Resistor, Wire Wound, 3 ohms, $5 \mathrm{~W}, 1 \% / \mathrm{R} 26$	1	1
04473202-01	Resistor, Variable, 1 Turn, 2K, 1/2W, 10\%/R7	1	1
05400101-01	Transistor, Unijunction-2N6027/Q4, Q8, Q12, Q13	3	4
07210015-01	Connector, 12-position/P4	1	1
07220012-01	Connector, 9-position/ J5	1	1
47080514-01	Contact, Socket	9	9
47080513-01	Contact, Pin	12	12

TABLE 6-3. REPLACEABLE PARTS LIST (continued)

PART NUMBER	DESCRIPTION/LOCATION	QUANTITY	
		$\begin{aligned} & \text { MODEL } \\ & 8510 \end{aligned}$	$\begin{aligned} & \text { MODEL } \\ & 8530 \end{aligned}$
CLOCK PREAMPLIFIER PC BOARD COMPONENTS			
1040003-01	Clock Preamplifier PC Board Assembly	1	1
01400101-52	Capacitor, Ceramic Disc, 1000pF, 1000V/C5-C7	3	3
01446103-01	Capacitor, Ceramic Disc, . $01 \mu \mathrm{~F}, 100 \mathrm{~V} / \mathrm{C} 1, \mathrm{C} 4$	2	2
01400108-12	Capacitor, Molded Cer, . $01 \mu \mathrm{~F}, 100 \mathrm{~V} / \mathrm{C} 2, \mathrm{C} 3$	2	2
47088295-01	Contact, Right angle/J4	5	5
04122101-01	Resistor, Carbon, 1/4W, 100 ohms $\pm 5 \% / \mathrm{R} 3$	1	1
04122511-01	Resistor, Carbon, $1 / 4 \mathrm{~W}, 510$ ohms $\mp 5 \% / \mathrm{R} 10, \mathrm{R} 11$	2	2
04122392-01	Resistor, Carbon, $1 / 4 \mathrm{~W}, 3.9 \mathrm{~K} \pm 5 \% 7 \mathrm{R} 1, \mathrm{R} 2, \mathrm{R} 4$, R5-R7	6	6
04122103-01	Resistor, Carbon, 1/4W, 10K $\pm 5 \% / \mathrm{R} 12-\mathrm{R} 14$	3	3
04220169-01	Resistor, Mtl Film, 1/4W, 562 ohms $\pm 1 \% / \mathrm{R} 8, \mathrm{R} 9$	2	2
02100102-01	Diode, Signal-IN4454/CR1, CR2, CR7, CR8	4	4
02500105-01	Diode, Matched-IN4307/CR3-CR6	4	4
03020733-01	IC, 733/U1	1	1
WRITE/LOCKOUT (OPTIONAL)			
$1040070-01$ $08100104-01$	Write/Lockout PC Board Assembly Switch, SPST	1 16	1 16
07189065-01	Connector, 34 Position	1	1
SUSTAINING GAS SYSTEM COMPONENTS			
08428009-02	Pressure Sensor Switch (S1)	1	1
10600094-02	Cylinder Assembly- Nitrogen Filled	1	1
19000102-01	Pressure Gauge, 0-5 psi	1	1
12100101-01	Indicator Lamp - LED (DSI)	1	1

TABLE 6-3. REPLACEABLE PARTS LIST (continued)

PART NUMBER	DESCRIPTION/LOCATION	QUANTITY	
		$\begin{gathered} \text { MODEL } \\ 8510 \end{gathered}$	$\begin{gathered} \text { MODEL } \\ 8530 \end{gathered}$
MISCELLANEOUS PARTS			
1260064-01	Pre-Filter	1	1
3070044-01	Brush (1)	1	1
3070045-01	Spring (1)	1	1
1260058-02	Belt	1	1
1260084-01	Shock Mount	4	4
1020085-XX	Drive Motor Assembly (2)	1	1
1020081-01	Heatsink Assembly (Power Supply)	1	1
1240056-01	Interconnect PC Board	1	1
1060076-01	Power Receptacle Assembly	1	1
09230005-01	Fuse, Ceramic, 5A SLO BLO/F1	1	1
09220004-01	Fuse, Ceramic, 2.5A SLO BLO/F1	1	1

(1) Brush and spring may be used as one unit also. Part number is 1060095.
(2) Select assembly applicable to disc unit model: -01 for Model 8510 ( 1800 rpm ), or -02 for Model 8530 ( 3600 rpm ).


































[^0]:    * Selection of options is done through test-point jumpering according to the list on AMCODE PC board schematic diagram 1940077.

[^1]:    ** A non-recovable error is defined as a single bit or many consecutive bits in error from which valid data cannot be recovered within three consecutive passes through the same data record.

