
, .

-------ALTOS_

... ~

~

ACS-586 XENIX C Compiler (x. out Format)
Version l.la

May 29, 1984

Introduction

N\:OT E S

These diskettes contain "the XENIX x.out C 'compiler,
also referred to as the "medium model" C compiler.
Included with this release is the C compiler, assem­
bler, linker, and other programs that are required to
support x.out programs.

Under the a.out model, C programs were limited to G4K
bytes of code space and 64K bytes of data/stack space.
This is referred to as "small model" and is the only
model supported by the a.out C compiler. The compiler
supplied with this release supports either small or
"medium" model, which means that a maximum of 192K
bytes of code and 64K bytes of data space are sup­
ported.

All of the utilities required to support code genera­
tion for the x.out format are supplied in this release.
Several deficiencies of the previous x.out release have
been rectified in this version. All known compiler
optimizer bug~ have been ~orrected. The linker has
been enhanced to support link editing of large pro­
grams. In addition, the libraries for the lex (1) util­
ity and the C preprocessor, /lib/cpp, are provided on
this release.

SOfTWARE
P/N:69.0-14768-.0.02 (1 of 17)

Changes ~ Version 1.Qa

This release of the x.out C compiler is different fro~
the previous release in the following ways:

1. The -s switch to the previous x.out linker caused it to
emit a symbol table file, to be integrated later with
the binary by the "nlcv" program. The linker in this
release does this step automatically, so the -s switch
is no longer necessary. The new linker will accept -S
in its command line, but will not perform any action.
The nlcv program supplied with previous releases is no
longer necessary, and is not supplied with this release.
Current linker command lines (in makefiles or shell
scripts) should be changed to eliminate any calls to
nlcv.

2. The -C
linker
cant.
symbol

switch in the previous release requested the
to consider the case of symbol name as signifi­

This option now means to disregard the case of
names when considering uniqueness.

3. In the previous x.out linker release, medium moue~ ~ro­
grams were linked with "seg.o" for both small and medium
model. This implementation requires the use of "Mseg.o"
for medium model. Seg.o is still used for small model.

Changes fIQm a.QUt

When switching from the a.out to x.out C compiler, the
following notes should be kept in mind:

1. The -M option has been added to ccCI) and as(l) to sup­
port compilation of medium model programs. If the -M
option is not used, then user programs are compiled
small model. There may be a small performance advantage
to compiling a program small model versus medium model.
This is due to the fact that in some cases long forms of
instructions are used in the medium model case. These
instructions take fractionally longer to execute than
their small model counter-parts. A program compiled
medium model will be larger than its small model version
for the same reason.

2. The options to ldCl) have changed from a.out. When link­
ing to a library using the "-1" option, the library name
must be a fully qualified path name. In addition, all
libraries must be run through ranlib(l) before linking.

3. Intermediate object files (".0" files) in a.out format
can not be linked with x.out object files. All ".0"
files must be re-compiled and all libraries re-built in
the x.out format before the linker can produce an exe­
cutable binary.

4. The libraries contained in this release are prefaced by
"M" or AS" , corresponding to medium or small model.
The appropriate libraries will be linked automatically
by cc (1). For this reason, it is recommended that cc (1)

be used to link programs.

5. All executable binaries that have been compiled small
model, whether in the a.out or x.out formats, are
expected to be compatible with the Intel 286 processor.
However, medium model binaries may not be compatible
with future releases of XENIX for the 286. All medium
model programs may have to be re-compiled when the time
comes to port them to the 286.

6. A new lusr/include/stdio.h has been included with this
release. This stdio.h will not work properly with the
small model (a.out) C Compiler and vice versa.

Known ~

The following bugs are known to exist in this release of the
x.out C compiler;

1. There is a bug in Ilib/cl that prevents the srm'itrl of
the stack by more than 32R bytes at a time. This means
that locally defined data arrays can not be larger than
32767 bytes. To work around this problem simply declare
the data structure outside of a procedure; i.e. use a
global definition.

2. The medium model linker
support the "-en or "-r"

Ubin/ld)
flags.

does not currently

3. Some uses of the -= construction do not compile correct
code when the type of the assignment {s a float or dou­
ble. Such a construction is:

float a = 0.0;

a -= 1.0 - .5;1* delivers wrong result *1

Th~ use of the equivalent statement a = a - (1.0 - 0.5)
is recomended. This problemoccurs.without respect to
model or optimization.

Installation Instructions

~: the installation procedure for the x.out C compiler
will over-write some a.out C compiler files that may exist
on your system.

To install either the x.out or a.out C compiler on your
system, insert the proQer floppy disk into the floQPv
drive, login as root, ana enter toe following commanas;

cd /
umask 0
tar xv

These commands will install all the programs and
libraries in their correct places with the correct per­
missions. Switching between C compilers is not recom­
mended but may be accomplished by inserting the a.out
(or x.out) C compiler floppy disk into the floppy drive
and following the steps above.

..; (-."
U'

CC (1) XENIX Programmer's Manual CC (1)

01ame
cc - Invokes the C compiler.

Syntax
cc options filename

Description
~ is the XENIX C compiler command. It creates executable
programs by compiling and linking the files named by the
filename arguments. ~ copies the resulting program to the
file a ~ out.

The filename can name any C or assembly language source file
or any object or library file. C source files must have a
".c" filename exten~ion. Assembly-language source files
must" .s", object files" .0", and library files" .a"
extensions. ~ invokes the C compiler for each C source
file and copies the result to an object file whose basename
is the same as the source file but whose extension is
".0". ~ invokes the XENIX assembler, ~ , for ea.ch
assembly source file and copies the result to an object file
with extension ".0". ~ ignores object and libr.:lry files
until all source files have been compiled or assembled. It
then invokes the ,XENIX link euitor, lQ , and combines all
the object files .it has created together with object files
and libraries given in the command line to form a single
program.

Files are processed in the order they are encountered in the
command line, so the order of files is important. Library
files are examined only if functions referenced in previous
files have not yet been defined. Library files must be in
ranlib(l) format, that is, the first member must be named
_.SYMDEF, which is a dictionary for the lib·rary. The
library is searched repeatedly to satisfy as many references
as possible. Only those functions that define unresolved
references are concatenated. A number of "standard"
libraries are searched automatically. These libraries sup­
port the standard C library functions and program startup
routines. Which libraries are used depends on the program's
memory model (see "Memory Models" below). The entry point
of the resulting program is set to the beginning of the
"main" program function.

There are the following options:

-P
Preprocesses each source file and copies the result to
a file whose basename is the same as the source but
whose extension is ·'.i' '. Preprocessing performs the
actions specified by the preprocessing directives.

Printed 5/29/84 ,1

CC (1) XENIX Programmer's Manual CC (1)

-E Preprocesses each source file as described for -P , but
copies the result to the standard output. The option
also places a 'line directive with the current input
line number and source file name at the beginning of
output for each file.

-C Preserves comments when preprocessing a file with -E or
-Po That is, comments are not removed from the prepro-
cessed source. This option may only be used in con­
junction with -E or -P .

-D~ [= strino]
Defines ~ to the preprocessor as if defined by
#define in each source file. The form "-D~" sets
~ to 1. -The form "-D~ = strino" sets ~ to
the given string.

-Ir;>athname
Adds pathname to the list of directories to be searched
when an .include file is not found in the directory
containing the current source file or whenever ansle
brackets « » enclose the filename. If the file can-
not be found in directories in this list, directories
in a standard list are searched.

-x Removes the standard directories from the list of
directories to be searched for #include files.

-v21.l
sets a flag which provides for XENIX 2.x compatibility
(-v2) or XENIX 3.0 (-v3). The default is -v2.

-i Creates separate instruction and data spaces for small
model programs. When the output file is executed, the
program text and data areas are allocated separate phy­
sical segments. The text portion will be read-only and
may be shared by all users, executing the file. The
option is implied when creating middle model programs.

-Kn.um
Removes stack probes ~rom a piogram. Stack probes are
used to detect stack overflow on entry to program rou­
tines.

-F n.um
Tells the linker to use a fixed stack size of "num" hex
bytes. The argument must be supplied as "OxNNNN".

-M The generated program is to be medium model.

-c Creates a linkable object file for each source file but
does not link these files. No executable program is

Printed 5/29/84 2

CC(l) XENIX Programmer's Manual CCCl)

created.

-0 filename
Defines filename to be the name of the final executable
program. This option overrides the default name a.out.

-llibrary
Searches library for unresolved references to func­
tions. The library must be an object file archive
library in ranlib format.

-0 Invokes the object code optimizer.

-S Creates an assembly source listing of the compiled C
source file and copies this listing to the file whose
basename is the same as the source but whose extension
is ".s' '. This file is suitable for assembly using
~(l) •

-L Creates an assembler listing file containing assembled
code and assembly source instructions. The listing is
copied to the file whose basename is the same as the
source but whose extension is ".L' '. This options
suppresses the "-S" option.

""'\ .. {' '- ~

l<iany options (or equivalent forms of these options) are ~'
passed to the link editor as the last phase of compilation. .
Tbe -I'! option is passed to specify program model. The -i and
-p are passed to specify other characteristics of the final
program.

The -D and ~I options may be used several times on the com­
mand line. The -D option must not define the same name
twice. These options affect subsequent source files only.

f>lemo ry ~'lode 1 s
IT can create programs for two different memory models:
small and middle. In addition, small model programs can be
pure or impure.

Impure-Text Small Model
These programs occupy one 64 Kbyte physical segment in
which both text and data are combined. IT creates
impure small model programs by· default. They can also
be created using the "-Ms" option.

Pure-Text Small Model
These programs occupy two 64 Kbyte physical segments.
Text and data are in separate segments. The text is
read-only and may be shared by several processes at
once. The maximum program size is 128 Kbytes. Pure
small model programs are created using the' '-i"

Printed 5/29/84

(7 of 17)

3

CC (1) XENIX Programmer's Manual CC(l)

option.

Middle (or Medium) Model
These programs occupy several physical segments, but
only one segment contains data. Text is divided among
as many segments as required. Special call and returns
are used to access functions in other segments. Text
can be any size, up to 192K. Data must not exceed 64
Kbytes. Middle models programs are created using the
"-M" option. These programs are always pure.

Small and middle model object files can only be linked with
object and library files of the same model. It is not possi­
ble to combine small and medium model object files in one
executable program. ~ automatically selects the correct
small and middle versions of the standard libraries based on
the -M option. It is up to the user to make sure that all
of his own object files and private libraries are properly
compiled in the appropriate model.

The special calls and returns used in middle model p[~grams
may affect execution time. In particular, the exc:cution
time of a program which makes heavy use of functions and
function pointers may differ -noticably from small model pro­
grams.

In middle model programs, function pointers are 32 bits
long. Programs making use of such pointers must be written
carefully to avoid incorrect declaration and use of these
variables. ~(l) will help to check for correct use.

Files
/bin/cc

See Also

Notes

as (1), ar (1), ld (1), lint (1), ranlib (1)

Error messages are produced by the program that detects the
error. These messages are usually produced by the C com­
piler", but may occasionally be produced by the assembler or
the link loader.

All object module libraries must have an up to date ranlib
directory.

Printed 5/29/84 4

LD (1) XENIX Programmer's Manual LD (1)

~lame

ld - Invokes the link editor.

Syntax
ld [opt ions] filename ...

Description
Ld is the XENIX link editor. It creates an executable pro­
gram by combining one or more object files and copying the
executable result to the file a.out. The filename must name
an object or library file .. These names must have the ".0"

(for object) or ".a' I (for archive library) extensions. If
more than one name is given, the names must be separated by
one or more spaces. If errors occur while linking,.ld
displays an error message; the resulting a.out file is unex­
ecutable.

L.d concatenates the contents of the given object files in
the order given in the command line. Library files in the
command line are examined only if there are unresolved
external references encountered from previous object files.
Library files must be in ranlib(l) format, that is, the
first member must be named _.SYr-mEF, which is a dictionary
for the library. The library is searched iteratively to
satisfy as many references as possiple and only those rou­
tines that define unresolved external references are con­
catenated. Object and library files are processed at the
point they are encountered in the argument list, so the
order of files in the command line is important. In gen­
eral, all object files should be given before library files.
Ld sets the entry point of the resulting program to the
beginning of the first routine.

There are the following options:

-F n.um
Sets the size of the program stack to hex n.um bytes.
The stack size must be supplied.

-i Creates separate instruction and data spaces for small
model programs. When the output file is executed, the
program text and data areas are allocated separate phy­
sical segments. The text portion will be read-only and
shared by all users executing the file.

-Ms Creates small model program and checks for error, such
as fixup overflow. This option is reserved for object
files compiled or assembled using the small model con­
figuration. This is the default model if no -M option
is given.

-~tm Creates middle model program and checks for er.rors.

Printed 5/29/84 I

.J C . .:

LD (1) XENIX Programmer's Manual LD (1)

This option is reserved for object files compiled or
assembled using the middle model configuration. -M with
no model specifed defaults to medium. These options
imply -i .

-0 lliUD..e.

Files

Sets the executable program filename to ~ instead of
a.out.

-1 library name
Searches the named library to supply archived routines.

-m Supply a link map.

-n length
Truncates symbol name sizes to "length".

-v 21.3.
Sets compatibility mode; 2 is XENIX 2.x compatibility,
3 is XENIX 3.0 compatibility.

-C Case of symbol names is not significant .

-s Strip the symbol table from the output.

-u symbol
Enters the "symbol" as undefined.

-S Does nothing. Retained for compatibility with previous
linker.

La should be invoked using the ~CI) instead of invoking it
directly. ~ invokes ld as the last step of compilation,
providing all the necessary C-Ianguage support routines. .
Invoking ld directly is not recommended since failure to
give command line arguments in the correct order can result
in errors.

Ibin/ld,
Ilib/[MS]crtO.o,
Ilib/[MS]libc.a,
Ilibl [!vIS] libfp.a

linker program
C runtime binary
C library archive
C floating-point archive

See Also

Notes

asCI), ar(l),cc(l), ranlib(l)

The user must make sure that the most recent library ver­
sions have been processed with ranlib(l) before linking. If
this is not done, l.d cannot create ·executable programs using

Printed 5/29/84 2

LD (1) XENIX Programmer's Manual LD(l)

these libraries.

Printed 5)29/84 3

A.OUT(5) XENIX System

a.out - assa~bler and link editor output

SYNOPSIS
tinclude <a.out.h>
Jinclude <sys/relsym.h>
*include <sys/relsym86.h>

DESCRIPTION

A. OUT (5)

~.out is the output file of the assembler as(l) and the link
editor ld(l). Both programs make a.out executable if there
were no errors and no unresolved external references.

~.out is the name given to all object files by default. In
this context, when a file is refe-rred to as being in x.out
format, it contains an x.out -header and may contain any-of
several symbol table and relocation record formats.

The a.out.h include file contains the header and extended - ---header declarations and defined values for the header
fields. It also contains declarations for the portable sym­
bol structures used by library routines to access symbol
tables.

The ~/relsvm.12. include file contains declarations an-::
defined _ values for the symbol table and relocation str'.:c­
ture s used in an x. out fi le. The svs/relsvm86. h inc lude fi le
contains declarations-and descriptiOns of the relocation and
symbol formats used in 8086 object files.

An x.out object file has seven sections: a header, an
extended header, text, da ta, symbol table, text relocation
records, and data relocation records (in that order). The
symbols and relocation records may be empty if the program
was loaded with the appropriate options to ld(l) or if they
have been removed by strip(l). - --

Whe."l an x.out file is loaded into core for execution, three
logical segments are set up: the text segment, the data seg­
men t, and stack segmen t. The da ta segmen t contains in tial­
ized data followed by bss, or blank storage space~ bss is
initialized to all O. The text segment begins at the text
relocation base (not necessarily 0) in the core image~ the
header itself is no t loaded. If the text segmen t is to be
impure (not -write-protected), the data segment is immedi­
ately contiguous with the text segment.

If the text segment is pure, the data segment begins at the
first page boundary following the text segment, and the text
segment is not writeable by the program; if ot..'er processes
are executing the same file, they will share the text seg­
men t. On some machines, the text and data segmen t locations

A. OUT (5) XENIX System A.OUT (5)

may be reversed.

If the text and data segments are separate (separate I & 0),
the text and data segments may begin at unrelated locations.

The stack segment will be located by the Xenix kernel, and
on non-fixed stack machines is extended automatically as
required. The data segment is only extended as requested by
brk (2) .

HEADER
In the header, the sizes of each section are given In bytes,
but are even. The size of the header is no t included in any
of the other sizes.

Layout information as given in the include file is:

struct xexec { /* x.out header */
unsigned shor t x magic; - /* magic number */
unsigned shor t x ext; /* extended header::- size * I - /

long x - text; /* text size */
long x da ta; /* data size */ -long x bss; /* bss size *! - I

long x_syms; /* symbol table s i:::e */
long x reloc; /* . relocation SIze */
long x_en try; /* entry point */
char x_cpu; /* cpu type, */
char x_relsym ; /* reloc & symbol format */
unsigned short x renv;

} ;
/* run-time envirornnen t */

Definition for the x.out magic number. The presence of this
value in the first two bytes of a file indicates the file is
in x.out format.

Ox0206

Definitions for x cpu. The first 'two defined bits are set
if the bytes or WOrds in the x.out header, symbol table and
relocation records are not stored in the same order as on a
PDP-ll. The second group indicates the cpu for which the
file was compiled or assembled.

~define XC BSWAP Ox80 /* bytes swapped */
tdefine XC-W5WAP Ox40 /* words swapped */

~define XC NONE OxOO /* none */
idefine XC PDPll OxOl /* PDP-ll */
idefine XC - 23 Ox02 /* 23fixed PDP-li */ -
~define XC zaK Ox03 /* zaooo */
idefine XC-80a 6 Ox04 /* 80a 6 */

;,

.J

A. OUT (5) XENIX System A. OUT (5)

#define XC 68K Ox05 /* M68000 */ -;i:defi:1e XC Z80 Ox06 /* Z80 */
;i:define XC -VAX Ox07 /* VAX 780/750 */
;i:define XC 16032 Ox08 /* NS16032 */
;i:define XC -CPU Ox3f /* cpu mask */

Definitions for x_ relsym. The first group ind icates the
type of relocatIon attached, the second indicates the type
of symbol table.

define XR R..,{OUT OxOO / x.out_ long form */
it:define XR RXEXEC OxlO /* x.out shor t form */ -it:define XR RBOUT Ox20 /* b.out format */ -ifdefine XR RAOUT Ox30 /* a.out format */ -it:define XR R86REL Ox40 /* 8086 relocatable */
idefine XR-R86ABS Ox50 /* 8086 absolute */ -idefine XR REL OxfO /* relocat-ion mask */

;i:define XR SXOUT OxOO /* struct sym */
:;:define XR SBOUT OxOl /* struct bsym */ -;i:define XR SAOUT OxO 2 - /* struct asym */
;j:define XR S36REL Ox03 /* 8086 relocatable */ -;j.' --:rae!:lne XR S86ABS Ox04 /* 8086 absolute */ -;j.' -f-
:rae_~ne XR SUCBVAX Ox05 /* string table */ -;i:cefine XR S~--:·l OxOf /* -symbol mask */

Definitions for x renv, the run-time environment. T~e first
group indicates the version of Xenix for whic!l t...'1e file 'Nas
compiled. The XE LTEXT and/or XE LDATA bi ts are set if text
and/or data addresses require ITCre than sixteen bits. Other
bits are set to describe the configuration of the text and
data segments, to indicate if the fixed stack size field in
the extended header is valid, and to indicate whether it is
executable or linkable. -

~define XE V2 Ox4000 /* up to version 2.3 */
idefine XE-V3 OxSOOO /* after version 2.3 */
#define XE-VERS OxcOOO /* version mask */

idefine XE RES OxOO80 /* reserved */
idefine XE-LTEXT Ox004 a /* large mdel text */
idefine XE-LDATA OxOO 20 /* large mdel data */
idefine XE-o-VER OxOOlO /* text overlay */
#define XE FS OxOO08 /* fixed stack */
idefine XE PURE OxOO04 /* pure text */
~define - OxOOO 2 /* */ XE SEP separate I & D
~define XE EXEC OxOOO 1 /* executable * /

EXTENDED HEADER
The first two fields contain the sizes of text and da ta
relocation attached to t!le file. The next t'NO contai:1 the
base addresses for whic!l text and da ta have alre ady be-::n

A. OUT (5) XENIX System A. OUT (5)

relocated. The fifth field is used on fixed stack machines
to indicate the size of the stack segment required for exe­
cution.

struct xext
long xe trsize; /* text rel size */
long xe~drsize; /* data rel size */
long xe tbase; - /* text base */
long xe dbase; - /* data base */

} ;
long stksize; /* stack size */ xe -

SYMBOL TABLE
The standard x.out symbol table (XR SXOUT) is discussed
here. For declarations of other supported symbol types, see
the svs/relsym.h include file. Some flag values are only
used--rnternally by utility programs, and will not be found
in object files.

I f a symbol's type is undefined external, and the value
field is non-zero, the s',..rmbol is interpreted by the link
editor Id(l) as the name of a cammon region whose size is
indicated by the value of the symbol.

The value of a wor d in the text- or da ta EX'r tions which is
not a reference to an undefined external symbol is exactly
that value which will appear in core wh~~ the file is exe­
cuted. If a word in the text or data portion involves a
reference to an undefined external symbol, as ind icated by
the relocation information for that word, then the value of
the word as stored in the file is an offset fran ~~e associ­
ated external symbol. When the file is _processed by t..~e
link editor and the external symbol becomes defined, the
value of the symbol will be added into the word in the file.

Each symbol in the table has the structure given below, fol­
lowed immediately by its name in the form of a null ter­
minated string. The length of the symbol name, including
~he null terminator, must be no greater than SYMLENGTH. No
effort is made to word align subsequent structures in the
symbol table.

The first field encodes the symbol type, the last contains
the value (usually the core address) of the symbol. The
structure has been padded to allow por table use.

struct

} ;

sym {
unsigned
unsigned
long

short
short

s_type;
s pad;
(:value;

A. OUT (5) XENIX System A. OUT (5)

*define SY'MLENGTH 50.

Definitions for 5 type:

#=define S UNDEF axoaao /* und ef ined */ -#:define S ABS OxOOOl /* absolute */
#:define S - TEXT ,OxOOO2 /* text */ -#:define S DATA OxOOO3 /* data */ -#:define S BSS - OxOOO4 /* bss */
idefine S COMM - OxOOOS /* internal */
idefine axOOO6 S REG - /* register */
#:define S COMB OxOOO7 /* inte rna 1 */ -idefine S TYPE OxO.Olf /* mask */

idefine S FN OxOOlf /* file name */ -
idefine S EXTERN OxO.O 20. /* external bit */

The nlist str uc ture , provided for compatibili ty with
nl i s t (3) •

struct nlist
C!1 ar
int

} ;
unsigned

RELOCATION

n_name[8];
n type;
n-value;

/* symbol name */
/* type flag */
/* value */

If relocation information is present, it takes one of t~o
forms. For linkable object files, the long form (XR ~XOUT)
is used to enable references between trodules to be resolved
whe."1 linked together.

The first field encodes the segmen t r;eferenced, the size
(number of bytes) to relocate, and whether the relocation is
relative. The second contains the symbol id, an index into
the symbol table. The first symbol in the symbol table is
referenced with O. The symbol id is used to obtain the sym­
bol value in order to perform external' relocation. The last
field contains the position within the current segment at
which re location is to be performed.

struct reloc {
unsigned
unsigned
long ,

short
short

r desc;
r:symbol;
r_pos;

/* descriptor */
/* symbol id */
/* position */

Defini tions for r desc. The first group encodes the segmen t
referenced, the second the size of relocation, and t!1e last
whether relocation is re lati ve.

A. OUT (5) XENIX System A. OUT (5)

*define RD TEXT 0:<:0000
iFdefine - Ox4 00 0 RD DATA
iFdefine RD - BSS Ox8000
#:define RD -EXT OxcOOO
~define RD SEG OxcOOO

#:define RD BYTE OxOOOO
#:define RD WORD OxlOOO
#=define RD LONG Ox2000 -ifdefine RD SIZE Ox3000

#=define RD orsp Ox0800

For executable files, the short form (XR_RXEXEC) is used to
allow - a single module to be relocated. This enables the
link editor to relocate a file to run at the different text
and da ta base addresses required for differen t mach ines, or
to convert it to pure text, fixed stack, etc, witl10ut r'2ccm­
piling.

struct

} ;

xreloc
long xr_CT1d;

The first bit is set
segmen t, the second
(as opposed to two).
offset, wi thin the
is to be performed.

if the reloc=t~:;r_ :-e:e:enc~s ~- - :2::':
if the reloc2.ci..on invol'les ~~,,- ~'!tes

The last field is the position, or
current segment at which "the relocation

~define XR CODE
idefine XR LONG
i#:define XR-OFFS

Ox80000000
Ox40000000
Ox3fffffff

/* code/text segment */
/* long/short operand */
/* 30 bit offset */

SEE ALSO
as(lS), Id(lS), nm(lS), strip(lS), brk(2), nlist(3)

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17

