


Mi'lY 1980 

IMPORTANT NOTICE FOR LISP USERS 

Several new functions and enhancements have been added to LISP in AMOS 
Release 4.4. These features include improved error reporting and the 
addition of functions to the Extended Library to handle breakpoints. 

1.0 ERROR HANDLING 

When LISP reports an error, it now displays the user function in which the 
error occurred. For example: 

* (DE DOUBLE (X) (PLUS XX» 
DOUBLE 
*(DOUBLE 2) 
UNBOUND VARIABLE - EVAL IN DOUBLE 

========= 
XX -
* 

2.0 NEW FUNCTIONS 

Three new functions have been added to LISP: RETFROM, BREAK, and UNBREAK. 
In addition, we have added the variable BREAKFNS (which is maintained by 
BREAK and UNBREAK). 

2.1 RETFROM 

The calL (RETFROM fn vaL) causes the most recent caLL of function fn to 
return with value vaL. If the specified function is not active~LISP 
generates an error message. For example: 

*(DE F1 (X) (PROGN (F2) X» 
F1 
*fDE F2 () (RETFROM @F1 5) ) 
F2 
*fF1 7) 

5" 

NOTE: The caLL (RETFROM PROG vaL) behaves exactLy the same as (RETURN vaL). 



IMPORTANT NOTICE FOR LISP USERS Page 2 

2.2 BREAK (added to the Extended Library) 

The call (BREAK fn1 fn2 ••• ) causes execution of a program to be interrupted 
if an attempt is made to call any of the specified functions. You may then 
single-step execution of the interrupted function by typing a line-feed, or 
resume execution by typing (RESUME). NOTE: fn1, fn2, are not 
evaluated. 

2.3 UNBREAK (added to the Extended Library) 

The call (UNBREAK fn1 fn2 ••• ) restores the specified functions so that they 
no longer interrupt program execution when called. (That is, this function 
clears breakpoints set via the BREAK function.) NOTE: fn1, fn2, ••• are not 
evaluated. 

2.4 BREAKFNS (added to the Extended Library) 

BREAKFNS is a variable which contains a list of all functions which will 
interrupt program execution when called. BREAKFNS is maintained by BREAK 
and UNBREAK; therefore, you should not directly modify this variable. (See 
BREAK and UNBREAK, above.) 



~ MICROSYSTEMS AM-100 

ALPHALISP ~AGE PRCX;RAr+1IN; SYSTEM 

USER'S REFERENCE MANUAL 

ALPHA MICROSYSTEMS 
17875 Sky Park North 
Irvine, CA 92714 



'AMOS', 'AlphaBasic', and 'AM-100' 

are trademarks of products 
and software of 

ALPHA MICROSYSTEMS 
Irvine, CA 92714 

© 1977 - ALPHA MICROSYSTEMS 

ALPHA MICBOSYSTEMS 
17875 Sky Park North 
Irvine, CA 92714 



PREFACE 

CHAPI'ER 

CHAPTER 

CHAPrER 

CHAPTER 

BIBLICX;RAPHY 

1 

1.1 
1.1.1 
1.1.2 

2 

2.1 
2.1.1 
2.1.2 
2.2 
2.3 
2.4 

3 

3.1 
3.2 
3.3 
3.4 

4 

Table of Contents 

INTRODUCTION 

OPERATING INSTRUCTIONS 
System Files 
O};:leration ....................•........•.•.. 

DATA TYPES 

NUmERS .•....••...••.•.•.•••.....••.••••... 
Fixed Point Small Integers 
Floating Point Numbers ••••••••••••••••••••• 
CHARA.CTER STR.INGS •••••••••••••••••••••••••• 
LITERAL ATOMS 
LIS'I'S •••••••...•••.•••.•.••.•••.•••.••••••. 

DEMONSTRATION LIBRARY 

1-1 
1-1 
1-2 

2-1 
2-1 
2-2 
2-2 
2-2 
2-2 

IXlC'IOR ••••••••••••••••••••••••••••••••••••• 3-1 
DIFF ...•....•....•...••••..••••••.•••.•.•.. 3-2 
ILISP ...................................... 3-3 
~EDR ••••••••••••••••••••••••••••••••••••• 3-3 

SUMMARY OF PERMANENT SYMBOLS 





Preface 

Version 1.1 of AlphaLisp corrects the following problems found in Version 1.0: 

1. The function PUTPROP (and hence DE, DF, and OM) did not properly detect 
an attempt to redefine a permanent function. Redefining a permanent 
function could result in system failure. 

2. The predicate MINUSP (and hence LESS, GREAT, etc) did not properly test 
the sign of a Floating Point number. 

3. The function VCONC, which returned a list built by TCONC or LeONC, 
caused system failure if used ~properly. This has been corrected at a 
slight expense in efficiency of the function. 

4. The function TTYECHO, which was disabled in the change over to moni tor 
2.0, has been re-enabled. 

Version 1.1 contains the following minor enhancements: 

1. The automatic conversion of input from lower to upper case letters has 
been turned off. This allows the use of lower case in messages and 
input. ** NOTE ** Built in identifiers must be entered in UPPER CASE' 
in order to be recognized! 

2. The OUTPUT function previously returned the error 'FILE ALREADY EXISTS' 
if an attempt was made to create an output file which was already 
present. OUTPUT now supersedes (ie. pre-deletes) any existing file. 

Finally, a table of contents and bibliography have been added to this manual to 
~rove its usefulness. 

Sincerely, 

Paul Allen Edelstein 
Alpha Microsystems 





CHAPI'ER 1 

This manual sumarizes the features and operation of AlphaLisp, a version of the 
programnirg larguage LISP. The reader is assumed to be already familar with 
LISP, or to have available an introductory text such as the LISP 1.5 PRIMER by 
Clark Weissman (Dickenson Publishirg Co., 1967) or PROGRAMMING LANGUAGE LISP: 
Its Operation and Applications, edited by Edmund C. Berkeley and Daniel G. 
Bobrow (The M.l.T. Press, 1966). 

AlphaLisp is based on UCI LISP, which in turn is based on Standford Ar tificial 
Intelligence Project's LISP 1.6 (Standford's LISP is documented in STANDFORD 
ARI'IFICIAL INl'ELLIGENCE IABORA'IORY OPERATING IDTE 28. 6, STANDFORD LISP 1. 6 
MANUAL, by Lynn H. Quam and Whitfield Diffie). 

1.1 OPERATING INSTRUCTIONS 

1.1.1 System Files 

In order to use AlphaLisp, the following files must be present: 

1. DSKO:LlSP.PBG[1,4] 

2. DSKO:LISP.LSP[7,4] 

The AlphaLisp language processor, LISP.PRG is re-entrant and can be made part of 
the system by includirg it in a SYSTEM command in the file DSKO:SYSTEM.INI[1,4] 
(See AMOS Operator's Manual). 



INTroOOCTION 1-2 

1.1.2 Operation 

AlphaLisp is entered by typing: 

• LISP 

to which the system responds: 

• LISP 
WAD EXTENDED LIBRARY? 

at this point, the user enters either Y for YES or N for 00 and presses the 
return key. If the user responds yes, several extended features will be loaded 
at the expense of memory space. 

If the user has a file INIT.15P, this file will be automatically loaded at this 
time. AlphaLisp will then print the following: 

• LISP 
WAD EXTENDED LIBRARY?Y 

"AlphaLisp 1.6 Version 1.0" 

* 
The star (*) indicates that AlphaLisp is awaiting a command or data, and is 
referred to as a P:ocMPI'. 

The user may now enter any commands he wishes, for example: 

*5 
5 

*(ADD 2 3) 
5 

*(MOL (ADD 3 4) 2} 
16 (note: numbers are in octal) 

* (DE FACI'ORIAL (N) 
* (COND «ZEROP N) 1} 
* (T (MOL N (FAcroRIAL (SUBl N}}}}}) 
FAcroRIAL 

* (FAcroRIAL 3) 
6 

*(SETQ VAR @(A Be» 
(A B e) 

* (CAR VAR) 
A 

* (CDR VAR) 
(B e) 

* 
When the user wishes to return to the monitor, he enters (EXIT): 



IN'rIDruCTION 

* (EXIT) 

If the user wishes to abort output, cancel input, or interrupt program 
execution, he enters CTRt/C (C): 

*(SE'IQ X 1) 
1 

* (PROG () roop «ONEP X) (GO ImP») 
"c 

INTERRUPI' 
(GO ImP) 

* 
The program can then be single stepped by typing line-feed (Lf) or resumed by 
entering (RESUME): 

* (Lf) 

INTERRUPI' 
«ONEP X) (GO rooP» 
* (Lf) 

INTERRUPT 
(ONEP X) 
* (Lf) 

INTERRUPI' 
X 
* (Lf) 

INTERRUPI' 
(GO rooP) 
*(SE'IQ X 0) 
o 

* (RESUME) 
NIL 

* 

1-3 





CHAPI'ER 2 

DATA TYPES 

There are five types of data in AlphaLisp: 

1. FIXed Point small integers (-2~13 thru 2~13). 

2. FLOATing Point exponential reals (11 digit accuracy) • 

3. Character STRINGS. 

4. Literal Atans. 

5. Lists. 

2.1 NUMBERS 

There are two types of numbers, small integers and floating point numbers. 
AlphaLisp autanatically performs conversion between these two types whenever 
possible to minimize storage requirements. 

2.1.1 Fixed Point Small Integers 

A small integer is a number between -2~13 and 2~13. When entered, it is 
interpreted as a number in the radix specified by IBASE, which is initially set 
to 8. If an integer is entered followed by a decimal po:tnt, is interpreted as a 
decimal (radix 10) integer. Integers can optionally be preceed by a plus (+) or 
minus (-). 

Small integers are represented internally as special illegal addresses, and 
hence require no additional storage space when contained in a list. 



DATA'lYPES 2-2 

2.1.2 Floating Point Numbers 

Floating Point numbers are maintained to an accuracy of 11 digits. They may be 
entered with a decimal point (such as 3.2, .1, -.09, etc.) or in scientific 
notation (IE3=IOOO, 23.45EI=234.5, 23.45E-I=2.345, etc.). 

2.2 CHARACTER S~S 

Character Strings are any sequence of characters including special characters 
such as carriage-return or line-feed, enclosed between a pair of double quotes 
("). [buble quotes may appear within a string by entering them twice (e.g., "HE 
SAID ""WHAT"" AND TURNED") • 

When character strings are read in, they are not INTERNed on the OBLIST (entered 
into the symbol table), and are initialized to their own value, unlike 
identifiers which are initially unassigned. 

2.3 LITERAL ATOMS 

Literal atoms (or Identifiers) are a sequence of alphanumeric characters 
beginning with a non-numeric character, such as A, ALPHA, COUNT, 
VERYBIGIDENTIFIER, VI, etc. Literal atoms may include special characters such 
as blank, dot, parentheses, etc., if these characters are preceeded by a slash 
(I). When this is done, these characters are referred to as slashified (e.g., 
THISI IS/ONEI IDENTIFIER, 1123, AI.B, etc.). 

2.4 LISTS 

Lists are composed of a sequence of data elements including other lists, 
enclosed between a pair of parentheses (e.g., (A B C), (A (B C) D), (1 2 1.7 
"HELI.O" ID), etc.). 

A special kind of two element list referred to as a dotted pair, has the form 
(left part. right part). Note that the two elements are separated by a dot 
(.). The CAR of a dotted pair is the left part, the CDR of a dotted pair is the 
right part. 

On entry, brackets II [] II can be used instead of parentheses II () ". A close 
bracket "] II will automatically match an open bracket If [If at any time, producing 
implicit close parentheses If) II if necessary. 

On entry, a double ALTMODE or ESC can be used to terminate an object being 
entered at any time, producing implicit close parentheses ") II if necessary. 



CHAPl'ER 3 

DEMONSTRATION LIBRARY 

Included with AlphaLisp is a demonstration library composed of the following 
files: 

1. OOC'IDR 

2. DIFF 

3. ILISP 

4. METEOR 

3.1 OOC'IDR 

OOC'IDR is a program which lirnnitates a psychiatrist who is holding a session with 
the user. To load doctor, enter: 

.LISP 
WAD EXTENDED LIBRARY?N 

"AlphaLisp 1.6 Version 1.0" 
* (DSKIN OOC'IDR) 

(Wait about one minute for OOC'IOR to be loaded and processed) 
NIL 

* (w)RKER) 
*HELID. 
* 
HOW 00 YOU 00, PLEASE STATE YOUR PROBLEM 

*MY NAME IS PAUL. 

* 



DEMONSTRATION LIBRARY 3-2 

I AM NOr INTERESTED IN NAMES 

* 
DOCTOR is an extremely large program and requires a machine with 56K of memory. 
Be sure your job has all of the system's memory when you try to load doctor, am 
that no systems such as BASIC have been loaded into the resident monitor by 
SYSTEM.IN! with the possible exception of LISP itself. If insufficent space 
exits, you will receive the error message: 

WORKSPACE FULL 

* 
Whenever you tell the IXX:'IOR something, be sure to terminate your text with a 
blank line so that the DOCTOR knows you are finished speaking. 

To leave IXX:'IOR, type a C1'RL/C C"'C) and then enter (EXIT): 

INTERRUPT 
(TYI). 
* (EXIT) 

3.2 DIFF 

DIFF is a program which performs symbolic differentiation (That's calculus in 
case you've forgotten). To load DIFF, enter: 

• LISP 
roAD EXTENDED LIBRARY?Y 

"AlphaLisp 1.6 Version 1.0" 
* (DSKIN DIFF) 

(Wait about 30 seconds) 
NIL 

* (DIFF) 
THE DERIVATIVE OF-

*3X"" 3 

wrm RESPECT 'IO-

*X 

IS-
9 X""2 



DEMONSTRATION LIBRARY 

THE DERIVATIVE OF-

INTERRUPI' 
(READCH) 
* (EXIT) 

DIFF is documented in the LISP 1.5 PRIMER by Clark Weissman. 

3.3 ILISP 

3-3 

ILISP is the incremental language processor presented by L.A. lombardi and 
Bertram Raphael in the paper "LISP as the LaIl3uage for an Incremental Canputer" 
in the book PROGRAMMING LANGUAGE LISP, edited by E. Berkeley. To load ILISP, 
enter: 

.LISP 
WAD E}cr'ENDED LIBRARY?Y 

"AlphaLisp 1.6 Version 1.0" 
* (DSKIN ILISP) 

(Wait a while) 
NIL 

*(GRINDEF SUBST1) 
(DEFPROP SUBsrl 

(LAMBrA (X Y Z) 
(COND «A'IOM Z) (COND «EQ Z Y) X) (T Z}» 

(T (CONS (SUBsrl X Y (CAR Z)} 
(SUBSTl X Y (CDR Z»»}} 

EXPR) 
* (EVALQUOTEl @SUBST1 @ «A B) C NIL*}) 

(LAMBDA (G3) 
(COND «A'lOO G3) (COND «EQ G3 @C) @ (A B» (T G3») 

(T (CONS (SUBsr1 @(A B) @C (CAR G3» 
(SUBST1 @(A B) @C (CDR G3»»» 

* (EXIT) 

3.4 METEOR 

METEOR is a progrannning language written in LISP by Daniel G. Bobrow and 
documented in the article "METEOR: A LISP Interpreter for StriIl3 
Transformations" which appears in the book PROGRAMMING IANGUAGE LISP, edited by 
E. Berkeley. To load METEOR, enter: 



DEMONSTRATION LIBRARY 

• LISP 
WAD EXTENDED LIBRARY?Y 

"AlphaLisp 1.6 Version 1.0" 
* (DSKIN METEOR) 

NIL 
*WS123 

(Wait a while) 

(A roSE IS A roSE IS A rosE) 
*TEsr1 

«* (roSE) (FIOOER) * (SIMPLE REPLACEMENT» 
(* «*P THE WORKSPACE IS» * (DEBOO PRINTOUl'» 
(* (IS A rosE) 0 * (DELETION» 
(* (A FLOWER IS) (3 1 2) * (REARRANGEMENT» 
(* «*P WS2» *) 
(* (FWWER) (1 OF RED) * (INSERTION» 
(* (A FIDWER) (THE 2) * (REPLACEMENI' IN CON'IEXT» 
(* «*P WS3» *) 
(* (FlOWER) * (N) OPERATION» 
(* (RED) (1 1) * (DUPLICATION» 
(* «*P WS4» *) 
(* (OF ($ 1» (1) * (SINGLE UNKNaiN CONSTITUENT» 
(* «$ 1» (QUESTIOO 1) * (FIRST CONSTITUENl'» 
(* «*P WS5» *) 
(* «$ 2) FWWER ($ 3» 

(3 2 1) 

* 
(N CONSECUTIVE CONSTITUENTS» 

(* «*P WS6» *) 
(* (~R $ roSE) (1 3) * (UNKNCMN NUM OF CONSTITUENTS» 
(* «*P WS7» *) 
(* ($) (START CAB D) * (REPLACING ENTIRE IDRKSPACE» 
(* (STAR!' ($ 1) $ D) (1 3 2 4) *) 
(* «*P WS8» *) 
(* ($) END» 

* (METEOR TEST1 WS123) 
(THE WORKSPACE IS) 
(A ~ IS A rosE IS A rosE) 
(WS2) 
(IS A ~R A rosE) 
(WS3) 
(IS THE ~ OF RED A roSE) 
(WS4) 
(IS THE FIDWER OF RED RED A rosE) 
(WS5) 
(QUESTION IS THE FLOWER OF RED A roSE) 
(WS6) 
(QUESTION OF RED A FI.aiER IS THE rosE) 
(WS7) 
(QUESTION OF RED A FI£MER rosE) 
(WS8) 

3-4 



DEMONSTRATION LIBRARY 

(STARr ABC D) 
(STARr ABC D) 

* (EXIT) 

Note that due to differences between AlphaLisp and LISP 1. 5, the following 
changes were made to METEOR: 

1. The form ($.n) has been change to ($ n). 

2. Slashes (/) have been changed to backslashes (\). 

3-5 





CHAPI'ER 4 

SUMMARY OF PERM.~ENl' SYMBOIS 

In the following summary, calling sequences to LISP functions are presented in 
S-expression form, with the CAR of the S-expression being the name of the 
function. An argument to a ftmction is evaluated tmless that argunent is 
surrounded by quotes (It) in the calling sequence definition presented. Quotes 
here mean that the function implicitly QUOrEs that argument. 

Several definitions refer to file specs. A file spec here refers to a standard 
AMOS file specification (Refer to AMOS OPERATORS MANUAL, Standard File 
Specification Format). If the file spec includes special characters, it should 
be enclosed in quotes. 

4.1 ABS 

The call {ABS X} returns the absolute value of X, i.e., if X )= 0 then (ABS X) 
is X: otherwise, if X < 0 then (ABS X) is (MINUS X) • 

4.2 ADD 

The call (ADD X Y) returns X+Y. 

4.3 ADDI 

The call (ADDI X) returns X+l. 



SUMMARY OF PERMANENT SYMBOLS 4-2 

4.4 AND 

The call (AND X[l] X[2] ••• X[n]) returns the value of X[n] if all XCi] are 
non-NIL, otherwise it returns NIL. AND evaluates its arguments fran left to 
right until either NIL is found in which case the remaining arguments are not 
evaluated, or until the last argument is evaluated. Note that (AND) returns T. 

4.5 ANDP 

The call (ANDP X) returns the last element of X if all the elements of X are 
non-NIL, otherwise it returns NIL. If X is the empty list NIL, ANDP returns T. 

4.6 APPEND 

The call (APPEND X[l] X[2] ••• X(n]) returns a list containing the elements of 
the lists XCi]. For example, (APPEND @(A B C) @(D E) @«F» @(G» returns (A B 
C D E (F) G). Note: X en] is an EQ-tail of the resul t of APPEND. 

4.7 APPLY 

The call (APPLY FN AR:;S) calls the function FN with the elements of the list 
ARGS as arguments and returns the result of FN. Example: (APPLY @ADD @ (1 1» 
returns 2. 

4.8 ASCII 

The call (ASCII N) creates a single character identifier whose ASCII print name 
equals N. Note: The identifier is not INTERNed on the OBLIST. Example: (ASCII 
101) returns an identifier with print name 'A'. 

4.9 ASSOC 

The call (ASSOC X L FN) searches the list of dotted pairs L for a pair whose CAR 
is EO to X. If such a pair is found, it is returned as the value of ASSOC. 
Otherwise, the value of FN, a function of no arguments, is returned. If FN is 
anitted or NIL, ASSOC s~ly returns NIL if a dotted pair is not found. 



SUMMARY OF PERMANENT SYMBOLS 4-3 

4.10 A'IOM 

The call (ATOM X) is T if X is not a list, i.e., if X is either an identifier or 
a number. Otherwise the value of A'IOM is NIL. 

4.11 BASE 

The variable BASE controls the output radix for integers, and is initially set 
to 8. If BASE = 10, then integers will print with a trailing ".", unless the 
variable *NOPOINT = T. If BASE > 10, digits higher than 9 will appear as the 
letters A - Z. 

4.12 BIcr' 

The call (BRT) displays a backtrace of all expressions suspended either by an 
error or in order to evaluate llribedded subexpressions. BKT is used prlinarily to 
determine the context of an error. BIcr' returns NIL. 

4.13 CAR 

The call (CAR X) returns the left half of the dotted pair X. If X is a list, 
this amounts to returning the first element of X. The CAR of an atan is illegal 
wi th one exception: The CAR of NIL is NIL. 

4.14 CDR 

The call (CDR X) returns the right half of the dotted pair X. If X is a list, 
this amounts to returning the list X with its first element removed. 

The CDR of an identifier returns the property list of that identifier. 

4.15 CAAR, CADR, ••• , CDDDDR 

All of the composite CAR-CDR functions with up to four A's and D's are 
available. 

Examples: (CADR X) = 
(CAADDR X) = 

(CAR (CDR X» 
(CAR (CAR (CDR (CDR X) ) » 



SUMMARY OF PERMANENT SYMBOLS 

4.16 CHRCr 

The call (CHOCT) returns the number of character positions remaining on the 
output line of the selected output channel. When characters are output, if 
CHRCT is made negative, a (TERPRI) is executed. 

4.17 CHRVAL 

4-4 

The call (CHRVAL X) returns the ASCII representation of the first character of 
the print name of X. If X is numeric, an ASCII 'i' is returned. If X is a 
list, an ASCII '(I is returned. 

4.18 CLRBFI 

The call (CLRBFI) clears the terminal input buffer. 

4.19 COND 

A conditional expression has the following form: 

{CONn (e[l,l] e[l,2] 
(e[2,1] e[2,2] 

(e[m,l] e[m,2] 

e[l,n[l]]) 
e[2,n[2]]) 

e [m,n [m] ]) ) 

where the e[i,j]'s are any S-expression. 

The e[i,l]' s are considered to be predicates, i.e., evaluate to a truth value. 
The e[i,l]'s are evaluated starting with e[l,l], e[2,1], etc., until the first 
e[k,l] is found whose value is not NIL. Then the corresponding e[k,2] e[k,3] 
.•• e[k,n[k]] are evaluated respectively and the value of e[k,n[k]] is returned 
as the value of CONDo It is permissable for n[k] = 1, in which case the value 
of e[k,l] is the value of CONDo If all the e[i,l] evaluate to NIL, then NIL is 
the value of CX>ND. 

4.20 CONS 

The call (CONS X Y) creates a dotted pair with left half X and right half Y. If 
Y is a list, this amounts to returning the list Y with X inserted as the first 
element. **NOI'E** A special restriction of AlphaLisp is that Y may not be 
numeric! 



SUMMARY OF PERMANENT SYMBOts 

4.21 CONSP 

The call (<X>NSP X) returns X if X is not an atom, NIL otherwise. 

4.22 COPY 

The call (<X>PY X) returns a copy of X. All non-atomic-portions of X are 
duplicated in storage. COpy is equivalent to (SUBST NIL NIL X) • 

4.23 DE 

4-5 

The call (DE "10" "AroS" "BODY") places the form (LAMBm ARGS OODY) on the 
property list of 10 under property EXPR. If 10 previously had any of the 
properties EXPR., FEXPR, SUBR, FSUBR, or MACRO, then DE will return the list (10 
REDEFINED). Otherwise DE returns ID. 

4.24 DEFPROP 

The call (DEFPROP "I" "V" "P") enters the property name P with property value V 
into the property list of the identifier 1. If the property name P is already 
in the property list, the old value is replaced by the new one; otherwise the 
new property name P and its value V are placed on the beginnirl3' of the property 
list. DEFPROP returns I. 

4.25 OF 

Same as DE except defines a function with FExpR property. 

4.26 DIV 

The call (DIV X Y) returns X/Y. 

4.27 OM 

Same as DE except defines a MACRO. 



SUMMARY OF PERMANENT SYMOOLS 4-6 

4.28 DREMOVE 

The call (DREMOVE X L) is similar to the call (REMOVE X L), but DREMOVE uses EX:} 
instead of EQUAL, am actually modifies the list L when removing X, and thus 
does not use any additional storage. More efficient than REMOVE. 

**NOlE** If L = (X ••• X) (Le., a list of any length all of whose top level 
elements are EX:} to L) then the value returned by (DREMOVE X L) is NIL, but even 
after then destructive changes to X there is still one CONS cell left in the 
modified list which cannot be deleted. Thus if X is a variable and it is 
possible that the result of (DREMOVE X L) might be NIL the user must set the 
value of the variable given to DREMOVE to the value returned by the function. 

4.29 DREVERSE 

The value of (DREVERSE L A) is EQUAL to (REVERSE L A), but DREVERSE destroys the 
original list L, and thus does not use any additional storage. More efficient 
than REVERSE. 

4.30 DRM [EXTENDED LIBRARY] 

The call (DRM "CHARACTER" "FUNCTION") defines CHARACTER as a Normal Read Macro 
with "FUNCTION" bein;J a function name or LAMBDA expression of no arguments which 
will be evaluated each time CHARACTER is detected as a macro during input. 
FUNCTION is put on the property list of CHARACTER under the property READMACID. 
The value of DRM is CHARACTER. 

4.31 [SKIN 

The call (DSKIN FILESPEC) opens the file specified by FILESPEC for input on 
channel T, and then READ-EVALs the contents of the file. This is the function 
to use to read files created by [sKOUT. The value of [SKIN is NIL. 

4. 32 [sKOUT [EXTENDED LIBRARY] 

The call (DSKOUT "FILESPEC" "EXPRSLIST") as used to create an entire output file 
specified by "FILESPEC". It evaluates all of the expressions in "EXPRSLIST". 
If an expression in "EXPRSLIST" is atomic, then that atom is given to GRINL 
instead of bein;J evaluated directly. 

For example, if ENLIST is a list of your functions, they can be saved on a disk 
file FUNCS.LSP by: 



SUMMARY OF PERMANENT SYMBOLS 4-7 

(Il3KOur "FUNes" FNLIsr) 

4. 33 Il3M [EXTENDED LIBRARY] 

DSM is exactly like DRM except that CHARACTER is defined as a Splice Macro. 

4.34 DSUBST 

The call (DSUBST X Y Z) is similar to the call (SOBST X Y Z), except DSUBST uses 
EQ and not copy Z, but changes the list structure z itself. DSUBST substitutes 
with a COpy of X. More efficient than SUBST. 

4.35 EO 

The value of (EQ X Y) is T if X and Yare the same pointer, i.e., the same 
internal address. Identifiers on the OBLIST have unique addresses and therefore 
EO will be T if X and Yare the same identifier. EO will also return T for 
equivalent small integers, since they are represented as addresses. However, EO 
will not canpare equivalent floating point numbers. For non-atanic 
S-expressions, EO is T if X and Yare the same pointer. 

4.36 ECUAL 

The value of (ECUAL X Y) is T if X and Yare equivalent S-expressions, NIL 
otherwise. 

4.37 ERR 

The call (ERR E) returns the value of E to the most recent ERRSET, or to the 
LISP Supervisor if there is no ERRSET. If the value of E is ERRORX, then ERR 
will return to the most recent ERRSET of the form (ERRSET -- ERRORX) • 
Ordinarily, this will be the most recent top level supervisor call. 



SUMMARY OF PERMANENT SYMBOIS 4-8 

4.38 ERROR 

The call (ERroR E) generates a real LISP error. E is evaluated, and if it is 
non-NIL, it is PRINCed (unless error messages are suppressed) and then a break 
occurs on the expression which invoked the error call. 

4.39 ERRORX 

Special argument to ERR. 

4.40 ERRSET 

The call (ERRSET E "F") evaluates the S-expression E and if no error occurs 
durin;J its evaluation, ERRSET returns (LIST E). If an error occurs and F = NIL, 
the error message is suppressed and ERRSET returns NIL, instead of a break 
occurin;J. If the function ERR is called durin;J evaluation, then no message is 
printed and ERRSET returns the value returned by ERR. If F is anitted, it is 
assumed to be T. 

4.41 EVAL 

The call (EVAL E) evaluates the value of the S-expression E. 

4.42 EXIT 

The call (EXIT) causes termination of LISP and a return to the AMOS Monitor. 

4.43 EXPLODE [EXTENDED LIBRARY] 

The call (EXPLODE L) transforms an S-expression L into a list of single 
character identifiers identical to the sequence of characters which would be 
produced by PRIN1. 



SUMMARY OF PERMANENT SYMBOLS 

4.44 EXPWDEC [EXTENDED LIBRARY] 

The call (EXPWDEC L) transforms an S-expression L into a list of single 
character identifiers identical to the sequence of characters which would be 
produced by PRINe. 

4.45 EXPR 

4-9 

An EXPR is an identifier which has a LAMB~ expression on its property list with 
property name EXPR. EXPRs are evaluated by binding the values of the actual 
arguments to their corresponding dUll1lly variables. If there are more actual 
arguments than dummy variables, the excess arguments are evaluated but ignored. 
If there are more dUll1lly variables than actual arguments, ~~e excess dUll1lly 
variables are bound to NIL. 

4.46 FEXPR 

An FEXPR is an identifier which has a LAMBDh expression on its property list 
with property name FEXPR. FEXPRs are evaluated by binding the actual argument 
list to the first dUll1lly variable without evaluating any arguments. Any 
remaining dummy variables are bound to NIL. 

4.47 FIXP 

The call (FIXP N) returns T if N is a small integer, i.e., in the range -2"13 
thru 2"13. Otherwise, FIXP returns NIL. 

4.48 FLATLE 

The call (FLATLE X N) returns (FLATSIZE X) if (FLATSIZE X) <= N. Otherwise, 
FLATLE returns NIL. 

4.49 FIATSIZE 

The call (FLATSIZE X) is equivalent to (LENGTH (EXPWDE X». 



SUMMARY OF PERMANENT SYMBOLS 4-10 

4.50 FLATSIZEC 

The call (FLATSIZEC X) is equivalent to (LENGTH (EXPLODEC X». 

4.51 FLOATP 

The call (FIDATP N) returns T if N is a floating point number, NIL otherwise. 

4.52 FSUBR 

A FSUBR is an identifier which has a dispatch number on its property list with 
property name FSUBR. FSUBRs are evaluated by passing the unevaluated actual 
argument list to the internal subroutine. 

4.53 FUNCTION 

The call (FUNCTION X) is currently equivalent to (QUOTE X) in AlphaLisp. It is 
used to prevent the evaluation of a functional argument. In sane 
nnp1ementations of LISP, FUNCTION invokes a special mechanism to maintain the 
proper bindings of free variables in the functional argument. 

4.54 GET 

The call (GET I P) searches the property list of the identifier I looking for 
the property name P. If such a property name is found, the value associated 
with it is returned as the value of GET, otherwise NIL is returned. Note that 
confusion exists if the property is found but its value is NIL. 

4.55 GETL 

The call (GETL I L) ~arches the property list of the identifier I looking for 
the first property which is EQ to L or a member (MEMQ) of L. GETL returns the 
remaining property list, including the property name if any such property was 
found, NIL otherwise. 



SUMMARY OF PERMANENT SYMBOLS 4-11 

4.56 00 

The call, (GO "10") causes the sequence of control within a PROG to be 
transferred to the next statement following the label 10. If 10 is non-atanic, 
it is repeated evaluated tmtilan atomic value is found. GO cannot transfer 
into or out of a PROG. 

4.57 GREAT 

The call (GREAT X Y) returns T if X > Y, NIL otherwise. 

4.58 GRINDEF [EXTENDED LIBRARY] 

The call (GRINDEF "FI" "F2" ••• "Fn") is used to print the definitions of 
functions and the values of variables in a format suitable for reading back in 
to LISP, in what is known as DEFPROP-SErQ format. GRINDEF uses SPRINT to print 
these S-expressions in a highly readable format, in which the levels of list 
structure (or parenthesies levels) are indicated by indentation. GRINDEF prints 
all the properties of the identifiers FI F2 ••• Fn which appear on the list 
GRINPROPS. If Fi is non-atanic, it will be SPRINTed. 

4.59 GRINL [EXTENDED LIBRARY] 

The call (GRINL "FI" "F2" ••• "Fn") causes all of the atans, "FI" "F2" ••• "Fn", 
and all of the atans on the lists which are the values of the atans Fl F2 ••• Fn 
to be GRINDEFed. GRINL correctly prints out read macros and is the only 
function which does. If any of the Fi are non-atomic, they are evaluated but 
ignored. 

4.60 GRINPROPS [EXTENDED LIBRARY] 

The variable GRINPROPS contains the properties which will be printed by GRINDEF. 
This variable can be set by the user to print special properties which he has 
placed on atans. The initial value of GRINPROPS is (NIL EXPR FEXPR MACRO SUBR 
FSUBR) • 



SUMMARY OF PERMANENT SYMBOLS 4-12 

4.61 IASCII 

The call (!ASCII X) is equivalent to (INI'ERN (ASCII X» 

4.62 IBASE 

The variable !BASE specifies the input radix for integers which are not followed 
by "." Integers followed by "." are decimal integers. IBASE is initially 8. 

4.63 INC 

The call (INC CHANNEL ACTION) selects the specified channel for input. The 
channel NIL selects the tenninal. If ACTICN = NIL, the previously selected 
input channel is not closed, but only deselected. If ACTION = T, that channel 
is closed, making it available. INC evaluates its arguments and returns the 
name of the previously selected channel. 

4.64 INITPROMPT 

Whenever LISP is forced back to the supervisor, the prompt character is reset. 
The call (INITPOOMPT CHAR) is similar to the call (PROMPI' N) except that it sets 
the supervisor prompt character instead of the current prompt character. The 
call (INITPROMPT NIL) returns the ASCII value of the supervisor prompt character 
without changing it. 

4.65 INPUT 

The call (INPUT "CHANNEL" IFlLESPEC") closes any file previously initialized on 
the input channel, and initialized the file or device specified by FILESPEC for 
input. INPUT does not evaluate its arguments and returns CHANNEL. 

If the file specified by FILESPEC is not fourrl, an attempt is made to find the 
file on DSKO:[7,4] with extension .LSP with the same file name. 

4.66 INTEGER 

The call (INTEGER N) returns the greatest integer less than N. 



SUMMARY OF PERMANENI' SYMBOLS 4-13 

4.67 INTERN 

The call (INTERN I) puts the identifier I in the appropriate bucket of OBLIST. 
If the identifier is alrecrly in the OBLIST, then INTERN returns a pointer to the 
identifier already there. Otherwise, INTERN returns I. 

4.68 LABEL 

The form (LABEL "ID" "LAMBM-EXPR") defines a function with the temporary name 
"ID". This makes it possible to construct recursive function expressions. 

4.69 IMBm 

The form (LAMBm "ARGUMENT-LIST" "BODY") defines a function by specifying an 
ARGUMENT-LIST, which is a list of identifiers which are to serve as dummy 
variables, and a body, which is one or more S-expressions. LAMBm expressions 
are evaluated by "binding" actual arguments to the dummy variables, then 
evaluating BODY with the current dunmy variable bindings. If BODY is a single 
expression, it is sXmply eValuated. If BODY is several S-expressions, it is 
interpreted as a PROGram (See PROG). 

4.70 LAST 

The call (LAST L) returns a list containing the last element of L. 

4.71 LeONC 

The call (LeONe PI'R L) is similar to the call (TCONC PI'R X) except that wheras 
TCONC is used to add elements at the end of a list, LeONC is used for building 
lists by adding lists at the end. Note that LeONe uses the same pointer 
conventions as TCONC for elXminating searching to the end of a list, so that the 
same pointer can be given to TCONC and LeONC interchangeably. 

4. 72 LDIFF [EXTENDED LIBRARY] 

In the call (LDIFF X Y), Y must be a tail of X, i.e., EXJ to the result of 
applying sane number of CDRs to X. LDIFF gives a list of all elements in X but 
not in Y, i.e., the List DIFFerence of X and Y. Thus (LDIFF X (MEMB FOO Y» 
gives all elements in X up to the first FOO. 



SUMMARY OF PERMANENT SYMBOlS 4-14 

Note that the value of LDIFF is always a new list structure unless Y = NIL, in 
which case (LDIFF X NIL) is X itself. 

If Y is not a tail of X, LDIFF generates an error. 

4.73 LENGTH 

The call (LENGTH L) returns the number of top-level elements of the list L. 

4.74 LESS 

The call (LESS X Y) returns T if X < Y, NIL otherwise. 

4. 75 LEXORDER 

The value of (LEXORDER X Y) is T if X is lexically less than or equal to Y. 
Note: Both arguments must be atans, and numeric arguments are lexically less 
than symbolic arguments. If both X and Yare numeric, LEXORDER returns NIL. 

4.76 LINELENGTH 

The call (LINELENGTH N) is used to examine or change the maximum output 
linelength. If N = NIL, the current line length is returned unchanged, 
otherwise the line length is changed to the value of N, which is returned as the 
value of LINELENGTH. 

4.77 LINEREAD 

The call (LINEREAD) reads a line, returning it as a list. If the last 
expression read does not end at the end of the line or is incanplete, LINEREAD 
continues reading. 

4.78 LIST 

The call (LIST X[l] X[2] ••• X[n]) evaluates the X[i] and returns a list of 
their values. 



SUMMARY OF PERMANENT SYMBOLS 4-15 

4.79 LITA'KM 

The call (LITATOM A) returns T if A is an identifier, i.e., a non-numeric atom. 

4.80 LSUBST 

The call (LSUBST X Y Z) is s~ilar to the call (SUBST X Y Z) except that X is 
substituted as a segment. Note that if X is NIL, LSUBST returns a copy of Z 
with all yls deleted. 

4.81 MACro 

A MACro is an identifier which has a LAMB~ expression on its property list with 
property name MACro. MACros are evaluated by bindiIl3 the list containiIl:3 the 
macro name and the actual argument list to the first dummy variable. My 
remainiIl:3 dummy variables are bound to NIL. The body in the LAMBDA expression 
is evaluated and should resul t in another, "expanded" form, which is then 
evaluated. 

4 • 82 MAKNAM 

The call (MAKNAM L) transforms a list of single character identifiers (actually 
takes the first character of each identifier) and ASCII character codes into an 
S-expression identical to that which would be produced by READing those 
characters. MAKNAM however does not INTERN any of the identifiers in the 
S-expression it produces. 

4.83 MAP 

The call (MAP EN X [1] X [2] ••• X [n]) applies the function EN to the argument 
list X[l] X[2] ••• X[n] arrl to successive CORls of all the X[i] until one of the 
X[i] is reduced to an atcm or NIL. Note that if any of the X[i] except X[l] are 
NIL, a circular list of NILls is substituted for those X[i]. The max~um value 
of n is 4. The value of MAP is NIL. 



SUMMARY OF PERMANENT SYMBOIS 4-16 

4.84 MAPC 

The call (MAPC FN X{l] X[2] ••• X[n]) applies the function FN to successive 
elements fran the X [i] until one of the X [i] become exhausted, i.e., become 
atomic or NIL. If any of the Xli] except X[l] are NIL, a circular list of NIL's 
is substituted for those X[i]. The maximum value of n is 4. The value of MAPC 
is NIL. 

4.85 MAPCAN 

MAPCAN is similar to MAPC except that it returns all the lists produced by FN, 
NCONCed together. 

4.86 MAPCAR 

MAPCAR is similar to MAPC except that it returns a list of the results produced 
by FN. 

4.87 MAPCON 

MAPCON is similar to MAP except that it returns all the lists produced by FN, 
NCONCed together. 

4.88 MAPLIST 

MAPLIST is similar to MAP except that it returns a list of the results produced 
by FN. 

4.89 MEMB 

The call (MEMB X L) is NIL if X is not EQ to any of the top level elements of L. 
Otherwise, MEMB returns the tail of L starting at the position where X is found. 



SUMMARY OF PERMANENT SYMOOIS 4-17 

4.90 MEMBER 

The call (MEMBER X L) is sDnilar to MEMB except that it uses EQUAL instead of 
EQ. 

4.91 MEMO 

MEMO is just another name of MEMB. 

4.92 MINUS 

The call (MINUS X) returns -X. 

4.93 MINUSP 

The call (MINUSP X) returns T if X < 0, NIL otherwise. 

4.94 MUL 

The call (MOL X Y) returns X*Y, i.e., it multiplies together X and Y. 

4.95 NCONC 

The call (NCONC X Y) is sDnilar in effect to (APPEND X Y) but NCONC does not 
copy list structures. NCONC modifies list structures by replacing the last 
element of X with a pointer to Y. The value of N:ONC is the modified list X, 
which is the concatenation of X and Y. 

4.96 NCONS 

The call (NCONS X) is equivalent to (ooNS X NIL) • 



SUMMARY OF PERMANENT SYMBOLS 4-18 

4.97 NEQ 

The call (NEQ X Y) is equivalent to (Nor (EQ X Y» 

4.98 NIL 

The call (NIL X[l] X[2] ••• X[n]) returns NIL without evaluating the X[i]. In 
general, NIL denotes falsehood, and is equivalent to the empty list" ()". NIL 
is unique in that it is both an atom and a list. 

4.99 Nor 

The call (NOT X) returns T if X is NIL, and NIL if X is non-NIL (e.g., T). 

4.100 N'IH 

The call (NTH X N) returns the tail of X beginning with the Nth element, e.g., 
if N = 2, the value is (CDR X). If N = 0, for consistency, the value is (CONS 
NIL X). 

4.101 NTHCHAR 

The call (NTHCHAR X N) returns the Nth character in the EXPLODEC representation 
of X. If N is negative, (NTHCHAR X N) returns the Nth fran last character of 
the EXPLODEC representation of X. 

4.102 NULL 

The call (NULL X) returns T if X is NIL, NIL otherwise. 

4.103 NUMBERP 

The call (NUMBERP X) returns T if X is numeric, NIL otherwise. 



SUMMARY OF PERMANENT SYMBOLS 4-19 

4.104 OBLISl' 

In order that occurrences of identifiers with the same print names have the same 
internal address (an:'! hence value), a special list which is the value of the 
variable OBLIST is used to remember all identifiers which READ and some other 
functions have seen. For the sake of searching efficiency, this list has two 
levels; the first level contains 16 sequentially stored "buckets" which are 
"hashed" into as a function of the print name of the identifier. Each bucket is 
a list of all distinct identifiers which have hashed into that bucket. Thus, 
(CAR OBLISl') is the first bucket, and (CAAR OBLISl') is the first identifier of 
the first bucket. 

4.105 ONEP 

The call (ONEP X) returns T if X = 1, NIL otherwise. 

4.106 OR 

The call (OR X[l] X[2] ••• X[n]) returns the value of the first non-NIL X[i], or 
NIL if the value of all the X[i] 's is NIL. OR evaluates its argtnnents fran left 
to right until a non-NIL argtnnent is found, leaving the remaining argtnnents 
unevaluated. Note that (OR) returns NIL. 

4.107 ORP 

The call (ORP X) returns the first non-NIL element of X or NIL. 

4.108 OUTC 

The call (OUTC CHANNEL ACTION) selects the specified channel for output. The 
channel NIL selects the terminal. If ACTICN = NIL, then the previously selected 
output channel is not closed, but only deselected. If ACTION = T, then any 
buffered output is sent to the previous file, and the file is closed. OUTC 
evaluates its argtnnents and returns the name of the previously selected channel. 



SUMMARY OF PERMANENT SYMBOLS 4-20 

4.109 OUTPur 

The call (OUTPUT "CHANNEL" "FILESPEC") closes any file previously initialized on 
the output channel, and initializes the file or device specified by FILESPEC for 
output. OUTPUT does not evaluate its arglll\ents and returns CHANNEL. If a file 
specified by FILESPEC already exists, it is deleted before the new file is 
ini tial ized • 

4.110 PLUS [EXTENDED LIBRARY] 

The call (PLUS X[l] X[2] ••• X[n]) returns the sum of all the XCi] 'so 

4.111 PRINI 

The call (PRINl S) causes the S-expression S to be printed on the selected 
output device with no preceedin;; or fo11owin;; spaces. PRINl also inserts 
slashes ("/") before any characters which would otherwise be syntactically 
incorrect. Double quotes around strin;;s and repeated double quotes within 
strings are also printed. 'lWO element lists beginning with QUOTE are printed in 
, @ , format (see QUarE) • 

4.112 PRINe 

PRINC is the same as PRINl except that no slashes are inserted, double quotes 
are strin;;s and repeated double quotes within strin;;s are suppressed, and QUOTE 
appears normally. 

4.ll3 PRINT 

The call (PRINT S) is equivalent to (PRCX.72 (TERPRI) (PRINI S) (PRINC @/ » . 

4 .114 PROCEED 

The call (PROCEED N) RESUMEs evaluation of the currently pending expression and 
causes an interrupt after N expressions are subsequently entered for evaluation. 



SUMMARY OF PERMANENT SYMBOLS 

4.115 PROO 

4-21 

The call (PRCX; "VARLIST" "BODY") specifies a list of program variables, VARLIST, 
which are initialized to NIL when the PROG is entered, and a body which is a 
list of labels (which are identifiers) and statements which are non-atomic 
S-expressions. PROG evaluates its statements in sequence lIDtil either a RETURN 
or GO is evaluated, or the list of statements is exhausted in which case the 
value of PROG is NIL. 

4.116 PROGI 

The call (PRCX;l X[l] X[2] ••• X[n]) evaluates all the expressions X[l] X[2] ••• 
X[n] (n<6) and returns X[l] as its value. 

4.117 PRCX;2 

The call (PRCX;2 X[l] X[2] ••• X[n]) evaluates all the expressions X[l] X[2] ••• 
X[n] (n<6) and returns X[2] as its value. 

4.118 PROGN 

The call (PRa;N X[l] X[2] ••• X[n]) evaluates all the XCi] and returns X[n]. 

4.119 PROMPI' 

The call (PROMPT N) resets the prompt character displayed by the input routines 
when a new line is requested, to the character whose ASCII representation is N. 
If N is NIL, the prompt is left unchanged. The value of PROMPI' is the previous 
value of the prompt character. 

4.120 PUTPOOP 

The call (PUTPROP I V P) enters the property name P with property value V into 
the property list of identifier 1. If the property name P is already in the 
property list, the old value is replaced by the new one; otherwise, the new 
property name P am. its value V are placed on the beginnirg of the property 
list. PUTPROP returns V. 



SUMMARY OF PERMANENT SYMBOrs 4-22 

4.121 QUOTE 

The call (QUOTE "E") returns the S-expression E without evaluating it. To 
~prove the clarity of expressions and programs, there exists a concise notation 
for (QUOTE "E"): @"E". This alternate notation is accepted by the read routines 
and displayed by all print routines except PRINC. 

4.122 COOTIENT [EXTENDED LIBRARY] 

The call (QUOTIENT X[l] X[2] ••• X[n]) returns X[1]/X[2]/ ••• /X[n]. 

4.123 RDNAM 

The call (RDNAM) is s~ilar to the call (READ) except that identifiers are not 
INTERNed. 

4.124 READ 

The call (READ) causes the next S-expression to be read from the selected input 
device, and returns the internal representation of the S-expression. READ uses 
INTERN to guarantee the references to the same identifier are EQ. 

4.125 READCH 

The call (READCH) causes the next character to be read from the selected input 
device and returns the corresponding single character identifier. READCH uses 
INTERN. 

4.126 READLIST 

The call (READLIST L) is identical to (MAKNAM L) except that READLIST INTERNs 
all identifiers in the S-expression it produces. READLIST is the logical 
inverse of EXPLODE. 



SUMMARY OF PERMANENT SYMBOIS 4-23 

4.127 READMACro 

A READMACRO is a single character identifier which has a LAMB~ expression on 
its property list with property name READMACRO. In order for READ to recognize 
a character as a READMACRO, the character's internal description must be changed 
with SETCHR. DRM and DSM are normally used to define READMACROs. 

4.128 RECIP 

The call (RECIP X) returns l/X. 

4.129 REMAINDER 

The call (REMAINDER X Y) returns the remainder of X divided by Y. X and Y must 
be small positive integers. 

4.130 REMOB [EXTENDED LIBRARY] 

The call (REMOB "1[1]" "1[2]" 
OBLIST and returns NIL. 

4.131 REMOVE 

"I[n] ") removes the identifiers I[i] from the 

The call (REMOVE X L) removes all top level occurrences of X from the list L, 
giving a COPY of L with all top level elements EQUAL to X removed. 

4.132 REMPROP 

The call (REMPROP I P) removes the property P from the property list of 
identifier 1. REMPROP returns T if there was such a property, NIL otherwise. 

4.133 RESET 

The call (RESET) clears the suspended evaluation stack and returns control to 
the top level supervisor. 



SUMMARY OF PERMANENT SYMBOLS 4-24 

4.134 RESUME 

The call (RESUME) resumes evaluation of a suspended expression. 

The call (RESUME "E") substitutes E for the suspended expression and resumes 
execution. If possible, the expression containing the suspended expression is 
physically modified to substitute E for the suspended expression using DSUBST. 

4.135 RE'IURN 

The call (RETURN V) causes the most recent PROG to be exited with the value V. 

4.136 REVERSE 

The call (REVERSE L) returns the reverse of the top level elements of the list 
L. 

The call (REVERSE L A) returns (NOONC (REVERSE L) A). 

4.137 RPLACA 

The call (RPLACA X Y) replaces the CAR of X by Y. 'lhe value of RPLACA is the 
modified S-expression X. 

4.138 RPLACD 

The call (RPLACD X Y) replaces the CDR of X by Y. The value of RPLACD is the 
modified S-expression X. 

4.139 SELEcm 

The call (SELECTQ X "Yl" "Y2" ••• "Yn" Z) is used to select a sequence of 
instructions based on the value of X (this call is often refered to as a CASE 
statement in other languages). Each of the Yi is a list of the form (Si E[l,i] 
E [2, i] ••• E [k, i]) where Si is the "selection key". 

If Si is an atom the value of X is tested to see if it is EQ to Si (not 
evaluated). If so, the expressions E [1, i] ••• E [k, i] are evaluated in sequence, 
and the value of SELECTQ is the value of the last expression evaluated, i.e. 
E[k,i]. 



SUMMARY OF FERMANEN!' SYMBOLS 4-25 

If Si is a list, arrl if any element (not evaluated) of Si is EQ to the value of 
X, then E[l,i] ••• E[k,i] are evaluated in turn as above. 

If Yi is not selected in one of the two ways described then Y[i+l] is tested, 
etc. until all the Y's have been tested. If none is selected, the value of 
SELECl'Q is the value of Z. Z must be present. 

4.140 SET 

The call (SET E V) changes the value of the identifier specified by the 
expression E to V am returns V. Both arguments are evaluated. 

4.141 SETCHR 

The call (SETCHR CHAR BITS) allows the internal description for the ASCII 
character CHAR to be modified to the value specified by BITS. BITS must be the 
sum of some canbination of the following flags: 

200 Don't slashify character as first character 
of an identifier. 

4 Splice option of READMACID. 

1 READMACID. 

4.142 SETQ 

The call (SETQ "ID" V) changes the value of ID to V and returns V. SETQ 
evaluates V, but does not evaluate ID. 

4.143 SPRINT 

The call (SPRINT EXPR IND :RMAR3IN) "pretty prints" EXPR in a human readable 
form, with the levels of list structures shown by indentation alorg the line. 
The initial indentation is IND - 1 spaces. ~IN is the anount of space to 
reserve in the right margin for the last line printed in order to print any 
enclosing tail, and is normally anitted. If IND is an it ted , it defaults to one. 



SUMMARY OF PERMANEN!' SYMBOIS 4-26 

4.144 STRINGP 

The call (STRINGP X) returns T if X is a str ing, NIL otherwise. 

4.145 SUB 

The call (SUB X Y) returns X-Yo 

4.146 SUBI 

The call (SUBI X) returns X-I. 

4.147 SUBR 

A SUBR is an identifier which has a dispatch number on its property list with 
property name SUBR. SUBRs are evaluated by evaluating up to five actual 
arguments and passing the results to the internal subroutine. Any additional 
arguments are ignored, and hence left unevaluated. 

4.148 SUBST 

The call (SUBST X Y S) substitutes S-expression X for all EQUAL occurrences of 
S-expression Y in S-expression S. 

4.149 T 

The call (T X[l] X[2] ••• X[n]) is equivalent to (PRDGI X[l] X[2) ••• X[n). In 
general, T denotes truth or success. 

4.150 TAB 

The call (TAB N) tabs to position N on the output line doing a TERPRI first if 
the current position is already past N. Note should be taken that TAB outputs 
spaces only when necessary and outputs tab characters otherwise. 



SUMMARY OF PERMANENT SYMBOLS 4-27 

4.151 TAILP 

The call (TAILP X Y) returns X if X is a list and a tail of Y (i.e., X is EQ to 
some number of CDR'S of Y), NIL otherwise. 

4.152 '.OCONC 

The call (TOONC PTR X) is useful for building a list by adding elements one at a 
time at the end. This could be done with NCONC. However, unlike NCONC, ':OCONe 
does not have to search to the end of the list each time it is called. It does 
this by keepin; a pointer to the end of the list bein; assembled, and updatin; 
this pointer after each call. The savings can be considerable for long lists. 
The cost is the extra cell required for storin; both the list being assembled, 
and the end of the list. PTR is that cell: (CAR Pl'R) is the list being 
assembled, (CDR Pm) is (LAST (CAR Pm». The value of ':OCONC is Pl'R, with the 
appropriate modifications to its CAR and CDR. Note that '.OCONC is a destructive 
operation, usin; RPLACA and RPLACD. 

':OCONe can be initialized in two ways. If Pl'R is NIL, ':OCONe will make up a 
pointer. In this case, the program must set some variable to the value of the 
first call to '.OCONC. After that it is unnecessary to reset since ':OCONC 
physically chan;es Pl'R. 

If Pl'R is initially (NIL), the value of '.OCONC is the same as Eor Pl'R = NIL, but 
':OCONC changes Pl'R. This method allows the program to initialize, and then call 
':OCONC without having to perform SETQ on its value. 

4.153 TERPRI 

The call (TERPRI X) prints a carriage-return and line-feed and returns the value 
of X. X may be omitted if the value of TERPRI is not used. 

4.154 TIMES [EXTENDED LIBRARY] 

The call (TIMES X[l] X[2] ••• X[n]) returns the product of all the X[i] 'So 

4.155 TI'YECHO 

The call (TTYECHO) complements the terminal echo switch, returning T if echoing 
is bein; turned on or NIL if it is bein; turned off. 



SUMMARY OF PERMANENT SYMBOLS 

4.156 TYI 

The call (TYI) causes the next character to be read from the selected input 
device and returns the ASCII code for that character. 

4.157 TYO 

The call (TYO N) prints the character whose ASCII value is N, and returns N. 

4.158 UNBOUND 

4-28 

The call (UNBOUND) returns the un-INI'ERNed atom UNBOUND which the system binds 
to an identifier to indicate that it currently has no assigned value. 

4.159 UNTYI 

The call (UNTYI CHAR) "unreads" a character (such as a character input by TYI or 
READCH), so that the nex t call to READ, TYI, etc., will pick up the UNTYI I ed 
character as the next character to be read, and returns the ASCII code for that 
character. NOTE: In the LISP READ routine, an atom may be terminated either by 
a break character (a character which must be interpreted by READ as well as 
serving to terminate the atan, such as "(", ")", "[", "]", and ".") or a 
separator character (a character used only to separate atoms, etc., but not in 
itself meaningful, such as carriage-return or blank). In order to save a break 
character for later interpretation, the LISP READ routines use a one-character 
buffer. UNTYI simply stores its argument in this buffer: thus there are two 
problems with using TYI. First, if UNTYI is used several times in succession 
with no intervening READs, TYls, etc., then only the most recent character is 
actually "unread" -- all others are lost. Second, if there is a break character 
in the one-character buffer when an UNTYI is performed, the break character will 
be lost. 

4.160 VCONC 

The call (VCONC Pl'R) is used in conj unction wi th TCONC or I.CONC to return the 
list they have built. VCONC is currently equivalent to CAR. reference by Pl'R 
back into the free cell list. 



SUMMARY OF PERMANENT SYMBOIS 4-29 

4.161 XCONS 

The call (XCONS X Y) is equivalent to (CONS Y X) 

4.162 ZEROP 

The call (ZEROP X) returns T if X = 0, NIL otherwise. 

4.163 #EXPIDDE 

#EXPIDDE is similar to EXPIDDE except that it returns a list of ASCII character 
codes. 

4.164 #EXPLODEC 

#EXPLODEC is similar to EXPLODEC except that it returns a list of ASCII 
character codes. 

4.165 #NTHCHAR 

#NTHCHAR is similar to NTHCHAR except that the ASCII value of the character is 
returned. 

4.166 $EOF$ 

When an end-of-file is detected during input, (ERR $EOF$) is executed. 

4.167 *EXPAND [EXTENDED LIBRARY] 

The call (*EXPAND L FN) is used within macros to perform macro expansion. 
*EXPAND is used by PLUS, TIMES, and QUQrIENI'. 

Examples: 
PLUS can be defined as follows: 

(LM PLUS (L) (*EXPAND L @ADD» 

(PLUS A B C) would be expanded as follows: 



SUMMARY OF PERMANENT SYMOOLS 

(*EXPAND @(PLUS A B e) @ADD) 
(*EXPAND @ (PLUS B e) @ADD) 
{*EXPAND @ (PLUS e) @ADD) 

= 
= 
= 

(ADD A (PLUS B e)) 
(ADD B (PLUS e)) 
e 

Thus converting (PLUS A B e) into (ADD A (ADD Be)). 

4.168 *NOPOINl' 

If BASE = 10, integers will print with a trailing 
*NOPOINl' is set to T. 

" " . unless the variable 

4-30 



Bibliography 

Berkeley, E.C., and D.G. Bobrow (eds). "The Progranming La.n:;Juage 
LISP: Its Operation and Applications," The M. LT. Press, 
Cambridge, Mass., 1962. 

Friedman, D.P. "The Little LISPer," Science Research Associates, 
Inc., Palo Alto, Calif., 1974. 

Maurer, W.D. "A Prograrmner's Introduction to LISP," American 
Elsevier Publishing Company, Inc., New York, 1973. 

McCarthy, J. "Recursive Functions of Symbolic Expressions and 
their Computation by Machine," Part I, Conm. ACM,3,4 (1960), 
184-195. 

McCarthy, J., P.W. Abrahams, D.J. Edwards, T.P. Hart, and M.I. Levin, 
"LISP 1.5 Programner's Manual," The M.LT. Press, Cambridge, 
Mass. 1962. 

Quam, L.H. and W. Diffie, "Stanford Artificial Intelligence Laboratory 
Operating Note 28.6, Stanford LISP 1.6 Manual," Stanford 
University. 

Ribbens, D. "Prograrmnation non numerique," LISP 1.5, Dunrod, Paris, 
France, 1970. 

Siklossy, L. "Let's Talk LISP," Prentice-Hall, Inc., Englewood Cliffs, 
N.J., 1976. 

Weissman, C. "LISP 1.5 Primer ," Dickenson Publishing Company, Inc., 
Encino, Calif., 1966. 




