
SOFTWARE MANUAL

Alpha PASCAL
USER'S GUIDE

DWM-00100-08
REV. BOO

SOFTWARE MANUAL

AI pha PASCAL
USERJS GUIDE

DW~010()..Q8

REV.B01

alpha
micro

ALPHA PASCAL USER'S MANUAL

~-2MD-4/81

NOTE: This printinq of the manual contains the contents of
Change Pagp. Packet #1 for the "AlphaPASCAL User's Manual",
(DSS-10000-10), which may be ordered separately from ALpha
Micro.

First Printing:
Second Printing:

1 August 1980
30 Apri l 1981

'Alpha Micro', 'AMOS', 'AlphaBASIC', 'AM-100',
'AlphaPASCAL', 'AlphaLISP', and 'AlphaSERV'

are trademarks of

ALPHA MICROSYSTEMS
Irvine, CA 92714

This book reflects AlphaPASCAL Versions 2.0 and later.

~1981 - ALPHA MICROSYSTEMS

ALPHA MICROSYSTEMS
17881 Sky Park North
Irvine, CA 92714

Paqe ii

ALPHA PASCAL USER1S MANUAL Page iii

CHAPTER 1

CHAPTER 2

PART I

CHAPTER 3

CHAPTER 4

TabLe of Contents

INTRODUCTION

1.1 ORGANIZATION OF THIS BOOK •••••••••••••••••••• 1-2
1.2 PASCAL BIBLIOGRAPHy •••••••••••••••••••••••••• 1-3
1.3 GRAPHICS CONVENTIONS USED IN THIS BOOK ••••••• 1-3

GETTING STARTED

2.1 WHAT IS PASCAL? •••••••••••••••••••••••••••••• 2-1
2.2 SAMPLE PROGRAM ••••••••••••••••••••••••••••••• 2-3
2.3 BRIEF DEMONSTRATION •••••••••••••••••••••••••• 2-4

2.3.1 BuiLding a PascaL Program ••••••••••••• 2-4
2.3.1.1 The VUE Text Editor •••••••••• 2-4

2.3.2 CompiLing and Linking a
Pascal Program ••••••••••••••••••••••••

2.3.3 Running a PascaL Program
2-7
2-8

THE ALPHA PASCAL SYSTEM

COMPATIBILITY AND CONVERSION

3.1 PREVIOUS VERSIONS OF ALPHA PASCAL •••••••••••• 3-1
3.2 STANDARD PASCAL •••••••••••••••••••••••••••••• 3-6
3.3 MAKING PROGRAMS COMPATIBLE WITH

THE NEW ALPHA PASCAL ••••••••••••••••••••••••• 3-7

OPERATING INSTRUCTIONS AND CHARACTERISTICS

4.1 FILE AND MEMORY REQUIREMENTS ••••••••••••••••• 4-2
4.1.1 FiLe Extensions ••••••••••••••••••••••• 4-2
4.1.2 FiLe Search Pattern ••••••••••••••••••• 4-3
4.1.3 Program Restrictions •••••••••••••••••• 4-4
4.1.4 Memory Requirements ••••••••••••••••••• 4-4

4.2 CREATING A PASCAL PROGRAM •••••••••••••••••••• 4-5
4.3 THE ALPHA PASCAL COMPILER •••••••••••••••••••• 4-5

4.3.1 The Diagnostic DispLay •••••••••••••••• 4-6
4.3.2 CompiLer Options •••••••••••••••••••••• 4-7

4.3.2.1 The GOTO Options
($G+ and $G-) •••••••••••••••• 4-7

4.3.2.2 The IncLude Option ($1) •••••• 4-7
4.3.2.3 The List Options

($L, $L+ and $L-) •••••••••••• 4-8
4.3.2.4 The Page Option ($P) ••••••••• 4-10
4.3.2.5 The Quiet Options

($Q+ and $Q-) •••••••••••••••• 4-10

ALPHA PASCAL USER'S MANUAL Page iv

PART II

CHAPTER 5

CHAPTER 6

4.3.2.6 The Range Check Options
($R- and $R+) •••••••••••••••• 4-10

4.4 THE ALPHA PASCAL LINKER •••••••••••••••••••••• 4-11
4.4.1 Linking a New .PCF FiLe ••••••••••••••• 4-12
4.4.2 Replacing a .PCF File ••••••••••••••••• 4-13
4.4.3 Updating a .PCF File •••••••••••••••••• 4-14
4.4.4 Linking Assembly Language Subroutines

(the /LINK Option) •••••••••••••••••••• 4-15
4.4.5 Preventing Backtracing of .PCF Files

(the /SMASH Option) ••••••••••••••••••• 4-16
4.5 THE ALPHA PASCAL RUN-TIME PACKAGE •••••••••••• 4-17

4.5.1 Library Version Checking •••••••••••••• 4-17
4.5.2 Interrupting a Program •••••••••••••••• 4-19

4.6 HELPFUL COMMAND FILES •••••••••••••••••••••••• 4-20
4.6.1 Compiling a Single File (PC.DO) ••••••• 4-20
4.6.2 Linking a Single File (PL.DO) ••••••••• 4-21
4.6.3 Compiling and Linking

a Single File (PCL.DO) •••••••••••••••• 4-21
4.6.4 Updating a Single Program

Module (PU.DO) •••••••••••••••••••••••• 4-21
4.6.5 Compiling and Updating a Single

Program Module (PCU.DO) ••••••••••••••• 4-22

SUMMARY OF ALPHA PASCAL

GENERAL INFORMATION

5.1
5.2
5.3
5.4

5.5
5.6

BASIC STRUCTURE OF A PROGRAM •••••••••••••••••
COMPOUND STATEMENTS (BEGIN AND END) ••••••••••
COMMENTS •••••••••••••••••••••••••••••••••••••
LEGAL IDENTIFIERS ••••••••••••••••••••••••••••
5.4.1 Reserved Words ••••••••••••••••••••••••
5.4.2 Standard Identifiers ••••••••••••••••••
SCOPE OF IDENTIFIERS •••••••••••••••••••••••••
NOTATION •••••••••••••••••••••••••••••••••••••
5.6.1 NUMBERS
5.6.2 STRINGS •••••••••••••••••.•••••••••••••

5-1
5-3
5-4
5-5
5-6
5-6
5-7
5-9
5-9
5-10

DECLARATIONS AND DEFINITIONS

6.1 PROGRAM DECLARATIONS ••••••••••••••••••••••••• 6-1
6.2 LABEL DECLARATIONS ••••••••••••••••••••••••••• 6-2
6.3 CONSTANT DEFINITIONS ••••••••••••••••••••••••• 6-4
6.4 TYPE DECLARATIONS •••••••••••••••••••••••••••• 6-4
6.5 VARIABLE DECLARATIONS •••••••••••••••••••••••• 6-5
6.6 FUNCTION AND PROCEDURE DECLARATIONS •••••••••• 6-6

6.6.1 Functions •••••••••••••••••••••••••••.• 6-6
6.6.2 Procedures ••.••..•.•...••••••••••••••• 6-8
6.6.3 Forward Declarations •••••••••••••••••• 6-9

ALPHA PASCAL USER'S MANUAL

CHAPTER 7

CHAPTER 8

CHAPTER 9

6.7

6.6.4 FormaL Parameters •••••••••••••••••••••
6.6.4.1 Va Lue Parameters
6.6.4.2 Reference Parameters •••••••••

EXTERNAL DECLARATIONS

DATA TYPES

7.1

7.2

SIMPLE
7.1.1
7.1.2
7.1.3
7.1.4
7.1.5

DATA TYPES
INTEGER
REAL ••••••••••••••••••••••••••••••••••
BOOLEAN
CHAR
User-Defined ScaLar

7.1.6 User-Defined Subrange ' •••••••••••••••••
STRUCTURED DATA TYPES
7.2.1 Packed Data Types •••••••••••••••••••••
7.2.2

7.2.3
7.2.4
7.2.5
7.2.6
7.2.7

7.2.8

ARRAy •••••••••••••••••••••••••••••••••
7.2.2.1
STRING
TEXT

MuLti-dimensionaL Arrays

SET
FILE
RECORD
7.2.7.1 Variant
Pointer Type

Parts

EXPRESSIONS

8.1

8.2
8.3
8.4
8.5

OPERATORS
8.1.1
8.1.2

Operator Precedence •••••••••••••••••••
Assignment Operator •••••••••••••••••••
8.1.2.1 Modifying Assignment

Operators ••••••••••••••••••••
Arithmetic Operators ••••••••••••••••••
ReLationaL Operators ••••••••••••••••••
LogicaL Operators •••••••••••••••••••••

8.1.3
8.1.4
8.1.5
8.1.6 Set Operators
CONSTANTS
VARIABLES
IF-THEN-ELSE EXPRESSIONS •••••••••••••••••••••
CASE EXPRESSIONS

STATEMENTS

9.1
9.2
9.3
9.4
9.5
9.6
9.7

ASSIGNMENT STATEMENT
PROCEDURE CALLS
EXIT
GOTO STATEMENT
NULL STATEMENT
COMPOUND STATEMENT
CONDITIONAL STATEMENTS
9.7.1 IF-THEN

9.7.1.1 IF-THEN-ELSE

Page v

6-11
6-11
6-12
6-12

7-2
7-2
7-3
7-3
7-4
7-5
7-6
7-6
7-7
7-8
7-10
7-10
7-11
7-12
7-15
7-16
7-18
7-19

8-1
8-1
8-3

8-4
8-5
8-6
8-6
8-7
8-7
8-8
8-8
8-9

9-1
9-1
9-2
9-2
9-3
9-4
9-4
9-4
9-5

ALPHA PASCAL USER'S MANUAL Page vi

CHAPTER 10

9.7.2 CASE-OF •.••••••.•••..••.••.•••••••••••
9.7.2.1 CASE-OF-ELSE •••••••••••••••••

9.8 REPETITIVE STATEMENTS ••••••••••••••••••••••••
9.8.1 WHILE-DO •..•••.•....•••....••.•.••••••
9.8.2 REPEAT-UNTIL ••••••••••••••••••••••••••
9.8.3 FOR-DO ...••..•.•..•••••.••.••••.••••••

9.9 WITH-DO ..
INPUT/OUTPUT FUNCTIONS AND PROCEDURES

9-6
9-7
9-8
9-8
9-8
9-9
9-10

10.1 BASIC FUNCTIONS AND PROCEDURES •••••••••••••• 10-1
10.1.1 The FiLe Window ••••••••••••••••••••• 10-3
10.1.2 EOF (End-of-fiLe Function) •••••••••• 10-3
10.1.3 EOLN (End-of-Line Function) ••••••••• 10-4
10.1.4 GET and PUT ••••••••••••••••••••••••• 10-5

10.1.4.1 GET •.••.•••••••••••.•••••• 10-5
10.1.4.2 PUT •.••....••....••••..•.• 10-6
10.1.4.3 SampLe Program Using

GET and PUT ••••••••••••••• 10-6
10.1.5 READ, READLN, WRITE, and WRITELN •••• 10-7

10.1.5.1 READ •••••.••.•.••.•••••••• 10-7
10.1.5.2 READLN •••••••••••••••••••• 10-8
10.1.5.3 WRITE ••••••••••••••••••••• 10-9
10.1.5.4 WRITELN ••••••••••••••••••• 10-9
10.1.5.5 Formatting Output ••••••••• 10-10

10.1.6 PAGE •••••••••••••.•••••..••••.•.•••• 10-13
10.1.7 RESET •••••••••••••••••••••••••••.••• 10-13
10.1.8 REWRITE ••••••••••••••••••••••••••••• 10-13

10.2 SPECIAL FUNCTIONS AND PROCEDURES
FOR FILE I/O ••••••••••••••••••••••••••••••••
10.2.1 Information on AMOS FiLes •••••••••••

10.2.1.1 Random FiLes ••••••••••••••
10.2.1.2 SequentiaL FiLes ••••••••••
10.2.1.3 LogicaL Records ••••••• ~ •••
10.2.1.4 Opening and

Setting Up FiLes ••••••••••
10.2.2 CLOSE ••••••••••••.•.•••.•••••..•••••
10.2.3 CREATE .~ ••••••••••••••••••••••••••••
10.2.4 ERASE ••••.•••••.•.•.••.•.••••.•••••.
10.2.5 EXTENSION .••••••••••.•.•.•••••..••••
10.2.6 FILESIZE .••••.•.•••••••••.•••••••••.
10.2.7 FSPEC ••••••••••••••.•.•.••.•••••••••
10.2.8 GETFILE ••.••••••••.•••••••.•.••..•••
10.2.9 JOBDEV •••.•••••••••••••••.•••••••••.
10.2.10 JOBUSER •••••••••••••••••••••••••••••
10.2.11 LOOKUP ••••••••••••••••••••••••••••••
10.2.12 OPEN ••••••••••••••••••••••••••••.•••
10.2.13 OPENI
10.2.140PENO

...............................
10.2.15 OPENR •••••••••••••••••••••••••••••••
10.2.16 PFILE •••••••••••••••••••••••••••••••
10.2.17 RADSO •••••••••.••••.•.•••••••.•••••.
10.2.18 RENAME •.•••••.••••••••••••••••••••••

10-14
10-14
10-15
10-15
10-16

10-16
10-17
10-18
10-19
10-19
10-20
10-21
10-22
10-23
10-24
10-24
10-25
10-25
10-25
10-26
10-26
10-26
10-27

ALPHA PASCAL USER'S MANUAL Page vii

CHAPTER 11

CHAPTER 12

10.3

10.2.19 SEEK
10.2.20 SETFILE •••••••••••••••••••••••••••••
SAMPLE PROGRAM TO DEMQNSTRATE FILE HANDLING •
10.3.1 Sample Run ••••••••••••••••••••••••••
10.~.2 The Program •••••••••••••••••••••••••
10.3.3 Program Organization ••••••••••••••••

10.3.3.1 The AMOS file NAMREC.INC ••
10.3.3.2 The AMOS file EMPREC.INC ••
10.~.3.'3 The AMOS file FIND.PAS

10-?7
10-27
10-29
10-~9
10-'31
10-38
10-~8
10-38
10-39

MISCELLANEOUS FUNCTIONS AND PROCEDURES

11.1 BASIC FUNCTIONS AND PROCEDURES •••••••••••••• 11-1
11.1.1 CHR ••••••••••••••••••••••••••••••••• 11-1
11.1.2 KILCMD •••••••••••••••••••••••••••••• 11-2
11.1.3 MARK •••••••••••••••••••••••••••••••• 11-2
11.1.4 NEW ••••••••••••••••••••••••••••••••• 11-~
11.1.5 ORO ••••••••••••••••••••••••••••••••• 11-3
11.1.6 PRED •••••••••••••••••••••••••••••••• 11-4
11.1.7 RELEASE ••••••••••••••••••••••••••••• 11-5
11.1.8 SUCC •••••••••••••••••••••••••••••••• 11-5

11.2 SPECIAL TERMINAL DISPLAY PROCEDURES ••••••• :. 11-6
11.2.1 CHARMODE •••••••••••••••••••••••••••• 11-6
11.2.2 CRT ••••••••••••••••••••••••••••••••• 11-7

11.2.2.1 Cursor Positioning •••••••• 11-7
11.2.2.2 Extended Screen

Display Options ••••••••••• 11-7
11.2.3 INCHARMODE •••••••••••••••••••••••••• 11-8
11.2.4 LINEMODE •••••••••••••••••••••••••••• 11-9

MATHEMATICAL FUNCTIONS

12.1 TRIGONOMETRIC FUNCTIONS ••••••••••••••••••••• 12-1
12.1.1 COS(X) •••••••••••••••••••••••••••••• 12-1
12.1.2 SIN(X) •••••••••••••••••••••••••••••• 12-1
12.1.3 TAN(X) •••••••••••••••••••••••••••••• 12-1
12.1.4 ARCCOS(X) ••••••••••••••••••••••••••• 12-2
12.1.5 ARCSIN(X) ••••••.•.•••••••••••••••••• 12-2
12.1.6 ARCTAN(X) ••••••••••••••••••••••••••• 12-2

12.2 HYPERBOLIC TRIGONOMETRtC FUNCTIONS •••••••••• 12-2
12.2.1 COSH(X) ••••••••••••••••••••••••••••• 12-2
12.2.2 SINH(X) •••••..••.•.•..•.•.•.••••...• 12-2
12.2.~ TANH(X) ••••••••••••••••••••••••••••• 12-2
12.2.4 ARCCOSH(X) •••••••••••••••••••••••••• 12-3
12.~.5 ARCSINH(X) •••••••••••••••••••••••••• 12-~
12.2.6 ARCTANH(X) •••••••••••••••••••••••••• 1~-3

12.3 MISCELLANEOUS MATHEMATICAL FUNCTIONS •••••••• 12-~
12.3.1 ABS(X) ••.••••••••••••••••••••••••••. 12-3
12.3.2 EXP(X) ••.•.••••••••.•.•.••.•.••.•••. 12-~
12.3.'3 EXPONENT(X) ••••••••••••••••••••••••• 12-4
12.3.4 FACTORIAL(X) •••••••••••••••••••••••• 12-4
12.3.5 LN(X) ••••••••••••••••••••••••••••••• 12-4
12.3.6 LOG(X) ..•.•...••••.•.•••••••••.•.•.• 12-4

<Changed 30 April 1981)

•

ALPHA PASCAL USER'S MANUAL

12.3.7
12.3.8

.............................. ODD(X)
POWER(X,Y)

1~.3.9 PWROFTEN(X) •••••••••••••••••••••••••
12.~.10 PWROFTWO(X) •••••••••••••••••••••••••
12.3.11 RANOO~IZE •••••••••••••••••••••••••••
12.3.12 RND ••••••••••••••••••••.•••••••••••• 12.~.13 ROUND(X)
12.3.14 SHIFT(X,Y)
12.3.15 SQR(X)
12.3.16 SQRT(X)

..........................
1~.3.17 STR(X) and STR(X,a,b) •••••••••••••••
12.3.1~ TRUNC(X) ••••••••••••••••••••••••••••

12.4 SAMPLE PROGRAM TO PAD A NUMBER WITH LEADING

Page viii

12-4
12-4
12-5
12-5
12-5
12-5
12-6
12-6
12-6
12-6
12-6
12-6

ZEROS ••••••••••••••••••••••••••••••••••••••• 12-6

CHAPTER 13

PART III

CHAPTER 14

STRING AND CHARACTER ARRAY FUNCTIONS AND PROCEDURES

13.1

13.2

STRING
13.1.1
13.1.2
13.1.3
"13.1.4
13.1.5
13.1.6
13.1.7
13.1.~

13.1.9

INTRINSICS •••••••••••••••••••••••••••
CONCAT ••••••••••••••••••••••••••••••
COpy ••••••••••••••••••••••••••••••••
DELETE
INSERT ••••••••••••• ~ ••••••••••••••••
LCS •••••••••••••••••••••••••••••••••
LENGTH ••••••••••••••••••••••••••••••
POS •••••••••••••••••••••••••••••••••
STRIP •••••••••••••••••••••••••••••••
UCS •••••••••••••••••••••••••••••••••

13.1.10 VAL •••••••••••••••• ~ ••••••••••••••••
CHARACTER ARRAY INSTRINSICS •••••••••••••••••
13.2.1 FILLCHAR ••••••••••••••••••••••••••••
13.2.2 MOVELEFT and MOVERIGHT ••••••••••••••
13.2.3 SCAN ••••••••••••••••••••••••••••••••

ADVANCED PROGRAMMING ON THE ALPHA PASCAL SYSTEM

SYSTEMS FUNCTIONS AND PROCEDURES

14.1
14.2
14.3
14.4
14.5

14.6

LOCATION ••••••••••••••••••••••••••••••••••••
SIZEOF .~ ••••••••••••••••••••••••••••••••••••
MEMAVAIL
MAINPROG ••••••••••••••••••••••••••••••••••••
SPOOL •••••••••••••••••••••••••••••••••••••••
14.5.1
14.5.2
14.5.3
14.5.4

Switches ••••••••••••••••••••••••••••
Error codes •••••••••••••••••••••••••
Function definition •••••••••••••••••
The SPOOL subroutine ••••••••••••••••

XLOCK AND GETLOCKS ••••••••••••••••••••••••••
14.6.1 The XLOCK subroutine ••••••••••••••••
14.6.2
14.6.3

Setting a Lock ••••••••••••••••••••••
Setting a Lock (and waiting
untiL it is avaiLabLe) ••••••••••••••

(Changed 30 April 1981)

13-2
13-2
13-2
13-3
13-4
13-4
13-5
n-5
13-6
13-6
13-6a
13-7
13-7
13-7
13-9

14-1
14-1
14-2
14-2
14-3
14-3
14-4
14-4
14-4
14-5
14-6
14-7

14-7

ALPHA PASCAL USER'S MANUAL Page ix

CHAPTER 15

CHAPTER 16

14.7

14.6.4
14.6.5
XMOUNT
14.7.1
14.7.2
14.7.3

Clearing a lock •••••••••••••••••••••
The GETLOCKS subroutine •••••••••••••

Error codes •••••••••••••••••••••••••
Unmounting a disk •••••••••••••••••••
Error codes •••• ~ ••••••••••••••••••••
14.7.~.1 MOUNTED •••••••••••••••••••
14.7.3.2 UNMOUNTED •••••••••••••••••
14.7.3.3 DEVNOTFOUND •••••••••••••••
14.7.3.4 BADHASH •••••••••••••••••••
14.7.3.5 NOVOLID •••••••••••••••••••

14.8 TIME ..

14-8
14-9
14-9
14-10
14-10
14-10
14-10
14-10
14-10
14-10
14-10
14-11
14-11
14-12
14-12
14-12
14-15
14-16

14.9 TOO •••
14.10 ERROR HANDLING PROCEDURES AND VARIABLES •••••

14.10.1 Including ERT.INC ••••••••••••••••••
14.10.2 ERRORTRAP ••••••••••••••••••••••••••
14.10.3 XERRORTRAP •••••••••••••••••••••••••
14.10.4 ERROR ••••••••••••••••••••••••••••••

ASSEMBLY LANGUAGE SUBROUTINES

15.1 CALLING ASSEMBLY LANGUAGE SUBROUTINES ••••••• 15-1
15.2 ARGUMENT PASSING CONVENTIONS •••••••••••••••• 15-2

15.2.1 Argument Passing •••••••••••••••••••• 15-3
15.2.2 Data Formats •••••••••••••••••••••••• 15-4

15.2.2.1 CHAR ••••••••••••••••.••••• 15-4
15.2.2.2 INTEGER ••••••••••••••••••• 15-4
15.2.2.3 BOOLEAN ••••••••••••••••••• 15-4
15.2.2.4 Subranqes and

Scalar Types •••••••••••••• 15-4
15.2.2.5 REAL •••••••••.••••.••••••• 15-4
15.2.2.6 STRING •••••••••••••••••••• 15-4
15.2.2.7 Pointers •••••••••••••••••• 15-4
15.2.2.8 Sets ••••...•..••••.••••••• 15-4
15.2.2.9 Arrays •••••••••••••••.••••• 15-5
15.2.2.10 Records ••••••••••••••••••• 15-5
15.2.2.11 Files ••••••••••••••••••••• 15-5

15.2.3 Error Exit •••••••••••••••••••••••••• 15-5
15.3 CODE RESIDENCy •••••••••••••••••••••••••••••• 15-5

15.3.1 Routine PLINKed with ILINK •••••••••• 15-5
15.3.2 Routines PLINKed without ILINK •••••• 15-6

15.4 OBTAINING MEMORY FOR DATA AREAS ••••••••••••• 15-6
15.5 RESTRICTIONS •••••••••••••••••••••••••••••••• 15-6

WRITING AND MODIFYING AN EXTERNAL LIBRARY

16.1 STDLIB •••••••••••••••••••••••••••••••••••••• 16-2
16.2 WRITING LIBRARY FILES ••••••••••••••••••••••• 1~-3
16.3 MODIFYING STDLIB •••••••••••••••••••••••••••• 16-4
16.4 VERSION CHECKING •••••••••••••••••••••••••••• 16-5

<Changed 30 April 1981)

•

ALPHA PASCAL USER'S MANUAL Page x

PART IV

APPENDIX A

APPENDIX B

APPENDIX C

INDEX

APPENDICES

QUICK REFERENCE TO ALPHA PASCAL

A.1
A.2

A.3

A.4

PROGRAM STRUCTURE ••••••••••••••••••••••••••••
DECLARATIONS AND DEFINITIONS •••••••••••••••••
A.2.1 Label Declarations ••••••••••••••••••••
A.2.2 Constant Definitions ••••••••••••••••••
A.2.~ Type Definitions ••••••••••••••••••••••
A.?.4 Variable Declarations •••••••••••••••••
A.7.5 Procedure Declarations ••••••••••••••••
A.2.6 Function Declarations •••••••••••••••••
DATA TYPES •• ; ••••••••••••••••••••••••••••••••
A.3.1 Simple Data Types •••••••••••••••••••••

A.3.1.1 Standard Data Types ••••••••••
A.3.1.2 Scalar Data Types ••••••••••••

A.3.2 Structured Data Types •••••••••••••••••
A. 3.2.1 St ri nq •••••••••• ' •••••••••••••
A.3.2.2 Arrays •••••••••••••••••••••••
A.3.2.3 Sets •••••••••••••••••••••.•••
A.3.2.4 File Type ••••••••••••••••••••
A.3.2.S Record Type ••••••••••••••••••
A.3.2.6 Pointer Data Types •••••••••••

EXPRESSIONS ••••••••••••••••••••••••••••••••••
A.4.1 Operators ••.••••••••••••••••••••••••••

A.4.2.
A.4.3
A.4.4
A.4.S

A.4.1.1

A.4.1.2
A.4.1.3
A.4.1.4
A.4.1.S

Assignment
A.4.1.1.1 The Modifyinq

Assignment
Operators •••••••••

Arithmetic Operators: ••••••••
Relational Operators •••••••••
Logical Operators ••••••••••••
Set Operators ••••••••••••••••

Constants •••••••••••••••••••••••••••••
Variables •••••••••••••••••••••• ~ ••••••
Function CaLls ••••••••••••••••••••••••
IF-THEN-ELSE and CASE-OF Constructs

A-1
A-2
A-~
A-2
A-2
A-3
A-3
A-3
A-4
A-4
A-4
A-4
A-4
A-5
A-S
A-S
A-S
A-S
A-6
A-6
A-6
A-6

A-7
A-7
A-7
A-7
A-7
A-R
A-8
A-8

in Expressions •••••••••••••••••••••••• A-9
A.S STATEMENTS ••••••••••••••••••••••••••••••••••• A-9

A.5.1 Simple Statements ••••••••••••••••••••• A-9
A.S.1.1 Assignment Statement ••••••••• A-9
A.S.1.2 Procedure Call ••••••••••••••• A-9
A.5.1.3 GOTO Statement ••••••••••••••• A-10
A.S.1.4 NuLL Statement ••••••••••••••• A-10

A.S.2 Structured Statements ••••••••••••••••• A-10
A.S.2.1 Compound Statements •••••••••• A-10
A.5.2.2 Conditional Statements ••••••• A-10
A.S.2.3 Repetitive Statements •••••••• A-11
A.S.2.4 WITH-DO ~tatements ••••••••••• A-11

A.6 ALPHA PASCAL STANDARD
FUNCTIONS AND PROCEDURES ••••••••••••••••••••• A-12

THE ASCII CHARACTER SET

ALPHA PASCAL COMPILER ERROR MESSAGES

(Changed 30 April 19~1)

CHAPTER 1

INTRODUCTION

This book is a reference manual for the AlphaPascal programming system. We
realize that some of you may be experienced Pascal programmers, while others
may never have seen a Pascal program before. Therefore, to suit the wide
range of interests and backgrounds our readers are likely to have, we have
tried to organize this book so that you can easily find the information that
you need without spending unnecessary time on chapters that contain
information that you already know or that is not important to you. (For
information on the organization of this book, see Section 1.1, below.)

Because there are so many excellent books available that teach you how to
program in Pascal, we have not attempted to do so in this book. (For a list
of some of the books that we found helpful, see Section 1.2, "Pascal
Bibliography.") However, our intention is to provide a detailed enough
description of AlphaPascal that an experienced computer programmer who is
unfamiliar with Pascal can get some idea of how to write Pascal programs.

The major purpose of the book is threefold:

1. To describe this implementation of AlphaPascal;

2. To discuss how this implementation differs from previous versions
of AlphaPascal and from the standard Pascal as set forth in the
Pascal User Manual and Report by Jensen and Wirth (and to give
hints on converting programs written in these versions of Pascal to
the current AlphaPascal format); and

3. To give operating instructions for the various components of the
AlphaPascal programming system: the compiler, the linker, and the
run-time package.

This book also gives information to systems programmers on writing their own
assembly language subroutines callable by Pascal programs, and on writing
and modifying an external procedure library.

INTRODUCTION

1.1 ORGANIZATION OF THIS BOOK

Some of the
programmers,
you find the
divided this

chapters in this book are aimed at experienced
whiLe others are specifically for new Pascal users.

information that you are particularly interested in,
book into four general parts:

PART I THE ALPHA PASCAL SYSTEM

PART II SUMMARY OF ALPHA PASCAL

PART III - ADVANCED PROGRAMMING ON THE ALPHA PASCAL SYSTEM

PART IV APPENDICES

Page 1-2

PascaL
To heLp

we have

The rest of this section discusses which chapters may be of particuLar
interest to specific readers.

IF YOU ARE AN EXPERIENCED PASCAL PROGRAMMER:

You wiLL probably want to skip Chapter 2, "Getting Started," and go
directLy to Chapter 3, "Compatibility and Conversion," which tells you
how this version of PascaL differs from earlier versions of
ALphaPascal and from the Jensen and Wirth standard. Chapter 4
discusses how to operate the various components of the AlphaPascaL
programming system. Rather than read through Chapters 5 through 13,
which give detailed discussions of the ALphaPascal statements and
procedures, you may want mereLy to turn to Appendix A, "A Quick
Reference to ALphaPascaL," to get an idea of the functions and
procedures included in this implementation of Pascal.

After you are somewhat famiLiar with the AlphaPascal system, you may
want to read Chapter 15, "Writing and Modifying an ExternaL Library
File." If you are a systems programmer, you may want to read Chapter
16, "Assembly Language Subroutines."

IF YOU ARE NEW TO PASCAL:

You wilL probably want to read Chapter 2, "Getting Started," which
gives a brief discussion of PascaL, and goes through a quick
demonstration of buiLding, compiLing, and running a smaLL, simple
Pascal program. Next, you wiLL probably want to start reading Part
II, "Summary of ALphaPascal," for information about this version of
the Pascal language.

When you are ready to begin writing PascaL programs, turn back to
Chapter 4, "Operating Instructions and Characteristics," for
information on using the AlphaPascal compiler and run-time package.

NOTE: We would appreciate any comments or suggestions; note the Reader's
Comments Form in the back of this book.

INTRODUCTION Page 1-3

1.2 PASCAL BIBLIOGRAPHY

The most important source book for Pascal programmers (containing the
definition of standard Pascal) is:

Jensen, K. and Wirth, N.
Pascal User Manual and Report (Second Edition)
Springer-Verlag, 1976

If you are interested in learning to program in Pascal, you might want to
take a look at one or more of the following textbooks:

Conway, R., Gries, D. and Zimmerman, E.C.
A Primer on Pascal
Winthrop, 1976

Grogono, P.
Programming in Pascal
Addison-Wesley, 1978

Kieburtz, R.B.
Structured Programming and Problem-Solving with Pascal
Prentice-Hall, Inc., 1978

Schneider, G.M., Weingart, S.W., and Perlman, D.M.
An Introduction to Programming and Problem Solving
with Pascal
John Wiley & Sons, 1978

Wilson, I.R. and Addyman, A.M.
A Practical Approach to Pascal
Springer-Verlag, 1978

1.3 GRAPHICS CONVENTIONS USED IN THIS BOOK

The symbo l [RET) i ndi cates the place
terminal carriage return key if you
computer. (The carriage return
labeled RET or RETURN, and tells the
current line.)

in an example where you would press the
were entering the example into the
key on the terminal keyboard is usually
computer to accept and process the

INTRODUCTION Page 1-4

It is often confusing when looking at a program in a new computer language
to determine which elements are an inherent part of the language (for
exampLe, program statements) and which eLements are to be supplied by the
programmer. To help eliminate some of this confusion, our sample programs
follow these conventions:

Reserved words are all upper case and underlined.

Standard identifiers are aLL upper case, but not underlined.

All user identifiers (for example, variable names, constants, etc.)
are in a combination of upper and lower case, and are not underlined.

(Note that reserved words are underlined. For clarity's sake, therefore,
this manual deviates from the usual Alpha Micro documentation practice of
underlining all output the computer displays on your terminal display. We
wiLL try to cLearly indicate which portions of our exampLes are entered by
you and which portions are printed by the computer.)

CHAPTER 2

GETTING STARTED

This chapter is primarily for the benefit of the programmer who is
interested in learning Pascal, but who has not yet had the chance to become
familiar with the language. If you are already familiar with PascaL, you
will probably want to skip to Part I of this book, "The AlphaPascal System,"
for information on Alpha Micro's specific implementation of Pascal, and for
operating instructions for the AlphaPascal compiler. <You may be interested
in Section 2.3 of this chapter, however, which contains a brief
demonstration of creating, compiling, linking, and running a small PascaL
program.)

The rest of this chapter gives a brief discussion of Pascal and walks you
through a quick demonstration of building, compiling, linking, and running a
program under the AlphaPascaL system.

We aLso show you a smaLL PascaL program and discuss its component parts.

2.1 WHAT IS PASCAL?

The Pascal language is based on the 1970 work of Jensen and Wirth, and is
related to the ALGOL-famiLy of Languages.

PascaL is a fairly new programming Language, and is considered by many to be
"cleaner" and more powerfuL in design than many oLder Languages as weLL as
more refLective of current trends in the phiLosophy of program design and
structure. However, this does not mean that programs written in PascaL wilL
necessariLy be cLearer or more powerfuL than programs written in other
languages-- that wiLL depend on the programmer. The major cLaim made for
Pascal is that the language makes it easier to write programs that may be
easiLy understood and maintained.

It was developed in response to increasing concerns that current programming
Languages were not encouraging good programming "styLe," and is based on the
idea that an effective programming language should heLp the programmer to
appLy design techniques in a naturaL and simple way. The result should be
well-made, well-structured programs that are easy to read and easy to

GETTING STARTED Page 2-2

maintain. Because most of a program's Life cycLe is spent in design and
maintenance, the creators of PascaL tried to deveLop a Language that heLps
programmers in these areas.

PascaL's use, acceptance, and avaiLabiLity have become widespread in recent
years. An increasingLy Large number of students are being taught PascaL as
their first programming Language. PascaL's use in industry is aLso becoming
more prevaLent as project pLanners become more aware of its usefuLness in
impLementing Large programming projects.

Some of PascaL's advantages stem from these characteristics:

* PascaL encourages weLL-structured programming by requiring that
programs be buiLt in a bLock structure in which the beginning and
end of each procedure is cLearLy marked. Because program structure
is hierarchiaL in nature, programming in PascaL Lends itseLf
naturaLLy to top-down design.

* One of the most important features of PascaL is its
extensibiLity. It is very simpLe to add your own functions and
procedures if the routines provided by PascaL do not exactLy match
your needs. In addition, on the ALphaPascaL system, you can add
these user-defined routines to an externaL Library where aLL
PascaL programmers can make use of them.

* PascaL was designed to be a generaL-purpose Language. Since it is
not specificaLLy aimed at scientific or data processing
appLications, it can be used to soLve a wide range of probLems.

* An important feature of PascaL is its powerfuL data structures
(arrays, sets, records, pointers, user-defined, etc.), and the
sophisticated structures you can buiLd from those primitives
(e.g., Linked Lists).

* Any variabLe used in a program must be decLared within that
program. That is, PascaL requires that the type of vaLues that a
variabLe may assume (e.g., integer or booLean) be cLearLy stated
by the programmer. This heLps both in program design and
maintenance, since the readabiLity and organization of your
program are enhanced. VariabLes may be gLobaL or LocaL in scope,
depending on where they are decLared.

* Most impLementations of PascaL, whiLe they may incLude extensions
to the Language, aLso contain a subset of PascaL which adheres
firmLy to the standards for the Language as set forth by Jensen
and Wirth. This means that programs written in standard PascaL
are transportabLe between computer systems on which PascaL is
impLemented.

GETTING STARTED Page 2-3

2.2 SAMPLE PROGRAM

If you have never before seen a PascaL program, you may be interested in
taking a Look at the smaLL, simpLe program beLow:

{Determine what % is deducted from your gross saLary}
PROGRAM SaLary;
VAR Gross, Takehome, Deductions, Percentage : REAL;
BEGIN {Begin Program SaLary}

{Print questions and read answers from terminaL}
WRITE ('What is your gross saLary? I);

READLN (Gross);
WRITE ('What is your takehome saLary? I);

READLN (Takehome);
Deductions := Gross - Takehome;
Percentage := 100*(Deductions/Gross);
WRITELN ('They keep', Percentage, , percent of your saLary!')

END {End Program SaLary}.

NOTE: To heLp you keep track of which words in the program are eLements of
the PascaL Language and which are variabLe names and data suppLied by you,
we have written in upper case and underLined those words (caLLed "keywords")
that are actuaLLy part of the PascaL Language. (Of course, you do not
underLine such keywords when you write your own PascaL programs.) Those
words that are in upper case, but that are not underLined, are caLLed
"standard identifiers"; they are eLements of the PascaL Language which can
be re-defined by you. The words that are upper and Lower case and that are
not underLined in the exampLe above are variabLe names, comments, and string
data suppLied by the writer of the program.

The first Line of our sampLe program is caLLed a "comment." It is ignored
by the computer, and has no effect on the execution of the program. Its
purpose is to make the program easier to read for humans. (Comments in
PascaL are denoted by encLosing text either with the symboLs "(*" and "*)"
or with the symboLs "{" and "}".)

The second Line "decLares" the program name, "SaLary."

The third Line "declares" the variabLes "Gross," "Takehome," "Deductions,"
and "Percentage," and teLLs PascaL that they can onLy assume the vaLues of
reaL numbers. (For information on decLaring programs and variabLes, see
Chapter 6, "DecLarations and Definitions.")

The fourth Line contains a BEGIN statement; this statement marks the
beginning of a program bLock. The end of this bLock (and in this case, the
end of the program) is marked by the END statement on Line 13. Within this
bLock, we send questions to the terminaL dispLay (sixth and eighth Lines)
and read data from the terminaL keyboard (seventh and ninth Lines). On the
tenth and eLeventh Lines we compute the answer we need based on the data we
received from the user of the program. The tweLfth Line sends the computed
answer to the terminaL dispLay. (For information on PascaL program
statements and procedures, see Part II, "Summary of ALphaPascaL.")

GETTING STARTED Page 2-4

(NOTE: So that we couLd identify specific lines of the program to you, we
mentioned identifiers such as "first Line" or "fourth Line." This was for
our convenience onLy; the lines in PascaL programs do not ordinariLy start
with numbers.)

2.3 BRIEF DEMONSTRATION

Now that you've taken a Look at a smalL PascaL program, we wouLd like to
waLk you through a brief demonstration of buiLding, compiLing, Linking, and
running the program.

We'LL assume that the computer and your terminal are on, and that you have
been assigned an account in which to work. Make sure that you are at AMOS
command LeveL (that is, that you see the prompt symboL, ".", that indicates
that you are communicating with the operating system).

First, Log into the system by typing LOG foLLowed by the device that
contains the account you want to Log into and then entering the number of
that account. Then press the RETURN key on your terminaL. For exampLe, if
you want to work in account [20,3] on device DSK1:, enter:

LOG DSK1:[20,3] (RET)

Now you see something Like:

Logged into DSK1:[20,3]

You can now begin to create your PascaL program.

2.3.1 BuiLding a PascaL Program

To buiLd a Pascal program, use one of the system text editors to create your
program as a text fiLe. If you are using a video-dispLay terminaL, you wiLL
probabLy want to use the screen-oriented text editor, VUE, rather than the
character-oriented text editor, EDIT.

2.3.1.1 The VUE Text Editor - First, we'LL make sure that no earlier
versions exist of the program we're going to create. So, we'lL erase from
the disk any fiLe caLled SALARY.PAS. At AMOS command LeveL, enter:

ERASE SALARY.PAS (RET)

If you see:

SALARY.PAS erased
Total of 1 fiLe deleted, 2 disk bLocks freed

I
I

GETTING STARTED Page 2-5

that means that the file did exist on the disk, and th~t we have now erased
it. If you se~:

%No files erased

no error occurred, it's just that no file named SALARY. PAS was in the
account you are logged into, and so we couldn't erase it. In either case,
you now are free to create a new file of the name SALARY.PAS.

So, enter:

VUE SALARY.PAS[Rfl]

Now VUE looks for the disk file SALARY.PAS in the account you are logged
into. Since the file does not yet exist, VUE says:

SALARY.PAS does not exist - create it?

Enter a Y followed by a RETURN to tell VUE that you do want to create a new
file named SALARY.PAS.

Now you see one or more lines of asterisks. (If you do not see this
display, but instead see a display whose first line begins: "AlphaVue n.n
Status:" (where n.n is the version number of VUE), simply type an Escape
(sometimes labeled ESC or ALT MODE on your keyboard), and VUE will display
the asterisks.>

The display of asterisks means that you are in editing mode, and
ready for you to type your program in. Start typing the sample
Section ~.2 just as you would if you were using a typewriter.
example exactly as shown, including all semicolons, quote
parentheses.

that VUE is
program in
Type in the
marks, and

If you make a mistake, you may erase single characters by using the RUB key
(sometimes labeled DEL or DELETE). To erase the characters on an entire
line, type a Control-RUB. (That is, hold down the CONTROL key while you
press the RUB key.)

The cursor (which may appear as a small white rectangle, triangle, line, or
other symbol) marks your place on the screen; the next character you type
appears at the cursor position. If more extensive corrections are needed,
you may back up in the display by using the arrow-keys to move the cursor
back and forth in the text on the screen. (If your terminal does not have
these arrow-keys, you must move the cursor by typing Control-J, Control-H,
Control-K, and Control-L. For example, to move the cursor to the left, hoLd
down the CONTROL key and type an H.)

When the cursor is positioned just to the left· of the error, you can
overwrite the error by typing your new characters over the probLem spot.
Or, if you do not want to overwrite the error, type a ControL-Q. From this
point on, the new characters you type will be inserted into the current
line, rather than overwriting it. (To resume overwriting characters, type
another Control-Q.)

(Changed 30 April 1981)

GETTING STARTED Page 2-6

Of course, there are many more VUE editing commands that we won't discuss
here. You can, for example, erase characters a word at a time, insert
entire new lines of text, search for particular groups of characters, or
move the cursor a word at a time. for more information on using VUE, see the
AlphaVUE User's Manual, <,DWM-00100-1S).

When the program is entered correctly, you are ready to leave VUE. Type an
Escape. The screen clears, and the cursor is now positioned next to the VUE
prompt symbol, >. (You are now in command mode.> Type an f followed by a
RETURN. This tells VUE that you are finished; it therefore writes your file
SALARY.PAS out to the disk. Next you see the AMOS prompt symbol, a dot,
which tells you that you have exited VUE, and are now back at AMOS command
level.

Here is a summary of the keys that you will use the most when editing
programs with VUE:

RETURN End each line with a carriage return symbol by pressing the
RETURN key (sometimes labeled RET, CR, or CARRIAGE RETURN).

ESC To change from editing mode to command mode (and back
aqain), type an Escape by pressing the ESC key (sometimes
labeled ALT MODE or ESCAPE).

CONTROL Most of the VUE commands are control-characters. To type a
control-character, hold down the CONTROL key (sometimes
labeled CTRL), and type the appropriate character. for
example, to type a Control-C,' hold down the CONTROL key
while you type a C.

RUB To deLete a singLe character, press the RUB key (sometimes
Labeled DELETE or DEL).

ARROW-KEY To move the cvrsor around on the screen, use the keys
marked with arrows (labeled with a left-arrow, right-arrow,
up-arrow, and down-arrow). for example, to move up on the
screen, press the up-arrow key. If your terminal does not
have arrow keys, you will use these control-characters
instead:

ControL-H
Control-J
Control-K
ControL-L

To move Left
To move down
To move up
To move right

If VUE is new to you, you may want to ask the System Operator to place into
your account a copy of the VUE initialization file in which the menu-display
option has been enabled. VUE will then display a summary of its commands when
you enter command mode. You may also want to ask the System operator to modify
the VUE initialization file so that the default extension is set to".PAS (which
means that VUE wilL expect you to edit .PAS files and thus will not require you
to enter a file's extension unless you want to edit a non-.PAS file). .

(Changed 30 April 1981)

\
I

GETTING STARTED Page 2-7

2.3.2 Compiling and linkinq a Pascal Program

The first step after creatin9 your program is to compile it using CMPIlR.
After you have compiled it, the program is still not ready to run until you use
the linker, PLINK. (Both PLINK and CMPIlR are themselves programs written in
Pascal.) Chapter 4, "Operating Instructions and Characteristics," discusses the
operation of PLINK and CMPIlR in detail~ For now; we'll simply show you one
way to use them-- to compile and link a new program made UP of only one file.
For this demonstration, we will use one of the command files provided with your
system, PCl.DO. This command file contains a series of commands and data that
automatically invoke CMPIlR and PLINK for you, and provide necessary
information to those programs. NOTE: Remember that the larger your memory
partition is, the faster your programs will compile!

At AMOS command level, enter PCl followed by the name of your program (leaving
off the .PAS extension). Then type a RETURN. For example:

PCl SAlARY[Au]

Now the PCl command file runs CMPIlR and PLINK for you.
compiled, you see a display something like this:

As your program is

PRUN CMPIlR
AlphaPascal V2.0
Source file name? SALARY
Diagnostic file name «return> for terminal)?
AlphaPascal Compiler Vp.rsion 2.0

< 0>--
P~OGRAM < ~>---------

12 lines
10.47 seconds, 68.79 lines/minute
No compilation errors.

If CMPIlR spots an error while it is compiling your proqram (for example, if
we left the semicolon off the end of the second line), CMPIlR pauses, and
tells you about the problem. For example:

VAR Gross, Takehome, Deductions, Percentage : REAL;

?line 2: CINISOP] ';' or ')' expected -- inserting
Hit RETURN to continue

, . , ,

The message above tells us that a semicolon is missing in front of the
symbol VAR. ("CINISOP]" identifies the portion of the compi ler that caught
the error-- you can disregard that information.>

Now you may type a RETURN to resume program compilation, or you may type a
Control-C (hold down the CONTROL key while you type a C) to interrupt the
compi lation. (If you type. a Control-C, CMPIlR displays the message:
"?Compi lation aborted" and then returns you to AMOS command level. If you
type a RETU~N, CMPIlR resumes the compilation, and then returns you to AMOS
command level. In either case, because an error has occurred PCl does not
go on to link the program and you are returned to AMOS command level.>

If CMPIlR reported something other than "No compi lation errors," your
program is incorrect. You should use VUE on the program and check your copy

GETTING STARTED Page 2-8

of the program against the one in this book. Correct any discrepancies, and
use the PCL command file again. (For full information on using CMPILR and
its options, refer to Section 4.3, "The AlphaPascal Compiler." That section
also discusses the compiler display.)

Let's say that your program has compiLed without error. PCL.DO goes on to
invoke the Link~r, PLINK. At this point, CMPILR has created three
intermediate files: SALARY.P01, SALARY.P02, and SALARY.P03. However, your
program stilL is not completeLy ready to run. PLINK will fully resolve
references within the intermediate files and wilL produce the final,
executabLe .PCF file. The second part of the screen display that you see
Looks something Like this:

.ERASE SALARY.PCF
%No fiLes deLeted
.PRUN PLINK
ALphaPascaL V2.0
Code fiLe = SALARY
Creating new code fiLe SALARY.PCF
Library code fiLe for SALARY.PCF = STOLtB

PLease specify fiLes to be Linked into SALARY,
one per Line, ending in a bLank Line

FiLe 1 = SALARY
File 2 =

Loading program and Library dictionaries
Processing SALARY

Linking in globaL func/proc PROGRAM
Transferrinq temporary file to new code fiLe
SALARY compLeted

The first thing that the command fiLe does before Linking your fiLe is to
erase any file SALARY.PCF that aLready exists. (This is because PLINK asks
different questions depending on whether or not the specified program
aLready exists, and we want to make sure that PLINK asks a particuLar set of
questions.) Now it invokes PLINK.

For more information on Linking a fiLe,. see Section 4.4, "The ALphaPascaL
Linker." That section also discusses the meaning of the display you see
above, and taLks about the concept of a "Library."

2.3.3 Running a Pascal Program

To run the program you have compiLed, use the Pascal run-time package, PRUN.
At AMOS command leveL, enter:

PRUN SALARY.PCF[RE~

followed by a RETURN.
information on executing

(Changed 30 April 1981)

At Last your program
Pascal programs, refer

is
to

running!
Section

(For fuLL
4.5, "The

GETTING STARTED Page 2-9

ALphaPascaL Run-time Package.")

As you run SALARY.PAS, you see:

ALphaPascaL V2.0
What is your gross saLary?

Let's assume that you want to enter 250 as your gross saLary and 175 as your
takehome. BeLow is a sampLe run of your program:

ALphaPascaL V2.0
What is your gross saLary? 250 [RET)
What is your takehome saLary? 175 [RET)
They keep 30 percent of your saLary!

ALPHA PASCAL USER'S MANUAL

PART I

THE ALPHA PASCAL SYSTEM

The next two chapters introduce you to the AlphaPascal programming system.
Chapter 3 is aimed at the experienced Pascal programmer; it discusses the
differences between this implementation of Pascal and previous versions of
AlphaPascal. It also discusses the major differences between this Pascal
and the standard Pascal as described in Jensen and Wirth's Pascal User
Manual and Report. The last section of Chapter 3 gives some hints for
converting programs written in earlier versions of AlphaPascal over to the
current AlphaPascal standards.

Chapter 4 gives full operating instructions for the various components of
the AlphaPascal system; the compiler, the linker, and the run-time package.
Chapter 4 tells you everything you need to know about the actual processes
of creating, compiling, Linking, and running an ALphaPascaL program.
Chapter 4 also discusses file requirements and memory limitations of the
AlphaPascal system.

CHAPTER 3

COMPATIBILITY AND CONVERSION

This chapter is aimed primarily at the experienced Pascal programmer who
wants to know how this implementation of PascaL differs from previous
versions of ALphaPascaL and from the standard PascaL described by Jensen and
Wirth in the PascaL User Manual and Report.

We have aLso incLuded a section that provides hints on converting PascaL
programs written under earLier versions of ALphaPascaL to the format used by
the current ALphaPascaL.

If you have never before programmed in PascaL, you wiLL probabLy want to
skip this chapter and go directly to Part II, "Summary of AlphaPascaL," for
information on the ALpha Micro PascaL, or to the next chapter, "Operating
Instructions and Characteristics," for information on using the ALphaPascaL
compiler and Linker.

3.1 PREVIOUS VERSIONS OF ALPHA PASCAL

Previous versions of AlphaPascal were based on the UCSD Pascal programming
system, Version 1.4. In order to provide a PascaL that is more fuLLy
integrated with the ALpha Micro operating system and fiLe system, we now
offer this new version of ALphaPascaL that was expressLy deveLoped for the
ALpha Micro computer.

To make Life easier for programmers who have written programs using previous
versions of ALphaPascaL, we have tried to keep many of the same features and
functions, while adding a number of new extensions and abiLities. Most of
the changes between this version and earlier versions are added features
that do not require that Y9U rewrite your earLier programs.

SeveraL of the most important difference are:

The operating instructions for ALphaPascaL have changed. An important
difference is that you wiLL use the ALpha Micro screen-oriented text
editor, VUE, to create your programs. You must aLso use the Linker,

COMPATIBILITY AND CONVERSION Page 3-2

PLINK, to Link any compiLed program, whether or not it consists of more
than one fiLe. See Chapter 4, "Operating Instructions and
Characteristics," for compLete instructions.

Expression handLing has been considerabLy enhanced:

1. You may now incLude the assignment operator in an expression.
For exampLe:

5 + X := 7

The expression above is equivaLent to 5 + (X := 7), and means
"Let X assume the vaLue of 7, and then be added to 5."

2. Wherever an expression is LegaL, you may incLude an IF-THEN
expression of the form:

II condition THEN expression ELSE expression

For exampLe:

Year := (IF Feb = Leap THEN 29 ELSE 28)+337;

If Feb equaLs the vaLue Leap, then Year assumes the vaLue
29+337; otherwise it assumes the vaLue 28+337.

3. Wherever an expression is LegaL, you may incLude a CASE
expression of the form:

CASE vaLue OF vaLue1
vaLue2

expression;
expression;

ELSE expression

For exampLe:

WRITE(CASE Errorcode OF
-1- 'IlLegaL input';

2 : 'Number too Large';
3 : 'Number too smaLL';
ELSE 'undefined error');

ALphaPascaL now recognizes modifying assignment operators.
operators are:

+= Adding assignment operator
-= Subtracting assignment operator
*= MuLtipLying assignment operator
1= Dividing assignment operator

These

COMPATIBILITY AND CONVERSION Page '3-3

These operators tell the compiler to modify (instead of replace) the
value of, the variable on the left of the assignment operator with the
value of the expression on the right of the operator.

For example, 'in the case of the adding assignment operator:

X += 1

tells the compiler to let X assume the value
information on these oper~tors, see Section
Assignment Operators."

of X+1.
8.1.2.1,

For more
"Modifying

- Operator precedence has been changed to make it more compatible with
operator precedence in other language processors on the Alpha Micro
system. The relational operators have been made of hiqher precedence
than the Boolean operators. (See Section 8.1.1, "Operator Precedence,"
for more information.)

AlphaPascal allows you to label BEGIN-END blocks by following the BEGIN
and END keywords with a colon followed by an indentifier. These labels
allow you to tell the compiler which BEGINs and ENDS should match. If
the structure of your program is such that they do not match, the
compiler will tell you so.

For example:

BEGIN Block1

BEGIN : Block2

END : Block2

END : Block1

The compiler checks these labels to make sure that the designated pairs
of BEGIN-END keywords are indeed properly matched. For example, the
following program would cause an error because the BEGIN-END blocks are
not properly nested:

BEGIN Block1

BEGIN : Block2

END Block1

END : Block2

(Changed 30 April 1981)

COMPATIBILITY AND CONVERSION Page 3-4

- Two new keywords have been added to AlphaPascaL: EXTERNAL and MODULE.
These words may no longer be used as identifiers. If they do appear in
your programs, you see an error message (e.g., "[TRYSCANJ VAR,
PROCEDURE, or FUNCTION expected -- scanning") when you compile the
programs.

EXTERNAL alLows you to access variabLes, procedures, and functions in
an external library~ and allows a file in a muLtiple-file program to
access variables, procedures, and functions in another fiLe. See
Section 6.7, "External Declarations," for more information.

The MODULE keyword designates a fil~ that does ,not contain the main
program portion of the program. Modules may contain decLaration and
definition statements, but may not contain the final BEGIN-END bLock.
(That is, BEGIN-END blocks may only appear in function or procedure
definitions if they appear in modules.) See Section 6.1, "Program
Declarations," for more information.

- The SEGMENT keyword and segment procedures are no longer supported.
(See the discussions of EXTERNAL and MODULE, above.) Remove the
SEGMENT keyword from your programs.

Floating point numbers are now three words in length (i.e., 12 digits).
(They used to be two words, and could only represent six digits.)

You may call assembly language subroutines from within your Pascal
programs. For information on writing assembly language subroutines,
see Chapter 15, "Assembly Language Subroutines."

- Opening, closing, and specifying files have changed. You may now
access AMOS files, and make full use of the Alpha Micro file system.
Refer to Chapter 10, "Input/Output Functions and Procedures," for more
information on the procedures and functions that alLow you to search
for, open, and read and write sequential and random fiLes. (NOTE: Those
of you who have done assembly language programming using monitor calls
on the AMOS system wilL recognize some of the new procedure names such
as FSPEC, OPF.N, OPENI, OPENO, and OPENR.)

AlphaPascaL supports an external procedure Library. This library
contains a series of procedures and functions availabLe to your
programs. You may write your own external Libraries that make use of
the library provided. See Section 16.1, "STDLlB," for a list of
procedures and functions in the Library. If you wish to access these
routines in your programs, your programs may not use these names in
globaL identifier definitions, since such definitions will override the
standard library definitions.

If you wish to access these procedures and functions, simpLy invoke
them in your pr~gram. If they are not defined within that program,
AlphaPascal assumes that they are in the external library.

(Changed 30 April 1981)

COMPATIBILITY AND CONVERSION Page 3-5

SeveraL procedures and identifiers used by previous versions of
ALphaPascaL are not supported by the current version:

BLOCKREAD
BLOCKWRITE
UNITREAD
UNITWRITE
UNITWAIT
UNITBUSY
UNITCLEAR
GOTOXY

HALT

(Refer to Section 11.2.2, "CRT," for
information on cursor positioning.)

IORESULT
INTERACTIVE fiLes

PROGRAM (the main program) may not be caLLed recursiveLy.

You shouLd be aware of these changes to the standard procedures:

1. RESET and REWRITE accept onLy one argument: a variabLe of type
FILE. You may not specify a fiLename after that argument.

2. The fiLe type INTERACTIVE is no Longer supported or needed; repLace
it with the standard fiLe type TEXT.

3. In earLier versions of ALphaPascaL, CLOSE took an option as an
argument in addition to a variabLe of type FILE; it now accepts
onLy a singLe argument-- a variabLe of type FILE.

4. When you use the EXIT statement to exit a program, you must suppLy
the PROGRAM keyword as the argument, not the program-name. (That
is, EXIT(PROGRAM) is vaLid, but EXIT(NewProgram) is not.) You may,
however, exit a procedure or function by giving the name of that
procedure or function (e.g., EXIT(EvaLError».

5. WRITE and WRITELN do not accept a BooLean variabLe as an argument.
That is, if NewFiLe is a BooLean variabLe which evaLuates to TRUE:

WRITELN(NewFiLe);

does not print TRUE, but instead generates an error.

COMPATIBILITY AND CONVERSION Page 3-6

3.2 STANDARD PASCAL

The standard PascaL is described by Jensen and Wirth, in the PascaL User's
Manual and Report (Second Edition). AlphaPascaL differs from this standard
in severaL ways (aLso, note the extensions discussed in Section 3.1, above):

The program heading fiLe identifiers are scanned but ignored. That is,
if you have any information in the program heading after the program
name, that information is ignored. (For exampLe, "PROGRAM Mai LBoXi" is
equivaLent to "PROGRAM MaiLBox(INPUT,OUTPUT)i".) This is because
ALphaPascaL uses its own form of fiLe handLing that is consistent with
the AMOS fiLe structure. (Note, however, that the remainder of the
heading after the program name is scanned, and that therefore the
program heading must be syntact i ca LLy correct. For exampLe: "PROGRAM
NewAccount (i" wiLL generate an error because of the open parenthesis.)
If you want to use any fiLes other than the predecLared fiLe INPUT and
OUTPUT, you must use VAR statements to decLare them.

Operator precedence has been changed to make it more compatibLe with
other Language processors on the ALpha Micro system. If it is
important that your program be abLe to run under another PascaL that
uses standard PascaL's rules of operator precedence, you wilL have to
use parentheses in your expressions to override ALphaPascaL's ruLes of
operator precedence.

This wiLL only become necessary if your expressions use reLational
operators to compare BooLean expressions. For exampLe, if A, B, C, and
D are BooLean variabLes, standard PascaL evaluates: IF A = BAND C = D
THEN... as: IF (A = (B AND C» = D THEN ••• , whiLe ALphaPascaL
evaluates it in this way: IF (A = B) AND (C = D) THEN •••

(See Section 8.1.1, "Operators,"
precedence.)

for information on operator

Two new keywords have been added to the List of reserved words:
EXTERNAL and MODULE. In addition, severaL identifiers have been added
to the standard identifier List. (For a List of ALphaPascaL standard
identifiers, see Section 5.4.2, "Standard Identifiers.")

ALso, severaL standard identifiers used by standard Pascal are NOT used
by ALphaPascaL (DISPOSE, PACK, and UNPACK) since AlphaPascaL does not
use these procedures. AlphaPascaL uses MARK and RELEASE to recLaim
memory aLLocated by NEW, and automaticaLLy unpacks packed data
structures for you when necessary. (See Section 11.1.4, "NEW," for
information on aLLocating dynamic variabLes.)

Standard PascaL supports
ALphaPascal aLso supports a
Length fieLd as weLL as
"STRING," for a description

the data type CHAR (singLe character).
non-standard type, STRING, which contains a
a fieLd of characters. (See Section 7.2.3,
of this data type.)

COMPATIBILITY AND CONVERSION Page 3-7

3.3 MAKING PROGRAMS COMPATIBLE WITH THE NEW ALPHA PASCAL

In generaL, programs written in previous versions of ALphaPascaL or standard
PascaL wiLL require very LittLe modification before being runnabLe under the
current ALphaPascaL. For exampLe, the sampLe program given in Chapter 2
runs correctLy in any of these versions of PascaL. The Largest number of
changes wiLL probabLy invoLve functions and procedures that read and write
disk fiLes, since the new ALphaPascaL is fuLLy integrated into the AMOS fiLe
structure.

If your programs were written under previous versions of UCSD/ALphaPascaL,
you wiLL need to transfer your programs to AMOS fiLes before you begin to
perform any necessary conversions. To do so, use the UCSD/ALphaPascaL
programming system (which was provided onLy in earLier reLeases of
ALphaPascal) :

1. At AMOS command LeveL, enter the UCSD/ALphaPascaL programming
system by typing PASCAL foLLowed by a RETURN:

PASCAL (RET)

When you see the initiaL prompt:

Command:E(dit,R(un,F(i Le,C(ompi Le,X)ecute,D(ebug,I(nit ,H)aLt

Type an F.

2. You are now communicating with the FiLer. You see this prompt:

FiLer:G(et,S(ave,W(hat,N(ew,L(dir,R(em,C(hng,T(rans,D(ate,Q(uit

To see what is in your Library, type L. Now you see the question:

What voLume?

Enter a coLon foLLowed by a RETURN. Now you see a List that might
Look something Like this:

SCR:
ROMAN. TEXT 4
POSTFIX.TEXT 4
2 fiLes, 8 bLocks

28-Jun-80
28-Jun-80

used, 26 unused

This is a List of the fiLes in your Library.

3. You see the FiLer prompt again. To write one of the programs out
to an AMOS fiLe, enter T.

a. The Transfer function asks you:

Transfer what fiLe?

enter one of the fiLes Listed in the directory. For exampLe:

COMPATIBILITY AND CONVERSION Page 3-8

Transfer what fiLe? ROMAN.TEXT (RET)

b. Now Transfer asks:

To what fiLe?

Enter "REMOTE:" and type a RETURN:

To what fiLe? REMOTE: (RET)

c. Now Transfer asks:

Using what AMOS file?

Enter a valid AMOS file specification. For exampLe:

DSK1:CONVRT.PAS

IMPORTANT NOTE: You must make sure that this fiLe does not
aLready exist; if it does, the UCSD/AlphaPascal system will not
do the transfer, and will make the accessed drive inaccessible
to you (that is, it wi LL declare that drive "off line") unti L
you exit or re-enter PascaL.

d. Now Transfer asks:

CONVRT.PAS mode: T(ext, I(mage:

Enter an upper case T foLLowed by a RETURN.

e. Now transfer begins to copy ROMAN.TEXT into the AMOS fiLe
DSK1:CONVRT.PAS. When Transfer is done, you see:

SCR:ROMAN.TEXT transferred to REMOTE:

You may now use the text editor, VUE, to modify the AMOS fiLe that
contains your program. NOTE: If your fiLe is too Large, Transfer
may ask for additionaL AMOS file specifications. When you are
finaLLy finished, you wiLL need to append alL such fiLes into a
single fiLe, using the AMOS APPEND command.

Here is list of things to check when converting your oLd programs to current
AlphaPascal format:

1. Make sure that you do not use the reserved words EXTERNAL or MODULE
as identifiers.

2. Check the List of standard identifiers in Section 5.4.2, "Standard
identifiers," to make sure that you do not redefine any identifiers
that designate functions or procedures you need by including them
in globaL decLarations.

COMPATIBILITY AND CONVERSION Page 3-9

3. Remove any information concerning input or output files from your
program heading.

4. The INTERACTIVE file type is no longer supported. Change any
occurrences of the INTERACTIVE file type in your programs to TEXT.
It might be easiest to just redefine INTERACTIVE at the front of
your programs via a type statement:

TYPE INTERACTIVE = TEXT;

5. Previous versions of AlphaPascal expected a UCSD file specification
for the argument of the compiler include option, $1. Now the $1
option request accepts an AMOS file specification. The default
extension is .INC. If you have used the $1 compiler option, you
wilL have to change your file specifications to valid AMOS file
specifications, and make sure that those files exist. For more
information on include fiLes, see Section 4.3.2.2, "The IncLude
Option ($1)."

6. If it occurs in your programs, remove the SEGMENT keyword.

7. Note that the operator precedence used by AlphaPascal is different
from that of standard PascaL and previous versions of ALphaPascal.
You may need to check expressions in which Boolean expressions are
compared with reLationaL operators to make sure that the
expressions will be evaluated correctly. See Section 8.1.1,
"Operator Precedence," for more information.

Besides changing your programs so that they wiLL run under ALphaPascaL, you
might also want to add some of the new AlphaPascal features listed in
Section 3.1, above. As an example, instead of the statement:

TOTAL := TOTAL + SUM;

you might want to say:

TOTAL += SUM

Or, you may want to break your programs up into modules. (For information
on moduLes, see Section 6.1, "Program Declarations.") Of course, if you
want your programs written in standard PascaL so that they can run with
other Pascal implementations, you may want to restrict your programs to
using features found only in standard Pascal.

CHAPTER 4

OPERATING INSTRUCTIONS AND CHARACTERISTICS

This chapter assumes that you are ready to start compiling and running
Pascal programs. If you are not familiar with AlphaPascal, you may want to
skim through Part II, "Summary of AlphaPascal," before you attempt to start
using the AlphaPascal system. This chapter gives you information that you
will need to know about the programs that make up the AlphaPascal
programming system. The first few sections talk about file and memory
requirements. Operating instructions begin with Section 4.2, "Creating a
Pascal Program."

The AlphaPascal system consists of the compiler, CMPILR; the linker, PLINK;
the run-time package, PRUN; and, the standard external library, STDLIB.

To create a Pascal source program, use the system screen-oriented text
editor, VUE. VUE is an easy to use, powerful editor that allows you to see
your Pascal program on the screen of your terminal, and to make changes to
that program by moving the cursor around on the screen display and enterinq
the new or replacement characters. For information on usinq VUE, see the
AlphaVUE User's Manual, (OWM-00100-1S). (Also, a brief introduction to
VUE is given in Section 2.3.1 of this book, "Building a Pascal Program.")

After creatinq your program, you will exit VUE and use the AlphaPascal
compiler, CMPILR, which compiles your source program (a file that has the
.PAS extension) into a series of intermediate files. ~ext you will use the
AlphaPascal linker, PLINK, which uses the intermediate files created by the
compiler to create a fully resolved, runnable P-code file that has the .PCF
extension. The linker also allows you to link together separate files into
one proqram, and allows you to update one portion of an existing compiled
program without re-compiling all of the modules that make up that program.
To run your .PCF file, you will use the AlphaPascal run-time package, PRUN.

The external library contains a set of procedures, variables, and functions
that are available to your Pascal programs. For a list of the routines
within the external library, see Section 16.1, "STDLIB." For information on
writing and modifyinq your own procedures within this library, see Chapter
16, "Writing and Modifying an External Library File."

(Changed 30 April 1981)

I

I

OPERATING INSTRUCTIONS AND CHARACTERISTICS

4.1 FILE AND MEMORY REQUIREMENTS

The AlphaPascaL system consists of these f;les~

DSKO:PRUN.PRG(1,4J
DSKO:CMPILR.PCFC7,SJ
DSKO:PLINK.PCFC7,SJ
DSKO:STDLIR.PCFC7,SJ
DSKO:DEMO.PAS(7,SJ
DSKO:DEMO.PCFC7,5J

DSKO:ERT.INCC7,5J
DSKO:SPOOL.INCC7,5J
DSKO:XLOCK.INCC7,SJ
DSKO:XLOCK.SYSC1,4J
DSKO:XMOUNT.INCC7,SJ

DSKO:PC.DO(2,2J
DSKO: PCL. DO(2,2J
DSKO:PL.DO[2,2J
DSKO: PCU. DO[2,2J
DSKO:PU.DO[2,2J

Page 4-2

The first four of these files must be on your system if you are to use the
ALphaPascal system. PRUN.PRGC1,4J is a re-entrant assembly language
program; you may load it into systpm memory. CMPILR[7,SJ, PlINK[7,5J, and
STDLIB[7,5J are Pascal code file programs. (.PCF files may not be loaded
into system memory.) DEMO.PAS and DEMO.PCF are the source-and compiled
versions of a sample Pascal program that demonstrates file handling. (This
program aLso appears at the end of Chapter 10 of this book.)

The .INC fiLes are speciaL fiLes you will include in programs that make use
of severaL of the subroutines we have provided with the ALphaPascal system.
(The special routines that make use of the .INC files are described in
Chapter 14, "Systems Functions and Procedures.") <See Section 4.3.2.2, "The
Include Option ($1)," for information on include files.)

The last five files listed above are .DO files: these are special command
files that help you to compile and link files. They invoke the compiler and
Linker for you, and automaticalLy answer aLL of the questions asked by those
programs. ALthough these command fiLes are not for use in all cases, you
will probably be able to use them most of the time when you are compiling,
Linking, or updating a single file. For information on how to use these
files, see Section 4.6, "Helpful Command FiLes."

4.1.1 FiLe Extensions

Some of the extensions recognized by various components of the PascaL
programming system are:

<Changed 30 April 1981)

OPERATING INSTRUCTIONS AND CHARACTERISTICS

.PAS PascaL source fiLe, created by text editor •

• P01 PascaL intermediate fiLes, created by the
.P02 compiLer. Not directLy executabLe •
• P03

.PCF PascaL code fiLe. The executabLe program fiLe
created by the Linker •

• PSB PascaL assembLy Language subroutine •
• INC IncLude fiLes

Page 4-3

NOTE: No .PSB fiLes have been incLuded with this reLease, aLthough many of
the routines in the standard Library are act~aLLy Linked-in assembLy
Language programs. If you write your own assembLy Language subroutines,
they must have the .PSB extension. The advantage in using assembLy Language
programs in combination with your PascaL functions and procedures is that
some systems functions can best be performed by an assembLy Language program
because of speed, size, or hardware requirements.

4.1.2 FiLe Search Pattern

PascaL uses a standard search pattern in Looking for those fiLes that it
needs. For .PCF and .INC fiLes, this pattern is:

The account you are Logged into
Your project Library account: [*,0]
The PascaL Library Account, PAS: -- DSKO:[7,S]

For PRUN.PRG, this pattern is:

System memory
User memory partition
System Library Account, SYS:-- DSKO:[1,4J
Your project Library account: [*,0]
The account you are Logged into

For .PSB fiLes, this pattern is:

System memory
User memory partition
The account you are Logged into
Your project Library account: [*,0]
The PascaL Library Account, PAS: -- DSKO:[7,S]

For exampLe, if you are Logged into DSK1:[100,3], and want to execute the
program PRIME.PCF, you enter:

PRUN PRIME [RET)

OPERATING INSTRUCTIONS AND CHARACTERISTICS Page 4-4

(PRUN assumes a file extension of .PCF.> Pascal first looks for the file
PRIME.PCF in the account you are logged into (in this case, DSK1:[100,3J);
next it looks in your project library account, DSK1:[100,OJ. Finally it
looks in the Pascal Library Account, DSKO:[7,5J. If it doesn't find the
file in any of these places, you see the error message:

?Cannot OPEN PRIME.PCF - file not found

Of course, if you give a complete file specification (including device
and/or account specification) Pascal wiLL look for the fiLe on the device
and account you have specified, without going through its search pattern.
The standard, compLete AMOS fiLe specification consists of a device
specification, a fiLe name, a fiLe extension, and an account specification.
For example:

PRUN HWK1:PRIME.PCF[200,56J (RET)

4.1.3 Program Restrictions

ALphaPascaL handLes your programs via a virtuaL memory paging system. This
means that there is no Limit to the size of your programs. (NOTE: OnLy
programs are paged, not data aLLocated by NEW.> However, there are minor
Limits on the size of components of those programs:

1. The object code version of anyone procedure may not be Larger than
2000 bytes.

2. You may not have more than 255 global procedures and functions in
anyone program or Library.

3. Any gLobaL procedure or function cannot have more than 255 LocaL
procedures or functions.

4. Maximum nesting of program block declarations is 15.

5. Maximum nesting of
descriptions is 12.

4.1.4 Memory Requirements

procedures, WITH-DOs, and RECORD type

Because AlphaPascaL uses a virtuaL memory paging system, there is no Limit
to the size of your programs. However, a certain amount of memory is
required to use CMPILR, PLINK, and PRUN. ALthough the minimum size of your
memory partition depends on the data space requirements of the PascaL
program you want to use, you shouLd have at least 16K of memory to run a
small program. To compiLe and link a program, you should have at least 24K
of memory.

OPERATING INSTRUCTIONS AND CHARACTERISTICS Page 4-5

Also, you should note that even thouqh you may execute a program that is
larger than your memory partition, the larqer that memory partition is, the
less paging must be done and, in qeneral, the faster your programs will run.
To help even more in speeding up program execution and in reducing the
minimum memory partition size, remember that you may load PRUN.PRGC1,4J into
system memory. Also, if the assembly language subroutines that you write
are re-entrant, you may load them into system memory.- If you should run out
of room in memory while compiling a program, CMPILR displays the messages:

?Insufficient memory
or:

?Attempt to call ERRORTRAP while in ERRORTRAP

4.2 CREATING A PASCAL PROGRAM

To create a Pascal source program, use one of the system text editors, VUE
or EDIT. If you are using a video display terminal, you will probably want
to use the screen-oriented text editor VUE. -For a full description of how
to use VUE and a list of all of its commands, see the AlphaVUE User's
Manual, (DWM-00100-15). Also, Section 2.3.1, "Building a Pascal Program,"
of this book contains a brief introduction to VUE.

4.3 THE ALPHA PASCAL COMPILER

The compiler reads the source program that you have created, and compiles it
into three intermediate files that have the same name as the source orogram
file and the extensions .P01, .P02, and .P03. These files are used by the
linker to create the final, executable program file, which has a .PCF
extension. (If .P01, .P02, and .P03 files already exist with the same name
as the program, CMPILR deletes them before compiling the new source
program.)

To use the compiler, at AMOS command level enter:

PRUN CMPI LR [RET]

The compiler now asks you for the name of the source file:

AlphaPascal V2.0
Source file name?

Enter the name of the file that contains the program or module you want to
compi le followed by a RETURN. (CMPILR assumes the .PAS extension.) This
source file may be in any account, but the .P01, .P02, and .PO~ files for
the program will be generated in the device and account you are logged into.

(Changed 30 April 1981)

I

OPERATING INSTRUCTIONS AND CHARACTERISTICS Page 4-6

4.3.1 The Diagnostic Display

After you have given CMPILR the name of the source file you want to compile,
it asks:

Diagnostic file name «return> for terminal)?

The diagnostic fiLe contains information about the program compilation. You
wiLL usually want to see this information on the screen as the compilation
proceeds, and therefore will enter a RETURN. If you want this information
sent to a file so that you can have a permanent record of the compilation,
enter a valid AMOS file specification. For example:

Diagnostic file name «return> for terminal)? DIAG[RET]

The default extension is .LST. The -diagnostic display might look something
like this, depending on the program you are compiling:

AlphaPascal Compiler Version 2.0
< 0>------

NEWCHECK < 6>---
PROGRAM < 10>------
16 lines
7.07 seconds, 152.83 lines/minute
No compilation errors.

The diagnostic display above shows the line numbers at which the procedures
within the program begin (line #6 for the procedure NEWCHECK; line #10 for
the main program). Each dash indicates the compilation of one program line.
The last three lines tell you a) how many lines were in the program; b) how
quickly the compilation was done; and c) how many errors occurred.

If an error occurs, you see it reported at
compilation. For example, suppose we had left
(the semicolon) at the end of the first line of
display would look like this:

AlphaPascal Compiler Version 2.0
< 0>-

PROGRAM MYPROG
VAR Target: REAL;

the appropriate place in the
off a statement separator
the program. The diagnostic

?Line 1: [INISOPJ ';' or .<. expected -- inserting
< 1>-----

••• ,

NEWCHECK < 6>---
PROGRAM < 10>------
16 lines
6.97 seconds, 155.02 lines/minutes

?Total of 1 compilation errors.

NOTE: If you tell CMPILR to_send the diagnostic display to the terminal
screen instead of a-file, CMPILR pauses when an error occurs, and gives yQU
a chance" either to continue or quit. For example: -

<Changed 30 April 1981)

OPERATING INSTRUCTIONS AND CHARACTERISTICS

AlphaPascal Compiler Version 2.0
< 0>-

PROGRAM MYPROG
VAR Target: REAL;

?Line 1: [INISOPJ 1;1 or 1(1 expec~ed -- inserting
Hit RETURN to continue

I • I ,

Page 4-7

At this point you may continue the compilation by typing a RETURN, or you
may stop the compilation by typing a Control-C (in which case you see the
message: ?Compilation aborted>. If an error occurs, CMPILR does not
generate the .P01, .P02, and .P03 intermediate files; this is to prevent you
from linking a program that contains a compile-time error.

4.3.2 Compiler Options

The AlphaPascal compiler has a number of options available to you. You may
select one or more of these options at compile-time by including the
appropriate option codes in your program.

You tell the compiler that you want to make an option request by including
the symbol S at the front of a program comment followed by the specific
option code you want to use. The compiler acts upon the option requests as
it reaches them in the program.

Option codes may be in upper or lower case. No space may separate the left
comment delimiter and the option code. For example, {SG-} is valid, but
{ SG-} is not.

4.3.2.1 The GOTO Options (SG+ and SG-> - The SG+ code tells the compiler
to allow use of the GOTO statement; the SG- code tells the compiler to
generate an error message if it encounters a GOTO statement. You may use·
these options to turn GOTO recognition on and off within your program. (The
compiler uses the SG- option as the default; that is, it does not recognize
GOTO statements unless you use the SG+ option in your program.)

4.3.2.2 The Include Option (SI) - The SI code tells
include the contents of the specified file in your program.
AMOS file specification. For example:

{SI MACRO.INC}

the compiler to
Supply a valid

The default extension is .INC. The $1 option code tells the compiler to
physically insert the contents of the specified file into the file being
compiled. The insertion takes place at the point of the option request. You
may not include any other option codes after the file specification. The

(Changed 30 April 1981)

OPERATING INSTRUCTIONS AND CHARACTERISTICS Page 4-8

purpose of the $1 option is to save you from havinq to duplicate frequently
used declarations or lines of code.

The include file can contain any valid program elements, as long as those
elements can legally be inserted at the pLace in the program where the
include file option occurs. (For example, you will not use the $1 option
request in a program's variable declaration section to include a file that
contains a program header.)

NOTE: You cannot nest include file requests. That is, the include fiLe may
not itseLf contain an include fiLe request.

4.3.2.3 The List Options ($L, $L+ and $L-) - The $L option request tells
the compiler to send a listing to an AMOS file. (You do not see a program
listing if you do not use the $L option.) Supply a valid AMOS file
specification. For example:

{$L DSK1:DIAG(33,2J}

The Lis~ing will now be written to the specified file. The default file
extension is .LST. If you do not give a file specification when you use the
$L request, CMPILR creates a listing file bearing the name of your source
file and a .LST extension in the account you are logged into.

Of course, you may not create a listing fiLe outside of the project of the
account you are logged into. For examole, if you are logged into
DSKO:(100,2J and try to create the Listing file DSKO:LIST.LST[200,2J, the
AMOS system will respond with a "protection violation" error and abort the
compilation because you tried to create the file in an account outside of
the 100 project area.

You may
again.
section
of your

use the codes $L- and $L+ to turn program listing off and back on
For example, suppose you have a long program that contains a Large

of comment that you don't want in your listing file. At the front
source program you might say:

{$L MYPROG}

Directly in front of the section you do not want in your listing, you would
pLace:

{$L-}

At the point where you want the listing turned back on again, place:

-($L+}

The compiLer teLls you in the diagnostic dispLay that it is writing a
listing fiLe. For exampLe:

(Changed 30 ApriL 1981)

I

I

OPERATING INSTRUCTIONS AND CHARACTERISTICS Page 4-9

AlphaPascal Compiler Version 2.0
< 0>

List to LIST

ERR CHECK < 9>---
PROGRAM < .13>------
20 lines
12.36 seconds, 96.90 lines/minutes

No compilation errors.

If you want the listing to appear on your terminal screen, use the device
specification TTY:. For example:

{$L TTY:}

(NOTE: This display will be intermingled with that of the diagnostic display
unless you send the diagnostic display to a file-- see Section 4.~.1, "The
Diagnostic Display.") No other option requests may appear after the $L
option. The listing consists of a display of your program with additional
information to the left of the program. If your program contains ~rrors, the
listing file contains the appropri~te error messages at the pl~ces in the
prog~am where the ~rrors occurred. The listing takes a form that looks
something lik~ this, depending on the program you are compiling:

l ine#
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

proc lv
D 1
D 1
D 1
D 1
D 1
D 1
D 2
D 2
D 2
C 2
C 2
C 2
C 2
C 1
C 1
C 1
C 1

19 --
20 --

C 1
C 1
C 1

il dsp
o 1
o 1
o 1
o 1
o 1
o 1
o 2
o 2
o 2
1 2
1 2
o 2
o 2
1 1
1 1
1 1
1 1
2 1
3 1
o 1

o compilation errors.

ic/lc
1
1
1
1
1
1
4
7
7
o
o

12
40
o
2

45
63
69

112
157

{$L DrAG}
PROGRAM Validate { Validate numeric entry; make

sure that it is between 1 and 100.};

VAR Target : REAL;

FUNCTION ErrCheck(Local : REAL) : BOOLEAN;
{ Function checks entry. If 100<number<1,

ErrCheck repo~ts error by returning a TRUE. }
BEGIN { Begin function ErrCheck }

ErrCheck := Local < 1 OR Local> 100
END { End function ErrCheck };

BEGIN { Main Program }
WRITE(IEnter a number between 1 and 100: I);
READLN(Target);
IF ERRCHECK(Target)

THEN WRITELN(IInvalid entry: try again. l)

ELSE WRITELNC'Very good. Correct entry.')
END { Main Program }.

On the right you see a listing of the program. The left contains additional
information about the program:

Line# - This is the number of the program line on the right-hand
side of the display. The rest of the information on this line
refers to this program line.

(Changed 30 April 1981)

OPERATING INSTRUCTIONS AND CHARACTERISTICS Page 4-10

Proc - You see the name of each locaLLy decLared procedure as
CMPILR comes to it.

C or D PascaL tells you if data (D) or code (C) is being generated
for the program Line.

lv and
dsp - Internal information used by the compiLer.

it - Indentation level. TeLLs you what nesting
current program line is at.

level the

ic/lc - Internal code location counter. This number tells you how
many total bytes have been allocated at this point in the
program compilation for the object code of the current
procedure or function. The ic/lc number can come in handy
Later when you debug programs. If you interrupt program
execution and backtrace that program, the backtrace gives you
the "IPC" number-- the "Interpreter Program Counter." The
IPC is the number designated by ic/lc in the program listing.
You can thus compare your backtrace with your program
listing, and see exactly where the probLem occurs.

Also, if a run-time error occurs, the error message gives the
IPC in the procedure at which the error occurred (e.g.;
?Value range error in PROGRAM at IPC = 64 within"FILL.~AS).
(For information on backtracing, see Section 4.5.2,
"Jnterrupting a Program.")

4.3.2.4 The Page Option (SP) - The SP option allows you to start a new
page in the listing by telling the compiler tQ insert a form-feed at that ,
point in the program lis~ing. (SP is ignored if the $L option is not in
effect.)

4.3.2.5 The Quiet Options ($Q+ and $Q-) - $Q+ designates the
quiet-compile option. This option request tells the compiler to give you a
brief diagnostic display, leaving off procedure names and line numbers. To
turn full-display mode back on (the default condition), use the $Q- option
code.

4.3.2.6 The Range Check Options (SR- and $R+) - The SR- option teLls the
compiler to turn off range checking; that is, the compiler does not 6utput
additional code to perform checking on array subscripts and assignments to
subrange type vari ables. Programs compi led with range check"ing off run
slightly faster; however, since the compiler is not' checking for range
errors~ if an invalid index or assignment is made by your program, the
run-time package will not stop the program when that error occurs. You

(Changed 30 April 1981)

OPERATING INSTRUCTIONS AND CHARACTERISTICS Page 4-11

shouLd not turn off range checking untiL your program has been tested and
you are absoLuteLy sure that your program runs without error. To turn range
checking back on (the defauLt condition), use the $R+ option.

4.4 THE ALPHA PASCAL LINKER

The Linker, PLINK, reads the .P01, .P02, and .P03 fiLes created by the
compiLer and resoLves the fiLes into a singLe executabLe program. You may
use PLINK to Link muLtipLe fiLes together into one program. However, even
if your compLete program consists of onLy one fiLe, you must use PLINK on
that fiLe to generate an executabLe program fiLe. The finaL fiLe created by
PLINK has the .PCF (PascaL Code FiLe) extension. ALthough the use of PLINK
may at first Look compLicated, once you begin to use it, you wiLL find that
its questions are rather seLf-expLanatory. The paragraphs beLow discuss the
different ways in which you can use PLINK. The Last few paragraphs of this
section (Sections 4.4.4 and 4.4.5) discuss the PLINK options.

To use PLINK, at AMOS commmand LeveL enter:

PRUN PLINK [RET]

Now PLINK asks:

Code fiLe:

Enter the specification you want given to your finaL .PCF fiLe. This
specification may be that of an existing fiLe, or it may designate a new
fiLe. It may be the same as or different than the specification of one of
the fiLes you are going to Link. Make sure that you suppLy a vaLid AMOS
fiLe specification that contains a fiLename of no more than six characters
(for exampLe, DSK4:VALID(110,4]). For the purposes of our discussions,
Let's say that you enter VALID

Code fiLe: VALID [RET]

(PLINK wiLL automaticaLLy assign the fiLe a .PCF extension.) If you do not
incLude a device and account specification, PLINK assumes that you want to
Link a fiLe that is in the device and account you are Logged into. At this
point PLINK asks you different questions, depending on whether or not the
specified .PCF fiLe aLready exists. In the next sections we wiLL step
through the three situations which can occur: 1) you are creating a new
fiLe; 2) you are repLacing an existing .PCF fiLe; 3) you are updating a
singLe moduLe in the .PCF fiLe.

For now, Let's assume that PLINK has asked its next few questions, and knows
what fiLes to Link together and what externaL Library to use. You see:

Loading program and Library dictionaries

OPERATING INSTRUCTIONS AND CHARACTERISTICS

This teLLs you that PLINK is getting ready to process your fiLe.
fiLe that you are linking, PLINK teLLs you when it begins working
fiLe. For exampLe:

Processing NEWMOD

Page 4-12

For each
on that

Next PLINK teLLs you what gLobaLLy decLared functions and procedures are
being Linked into your .PCF fiLe. (These routines are in your program and
the externaL Library.) For exampLe:

Linking in globaL func/proc ERRCHECK
Linking in gLobaL func/proc PROGRAM

At Last, PLINK is finished, and begins to copy the resolved code into the
.PCF fiLe:

Transferring temporary fiLe to new code fiLe

PLINK's finaL message teLLs you that it is finished:

VALID compLeted

Now, Let's get back to the questions PLINK asks when it is determining which
fiLes to Link together. NOTE: Keep in mind when answering PLINK's questions
that PLINK converts aLL of your input to upper case.

4.4.1 Linking a New .PCF FiLe

If you use PLINK to create a .PCF fiLe, and that fiLe does not aLready
exist, PLINK knows that you are Linking a new program, and not trying to
repLace or update an existing program. For exampLe, suppose you have toLd
it that you want to create VALID.PCF. It teLLs you:

Creating new code fiLe VALID.PCF

Now it asks which externaL Library you want to use for the new program:

Library code fiLe for VALID.PCF =
Enter the fiLe specification of the Library you want to use. In aLmost
every case, this wiLL be the standard Library file, STDLIB.PCF. The
external library contains routines used by your program and the compiler.
You must specify a Library (except in the very rare case where you are
Linking a "root" library-- that is, a library that has no library of its
own-- such as STDLIB itseLf). For information on the external Library, see
Chapter 16, "Writing and Modifying an External Library File." Now PLINK asks
which fiLes you want to Link together:

\

OPERATING INSTRUCTIONS AND CHARACTERISTICS Page 4-13

PLease specify fiLes to be Linked into VALID,
one per Line, ending in a bLank Line

FiLe 1 =

Enter the specification of the first fiLe; then type a RETURN. Now PLINK
asks for another fiLe:

FiLe 2 =

Remember that a singLe .PCF fiLe may be made up of severaL separateLy
compiLed moduLes. If you are Linking onLy one fiLe, enter a RETURN here;
otherwise enter the fiLe specification of the next moduLe. If you are
Linking together more than one fiLe, the fiLe specifications do not have to
be entered in any speciaL order, but at Least one of these fiLes must be a
main program fiLe (rather than a moduLe), or you see the message: ?Attempt
to create new code fiLe without main program bLock. (For information on
moduLe fiLes, see Section 6.1, "Program DecLarations.") Remember that you
are entering AMOS fiLe specifications, and not the internaL names of your
programs or moduLes; each specification must contain a six-character or Less
fiLe name that designates an AMOS disk fiLe.

NOTE: ALthough you wiLL usuaLLy be Linking together compiLed PascaL
you may aLso want to use .PSB (PascaL assembLy Language subroutine)
To teLL ALphaPascaL that a fiLe is an assembLy Language subroutine
than a PascaL program fiLe, you wiLL specify the .PSB extension.
exampLe:

File 1 = MODUL 1 [RET]

File 2 = MAINPR [RET]

File 2 = INPUT. PSB [RET]

File 3 = ANYCN.PSB/LINK [RET]

File 4 = [RET]

fiLes,
fiLes.
rather

For

The exampLe above shows us Linking together a main program fiLe, MAINPR, a
moduLe fiLe, MODUL1, an assembLy Language subroutine fiLe reference,
INPUT.PSB, and an assembLy Language subroutine, ANYCN.PSB. For a discussion
of how these .PSB fiLes are Linked in, see Section 4.4.4, "Linking AssembLy
Language Subroutines (the ILINK Option)." For information on assembLy
Language subroutines, see Chapter 15, "AssembLy Language Subroutines."

4.4.2 RepLacing a .PCF FiLe

If the VALID.PCF fiLe that we specified as "code fiLe" aLready exists, PLINK
knows that we want to either update or repLace the fiLe. Therefore, after it
asks for the code fiLe, PLINK asks:

Do you wish to 1) repLace or 2) update VALID.PCF?

To repLace the fiLe, enter a 1. PLINK now says:

OPERATING INSTRUCTIONS AND CHARACTERISTICS Page 4-14

Creating new code fiLe VALID.PCF

It asks which externaL Library to use:

Library code fiLe for VALID.PCF =
Once again, you wiLL probabLy want to answer "STDLIB." Now PLINK asks for
the names of the fiLes you want to Link together:

PLease specify fiLes to be Linked into VALID,
one per Line, ending in a bLank Line

FiLe 1 =

Enter the specification of the first fiLe; then type a RETURN.
asks for another fiLe:

FiLe 2 =

Now PLINK

Type a RETURN if you are onLy Linking one fiLe; otherwise, suppLy the fiLe
specification of the next moduLe. When you have finished entering aLL
moduLe specifications, enter a singLe RETURN. (See Section 4.4.4 for
information on Linking assembLy Language subroutines.>

4.4.3 Updating a .PCF FiLe

It wouLd be extremeLy inconvenient to re-compiLe and re-Link a huge PascaL
program every time you wanted to change a tiny portion of it. ALphaPascaL
allows you to spLit one program up into a number of fi Les caLLed "moduLes,"
which are Linked together with one main program fiLe. You can change a
moduLe fiLe, re-compiLe just that fiLe, and then re-link the changed moduLe
into the main .PCF fiLe.

To update a singLe moduLe, make your changes and then re-compiLe that
moduLe. Now, use PLINK to re-Link the moduLe into the program. When PLINK
says:

Do you wish to 1) repLace or 2) update VALID.PCF?

enter a 2 foLLowed by a RETURN. Now it wiLL teLL you what externaL Library
was used to Link that .PCF file. For exampLe:

The standard library code file for VALID.PCF is STDLIB.PCF
Do you wish to change this?

Answer Y or N. You wiLL probably want to answer N, to instruct PLINK to use
the same library the fiLe was originally Linked with. If you answer Y,
PLINK asks for the new Library:

New standard Library =

OPERATING INSTRUCTIONS AND CHARACTERISTICS Page 4-15

Enter the specification of the external library you want to use.

Now PLINK asks what fiLes you want to Link together. Just enter the
specifications of the moduLe or moduLes you have re-compiLed. The rest of
the modules in the .PCF fiLe wiLL be left aLone. NOTE: If you do change to
a new Library, you wiLL have to re-Link alL moduLes used in the program and
the main program file, since the old modules wiLL be incompatibLe with the
new Library. (See Section 4.5.1, "Library Version Checking," for more
information on program-Library compatibiLity.)

PLINK wiLL teLL you what new procedures or functions have been linked in,
and what oLd procedures or functions have been kept. For exampLe:

Keeping gLobaL func/proc ERRCHECK
Keeping globaL func/proc PROGRAM
Linking gLobaL func/proc NEWPROC

4.4.4 Linking Assembly Language Subroutines (the /LINK Option)

We mentioned briefly above in Section 4.4.1, "Linking a New .PCF File," that
you can Link assembLy language subroutine (.PSB) fiLes into your .PCF file
by specifying the .PSB extension when you use PLINK to Link the subroutine
fiLes into the program. (For information on such routines, see Chapter 15,
"AssembLy Language Subroutines.")

What actuaLLy happens is this: when you specify a .PSB fiLe to PLINK, PLINK
then inserts a reference to that fiLe in your finaL .PCF fiLe. When you
execute the .PCF fiLe, ALphaPascaL searches for the specified .PSB fiLe
(using the standard file search pattern we discussed at the front of this
chapter), and then Loads that fiLe into memory from the disk (if the fiLe is
not aLready in system or user memory); next, it executes the routine when
called by the program. When PRUN finishes executing the .PSB file, it
deLetes it from memory. (You can force PRUN to Leave the .PSB fiLe in
memory by explicitLy loading the fiLe into memory via the monitor LOAD
command before using PRUN to run the program that caLLs the .PSB fiLe. If
the .PSB fiLe has been pLaced into memory via the LOAD command, the fiLe
remains in memory until you use the DEL command to remove it.)

If you want the contents of the .PSB fiLe to be physicalLy part of your .PCF
file (so that this search-and-load procedure does not take pLace), you may
specify the /LINK option after the name of the .PSB file when you link that
fiLe in. For exampLe:

FiLe 1 = MODUL1 [RET]
FiLe 2 = MA INPR [RET]
FiLe 3 = XPUT.PSB/LINK[RET]

The /LINK option refers only to the singLe fiLe specification on the same
line as the option request. If you are going to physicaLly Link a .PSB fiLe
into your .PCF file, the .PSB fiLe cannot be larger than one disk bLock.

OPERATING INSTRUCTIONS AND CHARACTERISTICS Page 4-16

NOTE: Usually if you modify a module or .PSB file, you only need to re-link
the modified file into the linked .PCF file of which it is a part. (For
exampLe, if you changed the file XPUT.PSB in our example above, you would
not need to re-Link MAINPR and MODUL1; only XPUT.PSB.) However, if you
decide to replace a .PSB fiLe with a Pascal file of the same name or vice
versa, you wilL need to re-Link aLL moduLes that form the .PCF file of which
that fiLe is a part. For exampLe, Looking at our exampLe above again, if
you decide that the file MODUL1 wouLd be better as an assembLy Language
fiLe, MODUL1.PSB, you wiLL need to re-link aLL of the fiLes that form the
compLete .PCF fiLe-- MODUL1.PSB, MAINPR, and XPUT.PSB.

4.4.5 Preventing Backtracing of .PCF Files (the /SMASH Option)

ALphaPascaL aLLows you to trace the functions and procedures caLLed by a
program. This is a useful debugging feature when you are developing a
program, since you can interrupt the program at a trouble spot and see what
function or procedure it is in. (For more information on backtracing, see
Section 4.5.2, "Interrupting a Program.")

However, once a program has been finished and tested, you may not want users
of that program to be abLe to find out the names of the program functions
and procedures (which they can ordinarily do by interrupting the execution
of the program and backtracing). Therefore, AlphaPascaL provides the Linker
/SMASH option.

When you Link a program using the /SMASH option, users of that program are
prevented from seeing the names of the program's procedures and functions
when they backtrace the program; instead, the names are repLaced with
asterisks. For exampLe, instead of the backtrace dispLay:

Interrupt (?=HeLp): B [RET)

In STDLIB.PCF
RDR at IPC = 33

In VALID.PCF
PROGRAM at IPC = 43

In STDLIB.PCF
PROGRAM at IPC = 423

Exit to AMOS

they see:

OPERATING INSTRUCTIONS AND CHARACTERISTICS Page 4-17

Interrupt (?=HeLp): B [RET]

In STDLIB.PCF
RDR at IPC = 33

In VALID.PCF
******** at IPC = 43

In STDLIB.PCF
PROGRAM at IPC = 423

Exit to AMOS

Note that in the smashed version above, the name of the function in your own
program, VALID.PCF, is bLanked out with a Line of asterisks.

To use the /SMASH option, pLace the option request after the name of the
code fiLe you want to smash. For exampLe:

Code fiLe = VALID/SMASH [RET)

When PLINK finishes Linking the specified fiLes, it teLLs you that the names
of the functions and procedures in the code fiLe have successfuLLy been
hidden from the backtrace option. In the case of the fiLe discussed above,
VALID.PCF, you see:

SMASHed VALID/SMASH CompLeted

NOTE: CMPILR and PLINK have both been Linked using the /SMASH option.

4.5 THE ALPHA PASCAL RUN-TIME PACKAGE

The ALphaPascaL run-time package, PRUN, is the program that executes your
program by interpreting the .PCF fiLe created by the Linker. To use PRUN, at
AMOS command LeveL enter PRUN foLLowed by the specification of the fiLe that
contains the program you want to execute. Then type a RETURN. For exampLe:

PRUN LSTSQR[200,1J [RET)

4.5.1 Library Version Checking

Because you can add routines to the externaL Library, the situation can
arise where an oLd program was Linked with an externaL Library that is
different from the current external library. PRUN will not execute a
program that is not compatibLe with the Library it is being run with. By
"compatibLe," we mean that a program that was Linked with a certain externaL
Library cannot be run with an oLder version of that Library, or with a
compLeteLy different Library.

OPERATING INSTRUCTIONS AND CHARACTERISTICS Page 4-18

You wiLL rareLy have to worry about Library version numbers; if you modify a
Library, you can run programs Linked with earlier versions of that library
without re-linking the programs (unLess you changed functions and procedures
used by those programs, in which case you might have to change your programs
to be compatibLe with the new procedures and functions).

AlphaPascal uses a system of version numbers and version stamps to keep
track of program and library versions. (These numbers are for internal use
only-- they are not accessible to your programs.) Whenever a library is
created or modified, ALphaPascal writes a unique identifying number caLLed
the "version stamp" to that library. It also keeps track of the number of
version stamps generated for a library; this number is caLled the "version
number."

Whenever you Link a program, AlphaPascal writes the version stamp and
version number of the external library you are using to the .PCF file being
Linked. Whenever you execute a program, PRUN checks to make sure that the
version stamp for that program matches one of the program stamps in the
current external Library. This makes sure that the current library is not a
completely different library than the one the program was Linked with. If
the Library is a modified version of the library the program was Linked
with, checking to see that the version stamp in the program exists in the
list of version stamps in the library makes sure that the library is not an
earlier version than the library with which the program was linked.

If the library and program are not compatible, you cannot run the program
with that version of the library; instead, you must re-Link your program
with the current library.

PRUN displays the folLowing message if the program version stamp and number
of the library are oLder than those of the program:

?Wrong version of xxxx for use with yyyy

where xxx x is the external Library, and yyyy is your .PCF fiLe.

If you update an external Library, check to see if your oLd .PAS files have
to change because of the revisions. For exampLe, if a hypotheticaL
procedure REVERSE now expects three arguments, whiLe a previous version
expected two, your programs will have to change to accommodate the changes
in the procedure. (For more information on the external Library, see
Chapter 16, "Writing and Modifying an ExternaL Library Fi Le.")

OPERATING INSTRUCTIONS AND CHARACTERISTICS Page 4-19

4.5.2 Interrupting a Program

Whenever you use
typing a ControL-C.

PRUN, you can teLL it to interrupt pro,gram execution by
PRUN stops the program being executed and dispLays:

Interrupt (?=HeLp):

You may enter one of four responses: Q, R, B, or ?, foLLowed by a RETURN:

Q - TeLLs PRUN that you want to terminate program execution. PRUN
returns you to AMOS command LeveL.

R - Tells PRUN to resume program execution at the point of
interruption.

B - TeLLs PRUN to print a backtrace of aLL the procedures and
functions invoked during the program execution to this point.
These procedures and functions are Listed in order, with the
Last-caLLed procedure or function Listed first. The dispLay
might Look something Like this, depending on the program you are
executing:

Interrupt (?=HeLp): B (RET)

In STDLIB.PCF
RDR at IPC = 33

In VALID.PCF
PROGRAM at IPC = 43

In STDLIB.PCF
PROGRAM at IPC = 423

Exit to AMOS

Interrupt (?=Help): Q (RET]

(For information on keeping program users from using the
backtrace function to see the names of the functions and
procedures in your programs, see Section 4.4.5, "Preventing
Backtracing of .PCF Files (the /SMASH Option).")

? - Tells PRUN that you need help. PRUN now displays a menu of
the responses you can enter:

Interrupt (?=HeLp): ? (RET)

Q = Quit
B = Backtrace
R = Resume

Interrupt (?=Help):

OPERATING INSTRUCTIONS AND CHARACTERISTICS Page 4-20

4.6 HELPFUL COMMAND FILES

Although our discussions above on the compiler and linker discussed several
special uses of those programs, in general the information that you give to
the programs will be fairly standard. For example, you will rarely want to
use an external library other than STDLIB. To make CMPILR and PLINK easier
to use, we have provided a number of special command fiLes that you can use
for most cases of compilation and Linking; these fiLes automaticaLly supply
much of the information needed by CMPILR and PLINK.

These command fiLes are in the Command FiLe Library Account, DSKO:[2,2J. (A
command fiLe is a text fiLe that contains a series of AMOS commands and
input for those command programs. Such a fiLe aLLows you to execute a
string of commands and provide a stream of input by simpLy entering the name
of that fiLe.)

You wiLL use these command files at AMOS command leveL. To invoke one of
the files, enter the name of the file followed by one or more file
specifications. For exampLe, suppose you want to use the command file named
PC (for Pascal-compiLe) to compile your program file SMALL.PAS. At AMOS
command LeveL, enter:

PC SMALL [RET]

The PC command fiLe now invokes the Pascal compiler, and teLLs it that you
want to compile the fiLe SMALL. Then it teLLs CMPILR that you want the
diagnostic fiLe to be displayed on the screen. NOTE: If an error occurs
whiLe you are using one of these command fiLes (for exampLe, if your program
contains an error or if AMOS cannot find the specified fiLe), AlphaPascaL
stops execution of the command fiLe. After you cLear up the probLem, you
can then use the command fiLe again.

The command fiLes we have provided are:

DSKO:PC.DO[2,2J
DSKO:PL.DO[2,2J
DSKO:PCL.DO[2,2J
DSKO:PCU.DO[2,2J
DSKO:PU.DO[2,2J

Pascal-compiLe
Pascal-Link
Pascal-compiLe and -Link
Pascal-compile and -update
PascaL-update

Remember that these command fiLes do not cover all cases of compiling and
Linking files. If after you read these descriptions you realize that the
file wiLL not do exactLy what you need, you wiLL have to run CMPILR and
PLINK yourseLf to perform the actions you want.

4.6.1 CompiLing a Single File (PC.DO)

To use the PC file, enter PC followed by the name of the file that contains
the program you want to compile. Then type a RETURN. For exampLe:

PC DRWLIN [RET)

OPERATING INSTRUCTIONS AND CHARACTERISTICS Page 4-21

CMPIlR compiLes the fiLe DRWlIN.PAS into the fiLes DRWlIN.P01, DRWlIN.P02,
and DRWlIN.P03.

4.6.2 linking a SingLe FiLe (Pl.DO)

To use the Pl fiLe, enter Pl foLLowed by the name of the fiLe that you want
to Link. For exampLe:

Pl DRWlIN [RET)

PLINK now Links the fiLes DRWlIN.P01, DRWlIN.P02, and DRWlIN.P03 together
into DRWlIN.PCF. Before you try to Link a fiLe, make sure that it has
aLready been compiLed; that is, that the .P01, .P02, and .P03 fiLes exist.
Pl assumes that you want to Link a singLe fiLe, and that you want to use the
standard externaL Library, STDlIB.

4.6.3 CompiLing and linking a SingLe FiLe (PCl.DO)

To use the PCl fiLe, enter PCl foLLowed by the name of the fiLe you want to
compiLe and Link. For exampLe:

PCl TRSRCH [RET)

The compiLer compiLes the fiLe TRSRCH.PAS into the fiLes TRSRCH.P01,
TRSRCH.P02, and TRSRCH.P03. Next, PLINK Links these intermediate fiLes into
TRSRCH.PCF. The command fiLe assumes that you want to Link a singLe program
fiLe, and that you want to use the standard externaL Library, STDlIB.

4.6.4 Updating a SingLe Program ModuLe (PU.DO)

To use the PU fiLe, enter PU foLLowed by the name of the moduLe you want to
update, foLLowed by the name of the .PCF fiLe you want to Link the moduLe
into. For exampLe:

PU MODUl1 TRSRCH [RET)

PLINK now Links the moduLe into TRSRCH.PCF.
has aLready been compiLed, and that you
Library TRSRCH was originaLLy Linked under.

This fiLe assumes that MODUl1
want to use whatever externaL

OPERATING INSTRUCTIONS AND CHARACTERISTICS Page 4-22

4.6.5 Compiling and Updating a Single Program Module (PCU.DO)

To use the PCU file, enter PCU followed by the name of the module you want
to compile and update, followed by the name of the .PCF file you want to
Link the moduLe into. For exampLe:

PCU MODUL1 TRSRCH [RET]

CMPILR now compiLes MODUL1;
assumes that you want to
Linked under.

PLINK then Links it into TRSRCH.PCF. PCU
use the externaL Library TRSRCH was originaLLy

ALPHA PASCAL USER'S MANUAL

PART II

SUMMARY OF ALPHA PASCAL

The next nine chapters discuss the eLements of the PascaL Language as it has
been impLemented by Alpha Micro. If you are interested in a quick summary,
refer to Appendix A, "A Quick Reference to ALphaPascaL."

CHAPTER 5

GENERAL INFORMATION

This chapter contains very generaL information about ALphaPascaL program
concepts such as: basic program structure, statement separation and spacing,
LegaL identifiers, compound statements, scope of identifiers, etc. For
detaiLed information on specific eLements of a PascaL program, see the Index
and Appendix A, "Quick Reference to ALphaPascaL."

5.1 BASIC STRUCTURE OF A PROGRAM

This section Lists the major eLements of a PascaL program. We'LL taLk more
about each eLement in the foLLowing paragraphs, but this wiLL give you a
generaL idea of what goes where. Every PascaL program foLLows the generaL
form:

Heading
bLock.

The heading foLLows this form:

PROGRAM program-name;

or:
PROGRAM;

NOTE: Standard PascaL requires that you foLLow the program-name with a set
of names that are concerned with program input and output (for exampLe:
PROGRAM ScheduLe(INPUT,OUTPUT);). ALphaPascaL, however, ignores these
names, and you may omit them aLtogether. However, make sure that the
program heading is syntacticaLLy correct. (For exampLe, "PROGRAM NewAccount
(;" generates an error message because of the open parenthesis.)

The program bLock which appears under the heading consists of a decLaration
section that defines the names and properties of various data objects (such
as variabLes and constants) and subprograms (such as procedures and
functions) that wiLL be used in the program, and a statement section, which

GENERAL INFORMATION Page 5-2

lists the actions to be taken upon the declared items. (The names of the
data objects, as welL as the names of the procedures and functions of a
Pascal program are called "identifiers.") The program bLock takes this
form:

LabeL-decLaration part
Constant-definition part
Type-decLaration part
VariabLe-decLaration part
ExternaL-decLaration part
Procedure-and-function-decLaration part
Statement part.

(For information on the definition and decLaration sections of the program
bLock, see Chapter 6, "DecLarations and Definitions." For information on
the statement section of the program block, see Chapters 9-13.

Any number of spaces and/or bLank Lines may appear between words and symbols
in a PascaL program. Because program s'tatements may be broken up by bLank
Lines and spaces, PascaL requires that you identify where one statement ends
and another begins by separating them with a semicoLon. For exampLe:

PROGRAM NewTest;

VAR Counter REAL;

The Last eLement of a PascaL program must be the END keyword folLowed by a
period. (The period indicates that the end of the program has been reached,
rather than just the end of a group of statements within the program.)

As a finaL word on program structure, we wouLd Like to mention that your
program can consist of more than one fiLe. The advantage of spLitting your
program up into muLtipLe fiLes is that when a change needs to be made to one
of the fiLes, you onLy have to re-compiLe the one fiLe and then re-Link the
fiLes, rather than re-compiLe aLL of the fiLes.

If your program does consist of multipLe fiLes, onLy one of those files wiLL
foLLow the main program format we discussed above; the rest wiLL foLLow a
slightLy different format. (This is because onLy one main program fiLe may
be Linked together with other fiLes.) These non-program fiLes follow this
format:

or:

MODULE moduLe-name;
bLock.

MODULE;
bLock.

This heading teLLs the PascaL compiLer that the fiLe is not a main program
fiLe, and that it is part of a multipLe-fiLe program. The moduLe-name
identifies this non-program fiLe, and does not necessariLy have to be the

•

•

GENERAL INFORMATION Page 5-3

same name as that assigned to the actuaL fiLe or to the main program.

The bLock takes this form:

LabeL-decLaration part
Constant-definition part
Type-decLaration part
VariabLe-decLaration part
ExternaL-decLaration part
Procedure-and-function-decLaration part

As you can see, the fiLe does not contain a statement part. (Although, of
course, the procedure and function decLarations can contain a statement
section.) The fiLe ends with a period (even though it cannot end with an
END keyword foLLowed by a period).

BeLow is a smaLL sampLe of a moduLe and the main program with which it is
Linked:

A MODULE

MODULE;

FUNCTION MAX(Arg1,Arg2 : REAL) : REAL;
BEGIN { MAX }

IF Arg1>Arg2 THEN MAX:=Arg1 ~ MAX:=Arg2
ENo-{ End of MAx-!;

A MAIN PROGRAM

PROGRAM Main;

VAR Num1, Num2 : REAL;

EXTERNAL FUNCTION MAX(Arg1,Arg2 : REAL) : REAL;

BEGIN { Main Program}
WRITE('Enter two numbers: I); READLN(Num1,Num2);
WRITELN;
WRITELN('The larger number is:',MAXCNum1,Num2»

END { Main Program }.

5.2 COMPOUND STATEMENTS (BEGIN AND END)

The statement section of the program block starts with a BEGIN keywo~d and
ends with an END keyword. The eLements within these two keywords may
consist of one statement or many, and comprise the executabLe section of the
program.

(Changed 30 April 1981)

GENERAL INFORMATION Page 5-4

Anyone statement may be replaced by a combination of statements called a
"compound statement." A compound statement is a series of statements, and
starts with the BEGIN keyword and finishes with the END keyword. By
convention, the programmer usually indents each compound statement one level
within the program (see the example below) so that he or she can visually
keep track of how compound statements are nested.

The individual statements within the compound statement must be separated by
a semicolon. For example:

PROGRAM Average;
{ Th ; s program computes the .average of a seri es of numbers }

VAR Count
Answer, Total, Num

CONST Maxval = 10;

8EGIN { Average }
Total := 0

INTEGER;
REAL;

FOR Count := 1 TO Maxval DO
BEGIN

WRITE ('Enter number, please: ') { Prompt user for number };
READLN(Num) { Get number from user };
Total := Total + Num { Sum numbers}

END;
Answer := Total/Maxval { Compute averaqe };
WRITELN ('Average is: " Answer)

END { Average }.

In the example above, the statement section of the program block contains
two nested BEGIN-END compound statements. Note that the BEGIN keyword does
not require a semicolon after it, and that you do not precede the END
keyword with a semicolon. This is because BEGIN and END are keywords, but
are not statements. Therefore, there is no need to separate BEGIN from the
WRITE statement; in fact, doing so causes an error. For the same reason, do
not place a semicolon between the END keyword and the statement before it.

5.3 COMMENTS

Sometimes the function of a section of a program is not immediately obvious
to the casual observer. To help the reader of a program understand what
that program is doing, Pascal allows you to enter "comments" in your
program.

Comments are ignored by the compiler, and serve only to document the source
program. AlphaPascal accepts as comments any text enclosed either by a pair
of "{}" or "(* *)" symbols. For example:

READ(PlaneRoute) (* This variable is accessed by FLIGHT procedure *);

A comment may appear between any two symbols in a program, cover more than

(Changed 30 April 1981)

GENERAL INFORMATION Page 5-5

one Line, and may appear in the middLe of a statement. Comments may not be
nested, but {} symbols may appear within the symaoLs (* *), and vice versa;
this aLLows you to "comment out" areas of programs that contain comments.
For exampLe:

(* WRITELN(RecCount) { Report # of records sorted}
READLN;
IF Error THEN ErrorFix { Error condition }; *)

5.4 LEGAL IDENTIFIERS

Identifiers are groups of characters that
constants, procedures, functions, programs,
tagfieLds. As one exampLe of an identifier,
assumes the vaLues of a range of schooL test
program as the identifier Scores.

denote variabLes, types,
record fieLds, and record
consider a variabLe that

scores; it might appear in a

Identifiers in ALphaPascaL may consist of combinations of upper and Lower
case Letters and numbers, but must begin with a Letter. Identifiers may be
as many characters as you wish, but onLy the first eight characters are used
by PascaL in recognizing the identifier. (That means that the identifiers
STANDARDBUFFER and STANDARDBUFFOON wiLL be recognized by PascaL as the same
identifier-- STANDARD.)

IMPORTANT NOTE: ALphaPascaL "foLds" lower case identifiers to upper case.
This means that it transLates alL Lower case Letters to upper case when
considering identifiers. In other words, ALphaPascaL considers the
identifiers EvaLQuote, Evalquote, EVALQUOTE, and evaLQUOTE to be the same
identifier.

You may choose any combinations of Letters and numbers for identifiers with
the foLLowing exceptions. Certain words (caLLed "keywords" or "reserved
words") have been reserved by PascaL to identify statements and structures
inherent to PascaL, and may not be used as identifiers. (These keywords are
Listed in the section beLow.) Other identifiers (caLLed "standard
identifiers") have been pre-declared by ALphaPascaL. this means that
AlphaPascaL recognizes these standard identifiers as denoting procedures,
functions, and types aLready defined to ALphaPascal. The difference between
standard identifiers and keywords is that you MAY redefine standard
identifiers so that they no Longer represent predefined PascaL types,
functions, and procedures. In other words, if you attach a new meaning to a
standard identifier, no error message is generated; but, the procedure,
function or type previousLy associated with that identifier is no Longer
avaiLabLe to the procedure or function in which you redefined the
identifier. (Of course, a re-definition onLy appLies to the program in
which it appears.)

For this reason, you must be very carefuL when assigning identifiers not to
inadvertentLy redefine a standard identifier whose procedure, type, or
function you may have need for Later on in the program.

GENERAL INFORMATION Page 5-6

5.4.1 Reserved Words

Below is a list of the Pascal reserved words. You may not use these
reserved words as identifiers.

AND ARRAY BEGIN CASE CONST
DIV DO DOWNTO ELSE END
EXTERNAL FILE FOR FUNCTION GOTO
IF IN LABEL MOD MODULE
NIL NOT OF OR PACKED
PROCEDURE PROGRAM RECORD REPEAT SET
THEN TO TYPE UNTIL VAR
WHILE WITH

5.4.2 Standard Identifiers

Below is a list of all AlphaPascal standard identifiers. You may redefine
these identifiers. However, be careful not to unintentionally redefine
them.

Constants:

FALSE

Types:

INTEGER
TEXT

Predeclared files:

INPUT

TRUE MAXINT

BOOLEAN REAL CHAR STRING

OUTPUT KEYBOARD

Procedures, variables and functions. (NOTE: Several of these procedures,
variables, and functions are for internal use of the compiler and standard
library. For a List of all functions and procedures avaiLable for your use,
refer to Appendix A, "Quick Reference to AlphaPascal," or to the Table of
Contents.)

•
•
•
•

GENERAL INFORMATION Page 5-7

ABS ARCCOS ARCCOSH ARCSIN
ARCSINH ARCTAN ARCTANH CH"RMOOE
CHR CLOSE CONCAT COPY
COS COSH CREATE CRT
DELETE EOF EOLN ERASE
ERROR ERRORINFO ERRORTRAP EXIT
EXP EXPONENT EXTENSION FACTORIAL
FILLCHAR FILESIZE FSPEC GET
GETFILE GETLOCKS IOSEARCH INCHARMOOE
INSERT JOBOEV JOBUSER KILCMO
LCS LENGTH LINEMOOE LN
LOCATION LOG LOOKUP MAINPROG
MARK MEMAVAIL MOVELEFT MOVERIGHT
NEW 000 OPEN OPENI
OPENO OPENR ORO PAGE
PF'ILE POS POWER PRED
PUT PVIRT PWROFTEN PWROFTWO
RA050 RANDOMIZE ROC ROI
ROR ROS READ REAOLN
RELEASE RENAME RESET REWRITE
RLN RND ROUND SCAN
SEEK SETFILE SHIFT SIN
SINH SIZEOF SPL SPOOL
SQR SQRT STOERRORTRAP STR
STRIP SUCC TAN TANH
TIME TOO TREESEARCH TRUNC
UCS V"L WLN WRB
WRC WRI WRITE WRITELN
WRR WRS XERRORTRAP XLOCK
XMNT XMOUNT

5.5 SCOPE OF IDENTIFIERS

Because PascaL is a bLock structured Language, a PascaL proqram falls
naturaLLy into a nested structure. (See Figure 5-1, beLow. Each BLock in
the diagram represents some procedure or function within the program.) What
happens if, for exampLe, a variable is declared in the main program, and
then re-declared in a procedure calLed by the main program? Which
declaration is valid? This problem is resolved by defining the "scop~" of
the identifier; that is, by defining the area of a program for which the
declaration of an identifier is valid.

The scope of an identifier is the program, procedure, or function in which
it is defined and any encloseo blocks which do not redefine it. (The use of
an identifier in the same bLock as its declaration is called a "local"
reference; the use of an identifier declared in an outer block is called a
"non-local" reference.)

(Changed 30 April 1981)

GENERAL INFORMATION Page 5-8

Main Program

BlockA BlockS

BlockA1 BlockB1

BlockA2 BlockB2

Figure 5-1

Nested Structure of Prog~am Blocks

Let.'s say that a constant is defined both in the main program and BlockA.
BlockA itself and the blocks enclosed in BlockA (BlockA1 and BlockA2) use
the definition made in BlockA. The main program, BlockB, BlockB1, a.nd
BlockB2 use the constant definition made in the main program.

The following small program demonstrates identifier scoping. The variable
Counter is declared both within the main program and within the procedure
InnerBlock:

(Changed 30 April 1981)

GENERAL INFORMATION

PROGRAM Scope { This program tests identifier scoping };

VAR Counter INTEGER;
--{ "Counter" dec Lared for main program}

PROCEDURE InnerBLock;
VAR Counter: INTEGER;
{ "Counter" decLared for Procedure InnerBLock }

BEGIN
Counter := 1;
FOR Counter := 1 TO 10 DO
BEGIN

WRITELN('Procedure InnerBLock-- Counter = ',Counter);
END

END ~nd Procedure InnerBLock };

BEGIN { Main Program}
Counter := 20;
WRITELN('Main Program-- Counter = ',Counter);
InnerBLock { Invoke Procedure InnerBLock };
WRITELN('Main Program again-- Counter = ',Counter)

END { End Main Program }.

Page 5-9

If our description of identifier scoping is correct, we would expect the
statement:

WRITELN('Main Program again-- Counter= ',Counter)

to produce the vaLue 20, regardLess of the vaLue assumed by Counter within
the procedure InnerBLock. That is exactLy what happens.

5.6 NOTATION

ALphaPascaL uses severaL conventions in handLing and representing numbers
and strings.

5.6.1 NUMBERS

The integer
a fractionaL

and which
is zero).

PascaL recognizes two types of numbers: integer and reaL.
numbers are the "whoLe numbers"; that is, they cannot contain
part. ReaL numbers are numbers that contain a decimal point,
therefore contain a fractionaL part (even if that fractionaL part

For exampLe, these numbers are integers:

-231
7

8098

GENERAL INFORMATION

These are real numbers:

567.8
-25.00

4.318

Page 5-10

(For information on the REAL and INTEGER data types, see Chapter 7, "Data
Types.") Pascal has two methods of displaying numbers: decimal notation and
scientific notation. DecimaL notation aLLows us to represent a number with
an optionaL sign, a whoLe number part, a decimaL point, and an optionaL
fractionaL part. If the fractionaL part exists, there must be at Least one
digit on each side of the decimal point. For exampLe:

-2405.3

Scientific notation is handy for representing very smaLL or very large
numbers. A number represented in scientific notation is shown as a vaLue
multipLied by the appropriate power of 10. To indicate the exponent, Pascal
uses the symboL "E". For example:

-2.4053E+3

represents "negative 2.4053 times 10 to the thi rd"; that is, in decimaL
notation, the number wouLd be -2405.3. A positive number after the E teLls
you how many pLaces to shift the decimal point to the right, in order to
read the number in decimal notation; a negative number teLLs you how many
pLaces to shift the decimal point to the left. For exampLe, to represent
the number:

5.678E-2

in decimal notation, shift the decimal point to the Left two pLaces: 0.0567.

AlphaPascal generaLLy uses decimaL notation to dispLay real and integer
numbers. (Of course, if the number is integer, no fractionaL part is
shown.) However, if a number is too large or too smaLL to represent easiLy
in decimaL notation, AlphaPascaL dispLays it in scientific notation.

You may use either scientific or decimaL notation when entering numbers to a
PascaL program, or within the program itseLf.

(For information on using the WRITE and WRITELN procedures to format numeric
and character output, see Section 10.1.5.5, "Formatting Output.")

5.6.2 STRINGS

A string is a group of characters. These characters may be numbers,
letters, or any combination of characters, incLuding the delimiters for a
comment-- {} or (* *). A string is identified to PascaL by encLosing it in
singLe quotation marks. For exampLe:

GENERAL INFORMATION

'This is a string. '
I Data: 123 1
'The END is near l

Page 5-11

The characters in a string represent themseLves, rather than numeric vaLues,
reserved words, etc. For exampLe, the third exampLe contains the characters
"123", but does not represent the number 123. The fourth exampLe contains
the characters "END", but does not represent the keyword END.

If you wish a string to contain a quotation mark, pLace two quotation marks
where you want the singLe quotation mark to appear. For exampLe:

Iyou don"t say.1

A string may be defined in a constant definition. For exampLe:

CONST Message = 'Error - Type CR to recover l

(We then say that Message is a string constant.) Or, a string may be used
as a string LiteraL. For exampLe:

WRITELN('Do not forget to write-enabLe the disk.')

NOTE: ALphaPascaL incLudes the data type STRING as a standard data type.
Data of type STRING consists of a group of characters (data of type CHAR)
rather than a singLe character. For information on CHAR and STRING, see
Chapter 7, "Data Types."

CHAPTER 6

DECLARATIONS AND DEFINITIONS

One of the important features of Pascal is that it requires that you define
and name the data objects you are going to use in a program before you
reference those objects. For example, if you are going to be using a
variable named "Cost", you must "declare" that variable at the start of the
program or procedure in which that variable appears. Besides declaring
variables, you must also declare the program name, labels, functions and
procedures, and modules. In addition, you must define any numeric or string
constants you are going to use, as well as any data types. All declarations
and definitions appear at the front of the main program or the procedure or
function containing the declared data objects.

These centralized declarations and definitions
legibility and organization of your program,
performing error detection.

greatly
and aid

enhance the
the compiler in

You'll remember from Chapter 5 that the declaration and definition part of
the program block takes the form:

Label declarations
Constant definitions
Type declarations
Variable declarations
External declarations
Procedure and function definitions

6.1 PROGRAM DECLARATIONS

The program declaration consists of the PROGRAM keyword. It may also
contain a program name. This program declaration assigns the name of the
main program, and marks the start of the main program file. A program name
may be any legal identifier (see Section 5.4, "Legal Identifiers"). The
program declaration statement takes the form:

PROGRAM program-name;

DECLARATIONS AND DEFINITIONS Page 6-2

or:

PROGRAM;

UnLike other versions of PascaL, AlphaPascal does not require or recognize
any information about external input or output files after the program name
in the program declaration. Neither does AlphaPascal attach any significance
to the program name. That is, the program name serves onLy as a type of
comment, and does not actually identify the file.

End the program declaration with a semicolon to separate it from the rest of
the program statements. For example:

PROGRAM BubbleSort;

An AlphaPascal program may consist of more than one fiLe. You can compiLe
these fiLes separately; then, using PLINK, you can link them together into
one program. Of the files that you are going to link together, only one may
be a main program file. You telL the Linker which files are not the main
program file by including an external program decLaration a~he front of
those fiLes. This decLaration tells the linker that the fiLe is not the
main program (that it is, in effect, an external file to the main program).
The decLaration takes the form:

MODULE module-name;

(where module-name identifies the non-program file, and does not need to be
the same as the name of the main program) or:

MODULE;

If a file does not contain the main program, there are some restrictions on
the elements that it can contain. For information on the format of a
non-program file, see Section 5.1, "Program Structure."

6.2 LABEL DECLARATIONS

If you want to transfer controL to a particuLar section of a program, you
must label that section with a "statement label." Labels are unsigned
integers from 0 to 32767, and must be declared in a Label decLaration
statement. The label declaration statement takes this form:

LABEL one or more numbers, separated by commas;

For example, if we want to use the LabeLs 25 and 100 in a program, the
declaration Looks like:

LABEL 25, 100;

Labels appear in the program in front of the statement they designate, and
end with a colon. For exampLe:

I

•

DECLARATIONS AND DEFINITIONS Page 6-3

25: 1I EOF THEN WRITELN('End of file.');

To reference a labeLed statement, use the GOTO statement. (For information
on GOTO, see Section 9.4, "GOTO.")

In addition to the standard labels we taLked about above, ALphaPascal also
recognizes another type of LabeL which appears after the BEGIN and END
keywords. The purpose of these labels is to enlist the compiler's heLp in
determining whether or not you are properly nesting BEGIN-END bLocks. If
the same label appears after two BEGIN and END keywords, the compiLer checks
to make sure that the keywords do indeed mark the beginning and end of a
block; if they do not, the compiler reports an error ("(STMBIDJ Wronq
BEGIN-END identifier XXX expected," where XXX is the block labeL
expected). This heLps you to make sure that the structure of your program
is correct. An example may heLp to clarify. Look at the following program
diagram:

BEGIN LabeL1

BEGIN Label2

END Label2

END : Label1

The exampLe above shows a program in which the blocks are properly nested.
By incLuding the Labels "LabeL1" and "Label2", we have asked the compiler to
check the program structure and make sure that the BEGIN and END keywords
are indeed nested properly. The program beLow will cause the compiler to
report an error:

BEGIN : Block1

BEGIN Block2

END Bloc k1

END Block2.

since the END keyword for Block1 appears before the END keyword of Block2.
The BEGIN-END LabeL may take the form of any legaL identifier, and must be
separated from the keyword by a colon.

(Chanqed 30 ApriL 1981)

DECLARATIONS AND DEFINITIONS Page 6-4

6.~ CONSTANT DEFINITIONS

Defining constants will be helpful whenever: you have a string or numeric
literal that is used frequentLy within a program; a literal is important to
understanding the logic of the program; or a literal may possibly be changed
in future versions of the program. (For information on constants, see
Section 8.2, "Constants.")

The constant definition takes the form:

CONST identifier1 = number or string;
identifier2 = number or string;

identifierN = number or string;

For example, instead of repeating the expression "Radius * 3.1415927"
throughout a program, you might want to define the constant Pi:

CONST Pi = 3.1415927

Then, wherever your program used to say "Radius * 3.1415927", you can now
say: "Radius * Pi". This keeps your program easy to read. Also, if at a
future date you have to change a literal in your program, it is now a simple
matter since you have only to change one constant definition statement
instead of every occurrence of that literal in the program.

As an example of a string literal, consider the statement:

WRITELNC'You have entered an invalid number-- try again');

If you use this string more than once, you might want to replace it with a
constant:

CONST Error = ~You have entered an invalid number-- try again');

Now your statements can read:

WRITELN(Error);

6.4 TYPE DECLARATIONS

The most important feature of Pascal is its use and definition of the
concept of "data types." A data type is a set of data (for example, whole
numbers) that are alike in some way. For more information on data tyoes,
see Chapter 7, "Data Types." For now, let's just say that Pascal gives you
some very powerful ways of representing different kinds of data types.
Besides the standard types that Pascal recognizes (for example, the type
INTEGER, that represents whole numbers), Pascal also allows you to define
your own data types. You must declare a user-defined data type at the front

(Changed 30 April 1981)

DECLARATIONS AND OEFINITIONS Page 6-5

of the main program or procedure in which you are going to access that data
type. The type declaration takes this form:

TYPE identifier1 = type1;
identifier2 = type2;

identifierN = typeN;

For example, suppose you want to define a new data type that is a simple
scalar type whose elements are: MON, TUES, and WEDS. You can do so by
simply enumerating the elements of that type:

TYPE Days = (MON,TUES,WEDS);

On the other hand, suppose you want to declare a more complicated data type,
such as a type of array:

TYPE NewArray = ARRAY [1 •• 10J ~ INTEGER;

The declaration above declares an array named NewArray which contains 10
elements (which are to be indexed by the numbers 1 through 10). The
elements are of type INTEGER.

6.5 VARIABLE DECLARATIONS

Pascal requires that all variables be "declared." This means that you
assign a name to a variable and permanently associate a data type to that
variable. Since you tell Pascal the data type of each variable, Pascal
knows what operations can be performed on that variable, and which functions
and procedures can be used on it.

Be aware that Pascal does not assume an initial value (e.g., zero) for a
declared variable; you must explicitly assign a vaLue to a variable. If you
try to assign a vaLue that is not consistent with the data type associated
with that variable, the Pascal compiler generates an error message.

The variable decLaration statement takes the form:

VAR

For example:

identifier ••• ,identifier
identifier ••• ,identifier

identifier ••• ,identifier

data-type;
data-type;

data-type;

DECLARATIONS AND DEFINITIONS

VAR TestScores, Variance, Mean
StudentID, ClassName,

Student Name, Teacher
Passed

REAL;

STRING;
BOOLEAN;

Page 6-6

The variable name may be any legal identifier. The data types you can
assign to a variable are discussed in Chapter 7, "Data Types."

6.6 FUNCTION AND PROCEDURE DECLARATIONS

You may often need to perform the same sort of actions on a body of data
throughout your program. Rather than forcing you to tediously duplicate one
piece of code every place it is needed, Pascal gives you two ways to
generate "subprograms" whi ch may be ca lled upon wherever needed ina
program. These subprograms are called "functions" and "procedures." Such
subprograms also help you to maintain your programs since, if a change must
be made, it only needs to be made once.

Although you may invoke these functions and procedures any place in the
statement part of your program (or within the declarations of other
functions and procedures), you must first define the functions and
procedures within the declaration part of your program before you invoke
them. (A special case exists for referencing functions and procedures
within other functions and procedures before they have been defined; see
Section 6.6.3, "Forward Declarations.")

Functions and procedures can be thought of as programs within a prugram.
They can declare variables, define and invoke procedures and functions of
their own (known as "local" procedures and functions), and input and output
data.

6.6.1 Functions

A function is a subprogram that performs some computation and returns a
value. (For example, the standard function ABS takes a number and returns
the absolute value of it.) Pascal allows you to define your own functions
by including function declarations at the front of the program or procedure
that will call that function. Function declarations must appear after any
variable declarations.

The function declaration takes this form:

FUNCTION function-name (formal parameters)
function-block;

data-type of result;

where the formal parameters are identifiers that describe the variables (and
their data types) which will be used within the function. These variables
do not have to appear in a variable declaration statement, since they are
being declared within the function heading.

\.
)

DECLARATIONS AND ~EFINITIONS Page 6-7

FoLLowing the formaL parameters is the data type of the resuLt of the
function. For exampLe:

FUNCTION SufficientFunds(Request : REAL) : BOOLEAN;
BEGIN

SufficientFunds := Request <= AmountAvaiLabLe
END;

The heading above might identify a function that returns TRUE if a checking
account has enough funds to cash a specified check. The function bLock
starts with the BEGIN keyword and finishes with the END keyword. The
statements in between perform the action on the input data when the function
is executed. The function bLock takes this form:

LabeL decLarations
Constant decLarations
Type decLarations
VariabLe decLarations
Procedure/function decLarations
BEGIN-END bLock . ,

As you can see, the bLock of the function foLLows much the same form as the
program bLock itseLf, except that a function definition ends with a
semicoLon, rather than a period. At some point within the BEGIN-END bLock,
a vaLue must be assigned to the function name itseLf. This is the way that
the resuLt of the function is returned to the program or procedure that
invoked it.

To invoke a function, incLude the name of the function within the program
bLock aLong with the names of the variabLes that are going to suppLy that
function with data. For exampLe, to invoke the function SufficientFunds,
you might incLude a statement Line Like this:

IF SufficientFunds(100.50)
THEN WRITELN('Good check')
ELSE WRITELN('Sorry, overdrawn');

The statement above prints 'Good Check' if SufficientFunds returns TRUE, and
'Sorry, overdrawn' if it returns FALSE. You may suppLy variabLes,
expressions, or constants as the arguments of the function. Note that the
names of the variabLes you pass to the function do not have to have the same
names as those variabLes Listed in the function heading. The first variabLe
(or constant) mentioned in the function invocation is substituted into the
function' for the first variabLe mentioned in the function heading, the
second variabLe (or constant) in the invocation repLaces the second variabLe
in the function heading, and so on. (Of course, the data types of the
variabLes must be consistent. For exampLe, if you suppLy the variabLe Check
to the function SufficientFunds, it must contain a number of type REAL.)

Remember that a function invocation,is aLways part of an expression. For
exampLe, given the function MaxNum, these are vaLid function invocations:

DECLARATIONS AND DEFINITIONS Page 6-8

WRITELNC'The Largest number is: ',MaxNumCNumber1,Number2»;

or:

![MaxNumCVaLue1,VaLue2) < 0 ~ WRITELNC'Numbers are negative.');

Let's Look at an exampLe of a function and function invocation. Suppose
your program frequentLy needs to check the range of input numbers. A simpLe
function to make sure that a number is between 1 and 100 might Look
something Like this:

PROGRAM VaLidate; { VaLidate a numeric entry; make sure
that it is between 1 and 100. }

VAR Target: REAL;

FUNCTION ErrCheckCLocaL : REAL) : BOOLEAN;
{ Function does error checking on entry. If 100 < number < 1,

ErrCheck reports error by returning a TRUE. }
BEGIN { Begin function ErrCheck }

ErrCheck := LocaL < 1 OR LocaL> 100
END { End function ErrCheck };

BEGIN { Main Program}
WRITEC'Enter a number between 1 and 100: I);
READLN <Target);
![ERRCHECK(Target)

THEN WRITELNC'InvaLid entry: try again.')
ELSE WRITELNC'Very good. Correct entry.')

END { Main Program }.

Note that untiL the program begins executing the main program, where the
function is actuaLLy invoked, the function is not executed, even though the
function definition appears at the front of the program.

6.6.2 Procedures

The major purpose of a function is to compute and return a vaLue. The main
purpose of a procedure is to perform a set of operations. For exampLe,
Let's say that you are designing a program that pLays a card game. At
various times throughout the program you may need to simuLate the shuffLing
of a deck of cards. Rather than incLude this same piece of code throughout
your program Cwhich wouLd make the program hard to read and maintain), you
may designate this piece of code as a procedure. The procedure decLaration
names the procedure, teLLs what kinds of variabLes it wiLL use, and gives
the statements that make up the procedure. It takes this form:

PROCEDURE procedure-name (formaL parameters);
p rocedu re,-b Loc k;

DECLARATIONS AND DEFINITIONS Page 6-9

The formaL parameters List the variabLes (and their types) with which the
procedure wiLL work. For exampLe:

PROCEDURE PrintReport (TitLe STRING; PageSize INTEGER);

The procedure bLock takes this form:

LabeL declarations
Constant declarations
Type declarations
VariabLe decLarations
Procedure/function decLarations
BEGIN-END bLock
;

To invoke the procedure, include the name of the procedure
program. UnLike a function invocation, a procedure invocation
statement, not an expression. For exampLe, say that you have
named ShuffLe that simuLates the shuffLe of a deck of cards:

BEGIN
IF DeaLer = New OR Deck = Empty
-THEN Shuff Le

END;--

within your
is a program
a procedure

Although a procedure may take a form very much Like that of a function, it
does not necessariLy return a vaLue. Notice that it aLso does not have to
accept any arguments. (For information on using procedures to return
severaL resuLts, see Section 6.6.4.2, "Reference Parameters.")

6.6.3 Forward DecLarations

What happens when a procedure or function decLaration invokes a procedure or
function whose decLaration has not yet appeared in the program? There are
times when for aesthetic or practicaL reasons (or because the two routines
caLL each other) you must invoke a procedure or function before its
definition appears in the- decLaration part of the program. PascaL provides
a way to do this.

The forward decLaration teLLs the PascaL compiLer, "We'LL define this Later;
don't worry that you haven't seen its decLaration yet." The forward
decLaration takes the same form as the heading of a procedure or function
decLaration, except that the word FORWARD repLaces the procedure or function
bLock. In effect, we separate the heading from the bLock. For exampLe,
take a Look at the procedure DrawLine:

PROCEDURE DrawLine (Character
FORWARD;

CHAR; LineSize, Angle READ;

DECLARATIONS AND DEFINITIONS Page 6-10

Now a function or procedure declaration may appear that invokes the
procedure or function. Later within the declaration part of the program,
the actual procedure or definition block appears, preceded by the name of
the function. For example:

PROGRAM TaxReturn; {This program computes tax returns. First it
asks if the user wants instructions (short or long). }

VAR Short BOOLEAN;
Query CHAR;

PROCEDURE Display(Short : BOOLEAN);
BEGIN { Display}

{ This is the procedure that actually displays the
instructions. It prints a Long or a short
fiLe, depending on the value of Short. }

END { DispLay};

PROCEDURE PrintInstructions (Short: BOOLEAN);
FORWARD; { The forward reference! }

FUNCTION AskAnswer (Query CHAR): BOOLEAN;
BEGIN { AskAnswer }

AskAnswer := FALSE;
IF Query = 'V' OR Query ='y' THEN AskAnswer := TRUE
--ELSE IF Query~ I?' THEN Printlnstructions(Short);

END { AskAnswer }; --

PROCEDURE PrintInstructions;
BEGIN { PrintInstructions }

Short := FALSE {Initialized to long instructions. };
WRITE('Do you want short Instructions? Y or N:');
READLN(Query);
II AskAnswer(Que~y) THEN Short := TRUE;
Display(Short)

END { PrintInstructions };

BEGIN { Main Program }
WRITELN('We"re going to compute your tax return.'); WRITELN;
WRITELN('At any time in this program, you may

review the instructions');
WRITELN('by answering any Y or N question with a"?".');

WRITE('Do you want instructions? (Y or N): I); READLN(Query);
IF AskAnswer(Query) THEN PrintInstructions(Short);
WRITE('Do you want to-iVerage? (Y or N): I); READLN(Query);
IF AskAnswer(Query) THEN WRITELNC'OK, We"ll average.');
~Now, compute taxes~}

END { Main Program }.

DECLARATIONS AND DEFINITIONS Page 6-11

Note that when the procedure bLock PrintInstructions appeared after the
Function AskAnswer, we did not incLude the formaL parameters for that
procedure, since the procedure heading appeared at the time of the forward
reference.

6.6.4 FormaL Parameters

We wouLd Like to incLude a word here on formaL parameters. Parameters are
variabLes used within a function or procedure. PascaL greatLy extends the
usefuLness of your routines by aLLowing your program to suppLy those vaLues
at the time that you invoke your function or procedure. This means that you
can use your routines in a wide variety of situations, on a wide range of
data. Parameters give your functions and procedures a way to communicate
with the program that caLLs them.

The variabLes that are specified at the time you
procedure are caLLed the "formaL parameters."
the actuaL invocation of your routine are caLLed
For exampLe, given the function heading:

define your function or
The vaLues you suppLy with
the "actuaL parameters."

FUNCTION SaLary(Takehome, Gross : REAL) : REAL;

the formaL parameters are the variabLes Takehome and Gross. When we invoke
that function we might do so using constants:

Raise:=SaLary(183,2SO);

or, we might use variabLes which contain those vaLues

Raise:=SaLary(Net,TotaL);

Note that the variabLe identifiers we use as formaL parameters do not have
to be the same as the identifiers for the actual parameters. You can think
of the formaL parameters as "pLaceholders" for the actuaL data which wiLL be
used. The actuaL parameters are "pLugged into" the formaL parameters in the
same order as they appear in the routine invocation. (For instance, in the
exampLe above, Net takes the pLace of Takehome, and TotaL takes the pLace of
Gross.) The totaL number of actual parameters must match the number of
formaL parameters.

6.6.4.1 Value Parameters - The formal parameters we have seen in our
exampLes above were aLL used to pass information into the function or
procedure. When we left the function or procedure, the vaLue of the
variabLe we passed into the routine was not actuaLLy changed, even ~hough it
might have been modified, within the routine. In effect, the function or
procedure made a copy of the variabLe and used the copy for its
caLculations. Then when we left the routine, the originaL value of the
variabLe was unchanged.

DECLARATIONS AND DEFINITIONS Page 6-12

This type of variable is caLLed a "vaLue parameter." VaLue parameters may be
variabLes or expressions.

6.6.4.2 Reference Parameters - It sometimes happens that you wouLd Like a
procedure or function to actuaLLy modify a variabLe. (Otherwise, the onLy
vaLues you couLd return wouLd be the singLe vaLue returned by a function.)
To teLL a functi~n or procedure not to use a copy of a variabLe, but to use
the variabLe itseLf, incLude the VAR keyword in front of the parameter. For
exampLe:

FUNCTION Justify(VAR InputString:STRING;PageWidth:REAL):REAL;

which might modify the string InputString by inserting bLanks so that it
equaLed PageWidth in Length, and returns the number of bLanks inserted. A
parameter Like InputString is caLLed a "reference parameter."

Another way of Looking at vaLue parameters and reference parameters is that
in the case of vaLue parameters we are reaLLy deaLing with two different
sets of variabLes: those outside the routine and those inside. In the case
of reference parameters, we are deaLing with onLy one set of variabLes.
Reference parameters must be variabLes.

6.7 EXTERNAL DECLARATIONS

ALphaPascaL provides an externaL Library of procedures and functions. This
coLLection of usefuL routines is avaiLabLe for use by your program. You may
aLso write your own externaL Libraries. To teLL ALphaPascaL that you are
going to use a function or procedure that is in a standard Library other
than STDLIB, you must precede the decLaration of that function or procedure
with the keyword EXTERNAL. For exampLe:

EXTERNAL FUNCTION Graph (X,Y : REAL) REAL;

or:

EXTERNAL PROCEDURE PrintLine (Line: STRING);

You do not incLude the procedure bLock or function bLock, since the actuaL
definition of the routine is in the externaL Library.

Besides identifying procedures and functions within your program that are
defined in an externaL Library, you wiLL use the externaL decLaration to
designate eLements that appear in fiLes that are not a main program fiLe.
For exampLe, suppose you have a main program fiLe and three other fiLes
which wiLL be Linked together to form one program. (See Section 5.1,
"Program Structure," for information on main program and non-program fiLes.)
Within one fiL~ you may weLL want to use a procedure, function, or variabLe
that was decLared ~nd defined in another fiLe. If you are going to Link a
number of fiLes together into one program, each fiLe must contain an

\

DECLARATIONS AND DEFINITIONS Page 6-13

externaL decLaration for every eLement it needs to reference, if that
eLement was decLared and defined in another fiLe.

For exampLe, if the variabLe CustomerID was decLared in fiLe FiLe3, and you
need to reference that variabLe in FiLe2, FiLe2 contains the externaL
declaration:

EXTERNAL VAR CustomerID : STRING;

There are some things you shouLd keep in mind when making externaL
declarations:

1. You may not externaLLy decLare LabeLs, co~stants, or types. If you
need to have common definitions of these items, use incLude fiLes.
For information on incLude fiLes, see Section 4.3.2.2, "The IncLude
Opt i on ($1)."

2. If you are going to use data fiLes in your program, the
decLarations for those data fiLes must be in the main program fiLe.
(That is, data fiLes may not be externaLLy decLared in your main
program fi Le.)

3. You must be very sure that the types given in your externaL
decLarations exactLy match the types given in the originaL main
decLarations. For exampLe, if one fiLe has the decLaration:

VAR NetWork : CHAR;

the externaL decLaration in another fiLe for that variabLe must
specify type CHAR:

EXTERNAL VAR NetWork CHAR;

CHAPTER 7

DATA TYPES

We've already mentioned that a variable is a symbol that can represent more
than one data value. We've also said that you must "declare the type" of
each variable used in a program. This chapter discusses the idea of "data
type," and the various data types available in Pascal.

A data type describes the kinds of values that a variable can assume. For
example, if the variable CustomerID can assume only numeric, integer values,
we say that its data type is "integer." Some languages allow you to let one
variable assume a variety of types. (For example a variable could have the
integer value 34 at one point, and the real value 34.56 at another point.)
Pascal, on the other hand, allows each variable to assume only one kind of
data type.

Pascal requires that you declare the type of data that a variable can
assume. This resuLts in several advantages: 1) you can always deduce the
type of vaLues a variable can assume by reading the program; you do not have
to run the program to figure it out; 2) certain operations may only be done
on specific data types; having to declare your variabLes aids the compiler
in making sure that you are not performing an illegal operation on a
variable; 3) the compiler is able to make sure that you are not improperly
mixing variables of different data types. (For example, you may not
multipLy a real number by an integer and get an integer result.) Once a
variable has been assigned a data type, we have automatically defined the
operations that can be applied to that variable, the type of values it can
assume, and the standard procedures and functions that can be used on it.

Several data types have been pre-defined for you by AlphaPascal; these are
called "standard data types." The AlphaPascal standard data types are:
INTEGER, REAL, BOOLEAN, CHAR, STRING, and TEXT.

Data types are grouped into two categories: simpLe and structured. A simple
data type is a "scalar" type. A scalar data type is one that contains a set
of elements, and those elements are ordered. For example, the INTEGER data
type contains the set of whole numbers. These elements are ordered; for
instance, -2 is less than -1 which is less than 0 which is less than 1 which
is less than 2, and so on.

DATA TYPES

Structured data typ~s are more sophisticated than the simple,
types. If you were to create your own structured types, they
up of simple data types. Pascal supplies a set of keywords
RECORD, and FILE) that you can use to build structured types.

7.1 SIMPLE DATA TYPES

Page 7-2

scalar data
would be made
(SET, ARRAY,

Simple data types can either be the pre-declared simple data types (INTEGER,
REAL, BOOLEAN, and CHAR), or they may be types defined by you. If defined
by you, a simple data type is either a scalar type or a subran~e of another,
already defined scalar data type.

7.1.1 INTEGER

Integers are whole numbers (that is, numbers with no fractional part).
AlphaPascal allows you to use integers in the ran~e of -32767 through 32767.
They are stored by the computer as one-word, signed 2's complement binary
numbers. These are integers:

32000
o
1
-450
MAXINT
+56

(Remember that the pre-declared constant MAXINT is the largest integer that
AlphaPascal can represent, 32767.)

The standard identifier INTEGER designates the integer data type. For
example:

VAR Ellipse, Counter, Control: INTEGER;

The operators that have been defined for integers are: addition (+);
subtraction or sign inversion (-); multiplication (*); integer division-
that is, divide and truncate-- (DIV); moduLus (MOD); the set membership
operator IN; and, the reLationaL operators. Using other operators (for
exampLe, the reaL division operator, I) on integers causes the compiler to
generate an error message.

There are many functions that accept INTEGER arguments. (See Chapter 12,
"MathematicaL Functions," for a list of the trigonometric, hyperboLic
trigonometric, and mathematicaL functions.)

Two other functions often used on INTEGER data are the PRED and SUCC
functions. PRED returns the predecessor eLement of the data type; SUCC
returns the successor eLement of the data type. For exampLe, given three
variabLes, ONE, TWO, THREE of type INTEGER, and ONE = 1, TWO = 2, and THREE
= 3: PRED(TWO) returns 1; SUCC(TWO) returns 3. (See Sections 11.1.6 and

DATA TYPES Page 7-3

11.1.8 for information on PRED and SUCC.)

7.1.2 REAL

ReaL numbers are decimaL numbers that may contain a fractionaL part. As
noted in Section 5.6, "Notation," wecan represent reaL numbers either in
decimaL notation or in scientific notation. These are reaL numbers:

9.'3
-56.7812
7.03E+5
+45.0
1.03E-3

The computer stores reaL numbers as three-word fLoating point numbers
significant to 11 digits (12 for reaL numbers in which the fractionaL part
is zero or Less than 1E12), with an exponent range of roughLy 1E-37 to 1E37.

The standard identifier REAL designates the reaL number data type. For
exampLe:

VAR Mean, Median, Variance : REAL;

The operators defined for reaL numbers are: addition (+); subtraction and
sign inversion (-); muLtipLication (*); reaL division (/); and, the
reLationaL operators. Many functions accept REAL numbers as arguments.
Note that you may not use the PRED and SUCC functions or the set membership
operator IN on REAL data.

7.1.3 BOOLEAN

The BooLean data type contains two eLements: TRUE and FALSE. These eLements
are ordered so that FALSE < TRUE. (And, SUCC(FALSE) returns TRUE.) FALSE and
TRUE are pre-decLared constants. A BooLean variabLe represents a LogicaL
true or faLse vaLue. For exampLe:

IF Month = ApriL THEN Spring := TRUE

In the statement above, Spring is a BooLean variabLe that can assume the
vaLues TRUE or FALSE.

To designate a BooLean data type, use the standard identifier BOOLEAN. For
exampLe:

VAR Query, FemaLe, EmpLoyee: BOOLEAN;

The operators defined for BooLean data are: AND, OR, and NOT. These are
caLLed BooLean operators, and produce a BooLean resuLt. For exampLe:

D-ATA TYPES Page 7-4

X AND Y

gives a resuLt of TRUE if both X and Yare TRUE, or FALSE if either X or Y
(or both) are FALSE.

When we use the reLationaL operators on INTEGER, REAL, CHAR, or STRING data
types, the resuLt is aLways of type BOOLEAN.

You may use the PRED and SUCC functions on data of type BOOLEAN, and you may
use the set membership operator, IN. You may aLso use the ORD function:

ORD(FALSE) = 0
ORDCTRUE) = 1

7.1.4 CHAR

The computer recognizes a specific set of characters that it can represent.
The eLements of this set are ordered; for exampLe, A < B < C... In the case
of the ALpha Micro computer, this ordering is calLed the "ASCII collating
sequence," and the set of characters is caLled the "ASCII character set."
(For a list of the ASCII characters, see Appendix B, "The ASCII Character
Set.")

A CHAR variabLe contains one ASCII character. To indicate an element of
CHAR data type, enclose it in singLe quotes. For exampLe:

VAR MenuChoice CHAR;

MenuChoice := 'A';

The reLationaL operators have been defined for use on CHAR data. Remember
that A < B because of their position in the ASCII coLLating sequence. You
may also use the set membership operator, IN on data of type CHAR.

To designate data as type CHAR, use the CHAR standard identifier.

or:

VAR InitiaL: CHAR;

TYPE Character = CHAR;
~ Item : Character;

Because CHAR is a non-REAL scaLar type, you can use the SUCC and PRED
functions to identify predecessor and successor eLements of the type. For
example:

PRED('B')

returns an 'A'. You can aLso use the ORD function to determine the position
of the character in the ASCII character set. (For more information on PRED,
SUCC, and ORO, see Chapter 11, "MisceLlaneous Functions and Procedures.")

DATA TYPES Page 7-5

NOTE: Remember that CHAR data is only one ASCII character. Another standard
data type exists, STRING, which reprp.sents a collection of CHAR data. For
example: 'A' is CHAR data, but 'ABCD' is STRING data. For information on
STRING, see Section 7.2.3, "STRING."

7.1.5 User-Defined Scalar

Pascal allows you to define your own scaLar types. To do so, use the type
declaration statement. You wiLL supply the name of the data type, and the
eLements of which it is composed. For example:

TYPE Spectrum = (Violet,Blue,Green,Yellow,Orange,Red);

Just like any other scaLar type, your data
elements. This ordering is refLected by the
elements in the type declaration statement.
statement above, Violet < BLue < Green, and so on.
use a variable of the data type you have defined.

type consists of ordered
order in which you List the

For example, given the
You can then decLare and

For exampLe:

VAR Colors : Spectrum

IF CoLors = Red THEN WarmCoLor := TRUE;

The relational operators have been defined for user-defined scalar types,
and return a Boolean result. Internally, the computer stores each of these
eLements as an integer vaLue. (For example, in the example above VioLet is
0, Blue is 1, and so on.)

You may not use scalar types in I/O operations. For example, this statement
is ill ega l :

WRITE (Ye llow)

if Yellow is an element of a user-defined scalar type. However, you could
say something like:

.!£. Colors = Yellow THEN WRITE('Yellow');

Note that Colors is a variable, but Yellow is a constant of the scalar type
Spectrum (just as the number 2 is a constant of the scalar type INTEGER).
You may only use relational operators and the set membership operator, IN,
on an element of a user-defined scalar type.

NOTE: Rather than using a type declaration foLlowed by a variable
declaration, you may combine both statements into one variabLe declaration
when defining your own data types. For example:

VAR WaveLengths,Colors (Violet,Blue,Green,Yellow,Orange,Red);

D'ATA TYPES Page 7-6

However, if you are.going to have more than one variable declaration that
declares variables of that type, you must have a separate type declaration
statement instead.

You may use the ORO, PRED and SUCC functions on user-defined scalar types.
For example, given our example above:

ORD(Violet) = 0
ORO (Blue) = 1
SUCC(Violet) = Blue
PRED(Orange) = YeLLow

7.1.6 User-Defined Sub range

Pascal allows you to define a subrange of a previously defined data type.
For exampLe, given the data type Spectrum above, suppose you want a variable
to only access the first three coLors eLements of that type, VioLet, BLue,
and Green. You couLd define a subrange scaLar type:

TYPE CoLdCoLors = Violet •• Green;

You may define a subrange of any user-defined or standard scalar type except
type REAL. Use the type declaration statement in this format:

TYPE Type-name = lowerLimit •• upperlimit;

The symbols " " teLL PascaL
UpperLimit and LowerLimit are the
subrange. For example:

that you
beginning

TYPE Decimal = '0' •• '9';

are
and

estabLishing a subrange.
ending eLements of the

teLLs PascaL that we want to define a type named DecimaL that can assume
values in the range of '0' through '9' of the standard data type CHAR. We
can then declare a variabLe of that type:

VAR Number : DecimaL;

NOTE: You may aLso directLy decLare a variabLe to of a subrange without
using a type declaration statement. For exampLe:

VAR Number: '0' •• '9';

7.2 STRUCTURED DATA TYPES

Structured data types are buiLt up of simple scaLar data types. Several
keywords can be used to define structured data types: ARRAY, RECORD, SET,
and FILE.

DATA TYPES Page 7-7

You may define your own structured data types in much the same way that you
were abLe to define simpLe scaLar types. (See Section 7.1.5, "User-defined
ScaLar.") Two structured types have been pre-decLared for you: STRING and
TEXT.

7.2.1 Packed Data Types

Before we discuss the various structured data types avaiLabLe to you, we'd
Like to digress for a moment and taLk about how the computer represents data
types in memory.

Structured data types sometimes require quite a bit of room in memory. For
exampLe, consider how many memory Locations must be aLLocated for a
structure such as:

ARRAY [0 •• 10,0 •• 10,0 •• 10,0 •• 10] Qf CHAR;

where more than 10,000 eLements must be handLed. (NOTE: We discuss the
ARRAY data type in Section 7.2.2, "ARRAY.") It is often the case that onLy
one eLement of such a structure is stored in one memory location, even
though there physicaLLy may be room for more. To heLp minimize memory use,
PascaL allows you to create "packed" data structures, in which the data in
the structure are packed together in a minimum amount of space. To create a
packed data type, incLude the keyword PACKED in your type decLaration
statement:

TYPE Type-name = PACKED data type

For exampLe:

TYPE CustomerID = PACKED ARRAY [1 •• 50] Qf CHAR;

You may aLso pack records by preceding the keyword RECORD with the word
PACKED. OnLy the array or record immediateLy foLLowing the PACKED keyword
is affected, and any nested arrays or records must be expLicitLy packed. As
one exampLe of the efficiency you can sometimes gain in packing data,
consider the foLLowing data structure of type RECORD:

TYPE Date =
RECORD

Month
Day
Year

END;

(Jan,Feb,Mar,Apr,May,Jun,JuL,Aug,Sept,Oct,Nov,Dec);
1 •• 31 ;
0 •• 99

Unpacked, the data above takes up three words of memory; packed, it takes up
onLy one word.

NOTE: Some types of data cannot be packed (e.g., reaL numbers), and the
keyword PACKED in the type decLaration for such data types has no effect.

~ATA TYPES Page 7-8

Your program does not need to handle a packed data type differently than any
other data type. (NOTE: Standard Pascal requires that you use the UNPACK
and PACK standard procedures to convert between packed format and a format
that your program can read and write. AlphaPascal performs this conversion
for you automatically. In fact, AlphaPascal does not support the PACK and
UNPACK procedures.)

Although you do save memory space by packing a data type, be aware of the
fact that your program will run slower when it handLes such a data
structure, because of the time required to unpack and repack data.

7.2.2 ARRAY

An array has a fixed number of components which may be accessed in any order
by referencing the location of the element within the array. To reference
an element of the array, you give the name of the array, and the array index
(sometimes called a subscript) which selects the location within the array
whose contents you want to access. The subscript appears after the array
name in square brackets:

Array-name[Index1, Index2, IndexN]

where each index is a simple type. For example, suppose the array PartNos
contains thirty part numbers, and you want to see what the twentieth one is.
You would access the twentieth location in the array by saying:

WRITELN(PartNos[20]);

or perhaps:

WRITELN(PartNos[2 + Offset];

ALL elements of an array must be of the same data type. Your declaration of
the array must include the data type of the elements of the array, and the
data type of the subscripts by which you wiLL access eLements of that array.
(Declaring the type of the subscript teLLs Pascal how many elements the
array will contain.) For example:

TYPE MonthTotals = ARRAY[1 •• 20] ~ REAL;

The statement above tells Pascal that you are defining an array type named
MonthTotals whose elements will be real numbers, and that the Locations in
that array will be accessed by refering to the numbers 1 through 20 (e.g.,
MonthTotals[1], MonthTotaLs[2], ••• MonthTotals[20]).

The subscript data type can be any scalar type except REAL. Although this
field will often be of type INTEGER, it doesn't have to be. For example:

TYPE ComplaintNum = ARRAY [BobsOffice •• PaulsOffice] ~ INTEGER;

DATA TYPES Page 7-9

where BobsOffice •• PauLsOffice is a sub range of a user-defined scaLar type,
such as (RobinsOffice, BobsOffice, PauLsOffice, BiLLsOffice).

After you have decLared an array type, you may now decLare a variabLe of
that type. For exampLe:

VAR Problems : CompLaintNum;

Pascal also allows a shorthand form that permits you to combine the type and
variable decLarations:

VAR ProbLems ARRAY [BobsOffice •• PauLsOfficeJ ~ INTEGER;

One of the features that help make arrays so usefuL is the fact that
subscripts may be expressions. This alLows you to access eLements of the
array using variabLes for the subscripts. For example:

PROGRAM Squarelt;

VAR Square
Counter

ARRAY[1 •• 10J ~ INTEGER;
INTEGER;

BEGIN { Squarelt }
Counter := 1;
WRITELN('Squares of the integers 1 to 10 are: I);

FOR Counter := 1 TO 10 DO
-SEGIN

Square[CounterJ := Counter*Counter;
WRITELN(Square[Counter])

END;
END { SquareIt }.

The small program above creates array Square of ten elements. The FOR-DO
Loop increments the variabLe Counter from 1 to 10, accesses the array
Location indexed by Counter, and writes the square of Counter into that
Location of the array. (For exampLe, Location Square[5J contains the number
5*5, or 25.) You can use a simiLar type of Loop to retrieve data from an
array. NOTE: Sometimes you can fill an array without using Loops. For
example:

InvoiceNum['A'] := InvoiceNum['B'J;

accomplishes the same thing as:

FOR I := 1 TO 5 ~ InvoiceNum['A',I] := InvoiceNum['B',I];

DATA TYPES Page 7-10

7.2.2.1 MuLti-dimensional Arrays - Until now our discussion has been of
"one-dimensionaL" arrays; that is, arrays with just one index. Pascal also
aLLows you to construct arrays with an unLimited number of dimensions. (You
might consider a multi-dimensionaL array as an "array of an array.") To
decLare such a structure, include additional subscripts in the decLaration.
Suppose you want to keep track of a five-element array, each eLement of
which is in turn a five-element array:

TYPE InvoiceNums ARRAY['A' •• 'E'] OF ARRAY[1 •• 5] ~ INTEGER;

PascaL aLso aLlows a shorthand form:

TYPE InvoiceNums ARRAY['A' •• 'E',1 •• 5J ~ INTEGER;

The statements above create a two-dimensional array of 25 eLements. Each
eLement is referenced by a pair of subscripts. If we wanted to make a
pictorial representation of our array InvoiceNums, it might look something
Like this, with the Xs representing integer numbers contained in the array:

1 2 3 4 5

A x x x x x

B x x x x x

C x x x [?J x

D x x x x x

E x x x x x

If we wanted to access any number in the array, we wouLd have to specify the
subscripts that designate the proper Location. (In the example above,
'A' •• 'E' designate array "rows"; 1 •• 5 designate array "columns.") The
subscripts for a two-dimensional array must identify the eLement's row and
coLumn. For exampLe, to identify the element marked with a question mark in
the tabLe above, we wouLd ask for Row C, CoLumn 4:

InvoiceNums['C',4J

The number of dimensions an array may contain is Limited onLy by the room in
memory.

7.2.3 STRING

We have aLready mentioned the data type CHAR. A variable of type CHAR
contains a singLe ASCII character. However, we often need to refer to
coLLections of characters (such as words, names, or addresses) rather than
just singLe characters.

DATA TYPES Page 7-11

The standard data type STRING allows you to declare variables that contain a
group (or "string") of ASCII characters. For example:

VAR AccountID: STRING;

The defauLt maximum string Length is 80 characters, but you can set the
string length maximum to from 1 to 255 characters. To set maximum string
length, foLlow the identifier STRING with an integer constant in square
brackets. For exampLe:

TYPE OrderID = STRINGC25J;

The STRING data type is approximateLy equivalent to:

TYPE STRING[NJ = PACKED RECORD
LEN O •• 255;
TXT: ARRAY [1 •• NJ OF CHAR;

END·
--'

If N above is omitted, STRING defaults to size 80. (NOTE: The structure
given above for STRING is approximate, and is only given for illustrative
purposes; you cannot access the length of string X by referring to X.LEN.)
The computer stores strings with one character per byte, and one byte at the
front of the string which telLs Pascal how long the string is.

7.2.4 TEXT

The standard data type TEXT is equivalent to the type FILE OF CHAR. For
exampLe, suppose you want to decLare and open a text file, you couLd say:

PROGRAM ReadListing;

TYPE ListFile = TEXT;

VAR ProgramList: ListFile;

BEGIN { ReadListing }
OPEN(ProgramList,'ACCNT1.DAT',OUTPUT);

{ read data from file}

END { ReadListing }.

NOTE: In the exampLe above, it wouLd also have been vaLid just
ProgramList TEXT. (Note to users of previous versions of
the fiLe type INTERACTIVE is no Longer needed or supported.
occurrences of the identifier INTERACTIVE with TEXT, or at the
program re-define INTERACTIVE (e.g., TYPE INTERACTIVE =
information on type FILE, see Section 7.2~beLow.)

to say: VAR
AlphaPascal-
RepLace any

front of your
TEXT) .) (For

DATA TYPES Page 7-12

7.2.5 SET

Sets give you a very efficient WdY ot handLing certain kinds of information.
ALthough, they are not exactLy anaLogous, you might think of sets as a kind
of packed BooLean array. The use of sets aLLows compLex LogicaL expressions
to be written conciseLy, and aLso gives a more fLexibLe way of performing
LogicaL tests. For exampLe, instead of the cumbersome statement:

IF (Character = 'A') OR (Character = 'B') OR
(Character = 7f') OR (Character = '0')

OR (Character = IE')
THEN Flag : = TRUE;

using sets, you can simpLy say:

IF Character IN ['A' •• 'E'] THEN FLag := TRUE;

To define a set type, use the type decLaration statement. Every eLement of
the set must be of the same type, and that type may not be structured. You
must specify the name of the set data type, and the base type of that set:

TYPE Identifier = SET QI base-type;

For exampLe:

TYPE PLayer = SET Qf. 1 •• 5;

Once you have defined the set, you can now decLare a variabLe of that type:

VAR Piece: Player;

which can assume one or more of the vaLues of that set. Pascal aLso alLows
a shorthand decLaration:

VAR Piece : SET Qf. 1 •• 5;

The symboL [] is the set constructor operator.
expressions of the form:

[expression]

or:

[expression •• expression]

It takes a List of

For exampLe, given that Y is of type SET, the foLLowing is a valid
assignment statement:

Y := [X, X+5 •• X+7];

It assigns the eLement X and the eLements X+5 through X+7 to the set Y. You
may mix sets of the same base type. For exampLe:

DATA TYPES

VAR

BEGIN

X SET OF 'A' •• 'X';
Y SET Of 'L' •• ' Z ' ;

Y := Y + X;
END.

Page 7-13

You may use modifying assignment operators on sets. (So, for exampLe, you
couLd rewrite the statement above to: Y += X;.)

The operations that you can perform on a set are those defined by set
theory: set union (+); set difference (-); set intersection (*); set
equaLity (=); set inequaLity «»; set incLusion, «= and >=); and, set
membership <IN). The empty set, "[]", is a vaLid set.

If we define a type Newset that is a set of integers:

TYPE NewSet = SET OF 1 •• 10;

VAR Set1
Set2

ResuLt

NewSet;
Newset;
Newset;

and then assign vaLues to the sets Set1 and Set2:

Set1 := [1 •• 5];
Set2 := [5,6,7,8,9J;

We can use the sets Set1, Set2, and ResuLt to taLk about the operations you
can perform on sets:

+ Set Union. An eLement is contained in the union of SET1 and SET2 if
and onLy if it is an eLement of SET1 or SET2 or both. For exampLe:

ResuLt := Set1 + Set2 { ResuLt is the set r1 •• 9] }

Set Difference. An eLement is contained in the difference of two sets
if and onLy if it is an eLement of SET1 but not an eLement of SET2.
For exampLe:

ResuLt := Set1 - Set2 { ResuLt is the set [1 •• 4J }

* Set Intersection. An eLement is contained in the intersection of two
sets if and onLy if it is an eLement of both SET1 and SET2. For
exampLe:

ResuLt := Set1 * Set2 { ResuLt is the set [5J }

= Set EquaLity. Set1 = Set2 is TRUE if and onLy if every member of
Set1 is aLso a member of Set2, and every member of Set2 is aLso a
member of Set1.

DATA TYPES Page 7-14

ResuLt := Set1 = Set2 { ResuLt is FALSE}

<> Set InequaLity. Set1 <> Set2 is TRUE if and onLy if Set1 = Set2 is
FALSE.

ResuLt := Set1 <> Set2 { Result is TRUE}

<= Set IncLusion. The reLation Set1 <= Set2 is TRUE if and onLy if every
member of Set1 is aLso a member of Set2. In other words, Set1 <=
Set2 is TRUE if Set1 is incLuded in Set2.

>=

IN

ResuLt := Set1 <= Set2 { ResuLt is FALSE}

[6,9] <= Set2 is TRUE.

Set IncLusion.
every member of
>= Set2 is TRUE
Y >= X is TRUE.

The reLation Set 1 >= Set2 is TRUE if and onLy if
Set2 is aLso a member ,of Set1. In other words, Set1
if Set2 is incLuded in Set1. If X <= Y is TRUE, then

Set Membership. If Xis of the type decLared as the base-type of
Set1, then X IN Set1 is TRUE if and onLy if X is contained in Set1.
For exampLe:

Result . -.- 5 IN Set1 { ResuLt is TRUE }

ResuLt := 26 IN Set1 { ResuLt is FALSE }

The IN operator takes as a.Left argument a simpLe data type variabLe
or constant (e.g., CHAR or INTEGER); the right argument must be a
set of that data type (e.g., set of CHAR or set of INTEGER).

BeLow is a smaLL sampLe program that uses sets:

DATA TYPES

PROGRAM;

VAR

BEGIN

Y1,Y2,Y3,N1,N2,N3
Query

Yes,No

Yes : = [I Y I]; No : = [I N I];

CHAR;
CHAR;
SET OF CHAR;

Page 7-15

WRITELN('The onLy vaLid response to a Yes/No question is Y or N.');
WRITELN('We"LL Let you add your own answers. I); WRITELN;
WRITELN('Enter three one-character symboLs that can stand for YES I);
WRITE('(separate them with a space, not a comma): I);
READLN(Y1,Y2,Y3);
Yes := [Y1,Y2,Y3J + Yes; {Add user-defined symboLs to Yes}
WRITE('Now, enter three symboLs for NO: I);,
READLN(N1,N2,N3);
No := [N1,N2,N3] + No; { Add user-defined symboLs to No }
WRITELN;
WRITE('Let"s test this out. Enter a Yes or No answer: I);

READLN(Query);
WRITELN;

IF Query IN Yes THEN WRITELN('Yes!')

END.

ELSE IT Query IN No THEN WRITELN ('No! I)
~S~WRITELNT'I didn"t understand you. l)

7.2.6 FILE

A fiLe is a structured data type that contains a sequence of eLements of the
same type. Since you can onLy access one eLement at a time, fiLes might
seem much Like an array. The important difference is that fiLe are
associated with AMOS disk fiLes, and so can store data permanentLy beween
program runs. FiLes are the means of communicating with devices such as
terminaLs and printers.

In addition, unLike other structured types, the size of a fiLe does not have
to be decLared, and may be of any size supported by the AMOS fiLe structure.
FiLes typicaLLy hoLd data of type CHAR or they contain records (see Section
7.2.7, "RECORDS").

Use the type decLaration to decLare the data type:

TYPE identifier = FILE .Q£. base-type;

where identifier is the name you want to assign to that type of fiLe, and
base-type is the data type of the data in the fiLe.

To use this type of fiLe, you wiLL have to define a variabLe of that type:

VAR fiLe-identifier: identifier;

DATA TYPES Page 7-16

The fiLe-identifier acts as a communication channeL. Using commands such as
OPEN (see Section 10.2.12, "OPEN"), you can associate the file-identifier
with an actuaL AMOS fiLe, and transfer data between your program and the
disk fiLe.

Rather than using a type decLaration foLLowed by a variabLe decLaration,
ALphaPascaL aLso permits you to use a shorthand method of combining type and
variabLe decLaration statements:

VAR NewData: FILE OF INTEGER;

Remember that you must use one of the functions or procedures discussed in
Chapter 10, "I/O Functions and Procedures," to teLL ALphaPascaL which AMOS
fiLe you want to associate with the fiLe variabLe that you have decLared.

NOTE: The chapters in this book, especiaLLy Chapter 10, frequentLy use the
term "fiLe-identifer." Other books that describe PascaL may just caLL this
identifier "fiLe." The fiLe-identifier is not the same thing as a fiLe
specification. The fiLe specification identifies the actuaL AMOS disk fiLe
that you want to read data from or write data to. The fiLe-identifier
identifies the PascaL fiLe variabLe. Think of the fiLe-identifier as
specifying the PascaL data structure with which the actuaL fiLe wiLL be
associated. SeveraL of the functions you can use to handLe fiLes accept a
fiLe-identifier and a fiLe specification. For exampLe, the FSPEC procedure
accepts three arguments: the fiLe-identifier, an AMOS fiLespec, and a
defauLt extension. For instance:

FSPEC(FiLe1,'ACCNTS,"DAT');

where FiLe1 is the fiLe-identifier, and ACCNTS.DAT is the AMOS fiLe we want
to associated with that fiLe variabLe.)

The standard identifier TEXT has been pre-decLared for you; this identifier
is equivaLent to FILE OF CHAR. (See Section 7.2.4, above, for information
on TEXT.)

7.2.7 RECORD

A record is a data structure that consists of a number of components (caLLed
"fieLds"). UnLike arrays, the record eLements do not have to be of the same
type, and you access the eLements by name, not by subscript. You can use
records to deveLop very sophisticated data structures (e.g., array of
records, fiLe of records, pointers to records).

When you decLare a record type, you are defining a tempLate for a group of
variabLes that contain reLated information, but which do not have to be of
the same type. To define a record, use the type decLaration. You wiLL
provide the name of the record, and names and types of the fieLds within
that record:

DATA TYPES

TYPE Identifier =
RECORD

END;

fieLd-name ••• ,fieLd-nameN
fieLd-name ••• ,fieLd-nameN

fieLd-name ••• ,fieLd-nameN

fieLd-type1;
fieLd-type2;

fieLd-typeN;

For exampLe, a record to represent a date couLd be defined as:

TYPE Date =

Page 7-17

RECORD
Month
Day
Year

(Jan,Feb,Mar,Apr,May,Jun,JuL,Aug,Sept,Oct,Nov,Dec);
1 •• 31;
INTEGER

END;

You may then decLare a variabLe of type Date:

VAR DeadLine Date;

Such a variabLe
day, and the year.
you want to do so.

wouLd contain three pieces of information: the month, the
However, aLL the information may be treated as a unit if

If severaL fieLds share the same type, you may List them on one Line,
separated by commas. You may aLso nest record definitions. For exampLe:

TYPE Credit =
RECORD

Finances RECORD
Checking, Savings, Loans

END;
Name STRING[SOJ;
Birth Date

END;

INTEGER;

After defining a record, you may then decLare a variabLe of that type. For
exampLe:

VAR Customer: Credit;

To seLect a fieLd of a record, use both the name of the record variabLe and
the name of the fieLd, separated by a period. For exampLe:

~ Customer.Name = 'Smith, John C.' THEN CheckCredit;

You may assign the vaLue of record to another. For exampLe, given:

VAR Customer, EmpLoyee: Credit;

you may assign the contents of record Customer to record EmpLoyee:

DATA TYPES

Employee 2= Customer

which is equivalent to:

Employee.Finances := Customer. Finances;
Employee.Name := Customer.Name;
Employee.Birth := Customer.Birth;

Page 7-18

7.2.7.1 Variant Parts - Records of the same type do not necessarily have
to contain the same fleLds. Suppose, for example, that you are maintaining
a record of customer information in which one of the fields telLs you
whether or not the customer has a car.

Car : Boolean;

If, in fact, the customer does have a car, you might want to maintain
another set of information (such as License number, model, year of make,
etc.), but it doesn't make sense to fiLL in that information for a customer
who doesn't have a car. Pascal allows you to allocate fields which mayor
may not exist, depending on the value of another field. These fields, which
act as variations to the basic record structure, are called "variant"
fields. The variant field definition takes this form:

CASE field-type OF
---- Case-laoel ••• ,Case-labelN

Case-LabeL ••• ,Case-LabeLN
(fieLd-List1);
(fi e Ld- L i st2);

Case-LabeL ••• ,Case-LabeLN (fie L d- Lis t N)

or:

CASE case-fieLd-identifier : fieLd-type OF
-- Case-LabeL ••• ,Case-LabeLN (fieLd-List1);

Case-labeL ••• ,Case-LabeLN : (fieLd-List2);

SeveraL
List of
fields
be used
variant
exampLe:

Case-LabeL ••• ,Case-labeLN (fie L d- Lis t N)

case labels may be written on one line, separated by commas. The
variant fields must be enclosed with parentheses. (If no variant
are to be used in the case of a certain vaLue, empty parentheses may
or the vaLue may be omitted.> If you create a variant part, the

fieLds must appear at the end of the record definition. For

DATA TYPES Page 7-19

TYPE Customer = RECORD
Name STRING[SOJ;

Number INTEGER;
CASE Car : BOOLEAN OF

TRUE : (LicenseNo STRING[7J;
Model STRING[1SJ;

Year INTEGER);
FALSE () { You may omit this line}

E~D;

VAR Query ARRAY [1 •• 20OJ .Q!. Customer;

7.2.8 Pointer Type

Pascal recognizes two categories of variables: static and dynamic.

Static Variables - Static variables are declared in variable declarations
which determine their types and identifiers. You use
these identifiers to refer to the variables. Static
variables are created when the block in which they are
declared is executed, and remain in effect until your
program leaves that block. Most of the variables shown
in this book are static variables. They can only be
used when you know ahead of time what the storage
requirements of your program is going to be.

Dynamic Variables - Dynamic variables are created on demand. They do not
appear in variable declarations, and so cannot be
referenced by variable identifiers. Instead, each
dynamic variable of type X has associated with it a
value of type AX which is called the pointer to X. The
pointer to X is used to access the corresponding dynamic
variable, and contains the value of the address of the
value.

The pointer type is declared via the type declaration statement:

TYPE Identifier = Abase-type;

(The A symboL identifies a pointer.) For exampLe:

TYPE Location = AINTEGER;

The declaration above estabLishes a pointer type Location whose pointer
variabLes wiLL point to variabLes of type RECORD. To use the pointer type,
we must decLare variables:

VAR

NewNumber is
An identifier
being pointed
pointed to by

NewNumber Location;

a pointer variable that is associated with an integer vaLue.
folLowed by the pointer symboL, A, designates the actuaL value
to. Therefore, NewNumber A is the actual integer value being
NewNumber.

DATA TYPES Page 7-20

Now, to actuaLLy ·use the data types we have defined, we must use the NEW
function to aLLocate the dynamic variabLe:

NEW(NewNumber);

creates an unnamed variabLe of type INTEGER, and stores the pointer to it in
NewNumber. To access the new pointer, we reference it as NewNumber ft • (See
Section 11.1.4, "NEW," for information on NEW. ALphaPascaL aLso uses two
functions caLLed MARK and RELEASE for manipuLating pointer data; see
Sections 11.1.3, "MARK," and 11.1.7, "RELEASE.)

PascaL contains a speciaL pointer constant that indicates that a pointer is
not pointing to anything: NIL. This is usefuL for indicating speciaL
conditions, such as the end of a List. For exampLe:

EndingNode := NIL;

The use of pointers gives the PascaL programmer an extremeLy powerfuL tooL
for deveLoping sophisticated structures (for exampLe, Linked Lists). There
are many exampLes of usefuL appLications for pointers. As one simpLe
exampLe, suppose you want to sort an array of records:

TYPE Rec = RECORD
Name STRING;
Data ARRAY [1 •• 50] OF INTEGER

END;

VAR X: ARRAY [1 •• 20] .2£. Rec;

you wouLd have to perform a great many record moves; a sLow and inefficient
process. If you instead use pointers:

VAR X ARRAY [1 •• 20] .2£. ftRec;

you onLy need to sort pointers, which is much faster. Here is a very
smaLL sampLe of the use of pOlnters:

VAR X, Y : ftINTEGER;

BEGIN
NEW(X);
Y := X;
Xft := 5; WRITE(X ft);
yft := 6; WRITE(yft);
WRITE (Xft)
{ Note, X and Yare pointing to the same

Location, so output wiLL be 5,6,6 }
END.

A Linked List is one exampLe of a usefuL data structure you can buiLd with
pointers. (You might aLso consider buiLding doubLy Linked Lists, trees,
queues, etc.) Let's take a Look at the Linked List and see why it is so
usefuL, and how to buiLd one.

DATA TYPES Page 7-21

Each element of a linked list contains: 1) data; and 2) a pointer to the
next element of the list. To change the order of the elements in the list,
therefore, yo~ only have to change the pointers, not the elements
themselves.

Let's say that you have a sorted array of integers. If you add another
number to the array, you must sort the entire array to get the elements back
into the proper order. If, however, the nl.lllbers are' stored as a linked
list, adding a new number just entails changing two pointers in the list.
For example:

L i st1 (23)-----_i~~(32)---_l~~(6 7),----_i~~et c.

NewList (2~ /2)----~~(67)-----i~~et c.

(40)

To delete an element of the list, you only need to link around it.

Declare a linked list as follows:

TYPE Node = RECORD
Data
Next

END;

INTEGER;
ANode

Notice that we said that the data portion of the list element will hold
integer data; you can use whatever data type you want.

Let's build a simple linked list, and then display it in reverse:

(Changed 30 April 1981)

DATA TYPES

PROGRAM LinkedList;

TYPE Pointer = -Element;

Element = RECORD
Data INTEGER;
Next Pointer

ENO;

VAR I,X: INTEGER;
P,List : Pointer;

BEGIN { LinkedList }
--wRfTE('Enter integer: '>;

READLN(X>;
{ Get first number of list}

List := NIL; { Initialize list}
WHILE X ~O 00 { End list when X = 0 }

BEGIN
NEWCP);
P- .Data := X;
P-.Next := List;
List := P;

{ Allocate dynamic variable}
{ Put number into list}
{ Set list pointer to next element}

WRITE('Enter integer: ');
READLN(X>

END;
P := List;
WHILE P <> NIL 00

BEGIN
--wRfTELNCP-.Oata);

P := P-.Next
END

END { LinkedList }.

Page 7-22

If you enter the numbers: 1 2 3 4 5 6 7, you see displayed: 7 6 5 4 3 2 1.
Other useful examples would involve inserting elements into a list and
deleting elements from a list by updating the list pointers.

NOTE: AlphaPascal contains the procedures MARK and RELEASE which you use in
combination with NEW to make use of a stack-like structure called the
"heap." (See Chapter 11 for information on MARK and RELEASE.) MARK and
RELEASE allow you to perform very powerful operations with dynamic
variables. However, they can be dangerous if used unwisely; you should be
an experienced Pascal programmer before using MARK and RELEASE.

(Changed 30 April 198j)

CHAPTER 8

EXPRESSIONS

An expression
and variabLes.

is any combination of operators, constants, function caLLs,
For exampLe:

(238.6 * Invoice + SQRT(TaxBiLL»/365

This chapter discusses the LegaL ALphaPascaL operators, and gives the ruLes
of operator precedence. We aLso taLk about some speciaL expression handLing
abiLities of ALphaPascaL.

8.1 OPERATORS

An operator is a symboL that directs PascaL to perform an action on the
elements of an expression. For exampLe, the addition operator, +, in the
expression 34+123 teLLs Pascal to add the numbers 34 and 123. The operator
types in PascaL are: arithmetic, BooLean, reLational, LogicaL, and set.
Another speciaL operator, the assignment operator, is used to assign vaLues
to variabLes.

8.1.1 Operator Precedence

When PascaL sees the various operators in an expression, it evaLuates the
eLements in the expression in response to those operators. When more than
one type of operator appears in one expression, PascaL foLLows a set of
ruLes caLLed "operator precedence" in determining which operators to act
upon first. If the precedence of aLL operators in the expression is the
same, PascaL evaLuates the expression from Left to right. For exampLe,
PascaL evaLuates the expression:

312 + 34 - 20

as:

(312 + 34) - 20

EXPRESSIONS Page 8-2

evaLuating the vaLue 312+34 first, and then subtracting 20 from it. If the
precedence of the operators differs, PascaL evaLuates the eLements connected
by the operator of highest precedence first, and then evaLuates the eLements
connected by the operator of the next highest precedence, and so on. For
exampLe, muLtipLication has a higher precedence than addition, so the
expression:

76 * 54 + 2

teLLs PascaL to muLtipLy 76 by 54, and then add 2 to that vaLue. The
expression evaLuates to (76 * 54) + 2, or 4106.

You can change the order in which PascaL processes operators by using
parentheses. PascaL aLways evaLuates eLements in the innermost set of
parentheses first, and then works outward. For exampLe, if you want PascaL
to act upon the addition operator first in the previous exampLe, you must
use parentheses to teLL PascaL to appLy that operator first:

76 * (54 + 2)

This expression teLLs PascaL to add 54 and 2, and then muLtipLy that vaLue
by 76. The expression thus evaLuates to 4256.

NOTE: The operator precedence used by ALphaPascaL differs sLightLy from that
used by standard Pascal. We have changed the precedence to be compatibLe
with that of other Language processors on the ALpha Micro system.
SpecificaLLy, in ALphaPascaL the BooLean operators are of Lower precedence
than the reLationaL operators. Th~ onLy time you wiLL need to worry about
this is if you use expressions that compare unparenthesized BooLean
expressions with reLational operators (e.g., NOT A = B).

If your programs must be written to be compatibLe with standard PascaL (for
instance, if you want to be abLe to transfer your programs to another
computer system that uses standard PascaL) use parenthese to make sure that
your expressions are evaLuated in accord with standard PascaL's ruLes of
operator precedence. For exampLe, the expression:

NOT A = B

is evaLuated by ALphaPascaL as: NOT (A = B).

If you want the expression to work for either standard PascaL or
ALphaPascaL, you shouLd either write it as:

(NOT A) = B

or:

NOT (A = B)

to indicate how you wish the expression to be evaLuated.

The tabL~ beLow gives the ruLes of operator precedence for ALphaPascaL:

EXPRESSIONS

Highest Precedence

Parenthesized
expressions

Sign inversion:

MuLtipLying operators:

Adding operators:

ReLationaL operators:

BooLean operators:

Lowest Precedence

8.1.2 Assignment Operator

Page 8-3

- (unary)

* / DIV MOD

+

= <> < > <= >= IN

NOT
AND
OR

The assignment operator, :=, assigns the vaLue of an expression to a
variabLe. (See Section 9.1, "Assignment Statement," for information on its
use in a program statement.)

PascaL evaLuates the expression on the right side of the assignment operator
symboL, :=. The variabLe on the Left side of the assignment operator then
assumes the vaLue of that expression. Note that aLL variabLes to which
vaLues are assigned must have been previousLy decLared. For exampLe:

CardVaLue := 9.56

assigns the vaLue 9.56 to the variabLe CardVaLue. The expression above must
have been preceded in the program by a statement such as:

VAR CardVaLue : REAL

which decLares that the variabLe CardVaLue may onLy assume reaL number
vaLues.

Most Languages (incLuding standard Pascal) onLy aLLow the vaLue of a
variabLe to be changed by an assignment statement. ALphapascaL aLLows the
vaLue of a variabLe to be changed within an expression. For example:

200 + Sum/TotaL := 365

PascaL reads the expression above as:

{200 + (Sum/{TotaL := 365»

That is, PascaL assigns th~ vaLue 365 to the variabLe TotaL, and then
divides the vaLue Sum by Total (which is now 365), and adds 200 to it.

EXPRESSIONS Page 8-4

Remember that the assignment operator has the highest precedence, and that
PascaL evaLuates expressions from Left to right when operator precedence is
equaL. The Assignment operator has extremeLy high "Left precedence," and
very Low "right precedence." That means that it "binds" itseLf strongLy to
the nearest eLement on the Left, but LooseLy to the remaining eLements on
the right. To make this idea cLearer, consider the foLLowing expression:

ResuLt := 10 + Score - Cards := 32 + Pairs - SingLes

The second assignment operator binds strongLy to the variabLe Cards, but
\"swaLLows up" aLL of the expression to the right of itseLf. This means that
ALphaPascaL evaLuates the expression above as:

ResuLt := (10 + Score - (Cards := (32 + Pairs) - SingLes»

That is, Cards is set to (32 + Pairs) minus the vaLue of SingLes. Then, the
vaLue of Cards is subtracted from 10 + Score. That vaLue is assigned to the
variabLe ResuLt.

As another exampLe of the use of the assignment operator in an expression,
consider a situation where you want to initiaLize a group of variabLes by
setting their vaLues to zero. PascaL does not have a muLtipLe assignment
statement. However, the expression:

Averages := TotaL := Sum := Median := 0

causes PascaL to perform a muLtipLe assignment as a side effect of
evaLuating the expression.

8.1.2.1 Modifying Assignment Operators - ALphaPascaL
speciaL operators caLLed "modifying assignment operators."
aLLow you to assign vaLues to variabLes by modifying
variabLe instead of repLacing that vaLue. For exampLe,

contains a set of
These operators
the vaLue of the
the assignment

expression:

RecordCount := 120

teLLs PascaL to repLace the vaLue of RecordCount with the number 120. A
modifying assignment expression of the form:

I

RecordCount += 120

teLLs PascaL to take the vaLue of RecordCount and modify it by adding 120 to
it. PascaL then assigns this new vaLue to RecordCount. We thus modify,
rather than repLace, the vaLue of RecordCount. In effect, the expression
above is equivaLent to:

RecordCount := RecordCount + 120

EXPRESSIONS Page 8-5

The modifying assignment operators are:

+= Adding modifying assignment operator
-= Subtracting modifying assignment operator
*= Multiplying modifying assignment operator
1= Dividing modifying assignment operator

As another example, the statements:

Number := 1;
FOR I = 1 TO 5 DO
~umber *~2 {Same as 'Number := Number * 2'}

compute two to the fifth power. So, Number takes on the vaLues 2, 4, 8, 16
and 32.

8.1.3 Arithmetic Operators

The arithmetic operators are:

+ (unary)

- (unary)

+

*

DIV

1

MOD

Identity

Sign
inversion

Addition

Subtraction

MuLti
plicatiQn

Integer
division

Real division

Modulus

Takes INTEGER or REAL operands; resuLt is
same type as operands.

Takes INTEGER or REAL operands; resuLt is
same type as operands.

Takes INTEGER or REAL operands; resuLt is
same type as operands.

Takes INTEGER or REAL operands; resuLt is
same type as operands.

Takes INTEGER or REAL operands; resuLt is
same type as operands.

Takes INTEGER operands; resuLt is INTEGER.

Takes INTEGER or REAL operands; resuLt is
INGEGER or REAL.

Takes INTEGER operands; resuLt is INTEGER.

NOTE: If you wish to use the sign inversion symboL, -, you must encLose the
number in parentheses if another operator precedes the number. For exampLe,
the expression 3 * -5 is ilLegal, but the expression:

3 * (-5)

is vaLid, and evaLuates to -15.

EXPRESSIONS Page 8-6

8.1.4 Relational Operators

=

<>

<

>

<=

>=

IN

Equality

Inequality

Less than

Greater than

Less than or
equal

(or set
i nclus i on
(subset»

Greater than
or equal

(or set
i nclus i on
(superset»

Set
membership

Scalar, STRING, SET, or pointer operands.
BOOLEAN result.

Scalar, STRING, SET, or pointer operands;
BOOLEAN result.

Scalar or STRING operands; BOOLEAN result.

Scalar or STRING operands; BOOLEAN result.

Scalar or STRING operands; BOOLEAN result.

SET operands; BOOLEAN result.

Scalar or STRING operands; BOOLEAN result.

SET operands; BOOLEAN resuLt.

First operand is any scaLar, second is its
SET type. BOOLEAN result.

8.1.5 LogicaL Operators

NOT Negation BOOLEAN operands; BOOLEAN resuLt.

AND Conjunction BOOLEAN operands; BOOLEAN resuLt.

OR Disjunction BOOLEAN operands; BOOLEAN resuLt.

EXPRESSIONS Page 8-7

8.1.6 Set Operators

+ Union Given sets of type X, resuLt is of
type X.

Set difference Given sets of type X, resuLt is of
type X.

* Intersection Given sets of type X, resuLt is of
type X.

8.2 CONSTANTS

A constant is a vaLue that doesn't change. For exampLe, the number 34.5 is
a constant, because it can assume no other vaLue. Certain constants have
been pre-defined by PascaL for your use. They are:

MAXINT the maximum integer ALphaPascaL can represent.
FALSE BooLean faLse
TRUE BooLean true

You can use these constants as you wouLd any others. For exampLe:

{ Find the minimum of a List of numbers. InitiaLize CurrentMin to
Largest possibLe number. }

CurrentMin := MAXINT;
REPEAT

READ(DataFiLe,NewNumber);
IF NewNumber < CurrentMin THEN CurrentMin := NewNumber;

UNTIL EOF { Continue tiLL end of fiLe is reached };
WRITELN('SmaLLest number is: ',CurrentMin);

PascaL aLLows you to assign a name to a constant so that you can identify it
by name within a program, rather than including the constant itseLf. For
exampLe, it wouLd be rather cumbersome if you had to include the numeric
constant 3.14159 throughout a program. Once you use a constant definition
statement to assign 3.14159 a name (such as Pi), you can refer to that
constant by name. For example:

WRITELN('The Circumference = ',Pi * 234);

You may aLso assign a name to a string constant. For information on naming
constants, see Section 6.3, "Constant Definitions." For information on the
form string and numeric constants may take, see Section 5.6, "Notation."
NOTE: Of course, constants are not variabLes; that is, you may not assign a
constant a new vaLue within the program bLock.

EXPRESSIONS Page 8-8

8.3 VARIABLES

A variabLe is a named symboL that represents a vaLue. For exampLe, the
variabLe named StudentID might assume a range of student identification
numbers. VariabLes aLLow a program to operate on a variety of data.

Each variabLe in a program may assume onLy one type of vaLue (e.g., integer
vaLues, reaL vaLues, BooLean vaLues, etc.). PascaL requires that you
decLare the data type of each variabLe before that variabLe is used. (See
Section 6.5, "VariabLe DecLarations," and Chapter 7, "Data Types." for
information on data types and decLaring variabLes.)

For information on choosing a vaLid name for a variabLe,
"LegaL Identifiers." A variabLe identifer may be
expression. For exampLe, consider the case where we want
eLement in an array:

NewArray[2,4J := 99;

8.4 IF-THEN-ELSE EXPRESSIONS

see Section 5.4,
in the form of an
to refer to an

Wherever an expression is LegaL, ALphaPascaL aLLows you to incLude an
IF-THEN-ELSE expression. This aLLows you to conditionaLLy evaLuate one of
two aLternative expressions. The construct takes the form:

II condition THEN expression ELSE expression

Note that you must incLude the ELSE clause if you use the IF-THEN
construct in this way. For exampLe:

IF Credit> (IF BiLLAmt > 1000 THEN 2000 ELSE 0)
THEN WRITELN('OK, charge it.')
ELSE WRITELN('Sorry, send it C.O.D.');

The statement above contains this expression: IF BiLLAmt > 1000 THEN 2000
ELSE O. This evaLuates either to 2000 or to 0, depending on whether or
not the variabLe BiLLAmt has a vaLue greater than 1000. Therefore the
statement above either evaLuates to:

IF Credit > 2000
--THEN WRITELN('OK, charge it.')

ELSE WRITELN('Sorry, send it C.O.D.');

or:

IF Credit> 0
--THEN WRITELN('OK, charge it.')

ELSE WRITELN ('Sorry, send it C.O.D.');

EXPRESSIONS Page 8-9

Remember that expressions can also contain string constants or variables.
Consider the following smaLL program that conditionaLLy assigns a vaLue to
ErrorReport:

PROGRAM Recovery;

VAR ErrorFLag
ErrorReport

BOOLEAN;
STRING;

BEGIN { Recovery }
ErrorFLag := FALSE;
ErrorReport := (IF ErrorFLag

THEN 'An error-occurred!' ELSE 'No error.');
WRITELN(ErrorReport)

END { Recovery}.

NOTE: IncLuding an IF-THEN-ELSE construct in an expression is not a feature
of standard PascaL. Note that IF-THEN-ELSE may not be used in a variabLe
expression. For example:

(IF X THEN Y ELSE Z) := 1

is iLLegaL.

8.5 CASE EXPRESSIONS

Wherever an expression may appear, ALphaPascaL aLLows you to incLude a CASE
expression. This aLLows you to conditionaLLy evaLuate one of severaL
aLternative expressions. (NOTE: This is not a feature of standard PascaL.)
The expression must take the form:

CASE vaLue OF
va Lue1
value2

expression;
expression;

ELSE expression

For exampLe:

WRITE(CASE ErrorCode OF
1 'IlLegal input';
2 : 'Number too Large';
3 : 'Number too smaLL';
ELSE 'undefined error');

EXPRESSIONS Page 8-10

The statement above chooses one string to write, depending on the vaLue of
the variabLe ErrorCode. For example, if ErrorCode contains a value of 3,
the statement above evaluates to:

WRITE('Number too small');

If ErrorCode contains a value that is not 1, 2, or 3, the statement
evaluates to:

WRITE('Undefined error');

CHAPTER 9

STATEMENTS

9.1 ASSIGNMENT STATEMENT

The assignment statement assigns a vaLue to a variabLe. It takes this form:

variabLe := expression

PascaL evaLuates the expression on the right side of the assignment operator
symboL,"= The variabLe on the Left side of the assignment operator then
assumes the vaLue of that expression. Note that aLL variabLes to which
vaLues are assigned must have been previousLy decLared.

For exampLe, given that your program previousLy contained the statement:

VAR AccountNum: INTEGER;

the statement:

AccountNum := 1024+1

assigns the integer vaLue 1025 to the variable AccountNum. For more
information on the assignment operator, see Section 8.2, "Assignment
Operator." That section also discusses the use of the assignment operator
in expressions, discusses the precedence of the assignment operator, and
describes the ALphaPascal modifying assignment operators.

9.2 PROCEDURE CALLS

Procedure invocations may appear as program statements. (For information on
procedure parameters, see Section 6.6.1, "Formal Parameters.") Liberal use
of procedure calLs in your programs iLlustrates one of the important
features of PascaL-- moduLarity. Given the appropriate procedure
definitions, a main program can be extremely easy to read. For exampLe:

STATEMENTrS Page 9-2

BEGIN { Main Inventory }
OpenFiles(Receivng,Manufact) (Input filespecs for data from Receiving,

Manufacturing departments. Open files.}
{ Read inventory parts lists }; ReadData(Receivng,Manufact)

FindLow(LowFile)

PrintReport(Oate,LowFile)
END { Main Inventory}.

{ Compute which parts we are low on
and write to file. };

{ Print list of parts we need more of}

We can tell just by Looking approximately what the program does. The
procedures OpenFiles, ReadData, FindLow, and PrintReport do the actual work.

9.3 EXIT

EXIT allows you to exit from the program to the monitor or from a procedure
or function to a caLling program or routine. EXIT takes one argument-- the
keyword PROGRAM or the name of the procedure or function you want to exit
from. For example:

EXIT(PROGRAM);

EXIT(EvaLErr);

(You may not suppLy EXIT with the program identifier; use the PROGRAM
keyword to-exit a program.)

9.4 GOTO STATEMENT

The GOTO statement takes the form:

GOTO label;
~

where "label" has previously been defined in a label declaration statement.
The Label may not lie out of the current procedure or function block. For
example:

STATEMENTS

{$G+}
PROGRAM Tip;

VAR Cost, Percent, Tip
Query

REAL;
CHAR;

LABEL 100;

BEGIN {Program Tip}
WRITELN('Let"s caLcuLate the waiter"s tip');
WRITE('Was it good service (Y or N)?: I);
READLN(Query);
IF Query = 'N ' THEN GOTO 100;
--WRITE('How much did you pay for dinner? I);

READLN(Cost);
WRITE('What percentage do you want to tip? I);
READLN(Percent);
Percent *= 0.01;
Tip := Percent * Cost;
WRITELN('The tip is: ',Tip);

100: END {Program Tip}.

Page 9-3

NOTE: The ALphaPascaL compiLer is initiaLLy set so that it does not
recognize GOTO statements; that is, it gives the error message "IlLegaL
symboL" if it encounters a GOTO statement in your program. To teLL the
compiLer that you want to use GOTO statements in a particuLar program, the
compiLer option $G+ must appear at the front of that program. (For
information on the $G compiler option, see Section 4.3.2.1, "The GOTO
Options ($G+ and $G-).")

9.5 NULL STATEMENT

One of the features that make PascaL programs especiaLLy fLexibLe is the
fact that you may incLude a nuLL statement within your programs. A nuLL
statement aLLows you to incLude extra semicoLons within compound statements,
and to omit statements in certain program constructs. For exampLe, consider
the CASE expression beLow:

CASE expression OF
---- 1 statement1;

2 statement2;
3 , { Nu L L statement }
4 statement3;

ELSE statement4

By incLuding just a semicoLon after vaLue 3, we teLL the CASE expression to
perform ~ statement if the expression evaLuates to 3.

STATEMENT'S Page 9-4

As another exampLe:

IF A = B THEN
IF C =-o-THEN FLag ;= TRUE
- ELSE -- { NuL L statement after ELSE}
ELSE NewFLag := True;

The use of the nuLL statement above alLows us to attach the second ELSE to
the first IF-THEN construct. (Otherwise, the second eLse wouLd be performed
when C <> D, rather than when A <> B.)

9.6 COMPOUND STATEMENT

The body of a PascaL program is a compound statement; that is, it ;s marked
with the BEGIN and END keywords, and contains one or more statements between
those keywords (even if the encLosed statement(s) is a nuLL statement-- see
the paragraph above, Section 9.5, "The NuLL Statement").

Each individuaL statement may aLso consist of a compound statement. The use
of compound statements ;s what gives a PascaL program its nested, bLock
structure. Many sampLe programs in this book contain severaL 8EGIN-END
bLocks.

(See Section 6.2, "LabeL Declarations," for information on LabeLing
BEGIN-END keyword pairs. LabeLing these keywords teLLs the compiLer to
report back to you with an error message if the BEGIN-END keywords are not
matched as your LabeLs have indicated they shouLd be.)

9.7 CONDITIONAL STATEMENTS

ConditionaL statements aLLow you to execute certain sections of code onLy if
specific conditions are satisfied. This section discusses the IF-THEN,
IF-THEN-ELSE, CASE-OF, and CASE-OF-ELSE statements.

9.7.1 IF-THEN

The IF-THEN statement takes the form:

1I BooLean expression THEN statement;

where statement may, of course, consist of a compound statement.
expression is one which evaluates to a Boolean value. For example:
evaLuated as FALSE, since 1 is ~ greater than 5. For exampLe:

IF TestScore > 90 THEN WRITELN('Congratulations! An A+');

A BooLean
1>5 is

STATEMENTS Page 9-5

The statement(s) following the THEN clause are carried out if the Boolean
expression evaluates to TRUE; if it evaluates to FALSE, control is
transferred to the next statement after the IF-THEN statement.

Note that the statement following the THEN keyword may itself be an IF-THEN
statement. For example:

IF Single THEN
--If Witholding > .36 THEN Dependents := 1;

(Which is the same as: IF Single AND (WithoLding > .36) THEN •••) If
Single evaLuates to TRUE, everything after the first THEN keyword is
executed; otherwise, controL passes to the next program statement.

NOTE: You may incLude the keywords IF-THEN in an expression to conditionaLLy
evaluate one of two alternative expressions. See Section 8.4, "IF-THEN-ELSE
Expressions."

9.7.1.1 IF-THEN-ELSE - The addition of an ELSE cLause to an IF-THEN
statement gives us a way to select one of two statements as a result of
evaluating an expression. The IF-THEN-ELSE statement takes the form:

If BooLean expression THEN statement-1 ELSE statement-2;

If the BooLean expression is TRUE, the first statement is executed;
otherwise, the second statement is executed. As in the case of the simple
IF-THEN statement above, a compound statement may appear in place of a
singLe statement. One of the two statements wiLL aLways be executed. For
exampLe:

1£ Margin> LineWidth THEN Error := PGWDTH ELSE LineWidth -= Margin;

The Line above is from a program that formats documents. If the vaLue for
Margin is greater than the current LineWidth, then we set an error code into
the Error flag; otherwise, we reset the LineWidth to the old value minus the
Margin.

What happens if an IF-THEN-ELSE statement contains muLtipLe IF-THEN
statements? To which IF-THEN statement does the ELSE apply? For exampLe:

IF A = B THEN If B = C THEN FLag := a ELSE FLag := 1;

Does FLag get set to 1 if A>B or if B>C? ALphaPascal nests ELSEs. That
means that in the case above, the ELSE applies to the Last IF-THEN
statement; if B=C is FALSE, Flag is set to 1. As another example:

STATEMENTS

PROGRAM DoubLeELse;

VAR A,B,C,D: REAL;

BEGIN { DoubLeELse }
WRITE('Enter A, B, C, D: ');
READLN(A,B,C,D) { Enter vaLues for A,B,C,D };

IF A = B
THEN IF C = D
--;nHENlWRITELN('No ELse')
ELSE WRITELN('ELse1')

ELSE WRITELN('ELse2')

END { DoubLeELse }.

Page 9-6

As we said, ELSEs are nested. That means that the second ELSE is appLied if
the first IF clause (A=B) is faLse; the first ELSE is appLied if the second
IF cLause (C=D) is faLse. So, the output from the program above is as
foLLows:

A=B C=D Output

True True No Else
FaLse True ELse2
True FaLse Else1
FaLse FaLse ELse2

9.7.2 CASE-OF

The CASE statement aLLows you to seLect one out of a group of statements for
execution. The CASE statement takes this form:

CASE expression OF
----Case-Label •• :;Case-LabeL

Case-Label ••• ,Case-LabeL

Case-LabeL ••• ,Case-Label
ENP

statement1;
statement2;

statementN

The expression (caLLed the "seLector") is evaluated, and its value must be
the same as one of the case-labeLs. A selector must not be of type REAL,
and it must be of the same type as the case-LabeLs. You may have as many
case-labels as you like, but each case-LabeL may appear onLy once in anyone
CASE statement. When a matching case-labeL is found, the statement
following that case-labeL is executed. For exampLe:

STATEMENTS Page 9-7

BEGIN { MainMenu }
WRITE('Enter your choice from the menu above :');
READLN(MenuChoice);
CASE MenuChoice OF
~, ComputeTax;

'B' UpdateAccount;
'c' PrintReport;
'D' DoBiLLing

END { End of CASE };
ENo-{ MainMenu }.

The program bLock above performs the proper procedure based on the user
seLection from the main menu.

NOTE: What happens if ~ of the case-LabeLs match the seLector? Standard
PascaL says that such an event is undefined. ALphaPascaL simpLy says that
if none of the case-LabeLs are matched, then controL passes to the next
program statement. (See the next paragraph for information on using an ELSE
cLause to catch a situation where no match occurs.)

9.7.2.1 CASE-OF-ELSE - ALphaPascaL aLLows a unique variant to the CASE
statement; the CASE-OF-ELSE statement. This statement takes the form:

CASE expression OF
----Case-LabeL •• :;Case-LabeL

Case-LabeL ••• ,Case-LabeL

For exampLe:

Case-LabeL ••• ,Case-LabeL
ELSE statement;

BEGIN { MainMenu }
---wRITE (' Enter your choi ce: ');

READLN(MenuChoice);
CASE MenuChoice OF
~, ComputeTax;

'B' UpdateAccount;
'c' PrintReport;
'D' DoBiLLing

statement1;
statement2;

statementN

ELSE WRITELN('No vaLid
EN~MainMenu }.

choice') { Didn't enter A,B,C, or D };

Notice that the ELSE clause takes the place of the final CASE statement END
keyword.

NOTE: See Section 8.5, "CASE Expressions," for information on using the CASE
construct to conditionaLly evaluate one of several alternative expressions.

STATEMENrs Page 9-8

9.8 REPETITIVE STATEMENTS

It is often the case that one section of a program must be performed
repetitively, based on a certain condition. AlphaPascal provides a number
of repetitive statements: WHILE-DO, REPEAT-UNTIL, and FOR-DO. It is
important that you decide which of these statements is exactly correct for
your application, since each differs somewhat in the way that it handles
final values.

9.8.1 WHILE-DO

The WHILE-DO statement takes the form:

WHILE Boolean expression DO statement

where the Boolean expression evaLuates to a TRUE or FALSE, and the statement
may consist of a compound statement. For exampLe:

PROGRAM;

VAR Counter, Number, Average, Sum REAL;

BEGIN { Main Program}
Number := 1 { InitiaLize Number to > O. }
Average := Counter := 0;
WHILE Number > 0 DO

BEGIN
WRITELN('Average: ',Average);
Counter += 1;
WRITE('Enter number: I);
READLN(Number);
Sum += Number;
Average := Sum/Counter;

END;
END { Main Program }.

In effect, you tell Pascal, "While the following condition is TRUE, execute
the following statements." As soon as the condition becomes FALSE, the
program finishes executing the entire WHILE loop, and then goes on to the
next program statement. It is possible that a WHILE Loop wiLL never be
executed if the initial condition is not true and never becomes true.

9.8.2 REPEAT-UNTIL

The REPEAT-UNTIL statement takes this form:

REPEAT statement-list UNTIL Boolean expression

STATEMENTS Page 9-9

where statement-List may be series of statements separated by semicoLons,
and expression evaLuates to TRUE or FALSE. For exampLe:

PROGRAM;

VAR Number
Error

INTEGER;
BOOLEAN;

BEGIN { Main program }
Error := FALSE;
REPEAT

WRITE('Enter an integer divisibLe by 3: I);
READLN(Number);
IF (Number MOD 3) = 0 THEN

WRITELN(ICorrect. Try another. l) ELSE Error := TRUE
UNTIL Error
WRITELN(IIncorrect. End of exercise. l)

END { Main Program }.

Because the REPEAT-UNTIL keywords appear at the beginning and end of the
Loop (making it cLear where the beginning and end of the Loop are), we do
not have to incLude the BEGIN-END keywords after the REPEAT keyword
(however, you may do so if you wish). A REPEAT Loop wiLL aLways be executed
at Least once.

9.8.3 FOR-DO

The FOR-DO statement allows you to execute a given statement or group of
statements a specific number of times. A FOR-DO loop is executed for every
vaLue of the "control variable" from some starting vaLue up to and including
some terminaL value. A control variable must not be of type REAL. The
FOR-DO statement takes this form:

FOR Variable-identifier := expression TO expression DO statement

For example:

PROGRAM;

VAR Counter: INTEGER;

BEGIN { Main Program}
WRITELN('The square roots of the integers 1 to 10 are :1);
WRITELN;
FOR Counter := 1 TO 10 DO WRITELN(ISquare root: I,SQRT(Counter»

END { Main Program }.

Each time the statement
incremented by one.
integers from 1 to 10.

after the DO
The program

keyword is executed, Counter is
above prints the square roots of the

STATEMENTS Page 9-10

A variant of the FOR~DO Loop exists that aLLows you to decrement the
controL variabLe. It takes the form:

FOR VariabLe-identifier := expression DOWNTO expression DO statement

Each time the statement after the DO keyword is executed, the controL
variabLe is decremented by one. Note that it is possibLe that a FOR-DO Loop
may not be executed at aLL, if the initiaL and terminaL vaLues of the
controL variabLe are not in the proper range. (For exampLe, the statement
FOR I := 5 TO 1 ••• wiLL not be executed, but FOR I := 5 DOWNTO 1 ••• wiLL be
executed.)

9.9 WITH-DO

The WITH-DO statement
were simpLe variabLes.

aLLows you to access fieLds of a record as if they
The WITH-DO statement takes the form:

WITH VariabLe-identifier1 ••• ,VariabLe-identifierN DO statement

The WITH-DO statement simpLy gives you a shorthand way of accessing record
fieLds without specifying the name of the record structure for each access.
(See Section 7.2.7, "RECORDS," for information on records.) For exampLe,
suppose you have a record made up of the foLLowing fieLds:

CarInfo.ModeL
CarInfo.Year
CarInfo.CoLor
CarInfo.SeriaLNumber

You have 100 cars on your car Lot, and you want to know how many of them are
red. The records may be set up this way:

TYPE CarInfo = RECORD

VAR

ModeL STRING[3];
Year INTEGER;
CoLor STRING[3];

SeriaLNumber INTEGER;
END { record };

Counter,CarNumber
Carlot

INTEGER;
ARRAY [1 •• 100] .Q£. CarInfo;

Now you can process them. Without using a WITH-DO statement, you wouLd have
to do something Like this:

)

STATEMENTS

Counter := 0;
FOR CarNumber := 1 TO 100 DO

BEGIN
IF (Carlot[CarNumberJ.ModeL='X20')
--AND (Carlot[CarNumberJ.CoLor='red')

--rHEN Counter += 1;
WRITElN('Number of red X20s is: ',Counter)

END;

A more convenient way is to use the WITH-DO statement:

Counter : = 0;
FOR CarNumber := 1 TO 100 DO

BEGIN
WITH Carlot[CarNumberJ DO

Page 9-11

----IF (ModeL='X20') AND~CoLor='red') THEN Counter += 1;
WRITElN('Number of rea-x20s is: ',Counterr-

END;

By specifying more than one variabLe-identifier, you can use the WITH-DO
statement to access fieLds that occur within record fieLds. For exampLe, to
access data in the record Carlot.Make.ModeL, you could write something Like
this:

WITH Carlot,Make DO
~deL := 'HatchBack';

This is equivaLent to:

WITH Carlot DO -- --WITH Make DO
~deL :=-rHatchBack';

CHAPTER 10

INPUT/OUTPUT FUNCTIONS AND PROCEDURES

The functions and procedures discussed in this chapter are used to transfer
data between your programs and the users of those programs, and between
programs and fiLes. The routines we describe in the first part of the
chapter, "Basic Functions and Procedures," are routines that users of
standard PascaL wiLL probabLy be famiLiar with. The Last part of the
chapter, "SpeciaL Functions and Procedures for FiLe I/O," contains
descriptions of functions and procedures that are particuLarLy for use with
the AMOS file structure.

NOTE: You wilL notice that we use the term "fiLe-identifier" when discussing
a fi Le variabLe, rather than the, simpLe term "fi Le" (sometimes used by other
PascaL books). This is to heLp avoid confusing the fiLe-identifier with the
"file specification," which is the specification of the actual AMOS disk
fiLe that is associated with the fiLe variabLe. Using an AMOS fiLe requires
that you first declare the fiLe-identifier and then associate it with the
fi Le specification of an AMOS disk fi Le. See Section 10.2, "Special
Functions and Procedures for File I/O," for more information on using AMOS
disk fi Les, especially Section 10.2.12, "OPEN.")

10.1 BASIC FUNCTIONS AND PROCEDURES

These are the Input/Output functions and procedures that users of standard
Pascal wilL be most familiar with. Later sections in this chapter discuss
speciaL input/output functions and procedures that allow your programs to
access the AMOS fiLe structure.

You wiLL often use the procedures GET, PUT, READ, READLN, WRITE, and WRITELN
for transferring data between your program and the users of your program.
These procedures are aLso used to transfer data between your program and
speciaL storage areas caLLed "fiLes." The other procedures discussed in
this section, PAGE, RESET, and REWRITE, are used only with fiLes. Remember
that when we taLk about "fiLes," we are referring to the speciaL data type
FILE that in ALphaPascaL can be associated with AMOS disk fiLes.

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10-2

Three special pre-declared file-identifiers exist that you should be aware
of:

INPUT

OUTPUT

Specifying INPUT tells AlphaPascal that you want
terminal as an input fiLe. For exampLe, when you use
get data from the terminaL keyboard:

READLNCEmployeeNumber,Dept);

you have impLicitly said:

READLN(INPUT,EmpLoyeeNumber,Dept);

to use the
READLN to

(In other words, if you omit a fiLe-identifier from the arguments
given to the READLN procedure, READLN assumes you want to use
INPUT.) INPUT is a TEXT file.

Specifying OUTPUT tells AlphaPascal to
output file. For example, when you write
display via the WRITELN procedure:

use the terminaL as an
data to the terminal

WRITELN(IEnter your Employee Number: I);

you have implicitly said:

WRITELN(OUTPUT,IEnter your Employee Number: I);

OUTPUT is a TEXT file.

KEYBOARD The KEYBOARD file-identifier acts much the same as INPUT, except
that if the terminal is in Charmode, the characters typed by the
user of your program will not echo on the terminaL display. For
example:

CHARMODE;
WRITELNC1Enter password: I);
READ(KEYBOARD,Password);

Asks the user of your program for a password, but does not display
the characters of the password as they are entered. When your
terminal is not in Charmode and you are using INPUT, the monitor
processes and fiLters your input. (For example, it appends a
line-feed to the end of a carriage return.) KEYBOARD and Charmode
give you a way to examine the input exactly as it is entered; the
monitor does no processing of the characters. That means that for
the exampLe above to work, after typing the password, the user
must type a carriage return AND a line-feed. KEYBOARD is a TEXT
file. (For information on Charmode, see Section 11.2.1,
"Charmode.")

INPUT, OUTPUT, and KEYBOARD are
specifications TTY:, TTY:, and KBD:.
these special devices.

associated with the special AMOS fiLe
See Section 10.2.1 for information on

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10-3

10.1.1 The FiLe Window

The use of many of the procedures discussed beLow is based on the concept of
a buffer variabLe, or "fiLe window."

At anyone time, onLy one component of a fiLe is directLy avaiLabLe for.
access. Whenever you decLare a fiLe variabLe, PascaL automaticaLLy
generates a "buffer variable" for that fiLe which you can think of as a
"window" that marks your current position in the fi Le. Certain fi Le
procedures automaticaLLy change the position of the window. You wiLL
reference the buffer' variable by using the file-identifier foLLowed by a
symboL. For exampLe, given:

TYPE ReceivabLes = FILE ~ CHAR;

The buffer variabLe
buffer variable to
information to it.

for the above fiLe is ReceivabLes A
•

retrieve information from the fiLe

10.1.2 EOF (End-of-fiLe Function)

You can use the
and to write

The EOF function alLows your program to test for end-of-fiLe condition when
inputting data from a sequentiaL fiLe. (You may not use EOF to test for the
end-of-file for a random file. A r~ndom fiLe returns an error after the end
is reached.) EOF is FALSE before the end of the fite is reached; it is TRUE
after the end of the fiLe has been reached.

As with the end-of-Line function (see beLow), EOF is set TRUE after the
end condition is reached. That means that the data in the buffer variable
when EOF is TRUE is not defined. You wouLd need to preserve the data in the
buffer variabLe in a variable before each GET if you were trying to get the
very Last eLement in a fiLe.

When EOF is TRUE, EOLN is aLso TRUE. EOF is vaLid for a sequentiaL fiLe of
any type, but EOLN is used onLy for files of type TEXT.

The folLowing sampLe program demonstrates the use of EOF. (If you are
interested in how the file being used for input ~as built, see the sampLe
program in Section 10.1.5.5, "Formatting Output.")

(Changed 30 April 1981)

I

I

INPUT/OUTPUT FUNCTIONS AND PROCEDURES

PROGRAM TestEOF;

VAR Year,Profit REAL;
Report FILE OF REAL;

BEGIN { TestEOF }
OPEN(Report,'YTD.DAT',INPUT);
WHILE NOT EOF(Report) DO
BEGI~ --
---vear := Report-;

WRITE('Year: ',Year);
GF.T(Report) ;
Profit := Report~;

{ Get data in file. }

WRITELN (' Profi t: ',Profi t) ;
GET(Report);

END
END { Test EOF }.

Page 10-4

Our AMOS file YTD.DAT contains data of type REAL that represents five years
and the profits made in those years. The output from the program looks like
this:

Year: 1971 Profit: 650000
Year: 1973 Profit: 1500467.678
Year: 1975 Profit: 2845000
Year: 1977 Profit: 56550000.547
Year: 1979 Profit: 10345000.347

10.1.3 EOLN (End-of-line Function)

The EOLN function allows your program to test for an end-of-line condition.
It is only used for files of type TEXT. EOLN is true after GET reads a
~arriage return or before READ reads a carriage return. (This is because
READ uses a pre-character look ahe~d scheme.)

Let's digress for a moment and talk about what we mean by "end-of-line." An
end-of-line is defined as a carriage return symbol. On the AMOS system, a
carriage return is followed by a line-feed; the line-feed is ignored by
READ. READLN will read a carriage return followp.d by any number of
line-feeds. WRITELN writes a carriage return/line-feed pair after it writes
its expression list. ,

EOLN returns the value TRUE after end-of-line has been reached with GET or
after the last item on the line has been read with READ; otherwise it
returns a FALSE. To use EOLN when you are inputting data from the user of
your program, invoke the function without any arguments. For example:

WHILE NOT EOLN DO

To test for end-of-line
specification of that file.

(Changed 30 April 1981)

in data received
For example:

from a file, specify the

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10-5

If you are using READ to input data, remember that you wiLL have to do a
READLN after end-of-Line has been reached to make it read past the Line-feed
at the end of the carriage return in order to reset EOLN to FALSE. For
exampLe:

PROGRAM TestEOLN { Count how many characters are in input };

VAR Source
Counter

CHAR { Input };
INTEGER;

BEGIN { TestEOLN }
WRITE('Enter a Line of characters: I);
READ(Source);
Counter := 0;
WHILE NOT EOLN DO

BEGIN
WRITE(Source);
Counter += 1;
READ(Source)

END;
WRITELN;
WRITELN('-- number of characters = I,Counter);
READLN { Restore EOLN }

END { TestEOLN }.

The program above keeps reading characters until the user enters a RETURN
(that is, until EOLN is TRUE). Then it prints the number of characters in
the input string. For example, a sample run of the program might look like
this:

Enter a line of characters: NOW IS THE TIME
NOW IS THE TIME
-- number of characters = 15

10.1.4 GET and PUT

GET and PUT are the two basic file I/O procedures. You may use GET and PUT
on fiLes of any type, not just TEXT fiLes.

10.1.4.1 GET - GET advances the buffer variabLe to the next fiLe
component. In doing so, it assigns the vaLue of that fiLe component to the
buffer variable. The invocation takes the form:

GET(fiLe-identifier);

INPUT/OUT~UT FUNCTIONS AND PROCEDURES Page 10-6

where fiLe-identifier is a fiLe variabLe. If doing a GET moves the buffer
variabLe past the end of the fiLe, then the EOF function returns TRUE, and
the contents of the buffer variabLe is undefined. So, save the contents of
the buffer variabLe into another variabLe before doing a GET, if you need to
access the very Last item in the fiLe.

10.1.4.2 PUT - PUT writes the vaLue of the buffer variabLe into the
component at the current fiLe position. The procedure invocation takes the
form:

PUT(fiLe-identifier);

where fiLe-identifier is a fiLe variabLe. The EOF function remains TRUE.

10.1.4.3 SampLe Program Using GET and PUT - BeLow is a very simpLe
program using GET and PUT. Notice that we use the OPEN statement (described
in Section 10.2.12) to associate the fiLe-identifier DataFiLe with an AMOS
disk fiLe, NUMBER.DAT. The RESET procedure cLoses the fiLe and re-opens it
for input.

PROGRAM FiLeAccess;

VAR DataFiLe
Entry

Counter

FILE OF CHAR;
CHAR;
INTEGER;

BEGIN { FiLeAccess }
OPEN(DataFiLe,'NUMBER.DAT',OUTPUT);
FOR Counter := 1 TO 5 DO

BEGIN
WRITE('Enter data: I);

READLN(Entry);
DataFiLe ft := Entry;
PUTCDataFi Le)

END;

{ Open NUMBER.DAT for output}

{ Get data from terminaL}

{ Assign data to buffer var }
{ Write to fiLe}

RESET(DataFiLe); { CLose fiLe and re-open for input}
WHILE NOT EOF(DataFiLe) DO
{ Get data tiLL fiLe is empty}

BEGIN
Entry := DataFiLe A

;

WRITELN(Entry);
GET(DataFiLe) { Get data from fiLe}

END;
END { FiLeAccess }.

NOTE: If you use OPEN to open a fiLe for input, or if you use RESET, the
first fiLe component is pLaced into the buffer variabLe for you.

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10-7

10.1.5 READ, READLN, WRITE, and WRITELN

The READ and READLN procedures are eLaborations of the GET procedure
(discussed above). You shouLd use them onLy for TEXT fiLes and terminaL
input. WRITE and WRITELN are eLaborations of the PUT procedure (aLso
discussed above); they are for use onLy with TEXT fiLes and terminaL output.

ALthough we say that these procedures are for use with TEXT fiLes, you wiLL
notice throughout this book that we have made wide use of them for
transferring data between programs and the terminaL. Remember that your
terminaL is a TEXT fiLe. Two TEXT fiLes have been pre-decLared for use
with the--terminaL: INPUT and OUTPUT. If you omit the fiLe-identifier from
the List of arguments given to READ and READLN, th~ procedures assume that
you want to use the fiLe INPUT. No fiLe-identifier in the List of arguments
given to WRITE and WRITELN indicates that you want to use the fiLe OUTPUT.

One Last
type CHAR.

note on these procedures-- they convert REAL or INTEGER data to
For exampLe, when you say:

WRITE(ResuLt);

where ResuLt is an INTEGER variabLe containing the number 12, WRITE dispLays
the characters "12" on your terminaL. This is what you want to do when
you send data to a terminaL, but be carefuL in using READs and WRITEs on
actuaL disk fiLes. Consider performing fiLe operations on a Large fiLe of
INTEGER data. It wouLd be very inefficient to handLe that data in character
form, since every time you manipuLated it, you wouLd have to re-convert it.
It wouLd be far better to use GETs and PUTs rather than READs and WRITEs to
handLe the numeric data, since GETs and PUTs do no conversion.

10.1.5.1 READ - The READ procedure inputs a List of variabLes from the
terminaL or a fiLe. You shouLd onLy use READ for TEXT fiLes. NOTE: READ
does not read an entire Line of data up to a carriage return/Line-feed.

Given the fiLe variabLe Data, the procedure READ(Data,Character) performs
these actions:

1. Scans over and ignores Line-feed characters;

2. Character:= Data A
;

3. GET(Data);

The procedure invocation takes the form:

READ(fiLe-identifier,List-of-variabLes);

If you omit the fiLe-identifier:

READ(List-of-variabLes);

INPUT/OUT~UT FUNCTIONS AND PROCEDURES Page 10-8

READ assumes that you want to use the file INPUT (that is, that you want to
input from the terminal keyboard).

The READ arguments must be separated by commas. For exampLe:

READ(DataFiLe,CustomerID,CustomerName);

where DataFiLe is a fiLe variabLe, and CustomerID and CustomerName are
variabLe identifiers. Or:

READ(Linesize,Pagesize,PageNumber);

where Linesize, Pagesize, and PageNumber are variabLes to be input from the
terminaL.

NOTE: If you input more than one variable via the READ or READLN procedure,
those vaLues should not be input separated by commas. For exampLe, given:

READ(A,B,C);

The response:

1 2 3

is Legal, but the response:

1,2,3

is not vaLid. If you respond with an iLLegaL number (for exampLe, you input
an "A" for a variabLe of type INTEGER), ALphaPascaL assigns a zero to that
variabLe, instead of generating an error. It is the responsibiLity of your
program to check the vaLidity of data input by the READ procedure.

10.1.5.2 READLN - READLN inputs a List of variabLes from a file or the
terminaL keyboard. You shouLd onLy use READLN on TEXT fiLes. It differs
from READ in that it reads an entire Line of data up to a carriage
return/Line-feed pair. Given READLN(Data,Line), where Data is a fiLe
variabLe, READLN performs the foLLowing actions:

Line := Data A
;

WHILE NOT EOLN(Oata) DO
GET (Data);

GETCData)

In other words,
return/Line-feed
takes the form:

unti L
pair),

we reach the end of the line
read data into the variabLe Line.

READLN(fiLe-identifier,List-of-variabLes);

(a carriage
The invocation

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10-9

where fiLe-identifier is a fiLe variabLe associated with the fiLe you want
to read from. If you omit the fiLe-identifier:

READLN(List-of-variabLes);

READLN reads from the pre-decLared fiLe INPUT; that is, it reads from the
terminaL.

Separate READLN arguments with commas.

10.1.5.3 WRITE - The WRITE procedure writes a List of expressions to a
fiLe or a terminaL dispLay. To print a string, encLose it within singLe
quotation marks. You must onLy use WRITE for TEXT fiLes. WRITE does not
write an end-of-Line marker (carriage return/Line-feed pair) after writing
the specified data. To begin a new Line, use the WRITELN procedure. The
invocation takes the form:

WRITE(fiLe-identifier,expression-List);

where fiLe-identifier is a fiLe variabLe associated with the AMOS fiLe you
want to write the data to, and expression-List is the data to be written.
The expression List may contain string LiteraLs, constants, variabLes of
type INTEGER, REAL, CHAR, PACKED ARRAY[1 •• nJ OF CHAR, and STRING. For
exampLe:

WRITE(NewFiLe,'Two INTEGERs foLLowed by STRING:',INT,12,'IsaString');

If you omit the fiLe-identifier:

WRITE(expression-List);

WRITE assumes you want to write to the pre-decLared fiLe OUTPUT (the
terminaL dispLay).

10.1.5.4 WRITELN - WRITELN outputs a List of expressions to a fiLe or
terminaL. To print a string LiteraL, encLose it within singLe quotation
marks. You must onLy use WRITELN with TEXT fiLes. WRITELN differs from
WRITE in that it writes an end-of-Line marker (carriage return/Line-feed
pair) after writing the specified data. The invocation takes the form:

WRITELN(fiLe-identifier,expression-List);

where fiLe-identifier is a fiLe variabLe, and expression-List is a List of
expressions to be written. Separate the WRITELN arguments with commas. If
you omit the fiLe-identifier:

WRITELN(expression-List);

INPUT/OUT~UT FUNCTIONS AND PROCEDURES Page 10-10

WRITELN assumes tha~you want to write to OUTPUT (the terminaL dispLay).
You may write just a carriage return/Line-feed to a fiLe or terminaL by
omitting the expression-List:

WRITELN(fiLe-identifier);

or:

WRITELN;

10.1.5.5 Formatting Output - ALphaPascaL uses
outputting data. STRING data and data of type
Lead:ing spaces. Numbers are written different ly,
are REAL or INTEGER.

certain conventions for
CHAR are displayed with no
depending on whether they

AlphaPascal w~Ll aLways print REAL and INTEGER numbers in decimal notati0n
if the number is less than 12 digits. (If the number is larger than 12
digits, the number wiLL be printed in scientific notation.> If the
fractional part of a REAL number is greater than 11 digits, that number will
be printed in scientific notation.

INTEGER numbers are printed as a sequence of digits, possibly preceded by a
minus sign. INTEGER numbers are not printed with a leading space. REAL
numbers are printed with a leading space, unless the number is negative, in
which case the minus sign takes up that space. REAL numbers are accurate to
nearLy 12 digits. They are always rounded to 11 digits before being
displayed to avoid annoying outputg such as 4.9999 ••• instead of 5.

Both WRITE and WRITELN aLlow you to incLude optional
additionaL formatting instructions to ALphaPascal.
arguments is (for both WRITE and WRITELN):

arguments that give
The form of these

WRITE(expression1 : X : Y,expression2 X: Y, ••••);

where X specifies a minimum fieLd width, and Y specifies the number of
digits to write after the decimal point. X and Y must both be of type
INTEGER, and may be constants or variabLes. If you are not printing a REAL
number, you may not specify the Y argument.

The minimum fieLd width specifies the minimum number of spaces in which the
number is to be printed. For exampLe, if you want AlphaPascal to print the
number right-justified in a field of ten spaces, use the vaLue 10 for X.
This gives the minimum fieLd in which to print the number; if the number
is Larger than the specified fieLd (for exampLe, it is 11 digits),
AlphaPascaL wiLL not truncate the number, but will use the necessary number
of spaces.

If the number is a REAL number, you may also specify Y, the number of digits
to be printed to the right of the decimal point. (For example, for doLlar
values, you would probably want to specify 2.> AlphaPascal rounds the REAL
number to the specified number of places; it does not truncate it.

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10-11

Although you will probably find the optional formatting arguments to be of
most use in printing numbers, you may also print data of type CHAR or STRING
specifying a minimum field width. By combining formatting of numbers and
strings, you can construct tables and charts in which titles and numbers are
neatly lined up. See the output of the sample program below for a simple
example.

Here are some sample outputs (the "~" symbol indicates a blank):

WRITEC1, -1, 1.0, -1.0);

1-1 ~1-1

WRITE(O.O, 1.0, 100.010, 0.0012, 1E12, 1.1E12, -1.23E-12);

~0~1~100.01~.0012~1E12~1.1E12-1.23E-12

WRITECO.0:6:2, 1.0:6:2, 100.010:6:2, 0.0012:6:2, -1.23E-12:6:2);

~~0.00~~1.00~100.01~~~.OO~-O.OO

Below we give a sample program that demonstrates both formatted output and
the use of files:

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10-12

PROGRAM FormatOutput;

VAR Report FILE ~ REAL;
Year,Profit : REAL;

I : INTEGER;

BEGIN { FormatOutput }
OPEN(Report,'YTD.DAT',OUTPUT);
FOR I := 1 TO 5 DO

{ Put data in fiLe. }

BEGIN { Loop }
WRITE('Enter Year: ');READLN(Year);
Reportft:=Year;
PUT (Report);
WRITE('Enter Profit: ');READLN(Profit);
Reportft:=Profit;
PUT (Report)

END { Loop };

RESET(Report); {Open fiLe again-- for input}

WRITELN('Year': 6 ,'Profit' : 18); { Print header}
WRITELN('-------------------------------');
WRITELN;

WHILE NOT EOF(Report) DO
BEG~{ WhiLe-Loop ~

Year := Report ft ;
GET (Report);
Profit := Report ft

;

GET(Report);
WRITELN(Year : 6,Profit

END { WhiLe-Loop };
END {formatOutput }.

{ Print contents untiL End of file}

20 2); { Format output }

The program above prints a neat tabLe of the form:

Year

1971
1973
1975
1977
1979

Profit

650000.56
1205600.34
1865030.89

100450677.34
82380000.90

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10-13

10.1.6 PAGE

The Page procedure writes a form-feed to the specified fiLe. The invocation
takes this form:

PAGE(fiLe-identifier)

where fiLe-identifier is a fiLe variabLe.

10.1.7 RESET

The RESET procedure "rewinds" your fiLe to the beginning. In effect, it
performs a CLOSE and then OPENs the fiLe for input. The invocation takes
the form:

RESET(fiLe-identifier)i

where fiLe-identifier is a fiLe variabLe that is associated with the fiLe
you want to reset. As does OPEN, RESET inputs the first fiLe component into
the buffer variabLe for you.

10.1.8 REWRITE

The REWRITE procedure opens a fiLe for output. In effect, it performs a
CLOSE foLLowed by an ERASEi then it opens the fiLe for output. The
invocation takes the form:

REWRITE(fiLe-identifier)i

where fiLe-identifier is a fiLe variabLe that is associated with the fiLe
you want to rewrite. REWRITE has the abiLity to generate fiLe names if no
fiLe specification is associated with the specified fiLe-identifier. These
fiLe names begin with TEMPAA.TMP, and go on to TEMPAB.TMP, TEMPAC.TMP, •••
TEMPZZ.TMP. For exampLe, the program:

prints:

PROGRAM TestRewritei

VAR NewFiLe: FILE OF CHARi

BEGIN { TestRewrite }
REWRITE(NewFiLe)

PFILE(NewFiLe)
END { TestRewrite }.

TEMPAA.TMP

{ No fiLe specification associated with
NewFiLe }i

{ Print fiLespec now associated with NewFiLe }

INPUT/OUtPUT FUNCTIONS AND PROCEDURES Page 10-14

10.2 SPECIAL FUNCTtoNS AND PROCEDURES FOR FILE I/O

Standard Pascal gives you several functions and procedures that allow you to
read and write data from a file (e.g., GET, PUT, READ, etc.). We taLked
about these routines in the sections above. Although you wiLL often use
most of the functions and procedures discussed in those earlier sections to
transfer data between the terminal and your programs, AlphaPascal aLso
provides a number of additional functions and procedures that allow you to
work with AMOS disk fiLes.

Using the functions and procedures we discuss beLow, you can search for,
define, open and close sequentiaL and random AMOS files. The functions and
procedures we discuss in the folLowing sections are:

LOOKUP
OPEN
OPENI
OPENO
OPENR
CLOSE
FSPEC

EXTENSION
GETFILE
SETFILE
CREATE
SEEK

ERASE
FILESIZE
JOBDEV
JOBUSER
PFILE
RADSO
RENAME

Searches for specified file; returns BooLean vaLue.
Opens fiLe in input, output, or random mode.
Opens fiLe in input mode.
Opens fiLe in output mode.
Opens file in random mode.
Closes file associated with specified fiLe-identifier.
Returns number of characters in fiLespec; associates
fiLespec with file-identifier.
Forces specified extension into fiLe specification.
Reads information in fiLe specification.
PLaces information into file specification.
ALLocates random fiLe bLocks
Positions random fiLe to specified fiLe record.

Erases specified file from disk.
Returns number of disk bLocks used by fiLe.
Returns device user is logged into.
Returns account user is Logged into.
Prints name of fiLe associated with specified channel
Converts three-character string to RADSO format.
Renames specified fiLe.

10.2.1 Information on AMOS FiLes

The AMOS fiLe system recognizes two major types of fiLes: random and
sequential. Creating, opening, and performing I/O for the two types of
files differs somewhat, so it is important to understand the differences
between them.

Before we discuss AMOS disk files, we would like to mention again that the
pre-declared file-identifiers INPUT, OUTPUT, and KEYBOARD have associated
with them special AMOS fiLe specifications: TTY:, TTY:, and KBD:.

TTY: specifies your terminaL. (For example, if you give TTY: as the fiLe
specification to the compiLer listing option, $L, the compiler sends the
listing to your terminaL display.) The KBD: specification is equivaLent to
the TTY: specification except that it prevents input from being echoed to

•

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10-15

the terminal display if the terminal is in Charmode. <See Section 11.2.1,
"Charmode," for information on charmode.}

NOTE: The normal end-of-line separator is a carriage return. NormaLly, the
monitor appends a line-feed character onto the end of a carriage return. If
you are in Charmode and are using the KBD: device, the monitor does not
automaticaLly append a line-feed onto the end of a carriage return.
Therefore, if you are using KBD: in Charmode you shouLd use GETs and PUTs to
retrieve data, since READ has a one-character Lookahead buffer which will
cause it to wait on the line-feed when it encounters a carriage return.

10.2.1.1 Random Files - Random file blocks are aLLocated contiguously on
the disk, and access to such a fiLe is random; that is, by computing an
offset, the system can access anyone record in that fiLe without accessing
any other record. Random fiLe bLocks are 512 bytes. To create a random
fiLe, you wiLL use the CREATE procedure.

One advantage in using a random file is that access to that fiLe is very
efficient; using the SEEK procedure, you may randomly position to any record
in that fiLe without stepping through prior records. In addition, a random
file is the only file which you may read from and write to without cLosing
and opening it again.

Do not use READ and WRITE to get data from a random fiLe; use GETs and PUTs.
You shouLd be aware that the order in which you do GET and PUT procedures
makes a difference. If you do a GET and then a PUT to update information in
a random fiLe, the last record retrieved via a GET wilL be updated; if you
do a PUT, and then do a GET, you wiLL get the record after the one you just
updated. A series of GETs wiLL retrieve successive records in a random fiLe
just as it wiLL a sequentiaL fiLe. A series of PUTs wiLL write to
successive records.

The EOF function does not return TRUE after the end of a random fiLe has
been reached; instead, an error is generated. This error wilL aLso be
generated if you SEEK a record beyond the end of the fiLe and then attempt a
GET or PUT.

10.2.1.2 SequentiaL Files - SequentiaL fiLe bLocks are aLlocated in a
Linked List on the surface of the disk, with one word at the front of each
bLock containing the disk address of the next bLock in the fiLe. Access to
such a file is sequential, since the system has to read each block in order
to find out where a specific bLock is on the disk. SequentiaL fiLe blocks
are 510 bytes. The EOF function returns TRUE after the end of a sequentiaL
fiLe has been reached.

INPUT/OUT?UT FUNCTIONS AND PROCEDURES Page 10-16

10.2.1.3 Logical Records - Within each disk block of a file, you can have
one or more "logical records." The size of a logical record is determined by
your programs. For example, if a grouping of data in your data file is
CustomerName, 30 bytes; CustomerAddress, 50 bytes; and, SocialSecurity, 9
bytes, your fiLe LogicaL records might be 89 bytes. (For information on
blocking Logical records into disk bLocks, see Section 12.2.3, "CREATE.")

A random file record may not be larger than 512 bytes, and maximum random
fiLe size is 65535 records. A sequentiaL fiLe Logical record can cross
bLock boundaries, and so may be larger than 512 bytes.

10.2.1.4 Opening and Setting Up FiLes - The usuaL sequence of events for
opening and using a fiLe goes this way:

1. DecLare a fiLe variabLe. For exampLe:

2.

VAR DataFiLe: FILE Q[CHAR;

This variabLe estabLishes the file "channeL"; the communication
Line over which your program wiLL transfer data in and out of the
fiLe associated with that channeL. In our discussions beLow, the
term "fiLe-identifier" refers to the fiLe variabLe associated with
the actuaL AMOS fiLe.

Before you can
specification
decLared, and
fiLe you wiLL

use an AMOS fiLe, you have to associate the
of that fJ Le with the fi Le-identifier you have

you must open the fiLe. This teLLs AMOS what AMOS
be accessing via the fiLe-identifier.

An AMOS fiLe specification consists of:

"Device Unit FiLename Extension Project-number Programmer-number

For exampLe:

DSKO:CUSTID.DAT[100,3J

where DSK is the Device, 0 is the Unit, CUSTID is the Filename, OAT
is the Extension, 100 is the Project-number, and 3 is the
Programmer-number. You can use severaL procedures to associate the
fiLe specification with the fiLe-identifier (e.g., FSPEC, SETFILE,
EXTENSION). You can then use OPENI, OPENO, OPENR, RESET, or
REWRITE to open the fiLe. Or, you can combine these two steps by
using OPEN, which takes the form:

OPEN(fiLe-identifier, fiLespec, mode);

where fiLe-identifier is a fiLe variabLe; fiLespec is the fiLe
specification in string LiteraL or variabLe form, and mode (INPUT,
OUTPUT, or RANDOM) teLLs ALphaPascaL whether the file is going to
be used for input, output, or (in the case of random files), random

INPUTIOUTPUT FUNCTIONS AND PROCEDURES Page 10-17

update. With INPUT and RANDOM modes, besides associating the
file-identifier with a file specification, OPEN also inputs the
first record of the file for you.

3. Once you have set a file up to start doing 1/0, you can use GETs
and PUTs or READs and WRITEs to transfer data between your program
and the file.

4. The final stage in using an AMOS file is to close it, using the
CLOSE procedure. Closing the file makes sure that the last record
updated in the file gets written out to the file, and makes the
file available for being opened again. (You can't open an open
file.) It also makes the file-identifier ~vailable for association
with a possibly different AMOS file. Files are automatically
closed when you leave the procedure in which they were declared.

A simple case of opening and reading a file might look something like this:

PROGRAM TestFile;

VAR CustID
UserFile

FILE OF STRING { Declare file-identifier };
STRING;

BEGIN { TestFile }
WRITE('Please enter name of your data file: I);

READLN(UserFile);

OPEN(CustID,UserFile,INPUT)
WRITE(CustID A)
CLOSE(CustID)

END { TestFile }.

{ Open the file; get the data };
{ Display data in buffer };
{ Close the file}

The small program above asks the user for a file specification and opens
that file. The actual process of using the OPEN procedure inputs the first
record of that file into the buffer variable automatically assigned to the
file-identifier, CustIDA.

10.2.2 CLOSE

You will use the CLOSE procedure to close a sequential file that is open for
output. Closing the file ensures that the last record will get written to
the file; it also enters the file into the disk directory.

You may not OPEN a file that is already open, so if you have been using a
sequential file for output, and you want to use it for input, you must first
close it and then re-open it for input. The invocation takes the form:

CLOSE(file-identifier);

where file-identifier is the file variable associated with the AMOS file you
want to close. For example, given:

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10-18

VAR TaxRecs: FILE.Q!. CHAR;

once we have opened and used the AMOS file associated with TaxRecs, we must
close it:

CLOSE (TaxRecs);

As your program leaves each procedure or function, any fiLes declared in
those routines are automaticalLy closed for you. However, using the CLOSE
procedure ensures that if you are forced to do a hasty and untidy exit from
your program (for example, if a system error occurs), the last record of the
file will be written when the CLOSE procedure is executed. Closing a file
also makes its file-identifier avaiLable for use with another fiLe.

10.2.3 CREATE

ALL random files must be pre-alLocated on the disk before you can use them.
(That means that their maximum size must be established before you use them.
You can copy random fiLes to sequential fiLes and vice versa, so if you are
in doubt about the uLtimate size of a fiLe that you are buiLding, it is a
good idea to write the data to a sequentiaL fiLe first, then copy the file
to a random fiLe after you know how many records have to be copied.)

The CREATE procedure aLLocates a random fiLe.
form:

CREATE(file-identifier,sfze);

The invocation takes the

where fiLe-identifier is a fiLe variabLe associated with the AMOS fiLe you
want to create, and size is a variabLe of type INTEGER that designates the
number of disk bLocks you want the fiLe to contain.

NOTE: You must associate an AMOS fiLe specification with the fiLe-identifier
before using CREATE. (You may use FSPEC, SETFILE, or OPEN (with the RANDOM
mode) to do so.) For exampLe:

PROGRAM RandomFiLe;

VAR RanFiLe
Counter

FILE OF STRING;
INTEGER;

BEGIN { RandomFiLe }
Counter := FSPEC(RanFiLe,'NEWFIL','DAT');
CREATE(RanFiLe,20)

END { RandomFiLe }.

The program above creates the 20-block random fiLe NEWFIL.DAT. The FSPEC
function assigns the fiLespec NEWFIL.DAT to the fiLe variabLe FILE RanFiLe.

NOTE: CREATE causes an error if the fiLe you are creating aLready exists or
if there are not enough contiguous bLocks avaiLabLe for it to be aLLocated

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10-19

on the disk.

If you wish to create a random fiLe capabLe of hoLding X records of type T,
then the number of bLocks it wiLL require is:

1 + X DIV (512 DIV SIZEOF(T»

10.2.4 ERASE

The ERASE procedure erases a fiLe from the disk. The invocation takes the
form:

ERASE(fiLe-identifier);

where file-identifier is the file variabLe associated with the AMOS fiLe you
want to erase.

ERASE does not return an error if the specified fiLe is not there. This
makes it very usefuL for ensuring that the creation of new fiLes wilL be
successfuLly carried out. For example, since CREATE (see above) and OPENO
return an error if the fiLe you want to create aLready exists, you can use
ERASE before using OPENO or CREATE to make sure that the fiLe you want to
open does not aLready exist. If the fiLe doesn't exist, ERASE can't erase
it, but no error is generated and no harm is done. If the fiLe does exist,
ERASE erases it, and Leaves the way cLear for OPENO and CREATE.

We've rewritten the smaLL program in Section 10.2.3, "CREATE," to include
the ERASE procedure:

PROGRAM TestErase;

VAR RanFiLe FILE OF CHAR;
Counter INTEGER;

BEGIN { TestErase }
Counter := FSPEC(RanFile,'NEWFIL','DAT');
ERASECRanFiLe); {Make sure fiLe doesn't aLready exist}
CREATE(RanFiLe,20)

END { TestErase }.

10.2.5 EXTENSION

The EXTENSION procedure forces the specified extension in the specification
of the AMOS fiLe associated with the specified fiLe variabLe. The
invocation takes the form:

EXTENSION(fiLe-identifier,ext);

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10-20

where file-identifier is the file variable associated with the AMOS file,
and ext is a string LiteraL or variable that designates the extension you
want to force to the file specification. For example:

PROGRAM TestExtension;

VAR TheFile
Counter

FILE OF CHAR;
INTEGER;

BEGIN { TestExtension }
Counter := FSPEC(TheFiLe,'NEWFIL','DAT');
EXTENSION(TheFile,'LST');
PFILE(TheFile)

END { TestExtenstion }.

The program above associates the AMOS file NEWFIL.DAT with the
fiLe-identifier TheFile. Then it uses the EXTENSION procedure to change the
extension from DAT to LST. (Notice the use of the PFILE procedure to print
the AMOS file specification.) NOTE: EXTENSION does not change the
extension of the fiLe on the disk, it onLy changes the extension of the
fiLe specification associated with the fiLe-identifier.

10.2.6 FILESIZE

The FILESIZE function returns the number of disk blocks taken up by the AMOS
fiLe associated with the specifieq file variabLe. You must have prevlousLy
used the OPEN or LOOKUP procedure on the AMO~ fiLe. The invocation takes
the form:

FILESIZE(file-identifier);

where file-identifier is a fiLe variabLe. For exampLe:

PROGRAM TestFileSize;

VAR TheFiLe
Counter

FILE OF CHAR;
INTEGER;

BEGIN { TestFiLeSize }
Counter := FSPEC(TheFiLe,'BIGFIL','DAT');
CREATE(TheFiLe,50);
WRITELN('The number of disk blocks is: ',FILESIZE(TheFiLe»

END { TestFiLeSize }.

First the program above creates the random fiLe BIGFIL.DAT, then it prints:

The number of disk bLocks is: 50

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10-21

10.2.7 FSPEC

The FSPEC function performs two main functions: it associates the specified
fiLe variabLe with the specified AMOS fiLe, and it returns the number of
characters in the specified variabLe or string LiteraL that make up the file
specification part. The invocation takes the form:

FSPEC(fiLe-identifier, fiLename, defauLt-extension);

where fiLe-identifier is a fiLe variabLe with which you want to associate
the AMOS fiLespec, filename gives the name of the AMOS file, and
defauLt-extension gives the extension you want to use if no extension is
suppLied. For exampLe:

PROGRAM TestFspec;

VAR DataFiLe: FILE OF CHAR;
UserFiLe : STRING;
Counter : INTEGER;

BEGIN { TestFspec }
WRITE('PLease enter fiLe specificaton: I);

READLN(UserFiLe);
Counter:= FSPEC(DataFiLe,UserFiLe,'DAT');
WRITELN('Number of characters: ',Counter);
WRITE('FiLe spec is: I);

PFILE(DataFiLe)
END { TestFspec }.

You can use FSPEC to input an entire command Line, not just a fiLe
specification. If the user of the program enters:

NEW, OLD

the program prints:

Number of characters: 3
FiLe spec is: NEW.DAT

Then we can use the DELETE procedure:

DELETE(UserFiLe,1,Counter)

to Leave the remainder of the user input ('OLD') in UserFiLe.

(Note that we used PFILE to print the name of the fiLe associated with the
fiLe variabLe DataFiLe, and that the FSPEC function added the defauLt
extension of .DAT.)

INPUT/OUT~UT FUNCTIONS AND PROCEDURES Page 10-22

10.2.8 GETFILE

The GETFILE procedure allows you to find out exactly what file specification
is associated with a specific file-identifier. The invocation takes the
form:

GETFILE(fiLe-identifier, Dev, Unit, File1, FiLe2, Ext, Proj, Prog);

The arguments are declared INTEGER variables. The data is returned as
integers, because fiLe specifications are stored internaLly by AMOS in a
speciaL numeric form called "RAD50." RAD50 format compresses three bytes of
ASCII data into two bytes of numeric data. (In other words, GETFILE returns
the fiLe specification in RAD50 form.) FiLe1 and FiLe2 are the first three
and second three RAD50 characters of the filename.

ALthough GETFILE may not sound too useful by itseLf, by doing GETFILEs on
more than one file you can compare eLements of the specifications for those
fiLes, and by using SETFILE (described in Section 10.2.20, beLow), you can
actuaLLy change those eLements. For exampLe, consider the program beLow.
It asks for the specifications of two data fiLes needed for input; if those
two fiLes do not exist on the same device and unit, the program moves the
fiLes to the System Device, DSKO:, so that they are on the same disk
device and unit.

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10-23

PROGRAM;

TYPE DataFiLe = FILE ~ CHAR;

VAR Dev, Unit, FiLeA, FiLeB, Ext, Proj, Prog : INTEGER;
Dev1, Unit1, FiLeA1, FiLeB1, Ext1, Proj1, Prog1 : INTEGER;
MaiLLabeL, Addresses: DataFiLe

BEGIN { Main Program }
WRITELN('Enter the specifications of your two data fiLes');
WRITELN;
WRITE('FiLe #1: ');READLN(UserSpec);
WRITEC'FiLe #2: ');READLN(UserSpec1);

OPEN(MaiLLabeL,UserSpec,OUTPUT); { Open the user -specified fiLes}
OPENCAddresses,UserSpec1,OUTPUT);
GETFILE(MaiLLabeL,Dev,Unit,FiLeA,FiLeB,Ext,Proj,Prog);
GETFILE(Addresses,Dev1,Unit1,Fi LeA1,Fi LeB1,Ext1,Proj1, Prog1);

{ See if fiLes are on the same disk}
IF (Dev <> Dev1) OR (Unit <> Unit1) THEN

BEGIN
WRITE('You have asked for fiLes: I); PFILE(UserSpec);
WRITE(' and I); PFILE(UserSpec1); WRITELN; WRITELN;

WRITELN('Both of your data fiLes must be on the same');
WRITELNC'device and unit; we are moving them both to DSKO:.');

SETFILE(MaiLLabeL,RAD50C'DSK'),RAD50('0'),Fi LeA,Fi LeB, Ext,Proj,Prog);
SETFILECAddresses,RAD50C'DSK'),RAD50('0'),FiLeA1,FiLeB1,

Ext1,Proj1,Prog1)
END;

WRITEC'Your fiLes are: ');PFILE(UserSpec);
WRITEC' and ');PFILE(UserSpec1);

END { Main Program }.

10.2.9 JOBDEV

The JOBDEV function takes two INTEGER variabLe arguments. The invocation
takes the form:

JOBDEVCDev,Unit);

JOBDEV returns in Dev the device you are currentLy Logged into (in RAD50
form), and returns in Unit the device unit you are currentLy Logged into (in
INTEGER form).

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10-24

10.2.10 JOBUSER

The JOBUSER function takes two INTEGER variable arguments. The invocation
takes the form:

JOBUSER(Project,Programmer)i

It returns in Project the project number (in decimal) you are logged into,
and returns in Programmer the programmer number (in decimal) you are logged
into.

10.2.11 LOOKUP

The LOOKUP function returns a TRUE or a FALSE depending on whether the
specified file exists. The invocation takes the form:

LOOKUP(fiLe-identifier)i

where fiLe-identifier is the fiLe variabLe associated with the AMOS fiLe you
are Looking for. Since several fiLe procedures generate an error if the
fiLe specified to them aLready exists (e.g., OPENO, CREATE), whiLe other
procedures generate an error if the fiLe doesn't exist, doing a LOOKUP
before one of these procedures is a good idea. For example:

PROGRAM LookForIti

VAR FiLeID: FILE OF CHARi
Target : STRING;
Query CHARi
X : INTEGERi

BEGIN { LookForlt }
WRITE('Enter the fiLe you want to write to: I); READLN(Target)i
X := FSPEC(FiLeID,Target,'DAT')i
IF LOOKUPCFiLeID)
-THEN

---sEGIN
WRITE('That fiLe aLready exists. Destroy it? (Y or N): I);
READLN(Query);
.!£.Query = 'N' THEN !!!!.(PROGRAM);
ERASE(FiLeID);
WRITELNC'FiLe erased.')

END;
OPENOCFiLeID);
WRITELN('FiLe ',Target,' opened for output.')

END { LookForIt }.

The program above checks to see if the file specified by the user aLready
exists. If the fiLe exists, the user is asked to decide whether or not to
save the fiLe, or get rid of it and start a new one of that name.

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10-25

10.2.12 OPEN

The OPEN procedure opens a sequentiaL fiLe for input or output, or opens a
random fiLe for both input and output. The invocation takes the form:

OPEN (fiLe-identifier, fiLespec, mode);

where fiLe-identifier is a fiLe variabLe, and fiLespec is a vaLid AMOS fiLe
specification. Mode may be INPUT, OUTPUT, or RANDOM, and specifies whether
the fiLe is to be a sequential file used for input or output, or (in the
case of RANDOM), whether it is to be a random file used for input and output
both. If you are using OPEN in OUTPUT mode, it deLetes the specified fiLe
if it aLready exists. Default extension is .DAT. For exampLe:

OPEN (INP, 'TEST', RANDOM);

associates the AMOS file TEST.DAT with the file-identifier INP, and opens
the random file for input and output. Most of the sampLe programs in this
chapter use the OPEN procedure.

NOTE: OPEN in INPUT or RANDOM mode inputs the first record into the buffer
variable.

10.2.13 OPENI

OPENI is a variation of the OPEN procedure; it opens a sequential fiLe for
input. The invocation takes the form:

OPENI(file-identifier);

where fiLe-identifier is a file variable associated with the AMOS file you
want to open. If the fiLe does not exist or if the fiLe-identifier has not
been associated with an AMOS fiLe (via an FSPEC or SETFILE) OPENI generates
an error. OPENI inputs the first record of the fiLe into the buffer
variable.

10.2.14 OPENO

OPENO is a variation of the OPEN procedure; it opens a sequentiaL fiLe for
output. The invocation takes the form:

OPENO(fiLe-identifier);

where fiLe-identifier is the fiLe variabLe associated with the AMOS fiLe you
want to open. If the file already exists or if the file-identifier has not
been associated with an AMOS fiLe (via FSPEC or SETFILE), OPENO generates an
error.

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10-26

10.2.15 OPENR

OPENR is a variation of the OPEN procedure; it opens a random fiLe for input
and output. The fiLe must exist, and may not aLready be open. The
invocation takes the form:

OPENR(file-identifier);

where fiLe-identifier is the fiLe variabLe associated with the AMOS fiLe you
want to open.

NOTE: OPENR inputs the first record of the fiLe into the buffer variabLe.

10.2.16 PFILE

The PFILE procedure dispLays on your terminaL the
associated with the specified fiLe-identifier.
form:

PFILE(fiLe-identifier)i

AMOS fiLe specification
The invocation takes the

where fiLe-identifier is a fiLe variabLe associated with the AMOS fiLe whose
specification you want to see. (SeveraL of the sampLe programs in this
chapter use PFILE.)

10.2.17 RAD50

The AMOS system stores much of the information used by the fiLe system in a
speciaL form, caLLed "RAD50." RAD50 compresses three bytes of ASCII data
into two bytes of numeric data. The RAD50 procedure converts a string into
RAD50 form. This is necessary if you are going to use the SETFILE
procedure, since SETFILE expects severaL of its arguments in RAD50 form.
For exampLe, if you are pLanning to use SETFILE to change the fiLename of an
AMOS fiLe specification, you wiLL do a GETFILE to get that specification:

GETFILE(TheFiL6,Dev,Unit,FiLnam1,FiLnam2,Ext,Proj,Prog)i

The eLements Dev, FiLnam1, FiLenam2, and Ext are returned in RAD50 form.
Now, you wiLL do a SETFILE to change the FiLename:

SETFILE(TheFiLe,Dev,Unit,RAD50('NEW'),RAD50('NAM'),Ext,Proj,Prog)i

Leaving the rest of the eLements as they were.

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10-27

10.2.18 RENAME

The RENAME procedure aLLows you to rename an AMOS file. The invocation
takes the form:

RENAME(file-identifier,newname);

where fiLe-identifier is a fiLe variabLe associated with the AMOS fiLe you
want to rename, and newname is a string variabLe or a string literaL. For
exampLe, if the AMOS fiLe CURRNT.DAT is associated with the fiLe-identifier
AccountsFile:

RENAME(AccountsFiLe,'BACKUP.LST');

renames the AMOS file CURRNT.DAT to BACKUP.LST. By varying the fieLds you
supply to RENAME, you can rename just the extension, just the filename, or
both. For exampLe, if the AMOS fiLe OLDDAT.DAT is associated with the
fiLe-identifier MailBox:

RENAME(MailBox,'.BAK');

~enames OLDDAT.DAT to OLDDAT.BAK, and

RENAME(MaiLBox,'ARCHIV');

renames OLDDAT.DAT to ARCHIV.DAT.

10.2.19 SEEK

The SEEK procedure aLlows you to position a file pointer to a specific
record in a random file for file I/O. The invocation takes the form:

SEEK(fiLe-identifier,recordnum);

where fiLe-identifier is a file variable associated with the random file we
want to access, and recordnum ;s an integer variabLe or constant that
specifies the number of the record to access. (The first record is record
#0.)

REMEMBER: SEEK does not input a record into the buffer variabLe; it just
positions the file pointer.

10.2.20 SETFILE

SETFILE takes the same arguments as GETFILE, but it puts information into
the fiLe specification. It aLso associates the specified fiLe-identifier
with the specified AMOS fiLe. The invocation takes the form:

SETFILE(fiLe-identifier, Dev, Unit, File1, FiLe2, Ext, Proj, Prog);

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10-28

For example:

SETFILECNewFile,0,0,F1,F2,RADSO('LST'),0,0);

The sample above is changing the extension of the AMOS file associated with
NewFiLe to .LST. NOTE: Specifying a zero for both the project AND the
programmer number tells AMOS to use the current default project-programmer
number (the account you are Logged into). Specifying a zero for both the
device AND the unit number forces AMOS to use the default device
specification (the device and unit you are logged into). If you specify a
device (e.g., RAD50('DSK'», you can tell AMOS to use the defauLt unit, by
specifying a negative 1 for the unit. For a more lengthy example of the use
of SETFILE, see Section 10.2.8, "GETFILE."

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10-29

10.3 SAMPLE PROGRAM TO DEMONSTRATE FILE HANDLING

The program beLow is an exampLe of a programming soLution to a very common
business probLem: the need for an efficient way of reading in, organizing,
and maintaining empLoyee information. Our sampLe program beLow uses random
fiLe techniques to maintain the foLLowing information for a user-defined
number of empLoyees: name, age, and sex. The empLoyee records are
maintained in aLphabeticaL order by name of empLoyee. You may add, deLete,
change, List, or dispLay empLoyee records.

10.3.1 SampLe Run

A sampLe run Looks Like this (We wiLL underLine the information that the
user of the program types in):

PRUN DEMO [RET]

< The screen cLears>

ALphaPascaL Random FiLe Demonstration

Do you wish to (re-)create empLoyee fiLe? Y (RET]
How many records to you wish to use? 20 (REU

< The screen cLears>

Enter option [A)dd, C)hange, D)eLete, I)nquire, L)ist, Q)uit]: A [RET]
Last Name = ZUCKER [RET]
First Name = SUE ELLEN [RET]
MiddLe InitiaL = R [RET]
How 0 Ld isSUE ELLEN? 23 [RET]
Is SUE ELLEN ma Le? !. (RET)

Enter option [A)dd, C)hange, O)eLete, I)nquire, L)ist, Q)uit]: A[RET]
Last Name = ARROWSMITH [RET)
First Name = JACK @iD
MiddLe InitiaL = C [RET)

How oLd is JACK? 51 [RET)
Is JACK ma Le? 1. [Rm

Enter option [A)dd, C)hange, D)eLete, I)nquire, L)ist, Q)uit]: A [RET)
Last Name = ALLEN [RET)
First Name = EDNA (RET]
MiddLe InitiaL = N (RET]
How oLd is EDNA? 35 [RET]

Is EDNA maLe? N (RPT

INPUT/OU~PUT FUNCTIONS AND PROCEDURES Page 10-30

Enter option [A)dd, C)hange, D)eLete, I)nquire, L)ist, Q)uitJ: ~[RET)

ALLEN, EDNA N: 35 years old, sex: femaLe
ARROWSMITH, JACK C: 51 years old, sex: maLe
ZUCKER, SUE ELLEN R: 23 years oLd, sex: maLe

TotaL of 3 employee(s)

Enter option [A)dd, C)hange, D)elete, I)nquire, L)ist, Q)uitJ: ~[RET)
Last Name = ZUCKER [RET)
First Name = SUE ELLEN [RET)
Middle InitiaL = R @hlD
How oLd is SUE ELLEN? 23 [RET)
Is SUE ELLEN maLe? ~[RET)

Enter option [A)dd, C)hange, D)elete, I)nquire, L)ist, Q)uitJ: L[RET)

ALLEN, EDNA N: 35 years old, sex: female
ARROWSMITH, JACK C: 51 years oLd, sex: maLe
ZUCKER, SUE ELLEN R: 23 years old, sex: female

Enter option [A)dd, C)hange, D)elete, I)nquire, L)ist, Q)uit]: Q (RET)

< The screen cLears>

Leaving ALphaPascal Random FiLe Demonstration

I

INPUT/OUTPUT FUNCTIONS AND PROCEDURES

10.3.2 The Program

PROGRAM EmployeeMaintenance;

TYPE
NameRecord = RECORD

First: STRINGC11J;
Middle: CHAR;
Last: STRINGC15J;

END {NameRecord) ;

EmpRecType = (Control,Data,Unused);
EmpRecord = RECORD

CASE EmpRecType OF
Data: (

Name: NameRecord;
Age: INTEGER;
Sex: (Male, Female);
NextDataRecord: INTEGER);

ControL: (

Page 10-31

FirstDataRecord: ARRAY ('A' •• 'Z'J OF INTEGER;
FirstUnusedRecord: INTEGER);

{GLobaL
VAR

Unused: (
NextUnusedRecord: INTEGER);

END {EmpRecord) ;

EmpFiLeType = FILE OF EmpRecord;

Variables}
EmpFiLe: EmpFiLeType;
RecNum, PreviousRecNum: INTEGER;
ControLRecord: EmpRecord;

FUNCTION SameNames(Name1,Name2: NameRecord): BOOLEAN;
{Returns TRUE if Name1 = Name2)
BEGIN

SameNames := (Name1.First = Name2.First)
AND (Name1.MiddLe = Name2.Middle)
AND (Name1.Last = Name2.Last)

END {SameNames) ;

(Changed 30 Ap~il 1981)

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10-32

FUNCTION Find(Name: NameRecord): BOOLEAN;
{Searches for specified record in EmpFile.

Returns true if found, leaving fiLe positioned at desired record.}
BEGIN

RecNum := ControLRecord.FirstDataRecordCName.Lastt1JJ:
PreviousRecNum := 0;
WHILE RecNum <> 0 DO

BEGIN SEEKCEmpFiLe,RecNum):
GeT<EmpFi le);
IF SameNames(Name,EmpFile~.Name)

THEN BEGIN Find:=TRUE; EXIT(Find) END:
PreviousRecNum := ReCNum:
RecNum := EmpFiLeA.NextDataRecord;

END;
Fi nd := FALSE;

END {Find} ;

FUNCTION Remove(Name: NameRecord): BOOLEAN:
{DeLetes specified record in EmpFiLe.

Returns faLse if not found.}
VAR NextRecNum: INTEGER;
BEGIN

Remove := TRUE;
IF Find(Name) THEN

BEGIN
NextRecNum := EmpFiLeA.NextDataRecord:
EmpFileA.NextUnusedRecord := ControlRecord.FirstUnusedRecord:
ControLRecord.FirstUnusedRecord := RecNum;
PUT(EmpFile);
IF PreviousRecNum = 0 '

THEN ControLRecord.FirstDataRecordCName.LastC1JJ
:= NextRecNum .

ELSE
BEGIN

SEEK(EmpFile,PreviousRecNum);
GET(EmpFile);

END;

EmpFileA.NextDataRecord := NextRecNum;
PUT<EmpFi le);

SEEK (EmpFi Le,O>;
EmpFileA:=ControlRecord:
PUT(EmpFile);

END
ELSE {Name not found} Remove := FaLs~;

END {Remove} :

(Changed 30 April 1981)

INPUT/OUTPUT FUNCTIONS AND PROCEDURES

FUNCTION NamePrecedesName(Name1,Name2: NameRecord): BOOLEAN;
{Returns TRUE if Name1 <= Name2}
BEGIN

NamePrecedesName :=
IF Name1.Last <= Name2.Last

THEN TRUE
ELSE IF Name1.Last = Name2.Last

THEN IF Name1.First <= Name2.First
THEN TRUE
ELSE IF Name1.First = Name2.First

THEN Name1.MiddLe <= Name2.MiddLe
ELSE FALSE

ELSE FALSE;
END {NamePrecedesName} ;

FUNCTION Add(EmpLoyee: EmpRecord): BOOLEAN;
{Adds specified empLoyee record to EmpFiLe.

Returns faLse if no room remains to add record.}
VAR InsertionPointFound: BOOLEAN; NewRecNum: INTEGER;
BEGIN

Add := TRUE;

Page 10-33

RecNum := ControLRecord.FirstDataRecord[EmpLoyee.Name.Last[1JJ;
PreviousRecNum := 0;
InsertionPointFound := (RecNum = 0);
WHILE NOT InsertionPointFound DO

BEGIN SEEK(EmpFiLe,RecNum);
GET(EmpFiLe);
IF NamePrecedesName(EmpLoyee.Name,EmpFiLeA.Name)

THEN InsertionPointFound := TRUE
ELSE BEGIN PreviousRecNum := RecNum;

END;

RecNum := EmpFiLeA.NextDataRecord;
InsertionPointFound := (RecNum = 0);

END {Search for insertion point} ;
IF RecNum <> 0 THEN
IF SameNames(EmpLoyee.Name,EmpFiLeA.Name) THEN

BEGIN EmpLoyee.NextDataRecord := EmpFiLeA.NextDataRecord;
EmpFiLe A := EmpLoyee;
PUT(EmpFiLe);
EXIT(Add);

END;
IF 0 = (NewRecNum := ControLRecord.FirstUnusedRecord) THEN

BEGIN Add:= FaLse {EmpFiLe is fuLL};
EXIT(Add);

END;
SEEK(EmpFiLe,NewRecNum);
GET(EmpFiLe);
ControLRecord.FirstUnusedRecord := EmpFiLeA.NextUnusedRecord;
EmpFiLeA:=EmpLoyeeRecord;
EmpFiLeA.NextDataRecord := RecNum;
PUT(EmpFiLe);

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10-34

IF PreviousRecNum = 0 THEN
BEGIN SEEK(EmpFiLe,O);

ControLRecord.FirstDataRecord[EmpLoyee.Name.Last[1JJ
:= NewRecNum;

END
ELSE

BEGIN

EmpFiLe A := ControLRecord;
PUT(EmpFiLe);

SEEK(EmpFiLe,PreviousRecNum);
GEHEmpFiLe);
EmpFiLeA.NextDataRecord := NewRecNum;
PUT(EmpFiLe);

END;
END {Add} ;

PROCEDURE CreateEmpLoyeeFiLe(Size: INTEGER);
~Create/Recreate EmpLoyee FiLe with specified number of empLoyee records}
VAR X,SizeInBLocks: INTEGER; CH: CHAR;
BEGIN

SizeInBLocks := 1 + (Size+1) DIV (512 DIV SIZEOF(EmpRecord»;
X := FSPEC(EmpFiLe,'EMPFIL','DAT');
CLOSE(EmpFiLe); {CLose fiLe if it is open}
ERASE(EmpFiLe); {Erase fiLe if it aLready exists}
CREATE(EmpFiLe,SizeInBLocks);
OPENR(EmpFiLe);
ControLRecord.FirstUnusedRecord := 1;
FOR CH := 'A' TO 'Z' DO ControLRecord.FirstDataRecord[CHJ := 0;
EmpFiLe A := ControLRecord;
PUT<EmpFiLe);
FOR X := 1 TO Size-1 DO
BEGIN EmpFiLeA.NextUnusedRecord:= X+1;

PUT<EmpFiLe);
END;

EmpFiLeA.NextUnusedRecord := 0;
PUHEmpFi Le);
CLOSE(EmpFiLe);

END {CreateEmpLoyeeFiLe} ;

PROCEDURE OpenEmpFiLe;
BEGIN OPENCEmpFiLe,'EMPFIL',RANDOM);

ControLRecord := EmpFiLe A;
END;

FUNCTION Yes (Message: STRING): BOOLEAN;
VAR Answer: STRING;
BEGIN

WRITE(Message,' I); READLN(Answer); LCS(Answer);
IF Answer = 'y' OR Answer = 'yes' THEN Yes := TRUE
ELSE IF Answer = In' OR Answer = 'no' THEN Yes := FALSE
ELSE Yes := Yes('?PLease answer yes or no:');

END {Yes} ;

INPUT/OUTPUT FUNCTIONS AND PROCEDURES

PROCEDURE Introduction;
VAR Quantity: INTEGER;
BEGIN

CRTC-1,0> ;
WRITELN ('
WRITELN;
WRITELN;

{CLear Screen}
ALphaPascaL Random FiLe Demonstration');

IF Ves('Do you wish to (re-)create empLoyee fiLe?') THEN
BEGIN WRITE('How many records to you wish to use? I);

READLN(Quantity);
WHILE Quantity < 1 OR Quantity> 100 DO

Page 10-35

BEGIN WRITE('?PLease enter a number between 1 and 100: I);

READLN(Quantity);
END;

CreateEmpLoyeeFiLe(Quantity);
END;

OpenEmpFiLe;
CRTC-1 ,0);

END {Introduction} ;
{Clear screen}

PROCEDURE GetName(VAR Name: NameRecord);
{Note: UCS onLy works on strings, and MiddLe is of type CHAR}
VAR S:STRING[1J;
BEGIN

END;

WITH Name DO
BEGIN WRITEC'Last Name = I); READLNCLast); UCSCLast);

WRITEC'First Name = I); READLNCFirst); UCSCFirst);
WRITEC'Middle InitiaL = I); READLNCS); UCSCS);
MiddLe := IF S=" THEN ' , ELSE S[1];

END;

PROCEDURE GetEmpLoyeeInfoCVAR EmpLoyee: EmpRecord);
BEGIN

WITH Emp Loyee DO
BEGIN

END;

WRITEC'How oLd is ',Name.First,'? I);
READLNCAge);
WRITE('Is ',Name.First);
Sex:= IF VesC' male?')

THEN MaLe ELSE FemaLe;

END {GetEmpLoyeeInfo} ;

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10-36

PROCEDURE ShowEmployeeInfo(Employee: EmpRecord);
BEGIN

WITH Employee,Name DO
BEGIN

END;
END;

WRITECLast,', ',First,' ',Middle,': I);
WRITECAge,' years old, I);

WRITELNC'sex: ',CASE Sex OF
Ma l e : ' ma l e' ;
Female: 'female';

ELSE ");

PROCEDURE Process Requests;
VAR Option: CHAR;

PROCEDURE ListEmpLoyees;
VAR CH: CHAR; Count: INTEGER;
BEGIN

Count := 0;
WRITELN;
FOR CH := 'A' TO 'z' DO

BEGIN RecNum:= ControlRecord.FirstDataRecordCCHJ;
WHILE RecNum <> a DO

END;

BEGIN SEEKCEmpFile,RecNum);
GETCEmpFile);
ShowEmployeeInfoCEmpFile-);

END;

RecNum := EmpFile-.NextDataRecord;
Count += 1;

WRITELN; WRITELNC'Total of ',Count,' employeeCs)');
END {ListEmployees} ;

PROCEDURE AddEmployee;
VAR Employee: EmpRecord;
BEGIN

GetName(Employee.Name);
IF Find(Employee.Name) THEN

BEGIN WRITELNC'?Employee already on file');
EXITCAddEmployee);

END;
GetEmployeeInfoCEmployee);
IF NOT AddCEmployee) THEN WRITELNC'?Not enough room to add');

END {AddEmployee} ;

INPUT/OUTPUT FUNCTIONS AND PROCEDURES

PROCEDURE ChangeEmployee;
VAR Name: NameRecord;
BEGIN

GetName(Name) ;
IF Find(Name) THEN

BEGIN ShowEmployeeInfo(EmpFile A
);

GetEmployeeInfo(EmpFile A
);

PUT (EmpFi Le) ;
END

ELSE WRITELN('?Not found');
END {ChangeEmployee} ;

PROCEDURE DeleteEmployee;
VAR Name: NameRecord;
BEGIN

GetName(Name) ;
IF NOT Remove(Name) THEN WRITELN('?Not found');

END {DeleteEmployee} ;

PROCEDURE Inquire;
VAR Name: NameRecord;
BEGIN

GetName(Name);
IF Find(Name) THEN ShowEmployeelnfo(EmpFile A

)

ELSE WRITELN('?Not found');
END {Inquire} ;

BEGIN {ProcessRequests}
REPEAT

WRITE(

Page 10-37

'Enter option CA)dd, C)hange, D)elete, I)nquire, L)ist, Q)uitJ: I);

READLN(Option);
CASE Option OF
'a','A': AddEmployee;
'c','C': ChangeEmployee;
'd','D': DeleteEmployee;
'i','I': Inquire;
'l','L': ListEmployees;
'q','Q': EXIT(ProcessReQuests);
ELSE WRITELN('?Jnvalid option');

WRITELN;
UNTIL FALSE {i.e., until EXIT}

END {ProcessRequests} ;

(Changed 30 April 1981)

I

INPUT/OUTPUT FUNCTJONS AND PROCEDURES

PROCEDURE Termination;
BEGIN

CRT(-1,0); {CLear screen}

Page 10-38

WRITELN('Leaving ALphaPascaL Random FiLe Demonstration');
END {Termination} ;

BEGIN {Prog"ram}
Int roduct ion;
ProcessRequests;
Termination;

END {Program} •

10.3.3 Program Organization

We wouLd just Like to point out that the program above couLd have been
broken up into moduLes and Linked as separate fiLes. In fact, it wouLd have
been a good idea to do so. If we were going to break it up, we might
consider taking the first two gLobal type decLarations and putting them into
incLude fiLes (see beLow). (For information on incLude fiLes, see Section
4.3.2.2, liThe IncLude Oottion (SO .") Then we might have made the FIND
function a module, FIND.PAS.

10.3.3.1
TYPE

10.3.3.2
TYPE

The AMOS fiLe NAMREC.INC -
NameRecord = RECORD

First: STRING(11J;
MiddLe: CHAR;
Last: STRING(15J;

END { NameRecord };

The AMOS fiLe EMPREC.tNC -
EmpRecType = (Control, Data, Unused);
EmpRecord = RECORD

CASE EmpRecType OF
Oat a: (

Name: NameRecord;
Age: INTEGER;
Sex: (MaLe, FemaLe);
NextDataRecord: INTEGER);

Cont roL: (
FirstDataRecord: ARRAY (·A· •• ·I'J OF INTEGER;
FirstUnusedRecord: INTEGER);

Unused: (
NextUnusedRecord: INTEGER);

END {Em pRe cord} ;

EmpFiLeType = FILE OF EmpRecord;

(Changed 30 AoriL 1981)

INPUT/OUTPUT FUNCTIONS AND PROCEDURES

10.3.3.3 The AMOS fiLe FIND.PAS -

MODULE FIND;
{$I NAMREC.INC}
{$I EMPREC.INC}

EXTERNAL FUNCTION SameNames
(Name1, Name2: NameRecord): BOOLEAN;

EXTERNAL VAR
EmpFiLe : EmpFiLeType;
RecNum, PreviousRecNum: INTEGER;

FUNCTION Find(Name: NameRecord): BOOLEAN;
{Searches for specified record in EmpFiLe.

Page 10-39

Returns true if found, Leaving fiLe positioned at desired record.}
BEGIN

RecNum := ControLRecord.FirstDataRecordCName.LastC1JJ;
PreviousRecNum := 0;
WHILE RecNum <> 0 DO

BEGIN SEEK(EmpFiLe,RecNum);
GETCEmpFiLe);

END;

IF SameNames(Name,EmpFiLeA.Name)
THEN BEGIN Find:=TRUE; EXIT(Find) END;

PreviousRecNum := RecNum;
RecNum := EmpFiLeA.NextDataRecord;

Find := FALSE;
END {Find} ;

CHAPTER 11

MISCELLANEOUS FUNCTIONS AND PROCEDURES

The functions and procedures described in this chapter perform a variety of
functions such as allowing your programs to position the cursor on the
terminal screen and manipulating dynamic variables. The functions and
procedures discussed in this chapter are:

CHR
ORD
PRED
SUCC

KILCMD
NEW
MARK
RELEASE

CRT

CHARMODE
LINEMODE
INCHARMODE

Convert ASCII value to its character representation
Returns ordinal number of element in scalar type
Returns predecessor (i.e., previous item) of scalar type
Returns sucessor (i.e., next item) of scalar type

Abort command file execution
Creates new dynamic variable
Marks element on the heap
Releases element on the heap

Position screen cursor, and enable certain terminal
display options
Sets terminal into Charmodei suppresses echoing
Returns terminal from Charmode to line mode
Returns Boolean value telling you whether you are
in Charmode or not

11.1 BASIC FUNCTIONS AND PROCEDURES

11.1.1 CHR

All characters displayed by the computer are members of the ASCII character
set, and have a number (called the ASCII value) associated with them. The
CHR function returns the ASCII character associated with a specified ASCII
value. It accepts a positive, decimal INTEGER argument and returns a CHAR
result. The function invocation takes this form:

MISCELLANEOUS FUNCTIONS AND PROCEDURES Page 11-2

CHR(number);

For exampLe:

WRITELN(CHR(6S»;

prints the character A. (65 is the decimaL ASCII vaLue of the ASCII
character "A".)

11.1.2 KILCMD

It is often convenient to set up command fiLes that automaticaLLy invoke a
series of system commands and PascaL programs. (Remember that a command
fiLe is a text file; each Line contains data or a valid AMOS file
specification. To execute the entire set of command and program invocations
contained in the command fiLe, suppLy just the name of the command fiLe at
AMOS command LeveL.)

The KILCMD procedure teLLs PRUN to abort any command fiLe execution. You
probabLy wiLL use KILCMD if an error occurs that wouLd make continuing the
execution of the commmand fiLe awkward. The invocation takes this form:

KILCMD;

As an exampLe of the use of KILCMD, consider the command fiLe PCL that
accompanies this reLease of ALphaPascaL. The PCl command fiLe compiLes and
Links a PascaL source fiLe. Suppose you suppLy to PCL the name of a ~ource
fiLe that does not exist. If the compiLer can't compiLe your program, then
PLINK can't Link it. So, CMPILR itseLf contains a KILCMD procedure caLL
that is executed if a compiLation faiLs; the system stops any command fiLe
being executed and returns you to AMOS command LeveL.

For information on error handLing and writing your own errortrap routine,
see Chapter 14, "Systems Functions and Procedures."

11.1.3 MARK

MARK is used in combination with RELEASE to store and reLease dynamic
variabLes aLLocated via NEW (see beLow) in a stack-Like structure caLLed the
"heap." The invocation of MARK takes this form:

MARK(variabLe-identifier);

where variabLe-identifier specifies a pointer variabLe that points to any
type (typicaLLy, INTEGER). MARK returns the current state of the heap.
That is, it returns the current address of the top of the heap.

•

MISCELLANEOUS FUNCTIONS AND PROCEDURES Page 11-3

A "heap" or "stack" can be considered as a sequential list in which items
may only be inserted or deleted from one end of the list. Items are deleted
in the reverse"of the order in which they were entered on the stack.

The NEW procedure allocates dynamic variables on the heap. For example, if
you use MARK, then perform a NEW, then use MARK again, MARK will return two
different values, since the top of the heap changes when you allocate the
dynamic variable.

By doing a MARK followed by a NEW, you have a value that tells you where on
the heap the vari ab le allocated by" NEW is located. The way to free up
heap-space used by the dynamic variables allocated via NEW is to use RELEASE
(see Section 11.1.7, below).

NOTE: Be very careful when using MARK and RELEASE; unwise use of these
procedures can leave you pointing to areas of memory that are not part of
the heap, thus causing unpleasant and unpredictable results.

11.1.4 NEW

The NEW procedure allocates a dynamic variable. The invocation takes the
form:

NEW(variable-identifier);

where variable-identifier is the pointer to the variable allocated by NEW.
To access the variable allocated via NEW, use the pointer variable
variable-identifier A

• (For more information on NEW and. dynamic variables,
see Section 7.2.8, "Pointer Type.") The sections on MARK and RELEASE in this
chapter give information on using MARK, NEW, and RELEASE to allocate and
de-allocate dynamic variables on the "heap."

11.1.5 ORD

The ORD(X) function returns the ordinal number of the argument in the scalar
data type of which X is a member. Accepts arguments of type CHAR or
user-defined scalar types. Returns an INTEGER result. The function
invocation takes this form:

ORO(variable-identifier or constants);

For example, each character displayed by the computer has a numeric value
associated with it (called the ASCII value), which specifies its position in
the set of ASCII characters. If you use the ORO function on an ASCII
character, ORO will return to you the ASCII value of that character (that
is, its ordinal number in the ASCII character set). For example:

WRITELN(ORO('A'»;

(Changed 30 April 1981)

MISCELLANEOUS FUNCTIONS AND PROCEDURES Page 11-4

returns the decimal number 65, the ASCII value of the character 'A'. You
may also include an identifier for a user-defined scalar type. For example:

PROGRAM TestOrd;

TYPE DAYSOFTHEWEEK = (MON,TUE,WED,THUR,FRt);

BEGIN { TestOrd }
WRITELN('Ordinal
WRITELN('Ordinal

END { TestOrd }.

number of THUR is: ',ORD(THUR»;
number of Dis: ',ORDC'D'»

The program above prints the ordinal m.mber of the character liD" in the
ASCII character set, and the ordinal number of "THUR" in the user-defined
scalar type DAYSOFTHEWEEK. CNOTE: The ordinal numbers for the elements of
DAYSOFTHEWEEK are: MON = 0, TUE = 1, WED = 2, THUR = 3, FRI = 4.)

11.1.6 PRED

The PRED function returns the predecessor of the specified scalar argument.
The invocation of the PRED function takes this form:

PREDCelement);

For example, let's say that we defined the scalar type Cardinal to contain
the elements: First, Second, and Third:

TYPE Cardinal = (First, Second, Third);

Since the elements ~f a scalar data type are ordered, we can find out what
element is previous to the specified item by using the PRED function. For
example:

IF PRED(Second) = First THEN WRITELN('Correct!');

The value returned by PRED is not a variable or an expression; therefore,
trying to use WRITE or WRITELN to display that value causes an error. CThat
is, you may not say: WRITELN(PREDCSecond».)

PROGRAM TestPred;

TYPE Daysoftheweek = CMon,Tue,Wed,Thu,Fri);
VAR Day: Daysoftheweek;

BEGIN { TestPred }
Day := Tue;
IF PRED(Day) = Mon THEN WRITELN('Today is'Tuesday'»)
Day := PRED(Day); --
IF Day = Mon THEN WRITELNC'It"s Blue ~nday!')

ENo-{ TestPred ~

(Changed 30 April 1981)

MISCELLANEOUS FUNCTIONS AND PROCEDURES

When you run the program above, it prints:

Today is Tuesday
It's BLue Monday!

11.1.7 RELEASE

Page 11-5

The RELEASE procedure is used with MARK and NEW to use dynamic variabLes
with a stack-like structure called the "heap." (See Section 11.1.3, "MARK,"
for information on the heap.) It de-aLLocates the dynamic variabLe at the
specified heap location. The RELEASE invocation takes the form:

RELEASE(variable-identifier);

where variabLe-identifier is the same argument as that supplied to MARK.
For example, if you use MARK to get the current state of the heap, use NEW
to aLLocate a dynamic variable (which advances the top of the heap past the
value returned by the previous MARK), and then use RELEASE with the value
returned by the previous MARK, RELEASE de-alLocates the dynamic variable
from the heap. A picture might help to clarify:

Then:

Procedure

NEW(VQ)
MARK(LocationV1)
NEW(V1)
MARK(LocationV2)
NEW(V2)

Use RELEASE(LocationV2)
Use RELEASE(LocationV1)

The Heap

va

V1

V2

RELEASE(LocationV2) de-allocates V2; RELEASE(LocationV1) de-allocates V1.
va is left on the stack in the example above. You cannot RELEASE a dynamic
variable in the middLe of the heap; you may only release variables from the
bottom of the list.

NOTE: Be very careful when using MARK and RELEASE; unwise use of these
procedures can leave you pointing to areas of memory that are not part of
the heap, which can cause severe problems.

11.1.8 SUCC

The SUCC procedure allows you to determine the successor element to the
sepcified scalar constant. The invocation takes the form:

SUCC(element);

MISCELLANEOUS FUNCTIONS AND PROCEDURES Page 11-6

where eLement is a variabLe-identifier or constant of a scaLar type. For
exampLe:

PROGRAM;

VAR Int
Dat

BEGIN

INTEGER;
(YES, NO, Y, N);

WRITE('Enter integer: I); READLN(Int);
WRITELN(SUCC(Int»;
Oat := YES;
IF SUCC(Dat) = NO THEN WRITELN('YES')

END.

If you enter the number 11 to the program above, it prints:

12
YES

(See aLso Section 11.6, "PRED," for more information on manipuLating scaLar
types.)

11.2 SPECIAL TERMINAL DISPLAY PROCEDURES

11.2.1 CHARMODE

The CHARMODE procedure aLLows you to set the terminaL of the user of your
program into character mode. When a terminaL is in character mode, your
program is abLe to read keyboard input a character at a time, even before a
terminating carriage return is typed. (AssembLy Language programmers on the
AMOS system may recognize this input mode as "image mode.") The invocation
of this procedure takes this form:

CHARMODE;

Character mode is usefuL for checking speciaL input such as passwords, since
the characters are not echoed at the time they are input, but when read (via
a GET or READ). To inhibit echoing, use the pre-decLared KEYBOARD fiLe
identifier.

NOTE: Character editing (such as RUBs or ControL-Us) doesn't work when the
terminaL is in character mode. To return a terminaL to the normaL mode, use
the LINEMODE procedure (discussed in Section 11.2.3, beLow). When your
program exits to monitor LeveL, AMOS automaticaLLy puts the terminaL back
into LINEMODE.

MISCELLANEOUS FUNCTIONS AND PROCEDURES Page 11-7

11.2.2 CRT

The CRT function aLLows you to position the cursor on the terminaL scr~en.
In addition, you can aLso seLect certain terminaL-handLing options (such as
cLear screen, deLete character, etc.).

The function invocation takes this form:

CRT(Arg1,Arg2);

where Arg1 and Arg2 are integers. If Arg1 is positive, the CRT function
assumes that you want to position the cursor on the screen; if Arg2 is
negative, CRT assumes that you want to use one of the extended
screen-handLing options.

11.2.2.1 Cursor Positioning - If the first argument you suppLy to CRT is
positive, then the CRT function reads both arguments as the X,V row/coLumn
coordinates specifying the screen position where you want the cursor
positioned. (The top Left-hand corner of the screen is specified by the
coordinates 1,1.> For exampLe, the function:

CRT(12,35);

positions the cursor at the 12th row and 35th coLumn of the screen.

NOTE: If you suppLy row and coLumn coordinates that are out of range for
your terminaL, unpredictabLe resuLts couLd occur.

11.2.2.2
to CRT is
extended
exampLe,

Extended Screen DispLay Options - If the first argument suppLied
negative, the CRT function assumes that you want to use the
terminal-handling options specified by the second argument. For

the function:

CRT(-1,0);

teLLs CRT to seLect option #0, the cLear-screen option.

MISCELLANEOUS FUNCTIONS AND PROCEDURES Page 11-8

The screen-handling~options provided are:

Code Function

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24

25
26
27

Clear screen
Cursor home (upper Left corner)
Cursor return (column 0 without Line-feed)
Cursor up one row
Cursor down one row
Cursor Left one coLumn
Cursor right one coLumn
Lock keyboard
UnLock keyboard
Erase to end of line
Erase to end of screen
Protect fieLd (reduced intensity)
Unprotect field (normal intensity)
Enable protected fields
DisabLe protected fields
Delete Line
Insert line
DeLete character
Insert character
Read cursor address
Read character at current cursor address
Start blinking field
End blinking field
Start line drawing mode (enabLe aLternate
character set)
End line drawing mode (disable aLternate
character set)
Set horizontal position
Set vertical position
Set terminal attributes

NOTE: You should be aware that these options can be seLected onLy if your
particuLar terminaL and terminaL driver program are capabLe of carrying them
out. (For exampLe, not aLL terminaLs can perform an erase-to-end-of-screen
function.) Note that most terminals do not support all of the options Listed
above; unsupported options will be ignored by your terminal driver.

11.2.3 INCHARMODE

The INCHARMODE function returns a BooLean resuLt. If it returns a
then you are in charmode; a FALSE indicates that you are in Linemode.
the paragraph below.>

TRUE,
(See

MISCELLANEOUS FUNCTIONS AND PROCEDURES Page 11-9

11.2.4 LINEMODE

The LINEMODE procedure returns a terminaL to the normaL input mode after it
has been set into character mode via the CHARMODE procedure (discussed in
Section 11.2.1, above). The invocation takes this form:

LINEMODE;

While in line mode, alL input is ended by a carriage return, and character
editing is enabled. Character echoing occurs as you type the characters,
not when they are read.

I

CHAPTER 12

MATHEMATICAL FUNCTIONS

The following functions accept one or more numeric arguments.
information on invoking functions and on writing your own functions,
Section 6.6, IIFunction and Procedure Declarations. 1I

12.1 TRIGONOMETRIC FUNCTIONS

12.1 .1 COS (X)

For
see

Cosine trigonometric function. Accepts a REAL or INTEGER argument and
returns a REAL result. Argument must be in radians.

12.1.2 SlN(X)

Sine trigonometric function. Accepts a REAL or INTEGER argument and returns
a REAL result.

12.1.3 TAN(X)

Tangent trigonometric function. Accepts a REAL or INTEGER argument and
returns a REAL result.

(Changed '30 Apr; l 1981)

MATHEMATICAL FUNCTIONS Page 12-2

12.1.4 ARCCOS(X)

Arc cosine trigonometric function. Comp~tes the inverse cosine function.
(See COS above.) Accepts a REAL or INTEGER argument and returns a REAL
resuLt. X must be greater than or equaL to -1, and Less than or equaL to 1.

12.1.5 ARCSIN(X)

Arc sine function. Computes the inverse sine function. (See SIN above.)
Accepts a REAL or INTEGER argument and returns a REAL resuLt. X must be
greater than or equaL to -1, and" Less than or equaL to 1.

12.1.6 ARCTAN(X)

Arc tangent trigonometric function. Computes the inverse tangent function.
(See TAN above.) Accepts a REAL or INTEGER argument and returns a REAL"
resuLt.

12.2 HYPERBOLIC TRIGONOMETRIC FUNCTIONS

12.2.1 COSH(X)

HyperboLic cosine trigonometric function. Accepts a REAL or INTEGER
argument and returns a REAL resuLt. Argument must be in radians.

12.2.2 SINH(X)

HyperboLic sine trigonometric function. Accepts a REAL or INTEGER argument
and returns a REAL resuLt.

12.2.3 TANH(X)

HyperboLic tangent trigonometric function.
argument and returns a REAL resuLt.

(Changed 30 ApriL 1981)

Accepts a REAL or INTEGER

•

MATHEMATICAL FUNCTIONS Page 12-3

12.2.4 ARCCOSH(X)

Hyperbolic arc cosine trigonometric function. Accepts a REAL or INTEGER
argument and returns a REAL result. (See ARCCOS above.> X must be greater
than or equal to 1.

12.2.5 ARCSINH(X>

Hyperbolic arc sine trigonometric
argument and returns a REAL result.

function. Accepts a
(See ARCSIN above.)

REAL or INTEGER

12.2.6 ARCTANH(X>

Hyperbolic arc tangent trigonometric function. Accepts a REAL or INTEGER
argument and returns a REAL result. (See ARCTAN above.> The absolute value
of X must be Less than 1.

12.3 MISCELLANEOUS MATHEMATICAL FUNCTIONS

12.3.1 ABS(X)

Computes the absolute value of the argument.
argument, and returns an INTEGER or REAL result.

WRITELN(ABS(-32.123»;

displays the answer:

32.123

12.3.2 EXP(X)

Accepts one INTEGER or REAL
For example:

Exponential function.
natural logarithms.
result.

Computes e to the X power, where e is the base of
Accepts a REAL or INTEGER argument; returns REAL

(Changed 30 April 1981)

MATHEMATICAL FUNCTIONS

12.3.3 EXPONENT (X)

Computes K such that X = J * 2AK, whe~e J is greater than or equat to .5,
and Less than 1. Accepts a REAL argUltem •.

12.3.4 FACTORIAL(X)

Computes the factorial of X.
result. For exampLe:

Acc,epts a R'EAl argument; returns a REAL

FACTORIAL<6.0>

12.3.5 LN(X)

Computes the natural (Nap;e";'an) log&ri.thtn. Accepts a REAL or tNTEGER
argument; returns a R'EAL result. Computes log&rithll to' the base e. (e =
2.71828 •••)

12.3.6 LOGeX)

Computes the Log base ten of the argume.nt.
argument; returns a REAL resul t.

12.3.7 ODD (X)

Accepts a ReAL or INTEGER

Tests for odd vaLue. Ac:cepts INTEGER argument; returns a BOOLEAN: result.
If X is odd, ODD returns TRUE; if X is even, 01)0 returns FALSE.

12.3.8 POWEReX,Y)

Computes X to the Y power. Accepts two REAL numbers; returns a R'EAl result.
For exampLe:

POWER(2.0,3.0)

returns 8. You c'an aLso use POWER to co~ute the Nth root of a number-
POWER ex, 1.0/N).

For exampLe, to find the cube root (third root) of 256.12:

POWER(256.12,1.0/3.0)

(Changed 30 ApriL 1981)

MATHEMATICAL FUNCTIONS Page 12-5

12.3.9 PWROFTEN(X)

Returns the value of ten raised to the power of X. Accepts an INTEGER or
REAL value; returns a REAL value. Accepts fractions and negative numbers.
For: example:

PWROFTEN(3)

returns 10 to the third, or 1000.

12.3.10 PWROFTWO(X)

Returns the value of two raised to the power of X. Accepts an INTEGER value
and returns a REAL value. Number must be greater than zero. For example:

PWROFTWO(3)

returns 2 to the third power, or 8.

12.3.11 RANDOMIZE

Randomizes the starting seed of the RND function (see below). It takes no
arguments. For exampLe:

RANDOMIZE;

12.3.12 RND

Returns a random REAL number between 0 and 1. It takes no arguments. For
example:

PROGRAM TestRND;
{ Generate 20 random integers between 1 and 10 }
VAR I: INTEGER;
BEGIN

END.

RANDOMIZE;
WRITELN('Random numbers between 1 and 10:');
FOR I := 1 TO 20 DO
-BEGIN

WRITELN(TRUNC«RND*10)+1»
END

(Changed 30 ApriL 1981)

MATHEMATICAL FUNCTIONS Page 12-6

12.3.13 ROUNO(X)

Rounds-off X. Accepts a REAL argument; returns an INTEGER result. For
exampLe, ROUNO(23.78) returns 24; ROUNO(23.45) returns 23.

12.3.14 SHIFT(X,Y)

Performs binary muLtiplication by shifting left the binary representation of
the number specified by the first argument the number of pLaces specified by
the second argument. For exampLe:

SHIFT(7,2);

returns the answer 28.
places is the binary
INTEGER.

12.3.15 SQR(X)

(The binary number 111 (7 decimaL) shifted Left two
number 11100 (28 decimal).) X and Y must be of type

Computes the square of X. For example, SQR(8) returns 64. Accepts REAL or
INTEGER argument and returns an INTEGER or REAL resuLt.

12.3.16 SQRT(X)

Computes non-neqative square root of argument. Argument may be INTEGER or
REAL; resuLt is REAL. X must be greater than or equaL to zero. Accepts a
REAL or INTEGER argument; returns a REAL resuLt.

12.3.17 STR(X) and STR(X,a,b)

Converts numeric vaLues to STRING. Accepts a REAL or INTEGER number~ and
returns a STRING.

You may optionaLLy suppLy STR with two INTEGER arguments that tell STR how
to format a converted number:

STR(Number,X,Y);
or:

STR(Number,X);

where X specifies.a minimum fieLd width and Y specifies the number of digits
to write after the decimal point. If the number is larger than the fieLd
specified by X, PASCAL does not truncate the number, but prints the number
using the necessary number of digit positions.

(Changed 30 ApriL 1981)

MATHEMATICAL FUNCTIONS Page 12-7

CIf "Number" is INTEGER, you may not specify Y.) These two variations of
STR perform formatting in exactly the same way as WRITE and WRITELN, except
that they do not generate a Leading spa~e for positive numbers. For
exampLe, given the REAL data 123.44:

WRITELN(STR(123.44,10,4»;

returns the string:

123.4400

where the number is right-justified in a fieLd of ten blanks, and four
digits are written to the right of the decimal point.

12.3.18 TRUNC(X)

Truncates X. Accepts REAL argument; returns INTEGER resuLt. (For exampLe,
TRUNC(24.3) returns the integer 24.)

12.4 SAMPLE PROGRAM TO PAD A NUMBER WITH LEADING ZEROS

Below is a usefuL procedure to pad a number with Leading zeros aLong with a
sampLe program that makes use of it:

PROGRAM Format;
VAR S STRING;

{ The procedure caLL Format(String,Left,Right,Number) formats
the number with Left zero-fiLLed digits before the decimaL
point and Right zero-fiLLed digits after the decimaL point.
A traiLing space or minus sign is added to indicate the sign
of the number. IllegaL arguments generate an error to
ERRORTRAP. }

PROCEDURE Format(VAR X : STRING; Left,Right : INTEGER; Num : REAL);
VAR Pow: REAL;
BEGIN { Procedure Format }

IF Left> 11 OR Left <= 0 THEN ERROR(1);
Pow := PWROFTEN(Left);
IF ABS(Num) >= Pow THEN ERROR(1) { Value range error };
X-:= STR(Pow + ABS(Num),O,Right);

{ Force leading zeros by adding power of ten and converting
to STRING. }

DELETE(X,1,1); {Remove leading 1 }
X := IF Num < 0 THEN CONCAT(X,'-') ELSE CONCAT(X,' ')

END { Format}; -- --
BEG~{ Main'program }

Format(S,S,2,-12.7); { Return answer in S }
WRITELN('Format(S,2,-12.7) = ',S);
WRITELN('Result shouLd be 00012.70-')

END { Main program }.

(Changed 30 April 1981)

•

CHAPTER 13

STRING AND CHARACTER ARRAY FUNCTIONS AND PROCEDURES

This chapter contains descriptions of the standard functions and procedures
you can use on data that have been declared as type STRING or packed arrays
of type CHAR. These functions and procedures have been pre-declared for you
by AlphaPascal. For a full list of all functions and procedures, refer to
Appendix A, "Quick Reference to AlphaPascal."

These are the functions and procedures described in this chapter:

For data of type STRING:

CONCAT
COpy

DELETE
INSERT

LENGTH
LCS
POS
STRIP
UCS
VAL

Concatenates specified strings
Copies specified string (or partial string) into
another string
Deletes specified number of characters from string
Inserts specified string (or partial string) into
another string
Returns number of characters in string
Converts upper case string to lower case
Returns position of specified character in string
Removes trailing spaces from string
Converts lower case string to upper case
Converts a string to a REAL number.

For data of type PACKED ARRAY OF CHAR:

FILLCHAR
MOVELEFT

MOVERIGHT

SCAN

Fills specified strinq with specified character
Copies specified number of characters beginning
with left of array over to specified array
Copies specified number of characters beginning
with right of array over to specified array
Returns position of specified character in array

(Changed 30 April 1981)

STRING AND CHARACTER ARRAY FUNCTIONS AND PROCEDURES Page 13-2

13.1 STRING INTRINSICS

BeLow are the functions and procedures that you can use on data of type
STRING.

13.1.1 CONCAT

The CONCAT function returns a string that contains the contents of all of
the specified string(s). The function invocation takes this form:

CONCAT(String1,String2, ••• ,StringN);

where you may specify one or more strings to be concatenated.

For example:

P~OGRAM TestConcat;

VA~ Destination, Source1, Source2, Source3

BEGIN { TestConcat }
Source1 := '''Nevermore!''';
Source2 := 'the Raven, ';
Source3 := 'Quoth ';

STRING;

Destination := CONCATCSource3,Source2,Source1);
WRITELNCDestination)

END { TestConcat }.

The program above prints:

Quoth the Raven, "Nevermore!"

13.1.2 COpy

The COPY function creates a new string of the specified number of characters
whose contents are taken from the specified source string, starting at the
specified index. The function invocation takes this form:

COpy CSource-string,Index,Size-of-returned-string);

For exampLe:

(Changed 30 ApriL 1981)

STRING AND CHARACTER ARRAY FUNCTIONS AND PROCEDURES

PROGRAM TestCopy;

VAR Source, Target
Position

BEGIN {Test Copy}

STRING;
INTEGER;

Source := 'Jonathan R. Smith';

Page 13-3

Position := POS('S',Source) { Find position of last name };
Target := COPY(Source,Position,S);
WRITELN('The customer last name is: ',Target);
WRITELN('Last-name position in source string is: ',Position);

END {End TestCopy}.

The program above prints:

The customer last name is: Smith

and:

Last-name position in source string is: 13

(Notice that we used the POS function, discussed below in Section 13.1.7, to
determine the position in the source string of the character'S'.)

13.1.3 DELETE

The DELETE procedure removes the specified number of characters from the
source string, starting at the specified position. The procedure invocation
takes this form:

DELETE (Source-string, Index, Number-of-characters);

where Source-string must be a string variable.

For example:

PROGRAM TestDelete;

VAR Source
Position, Size

STRING;
INTEGER;

BEGIN { TestDelete }
Source := 'Now is the time for all good men!';
Position := POS('alL',Source);
DELETE (Source, Position + 3, 9);
WRITELN(Source)

END { TestDelete }.

The program above prints the string:

Now is the time for aLL!

STRING AND CHARACTER ARRAY FUNCTIONS AND PROCEDURES Page 13-4

13.1.4 INSERT

The INSERT procedure
destination string.
the destination string.

inserts the specified string into a specified
It begins the insertion at the specified position in
The invocation of this procedure takes the form:

INSERT(Insert-string,Destination-string,Index);

where Destination-string must be a string variable. For example:

PROGRAM TestInsert;

VAR Insertion,Destination STRING;

BEGIN { TestInsert }
Destination := 'Customer name is:
Insertion := 'Robert Allen';
INSERT(Insertion,Destination,19);
WRITELN(Destinat;on)

END { TestInsert }.

The program above prints:

Customer name is: Robert Allen.

13.1.5 LCS

, . . ,

The LCS procedure converts upper case characters to lower case. The
procedure invocation takes this form:

LCS(SourceStr;ng);

where SourceString is the string to be converted. For example:

PROGRAM TestLCS;

VAR CustomerID STRING[22J;

BEGIN { TestLCS }
CustomerID := 'Alfred J. Prufrock Jr.';
LCS(CustomerID);
WRITELN('Converted name is: ',CustomerID)

END { TestLCS }.

The program above prints:

Converted name is: alfred j. prufrock jr.

STRING AND CHARACTER ARRAY FUNCTIONS AND PROCEDURES Page 13-5

13.1.6 LENGTH

The LENGTH function returns the number of characters in the specified
string. The function invocation takes this form:

LENGTH(Source-string);

For exampLe:

PROGRAM TestLength;

VAR State: STRING;

BEGIN { TestLength }
State := 'CaLifornia';
WRITELN('Number of characters in state: ',LENGTHCState»;
WRITELN('Number of characters in zipcode: ',LENGTH('90247'»;

END { TestLength }.

The program above prints:

Number of characters in state: 10

and:

Number of characters in zipcode: 5

13.1.7 POS

The POS function returns the position of the first occurrence of the
specified characters in the specified source string. If POS can't find the
specified characters, it returns a zero. The invocation of this function
takes the form:

POS(Pattern,Source-string);

For exampLe:

PROGRAM TestPos;

VAR Source: STRING;

BEGIN { TestPos }
Source := 'The requested account number is #AA234-567-23228';
WRITELNC'The account number begins at character position # "

POS('#AA',Source»
END { TestPos }.

The program above prints the message:

The account number begins at character position # 33

STRING AND CHARACTER ARRAY FUNCTIONS AND PROCEDURES Page 13-6

13.1.8 STRIP

The STRIP procedure strips trailing blanks from the specified string. (That
is, STRIP removes any blanks that are at the end of the string.) The
invocation takes the form:

STRIP(SourceString);

where SourceString must be a string variable. For example:

PROGRAM TestStrip;

VAR Source: STRING;

BEGIN { TestStrip }
Source := '25 characters ';
WRITELN('Before stripping:[',Source,'J');
STRIP(Source);
WRITELN('After stripping:[',Source,'J')

END { TestStrip }.

The ~rogram above prints:

Before stripping:[25 characters
After stripping:[25 charactersJ

13.1.9 UCS

J

The UCS procedure converts lower case characters in a specified string to
upper case. The procedure invocation takes the form:

UCS(SourceString);

where SourceString must be a string variable. For example:

PROGRAM TestUCS;

VAR Title: STRING[30J;

BEGIN { TestUCS }
Title := 'fAmOus comPUters i HAve knOWn.';
UCS(Title);
WRITELN('Converted title is: ',Title)

END { TestUCS }.

The program above prints:

Converted title is: FAMOUS COMPUTERS I HAVE KNOWN.

STRING AND CHARACTER ARRAY FUNCTIONS AND PROCEDURES Page 13-6a

13.1.10 VAL

The VAL procedure converts a string to a REAL number. The invocation takes
the form:

VAL(SourceString);

where SourceString is a string variable that you want to convert to a
number. For example:

PROGRAM TestVAL;

VAR Price STRING;
Total REAL;

BEGIN { TestVAL }
---wRITE('Enter price of object: I);

READLN(Price);
IF POS('.',Price) = 0 THEN WRITELN('The price is in whole dollars. ')
Total := VAL(Price); --
WRITELN('With 6% tax, the price is:',Total * 1.06:8:2)

END { TestVAL }.

The program above uses a string function, POS, on the string Price; it then
converts Price to a REAL number (Total) so that it can perform a numeric
operation on the value. (Notice the use of the optional parameters (":8:2")
in the last WRITELN invocation to format the numeric answer in a field eight
characters wide with two digits to the right of the decimal point.)

A sample run of the program looks like this:

Enter price of object: 560
The price is in whole dollars.
With 6% tax, the price is: 593.60

<Changed 30 April 1981)

STRING AND CHARACTER ARRAY FUNCTIONS AND PROCEDURES Page 13-7

13.2 CHARACTER ARRAY INSTRINSICS

The procedures and strings Listed beLow are for use on packed arrays of type
CHAR. You must make sure that any string LiteraL you assign to the array is
the correct number of characters. For exampLe, asssigning a string LiteraL
to an array of 24 eLements wiLL cause an error if that string LiteraL has
Less than or more than 24 characters.

13.2.1 FILLCHAR

The FILLCHAR procedure modifies a character ar~ay by fiLLing it with the
specified character. The invocation for the procedure takes this form:

FILLCHAR (Destination,Length,FiLL-character);

where Destination must be a variabLe. For exampLe:

PROGRAM TestFiLLChar;

VAR Destination
Length

Character
I

BEGIN { TestFiLLChar }
Length := 10;

PACKED ARRAY [1 •• 10J Q[CHAR;
INTEGER;
CHAR;
INTEGER;

Character := 'A';
FILLCHAR(Destination,Length,Character);
FOR I := 1 TO 10 DO
--WRITE(Destlnation[I])

END { TestFiLLChar }.

The program above fiLLs the character array Destination with ten A's.

13.2.2 MOVELEFT and MOVERIGHT

The MOVELEFT and MOVERIGHT procedures move bLocks of bytes in memory. They
can be dangerous if not used correctLy. (For exampLe, if you teLL one of
these procedures that you want to move 20 bytes, but the destination array
onLy contains 10 bytes, where do the extra 10 bytes go? Somewhere in
memory?)

You wiLL probabLy use MOVELEFT and MOVERIGHT most often to shift characters
within a singLe array. You can aLso use them to move characters from one
array of type CHAR to another.

MOVELEFT starts at the Left of the specified source array, and moves bytes
to the specified position in the destination array (also beginning at the
Left). MOVERIGHT moves bytes beginning with the right of the source array,

STRING AND CHARACTER ARRAY FUNCTIONS AND PROCEDURES Page 13-8

and beginning with the right of the specified locations in the destination
array. You specify the source array, the destination array, and the number
of bytes to move. (In the case of an array of type CHAR, one byte is one
character.> By including subscripts, you may specify the locations in the
source and destination arrays at which to start.

Of course, MOVELEFT and MOVERIGHT do not physically "move" the bytes;
instead, they make a copy of the specified bytes f~om the source array into
the specified locations of the destination array. The invocations of
MOVELEFT and MOVERIGHT take this form:

MOVELEFT(Source-array,Destinat;on-array,Number-of~bytes);

and:

MOVERIGHT(Source-array,Destination-array,Number-of-bytes);

where Destination must be a variable.

Given the same arrays and same subscripts,
MOVELEFT will look exactly the same. For
array of CHAR "1234567890", and Destination
"**********",

the results of MOVERIGHT and
example, if Source is the packed
is the packed array of CHAR

MOVELEFT(Source[6J,DestinationC6J,S);

MOVERIGHT(Source[6J,Destination[6J,S);

will produce the same packed array: *****67890. The MOVELEFT procedure
above moves the characters in this order: 6, 7, 8, 9, and O. The MOVERIGHT
procedure above moves the characters in this order: 0, 9, 8, 7, and 6. The
only time this will become important is when you are moving characters
within the same array.

For example:

PROGRAM TestMove;

VAR Source: PACKED ARRAY [1 •• 23J Q[CHAR;

BEGIN { TestMove }
Source := 'Days are never too Long';
MOVELEFT(Source[6J,SourceC1J,10);
WRITELN(Source);
Source := 'Days are never too long';
MOVERIGHT(Source[6J,50urce[1J,10);
WRITELN(Source)

END { TestMove }.

The program above prints:

are never ever too long

STRING AND CHARACTER ARRAY FUNCTIONS AND PROCEDURES Page 13-9

and:

ever ever ever too Long

MOVERIGHT and MOVELEFT can produce radicaLLy different resuLts, depending on
the data you give them. You must be carefuL to choose the correct MOVE
function for your particuLar appLication.

13.2.3 SCAN

The SCAN function returns the number of characters in the array from the
beginning of the array untiL the specified character. (If the specified
characters are not found, SCAN returns the number of characters in the
entire array.) The function invocation takes this form:

SCAN (Length,PartiaL-expression,Source-array);

where Length gives the Length of
packed array of type CHAR that is to
takes the form:

<> character-expression
or:

= character-expression

For exampLe:

PROGRAM TestScan;

the array, Source-array specified the
be searched, and PartiaL-expression

VAR Source: PACKED ARRAY [1 •• 25] Qf CHAR;

BEGIN { TestScan }
Source := 'Error:30240 type RETURN ';
WRITELN('Error code starts after char #: ',SCAN(25,=':',Source»

END { TestScan }.

If the searched for character-expression is the first character of the
array, SCAN returns a zero.

By specifying a negative Length, you can teLL SCAN to scan the array
backward, from right to Left. If the specified character appears in the
array, SCAN then returns a negative number specifying the number of
characters scanned from the right of the array before the specified
character was reached. If you suppLy a negative Length, be sure to aLso
specify the position in the array at which you wish the search to start.
For exampLe:

WRITELN('It starts after character #',SCAN(-25,=':',Source[25]»;

PART III

ADVANCED PROGRAMMING ON THE ALPHA PASCAL SYSTEM

/

CHAPTER 14

SYSTEMS FUNCTIONS AND PROCEDURES

The foLLowing functions and procedures wiLL be of
experienced ALphaPascaL programmer. They aLLow you
Location and size of data objects in memory, to determine
memory Left, and to handLe system and fiLe errors.

speciaL use to the
to determine the
the amount of free

Other functions and procedures aLLow you to access system functions such as
accessing the Line printer spooLer, mounting disks, reading the system
cLock, and reading, setting, and reLeasing muLti-user fiLe Locks.

14.1 LOCATION

The LOCATION function returns an integer that corresponds to the absoLute
memory address of the specified variabLe. The invocation takes the form:

LOCATION(variabLe-identifier);

where variabLe-identifier specifies the variabLe whose memory address you
wish to know. LOCATION accepts a variabLe of any type as an argument.
LOCATION may not be used on packed fieLds.

14.2 SIZEOF

The SIZEOF function returns the size (in decimaL bytes) of the specified
item. The invocation takes this form:

SIZEOF(variabLe-or-type-identifier);

For exampLe:

SYSTEMS FUNCTIONS AND PROCEDURES

PROGRAM Test~izeOf;

TYPE SampLeRecord = RECORD

BEGIN (TestSizeOf }

character: CHAR;
next: ftSampLeRecord;

END;

Page 14-2

WRITELN('Size of SampLeRecord (in bytes) is:',SIZEOF(SampLeRecord»
END { TestSizeOf }.

The program above prints:

Size of SampLeRecord (in bytes) is: 4

14.3 MEMAVAIL

MEMAVAIL returns an integer corresponding to 3/4 the number of unused words
remalnlng in the user partition. This number can be used to estimate how
many items can be aLLocated by NEW before memory capacity is exceeded. You
can use SIZEOF to determine how many bytes any particuLar object wiLL
require.

14.4 MAINPROG

MAINPROG is a booLean function that returns no arguments. It returns TRUE
if the .PCF fiLe is being used as a program, or FALSE if it is being u~ed as
a Library.

MAINPROG can be used for debugging purposes. It can be used to write a
program which can aLso be used as the Library of a checkout program that
makes sure that the functions and procedures defined in the originaL program
(now a Library to the checkout program) are impLemented correctLy. To do
this, the program wouLd have the form:

PROGRAM;

••• decLarations •••

BEGIN
••• initiaLization •••

IF MAINPROG THEN
BEGIN
{statements}

END;
END.

SYSTEMS FUNCTIONS AND PROCEDURES Page 14-3

The statements are onLy executed if the program is being used as a program
and not as a Library.

The checkout program testing the functions and procedures in the above
program wouLd then decLare them as EXTERNAL functions and procedures in
order to caLL them with test arguments.

14.5 SPOOL

SPOOL is an assembLy Language routine that you can caLL from PascaL to spooL
a disk fi Le to the Line printer(s). (To "spooL" a fi Le is to insert it into
the printer queue, after which you can continue to do other things whiLe
your fiLe waits in the queue for its turn to be printed.) SPOOL aLLows you
to specify on which printer the file is to be printed, the number of copies
to be printed, the form on which it is to be printed, whether the fiLe is to
be deLeted after it is printed, etc.

The current version of SPOOL (AMOS version 4.4/ALphaPascaL version 2.0, and
Later) is fuLLy compatibLe with the current BASIC SPOOL subroutine. In
other words, the onLy information you must suppLy to SPOOL is the
specification of the fiLe you want to print; aLL other parameters are
optionaL. However, any unspecified arguments must be repLaced by a nuLL
vaLue (STRING nuLL or INTEGER 0, based on the type of the argument). This
is because PascaL functions and procedures require a fixed number of
arguments.

The foLLowing definitions of switches and error codes are provided in the
include fiLe SPOOL.INC. To use, insert {$I SPOOL} into the appropriate
pLace in your program.

14.5.1 Switches

To make Life easier, switch vaLues
description of SWITCHES, see beLow.

BANNER = 1;
NOBANNER = 2;

DELETE = 4;
NODELETE = 8;

HEADER = 16;
NOHEADER = 32;

FF = 64;
NOFF = 128;
WAIT = 256;

are avaiLabLe as constants.
The constants wouLd be:

For a

SYSTEMS FUNCTIONS AND PROCEDURES Page 14-4

14.5.2 Error Codes

The error codes returned by SPOOL are provided in a TYPE declaration at the
beginning of a program. The TYPE command has the form:

TYPE SPOOLERROR = (SPOOLED, NOSPOOLERALLOCATED, BADPRINTERNAME,
OUTOFQUEUEBLOCKS, FILENOTFOUND);

14.5.3 Function Definition

Finally, the external function linkage definition is made as follows:

EXTERNAL FUNCTION SPOOL(F,P: STRING;
SW,CP: INTEGER;

FRM: STRING;
L,W: INTEGER): SPOOLERROR;

14.5.4 The SPOOL Subroutine

Call SPOOL via:

SPOOLCODE:=SPOOL(FILENAME,PRINTER,SWITCHES,COPIES,FORMS,LPP,WIDTH);

where:

SPOOLCODE A variable of type SPOOLERROR which gets the completion code
shown in the above TYPE declaration. If SPOOLCODE is not set
to SPOOLED after the calL is made, then an error of some kind
occurred and the file was not printed.

FILENAME A string variabLe or expression that gives the specification of
the file you want to print.

PRINTER A string variable or expression that gives the name of the
printer to which you want to send the file. If PRINTER is a
nuLL string, SPOOL uses the defauLt printer.

SWITCHES An integer variabLe or expression that specifies various
control switches and fLags that affect the printing of the
file. The control switches that SPOOL uses are exactly the
same as the switches used by the monitor PRINT command. (See
the "AMOS System Commands Reference Sheets" in the User's
Information section of the AM-100 documentation packet for
information on PRINT.)

Each switch you can use has a numeric code associated with it
(see below). For exampLe, the BANNER switch code is 1; the
DELETE switch code is 4. Set control switches by putting the
sum of the appropriate switch codes into the SWITCHES variabLe.

SYSTEMS FUNCTIONS AND PROCEDURES Page 14-15

exception of a Control-C followed by a command to resume. Thus the
ERRORTRAP procedures themselves have aborted to AMOS in most circumstances.

In addition, STDERRORTRAP resets INFOPA.XEQERR to zero before returning if
execution is to be resumed. This is because errors MUST NOT occur fn the
error handler itself for obvious reasons. AlphaPascal assumes it ~s

II executing an error handler whenever XEQERR is nonzero. If an error does
occur within an error handler, the message

?Attempt to call ERRORTRAP while in ERRORTRAP

is displayed, a direct abort to AMOS is made without closing any open files.
Thus, by reseting XEQERR to zero, STDERRORTRAP signals to AlphaPascal that
error handling is finished and further errors aOre again acceptable.

Should you decide not to call STDERRORTRAP at all, please keep in mind the
following points:

1. The only errors from which you may safely resume execution are 8 (a
Control-C) and 10 (I/O error). An attempt to resume execution by
returninq from ERRORTRAP with any other errors will probably crash
the system.

2. It is acceptable to use EXIT to abort some function or procedure,
or your program, when any error occurs. Of course you can only
EXIT to leave a function or procedure which is currently active, so
you will probably want to have around some BOOLEAN variables to
keep track of whether or not you are currently within routines
which you might wish to EXIT from ERRORTRAP.

3. Remember to set XEQERR back
otherwise your next error
ERRORTRAP.

14.10.3 XERRORTRAP

to zero before
wi II abort to

leaving ERRORTRAP,
AMOS without calling

When STDERRORTRAP is called by entering a Control-C, it is possible to
request a backtrace of suspended functions and procedures. This backtrace
begins with the caller of the caller of STDERRORTRAP, which is usually the
caller of ERRORTRAP, and hence the routine which was suspended. Thus,
should STDERRORTRAP be called by a function or procedure local to your
ERRORTRAP procedure, the backtrace will begin in the wrong place. This can
be corrected by using XERRORTRAP, which takes a copy of the system INFOREC
as its argument. It is used as follows:

(changed 30 April 1981)

SYSTEMS FUNCTIONS AND PROCEDURES

PROCEDURE ERRORTRAP;
VAR INFOP: AINFOREC; INFO: INFOREC;
PROCEDURE P1;

BEGIN
XERRORTRAP(INFO);

END;
BEGIN-

INFOP := ERRORINFO;
INFO := INFOPA;
P1;
INFOPA.XEQERR := INFO.XEQERR;

END;

Page 14-16

Using XERRORTRAP, the backtrace will be displayed beginning with the caller
of the routine which invokes ERRORINFO, thus producing a correct backtrace,
even when called from an inner procedure. Begin at the caller of the
procedure which set X to ERRORINFO.

14.10.4 ERROR

The procedure ERROR(x) takes an INTEGER x as argument and generates the
corresponding system error. See the previous section for the list of error
codes.

(changed 30 April 1981)

SYSTEMS FUNCTIONS AND PROCEDURES Page 14-7

(These two declarations can be included in a program by using {$I XLOCK}.)
The result of the XLOCK caLL wiLL be returned in the integer variabLe
RETCODE:

RETCODE:= XLOCK(MODE,LOCK1,LOCK2);

Where MODE is one of the modes specified in XLOCKMODE, and LOCK1 and LOCK2
are integers containing the Locks to be set.

If RETCODE is ever set to -1, this means that a bad mode was passed to
XLOCK. This can happen if there was an error in setting up XLOCKMODE.

14.6.2 Setting a Lock

A Lock is set using XLOCK mode SETLOCK. For instance, if the user had
opened a fiLe on channeL 3 and was updating record 47, he might enter the
foLLowing code into his PascaL fiLe:

LOCK1:=3; {locking fiLe 3}
LOCK2:=47; {Locking record 47}
RETCODE:=XLOCK(SETLOCK,LOCK1,LOCK2);

If the Lock was successfuL, then RETCODE is set to O. If not, the job
number of the job that has that Lock is returned in RETCODE.

14.6.3 Setting a Lock (and Waiting UntiL it is AvaiLabLe)

It is sometimes necessary to wait for a Lock to become cLear. To do this,
mode SETLOCKWAIT is used instead of SETLOCK. This mode, assuming the above
exampLe, is used as foLLows:

RETCODE:=XLOCK(SETLOCKWAIT,LOCK1,LOCK2);

If the Lock is heLd by another user, the program wiLL be put to sLeep untiL
it becomes avaiLabLe. When XLOCK returns to the user program, RETCODE wiLL
contain a 0 if the Lock was aLLocated, or the user's job number if the Lock
aLready was aLLocated to him.

14.6.4 Clearing a Lock

After a Lock is no longer needed (i.e. in the above example, moving to
another record) it must be cLeared so that other users have access to that
Lock. To cLear a Lock, the CLEARLOCK mode is used. Again, using the above
example:

RETCODE:=XLOCK(CLEARLOCK,LOCK1,LOCK2)

SYSTEMS FUNCTIONS AND PROCEDURES Page 14-8

RETCODE will contai~the number of Locks that
after the caLL, then no Locks were cLeared.
was cLeared. If RETCODE > 1, then a wiLdcard
LOCK2 and mucho Locks were cLeared.

were cLeared. If RETCODE = 0
If RETCODE = 1, then one Lock
was specified in LOCK1 or

14.6.5 The GETLOCKS Subroutine

GETLOCKS is an externaL procedure. Therefore, it must be specified as such
in the Pascal program that uses it:

EXTERNAL PROCEDURE GETLOCKS(VAR LOCKQTY,JOBNUM: INTEGER;
VAR LOCKARRAY: LARRAY);

Type LARRAY is an array of type LOCK. LOCK is set up as foLlows:

TYPE LOCK = RECORD JOB,LOCK1,LOCK2 : INTEGER END;

If X is a variable of type LOCK, then X.JOB is the job number that holds the
lock. X.LOCK1 and X.LOCK2 are the lock vaLued of the lock. LARRAY is
defined as follows:

TYPE LARRAY = ARRAY[1 •• 25J ~ LOCK;

The variable LOCKARRAY may then be aLlocated for GETLOCKS to return the List
of locks in:

VAR LOCKARRAY : LARRAY;

Be sure to set up type LARRAY as an array large enough to hold the maximum
number of possibLe locks on your system. Since there is no range checking
in external procedures or functions, LARRAY must be large enough to receive
the maximum number of anticipated locks. Therefore, it is a good idea to
set LARRAY to the number of queue bLocks aLlocated in your system.

If there is a possibiLity that more than 25 locks may be set at a time when
GETLOCKS (see below) is calLed, then it is necessary that the size of LARRAY
be increased. The file DSKO:XLOCK.INC[7,5J, which contains the definition
of LARRAY, may be modified.

To get a list of Locks, enter into your program:

GETLOCKS(LOCKQTY,JOBNUM,LOCKARRAY);

Where LOCKQTY is an integer that receives the number of set locks, JOBNUM is
an integer that receives your job number, and LOCKARRAY is the array that
receives the list of locks.

SYSTEMS FUNCTIONS AND PROCEDURES Page 14-9

One thing you might do with this list of locks is list it. To do this:

FOR LOCKLIST:=1 TO LOCKQTY DO
----WITH LOCKARRAY[LOCKLISTJ-oO

--BEGIN {LIST LOCKS}

14.7 XMOUNT

WRITELN (' J OB =
WRITELN (' LOCK1 =
WRITELN ('LOCK2 =

END; {LIST LOCKS}

',JOB);
',LOCK1);
',LOCK2);

XMOUNT is an assembly language routine that aLLows you to mount a disk from
within a Pascal program without leaving Pascal. You should call it whenever
you change a disk and your Pascal program is going to use that disk. You
must always mount a disk after you have changed it and before you write to
it. Otherwise, the system wilL think that the old disk is still in the
drive, and use the oLd disk's bitmap to find unused disk bLocks.

14.7.1 Error Codes

The error codes returned by XMOUNT are specified in a TYPE decLaration at
the beginning of a program, having provided the form:

TYPE MOUNTERROR = (MOUNTED, UNMOUNTED, DEVNOTFOUND, BADHASH, NOVOLID);

Next, some variabLes wiLL have to be defined.
variabLe to contain the device specification and
that wiLL contain the voLume ID of the newLy
return an error code in a variabLe that shouLd be

VAR DEV,VOLID: STRING[10J;
RETCODE: MOUNTERROR;

XMOUNT requires a string
another string variabLe

mounted disk. XMOUNT wiLL
of type MOUNTERROR:

Next, the function (XMOUNT) must be defined as foLLows:

EXTERNAL FUNCTION XMOUNT(D: STRING;
VAR V: STRING): MOUNTERROR;

{$I XMOUNT} wiLL include the required TYPE and EXTERNAL FUNCTION definitions
required by XMOUNT.

XMOUNT is then caLLed via:

RETCODE:=XMOUNT(DEV,VOLID);

SYSTEMS FUNCTIONS AND PROCEDURES Page 14-10

Where DEV is
DEV:='DSK3:')
ID, if any.

a string
and VOLID

containing the device to be mounted (e.g.,
is the string variable used to receive the volume

14.7.2 Unmounting a Disk

A disk may be unmounted by specifying '/U' after the DEV spec (i.e.
RETCODE:=XMOUNT('DSK23:/U',VOLID);). If a disk is to be unmounted, the '/U'
must contain an upper case Jut. When you unmount a disk, you prevent BASIC
and most system programs from being able to access that device. Note that
VOLID is included, even though it is not needed because a volume id is not
returned when a disk is unmounted. VOLID is required at all times.

14.7.3 Error Codes

The error (or return) codes specified above have the following meanings:

14.7.3.1 MOUNTED - The device was successfully mounted and the volume ID
is in VOLID (or whatever the second string was called).

14.7.3.2 UNMOUNTED - The device was successfully unmounted.
unchanged.

VOLID is

14.7.3.3 DEVNOTFOUND - The specified device was not defined at system
generation, and is not in the system device table. VOLID is unchanged

14.7.3.4 BADHASH - The device was mounted, but it was a storage module
device with a BADBLK.SYS. When the new BADBLK.SYS was read, it was found to
contain a bad hash total. VOLID is unchanged.

14.7.3.5 NOVOLID - The disk was successfully mounted, but there was no
volume ID on the disk. Note that MOUNTED and NOVOLID specify successful
mounting of the disk. UNMOUNT specifies a successful UNMOUNT. DEVNOTFOUND
and BADHASH indicate errors occurred while attempting to mount the disk. If
either of these errors occur, you should not try to access that device!

SYSTEMS FUNCTIONS AND PROCEDURES Page 14-11

14.8 TIME

The TIME procedure pLaces the contents of the system cLock into the two
specified variabLes. (The system cLock contents increment every sixtieth of
a second on most systems, and every fiftieth of a second on other systems;
the actuaL amount is specified by CLKFRQ in SYSTEM.INI.) Word1 contains the
most significant part of the returned vaLue. Word1 and Word2 must be
decLared INTEGER variabLes. The procedure invocation takes this form:

TIME(Word1,Word2);

For exampLe:

PROGRAM TestTime;

VAR First,Second: INTEGER;

BEGIN { TestTime }
TIME(First,Second);
WRITELN('The time is: ',First,',',Second)

END { TestTime }.

When the program above was run at 5:~0:02 PM, it printed:

The time is: 56,2086

NOTE: Because the cLock contents are stored
Word2 may sometimes be interpreted and
negative number.

14.9 TOD

as a 32-bit unsigned vaLue,
dispLayed by the computer as a

TOD takes no arguments, and returns a reaL number corresponding to the
number of seconds since midnight, according to the time of day. InternaLLy,
the time of day is converted from a two word integer to a reaL number, and
then divided by the cLock frequency defined in SYSTEM.INI. Therefore, the
resoLution on 60 cycLe systems is to within .01666 ••• seconds, and on 50
cycLe systems is to within .02 seconds.

You wiLL probabLy find TOD to be of most use for timing purposes or for
caLcuLating the time of day.

SYSTEMS FUNCTIONS AND PROCEDURES Page 14-12

14.10 ERROR HANDLING PROCEDURES AND VARIABLES

Whenever an error occurs, the ALphaPascaL system prints an appropriate
message (incLuding the Location of the error) and aborts to AMOS. Whenever
a user types a ControL-C whiLe his program is executing, execution is
suspended and the user is aLLowed to choose among a series of options such
as resuming his program, exiting to AMOS, or displaying a backtrace of
suspended function and procedure invocations.

However, it is not aLways desirabLe to let the system perform error handLing
for you. You may wish to aLlow the user to type a ControL-C in order to
exit from some mode of a program, or in order to obtain a status report on
the progress of your program in processing some task. It may be that you
have an applications package in which the users of your package are
unfamiLar with AMOS ••• if an error occurs you may simpLy wish to print a
message and return to the top level of your appLications package. Or it may
be that you enforce security on your system, and have an unattended program
that you wish to LOGOFF automatically if an error occurs.

For these reasons and more, it is desirabLe for you to be able to write your
own routine to handLe a ControL-C and error conditions. AlphaPascal allows
you to do so, and the remainder of this section wilL attempt to provide you
with the necessary information to write such a routine.

14.10.1 IncLuding ERT.INC

In order to write your own error r9utine, you must include a special set of
definitions with {$I ERT}~ Doing so incLudes the foLLowing text;

TYPE
~FOREC = RECORD

XEQERR: INTEGER;
FILERC: INTEGER;
ERRFIB: ATEXT;

{Additional information for internaL use onLy}

EXTERNAL PROCEDURE XERRORTRAP(VAR INFO: INFOREC);
EXTERNAL PROCEDURE STDERRORTRAP;

14.10.2 ERRORTRAP

To catch errors, you must write a gLobal procedure of no arguments with the
name ERRORTRAP. Here is a very simpLe exampLe of such a procedure:

SYSTEMS FUNCTIONS AND PROCEDURES

PROCEDURE ERRORTRAP;
BEGIN

STDERRORTRAP;
END;

Page 14-13

In this exampLe, we simpLy caLL the standard system error handLer
STDERRORTRAP. In order to determine the nature of the error which has
invoked errortrap, you must use the function ERRORINFO in conjunction with a
variabLe decLared as type ftINFOREC:

PROCEDURE ERRORTRAP;
VAR INFOP: ftINFOREC;
BEGIN

END;

INFOP := ERROR INFO;
WRITELN('?Error ',INFOPft.XEQERR');
STDERRORTRAP;

In this exampLe, we aLso dispLay the error code corresponding to the error
which occurred before caLLing the standard error handLer. The List of error
codes is as foLLows:

Error
Code Meaning

1 VaLue range error
3 Exit from uncaLLed procedure
4 Memory capacity exceeded
5 Integer overfLow
6 Divide by zero
7 Bad pointer reference
8 (ControL-c)

10 (I/O error)
11 UnimpLemented runtime instruction
12 FLoating point error
13 String overfLow
14 Programmed HALT
15 Programmed breakpoint
16 ARCSIN(x) or ARCCOS(x) where abs(x) > 1
17 LOG(x) or LN(x) where x <= 0
18 SQRT(x) where x < 0
19 TAN(PI/2 + k*PI) is undefined for integer k (bad TAN argument)
20 ARCCOSH(X) where x < 1
21 FACTORIAL(x) where x is a negative integer
22 ARCTANH(x) where abs(x) >= 1
23 POWER(x,y) where x < 0 and y is a fraction

In the case of I/O errors, there is some additionaL information, nameLy the
type of error and the fiLe invoLved, which is avaiLabLe:

SYSTEMS FUNCTIONS AND PROCEDURES Page 14-14

PROCEDURE ERRORT~AP;
VAR INFOP: AINFOREC; BADFILEP: ATEXT;
BEGIN

INFOP := ERRORINFO;
IF INFOPA.XEQERR = 10 {I/O Error} THEN
--aEGIN BADFILEP := INFOpA.ERRFIB;-----

WRITE('?I/O error ',INFOPA.FILERC,' has occurred in I);

PFILE(BADFILEpA);
WRITELN;

END;
STDERRORTRAP;

END;

In the above example, if an I/O error has occurred, we display the file
error code (INFOPA.FILERC) and the name of the file involved
(INFOPA.ERRFIBA). ERRFIB is a pointer to the most recently processed file,
which is why we first save it in BADFILEP before writing to the terminal,
otherwise our message would read

?I/O error xxx has occurred in TTY:

regardless of the actual file in which the error occurred.

Here is a list of the I/O error codes. They are the standard codes used by
AMOS:

I/O
Error
Code Meaning

1 File specification error
2 Insufficient free memory for INIT
3 File not found
4 File already exists
5 Device not ready
6 Device full
7 Device error
8 Device in use
9 Illegal user code

10 Protection violation
11 Write protected
12 File type mismatch
13 Device does not exist
14 Illegal block number
15 Buffer not INITed
16 File not open
17 File already open
18 Bitmap kaput
19 Device not mounted
20 Invalid filename

In the examples so far, we have always been calling STDERRORTRAP to handle
our errors. STDERRORTRAP always aborts to AMOS without returning with the

SYSTEMS FUNCTIONS AND PROCEDURES Page 14-15

exception of a ControL-C foLLowed by a command to resume. Thus the
ERRORTRAP procedures themseLves have aborted to AMOS in most circumstances.

In addition, STDERRORTRAP resets IN FOP .XEQERR to zero before returning if
execution is to be resumed. This is because errors MUST NOT occur in the
error handLer itseLf for obvious reasons. ALphaPascaL assumes it is
executing an error handLer whenever XEQERR is nonzero. If an occur does
occur within an error handLer, the message

?Attempt to caLL ERRORTRAP whiLe in ERRORTRAP

is dispLayed, a direct abort to AMOS is made without cLosing any open fiLes.
Thus, by reseting XEQERR to zero, STDERRORTRAP signaLs to ALphaPascaL that
error handLing is finished and further errors are again acceptabLe.

ShouLd you decide not to caLL STDERRORTRAP at aLL, pLease keep in mind the
foLLowing points:

1 • The onLy errors from which you
ControL-C) and 10 (I/O error).
returning from ERRORTRAP with
the system.

may safeLy resume execution are 8 (a
An attempt to resume execution by

any other errors wiLL probabLy crash

2. It i! acceptabLe to use EXIT to abort some function or procedure,
or your program, when any error occurs. Of course you can onLy
EXIT to Leave a function or procedure which ;s currently active, so
you wiLL probabLy want to have around some BOOLEAN variabLes to
keep track of whether or not you are currentLy within routines
which you might wish to EXIT from ERRORTRAP.

3. Remember to set XEQERR
otherwise your next
ERRORTRAP.

14.10.3 XERRORTRAP

back
error

to
will

zero before
abort to

Leaving ERRORTRAP,
AMOS without caLLing

When STDERRORTRAP is caLLed by entering a Control-C, it is possibLe to
request a backtrace of suspended functions and procedures. This backtrace
begins with the caLLer of the caLLer of STDERRORTRAP, which is usuaLLy the
caLLer of ERRORTRAP, and hence the routine which was suspended. Thus,
should STDERRORTRAP be caLLed by a function or procedure LocaL to your
ERRORTRAP procedure, the backtrace wiLL begin in the wrong pLace. This can
be corrected by using XERRORTRAP, which takes a copy of the system INFOREC
as its argument. It is used as foLLows:

SYSTEMS FUNCTIONS AND PROCEDURES

PROCEDURE ERRORTRAP;
VAR INFOP: AINFOREC; INFO: INFOREC;
----PROCEDURE P1;

BEGIN
XERRORTRAP(INFO);

END;
BEGIN-

INFOP := ERROR INFO;
INFO := INFOpA;
P1;
INFOPA.XEGERR := INFO.XEGERR;

END;

Page 14-16

Using XERRORTRAP, the backtrace wiLL be dispLayed beginning with the caLLer
of the routine which invokes ERROR INFO, thus producing a correct backtrace,
even when caLLed from an inner procedure. Begin at the caLLer of the
procedure which set X to ERRORINFO.

14.10.4 ERROR

The procedure ERROR(x) takes an INTEGER x as argument and generates the
corresponding system error. See the previous section for the List of error
codes.

CHAPTER 15

ASSEMBLY LANGUAGE SUBROUTINES

AssembLy Language subroutines are assembLy Language programs that are
caLLabLe by your ALphaPascaL programs.

Why wouLd you want to caLL assembLy Languages routines from a PascaL
program? There are at Least two good reasons. FirstLy, not aLL the
capabiLities of the operating system (AMOS) have been directLy incLuded in
AlphaPascal. The abiLity to write assembly Language subroutines allows you
to enrich AlphaPascaL, as need requires, with additional capabiLities.
SecondLy, routines written in assembLy Language execute significantLy faster
than routines written in PascaL. Thus, you may wish to identify key
functions and procedures which are bottle necks in your programs, and
rewrite them in assembly Language.

This chapter describes how to write and use assembly Language subroutines.
It wiLL be assumed in this chapter that you are an experienced assembLy
Language programmer on the AMOS system. For more information on assembly
Language programming, pLease refer to the AMOS AssembLy Language
Programmer's Reference Manual (DWM-00100-43), the WD16 Microcomputer
ManuaL (DWM-00100-04), and the AMOS Monitor CaLls ManuaL (DWM-00100-42).

15.1 CALLING ASSEMBLY LANGUAGE SUBROUTINES

In ALphaPascaL, there is no distinction between caLling an assembly Language
function or procedure, and caLLing a PascaL function or procedure which
occurs in a separateLy compiLed moduLe. (Modules were discussed in Section
5.1.) Section 4.4.4 describes how to Link an assembly Language subroutine
into a program during the PLINK process. Instead of linking output fiLes
from the compiLer, you Link a PRG fiLe with an extension of .PSB which
contains code for a singLe function or procedure. The name of the PSB fiLe
must be the first six Letters of the name to be used for caLLing the
assembly Language routine. When specifying the fiLe to PLINK you must, of
course, specify the fuLL name of the procedure or function contained in the
PSB fiLe, otherwise PLINK would not know the fuLL name you wish to use for
it.

ASSEMBLY LANGUAGE SUBROUTINES Page 15-2

For example, if you code in assembly language a procedure that displays a
menu, the procedure name might be MENUDISP. The disk file containing that
routine must then be called MENUDI. When you specify the file to PLINK,
though, you use the full eight-character name of the procedure. For
example:

File 1 = MENUDISP.PSB/LINK

15.2 ARGUMENT PASSING CONVENTIONS

Your assembly language routine must work with two stacks. One of these
stacks is the familar SP stack. The other is a data stack used by
AlphaPascal for passing arguments and recieving results. The data stack is
indexed by R5, and so will also be referred to as the R5 stack. All other
registers (RO-R4) are available for any purpose to your assembly routine.

Arguments are pLaced on the R5 stack in reverse order. That is, the Last
argument appears on the top of the R5 stack. For exampLe, if we have the
following program in AlphaPascaL:

File TEST1.PAS--

PROGRAM;
EXTERNAL PROCEDURE dem01(x,y: INTEGER);
BEGIN

dem01(10,20);
END.

then, upon entry to our assembly language subroutine, 20 wilL be on the top
of the R5 stack (referenced as @R5) and 10 wiLL be under it on the R5 stack
(referenced as 2(R5».

A procedure to print its two INTEGER arguments in order might then be
DEM01.MAC:

File DEM01.MAC--

COpy SYS

START: MOV
DCVT
CRLF
MOV
DCVT
CRLF
ADDI
RTN

2(R5),R1
0,2

@R5,R1
0,2

4,R5

; Get first argument
; Print it in decimal

; Get second argument
; Print it in decimal

; Remove arguments from R5 stack
; Return to pascal

DEM01 would then be assembled with MACRO, and the resulting program file
DEM01.PRG would be renamed to DEM01.PSB in order to allow it to be linked
into a code file by PLINK.

ASSEMBLY LANGUAGE SUBROUTINES Page 15-3

When caLLed as a function rather than as a procedure, your routine wiLL
receive an additionaL three words containing zeros on the top of the RS
stack. These words serve no purpose when writing assembLy routines and may
be immediateLy removed by executing an ADDI 6,R5. Their presence ;s
required for internaL reasons by functions written in PascaL.

Assembly language functions return their result on the top of the R5 stack
after aLL arguments have been removed. ExampLe:

FiLe TEST2.PAS--

PROGRAM;
EXTERNAL FUNCTION Maximum(x,y: INTEGER): INTEGER;
BEGIN

WRITELN(Maximum(2,7»;
END.

FiLe MAXIMU.MAC--

START: ADDI 6,R5
MOV (R5)+,R2
MOV (R5)+ ,R1
CMP R1,R2
BHI USE1ST
MOV R2,-(R5)
RTN

USE1ST: MOV R1,-(RS)
RTN

· Throwaway unused additionaL words ,
· Get 2nd argument ,
· Get 1st argument ,
· 1st> 2nd? ,
· Yes, return 1st argument ,
· No, return 2nd argument ,

· Return 1st argument ,

After producing MAXIMU.PSB, you wouLd need to remember to refer to the fiLe
as MAXIMUM.PSB to PLINK, otherwise it wouLd think the function being
defined had the name 'Maximu' instead of 'Maximum'.

15.2.1 Argument passing

There are two methods of passing arguments in PascaL, typified by:

1.
and 2.

PROCEDURE(x: INTEGER);
PROCEDURE(VAR x: INTEGER);

In the first decLaration, x is referred to as a vaLue parameter. In the
second decLaration, x is referred to as a reference parameter.

In generaL, vaLue parameters appear directLy on the RS stack, whiLe
reference parameters (denoting variabLes which can be modified) appear as an
address on the RS stack which points to the parameter.

However, there are exceptions: arrays, records, and strings aLways have
their address passed on the RS stack, even when they appear as vaLue
parameters.

ASSEMBLY LANGUAGE SUBROUTINES Page 15-4

15.2.2 Data Format~

This section describes the internaL format of each data type. ALL data
types are aLigned on a word boundary unLess contained as a packed fieLd.

15.2.2.1 CHAR - Characters are represented by their ASCII code in a fuLL
machine word. They are onLy stored within singLe bytes of memory when
contained in packed arrays or records.

15.2.2.2 INTEGER - Integers are represented in a singLe machine word.

15~2.2.3 BOOLEAN - BooLeans are represented by a zero (FALSE) or one
(TRUE) in a fuLL machine word. They are onLy stored as singLe bits when
contained in packed arrays or records.

15.2.2.4 Subranges and ScaLar types - These are represented in a fuLL
machine word unLess they appear in a packed array or record, in which case
they are stored in a fieLd of as many bits as necessary to hoLd their
maximum vaLue. User scaLar types are numbered starting from zero.

15.2.2.5 REAL - ReaLs occupy three words of memory and conform with the
format for-reaLs used by the FADD, FSUB, FMUL, FDIV, and FCMP machine
instructions.

15.2.2.6 STRING - Strings are represented by a
0-255, foLLowed by a sequence of bytes which are used
characters of the string.

Length byte containing
to hoLd the actuaL

15.2.2.7 Pointers - Pointers require a fuLL machine word.

15.2.2.8 Sets - Sets require one or more words depending upon the size of
the set. Sets are represented as a bit pattern, where a one bit denotes the
presence of a set eLement. The bits are ordered from Low order to higher
order in each word, and from first word to Last word. For exampLe, SET OF
3 •• 19 requires two words of memory. The first three bits corresponding to 0
thru 2 are unused. To test for the presence of the eLement 18, one wouLd
perform a bit test on the second word of the set with a mask of 4.

ASSEMBLY LANGUAGE SUBROUTINES Page 15-5

15.2.2.9 Arrays - Arrays require one or more words. The eLements of an
array appear in order in memory. In packed arrays, the eLements of an array
may each occupy on a few bits, otherwise each eLement wiLL appear on a word
boundary. FieLds appear from Low order to high order in a word, and may not
cross word boundaries.

15.2.2.10 Records - Records require one or more words. The eLements of a
record appear in order in memory in a fashion simiLar to arrays.

15.2.2.11 FiLes - FiLes are actuaLLy an internaL 'kind of record format.
The detaiLs of this format are not being made avaiLabLe as they wiLL change
as versions of ALphaPascaL change.

15.2.3 Error Exit

ShouLd you wish to generate an error from your assembLy Language subroutine,
it is preferabLe that you caLL the PascaL system's ERRORTRAP procedure,
rather than dispLay an error and exit to AMOS directLy, otherwise there is
no guarantee that open fiLes wiLL be cLosed correctLy.

To signaL an error, you must perform a proper return from your routine, but
in addition, advance your return address by executing IW2 @SP, and Leave an
execution error code in R1. For additionaL information on ERRORTRAP and a
List of execution error codes, see section 14.10, "Error HandLing Procedures
and VariabLes."

15.3 CODE RESIDENCY

This section discusses the variety of ways in which your routine may appear
in memory.

15.3.1 Routines PLINKed with ILINK

Routines which have been Linked into a code fiLe with the ILINK option must
have a finaL PSB fiLe which is exactLy one bLock in size. Such routines are
dynamicaLLy paged into memory aLong with PascaL psuedo-code. They are
deLeted from memory and reLoaded as memory requirements and usage demand.
They pLace no burden on avaiLabLe memory when not being used.

ASSEMBLY LANGUAGE SUBROUTINES Page 15-6

15.3.2 Routines PLtNKed without /LINK

Routines which have been linked into a code file without the '/LINK option
will be searched for in memory and on disk each time th~y are called. What
has been linked into the code file is not the actual routine, but rather the
name of the PSB file containing that routine (see section 4.4.4).

If your routine has been Loaded before entering ALphaPascaL via the LOAD
command, either into system memory or user memory, then that copy of your
routine wiLL be used.

If your routine is not present in memory, it will be temporariLy loaded in
order for it to be executed, and then deleted from memory immediateLy after
execution.

15.4 OBTAINING MEMORY FOR DATA AREAS

When writing
temporary data
this purpose.
stack, or place
routines which
sharable). The

an assembly language routine, you wiLL probably want and need
areas. There is no room for allocating memory moduLes for

Instead, you may either alLocate space for data in the SP
your data inLine in your routine (this is unacceptabLe for
are to be Loaded into system memory, since they must be

R5 stack is NOT available for allocating data space.

Another method for obtaining Larger data areas, is to have your caLler pass
them to you as arguments.

15.5 RESTRICTIONS

As mentioned above, there is no room for alLocating memory moduLes. This
aLso means that you may not use INIT to create a fiLe buffer, or perform
fiLe operations which would require loading a device driver into memory.

CHAPTER 16

WRITING AND MODIFYING AN EXTERNAL LIBRARY

When you link together your programs using PLINK, you are asked to specify a
library file. Typically, you specify STOLIB. The global functions,
procedures, and variables contained in this library are available to you
just as if you wrote them in a module and linked them into your program.
However, using routines contained in a library requires no additional space
in your program's code file because the routines are accessed directly from
the library file at run-time.

There are several advantages to placing commonly used routines in a library
rather than linking them directly into your program. First, you save disk
space by only having a single copy of your routines on disk. Second, the
linking process is faster if you only need to specify a library rather than
several files contain your modules. Finally, if it becomes necessary to
modify a routine, you need only change it in the library to update all your
programs which use it.

Another possible use of libraries is to generate multiple configurations of
a program. A single program could be linked to a variety of libraries each
of which define the same set of functions and procedures, but each of which
do so with different definitions. This might be used to configure a
generalized set of applications programs for use in different specific
applications.

It is not necessary to specify EXTERNAL declarations for most of the
functions and procedures in STOLIB. This is NOT a feature of libraries.
Rather, the compiler has been written to automat1cally include EXTERNAL
declarations for these commonly used routines.

There is really very little difference between a program file and a library
file. Both are actually AlphaPascal programs. The only difference is that
if Program A uses Program B as a library, then Program B is executed with
the purpose of initializing the library (i.e., global variables in the
library), before Program A is executed.

It is possible for a library to itself have a library. Thus Program A can
use Program B as a library, and Program B can use Program C as a library, in
which case C, then B, and finally A are executed.

WRITING AND MODIFYING AN EXTERNAL LIBRARY Page 16-2

To aLLow programs to be written which can serve either directLy as a
program, or indirectLy as a Library, a speciaL BOOLEAN function is provided,
caLLed MAINPROG, which takes no arguments and returns true if the program in
which it is executing is being used as the main program, and faLse if the
program in which it is executing is being used as a Library to another
program. The idea is to write a program in such a way that if it is being
used as a Library, aLL it does is initiaLize gLobaL variables.

16.1 STDLIB

STDLIB is a special library which itself has no library. It provides a
basic set of mandatory procedure and function definitions. It is
permissable for you to overide any of these definitions with your own
external procedures or functions with the exception of ROC, RDI, RDR, RDS,
RLN, WLN, WRB, WRC, WRI, WRR, and WRS. CalLs to these procedures are
automatically generated whenever you use READ and WRITE statements. READ
and WRITE will seriousLy malfunction if you redefine any of these.

The functions and procedures included in STDLlB are:

ARCCOS
ARCCOSH
ARCSIN
ARCSINH
ARCTAN
ARCTANH
CONCAT
COpy
COS
COSH
DELETE
ERRORTRAP
EXP
FACTORIAL
GETFILE
GETLOCKS
INCHARMODE
INSERT
KILCMD
LCS
LN
LOG
OPEN
POS
POWER
PROGRAM
PWROFTWO
RDC
RDI
RDR
RDS

Arc cosine function
Hyperbolic arc cosine fun~tion
Arc sine function
Hyperbolic arc sine function
Arc tangent function
HyperboLic arc tangent function
Function to concatenate strings
Function to copy characters in string
Cosine function
HyperboLic cosine function
Procedure to deLete characters in string
DefauLt error handLer
Function to compute e to the specified power.
FactoriaL function (X!)
Procedure to get information in fiLespec
Procedure to read file Locks.
Returns true if terminaL is in Charmode.
Procedure to insert characters into a string
Procedure to abort command fiLe
Function to convert upper case characters to lower case
Function to compute natural (Napierian) log
Function to compute log base ten of argument
Procedure to open an AMOS fiLe
Function to compute position of character in string
POWER(x,y) computes x to the y'th power
STDLIB initiaLization
Function to compute powers of two
Routine used by READ
Routine used by READ
Routine used by READ
Routine used by READ

WRITING AND MODIFYING AN EXTERNAL LIBRARY Page 16-3

RESET
REWRITE
RLN
SETFILE
SIN
SINH
S~

SPOOL
STDERRORTRAP
STRIP
SQRT
TAN
TANH
TOD
UCS
WLN
WRB
WRC
WRI
WRR
WRS
XERRORTRAP
XLOCK
XMNT
XMOUNT

Procedure to cLose a fiLe, and then open for input
Procedure to cLose, erase, and then open a fiLe for output
Routine used by READ
Procedure to pLace fiLe information in fiLespec
Sine function
HyperboLic sine function
Routine used by SPOOL; must not be caLLed directLy
Procedure to spooL fiLes to Line printer
Standard error handLer
Procedure to strip traiLing bLanks from string
Square root function
Tangent function
HyperboLic tangent function
Returns time of day in seconds as a reaL number
Procedure to convert upper case characters to Lower case
Routine used by WRITE
Routine used by WRITE
Routine used by WRITE
Routine used by WRITE
Routine used by WRITE
Routine used by WRITE
SpeciaL version of error handLer
Procedure to set or reLease fiLe Locks
Routine used by XMOUNT; must not be caLLed directLy
Procedure to mount a disk

16.2 WRITING LIBRARY FILES

It is not likeLy that you wouLd want to dispense with the standard library
fiLe altogether, since the compiLer reLies on the presence of many of the
procedures and routines in that Library. If you did not use STDLIB, you
wouLd have to dupLicate for yourseLf aLL of the routines Listed above that
make up that Library.

However, it is possibLe for one Library to make use of another. For
exampLe, suppose you want to write your own library which contains a set of
functions that are particuLarLy usefuL for the programs that you write
(e.g., you need a set of routines that construct and dispLay screen menus),
you can write such a Library; then, when you Link it, you can specify the
STDLIB externaL Library as its Library fiLe. (The onLy time you ever Link
a fiLe without specifying a-rlbrary, is when you are Linking a root Library,
such as STDLIB itseLf-- a very rare occurrence.) In this case, your Library
fiLe (perhaps named NEWLIB) wouLd be Linked with STDLIB. Then, when you
Link a new program, you might Link it with the NEWLIB Library. Your new
program wouLd thus be Linked with NEWLIB which in turn has its own Library,
STDLIB. There is no Limit to Library nesting.

WRITING AND MODIFYING AN EXTERNAL LIBRARY Page 16-4

There are several things you should keep in mind when writing an external '
library:

1. If an external procedure or function is declared both in a program
and in a library which it uses, then the definition within the
program is in effect while execution resides in the program, and
the definitions within its libraries are in effect while in its
libraries.

2. If you change a procedure from pascal to assembly language, or from
assembly language to pascal, it is wise to re-create (re-link) that
program and all the programs which use it as a library. Any
references to the procedure which are not re-Linked wiLL treat it
as the wrong kind of code.

,
3. SimilarLy, if while updating a program, you overide a definition in

a library which was formerly accessibLe, there is no garauntee that
alL references to the definition wilL be updated unless you re-Link
the program and aLL the programs which use it as a Library.

4. If a library is updated with PLINK, it is not necessary to update
the programs which use that library. However, if the library must
be compLetely re-created, aLL programs which use that Library wiLL
need to be re-created. Thus, it is desirabLe to avoid the need to
re-create a Library. PLINK does not aLLow you to enLarge the size
of global variables with an update, thus it is wise to avoid having
globaL variables which you may wish to enlarge, such as records,
strings, or arrays. Instead use a globaL pointer variabLe which
points the desired object. In this way, if you change the size of
the object, no globaL variabLe wiLL change size.

16.3 MODIFYING STDLIB

If you decide to modify STDLIB, you must do so very carefuLLy. Because
PLINK uses STDLIB whiLe it is working, you must not directLy modify STDLIB.
If you want to add routines to STDLIB, use the AMOS COPY command to make a
dupLicate of STDLIB under another name. Then, add your routines to the copy
of STDLIB using PLINK. FinaLLy, rename your copy to STDLIB (making sure to
keep a copy of the oLd STDLIB somewhere in case of emergencies).

However, it is far wiser to create a Library which has STDLIB as its
Library, rather than to directLy modify STDLIB. Otherwise, when ALpha Micro
reLeases an update to STDLIB, aLL your programs wiLL need to be re-Linked!

WRITING AND MODIFYING AN EXTERNAL LIBRARY Page 16-5

16.4 VERSION CHECKING

Both PLINK and PRUN check to insure that a program is only given its
original library or an update of that file, since an attempt to use any
other fiLe as a Library resuLts in a system crash.

If you attempt to execute a program with an improper Library, you wiLL
receive the error

?Wrong version of xxx for use with yyy

where xxx is the name of your program and yyy is the name of its Library.
If you get this message, it either means that you are running with an out of
date version of Library yyy, or that you are running with a newer version of
Library yyy which had to be re-created. In the latter case, you wiLL need
to re-create your program with PLINK.

PART IV

APPENDICES

APPENDIX A

QUICK REFERENCE TO ALPHA PASCAL

This appendix gives a quick summary of the Pascal language as implemented by
Alpha Micro. For information on a particuLar Pascal statement or element,
Look in the index to see what pages of this book contain information on that
eLement. For a compLete description of the standard PascaL language, see
Jensen and Wirth, The PascaL User ManuaL and Report.

For a List of aLL standard identifiers, see Section 5.4.2, "Standard
Identifiers."

A.1 PROGRAM STRUCTURE

A program consists of a heading and a bLock, and it concLudes with a period:

Heading
Block.

The heading takes this form:

PROGRAM program-name;

or:

PROGRAM;

A bLock has the form:

labeL declaration
constant definitions
type definitions
variabLe decLarations
externaL decLarations
procedure and function decLarations
BEGIN statement1 ; statement2 ; ; statementN END.

If a fiLe is not a main program file, the heading takes the form:

QUICK REFERENCE TO ALPHA PASCAL

MODULE moduLe-name;

or:

MODULE;

and the bLock takes the form:

LabeL decLaration
constant definitions
type definitions
variabLe decLarations
externaL decLarations
procedure and function decLarations

A.2 DECLARATIONS AND DEFINITIONS

PascaL requires that you define and decLare
constants, data types, procedures, and functions
program or procedure.

A.2.1 LabeL DecLarations

aLL
at

variabLes,
the front

Page A-2

LabeLs,
of each

LabeLs are aLways unsigned integers. A LabeL decLaration takes the fotm:

LABEL integer1, integer2, •••• integerN ;

A.2.2 Constant Definitions

CONST identifier1 = vaLue1;
identifier2 = vaLue2;

identifierN = vaLueN;

A.2.3 Type Definitions

TYPE identifier1 = type1;
identifier2 = (identifier3, identifier4, •••);
identifierS = vaLue1 •• vaLue2; ,

QUICK REFERENCE TO ALPHA PASCAL

A.2.4 VariabLe DecLarations

VAR identifier
identifier ,

... ,

... ,

A.2.S Procedure DecLarations

identifier
identifier

PROCEDURE procedure-name;
bLock;

or:

data-type;
vaLue1 •• vaLue2;

Page A-3

PROCEDURE procedure-name(formaL-parameters1; ••• formaL-parametersN);
bLock;

where formaL-parameters have the form:

identifier1 ••• , identifierN : type1

or:

VAR identifier1 ••• , identifierN type1

A.2.6 Function DecLarations

or:

FUNCTION function-name
bLock;

resuLt-type;

FUNCTION function-name(formaL-parameters1;
••• formaL-parametersN)

bLock;

where formaL-parameters have the form:

identifier1 ••• , identifierN : type1

or:

VAR identifier1 ••• , identifierN type1

resuLt-type;

GUICK REFERENCE TO ALPHA PASCAL Page A-4

A.3 DATA TYPES

The data type tells Pascal what range of values the declared variable may
assume and what operations may be carried out on those variables. Data
types are simple data types or structured data types.

A.3.1 Simple Data Types

A simple data type is the basic data type of which structured data types are
built. The simpLe dc;lta type is called a "scalar type." Such a type
contains a set of elements, and those eLements are ordered.

A.3.1.1 Standard Data Types - The standard data types are:

INTEGER - A non-fractional number in the range -32767 through 32767.

REAL - A floating point number significant to 11 digits (12 for
integer values) with an exponent range Of roughLy 1E-37 to
-IE37.

BOOLEAN - The standard scalar type (FALSE, TRUE).

CHAR - A singLe ASCII character.

A.3.1.2 User-defined ScaLar Types - A scaLar data type takes the form:

(identifier-eLement1, identifier-eLement2, ••• identifier-eLementN)

or a sub range type (of another, already defined scalar type) of the form:

first-eLement •• Last-element

A.3.2 Structured Data Types

Simple data types can be organized into larger units, calLed structured
types. A type definition or variabLe decLaration of a structured data type
that incLudes the keyword PACKED telLs the compiLer to minimize internaL
storage for that data type (at the possibLe expense of execut~on time). For
exampLe, instead of:

VAR LongL;ne ARRAY [1 •• 1000J OF CHAR;

you couLd cause LongLine to be a packed array by saying:

~ LongLine PACKED ARRAY [1 •• 1000J ~ CHAR;

QUICK REFERENCE TO ALPHA PASCAL Page A-5

The structured data types are:

A.3.2.1 STRING - STRING data is a group of characters. You may
optionaLLy specify a maximum Length by foLLowing the keyword STRING with
square brackets encLosing the number (e.g., STRINGC23J).

A.3.2.2 Arrays-

ARRAY [index1-type, index2-type, ••• , indexN-typeJ ~ component-type

A.3.2.3 Sets-

SET ~ eLement-type

A.3.2.4 FiLe Type -

FILE ~ eLement-type

or:

TEXT

(This is the same as "FILE OF CHAR".)

A.3.2.5 Record Type -

RECORD fieLd-List END

where fieLd List is of the form:

fieLd-identifier •• , fieLd-identifierN
fieLd-identifier •• , fieLd-identifierN

fieLd-identifier •• , fieLd-identifierN

fie Ld1-type1;
fieLd2-type2;

fieLdN-typeN;

The fieLd List may aLso contain a variant-part, which impLies that the
information in that fieLd may vary as to type. The variant-part takes this
form:

QUICK REFERENCE TO ALPHA PASCAL

or:

CASE field-type OF
case-label •• , case-label: (field-list1);
case-label •• , case-label: (field-list2);

case-label .. , case-label (field-listN)

CASE case-field-identifier : field-type OF
case-label •• , case-label (field-list1);
case-label •• , case-label: (field-list2);

case-label .. , case-label : (field-listN)

Page A-6

A.3.2.6 Poin~er Data Types - The pointer enables Pascal to permit dynamic
data structures by giving you a way to point to an element of such a
structure. It takes the form:

"object-type

Pascal provides a standard constant NIL, which points to "nothing."

A.4 EXPRESSIONS

Expressions use operators to combine variables, constants, and function
calls into larger units. This section gives information about each of these
components of an expression.

A.4.1 Operators

Operators hav~ precedence, which you can override by incuding parentheses in
the expression. The unary operators are performed before all other
operators; next the multiplying operators are performed, followed by the
adding operators. Then, the relational operators are performed. Lastly,
the Boolean operators are applied. If several operators in an expression
have the same precedence, execution is performed from left to right.

A.4.1.1 Assignment-

..-

QUICK REFERENCE TO ALPHA PASCAL

A.4.1.1.1 The Modifying Assignment Operators -

The modifying assignment operators are:

+= Addition
-= Subtraction
*= Multiplication
1= Division

A.4.1.2 Arithmetic Operators: -

+ (unary operator) Identity
(unary operator) Sign inversion

+ Addition
Subtraction

* Multiplication
DIV Integer number division
1 Real number division
MOD Modulus

A.4.1.3 Relational Operators -

= Equal ity
<> Inequality
< Less than
> Greater than
<= Less than or equal (or, set inclusion)
>= Greater than or equal (or, set inclusion)
IN Set membership

A.4.1.4 Logical Operators -

NOT Negation
OR Disjunction
AND Conjunction

A.4.1.5 Set Operators -

+ Union
Set difference

* Intersection

Page A-7

QUICK REfERENCE TO ALPHA PASCAL Page A-8

A.4.2 Constants

Constants may consist of:

Characters and strings of characters (in quotes)

TRUE and FALSE

MAXINT (which evaluates to the largest integer on the AMOS system, ~2767).

Values of user-defined types

Integers

Decimal and exponential numbers - If a number contains a decimal point, at
least one digit must appear to the left of the decimal point. The exponent
in an exponential number is identified by the "E" symbol. For example:
"34E-5" represents "0.000034".

A.4.3 Variables

A variable is a simple identifier, an indexed variable of the form:

array-variable Cindex1-expression, ••• indexN-expresionJ

a referenced variable or file buffer variable of the form:

pointer-variable ft

or:
file-variable ft

or a field designator of the form:

record-variable • field-identifier

A.4.4 Function Calls

Function calls have the form:

function-identifier

or:

function-identifier (parameter, •••• , parameterN)

QUICK REFERENCE TO ALPHA PASCAL Page A-9

A.4.S IF-THEN-ELSE and CASE-OF Constructs in Expressions

ALphaPascaL aLLows you to use the IF-THEN-ELSE and CASE-OF constructs to
conditionaLLy evaLuate one of two (in the case of the IF·THEN-ELSE) or
severaL (in the case of the CASE-OF) expressions:

and:

IF BooLean expression ~ expression ~ expression

CASE vaLue OF
vaLue1 : expression;
vaLue2 : expression;

vaLueN : expression;
ELSE expression;

A.S STATEMENTS

Statements are either simpLe statements or structured statements. A simpLe
statement consists of onLy one statement. Structured statements are
comprised of more than one statement.

You may LabeL statements by writing:

LabeL: statement

where "LabeL" is an unsigned integer.

A.S.1 SimpLe Statements

The PascaL simpLe statements are:

A.S.1.1 Assignment Statement - assigns a vaLue to a variabLe:

variabLe := expression

A.S.1.2 Procedure CaLL - Procedure caLLs invoke the specified procedure,
and take the form:

procedure-name

or:

procedure (parameter1, parameter2, ••• , parameterN)

QUICK REFERENCE TO ALPHA PASCAL Page A-10

A.S.1.3 GO TO Statement - The GOTO statement transfers program control to
the labeled portion of the program. It takes the form:

GOTO labeL

A.S.1.4 Null Statement - Another permissible simpLe statement is the null
statement (that is, no statement at all).

A.S.2 Structured Statements

The PascaL structured statements are:

A.S.2.1 Compound Statements - The compound statement is bracketed with
the keywords BEGIN and END, and takes the form:

BEGIN statement1; statement2; ••• ; statementN END.

A compound statement may take the place of any single statement in the
examples given in this appendix.

A.S.2.2 Conditional Statements -
A conditionaL statement conta1ns statements whose execution depends on the
resuLt of a conditional test. These statements may take the form:

or:

or:

IF Boolean expression ~ statement;

IF Boolean expression ~ statement ~ statement;

CASE expression OF
case1-label:-statement1;
case2-LabeL: statement2;

caseN-label: statementN
END.

(SeveraL case-Labels, separated by comm~s, may be written in place of a
single case-label.)

QUICK REFERENCE TO ALPHA PASCAL

A.S.2.3 Repetitive Statements -

or:

or:

or:

WHILE Boolean expression DO statement

REPEAT statement-list UNTIL Boolean expression

FOR variable-identifier ~= expression TO expression
---DO statement

FOR variable-identifier := expression DOWNTO expression
---DO statement

A.S.2.4 WITH Statement -
The WITH-DO statement allows you to access record fields as if they
were simple variables:

,

Page A-11

WITH record-variable1, record-variable2, ••• , record-variableN
---00 statement

(Changed 30 April 1981)

I

•
•

QUICK REFERENCE TO ALPHA PASCAL Page A-12

A.6 ALPHA PASCAL STANDARD FUNCTIONS AND PROCEDURES

BeLow is an aLphabetic List of aLL ALphaPascaL standard functions and
procedures that you may use. To find out what pages of this book discuss a
particuLar procedure or function, refer to the Index.

ABS
ARCSINH
CHR
COS
DELETE
ERROR
EXP
FILLCHAR
GETFILE
JOBDEV
LENGTH
LOG
MEMAVAIL
ODD
OPENR
POS
PVIRT
RANDOMIZE
RENAME
ROUND
SHIFT
SPOOL
STR
TANH
UCS
XEQERR

ARCCOS
ARCTAN
CLOSE
COSH
EOF
ERROR INFO
EXPONENT
FILESIZE
GETLOCKS
JOBUSER
LINEMODE
LOOKUP
MOVELEFT
OPEN
ORO
POWER
PWROFTEN
READ
RESET
SCAN
SIN
SQR
STRIP
TIME
VAL
XLOCK

ARCCOSH
ARCTANH
CONCAT
CREATE
EOLN
ERRORTRAP
EXTENSION
FSPEC
INCHARMODE
KILCMD
LN
MAINPROG
MOVERIGHT
OPENI
PAGE
PRED
PWROFTWO
READLN
REWRITE
SEEK
SINH
SQRT
SUCC
TOO
WRITE
XMOUNT

ARCSIN
CHARMODE
COpy
CRT
ERASE
EXIT
FACTORIAL
GET
INSERT
LCS
LOCATION
MARK
NEW
OPENO
PFILE
PUT
RAD50
RELEASE
RND
SETFILE
SIZEOF
STDERRORTRAP
TAN
TRUNC
WRITELN

For a List of aLL standard identifiers and reserved words, see Section 5.4,
"Legal Identifiers."

<Changed 30 April 1981)

APPENDIX B

THE ASCII CHARACTER SET

The next few pages contain charts that List the compLete ASCII character
set. We provide the octaL, decimaL and hexadecimaL representations of the
ASCII vaLues.

Note that the first 32 characters are non-printing ControL-characters.

THE ASCII CHARACTER SET Page B-2

THE CONTROL CHARACTERS

1----------------1-------1---------1------1-------------------------------1
1 CHARACTER 1 OCTAL I DECIMAL 1 HEX 1 MEANING 1
1----------------1-------1--------- ------1-------------------------------1
1 NULL 1 000 1 0 00 1 NuLL (filL character) I
1 SOH 001 I 1 01 1 Start of Heading 1
1 STX 002 I 2 02 I Start of Text 1

I ETX 003 I 3 03 End of Text I
1 ECT 004 1 4 04 End of Transmission I
1 ENQ 005 1 5 05 Enquiry 1
1 ACK 006 I 6 06 AcknowLedge 1
I BEL 007 1 7 07 BeLL code 1
1 BS 010 1 8 08 Back Space 1
1 HT 011 I 9 09 HorizontaL Tab !
1 LF 012 I 10 OA Line Feed 1
1 VT 013 1 11 OB Vertical Tab I
1 FF 014 12 OC Form Feed I
I CR 015 13 OD Carriage Return 1

I SO 016 14 OE Shift Out 1

I SI 017 15 OF Shift In 1

1 DLE 020 16 10 Data Link Escape 1
1 DC1 021 17 11 Devi ce ControL 1 I

I DC2 022 18 12 Dev;ce Control 2 1
1 DC3 023 19 13 Device Control 3 1
I DC4 024 20 14 Dev;ce Control 4 1

1 NAK 025 21 15 Negative Acknowledge I
1 SYN 026 22 16 Synchronous Idle 1
I ETB 027 23 17 End of Transm;ssion BLocks 1
I CAN 030 24 18 Cancel 1
1 EM 031 2S 19 End of Medium I
1 SS 032 26 1A SpeciaL Sequence 1
1 ESC 033 27 1B Escape 1
I FS 034 28 1C File Separator 1

1 GS 035 1 29 1 1 D 1 Group Separator 1
1 RS 036 1 30 1 1 E 1 Record Separator 1
1 US 037 1 31 I 1F 1 Un; t Separator 1
1---------------- -------1---------1------1-------------------------------I

THE ASCII CHARACTER SET Page B-3

PRINTING CHARACTERS

1----------------1------- ---------1------1-------------------------------
1 CHARACTER 1 OCTAL DECIMAL 1 HEX 1 MEANING
----------------1------- --------- ------ -------------------------------

SP 1 040 32 20 Space
1 041 33 21 ExcLamation Mark

" 042 34 22 Quotation Mark
043 35 23 ~umber Sign
$ 044 36 24 Do L Lar Sign
% 045 37 25 Percent Sign
& 046 38 26 Ampersand

047 39 27 Apostrophe
(050 40 28 Opening Parenthesis
) 051 41 29 CLosing Parenthesis
* 052 42 2A Asterisk
+ 053 43 2B PLus
, 054 44 2C Comma

055 45 2D Hyphen or Minus
056 46 2E Period

/ 057 47 2F SLash
0 060 48 30 Zero
1 061 49 31 One
2 062 50 32 Two
3 063 51 33 Three
4 064 52 34 Four
5 065 53 35 Five
6 066 54 36 Six
7 067 55 37 Seven
8 070 56 38 Eight
9 071 57 39 Nine

072 58 3A CoLon . 073 59 3B SemicoLon ,
< 074 60 3C Less Than
= 075 61 3D Sign
> 076 62 3E Than
? 077 63 3F Question Mark
@ 100 64 40 CommerciaL At

---------------- ------- --------- ------ -------------------------------

THE ASCII CHARACTER SET Page B-4

I----------------r------~I--------·I------I-~--·-----~--------------------
I CHARACTER I OCTAL I DECIMAL I HEX I MEANING
----------~----- -------1--------- ------ --~----------------------------

A
B
C
D
E
F
G
H
I
J
K
L
M
N
o
P
Q
R
S
T
U
V
W
X
Y
Z
C
\
] ..

a
b
c
d
e
f
g
h
i
j
k
L
m
n
o

101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
1 Z2
123
124
125
126
127
130
131
132
133
134
135
136
137
140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157

I

I
I
I
I

I
I
I
I

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111

41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F
60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F

Upper Case Letter
Upper Case Letter
Upper Case Letter
Upper Case Letter
Upper Case Letter
Upper Case Letter
Upper Case Letter
Upper Case Letter
Upper Case Letter
Upper Case Letter
Upper Case Letter
Upper Case Letter
Upper Case Letter
Upper Case Letter
Upper Case Letter
Upper Case Letter
Upper Case Letter
Upper Case Letter
Upper Case Letter
Upper Case Letter
Upper Case Letter
Upper Case Letter
Upper Case Letter
Upper Case Letter
Upper Case Letter
Upper Case Letter
Opening Bracket
Back Slash
CLosing Bracket
Ci rcumflex
UnderLine
Grave Accent
Lower Case Letter
Lower Case Letter
Lower Case Letter
Lower Case Letter
Lower Case Letter
Lower Case Letter
Lower Case Letter
Lower Case Letter
Lower Case Letter
Lower Case Letter
Lower
Lower
Lower
Lower
Lower

Case
Case
Case
Case
Case

Letter
Letter
Letter
Letter
Letter

---------------- -------1--------- ------ ------------------------.------

THE ASCII CHARACTER SET Page B-5

1----------------1------- ---------1------1-------------------------------1
1 CHARACTER 1 OCTAL DECIMAL 1 HEX 1 MEANING 1
1---------------- ------- --------- ------ -------------------------------1
1 p 160 112 70 Lower Case Letter 1
1 q 161 113 71 Lower Case Letter 1
1 r 162 114 72 Lower Case Letter 1

1 s 163 115 73 Lower Case Letter 1
1 t 164 116 74 Lower Case Letter 1
1 u 165 117 75 Lower Case Letter 1

1 v 166 118 76 Lower Case Letter I
1 w 167 119 77 Lower Case Letter 1

1 x 170 120 78 Lower Case Letter 1

I y 171 121 79 Lower Case Letter 1
I z 172 122 7A Lower Case Letter 1
1 { 173 123 7B Opening Brace I

1 1 174 124 7C VerticaL Line 1
1 } 175 125 7D CLosing Brace 1
1 176 1 126 7E Ti Lde 1
1 DEL 177 1 127 7F DeLete 1
1---------------- -------1--------- ------ -------------------------------1

APPENDIX C

ALPHA PASCAL COMPILER ERROR MESSAGES

BeLow is an aLphabetic List of aLL error messages output by the
compiLer. For a discussion of how to compiLe programs, and for
on error reporting and error recovery, see Chapter 4,
Instructions and Characteristics."

ALphaPASCAL
information
"Operating

We beLieve that the error messages beLow are very heLpfuL in expLaining
exactLy what part of your program caused the error. Ther'efore we have not
provided detaiLed expLanations for each error message. For some of the
messages beLow we have added notes that give more information about the
error and that teLL you where to Look in this manuaL for more information on
the operator, data structure, or decLaration invoLved in the error.

When CMPILR dispLays an error message, it aLso dispLays the Line of the
program that contains the error and points to the probLem. For exampLe, if
you try to compiLe the foLLowing smaLL program:

PROGRAM TestError;

VAR Number1 REAL;
Number2 : STRING;

BEGIN { Try to use addition operator on reaL and strinq data. }
IF Number1 + Number2 = 0 THEN WRITELN('Zero.')

END.-

you see the folLowing display:

(Changed 30 April 1981)

ALPHA PASCAL COMPILER ERROR MESSAGES Page C-2

AlphaPascal Compiler Version 2.0
< 0>-----

PROGRAM < 5>-
BEGIN { Try to use addition operator on real and string data. }

IF Number1 + Number2 = 0 THEN WRITELN('Zero.')

?Line 6: CBOPNBNJ In 'x+y', x and yare not both numeric
?HIT RETURN to continue
< 6>-

7 lines
4.10 seconds, 102.44 lines/minute

?Total of 1 compilation errors.

The error above occurred because we tried to perform an arithmetic operation
on numeric and string data; both Number1 and Number2 must be numeric in
order to use the addition operator.

The first eight characters of the error message identify the portion of the
compiler that caught the error. You will probably not need to make note of
this identifier.

In many of the error messages, CMPILR actually substitutes into the error
message the operator or identifier that is the source of the error. For
example, in the list below, the error message above appears as:

CBOPNBNJ In 'x <op> y', x and yare not both numeric

In our example above, CMPILR substituted into the error message the operator
("<op>") causing the problem, and displayed the message:

CaOPNBNJ In 'x+y', x and yare not both numeric

The symbols in the error messages that are replaced by elements from your
program when the message is displayed are:

<op>

xxx

xxx
yyy
zzz

(Changed 30 April 1981)

Operator

User-defined Identifier

Keyword

ALPHA PASCAL COMPILER ERROR MESSAGES Page C-3

C.1 THE ERROR MESSAGES

[??????J ***" Undefined error ***
You should never see this error message. Please report it and the
circumstances under which you saw it to Alpha Micro.

(ANEANXJ In IX AND y', X must be of type BOOLEAN
(ANENOTJ In 'NOT x', x must be of type BOOLEAN

See Chapter 8 for information on BOOLEAN operators.

[ASGASTJ In 'X:=y', the types of x and yare incompatible

(ASGFILJ It is illegal to assign files to one another
See Chapter 7 for information on the FILE data type.

(ASGMATJ In IX <op>= y', the types of x and yare incompatible
You tried to use a modifying assignment operator on two pieces of
data that were of incompatible type. For exampLe, you cannot use
"NUMBER /= DATA" if NUMBER is an INTEGER but DATA is REAL, since
you cannot return an INTEGER result if you divide an INTEGER by a
REAL number.

[ASGSWLJ String constant has wrong length for packed array
(BDYULBJ Undefined Labels occur in this function/procedure

(BEXARLJ OnLy '=' and '<>' are permitted with ARRAYs
See Chapter 7 for information ~n ARRAY data types.

[BEXCMTJ In 'x <reLation> y', x and yare incompatible
[REXFRLJ Comparison of FILEs is undefined
[BEXINSJ In IX IN y', y must be a SET type
C~EXINTJ In 'x IN y', X must be compatible with base type of y
(BEXPRLJ Only '=' and ,<>, are permitted with pointers
CBEXRRLJ OnLy ,=, and '<>' are permitted with RECORDs
[BEXSRLJ ,<, and ,>, are undefined on SETs

[BLKDOTJ I.' (denoting end of source) expected - assumed missing
CMPILR reached the end of the fiLe, but saw no period.
to end all program and moduLe fiLes with a period.

(BOPINTJ Only INTEGER operands are permitted with <op>
(BOPIOSJ OnLy INTEGER or set operands are permitted with <op>
[BOPNBNJ In 'x <op> y', x and yare not both numeric
CBOPNBSJ In 'x <op> y', x and yare not both sets
[ROPNOSJ Only numeric or set operands are permitted with <op>

Remember

[BOPNUMJ Only numeric (INTEGER or REAL) operands are permitted with <op>
[CALAPBJ Preceding argument must not be a packed char fieLd
[CALARLJ The preceding string constant has wrong length
[CALARSJ The preceding SET variable has wrong size
(CALARTJ The preceding argument has wrong type
[CALARVJ The preceding argument must be a variabLe expression
[CALCHRJ The preceding must be of type CHAR

(Changed 30 April 1981)

ALPHA PASCAL COMPILER ERROR ~ESSAGES

[CALEXTJ EXIT(x) where x is a standard func or proc ;s itlegal
You may only supply EXIT with the P~OGRAM k~yword or th~ n.me Qf
your own procedure or function that you want to eKit; you May not
supply the name of a function or procedure in the lib~ar~.

[CALFILJ Preceding argument must be of FILE type
[CALFRMJ Formal procedures and functions not implemented
[CALINTJ The preceding argum~nt must be of type INTEGER
[CALIORJ Preceding argument must be of type INTEGER or ReAL
[CALLPRJ '(' expected -- assumed missing
[CALNRSJ Preceding argument must be a pointer or non-qEAL scala'r

(CALOPMJ INPUT, OUTPUT,or RANDOM expected -- INPUT assumed
See Chapter 10 for information on file-identifiers.

(CALPACJ Must be a packed array of char or a char element
[CALPTVJ The preceding must be a pointer variable
[CALRDPJ It is illegal to read into a packed char field
[CALRDTJ Arguments to read must be INTEGER, REAL, CHAR, or String
[CALSCNJ Only '=' and '<>' are permitted here
[CALSEXJ The preceding must be a string expression
CCALSVRJ The preceding must be a string variable
[CALTFAJ Too few arguments supplied
CCALTGSJ The preceding must not be a string or a real

CCALTGTJ The preceding constant is of incorrect type for variant
See Chapter 7 for information on RECORD variants.

r.CALTMAJ Too many arguments supplied
[CALTXTJ Preceding argument must be of type TEXT (FILE OF CHAR)
CCALWRMJ Preceding modifier must be of type INTEGER
CCALWRTJ Must be INTEGER, REAL, CHAR, String, or pck'd arry of chr
[CSDJNKJ Junk after <constant definition> -- scanning
[CSTSGNJ Only INTEGER and REAL constants may be sign~d
[EXPORXJ In 'x OR y', x must be of type BOOLEAN
[FACCETJ In 'CASE x OF ••• ', x must be a non-REAL scalar type
[FACCLTJ In 'CASE x OF ••• ', labels must be compatible with x
[FACCVTJ In CASE expressions, all cases must have compatible types
[FACDCSJ The previous case label has already appeared
[FACIFTJ THEN and ELSE expressions must have compatible types
[FACRTLJ Proc or func too large, split it into smaller pi~ces
[FACSCKJ In set constructor [--J, set elements must be scalars
CFACSCTJ In set constructor [--J, all elements must be compatible
[GVDFILJ Global files must be declared in PROGRAM file
[GVDFWPJ AX present and x never declared for some x
[GVDJNKJ Junk after <variable definition> -- scanning
(INIESFJ Empty source file
[INILTLJ First source line too long -- truncated to 132 characters
[INIPOMJ PROGRAM or MODULE expected -- 'PROGRAM;' assumed
[INIRPRJ ')' expected -- ~nserting ')'
[INISEMJ ';' expected -- inserting ';'
(INISOIJ ':' or <identifier> expected -- inserting ';'
[INISOPJ ';' or '(' expected -- inserting ';'

(Changed 30 April 1981)

ALPHA PASCAL COMPILER ERROR MESSAGES Page C-5

[LADERRJ *** Compiler error in LOADADDRESS ***
You should never see this error message. Please report it and the
circumstances under which you saw it to Alpha Micro.

[LADPCKJ Packed variables may not be used in this context
[LBLDDCJ Label already declared in this scope.
[MPATBGJ Maximum string size is 255
[PRDAFLJ Only formal (VAR) FILE parameters are permitted
[PRDDDFJ Function or procedure already declared forward
[PRDDDPJ Parameter-list must only appear in FORWARD declaration
[PRDFNRJ ': <result type identifier>' expected -- assumed missing

[PRDFTMJ Function type not compatible with forward declaration
For information on forward declarations, see Chapter 6.

[PRDLPXJ '(I expected -- assumed missing
[PRDNSTJ Procedure/function declarations nested too deeply
[PRDPDFJ Function or procedure previously defined
[PRDPRFJ Previously declared a function in same scope
[PRDPRPJ Previously declared a procedure in same scope
[PRDSSPJ Function must be of scalar, subrange, or pointer type
[SCNINSJ Giving up scan -- inserting xxx
[SCNMISJ Giving up scan -- xxx assumed missing
[SELATOJ In x[yJ or x[--,yJ, x or x[--J must be of ARRAY type

[SELERRJ *** Compiler error in SELECT ***
You should never see this error message. Please report it and the
circumstances under which you saw it to Alpha Micro.

[SELFOPJ In 'XA', x must be of pointer or FILE type
[SELIXTJ In x[yJ, y must be compatible with index type of x
[SELNISJ Only enclosing func identifiers may be used as variables
[SELNSFJ In 'x.y', y must be a field of the RECORD x
[SELRTOJ In 'x.y', x must be of RECORD type

[SELSTFJ Standard function identifiers may not be used as variables
For a list of the standard identifiers, see Chapter 5.

[SELSXOJ In x[yJ, y must be of non-REAL scalar type
[SIDUDFJ 'XXX, is undefined
[SIDWRCJ 'XXX, is not a TYPE/CONST/VAR/FIELD/PROCEDURE/FUNCTION identifier
[SMPNUMJ In '-x', x must be numeric

[STMBIDJ Wrong BEGIN-END identifier -- XXX expected
For information on BEGIN-END labels, see Section 6.2, "Label
Declarations."

[STMCSDJ The preceding case label appears more than once
[STMCSTJ The preceding case label has wrong type
CSTMDOWJ DO without WHILE, FOR, or WITH
[STMEWIJ ELSE without IF or CASE
[STMFFKJ Final FOR value must be of scalar type
[STMFFTJ FOR variable and final value have incompatible types

(Changed 30 April 1981)

ALPHA PASCAL COMPILER ERROR MESSAGES

[STMFIKJ InitiaL FOR vaLue must be of scaLar type
[STMFITJ FOR variable and initiaL vaLue have incompatible types
[STMFVFJ In 'FOR x:= ••• ·, x must not be a formal variabLe
[STMFVKJ In 'FOR x:= ••• ·, x must be a non-REAL scaLar variable
[STMGTOJ GOTO statements are not permitted without (*$G+*) option
[STMMDLJ Definition for this label has aLready appeared
[STMPEXJ Function calls are not legal as statements
[STMPEXJ Procedure identifier was expected
[STMRTLJ Proc or func too Large, spLit it into smaller pieces
[STMTWIJ THEN without IF
[STMULBJ UndecLared Label
[STMUWRJ UNTIL <expression> without REPEAT

[STMWRTJ In 'WITH x DO •••• , x must be a RECORD variable

Page C-6

See Chapter 9 for information on accessing record fields with
WITH-DO.

[STMWTSJ WITH statement has caused too many nested scopes

[STRERRJ *** Compiler error in STORE ***
You shouLd never see this error message. PLease report it and the
circumstances unde,r which you saw it to Alpha Micro.

[TOKEDGJ Digit (0-9) expected in exponent -- assumed missing

[TOKEOFJ Unexpected end-of-source-file encountered
Remember to end every program or module file with a period.

[TOKFDGJ Digit (0-9) expected in fraction -- assumed missing
[TOKILCJ ILLegaL character encountered ignoring

[TOKINFJ Include file not found
See Chapter 4 for information on Include FiLes.

[TOKIRGJ Integer constants must be in the range +-32767
[TOKLTLJ Line too long -- truncated to 132 characters
[TOKNINJ File incLudes (*$1 ---*) may not be nested
[TOKSLSJ Unterminated string (muLti-line strings not permitted)
[TRMNBNJ In 'x/y', both operands must be numeric
[TRYINSJ xxx or yyy expected -- inserting xxx
[TRYINSJ xxx or yyy expected -- inserting yyy
[TRYINSJ xxx, yyy, or zzz expected -- inserting xxx
[TRYINSJ xxx, yyy, or zzz expected -- inserting yyy
[TRYMISJ xxx expected -_.yyy assumed missing
[TRYSCNJ xxx expected -- scanning
[TRYSCNJ xxx or yyy expected -- scanning
[TRYSCNJ xxx, yyy, or zzz expected -- scanning
[TYDFWPJ AX present and x never declared for some x
[TYDJNKJ Junk after <type definition> -- scanning
[TYPBTFJ In 'ARRAY [xJ OF y', y must not be a FILE type .
[TYPCTKJ In 'CASE x OF •••• , x must be a scalar type identifier
[TYPCTRJ In 'CASE x OF •••• , x must not be of type REAL
[TYPIXBJ Array is too large

(Changed 30 April 1981)

ALPHA PASCAL COMPILER ERROR MESSAGES

(TYPIXR]
(TYPIXT]
(TYPLGH]
(TYPNSTJ
(TYPRFF]
[TYPRGE]
(TYPSCIJ
(TYPSRR]
[TYPSTB]
(TYPSTB]
(TYPSTK]
(TYPSTR]
(TYPSXR]
(TYPSXTJ
(TYPTTE]
(VRDFWP]
(VRDJNK]
[XPRAFL]
(XPRLPX]
(XPRSSP]

In 'ARRAY (x] OF y', x must not be of type REAL
In 'ARRAY (x] OF y', x must be a scalar type
x •• y where x>y is illegal
Declarations too deeply nested
Record fields must not be of FILE type
x •• y where x and yare incompatible
A string constant identifier must not appear here
Subranges of type real are illegal
Set is too large
Set is too large (must be <= SET OF 0 •• 4095)
In 'SET OF x', x must be a scalar type
In 'SET OF x', x must not be of type REAL
STRING(x] must have 1 <= x <= 255
STRING(x] where x is not an integer

In 'CASE x OF •••• , tag type is incompatible with x
AX present and x never declared for some x
Junk after <variable definition> -- scanning
Only formal (VAR) FILE parameters are permitted
.(. expected -- assumed missing
Function must be of scalar, subrange, or pointer type

(Changed 30 April 1981)

Page C-7

ALPHA PASCAL USER'S MANUAL

$G compiLer opt ions · $1 compiLer opt ion
$L compiLer options · · · · · $p compiLer option · · · · · · · $Q compiLer options · · · · · · · $R compiLer options ·
.INC files · · · · · · · · .PCF fiLes
.PO? fiLes · · · · · · · · · .PSB fiLes · · · ·
fUNK Linker option · · · · · · · fSMASH linker opt i on

Aborting command fiLe execution.
ASS • • • • • • • • • •
ActuaL parameters ••
ALphaBASIC fiLe Locks.
AMOS fiLe specification •••••
AMOS files •••• • ••••
AND • • • • • • • • • • • • • • •
ARCCOS •••••••••••••
ARCCOSH • • • • •
ARCSIN ••••••
ARCSINH • •
ARCTAN •••••••••••
ARCTANH •
Arithmetic operator.
ARRAY • • ••
Array index ••
ASCII • • • • •
ASCII character set •
ASCII vaLue •• • ••••••
AssembLy Language subroutines
Assignment operator •
Assignment statement

BEGIN . . . · · BibL iography · · · · · · BLock . . . · · · · · · · BLock st ructure · · · · · Blocking records · · · · · ·

· ·
· ·
· ·

Index

4-7
4-7
4-8
4-10
4-10
4-10

4-2
4-11
4-5,
4-13,

4-15,
4-16,

11-2
12-3
6-11
14-6
10-16

4-11
15-1

15-2,
4-19

7-15, 10-14
7-3
12-2
12-3
12-2
12-3
12-2
12-3
8-5
7-8, 15-5
7-8
7-4
11-1
11-1

15-5

3-4, 4-13, 15-1, 16-4
3-2, 8-3
9-1

2-3, 5-4
1-1
5-1
2-2
10-19

Page Index-1

ALPHA PASCAL USER'S MANUAL

BOOLEAN • • • • • • • •
Buffer variabLe.

CASE expressions
Case labeL
CASE-OF .
CHAR · ·

· · · · . · · · · · · · ·

7-3, 15-4
10-3

8-9
7-18
7-18, 9-6
5-11, 7-4, 15-4

Character array functions and procedures
F1LLCHAR · MOVELEFT
MOVER1GHT . · · SCAN

Character
Character
Character
Charmode
CHR • • •

· · editing
mode
set ·

· ·
· · · ·
·

CLearing file Locks.
CLock, System.
CLOSE • • • • • •
CMP1LR
CoLLating sequence

.
· · · ·

. . · ·
· · · ·

Command fiLes. • •••
Comments ••••••••••
Compiler ••••••••••
Compiler display ••••••
CompiLer Listing
CompiLer options

$G+ and $G- •
$1
$L+ and $L- •
$P
$Q+ and $Q- •
$R+ and $R- • • • • •

CompiLing a program.
CompiLing a singLe fiLe •••••
CompiLing/updating one moduLe ••
Compound statement ••••
CONCAT ••••••• • • • •
CONST • • • • • • • •
Constant definition
Constants ••••••
ControL-C handLing
COpy ••••
COs • • • •
COSH
CREATE
Creating a source fiLe
CRT • • • • • •

Data objects
Data stack
Data structures •

13-7
13-7
13-8
13-9
10-14
11-6
7-4
10-2, 10-14, 11-6
11-1
14-5
14-11
10-17
4-5
7-4
4-20, 11-2
2-3, 5-4
4-5
4-10
4-8
4-7
4-7
4-7
4-8
4-10
4-10
4-10
2-7
4-20 to 4-21
4-22
5-4
13-2
6-4
5-11, 6-4
6-4, 8-7
14-15
13-2
12-1
12-2
10-18
2-4
11-7

6-1
15-2
2-2

Page 1ndex-2

ALPHA PASCAL USER'S MANUAL

Data type • • • • • • • • • •
Debugging • • • • • • •
Decimal notation ••••
Declarat ions
Declaring

Functions • •

. .
Labels •••••
Procedures
Type
Variables.

·
Declaring external elements
Declaring variables. • •••
Defining constants ••••
DELETE •••• • • • •
Disk blocks ••••
Displaying file locks ••••
Dynamic variables

E symbol
END • • • • • • • • •
End-of-file ••••••
End-of-line •
End-of-line separators
EOF • • • • •
EOLN •••••••••

· . .
. . . .

ERASE • • • • • • • • • • •
ERROR • • • • • • • • •
Error codes • • • • •
Error handl ing ••••
ERRORINFO •
EXIT • • • •
EXP • • • • • • • • • •
EXPONENT ••••
Expression

· . .
·
·

Expression handling •••••
Expressions

Assignment operator •
CASE-OF construct • •
IF-THEN-ELSE construct ••••

EXTENSION • • • • • • •
EXTERNAL • • • • • • • •
External declaration •••
External library ••••••

Modifying •••
Version number ••••••••
Version stamp

FACTORIAL • • • • • • • · . .
FALSE •
FieLd •••••••••
FILE · . .

6-4, 7-1
14-3
5-10
6-1

6-6
6-2
6-9
6-4
6-1, 6-6
6-12
7-2
8-7
10-21, 1'3-3
10-15
14-5
7-19, 11-3

5-10
2-3, 5-2, 5-4
10-3, 10-16
10-4
10-15
10-3, 10-15
10-4
10-19
14-16
14-13
14-12, 15-5
14-13
~-5, 9-2, 14-15
12-3
12-4
8-1
3-2

3-2
3-2, 9-6
3-2, 8-8, 9-5
10-19
3-3, 6-12, 16-1
6-12
2-2, 3-4, 4-1, 6-12, 16-1
16-5
4-18, 16-5
4-18

12-4
7-3
7-16
7-15, 10-16, 15-5

Page Index-3

ALPHA PASCAL USER'S MANUAL

File error codes · · · · · · File handLing · · · · · File Locks · · · · · · · · File search pattern · File specification · · · · · File window · · · · File-identifier · · FILESIZE · · · FILLCHAR · Floating point numbers
FOR-DO · · · · · · · · · FormaL parameters · · Formatting output · · · · · · FORWARD · · · · · · Forward decl arat i on · · · · · FSPEC . · · · · Function • · 'Function bLock · · · · · Function caLL · · · · Function declaration · · · · Function result · · ·
GET • • • •
GETF ILE • •
GETLOCKS
GOTO

·
Heading •
Heap • • • •

· . .
· .

· · · ·

· · · ·
· · · ·
· ·

· ·
· ·

I/O errors •••••••••••
Identifier •••••••••••
Identifier scope
IF-THEN • • •
IF-THEN-ELSE ••••••••••
Image mode ••••••
Include file •••••••

· . .
Include files. • •••
Indentation conventions •
INFOREC • • • • • • • • •
INPUT • • • • •
INSERT • • •
INTEGER • • •
Integer numbers •
INTERACTIVE • • •
Invoking functions

JOBDEV
JOBUSER •

KBD:
KEYBOARD ·

14-14
3-4
14-5
4-3
10-16
10-3
7-16,
10-20
13-7
3-4
9-9
6-11
10-10
6-10
6-10
7-16,
15-3
6-7
8-1
6-6
6-6

10-5
10-22
14-5

10-16

10-21

4-7, 9-2 to 9 ... 3

5-1
7-22, 11-3, 11 w 5

14-13
5-2, 5-5
2-2, 5-7
9-4
9-5
11-6
4-7
14-3
5-4
14-13
10-2
13-4
6-4, 7-2, 15-4
5-9, 10-10
7-11
6-7

10-23
10-24

10-2, 10 .. 14
10-2, 11-6

Page Index-4

ALPHA PASCAL USER'S MANUAL

Keywords
ARRAY •
BEGIN • • • •
CASE •••••
CASE-OF
CONST •
END ••

, .

2-3, 5-5
7-8
2-3,
7-18
9-6

5-3

5-3
EXTERNAL • • • • • •
FILE

6-4
2-3,
3-3, 6-12, 16-1

FOR-DO
FORWARD ••

• • • • 7-15
9-9

FUNCTION • • • • • • • •
GO TO

• ·6-10
6-6
4-7,

IF-THEN ••
IF-THEN-ELSE
LABEL •
MODULE •••••

• • • • 9-4
• • •• 9-5

6-2
5-2
7-8 PACKED

PROCEDURE •
PROGRAM ••

• • • • 6-9

RECORD
REPEAT-UNTIL
SET • • • •
VAR • • •
WHILE-DO •••••••
WITH-DO • • • • • •

KILCMD

Label declaration · LCS · · · · · · · Legal identifier · · · · LENGTH · · · · · Library version checking
Line pri nter spooler
Linked list · · · · Linker · · · · · · · Linking a program · · · · Linking a single file
LN · · · · · · · LOAD · · · · · · · Local procedures · · · · Local reference · · LOCATION · · · · · LOG · · · · · · · · Logical operators · · Logical records · LOOKUP · Loop

MAINPROG
MARK
Mathematical functions

ABS · · · · · · ARCCOS · · · · · · · ·
<Changed 30 April 1981)

• • •• 5-1,

· ..
7-16
9-9
7-13

• • • • 6-6
9-8
9-10

• • •• 11-2

6-2
13-4

· · · · 5-5,

· · · · 13-5

· · · · 4-17

· · · · 14-3

· · · · 7-22

· · · · 4-11

· · · · 2-7

· · · · 4-21
12-4

· · · · 15-6

· 6-6

· · · · 5-7
14-1
12-4

· · 8-6
10-16

· · · · 10-24

· · · · 9-9

· · · · 14-2

· · · · 7-22,
12-1

· · · · 12-3
12-2

9-3

6-1

6-1

11-3, 11-5

Page Index-5

I

•

ALPHA PASCAL USER'S MANUAL

. ARC COSH
ARCSIN
ARCSINH •
ARCTAN
ARCTANH • • •

· . . .

COS • •
COSH
EXP •

· · . . . • • · . . · · · . .
• • · . · · . . . · .

EXPONENT • • • • • • • • • • •
FACTORIAL · . . · . · .
LN . . . · . · .
LOG • • • • · . . · . . .
000 • • • · POWER ••
PWROFTEN ••••
PWROFTWO • • • •

· . . . · . . · .
RANDOMIZE · · .
RNO • • • • • • •
ROUND •
SHIFT ·
SIN • • • • ••• · . . · .
SINH
SQR •
SQRT

.
· . .

STR ••
TAN •

· . .
TANH • • • • • •
TRUNC • • • • • • •

MAXINT • • • • • • • •
MEMAVAIL ••••••••••••
Modifying assignment operators
Modifying STOLIB ••••••
MODULE •••••••••••••
MOUNT.INC ••••••
Mounting a disk. • • ••
MOVELEFT • • • • • • •
MOVERIGHT • • • • • • •
MuLti-dimensionaL arrays

· . MuLti-user fiLe Locks
MuLtipLe Libraries •••• · . .
Napierian Logarithm •••••••
NaturaL Logarithm • • • • ••
NEW • • • • • • • • • • .. • • • •
NIL • • • • • • • • •
Non-Local reference • · . . · . .
NOT • • • • • • ·
Null statement ••••
Numbers • • • • • • • • •
Numeric constants ••••••
Numeric literals •••••
Numeric notation •••

(Changed 30 April 1981)

12-3
12-2
12-3
12-2
12-3
12-1
12-2
12-3
12-4
12-4
12-4
12-4
12-4
12-4
12-5
12-5
12-5
12-5
12-6
12-6
12-1
12-2
12~6
12-6
12-6
12-1
12-2
12-7
7-2, 8-7
14-2
3-2, 8-4
16-4
5-2
14-10
14-9
13-8
13-9
7-10
14-5
16-1

12-4
12-4
7-20, 7-22, 11-3, 11-5
7-20
5-7
7-3
9-3
5-9
6-1, 8-7
6-4
5-9

Page Index-6

•

ALPHA PASCAL USER'S MANUAL

000 • •
OPEN •••••
Opening files
OPENO ••
OPENR •

· . . .
Operator • • • • • • • • • •
Operator precedence •
OR • • ••
ORO • • • • • • • • • • • • • • •
OUTPUT • • • • • • • •

PACK · · · · · · · · · · · · Packing data · · · · PAGE · · · · · · · · · Parameters
Pascal · · · · · PC.DO · · PCl.DO
PCU.DO · · · · · · · · PFIlE · · · · · · · · · · Pl.DO · · · · · · PLINK · · · · · · Pointer · · · · · · · · · Poi nter data type · · POS . · · · · • · · · · · · POWER · · · · · · · · · · · · · · Pre-declared constants
PRED · · · · · · Previous versions of AlphaPascal
Printer queue · Procedure · · · · · · · · Procedure call
Procedure declaration · PROGRAM · · ·

,
· · · Program declaration · · • · · · · Program list ing · Program name · · · · · Program structure

Prohibiting GOTOs · · · · · PU.DO · · PUT . · · PWROFTEN · · · · PWROFTWO · · · · ·
Quiet compiler display · · · · ·
RAD50 · · · · · Random files
RANDOMIZE · · · Range chec~ing · · · · READ · · · · · · · · READlN · · · · REAL · · · · · · · · · Real numbers · · · · •
(Changed 30 April 1981)

12-4
10-16, 10-25
10-16
10-25
10-26
8-1
3-3, 8-1 to 8-2
7-3
7-2, 7-4, 11-3
10-2

7-8
7-8
10-13
15-3
2-1
4-20
4-21, 11-2
4-22
10-26
4-21
4-11, 15-1
7-19 to 7-20,
7-19
13-3, 13-5
12-4
8-7
7-2, 7-4, 11-4
3-1
14-3
15-3
9-1
6-8
5-1, 6-1
2-3, 6-1
4-8
6-1
5-1
4-7
4-21
10-5 to 10-6
12-5
12-5

4-10

10-26
10-15
12-5
4-10
10-7
10-8
7-3, 15-4
5-9, 10-10

15-4

Page Index-7

•

•

ALPHA PASCAL USER'S MANUAL

RECORD
Record variants
Recursion
Reference parameter •
Registers ••••••
Relational operator ••
RELEASE ••••
RENAME ••••
REPEAT-UNTIL
Reserved words
RESET • • • • • • • • •
REWRITE • • • • • • • •
RND • • • • • •
ROUND • • • • • • • • •
Running a program.

Sample program
Array • • • •
Demonstration.
EOF • •.• • •
ERRORTRAP • •
Formatting output
Forward declaration.
Function ••••••

.
(

GET and PUT • • • • • • • • • •
GETFILE and SETFILE •
GOTOs • • • • • • • •
Identifier Scope
IF-THEN in expressions
Linked list •••••••
Modifying assignment operator •
Mathematical functions ••••
Pointers
Random file.
REPEAT-UNTIL
Sets ••••
WHILE-DO

Scalar constant
Scalar data type
SCAN ••••••••
Scientific notation.
Scope of identifiers
SEEK • • • • • •
Semicolon ••••
Sequential FiLes
SET • • • • •
Set operators ••••
SETFILE •••••
Setting file locks
SH 1FT. • •
Simple data type
SIN •••••••••
SINH ••••••••
SIZEOF

<Changed 30 ApriL 1981)

7-16, 15-5
7-18
3-5
6-12, 15-3
15-2
8-6
7-22, 11-5
10-27
9-9
1-4, 5-5 to 5-6
10-13
10-13
12-5
12-6
2-8

7-9
2-3
10-4
14-12
10-11
6-10
6-8
10-6
10-23
9-2
5-9
8-9
7-21
8-5
12-7
7-20
10-29
9-9
7-14
9-8
7-5
7-1, 7-5
13-10
5-10
2-2, 5-7
10-27
5-2
10-15
7-12, 15-4
7-13, 8-7
10-27
14-5
12-6
7-1
12-1
12-2
14-1

Page Index-8

•

ALPHA PASCAL USER'S MANUAL Page Index-9

Spacing conventions.
SPOOL . · · · · · Spool switches
SPOOL. INC
SQR . · · · · · · · · SQRT · · · · Stack · Standard constants · Standard data type
Standard ident ifiers
Standard Pascal · · Statement label · · · Statement separator
St at i c variables · · STDERRORTRAP · · · · STOlle · · · · · · · STR . . · · · · · · STRING • • • •
String constant
String constants ••••
STRING data type

· · · · · ·
· · · · · ·
· · ·
· · ·
· · · · · · · · · ·

String functions and procedures
CONCAT ••••••••
COPY
DELETE

· ·
· ·
·
·

· ·

INSERT ••••••••••••
LCS • •
LENGTH ••••••••••• •
POS • •
STRIP • • • • • • • • • • • • •
UCS ••
VAL •

String literal
~tring notation
Strings •••••••••
STRIP • • • • • •
Structured data type ••••
Subrange data type
Subscript • • • • • •••
Subset operator • • • • • • •
SUCC ••••••••••••••
Superset operator •
System queue •••••

TAN • • • • •
TANH
Terminal display
Terminal screen-handling
TEXT •••• • • • •
TIME
TOO • •
TRUE ••••

<Changed 30 April 1981)

5-2
14-3
14-3
14-3
12-6
12-6
11-3, 15-2
8-7
7-1
1-4, 2-3, 5-5 to 5-6
2-2
6-2
5-2, 5-4
7-19
14-13
16-1
12-6
3-6, 7-5, 7-10, 15-4
5-11
6-1, 8-7
5-11

13-2
13-2
13-3
13-4
13-4
13-5
13-3, 13-5
13-6
13-6
13-6a
5-11, 6-4
5-10
5-10
13-6
7-1, 7-6
7-6
7-8
8-6
7-2, 7-4, 11-5
8-6
14-6

12-1
12-2
4-9
11-7
7-11
14-11
14-11
7-3

•

ALPHA PASCAL U~ER'S MANUAL

TRUNC • • • • • •
TTY:
Type declaration

UCS • • • • • • • • • • •
Unmounting a disk ••
Updating a single module
User-defined data type
User-defined ERRORTRAP
User-defined functions
User-defined subrange

VAL •••• • -••••
Value parameter • • •
Value parameters
VAR • • • • • • • • • •
Variable declaration
Variables •••
Variant •••••
Version number
Version stamp •
VUE • • •

WHILE-DO
WITH-DO.
WRITE.
WRITELN

. . .

. . . .

. .

Writing an external library.

XERROTRAP •
XLOCK • • •
XLOCK.SYS •
XMOUNT

(Changed 30 April 1981)

Page Index-10

12-7
10-2, 10-14
6-4

13-6
14-9
4-21
7-5
14-12
6-6
7-6

13-6a
15-3
6-12
6-6
2-2, 6-6, 7-2
7-1, 8-8
7-18
4-18
4-18
2-5

9-8
9-10
10-9
10-9
16-4

14-16
14-5
14-6
14-9

SOFTWARE PUBLICATIONS FILE REFERENCE NUMBER: ALphaPascal User's Man

SOFTWARE DOCUMENTATION READER'S COMMENTS

We appreciate your help in evaluating our documentation efforts. Please feel free to attach additional comments. If you require a written response, check her

NOTE: This form is for comments on software documentation only. To submit reports on software problems, use Software
Performance Reports (SPRs), available from Alpha Micro.

Please comment on the usefulness, organization, and clarity of this manual:

Did you find errors in this manual? If so, please specify the error and the number of the page on which it occurred.

What kinds of manuals would you like to see in the future?

Please Indicate the type of reader that you represent (check all that apply):

o
o

o

Alpha Micro Dealer or OEM

Non-programmer, using Alpha Micro computer for:
o
o
o
o

Business applications
Education appl ications
Scientific applications
Other (please specify):

Programmer:
o Assembly language
o Higher-level language
o Expenenced programmer
o Little programming experience
o Student
o Other (please specify):

NAME: ___ DATE: ______________________ _

TITLE: ___ PHONENUMBER: ____________________ ___

ORGANIZATION: __ _

ADDRESS: __ __

CITY: ________________________________ STATE: _____________ ZIP OR COUNTRY; ________ _

STAPLE STAPLE

LD FOLD
•

~alpha
-4~mlcra

,,11IIIIIIII 17881 Sky Park North
Irvine, California
92714

ATTN: SOFTWARE DEPARTMENT

PLACE
STAMP
HERE

. ~
LD FOLD

