
This bicentennial edition of the Proceedings of the 1976
National Computer Conference is dedicated to the
memory of

THOMAS JEFFERSON

who wrote,

I have sworn upon the altar of God
eternal hostility against eve1'y form
of tyranny over the mind of man.

AFIPS
CONFERENCE
PROCEEDINGS

1976
NATIONAL
COMPUTER

CONFERENCE
Member National Bicentennial

Service Alliance

June 7-10, 1976

New York City, New York

The ideas and opinions expressed herein are solely those of the authors and
are not necessarily representative of or endorsed by the 1976 National
Computer Conference or the American Federation of Information Process
ing Societies, Inc.

Library of Congress Catalog Card Number 55-44701
AFIPS PRESS

210 Summit Avenue
Montvale, New Jersey 07645

© 1976 by the American Federation of Information Processing Societies,
Inc., Montvale, New Jersey 07645. All rights reserved. This book, or parts
thereof, may not be reproduced in any form without permission of the
publisher.

Printed in the United States of America

iv

Preface

by CARL HAMMER
Conference Chairman
Sperry Univac
W",,,},;no-/-nn nr
•• - ~ ... &bo&.L' ~-

This is the second time that I have had the privilege of serving the
computing community by assuming a role of major responsibility in a
National Computer Conference. Dr. Harvey Garner, General Chairman of
the First National Computer Conference, asked me in the fall of 1972 to
manage the Science and Technology Program for "his" '73 NCC in New
York. Three years later, during the Nation's Bicentennial Year, I have
returned to serve as Conference Chairman of "my own" '76 NCC.

This conference was carefully planned as a profound educational experi
ence for all in attendance. We used an innovative approach throughout to
make it a Landmark Event long to be remembered. Our programmatic
activities include many unusual events such as hands-on demonstrations in
computer networking, student computer projects from all over the country,
computer graphics art exhibits from all over the world. We obtained some
entirely new materials for our science film theater and we tailored special
programs for the convenience of the handicapped.

The preparations for this conference commenced in the fall of 1974. We
recruited a talented and dedicated team of professional volunteers to help
us plan and manage it. The members of this Conference Steering Com
mittee were our brains-and often also our arms and legs. It was their
unbounded enthusiasm and their unflagging spirit which put this magnifi
cent show on the road. :r-,iore than once many of them toiled around the
clock, or gave up weekends and even holidays. The community owes them
much for their dedication to the cause

The transient nature of even the most successful conferences is not
likely ever to change. But some of them, including these National Computer
Conferences, make a permanent contribution in terms of the archival
records of their Proceedings. Here we capture for posterity the most
current reports on recent achievements and new applications, on advances
at the frontiers of computer science and technology. We are justifiably
proud of this volume which contains the papers that were selected for
delivery at this conference. We acknowledge with deeply felt gratitude the
leadership role of our program chairman, Dr. Stanley Winkler, who struc
tured this exciting program and who assembled these proceedings. We
who worked with him on the colossal task of designing this meaningful and
balanced program will never forget this experience which has enriched our
lives and strengthened many personal bonds as well.

We have striven to give this conference and these proceedings a quality
which is appropriate for the occasion. As our country prepares for her
bicentennial celebration we are also observing the hundredth birthday of
the telephone without which interactive computing and distributed net
works would be inconceivable. We remember with nostalgia the First
(Inaugural, one might say) Joint Computer Conference held twenty-five
years ago in Philadelphia; hopefully our efforts will be judged worthy of
its great tradition and of all past FJCCs, SJCCs and NCCs. Another
milestone comes to mind for 1951: During that memorable year the first
commercially built computer was delivered to the U. S. Bureau of the

v

Census. 1776, 1876, 1951 were evidently years in which men of great
vision pioneered unforgettable events with much impact. If indeed the
"Past is Prologue," we should forever be motivated and inspired by this
rich legacy of our nation and the computing profession.

For developing the stimulating materials which comprise these pro
ceedings we are deeply indebted to our stalwart program chairman, Dr.
Stanley Winkler. We are grateful to the circa two thousand persons who
contributed to this effort by writing or reviewing these papers, or by
participating in the program sessions as organizers, discussants and
speakers. We thank all Conference Steering Committee members for giving
so unstintingly of their time and resources; we also thank their employers
or sponsors for allowing them to draw so heavily on their resources. We
are also grateful for the support received from the AFIPS staff who most
graciously coped with our many idiosyncrasies and scheduling difficulties.
Finally, it is a pleasure to acknowledge the guidance we received from the
NCC Committee and Board. The names of all who took part in this her
culean effort are recorded in this monument to their tenacity and endur
ance. This was truly a team effort and it was well worth it.

As we commemorate the first twenty-five years of electronic data pro
cessing we observe that the introduction of computers into our society has
already caused profound changes in everyone's life style. Digital communi
cations today provide public access to the power of computers as readily
as the earlier telephone facilitated human dialogue. Global communications
systems span the earth as we probe the depths of our solar system and
even of the universe. Electronic miniaturization is revolutionizing entire
industries and radically new concepts of electronic systems architecture are
evolving. Computers have become a new source of power, facilitating the
transition from traditional management systems to those of a society which
is data and information rich. Yet, as these Proceedings establish so well,
we are still at the very threshold of electronic invention and innovation!

As we continue along a path of near-exponential progress-and there
is little reason to doubt that we will do so for quite some time-the per
vasiveness of electronic systems and their impact on societal structures is
bound to exceed our cumulative experience with all earlier technological
developments by several orders of magnitude. Whatever one cares to read
into such prophecies, human values and the attainable quality of life for
all mankind will and must emerge as the ultimate beneficiaries. Perhaps
this is the greatest reward which posterity can bestow on us as we place
this volume into the public domain. Hopefully the concepts and results
espoused herein will help liberate mankind from the self-imposed yokes of
rote and drudgery, ushering in a brighter future that knows how to make
human use of human beings

vi

CONTENTS

Preface

Carl Hammer

INTRODUCTION

A view of the world of computing as seen at the 1976 National Computer Conference

Stanley Winkler

Conference maketh a ready man or, twenty-five years in the better joints

Herbert R. J. Grosch

Computer prehistory and history in Central Europe ... < ••••••••••••••••••••••••••••••••••••••

H. Zemanek

Early computers in Europe

Richard Williams

SOCIETAL CONCERNS

The U.K. privacy white paper 1975

A. S. Douglas

COMPUTERS AND PEOPLE

Human and organizational implications of computer privacy

Jerry M. Rosenberg

A control systems model of privacy

John Salasin

Computer security-A survey

Peter S. Browne

Computer abuse perpetrators and vulnerabilities of computer systems

Donn B. Parker

Effective safeguards for computer system integrity

!'Jorman R. ~rielsen, Brian Ruder and David R. Brandin

A centralized approach to computer network security

Frank R. Heinrich and David J. Kaufman

Computer network cryptography engineering

Harrison R. Burris

The application of cryptography for data base security

Ehud Gudes, Harvey S. Koch and Fred A. Stahl

v

1

7

15

21

33

39

45

53

65

75

85

91

97

Multiuser cryptographic techniques. 109

Whitfield Diffie and Martin E. Hellman

vii

Cryptography using modular software elements .. 113

Herbert S. Bright and Richard L. Enison

Analysis of secret functions with application to computer cryptography

Ingemar Ingemarsson

A secure, national system for electronic funds transfer

D. Kaufman and K. Auerbach

Design considerations for electronic funds transfer switch system development

Joseph P. Mazzetti

Are computers ready for the checkless society?

Frank Backman

THE COMPUTER PROFESSION

125

129

139

147

Personware .. 157

H. W. Bomzer

From data entry supervisor to data entry specialist

Carolyn M. Dunning

A modern beginning programming course

Roy F. Keller

161

165

Instructional computer systems for higher education .. 171

Charles J. Prenner and Alfred Z. Spector

ADP training systems-Organization-wide training for increased productivity 179

Jack L. Stone and Alexander P. Grant

Teaching art through computer graphics

Joseph Scala

185

Artists and computers 191

Patsy Scala

The digital component of the circle graphics habitat

Thomas A. DeFanti

195

Braille grade II translator program 205

Monique Truquet

Interfacing computers for the physically handicapped-A review of international approaches

Gerald A. Raitzer, Gregg C. Vanderheiden and Craig S. Holt

209

The spellex system of speech aids for the blind in computer applications . 217

Ching Y. Suen, Michael P. Beddoes, and James C. Swail

Development of a hand-held talking calculator for the blind 221

R. E. Savoie, J. S. Brugler and J. C. Bliss

ISSUES IN COMPUTING

Survey of public attitudes toward computers in society

David H. Ahl

227

Survey of public access to computing .. 231

Carol H. Kastner and William G. Underhill

Building your own computer

Stephen B. Gray

235

viii

APPLICATIONS SERVING PEOPLE

THREAD (three-dimensional reconstruction and display) with biomedical applications in neuron

ultrastructure and computerized tomography .. 241

John C. Mazziotta and H. K. Huang

Regional kidney transplant matching-The Rentran interactive approach

David J. Mishelevich, Peter Stastny, R. Gail Ellis, and Susan G. Mize

251

Data base for protein sequences. 261

M. O. Dayhoff, W. C. Barker, R. Iv!. Schwartz, B. C, Orcutt, and L, T, Hunt

From text to structured information-Automatic processing of medical reports

Lynette Hirschman, Ralph Grishman and Naomi Sager

267

Design considerations of a database system in a clinical network environment. 277

Shi-Kuo Chang, M. O'Brien, J. Read, R. Borovec, W. H. Cheng and J. S. Ke

Correct problem statements in biomedical data processing. 287

N. I. Moiseeva, M. Yu. Simonov and V. M. Sysuev

An adaptable, modular data-collection system suitable for scientific experimentation-Analog to

digital transformation, short-term digital storage, formatted digital tape-recording, and

computer entry of experimental data .. 295

Harold H. Shlevin

Classification of personal information for privacy protection purposes

Rein Turn

Philadelphia justice information system

Irving J. Chasen

Computers in architecture

Genevieve Greenwald-Katz

COMPUTER SYSTEMS

SYSTEMS

301

309

315

Prospective capabilities in hardware .. 323

Margaret K. Butler

An evaluation of the East German RYAD 1040 system

Robert A. Koenig

337

MagicScore bowling scorer-A microprocessor application for fun and profit . 341

Reg A. Kaenel

QLISP-A language for the interactive development of complex systems ,....... 349

Earl D. Sacerdoti, Richard E. Fikes, Rene Reboh, Daniel Sagalowicz, Richard J. Waldinger

and B. Michael Wilber

User interface design issues for a large interactive system

Richard William Watson

357

Terminal transparent display language (TTDL) ... 365

Carl E. Krebs, C. Bumgardner and T. Northwood

Working set restoration-A method to increase the performance of multilevel storage hierarchies

Peter Schneider

ix

373

Performance and power dissipation analysis for CCD memory systems. 381

S. L. Rege

Intelligent memory .. 393

Murray Edelberg and L. Robert Schissler

Approaches to computer reliability-Then and now 0 0 0000000000 •• 0 0.0000000.0 401

Algirdas A vizienis

Failure-tolerant parallel programming and its supporting system architecture

Ko Ho Kim and Co Vo Ramamoorthy

SYSTEMS MANAGEMENT

Strategic planning for MIS-A conceptual framework

Ephraim Ro McLean and John Vo Soden

413

425

The economics of software quality assurance 0 ••• 0 0 0 0 0 0 0 0 0 0 0 0 0 •• 0 • 0 • 433

David So Alberts

Implementation of quality control in software development

Frank Tsui and Lew Priven

A computer performance prediction model

Robert Wo Otto and Mark Auerbach

A queueing network model for the effect of data compression on system efficiency

Alan Jay Smith

NETWORKING

The Federal Communications Commission and major policy matters affecting computer

443

451

457

communication 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 ••• 0 0 0 • 0 0 0 0 0 • 0 0 • 0 0 0 ••• 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 • 0 0 0 0 0 •••• 0 0 467

Frank J 0 Martin, J r 0

A new communication protocol for accessing data networks-The international packet-mode

interface 0 0 0 • 0 •• 0 0 0 0 0 •••••• 0 ••••• 0 0 • 0 0 0 0 ••• 0 0 0 0 •••• 0 0 • 0 0 • 0 0 •• 0 •• 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 • • • • • • • • • 477

Ao Rybcznski, B. Wessler, Ro Despres and Jo Wedlake

Virtual circuits vSo datagrams technical and political problems

Louis Pouzin
483

Network access techniques-A review 000000.000 ••••••• 00.000000000. 0 •• 0 •••• 000 •• 0 • 0 0 00 ••• 00. 495

Robert Rosenthal

The Rand intelligent terminal agent (RITA) as a network access aid

Robert Ho Anderson and James Jo Gillogly

Network interface systems-An evaluation by simulation

Joe Bo Wyatt and Vincent 1. Polley

An overview of the distributed computer network

David Lo Mills

A network-oriented multiprocessor front-end handling many hosts and hundreds of terminals

Wo F 0 Mann, So Mo Ornstein, and Mo F 0 Kraley

Design issues for mixed media packet switching networks

Do Huynh, Ho Kobayashi and Fo Fo Kuo

501

511

523

533

541

A perspective on network operating systems 00 0 00. 0 • 0 0 0 0 000. 0 0 0 0 00000 0 0 0 0 0 0 0 0 ••• 0 ••••• 00 ••• 0 • • 551

Stephen R. Kimbleton and Richard L. Mandell

x

A high-level framework for network-based resource sharing

James E. White

Factors in interprocess communication protocol efficiency for computer networks

Carl A. Sunshine

Performance of file directory systems for data bases in star and distributed network

Wesley W. Chu

On measurement facilities in packet radio systems

Fouad A. Tobagi, Stanley E. Lieberson and Leonard Kleinrock

Monitoring and access control of the London node of ARPANET

Adrian V. Stokes, David L. Bates and Peter T. Kirstein

BUSINESS AND INDUSTRY SYSTEMS

Office automation project-A research perspective

Howard Lee Morgan

Evaluating the impact of office automation on top management communication

James H. Carlisle

The evolving market for word processing and typesetting systems

J. Christopher Burns

The computer as a tool in the processing of text for periodical publications

William J. Hammond

The integration of microfilm and the computer

Dennis R. Neary, Terrence H. Coyle and Don Mo Avedon

The AlDUS system-Automated capture, update and republication of maintenance manuals

Arnold K. Griffith

The CMU RT -CAD system-An innovative approach to computer aided design

Daniel P. Siewiorek and]Vlario R. Barbacci

Some computer-related advancements for enhancing U.S. shipyard productivity

Richard B. Wise and Douglas Martin

Computer analysis and evaluation of marine structures

Donald Liu and Matias E. Wojnarowski

Evolution of automation in terminal air traffic control

Howard R. McGlauflin

Computer graphics in an automatic aircraft landing system

E. H. Reitan and S. H. Saib

Libraries and the implications of computer technology

Murray Turoff and Marion Spector

The expanding role of on-line interactive searching

Vivian S. Sessions

SCIENCE AND TECHNOLOGY

COMPUTER AND DATA BASE ARCHITECTURE

Developing application oriented computer architectures on general purpose microprogrammable

561

571

577

589

597

605

611

617

625

627

639

643

657

671

683

689

701

709

machines ... 715

Tomlinson Gene Rauscher and Ashok Kumar Agrawala

xi

A pipeline polish string computer. 723

Gerard G. Baille and Jean P. Schoellkopf

Evolution of computer memory structure .. 733

Yaohan Chu

Cache system design in the tightly coupled multiprocessor system

C. K. Tang

749

Coupling small computers for performance enhancement. 755

Fernando C. Colon, Robert M. Glorioso, Walter H. Kohler, and Dominic W. Li

The CERF computer system ... 765

Neil Wilhelm, David Pessel and Charles Merriam

A parallel processor for evaluation studies

Gary J. Nutt

Asynchronous speed-independent arbiter in a form of a hardware control module

H. Sechovskyand S. Jura

769

777

Log-sum multi pIer .. 783

J. P. Agrawal and V. U. Reddy

Distributed information systems

Grayce M. Booth

Error detection in data base systems

Michael Hammer

A framework for federal health data collection

N. Phillip Ross and Meyer Katzper

Data base processor technology

Donald R. Anderson

Integrity aspects of a shared data base

Eduardo B. Fernandez and Rita C. Summers

789

795

803

811

819

Designing optimal data structures ... 829

Larry Clough, William D. Haseman and Yuk Ho So

REGIS-A relational information system with graphics and statistics

J. D. Joyce and N. N. Oliver

Query-by-example-Operations on hierarchical data bases

Moshe M. Zloof

A virtual memory system for a relational associative processor

S. A. Schuster, E. A. Ozkarahan and K. C. Smith

Managing the census data base-Data description, acquisition, and manipulation

Jay-Louise Weldon

Defining management's information needs

Trevor John Bentley

Managerial response to an information system

Roy H. Igersheim

Transaction queueing and cylinder logic access in the Time, Inc. magazine/book/record system

Carl R. Gerami, T. Russell Shields and Richard J. Weiland

xii

839

845

855

863

869

877

883

SOFTWARE

Generalized software for translating data ... 889
Edward W. Birss and James P. Fry

Experiments with a symbolic evaluation system .. 899
William E. Howden

Some experience with DAVE-A Fortran program analyzer
Leon J. Osterweil and Lloyd D. Fosdick

909

A dynamic (FORTRAN) programming system .. 917
Julius A. Archibald, Jr.

GPMX-A portable general purpose macro processor adapted for preprocessing Fortran
Robert C. Gammill

COMPUTER SCIENCE

An experiment comparing Fortran programming times with the software physics hypothesis

R. D. Gordon and M. H. Halstead

927

935

Representations of networks .. 939

Harvey J. Greenberg and James E. Kalan

A practitioner's guide to the state of large scale network and network-related problems

Fred Glover and Darwin Klingman

945

Low-cost residue number systems for computer arithmetic 951

Behrooz Parhami

Very fast computation of polynomial remainder sequence coefficient signs 957

James R. Pinkert

System theoretic implications of numerical methods applied to the solution of ordinary differential

equations ... 963

T. G. Winderknecht and H. D'Angelo

Memory conserving efficient methods for solving large sets of stiff differential equations

Gruia-Catalin Roman, David Garfinkel and Carl B. Marbach

973

A geometric analysis of heuristic search . 979

Gordon J. Vander Brug

Another algorithm for reducing bandwidth and profile of a sparse matrix

W. F. Smyth and Ilona Arany

987

Business opportunity analysis ... 995

James S. Ketchel and John B. Dolan

A "unique number" generator ... 999

Armen N aha petian

An on-line test program for peripheral devices .. 1001

Akira Taneda, Hikaru Oku and Daiji Namba

Structure of the ELF operating system .. 1007

David L. Retz and Bruce W. Schafer

Elements of a planning and modeling system

Thomas H. Naylor

APPLICATIONS OF COMPUTER SCIENCE

1017

Analysis of "natural" language discourse .. 1027
Sally Yeates Sedelow

xiii

Computer animated film systems-A rat's nest of trade-off's

Bruce Cornwell and Katharine Cornwell

1035

SpeakeasY-A window into a computer .. 1039

Stan Cohen

A case study of a young child doing turtle graphics in LOGO 1049

Cynthia J. Solomon and Seymour Papert

Feature selection for binary data-Medical diagnosis with fuzzy sets

James C. Bezdek

Procedural representation in a fuzzy problem-solving system

Richard A. LeFaivre

Subjective Bayesian methods for rule-based inference systems

Richard O. Duda, Peter E. Hart and Nils J. Nilsson

xiv

1057

1069

1075

INTRODUCTION

A view of the worid of computing as seen at the 1976
National Computer Conference

by STANLEY WINKLER
IBM Corporation

Gaithersburg, Maryland

ABSTRACT

The twenty-fifth anniversary of joint computer confer
encing and the bicentennial of the United States of
America are celebrated during this 45th in a series of
joint conferences. The Conference also commemorates
the 25th anniversary of the introduction of commer
cial computing. The state of the computer profession
and industry is mirrored in the conference program
and these conference proceedings are a selected distil
lation of the program. The spirit of the American Revo
lution is reflected in the attention given to Computers
and People in general and Societal Concerns in partic
ular. About one third of the Conference is devoted to
Computers and People and the remaining two thirds is
divided almost equally between Systems and Science
and Technology. The quality, scope and diversity of the
papers in this volume; as they represent the state-of
the-art today, augurs well for the future.

INTRODUCTION

June 7, 1976, the opening day of this Conference, is
the 200th anniversary of the introduction, by Richard
Henry Lee, of the resolution for independence of the
United States of America. It is, thus, proper in a
bicentennial year that we recognize this connection
with the American Revolution, and the dedication to
Jefferson provides that recognition. However, in dedi
cating this volume to the memory of Thomas Jefferson,
I also hoped to invoke that fierce spirit of the man who
swore eternal hostility against tyranny over the mind
of man. As we look at the state of our profession in the
mirror of this conference, it is easy to see a maturity
in the realm of technological capability. The equiva
lent maturity in the understanding of social impacts
and public policy direction is not so easy to detect.
Perhaps it is appropriate to recall the dictum of N or
bert Wiener who wrote, " ... danger to society is not
from the machine but from what man makes of it."!

During our conference, we celebrate not only the
nation's bicentennial, but also the 25 year anniversary

1

of joint conferencing and the 25th anniversary of the
introduction of commercial computing. On December
10-12, 1951, a relatively homogenous group met in
Philadelphia to discuss the characteristics and per
formance of ten working, large-scale electronic digital
computers. In many ways it was a remarkable meet
ing as may be seen from the contents of that first pro
ceedings.2 The Keynote Address for 1951 by W. H.
MacWilliams of the Bell Telephone Laboratories is a
very interesting sketch of the past, present and future
of the computing industry as seen in 1951. The last
two papers in that first program were a discussion of
the applicability of transistors to digital computation,
by J. H. Felker and a forecast of the future by J. W.
Forrester. Elsewhere in this volume, Herb Grosch
provides us with an highly personal view of that first
conference and the succeeding twenty-five years of
joint computer conferencing in which he captures the
gestalt of these conferences.2

The program for this 45th Conference is structured
into three areas. Each in a sense is a conference within
the conference and each area is further divided into
four affinity groupings or tracks. These are shown in
the Conference-at-a-Glance which is reproduced here
as Figure 1. The program is intended to mirror the
current state of our profession and industry and this
volume of conference proceedings is a selected distilla
tion of the program.

PAST IS PROLOGUE

As everyone knows, the digitai computer did not
arrive from outer space in 1951. The story of the
steady progression of machines from the Jacquard
loom, the Babbage Analytic Engine, the Hollerith
Electric Tabulating Machine, the IBM Electronic Mul
tiplier and the ENIAC to present computer systems is
familiar. In this volume, Professor Heinz Zemanek
recounts the less known tale of pre-computer history
in Central Europe.:1 The reader will discover that
Jacquard had predecessors and that the 1890 Austrian
Census used punched cards. This event had been made

PLENARY SESSIONS

The '76 NCC will include four special
plenary sessions open to all conference
attendees. Each will be held in the Grand
Ballroom of the New York Hilton Hotel
and will feature major presentations on
issues of particular relevance to the com
puting field, and to concerned members
of the business community and the gen
eral public.

Keynote Addre ••
Monday, June 7
10:15a.m
J. Paul Lyet
Chairman of the Board
Sperry Rand Corporation

tnternational Plenary Se .. ion
Monday, June 7
115p m
Chairman: Bob 0 Evans
President
IBM System Communications Division

Sesslor Participants
Professor A. S. Douglas, University of

London
Dr. Anatoly A. Dorodnicin, Academician

and Director of Computer Systems,
USSR Academy of Sciences, Moscow

Or. Heinz Zemanek, Director of IBM
Laboratory, Vienna

Shiro Omata, President, Nippon Univac
Kaisha, Ltd, Tokyo

The Computer Profe .. ion
Tuesday, June 8
115p.m.
Chairman: Dr. Ruth M. Davis
Director, Institute for Co,mputer Sciences

and Technology
National Bureau of Standards
Featuring:
AFIPS Presidential Address
Dr. Anthony Ralston

Public Policy and Computer.
Wednesday, June 9
1:1Sp.m.
Chairman: Janice C. Lipsen
President, Counselors for Management,

Inc.
Featured Address
To be Announced

W ...
A.
0
W
A.
Q
Z
C
en
a:
w ...
::I
A.
~
0
CJ

en
~
W ...
en
>-en

>-
CJ
0 ...
0
Z
:z:
CJ
w ...
Q
Z
C
W
CJ
Z
w
U en

-

CONFERENCE
AT A GLANCE

MONDAY AFTERNOON

2:30 pm - 400 pm 4:15 pm - 5:45 pm

A A1-2
SOCIETAL Saul P8dwo
CONCERNS WORLD ENVIRONMENT FOR DATA
Sutton, NYH PROCESSING

B B1 B2
COMPUTER Margaret Fox Walter Anderson
PROFESSION 25 YEARS OF JOINT INFORMATION
Royal S, AM COMPUTER PROCESSING IN

CONFERENCING THE YEAR 2000

C C1 C2
ISSUES IN Ronald A. Frank H. W. Bomzer
COMPUTtNG ROLE AND DATA PROCESSING

OBLIGATIONS OF THE CAREER PATHS Imperial B, AM
TRADE PRESS

IUAPPLICATIONS D1·2
SERVtNG

Genevieve Greenwald-Katz PEOPLE
Grand Ballroom COMPUTERS IN ARCHITECTURE
East, NYH

E • COMPUTER
SYSTEMS John C. Davis E1·2
Grand Ballroom STORAGE SYSTEMS
West, NYH

F • COMPUTER

SYSTEMS John V. Soden F1·2
MANAGEMENT LONG·RANGE PLANNING FOR COMPUTER
Mercury, NYH USAGE IN LARGE ORGANIZATIONS

G Peter E. Jackson G1 Ira Cotton G2
NETWORKING LEGAL'" REGULATORY PROTOCOLS FOR
Imperial A, AM TRENDS IN COMPUTER COMPUTER

COMMUNICATION NETWORKS

H H1 H2
BUSINESS AND

Carol Johnson Greg E. Mellen INDUSTRY
SYSTEMS ENHANCING LIBRARY AIR TRAFFIC
Georgian B, AM SYSTEMS CONTROL

I t1 12
COMPUTER & Noah S. Prywes Llba Svobodovd

DATABASE IMPACT OF AUTO. COMPUTER
OF SYST. DESIGN STRUCTURE ARCHITECTURE ON DATA BASE Georgian A, AM ARCHIT.

J
J1 Alan G. Merten J2 Margaret Bur/er

SOFTWARE SOFTWARE SHARING TRANSFERABILITY OF
Trianon, NYH APPLICA TlON PRO-

GRAMS & DATA BASES

K K1-2

COMPUTER Nathaniel Macon
SCIENCE COMPUTER ARITHMETIC AND NUMERICAL
Gramercy, NYH METHODS

L • APPLICATIONS
OF COMPUTER Saul Amarel & Edward Feigenbaum L1·2
SCIENCE APPLIC. OF ARTIFICIAL
Royal A, AM INTELL. TO SCIENCE & MEDICINE

NYH _. NEW YORK HILTON

AM AMERICANA

TUESDAY MORNING TUESDAY AFTER~IOON

6:30 am - 10:00 am 10:15 am - 11 :45 am 2:30 pm - 4:00 pm 4:'15 pm· 5:45 pm

• DATA SECURITY •
Eldred C. Nelson A3 Rein Turn A4/ Naomi Seligman A51 Dennis K. Branstad A8
DATA SECURITY IN DATA DATA SECURITY IN SECURITY IN COM-
THE DOD CRYPTOGRAPHY INDUSTRY PUTER NETWORKS

B3 • PIONEER DAY • Anita J. Cochran
COMPUTING IN

'''" G. B","", "I ""m," """""' "'I .,,,,,, E ~'" B8
EUROPE ORIGINS OF ENIAC DEVELOPMENT OF POS1r-ENIAC

ENIAC TRANSFER OF
TECHNOLOGY

• PUBLIC ACCESS TO COMPUTERS •
Janet Kiehl C3 Evelyn R. Murphy C4 David H. Ahl CS-6
PUBLIC ATTITUDES PERSONAL PUBLIC ACCESS TO COMPUTER POWER
TOWARD COMPUTERS COMPUTERS

• CRIMINAL JUSTICE SYSTEMS •
Bernice Pantell D3-4 Thomas J. Madden . DS-6
THE ALEMEDA COUNTY LAW ENFORCEMENT CRIMINAL JUSTICE INFORMATION SYSTEMS
SYSTEM OF THE FUTURE AND USE OF CRIMINAL RECOI'lDS

COMPUTER SYSTEM DESIGN •
Nancy Betz E3 Stephen S. Yau E4 Gerald Estrin E5-6
INTERACTIVE COMPUTER SYSTEMS MODULAR COMPUTER DESIGN
SYSTEMS RELIABILITY AND

MAINTAINABILITY

SYSTEM MANAGEMENT AND PLANNING •
Edward O. Joslin F3·4 David S. Alberts F5 Davie/ S. Alberts F6
ECONOMIC REQUIREMENTS AND WORKLOAD ECONOMICS OF FUTURE DIRECTIONS
ANALYSIS: ESSENTIAL ELEMENTS OF SOFTWARE QUALITY IN SOFTWARE
SYSTEMS ANAL YSIS ASSURANCE QUAl.. ASSUR .

Franklin F. Kuo G3 Robert E. Kahn G4 Louis Pouzin GS G6
PACKET RADIO & PROGRESS IN PACKET INTERACTIONS BE- (SEE "SECURITY
SATELLITE NETWORK INTER- TWEEN PRIVATE & IN COMPUTER
NETWORKS COMMUNICATION PUBLIC DATA NET- NETWORKS"

WORKS IN EUROPE ABOVE.)

• WORD PROCESSING & OFFICE AUTOMATIO~I •
Harvey L. Poppe I H3 David Farber H4 Howard L. Morgan H5-6
COMMUNICATIONS, COMPUTERIZED WORD PROCESSING & OFFICE AUTOMATION
COMPUTERS & WORD MESSAGE SYSTEMS
PROCESSING

• COMPUTER ARCHITECTURE •
Vaohan Chu 13-4 Anne M. Gulick IS Tomlinson Rauscher 16
HIGH LEVEL LANGUAGE COMPUTER MULTIPROCESSING DEVEL. APPLIC
ARCHITECTURE ORIEIIHED COMPUTER

ARCHITECTURE

• SOFTWARE DESIGN & ENGINEERING •
Edward Yourdon J3-4 Raymond T. Yeh JS-6
STRUCTURED DESIGN SOFTWARE ENGINEERING - WHAT TO

EXPECT IN THE NEXT DECADE

K3 K4 KS-6

James S. Ketchel Joyce A. Amenta Murray Turof/
TECHNOLOGICAL SOFTWARE IMPLEMENTATION OF COMPUTERIZED
FORECASTING FOR CONFERENCING SYSTEMS

SYSTEMS

ARTIFICIAL INTELLIGENCE •
Iris Kameny L3·4 Marvin Minsky & LS Leo",rrd Friedman L6
INFERENCE SYSTEMS AND SPEECH Seymour Papert THE PRESENT AND
RECOGNITION AND UNDERSTANDING ARTIFICIAL INTELLI- FUTURE OF MOBILE

GENCE & EDUCATION ROBOTS

Figure I-Conference at a Glance

I.\j

z
~
M-O·
::;
e-
O
o
S
'0
s::
M
C'D

" o
o
::;
........
C'D

" C'D
::;
C":l
~C'D

1--1
~
....;J
~

CONFERENCE AT A GLANCE (conllnued)

8 9 10

WEDNESDAY MORNING WEDNESDAY AFTERNOON

6:30 am - 10:00 am I 10:15am-ll:45am 2:30 pm - 4:00 pm I 4:15 pm - 5:45 pm

A • PUBLIC POLICY ISSUES I •
SOCIETAL Frank D. De George A71 Marilyn E. Courtot .. '"""w, , ""W,"" "I .m"m R .oO" ", CONCERNS
Sutton. NYH WELFARE PAYMENTS DATA BANKS IN EFTS: THE POLICY EFTS: IMPLEMENTA-

AND THE COMPUTER THE FEDERAL QUESTIONS TION PROBLEMS
ESTABLISHMENT

~ B • COMPUTERS AND THE PHYSICALLY HANDICAPPED • A-
0 COMPUTER

Robert Gildea B71 Steven L. Jamison B8 H"" G H,"" .0 1 H.;" G. H"'", ." III PROFESSION
A- Royal B. AM COMPUTERIZED COMPUTERS AND COMMUNICATION READING MACHINES
Q BRAILLE SIGN LANGUAGE AIDS FOR THE FOR THE BLIND
Z TRANSLA TION NON· ORAL
C
rn C • INDUSTRY & UNIVERSITY RELATIONSHIPS • II:
III ISSUES IN M",,,,, C. '0"," C'l M","" C. ",;" '" C9-10 t- COMPUTING MarsiJali C. Yovits
::I Imperial B, AM INDUSTRY NEEDS & COMPUTER SCIENCE INDUSTRY AND UNIVERSITY -A-

VIEWS OF COMPUTER GRADUATES & PROBLEMS AND SOLUTIONS :I
0 SCIENCE GRADUATES INDUSTRY
0 0

APPLICATIONS • MEDICINE AND HEALTH CARE I •
SERVING ""m. ''',;w D'l Ro"'" ''''''

08 Richard Shepard 09-10
PEOPLE
Grand Ballroom COMPUTERS AND COMPUTERIZED BIOMEDICAL DATA BASES

East, NYH BIO-CYBERNETICS TOMOGRAPHY

E
COMPUTER • MICROPROCESSORS •
SYSTEMS Rag E. Kaenel E7-8 Barry R. Borgerson E9-10
Grand Ballroom UNDERSTANDING AND USING MICROPROCESSOR SYSTEMS
West, NYH MICROPROCESSORS

F • COMPUTER SYSTEM PERFORMANCE & EVALUATION I •
SYSTEMS F7-8 Gerald Estrin " rn""ow , 'w",

F10 MANAGEMENT Philip J. Kiviat
rn

Mercury, NYH COMPUTER PERFORMANCE MANAGEMENT MEASURES OF PERFORMANCE :I PERFORMANCE INFORMATION III
t- SYSTEMS
rn
~ G ,,"" 0. G .. ,w G' I .,,,,, A. ,,'''ow G8 Stephen R. Kimbleton G9-10

NETWORKING USE OF NETWORKS NETWORK NETWORK OPERATING SYSTEMS
Imperial A, AM IN SCIENCE & ARCHITECTURE

EDUCATION

H • COM P U TE R -ASS I STE 0 MANUFACTURING • BUSINESS AND
INDUSTRY Thomas L. Boardman H7-8 W. Barkley Fritz H9-10
SYSTEMS COMPUTER-AIDED MANUFACTURING AND COMPUTERS IN THE SHIPBUILDING Georgian B. AM DESIGN INDUSTRY

I • DATA BASE ARCHITECTURE • COMPUTEII&
DATA BASI: Etalle Grinoch 17\ Susan Brewer 18 John L. Berg 19-10
ARCHITEC'rURE DATA BASE RELATIONAL DATA BASE DECISIONS

>-
Georgian A, AM STRUCTURE DATA BASES

c.:J J PROGRAMMMING LANGUAGES 0 • • ...
0 SOFTWARI:

Herbert Maisel J7-8 Paul Oliver J9-10
Z Trianon, NYH

PROGRAMMING LANGUAGE DESIGN PROGRAMMING LANGUAGE STANDARDS: %
0 SUCCESSES AND DISAPPOINTMENTS
III
t- K K7-8 "G ." Q

COMPUTEII Z Enrique Ruspini John McLeod R(lger M. Firestone C SCIENCE
III Gramercy. NYH APPROXIMATE REASONING ENERGY MODELS COMPUTING PHYSICS
0 AND APPROXIMATE ALGORITHMS
Z
III
U L • COMPUTER GRAPHICS • rn APPLICATIONS

OF COMPUTER , .. ""'w <e,;" "I Jo .. ,,,,,,, 'OOGii' I gt" s"" " Ii";' """ L10
SCIENCE SOUND - ANOTHER TEACHING THROUGH COMPUTER COMPUTER
Royal A. AM DIMENSION IN COM- COMPUTER GENERATED FILMS GRAPHICS

PUTER GRAPHICS GRAPHICS SOFTWARE
- --- ---- ---- .

11 12 13 14

THURSDAY MOI~NING THURSDAY AFTERNOON

6:30am-l0:00am I 11l:15am-l1:45am 2::10 pm -4:00pm I 4:15 pm - 5:45 pm

• PUBLIC POLICY IS !~UES II •
Neal Gregory A11 FrancIs Gregory A12 John S,
DATA COMMUNICA- PRIVACY: THE POLICY PRIIiAI

II/asin A13-14
:Y: THE PSYCHOLOGICAL &

TION POLICY QUESTIONS SOCIO IcOGICAL IMPLICATIONS

B11 B12 B13 B14
Etra Patsy Scala Gopal K. Kapur

EXECUTIVE MANAGE
MENT MUST BECOME
INVOLVIOD

Roy F. Keller
CONCEPTS IN PRO
GHAMMING AND ADP
INSTRUCTIONAL SYS.

Lou;'se
COMPI
NEWB
ARTIS

)TER ART: ARTISTS & THEIR
REED OF USE OF COMPUTERS
r TECHNICIAN

• SOFTWARE PRODU CTIVITY

Lloyd Baldwin C11 Eugene I. Lowentha/C121 Larrl' A
PRODUCTIVITY PAY- HIGH LEVEL LAN- QUAL
BACK FROM PACKAGED GLiAGES FOR SOFT- MEAS

. Welke
ry AND PERFORMANCE
JREMENTS FOR SOFTWARE

APPLICATION SOFT. WARE DEVELOPMENT

• MEDICINE AND HEAI_T H CARE II

David J. Mishelevich ~ J. Proctor
TOWARD THE INTEGRATED HOSPITAL
INFORMATION SYSTEMS

011-12 I Bernie
PATTE
MEDIC

RN RECOGNITION IN CLINICAL

•
S. Ron Oliver
MINIS VS. MAXIS

E11-12 I Carol
USING
SMAL

INE

RS

Irown
MINIS IN LARGE AND

. BUSINESSES

ICE • COMPUTER SYSTEM PERFORMAN & EVALUATION

" E. Perry

II

Jellrey P. Buzen F111 Jack Moshman F121 Willtan
ISSUES IN COMPUTER PFIOBAB. MODELS COMP' UTER SYSTEMS AUDITABILITY
SYSTEMS FOR PREDICT. SYS. AND C :ONTROL
PERFORMANCE THROUGHPUT

Susan Poh IS Pyke. Jr.
NETWORK MEASUREMENTS

G11-12 I Thom
NETW ORK ACCESS TECHNIQUES

• COMPUTER-CONTROLLED

Norman W. Scharpl
COMPUTERS IN TYPESETTIING

H11-12 I Denn;
INTI=G
CaMP

• DEVELOPING DATA BA

PUBLICATION

Norman F. Hirst

•
C13-14

•
013-14

•
E13-14

•
F13-14

G13-14

•
H13-14

•
114 Fredric C. Gey

SOCIO-ECONOMIC FACTORS IN
DATA BASE MANAGEMENT

111-12 I Patrie
MAI~A
MATle

AN INTRODUCTION

J11-12
Edward Miller 1 Paul S
AUTOMATED SOFTWARE TESTING AND WHY
EVALUATION

• MATHEMATICAL PRO

Patricia J. EberieinK111 Jelln-Paul Jacob
ALGORITHMS FOR SIMULATION VS.

UNCERTAIN FORMS MII,THEMATICAL
PROGRAMMING

K12 DarNi
OPTI'"
GRIIP

• COMPUTER STUDIES IN T

TO MUMPS

ilRAMMING

, Klingman
IIZATION OVER
~S AND NETWORKS

HE HUMANITIES

loshi and C. Rieger Joseph Raben L 11 I Nlloml Sager L 121 A. ~'. J
COMPUTERS IN COMPUTATIONAL NAlru I>lAL LANGUAGE PROCESSING
MUSICAL & HISTOR- LINGUISTICS
ICAL RESEARCH

J13-14

•
K13-14

•
L13-14

Figure l-(Continued}

~

~
o
0...
~ g.
g"

CJ.:J

4 National Computer Conference, 1976

possible by a remarkable, adopted Austrian engineer,
Otto Schaeffier, whose capsule biography is delightful
and fascinating. Another fascinating story, and not
as well known as it should be, is the history of early
computers in Europe. Richard Williams recounts this
history with authority and rare candor. Machines were
built in Germany, Holland, France, Scandinavia and
Great Britain. It is very interesting to learn that the
only German commercial computer development was by
Konrad Zuse based on the control mechanisms for VIs
and V2s. This paper contains many very interesting
notes and remarks. Williams pays tribute to the fore
sight of Eckert and Mauchly in recognizing the business
potential of computers. In England, influenced by Pro
fessor Hartree's remarks that computers would never
be used for business purposes because there would not
be enough scientists to run them, commercial use was
delayed. During the 1976 Conference, we pay tribute
to the development of the ENIAC at the Moore School
of Electrical Engineering at the University of Pennsyl
vania in the Pioneer Day activities, organized this year
by Dr. Harvey L. Garner, the director of the Moore
School. It is a matter of regret, for the Program
Chairman, that papers on the topics to be discussed on
Pioneer Day are not available to be included in this
volume. Personal accounts of the development of our
profession are a valuable part of our heritage.

COMPUTERS AND PEOPLE

This area is introduced by the seminal paper by Pro
fessor A. S. Douglas who quite properly points out the
necessity of separating Privacy, Confidentiality and
Security. This, Professor Douglas does with decisive
clarity in his discussion on privacy and data protection
procedures in the U.K. Privacy, data security and
electronic funds transfer are maj or societal concerns.
Social impacts and technological aspects of these topics
are addressed by a group of papers which are included
in this volume. These papers are only a sample of the
content of the program which expands these topics
with panel discussions on policy questions and imple
mentation problems. The program also includes panels
on world environment for data processing, welfare
payments and the computer, data banks in the federal
establishment and data communication policy. The
papers published here provide the background for
these panel discussions.

The track on the Computer Profession contains
papers on education and training, exciting develop
ments in the use of computers to generate Art, and
some very intriguing developments in the field of com
puters and the physically handicapped. The computer
has great promise for providing educational and oc
cupational opportunity for the physically handicapped.
Clearly there is much good work being done, but equally
clearly much more research, development and engi
neering is needed. A central difficulty is apparently the

need both to understand the requirements of the handi
capped and the levels of acceptability in equipment de
veloped for them. The paper on a hand-held calculator
for the blind reveals what can be accomplished by a
combination of imagination and technical skill.

David Ahl organized a very interesting full day on
the subject of Public Access to Computers. The three
papers on that topic published in this volume give only
a glimpse of what is happening. A few years ago the
concepts of amateur computing, home constructions of
computers and universal access to computer power,
would have been dismissed as ludicrous. Today there
are thousands of home built and operated computers.

In the track on applications serving people, there
are papers in medicine and health care, criminal justice
systems and architecture. The variety and versatility
of the applications which are described is surprising to
one who has been immersed in the development of
computer systems. The computer technologist finds it
hard to recognize "his" computer in the description of
these applications. While we always said that truly
remarkable applications would evolve, did we really
suspect that they would be so remarkable? One task
for the future, in which we must all participate, is to
retain a common language through which we can com
municate with one another. No Tower of Babel must
be allowed to arise.

SYSTEMS

If there is one area in which the difference between
the first and the forty-fifth conference is marked, it is
in the area of systems. The program for the 1976 con
ference has 38 sessions in which the participants will
examine and explore computer system design, micro
processors, minicomputers, computer system manage
ment and planning, computer system performance and
evaluation, computer networking in the United States
and Europe, word processing and office automation,
computer-assisted manufacturing and computer-con
trolled publication. The evolution of the systems ap
proach and the development of systems has occurred
so naturally, that it is hard to recall now how we
thought about such things in 1951. The preoccupation
was in making the calculators and computers work, and
little, if any, thought was spared for system design.
Learning to think in terms of systems and implement
ing system designs is one of the great achievements of
the past quarter of a century. Again, only a sampling
of what is discussed in the program is printed in this
volume, but that sample presents an interesting view
of the current state of systems.

The track on Computer Systems begins with a per
ceptive paper by Margaret Butler. Four generations
of computer technology ranged from the vacuum tube
(1946) through the transistor (1959) and the inte
grated circuit (1965) to large-scale intergration
(1971). During the same time frame, memory was

evolving from the mercury delay line and the electro
static tube through magnetic cores and plated wires to
semi-conductor memories. The paper by Mrs. Butler
is an interesting discussion of the development of large
scale computer systems. Another very interesting
paper is the 1975 evaluation at the Control Data Cor
poration of the East German RY AD 1040 system. On
the basis of the performance tests reported, there is
an apparent lag behind Western technology in proces
sors, memory, and peripheral equipment; but work
manship and reliability were, in general, very good.
At the other end of the computer system spectrum is
the application of a microprocessor to the handling of
bowling scores. Microprocessor systems are being
developed which combine low cost, small size and mod
est power requirements with high operating speed, a
high density of logic and flexibility in configuration.
It is now hard, if not impossible, to distinguish between
a micro and a small mini on the basis of performance.
The management of systems now requires greater
technological skill as well as an understanding of the
basic economic aspects. Quality control of software,
reliability, and the evaluation and prediction of per
formance of computer systems are major management
concerns. None of these subjects is simple, but the
effective manager must learn to understand them.
Improved performance and increased productivity are
necessary for profitability.

A special feature of this year's conference is the
particular attention paid to Networking. In addition
to the ten sessions so ably organized by Ira Cotton and
Franklin Kuo, there are also a demonstration of a
commercial network and a professional development
seminar on Networking. Taken together, these events
present an integrated approach to Networking which
should be useful to everyone with an interest in the
topic. Fifteen papers on Networking and related sub
jects are printed in this volume. Included among these
papers is an extensive review by Frank Martin of the
FCC dockets which affect computer communication.
Decisions already made by the Commission appear to
indicate, if only vaguely, how they will distinguish be
tween communications and data processing. But the
issues are not settled and many hearings and court
cases will transpire before the issues are settled. A pro
posed international packet-switched network protocol
is discussed in a paper by authors from four countries
(Rybcznski, et. al) and Louis Pouzin presents a some
what different point of view. Network access tech
niques, network architecture, network design problems,
and the measurement of network performance are
also treated by papers in this volume. From a labora
tory curiosity in 1972 to a commercially available
capability in 1976 is an amazingly swift development in
which many individuals participated and contributed.

In the business and industry systems, which are
described in this volume, the importance and value of
computer based systems is clearly indicated. Work

Introduction 5

processing and office automation, computer-controlled
publication, computer-aided design, computers in ship
building, air traffic control, and the expanding role of
computers in libraries are described in this volume.
They are not, themselves, the totality of applications
of computers in business and industry but they do
represent an impressive sample of such applications.
In reviewing these developments, one becomes acutely
aware of the maturing of the computer from a scientific
toy to a business necessity.

SCIENCE AND TECHNOLOGY

In the area of science and technology, we are in the
more traditional realm of the joint computer confer
ence. It is also the area in which one would look for
the insights into what the future might bring. If the
papers received for this conference are any indication,
we are now in a transition period in which older ideas
are being consolidated and new ideas have not yet
emerged. In computer architecture, there is still much
interest in pipeline computers, multiprocessors and in
parallel processing. What seems to be lacking is the
corresponding system software development. The con
cept of application oriented computer architecture is
intriguing as is the idea of coupling small computers
fo.r performa~ce enh.a~cement. Undoubtedly the world
vnde economIC condltIons of the past few years have
had a dampening effect. The great interest in data
base is reflected in the number of papers on that sub
ject. Relational data bases remain interesting but
there are still questions concerning their practicability
and efficiency. Both performance and user acceptihil
ity are important considerations. The papers on data
base structures and on management information sys
tems show that there are important problems to be
solved although considerable progress has been made.
Error detection in data bases and integrity aspects of
shared data bases are topics that will continue to merit
discussion.

In the computer science and application of computer
science tracks, an interesting collection of papers ap
pear. There are two fine papers on networks in the
Operations Research sense of that term. Computer
arithmetic and numerical methods are addressed as
well as algorithms for uncertain forms. Cynthia Solo
mon's case study of a child doing turtle graphics in
LOGO was fun to read. The two papers on fuzzy sets
by James O. Bezdek and Richard A. LeFaivre, which
are part of the session on Approximate Reasoning,
seem to represent a future direction for the analysis of
computer systems.

REMARKS

Each conference is, to paraphrase Emerson's re
mark, the lengthening shadow of its participants and

6 National Computer Conference, 1976

attendees. The discussions and debates during the ses
sions are both the real substance and the ephemeral
part of the Conference. In the past, recordings of the
sessions have not seemed to capture the vital spirit of
the meetings. Thus we are left with the Proceedings
as the lasting record of the Conference. For the errors
of omission and commission, the Program Chairman
must accept responsibility. For what is fine and
worthwhile in this volume, credit must be given to the
authors and to the reviewers, to the members of the
Program Committee and the Program Advisory Com
mittee, and to the Steering Committee. Everyone has
contributed in a significant way. There are five in
dividuals without whose dedicated effort, repeatedly
given over long hours, this volume would not have
been finished. It is with most grateful appreciation

that I mention Carl Hammer, who did more than all
of us and provided leadership and inspiration as well,
Norm Moraff, Lee Danner, Anita Cochran and Nelle
Morgan.

REFERENCES

1. Weiner, Norbert, The Human Use of Human Beings, Hough
ton Mifflin Co., New York, 1950.

2. Grosch, Herbert R. J., "Conference Maketh a ready man or,
twenty-five years in the better joints," AFIPS Conference
Proceedings Vol. 45, 1976. Figure 1 of this paper is the
table of contents of the Proceedings of the First Conference.

3. References to papers which appear in this volume will not be
given. The reader is referred to the Contents or the Author
Index for any individual paper.

C p d onIerence maKetn a rea y man
Or, twenty-five years in the hetter joints

L __ TT~~~y-;,Tlirn r. T r'tTllo,....,r1r....YT
uy fl..CJn.D.CJn..l n. • .J. un.v",\..;n
Consulting Editor, COMPUTERWORLD
and Vice President, Association for Computing Machinery
Sunnyvale, California

AnC'rnnAr;rn
.n.00.l n..n.v.l

The author rehearses, with much pleasure, the origins,
physical circumstances, personalities, exhibits and
papers of the Joint and National Computer Confer
ences, from December 1951 to the present meeting.

The Joints are no more, at least in name-but long
live the NCCs! I suffered the agonies of grim Phila
delphia at the very first Joint, not yet named "East
ern." I enjoyed the dubious sunshine of Los Angeles at
the first Western, not yet named "Joint." I was on the
JCC Board twenty years later, when, hoping to retrieve
the big exhibitors of the Sixties, our Industry Ad
visory Panel told us

"The time is out of Joint;"

and we replied, each one of us,

"0 cursed spite,
That ever I was born to set it right"!

And we coined the name, National Computer Con
ference, to mark the creation of something new, yet
old: still joint, but of all the AFIPS societies; no
longer Joint, or Western, or Eastern, or Spring, or
Fall. And, Disneyland coupon book in hand, I scurried
off to the last of the old semiannuals: Fall, 1972.

So I may reasonably claim, I think, to have been as
close to the Joints as any man could be, and to all the
NCCs so far. (See Table I.)

There are 45 conferences, counting this one, and they
stretch over a full quarter century. I attended 35, and
would have gone to more except for a long sojourn in
Western Europe in the early Sixties.

Number

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

Type

JCC
JCC
WCC
EJCC
WCC
EJCC
WJCC
EJCC
WJCC
EJCC
WJCC
EJCC
WJCC
EJCC
WJCC
EJCC
WJCC
EJCC
WJCC
EJCC
SJCC
FJCC
SJCC
FJCC
SJCC
FJCC
FJCC
SJCC
FJCC
SJCC
FJCC
SJCC
FJCC
SJCC
FJCC
SJCC
FJCC
SJCC
FJCC
SJCC
FJCC
NCC
NCC
NCC
NCC

Key: CC=Computer

TABLE I

Opened Days Place

1951 Dec. 10 3 Philadelphia
1952 Dec. 10 3 New York
1953 Feb. 4 5 Los Angeles
1953 Dec. 8 5 Washington
1954 Feb. 11 2 Los Angeles
1954 Dec. 8 3 Philadelphia
1955 :Mar.1 3 Los Angeles
1955 Nov. 7 3 Boston
1956 Feb. 8 3 San Francisco
1956 Dec. 10 3 New York
1957 Feb. 26 3 Los Angeles
1957 Dec. 9 5 Washington
1958 ~ay 6 3 Los Angeles
1958 Dec. 3 3 Philadelphia
1959 Mar. 3 3 San Francisco
1959 Dec. 1 3 Boston
1960 :May 3 3 San Francisco
1960 Dec. 13 3 New York
1961 May9 3 Los Angeles
1961 Dec. 12 3 Washington
1962 :May 1 3 San Francisco
1962 Dec. 4 3 Philadelphia
1963 May 28 3 Detroit
1963 Nov. 12 3 Las Vegas
1964 Apr. 21 3 Washington
1964 Oct. 27 3 San Francisco
1965 Nov. 30 2 Las Vegas
1966 Apr. 26 3 Boston
1966 Nov. 7 4 San Francisco
1967 Apr. 18 3 Atlantic City
1967 ~ov.14 3 Anaheim
1968 Apr. 30 3 Atlantic City
1968 Dec. 9 3 San Francisco
1969 May 14 3 Boston
1969 Nov. 18 3 Las Vegas
1970 May 5 3 Atlantic City
1970 Nov. 17 3 Houston
1971 May 18 3 Atlantic City
1971 Nov. 16 3 Las Vegas
1972 May 16 3 Atlantic City
1972 Dec. 5 3 Anaheim
1973 June 4 5 New York
1974 May 6 5 Chicago
1975 May 19 5 Anaheim
1976 June 7 4 New York

Conference, E=Eastern, F=Fall, N=

Recent comers to our trade can hardly imagine the
novelty of a computer conference in 1951. The first
production computer, a UNIVAC I, had just been
delivered to the Census. The most powerful IBM
machine in production was the ineffable Card-Pro
grammed Calculator. The Association for Computing
Machinery was only four years old, and was years
away from its first formal publication series. The
IEEE did not yet exist, and the two societies which National, S=Spring, W=Western.

7

8 National Computer Conference, 1976

later merged to form it did not themselves care much
for the miniscule computer activities of the time. The
Institute of Radio Engineers had had an Electronic
Computer Committee since early 1948, for which I
had helped produce a bibliography (a few dozen en
tries) in 1949, under the direction of Bob Serrell. The
American Institute of Electrical Engineers had a Com
mittee on Computing Devices-and analog "devices"
were also hot stuff in the Forties and early Fifties.

These two committees in turn appointed, in early
1951, a joint committee to arrange a conference. That
first JCC met in Philadelphia, the world center of
electronic computer activity at the time. The Moore
School, the Eckert-Mauchly division of Remington
Rand, the proximity to Aberdeen Proving Ground
(the largest computer center of that day, with a
huge differential analyzer, punched card machines,
IBM and Bell Labs relay calculators, and of course
ENIAC) and the relative closeness of Washington, all
contributed to this judgment. Washington would have
been suitable also, and was indeed the site of the third
eastern meeting two years later. It was the source of
most funding of one-off machines, the purchaser of
most production computers, the nexus of enthusiasms
for the Defense Calculator, IBM's yet-unannounced
scientific computer (called Type 701 from 1952 on).
Another main factor in the choice of Philadelphia was
that attendees could actually see, feel, smell the equip
ment-and that excitement led to the exhibit idea, and
to the National Computer Conference as we see it
today.

In February 1952, delighted with the unexpectedly
large attendance (almost a thousand) the committee
published with AlEE help the first Joint proceedings.
Figure 1 gives the table of contents; note the early
appearance of British participants (both Cambridge
and Manchester) ; note Jean Felker's paper on using
transistors, then less than three years old; note that
monuments such as Howard Aiken's MARK III, Sam
Alexander's SEAC, and Jay Forrester's WHIRLWIND
I were described. And note the first big drum-domi
nated 1100-series machine, already at work on cryp
tographic problems: " ... the user is not free to taik
about his classified applications."

A few last words about origins: there had been a
jointly -sponsored meeting on electron tubes for com
puters in 1950 (Atlantic City, thus setting a horrid
precedent), and except perhaps for an early lack of
perspective that somewhat smaller gathering could
have been labeled the first Joint Conference. And
ACM, although interested more in hardware in 1951
than in later years, only "cooperated" in organizing
the Philadelphia sessions. The title page of the very
first meeting says "Joint AlEE-IRE"; of the second,
"J oint AIEE-IRE-ACM" !

I remember rather faintly that hotel arrangements
were pretty grim, and that social events were limited
to privately-arranged tours to the UNIVAC, to Bur-

T ABLE OF CONTENTS

Page
Keynote Address, W. H. MacWilliams, Jr..... 5
The UNIVAC System, J. Presper Eckert, Jr., James R.

\Veiner, H. Frazer Welsh, HerberL F. Mitchell. 6
Discussion ... 15

Performance of the Census UNIVAC System, J. L.
McPherson, S. N. Alexander....................... 16

Discussion ... 20
The Burroughs Laboratory Computer, G. G. Hoberg. 22

Discussion ... 29
IBM Card-Programmed Calculator, J. W. Sheldon, Liston

Tatum .. 30
Discussion ... 36

The ORDVAC, R. E. Meagher, J. P. Nash , 37
Introductory Remarks, Dr. Herman Goldstine. 38
Discussion .. 42

Design Features of the ERA 1101 Computer, F. C. Mullaney 43
Discussion ... 49

The Operation and Logic of the MARK III Electronic Cal
culator in View of Operating Experience, Glen E.
Poorte .. 50

Discussion .. 56
The University of Manchester Computing Machine, F. C.

Williams, T. Kilburn.............................. 57
The Design, Construction, and Performance of a Large-

Scale General-Purpose Digital Computer, B. W.
Pollard ... " " 62

Joint Discussion. 69
The Whirlwind I Computer, R. R. Everett. , " . . . 70
Evaluation of the Engineering Aspects of Whirlwind I,

Norman H. Taylor................................ 75
Joint Discussion. 78

The EDSAC Computer, M. V. Wilkes... 79
Discussion ... 83

The National Bureau of Standards Eastern Automatic
Computer (SEAC), S. N. Alexander................ 84

Engineering Experience with the SEAC, Ralph J. Slutz. . .. 90
Joint Discussion 93

Computing Machines in Aircraft Engineering, Charles
R. Strang

A Review of the Bell Laboratories' Digital Computer De-
velopments, E. G. Andrews

The Transistor as a Digital Computer Component, J. H.
Felker .. .

Discussion .. .
Digital Computers-Present and Future Trends, J. W.

Forrester , '" .. , " . "
Discussion

Figure 1

94

101

105
109

109
113

roughs, and to the Moore School. I remember vividly
buttonholing everybody I knew to tell them how great
IBM's new machine was going to be-I was fresh
from several months in far Poughkeepsie! I remem
ber John Bennett saying there would be an Australian
meeting the next year (and there was!). I remember
there were a few senior women professionals present,
but none on the committees or program. And I re
member being impressed that Charlie Strang, a vice
president of Douglas Aircraft, would come all the way
from Santa Monica to gray Market Street to tell us a
user's story-the only such paper. The weather? I
don't remember. Did I bring my wife? No. Did I
enjoy it? Well, yes; great stuff about several imp or-

tant new ventures, and hot news from England. But
I didn't get to say anything myself!

In those days we read MTAC, "Mathematical Tables
and other Aids to Computation," a v(!,ry curious N a
tional Research Council publication. It still exists; in
a much more esoteric format. Along with errata in
printed tables, book reviews of new numerical analy
sis texts, and the like, the editors reviewed articles on
computers and computing, described new machines
and acceptance tests, and told about conferences and
seminars. In 1952 they gave the program of the
Philadelphia meeting, and in 1953 published a six
page review of the Proceedings, by Ed Cannon or the
Bureau of Standards. This was the first appearance
in the nonengineering literature of the many, many
references over the decades, to our formidable con-
ferences.

The second year the show really got on the road, in
a manner of speaking. First of all, there were ex
hibits-and from that, in late 1952, we never receded.
Then it traveled: met in New York. And clouds not
much larger than a man's hand were visible: a 25 per
cent gain in attendees, and a Western Liaison subcom
mittee. Aided by the proximity to Galactic Head
quarters at Madison and 57th, the various committees
tapped IBM for personnel and other support: I had
expected to be involved, although then based in Wash
ington' but was extruded from the Body Economic for
general recalcitrance only a few weeks before. This
probably accounts for my rather specialized impres
sion of JCC2: Jay Forrester offered me a job at
Whirlwind!

Margaret Fox of NBS did most of the program, and
there was a paper on SEAC offline input-output gear
by Ruth Haueter: first major feminine influence. The
whole program, in fact, revolved around peripherals,
from magnetic wire (!) and tape equipment to Kim
ball tags. Paper tape, punched cards, photographic
techniques (including a read-only disk), and the
ubiquitous line printer all were discussed. And of
great interest to me, of course, the first major papers
on the IBM 70l.

Don Davies, today the top man at the National
Physical Laboratory, was a new but welcome visitor.
General Electric made an appearance, threatening to
build a nonimpact printer. And artificial intelligence,
the advisability of standards, and economic modeling
were all mentioned-just like 1976!

The scene now shifts to that hotbed of technical
computing, Los Angeles. The tin airplane was flourish
ing, missiles were at least conceivable, and spies had
been sent to the East and had reported, notably Harry
Huskey and Dick Canning. The joint committee de
cided to try a western conference. And because the
enormous later development of componentry, of pe
ripherals and of systems had not yet flowered, most of
the papers concerned applications (Figure 2). Canning
had just come down from Mugu, McCann and Morton

Conference Maketh A Ready

PROCEEDINGS of the WESTERN COMPUTER
CONFERENCE

Table of Contents

KEYNOTE AND LUNCHEON ADDRESSES

The Impact of Computer Development on the Training and

9

Utilization of Engineers Dr. Simon Ramo 4
Factors Influencing the Effective Use of Computers

· Dr. R. D. Huntoon 5
Scientific Manpower Problems Dr. L. A. DuB ridge 6
New F.qllations for Management. Dr. J. E. Hobson 9

SESSION III

Panel Discussion-An Evaluation of Analog and Digital
Computers 19

SESSION I

Commercial Applications-The Implication of Census Ex-
perience " J. L. McPherson 49

Payroll Accounting with Elecom 120 Computer .. "
.. . R. F. Sha"\v 54

Automatic Data Processing in Larger Manufacturing
Plants M. E. Salveson and R. G. Canning 65

Requirements of the Bureau of Old-Age and Survivors
Insurance for Electronic Data Processing Equipment
· E. E. Stickell 74

The Processing of Information-Containing Documents ...
.................... G. W. Brown and L. N. Ridenour 80

SESSIOK II

Airplane Landing Gear Performance Solutions with an
Electronic Analog Computer
· D. W. Drake and H. W. Foster 86

The Equivalent Circuits of Shells Used in Airframe Con-
struction R. H. ~:IacN eal 98

Analog-Digital Techniques in Autopilot Design
..................... W. T. Hunter and R. L. Johnson 119

Applications of Computers to Aircraft Dynamic Problems
· B. Hall, R. Ruthrauff and D. Dill 128

SESSION IV

The Snapping Dipoles of Ferroelectrics as a Memory Ele-
ment for Digital Computers C. F. Pulvari 140

Magnetic Reproducer and Printer J. C. Sims, Jr. 160
An Improved Cathode Ray Tube Storage System

· .. R. Thorensen 167
Nonlinear Resistors in Logical Switching Circuits

· " F. A. Schwertz and R. T. Steinback 174

SESSIO~ V
Ke"\v Laboratory for Three-Dimensional Guided ::\lissile

Simulation ., Louis Bauer 187
ANew Concept in Analog Computers Lee Cahn 196
A :\lagnetically Coupled Low-Cost High-Speed Shaft Posi-

tion Digitizer A. J. Winter 203
The Solution of Partial Differential Equations by Differ-

ence Methods L sing the Electronic Differential Analyzer
· R. ~I. Howe and V. S. Haneman 208

The K ordsieck Computer Arnold N ordsieck 227

Figure 2

were pushing hardware at Cal Tech and Berkeley, the
Northrop offshoots had incorporated (CRC, later to
be a part of National Cash). There were exhibits: I
particularly relish the memory of a Telecomputing
point plotter that counted the lines on graph paper.

10 National Computer Conference, 1976

I also relish, perhaps comfortably in view of the
dominance of digital ideas today, the comment I made
to Arthur Vance, a prominent RCA analog man, that
effort should preferably be spent on numerical analysis,
and less on stringing "900 integrators on the end of
one piece of wire. (Laughter and applause.)" Plus
(}a change . ..

Now that there had been a Western, and a reason
ably successful one, the senior conference had to be
relabeled. So from that point on, we had Eastern
J oint Computer Conferences-nine of them, through
1961. And, as the third eastern conference was called
"Eastern," so the third one on the Coast would be
called "Joint," in 1955.

That first EJCC was held in Washington, still in
early winter. I gave the after-luncheon speech, which
does not read too well almost 23 years later. But the
papers do, notably the first conference report on mag
netic core memory, first mentions of life insurance
"Electronic Data-Processing" and of numerical
weather prediction. One of the very earliest inter
preters, the Los Alamos SHACO (Short Hand Coding),
was described, and discussion of open shop versus
closed shop appeared. I remember the former: Allan
Benson had worked up a three-address floating point
package for the very first 701. And as for the latter,
why, I had a great closed shop in Cincinnati and
couldn't see why anyone would want the opposite: "it
requires more tactful people," said the Los Alemite.
What I wanted was core instead of electrostatic mem
ory; definitely not tact!

This Washington meeting was keynoted by Howard
Engstrom, and his presence was an early link to the
National Security Agency. The next Western, two
months later, saw some of the bedroom conferences
that led to SHARE later that year (1954), and NSA,
super-secret though it was, became a charter member.

The Washington meeting was perhaps the last in
which everybody discussed reliability. There would be
dour jokes in the trade for many conferences to come
about specific hardware problems: air conditioning,
head crashes, and so on, up into modern times. But
increasingly there would be concern for software
problems; the hardware was working.

There were exhibits, but in the small Statler environ
ment; the day of the giant hall and the gorgeous booth
bird had not dawned.

Well, there was one more '\Vestern Computer Con
ference to go, at the Ambassador in Los Angeles-I
remember I ran my first major recruiting suite. The
exhibit list was getting longer, and space was tight.
There was heavy emphasis on control applications:
machine tools, chemical processes, and feedback of
management information-the earliest MIS discussion
group. I was on it, boasting about Stan Rothman's
machine shop scheduling work in General Electric.

Sybil Rock, Monty Phister, Herb Mitchell were all
flourishing; Harry Huskey had gotten to UCLA, Louis

Ridenour was playing his games at International Tele
meter. It was a small but golden time.

That December, the Easterners turned back to
Philadelphia, and I was program chairman. This was
still the era of single sessions, mind you, and of one
man program committees. I chose small digital com
puters for a subject; tongue-in-cheek, no doubt, Charlie
Adams did a keynote that mentioned a fictional giant
machine: "Officially the giant brain was the SOCIAC,
but . . . around the office it was known as Herbie."
Alan Perlis, of all people, did the survey paper. How
have the leaves fallen: the IBM 650, the Marchant
Miniac, the Alwac! I read the other day there were
"several hundred" minicomputer and microprocessor
types in current production. In 1954 there were nine.
Most were decimal, none were transistorized; one had
an early cassette ("magnetic tape capsule").

Software? Not much, although Stan Gill had come
over and was sharing his experiences. One 650 cus
tomer described an "automatic coding" technique; to
day we would call it an optimizing interpreter. And
in the information retrieval field, one of the earliest
appearances of the team of Perry, Berry and Kent,
then at Battelle, was also a near-first for that subject
at a Joint.

By this time the three sponsoring groups saw they
had a Good Thing going, and formalized the joint
committee's structure, prescribed the steering commit
tees for the two annual conferences, and set up finan
cial procedures (the surplus was divided equally, and
each conference started from scratch, with volunteer
workers and a small loan "from each of the sponsors").
Clearly, a machine had started to grind.

The seventh one, the first to be called Western Joint,
I missed. ACM records say it was at the Statler in
Los Angeles, and AFIPS records show 1500 regis
trants, double the 1953 startup number. There were
trips and exhibits, and a big publicity thrust. Don
Pendery of IBM was on a panel about common lan
guages. On the other hand, there 'Was a lot of analog
material on the program, and in the Spring of 1955 I
was helping persuade General Electric Syracuse, in
the person of the famous W. R. G. Baker, to start its
own computer adventure. So, although I had lots of
travel money, and a continuing need to recruit-one
of the major activities at all early Joints-I passed it
up.

The papers list includes Charlie De Carlo and Willis
Ware, Newell on chess machines, and Bob Johnson's
doctoral thesis. Must have been a good meeting!

By this time SHARE was official, Fortune cared
about computers, and IBM was delivering 704s. The
president of Burroughs, no less, came to Boston for
the 1955 EJCC and talked about computers as man
agement tools: not too sensibly, as I remember it, but
it flattered us all nevertheless. Indeed, the conference
was quite strongly DP oriented; even Tony Oettinger,
then a humble instructor at Harvard, did a piece, as

did Bob Gregory. There were review papers on infor
mation retrieval and on data communications net
works. Networks, yet! And I did my first-ever paper
on standards; fortunately, it had been forgotten before
I was interviewed for the NBS job ten years later! It
was followed by a sound-soundly pessimistic-re
view of magnetic tape standardization problems by
Ampex and ElectroData and telephone and govern
ment people.

Finaily, Jay Forrester in a conference SUIiuilary re
ferred to computer toys and computer kits and elec
tronic surplus gear, a prevision of the myriad hobby
enterprises of LSI 1976.

Space of course doesn't permit a review of every
Joint and National; moreover, after the first ten or
twelve; media developments make information and
impressions more easily available. Many libraries
have the later conference proceedings; many libraries
and individuals have access to the JCC issues of Data
mation, which began covering the Joints in 1957. What
I therefore will do from 1956 on is to skip along, re
calling high points, personal or professional, and relat
ing them to the rapidly developing world outside the
three societies and their enterprises.

The 1956 WJCC was held at the Fairmont in San
Francisco, beginning a love affair with that town
which lasted until the exhibits finally outgrew avail
able space in 1968-0 Shortly thereafter I moved to
Phoenix to help G E enter the field, and was put on the
Western Conference Committee. The 1956 EJCC re
worked the organizational structure behind the con
ferences (they were growing at incredible speed), and
created a National Joint Computer Committee. It was
the existence of these initials, NJCC, for so many
years thereafter that militated against adoption of
NJCC in 1972, as the initials of the new once-a-year
conference and exhibit. The letters "NCC" were
chosen instead.

The 1956 conferences, taken together, were dedi
cated to great projects: BIZMAC, the DATAMATIC
1000, the Univac LARC, and the IBM STRETCH. The
first IBM 705 was delivered, tubes and all, to Jack
Jones in Atlanta: first time I'd heard of him. The 709,
tubes and all, wabbled onto the scene. But in the fore
front, in single copies but vastly significant, were the
first powerful transistor machines: the MIT TX-O,
with 65K ·words of core, and the Transac 8-1000.
Oh, and IBM brought out the first disk machine:
RAMAC. I remember the latter not so much for its
novel appearance but for the fact that the IBM engi
neer who described the machine actually quoted the
rental!

For the 1957 Washington conference I still have
my registration receipt: $4.00. Those were simpler
times: single sessions, straightforward entries like
the Bendix G-15, open scandals like SAGE. For the
first time, a fourth organization, the National Simula
tion Council, shoved its tiny nose into the tent.

Conference Maketh A Ready Man 11

In 1958, social implications: a great panel which I
remember vividly, with a famous Yale professor, a
great union man, and IBM's Cuthbert Hurd (severally
identified in the Proceedings as "Nonmember AlEE" !)
taking an early look at automation. For the first time,
multiple sessions. And for the first time on any con
tinent, the Bull Gamma 60, with Phillippe Dreyfus; I
helped him a little. At the session that winter, in
Philadelphia again, Heinz Gumin, now the top Siemens
man in computers, came over for the first time, and
described the 2002. I was more interested at the time,
not realizing that I would soon be moving to Europe,
in the paper on microprogramming by Maurice Wilkes,
by now almost a fixture at the eastern meetings. Also,
ha ving served my time in Phoenix, I noted but did
not attend the paper on the magnetic-character check
handler, ex-ERMA.

Cal Mooers was in great form in San Francisco:
information retrieval. And I did the ladies program.
Also Charlie Asmus, for many years to follow the key
figure in staging the ever-growing exhibits, began
major participation at the meeting.

The next vivid memory I have is of EJCC 1960. It
was held at the Manhattan Center and the New Yorker
Hotel, just before Christmas. And the night before,
December 12, it snowed. And snowed. And snowed!
Most of the exhibitor trucks, and most of the attendees,
missed the first day entirely. I lived in :.cw York that
year, and arrived promptly, by subway. It was this
near-catastrophe, modulated of course by the several
year lead times now necessitated by the size of the
Joints, that led to the changed pattern of the Sixties.
From 1951 on, the eastern conferences had been held
in December, and in the East the weather was fre
quently awful. The western conferences had drifted
from February, too soon after the EJCCs, to May,
when the weather was great everywhere. So in 1962
the old terms "Eastern" and "Western" were aban
doned, the conferences were switched, and from that
time to the end of the two-a-year Joints, the eastern
meeting was held in Mayor so, and called "Spring,"
and the western one was held in November, always
pleasant in the West, and called "Fall." In order to
effect a transition without two meetings in a row on
one side of the country or the other, the 1963 SJCC
was held in Detroit; I came back from Europe to at
tend, partly because of the novelty, partly because,
living overseas, I had missed three or four Joints in
a row, and the friends I saw at them. That was the
midpoint conference, in many ways: Number 23. NCC
76 is Number 45.

The next dislocation in the series was a simpler one:
there was no Spring Joint in 1965. New York was the
site that year of IFIP 65, the second of the triennial
international meetings. The zeroth, pre-Federation,
had been held at UNESCO in Paris in 1959, and the
first, in Munich in 1962. So, preparing to sponsor the
1965 sessions and show, AFIPS gave up one Joint.

12 National Computer Conference, 1976

:\lESSAGE FRO~l NJCC CHAIR~IAX

This is an historic occasion. The close of this 1961 Western
Joint Computer Conference will signal the change-over in ad
ministration of Joint Computer Conferences from the ~ ational
Joint Computer Committee to the American Federation of In
formation Processing Societies (AFIPS), \vith broader scope
and greater flexibility. As you know, AFIPS is a society of
societies organized to represent through a single body the pro
fessional societies of the American computer and data processing
world. The enthusiastic response to the formation of AFIPS
is highly gratifying and lends encouragement, confidence and a
sense of mission to those whom you have charged with con
ducting its activities.

There are times when the path to the future is best appre
ciated through a re-examination of the past. I would like to
quote from a letter dated December 15, 1959, written by the
late Chairman of NJCC, Professor Harry Goode, who con
tributed so much both to NJCC and to the birth of AFIPS:

"I believe the major objective in the formation of the society
is to provide for information flow in all other instances than
those provided for by the individual societies to their members.

"There are four types of such flow:

(1) Information flow between members of information pro
cessing societies nationally.

(2) Information flow between our national information
processing society and foreign information processing
societies.

(3) Information flow between societies in the information
processing profession and other professions.

(4) Information flow from the information processing so
cieties to the general and educational public.

"If we can recognize a firm set of objectives such as these
(which of course need to be rewritten into a proper set of
words), then what the society is to do is relatively clear-cut.

"The functions follow immediately from the objectives:

(1) Act as the American representative body on matters
related to computing application and design, in a broad
area of computational and information processing sciences.

(2) Advance the field by stimulating research into new aspects

of computer sciences emphasizing the cross-pollination of
ideas among member societies.

(3) Prepare, publish, and disseminate information of a
tutorial nature to laymen, high school teachers and stu
dents, government officers and officials; etc.

(4) Maintain relations among American and foreign tech
nical societies through conferences and symposia, coopera
tion with other societies in organizing sessions at their
conferences; provide reference material to other societies
on the computational sciences.

(5) Maintain membership in the International Federation of
Information Processing Societies (IFIPS).

(6) Aid in certain actions of member societies involving par
ticipation and cooperation by more than one society.

(7) Sponsor the JCC's."

The Constitution of AFIPS reflects these views in their
entirety. With your frequently demonstrated cooperation and
support, the Board of Governors of AFIPS will continue to
conduct our successful Joint Computer Conferences and to repre
sent the United States in our International Federation, IFIPS.
As new societies join the Federation, it will gradually provide
the hoped-for broad representation of the American information
processing profession. We will seek to establish AFIPS as the
information center on data processing including not only bibliog
raphies of written material, but also a calendar of events of
computer activities in the United States and throughout the
world, a roster of individuals active in information processing,
and a current file of developments in progress or recently con
summated. We plan to establish a speakers' bureau to carry
information on the information processing field to educational
institutions and professional societies. We plan to establish a
public infonnation committee which, through the media of per
sonal contacts, press releases and tutorial articles, will make
available to laymen, to government agencies, to affiliated and
member societies and to the ploofession as a whole, the present
status and the probable future of information processing in the
United States.

I trust that with your continued cooperation and support our
efforts will meet with a long string of successes.

Respectfully submitted,

Morris Rubinoff, Chairman
National Joint Computer Committee

Figure 3

Yes, AFIPS; in order to simplify U.S. representa
tion in the International Federation of Information
Processing after its formation in 1960, the National
J oint Computer Committee had transformed itself
into AFIPS (see Figure 3). I had been involved as
an ACM representative to the NJCC in 1959 and 1960,
but was getting ready to move to Europe at the cru
cial moment. I remember 'i\T alt Bauer was the chair
man of the last pre-AFIPS Joint, in May 1961, and
that the death of Harry Goode, who had planned the
changeover, cast a pall over much of the action.

I attended IFIP in New York as a recent immigrant;
Generous Electric had reached out to Lausanne and
hauled me back to lovely Santa Barbara just a month
or so before. I had missed the first Las Vegas meeting
while overseas, and hence doubly relished the 1965
FJCC. It was huge; Asmus was in his glory. The town
was fun, to one who had been away for some years.

The papers were fresh; I especially remember a panel
on the overseas market (Norm Ream, Jim Miles and
others)-I commented from the floor that it would be
safe to let the Russians have big CDC machines, but
only if they agreed to take the software too! And
there was a great look-ahead panel that opened my
eyes to the coming LSI revolution: Rex Rice had just
gone to Fairchild.

This was the first Joint to publish its proceedings
in two volumes; the San Francisco 1968 holds the rec
ord to date, with 3.5 inches of paper and bindings.
The first nineteen Joints had paper-covered proceed
ings; bound library-style, they span ten inches. The
volumes from 20 on, which were bound by AFIPS,
span 53 inches: already, we have the proverbial five
foot shelf of books!

At the end of 1962, the IRE and the ALEE, founding
fathers of the Joint concept, had merged into the

IEEE. The Simulation Council had become a smaller
member, so AFIPS continued to have three partners,
albeit rather disparate: the simulation people, the
computer part of the giant IEEE, and all of ACM.

A horrid thing happened in 1967. Having out
grown all other eastern exhibit facilities, the Joints
began meeting in Atlantic City-the SJCCs, that is.
Five out of the six, through 1972, were held there; the
1969 was shoehorned into Boston, but hotel and ex-
hibit facilities ,\'lere completely s\"Xv'"amped, and ,\-TIC re-
treated to Jersey. I remember the Boston meeting
largely because I flew from the last moments of the
ACM Council, to which I had been elected the year
before, all the way to Tokyo-and made a major
speech a few hours later. I was based at the Bureau
of Standards by then, and fie,," the same year to meet
ings in Novosibirsk; it was 1970 before my jet lag
wore off!

Shortly after I came to NBS, I had had the sad
privilege of helping award the Harry Goode medal to
Sam Alexander-three times. The award was to be
made at FJCC 67, in Anaheim, but we all feared Sam,
one of the great figures of all the Joints from the very
earliest days, might not be able to make it. So we
gave him a blank medal at ACM 67, which fortui
tously met only a few blocks from his house in August.
Then when the engraving was done, the director of the
Bureau and I gave it to him again L1 nd indomitable
Sam flew out to California in November, and got it
again, in formal ceremony. He died less than a month
later.

Another departure, less tragic of course, was Charlie
Asmus leaving AFIPS. More than any other person,
he had built up the exhibits to the huge, multimillion
dollar extravaganzas of the Sixties. He and I had
worked together, inside and outside the Joints, since
1954. He still attends; he still organizes meetings all
over the world-but the Joints missed him.

The last WJCC to meet in San Francisco was in
1968. There were nearly a hundred unaccommodated
potential exhibitors, in addition to the 130 who showed.
The hotels were swamped; people flew in from Los
Angeles and went back the same night. Fees were up,
to $20. There were complaints. Las Vegas was better,
while the aerospace euphoria of the Sixties lasted, but
in the end, with deflation, Puritanism prevailed: too
many bosses thought the attendees, papers or exhibits,
to the contrary, were really bucking the tables. Not
true, in my opinion-but it was a dour time. No more
Vegas!

We tried Houston, and the Astrodome complex held
us nicely. But the hotel/motel accommodations were

scattered; the personal and intellectual and sales con
tacts suffered. It was the era of the shuttle bus: the
Joints were swollen!

They had eaten up the DPMA annual show and the
ACM exhibits. They had completely changed the
various electronic trade shows: pulled out the major
systems, left components and modems and lemon
squeezers. Now they in turn began to suffer. "Too
much," the manufacturers said, "We have overseas
sho\vs, '\rvhere the market is skyrocketing, and where
sales are actually closed at the booth. We can't afford
two huge Joints every year, all the special shows for
bankers and retailers, and Paris and London and
Hannover." So they began to pull out. The papers
poured in as always; the attendance stayed up; the
income side of the AFIPS ledger, though, sho\ved the
strain. And by this time the Federation included
other, less seasoned, societies, societies that were not
so sure computers would keep on growing at the old,
crazy pace.

So the JCC Committee, of which I was again a mem
ber, asked the big boys-the IBMs, the UNIV ACS, the
Burroughses-what to do. "Cut back to one national
show a year, and hold it only in New York or Chicago
or Anaheim," we were told. And, moaning and com
plaining, we did. Growth resumed.

Most of the big exhibitors came back-you will see
them at NCC76. "\Ve have tens of thousands of attend-
ees at the exhibits, thousands at the technical sessions.
Ten or more sessions run in parallel, fiendishly
planned (like prime-time TV) so that the best papers
compete.

The booth birds are not quite so sexy; Women's Lib
has had a say. The recruiting is not quite so vigorous.
The hospitality suites are harder to find. Social issues
flourish; we deplore EFTS in the panels, and sell its
hardware and software like mad in the exhibit hall.
Yes, the Joints are gone: the NCCs have taken over.
I've been to most of them, and plan to go to many
more. Now here in the world, not even in Tokyo or
Paris or Hannover, do you smell the excitement, see
the vigor of our trade as at these gigantic gatherings
of the clan. We invented something good: the shared
computer conference. It bridged the disparate inter
ests of our organizations, and of the manufacturers.
I t let us join together in a common enterprise. And
it ,vas fun!

I would like to express my thanks to the
Stanford University Computer Science
library. They have everything, and are
most kind besides.

Computer prehistory and history in central Europe

by H. ZEMANEK
International B1tsiness .'If:a·chines Corpora...tiQ1?
Vienna, Austria

ABSTRACT

An excursion is made into the history and prehistory of
computers with special attention to Central Europe.
Three historic periods are examined. The period of
programmed automata is rich in the development of
programmed clocks and musical instruments beginning
in the 14th century and continuing through the 18th
century. The period of programmed weaving to
punched cards ranges from the Jacquard loom to the
Hollerith card. It can be noted that the Jacquard card
and the Hollerith card are the same width. Prede
cessors of Jacquard can be found in Austria as early
as 1680 or 1690. The Hollerith card was used in census
of 1890 in Austria, a fact not as well known as its use in
the United States census of 1890. The story of Otto
SchaefHer, the engineer who produced the equipment
for the Austrian census, is a fascinating one. The third
period is the period of programmed calculation. The
computer is the product of two streams of development,
calculating devices and programmed calculation, and
contributions from Central Europe are prominent in
both streams. Among the names which must be in
cluded are those of Petzval, Boltzman, Goedel, Morgen
stern and Von Neumann. Attention is called to two
contributions from the author's laboratories, namely,
the 1954 fully transistorized computer, "Mailufterl,"
and the "Vienna Definition Language."

INTRODUCTION

New ideas are rarely really new ideas. Mostly, they are
just another step on a long road from ancient times
into the future; often an idea becomes known as a new
idea, because at this moment the idea was suddenly
supported by a possibility of technical realization or
industrial exploitation. We tend to underestimate the
skill and wit of our ancestors. Most ideas, further
more, are only a part in a set of ideas which all to
gether makes a scientific field or a technical application
a flourishing subject. One "new" idea, in other words,
depends very much on many other flanking ideas.

Nothing, therefore, can be understood without a
knowledge of the relevant history, and any object,

15

natural or artifact, carries elements and traces of its
history. Understanding the present and judging the
future of any science or technology, institution or com
pany is only possible on the basis of knowing the past.

So the modernistic view that history is uninteresting
except for historians or that history today proceeds so
fast that it is not worth looking into the past, is totally
wrong.

The impression of speed or acceleration, by the way,
is a function of specialization. You might have heard
the bon mot about the difference between the universal
ist and the specialist which says that the universalist
knows nothing about everything while the specialist
knows everything about nothing. That sounds sym
metric-but only until you consider time. Because then
the zero knowledge of the universalist holds forever,
while the total knowledge of the specialist lasts for zero
time. Rephrased less extremely, one could say that the
less specialized the longer the truth lasts and accelera
tion is proportional to specialization.

Computers require a lot of specialization and abstrac
tion, and we all should compensate for that by care
fully cultivating our personal universality and by
intentionally rehumanizing our technology and profes
sion. This principle encourages an excursion into the
history and even prehistory of computers with special
attention to Central Europe.

Thus the paper is organized into three sections of
different length:

(1) the period of programmed automata,
(2) the period of punched card development, and
(3) the history of programmed calculation.

PROGRAMMED EARLY AUTOMATA

Time is a steady flow without steps, but in order to
indicate or measure it, steadily working or analog
devices are less accurate than digital ones. This basic
principle is very true of the computer, but it was first
discovered for clocks and watches and implemented in
the forms of the pendulum and the balance wheel. Once
the step function is introduced, it takes a small step to
use programs and to add programmed devices. The

16 National Computer Conference, 1976

stroke of the full hour and of the quarter soon is
followed by automatically moved figures or by chimes.

Music, of course, is typically digital, quantized in
frequency, time and even in amplitude-from pp to ff.
The musical notes and the score are digital programs,
their realization in automatic musical instruments is
well within the spirit of music, and the classic com
posers like Bach, Haydn, Mozart and Beethoven have
written for automatic music machines.

In Northern Germany and in the Netherlands we
find the oldest chimes, dating back to the 14th century.
In Southern Germany, particularly in Augsburg, auto
mata of very fine artistry have been produced during
the 16th and 17th centuries. Museums in Dresden and
Vienna are exceptionally rich in automata of this
period. We have in Vienna even a programmed auto
matic piano of around 1600.

The 18th century brought great advances in me
chanics, and the art of building automata and music
machines flourished in Switzerland, Southern Germany
and Austria-but also in France and England. Again,
the museums in Dresden and Vienna are exceptionally
rich, but one must also see the Swiss treasures in
Neuchatel, Lelocle, La-Chaux-de-Fonds and Auberson.
It would be my pleasure to show many of those auto
mata and to explain their history and their mecha
nisms, but I want to cover a much broader field and I
must, therefore, restrict myself to a few hints. A
couple of pictures, however, of the most beautiful
automation I know, the so-called Knights-Fight-Clock
in the Vienna Imperial Castle, I cannot suppress. This
mechanical theater was built in the first third of the
18th century. The gate is only four inches high and the
performance consists of the presentation of the role
cast including a small brass band on horse followed
by three fights, where in the first fight the right
knight is pushed from the horse, in the second fight
the left knight loses his helmet and in the third fight
the lancet of the right knight is broken. The last event
is the piercing of the Moor's head, and because this
scene is so nice, it is done twice. Before the gate closes
again, the spectator gets a look at the rearrangement of
the men.

FROM PROGRAMMED WEAVING TO
PUNCHED CARDS

Programmed weaving is generally connected to the
Jacquard loom, because Jacquard not only refined this
technology but also brought it to industrial production
and application during the Napoleonic time. But the
ideas are much older.

Weaving is of more interest for information pro
cessing than we attach to it. That it is binary stems
from the fact that each crossing of two threads means
a natural digital-point. Many folkloristic weaving
devices-in Europe, but also in Africa and Asia-are
implementations of or tools for programmed processes.

And weaving is in particular important in our present
day advance from serial to parallel processing:
weaving, in contrast to mathematics, is a naturally
parallel process and might gi\7e us more ideas than \T,,"e

think.
It is known that Jacquard had many predecessors,

J.B. Falcon and B. Bouchon for instance, and Vaucan
son, who is known by his two music players and his
artificial duck, but whose main contribution was the
preparation of Jacquard's success, the development of a
punched tape-controlled 100m.

Recently one of my Austrian friends discovered, how
ever, a device which seems to be considerably older.
It is called "Broselmaschine," and there are two pro
gramming units in existence, both in the province of
Upper Austria. They were made around 1740, and
there are good indications that the invention was made
between 1680 and 1690. Wooden bars are glued on a
closed loop strip of linen, and the bars operate the
weaving device. The name, by the way, does not seem
to be derived from Brasel (crumbs), but from the
diminutive form of Ambrosius, probably the family
name of the inventor. It is interesting to note that
Jacquard punched cards are of the same width as
today's computer punched cards: certain measures
change little over long times. There is the nice story
that Mr. Watson answered the question of Mr.
Hollerith what format he should choose for the punched
card by opening his wallet and producing a dollar bill
(of that time). But in all probability, Hollerith chose
the size of the bill in order to be able to make use of
certain sorting devices already in use for dollar bills,
or much simpler: he started from a jacquard punched
card in his development and found no reason to change
the width.

Everybody knows that punched card equipment was
introduced by Hermann Hollerith for the US census of
1890. Much fewer people know that the idea very
probably comes from John Shaw Billings, a medical
doctor of the US army assigned to the census office.
He triggered Hollerith to construct census machines
after the Jacquard loom idea; you will find this story in
Herman Goldstine's book "The Computer from Pascal
to von Neumann". Even less people know that there
was one country where the census of 1890 was also
done on Hollerith machines, and that country was
Austria.

Again, it was not an engineer who triggered the
enterprise, it was an economist of reputation, Pro
fessor Inama-Sternegg, head of the Austrian census
office. How he had heard of the American development
we can only guess, but Hermann Hollerith was on his
honeymoon trip in Vienna at the right time, and it is
probable that Inama got the idea by Hollerith's visit in
the Vienna census office.

The engineer who made Inama's intention possible,
who cooperated with Hollerith, introduced and pro
duced equipment and maintained it, and who finally

Computer Prehistory and History In Central Europe 17

made a very big step forward, deserves a section of this
paper. I dug up this man, so to speak, (who had
been practically totally forgotten in Austria) during
three years of a fascinating research. Here, I can give
only a short version of my findings.

OTTO SCHAEFFLER

(Theodor Heinrich) Otto (Hermann) Schaeffier ,:vas
not a native Austrian. Like many famous Viennese
Beethoven, Brahms, Maelzel-he came from abroad.
He was born on October 15, 1838 to a Wurttemberg
pastor family in Unterheimbach, east of Heilbronn,
Germany. His parents sent him to the priest seminary
of Blaubeuren near VIm, but the bOj.T \'Ilanted to become
a mechanic. So he left the seminary at the age of 15
and entered a mechanics shop in Stuttgart. His apti
tude for this profession is confirmed immediately. He
received an award of second class in the first year and
an award of first class in the second year, the latter
for designing an electro-motor. In 1855, he traveled
to Vienna and continued to learn in mechanics shops
for four years. He then went in 1863 to London for
another four years. He settled in Vienna for the remain
der of his life.

He understood how to grasp opportunity. When the
Austrian Post Administration in 1867 bought (for
40,000 Austrian Guilders) the patent rights for the
Hughes printing telegraph, which, in the following
year, was internationally accepted at the Second Inter
national Post Congress in Vienna, SchaefHer cooperated
with the American inventor so successfully that he
could start local production of Hughes telegraphs. He
soon exported them to Serbia and Roumania, to Italy
and Switzerland and even to Japan. SchaefHer estab
lished his own factory and in an advertisement of 1871
offered all kinds of telegraph equipment, railway
signalling systems and physical measurement appa
ratus. The main customer was the Post Administration
which in 1871 closed their own Central Telegraph
Workshop (founded by the German inventor and Tele
graph officer Steinheil in 1850) and turned to private
suppliers. SchaefHer succeeded in getting the main con
tract, installed a contract workshop in the Post Admin
istration building and ran the business of Post Tele
graph and Telephone supply and maintenance until
1896. His successors continued this work until 1913.
He supported the projects of the Post engineers. He
let them publish; he let them earn all the glamor he
produced and he sold. So there is little trace of his
work in the technical literature; I had never heard
his name during my studies and I had a lot of work to
collect the facts about him. The result is fascinating.

At the Vienna World Exhibition of 1873 and at the
Paris World Exhibition of 1878, SchaefHer showed,
apart from his Morse and Hughes telegraph equipment
and his railway signalling systems, a stock exchange

printer of his own invention. His exhibit was one of
the best at both events; he received gold medals and
France made him Chevalier de la Legion d'Honneur and
Officier de l' Academie.

In 1874, SchaefHer invented another printing tele
graph, a quadruple system like the Baudot, but mechan
ically more sophisticated. The Hughes telegraph had
two synchronously rotating fingers, one in the sender
and one in the receiver. By a piano-like keyboard the
operator selected a letter and thereby made contact
with the rotating finger in the corresponding direction.
Since the receiving finger was in the same direction at
this moment, the receiver could print the correct letter.
The Baudot and the SchaefHer printing telegraphs use
a five-bit binary code. But while the Baudot operator
must learn the code and apply it to a five-key board,
SchaefHer had a Hughes-like piano keyboard for 26
letters (or signs and numerics) plus letter blank and
sign blank; below the keyboard there are gliding bars
like in a tele-typewriter of our days which produce the
code. SchaefHer's code is a reflected binary code! What
F. Gray patented in 1953 for PCM, SchaefHer had
applied in his telegraph in 1874, and for a similar
reason: reliability. He had contact fingers sensing on
five cams consecutively all combinations; the right one
triggers printing. If the fingers are to make a minimal
number of movements, the solution is the reflected
binary code. For SchaefHer, this idea was a minor one.
More exactly, the code is described in a letter by the
Austrian Post employee, J. N. Teufelhart, inserted
there as a footnote and telling that SchaefHer found the
code by combining wooden bars with the different com
binations until he had the best solution. Another Post
employee, Alexander Wilhelm Lambert of Linz, claims
to have shown this code to SchaefHer as early as 1872,
but this claim is not clear and cannot be checked.

The Baudot apparatus was successful, the SchaefHer
apparatus was not; the Post Administration was not
interested in proliferation of telegraph systems.
SchaefHer soon turned to the next subject, where he
saw and obtained his next big chance: the telephone.

Graham Bell and Elisha Gray had shown their in
ventions in 1876 at the Philadelphia World Exhibition.
Two years later the first American telephone network
opened in Detroit. Vienna followed in 1881. A private
company got a license for a telephone network within a
10-mile circle around St. Stephen's Cathedral and
started in December 1881 with 154 subscribers.
SchaefHer constructed and built telephone stations. He
supplied the exchanges for 500 subscribers in 1882, for
2,400 in 1884, to which he adds a second of the same
capacity in 1890 and a third for 3,000 in 1892. In a
report by J. Hopkinson, a member of the Royal Society
of London, dated 1893, the Vienna network is classified
as faster, better (except for some noise in the lines),
and less expensive than the networks of London, Paris
and Berlin. In 1895, the Post Administration bought
the Vienna network (which now has 18,500 sub-

18 National Computer Conference, 1976

scribers) for 1,300,000 Austrian Guilders, so that the
Austrian telephone system was completely nationalized.

In 1880, SchaefHer married a Viennese and in 1883
became an Austrian citizen. Between 1874 and 1895.
he filed 18 patents and in 1885 he fought the Bell patent
with partial success. In 1884, he moved into a new
factory where he employed 80 workers (plus 6 in the
contract workshop at the Post Administration). He
was known in Vienna as a progressive entrepreneur.
He allowed no children's work and no Sunday work,
which was not a normal procedure in those days. He
financed health and employment insurance for his
employees and was interested when they got medals
(from the trades' union of lower Austria) for working
25 years in their profession.

In 1889, Hermann Hollerith received his patent for
the punched card system. The director of the Austrian
Census Office (Central Statistical Office), Professor
Inama-Sternegg, an important statistical and economic
scientist of his time, heard about the new machinery
and wanted to apply it to the Austrian census of 1890.
SchaefHer accepted the task of importing and servicing
the Hollerith machines, providing for the power supply,
organizing trial runs and using it for smaller tasks like
cattle census and hospital statistics. In the spring of
1891, Emperor Franz Joseph I visited the Hollerith
operation which processed 28 million punched cards
using 12 machines during 667 days, thus carrying out
almost 100 million counting steps. The emperor was
very satisfied with his visit and after completion of the
work, SchaefHer received a very high distinction
(Ritterkreuz des Franz-Josephsordens).

Programming of punched card operations was ex
tremely clumsy on Hollerith's early machines. An elec
trician had to wire the interconnections between
sensors, counters, the relays and their contacts.
SchaefHer, the experienced telephone exchange special
ist, saw the way for the remedy and applied exchange
technology, such as plugs and plug-in cables. On May
20, 1895, he got the Austrian patent No. 463 182 for
this idea. He wired the different elements around the
bar to make contact on plates of metal. He used 77
counters, 100 relays, 240 punched card hole sensors, and
5 batteries which were accessible and could be pro
grammed by connecting neighboring elements with
plug in cables and groups of sensors with metal sheet
forms. The programming board could be moved out
and the electrician had access in case of trouble. This
patent clearly was the beginning of technical pro
gramming which could be carried out by the census
employees without a requirement for an electrician.

In 1896, SchaefHer came home with a big surprise
for his wife. He had sold his factory to Czeija & Nissl
who then used the name United Telegraph and Tele
phone Factories Czeija, Nissl and Company and is now
merged into ITT Austria. SchaefHer had requested the
term "United" in the name to indicate the succession
and, in fact, the new company continued the contract

with the Post Administration until 1913. SchaefHer's
big 7,800 subscriber exchange was replaced in 1898,
but in remodeled form it was installed again in Prague
and worked there for several years.

Before retiring, SchaefHer moved into an imposing
house behind the factory he had built. Even today the
guest of the present owner, who organizes chamber
music concerts in SchaefHer's ancient rooms, are excited
about the place.

SchaefHer died in 1928, at the age of 90, unknown,
not as rich as he was at the end of the century, but after
a life full of success and satisfaction.

With SchaefHer's retirement, the import and produc
tion of punched-card equipment obviously was at a
provisional end; the machines of the Census office con
tinued to work, the population register was made a con
tinuous service operated on SchaefHer's punchers,
counters and sorters. One or the other machine was
still in existence at the end of the Second World War.

GUSTAV TAUSCHEK

A generation later, development started again. Gustav
Tauschek (1899-1945) began around 1930 to develop
accounting machines of a new type on punched-card
basis. He used only the upper half of the standard card
for a punched one-out-of-ten code, while the lower half
served as written or printed document. There was a
sorter running at 20,000 cards per hour; the calculating
machine had 75 places for counting and printing, all
four basic operations could be performed and also the
total sum of the digits of a number. The throughput
was at 4,000 cards per hour. Programming was done
by plugboards.

Tauschek's machines remained single models, no pro
duction was made. But Tauschek sold 169 of his 200
patents to IBM, among which there was a set for an
interesting reading machine.

JOHANN NEPOMUK MAELZEL

Another Austrian (again not born there) I want to
mention shortly is Johann Nepomuk Maelzel whose life
story has not yet been written. I have collected almost
all material and I hope to write it soon. We cannot
cover here his contributions to the Music Machine of
the 19th century and his success in Artificial In
telligence. Maelzel had invented the Panharmonium,
the first flute organ extended by trumpets and per
cussions, and the first automatic trumpet player.
Maelzel had pushed Beethoven to write a Battle Sym
phony, the first stereophonic composition for two auto
mata, intended for Maelzel's machines, but never per
formed on any. Maelzel himself convinced Beethoven
to rewrite "Wellington's Victory" for two orchestras.
The cooperation ended in a law suit which, however,
was terminated by a friendly agreement. Maelzel

Computer Prehistory and History In Central Europe 19

bought the famous wrong Chess Player from the son of
Herr von Kempelen, sold it to Eugen Beauharnais and
got it back in 1817. Nine years later, he came over here
to the US and performed with the Chess Player and
other automata in simulating artificial intelligence 0

Kempelen's trick, to prove that an obviously man
driven chess player could not possibly contain a human
being, was superbly staged by Maelzel. Once he was
dead, the chess automaton was practically dead. That
it was destroyed by fire in Philadelphia in 1854 is only
the proper dramatic end of a fascinating story.

Maelzel, however, also introduced the master clock
into music, and a standard for musical speed, much
more efficiently than any modern standards commit
tee. He started off by stealing the mechanical invention
from D. N. Winkel, who had invented his chronometer
in 1814. Maelzel not only got patents in London, Paris
and Vienna, he started fabrication in all three places
within two years after stealing the mechanical con
struction idea. Apart from his sales campaign, his main
contribution was first, a good trade name, metronome,
and second, the scale which made the device attractive.
From the natural marks at 60 and 120 beats per min
ute, he derived a 16-step scale which is accepted by
musicians to this day. All of that was accomplished
in two years. Maelzel would give metronomes as pres
ents to the most famous composers in London, Paris
and Vienna, if they signed a declaration that they
would mark future compositions by the Maelzel
measure.

DIEDERICH NIKOLAUS WINKEL

D. N. Winkel (1777-1826) was very angry about
Maelzel's total disregard of him as the real inventor.
(It is true, however, that Maelzel made the mechanical
idea a world success, which Winkel could never have
achieved. This is a lesson for the engineer on the dif
ference between a technical idea and its commercial
exploitation). So Winkel decided to beat Maelzel in his
(then) central field: in the field of musical machines.
And Winkel built a music machine which could com
pose, and this is the first construction I know of to use
a stochastical element. The trick is to distribute eight
forms (the melody and seven variations) of a composi
tion over two pin drums, two bars on one and two bars
on the other in sequence. The stochastic element de
cides a stochastic path through the stored information
which would repeat itself only after 5 million years, as
the Paris Academy calculated.

The stochastic element is a 3" wheel where the first
and third quarter of the circumference is cut out. It
is started and slowed down. When it stops, a finger
finds out the decision (stopped at a cut-out quarter or
at a full quarter) and correspondingly commands a
move or not into the adjacent variation. Weaving,
Music Machines and Census have prepared as many
ideas for the computer as calculating devices. Only

part of the history of ideas is collected and described
in publications of our days and in our language. A
lot remains to be done.

But let us now turn to programmed calculation.

PROGRAMMED CALCULATION

The computer, in fact, is the product of two streams
of development; namely calculating devices and pro~
grammed calculation, and it should never be forgotten
that a computer can be as well man as machine.

The prehistory of calculating devices is well known,
from the calculi, the reckoning-stones to the abacus,
which might be an Asiatic invention but might also
come from Europe. The contributions of Pascal and
Leibniz are known, but the fact that a professor of
theology in Tuebingen, Germany, by the name of
Schickart built a four-species device already in the
year in which Pascal was born, had to be rediscovered
several times. No Schickart machine survived, but we
have some documents from which several reconstruc
tions have been derived. The device contains an adder
with carry plus cylindric multiplication tables which
permit easy adding for multiplication and substraction
for division. Since transmission is done by the opera
tor, the system is less reliable than the later desk
calculators.

Leibniz, by the way, not only described the binary
system, which he got from the Chinese philosophical
code connected to I-Ging, Leibniz also described the
construction of a binary adder operating with metallic
spheres. The case 1 + 1 yields zero, carry one, requires
channelling one of the two spheres to the next binary
place, while the redundant sphere falls through into
the container which from time to time must be
"poured" by hand into the "stock" above the added.
Dr. Mackensen of the German Museum in Munich has
built a model, restricting himself to the technical pos
sibilities of the time of Leibniz.

But let me turn to programmed calculation. Cer
tainly, there were many examples for it--let me tell
you an Austrian story which had very practical con
sequences. Around 1840, there was a typical Viennese
University Professor by the name of Joseph Petzval
who was born in a German town in a Slovak province
of the Kingdom of Hungary. He had worked in several
fields of Applied Mathematics and Physics, and he had
written an interesting mathematical theory of music.

At that time he had an idea how to produce high
quality lenses which would make the newly invented
photography a real art and technology. But his idea
would have required so many hours of calculations that
a full crowd of calculators would be required which a
University Professor never could afford to pay.

It was the Army who helped. One day, Petzval told
his story to a Hapsburg, Archduke Ludwig, who then
was the director of the Austrian artillery. Using bom
bardiers to calculate firing tables was already standard.

20 National Computer Conference, 1976

Some of these were very experienced specialists in
numerical calculations. Petzval borrowed some of them
and the result was first a landscape lens and later a
portrait lens~ manufactured by a German optician
Voigtlaender who obtained a world-wide reputation
based on these programmed calculations.

Petzval, to my knowledge, was the first one to use the
term "thinking machine" and he used it properly. In
his introduction to the paper on the programmed cal
culation of the lens, he says that pure mathematics is
the construction of a powerful thinking machine.

A similarly powerful thinking machine is logical
algebra, reinvented by engineers under the name of
switching algebra. From 1895 to 1936, there is a full
series of Austrian forerunners of Shannon. A contri
bution to the thinking tools around computers comes
from Ludwig Boltzmann, the Austrian physicist who
lectured on thermodynamics. His chapter on entropy
contains a derivation of Shannon's formula H=Pl log
I/Pl. (It is from Boltzmann that Shannon took over
the letter H for entropy.)

Austria's contribution to the theory of computation
is the revolutionary paper of 1931 by Kurt Goedel,
then Assistant Professor at the Vienna University, on
the undecidability of axiomatic systems above a certain
degree of complication. The theory of games and eco
nomic behavior comes from Budapest-born John von
Neumann and Vienna-born Oskar Morgenstern. The
philosophy of information processing can be based, as
I have shown, on Ludwig Wittgenstein's "Tractatus
Logico-Philosophicus," written while he was in the
Austrian Army. All these ideas are as important for
the development of information processing as the ac
tual construction of computer models and computers.

Let me close this paper with two paragraphs on
Austrian contributions to the electronic computer
which were achieved in my own environment.

In 1954, we started at the University of Technology
in Vienna the development of a fully transistorized

computer which was given the name "Mailiifterl" after
a friendly Viennese May breeze-thus indicating its
more modest parameters compared to the ambitious
computers of those days called Whirlwind, Typhoon
and Hurricane. But this Viennese development (which
finally was, e.g., not that slow; with hearing aid tran
sistors we could run it at a clock frequency of 130
Kilocycles per second) had several interesting features.
The instruction word included van der Poel's func
tional bits (nine of them, in fact), could decide between
binary and decimal operation, use flag-bits and attach
one of 15 different conditions to any instruction.

The second development was the formal definition of
syntax and semantics of PL/I, including the design of
the Vienna Definition Language and an Abstract PL/I
machine. The ANSI Standard for PL/I is written in
this Vienna Definition Language, although there have
been critical objections to this abstract method. But
there is no easy way to describe a language of the size
and sophistication of PL/I in English or in a half
formalized language. I think it is impossible, as a
matter of fact, if one is unwilling to accept serious
ambiguities. Obligation to formalization is as old as
formal methods; reluctance is as human as the inven
tion of formalisms. All is a matter of education, bal
ance and respect for the human aspects of science and
technology.

I have presented a sequence of highlights rather than
a systematic paper. My excuse is that the material that
exists on the subject is enough for many hours of lec
turing and would require years of work to render it in
a systematic form. It was not my intention to bore the
reader with details. I wanted to invite him to glimpse
fascinating adventure, to see not only more than the
circuitry and the present status of the computer, but to
understand this magnificent invention, the computer,
as the result and combination of many hundred years
of human efforts of many kinds. To trace these efforts
back in history is as fascinating as it is useful.

Eariy computers In Europe

by RICHARD WILLIAMS
Computer Consuitants (Iniernal:iunal) Li'in,ited
Llandudno, Gwynedd, Wales

ABSTRACT

This paper describes the early history of computers in
Europe, notably in Germany, Holland, France, Italy
and the Scandinavian countries as well as Great
Britain.

Of necessity, in such a short paper, information is
given in a fairly short form, but the paper also includes
a detailed description of the birth and foundation of
the most successful first British commercial computer
company-Leo Computers Limited, and this gives an
insight into the thinking which lay behind British
early computer development.

Three appendices are included which give the names
and addresses of the early computer manufacturers
and sales organizations in Europe, and short notes on
the early computers and calculators.

The development of electronic computers started in
Europe earlier than it did in the United States of
America.

Developments in Great Britain occurred in the late
1940's at the end of the Second World War, but prior
to that Konrad Zuse in Germany, as far back as 1934,
started development work on program-controlled ma
chines, and in 1937, jointly with Dr. Schreyer, started
development work on electronic computers proper. By
1941 they had completed the first fully operating
Model Z3 in electro-mechanical technique; program on
punched tape, binary system and floating point arith
metic.

During the Second World War, Konrad Zuse was
involved in developing special devices and an improved
universal computer, the Z4, with a mechanical memory.
These devices were, in fact, the control mechanisms for
the VIs and V2s which almost played a decisive part
in the war. Fortunately for the British, Zuse had as
many bureaucratic troubles as they had encountered,
and the delays seriously affected his work.

The firm of Zuse KG was formed in 1949 and the
development of other computers, the Z9, ZII, Z22, Z23
and Z25 took place.

As a matter of record, in 1964 Zuse KG became
part of the Siemens empire and by 1969 had become
wholly owned by Siemens.

21

It is strange, however, that apart from Zuse's efforts,
comparatively little effective computer development
took place in Germany on a commercially viable scale,
although by now a great deal of IBM equipment is
built in Germany.

What was happening elsewhere?
In Italy, Olivetti were becoming involved, in the

early 1950's with the development of machines which
were variations on their established commercial equip
ment, but their development was restricted by virtue
of the fact that these machines made use of punched
paper tape of Olivetti's own design, which had, in fact,
square and not round holes and which had no clock
track. This made the equipment as a whole incom
patible with the competitors' equipnlent and this was
markedly to the disadvantage of Olivetti.

In France, a considerable number of small electronic
companies were trying to get on to the computer band
wagon. The dominant company was Compagnie des
Machines Bull, which could not quite make up its mind
whether it wanted to outdate its existing punched card
equipment by introducing computers, or whether it
should disregard the future of computers altogether.

Everywhere there was confusion between just what
a computer was and what a calculator was. The con
fusion was added to in Europe, as in America, by
different tax structures, depending on whether a ma
chine was, in fact, a computer or was classed as a
calculator, and the universal practice grew of giving
computers names made up from initial letters. The
letter 'C' in a name could stand for computer or calcu
lator as it suited the mood and purpose of the time.

In Holland, the Philips organization was involved
in prototype computer development and a completeiy
separate company later acquired by Philips and Elec
trologica, produced a small number of quite viable
machines. Philips' problem was one of administration
and bureaucracy, coupled with the fact that they sup
plied from their numerous other companies component
parts which were used in computers and the sale of
which they had no wish to lose on the basis of a bird
in the hand is worth two in the bush.

In Denmark, three types of computers were built at
a very early stage. These were reasonably successful,

22 National Computer Conference. 1976

and would have been even more successful but for
Denmark's inability to export them in significant
numbers.

The Danish Institute of Computing Machinery built
the DASK computer and the GIER computer. The
GIER was the first built by Disa Elektronik in Herlev
and was known as DISADEC. It was later taken over
by the Danish Institute of Computing Machinery in
Copenhagen and re-christened GIER.

Gallo Electronics also built a computer called
GALLO which, although developed at a very early date,
had, in fact, an early demise.

Computer development also took place in Norway,
as well as Sweden, and this was geared to the activities
of the Great Northern Telegraph Company and its
equipment.

One of the fundamental problems with the com
puters mentioned in the countries above was that the
countries all had their own national language and,
because of the cost and lack of foresight of the com
panies concerned in realizing that to sell their machines
outside their own country, they had to have a universal
language, which as it turned out in the computer field
is English, the difficulties of production and economic
viability were very considerable.

The countries which had no such language problem
were the United States of America and Great Britain,
both of which produced computers, sold and operated
them, making use of the international language of
English, although American English, it must be said,
is a little different from British English, both in its
spelling and connotations.

Computer development in Great Britain started
fairly soon after the Second World War and was par
ticularly based on Manchester University and Cam
bridge University with off-shoots taking place in the
Midlands and London.

It became very fashionable, and still is so, to say
that Charles Babbage who about a hundred years ago
was a mathematics professor at Cambridge was the
father of British computers. This is one of those jolly
myths which it is nice to have but is somewhat differ
ent from the truth. Presper Eckert told the author
that neither he nor John Mauchly had heard of
Babbage's Engines at the time they first started work
on computers, and probably the same comment might
have been made by those people who were working on
computers at Manchester, although their Cambridge
colleagues could, of course, be expected to have had
some influence from Babbage.

Babbage was an individual who was very much mis
understood. He had relatively limited funds and he
was accused by his critics of never finishing anything.
What actually happened was that before he had fin
ished building one of his many machines, he discovered
a better way of doing things and, therefore, there was
no purpose in completing that particular machine just
for the sake of keeping things orderly. He had a

girl-friend who was probably a better mathematician
and engineer than he was, and it could well be that
such reputation as Babbage enjoyed was as a result
of her efforts rather than his own.

The original emphasis in Great Britain, as indeed it
was elsewhere, was on the design and production of
computers for scientific purposes, and those people
involved in this activity delighted in using mathemati
cal terminology instead of simple English, to confuse
the public at large and enhance their own reputations
and prestige. This had a back-lash effect in Great
Britain in that the commercial use of computers was
delayed for several years because businessmen did not
understand them or realize their potential. Indeed, it
was in Llandudno where the author lives, at a confer
ence during the 1950's, that Professor Hartree told the
assembled audience that, in his opinion, computers
would never be used for business purposes because
there would not be enough scientists to operate them.
Fortunately, this state of affairs did not exist to the
same extent in America, largely because of the practi
cal ability and outlook of Eckert and Mauchly and the
fact that Eckert, in particular, had a degree in business
studies as well as in electrical engineering, and better
understood the thinking and outlook of the American
businessman.

Fortunately, in Great Britain also, we had some
people of influence who saw a commercial future for
computers. In particular, the name of Vivian Bowden,
now Lord Bowden, and Principal of the Manchester
College of Technology springs to mind. The author
was privileged to enjoy his confidence when they pub
lished books at the same time, the books being very
different. Bowden's was called "Faster than Thought"
and the author's simply "The Electronic Office" which
was a description of the use and possibilities of com
puters.

Since 1957, when Computer Consultants Limited
was formed as the first independent consultancy COI}1-

pany on computers in Europe, that company and its
associated companies have produced almost a hundred
internationally recognized reference books on com
puters which, because of the nature of the industry and
its continuous change, had, of necessity, a very short
shelf life. It is from these books that the appendices
which form part of this paper have been taken, with
the permission of the companies concerned.

The scientific computers developed at Manchester
included MADAM and at Cambridge, EDSAC, and the
English Electric Company produced an early computer
called DUCE which had its origin largely in Cam
bridge.

Manchester University co-operated with the Ferranti
organization and produced early machines like the
PEGASUS, while EMI relied to a great extent on their
own research and produced EMIDEC.

Elliott Brothers at Borehamwood showed a lot of
initiative in producing scientific computers and at a

very early stage sought to find ways of using these for
commercial purposes with some success, but without
the commercial sales back-up to further the enterprise
sufficiently in a hardening market.

There were two punched card companies in Great
Britain-the Power Samas organization and the Hol
lerith organization. Both of these companies invested
large sums of money in developing machines which
they were not quite sure whether to call computers or
c.alculators, and both ,Xlere surprised to find that '\vhat
they had produced was already out of date. It is said
that it was at that time that Prince Phillip made the
pertinent comment that "if it works, it's obsolete." To
seek to protect their position, the companies merged
to form ICT-International Computers & Tabulators
Limited, and some of their early machines made an
impact, albeit a short one because of their inability to
keep up with research and development.

It may seem strange to an American audience, but
IBM had little or no impact in Britain at that time
and, indeed, their British organization was very small.
This, of course, has now changed, and by now other
significant American companies such as Honeywell
have made their appearance.

The author was privileged to be asked to make
suggestions about Honeywell's entry into Britain, and
later Europe, and amongst his working papers are
reports that were prepared both for this development
and for other significant mergers of European com
puter companies.

Unquestionably, the greatest single impact made on
the British computer field was by an organization that
was not concerned with computers at all. It sold cakes
and bakery commodities, had some two hundred shops
in the London area, and found difficulty in deciding
what to bake each night. It was by virtue of the fact
that they could not find a suitable computer to carry
out their work that they came to design and build their
own, and formed Leo Computers Limited. They suc
cessfully built and used Leo I for many years, and
later produced very advanced versions of the machine
before the company ultimately merged with other
British computer companies and came under the con
trol of ICL, the, by now, sole remaining British
computer company.

The National Cash Register Company had also de
veloped its own computers which were marketed in
Britain, and an arrangement was entered into between
that company and Elliotts to assemble NCR computers
at Elliotts' factories in Britain. This arrangement was
expanded to allow for Elliotts' continuing to sell ma
chines for scientific purposes with the same machines,
notably the Elliott 803, being sold for commercial pur
poses by NCR. This arrangement cannot be said to
have been altogether successful.

However, to return to the Lyons story. In 1947, two
men called Standingford and Thompson, both employed
by the Lyons Organisation, decided to study the pos-

Early Computers in Europe 23

sibilities of electronic calculators in the office and, to
this end, arranged to visit Dr. Goldstine of Princeton
University.

Professor Hartree, who was also working on com
puters at Cambridge heard of this visit and invited
Standingford and Thompson to visit him and Dr.
Wilkes at Cambridge. Following the visits to Cam
bridge and America, Thompson and Standingford pre
pared a report for the Lyons Board and proposed that
the company should take an active part in promoting
the commercial development of electronic calculators.
The Lyons Board decided to donate £2,500 to Cam
bridge and to lend a man for six months to assist
Dr. Wilkes in the activity. Lyons continued their
studies during 1948 and the building of EDSAC, the
first electronic computer to be built at Cambridge, was
nearing its completion.

By November 1948, Lyons had prepared an experi
mental payroll program which was to be tried out on
EDSAC as soon as the computer was ready.

It became quite clear to Lyons by now that it was
necessary for them to hold the initiative in this activ
ity and, to do so, they needed staff of their own who
were capable of acting on behalf of Lyons. To this
end they advertised for the services of an electronic
engineer and late in December, J. N. M. Pinkerton was
appointed.

By January 1949 they had made practical arrange
ments for installing a calculator, as it was then called.
The clerical staff were told that it was intended to
start a computer project, and during the whole of the
activity Lyons maintained an excellent staff relation
ship by keeping their senior, middle management and
junior staff fully in the picture as regards their inten
tions and the progress the activity was making.

For a commercial computer, it had now become ob
vious to Lyons that it was necessary to have more
input/output devices than were customarily intended
to be involved with these scientific machines. In April,
1949, therefore, they recommended and, in May, im
plemented arrangements with Standard Telephones
and Cables Limited at Enfield to develop, on their
behalf, certain input/output devices.

In May, 1949, EDSAC did its first job of work and
a significant step forward had been taken. By July,
1949, Lyons had entered into an arrangement with
Wayne Kerr Laboratories Limited to produce panels
of electronic circuits on their behalf and to their
specification. By August of the same year, Standard
Telephones had carried out a survey to ascertain what
work was necessary to produce the input/output equip
ment, and a Mr. E. J. Kaye joined Lyons as assistant
to Pinkerton. By the end of the month it had become
apparent to Lyons that considerable research was re
quired into the way the clerical work should be
organized for the calculator and into techniques of
programming. As a result, a start was made on a sys
tematic analysis of clerical work and also on the basic

24 National Computer Conference, 1976

techniques of data processing and programming. The
initiative was very much in the hands of T. R. Thomp
son and it was his drive and perspicacity which largely
led to the success of the operation, but it must be
emphasized also that he had had the foresight to ap
point excellent people to help him in the activity.

In September, 1949, Mr Simmons, one of the Di
rectors of Lyons, christened the calculating machine
"Leo" which stood for Lyons Electronic Office. The
Coventry Gauge and Tool Company Limited were asked
to commence the manufacture of large delay battery
tubes which were going to be the computer's memory.

By the end of the year, Standard Telephones had·
completed their research work and had indicated the
equipment which they considered necessary. All this
activity was geared to the production of a pilot Leo
computer and, in January 1950, Standard Telephones
and the other people concerned with assembling the
various units were given their head and the equipment
required was to be completed and delivered to Leo by
January 1951, that is twelve months later.

During March of 1950, demonstrations were given
to the Director, office managers, supervisors and
members of the Clerical Staff Committee on the way
counting and addition was to be carried out on the cal
culator, and talks were given to the Lyons office staff
on the philosophy of electronics in offices.

The first of the delay tubes were received from the
Coventry Gauge and Tool Company and Lyons con
sidered the possibility of having the initial records of
their data prepared in binary form to be read by
photoelectric readers developed by them for that pur
pose. The activity was now assuming considerable
proportions and in April 1950, Thompson was released
by the Lyons Board from his other commitments and
allowed to devote his entire time to the Leo project.
His first step following this was to appoint Mr. D. T.
Caminer to take charge of the programming for Leo.

It is significant that the majority of those who played
a part in the early days of Leo, went on to remain with
the company, and the tradition of almost joining the
Lyons organization for life continued strongly in the
computer division also. This differs from the ap
proaches in some other companies. To stay with one
company for a very long time may have its virtues,
but it also has its drawbacks, because it tends to
narrow the experience of the group as a whole unless
fresh blood is imported from time to time.

By August 1950, discussions had taken place with
Standard Telephones to ascertain whether they should
develop Leo on a joint basis, but Standard Telephones
were not particularly enthusiastic about this and, in
fact, the electronic companies at this time must have
been quite diffident about the possibilities of using
computers in business, in the face of opposition by
such well-known organizations as the National Cash
Register Company Limited and other office machine
organizations.

There were signs at this time that the question of
rights to patents were beginning to raise their heads.
It was agreed by Standard Telephones and Lyons that
neither party should enter into arrangements for sup
plying equipment similar to that which had been de
veloped without the agreement of both parties. By
October 1950, the progress being made was not satis
factory and was behind schedule. To try and correct
this, Pinkerton spent a lot of time at Enfield trying to
accelerate production, but this was to no avail. By the
end of the year, rethinking was taking place in connec
tion with the Standard Telephones/Lyons arrange
ment, and Lyons agreed to pay Standard Telephones
some additional costs in connection with equipment
which had been overlooked in the original specification.
Standard Telephones agreed to allow Lyons to obtain
equipment previously commissioned from them, else
where if it was necessary for them to do so.

While the computer was by no means complete, there
were working portions of it which could be seen by
January 1951 and, in February 1951, Her Royal High
ness, Princess Elizabeth, now Queen Elizabeth II, went
to Cadby Hall to see Leo carrying out a simple test
program.

By April, it was possible to give demonstrations to
the Lyons Directors of Leo doing clerical work, and
although they were very behind schedule with their
activities, Standard Telephones felt that it would be
in the interests of both parties if the patent applica
tions of the two companies were considered together.

In May 1951, a memorandum setting out the scope of
the Lyons patents was sent to Standard Telephones
and a demonstration was given in June by Standard
Telephones at Enfield to some of the Lyons Directors
and Executives of the partly assembled auxiliary equip
ment in operation.

However, despite the difficulties which were arising,
by the end of August, Leo was doing some real clerical
work, albeit very slowly, and the Cadby Hall Bakeries
job was being done on the calculator by September arid
producing accurate results. However, the difficulties
arising from the late delivery of the Standard Tele
phones equipment had not been resolved by October
and, regretfully, Thompson and others discussed the
possibility of developing other input/output systems
using paper tape in order to keep the work going on
schedule.

The Leo computer had engendered so much outside
interest by November that the Ministry of Supply
was seeking to find out whether Lyons could carry
out some ballistic computations on the computer. In
November 1951 also, the Cadby Hall Bakeries job,
which was the scheduling of an overnight bakery pro
gramme for the whole of the production at Cadby Hall,
was carried out on the computer completely success
fully, and the job was carried out regularly from
then on.

At this time, the Leo machine was still being re-

ferred to as a calculator and, in February 1952, a wages
demonstration program was carried out on the machine
using magnetic tape for the first time. The records on
magnetic tape were subsequently printed by teleprinter
and more outside enquiries were being made for time
on the machine, in particular, the Meteorology Depart
ment and the Ministry of Supply.

In May 1952, Professor Hartree made the remark
that computers would never be used for business pur
poses with any degree of success. This undoubtedly
carried a lot of weight with people in authority in
Britain and must surely have delayed the use of com
puters in Britain for a significant period.

Up to about this time the Lyons machine had used
punched paper tape and magnetic tape, but in June
1952 began the collaboration between Lyons and the
Hollerith company. Originally Lyons had intended
that the computer should be used for their own activi
ties and they were pursuing the requirements for their
own work. Their next objective was to carry out the
provisioning of all the London Lyons Tea Shops, as
they were called, some two hundred and fifty in all.
In this comparatively short space of time, they had
also developed their own photo-electric tape reader and
this was in use. An increasing number of enquiries
were being received from outside organizations for the
use of the machine and the range of enquiries were
substantially wide.

By October 1952 Lyons had decided to go ahead
with building their own high speed input/output equip
ment as an alternative to the Standard Telephones
equipment because there were increasing fears that
this would prove to be unreliable. By the end of the
year, early production payroll work was being done and
pay slips, produced on pre-printed forms, were being
used within the Lyons organization. In January 1953
came a successful full-scale trial of a payroll program
and, although there were minor computer faults which
were later amended, the operation was initially a
success.

The writer believes that much of this success by
Lyons with computers arose from their readiness to
face realities, and the fact that they themselves had
for a long time, as a company, been engaged in or
ganization and method work, and were aware of the
necessity for study and planning their operations,
rather than just patching them up and doing them in
the same old way, albeit with new equipment. In May
1953, the first tabulator was delivered from BTM
and a card feed was also delivered the same month.
Both pieces of equipment operated successfully, and
later that month a demonstration payroll was carried
out, printing the result, not on a teleprinter as previ
ously, but on a Hollerith tabulator. By August a draft
plan had been prepared in respect of the London Tea
Shops Provisioning Application and sufficient use had
been made of the computer to appreciate what improve
ments could be made to the existing equipment. For

Early Computers in

example, future mercury delay lines would use shorter
tubes in which the pulses would be one quarter of a
microsecond in width and so reduce the access time to
a quarter of that operated in the early days without
any loss of capacity. About this time Standard Tele
phones decided to abandon the project with Lyons
and arrangements were made for the re-siting of the
equipment.

By the end of 1953 Leo I was operating more than
ninety per cent effectively, and a significant number of
people were approaching Lyons from outside the or
ganization with a view to hiring computer time and
finding out what their future plans were. These in
cluded plans for building Leo II, and in February 1954
the amount of coverage given to the success of Leo I,
increased enquiries for the new machine.

Outlined proposals for Leo II were finalized and new
equipment such as Ferranti Fast Tape Readers were
added to the early machine. Lyons then announced that
they were prepared to build Leo II for sale or hire to
other organizations and that they were forming a
subsidiary company, Leo Computers Limited.

The number of staff on the Leo payroll by August
1954 was slightly under ten thousand, and the work
for the provisioning of the Tea Shops had been put on
the machine, first of all with forty two shops, and later
on with nearly two hundred, and this was a success
from the start.

By the end of 1954 Bull tabulating equipment had
been added to the computer, and the number of en
quiries for the purchase of computers and computer
time on Leo's own machines, had grown to significant
proportions. By now, of course. Leo Comnuters
Limited, have become part of Inter~ational Computers
Limited through various mergers. In the meantime
Standard Telephones & Cables Limited (part of ITT)
had, in 1958, built their own small computer, the
Stantec Zebra. A new transistorized prototype was
built six years later, but the company then withdrew
from computers. That Leo Computers Limited was a
success story was unquestionable. Why was this, when
so many computer companies have run into difficul
ties? Much must have depended on the quality of the
people concerned, but the author believes that it was
mainly because they knew from the start what they
wanted to do, and they went ahead and did it. And
eventually knew when to stop trying to keep up with
the big boys.

CONCLUSION

What of the future of computers in Europe? The
dominant computer manufacturer is undoubtedly IBM,
with Honeywell a close second, and with IeL being
moderately successful. All the remaining small, indi
vidual companies have been swallowed up by these
empires, but as competitors there still remains Bur
roughs, NCR and other American oriented companies.

26 National Computer Conference, i976

The future of any individual computer company is
damned by the cost of development and the lack of
marketing facilities, but there remains the thought
that since the early 1960's, with the advent of computer
memories, using laser and other techniques, all exist
ing computers are dated-and the size of IBM, for
example, makes it virtually impossible for that com
pany ever to switch from these out of date computers
to newer, more imaginative equipment which we know
is technically possible, and certainly economically
viable.

Who knows what the future is?

APPENDIX I-THE NAMES OF MANUFACTURERS AND
SALES ORGANIZATIONS OF COMPUTERS WHICH
WERE BEING SOLD IN EUROPE IN 1965 AND SHOW
ING THE ORIGIN OF SOME OF THE EARLY COM
PANIES

Aktiebolaget Addo, Malmo, Sweden.
Svenska Relafabriken ABN., Tyreso, Sweden.
Alwac Computer Division, EI-Tronics, Inc., California, U.S.A.
A.E.!. Automation Ltd., Manchester, England.
Bunker Ramo Corp., California, U.S.A.
International Systems Control Ltd., Wembley, England.
Burroughs Corp., Michigan, U.S.A.
Burroughs International S.A., Fribourg, Switzerland.
Cambridge University, Cambridge, England.
Centre National d'Etudes des Telecommunications, Seine,

France.
Clary Corp., San Gabriel, California, U.S.A.
Collins Radio Corp., Dallas, Texas, U.S.A.
Compagnie Bull-General Electric, Paris, France.
Compagnie Europeenne d' Automatisme Electronique, Seine,

France.
(CIT) Compagnie Industriel des Telecommunications
(CAE) Compagnie d'Automation Electronique
(CSF) Both Subsidiaries of Compagnie de Telegraphie Sans Fil

which formed a joint company with Compagnie General Elec
tric.

Computer Engineering Ltd., Hitchin, Herts, England.
Control Data Corp., Minnesota, U.S.A.
Control Data AG., Luzern, Switzerland.
Danish Institute of Computing Machinery, Copenhagen, Den-

mark.
A/S Regnecentralen, Copenhagen, Denmark.
Disa Electronik A/S, Herlev, Denmark.
Electronic Association Inc., New Jersey, U.S.A.
Electronic Associates Ltd., Burgess Hill, Sussex, England.
Electronic Machine Controls Ltd., Thornton Heath, Surrey,

England.
English Electric-Leo-Marconi Computers Ltd., Kidsgrove, Staffs.,

England.
Elliott Bros. (London) Ltd., Borehamwood, Herts, England.
Facit Electronics AB., Stockholm, Sweden.
Atvidabergs Industrier AB., Stockholm, Sweden.
Ferranti Limited, Hollinwood, England.
Friden Inc., San Leandro, California, U.S.A.
Friden International S.A., Fribourg, Switzerland.
General Electric Corp., Arizona, U.S.A.
International General Electric S.A., Geneva, Switzerland.
General Precision Inc., California, U.S.A.
General Precision Systems Ltd., Ealing, London, England.
General Precision France, Paris, France.
Eurocomp GmbH, Minden, Germany.
Schoppe & Fraeser GmbH, Minden, Germany.
International Business Machines Corp., New York, U.S.A.

IBM World Trade Corp., Paris, France.
International Computers & Tabulators, London, England.
Marconi Instruments Ltd., London, England.
Mercedes Buromaschinen AG., Thuringen, East Germany.
Minneapolis-Hcney,ve!l Regu.!ator Co. Inc., Massachusetts;

U.S.A.
Honeywell Controls Ltd., London, England.
Monroe International Inc., New Jersey, U.S.A.
Monroe International (UK) Ltd., London, England.
Monroe Calculating Machine Co. France, Paris, France.
Deutsche Monroe/Sweda GmbH, Dusseldorf, Germany.
Monroe Calculating Machine Co. Holland N.V., Amsterdam,

Holland.
National Cash Register Co. Inc., Ohio, U.S.A.
National Cash Register Co. Ltd., London, England.
National Physical Laboratory, Middlesex, England.
N.V. Electrologica, Den Haag, Holland.
Olivetti-General Electric SpA, Milan, Italy.
Olympia Werke AG., Wilhelmshaven, Germany.
Philips Gloeilampen Fabrieken N.V., Eindhoven, Holland.
Pisa University, Toscanna, Italy.
Raytheon Corp., California, U.S.A.
Scientific Data Systems Inc., California, U.S.A.
Compagnie Europeenne de Calculateurs Industriels et Scien

tifiques, Paris, France.
Siemens & Halske Aktiengesellschaft, Munich, Germany.
Societe d'Exploitation et de Recherches Electroniques, Auber

genville, France.
Societe Europeenne pour Ie Traitement de L'Information, Massy

S. et 0., France.
Scciete Nouvelle d'Electronique, Paris, France.
Societe d'Electronique et d' Automatisme, Seine, France.
Solartron Electronic Group Ltd., Farnborough, England.
Sperry Rand Corp., New York, U.S.A.
Univac Division of Sperry Rand International Corp., Lausanne,

Switzerland.
Standard Elektrik Lorenz AG., Stuttgart, Germany.
Standard Telephones & Cables Ltd., Enfield, England.
Svenska Aeroplan AKT., Linkoping, Sweden.
Technische Hochschule, Munich, Germany.
Telefunken GmbH Konstanz, Germany.
Teleregister Corporation, Connecticut, U.S.A.
Zeisswerke GmbH, J ena, Germany.
Zuse KG., Bad Hersfeld, Germany.

APPENDIX II-LIST OF AND SHORT NOTES ON DIGITAL
COMPUTERS USED IN EUROPE IN 1963. (SPECIAL
ONE-OFF MACHINES, OF WHICH THERE WERE
MANY, ARE NOT INCLUDED)

Name Manufacturer Price

Ace National Physical Laboratory £ 400,000
Advance II Advanced Scientific

Instruments Inc. £ 300,000
AEI1010 Associated Electrical

Industries Ltd. £ 250,000
AEI959 Associated Electrical

Industries Ltd.
Alwac II Alwac Computer Div. of EI-

Tronics Inc. £ 35,000
Alwac III Alwac Computer Div. of El-

Tronics Inc. £ 37,000
Alwac IIIE Alwac Computer Div. of El-

Tronics Inc. £ 40,000
Alwac IV Alwac Computer Div. of EI-

Tronics Inc. £ 50,000
AI-wac 800 Alwac Computer Div. of EI-

Tronics Inc.

Early Computers in Europe 27

Name Manufacturer Price Name Manufacturer Price

Amdec Addressograph Multigraph £ 30,000 Control Data 1604 Control Data Corp. £ 380,000
ANjVYK-1 Thompson Ramo Wooldridge Control Data 3600 Control Data Corp. £1 million

Inc. £ 40,000 Control Data 6600 Control Data Corp. £1,600,000
Apollo Ferranti Ltd. £ 35,000 CXPQ Philco International Corp.
Arch Elliott Bros. (London) Ltd. £ 17,000
Argus 100 Ferranti Ltd. £ 20,000 D21 Svenska Aeroplan Aktiebolaget £ 60,000

Argus 200 Ferranti Ltd. £ 20,000 Datamatic 1000 Honeywell Corp. £ 584,000

ASI210 Advanced Scientific Datatron Electro Data Corp. £ 39,800

Instruments Inc. £ 40,000 DB 10 Standard Elektrik Lorenz AG

.L~SI 420 ... d.Ldvanced Scientific DB40 Standard Elektrik Lorenz AG £ 50,000

Instruments Inc. £ 150,000 DB70 Standard Elektrik Lorenz AG

AV 41).J"orth American Aviation Inc. Deuce I English Electric Co. Ltd. £ 45,000

Atlas £2 million Deuce II English Electric Co. Ltd. £ 50,000
Deuce IIA English Electric Co. Ltd. £ 55,000

Basicpac Philco Disadec Disa Elektronik AjS £ 41,500
Bendix D-12 Bendix International Div. of

Bendix Corp. ELEA 2001 Olivetti SpA

Bendix G-15 Bendix International Div. of ELEA 6001 Olivetti SpA £ 29,500

Bendix Corp. £ 30,000 ELEA 9002 Olivetti SpA

Bendix G-20 Bendix International Div. of ELEA 9003 Olivetti SpA £ 236,000

Bendix Corp. £ 210,000 Elecom 120 1) nderwood Machine Co. Inc.

Bendix G-25 Bendix International Div. of Elecom 125 "C nderwood Machine Co. Inc. £ 100,000

Bendix Corp. £ 300,000 Electronic Anoc

BESM 1 Made in Russia 231R

BES:\1 II Made in Russia Elliott 401 Elliott Brothers (London) Ltd. £ 15,000

BISMAC I Radio Corp. of America £ 500,000 Elliott 402 Elliott Brothers (London) Ltd. £ 22,000

BISMAC II Radio Corp. of America £ 500,000 Elliott 402E Elliott Brothers (London) Ltd. £ 25,000

BRLESC Ballistic Research Elliott 402F Elliott Brothers (London) Ltd. £ 25,000

Laboratories Elliott 403 Elliott Brothers (London) Ltd. £ 100,000

Burroughs 204 Burroughs Corp. Elliott 502 Elliott Brothers (London) Ltd. £ 135,000

Burroughs 205 Burroughs Corp. £ 67,500 Elliott 503 Elliott Brothers (London) Ltd. £ 80,000

Burroughs 220 Burroughs Corp. £ 160,000 Elliott 802 Elliott Brothers (London) Ltd. £ 17,000

Burroughs 250 Elliott 803 Elliott Brothers (London) Ltd. £ 35,000

VRC and 251 Elliott 900 Elliott Brothers (London) Ltd.

VRC Burroughs Corp. £ 140,000 Emidec 1100 EMI Electronics Ltd. £ 180,000

Burroughs 260 Emidec 1101 EMI Electronics Ltd. £ 185,000

and 261 £ 70,000 Emidec 2400 EMI Electronics Ltd. £ 200,000+

Burroughs 270 EMI Special EMI Electronics Ltd. £ 100,000

and 271 " 130,000 EPOS State Statistical Department,
Olj

Burroughs 280 Czechoslovakia

and 281 £ 140,000 EPSCO 275 £ 35,000

Burroughs B5000 £ 200,000+ ER 56 Standard Elektrik Lorenz AG £ 50,000

Burroughs D825 ES 92 Standard Elektrik Lorenz AG

Burroughs E101 £ 16,400 Facit EDP Facit Electronics AB £ 120,000
Burroughs E102 £ 10,000 Friden 6010 Friden Inc. £ 7,850
Burroughs E103 £ 10,000 FX-1
Burroughs F2000

CAB 500 SEA of France £ 23,675
Gallo

CAB 600 SEA of France £ 30,000
Gamma 3 & }IDE La Compagnie des)Iachines

CAB 3900 SEA of France
Bull £ 85,000

CE 55 Computer Engineering Ltd. £ 2,000
Gamma 10 De La Rue Bull Machines Ltd. £ 30,000

CE 102 Computer Engineering Ltd. £ 10,000
Gamma 30 De La Rue Bull Machines Ltd. £ 100,000

Cellatron SER 2 :\fercedes Buromaschinen £ 9,000
Gamma 60 Compagnie des Machines Bull £ 500,000+

CIFA-3 Institute of Kuclear Physics,
Gamma 150 Compagnie des Machines Bull £ 50,000

Roumania
Gamma 300 Compagnie des Machines Bull £ 22,000

CIFA 101 Institute of Nuclear Physics,
GE 210 General Electric Co. Inc. £ 270,000

Roumania
GE 225 General Electric Co. Inc. £ 84,000
General :\fills

CITAC 210B Compagnie Industrielle des EC5 General Mills
Telephones General ~lills

Clary DE-60 Clary Corporation £ 8,000 EC6 General :\lills
Clary DE-60M Clary Corporation £ 7,000 George Argonne National
Computer Control

DDP 19 Computer Control £ 40,000
Laboratories

. Computer Control Hipac 101 Hitachi Ltd. £ 25,000
DDP25 Computer Control £ 40,000 Honeywell 290 Honeywell Controls Ltd. £ 60,000

Control Data 160 Control Data Corp. £ 30,000 Honeywell 400 Honey\vell Controls Ltd. £ 120,000
Control Data 160A Control Data Corp. £ 50,000+ Honeywell 800 Honeywell Controls Ltd. £ 395,000
Control Data 924 Control Data Corp. £ 110,000 Honeywell 1800 Honeywell Controls Ltd. £ 500,000+

28 National Computer Conference, 1976

Name Manufacturer Price Name Manufacturer Price

IBM 305 IBM Corporation £ 65,000 M1, 2, 3 Made in Russia
IBM 305 II IBM Corporation £ 40,000 M20 Made in Russia
IBM 630X IBM Corporation Madam Mk I Manchester University £ 40,000
IBM 650 IBM Corporation £ 70,000+ Madam Mk II Ferranti Ltd. £ 45,000
IBM 701 IBM Corporation Maddam Burroughs Corp.
IBM 702 IBM Corporation Magloc 1 Sperry Gyroscope Co. Ltd.
IBM 704 IBM Corporation £ 600,000 Maniac II
IBM 705 I IBM Corporation £ 533,400 Mercury Ferranti Ltd. £ 120,000
IBM 705 II IBM Corporation £ 533,500 Merlin Brookhaven Inc.
IBM 705 III IBM Corporation £ 540,000 MESM Ukrainian Academy of
IBM 709 IBM Corporation £ 866,700 Sciences
IBM 832 IBM Corporation Metrovick 950 Metropolitan-Vickers
IBM 1401 IBM Corporation £ 120,000 Electrical Co. Ltd. £ 20,000
IBM 1410 IBM Corporation £ 150,000+ Micropac R.C.A.
IBM 1440 IBM Corporation £ 30,000 Miniac Marchant Calculations Inc. £ 28,400
IBM 1620 IB:M Corporation £ 35,000 Minsk 1 & 2 :Made in Russia
IBM 1620 Mark II IBM Corporation Mobidic Sylvania Electric Systems
IBM 1710 IBM Corporation Monrobot Mk VI Monroe Calculating Machine
IBM 7010 IBM Corporation Co. £ 33,700
IBM 7030 IBM Corporation £1,500,000 Monrobot IX Monroe Calculating Machine
IBM 7034 IBM Corporation Co. £ 5,000
IBM 7040 IBM Corporation £ 305,500 Monrobot X Monroe Calculating Machine
IBM 7044 IBM Corporation £ 350,000 Co. £ 14,200
IBM 7070 IBM Corporation £ 450,000 Monrobot XI Monroe Calculating Machine
IBM 7072 IBM Corporation £ 400,000 Co. £ 12,500
IBM 7074 IBM Corporation £ 450,000 Monrobot MU :Monroe Calculating Machine
IBM 7080 IBM Corporation £ 840,000+ Co. £ 250,000
IBM 7090 IBM Corporation £1 million Narec U.S. Naval Research IBM 7094 IBM Corporation £1 million Laboratories IBM 7701 IBM Corporation N ational102 National Cash Register Co. IBM 7750 IB:M Corporation National 107 National Cash Register Co.
IBM 7950 IBM Corporation NCR 303 National Cash Register Co. £ 50,000 IBM 8000 IBM Corporation NCR 304 National Cash Register Co. £ 285,000 ICT 1200 International Computers & NCR 310 National Cash Register Co. £ 32,000

Tabulators Limited £ 25,000 NCR 315 National Cash Register Co. £ 120,000 ICT 1201 International Computers & NCR 390 National Cash Register Co. £ 25,000
Tabulators Limited £ 33,000 National Elliott

ICT 1202 International Computers & 405 Elliott Bros. Ltd. £ 120,000
Tabulators Limited £ 45,000 National Elliott

ICT 1300 International Computers & 405M Elliott Bros. Ltd. £ 130,000
Tabulators Limited £ 45,000

ICT 1301 International Computers & OKI OKI Electric Industry Co. Ltd.

Tabulators Limited £ 65,000+ Omega 203 Olympia Werke AG £ 44,500
ICT 1400 International Computers & Oracle Oak Ridge and Argonne

Tabulators Limited Ordvac University of Illinois

ICT 1500 International Computers & Orion Ferranti Ltd. £ 300,000

Tabulators Limited £ 75,000 Packard Bell 250 Packard Bell Electronics £ 20,000
ITT 7300 ADX International Telegraph £ 266,700 Packard Bell 350 Packard Bell Electronics £ 40,000

KA21 Standard Elektrik Lorenz
Packard Bell 440 Packard Bell Electronics £ 30,000 £ 40,000 Panellit lSI 609 Panellit Ltd. KDF6 English Electric Co. £ 60,000 PDP1 Digital Equipment Corp. £ 60,000 KDF9 English Electric Co. £ 120,000 PDP3 Digital Equipment Corp. £ 58,700

KDN2 English Electric Co. £ 20,000 PDP4 Digital Equipment Corp. £ 17,400
KDP10 English Electric Co. £ 400,000 Pegasus 1 Ferranti Ltd. £ 50,000
Kiev Academy of Science of the Pegasus 2 Ferranti Ltd. £ 120,000

Ukrainian Soviet Republic Perm Technische Hochschule
KL 901 Societe Nouvelle Perseus Ferranti Ltd. £ 150,000

d'Electronique Philco 1000 Philco Corp. £ 83,000
Philco 2000/210 Philco Corp. £ 533,000

Leo I Leo Computers Ltd. £ 95,000 Philco 2000/211 Philco Corp. £ 666,000
Leo II Leo Computers Ltd. £ 95,000 Philco 2000/212 Phil co Corp. £ 840,000
Leo III Leo Computers Ltd. £ 200,000 Philco 2400/410 Philco Corp. £ 120,000
L-3060 General Precision, Librascope PICO Honeywell

Div. Pluto Ferranti
Librascope A TC General Precision, Librascope Prodac 510 Westinghouse & Univac

Div. Division of Sperry Rand
Librascope 500 General Precision, Librascope Prodac 580 \Y estinghotise & Univac

Diy. Division of Sperry Rand

Early Computers in Europe 29

Name Manufacturer Price Name Manufacturer Price

Poseidon Ferranti Univac Larc II Remington Rand "Gnivac £2 million

Rand J ohniac Remington Rand "Gnivac
"GSS 80/90 Remington Rand Univac £ 66,700
"GSS 11 Remington Rand Univac £ 130,000+

Raycom Datamatic Corporation £ 85,000 USSC-STEP Remington Rand Univac £ 113,400
RCA Bismac Radio Corporation of America £ 500,000 Ural 1 Made in Russia
RCA 301 Radio Corporation of America £ 100,000 Ural 2 Made in Russia
RCA 501 Radio Corporation of America £ 300,000 Ural 4 Made in Russia
RCA 601 Radio Corporation of America £ 650,000
RCA 604 Radio Corporation of America Verdan North American Aviation Inc.

Readix Idaho-3tIaryland 'l·1 cgcmatic 1000 .Li~ktiebolaget Addo
Recomp II Korth American Aviation Inc. £ 3i,700

Xl K. V. Electrologica £ 110,000
Recomp II North American Aviation Inc. £ 21,700
Royal Precision ZRA 1 Zeisswerke GmbH £ 40,000

LGP 30 Royal Y[cBee Corp. £ 18,000 Zuse 11 Zuse KG £ 10,000
Royal Precision Zuse 22 Zuse KG

RPC 4000 Royal McBee Corp. £ 29,200 Zuse 23 Zuse KG £ 33,000
Royal Precision Zuse 31 Zuse KG £ 40,000

RFe 9000 Royal :J,:IcBee Corp. £ Af),{'\{\f\
"±v,vvv ZUse 64 Zuse KG £ 20,000

Zuse 80 Zuse KG £ 21,000
SA 100 Wayne Kerr Corp. £ 1,750
SDS 910 Scientific Data Systems £ 14,000
SDS 920 Scientific Data Systems £ 30,000 APPENDIX III-LIST OF AND SHORT NOTES ON CAL-

SDS 930 Scientific Data Systems CULATORS USED IN E"GROPE IN 1963 (SPECIAL ONE-

SEA 3900 OFF MACHI~ES, OF WHICH THERE WERE MANY,

(CAB 3900) Societe pour l'Exploitation des ARE NOT INCLUDED)

Procedes SEA £ 105,000+ Name Manufacturer Price
Setun ~lade in Russia
Siemens 2002 Siemens & Halske £ 100,000 Bull Gamma 3 De La Rue Bull Machines Ltd. £ 10,000
Sirius Ferranti Ltd. £ 17,000 Bull Gamma C33 De La Rue Bull Machines Ltd. £ 3,800
Stantec Zebra Standard Telephones & Cables £ 28,000 Bull Gamma G 1 72 De La Rue Bull Machines Ltd. £ 7,000
Strela :.\'lade in Russia Bull Gamma G300 De La Rue Bull Machines Ltd. £ 11,500
Storekeeper Electronic 1-iachine Control Bull Gamma G322 De La Rue Bull Machines Ltd. £ 7,500

Ltd. £ 4,750
Deciplex Southern Instruments Ltd.

Sylvania 9400 Sylvania Electronic Products
Deciplex K10n Southern Instruments Ltd.

Inc. £ 900,000
Deciplex K1012-A Southern Instruments Ltd.

TAC (Marconi) }larconi Ltd. £ 10,000 Deciplex K1013 Southern Instruments Ltd.

Teleregister IBM 602 IBM United Kingdom Ltd. £ 5,000+
Telefile IB~'v:l 602A IBM United Kingdom Ltd. £ 5,000+

Tosbac 3100 Tokyo Shibaura Electric Co. IBM 604 IBM United Kingdom Ltd. £ 7,500+
Tosbac 4200 Tokyo Shibaura Electric Co. IBy[609 IBy["Gnited Kingdom Ltd. .£ 14,000+
TR4 Telefunken GmbH £ 300,000 IBy[626 IBM "Gnited Kingdom Ltd. £ 6,000
TR 5 Telefunken GmbH IBy[628 IBM "Gnited Kingdom Ltd. £ 17,500+
Trice Packard Bell Electronics £ 250,000 IBy[632 IBM United Kingdom Ltd. £ 2,500
TRW 33 Thompson Ramo Wooldridge IB}1 644 IBM United Kingdom Ltd.

Inc. IBM 3000 IB:Y.I: "Gnited Kingdom Ltd.
TRW 130 See AK/UYK 1 ICT 542 International Computers &
TRW 230 Thompson Ramo VI ooldridge Tabulators Ltd. £ 8,100

Inc. ICT 544-E:.YIP International Computers &
TR\V 300 Thompson Ramo Wooldridge Tabulators Ltd.

Inc. £ 50,000 ICT 547-EMP International Computers &
TRW 330 Thompson Ramo Wooldridge Tabulators Ltd.

Inc. ICT 548-Ey[P International Computers &
TRW 400 Thompson Ramo W ooldl'idge Tabulators Ltd.

Inc. £ 666,000 ICT 549-EMP International Computers &
TRW 530 Thompson Ramo W ooldddge Tabulators Ltd.

Inc. ICT 550 International Computers &

Cnivac File Tabulators Ltd. £ 13,200

Computer ° & 1 Remington Rand enivac £ 100,000 ICT 550/2 International Computers &

Cnivac 1 Remington Rand Univac £ 426,700 Tabulators Ltd. £ 13,200

Univac II Remington Rand "Gnivac £ 500,000 ICT 555 International Computers &

Cnivac III Remington Rand "Cnivac £ 333,000 Tabulators Ltd. £ 25,000

Univac 120 Remington Rand "Gnivac £ 32,700 ICT 556-PCC International Computers &

"Gnivac 422 Remington Rand "Cnivac £ 16,500 Tabulators Ltd. £ 20,000

"Cnivac 490 Remington Rand Gnivac £ 350,000+ ICT 557-PCC International Computers &

Univac 1101-1105 Remington Rand Univac £ 500,000 Tabulators Ltd.

"Cnivac 1107 Remington Rand "Cnivac £ 833,400 ICT 558 Intern;;ttional Computers &

Cnivac 1218 Remington Rand Gnivac Tabulators Ltd. £ 15,100+

Cnivac Larc Remington Rand Univac £1,800,000 Univac 1004 Remington Rand Limited £ 20,750+

COMPUTERS AND PEOPLE

Societal Concerns
The Computer Profession
Issues in Computing
Applications Serving People

The U.K. privacy white paper 1975

by A. S. DOUGLAS
The London School of Economics atid Political Science
London, England

ABSTRACT

It is now some years since the formation of the
Younger Committee, set up to study the question of
Privacy and its protection as it related to the private
sector. The Committee published its report in 1972.
Shortly after the Younger Committee was set up, an
interdepartmental working party was set up within
central Government to study the problem as it related
to the public sector. This working party's report has
now been issued along with a Government White
Paper, which makes specific proposals for action in the
computer field. In the meantime other countries, in
cluding the U.S., have taken significant steps in the
direction of defining Privacy and introducing data
protection procedures.

INTRODUCTION

The White Paper has been promised for some eighteen
months, but there have been successive delays and it
has long been an open secret that disagreements over
its content have existed in official circles.1-

2 The final
version3 issued owes a great deal to Alex Lyon, the
Minister of State at the Home Office, who sat on the
Younger Committee and whose minority report is in
corporated in the report of that Committee's findings.
The White Paper was drafted by a lawyer, Mr. Paul
Sieghart, who spent considerable time in wide-ranging
consultation beforehand under the aegis of the Home
Office and no little time in subsequent amendment to
take account of comments and objections I

In discussing the various reports and the White
Paper it is essential to distinguish clearly between
Privacy, Confidentiality and Security. These three
concepts are often confused. However, there are im
portant differences involved, not only in the topics
covered, but also in the attitudes to them which can
and should be adopted by the professional community,
and in the acceptability of those attitudes to the gen
eral public. For a brief but clear statement of what is
involved see "The Application of Computer Technology
for Development."1 The question is discussed at more
length in the Younger Report and elsewhere. 5

33

'VHAT IS MEANT BY 'PRIVACY'

It is sufficient here to point out that Privacy con
cerns the rights of an individual, personal or corporate,
to enjoy protection from unwarranted and unautho
rised intrusion into his affairs. It is not related in any
specific way to computers.

It is a social phenomenon and depends critically on
public opinion. In a democracy it is clearly a political
matter, to be dealt with by our elected representatives
-under the (hopefully!) watchful eye of the electorate.
It defines what is to be protected, not how this is to be
done.

Every professional is a citizen also. In that capacity
he has a right to speak on privacy; but only on the same
basis as every other citizen-his professional status
confers no special virtue on any pronouncements he
may make. However, in regard to the legal definition
of what is to be protected, or to the methods of pro
tection of data regarded as private, professionals in
whose area the matter lie may speak as experts and
carry an appropriate degree of authority. This author
ity carries with it a responsibility to explain the nature
of any problems involved-in language laymen can
understand-and to warn of the probable results of
abuse, misuse or omission of safeguards. It is in this
spirit, I shall approach the rest of this paper.

CONFIDENTIALITY

Confidential material is data entrusted to an indi
vidual, corporation or agency, whether local, national
or international, the possession of which imposes a
duty on that agency to protect it from disclosure ex
cept as authorised by the protocols under which it may
be collected. It may include, but is not limited to data
about individuals. The protocols creating confidential
status for data may be statutes, contracts or customs
recognized by the Courts or by common consent. The
protocols sometimes conflict with other protocols, when
the individuals involved may well be placed in an
invidious position. A journalist asked to reveal his
sources when these are connected with criminals, for
example, may feel that he must preserve the anonymity

34 National Computer Conference, 1976

of the sources partly to preserve them from retribution
and partly to ensure that he is able to use similar
sources at a later date-yet his action could be deemed
to conflict with the criminal law and place him in
j eo-pardy as an accessory to a crime. In SOlne cases the
conflicts have been resolved by the Courts in favour
of preserving confidentiality except in specified circum
stances-e.g., the doctor-patient and solicitor-client
relationships, where the preservation of confidentiality
is generally acknowledged to be in the public interest
unless criminal proceedings are involved.

The protection of confidential material is, of course,
closely related to the preservation of privacy in respect
of data about an individual. The security considera
tions are similar. But in the case of privacy the rules
under which disclosure may be made are not neces
sarily well defined, if they are defined at all. Since
there is no right to privacy defined in English law,
rules of disclosure must currently rest solely on any
protocols which may exist or be created by, e.g., con
tract. It is interesting to note that this is not so under
the Code Napoleon, on which French law is based, in
which the point is covered to some extent by the 'droit
de la personalite'. (For a comparative study of the
position under different laws, see Reference 6.) A
political move is now afoot in the U.K. to cover this
'open' position by Statute. It will be interesting to
study the White Paper which will in due course, no
doubt, emerge.

It is fair to say that the White Paper on Privacy
discussed here does not directly define Privacy or Con
fidentiality but primarily addresses itself to the ques
tion of Security. However, there is one important point
on which it is clear. This relates to the question of
disclosure of the existence of data banks containing
records concerning individuals. The White Paper pro
poses that disclosures should here be the rule (para
34 & 35) and that exemptions on grounds of national
security would need a certificate from the Home Sec
retary (para 39) .

SECURITY-SOME GENERAL REMARKS

There are two points to bear clearly in mind when
examining any security system. The first is that there
is no such thing as a perfectly secure system. In gen
eral, one gets the degree of protection one is prepared
to pay for-and perfect protection has infinite cost.
It is generally cheaper to design features into the sys
tem from the start than to add them later. The aim
must be to ensure that penetration of the system costs
at least as much as the possession of the data is worth
to a penetrator, and to design the system so that
penetration, if it occurs, is detected.

The second point is that the weakest link in any
security system is the people involved in it. Almost
all breaches of security involve the co-operation of
someone inside the system. Thus the selection and

control of personnel is a key issue in providing pro
tection of data. Moreover, only those 'inside' a system
are normally in a position to detect certain types of
abuse, before these effect the public. Thus their co
operation is essential.

These points are implicitly recognised in the White
Paper, and specific mention is made of the role that
the British Computer Society could play in relation to
any legislation which may follow from its provisions
(para 43). But the mechanism involved has been left
open for the present. We shall discuss this further
below.

The essential elements of a security system must
involve legislation, detection of breaches, and enforce
ment. The White Paper, whilst proposing legislation,
is not definitive on the method to be used to detect
breaches or by whom the law is to be enforced. How
ever, one important aspect on which it is clear is that
the mechanism of enforcement should apply equally to
the public and private sector. The delay in prohibiting
the Report of the Interdepartmental Working Party
which completed its work in 1972, indicates that this
view may not have been wholly shared by the official
side. To understand this, it is perhaps necessary to
review existing practices.

THE OFFICIAL SECRETS ACT, 1911

In the public sector, protection of data has been
practised for many years, of course. Indeed, specific
duties of protection are laid down in various statutes
to preserve the interests of the individual. Cross
correlation of data relating to an individual has been
controlled by a set of internal rules drawn up within
the Civil Service. It is a fairly sophisticated code and
takes account of the need to obtain valid statistics,
whilst at the same time preserving the anonymity of
the individuals whose records are used in those statis
tics. It is recognised that any such procedure can lead
to a risk of disclosures about individuals, but there is
insistence on this risk being minimised by the tech
niques employed. * It is fair to say that a specific case
of unauthorised disclosure has yet to be proved, al
though it is not difficult to 'manufacture' situations in
which it could take place. To this extent existing
protection is to be commended as being effective and
sensible.

Enforcement of the rules is by administrative fiat.
The unauthorised disclosure of data by an individual
Civil Servant not covered by any other protocol is cov
ered by the Official Secrets Act,7 under which every
Government Servant who handles any confidential or
private data operates. Signature of a declaration under
the Act is not essential to its effect being binding on

* For some valuable comments on this aspect of matters see
'Report of a Working Party on Survey Research and Privacy'
1973, issued by Social & Community Planning Research, 16
Duncan Terrace, London N1 8BZ.

persons involved in handling such data, but helps to
draw attention to its provisions. The Act is compre
hensive and was drawn up with matters of national
security in mind. There are thus "catch-all" clauses
which can be extended to cover matters which might
be considered to be secret only in a national emer
gency-and then only by the stretch of a very fertile
imagination. It is, for example, possible to bring under
the Act the important topic of whether and how often
the grass is cut at a designated Government installa
tion. Whilst one can undoubtedly construct an inge
nious scenario in which such a matter is of crucial
national importance, one can reasonably feel that, in
normal circumstances, it is unlikely that this is of
great concern to anyone-friend or foe--except per
haps an aspiring gardening contractor!

Use of the Act to support a case against reporters
and others concerned with the Nigerian civil war led
to some public concern a few years ago. There have
been rumbles about its effect ever since, and a Depart
mental Committee set up in 1972 under the Chairman
ship of Lord Franks recommended the repeal of Sec
tion 2 and its replacement by an Official Information
Act. t; But any alteration is naturally met by an equal
concern about the effects which could flow from its
repeal and a general uncertainty as to what amend
ments are really needed.

There are~ no doubt, those who deem the Act neces
sary in some form, as I do myself. Many of them, like
me, feel that it is a somewhat blunt instrument as it
now stands. It is administratively convenient, because
it confers wide powers to impede the flow of informa
tion both inside and outside Government on senior civil
servants when they deem it necessary. Whilst I have
no reason to doubt the sincerity of their intentions in
the public weal, nor can I point to specific instances
of abuse related to computer matters, the system could
all too readily be abused, and there is at least circum
stantial evidence that it is, from time to time, used
more to cover up incompetence than to protect what
must be protected for the good of all. To this extent
the present system could usefully be amended.

The White Paper, if implemented, must necessarily
impinge on the working of the Act in so far as it relates
to computer-supported data bases concerning' records
of individuals. Since non-disclosure on grounds of na
tional security of the existence and nature of such a
data base would require the certificate of the Home
Secretary, if the provisions of the White Paper become
law the provisions of the Act could then only be used
if that exemption were to be granted. This implies a
review procedure which is not necessary at the mo
ment. Furthermore, the mechanisms for enforcement
considered by the White Paper both imply that, if
complaints are made concerning the effects of the ex
istence or use of such a data base to the enforcing
authority, that authority will need to know of the
existence of such an exemption order, and could ask

The U.K. Privacy White Paper 1975 35

for it to be reviewed by the Home Secretary if it felt
that exemption was being abused.

While there are those who would welcome the abol
ishment of the Official Secrets Act or, at least, its
substantial modification, it is encumbent upon them,
in my view, to state how those of its provisions deemed
essential to national security are then to be dealt with.
For the most part, this has not been satisfactorily
tackled by would-be amenders. Total abolitionists
would not, I think, obtain a Pariiamentary majority,
and would undoubtedly be opposed by a majority of
officials.

A partial answer might well evolve from the legis
lation proposed by the White Paper. Clearly the review
mechanism introduced as described above would tend
to reduce the unselective use of blanket security pro
visions, and a sensitive use of his powers by the Home
Secretary could lead to greater openness overall, by
insisting on a careful definition of what features of a
system actually attract exemption, initially in relation
to computer-based systems, but, in due course, by ex
tensions to manual systems. It is to be hoped that this
evol ution will indeed take place.

ENFORCEMENT-THE PROPOSED
DATA PROTECTION AUTHORITY

The White Paper describes two possible forms of
enforcement agency, which it tends to contrast. The
one with a tighter form of control would involve a
process of licensing. The White Paper does not set out
to determine whether this relates solely to the licensing
of the organisation holding the data, the collection
agency, the people involved, or all three. Nor is any
specific mechanism proposed for ensuring the existence
of a 'responsible person' in relation to the data, al
though this point is discussed at some length in the
Younger Report. Any or all of these forms of control
are possible under the suggested provisIOns, however.

The "alternative" seen by the White Paper envisages
an agency which only reacts in response to a complaint
of an abuse of the citizen's rights by virtue of the
existence or operation of a data base. The proposed
Data Protection Authority in this case would act only
to investigate such complaints and take action to
remedy them where they proved to be justified.

An interim Data Protection Committee is being set
up to make recommendations on the form the Data
Protection Authority should eventually take. The terms
of reference of this Committee are not spelled out in
the White Paper directly, but, by implication, include
advice on the legislation to be enacted. They will almost
certainly be required to define, at least provisionally,
some of the individual's rights to privacy as well as
spelling out the powers and duties of the Data Protec
tion Authority. It is, perhaps, significant that Sir
Kenneth Younger has been appointed the Chairman of
this Committee. In the light of the work done by his

36 National Computer Conference, 1976

earlier Committee, we may expect that the definition
of privacy will follow the lines of its Report, modified
by any impact made by inclusion of public sector
considerations,

COMMENTS ON ENFORCEMENT

The problem of enforcement is perhaps best seen in
relation to a real-life situation, albeit a hypothetical
one. U.K. firms are currently subject to a Pay Code,
forbidding the paying of increases in wages in excess
of a fixed figure each twelve months. It is true that
this does not exactly have the full force of criminal
law, but a breach is certainly punishable, if detected.
In all firms which use their computer for payroll one
or more programmers are authorised to see the figures
paid out, although these are regarded as confidential.
The programmers concerned are usually asked to sign
papers drawing their attention to the confidential na
ture of their work and under law can be dismissed by
their employer for a breach of such confidentiality.

Let us suppose that one such programmer notices a
breach of the Pay Code in the course of his duties,
what should he do? He can, of course, report it to his
superior. However, more likely than not he will be
told to forget it and reminded of his obligations relat
ing to confidentiality. He can resign, but with present
employment prospects, he might find that, at the least,
inconvenient. A threat to resign in order to reinforce
his report to his senior, is clearly a dangerous course,
bordering on blackmail at worst, and almost certain to
rebound on him in due course. He can consult his
professional Society-assuming he belongs to one. The
Society can operate at a higher level than he is able to
do, and stands some chance of getting the situation
put right, but there is no way to avoid the finger point
ing at a small number of people as containing the one
responsible for the 'leak'. Naturally straight dismissal
would be out of the question as the adverse publicity
the Society would ensure would not be welcome. But
it is difficult to see how some retribution could be
avoided if the management were so minded. The least
that would be likely would be a transfer to other work.

Clearly the dice are loaded against disclosure of the
breach coming from anyone, however professional and
public spirited, inside the system, unless they are on
the point of resigning anyway. Moreover any tangible
proof of their contention which could be produced by
them would constitute theft of company property-all
the more culpable if they took it with them on leaving.

The only possible counter to this seems to be to
strengthen the 'outside' pressure on the individual pro
fessional to act according to a code of ethics and good
practice and to protect him, if he does so, from re
prisals by his employer. An enforcement authority
would need to be equipped with wide licensing powers
to do this, applicable equally to the conduct of opera
tions and the personnel involved. It is also clearly

practically desirable to have a named person to accept
responsibility if things go wrong, who is empowered
under the licensing procedure to enforce proper control
even though this may not be in the direct interests of
his employer. The parallel drawn in the Younger
Report is to a mine safety officer, who is employed by
the mine but has statutory powers and duties in respect
of safety. The parallel is not exact, but illuminating.

It is, I think, clear that a 'complaints board', how
ever strongly armed with investigative powers and
sanctions on future action, would be unlikely to achieve
a significant change in employee attitudes. But this is
not to say that some complaints procedure is not desir
able for a licensing authority. I do not myself see the
White Paper proposals as strictly alternative. To an
extent they are complementary. It is arguable, obvi
ously, that it is possible to have a complaints handling
procedure without licensing. However I do not think
that, in practice, a licensing procedure will work
smoothly without a complaints mechanism.

The British Computer Society, in addressing the
Home Secretary on the subject, has come out firmly
in support of a licensing authority (see Appendix).
One form of such a system is already in operation in
Sweden, under their Data Act.9

COSTS

The White Paper refers specifically to costs, and it
is clear that the Data Protection Committee, in making
its recommendations, will need to justify them on a
cost/benefit basis. The Swedish licensing system does
not involve a large central staff-25 at present, I be
lieve, and direct costs are covered by charging a licens
ing fee. Some of the factors involved in implementing
recent legislation in the U.S. are set out in a recent
Rand Corporation report. 10 A similar study will be
needed to assess the costs, both direct and indirect,
incurred in implementing the alternatives proposed in
the White Paper. Whilst, as in the Swedish system,
central costs can be kept down and funded from license
income, if this route is chosen, there are bound to be
additional costs at each installation. This raises, in
particular, the question of consultation of records by
those about whom they are kept. Although the right
to inspection is advocated in principle in the White
Paper it is clear that the cost of this will need to be
reviewed carefully and some arrangements set up that
will enable the individual to be assured of the correct
ness of data held about him without either he himself,
the data bank operator or the public purse being put to
unreasonable expense. It is here that proper advance
planning of the data base system for filing and re
trieval in the light of security and accuracy require
ments will have its most important role to play. A well
planned system which satisfies a reasonable licensing
requirement may well be little more expensive to con
struct and operate than one which does not. The main

problem of cost is likely to arise in respect of existing
systems, which cannot readily be replanned to serve
the new requirement. Clearly, temporary measures
may be necessary to deal with this problem. More
study is certainly needed before costs can be deter
mined.

Clearly the costs of a complaints system must also
be carefully considered. At first sight it would seem
that the burden will have to fall on the taxpayer, since
charging the complainants ,xlould rapidly defeat the
intentions of the system by discouraging complaint and
a system of fines on firms found at fault used to fund
the system might lead to over-vigorous pursuit of com
plaints if the 'quota' of fines had not been received.

In fact the method of financing has a deeper signifi-
cance than a narrO,\Xl question of cost/lbenefit of opera-
tions; it goes to the root of the independence of the
Authority itself. Any arrangement depending for its
finance on taxpayer's money can be influenced by the
funding agency-no doubt in this case the Home Office.
This is plainly undesirable if the Authority is to act
even~handedly in both public and private sectors. It
would, of course, be possible to insulate the members
from influence by giving them the Status of Her
Majesty's Judges who can only be dismissed by a vote
in both Houses of Parliament-but this is unlikely to
be considered appropriate at this stage. An institution
dependent on license fees which it can levy as of right
to recover its costs seems the more independent of the
alternatives available. Financial independence is spe
cifically commended in the White Paper.

PERSONNEL SELECTION AND LICENSING

Another important question, should the Authority
become an established part of our national life, will
undoubtedly be who appoints the members of the Au
thority. There is growing concern being evinced in
the Press and Parliament about the nature and extent
of Government patronage. This probably seems some
what surprising to those who live in a country where
rather more Government posts are filled by political
patronage than in the U.K.-and perhaps we are rather
too touchy on the subject. The concern is, I think, less
over the influence exercised by Ministers themselves
than over that being increasingly exercised by the
Civil Service. To pretend that this does not happen in
all bureaucratic systems would be hypocritical, but to
condone an unnecessarily arbitrary and subjective
practice would be equally so. The process of advertise
ment and competitive interview used in the Universi
ties and in recruitment for the Civil Service itself still
seems to be the most objective procedure available, but
this is not used in practice for appointments to such
bodies as the Data Protection Committee or the pro
posed Authority. I certainly hope the Authority will
not emerge as a self-perpetuating body setting up its
own system of succession. Obviously careful thought
needs b go into this question.

The U.K. Pri~lacy ¥!hite 1975 37

So far as the licensing of personnel operating data
banks is concerned, I have explained above why I
believe it is important to 'control' the people involved
as well as the organisation keeping the data bank.
Here "control" can be assisted by the existence of a
national professional body or bodies whose standards
incl ude a code of ethics and a code of good practice
attuned to the needs of the situation. Whether or not
the societies concerned maintain rigid restrictions on
entry to qualified persons is perhaps less important
than their members should accept the need for a de
gree of responsible discipline in their work. The Swed
ish Computer Society for example whilst subscribing to
the latter concept has yet to embrace the former and
may well never do so. But I have no doubt that its
existence is of value in operating their Data Act.

The E.C.S. would not, I believe, wish to seek a
monopoly under any licensing system, but would cer
tainly seek to ensure that its membership at an appro
priate level would carry with it automatically a license
to practice at a licensed installation, and this would
undoubtedly simplify and strengthen the implementa
tion of a licensing scheme.

CONCLUSIONS

The White Paper has gone a considerable way in the
direction pointed by the Younger Report, and, in par
ticular, to satisfying the various concerns expressed
by the British Computer Society in its submission to
the Younger Committee, as developed subsequently by
the Privacy and Public Welfare Committee of the
Technical Board. As I have indicated, there are a
number of matters still to be defined and worked on
before an Act is finally introduced-indeed, more than
I have had time to develop here. The various Commit
tees of the E.C.S. within the Technical Board are
already at work on these with a view to making a sub
mission to the Data Protection Committee, with whose
work they hope to be even more closely associated than
they were with that of the Younger Committee. I am
proud to be associated with this effort, which, I feel is
helping to maintain in the U.K. the high standards of
liberty and open Government for which we are re
nowned. I am also very grateful to the organisers of
this Conference for giving me the opportunity to pre
sent this report to those who share our concern that
computer systems should be used to the advantage and
not to the detriment of individual liberty.

REFERENCES

1. Report of the Committee on Privacy, 1972, H.M.S.O. Cmnd
5012.

2. Computers: Safeguards for Privacy, 1975, H.M.S.O. Cmnd
6354.

3. Computers and Privacy, 1975, H.M.S.O. Cmnd 6353 (the
White Paper, i.e., a statement of Government Policy).

4. The Application of Computer Technology for Development,

38 National Computer Conference, 1976

Second report of the Secretary-GeneTaI, 1973 U.N. Sales
No. E.73 II.A.12 para. 50, p. 73. See also First report of the
Secretary-General 1971 U.N. Sales No. E.71.II.A.1 paras.
214-7, pp. 73-4.

5. Gotlieb, C. C. and A. Borociin, Social Issues in Computing,
Academic Press 1973, particUlarly Chapter 5.

6. International Social Science Journal, XXIV, 3, 1972, pp.
413-602, published by Unesco. See also Ref. 2, paras 69-85.
For the position in France see 'Report of the Commission
on Liberties and the Computer to the Lord Chancellor, 1975,
Documentation Fran~aise.

7. Official Secrets Act 1911, available from H.M.S.O.
8. Report of a Departmental Committee on S.2 of the Official

Secrets Act 1911, 1973, H.M.S.O. Cmnd 5104.
9. Swedish Data Act 1973; for commentary in English on its

provisions see Current Sweden, Swedish Institute No.4,
July 1973.

10. Turn, Rein, Cost Implication of Pl'i'IJacy Protection in Data
bank Systems, 1975, Rand Corporation, p. 5321. See also
EDP Analyser for November/December 1975, particularly
December, p. 11, and 'The Cost of Privacy,' Goldstein, R. C.,
1975, published by Honeywell Information Systems Inc.

APPENDIX-BCS POLICY ON COMPUTERS
AND PRIVACY

Preamble

The BCS has 22,000 members from all elements of
the computing community, by whom it is guided and
influenced. As such it is aware of the existing and
potential impact of computing technology on the per
sonal and economic lives of us all.

The BCS recognises that computing techniques have
much to offer in improving the general quality of life
of both the individual and the community. Computing
technology is an asset of such power for assisting us
to attain real wealth that it becomes essential for it
to be used effectively.

Any source of power may be used or misused-the
issue of privacy and computers is concerned with
ensuring that control may be exercised in such a way
as to avoid and prevent the misuse of personal data

and in so doing also to encourage the beneficial use of
such data.

Computing within our community has attained a
stage at ,\xlhich legislati've control is required as the
White Paper of December 1975 acknowledges.

The policy

1. The policy of the BCS is to encourage the effective
use of computing for the benefit of individuals and
society and we believe that all regulatory measures to
be introduced should reflect this positive attitude.
2. There is a need for legislation to control the use of
personal data held on a computer.
3. The regulatory measures should apply to both the
public and private sectors.
4. Regulation should be carried out by licensing.
5. Regulation should be associated with appropriate
enforcement procedures.
6. The Regulatory measures should include a com
plaints and appeals mechanism available to organisa
tions and the general public.
7. Regulation should involve the approval of the origi
nal purpose and any subsequent revisions thereto for
which personal data is collected and processed.
8. The Licensing Authority should have the duty to
disclose the existence and purpose of collections of
personal data unless it is satisfied that substantial
reasons exist to the contrary.
9. Regulatory measures should include the definition
of the responsibilities and duties of individuals en
gaged in a licensed function affecting personal data,
together with the authorisation of those individuals.

The Society believes it to be desirable that the Regu
latory Authority should be wholly independent and
preferably self-financed. However, although data pro
cessing costs are currently falling the expenses of the
regulatory measures to be embodied should be ar
ranged so as not to inhibit the wider exploitation of
computers.

Human and organizational implications
of computer privacy

by JERRY M. ROSENBERG*
Polytechnic Institute of New York
Brooklyn, New York

ABSTRACT

The computer was created to serve man. With increas
~ng reason serious questions are being raised pertain
I~g to the potential misuse of the computer. Spe
cIfically, the issue of privacy has come to the public's
attention as cherished liberties and psychological
needs are gradually being eroded as the technology of
the computer expands.

Recent discoveries have shown how men desiring
power can utilize data for their own benefit, leaving the
person intruded upon with little recourse, or for that
matter, any knowledge of the invasion into his ori-
vate world. ~

This paper identifies the many implications of loss
of privacy on man's ego, dignity and general ability
to cope with these forces. Failure to possess privacy
can lead to withdrawal, loss of productivity, lack of
confidence, physiological deterioration and other con
ditions of mental and physical decline.

A significant portion of this paper details the pro
tections that can be incorporated, primarily technical,
to preserve the balance between the need for society
to know and the need of the individual to remain in
dependent. The basic conditions for man's well-being
are being tested along with the foundations of our
governmental traditions.

At present, computers have an almost limitless ca
pability to store, intermingle and, at the push of a
button, retrieve information on persons, organizations
and a variety of their activities, all without the knowl
edge of those involved. Even now, stacks of punched
cards and tapes store statistics about us that we may
not know exist. We might never escape in time or
distance the bureaucratic machinery keeping tabs on
us.

With present technical capability, it is possible to
develop a composite picture of an individual that can

* Dr. Jerry M. Rosenberg is the author of "The Death of Privacy
-Do Government and Industrial Computers Threaten Our Per
sonal Freedom?" (Random House, 1969). This papeT is based
on testimony before the Senate Judiciary Committee on Con
stitutional Rights.

39

be stored in a single information warehouse. Each
year we offer information about ourselves which be
comes part of the record. It is often scattered across
the continent and is usually inaccessible except after
considerable effort. It begins with our birth certificate
and is followed by a series of medical notations. Early
in life we are documented as an added income tax
deduction by our parents. Then there is information
on what high school, public or private, and what col
lege, public or private, we attended. At school, rec
ords are made of our abilities, grades, tests of intel
ligence and attendance. For some, there will be car
registration and driver;s license, draft status, military
service or Peace Corps. Then job history is recorded
-working papers, Social Security number, a first job,
our performance with each employer, recommenda
tions, and references-all this makes an interesting
dossier. Then perhaps, a marriage license, a home
mortgage, and when children come, the cycle begins
anew. Should we divorce, the court records will be
added. These would increase should we be arrested,
convicted or serve time in prison. And of course,
when we die, a last footnote is made.

In our daily activities we leave behind a trail of
records: the credit card carbon for a luncheon meeting,
the receipt from the hotel where we spent last night,
our airline ticket, the check we cashed in a city bank,
and the bill for the toys we charged for our children.

There are also government dossiers including tax
returns over a number of years, responses to census
questionnaires, Social Security records, passport files,
and perhaps, our fingerprints and military intelligence
reports. If we have worked for a defense contractor or
for the federal government, there are lengthy files on
us that may note our associations and affiliations.

Information is power. These records may at various
times be of considerable interest to people inside and
outside a specific government agency. Years after our
birth, for example, an interested party may be happy
to pay for information from our birth certificate which
is officially confidential. And in a number of cities
there are entrepreneurs who obtain and sell this in-

40 N Htional Computer Conference, 1976

formation as well as hospital records, police records,
immigration records, and so on.

Confronted with the erosion of his privacy, the in
dividual American has until now had the consolation
that all these files have been widely dispersed and
often difficult to put together. It has been a time-con
suming, expensive proposition to compile a sizable
file on any individual. Giant computers with their
capacity for instant recall of a great variety of avail
able information are changing all this.

The evolution of computerized complexes without
effective public participation and protest can have a
serious impact on our democratic process. Under our
present system, individuals are expected to make
fundamental choices where the future welfare is at
stake, as would be the case in an election. By alienat
ing the people from the decision-making process, con
trol of the computer technology is left in the exclusive
hands of those in possession of organizational power.

The public itself should question the drift of these
technologies. We should want to make certain that
human dignity, psychological well-being and civil
liberties remain intact. We should demand to know
the precise nature of the information that will be
stored and who will have access to it. The public has
the right to know who will have the power to control
the computen and most importantly, how confidential
ity and individual privacy can and will be protected.

Liberty is never gained once and for all. It is for
ever in conflict with civilization-a conflict which has
no clear-cut solution but which reappears in cycles,
usually in different forms. Each succeeding genera
tion must win it anew. Each must defend it against
ensuing dangers. This is necessary because we are
constantly changing our life environment; society may
be altered so frequently that safeguards that in the
past adequately protected our liberties become ob
solete.

Science and technology are of immense benefit to
society. These advances are so important to us that
we would not want under most circumstances to im
pede their movement in advancing our knowledge of
the world. But they may also expose us to potential
danger-to a pollution that could curtail our anonym
ity, solitude and privacy. Unless certain practices in
the technological exploitation of scientific knowledge
are restrained, they will cost us more than we should
be willing to sacrifice.

And we must constantly evaluate these technologies
which are tools developed to increase man's power to
understand his world. The mere fact that an innova
tion presents itself does not mean that we should sur
render years of experience and values to its authority.
Yet it is difficult to bring social pressure to bear
against the control of potentially dangerous technol
ogies. One reason is that those who have the use of
the technology are influential enough to prevent so
cietal, or for that matter, legal restraints.

That privacy will forever remain because it is im
plied in the Constitution and Bill of Rights is not
credible to the new adult population. With growing
hostilit:r" tOvv"ard the dominating technology and the
establishment, a segment of this group fear that the
documentation of their so-called acts of rebellion will
only show that the freedoms once assumed have been
surrendered. Should our older citizens in power fail
to come to grips with the issue of preservation of
privacy, it can be expected that the last struggle will
be made by those who question how their present be
havior, if documented, could be used against them at
some future time.

The computer cannot be blamed for the loss of pri
vacy. It is but an instrument created by man. Com
puters and other advanced machine systems are not
permitted to be in error, but man is not a machine
and does not have to be as efficient as the tools he has
created to serve him. If man loses his right to be
wrong, will he react by withdrawing from society?
Will his curiosity to experiment with life falter? If
this happens, man truly becomes nothing more than
a machine.

Of course, not all computerized systems contain
potentially damaging information. Some operations
merely act as accounting systems and high-speed cal
culators, while others at more sophisticated levels are
depositories for internal decision-making; some store
research information from diverse sources; and some
are documentors for the purpose of assimilation and
distribution of pertinent data to a large community.

Not all computerized complexes contain the "sensi
tive" or potentially "threatening" information that
might be found in a computerized system designed to
collect personal data. But the possibility of incorporat
ing such information does exist. Even the rather ele
mentary, antiquated computer has the potential for
being an information storage center. It doesn't matter
whether it is formally called a "bank" or a "single
unit processor" -any capacity to collect, store and
retrieve data instantaneously upon request may, if
misused, infringe on personal privacy.

There is little doubt that as computerized com
munications systems spread throughout the nation and
world, surveillance by data processing is bound to in
crease. If the trend continues, it will soon be possible
to have all personal information about an individual
gathered on a continuous basis and held indefinitely
until requested. The snowballing effect is quite pro
nounced here. When the decision is made to purchase
a computer, more data are gathered about the em
ployees, customers or taxpayers who are of interest to
an organization. Although this may provide for better
services, improved decision-making and policy-pro
gramming, it also provides personal information
about individuals never known before the advent of
computers.

ALONG THE ROAD TO PSYCHOLOGICAL
SUBMISSION

Today man lives in an atmosphere dominated by the
machine~ He brushes his teeth with an electric tooth
brush; prepares his meals with mechanical toasters,
ovens and broilers; works in an atmosphere of motors,
switches, fans, typewriters; goes to and from home
by car, bus and train; reduces the chores of home life
with sewing machines; washing machines and drying
machines. In the past only the craftsman used the
tool. Today all of us take machinery for granted. As
long as machines served us and did not threaten our
rights as persons, we welcomed technology.

The charm of the horse-drawn buggy yields to the
modern automobile; the candlestick maker is not
needed in this day of electric power; the complexities
of the abacus are incorporated into the computer's
memory unit. Often we are glad to say goodby~ to
what we leave behind because many innovations free
man from monotony, physical effort and waste of
energy.

Computers are part of this advance, aiding us in
ways that are valuable for our everyday living and
essential for progress on all levels. Much of what has
been achieved in medical research and outer-space ex
ploration would have been impossible without the wide
range of sophisticated computers.

Unfortunately; sacrifices frequently accompany
these changes. With all the splendid wonders of the
computer we find ourselves asking: has man become
submissive to the computers of today? Can each in
dividual profess to be more human in his actions than
the complex system he has developed to assist in daily
endeavors? Will there be a growing tendency to cre
ate a world where we treat each other as machines?
Are we building more barriers which prevent the in
dividual from having the opportunity to evolve his own
unique potential-to be self realized?

Man submits more and more as his ability to make
choices about and control his future is gradually taken
away from him. He is willing to have the machine
make numerous decisions for him about his future; he
is willing to permit the machine to build towers of
brick and metal, hoping that it will not fail him when
he has to live or work in them; he is willing to have
the machine process his life's facts, hoping that it will
be accurate and objective.

It seems that we are not aware of what is happening
to us-that we are losing a little each day to the ma
chines. We are usually too busy to think about matters
which seem on the surface not to be so "important" as
whether our cars are safe, or the price of bacon or the
way taxes are skyrocketing.

What is most disturbing to the American population
is the undemocratic process which starts at birth to
make people believe that they are unable to say "no"
to divulging personal information, thus perpetuating

Computer Privacy 41

a collection of data that will follow them for the re
mainder of their lives-"frozen in time and the
computer."

People want to determine for themselves in every
particular situation of life just how much of their
complex beliefs, attitudes and actions they choose to
disclose. To the American, this data is more than just
statistics. It is the data of judgment, a possible last
judgment that can affect their schooling, employment
possibilities; promotion; or role in the community. The
citizens of this country want to have the right to a
personal diary that is away and free from the organi
zation's outstretched hands. They plead the case that
if all their actions were documented, including their
mistakes, it would be difficult to close a page of one's
life and start anew. It would be a tyranny over mind
and destiny.

To maintain their dignity and fill their need for psy
chic distance, people construct mental walls around
themselves. To be a total psychic being, with stability
and confidence, forces people to reject being intruded
upon without permission. Psychologically, privacy
demands a delineation of the self, the acceptance that
each of us is unique and separate from all others. It
recognizes an empathy toward the finer qualities
within man. It demands the perpetuation of a private
psychic domain, displaying a defensive shield against
psychological penetration; unless authorized~

There is a growing antagonism against people de
siring power, who will through mental coercion try to
intrude upon our concealed thoughts. Unfortunately,
we have learned that the man who wishes to gain con
trol will employ various techniques to influence and
force individuals and groups into submission.

People have a right to remain unique and different.
But there are many, and indeed the number is growing,
who intentionally or by title of their office, are against
the solitary man. They may envy his uniqueness. They
want to keep a close watch on his behavior so as to an
ticipate future moves, often defended in the name of
science or national priority. They too often regard his
privacy as a denial of their own mechanized psychology
which has a stereotyped and oversimplified answer for
everything.

COMPUTER COMMUNICATION AND PRIVACY
PROTECTION

A major problem in protecting our privacy is that
too often we believe in the principle that the ends jus
tify the means. When we consider that the goal is the
greater good of our people, we cannot understand why
a specific intrusion should be prohibited. The result:
gradual erosion of the value we place on individual
privacy. Sometimes we are confused and become easily
convinced that a particular device that may lead to
personal intrusion is warranted on other grounds, such

42 National Cornputer Conference, 1976

as purposes of security. This is an inadequate argu
ment I believe.

As computer networks spread throughout the country
and world, science and privacy must be able to thrive
together. We will be collecting thousands of facts
about everyone, depositing these details into the un
forgetting computers of the future. To date there are
no adequate legal protections to safeguard the indi
vidual against computer leakage. Furthermore, laws
alone will not offer satisfactory protection in the face
of widespread use of these systems. Although laws can
impose penalties for violation and can set the limits of
proper safeguards, legislative actions have not always
been effective in the control of surveillance activities
like wiretapping and eavesdropping.

There is reason to hesitate before passing new legis
lation that might in fact backfire. Laws that give
special agencies or departments the responsibility of
investigating those who break the law would be intro
ducing yet other bodies that decide who can know
what, thus putting a new decision-power in the hands
of a few.

We have to make sure that information given to a
specific organization will not be shared in such a way
that the person's identity will be discovered. It is nec
essary to specify those who may use certain techno
logical devices. Neither the principal of a school nor
a personnel director should be allowed to enter at will
the dossier on a potential or present student or em
ployee. The question of duration of surveillance is
most important. In addition, we need to determine
what kinds of electronic devices are appropriate and
permissible.

We must define the penalties that would be imposed
on those who disclose information improperly or with
out authorization, and we must regulate the use of in
formation for purposes other than those for which it
was originally obtained.

We must also bear in mind that we are dealing with
a super-technology that will become increasingly com
plex and difficult to evaluate. It is safe to assume that
probably the only persons who will understand the
complexities and operations of these systems will be
the computer designers and systems engineers who are
directly responsible for the evolution of the industry.

Safeguards can be inserted into a system in use, but
it would be more efficient and less costly to build them
in at the time the computer is designed. The burden of
a great deal of the responsibility must lie with the
computer manufacturers. If they want to avoid ex
ternal regulations, they will have to start thinking
about how to design systems with built-in safeguards.

To date, the best attempt to identify the relation
ships between computer surveillance and invasion of
privacy has been outlined by Petersen and Turn of
the Rand Corporation. They visualize two types of
disclosures of information-accidental disclosures re
sulting from failure of the computer, and deliberate

disclosures from infiltration of the system. They sug
gest countermeasures to prevent surveillance of data
within a computerized system.

Unfortunately, essential safeguards are not as easily
attained as is suggested by some of these outspoken
specialists. It is one thing to design countermeasures
as they apply to the "general" concept of computer
leakage; it is quite another matter to build in protec
tions for a specific computerized system.

For example, few can find fault with Petersen and
Turn's countermeasures but they are merely a theo
retical framework for the complex changes that are
needed. These countermeasures offer little assistance
to those attempting to design a surveillance-proof com
puterized system in the medical field, in an educational
community, for a corporation or for a government
repository. Examples of a specific computer utilization
within a defined framework are necessary. The rules
that apply for one computer installation might be in
adequate for another or might fail to respond to the
more crucial or pressing needs.

There are certain general rules of conduct pertain
ing to all computerized data centers that should be fol
lowed in order to increase confidentiality and reduce
information leakage:

1. Let people know what their records contain,
how they are used and protected, and who has
access to them.

2. Employ a verification process to insure accuracy
of data; in addition, permit the individual to re
view the data for accuracy, completeness, cur
rent application, and freedom from bias.

3. Categorize all stored information as intimate,
private and therefore non-circulating (such as
physical, psychiatric and credit information) ;
pertinent, but confidential and having limited
distribution; or public, and therefore, freely
distributed.

4. Regard personal data as personal property, re
quiring permission for its use, and punishment
for its improper use.

5. Appointing an ombudsman agency-or a com
mittee that represents all levels of the organi
zation-to take major responsibility for hear
ing and responding to complaints, and to
determine appropriate measures to minimize
leakage.

6. Record each request for access that is made,
along with the authorization.

7. Make security checks on computer personnel.
8. Assess, from time to time, people's attitudes

toward and anxieties about the issue of invasion
of privacy. Such studies could be useful in de
termining what form of records would be most
acceptable.

9. Periodically review and update the adequacy of
the physical safeguards. Employ capable out
side consultants to attest to the safety of the

systems used, and to assist in the development
of appropriate technical devices (such as scram
bled data and code names), and

10. Allow psychological seclusion and withdrawal
from accountability to remain as a permanent
stronghold of our value system. The individual
must freely choose whether or not he wishes to
become submissive to the power of the com
puter.

A creative response by the computer industry to its
technology will probably serve, and satisfy, the public
better than rewriting our laws. In fact, one can doubt
that legal measures-although necessary-will be as
effective as technological adjustments in the protection
of the public's privacy.

What is needed before the establishment of large
computerized centers is a rigorous research effort to
answer the following unresolved questions:

1. What are the purposes of a computerized cen
tral facility? What kinds of information are
strictly relevant to these purposes?

2. How much information about an individual is
required to guarantee that such services are
useful to the person, community and nation?
How accurate, objective and challengeable is
the information?

3. What are the procedures for the sharing of the
system?

4. How will individuals be protected from the crea
tion and distribution of derogatory data caused
by clerical mistakes or computer malfunction?

5. Will procedures be developed to permit indi
viduals to see their files?

6. Will the cost of such a facility be justified in
terms of future savings?

7. Will there be adequate safeguards to prevent
penetration from the outside?

8. In whose backyard should computerized cen
ters be physically established?

9. Will a computerized center officially created as
a statistical system eventually become a store
house of personal information? and

10. Does the concept of computerized communica
tion centers suggest a changing value system
and further intervention in the lives of Ameri
cans?

The burden of proof of the security of the data fa
cility should lie primarily with those who propose it.
They must demonstrate that they can create a virtually

Computer Privacy 43

impenetrable and incorruptible system and justify its
greater economy and expanding service.

The dialogue has just begun. The right to preserve
privacy is a right worth fighting for. Events of the
past several years clearly point to the need for a rede
signing of our communications protections. Compu
terized systems offer great potential for increased effi
ciency; yet they also present the gravest threat of
invasion of our innermost thoughts and actions. Trans
actions of our personal movement will glut the records
and offer a very up-to-date picture of how we conduct
ourselves in private. Some see this trend as leading
to an Orwellian nightmare with Big Brother watching
over us and reporting to the central record-control au
thorities any behavior adjudged out-of-line with stated
policy.

We are slowly drifting into a world of nakedness.
Each year an increasing number of technological de
vices invade the world that once we considered private
and personal. In spite of this, we are still confident
that our lives, activities, ideas, thoughts, and sensa
tions are shared with no one unless we so choose. Will
this confidence be perpetuated? Echoes of Watergate,
CIA spying, domestic surveillance, wiretapping, etc.
may well have shattered any future acceptance by the
public. An uphill effort is required.

The snowballing effect of computers is very real in
deed. The more you know, the more you want to know
and the better your methods will become to get and in
tegrate this information. In the end, will there be any
place to hide?

Computers may continue to prove themselves the
worthy servant of man. But the servant must yield to
his master, and the necessary thought must be given
to developing essential safeguards. The computer
manufacturers have thus far shirked their responsi
bility, but they cannot long remain bystanders if they
wish to continue to make their own decisions. Both the
manufacturers and then the consumer must seek ways
to control the all-documenting, all-remembering com
puter systems and demonstrate that machine tech
nology need not necessarily bear the stamp of increased
surveillance.

The ultimate submission must be of the machine to
man. If we fail to act immediately to preserve our
claims to anonymity, psychological independence and
seclu~ion we may develop a permanent fear-a fear to
enjoy the fuller opportunities of life. We will hesitate
before experimenting with the challenges of the world.
We could become carbon copies of one another-con
forming, dull and psychologically equivalent to the
computer-heartless and non-emotional.

A controi systems modei of privacy

by JOHX SALASIN
The lVllTRE Corporation
McLean, Virginia

ABSTRACT

Concerns about individual privacy, specifically in rela
tion to automated data systems containing personal
information, are considered in terms of a feedback
control system model. This model provides a frame
work which appears to relate many separate concerns
which individuals or groups have expressed about
privacy. It also provides a framework which may be
suitable for analyzing legislation or regulations prom
ulgated for the protection of privacy. The model may
assist in defining needed research on the need for
privacy, or on the impact of inadequate protection of
privacy.

The model posits that data systems pose various
Uthreats" to privacy depending on the extent and
manner in which the existence of such information
systems hinders the ability of individuals or groups
to provide feedback to systems which affect them.

INTRODUCTION

A recent workshop addressing "The Privacy Man
date"l reached consensus that "our current lack of
understanding about specific needs for, and feasibility
of, implementing comprehensive privacy laws indicates
a need for continuing research in many areas." One of
the areas of research suggested was the "privacy needs
and desires of individuals as affected by situations,
culture, and economic level." Comments from the floor,
following presentation of workshop findings, included
the statement that:

"Proposed legislation seek to deliver and protect a
'right of privacy.' Nowhere is such a right identi
fied or defined. We recommend that present efforts
be redirected, at least in paTt, towards the de
velopment of a cleaT and complete identification
of the nature of privacy as a concept, perhaps sev
eral concepts, depending on varying situations."

This paper presents a model which may be useful in
developing an "identification of the nature of privacy,"
at least as the concept of privacy applies to the use of
information systems containing personal data. The

45

concept of privacy employed in developing the model is
broader than that of information security. It is, rather,
based on Westin's view that privacy is the claim of
individuals, groups, or institutions to determine for
themselves when, how and to what extent information
about them is communicated to others.2

The model incorporates concerns which individuals
have expressed about computerized data systems con
taining personal information and regulations which
have been promulgated to address these concerns in
the framework of a feedback control system.

The model attempts to separate concerns about the
privacy impact of computerized information systems
from inherent characteristics of such systems. These
inherent characteristics include, for example, potential
reductions in the cost of processing large amounts of
data, the potential for updating and checking the accu
racy of files more frequently (or for increasing errors
due to improper coding and transcription), and the
use of more "objective" (e.g., coded) information.
These "characteristics" do not, in themselves, neces
sarily raise concerns about privacy. The model is based
on the premise that such concerns can be explained
(and studied) by viewing automated personal data
systems as control systems, rather than through ex
amination of such inherent system characteristics.

The material presented is based largely on testimony
presented before the Secretary's Advisory Committee
on Automated Personal Data Systems and on literature
cited and recommendations made in that Committee's
report.3

A CONTROL SYSTEMS DESCRIPTION OF
INFORMATION SYSTEMS

Control systems can be roughly categorized as being
of two types. The simplest type of control system
employs "external" control, or control unresponsive to
the output of the system being controlled. Many con
trol systems which utilize personal data have tradi
tionally been of this type.

The credit reporting industry, for example, controls
the issuance of consumer credit by providing data to
indicate an individual's eligibility to receive credit.

46 National Computer Conference, 1976

Until passage of the Fair Credit Reporting Act, how
ever, individuals affected by the system were often not
aware of its precise nature. They could object to the
fact that credit had been denied, but had little oppor
tunity to provide feedback to the control portion of the
system (Le., the particular credit bureau providing
information). The difficulties experienced by individ
uals who have attempted to correct erroneous bills
from gasoline companies or other credit-granting or
ganizations indicates that someone affected by the
system may not be able to provide input to the control
system which determines, in this case, his ability to
purchase goods using the credit instrument.

A second type of control system employs "feedback
control," or a control which is determined partially
by the output of the system being controlled. An auto
mated oil refinery serves as an example of this type of
control mechanism. External controls, such as market
demands, availability of crude petroleum products, etc.,
are used to determine an "optimum mix" of output
products. An attempt to operate the system consider
ing only these external factors could, however, lead
to a major explosion at the oil refinery, since the out
put products of the refinery must also be related to the
current state of the chemical processes involved. While
running the refinery without external controls would
be uneconomical, running without feedback control
based on the temperature and pressure of ongoing
reactions would be catastrophic.

Feedback in the control of social systems can be
taken to represent the ability of individuals or groups
affected by a system to respond in a manner which
might modify the behavior of the system. In the case
of an information system containing personal data,
this response is not a primary input to the system it
self but, more accurately, a feedback signal to the con
trol portion of the system. Any loss of feedback is,
in this control system approach, equivalent to eliminat
ing the potential for input from the persons affected.

While most physical systems allow a relatively clear
distinction to be made between input and feedback
signals, such differentiation may become difficult in
social systems since both input and feedback informa
tion is often provided by the same person or group. In
some state welfare systems, for example, eligibility is
determined primarily from a declaration provided by
the applicant. Such information could appropriately
be considered as input. Feedback might take the form
of an individual's objection to a decision reached in his
case, or in a larger sense, societal reactions to the man
agement of the welfare system. Feedback is thus
characterized as representing input generated in re
sponse to prior system output. We emphasize that
elimination of this feedback is not an inevitable con
sequence of automation. It can be avoided if care is
taken in the design and operation of systems.

There are two types of concern about automated data
systems. First is concern by an individual who is di-

rectly affected by the system (e.g., a welfare recipient),
and therefore is highly concerned about his inability to
provide feedback. Second is the concern of individuals
who, though not directly affected by the system, are
concerned about the institution's effectiveness in serv
ing the interests of the public.

POTENTIAL HARMFUL EFFECTS OF
AUTOMATED PERSONAL DATA SYSTEMS

An individual's feeling that he is unable to provide
feedback to a system affecting him may reflect seem
ingly rigid and impersonal treatment of him by or
ganizations maintaining data systems. This feeling
can be heightened by the very nature of computeriza
tion. Computers are programmed by supplying specific
rules for operations to be carried out on the data being
processed. While any well-designed system includes
provisions for processing both the normally expected
data and all foreseeable exceptions, the data used for
input must conform to pre-established rules. It is, for
example, often expected that numerical values will be
within a given range or that an individual's name will
consist of alphabetic characters only. While such ex
pectations are often reasonable, they do impose arti
ficial limitations. The existence of rigid procedures
may make it necessary for individuals to interact with
the system according to its rules. This is, in itself, a
block to providing feedback to the system.

An individual's feeling of inability to provide feed
back may also be created by a system's reliance on
records, as opposed to personal contacts, in making
decisions about individuals and groups. Such reliance
on records may be inappropriate if the record used to
make a decision does not contain enough information
or have enough reliability to be the basis for a "just"
decision. Relying on records for decision-making will,
because of economic necessity, place a much greater
emphasis on stored, and hence possibly old, informa
tion. It is evident that a greater reliance on records
is aided by the fact that the computer has made the
records more readily accessible, often cheaper to ob
tain, and therefore more convenient to use than infor
mation collected and verified by personal contact. The
economics of computerization makes it possible to rely
on computers for low-level decision making (e.g., initial
screening for job candidates) when dealing with large
populations of individuals on whom one has readily
accessible information.

As a side effect of this reliance on records, indi
viduals are concerned that unequal treatment may
accrue to various segments of the popUlation because
of the extent to which their lives are documented by
automated records. The comprehensive record-keeping
practices of such institutions as the military, psychi
atric hospitals, and correctional institutions combine
with the fact that poor, black, Spanish-speaking, and
unskilled individuals are more likely to be drafted,

have a criminal record, have a mental illness or de
ficiency treated in a state institution, be on welfare,
and enroll in a government retraining or special edu
cation program. Thus these individuals will be trailed
by a far greater volume of possibly derogatory com
puterized records than most middle or upper class
Americans.

There is a diminished opportunity for individuals to
"make a new start," free of the records of their past
activities. The greater accessibility of more data, niUch
of it obsolete (due to an increased storage, linkage, and
retrieval capability without sufficient provision for
expunging old records) leads, as was previously noted,
to a greater institutional reliance on records. If there
are no legal constraints on informal exchanges of data
and on the amount of time that data can be maintained
in a file, the danger is increased that institutions will
use old and possibly inappropriate records in reaching
decisions.

The two effects mentioned (Le., rigid treatment of
individuals and reliance on records) might cause other
effects which contribute to the concern of individuals
over their inability to provide feedback to systems.
The rigidity of a system may lead to distorted inter
pretation of data by the cOITlpression, standardization,
and oversimplification of data elements. This fitting of
people to codes rather than codes to people leads to
misinterpretation of the data. Thus, while a police
blotter might show that an individual was arrested
"for refusing to supply positive identification on re
quest," the National Criminal Information Center
(NCIC) may be informed, because of the required
standard code, that the individual was charged with
"resisting arrest." Poorly designed systems might be
characterized by the statement that: "It can't be done
if there isn't a code for it." People appear less likely
to have feedback worries if they feel able to present
"their side."

Individuals are also highly concerned that organiza
tions will make decisions about them without their
knowledge. People fear unwarranted, peremptory, or
discriminatory institutional responses to non-conform
ing behavior which is detected covertly using computer
analysis. They are concerned that institutions will use
personal data contained in data banks to detect and
respond to behavior considered (by the institution) to
be undesirable. The ability of the computer to rapidly
retrieve and analyze large masses of data facilitates
"browsing" through records in an attempt to determine
relationships among the data. For example, computers
might be used to identify a small percentage of fami
lies in a given city that account for substantial por
tions of the serious crime and/or welfare caseload so
that discriminatory action might be taken against these
families. The significant element to this concern is
that there is no opportunity for the individual to pro
vide feedback to affect these actions.

As more social functions become controlled by data

A Control Systems Model of Privacy 47

systems, it becomes harder for an individual to register
objections about the fact of inclusion in a specific
system. To participate in society we are required,
depending on our age, class, education, etc., to be in
cluded in files of students, drivers, members of a par
ticular profession, patients at a hospital, or other files
pertinent to our activities. A student in a migrant
farm worker's family appears to have little choice re
garding whether or not his records are maintained in
the "U niform ~,~igrant Student Transfer System."
Even if he, his parents, or his teachers were able to
provide feedback regarding the accuracy or complete
ness of information stored, could feedback be provided
which registered his objection to being labeled a "Mi
grant Student"? While the computer may not have
caused society's desire for information, it has made it
more feasible to use this information in the control of
social processes. The resulting pervasive nature of
such computerized information systems, combined with
the rigid classification procedures often applied, tends
to limit the manner in which individuals can provide
feedback to control systems employing the technology.

A feeling of individual powerlessness is, to some
extent, contributory to the second type of concern about
the use of automated personal data systems; that the
use of such systems by institutions may weaken the
institution's effectiveness in serving the interests of
the public. If individuals do not feel they can have an
impact on organizations making decisions about them,
they may not believe the organization is fulfilling its
social mission. This feeling may be evidenced in in
creasing distrust, fear, or frustration of individuals
and groups in regard to institutions; these feelings
may be promoting a notable reserve or hostility in
dealing with record-keeping operations. If the process
of computerization in a large organization is not visible
to the individuals affected; the individuals may feel,
correctly, that they are denied opportunities to provide
feedback to the organization.

There is also growing skepticism about the effective
ness of the institutions in meeting their own organiza
tional goals. The reduction of feedback can cause such
skepticism by reducing the ability of individuals and
groups to contest the acts of institutions, which, be
cause of their control of large data bases, may claim
to have "the true facts," "more persuasive evidence,"
or "more comprehensive view" of an issue. Distortions
or misinterpretations of data which reflect assumptions
underlying the design of the data system might result
in policy ill-suited to the goals of the organization.

The tendency of institutions to "blame it on the
computer," combined with the specialization inherent
in computerized operations, may result in a diffusion of
institutional and individual accountability for decisions
and their effects. It becomes difficult for either an
organization or an individual affected by the organiza
tion to assign responsibility for decisions arising from
erroneous data or programs. For example, an error

48 National Computer Conference, 1976

could occur because the input data were not correct,
because input data represented a special case which the
computer program was not designed to handle, or
because the output data were interpreted erroneously.

Related concerns arise over the unintentional erosion
of the autonomy and authority of institutions. As
economies of scale cause institutions to pool data bases
and computer hardware, it is difficult to determine
which agency has the responsibility for maintaining the
data or the right to access certain portions of it. Such
an erosion of autonomy seems particularly significant
in systems which combine police and court records or
in data bases shared by Federal and State govern
ments, since combination of these systems may result
in a blurring of the separation of powers. It is cur
rently common practice to allow private insurance
companies access to drivers' license records maintained
by State governments; such practices might weaken
the distinction between the public and private sectors.

All of these effects create a concern that social insti
tutions employing automated personal data systems
are out of human control. The individual feels that he
is unable to provide feedback relating to either the
goals or method of operation of an institution.

LONG TERM SOCIAL EFFECTS

Feedback is generally designed into physical systems
to provide stability in the face of varying inputs. The
higher the "gain," or amplification factor, of a system
is, the more necessary that feedback be employed to
prevent small disturbances in the input from causing
major perturbations in the output. Automated per
sonal data systems, having the ability to process more
records more rapidly than manual methods, might be
thought of as processing a higher gain (i.e., varia
tions in the system itself, or systematic changes in
input data, may have a greater effect on a larger num
ber of people) .

In addition to the immediate effects of the misuse of
automated personal data systems, any widespread feel
ing of individual powerlessness in affecting institu
tional behavior may result in major social changes.
Such changes might include: increased social isolation
accompanied by hostility between those responsible for
social institutions and those served by them; increasing
skepticism about the effectiveness of institutions, lead
ing to a state of anarchy as the institutions cease being
able to function; or the establishment of a new "ethic"
which, contrary to western (American) tradition,
negates the concepts of "free will" or "self-determina
tion." While it seems improper for us to make value
judgments respecting the nature of society in future
generations, we have an obligation to prevent such
changes from occurring without review. Individuals
should be allowed the opportunity to provide feedback
to the process of social change. If particular elements
of automated personal data systems might induce such

changes, people should be able to provide feedback
which could modify those elements.

FEEDB...A ... CK CONSIDER.ATIONS IN THE
PROTECTION OF PRIVACY

Just as the concerns of individuals about privacy
can be expressed in terms of their ability (or inability)
to provide feedback to systems, so regulations promul
gated to protect privacy can be analyzed in terms of
the ways in which the regulations foster or inhibit
feedback from individuals or groups.

Information systems might be considered in two
categories for determining types of feedback appro
priate to a system. The first category includes those
systems used for entitlement or classification of indi
viduals, thus directly affecting the file subject. Ex
amples might be credit files, school records, medical
files, or police records. The second category, "statisti
cal systems," includes systems which may not affect
the individual file subject directly but are used by or
ganizations for planning and evaluation. The decennial
census of individuals in the United States is an example
of such a system, since these data are used extensively
for policy decision making.

Statistical systems mayor may not contain sufficient
information to allow data to be linked to specific in
dividuals. Those which do not contain personal identi
fying information (e.g., name, address, social security
number, etc.), cannot easily be used to directly affect
individual file subjects. If such identification is main
tained however, information in the system can be used
in a manner which directly affects the individual. If a
given system is used both for making decisions about
individuals and for statistical purposes, several forms
of feedback may be required.

Many of the factors which influence the design of
feedback control to physical systems may also be appli
cable to ensuring feedback to information systems. It
is, for example, extremely important that the output
effects being used to determine the feedback control
are, in fact, the "right" outputs. If the system being
controlled is not understood completely, the relevant
outputs may not be discernible. A simple example
might be that of a husband and wife sharing a double
bed with an electric blanket that has separate controls
for each side. In this hypothetical situation, assume
that the controls have been switched inadvertently, so
that the control on one side of the bed controls the
temperature on the opposite side. Considerable diffi
culty arises if the wife attempts to turn up the control
on her side of the bed; the husband begins to get too
warm and turns down his control. The wife, realizing
she is not getting warmer, turns the control up further;
how long the procedure continues depends on the toler
ances of the individuals involved.

The problem in this situation is that inappropriate
output is used to generate a feedback control signal.

Each person is providing feedback based on the tem
perature on his or her side of the bed, rather than on
the temperature of the opposite side, which is actuallv
what each controls. The appropriate output for each
to react to would be the spouse's comment that one was
either too hot or too cold. Adjusting the control based
on this verbal input rather than on the temperature of
one's own side of the bed would better insure that an
appropriate control was applied. In a complex social
system it becomes even more difficult to be sure that
all relevant output effects are included in an appro
priate feedback loop.

We are concerned not only with what output effects
are measured, but also how they are measured. If
effects are measured periodically, rather than con
tinuously, we run the danger of being unable to tell
what the true output is. Shannon's sampling theorem
states that if a varying signal, or wave, is measured
by sampling at time intervals, the sampling rate must
be at least twice as great as the highest frequency of
variation in the original signal if we wish to reproduce
the signal. If we were to assume that bicvcle theft
varies cyclically, with a periodicity of one y~ar and a
maximum occurring in July, any conclusions which
were reached about bicycle theft in this country might
be biased if measurements were taken only in the
month of July. An erroneous picture of system output
can make any feedback employed ineffective.

The output effects measured and the method by
which they are measured contribute to the effect which
feedback has on the system. Control science differen
tiates between "positive" and "negative" feedback.
While negative feedback will tend to dampen oscilla
tions in the system, and thus promote system stability,
positive feedback may accentuate such oscillations and
lead to system instability.

The delay inherent in a feedback loop can have a
major impact on the effect of feedback. A feedback
signal which normally acts in a negative manner and,
therefore, improves system stability may, if an appro
priate delay is chosen, create system instability. While
it becomes difficult to make firm analogies between a
physical system and a far more complex and variable
social system, we might consider court processes to
represent a potential delay in social systems. If each
feedback action initiated by an individual or group
experienced a two-year delay while awaiting judicial
action, the delay might be capable of causing system
instability.

FEEDBACK ANALYSIS OF PRIVACY
REGULATIONS

Recommendations made by the DHE\V Secretary's
Advisory Committee on Automated Personal Data
Systems,3 many of which were incorporated in the
Privacy Act of 1974, can serve as an example of how
regulations to protect privacy can be analyzed in terms

A Control Systems Model of Privacy 49

of a feedback control system model. Thus, for example,
the Committee recommended that individual data sub
j ects be provided the following rights:

(1) To be informed of his (or her) right or privi
lege to refuse to provide data about himself and
of the consequences of such refusal. Such noti
fication should allow an individual to make an
informed decision about whether or not he
wished to be included in a given system, This
most fundamental type of feedback, allowing an
individual to decide about his own inclusion in
a system, is essential to enabling feedback.

(2) To be informed (upon request) that he is the
subject of a record contained in a system and to
obtain the data contained in the record. Indi
viduals must be aware of both their inclusion
in a system and of the information stored about
them if feedback is to be possible. While in
forming (automatically) an individual that he
is a data subject without his requesting this
information would go further towards facili
tating individual feedback, the Committee found
that such a requirement might be "needlessly
burdensome to some organizations."

(3) To have assurance that data about him are not
used for purposes other than the stated purposes
of the system without his informed consent
and to inform him (upon request) about the
uses being made of the data. An individual
should be allowed to provide feedback regarding
the use of information about him. Individuals
should be allowed to provide feedback relating
to dissemination (and additional uses) of in
formation about themselves; both because the
dissemination itself may affect them and to alert
them that another organization may be making
decisions about them based on the data.

(4) To contest the accuracy, completeness, or per
tinence of a record or data, and to alter the rec
ord or data as necessary to assure its accuracy,
completeness, or pertinence (Le., mechanisms
will be established to allow feedback).

These requirements are designed to allow individuals
to provide feedback regarding whether or not they
wish to be included in a system; the accuracy, com
pleteness, or relevance of data contained about the
individual in the system; and potential uses of the
record both inside and outside of the system.

For those systems defined as "statistical," whether
or not personal identifying information is included,
the ease with which an individual can assure himself
of the accuracy, completeness, or propriety of a record
about him may be less significant. Random data errors
in individual records might not affect the statistical
uses to which the data are put as long as the error rate
was reasonable. The feedback capabilities provided
for such systems must allow interested individuals or

50 National Computer Conference, 1976

groups to assess validity of the decisions made on the
basis of the records. The following might be required
of such statistical systems:

(1) as in the case of systems directly affecting the
individual, the individual should be informed of
his right or privilege to refuse to provide data
about himself ;

(2) the individual should be informed that the in
formation collected from or about him is to be
maintained in a data base used for statistical
analysis. The individual should be informed of
the policies governing institutional responses to
subpoenas or other requests for information
contained in the data base;

(3) provision should be made to allow review by any
interested party of all techniques used in arriv
ing at a decision based upon analysis of data
contained in the data system. Such review
might include evaluation of the sample selection,
data collection instruments or procedures, in
formation storage policies, analysis techniques,
and any other elements of the data analysis
process;

(4) data used by the organization in making the
analysis should be made available, in machine
readable form, to any individual or organiza
tion desiring to undertake independent analysis
of the data. Individual personal identifiers
should be removed from the data before such
transfer occurs and, if due to sample size,
sampling procedures, or other characteristics of
the data base, a likelihood exists that individuals
might be identified even in the absence of per
sonal identifying information, data should be
aggregated to a sufficient degree to make such
identification impossible;

(5) the organization maintaining the data should
be responsible for preventing transfer to, access
to, or use of any data in personally identifiable
form by any person or organization, including
staff of the organization itself. Data collected
for statistical purposes should not be used in a
manner which could affect the individual di
rectly.

The management requirements which might be
placed on organizations maintaining data systems con
taining personal information are similar regardless of
the type of system. They are designed to ensure that
the organization provide for appropriate feedback and
that, if information is collected for statistical pur
poses, that the information is not used in a way which
would directly affect the individual file subjects.

Any organization maintaining an automated per
sonal data system might be required to fulfill the fol
lowing general management requirements:

(1) designate one person as responsible for the

operation of the system and for assuring that
appropriate feedback mechanisms are provided;

(2) take affirmative action to assure that each of
its employees having responsibility for the de
sign, development, operation, or maintenance of
the system, or for the use of data contained in
the system, is informed of all requirements
relating to the operation of the data base and of
all of the rules and procedures of the organiza
tion which are used to ensure adherence to the
requirements;

(3) provide for sanctions to be applied to any em
ployee whose willful or negligent conduct causes
or significantly contributes to the denial of
feedback to an individual or group;

(4) provide for sanctions to be applied to any em
ployee who initiates any disciplinary or other
punitive action against any individual who
brings to the attention of appropriate authori
ties, the press, or any member of the public,
evidence that opportunities for feedback have
been denied to an individual or group.

The above examples of recommendations for the pro
tection of privacy can all be viewed as guaranteeing
that individuals will be able to provide feedback to
systems which make decisions based on files containing
personal data. Other potential recommendations, re
garding the design of systems and the requirement that
the public be notified of the system's existence, can
also be viewed as protecting the right of individuals to
provide various types of feedback to systems which
employ personal files as part of their control element.

POTENTIAL MODEL UTILITY

The feedback control system model of privacy, as
outlined in this paper, provides a framework which
may help coalesce many of the separate concerns which
individuals or groups have expressed about privacy.
Similarly, the framework appears to provide a unified
framework for analyzing the effectiveness of privacy
legislation and regulation. The model can also provide
guidance to those responsible for developing and op
erating information systems-does a system provide
for adequate feedback from those affected by the
system?

The model may provide a basis for conducting re
search on the need for privacy, or on the impact of
inadequate protection of privacy. Individuals might
be surveyed, or requested to participate in hypothetical
scenarios, to determine, for example:

• the types of feedback which individuals feel are
required for different types of systems (thereby
providing a categorization of systems in terms of
feedback required).

• the relative value of different forms of feedback

(e.g., feedback regarding accuracy vs. feedback
regarding dissemination).

• potential "tradeoffs" which might be made be
tween different forms of feedback provisions and
other costs (or benefits) to data subjects.

Finally, a more fully developed model of privacy as a
feedback function should provide guidance for the on
going monitoring of privacy protection mechanisms.

Any assessment of the important system output
effects or of the appropriate feedback mechanisms
might prove, over time, to be somewhat in error. It is
often difficult, even in purely physical systems, to
determine exactly what output measures are appro
priate to use for feedback control. The fact that out
put measures and feedback mechanisms chosen might
be partially incorrect, or that the appropriateness of
feedback forms could change with time, does not ob
viate the necessity of providing such mechanisms. The
pervasive nature of regulations for the protection of
privacy, combined with the fact that the public should
be encouraged to use whatever feedback mechanisms
are to be provided, makes it advisable that the types of
feedback provided, and the implementation of regula
tions which ensure the feedback, should be continuously
reviewed.

Ongoing review of feedback procedures might include

A Control Model of 51

monitoring organizations' compliance with regulations
designed to facilitate feedback. Public perception of
the availability and utility of feedback opportunities
should be reviewed.

Regulations established to provide feedback should
be evaluated continuously. Further knowledge of the
processes involved may indicate the need for changes
in procedures, regulations, etc. Social scientists might
discover that recommendations have not, in fact, con
sidered the most important output variableS with
respect to the stability of institutions or society. The
mechanisms provided for feedback might act contrary
to what is expected. Since most automated systems
used today are highly complex and poorly understood,
the continuing study of the efficacy of the feedback
mechanisms employed is required.

REFERENCES

1. The Privacy Mandate; Planning for Action, Symposiumj
Workshop National Bureau of Standards and The MITRE
Corporation, Washington, D.C., April 2,3, and 4, 1975.

2. \Vestin, A. F., Privacy and Freedom, Atheneum, New York,
1967.

3. Records, Computers, and the Rights of Citizens, Report of
the Secretary's Advisory Committee on Automated Personal
Data Systems, U.S. Department of Health, Education, and
Welfare, July 1973, DHE\V Publication No. (OS) 73-97.

Computer security-A survey

by PETER S. BROWNE
General Electric Info-rmatioi'i Se·r"u·ices Business Division
Rockville, Maryland

ABSTRACT

With the growing requirements for protection gen
erated by legislation such as the 1974 Privacy Act, the
increasing complexity of computer and data communi
cations applications, and increasing awareness regard
ing computer vulnerabilities, the discipline of com
puter security is achieving independent recognition.
Current data processing literature is a rich source of
information. Articles and papers regarding security,
design of software protection, operational practices
and auditing number in the thousands. Most of them
are very narrow in scope or so general that they are of
little use.

It is important to the data processing professional
to be able to sort out the large body of material in
order to gain perspective. This paper attempts that
by relying on a carefully selected and fully annotated
bibliography of 134 items, many of them of interest to
the systems analyst or designer. These papers are
referenced in the text, which attempts to carefully
distinguish between the technical and operational ele
ments of computer security, while providing an overall
perspective.

INTRODUCTION

The computer has unleashed countless opportunities
for industrial growth, new applications, labor-saving
accomplishments, and improvement of the quality of
decisions. Most industrial and governmental organiza
tions could not survive without the processing capa
bility of their computer systems, and it can be shown
that society itself is dependent upon the computer. 23

At the same time, computer technology has spawned a
whole new field of crime and has generated a series of
problems for both designers and users of information
systems.2

With the growing pervasiveness of computers, their
increasing complexity and the development of sophisti
cation regarding computer vulnerabilities, the disci
pline of computer security is achieving widespread
recognition. Many organizations have created the posi
tion of DP security specialist or manager87

,92 and

53

college courses in computer security are being taught.69
There are a number of driving forces behind the in
terest, some of which are outlined below.

Historical

In the middle 1960's, Congress began discussing the
issues of privacy and the computer. A national data
bank was proposed. Congressional committees were
established, and public testimony published.132 The
general consensus was that that technology had
not advanced to the point where privacy could be
maintained.

Concern over the inherent lack of controls in com
puter systems led to much discussion and some activity
on the technological front. A landmark meeting of
active professionals in computer security in 1972 set
the stage for an understanding of the technological
issues and led to intensive design efforts to achieve
"secure" computer systems.lS

In the meanwhile, activity on the legislative and
social fronts saw a culmination in the Privacy Act of
1974 (Public Law 93-579). This act applied privacy
requirements to most computer systems operating
within the Federal Government. It also generated a
number of papers regarding implementation require
ments, 90,10;;,110 and attempts to determine the true cost
of privacy, especially as applied to large, multi-use
data banks.lo,57

The need for computer security is also affected by
technological factors. As systems become more com
plex and sophisticated, so do the problems of data
integrity. Resource-sharing systems achieve their
greatest advantage when used simultaneously by many
customers. This also means simultaneous processing
of data with varying needs for confidentiality and per
vasive needs for accuracy.6 The problems of manage
ment control also have increased as the flexibility and
capability of systems improve.

The scope and complexity of the field becomes ap
parent when a survey of the literature turns up over
a thousand articles dealing with physical security of
computer assets, threats to the computer, protection
against fraud, embezzlement, and other human fail-

54 National Computer Conference, 1976

ings, the need for insurance, software protection, hard
ware safeguards, legal considerations, risk assessment,
auditing, computer system design and the principles of
operating system software security.l,ll,l07 A muiti
disciplinary approach is needed.95

De jinitions

Computer security is a widely discussed subject, and
a generally agreed definition refers to it as protection
of data against accidental or intentional disclosure,
destruction or modification. Security can be viewed as
a problem of "comprehensive control," involving the
development of means to insure that privacy decisions
are enforced.37

Data confidentiality is "the status accorded to data
which requires the protection from unauthorized dis
closure."92 It refers to the protection of data from
unauthorized disclosure, whether the basis for such
protection is agreement, law, policy or prudent judg
ment.l09

Privacy is a legal and social concept, having roots in
constitutional law and social justice requirements. 66,132
It refers to the right of an individual to control the
collection, storing and dissemination of data about
himself.6

Data integrity is the protection of data against
accidental or intentional destruction or modification.
It also is the ensuring of accuracy and completeness of
data. It involves the need for all components to operate
together in a consistent and reliable manner.133

It can be seen that the object is data. We have been
discussing data security as contrasted with computer
security. To include the broader-based definition of the
subject, and the need to think of the other assets in
volved such as computer hardware, facilities and
people, the term 'processing integrity' has been
coined. l05 It is the property of having adequate
processing capability, availability and reliability in or
der to provide the requisite services of data processing.

PLANNING FOR COMPUTER SECURITY

Threats and vulnerabilities

The result of a security breach is what usually draws
attention to a threat, a vulnerability or a particular
countermeasure. The short history of computer secu
rity is spotted with numerous "horrible examples," fads
such as the interest in magnets as a threat, the imple
mentations of security measures that are anything but
cost-effective.8 0,101,131 A rational approach to the sub
ject implies some sort of quantification of risks, and an
analysis of the costs and benefits of countermeasures.
Although some articles and papers have called for this
approach,23,:lo only recently has there been a serious
attempt to model the risk-cost interface. 20,40.79.87

One of the key steps in devising protection is the
classification of various threats. There are two sources
of threats, people and natural hazards. 25 It is possible,
though nut easy, to quantify the threat of fire, earth
quake, flood and storm.79 On the other hand, those
events that arise from human acts such as mistakes,
disgruntlement, fraud and sabotage are not always
possible to quantify, namely because of the complexity
of motivations, environmental considerations and the
effect of in-place countermeasures imposed. loo The first
step is to organize and classify the threats in a sys
tematic mannerY Threats are usually part of the
environment. On the other hand, the vulnerabilities of
a particular computer system to those threats are
dependent on a large number of factors relating to
location, people, capabilities of the system, building
structure, nature of the processing and operating prac
tices. 79 Most security surveys and evaluations are de
signed to review these installation dependent vulnera
bilities and postulate countermeasures accordingly.84,102

Adequate cost-effective protection against data
security threats is uncommon. Usually the implemen
tation of computer security is given low priority. It
has suffered from inadequate attention and analysis,
with too many existing measures lacking flexibility,
consistency, completeness and redundancy. These at
tributes are all necessary in order to achieve protection
that works when it is supposed to. One-hundred per
cent security or reliability is never possible. What is
needed is a set of security measures that take into
account the failures, errors, omissions and vulnerabili
ties of any given environment.23 ,104

Ris k analysis

Risk analysis is the term applied to the systematic
quantification of threats, loss exposures and counter
measure benefits. 20 The ingredients of a risk analysis
are the postulation of threats and their probability, the
calculation of loss exposures, including degraded pro
ductivity, usually on an annualized basis. It is im
portant not to ignore the very low probability, high
loss events that occur so infrequently that the annual
loss potential appears negligible. A high loss exposure,
regardless of the probability, should be evaluated care
fully. In any event, the apparent simplicity is mislead
ing. It is not easy to quantify all the potential losses,
to postulate all the threats or to estimate their prob
ability. It is also a complex and time-consuming task,
which accounts for the relatively few completed risk
analyses to date.

OPERATIONAL COMPUTER SECURITY

Computer systems are generally not designed with
security as a primary objective.18 Generally, the large
main-frame manufacturers claim that users have been

slow to request security. Current research effort by
independent sources and manufacturers alike indicate
that the next generation of computers will achieve
adequate, measurable and certifiable protection in
hard'\vare and software. 111

Much protection for computer systems can be im
plemented outside of the computer hardware and sys
tem software. Managers of computer installations have
always been concerned with the problems of system
integrity, processing availability and security. For
them, physical security, backup and administrative
controls are highly relevant.

Physical security

Physical security has been subjected to study and
implementation long before the arrival of computers.
Implementation of physical access controls to computer
facilities represents a generally agreed first step in
achieving threat protection. The reason is that many
threats, especially of a human nature, can be reduced
by limiting access.28

,131 To deal with the threat of fire,
utility unreliability and environmental disturbances,
numerous control and monitoring systems have been
devised. All should be considered in the context of the
overall DP security plan, even though responsibility
for their implementation may be elsewhere in the
organization.

Backup and recovery

Recovery planning to ease the pain if a disaster were
to strike is important. 29 The objective is to assess the
capability of the organization to respond immediately,
and ensure that supplies, data files, programs, docu
mentation and equipment are available off-site. The
contingency planning must be of sufficient detail so
that in case of disaster, all the elements can be pulled
together in order to resume operations in as short a
time as possible.117

Administrative controls

The administrative burden of proceduralizing and
formalizing a security program is generally underesti
mated. It takes great clerical resources to ensure
adequate maintenance of a selective access program,
whether it be selective authorization to data files or
physical areas. Other administrative aspects include
the development and implementation of security poli
cies, guidelines, standards and procedures. Again,
these functions may be centralized or decentralized,
but stand a greater chance of success if the latter.39

Security in recent years has been a major concern of
computer operations groups. It is here that the orga
nization can channel resources most effectively to deal
with the lack of security in operating systems or in

Comput.er Secudty 55

application system design. It is a necessary but
not sufficient condition for providing true computer
security.21 One of the best guides for information about
secure operating practices is the System Review Man
ual on Security~ published by AFIPS.102 Other guid
ance can be found in the more exhaustive of
the many checklists and guidebooks on computer
security. 44,61,79,84,87,92

Audit

Audit has been defined as "an independent and ob
jective examination of the information system and its
use (including organizational responsibilities) into:

the adequacy of controls, levels of risks, expo
sures and compliance with standards and
procedures
the adequacy and effectiveness of system con
trols versus dishonesty, inefficiency and se
curity vulnerabilities."18

Independent and objective are the key words. Whether
or not an auditor's objective is the detection of fraud
in computer systems, his role is certainly one of re
viewing the adequacy of system security. Many CPA
firms have finally recognized their unique role in se
curity assurance.83

.
ll6 Some critics say their attention

is still inadequate and not yet relevant. no Suffice to say
that computer systems need auditing, both internal and
external. It is not possible to even consider auditing
"around the computer" because of the risks involved.
Given the nature of computer related threats and
vulnerabilities, the traditional independence and in
quisitiveness of the audit profession and the require
ment for independent assessment of controls, it is
logical that much computer security activity will be a
part of the auditor's domain.26

TECHNICAL ELEMENTS

Even though the first line of defense is to rely on
secure operational practices and physical security, the
elements of system design have always intrigued
computer security professionals. Obviously things can
go wrong with hardware and software. Data integrity,
encryption and security surveillance must be con
sidered in any complete computer security program.
Understanding of these elements usually requires a
person well-versed in systems programming and appli
cation system design. That the skills required in this
area are completely different (and perhaps incom
patible) with the skills required for handling opera
tional security problems has not been well identified
in the literature. In addition, no present commercially
available operating system is immune from penetra
tion, and so the prevalent attitude is that it is futile to

56 National Computer Conference, 1976

attempt to provide protection against the determined
technical penetrator. However, much research and
vendor effort is being devoted to the appropriate tech
nical safeguards in operating systems.1l1

I dentijication

Positive identification of people, devices, programs,
systems and processes is clearly a requirement for ade
quate security. Holding a person accountable for his
actions is one of the first principles in good design.
This requires certain knowledge that he is who he says
he is. There are three approaches to personal identi
fication, (1) identification based on passwords (2) on
credit card technology and (3) on personal character
istics of the requestor. Passwords are the most com
mon method, but they suffer from some serious inade
quacies.66 They should be random in nature and of
sufficient length to avoid compromise.6 The use of
credit cards, usually with a magnetically encoded
stripe, is achieving great popularity, especially in re
gard to Electronic Funds Transfer Systems. This
approach makes sense if the cards are controlled, used
in conjunction with a unique personal identifier (PIN
number) and if the system is made aware of lost cards
so that casual retrieval of a card will not be an open
invitation to access. Identification based on personal
characteristics, such as voiceprint or fingerprints is
still not a commercially popular methodology, but
offers future promise.38 Identification not only relates
to personnel access, but also to other system entities.
Security objects can be people, terminals groups of
people (cliques), programs, terminals, data communi
cations devices or segments of virtual memory.85 Then
one can specify restrictions based on a number of
parameters such as the characteristics of the requestor
(name, terminal, program, etc.) content of data (all
salaries over $30,000), context of data (association of
college grades, number of parking tickets and credit
rating) or one can use procedures (formularies) based
on the nature of the situation.67

Authorization

Once a system resource or person is identified, the
problem of access of the identified subject becomes an
important concern. Authorization refers to the estab
lishment of allowable interactions among system
elements.52

,59 The traditional concept of authorization
in system design presupposes that any system entity
automatically is authorized access to any other system
entity unles specifically prohibited. The secure concept
of system design takes the opposite view. The con
cept of "least privilege" holds; namely that any system
entity is prohibited from access to another system
entity unless specifically authorized. For example,
there is no need for a peripheral allocator to be able to

control or even have access to user data bases or other
elements of the operating system. It should have
knowledge of only those resources necessary for allo
cation of devices to jobs.Iil

The concept of an access matrix espoused by Con
way, et a}36 appears to be the easiest way to implement
access control, but the implementation is not clean.59
There are a number of choices that one can make in
defining the rules of access. For example, what level or
degree of privilege should be permitted? Are we talk
ing about control of access to files, records, elements
within records or specific hardware or software ele
ments of the computer system ?52,67,72

Much of the early work in authorization technology
is the result of research activities.35,42,5~ The academic
environment has fostered some good studies5;),59 which
have led to some actual efforts at implementation.
Work at MITRE and the US Air Force on security
kernels (provably small security reference monitors) 86

at Stanford Research Institute on proofs of program
correctness/I at System Development Corporation for
the DOD community,128 at MIT Under Project MACll2
and at computer system manufacturers,52,54 has led to
actual demonstration of computer and communications
systems with security as a prime design requirement.
An excellent but dated paper by Saltzer summarizes
current (as of early 1975) research and development
efforts. 111

Integrity

Obviously, things can go wrong with hardware and
software. Data can be (and frequently is) inconsistent
or unreliable. Data integrity interfaces with computer
security at almost every point. In fact, many observers
see the two concepts as being nearly synonymous. 105
A high integrity operating system can by its nature
provide security against unauthorized use of system
resources. System integrity is the condition of proper
and predictable operation of the total system, including
hardware, software and human elements. It includes
the physical and operational security mechanisms in
place.

Part of the integrity solution lies in providing an
operating system that does not treat every operation as
"benevolent," but in fact assumes that users are going
to attempt to get into supervisor state, and are going
to overreach the limits of the software design. Other
corrective elements can be found in attempts to en
hance the reliability and availability of applications.133

System audit trails

System surveillance, measurement and auditing are
critical elements in providing the technical base for
adequate security and integrity. The effectiveness and
operability of the entire system, especially the protec-

tion mechanisms, must be continually scrutinized and
measured. Management must be assured that the
protection is in place and effective. Management must
also be able to detect and to respond to events that
constitute system security threats. Many of the same
mechanisms used for performance measurement also
can be used for monitoring of the protection mecha
nisms and the integrity of the entire system. A
properly functioning audit mechanism should allow

OPEN, LOGON, etc) to trigger an audit trai}.32 The
interfacing of system measurement and surveillance
activity with the auditor is the subject of much activity
and researchY9

CONCLUSION

As of early 1976, systems are in use which provide a
high degree of computer security and integrity, and
may provide the basis for systems accreditation. The
MULTICS project at MIT has led to commercial mar
keting of the system by Honeywell and a multi-level
security enhancement by. MITRE and the USAF. 112

The General Electric Mark III® Service has long been
known for its good security. Other operating sys
tems have been designed with security as an objec
tive,53,8G,9.1.10G,113 and the efforts of IBM and Honeywell
have been previously mentioned. Current research
directions are outlined in the paper by Saltzer111 and
should see commercial reality sometime in the next few
years. A wareness of the risks is being fostered by
numerous seminars and conferences. Large organiza
tions, both commercial and government, are funding
the position of systems security officer or computer
security manager. An association, the Computer
Security Institute, has been formed to provide informa
tion to, and give voice to the growing number of
specialists in the field.

Current state of the art would seem to allow quite
flexible and cost-effective security measures. But in
practice, protection is generally not elaborate, flexible
or impenetrable.3' As a result, most safeguards are
imposed "after the fact", through a mixture of man
agerial controls and physical security. This type of
control is largely ineffective, due to inconsistencies,
lack of proper redundancy or incompleteness. It ap
pears that this will be the case, even after computer
systems come provided with flexible and effective
protection mechanisms.

In 1969, Lance Hoffman said that much research is
needed to design security controls and to evaluate
computer access control methods.66 Nothing has
changed to alter this. When designers and imple
mentors agree on the needs, and the computer and
software providers supply the secure methods to use
their products, it is still up to the user to provide the
proper environment, the procedures and the manage-

Computer Security 57

ment climate to implement the principles of "least
privilege," compartmentalization, redundancy in con
trols and personnel awareness that are the necessary
first step in provision of security, privacy protection
and system integrity. Only then, shall we realize the
goals of simple, economic, functionally capable and
modular protection mechanisms.114

In conclusion, it is important to realize that we are
talking about a complex technology, with many inter
faces. 124 Because of the great need, the next few yean;
should see a continued broadening of interest, the
forcing of computer security protection because of
privacy legislation, awareness of the economic conse
quences of security deficiences, increased risk manage
ment efforts by computer system implementors and
increasing government regulation of the data process
ing industry.

COMPUTER SECURITY BIBLIOGRAPHY

1. Abbott, Robert P. et aI, A Bibliography on Computer
Operating Systems SeC""('rity, Lawrence Livermore Labora
tory, University of California, The RISOS Project, Report
UCRL-51555, April 1974. Technically oriented bibliog
raphy of key articles and papers relating to internal pro
tection for computer systems.

2. Allen, Brandt, "Danger Ahead-Safeguard Your Com
puter," Harvard Business Review, November-December
1968. One of the early, well publicized articles on com
puter security. Helped achieve an awareness of physical
security requirements.

3. Allen, Brandt, "Embezzler's Guide to the Computer,"
Harvard Business Review, July-August, 1975. The author
talks directly to the would-be embezzler and cautions him
not to be concerned about getting caught. The real big
embezzlement schemes are still vwrking and the perpetra
tors are not being caught. Shows how to defraud through
manipUlation of payroll, accounts payables, inventory,
shipping documents and accounts receivable records that
are maintained in computers.

4. AICPA, Audits of Service-Center Produced Records,
American Institute of Certified Public Accountants, Audit
ing Standards Division, New York, 1974. This is a guide
for Certified Public Accountants for their use in examining
and reporting on the financial statements of clients whose
records are produced by a computer service center or time
sharing firm. It is the basis for third-party audit reviews
of such firms, and is oriented to'ward security and controls.

5. Anderson, James P., Computer Security Technology Plan
ning Study, USAF Electronic Systems Division (MCIT),
ESD-TR-73-51, October 1972. The "classic" study of
computer security requirements in the later 1970's,

6. Anderson, James P., "Information Security in a Multi-User
Computer Environment," In Ad'vances in Computers, Vol.
12, 1972, Morris Rubinoff, Editor, Academic Press, New
York. Stresses the technical problems and prospects for
protecting data or infol1nation in multi-user computer
environments. Shows how it is possible and profitable to
penetrate systems for purposes of manipulation or un
authorized viewing.

7. Baran, Paul, On Distributed Communications: IX. Security
and TarnpeT-Free Considerations, Rand RM 3765, August
1964. An unclassified discussion of cryptography: It an
ticipates the distributed data network exemplified by the
ARPA net. It also anticipates the need for secure com
munications links.

58 National Computer Conference, 1976

8. Bates, William S., "Security of Computer-Based Informa
tion Systems," Datamation, May 1970, pp. 60-65. A survey
article, written by a Marine captain.

9. Beardsley, Charles W., "Is Your Computer Insecure?"
IEEE Spectrum, January 1972. A survey article that
updates the earlier work of Lance Hoffman.

10. Berg, John L. (Editor), Exploring Privacy and Data
Security CoS'ts-A Summary of a Workshop, U. S. Dept.
of Commerce, National Bureau of Standards, NBS Tech
nical Note 876, August 1975. On 2/20/75 nine informed
DP professionals were invited to NBS to discuss the costs
of implementing privacy legislation. This is an edited
summary of those discussions.

11. Bergart, J. F. and Marvin Denicoff and David K. Hsiao,
An Annotated and Cross-Referenced Bibliography on Com
puter Security and Access Control in Computer Systems,
Ohio State University, Computer and Information, Science
Research Center Report OSU-CISRC-TR-72-12, November
1971.

12. Bigelow, Robert P., "Legal and Security Issues Posed by
Computer Utilities," Harvard Business Review, Vol. 43,
September-October 1967, pp. 150-161.

13. Bigelow, Robert P., "The Privacy Act of 1974," The Prac
tical Lawyer, Vol. 21, #6, September 1, 1975. Covers the
1974 Privacy Act in some detail, and shows the effect on
computerized personal information systems.

14. Bingham, H. W., Security Techniques for EDP of Multi
Level Classified Information, RADC-TR-65-415, December
1, 1965. A classic study that predates much of the efforts
in authorization technology. This was a study of military
intelligence security control techniques for the Burroughs
D825. Hardware and software techniques currently under
study are explained in great detail.

15. Bisbey, Richard L. II and Gerald J. Popek, "Encapsula
tion: An Approach to Operating System Security," Pro
ceedings, 1973 ACM Conference, San Diego, California,
also, AD-771-758, October 1973, ARPA. Encapsulation is
the removal of access controls from the host computer, and
the placing of a mini-computer-based access control system
at the peripheral interfaces. This is a logical extension of
the hypervisor, or virtual machine monitor. It is one
solution to problems of security in fourth generation com
puter architecture.

16. Bjork, L. A. and C. T. Davies, Jr., Technical Report: The
Semantics of the Preservation and Recovery of Integrity
in a Data System, International Business Machines, Inc.,
Systems Development Division, TR-02.540, December 1972,
also in Proceedings, SHARE Conference, November 1973.
Discusses a unified view of data base recovery mechanisms,
and proposes a set of concepts and principles revolving
around spheres of control.

17. Branstad, Dennis K., "Security Aspects of Computer N et
works," Proceedings, AIAA Computer N~twork Conference,
Huntsville, Alabama, April 1973. Discusses the relevant
issues of communications protocol, switching techniques
and protection techniques in relation to design of secure
computer/communications networks.

18. Branstad, Dennis K. and Susan K. Reed (editors), Con
trolled A_ccessibility Workshop Report, US Department of
Commerce, National Bureau of Standards, NBS Technical
Note 827, May 1974. Presents the results of a three day
workshop in San Diego, sponsored by NBS and ACM.
About 75 computer security professionals were invited,
and discussed at length the technical and managerial issues
of protection in computer systems. The results are sig
nificant, because much developmental work since then can
be traced to the workshop.

19. Branstad, Dennis K., "Encryption Protection in Computer
Data Communications," Proceedings: Fourth Data Com
munications Conference, Quebec City, Canada, October

1975, IEEE, New York. Encryption can be an effective
process for protecting data during transmission. The
degree of protection depends on the encryption algorithm,
the implementation of the algorithm, and the associated
administrative procedures. Additional security require
ments of user identification, access authorization and audit
ing may be satisfied by combining encryption technology
with a network access control machine (computer). This
paper presents the proposed Federal encryption standard
and the security requirements satisfied by proper use of
the algorithm. It also discusses implementation.

20. Brown, William (editor), Computer and Software Security,
AMR International, New York, 1971. This book contains
the essential contents of the AMR Seminar on computer
security. Physical security, development of a computer
security plan, backup, legal, auditing, insurance, software
and cryptographic techniques are all covered with varying
levels of competency and detail. Included is a key-word-in
context bibliography covering citations up to mid-1971.

21. Browne, Peter S., "Computer Security-A Survey," Data
Base, Quarterly Publication of ACM Special Interest Group
on Business Data Processing, Fall 1972. An annotated
bibliography of over 100 items presents the 'state of the
art' as of 1972. It makes reference to some little publicized
material, and shows the importance of then classified
Department of Defense activity in the field.

22. Browne, Peter S. and Dennis D. Steinauer, A Model for
Access Control, 1971 ACM/SIGFIDET Workshop on Data
Description, Access and Control, San Diego, Nov. 11-12,
1971. Authorization is discussed from the standpoint of
requirements for access to given objects. A conceptual
model, based on the work of Weissman is developed.

23. Browne, Peter S., "Computer Security-A Risk Manage
ment Approach," Security Register, December 1973. Over
views the problems of security, shows how to systematically
approach a computer security program, and calls for a
risk management approach.

24. Browne, Peter S., Security in Compwter Networks, NBS
Special Publication 404, U. S. Dept. of Commerce, National
Bureau of Standards, 1974. Also in Data Communications
User, January 1975. Makes the point that security in
networks is an extension of security in multi-user com
puter systems. Physical and administrative controls come
first, followed by the technical requirements of hardware,
software and encryption security controls.

25. Buskin, Arthur A., A Framework for Computer Security,
SDC Technical Memorandum, TM-WD-5733, System De
velopment Corporation, McLean, Virginia, June 1975. Pre
sents an overview of the computer security problem and
an interrelated set of axioms and principles of computer
security as the beginning of a top-down, structured ap
proach.

26. Canadian Institute of Chartered Accountants, Computer
Control Guidelines, Canadian Institute of Chartered Ac
countants, 1970. An early attempt to define controls in
computer systems for auditor guidelines.

27. Canning, Richard G., "Data Security in the CDB," EDP
Analyzer, May 1970.

28. Canning, Richard G., "Security of the Computer Center,"
EDP Analyzer, December 1971.

29. Canning, Richard G., "Computer Security: Backup and
Recovery Methods," EDP Analyzer, January 1972.

30. Canning, Richard G., "Protecting Valuable Data," EDP
Analyzer, December 1973, Vol. 11, No. 12. EDP Analyzer,
January 1974, Vol. 12, #1.

31. Canning, Richard G., "Computer Fraud and Embezzle
ment," EDP Analyzer, April 1975, Vol. 13, #4. These
issues, written by one of the world's experts in business

data processing, are each a concise yet complete exposition
of current thinking on each topic.

32. Chastain, Dennis R., "Security vs. Performance," Data
mation, November 1973. Scrambling devices, file access
validation and subversion tests are all part of a security
enviromnent. The author discusses his measurement efforts
at the Defense Intelligence Agency regarding the overhead
of these mechanisms.

33. Clements, Don and Lance J. Hoffman, C01nputer Assisted
System Design, Electronics Research Laboratory, College
of Engineering, Univ. of California, Berkeley, CA, ERL
J\I468 , November 1974. Describes a computer softv~Tare

package that partially automates the selection of security
techniques applicable to a particular system design.

34. Computer Security Research Group, Computer Security
Handbook, Computer Security Research Group, Douglas B.
Hoyt, Chairman, Macmillan and Company, Inc., New York,
October 1973. Provides detailed information on manage
ment's role in the accountability and reporting, hardware/
software controls, computer risk insurance, auditing com
puterized systems and outside contract services. The Com
puter Research Group was sponsored by the Atlantic and
New Jersey Chapters of Association for Systems Manage
ment. Authors are Arthur Hutt, Belden Menkus, Eugene
Redmond, Seymour Bosworth, Ralph Jones, Herbert Dick
son, Robert Daley, Dick Brandon, Joseph Wasserman,
Theodore Christiansen, Guy Migliaccio and Stephen Falb.

35. Conn, Richard W. and Richard H. Yamamoto, A Model
Highlighting the Security of Operating Systems, RISOS
Project, Lawrence Livermore Laboratory, Proceedings,
ACM 1974 Conference, San Diego, CA. Penetration of
computer systems have led several authors to identify
generic weaknesses in operating systems, but have not led
to formal methods of analysis. An approach showing
promise in identifying trouble spots, as ''lell as charac
terizing existing operating systems in a more general
sense, lies in forming graph models in which nodes are
program modules or data structures, and arcs are access
or shared resource synchronization paths. A given system
should be capable of reduction to a graph of this sort by
appropriate analysis of its load modules.

36. Conway, R. W., "On the Implementation of Security
Measures In Information Systems," Communications of the
ACM, Vol. 15, No.4, April 1972. Excellent presentation
of those concepts that are germane to authorization and
efficiency. All authorization does not have to be accom
plished at run-time. To the extent that privacy is data
independent, the access function is inexpensive to imple
ment.

37. Conway, R. W., VV. L. Maxwell, and H. L. Morgan, "Selec
tive Security Capabilities in ASAP-A File Management
System," 1972 Spring Joint Computer Conference, p. 1181,
May 1972. Shows implementation of principles described
in the previous article.

38. Cotton, Ira 'V. and Paul Meissner, "Approaches to Con
trolling Personal Access to Computer Terminals," Pro
ceedings of the 1975 Symposium, Computer Networks,
Trends and Applications, National Bureau of Standards
Institute for Computer Science and Technology. Considers
a number of approaches to protection against unauthorized
access to computers. Surveys the current state of the art
of personal identification. Explains how devices can be
compared, and introduces criteria that can be used in
personal identification system evaluation and/or compari
son.

39. Courtney, Robert H. Jr., Forty Commonly Found Deficien
cies in the Security of Data Processing Activities, IBM,
June 1971. A common sense primer to management, out
lining frequently overlooked security deficiencies.

40. Courtney Robert H., Jr., Security Risk Assessment in

Computer Security 59

Electronic Data Processing Systems. National Bureau of
Standards, Task Group 15, October 1975. An approach
toward determination of risk to data processing is postu
lated. It shows how to quantify the potential benefits
afforded by given security protection for comparison with
costs.

41. Davies, C. T., Jr., A Recovery/Integrity Architecture for
a Data System, IBM, Systems Development Division, May
1972. Discusses concepts of integrity as related to operat
ing system and data base architecture.

42. Dean, Albert L., Jr., "Data Privacy and Integrity Require
ments for On-Line Data Management Systems," 1971
ACM-SICFIDET Workshop on Data Description, Access
and Control, Nov. 1971, San Diego, CA. Identifies security
requirements for an on-line data base management sys
tem. Concepts were implemented in work by the author
for the US government.

43. Denning, Peter J. (Chairman), An Undergraduate Course
on Operating Systems Principles (Module 6-Protection) ,
Interim Report of the COSINE Committee of the National
Academy of Engineering (Commission on Education), June
1971. Embodies the principles of protection as discussed
in the paper by Graham and Denning.

44. Department of Defense, ADP Security Manual: Tech
niques and Procedures for Implementing, Deactivating,
Testing and Evaluating Secure Resource-Sharing ADP
Systems; also see Industrial Security Manual f01' Safe
guarding Classified Information, DOD 5200.28M, January
1973 and DOD 5220.22M, April 1970, order from Super
intendent of Documents, US Government Printing Office,
Washington, DC 20402. These two manuals provide very
helpful guidance for non-DOD government and commercial
organizations in defining and implementing physical and
data processing security programs. Even though the con
cepts of the DOD classification of information hierarchy
are pervasive, the methods, ideas and procedures are
valuable in any environment.

45. Chadwick, H. A., "Burning Down the Data Center," Data
mation, Vol. 21, #10, October 1975, pp. 60-64. A well
written article that discusses DP insurance from the point
of view of the data processing expert . .complex insurance
related terms and concepts are clearly explained. Guidance
is given as to what insurance coverage is needed, why
various forms should be considered and who can provide
insurance services to DP installers.

46. Enger, I. Sador, Guy T. Merriman and Ann L. Bussemy,
Automatic Security Classification Study, RADC TR 67-472,
October 1967. Report of an investigation of the feasibility
of using computers to assign the government security clas
sification to textual material. The "correctness" was only
54 r;{ but the techniques used did show promise for further
research.

47. Federal Fire Council, Recommended Practices No. I-Fire
Protection for Essential Electronic Equipment, March 1962,
Clearinghouse for Federal Scientific and Technical infor
mation. Discusses practices in dealing with the threat of
fire. Is the most thorough and concrete guidance to date<

48. Feistel, H., Cryptographic Coding for Data Bank Privacy,
IBM Research Report, RC-2827, March 1970, also in Scien
tific American as "Cryptology and Computer Privacy," May
1973. Discusses concepts of cryptography that eventually
led to the development of an IBM pilot project and the
Federal encryption standard.

49. Fenwick, vVilliam A., "Marketing EDP Services: Review
ing the Legal Considerations," Computers and Automation,
Kovember 1971. A misnomer. The author is really talking
about security measures to protect the confidentiality of
data.

50. FIPS PUB-39 Gl08SaJ'Y of Terminology for Computer Sys
tems Security) Federal Information Processing Standards

60 National Computer Conference, 1976

Task Group 15: Computer Systems Security, National
Bureau of Standards, US Department of Commerce, Wash
ington, DC. September, 1975. A glossary of 70 terms re
lating solely to the concepts of privacy and computer se
curity~ The t~rms were exacted from many sources and
renned through the joint efforts of FIPS Task Group 15,
which was established in 1975 to develop standards and
guidelines in computer systems security. Emphasis is on
technical terms that relate to computer security architec
ture and communications security.

51. Foster, Caxton C., "Data Banks-A Position Paper," Com
puters and Automation, March 1971, p. 28. A summary of
what can go wrong (machine failure, logical errors, eaves
dropping, wiretapping) and what to do about it.

52. Friedman, T. D., "The Authorization Problem in Shared
Files," IBM Systems Journal #4, 1970, pp. 258-280. The
problem of sharing information yet providing proper au
thorization is reviewed. A model of a secured file system
provides the basis for much current work in the field.
Friedman rejects the hierarchial approach to authorization
in favor of compartments or categorization of access rights.

53. Gaines, R. Stockton, An Operating System Based on the
Concept of a Supervisory Computer," Communications of
the ACM, Vol. 15, No.3, March 1972. Concepts of protec
tion are outlined.

54. Girsdansky, M. B., "Cryptology, the Computer, and Data
Privacy," Computers and Automation, April 1972. Also see
Data Privacy: Cryptology and the Computer at IBM Re
search, IBM Research Reports, Vol. 7, #4, 1971. An inter
esting study on what researchers are doing to devise 'un
breakable' codes and how many classical approaches to
encipherment are easily compromised. The paper discusses
"Lucifer," a hardware encryption device.

55. Glaser, E. L., "A Brief Description of Privacy Measures
in the MULTICS Operating System," SJCC 1967, Vol. 30,
pp. 303-304. Must reading for the student of protection
theory.

56. GMIS, An Administrative Guideline: Security and Confi
dentiality for Government Data Centers, GMIS, December
1973. A report for state and local government members of
GMIS that views computer security from an organizational
viewpoint, and structures guidance on legislation, adminis
trative control, personnel security, data flow security, phys
ical security, hardware/software protection and confiden
tiality codes of ethics.

57. Goldstein, Robert C., "The Cost of Privacy, Datamation,
Vol. 21, #10, October 1975, pp. 65-71, also see PhD disser
tation, published by Honeywell Information Systems, Brigh
ton, MA, 1975. Discusses implementation requirements for
operators of personnel data systems in order to comply
with privacy legislation. Physical security and clerical
costs appear to be high-cost categories. Some possibilities
for reducing the impact of privacy legislation are outlined.

58. Goode, George E. "Security for Teleprinters and Data
Communications," Data Management, January 1973. De
cribes cryptographic methods for securing communications.

59. Graham, G. Scott and Peter J. Denning, "Protection
Principles and Practice," 1972 Spring Joint C01nputer
Conference, p. 417, May 1972. Graham and Denning have
analyzed most existing systems and find they fit the pro
tection model that is described. The work draws heavily
on theories of the "Princeton" school.

60. Graham, Robert M., "Protection in an Information Proces
sing Utility," CACM, Vol. 11, #5. May 1968, p. 368.
Describes the "rings of protection" in Multics.

61. Guide International, Data Center Security Guidelines,
Guide Data Center Security Project-GSD 28-070, Febru
ary 1972. Provides a set of guidelines for implementation
and management of security in a data processing opera-

tions environment. Developed from a dedicated project at
GUIDE, the major IBM user group.

62. GUIDE SHARE, Data Base Management System Require
ments, Joint GUIDE-SHARE Data Base Requirements
Group, November 11, 1970. An important document that
outlines idealized requirements for data base management.
Security and integrity playa dominant role.

63. Held, Gilbert, "Locking Intruders Out of a Network,"
Data Communications, January-February, 1975, pp. 27-31.
The author favors a password scheme for controlling access
to network components. Security is gained through use of
nonprinting characters. Interesting statistics are presented
on compromise possibilities utilizing a minicomputer and
repeated attempts to exhaustively enumerate possible pass
word combinations.

64. Healy, R. J., Emergency and Disaster Planning, New York,
Wiley Press, 1969. An industrial security expert writes on
the principles of emergency planning.

65. Hemphill, Charles F., Jr., Security for Business and In
dustry, Homewood, Illinois, Dow Jones, Irwin, Inc. 1971.
This book has very little to do with EDP (only one chapter
talks about computer room safeguards) but the principles
of physical security are worth reading.

66. Hoffman, Lance J., "Computers and Privacy: A Survey,"
Computing Surveys, Vol. 1, #2, June 1969. The "classic"
survey on this subject.

67. Hoffman, Lance J., "The Formulary Model for Flexible
Privacy and Access Controls," FJCC, November 1971,
Las Vegas, Nevada. Presents a model for interfacing user
access controls and data by means of coded procedure called
formularies.

68. Hoffman, Lance J. and W. F. Miller, "Getting a Personal
Dossier From a Statistical Data Bank," Datamation, May
1970. An interesting example of how to input information
by indirect means from innocent files.

69. Hoffman, Lance J. (editor), Security and Privacy in In
formation Systems, Melville Publishing Company, Los
Angeles, California, 1973. The book developed from a
collection of readings used in a graduate course on the
technological methods of providing security in computer
systems.

70. Hollingsworth, Dennis, Steve Glaseman and Martha Hop
wood, Security Test and Evaluation Tools: An Approach to
Operating System Security Analysis, Rand Corporation,
p. 5298, September 1974. As of this paper, the techniques
for determining the security characteristics of system
software are primitive, based generally upon the notion of
penetration testing, and manual examination of system
source code. The paper suggests ways of developing and
refining the tools of operating system security analysis.

71. Honeywell Information Systems, "Computer Security and
Privacy," Symposium Proceedings, April 1975. A sym
posium sponsored by Honeywell Information Systems. In
cludes 20 papers covering security approaches, require
ments, technical solutions, and data center management.

72. Hsiao, David K., A File System for a Problem Solving
Facility, PhD dissertation, University of Pennsylvania,
1968, published by NTIS, Springfield, VA, AD-671826.
Hsiao discusses the use of an "authority item" which allows
protection below the file level. The system is based on a
multilist file structure.

73. Hunt, Kathleen and Rein Turn, Privacy and Security in
Databank Systems: An Annotated Bibliography, 1970-1973,
Rand Corporation, Santa Monica, CA, R-1351-NSF, March
1973.

74. International Business Machines, Data Security and Data
Processing, (Volumes 1-6) IBM, Data Processing Division,
June 1974. Presents the findings of the May 1972 data
study project at MIT, TRW Systems, State of Illinois and
IBM's Federal Systems Division. The IBM Resource

Security System (RSS) was evaluated. Results of cost
studies and implementation measurements as well as
general papers on the subject are included in this un
evenly presented, but valuable collection.

75. International Business Machines, Inc., The Considerations
of Data Secu.rity in a Computer En'l)ironment, IBM, Data
Processing Division, 1968. A widely distributed monograph
on data security: it helped bring attention to some of the
needs and the problems.

76. International Business Machines, Inc., The Considerations
of Physical Security in a Computer Environment, IBM,
Data Processing Di""isioTI, 1972 . .J.

11
1. companion to the data

security monograph of 1968; it draws largely upon the
work and experiences of Robert Courtney.

77. International Business Machines, Inc., The Fire and After
the Fire, IBM, Data Processing Division, G520-2741-0,
January 1973. A marketing oriented brochure that ex
plains how IBM averted a major disaster by its imple
mentation of a backup and recovery plan following a fire
at their Program Information Department facility.

78. International Business Machines, Inc., Proceedings: IBM
Data Security Forum, Denver, Co., September 1974. IBM,
Data Processing Division, G520-2965-0, 1974. Contains a
number of papers on data security related topics, including
risk management, hardware protection, and operational
controls to enhance data security.

79. Jacobson, Robert V., Peter S. Browne and William F.
Brown (editors), Guidelines for Automatic Data Proces
sing Physical Security and Risk Management, US Depart
ment of Commerce, ~ ational Bureau of Standards, FIPS
PUB 31, June 1974. Basic reference guidelines for imple
mentation of physical security and risk management.
Reference is made to numerous sources of information that
will aid an installation manager in defining security re
quirements and making essential security decisions.

80. Jacobson, Robert V., "Cornerstones for Computer Se
curity," Security Register, Vol. 1, No.2, January-February,
1974. Discusses some of the fallacies of the "amulet"
approach towards computer security, as traditionally prac
ticed. Risk analysis, quality control, contingency planning
and independent audit are postUlated as the four corner
stones of computer security.

81. Kahn, David, The Code Breakers, The MacMillan Company,
New York, 1967. The classic book for those interested in
cryptology and cryptanalysis.

82. Karush, A. D. and Larson, R. H., Analysis and Measure
ment of the Audit Recording Function, System Develop
ment Corp., TM-4435, August 1969. Early research in
system audit mechanisms.

83. Krauss, Leonard I., Administering and Controlling the
Company Data Processing Function, Prentice Hall, Engle
wood Cliffs, NJ, 1969.

84. Krauss, Leonard I., SAFE-Audit and Field Evaluation
for Computer Facilities and Infornwtion Systems, Fire
brand, Krauss and Co. Inc., 1972. An extensive checklist
audit guide for a complete review of security and controls
in data processing facilities. Uses a weighted scoring that
attempts to quantitatively score the merit of controls
noted.

85. Lampson, Butler W., "Dynamic Protection Structures,"
Proceedings, 1969 Fall Joint Computer Conference, pp.
27-38. AFIPS Press, Montvale, NJ. Lampson's theory of
protection is a foundation for much modern day research
and application of protection in operating systems and
computer hardware.

86. Lipner, Steven, "A Minicomputer Security Control Sys
tem," Compcon 74, San Francisco, February 1974. Lipner
is a pioneer in espousing and developing a protected
hardware/software system based on the concept of a
"security kernel," a certifiably small, protected module

Computer Security 61

that itself is the authorization mechanism for other system
components.

87. Martin, James, Security, Accuracy and Pri'uacy in Com
puter Systems, Prentice-Hall, Englewood Cliffs, NJ, 1973.
To date, the most complete treatment on the subject of
computer security'.

88. Martin, James and Adrian Norman, The Computerized
Society, Prentice-Hall, Englewood Cliffs, NJ, 1970, pp.
481-498. Security and privacy are extensively treated in
this book which explores the effect of computers on society.

89_ Menkus, Belden, "Computer Security Needs a Common
Sense Approach," Administrative lvlanagement, March
1973. Discusses two aspects of comprehensive physical
security. The first step is to build security into the facility
by making it inconspicuous, installing access controls, and
providing basic environmental support. The second step
is to ensure integrity of processing through controls over
input and file access, and ensuring good facility operating
procedures.

90. MITRE Corporation, The Privacy Mandate-Planning for
Action, National Bureau of Standards and MITRE Corp.
Washington DC, August 1975. A summary of a workshop
sponsored by the publishing organizations to develop
recommendations for action in implementing privacy legis
lation. Four working panels covered the issues of indi
vidual privacy rights, institutional responsibilities, techno
logical implications and the economics of privacy. View
points of many interested organizations are also included.
Unfortunately, the proceedings do not capture the depth
of discussion that actually took place.

91. Molho, L. M., Hardware Aspects of Secure Computing,
Systel'V' l)evelopment Corporation, SP3453, December 1969
an "-roceedings, 1.970 SJCC, AFIPS Press, Montvale NJ.

92. National Bureau of Standards, Computer Security Guide
lines for Implementing the Privacy Act of 1974, Depart
ment of Commerce, National Bureau of Standards, FIPS
PUB 41, September 1975. Provides a set of guidelines for
the use of technical procedures for safeguarding personal
data in automated information systems. Covers physical
security procedures, information management practices and
computer system/network security controls.

93. National Fire Protection Association, Standards for the
Protection of Electronic Computer Systems, NFP A Stan
dard 75, May 1962. Covers fire detection and suppression
equipment requirements.

94. Neumann, Peter, "On the Design and Verification of a
Secure Operating System," Proceedings, 1974 National
Computer Conference, AFIPS Press, pp. 978-979. Neumann
of Stanford Research Institute, has been doing work for
government agencies and others in proving the correctness
of software, with ultimate security and protection impli
cations.

95. Noll, A. Michael, "The Interactions of Computers and
Privacy," Honeywell Computer Journal, Vol. 7, #3, 1973.
A survey of the existing relationship between computer
usage and the concepts of confidentiality, security and
privacy. Explores where new problems raised by technology
show gaps and inadequacies in laws. Covers computer
security threats, levels, costs and surveys the technological
aspects of computer security.

96. Notz, W. A. and J. L. Smith, An Experimental Application
of Cryptography to a Remotely Accessed Data System,
IBM Corp., RC 3508, August, 1971. Describes "Lucifer,"
a hard,vare encryption and decoding device attached to a
time-shared IBM 360/67.

97. Office of Emergency Preparedness, Disaster Preparedness,
Report to the Congress by Executive Office of the Presi
dent, Office of Emergency Preparedness, US Government
Printing Office, January 1972. A comprehensive study

62 National Computer Conference, 1976

useful for the data processing risk manager. Discusses and
quantifies risks due to floods, wind, fire, earthquakes, land
slides, volcanos, freezes and droughts.

98. Owens, Richard C. Jr., "Evaluation of Access Authoriza
tion Characteristics of Derived Data Sets," 1971 SIGFI
DET Workshop on Data Definition, Access and Control,
pp. 263-278, ACM, New York. Project MAC-TR89, July
1971, also NTIS AD-728036. The two papers by Owens
describe the access control for the MACAIMS Data Man
agement project at MIT. The concepts are quite sophisti
cated.

99. Palme, Jacob, "Software Security," Datamation, January
1974, Vol. 20, #1. Discusses the prevention of illegal access
to, modification of and interference with data. A general,
survey type article.

100. Parker, Donn B., Susan Nycum and S. Stephen Gura,
"Computer Abuse," Stanford Research Institute, Final
Report, NSF Grant GI-37226, Report NSF /RA/S-73-017,
November 1973. Describes results of a study of 148 cases
of computer abuse. Provides technical, legal, and social
perspectives on computer crime. The purpose of the re
port is to alert business and government users of the
seriousness, extent, and potentials of computer abuse as a
new and emerging social and technological problem.

101. Parker, Donn B. and Susan Nycum, "The New Criminal,"
Datamation, January 1974, Vol. 20, #1. Discusses the old
Trojan Horse program trick, and others that have netted
millions for enterprising, crooked data processing per
sonnel.

102. Patrick, Robert B. (editor), AFIPS System Review Manual
on Security, AFIPS Press, Montvale, NJ, 1974. The re
sults of a two year study under the direction of a com
mittee chaired by John Gosden of Equitable Life Insurance
Co. It consists of a set of guides for evaluation and a
series of checklists to aid in the review of system security.

103. Peters, Bernard, "Security Considerations in a Multi
programmed Computer System," Proceedings, Spring Joint
Computer Conference, Vol. 30, 1967, pp. 283-286. One of
the pioneering articles dealing with the issues of computer
security. Based on government agency work in the mid-
1960's.

104. Peterson, H. E. and Turn, Rein, "System Implications of
Information Privacy," Proceedings, Spring Joint Computer
Conference, Vol. 30, 1967, pp. 291-300. Another pioneering
work based on the technical implications of privacy.

105. Pfaff, Alfred M., Toward A Taxonomy of Computer Se
curity Requirements for Federal Agencies, Federal In
formation Processing Standards Task Group 15: Computer
System Security, National Bureau of Standards, US De
partment of Commerce, Washington, DC, September, 1975.
Computer security is defined as organized into the three
distinct aspects of processing integrity, data integrity and
data confidentiality. Security requirements are mapped to
particular security countermeasures, and a system for
rating the degree of compliance is proposed. A very useful
addition is the extraction of relevant portions of US Codes
(Public Law) relating to computer security.

106. Popek, Gerald J. and C. Kline, "Verifiable Secure Operat
ing System Software," Proceedings, 197 4- National Com
puter Conference. AFIPS Press, pp. 145-152. Popek's
work is very significant in that it provides much of the
basis for current research and experimentation in secure
operating systems.

107. Reed, Susan K. and Martha M. Gray, Controlled Accessi
bility Bibliography, US Department of Commerce, National
Bureau of Standards, NBS Technical Note 780, June 1973.
A Comprehensive, technically oriented bibliography pre
pared in conjunction with the San Diego Controlled Acces
sibility Workshop.

108. Reed, Irving S., The Application of Information Theory to

Prit'acy In Data Banks, Rand Corporation (NSF), R-1282-
NSF, May 1973. Covers theoretical, mathematical aspects
of information protection.

109. Renninger, Clark R. and Dennis K. Branstad (editors),
Go've'i"nnieni Luuk::s at Pri'vacy and Security in Cornpuier
Systems, US Department of Commerce, National Bureau
of Standards, NBS Technical Note 809, February, 1974.
Potential confrontations between society and technology
over problems of individual privacy and data confidentiality
can be defused by understanding and action. A conference
on privacy and security was held at NBS, November 19
and 20, 1973. A number of speakers provided statements
of governmental needs and problems. Also suggested was
a broad range of activities for satisfying the needs.

110. Renninger, Clark R. (Editor), Approaches to Privacy and
Security in Computer Systems, US Department of Com
merce, National Bureau of Standards, NBS Special Pub
lication 404, September, 1974. This publication summarizes
and contains the proceedings of a conference held at NBS
on March 4-5, 1974 to continue the dialog in search of
ways to protect confidential information in computer
systems. Proposals were presented for meeting govern
mental needs for safeguarding data confidentiality. Among
the proposals were the enactment of privacy legislation,
improved computer system architecture and access con
trols, information and security management guidelines and
the development of systematic, balanced approaches to
system security. A number of prominent computer, legal
and social professionals presented their views as to poten
tial solutions.

111. Saltzer, Jerome H., "Ongoing Research and Development on
Information Protection," Operating Systems Review, July
1974; also Proceedings, Computer Security and Privacy
Symposium, Honeywell Information Systems, April 1975.
A survey of current research in the technical solutions to
computer security.

112. Saltzer, Jerome H., "Protection and the Control of In
formation Sharing in MULTICS," Communications of the
ACM, Vol. 17, #7, July 1974. Describes the protection
mechanisms in the MULTICS system. These are some of
the most advanced in current implementation.

113. Saltzer, Jerome H. and Michael D. Schroeder, "The Pro
tection of Information in Computer Systems," Proceedings
of the IEEE, IEEE Computer Society, September 1975. A
thorough discussion of the technical aspects of providing
protection in computer systems. This is the most complete
and most valuable discussion of the concepts of protection
to date.

114. Schroeder, Michael D. and Jerome H. Saltzer, "A Hard
ware Architecture for Implementing Protection Rings,"
Proceedings, 3rd Annual ACM Symposium on Operating
Systems Principles, October 1971. Schroeder and Saltzer
have designed hardware for use on the MULTICS system.
It has found its eventual implementation on the Honeywell
6180. It allows efficient and flexible access authorization
to be implemented partially in hardware.

115. Shannon, C. E., Communications Theory of Secrecy Sys
tems, Bell Telephone System Technical Journal, October
1949, Vol. 28, #4, pp. 656-715. The theory of cryptology
has not been significantly improved since this landmark,
unclassified study was published.

116. Sorensen, J. L., "Common sense in computer Security,"
Journal of Systems Management, April 1972, pp. 12-14. A
hypothesis is made that computer security is nothing more
than rational decision making.

117. Stern, Ludwig, "Contingency Planning: Why? How? and
How Much?," Datamation, September 1974, Vol. 20, #9,
pp. 83-95. Discusses an approach to contingency planning
that has been implemented at a major corporation.

118. Turn, Rein, Privacy and Security in Personal Information,

The Rand Corporation, Santa Monica, CA, R-1044-NSF,
March 1974. This report presents the results of a National
Science Foundation research study on theoretical and
technical aspects of protection of personal infonnation in
databanks. The protection requirements and design of
protection is the key focus. The investigation led to the
establishment of classifications of systems and the sensi
tivity of personal information and the development of a
protector-intruder model.

119. Turn, Rein, Remarks on the Instrumentation of Databank
Systems For Data Security, The Rand Corporation, Santa
l\fonica, CA, P-5151, January, 1974. This paper discusses
the infonnation requirements of an active security subsys
tem as well as auditing and threat monitoring. It explores
ways of instrumenting a databank system for obtaining
this infonnation.

120. Turn, Rein and Norman Z. Shapiro, Privacy and Security
in Databank Systems: Measures of Effectiveness, Costs and
Protector-Intruder Interactions, The Rand Corporation,
Santa Monica, CA, P-4871, July 1972, also in Proceedings,
Fall Joint Computer Conference, 1972, AFIPS Press, Mont
vale, NJ. Introduces a model that attempts to systematicize
the process of measuring the "malicious" penetrator of
computer systems.

121. Van Tassel, Dennis, Compute?' Security Management,
Prentice-Hall, Inc., Englewood Cliffs, NJ, April 1972. One
of the first books to appear concerning computer security.
It is largely a collection of previous articles by the author
and a series of "horror stories."

122. Walter, K. G. et aI, Modeling the Security Interface,
Department of Computing and Infonnation Science, Case
Western Reserve University, Cleveland, Ohio, Report
#1158, August 1974. Presents developments in modeling a
security kernel.

123. Ware, Willis H., Computer Data Banks and Security Con
trols, The Rand Corporation, Santa Monica, CA, P-4329,
1970. A pioneering monograph by the dean of computer
security professionals.

124. Ware, Willis H., "Security and Privacy: Similarities and
Differences," Proceedings, Spring Joint Computer Confer
ence, Vol. 30, 1967, pp. 287-290. Along with the early
work by Brandt Allen and Joseph Wasserman, Dr. Ware
helped bring awareness of computer security to the atten
tion of management and data processing professionals
prior to 1970.

125. Wasserman, Joseph J., "Plugging the Leaks in Computer
Security," Harvard Business Review, September 1969,
pp. 119-129. One of the early and most thorough efforts to

Computer Security 63

provide a framework for operational controls in computer
systems.

126. Wassennan, Joseph J., "Selecting a Computer Audit Pack
age," Journal of Accountancy, April 1974. Explains a
methodology and approach toward audit package evalua
tion.

127. Weiss, Harold, "Computer Security: An Overview," Data
mation, Vol. 20, #1, January 1974. Even though computer
crime is increasing, fire, earthquakes and storms are
postUlated as the greater hazard to computer systems. Few
installations have taken even the simple steps toward
protection.

128. Weissman, Clark, "Security Controls in the ADEPT-50
Timesharing System," Proceedings, Fall Joint Computer
Conference, Vol. 35, 1969, pp. 119-133. Describes the
mechanisms used in implementing security in a large, data
management oriented Department of Defense computer
system.

129. Weissman, Clark, System Security Analysis/Certification
Methodology and Results, System Development Corpora
tion, Santa Monica, CA, SP-3728, October 1973. Presents
an approach toward system certification.

130. Weissman, Clark, Tradeoffs in Security System Design,
System Development Corporation, Santa Monica, CA, SP-
3548, September 1970, also in Data Management, April
1972. A very important paper that clearly presents the
issues of trade-off analysis in designing and implementing
protection.

131. Wessler, John, Edith Myers and W. David Gardner,
"Physical Security-Facts and Fancies," Datamation, July
1, 1971. Another survey article on physical security.

132. Westin, Alan F., Privacy and Freedom, Atheneum Press,
New York, NY, 1967. The earliest and one of the clearest
books on the subject.

133. vVinkler, Stanley and Lee Dannel', "Data Security in the
Computer Communication Environment," Computer, Vol
ume 7, No. 23, February 1974, IEEE. Describes security
concerns in multi-tenninal computer systems. Useful as an
introduction to the problems and the nature of network
security. Describes a number of possible implementations
of controlled access to data.

134. Yourdan, Edward, "Reliability of Real-Time Systems,"
Modern Data, January-June 1972. A six-part series that
thoroughly explores data integrity and reliability. Covered
are the different concepts of reliability, causes of system
failure, examples of failure and approaches to error
recovery.

Computer ahuse perpetrators and vuinerahilities
of computer systems

by DONN B. PARKER
Stanford Research Institnte
Menlo Park, California

Analysis of computer abuse experience is valuable in
threat and risk studies performed to develop appro
priate safeguards in computer use. A profile of com
puter abuse perpetrators has been developed on the
basis of interviews with 17 offenders involved in a to
tal of 15 cases. Common characteristics, occupations,
and modus operandi are documented and analyzed.
Computer systems' and user organizations' vulnerabili
ties that facilitated perpetrators' actions are also de
scribed, based on study of 375 reported cases of abuse.
Eight main vulnerable functions and nine main vul
nerable functional locations are identified and ranked
by incidence of occurrence. Each vulnerability is de
scribed by examples in the form of brief case descrip
tions. Finally, priorities for safeguards are deduced
from the results of the study.

INTRODUCTION

Computer abuse research has been conducted over the
past five years at Stanford Research Institute, sup
ported in part by the National Science Foundation
(Grants GI-37226 and GJ-44313). Computer abuse is
defined as any intentional act in which one or more vic
tims suffered or could have suffered a loss, and one or
more perpetrators made or could have made a gain.

The assessment of computer abuse and development
of a case file-which now contains information on
about 375 cases-are nov: sufficiently advanced to al
low analyses that can assist security planners and
EDP management. Two basic areas of concern are the
sources of threats-the computer abuse perpetrators
and the vulnerabilities that facilitated their acts. With
the rubric, "know the enemy to overcome him" in mind,
a profile of known perpetrators was developed and
documented. The admonition to be aware of the vul
nerabilities of victims is the motivation for also identi
fying and presenting the weaknesses and functional
locations of weaknesses among the known, reported
cases of computer abuse.

65

COMPUTER ABUSE PERPETRATORS

An important aim of computer abuse research is de
termining a typology of known perpetrators as an aid
in developing safeguards. Such a typology can be
used in reducing the number of possible perpetrators
and their potential for doing harm.

Interviews of varying lengths were conducted with
seventeen perpetrators. In some cases over 20 hours
of interviews were held, involving numerous sessions
covering pretrial, criminal trial, pre sentencing, incar
ceration, and post incarceration periods. In six cases
only brief telephone conversations were held with
perpetrators, but information from them was heavily
supplemented with facts and opinions of other case
participants. No attempt was made to carry out psycho
logical profiling, but obvious characteristics were de
termined in a gross fashion by interviewers with ex
pertise in computer technology, management, and law.
The sample of perpetrators was chosen on the basis of
geographic and interview schedule expediency, case
notoriety, and technical novelty or frequency of the
abuse method. In the future attempts will be made to
choose perpetrators so that the growing sample will be
more representative of the total file of cases.

Characteristics were collected and synthesized by
interviewing perpetrators, and conclusions were based
on computer technology management experience of the
interviewers. Characteristics of white collar criminals
were identified from criminology literature.1

-
3 Theories

and information from this source include the trust po
sition vulnerability; Robin Hood, and differential asso
ciation theories; known characteristics of people in
EDP occupations such as their ages, skills, occupation
related actions, technical challenge and game playing
interests; and characteristics discovered in interviews,
such as tendencies to collusion and business and occu
pational aggressiveness. The characteristics identified
are those that a manager of a computer system might
recognize among people within the computer environ
ment operating or affected by computer services.

There are ten characteristics of the typology and
supporting data based on the sample of 17 perpetrators.

66 National Computer Conference, 1976

(1)

(2)

(3)

(4)

Age-Perpetrators are young. Mean age is 29
years, median age is 25 years, and the range is 18
to 46 years.
Skill Level-Skill level pertaining to the abuse
is high, with professional and managerial skills
predominant:

Skill Level/Occupation

Low experience technician
Technician
Low experience professional
High experience professional
Manager

Number of
Perpetrators

1
3
1
5
7

Relation Between Occupation and Abuse-In all
cases except one, perpetrators performed their
acts while engaged in their occupations. The ex
ception is an individual who, while president of
an electronic supply house, posed as a telephone
company employee to order the delivery of tele
phone equipment. Eleven of the perpetrators
violated their occupational positions of trust.
Six performed their acts without violating occu
pational trust.

The perpetrators' occupations, associated with
types and characteristics of the victims appear in
Table I.

A significant range of types of perpetrators
and victims is included with consumers, non
EDP employees, EDP employees, managers and
staff, and large and small victims in various in
dustries.
Abuse Modi Operandi-The modi operandi were
almost equally divided between unauthorized

T ABLE I-Computer Abuse Perpetrators' Occupations and
Types of Victims

Number
of Per-

Perpetrator Occupations Victims petrators

Retail consumer large insurance company 1

Teller large bank 1

Accountant and computer small manufacturing com-
service company owner pany (one accountant) 1

Time-sharing user large service, small service,
large private system 3

Business programmer small banks 2

Systems programmer state agency 1

Data input supervisor large insurance company 1

Computer operations and small bank, large insurance
systems managers companies 3

Firm presidents small electronic supply and
software house 2

Business manager large manufacturer 1

Sales manager large time-sharing service 1

data manipulation during authorized computer
use and unauthorized computer use. In eleven
cases computers were primarily objects of acts;
in five of the cases they provided the environment
for the act; and in one case a computer was the
instrument of the act. Eight cases involved
batch-operated computer systems, five involved
time-sharing systems, and four involved transac
tion systems.

Table II presents a range of perpetrators' tech
nical acts.

Types of losses were: information or property
fraud or theft in five cases, financial fraud or
theft in ten cases, and unauthorized USe of ser
vices in two cases. In the last two cases, perpe
trators were able to use time-sharing services
without paying for them and also took proprie
tary data, but no loss was sustained by victims of
the data theft.

(5) Collusion-Collusion occurred in seven cases.
Four of the cases involved only two people; the
others involved five, seven and twenty-two peo
ple. Collusion was found necessary by the perpe
trators either because they did not possess all of
the skills, time, or resources necessary for the
act, or they needed assistance in converting the
act to financial gain. Several of the other perpe
trators said they considered obtaining assistance
from others but rejected the idea because they
felt they should not entice others into wrongdo
ing.

(6) Personal Gain-For a group of eight of the cases,
a total financial gain of $4 million was discov-

T ABLE II-Perpetrators' Technical Methods of Computer
Abuse

Number of
Cases Methods

2 Manipulation of data by unauthorized computer
program changes.

1 Unauthorized use of an existing program to
manipulate data.

3 Compromise or penetration of a time-sharing
computer system by legitimate access from an
on-line terminal performed by discovering and
exploiting a weakness or error in the system con
trols that protect users or the system.

2 Impersonating an authorized terminal user of a
time-sharing computer service by using confiden
tial identification codes to obtain and use pro
prietary programs and data.

1 Use of a computer as an instrument or tool to
plan or control a noncomputer related act.

2 Taking by manual means and/or selling copies of
proprietary computer programs without the own
er's permission or knowledge.

4 Inputting incorrect data and/or using incorrect
output by authorized and correct means but for
unauthorized purposes.

(7)

(8)

(9)

(10)

(11)

Computer Abuse Perpetrators and Vulnerabilities 67

ered, with an average gain of $500,000 per case.
The range for the 15 cases is $1400 to $1.5 mil
lion. Another type of gain was business or em
ployment advantage over competitors through
sabotage or espionage (intelligence gathering).
Differential Association-Thirteen perpetrators
demonstrated the differential association syn
drome: The white collar criminal in his act de
viates from accepted practices of his associates
only in small waYR.
Robin Hood Syndrome-Twelve perpetrators ex
hibited the Robin Hood syndrome: They differ
entiate strongly between harming people, which
is highly immoral within their standards, and
harming organizations, which they can easily ra
tionalize.
Game Playing-Fifteen perpetrators indicated
that they considered their acts games pitting
their skills against the computer and the victim
organization. The games represented challenges
to them, and made their lives exciting and filled
with danger. Fourteen perpetrators accepted the
challenge with considerable aggressive behavior,
identified by one perpetrator as the desire to par
ticipate in physically dangerous activities such
as entering a bull ring or driving a race car.
The dispositions of the perpetrators at this writ
ing follow:

Disposition

Felony conviction
Felony charged
Lawsuit judgment
Charges dropped
No sanctions proposed
Hired by victim

Number of
Perpetrators

9
1
1
1
4
1

Only one perpetrator, a nineteen-year-old pro
grammer, had a prior conviction-for a misde
meanor of marij uana possession.
Personal Characteristics-Generally the perpe
trators were accepted as reliable, honest, bright,
highly motivated in their work and most desir
able people for a manager to hire. They do not
appear special as a class and could not be classed
as professional criminals who take pride in their
wrongdoing. The greatest fear they reported oc
curring during their acts was unanticipated de
tection and exposure of their acts to their fami
lies, friends, and coworkers. This was feared
more than incarceration. In fact, after sentenc
ing, several said imprisonment was the best so
lution to the original problem that drove them
to their acts. After they were caught, their
greatest concern was to minimize the criminality
aspects of their cases.

This initial study of perpetrators is enough to
suggest the value of a thorough sociological and

psychological study as a basis for identifying
populations of potential perpetrators in auto
mated crime.

COMPUTER SYSTEM VULNERABILITIES
THAT FACILITATE ABUSE

Vulnerabilities to computer abuse must be under
stood for effective threat and risk analysis and com-
puter security_ ~,1any vulnerabilities seem ob'viollS,
but the security planner can never be sure he has
thought of them all or even the important ones. Two
analyses, based on the principal vulnerability found
or surmised in each of the 375 recorded cases of com
puter abuse were made to assist in this activity. The
first ","as based on a breakdovvn of common functional
weaknesses, such as inadequate input/output controls;
the second was based on a breakdown of the most com
mon functional and physical locations of vulnerabili
ties. Tables III (a) and III (b) summarize these vul
nerabilities and locations.

FUNCTIONAL VULNERABILITIES

Eight primary functional vulnerabilities emerged
from the analysis. They are listed below in order of
frequency of occurrence. Each vulnerability is general
enough to maintain an acceptable level of confidence in
assignment of cases to types of vulnerabilities. This
approach was adopted because the amount of informa
tion about some cases is limited. Examples from the
file that demonstrate the range of acts facilitated by
each vulnerability appear in the appendix.

(1) Poor Controls Over Manual Handling of Input/
Output Data-This vulnerability was associated
with 147 cases. The greatest vulnerability occurs
wherever assets are most exposed. Over the past
17 years-the period of reported cases-assets
have been most tangible and subject to human
acts before entry into computers and after output
from computers. Data assets are more accessible
outside computers than when they are within
them, and programs must be executed to achieve
unauthorized access. Controls that are often ab
sent or weak include separation of data handling
and conversion tasks, dual control of tasks, docu
ment counts, batch total checking, audit trials,
protective storage, access restrictions, and label
ing.

(2) Weak or Nonexistent Physical Access Controls
This vulnerability to access to computing facilities
accounted for 46 cases. Where physical access is
the primary vulnerability, nonemployees have
gained access to computer facilities, and employees
have gained access at unauthorized times and in
areas in which they were unauthorized. Perpetra
tors' motivations have included political, competi-

68 National Computer Conference, 1976

tive, and financial gain. Financial gain occurred
mostly through unauthorized selling of computer
services, holding computer centers for extortion
purposes, burglary, and larceny. In a number of
cases employee disgruntlement has been the mo
tivating factor. In some of these cases disgruntle
ment stemmed from frustration with various
aspects of automated society. Controls that were
found to be weak or nonexistent include door ac
cess, intrusion alarms, low visibility of assets,
identification and establishment of secure perim
eters, badge systems, guard and automated mon
itoring functions (closed circuit television), in
spection of transported equipment and supplies,
and staff sensitivity to intrusion. A number of
the intrusions occurred during nonworking hours
when safeguards and staff who might notice in
trusions were not present.

Four cases from the case file in which abuse was
facilitated by physical access vulnerability in
volved attacks on computers with firearms; one
involved a dispute over national politics; another
case was perpetrated by a computer operator frus
trated with his job, and the remaining two are
presumed to have involved citizens frustrated in
dealing with government bureaucracy and com
puter-based services.

(3) Computer and Terminal Operations Procedures
This vulnerability accounted for 43 cases. Losses
resulting from operational procedures weaknesses
have resulted from sabotage, espionage, sale of
services and data extracted from computer sys
tems, unauthorized use of facilities for personal
advantage, and direct financial gain associated
with negotiable instruments in operational EDP
areas. The controls whose weakness or absence
facilitates these kinds of acts include separation of
operational staff tasks, dual control over sensitive
functions, staff accountability, accounting of re
sources and services, threat monitoring, close su
pervision of operating staff, sensitivity briefings of
staff, documentation of operational procedures,
backup capabilities and resources, and recovery
and contingency plans. The most common abuse
problem has been the unauthorized use or sale of
services and data. The next most common prob
lem is sabotage perpetrated by disgruntled EDP
operations staff.

(4) Weaknesses in Business Ethics-Abuse facilitated
by this vulnerability accounted for 41 cases. A
weakness or breakdown in business ethics can re
sult in computer abuse perpetrated in the name of
a business or government organization. The prin
cipal act is more related to a company's practices
or management decisions rather than to identifi
able unauthorized acts of individuals using com
puters. These practices and decisions result in
deception, intimidation, unauthorized use of ser-

vices or products, financial fraud, espionage, and
sabotage in competitive situations. Controls in
clude review of business practices by company
boards of directors or other top level manage
ment, certified public accountant audits, and ef
fective practices of regulatory and law enforce
m2nt agencies.

(5) Weaknesses in the Control of Computer Programs
-This vulnerability facilitated 33 cases. Pro
grams are assets subject to abuse. They can also
be used as tools in the perpetration of abuse, and
are subject to unauthorized changes to perpetrate
abusive acts. The latter abuses are the most com
mon. Controls found lacking include labeling pro
grams to identify ownership, formal development
methods (including testing and quality assur
ance), separation of programming responsibilities
in large program developments, dual control over
sensitive parts of programs, accountability of pro
grammers for the programs they produce, the
safe storage of programs and documentation, au
dit comparisons of operational programs with
master copies, formal update and maintenance

TABLE III-Vulnerabilities to Computer Abuse

(Incidence in Reported Cases)

(a) Vulnerable Functions

Function

Manual handling of input/output data
Physical access to EDP facilities
Operations procedures
Business practices
Computer programs usage
Operating systems access and integrity
Time-sharing service usage
Magnetic tape storage

Totals

(b) Vulnerable Locations

Number Percent
Functional Locations of Cases of Cases

Data and report prepa-
ration 120 33

Terminal areas 14 4

Computer operations 95 26
Terminal areas 10 3

Non-EDP 44 13

Computer systems 7 2
Terminal systems 33 9

Programming 27 7

Magnetic tape storage 12 3

Number Percent
of Cases of Cases

147 41%
46 13
43 12
41 11
33 9
24 6
19 5

9 3

362* 100%

Total

Number Percent
of Cases of Cases

134 37

105 29

44 13

40 11

27 7

12 3

362* 100%

* 13 of 375 cases were not amenable to analysis.

Computer Abuse Perpetrators and Vulnerabilities 69

procedures, and establishment of ethical concepts
of program ownership.

(6) Operating System Access and Integrity Weak
nesses-This vulnerability facilitated 24 cases. All
of these compromises of computer operating sys
tems that are recorded involve the use of time
sharing services. Compromises are accomplished
through discoveries of weaknesses in design or
taking advantage of bugs or shortcuts introduced
by programmers in the implementation of operat
ing systems. The acts involve intentional searches
for weaknesses in operating systems, or the unau
thorized exploitation of weaknesses discovered ac
cidentally. Most of the acts have been perpetrated
in university-run time-sharing services by stu
dents committing vandalism or malicious mischief,
or attempting to obtain computer time without
charge. Controls that would eliminate weaknesses
in operating systems include methods for proving
the integrity and security of the design of operat
ing systems, imposing sufficient implementation
methods and discipline, proving the integrity of
implemented systems relative to complete and
consistent specifications, and adopting rigorous
maintenance procedures.

(7) Poor Controls Over Access Through Impersona
tion to Time-Sharing Services-This vulnerability
facilitated 19 cases, Unauthorized access through
impersonation to time-sharing services can most
easily be gained by obtaining secret passwords
which are keys for the most common method of
protecting users of time-sharing services. Perpe
trators learn passwords that are exposed acciden
tally through carelessness or administrative
failures, or obtain them by conning people into re
vealing their passwords or by guessing obvious
combinations of characters and digits. It is sus
pected that this type of abuse is so common that
few victims bother to report cases in recordable
form. Control failures include poor administration
of passwords, failure to change passwords periodi
cally, failure of users to protect their passwords,
poor choices of passwords, absence of threat moni
toring or password-use analysis in time-sharing
systems, and failure to suppress or obliterate the
printing of passwords.

(8) Weaknesses in Magnetic Tape Control-This vul
nerability accounts for nine cases. Theft of mag
netic tapes, their destruction, and data erasure
from them are acts attributed to weaknesses in
control of magnetic tapes. Many other cases, iden
tified as operational procedure problems, involved
the manipulation of data on tapes and copying.
(No cases are known in which magnetic disk packs
have been subject to abusive acts.) Controls
found lacking include limited access to tape librar
ies, safe storage of magnetic tapes, the labeling
of tape reels, location and reel number account-

ing, control of degausser equipment, and backup
capabilities.

FUNCTIO~AL LOCATIONS OF
VULNERABILITIES

The functional locations of vulnerabilities were an
alyzed for the 375 cases. Data and report preparation
areas and computer operation facilities-the physical
locations with the highest concentration of manual
functions-were the most vulnerable locations.

Nine primary functional locations of vulnerabilities
emerged from the analysis.

(1) Data and Report Preparation Facilities-These
were the locations of 120 cases. Areas included
key-to-tapejdiskjcard data conversion, computer
job setup, output control and distribution, data
collection, and data transportation. Input and
output areas associated with on-line, remote ter
minals are not included here.

(2) Computer Operations-These were the locations
of 95 cases. All functional locations concerned
with operating computers in the immediate area
or rooms housing central computer systems are in
cluded in this category. Detached areas contain
ing peripheral equipment cable-connected to com
puters and computer hardware maintenance areas
or offices are also included. On-line remote termi
nals (connected by telephone circuits to comput
ers) are not included here.

(3) Areas Without EDP Functions-Forty-four cases
occurred in non-EDP locations. Many cases in
volved business decisions in which the primary
abusive act occurred in non-EDP areas such as
management, marketing, sales, and business of
fices.

(4) On-Line Terminal Systems-These were the loca
tions of 33 cases. The vulnerable functional areas
are within on-line computer software operating
systems where acts occur by execution of pro
grammed instructions such as are generated by
terminal commands.

(5) Programming Offices-These were the locations
of 27 cases. This includes office areas where pro
grammers produce and store program listings
and documentation,

(6) Data Preparation and Output Report Handling
Areas for On-Line Terminals-Fourteen cases oc
curred in these locations. This category includes
the same functions identified in (1), data prepara
tion but is associated with on-line terminals rather
than computers.

(7) Magnetic Tape Storage Facilities-These were
the locations of 12 cases. Areas included in the
category are tape libraries and any storage place
for tapes containing usable data. This does not
include temporary or short-term storage of tapes

70 National Computer Conference, 1976

in tape-drive mounting areas. The latter are in
cluded in categories (2), computer operations, and
(1), data preparation.

(8) On-line Terminal Operations Areas-These were
the locations of ten cases. This category is the
equivalent of (2), computer operations, but is in
on-line terminal areas.

(9) Central Processors-These were the locations of
seven cases. These functional areas are within
computer systems where acts occur in the com
puter software operating system (not induced
from terminals) .

SAFEGUARDS AGAINST COMPUTER ABUSE

A computer-dependent organization intent on op
timizing resource expenditure for computer security
can profitably use the results of this study against
known and reported types of computer abuse. In gen
eral, priorities for safeguards should be established in
the following order:

(1) The most important priority, by far, is safeguard
ing input/output data from disclosure (taking),
modification, and denial of use during manual
handling in data preparation and distribution.

(2) Secondly, access to sensitive EDP areas should
be strictly limited. Particular attention should be
given to access by non-EDP employees and non
operational employees (such as programmers) into
any operational areas and to the access of oper
ational employees and vendors' employees into
operational areas not directly connected with their
work. The dangers are primarily vandalism and
sabotage.

(3) Computer and on-line terminal operational safe
guards are almost as important as access control.
The dangers also derive principally from vandal
ism and sabotage by disgruntled employees in
positions of trust.

(4) Business ethics are next in importance to access
and operations safeguards. Lack of ethics is a
vulnerability found at the highest levels of man
agement and among EDP managers and staff per
forming or supporting unethical acts for higher
management. Accepted ethical standards are
needed throughout the computer field.

(5) The next level of concern should be directed at the
control of application and operating system pro
grams, including safeguards against unauthorized
modification and use, and proprietary aspects.

(6) The specialized and growing problem of prevent
ing access to time-sharing systems by unauthor
ized users is of next importance.

(7) Finally, the special problem of protecting magnetic
tapes in tape storage areas from vandalism and
theft must be addressed.

Physical EDP areas of importance for safeguarding
appear to be primarily those where manual, opera
tional functions are performed. They are followed by
computer systems, then programming offices, and
finally magnetic tape libraries. An interesting con
jecture is based on the apparent concentration of
abuse in the areas of heaviest manual functions. As
technical advances eliminate and reduce the size of
manual activities, the incidence of abuse could dimin
ish, independent of the degree of security efforts.

REFERENCES

1. Cressy, D., Other People's Money, Wadsworth, 1971.
2. Geis, G. (Editor), White Collar Criminal, The Offender in

Business and Professions, Atherton Press, 1968.
3. Smigel, E. and H. Ross, Crime Against Bureaucracy, Van

Nostrand Reinhold, 1970.

APPENDIX

RANGE OF ACTS PERPETRATED IN EACH
VULNERABILITY: EXAMPLES FROM CASE
FILE

Vulnerability/Case Number *

Case Abstract

1. Poor Controls over Manual Handling of Input/Out
put Data

75327

A keypunch operator in Stockholm, Sweden manipu
lated payroll data to produce 86 false payroll vouchers
payable through the Swedish postal system. She cashed
the vouchers at small, remote post offices that had
either not received the computer listings of valid
vouchers, or did not bother to check the listings before
cashing the vouchers. She escaped to South America.

75321

A data control clerk in a bank computer center em
bezzled $7,200. He diverted and stole checks being
processed from a correspondent bank. For each check
he then wrote a check for the identical amount on his
own checking account and then deposited it in a second
checking account, also his own. When his own check
turned up for processing he destroyed it and sub
stituted the stolen check. Thus, the check he wrote
against his own account was never charged against
that account.

* The first two digits of case numbers identify year of occur
rence. The third indicates the type of loss (l=vandalism; 2=
information or property fraud or theft; 3=financial fraud or
theft; 4=unauthorized use or sale of services). The last digit or
two digits is a sequence.

Computer Abuse Perpetrators and Vulnerabilities 71

7524

Three oil company employees are alleged to have
conspired to manipulate computer stored data and oil
tank gauges to indicate a full delivery had been made
to a refinery from tankers when only part of the load
went into the tanks. The rest of the oil is alleged to
have been delivered to two smaller companies. The acts
were discovered when an inventory check revealed a
discrepancy between the amount of oil in the tanks
and the amount supposed to be in the tanks according
to computer-stored records.

2. Weak or Nonexistent Physical Access Controls

72112

An EDP employee or a vendor's maintenance engi
neer did $590,000 worth of damage to computer
memory stacks by attacking them with a pointed in
strument, probably a screwdriver.

7219

An unknown person poured acid over telephone wires
where they enter a building containing data processing
equipment.

7522

Twelve persons, including a computer manufac
turer's employee, thought to be engaged in interna
tional espionage, were caught while taking computer
components, maintenance manuals, magnetic tapes and
circuit diagrams from computing facilities in Frank
furt and Karlsruhe, Germany. Financial losses were
estimated to be $110,000.

3. Weaknesses in Computer and Terminal Operations
Procedures

74313

In a large bank fraud in Germany, computer oper
ators prevented bookkeeping entries by activating sys
tem interrupts from the computer console. Invoices
were prepared by the system without recording the
transactions.

70410

A programmer analyst used his employer's computer
under nonchargeable software development usage in
conjunction with his personal outside consulting
business.

6711

A disgruntled computer operator dropped pieces of
metal into an IBM 2740 terminal causing electrical
shorts, fires and considerable downtime. The operator
was discharged and successfully prosecuted.

7427

A computer printer operator was paid to make an
extra carbon copy of competitive bidding reports for
industrial espionage purposes. The operator was dis
charged.

A computer operator printed copies of unemploy
ment checks and deleted the copying record from the
file. An auditor discovered the $10,000 fraud in a
computer audit run. The employee was convicted and
given a suspended sentence and five years' probation.

7415

A computer operator working alone at night carried
a hand gun because the computer center was in a high
crime area. One night out of frustration with the com
puter he shot it with his gun.

4. Weaknesses in Business Ethics

7523

A customer charged a computer equipment vendor
with fraudulently representing the capacity and capa
bility of a computer system and charged that the full
system was never delivered and did not have adequate
software.

7539

One company made a loan to another company based
on certain collateral. The pledging of the collateral
was hidden by the company receiving the loan so that
it could be reused for new loans. Computer listings
containing fake data describing the collateral were
used.

7446

A computer dating service was sued because re
ferrals for dates were so few and inappropriate. The
new owner of the dating bureau said that no computer
was used at that time although use of a computer was
advertised.

72 National Computer Conference, 1976

73216

A convicted criminal filed an appeal against the
U.S.A. claiming he was denied a fair trial by admission
of computer-produced statistical summaries from
which inferences of guilt were suggested. The appeal
was denied.

5. Weaknesses in the Control of Computer Programs

75315

The manager of a bank computer center made un
authorized changes to the demand deposit accounting
program to credit service charges to his and a friend's
accounts rather than to the proper bank income
account.

72219

The president of a French software company posed
as a professor of computer science on a tour in the
United States where he collected many free programs
offered from more than 200 computer centers. He
returned to France and sold copies of the programs he
had collected. He was caught and fined 5,000 francs
for the sale of one program. No action was taken con
cerning all the other programs he was selling.

65.42

A systems programmer replaced a computer operat
ing system supervisory module with a new one that
allowed him access to the area of storage used for the
resident operating system.

6521

Accounting clerks programmed and used a program
called "fudge". It was run at the end of each month to
change account balances until all column totals balanced
correctly.

7.439

A programming manager in a savings and loan asso
ciation changed updates to the savings program to
ignore withdrawals from his account. He was con
victed after he was caught by auditors when he made
a keypunch error in an account number.

72216

A computer specialist in the government taxation
commission in a foreign country sold copies of program

logic documentation describing the controls and check
ing on deduction claims in income tax forms.

73212

A 19-year-old girl convinced her boyfriend to steal
copies of computer programs from his employer, a
service bureau. She then attempted to sell them to
customers of the service bureau. She was convicted
and received a one-year suspended sentence.

6. Weaknesses in Operating System Access and In
tegrity

6611

Students caused disruption of a time-sharing service
when they tested the operating system and found a
failure in the exception handling of filled physical disk
storage.

7.4.41

A graduate student compromised a time-sharing
system to convert his terminal to the functional equiva
lent of the computer console. He performed this act to
convince management of the computer facility of the
vulnerability of the time-sharing system.

73.43

A student wrote a program masquerading as an
operating system. When a user attempted to log in, the
masquerading program obtained his account number
and then declared the system unavailable. The student
used the account numbers discovered in this fashion
for his own purposes to obtain computer time without
charge.

7. Poor Controls over Access Through Impersonation
to Time-Sharing Services

7525

A time-sharing user discovered he was being under
bid by small amounts in contract negotiations where
the data was stored in a time-sharing service com
puter. He concluded that a recently terminated em
ployee retained knowledge of his password. He had
the password changed, and the problem disappeared.

7.4316

A man was convicted in France of counterfeiting
bank cash dispenser credit cards. He impersonated a
bank official to obtain the personal identification num
bers associated with the cards by calling the card
number holders requesting them to report their num
bers so that new numbers could be assigned.

Computer Abuse Perpetrators and Vulnerabilities 73

681;2

High school students found a time-sharing user's
passwords on discarded terminal printouts. The stu
dents used the passwords to obtain unauthorized
services.

731;1;

An unauthorized user of a commercial time-sharing
service was found to have used eight hours of com
puter time by continuing to use a password assigned
him only for demonstration purposes. The password
had not been purged as scheduled.

8. Weaknesses in Magnetic Tape Control

71;212

A mailing house employee was caught in attempts
to sell magnetic tapes containing mailing lists to a
competitor of the mailing house.

7511

An EDP employee sabotaged his company by erasing
magnetic tapes with a degausser.

6212

An EDP employee in a bank de~troyed all dividend
accounts for shareholders of a large company by
destroying the magnetic tapes containing the data with
a sharp instrument.

7216

A tape librarian in an insurance company was fired
but given a 30-day notice. During that time she
replaced most of the magnetic tapes in the tape library
wi th scratched tapes.

NOTE: Any opinions, findings, conclusions or recommendations expressed in this paper are those of the author and
do not necessarily reflect the views of the National Science Foundation.

Effective safeguards for computer system integrity

by NORMAN R. NIELSEN, BRIAN RUDER and DAVID H. BRANDIN
Stanford Resea.rch Tnstitute
Menlo Park, California

ABSTRACT

This paper reports the findings of a project to identify
types of computer system integrity safeguards that
would have been effective in preventing, detecting, or
mitigating the effects of actual reported incidents of
computer system integrity violations. More than 350
cases were analyzed and categorized among one of 26
types of violations and among one or more of 34 types
of applicable safeguards. Brief definitions are provided
for all categories, and distributions of incidents over
the various violation categories and over the applicable
safeguards are presented.

The analysis revealed that most safeguards have a
surprisingly narrow range of applicability, whether
measured by number of cases or by number of viola
tion categories affected. However, much broader viola
tion coverage is possible through use of combinations
of small numbers of safeguards. Directions for fur
ther research are discussed, including the need to de
velop measures of violation category importance and
to include a consideration of safeguard cost, effec
tiveness, and operability factors.

INTRODUCTION

The history of computing is marked by periods of spe
cialized concerns, such as those for the development of
high level programming languages and time-sharing
systems. Currently, there is intense interest in com
puter security and related topics such as privacy and
data confidentiality. A number of research projects
have been and are being conducted in such areas as
physical security equipment, secure operating system
kernels, program certification, data encryption, opera
tions procedures, personal identification, and audit
practices. While the developments in all these areas
are effective against certain types of problems, no
general appraisal has been made of their effectiveness
against actual computer security problems.

System integrity is used herein to refer to the re
lated and overlapping concerns of:

• Security (protecting system integrity from com
promise)

75

• Audit (verifying the continued existence of sys
tem integrity)

• Recovery (restoring system integrity and oper-
ability in the event of the loss of such integrity).

Computer system is broadly defined to encompass not
only the computer hardware and software but also the
computer facility itself. Thus the operations associ
ated with that facility are included, from the initial
capture of input data to the final usage of output in
formation by the user. Within the broad perspective
of computer system integrity maintenance, the ques
tions of interest concern:

• The safeguards that the user should implement
first

• The areas in which development efforts should be
focused

• The directions in which future research should
be guided.

This paper reports an effort to identify the types of
system integrity safeguards that would have been ef
fective in preventing, detecting, or mitigating the
effects of actual reported computer system integrity
violations. Although the representativeness of the
known cases of system violation relative to the total
population of actual violations is unknown, this paper
does provide some initial information concerning the
types of safeguards applicable to the types of viola
tions that are occurring. The scope of potential threats
to computer system integrity is vast; hence if a system
integrity maintenance budget is to be allocated mean
ingfully, attention must be focused on the likely threats
and the relevant tools for defending against those
threats.

The second section describes the integrity violation
information used in this research, the third section
the categorizations of violations, and the fourth sec
tion the safeguards. The fifth section discusses the
relationship of the types of violations being experienced
to the various types of safeguards. The directions sug
gested for further research are indicated in the last
section.

76 National Computer Conference, 1976

CASE FILE OF COMPUTER SYSTEM
INTEGRITY VIOLATIONS

The computer abuse case file collected by Donn B.
Parker was used as the basis for categorizing both
violations and safeguards. This file, described by
Parker! in 1973, now contains information on more
than 350 computer incidents. The cases have been
collected over a number of years, with information ob
tained from newspaper articles and other published
reports, from personal contacts, and from a number
of in-depth interviews with victims and perpetrators.
The information available about an incident ranges
from a two-inch newspaper clipping to several hun
dred pages of transcripts and investigatory notes.

It is suspected that, in the history of computing,
there have been far more than 350 cases of system in
tegrity violations. However, most of these incidents,
for various reasons, have not been reported and in
some cases have been actively suppressed. Hence,
small as the 350-case sample may be, it represents the
most complete coverage available of the known com
puter system integrity violations.

Each case in the file was studied, and a one-page
summary data sheet was filled out. Exhibit I shows

1.

2.

3.

4.

8.

9.

10.

EXHIBIT I-Computer Incident Summary Sheet

Questionnaire Date __

Analysis Complete 0
Analysis Incomplete 0

Case Number 5. Categories: ____ _
Source

Discovery Date
Event Date/Duration

Accidental 6. Type of person (s) in-
Intentional volved: ______ _

Unauthorized use of au-
thorized facility 7. Number involved: __ _

Intent of perpetrator:

Success of perpetrator:

Brief description:

11. Follow-up information: ____________ _

12. Preventive measures: _____________ _

the form that was used for this purpose. The collec
tion of summary sheets then became the primary data
base on which the remainder of the investigation was
based.

INTEGRITY VIOLATION CATEGORIES

In analyzing the types of system integrity violations
against which various types of safeguards might be
effective, it is helpful to be able to deal with classes or
categories of violations rather than with a long list
of specific violations. Accordingly, the violation case
file was categorized by type of violation.

Each case was studied and given a brief descriptive
label. These labels were then collected, refined, and
consolidated to form a tentative set of 26 violation
categories. Each case was then re-examined by a dif
ferent analyst and placed into one of the new cate
gories. Differences in placement between the original
assignment and the reassignment were resolved, so
that there was consensus over the assignment of each
case to one and only one of the violation categories.

It should be noted that the choice of 26 categories
is not sacred. The categories simply represent a con
densation of the various violations for the convenience
of this study. It would have been possible to develop
only ten categories or as many as 50 categories, if we
had found that helpful.

There is as yet no definitive and universally ac
cepted mechanism for determining the precise viola
tion occurring in a given case. Most cases represent
a combination of violations. For example, a person
enters a restricted area (e.g., a computer room) with
out authorization, which can be considered one type
of violation. Having gained access, the perpetrator
then uses the computer in an unauthorized manner or
for an unauthorized purpose, which can be considered
a different type of violation. The problem is determin
ing which type of violation was the "real" violation.

As a result of such ambiguities, the assignment of
cases to the various violation categories is a subjective
process. While the placements we have made may not
be suitable for all purposes, the subjective nature of
our assignment process does not detract from the value
of these data to the study. It must be remembered
that the categorization of violations serves only to
stimulate the isolation or development of safeguard
concepts having practical application to the problems
actually being experienced.

After all the cases had been reviewed and catego
rized, 62 were discarded from further consideration.
Most of those discarded cases were eliminated because
the available information was too sketchy or so vague
that it would have been impossible to identify appli
cable safeguards. A small number of cases were also
eliminated because they closely paralleled other cases
for which more extensive information was available.

The distribution of the 293 remaining cases across

Effective Safeguards for Computer System Integrity 77

the 26 violation categories is shown in Table I. A
brief definition of each violation category is given in
Exhibit II.

It is interesting to note that the two violation cate
gories having the largest number of cases (Direct
Change of I/O Data, Adding to I/O Data) refer to
activities taking place outside the computer itself.
However, lest incorrect conclusions be drawn, it is im
portant to note that the distribution figures represent
incidents and not a random sampie of the full popula
tion of incidents. Thus, the concentration of cases
noted above may indicate that a preponderance of vio
lations are of this type or that a greater percentage
of the violations in these categories are reported or
otherwise become known.

SAFEGUARD CATEGORIES

In analyzing the types of system integrity violations
against which various safeguards might be effective,
it is helpful to be able to deal with classes or categories
of safeguards rather than with a long list of specific
safeguards. In the early stages of analysis, it is more
helpful to deal, for example, with a category called
"personal identification procedures" than it is to deal
with a list of specific safeguards such as "badge with
photograph, machine readable badge, handprint, fin
gerprint, signature, and password." Accordingly, the

T ABLE I-Case Distribution Over Violation Categories

Number of
Cases

1. Application Software :Manipulation 29
2. System Software Manipulation 18
3. Contract Mistakes 3
4. Improper Lse of Personal Identification 2
5. :Misuse of System Authorization 4
6. Destruction of Data 7
7. Unauthorized Copying of Data 15
8. Misuse of Passwords 19
9. Direct Change of I/O Data 39

10. Adding to I/0 Data 31
11. Personnel Practices 1
12. Unauthorized Building Access 20
13. Violation of Operating Procedures 20
14. Unauthorized Use of Terminal Area 4
15. Misuse of Communications Equipment 4
16. Management Inaction or Misaction 3
17. Unauthorized Use of Services 21
18. Unethical Behavior 7
19. Software Theft 16
20. Improper Training 1
21. Natural Disasters 5
22. Aura of Computer 5
23. Computer Support of Another Crime 2
24. Accident 9
25. Negligence 4
26. Miscellaneous 4

Total 293

EXHIBIT II-System Integrity Violation Categories

1. Application Software ManipUlation-Direct manipulation
or change of application programs, in the design, imple
mentation, or maintenance stages.

2. System Sofbvare Manipulation-Direct change to or non
standard use of operating system functions or utilities,

3. Contract IVlistakes-Poor contract specifications, permitting
integrity violations.

4. Improper Lse of Personal Identification-Use of personal
identification mechanism (e.g., a badge) by an unauthorized
person to obtain information or money.

u. ~lisuse of System Authorization--... A;r..n other,Xlise authorized
person performing a legitimate task, but one for which he
or she is not authorized.

6. Destruction of Data-Physical or logical destruction of data.
7. Unauthorized Copying of Data-Copying files or other data

for personal use or resale without authorization.
8. Misuse of Passwords-Unauthorized use of passwords to

gain access to computer system.
9. Direct Change of I/O Data-Alteration of computer input

data before its entry into the computer system.
10. Adding to I/0 Data-Adding data to the computer input

stream or to computer outputs after processing.
11. Personnel Practices-Errors or oversights that result in

improper privilege level assignments to staff members.
12. unauthorized Building Access-Unauthorized building

access for theft or vandalism.
13. Violation of Operating Procedures-Authorized persons

violating computer room procedures or access controls for
theft of hardware supplies or for vandalism.

14. Unauthorized Use of Terminal Area-Unauthorized access
to the terminal area or use of terminal equipment in un
authorized ways.

15. :Misuse of Communications Equipment-:vlisuse of com
munications equipment such as lines, multiplexors, and
front-ends but excluding terminals.

16. Management Inaction or Misaction-Failure of management
to act or improper action because of lack of understanding
of computing.

17. Unauthorized Use of Services-Use of computer sex-v"ices
in an unauthorized manner (e.g., without payment).

18. Unethical Behavior-Violation of the "reasonable man"
ethical standard.

19. Software Theft-Theft of programs or program documen
tation.

20. Improper Training-Errors made by personnel receIvmg
inadequate or improper training for their assigned duties.

21. Katural Disasters-Damage arising from earthquake, fire,
or explosion, flood, etc.

22. Aura of Computer-Computer used as a "know-all" symbol
to cheat or mislead people.

23. Computer Support of Another Crime-Computer used in
the planning or in the support of another, possibly non
computer related, crime.

24. Accident-Accidental damage to or destruction of data.
25. Negligence-Destruction of data, supplies, or equipment

through negligence of personnel.
26. Miscellaneous-violations that do not fit into any of the

above categories.

violation case file was categorized by the types of safe
guards that would have been effective in preventing,
detecting, or mitigating the effects of those violations.

Each case was studied and given a set of brief de
scriptive labels. Each label described a safeguard that,
had it been applied, would have altered the outcome of

78 National Computer Conference, 1976

the incident. Generally two to four safeguards were
identified for each case. These labels were then col
lected, refined, and consolidated, and a tentative set of
safeguard categories was formed.

The safeguard categories were themselves analyzed
and organized into a set of four generic categories.
Each generic category was re-expanded into a set of
carefully defined subcategories. Each case was then
re-examined and recategorized using the refined cate
gories. This reassignment of cases resulted in one
additional round of refinements before the present 34
subcategories were defined and established.

The four generic categories of safeguards are:

•]danagementsafeguards
• Systems safeguards
• Industrial security safeguards
• Legal and educational safeguards

Figure 1 illustrates the hierarchical organization of
the safeguard categories, and Exhibit III provides a
brief definition of each. Systems safeguards constitute
the principal technical defense against computer sys
tem integrity violation. Management safeguards are
more conventional and less difficult to implement. In
dustrial security safeguards are the familiar and well
understood "physical security" safeguards. The legal
and educational safeguards are essentially longer term

measures that apply to society as a whole rather than
to the environment of a specific organization.

The determination of helpful safeguards for cases
faces subjective problems similar to those encountered
in assigning cases to violation categories, although the
freedom to specify several safeguards eliminates the
problem of specifying the safeguard for multiple vio
lation situations (i.e., a situation in which violation A
was committed so as to be able to commit violation B).
However, the categorization problem for each specific
safeguard proposed still remains, analogous to the cate
gorization problem for each violation. Consider the
specification of a test procedure to be used as a safe
guard in the installation of operating system modifica
tions. Is such a safeguard more appropriately classified
as a management procedure, an operations procedure,
or a software interface procedure? Thus, a large de
gree of subjectivity exists in the selection of applicable
safeguard categories for cases.

Table II shows distribution of cases across the vari
ous types of safeguards that might have been appli
cable in defending against the violation that occurred.
Note that the total number of applicable safeguards
is 738, making an average of 2.5 safeguards for each
of the 293 cases. It is interesting to note that the two
types of safeguards identified as being applicable to
the largest number of cases (Audit Procedures, Data

Figure I-Safeguard schematic

Effective Safeguards for Computer System Integrity 79

EXHIBIT III-Protective Categories

MANAGEMENT SAFEGUARDS
• Audit-Use of internal and external audits to validate the

EDP system.
• Procedures and Operations-Establishment of management

procedures that define and enforce operational procedures.
• Insurance Protection-Maintenance of adequate EDP in

surance protection.
• Personnel Practices-Investigation of new employees, moni

toring of anomalous behavior, and use of effective dismissal
techniques.

• Contractual Protection-Use of contracts that address de
liverables, specifications, and liabilities.

• Inventory Control-Identification and control of all com
putational resources and hard copy forms.

SYSTEMS SAFEGUARDS

Hardware
• Hardware Monitors-Use of independent devices for mea

suring system activity.
• Hardware Privilege-Use of hardware to control access to

and use of system resources.
• Identification-Use of hardware devices to identify equip

ment and people accessing a computer system.

Software
• Detection and Prevention-Use of software to monitor and

check program accesses to I/0 programs, utilities, and spe
cial hardware.

• System Software Interface-Use of software controls to
monitor and limit references to operating system com
ponents and system utilities.

• Restricted Language Processors-Development and use of
families of language processors (and loaders) with in
creasing levels of priviiege.

• Transaction Logs-Use of serialized logs to record trans
actions, log-ons, I/O, and detected unauthorized accesses.

Systems and Operations Procedures
• Procedures and . Operations-Identification of work re

sponsibilities, separation of responsibilities, procedures for
handling data, and increased sensitivity to security during
abnormal times.

• Maintenance and Services-Use of procedures to ensure
timely preventive maintenance and good quality control
procedures for software maintenance.

• Quality Control-Use of stringent testing procedures for
operating system software and assignment of quality con
trol to separate teams of programmers.

Reliability Safeguards

• Availability-use of environmental safeguards and archi
tectural configurations that facilitate modular recovery.

• Backup-Restart-Establishment and testing of restart pro
cedures, proper hardware/software backup, and a carefully
monitored checkpoint/restart program.

Input/Output Safeguards

• Data Handling-Verification of input data, special handling
of extraordinary input, shredding of surplus output, proper
storage and backup of data and program files, and limited
transmission of output to remote devices.

• Password Controls-Development and enforcement of pass
word procedures, updating of passwords, monitoring of
invalid log-ons, and the use of passwords to verify devices
and users.

• Communication Safeguards-Establishment of secure com
munications, hardwired lines, and use of intelligent front
end processors to supplement mainframe coding.

• Encryption-Encryption of sensitive files, including data,
password, and accounting files.

INDUSTRIAL SECURITY SAFEGUARDS
Environmental Safeguards

• Physical Integrity-"Cse of procedures to protect the physi
cal environment of the facility, the use of UPS, and the
housing of computing facilities in structurally secure build
ings.

• External Support-Establishment of relationships with local
police and fire agencies as well as monitoring vendor and
other outside personnel in a computing facility.

• Business Threats-Management procedures for anticipating
potential threats from competiti~le and other forces.

• Disaster Control-Establishment of provisions for reacting
to natural disasters, e.g., drainage in the event of floods.

Recovery Safeguards

• Relocation and upgrade-Use of detailed procedures for
maintaining system integrity during hardware upgrade or
system relocation and comprehensive testing of all system
modifica tions.

• Storage and Backup-Enforcement of operational pro
cedures for storing systems and data backup and documen
tation in off-site vaults, and the logging of all vault traffic.

Access Control Safeguards

• Guards-Use of building guards to control building access,
monitor visitors, and to patrol restricted areas.

~ Alarms and Locks-Use of alarms to detect unauthorized
entry and locks to limit traffic.

• Visitor Control-Use of proper identification procedures for
all persons in the facility, validation of the purpose of all
visitors, and investigation of all packages moving in and
out of a computing facility.

• Surveillance and Monitoring-Use of surveillance and log
ging equipment to monitor activities in and around the
computing facility.

LEGAL AND EDUCATIONAL SAFEGUARDS

• Legislative Safeguards-Formulation of civil and criminal
codes that aid in apprehension and recovery in the event of
viola tions.

• Education-Education of computer practitioners, the public,
and law enforcement authorities, curricula developments in
protective procedures, and improved professionalism.

Handling) are two areas that are not commonly
treated by security research efforts aimed at develop
ing new tools and techniques. It is also interesting
that none of the reported violations could have been
aided by the application of system availability safe
guards. A third observation concerns the large num
ber of cases for which it was judged that some form
of procedural development would have been effective,
as opposed to some type of hardware or software tool
or technique.

Care must be exercised in drawing conclusions from
Table II, since the underlying cases do not necessarily
represent a random sample of the full population of
computer system integrity violations. Thus, the large
number of cases for which some type of audit proce
dure would have been helpful may indicate that a large
percentage of the violations actually occurring could
have been affected by the application of appropriate
audit procedures, or it may only indicate that a large
proportion of cases in which audit safeguards were
lacking are reported or publicized.

80 National Computer Conference, 1976

T ABLE II-Case Distribution Over Safeguard Categories

Management Safeguards Input/Output Safeguards
Audit Procedures 97 Data Handling 120
Procedures and Password Controls 38

Operations 36 Communication
Insurance Protection 1 Safeguards 6
Personnel Practices 11 Encryption 13
Contractual

Protection 11
Inventory Control 22

Legal and Educational

Systems Safeguards Safeguards

Hardware Legislative

Hardware Monitors 1 Safeguards 23

Hardware Privilege 9 Education 7

Identification 17
Software

Detection and Industrial Security
Prevention 63 Safeguards

System Software Environment Safeguards
Interface 14 Physical Integrity 27

Restricted Language External Support 3
Processors 11 Business Threats 6

Transaction Logs 26 Disaster Control 22
Systems and Operations Recovery Safeguards

Procedures Relocation and
Procedures and Upgrade 2

Operations 52 Storage and Backup 15
:\Iaintenance and Access Control Safeguards

Services 2 Guards 18
Quality Control 37 Alarms and Locks 8

Reliability Safeguards Visitor Control 3
Availability 0 Surveillance and
Backu p-Restart 2 Monitoring 15

Many interrelationships exist between the safe
guard categories depicted in Figure 1. However, these
relationships are not shown, since their number is so
large as to confuse the categorization. Thus, for ex
ample, two well-known interrelationships (between
Hardware Monitors and Detection Software and be
tween Quality Control and System Software Inter
face) are not indicated.

It is interesting to note the pervasiveness of pro
cedural aspects throughout the safeguard categories.
It was this multitude of interrelationships that pre
sented one of the biggest problems in attempting to
isolate and define unique safeguard sUbcategories. On
the other hand, this pervasiveness of procedural safe
guards is in itself a significant finding.

SAFEGUARD APPLICABILITY

As discussed earlier, Table II presents the disuibu
tion of violation cases over the various types of safe
guards that might have been applicable in defending
against those violations. However, in view of the un
known representativeness of the violation frequencies
of the available cases, it is important to measure safe
guard applicability by means other than simply num
ber of relevant cases.

An important alternative measure relates to the
range of types of violations against which a safe
guard is applicable. Such a measure provides insight
into the types of safeguards that potentially have the
greatest impact and that should be given prime at
tention when planning for system integrity mainte
nance. Accordingly, the safeguards judged applicable
to each case were aggregated by violation category.
The number of cases in each violation category for
each category of applicable safeguard is presented as
a matrix in Table III. Several observations should be
made relative to these data.

First, there is a tendency for safeguards to cluster,
that is, for the safeguards in a set of SUbcategories to
apply to the same types of violation categories. Sec
ond, the range of violation types to which a given type
of safeguard applies is fairly restricted. Only two
violation categories (Data Handling, Detection and
Prevention Software) are applicable to at least 50
percent of the violation categories. However, com
binations of categories can increase the range of cov
erage. For example, nearly 70 percent of the violation
categories are covered if all the procedural safeguards
are considered together. This finding supports the
observation discussed earlier about the pervasiveness
of procedural safeguards encountered in the formula
tion and definition of safeguard categories.

As expected, the industrial security safeguards have
a very narrow span of applicability. Nominally, Table
III shows that some safeguard from this generic cate
gory is applicable to cases from 11 violation categories.
However, if violation categories having only one safe
guard subcategory applicable to but a single case are
eliminated from consideration, then the industrial
security safeguards apply to only 5 of the 26 violation
categories.

It is possible to obtain greater violation category
coverage by combining safeguard subcategories. For
example, the two management safeguards, Audit Pro
cedures (11 categories) and Procedures and Opera
tions (8 categories), combine to cover 15 categories.
The two systems safeguards, Detection and Prevention
(13 categories) and Procedures and Operations (10
categories) , combine to cover 15 categories. Even Data
Handling, with the broadest coverage of any safeguard
(17 categories), can be extended to 20 categories when
combined with Password Control (10 categories).
These types of combinations are very likely to occur
in practice because of the natural relationships be
tween safeguards.

Despite the aforementioned overlap in violation
category coverage by the various safeguard subcate
gories, a surprising finding was the lack of broad ap
plicability of the subcategories within a single viola
tion category. For example, in only 5 of the 11
applicable violation categories does Audit Procedures
apply to at least 50 percent of the cases in a category.
Data Handling applies to a majority of the cases in

Effective Safeguards for Computer System Integrity 81

TABLE III-Safeguard-Violation Matrix

Safeguards
Number of Cases

Managemen t safeguards

I

Audi t procedures
Procedures and operations

Insurance protection

I

Personnel prac tices
Con trac tua 1 protec t ion

Inventory control

I Systems safeguards

I

Hardware

Hardware moni tors
Hardware privilege

Ident ifica tion
Software

Detection and prevention

System software interface
Res tric ted processors
Transaction logs

Sy s terns and opera t ion s procedure s
Procedures and operations
Maintenance and services

Quality control
Rel iabili ty safeguards

Availability

Backup-restart

Input/output safeguards

Da ta handl ing
Password controls

Communica t ion sa feguards

Encryption

Industrial security safeguards

Environment safeguards
Physical integrity
External support

Business threa ts
- .
u~saster contro.1

Recovery safeguards
Relocation and upgrade

Storage and backup

Access control safeguards

Guards

Alarms and locks

Visitor control

Surve illance and moni toring

Legal and educational safeguards

Legislative safeguards
Education

Application System Contract

Software Software Mistakes

29 18 4

20 1

I
5

1 1

I
3

1 1

I I I

I
I I

1
2

I
6

4 3

4 6

3 2

9
4 6

8 2

21 6

4 1
4 6

3
2

only 9 of its 17 applicable categories, while Detection
and Prevention applies to a majority in only 2 of its
13 categories.

This shallowness of coverage supports the findings
from Table II showing only two safeguard categories
applicable to as many as 35 percent of the violation
incidents (Audit Procedures, Data Handling), only
two additional categories applicable to as many as 20
percent of the cases (Detection and Prevention, Pro
cedures and Operations-Systems), and only three
additional categories applicable to as many as 10 per
cent of the cases (Password Control, Quality Control,
Procedures and Operations-Management).

The research project to date has utilized applicable
violation categories as a measure of breadth of safe
guard applicability. While this measure has certain
advantages over a measure such as number of ap
plicable cases, it also has certain disadvantages. For

Violations
Personal System De s truc t ion Copying Direc t Change

Identification Au thor iza tion of Da ta of Data Passwords of I/O Data

2 4 7 15 19 39

1 2

I

2

I

23

2

4
I

I I
1 3

I I I I I I

I
I

I
I

I I I
1

2 1 1 1

1 1 6 7 13

5 1

1
6 4

1 4 1 11

3

1 1 6 12 4 32

1 1 1 17

3 7

example, measurement of range by number of appli
cable violation categories makes an implicit assumption
that all violation categories are of equal importance,
an assumption unlikely to hold in practice.

Thus, in drawing conclusions about the "most ap
plicable" types of safeguards, it is important to con
sider the likelihood of violations occurring in a par
ticular category as well as the likely damage that would
result from a violation in that category. A set of
weights must be developed for the violation categories,
based on both risk of occurrence and risk of loss on
occurrence, so as to permit safeguard category cover
age to be adj usted by the relative importance of each
category. Furthermore, safeguard selection must be
based on far more than just potential applicability.
Cost, effectiveness, operability, and like factors must
be considered as well. Extensions into these areas are
part of the planned course of the research project.

82 National Computer Conference, 1976

TABLE III (Continued)

Adding to Personnel Building
Safeguards 1/0 Data Practices Access

Number of Cases 31 1 20
Management safeguards

Audit procedures 26 1
Procedures and operations
Insurance protection
Personnel practices 1 1
Contractual protection
Inven tory control 9

Systems safeguards
Hardware

Hardware monitors

Hardware privilege
Ident ifica tion 1

Software

Detection and prevention 10
System software interface 1 1 1
Restricted processors

Transac tion logs 2
Systems and operations procedures

Procedures and opera tions 18
Ma in tenance and services 1
Quali ty control 2 1 1

Re liabil i ty safeguards

Availability
Backup-restart

Input/output safeguards
Data handling 25
Password controls 1
COlIDDunication safeguards
Encryption

Industrial security safeguards

Environment safeguards

Physical integrity 9

External support 1
Business threats 6
Disaster control 10

Recovery safeguards

Relocation and upgrade 2
Storage and backup 3

Access control safeguards

Guards 14
Alarms and locks 6

Visitor control 1
Surve illance and moni toring 3

Legal and educational safeguards

Legislative safeguards

Education

Nevertheless, the first-cut, coarse approach used thus
far is informative and does provide a meaningful base
from which to proceed with further work.

Our analyses and the data presented in Table III
support many subjective feelings held about effective
types of safeguards. Two conjectures that are sup
ported relate to the potential range of application of
particular safeguards. (This support is not affected
by the uncertainties that exist concerning the repre
sentativeness of the cases used relative to the actual
population of computer system integrity violations or
by the coarse applicability measure used.) First, the
data provide no evidence that there is a type of safe
guard that is likely to apply to all types of possible
system integrity violations. Second, the data provide
evidence that there are likely to be few if any instances

Violations
Operating Terminal Communica tions Management Use of Unethical

Procedures Area Equipment Action Services Behavior

20 4 4 3 L! 7

1 18
5 1 3 15 2

2
1 2

4

2 2

2 8 3

1
1 1

1
1 1

4 3 7 3
3 3 1

3
1

1
1 1

3

3 1
1 1

10 1 1

1 3
1 2

where a particular type of safeguard will apply to all
cases within a given type of violation.

Consequently, from a user's point of view, effort
must be directed toward the development of sets or
packages of safeguards rather than the development
and refinement of single techniques to address one
problem area. The breadth of violations encompassed
in a single violation category requires that a similar
breadth exist in the safeguards applied.

FURTHER RESEARCH

The research conducted thus far and reported herein
has focused on the types of computer system integrity
safeguards available and on the range of applicability

Effective Safeguards for Computer System Integrity 83

TABLE III (Continued)

I Number

Violations

Safeguards
Software

Theft

Improper Na tural Aura of Computer Support

Training Disasters Computer of Another Crime Accident Negligence :-liscellaneous

Number

of Covered

Categories

of Covered

Cases
;:.;Jumber of Cases

:·ia.ndgt::!men t sa feguards

Audi t procedures

Procedures and opera t ions

Insurance protection
Personnel prac tices

Con trac tua 1 pro tee tion
Inventory control

Sys terns safeguards

Hardware

Hardware monitors

Hardware pri vi lege
Identification

Saf tware

De tee t ion and preven t ion

System software interface

Restricted processors

Transaction logs
Systeills and operations procecures

Procedures and operations

Maintenance and services

Quality control

Reliability safeguards

Availability

Backup-restart

Input/output safeguards

Data handling

Password controls

I

Communication safeguards

Encryption

Indus tr ia 1 securi ty safeguards

Environment safeguards

Physical integrity
External support

Business threats

Disaster control

Recovery safeguards

Kelocat 10n and upgrade

Storage and backup
Access control safeguards

Guards

Alarms and locks

Visitor control

Survei llance and moni toring

Legal and educational safeguards

Legislative safeguards

Educa t ion

16

12

of these safeguard categories relative to the identified
types of computer system integrity violations. It has
been an exploratory effort aimed at revealing the types
of safeguards that would have been effective in de
tecting or preventing the actual system integrity vio
lations that have been publicly reported. This work is
now being expanded to examine the range of appli
cability of combinations of safeguards relative to the
violations themselves (rather than the categories of
violations). The identified safeguards will be cate
gorized according to implementation cost, operational
cost, and effectiveness. This should aid in identifying
promising research areas and types of tools where
further development work would be helpful.

A second phase of the research will be oriented to
ward the development of an effective collection of
detection tools. This set of tools will be designed to
address the types of violations not more readily ad
dressed by other categories of safeguards. Emphasis
has tended to be placed on the prevention of computer
system integrity violations; yet there are many situ a-

:

I

il

II
I

I
II
II

II

26

11
8

13
7

10

17
10

293

97
36

11
11
22

17

63
14
11
26

52

37

120
38

13

27
3

22

15

18
8

15

23
7

tions where rapid, inexpensive detection of violations
(or attempted violations) is more effective from a
system standpoint than reliance on stronger but more
expensive prevention mechanisms. The research find
ings with respect to safeguard effectiveness, imple
mentability, operation, and cost will be used as the base
for the second phase effort to develop a set of detec
tion tools appropriate for computer system integrity
maintenance purposes.

SUMMARY

The coarse analysis of more than 350 incidents of
computer system integrity violation revealed a sur
prisingly narrow range of applicability of particular
safeguards over the various types of possible viola
tions. This narrowness was observed both in terms of
safeguard applicability to the 26 violation categories
and in terms of applicability to the cases within any
one category. However, since there are many inter
relationships between the 34 safeguard categories,

84 National Computer Conference, 1976

combinations of safeguards are a logical development.
The study found that combinations of small numbers
of safeguards readily extend the range of violation
categories covered.

The study also revealed the desirabiilty of extending
the work to consider the relative importance of viola
tion categories, to include consideration of safeguard
cost, effectiveness, and operability factors, and to ex
amine combinations of safeguards at the case level
rather than at the violation category level.

Interesting sidelights arising from the study were
the findings that the two largest violation categories
(in terms of number of cases) were ones that apply
to activities taking place outside the computer proper
and that the two most applicable safeguards (in terms

of number of applicable incidents) were ones that are
not commonly treated by security research efforts
aimed at developing new tools and techniques.

ACKNOWLEDGMENTS

This research was supported in part by the National
Science Foundation under Grant DCR74-23774. The
viewpoints presented are those of the authors and not
necessarily those of the Foundation.

REFERENCE

1. Parker, D. B., S. Nycum, and S. Oiira, Computer Abuse,
Stanford Research Institute, 1973, (NTIS: PB 231 320/ AS).

A centralized approach to computer network security*

by FRANK R. HEINRICH and DAVID J. KAUFMAN
Sysiem Developmeni Corporaiion
Santa Monica, California

ABSTRACT

This paper presents an approach to network security
at the system design level. Some basic network con
cepts and major network security threats are out
lined. The design approach is described and a brief se
curity analysis is presented. The proposed network
structure incorporates data protection devices called
network cryptographic devices and a special-purpose
processor, the network security center, to control ac
cess in the network.

INTRODUCTION

The ever-increasing utilization of computer systems
has heightened demand for broader computer service
and data management capability. Computer networks
are an attempt to meet this demand by organizing
many individual computer systems to act as a single,
very large system or supracomputer.

The distribution of data processing functions among
a set of distinct systems decentralizes the control of
data storage and processing. In addition, information
must be transmitted between computers and is there
fore subject to exposure. These factors complicate the
problem of providing a high degree of security assur
ance in computer networks. Additionally, current em
phasis on privacy considerations underlines the need
for network security. Thus security must be a major
factor in network design.

This paper presents an approach to network security
at the system design level. To provide a basis for dis
cussion of this design, a few basic network concepts
are first outlined. Some major network security threats
are then presented to provide a context for evaluating
the system. Finally, the network structure is described
and a brief security analysis presented. The proposed
network structure incorporates data protection devices
called network cryptographic devices and a special pur-

* The work reported in this paper was supported by the U.S.
Department of Commerce, National Bureau of Standards con
tract # 5-35934.

85

pose processor, the Network Security Center, to con
trol access in the network.

The design in this paper provides a means for cen
tralizing control in computer networks. When global
policies toward network access, data storage and pro
cessing can be established, this design is quite appro
priate. In some instances, however, it may be difficult
to develop such global policies. The management at
each network site may decide to maintain greater con
trol over local policy and resist centralization. A sec
ond approach to computer network security in which
control can be more easily distributed, is presented
in a companion paper.1

BASIC NETWORK'CONCEPTS

In an intercomputer network, a number of com
puter systems and terminals are linked. The individual
computer systems (hosts) and terminals are called net
work resources. Interconnection of these resources re
quires functions performed by both hardware and
software, but in this section we consider only the logi
cal arrangement of networking functions rather than
associating any particular functions with specific hard
ware devices.

Network resources must be physically intercon
nected in some manner. That is, facilities must exist
to provide data paths between network resources.
These facilities, called the communications subnetwork
may take many forms. The communication subnet~
work may consist of telecommunications lines, a mes
sage switch, or a packet s~Nitched network. Regardless
of the configuration, however, we will view communi
cations subnetworks as logically equivalent, supplying
a means for data to flow from any network resource to
any other network resource.

Figure 1 illustrates three layers, or levels, of net
work functionality. Layer 1 is network resources;
layer 2 is connection-oriented functions; and layer 3 is
the communications subnet. Network resources can
be thought of as correspondents, freely exhanging in
formation (i.e., message text) by way of a carrier
consisting of the connection-oriented functions and the

86 National Computer Conference, 1976

NETWORK

RESOURCE

CONNECTION
ORIENTED

FUNCTIONS

NETWORK

- - - - RESOURCE

- - - --

COMMUNICATION SUBNETWORK

Message Routing and Delivery

CONNECTION
ORIENTED

FUNCTIONS

Figure i-Layers of network functionality

communications subnetwork. The connection-oriented
functions at different locations are, in turn, corre
spondents, exchanging information concerning the
state of message pipelines via their carrier, the com
munications subnetwork. We refer to correspondents
as being (logically) above the carriers.

The actual content of the communication between
correspondents is not of concern to lower layers (the
carrier). Within a carrier, control messages may also
be exchanged which are of no concern to higher level
correspondents.

Countering the network security threats discussed in
the following section will require introduction of addi
tional network functions. These new functions will not
alter the logical relationship between the three layers
already presented, but will necessitate the addition of
a new functional layer.

NETWORK SECURITY THREATS

With privacy statutes being enacted, security vulner
abilities are a serious concern. Yet networks present
formidable security problems due to the multi-user,
multi-resource, multi-system environment. Physical
and procedural controls have proven to be particu
larly inadequate in such geographically distributed
systems. Primary security threats to intercomputer
networks are:

1. Th'reats to Netwo'rk Communication-Network
communications are susceptible to several maj or se
curity threats. Penetrators may tap communication
lines or network devices outside of physically secure
facilities. Tapping of communications may result in
unauthorized exposure of sensitive information or al-

teration of message text. A penetrator may record
legitimate messages and replay them at a later time in
order to spoof a network resource. Spoofing could also
be accomplished by generation of spurious, but appar
ently legitimate messages. Misrouting and subsequent
misdelivery of messages, either accidentally or mali
ciously, may result in unauthorized disclosure of sensi
tive information.

2. Counterfeit Network Resources-Network pene
trators may be able to utilize counterfeit network re
sources. A bogus terminal or host computer may be
made to appear as a legitimate source or destination
of network messages. Without mutual authentication
of network resources, uncontrolled use of the network
may be obtained by those who would normally not have
access to the network.

3. Forged User Identi/ication-A penetrator may
gain network privileges by forging the identity of a
valid user. Of course, this same threat applies to a
single computer system. In a network, however, a
penetrator may capitalize on a domino effect. A pene
trator may use a forged identity to compromise a sin
gle host with poor security controls. Other network re
sources may then be compromised if they, in turn, trust
the user's identity as established by the compromised
host.

4. Unauthorized Access by Legitimate Users-Legit
imate network users may gain unauthorized access to
host computers, data files, programs, etc. A malicious
user may take advantage of unauthorized access to de
lete or modify data files or programs, or even subvert
an entire host computer system. Furthermore, sensi
tive or private information may be subject to unau
thorized browsing.

If each of the host computer systems which make up
the intercomputer network were secure when operated
separately, the security threats of forged user identifi
cation and unauthorized access would be eliminated.
Separate network countermeasures for these threats
would then be unnecessary. Mechanisms might still be
included to relieve each host of the operational burden
of implementing identification/authentication mecha
nisms and to provide a single unified network access
protocol increasing user convenience when accessing
various network sites. However, no secure general
purpose computer systems exist today. Furthermore,
it is doubtful such systems will be widely available for
a long time. Thus, network mechanisms must be de
veloped to protect network communications and to
avoid increasing compromise threats to hosts because
those hosts are linked in a network.

SYSTEM DESCRIPTION

This section presents a system level design of a se
cure intercomputer network as illustrated in Figure 2.
The design incorporates cryptographic devices which

Centralized Approach to Computer Network Security 87

TERMINALS

TERMINALS

Figu:l'e 2-System ievel design

encipher data (Le., transform data in order to conceal
its meaning) and decipher data (Le., reverse the en
cipher process to render data once again intelligible).2
This transformation is based on a secret parameter
called a Key. The cryptographic devices provide an
additional layer in the logical structure of the network.

The design also incorporates a new network resource
called a Network Security Center (NSC), which is
based on Branstad's concept of a Network Agency.3
Connections between nehvork resources are permitted
only when authorized by the NSC, based on stored ac
cess control information. This control is enforced by
the network cryptographic devices which will form
cryptographic links only when instructed by the NSC.

The network shown in Figure 2 contains N ehvork
Front Ends (NFEs). An NFE is a processor which
implements connection-oriented functions for a set of
terminals and hosts. A network, which adheres to the
secure design, can be built without NFEs. NFEs do
have operational advantages, however, and are being
considered for use in many future networks. Thus, we
address their role in network security.

An example may clarify the functioning of the NSC
and network cryptographic devices.

A user (V) at a terminal, desires access to a process
(P) at a distant host (H). Before being connected
with H, the user must carryon a dialogue with the
NSC. During this dialogue, V must identify himself
and supply additional information, such as a password,
to authenticate his identity. V then requests access to
host H. The NSC verifies the user's identity. If the
user's identity is valid, the access request is checked,
otherwise access to H is denied. The NSC uses previ
ously stored access control information to determine if
V is permitted access to host H. If the access control
information indicates that the access request is legiti
mate, the NSC will initiate establishment of a logical
connection between V and H.

The scenario is similar to that of a user attached di
rectly to a host with an access control mechanism. In

that sense the network appears to the user as a single
large system.

All messages in the Vser-NSC dialogue are enciphered
and deciphered by cryptographic devices attached to
the terminal and to the NSC. Each network crypto
graphic device has the capability of protecting such
dialogues with the NSC. Creating a con?ection between
V and H requires that a new key be established in the
cryptographic devices at V's terminal and at H. When
the cryptographic devices begin to use the new key
they ca~ c~m~unicate, forming a cryptographic link
between V and H. Vser V may then initiate formation
of a message pipeline to host H via the connection
oriented functions. This connection authorization pro
tocol is similar to that described by Branstad.2 ,3

CRYPTOGRAPHIC DEVICES

There are two main types of cryptographic devices
utilized in this design. One is the cryptographic device
at the NSC called the master cryptographic device. The
other type is attached to each of the other network re
sources and is called the slave encryption device.

Slav~ encryption devices can accept new keys from a
remote location. If attached to a single terminal, a
slave cryptographic device need maintain only one new
key. If attached to a host or NFE, a slave crypto
graphic device must be able to maintain several new
keys in order to support each of the multiple logical
connections with a distinct key.

The master cryptographic device must be able to en
cipher and decipher messages to and from each of the
slave cryptographic devices. The master cryptographic
device manages establishment of new keys at the slave
cryptographic devices.

Both the master and slave cryptographic devices
distinguish message headers from message text.
Headers must remain in the clear so that the com
munication subnetwork has sufficient control infor
mation to route and deliver messages. Only message
text will be enciphered and deciphered.

These devices should make use of the National
Bureau of Standards (NBS) Data Encryption Algo
rithm, which has been proposed as a Federal Infor
mation Processing Standard. -1 Several characteristics
of this algorithm make it well suited for use in network
cryptographic devices:

1. The secrecy of the transformation is dependent
only on the secrecy of the key, not on the secrecy
of the algorithm.

2. The length of the key is 64 bits, eight of which
are reserved for parity. Thus there are 256 po
tential keys. The key is not so short as to make
exhaustive search techniques feasible, yet not so
long as to make distribution to a remote device
difficult.

3. The algorithm is block-oriented; that is, data

88 National Computer Conference, 1976

is grouped into blocks of 64 bits which may be
enciphered and deciphered independently of any
other block. As long as the same key is used,
position or time ~ynchronization of encryption
with decryption is not required.

Due to routing and transmission differences,
message transit time through a network is some
what variable. Messages may arrive at a des
tination in a different order than they were sent
Using the NBS Algorithm, cryptographic device~
can be built which do not require position or time
synchronization and are independent of the com
munication subsystem.

4. When enciphering or deciphering, the change of
a single bit in either the key or the input text
has an unpredictable effect on the output text.
This characteristic has two implications. First,
the correct key must be known to make use of
(Le., decipher) enciphered information. Second,
alterations to enciphered text cannot produce
predictable changes to the corresponding clear
text.

5. Analysis of clear/enciphered text pairs does not
aid in code-breaking to determine the key used.
Penetrators are forced to use impractical exhaus
tive search techniques for code-breaking.

6. The NBS algorithm is expected to be available
as an LSI package. This will provide a low cost,
high speed implementation suitable for use in
network cryptographic devices.

Network security center

The NSC authenticates the identity of network users
and authorizes connections between network resources.
When an access request is approved, the NSC must
generate a random, distinct encryption key to be dis
tributed to the cryptographic devices at both subject
and object. In addition, the NSC will keep audit logs
of all access requests, both approved and denied, and
will issue appropriate alarms when a suspected pene
tration attempt is detected.

The NSC must, therefore, maintain a data base
which contains sufficient information to verify (au
thenticate) the identity of users, and sufficient access
control information to determine the legitimacy of
access requests (access authorization). This data base
will not remain static, but will require timely up
dating. This updating can be accomplished by a secu
rity officer at the NSC or by protocols between the NSC
and network hosts. Except for authentication of up
dates, the issues of NSC data base updating are con
ventional data management system cost and perform
ance tradeoff's and beyond the scope of concern here.

NSC access control information is defined in terms
of subjects, objects, and capabilities. A subject is an
entity such as a user or a process that can initiate

/1
I
I

r--0_b.;...je_ct_s_,,...._

Subjects

The access control information can be represented by a 3-dimensional space.

The shaded plane would contain all information concerning user A.

Figure 3-Access control matrix

access requests. An object is an entity such as a data
file, a process, a host computer system or another net
work resource that can be the target of access requests.
Capabilities are the actions which a subject may per
form on an object.

A good conceptual model for the access control in
formation is a three-dimensional access matrix5 as
illustrated in Figure 3. On one axis of the matrix are
subjects; on another axis are the objects, and on the
third axis are the capabilities. Entries in the matrix
are boolean values, indicating whether a capability is
available to a subject for a given object. This model
can accommodate objects to any desired degree of
granularity; where granularity refers to the relative
size of the subject being controlled. For most systems
this matrix is rather sparsely populated, with subjects
having access to only a few objects. Thus the actual
implementation will use some other more compact and
logically equivalent data structure.

Network front ends

A Network Front End (NFE) may interface one or
more network resources to the communications sub
network. The NFE performs the connection-oriented
functions on behalf of hosts as well as terminals. The
NFE could also provide a user-level command inter
face for terminals. It is likely that NFEs can reduce
the software cost and system overhead normally in
volved in connecting to networks. A Secure Front End
may, in fact, enhance network security, a concept
discussed later.

Centralized Approach to Computer Network Security 89

SECURITY ANALYSIS

The system design presented above counters the net
work security threats. The following discussion
analyzes the design approach with respect to the
threats presented earlier.

1. Network Communication Threats-The charac
teristics of the NBS data encryption algorithm (and
cryptographic devices in general) eliminate many net
work communication threats. Obviously, line tapping
yields encrypted text which cannot be read by a pene
trator. Furthermore, alteration of enciphered text
can be detected if an error detection field is included
in the message. This error check must be enciphered,
so that the error check value cannot be predictably
altered. Additionally, the check value must be cal
culated with clear, rather than enciphered, text; other
wise it is possible to alter enciphered text such that
the error detection field does not indicate the change.
Inclusion of redundancy checks and message sequence
numbers within the enciphered portion of the message
can prevent undetected message playback or intro
duction of spurious messages.

The network cryptographic devices used in this
design utilize a distinct encryption key for each logical
connection between network resources. Therefore,
misrouted messages are rendered unintelligible to
unauthorized recipients. Currently available "line"
cryptographic devices can only be placed on the com
munication lines, and therefore do not eliminate the
threat of misrouting.

Network cryptographic devices with the charac
teristics required in this design offer greater security
assurance than is currently available with existing
"line encryption" devices. Although not currently
available, network cryptographic devices can be built
with current technology.

2. Counterfeit Network Resources-The term end
to-end encryption refers to data being enciphered at
the source and remaining unintelligible until it is
deciphered at its final destination. Network crypto
graphic devices provide such end-to-end encryption,
thereby eliminating the threat of counterfeit network
resources. Communication with a bogus network
resource is impossible because it would not be attached
to a network cryptographic device, or know an appro
priate key.

If a network resource, attached to an NFE, is the
source or target of network communication, the NFE
is responsible for maintaining a proper message pipe
line. The NFE must, therefore, guarantee that connec
tions are made with the proper resource. Thus a
secure NFE guarantees that the message routing and
connection management functions are performed cor
rectly on behalf of attached terminals and hosts.

3. Forged User Identity-The NSC requires each
user to identify himself and provide information to
authenticate that identity. A user's identity is vali-

dated before connection to any network resource is
permitted. The NSC is a separate tamper-proof
mechanism which is not part of a general purpose host
computer system. Therefore, the NSC provides a
protected environment for the user authentication
process, which is less vulnerable than similar mecha
nisms within a general purpose host.

4. Unauthorized Access-The NSC maintains an
access control data base that defines all permitted

a connection between network resource is formed. The
NSC is only involved in the initial decision to permit
or deny access; an acceptable overhead cost analogous
to "opening" a file in most operating systems.

Access requests may specify objects with a varying
degree or granularity, but network cryptographic
devices can enforce access control only to the granular
ity of entire network resources. The NSC can, how
ever, pass the results of the access request decision,
and any necessary parameters for enforcement, to the
host system. The host can then provide the finer
granularity of enforcement.

Terminals should not be connected to the network
through network hosts. Connection of terminals to the
network through general-purpose computer systems
needlessly exposes the terminal's communications to
security vulnerabilities within the host. Similarly~ the
hosts are subject to uncontrolled access from the
terminals. When terminals are connected directly to
the network, on the other hand, all access can be con
trolled by the NSC. Terminals could therefore either
be connected directly to the network with their own
cryptographic device (and providing their own connec
tion-oriented functions and message formatting) or be
connected to the network through a secure NFE.

SUMMARY AND CONCLUSION

The secure network design outlined here is a central
ized management and control philosophy based upon
centralized key management. Keys are generated by
the NSC and managed by the master cryptographic
device. NSC access control decisions are enforced
through the use of centralized key management. A
companion paperl describes an alternative, equally
effective approach to network security based upon
decentralized key management, and is useful where
centralized control is precluded by law, policy, juris
diction, reliability or practical constraints. In that
decentralized approach, all cryptographic devices are
identical, but more complex, with each capable of
generating keys and relaying keys to other crypto
graphic devices. The master cryptographic device is
eliminated and the NSC is optional.

The network structure described in this paper
greatly reduces network security vulnerabilities. The

90 National Computer Conference. 1976

NSC provides a separate, secure network facility to
insure that only legitimate users can access network
resources and that only authorized access requests are
..... a ... -.v..ffarl
1-''-'.L.l.l..1.1.1,;l..vu.

Network cryptographic devices virtually eliminate
security threats to network communications and aid in
authentication of network resources. Although cur
rently available cryptographic devices do not have the
appropriate characteristics, suitable network crypto
graphic devices can be built with existing technology.
Thus, a high degree of cost-effective security assurance
can be provided in computer networks with currently
available technology.

REFERENCES

1. Kaufman, D. J., A Distributed App1'oach to Computer Net
work Security, System Development Corporation, SP-3848,
May 31, 1976.

2. Branstad, D. K., "Encryption Protection in Computer Data
Communications," Fourth Data Communications Sym
posium, Quebec City, Canada, October 1975.

3. Branstad, D. K., "Security Aspects at Computer Networks,"
AIAA Computer Network Conference, Huntsville, Alabama,
April 1973.

4. National Bureau of Standards Data Encryption Algorithm,
Federal Register, March 17, 1975 and August 4, 1975.

5. Lampson, B. \V., "Dynamic Protection Structures," Fall
Joint Computer Conference, 1967.

Computer network cryptography engineering

by HARRISON R. BURRIS
TRW Systems Group, lnc.~
Redondo Beach, California

ABSTRACT

A definition of system security and a unified descrip
tion of encryption methods is presented as background.
Alternatives for five major computer network design
decisions related to the employment of cryptography
with the network are discussed in terms of efficiency
(security achieved) and cost.

INTRODUCTION

This paper discusses several design decisions relating
to the employment of cryptographic techniques with
computer based networks. Cost (hardware purchase
prices and effect on performance parameters other
than security) and efficiency (security achieved) mea
sures are used for comparisons of alternatives. A
definition of security is presented in section two and a
method of describing basic types of encryption is pre
sented in section three. The remainder of the paper
compares the various network cryptography design
alternatives which must be considered in planning
efficient secure computer networks.

Given a professionally designed cryptographic algo
rithm (ignoring considerations of cryptanalytic resis
tance) , the computer network designer should be aware
of the impact of decisions concerning the method of
employment of the cryptographic techniques upon the
overall performance of the system design.

Following the example of Baran/ it is assumed that
the system attackers are thoroughly familiar with all
aspects of the system security design including cryp
tography and that only the current cryptographic keys
are kept secret from the attackers.

There are three possible system security objectives
for any computer based system, from single processor
to distributed computer network. ~ These are:

Restriction of information to authorized persons.
Protection of system performance (availability

and responsiveness) .
Restriction of system resources to authorized

persons.

One or more of these security objectives may be appro-

91

priate to a particular network depending upon the
application. Penetration through the network com
munications system is a high probability threat to all
three security objectives and network cryptography is
an important system security technique which, depend
ing upon the design decisions made, can either greatly
strengthen or weaken the system's threat resistance.

Restriction of information

Restriction of information refers to the objective of
preventing unauthorized persons from obtaining the
information present in a system. There is nothing as
effective as professionally designed cryptography for
securing the information content of a communication~

Kahn4 provides numerous examples of the ease
with which "unbreakable" amateur ciphers have been
broken by professionals, and restates the maxim that
only the skilled cryptanalysts can determine the cryp
tographic strength of a cipher algorithm. Given pro
fessionally designed encryption techniques (hardware
or computer algorithms) it is the job of the network
engineer to insure that the method of employment does
not provide an opportunity to compromise the encryp
tion system.

Protection of system performance

Protection of System Performance refers to all ac
tions taken to prevent system degradation. Degrada
tion of performance is achieved either by causing a
system to function with incorrect data so that the
outputs are meaningless, or by slowing the system re
sponse time until even a correct response is useless.
Degradation of performance can be achieved through
the communications links by attacking the information
being transferred or by monopolizing a sufficient por
tion of the available communications resources to slow
down the system. The manner in which cryptography
is employed with a particular network will either re
duce the chances of successful attempts at system
degradation or may greatly increase the impact of an
attack (i.e., it may take much longer to resynchronize

92 National Computer Conference, 1976

an encrypted communications link than one sending
clear text) .

Degradation of performance is measured as the in
crease in processing time or c.ompu.tational inaccuracy
when the system is under attack over the processing
time or computational inaccuracy when the system is
operating in a benign environment. This measure
should be distinguished from the security cost mea
sured in increased processing time, hardware com
plexity, or computational inaccuracy of the secure
system design over a system performing similar pro
cessing but without security capabilities.

An attacker can achieve degradation of performance
by attacking the communications network with any
combination of four types of attack: (1) Jamming,
(2) Playback, (3) Alteration, and (4) Generation.
Jamming refers to the introduction of some signal into
the communications stream thereby preventing the
reception of legitimate transmission. Playback refers
to the recording of a legitimate transmission and then
reintroduction of the message into the communications
stream at some later time. Alteration refers to in
troducing changes into legitimate transmissions. Gen
eration refers to introducing new messages into the
communications stream. Since generation generally
implies breaking the cipher before new messages can
be produced it will be considered as precluded by the
cryptographic algorithms being used in the network.

While cryptography is the principal tool for infor
mation protection its contribution to achieving the
other security objectives is largely dependent upon the
presence of other system security techniques such as
Message Sender Identity Verification.5 Just as a poorly
designed encryption algorithm can cause the compro
mise of information, a poor application of either ama
teur or professionally designed encryption can greatly
increase the impact of an attack aimed at degrading
system performance.

Restriction of system 1"eSOUrces

Restriction of System Resources refers to the ob
jective of insuring that the system is used only for
intended processing, or from another point of view,
that each user pays for the system resources used. As
for attacks through the communications links (and
hence cryptographic design decisions), threats to this
security objective are just another form of degradation
of performance. From this view, the unauthorized
processing load introduced represents the amount of
degradation achieved.

ENCRYPTION METHODS

Most digital cryptography has developed as an aspect
of digital communications, and this practical rather
than theoretical outlook has resulted in digital cryp-

tography being described in terms of a particular logic
implementation. The resulting lack of a clear distinc
tion between the cryptographic principles and the logic
implementation presents a formidable barrier in as-
sessing the performance (speed and cost) of a particu
lar algorithm compared to other algorithms with simi
lar properties.

The n character message to be encrypted (plaintext)
is represented as a character string P liP 2' •• ,P nand
also as a bit string BUB2' .. ,Ba where a=nf3 and f3 is
the number of bits per character. The n character long
encrypted message (cipher text) is represented as a
character string E lIE 2 ••• ,E" and as a bit string
YuYz •• • ,Ya • The different encryption methods (some
times called privacy transforms6 ,7,8,9) are categorized
according to the manner in which plaintext string P is
transformed into the encrypted string E.

There are three major categories of enciphering :4,8

(1) Transposition, (2) Substitution, and (3) Additive
Encoding.

(1) Transposition-Transposition enciphers a mes
sage by reordering the characters of the plaintext. A
transposition cipher is decrypted by reordering the
encrypted message according to an inverse of the
transform used to encrypt the message.

(2) Substitution-Substitution enciphers a message
by replacing the characters of the plaintext with other
characters, perhaps from another alphabet.

(3) Additive Encoding-Additive Encoding enci
phers a message by combining the bits of the plaintext
with the bits of a binary string using the exclusive
OR (binary add) function. The encrypted message is
decrypted by repeating the exclusive ORing of the
encrypted text with the identical binary string.

Transposition

Define a transposition vector, T, of length n such
that each value of T controls the transposition of the
corresponding character in P into string E according
to

ETi~Pi for l~i~n and l~Ti~n (1)

Clearly, Ti~Tj is required for i~j and l~i~n and
l~j ~n. The enciphered message is transposed back
to the plaintext (decrypted) by the inverse transposi
tion vector, if, such that

P'i\~Ei for l~i~n (2)

where if is related to T by 1\~i for i = 1 to n.
Plaintext messages of length greater than n can be

encrypted using a transposition vector T of length n
by partitioning P into a series of n long character
strings and transposing each separately. The last
string of P can be padded to length n with pseudo
random characters without weakening the transposi
tion system.

Substitution

Define the plaintext alphabet, A, as the ordered set
of all characters from which characters can be chosen
to generate cleartext message strings. Define La J A as
the sequence number of character a in the ordered
alphabet A.

Define a substitution alphabet, S, such that for every
aE {A} there corresponds an SE {S}. The correspon
dence or mapping of A into S is determined by a sub
stitution table F. The substitution table F is defined
such that j = fi indicates a correspondence between A
and S such that ai corresponds to Sj. Table F could in
some cases be represented as a function rather than a
table which will be done now for brevity. Table I indi
cates two alphabets A and S whose characters happen
to be mutually exclusive.

TABLE I

A S A S

1 A S 10 J 2
2 B T 11 K 3
3 C U 12 L 4
4 D V 13 M 5
5 E W 14 N 6
6 F X 15 0 7
7 G y 16 P 8
8 H Z 17 Q 9
9 1 18 R 0

For an F table defined according to the function
f; = i, the correspondence between the alphabets of
Table I would be YES corresponds to G E A. For the
function fi = n + 1- i with n = 18, Table I indicates the
correspondence of character 4 E S to G EA.

A plaintext message P is encrypted by substitution
on a character by character basis where Pi is encrypted
according to

(3)

The encrypted message string is decrypted using the
inverse transform vector F defined so that

(4)

Substitution ciphers are not explicitly influenced by the
length of the plaintext strings.

Substitution ciphers where only one substitution al
phabet and one substitution function are defined are
called monalphabetic (including S == A except that for
this case fi'7.f=i is required to avoid an identity trans
form). Polyalphabetic substitution ciphers1 ,lo can be
represented as multiple mappings (multiple F's) into
a single S, as multiple alphabets controlled by a single
F, or as a combination of multiple S's and F's. In
order to complicate the cryptanalysis of substitution
ciphers, several characters in S are often defined as
being equivalent to one character in the plaintext al
phabet. These sets of equivalent substitution characters
are called homophones. 4

Comput.er Network Cryptography Engineering 93

Additive encoding

An additive encryption system transforms the plain
text bit string B into the enciphered string Y by apply
ing the exclusive OR operation to string B and cipher
ing string X on a bit by bit basis where

Yi~BiEBX; for i=1 to (J.. (5)

It is the property of the exclusive OR operation that
string Y can be decrjrpted by a repeated application
of the transform

(6)

Partitioning the encrypted bit string into characters
shows a key additive encryption to be equivalent to a
polyalphabet substitution.

Plaintext strings longer than the coding string can be
encrypted by partitioning the plaintext string into a
series of bit strings of length (J. and encrypting each
separately. The last string can be padded (random
characters should be used for padding to strengthen
the crypto system).

Encryption primitive security considerations

Jamming and Playback are not directed against the
cryptographic primitives. For this presentation, gen
eration has been eliminated as a threat (professional
cryptographic algorithms), so only alteration remains
as an attack directly influenced by the cryptographic
primitives embodied in an implementation.

With a transposition cipher the plaintext characters
are replicated in the ciphertext string so the attacker
can precisely determine the plaintext character that re
sult if a change to a ciphertext character is made. How
ever, since the T vector is unknown, the correct posi
tion occupied by each character in the plaintext string
cannot be determined. With both substitution and
additive ciphers, the exact position of an altered char
acter is known to the attacker but the exact plaintext
character represented by each ciphertext character
cannot be determined. Numerous highly effective prob
abilistic attacks can be made against substitution and
additive cipher systems.5 Cryptographic implementa
tions employing multiple transposition and substitu
tion or additive primitives can counter all but brute
force alteration attacks since both position and result
ing plaintext are unknown.

SYNCHRONIZATION

Synchronization of cryptographic devices is the
process by which the encrypter at the sending end and
decrypter at the receiving end are kept in step with
each other. Three synchronization alternatives exist.
The first two are in general use, the third is considered
a practical proposal.

(1) Link Synchronous Encryption-The term link

94 National Computer Conference, 1976

synchronous is applied to an employment of crypto
graphic devices in which a one directional (simplex)
point-to-point communications channel is enciphered
Qllf'''' th!Olt !Ol f'Ontinll0llQ Qt1"t:>!Oll'Yl of t:>nf'1"'trntt:>n f''''!Ol1''!Olf'tt:>1''Q _ _ ... - _ __ __ _..&. _a.&.J ,t-' ... _- _ _..a.. __ _.a.

appear on the communications link and the receiving
crypto device (the decrypter) is kept in step with the
key of the sending encryption device by counting char
acters in the received data stream. In order to main
tain the continuous character stream when no data is
available to be sent, the encrypting end of the link
generates a string of pseudorandom padding charac
ters which are switched in and out of the transmission
stream as required.

Link synchronous encryption is highly susceptible to
degradation of performance attacks, since once the
encryption devices are forced out of synchronization
(i.e., by jamming) it requires a relatively long period
to reestablish the network. Thus, a short duration
jamming attack on the part of the attacker can deny
use of the communication link for a period much longer
than the period of jamming.

Because the communications link is continuously in
operation, the network attacker is denied information
about the volume and frequency of message traffic.
This is called transmission security (TRANSEC).

The costs of this synchronization method are ex
tremely high in terms of encryption equipment and
communications resources (radio frequency spectrum
or wire lines) required. The upper bound for a fully
interconnected n node network is n2-n links (dedicated
frequencies or wire lines) and 2 (n2-n) encryption
devices.

(2) Packet Synchronous-A packet is a block of
characters, which may be either a segment of a mes
sage or an entire message, and mayor may not be of
fixed length. The term packet synchronous will be used
to describe methods of synchronization which rely
upon the appending of crypto synchronization infor
mation to the header of the packet in order to set the
decryption device to the appropriate key.

In this mode, packets may be deleted without detec
tion, and playback is possible. These attacks are facili
tated by packet synchronization because as long as the
synchronization and message text are associated to
gether, both can be sent to a receiver at a later time
and still be decrypted correctly. This method does not
require the time consuming resynchronization pro
cesses of link synchronous systems since each packet
carries its own synchronizing information.

Since a network can be established in which each
node (and encryption device) recognizes its own ad
dress in the packet header, the costs of this method
are considerably less than those for link synchroniza
tion since dedicated links and encryption devices are
no longer required. For an n node network offering
fully interconnected routing only n links and n devices
are required.

(3) Clock SynchTonous-Clock synchronous is a

term proposed for the following method of encryption
synchronization. The use of extremely accurate atomic
(Rubidium or Cesium Beam) clocks for achieving
synchronization of communications devices has been
proven and portable clocks are availableY It should
be possible to use the same methods to synchronize
encryption.

In this mode a clock at each node is used to control
the advance of the key. The clock time at which en
cryption was begun is appended to the message packet
and serves as the synchronization information to set
the key at the receiving node. If the message is not
received within a set time period after encryption, it
is rejected. Aside from the reduction of the synchro
nization bit string (often longer than the data in the
packet) to a string just long enough to contain the
start time to the required accuracy, the clock synchro
nous method offers no additional benefits over the
packet synchronous mode. An atomic clock is required
at each node for the clock synchronous method.

IMPLEMENTATION OF ENCRYPTION DEVICES

Presupposing the cryptographic algorithms are
highly resistant to cryptanalysis it is extremely im
portant to insure that the information to be protected
is not compromised in some other fashion. It is pos
sible that a circuit failure could result in plaintext
being passed through a failed encryption device with
out detection. It is possible the ·electromagnetic radia
tion caused by the encryption device could radiate the
plaintext data.9,12-Ch. 29

While status indicators or software checks are avail
able to detect the failure of an applique or main pro
cessor cryptographic process, these are not nearly as
reliable for preventing accidental information release
as using an LSI cryptographic device tied to some
other critical circuit such as the main processor in
struction sequence controller (CPU master clock) so
that if the encryption chip failed, the main processor
would stop within one instruction!

There are some applications where it is critical that
the processing functions be performed even when the
security system has failed. In these circumstances, the
strong argument for LSI becomes a liability. Bypass
ing a failed applique is usually accomplished by a
switch action or at most replugging a patchboard, by
passing circuits at the LSI or even card level can be a
more difficult problem. However, as LSI availability
increases, multiple encryption chips could be used with
"hot spares" switched in after a failure.

KEYING METHODS

The autokey (or ciphertext autokey) method was
developed for use with polyalphabetic substitution
ciphers.4 For a plaintext alphabet of n characters
define n substitution functions (and inverse functions)

F 1 ,F2, ... Fn and F\F\ ... Fn each of which specifies a
transform of every character in A into S and vice versa.
The notation F/ is defined for multiple functions where
i specifies which substitution function is to be used
and j is the input (sequence number) to the function.

Encryption begins by placing an extra plaintext
character which indicates the start of the key at the
beginning of the plaintext and enciphered strings
(Pn == En). The plaintext is then enciphered according
to

E S f . F P i - 1 d· 1 t
i~ j or J = I p. JA an 1 = 0 n.

'- 1

(7)

where Pi-I determines which substitution function F
will be used to transform Pi into Ei. The decryption
process is

-P
Pi~Aj for j=F LE:JS

and i=l to n. (8)

To begin the decryption, recall that P (l == Eo.
It appears practical to extend the autokey strategy

to transposition and additive encryption methods. Both
of these methods may employ a fixed length transform
of n characters at a time. Define a key as a set of trans
forms for either method with one transform for every
possible character in the plaintext alphabet A. Then
designate one character position in the n character
plaintext string as the position controlling the selec
tion of the transform to be used for encrypting the
next n character string. This completely defines an
autokeying encryption process. Similar to substitu
tion, decryption is controlled by the key selection char
acter position of the most recently decrypted plaintext
string.

Some autokey systems have not been popular for
computer network applications because of their ten
dency to propagate communications errors (or attacker
induced changes). A transmission error in one posi
tion causes the wrong inverse transform to be selected
for decrypting the next character. However, good
autokey systems ·can be devised to be self-synchroniz
ing after an error. Error propagation increases the
attacker's leverage for denying the use of the commu
nications resources. However, it makes attacks relying
upon the acceptance of an altered message almost im
possible. The autokey methods proposed above for
transposition and additive systems do not perform as
well for detecting alteration, as in many applications
it would be unacceptable to wait until receipt of the
next message before determining that the system has
been penetrated. Even this after-the-fact indication
would not be present if the attacker were careful to
avoid altering the character position controlling selec
tion of the next key. Error propagation would occur
for these transforms only for the case where the key
selecting character was in error.

DISTRIBUTION OF KEY MATERIAL

The particular key used with a set of crypto-

Computer Network Cryptography Engineering 95

algorithms is usually changed after a stated period of
time (the crypto period). This change makes the play
back of previous messages difficult and increases the
work of the cryptanalysts since the statistics collected
on the previous key must now be repeated. Key ma
terial is also changed or updated whenever it is sus
pected that the previous key has been compromised.

There are two principal alternative methods which
can be used to distribute the new keying material:
(1) the kCjrs can be transmitted over the network, or
(2) the keys can be distributed by an independent dis
tribution system.

Manual key distribution systems require extra stor
age capability for keys, special handling, such as
couriers, and require a relatively long time (manual
action) to insert the new key. The strength of this
method, which is the standard practice today, is that
it requires a physical compromise of the key material
in order for the encryption system to be broken during
key distribution. Distribution of new key material
over the network would have the advantage of chang
ing crypto periods at machine (computer and commu
nications) speeds. However, if the network is used to
distribute new keys using an old key, compromise of
this key potentially compromises all subsequent keys.

EXTENT OF ENCRYPTION

The network design decision to encrypt all messages
(encrypt-all) or to encrypt only messages requiring
protection (encrypt-select) must be considered by the
network architect. Enciphering equipment is expen
sive; especially for remote terminals that do not handle
information that must be protected. This observation
has led to the development of several networks where
some nodes are interconnected by encrypted communi
cations and other nodes of the network are intercon
nected by unencrypted communications.1 ,12 Another
implementation with similar properties is a network
where information requiring protection is sent en
ciphered (ciphertext) and information not requiring
protection is sent unencrypted (cleartext). The ad
vantages of these cleartext/ciphertext systems are that
(1) low cost, portable nodes can be used where encryp
tion is not necessary and (2) the network can be easily
reconfigured for emergency transmission of priority
information even if some encryption devices have
failed.

The advantages of encrypt-select designs are transi
tory at best, since LSI encryption devices should soon
eliminate the cost/size/power objections to encryption
of even the lowest priority remote terminals. More
importantly, the increased complexity in message
switching software and encryption status checking
hardware in the processors far outweighs the ease of
reconfiguration achieved. Once total encryption be
comes feasible these bimodal networks will probably
cease to exist.

96 National Computer Conference, 1976

SUMMARY

Several network design considerations involving cryp
tography were discussed in terms of security and cost.
In nearly every case each design alternative traded
increased security from one form of attack at the ex
pense of increased susceptibility to another attack.
The particular choice of a method therefore is left to
the designer depending upon the intended application
of the network.

REFERENCES

1. Baran, P., On Distributed Communications: IX. Security,
Secrecy, and Tamper-free Considerations, Doc. RM-3765-RP,
Rand Corp., Santa Monica, Calif., August 1964.

2. Burris, H. R., "System Security Planning Guide: Concepts
and Projects," System Security Series No.1, Office of the
Project Manager Army Tactical Data Systems, Ft. Mon
mouth, N. J., October 1972.

3. Girsdansky, M. B., "Cryptology, the Computer and Data
Privacy," Computers and Automation, Vol. 21, No.4, April
1972, pp. 12-19.

4. Kahn, D., The Code breakers, The Macmillan Company, New
York,1967.

5. Burris, H. R., "Performance Comparison of Authentication
and Serialization Message Sender Identity Verification
Techniques," System Security Series No.4, Office of the
Project Manager Army Tactical Data Systems, Ft. Mon
mouth, N. J., February, 1973.

6. Carroll, J. M. and P. M. McLelland, "Fast Infinite Key
Privacy Transformation for Resource Sharing Systems,"
Proc. AFIPS 1970 FJCC, Vol. 26, AFIPS Press, Montvale,
N. J., pp. 223-230.

7. Hoffman, L. J., Security and Privacy in Computer Systems,
Melville Publishing Company, Los Angeles, Calif., 1973.

8. Petersen, H. E. and R. Turn, "System Implications of In
formation Privacy," Proc. AFIPS 1967 SJCC, Vol. 30,
AFIPS Press, Montvale, N. J., pp. 291-300.

9. Turn, R. and N. Z. Shapiro, Privacy and Security in Data
bank Systems: Measu,res of Effectiveness, Costs, and Pro
tector-Intruder Interactions, Report P-4871, The Rand Cor
poration, 1972.

10. Skatrud, R. 0., "The Applications of Cryptographic Tech
niques to Data Processing," Proc. AFIPS 1969 FJCC, Vol.
34, AFIPS Press, Montvale, N. J., pp. 111-117.

11. Elect1'onic Instruments and Syste1n8, Hewlett Packard, 1975.
12. Martin, J., Secnrity, Accuracy, and Privacy in Computer

Systems, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1973.

The application of cryptography for data base security

by EHUD GUDES and HARVEY S. KOCH
The Ohio State University
Columbus, Ohio

and

FRED A. STAHL
Columbia University
New York, New York

ABSTRACT

The application of cryptographic transformations for
the purpose of enhancing the security in data base
systems is discussed. These transformations have been
recognized in the past as a valuable protection mecha
nism but their relation to data base security has not
been identified. The maj or reason is the lack of a suit
able data base model for investigating the questions of
security and cryptography. A multi-level model of a
data base is presented in this paper. This model helps
to understand the connection between the data base
structure and the cryptographic transformations ap
plied to the data base. It is shown that cryptographic
transformations can be applied behveen the different
levels of the data base. Several types of these trans
formations are identified and the possible ways of
using and controlling them are also discussed. The
multi-level model can provide a useful framework for
further research in the area of cryptography and data
base security.

INTRODUCTION

The technical problems associated with providing pro
tection for information in a shared computer environ
ment have received considerable attention in recent
years. Petersen and Turn discussed a broad spectrum
of these problems in their article on "System Implica
tions of Information Privacy."14 Subsequently, there
have been numerous endeavors attempting to amplify
and find reasonable solutions to these problems.6 ,7,9,ll,12

Concurrent with the developments in the area of
protection has been the very important research in
data base systems. This is due principally to the grow
ing size and complexity of existing data bases. Re
search in data security and research in data base
systems have only been combined recently. Most data
security models/,ll use a unified approach in which all

97

components of the computer system (i.e., objects) are
viewed as being on the same level. A data base system
is viewed as much more complex than the traditional
file system and therefore its security problems are
more complicated. In a data base, protection may be
required from the file and record level down to the field
level. User protection requirements of a data base are
more complex than protection of a full file (or seg
ment) and complex protection specifications based on
boolean expressions may be neededo A unified approach
is, therefore, not suitable for dealing with the security
problems in data base systems. Our view is that the
security problems of data base systems have to be dealt
with separately from the security problems of operat
ing systems. (A similar view is held by Minskyy)
However, since a data base system uses the operating
system services, the two problems cannot be completely
disconnected.

Since we are interested in data base systems, our
assumption is that the hardware and the operating
system are correct and secure. This is not as strong
an assumption as it may seem at first glance. Since we
have removed the problems of files and data bases from
the operating system domain, the operating system
becomes smaller and easier to verify. Clearly, the com
plexity of the protection problem in the data base
system increases.

In this paper we concentrate on the security prob
lems of data base systems, We develop a model of a
data base which allows the incorporation of several
protection mechanisms. The goal is to define a struc
tural model of a data base in which known protection
mechanisms can be applied, and their dependency on
the structure of the data base can be understood. In
this paper we are interested in one protection mecha
nism called cryptographic transformations. The value
of these transformations as a means of protection has
been well established14 and some research was done on
their application in file systems.19 This model will help
us to understand where and how to apply these trans-

98 National Computer Conference, 1976

formations, and how these transformations can be used
in conjunction with other protection mechanisms, in a
data base system.

CRYPTOGRAPHY AND DATA BASES

Cryptographic transformations have been recog
nized long ago to be an effective protection mechanism
in communication systems. In the past they have been
used mainly to protect information which is trans
ferred through communication lines. However, as
Peterson and Turnu pointed out, they can be used as
an effective counter-measure against some of the
threats to security which exist in computer systems.
Among them are: wiretapping, between lines entry,
browsing files, physical acquisition of removable files.
Although several other articles mention their existence
and suggest their application in computer systems
(Skatrud,18 Van TassePO), not much (public) research
has been done in this area. In particular, there is no
research on the problems of how to apply crypto
graphic transformations to permanent sharable data
bases as opposed to their application to information
transferred through communication lines. We call the
first form of cryptography data base cryptography as
opposed to the more popular form of communication
cryptography.

There are large differences between the constraints
put on communication cryptography (see Shannon15)
and between those put on data base cryptography.
Turn19 enumerated some of these differences. The ma
jor ones are: (a) The problem of selective retrievalr
because files are usually organized so that selective
retrieval of records can be achieved, it is very desirable
that enciphering (deciphering) of record i will not
depend on another record j. This constraint prevents
the use of the popular Vern am Cipher using a pseudo
random number generator of a very large period. Such
a generator would be usually used for enciphering
large quantities of data (e.g., the whole file) and would
have to include more than one record in the encipher
ing process. * (b) The long "life" of the data-data in
data bases usually resides there for relatively long
periods. Therefore, the very popular method of chang
ing the cryptographic keys very often cannot be ap
plied, since it will require a complete reprocessing of
the data base or a large part of it. (c) The processing
problem-data in files and data bases is stored for
processing purposes. It would be very desirable if we
could process the ciphered data in the same way we
process the "clear" data. The reasons for this are that
the system is more secure if only ciphered data is pro
cessed and the overhead of enciphering/deciphering
every time we access the data is saved. We would like

':' Of course, VERN AM cipher can be applied to each record
separately, probably using different "seeds" for the pseudo
random number generator, but then its security is far from a
"one time" cipher.

therefore to design "processable" ciphers. Examples of
such ciphers will be given later. It can also be shown
that in the case of a "processable" cipher, applying the
cryptographic transformation on the data item level
only, is not secure enough. Given the constraints above
it is clear that the subject of data base cryptography i~
strongly connected to the subject of data base organiza
tion, representation and accessing. None of the cur
rent models of data base systems addresses this prob
lem directly. Furthermore, current data base models
are not suitable for answering questions related to data
base cryptography.

Very few models of security in data bases mention
the use of cryptographic transformations. The
CODASYL3 model provides the ENCODING/DECOD
ING clause on the data item level. However, applica
tion on the data item level only may not be secure
enough. The connection to other protection mecha
nisms is not clear. Hoffman~ mentions the SCRAM
BLE/UNSCRAMBLE procedures, but does not give
any details of their use.

We are then faced with the following questions:
(a) To which level should the cryptographic transfor
mations belong? To the physical structure, to the logi
cal structure, or to the mapping between them? (b)
Should the Data Base Administrator (DBA) have
complete control on the cryptographic transforma
tions? Similarly, should the keys for these transfor
mations be part of the system, e.g., in its Data Defini
tion Language (DDL), or should only the appropriate
user have some of the cryptographic keys? (c) Should
cryptographic transformations preserve or destroy the
structure of the data base and what are the advantages
and disadvantages of each case? (d) What is the re
lation with other protection mechanisms? Should they
complement each other and how should it be done? The
main goal of this paper is to answer the questions
above. However, in order to answer them, we need
a framework-a data base model in which the security
problems and their relation to the data base structure
are clearly identified. Such a model will be developed.
Before we develop this model, we want to review some
of the basic concepts in data security.

BASIC CONCEPTS

Looking at the literature on data security, we find
some degree of confusion about the basic concepts. We
will use the terms security, protection and access con
trol interchangeably and assign them the following
meaning by McCauley,I2 "The process of determining
the authorized users of the data base and of determin
ing which access may be permitted and which would be
denied." Graham and Denning7 made a very important
distinction between the protection specification and
the protection mechanism in computer systems. The
protection specifications are the translation of man
agement privacy views into exact specifications. The

Application of Cryptography for Data Base Security 99

protection mechanism is the mechanism to execute
correctly the protection specifications and to assure
that any protection violation of these specifications will
be detected.

In different systems there exist different protection
mechanisms. Most of these mechanisms are composed
of two parts: the protection procedure and the pro
tection data. The protection data is not to be confused
with the protection specification. The protection data
is data which is internal to the protection mechanism,
for example-passwords in the case of the password
protection mechanism or tags in Friedman's mode1.5

The protection procedure is analogous to the program
or procedure in programming systems and it is the
coded fo~m of the protection mechanism algorithm.
An important example of such a two part protection
mechanism are cryptographic transformations. In this
case, the transformation algorithm is the protection
procedure while the cryptographic keys are the pro
tection data. The analogy to programming systems can
be carried further as follows:

Progra,mming Systems

Procedure
Temporary Variables
Input Data
Output Data

Data Security

Protection Procedure
Protection Data
Protection Specifications
Protection Decision (i.e.,

Grant or Deny)

As an example for the use of the concepts above,
let us look at the protection mechanism in OS/360 file
system. IO The protection mechanism is a password
protection mechanism where a file can be accessed if
and only if the right password is given by the user
during OPEN. The protection procedure then is part
of OPEN. The protection data is the list of passwords.
The protection specification is the distribution of pass
words between users according to the privacy deci
sions: which user has access to which file. So pass
words here has a double role: as the protection data
and as the way to express the protection specifications.

In the next section, we will use the concepts defined
here in the discussion of the data base model and its
relation to security.

A MULTI-LEVEL STRUCTURED MODEL FOR A
DATA BASE

The existence of several data base levels is well
recognized in the data base "community." Usually a
distinction is made between the logical level (struc
ture) and the physical level (structure). A good dis
cussion of these levels and the mapping between them
is given in Sibley & TaylorY In the CODASYL model
we can distinguish three levels: the Sub-Schema and
Schema levels which define the logical structure and
the storage level which defines the physical structure.
A four level model known as the entity-set model was
suggested by Senko, et al. I Another four level model,

similar in concept to the one we suggest here, was sug
gested by Sibley.I6 We could have developed most of
our notions in the framework of one of these models,
however we preferred to develop our own terminology
and structure for two major reasons: First it allows
us to stress the security point of view which we are
interested in. Secondly, our model differs from other
models by its recognition of the existence of more than
one physical level in a data base. In most data base
models only one physical level is recognized and this is
usually the secondary storage structure. However in
most conventional systems (even with virtual mem
ory), data exists physically in more than one medium
and this fact is very important from the security and
cryptographic points of view. The main idea in this
model is that a data base is composed of several logical
or abstract levels which describe data which physically
resides in one or more physical media and therefore
have one or more physical structures.

The existence of these physical media is recognized
even in the conceptual model of CODASYL.3, p. 15 In
CODASYL three media are identified:

1. The user-working area
2. The system buffers
3. The secondary storage

Therefore we should have logical schema which de
scribe the data structure in each of these levels.
Actually in the CODASYL model the sub-schema de
scribes the data in Physical Levell while the schema
describes the data in Physical Levels 2 and 3.

A FOUR LEVEL MODEL

In the model that we have developed there are four
logical-abstract levels:

1. User-logical level
2. System-logical level
3. Access level
4. Storage level (also called structured storage level)

Each of these levels can be composed of several sub
levels. Corresponding to each logical level there is a
physical level which is connected to a physical medium.
We will now concentrate on the description of the
logical levels and their relation to security.

The user-logical level corresponds to the way a user
or a user group sees the data base. It is very similar
to CODASYL's Sub-Schema with the exception that
we do not have the constraint that the user-logical level
must be a subset of the system logical level. On the
contrary, it might be useful to have complex transfor
mations between the two levels. Usually there are
several user-logical level structures in a data base. The
system-logical level describes the whole logical struc
ture of the data base. It may correspond to CODASYL's
Schema with the difference that indexes, directories,
and access paths are not part of the system-logical level

100 Nationai Computer Conference, 1976

(they are part of the Schema in CODASYL.) The
access level describes the directories, indexes and all
possible access paths in the data base. The storage
level iR the result of applying the access level to a par
ticular physical secondary storage device (s) and de
scribes characteristics which are special for these de
vices. To each logical level corresponds one or more
physical levels according to the number of physical
media. An example is shown in Figure 1.

In this example the user logical level describes the
data as it appears on the user site. The system logical
level gives the interpretation to data which appears
in memory. And the access and storage levels give the
right interpretations to the data which reside on the
secondary storage devices. It is conceivable that in
the future the secondary storage hardware will do all
the access calculations and therefore no access infor
mation has to be in memory or described in the system
logical level. The main idea is the existence of more
than one physical level corresponding to more than one
physical media.

The relation of this model to security is discussed
in Gudes. 8 The model is shown to be general and to
include other known data base security models5

,12 as
special cases. The main idea is the decentralization of
protection mechanisms by the "spreading" of protec
tion specifications and mechanisms through the dif
ferent levels of the data base. In this paper we are
interested with only one protection mechanism-cryp
tographic transformations. The model will be used as a
framework for the application of cryptographic trans
formations in a data base. As is shown in the follow
ing sections, cryptographic transformations are a sub
set of the transformations between the physical levels
of a data base, which is used for protection.

FORMALISM

In order to understand the relationship between the
logical levels of a data base and their corresponding
physical levels we need some notation. When one looks
on a data base as it is represented on secondary stor
age one sees a sequence of O's and 1's. These binary
digits make sense only when one knows the right
structure, coding and interpretation of the data. One
starts with the simple division to data items and then
starts to build the more complex blocks of the struc
ture (repeating groups, records, files). The basic con
cepts, then, for describing a data base is the concept

;. :.....: : -.: c:
1 Terrmnal or 1 --' M' t~' , _econcary
,Satellite Cornputer,---. 1 ,aln ,emory ,~--, Storace
I I I I 1-' ___ -'

User-Lo 9i cal SyS tern-Looi ca 1 Access and
Storage -Loa i ca 1

Figure I-The fOUl" levels of a data base

of the data item. A data item has the following proper
ties:

interpretation (attribute) -what the data item is
length and what it is used
value for.
representation (coding)
address

We denote data items as: di

A common case in data bases is that one data item
contains one or more properties of other data items.
We give two examples:

Example 1 d1 d2

interpretation: Length of d2 name
value: 5 SMITH

In this case d1 contains the property: length of d2 •

Example 2 d1 d2

interpretation: units distance
value: 0 or 1 100

If d1 = 0 then dz is in miles
If d1 = 1 then d2 is in kilometers

Hence d1 contains the interpretation of d2• However
we need also the interpretation of d1 in order to know
what dz is. The interpretation of d1 is probably docu
mented in some manual which describes the system.

We see then that a set of data items may have several
levels of interpretation. Some of them are in the data
base itself and some of them are only implicit. Each
physical level of the data is just a set of data items,
where their interpretation is either in some of the
data items themselves, or in the logical description of
this level, or documented in some manual. More for
mally, a physical record j on level i is denoted as PRl
where this physical record has the address Aj • This
physical record is an ordered tuple of data items

PRjo= (dlij,d2ij" ... ,dnij)

The address of data item dk
i
j is determined by its rela

tive position and the length of all data items before it.
These lengths can themselves be other data items or
part of the logical description of this physical record.
The order of data items within a physical record is
then important for finding their addresses. (A physical
record here is "continuous" by definition.) The physi
cal data base on level i is the set of physical records on
this level

PB (i) = {PRiHPRi~, ,PR\u}

In reality only part of a physical data base on some
level will exist at any time (Except the fourth level
the storage level-in which the whole physical data
base exists.)

The definition of physical records is very simple be
cause we believe that the complex structure of the data
base is connected to the interpretation we give to these
data items. Most of this interpretation is in the logical
levels of the data base. In order to describe these
logical levels, we need to define more concepts.

Application of Cryptography for Data Base Security 101

Two data items are called simila1' if they have the
same interpretation. A field is an abstract concept
representing a set of similar data items. A field has no
value but usually has a unique name or identifier. We
denote field j on level i as Fi j •

The notation dj'- F k means dj is a data item occur
rence of the field F k' A logical record is a set of fields
with a unique name or identifier. The order of fields in
a logical record is immaterial because each field can be
identified by its name. Logical records on level i are
denoted as: LR\.

What is the connection between logical records and
physical records? Very simple. A physical record is an
occurrence of a logical record and a data item is an oc
currence of a field!

The logical data base on level i is a set of logical
records plus their interpretation which is contained
in the corresponding description language DL (i). The
logical data base on level i is LDB (i).

LDB (i) = {LRiuLRi2, •••• ,LRid + DL (i) +
some implicit interpretation.

The connection between logical data base level,
physical data base level, logical records and physical
records is seen in Figure 2.

In order to better understand the concepts above we
give two examples for describing structures which are
common in data bases.

Example 1: Repeating Group

Suppose we have a repeating group which gives infor
mation on a person's children. In this example we dis
regard the level notation. The logical record is:

LRC= (FHFz,FJ

/-

//-~-'''\ /PR i \
/ . , ,

LR' I • I, I .
, • ; I

I • : I PP, k, I

LOB(i >----.' : J I I "'-PDB(i)
I , I
I ., I;

.~' ~PRl I, I •
, LR m •
I I .

I PR\ I
+ I \ m /

\ '_ .. /
\

....... \ DL(i)
\ + ,
\ I
\ interpretation /
" - -- -- - -- - /'

Figure 2-The connection between logical data base level, physi
cal data base level, logical records and physical records

The following interpretation will appear as part of the
logical description

LRC-information on children
Fl -number of children
F~ -name
F~ -age

Physical records which are occurrences of this logical
record are:

where dI--Fu dz--F2, d4 --Fz, d3--F3 , d5--F3 and value
(d1) =V(d1) =2, V(dz) = 'AMI', V(d3) =25, V(d4)=
'ROMIT', V(dJ =22 and

PRz = {dud2,d3,dHdo,d6,d7}

where d1--F1; d2 , d4 , d6--Fz; d3, do, d,--F3 and V(d1)
=3, V(d2) ='SMITH', V(d3) =29 etc.

Example 2: Sets

Suppose we want to describe the structure:

LRX, LRY, and LRX are names for logical records.

LRX= {FXH Fx2 , •••• ,Fxm,Fxm+1}
LRY = {F1Y,Fl-, ,FnY,Fn71~-}
LRZ = {F lZ,F 2Z" ... ,F kZ,F k+1z,F k+2Z}

with the following interpretation

F\n+I-address of the physical record occurrence
LRZ which is the "son" (if there is more than
one son, we need another field to specify the
number of sons).

F m+1Y-address of son LRZ
F k+1z-address of LRX parent
Fk+l-address of LRYparent

We do not show here physical record occurrences of
the above logical records. It should be clear now that
any structure whether inter or intra record can be
represented in this way. The important fact is that
the complex structure is part of the logical description
while the physical records are no more than ordered
tuples of data items.

The user logical level is denoted as U 1 (D B) ,
U2 (DB), ,Uk (DB). We denote logical records on
Levell as: URij. Therefore

Vi (DB) = {URil ,VRi2, ,VRini}

We denote a logical record on Level 2 as LR j • The sys
tem logical level is denoted as :

S (DB) = {LRu LR2 , •••• ,LRs}

102 National Computer Conference, 1976

We do not put any constraints on the transforma
tions between these two levels. For example in the
CODASYL model we have the following constraint:

We will allow more complex transformations. In the
access level we introduce concept of access record. An
access record is simply another name for a logical
record on Level 3. \Ve denote access record i as AR j •

The access level is then,

The transformation between the system logical level
and the access level is very important and we would
like to give some examples of it:

Example 3:

Suppose we have a file--LR= {FH F 2,. ... ,Fn}-and
two indexes. The first index specifies for each data
item occurrence of field Fl the record(s) which contain
this data item. The second index does the same for field
F 2 • We say that the logical record LR is translated
into three access records:

AR1= (FwF12)
AR2= (F2UF 22)

AR3= (F3UF 32, ,F3n)

where we have the interpretation F ll =FuF 12 =address
of record containing a specific data item occurrence of
Fl. (If there is more than one such record we need
another field to specify the number of these records.)

F 21 = F 2, F 22 = address of record containing a specific
data item occurrence of F 2.

We therefore have three access paths to physical occur
rences of LR :

APl = access path 1= (ARuAR3)
AP2 = (ARu AR3)
AP3= (ARs) which represents a sequential search

through the file. The situation is shown below:

IndeX Index
~ ARl

2 ... File ~ APl
AR3

......
AP

(*) The notation C here is used more by its semantic meaning
l'ather than by its exact mathematical meaning.

With the concepts of access records and access paths,
we can present now any structure of directories or
indexes.

Example 4-Inverted File

LR= (FHF~, ,Fn) (This is also AR2)

ARI = (F wF l~,F 13,F 14) (directory entry)

with the following interpretation:

I
F11=name of field F j

keyword= F 12 =value of a data item occurrence on
field F j

F 13 =number of records containing the
corresponding keyword.

F 14 = addresses of these records

Notice that F 137 F 14 represent together a repeating
group. The possible access paths are

AP 1 = (ARuAR2) -using the directory
AP2 = (AR2)-a sequential search

Example 5: Splitting

LR= (FuF 2, •••• ,Fn)
AR1= (FH F2,. ... ,Fk,Ak)
AR2 = (Fk+HFk+2" ... Fn)

Ak is the address of the occurrence of the second half
of the same logical record. The only possible access
path is:

This situation is shown below:

..... A-P...-. F k+ 1 ' · · · · · ,F n

AR
We will use this example in the next section. 2

We feel that the concepts of access records and
access paths are very significant since they clarify
much of the confusion about the question: to which
level do indexes and directories belong? We denote
the logical records in Level 4 (storage level) as LP j •

The storage level is then:

In many cases this level is equivalent to the access
level, i.e. LPj=AR j • However it may differ in two im
portant aspects:

1. Control information used by the device such as
"gaps" or keys may be added.

2. If cryptographic transformations are used on

Application of Cryptography for Data Base Security 103

this level, they may destroy the whole data item
structure. In that case we can speak on another
level-Level 5-called unstructured storage level.

Until now we discussed mainly the logical abstract
levels. As was explained before, the physicai records
are just occurrences of the corresponding fields. One
comment is appropriate at this point. It may be that
in reality we will have a smaller number of physical
media, and therefore of physical levels, than the num
ber of logical levels. In that case, some of the iogicai
levels are abstract and no corresponding physical level
exists. The importance of having these abstract inter
mediate logical levels is for understanding the struc
ture. For example, it is usually the case that the access
level and the storage level correspond to one physical
medium-the secondary storage. In this case, the
physical records on Level 4 are occurrences of the
logical records on Level 4. No physical records on
Level 3 exist. The existence of the access records is
important because otherwise the transformation LRi~
LP j would be very difficult to understand. In the case
that we have only one physical medium, we come to
the traditional view of a data base of several logical
levels and one physical level! So our model contains
the traditional view as a special case.

CRYPTOGRAPHIC TRANSFORMATIONS

Now, with the notation defined, we can return to the
subject of cryptographic transformations. These trans
formations can affect both the structure of the data and
its coding or representation. The importance of having
several physical levels for a data base should now be
clear. We can look at the cryptographic transforma
tions as transformations between two consecutive
physical levels. In general, cryptographic transforma
tions are a subset of the set of transformations be
tween the physical levels of the data base, which is used
for protection. CJyptographic transformations can
be a powerful protection mechanism. They can be
used in two ways:

(1) As part of the standard access control. That is,
serving as a protection mechanism for imple
menting the protection specifications as they are
defined in each level. In this case the user must
know about the existence of these transforma
tions since he probably holds some of the crypto
graphic keys.

(2) As a system tool for protecting against illegal
access paths such as: browsing or wire tapping.
In this case the cryptographic transformations
are completely controlled by the system, they are
not connected to a specific protection specifica
tion and the user does not have to know about
their existence.

Of course, the combination of these two methods can

be used. We leave the subject of how to use crypto
graphic transformations to the next section and con
centrate in this section on describing the possible
cryptographic transformations between the different
physical levels of the data base.

TRANSFORMATIONS BETWEEN PHYSICAL
LEVELS

""Ve stal~t with the transformation bet",l'een the user=
logical and the system-logical levels. Clearly, the trans
formation between the corresponding physical levels
is dependent on the transformation between the logical
levels. In general, these transformations can be very
complex. However, if we want to use system services
to process and query on data items and we ,vant the
ability of sharing data with other users, the common
data item structure has to be preserved. We identify
three types of transformations between physical
Levels 1 and 2:

Type 1: Data Item Substitution

d\=f (d2j)
d2

j =f-1 (d1i)

This is the common substitution transformation
which does not destroy the data item structure. Its
advantage is its simplicity and the fact that some
processing, such as querying, can be done on data items
even in their ciphered form. Its disadvantage is that it
may not be secure enough. (Because the statistical
properties of similar data items may be saved.)

Type 2: Data Item Expansion

d2
i =f (d1j,d1jw ,d\+k)

A data item in the system logical is expanded to sev
eral data items and finer structure on the user logical
level. As an example suppose we have the fields:
NAME, AGE, SEX on the user logical level, while on
the system logical level we have one field: PERSONAL
DATA, whose occurrences are a scrambled form of
occurrences of the three fields on the user logical level.
This transformation can be made more secure than the
former one but it has a major disadvantage which is:
because the fine structure on the user logical is de
stroyed a user cannot ask queries, which require pro
cessing on the system logical level, about individual
fields such as: NAME, AGE, SEX since these fields
are not defined in the system logical level.

A third type of transformation is data item con
traction

Clearly more complex transformations can be de
fined between Levelland 2. One comment is appro
priate at this point. There may be some cryptographic
transformations between the two levels that we are not

104 National Computer Conference, 1976

aware of. For example, if Levelland Level 2 are far
apart and are connected by telephone lines, some en
ciphering device may be connected to these lines. We
are not interested in this kind of enciphering which
has nothing to do with the data base structure and as
far as the representation of the data in the two levels
is concerned does not have any effect. The same com
ment is true in the case of transformations between
other physical levels of the data base.

System Logical+-- - - -?Access-E- - - -?Storage

We discuss the transformations between these three
levels together since we consider the case of one physi
cal medium to both Levels 3 and 4. We identify three
types of transformations:

Type 1: Substitution Oriented

d2
i =f(d4

j), d4
j =f-l(d2

j)

The importance of this transformation is that it al
lows us to define p'rocessable ciphers. Most of the
processing of data items is done on the system logical
level (in main memory). So our definition of process
able ciphers must be connected to data in Level 2. The
advantages of being able to process data in its ciphered
form were discussed above. Informally, a processable
cipher is a transformation from the system logical
level to the storage level which preserves the data item
structure and allows the type of operations which are
done on the "clear" data to be done on the ciphered data
items. Formally, if d2

1 =f(d\) and d22=f(d4~) and G
is a defined operation on data items in Level 2, then f is
processable if and only if:

3: G,G'-?G (d2Hd2~) =f (GI (d\,d4~))
Usually we also require that G=GI. For example, if G
is the compare operation, then we have

d1
4 =d2

4 ¢:::>f (dI4
) =f(d2

4
) ¢:::>dI2 =d/

Such a cipher f is called a retrievable cipher, since it
allows the searching and retrieving of records in their
ciphered form. (This is done by comparing the
ciphered form of the query to the ciphered content of
the record.)

Type 2: Transposition Oriented

We have explained before that the order of data
items in a physical record is important in order to find
their addresses. However, this order may change from
one physical record to another. For example, suppose a
logical record on Level 4 is: LP= (FHF~,Fa) and fol~
lowing are occurrences of physical records:

PR1 = (dll,dl~,dl3)
PR~ = (d21 ,d2~,d~3)

PR3 = (d3Hd3~,d:J3)

Where:
dl1,-,FH d~2'-'F" d~:l,-,Fl

d12 ,-,F2, d21 ,-,F2, d32 --F2

-"I ~ U23 '-' F 3 , d31 ,-, Fa U 13 '-'1' 3,

That is, the order of data items in a physical record
changes from one record to another. Such a trans
formation is very effective against "browsing" since
the starting address of data items is not known to the
illegal "browser". Its disadvantages are that it in
creases the access time of finding a data item, and that
another data item has to be added which contains in
formation about the specific order in each record.

Type 3: Access Oriented

In this transformation we encipher only the data
items which allow the transfer from one access record
to another in a specific access path. For example,
suppose we use the splitting example above. We have

and

LR= (NAME, F z, SALARY, F 4)

ARl = (NAME, F 2, A)
AR2 = (SALARY, F 4)

A-is the address of the second half of an occurrence
of LR. If we encipher the field A, then matching the
right salary to the right name without deciphering this
field is very difficult. The reason is that we have used
the notion of access path for enciphering. In this case
we enciphered the only existing access path. This type
of transformation can be very effective, since address
fields do not have regular statistical properties. (Note
also that fields NAME and SALARY do not have to be
enciphered.)

COMBINED TRANSFORMATIONS

Shannon l
" has shown the strength of combined

cryptographic transformations. The simplest example
of a combined transformation is the substitution
transposition transformation. In this case data items
are first enciphered by substitution transformation and
then transposed by the transposition transformation.
It is very difficult now to get the statistical properties
of data items in order to "break" the substitution
because of the transposition.

Another effective combination is the access-substitu
tion combination. Following are two examples of sub
stitution access combination.

Example 1 : Hashing

Suppose we have a hashing "file". We have one
logical record

LR= (FHF~,. ... ,Fll) and two access records
AR 1 = (Fl)-F, is the hashing field
AR~= (Fl,F~, ,FIl)

Application of Cryptography for Data. Base Security 105

We have two access paths. The legal access path
(ARlJAR2) and the illegal one-(AR2) which is
equivalent to a sequential search. Suppose we use the
following transformation:

k + d-7hashing address + Kl

where d.-FI and K is the cryptographic key. The
meaning of this transformation is that as a result of
the hashing process we get an address and a key KI.
Key KI which is the "residueH of the hashing trans
formation is used for the substitution transformation
of data item d. The illegal path of (AR2) is now very
difficult, since in order to guess what the substitution
is, we need to go through the legal access path (ARlJ
AR 2) using the hashing algorithm and the crypto
graphic key K!

Example 2: Inverted File

Suppose we have the "file" described above in Ex
ample 4. That is

LR= (FlJF 2 , •••• ,Fn)
ARl = (Fn,Fu,F'3,F14)

AR2= (FH F 2,. ••• ,Fn)

The two possible access paths are (AR"AR2) and
(AR2) . We add to access record ARI a KEY field.
That is

AR 1 = (FwF w F 13JF 14,F1J

where F 1:; is the key to encipher records with a specific
keyword. All records which contain a data item oc
currence of Field F 1 (= keyword) are enciphered by
specific occurrence of field F 1fi' Therefore all records
which have the same keyword are enciphered by the
same substitution key. Again illegal path (AR2) is
protected by the fact that for deciphering we need
to know which records contain a particular keyword,
but this information is contained in the directory only,
which is part of the legal access path. (*) Many varia
tions of the combined transformation technique are
possible. One possible extension of this is to build the
directory as a tree where the key for enciphering a
node of the tree is contained in its parent node. The
subject of the enciphering of search trees is discussed
also in Bayer and Metzger.2

Storage~ - - - - - -7Unstructured Storage

One can think of a general structure destroying
transformation which can be used, for example, for
backup or data migration purposes. Since usually an
other physical medium is involved (e.g., magnetic
tape) we define another logical and corresponding
physical level called: unstructured storage level. We

(*) The case where a record contains two keywords or can be
accessed by more than one access path can be further researched
based on McCauley.12

do not give any special notation for this level. (It
should be straightforward using the examples above.)
An example for such transformation is to use a pseudo
random number generator to encipher a complete "file"
or a large part of a data base. Such transformation can
be made very secure. Its major disadvantage is that
complete deciphering is necessary before any access is
possible.

We summarize this section with the following sche-

tions and their use in the multi-level data base model:

) U_S_E_r_" _t,..L_O_G __ C __ ~_L--II

substitution contraction expansion

substitution

LOG I CAL

transposition
I

structure destroyin9

+

access

U N S T RUe T U RED S TOR AGE

USING CRYPTOGRAPHIC TRANSFORMATIONS

As was pointed out above, there are two ways for
implementing cryptographic transformations: (1) as
part of the standard protection mechanism according
to some protection specifications. These transforma
tions are user oriented (since the protection specifica
tions are user oriented) and the users should know
about their existence, since they probably have some
of the cryptographic keys, (2) as a system tool to
protect against illegal access paths such as "browsing"
or "wiretapping". In this case users may not be aware
of the existence of these transformations and their
keys are under system (or DBA) control.

The actual implementation of the two methods de
pends on the data base structure and on the way the
protection specifications and mechanism are spread out
through the different levels of the data base.

106 National Computer Conference, 1976

SYSTEM CONTROLLED TRANSFORMATIONS

The following transformations are examples for sys
tem eontrolled transformatjons (method 2 above)

(1) The transformation between the unstructured
storage and the structured storage levels are al
ways system controlled.

(2) Combined transformations such as substitution
transposition or substitution-access can be
system controlled for protecting against the
illegal access path or browsing (e.g., in case of
"stealing" a physical secondary storage device) .
In this case the cryptographic keys for these
transformations have to be internal to the data
management or access control methods.

(3) Substitution oriented transformations, includ
ing processable ciphers under system control,
can be used to protect against wiretapping or
against dumping of main memory. Again, the
keys for these transformations are either in
ternal to the processing primitives of the query
language or are part of the DDL for Level 2, but
they must be protected by standard access con
trol methods.

We see then that system controlled transformations
are easy to implement and quite simple to control. They
are controlled by the DBA and he can change the
cryptographic keys at any time. They are very effec
tive against illegal access paths such as: "browsing~~
or "wiretapping" but they must be complemented by
standard access control methods for protection of the
cryptographic keys. This method, of using both sys
tem controlled cryptographic transformations and
standard protection mechanisms (e.g., passwords)
such that each mechanism protects the "weak" areas
of the other, can be very effective provided that ade
quate administrative security exists so that the prob
ability of compromising both mechanisms is low.

USER CONTROLLED TRANSFORMATIONS

The situation with user controlled transformations
is more complex, and the main reason is the existence
of sharing and overlapping protection specifications.
Clearly, if every user has access to a unique part of
the data base, then this part can be enciphered by a
unique key and only the appropriate user has the right
key. But this case is unreal since the main purpose of a
data base is sharing data. McCauley12 has suggested
a way to partition a data base using security atoms.
The security atoms are data base dependent and not
protection specification dependent! Every user has
access to a set of security atoms according to the pro
tection specifications. A way to use cryptography in
this model will be to encipher each security atom with a
unique key and distribute the keys between users ac-

cording to the protection specification. (Somewhat
similar to the passwords mechanism.)

Another possible use of user controlled cryptography
is based upon the fact that the only "clear" data which
is sent to the user is the data that he should have legal
access to. (The fact that he gets a lot of "garbage"
may discourage him from issuing illegal queries.) The
main advantage of user controlled transformations
versus system controlled transformations is concerned
with the problem of key placement. In the system con
trolled case, the cryptographic keys must reside at all
times in the system and therefore must be protected by
the standard protection mechanisms. In the user
controlled case there is the possibility that only the
user (s) will have some of the cryptographic keys to
their authorized data. These keys do not reside in the
system except at the actual time the user is accessing
his data. In this case even the DBA cannot "decipher"
the user's data since he does not have the right key.
This is certainly in accordance with the "need to know"
concept, i.e., that the DBA does not have to know the
content of every data item in the data base. Such a
system, where only the authorized user has the crypto
graphic key was implemented by IBM-i using the
LUCIFER system to protect a "secure field." There
are two disadvantages to this method. The first is the
possibility of penetration of illegal cryptographic keys.
Since the right key is not stored in the system, some
checking algorithm (e.g., check digit) must be used.
The probability that an illegal key will not be detected
by the checking algorithm is not zero and its results
in case of updating can be disastrous! The second
disadvantage is that it is very hard to control the "user
controlled transformations" case. For example, close
cooperation between users which share the same data is
needed if the cryptographic keys are to be changed.
Also, close cooperation is needed between users and the
DBA in some cases of error recovery and data base
reorganization.

We note that cryptographic transformations which
are controlled by the system are easier to implement
but since the keys must reside within the system, they
may be less secure. User controlled transformations
allow the possibility that only the user will have the
right cryptographic key, and therefore provide more
security, but they require data base partitioning and
probably a large number of keys, and therefore present
quite a serious control problem.

FURTHER RESEARCH

The model presented in this paper is used as a frame
work for further research in the area of cryptography
and data base security. This research is reported in
Gudes.8 The main areas of this further research are:
(1) a detailed investigation into the problem of how
to design an authorization scheme which is based on
user controlled cryptographic transformations. Sev-

Application of Cryptography for Data Base Security 107

eral types of protection specifications such as: com
partmentalized, hierarchical or data dependent are
discussed and several cryptographic schemes are sug
gested for their implementation, (2) research into the
problem of evaluating the security of data base en
ciphering. A "security measure" for data base enci
phering is suggested and is computed for several types
of ciphers, (3) an experiment using a simple file sys
tem is being performed. The goal of this experiment
is to gain insight on the amount of security provided
by the different ciphers and the overhead associated
with them. The results of these areas of the research
will be reported in future papers.

SUMMARY

In this paper we have investigated the protHem of
applying cryptographic transformations for enhancing
the security of data base systems. These transforma
tions have been recognized in the past as a valuable
protection mechanism but their relation to data base
security has not been identified. The major reason
was the lack of a suitable data base model with which
the problems related to security and cryptography can
be analyzed. Such a model is developed in this paper.
This is a multi-level model of a data base which helps
us to understand the connection between the data base
structure and the cryptographic transformations ap
plied to the data base. We have identified several
generai types of cryptographic transformations, and
have shown the two major ways in which they can be
used: as system controlled transformations, or as user
controlled transformations. More research is being
conducted on the probiem of designing a secure system
based on cryptography and on the cost-effectiveness of
the application of cryptographic transformations in a
data base system.

REFERENCES

L Astrahan, M. M., E. B. Altman, P. L. Fehder and M. E.
Senko, "Concepts of a Data Independent Accessing Model,"
SIGFIDET Workshop, 1972.

2. Bayer, B. and J. K. Metzger, "On the Encipherment of
Search Trees and Random Access Files," Proceedings of
First International Conference on Very Large Data Bases,
September, 1975.

3. CODASYL Data Base Task Group Report, April, 1971.
4. Feistel, H., W. Notz and L. J. Smith, "Some Cryptographic

Techniques for Machine to Machine Data Communications,"
Proceedings of the IEEE. November, 1975.

5. Friedman, T. D., "The Authorization Problem in Shared
Files," IBM System Journal, Vol. 7, No.4, 1970.

6. Graham, R. M., "Protection in an Information Processing
Utility," C .. 1CM, Vol. 15, No.5, May, 1968.

7. Graham, S. G. and P. J. Denning, "Protection Principles
and Practice," AFIPS Conference Proceedings, SJCC, 1972.

8. Gudes, E., The Application of Cryptography for Data Base
Security, Ph.D. Dissertation, The Ohio State University,
1976 (to appear).

9. Hoffman, L. J., "The Formulary Model for Flexible Privacy
and Access Controls," AFIPS Conference Proceedings,
FJCC, 1971.

]0. IBM Systems Reference Library, OS Data Management
Services Guide, Order No. GC26-3746, 1972.

] 1. Lampson, B. \V., "Dynamic Protection Structures," AFIPS
Conference Proceedings, FJCC, 1969.

]2. McCauley, E. J., A Model for Data Secure Systems, Ph.D.
Dissertation, The Ohio State University, 1975.

13. Minsky, N., "On Interaction with Data Bases," ACM
SIGFIDET Workshop on Data Description, Access and Con
trol, May, 1974.

14. Petersen, H. E. and R. Turn, "Systems Implications of
Information Privacy," AFIPS Conference Proceedings,
SJCC, 1967.

15. Shannon, C. E., "Communication Theory of Secrecy Sys
tems," The Bell System Technical Journal, Vol. 28, No.4,
1949.

16. Sibley, E. H., "On the Equivalence of Data Base Systems,"
SIGFIDET Workshop on Data Description, Access and
Control, May, 1974.

17. Sibley, E. H. and R. W. Taylor, "A Data Definition and
Mapping Language," CACM, Vol. 16, No. 12, December,
1973.

18. Skatrud, R. D., "A Consideration of the Application of
Cryptographic Techniques to Data Processing," AFIPS
Conference Proceedings, FJCC, 1969.

19. Turn, R., "Privacy Transformations for Databank Systems,"
NCC Proceedings, 1973.

20. Van Tassel, D. L., "Cryptographic Techniques for Com
puters," AFIPS Conference Proceedings, SJCC, 1969.

Multiuser cryptographic techniques*

by vVHITFIELD DIFFIE and :MARTIN E. HELLMAN
Stanford University
Stanford, California

ABSTRACT

This paper deals with new problems which arise in
the application of cryptography to computer commu
nication systems with large numbers of users. Fore
most among these is the key distribution problem. We
suggest two techniques for dealing with this problem.
The first employs current technology and requires sub
version of several separate key distribution nodes to
compromise the system's security. Its disadvantage is
a high overhead for single message connections. The
second technique is still in the conceptual phase, but
promises to eliminate completely the need for a secure
key distribution channel, by making the sender's key
ing information public. It is also shown how such a
public key cryptosystem would allow the development
of an authentication system which generates an un
forgeable, message dependent digital signature.

INTRODUCTION

In a computer network with a large number of users,
cryptography is often essential for protecting stored
or transmitted data. While this application closely
resembles the age old use of cryptography to protect
military and diplomatic communications, there are
several important differences which require new pro
tocols and new types of cryptosystems. This paper
addresses the multiuser aspect of computer networks
and presents ways to preserve privacy of communica
tion despite the large number of user connections which
are possible.

In a system with n users there are n2_n pairs who
may wish to hold private conversations. The straight
forward way to achieve this is to give each pair of users
a key in common which they share with no one else.
Each user will then have n-l keys, one for communi
cating with each other user. Unfortunately, the cost of
distributing these keys is prohibitive. A new user must
send keys to all other users. Unfortunately, the net
work cannot be used for this purpose, and an external

* This work was supported by the National Science Founda
tion under NSF Grant ENG 10173.

109

secure channel is required. This procedure is compar
able to requiring each new telephone subscriber to send
a registered letter to everyone else in the phonebook.

Military communications suffer less from this prob
lem for several reasons. Among these are the limita
tions imposed by the chain of command and the fact
that stations change allegiance infrequently. In a
computer network designed for business communica
tion, on the other hand, users will regard each other
as friends on one matter and as opponents on another.
Firms A and B may cooperate on one venture in com
petition with C, while simultaneously, A and C com
pete with B on a different endeavor. A must therefore
use different keys for communicating with Band C.

One approach to this problem is to assume that the
users trust the network. Each user remembers only
one key which is used to communicate with a local
node. From there the message is relayed from node to
node, each of which decrypts it, then reencrypts it in
a different key for the next leg of its journey. This
process is known as link encryption. 1 When the mes
sage reaches the network node closest to its destina
tion, it is sent on to the addressee encrypted in a key
shared only by the addressee and that node.

Although this technique requires each user to re
member only one key, it has the disadvantage that a
message is compromised if anyone of the nodes in its
path is subverted. In this paper we examine two other
ways of allowing secure communication between any
pair of users without assuming the integrity of all
nodes in the network and without requiring the users
to distribute or store large numbers of keys.

The first technique requires no new technology, but
imposes a complex initial connection protocol. This
is the subject of the second section of this paper. We
call the second technique public key cryptography,
since most of the secrecy traditionally required for the
keys has been removed. This is discussed in section
three and represents a radical departure from past
cryptographic practices. While it requires further
work before it becomes implementable, its simplicity
of operation makes it extremely attractive. If a suc-

110 National Computer Conference, 1976

cessful implementation can be developed it should find
wide use in both military and civilian applications.

The fourth section shows how public key cryptog
raphy can be used to provide a time and message de
pendent digital signature which cannot be forged even
when past signatures have been seen. This is an ex
ample of the general problem of authentication dis
cussed in greater detail in Reference 2, which provides
a more general perspective in which public key cryptog
raphy can be viewed.

A PROTFCTIVE PROTOCOL

As indicated earlier, a message protected by link
encryption will be compromised if any node in the path
it follows from the sender to the receiver is subverted.
In this section we describe a protocol which guarantees
to protect the message unless a large number of nodes
are compromised. While many variations are possible,
the basic technique is as follows.

A small number m of the network's nodes will func
tion as "key distribution nodes." Each user has m
keys, one for communicating with each of these m
nodes. These keys vary from user to user, so while
each user must remember only m keys, each of the
key distribution nodes remembers n, one for each user
of the net. When users A and B wish to establish a
secure connection they contact the m key distribution
nodes and receive one randomly chosen key from
each. These keys are sent in encrypted form using
the keys which the users share with the respective
nodes. Upon receiving these keys, the conversants
each compute the exclusive or of the m keys received
to obtain a single key which is then used to secure a
private conversation. None of the nodes involved can
violate this privacy individually. Only if all m nodes
are compromised will the security of this connection
fail.

It might be objected that any key distribution node
acting alone can prevent all communication by mis
chievously sending out different keys to each of the
parties, thus bringing network operations to a halt. The
users, however, can easily protect themselves against
this threat. If communication using the composite key
fails, its use as a key is abandoned, and the components
are exchanged one by one, in clear, for comparison.
If any key fails to agree, the node which issued it is
blacklisted. Finally, on conclusion of this process, the
users repeat the request for keys to the nodes which
passed the previous test.

Alternatively, the component keys can be compared
by the use of one way functions2 ,3,5 without ever being
transmitted in clear. Loosely speaking, a function f
is called a one-way function if it is easy to compute
in the forward direction, but given any output, it is
computationally infeasible to find an input which pro
duces it. In referring to a task as computationally in
feasible, we have in mind that it cannot be done in

fewer than a finite but astronomical number of opera
tions, say 2j100. For practical purposes, this is equiva
lent to being incomputable. As shown in Reference 2,
a one way function can easily be obtained from a se
cure cryptosystem.

If communication fails using the composite key, the
users send the images of the individual keys under a
public one-way function. If the image received does
not agree with that computed by applying f to the key,
the node which issued it is guilty of compromise.
Since the valid keys have not been publicly revealed
in this process, there is no need to request new ones
from the uncompromised nodes. Instead the invalid
ones are omitted and the remainder xored.

To sum up, this technique requires each user to
remember m keys and each key distribution node to
remember n keys. Unless all m key distribution nodes
are subverted, any two users can establish a private
link through use of a set-up protocol usually requiring
2m exchanges (more are required if a key distribution
node has been subverted). The next section describes
a concept which eliminates much of this overhead and
does not require the user to trust any node. This new
concept, if successfully implemented, will make the
technique described above obsolete.

PUBLIC KEY CRYPTOGRAPHY

In this section we propose that it is possible to elimi
nate most of the secrecy surrounding the key used in
a communication, and yet to preserve the secrecy of
the communication. This is accomplished by giving
each user a pair of keys E and D. E is an enciphering
key and is public information. D is the corresponding
deciphering key, and while this must be kept secret,
it need never be communicated, eliminating the need
for a secure key distribution channel. Although D is
determined by E, it is infeasible to compute D from E.

For reasons of security, generation of this E-D
pair is best done at the user's terminal which is as
sumed to have some computational power. The user
then keeps the deciphering key D secret but makes
the enciphering key E public by placing it in a central
file along with his name and address. Anyone can
then encrypt a message and send it to the user, but
only the intended receiver can decipher it. Public key
cryptosystems can therefore be regarded as mUltiple
access ciphers.

By regularly checking the file of enciphering keys
the user can guard against any attempt to alter it
surreptitiously. Any such mischief is reported and
settled by other authentication means, such as personal
appearance.

The crucial feature of a public key system is that it
is relatively easy to generate an E-D pair, preferably
automatically through a publicly available transforma
tion from a random bit string to E-D, and yet it is
computationally infeasible to compute D from E.

At present we have neither a proof that public key
systems exist, nor a demonstration system. We hope
to have a demonstration E-D pair in the near future,
and expect that if the demonstration pair successfully
resists attack then we will be able to design an algo
rithm for automatically generating E-D pairs of a
similar kind. In the meantime, the following reasoning
is given to help dispel any doubts the reader may have.

A suggestive example is to let the cryptogram, rep
resented as a binary n-vector c equal E; TIl; where m i~
the message also represented as a binary n-vector, and
E is an arbitrary n-by-n invertible matrix. Letting
D=Ei-1 we have m=D c. Thus both enciphering and
deciphering are easily accomplished with about ni2
operations. Calculation of D from E, however, involves
a matrix inversion which is a harder problem. And it
is at least conceptually simpler to obtain an arbitrary
pair of inverse matrices than it is to invert a given
matrix. Start with the identity matrix I and do ele
mentary row and column operations to obtain an arbi
trary invertible matrix E. Then starting with I do
the inverses of these same elementary operations in
reverse order, to obtain D=Ei-l. The sequence of
elementary operations could easily be generated from
a random bit string.

Unfortunately, matrix inversion takes only about
ni3 operations even without knowledge of the sequence
of elementary operations. The ratio of "cryptanalytic"
time (i.e., computing D from E) to enciphering or
deciphering time is thus at most n. To obtain ratios
of 10i6 or greater would thus require enormous block
sizes. Also, it does not appear that knowledge of the
elementary operations used to obtain E from I greatly
reduces the time for computing D. And, since there
is no round-off error in binary arithmetic numerical
stability is of no consequence in the matrix inversion.
In spite of its lack of practical utility, this matrix
oriented example is still useful for clarifying the re
lationships necess:;try in a public key system.

A more practical direction uses the observation that
we are really seeking a pair of easily computed inverse
algorithms E and D, but that D must be hard to infer
from E. This is not as impossible as it may sound.
Anyone who has tried to determine what operation is
accomplished by someone else's machine language pro
gram knows that E itself (i.e., what E does) can be
hard to infer from E (i.e., a listing of E). If the
program were to be made purposefully confusing
through addition of unneeded variables, statements and
outputs, then determining an inverse algorithm could
be made very difficult indeed. Of course, E must be
complicated enough to prevent its identification from
input-output pairs.

Another idea appears more promising. Suppose we
start with a schematic of a 100 bit input, 100 bit out
put circuit which merely is a set of 100 wires imple
menting the identity mapping. Select 4 points in the
circuit at random, break these wires, and insert AND,

Multiuser Cryptographic TechniQues 111

OR and NOT gates which implement a randomly
chosen 4 bit to 4 bit invertible mapping (a 4 bit S box
in Feistel's notation).-1 Then repeat this insertion
operation approximately 100 times to obtain an en
ciphering circuit E. Knowing the sequence of opera
tions which led to the final E circuit allows one to
easily design an inverse circuit D. If however the
gates are now randomly moved around on the sche
matic of E to hide their associations into S boxes, an
opponent would have great difficulty in reconstructing
the simple description of E in terms of S boxes, and
therefore would have great difficulty in constructing
a simple version of D. His task could be further com
plicated by using reduction techniques (e.g. Carnaugh
maps) or expansion techniques (e.g.-' (AB) = --A or
-' B, or expressing a logical variable in terms of pre
vious variables), and by adding additional, unneeded
S boxes and outputs.

For eaSe of exposition, we have described the imple
mentation of a specific key in hardware. In practice,
a special purpose simulator is obviously of most in
terest. The hardware description is also valuable in
exemplifying a generally useful idea. To build a good
public key cryptosystem one needs easily inverted ele
mentary building blocks and a general framework
for describing the concatenation of these elementary
blocks. Here the elementary building blocks are S
boxes and the general framework is the schematic
diagram. The general framework must also hide the
sequence of elementary building blocks so that no one
other than the designer can easily implement the
sequence of inverse elementary operations. Examina
tion will show that the matrix example had a similar
structure, except there the general class of transforma
tions obtainable was too small.

While the above arguments only provide plausibility
as opposed to proof, we hope they will stimulate addi
tional work on this promising area of research.

PUBLIC KEY AUTHENTICATION

The purpose of a cryptographic system is to prevent
the unauthorized extraction of information from a
public (i.e., insecure) channel. The dual problem of
authentication is to prevent unauthorized injection of
messages into a public channel.

In conventional paper oriented business transac
tions, signatures provide a generally accepted level of
authentication. As electronic communication replaces
mail service the need for a digital signature will be
strongly felt.

Various types of authentication are now possible,2
but the development of public key cryptosystems would
allow an entirely new dimension.

Currently, most message authentication consists of
appending an authenticator pattern, known only to the
transmitter and intended receiver, to each message

112 National Computer Conference, 1976

and encrypting the combination. This protects against
an eavesdropper being able to forge new, properly au
thenticated messages unless he has also stolen the key
being used. There is no protection against such an
eavesdropping thief or against the threat of dispute.
That is, the transmitter may transmit a properly au
thenticated message, later deny this action, and falsely
blame the receiver for taking unauthorized action. Or,
conversely, the receiver may take unauthorized action,
forge a message to itself and then falsely blame the
transmitter for these actions. For example, a dis
honest stockbroker may try to cover up unauthorized
buying and selling for personal gain by forging or
ders from clients. Or a client may disclaim an order,
actually authorized by him, but which is later seen to
cause a loss. We will introduce concepts which would
allow the receiver to easily verify the authenticity of
a message, but which prevent him from generating
apparently authenticated messages, thereby protect
ing against both the threat of eavesdropping thieves
and the threat of dispute. Note that these techniques
thus provide stronger protection than signatures,
voiceprints, etc. which can be forged once seen and
are not message dependent.

To obtain an unforgeable digital signature from a
public key cryptosystem, the protocol would be as fol
lows: Assume user A wishes to send a message M to
user B. The transformed message C=EbDa(M) is
sent, where Eb represents the transformation effected
by use of B's public enciphering key and Da represents
the transformation effected by use of A's secret de
ciphering key. Upon receipt of C, user B operates first
with his secret operation Db and then with the public
operation Ea thereby obtaining EaDb(C) = EaDbEbDa
(M) =M. No one else can extract M because of the
need to know Db. By saving the intermediate result
Db(C) =Da(M) user B (and only user B) can prove
that he received the specific message M from user A.
There must be some structure to the message (e.g., it
could include a date and time field) to prevent injec
tion of random bit patterns for C, with the hope that
the resultant decoded "message", EaDb(C), might
cause random mischief such as deletion of files.

Note that since there is no need for a secure channel
for distribution of authentication information, we have
a public key authentication system. This system pro
tects against, "eavesdropping thieves" and against a
dispute as to whether or not an action taken by the
receiver was authorized by the transmitter. Similarly,
a public key cryptosystem can be used to protect

against the other type of dispute in which the trans
mitter A claims to have issued an order which was
not carried out by the receiver B. The transmitter re
quests that the receiver B send EaDb (M) as a receipt
for the message M. By operating on this receipt with
his secret operation Da, the transmitter obtains Db
(M), which could only have been generated by the
receiver B. Only user A can generate this receipt
since it requires knowledge of Da.

While the above discussion centered on message
authentication it also applies to user authentication.
The implicit message becomes "I am user X and the
time is T." Inclusion of the time field prevents an
eavesdropper from using old authentication signals to
pose as someone else. For reasons noted in Reference
2, such a system deserves to be called a one-way IFF
system.

We thus see that public key cryptosystems developed
for ensuring the privacy of communications, could
also be used to ensure their authenticity. They could
therefore be used to fill the need for a digital equivalent
of a signature. This need is currently a major barrier
to the use of electronic mail for business communica
tions, and provides additional motivation for study of
public key cryptosystems.

ACKNOWLEDGMENT

The authors wish to thank Leslie Lamport of Massa
chusetts Computer Associates for several valuable dis
cussions. In particular, the technique described in
Section 2 was discovered during one of these conversa
tions.

REFERENCES

1. Baran, Paul, On Distributed Communications: IX. Security,
Secrecy, and Tamper-Free Considerations, Santa Monica,
CA: The Rand Corporation August 1964, (RM-3765-PR).

2. Diffie, Whitfield and Martin E. Hellman, forthcoming paper
to be submitted to the IEEE Transactions on Information
Theory.

3. Evans, Arthur, Jr., William Kantrowitz and Edwin Weiss,
"A User Authentication System not Requiring Secrecy in
the Computer," Communications of the ACM, Vol. 17 No.8,
August 1974, pp. 437-442.

4. Feistel, Horst, "Cryptography and Computer Privacy,"
Scientific American, Vol. 228, No.5, May 1973, pp. 15-23.

5. Purdy, George B., "A High Security Log-in Procedure,"
Communications of the ACM, Vol. 17, No.8, August 1974,
pp. 442-445.

Cryptography using modular software elements*

by HERBERT s. BRIGHT and RICHARD L. ENISON
Computation Planning, Inc.
Bethesda, Maryland

ABSTRACT

Protection of information within a computer/com
munication system can be provided through reversible
cryptographic transformation of the information itself
into a form that can be returned to usable form only
through use of control information known as "key."

It is not necessary, in order to achieve access control,
that the encryption algorithms, random number gen
erator, or system organization be kept secret; in fact,
a basic requirement of modern cryptographic tech
nology is that it must be effective although a would-be
penetrator is assumed to have full access to all of that
information and the facilities and competence to apply
it. Only the key can be assumed to be, and must be,
physically secure.

The building-block approach outlined makes use of
pre-programmed software elements for providing all
specialized algorithms, including the Proposed Federal
Data Encryption Standard (DES), together with
necessary nonnumeric generalized support routines for
use with application programs written in conventional
procedural higher languages (FORTRAN, COBOL,
etc.). Both Strong Algorithm and Long Key methods
can be used as required by security-Ievel-vs-cost trade
off considerations.

This method is useful in conjunction with specialized
hardware; for testing of programs and hardware; in
some cases instead of hardware; and can support
multiple-level security applications.

The entire scheme, including the Tausworthe-Lewis
Payne bitwise linear recurrence modulo 2 quasirandom
number generator, is based irrespective of hardware
type on a standardized 64-bit data element.

INTRODUCTION

In spite of appropriate bars and locks on parts of a
system: If the information it handles is in a form that
can be understood, used, or damaged by unauthorized

* This work was done in connection with software product
development.

113

persons without such access being immediately evident
to management, the information is vulnerable.

Loss of management control over sensitive informa
tion or operations is then prevented only by the in
tegrity of system controls.

Unauthorized access may be for improper or ma
levolent purpose or-much more probably-may occur
by accident; but in any case it is ultimately manage
ment's responsibility to avoid errors and omissions in
planning that can lead to such vulnerability.

In the course of physical and logical configuration
planning, management has some choices of "appro
priate bars and locks" in hardware/software installa
tion.

Protection of the information itself: through privacy
transformation using cryptographic technology, pro
vides an additional level of management control that
can be relatively low in cost and high in effectiveness.

Elementary applications of cryptographic protection
can include:

• User authentication (off-line)
• Terminal authentication (on-line) * *
• Data link protection
• Network protection
• File access protection

The basic concept of modern cryptographic protec
tion for information is that access to it can be limited
to only those properly authorized to make such access,
merely by protecting an information key.

This paper will outline a method by which prepro
grammed software elements can be combined in modu
lar fashion to provide a broad range of cryptographic
transformation capabilities.

CRYPTOGRAPHY CONCEPTS

Cryptographic transformation of discrete data ele
ments consists of applying deterministic modification
processes that prevent the data from being recognized
or used, or modified without such modification becom-

** An advanced tv.to-way authentication scheme is outlined in
Reference 1.

114 National Computer Conference, 1976

ing obvious. This paper will be limited to reversible
crypto processes (i.e., those which are capable of sub
sequently reversing the encryption (i.e., "decrypt
ing"» in order to recover the original text.

Basic ideas

Figure 1 defines the nomenclature and shows sche
matically the relationship between input data (known
as Plaintext or Cleartext) ; the encrypted data (known
as Cipher or Ciphertext); the data used to control
encryption and decryption (known as Key) ; and the
encrypt/ decrypt operations.

A system using the arrangement of elements shown
in Figure 1, constituting the simplest and most basic
implementation of cryptography, is known by the term
"Electronic Code Book" or ECB. Many writers dis
tinguish between encoding (conversion of message
elements to different form using a substitution pro
cess) and enciphering (transforming message elements
using an algorithmic process). Enciphering trans
formations include both resequencing and in-sequence
con version.

Shannon, whose basic 1949 work2 is fundamental to
much subsequent work and is the foundation for the
work reported in the present paper, distinguished
between

• "Concealment Systems," also known as Steganog
raphy, in which the very existence of sensitive
information is concealed;

• "Privacy Systems," in which the physical form of
information is transformed and reconverted by
special equipment assumed to be not possessed by
unauthorized users; and

• "'True' Secrecy Systems," in which the informa
tion is modified only logically, and unauthorized
persons can be assumed to be aware of its exis
tence and to have any equipment needed to decrypt
it into Plaintext form.

We will consider only what Shannon called True
Secrecy Systems: We assume that the algorithm(s)
used for data transformation, and all necessary system
information, are completely public and that only the
key information is physically secure; viz., that a key is
known only to authorized persons who are authorized
to access the information that is to be protected by
cryptographic transformation. This assumption is con
sistent with the National Bureau of Standards' Draft

~I Encryption ~ s-i Decryption j .. • Plaintext t Ciphertext t Plaintext

Key Key

Figure l-Encr;,'ption and decryption

Guidelines3 in which D. K. Branstad established the
basic assumptions underlying development and use of
the Proposed (U.S.) Federal Data Encryption Stan
dard (DES).

Shannon showed that effective cryptographic trans
formation processes can be implemented using either
algorithmic complexity or key length for achieving
strength: He showed that what he called "product
systems," consisting of a combination of simpler cryp
tographic processes, form a linear associative algebra
with a unit element, thus permitting techniques to be
concatenated without losing the required deterministic
nature of the resulting process.

The NBS Proposed DES4 is an example of a Shannon
Product System, consisting of an algorithm using bit
wise permutation, addition mod 2, and substitution in
each 64-bit data block in a highly complex sequence,
involving multiple iterations through parts of the pro
cess, under control of a 64-bit Key (56 data bits plus
8 parity bits). Its basic character is outlined in gross
schematic form in Figure 2, which is taken from
Branstad.3

Shannon represented all simple substitution pro
cesses in the form of character set arithmetic (for En-

Plaintext Input
(64 data bits)

Key (56 active and
8 parity bits)

Initial Permutation

Inverse Initial Permutation

Ciphertext Output(64 data bits}

Figure 2-Schematic flowchart of DES algorithm

Cryptography Using Modular Software Elements 115

glish alphabetic sets, arithmetic base 26) ; the Vern am
system5 used bit-by-bit addition modulo 2.

A simple monoalphabetic substitution process, known
as a Caesar System (perhaps first introduced to some
readers in the form of the Little Orphan Annie Secret
Code Wheel) , can be represented by

Yi=Xi+ U

where u is a constant and the Yi are the elements of a
substitution encoding scheme.

It may be seen by inspection that a Caesar-encoded
alphabetic. message can be solved by the method of
exhaustion, writing it 26 times and choosing one that
seems to follow the required language syntax and
semantic requirements. Such* processes have not been
used by military people since Biblical times.

Vigenere systems2 use a constantly-changing alpha
betic substitution process, stepped synchronously with
the message being transformed.

If a single transformation process is stepped to
the next sequential substitution using a recirculating
transformation representation (initially implemented
as a paper tape loop, thus called a "single loop Vigenere
system") the transformation can be represented by
the sequence

A system in which two recirculation transforma
tions are synchronously cascaded can be represented by

aO,a lJ • •• ,aIL
bo,b], ... ,b-y

It is customary to choose p. and y to be relatively prime.
TuckermanG demonstrated that a general solution to

n-Ioop Vigenere systems could be provided by statis
tical methods, and showed fully-developed breakings
of single- and double-loop Vigenere systems, using real
examples.

Shannon proved that a single-loop Vigenere system
with infinite "loop" length is unbreakable. Such a
scheme is known as "single use code." It requires that
the key be at least as long as the message and that the
key be kept physically secure.

The significance of the previous paragraph is that
the simple Addition Modulo 2 or Exclusive Or algo
rithm, which is its own inverse, can be used for both
encryption and decryption providing that an infinite
length key or an acceptable substitute therefor can be
provided and maintained secure. We will use Shannon's
designation of such a system as Vernam.

As originally published5 the Vern am system applied
bit-by-bit add-mod-2 (reversible) transformation of a
binary message without changing its length.

It may be seen that a similar transformation, also
reversible, can be applied through use of sequential

* Martin" described as a particularly poor example of encryption
a method that has been suggested for use with Selectric® type
writer terminals: use scrambled positions for the characters on
the type element, and physically secure this removable alphabet.

logic by merging random noise with the plaintext in
formation to form cipher that will be increased in
length by the amount of noise inserted. Subsequent de
cryption will extract the binary key information and
return the cipher to the original plaintext content and
length.

Both bitwise operations (Vernam) and sequential
logic schemes (merge) depend for their cryptographic
strength on the quality of the random number stream
• ___ ..l __ .L1.._ T ____ TT __ _

ui:)t::u a.i:) I"ut:: .1.Juug ..n.t::y.

The long key information can be retained as physi
cally secure, or can be generated from seed by using a
short actual key to start an appropriate random num
ber generator. A third choice is to generate random
blocks of key data that can be randomly sequenced to
form a pseudo-long-key binary stream. The decision
between these implementation approaches should be
made in consideration of the required technical per
formance (in the security sense) and economics of
each problem situation.

In the remainder of this paper we will consider only
encryption schemes that can be sufficiently strong so
that they are economically infeasible to break. We
will categorize them into the two broad groups implied
in the above discussion:

• Those depending for their strength upon the com
plexity and effectiveness of a known algorithm,
using a nominal-length key, will be called strong
algorithm systems.

• Those depending for their strength upon the non
predictability (i.e., the random-bit quality) of a
long key, used with relatively trivial algorithms,
will be called long key systems.

Strong algorithm

Much of the substantive content of the classic
Shannon paper~ and others7 ,8 culminating in current
algorithm developments has led to what Shannon called
Product Systems. Because it has been broadly pub
lished and scrutinized, and because current indications
are that it satisfies the basic requirements of strength,
use of short key, and generality, we suggest that the
NBS Proposed DES Algorithm4 is an appropriate
archetype for Strong Algorithm schemes. Its use will
be assumed in this section, with the understanding
that it could be replaced by a different strong algo
rithm if such replacement is appropriate.

Proposed Data Encryption Standard (DES)

The National Bureau of Standards (NBS) has se
lected and published4 a Proposed Federal Data En
cryption Standard. The announcement includes the
statement that:

"Data may be protected against unauthorized dis-

116 National Computer Conference, 1976

closure by generating a random key and issuing it
to the authorized users of the data. The cipher that
has been produced by performing the steps of the
encryption algorithm on data using a particular key
can o~IY be returned to the original data by use of
the decryption algorithm using the identical key.
Unauthorized recipients of the cipher who may have
the algorithm but who do not have this key cannot
derive the original data. A standard algorithm based
on a user-generated key thus provides a basis for
compatible cryptographic protection of computer
data while preventing unauthorized use of the data
in cipher form." (The Proposed Standard also states
that "Only hardware implementations of the algo
rithm ... will be considered as complying with the
standard.")

Several manufacturers are developing LSI-chip
based hardware for implementation of the DES algo
rithm. Weare not aware that any of this hardware
has been released for sale as of the date of submission
of this paper; however, we assume that such release
will occur shortly after official confirmation of the
Federal Standard.

We have developed exact software Emulators of the
DES algorithm for several kinds of hardware, for use
as a part of a generalized nonnumeric software ele
ment support package. The emulators maintain, and
select from, preprocessed key pools. Other parts of
the package provide capabilities for data preparation,
manipulation, parity bit setting in randomly generated
keys, and testing (including optional checking of key
parity bits), for use with source programs written in
higher procedural languages such as FORTRAN and
COBOL.

We anticipate that the special-purpose DES hard
ware will be much faster in data throughput than the
general-purpose versions of the software. The hard
ware must, of course, be dedicated to particular system
functions and consequently cannot be used for general
testing and other auxiliary functions without inter
rupting on-line availability.

NBS has developed two sets of test data for validat
ing implementations of the algorithm:

• What we have called Test A is a set of 24 64-bit
key/data pairs designed to demonstrate the power
of the algorithm by showing the large effects on
cipher of small changes in either datum or key,
and the behavior of the encryption process on a
variety of bit patterns.

• What we have called Test B is a set of 19 key/data
pairs generated as pseudorandom numbers and
chosen because the corresponding 19 encryptions
reference at least once all of the 512 entries in the
"S-box" substitution cipher tables. These 19 pairs
were found experimentally by NBS and indepen
dently confirmed by us. Correct execution of Test
B (in which all cipher produced correspond to

presumably correct cipher from a different imple
mentation, and in which all of the S-box table
entries are referenced at least once) provides a
high order of confidence in the correctness of en
cryption for any values of key/data.

Result of exercising one of the DES Emulators
executing 15 examples from A and B, as described
above, is given in Figure 3. In this test output the
column headed "CIPHER (ENCRYPTED)" gives the
result of machine encryption; the column headed
"DECRYPTION OF CIPHER" gives the result of the
machine decryption of the machine-produced cipher to
recover the original plaintext. All keys and data are
shown in hexadecimal notation to correspond with
NBS examples.

For all key/data pairs of Tests A and B, the Emu
lators give results identical to those given by NBS.

From Test A (the first 12 rows of Figure 3), it may
be seen that change of a single bit value or a I-bit
shift of a subpattern position within datum or key
provides essentially complete change of encrypt/de
crypt results. This requires complete accuracy of trans
mission; conversely, the process can thus be used to
display with great sensitivity even slight errors in
data entry or transmission.

To show this effect, we repeated Example A9 with
the 5th and 6th data digits interchanged (BC becomes
CB). Note that the resulting cipher (for Example
A25) shows no evident resemblance to the cipher for
A9.

Example A26 is a demonstration of the odd-parity
check (optional under the Proposed Standard) ; it con
sists of Example A10 modified by giving the first eight
key bits even parity.

The general-distribution versions of the DES Emu
lators use medium-speed, medium-space techniques.
NCRYPT/DCRYPT requires less than 9000 bytes on
360/370 or 2200 words on 1108. Execution speed is
over 100 encrypts or decrypts per second with ma
chines in the 370/155 or 1108 class.

It may be seen that the strong-algorithm process, if
executed entirely by software, will be economical for
fairly small data volumes but will be costly for large
volume applications (such as, e.g., encrypting all but
control elements of continuous high-speed data streams
or sizable data bases). For large-scale applications,
the long-key methods outlined in the next section
(after either a time delay for about a million machine
instructions executed in initial (from seed) startup of
the high-performance random number generator pro
vided, or time to load a 1042-word restart table)
operate orders of magnitude faster than the Emulator.

Applications of the software DES emulator include:

• Testing of application ideas and methods before
hardware is available;

• Debugging and production testing of programs
independently of on-line hardware;

Cryptography Using Modular Software Elements 117

u~S tMULATOR TE~TS A ~ BUSING NBS DATA AND KEYS
tXAMPLtS IN HExADtCIMAL NOTATION

CIPHER DECRYPTION
EXAMPL!:. t<'Ey DATA (ENCRYPTED) Of CIPHER
------- ---------------- ---------------- ---------------- ----------------
A 9 4~BC264b9EBA1304 0573BC~2D6831492 8028081803484084 0573~C52D6831492
A 10 0101010101010101 0000000000000000 8CAb4DE9CIB123A7 0000000000000000
A 11 7F7f 7f7f 7f7F7f7F 0000000000000000 5EFA7688A5A9E~37 0000000000000000
A 12 1F1f1F7F7F7f1F7f 1111111111111111 CEDA59020980D525 1111111111111111
II 13 0101010101010101 AAAAAAAAAAAAAAAA 3AE7169540C04E25 AAAAAAAAAAAAAAAA

A 14 01010UH01010101 AAAAAAAAAAAAAAAB 'to ~n~J.r:·~''''''''I.n, I 1.1"'.111. AAAAAAAAAAAAAAAQ
J.'UO~"7"'~f"U.L""7" """' ... ,..""' "" ""'""'...,

A If- 0101010101010101 555S555555555555 8109f0803EB2D05E 5555555555555555
A 11:\ 0101010101010102 ~555555555555555 451FOC33F24fB80C 5555555555555555
A 19 0101010101010104 5555555555555555 CA88E849EOA80C32 5555555555555555
A 20 0101010101010104 5555555555555554 7034Ab5AOE2862CE 5555555555555554

A 25 498C264b9EBA7304 0513C85206837492 3C2fB840FD46of20 0513CB5206837492
A 2b 0001010101010101 0000000000000000 THIS KEY fAILS THE ODD PARITy TEST.
B 1 7CAll(j454AiA6t.57 OlA1D6D039776742 b90FSBOO9A2b9398 OlAIDbD03977b742
B 2 0131D9619DC1376E. 5CD54CA83DEf57DA 7A389010354B0271 5CD54CA83OEf57oA
B 19 1 C587F! C13924FEF 30553228606f295A 63fACOo034D9f793 30553228606f295A

Figure 3-DES emulator encryption/decryption results: Tests A and B

• Preparation and evaluation, by manufacturers, of
hardware design test data;

• Testing (both validation and maintenance) of in
stalled hardware;

• Operational encryption/decryption where the Fed
eral Standard is not applicable; and

• Bidirectional authentication procedures (See, e.g.,
Reference 1).

Long-key systems

Any long-key system depends upon the use of a key
stream that must be assumed to be physically secure.

The key stream can be provided in two basic ways:

(a) It can be generated from "seed" (i.e., a key
unique to that key stream) in a fully-determin
istic process when used for either encryption or
decryption or both; or

(b) It can be generated, stored, copied as may be
required, and played back from the stored form
when and where needed.

In case (a), decryption of a particular ciphertext
data stream requires that a key-stream generator
(software or hardware) identical to that used in en
cryption of that stream must be available at the time
and place of key stream entry for decryption.

Physical security must be provided for the key to be
used: in case (b), this will require security of tape
or diskpack; in case (a), only the seed need be kept
secure. Obviously, physical and geographical consid
erations will affect the generate-or-playback choice.

An important consideration is that long messages
would be in hazard from even trivial communication
or other hardware errors; loss of absolute synchro-

nization would generate chaos, effectively preventing
recovery of plaintext beyond the point at which, say,
a one-bit loss occurred.

The very vulnerability of ciphertext, as noted here,
provides a potentially useful and highly sensitive de
tection scheme: even sman errors in ciphertext trans
mission will result in gross and obvious format and
other changes in decrypted output.

Use of message blocking (we have chosen 64 bits as
the standard block length corresponding to DES prac
tice3,4), and careful block numbering and accounting,
prevents loss of more than a single block for a single
small error and provides an audit trail for recovery.

As noted in References 3 and 4, validity of the en
cryption process as secure in and of itself, depending
only upon key security, requires that the system not
depend upon secrecy of an algorithm or of hardware/
software configuration.

With either of the long-key methods discussed below,
in order to maximize security and integrity of the en
cryption process, "leakage" of key stream control in
formation elements should be inhibited in spite of the
simplicity of the actual encryption algorithms. Thus,
it is desirable that the appearance of cyclic or unchang
ing (I.e., transparent) bit patterns in plaintext (see,
e.g., the all-zeroes and alternate-ones data of Examples
A10 and A13 of Figure 6) be suppressed by compres
sion or other means.

Long-key generation from seed

One effective means of key stream generation is a
process that produces uniformly distributed random
numbers. The process used here is a computer pro
gram quasirandom number stream generator of the

118 National Computer Conference, 1976

Tausworthe-Lewis-Payne bitwise linear recurrence
modulo 2 type, of which the developmental background
and characteristics are outlined in the Appendix.

Chaitin9 expressed proof that a truly random string
cannot be specified by an information string shorter
than itself. It may be inferred that a perfect single-use
code cannot have its key stream generated from a short
seed expanded by any program of limited complexity.

We believe, however, that despite its finite complex
itya publicly known quasirandom number stream gen
erator of long period and good statistical performance,
such as that described in the Appendix, when operating
on a secret seed, can produce a sufficiently close ap
proximation to a random key stream so that the funda
mental objective of the present paper is met: the re
sulting encryption will be economically infeasible to
break.

Figure 4 shows schematically the process by which
the quasirandom number generator produces a 64-bit
block key stream starting from a 64-bit (or less) seed,
continually accessing a recirculating seed matrix of
about a thousand words as outlined in the Appendix.

Initial startup of the generator from a seed requires
a half million machine instructions to be executed, after
which the process proceeds at a speed corresponding
to only a dozen machine instructions executed per
number generated.

Restart of the process can be accomplished readily
through reloading of the recirculating seed matrix.
Backwards re-generation from a previous checkpoint,
as is required for some system problems, offers no diffi
culties; the generator can operate in either direction.
Pre-iteration count is a user-controlled parameter.

For encryption purposes this Tausworthe-Lewis
Payne generator offers the advantage that a large
amount of information (521 64-bit blocks) would be
needed to initiate or restart a quasirandom string.
There is no explicit way of identifying the initially
used element of the generated string, other than know
ing the actual seed and the starting iteration count.
The fact that both seed and period are of great length
permits both Vern am and merge/extract encipher
ments to have considerable cryptographic strength.

On a 360/65, after restart (time to load the current
seed string matrix) or startup (2.3 seconds for a pre
iteration count of 20,000p), the generation of 64-bit

Seed ~

(l :: 64 bits)

Quasirandom ---- K Str ---- ey earn
Number (64-bit blocks)

Generator

t +
Recircu lating
Seed Matrix

Figure 4-Long-key generation from seed

Plaintext Plaintext

Key Stieom Key Stream

Figure 5-Long-key Vernam (bitwise) logic

unsigned quasirandom integers takes 24.1 milliseconds
per thousand numbers.

The period of this Tausworthe-Lewis-Payne type
generator is essentially infinite (viz., 2521 _1). Its gross
performance has been checked in dimensionality up
to 8-distributivity. Small changes in seed cause large
changes in generated key stream.

Long-key Vern am (bitwise)

The classical Vern am single-use-code concept, imple
mented explicitly, is shown schematically in Figure 5.

As noted previously, this schemell does not change
message length.

The building-block approach uses prefabricated soft
ware elements for executing the encryption and control
logic and for data preparation and testing.

A Vern am test is shown in Figure 6. This test uses
as plaintext input data, read from cards, the 15 ex
amples used in Figure 3 above to test the DES Emula
tor, consisting of 13 examples of NBS "Tests A and B"
plus slight modifications of two of the Test A examples.
The key stream was generated by the TLP quasi
random number generator from the 64-bit seed
012357BD14905694. Speed of this encryption or de
cryption on a 360/65 is one 64-bit block per 12.3 micro
seconds.

Long-key sequential logic

The capability for controlled merging and extracting
of noise into and from binary information streams has
several potential uses and should be considered in a
comprehensive encryption plan:

• Provide a high level of cryptographic protection
when used with a long quasirandom number con
trol stream and appropriately generated noise
data;

• Provide an intermediate level of cryptographic
protection when used with shorter or recycling
control stream and a noise data stream of any
length;

• Suppress redundancy or cyclic patterns in plain
text or in ciphertext, for the purpose of raising
the cryptographic strength of DES or Vernam
type high-level cryptography systems; and

• Permit, in combination with the DES andjor
Vernam techniques, the implementation of multi
ple-level cryptography systems of controllable

Cryptography Using Modular Software Elements 119

VERNAM ENCIPHERING USING QuASIRANDOMLY GENERATED KEYS.
DATA A~E FROM N8S TESTS A &~. S~EO IS 0123518014905694.

CIPHER DECRYPTION
EXAMPLI:. KEy STREAM DATA (ENCRYPTED) OF CIPHER
------- ---------------- ---------------- ---------------- ----------------
A '; E~1481A';AC358419 05738C52D6831492 E0673FF87AB6C088 0573~C5206837492
A 10 5ADCEI04069EF78A 0000000000000000 5ADCEI04D69EF78A 0000000000000000
A 11 97F5FF992FF85F61 0000000000000000 97F5FF992FF85F61 0000000000000000
A 12 25FIBCR258A66~CA 1111111111111111 34EOAD9349877AD8 1111111111111111
A 13 A~2DCC8697619123 AAAAAAAAAA~AAAAA OF87662C3DC~3889 AAAAAAAAAAAAAAAA

A 14 00E8660(';01504771 AAAAAAAAAAAAAAA8 7A42CC76A~FAEDDA AAAAAAAAAAAAAAAB
A 16 933314Dt::.D3309~33 ~555555555555555 C66641888665C066 5555555555555555
A 11; 41;49FBEbEB9F9304 55~5555555555555 IDICAE838ECAC651 5555555555555555
A 19 601CID64C14F8EC4 5555555555555555 35494831921AD891 5555555555555555
A 20 lDA03AD311 AA2EWC ~555555555555554 48F86F8644FF7E88 5555555555555554

A 2~ CE8FED411;0559U9b 0573C85206837492 C8CC26135b06E~04 0573C85206837492
A. 2b EE62F?4L3190D777 0000000000000000 EE62F24C3190D177 0000000000000000
~ 1 EAOB55F~~~lF590C 01AI060039776742 EBAA832281b83E4E OlAID6D039776742
8 2 ED8926F4~6DODA8E ~CD54CA830EF570A B16C6A5C8B3F8D64 5CD54CA83DEF57DA
8 19 D916E1592EB8D728 305532286D6F295A E943Dl714307FE71 305532286D6F295A

Figure 6-Vernam encryption/decryption results

complexity and with controllable strength/cost
tradeoff at each level.

The encryption and decryption processes can be
controlled from fixed mask (MASK=constant); lists
or tables of masks (MASK=array variable) ; or from
a recycling or open-ended mask stream, with corre
sponding levels of complexity and security.

Use of a constant merge control mask produces weak
cipher that has recognizable patterns, especially when
used with simple bit pattern plaintext and examined in
binary form; a variable mask produces higher-grade
cipher.

A sequential logic test is shown in Figure 8. In this
case a constant quasirandom 64-bit key (actually one
of the generated keys, chosen because it happens to
contain exactly 32 one-bits and 32 zero-bits, generated
from the same seed used in the Vernam test above) is
used as the control mask for noise (the same 15 gen
erated quasirandom keys) to be merged with plaintext
to form a kind of cipher. This mask, because of the
50/50 one/zero mask ratio, produces cipher just twice
the length of the plaintext. The two sequential 64-bit
cipher blocks produced from each plaintext block are
shown together in the double column headed CIPHER
(ENCRYPTED). The decrypted plaintext, recovered
by extraction of the noise stream under control of the
same mask, is shown in the right-hand column labeled
DECRYPTION OF CIPHER.

The requirements for bitwise testing and processing
make this sequential process slower than the Vern am
process.

PROGRAM PROTECTION

The protection of proprietary programs from un
authorized use, copying, or alteration is a largely

un exploited area of application of cryptography that
offers fascinating opportunities for strategy and
counter-strategy development.

Protection technology for file and system access, as
outlined previously, provides the basic mechanisms for
program transformation, detection of alteration, and
audit trail development.

A basic decision that must be made at the outset of
development of a program protection method is
whether personnel and organizations having some level
of authorization for system software maintenance are
to be considered part of the world against which pro
tection (from errors and omissions as well as mal
feasance) is sought. If the answer is yes, the problem
set escalates in difficulty and reasonable bounds on the
protection objectives must be established.

APPENDIX

Background for a 6-,+-bit quasirandom number string
generator

The "mid-squares" random number generators used
by pioneers Von Neumann and others in the late 1940s
rapidly degenerated (to zeroes or cycles of short
period) when used for long string generation, Like
physical (e.g., electronic noise) generators, they were

Data Stream _-__ ~ Extract Data Strearr
~_~ Control

Logic

Mask Stream Mask I Stream

Figure 7-Long-key sequential logic

120 National Computer Conference~ 1976

ME~GING PLAINTEXT WITH QUASIRANOOM NOISE USING A CO~STANT QUASIHANOOM MASK
DATA A~E fRO~ NRS TESTS A 'd. S~ED IS 012357BOI4~05694. MASK IS BfAOE28261701305.

CIPHER DECRYPTION
DATA (ENCRYPTED) Of CIPHER EXAMPLE NOISE

---------------- --------------------------------- ----------------
0573BC5206837492 42002B89694478A6 EB303AIB7AC89066 0573BC5206837492
0000000000000000 004214600E002010 40420C408E80E828 0000000000000000
0000000000000000 400200791E82E862 0010107C0482E482 0000000000000000
1111111111111111 08910B783A929809 08CJ1251A6127C29 1111111111111111
AAAAAAAAAAAAAAAA OS34A995502B8AIC 0526AOB059A9228E AAAAAAAAAAAAAAAA

A ~ E5148~A9AC358419
A 10 5ADCEI04069Ef78A
A 11 97F5FF992FF85F61
A 12 25flBC8258A66BCA
A 13 A52DCC8b97619123

AAAAAAAAAAAAAAAB 0566AOF44729CE74 9524AIA84529E6C7 AAAAAAAAAAAAAAAB
5555555555555555 6A8B471AB0049079 6ACB471A2804BICB 5555555555555555
5555555555555555 2AC952263ED67099 6A09574f~8D47111 5555555555555555
5555555555555555 2AD9420f20D6B591 6AC94f2788560011 5555555555555555
5555555555555554 2A8B58573206504B 2A884356A2567070 5555555555555554

A 14 OOE8660C01504771
A 16 9333140E03309533
A 18 4849FBEbE89f9304
A 19 601CI064C74F8EC4
A 20 10A03A0311AA2bDC

0573C85206837492 42C03EOf9F368406 EB20222B78CAB85C 0573C85206837492
0000000000000000 40501C308E804430 001201480C80E40A 0000000000000000
01AI06D039776742 40F41b86B4ECBCC8 5C9f720f04f62034 01AI060039776742
5C054CA830Ef570A 6E79585E1349CEOo 5EBEEE6A2CfE5AFC 5C054CA830EF570A
30553228606f295A 58485309EE216662 369CFE5C4094f2AE 30553228606F295A

A 25 CEBfE0418055909b
A 26 EE62F24C31900777
B 1 EAOS55F2B81f590C
8 2 E08926F4B6000ABE
B 1~ 0916E)592E88072B

Figure 8-Sequential encryption/decryption: Tests A and B

unsuitable for many modern computing purposes. They
were largely displaced by generators (programs) of
many designs using congruential methods.

Generators of one type, suggested by Lehmer30 in
1951 and known as "linear congruential", can be de
scribed by the recursive formula

Xi+1==aXi+C (mod m)

where {xd is the sequence generated. The parameters
are the seed (xo), the multiplier (a), the additive
constant (c) and the modulus (m). This is called the
multiplicative congruential method when c=O, and the
mixed congruential method when c~. The Xi'S are
integers from ° to m-1. A large value of m is needed
to avoid trivial sequences with small period. For ex
ample, if m=2, the sequence is either a constant or an
alternating 0,1,0,1, Uniform numbers between

o to 1 are obtained by Ui = Xi .
m

Generators of a second type, known as "additive
congruential," can be described by

Xi == Xj-q + Xi-p (mod m) .

Both are special cases of the general linear congruen
tial method:

Xj==a1Xi-1+a2Xj-2+ +apxj_p+c (modm).

The additive method has properties sufficiently dif
ferent from the linear as to make it worth studying
separately. A large modulus is not needed to ensure a
long period; arbitrarily long period sequences can be
generated with m = 2, provided judicious choices are
made for p and q.

Both linear and additive methods are described in
Knuth Volume 2.10 Knuth observes that a good se
quence of random numbers can be obtained by the addi
tive congruential method, or more generally, by

Xi==a1Xi-1 + ... -+.akXi-k (mod m)

provided that m is prime and the polynomial Xk
a 1xk-1- ... -ak is primitive modulo m. Such genera
tors with m=2 were proposed by Tausworthe29 in 1965
and are referred to as linear recurrence modulo 2.
In this case, the ai's are 0 or 1; we may write

Xi==Xi-ql+ ... +Xi-qr (mod 2)

and the polynomial becomes XQr+ ... +XQl+ 1 (note-1
== 1 (mod 2». In the simplest case, r=2 and the poly
nomial is a trinomial of the form xP+xQ+ 1. Such a
generator is simple to implement on many modern
electronic computers: addition modulo 2 is provided
as the machine operation Exclusive Or.

An additive congruential generator not of this type
was implemented by Carroll and McLellandll using
suggestions made by Green, Smith, and Klem.12

Green, Smith and Klem showed that such a genera
tor did not produce a very random sequence; Knuth
rejected the Tausworthe generator as a poor source of
random strings of bits; however, strings of consecutive
bits from a Tausworthe sequence do not yield poor re
sults when larger and more carefully chosen values of
p and q are used than those tested by Knuth, and the
string sequence can be further improved by using a
technique recently proposed by Lewis and Payne.13

Statistical tests and criteria

Many tests for a would-be random number generator
have been proposed and used. Several tests are de
scribed by Knuth:

(1) Equidistribution or Frequency Test: One counts
the number of times a member of the sequence falls
into a given interval. The number should be approxi
mately the same for intervals of the same length if the
sequence is uniform.

(2) Serial Test: This is a higher-dimensional ver
sion of the equidistribution test. One counts the num-

Cryptography Using Modular Software Elements] 2]

ber of times a k-tuple (Xkh Xkiw .•• , Xki+k-l) of mem
bers of the sequence falls into a given k-dimensional
cell. If this test is passed, the sequence is said to be
k-distributed. It is not practical to divide the co
ordinate axes into too many subintervals when k is
large, say, k>3. Other tests of k-distributivity are:

(2a) Poker Test: One considers groups of k
members of the sequence and counts the number of dis
tinct values represented in each group.

(2b) Maximum [Minimum] of k: One plots the
distribution of the function max [min] (Xkh'" ,

Xki+k-l) •

(2c) Sum of k: This is similar to tests described
by Knuth. The same tests can be made for any func
tion of k numbers, provided one can calculate an ex
pected distribution for the function. This test is ex
plicitly mentioned by MacLaren and Marsaglia14 as
well as by Lewis and Payne, who refer to it as the Yules

k

Test. Several authors use L x/, which is commonly
1

called "the d2 test".
(3) Gap Test: One plots the distribution of gaps

in the sequence of various lengths, i.e., consecutive
members Xi' XiW ••• , Xim such that all members fall
into a given interval, while the immediately preceding
and succeeding members do not. A special case is
where the interval is the set of numbers above (or
below) the mean, in which case it is called the Runs
Above (Below) the Mean Test.

(4) Runs Test: One plots the distribution of maxi
mal ascending (descending) runs of various lengths.
This test (now called the Runs Up/Runs Down Tests)
was mentioned by Moshman15 in the first random
number generator paper ever published in an ACM
serial.

(5) Coupon Collector's Test: One chooses a suitably
small integer d and divides the universe into d inter
vals. Then each member of the sequence falls into one
such interval. One plots the distribution of runs of
various lengths required to have all d intervals repre
sented.

(6) Permutation Test: One studies the order rela
tions between the members of the sequence in groups
of k. Each of the k! possible orders should occur about
equally often. If the universe is large, the probability
of equality is small; otherwise, equal members may be
disregarded.

(7) Serial Correlation Test: One computes the cor
relation coefficient between consecutive members of
the sequence. This gives the serial correlation for lag 1.
Similarly, one may get the serial correlation for lag k
by computing the correlation coefficient between Xi and
Xi+k' This is to show that the members of the sequence
are independent.

Other tests have been proposed and used. Lewis and
Payne t3 ran a Conditional Bit Test, which tested the
independence of each bit in a string from the others,
as well as a Fourier Transform Test, also used by

Coveyou and McPherson16 in 1967 and by Lewis, Good
man and MillerY The latter was facilitated by the Fast
Fourier Transform algorithm introduced by Cooley
and Tukey.18

All of the pre-Tausworthe papers referenced here
proposed some sort of linear congruential generator.
Those who subjected their generators to exhaustive
tests admitted that some of the tests failed. Some only
ran the simplest tests (e.g., equidistribution and serial
test for pairs) ~ and passed; however~ in typical cases
the same generators were later shown to fail some
other test. The generators differed mainly in the choice
of such parameters as multiplier, additive constant,
and modulus. The modulus was usually the largest
number that could be represented on some machine
(most often 235

), or a prime less than that number.
The present problem required a 64-bit random number
generator, which none of the above papers considered.
Many authors seemed to choose various parameters
arbitrarily and pick the ones that passed the most tests,
although in some cases broad guidelines were given
(but, in general, were not shown to be useful). One
formula giving an approximation to the serial correla
tion of a linear congruential sequence was published
by Coveyou.19 In certain cases his approximation was a
poor one, but Greenberger20 corrected this flaw by add
ing another term. Some theoretical and empirical work
by Marsaglia 21 in 1968 showed that all linear congru
ential generators suffered from poor higher-dimen
sional distributions. There was then little hope of pro
ducing one generator that passed all tests.

A paper by Martin-Lof22 showed, using methods of
recursive function theory, that there was a universal
test for uniform random number sequences and that
almost all sequences (in the sense of measure theory)
passed it. Although this paper is quite abstract and not
of much practical use in constructing a good random
number generator, it did provide some hope that it
could be done.

Knuth mentioned a property that seems to come close
to the concept of a universal test, namely, complete
equidistributivity, or 00 -distributivity: If a sequence
is k-distributed, it is r-distributed for r<k. A sequence
00 -distributed if it is k-distributed for all k.

A sequence that is 00 -distributed passes all the other
tests we have considered. Such a sequence was con
structed by Knuth,23 but, as he observed, his sequence
is not of much use in machine generation of random
numbers because it takes too long to converge to the
desired properties. It was formed by starting with a
short I-distributed sequence, followed by a slightly
longer 2-distributed sequence, etc.

The papers after Tausworthe's own paper that de
scribe Tausworthe sequences show increasingly good
results: it seems that such sequences can be con
structed to pass more of the tests than the linear
congruential generators. Whittlesey24 showed that
linear congruential generators that had passed other

122 Nationai Computer Conference, 1976

tests failed some autocorrelation tests he performed
with lags from 1 to 50. These tests are related to the
serial correlation test.

The Tausworthe sequence passed Whittlesey's test;
in fact, it can be shown to pass these and many other
tests on purely theoretical grounds. We found such
analytical support to be lacking in the papers proposing
linear congruential generators. Tootill, Robinson and
Adams25 showed that a Tausworthe sequence had good
Runs Up and Down properties, and Tootill, Robinson
and Eagle26 showed that a Tausworthe sequence they
generated was indistinguishable, by empirical tests,
from one that was oc -distributed.

It appears to be consensual among recent authors
that, in generating a Tausworthe sequence, it is best to
use a trinomial xP + xq + 1 whose degree p is such that
2p-1 is relatively prime to various parameters of the
tests. Also, better results are obtained if decimation is
used, which means that one does not pick consecutive
groups of bits from the sequence but rather spaces
them out; and the amount of spacing should be rela
tively prime to 2p-l.

One would expect the best results from a Tausworthe
generator if the degree p were such that 2P-1 were it
self a prime number. Such primes are called Mersenne
primes, and p is called a Mersenne exponent. A table
of primitive trinomials whose degree is a Mersenne ex
ponent was published by Zierler.33 It included the 23
then known Mersenne exponents, which form a con
secutive set, the largest of which is 11213. The largest
one having a primitive trinomial is 9689.

The most promising generator we have found seems
to be the one described by Lewis and Payne. l3 They
use a technique that appears to be superior to decima
tion: to generate r-bit numbers, each of the r bits is
chosen from a different part of the same Tausworthe
sequence with a constant gap between bits. Lewis and
Payne suggest that a gap of at least lOOp should be
sufficient. They also suggest that the sequence will be
k-distributed for k::;rp.

Our Tausworthe-Lewis-Payne (TLP) generator uses
the trinomial x521 + X 32 + 1 to generate 64-bit numbers
that are 8-distributed and have good k-distributivity
for k> 8. The period of the sequence is 2521 _l.

The degree-521 TLP generator requires 521 bits
(not all zero) to start, which must somehow be ex
panded from the initial 64-bit seed. If these 521 bits
are "not very random", the next few members of the
sequence will also have this weakness; however, Lewis
and Payne suggest that about 5000p (here, 2.6 million)
bit-iterations of a Tausworlhe generator should sup
press such non-randomness. Our initial statistical tests
appear to confirm that suggestion if iteration count is
increased to 20,000p. We have considered but not
implemented use of the primitive trinomial X89 + X38 + 1
with the TLP method for generating the seed string.
This two-level TLP may reduce the number of itera
tions required.

We have used the prefix "quasi-" which, according to
Webster's 3ID, means "seemingly, almost" together
with the word "random" to identify effective genera
tors. Most authors have used the prefix "pseudo-"
which, per Webster, connotes "false, sham, feigned,
fake, counterfeit, spurious". Subsequent test results
have shown, alas, that "pseudo" was often an appro
priate descriptor. It is hoped that the performance of
the generator described here will prove, on further
testing, to have justified our use of the term "quasi
random number generator".

We gratefully acknowledge discussions on applicabil
ity of congruential methods with Juncosa,28 whose
work was used by many subsequent authors, and on
primitive trinomials with Tausworthe,29 whose basic
concept underlies the most promising current develop
ments.

REFERENCES

1. Fiestel, H., W. A. Notz and J. L. Smith, "Some Crypto
graphic Techniques for Machine-to-Machine Data Communi
cations," Proceedings IEEE 63, November 11, 1975, pp.
1545-1554.

2. Shannon, C. E., "Communication Theory of Secrecy Sys
tems," Bell Sys. Tech. Journal, October 1949, pp. 656-715.

3. Branstad, D. K., Draft Guidelines for Implementing and
Using the NBS Data Encryption Standard, National Bureau
of Standards, November 10,1975.

4. National Bureau of Standards Announcement of Proposed
Federal Data Encryption Standard, Federal Register,
March 1975 (40FR12607).

5. Vernam, G. S., "Cipher Printing Telegraph Systems for
Secret Wire and Radio Telegraphic Communications,"
Journal AlEE, 1926, pp. 469-481.

6. Tuckerman, B., A Study of the Vigenere-Vernam Single
and Multiple-Loop Enciphering Systems, IBM Research Re
port RC 2879 (#13538), May 14,1970 (Mathematics).

7. Martin, J., Security, Accuracy and Privacy in Computer
Systems, Prentice-Hall 1973.

8. Feistel, H., Cryptographic Coding for Data-Bank Privacy.
IBM Research Report RC 2827, (# 13260), March 18, 1970.

9. Chaitin, G. J., "Information-Theoretic Limitations of For
mal Systems," JACM 21/3, July 1974, pp. 403-424.

10. Knuth, D., The Art of Computer Programming, Vol. 2,
"Seminumerical Algorithms," Addison-Wesley, 1969.

11. Carroll, J. M. and P. M. McLelland, "Fast Infinite-Key
Privacy Transformation for Resource-Sharing Systems,"
Proceedings FJCC, '70, AFIPS, Vol. 37, pp. 223-230.

12. Green, B. F., J. E. K. Smith and L. Klem, "Empirical Tests
of an Additive Random Number Generator," JACM, 6,
1959, pp. 527-537.

13. Lewis, P. A. W. and W. H. Payne, "Generalized Feedback
Shift Register Pseudorandom Number Algorithm," JACM
20, 1973, pp. 456-468.

14. MacLaren, M. D. and G. Marsaglia, "Uniform Random
Number Generators," JACM 12, 1965, pp. 83-89.

15. Moshman, J., "The Generation of Pseudo-Random Numbers
on a Decimal Calculator," JACM 1,1954, pp. 88-91.

16. Coveyou, R. R. and R. D. MacPherson, "Fourier Analysis
of Uniform Random Number Generators," JACM 14, 1967,
pp.100-119.

17. Lewis, P. A. W., A. S. Goodman and J. M. Miller, "A
Pseudo-Random Number Generator for the System/360,"
IBM Syst. J. 8, 1973, pp. 456-468.

Cryptography Using Modular Software Elements 123

18. Cooley, J. W. and J. W. Tukey, "An Algorithm for the
Machine Calculation of Complex Fourier Series," Math. of
Compo 19, 1965, pp. 297-301.

19. Coveyou, R. R., "Serial Correlation in the Generation of
Pseudo-Random Numbers," JACM 7, 1960, pp. 72-74.

20, Greenberger, M., "An a priori Determination of Serial
Correlation in Computer Generated Random Numbers,"
Math. of Compo 15, 1961, pp. 383-389.

21. Marsaglia, G., "Random Numbers Fall Mainly in the
Planes," Proc. Nat. Acad. Sci. 6,1968, pp. 25-28.

22. Martin-V>f, P., "The Definition of Random Sequences,"
Information u/prAi Control 9, 1966, pp. 602-619"

23. Knuth, D., "Construction of a Random Sequence," BIT 5,
1965, pp. 246-250.

24. Whittlesey, J. R. B., "A Comparison of the Correlational
Behavior of Random Number Generators for the IBM 360,"
CACM 11, 1968, pp. 641-644.

25. Tootill, J. P. R., W. D. Robinson, and A. G. Adams, "The
Runs 1..;p-and-DowIi Pel"formances of Tausworthe Pseudo-
Random Number Generators," JACM 18, 1971, pp. 381-399.

26. Tootill, J. P. R., W. D. Robinson and J. Eagle, "An
Asymptotically Random Tausworthe Sequence," JACM 20,
1973, pp. 469-481.

27. Zierler, N. and J. Brillhart, "Un Prmntlve Trinomials,
(Mod2) ," II, Information and Control 14, 1969, pp. 566-569.

28. Juncosa, M. L., Random Number Generation on the BRL
High Speed C01nputing Machine, BRL Report No. 855,
1953.

29. Tausworthe, R. C., "Random Numbers Generated by Linear
Recurrence Modul Two," lviath. of Compo 19, 1965, pp. 201-
209.

30. Lehmer, D. H., Mathematical Methods in Large-Scale Com
puting Units, Ann. Compo Lab. Harvard U. 26, 1951, pp.
141-146.

31. U.S. Patents (assigned to IBM Corpora.t.ion a.nn underlying
the DES product block cipher algorithm); Feistd, Block
Cipher Cryptographic System, No.3, 798,359 of 1974 and
Smith, Recirculating Block Cipher Cryptographic System,
No.3, 796,830 of 1974.

32. Skatrud, R. 0., "A Consideration of the Application of
Cryptographic Techniques to Data Processing," Proc. F JCC
'69, AFIPS, Vol. 35, pp. 111-117.

33. ZieTler, ~ _, Primitive Trinomials \Vhose Degree is a
Mersenne Exponent," Information and Control 15, 1969,
pp.67-69.

34. Zierler, N. and J. Brillhart, "On Primitive Trinomials
(Mod 2) ," Information and Control 13, 1968, pp. 541-554.

Anaivsis of secret functions with
.;

application to computer cryptography

by INGEMAR INGEMARSSON
Linkoping University
Linkoping, Sweden

ABSTRACT

In computer cryptography we cannot avoid that data
and the corresponding encrypted data can be read by
an outside observer. The information contained in
these observations may be used to decrypt parts of
encrypted data or ultimately to identify the key in the
cryptographic transformation. In this paper we have
analyzed this situation using the concepts of informa
tion theory. The result shows that in most cases it is
theoretically possible for an outside observer to iden
tify the key after very few observations. As this must
be avoided we have to rely on computational complex
ity in the process of deriving the key. This is achieved
by using one-way functions which are practically im
possible to invert.

INTRODUCTION

Computer cryptography differs from communication
cryptography in two respects: (i) A particular set of
data is used more than once and by several users. (ii)
Data are processed by the computer. These two dif
ferences impose restrictions on the type of cryptologic
transformations suitable for use in an electronic data
processing (EDP) system. In this paper we will focus
our attention on the problems caused by property (i)
above.

Communication cryptography was analyzed by
Shannon 1949. 1 His model includes an information
source (a stochastic process) with knm'lm statistics.
The information from the source is encrypted and then
observed by an outside observer. The goal of the ob
server is to derive the original information and/or
identify the encryption transformation. Our approach
is somewhat different. When several users have access
to the same data, the encryption transformation for
the particular set of data is preferably fixed, at least
for some time. In an EDP system it is also realistic
to assume that a set of data and the corresponding
cryptogram is known to an outside observer. The ob
server may use this knowledge to facilitate decryption

125

of other cryptograms, encrypted '"{lith the same trans=
formation. He may also ultimately be able to identify
the encryption transformation. We want to investigate
his chances to work in these directions. A related
problem, from the legitimate user's point of view, is:
How do we avoid that an outside observer gets the
ability to decrypt stored cryptograms? Our approach
originates in information theory. The encryption or
decryption transformation (or algorithm) may be re
garded as a set of known functions of the input
variable. The function is chosen by the key which is
unknown. From the beginning an outside observer
does not know which function is actually realized. To
him each function has the same probability.

When he observes the input and the corresponding
output he receives some information about the actual
function. The number of possible functions is de
creased. To what extent does this help the observer if
he wants to estimate the output corresponding to an
other input? We may formulate the question more
precisely this way: Before the observation the uncer
tainty, measured as entropy, is Ho bits. If no infor
mation as how to estimate other outputs is conveyed
by the first observation, then the uncertainty remains
unchanged. The entropy connected with the second
observation is still Ho. It may sound as a good design
objective to keep the uncertainty (the entropy) un
changed after several observations. Unfortunately this
is limited by one of the main results of this paper.

x

LHi=log M (1)
j=O

Here Hi is the entropy after i observations and M is
the number of encryption or decryption transforma
tions, i.e., the number of keys. As is seen from equa
tion (1) the requirement that the entropy should re
main constant must be limited to a finite (and perhaps
low!) number of observations. After that the entropy
is zero, i.e., the observer knows exactly which function
is actually chosen, i.e., he knows the key!

If we want to avoid this fallacy the sequence of
entropies

126 National Computer Conference, 1976

must decrease. This means that the difficulty of the
observer to estimate outputs for given inputs is de
creasing with the number of observations! Obviously
we have to compromise to obtain reasonable protection
of the key and reasonable low chance to estimate the
outputs.

However, when typical figures are put in the equa
tions the result is most unsatisfying for the designer.
If the model is accurate, it is too easy to break the sys
tem. The way out of this dilemma is of course to build
a system for which this model cannot be used. The
main point here is that we have not taken into account
the computational problem involved in estimating the
output for a given input starting from the knowledge
from several observations. Hence the theory shows
that we have to rely on computational complexity when
designing computer cryptographic systems. The com
plexity requirement is preferably formulated in terms
of one-way functions. Such a function is easy to com
pute but its inverse is not computable in a reasonable
amount of time.

SECRET FUNCTIONS

We want to implement a secret function, i.e., a func
tion which is not completely known to an outside ob
server. Such is the case for example in cryptology and
in access control systems. The input variable x is
supposed to be discrete and takes only a limited num
ber of values. The output variable y is a function of x.

(2)

where IX is a fixed but unknown parameter in the range.

IX= 1, ... ,M (3)

Starting from scratch, an outside observer does not
know IX, but knows the set of functions f:

{fa};~l (4)

The problem is now: How does the knowledge of a
number of pairs (x,y), satisfying (2), affect the un
certainty about the parameter IX? The range of pos
sible IX obviously cannot increase if the observer gets
to know one more pair (x,y). The problem of the de
signer of the secret function seems to be maximizing
the remaining number of possible IX. We will see that
this is not good advice. H leads to low uncertainty
about y, given x. A better formulation of the problem
is therefore: How does the knowledge of a number of
pairs (x,y), satisfying (2), affect the uncertainty of
y given x?

STRUCTURE OF THE SYSTEM

We may divide the system into a known part, con
taining the functions (4) and an unknown part con
taining the parameter IX.

x ~ {fa (x)}:=1
I 1

y~

ta

S

Figure I-Structure of the secret function

S may be visualized as a store or memory, capable to
store the M possible values of IX. Hence the capacity,
C, of the store must be:

C = 210g M bits (5)

Figure 1 also reflects the structure of the imple
mented system. The block containing the function f (x)
is supposed to be known, while S is a secure memory.

IX is regarded as the outcome of stochastic variable A
with

P[A=IX] =ljM for I~IX~M (6)

The output is then a stochastic variable Y. n pairs
(x,y), satisfying (2), are known to the observer. The
uncertainty in Y for a given x is measured as the
conditional entropy:

Hn==H(YiYlI" Yn) ==
- ~~ ... ~ P(y,Yl,' ·Yn).210g P(ylyu .. Yn) (7)

J" J~ 1 .•. ~·n

Note that this entropy is a function of x,xH ••• Xn'
All entropies are nonnegative. The maximum of Ho
occurs when the possible outcomes of Yare equally
likely.

maxH ll =210gq whenP(y)=l (8)
q

where q is the number of possible values for the output
variable y. If Y is conditionally independent on previ
ous observations Y l' .. Y n then

Hn(x) =Ho(x) as P(ylyu .. Yn) =P(y) (9)

Note that H is still a function of x. If we sum Hn
over n we obtain the following result:

x
I,Hn= - I, .. I, P(y,Yl,. .Yn).210g P(Y,Yl' .Yn)
n=O Y Yn

(10)

If we make N large enough only one or none of the
M functions will pass through a given set of points
(x,y),(XUYl),'" (xmYn)' Thus equation (10) reduces
to:

r x ;\1 1 1 1
1m I,Hn = - "-210g- = -210g-=210g M (11)

x-?x n=O tiM M M

where we have used the probability in equation (6).
Finally we combine equations (5) and (11) to:

I ~H"=C I (12)

In words: The sum of the entropies at each observa
tion in a sequence of observations equals the capacity
(in bits) of the key space. In practice C is the number
of bits in the binary key.

Example

In a computer cryptographic system the input, out
put and key are binary numbers.

In the algorithm proposed by NBS as federal stan
dard/ for example, k is 64 bits. (Actually lower be-
cause of redundanc:r in the key.) The output is also a
64-bit word.

Thus the maximum entropy (max H o according to
(8» is 64 bits. If Ho really is 64 bits, then from (12)
Hl,H~.. is zero. Hence all information about the
transformation is given in the first observation. The
future outcomes are perfectly predictable:

Now suppose that H" is lower than 64 bits. Suppose
that we want the system to withstand 8 (eight!) ob
servations before the outside observer can identify the
key. Then from (12) :

""'" IT -SA 1-.~+~ L..L..Ln - ':t:UlI"O

11=0

x y
m bits m bits

a k bits

Figure 2-Computer cryptographic transformation

Application to Computer Cryptography 127

and thus the average of Ho, •• ,Hn is 8 bits. With this
low entropy it takes only 256 trials (at most!) to make
a correct guess of the output for a given input;

The situation is indeed disappointing, from the theo
retical point of view!

ONE-WAY FUNCTIONS

We have as yet made no indication as how to com
pute the esttmates of the output or the key from onr
observations. As we have seen from the above ex
ample it may be possible to predict the output and to
identify the key after just a few observations. This
must be avoided, of course. The only way to stop any
effort in this direction is to make it practically im
po~sible to perform the calculation~ which are theo
retically possible.

We refer to Figure 2. The function:

y=f (a.,x)

is calculated by the encryption unit and must be easy
to perform. Also:

x=f-1 (a.,y)

has to be performed by the decryption unit. On the
other hand we have to design the system so that the
function

a.=g (x,y)

is practically impossible to compute. This is an ex
ample of a one-way function. The algorithm proposed
by NBS2 does indeed have this property. To my knowl
edge it has successfully resisted every attempt to com
pute the key, given the input and output.

REFERENCES

1. Shannon, Claude, "Communication Theory of Secrecy Sys
tems," Bell Syst. Tech. Journal, Vol. 1949, pp. 656-715.

2. "Computer Data Protection," Federal Register, Vol. 40,
Xo. 52, March 17,1975, pp. 12067-12250.

A secure~ naiional system for electronic funds transfer

by D. KAUFMAN and K. AUERBACH
Syste'iii De-veloprn.ent Corporati01'L
Santa Monica, California

ABSTRACT

This paper presents guidelines for development of a
secure national network for electronic funds transfer.
Six security principles are developed. These principles,
together with certain important networking notions,
are utilized to evolve a system level design of a secure
localized system for electronic funds transfer. This
design is then further defined in order to address the
various problems involved when local systems are
linked to form a national network. It is concluded that
national standards are needed in order to prevent pro
liferation of incompatible local systems.

INTRODUCTION

As the computerization of bank functions continues its
rapid advance, electronic funds transfer is becoming
a reality. Independently developed local systems are
evolving-but the emergence of a system national in
scope is inevitable. Unless planning for security and
for operation on a national scale begins now, develop
ment of an efficient and secure future system may be
impossible.

We believe that a secure, national network for elec
tronic funds transfer (EFTS) can be built with cur
rently available technology. We do not suggest that the
monumental task of interconnecting all the various
financial institutions in the United States be under
taken, rather we contend that pilot EFTS networks
being planned today could and should provide a high
degree of security assurance. Furthermore, these pilot
systems could be built so that as they inevitably grow,
proliferate, and interconnect, they can be linked to
gether to form a national network without major im
pact on either local system structure or local system
security and privacy.

EFTS SECURITY PRINCIPLES

As a basis for this discussion of EFTS security
principles, several basic assumptions must be made
about EFTS schemata. These include:

1. All funds transfer transactions are initiated by a

129

cardholder (possibly assisted by a teller or a
merchant) at any of a variety of Point of Sale or
Automated Teller devices. These devices are
commonly referred to as Remote Service Units
(RSUs). Although other transactions not involv
ing a transfer of funds may be handled by an
EFTS system, they are not addressed in this
discussion to avoid distraction from the major
issues addressed.

2. Each bank card has imprinted or recorded on it a
personal account number (PAN), institution
identification information, and other data such
as the expiration date of the card. A cardholder
initiating a transaction must supply a value not
on the card. This value is called a Personal
Identification Number (PIN). The PIN was con
ceived as an aid in verifying the identity of the
user of the card (i.e., the PIN is a password).

3. All funds transfer transactions must be autho
rized. An authorization, or transaction approval,
is based upon a verification of the cardholder's
identity and an examination of his account. If
the cardholder has supplied the appropriate PIN
and if his balance or credit limit is sufficient to
allow the transaction, then an authorization is
generated. A Host Processing Center (HPC),
the computer facility of a financial institution,
will typically authorize transactions.

4. Financial institutions may require that the EFTS
network provide backup support for the HPC
authorization function. For instance, the net
work may have to provide an alternate site to
perform transaction authorizations when the
primary HPC is down. Similarly, the EFTS net
work may be required to log all transactions.
These assumptions must be considered in the de
velopment of any EFTS network design.

Security Principle #1: The PIN should be known only
by the cardholder

It is important to realize that the PIN is potentially
a powerful tool for providing EFTS security, and ap
parently the only currently viable means for positive
identification of the cardholder.

130 National Computer Conference, 1976

The authentication process is important since cards
can easily fall into the wrong hands. Cards can, of
course, be stolen or lost. Furthermore, any card which
can be easily produced can also be easily forged. Elec
tronic funds transfer Yv"ill provide a powerful incentive
to illegally produce and distribute fraudulent bank
cards. The identity of cardholders must, therefore, be
authenticated.

The PIN, therefore, plays a critical role in EFTS
security, and PIN distribution must be carefully con
trolled. It has been suggested that PINs be stored
at the computing facility of the cardholder's financial
institution. It may also be desired to store PINs at the
network's backup sites. Unfortunately, the greater the
distribution of the PIN, the greater is the risk of il
legitimate PIN acquisition. For example, if PINs are
stored at the bank, they are potentially exposed to dis
honest bank employees. And more distressing, if PINs
are stored at a backup site, they are potentially ex
posed to personnel who may not even be under the
control of the cardholder's bank.

Only the cardholder need know the PIN if, at the
time of issue and within the network, it is transformed
by a one-way process to create a unique new value, and
if only the transformed version is used to authenticate
cardholders. The new value could then be used for
cardholder authentication, but the original PIN could
not be determined from this new value. Thus, neither
the HPC nor the backup sites have access to the
original PIN. PIN transformation is discussed in more
detail in the system level design portion of this paper.

Security Principle #2: There should be no way to
derive the PIN fTom information on the card

The importance of PIN security to EFTS security
is recognized in both the banking and the security
communities. Oddly enough, however, many PIN
schemes currently being discussed are based upon the
notion of deriving the PIN from the information on
the card (and primarily from the PAN). Such schemes
do reduce the need for PIN storage in the system since
PIN s can simply be derived when needed, but such
schemes risk PIN exposure.

Schemes in which the PIN can be derived from in
formation on the card are inherently weak. Once the
algorithm used to convert card information into PINs
becomes exposed, any person who obtains the card must
be assumed to have obtained the PIN as well. This ob
servation has two important implications in generated
PIN systems. First, the secrecy of the PIN depends
entirely upon the secrecy of the algorithm used to
generate the PIN. Second, the incentive for theft of an
algorithm is high, since that algorithm is utilized to
generate all PINs for a particular institution's cards.
The means for determining such algorithms exists.
The algorithms may be exposed by bank personnel who,
by the nature of their jobs have access to it, or given

sufficient cards with known PINs, it may be possible
to synthesize the algorithm. Once the means of deriv
ing PINs is known, production of apparently valid but
unauthorized cards is a simple matter. The system
level design section of this paper win describe a method
of PIN verification which does not require that the
PIN be derivable from information on the card.

A rough analogy may be drawn to the security
problem of telephone credit accounts. Credit identifica
tion numbers are based on the account holder's tele
phone n um ber, and the time lag between the develop
ment of new methods of deriving credit card numbers
and the fraudulent use of them has always been short
indeed. The potential rewards of defrauding an EFTS
system are incalculably greater.

Security Principle #3: Exposure of PINs should be
minimized during a transaction

This principle stresses once again the importance
of the PIN in EFTS security. A transaction will in
volve many devices and probably more than one finan
cial institution. PINs should, therefore, be transformed
or otherwise protected at the earliest possible stage in
the transaction.

SecuTity Principle #4: Sensitive or private transaction
data should not be subject to unauthorized exposure

During the course of a transaction, sensitive data
passes through a variety of devices and may be trans
mitted over public communications lines. Not all
EFTS devices may be "trustworthy." Communica
tions lines can be easily tapped. Obviou~ly any sensi
tive data such as the PIN should not be exposed un
necessarily. Furthermore, because privacy statutes
are likely to be enacted in the near future, the network
must exercise strict control over all personal informa
tion involved in transactions. The PAN, for example,
may be regarded as private information and not all
devices will need to have access to the PAN.

Security Principle #5: Transaction data should not be
subject to unauthorized alteration

As transaction processing is performed, alteration
of certain data could result in authorization of other
wise illegitimate transactions. For example, transac
tions may be diverted to the wrong institution or the
amount of the transaction might be changed during a
transaction, fooling the HPC into authorizing an im
proper transfer. Protection via an encrypted error
detection field is a simple technique to prevent such
unauthorized alteration. This technique is detailed
later in this paper.

A Secure, National System for Electronic Funds Transfer 131

Security Principle #6: All transaction requests and
transaction authorizations should be authenticated
at their destination

RSUs, where all transaction requests originate, and
HPCs, where processing of transactions occur, may
be physically remote from one another. However, each
must act on information received from the other. It is
essential that the identity of the source of information
be authenticated by the receiver of the information.
An HPC must know that the request it receives
actually comes from an RSU and not an outside source,
such as a penetrator tapping onto the line. An RSU
must know that a transaction authorization actually
came from the appropriate HPC. Otherwise a physical
transfer of funds or merchandise may occur when the
necessary authorization was denied or simply did not
take place.

An example will illustrate this point. A grocer rings
up a bill for a customer's purchase. The customer
wishes to use his card to pay the bill, and wishes to
receive an additional $50.00 cash. The grocer enters
the transaction request on his RSU and the customer
inserts his card and enters his PIN. When the grocer
receives an authorization on his RSU, he accepts the
transfer as payment and gives the customer $50.00 in
cash. A penetrator could have injected a false authori
zation message somewhere along the line. The grocer
would then assume that his account has been credited
in the amount of the cash disbursement plus the cost
of the groceries, but the "authorization" is fraudulent
and the grocer has been cheated. A direct, positive
identification of the source of messages in the system
must be incorporated to prevent such fraud.

SYSTEM LEVEL DESIGN

The six security principles may now be combined
with basic intercomputer network concepts to formu
late a general design for a local EFTS system. The
following paragraphs describe a design that has the
potential to provide a high degree of security as
surance.

The design incorporates cryptographic devices.
These devices encipher data (i.e., transform data in
order to conceal its meaning) and decipher data (i.e.,
reverse the encipher process in order to render data
once again intelligible). Proper use of cryptographic
techniques can greatly enhance network security. How
ever, in order to simplify presentation of the design,
the system is first presented and analyzed without
cryptographic devices. The cryptographic devices are
then introduced and discussed in detail. It is important
to note, though, that security is an integral part of the
entire design.

An EFTS system configuration without crypto
graphic devices is illustrated in Figure 1. This struc
ture includes four major types of devices or processors.

Figure l-Local EFTS Neb,vork (without Cryptographic
devices)

RSUs

Two of these, RSU sand HPCs, were discussed previ
ously. A third type of device, the transaction processor
(TP), interfaces RSUs to the rest of the EFTS system,
manages funds transfer requests initiated at RSU s,
and performs the one-way PIN transformations. The
fourth device type, the switch, interconnects HPCs
and TPs.

An example (see Figure 2) may help to clarify the
function of these devices and the relationship between
them. U sing the example of the customer at a grocery
store, we will assume that the customer maintains his
card account at institution X and that the grocer main
tains his account at institution Y. The customer de
sires to use his card to pay his grocery bill of $35.00
and wishes to receive an additional $50.00 cash. The
customer inserts his card into the RSU and enters his
PIN. The grocer enters a request for a transfer of
$85.00 (i.e., $35.00 for the groceries plus $50.00 for
the cash the grocer will give the customer) from the
customer's card account to the merchant's account.
The RSU collects all this information and forwards it
to the TP.

The transaction request is then received by the
transaction processor. The TP isolates the customer's
PIN from the transaction request and derives two new
values, PIN' and PIN", by performing two successive
transformations on the PIN. PIN" is compared with
a set of digits, called cryptographic check digits
(CCDs), recorded on the customer's card. If PIN" is
not equal to the CCDs, the PIN is invalid. The funds
transfer would not occur and a transaction denial
would be sent to the grocer at the RSU. In this example
we will assume that the CCDs and PIN" are equivalent
and that transaction processing continues.

The TP then sends a debit request message destined
for HPC X, the computer facility of the institution at

132 National Computer Conference, 1976

RSU

1. Grocer enters
transaction

2. Customer inserts
card into RSU and
enters his PIN

3. Transaction data is
forwarded to TP

17'. Transaction Appro
val is received
from TP

18'. Customer receives
groceries and
$50.00 in cash

TP

4. Transaction data is
received from RSU

5. PIN' and PIN" are
generated

6. PIN" is checked
against CCDs

7. PIN" check succeeds
(If check fails,
transaction is
aborted at this
point.)

8. Debit Approval Mess
age is created and
sent to HPC X

15. Debit Approval Mess
age is received
from HPC X

16. Credit Message is
created and sent
to HPC Y,Transac
tion Approval
Message is created
and sent to RSU.

HPC X

9. Debit Request Mess
age is received
from TP

10. PIN' is checked
11. PIN' check succeeds

(If check fails,
rejection is sent
to TP and transac
tion is aborted
at this point.)

12. Customer's account
balance is checked
for sufficiency.

(If check fails,
rejection is sent
to TP and trans ac
tion is aborted at
this point ..)

13. Customer's account
balance is found
sufficient and
$85.00 (i.e., the
transaction amount
is deducted.

14. Debit Approval Mess
age is created and
sent to TP.

HPC Y

17. Credit Message is
received from TP

18. Grocer's account
is credited with
$85.00

Figure 2-An EFTS transaction

which the customer has his account. The debit message
is addressed to HPC X and transmitted via the switch.
It should be noted that the customer's PIN is not trans
mitted, instead PIN' is sent along with additional
transaction information.

Upon receiving the debit request, HPC X verifies
that PIN' correlates properly with the customer's PAN
and that the customer's account balance is sufficient
to cover the $85.00 request. If either test were to fail,
the debit request would be denied and a debit refusal
sent to the TP.

Assuming the debit is approved, HPC X records the
debit request, reduces the customer's account balance
by $85.00, addresses a debit authorization to the TP
and transmits the authorization via the switch.

The TP sends two messages upon receiving the debit
authorization. One message is sent to the grocer's
RSU, indicating to the grocer that the funds transfer
has been approved. The second message is a credit

message sent to the HPC Y via the switch. At this
point the transaction is completed.

The transaction scenario outlined above demon
strates some basic functions of an EFTS system. Sev
eral simplifying assumptions were made to clarify the
presentation. N either backup support for HPCs nor
cryptographic devices were included, and logging of
transaction data for auditing and accounting was not
discussed. Furthermore, message acknowledgments
and retransmissions were ignored. Each time a net
work message is transmitted, an explicit acknowledg
ment is expected. If an acknowledgment is not re
ceived promptly, the message should be retransmitted.
Throughout this design presentation we will assume
that an acknowledgment/retransmission mechanism
exists where appropriate.

In the subsequent, detailed discussion of the local
EFTS design, the issues of HPC backup, logging and
auditing will be considered. The security of the EFTS

A Secure, National System for Electronic Funds Transfer 133

system will be analyzed after the full presentation of
the system level design.

The switch

The switch interconnects HPCs and TPs. The exact
nature of the switch is of no concern here-any switch
which is capable of carrying messages to a specified
;!"n+;..,n+;" ; <l +;"",o1", ""''''n 01'' ;0:. ",(>(>ont~ hlo Tn ~
Uv.;:,lI~~~"'\J.1.V.1..1. .1..1..1. '-II LJ.1..I..LJ..v.l.J .I.I.~ ... J..&.L .1."-' --...... -1:' _,..,.......... -

centralized system the switch may consist of a single
message switching computer. On the other hand, the
switch may consist of a geographically distributed net
work of message or packet switching mini-computers.
The term "distributed networks" as used in this paper
means those networks where messages, or pieces of
messages-packets-are carried from source to desti
nation by being relayed from one switching computer
to another until the destination is reached. Currently
such distributed networks can relay a message across
the United States in less than one-half second.

The distributed approach (which is used in the
ARP ANET) offers many advantages over the cen
tralized approach. Distributed networks have the po
tential to provide alternate message pathways when
one of the switching centers fails. When a centralized
switch fails, the entire EFTS system halts. Distributed
approaches, besides having a great potential for re
liability, may be designed to adaptively route traffic
through the various communications paths in order
to reduce communications delays.

Unfortunately, distributed systems are not neces
sarily the most cost effective approach for a local
EFTS system. Distributed systems generaily require
a much higher initial investment than centralized sys
tems. It should be noted, though, that either a central
ized or a distributed switch can be incorporated into a
local EFTS system without impacting other system
components.

Host processing centers

Each HPC is the computer facility for a specific
financial institution and as such is subject to the par
ticular policies of that institution. A large and varied
population of HPCs now exists. The manner in which
accounts are maintained and PINs are handled will
undoubtedly vary.

Each HPC must adhere to the message formats and
protocols developed for the local EFTS system. All
communication between HPCs and TPs must conform
to these standards. For instance, HPCs will receive
only transformed PINs. The precise manner in which
transaction messages are generated, transaction data
interpreted, and transformed PINs verified can be de
termined by each institution.

Functions may be desired in the EFTS system other
than those illustrated in the simple transaction sce-

nario presented above. For example, a facility to back
up HPCs or to log data on all transactions is likely to
be included in most EFTS system requirements. In
this EFTS system design these functions are provided
by one or more special-purpose HPCs (see Figure 3).
The switch need not distinguish between such special
function HPCs and transaction HPCs.

Only TPs and HPCs need to recognize the functions
of these special HPCs. It is expected that a TP would
transmit a message to the logging HFe at the start
and end of each transaction. Similarly, the debit and
credit HPCs would transmit log messages to the
logging HPC each time they either authorize or refuse
a request.

Whenever a primary HPC is not operating, it is ex
pected that TPs would interact with a backup HPC.
The backup HPC would partially determine the valid
ity of debit requests based upon information collected
from HPCs when they are operating. Transaction in
formation would be stored at the backup HPC until
the primary HPC is again operating.

Transaction processor

The TP manages all transactions in the EFTS sys
tem. The TP interprets each transaction request re
ceived from an RSU. A set of actions is associated
with each type of transaction. These actions include a
sequence of messages to be sent to HPCs and the RSU
initiating the request.

The TP must determine to whom the various trans
action messages should be sent. Thus the TP must
maintain tables indicating vlhere messages should be
routed.

The TP manipulates PINs. Upon receiving a trans
action request, the TP creates two transformed PINs,
PIN' and PIN". Both transformations should be PIN

Figure 3-Local EFTS network with special-purpose HPCs

134 National Computer Conference, 1976

dependent (i.e., they should vary with the value of the
PIN) and should be resistant to attempts to determine
original PINs from transformed values.

Transformations of this type can be performed in
many ways. One such technique employs the NBS
standard algorithm for data encryption. This algo
rithm has two inputs, a text string and a key. The out
put is a scrambled version of the input text string. The
algorithm has the desirable property that even if both
a sample input text string and the output are known,
the key can only be determined by testing all 76 x 1015

possible keys. (This protects future cyphers from so
phisticated penetration attacks.)

The transformation process is illustrated in Fig
ure 4. In this method the PAN is the first text input
to the NBS algorithm and the PIN is the key input.
The output of the first application of the algorithm is
PIN.' PIN' is then input to the algorithm as the text
and a predetermined but secret value is input as the
key. The resulting output is PIN". Thus both PIN'
and the "secret value" must be known to determine
PIN" and both the PIN and the PAN must be known to
determine PIN'. The important security implications
of this approach are discussed later.

Cryptographic devices

Two types of cryptographic devices are included in
the EFTS system design. These devices are referred
to as Network Cryptographic Devices (NCDs) and
Serial Cryptographic Devices (SCDs). An EFTS net
work incorporating cryptographic devices is illustrated
in Figures 5 and 6.

The National Bureau of Standards (NBS) Data
Encryption Algorithm should be utilized in the SCDs
and NCDs. The algorithm has many desirable features
for use in such devices (see Reference 1). Further
more, it is rapidly being accepted as a standard for use
in EFTS networks.

SCDs are similar to standard cryptographic devices
now available. An SeD protects a single telecom
munications line. Multiplexed SCDs can simultaneously
handle several such lines. NCDs, on the other hand,

PIN

(Key)

1----PIN'----i
(Output) (Text)

Special Key

(Key)

PIN' ,

Cryptographic
Check Digits

Figure 4-PIN transformation using National Bureau of Stan
dards data encryption algorithm

I-~-------'
I :

I NCD TP:

, L-..J;
1 ________ I

I Area enclosed
in single secure
Cacility

Figure 5-Portion of EFTS network with cryptographic devices

are quite unlike anything now produced. NCDs main
tain a fully interconnected network. By using a unique
key, each NCD can protect the communications path to
any other NCD in the network. This technique is
described in the following section. It is assumed that
an automatic key update mechanism in the NCDs and
SCDs changes keys after a given amount of use.

EFTS SYSTEM SECURITY ANALYSIS

The EFTS system described above should provide
substantial security assurance. The following few
paragraphs analyze the system's security based upon
the six EFTS security principles previously presented.

Security Principle #1: The PIN should be known only
by the cardholder

In the system presented above, the PIN is not stored
anywhere in the system. All processing beyond the
TP is based upon transformed versions of the PIN.
HPCs perform authorization checks on transformed
PINs only and it is virtually impassible to derive the
actual PIN from the transformed PIN.

Security Principle #2: There should be no way to
derive the PIN from information on the card

This principle can simply be restated as a system
requirement. There is certainly no need in the system
presented in this paper to generate PINs from infor
mation on the card. The use of cryptographic check
digits derived from the PIN illustrates that the PIN
can be verified without being implicitly exposed on the
card.

A Secure, National System for Electronic Funds Transfer 135

LEGEND

x RSU

() RSU Controller

r~l Concentrator
V

SCD Serial Cryptographic
Device

TP Transaction Processor

- - -: Area enclosed in a
, __ J single secure facility I

:LJU, _L ____ : -J1 SCD

I
~:

• _________ 1 x
______________ :1

As shown above, RSUs are not directly connected to IPs or SCDs. RSUs are directly
connected to an RSU controller. Several RSUs may be attached to a single controller.
This may be accomplished by concentrators, multidrop lines, etc. Communications
security between RSU controllers and RSUs is, of necessity, the responsibility of
the RSU manufacturer.

Figure 6-Transaction processor-RSU portion of EFTS net\vork

Security Principle #3: Exposure of PINs should be
minimized during a transmission

PIN s entered at RSU s are in the clear until enci
phered by SCDs. PINs are again exposed in TPs.
Thereafter, PINs are discarded and only transformed
PINS are utilized.

If PINs were transformed at the RSU, only trans
formed PINs would appear in the network. Unfortu
nately, many RSUs already exist and none perform the
transformation described in the system design. Expo
sure of the PIN can be reduced further if new RSUs
adopt the transformation design proposed herein.

Security Principle #4: Sensitive or private
transaction data should not be subject to
unauthorized exposure

When data is enciphered, it is considered safe from
exposure. Thus, sensitive or private transaction data
is safe as it flows between SCDs and as it flows be
tween NCDs. There is, however, a potential weak link
between RSUs and their controller. Because RSUs
and RSU controllers are built to operate as an inte
grated unit, the burden of providing communication
security between these devices must fall on the manu
facturers. ~anufacturers should be required to pro
vide this security.

Data is necessarily in clear (non-enciphered) form
while in RSUs, RSU controllers, TPs, and HPCs.
Consequently these devices will require procedural and
physical protection.

Security Principle #5: Transaction data should not
be subject to unauthorized alteration

Cryptographic techniques can be used in conjunction
with error detection techniques to prevent unautho
rized alteration of transaction data. An error detec
tion field is calculated on each message and appended
to the message before it is enciphered. Encipherment
of data based on the National Bureau of Standards
encryption algorithm makes it virtually impossible to
alter enciphered data with predictable impact on the
data once it is deciphered. Thus, \~t,"hen a message is
deciphered and the error detection field recalculated
and compared to the value in the message, it is ex
tremely unlikely that any changes made to the en
ciphered message will not be detected. This technique
does not directly prevent unauthorized alteration. It
does, however, eliminate any threat due to such al
teration since virtually all unauthorized changes to
messages can be easily detected. If encipherment is
coupled with a procedure for retransmitting messages,
incentive for altering data without authorization is
eliminated. Thus, SCDs and NCDs combined with

136 National Computer Conference, 1976

appropriate protection of the RSU-RSU controller link
prevent unauthorized alteration of transaction data.

Security Principle #6: All transaction requests and
transaction authorizations should be authenticated
at their destination

NCDs are utilized in this design to authenticate the
source of HPC and TP messages. Encipherment and
decipherment of messages by NCDs is based upon
secret values called keys. An NCD cannot decipher a
message unless it knows the key used to encipher the
message.

Each NCD will maintain a unique key for commu
nicating with each of the other NCDs in the system.
Thus, if TPl attached to NCD1 sends a message to
HPC 2 attached to NCD 2 , the key used by NCD l to
encipher the message is known only by NCD! and
NCD 2 • When NCD 2 receives the message, NCD 2 can
be assured that the message came from NeDl. The
source of the message which arrives at HPC2 must
therefore be TP l •

Similarly, SCDs will maintain pairwise-unique keys.
This technique provides a means for mutual authenti
cation of TPs and RSU controllers. RSU controllers
should be required to have a mechanism for authen
ticating messages sent between RSU controllers and
RSUs. However, RSU to RSU-controller communica
tions are the domain of the manufacturers of these
devices.

In this system PINs are known only by cardholders
and during a transaction are in the clear only in the
TP. A transaction can only be initiated at an RSU
since the various cryptographic devices prevent un
authorized insertion of messages into the system. Thus
the PIN must be known to initiate a transaction and
only a legitimate cardholder can initiate a transaction.

A NATIONAL SYSTEM

The local EFTS system previously described con
forms to the six EFTS security principles. That sys
tem would provide a high degree of security assurance.
By linking several of these local systems it is possible
to create a secure national EFTS network. Such a
national EFTS network design is illustrated in Figures
7 and 8.

Three major components-a nationwide message
switching network, gateways, and NCDs-are needed
to link the local systems. The nationwide message
switching network carries messages between the local
systems. NCDs (like NCDs in the local system) pro
tect messages which flow through the nationwide
message switching network. Gateways interface local
EFTS systems to the message switching network.

1

1 _______ -'

,_ c£--- -, To National Network

, '
I NeD I
, ,

1- - - - - - - -

r

I Area enclosed in a __ J single secure facility

Figure 7-Local EFTS system attached to national network

An example may clarify the function of these inter
network devices. We will assume that TP1 finds it
necessary to send a debit request to HPC2• We fur
ther assume that TP land HPC2 are not in the same
local system.

TP], recognizing that HPC 2 is not local, generates a
debit request message addressed to HPC2• That re
quest is enclosed in a message addressed to a local
gateway, Ga. The message is transmitted, via the
local switch, to Ga. G3 receives the message and ex
tracts the debit request. The gateway inspects the
debit request to determine which local system contains
HPC2• G3 then encloses the debit request in an inter-

To Local EFTS System

To Local EFTS Ssytem

Figure 8-A national EFTS network

A Secure, National System for Electronic Funds Transfer 137

network message. The internetwork message is ad
dressed to a gateway, GH which is part of the same
local system as HPC2 •

The internetwork message, cryptographically pro
tected by NCDs, is routed by the natioTI'\vide message
switching system to G4• G4 receives the internetwork
message and extracts the debit request. G4 then routes
the debit request to HPC2 via the local switch. The
resulting debit authorization or denial follows the re
verse path from HPC2 to TP l'

The national network

Like the local system's switch, the nationwide mes
sage switching network may take many forms. Any
network capable of carrying messages between gate
ways in a timely manner is acceptable. The national
networks will span large distances and, when com
pared to local switches, will carry a relatively light
EFTS message load. Hence, a distributed shared,
public network seems appropriate. Because NCDs
protect messages sent through the national network,
it is possible to utilize a commercial, value-added net
work.

Gateways.

A TP views a gateway as a special HPC which rep
resents all HPCs not found in the local system. An
HPC views a gateway as a special TP.

The national system design presented above assumed
that the local systems to be linked were identical.
Unfortunately, such standardization is unlikely. Where
little commonality exists between local systems, a na
tional system will be effectively precluded. If the only
differences are message formats, gateways can be used
to translate the message formats utilized by different
local systems. It cannot be stated too strongly-a
national EFTS system requires standardization of at
least transaction protocols and message information
content.

To simplify the format translation task, all messages
travelling through the national network will conform
to a single, standard protocol and format, I f a local
system does not conform to the national standard, the
gateway to that system must translate messages to
and from the national standard. In this way neither
HPCs nor TPs are impacted by the differences be
tween the local system and the national system. How
ever, it must be reiterated that gateways can only
reformat messages. In all other respects (protocol
and information content) local messages must conform
to the national standard. The more the local system
resembles the national standard, the less complex the
gateway becomes.

Security analysis of the national system

The extent to which the national system design
adheres to the six EFTS security principles is pre
sented in a two part analysis. First, the protection of
the PIN is examined. Second, the protection of trans
action communications is examined.

A national network can be built in which all PINs
are handled in the same manner as described earlier
___ 1 __ LL ___ Ll _ _ J.._l-! _ _,.,... + n 11~T ,.T7';+1,';,..., +'h.o In/'l(ll w uet..uer t..He t..1"a!ll::)at;("lUU U\..\..U.l.::l I;VI;Q,U,y vv ~"U~.LJ. "uLv

system or whether other local systems are involved.
If the national network is built in that way, security
principles # 1, #2, and #3 are satisfied by the national
system design just as they were in the local system
design. If, in some local systems a non-standard PIN
transformation is used, or if the PIN is not trans
formed at all, PINs may be exposed. Furthermore,
nonstandard PIN handling mechanisms may require
ad hoc processing in gateways. Such ad hoc mecha
nisms would increase cost and decrease security, in
tegrity, and reliability.

The extent to which EFTS security principles #4,
#5, and #6 are followed depends entirely upon the
local systems. If a local system is built according to
the design presented in this paper, then messages are
not subject to unauthorized alteration or exposure
until they enter a local system not adhering to the
security principles. This result occurs because the
NCDs of the national system protect against unautho
rized exposure and alteration of messages sent between
gateways. Furthermore, because the NCDs of the
national network prevent misdelivery, a gateway may
trust that a message it receives actually originated in
the remote local network from which that message
appears to have come. If both the source and destina
tion local systems adhere to the security principles,
then mutual authentication of the ultimate source and
destination of a message is possible.

CONCLUSION

Security must be an integral part of any EFTS
system design. Adherence to the six EFTS security
principles will provide a high degree of system se
curity. Through the proper use of the NBS algorithm,
a system for local electronic funds transfer can be
built which conforms to these guidelines for handling
PIN s and transaction data. Although the devices to
implement such systems may not be currently avail
able, the technology to build these devices does exist.

National systems for electronic funds transfer can
be created by linking local systems. It is necessary,
however, that the local systems be designed to operate
as part of a national system-effective and secure
after-the-fact linking of heterogeneous local systems
may be virtually impossible. National standards must
be developed to permit interconnection of local sys
tems and to insure a high level of security.

138 National Computer Conference, 1976

BIBLIOGRAPHY

1. Branstad, D. K., Encryption Protection in Computer Data
Communications, Fourth Data Communications Symposium,
Quehp.<, City; Canada, October 1975.

2. Branstad, D. K., "Security Aspects of Computer Networks,"
Paper Number 73-427, AIAA Computer Network Conference,
Huntsville, Alabama, Apri11973.

3. Cerf, V. and R. E. Kahn, "A Protocol for Packet Network
Intercommunication," IEEE Transactions on Communica
tions, Vol. COM-22, No.5, May 1974.

4. Ferdman, M. D., D. W. Lambert and D. W. Snow, Security
Aspects of Bank Card Systems, MITRE Technical Report
MTR-2971, Vols. 1 and 2 and Executive Summary, September
1975.

u. National Bureau of Standards Data Encryption Algorithm,
Federal Register, March 1975.

6. Security and Reliability in Electronic Systems for Payments,
Study Group on Electronic Systems for International Pay
ments of the Group of Computer Experts of the Central
Banks of the Group of Ten Countries and Switzerland, April
1975.

Design considerations for electronic funds transfer
switch system development

by JOSEPH P. MAZZETTI
Technology Management Incorporated
Washington, D.C.

ABSTRACT

This paper reviews the EFTS switch concept and out
lines some of the major design considerations involved
in its implementation. The EFTS switch permits finan
cial institutions to share customer terminal devices
(for example, point-of-sale terminals in a super
market) by transmitting messages generated at the
terminal to the financial institutions holding the cus
tomer (and merchant) account. The switch, in addi
tion to message routing, must maintain information
for settlement among the financial institutions in
volved, and generate accounting, audit trial and oper
ational reports. Specifically addressed in the paper
are: the financial transactions and terminal devices
involved; switch message processing and accounting
functions; hardware, software, and network com
ponents and alternatives; and security and backup con
siderations. The material presented is based on EFTS
project work performed by Technology Management
Incorporated (TMI) for the Federal Home Loan Bank
System.

INTRODUCTION

An Electronic Funds Transfer System involving shared
terminals *-for example, financial institutions sharing
point-of-sale devices in a supermarket or an automated
teller machine in a shopping center-requires a com
puterized switch to route messages from a given device
to the computer system (host computer) servicing a
particular financial institution. A typical switch con
figuration servicing two institutions is shown in Fig
ure 1. In addition to message routing, the EFTS
switch is designed to generate information for inter
institutional settlement and to maintain accounting and
audit trials.

The EFTS switch design emphasizes throughput per-

* Commonly called Customer Bank Communications Terminals
(CBCTs) by commercial banks or Remote Service "Cnits (RSUs)
by thrift institutions.

139

formance while at the same time providing a high
degree of message protection and system integrity.
Further, a switch must be capable of handling a
multiplicity of host computers with different operating
characteristics, have the capability of dealing with
varied terminal types, and communicate with other
switch networks.

The EFTS switch will be a key element in the future
of Electronic Funds Transfer because neither the
public nor the merchant community will tolerate a
profusion of competing terminals and because of the
higher costs associated with independent facilities.
The technology for switch development is well within
the current state-of-the-art; what remains is the appli
cation of that technology to real-world situations.
Further, a number of alternative switch and network
design approaches exist providing EFTS planners in a
given area the ability to configure the switch (es)
which best meets the geographical, demographic, and
market demand characteristics of that area.

This paper treats basic switch concepts and outlines

------------,
I Su;:e=:-arket I
I I
1 I
I I

I :
I
I Point-of-Sale Te:!: •••
L ________ _

,---------------
I Shopping Center
I
I

Eost Ccr.p..1tcr-Institut'icn B

Figure I-EFTS switch overview

i40 National Computer Conference, 1976

the major design considerations involved in s\vitch
development. It is based on EFTS project work per
formed by Technology Management Incorporated
(TMI) for the Federal Home Loan Rank System,

OPERATION AL CONCEPT

A range of plastic card transactions initiated by
depositors will be processed by the switch, including:

• cash u:ithdrawal-direct withdrawal from a check
ing or savings account;

• check cnshing / guarantee-placing a "hold" on the
customer's account in the amount of the trans
action;

• deposit-placing funds on deposit to a customer's
account;

• funds transfer-transfer of funds from one
account to another;

• payments-direct submission of cash or check
for loan payment (e.g., mortgage loan) ; and

• balance inquiry-determining the existing balance
in an account.

Other switch-based services could include: interface
with Automatic Clearing Houses (ACH) ; interconnec
tion with Credit and Debit card networks; possible
linkage with the FEDWIRE, BANKWIRE, and other
networks; and other depositor-based services.

These transactions are generated from several types
of terminal devices as shown in Figure 2, including
automated teller machines and merchant-operated ter
minals. The automated teller machines (ATMs) dis
pense cash, accept deposits, accept payments, and
transfer funds between customer accounts, and are
activated by a combination of a plastic card and push
buttons. They typically limit the total number of with
drawals a customer can make through controls built
into the system (on-line operations) and on the cus
tomer's plastic card (off-line operations). The mer
chant-operated terminals are those devices normally
operated by merchant personnel in a business establish-

:lerchant-Operated Terminals

Figure 2-Terminal device types

ment such as a supermarket or retail store. They are
of two general types:

• point-of-sale terminals used to collect sales, in
ventory, and other data about a sales transaction
in addition to performing some financial trans
actions. These include: Electronic Cash Registers
(ECR) and Point-of-Sale (POS) terminals; and

• terminals located in a business establishment for
the sole purpose of performing financial trans
actions (deposi ts, wi thdra wals, etc.). These are
often called point-of-business terminals.

These terminals usually include the following com
ponents: plastic card, magnetic stripe reader; nu
meric keyboard and function keys; display; printer or
imprinter; journal tape unit (ECR); and usually a
terminal controller to service multiple devices.

The flow of data for a typical transaction is shown
in Figure 3. In this example, a customer makes a cash
withdrawal at a supermarket; the customer's and mer
chant's accounts are maintained at different financial
institutions.

The customer submits his plastic card to the financial
service window at the supermarket. The clerk enters
the customer's plastic card along with merchant data
(either by a second plastic card or key entry). The
customer enters his Personal Identification Number
(PIN) through a separate numeric key pad. The
transaction data is then transmitted to the switch

STEP
NtI!IBER

10

CUSTOMER

Sutnit9

MERCHANT/
TERMINAL

Plastic ---,
Card +

Enters Customer
Card and

r-- Merchant Data + into Terminal

Enters Personal

SWITCH
CUSTOMER'S
FINANCIAL

INSTITUTIO:l

Identification. f------+---.
Number (PIN) ~

Enters

Validates
Card/Account

Transaction Code n
and Amount

of Withdrawal

Dillpenses cashl
Prints Receipt

Routes Message
to Customer I II

Financial
Insti tution

Verifies
sufficient

r-- Balance; Debits + Customer I S Accoun

Routes Messaqe
to CUstomer's
. Pinancial
Institution

~RCHA!lT'S
FINA!ICIAL

IliSTIT;;TIO~

Credits
Merchant'.
""count

Figure 3-Transaction data flow-cash withdrawal

Electronic Funds Transfer Switch System Development 141

where card and account validation and security is per
formed through algorithmic procedures and reference
to a negative file containing stolen or counterfeit card
information. Assuming the validation checks are
passed, an acknowledgement is sent back to the ter
minal. The clerk enters the transaction code and the
amount, and the message is then transmitted to the
switch. The switch routes the message to the cus
tomer's financial institution processor which verifies
that a sufficient balance exists to cover the withdrawal
and debits the customer's account. A positive acknowl
edgement of the action is sent to the switch which, in
turn, transmits the acknowledgement to the terminal
(where a receipt is printed) and also transmits a
message to the merchant's financial institution proces
sor where the merchant'~ account is credited.

The processing performed in each of these steps in
the case of a cash withdrawal transaction may vary in
alternative switch designs, depending on the division
of functions between the switch and financial institu
tion processors.

MAJOR DESIGN CONSIDERATIONS

This section describes in some detail the major design
considerations involved in EFTS switch development,
including: switch functions, hardware and software
components, network alternatives for terminal support
and degree of centralization, backup, security, and
message standardization.

Switch functions

The EFTS switch must be designed with maximum
emphasis on throughput performance (i.e., low message
residency time as in an inquiry/response communica
tions network) and also on the ability to provide a
high level of system integrity and message protection
as can be found in a store-and-forward message pro
cessing system. General switch design considerations
include:

• ability to support the processing of plastic card
based financial transactions described above;

• ability to provide interconnection with a variety
of host processors and terminal devices;

• modular system architecture to accommodate evo
lutionary transaction volume growth so that no
major structural changes are required as greater
levels of volume are reached;

• flexible hardware and software design to permit
new terminal devices to be added in the future;
and

• a high degree of system reliability.

The specific functions to be performed by the switch
are listed in Figure 4 and discussed below.

• MESSAGE PROCESSING
• SETTLEMENT
• REPORT GENERATION
• AUDIT TRAIL MAINTENANCE

Figure 4-Switch functions

Message processing

The elements of common processing for each trans
action message include:

• message receipt-receipt of messages transmitted
from terminals and terminal subsystems (i.e., con
trollers and concentrators), host processors, and
other switches;

• message validation-verification of the format and
content of the message received;

• account verification and security-verification of
customer and merchant account numbers;

• message logging-writing of all messages pro
cessed by the switch to a historical file (usually
magnetic tape) for audit trail purposes;

• settlement-posting accounting data to an inter
institutional settlement file;

• message reformatting-reformatting of message
as necessary to achieve the appropriate terminal/
host processor interface; and

• routing-directing the output message to the
appropriate endpoint~

Settlement

The settlement process provides for transferring
funds between financial institutions to cover the value
of interinstitutional transactions originated by the
customers of those institutions. This is normally
accomplished by moving the funds between the clear
ing accounts held by a common financial intermediary
such as a Federal Reserve Bank or a commercial bank.

Settlement can be handled in a number of ways,
depending primarily on the relationship between the
entity that operates the switch facility and the finan
cial intermediary which holds the clearing accounts. If
the switch is operated by the financial intermediary
which holds the clearing accounts, a continuous clear
ing process can be implemented. This allows instan
taneous clearing, and each transfer can be applied, as
it occurs, to the clearing accounts of both the sending
and receiving institutions. Periodic cutoffs could pro
vide for reporting, reconciliation, and analysis.

In circumstances where continuous settlement is
impractical or impossible, batch settlement can be used.
This involves the accumulation of transaction data be
tween cutoffs for subsequent posting to a clearing

142 National Computer Conference, 1976

account. A single settlement entry can then be made
for each participating institution. That entry repre
sents the net of all deposits and withdrawals initiated
by that institution's cardholders through its own
terminals.

Regardless of the settlement process used, the switch
operation will have to provide detailed transaction
reports to enable the participating institutions to
reconcile their settlement accounts.

In addition to accomplishing the settlement function,
the switch should provide on-line availability of net
position data (among institutions) which is a con
tinually updated balance or a beginning balance and
net debits and credits. Warning levels can be estab
lished at which an institution would be notified of a

need to transfer additional funds into the clearing
account.

Report generation

The switch must provide data for the production of
reports of four types: on-line reports, system activity
reports, accounting reports, and history reports.
Definitions of these reports are given in Figure 5.

Audit trail maintenance

In order to ensure the ability to restore system oper
ation following an outage, identify patterns of terminal
or network use for possible security violations, and
assist in reconciliation of switch/host processor /ter-

On-Line Reports (or displays) assist in the management of the switch system
during the processing day. These are usually monitored by an operator at a
system control panel. They include:

status reports - status of network hardware;

transaction traffic level and flow reports - type and flow of trans
action message traffic:

switch system resources utilization - use of storage devices, core,
and other system resources.

Sys~em Activity Reports (produced at end-of-day) cover a wide range of data
reporting, describing the characteristics of that day's processing. They include:

message/transaction workload volumes and characteristics - by
terminal end point, concentrator, and communication line;

security - identification of security problems;

error reports - det~iling hardware errors (by source);

peak/load reports - showing peaking characteristics of the daily
workload; and

file usage reports - describing update activity against switch
files.

Accounting Reports (produced at end-of-day) are directed at control of the inter
institutional settlement process, and include:

settlement reports - displaying the transactions (debits and
credits) affecting the various institution accounts and the net
result of daily settlement activity; and

terminal level reconciliation reports - reflecting the transactions
generated by the terminals to the participating financial institutions.

History (Archival) Reports attempt to maintain a sufficient audit trail on daily
activity for purposes of researching and reconciling transaction level questions
which might arise. These may be produced daily, monthly, or on an on-request basis.
These could include: transaction journals, transaction and dollar volume reports,
and other statistical analyses useful to overall management of the switch system.

Figure .5-Switch reports

Electronic Funds Transfer S'\vitch Development

minal interactions, an audit trail must be maintained of
each transaction processed by the switch.

All messages received by the switch must be recorded
on magnetic tape or some other suitable device. The
taoe record should include-in addition to the in
co~ing data-a time and date stamp, a sequential
reference number, and the identification of the line
and terminal or other device from which the data
originated. In addition, the record should contain in
formation relating to the disposition of the transaction,
such as routing, format revisions, and error codes.

These transaction records will have to be retained
for a period of time commensurate with the need for
reprocessing, trouble-shooting, and analysis relating to
system integrity and security matters.

The hardcopy could be in the form of microfilm,
microfiche, printed listings, or another suitable media.

Hardware and software components

The major hardware and software components re
quired for EFTS switch operation are described below.
The mix of components will differ for each switch
installation based on functions to be performed, trans
action workload and performance requirements.

Hardware components will include:

e Processors-Several classes of computers could
feasiblv be used in the switch configuration} in
cludin~ microprocessors, minicomputers, and me
dium-soale processors. The· medium-scale pro
cessors would have the capability to perform
other financial processing functions, together with
the switch functions (integrated switch). For
purposes of switch reliability, multiple processors
are suggested.

• Processor M emory-The range of processor
memory sizes will vary according to the class of
processor used and the functions to be performed
by the switch.

• Communications Adapters-These are utilized for
communications line control and multiplexing.

• Input/Output Controllers and Peripheral De
vices-The specific components necessary for
switch configurations include:

• tape drives-for transaction audit log and
interfacing with other outside systems;

• disk-for program storage, switch file resi
dence, and working storage for message pro
cessing operations;

• printer-for production of accounting and
activity reports;

• system console-display-type device for moni
toring system operations; and

• communication "front-ends" -for network
control and message handling.

All software required for the EFTS switch can be

categorized as either environmental software or appli
cations programs. Environmental software is the
manufacturer-supplied packages, including:

• Operating System-supports the effective, shared
utilization of system hardware and software re
sources;

• Transaction/Message Handling Software-sup
ports communication of messages from terminal to
computer, computer to terminal, and froI1i Oile

computer to another;
• Network Support Software-descriptive, table

driven language used by a communications pro
cessor in controlling network configuration and
operation;

• File Maintenance Software-provides data base
access and update capability;

• Recovery Software-provides an automated means
for re-establishing operations in the event of sys
tem failure (e.g., transmit messages previously
received but not yet forwarded) ; and

• System Utilities-includes language processors,
data manipulation routines, and other system sup
port software.

The application programs are usually unique to a
given switch situation and include those needed to per
form the functions described earlier, i.e., message pro
cessing, settlement, report generation, and audit trail
maintenance.

Network alternatives-terminal support

Severai network configurations are possible to pro
vide terminal support for the EFTS switch. Switch
performance, economics of operation, initial develop
ment cost, maintenance costs, minimization of the
number of communication lines and distance, and other
factors should be considered in determining the most
appropriate configuration in any given situation. Three
possible alternatives are depicted in Figure 6 and are
discussed below.

AL TERNA TI VE 2

ALTERNATIVE 3

TERI-tIN-ALS

Figure 6--Network alternatives-Terminal support

144 National Computer Conference, 1976

• Alternative l-CmnputerjComputer Switch-This
approach would require that all terminals be con
nected to host processing centers with those host
processors, in turn, connected to the EFTS switch.
The host processors would have the responsibility
for terminal and network control functions, includ
ing: communication line disciplines, error recov
ery, polling and addressing, and message format
translation. Messages would be presented to the
switch in a standard format.

• Alternative 2-TerminaljComputer Switch-This
approach is at the opposite extreme from Al
ternative 1 requiring that all terminals be con
nected either directly or through a series of con
centrators to the switch, and through the switch
to the host processing centers. The switch, of
course, would also handle interinstitutional settle
ment. In this case, the switch has complete ter
minal and network control including message
formats, interface specifications, and network
configurations.

• Alternative 3-"Hybrid" Approach-This ap
proach would provide for:

• Some terminals connected directly to the
switch;

• Some terminals connected to host processing
centers and the host processing centers con
nected to the switch; and

• Some computer centers connected directly to
each other over high-speed lines (by-passing
the switch for certain types of message
traffic) .

In the short term, Alternative 1 appears to be the
most expedient because it reduces the complexity of
interfacing various terminal devices (and related stan
dard setting) and reduces the switch software and
communications costs involved. Alternative 2 presents,
in the longer term, the most likely point of evolution
because it provides the centralized control and flexi
bility needed for network expansion. With Alternative
3, several key control questions exist relating to the
integrity of the network in the event of failure.

Network alternatives-centralized vs. distributed
switch

Figure 7 presents two alternative network design
philosophies which are applicable: the centralized
switch and the distributed switch.

• The centralized switch approach uses one or more
computers as the heart of the network processing
all transactions. For network configuration (a),
transactions generated at terminals are trans
mitted to the switch and routed by the switch to
the appropriate host processing center (and settle
ment accounting is performed) .

CENTRAL! ZED SWITCH
(al

DISTRIBUTED SWITCH
(bl

Figure 7-Network alternatives-Centralized vs. distributed
switch

• In the distributed switch (b), each switching node
is designed to be self-contained, operating in
dependently of the other nodes in the network.
Normally, at least two communication paths are
possible to reach each switch node. Further, if the
network is constructed such that specific end
points (such as a host processor) have connections
to two nodes (primary and backup), the functions
of that endpoint would be available in the event
of failure of a given node.

Backup considerations

The reliability of the switch network depends largely
on the switch design itself. For most switch appli
cations, the need for multiple processors is indicated.
For the centralized switch, several backup approaches
are possible as discussed below for a two processor
example:

• Foreground/Background Processors-There are
two processors; one CPU operates on-line per
forming all switch functions, while a backup CPU
(with access to all peripheral devices) is avail
able to perform off-line functions until the fore
ground processor goes down.

• Load Sharing-There are two processors, each of
which services half of the network workload under
normal conditions. In the event that one pro-

Electronic Funds Transfer S'.vitch System Development "1 A ~
.L':H.I

cess or fails, the second processor takes over its
workload.

• Hot Standby-There are two processors; each
processor is capable of supporting the network
workload and processes each transaction sepa
rately. In the event that the main processor fails,
the standby computer takes over network oper
ation.

The distributed switch network contains inherent
backup in that the overall workload is segmented; thus,
only a portion is vulnerable at any particular time.
Further, alternate transaction routing among nodes in
the network also increases the network reliability.

Another factor affecting the reliability and integrity
of the switch is the segregation (physical and logical)
of switch functions. This segregation is possible at
several levels :

• Software Segmentation-Use of modular software
design to maintain the processing integrity of
each of the functional segments described earlier;

• Separate Processors-Use of dedicated processors
to perform one or more of the functions indicated;
and

• Sharing-Assignment of one or more processors
in the network to perform given functions; e.g.,
assis-ning a host processor to maintain all settle
ment information.

This segregation can affect the operational efficiency
of the switch, its reliability, and its ability to recover
in the event of an outage.

Switch security

The process of transferring funds between customer
accounts and from one financial institution to another
via depositor-activated or merchant-operated ter
minals is susceptible to many types of fraud. Switch
designers must build security protection into the basic
design. Figure 8 highlights some of the major areas of
"vulnerability". Examples of possible fraud are:
counterfeit, changed or duplicated cards; wire tapping;
tampering with terminal devices; adjusting switch or
HPC programs; modification of switch or HPC files.

Commonly considered approaches to achieving ade
quate security include:

• rendering the card counterfeit-proof and tamper
proof by embedding various materials on or within
the card during manufacture;

• encrypting procedures, such as enciphering the
characters on the magnetic stripe, and enciphering
all file data;

• physical security procedures for switch and host
processing center facilities; and

• systems for signature verification, voiceprint, and
fingerprint identification.

• PLASTIC CARD

• TERMINAL

• MAN-MACHINE INTERFACE
I'/,\UUI n.1 T I' 1\.,. T nul"
~UI"IJ"IU" 1 \".1-\ I 1 un\:)

• SWITCH SOFTWARE

• SWrTCH FI LES

• SWITCH PERSONNEL AND
FACILITIES

• HOST PROCESSOR (FILES)
PROGRAMS) PERSONNEL)
FACILITIES)

Figure 8-Security considerations

Message standardization

The issue of message standardization has a direct
bearing on the cost of development and on-going main
tenance of an EFTS switch, its operational perform
ance, and the degree of cooperation among those in
stitutions participating in the use of the switch. Con
sider two opposite approaches:

• Standard formats-This approach would require
that all messages (i.e., terminal/switch and
switch/host processor) be standardized. This
would provide considerable ease of administration
and control, as well as a lower base of develop
ment and operating costs. On the other hand,
practical experience has proven that agreement
on standards is very difficult to obtain and, during
an interim period, the changeover to standard
formats would require maintenance of dual for
mats with the attendant operational and control
problems.

• No standard formats-This approach would re
quire that the switch have available a set of ter
minal-specific and host processor-specific programs
which are used whenever a given terminal (or
host processor) interaction is initiated. It would
permit any new terminal or host processor to be
brought "on stream" with minimum switch-im
posed restrictions or modifications. It would, how
ever, involve a large investment in software de vel-

146 National Computer Conference, 1976

opmen t and maintenance and could increase
overall transaction processing time.

Between the two extremes, there exists the possi
bility of standardizing portions of message processing:
such as between the terminal and the switch or between
the host processor and the switch. Over the long term,
as EFTS networks expand, standardization of message
formats will become more important. As the number
of host processors and other switch nodes increases,
control and maintenance problems will also increase.

RECAP

The technology to support EFTS switch development
in a range of alternative design configurations as
described above is generally available today. EFTS
development work is currently under way in pilot proj
ects throughout the country and hardware and soft
ware vendors offer a variety of relevant product lines.

More detailed investigation is still required in several
areas, specifically:

• Security-There is a need to determine the degree

of security (over terminal devices, communica
tions network, and switch operation) which is
required to ensure against violations of privacy
and fraud; and how that level of security can be
delivered at a price which does not render switch
operation prohibitively expensive.

• Standards-A lack of standardization will, in the
long run, lead both to unnecessary duplication of
effort and the intercommunication problems both
within and outside of a given switch area. Stan
dards will be required in message formats, com
munication line protocols, terminal device charac
teristics, and error detection and correction
mechanisms .

• Other Considerations-Further definition is re
quired in areas relating to settlement and audit
trail "including : float implications of switch oper
ation (e.g., direct debiting of an account versus
value dating of the transaction for future debit
ing) ; clearing arrangements for the financial in
stitutions participating in the switch; and his
torical audit trail requirements for transaction,
terminal, and store level reconciliation of customer
and merchant accounts .

Are computers ready for the checkless society?

by FRANK BACKMAN
IBM Design Center
Gaithersburg, Maryland

ABSTRACT

Once the furor over the legal and regulatory issues of
electronic funds transfer dies down, the data process
ing industry will find several complications in the
development of a systems architecture suitable for
implementing a nationwide system. Apart from inter
face difficulties presented by the equipment and soft
ware designs of competing manufacturers, there are
complications to the control of such a system that
appear to merit the attention of the data processing
industry. The purpose of this paper is to stimulate the
exchange of opinions on how the industry should cope
with differences in end-user protocols, different routing
techniques, different methods of controlling terminal
devices, the value of various communication line dis
ciplines, and the overall management of a nationwide
network.

BACKGROUND

For the past several years the move toward an
electronic funds transfer system has been gaining mo
mentum. The Federal Reserve System already trans
fers vast sums of money electrically; banking termi
nals are popping up in supermarkets and airports; the
battle lines between the thrift institutions and the
commercial banks have been drawn; and reliable digi
tal communications are becoming available at an un
precedented rate. Even the most strident slow-payers
can be accommodated in the systems being proposed.
It seems inevitable that the flood of paper that is
engulfing the financial industry is about to be abated
by a worldwide network of digital computers and ter
minals. After all, stored-program digital devices can
do anything!

The problem is that they don't; and there seems to
be a labyrinth of data processing issues that will
become critical, once the furor over legal and regula
tory rules dies dOWR

To address these data processing issues, the Federal
Home Loan Bank Board, in March 1975, invited in
dustry to suggest an electronic funds transfer system
that could evolve from the regional needs of a mythical

147

metropolitan area called Middletown. The Federal
Home Loan Bank Board provided a scenario that illus
trated some of the problems being faced by the archi
tects of an electronic funds transfer system today. The
scenario carried the evolution of the EFTS system
through several stages in which Savings and Loan
Associations entered agreements with local merchants
to handle debit and credit card transactions, installed
banking terminals at shopping centers, added new
functions, and included new S & L's into the evolving
system. The scenario, which included enterprises with
such picturesque names as Korn Krib Supermarkets
and Marshall Prairie Department Stores, was made
even more vivid by the technical difficulties posed at
each stage of the evolution.

Several computer and terminal manufacturers'
equipment was involved, and an equally complicated
mixture of transaction types, communication line dis
ciplines and business practices were represented. Re
spondents to the FHLBB invitation were not requested
to submit the detailed design of a system that would
track the evolution of the Middletown scenario through
its various stages, but rather to postulate a system that
would solve similar problems scaled for a metropolitan
area with a population of from two million to five
million people.

The purpose of this paper is to identify some of these
problems that are of a data processing nature (ignor
ing legal and regulatory issues), to suggest promising
directions, and to stimulate discussion among the archi
tects of the future Electronic Funds Transfer System.

.LA;LSSUMPTIONS

The arrangement of the institutions on the topo
graphic maps at the end of this paper has been syn
thesized from the demographic information in the
scenario developed by the Federal Home Loan Bank
Board and illustrates several points, other than purely
technical considerations, that will affect the evolution
of an electronic funds transfer switch. The evolution
shown for the Middletown environment is intended to
represent only a plausible evolution through the vari
ous stages under the assumption that no consortium is

148 National Computer Conference, 1976

formed to bypass stages. In actual practice, the de
cision to install a regional switch may be reached at
any time, so that some of the technical problems in the
expanded scenario need never be addressed.

In the Middletown environment, we have assumed
that some transactions may cross a state line. Al
though this consideration is difficult to cope with in
the design of a generalized system, it presents a real
world problem because of the variety of inter- and
intra-state communication line tariffs and because of
state banking laws. This is a non-technical considera
tion that will influence the topology of the network.

The location of the thrift institution servicers in the
downtown location suggests the possibility of colloca
tion which would, if implemented, have a profound
impact on the design of the communication system. We
have, however, assumed that the thrift institution
servicers are physically separated from one another
and that communications lines are required.

The geographic layout of Middletown (as shown in
stage 1 and 2a), suggests that these stages would be
implemented by a combination of point-to-point and
multipoint lines rather than by point-to-point lines
only as was illustrated in the original scenario. In
addition, reliability considerations may cause First
Federal to install two separate multipoint lines in each
of its branches. This would permit each branch to tie
half its terminals to each line so that business could
continue normally in the event of a single line failure.
The practicality of doing this is dictated by the prices
and the line routing of the local common carriers and
is another illustration of a non-technical consideration
that wiII influence network topology.

In the later stages of the evolution, we have assumed
that the network would evolve as in the scenario with
the thrift institutions and merchants entering agree
ments with one another at each stage. In order to pre
serve the staging of the scenario we have also assumed
that the rival thrift institution servicers would some
how be able to overcome the technical problems of
"looking like one another's terminals" and would
accommodate one another's customers by developing
and installing the software necessary to cope with the
different transaction formats used by the various thrift
institutions. This latter assumption, of course, is opti
mistic, but illustrates a natural tendency toward the
evolution of a hybrid network. We have however,
assumed that at some point (illustrated in stage 3D)
a regional switch is installed and that S & L's sub
scribe to it through their servicers.

The remainder of this paper describes some key
elements of network design and suggests that, once
non-technical problems have been overcome and ade
quate computational "horsepower" has been planned
for, the network design is dominated by data process
ing software and procedural considerations rather
than by communications considerations.

NETWORK DESIGN CONSIDERATIONS

Figure 1 shows a simple hierarchical structure for
an EFTS network In practice, the network will be
more complex than that shown, since it will frequently
be advantageous for terminals to access the switch
directly rather than via the computers serving the
thrift institutions. (In the scenario, for example, Sec
ond Federal may decide to attach their teller terminals
and their Merchant Operated Terminals at Fast Food
directly to the switch, rather than through the FHLB
data center 250 miles away. This decision would save
250 miles of communication line at the expense of
increased switching load that would be generated by
any "on us" transactions. This situation, can be ex
pected in the actual EFTS network. (The decision will
also be influenced by the compatibility of Second Fed
eral's terminals with the switch.) Furthermore, traffic
considerations will undoubtedly justify additional in
tercommunication links among terminals. N everthe
less, even the tree structure of Figure 1 illustrates five
key considerations that will dominate the design of
the EFTS network. These five considerations, listed
on Figure 1 form the basis for IBM's Systems Network
Architecture (SNA), and are being addressed by other
implementers of specialized computer networks. As
yet, however, there is no set of widely accepted stan
dards for computer networking. No matter what stan
dards are adopted by the Federal Home Loan Banking
System, these management problems must be addressed

1 NETWORK CONTROL

2 PATH CONTROL (ROUTING)

3 LINK CONTROL

TERMINALS

00

4 DEVICE CONTROL iNETWORK SECURITvl

5 END USER PROTOCOES ICUSTOMER SECURITYI

Figure l-A simple topography

FUTURE CONNECTIONS
TO OTHER
REGIONAL SWITCHES

... L\.re Computers Read:"T for the Checkless 149

in the design of the EFTS network and the participat
ing thrift institution servicers must modify their sys
tems to conform to the EFTS network rules.

1. Network Control--In order to allow the future
interconnection of EFTS switches, some form of
distributed control must be used. Control includes
responsibility for the equipment configuration in
the network subordinate to the control locations,
the loading of the communication programs in the
processors and cluster controllers of the thrift in
stitution servicers, the reaction to outages, and the
activation and deactivation of equipment in re
sponse to changing workloads. The Systems N et
work Architecture, as currently implemented by
IBM, concentrates control at the highest level of a
tree-structured network and distributes responsi
bility for its execution to subordinate elements. In
the EFTS, control would reside at the switch with
the bulk of the responsibility delegated to the thrift
institution servicers.

Special arrangements must be made to crosstell
status information between thrift institution ser
vicers when direct links are installed. (In the
scenario, for example, it is conceivable that a direct
link could be established between two of the data
centers, bypassing the switch, and dedicated to high
volume transactions between these servicers. It is
important that the overall network design not pre
clude this sort of connection if the member banks
feel that it is to their advantage. This situation is
invisible to the switch but requires the development
of special protocols by the servicers. Further com
plications to network control are discussed later
and must be resolved by the standards adopted by
the Federal Home Loan Banking System.

2. Path Control, or routing, is the second key con
sideration in the EFTS network design. Many
store-and-forward systems employ a fixed routing
technique (with a small number of alternatives)
that is specified when the system is initially pro
gram-loaded. If the EFTS is to be permitted to
evolve into a national network, it should provide
for an alterable path control technique so that
traffic can bypass damaged parts of the network
without requiring the reinitialization of the net
work. This means that addresses on data streams
(routing indicators) wiiI be read at several places
in the network and decisions made as to the path to
be taken. This will allow EFTS to achieve the
efficiencies associated with line load balancing but
complicates path control with the problems inher
ent in a spill-forward system of routing, namely:
shuttling or "ring-around-the-rosey." This problem
is not severe in the single regional system described
by the Federal Home Loan Bank Board, but is a
potential source of trouble if the fundamental net
work architecture is not sound.

3. A third consideration in the design of the access

network is link control. Link control is the ac
knowledgment of the receipt of data and the con
trol of errors on each hop through the network.
The two common types of link control are forward
error correction (FEe) and Automatic Request for
Retransmission (ARQ). In FEC, sufficient redun
dancy is added to the data stream to provide an
acceptable degree of assurance that errors will be
corrected at the receiving end without acknowledg
ment. The .oL~RQ approach concentrates on detectioll
of errors and the retransmission of a block of data
when an error is detected. Synchronous Data Link
Control (SDLC), a form of ARQ, is employed in
devices conforming to IBM's Systems Network
Architecture. A similar line discipline is emerging
as an international standard and is likely'" to influ-
ence the design of future EFTS links. In an EFTS
system, SDLC could be used between SNA devices,
e.g., between an IBM 3600 Financial System and
a thrift institution servicer's machine. Because of
the variety of machines employed by the thrift
institution servicers, however, switching systems
will probably employ the line disciplines prescribed
by the manufacturers for links between the thrift
institutions and their servicers.

4. Device Control is the fourth element in the design
of the network. Standards are required to control
the operation of the terminal devices (paper feed
ing, spacing, indicator control, etc.). More im
portant, however, are standards that determine the
operation of intermediate devices, such as the trans
mission control units of the switch and the thrift
institution servicers and the cluster controllers of
the S & L's. These controls are necessary for net
work security and to pace data through the network
to assure that the available data buffer capacities
are not exceeded by bursts of data.

5. Finally, end user protocols must be developed for
the EFTS. These protocols, used by the thrift
institutions, are essential for customer security and
include authentications and special codes agreed
upon by the industry. As EFTS evolves, a parallel
evolution of end user protocols can also be expected
to evolve to support new services offered by the
thrift industry.

Figure 2 summarizes the key controls in the network
access subsystem by illustrating the format of an en
route message nested within the control protocols de
scribed above. While every attempt should be made to
reduce the communications overhead incurred by these
protocols, the EFTS users will probably find the cost
of this overhead to be low in comparison with the
costs associated with loss of control of the network.
Other controls such as modem synchronization and
signaling through a dial-up network are considered to
be within the responsibilities of the supplier of the
communications link, while still other controls, such as
end-to-end acknowledgment and password protection

150 National Computer Conference~ 1976

CONTROLS INFORMATION TRANSFER

ON THIS LINK • (2)

.-/'--.-----j
SPECIFIES THE ULTIMATE DESTINATION

OFTHETEXT~

-
SPECIFIES WHAT SHOULD BE
DONE WITH THE TEXT BY

INTERMEDIATE DEVICES 0

FORMAT AND MEANING
AGREED UPON BY END

bit "0"

USERS--..®

- bit IOn"

LINK ROUTING ~;~~CREOL I TEXT
ERROR

ADDRESS INDICATOR CONTROL

B 4 B
~ ----~

o PROGRAM LOADED BY NETWORK CONTROL

Figure 2-Key controls on an en route transaction

are considered to be the responsibility of the thrift
institution servicers themselves. These controls, while
important, are outside the scope of this discussion.

Figure 3 illustrates the hierarchy of facilities that is
envisioned for the Electronic Funds Transfer System.

SORTING, ROUTING,
TRANSMISSION CONTROL,
ACCESS MANAGEMENT,
FILE ACCESSING
AND TELEPROCESSING
EQUIPMENT

TERMINAL CLUSTER CONTROL EQUIPMENT
DATA CONCENTRATION AND MULTIPLEX EQUIPMENT

OCR'S, KEYBOARDS, PRINTERS, SCANNERS, MOT'S
PLUS SIGNALLING AND HEADER CREATION EQUIPMENT

PLUS OFF LINE FUNCTIONS

Figure 3-ADP equipment hierarchy

At the Switch and at the Thrift Institution Servicers,
computer installations will be required to perform the
switching and communications line handling functions.
(The S"llitching function can include circuit, message,
or packet switching as well as certain hybrid combina
tion of these techniques sometimes referred to as
"virtual channel switching.")

At the S & L's themselves, the ADP equipment is
visualized as cluster control equipment and terminals.
Cluster controllers control terminal equipment which is
either locally or remotely attached. Cluster controllers
contain a pool of equipment normally associated with
"intelligent terminals" and perform a data concentra
tion function so that multiple terminals can share a
communication line.

Figure 4 shows some communications options to be
used in the design of the EFTS. It is reasonable to
expect that much of the access network will be provided
by various communications carriers under contract to
the EFTS operator.

The availability of the services shown in Figure 4
and their tariffs are constantly changing so that no
useful purpose would be served by repeating them in
this paper. There are, however, several trends in com
munications that will affect the implementation of the
Electronic Funds Transfer System, particularly the
access subsystem.

VALUE
ADDED

FAST DIAL IN
IROTARY)

VOICE GRADE
lEASED POINT-TO-POINT

SATELLITE

SLOW DIAL IN
IROTARYI

/11\
/1/ \

/ I I \
/ I I \

0000

Figure 4-Some communications options

Are Computers Ready for the Checkless Society? 151

The move to digital communications

The communications industry is dominated by voice
users who have traditionally been provided with
switched analog circuits of approximately 3000 hz
bandwidth. Digitai users had to make do with the
available services and adapt them to digital use through
modems. Both switched and leased services are avail
able under a variety of tariff structures. Data speeds
range from the sub-voice level (50, 75; 100, 300 bits
per second) through switched voice ievei 1200, 2400,
and sometimes 4800 bits per second, up to 9600 bits
per second that can be provided by present day modems
operating over a leased, specially-conditioned voice
grade line. Higher speeds are available by leasing
lines that have been derived from groups of voice
channels (6, 12, 60 and 240 voice channeis) . New
construction in the telephone system is employing digi
tal communications techniques to an ever increasing
extent. This is being done because the advantages of
digital voice communications (circuitry is cheaper and
easier to adjust) outweigh the disadvantages (up to
64 kilobits per second are used to provide high quality
voice). The move to digital voice has an important
effect on the design of the EFTS network. In the next
few years both switched and leased digital service, at
voice channel prices, can be expected to be available
between major cities in the United States and will have
channel capacities of 56 kilobits per second (derived
from a 64 Kb/sec voice channel).

High speed access (Tl) lines will also become avail
able for data use at speeds up to 1.544 megabits per
second and groups of these lines will probably be
tariffed eventually to provide service up to the 96 mega
bit rate envisioned for digital television.

The use of satellites

Leased satellite capacity is an obvious candidate for
the long haul trunking portion of the National EFTS
of the future but a satellite system has a unique fea
ture that may be advantageous even at the regional
level. This feature is derived from an earth station's
ability to "hear" everything repeated by the satellite
transponder and thereby establish a fully intercon
nected or nodeless arrangement of earth stations.

This permits the design of a system that can set up
and tear down point to point circuits on demand and
can allow the EFTS to adapt to changing loads. Satel
lite capacity is currently available and several com
panies have planned satellite services that appear to be
considerably more cost effective than equivalent ground
service.

Distance sensitivity

For the past several years, the cost of providing
communications service has become less sensitive to

distance; that is, the cost of long haul communications
has been falling and the cost of local terminations has
been rising. These costs have not yet been fully re
flected in the tariffs. The Government's encouraging
of competition in public communications must inevita
bly result in tariffs that more closely reflect the costs.
This will mean that the cost (to the EFTS operator)
of a transaction will be relatively insensitive to dis
tance and will be most influenced by considerations
associated vTV'ith the access subsystem (terminating
arrangements, terminals, subscriber loops, etc.).

Dialup and switched networks

Until now, the use of switched communications for
message service has been limited to lo'\v speed service
over the teletype and voice networks. A trial offering
of switched 50 kilobit service did not attract enough
users and has been discontinued. As line speeds in
crease and become more widely available, dialup service
may become an attractive method of communication
in the electronic funds transfer system. Several new
kinds of common carriers have been authorized within
the United States and worldwide. These include spe
cialized carriers offering a fast-dial fast-connect
capability (under 1 second) and value-added carriers
who lease lines from others and reoffer service by add
ing value such as error control, variable data rates,
and switching schemes such as packet switching to
attract data users who have highly intermittent traffic.

Special lines, loops, and channels

In addition to the conventional point-to-point com
munications lines available for the design of an Elec
tronic Funds Transfer System, there exist several other
kinds of access arrangements that warrant considera
tion. These include loops that reduce terminal polling
loads by passing control from one station to another,
high speed data loops being proposed for computer
networks, and specially engineered customer-owned
lines. Furthermore, there are no technical reasons
that preclude the possibility of channel-attaching a
thrift institution device directly to the switch. (In
deed, the concept of a "free standing" switch is tech
nically unnecessary. If the member institutions were
to agree, the switching function could be assumed by a
thrift institution servicer as an addition to its regular
functions.)

Complications to network control

As discussed previously, system control implies the
ownership of terminals by cluster controllers, cluster
controllers by higher level computers, etc. In a rigidly
structured hierarchical tree network, the concept of
ownership is simple. IBM's System Network Archi-

152 National Computer Conference, 1976

tecture, for example, provides for hierarchical system
control in computer networks. If, as seems likely, the
EFTS eventually departs from the tree structure, sys
tem control becomes more complex. Figure 5 illus
trates a possible configuration of part of the EFTS
network. If bank-to-bank links are permitted (or ser
vicer-to-servicer), or if thrift institution servicers can
access more than one switch, then the situation shown
by Figure 5 occurs. Which switch is responsible for the
integrity of the bank-to-bank communication? Does
the thrift institution servicer authorize the dedication
of a terminal to communication to a particular switch?
Does it inform other servicers of the status of its
subordinate terminals? These are the kinds of prob
lems that must be resolved in the design of the access
system control function.

Present-day computer networks usually call for some
kind of control point, charged with the responsibility
for configuration control, routing table distribution,
statistics collecting, operator interface, system initiali
zation, and other functions associated with the man
agement of the network. The control point is some
times responsible for controlling "sessions" between
end users (terminals and computers). Sessions may be
created at the time the system is generated (when the
software is tailored to the needs of the network), they
may be created at the time the system is initialized
(when the network is first opened for traffic), or they
may be created dynamically when the need for end-to-

SWITCH SWITCH

Figure 5-Complications to network control

end communication is recognized. As the EFTS system
evolves into a national network, dynamic session con
trol from a single control point will probably be im
practical. The EFTS can probably centralize most of
the management at a single point (with appropriate
backup) but the concept of sessions must eventually be
modified to permit a terminal to be placed in permanent
session with its "owner," a nearby, or regional control
point designated when the system is initialized. This
will permit distributed control and fixes responsibility
for trouble diagnosis but, in turn, complicates the
problem of routing transactions, guarding against lost
transactions, and averting localized congestion caused
by fluctuating traffic loads. These complications will be
discussed next.

Complications to path control and routing

Figure 6 indicates some of the problems of network
routing. If a thrift institution servicer has the exclu
sive responsibility for specifying the route that an
EFTS transaction shall take through the network, it
must be kept informed of the complete status of the
network, including outages and congestion problems.
The alternative is for the thrift institution servicer to

I
/

I
/

/

I
/

/

/

/

/
/

Figure 6-Complications to path control and routing

Are Computers Ready for the Checkless Society? 153

affix a routing indicator on the transaction and for
the switches to assume responsibility for the path to
be taken. If, as shown in Figure 6, the thrift institu
tion servicer is permitted to home on more than one
switch (This possibility is suggested in the Middletov{n
scenario.) then the servicer must have the capability
of determining which physical connection should be
used to transmit a particular transaction. This logical
decision may be influenced by time of day, information
on the rest. of the network, traffic loads and priorities.

If alternate routing is permitted in the National
EFTS, then special precautions must be taken to pre
vent a transaction from circulating endlessly in the
system. The technique currently employed in the U.S.
telephone system involves a hierarchical system with
alternate routing whereby a direct route is tried first,
followed by an escalation to higher level of offices until
a route is found. Lower-level trunks are engineered for
high usage (i.e., the trunks are often busy and there
fore efficient). This causes traffic to percolate up to
higher level centers which are more generously en
gineered so they can cope with alternate-routed traffic
that is generated by the overloads. Traffic engineering
techniques developed over the years for the world's
telephone system can be used to advantage in the de
sign of the EFTS.

Complications to link control

Link control involves the transfer of a bit stream
between two points. Problems in link control are
dominated by the error rate of the communication line.
If the line were perfect, or if the natural error rate of
the line were tolerable because of some gross redun
dancy in the data being transmitted (as in a facsimile
system) then link control would merely involve some
gross protection against lost messages. For digital
data streams with low redundancy, such as EFTS
transaction, some form of error control is required so
that a transaction can be accurately reconstructed at
the end of each hop through the network. This can be
performed by adding redundancy bits that are checked
at the receiver for each transaction. Either variable
length transactions or fixed length transactions can be
used. The useful line speed of a link is a function of
the raw speed and error rate of the line, the length of
the transaction, and the amount of redundancy in the
transaction.

Figure 7 shows experience of leased telephone lines
typical of a few years ago. The system shown involves
adding 8 error detection characters per transaction and
retransmitting it if it is found to be in error. Notice
that raw error rates are high for high bit speeds and
that this requires extensive retransmission if the trans
actions are long. On the other hand, short transactions
are also inefficient because of the overhead repre
sented by the error control characters. In EFTS, be
cause of the sensitivity of the data being carried, some

EFFICIENCY DOMINATED
BY OVERHEAD BITS

\ LINE SPEED 9600 b/s

4000 _ • f ERROR RATE 1:4000

EFFICIENCY DOMINATED
BY RETRANSMISSIONS

~ 48oob/sec

/ ~ ----- ERRORS 1:25,000

"" - ((~ ~~~~
=jl ,~

x
1000- ~ 1200blSec ___

1:200,000

_IV I , , , , ,

100 200 300 400 500 600

CHARACTERS PER TRANSACTION

Figure 7-Complications to link control

form of error control will be needed. Because the line
efficiency is sensitive to the transaction length used,
careful attention to the error control problem is re
quired before standards are adopted to minimize the
effect of variations in the error performance of the
communications link.

Complications to device control

The problems of congestion in the EFTS will become
severe when it evolves into a national system. In a
data communications system with distributed control,
overloads, when they occur, must be coped with by
buffer storage capable of temporarily holding the traffic
as it is moved through the system. Some means must
be provided to prevent traffic from exceeding the out
put speed of the receiving device and from exceeding
the buffer capacity of the intermediate devices (Refer
to Figure 8). IBM's Systems Network Architecture
accomplishes this through standardized messages
among the intermediate devices that serve to regulate
traffic through the system. Some similar set of device
control protocols should be designed into even the early
pilot models of the EFTS that will reflect the overload
status of a device back through the network to control
the flow of traffic through earlier stages.

Complications in end user protocols

The EFTS should be transparent to the users (Le.,
thrift institution servicers). That is, once the address
ing and input rules have been followed, the text of the
transaction should have no effect on the operation of

154 National Computer Conference, 1976

THRIFT
INSTITUTION
SERVICER

TERMINAL

Figure 8-Complications to device control

the system, nor should the system have any effect on
the transaction.

Such transparency is not easily achieved. Figure 9
illustrates four common pitfalls that cause problems.
First, the link hardware may be affected by the con
tent of the message. Consecutive streams of "I" bits
or "0" bits sometimes cause problems. When these
problems are overcome, the remaining problems are
sometimes bizarre. There are instances of 27 asterisks
causing a particular modem model to lose synchroniza
tion. In addition to link problems, the transmission
control hardware may not be transparent. Certain
dial telephone systems utilize specific frequencies in
the transmission band for signaling and routing. These
frequencies, if duplicated by the data stream, can cause
misrouting. Routing software in intermediate devices
can exhibit bugs years after its installation when some
procedural change causes text to be interpreted as sig
naling information. Finally, there are incompatibility
problems that may occur in the receiving devices them
selves. The EFTS system is a long-term endeavor that
will be characterized by the introduction of new de
vices over the years. It is essential at the start that a
fundamental systems architecture be developed that
will permit this evolution.

ROUTING
SOFTWARE

~
\i)

~_......L_ !~!.' RECEIVING
\, DEVICES

Figure 9-Complications in end user protocols

ARE COMPUTERS READY?

None of the problems discussed in this paper is in
surmountable. Each data processing company offers a
solution to at least some subset of these problems, and
rival computer networking schemes have generated
some lively discussions (some of which border on
medieval theology). The Public, and the Banking,
Communications and Computer Industries seem to be
ready for the checkless society; yet the crucial com
ponent: A nationwide electronic funds transfer system
seems to be an elusive goal. Comprehensive, cross
industry standards seem almost too much to expect at
this time; but surely the computer industry can do
better than it has in proposing at least the architecture
for a bold, new approach to electronic funds transfer.

MIl)lHt-O"'r.,
n.HII<'INS1IT1"IOIIISI 4 V("!"RS

Attachment A

Attachment B

Are Computers Ready for the Checkless Society? 155

Attachment C

Attachment D

156 National Computer Conference, 1976

MIOOLETOWNSMSA
STAGE1B
(I'IASTFEDERAL"'OTSI-10Wfll'

Attachment E

Attachment F

Attachment G

.ll.L ~E";:I'lJATE 30PTIOJliAL "PRIVATE"
CONNECTIONS FOR
I-i'G>i VOLUMES ISEE TEXTI

.-6

l>-I ,.--a

i0,~
-..:.J l.-.,o,

cb
-0
-0
L0
'J

Attachment H

Attachment I

I

DIREC"DBY I I
~:;;;;'~" 6 6

~ERMI'\IAL5 tt.'IID Clu~TER COr-.;TACLL~PS OV't"'~::: BY ,"<I'< F, 1"':STlT:r:G~S
ACTUALWULTI~!I\- AtlRANGi:\1i'::i'Io7S-:;;i;ii: :::l:;:;~!"'\::: ';Y-::Ar<": ~.":
~E~ 1,11.6· _ITY COr..S'::lE;:rA -'00.,::::

s-,~c::: 3) PEc;:rESE"'~AT'\'l: NETVOOPK "'CP-:' •. OC: v t>.~-~~·';A-'·.'r:'
,'.~ ,-,~ OTI,EO:; AL ¥E pt>, ... - 'VES _L,-ST;::>A~;::- ev :C--~'J _'o;::S

Attachment J

Personware

by H. W. BOMZER
Tlni1Jen:ity of Illinois
Urbana Champaign, Illinois

ABSTRACT

Personware is the human resource that makes it pos
sible for hardware and software to perform the data
processing function. Consequently, management is
urged to invest in its maintenance and upgrading. The
paper develops the effects of management objectives,
user interface, organizational structure, job descrip
tions, and individual goals on a training program.
Methods for implementing a program which will result
in a high correlation of the skills inventory available,
identification of skills required to meet functional
needs, and specified employee objectives are discussed.
Various educational techniques are shown to fit into a
schedule which provides maintenance and upgrading
of personware at a relatively low cost.

In the dynamic world of data processing manage
ment recognizes that successful performance involves
not only hardware and software, but personware as
well. In carrying out its plans for accomplishing in
creased productivity and greater efficiency, manage
ment cannot ignore the importance of the employees
who perform the functions of the data processing
business. Management seeks to satisfy the needs of its
customers. Equally it must seek to satisfy the needs
of the employees. It is only in this way that the
organization can realize a full potential.

In this constantly changing world of data processing
it is necessary for employees to be able to plan their
futures. These plans should be consistent with the
market demand for skills and the individual's ability
to satisfy these demands. Inherent in his growth proc
ess is a recognition of one's own abilities, learning
potential, behavior patterns, and needs as well as the
anticipation of the employer requirements. With this
in mind it is prudent to examine the present structure
and needs for providing a frame of reference in which
to plan for growth.

In providing for the professional development of its
employees management is contributing toward the
realization of its organizational objectives. This will
occur if the career path plan which provides for train
ing and progression is in consonance with the services
of the organization.

157

During the past several years management has con
centrated on acquiring larger, faster and more efficient
machines. There has been increased emphasis on com
munications and on-line systems; higher level lan
guages and special packages for retrieval have come
into vogue; there has been greater sophistication in
system development and the use of data bases. Con
comitant with these changes have been reorganiza
tions and realignment of personnel and their duties in
order to effect efficient interaction and productivity. In
this environment the data processing employee has
become restless, sometimes frustrated and increasingly
aware of the need for maintaining his technical skills.
Not only is it necessary for the employee to maintain
an adequate skill level, but he also requires a frame
of reference in which to plan for growth. The objec
tive of a career path is to provide the employee with
the wherewithal to realize his potential and desires to
the fullest while at the same time serving the needs of
management.

How does management develop personware? This
will vary from company to company, but in all cases
it starts with the person and how he will fit into the
organization. Management philosophy, its policies,
procedures and structure are of considerable impor
tance. For example, if the shop has programming
teams as a modus operandi, then an individual who
likes to "go it alone" may not function effectively in
the team environment. A happy marriage for both
management and the employee is predicated on mutual
support.

Figure 1 illustrates schema that can be adopted to
develop personware. It starts with management objec
tives. In terms of data processing, these objectives
must be measurable.

Frequently, objectives set by management for data
processing are beyond the control at the D. P. unit.
Thus, management may state as an objective "Reduce
the cost of inventory by X % over the next two years."
Translated into tactics, this may involve the develop
ment of a new inventory system which substitutes
on line input of data for an existing hand entry system.
At the same time, management may set another ob
jective "Do not increase the cost of internal service

158 National Computer Conference, 1976

'Sefine i
I user inpu-:Os I
! to DF I

r-:ue;f ;:ne:--r----I·~i ---,--~I-----j~~: -------:
rlanage-rent ~ II ~~ii~:
ObJective~ • Required

Employee
Goals

SCHEMA

Figure 1

for the next year." If the data processing function
in this organization is counted as service, management
may impose a dilemma. The situation created by try
ing to satisfy both objectives can lead to frustrations
which are not conducive to development of person
ware.

Within the D. P. organization objectives should be
clear. To a large extent these are infl. uenced by the
D. P. budget. However, D. P. management should
provide both long range and short range objectives of
which employees are aware. Table I is a typical
example.

A natural adjunct to objectives is a definition of
services. The key to success lies with accepting input
from the customer and producing output which meets
his needs in a cost effective manner. The form of
inputs and outputs affect performance as well as effi
ciency. However, from the employee point of view,
they affect the skills that will be required to perform
on the job. For example, consider a shop which op-

TABLE I

LONG RANGE
1. Realize in excess of 107< R. O. I.
2. Operate with centralized system and distributed network
3. Operate in Data Base environment within five years.
4. Provide security for user data

SHORT RANGE
1.. Cut paper costs by 10% this year
2. Develop terminal oriented system for customer
3. Educate 2 analysts in Financial area to use Data Base
4 Identify data requiring limited access and install passwords.

erates strictly in a batch mode. Punched cards are
the input and reports are the output. In this shop the
analyst or programmer need not become proficient in
terminal applications and languages, On the other
hand, if it were a terminal oriented IBM shop, the
analysts and programmers would be very much in
volved with such things as CICS, DMS, etc.

When one considers the multiplicity of input and
output techniques that are available, it becomes clear
that training and education are continuing phenomena.
The skills required for providing services and making
transitions to improved and more efficient services
must be inventoried. Training to maintain and up
grade employee skills are part of management's plan
ning function.

A clear definition of the data processing organiza
tion is essential for the long term employee who
envisions progress along promotional lines. Unfortu
nately, this is replete with traps and problems tied to
wage scales and responsibility. Thus, a top notch
analyst may aspire to a management position. How
ever, there is no guarantee that even with proper
training the analyst would be transformed to a good
manager. Nevertheless, it behooves management to
adopt an organization which can respond to its needs.

A typical organization chart is shown in Figure 2A.
In this type of structure, a programmer entering the
Applications section can see growth within the pro
gramming field. In fact, experience suggests that the
hierarchy would require transferring from the Appli
cations Programming section to the Analysis & Design
section in order to progress to the manager position.
However, the systems programmer would proceed by
an entirely different route.

In Figure 2B the systems section is shown orga
nized in a team approach. The lines of progression
favor a project orientation. This construct produces

,------------

~<iGR. AD~.1I~

_, _J
! ,--------- . i

'-- FINANCIAL
I

---------.!

r-----------. 1

:--' TRAINING :

f- PERSO)lNEL I

";O!<D
-- PROCEssr,c;

- SERV~CES

AI'lALYSIS
DESIG"I

APPLICATIO"l
PROGRAMMING

APPLICATIO"l
!IAINTE"IANCE

Figure 2A

o
-0

Q:-;;~,'"
I
, SHIFT .:.
- 2
I c:

L SHIFT ~
I 3

i
L SYS""E'IS

PROGRAMI-IING

I-----C~----==.r.:-..::=-:..:.:.-
I ACCOUNTI~G : INVENTORY I

L_~~~ _________ : l TEA~ __ J
~ANALYST
L PROGRAM/ANALYST

L PROGR.""'1!1ER

.~·'!A..'JAGER ~

SYSTEMS

---~

Figure 2B

. __ ._--L __

I !

I OTHER i

L2~~ __ .J
IMAINTE~A.'1CE!
I I

people who are likely to be specialists in certain appli
cation areas. An employee who wants exposure to
many application systems may want to carefully con
sider the policies regarding transfer from one team to
another.

Personware, unlike software and hardware, is a
self-evaluating mechanism. One of the references for
performing the evaluation is a description of the in
cumbent's job. A "Job Description" would show where
the position fits in the organization. It summarizes
the responsibility and authority of each position, the
tasks to be accomplished, skills and education required,
and general information useful for evaluating per
formance. Figure 3 illustrates a job description for
mat similar to that used as a guide for some Civil
Service positions in Illinois.

A match of employee skills with job requisites pro
vides a basis for implementing a training program.
Depending on the size of the D. P. department, the
amount of times scheduled for training and availa
bility of employees for training, management may
choose to offer several methods for accomplishing the

JOB CATEGORY - CLASS, FAMILY

FUNCTION

ORGk'H ZATIONAL RELATIONSHIPS

DUTIES AND RESPONSIBILITIES:

1. KNOWLEDGE REQUIRED FOR THE JOB (State level.)

A. EDUCATION

B. EXPERIENCE

C. SKILLS

2. RESPONSIBILITY

A. SUPERVISORY CONTROLS

B. GUIDELINES

3. DIFFICULTY

A. COMPLEXITY

B. SCOPE AND EFFECT

4. PERSONAL RELATIONSHIPS

A. PERSONAL CONTACTS

B. PURPOSE

5. ENVIRONMENTAL DEMk'lDS

A. PHYSICAL REQUIREME:-<TS

B. WORK ENVIRO~HENT

COl-lME~TS :

Prepared by Date Reviewed by
(Supervisor)

Figure 3

AUTHORIZED SIGNATURE

Person ware 159

desired results. Short courses are provided by several
private firms who have developed instructional ma
terial. Lectures can be attended when the vendor
schedules them at specified education centers; or, for
large D. P. organizations, they can be scheduled on
site. In addition to lectures, much of the basic material
is available in self-study courses. Programmed in
struction manuals represent one such format. Lessons
are designed to instruct, quiz, and review as students
progress through the text. In some cases, text material
is augmented with practice "work type" examples.
Another approach to training relies on multi-media.
This technique usually involves a combination of read
ing, listening to audio tapes, viewing video tapes, and
self tests in a guide book. To employ this technique
requires an investment of $1500-$2000 in the video and
audio equipment. However, it provides an extremely
flexible means to provide training at various levels.

Management should be concerned with the progress
of employees. Records can be kept by the personnel
office, a responsible training office, or the employee's
immediate supervisor. In a large department, a format
for maintaining the records can be developed. The
immediate supervisor should have the record available
and use it to plan and encourage additional training.

Figure 4 illustrates a simple format which has been
employed at the University of Illinois to maintain

NU\.LYSTS

Ray

Jim

Gary

Jean

.Zl.RCHI
TECTURE

SKILLS INVENT()!(Y

PROG.
FUND JCL

FILE
ORG. CICS

1

1

1

1

Proficiency Level: I-Familial, no working knowledge; 2-Good

working knowledge; 3-Proficient

TRAINING STATUS

Ray C12-72 El-76

Jim C8-75 El-76 86-76

Gary S4-76 Cl-76

Jean C6-74 Cl-75

ENTRY; E-enrolled; C-completed; S-scheduled; xx-xx is rnon~h

and day completed.

Figure 4

160 National Computer Conference, 1976

training records. On a single sheet, the supervisor can
see the inventory of skills required in the department,
the level at which those skills exist, the training that
has been taken to achieve a given skill level, and the
status of training for each person in the group. Based
on this chart, a schedule of training can be arrived at
between the employee and the supervisor. Plans to
reinforce skills or acquire new ones can proceed in
harmony with production needs.

The accumulation of skills and worthwhile experi
ence helps the individual develop. Management gauges
the employee progress and provides the nourishment.
However not all employees have the same goals, nor
do all employees require the same nourishment. The
career path plan should contain the characteristics for
meeting the needs of both management and the em-

ployee. There are a number of ways by which the
individual measures his goal attainment. These include
status, responsibility, authority, salary, working envi
ronment, technical support, opportunity for improve
ment, and other fringe benefits. A career path plan
provides the employee with a tangible reference for
measuring his progress toward achieving his goals.
The plan is somewhat constrained by the data process
ing organization and its philosophy. However the
demands of the industry supply management with suf
ficient opportunity to reward the deserving employee.
As the individual develops he becomes a valuable asset
to the employer. The development of this "Person
ware" is potentially the highest payoff item in an
operating budget. It deserves the attention worthy of
this potential.

From aaia eniry supervisor to data eniry specialist

by CAROLYN M. DUNNING
Pertee
Santa Ana, California

ABSTRACT

For manv vears data entry lagged behind all other
aspects of d~ta processing. Originally, there were card
punches where data was entered a character at a time.
Then came key tape making buffering a common con
cept to data entry. Buffered key punches provided the
same advantages of key tape, but had more flexibility.
Then key-disk entered the scene and data entry became
computerized. Data could be entered faster and more
accurately than ever before.

What does this mean to the data entry industry?
Operators do not have to be as well trained as before.
But the greatest impact is felt at the supervisory level.
'Mini-analvst' training should be provided for those
individual; interested in supervising key-disk installa
tions. These classes should cover terminology, hard
ware components and some form of programming as
well as the use of peripherals and options common to
key-disk systems. Typical problems th3.t can occur,
both from an operator and the system should be dis
cussed with methods to assist in analyzing them. Con
trol procedures should be outlined.

Well-trained supervisors can help provide a more
efficient data entry department and can be an asset in
designing the data entry systems of the future.

For many years, the lowliest task associated with
data processing was data entry. The manipulation and
output of information progressed by leaps and bounds.
Faster accounting machines, calculators and the advent
of computers. Look how far computers have advanced
in 20 years! The growth has been phenomenal. But
·what happened with data entry? Computers were pro
cessing more information at faster speeds every day. It
was beginning to become a problem to find enough
input to feed these hungry monsters. Why? Because
data was still being keyed into cards one character at
a time on equipment that was only as fast as the me
chanics of the machines would permit. Keyboards had
to be interlocked to prevent the operators from getting
ahead of the card punches.

The introduction in the early 1960's of the IBM
029-059 card punches and verifiers produced two fea
tures that were indicative of things to come in the

161

world of data entry. One was the automatic left zero
option that gave birth to the concept of buffering data
as it was keyed. Data could be keyed and corrected
before it was actually punched into the card. Not only
that, the operator didn't have to count and key leading
zeroes. Granted, only integers could be buffered and
the maximum was eight digits, but it was a beginning.
The second feature that was new, was the photo
sensing on the 059 verifier. Cards could be read more
quietly and much faster without waiting for any
mechanical action to occur.

The next milestone for data entry was the introduc
tion of the key-tape. Now an entire record could be
buffered and massaged and corrected before being
output. Just as important, the operator did not need
to be inhibited by the mechanical limitations of the
machine. Faster electronic keyboards were made which
had a feature called n-key roll over. This 'remembered'
keystrokes therefore assuring none were omitted, nor
the operator locked out. Record sizes could be in
creased from 80 characters providing the ability to
enter more data at one time.

Although key-tape machines were much faster, they
had other serious limitations that made their use some
what impractical for many applications. It was im
possible for the operator to see an entire record all at
once. Data would have to be read character-by
character. Another limitation was the inability to in
sert records within a batch. Missing records had to
be appended to the end of the data batches which was
not always feasible. Also, although both data entry
and verification could be performed on the same ma
chine, it was not convenient to do so. Since it is
common practice for an operator not to enter and
verify the same batch of data, this meant either switch
ing tapes or machines. Therefore, key-tape was found
to be very inflexible.

However, cards hadn't given up the battle yet. Then
came the advent of the buffered card punches. Now
an entire card image could be keyed into a buffer with
out physically punching a card until column 80 had
been passed. While still being limited by the 80 columns
in a card, the number of program levels was increased
to provide the ability to key more data from a source

162 National Computer Conference; 1976

document at one time. Now data entry had the best of
two worlds; the speed and accuracy of key-tape with
the flexibility of cards. Gone were the clumsy drums
and their nemesis, starwheels. Programs could be
stored in memory. Card punches could have the faster,
electronic keyboards. As one card was being punched,
the operator could begin keying the next one. Skips
and dups were performed at electronic speeds. Opera
tor statistics and the generation of batch totals was
possible. Automatic emitting of data was available on
some machines, as well as the automatic sequencing
of program levels. Both punch and verifier were
housed in the same machine. What a tremendous help
this was in scheduling! No more worrying about the
ratio of punches to verifiers. Throughput was in
creased tremendously.

Then all of a sudden, data entry grew up. Key-disk
entered the scene and "Look Ma, we're computerized !"
Now data entry had entered the same league as the big
guys. Information is entered onto a disk with the
assistance of a mini-computer. This data can be mas
saged and manipulated as much as desired. It is then
usually written to tape for the mainframe computer to
process. On most systems, it can optionally be trans
mitted directly to the mainframe, either over a tele
phone line or a direct interface. The advantages to
this type of system are numerous. Data can be vali
dated as it is keyed. Calculations can be performed
and the results can be automatically entered into the
records. Likewise, constant data. Now it isn't a ques
tion of keystrokes, but truly a matter of through
put. The data entry department has finally become a
respected member of the data processing community.
And this is just a beginning.

What does all of this mean? First of all, operators
do not need to be as well trained as with the earlier key
punches. Although key punch keyboards are standard,
optional typewriter keyboards make it easy for typists
or clerical personnel to become data entry operators.
Information can be easily entered at the source, elimi
nating or greatly reducing the possibility of errors,
which typically increases turn-around. Programming
is no longer a factor since most systems are 'prepro
grammed' with all operators using the same programs.
Extensive procedures need not be remembered as most
key-disk systems can prompt the operators as well as
alert them to error conditions.

Well and good for the operators. But what happens
at the supervisory level? Here is where the greatest
impact is felt. Now to be really effective and utilize a
key-disk system to its greatest potential, the super
visor should be a 'mini-analyst' with a fundamental
knowledge of basic computer systems and data man
agement. Gone are the cards with the visual evidence
of work that has been completed. Data is now in a
'never-never land' called a disk. But how do we really
know it is there? What does it look like and what hap
pens to it now? These and many more questions plague

a supervisor who is frequently answered with a "Don't
worry about it. Just do exactly what you have been
told to do and everything will be alright."

Key-disk has been over-simplified by many vendors.
Who wants to frighten the supervisor with a lot of
confusing terminology? After all, a very competent
mainframe programmer wrote all of these programs
and all that needs to be done is for the operators to
enter and verify the data, the supervisor to write it
to tape for the computer and then delete it from the
disk. Simple, right? But what is wrong with this
logic?

Let's start with programming. There's a world of
difference between a program for a mainframe where
an operator selects it and it executes with very little
interference, and a program for a key-disk system
where many operators sit and use it for hours at a time.
A poorly written mainframe program can be slow and
inefficient memory-wise, but this has little, if any, effect
on the operator. On the other hand, a badly written
key-disk program may not only be inefficient as far as
the processing goes, but it can be very tedious for an
operator to use. Who is best qualified to write a data
entry program? A mainframe programmer or systems
analyst whose primary key punch experience comes
from punching their own programs (usually freeform)
while in school or a key punch operator or supervisor
who has been making program cards and punching
and verifying data for years. These people know what
is necesary for entering data easily and accurately and
should be best qualified for writing programs that are
going to be used by all operators on a system.

Another area of concern that is created by a key-disk
system is the terminology that is used. A supervisor
must be familiar, not only with standard data entry
terms, but also those associated with computer opera
tions. While most key-disk manufacturers have at
tempted to keep the terms data entry oriented and as
simple as possible, this is not always feasible. For ex
ample, what about tape writes with blocking factors,
translations, labels, etc.? And how about bits, bytes
and words? We didn't have all of that with cards. The
worst problem we had may have been trying to trans
late the holes in the cards into characters if the print
mechanism failed. Otherwise, we just handed a deck
of punched and verified cards to the computer operator
and everything else was taken care of.

Some key-disk systems must compile programs be
fore they can be used. That really is scary. With card
punches all we had to do was create a program card,
either put it on the drum and lower the starwheels or
read it into memory and we were ready to go. If the
program card wasn't quite right it was a simple matter
to change it. Simplicitly was the key word.

What is the point of all of this? Well, many schools
and colleges provide very extensive computer training,
both for programming and operations. And some
schools also provide key punch training. But what

Data Entry Supervisor to Data Entry Specialist 163

about a person who is interested in learning about a
key-disk system? Oh yes, manufacturers provide train
ing, but only on their equipment and usually only for
customers. Normally, these are rather abbreviated and
do not cover a lot of things a key-disk supervisor might
want to know. A mainframe programming or systems
class taught at the college level is more than most data
entry supervisors would need, or want. They aren't
interested in becoming mainframe programmers. So
why not provide educational classes tailored to suit
the needs of a key-disk supervisor? Data entry is ad
vancing at a rapid pace and experienced, qualified indi
viduals are necessary to create efficient key-disk depart
ments. Again, who is more qualified to handle this task
than an operator or supervisor who has been entering
data for a long time and understands the needs and
problems associated with data entry? This is a ~people
oriented' environment more so than any other area of
data processing. It can be a very emotional situation.

What kind of course would this be? It does not need
to be concerned with all of the problems of a large
mainframe computer, but should be more like a 'mini
analysts' course, tailored for individuals who want to
work with some type of computerized data entry sys
tem. It must be generalized to cover the common
features and functions of most key-disk systems, which
is a large order since none are totally alike. However,
there are many characteristics that are common to all,
or most, systems.

~A~n explanation of computer concepts and terminol
ogy is vital. Bits, bytes, words, binary, ASCII,
EBCDIC, software, hardware. These are terms that
are thrown around by the customer engineers or sys
tems analysts working with a key-disk system. But
what do all of these words mean to the supervisor?
I think an understanding of some of these terms can
help the supervisor communicate better with the people
who have to answer questions and service the system.
It will also help allay some fears of the 'unknown'.

The difference between hardware and software
should be explained. As anyone who has been in the
real world of data processing knows, it is often very
difficult to isolate problems between software and hard
ware. A supervisor who has some understanding of
them can possibly better define a problem that may be
occurring with the system. The hardware components
that are part of the system should be explained, the
most common ractor being the disk. This should be
covered in sufficient detail so the supervisor has a
clearer understanding of its function. Tracks, sectors
and AU's should be explained, as well as some explana
tion of a volume table of contents (VTOC). Some sys
tems require the disk be initialized regularly. The
purpose of this and its effect should be explained. Most
systems also use some type of WARM and COLD
START procedures. The difference between the two
functions should be defined as well as what will happen
if the wrong option is accidentally selected.

Tape drives are very important to most key-disk
installations. Their care and use should be thoroughly
covered. Proper cleaning and usage of both tape drives
and tapes is very vital to producing good, clean output
as the improper handling of tapes can create many
errors from the data entry department. The cleaning
of tape heads and a recommendation of what should
be used to clean them is important. The benefit of
having tapes certified regularly should be discussed.
Since most drives are loaded and unloaded in much
the same way, this could be demonstrated with students
actually mounting and dismounting their own tapes.
Terminology connected with tape drives should be dis
cussed. For example, the difference between 7 -track
and 9-track tape drives should be explained, bits per
inch and the difference between 800 bpi and 1600 bpi
as well as parity and its purpose should be covered. An
explanation of the appearance and purpose of BOT
(beginning of tape) and EOT (end of tape) markers
and how are they sensed is vital. Cutting the lead from
a tape and putting on a new BOT marker should be
demonstrated. EOF (end of file) should be defined.
These are things that will confront a supervisor who
may have no idea as to what is meant.

A most important aspect of any key-disk training
is some form of programming. Although all systems
use their own type of programming, there are many
common factors that can be discussed in a generalized
way. Most systems use at least some type of 'checkbox'
programming. This is usually merely a fill in the
blanks procedure to tell the system what is wanted.
It usually contains field descriptors, the most common
being field size and shift (alphabetic, numeric and in
some systems, lower-case alphabetic). Other controls
can also be defined in the checkboxes. One of these
might be data type which specifies exactly what types
of characters can be entered into a field and provides a
character-by-character validation as the field is keyed.
For example, a field may be programmed as alphabetic,
but numerics and blanks are also allowed. Data type
would have to specify this. Or perhaps a field can only
be numeric, with no alphas or blanks permitted. An
other common control is how the field can be exited.
Perhaps it doesn't need to be exited at all and as soon
as it is completed, control automatically goes to the
next field. Or maybe a field release must be depressed
before continuing to prevent overflowing into the next
field. The extent to which a field must be keyed may
also be specified. Perhaps a field must have every posi
tion keyed (none can be blank), or maybe it must have
some data keyed, but not necessarily be filled. Maybe
it must not be keyed at all and the system will insert
some type of constant or calculated data. Justification
and fill can be programmed so the operator does not
need to remember whether a field must be right-justi
fied and zero-filled or left-justified and blank-filled. The
system will handle it automatically. Range checking

164 National Computer Conference, 1976

and batch balancing frequently can be programmed in
a checkbox program.

Since most key-disk systems allow rearranging the
data for output (commonly called reformatting), fields
can be organized so that it is easier for the data entry
operator. Various types of verification can be pro
grammed, such as key, sight, to-balance or not verified.
In many instances, verification can be greatly reduced,
or even eliminated.

In addition to checkbox programming, many systems
use some type of higher level programming language,
the most common being similar to COBOL. It might
be well in a class of this type to cover the general con
cepts of computer programming, particularly the logic
of COBOL such as IF, MOVE and the arithmetic state
ments ADD, SUBTRACT, MULTIPLY and DIVIDE.

Most key-disk systems have some method of prompt
ing the operator. The purpose and general use of
prompts should be discussed, such as the most effective
way to program them so that they are meaningful to
the operator. Peripheral equipment such as teletypes
and line printers should be discussed. Since each sys
tem probably utilizes these options differently, their
use can only be discussed in a general way. However,
feed controls, carriage tapes, top-of-form, and other
common characteristics might be explained. Since most
data is usually entered in an unedited form, (no
commas, periods, dollar signs, etc.) and printed re
ports will have these characters inserted, editing might
be mentioned. Examples of the most common editing
functions should be provided.

With the increasing use of data communications, a
discussion of this feature might be appropriate. Since
this is a very complex area it must be generalized and
greatly simplified. A brief description of the most com
mon protocols might be good as well as factors neces
sary for initiating a transmission or receive.

Since most systems use some type of full CRT dis
play, the generalized areas of display should be dis
cussed. For example, there are usually one or more
status lines, a message line and several lines for dis
playing data. An explanation of what is displayed in
these three areas is appropriate.

A discussion of error messages and the most common
types of operator errors is necessary. This might in
clude common errors such as keying an invalid char
acter, attempting to key too many characters in a field
or keying data that is not within a specific range. Most
systems also provide the capability of creating some
types of individual 'tailor-made' messages. A recom
mendation of what these messages could be and where
they should be used would be helpful.

Relatively common system problems should be cov
ered. This might include such things as not being able
to bring up the system, a terminal or entire system
hanging or not being able to locate a batch of data or a
program. Things to look for when any of these condi
tions occur should be outlined. It can help a customer
engineer isolate a problem if a supervisor has previ
ously tried to analyze what is happening. Common
operator problems should also be explained, such as
keying an incorrect batch name or number, or opening
a batch under the wrong mode. Most systems also have
some type of search procedure. The parameters avail
able should be discussed.

The supervisory functions are basically the same for
all systems. The purpose of the most common ones
should be explained. This might include things such as
tape writes, deleting data from the disk, system saves,
obtaining a disk status, assigning a new name or batch
number to an existing batch of data, printing to a line
printer or requesting batch status. Generalized opera
tor statistics should be discussed.

Control procedures are a very important area of a
key-disk system. Batches must be carefully and ac
curately logged and monitored as the work progresses.
The log must be periodically checked against what is
on disk and the status of the batch. (Has the batch been
completely entered? If so, has it been verified? Does
it contain any invalid data? Is it in- or out-of-balance?)
These are things that are very important when the data
is output. When a write is performed, batches must
be checked against the log to be certain that all desired
batches were written, and no extraneous batches were
included. Disk status must be checked regularly to as
sure that the disk does not get full since in most in
stances, this can create severe problems. Deletes must
be very carefully monitored and system saves regularly
scheduled. System crashes where data is lost is not a
common occurrence, but just one crash can be a dis
aster in that hours, or even days of work can be lost
if the data is not properly backed up.

Well-trained key-disk supervisors can be a great
asset to the industry in optimizing the quality of data
going to mainframe computers. They can also be very
instrumental in providing good, valuable input for
creating better data entry systems in the future. Data
entry is still in its childhood. There will be many
changes in the years to come and the term 'data entry
specialist' will be just as common to data processing as
systems analyst or programmer. Now is the time to
start training these specialists for tomorrow.

A modern beginning programming course*

by ROY F. KELLER
Iuwa Siaie UUi'iJeT8'iiy
Ames, Iowa

ABSTRACT

This paper describes a beginning programming course.
It represents an approach to the "right way" to teach
programming independent of any programming lan
guage. This is accomplished by thinking of pro
gramming as a two part process- (1) constructing an
algorithm and (2) translating the algorithm into a pro
gram in some chosen programming language. Basic
structured programming constructs are used for con
structing an algorithm and translation is demonstrated
by translation of control constructs into FORTRAN.

INTRODUCTION

The following quotations are a good way to introduce
this paper:

(1) "Over the past decade, computer science has suf
fered a loss of innocence. No longer can a programmer
be a gullible optimist, convinced of a program's per
fection by success with a few chosen data. A program
must be seen to be correct, and clarity has become es
sential. One of the keys to clarity is the set of control
structures used, and the debate over the choice has
been lively." Ledgard and Marcotty.l

(2) "One point should be made clear. We must dis
tinguish between the programming language and the
notation used while programming. One doesn't pro
gram in a language but into it." Gries. 2

(3) "Yet it is fair to say that almost none of the
elementary programming books say anything about
problem solving, about orderly thinking, about express
ing algorithms clearly and simply. The only conclusion
to draw is that the students are not being taught how
to program; they are being taught a language." Gries. 2

(4) "It is insufficient to present the endproduct and
expect the beholder to perceive its structure by inspec
tion or even deep meditation. Instead, the beholder
must also see at least part of the programmer's thought
process, starting from the original (very abstract)
version and proceeding to the end product via a clearly

* This work was supported by the U.S. Energy Research and
Development Administration under contract no. W-7405-eng-82.

165

presented sequence of clear transformations and refine
ments." Denning.3

(5) HWe have outlined three views of what a pro
gram should be. The final form of development is suit
able for communication to a computer; a carefully
documented sequence of forms is suitable for communi
cation between programmers; a proven sequence of
forms is suitable for communication to posterity."
McKeeman.'"

(6) "I now believe that it was a fundamental error
to feel that we could think in a programming lan
guage." McKeeman. 4

(7) "I would like to see the S.P. forum redirected
towards a less hopeless task than finding the perfect
programming language or formally defining S.P. itself.
If we take the definition to be simply the construction
of efficient, readable, understandable, modifiable, and
verifiable programs, we can discuss ways to globally
reach these goals by educating the people who do pro
gramming. Since it follows from the axiom that no
amount of construct-clipping will make the typical
graduate of a "data processing" school even a poten
tially good programmer, we must find something that
will. What can be said to be the proper use of goto's,
conditionals, and global variables (and block struc
tures, pointers, etc.) ? What are general guidelines to
follow with respect to procedures? How does one go
about modularizing a task?" Flon.5

The ideas in these quotes along with those expressed
in the many papers dealing with programming and
structured programming7

-
12 form the basis for the fol

lowing ideas in developing a beginning programming
course:

a. The primary issue in programming is one of con
structing a solution to a given problem to be pro
grammed.

b. The solution should be "correct" and "readable."
(Where correct means the solution solves the problem
intended and readable means the form of the solution
is "easily" understood by people.) Concepts of effi
ciency and reliability in programs come after correct
ness and readability. These ideas should come later in
a more advanced course. However, a beginning course

166 National Computer Conference, 1976

should promote practices which lead naturally to higher
level considerations.

c. Constructing a correct and readable problem solu
tion can best be done through a sequence of refinement
steps starting with an abstract form and ending with
a form easily translated into most any high level pro
gramming language.

d. In the refinement process problem solving con
structs for constructing well structured algorithms are
essential.

e. The purpose of a programming language is so that
a problem solution can be expressed in a form under
standable by a computer. A programming language is
not often a good language in which to think or to docu
ment. It may be that expecting a programming lan
guage to serve both as a language (1) in which to think
and (2) in which to make a computer understand is
expecting too much.

A beginning programming course based on the above
ideas has been taught since Fall 1974. This paper re
ports on the course contents and to some extent on its
success as reflected by student and instructor surveys.

BASIC PHILOSOPHY FOR A BEGINNING
PROGRAMMING COURSE

Based on the above, our approach to teaching pro
gramming was to focus carefully on what is essential
to constructing a "well structured" solution to a prob
lem in the form of an algorithm. What problem solv
ing constructs are needed? Is there some hierarchy in
such constructs so they can be developed naturally?

We divide programming into two parts:

Part I: constructing a "well structured" algorithm,
Part II: translating the algorithm into some program-

ming language. (a program)

An algorithm is defined to be a problem solution, in the
form of a sequence of statements which can be executed
by a human using any devices at his disposal. A pro
gram is a problem solution in a form understandable
by a computer. A "well structured" algorithm is to be
a correct and readable one.

Dividing programming into the above two parts
makes it possible to teach much of programming inde
pendent of any particular programming language. Part
I is problem dependent and Part II is programming
language dependent. In addition Part II can be taught
by showing how to translate a particular Part I con
struct into appropriate statements in a chosen pro
gramming language. Thus the details of a language
can be studied in the context of how to use it.

Our philosophy for a beginning course is to naturally
develop problem solving constructs for constructing
correct and readable algorithms and then show how to
translate these into language statements in such a way

to preserve the structure of the algorithm in the pro
gram. Thus we have "structured programming" in any
programming language.

CONSTRUCTS FOR CONSTRUCTING
ALGORITHMS

The details regarding the development of a set of
constructs and pedagogically how to develop these can
be found in Keller. 6 Here we shall list them along
with some explanation or reasons for the construct.
(All constructs are developed in context of a problem
to be programmed starting with problems requiring
simple constructs and progressing to the more complex
ones.)

a. Basic constructs (or concepts): value, constant,
variable, identifiers (names), expressions (operators
and operands), statements, assignment statement, read
and print statements. The crucial concepts here are
the "ideas" of a value, a constant, a variable and of
value and name association. Initializing values and
assigning values form the basis for programming.

b. Decision making constructs (control mecha
nisms) : an action (execution of a statement) ; sequence
of actions, if-then and if-then-else constructs; while-do
and repeat-until constructs. These constructs can be
represented by flow diagrams and developed naturally
in the following order.

(1) action ~.f--
(2) sequence of actions

(3) if-then: if C then S

(Where C is a condition and S is a statement or se
quence of statements.) The concept is to do S zero
times if C is not satisfied (F) or once if C is satis
fied (T).

T~_ F

(4) if-then-else: if C then 81 else 8 2

The concept is to do 81 if C is satisfied; S2 if C is not
satisfied. Always one, 81 or 8 2, is to be done.

(5) nested if-then-else: if C1 then 81 else if C2 then 8 2

else . . . else if Cn then 8n else Sn.1.

The concept here is to select one sequence to be done
from many (more than two). This represents a nat
ural extension of if-then-else.

(6) while-do: while C do 8

The while-do concept develops naturally from if-then.
If-then implies 8 is done zero or one time and the while-

A Modern Beginning Programming Course 167

do extends doing 8 to more than once, i.e., iteration,
while still preserving the idea of doing 8 zero or one
time.

(7) repeat-until: 1'epeat 8 until C

J;
- I .

The concept is to do 8 repeatedly until C is satisfied.
These are the D and D' structures (without the case

construct) found in Ledgard and Marcotty1 that have
been studied by Dijkstra and others (See Reference 1
and references therein for further details on control
structures.)

(8) repeat-forever: repeat-forever 8

,. ~ __ .a-__

• •

• • •

The concept here is to iterate forever through the se
quence 8 which will contain one or more exit constructs
of the form:

if C then exit or exit alone

Exit is always to the statement following 8. In a be
ginning programming course there is seldom a need for
more than two exits. This construct is a natural ex
tension of while-do and repeat-until and obviously in
cludes them.

c. Modularizing constructs: (Blocks and proce
dures). This includes:

(1) the concepts of local and global variables and
how to specify their scope using some form of a declare
statement;

168 National Computer Conference, 1976

(2) procedures as independent blocks \vith infor
mation passed through the formal and actual param
eters. (This includes function procedures.)

The essential point for the student to understand is
that modularizing comes naturally when one constructs
an algorithm in a refinement fashion.

d. Data structures and value types.

Throughout all of the previous subject matter sim
ple data structures (simple variables) are implicit.
Iteration is developed by introducing a one-dimensional
array data structure, introduced by considering a prob
lem to be programmed. Multiple dimensional arrays
and multiple dimensional structures are next devel
oped. At this point the goal is that the student see
clearly that developing an algorithm starts with his
visualizing the data structures which are appropriate
to the problem and naming these structures in such a
way that he has names for substructures. He then must
write statements involving these structures which
when executed will solve the problem intended. The
above constructs are his means of getting the job done
through a sequence of refinement steps.

Character and Boolean values are next introduced
again by considering appropriate problems. These data
values give rise to taking a closer look at expressions,
in the sense of operators and operands, and expression
evaluation.

e. Verification of algorithms.

Throughout the refinement process of developing an
algorithm, verification of each refinement step is
heavily emphasized. Most of this is "hand" verifica
tion, testing decision points and iteration termination.
In some cases simple proofs can be inserted to show
a part of an algorithm (module) is correct.

Each refinement step is followed by the programmer
proving the refinement is correct either formally or
experimentally by hand execution with trial data. If
great care in verification is taken, then a minimum
number of bugs are introduced in an algorithm and
programmer time is used efficiently.

Refinement steps and verification are never tidy.
Many trial refinements are tried, determined to be in
correct by trial verification and replaced by other trial
refinements. This is what programming is about; the
student learns by doing. This is how he learns to think
about the process of constructing a program.

TRANSLATING ALGORITHMS TO PROGRAMS

All the previous ideas are based on problem solving
constructs needed for constructing algorithms which
are correct and readable. These are essentially inde
pendent of any major programming language.

At this point any programming language could be

introduced and studied from the standpoint of trans
lating problem solving constructs into programming
language statements. Of course it would be great if
the major programming languages had these con
structs. Unfortunately they do not. Someday major
programming languages will contain these constructs,
however, there will stilI remain some translation effort
necessary for syntax reasons alone. In constructing an
algorithm the programmer can ignore many details
that a computer requires, but, a person does not. He
can use indentation, one statement per line, etc. to make
the algorithm readable for a person. Many of these
human readable forms may never be machine readable.
So some translation will be required for machine read
ability. The point is that people read algorithms and
computers read programs.

The translation process is really not very difficult
even for a language similar to FORTRAN. We il
lustrate translation to FORTRAN of the decision con
structs using the FORTRAN logical IF statement:
(These and other translations can be found in one of
References 13-17.)

a. if C then S

IF (C) GO TO then

GOTO~

then S

next CONTINUE

Where then and next represent statement numbers and
C must be translated to a logical expression in FOR
TRAN.

b. if C then S1 else S2

IF (C) GO TO then

GOTO~

GO TO~

else 52

next CONTINUE

(Where then, else and next are statement numbers.)

c. while C do S

I while IF (C) GO TO do

GOTO~

do S

I

I~
GO TO while

CONTINUE

(Where while, do and enddo are the statement num
bers.)

d. repeat S until C

repeat S

IF (C) GO TO ~

GO TO repeat

next CONTINUE

nVhere repeat and next are statement numbers.)
e. Repeat-forever translation is obvious. Exit

translates to a GO TO exit.
Translations for variables, constants arithmetic ex

pressions and Booleans expressions are straightfor
ward. Procedures and functions procedures translate
to subroutines and functions respectively in FOR
TRAN.

Blocks do not translate directly into FORTRAN";
local variables must translate into global ones unless
a subroutine or function is used for translation. Other
programming languages avoid many of the FORTRAN
translation problems.

While the above translations represent good ones
they are by no means the only ones possible. These
translations are the most natural and keep the struc
ture of the algorithm present in the program. By use
of comments in the FORTRAN program the transla
tions can mirror even clearer the structure of the
algorithm. Our experience has shown this is not of
much use provided the final algorithm and selected re
finements are maintained along with the program for
documentation purposes; again the idea is that people
read an algorithm and the computer reads a program.

SUMMARY AND CONCLUSIONS

This type of course in programming using FORTRAX
has been taught to approximately two thousand stu
dents mostly non-computer science majors by large

A Modern Beginning Programming Course 169

lectures (150 plus students) and small (25 students)
recitations. Lectures met twice a week; recitation
once a week. Fall 197 4 was the first time.

General reaction from students has been favorable.
For the first time in our experience students feel they
are learning to program and feel they can. About
sixty percent of the students reported in a survey that
they felt "competent" to construct a program in FOR
TRAN. In a survey reported on by Krietzberg and
Shneiderman,u; in the preface of their book; only ten
percent reported they felt "competenf; to construct a
program. It seems clear that the emphasis on con
structing algorithms by refinement and verification is
what makes the difference.

A total of five faculty members and more than
twenty graduate assistants have been involved. With
few excepts all agree that algorithm construction is
most crucial and should be the emphasis in a beginning
course. Most feel that regular size classes (about 30
students) would be much more effective than large
lecture sections. It is very difficult to teach problem
solving via large lectures.

Both students and staff feel that two languages are
involved and this seems to create some difficulties for
the student. The top students overcome this easily, but,
others have troubles. It takes a while before the stu
dent realizes that the problem solving constructs are
for thinking about the problem and its solution and
the programming language is for translating into.

Further support for this type of programming course
can be found in the conclusions of the paper by Ledgard
and Marcotty.l We list their four points here. More
detail can be found in their paper.

1. "From the programmer's viewpoint, theoretical
results based on the conversion of one program form
to another under restrictive conditions may not be
practical significance."

2. "The need for higher level (above D and D') con
trol structures remains unproven."

3. "The utility of the goto is seriously questioned."
4. "The utility of D' structures over D-structures is

supported." (D-structures are: actions, compositions,
if-then-else and while-do. D' structures are: any D
structure, plus if-then, repeat-until and case state
ments.)

VI e feel all of these except the case statement are im
portant for the beginning programming course. Case
statements and other control structures (BJ,,, REn etc.
See Reference 1 for definition of these and other con
trol constructs.) should be introduced in a more ad
vanced programming course.

In our approach the argument for or against the goto
is quieted for the goto never appears in an algorithm.
If used in a translation the goto mechanically causes the
correct transfer of control specified by the algorithm.
Thus program structure and correctness are independ
ent of the goto. Readability is present in the algorithm

170 National Computer Conference, 1976

refinement levels kept with the program for documen
tation purposes.

REFERENCES

1. Ledgard, H. F. and :\1. Marcotty, "A Genealogy of Control
Structures, C01nm ACM 18, 11 November, 1975, pp. 629-639.

2. Gries, D., "On Structured Programming-A Reply to
Smoliar," Comm ACM 17, 11 November, 1974, pp. 655-657.

3. Denning, P. J., "Is 'Structured Programming' any Longer
the Right Term?," SIGPLAN Notices 9, 11 November, 1974,
pp.4-6.

4. McKeeman, W. M., "On Preventing Programming Lan
guages from Interfering with Programming," IEEE Trans
actions on Software Engineering, 1, 1 March, 1975, pp.
19-26.

5. Flon, L., "On Research Instructured Programming," SIG
PLAN Notices, 10, 10 October, 1975, pp. 16-17.

6. Keller, R. F., Constructing Algorithms-An Introduction to
Structured Programming, Kendall/Hunt, Dubuque, Iowa,
1975.

7. Dahl, O. J., E. W. Dijksh'a, and C. A. R. Hoare, Structured
Programming, Academic Press, London and New York,
1972.

8. Wirth, N., "Program Development by Step-Wise Refine
ment," C01n1n AC:\f 14, 12 December, 1971, pp. 780-790.

9. Wirth, N., "On the Composition of Well-Structured Pro
grams," ACM Computing Surveys 6, 4 December, 1974, pp.
247-259.

10. Wirth, N., Systematic Programming, Prentice-Hall, Inc.,
Englewood Cliffs, N.J., 1973.

11. Knuth, D. E., "Structured Programming with Goto State
ments," ACM Computing Surveys 6, 4 December, 1974, pp.
261-302.

12. Kernighan, B. W. and P. J. Plauger, "Programming Style:
Examples and Counterexamples," ACM Computing Surveys
6,4 December, 1974, pp. 303-319.

13. Bond, R., "Free Form Structured FORTRAN Translator,"
SIGPLAN Notices, 10, 10 October, 1975, pp. 12-15.

14. Gales, L. E., Structured FORTRAN with no Preprocessor,"
SIGPLAN Notices, 10, 10 October, 1975, pp.17-24.

15. Charmonman, S. and J. L. \Vagner, "On Structured Pro
gramming in FORTRAN," SIGNUM Newsletter, 10, 1
January, 1975, pp. 21-23.

16. O'Neill, D. M., "SFOR-A Precompiler for the Implemen
tation of a FORTRAN-Based Structured Language,"
SIGPLAN Notices, 9,12 December, 1975, pp. 22-29.

17. Meissner, L. P., "A Compatible 'Structured' Extension to
FORTRAN," SIGPLAN Notices, 9, 10 October, 1974, pp.
29-36.

18. Kreitzberg, C. B. and B. Shneiderman, FORTRAN Pro
gramming-A Spi'ral Approach, Harcourt, Brace, Jovano
vich,1975.

Instructional computer systems for higher education

by CHARLES J. PRENNER
Uniwm;ity of Califorrt,ia, Rerkeley
Berkeley, California

and

ALFRED Z. SPECTOR
Harvard University
Cambridge, Massachusetts

ABSTRACT

In most universities, increased instructional utilization
of computers by many departments has been the rule.
With the associated diversity of instructional require
ments and evolving hardware capabilities, the choice
of a proper computer system for this environment has
been made more difficult. In this paper, a review of the
requirements for such a system is presented and the
alternatives are analyzed in light of these requirements.
It is shown that non-interactive systems are the least
desirable educationally and furthermore, that the eco
nomic justification for their use is no longer as strong
as in the past. In support of this, a description of an
inexpensive interactive system currently in use at
Harvard is given.

INTRODUCTION

With an increased need for instructional computing in
higher education and tighter university budgets, edu
cational administrators must determine which com
puter systems provide the highest educational benefits
at the least cost. Questions of interactiveness, size and
performance must be considered. They can only be
answered by an analysis of the user community, of the
various possible alternative systems, and of the costs
of these systems in light of the conditions on a par
ticular campus.

THE USER GROUPS

In order to determine the desirable attributes for an
instructional system, a survey must be made of the
various user groups and of their individual require
ments. Unlike many systems where essentially one
class of end-user is supported, educational systems
typically must host a widely variegated user com-

171

munity. * It is convenient to classify the users into four
categories: (a) those who utilize the computer for
introductory programming courses, (b) users from
intermediate and advanced computer science courses,
(c) users from non-computer science courses utilizing
the computer as an instructional aid or tool, and (d)
users consisting of instructors and staff. Each group
is analyzed in turn.

Users from introductory computer science courses

This group utilizes the computer to obtain a general
understanding of the techniqUeS of computer science.
In this category are general interest students, future
computer science majors and students from the phys
ical or quantitative social sciences. Although it is true
that the individual goals of the students may vary,
most students share the same computing requirements.
Mainly, they must all cover a large amount of in
formation in a short time. They must also be given a
broad and balanced view of the subject matter. Finally,
because of their lack of experience, they require es
pecially simple system conventions and a protected
environment which provides for easy detection and
correction of errors.

A computer system that suits their needs must be
capable of supporting a suitably rich set of program
ming languages as well as providing reasonable con
ventions for their use. Since introductory students will
undoubtedly make many mistakes, easy debugging of
programs and clear diagnostics must be provided.
Finally, as all neophytes have difficulty in coping with
what appears to them to be convoluted conventions,
these must be held to a minimum.

* Computer aided instruction, (CAl) per se is considered to be
a different use of computers and is not considered in this paper.

172 National Computer Conference, 1976

U seTS fTom non-inh'oductory computer science COUTses

This group requires a wide variety of languages in
which to program and the ability to develop, debug and
test prograrns as quickly as possible.

For example, students in this category may have
courses in programming language design or implemen
tation where it is necessary for them to obtain ex
perience with the languages. Alternatively, they may
be taking a course in algorithms and have frequent
need to implement their solutions to problems. At this
stage in these students' training it is important for
them to be exposed to as many different programming
situations as possible; the computer system should not
give them a myopic view of their field of study.

U seTS from non-computeT science COUTses

The members of this user group are learning both to
utilize the computer as a tool in their respective fields
by carrying out assignments which illustrate basic
methods, and also to use library packages to aid them
in their work. For example, students in this group may
be in an econometrics or statistics class where they are
performing sample regressions using library packages,
or developing their own software to do this.

This group, being diverse, may yield many require
ments. It is composed of future mathematicians, social
and physical scientists and various kinds of appli
cations programs are needed for their support. Thus,
this group will also require a wide class of program
ming languages and a powerful library of applications
programs.

Usage by instTuctoTs and staff *

These users typically have enormous time demands
on them and thus require responsive, time-saving sys
tems. It is essential for faculty to have the ability to
develop pedagogical and applications libraries quickly
and easily.

In terms of other requirements, those of this group
may be correlated with the needs of their students. If
the needs of the users in the groups described above are
met, the needs of this user group will be met as well.

There are three main requirements in an educational
computer system which can be distilled from the needs
of the four user groups described above: (1) support
for a wide variety of programming languages and ap
plications libraries, (2) provision for quick program
development and easy debugging, and (3) simple, sen
sible conventions.

It is important to note that no program execution

* The reader should note: that this paper is concerned only with
instructional uses of computers in the university. If it is
desirable to have the faculty and staff utilize the instructional
machine for their own research purposes, the requirements can
gJ:'OW considerably.

speed requirements have been postulated. This is be
cause repetitious and time-consuming program execu
tions are not commonly found on the usual instructional
university machine. While it is true that some students
will utilize the computer to solve problems using library
applications programs, the tasks tend to be small since
the computer problems assigned in most courses are the
minimal sized examples which demonstrate the desired
principles or techniques.

Thus, system throughput is not critically dependent
upon program execution speed. Rather, it depends on
pTogram development efficiency because constant pro
gram development is the activity which best charac
terizes the university instructional computer system.

ALTERN ATIVE SYSTEMS

The needs of the various user groups may be met in
different ways. The users may be supported on a
variety of machines, each offering distinct facilities.
For example, there may be the need for some special
purpose computers to act as real-time laboratory aids
or to be used stand-alone in an operating system course.
However, the needs of most users will be supported
either on non-interactive systems (batch) or on inter
active time-sharing systems. It is to these systems that
we next turn our attention.

N on-interactive systems

The non-interactive, or batch, machines are usually
fast and capable of executing the largest programs.
However, execution-speed/size efficiency is not obtained
without a price. Batch machines are inefficient as a tool
for program development, especially in an environment
in which a large support staff is unavailable. In addi
tion, they are unusable in situations where interactive
ness is a requirement. Finally, in some sense, they are
an improper model of a computer to present to the
student, especially the neophyte.

As a program development tool for those learning to
utilize computers, batch machines are very wasteful of
both machine time and more importantly, human time.
Associated with batch machines is the notorious batch
cycle. This consists of the four step process which must
be repeated numerous times while writing and debug
ging programs: (1) the program must be written or
corrections made, (2) program (and job control cards)
or corrections must be keypunched, (3) the card deck
must be submitted and (4) the print-out must be
awaited. This cycle is especially onerous in an instruc
tional environment because students will make large
numbers of mistakes, both conceptual and typograph
ical. The latter mistakes are compounded by the fact
that students are not professional keypunchers. Thus,
the batch cycle will be repeated an excessive number
of times even in the course of easy program develop
ment. This ties up both operator time, student time,

Instructional Computer Systems for Higher Education 173

and burdens the system with a constant influx of trivial
tasks.

Further problems with program development are
associated with the fact that debugging aids are neces
sarily static on a batch machine and therefore; they are
not nearly as flexible as the dynamic aids on an inter
active system. Again, this is an especially grave de
ficiency in a university environment due to the large
number of errors that students will make.

T __ ~...J...l! L! _ __ L 1_ _ __ _ ____ .f! _ _ .L .L L _ L 1 _ _ .L _ L __ __ _ 1_ ! __ _ _ _ __ _

.Lll GtUUHIUll, Llle very .1Gt~L LllGtL UGtL~Il 1I1Gt~IllIle::; Gtre

non-interactive means that restrictions are placed on
the flexibility of the system. Certain kinds of computer
usage cannot occur at all and other kinds not very
easily. For example, the batch machine is not usable in
a laboratory situation where a student wishes to
quickly analyze data necessary for an ongoing experi
ment. In other situations, it may be very desirable,
though not strictly necessary, for the user to dynam
ically view the results of a program and be able to in
teract continuously with it.

The final disadvantage of batch systems is a psy
chological one. In using a batch machine, the student
must necessarily learn of the computer as a static
machine. The student sees the computer as a monolith
which can talk only at him, never to him. Undoubtedly,
this is a bad view to give to the student, especially the
introductory student who may be uncomfortable with
computers in the first place.

In summary, batch machines have the capability of
executing large programs efficiently but provide an
inadequate program development medium for students.
They are restrictive in the kinds of tasks in which they
are useful and are a poor model to present to neophytes.
It should be noted, in light of the conclusions on the
needs of the user groups, that the ability of batch sys
tems to execute large programs efficiently is not ex
tremely valuable on an instructional system. It is a
capability which is not necessary for this environment.

Thus, the batch computing system does not fulfill the
requirements of the user groups and is not a good
choice as the basis of an educational computing system.
This is not to say that batch machines do not have a
place on campus. In the bulk of computer usage,
efficient machine utilization is vital and batch machines
can be used effectively. However, in contexts where
there is almost constant program development and
great diversity of needs, batch computers are not suit
able.

There has been a variant on the batch machine which
has given to the batch system some of the attributes of
interactive systems. Systems like Wylber1 have pro
vided some degree of interactiveness and at the very
least, allow the user to dispense with key-punching. To
the extent that the system can provide interactive facil
ities, the system can meet the requirements described
earlier.

Interactive systems

Although, interactive computing is an old concept in
educational systems/ it is still rarely utilized. 3 The
machines which are utilized for interactive computing
are very diverse and encompass great differences in
flexibility, machine cost, performance, and even inter
activeness. Some systems have the capability of run
ning in a batch emulation mode, while others provide no
such opportunity. Some systems utilize only one lan
guage while others support many diverse languages. In
this section, we classify the different types into four
categories: (1) large scale time-sharing systems, (2)
traditional mini-computer systems, (3) large mini
computer systems and (4) networked systems.

The large scale time-sharing systems are character
ized by many simultaneous users, relatively large size
and speed, and high flexiblity. In fact, the systems
tend to be so large that many universities have too
little computing to fully utilize a whole machine. Thus,
the system must be shared with others. This can lead
to high communication costs and other problems asso
ciated with an environment in which there is not com
plete control over the computing resource. However, as
will be seen, from strict performance criteria, these
machines do an excellent job of satisfying the educa
tional requirements.

Since the large time-sharing machines are fast and
possess large address spaces, they can run the most
complex instructional programs. In addition, the large
address space allows the use of many different lan
guage systems as well as the use of large flexible soft
ware designed to simplify the program development
task. Furthermore, they can allow for any amount of
interactiveness including on-line editing, dynamic pro
gram debugging, and graphics. Some systems even
provide a batch mode in which more complex, time
consuming tasks can be run.

Of course, these machines do not have the efficiency
advantages of the batch machines in raw execution
power but as has been argued, this is wasteful in an
educational (non-research) environment. In fact, it
is argued here that even these large time-sharing
machines, like the large batch machines, have built into
them an amount of execution efficiency beyond that
which is required in the instructional environment.

Traditional mini-computer systems have tried to pro
vide the services of their large counterparts but with
more restrictive environments and less powerful
processors. Many systems have only a single language
available, typically BASIC, and can handle between 5
and 15 users simUltaneously. These machines have
many of the advantages of the large time-sharing
machines and thus satisfy some of the requirements of
the user groups. Ho\vever, they are not powerful
enough to meet the flexibility requirements.

These machines are interactive and thus allow ease
of debugging, instantaneous turn-around, and quick
program type-in. However, due to both the restrictive-

174 National Computer Conference, 1976

ness of the operating systems which run on them, the
speed of the CPU and the restricted main memory size,
they cannot support languages powerful enough for
many users. For example, the "BASIC only" systems
are suited for some kinds of programming but cer
tainly cannot fulfill the requirements for an inter
mediate course in computer science.

Thus, these machines do not fulfill the requirements
of the user groups because of their low flexibility. They
are not a good choice for a university system.

Large scale mini-computer systems are based on the
great advances in hardware technology that have
allowed for the creation of much larger and more
powerful mini-computers. Although many of these
machines have limited processing speed and memory
restrictions, they are much more powerful than the
mini-computers which were available only a few years
ago. We contend that one or more of these machines
are sufficiently powerful to provide for almost all of the
educational computing needs for a university. Typi
cally, each can serve between 20 and 50 users, each user
having the ability to perform a wide variety of com
mands and utilize a wide variety of languages.

The reason that this can be achieved is that most
requests for service in the instructional environment
are trivial ones which have correspondingly little need
for raw computing power. Thus, a relatively large
number of users can be supported on a system of only
moderate power. Occasionally, some students' requests
will be beyond the power of the system. But, in the
authors' experience, the number of such requests is
typically small. For these students, alternative arrange
ments can be made.

An approach that may be used in the future is to
connect a number of large-scale mini-computers di
rectly to a powerful central processor in a hierarchical
network. If any of the mini-computers become over
loaded, they may send some users' requests to the
more powerful machine to be executed. In this way,
reasonable response time can be maintained on the
small machines. In addition, the small number of users
whose computations would normally overflow the large
scale mini-computer systems may be accommodated.4

Thus, of the time-sharing approaches, only the use of
the more traditional mini-computer based system does
not meet the requirements of the user groups. If the
university administrator is concerned with perform
ance alone, the large scale time-sharing system would
be his choice. However, as the cost of such a system
may exceed the funds available, it may be necessary to
choose among the other alternatives.

COSTING THE VARIOUS SYSTEMS

The university administrator, after taking into con
sideration the merits of the various kinds of computer
systems, as discussed in the previous section, must
chomle between systems based on their educational cost-

effectiveness. This determination is exceptionally dif
ficult5 and is a two part analysis. First, the cost per
standardized resource unit must be determined. Sec
ond, the educational benefit per such unit must be
evaluated.

If educational effectiveness per unit resource is not
considered, it is possible for a computer system to ap
pear to be less expensive than it actually is. For ex
ample, it is easily conceivable (and even expected) that
a student may require more runs on a batch system in
order to debug and test a program than on an inter
active system. Thus, even if the batch system were to
have a smaller cost per job executed, the overall cost
of program development could be higher.

The difficulties in determining cost per resource unit
are also considerable. The construction of a standard
ized unit with which to compare systems is in itself a
difficult task. This can be seen to be extremely hard
when comparing batch and interactive systems. How
ever, even on a single system, it is difficult to present
clearly the assumptions that go into the determination
of some costs.

Thus, whenever a definitive assessment of the bene
fits and costs of a given system is made, it should be
kept in mind that the task is extraordinarily difficult
and that the results of any studies should be viewed
cautiously. Finally, explicit specification of the nu
merous assumptions used in any study are required if
the study is to have any meaning.

The authors' experiences have been with educational
time-sharing systems. However, it has become clear to
them that even when comparing and attempting to
describe the attributes of systems in this category
alone, the number of items which must be considered
is very great with respect to the description of the
costs of a given system, and of its attributes.

For example, on interactive systems, it is common
to use connect cost per hour as the yard-stick of cost.
This is usually defined by the following fraction:

where

Initial Cost/Yr. + Operating Cost/Yr.
Connect Hours/Yr.

Initial Cost/Yr. Hardware + Software Cost
Years of Amortization

But, it should be immediately seen that this fraction can
vary substantially, perhaps by an order of magnitude
depending upon the interpretation of the various terms.
For example, are actual yearly connect hours utilized,
or some "reasonable" figure which could be assumed to
be the maximum (or minimum) number available?
Or is the "reasonable" number of connect hours based
on raw hardware limitations or upon the maximum
number of users which can obtain some reasonable re
sponse time? There are, of course, many more ques
tions which could be asked.

It should also be noted that the cost from university
to university can vary greatly. Perhaps, the university
can support some percentage of the cost of the instruc-

Instructional Computer Systems for Higher Education 175

tional machine by utilizing it for some research or
some grants can be obtained to cover certain parts of
its development. Also, there can be wide variations
in the cost of the hardware from institution to institu
tion.

Because of these difficulties, no attempt is made to
provide a detailed cost comparison of various time
sharing systems. Unfortunately, this would be the
only way to demonstrate that large mini-computer
based systems are cost effective. But this would be
difficult, in general, since there will be instances where
circumstances particular to a given institution make a
different kind of system more cost-effective. Instead, a
detailed case study of the Harvard undergraduate
time-sharing system is presented.6

,7 This system is one
in which the authors have extensive experience and one
which has been running long enough to provide com
prehensive data. In the particular situation in which it
is used, it appears to provide for extremely inexpensive
instructional computing. It also appears likely that
there might be many comparable situations.

A LARGE MINI-COMPUTER BASED
SYSTEM EXAMINED

The present Harvard undergraduate time-sharing
system (HRSTS) is utilized in the support of the com
puting requirements of most undergraduate courses,
some graduate courses and a limited amount of re
search usage. Among others, courses in applied mathe
matics, economics, mathematics, engineering, music,
and even Arabic utilize the system. The hardware used
is a Digital Equipment Corporation PDPll/45 proces
sor,s 240K bytes of core memory, a fixed head disk for
swapping, 116 Megabytes of on-line disk storage for
files, a high speed printer, card reader, paper tape
reader/punch, 2 DEC-tape drives and about 28 termi
nal ports.

The operating system used is a modified version of
Bell Laboratory's UNIX system.9 The language pro
cessors currently in use on the system are 2 assemblers,
2 text editors, numerous high level languages including
BASIC, FORTRAN, C/o PPL,ll ECL,12 and LISP as
well as a wide variety of utility programs. The user
command interpreter was specially designed for ease
of use based on past experience with other time-sharing
systems.

The system is operational 23 hours a day, 7 days a
week with periodic maintenance disturbing this sched
ule somewhat. The load conditions vary from semester
to semester. During the first semester, PPL is used
heavily by the 400 students of Harvard's general in
troductory computer course. During the second se
mester, the assembler and LISP are most heavily used
due to an intensive introductory computer course for
more advanced students. During both semesters,
FORTRAN and BASIC are utilized extensively by stu
dents dealing with numerical methods and due to con-

tinual system development, the language C is also
highly utilized.

The system is operated by one full-time administra
tor and numerous "terminal watchers." The latter are
students who are hired by the university to act as
combination operators, programming assistants, and
systems programmers. During most of the day, they
are available. This is especially valuable for the large
number of beginning users.

The use of terminal watchers highlights one of the
cost advantages of the university owning its own sys
tem. The cost of the terminal watchers is low due to
the lower cost of student wages and the fact that a pay
ment from the university to a student is really an
intra-university transfer payment which is not too
costly to the university and very beneficial to the
student.

The present operating costs for the system are
sketched in Table 1. It should be noted that the budget
is inflated by four items: (1) the cost of the terminal
watchers, many of whom would not be necessary if it
were desirable to have only operators on duty during
usual hours or if such personnel could be recruited
from the teaching staffs of the courses using the sys
tem, (2) the high cost of having rented, high speed
video display terminals, (3) the high cost of main
tenance contracts with the various manufacturers (as
opposed to in-house maintenance), and (4) the cost of
having dial-up lines on the system. The latter cost
shows that communication costs are a very important
consideration in the overall costs of a time-sharing
system. In a different environment, the costs could be
reduced significantly.

The capital costs for the system have been amortized
over a three year basis and come to approximately
$50,000 per year. The amortization period is not based
on the life expectancy of the system for the system is
now 18 months old and there is every expectation that
it will last considerably longer than an additional 18
months.

The system usage, over the Spring and Fall semesters
of 1975, is shown in Table II. As can be seen, the total
number of connect hours utilized during the year is
43,500. It is the belief of most people associated with
the operation of that system that this number of con
nect hours is close to the maximum that the system can
support.

Based on the act'ual connect hours of the year 1975,
the connect cost per hour is approximately $3.20. It

TABLE I-Approximate Operating Costs for HRSTS

I tern/Description
Terminal Watchers & Other Salaries
Supplies
Telecommunications
Terminal Rental
Maintenance
Total

Amount
$41000.
$ 5000.
$ 9000.
$22000.
$13000.
$90000.

176 National Computer Conference, 1976

TABLE II-Total Connect Hour Usage of HRSTS during 1975
by major usage category

Category Spring Summer Fall*

Applied ::\1athematics 7685 300
Arabic 99 149 400
Biology 232 110 1100
Chemistry 1492 215 100
Economics 29 55 200
Engineering 496 115 300
GTad. School of Design 1028 10 1500
Independent Usage 1053 488 1000
:Mathematics 753 93 300
~atural Sciences 297 28 8100
Physics 1159 575 300
Social Sciences 346 90 100
Statistics 362 11 500
Research 336 135 200
Sys Work/Term. Watchers 3288 1995 4000
Other 450 1270 800
Totals 19105 5339 19200

~, projected based on Dec. 20, 1975 totals.

should be noted that this figure does not include an ex
traordinary once-only development cost of $50,000 for
some of the system software. If the reader is concerned
with duplication cost of the system, this figure should
not be taken into account since most of the software is
now freely available to other educational institutions.

HRSTS COSTS IN PERSPECTIVE

The determination of the relation of these costs at
Harvard to real costs in other situations must neces
sarily take into account the following consideration.

(1) Usage-The system at Harvard is highly used,
often in the very early hours of the morning. The
impact of this is substantial on the connect cost per
hour figure cited above.

(2) Communication Costs-At Harvard, there are
many dial-up lines available. If the terminals are in
one or more centralized locations on campus, the num
ber of dial-up lines can be reduced substantially.

(3) Overhead-The costs given do not include the cost
of utilities, room space nor the de facto use of some of
the administrative structure of the Harvard Univer
sity Science Center.

(4) Operator Attendance-The cost of operator cov
erage could vary sUbstantially at other installations
depending upon the availability of students to handle
this function and the amount of coverage desired. It
could conceivably be made the responsibility of teach
ing assistants.

(5) Peripheral Hardware-Considerable peripheral
hardware exists at Harvard that might not be needed
elsewhere. However, additional items might be neces
sary if real-time or graphics applications are desired.

(6) A1Jplication Programming Costs-These are spe
cifically not included in the connect cost per hour figure
cited above except to the extent that they are handled
by the terminal watchers. In some situations, it might
make sense to include these costs.

(7) Amortization-The period at Harvard is three
years. It might be more reasonably set at five to seven
years.

(8) Specialized System Software-Most of the soft
ware used at Harvard may be obtained free by other
universities. However, the development of new soft
ware might be required for certain situations.

(9) Hardware Advances-The compatible Digital
Equipment Corporation PDP11/70 processoru can sup
port at least twice as many users without very great
increases in cost.

It is possible to reduce the cost per connect hour
to $0.50 per connect hour under favorable circum
stances (no dial-up lines, operator coverage by teach
ing assistants, local maintenance, longer amortiza
tion, and purchased low cost terminals). Since most
environments will differ somewhat from this extreme,
the expected costs will be in the $1.00 to $3.00 range.

CONCLUSIONS

The low cost of HRSTS lies in the fact that the hard
ware is tailored to the needs of the users. Such systems
utilizing large mini-computer systems, tend to be just
powerful enough to support the vast majority of the
users' demands. In the future, it is conceivable that a
hierarchical network based on machines of differing
power will be the logical extension of this. Easy com
puting tasks will be serviced by the simplest and lowest
cost machines with the more diffcult tasks being passed
on to larger machines.

This division will allow the cheapest machines to be
utilized in most instances and the more complex and
expensive machines will be saved for the limited
amount of overflow. This approach will allow the bene
fits of the largest time-sharing systems to be coupled
with the very low costs of the mini-computer based
systems.

Today, a large mini-computer based system, not
unlike Harvard's, can offer very low cost, flexible com
puting that satisfies most requirements for an educa
tional system. The services provided by such systems
are much more suited to the needs of the university
user community than are those provided by batch or
single language systems. Although not as powerful as
the large scale time-sharing system, they are suffi
ciently powerful to satisfy the needs of most users.
Furthermore, such systems can be run with very low
cost, with connect costs in the $0.50 to $3.00 range.

REFERENCES

1. Fajman, R., J. Borzgelt: "Wylber: An Interactive Text
Editing and Remote Job Entry System," CACM, Vol. 16,
~ o. 5, ::\:Iay, 1973.

Instructional Computer Systems for Higher Education 177

2. Kemeny, John G. and Thomas E. Kurtz, "Dartmouth Time
Sharing," Science, Vol. 162, No. 3850, October 11, 1968.

3. :J-lcCracken, John, "Is There a FORTRAN in Your Future,"
Datamation, May, 1973.

4. Prenner, Charles J. and J. P. Buzen, Proposal For Research
on Hierarchical Computing, Ctr. for Res. in Computing
Tech., Harvard University.

5. Austin, John E., Costing Computer Aided Instruction, Ibid.
6. HRSTS Terminal Users Guide, Harvard University Science

Center, August 1975.
7. Prenner, Charles J., Using Unix in an Instructional

ErlVirorlT!1elit, P'roc. COlvlPCOl{ 1976.

8. PDPll/45 Processor Handbook, Digital Equipment Cor
poration, 1973.

9. Ritchie, Dennis M. and Ken Thompson, "The Unix Time
Sharing System," CACM, Vol. 17, No.7, July 1974.

10. Ritchie, Dennis M., C Reference Manual, Bell Laboratories.
11. Taft, Edward A. and Thomas A. Standish, PPL User's

Manual, Ctr. for Res. in Computing Tech., Harvard Uni
versity, TR 21-74.

12. Wegbreit, Ben E., "The ECL Programming System," Proc.
FJCC 1971.

13. PDPll/70 Processor Handbook, Digital Equipment Cor
poration, 1975.

ADP training systems-Organization-wide
training for increased productivity

by JACK L. STONE and ALEXANDER P. GRANT
Computer Education International, Inc.
Washington, D.C.

ABSTRACT

In most organizations with medium to large computer
centers, management attention is primarily focused on
technological gains as the major method for improving
data processing services and utilization. However,
computer system productivity can also be increased
through effective organization-wide training.

To improve on training currently available to most
organizations-OJT, standard courses provided by the
hardware manufacturer or independent suppliers, and
self-study packages-a systems approach to training
is suggested, named the ADP Training System (ATS).
This approach employs proven systems methodology
to plan, develop, and implement fully documented ADP
training to improve job performance of all personnel
who manage, operate, or use the computer center
facilities and services. An ATS is tailored to meet
specific needs of the organization.

ATS planning includes determination of organiza
tion needs, available resources, and program con
straints. It documents objectives, scope, costs and
master schedules.

ATS development includes course definitions, devel
opment schedules, and course materials development.
It provides implementation schedules, instructor's
guides, student materials, and support materials.

ATS implementation includes administration, exe
cution of courses, evaluation and redirection.

After a discussion of ATS concepts, a case history
of an ATS program which involved the authors is
presented.

It is concluded that an ADP Training System pro
vides management the planning and control capability
to implement organization-wide training for new sys
tems and technology on a cost-justifiable basis.

INTRODUCTION

As the use of automated data processing for commer
cial applications has become more and more wide
spread, it has become increasingly worthwhile to

179

examine those factors that influence the cost/effective
ness of ADP systems. This paper addresses one such
area: organization-wide training for increased pro
ductivity. It advocates the application of total system
concepts to the development and implementation of
training programs and presents an example of the use
of those concepts in an actual situation.

In most organizations with medium to large scale
computer centers, personnel costs exceed the costs for
computing equipment and software; nevertheless,
management attention continues to be focused on tech
nological gains as the primary method for improving
data processing services and utilization. Granting that
processing costs can be substantially reduced with
improved hardware technology, it is also true that the
over-all effectiveness of complex data processing sys
tems can be improved through effective organization
wide training.

However, in many, if not most, organizations, com
puter center hardware and software have surpassed
the capabilities of existing programs to train person
nel to manage, operate and use this technology. In
many organizations ADP training is only available on
an ad hoc basis, often unplanned, and provided as on
the-job training, instruction at a computer manufac
turer's or independent supplier's education center, and
self-study of textual or audiovisual packages. In short
in many organizations, ADP training tends to be epi
sodic, fragmented and directed toward the satisfaction
of unanticipated needs.

After extensive experience as vendors of training
services to many organizations such as those noted
above, the authors have developed and implemented a
systems approach to training that they call ADP
Training Systems. The ADP Training Systems method
employs proven planning, systems and training meth
odologies to produce a fully documented ADP training
program that is directed toward improvement of
on-the-job performance of all personnel who manage,
operate or use the products of an organization's auto
mated data processing system. Each ADP Training
System is developed for a specific organization and
has as its major objective satisfaction of that orga-

180 National Computer Conference, 1976

nization's training needs in a coherent, timely and
economic manner.

An ADP Training System is an organization-wide
program for the training or re-training of personnel
to meet new or changing job requirements that are
occasioned by changes in the scope or level of auto
mated data processing technology available to the or
ganization. It is concerned with a broad range of
personnel, including: top executives; middle manage
ment; proj ect administrators and supervisors; users;
systems analysts; applications and systems program
mers; and operations personnel. It is characterized by
an orderly, planned process of installing an effective
operational training capability to support all of the
training needs of the organization in an economic,
efficient manner.

The scope, complexity and depth of penetration of
a specific ADP Training System is dependent on the
size, complexity and needs of the specific organizatiun
for which it is intended. In any case, to some extent
it always includes three functions:

(1) Planning;
(2) Development;
(3) Implementation.

Planning-This function includes determination of:
the organization's training needs; the resources avail
able to support a training program; and the con
siderations and constraints that must be taken into
account in developing and implementing the ADP
Training System. The function's outputs are a set of
planning documents that define: the objectives of the
ATS; its scope and content; its probable cost for
development and operations; and the estimated time
frame for development and operation of the ATS.

Development-This function includes: definition of
the individual training courses required; setting devel
opment schedules; selection or development of course
materials. The function's outputs are: a program
implementation schedule; instructor's guides; student
materials; class schedules, class announcements and
other ancillary materials.

Implementation-This function includes: adminis
tration and execution of individual courses; evaluation
of students, instruction, and overall system operation;
modification or re-direction of the system as needed.

PLANNING FOR AN ADP TRAINING SYSTEM

In order to do a creditable job of planning for an
ADP Training System, it is necessary that the plan
ner have a reasonable understanding of the goals,
activities and organization of the company or agency
for which the ATS is intended. The normal investi
gative and analytical techniques used in any system
study are applicable to this problem. Once the orga
nization itself is understood, the ATS planner can

move toward definition and documentation of the or
ganization's training needs and objectives.

The fundamental goal of training in any organiza
tion is, or should be, to improve performance on the
job. Specific, more detailed, objectives flow from this
goal. Any departure from this goal will necessarily
result in a decrease in the cost/effectiveness of the
system. Courses of an academic nature, while useful
in the long range, do not necessarily support the orga
nization's operational objectives and are, therefore,
difficult to justify. It is more cost/effective to encour
age individuals with academic interests to pursue
course work at a local college or university.

Training, within the operational organization, for
both technical and non-technical personnel should be
oriented to specific job functions and particular ADP
applications. With this strategy, both management
and employees can better understand the value of ADP
training: management can more easily evaluate the
financial investment in terms of increased personnel
productivity and the ability of personnel to handle
increased responsibilities; employees can more readily
accept the training as a vehicle for improved perform
ance on the job, self-development, career enlargement,
and professional growth.

In addition to satisfying the basic goal of improved
job performance, an ADP Training System should be
tailored to meet the special needs of the organization,
including: selection of topics to relate the instruction
directly to the installed or anticipated computer con
figuration; development of computer-oriented student
problems; off-hour or part-day scheduling of classes to
accommodate the regular workload of the students;
and, when appropriate, the development of case studies
based on actual experiences at the installation.

Planning for an ATS should also include considera
tion of factors that influence training costs. In the
authors' experience, appreciable cost savings can be
effected through implementation of training programs
on-site which allows use of installation-owned class
rooms and equipment for instructional purposes and
eliminates student travel expense and idle time. For
an on-site course, $50 per student for each instruc
tional day* appears to be an achievable goal for groups
of 12 or more. This number should be contrasted with
$75 to $150 a day per student at typical classes held
by manufacturers and producers of commercial semi
nars.

Some other considerations that bear on the develop
ment of a plan for satisfying the training requirements
of an organization faced with technological change,
relate to the training curriculum. First, training must
be implemented for all personnel categories involved
with the computing center or using its products. Such
training may range from a two-hour seminar for top
executives to a six month case study in systems analy
sis and design. Training should not be limited to tech-

':' Six classroom hours

nical professionals, i.e., analysts and programmers,
but should be extended to technician-level personnel,
i.e., coding clerks, computer operators, tape librarians
and so on, and to users, managers and executives. In
addition, each training course should be related to a
specific personnel category. Courses should be orga
nized as a progressive sequence of formal classroom
instruction, interleaved with practical OJT assign
ments as appropriate. Refresher and review courses
or short duration should be planned to provide techni
cal updates, answer questions regarding current op
erations and future plans, and to minimize the normal
tendency of individuals to drift away from established
systems and procedures.

The outputs of this developmental phase consist of
a set of planning documents, including:

(1) A statement of the objectives of the ADP Train
ing System;

(2) A description of the course content of the ADP
Training System;

(3) A summary estimate of the resources required
for the ATS including a cost estimate for each
maj or class of resource;

(4) A proposed schedule for the ATS;
(5) An outline and summary for each course in

cluding planned OJT segments. The documen
tation for each course should include:

-The behavioral objectives of the course.
-A profile of the typical target participant

including: prerequisite training and ex
perience; current work assignment; and
proposed work or job functions to be as
signed at the completion of the course.

-A topic outline of the course content.
-A description of the proposed instructional

methodologies for the course.
-A description of student materials.
-A proposed schedule for the course.
-An estimate of the resources required for

the course including a cost estimate for
each maj or class of resources;

(6) A plan and schedule for development and im
plementation of the ADP Training System.

The completed ATS planning package is presented to
management for review and concurrence. Any needed
revisions to the plan should be made before proceeding
to the next developmental phase.

DEVELOPING AN ADP TRAINING SYSTEM

Upon acceptance by management of the ATS plan,
the ADP Training System package may be developed
and documented. The major outputs from this activity
are:

ADP Training Systems 181

(1) The ADP Training System Catalog;
(2) Course announcements;
(3) Structured training course packages.

The ADP Training System Catalog is an edited
version of the approved ATS plan. It is in a form
suitable for distribution to prospective students. Pub
lication and distribution should be in accordance with
normal policies of the organization. Course announce
ments are extracted from the catalog as needed.

The structured training course package consists of
two major components: the instructor's guide with
its supporting materials and the appropriate student
materials. The basic instructor's guide is composed of:

(1) A narrative exposition of behavioral objectives,
content and instructional methodologies;

(2) A course schedule;
(3) A listing of student materials;
(4) A set of lesson plans which set forth a detailed

description of: instructor activities and in
structional aids; the instructional content of the
unit; lesson objectives; and student activities.

Appropriate student materials are developed or se
lected and procured, and are coordinated with the
instructor's guide.

IMPLEMENTING AN ADP TRAINING SYSTEM

Implementation of an ADP Training System con
sists of system administration and course presentation.
The system administrator need not be an educator or
teacher, but he should have a firm grasp of the objec
tives of training and of good administrative practice.
His functions are to: select or approve instructors;
announce courses in a timely fashion; administer the
student selection process; assure the availability of
needed facilities, materials and equipment; evaluate
overall system operation; and prepare appropriate
management reports.

Instructors should be selected from professionals in
the data processing field who have achieved a reason
able balance among technical experience, instructional
experience and communication skills. Experience has
shown that instruction in technical subjects requires
an unusually high degree of instructional talent which
includes not only a good background in the subject
matter, but also a high level of empathy with the
students.

It is important that the ADP Training System and
its constituent courses be properly announced and sup
ported to insure that all prospective students and
their supervisors are aware of the available training
opportunities and can have the time necessary to plan
for their attendance. Elements of the announcement
strategy include: letters from the chief executive re-

182 National Computer Conference, 1976

questing support of the training function by line man
agement; the early distribution of the ADP Training
System Catalog; briefing sessions for prospective stu
dents to explain the program or courses and to answer
their questions; course announcements through bul
letins or other communication media in the organiza
tion.

Each prospective student for each course should be
screened to assure that he satisfies course prer€qui
sites and that his post-training assignment will be
appropriate. In addition, the system administrator
should assure that each student's current work sched
ule has been adjusted to allow class attendance.

Effective training requires that students receive all
documentation appropriate to the subject matter. For
example, students training in hardware/software tech
nology should receive personal copies of appropriate
technical manuals; students in introductory courses
should receive text books written at levels commensu
rate with their capabilities, e.g., executives should
receive texts written at a general level. Other student
materials such as charts, diagrams, templates and the
like should be distributed as needed.

Audiovisual materials can be valuable instructional
aids. Such aids reinforce textual and oral presenta
tions and provide an enlivening change of pace. How
ever, such materials must be integrated with other
course activity: each audiovisual segment should be
both introduced, and followed up by the instructor.
The system administrator's responsibility in regard to
audiovisual support is to assure that both materials
and any required equipment are available when and
where needed.

It is important that administration of the ATS be
handled just as any other proj ect; therefore, the train
ing administrator should prepare periodic manage
ment reports regarding overall performance and ad
herence to budget.

In the authors' experience, classroom operation is
most successful when well structured and tightly
disciplined. In this approach, daily quizzes based on
outside reading assignments and the previous day's
class work provide a sharp focus on the instructional
content of the course. Each class session starts with
a quiz which is then corrected immediately in a proc
ess that provides the framework for discussion and
clarification of the previous session and reading assign
ment. The extensive testing is used primarily to re
inforce learning and to provide the students immediate
goals for learning. It is only secondarily used for
evaluating student progress.

As appropriate, many instructional methodologies
are used, including: oral presentations by the instruc
tor; audiovisual materials; laboratory exercises and
workshops; and outside reading or project assign
ments. The particular methodologies used in a specific
course are dependent on course content, course scope,
and the type and level of persons being trained.

A CASE HISTORY

This case history involves the ADP Training System
that was established for a large federal agency that
was upgrading its computer capability. Its second
generation equipment was being replaced by a large
third generation computer with advanced software
support and remote terminal and RJE capability. Im
plementation of the new system was contracted to an
industrial firm who provided on-site technical assis
tance, system development, computer center manage
ment and training. The implementation plan extends
over a five year period.

In the early years, the training plan was to provide
basic technological training and to develop an in-house
training capability. It is intended that the contractor
will gradually phase out as agency personnel become
capable of picking up responsibility. At the end of
five years, it is intended that the agency will be man
aging all aspects of its operational and training pro
gram.

The original plan called for training programs to be
set up for approximately 100 programmers and ana
lysts, 50 computer operators and support personnel,
350 terminal users and operators, and 150 executive
and middle management personnel. The initial train
ing period extended over approximately 18 months
ending in December, 1975. The original plan called
for approximately 500 days of instruction over this
period. The authors' company participated in a sub
stantial portion of the technical training of personnel.

Although the program was reasonably successful,
some areas of possible improvement are documented
for future reference. Such comments relate only to
segments of the program that were produced by the
authors.

At an early date, a master plan and schedule was
produced by the prime contractor and accepted by the
agency's management. This plan had a reasonable
array of courses scheduled in progression from basic
to more advanced training. The authors' company was
engaged as a subcontractor to produce courses to meet
the plan's specifications.

These courses dealt with four training areas:

(1) Systems programming;
(2) Programming languages;
(3) Operator training;
(4) Terminal user training.

The systems programming training consisted of
thirty instructional days presented over a four month
period. This schedule permitted students to attend
class part-time and to perform their regular assign
ments during out of class hours. The instructional
goals were met, but not without difficulty. The stu
dents' job assignments imposed a heavier and heavier
burden as the application conversion program pro
ceeded. Additionally, the four month time frame

tended to dilute the instructional impact of the course.
A better result would have been attained by organizing
the content of the course into two or three courses of
shorter duration.

The courses in COBOL, FORTRAN and JCL were
only partially successful. Although the courses were
announced with appropriate prerequisites, no signifi
cant controls were exercised over attendance. As a
result many students did not meet the prerequisites
and had great difficulty with the course. Additionally,
many students lacked any real job-connected objective
to be met by this training, that is, neither current nor
prospective job assignments required use of the knowl
edge and skills to be attained by successful completion
of training. The presence of a substantial number of
such individuals in these courses seriously compro
mised the effectiveness of the training.

The objective of the three day operator training
course was to indoctrinate second generation computer
operators and production control personnel with third
generation ADP system concepts. The presence of
production control personnel in this course presented
some difficulties since, in contrast to the computer
operators, they had little prior ADP training. In any
case, training for computer operations personnel is a
complex problem, because such personnel represent a
wide range of interests, backgrounds and capabilities,
and frequently lack the motivation and study skills
needed for mastery of complex technical subjects.

Terminal user training, presented in a four day
course, was quite successful. The course, intended to
introduce administrators and professional personnel
to the use of remote terminals to access an inter-active
programming system and an on-line data base manage
ment system, was of sufficiently short duration so that

ADP Training Systems 183

student interest was easily maintained. Since this was
an introductory course, the divergent backgrounds and
objectives of the students did not constitute a severe
problem; however, in the future, the course outcomes
could be improved by grouping individuals with simi
lar interests into separate classes. In this way, both
the instructor's presentation and the workshop ses
sions which are an integral and important part of- this
course could be more specific to each group's interests.

Many of the problems encountered in producing the
courses discussed above, flowed directly from a lack of
strong, sustained management interest. At the begin
ning of the program it was recognized that an in
house training capability was required. Four full-time
agency people were initially assigned to the program;
however, after a short time, management decided that
those individuals were needed elsewhere and the in
house training function was abandoned.

This shortfall in management interest was strongly
felt, since the training courses that made up the pro
gram were provided by four different organizations.
Lacking strong program administration, each provider
interpreted the plan in its own way and handled its
part of the program in its own style. The overall effect
was that the benefits realized from this ADP Training
System were less than might have been reasonably
expected.

Nonetheless, much about the ADP Training System
was right: the organization's training needs and ob
jectives were properly defined; a realistic and effective
training plan was documented; a large number of good
training courses were developed and implemented.
The shortfalls in the student selection process and in
program administration should not be allowed to ob
scure the very real benefits produced by this ATS.

Teaching art through computer graphics

by JOSEPH SCALA
Syrf).CU.':!f! Uni'l)f!r.':!ity
Syracuse, New York

ABSTRACT

The computer is becoming an important tool for the
production of works of art. Art students are becom
ing increasingly interested in tapping the potential of
the computer in the area of static and animated
graphics. This paper deals with my personal experi
ence in teaching art through computer graphics, at
Syracuse University, to art majors and students from
other academic disciplines.

A very exciting experience for me in the past two
years has been establishing a computer art division
within the department of Experimental Studies in the
College of Visual and Performing Arts at Syracuse
University and teaching a number of very enthusiastic
students from a number of different academic back
grounds.

Students have access to the Syracuse University
Computer Center, with the following hardware: an
IBM 370 computer, the DEC-10 system with 128K core
and a VB10-C display, two high speed line printers,
six ADDS CRT terminals, 100 DEC writer terminals a
14 inch Cal-Comp drum plotter and a 33" Cal-Co~p
drum plotter with three pens. Students may use these
facilities in conjunction with the university's video,
film and animation studios. Art and science students
have accepted the computer as a viable tool for the
creation of art. Not all students have reacted posi
tively, but the vast majority of students discovered a
positively fantastic environment to create in, bringing
together the blissful marriage of art and technology.

The computer may be the universal tool, not only a
device for scientific and engineering progress, but a
tool for artistic progress as well. The computer is
malleable, like clay, making it a perfectly applicable
medium for manipulation by artistic minds and hands.
Naturally, the digital computer alone cannot create art.
Artists need hardware and software they can under
stand. Fortunately, there have been a number of
ingenious software systems designed for them. The
two principal systems that most of my students use at
this time are MINI-EXPLOR and PSPLAT.

MINI-EXPLOR was created by Ken Knowlton and

185

the name EXPLOR stands for the production of images
from Explicit Patterns, Local Operations and Random
ness. MINI-EXPLOR is a FORTRAN coded version of
the EXPLOR language which allows the student to
become familiar with many of the FORTRAN lan
guage subprograms and other FORTRAN details from
a graphical point of view. The paper output is 132
spots wide by 140 lines long. The display output is
1024 points x 1024 points using run length vectors
which are multiply interlaced. * Each individual image
can be produced as many times as the artist wants and
each individual point or area of points can be changed
explicitly or changed randomly by the student's pro
gram. There are also subroutines which allow for
growth and combination patterns. The graphic output
produced on unlined white paper is immediately
suitable for framing and editions can be run off in a
matter of minutes. In addition, other media such as
paint, pastels, different colored line printer ribbons
and photography can be combined with the graphic
output to bring the images into yet another visual
plane. Taking a photograph of the printer output
image, developing the negative, making a kodalith
from the negative and applying that to the production
of a photo-silk screen, photo-lithograph or photo-etch
ing have produced dramatic and colorful prints.

Images generated on the display can be filmed in
single frame to produce an animated sequence. The film
can then be placed in a film chain in the television
studio and these images can be manipulated through
the special effects generator, resulting in a color video
tape which can then be kinescoped if desired.

Some students prefer to generate sequential images
on paper output and single frame each image in our
animation studio using the Oxberry animation stand.
The advantage of this technique is that the artist can
add hand-done animation to the computer graphic,
adding other media and images as well as color, giving
surprisingly unusual results.

MINI-EXPLOR produces output in four level grey
scale. The total grey scale in a single image is easily

':' Rather than the conventional video scan-line ratio of 1 to 2,
this system uses a ratio of 1 to n.

186 National Computer Conference, 1976

separated into three images containing one grey level
each, with a simple program, allowing the student to
add optical color through filmic techniques to his or
her animated Requence~

In addition, MINI-EXPLOR designs are beautifully
suited for making rugs, weavings, textiles, needle
points, collages, and relief sculpture.

I have found that in the beginning of my course
those students who have a background in FORTRAN
and mathematics, usually the computer science and
engineering students, are able to produce more inter
esting designs with greater facility than the art
students, who usually have not more than one year of
high school algebra and no programming experience.
Eventually, there is a leveling off point and then art
students begin to excel.

In the second semester of the course art students
reach a point where they can begin to use the language
effectively enough to establish a personal style. With
MINI-EXPLOR this often requires the creation of the
student's own subroutines and the delineation of a
clear and purposeful aesthetic concept. Even then the
imposed stylistic format of the software gives the work
a certain 'EXPLOR' character but this becomes less
important if the concept is strong. The hardware also
contributes a stylistic character to the output but the
artist is free to mix media and in this way, if he or
she wishes, can effectively eliminate any reference to
the software or the hardware to suit the aesthetic
concept.

Two other factors that students can capitalize on
when using MINI-EXPLOR are the built in random
number generator and the 'expand' program which was
written by David Carr, a computer science major, at
Syracuse University. First, the random number gen
erator activated by the MINI-EXPLOR function NE
(Min., Max.) used in a program can lead to interesting
designs not necessarily predictable in advance. Here the
art comes in by making the right choice of what works
and what doesn't work in the final image. Chance has
often played an important role in artistic creation and
can be used as a valid parameter in creating a work of
art.

Second, the 'expand' program enables the student to
enlarge his or her line-printer image to any propor
tional size by joining the side edges of the standard
line-printer paper together for the increased width.
The only limiting factor is how much paper is avail
able. This property adds an exciting new dimension
to the MINI-EXPLOR system and to computer graphic
art in general. One advantage of our MINI-EXPLOR
system is that for a non-real time system, it is fast on
returning images. This is very important in teaching
traditionally trained art students who aren't used to
waiting around to see what they have created. Using
TTYOUT, the DEC-writer terminals return the hard
copy image almost immediately so the art student can
make the necessary visual critique of the work and

proceed to modify the results through further pro
gramming or by hand. Designing on a display is even
faster, waiting on line for over an hour for a printout
is very bad and quickly discourages the creator~

I have found that art students who enjoy writing
programs tend to stay with MINI-EXPLOR and desire
to delve deeper into how the total system works from
a programming point of view. MINI-EXPLOR mo
tivates art students to want to create their own lan
guage for their own personal visual statement and
gives science students an opportunity to apply his or
her previously acquired programming skills for a
purely aesthetic purpose. The science and engineering
student is able to create visual images, using a familiar
medium which relates directly to his educational and
personal experience, without spending long amounts
of time trying to master a traditional art skill which
requires the traditional art talent. By this method the
aesthetic experience has a direct transfer to the stu
dent's daily technological involvement.

MINI-EXPLOR is also an excellent software system
to teach FORTRAN programming graphically to
anyone.

PSPLAT is a FORTRAN program written by
Richard H. Blocher of Washington University, St.
Louis, Missouri, and more or less simulates another
program, SPLAT, which was written for artists by
John E. Skelton and Daniel J. Donohue at the Uni
versity of Denver. SPLAT stands for Simplified Pro
gramming Language for Artists.

PSPLAT (poor man's SPLAT), is a simple non
numeric computer language which is an excellent soft
ware package for introducing art students to computer
graphics and should be used as an introductory course.
The language uses statements composed of words
which the artist can understand in terms of non-tech
nical language. Everything is categorized by com
mands under headings like Creation, Manipulation,
Looping, Branching, etc. which eliminates the need
for the art student to go through tedious programming
details. The output is principally by cal-comp plotter
but we have output on our display as well, and this
system has animation capabilities. We run PSPLAT
by batch on the IBM 370 computer and MINI-EXPLOR
on the time-sharing DEC-I0 computer. This gives the
art student the experience of using both types of
systems. With PSPLAT the art student is working
with a pre-defined symbol, such as a circle, square,
polygon or line and draws and manipulates these sym
bols by writing a program, which is closer in concept
to the way a traditional drawing is made. The art
student can often visualize his or her final design in
his or her 'mind's eye' making the process very com
fortable for the student and a friendly rapport is
established quite rapidly between the person and the
machine.

In many cases the designs generated with PSPLAT
are extremely complex and would have taken much

more time if they had been executed by hand. The
creator is thereby freed from doing the "vork and has
more time to devote to thinking about developing new
concepts for design possibilities. What often results
is that the final images would not have been possible
using traditional media.

I call PSPLAT a closed system because it doesn't
lend itself easily to change by adding additional sub
routines. MlNl-EXPLOR, on the other hand, is an
open system and encourages the addition of sub
routines.

What is remarkable about using PSPLA T is that
art students have been able to develop individual styles
fairly quickly and neither the software nor the hard
ware has greatly hindered this stylistic development.

As I mentioned before, art students who turn on
to programming in FORTRAN and get aesthetic satis
faction out of the programming challenge continue
working with MlNl-EXPLOR. Students who prefer
a more traditional output continue with PSPLAT,
and some art students choose to work with the system

Figure I-David Cox, "Pouring In and Out," 14" x 20", photo
etched intaglio, PSPLAT, IBM-370, Cal-Comp Plotter.

Teach Art Through Computer Graphics 187

which can best provide the desired results for their
aesthetic concepts.

The limitations of the software and hardware have
not greatly hindered the development of individual
style and the results can or cannot have a computer
made look, depending on what the artist wants. All
media and materials impose certain limitations on
the artist in the same way that the computer does.
Whether the visual images generated by a computer
S~Tstem 'tllill ever constitute a major art movement
remains to be seen. But when the artist transcends
his media and materials with his unique personal
vision and strikes human chords of sensuality, existence
and human essence, we get art. I believe a number of
my students have created art with the computer and
this strengthens my belief that the computer is the
most important technological achievement that has
been made for the arts and will affect the course
of art greatly in the future.

There is still much to be done in terms of hardware
and software for the arts. Computer systems have to
be designed to respond with greater sensitivity to
the artist's sensitivity and expectations. I believe, at
this time, that the major interest in computer graphic
science is in the area of moving graphics for film and
video, but static art is still the major movement in
the art world and computer graphic science can con
tribute greatly to the future of static art images.

Artists are always searching for new forms and new
ways to express their visual concepts. To use the
familiar pleases the masses and saddens the individual.
I believe the computer has the potential to provide new
ways for the artist to create new forms, and I am
looking forward to the computer becoming a standard
studio tool for the creators of the visual image.

Figure 2-Ella Mears, "Eyes," 10" x 10", PSPLAT, IBM-370,
Cal-Comp Plotter.

188 National Computer Conference; 1976

REFERENCES

Blocher, Richard H., PSPLAT, Washington University, St.
Louis, Missouri.

Donohue, Daniel J. and .Tohn E. Skelton; SPLA.T-A. Computer
Language fOT Artists, University of Denver, Denver,
Colorado.

Knowlton, Ken, MINI-EXPLOR-A FORTRAN-Coded Version
of the EXPLOR Language lor Minic01nputers, Bell Labora
tories, Murray Hill, Xew Jersey.

Figure 3-David Cox, "Great Multiple Circles," 10" x 18",
PSPLAT, IBM-3iO, Cal-Comp Plotter.

Figure 4-David Cox, "Cosmo," 10" x 12", PSPLAT, IB~:1-370,
Cal-Camp Plotter.

Figure 5-Susan Sirkus, "Woven Tapestry," 20" x 36", DEC-10,
After EXPLOR lineprinter graphics, five colors, wool.

Figure 6-Don Leich, "After Mondrian," 14" x 18", MINI
EXPLOR, DEC-10, lineprinter.

Figure 7-Don Leich, "Where Am I Going-Where Have
Been," 14" x 18", MINI-EXPLOR, DEC-10, lineprinter.

Figure 8-Ella Mears, "Crazies," 101! x 10", PSPLAT, IBM-370,
Cal-Comp Plotter.

Teaching Art Through Computer Graphics 189

Figure 9-Bruce Maccurdy and Joseph Scala, "Strutting
Through Computer Space," 8" x 10", mixed media, EXPLOR,
DEC-10.

Figure 10-J oseph Scala, "Exploring II," 40 %" x 5214 ",
EXPLOR, DEC-10, lineprinter, acrylic paints.

J. _. _.. •

ArtIsts ana compUlers

by PATSY SCALA
State U"ni-versity of }J ew Y o·r'k
Oswego, New York

ABSTRACT

This paper deals with the use of computers by artists
as a means of aesthetic expression, considers several
theories of the validity of art created through the
assistance of computers, and discusses the author's
personal reasons for beginning to use the computer
as an artistic tool.

Sometimes, in the eyes of the uninitiated public,
there is a vast dichotomy between artists and persons
who use machinery, particularly electronic machinery
such as the computer. Artists, according to public
opinion, are intuitive, somewhat irrational, almost
always illogical, often slightly eccentric, and create
by some internal inspirational force, some muse,
which takes the artist by the hand and leads him or
her to the ecstasy of the act of creation.

Scientists, and especially those scientists who work
with computers, are often considered to be highly
rational, totally logical, definitely non-eccentric. Com
puter scientists create through a completely intellectual
comprehension of the tools with which they work, with
inspiration a folly to be tossed at the artist.

Contrary to popular opinion, and quite fortunately,
none of this is true. At least, none of it is entirely
true. Sometimes artists create with a high degree of
logic and intellectual rationality. Often the work done
by computer scientists, even in the writing of new
programming languages, borders on conceptual art.

In reality, there are few differences between artists
who use computers and computer scientists who use
computers, except in the intent of the user, and in the
knowledge of the software and hardware being used.
Computer scientists use the computer to solve pre
viously insoluble problems, to do mathematical model
ing, to illustrate phenomena which could not be il
lustrated in any other way-for a multitude of
scientifically necessary reasons.

But why do artists use computers?
Throughout the history of art, the artist has sought

new means for expressing ideas. Many of the ideas
expressed through art, and. the tools used in the ex
pression of these ideas, have been direct reflections
of the existing ideas and tools in the society in which

191

the artist lived. Take Michelangelo for example. If
he were living in this country today, he would probably
have painted "The Creation" on the walls of the 'Vhite
House instead of on the ceiling of the Sistine Chapel.
Only it wouldn't have been "The Creation." It would
have had a Bi-Centennial theme.

Paint itself, long taken for granted as a tool for
artistic expression, was at one time many centuries
ago, a new technology.

So the artist adapts.
Today we live in a highly technological society. We

have quietly gone out of the Age of Machinery and
discovered ourselves plugged into the Age of Elec
tronics. Everywhere we look, we are surrounded by
the ramifications of the two most pervasive electronic
devices ever created: television and the computer. The
influence of tele~ision is more apparent to persons in
the general public; approximately ninety-seven percent
of the homes in the United States have at least one
television set. In fact, our country boasts of more
television sets than toilets. It has become, for the
masses, an accepted medium, and a very visible one.
For this reason, it is non-threatening to a person in
the general public, although, for the intellectual elite,
it is often a very real problematic threat. The entrance
of the computer into the lives of Americans has been
more subtle. To the uninitiated, the computer is a
techno-monster which messes up bank statements, puts
erroneous amounts of money onto paychecks, and gen
erally terrifies the mass public, who see it as a machine
which could ultimately overthrow humanity.

It is, of course, none of these. The computer, pro
grammed by persons who know how to do so without
error, is one of the most important tools of learning
that has ever been invented. It can, essentially do
anything the intelligent programmer wants it to do.

An artist living in this highly technological, elec
tronic world has basically two choices as to how he or
she will handle aesthetic expression. The artist can
either choose to ignore these new electronic tools, and
deal only with traditional tools of art, thus making
the statement that electronic means of artistic expres
sion are invalid and anti-art. Or the artist can choose
to use these tools in an attempt to create thus-far

192 National Computer Conference, 1976

totally new imagery, or in an effort to prove that
electronic technology can indeed be humanized.

It is my feeling that the artists who are currently
tackling the new technologies to create art are making
the most significant contribution to the world of art,
despite the fact that most art critics disagree with this
theory.

Poet T. S. Eliot, in an essay entitled "Tradition and
Individual Talent," offered a definition of art which
stated that a work could be considered art if it, first
of all, fits into some prior tradition of art, and sec
ondly, if it adds something new to this tradition which
significantly changes the tradition of art.

Artists who ignore the computer and television are
fitting into the established tradition of art; through
ignoring the technologies with which we live, however,
they are adding precious little to this tradition.

Artists who are using the computer to create aes
thetic statements are obviously adding something new
to the tradition of art, not only through the types of
imagery they are able to achieve, but also through
the use of a totally new tool. And contrary to the
arguments of many artistic traditionalists, computer
artists do fit into the general tradition of art. Static
computer graphics have a parent in painting; still
graphics can be judged aesthetically by the same
standards that static art has been evaluated through
the centuries. Animated computer art also has a place
in the general tradition of art. First of all, good com
puter animated art, whether it is implemented in film
or video, also fits into the tradition of painting, since
each single image in a computer animated piece is
carefully composed, utilizing juxtapositions of color,
form, perspective and planar relationships. Computer
animated art also fits into the tradition of film, and,
through its often mathematically choreographed imag
ery, into the tradition of the fluid movement of music,
albeit visualized music.

The field of computer art is still too new for a solid
aesthetic to have been formed, stipulating which com
puter-assisted art is truly art and which is merely
interesting experimentation. Some basic ground rules
can, however, be stated. First of all, the intent in the
creation of the work can be considered. If a person
manipulating computer imagery intends to create art,
his or her work must at least be considered for artistic
judgment. If, in addition to this, the finished computer
assisted art presents to the viewer imagery which is
new, unconventional and visually interesting, it de
serves further consideration as art.

Also, in the art world, it is common knowledge that
if other artists accept a piece of art as aesthetically
valid, it takes still another leap toward being seriously
considered art. If, therefore, artists relate to a piece
of computer-assisted art, it has gone one more step
toward qualifying as art.

Problems do arise, however, in evaluating computer
assisted art. Although some artists using the computer

have a strong understanding of the internal operation
of computer hardware and software, there are many
more who do not and who are, therefore, compelled
to create their art in collaboration with a computer
scientist or programmer. This in no way invalidates
the value of the art, although, in the communication
process between artist and computer scientist, many
difficulties in language must be overcome. For ex
ample, an artist might say to a computer scientist,
"I'd like a piece of film which bursts forth from an
epicenter, then moves around in circles for a few
minutes, then swirls across the screen in something
that looks like a tornado." How does the computer
scientist translate this into a viable programming as
signment? With difficulty. But it can be done, and
often the results are far more striking than if the
artist had manipulated the imagery alone, since the
scientist can add his or her own knowledge of what
can be done with the computer, thus adding dimensions
that the artist might never have conceived alone.

Another parameter to consider in discussing com
puter art is the fact that some of the most aesthetically
beautiful computer-generated imagery has been pro
duced by scientists as an offshoot of their scientific
inquiry. Since the intent in the creation of this
imagery was not to create art, it probably cannot be
considered art. But increasingly, as computer scien
tists see the beauty, as well as the scientific validity,
of the output they produce, these scientists are making
choices that certain of their images are indeed artisti
cally valid, and therein enters the intent to show art.

What seems to be happening is that artists using
computers are becoming more knowledgeable in the
field of computer science, and computer scientists are
becoming more aesthetically aware. Soon there may
be a point at which computer scientists are computer
artists, and computer artists become competent pro
grammers.

My personal involvement in computer-assisted art
arose as an offshoot of my work in video. I discovered
that, using video alone, I was unable to obtain the types
of imagery I visualized. The computer gave me a new
means of creating visual input for my video tapes. I
personally have chosen not to use straight computer
animated input for my video tapes; in order to produce
the imagery I envision, I utilize computer input on
film, then do video-graphic manipulations on this
imagery. Some of my finished pieces retain the quality
of the original computer-animated input; others have
been so manipulated through video techniques that
they no longer retain the look of computer graphic
animation.

Whatever techniques artists choose to use in their
manipulations of computer graphic art, it seems that
the computer has become one of the most useful tools
available today to the artist who is in tune with his or
her times.

Illustration I-From SCOPE I, videotape by Patsy Scala. In
this piece, fewer videogl'aphic manipulations were introduced in
converting the analog computer imagery to video. The \york
retains much of the original quality of the original computer

animation.

Illustration II-From SCOPE II, videotape by Patsy Scala. In
this piece, composed of analog computer generated imagery, the
videographic manipulations do not obliterate the "computer

look" of the piece.

Artists and Computers 193

Illustration III-From WIPEPOEM, videotape by Patsy Scala.
In this piece, red, green and blue refracted laser light was dis
torted by analog computer voltage and videographic manipula
tions. The piece retains little of the look of computer animation;
yet it can be judged compositionally by the same standards that

traditional paintings are judged.

Illush'ation IV-From 'YIPEPOE:vI, videotape by Patsy Scala.
Again, the analog distortion of laser light, and three levels of
videographic manipulations leave the finished piece with little of

its original computerized quality.

194 National Computer Conference, 1976

Illustration V-AZTEC I, by Joseph Scala. This piece, gen
erated through Kenneth Knowlton's EXPLOR system, was hand

colored by the artist to giYe it the look of Aztec tapestry.

Illustration VI-EXPLORING III, by Joseph Scala. This large
painting, done on computer printout paper, was based on
Kenneth Knowlton's EXPLOR program, yet the addition of
paint gives it a very different character from typical computer

art.

Illustration VII-From \YIPEPOEM, videotape by Patsy Scala.

The digital component of the circle graphics habitat

by THOMAS A. DEFANTI
"liniversity of Illinois at C~hicago Circle
Chicago, Illinois

ABSTRACT

This real-time interactive computer graphics system
derives from the author's dissertation1 at the Ohio State
University (National Science Foundation Grant GJ-
204, Charles A. Csuri, project director). The system,
called "The Graphics Symbiosis System" or "Grass"
was first designed to help artists interactively explore
computer art without the constant companionship of a
programmer. Over the past three years, it has been
expanded at the University of Illinois at Chicago Circle
(Figure 1) and is now the image generation portion
of a short-order full-color animated videotape produc
tion facility called "The Circle Graphics Habitat."
Combined with Dan Sandin's Image Processor, the
system2

,3 is sufficiently powerful and flexible to be used
in real-time performance context1 here at UICC.

INTRODUCTION

The hardware is a standard PDP-11/45 computer with
a Vector General 3DR display scope. In addition, we
have a data tablet, thirty channels of analog input

Figure I-The Grass user's console

195

devices (dials, slide potentiometers, joysticks, etc.) and
several channels of analog output (built by Larry
Leske) to driVe the Image Processor.

Primary inspiration for the structure of the lan
guage was the DECsystem-10 operating system and its
text editor TECO, and Ron Baecker's animation system
"GENESYS."5 About ten person-years of program
ming effort up to now has resulted in about ten thou
sand lines of code in assembler. Persons primarily
responsible for implementing the software will be
identified by their initials as we progress: Tom
Chomicz (TC), Dean Daniele (DD), Tom DeFanti
(TD), Mike Dearing (MD), Nola Donato (ND),
Manfred Knemeyer (MK), Gerry Moersdorf (GM),
T. J. O'Donnell (TO), Ralph Orlick (RO) and Bob
Rocchetti (BR). Gerry Moersdorf was responsible for
about half the code in the Ohio State implementation.
Grass currently has six running installations.

This paper will communicate the program structure
of Grass. It would be good, however, to first describe
briefly what is expected of the system by university
authorities and users. The system, with the Image
Processor, is used by professors, instructors and ad
vanced students in preparing animated educational
materials in less than geological time. Educational
animation makes demands on a system which are
computationally and conceptually more complex than
standard plotting. The system has to be both easily
learned and powerful enough for use by expert pro
grammers in animations like continental drift or a
dynamic explanation of how television works. A
friendly review of the Circle Graphics Habitat may be
found in Reference 6.

Educational animation systems are exciting to de
velop but not always as much fun to use. Educational
animation is rarely free and loose. Fortunately, to
continue the good feeling of pure, uncompromised cre
ation, we now have an annual event in April which,
like a faculty recital in music, is a performance, but
of animated 3-D images and color image processing
along with live music (Figures 2 and 3). We believe
that jamming on equipment like this demands more
from the human engineering side of design than ordi
nary real-time graphics. More on the philosophy of

196 National Computer Conference, 1976

Figure 2-A still from 'Peano Boogie' by Sandin, Morton and
DeFanti, a live performance. Colors are sky blue, raspberry

red, lemon yellow and mange orange

the Circle Graphics Habitat may be found in Refer
ence 2.

For the technical discussion that follows, it is as
sumed that the reader has knowledge of interactive
graphics to the level found in Newman and Sproull.7

TECHNICAL DESCRIPTION OF THE
GRASS LANGUAGE

Grass has two essential types of primitives: com
mands and pictures. Commands are kept as ASCII
strings terminated by carriage-returns. Pictures
(often called "sub-pictures" in the literature) are user
defined displayable lists of 3-D absolute vectors com
piled into binary code acceptable by the Vector General
display direct memory access processor. On disk, both
commands and pictures are normally kept as ASCII

Figure 3-A still from 'Wednesday Night Spiral' by Sandin
and DeFanti, a live performance

strings (we always wanted to be able to read what
was on the disk). Both commands and pictures in
Grass are higher-level primitives, and this concept is
essential to the design of the system. In addition, both
may be broken down into the lowest level cornponents
if desired (Le., ASCII characters and x, y and z end
points) and both may be grouped into hierarchies
whose elements have much the same behavior as the
primitives themselves. The user first learns the com
mand primitives like ROTATE, MOVE and SCALE
to manipulate graphical images. Non-programmers do
not have to think of images as endpoints or manipulate
instructions as individual characters. This differs con
siderably from the approach taken in typical FOR
TRAN graphics packages where the user is assumed
to be an expert programmer.

USE AND CONTROL OF PICTURES

Pictures in Grass have user-assigned names and are
displayable lists of vectors prefixed in core by a control
block. The user indirectly communicates with the con
trol block for each picture by using commands like
ROT ATE, MOVE and SCALE rather than by setting
bits. At interrupt level, the system updates and writes
these control blocks out to the display's internal regis
ters which drive the hardware features of the display
(see Reference 8 for a complete description of the
Vector General Scope). Updating of the control blocks
is done at programmed interrupt level six and the
vector display is done by direct memory access over the
UNIBUS. The maximum number of pictures concur
rently displayed is an assembly feature, presently set
to sixty. To the user, all pictures are effectively pro
cessed in parallel. The commands that set up to use the
hardware are:

MOVE PIXN AME,x-DEVICE,y-DEVICE,
z-DEVICE

Translates picture named "PIXN AME" to current
values of the X-, y-, and z-DEVICEs until disabled
(that is, the command has to be issued one time
only, but any time the DEVICEs are changed, the
update is done automatically). A DEVICE is
defined as either an analog input device or an
integer variable. Example: MOVE TITLE,D2,
D3,D4 moves the picture "TITLE" on dials 2, 3
and 4.

SCALE PIXNAME,DEVICE

Scales all three dimensions of the picture on
the DEVICE until disabled. Also available are
SCALE/X, SCALE/Y and SCALE/Z which scale
in individual axes. Example: SCALE/X CIR
CLE,A scales the circle horizontally on variable A.

SETINT PIXNAME,DEVICE

Sets the intensity of the picture to be continuously
variable on the DEVICE until disabled.

SETCUT PIXNAME,DEVICE

Sets the z-axis depth cueing and z-axis cutoff fea
ture of the scope until disabled.

The system hardware excels at rotation. Con~e

quently, the ROTATE command, a very high-level
primitive, has many options:

ROTATE PIX,AXIS,SPEED-DEVICE

Gives simple rotation about the x, y or z axis
(specified by AXIS) at a constant speed of rota
tion determined by SPEED-DEVICE. If angular
position rather than speed is desired, ROT ATE/D
is used for this and all the following ROTATE
commands. (By MK and DD.) Example: RO
TATE TETRA,Y,K rotates "TETRA" around the
y-axis using variable K for the speed of rotation.

ROTATE PIX,AXIS,SPEED-DEVICE,
TILT-DEVICE

This rotation uses the second DEVICE to control
the angular position of the axis of rotation in the
plane through the origin perpendicular to the
AXIS specified. It is a strange rotation to describe
on paper but it is a highly useful rotation for
interactive use. (By MK and DD.)

ROTATE PIX,AXIS,SPEED-DEVICE,
TILT-DEVICE,X-DEV,Y-DEV,Z-DEV

This rotation gives arbitrary origin rotation capa
bility. It tends to produce elliptical rotations, the
backbone of complex animated sequences (as in
Disney's Fantasia). Again, it is non-intuitive and
requires feedback to use. (By MK and DD.)
Example: ROTATE COPTER,X,DO,Dl,D2,D3,D4

ROTATE PIX,7,SPEED-DEVICE,XI-DEV,
YI-DEV,Zl-DEV,X2-DEV,Y2-DEV,Z2-DEV

The "seven-dial" rotate allows the user to specify
the endpoints of an arbitrary axis of rotation. It
is the rotation preferred by programmers describ
ing scientific phenomena in terms of rotation.
(By TC.)

ROTATE/X PIX,DEVICE
ROTATE/Y PIX,DEVICE
ROTATE/Z PIX,DEVICE

Digital Component of Circle 197

These rotations are compounded with any of the
above rotate commands to produce more complex
effects. Grouping of pictures allows further com
pounding of transformations.

PATHMOV PIX,PATH-NAME,SPEED-DEVICE

This command tangentially moves the PIX along
a PATH (which is simply any picture~ displayed
or not) with the given speed. It is basically an
extension of Baecker's p-curve.5 (By TC.)

These commands stay in force and cause constant
updating to the values of the DEVICEs until disabled
by the FIX or RESET commands. None of the above
commands actually change the vector list since all the
functions are done by the hardware.

Many commands do, however, change vector end-
points. The most used ones are:

SMOOTH-does a binomial smoothing of a vector
list (BR).
PERSP-does perspective projection (TC).
CLIP-clips one picture against another (like film
matting or video keying) (TC).
WINDOW-does normal 3-D windowing (TC).
SHADE-shades in outline with vectors (BR).
SOFT--carries out the hardware transformations
on the vectors by software (DD).

The precise syntax of these commands is contained
in the on-line HELP file, a copy of which may be had
on request.

As is usual with sophisticated refresh graphics sys
tems, the pictures appear to be parallel processed. They
are controlled in parallel by turning dials (which are
polled at interrupt level 30 times a second) or by
manipulating variables. The user can also get at the
individual endpoints of pictures with the GETPOINT
and ZAPPOINT commands, build pictures with the
PUTPOINT command, or draw them in using the
tablet or other digitizers. (There is also complete
software for text appearing on the Vector General (by
BR and TO».

In addition, the user can group pictures together and
create a tree structure hierarchy of control on these
grouped pictures. Pictures are grouped for convenient
reference, and the groups respond to all the hardware
transformation commands just as pictures do. Most
often, the GROUP command is used to create multiply
articulated structures like Professor Csuri's airplanes,
helicopters and witches on propeller-driven broom
sticks9 as well as very complex rotations and trans
lations. Grouping may be carried on to 59 levels (the
same assembly feature as before). Note that the user
does not have to know about tree structures, lists and
pointers to use any of these commands because the
system housekeeping does all the chaining. For knowl
edgeable users, the TREE command gives a schematic

198 National Computer Conference, 1976

of the hierarchy developed. A two hour-long videotaped
lecture describes the internal workings of the system
algorithms. 10

Storage allocation (by TD and ND) is by a "best-fit"
algorithm. About 10K of 16-bit words is available to
the user for vectors, text, command strings and disk
resident command modules. Many Grass commands,
especially user aids like TREE and software trans
formations like PERSP, SHADE and CLIP are not
core-resident. Code (by GM and RO) automatically
fetches the appropriate modules into core and executes
them. They are automatically deleted. When done, the
total overhead amounts to about a tenth of a second.

Garbage collection (by TD and ND) dynamically
tries to maintain large blocks of storage. It is called
by the user commani "DELETE" or automatically
invoked by system housekeeping whenever appropriate.

As an example, a videotapell to illustrate that 3-D
rotations are not commutative (Figures 4, 5 and 6)
was done using the following code:

GETDSK BFLYI
COPY BFLYl,BFLY2
ROTATE/D BFLYl,X,Dl
ROT ATE/Y BFL Yl,D2

SETINT BFLYl,D3

ROT ATE/D BFLY2,D5
ROT ATE/X BFLY2,D6

SETINT BFLY2,D7

GETDSK3DAXES
GROUP 3DAXES,

BFLYl,SAM

ROTATE/D SAM,X,Sl,S2

(get butterfly from disk)
(make a copy)
(rotate on x axis)
(then compound with

y rotation)
(control intensity on

dial 3)
(rotate on yaxis)
(then compound with

x rotation)
(control intensity on

dial 7)
(get the axes up)
(group and call the

group "SAM" BFL Y2
gets in for free)

(rotate the whole thing)

Figure 4-The butterfly in its original position

Figure 5-The same butterfly rotated ninety degrees around the
x-axis and thp.n ninety degrees around the y-axis

Now, by turning dials 1 and 2 enough to get ninety
degree rotations about the x then y axis, the first but
terfly takes one position. Turning dials 5 and 6 enough
to get similar rotations about y then x axes, the second
butterfly goes to a different position. It is quite easily
seen that the two are not equivalent. That is, 3-D
rotations are not commutative. (Rotating the group
"SAM" allows the third dimension to be seen more
clearly. The intensity controls allow independent fad
ing of the two butterflies for clarity.) Given the exis
tence of the butterfly and the axes on disk, the entire
videotaped sequence took less time to produce (about
fifteen minutes-some of which was dedicated to aes
thetic judgment and color choice) than to describe.

Figure 6-The same butterfly at half intensity contrasted with
another butterfly rotated ninety degrees around the y-axis and

then ninety degrees around the x-axis

USE AND CONTROL OF COMMANDS

The foremost design criterion of the command lan
guage in Grass has always been habitability, a term
adopted12 which means the quality of a system that
makes it easy to learn and use. In many ways, the lin
guistics of graphics languages are quite unnatural for
describing animation and many people do much better
by waving their hands. On the other hand, the power
of linguistic structures is undeniable, especially when
modeling scientific data.

Programming on someone else's system is always
frustrating. What really matters is whether you get
anything done while being frustrated. We have tried
to design a system to help users at all levels to get
things done.

The basic tenets of habitability are usually obvious
mnemonic command names, predictible syntax, good
error messages, high feedback-but they are rarely
implemented in full because the detail work in coding
is immense. The leisure time for attention to such de
tail is hard to come by; especially if the users are
overwhelmingly power-conscious and impatient pro
grammers. In a short-order videotape laboratory
where users are by and large professionals donating
their time to improve the quality of their classes, non
alienation is the item of highest priority. General fun
and productivity seem to follow. Again, more of this
philosophy is found in Reference 2.

A command in Grass is a string of characters ter
minated by a carriage return (CRLF) or a semi-colon
in the case of multiple commands on a line. In order
for the system to process a command in any context,
originating from anywhere, the string of characters
is simply passed to the line processor (LINEP) which
interprets the string, dispatching to the proper com
mand module. There are two general formats:

COMMANDNAME ARG1,ARG2,ARG3, ...
(for most commands)

Example: SCALE WIDGET,DO
VARIABLE = EXPRESSION

(for FORTRAN-style commands)
Examples:

A=A+10
K=K-DOj2 (note use of dial 0)
FA=ATN (FP) +SQR (FQ* (FD-FE»

If the command is not core-resident, it is fetched from
the disk (all disk-resident commands are written in
position-independent code), executed and deleted.

Commands are typed in line by line on the video
terminal (VT05). Since many of the commands set up
processes at interrupt level, the system may be used
exclusively on a line-by-line basis as with a text editor.
The previous rotation example was done this way, as
was a twenty-minute film with witches chasing butter
flies and airplanes flying around the globe, at a time
(1972) when the language had only line-by-line capa-

Digital Component of Circle Graphics Habitat 199

bilities. Almost all programs written in the language
start as a few commands typed in and tested one line
at a time.

The next step in command processing is to take
commands stored in a file so they in essence become
like the roll of a player piano, or the paper tape for a
milling machine. Many text editors allow this type of
command usage. This grouping of commands is often
called a "macro."

lvlacros in Grass are simply groups of commands-a
concept easily grasped by all our users. In compiled
languages, macros are called "subroutines," but this
terminology was not chosen because Grass macros
are often not subordinate to anything conceptually.
Macros do not require preambles, declaration state
ments, end statements or other formalities associated
with subroutines.

To give the player piano roll in Grass a variable fast
rewind and fast-forward, control is transferred with
the SKIP command. Its argument (e.g., SKIP 3)
specifies how many CRLF's to pass over forwards or
backwards. The argument may also be a label, in
which case the transfer is to that label local to the
current macro. Transfer to other macros is with the
DO command whose argument (e.g., DO SETUP) is
a macro. If this macro is not core-resident, it is auto
matically fetched from disk and then interpreted. The
CALL command is similar except that it uses the sys
tem area of the disk and tries to find a compiled version
of the macro (see below for details on the compiler).
As will be seen later, the syntactic form of the macro
call with parameters is very close to the form of com
mands so that system macros can appear to be system
commands to the user.

Conditional branching and command execution is
done with the IF command whose syntax is simple:

IF VARIABLE=EXPRESSION,ANY COMMAND
Examples:

IF A=B,SKIP -5
IF DO GT 0, IF A LT -100, DO FIXUP

In any case, control returns to the statement follow
ing the DO when the indicated macro is finished.

Macros may be generated in several ways. The sys
tem editor can be used to enter and change ASCII files
on the disk or in core. Macros may also be created by
typing a name followed by a colon as in the following
example:

SETUP:<GETDSK GLOBE
SCALE GLOBE,DO
ROTATE GLOBE,X,TX,TY

(using the tablet x and y)
GETDSK TITLE
MOVE TITLE,D6,D7,D8>

To execute this macro, one types "DO SETUP" or
simply "SETUP" (providing it is not a system name).
Often, immediate execution is desirable. The "un-

200 National Computer Conference, 1976

named" macro, entered thus:

<ANY COMMANDS

... >
is automatically executed upon typing the final angle
bracket. In addition, when this type of macro finishes,
it is automatically deleted. Only named macros may
be stored on the disk.

The system uses a VT05 video terminal at 2400 baud
for user communication. This choice was originally
made (by MK) to keep the Vector General screen free
for images to be recorded by a camera. One version
of Grass uses a keyboard interfaced through the Vector
General and space at the bottom of the screen for the
same purpose. At any rate, the system can afford to
be fairly wordy with messages without much delay.

Being strings, macros can generate other macros
using the string variables ($A through $Z in Grass)
and the string manipulation primitives given by con
catenation and the SEARCH command (MD and TD).
This feature, exploited only by fairly experienced
users, allows very plastic fabrication of executable
statements in Grass. String variables are executed by
putting them alone on a line after construction:

$A='GETDSK GLOBE
SCALE GLOBE,DO'
$A

Passing parameters is usually clumsy in program
ming languages. Indeed, we have only recently imple
mented a habitable way of passing parameters between
macros (by RO). Like everything else in the system,
macros are used interactively. Rather than burden
users (who often cannot yet write macros) with hav
ing to know which parameters to supply, macros are
usually written to ask questions:

SETUP: <PROMPT "WHICH PICTURE DO YOU
WANT"

INPUT $A (system types a "?" and waits
user then types in a name)

GETDSK $A ;SCALE $A,DO (a multi-command
line)

ROTATE $A,Y,DI>

Effectively, any picture on the disk may be gotten,
scaled and rotated with this macro. Similarly, one can
input numeric values (e.g. INPUT FA) as numbers
or expressions. The PROMPT command is the general
typed output command, and may be used to print
strings or numbers and combinations thereof:

PROMPT "THE SQUARE ROOT OF 1000 IS "
SQR (1000)

However, once the user is familiar with the macro,
he may type "DO SETUP,GLOBE" or simply, "SET-

UP GLOBE" which looks like a Grass command.
Either construction may be imbedded in another macro
without any reprogramming of the original macro
an important feature since many users c.annot decipher
complex macros written by others. Note that the
PROMPTs are automatically suppressed as long as
enough arguments are supplied. If the user leaves off
an argument, the system will wake up the PROMPTs
and start asking the questions again. Of course, over
rides are available to force INPUTs or PROMPTS if
desired. Arguments may also be passed in global vari
ables.

Variables in Grass have fixed names and are either
local to macros (LA-LZ, fixed; EA-EZ, floating) or
global (A-Z, VA-VZ, WA-WZ, fixed; FA-FZ, floating;
$A-$Z, string; and AA-AZ, fixed and floating arrays).
Analog inputs are global (DO-D9, dials; SO-S9, slide
potentiometers; JX,JY,JZ and KX,KY,KZ, joysticks;
PO-P3, more dials). Digital inputs include the tablet
(TX,TY,TZ or pen-press) and function switches (FSO
FSI5). Analog outputs are global too (OA-OH).
Variables are prenamed in Grass because otherwise
the interpretive overhead for arithmetic would really
be immense. Prenaming also eliminates the need for
declarations of variables (except for array dimen
sions) .

The external inputs are polled every Yso second by
the system. Currently under construction is a flexible
input box with variety of connectors and amplifiers to
aid in prototyping new input devices such as your body
or musical instrument to produce a set of Grass vari
ables. Having so many analog input devices, by the
way, may seem confusing to the reader, but these
physical extensions to the system can be intuitive and
therefore easy to use.

Macros work despite the parsing overhead because
the primitives of the language are generally rather
high level and parsing is only a fraction of the code
executed in doing the command. The higher the level
of the primitives, the more practical the interpreter
becomes. Note also that often one does not care how
long something takes to parse as long as it is done in
say, less than Yuo second.

However, for low level primitives like addition or
expression evaluation, the interpreter may execute a
thousand instructions to add one to a variable. This is
a major reason compilers are still preferred for arith
metic calculations. As soon as we started doing scien
tific animations as well as computer art, a fast arith
metic capability became essential. Thus, The Habitable
Compiler was written (by RO). It takes assignment
statements and some commands (notably GETPOINT,
ZAPPOINT and PUTPOINT) and compiles them into
PDP-II machine code which executes very quickly.
Whatever the compiler does not understand, that is
most commands, it keeps as ASCII strings which are
passed to the resident interpreter during execution.
Thus the compiler retains the benefit of the interpreter

and yet gains the speed of compiled code where essen
tial. One usually debugs the macro first and then, if
speed is a problem, compiles it. The compiler is disk
resident and rarely takes more than a second to load in
and do its job. Compiled macros may be stored on the
disk (in binary) and recalled at any time. In addition,
macros that contain only arithmetic code are re-entrant
so they can be set up to execute at interrupt level with
the VIP (Very Important Program) command. VIPed
macros are used when variables must be calculated
perfectly in synch with the display refresh or when a
higher priority task is useful. Few higher-level lan
guages allow users to schedule subroutines at different
priority levels.

To give a quick idea of the compactness of Grass
macros, Donald Warren Collins wrote an architectural
preview system12 first on the IBM S/360 in FORTRAN
taking some 132K 32-bit words, then in PDP-11 RSTS-
11 BASIC taking 28K 16-bit words with multiple
overlaying. Finally, he rewrote it in Grass, thus mak
ing it interactive. The Grass version took about 2K
16-bit words of storage, not including the 13K inter
preter, of course.

DRIVING MACROS

Most of the contribution this system has made to
habitability in graphics is noticed when actually exe
cuting and debugging macros. The constant real-time
user control combined with the analog input devices
makes this system usable as a performing instrument.
Some of this control comes from parallel processing of
pictures and, if the user desires, macros as well.

Animation often involves several more-or-Iess inde
pendent things happening simultaneously. Grass can
be asked to set up a ring structure of macros so they
can be executed in parallel. With two macros, the
commands are interleaved. More than two macros
requires grabbing lines from each one, one at a time,
round-robin fashion. In addition, unless specifically
requested otherwise, a macro in this ring structure
automatically starts over again when finished. All this
housekeeping is initiated by the DOLOOP command
(by TD) :

DOLOOP MACNAMl i MACNAM2","

where the MACN AMs may be macros or compiled
macros. The unnamed macro is retained for conve
nience in setting up background jobs:

DOLOOP <A=A+DO/100
B=A*2>

and so on. The system continuously listens to the VT05
keyboard for a line to be typed interactively and slips
it in, executing it with no noticeable delay in most
cases. Provisions for one macro waiting for another

Digital Component of Circle Graphics Habitat 201

to complete and selective removal from the ring also
exist.

As might be imagined, there is some overhead asso
ciated with the DOLOOP feature, but compiling the
macros usually helps make the overhead quite unnotice
able. The need for and desirability of a parallel execu
tion structure in graphics is more fully developed in
Reference 3. Alan Kay's SMALLTALK language for
children also implements this type of parallelism for
2-dimensional grapliics.13

Two major conceptual simplifications of using
macros result from parallel execution. First, the user
can develop small animation sequences separately and
then combine them later with little or no reprogram
ming. Without the parallelism, a total rewrite of the
macros would be required. Second, the user may wish
to incorporate macros written by others in his anima
tion sequence, macros whose logic he may not under
stand. Again, without the DOLOOP structure, this
would be very difficult.

Grass also has well-developed "panic-button" control
structures (by TD) to abort or temporarily interrupt
macros. First, CONTROL-C (holding the control key
while typing a "C") stops any macro or compiled
macro, kills the DOLOOP structure, stops any output,
cleans up any scratch files like unnamed macros and
sets the user back to command input level. It is the
most common way to exit a macro in an infinite loop.

CONTROL-W temporarily stops printout until
pressed again (2400 baud is too fast to read) and
CONTROL-O cancels any output.

The real crowd-pleaser in the system, though, is
CONTROL-So It suspends execution of any macro or
compiled macro, even if DOLOOPED. The user is put
in command level and he can type commands to check
variables, or anything else. The macro continues when
the user types "RESUME." Since performance
graphics, especially the jamming variety, requires con
stant real-time debugging with two hundred people
looking over your shoulder, CONTROL-S comes in very
handy. The combination of background DOLOOPED
macros and CONTROL-S give the user the impression
he is always in control.

ERROR MESSAGES AND DEBUGGING
IN GRASS

Grass has about one hundred fifty error messages,
only one of which is truly cryptic ("Undiagnosable
syntax error"). When an error occurs, the whole
command is printed out on the VT05 with a little arrow
under the part that caused the error, followed by the
error message. The user is then put into the same
mode that CONTROL-S initiates, at which time he can
correct the mistake and RESUME or type CONTROL
C to abort. Along with the feedback on the screen,
these error messages and interactive fixups account for
about ninety percent of the user debugging activity.

202 National Computer Conference, 1976

The harder-to-find logic errors are usually tracked
down by the LIST command (by GM), the TRACE
command (by TO) or sometimes the DOLOOP code.
LIST simply prints each line of a macro as it executes.
TRACE, adopted from SNOBOL, takes variable names
as arguments and then prints out the value of the
variables every time tbe variables are changed along
with the location of the change. As a last resort, a
macro to sense an elusive logic error may be parallel
processed with the defective macro to discover the
problem. For instance, assume variable A is never
supposed to get to zero but it is anyway. "DOLOOP
<IF A EQ O,LIST>" will turn on the LIST feature
as soon as A goes to zero. Obviously, more exotic bug
traps can be constructed.

Error conditions may also be trapped and further
processed by the macro writer. The ONERROR com
mand sets up an asynchronous error recovery proce
dure for use when an error happens:

ONERROR V ARIABLE,ANY GRASS
STATEMENT

When the error occurs, the error number is put in the
variable indicated for use by the error recovery routine
and the Grass statement following the comma is exe
cuted in place of the line in error. Since errors can be
as benign as not finding a file on the disk, system
macros are written with ONERROR frequently to help
the novice user. As might be imagined, considerable
detail work was done to assure PDP-11 stack integrity
when commands in error are replaced by ONERROR
code. Note that the Grass statement in the ONERROR
command can be a macro call like "DO FIXUP."

The expert user can take advantage of the asynchro
nous nature of the ONERROR command to speed up
loops. For example, in the following program which
zeros the z-value of each vector, the end-of-picture
condition (K= -1) must be tested:

ZEROZ:<PROMPT "NAME OF PIX FOR Z-AXIS
ZEROING"

INPUT $L
N=O
N=N+l
GETPOINT $L,N,X,Y,Z,K (set the nth point in

variables X,y,z and k)
IF K NE -l,ZAPPOINT $L,N,X,Y,O,K; SKIP -2

(if K= -1, it is the end of picture)
PROMPT "DONE ZEROING">

Now, if "ONERROR A,SKIP 2" is placed somewhere
before the last four lines of this macro, the test for
K= -1 may be eliminated because the GETPOINT
index (N here) will go out of bounds and generate an
error. "SKIP 2" will be executed in place of the line
in error and the control will pass to the last PROMPT.

Such tricks can even work with compiled macros, a
housekeeping feat of some proportion.

In summary, Grass provides many ways of control
ling, debugging and interacting with pictures and
macros. Since so much of the control can be parallel,
the user occasionally feels like he is conducting rather
than watching a plotter. Music has always been a
performing art and artists now have the tools to per
form visual scores. The task now is achieving the
control subtlety in performance graphics that we know
and love in music.

CURRENT LIMITATIONS OF GRASS

Grass as a system has for some time been pushing
against walls created by equipment speed, memory
limitations and the nature of the refresh display. Cur
rently, the PDP-11/45 we use has only 28K of usable
memory, of which 3K is used by the disk operating
system. The user is left with 10K of space to use.
Given the software overhead, the maximum number
of parallel full-screen vectors that can be displayed
flicker-free is about a thousand, although they can all
be rotating, moving and scaling. We have to operate
in a flicker-free environment because our television
based system is not sophisticated enough to operate in
anything but real-time.

Adding speed to the PDP-ll/45 is fairly simple with
an add-on cache memory, but not cheap. Adding to the
memory requires memory management, and a consid
erable amount of reprogramming. And CRT's that are
faster by an order of magnitude are still a gleam in the
designer's eye.

A major limitation to the habitability of Grass is
that not all users have linguistic skills-or type well.
Non-linguistic approaches to subset problems like con
structing complex 3-D pictures are possible using light
pen or tablet menus. We now have several small grants
to investigate performance-time control structures for
computer graphics.

REFERENCES

1. DeFanti, T. A., Dissertation, The Ohio State University,
1973.

2. DeFanti, T. A., D. J. Sandin and T. H. Nelson, "Computer
Graphics as a Way of Life," Computers & Graphics, Vol. 1,
No.1, May 1975.

3. DeFanti, T. A., "Toward Loopless Interactive Grallhics
Programming," Proceedings of the Conference on Com
puter Graphics, Pattern Recognition and Data Structures,
May 14-16, 1975 (IEEE Catalog #75CH0981-1C).

4. DeFanti, T. A., D. J. Sandin, et aI., Interactive Electronics
Visualization Event, Videotape, 90 mins., OIRD University
of Illinois at Chicago Circle, 1975.

5. Baecker, R. M., Dissertation, M.LT., 1969.
6. Nelson, T. H., Computer Lib/Dream Ma.chines, 1974.

7. Newman, W. M. and R. F. Sproull, Principles of Interactive
Computer Graphics, McGraw-Hill, 1973.

8. Vector General Inc., Graphics Display System Reference
Manual,1975.

9. Csuri, C., et al., Real-Tirne Film Animation, The Ohio
State University Research Center, Febl"'.lary 1973.

10. DeFanti, T. A., Grass Internal Logic, Videotape, 120 min.,
OIRD The University of Illinois at Chicago Circle, 1974.

Digital Component of Circle Habitat nno
~Vi)

11. Donato, N. and T. A. DeFanti, 2-D and 3-D Transforma
tions, Videotape, 25 min., OIRD The University of Illinois
at Chicago Circle, 1975.

12. Collins, D. W., "A Computer Graphics System for Modular
Building Elevation Design," Proceedings of the Second
Annual Conferer~e on Compu.te·r G-'j"'aphic8 a·n,d Iiite'i""act·fve.
Techniques-SIGGRAPH '75, July 1975.

13. Personal communication.

Braille grade II transiator program

by MONIQUE TRUQUET*
Universite Paul Sabaiier
Toulouse Cedex, France

ABSTRACT

This paper describes the Computer Translation of
French inkprint into Grade II. It will be a reminder
of what I have presented during two workshops and a
conference, increased by the last modifications.

THE FRENCH GRADE II

The Translator program was written in Basic
FORTRAN IV two years ago and it has undergone
some modifications. Weare going to present the method
used. To recognize EXPRESSIONS like c'est-it-dire
(that is to say), to recognize "VORDS, CONTRAC
TIONS, NUMBERS-\ve use a syntactic analyzer with
a list structure and a hashing table. The organigram
presented (Figure 1) shows the different ways of the
program. The grammar used follows. We have chosen
for axiom TEXT and the grammar is written on the
Backus Normal Form.

TEXT: : = (TERM ~ TERM) followed by (PUNCTUA
TION MARK ~ PUNCTUATION MARK)

TERM:: = SPECIAL SIGN/EXPRESSION/WORD/
NUMBER

WORD: : = LETTER ~ LETTER
NUMBER: :=DIGIT ~ DIGIT
SPECIAL SIGNS are in a TABLE the form of which

is a Tree
EXPRESSIONS are in a TABLE the form of which

is a Tree
LETTERS are in a TABLE
DIGITS are in a TABLE
PUNCTUATION MARKS are in a TABLE

Expressions

It is the grouping "Pour ainsi dire" which is trans
lated but not Pour (for) then AINSI (so) then DIRE
(to say). To find an expression let us see in Figure 2

* Centre d'Informatique de Toulouse (France).

205

that the checker has to know if the first letter is or
A or C or D or E or L or N or P or W or S or Tor V.
In supposing that it is A, we have to survey the "Tree"
in Figure 3.

If no expression is found then the checker search is
to isolate a word.

(a) with A we can found:

Au contraire ~ (on the contrary)
Au-dessous ~ (below
Au-dessus ~ (above)
Auj ourd-hui ~ (to day)
Autant que ~(as far as)
Autant qu' ~(as far as)
Autre chose ~(something else)
it part ~ (except for)
it cause ~(on account of)
it mesure ~ (in proportion as)
it peine ~ (hardly)
it peu pres ~(nearly)

. it present ~(now)

it travers ~ (through)

(b) with P

Parce que
Parce qu'
Par consequent
Par exemple
Par suite
Par-dessous
Par-des sus
Peu it peu
Peut-etre
Plus tard
Plus tot
Pour ainsi dire

~(because)

~(because)

~ (therefore)
~(for example)
~ (consequently)
~(under)

~(on top of)
~ (little by little)
~(perhaps)

~(later)

~(earliest)

~(so to speak)

The tree which permits us to find the expressions which
begin by the letter A is represented in Figure 3.

Words

Supposing that a word is recognized then a hashing
method is applied and the word is searched in the

206 National Computer Conference, 1976

N

Contruction of the different tables: I
DICTIONNARY , CONTRASTIONS , SYNTACTIC RULES, !

EXPRESSIONS and SPECIAL SIGNS j

I READING of Ya DATA CARD I

~ ,~"' II l~r ~

-L ;:::=lt~===;===l~~

i
the line is tested,consecutices !
spaces are replaced by one spacl
and another character is called
unless they are preceeded by

the special sign L 3

Figure 1

Braille dictionary. If it is, the program takes the
equivalent Braille if not the program search of the
word is composed with contractions.

Difficulties encountered

(1) To obtain a Braille Page correctly: the program
has to obey precise rules and it has to replace
consecutive spaces with only a space.

(2) to use the contraction method: if some groups of
letters are forgotten the program cannot continue;
it was the case for the groups:

AIH(ai)
AIh(ai)

but the correction is easy.
(3) to treat homonyms: (we must specify to the pro

gram those which obey the rules that they will
be preceded by the special sign": :").

- like CONVIENT :

I am spelling this word because it has not the same
pronounciation; it depends on the meaning. This
could be a form of the verb "CONVIER" (to in
vite). It is pronounced CONY (I) or the verb
"CONVENIR" (to agree with) is pronounced

OUT-TOpl

Expression test

Figure 2

CON VI (IN). If it means to invite, the Braille
translation is (CON)-V-I-(ENT). If it means
to agree with, the Braille translation is (CON) -V
(IEN) T. "To agree" obeys the rules and with the
sign mentioned above the program directs this
word to the contraction table.

-like FILS:

If it is the "SON" it is pronounced (FIS), the
Braille translation is F -So If it is the "threads"

Figure 3

sommet

termi ~a 1

OUT TOP

it is pronounced (FIL) and the Braille translation
is F-I-L-S.

(4) to 'Write foreign 'Words: foreign words and proper
names must be written in grade I preceded or
with a capital, or with the special sign which
shows to the blind that the word which follows is
in grade I.

(5) to kno'W if a 'Word must be translated or in grade I
or in grade II. It is the case for the words SI (if)
or PUIS (then) or CELUI (this one Or that one).
When they are not followed by a punctuation mark
they can be translated in grade II if not they must
be translated in grade I and preceded of course
by the special sign "integral".

MODIFICATIONS

We have seen that a part of the words put in the
dictionary can be translated by the contraction method.
This is interesting because we have only one word to
add to the contraction table and with the prefixes,
suffixes of this table we can produce all the words of the
same family.

With the word "EGAL" (EQUAL) written E2GAL
we can create

E2GALE
E2GALES

INE2GAL---+(IN) - (E2GAL)
INE2GALE~ (UNEQUAL)
INE2GALES

but we cannot obtain

E2GALITE2
E2GALIT AIRE
E2GAUX
E2GALEMENT

~E-G-T

~E-G-T-R

~E-G-X

~E-G-M

(equality)
(eq uali tarian)
(equal)
(also)

and these words stay on the dictionary because they
don't obey the contraction rules.

With the word "POINT" we can create about 40
words so it is very interesting.

Here are some:

POINTE
POI~TU

POINTAGE
POINTE AU
POINTS
POINTER

head,touch
sharp
checking
needle
points
to check

RemaTk: If we want to obtain the words E2GALITE2,
E2GAUX by the contraction method we must change
the sense of the test of the word. At the present time
we begin by the right as some suffixes are longer than
prefixes, but for the new method it will be necessary
to begin by the left to isolate first the prefix, then the

Braille Grade II Translator Prog:ram 207

root; but will the Braille text obtained be more correct
than now because of some roots which begin by the
same letters than some prefixes?

CONCLUSION

This year we have a Braille device which satisfies us
so we have the care to translate texts for a special
school for blind (} ... SEI) * and for students of the
Letter University. French grade I is very important
for young children, grade II for the others, and the
special schools need translations. Students of our Uni
versity need above all Braille mathematics and we are
going to write the program. Later we'll try to create
Informatic trainings for the blind at our Informatic
Center of Toulouse. At the present time we work more
easily thanks to a French organization IRIA ** which
sent us some money to pay an Engineer and the making
of a French Braille device built by the society SAGEM:j:
so that it will be better in the future.

REFERENCES

1. Association Valentin Hauy, Abrege Orthographique etendu,
(Extended Contracted Orthography), Edition 1964, 9 rue
Duroc, PARIS 75007.

2. Espitallier, J., Abrege Orthographique Franc;ais etendu,
(Contracted French Orthography), Lycee Parc St Agne
Ramonville-Toulouse 8 October 1966.

3. Kahan, B. and H. Dumas-Primbault, "Principe d'une
methode syntaxique d'ecriture de compilateurs," (Principles
for a syntactic method for scripture of compilators), Asso
ciation Franraise pour la Cybernetique Econontique et
Technique, (French Association for the Economical and
Technical Cybernetics), August 1969, No. B2.

4. Bloch, M. and C. Brisseau, "Analyse syntaxique par
cheminement sur un graphe," (Syntactic Analysis by
graphical methods), Association Franraise pour la Cyber
netique Econontique et Technique, (French Association for
the Economical and Technical Cybernetics) , March 1970.

5. Truquet, M., "Automatic translation into Braille, (grade
2)," Paper presented to a Workshop in ::\Tiinster (RFA)
March 1973.

6. Truquet, M., "The automatic transcription of French ink
print into Braille," Research Bulletin, No. 28.

7. Truquet, M., Sonte rentarks on the French Braille Transla
tion, Lecture given in the Research Center of Munster
(RFA), September 1974.

8. Truquet, M., "Automatic Translation into Braille in Basic
Fortran IV," Paper presented to the Second Workshop in
Copenhagen (Denmark), September 1974.

* ASEI: Association pour la Sauvegarde de l'Enfance Invalide
(Association for the Safeguard of the Invalid Childhood)
** IRIA: Institut de Recherche d'Informati4ue et d'Informatique
(Institut of Informatic and Automatic Research)

:j: SAGEM: Societe d'Applications Generales d'Electricite et de
Mecanique (Society of General Applying for Electricity and
Mechanical) .

Interfacing computers for the physically handicapped
A review of international approaches

by GERALD A. RAITZER, GREGG C. VANDERHEIDEN and CRAIG S. HOLT
University of Wisconsin
Madison, \Visconsin

ABSTRACT

The computer has shown great promise for expanding
educational and occupational opportunities for severely
handicapped individuals. The greatest obstacle facing
these individuals today is that they are unable to access
computers through traditional keyboards or other types
of terminals. This paper describes the three basic
techniques which have been successfully used to allow
the severely handicapped to communicate with other
people and with their environment. A review of over
25 various approaches which have been developed
around the world is presented, including a comprehen
sive bibliography of available information.

INTRODUCTION

For many individuals severe physical handicaps have
completely cut off most avenues of personal develop
ment and employment. Their physical involvement
bars them from any constructive or creative activities
requiring physical or manipulative abilities. More
over, their inability to speak, write or efficiently
operate even simple communication devices severely
impairs their ability to develop and exercise their
mental capacities. This latter problem is basically an
output problem in which a normally functioning in
tellect is trapped within a body having no effective
means of communicating or interacting with the en
vironment. Fortunately with today's technology, espe
cially micro electronics and the computer, new avenues
are being opened for these individuals which promise
them not only a chance for a more effective education
and a more meaningful mode of self expression, but
also a means of self support through employment.

The major problem in trying to realize the full
potential of these individuals is in finding efficient
means of communication for them. Information output
should consist of both written communication and dis
crete commands with which they can control certain
elements or devices in their environments.

209

Two years ago we presented one approach for pro
viding the severely physically handicapped with a
means to control computers and other data and infor
mation processing equipment. The approach described
was developed for individuals who had some pointing
capability but who were physically unable to use
regular keyboards in an effective manner. In this
paper we will be presenting a summary of all of the
different basic approaches which have been developed
around the world to interface individuals with varying
physical abilities. With these different approaches
most any individual, no matter how severe his physical
handicap, could be provided with an effective means for
controlling communication and other interactive
devices.

THREE BASIC APPROACHES

Although a great many different aids have been
developed to provide the physically handicapped with
a means of controlling other devices, their control
schemes are all essentially variations on three basic
approaches. These approaches are scanning, encoding
and direct selection. Each of these approaches has
different advantages and disadvantages and will work
better with one kind of disability than with others.
Some of the techniques such as scanning are much
more powerful in that they can be used by even the
most severely handicapped. Other techniques may be
less powerful but more efficient, thus allowing individ
uals who have more control over their movements to
be able to communicate in a faster manner by taking
advantage of their better physical abilities.

THE SCANNING APPROACH

The definition of scanning aids which has been
developed by the Trace Center (University of Wis
consin-Madison) is:

Any technique or aid in which the selections are

210 National Computer Conference, 1976

offered to the user by a display and where the user
selects the characters by responding to the display.
Depending upon the device, the user may respo~d
by simply signaling when he sees the correct choIce
presented or by actually directing the indicator (e.g.
light or arrow) toward the desired choice.

One example of a scanning aid would be a simple
rotating pointer (see Figure 1 (a)). With such a s?,s
tem the individual could start and stop the arrow usmg
some switch that was specially adapted to take advan
tage of some movement over which he had good control.
He could then use the arrow to point to the various
characters desired. An encoding wheel on the back
could digitize the selection process for entry to the
computer. This type of scanning is referred to as
linear scanning. A more efficient technique which has
been developed is a two-speed linear scan whereby
the individual can operate one button which will cause
the aid to scan rapidly until it approaches the correct
choice. The individual then releases the button and the
aid slows down to enable an accurate selection by the
individual.

Another technique which can be used to increase the
scanning speed is an XY or row column scan (see
Figure 1 (b)). Here the aid lights one entire row at a
time until signaled by the user. The aid then lights up
the entries in that row one at a time until the user
signals it again. The character is then output and the
aid resumes scanning.

For individuals who can control a joystick or other
set of four switches, a directed scanning technique can
provide an even more efficient scanning control system.
With this system the individual can direct the lighted
square up, down, left or right to move it to the desired
character. He can then release the control switch
allowing the light to remain on the square for a pre
determined time interval after which it is output. This
technique has also been implemented using switches
where one is pushed alternately to control the up and
down direction and the other is pushed alternately to
cause the light to move left and right.

Figure 1 (a)-Simple lineal' scanning technique

Figure 1 (b) -Row/column scanning technique

The latest technique to be developed in the scanning
category is the "anticipatory scan" or computer as
sisted scan. With this technique the aid looks at the
last one or two letters which have been printed, refers
to its programmed memory for the next most probable
letters, and then displays those letters first. For ex
ample: if the last two letters printed by the handi
capped individual were" ... TH", the aid would present
the letters E, A, SPACE, I. .. and then scan over the
remaining letters afterwards. In this manner the
letters which are most likely to occur next are pre
sented to the individual first, increasing his speed for
selection. U sing this system the odds are about 8070
that the next letter that the individual wants will be
one of the first five characters presented by the antici
patory scanning aid.-;

THE ENCODING APPROACH

The definition adopted for encoding aids is:

Any technique or aid in which the desired char
acters are indicated by a pattern or a code of input
signals, where the character codes must be memor
ized or referred to on a chart. Any number of
switches may be used (e.g., 1, 2, 4, 7, 8, etc.). The
code may involve activating the switches sequen
tially, simultaneously or in a specific time
sequence.

One example of an encoding technique would be an
aid where two numbers given in sequence are used to
encode the desired characters. For instance, in the
simplified example shown in Figure 2 (a) a "2" and a
"3" could stand for an "m" and a "4" and a "4" would
stand for an "s". By using a larger number of encoding
numerals (e.g., 10 or 12), larger numbers of characters
and control commands can be encoded while keeping
the number of keys relatively few.

For individuals who have very poor gross motor
movement but who do possess some very fine motor
control, techniques such as Morse Code may be more
efficient. (Figure 2 (b)). Here an aid can take ad
vantage of a very small muscle movement or even a
bio-potential to control a device which could decode

Interfacing Computers for Phy~;!icany Handicappecl 211

Figure 2(a)-Simplified example of a two-number encoding
scheme

his movements and in turn control some form of out
put or data processing equipment.

THE DIRECT SELECTION APPROACH

A direct selection technique is:

Any technique or aid in which the desired output
is directly indicated by the user. In direct selec
tion aids there is a key or sensor for each possible
output selection.

This is the most common fornl of control used in the
computer industry_ All keyboards would fall into this
category. For the severely handicapped, a number of
guarded and expanded keyboards have been developed
(Figure 3 (a». For individuals who have some point
ing abilities, but \vhose motions are too erratic to
control even enlarged keyboards, other special tech
niques have been developed which can interpret even
very erratic pointing motions. These techniques would
also fall under the category of direct selection aids.

PROFILE OF EXISTING COMMUNICATION AIDS

The following is a descriptive survey of aids cur
rently available or under development in each of the

Figure 2 (b) -Small muscular movement used to control output
device via encoding technique

Figure 3(a)-A direct selection technique in the form of an
expanded recessed keyboard

above categories. This descriptive survey does not
include all of the aids which exist in each of these
categories. A more comprehensive listing and descrip
tion of these and other aids is available from the Trace
Center, University of Wisconsin-Madison. (See Bib
liography) .

SCANNING COMMUNICATION AIDS

The scanning type of communication aid is currently
the most common form of communication aid avaiiable.
The major advantages of these aids are: (1) they
require little physical effort to operate and (2) they can
be used by most anyone no matter how severe their
physical disability.

The major disadvantage of these aids is their slow
speed. The user must wait until the indicator stops
at many unwanted characters before the aid will reach
the desired character. The rate of scanning must stay
relatively slow because the indicator must rest on each
selection long enough for the operator to select it with
out error.

Figure 3(b)-Auto-monitol'ing technique; a direct selection
technique which can be used by individuais having only very

erratic pointing skills

212 National Computer Conference, 1976

Many different variations of this technique have been
developed. A device which scans by eliminating the
characters in a row column fashion was developed for
use with severe myasthenia gravis patients by the
Department of Surgery of the Royal Post Graduate
Medical School, (London, England). Centre Indus
tries, (New South Wales, Australia) also has an
illuminated letter scanning device which uses a linear
scan to control an electronic typewriter. A two-speed
linear scanning aid is available from PMV (Stockholm,
Sweden) which controls a standard IBM typewriter
using a solenoid matrix positioned over the keyboard.

Several groups have developed aids which utilize the
row column scanning pattern. With these aids a larger
number of selections can be displayed without requir
ing great amounts of time to select them. The increased
efficiency, however, requires two signals to be given
for each letter selected. The Tufts Interactive Com
municator (TIC) developed at Tufts University,
(Boston, Massachusetts) uses the row column scan
ning technique and has a Burroughs display and strip
printer as two of its output forms. Other versions of
this aid have been adapted to work with a variety of
outputs. The "Linguaduc Scanner" produced by Carba
(Switzerland) uses one or two switches to control a
Facit printer. POSSUM Controls, Limited (Aylesbury,
England) produces the "POSSUM" device which uses
an adapted typewriter as its output form, as does the
Zambette Electronics (Essex, England) "System 8"
unit. The POSSUM typewriter features a simple sip
puff switch and chin switch while the System 8 unit
features a "magic" capacitance switch and projection
system for displaying typewriter output on the wall or
ceiling. The "Comhandi" produced by Physio-medical
Systems (Montreal) is built into the base of a Teletype
which it uses as its output form. The Cybernetics
Research Institute (Washington, D.C.) also has a
scanning communication aid called the Whispertype
which controls a typewriter and can be used with a
variety of input sensors. This aid has also been re
cently interfaced with a voice synthesizer. The Alpha
bet Message Scanner developed by Prentke-Romich
(Shreve, Ohio) is a very simple row column scanning
device which runs on batteries and has a data output
jack on its back for control of other devices. A com
pletely portable scanning aid has been developed by
Vendacom (Brooklyn, New York) called the Porta
Printer. This aid is built into an attache case and
weighs just 17 pounds. It uses a miniature strip
printer as its output and can control two electrical
outputs for the convenience of the user. The STRIP
PRINTER is an aid which is very similar though
lighter than the Porta Printer and is also marketed by
Prentke-Romich (Shreve, Ohio) .

Another fully portable scanning aid, which is built
into a special lap board, has been developed by the
Trace Center (Madison, Wisconsin). This aid has
several output forms including typewriter, television

display, teletype and voice synthesizer in addition to its
built in strip printer and correctable alpha-numeric
display.

... 4..8 mentioned earlier, the anticipatory scanning
technique was first introduced by the New England
Biomedical Engineering Center at Tufts University
(Boston, Massachusetts) and is now being incorpo
rated into the newest version of the Tufts Interactive
Communicator (TIC). A computer assisted anticipa
tory scanning system has also been implemented at
Northwestern University, Rehabilitation Engineering
Center (Chicago, Illinois) using a DEC mini computer.

One of the principal advantages of the scanning
approach that has been mentioned is the fact that it can
be used by almost any individual no matter how severe
his handicap. This is due to the fact that the operator
may use a single input switch to control the aid. In
addition, anyone of a large number of input switches
or sensors could be used to provide the signal. Some
examples of switches that may be used are breath
switches, knee switches, impact switches, pull switches,
proximity switches, whistle switches, the NASA Eye
Movement Switch, eyebrow. switches, muscle potential
switches and brainwave sensors, to name a few. Thus,
at least one switch could be found which could be
operated by a given individual.

ENCODING AIDS

Because speed is so important when communicating
(especially character by character) several research
groups have developed devices that use encoding tech
niques instead of the scanning approach. The increased
efficiency of signaling provided by the encoding ap
proach increases the speed of communication. Here
again, however, the increased speed requires a greater
degree of control from the operator. More complex
motions and sometimes more responses per letter are
required. In addition, the encoding scheme must be
learned before the device can be used. The greater the
number of switches used in the encoding scheme, the
simpler the code will be. However, an increased
number of switches requires greater dexterity on the
part of the operator. Thus, a compromise between the
two factors, simplicity of code and number of switches,
must be worked out. Different research groups have
chosen different balances between the two factors in
the design of their aids. The aid best suited to an
individual is determined by his specific communication
needs, and his physical abilities.

Centre Industries (Australia) chose a simple set of
movements (two levels and a pause) as a Morse Code,
to operate their COS unit which in turn controls a type
writer. Medicel (South Burlington, Vermont) also
uses a Morse Code communication aid. This device,
called the MC 6400, uses a television monitor as its out
put form. POSSUM Controls (Aylesbury, England)
uses a three level code in one of their POSSUM units

Interfacing Computers for Physically Handicapped 213

(sips, pauses, and puffs) which also controls a type
writer. The aid developed by Hengrove, Ltd. (Berk
shire, England) uses a four level code (two degrees of
sips and two degrees of puffs) which requires finer
breath control but is faster. With the Electraid, 1, 2, 4
or 8 switches can be used to control a typewriter. The
Cybernetics Research Institute (Washington, D.C.)
uses a still larger number of switches in their CYBER
TYPE device. The CYBERTYPE uses an encoding
scheme which utilizes 14 switches arranged in two
banks of 7. One switch in each bank must be selected
to print a character. The aid may also be used with
only 7 keys by just pressing two keys in succession. A
portable independent encoding aid has been developed
at the Trace Center (Madison, Wisconsin). This aid is
built into a special wheelchair laptray and features
correctability and the ability to print out words and
phrases in addition to individual characters.

The basic advantage the encoding devices tend to
have over scanning systems is the greater speed-a
most important factor. Encoding devices do however
require that the operator have considerably greater
dexterity. They also require that the operator learn a
code of some sort before operating the device. Those
who have used encoding aids however report that the
codes are usually easily learned and retained by the
individuals using them.

DIRECT SELECTION AIDS

Communication aids in this category have the great
est number of switches; one for each symbol or char
acter on the aid. To obtain a character the user simply
operates the switch corresponding to that letter and
that letter only. One obvious advantage with this
type of aid is that its operation is very simple and
straightforward. These aids also tend to be more rapid
than the scanning systems since there is no need to
wait for a scanning indicator to arrive at the proper
lettel'. Speed of communication is limited only by the
user';;;; ability to activate one of the aid's switches. The
major limitation of aids in this category is that they
require increased dexterity on the part of the operator,
who must have fairly good control of the gross motor
movements of at least one of his extremities.

Some of the aids in this category are designed for
persons with no arm or hand control but fairly good
control of other portions of the body. MEFA GmbH
(Bonn, Germany) makes an expanded four tier key
board for operation with one's feet. Reva-Aids (Copen
hagen, Denmark) makes an expanded proximity key
board for use with cerebral palsied individuals. This
keyboard can be operated by either foot or by head
sticks. IBM makes special handrests and armrests
which allow some weak and spastic individuals to
operate standard IBM electric typewriters. When
used with a correctable IBM Selectric typewriter these
adaptations can provide the handicapped individual

with a correctable communication aid. Furthermore
a special "ORATOR" type-ball is available which can
provide large and highly visible characters for the
vision-impaired. Several special keyboards have also
been developed by PMV (Stockholm, Sweden) to en
able use of the typewriter by the severely handicapped.

A typewriter that is controlled by a light pen at
tached to the user's head has been developed by M.
Soede and H. G. Stassen (Netherlands) and is called a
LOT (light operated typewriter). Several telecom
munication aids for the deaf can also be modified for
the moderately involved individual, including the MCM
Communicator marketed by SICa (Oakland, Califor
nia) and the TV Phone marketed by TV Phone (Silver
Spring, Maryland). A hand held communicator which
can be worn on the wrist has been developed by Can
non, Incorporated (Japan) in cooperation with re
searchers in Holland. The aid is called the Cannon
Communicator and uses a strip printer as its output.
A portable direct selection communication aid which
is built into a laptray has been developed by the Trace
Center (Madison, Wisconsin). This unit, called the
Auto Monitoring Communication Board (Auto-Com)
has a special sensing system which allows the aid to be
used by individuals having only very minimal pointing
skills. The aid has a smooth, flat, hard surface and
operates in much the same manner as a traditional
communication board except that the user's output is
automatically printed out for him on a self-contained
strip printer or other output device such as a type
writer, CRT display or teletype. The Auto-Com is
capable of printing entire words, phrases or strings of
commands in addition to being able to print out indi
vidual characters.

CONCLUSION

It can be seen that a large number of devices have
been developed for the physically handicapped, al
though only a limited number of these aids have been
developed to interface with computers. All of the
techniques described could be easily adapted to provide
access to computers for the physically handicapped.
It can also be seen that because of the diversity of
approaches and specific techniques which have been
developed by the various researchers, it should be
possible to select an aid which could provide any par
ticular individual with a control scheme which would
take optimum advantage of his physical skills. Thus,
the inability to control traditional data entry devices
should no longer be a barrier to the use of computers
by the severely handicapped. Moreover, two other
features of the computer, remote terminals and time
sharing, can help to overcome two other barriers,
(transportation problems and the decreased work
speed of more severely handicapped individuals) that
may interfere with the physically handicapped indi-

214 National Computer Conference, 1976

vidual's ability to participate in other types of en
deavors.

The potential for the use of the computer in the
instruction of the handicapped (particularly the more
severely handicapped whose slower response time can
make optimum use of the "patience" of the computer)
should also not be overlooked.

FOR FURTHER INFORMATION

A master chart of communication aids listing the above
communication aids and others in a chart form profil
ing their features, as well as an annotated bibliography
of communication aids providing pictures, descriptive
information and where to secure additional informa
tion on each of the aids, are both available from the
Trace Research and Development Center for the
Severely Communicatively Handicapped, University of
Wisconsin-Madison, 922 ERB-1500 Johnson Drive,
Madison, Wisconsin 53706.

ACKNOWLEDGMENTS

A special note of gratitude to Mary J 0 Luster whose
efforts are responsible for the location and classifica
tion of many of the aids contained in this summary.
We would also like to thank the many individual re
searchers and groups who have assisted the Trace
Center in compiling these summaries for use by other
concerned professionals.

REFERENCE BIBLIOGRAPHY

1. Boydell, R. G., "Possum-I Can," Spastic News, May 1964,
p.6.

2. Brulisaur, Peter, "Mailing Rehabilitation Systems," Pro
ceedings of the Seminar on Electronic Controls for the
Se'oerely Disabled, Vancouver, British Columbia, Canada,
pp. 37-39, 1974.

3. Bruun, Georg, Bjorn Jarkler, Peter Speldt and Arne Nybroe
Sorensen, "Communication Display/Printout Aid with a
Memory," In Aids for the Severely Handicapped, pp. 116-
118. Edited by Keith Copeland. London, Sector Publishing
Limited,1974.

4. Charbonneau, J. R., C. Cote and O. Z. Roy, "NCR's 'Com
handi' Communication System, Technical Description and
Application at the Ottawa Crippled Children's Treatment
Centre," Proceedings of the Seminar on Electronic Controls
for the Severely Disabled, Vancouver, British Columbia,
Canada, pp. 83-88, 1974.

5. Copeland, Keith, Aids for the Severely Handicapped, Lon
don, Spector Publishing Co., Ltd. 1974.

6. Crochetiere, J. W., R. A. Foulds and R. G. Sterne. "Com
puter-Aided Motor Communication," Proceedings of the
1974 Conference on Engineering Devices in Rehabilitation,
Boston, Massachusetts, pp. 1-5, 1974.

7. Foulds, Richard A. and Earl Gaddis, "The Practical Ap
plication of an Electronic Communication Device in the
Special Needs Classroom," Proceedings of the Seminar on
Devices and Systems for the Disabled, Philadelphia, Penn
sylvania, pp. 77-80,1975.

8. Foulds, Richard A., Gregory Baletsa and William J.

Crochetiere, "The Effectiveness of Language Redundancy
in Non-Verbal Communication," Proceedings of the Seminar
on Devices and Systems f01" the Disabled, Philadelphia,
Pennsylvania, pp. 82-86, 1975.

9. Foulds, R A., "'fhe Tufts Interactive Communicator," Pro
ceedings of the 1972 Carnahan Conference on Electronic
Prosthetics, Lexington, Kentucky, pp. 16-24, 1972.

10. Hyde, C. David, The Possum Selector Unit Type I, Ayles
bury, P.O. S.M. Research Project.

11. nes, G. H., "Interfaces for the C.P.," Proceedings of the
Seminar on Electronic Controls for the Severely Disabled,
Vancouver, British Columbia, Canada, pp. 71-82, 1974.

12. Jefcoate, Roger, "Possum-Its Significance to Multiple
Sclerosis Patients," M.S. News, Christmas, 1970.

13. Jenkin, Rosemary, "Possum: A New Communication Aid,"
Special Education, March, 1967, pp. 9-11.

14. Jones, Morris Val, "Electrical Communication Devices,"
American Journal of Occupational Therapy, 15, May-June
1961, pp. 110-111.

15. Luster, Mary Jo, Selected Bibliography of Articles, Bro
chures and Books Related to Communication Techniques and
Aids for the Severely Handicapped, Trace Center, 922 ERB,
University of Wisconsin-Madison, Madison, Wisconsin
53706, 1975.

16. Luster, Mary Jo, Annotated Bibliography of Researchers
and Institutions, Trace Center, 922 ERB, University of
Wisconsin-Madison, Madison, Wisconsin 53706, 1975.

17. Luster, Mary Jo and Gregg C. Vanderheiden, Annotated
Bibliography of Communication Aids, Trace Center, 922
ERB, University of Wisconsin-Madison, Madison, Wiscon
sin 53706, 1975.

18. Mailing, R. G. and D. C. Clarkson, "Electronic Controls for
the Tetraplegic (Possum) ," Paraplegic, March 1963, pp.
162-174.

19. Miller, John, "Electronics for Communication," American
Journal of Occupational Therapy, 18, January-February
1964, pp. 20-23.

20. Possum Controls, "General Descriptions and Specifications:
P.O.S.M. Research Project," Aylesbury, 1967.

21. Rahimi, Morteza Amir and John Bryson Eylenberg, "A
Computer Terminal with Synthetic Speech Output," A
paper presented at the National Conference on the Use of
On-Line Computers in Psychology, St. Louis, Missouri, 31
October 1973.

22. Rahimi, Morteza Amir and John Bryson Eylenberg, "A
Computing Environment for the Blind," AFIPS Conference
Proceedings of the 1974 National Computer Conference,
Vol. 43.

23. Tolstrup, I. M., VIDIALOG: TV-Based Communication
System for the Motor Handicapped, Proceedings from III
Nordic Meeting on Medical and Biological Engineering,
Tampere, Finland, 1975.

24. Vasa, J. J. and M. Mansell, "Queen's Communication Aids,"
Proceedings of the Seminar on Electronic Controls for the
Severely Disabled, Vancouver, British Columbia, Canada,
pp. 37-39, 1974.

25. Kafafian, H., Study of Man-Machine Communication Sys
tems for the Handicapped, 3 vols. Washington, Cybernetics
Research Institute, Inc., 1970-1973.

26. Newell, A. F. and C. D. Nabaui, "VOTEM: The Voice
Operated Typewriter Employing Morse Code," Journal of
Scientific Instruments, Series 2, 2, 1969.

27. Englehart, T. W., "A Computerized Typing System for the
Handicapped," M.S. Thesis, University of Alberta, 1971.

28. Kildaw, R., "A Multi-Terminal Interface Allowing Type
writer Operation by Paraplegics (MINTOP) ," M.S. Thesis,
University of Alberta, 1968.

29. Soede, M. and H. G. Stassen, "A Light Spot Operated Type
writer for Severely Disabled Patients," Medical and Bio
logical Engineering, 1973, pp. 641-644.

Interfacing Computers for Physically Handicapped 215

30. Stassen, H. H., ::\1. J. Soede and W. J. Luitse, "The Light
Spot Operated Type\vriter: The Evaluation of a Prototype,"
5th International Seminar on Rehabilitation. London,
England, 1974, pp. 1-21.

31. Vanderheiden, Gregg Charles, Gerald A. Raitzer, David P.
Kelso and C. Daniel Geisler, "An Automated Technique for
the Interpretation of Erratic Pointing Motions of Severely
Cerebral Palsied Individuals," submitted for publication,
1975.

32. Vanderheiden, Gregg Charles, Gerald A. Raitzer, David P.
Kelso and C. Daniel Geisler, "A Portable Non-Vocal Com
munication Prosthesis for the Severely Physically Handi
capped," submitted for publication, 1975.

33. Vanderheiden, Gregg C., Andrew 11. Volk and C. Daniel
Geisler, "An Alternate Interface to Computers for the
Physically Handicapped," AFIPS Conference Proceedings
of the 1974 National Computer Conference, Vol. 43, pp.
115-121.

34. Vanderheiden, Gregg C. and Mary Jo Luster, Non-Vocal
Communication Techniques and Aids as Aids to the Edu
cation of the Severely Physically Handicapped: A State oj
the Art Review, 1975, (In preparation) Trace Center,
University of Wisconsin-Madison, :Madison, Wisconsin
53706.

35. Ziskind, A. and R. Ziskind, "Remote Control Typewriter for
Paraplegics," Journal of American Medical Association,
169, January 3,1959, pp. 459-460.

APPENDIX

AID REFERENCES

Alphabet-Message Scanner
Prentke Romich Company
R.D. #2, Box 191
Shreve, Ohio 44676
(215) 567-2906

Auto-Com
Trace Center
922 ERB, 1500 Johnson Drive
Madison, Wisconsin 53706

Clock Face Selector (C.F.S.)
Centre Industries
Allambie Road
Allambie Heights
New South Wales,
Australia

Code Operated Selector (C.O.S.)
Centre Industries
Allambie Road
Allambie Heights
New South Wales,
Australia

Comhandi
Physico-Medical Systems Company
9250 Park Avenue, Suite M-101
Montreal 354, Quebec
Canada

Communications Prosthesis for the Cerebral Palsied
Loren J. Wymore
3 Gregory Court
Banington, Rhode Island 02806

Computer Assisted Communication (CAC)
United Cerebral Palsy of Middlesex Co.
Roosevelt Park
Edison, New Jersey

or
The Telephone Pioneers
Bell Telephone Laboratories
Whippany Council
Whippany, New Jersey

Corsford Selector
Mr. Ellis Cohen
19 Cochrane Street
Glasgow, C.l.
England

Discom
Rikscentralen
Bracke Ostergard
S-41722
Goteburg
Sweden

Electronic Typewriter Controller
Kingma Harding Associates, Ltd.
9639-62 Avenue
Edmonton, Alberta TGE OE1
Canada

Enlarged Typewriter Keyboard (adapted IBM
Selectric. Typewriter)
Suzanne D. Hill
Department of Psychology
University of New Orleans
Lakefront
N e\v Orleans, Louisiana 70122

Eye controlled "Teletypewriter"
Technology Utilization and Application

Programs Officer
National Aeronautics and Space Administration
Langley Research Center

Hampton, Virginia 23665
Herald I & II Electronic Communication Boards

The HERALD Company
3840 Railroad Avenue
Pittsberg, California 94565

Keyboard for Operation with the Feet
MEFA GmbH Bonn
518 Eschweiler
Post Sach 466
Germany

Lightspot Operated Typewriter (LOT)
Dr. H. G. Stassen
Associate Professor of Control Engineering
Lab for Measurement and Control
C. Drebbelweg 1
Delft University of Technology
Delft
The Netherlands

216 National Computer Conference, 1976

Linquaduc
Carba, Inc.
Technischer Berater
3097 Liebefeld-Bern
Switzeriand

MC 6400 Communicator
MEDICEL
222 Foxbill Road
Burlington, Massachusetts

MCM-Manual Communications Module
Silent Communications, Inc.
1440 29th Avenue
Oakland, California 94601

Multi-Access Interface for the Disabled (MAID)
Mr. J. Agzarian
Department of Medical Physics
The Prince Henry Hospital
P.O. Box 233
Matraville, New South Wales 2036
Australia

Modified Electric Typewriter
The National Institute for Rehab. Engineering
Pompton Lakes, New Jersey 07442

OCCUR-(Optical Controlled Communication Unit for
Rehabilitation)
National Research Council
Ottawa, Canada
K1AOR8

PILOT System (Patient Initiated Light Operated Tele
control)
Hugh Steeper (Rechampton) Limited
Queen Mary's Hospital

Rochampton Lane
London, S.W.
England

PMV Keyboards
PMV Printer
PMVAB
Dobelnsgatan 34C
113 52 Stockholm
Sweden

POSSUM Typewriter Control Systems
Possum Controls, Ltd.

63 Mandeville Road
Aylesbury
Buckingham HP21-8AE
England

Rumble Communicator MK 1
L. A. Rumble
30 Benton Road
Ilford, Essex, 161 4AT
Great Britain

System 8
Zambette Electronics
17 High Street
Southend-on-Sea
Essex
England

Tongue Controlled Typewriter
Technical Aids to Independence
12 Hyde Road
Bloomfield, New Jersey 07003

TV Phone
Phonics Corporation
814 Thayer Avenue
Silver Spring, Maryland 20910

Whispertype
Cybernetics Research Institute
2233 Wisconsin Ave N.W.
Washington, D.C. 20007

The spellex system of speech aids for the blind
in computer applications

by CHING Y. SUEN
Concordia University
Montreal, Canada

MICHAEL P. BEDDOES
Univer.sity of British Columbia
Vancouver,Canada

and

JAMES C. SWAIL
National Research Council
Ottawa, Canada

ABSTRACT

Spell ex is a system developed to aid the blind in the
use of computer and office equipment without sighted
help. It consists of a digital spelled speech generator
interfaced with a number of instruments by digital
electronic circuits. Voice is produced by two specially
programmed read only memory chips. Standard
C-MOS components are used in the design of the spelled
speech generator so that the processor can be easily
implemented using the latest large scale integrated
circuit technology. As it now stands, Spellex provides
voice for standard input and output terminals, punch
card reader, paper-tape punch and reader, calculator,
electric typewriter and the Lexiphone reading machine
for the blind.

INTRODUCTION

With the rapid progress in digital electronics and
speech processing techniques, the field of aids for the
blind has entered the stage of synthesizing voice by
digital circuits as the output medium.1 , 3 This evolu
tion of using spoken sound as output is logical because
speech is one of the most common and natural media
of human communication. Due to the decrease in price
of electronic components, it is now possible to build
intermediate types of speech aids at a reasonable cost.
This paper deals with the application of the Spellex
system for communication with the computer and its
accessories.

Many job opportunities in our competitive society
are not available to the blind because they cannot work

217

without sighted help. However, with a multitude of
aids now being developed using tactile and auditory
feedbacks! 5 it is forecast that more blind people will
be able to hold technical and professional jobs in the
future. Indeed, during the past several years a con
siderable number of blind programmers were able to
find employment in the field of data processing. There
are also several good facilities for the training of blind
programmers, both in North America and Europe.

In response to a questionnaire on their special needs,
blind programmers indicated that they would like to
see the following tools developed: 8 Braille terminals
and printouts, reader for inkprint printouts, spoken
input/ output, card reader for verifications and correc
tions and Braille writer as an attachment to miscel
laneous equipment. The development of the Braille
line printer4

,6 has answered some of their needs and
the development of the Spellex system will further
resolve their problems related to reading and commu
nication with the computer and its accessories.

The Spellex system depicted in Figure 1 is the result
of several years of continuous research and develop
ment in auditory feedback. At the present stage of
development, it can generate a synthesized spoken
sound each time it receives an output signal in ASCII
from the various machines. The spelled speech gen
erator was initially conceived as an output device for
the Lexiphone reading machine.7

,8 This enables a blind
user to monitor the machines easily. At the present
moment, the Lexiphone can read several type fonts. 2

A calculator has been interfaced to Spell ex and an IBM
electric typewriter is functional with an editor and
enunciates the sound of all the keys. The system also

218 National Computer Conference, 1976

_·-;:'Ot:-.er Perip::erals -~

~'elctype/printer ~
Disital ~ OLher E:quip:'.ent I

Interface hl EiC Typewr~ teo: H
I , I H Punch Card Reader ~ y Calculator ~

I I
i Paper Tape Lexiphone

r-----o
Reilding ~Iachine Reader/Punch

I
I Computer

I peripherals

Off ice

Equi;:>ment:

I

Figure 1-The Spellex system

operates a portable punch-card reader, teletypes and
teleprin ters.

THE SPELLED SPEECH GENERATOR

Spelled speech was synthesized by the concatenation
of phonemes stored digitally in Read Only Memories
(ROMs). In order to minimize the memory require
ment, only 18 phonemes were chosen to synthesize the
whole set of 64 ASCII characters.7 They were ex
tracted from recordings by the computer specially pro
grammed for digitization and segmentation purposes.
Although some of the sounds produced may be a bit
artificial, extensive experiments proved that blind sub
jects could master them in a matter of just an hour or
so after which they could "read" between 60 and 80
words a minute.s

The first version of the generator was developed on
a mini-computer. Based on the principles of the com
puter program which generates the spoken sounds, a
portable digital apparatus was subsequently designed
and built. The circuit is relatively simple and can be
easily converted to the current LSI computer technol
ogy. Its block diagram is shown in Figure 2. As the
ASCII code of a character reaches the machine, a
pointer is set to search its location in memory. By a

ASCII Code

Input

!de!'.tity 0: I

Table

Look

Up

Phoneme

Combination

of Character

Sou,-,d

Phonetic

Rules

Digital

Speech

Data

Phoneme

Storage

ROM s

Figure 2-Block diagram of the spelled speech generator

table look-up technique, the phoneme combination for
the corresponding sound is found. The phonemes are
then generated through the digital to analog converter
according to pre-programmed phonetic rules also
stored in the ROMs. Thus, one hears the sound A
(phonemes lei and Iii) when the ASCII code 301
reaches the machine. The current spelled speech gen
erator will make any instruments talk as long as they
give an ASCII output.

COMMUNICATIONS WITH THE COMPUTER

Since ASCII codes are readily available from most
computer terminals, the Spellex system enables blind
programmers to hear what they command the com
puter to do. This mode of operation is desirable for
mini-computers as well as big computers using remote
terminals. Our system provides communication with
the computer by telephone lines at remote terminals
at three locations in Vancouver: the Jericho Hill
School for the Blind, the Crane Memorial Library and
the Vancouver branch of the Canadian National Insti
tute for the Blind. An editor is also included in the
programs so that detected errors can be removed im
mediately. Once the user is satisfied with the output,
he can have it punched on paper-tape so that multiple
copies can be made afterwards. So far, blind students
have used the system for text editing and as a training
facility for typing. They have used it to type theses,
make copies, circulars, and even applications for jobs!
Nearly everyone likes to play with the new machines.
However, continued co-operation with blind people is
needed to adapt the interface to new uses as they are
discovered. Many suggestions have been received from
users of these terminals, especially from the oldest
installation (1972) at the Jericho Hill School for the
Blind. The system has also been used by multiple
handicapped blind.

So far, we have answered the input problem. The
output problem is more difficult to solve due to the fast
speed at which characters are generated from the com
puter. Even with the slowest specified rate of 110
bauds, it represents an output speed of at least 100
words a minute, and the speed of line printers could
be many times faster. Some blind people can listen to
spelled speech at 100 words per minute if they have
some ideas about the kind of output and the likely
results, but not the others. To overcome this particu
lar problem, we have programmed the computer to
slow down its speed by the introduction of silent gaps
between characters. To date, we have used this tech
nique with success. Another alternative is to imple
ment a memory buffer at the terminal so that the out
put can be slowed down to the programmer's desired
speed. Of course one can also record the computer
output on tape-recorders so that he can verify it when
desired. The reading of paper-tapes follows the above
pattern.

CARD READING

The one operation with which a blind programmer
does not appear to be able to cope satisfactorily is the
reading of individual punched cards for verification
and correction. Braille printouts may be used to check
a complete stack of cards, but there is a need to read
cards singly for certain purposes. One device, which
has been available for some time, requires the user to
find each hole with a probe~ but the procedure is too
time-consuming for efficient operation.

To answer the above needs, a portable card reader
was developed in the laboratories of the National Re
search Council. This device employed a tactile read-out
with no form of code conversion. Appropriate tactile
stimulators in a row of 12 were activated correspond
ing to the holes punched on the card. Recently we have
modified this equipment to provide an ASCII output
for the Spellex spelled speech generator. A block dia
gram of this new device is shown in Figure 3.

The card to be read is placed in a carriage that is
movable from left to right. A small plastic key in the

U Light Source

11\

/" , / ' , ,
Card ' " , IBM

/ , ,

I I

W W ,~

Array of 12

Photocells

I I

,~ ,1/ ,~

Schmidt Triggers

I I

W \it'

Hollerith to ASCII

Code Converter

11
To Spelled Speech Generator

Figure 3-Punch card reader

The Spellex System of Speech Aids 219

rear left hand corner assures correct orientation of the
card. Only one column is read at a time and this is
selected by moving the carriage manually. Column po
sitions are identified by feeling the location of a pointer
which moves along a raised scale. A row of twelve
photocells under the moving carriage is fixed to the
body of the instrument to detect light passing through
the 12 possible punched holes in any column. A fluo
rescent lamp is used as the light source. ASCII codes
of the punched characters are provided by an inte
grated circuit Hollerith to serial ASCII code converter.
Thus, the operator hears the sound of the punched
character each time its holes pass through the photo
cells. At present, the synthesizer is triggered at each
column location by a pushbutton. However, it is
planned to provide an automatic trigger so that each
character on the card will be pronounced as soon as the
column is properly aligned. An automatic drive for
the carriage will also be added if field trials with blind
programmers indicate that this is a useful feature.

CONCLUSION

The Spellex system does not only make office equip
ment such as the typewriters and calculators talk but
also teletypes, card readers and some other computer
peripherals. In sum, it can make any instruments talk
as long as ASCII code is available. Although spelled
speech is slower in speed than ordinary conversation,
it is especially useful in such cases as reading com
puter programs, checking spelling errors and provid
ing numerical output. It can also be employed in the
mini-computer environment, on-line applications and
satellite terminals for large computers. It has the
potential of being manufactured by large scale inte
gration technology. The cost of such a unit can be
very low when large quantities are produced.

OUTLOOK FOR THE FUTURE

Over the past few years, numerous blind people have
accepted the challenge of working in the field of data
processing. While scientists and research workers
have developed a number of tactile and auditory instru
ments to assist them, there are still some problems
blind programmers are facing, in particular: faster
means of reading computer output, flow-charting com
munication, means of getting information from books,
manuals, periodicals, and other reference materials. It
seems that the needs of blind programmers are many
and can only be solved when a multi-media approach
is taken, i.e., combining the use of both tactile and
auditory feedbacks for adaptation to computer periph
erals and other equipment. They could then use the
appropriate type of sensory aid as required. Those
who are poor in Braille and tactile senses (e.g., dia
betes) could make use of auditory instruments to

220 National Computer Conference, 1976

carry out their daily work. The converse is true for
those who have a poorer auditory sense although sta
tistically this condition is far less common than the
former condition. While Braille seems to be more
suitable for establishing permanent records of com
puter output and programs, spelled speech is more
suitable for the input phase and on-line monitoring,
and optical readers such as the Optacon and the Lexi
phone are more suitable for reading materials already
in print. A multi-media approach in a time-sharing
mode seems ideal for the visually handicapped to
choose the right equipment and feedback medium for
each particular situation. The ultimate solution will
be a low-cost multi-media system which can only be
realized by greater efforts in research, development
and evaluation.

ACKNOWLEDGMENTS

This work was supported by grants from the Medical
Research Council and the National Research Council
of Canada, the Mr. and Mrs. P. A. Woodward Founda
tion, the Vancouver Foundation, and the Department
of Education of Quebec, Canada. The authors also
wish to thank John Moon and Lloyd McSheffrey for
assistance.

REFERENCES

1. Allen, J., "Reading Machines for the Blind: The Technical
Problems and the Methods Adopted for Their Solution,"
IEEE Trans. Audio and Electroacoustics. A U-21 , Pp. 259-
264,1973. ._-

2. Beddoes, M. P. and C. Y. Suen, "Transducers for a Reading
Machine for the Blind," Proc. International Conference on
Biomedical Transducers, 2, pp. 511-515, Paris, Nov. 1975.

3. Cooper, F. S., J. H. Gaitenby, 1. G. Mattingly and N.
Umeda, "Reading Aids for the Blind: A Special Case of
Machine-to-man Communication," IEEE Trans. Audio and
Electroacoustics, AU-17, pp. 266-270, 1969.

4. Dalrymple, G., "Sensory Aids Progress at the MIT Sensory
Aids Evaluation and Development Center," Research Bulle
tin of the American Foundation for the Blind, 27, pp. 11-
44, 1974.

5. Nye, P. W. and J. C. Bliss, "Sensory Aids for the Blind:
A Challenging Problem with Lessons for the Future," Proc.
IEEE, 58, pp. 1878-1898, 1970.

6. Proceedings of the First International Workshop on Com
puterized Braille Production, edited by R. A. J. Gildea, G.
Hubner and H. Werner, ACM SIGCAPH Newsletter, March
1975.

7. Suen, C. Y. and M. P. Beddoes, "Development of a Digital
Spelled-Speech Reading Machine for the Blind," IEEE
Trans. Bio-Medical Engineering, BME-20, pp. 452-459, 1973.

8. Suen, C. Y. and M. P. Beddoes, "Spelled Speech as an
Audio Output for the Lexiphone Reading Machine and the
Spellex Talking Typewriter for the Blind," Research Bul
letin of the American Foundation for the Blind, 29, pp. 51-
66,1975.

9. Smnma1'y of Responses to Blind P1'ogrammer Questionnaire,
ACM SIGCAPH Newsletter, pp. 5-13, July 1973.

Development of a hand-held talking calculator for the blind

by R. E. SAVOIE, J. S. BRUGLER and J. C. BLISS
Telesensory Systems, Inc.
Palo Alto, California

ABSTRACT

This paper describes a project to develop a calculator
for blind people. Based on the results of a survey of
needs and an evaluation of various types of displays for
the blind, spoken word output was chosen as the ideal
display. The final product, hand-held and battery pow
ered, incorporates a custom LSI microcontroller and
a single 16K Read Only Memory to synthesize a vocabu
lary of 24 words.

INTRODUCTION

Small, lightweight hand-held calculators have become
as standard a household item as toasters since Hewlett-
Packard Company pioneered the HP-35. These elec
tronic calculators are among the few truly innovative
products of recent years and a success of American
technology made possible by Large-Scale-Integration
(LSI) electronic circuitry. New and improved calcula
tors are being introduced almost daily by various
manufacturers, with computation capability ranging
from the basic four functions to programmable models
which are essentially computers. All indications are
that the prevalence of use of these calculators by work
ing adults and school children is on the increase.

Thus far, the blind have largely not benefited from
this technological advance because pocket calculator
displays are visual. To overcome this lack, many or
ganizations, including our company, have worked at
developing special calculators suitable for use by the
blind. The motivation for these efforts stems largely
from the realization that an effective calculator for the
blind would not only provide a quick and reliable
means for doing calculation, but also would offer the
possibility of increasing the mathematical skills of the
blind. Mathematics has traditionally been a difficult
subject for blind students, partly because of the com
plications of displaying mathematics in Braille.

The development described in this paper initially
addressed several fundamental questions such as: How
would the blind use a calculator? What features are
required? How should the information be displayed?
The answers to these and other questions led us to

221

develop a talking calculator that provides to the blind
user all the information and convenience that ordinary
hand-held calculators provide to the sighted.

BACKGROUND

The traditional calculation tool for the blind has been
the abacus, which performs simple computations ade
quately, but which requires great skill for more in
volved work. When electronic calculators became
generally available, TSI developed a special lens module
that allows an Optacon user to read many of these cal
culators without modification. The Optacon is an elec
tronic reading aid for the blind that presents the user
with a tactile facsimile image of an area about the size
of a letterspace, selected by a small camera that is
scanned by the user. By replacing the standard lens
module used for reading inkprint with the special
calculator lens module, the Optacon user can scan the
calculator's visual display and feel the images of the
digits displayed on his finger. A number of Optacon
users own sophisticated, scientific calculators which
they use routinely in their work. However, many totally
blind or low vision people are not Optacon users, but
have a need for a portable calculator which can produce
the numerical display in a form that does not have to
be read visually. To address these needs, TSI began
to investigate the alternatives to the visual display
readout which is standard on pocket calculators.

DESIRED FEATURES OF A CALCULATOR FOR
THE BLIND

Blind persons' computational needs cover the same
wide spectrum as that of the general public. In order
to accurately assess interest from the blind community
in an electronic calculator, we conducted an informal
survey of 180 blind people throughout the country. 1

We found that 75 percent of those questioned expressed
a desire to own an electronic calculator. The results of
the survey, together with our own opinion, led to the
following list of key important features needed in any
calculator we should develop for the blind:

222 National Computer Conference, 1976

1. At least fO'ltr functions (add, subtract, multiply,
and divide), floating point calculation plus auto
matic constant, memory and square root. Nearly
half of the survey respondents indicated that they
would use a calculator primarily for personal use,
and only 5 percent needed full scientific capa
bility. The above features would therefore cover
most of the expected usage.

2. Easy usage by the sighted and partially sighted.
Many potential blind users have sighted spouses
and children who would also use the calculator.
The utility of a calculator would also be increased
considerably if those partially sighted who can
not read ordinary calculators would be able to use
it.

3. Easy portability and battery operation. About
half of our survey respondents indicated a firm
desire to have a portable unit as close as possible
to pocket size.

4. Immediate confirmation of keyboard entry. The
operator needs instant feedback to confirm each
key-press to insure easy learning and fast, ac
curate computation.

5. A display that is easily learned. To enable wide
spread usage there should be no undue burden
on the operator, other than learning how to
operate the calculator. Additionally, the calcu
lator should be easy to teach and demonstrate.

6. Minimum human error in display readout. Cal
culators do not make mistakes-human operators
do. The display technique chosen should be
sufficiently clear and unambiguous to minimize
the inevitable human error.

7. Low "user frustration." This subjective param
eter relates to the others, and means basically
that the display is easy to use. The operator
should be able to concentrate on the mathematical
problem at hand, not on just reading the display.

A critical problem in meeting the above goals is to
choose the proper display. The computation itself is
easy, due to the recent availability of inexpensive LSI
calculator circuits. Our initial work was therefore
directed toward the display problem, with the hope
that the same LSI technology could lead us to an effec-

tive display. Since we were searching for "pocket"
calculator displays, we did not consider displays pro
viding permanent hard copy.

DISPLAY ALTERNATIVES AND EVALUATION

Choice of a digital display for the blind is the subject
of considerable effort throughout the world. A recent
report2 by J. M. Gill of the University of Warwick,
Coventry, England lists 27 different digital displays
either available or proposed. We encountered several
additional displays during our investigations. Most of
these displays, it should be noted, are useful for digital
information whether from a calculator or not.

In Table I we present a listing of the important
pocket calculator displays that we know, along with a
comparison with respect to the important features we
identified in our survey, plus calculation speed and
cost. Displays are ranked within each category, with
lowest numbers the best. To the right, scores of each
column are added to give a rough ranking of the various
display options. Our listing of the relative display
merits is, of course, subject to debate, but the indica
tion is that the most attractive display is speech.

One can appreciate that the display problem is really
one of too many choices. All of these displays work.
Undoubtedly, anyone of them could be happily and
successfully used by many people. Faced with this
dilemma, we decided to construct or obtain several
different calculators having the display techniques we
liked the best, and conduct a comparative evaluation as
objectively as possible. Following this plan, we eval
uated four different calculators.

1. An Audio-Matrix Scan Display-a number of
side-by-side columns of braille readout cells, one
column for each display digit. The user scans
each column of cells vertically with his fingertip.
A tone is provided when the correct cell is
touched.

2. An Audio-Keyboard Scan Display-the calculator
keyboard itself is used to perform the digital
readout. The user scans the keyboard by sequen
tially pressing the numeric keys. An audio tone
is generated when the key corresponding to the

T ABLE I-Ranking of Calculator Displays

Learning Computation Confir- Overall
Display Effort Sighted Throughput Porta- mation Error User Unweighted

Type Required Use Speed bility on Entry Rate Cost Frustration Total Score

Abacus 2 2 4 1 4 2 1 2 18
Optacon 5 1 1 2 3 2 5 2 21
Tactile-Parallel 3 3 1 2 2 2 4 2 19
Tactile-Serial 3 3 2 1 2 2 3 3 19
Audio Tones 4 3 2 1 3 4 2 3 22
Speech 1 1 2 1 1 1 4 1 12
Audio-Keyboard Scan 2 2 3 1 2 3 2 3 18
Audio··Matrix Scan 2 2 3 2 2 3 2 3 19

most significant digit is depressed. At successive
scans, successive digits are determined on down
to the least significant digit. Of course, the cal
culator itself is disabled during the scanning
process.

3. A Braille Serial Display-a single braille display
cell dynamically presents the digits, one at a
time, from most to least significant digit upon
user command.

4. An Audio-Speech Display-synthetic speech is
the output code.

Our evaluation involved participation by almost two
dozen blind subjects, many of whom were sophisticated
in mathematics and had experience in evaluating sen
sory aids. The evaluators were shown the calculators
and allo'\ved to practice. Next, they '~lere timed for
speed and accuracy doing sample problems. Finally,
their subjective preferences were solicited.

The Audio-Keyboard Display was eliminated early in
the evaluation because we determined that it simply
required too much effort on the part of the user. Of
the seven evaluators who saw the remaining three
displays, six preferred speech output, and speech
proved to be the fastest and most accurate, as shown
below.

Display Av. Time/ Total No. Preferred
Type Problem Errors by

Matrix
Scan 66 sec. 13 0

Braille
Serial 38 sec. 14 1

Audio
Speech 26 sec. 0 6

A key finding was that quite commonly an error with
the matrix or braille displays was the result of reading
correctly a display that had the incorrect answer
because the user had made a mistake entering the
problem without knowing it. This problem was ob
viated with the speech display, which pronounced the
name of each key as it was depressed.

Our evaluation thus led us to conclude that spoken
speech is preferred using both subjective and objective
measures. Speech, as the natural human communica
tion means, uniquely needs no learning, can be used by
the sighted, causes minimum user error and frustra
tion, and provides immediate feedback identifying
every key depression. Another advantage of voice for
the calculator application is that additional required
display parameters, such as "overflow," "minus" and
"point" are provided in a natural way. All of the other
display techniques become awkward when faced with
these extra functions.

Hand-Held Talking Calculator for the Blind 223

DEVELOPMENT OF SPEECH PLUSTM
CALCULATOR

Based on the results of our survey and evaluations,
we formulated the following product specifications:

1. Hand held and battery operated
2. Spoken speech for every key depression and for

display on command
4. Cost effective and reliable.

One main effect of these constraints was to eliminate
analog methods of producing speech, such as magnetic
tape or optical film, which we felt could not compete
with modern solid-state electronics in terms of size,
cost and reliability.

At the time that these goals were written, we had a
breadboard talking calculator (used in the evaluation)
that comprised two large boxes full of electronics. One
box contained a TTL prototype electronic speech syn
thesizer which employed a synthesis algorithm for
which TSI subsequently obtained an exclusive license.
The remaining electronics was required primarily to
interface our speech synthesizer to an ordinary cal
culator chip. This interface proved to be surprisingly
complex, because the high-speed, multiplexed, 7 -seg
ment signals used for the visual display are inappro
priate for the slow-speed sequential readout required
by the speech synthesizer. A possible solution to
eliminating this interface would have been the use of
a printing calculator chip, but there were none avail
able that satisfied our computational needs. The major
engineering tasks as we began the development can
be summarized as :

1. Reduce the speech synthesizer (over 60 inte
grated circuits) to a small, cost effective size

2. Reduce the complexity of (or eliminate entirely)
the interface between the calculator chip and
the speech synthesizer

3. Design a convenient package engineered with the
human factors of a blind user in mind.

To tackle the problem of the speech synthesizer, we
engaged a consulting firm to evaluate the synthesis
algorithm and recommend whether it could be imple
mented using a microcomputer. Their findings sup
ported our feelings that microprocessors available then
(April 1975) were inadequate in all of the following
areas:

1. Speed
2. Size
3. Power consumption
4. Cost

We had previously confirmed the feasibility of execut
ing the synthesizer design in a custom LSI micro
controller. With the finding that the microprocessor
approach was not feasible, we began LSI development.
The resulting custom MOS LSI program successfully

224 National Computer Conference, 1976

reduced the 60 IC packages to a single micro controller
circuit and a single ROM.

The microprocessor approach, however, was the
solution to reducing the interface complexity. We
were able to identify a one-chip microcomputer that
could be programmed to perform the computational
algorithm we required and also to give the speech
command signals required by the speech synthesizer.

The packaging problem involved innumerable de
tails, but was centrally concerned with satisfying the
following requirements:

1. Small and lightweight enough to be hand-held
2. Keyboard designed expressly for the blind.

The first problem was complicated by the presence
of considerably more electronics than are in an or
dinary calculator. The major contribution to size
reduction was, of course, the use of LSI integrated
circuits to reduce the package count. We also took
care to assure low power consumption so we could
obtain the required operating time with physically
small batteries.

To find out as much as we could about the best key
board design, we conducted an evaluation of twenty
commercial keyboards using almost fifty blind subjects.
We also tested several different formats of custom
keyboard. For these, subjects were timed and scored
for errors on sample problems with a simulation of a
talking calculator. The general findings, which were
incorporated into the calculator design, were:

1. Relatively large key tops were preferred
2. Relatively long keystroke was preferred
3. A tactile locating "bump" on the "5" key was

preferred
4. Functional partitioning by spatial separation was

more efficient than other tactile cues
5. A 6 x 4 horizontal key matrix was more efficient

than a vertical or square format (because many
subjects used two hands to input data)

6. The standard calculator arrangement of the num
ber keys was disliked by many blind subjects.
These subjects had experience using push-button
telephones, which have an inverted arrangement.
It would be confusing to a blind user to alternate
between calculating and telephoning if the basic
number matrices were different. We therefore
decided to use the telephone arrangement for the
number matrix of the keyboard

Figure 1 shows a functional block diagram of the
talking calculator. It employs a "three-chip" archi
tecture. On the left is the microcomputer, which
implements our calculation algorithm, drives the visual
LED display, services the keyboard, and sends speech
command signals to the speech synthesizer portion on
the right. The speech command signal is a 5-bit parallel
code specifying one of the 24 words in the calculator's
vocabulary, and a strobe signal to initiate speech.

CALC.

CKT

KEYBOARD

MICRO

CONTROLLER

ROM

Figure I-Functional block diagram.

POWER

The speech synthesizer uses two LSI integrated cir
cuits, one of which is a commercially available 16-K
n-channel MaS read-only-memory, mask programmed
with our custom pattern. The second IC is our Custom
MaS ROM Controller (CRC), a micro-controller which
implements a proprietary algorithm for speech syn
thesis. Upon command of the calculator chip, the
micro-control chip reads the outputs of the calculator
chip. These signals are used to fetch control informa
tion stored in the read-only-memory (ROM) chip. The
CRC also determines the addresses needed to access
data stored in the ROM. From ROM information, the
control chip determines how to say the word, the
pronunciation, how long to say the word, and when
to stop saying the word.

Sound is produced from data stored in the ROM.
The micro-control chip selects the ROM addresses to
be read and speech is produced from the data stored
in a given location. Each speech sound is made up of
many digital bits, each one making up an increment of
the analog audio signal. The control chip also converts
the digital information produced in conjunction with
the ROM to an analog audio signal, via an on-chip DjA
converter.

The division of labor between these two ICs is such
that the vocabulary and language information reside
solely within the ROM, while the controller is language
and vocabulary-independent. Thus, a change in the
language of the calculator involves only replacing the
"English" ROM with the appropriate foreign lan
guage. Weare presently working on a German calcu
lator.

APPLICATIONS

The Speech PlusTlf calculator is expected to open
whole new fields of application of math to the blind.
We see imoprtant uses in the vocational, educational,
and home areas.

Blind vending stand operators can use the calculator
to figure prices and sales taxes, and also to do their
own accounting. Blind salesmen can figure quotes,

budgets, and the like. And scientists and engineers can
use the calculator at their jobs.

In education, the calculator offers the possibility of
improving the methods of teaching math to blind (and
sighted) children, as the entire class can follow the
calculation by sound. iU higher grades, it offers a
means for blind high school and college students to do
assignments involving calculations.

In the home, the calculator can be used to reconcile
bank accounts, figure taxes, do comparison shopping,
and is useful in hobbies such as carpentry and elec
tronics.

We intentionally structured the calculator so that
the calculating portion and the speaking portion are
relatively independent. The speech synthesizer can
easily be expanded to a 64-word vocabulary with the
addition of one more ROM. There are many applica
tions for other devices for the handicapped which
could benefit from the use of such a relatively small
vocabulary voice capability. These include talking
voltmeters, talking clocks, talking typewriters, talking
notetaking devices, talking computer terminals, and
so on. The development of a speaking capability for

Hand-Held Talking Calculator for the Blind 225

the calculator thus opens the door to a wide variety
of other possible applications.

SUMMARY

An extensive survey of blind people indicated that there
is demand for a hand-held electronic calculator useable
by the blind. An evaluation with blind subjects showed
that audible speech is the best display modality for an
electronic calculator for the blind. The principal dra~'ll
back of speech is its cost, which has been effectively
mitigated through LSI electronics.

REFERENCES

1. Proscia, Vito A., Robert E. Savoie and J. S. Bl'ugleT, "Elec
tronic Calculators for the Blind," presented Krusen Center
for Research and Engineering at Moss Rehabilitation Hos
pital, Temple University Health Sciences Center Program,
Devices and Systems for the Disabled. April 29 and 30, 1975.

2. Gill, J. M., "Non-Visual Computer Peripherals," survey report
distributed by Department of Engineering, University of
Warwick. September 1974.

Survey of public attitudes toward computers in society*

by DAVID H. AHL
A T&T and Publisher-(;reah:1Je C01r!puting Magazine

ABSTRACT

There is no doubt that the computer will have at least
as great an effect on humankind as any previous in
novation, but today we can see just the tip of the ice
berg. In the future the computer will be not merely in
the realm of the scientist or data processing specialist
but it will be available to everybody.

Do people understand the computer and what it can
do? Creative Computing magazine conducted a survey
in 1975 to find out. The survey was conducted in two
highly computerized nations, the United States and
Germany among both young people and adults and
among people who had been exposed to the computer
and those who had not. The sample of 843 was rela
tively balanced demographically.

This survey indicates that most people are remark
ably optimistic about the benefits the computer can
bring to society in a number of areas, for example,
education, law enforcement, and health care. People
feel they are u:Qable to escape the influence of the
computer and that it has some undesirable effects,
however, they do not feel particularly threatened by it.
Young people tend to be less optimistic and feel more
threatened by the computer than do adults. A sur
prising two-thirds of the population have a fair under
standing of both the role and function of the computer
although there are a few misconceptions.

Compared to the 1971 AFIPS/Time survey, people
have become more optimistic about the use of com
puters in most areas with the notable exception of
credit data banks. Also, this Creative Computing sur
vey identified the computer influence on elections as a
real danger area-to our knowledge this has not been
previously surveyed.

METHODOLOGY

During the 6-month period, February through July
1975, C1'eative Computing Magazine conducted a sur
vey on people's attitudes toward computers and their

* For further information about this survey, please contact
David Ahl, Editor, Creati1.:e Computing, P.O. Box 789-M, Morris
town, N.J. 07960.

227

role in society. Some 843 people responded in two
highly computerized nations, the United States and
Germany. About one-third of the respondents had been
directly exposed to computers in some way; two-thirds
had not. Thirty-six percent of the respondents were
classified as young people (20 and under) and students;
the remainder were a relatively balanced cross-section
of adults.

The 17 questions in the survey fell in four major
categories (although they appeared in random order on
the survey instrument). The categories:

1. Computer Impact on the Quality of Life (4Q)
2. Computer Threat to Society (4Q)
3. Understanding of the Role of Computers (5Q)
4. Understanding of the Computer Itself (4Q)

In some cases where the questions were similarly
worded, the responses to this questionnaire are com
pared to those from a 1971 survey jointly sponsored
by AFIPS and Time :Magazine.

SUMMARY

Computers are not only invading our lives along a
multitude of directions-supermarkets, credit data,
medical records, hobbies, etc.-but our society is be
coming so dependent upon computers that it can truly
be said that we live in the computer age. The computer
will have at least as profound an effect on humankind
as did the printing press some 500 years ago. In the
Guttenburg Museum, a map plots the spread of print
ing out from Mainz to the rest of the world over scores
of years, The computer invasion has taken place at an
infinitely greater speed.

Now, some 30 years after its invention, what do
people think of the computer. Monster or savior?
Slave or dictator? Do people understand this awesome
force?

This survey indicates that most people are remark
ably optimistic about the benefits the computer can
bring to society in a number of areas, for example,
education, law enforcement, and health care. People
feel they are unable to escape the influence of the com
puter and that it has some undesirable effects, however,

228 National Computer Conference, 1976

they do not feel particularly threatened by it. Young
people tend to be less optimistic and feel more threat
ened by the computer than do adults. A surprising
two-thirds of the population have a fair understanding
of both the roie and function of the computer although
there are a few popular misconceptions.

Compared to the 1971 AFIPS/Time survey, people
have become more optimistic about the use of com
puters in most areas with the notable exception of
credit data banks. Also, this Creative Computing sur
vey identified the computer influence on elections as a
real danger area-to our knowledge this has not been
previously surveyed.

COMPUTER IMPACT ON THE QUALITY OF LIFE

On the whole, respondents felt that the computer
will improve the quality of life in four areas: educa
tion, law enforcement, health care, and prevention of
fraud. Young people and students saw somewhat less
improvement from the use of computers than did
adults.

Computers will improve education-About 85% of
all the respondents strongly or mostly agreed with
that statement and only 5 % disagreed. This was the
highest positive (or negative) response to any single
question and also the question which had the greatest
agreement between adult and youth.

Computers will impTove law enforcement-82% of
the adults agreed with this and only 3 % disagreed.
The younger respondents were somewhat more cynical;
70% agreed and 10% disagreed.

Computers will improve health care.-On this issue,
the young respondents had considerably more doubts
than adults; about 79 % of the adults agreed but only
547c of the youth. More than twice as many youth
disagreed with the statement as adults-12% vs 5%.

Ranking lower on desirable uses of the computer is
its use for storing and checking credit rating data;
64% of both adult and youthful respondents saw this
as a worthwhile application. However, 131'c of the
adults thought this was a bad application for the com
puter perhaps reflecting previous hassles that they or
friends had with computerized credit rating data.
Most young people probably haven't been exposed to
this malady; only 8]'c of them objected to this applica
tion. While substantial, the 64% of the people in favor
of this application represents a substantial decline
from the 75% recorded just four years ago in the
AFIPS/Time survey.

THE COMPUTER THREAT TO SOCIETY

Respondents were mixed in their feelings about the
threatening nature of computers. Most felt they were
unable to escape the influence of the computer. Nearly
half saw computer predictions influencing the outcome

of elections. More than one-third felt that computers
dehumanize society to some extent. About one-quarter
saw the computer taking more jobs than it creates.
And about one-fifth saw the computer having an iso
lating effect on programmers, operators, etc.

A person cannot escape the influence of computers-
92 % of the adults agreed with that statement, most
"strongly" agreeing; only 4 % disagreed. These per
centages are virtually the same as those recorded in
the 1971 AFIPS/Time survey. Reflecting a more opti
mistic, perhaps somewhat naive view that one can
drop out and avoid anything one doesn't approve of,
only 67 % of the young people felt they could not escape
the influence of computers and 18% strongly disagreed
with the notion that computers couldn't be avoided.

Computer polls and predictions influence the outcome
of elections.-About 46% of the respondents agreed
with this statement and 270/c disagreed. In a demo
cratic society, this is truly of grave importance. If
almost half the people, adult and youth alike, feel their
voting behavior is in some way influenced by computer
polls and predictions (j oin the bandwagon, we've lost
so why bother voting, etc.) then we have a real prob
lem.

Computers dehumanize society by treating everyone
as a number.-Reflecting a rather positive shift in
attitude, only 37 % of the adult respondents agreed
with this statement and 500/c disagreed compared to
the percentages of 54 % agreement and 400/c disagree
ment just four years ago in the AFIPS/Time survey.
The younger respondents in the current Creative Com
puting survey were more pessimistic; 40 % agreed
that computers dehumanize and only 31 % disagreed.
(youth were not included in the 1971 survey.)

Computers isolate people by preventing normal social
interactions among use7's.-Computer bums and com
puter freaks are common around any school with a
computer. Million dollar corporate computers have
to be fed data around the clock to justify their invest
ment and there is a growing army of midnight shift
programmers and operators. Among the uninitiated,
FORTRAN or COBOL are more foreign than French
or German. Are computers really isolating segments of
society? Maybe, but apparently it's not very noticeable
since only 20 % of the respondents agreed with the
statement above. More revealing, however, is the fact
that 63 % of adults disagreed with the statement and
only 43 % of young people disagreed. Perhaps com
puter freaks, who tend to be among the younger cadre,
a're becoming more evident.

UNDERSTANDING THE ROLE OF COMPUTERS

This issue was examined from two directions: what
types of jobs are suitable for a computer and what will
be its effect on human employment (or unemploy
ment)? For the most part, adults saw the computer
as suitable for dull, repetitive tasks like a hammer or

Public Attitudes Tov;ard Computers m Society 229

lathe while young people saw computers in much
broader roles. Furthermore, adults saw computers
replacing low skill jobs and creating just as many jobs
as they eliminate; young people were not as optimistic.

Computers are best suited for doing repetitive;
monotonous tasks.-Eighty percent of the adults
agreed with this statement and 10 % disagreed. Among
young people, 57 % agreed, 22 % disagreed. In other
words, young people see the computer doing a wide
variety of things beyond simply data processIng, nu
merical machine tool control, and telephone switching.
But perhaps in some of these more sophisticated
applications in which the computer takes over some of
the human decision-making function, youngful re
spondents are more fearful of computers and less
optimistic than adults.

Computers are a tool just like a hammer or lathe.
Again, adults are in considerably greater agreement
with this statement than are younger respondents.

Computers slow down and complicate simple busi
ness operations.-Interestingly enough, most people
seem to believe that computers are used reasonably
well in business because 68 % disagree with this state
ment and only 17 % agree.

Computers will replace low skill jobs and create jobs
needing specialized training.-Somewhat more adults
agreed with this statement (71 %) than did youth
(62 %). About 150/c of both adults and youth dis
agreed. This implies that a substantial fear exists that
computers will take a tremendous number of jobs and
there will have to be a massive effort by society (re
training, welfare, or ?) to absorb the human beings
put out of work by the computer monster. This leads
to the next question.

Computers will replace as many jobs as they elimi
nate.-Again, somewhat more adults agreed (70 %)
than did youth (61 %) and fewer adults disagreed
(13 %) than youth (23 %). So we see that a large
number of people believe the computer will replace low
skill jobs, but furthermore, we see some question about
the creation of new jobs by the computer to replace the
ones eliminated and, as before, there is even more doubt
expressed by youthful respondents.

UNDERSTANDING OF COMPUTERS

After looking at the various roles of the computer,
one must ask, do people understand the computer per
se by itself? And the answer is that a surprising num
ber do. And quite a few don't. Indeed between one
quarter and one-third of the population believe the
computer is beyond the understanding of the typical
person. Also, many people have the wrong notion about
who causes computer mistakes-machines or people.

Computers are beyond the understanding of the
typical person-Are they? Well 25 % of the adults and
31 % of the youth think so. But 62% of the adults and
49 % of the youth think they are within comprehension.
Perhaps more revealing-among schools with a in
structional computer program, nearly 80 % of the
students believe that computers are within their under
standing.

Computers make mistakes at least 10% of the time
This statement must be coupled with the next one:
Programmers and operators make mistakes, but com
puters are, for the most part, error free. FACT:
Statement 1 is absolutely false, statement 2 is true.
How did respondents do with these questions? Most
answered "correctly" -about 68 %, fewer youth than
adults, but a fair number of people were downright
,vrong (13 %) . The rest of the people didn't know
(19 %)" These percentages are similar to those scored
on nationwide tests of scientific facts-about % of the
people know the facts but the other third are wrong or
just don't know. A happy situation? Not very.

It is possible to design computer systems which
protect the privacy of data.-Not even the computer
designer knows for sure, so what can we expect from
the general public ? Well, 61 % of the adults think you
can design a secure system and 26% think you can't;
only 49 % of the youth think you can and 16 % think
you can't. What does all this say? Probably nothing
except that some people are optimists and some are
pessimists, and at least on the data privacy issue, more
adults are optimistic than young people.

230 National Computer Conference, 1976

APPENDIX-Statistical Results of SllT1'ey of Public A ttit1ldes Toward CampI/tel's in Society

ADULT (~=300)

Computer Impact on the Quality of Life

• Computers will improve education.
• Computers will improve law enforcement.
• Computers will improve health care.
• Credit rating data banks are a worthwhile use of computers.

Computer Threat to Society

Strongly
or IV[ostly

Agree

86.6 o/r
81.9
78.6
64.2

• A person today cannot escape the influence of computers. 91.6
• Computer polls and predictions influence the outcome of elec-

tions. 48.1
• Computers dehumanize society by treating everyone as a

number. 37.4
• Computers isolate people by preventing normal social inter-

actions among users. 18.7

Understanding the Role of Computers

• Computers are best suited for doing repetitive, monotonous 80.0
tasks.

• Computers are a tool just like a hammer or lathe. 72.6
• Computers slow down and complicate simple business opera-

tions. 17.6
• Computers will replace low-skill jobs and create jobs needing

specialized training. 71.0
• Computers will create as many jobs as they eliminate. 62.5

Cnderstanding of Computers

• Computers are beyond the understanding of the typical person.
• Computers make mistakes at least 10o/r of the time.
• Programmers and operators make mistakes, but computers are,

for the most part, error free.
• It is possible to design computer !;'y!;'tems whkh protect the

pl'iYacy of data.

25.2
9.6

67.0

60.2

Strongly
or Mostly
Disagree

5.9o/r
3.3
5.3

13.4

4.0

27.5

50.3

62.5

10.3

14.7

66.4

15.0
16.4

61.6
76.7

19.3

26.4

YOUTH (~=543)

Strongly
01' Mostly

Agree

84.2%
70.0
54.1
64.0

66.6

44.2

39.9

20.9

57.0

61.3

17.4

61.8
40.0

30.6
10.3

72.3

48.6

Strongly
or Mostly
Disagree

4.5o/c
10.1
11.9

7.6

17.7

26.9

30.6

42.5

21.6

23.4

68.8

14.4
29.1

49.2
60.0

13.3

15.9

Survey of public access to computing

by CAROL H. KASTNER and WILLIAM G. UNDERHILL
Human Resources Research Organization
Alexandria, Virginia

ABSTRACT

The Center for Inquiry and Discovery in Washington,
D.C., is planning to establish a public computer center
to be used primarily by school age children. A survey
of existing public-access computing facilities through
out the country is being made in order to seek informa
tion and advice to assist in this planning. This paper
describes the survey being undertaken, the institutions
being studied and the findings to date.

SURVEY OF PUBLIC ACCESS TO COMPUTING

There is at present no public access computing
facility in the Washington, D.C. area. Although uni
versities and even some secondary schools have com
puters for student and faculty use, access to these sys
tems is generally restricted. The Center for Inquiry
and Discovery, a newly established institution in Wash
ington, is planning to create a public computer center
for a wide variety of uses.

The Center will organize computer-related work
shops, classes, clubs and special projects for individ
uals, community groups and local schools. In addition,
the computer will be used in the exhibit areas of the
Center. There will be an exhibit devoted to computers,
where the casual visitor will be able to learn something
about the nature of computing and perhaps become in
terested enough to enroll in a class or workshop. The
computer will also be used in some of the other exhibit
areas to help to explain the subject matter using simu
lations or graphic displays where appropriate. Finally,
a data bank describing community resources, available
materials and upcoming events of possible interest to
Center visitors will be available from terminals located
throughout the exhibit areas.

In order to plan for this computer facility, a survey
is currently being conducted by the Center to study
similar programs at museums, science centers and
other public institutions throughout the country. Also
included in the survey are several research oriented
labs (SOLOWORKS at the University of Pittsburgh,
the LOGO project at MIT, Xerox PARC in Palo Alto)
which have as a common goal the development of com-

231

puter systems which can be used effectively by people
having widely divergent backgrounds and interests.

Information is being collected about hardware, soft
ware, educational programs, staffing, types of users,
costs and financing at these institutions. The follow
ing is a partial list of questions taken from a question
naire being used in the survey.

Ties with other institutions

• What kinds of services are provided to local
schools, colleges or community groups (e.g., field
trips, classes during school hours, facilities for stu
dents to do individual projects, in-service teacher
training) ?

• Do students and teachers receive credit and release
time for their participation?

• Does the center provide a time-sharing service for
the schools or the community and, if so, what level
of support is provided (e.g., development of curric
ular materials) ?

Exhibits

• What philosophy about computing is shown to the
one-time visitor?

• How are exhibits designed that are easy for visi
tors to use and understand, and which need
minimal supervision?

• Is game playing the most effective use of com
puters in an exhibit area?

Educational programs

• What classes, workshops, and clubs are available
for the public?

• Are educational programs provided for various
age groups and levels of sophistication?

• How are educational programs, classes, workshops
evaluated?

Equipment

• . What kind of computer equipment (e.g., central
system, terminals) is used?

232 National Computer Conference, 1976

• How is maintenance handled?
• What software packages are available for users?

Staffing

• What level of staffing is needed to support the com
puter center and its activities?

• To what extent does the center rely on students
and other volunteers to perform staff functions
(e.g., teaching classes, systems development, hard
ware maintenance) ?

• Are volunteers reimbursed in some way for their
efforts (e.g., receiving school credit, revenue from
sales of software) ?

Financing

• Is the computer center self-supporting or does it
rely on general admission charges, grants or dona
tions?

• Is the computer used to raise money by providing
such things as mailing list and accounting services
to other non-profit institutions?

• ls computer time sold to the public?
• Is tuition charged for classes and workshops?
• Are payments received for services provided to

schools?

The following is a brief description of those institu
tions which have already been visited.

Lawrence Hall of Science on the University of Cali
fornia Berkeley campus is a science museum with a
large staff of students. It has five computer terminals
in the exhibit area running games and simulations and
an extensive educational program of classes for school
children and the public. Its three computers provide a
low cost time-sharing service for over 35 educational
institutions in Northern California.

Oregon Museum of Science and Industry (OMSI) in
Portland has in addition to its exhibit area a com
munity research center. The goal of this research
center is to provide the community with access to
otherwise unavailable scientific equipment. It has a
PDP 11/45 that approximately 40 students per year use
to do individual projects for which they receive high
school credit. Advanced software development projects
have earned revenue and equipment donations for the
center.

Community Computer Center is a storefront com
puter center in Menlo Park, California, that offers the
public access to recreational uses of computers. Their
activities include a hardware club, classes for teachers,
birthday parties, field trips, and game nights.

The Exploratorium in San Francisco is a large sci
ence center that hopes to use computers in the future
to simulate scientific phenomena.

Pacific Science Center in Seattle is in the American
exhibit building of the 1962 World's Fair. They are

still planning their computer activities, but do have
two terminals running games with time donated by
various schools and businesses.

Boston Children's lJ1'tlseum has a computer, ter
minals, and calculators in an exhibit area for visitors
and school children on field trips to use. They also use
their computer for administrative purposes.

Boston Museum of Science has a large exhibit area
with a computer and terminals donated by Honeywell.

Franklin Institute in Philadelphia has a terminal in
the math area, running a demonstration package.
Computer time is donated by businesses and schools.
They also hold a summer computer workshop. They
are planning to use the computer in a new Bicentennial
exhibit.

Maryland Science Center is a new institution not yet
open to the public. In a preview exhibit they used the
computer-controlled turtle and music box developed at
MIT's LOGO Project.

The LOGO P1'oject at MIT has developed new ways
for young children to learn mathematics and logical
thinking using the LOGO language, computer-con
trolled devices and graphics.

SOLO WORKS at the University of Pittsburgh is
working to develop the hardware, software, and course
ware for an open mathematics laboratory. They use a
wide variety of computer peripherals such as graphic
displays, robots, and a pipe organ in their lab.

Xerox P ARC has developed a computer system and
a language called SMALLT ALK which makes graphics
and animation easy to use. They hope to open their
own storefront computer center in the near future.

Other institutions which have been or will be con
tacted by telephone and visited in the future include:
Ontario Science Center, Chicago Museum of Science
and Industry, The Science Museum of Minnesota, Sci
ence Museum of Roanoke Valley in Virginia, Denver
Children's Museum, Fernbank Science Center in At
lanta, and the Brooklyn Children's Museum.

While each site surveyed has its own unique features,
certain ideas, programs and problems seem to be al
most universal. Although the survey is not yet com
plete, a summary of the most common and most im
portant points of information gives a picture of a
"typical" public access computer center.

Coordination with local public schools is essential.
The schools are the primary sources of users for a
public access computer system. While the computer
exhibit areas attract the attention of adult and child
alike, the more in-depth behind-the-scenes activities
such as workshops and computer programming classes,
mainly attract school children. Many of these classes
are official school functions, with the computer center
being the site for repeated field trips from the schools.
Payments from schools for use of the center's resources
are often an important source of income.

Cooperation with local universities is important since
college students are a valuable source of part-time or

volunteer staff. The possibility also exists to offer
in-service training for teachers in the computing center
for college credit.

Most of the institutions visited have computer ter
minals in an exhibit area. Simple games are the main
mode of initially presenting computers to visitors,
however, neither staff nor user interest is sustained if
the only computer activities available are games.

Cathode ray tubes (CRTs) or silent printer ter
minah;; are preferable in the exhibit areas to decrease
noise. Since the majority of museum visitors tend to
read little of the printed text accompanying exhibits,
graphics displays are an additional advantage. Simpli
fied or color-coded keyboards are sometimes used, par
ticularly with young children.

The level of staffing at the centers surveyed varies
from the Lawrence Hall of Science with over 30 part
time staff members, most of whom are Berkeley stu
dents, to other institutions with only one part-time
person. It is important to have at least one paid staff
member whose responsibility is to coordinate and pro
vide direction for all the various activities in the center.
High school and college students who develop a strong
interest become a valuable, but temporary, resource
as instructors, programmers, and maintenance engi
neers.

All the institutions surveyed have received loans or
donations of either computer hardware, computer time,
or terminals. One institution has traded marketable

Survey of Public Access to Computing 233

software packages to a computer manufacturer in re
turn for equipment (e.g., a disc drive). Although
donations and loans were instrumental in the develop
ment of the various centers, they also have disadvan
tages. Donations of computer time are often short
term commitments. Software packages developed for a
borrowed computer system must either be re-imple
mented or discarded when the hardware base changes.
Donated equipment often presents a maintenance prob-
lr\"""" n':",no_ +t.. ___ .. ,..: ".......,. __ +- + __1 _ h_ "" _ 1 ,.. _ l...J
l~lH ~lH\...C I-HC C,,!U.1l-'.1HCHI- I-CHU;:' LV UC ;:'CVCJ.tt! YCGU;:' VIU.

Maintenance contracts are, therefore, fairly costly and
parts are more difficult to obtain.

N one of the centers is totally self-supporting. Most
rely on general museum admission fees, grants, endow
ments and donations. These revenues are often supple
mented by income from school field trips, classes,
workshops, and sales of computer time to individual
community members and groups. Many of the mu
seums also use their computers to do their adminis
trative work and have expanded to provide these ser
vices to other cultural institutions at low cost.

When the survey is complete, our goal is to have
developed a model of an ideal public access computer
center. It is our hope to build this center in phases as
we acquire the necessary funds, personnel and ex
perience. We envision it to be a non-profit, self
supporting computer center which will be able to grow
as community acceptance and demands increase.

Building your own computer

by STEPHEN B. GRAY

Darien, Connecticut

ABSTRACT

Microcomputer kits have changed the build-it-yourself
hobby dramatically. Until the introduction of such
kits, only about two dozen amateur computers of any
real complexity were in operation; nearly all were
built by engineers in the computer industry. Formida
ble problems exist when trying to use or rebuild obso
lete vacuum-tube or transistor computers, such as the
non-availability of schematics. Building from scratch
is so complex that usually only electronics engineers
achieve it. Building a machine that uses the instruc
tion set of a commercial computer is popular. Micro
processors were introduced only a few years ago, and
already two dozen microcomputer kits are available,
ranging from inexpensive minimal machines using as
sembly language, to high-Ievel-Ianguage systems cost
ing several thousand dollars.

INTRODUCTION

Microcomputer kits have been available for only a lit
tle over two years, but they have changed the build-a
computer hobby quite dramatically. Up to the begin
ning of 1974, only about two dozen amateur computers
of any real complexity were in operation, and nearly
all had been built from scratch by engineers in the
computer industry. Today two dozen different micro
computer kits are available, based on half-a-dozen dif
ferent microprocessors, and about 7,000 have been
sold, a great many to people with apparently little or
no knowledge of electronics.

Despite all the activit~r in microkits, many computer
hobbyists are still building machines of their own de
sign, or copying a commercial machine (or its instruc
tion set), or operating and/or rebuilding obsolete com
puters. Before looking at the microcomputer scene,
let's first examine what can be done, and has been done,
in the more individualistic areas.

USING OBSOLETE COMPUTERS

Vacuum-tube computers are occasionally available,
but most of the drawbacks in using them are formid-

235

able: many are so large that a barn is required to
store them, they need a great deal of air-conditioning
and electrical power, and tubes can be expensive to
replace.

Schematics are needed to get the computer working
and maintained, but they are almost never available.
Even with the older transistor computers, schematics
(and especially updated schematics) are usually im
possible to obtain. N ow and then the prototype of a
recent computer can be bought cheaply, but again, usu
ally without schematics, so the buyer has two choices:
take months or years to trace out every connection, or
rewire most or all of the machine.

Several hobbyists who have bought obsolete com
puters with ailing or missing magnetic-drum or core
memories have tried replacing them with semiconduc
tor memory, quite a task even for an electronics engi
neer, which not all of them are.

Despite all the problems, many hobbyists are still
operating an old computer, or trying to get it into
shape, including machines such as the LGP-30, RPC-
4000, LGP-21, and G-15. The CDC 160A appeals to a
number of amateurs, but few if any are in the hands
of hobbyists, because the machine is still relatively ex
pensive, and it has 1700 discrete transistors, leading
one California amateur to note, "I look at this number
as an indication of the problem I would have in keep
ing it running or even getting it going." He bought an
RPC-4000 "at a graveyard-type disposal sale," and
later noted, "My RPC is working but I can't get an
assembly program more than two-thirds loaded. This
produces lots of messages telling me my programs are
bad" I suspeet some memory aberrations, but the mem
ory print routine won't print either. So I have been
trying to write a simpler routine of my own in machine
language. That is a drag. It is amazing how many
ways you can make mistakes with 32-bit instructions."

An Indiana hobbyist bought a Univac 0 File Com
puter as scrap, with arithmetic unit, program-control
unit, 90-column reader/punch, sort-collate unit, tape
drive program controller, and six magnetic-tape units.
The new owner says, "I had figured to use the outside
winter air to get it turned on and see what I've got, and
just close down in summer. As to space, not too bad:

236 National Computer Conference, 1976

only about 400 or 500 square feet, pretty compact. I'm
presently having 220 V installed to begin to turn on
some of it." The manufacturer told him they can't
provide schematics for an~l machine this old. Each
machine was somewhat different, various changes hav
ing been made to each during its life, and careful docu
mentation had to be kept as to what was inside each.
Many of the old schematics and documentation have
been thrown out, and "no amount of money" could pro
vide relevant schematics for most of these old ma
chines, antiques at 19.

Manuals are (or were until recently) available for
the Univac 1108: 20 to 30 of them, each costing $50.
Some Univac Solid State computers were given away
to schools; when the schools asked the manufacturer
about documentation, the situation turned out to be
"impossible," as there were no records available on up
dated blueprints. "Maintenance in those days was a
tricky thing," said Univac, "and the man who did it
has long since been assigned to newer equipment, so
there is nobody available from us today who knows
how to service the old machines."

One company was getting rid of its Univac I, and
wanted to give it away. But Univac found that to take
it apart carefully and reassemble it elsewhere would
cost $100,000, so the machine was scrapped.

BUILDING FROM SCRATCH

As in amateur radio, many computer hobbyists
would never think of buying a kit or an assembled ma
chine; they must build one. Up until only a couple of
years ago, this task was so difficult that only a couple
of dozen computer hobbyists in this country had op
erating digital computers that could really be consid
ered as computers, and nearly all were electronics en
gineers in the data-processing industry.

The main problem in building a computer from
scratch, without resorting to a microprocessor, is that
so many areas of specialization are involved: logic,
input/output, memory, peripherals, and mechanical
skills such as packaging, back-plane wiring, metal
working, plastics, and many others. To build one's own
computer once required learning a great deal about
each of these fields. Although some computer hobby
ists are engineers who design their own circuits, most
non-engineers must rely on published information, and
although several dozen books and manuals contain
computer schematics, they have serious limitations. A
book may show schematics of various portions of a
computer-arithmetic unit, memory, control circuits
but none show how to connect them together, and any
way, they are usually only partial schematics. Mini
computer manuals with full schematics can be bought,
but many of the parts are identified only by the manu
facturer's code number; copying such a machine would
be no real hangup for a computer engineer, but it is
indeed for the neophyte.

Even supposing that an amateur computer-builder
did get hold of complete schematics and all the parts,
the one big stumbling block that has thrown many is
core memory_ It is still expensive to buy ,xlhen new,
and when surplus it may contain broken cores, or per
haps it's surplus because it couldn't pass the manu
facturer's quality control. Getting a core memory to
work still separates the men from the boys, if there
are still any who want to try it, now that semiconduc
tor memory is so readily available and so cheap.

Surplus computer printed-circuit boards have been
available for years, but most of them, especially the
IBM SMS series, have had their "tab" ends broken off,
to make sure the boards won't find their way back into
commercial computers. Many of the 3800 different
types of SMS boards are level-changing circuits, of lit
tle use to the amateur.

DESIGNING YOUR OWN

Computer engineers often like to design their own
machines, perhaps for the challenge of making it work.
One Pennsylvania engineer's pre-IC machine is 7 feet
long, 11/2 feet deep, and 6 feet high; it took a year to
build and "will take 10 years to program," according
to the builder, who used NOR gates from a process
control system declared scrap, mounted on 120 circuit
boards with 35-pin connectors.

One North Carolina hobbyist built 75 percent of his
computer with IBM SMS cards, the rest with home
built cards, an IBM 1620 core memory, Selectric type
writer and paper-tape reader/punch for input/output.
The six-register machine has 16 instructions. "I/O de
vices available but not connected: 384K-word drum,
two 7330 tape drives, two 100-cpm card readers
A home-built line printer is % complete; 52-character
chain, about 200 lpm."

A letter published in the April 1969 issue of the
Amateur Computer Society Newsletter, from an ACS
member now in Israel, said, in part, "In past issues of
the Newsletter, some rather ingenious instruction sets
have been devised which either simplify hardware, de
coding or subsequent programming. It should be borne
in mind, however, that the use of an instruction set
which is already implemented on a commercial machine
means a great reduction in problems with software,
which would then be readily available. Remember that
commercial manufacturers also look for instruction
sets which tend to optimize both hardware and soft
ware, and many machines have instructions worth
copying. If you've never written an assembler or For
tran compiler, don't just laugh it off as an easy project;
it may well take you longer than to build the machine
itself. Coming up with a new, unique instruction set
may be a thrilling idea, but getting someone else's in
struction set to function with your hardware is no
small feat either."

COPYING A COMMERCIAL MACHINE

The computer amateur who wants to make things
easier on himself by copying has two choices: he can
obtain the schematics of his favorite computer and try
to duplicate it, or he can build a machine or his own
design that will use the instruction set of a commercial
machine; the latter choice is the most common.

Most of those who have borrowed an instruction set
already in use are copying that of the PDP-8 family;
because of the variety of programs available, and a
simple yet powerful set of instructions.

An Arizona hobbyist has built two computers from
scrap parts. "Both are 12-bit, 2-,usec machines pat
terned after the PDP-8 instruction set. The first was
built from second-generation discrete-component DTL
N AND logic. The memory was of my own design. My
second computer was built to get around the power
dissipation problem (l.5W) of the first machine. It
gets expensive to operate and refrigerate that kind of
system in Arizona. The second machine is made out
of 7400-series TTL and has an 8K x 12 main core mem
ory. . .. All the PDP-8 software works on my system.
This has saved considerable time, as you can. well
imagine. I have used the following DEC software:
compilers (Focal-8K, Basic-Poly, Fortran-8K);
assemblers (Macro 8, Pal III, Saber); maintenance
programs, disk monitor systems (my 32K core memory
looks like a DF32 Disk System) I have devoted
most of my spare time for the last four years in accu
mulating the parts and developing my software."

In Maryland, a computer amateur says, "Over the
past four years, I have been in the process of building
a computer. The actual hardware work got under way
about three years ago. The machine really started
working only a year ago. My machine uses the PDP-8
command set and runs at about the speed of a PDP-8/S
(24-,usec cycle time). My memory is from an IBM
1620. . . . I have implemented only 4K at present,
though I have designed the boards to allow easy expan
sion to 8K I have copies of the DEC software,
which all seem to run: Focal, Editor, Pal III, etc.
While I use the DEC sofeware, I have made a point of
never looking at their PDP-8 hardware diagrams, etc.
I'm sure I learned more this way. After all, I'm sup
posed to be an EE."

A Floridian built a "Mininova 721," which he de
signed "to be a miniature Nova 1200 I wanted to
ha ve a Nova for my very own, but couldn't afford it. I
thought 'someday when the price of ICs comes down
I'll design and build my own minicomputer, a small
scale version of the Nova.' Well, the prices of ICs
came down tenfold or more in 1971-72, and this made
my dream practical. The rest was innovation, enthu
siasm, and a lot of careful planning I've incorpo
rated very carefully the best features of the Nova in
struction set and programmer's console, and designed
the circuits to make a true stored-program, program-

Building Your Own Computer 237

mabIe digItal computer (complete wtih loads of inte
grated-circuit MOS-RAM memory) that would execute
16 different very carefully selected instructions.

TWO PRE-MICROPROCESSOR KITS

Back in the Sixties, the Tesla Research Foundation,
with offices in Utah and Arizona, offered a variety of
analog and digital computer kits, plans for digital gad-
n-a+" lQ'Ylrt l"In'YV'llo ~""l'.rI"'('T n.n1"1~C'tru:"1 "-'1-,,""\ nT r"f1"Dl!': ,.1':,no.';i-nl 6'"''"'),,], U~J..u. .l..LVJ..J..J.\,...-D UU.Y \,...Vl..t...l.t.:J'C..:I. .LJ...l.'C ~.L-~.L\lV U~b~l,..a..l

computer, for instance, cost $365 in kit form, $440 as
sembled, used germanium transistor KAND logic and
diode OR gates, and had two registers and 15 instruc
tions. Input/output was with switches and lamps. The
company didn't last long, and has vanished without a
trace.

Beginning about five years ago, the National Radio
Institute has been offering a course in computer elec
tronics. The course includes building a simple desk
top computer, which weighs 16 pounds. The Model 832
NRI Digital Computer contains 52 TTL ICs, 7400-
type. The specifications include: 17 storage locations
for 8-bit words, expandable to 32 words; over 15 basic
instructions; input/output is with switches and lamps.
For teaching purposes, the memory consists of slide
switches.

THE MICROPROCESSOR REVOLUTION

All the previous quotes from amateurs building
their own computers are from before 1974, the year
in which hobbyist microcomputer kits first appeared
on the market.

The avalanche started somewhat slowly, two years
before, when Intel Corp. introduced two "Micro Com
puter Sets," the MCS-4 and MCS-8, sets of LSI chips
for microprogrammable general-purpose computers.
The MCS-4 was built around the 4-bit 4004 micro
processor, with 45 instructions; the MCS-8, around the
8-bit 8008, with 48 instructions. Although highly at
tractive to the hobbyist, both sets were expensive. The
MCS-4 consisted of the 4001 programmable ROM mem
ory, 4002 RAM data storage, 4003 I/O expansion, and
the 4004 MPU. The last three were fairly cheap: $50,
$10, and $100, respectively (in 1972), for 1 to 24. The
catch was the 4001: the minimum order quantity was
25, at $25.50 each, plus mask charges of $600. The
purchaser could have the ROMs programmed by Intel,
or do it himself with the SIM-01 microcomputer (then
$400), three control-program ROMs at $101 each, and
an ASR33 Teletype.

The MCS-8 cost even more: the 8008 was then $200
for 1 to 24, and programming the ROMs required the
SIM8-01 at $900, plus the control ROMs and Teletype.

Hobbyists soon seized upon these MPUs. A Con
necticut computernik put it this way, "Enter the Intel
4004 and 8008 CPU on a chip! Both are complete

238 National Computer Conference, 1976

CPUs \"ith quite a bit of power (45 instructions) and
flexibility (internal address stack for subroutine nest
ing, etc.). The 4004 is not as desirable since it is more
complicated to control and doesn't look as much like a
typical computer. The 8008, however, is a beaut! ...
The only drawback I see on these devices is their slow
speed (about 1 MHz), yielding about 75K instructions
per second. For amateur (and many commercial) uses
this should be no real problem. Whether we wait 1 sec
or 3 sec for the answer does not really matter. But a
cost of $5K or $IK does matter!"

MICROPROCESSOR HOBBY KITS

In early 1974, Scelbi Computer Consulting offered
the Scelbi-8H modular computer kit, based on the 8008
MPU. There was a starter set of five cards-CPU,
DBB (data bus buffer) and output, input, front-panel
card, and RAM card (256 8-bit words)-at $440. One
step up, the standard card set, with 1024 words of
RAM memory, was $565. A standard computer, with
cards, chassis (console switches, card sockets, input/
output and power connectors), and separate power
supply, was $795 in kit form, $950 assembled. The 8H
deluxe had 4096 words of RAM memory, and a higher
rated power supply; $1400 in kit, $1600 assembled.
The memory could be expanded to 16K words, for
about $2760 more.

Peripherals for the 8H included an oscilloscope al
phanumeric interface, audio cassette tape unit inter
face, ASCII keyboard, and bit-serial interface for
Teletype.

The Scelbi 8H was manufactured from March 1974
to June 1975, and was superseded by the Scelbi-8B,
manufactured from April to December 1975, and using
Intel 2102 RAMs "which allow the 8B to be directly
expanded up to 16,384 words of memory at a cost com
parable to that of 4,096 words of memory in an 8H,"
which used the Intel 1101 RAM. The 8B kit, with
8008 MPU and lK memory, was $499; empty 4K RAM
card, $49; eight 2102 RAMs, $59. Scelbi provided ex
tensive assembly-language software for their machines.

Scelbi got out of the hardware business at the end
of 1975, and has since devoted itself exclusively to
software, and to publishing books such as the $19.95
"Machine Language Programming for the 8008 (and
Similar Microprocessors)." (The book could just as
well have been called "Assembly Language Program
ming, etc.," but the author felt that people with little
or no knowledge of computers would be more likely to
understand the title the book was given.) At this writ
ing, Scelbi is working on software such as BASIC for
the 8008 and the 8080, and is considering what other
MPUs to write software for.

The July 1974 issue of Radio-Electronics heralded
the debut of the Mark-8 microcomputer kit, based on
the Intel 8008 and using 7400-series TTL ICs. A mini
mum Mark-8, with 256 8-bit words, was about $300.

The Mark-8 was available from June 1974 to Decem
ber 1975, and will be superseded this Spring by the
Dyna-Micro kit, an 8080 "microcomputer learning sys
tem, not a number-cruncher," with a 1702A PROM
that loads on reset, and a memory of 256 words, maxi
mum 512 words; about $200.

The January and February 1975 issues of Popular
Electronics unveiled the Altair 8800 computer kit from
MITS, based on the Intel 8080 MPU, an 8-bit-word/16-
bit-address machine with 78 basic instructions. The
8800, through extensive advertising, has become the
best-known and most widely sold hobby computer, with
some 6,000 sold as of this writing. The basic Altair
8800, with CPU board, front panel, power supply and
expander board, is $439 kit, $621 assembled. The 4k
dynamic memory boards are $195 kit; the 2K static
memory kit is $145; lK static memory kit, $97; maxi
mum memory is 65K. There are serial and parallel in
terface boards.

Altair hardware options include a terminal with
built-in audio cassette interface, a floppy-disk system,
and a line printer. Software includes 4K and 8K
BASIC, 12K Extended BASIC, assembler, text editor,
system monitor, debug and DOS.

Sphere, a Utah company, offers the 4K Sphere 1
computer kit, using the Motorola 6800 MPU, with 512-
character TV terminal, keyboard and power supply,
for $860 ($1400 assembled). Memory is expandable
to 65K, at about $240 for a 4K board, $400 for 8K,
$750 for a 16K memory-board kit. A mini-assembler,
editor, debugger, and utility commands are built into
lK of PROM. Available software includes Extended
BASIC (with string and matrix manipulation), ma
chine-language subroutine calls, trig functions, and
disk-file input/output, plus FDOS (flexible disk oper
ating system). The Sphere 2 kit adds serial communi
cations and audio-cassette capability, at $999. The
Sphere 3 kit adds 16K more of memory, for $1765.
The Sphere 4 kit includes a 65-lpm printer, two IBM
compatible floppy disks, and DOS, at $6100. Other
Sphere products include a light pen, and both full
color and black-and-white video graphics systems.

The MITS Altair 680 kit, with the Motorola 6800
MPU, is less than a third the size of the Altair 8800.
Software includes a monitor on PROM, assembler, de
bug and editor. The 680 has three interrupt levels
(the 8800 has eight). A $345 kit includes lK bytes of
RAM; the price for the 12K RAM board kits has not
been set as of this writing.

The SWTP 6800 kit, from Southwest Technical Prod
ucts Corp., using the Motorola 6800 MPU, comes with
serial interface, 128 words of static scratchpad RAM,
and 2,048 words of main memory, at $450. Additional
4k memory boards are $125 each; interface cards are
$35. The SWTP 6800 contains a "Mikbug" ROM with
a program that allows data to be entered the moment
power is turned on.

In addition to the Altair 8800 and 680, Sphere and

SWTP 6800 kits, over a dozen others are available, in
cluding the Mike 2 and Mike 3 (Martin Research),
Mark 80 (E&L Instruments), MOD 8, MOD 80 and
RM6800 (MiniMicroMart), 008A (RGS Electronics),
"George" (Godbout Electronics), Micro 440 (Comp
Sultants), SRI-1000 (Systems Research Inc.), Imsai
8080 (IMS Associates), Jupiter II (Wave Mate), and
Micro-68 (Electronic Products Assoc.).

Some kits are based on the Intel 8008 (Mike 2, MOD
o (1(10 A \ ~~ Q(lQ(I I i\ H- ~ ... QQ(lf'\ l\1f~t.-o Q M., ... t.- Qf'\ Mnn
u, vVU~J, V.1. uvuv \.c-:1.~""CA.~..1. UUVV, ,1..1.11..'-' U, ~~~lr.. IIrJV, , "".L.J'"

80, Imsai 8800), others on the Motorola 6800 (Altair
680, Sphere, SWTP 6800, RM6800), National Semi
conductor PACE ("George," SRI-1000), or Intel 4040
(Micro 440) .

Many microprocessors are available as part of a PC
board kit marketed for engineering evaluation, usually
with a minimum of memory, and without power sup
ply, chassis or case. Some of these are being bought by
hobbyists, including the JOLT from Pehaco Corp.,
built around a MOS Technology 6502, at $249; a Mos
tek F8 Evaluation Kit, using the Mostek 3850; three
evaluation kits from Cramer Electronics, based on the
Intel 8080A, Texas Instruments 8080, Motorola 6800,
$495 each. Cramer has planned later evaluation kits
based on the AMD 9800, Mostek F8, RCA COSMAC,
and bipolar MPUs such as the Intel 3001, AMD 2901,
TI C400, Motorola 10800.

KIT PROBLEMS

Building a computer kit is not all that simple for a
beginner. One kit manufacturer says, "For every
person who can wire a computer kit, there are ten who
can't." But those ten do try. Another manufacturer
says, "Half the people buying kits are not qualified to
build them. From the ones that are sent back, it's obvi
ous that most people don't know how to solder, don't
even know how to put components on boards. Even re
sistors get all jumbled up. Our literature says the
builder should have a couple of years experience in
electronics, but people just don't believe that."

Because of these problems, Sphere is now offering
the Micro-Sphere 200, in assembled form only. Built
around the 6800 MPU, the basic 200 comes with 4K
RAM, cassette loader, cassette operating system, 12-
line by 21-character alphanumeric character genera
tor, and "Monte Carlo games package," at $860. A
second 4K of memory is $180; an Extended Business
BASIC ROM, $400; floating-point and trig ROM, $130.

The latest hobbyist computer offered by Systems Re
search is the SRI-F8, sold as a wired unit only, not a
kit, because "too many people building computers have
blown CPU chips. It's too dangerous." Quite a few
beginners (and some professionals too) have destroyed

Building Your Own Computer 239

sensitive ICs with static electricity, and have also put
ICs in the wrong sockets or wrong-way-around, and
burned them out. The SRI-F8, with the Mostek F8,
1K words, Teletype interface and debug program in
ROM, is $325. Options are power supply, cassette in
terface, keyboard interface, video interface, keyboard,
and enclosure.

Not all marketers of microkits are altruistic to the
point of really trying to provide a top-quality product
.,.T.,;+l" 0...::11"\"""'1, 1-1"\ nC"C"tn.~hl,,{T n'Ylr1 I'Y1'i.a o+iYlI"l" inCt+"..'1ra+irn",C! A
""~"".l.l au""''-::I.ua v a.:h::)vJ.J..UJ.I..,. Gl..l.lU VP"""..I..u,,'-'.I..l.J.6 .I. UJ""..Lu.""''''' ... vJ.J.u

few kits are little more than a box of parts, delivery of
some kits is on an uncertain schedule, and some man
uals that are supposed to be for beginners, would be
understood only by a computer-design engineer. Surely
many beginners are buying kits with no knowledge of
what is involved in writing programs in assembly lan
guage, which many will find to be tedious, uninspiring
and error-prone. And there are only a couple of books
or manuals that teach the tyro how to use microproces
sor assembly language; nearly all the manufacturers'
publications are meant for the engineer or the profes
sional programmer. Of course some computer enthu
siasts thrive on assembly language, but many beginners
are likely to soon find that what they really want is a
high-level language such as BASIC. So far, BASIC is
available on only a few hobby computers, including the
Altair 8080, Sphere, and Jupiter II.

AMATEUR COMPUTER CLUBS AND
PUBLICATIONS

A variety of amateur computer clubs and newslet-
ters exists. The Amateur Computer Society, the old
est, has been publishing a newsletter since 1966 (all
the quotations regarding hobbyist computers are taken
from the ACS Newsletter). The other newsletters, and
the clubs, came into being after the introduction of
microprocessor kits, and include the Micro-8 Newslet
ter (Lompoc, Calif.), Homebrew Computer Club News
letter (Menlo Park, Calif.), Interface (Studio City,
Calif.), and The Computer Hobbyist (Cary, N.C.).
The Amateur Computer Club Newsletter first appeared
in England in March 1973; the newsletter of the Asso
ciation Francaise des Amateurs Constructeurs d'Ordi
nateurs was first published in the Spring of 1974.

THE LAST QUESTIO~

One big question remains for the amateur: after
you've gotten tired of playing games on your kit com
puter, what are you going to do with it? The discus
sion of this question opens up a whole new area, so
large that another paper should be devoted to it.

THREAD (Three-dimensional Reconstruction And Display)
with hiomedical applications in neuron ultrastructure
and comDuterized tomo!!raDhv

• CJ • 01

by JOHN C. MAZZIOTTA and H. K. HUANG
Georgetown University Medical Center
Washington, D.C.

ABSTRACT

THREAD is a computer system capable of displaying
three-dimensional images from serial two-dimensional
sections. The serial two-dimensional input images can
either be in the format of 35 mm films or in digital
cross sectional pictures of live patients generated by
the ACTA (Automatic Computerized Transverse Axial)
Scanner. The hardware components of the system
consists of FIDAC (Film Input to Digital Automatic
Computer), MACDAC (MAn Communication and Dis
play to Automatic Computer), and the Display Sub
system of the ACTA-Scanner. The software inciudes
such features as segmentation, rotation, hidden line
removal, shading plane definition, shading and display.
Two examples, one from serial electron micrographs of
a neuron and the other from serial ACT A, live patient,
scans are given to demonstrate the capability of the
system.

INTRODUCTION & BACKGROUND

The study of tissues in the biomedical sciences is most
often in the form of two-dimensional cross sections.
This is especially true of microscopic data obtained
from both the electron and light microscope. The
recent advent of computerized tomography, whereby
computer generated cross-sectional tomograms are pro
duced anywhere in the whole living human body,
provides a new additional source of two-dimensional
serial images.

Three-dimensional reconstruction of this data has
for the most part been avoided because of the difficult
and time-consuming techniques involved. However,
the added insights and the additional qualitative and
quantitative data that can be obtained from three
dimensional studies, prompted investigators to under
take three-dimensional reconstructions using graphic
art techniques. These reconstructions took the form
of wax and plexiglass models as well as artists' draw
ings. 1- 11 Although these methods produced some ele
gant results, they were quite costly in terms of artists'

241

fees, time-consuming and lacked simple means to ob
tain quantitative data such as volume, shape and sur
face area.

To obviate these disadvantages, computer graphic
systems were employed to provide semi-automatic
three-dimensional reconstructions of microscopic
data.12-17 Most of these systems required some type of
photographic manipulations of the input data in order
to transform the information into digital format. These
procedures included tracing photographic prints with
light pens or cursors,13,14 the use of a camera lucida
followed by tracing on a data tablet 15 or manual track
ing of cell outlines using the computer as a notebook
for coordinate points.16,17 Output from these earlier
systems was in three forms, purely quantitative data
such as perimeters and surface area,15 schematic dia
grams of reconstructed images12,16,17 or line drawings
depicting the contours of the section outlines which
in most cases served as a guide for artists who then
drew shaded three-dimensional images of the struc
ture.12,13,16,17 Most of these earlier systems provided the
important advantage of image rotation so that any
surface of the reconstructed object could be visualized.

In the field of computerized tomography, cross
sectional tomograms are taken allowing for the visu
alization of the internal anatomy of the living patient
in the horizontal plane. Consecutive scans obtained at
fixed intervals along the patient's longitudinal axis
provide serial cross sections of the patient. Methods
exist for the alignment of such data and the display of
other (sagittal, coronal, or arbitrary) planes obtained
from the original cross-sectional scans.18-20 Three
dimensional imaging of selected structures, however,
allows a specific object (bone, organ, tumor, etc.) to be
displayed as an isolated image which can be rotated to
allow visualization of all surfaces. This display is anal
ogous to the situation encountered with microscopic
serial cross-section reconstruction and is the logical
next step in computerized tomography data display.

The three-dimensional reconstruction and display
of nonbiomedical data has been an active field in com-

242 National Computer Conference, 1976

puter graphics. The "'wrk of Roberts, 'Varnock, Suth
erland and others demonstrates the excellent results
that have been obtained in the three-dimensional re
construction of geometric and architectural struc
tures. 21

-
28 However, the reconstruction and display of

three-dimensional biomedical data of the type de
scribed above, differs from geometric data in two spe
cific ways: (1) algorithms to reconstruct biomedical
serial section data can take advantage of the initial
condition that all two-dimensional sections are aligned
with respect to their X and Y axes and that these sec
tions follow each other sequentially along the Z axis
prior to rotation, and (2) biomedical data reconstruc
tion in three-dimensions is complicated by the lack of
any geometric assumptions about individual section
outlines, since they may assume any random shape and
are often quite complex.

The THREAD system allows for the three-dimen
sional reconstruction of biomedical data in the form of
serial cross sections, using existing hardware devices
and methods analogous to earlier three-dimensional
geometric or architectural reconstructions. The sys
tem locates objects of interest in each section automati
cally, thereby eliminating time-consuming manual out
line tracing. THREAD can rotate objects to any view
ing angle and the system generates both contour-grams
(line drawings), as well as fully shaded, three-dimen
sional images in both color and black-and-white in a
fast and highly automated fashion.

The major hardware subsystems of THREAD in
clude: FIDAC29,30 (Film Input to Digital Automatic
Computer) a flying spot scanner for 35 mm film,
MACDAC3o,31 (MAn Communication and Display to
Automatic Computer) an interactive computer graphics
terminal, and the video graphic display subsystem of
the ACTA-ScannerY The software subsystems in
clude: programs to digitize 35 mm film negatives, find
boundaries of objects of interest in each section, align
section outlines, erase hidden lines and programs to
rotate and shade the completed three-dimensional
object.

The THREAD system can accept input data in two
forms, either 35 mm film negatives of serial sections
photographed from any source or serial computerized
tomograms generated by the ACTA-Scanner which are
stored on magnetic tape. Figure 1 depicts the complete
THREAD system.

In this paper we present a detailed discussion of the
use of the THREAD system using two examples: re
construction of images from electron micrographs re
corded on film and macroscopic structures recorded
in vivo from serial computeriezd tomograms obtained
with the ACTA-Scanner.

HARDWARE DESCRIPTION OF THE THREAD
SYSTEM

The hardware of the THREAD system was already
in existence and consists of three maj or components,

all of which convert digital information into graphic
displays in an interactive manner. Input data can be
digitized from 35 mm film negatives, as is the case
with photomicrographs or if the input data is alrearly
in digital form as is the case with ACT A-Scanner out
put tapes, this information can be directly read by the
computer from a magnetic tape unit. Data is processed
by an IBM 360/44 computer equipped with disc storage
for intermediate results.

Film input

Serial sections of structures can be recorded on 35
mm film and converted to digital form by the FIDAC
device (Figure 2). Film is positioned in this device
and a flying spot scan is generated whereby the image
on the film is digitized into 16 grey-levels, the value of
which is proportional to the relative translucency of
the film at each particular spot. The scanner can sam
ple some 450 rows of spots with 672 spots per row,
converting a standard 35 mm film frame into a grid of
450 x 672 numerical values. This data is then trans
mitted on-line to the computer, the whole process re
quiring Va of a second.

The FIDAC device can also send the digital signals
of its scan to the MACDAC display device (Figure 3)
without storing them in the computer memory so the

ACTA DISPLAY
SYSTEM

TRANSVERSE
SECTIONS FROM
ACTA SCANNER

IBM
360/44

PERIPHERAL
STORAGE

DEVICE

Figure l-Block diagram of the complete THREAD system

Figure 2-FIDAC: Film input to digital automatic computer

Figure 3-MACDAC: Man communication and display to auto
matic computer

THREAD 243

operator can see the image and make adj ustments prior
to computer data acquisition.

111ACDAC

The MACDAC device is an interactive computer
graphic system which provides for CRT display of
digital information transmitted to it by the computer
or FIDAC. In addition to display, the device has the
capability of transmitting coordinates from its cir
cuitry to the computer allowing the operator to inter
act with and modify the image on the CRT.

The operator may point out objects using MACDAC
by positioning a light spot on the screen by means of a
joystick controller and pressing a "Read" button on the
device which sends the point's coordinates into the
computer.

V ideo display

Output in the form of two 160 x 160 matrix pictures
is generated by the THREAD system and stored on
magnetic tape for viewing on the display processor of
the ACTA-Scanner, Figure 4. The output portion of
the ACTA-Scanner is usually employed in the display
of computerized tomograms but also provides a flexible
graphics display system for information which can be
stored on magnetic tape as 160 x 160 or 320 x 320
matrices.

The components of the ACTA display system in
clude: a magnetic tape unit (Figure 4-2), a pre
programmed video display processor called the RAM
TEK (Figure 4-3,4), a 19-inch color TV monitor (Fig
ure 4-5), two 12-inch black-and-white TV monitors
(Figure 4-6), a mini-computer (Figure 4-7) and a
teletypewriter console (Figure 4-1).

Two 160 x 160 matrix pictures (or a 320 x 320
matrix picture) are simultaneously displayed side-by
side on all three monitors. The display system has the

6-'X-i"!' COOtroIlmi
'l. ,oI.ctkS"'ff eor..oi· p",,"

1('t'J'I~""""'"

Figure 4-ACTA scanner video display components

244 National Computer Conference, 1976

capacity of distinguishing 2048 discrete intensities
which are viewed as sixteen grey-Ievels.33 For our pur
poses, the 2048 possible intensities are equally divided
into the sixteen grey-levels, each with a range or width
of 128 intensity values. These grey-levels may be as
signed a continuous gradient of black to white or color
codes may be selected for some or all of the individual
grey-levels.

In the final display, a heading appears along with
the two reconstructed images. The heading contains
information describing the obj ect and its orientation
(Figure 13). A grey-level reference is also provided
where the sixteen grey-levels are displayed as indi
vidual blocks along with the maximum and minimum
intensity values represented by that particular grey
level.

The ACTA display system provides for automatic
color coding, image enlargement and various photo
graphic formats which the operator can request by
means of selecting the appropriate code word on the
teletypewri ter. 34

SOFTWARE DESCRIPTION OF THE THREAD
SYSTEM

All driver programs are written in either FORTRAN
IV or Assembly and interact with the operator in
everyday language via typewriter console.

Data gathering phase

Film input data is received from the FIDAC device
one frame at a time and the portion of the frame which
contains the objects to be reconstructed is stored in
sixteen grey-levels in the computer memory. Digital
input from magnetic tape is handled in a similar fash
ion. Any single grey-level or composite of grey-levels
may be displayed on the MACDAC monitor.

The operator is asked for information pertaining to
each section including: its thickness and magnifica
tion. The operator is also instructed to point out, using
the MACDAC light spot, the left-most boundary of an
object of interest and three alignment points to be
used later for orienting all sections in the series rela
tive to one another. Automatic boundary location com
mences once the above information is obtained by the
program.

Standard boundary detection methods are used:
boundaries or section-object outlines which differ from
their surroundings by one or more grey-level can be
automatically located by the program.35 This process
is initiated in the memory when the operator points
out an object of interest and types the object's grey
level into the console. The coordinates of the light spot
serve as a pointer or bug which moves to the right
until contacting a grey-level which equals or exceeds
the threshold set for this object. The program then

moves the bug clockwise around the object boundary,
recording the coordinates in a 4 x 1000 element array
where the first two columns represent the boundary
point's X and Y coordinates, the third column repre
sents the Z coordinate (proportionai to section thick
ness) and the fourth column is used for later coding of
selected points. The boundary processing terminates
when the starting point is again located by the bug.
All points are plotted on the MACDAC monitor and
the operator may choose to manually edit the result if
the object outline was indistinct. Up to nine objects
may be located and stored for each section.

The above procedure is repeated for each section in
the series and once completed, all sections are aligned
using the alignment markers previously obtained for
each section. Alignment is obtained by a best-fit ap
proximation. When all objects in the series are aligned,
the lists of their boundary points may be stored on
magnetic tape and a new series of sections can be
processed.

Reconstruction phase

The reconstruction phase of the software package is
divided into six distinct steps. These six steps are pre
ceded by the acquisition of the object boundary point
lists from magnetic tape and are followed by display
of the completed image.

1. Segmentation: Each object outline in the series
is subdivided into segments of equal length, the end
points of which will later be connected between adja
cent sections to facilitate shading. These segment end
points are assigned consecutive code numbers termed
segment marker numbers. As will be seen later, the
higher the number of segments chosen, the greater
will be the detail of the final image.

Segmenting begins by determining the section-obj ect
outline which" contains the greatest number of bound
ary points. This number represents the greatest pos
sible number of segment markers available for this
object. The operator is then asked what percentage of
this maximum should be used in the reconstruction.
For example, if the maximum segment number equals
100 and the operator chooses to use 50% of these seg
ments, a section through this object which contained
50 boundary points would have the fourth column of
its 4 x 1000 boundary point array filled with consecu
tive numbers from 1 to 50. If the section outline had
greater than 50 boundary points, zeroes would be in
serted between segment marker numbers at regular
intervals (e.g. 1,2,0,3,4,0, ... , 50) and if the object
had less than 50 boundary points, segment marker
numbers would be evenly deleted (e.g. 1,6,11,16, ... ,
50) .

2. Rotation: Section object outlines are rotated by
selecting two rotational angles, one about the vertical
Y axis and one about the horizontal X axis. These an
gles are substituted in a rotational transformation

matrix and the X, Y, and Z coordinates of all object
boundary points are transformed by matrix multipli
cation.24 All rotated points must be checked to insure
that they are positive values and if negative values are
encountered, the entire list of boundary points for the
object must be shifted into the positive domain by addi
tion of a constant to the appropriate coordinate set.

3. Hidden Line Removal: Hidden lines are defined
as portions of section-object outlines which are over
lapped by the addition of a new section on top of it.
Other authors have used a variety of techniques to re
move hidden lines during reconstruction/2

,27,28 but so
lutions were directed at objects or groups of objects
composed of plane polyhedra. These algorithms per
form depth sorts along the Z axis at critical points and
reject lines that would not be visible in the final image.
However, input data for three-dimensional reconstruc
tion from serial sections is already depth sorted, each
section lying sequentially in front of the previous sec
tion. One merely examines the rotational angles to de
termine the forward-most section and the sequence will
be known for all remaining sections. We define the
forward-most section as the section last digitized un
less the object is rotated greater than 90 degrees about
either the horizontal or vertical axis in which case the
first section to be digitized is defined as forward-most.

The procedure for hidden line removal amounts to
stacking each section upon the previous section start
ing with the back-most and erasing any lines which
fall within the area inside the forward-lying section.
The process begins by initializing a region of memory
to zero. This region of memory is the same size as the
completed picture (160 x 160) and is called the con
tour-gram matrix. Processing begins by Hdrawing"
the back-most section on this matrix, this is accom
plished by locating, on the contour-gram matrix, the X
and Y coordinate of each boundary point for this sec
tion and inserting the value of that point's Z coordi
nate in the matrix. The Z coordinate is used later in
processing and serves as a code for that particular
point.

Following this step, the same procedure is carried
out for the next forward-lying section. This is fol
lowed by erasure of overlapped boundary points lying
inside the newly added section. Erasure is accom
plished by a line-by-line examination of the matrix
points lying within the confines of the forward-lying
section. Each point lying within these confines, regard
less of its value, is replaced by a negative number, the
magnitude of which is equal to the section's number in
the serial set (e.g., the area inside the outline of sec
tion number 5 is coded with -5's). The use of a special
negative number serves two purposes: (1) it defines
areas of the matrix as within the confines of a specific
section outline (a code used later in processing), and
(2) it allows for simplified display of the complete
contour-gram by lighting only those points on the
MACDAC monitor which have positive values (i.e. the

THREAD 245

un erased Z coordinates). All sections are processed in
sequence from back to front in this way.

4. Plane Definition: Planes are defined as rectangu
lar areas lying between visible portions of adjacent
sections and are formed by connecting corresponding
segment markers. Starting with the forward-most
section, a search is made of the boundary point list for
the lowest segment-marker number. Once found, a
similar search is made for the same number in the
boundary point list of the section immediately behind
the first. If either 1I1arker is rnissing, the prograrn
moves to the next marker number and the search is
repeated.

If both segment markers are found in the arrays,
the contour-gram matrix is examined to determine if
these points (represented by their Z coordinates) ap
pear in the picture or if they have been erased during
hidden line removal. Three possible outcomes exist:
(1) if both points are located, they are connected by a
line and the program moves to the next marker num
ber; (2) if neither point is located, the line is ignored
and the program moves on; (3) if one of the two points
is missing, it is dealt with as a special case.

In the special case of a missing point in the forward
lying section (Figure 5a), a line is drawn connecting
the located back segment point and the expected posi
tion of the missing forward marker point. Points along
this line are tested from back to front and the line is
terminated when it encounters a positive number. The
case is similar for a missing back segment marker ex
cept that the points along the connecting line are tested
from front to back (Figure 5b).

Finally, a case exists where both segment marker

, \ , , , , . ,
'" \ I ,i

--...... ',~~_J __ I " ---.... :
I I -------1 I
I I

, .. -,,,~,,,,------

I
I
I
I
I
I
I
I
I
I
I
I
I

----------------.! '---____ a

'~
I

L ________ ~-
"

r

~
------------------- f--- b

c
Figure 5-Special cases in "plane" determination described in
text, (a) arrow shows partial line drawn in case of missing
segment marker point in the forward-lying section, occurring
with two large sections straddling a smaller section, (b) arrow
shO\vs partial line drawn in case of missing segment marker in
back-lying section, (c) arrows show potential erroneous lines
with both segment marker points visible in contour-gram (dotted

lines indicate hidden lines not seen in final image)

246 National Computer Conference, 1976

coordinates can be located in the contour-gram but the
connection of these points would be erroneous (Figure
5c). To eliminate this possibility all connecting lines
are always tested to insure that their points never en
ter an area coded with the negative value of the
forward-most section. When this occurs, the line is
discarded.

After all segment markers in each section pair have
been processed, adjacent connecting lines are grouped
in pairs resulting in planes lying between the two sec
tions. The program examines all sections in the series,
defining planes between them and generates a list of
the vertices of all planes.

5. Shading Values: Shading values or the light in
tensity assigned to each plane are derived using the
methods described by Bouknight. 25 The light source
and the viewer are defined as being in the center of the
viewing screen and at an arbitrary distance from it.
Since the graphic display system can distinguish 2048
intensities, this defines the range of shading values
available. Each plane is assigned a shading value pro
portional to the angle it makes relative to a normal to
the viewing screen. Those planes lying perpendicular
to the normal are brightest and those parallel to it are
darkest.

6. Shading: Using its respective vertices, each plane
including the surface of the forward-most section is
essentially "colored-in" with its assigned shading
value on the 160 x 160 contour-gram matrix. The
completed image and the image of the contour-gram
generated for this object at the selected angles are
then stored on magnetic tape for display.

RESULTS

Microscopic structures

Three-dimensional reconstruction on an ultrastruc
tural level is demonstrated for a nucleolus obtained
from cross sections through a neuron of the cat brain
(Figure 7). This cell was serially sectional and photo
graphed in the electron microscope at a uniform mag
nification. 36 Six equally spaced sections through the
cell's nucleolus were used as input data for the recon
struction process. The physical time required to posi
tion the film in the FIDAC device, digitize the picture
and locate the nucleolar outline was approximately two
minutes.

As was previously described, varying the number of
segment markers alters the degree of detail in the final
image. This can be seen in Figure 8 where the contour
gram of two sections through the nucleolus is seen with
varying numbers of segment markers connected. Image
8a was produced using only 10 percent of the available
segment markers. Image 8b uses 50 percent, while
Image 8c uses 90 percent of the markers. The number
of planes produced in the image as well as the process
ing time required to generate these planes increases

as the number of segment markers increase. The dif
ference in processing time is significant and is demon
strated by the fact that Image 8c required approxi
mately two minutes of processing time while Image 8a
req uired only 15 iSecondiS.

Contour-grams of this nucleolus at four different ro
tational angles can be seen in Figure 9. Contour-grams
such as these can be displayed along with the shaded
three-dimensional image at the end of processing or
can be visualized during processing on the MACDAC
monitor.

OBTAIN OUTLINE
BOUNDARY LISTS --------.

FROM TAPE

SEGMENT
OUTLINES AT

CHOSEN POINTS

ROTATE ALL
SECTION
OUTLINES

STORAGE OF
PICTURE

FOR LATER DISPLAY

Figure 6-Block diagram of THREAD software (Reconstruc
tion phase)

Figure 7-Electron micrograph of neuron from the cat brain
stem. The dark round area in the center is the nucleolus

Figure 10 shows the final shaded image of the neuron
nucleolus at two rotational angles varied with respect
to the vertical axis. The structure is tapered at one
pole and is slightly constricted at the center. Process
ing time for this image was slightly under five min
utes. Image quality was consistent throughout a wide
range of rotational angles.

Computerized tomography

A patient with a biopsy-proven brain tumor was re
ferred for computerized tomography of the head. A
serial set of ten ACTA scans was obtained at 1 cm in
tervals beginning at the level of the external auditory
canal. Contrast material was used since it enhances
tumor visualization in the brain. The tumor was pres
ent in five of the ten scans (Figure 11).

Figure 8-Contour-gram of sections through a neuron nucleolus
showing the effects of varying the percentages of segment
marker points used in the reconstruction, (A) 10 percent, (B)

50 percent, (C) 90 percent

THREAD 247

Figure 9-Contour-grams of the nucleolus seen in Figure 7 at
four rotational angles

The five sections showing the tumor were recorded
on magnetic tape and served as the input data to the
THREAD system. Processing resulted in the shaded
three-dimensional views of the isolated tumor mass
seen in Figure 12. Since no tumor was seen above or
below the 5 input sections, the resultant image is
truncated at both poles. Thinner input Sections would
provide a more detailed view of these regions. Each
individual picture point on the viewing monitor repre
sents 1.5 square millimeters for surfaces parallel to
the viewing screen.

Figure 13 shows the standard display format of the
THREAD system including: date, object orientation
and composition in coded form and the grey-level block
display with reference numbers described earlier. Usu
ally, a contour-gram and a shaded image or two shaded
images at different rotational angles are viewed side
by-side on the screen. Figure 13 shows the automatic
enlargement feature of the system with which the op
erator can type a code word into the console and have
either the left or right image enlarged on the opposite
side of the screen. Color formats are also available as
is the capability for Polaroid photography from the
monitors.

SUMMARY AND FUTURE BIOMEDICAL
PROSPECTS

The THREAD system represents an effective and
highly automated method for three-dimensional recon
struction and display of biomedical data from many

248 National Computer Conference, 1976

Figure 10--Shaded three-dimensional image of a neuron nucle
olus generated at two rotational angles by the THREAD sys
tem: (A) right lateral view, (B) left lateral view. The program
assumes viewer and light source are directly in front of monitor
and assigns the brightest shades to planes lying parallel to the

viewing screen

sources. It has a number of advantages over previous
three-dimensional reconstruction methods, particularly
the ability to automatically locate object-boundary out
lines and to produce shaded three-dimensional images
of the reconstructed data.

Figure ll-Two adjacent computerized tomograms produced by
the ACT A scanner from a patient with uptake of contrast
material by a brain tumor in one cerebral hemisphere. Skull

defects are the result of previous surgery

Figure 12-T:hree-dimensional reconstruction of brain tumor by
the THREAD system, (A) Contour-gram of inferior and medial
surfaces of tumor mass, (B) Shaded image of A, (C) Greater
rotation of same tumor about the horizontal axis, showing more

of the inferior surface

The shaded image might be further enhanced by a
number of techniques to reenforce the three-dimen
sional illusion created by the shaded image. Smoothing
of the shading planes by performing successive linear
interpolations in both the X and Y direction will result
in a more continuous shading gradient.37 Stereo pairs
can be generated, side-by-side, on the viewing screen
with each image symmetrically rotated with respect to
its vertical axis and by adjusting the relative X-axis
spacing of the two images to accommodate for differ
ing interocular distances in the viewer. In addition,
movies could be made of the object at consecutively
varying rotational angles thereby allowing for rapid
viewing of all object surfaces.

Finally, quantitative data such as volume, shape, and

Figure 13-THREAD display format with headings, display
level shading block and reconstructed brain tumor. The image
on the right has been automatically enlarged four times and

displayed on the left side of the viewing screen

surface area may be readily calculated for individual
objects. 38 Comparison of this type of data are impor
tant in the study of changing cell morphology during
experimental manipulations. Similarly, quantitative
data obtained from reconstructed computerized tomo
grams can be used to study normal anatomy in vivo
and to examine the effects of various treatment modali
ties on the size and morphologic characteristics of
tumors and other pathological entities.

ACKNOWLEDGMENTS

The authors wish to thank the staff of the National
Biomedical Research Foundation for their assistance
and the generous use of their facilities. In particular
we appreciate the initial interest and continued ~mp
port of Dr. Robert S. Ledley in this project and the
programming assistance of B. Shiu. We thank Dr. Betty
Hamilton and the Department of Anatomy, George
town Medical School for their encouragement and
guidance.

REFERENCES

1. Bang, B. G. and F. B. Bang, "Graphic Reconstruction of
the Third Dimension from Serial Electron Micrographs,"
J Ultrastructure Res, 1: pp. 138-149, 1957.

2. Sjostrand, F. S., "Ultrastructure of Retinal Rod Synapses
of the Guinea Pig as Recorded by Three-Dimensional Re
constructions from Serial Sections," J Ultrastructure Res,
2: pp. 122-170, 1958.

3. Mitchell, H. C. and J. C. Thaemert, "Three Dimensions in
Fine Structure," Science, 148: pp. 1480-1482, 1965.

4. Karlsson, U., "Three-Dimensional Studies of Neurons in
the Lateral Geniculate Nucleus of the Rat, Part 1," J
Ultrastru.cture Res, 16: pp. 429-481, 1966.

5. Karlsson, U., "Three-Dimensional Studies of Neurons in
the Lateral Geniculate Nucleus of the Rat, Part 2," J
Ultrastructure Res, 16: pp. 482-504, 1966.

6. Keddie, F. M. and L. Barajas, "Three-Dimensional Recon
struction of Pityrosporum Yeast Cells Based on Serial Sec
tion Electron Microscopy," J Ultrastructure Res, 29: pp.
260-275, 1969.

7. Poritsky, R, "Two and Three-Dimensional Ultrastructure
of Boutons and Glial Cells on the Motoneuronal Surface in
the Cat Spinal Cord," J Comp Neurol, 135: pp. 423-452,
1969.

8. Barajas, L., "The Ultrastructure of the Juxtaglomerular
Apparatus as Disclosed by Three-Dimensional Reconstruc
tion from Serial Sections," J Ultrastructure Res, 33: pp.
116-147,1970.

9. Wiley, T. J. and R L. Schultz, "Intranuclear Inclusions in
Neurons of the Cat Primary Olfactory System," Brain Res,
29: pp. 31-45, 1971.

10. Dunn, R F., "Graphic Three-Dimensional Representations
from Serial Sections," J Microscopy, 96: pp. 301-307, 1972.

11. Rakic, P., "Mode of Cell Migration to the Superficial Layers
of Fetal Monkey Neocortex," J Camp Neurol, 145: pp. 61-
84,1972.

12. Macagno, R, V. Lopresti, C. Levinthal, "Structure and
Development of Neuronal Connections in Isogenic Orga
nisms: Variations and Similarities in the Optic System of
Daphnia mag'na," Proc Nat Acad Sci, 70: pp. 57-61, 1973.

13. Rakic, P., L. J. Stensas, E. P. Sayre and R L. Sidman,

THREAD 249

"Computer-aIded Three-DImensional .Keconstruction and
Quantitative Analysis of Cell from Serial Electron Micro
scopic Montages of Fetal Monkey Brain," Nature, 250:
pp. 31-34, 1974.

14. \'liley, T. J., R L. Schultz and A. H. Grott, "Computer
Graphics in Three-Dimensions from Perspective Reconstruc
tion of Brain Ultrastructure," IEEE Trans Biomed Eng,
20: pp. 288-291, 1973.

15. Cowan, W. M. and D. F. Wann, "A Computer System for
the Measurement of Cell and Nuclear Sizes," J Microscopy,
99: pp. 331-348,1973.

16. Levinthal, C. and R. 'Ware, "Three-Dimensional Reconstruc
tion from Serial Sections," Naiure, 236: pp. 207-210, 1972.

17. Wann, D. F., T. A. Woolsey, M. L. Dierker and W. M.
Cowan, "An On-Line Digital-Computer System for the
Semiautomatic Analysis of Golgi-Impregnated Neurons,"
IEEE Trans Biomed Eng, 20: pp. 233-247, 1973.

18. Glenn, W. V., R J. Johnston, P. E. Morton and S. J. Dwyer,
"Image Generation and Display Techniques for C.T. Scan
Data," Invest Radial, 10: pp. 403-416, 1975.

19. Glenn, W. V., R J. Johnston, P. E. Morton and S. J. Dwyer,
"Further Investigation and Initial Clinical Use of Advanced
C.T. Display Capability," Invest Radiol, 10: pp. 479-489,
1975.

20. Huang, H. K. and R S. Ledley, "Three-Dimensional Image
Reconstruction from in vivo Consecutive Transverse Axial
Sections," C01nput Biol M ed, 5: pp. 165-170, 1975.

21. Roberts, L. G., Machine Perception of Three-Dimensional
Solids, Technical Report No. 315, Lincoln Laboratory,
M.LT., Cambridge, Mass., 1963.

22. Warnock, J., A Hidden Surface Algorithm for Computer
Generated Halftone Pictures, Technical Report 4-15, Com
puter Science, University of Utah, Salt Lake City, Utah,
1969.

23. Sutherland, L E., "Sketchpad, A Man-Machine Graphical
Communication System," Froc AFIPS, 23: pp. 329-346,
Spring, 1963.

24. Ne\\'TIlan, W. M. and R F. Sproull, Principles of Interactive
Computer Graphics, McGraw-Hill Co., New York, 1973.

25. Bouknight, W. J., "A Procedure for Generation of Three
Dimensional Half-Tone Computer Graphic Presentations,"
Comm Ass Comput Mach, 13: pp. 527-536, 1970.

26. Bouknight, J. and K. Kelley, "An Algorithm for Producing
Half-Tone Computer Graphics Presentations with Shadows
and Movable Light Sources," Proc AFIPS, 36: pp. 1-10,
Spring, 1970.

27. Watkins, G. S., A Real-Time Visible Surface Algorithm,
Tech Report UTEC-CSC-70-101, Dept. Comput. Sci., Uni
versityof Utah, Salt Lake City, Utah, 1969.

28. Wright, T. J., "A Two-Space Solution to the Hidden-Line
Problem for Plotting Functions in Two Variables," IEEE
Trans Computers, 22: pp. 28-33, 1973.

29. Golab, T., R S. Ledley and L. S. Rotolo, "FIDAC-Film
Input to Digital Automatic Computer," Pattern Recog, 3:
pp. 123-156, 1971.

30. Ledley, R S., "Pattern Recognition with Interactive Com
puting for a Half Dozen Clinical Applications of Health
Care Delivery," Proc AFIPS, 42: pp. 463-477, 1973.

31. Golab, T. J., "MACDAC-An Inexpensive and Complete Bio
medical Input and Output Display System," Proc 23rd
ACEMB, Nov. 15-19, 1970.

32. Ledley, R S., J. B. Wilson, T. Golab and L. S. Rotolo,
"The ACTA-Scanner: The Whole Body Computerized Trans
axial Tomograph," Comput Biol Med, 4: pp. 145-155, 1974.

33. Ledley, R S., J. B. \Vilson and H. K. Huang, "Reconstruc
tion and Display of the Image from the ACT A Whole-Body
X-Ray Scanner," Proc 27th ACEMB, Oct. 6-10, 1974.

34. Ledley, R S. and L. S. Rotolo, "Advanced Features of the
ACT A Scanner," Proc 28th ACEMB, Sept. 20-24, 1975.

250 National Computer Conference, 1976

35. Ledley, R. S., Use of Compute1"S in Biology and Medicine,
McGraw-Hill Co., New York, pp. 339-341, 1965.

36. Mazziotta, J. C., B. L. Hamilton and P. Fenner-Crisp, "A
Device for the Precise Transfer of Serial Sections for
Electron Microscopy," Stain T€ch, 48: pp. 153-154, 1973.

37. Gouraud, H., "Continuous Shading of Curved Surfaces,"
IEEE Trans on Computers, 20: pp. 623-629, 1971.

38. Belson, M., A. W. Dudley and R. S. Ledley, "Automatic
Computer Measurements of Neurons," Pattern Recog, 1:
pp. 119-128, 1968.

Regional kidney transplant matching-The
RENTRAN interactive approach *

by DAVID J. MISHELEVICH, PETER STASTNY, R. GAIL ELLIS and SUSAN G. MIZE
Uni'L1ersity of Texas Health Science Center at DaUas
Dallas, Texas

ABSTRACT

An interactive on-line computerized renal transplant
matching system called RENTRAN which serves the
Southwest Kidney Transplant Region is described. The
region consists of one transplant center in Arkansas,
two in Oklahoma, and six in Texas. The computer
used is the DECsystem-10 located in the Medical Com
puting Resources Center at the University of Texas
Health Science Center at Dallas. RENTRAN partici
pants have remotely located standard interactive com
puter terminals and gain access to the computer by
dialing over normal telephone lines. Functions pro
vided by RENTRAN include obtaining instructions,
performing a donor-recipient match, obtaining a list
of potential recipients, making a user comment or add
ing, updating or deleting a patient record. Either
long or short dialog forms are available for inexperi
enced and experienced users respectively. In the time
period since August 1, 1973 when the system went into
production, there have been in excess of 100 matches
attempted and approximately 50 kidneys have been
transplanted according to RENTRAN results. There
are about 350 recipients currently on the data base.
The system was developed with funds provided by the
Texas Regional Medical Program and operational ex
penses and enhancements are provided through a $25
per year potential-recipient patient charge for being
listed on the data base.

INTRODUCTION

Success in renal transplant matching can be increased
by enlarging the pools of potential recipients and
donors. With this in mind, the Southwest Kidney
Transplant Region maintains an interactive on-line
computer-based matching system called RENTRAN in
collaboration with the Medical Computing Resources
Center (MCRC) of The University of Texas Health
Science Center at Dallas (UTHSCD).

* The major portion of financial support for RENTRAN came
from the Renal Program, Texas Regional Medical Program.

251

The network is shown schematically in Figure 1 and
includes one center in Arkansas (Little Rock), two
centers in Oklahoma (V.A. Hospital in Oklahoma City
and St. Anthony's Hospital) and six centers in Texas
(Austin, Dallas, Galveston, Houston and two in San
Antonio). The latter two are located at Lackland Air
Force Base and The University of Texas Health Sci
ence Center at San Antonio. The three states comprise
the Southwest Kidney Transplant Region and main
tain common tissue typing standards including the
holding of typing workshops, use of a common tissue
typing tray and exchange of sera from sensitized
recipients for cross-matching.

This paper describes system capabilities, including
sample computer terminal interactions. The results for
the first year and one half of operation are presented

DD \! Oklahoma Okla.- \! U " C.,,·V.A. ". A"'"y·, U
Am", """ \ I / L,ul, R"k

San Antonio
(Military) Galveston

San Antonio
(Civilian)

Figure I-Overall threetate RENTRAN network

252 National Computer Conference, 1976

and a comparison of features with the SEROP system 1

is made.

SYSTEM DESCRIPTION

The interactive on-line computerized system re
placed a previous batch system whose major defects
were relatively infrequent updating (monthly) of po
tential recipient data and the necessity for human
determination of matches based on scanning lists of
potential recipients comparing the blood types and up
to four HL-A values. The current system went into
production on August 1, 1973 with development occur
ring earlier that year. A prototypical demonstration
version was programmed in the BASIC language in
two months, beginning in December 1972. The pro
duction version of the RENTRAN program was begun
in March 1973 in the COBOL computer language using
the ISAM (Indexed Sequential Access Method) file
structure and runs on the DECsystem-l0 computer
located in the MCRC. The MCRC is an academic and
scientific computing facility that serves some adminis
trative functions as well. 2

A prime objective in the system design was to put
the computing power where the users are. The com
puting system has a number of dial-up lines and sup
ports a variety of interactive computer terminals. The
transplant centers in the three-state region communi
cate with the MCRC DECsystem-l0 over normal tele
phone lines at rates of 10 or 30 characters per second.
The terminals are equipped with acoustic couplers for
digital to analog sound signal conversion and vice versa
to permit the communication. Data confidentiality is
maintained by the use of account numbers and pass
words on the time sharing system.

The RENTRAN data base is a file of potential kid
ney transplant recipients currently numbering about
350. The following items of information are kept for
each patient:

Registry number
Name
Age
Sex
Race
Blood Type (ABO)
HL-A Antigens
Location Center
Source of Reference
Presence or absence of antibodies
N umber of acceptable mismatched antigens.

This information is maintained daily on disk storage
in the computer system and on back-up magnetic tapes.
In addition, monthly printouts are made of the file for
comparative and back-up purposes.

The user has a choice of the following functions:

Obtain instructions
Perform a donor-recipient match
List potential recipients
Make a user comment
Add, update, or delete a patient.

Since the system is designed to minimize typing at the
computer terminal, the choices for these and other
multiple choice items are numbered. Thus the user
simply has to type in the appropriate number and press
the carriage return to enter the selection into the
computer. A sample update procedure demonstrating
the addition of a patient is shown in Figure 2. This
interaction was human engineered to make RENTRAN
easy to use by an individual without computer experi
ence. Each user entry is edited for consistency and the
user is obliged to enter a meaningful response before
proceeding to the next entry. Because more experi
enced users found this dialog with its many checks to
be long and tedious, a short dialog version was devel
oped. The same process in short-dialog form is shown
in Figure 3. In this format if the user forgets the
possible values in a multiple choice question, he or she
can type in a 0 (zero) followed by a carriage return
and the possibilities will be typed out to prompt the
user. Editing for consistency also applies to the short
dialog.

Updates are actually stored in a temporary file and
once a day the added, changed, or deleted data is
checked for consistency and processed by a mainte
nance program to bring the master RENTRAN file
up to date. This indirect approach was selected to
protect data integrity by avoiding problems with users
of varied experience making changes directly to the
master data bank.

A sample patient listing with the names removed
appears in Figure 4. The primary listing choices are
all patients or those within a given center. Once a
specific center is designated, the variety of lists that
may be obtained for that center includes the following:

All potential recipients having a certain blood type
All those with a specified number of HL-A antigens
All those with a certain number of acceptable mis-

matches
All those who have developed antibodies
All those with a specific source of reference
All patients for the center listed alphabetically
All patients for the center in registry number se

quence.

Two additional listing capabilities which are inde
pendent of the center are obtaining the data for a
single patient provided the registry number is known
and listing those patients who have been added as
potential recipients during the current month.

Regional Kidney Transplant Matching

RENTRA...~

LONG FOlt.\t OF DIALOG FOR ADDING A RECIPIENT

RECIPIENT UPDATE PROCEDURE
CHOOSE ONE OF THE FOLLOWING
1 ADD A NEW RECIPIENT
2 D:::LETE A RECIPIENT
3 CORRECT RECIPIENT DESCRIPTION
1
ENTER THE SOCIAL SECURITY NBR OF THE PATIENT: 78191237

riPE THE RECiPiENTS LAST NAME: PERSON

YOU HAVE ENTERED PERSON, CORRECT?: y

TYPE FIRST NAME: TEST

YOU HAVE ENTERED TEST, CORRECT?: y

ENTER 3 CHAR FOR SOURCE OF REFERENCE: ELP

YOU HAVE ENTERED ELP, CORRECT?: y

ENTER AGE, IF UNKNOWN TYPE 0: 33

YOU HAVE ENTERED 33, CORRECT?: y

ENTER SEX AS M OR F, IF UNKNOWN TYPE U: F

YOU HAVE ENTERED F, CORRECT?: y
ENTER RACE
1 CAUCASIAN 4 ORIENTAL
2 BLACK 5 AMER INDIAN
3 LATIN AMERICAN 6 UNKNOWN
5
YOU HAVE ENTERED 5, AMER. INDIAN CORRECT?: y

ENTER DONORS ABO TYPE: 0

YOU HAVE ENTERED O. CORRECT?: y

ENTER DONORS Ht-A ANTIGENS
ENTER THE LA SERIES FIRST. THEN THE FOUR SERIES
ENTER TWO ANTIGENS FOR EACH SERIES
IF AN ANTIGEN is UNKNO"N ENTER 0

VALID ENTRIES FOR THE LA SERIES ARE:
AI, A2. A3, A9, W23, W24, AIO, W2S, W26
All, W19, W29, W30, W31, W32, W28, °
ENTER THE FIRST LA SERIES: A2

ENTER THE SECOND LA SERIES: A10

VALID ENTRIES FOR THE FOUR SERIES ARE:
AS, A7, A8, AI2, A13, WS, WIO, W14
WIS, W16, WI7, WI8, W21, W22, W27, 4C, 0
ENTER THE FIRST FOUR SERIES: W5

ENTER THE SECOND FOUR SERIES: AS

YOU ENTERED THESE ANTIGENS
LA SERIES A2 AIO
FOUR SERIES WS AS
CORRECT?: y

CHOOSE YOUR CENTER FROM THE FOLLOWING
1 AUSTIN
2 DALLAS
3 GALVESTON
4 HOUSTON
S LACKLAND AFB
2

6 LITTLE ROCK
7 OKLAHOMA - V.A.
8 SAN ANTONIO MED. SCH.
9 OKLA ... ST ANTHOr-.JVS

YOU HAVE ENTERED 2, DALLAS CORRECT?: y

DOES THE RECIPIENT HAVE ANTIBODIES?: N

ENTER NBR OF ACCEPTABLE MISMATCHES?: 0

YOU HAVE ENTERED 0, CORRECT?: y

DO YOU WANT TO ADD, DELETE, OR CORRECT ANOTHER RECIPIENT?: N

END OF RECIPIENT UPDATES

Figure 2-Sample update procedure demonstrating the addition of a patient using the long dialog. Stylized type used for em
phasis as well as to differentiate computer output and user responses

254 National Computer Conference, 1976

RENTRAN

SHORT FORM OF DIALOG FOR ADDING A RECIPIENT

RENAL TRANSPLANT MATCHING SYSTEM
ARE YOU AN EXPERIENCED RENTRAN USER?: y

ENTER CODE FOR CENTER, IF UNKNOWN TYPE 0: 2

RENAL TRANSPLANT MATCHING SYSTEM
TYPE FUNCTION YOU WANT TO PERFORM (UNKNOWN = 0): S

RECIPIENT UPDA IE PROCEDURE
CHOOSE ONE OF THE FOLLOWING
1 ADD A NEW RECIPIENT
2 DELETE A RECIPIENT f CORRECT RECIPIENT DESCRIPTION

ENTER THE SOCIAL SECURITY NBR OF THE PATIENT: 12373488
TYPE RECIPIENTS LAST NAME: PERSON

TYPE FIRST NAME: TEST

ENTER 3 CHAR FOR SOURCE OF REFERENCE: ELP

ENTER AGE, IF UNKNOWN TYPE 0: 23

ENTER SEX AS M OR F, IF UNKNOWN TYPE 0: F

ENTER RACE: S

ENTER DONORS ABO TYPE: 0

ENTER DONORS HL-A ANTIGENS
ENTER THE FIRST LA SERIES: A2

ENTER THE SECOND LA SERIES: A10

ENTER THE FIRST FOUR SERIES: ws
ENTER THE SECOND FOUR SERIES: AS

YOU ENTERED THESE ANTIGENS:
LA SERIES A2 A 10
FOUR SERIES WS AS
CORRECT?: y

ENTER CODE FOR YOUR CENTER: 2

DOES THE RECIPIENT HAVE ANTIBODIES?: N

ENTER NBR OF ACCEPTABLE MISMATCHES: 0

DO YOU WANT TO ADD, DELETE, OR CORRECT ANOTHER RECIPIENT?: N

END OF RECIPIENT UPDATES

F.igure 3-Sample update procedure demonstrating the addition
of a patient using the short dialog

The dialog associated with a matching procedure is
shown in Figure 5. It is important to note that cross
matching of antigens is permitted. For example an
tigen designation 4C will show matches to A5, W5,
and WIS. Each time a match is performed, a follow-up
form is mailed to the donor center to determine the
disposition of the kidneys.

The user of RENTRAN can get minimal instruc
tions for system use on the terminal even though full
user documentation is supplied to each center. This
permits the system to be usable even if the documen
tation is mislaid. A telephone reference is given for
special problems that might arise.

An important capability is the user comment facil
ity. Problems, general questions or other items of

interest are input by the users and reviewed on a
daily basis when the updating of the master file is done.
Changes may result from these comments, such as the
provision of an abbreviated as well as a long form of
the dialog to expedite interaction by the experienced
users.

The DECsystem-IO is available 24 hours per day, 7
days per week except for an average of 2112 hours of
preventive maintenance and rare episodes of unsched
uled down time. In almost two years there has been
no time when a match could not be done even if some
delay was necessary. Periodically a printed listing of
all potential recipients on the data base is distributed
to each member center to be used for backup in case
of emergencies. It is still, however, the objective of

R.egional Kidney Transplant Matching

RENTRAN

SAMPLE DIALOG FOR RECIPIENT LIST

RENAL TRANSPLANT MATCHING SYSTEM

ARE YOU AN EXPERIENCED RENT RAN USER?: y

ENTER CODE FOR CENTER. iF UNKNOWN TyPE 0: 1

RENAL TRANSPLANT MATCHING SYSTEM:

TYPE FUNCTION YOU WANT TO PERFORM (UNKNOWN = 0) : 3

BEGINNING OF RECIPIENT LIST

RECIPIENT LIST OPTIONS
TYPE NBR OF LIST OPTION YOU WANT, IF UNKNOWN TYPE 0: 3

ENTER CODE FOR CENTER, IF UNKNOWN TYPE 0: 1

TYPE NBR OF CENTER LIST OPTION YOU WANT (UNKNOWN = 0): 5

RENAL TRANSPLANT MATCHING SYSTEM
LIST OF RECIPIENTS BY CENTER

REG NAME OF SOR A S R ABO ANTIGENS
NO RECIPIENT REF G X C LA1 LA2

000000724 61 F BLK 0 W19 A10
000000732 ELP 54 M CAU 0 A2 Al
000000194 23 M LA 0 W28 A3
000000731 LUB 26 F BLK B A3
000000797 19 F CAU 0 W28 A10
000000642 BR! 44 F BLK 0 AS
000001005 FTW 29 M LA B A2 Al

DO YOU WANT TO CHOOSE. FROM THE LIST OPTIONS AGAIN?: N

END OF RECIPIENT LIST

RENAL TRANSPLANT MATCHING SYSTEM

TYPE FUNCTION YOU WANT TO PERFORM (UNKNOWN = 0): 6

EXIT

FR1

W22

W22

W5

W15

W16
,....,

A8

FR2

A12

A7

A5

Figure 4-Sample listing, in this case by center, although a list
of all patients could be l·equested. Patient names have

been removed to preserve confidentiality

CTR A A
B M

AUS

AUS

AUS

AUS

AUS

AUS X

AUS

the MCRC to develop a fully redundant fail-safe sys
tem to further increase availability for such critical
activities.

onstrated in Table 1. As of March 1, 1975 there were
356 potential recipients on the file and 108 donor
recipient matches have been performed. The data
gathered by analysis of the follow-up forms mailed
after each attempted match or deletion of a recipient
from the data base are shown in Table II. In some
cases a kidney was transported to an area outside the
regional membership. RENTRAN results were used
in over 50 cases to identify the appropriate :::oecipient.

RESULTS

Some basic statistics of RENTRAN since initiation
of the production system on August 1, 1973 are dem-

256 National Computer Conference, 1976

RENiRAN

SAMPLE DIALOG FOR DONOR-RECIPIENT MATCH

RENAL TRANSPLANT MATCHING SYSTEM
ARE YOU At~ EXPERIENCED RENTRAN USER?: y

ENTER CODE FOR CENTER, IF UNKNOWN TYPE 0: 2

RENAL TRANSPLANT MATCHING SYSTEM
TYPE FUNCTION YOU WANT TO PERFOIOi (UNKNOWN = 0): 2

DONOR-RECIPIENT MATCH PROCEDURE
ENTER DONORS ABO TYPE: 0

ENTER DONORS HL-A ANTIGENS
ENTER THE FIRST LA SERIES: A9

ENTER THE SECOND LA SERIES: AlO

ENTER THE FIRST FOUR SERIES: A7

ENTER THE SECOND FOUR SERIES: A12

YOU ENTERED THESE ANTIGENS:
LA SERIES A9 At 0
FOUR SERIES A7 Al2

CORRECT?: y

NBR OF 4-WAY MATCHES = 000
NBR OF3-WAY MATCHES = 002
HOW MANY DO YOU WANT PRINTED? TYPE A NUMBER, OR "ALL" OR "NONE": ALL

THE FOLLOWING RECIPIENTS MATCH 3 DONOR ANTIGENS

REG
NO

NAME OF
RECIPIENTS

SOR A S R
REF G X C

ABO ANTIGENS CNT A A
LAI LA2 FRI FR2 B M

000000542

000000613

ELP 30 F BLK A

FTW 47 M CAU A

W28 A9 A7 Al2 DAL

A9 All A7 A12 DAL

NBR OF 2-WA Y MATCHES = 063
HOW MANY DO YOU WANT PRINTED? TYPE A NUMBER, OR "ALL" OR "NONE": NONE

END OF MATCHING PROCEDURE, DO YOU WANT TO MAKE ANOTHER MA TeH?: N

RENAL TRANSPLANT MATCHING SYSTEM

TYPE FUNCTION YOU WANT TO PERFOR...\t (UNKNOWN = 0): 6

EXIT

Figure 5-Interactive dialog demonstrating the matching
procedul'e

FIN ANCIAL ASPECTS

I

1

Another area of interest involves reasons for the
permanent or temporary removal of potential recipi
ents from the data base. The information is shown in
Table III. There were 263 permanent removals (142
because of transplantation, 51 because of death, and
70 because of miscellaneous reasons as analyzed in the
figure) and 26 temporary removals (of which 5 were
due to infection).

The development of RENTRAN began in December
of 1972. The initial development cost was approxi
mately $9,000 with roughly four-fifths coming from
the Texas Regional Medical Program. The computer
terminal and telephone costs are borne by the individ
ual transplantation centers. Operating expenses and

Regional Kidney Transplant Matching 257

TABLE I-Basic RENTRAN statistics as of March 1, 1975. The
period covered is July, 1973 through February, 1975.

RENAL TRANSPLANT MATCHING SYSTEM (RENTRAN)

STATISTICAL ANALYSIS

AS OF 03-01·75
TOTALS

nT.'C",...nTrvrTn ... T """ n • ., .. .,..n n1 Lt. .. ." Oi..ol-i3 TO 02-01·i4 Ur...J!'\..J'\oU,llVl' U~-Ul·'''' tV U.:J-\IJ-/;.)

DONOR·RECIPIENT MATCHES PERFORMED:
KIDNEY AVAILABLE FOR MATCHING 54 17
NO INFORMATION AVAILABLE 29 8
TOTAL 83 25

REQUESTS FOR RECIPIENT LISTINGS 120 45
UPDATES TO THE RECIPIENT FILE

RECIPIENTS ADDED 530 174
RECIPIENTS DELETED 192 145
RECIPIENTS CORRECTED 195 148
TOTAL 917 467

INSTRUCTIONS REQUESTED 39

NUMBER OF SUCCESSFUL SIGN·ONS 287 129

RECIPIENTS ON mE DATA BASE (AS OF ENDING PERIOD) 356 245

T ABLE II-Data obtained from RENTRAN follow-up forms.

RENTRA."I

ANALYSIS OF FOLLOW·UP DATA

TOTALS
DESCRIPTION 02"()1·74 TO 03-01·75 07"()1·73 TO 02"()1·74

FOLLOW-UP INFORMATION
FORMS FOR RECIPIENTS DELETED FROM DATA BASE

RETURNED 181 108
NOT YET RETURNED 11 37
TOTAL 192 145

FORMS FOR DONOR·RECIPIENT MATCH AITEMPTS
RETURNED 54 17
NOT RETURNED 29
TOTAL 83 25

REPORTED TRANSPLANTS OF KIDNEYS
WHERE DONOR WAS MATCHED TO RECIPIENT
USING RENTRAN (BY RECIPIENT LOCATION CENTER)

HOUSTON
GALVESTON 4
DALLAS 24
L.~CKLA_l'm

AUSTIN
UTILE ROCK
OKLAHOMA CIlY·UNlV OF OKLA. 4
SAN ANTONIO 3

NEW YORK
OKLAHOMA-ST ANTHONY'S
NASHVILLE, TENN.
KIDNEY NOT USED 47

DISPOSITION OF KIDNEY UNKNOWN

TOTAL 91 34

j.;~uMBER

71
37

108
165

704
337
343

1384
46

416
356

NUMBER

289
48

337

71
37

108

12
7

26

4

2
4
1

SS
S

125

258 ~~ational Computer Conference, 1976

T ABLE III-Reasons for the permanent or temporary removal
of potential recipients from the data base.

RENlRAN

REASONS FOR REMOVAL OF RECIPIENTS FROM DATA BASE

DESCRIPTION 02-01·74 TO 03-01·75

REPORTED REASONS FOR REMOY AL OF POTENTIAl
RECIPIENT FROM DATA BASE:

PERMANENT REMOVAL FROM DATA BASE DUE TO:
TRANSPLANT
DEATH
OTHER

NOT A CANDIDATE FOR TRANSPLANT 26
HAS A LIVING RELATED DONOR
REFUSAL BY PATIENT
UNABLE TO LOCATE RECIPIENT
MOVED AWAY FROM AREA
ERROR INPUT 2
ERROR·ENTERED lWICE ·ONRENTRAN 4
FORM RETURNED BUT NOT FILLED OUT
TOTAL OTHER

TOTAL

TEMPORARY REMOVAL FROM DATA BASE DUE TO:

INFECTION
OTHER

NOT READY
TOTAL OTHER

TOTAL

periodic RENTRAN enhancements are provided by a
$25 charge made once during a September to August
fiscal year to each potential recipient listed on the file
irrespective of the length of time on the file during
the year. Patients are not charged twice if they are
temporarily removed and then reinstated during the
same fiscal year. Patients are individually billed
through their respective centers for RENTRAN via a
computerized billing system.

DISCUSSION

The system is much more successful than the pre
ceding batch system. The concept of using a central
ized up-to-date file with access over telephone lines has
proven to be quite reasonable. There are other such
computerized systems in existence, a major one being
the SEROP (Southeastern Regional Organ Procure
ment Program) system.1 A detailed comparison of its
characteristics with those of RENTRAN is shown in
Table IV. SEROP currently covers a larger area with
its 30 participating institutions. While there is no
practical limit to the number of centers or potential
recipients which could be supported by RENTRAN,
the Southwest Kidney Transplant Region has devel
oped on the basis of geographic proximity and co-

90
38

48

TOTALS
07-01·73 TO 02-01·74 NUMBER

52 142
13 51

33

11
8
2
4
2

22 70
176 87 263

16 21
16 21

21 26

operation among the physicians involved. It must be
stressed that most of the decisions are medical ones
and therefore are made by the medical group which
oversees RENTRAN activities. A somewhat more
mathematical approach to computerized donor-recipi
ent matching has been developed by the Department of
Immunohematology, University Hopital, Leyden, the
Netherlands.3 A key to the success of RENTRAN and
a main objective in its design was to make the system
easy to use for those trained or untrained in its use.

CONCLUSION

Renal transplantation is the most successful of all
internal organ transplantation procedures. Pooling of
recipients in regional exchange groups allows more
efficient utilization of available cadaver kidneys. The
computer-based regional approach such as that of
RENTRAN which provides an accurate and up-to-date
file of a fairly large size to maximize the probability
of finding a likely potential recipient and which is ac
cessible via telephone lines from essentially any dis
tance has proved to be a viable one. The RENTRAN
system, which is readily available and easily used, is
successfully utilized by the participating transplant
centers.

Regional Kidney Transplant Matching 259

TABLE IV-Comparison of RENTRAN features and informa
tion to those of the system supported by SEROP.

A W1PARlSON OF RENTRAN TO THE SEROP TRANSPLANT SYSID1

SYSTEM FEATURE

Recipient Identification

Donor Identification

Update Technique

programs

Patient protection
within center

Matchin n criteria

Bill ing capabi 1 i ty

24-hour ava i lab i 1 i ty

Instructions for use

User comment facility?

Follow-up after match

Cross-matching of
antigens

--

Statistics

Cost

I

AS USED BY SEROP SYSTEM

.'.1,_11 t"'- ~ I _I"~ . ~ -_ .. _._._--

includes # of transplants,
RH factor, antigens against
,.,h i rh n:::.t- i .:>nt- i c: c:.:>nc: it i 7Pti

Basic ID - Name, age, 10-
cation, etc.

Direct to f i 1 es.
Brief & succinct but re-
quires training in format
program expects.

Separate program for each
function (update, 1 is t,
etc.)

Password method

(n HL-A com p atibi 1 itv
(2) presensitization
(3) waiting time

None

Network of 8 GE Mark Ill's
avai lable. Maximum-of 30
minutes downtime guaranteed

None programmed

No

None described

None

3} years implementation
6 major revisions
800 recipients on fi le
30 participating institutions
10 states

R&D = $20,000 over 4} yrs.
maintenance = $550 per month
for 800 patients

AS USED BY RENTRAN
social security #, source
of referral within center

I

None

Indirectly, once per day
for file protection~
Verbose or abbrevi ated
form user's choice. Tra i n i n9
not necessary.

One user program combining
functions

None

HL-A comoatibilitv

Basic monthly audit tra i 1

When possible

Programmed with telephone
reference

Yes

By mailout

Extensive

2 years implementation
1 major revision
356 recipients
9 participating institutions
3 states

R & D = $9,000 over 1 year
Maintenance and enhancements
$25 per patient per year

260 National Computer Conference, 1976

ACKNOWLEDGMENTS

Thanks are gratefully given to the members of the
Southwest Kidney Transplant Region, the Texas Re
gional Medical Program, Dr. Garabed Eknoyan of the
Baylor College of Medicine who headed the renal sec
tion of the Texas RMP, Mr. Stephen B. Brewton who
programmed the original prototypical demonstration
program in BASIC, Ms. Linda Firnberg who partici
pated in the systems analysis and training, and Mr.

Michael Blaylock who programmed many of the later
changes to RENTRAN.

REFERENCES

1. Stulting, R. D. and F. E. Ward, "A Computerized System
for the Selection of Organ Transplant Recipients," Trans
plantation, 19, pp. 27-35, 1975.

2. Mishelevich, D. J., "Medical Computing in Texas," Medical
Electronics and Data, 6, pp. 33-37, 1975.

g. Steen, G. J. and J. D'Amaro, "Computer Selection of Donor
Recipient Pairs," Tissue Antigens, 2, pp. 189-95, 1972.

Uata base for protein sequences *

by M. O. DAYHOFF, W. C. BARKER, R. M. SCHWARTZ,
'T""tIo r1 r'\. ... f""1TTrnrn ____ , T rn TTTT~Tm

Jj. \...!. u.n.\...! u 1. 1., aIlU L. 1. • .rr U.l.'II 1.

National Biomedical Research Foundation
Washington, D.C.

ABSTRACT

Proteins are linear polymers synthesized in living or
ganisms from twenty different kinds of amino acids
according to the message carried in the chromosomes.
Typically, they have evolved by natural selection over
hundreds of millions of years through many small
changes in sequence. The present computerized data
base includes 77,267 amino acid residues from 767 se
quences. We believe that all of the protein structures
occurring in living organisms can be combined into
fewer than 1,000 groups containing proteins of simi
lar sequence. Each group can be characterized by a
few sequences that are known exactly and by a number
of evolutionary parameters. The rest of the structures,
occurring in organisms not examined, can be described
with estimated precision in terms of the number of
differences from a known sequence or from sequences
inferred to have been present in ancestral forms. The
following kinds of information are needed: sequences
of proteins from each group, the phylogenetic tree of
biological species, a list of protein groups and the gene
duplications in each, a description of the quantitative
parameters of the evolutionary processes affecting pro
teins, and methods of estimation of sequences in an
cestral species and in living forms phylogenetically
close to those investigated. The conceptual tools and
the computer programs necessary for the prediction of
all of the 1010 to 1011 protein sequences in living species
are described. One can readily visualize the separate
parts operating as an integrated interactive compu
terized data base that could predict sequences for
specified organisms with an estimated precision based
on the collection of known sequences.

Proteins are the most interesting of an of the bio
chemical components of living organisms because of
their potential for diversity in structure and function,
their key positions in the cellular fabric, catalysis, and

* This work has been supported by NIH Grant GM-08710 from
the National Institute of General Medical Sciences and. by
Contract NASW2546 from the National Aeronautics and Space
Administra tion.

261

control mechanisms, and their great conservation of
structure, which provides information about biological
evolution. Sequence studies have been carried out for
various reasons in a number of disciplines: structural
chemistry, crystallography, enzymology, genetics, evo
lution, systematics, physiology, immunology, pharma
cology, virology, and bacteriology, to name a few. In
many of these disciplines, the protein sequences and
associated data are essential for an understanding of
the fundamental concepts and for a parsimonious or
ganization of the knowledge.

Proteins are synthesized by complex cell machinery
according to the information in the deoxyribonucleic
acid (DNA) template, which is replicated in cell divi
sion or reproduction. There are 4 kinds ofnucleotides
in the linear DNA chain and there are 20 kinds of
amino acids in the linear chain of the protein. Some
proteins are functional as initially polymerized; some
undergo subsequent chemical modification.

Occasional errors are made in the copying of the
DN A from generation to generation. When such er
rors are beneficial or neutral, the new sequence may
eventually replace the original as the predominant
form in the species. The main kinds of errors reflected
in the protein sequences are point mutations (the ex
change of one amino acid for another) and insertions
or deletions of one or a few residues in the chain. Al
though errors occur in many individuals each genera
tion, it may be millions of years before a change in any
one protein permeates the whole population.

PRESENT AND ULTIMATE SIZE OF THE
PROTEIN SEQUENCE DATA COLLECTION

We maintain a reference data collection of protein
sequences embodied in a series of books entitled Atlas
of Protein Sequence and Structure/,2,3 in computer
tapes containing the sequences,4 and in derivative data
such as a key-amino-acid-in-context dictionary.5 Over
3,000 experimental scientists have elucidated the 77,267
amino acid residues in the 767 sequences currently on
our sequence data tape. These sequences represent
only a small sample of the entire data base that could

262 National Computer Conference, 1976

be compiled from the 1010 or 1011 different protein se
quences from the approximately 2 million living spe
cies; in humans alone between 105 and 106 different
proteins are thought to be expressed.

We believe that it will be possible to combine all of
the naturally occurring protein structures into fewer
than 1,000 groups containing proteins of similar se
quence. 6

•
7 Each group (or superfamily) can be charac

terized by a sampling of sequences that are known ex
actly and by a number of evolutionary parameters. The
rest of the structures, occurring in organisms not ex
amined, can be described with estimated precision in
terms of the number of differences from a known se
quence or from sequences inferred to have been present
in ancestral forms on the basis of the data from extant
species. Thus, virtually the entire collection of proteins
of living organisms can be described with useful pre
cision by the elucidation of only a limited number of
sequences and parameters for each group.

Procedures for organizing and estimating the chemi
cal structures of proteins in living organisms require
the following kinds of information:

1. The phylogenetic tree describing the evolution
of extant biological species

2. The organization of sequences into superfami
lies

3. A tabulation of the gene duplications that have
occurred in each superfamily

4. The frequency of occurrence of point mutations
and insertion-deletion events for each super
family

5. A method for the estimation of protein se
quences that occurred in ancestral species from
those found in living organisms

6. A method for the estimation of a protein se
quence in a living organism based on related
sequences in other organisms and on inferred
ancestral sequences

THE PHYLOGENETIC TREE OF LIFE

From fossil evidence and from biological and pro
tein sequence evidence3 ,8-11 an outline of the phyloge
netic tree of life is emerging, as shown in Figure 1.
About 2.8 billion years ago there were at least two
morphologically distinct types of organisms already
living on earth: one was filamentous and the other
spherical. Presumably the genetic code and a rudi
mentary metabolism had already developed. Highly
conserved descendants of these forms may be the fila
mentous and coccoid blue-green algae and the anaero
bic bacteria such as clostridia. About 2.0 billion years
ago, when an oxidizing atmosphere began to develop,
a large number of different morphological types of
prokaryotes abounded, presumably including the be
ginnings of the rest of the 19 major groups of bacteria
found today as well as a proliferation of blue-green

PROKARYOTES

Blue· green Algae
and Chloroplasts

ChromallUln

Aerobic Bac ter ia
and Mitochondrion

R/Iodospi,illum

ElJI(ARYOTES

Tl)~

Ihgt1splHlHa

Figure I-Phylogenetic tree of living organisms. The major
groups of bacteria and blue-green algae as well as the eukaryote
host and its endosymbionts are represented. Spirochaetes that
may be the endosymbiotic ancestors of flagella and the mitotic
apparatus are not pictured, as no sequence information from
them is yet available. The topology and branch lengths were
approximated from sequences of c-type cytochromes, ferredoxins,
plastocyanin and azurin, and 5S ribosomal RNA. The position
of Mycoplasma, estimated from transfer RNA sequences, is only
tentative. The lengths of the branches reflect the amount of
change that has taken place in the sequences of the various

organisms

algal types. It is thought that one of the bacterial
lines, possibly mycoplasma, gave rise to the host cell of
the higher organisms, or eukaryotes. Another bacte
rial line invaded the host, developed a symbiotic rela
tionship, and gave rise to the mitochondrion, in which
the oxidative reactions of the cell take place. By a
similar mechanism, blue-green algae gave rise to plant
chloroplasts, in which photosynthesis takes place. The
host cell and its endosymbiont(s) have evolved to
gether in most of the multicellular forms.

About 1 billion years ago the lines that have since
evolved into the present-day fungi, plants, and ani
mals diverged from each other (see Figure 2) .12-16 Pro
ceeding along the animal line leading to human, the in
sect line diverged first, followed by the annelid and
mollusc lines and then, about 400 million years ago, by
the line to the fishes. More recently the amphibians
branched off, then the reptiles and birds. Finally, about
75 million years ago there was a rapid proliferation of
mammalian species into some 19 orders. Among the
primates the line to monkeys separated early, followed
by the divergence of the great apes from the human
line.17 On many of the other branches of the tree there
has been a comparable proliferation of groups. It
seems reasonable to suppose that the major branches,
representing biological orders, classes, and phyla, along
with their approximate times of divergence and aver
age amounts of evolutionary change, will soon be fitted
into place, largely on the basis of sequence evidence.
Much is already known from morphological evidence
about the connections of species, genera, and families
in the terminal portions of all of the branches, which

represent the 2 million living species. At present it
suffices to consider in our tree the few hundred species
for which we have sequences and the approximately
one thousand intermediate groups, such as families,
about which most inquiries would be made.

The topology of this tree, the names of the species
or groups on all of the branch tips, and the lengths of
the branches, which reflect average evolutionary change
of the proteins in the species, can all be stored in the
computer, The Rame manipulative programs now used
in deducing the phylogenetic tree from the data can
be turned to the automated retrieval of sequence data.

METHODS FOR RECOGNIZING DISTANTLY
RELATED SEQUENCES

At present the sequences of almost 500 proteins more
than 5 percent different from one another are known.:!
These proteins can be clustered into 116 superfamilies
by using statistical methods to recognize their simi
larityY

A comparison of sequences is based ultimately upon
the sum of scores derived from comparisons of an
amino acid in one sequence with one in the other se
quence. The contribution for each pair of amino acids
is specified in a matrix of amino-acid-pair scores. The
simplest such matrix counts 1 for amino acid identities
and 0 for nonidentities. A very sensitive matrix, de
rived from the large body of protein mutation data,
has proven to be most satisfactory for detecting dis
tantly related sequencesY

The most useful computer algorithm for detecting
distant relationships:!,19,2o determines the highest pos
sible score for any alignment (including gaps) of two

Figure 2-Phylogenetic tree showing the divergences of selected
kingdoms, phyla, classes, orders, and families from the human
line. The lengths of the branches have been drawn proportional
to time without regard to the change in the proteins. The plants,
animals, and fungi diverged from each other about 1 billion

years ago

Data Base for Protein Sequences 263

protein sequences. The score for a pair of real se
quences is compared with the distribution of scores
obtained by aligning 100 pairs of randomized sequences
having the same amino acid composition as the two
real sequences. This distribution is close to normal.
The difference between the score obtained with the
two real sequences and the mean score from the ran
domized sequences is divided by the standard deviation
of the random scores to give the "alignment score" in
standard deviation units. Comparisons of real se
quences that are unrelated give an essentially normal
distribution of scores. Probabilities derived from a
normal distribution are associated with the alignment
scores. When a pair of sequences gets an alignment
score of 4.8 SD units or more, we feel quite confident of
a relationship (P<10-6), presumably by descent from
a common ancestor. Because over 6,600 comparisons
between superfamilies are necessary for the organiza
tion of the presently known data, the standard is set
sufficiently high to eliminate false-positive results.
Alignment scores are shown in Table I for representa
tives of the various families of the globin superfamily.
The (J. and f3 chains form the hemoglobin molecule of
vertebrate red blood cells whereas myoglobin is found
in vertebrate muscle. The lamprey and annelid globins
are also found within blood cells. The insect globin, on
the other hand, is dissolved in the body fluid of larval
forms. The plant globin is found in the root nodules of
a legume.

EVOLUTIONARY TREE OF A PROTEIN
SUPERFAMILY

Each point on the evolutionary tree of a superfamily
of related proteins represents a time, a biological spe
cies, and a protein structure. There is a point of ear
liest time on such a tree corresponding to the species
ancestral to all of the others represented and within
which the ancestral protein sequence for the super
family was found. Sometimes during evolution a gene

T ABLE I-Alignment Scores for Representative Sequences
of the Various Globin Families

(in SD units)

r:J. {3 Myo- Lam- Anne-
chain chain _l~h:_ prey lid Insect Plant e.lUU~U

Human

Hemoglobin
r:J. chain 15.8 8.0 4.9 6.3 2.2 4.7

Human
Hemoglobin
{3 chain 15.8 7.6 3.8 6.0 2.9 4.2

Sperm 'Vhale
Myoglobin 8.0 7.6 3.6 5.7 3.7 2.7

Lamprey globin 4.9 3.8 3.6 1.2 3.5 1.4
Annelid globin 6.3 6.0 5.7 1.2 3.3 5.3
Insect globin 2.2 2.9 3.7 3.5 3.3 3.1
Plant globin 4.7 4.2 2.7 1.4 5.3 3.1

264 National Computer Conference, 1976

is added within an ancestral species through the dupli
cation of a gene already present. Two related proteins,
frequently designated by Greek letters such as a.. and
/3, may then be found in all descendants. At each point
of duplication, the phylogenetic tree of species must be
modified to represent the evolutionary tree of the su
perfamily. The tree of descendant species is duplicated;
one subtree represents the a.. protein and the other, the
/3 protein. There may also be ancestral organisms that
have lost genes. The branches for descendant species
would then be deleted from the tree. Figure 3 shows
the globins to be found in selected vertebrates. The
duplication of the tree when the hemoglobin-myoglobin
duplication occurred and again when the a..-/3 gene du
plication occurred can be seen. The y chain has been
found only in primates and must have been lost in the
horse line.

FREQUENCY OF ACCEPTED POINT
MUTATIONS

From the number of differences between homologous
sequences in biological lines for which divergence
times are known from the fossil record, the average
rate of change due primarily to point mutations can be
derived for each group of proteins. In Table II the av
erage rates of mutation acceptance within selected pro
tein families are shown. Observed changes have been
corrected for inferred superimposed mutations. Most
values are based on the time interval to 75 million
years ago estimated for the mammalian radiation. Al
though there is more than a 500-fold difference in

MYOGLOIIN HEMOGLOBINS

• CHAIN • CHAIN T CHAIN

Figure 3-Evolutionary tree of the globin superfamily sequences
from vertebrates. The lengths of the branches have been drawn
proportional to time without regard to the change in the proteins.
Diamonds mark the places where gene duplications have occurred
in ancestral forms. The phylogenetic tree of descendant species
is repeated at each of these points. The hemoglobin "I chain has

been lost in the horse

TABLE II-Average Rates of Mutation Acceptance

PAMs/ Detection
Protein Family 100my* Range

----- ------ -- -- -
Amyloid A 48

} GrO"wth hormone 32
All vertebrates

Immunoglobulin C and V regions 32
Luteinizing hormone {3 chain 26

Luteinizing hormone (J.. chain 20

} Hemoglobin chains 14
All eukaryotes

Myoglobin 13
Animal lysozyme 10

Thyrotropin {3 chain 7
Trypsinogen 5
Cytochrome c 2.3
Glyceraldehyde 3-PO. dehydrogenase 2.1 All organisms
Glucagon 1.1
Glutamate dehydrogenase 0.90
Histone IV 0.09

* Accepted point mutations per 100 residues per 100 million years
NOTE: Observed changes have been corrected for superimposed
mutations. In most cases estimated rates are based on the diver
gence of the mammalian orders 75 million years ago. For some
proteins the estimated divergence times of other lines were used:
amyloid A proteins from man and rhesus monkey, 20 my a ;
glutamate dehydrogenase from chicken and bovids, 300 my a ;
cytochrome c and trypsinogen from fish and mammals, 400
my a ; glyceraldehyde 3-PO. dehydrogenase from pig and lobster,

800 my a ; histone IV from plants and animals, 1,000 my a

rates between the slowest and the fastest changing
families, the rate of change of proteins within a family
seldom varies by more than a factor of 2 or 3, particu
larly when the proteins fill the same functional niche
in different organisms. In the presently available data,
the most strongly conserved family is eukaryote his
tone IV; only two differences in 102 residues are found
between the pea and the bovine sequences. The most
rapidly changing protein family is amyloid A; its nor
mal function,. if any, is unknown, but its abnormal
production and deposition is pathological. Even its
rate is only one point mutation/100 residues/2 million
years. This rate of change is so slow that homologues
of all such proteins that were present in the first an
cestral vertebrate should still be recognizable in living
vertebrates as members of the same protein superfam
ily. Proteins within a few superfamilies, such as cyto
chrome c, have changed so slowly that members are
recognizable in the whole world of living organisms.

The detection range is inferred from a model of the
point mutation process, without insertions and dele
tions, using the average mutation rate shown. If such
a conservative process has always obtained, all of the
proteins in the last group could be detected in all living
organisms in which they occur. Sequences of trypsino
gen, cytochrome c, glyceraldehyde 3-P04 dehydroge
nase, and glutamate dehydrogenase from prokaryotes
and eukaryotes are detectably related. Homologues of
thyrotropin (3 chain, glucagon, and histone IV have not
been reported from prokaryotes.

For all sequences so far reported, related forms are
found in other species. It is expected that related forms
of virtually all human sequences would be recognizable
in other vertebrates.

FREQUENCY OF I~SERTION-DELETION
EVENTS

TIle successful insertion or deletion of one or a fe\:v
amino acids in a sequence is much less frequent than
the acceptance of a point mutation. An average value
of one insertion-deletion event per 42 point mutations
has been derived from the evolutionary trees of 14 dif
ferent groups of proteins.21 It is possible to estimate
this frequency with more precision in protein super
families, such as eukaryote cytochrome c, for which
there is extensive sequence data.

ESTIMATION OF ANCESTRAL SEQUENCES AT
THE NODES OF A TREE

Good computer algorithms are available for deter
mining the ancestral sequences at the nodes of an evo
lutionary tree of protein sequences. la ,lf;,22 For each pos
sible set of nodal sequences, the tree size is determined
by counting the total number of differences between
each pair of nodal and terminal sequences that are con
nected. The one (or set of alternative) nodal se
quence (s) that corresponds to the minimum tree size
is generated. Sequences along a branch can be pre
dicted as an average of the sequences inferred or
known for the two ends of the branch. For the cyto
chrome c sequence at the divergence of plant, animal,
and fungal lines, 86 percent of the positions can be
uniquely predicted (with >50% probability of being
correct) ; and for the hemoglobin a.. chain at the diver
gence of the chicken and mammalian lines 84 percent
of the sequence can be inferred. l

ESTIMATION OF PROTEIN SEQUENCES IN
ORGANISMS NOT STUDIED

From the phylogenetic tree of living organisms,
modified for the gene duplications within the protein
superfamily under consideration, a subtree can be ab
stracted containing the branches for which sequences
are known and the branch for which a sequence is
sought. The elapsed time corresponding to this latter
branch is also known and hence the number of point
mutations and gap events expected to occur on it can
be calculated from the rate parameters. The inferred
ancestral sequence to be thus modified can also be esti
mated as described above.

Consider as an example a tree involving five species
and the first six residues of their hemoglobin a.. chains,
as shown in Figure 4. It is required to estimate the

Data Base for Protein Sequences 265

Human VLSPAD

Mouse VLSGED

Horse VLSAAD

Sheep VLSAAD

Cal VLSAAD

Kangaroo VLSAAD

Figure 4-Prediction of the first six residues of the hemoglobin a.
chain in cat from sequences observed in a marsupial and in four
other mammals. The ancestral sequence at all of the nodes is
VLSAAD for the most parsimonious tree. The cat sequence
is also possibly VLSAAD, although there is a probability of 0.55

that at least one residue has changed

corresponding sequence in the cat. The minimal size
tree has the ancestral sequence VLSAAD at all three
nodes and also along the branch to which the cat line
is connected. There has been one change on the branch
to human and two on the branch to the mouse. These
three mutations have occurred in the 415 million years
of evolutionary time represented by all of the branches
on this tree. If the sequences have been equally muta
ble during this time, then one would predict, using
the binomial distribution, that, following the 75 mil
lion years represented by the dashed branch to the
cat, there is a probability of 0.58 that the cat sequence
has remained VLSAAD, a probability of 0.32 that
there has been one change, and a probability of 0.10
that there have been two or more changes in the
sequence.

In this procedure there are two major contributions
to the error in the estimates, the error in the estimate
of the mutation rate and the prediction error of the
model. In this example, the standard deviation of the
count is approximately fil, corresponding to a proba
bility of 0.58 ± 0.18 that no change will be found in
the cat sequence. The precision of the model, which is
derived from proteins in all superfamilies, is difficult
to estimate from the data now available, but it seems
close to the expectation for independent events. Ad
ditional parameters can be included as more data
accumula tes.

CONCLUSION

The conceptual tools and the procedures necessary for
a prediction of all of the 1010 or 1011 protein sequences
in living species are already highly developed. One
can readily visualize the separate parts operating as
an integrated interactive computerized system that
could predict sequences for specified organisms with
an estimated precision from the collection of known
sequences.

266 National Computer Conference, 1976

REFERENCES

1. Dayhoff, M. 0., editor, A tlas of P1'otein Sequence and
Structure 1972, Vol. 5, National Biomedical Research Foun
dation, WaRhington; D.C., 1972.

2. Dayhoff, M. 0., editor, A tlas of Protein Sequence and Struc
ture, Vol. 5, Suppl. 1, National Biomedical Research
Foundation, Washington, D.C., 1973.

3. Dayhoff, M. 0., editor, Atlas of Protein Sequence and
Structure, Vol. 5, Suppl. 2, National Biomedical Research
Foundation, Washington, D.C., 1976, in press.

4. Dayhoff, M. 0., L. T. Hunt and W. C. Barker, Protein
Sequence Data Tape 76, National Biomedical Research
Foundation, Washington, D.C., 1976.

5. Dayhoff, M. 0., L. T. Hunt, W. C. Barker and B. C. Orcutt,
Protein Segment Dictionary 76, National Biomedical Re
search Foundation, Washington, D.C., 1976.

6. Dayhoff, M. 0., P. J. McLaughlin, W. C. Barker and L. T.
Hunt, NatU1'wissenschaften 62, pp. 154-161, 1975.

7. Dayhoff, M. 0., Fed. Proc. 1976, in press.
8. Dayhoff, M. 0., "Evolution of proteins," in Exobiology,

edited by C. Ponnamperuma, pp. 266-000, North-Holland,
Amsterdam, 1972.

9. Margulis, L., Origin of Eukaryotic Cells, Yale Univ. Press,
New Haven and London, 1970.

10. Margulis, L., Biosyste1i1,s 7, pp. 266-292, 1975.
11. Schwartz, R. M., W. C. Barker and M. O. Dayhoff, in Second

College Park Colloq. on Chemical Evolution, 1975, p. 40,
Univ. Maryland, College Park.

12. McLaughlin, P. J. and M. O. Dayhoff, J. Mol. Evol. 2, pp.
99-116, 1973.

13. Dayhoff, M. 0., C. M. Park and P. J. McLaughlin, in Atlas
of Protein Sequence and Structure 1972, Vol. 5, edited by
M. O. Dayhoff, pp. 7-16, National Biomedical Research
Foundation, Washington, D.C., 1972.

14. Dayhoff, M. 0., L. T. Hunt, P. J. McLaughlin and D. D.
Jones, in Atlas of Protein Sequence and Structure 1972,
Vol. 5, edited by M. O. Dayhoff, pp. 17-30, National Bio
medical Research Foundation, Washington, D.C., 1972.

15. Langley, C. H. and W. M. Fitch, J. Mol. Evol. 3, pp. 161-177,
1974.

16. Moore, G. W., J. Barnabas and M. Goodman, J. Mheor. Biol.
38, pp. 459-486, 1973.

17. McLaughlin, P. J., L. T. Hunt and M. O. Dayhoff, J. Human
Evol. 1, pp. 565-578, 1972.

18. Dayhoff, M. 0., W. C. Barker and L. T. Hunt, in Atlas of
Protein Sequence and Structure, Vol. 5, Suppl. 2, edited by
M. O. Dayhoff, National Biomedical Research Foundation,
Washington, D.C., 1976, in press.

19. Barker, W. C. and M. O. Dayhoff, in A tlas of Protein
Sequence and Structure 1972, Vol. 5, edited by M. O. Dayhoff,
pp. 101-110, National Biomedical Research Foundation,
Washington, D.C., 1972.

20. Needleman, S. B. and C. D. Wunsch, J. Mol. Biol. 48, pp.
443-453, 1970.

21. Dayhoff, M. O. and W. C. Barker, in Atlas of Protein
Sequence and Structure 1972, Vol. 5, edited by M. O. Dayhoff,
pp. 41-45, National Biomedical Research Foundation, Wash
ington, D.C., 1972.

22. Fitch, W. M., Syst. Zool. 20, pp. 406-416, 1971.

From text to structured information-Autolllatic
processing of medical reports *

by LYNETTE HIRSCH~vIAN, RALPH
New York University
New York, New York

ABSTRACT

This paper describes the analysis and processing pro
grams for a set of natural language texts in a medical
area (x-ray reports on patients with breast cancer).
The programs convert the information in the text into
a tabular form suitable for further automatic infor
mation processing (e.g., editing of records, question
answering on the data collected, or statistical sum
maries of the data). To set up a tabular form appro
priate for the data, we first perform a manual lin
guistic analysis on a sample of the texts. From this
we obtain the word classes and the form of the table
(called an information format) for this type of ma
terial. We then apply the series of processing pro
grams to the sentences of the texts. Each sentence is
parsed with the Linguistic String Parser English
grammar in order to obtain its grammatical structure;
certain standard English traRsformations are then
applied to regularize the grammatical form of the
sentence; and finally a set of "formatting transforma
tions" map the words of the sentence into the slots of
the format or table, in such a way that the sentence
is reconstructible (up to paraphrase) from its repre
sentation in the table. The results of applying these
programs to a corpus are described. This procedure
enables us to convert a natural language corpus into
a structured data base.

INTRODUCTION

An essential part of the effective management of sci
entific and technical information is the efficient re-

'~This investigation was supported in part by research grant
l-ROI-LM-02616 from the National Library of Medicine, Na
tional Institutes of Health, DHEW, in part by Public Health
Service Research Grant No. CA-11531 from the National Cancer
Institute, and in part by research grant SIS75-22945 from the
National Science Foundation, Office of Science Information Ser
vice. Development of the program for transformational analysis
was supported in part under Contract No. N00014-67A-0467-
0032 with the Office of Naval Research.

267

trieval of information from a large body of text. One
example of this is the retrieval of documents from a
large collection of scientific articles, in response to a
user's request. Another example of the same problem
is the extraction of data from medical reports for
statistical purposes, or for fact retrieval.

The key to efficient retrieval lies in the appropriate
structuring of the information. For document re
trieval, this may involve the extraction of key terms
for each document. For medical records, it may involve
transferring the most essential information into sepa
rate tables. These tasks pose a considerable burden on
the preparer of the document. In addition, each such
structuring will be appropriate only for the retrieval
of certain types of information from the data base.

What is required therefore is a procedure for the
automatic structuring of the natural language ma
terial itself; in such a way that all the information is
preserved. The Linguistic String Project of New York
University has been engaged in a long-term effort to
develop techniques for processing textual information.
These techniques are based on distributional analysis
and computerized parsing of English texts. We intend
in this paper to give an overview of our approach and
to describe briefly our latest experiments.

OVERVIEW

Since we are dealing with textual data, structuring
the information means, first of all, structuring the
sentences. The question then is: what sort of struc
ture should be assigned to the sentences? One alter
native is some kind of surface parse tree. PROTO
SYNTHEX 1,1 one of the earliest systems for
information retrieval from natural language texts,
attempted to use dependency analysis to match requests
for information with sentences in the data base. How
ever, surface analysis alone is inadequate for such
information processing; one limitation is that it does
not take into account possible differences between data
and request due to grammatical paraphrase. For ex-

268 National Computer Conference, 1976

ample it would fail to match a request stated as an
active sentence with an otherwise identical sentence in
the data base which was in the passive voice.

It has long been recognized2 that the effects of such
paraphrastic variation can be overcome by performing
some type of transformational analysis on the sentence.
Transformational decomposition, following the theory
of Harris, or deep structures, following the theory of
Chomsky, can be used to reduce grammatical para
phrases to a standard form. A Linguistic String Proj
ect study in 1970 showed that Harrisian transforma
tional decompositions could be useful in matching
technical articles with information requests. 3 Such
techniques can be used to structure a variety of texts;
however, the resultant structures provide only general
grammatical relations (subject, object), which are
not directly related to the semantic or informational
classes in a specific scientific subfield. In other words,
the categories of English grammar are too general for
information structuring.

It is possible to write a grammar specific to the use
of language in a particular subfield of science, employ
ing the same methods used to write descriptive gram
mars of whole languages. The resulting sublanguage
grammar yields structures suitable for information
processing: the word classes of this grammar are the
word classes of semantic interest in the subfield; the
overall arrangement of classes provides a format for
the information content of subfield text sentences. For
example, the grammatical structure of medical reports
includes categories for patient, type of test, body organ
tested, date of test, etc. Such an organization can
greatly facilitate information retrieval or statistical
manipulation of the data. On the other hand, each
scientific field and type of text has its own structure.
This means that a detailed linguistic analysis is re
quired every time a new class of text is to be handled.

In this paper we describe an experiment in the com
puter formatting of material from medical records.
Our previous papers have described the method of
sublanguage analysis and information formatting for
more complex textual material,4,5 as well as the battery
of programs which have been developed for text pro
cessing.6

,; Here we focus on the problem of mapping
text sentences into information formats. In the sec
tions which follow, we will describe how the format
for a particular type of medical narrative was derived,
and how sentences are automatically transformed into
structured information, as specified by the format. We
will also indicate how the process of deriving formats
may be automated or partially automated, and how
the structured information of the formatted sentences
can be used.

THE TEXTS

For our initial experiment in the computer format
ting of texts, we chose to work on medical records. A

set of follow-up reports on patients with cancer was
provided to us in machine readable form, as part of a
collaborative research project with Dr. I. D. J. Bross
of Roswell Park Memorial Institute. The reports in
cluded laboratory tests, pathology reports, radiology
reports, records of treatment, and discussion of medi
cal problems. A linguistic analysis of some of these
reports was done at Roswell Park.~ We chose to pro
cess one particular type of report, identified as "Find
ings R (adiology)." This material was selected because
it contained both full sentences and sentence frag
ments, a combination typical of the compressed note
taking style of much medical narrative (e.g., x-rays
not taken, or nothing to indicate metastasis). The
limited vocabulary of Findings R and the frequent
paraphrasing of the various types of medical informa
tion made it possible to define valid word classes and
formats on a limited corpus.

The corpus consisted of 159 Findings R reports on
11 patients, containing a total of 188 sentential units.*
Due to frequent repetition of certain formulaic expres
sions, such as x-rays negative, only about half of the
sentential units (86/188) were distinct, ignoring dif
ferences in date.

CREATION OF SUB-LANGUAGE FORMATS

To convert the medical information contained in a
sentence into tabular form, we create a table (or for
mat) with slots for each class of relevant information.
The definition of a set of formats for a particular
sub-field is done in two steps: first we perform a
distributional analysis on the parsed sentences to ob
tain the sub-language word-classes; we then use the
distribution of the word-classes to define the formats.

Distributional analysis involves classifying together
words which occur in the same syntactically defined
environments; for example verbs which occur with the
same subjects and objects would form a word class.
We begin building each class by finding a few words
which occur frequently and share a number of environ
ments. These words form the "core" of the new class.
We then enumerate the environments in which these
core words occur, and look for other words which
share some of the same environments. If these other
words occur primarily in the same environments as
the core words, we add them to the class. This process
can be illustrated with the NTEST (Noun TEST)
class. The words x-ray and film share many environ
ments, and are thus selected as the core of a new class.
The characteristic environments in which they occur
are:

.~ A sentential unit is a word sequence ending in a period; a
sentential unit may contain more than one sentence or sentence
fragment: chest x-my uncha.nged, nothing to indicate metastatic
disease.

(1) [chest] {x-ray (s) 1 [RN][ShOWJ-
film (s) J --

I change (s) I
[LN] metastasis [RN]

metastases

(2) [chest] {x-ray(s)} [RN][be]
film (s) --

negative [RN]

Here braces enclose alternative elements and brackets
enclose optional elements; LN and RN designate left
and right adjuncts (modifiers) of the noun. Note that
the dash is treated as a word of the sentence. Looking
for other words which appear in these environments,
we find:

(a) Mammograms no change
(b) Metastatic series showed extensive osteolytic

metastases. . . .
(c) Metastatic bone survey -- negative.
(d) Flat plate -- mild degenerative changes
(e) Flat plate of abdomen -- shows lumbar spine to

be riddled with multiple metastatic areas.

Since the environments of mammograms, series, sur
vey, and plate match either environment (1) or (2)
of the core words, they are added to the NTEST class.

We have implemented this approach to word classi
fication in a computer program, although using a
somewhat different procedure than that described
above.9 The program has been applied to the Findings
R data and to other texts. Both the manual and com
puterized methods successfully classify all of the fre
quent words and some of the infrequent words.

To capture more of the infrequent words, we use a
second-order distribution analysis procedure. In the
characteristic environments of each class, we replace
each word which has already been classified, by the
name of its class. Consider the two environments of
x-ray and film given above. At this point chest has
been assigned to the NBODY class; x-ray and film
to the NTEST class; show to the VSHOW class; be
to the VBE class; change to the NCHANGE class;
metastasis (-ses) to the NCONDITION class; and
negative to the ~ONPATHADJ (non-pathological ad
jective) class. Replacing each word in the environ
ments listed above by its class name, we get:

(3) [NBODY] NTEST [RN] [~SHOWJ

[LN] {NCONDITION} [RN]
NCHANGE ...

(4) [NBODY] NTEST [RN] [~BEJ
NONP ATHADJ [RN]

In similar fashion, we take the environments of each
unclassified word and replace the words by class names

Automatic Processing of Medical Reports 269

where possible. For instance, there are two occur
rences of scan:

(f) The liver scan was normal.
(g) Brain scan shows midline lesion.

Replacing words by class names, we obtain:

(h) NBODY scan VBE NONPATHADJ
(i) NBODY scan VSHOW LN CONDITION

Since these two sentences match the environment for
NTEST words, we add scan to the NTEST class.

There are some words which occur so infrequently
(once or twice in the corpus) that we cannot rely on
distributional analysis to classify them. However these
words must be assigned to a sublanguage class if the
sentences in which they occur are to be correctly for
matted. (Words are assigned to format ~lots on the
basis of membership in a word class.) In these cases
we either extend the criteria of a sub-class in reason
able ways, or if all else fails we use our knowledge
of the meaning of a word to fit it into a subclass.
On this basis we add to the NTEST class the words
auscultation, percussion, urinalysis, and view, each of
which occurred only once in the corpus.

Once we have defined the sublanguage word classes,
we can use the word classes to define the sublanguage
formats. A format is constructed so that:

1. equivalent pieces of information in different sen
tences will map into the same format slots;

2. each informationally significant word in a sen
tence is mapped into a separate slot of the for
mat;

3. in each sentence, certain slots of the format may
be empty, if the sentence does not contain that
particular type of information;

4. not every word in a sentence will receive its own
format slot: certain modifiers (e.g., the) are
simply left as adj uncts on their head noun, if
they contain no sublanguage information, or if
they never occur independently of a particular
word class;

5. all the words of the sentence are mapped into
the format, preserving their original order of
occurrence, with the exception of certain allow
able paraphrastic permutations.

Once the sentences are formatted, we know exaciiy
where (what slot or slots) to check, in order to find
any particular type of information, in any sentence.
However the formatted sentence will resemble the
original unformatted sentence very closely, since no
words are lost, and word order is preserved up to
paraphrase. It is surprising that the sublanguage
sentences are so highly structured that an information
format can be constructed in this way, but it is just
this structure that makes it feasible to do natural
language processing on these texts.

270 National Computer Conference, 1976

We begin to build the format by taking a sentence
of the corpus:

(a) Chest x-ray 12-6 shows no evidence of metas
tasis.

We replace the words by their sublanguage classes:

(b) [NBODY NTEST DATE] [VSHOW]
chest x-ray 12-6 shows

subj verb

[
NEGATIVE NSHOW P NCONDITION]
no evidence of metastasis

obj

Each significant word gets its own slot. Of these
words, only P (preposition) has no significance beyond
its role as syntactic marker; it is therefore included
as an adjunct of NCONDITION. We can now write
our first tentative format. The format slots are given
names related to the type of information they will
contain. The gross syntactic structure of the parsed
sentence provides some additional groupings of the
format slots into TEST (subject) and FINDING
(predicate). In Table I words in 0 are adjoined to
the main word in the slot.

Next we take another sentence and again replace the
words by their word classes:

(c)
[

DATE NTEST
10-26 film
subj

-- [NEGATIVE
no

-- obj

of lumbar spme
P ADJSPINE NB?DY]

NCHANGE]
change

The subject of sentence (c) contains the word classes
DATE, NTEST, NBODY, but in a different order than
sentence (b). However there are paraphrastic trans
formational relations that allow the date (a time ex
pression) to be on either side of the subject; and a
paraphrastic transformational relation between the
two noun phrases:

N2 of Nl
film of chest

Since the subjects of sentences (b) and (c) contain
the same kinds of information, this information must
be mapped into the same format slots in both cases.
Changing the word order of sentence (c) for format-

TABLE I

FORMAT #1

TEST FINDING

TESTLOC TESTDATE VERB I MED-FINDING

NBODYPT I DATE

chest ! x-ray I 12-6 I shows I I

NCONDITION

: (of)rnetastasis

ting is permissible, since it only involves paraphrastic
permutations. Therefore 10-26, film, and spine map
into the format slots TESTDATE, TESTN, and
TESTLOC as set up in format # 1. Lumbar is not
a:::;:::;igned a format slot of its own, but is left as an
adjunct on spine, because ADJSPINE adjectives occur
only on spine in this corpus; that is, they have no
independent status and do not get a separate column
of the format.

Next we must decide what to do with the symbol
"--" which appears between subject and object in
sentence (c). Should it be assigned to a new format
slot, or can it be mapped into the VERB category? If
we examine its distribution, we find that it has the
distribution of VSHOW in certain cases, and of VBE
in others, e.g., Chest x-ray -- no evidence and Chest
x-ray -- negative. It is therefore appropriate to map
it into the VERB slot. Finally, we must decide where
to put NCHANGE in the format. Its distribution
differs from NSHOW and NCONDITION; in particu
lar it can occur in the same sentence with words from
these two classes:

(d) No evidence of recurrence
NSHOW NCHANGE

(e) No callus formation
NCONDITION NCHANGE

Clearly the class NCHANGE is not in complementary
distribution with either NSHOW or NCONDITION.
We must create a new slot in the format between INDI
CATION and MED-FINDING to house it. Our revised
format #2 is shown in Table II with formatted
sentences (b) - (e) :

In this manner we build up the format on the basis
of a limited number of sentences. The adequacy of the
format created can be tested by using it in the for
matting of a different set of texts. The x-ray format
made up from part of the Findings R data has been
tested both against other Findings R data and against
a different set of x-ray data from patients with sickle
cell disease. In both cases it was found adequate to
format the radiology material.

TABLE II

FORMAT .2
TEST FINDING

TBSTLOC TESTN TESTDATE VERB NEG INDICATION CiIl\NGE NED-FINDING

NBODYPT NTEST MTE VSHOW NEGATIVE NSIIOW NCHANGE NCONDITION
--

b) c:but x-ray 12-6 shows no evidence I (of)metastasis

(of) (1) I I I
.pine nla 10-26

I
-- no I i change i

no ! evidence (of) re- .

!
I currence i

! I :

c)

d)

e) lno

I

Not all the entries in Findings R report the results
of a test. There are a few sentences that refer directly
to the patient:

(g) Patient given penicillin for 9 days.

(h) Patient to return in one month for repeat x-ray.

Clearly these sentences require a different format from
the one being developed above. Since there are so few
sentences of this type, a much larger corpus would be
required to define a format for sentences (g) and (h),
but as these sentences illustrate, even in a restricted
subfield of a medical report, several formats may be
needed to represent the different types of information
encountered.

FORMATTING THE TEXT

Once the format is defined, the sentences must be
mapped into the format. As before, it is important
to have a procedure which can be generalized to texts
in other subfields. Our procedure is built around the
Linguistic String Parser, a powerful system for lan
guage analysis which provides the mechanism for
parsing sentences with a context-free grammar aug
mented by restrictions;7 it also provides the machinery
for performing transformations on parsed sentences,10
and a higher level language (the Restriction Lan
guage) for writing restrictions and transformations. ll

Sentence formatting is done in three stages:

1. determination of sentence structure by linguistic
string analysis;

2. regularization of certain sentence structures by
use of general English transformations;

3. mapping of transformed parsed sentences into
format slots, using specialized "formatting trans
formations."

We will briefly consider each stage in turn.

Linguistic string analysis

Linguistic string analysis provides a structural de
scription of the sentence in terms of a specified set
of linguistic strings. The assignment of a word to a
format slot depends on its role in the sentence struc
ture, as well as on its word class, so that a determina
tion of sentence structure is a prerequisite to for
matting. For example syntactic analysis resolves part
of-speech ambiguities, so that the word left is identified
as a verb in

(a) The patient left the hospital.

but as an adjective in

(b) X-ray of the left lung showed metastasis.

The LSP string grammar was originally designed to
handle only complete English sentences; it provides a
broad coverage of English syntactic constructions and
together with its associated word dictionary, has been

Automatic Processing of Medical Reports 271

used to analyze .t.ingllsn scientmc texts. In order to
process the note-style and incomplete sentences of the
medical reports, we made four changes in the grammar.

First, the grammar was expanded to handle the
sentence fragments by adding a small number of new
productions to the context-free component. Five types
of fragments were allowed.

1. A sentence with subject and object but either
without verb or with a dash (--) in place of a
verb: Chest x-ray -- no change., 10-6 x-ray nega
tive.

2. An adjective with its adjuncts: Negative for
metastatic disease.

3. A noun with its adj uncts : No evidence of change.
4. A passive sentence without subject or be : Not

done on previous exam.
5. A sentence preceded by a noun phrase. Chest

x-ray 4-6-71 chest film shows no evidence of
fluid.

Second, one restriction in the grammar was removed
in order to accommodate the note-taking style of the
text: this was the count noun restriction, which re
quires that a singular count noun have an article or
some other appropriate form of modifier before the
noun. For example, the Findings R text contains sen
tences like X-ray shows lesion, whereas in normal
English both x-ray and lesion must be preceded by an
article: The x-ray shou's a lesion.

Third, certain constructions that were unlikely to
occur in this type of text were eliminated from the
grammar, for example, the question constructions.
This pruning of the grammar speeded up the sentence
analysis considerably_

These first three changes were designed to accom
modate texts in a note-taking style and would be ap
plicable to any subject area. A fourth change, needed
to handle certain types of ambiguity, required the use
of word classes and selectional restrictions specific to
the sublanguage grammar of radiology reports.

One such type of ambiguity is a predictable struc
tural ambiguity, which must be resolved in order to
format the sentences correctly. This type of ambiguity
can arise from modifiers on conjoined material. For
instance, the sentence

(c) X-rays of lumbar spine and chest showed lesions.

may be analyzed as anyone of the following:

(d) X-rays of lumbar spine showed lesions and chest
showed lesions.

(e) X-rays of lumbar spine showed lesions and
x-rays of lumbar chest showed lesions.

(f) X-rays of lumbar spine showed lesions and
x-rays of chest showed lesions.

Such ambiguity is inherent in the syntactic construc
tion, and has nothing to do with the particular words
involved. Only sublanguage selectional restrictions
can resolve it. In this example, lumbar is an ADJ-

272 National Computer Conference, 1976

SPINE which modifies only the noun spine, eliminat
ing reading (e) . Since spine and chest are both
NBODY, it is more likely that they are conjoined than
words of different classes (e.g., x-ray, an NTEST and
spine). Thi:s eliminates reading (d) leaving the cor
rect reading (f).

Another type of ambiguity arises from an "over
rich" lexicon--a lexicon for all of English, containing
possible uses of words that would never occur in this
sublanguage. The sentence

(g) No report of x-rays being taken.

received a parse in which being was taken to be a noun
(as in human being) which was the object of a missing
verb be or show derived from a sentence:

(h) No report of x-rays shows a being which has
been taken.

There were several ways to deal with this kind of am
biguity. We could have used selectional restrictions on
the subject and object of taken, or we could have placed
tighter restrictions on the construction with an omitted
verb. However we chose what seemed the simplest
and most direct approach for such cases: we created
a special x-ray dictionary, by editing the general
English dictionary to remove word classifications (e.g.,
being as a noun) which would never occur in the
Findings R text.

English transformations

In the Linguistic String Parser, the transformations
are applied to the output of the string analysis. The
function of the transformations is to regularize the
parse trees, reducing the variety and complexity of
structures present. For example, the sentences

(i) X-rays of chest and pelvis negative.
(j) X-rays of chest negative and x-rays of pelvis

negative.

contain the same information. By transforming the
parse tree for the first sentence into the tree for the
second sentence: we produce a more regular set of
structures in which only full sentences (or sentence
fragments) are conjoined. We also transform rela
tive clauses into complete sentences; for example, we
would convert

to

(k) X-rays showed a lesion which may be meta
static.

(I) X-rays showed a lesion such that the lesion may
be metastatic.

The gain achieved in performing this transformation
is that the complete sentences derived from relative
clauses can then be formatted in the same way as any
other sentence; no special process for formatting rela
tive clauses is required.

These transformations are written for all of En
glish; they do not make use of any information spe
cific to the Findings R sublanguage. There are a large
number of English transformations, but only a very
few have been used in this application. This is because
transformations expand compressed material into a
more regular form by filling in certain pieces of re
dundant information, or information retrievable from
context (like the verbs be or show). If a particular
type of information is always omitted in a certain class
of texts, no regularization is achieved by trying to fill
in this missing information. For example, the word
x-ray can be used both as a verb and as a noun, so we
could have an English transformation to convert
sentences with the noun to sentences with the verb; in
Findings R, however, x-ray is used only as a noun, and
no regularity would be gained. Moreover, the verb
requires a subject--the taker of the x-ray--which is
never present in this text. As a result, the only two
English transformations used are the conjunction ex
pansion and relative clause expansion described above.
However, in more syntactically complex material or
less abbreviated material, there might be a real benefit
from a greater regularization of the syntax (via trans
formations) before attempting to format it.

Formatting transformations

The formatting transformations transfer the words
from the parsed sentences to the appropriate slots in
the format. They use the same transformational
mechanisms built into the Linguistic String Parser to
handle the English transformations. Because these
mechanisms are set up to map trees into trees, the
format is first created as a tree; after it has been built,
it can be written out in the tabular form shown in
Tables I-III. Formatting transformations move the
words from the original ASSERTION or FRAGMENT
node in the parse tree into the format slots. As a re
sult, at the end of the formatting process, the FOR
MAT has the words of the sentence in it, while the
original ASSERTION or FRAGMENT node is empty.
This provides a check on the completeness of the for
matting process.

Three kinds of transformations can be distinguished.
The first type of transformation sets up the format
slots under the node FORMAT. For sentences which
contain a verb or adjective connecting two findings or
pieces of data (e.g., related to, compatible with, typical
of), the format is augmented with a CONNECTIVE
slot and an additional set of FORMAT slots. It is
necessary to add this new FORMAT to provide an
empty set of slots for the second finding. Relative
clauses are treated similarly: a CONNECTIVE slot is
added, with a relative clause marker placed in the
CONN slot under CONNECTIVE; and the assertion
contained in the expanded relative clause is mapped
into the new set of format slots.

Once the format slots have been set up, the remain
ing transformations each map words of one class into
the appropriate format slot. These transformations
fall into two groups. One type requires little if any
syntactic or co-occurrence information; it simply
searches the parse of the sentence for a word having
both a particular syntactic category and a certain
sublanguage word class, and then maps the word into
the format slot associated with that word class. For
example~ the T -NTEST transformation looks for a
NOUN of class NTEST. When it finds such a word in
the sentence being formatted, it moves the word, to
gether with its adj uncts, into the appropriate format
slot (TESTN).

A different type of formatting transformation is re
quired for a word that can go into one of several slots
depending on what it modifies (e.g., negative and in
definite words). This class of transformations relies
heavily on the availability of syntactic information
from the parse. For example, not can go in anyone
of three slots, depending on what kind of verb it
negates. Therefore the T -NOT transformation must
apply before any of the verb transformations have
moved the verb into its format slot: co-occurrence re
lations must be checked in the parse tree, where the
syntactic relations are still explicit. Once the verb has
been moved into the format, the syntactic relations
have been translated into informational relationships
and are no longer explicitly expressed. When the
T-NOT transformation finds a not, it checks the T11ain
verb occurring in the same string with not. If the verb
is VSHOW (e.g., X-rays do not show metastasis.), the
not goes into NEG in FINDING. If the verb is VDONE
(as in not done) the not goes into the NO-TEST slot,
under TEST, because the class VDONE occurs only
with NTEST nouns; if not occurs with VDONE, it
necessarily negates the existence of a test, even if no
NTEST word occurs in the sentence. Finally if the
not negates a word that connects two findings (e.g., is
not related to, is not compatible with) it will go into
the NEG-CONN slot under CONNECTIVE.

The set of formatting transformations can be viewed
as a set of special sublanguage transformations which
reduce various sublanguage paraphrases to a standard
representation in the format. For example, to find out
if a test was performed, we need only inspect the NO
TEST column of the format. If it is empty, a test has
been performed and we can find the type of test by
looking in the NTEST slot. Or if we want to know
when the first abnormality is seen in a patient, we look
for the first sentence where both (1) FINDING is
not empty and (2) the columns NEG and STATUS in
FINDING are both empty. This is because all the
"normal" findings are expressed either by NON
PATHADJ (negative, normal) formatted in the
column STATUS or by expressions like no change, no
metastasis, no evidence of metastasis. If one of the
slots in FINDING has an entry other than NEG or

Automatic Processing of Medical Reports 273

STATUS, then it must be an INDICATION, a
CHANGE, or a MEDical-FINDING (PART-OF
BODY words will not occur by themselves in the
FINDING slot). The format thus standardizes the
representation of the important medical information
in the sentence, so that this information can be further
processed.

RESULTS

To each sentence of our corpus we applied the for
matting program, which parsed the sentence, per
formed certain English transformations on it, and then
mapped this structure into the format. This program
successfully formatted 176 of the original 188 sen
tences (94 percent). Table III presents the full format
and several examples of formatted sentences.

The full format contains sets of slots for OBSERVE
(for doctor + verb : radiologist noted), TEST and
FINDING. For those sentences that require more
than one set of format slots to accommodate their in
formation (e.g., sentences 4 and 5 in Table III), addi
tional sets of format slots are added, each linked to the
preceding format by a CONNECTIVE:

FORMAT CONNECTIVE FORMAT

! DATA ! I
i OBSERVE I TEST i FINDING

DATA

OBSERVE I TEST I FINDING I

In Table III, each row represents a set of format
slots; a sentence that requires three sets of format slots
(e.g., sentence 5) will therefore occupy three lines of
the table.

CONCLUSION

The formatting procedure enables us to convert a
natural language corpus into a structured data base.
Given a set of x-ray reports in machine readable form,
the formatting program maps the input sentences one
by one into the tabular format structure. This data
base can be used in a variety of ways; we are currently
at work on a program to extract various medical sta
tistics from the data base (e.g. number of patients with
recurrence of metastasis; time from operation to time
of first suspected recurrence of metastasis; location of
new metastasis, etc.). I t should also be possible to
use the data base with a natural language front end
to process questions and answer them with informa
tion from the data base.

The formatting program is able to convert the
natural language material into structured information
partly because the material chosen for processing is
itself highly structured; however, the formatting relies
heavily on a linguistic analysis of each sentence, in
order to handle such informationally complex struc
tures as relative clauses, negation, and conjunction.

274 National Computer Conference; 1976

TABLE III

THE COMPIETED FORMAT: OBSERVE and TEST col\DIDs, with examples of fOl'lUtted sentences.
rI Wlml6'1'

Labels of the form t slots: ~
~."" a.n. ..

bATl

U~MVl!i

NOTE: in the fonnatted sentences, adjuncts
are placed in 0; left adjuncts
appear above the 1I8in word, right
adjuncts below it.

Findings R sentences, formatted in the
columns to the right:

1. Chest film 6-5 shows enlargement of
lesion on right hilum since film of
4-17

MIl REPORT

\\

2. X-rays taken)-22-65 reveal no evidenc
of metastatic disease.

e

). None this examination

4. Nothing definite is seen that indicate
tUllor.

5. The heart, lungs, and bony structures
are intact.

,
1 j
L-..l.

·1
f (is)

seen

I

I
I

-

NO-TEST TEST-VI»l

none

!
i

-
lu:sr ""l

TES'l'N TESTLOC VERB-ron OCCASION TESTDATE

fU. chest

-{--
I 6-5
I

I
· a.' - ,-- - - !

t-ra78 taken j3-22
-6S I

--r-' ,- ft;;s) 'I ! e Ix&1Iinaticra

I

i
i
i

j

I !
i I !

!
I i I

I

T
Without a stage of syntactic processing, it would not
be possible to determine the scope of negation, the ap
propriate expansion for conjoined elements, or the
referend of the relative pronoun. Because we can
process these linguistic structures we can go beyond
document retrieval; we are now able to "get inside"
the text, to process the actual content.

Our formatting experiment was conducted on a
rather simple set of reports which had little paragraph
structure and contained specific limited kinds of in
formation. A text that contained several different
types of information (requiring several different for
mats), or had a more complex paragraph structure,
with a corresponding increase in intersentential refer
ence, would pose somewhat greater difficulties than the
type of material discussed here. Nonetheless there are
many instances of natural language material that is
both restricted and highly structured (different types

of medical reports; weather reports; program specifi
cations in natural language), where this type of pro
cedure would be successful in structuring the infor
mation.

Although the specific program described here will
process only x-ray reports, the techniques that have
been used to obtain the program are general. The
string grammar parses English sentences; a few
changes enabled it to handle fragmentary note style.
The procedure for defining word classes (and selec
tional restrictions) is based on distributional analysis
and can be applied to any language or sublanguage.
Part of the procedure for obtaining word classes has
been automated in the clustering program;9 one of our
next projects is to complete the automation by adding
a program that will convert the parsed sentence into
co-occurrence patterns suitable for clustering. The
definition of the format was a general technique,

Automatic Processing of Medical Reports 275

TABLE III-Continued
____ .. __ .. ___ .THE __ CCMP_' IETED F~~~1_~DINGS and CONNECTIVE colUllllls.
FORMAT, continued _____ . ___ . --- - ---. -- -.-------.. I CONNECTIVE

DAn, continued --k:a ! i
L'IrNIEFI VERB-ELEMEN'l CHANGE-O:~~ - ----- - --- -TSTATU§fME6--' ~. ~..FlcO.~I! ~O:\ CONN
r'l:U ~FIN~ I i FINDING !
! I fTlDlCA CHANG, ~1ME_PERIOD -- - - 1 I po~p. - -OF ISTRUG r ! '

SHai -TION j 0 -BODY -TURE ,

I I, rmt oBSERVE TESt -- oeM I~~ " i

H-l_.~. -~ ~ rr~ VI":f1~~~i·SI~ ~ ~---. ---;;--+-1 --
4: Ii: t I.! I I _._ I : : ~c:2: !~(c~) !~::ght): !

,. i r"oool ~~ [i ll] "-:. J~~= on 1 ~. t---
I I i [I (of) I

;reveal en- : I mlBtastatic I
, I de","'._. l _.t_ .. _.H=r~=as:::de1=~! ==t;;;;==*'=====

4 •. nothing
I (deti
'nit)
,~

I
; nothing
. {deft-
'.ni

5 •.

kndi- :
eates;

I rre
·t·_·.- -.

I
jare

1

- --~

originally developed on a corpus from pharmacology.4
An overall strategy for mapping parsed sentences into
a sublanguage format has been defined, although the
transformations themselves are dependent on the
target structure (the format) as well as the type of
sentence structures in the input. Because each step of
our procedure has been based on general linguistic
techniques, it should be possible to apply this procedure
to convert natural language texts of any sufficiently
structured subfield into a structured data base.

REFERENCES

1. Simmons, R., S. Klein and K. McConlogue, "Indexing and
Dependency Logic for Answering English Questions,"
A merican Documentation 15, p. 196, 1964.

2. Harris, Z. S., "Linguistic Transformations for Information
Retrieval," Proc. Int'Z. Conf. on Scientific Information
(1958) 2, p. 158,1959.

3. Sager, 1\., J. Touger, Z. S. Harris, J. Hamann, and B.
Bookchin, "An Application of Syntactic Analysis to Infor
mation Retrieval," String Program Reports No.6, Lin
guistic String Project, New York University, 1970.

4. Sager, N., "Syntactic Formatting of Scientific Information,"
Proceedings of the 1972 Fall Joint Computer Conference,

I 1
·t~----=+-1-====i= == . 1

i . rel-
cla~

tUlllor

i -

intact'

intact

.(

;
I

I
I

i (the)
. heart
L _____ . __ ~_

(the)
: lungs
!
t--
; bony

i ,
~truc-I
t-u;res !.

. and

i and i

-+------1-!
I I i

+

AFIPS Conference Proceedings, Vol. 41, pp. 791-800, AFIPS
Press, Montvale, N.J., 1972.

5. Sager, N., "The Sublanguage Technique in Science Infor
mation Processing," Journal of the American Society for
Information Science, Vol. 26, pp. 10-16, 1975.

6. Sager, N., "Syntactic Analysis of Natural Language,"
Advances in Computers, Vol. 8, pp. 153-188, Academic Press,
Inc., New York, 1967.

7. Grishman, R., N. Sager, C. Raze, and B. Bookchin, "The
Linguistic String Parser," Proceedings of the· 1973 Com
puter Conference, pp. 427-434, AFIPS Press, 1973.

8. Anderson, B., I. D. J. Bross and N. Sager, "Grammatical
Compression in Notes and Records: Analysis and Compu
tation," paper delivered at the 13th Annual Meeting of the
Association of Computational Linguistics, Boston, Nov. 1,
1975, American Journal of Computational Linguistics, Vol.
2, No.4, 1975.

9. Hirschman, L., R. Grishman and N. Sager, "Grammatically
based Automatic \V ord Class Formation," Information
Processing and Management, Vol. 11, pp. 39-57, 1975.

10. Hobbs, J. and R. Grishman, "The Automatic Transforma
tional Analysis of English Sentences: An Implementation,"
to appear in International Journal of Computer Mathe
matics.

11. Sager, N. and R. Grishman, "The Restriction Language for
Computer Grammars of Natural Language," Communica
iions of the ACM, Vol. 18, pp. 390-400, 1975.

Design considerations of a datahase system in a
clinical network environment

by SHI-KUO CHANG, M" O'BRIEN, J. READ, R. BOROVEC, 'Xl. H. CHENG and J. S.
University of Illinois
Chicago, Illinois

ABSTRACT

A database system designed in the context of a clinical
network incorporating small computers, automated
clinical instruments, and a variety of terminals is de
scribed. The database system is used for clinical data
acquisition, research support, and clinical decision
making support. The database system is based upon
the relational approach, with important modifications
to meet above design objectives and provide means for
dynamic database reconfiguration. Its characteristics
include: definition of elementary files as tables, a data
base skeleton describing the structure and contents of
files in the database, a low-level database manipulation
language based upon the Relational Algebra, and a
frame-oriented user interface for high-level database
manipulation.

INTRODUCTION

The Medical Information Systems Laboratory is devel
oping a database system in the context of a clinical
network incorporating small computers, automated
clinical instruments, and a variety of terminals. The
database system is intended to support patient care,
clinical research, and research in advanced techniques
of automated processing of medical information. The
major support functions of the database system are
summarized in Table I.

The primary functions of the clinical network in
clude clinical knowledge acquisition, clinical research
support, and clinical decision making support. Clinical
data are collected from several sources: laboratory
technicians, clerks, physicians, and automated clinical
instruments. Clinical data should be checked for errors,
formatted, and appropriately compressed, before being
stored in the database. Moreover, database consistency
and integrity should be maintained by the database
system.

The clinical database is manipulated by local physi
cians for research purposes, using terminals connected
to the clinical network. Another research use of the

277

database is the sharing of clinical information via the
Artificial Intelligence in Medicine (AIM) network. In
the future, the clinical network could become a local
node in a nationwide computer-communications net
work, so that outside physicians can conduct clinical
research by gathering information from the databases
at various local nodes.

The clinical database can also be used for clinical
decision making. To aid clinical decision making,
statistical information can be collected from the data
base, histograms can be plotted, using various mundane
application programs. Data reduction and meaningful
data manipulation capabilities are other useful fea
tures which can be provided by the database system.
The database system should also facilitate the appli
cation of advanced artificial intelligence techniques
such as automated inference and pattern recognition,
so that such techniques can be explored as possible
clinical decision making aids. Finally, since the clinical
network will be used primarily by the Department of
Ophthalmology of the Eye and Ear Infirmary, Uni-

TABLE I-Support Functions of the Database System

1. Clinical knowledge acquisition
1.1 Data collection

Technician Input
Clerk Input
Physician Input
Automated Instruments

1.2 Error control, data formatting and data compression
1.3 Database consistency and integrity

2. Clinical research support
2.1 Local physician research
2.2 Outside physician research
2.3 Artificial intelligence in medicine (AI::\{) research

3. Clinical decision making support
3.1 Statistical information, graph plotting, and other mun-

dane applications
3.2 Data reduction
3.3 Display and manipulation of stored information
3.4 Automated inference aid
3.5 Pattern recognition aid
3.6 Graphics aid

278 National Computer Conference, 1976

versity of Illinois Medical Center, some interactive
graphics capabilities are needed to present graphical
information collected by some of the automated clinical
instruments.

With the above objectives, we are designing a data
base system having the following characteristics:

1. Definition of elementary files as relational tables.
2. A database skeleton describing the structure and

contents of files in the database
3. A low-level database manipulation language

based upon Codd's Relational Algebra
4. A frame-oriented user interface for high-level

database manipulation

In designing the clinical database system, we are heav
ily relying on the relational approach to database
system design,l--1, because we feel that the relational
approach provides a unified, simple viewpoint to the
user and at the same time also supports complicated
deductive reasoning as exemplified by the first-order
predicate calculus. The relational approach is also of
interest from a methodological viewpoint, when we
consider the problem of designing knowledge-based
systems. Database systems are now being designed
primarily for commercial applications in data process
ing. In order to extend the capabilities of database
systems to support more sophisticated information
processing applications such as automated inference,
automated problem solving, and complex decision mak
ing, knowledge-based systems are needed. The rela
tional approach offers possibilities of being extended
to the design of knowledge-based systems.

The clinical database system is based upon the rela
tional approach. However, important modifications are
made to (a) meet the above mentioned design objec
tives, and (b) provide means for easy database re
configuration, so that the database can be dynamically
reconfigured for efficiency reasons. In what follows,
the design of this database system will be described in
some detail.

HARDWARE AND SOFTWARE ENVIRONMENT

The selection of hardware for the clinical network
was based primarily on the availability of software
tools for the development of the database system and
other network control programs. The choice of Bell
Laboratories UNIX operating system constrained our
selection to PDP11-compatible machines. The clinical
network includes a host computer, a number of satel
lites, a database module, and a number of terminals.

Host

The host system consists of a DEC PDP11/40 with
48K words of core memory, each word being two bytes
long; two RK05 1.2 million word cartridge disk drives;
two industry compatible magnetic tape drives; one

Versatec electrostatic printer/plotter; and one high
speed paper tape reader/punch which is used primarily
for maintenance purposes. Communications with the
satellites are via standard asynchronous serial lines.
Initially these will operate at 9600 baud. 1''',.8 the final
form of the clinical network takes shape, the lines and
interfaces will be upgraded, and the old interfaces will
be used for remote terminals.

Satellites

The four satellites are identical (at this time) and
consist of a California Data Processor's 1/35 with
16K words of core memory, two serial I/O interfaces,
and a bootstrap loader, mounted in a stand-alone cabi
net which is converted to a desk when appropriate.

The choice of the CDP machine over a comparable
DEC PDP11/35 was based primarily on price and
flexibility. It is totally compatible with the DEC
PDP11 and is based upon a fast, versatile micropro
cessor which will allow enrichment of the instruction
set if necessary.

Each interface to clinical instruments will be a cus
tom design tailored to make the data available in the
most useful format. Preliminary specifications for
each of the clinical interfaces have been completed. It
is anticipated that some satellites (most notably the
satellite for Glaucoma Clinic) will require more com
puter resources (more core memory and perhaps a
local disk). These will be provided as the need arises.

Database module

The database module consists of front-end processor,
a disk controller and disks. The processor and con
troller comprise a dual CDP 1/35. This configuration
currently contains 32K words of core memory, memory
management and an RK05 disk. Facilities for micro
programming consist of 256 words of alterable control
store and a microconsole for debugging and mainte
nance.

The disks consist of four 80 megabyte Control Data
Corporation 9762 Storage Modules giving a total stor
age capacity of 300 megabytes (after necessary for
matting). The actual control of the disks is performed
by a CDC CU /33 formatter which moves the heads,
reads and writes the disks and performs error check
ing and correcting.

We plan to initially use the disks with a small inter
face which will make them look like DEC RP03 disks
to the host machine. This will allow us to do most
software development in the C language provided by
the UNIX operating system.

Terminals

Three types of terminals are in use. The principal
terminal in each clinic will be a modified Owens-Illinois

CVG-II plasma panel terminal with associated touch
panel, both being outgrowths of the PLATO project.5

Teleray 3700's and Infoton Vistar II's constitute the
rest of the terminals for general use.

The system at this time (January, 1976) is partially
operational. Six terminals are in use on the host sys
tem for database and operating system development.
Links to one satellite and the Television Ophthalmo
scope SystemG have been installed. The database mod
ule front-end iR operational, and the disk components
are being assembled.

In addition to the internal clinical network, a direct
hostl AIM link will be provided for access to the clini
cal database and for continued modelling of ophthalmic
diseases, when AIM upgrades its 300 baud links to
1200 baud.

The selection of the UNIX operating system is made,
primarily for the ease of software development under
UNIX. The prototype database system is written in
the above mentioned C language.' When the database
module becomes operational, we also intend to run a
stripped-down version of UNIX on the dual CDP 1/35.
The lowest level database operations will later on be
rewritten in microcode.

THE DATABASE

The clinical database comprises a collection of files.
There are three types of files in the clinical database:
elementary files, composite files, and Taw files.

ElementaTY files

An elementary file is a relatio1wl table* in Third
Normal Form.4 In the database, all composite files
must be composed from elementary files. Since an
elementary file is a relational table, all valid relational
algebraic operations can be applied to an elementary
file to extract the desired information. An elementary
file is associated with a descTiptor set. Each descriptor
in the descriptor set has a name (usually a string of
characters), a descriptor type, a format specification,
and a descriptor domain. The descriptor types are as
follows:

1. Interval descriptor-The descriptor domain is a
linearly ordered set, with a minimum as well as
a maximum element.

2. Nominal descriptor-The descriptor domain is
an unordered set. Descriptors with values as
character strings are regarded as nominal de
scriptors. So are logical descriptors which take
on the logical values 0 or 1. However, there is
usually an implicit collating sequence for char
acter strings, so that they still can be sorted into
a collating sequence.

3. Structural desc1'iptol'-The descriptor domain
has a specified mathematical structure, such as a

Design Considerations of a Database System 279

F

,

tree, a lattice, a semi-lattice, a directed graph,
etc.

D2 D3 D4 DS
100 1 a A x

Dl D2 D3 D4 DS 200 a 1 c X
100 1 a A x
200 0 1 C XNDl D2 D3 D4 DS
300 1 1 A X 300 1 1 A X
400 a a n y I ;400 0 0 !) y

Figure I-Vertical conca tena tion

Rl

R2

The format of a descriptor is usually specified by a
picture of the format, such as X (3),9 (5), which mean
a character string of length 3 and a numeric Rtring of
length 5, respectively. In the current implementation,
only the first two types of descriptors are allowed.

An elementary file consists of a number of records
(or rows, tuples), each record being of the form
(d1 , d2 , ••• , du), where di belongs to the descriptor
domain of descriptor Di ,

Composite files

A composite file is a relational table which is defined
in terms of other relational tables using certain com
position rules. As an example, Rl and R2 are two
constituent files. A composite file F can be defined as
the vertical concatenation of R1 and R2, or

F=R1 11R2

vlhere II is the vertical concatenation operator, pro
vided that R1 and R2 have similar descriptor sets, as
illustrated in Figure 1. Similarly, a composite file F
can be defined as the union of two constituent files R1
and R2, or

F=R1+R2

where + is the union operator, provided that R1 and
R2 have similar concatenated keys, as illustrated in
Figure 2, where D1 is the common key, and - denotes
an undefined entry in the relational table.

A concatenated key is a subset of the descriptor set,
which takes on unique values for each record in a file.
If the concatenated key comprises one descriptor, that

Dl D2 D3
I Dl D2 D3 D4 D5 100 1 0 Rl ,
/100 1 0 0 1

F i 200 0 1 +
'300 A i

Dl D4 DS
1400

I

D 1 200 A X R2
;400 D y

Figure 2-Union

280 National Computer Conference, 1976

descriptor is called a key, such as Dl for file F in
Figure 2.

A third composition rule is qualified vertical con
catenation, which can be used to combine files by add
ing an extra descriptor to indicate the individual
identities of constituent files. An example is illustrated
in Figure 3, where $F denotes the new descriptor for
identifying constituent files. The composite file F is
the qualified vertical concatenation of Rl and R2, or

F=Rl(j/$F)R2

The above example illustrates the composition of F
from Rl and R2. Conversely, F can also be decom
posed into several smaller files, as illustrated in Fig
ure 4, where the decomposition is made with respect
to descriptor Dl, and

F=$Fl (j /Dl)$F2(j /Dl) $F3

where $FI, $F2 and $F3 are new names for the con
stituent files.

Similarly, another composition rule is qualified
union, which can be used to combine files with different
descriptor sets by adding an extra descriptor to indi
cate the identities of the constituent files.

The last composition rule is the horizontal concat
enation rule. A composite file F can be defined as the
horizontal concatenation of constituent files Rl and R2,
or

F=Rl (*Dl) R2

by equijoining the two relational tables on descriptor
Dl, where * denotes the equijoin operator, and Dl
must be the key for both Rl and R2, as illustrated in
Figure 5.

In horizontal concatenation, the constituent files
can be joined on any common concatenated key, in
which case the concatenation operation is written as
(*DI,D2, ... ,Dn), where {Dl, ... ,Dn} is the common
concatenated key.

Raw files

Raw files are files not in the form of relational tables.
In clinical data collection, data entered by human users
could be appended to relational tables which have al
ready been defined by the users previously. Some data
collected by clinical instruments, however, will not be

01 02 03 04 05
$F 01 l)2 D3 04 D5 ; 100 lOA X

Rl 100 IDA x, I 200 Ole X I
Rl 200 Ole x: (/ / SF)

R2 300 1 1 A X I~' 'I 01 02 03 04 05
R2 400 0 0 D Y I ~ 301) 1 1 A X

;400 0 0 0 Y

Figure 3-Qualified vertical concatenation

Rl

R2

F

fOl D2 03 D4 Dsl
1 1 0
1 2 0
2 3 1
240
351

~

A X
A Y

Figure 4-Decomposition of F

$Fl

$R2

$£3

suitable to be stored in relational tabular form directly.
Graphical information such as visual field charts, pic
torial information such as those provided by the Tele
vision Ophthalmoscope System (the TVO System), are
examples of nonrelational data. It will be wasteful to
store such information in relational tables. Moreover,
in the intended applications, such graphical and pic
torial data will invariably be processed by special ap
plication programs. Therefore, they should be stored
in raw files, with no restrictions on format, record
length and file size.

Raw files can also be used for input/output purposes.
After an elementary file has been defined, the following
statement

READ Rl FROM Ul

can be used to transform a raw file Ul into an elemen
tary file Rl in relational tabular form. Similarly, the
statement

WRITE Rl TO UI

will transform RI into a non relational format and
store it in UI. If the phrase "FROM UI" is omitted
the standard input file is assumed, which is normally
taken to be the user terminal. Similarly, the omission
of "TO UI" causes output to be directed to the stan
dard output file, and the output normally appears at
the user terminal.

The above input/output mechanism is very useful
for the clinical research applications. For example, a
file in relational tabular form may first be transformed
into a raw file. A data reduction program based upon
Variable-valued Logic Reduction' can then be applied
to the raw file. Finally, the resultant raw file can again

--------1 Dl D2 D3
-------, . 100 1 0

l~~ D~ o~ D~ D~ I (*:;1) 200 0 1

_2_0_0_0 __ l_D_....;.Y:..--l i Dl D4 DS

100 A X

j 200 D Y
i 300 A Y

Figure 5-Hol'izontal concatenation

Rl

R2

be recast into relational tabular form. Similarly, pic
ture processing applications are also applied to raw
files, with subsequent transformation into relational
tables, after extensive preprocessing has been made.

A final use of raw files is to equate a raw file to an
elementary file (see later section). Any database op
erations to be performed on the elementary file will be
actually performed by a special program associated
with the corresponding raw file. For example, file U2
is a ra~! file ,';lith an inv'ertcd file structure. The asso-
ciated special program is in a UNIX file P2. File U2
is equated to an elementary file R2. Whenever a data
base operation is to be performed on R2, the operation
command and arguments are passed to P2, which then
performs some operation on U2. In this way, files with
different file structures could be treated as part of the
relational database and at the same time still retain
their idiosyncratic structures. It is thus unnecessary
to transform all files into relational tubular form,
which may not be economical either in storage or in
speed, or both.

DATABASE SKELETON

With the above described three types of files-ele
mentary files, composite files, and raw files-a database
can be structurally characterized by a hierarchical
schema, called a database skeleton. Here VIe will re
strict our attention to one user's view of the database.
Multiple user's views can be accommodated by having
multiple database skeletons. An example is shown in
Figure G.

In the database skeleton, UI, U2, U3 and U4 are
raw files. UI, U2 and U4 have associated application
programs PI, P2, and P4. The composite file FI is
defined as the equijoin on DI of two elementary files
RI and R2. The composite file F2 is defined as the
vertical concatenation of an elementary file R3, and
another composite file F3, which in turn is the equijoin
on D2 of three elementary files R4, R5 and R6. The
elementary file F4 is equated to raw file U4, whose
associated program is P4.

From the user's viewpoint, he need only be aware
of the existence of UI, U2, U3, FI, F2 and F4. The
structures below composite files could be opaque to him.

UI
I
I

PI

DBS

~\--

I

P2

U3 FI

Ir*D~
RI R2

F2

j;/""
R3 j~~

R4 R5 R6

Figure 6-A database skeleton

F4

1/
U4
r

. I
P4

Design Considerations of a Database System 281

He also may not know that F4 is equated to U4, and
the relational table is in reality implemented as an
inverted file.

Every file in the database skeleton also has an asso
ciated logical expression called the file characteristics,
which characterizes the contents of this file. For com
posite files and elementary files, every record in a file
must satisfy the characteristics logical expression. For
raw files, the characteristics clause can be used to
register typical samples. or prototype records, of a
raw file.

A more detailed discussion of the database skeleton,
together with its formal model and some theoretical
results, can be found in Reference 9. Intuitively, the
database skeleton serves the function of a structured
file directory, similar to UNIX's tree directory. How
ever, it is also a model of the database, with informa
tion on file size, file contents, and database operation
statistics. Such information could be used (a) to op
timize the performance of database operations, and
(b) to dynamically restructure the database to im
prove system performance. These topics are also
treated in Reference 9.

To illustrate how the database skeleton can be used
for efficient searching, consider the case of a composite
file F which is the vertical concatenation of RI with
the characteristics (DI~200), and R2 with the char
acteristics (DI>200). If it is intended to find all
records in file F with DI~300, then the constituent
file RI need not be searched, because no record in RI
satisfies the search condition. This is discovered when
the expression (D~200) 1\ (DI>300) is reduced to a
logical zero. Therefore, a structurally organized data
base skeleton could help reduce database processing
time.

DATABASE MANIPULATION LANGUAGE

The database manipulation language is based upon
Codd's Relational Algebra.;; An algebraic language is
chosen for two reasons. First of all, an algebraic lan
guage is flexible and can easily be extended. The lan
guage is easily embedded in a host language, in our
case the C language, so that the powerful instruction
set of the host language can be used to write applica
tion programs or to design flexible user interfaces. In
fact, the database manipulation language is considered
to be a low-level language for internal use. The end
user will communicate with the database system via
the user interface described later.

The second reason for choosing an algebraic lan
guage is that it permits easy definition of structurally
composed files. Although relational tables are useful
as a unifying viewpoint for the end user, in imple
menting a realistic database system on a small com
puter, performance considerations cannot be over
looked. When a database grows larger and larger, the
efficient storage and retrieval of possibly very large

282 National Computer Conference, 1976

files becomes the primary concern of the system de
signer. In such cases, it is natural to consider breaking
up or decomposing a large file into smaller pieces. The
algebraic database manipulation language can be used
to define structurally composed files and to dynamically
restructure the files, so that storage requirements and
processing time can be reduced.

The basic commands * * of the database manipulation
language are summarized in the Appendix. Several ex
amples will be given in this section. The vertical con
catenation of files, as illustrated in Figure 1, can be
defined as follows.

DEFINE CFILE F(Dl,D2,D3,D4,D5)
STRUCTURE (j /)

DEFINE EFILE Rl (Dl,D2,D3,D4,D5)
DEFINE EFILE R2(Dl,D2,D3,D4,D5)
INCLUDE (Rl,R2) IN CFILE F

Similarly, the horizontal concatenation of files, as illus
trated in Figure 5, can be defined as follows.

DEFINE CFILE F (Dl,D2,D3,D4,D5)
STRUCTURE (*Dl)

DEFINE EFILE Rl (Dl,D2,D3)
DEFINE EFILE R2(Dl,D4,D5)
INCLUDE (Rl,R2) IN CFILE F

In the definition of elementary or composite files, a
characteristics clause can be included to describe con
cisely the contents of this file. Access and update can
also be controlled by other clauses, as illustrated in the
following example.

DEFINE EFILE Rl (Dl,D2,D3)
CHARACTERISTICS (Dl~200)
RETRIEVAL (D4='X')
DELETION (USERID='SMITH')
MODIFICATION (USERID='SMITH')

The above example provides the following informa
tion: name of elementary file is Rl, with descriptors
Dl, D2, and D3; every record in Rl has Dl less than
or equal to 200; all records with D3 equal to 'X' can
be retrieved by any user; only user allowed to delete
and/or modify records is 'SMITH'. (USERID is a
global keyword. Other such keywords are P ASS
WORD, GROUPID, CLINICID, etc.)

A composite file can be dynamically restructured, as
illustrated in the following example.

DEFINE CFILE F(Dl,D2,D3)
STRUCTURE (+)

DEFINE EFILE Rl (Dl,D2,D3)
DEFINE EFILE R2 (Dl,D2)
INCLUDE (Rl,R2) IN CFILE F

DELETE R2

DEFINE EFILE R3 (Dl,D2)
DEFINE RFILE U3 (P3) EQUAL TO EFILE R3
INCLUDE (R3) IN CFILE F

I l P# NAME
I

It
I CLINIC#I

1 I,

~ rRESULT I I PRSPTN# J MEDICINE I

Figure 7-Hierarchical patient record structure

In the above example, F originally is the union of
Rl and R2. Later on, R2 is removed from F. A virtual
elementary file R3 which is equated to a raw file U3,
is added to F. Thus, F is the union of Rl and R3
(which is really U3). U3 might have a file structure
more efficient for certain retrieval operations, so that
database operations performed on F can be processed
more efficiently.

Hierarchical record structures, such as those used
in IMS,lO occur quite frequently in practice. Hierarchi
cal structures can easily be represented using com
posite files and the horizontal concatenation rule, as
illustrated in the following example. The hierarchical
patient record structure is shown in Figure 7.

In Figure 7, the underlined fields are the key fields.
This hierarchical patient record can be defined in our
database as in Table II.

Suppose a composite file Fi has descriptor set Si
and concatenated key Ki for horizontal concatenation.
Suppose its constituent composite file Fj has descriptor
set Sj and concatenated key Kj for horizontal concat
enation. Then the following relation must hold,

Kj cKicSj cSi

As before, a hierarchically structured composite file
can also be dynamically restructured.

It can be seen that the sub-partitions of a composite
file (or conceptually, the sub-regions of a two-dimen
sional relational table) can be assigned different pro
tection conditions. Therefore, if part of the patient
record is confidential and should never be made public,
that portion could be separated out as a constituent
file and given the most severe protection condition.
This confidential file can also be stored in a separate

T ABLE II-Defining a Hierarchical Patient Record

DEFINE CFILE F(P#,NAME,DATE,CLINIC#,TEST#,
RESULT,PRSPTN#,MEDICINE) STRUCTURE (*P#)

DEFINE EFILE Rl(P#,NAME)
DEFINE CFILE G(P#,DATE,CLINIC#,TEST#,RESULT,

PRSPTN#,MEDICINE) STRUCTURE (*P#,DATE)
INCLUDE (Rl,G) IN CFILE F
DEFINE EFILE R2(P#,DATE,CLINIC#)
DEFINE EFILE R3(P#,DATE,TEST#,RESULT)
DEFINE EFILE R4(P#,DATE,PRSPT~#,:MEDICINE)
IXCLUDE (R2,R3,R4) IN CFILE G

storage volume with tight security control. Thus, the
above described structured database protection scheme
can be very useful to the database manager in a clinical
network environment.

USER INTERFACE

The user interface is frame-oriented, with emphasis
on tabular presentation of structured information to
the end user. This approach is ba~ed upon the rrame
oriented approach of the PLATO system." The CVG-II
touch panel plasma display terminal is an ideal vehicle
for designing such frame-oriented user interface.

There are three modes provided by the user inter
face. As the user starts the interactive session, he is
presented with the first frame, which displays the
three modes: the data entry mode, the database ma
nipulation mode, and the table manipulation mode. In
addition to the three basic modes, in every frame there
is a help button. If the user touches the help button,
self-explanatory information concerning the user in
terface itself, the database manipulation language, or
the database system will be provided. There is also a
dbs button. If the user touches the dbs button, he can
browse through the database skeleton, which can be
regarded as an enhanced database directory. Other
buttons enable the user to back up to the previous
frame, exit to the starting frame, ormo'Ve on to the
next frame.

In the data entry mode, the user first selects a file
name. The user interface will prompt the user to enter
a record, and then send this record to the database
system to append to that file. For each record, fields
will be checked against the correct format, and default
values will be inserted in the unspecified fields. If a
descriptor has only a limited number of possible values,
such as M or F for the SEX descriptor, these values
will be displayed on the screen to allow the user to
make a selection.

In the database manipulation mode, the user can
enter a retrieval/update command by selecting the
appropriate files, descriptors, conditions, and opera
tions, which are provided by the user interface. The
user interface will translate user's specification into
low-level commands of the database manipulation lan
guage.

For example, suppose the patient record is hierarchi
cally structured, as shown in Figure 7. The patient
file F is a composite file, composed from four elemen
tary files, as illustrated in Table II. The user may wish
to find the names of patients who visited Clinic # 12.
Using the user interface, he makes the following
selections:

FILEN AME : F
DESCRIPTORS TO BE RETRIEVED : NAME
CONDITIONS: *CLINIC# = = '12'*

The user interface will translate the above specifica-

Design Consiclerations of a Database System

tions into the following commands, with the aid of the
database skeleton:

T1 = R2 (*CLINIC# = = '12'*)
T2=T1 (P#,DATE,CLINIC#) (*P#)

Rl (P#,NAME)
T3=T2 (NAME)
PRINT T3
DELETE T1,T2,T3

It is obvious that the user interface could attempt
to optimize the translated commands by using such
information as the size of the constituent files, approxi
mate processing times for various operations, and the
structure of the files. These problems are considered
in Reference 9.

In the table manipulation l1wde, the user first selects
a relational table, such as the patient file F. He can
then browse through this big table. He can declare
certain descriptors to be stationary, such as P#, whose
column will always remain on the screen. He can
declare certain descriptors to be movable, whose col
umns will be moved in and out the screen. He can also
drop unwanted descriptors. There are touch buttons
allowing him to scroll left, scroll right, scroll up, and
scroll down, positioning the viewing window anywhere
in the big table. There is also a single record option,
allowing the user to view the file in a record-by-record
fashion.

In the table manipulation mode, the user can only
make projections and restrictions. Other more time
consuming database manipulations will not be made
available to him. We believe that projections and re
strictions are by far the most useful relational alge
braic operations. Other relational algebraic operations
are too expensive to be provided in the table manipu
lation mode.

After having selected a desired sub-table, the user
can store it as a temporary raw file using the sto're
button. Special application programs can then be
invoked to plot diagrams, compile histograms, and
perform data reduction operations. (The italicized
words are touch buttons defined as fixed areas on the
touch panel.)

IMPLEMENTATION STATUS

In the preceding sections, the design of a database
system in the context of a clinical network has been
described in some detail. Currently, a prototype data
base system has been implemented. The software was
developed in the UNIX environment, using the C lan
guage. The prototype database system consists of the
following:

1. User interface-It supports the three modes de
scribed above, with the table manipulation pro
grams still under development.

2. RAIN-A Relational Algebraic I~terpreter was

284 National Computer Conference, 1976

implemented which accepts and executes com
mands in the database manipulation language,
also called RAIN.

3. Data compression programs-Several data com
pression programs are available to reduce input
data into compressed internal format, and to
perform corresponding inverse transformation.
As far as the end user is concerned, he only sees
data in the user-specified external format.

4. VVL data reduction program-A data reduction
program based upon VVL reduction techniques
has been written, which can be invoked to reduce
a given relational table into a disjunction of VVL
logical expressions. These logical expressions
can be evaluated by the user, and used as the
characteristic expression describing the contents
of a relational table.

The current implementation, when completed, will
be used as an experimental tool for trial usage. The
above described database system is a first step toward
the design of a database system which can support
mundane applications as well as certain more esoteric
research applications. The system will undoubtedly
undergo major modifications and evolution. However,
areas for the application of optimization techniques
have been identified and are under investigation. Such
database systems which are implemented on small
computers and still support advanced research appli
cations could find wide range applications involving
sophisticated decision making. The clinical network
environment provides an interesting test bed for the
design of such systems.

REFERENCES

1. Codd, E. F., "A Relational ::\lodel of Data for Large Shared
Data Banks," Comm. ACM, Vol. 13, No.6, 1970, pp. 377-
387.

2. Codd, E. F., "A Data Base Sublanguage Founded on the
Relational Calculus," Proc. of ACM-SIGFIDET Workshop
on Data Description, Access and Control, San Diego, 1971.

3. Codd, E. F., "Relational Completeness of Data Base Sub
languages," in Courant Computer Science Symposia, No.6,
Data Base Systems, Kew York, ::May 1971.

4. Codd, E. F., "Further Normalization of the Data Base
Relational Model," in Courant Computer Science Symposia,
No.6, Data Base Systems, New York, May 1971.

o. Bitzer, D. L. and J. A. Easley, "PLATO: A Computer
Controlled Teaching System," in Computer A?lgmentation of
Human Reasoning, Edited by ::.vr. A. Sass and W. D. Wilkin
son, Spartan Books, 1965, 90-103.

6. ::\lcCormick, B. R., R. T. Borovec, J. S. Read and R. C.
Amendola, "Image Processor for Biomedical Research," in
Compnters in Life Science Research, edited by W. Siler and
D. A. B. Lindberg, Plenum Press, 1975, pp. 129-135.

7. Ritchie, D. -:.vI. and K. Thompson, "The UNIX Time-Sharing
System," Comm. ACM, Vol. 17, No.7, 1974, pp. 365-375.

8. ::\lichalski, R. S., "AQVAL/1-Computer Implementation of
a Variable-Valued Logic System VL1 and Examples of Its
Application to Pattem Recognition," Proc. of First Inter
national Joint Conference on Pattern Recognition, \Vash
ington, D.C., October 1973, pp. 3-17.

9. Chang, S. K., "Database Skeleton-A Formal Model,"
Technical Report, Medical Information Systems Laboratory,
Department of Information Engineering, University of
Illinois at Chicago Circle, Chicago 1976.

10. Information lvluuagemelli Sysielii/3{iO, Version l, General
Information Manual, GR20-0765-4, IBM, June 1973.

APPENDIX-DATABASE MANIPULATION
LANGUAGE

A. File definition and file input output

AI. DEFINE EFILE R (PI)
(Dl (9 (2) ,nl) ,D2 (9 (3) ,n2) ,D3 (X (5) ,n3))

An elementary file R is defined, and its defi
nition is stored in the database skeleton. The
file R is still empty. PI is name of data
compression/conversion program to convert
data from external format into a condensed
internal format, and vice versa. Dl, D2, D3
are descriptors. Their external formats are
specified by 9(2), 9(3), and X(5). The inte
gers nl, n2 and n3 refer to conversion rules
in PI. If there is no data compression (the
external format is the same as the internal
format), then PI, nl, n2, and n3 may be
omitted.

A2. DEFINE CFILE F (P2)
(Dl (9 (2) ,nl) ,D2 (9 (3) ,n2) ,D3 (X (5) ,n3»

STRUCTURE (j j)
CHARACTERISTICS (Dl:::;200)
RETRIEVAL (D4='X')
DELETION (USERID = 'SMITH')
MODIFICATION (USERID='SMITH')

A composite file F is defined. Its definition,
structure, characteristics and other protec
tion conditions are stored in the database
skeleton. The file F is still empty.

A3. INCLUDE (RI, R2, R3) IN CFILE F

The files Rl, R2, and R3, which can be either
elementary files or composite fiiles, are in
cluded as constituent files of the composite
file F. The structural links are stored in the
database skeleton.

A4. DEFINE RFILE U (P3) EQUAL TO
EFILE R

A raw file is defined, and its definition is
stored in the directory. The raw file U can
be associated with an application program
P3, which is a UNIX file. If the clause
"EQU AL to R" is added, then the raw file U
is equated to a relational table R. All data
base operations on R will be relegated to P3.

A5. EFILE R

(DI='I',D2='3',D3='4',D4='A')
(DI='3',D2='0',D3='0',D4='B')
&
When the elementary file R is empty, it is
initialized by directly specifying its contents.
If a certain descriptor is omitted in the speci
fication, its value is undefined. The database
skeleton is modified by entering the record
number of R and setting a pointer to the first
location of the file. When the elementary file
R is not empty, the new records are appended
to the end of the existing file.

A6. READ r ~ l R FROM VI
LNJ

The elementary file R is initialized by reading
in the records from a raw file VI. The data
base skeleton is modified by entering the
record number of R and setting a pointer to
the first location of the file R. The conversion
code E indicates that the raw file VI contains
data in external format (as specified in the
DEFINE statement), C indicates that VI
contains data already in condensed internal
format, and N indicates conversion of binary
integers. If the clause "FROM VI" is omitteds

standard input is assumed.

A 7. WRITE [~] R TO U1

The file R is written to a raw file V1, accord
ing to conversion specifications. If the clause
"TO VI" is omitted, the standard output is
assumed.

B. Maintenance operations

BI. ERASE R
The file is deleted from the database skeleton.
If a composite file is deleted, all its constituent
files are also deleted.

B2. RENAME RI R2
The name of RI is changed to R2,
database skeleton is updated.

B3. DISPLAY F
The format, structure, characteristics, protec
tion conditions and constituent files of Fare
printed via standard output. If the command
is "DISPLAY ALL", the contents of the data
base skeleton are printed.

B4. PRINT F
File F is printed via standard output, using
external format.

Design Comdderations of a Database System

C. Basic data operations

CI. IXSERT (DI='2',D3='0') IXTO RI
A record with DI equal to 2 and D3 equal to 0
is inserted into file RI, ."vhich must be either a
composite file or an elementary file.

C2. DELETE «condition» FROM RI
All records in RI satisfying given <condi
tion > t are deleted.

C3. MODIFY «condition>) OF RI TO
(DI='2',D3='O')
All records in RI satisfying given <condi
tion> are modified by changing the value of
DI to '2', and the value of D3 to '0'. Other de
scriptor values are unchanged.

C4. RETRIEVE «condition» of RI (DI,D2)
INTO R2
Records in RI satisfying the given (condition)
are retrieved into a file R2. R2 will have the
descriptor set {DI,D2}, and other descriptors
of R I are discarded. If R2 is an existing file,
it is redefined.

D. Relational algebraic operations

DI. (PROJECTION) RI=R2(DI,D2)
A file RI with descriptors DI, D2 is created,
which is the projection of R2 on DI, D2. If
RI is an existing file, it is redefined.

D2. (RESTRICTION) RI=R2 «condition»
A file RI having the same descriptor set as R2
is created, which is the restriction of R2, so
that only records satisfying the given <condi
tion> are in RI. If RI is an existing file, it is
redefined.

D3. (JOIN) RI=R2(DI,D2) (*D2) R3(D2, D3)
RI is the equijoin of R2 (DI,D2) and R3 (D2,
D3) on key D2. RI has descriptor set {DI,
D2, D3}. If RI is an existing file, it is re
defined.

D4. (DIVISION) RI=R2 (DI,D2) (jD2) R3
(D2)
RI is the division of R2 (DI,D2) by R3 (D2)
on D2. RI has descriptor set {DI}. If RI is
an existing file, it is redefined.

D5. (VERTICAL CONCATENATION) RI=R2
(DI,D2) IIR3 (DI,D2)
RI is the vertical concatenation of R2 and R3.
Rl has same descriptor set as R2 or R3. If
RI is an existing file, it is redefined.

286 National Computer Conference, 1976

D6. (DIFFERE~CE) R1=R2 (D1,D2) -R3,
(D1,D2)

R1 is the set-theoretic difference of R2 and
R3. RI has same descriptor set as R2 or R3.
If R1 is an existing file, it is redefined.

D7. (PRODUCT) R1=R2(D1,D2) ** R3(D3,D4)

R1 is the Cartesian product of R2 and R3. Rl
has descriptor set {D1,D2,D3,D4}. If R2 and
R3 contain same descriptor Di, R1 will con
tain Di and $Di. If R1 is an existing file, it is
redefined.

D8. (INTERSECTION) R1=R2(D1,D2) * R3
(D1,D2)

R1 is the set-theoretic intersection of R2 and
R3. R1 has same descriptor set as R2 or R3.
If R1 is an existing file, it is redefined.

D9. (UNION) R1=R2(D1,D2) +R3(D1,D3)

R1 is the set-theoretic union of R2 and R3.
The descriptor set of Rl is union of that of
R2 and R3, provided that R2 and R3 have
common concatenated key. If R1 is an exist
ing file, it is redefined.

E. Jfiscellaneous

El. END

Notes

I SAVE l
I NOSAVE
L ..J

* We will use "relational table" or "table" to refer
to the physical realization of a mathematical rela
tion.

** Any command in the database manipulation lan
guage can be split into several lines, provided that
a back-slash (\) is entered immediately preceding
the new-line or return key.

~ A condition is a Boolean expression of terms, where
each term is either of the form <descriptor>
<rel-op> <literal>, or of the form <descriptor>
<rel-op> <descriptor>. <rel-op> is anyone of
the relational operators: = = (equal), ! = (not
equal), > (greater than), > = (greater or equal),
< (less than), < = (less or equal). A logical "and"
is written as &&, and a logical "or" is written as : ..
The logical expression is surrounded by two
asterisks.

Correct prohlem statements In hiomedical data processing

by N. I. MOISEEV A, M. YU. SIMONOV and V. M. SYSUEV
Academy of the lviedical Sciences of the USSR
Leningrad, "CSSR

ABSTRACT

The correct formulation of any task appears to be not
only the first step in its solution but sometimes the
solution itself. Biomedical data processing is unlike
other problems encountered by biologists and they
often use mathematical methods without taking into
consideration both the possibilities and limitations of
the given methodology and the properties of the data
to be processed. As a result the approach to the solu
tion of the problem is often inadequate. 1

Moreover, biologists encounter difficulties with the
choice of a method for data conversion into the form
suitable for mathematical processing, Often this leads
to the incomplete utilization of the power of a given
mathematical method. Sometimes only the correct
data representation is sufficient to draw final conclu
sions. For example, data given in the form of an in
terval distribution histogram or mean frequency func
tion allow the investigator to obtain information on
time-dependent features of the process.

Science "creates and supports conditions whereby
functional foundations become the field of controversy,
resulting in competitive but different ways of doing the
same thing. In other words the number of alternatives
constantly increases due to science."2

In fact the problem of choice always faces the in
vestigator not only in relation to the optimal method
of data processing, but also in relation to optimally
configuring electronic devices to be used in the im
plementation of these methods.

The correctly formulated requirements for biomedi
cal data processing could be and should be used as a
basis for this choice. Thus there arises the special
problem of stating correctly the processing task itself.
From our point of view the correct approach to its
solution must take into account all a priori informa
tion. We must systematically look at the final aims of
our research (in the sense that it is a biological data
processing task) and at existing methods of analysis,
their scope and limitations.

287

PECULIARITIES IN THE STATEMENT OF
BIOMEDICAL TASKS

The complications arising in the study of biological
objects derive above all from the fact that life itself,
from the point of view of physics, "is too intricate and
does not lend itself to mathematical interpretation."3
Living organisms possess a large number of possible
stable states; every concrete subject during its whole
life uses only some of them, and different subjects pre
fer different approaches (if it is possible to use this
word in reference to processes in the vegetatic nervous
system). Moreover, in the same organism even stable
states are different as they depend, for example, on
age and functional states. Thus the problem of select
ing appropriate statistical tools in biology becomes
quite intricate. In fact, even the idea of "normality"
is not clearly defined in biology so far. 4

Transmission of signals in living organisms is car
ried on both with the aid of discrete impulses (e.g., in
the nervous system) and analog-type information, like
the constant potential of membranes and tissue, hu
moral regulation of functions and so on. Under these
conditions signals propagate in two ways-along a spe
cific channel to a specific organ or group of cells and
"in a general way," without any defined "address."
The latter signals could act upon any part of the or
ganism and could, in fact, be perceived either by any
part of the organism (Le., general nonspecific reac
tions like arousal) or by the tissues and organs spe
cially prepared for the reception of this particular sig
nal or group of signals. For example, the hormones
of endocrinous glands excreted in blood are intended
for specific "target-tissue."

The next complication arises from the fact that there
are no really stable functions in a living organism,
everyone of them representing oscillation processes.

The relative stability of an organism is the result of
the rhythmic activity of the regulating systems. Some
of these rhythms are endogenous: That is, they orgi
nate in the organism itself. Others reflect external
events like the change of day and night, seasons of the
year, and other influences from the environment.

288 National Computer Conference, 1976

As a specific property of this oscillating system the
irregularity of growth and decay of different parts
should be mentioned. For example, the growth of
bones and muscles in human beings practically ceases
as we attain adulthood, but some internal organs and
the cardio-vascular system continue their development
during the whole life. Organisms develop and degrade
in an irregular manner.

All this leads to the idea that biological analysis must
take into account structural (synchronous) as well as
temporal (diachronic, functional) aspects of living
objects.

SUGGESTED CLASSIFICATION OF
BIOMEDICAL DATA PROCESSING TASKS.

In the literature on this problem we were able to
find only one attempt to systematize biomedical tasks.
Weare here not concerned with the classification based
on the coefficient of utilization of computer memory.5
Rather we refer to the paper by Dixon6 in which the
author discusses both the so-called "source of informa
tion" (in fact, dealing with the modelling of functions,
selecting interconnections, estimating the state of
health etc.) and the desired processes. The taxonomy
is rather incidental and classification indicators are not
selected.

We made an attempt to distinguish two groups of
biomedical processing tasks after having selected as a
basic indicator the relation to time: those tasks where
some variables and their interconnections are analyzed
without regard to time (synchronous analysis) and
those tasks where the processes develop in time (dia
chronic analysis) .

Within each of these groups the tasks are classified
according to final aims (description and identification
or classification) on one side and to the object of the
investigation (elementary events, processes or inter
relations) on the other side.

In Tables I and II the systematization of biomedical

TABLE I-Levels of Structural (Synchronous) Analysis of
Biological Objects

I'

A".!Il":'I:I, !'If .,r.uetur"" "!'l!tS 'Jir'!ln
• ['U! ~~'I t el"

~~;;;!~~ ~ O:e::r!~~'-
elf'~ t .. "''(1 th<"
1 ~ 3 ~ '" ~ ~ s "r t I, (' ! T

t., r,,'1"_ ~ r:l v j t:-

~ (' q C T i 'n: {o n "f
(',,'" r ~ c t PT' -0:1" {r 'I

:~ : 1 :;:~ ~:;('Ie;

01""",",j,,.,,' II Ol".,,,,.,,,.,,., I:

~ !:~t:~.,:, ::.:;~:.'~ ~_ ~~:"I:~~~1 ~~~:~ :~'<.
XO~ .. ~. (" 1'1 'I t r. r.,. O?t c -1 '" !II!; (>". .. t ~ .)

I I

I

conne-eciOD. betw.en connections between

tbe lIeparate .,leaeat :~:.~~~:l.xel!l of

De 5crt;", t {o" ') ~ ;-arpm UP O;C:' f r t t on C' f' [I. '!'
erer", !>enoe!"81 fel!l- "'TII.ett-'I'1I and ~en-
tuT"" the fntf'r- eTlil frature,rof'
c C'nl' P l'" r 1 ... " '" bp .. · .. rpn ~ nC ereonnec t1 o~"
["-e elellle;'1ts 1 ... ~t'H!en the 'I'1stelll'i,

~ Is!!! Sit I. t .!I'I'o,es.
cl'J'IttTII, et(".

~~:;~::~;:;;;;r:' ~;;;:~;!::::;~n;' .1

II!!'!"" ra t t 0'1 ... f f '-" - '.~ '" ""'''. :"IT -' s""rll TII-

betveen th .. Pl,I''l' ... :t'< b,"'tlolef'n t,I'" lI:",'tt'llS,

~~:;~!::n~~e:~~~~: : :;:!: ;~~;: ~~~:~ e:~ ("
!or'" thp syatl!'tI

processing tasks is shown both for the synchronous and
diachronic analysis.

It is well-known that all the curiosity as to events in
our universe can be expressed with the help of only
six questions: who (what); what kind of; where;
when; how; why (what for). All entries in Table I
are in response to questions about the kind of objects
and the nature of their interactions; or to questions
whether certain objects belong to certain classes. En
tries in Table II address the questions "what kind of"
and "when" (analysis of elementary events and their
interactions within the time continuum), the questions
"what kind of", "when" and "where" (analysis of
processes and their interconnections), or the questions
"what" and "when" (classification of phenomena and
processes). The questions "how" and "why" are not
within the scope of our analysis.

Definition of causes, aims and mechanisms is derived
from the combination of analytical and synthetical
processes in the human brain. Without the latter
human component the results of analysis bring to life
only the question "so what?".

SUGGESTED CLASSIFICATION OF
BIOMEDICAL DATA ANALYSIS METHODS

Many books on mathematics for biologists exist, of
course, but there are no specific methodologies (and,
of course, branches of mathematics) specially tailored
to deal with biomedical problems. Biologists in their
investigations simply use more or less successfully
"standard" mathematics. We were unable to find in
the literature any guidelines for biologists to aid their
understanding of the relations between different meth
ods or giving advice on the use of various kinds of
processing techniques.

Biologists and non-biologists are becoming aware of
the need to systematize methods of analysis. Isolated
attempts to create particular schemes of analysis have
been made, as shown in Tables III and IV (from the

TABLE II-Levels of the Diachronic Analysis of Biological
Objects

"na1,s1. of procluaes vhich are
aet of atpllrate evente.nd 1'1a"t'e
totti.land !'lualpolntt

".al,.1I{a of ele
lIIenta'r'yc"entl

Dellcrf.pttollofthe

;~::t:c:r.:e::: of

••• l •• tlon of their

Dtllco.eryandde
.criptlonoftype

~::e!::n::~~~:n:f ::!:::n up.nte

S.,.r.tion01 el Sel.etionoftbe
•• of el .. ent.r,. e •••• l-co ••• q1l1l'D ...
••• nt. interconD.eetionll,

sroup.ol • .,ent!!
for_ins the
pheno.enoQ

"nal,..ls of proce •• ea reflecttl1~ the contlnuoua
chanSe of ele.ent IItllt" ."("Te th~ 1.nltl.1
IIlId final polntacanbe.elcctedoal,.al"bltrartly

Ana1,..le of procelue.
byth""'lIelveli

De.criptf.oaofproce •• e.

:!n::~;:n o:~ :) f::: r
:;

•• eql,llluce of tlt.ry
IIt.te. b) repr •• ellt.tioD
ill. tb. for •• f • lIequellc
ofe .. ent.c) .e.rcbof
the'repe.tedllt.I: •• llud
resul.l'ch.nge.

Selectio.vftbecl •••• s
of'l'oc ••••• --r.l.x.
tioa.l, i.plulle •
hor.oaic. etc.

Df'finitf.oQ of the type

:::e~:;:::!;~:lI;' b~~e
twltentbeproce •• e.

SlIIlectionoftbedeter
ala.latlc ind atoch •• tic

~~~ :;!; ~::~ ;~~::c. 



TABLE III-General Procedure for Analyzing Individual 
Sample Records 

book by Bendat and Piersol) for the complex of 
realization and Table V for time series used for 
the rhythmometric investigations. 

Since neither general schemes nor a classification of 
methods exist, we made an attempt to classify the 
methods of analysis on the basis of the above taxonomy 
of the data processing tasks. 

As time and spatial coordinates are processed iden
tically in calculating procedures we combined the 
methods of spatial structural analysis and methods of 
time series analysis. 

The basis for our classification is the ability of a 
given method to answer one or more questions from 
the above mentioned set. Thus we systematized ways 
of processing and separated the methods which could 
be used as: 

-methods of qualitative analysis (indicative meth
ods) answering questions on the general features 
of the object, event or a process (from a mathe
matical point of view) . 

-quantitative methods of investigation for esti
mation of the numerical characteristics of pro
cesses or objects. 

-methods for qualitative and/or numerical descrip
tion of interconnections. 

-methods for analysis of external (related to the 
environment) features of objects and processes. 

T ABLE IV-General Procedure for Analyzing a Collection of 
Sample Records 

A. ~::!;:!. of indtv-{t!ual 

Riomedjcal Dat.a Processing 289 

Table V-Analysis of Time Series in Rhythmometric 
Investigations 

It turned out that this classification satisfactorily 
covered all biological methods. Still, it was necessary 
to make an additional subdivision within every class 
of methods depending on the level of analysis and to 
select accordingly: (1) the methods for detection of 
signals on a noisy background (D); (2) methods of 
phenomenological description (P); (3) analytical 
methods (A); and (4) methods of systemic analysis 
(S) . 

As an indicative method of qualitative a.na1ysis a·n
swering the question "what kind of", that is, to provide 
information on the general properties of an object or 
process, the following methods can be considered: 

The methods of detection of signal in the presence of 
noise or separation of an object 

As a result of applying these methods the following 
can be discovered. 

-pure noise 
-a signal or a complex of signals 

The signal can be separated by the following means: 

(1) 

(2) 

(3) 

(4) 

Filtering-the detection of a signal with known 
parameters or elimination of noise with known 
frequency spectrum. 
Different ways of smoothing, like least squares 
method and snecial tvne filtering. 
Ac~umulatio~ of sig~~l (synchronous detection, 
correlation methods). 
Identification of signal presence by applying 
test stimuli. 

Methods for testing of stationarity of the processes or, 
in general, testing for horaogeneity within a group 
of objects 

This method implies the reproducibility of charac
teristics of the process or object under given conditions 



290 National Computer Conference, 1976 

and in some cases the ergodicity-the stationarity both 
in time and over the ensemble of realizations. 

The following processes can be identified by com
paring sequential fragments of the process or by 
sequentially measuring parameters of an object and 
also by comparing sequential fragments and separate 
realizations within the ensemble of realizations: 

-nonstationary 
-quasistationary 
-stationary 
-ergodic 

Stationarity can be tested as follows: 
(1) Calculation of the variance of the parameters 

as a measure of stationarity. 
(2) Comparison of sequential fragments of the 

processes or sequentially measured parameters 
of an object, with the aid of statistical criteria 
and an analysis of the matrix of criterion 
values. 

(3) Calculation of sequential or general correlation 
coefficients and their comparison in order to 
detect any dependence on the point of sampling. 

(4) Plotting of the sequential spectra (Walsh, 
Fourier or other basis) to detect any dependence 
on the point of sampling. 

(5) Calculation of the transition probability matrix 
and estimation of its numerical parameters. 

(6) Calculation of reproducibility matrices-the 
matrices of a criterion value for the sequential 
fragments of the process. 

(7) Selection of the optimal value of intervals of 
stationarity tested by different methods (pri
marily, variance analysis). 

By applying these methods we learn whether we can 
use numerical parameters to describe the whole real
ization (as for stationary or ergodic processes) or only 
intervals of stationarity (in case of a quasistationary 
process) . 

In the absence of stationary fragments we must find 
other informative parameters, for instance the degree 
of stationarity. 

Methods for analyzing the periodicity of the processes 

As a result of their application we can determine 
whether the signal is: 

-periodic with constant period 
-quasiperiodic (with changing period) 
-aperiodic 

The detection of periodicity is possible with the help 
of the following methods: 

(1) Methods of approximation. 
(2) Correlation methods. 
(3) Spectral methods. 

(4) Method of periodograms. 
(5) Analysis of extremal values. 
(6) Cosinor method. 
(7) The calculation of a matrix of reproducibility

the matrix of criterion values for sequential 
fragments of the process. 

Methods fOT investigating the internal coherence of the 
process 

As a result of this investigation the following can 
be obtained: 

-Markov processes of the 1st, 2nd and higher 
orders. 

-Coherent processes. 

The test of coherence requires: 

(1) Calculation of the transitional probability ma
trix and the estimation of the order of the 
Markov process. 

(2) Estimation of the interval of coherence using 
the correlation function. 

(3) Calculation of matrices of reproducibility. 

In case a high degree of coherence is discovered 
filtering of data can be used to reduce their volume 
without the loss of information. 

A high degree of coherence of a process also indicates 
high inertia of the studied object; that is of practical 
importance for the study of transient processes. 

METHODS FOR EVALUATING NUMERICAL 
PARAMETERS OF OBJECTS, EVENTS AND 
PROCESSES 

To answer the question "what kind of" in the narrow 
sense of the word are the following: 

Different ways of estimating signal-to-noise ratio: 

(1) Smoothing of numerical Data Sequences. 
(2) Optimal linear and nonlinear filtering. 
(3) Elimination of noise with known frequency 

parameters. 

Methods for evaluating integral parameters of a 
process 

They are different for periodic and aperiodic pro
cesses. For periodic processes the following methods 
are applicable: 

(1) Analysis of the probability density distribu
tion: 
(a) calculation of statistical moments (mean, 

variance, coefficients of asymmetry and 



excess, and higher moments) and their 
comparison by means of parametric cri
teria. 

(b) Calculation of distribution functions and 
their comparison by means of nonpara
metric criteria (rank correlation, Spear
man, Mann-Witney, Kendall, Kolmogorov
Smirnov criteria and others) . 

(2) Calculation of reproducibility matrices. 
/'1'\ 
\oJ) Ev~aluation of time series of values of the 

periods (spectrum of periods) by means of 
calculation of intervals between successive 
extremal values; crossing the zero line; and 
analysis of statistical properties of these time 
series. 

(4) Calculation of the spectral density function 
using different bases. 

(5) Investigation of the phase structure of pro
cesses analyzing the dependence between the 
accumulated phase shift and time. 

(6) The "Cosinor" method. 
(7) Calculation of the transfer function by means 

of operators method. 
(8) Method of test stimuli. 
(9) Plotting of the amplitude-frequency charac

teristics. For aperiodic processes we may 
apply: 

(10) Analysis of amplitude distribution and calcu
lation of moments. 

(11) Analysis of power spectrum. 
(12) Investigation of overshoots and their statis

tical properties. 
(13) Calculation of the sequence of intervals be

tween events. 
(14) Investigation of patterns and their reproduci

bility. 

Methods fOT detection of coherence of the process 

Calculation of the transitional probability matrix and 
its numerical parameters (trace, determinant etc.). 

ANALYSIS OF THE INTERCONNECTIONS 
BETWEEN ELEMENTS, PHENOMENA AND 
PROCESSES 

As a separate parameter to be investigated (in 
response to the question "what kind of connection is 
this ?"), we primarily selected the following features 
of interconnections: 

a. Type of interconnection-linear or nonlinear. 
Within the nonlinear group we study those which 
can be represented by polynomials of higher 
order, harmonic functions, exponential, hyper
bolic interconnections and so on. 

b. Degree of linearity. 
c. Direction of interconnection (vector of inter

connection) . 

Biomedical Data Processing 291 

Tensor of interconnections can be used accordingly 
to describe completely the interconnections within the 
group of elements. 

The first routine stage in the analysis of interconnec
tion is the calculation of the correlation ratio indicating 
the presence or absence of any connection. If this 
parameter exceeds certain thresholds special tests 
concerning linearity of interconnection can be carried 
out. For that purpose the correlation coefficient reflect-
ing the strength of linear (or a pproxima tely linear) 
interconnections is calculated. 

The direction of interconnection can be obtained 
either by using the time shift of the principal maximum 
of the crosscorrelation function or by calculating the 
regression lines of each process relating to the other 
ones. 

Nonlinear interconnections can be successfully ap
proximated with linear functions within short in
tervals, principally for monotonic increasing or 
decreasing functions. In case such an approximation 
is not accurate enough and for periodical interconnec
tions, we choose empirically approximating functions 
from routine methods (least squares, maximum likeli
hood, minimization of objective functions, nonlinear 
programming). The direction of interconnection can 
be specified by means of regression or factor analysis. 

To investigate the interconnections on different 
structural levels and between the objects of different 
complexity we must take the following steps: 

(1) In case the parameters of a single object are to 
be analyzed: 

(a) Calculation of value and sign of correlation 
ratio. 

(b) Calculation of correlation coefficient to es
timate the degree of linearity of the inter
connection. 

(2) To analyze the interconnections between ele
ments and elementary events, calculate vector 
of interconnections. 

(3) When analyzing the interconnections within the 
system calculate tensor of interconnections. 

METHODS OF INVESTIGATI~G THE 
EXTERNAL PROPERTIES OF PROCESSES 
AND OBJECTS 

These are relating to the environment and answer
ing the questions "what kind of," "when," "where" and 
"what". 

Methods of calculating the unobservable 

Observation relates here to the field of metrology 
space-time coordinates. Such calculations are carried 
out with the aid of: 

(1) Crosscorrelation analysis. 



292 National Computer Conference, 1976 

(2) Description of objects' motion in space-time 
coordinates by means of differential equations. 

(3) Calculation of dynamic transfer functions (re
lated to relaxation processes) by routine meth
ods. 

(4) Evaluation of accumulated phase shift as a 
function of time. 

Methods of sorting and distributing objects according 
to certain indicators 

(1) Calculation of statistical moments. 
(2) Calculation of distribution function. 
(3) Calculation of the multidimensional joint prob

ability density functions and estimation of their 
parameters. 

Methods of analysis of motion and functioning of an 
object in a space-time coordirwte system 

(1) Calculation of matrices of reproducibility. 
(2) Construction and solution of pertinent differen

tial equations. 

Methods of identifying and classifying objects, events 
and processes 

As a possible way to answer the question "what" we 
determine whether one observed phenomenon is similar 
to another. The problem is to identify an object as 
belonging to a certain class-it is pattern recognition. 
In such cases the following methods could be applied: 

(1) Search for the complete or partial precedent. 
(2) Diagnostic procedures in multidimensional space 

on the basis of Bayesian or other criteria. 
(3) Calculation of discriminant functions of the 

first and higher orders. 

Cases where there is no a priori information on classes 

Their images can be constructed using: 

(1) Factor analysis-principal components in par-
ticular. 

(2) Cluster-analysis. 
(3) Adaptive classification (with learning) . 

The enumeration of these methods shows that any 
one method can belong to more than one group (like 
correlation analysis which can be applied to signal 
detection, to testing the periodicity and for estimating 
the numerical parameters of the process). From our 
point of view, this does not make the suggested classi
fication less convenient because of the different inter
pretations of the results in each case. 

The complete classification is given in Table VI 
where the arrows denote what questions can be an-

swered by means of a particular method. Of course, 
not all the possible mathematical methods are exhibited 
but only those widely used in the solution of biomedical 
processing tasks according to the literature. 

Not being mathematical specialists we have un
doubtedly missed a few "tools" which may appear more 
or less important to others, but the open-ended struc
ture of the classification scheme allows us to add any
thing necessary. There is also no doubt that from the 
pure mathematician's point of view this classification 
is rather eclectic. However, our aim was not mathemat
ical harmony but the distribution of analytical tools 
over the "shelves" to make it convenient for the user 
to take the needed one from there according to his/her 
requirements. 

FEASIBLE FORMULATION OF BIOMEDICAL 
PROCESSING TASKS 

The difficulty of choosing an adequate method of 
analysis derives not only from the above mentioned 
large number of possible methods and the complexity 
of the problems themselves. This was only the tip of 
the iceberg. Complications arise when optimal time 
periods must be selected (also the correct digitizing 
interval) for a given method in order to find the desired 
parameters. However, it is impossible to discuss these 
problems here in detail. 

The way to overcome these difficulties seems to be 
formalization of the approach to the statement of bio
medical data processing tasks, thus guaranteeing the 
correct approach. 

As a first step along this line we suggest the use of a 
standard form with the following items: 

(1) Parameter (or parameters) to be investigated. 
(2) Intervals of parameter values and the given 

precision of the measurement of each one. 
(3) Duration of observations (adding criteria of 

choice if there are any) . 
(4) Digitizing interval (number of samples per ob

servation) . 
(5) Object of analysis (elements, elementary events, 

processes, interconnections) . 
(6) The real aim of the analysis (to answer the 

questions "What kind of," "Where," "When," 
"What") . 

(7) The final aim of the analysis (biomedical prob
lem). 

These seven pieces of information are supplied by 
the research worker; the people who deal with the 
data processing tasks should add one more: 

(8) Results of preliminary analysis of data by 
means of indicative methods (general informa
tion about the properties of the object or pro
cess) . 

Here the following are useful: 
(a) signal-to-noise ratio. 
(b) whether the process is stationary and the in-



Biomedical Data Processing 293 

T ABLE VI-Quantitative Methods of Investigation of Internal Properties of Objects, Events and Processes 

• Detect10n 

:~ ~!!Ca1s 
not.!" 
background 

Extraction 
of object 
frcllthe 
enviro:'laen 

F.st {mation ("O~ 

rhcholllogene
it.Y(lfgrour 
0" obj~rts 

A.Eati •• rion 
of period i
c if,. of ~ he 
process 

F.stililation 
.... fpertodl-

~!::1:~ the 
structures 

P. Eatt •• tlonof t.he integral 
?ar ••• teraofproceases 

periodical 

5P('-[[·11 -'I:":alysis 

alc'J1.1ttonof the ,pec 
ral dena!q" function 
s1. n t clif ferentbaseg 

(WaI!'Ih. Fout'ier, etc.) 

Cal-:'Ilat Ion "r t~e 
r.To"s-ep~ctTal den!liry 

- .. e8:1.g3[10no£ the 
i:-tternal coht"rr.,c",., 

". proce" U---r-_-_-_-_-_-_~ ______ ~:I:==========j----I--------.J 

~~~:~~~;~' ill~p~~~~:t~~:~o~~~A~ ~~',O~,' ~,j~~" II 

terval of stationarity.

.. ort:'lE:<''' str. utlonofo .. ecr
accordir.p, t~ their t 1111e aram.erers

(c) statistical parameters, primarily the type of
distribution.

(d) whether the process is periodical.
(e) results of Markov property test.
Analysis of data thus obtained in combination with

the suggested classification schema will facilitate the
choice or the optimal method of data processing. In
case there are several possible methods one should
remember the Okkam razor and choose the simplest one
so as not to increase unnecessarily the number of
essential descriptors.

In conclusion we would like to stress that the choice
of data processing methods must be based upon their
applicability to the data at hand. A bad choice will
lead to the data having to be "reprepared" in a
perhaps less useful format.

REFERENCES

1. Moiseeva, N. I. and M. Yu. Simonov, "Some Limitations of
Computer Data Processing," Problems of Cybernetics, Vol.
24 and Problems of Medical Cybernetics, Moscow, 1975,
pp.98-112.

2. Petrov, M. I., "Systemic Aspects of Scientific Activity,"
Systemic Investigations, Moscow, 1972, p. 34.

tAn'IY'" o. ObJ'" .",ojl
and functioDi'CIglnspac.e
~1.~ coordinate",

3. Schrodinger, E., What is Life? The Physical Aspect of the
Living Cell, 1955.

4. Moiseeva, N. I., "Medical Aspects of Computer Diagnostics
in Neurology," M editsina, Leningrad, 1972.

5. Gontcharov, V. A., "On the Problem of Tasks Classification,"
Controlling Systems and Machines, 1975, N. 1, pp. 95-97.

6. Dixon, W. J., "Statistical Packages in Biomedical Compu
tation," Computers in Biomedical Research, Vol. I, Eds:
R. W. Stacy, and B. Wasman, New York, London, Aca
demic Press, 1965, pp. 47-64.

7. Rashevsky, N., Some Medical Aspects of Mathematical
Biology, Ch. C. Thomas, Springfield, Illinois, 1964.

8. Urbach, V. Yu., Mathematical Statistics for Biologists and
Physicians, Moscow, Acad. Sci. Press, 1963.

9. Urbach, V. Yu., "Biometrical Methods," Moscow, Nauka,
1964.

10. Urbach, V. Yu., "Statistical Analysis in Biomedical Re
search," Meditsina, Moscow, 1975.

11. Ivanov-Muromsky, K. A. and S. Ja. Zaslavsky, "Applica
tion of the Computer for Brain Electrodramms Analysis,"
Naukova dumka, Kiew, 1968.

12. Moiseeva, N. I. and V. V. Usov, "Some Mathematical
Aspects of Computer Diagnosis," Proceedings of the IEEE,
Vol. 57, N. 11, 1969, pp. 1919-1925.

13. Heinmets, F. (Ed.), "Concepts and Models of Biomathe
matics," Biomathematics, A series of Monographs, New
York,1969.

14. Plochinsky, N. A., Biometry, Mosco,..,. University Press;
1970.

294 National Computer Conference, 1976

15. Gorovenko, G. G., V. A. Diadura, N. N. Zukov, M. M. Petrov,
B. V. Radionov and E. L. Tsatsko, "Probability and Statisti
cal Methods and Computers in Biomedical Research,"
Zdorovie, Kie\v, 1970

16. Kline, N. and E. LaRka; Computers nnrJ. Eler.tronir. ne1JifJe.~

in Psychiatry, Grune and Stratton, New York, London,
1968.

17. Reinberg, A., "Methodological Considerations for Human

Chronobiology," Journal of Interdiscipl. Cycle Res., Vol. 2,
N. 1,1971, pp. 1-15.

18. Lakin, G. F., "Biometry," Vysshaya Skola, Moscow, 1973.
19. Bendat, J. S. and A. G. Piersol, Random Data: Analysis

nnd MenR1l,rem,ent Procedures; New York; London; Wiley
Interscience, 1970.

20. Hallberg, F., "Chronobiology," Annual Review of Physi
ology, Vol. 31, 1969, pp. 675-725.

An adaptahle~ moduiar data - collection system suitabie for
scientific experimentation - Analog to digital transformation~
short - term digital storage~ formatted digital tape - recording~
and computer entry of experimentai data

by HAROLD H. SHLEVIN
University of Rochester School of Medicine
Rochester, ~ew York

ABSTRACT *

This paper describes an adaptable, modular data ac
quisition system suitable for the collection of experi
mental data in a form readily adapted to subsequent
digital computer entry and analysis. The system uti
lizes voltage-to-frequency conversion of an input ana
log signal over precisely regulated timing intervals.
The digitized data is initially stored in shift-registers
and later digitally formatted and digitally tape-re
corded. The recorded data is read by a complimentary
tape reading system and entered into a mini-computer
for subsequent analysis and long-term storage. The
digital formatting technique permits unambiguous defi
nition and recovery of each data word as the tape is
read.

Adaptations of this system necessary to accommodate
variations in the length of each data-word and the num
ber of words per message block are discussed.

Commercially available TTL integrated circuits and
modular components are used in the design of this
system.

INTRODUCTION

Scientific experiments often require a means of rapidly
collecting and storing analog experimental data in a
form readily adapted to later digital computer entry
and analysis Although commercial systems are avail
able, individual systems better suited for the particular
experimental configuration can be constructed with rel
ative ease and at significantly reduced cost by using
readily available TTL and CMOS integrated-circuits.

The data collection system described in this paper
evolved from a desire to carry out electrophysiological
experiments aimed at further characterizing the mem
brane charge movement phenomenons in single, skele-

* This work has been supported by KIH/USPHS Training Grant
number 5-T01-GM00394; and in part by an :\LD.A.A. research
grant to Dr. :'.1artin F. Schneider.

295

tal muscle cells (Schneider, M. F. and Chandler, W. K.,
1973). A Digital Equipment Corporation PDP-8/E
minicomputer was available for off-line analysis.
Therefore, an interim means of storing the data for
later computer entry was needed.

This paper describes an adaptable, modular data
collection system suitable for the collection of experi
mental data. The description is divided into four logi
cal segments (Figure 1): (1) Data transformation
using voltage-to-frequency conversion, and static shift
register storage of the digitized data, (2) Formatting
of the stored, digital data using a Universal Asynchro
nous Receiver-Transmitter (U.A.R.T.), in preparation
for tape-recording, (3) Digital tape-recording, and,
(4) Reading and computer entry of the digitally tape
recorded data.

DATA TRANSFORMATION

The process of analog-to-digital conversion of the ex
perimental data was simplified by using a voltage-to-

bit-IZ_bitl

Figure l-Block diagram of the data-collection system

296 National Computer Conference, 1976

frequency (V IF) converter module (Anadex Instru
ments, Inc. Model 1700-5044-00). The converter pro
duces TTLIDTL compatible output frequencies of 0-1.0
MHz that are directly proportional to input D.C. volt
age signals of 0-10 V.D.C. The linearity of the con
verter is better than 0.01 percent of full-scale, and its
output responds virtually instantaneously to changes
in input voltage. Experimental input D.C. voltages of
± 100 mY. in amplitude are amplified to a level com
mensurate with that of the V IF converter by an in
strumentation amplifier (Analog Devices, Inc. Model
AD520J) with externally adjustable gains of 1, 20, 50,
or 100, and adjustable reference levels.

Voltage-to-frequency converters require less complex
wiring for data transmission than do conventional
analog-to-digital converters; only a single line is needed
for a serial pulse-train. A clock signal and a counter at
the receiving end are used to encode the pulse train.
The process results in an analog-to-digital conversion
and time-integration of the input signal. This was
particularly desirable for later data analysis (Figure
1).

The output pulses of the V IF converter were counted
by three cascaded four-bit binary counters (SN 74193)
for externally adjusted intervals of 0.1, 0.5, 1.0, 2.0,
5.0, or 10.0 milli-seconds. Timing pulses, which had
been buffered to TTL levels, were generated by a gated,
pulse train output channel of a digital stimulator
(Digitimer Ltd., Hertfordshire, England, Model 4030).
When the binary counters for the V IF converter out
put receive a timing signal, the following sequence of
events occur (Figure 2) : (1) The input to the counters
from the V IF converter is disabled, (2) The twelve-bit
binary number presently in the counters is transferred
to a digital (12 X 256) -bi t storage register (NS
5055), (3) The binary counters are cleared, (4) A
Master-Event-Counter is advanced by one count, and
(5) The input to the V IF counters is again enabled.
These five steps occur within 3.8 micro-seconds. By

Timing pulse

Counter enable

Load shif t reQi ster

C Ie ar counter

Master event counter

1.~/----~rl~-------------4,1
IJ~J--..., II

I !

~'J~-----~rl~----------~h

u~------~rl~--------~H
H
IfLsec

Figure 2-Voltage-to-frequency converter; Timing sequence

MASTER EVENT COUNTER

AI SN7408 01 SN7"32

eTl,z SN 7493 II SN H 0"

FFI,2 SN7473

Figure 3-Master-event-counter; Circuit diagram arrows in
dicate direction of information flow

(Al=SN 7408; CT1, CT2=SN 7493; FF1, FF2=SN 7473;
Ol=SN 7432; and I1=SN 7404)

repetition of this sequence, a total of 256 sequential
data, points are sampled during any collection interval,
(e.g. one oscilloscope sweep).

A Master-Event-Counter circuit serves to control two
distinct sequences (Figures 1, 3, and 4): (1) The ac
tual digital transformation of the analog data and the
static storage of 256 digital data points, and (2) The
digital formatting and then digital tape-recording of
the previously collected 256, twelve-bit binary data
words.

In conjunction with an initializing SYNCH pulse,
CT1 and CT2 .< cascaded four-bit binary counters SN
7493), and FF1 and FF2 (dual J-K flip flops with
clear SN7473) are cleared. This sets QFF2 to logic
high and enables the Master-Event-Counter and the
sequence of events necessary to digitally transform and
store the experimental data signal, as previously
described. After 256 data points have been sampled,
QFF2 toggles to logic high enabling the sequence of
events required to format the 256 twelve-bit binary
data words, and to initialize and consummate the

Synch ------~n~ ____ ~ii,~------------~
n ~I

Reset counter -----.J ~J------.1 '""'U"

Co lIeet data (Qm) ____Jr;tt;;;l~ _____ ___III

Format a tap. (QFF2) _______ -J12~ Pt.'~1

Figure 4-::vraster-event.-counter; Timing sequence

taping process. After taping of all 256 data words has
been completed, FF2 again toggles setting QFFI to
logic high. This blocks any further timing pulses and
blocks all counters until another SYNCH pulse is
received.

Although independent and variable clocks are used
to collect the data and to format and tape the data, the
control logic segment assures that only a single Master
Event-Counter pulse is generated for each twelve-bit
binary data word collected and for each original twelvc
bit data word transmitted by the V.A.R.T. to the
tape-recorder.

Although the data-collection system is designed spe
cifically for the digital transformation and taping of
256 twelve-bit binary data words, it is easily adapted
to any multiple of 2n points by simply changing the
Master-Event-Counter, the length and/or width of the
shift-register buffer, and the number of bits per data
word as may be appropriate for the resolution desired.

FORMATTING OF THE STORED DATA WORDS

A Vniversal - Asynchronous - Receiver/Transmitter
(V.A.R.T.) in half-duplex mode was used to ensure
the competency of the data interface between the 256
word shift-register buffer and transmission to the
digital tape-recorder The transmitter section of the
U.A.R.T. (Texas Instrument Co, Model TMS 60IINC)
accepts the parallel data from the shift-registers, con
verts it to serial form and generates a start, parity,
and stop (1 to 2) bit(s) for each original twelve-bit
binary data word. The data word length (5 to 8 bits
long), the baud rate (0 to 200 KHz.), and the sign of a
parity bit are externally selected. The formatting func
tion and parity generation of the V.A.R.T. allow for
unambiguous definition of each data word when read
ing the data tape and for the detection of dropped bits.

To transmit one twelve-bit word from the shift
registers to the tape-recorder, two ten-bit data words
are sent by the V.A.R.T. Each word is formatted as
shown in Figure 5. Each half (six bits) of the original
twelve-bit data word is concatenated to an indicator
bit. The indicator bit is used to indicate whether we
have the front-half or the back-half of the original

12-BiT DATA WORD

Figure 5-Formatting. (a)-Original twelve bit binary word
from counters for V IF converter

An Adaptable, Modular Data-Collection System 297

UART WOR D 1 UART WORD 2

1 _ __ _

l 11I~t::t,...

Figure 5 (b) -Actual oscillographic record of formatted output
from the V.A.R.T. sent to WRITE unit

twelve-bit data word; this is rechecked when reading
the tape.

The V.A.R.T. clock, derived from an internal oscil
lator, runs at a frequency of sixteen times the baud
rate. Successive divisions of the V.A.R.T. clock rate
by sixteen (for the baud rate), by ten (signalling each
half-word) , and then by two (denoting complete trans
mission of the two halves of the original twelve-bit
data word), together with appropriate internal and
external control logic allow for constant checking and
control over the formatting and transmission processes.
For each original twelve-bit data word, transmitted as
two ten-bit, formatted V.A.R.T. words, the Master
Event-Counter is advanced by one count.

This configuration is easily adapted to any length
data word by appropriate fragmentation of the data
word into separate V.A.R.T. words, indicators bit(s),
and appropriate division of the V.A.R.T. clock to form
the clock pulse which serves as input to the Master
Event-Counter.

DIGITAL TAPE RECORDING

The core of the system is a MicroVox tape recording/
reading unit (Micro Communications Corporation,
Waltham, Massachusetts). There are two separate,
hand-size units in this system: a WRITE unit and a
READ unit. Each unit consists of a tape drive system,
plus all the necessary data transfer and tape handling

PLAYED- BACK DATA

5101112131415 1 rlplst l 5 1 01112131415111 pist
~
I msec.

Figure 5(c)-Actual oscillographic record of DATA recovered
from the READ unit, on expanded time base for comparison

with Figure 5b

298 N ationa! Computer Conference, 1976

logic. The available lines are: CLOCK __ IN, CLOCK_
OUT, DATA, READY, END._OF_TAPE/BEGIN
NING_OF_TAPE, ON, and FAST_FORWARD. The
internal CMOS circuitry of the Micro Vox units pro
vides true TTL-compatible logic interfaces (after ap
propriate buffering) to and from the data-collection
system.

The WRITE unit is functionally a phase-lock loop
(P.L.L.) (Figure 6). The P.L.L. functions as an elec
tronic servo consisting of a phase detector, a low pass
filter, and a voltage-controlled oscillator (V.C.O.). The
V.C.O. enables the P.L.L. to synchronize or "lock" on
the incoming clock signal. The clock signal (CLKIN)
serves to clock in each bit of the word. As the phase
of the clock signal changes, indicating a change in in
coming frequency, the output of the phase detector will
change just enough to keep the V.C.O. frequency the
same as the incoming frequency. This allows the baud
rate to be varied both dynamically and statically over
a wide range.

In external-clock mode, the Micro Vox WRITE sys
tem's P.L.L. synchronizes with the leading edge of a
user supplied clock-in (CLKIN) signal. This signal is
derived from the successive division of the U.A.R.T.
clock signal (-;- 16), described earlier. The WRITE
system furnishes an externally available clock-out
(CLKOUT) signal which is checked by the data-collec
tion system to verify phase-locking quality. A modu
lator, internal to the WRITE system, then manufac
tures the waveforms of logic 1 and logic 0 which are
written onto the tape in proper relation and synchrony
with the formatted, serial data stream from the
U.A.R.T. The MicroVox WRITE system can function
over a range of 300 to 3200 bits/second.

This technique of pulse-coded modulation affords sig
nificant advantages over more conventional AM or FM
recording methods: (1) A greater accuracy, (2) A

CLKIN

CLKOUT

Ready _-=::I==------+-----------'
E .O.T. eC-------~--_;
F ,I. - -~---7__--__t.

protect'
ON~----r--i

FF ~-~-------------~

+12 VDC o?---<I
+5VDC~

GRD-+-o

Figure 6-Micro Vox WRITE unit: Functional block diagram re
produced with permission of Micro Communications Corporation

significantly better signal-to-noise ratio (up to 90 db),
(3) The capability for relatively long-distance trans
mission of the data without degradation since the
digital signal can be regenerated with a very low prob
ability of loss, and (4) The ability to computer process
the information with virtually no modifications.

The tapes are continuous loop, one-track cartridges
available in a variety of lengths. Since the tape is a
loop, the physical end-of-tape (EOT) and beginning-of
tape (BOT) are the same. Provisions exist for detec
tion of EaT/BOT as well as for file protecting each
cartridge.

Transition of QFF2 of the Master-Event-Counter
from logic low to logic high initializes the following
sequence of events by the data-collection system lead
ing to consummation of the WRITE function (Figures
6, 7) : (1) Fast_Forward (FF) is set to logic 0 and
ON to logic 1, thereby entering WRITE mode and
accelerating the tape to speed. If initially stopped, the
tape unit reaches speed within 60 mill i-seconds. (2)
The CLKIN sign:!l derived from successive division of
the U.A.R.T. clock is supplied. The MicroVox WRITE
unit then furnishes an external READY (RDY) signal
indicating that phase-lock and speed have been
attained. This permits the external data-collection in
terface to transmit DATA to the recorder and allows
the recorder to write the formatted DATA onto the
tape. Had CLKIN not been supplied, the RDY signal
would not be furnished and the data-collection inter
face would not permit the sending of DATA to the
recorder. During such a state, the Micro Vox WRITE
unit would write bias onto the tape; this prevents man
gling of message blocks and later allows the Micro Vox
READ system to start and stop between two consecu
tive message blocks. (3) Each data bit is clocked to
the recorder by the CLKIN signal. There is a delay of
approximately 11/~ CLKIN cycles between the occur
rence of a CLKIN pulse and the actual writing of that
particular data bit onto the tape.

In this fashion all 256 original twelve-bit data words
(or 5120 U.A.R.T. bits) are transmitted. Upon com-

message: formatted wordiS)

------------------------~'~ " ON~ L-........-,

ClKIN f T i i f i ". t i i 1 iTt r 1 f iii 1 f t
ClKOUT TTl T T T i i fiT i tiT iTT T T T T T f 1 T •..•

'~,
DATA" ~llor 'I z, 'r 4 1'1 I;:T:'0, 10,' It ,',4 flr;-;-.-'n, 711ftllll17lli

liAS t-- UART .ord "I -----f _UART wer. ~ -----f .on

MODULATION L ~. 0 I Z l 4 , I ~~'8' 0 , 2 l 4 I' ~-p8 .,.,-----""
ON TAPE If-- liAS .. I I I I I I I I "T""'"""""'""O " r,,............,. ----If ---.,

I' lta,t lIit p. parit, bit

I-lftllllle_Urblt .t-,t.p"',

Figure 7-MicroVox WRITE system: Operating sequence
A formatted U.A.R.T. word is shown: s=start bit, 0-5 denote
data bits, I=indicator bit (0 or 1), P=parity (odd or even),

and st=stop bit (1 shown)

pletion of transmission, QFF2 of the Master-Event
Counter flips to logic low and in conjunction with a
U.A.R.T. done flag, the CLKIN signal is discontinued.
After 11/~ bit periods, the time needed to write the last
bit, RDY drops to logic O. (4) The data-collection
interface then sets ON to iogic 0 and the tape dy
namically brakes to a standstill.

The external data-collection interface provides the
option of slewing to the EOT /BOT in Fast_Forward or
slow mode (with eLKIN discontinued, FF=lj ON=l).
EOT /BOT is optically sensed by the Micro Vox WRITE
and READ systems from two foil-reflectors spaced 3"
apart and affixed to the tape.

During the writing of data, the occurrence of the
first EOT applique causes the data-collection interface
to finish writing only the current twelve-bit word (20
U.A.R.T. bits), and then the recorder is stopped. A
new cartridge is inserted, and writing resumes under
control of the Master-Event-Counter. However, in
slew to EOT /BOT mode, the external interface stops
the tape immediately after the second EOT applique
in preparation for later reading or writing.

No modifications to either the data-collection inter
face controlling the Micro Vox WRITE system (other
than those already described) or to the tape unit itself
are necessary to write any word-length, or number of
words per data block.

DIGITAL TAPE READING AND COMPUTER
ENTRY

The Micro Vox READ system is specifically designed
to read tapes produced by the MicroVox WRITE sys
tem. A high degree of cooperativity between the two
units minimizes errors that could result· from tape
speed irregularities (e.g., wow and flutter), allows for
writing and reading the same tape-wafer at widely
different speeds, and results in simple adaptation of
the tape units to a large number of external interfaces.

The instrumentation of the motor control functions
(ON, FF, EOT/BOT) of the READ system are iden
tical to those of the WRITE system; their functions are
similarly controlled by the external data-collection
interface. The bit density (b.p.i.) written on the tape,
and the speed (i.p.s.) at which the tape is read deter
mine the waveform presented to the READ head.
Above a density of 800 b.p.L, the READ waveform is
no longer usable. A dual-peak-detecting system, with a
decent frequency response and insensitive to both am
plitude and waveform, is used to allow for large vari
ations in the amplitude, frequency, and shape of the
waveform presented to the READ head.

To read a tape-wafer, the external data-collection
interface is used to control the following sequence of
events (Figure 8): (1) Fast Forward is set to logic 0
and ON to logic 1, thereby entering READ mode and
accelerating the tape to speed. (2) The READY signal
rises to logic 1 a full bit-interval before the first data

An Adaptable, Modular Data-Collection System 299

bit is shifted to the external interface, allowing the
maximum possible time in which to ready the external
data interface. (3) A CLKOUT pulse is furnished by
the READ unit approximately 5 p.secs. after each
DATA bit is shifted. The process continues until modu
lation ceases, then (4) READY drops to logic lo\v, and
depending upon the states of the external interface and
the computer program either the tape is stopped (ON
to logic 0) or reading is continued (ON remains at
logic 1).

Data collection system-computer interface

The use of the U.A.R.T. to format the data sent to
the Micro Vox WRITE system allows the data collection
interface to unambiguously define the beginning, end,
and origin (front-half or back-half of the original
twelve-bit data word) of the words being read.

The start of each U.A.R.T.-word is defined as a
transition of the READ system bit-output from logic
high to logic low. This transition is detected by the
external data-collection interface which is preset for
the word-length, the parity (even or odd) and the num
ber of stop bits (1 or 2) written.

Detection of a start-bit by the external interface
enables the following sequence of events (Figure 8) :
(1) A word-length counter (SN 7490), parity gener
ator (SN 74180), and a ten-bit series-to-parallel shift
register (SN 7496) are cleared. (2) Each bit of the
ten-bit U.A.R.T.-word is clocked into the ten-bit series
to-parallel shift-register by the CLKOUT signal derived
from the Micro Vox READ unit. When a complete ten
bit U.A.R.T.-word has been shifted, (3) The word
length counter overflows, (4) Parity is checked and
error flag(s) set as necessary, (5) Either the first-six
or last-six bits of a twelve-bit parallel-in, parallel-out

melsaQ.

ON

REA 0 y.~------II
~ ~ I bit period + 5psec

CLKOUT
iiiiiiiii1iiiiiiitii

r'C;;;~'d 7777777 77 7 lis 10 ",2'"1 4 1"1 1 ;-;[::1. 1°1'1 21"1 4
" GFFI r,JZZZZ

~ bia. I uart word If, __ uart word "2 --+ blo.

C;;;.O'YH.\'. ,. wora I n •. Hil2 n _
ck.,arltr J---------~.L... ------=.=.:..:..~ct. Inllieatar

PDPe/E rl
Ht fla, I -----------------, -'---t

PDPe/E _____________________ ~

reeeivell
• •• t .. , bit , • ,.rlt, ~It

%_ IMllcstor ~It at. ate, IM't

Figure 8-::.vlicroVox READ system and DATA interface
operation

A recovered DATA word is shown: s=start bit, 0-5 denote
data bits, I=indicator bit (0 or 1), P=parity (odd or even),

and st=stop bit (1 shown)

300 National Computer Conference, 1976

buffer register (SN 74174) are loaded (with the data
bits of the U.A.R.T. word) depending on whether the
indicator-bit is a logic 1 or a logic 0, respectively.
These five steps are repeated until the second U.A.R.T.
word has been received; then, (6) The data-collection
interface flags the computer (D.E.C.-PDP-8/E) and
a complete twelve-bit binary data word is read into core
memory. (7) In response, the computer acknowledges
receipt of the data word.

This process is continued until a total of 256 twelve
bit, binary data words (1 sweep) have been received
and acknowledged by the computer. The controlling
program then either stops the READ unit or continues
the reading process as may be appropriate.

A Digital Equipment Corporation PDP-8/E mini
computer was used to control the read portion of the
data collection system, and perform subsequent data
analysis. During the READ cycle the data collection
system communicates with the PDP-8/E through a
D.E.C. M1709 omnibus interface module.

The computer was programmed in OS/8 Fortran
IV. The actual control of the data-collection system is
implemented by a RALF assembly language sub
routine. The starting and stopping of the READ unit,
the number of 256-word data blocks read, the handling
of all error flags, and the transfer of the core resident
data to Dectape for long term storage are all under
program control. To maximize efficient use of storage,
three twelve-bit binary data words are stored in both
core and on Dectape in the space allocated for one
Fortran floating point variable.

In subsequent analysis of such condensed data it is
necessary to "float" each twelve-bit, binary data word
into one Fortran floating-point variable. Each Fortran
floating-point variable occupies 3 contiguous storage
locations. This is accomplished by executing a call
from the main FT~ IV program to a specific RALF

subroutine which floats a binary word. All program
generated output destined for Dectape is recondensed
before transfer.

The programs and interfaces are easily adapted to
accommodate a variety of word-lengths, words pel'
message block and other necessary control functions.

ACKNOWLEDGMENTS

It is a pleasure to thank Dr. Martin F. Schneider for his
helpful advice and discussion concerning this system,
as well as his continual encouragement.

I am grateful to my wife, Barbara for her continual
encouragement and love, and for her help with the
illustrations; and to Mrs. Lillian Peracchia for help
with photography.

I thank Mr. John Young of the Department of Bio
mathematics for his helpful discussion and debugging
aide; and also thank Irma Johnson, and John Hemmert
of Micro Communications Corporation for much help
ful advice.

This work has been supported by NIH/USPHS
Training Grant #5-T01-GM00394 and in part by a
research grant from the Muscular Dystrophy Associa
tions of America to Dr. Martin F. Schneider.

The author gratefully acknowledges the support of
Micro Communications Corporation for travel-expenses
necessary to attend this conference.

REFERENCES

1. Micro Communications Corporation, Equipment :Ylanuals:
MicroVox Digital Write System, and MicroVox Digital Read
System, with permission, 1975.

2. Schneider, M. F. and W. K. Chandler, 1973, "Voltage-De
pendent Charge :Movement in Skeletal Muscle; A Possible
Step in Excitation Contraction Coupling," l\Tature, London
242, pp. 244-246.

£,\1 • £- ..i! I· £ · p • t...laSSIllcaiIon 0.1 persona in ormatIon tor prIvacy
• * protectIon purposes

by REI1~ TURt~
The Rand Corporation
Santa Monica, California

ABSTRACT

Laws now in effect require protection of individual
privacy in personal information record-keeping sys
tems maintained by the federal government and by
several states. These requirements will be extended to
the private sphere in the future. It is necessary for
their implementation in record-keeping systems to
establish a standard sensitivity scale and classification
system for personal information. This paper surveys
several classification systems that have been discussed
in the literature, examines the criteria for setting up
such systems, proposes a new sensitivity scale and
corresponding classification system, discusses the infor
mation integrity and security provisions that should
be adequate for each classification level, and examines
the problems that arise in assigning sensitivity and
classification levels to personal information items, rec
ords, and record-keeping systems.

INTRODUCTION

The federal Privacy Act of 19741 and similar laws in
several states (Minnesota, Arkansas and Utah) have
established certain rights of individuals regarding
personal information maintained on them by govern
ment agencies, restricted the use and dissemination of
personal information, and prescribed requirements for
information quality, integrity and security. In par
ticular, the Privacy Act of 1974 states that any agency
of the federal government must "maintain all records
which are used by the agency in making determinations
about an individual with such accuracy, relevance,
timeliness and completeness as is reasonably necessary
to assure fairness to the individual in the determina
tion," and must "establish appropriate administrative,
technical, and physical safeguards to insure the security
and confidentiality of records and to protect against

* Any views expressed in this paper are those of the author.
They should not be interpreted as reflecting the views of The
Rand Corporation or the official opinion or policy of any of its
governmental or private research sponsors.

301

any anticipated threats or hazards to their security or
integrity which could result in substantial harm, em
barrassment, inconveniences or unfairness to any in
dividual on whom information is maintained." The
Act and state privacy laws also note that certain per
sonal information items are available to anyone under
the provisions of the Freedom of Information Act/
certain other items must be restricted to the agency
personnel on a need-to-know basis, and still other items
may be withheld even from the individual data subject
himself.

The privacy protection laws recognize implicitly that
not all items of personal information are equally criti
cal in making a fair determination about an individual,
that they are not equally sensitive from the point of
view of their dissemination causing harm or embarrass
ment to an individual, and that the information quality,
integrity and security requirements may vary among
information items, types of records, and types of rec
ord-keeping systems. Even the same information item
may be innocuous in one system of records, but very
sensitive in another. For example, while a person's
name is usually public information, it becomes sensi
tive when associated with a system of psychiatric
treatment records.

Since most of the personal information record-keep
ing systems do not contain highly sensitive informa
tion, it is not necessary nor would it be economically
practical to require absolute quality, integrity and
security for all personal information in all record
keeping systems. Rather, following the approach taken
in handling sensitive national defense information, a
set of information sensitivity categories couid be estab
lished such that, for each category, the access and dis
semination restrictions would be specified and the mini
mal levels of required information quality, integrity
and security would be defined. Thus, the technical
questions of assuring quality and integrity, and pro
viding security would be separated from the social
policy questions of determining what level of integrity
and protection must be provided for a particular type
of information in a particular record-keeping system
several sensitivity categories are available and the

302 National Computer Conference, 1976

corresponding access control, integrity and security
levels are provided by the system, such that any infor
mation item can be assigned to the sensitivity category
most suitable under the circumstances.

This paper surveys several sensitivity classification
systems that have been discussed in the literature,
examines the criteria for setting up such systems, and
proposes a generalized set of sensitivity categories for
personal information in governmental as well as pri
vate record-keeping systems.

PROPOSED CLASSIFICATION SYSTEMS

Several suggestions for classification of personal
information have been made in the literature. One of
the earliest proposals by Comber3 defines three cate
gories based on dissemination controls that are applied:

1. Unclassifiedr-All data maintained by a public
agency not otherwise classified as restricted or
confidential.

2. Restrictedr-Data that are not prohibited from
full and free disclosure by statute (confidential),
but whose unauthorized use could constitute an
unwarranted invasion of personal privacy.

3. Confidentialr---Data that are prohibited from free
and full disclosure by statutory regulation (law).

Comber suggests that among the criteria for classi
fying personal information as "restricted" should be
whether or not the disclosure of data in question
would: (1) Facilitate unwarranted identification of
individuals, (2) Cause unjust economic loss or public
stigma or harassment, and (3) Result in unnecessary
loss of property right. The classification decisions
would be made on the basis of public policy, laws, legal
interpretations, agency specifications and personal
needs of individuals. However, the decisions would be
expected to vary among record-keeping systems de
pending on the context in which the data are embedded,
the amount of information and its intrinsic nature, the
sophistication of the social values of the individuals
involved, and the significance of personal attributes in
the sub-culture involved. Among the examples of per
sonal information that may be classified as "restricted,"
Comber cites political and religious preference, marital
history, family attributes, ancestry and names of rela
tives.

A more detailed information classification system and
sensitivity scales have been proposed by the British
Computer Society :4

1. Public-Any personal information that is gen
erally available in a listed form, such as various
directories, biographic pUblications, etc.

2. Published-Information that is available but has
not been collected, such as court records or hos
pital admission records. This category differs
from "public" information in that if the indi-

vidual involved does not draw attention to its
existence, this information is not generally
known.

3. Confidential-Information that is not generally
available, althuugh it is available and known to
the individuals concerned.

4. Secret-Information that is not generally avail
able, including the individuals concerned. In
formation in this category would be collected
only under statutory authority or when author
ized by the individual involved.

Within these four sensitivity categories there could
be a more detailed sensitivity scale, such as illustrated
in Table 1. The authors of this classification system
also point out that sensitivity of personal information
varies with the circumstances and ideally each case
should be determined according to precedents within
the framework of legislation or professional codes of
conduct, and that it appears not practicable to define
degrees of sensitivity in any rigorous manner.

A very detailed catalog of classification of personal
information items on the basis of sensitivity has been
developed by Bing" from the point of view of N or
wegian societal, legal and cultural concepts. The index
contains some 400 data elements that are graded on
the basis of three sensitivity levels:

1. Normal aspects (GSl) -General factual infor
mation about an individual's person, family,
housing, property, employment, and other infor
mation in public record-keeping systems.

2. Personal aspects (GS2) -Intimate, detailed or
specific information on an individual that could
be used to make a social judgment about him as
well as to obtain a detailed picture of his person,
health, family, life style and views.

TABLE I-A Scale for Data Sensitivity (British)

Value
Scale

10

Examples

Information collected and available,
such as telephone books, pro fessional
listings

Selected general information (e.g., titles
such as Miss, Mrs. or which indicate the
marital status)

Public utilities account inquiry systems

Public information in schools

Vehicle licensing systems

Financial information (e.g., bank records;
medical records)

More sensitive financial information (e. g. ,
company finances)

Commercial secure infornBtion (e. g. ,
trade secrets)

Confidential police records (e. g., records
used by inquiry agents)

Police records relating to convictions

Secret information (diplomatic secrets;
defense secrets)

Classification of Personal Information for Privacy 303

3. D'isparagi'ng and de ja-rrwto-ry aspects (GS3) -
Information that could be used to form a moral
or ethical picture of an individual, as well as
information on especially sensitive health con
ditions or handicaps, ideological views and be
liefs, law enforcement information, personal
idiosyncracies and habits and evaluations of
abilities.

The criteria for categorizing a data element depend,
as in other classification systems that have been pro
posed, on considerations such as the individual and
societal values, quantity of information involved, pur
pose of its collection and use, context and age of the
information.

Sensitivity categories have also been proposed for
various specialized record-keeping systems. For ex
ample, in the guidelines for record-keeping in public
schools(; the following sensitivity categories are pro
posed:

1. Category A-Official administrative records that
constitute the minimum personal data on students
necessary for the operation of the school (identi
fication, attendance, academic work completed,
level of achievement, emergency information).

2. Category B-Verified information of clear im
portance but not absolutely necessary (intelli
Jence, aptitude and achievement test scores;
health and family background; teacher and coun
selor ratings; verified reports of recurrent be
havior patterns).

3. Category C-Potentially useful information, but
not verified or clearly necessary beyond imme
diate use (legal or clinical findings, personality
test results, unevaluated reports by teachers or
counselors) .

Specific administrative procedures are proposed for
each category regarding access and dissemination,
retention and use. For example, it is recommended that
unless category C items are verified and, thus, moved
into category B, they should not be retained longer
than one year without discussing the reasons for this
with the student's parents.

Finally, the following set of sensitivity categories
has been proposed for criminal justice information
systems :7

1. Restricted-Data that require minimum special
security consistent with good security and privacy
practices.

2. Confidential-Criminal justice information on
individuals disseminated to criminal justice
agencies, research reports derived from such
information, and documentation of the informa
tion system itself.

3. Highly sensitive-Data that require maximum
special security provisions and particularized
privacy protection, such as criminal history in-

formation accessed by using other than personal
identifying characteristics, arrest information
without conviction, intelligence information, and
computer programs and systems used for pro
cessing criminal justice information.

The lowest sensitivity category proposed in this sys
tem is "restricted" even though much of criminal
justice information is public by statute. This is ex
plained by pointing out that there is still a need to
assure the integrity of such information.

A GENERALIZED CLASSIFICATION SYSTEM

The establishment of a standard classification sys
tem for controlling the use, dissemination and pro
tection of personal information in record-keeping SJTS-

tems has the obvious benefit of clarifying for everyone
concerned the level of privacy protection that can be
expected and must be provided, and the consequences
of not doing so. For each category would be specified
the requirements for maintaining information quality,
integrity and security; information handling and
accountability procedures; personnel clearance criteria
and procedures; information retention periods and
classification criteria and procedures; and penalties for
willful violations of these requirements. A framework
for such a classification system is outlined below. It
is discussed in more detail elsewhere.8

A very important consideration in setting up a classi
fication system is the number of categories that are
defined. Too many categories may make the use and
implementation of the system too cumbersome and
costly; too few categories may result in overc1assifica
tion and excessive privacy protection requirements.
Important considerations here are the number of sensi
tivity levels of personal information and the number of
different dissemination restrictions.

Sensitivity levels

Personal information becomes sensitive when its
uncontrolled dissemination may have adverse effects
on the individual concerned and on his activities within
his social group, or when it can reveal that the indi
vidual does not possess values expected by his family,
acquaintances, those making determinations affecting
him or the society. Two situations arise: the individual
wants to limit circulation of the information, or the
information is kept from the individual for "his own
good" or the society's good. For example, the infor
mation may include an individual's past transgressions,
views or associations or, in the second case, it may in
clude results of medical or psychiatric examinations, or
information on an ongoing criminal investigation of
the individual.

The adverse effects of revealing personal information
on an individual to others or, as the case may be, to

304 National Computer Conference, 1976

himself, may range from a mild annoyance to physical
harm or even loss of life. Between these extremes it is
possible to define many other levels of adverse effects
on the individual's physical and mental health and
well-being, employment, family life, reputation, social
life, and values. However, in order to keep the number
of sensitivity levels small a scale of six categories is
proposed in Table II. Shown are only the primary
potential adverse effects of uncontrolled dissemination
of information in each category; it is possible for
adverse effects to escalate into the higher categories.
For example, the release of information that results in
a loss of self-respect may further lead to antisocial
behavior, loss of employment and serious mental con
ditions.

Dissemination categories

Another consideration in setting up a classification
system involves the restrictions that are placed on dis
semination of the information by statutes such as the
Privacy Act and the Freedom of Information Act, and
by procedures adopted by the record-keeping organiza-

tions. The following possible recipients of information
must be considered:

• The individual to whom the information pertains
or those formally representing his interests
(guardian, physician, lawyer, accountant). There
are two aspects here-knowledge by the individual
that a record of information is kept on him, and
access to that information.

• Personnel of the record-keeping organization.
There are two groups-those who have a specific
need to use the information, and other personnel
of the organization.

• Organizations with subpoena power, such as
courts, grand juries, investigative committees at
various levels of government.

• Any member of the general public who requests to
see the information.

For each of the above, gaining access to the infor
mation is the principal consideration. However, for
certain types of information the individual himself
may need to be denied knowledge of the existence of a
record on him, denied access to the content of the
record, or both. For example, the Privacy Act of 1974

T ABLE II-Sensitivity Scales for Personal Information

Category Individual

Knows Has access

AS: Public
(by statute)

Yes Yes

---------------------------+--------
A: Public Yes Yes

Access granted
to users

Autho
rized Others

Yes Yes

Yes Yes

Subject
to sub
poena

Yes

Access
to

Public

Yes

Yes Yes

Examples of information;
information sensitivity
levels

Property tax rosters;
Level 0 information

Employee directory;
Level 0 information

-------------------~------- -------- -------- -------- ------------------------ ----------------------------
B: Limited,

Official Yes Yes Yes Yes Yes No Personnel records;
Level 1 information

-------------------~------- -------- -------- -------- ------------------------
C: Restricted Yes Yes Yes No Yes No Payroll records;

Level 2 information

--------------------------- -------- -------- -------- ---------- ---
D: Confidential

(by statute) Yes Yes Yes

--~~-~~;:!;!;;::------:::-\---::--- ---~::--
--;~-~~;:~;::::::-"----::-r---::-------~::--

I

No

No

No

No No Social research data;
Level 3 and 4 infor
mation

--
No No Psychiatric examina

tion records; Level 4
and 5 information

--
No No Organized crime in

vestigation records;
Level 5

Classification of Personal Information for Privacy 305

exempts certain testing information from access by the
individual, and the existence of certain criminal inves
tigation records may be kept secret from the individual
while the investigation is in progress.

Organizations with subpoena power can demand
access to any record-keeping system "\vhich they con
sider important for their investigation and which is
not provided a privileged status by law.9 Information
that is protected from subpoena includes the U.S.
Census data and certain medical and psychiatric rec-
ords. Other information granted statutor~y immunity
from subpoenae in various states includes10 drug abuse,
alcoholism, and venereal disease records; information
on victims of sex crimes, adoption proceedings, and
illegitimacy records. However, personal information
gathered for research purposes in social, behavioral
and political sciences areas, and in education and psy
chology, is not provided with statutory protection
against subpoenae and, as illustrated by recent
cases,l1,12 the researchers' promises to keep the infor
mation confidential often have no substance. Hence,
every classification category should also indicate
whether or not protection against subpoena is provided.

Based on these considerations, dissemination control
categories can range from "public" information which
is accessible to anyone to "secret" information which is
accessible only to authorized users of the record-keep-

ing organization (the individual concerned neither
has access to such information on him nor can he
determine whether or not such a record on him exists).
Table III depicts a classification system of six cate
gories that should be suitable for personal information
record-keeping systems both in government and in
private sphere.

Clearly, the classification categories in Table III do
not represent all possible combinations of access con
trol restrictions. For example, it is conceivable that
access to a particular type of information may be
denied to the individual, but it may still be subject to
subpoena power. In such cases the present classifica
tion system may have to be expanded.

INTEGRITY AND SECURITY PROVISIONS

Given a set of access control categories such as those
defined in Table III, a set of requirements for assuring
integrity and security of the information in each cate
gory can be specified. However, not every category
may need a separate set of specifications. In Table III
the categories AS and A are essentially the same, and
so are the categories C and D (they differ only in
whether or not information in these categories is sub
ject to subpoena power). Thus, three or four levels of
integrity and security provisions may be sufficient. In

T ABLE III-Classification of Personai Information

Sensitivity
level

o

1

2

3

4

5

Potential Adverse Effects
on the Individual

No appreciable adverse effects

Loss of respect in social sphere.
loss of friends, loss of privacy
and solitude

Loss of reputation. recognition,
social acceptance, self-respect,
loyalty. competence

Loss of economic security and
opportunities, employment; disrup
tion of family life

Loss of civil rights, imprisonment.
serious effects on mental and
physical health

Loss of life or physical safety

Examples of Information Revealed

Widely available, common information

Remarks made in private; publicly avail
able information not widely disseminated;
information on views, preferences, leisure
activities

Information on political views. anti
social behavior, evaluative statements by
the individual or others

Information on medical and psychiatric
treatments; sexual deviations; extra-marital
affairs; evaluative statements by or about
family members; criminal history

Self-reported information on illegal or
anti-social behavior; information on medical
and mental condition; psychiatric evaluations

Information that the individual is an under
cover agent for an investigative agency

306 National Computer Conference, 1976

any computer system there must be implemented a set
of "basic" integrity, security and auditing procedures
to prevent inadvertent interference of users with each
other, accidental modification or destruction of infor
mation, and physical damage to the equipment.S.13-16
Such a basic set of requirements should be sufficient
for information in categories AS, A, and B (and to the
sensitivity categories 0-2 in Table II).

A "medium" level of integrity, security and auditing
is needed for information in categories C and D (and
in sensitivity levels 3 and 4) since access to this infor
mation is limited to authorized users only and this
information has a greater potential for adversely
affecting the individual. The security and integrity
provisions should include marking of the information
items and records, and hard copy, either as "Re
stricted" or "Confidential"; establishing users' ac
countability for such information; implementing more
sophisticated identification, authentication, and au
thorization procedures ;17 implementing audit logs; and
strengthening the basic integrity assurance provisions.

A "high" level of integrity and security assurance
would be provided to information in categories E and
F (and for sensitivity levels 4 and 5). All files in the
computer and all hard copy should be marked as
"Sensitive" or "Secret" and stored securely; encryption
techniques* should be used to protect information in
these categories on removable storage media and in
communication systems; sharing of the computer sys
tem with other computer activity should be limited,
the system should be entirely dedicated to the record
keeping system in question, or (especially for sensi
tivity level 5) the information may have to be kept
off-line or even in manual files; there should be full
accountability of the users for handling information in
these categories; sophisticated audit trails to trace
file accesses to users and enhanced integrity control
procedures such as change and error detecting codes
should be implemented.

The above are only a set of general suggestions of
what types of protection and integrity procedures
might be used for the various information categories.
In practice, the provisions adopted should reflect the
specific circumstances of the record-keeping system
and a thorough analysis of the security risk exposure
of the information as well as a cost-benefit tradeoff.
However, the methodology for risk assessment is still
in the development phase at the National Bureau of
Standards and elsewhere, and the cost of providing
integrity and security is also known only in a very
rough term.20•21

Classification policies and problems

Given a sensitivity scale and a corresponding classi
fication system it is necessary to establish a set of

* See papers on encryption in this Volume and References 17
and 19

standard criteria and a standard policy for classifying
personal information items, records that contain sev
eral information items, and entire systems of records.
Certain types of personal information used by the gov
ernment can be classified directly on the basis of stat-
utes that apply to the record-keeping system or to the
information categories involved. For example, all per
sonal information collected as part of the census are
automatically "confidential," while property tax rec
ords are "public by statute" and psychiatric records
are "confidential" or "sensitive." For other informa
tion not covered by statutes it may be necessary to first
determine its sensitivity level and then to use this for
making the classification decision.

One approach to standardize the assignment of sensi
tivity levels is to generate a handbook where, as sug
gested by Bing," sensitivity levels are assigned to all
personal information items that are known to occur in
record-keeping systems (e.g., name, date of birth,
amount of income, name of the employer, names of
acquaintances, leisure time activities, etc.). A less
detailed approach that is being considered for imple
mentation of the Privacy Act of 1974 would assign
sensitivity levels only to categories of information
(e.g., identifiers, physical characteristics, employment
history, evaluations, etc.) rather than individual in
formation items and provide a list of these. In both
cases there is the problem of deciding what sensitivity
level should be assigned. Sensitivity is a highly sub
jective and context-dependent property of personal
information-what one individual may consider very
sensitive may be regarded with indifference by many
others, and it is likely that there is a large range of
sensitivity assessments for every information item.
However, it would not be practical to assign the top
sensitivity level of this range to each information item.
Instead, a reasonable sensitivity level must be deter
mined through the use of surveys and expert opinion.

A traditional approach to classifying a record that
contains several information items that have already
been classified, or for declassifying an entire record
keeping system, is to assign it to the highest classi
fication found among its elements. Here, too com
plications may be found. For example, under some
circumstances a collection of information items may be
more sensitive than anyone of the elements. In other
record-keeping systems only very few information
items may have a higher sensitivity level than the rest
of the records and, thus, escalate the classification of
the entire record-keeping system. The first case re
quires the development of an algorithm for increasing
the sensitivity level of a record or record-keeping sys
tem as a function of the amount, type, sensitivity and
uses of its elements. Research on this is yet to be done.
The second case could be handled by using special
security techniques (e.g., encryption) to reduce the
sensitivity level of the information items in question,
or by establishing a separate record system for these

Classification of Personal Information for Privacy 307

information items. Other problems that must be
tackled in assigning sensitivity levels to personal in
formation and making classification decisions include
automated classification of records and information
derived from existing records, and downgrading of
sensitivity levels and classifications as circumstances
change.

Concluding rem-arks

Laws now in force require that privacy protection
be provided to personal information in record-keeping
systems maintained by the federal government, and
by state and local governments in three states. Other
states are expected to enact similar legislation, and
pending in Congress is a bill, H.R. 1984, the Compre
hensive Right of Privacy Act, which would extend
privacy protection also to record-keeping systems in
the private sphere.

It is necessary for effective implementation of these
requirements to establish a standard sensitivity clas
sification system for personal information such that
for each classification level it is known what integrity
and security assurance must be provided, what infor
mation handling practices must be followed, and what
penalties apply for non-compliance. Information items
can then be assigned into appropriate categories on the
basis of their potential to adversely affect individual
data subjects, and on the basis of access and dissemina
tion limitations that may be required by law. One such
classification system and a sensitivity scale is proposed
in this paper. Important questions still being re
searched deal with criteria and policies for determining
the sensitivity and classification levels of information
items, records and record-keeping systems.

REFERENCES

1. Privacy Act of 1974, Title 5, United States Code, Section
552a (Public Law 93-579), December 31,1974.

2. Freedom of Information Act, Title 5, United States Code,
Section 552, 1967.

3. Comber, E. V., "Management of Confidential Information,"

AFIPS Conference Proceedings, Vol. 35, 1968 FJCC, pp.
135-143.

4. Ellis, L. (Ed.), Privacy and the Computer-Steps to Prac
ticality, British Computer Society, London, July 1972.

5. Bing, J., "Classification of Personal Information With
Respect to the Sensitivity Aspect," Databanks and Society,
Universitetforlaget, Oslo, 1972, pp. 98-150.

6. Guidelines for the Collection, Maintenance and Dissemination
of Pupil Records, Russell Sage Foundation, New York, 1969.

7. "Data Sensitivity Classification," Criminal Justice Symem,
National Advisory Commission on Criminal Justice Stan
dards and Goals, Washington, D.C., January 19'73, pp. 128-
130.

8. Turn, R., Privacy and Security in Personal Information
Databank Systems, R-1044-NSF, The Rand Corporation,
Santa Monica, March 1974.

9. Nejelski, P. and L. M. Lerman, "A Researcher-Subject
Testimonial Privilege: What to Do Before the Subpoena
Arrives," Wisconsin Law Review, Fall 1971, pp. 1085-1148.

iO. "The Computerization of Government Files: What Impact
on the Individual ?", UCLA Law Review, September 1968,
pp.1371-1498.

11. Kershaw, D. N. and J. C. Snell, "Data Confidentiality and
Privacy: Lessons from the New Jersey Negative Income
Tax Experiment," Public Policy, Spring 1972, pp. 261-269.

12. Walsh, J., "Antipoverty R&D: Chicago Debacle Suggests
Pitfalls Facing OEO," Science, September 19, 1969, pp.
1243-1245.

13. Gu.idelines for Automatic Data Processing: Physical Se
curity and Risk Management, FIPS Pub. 31, National
Bureau of Standards, Washington, D.C., June 1974.

14. Computer Security Guidelines for Implementing the Privacy
Act of 1974, FIPS Pub. 41, National Bureau of Standards,
Washington, D.C., 1975,

15. AFIPS System Review Manual on Security, AFIPS Press,
Montvale, N.J., 1974.

16. Turn, R. and W. H. Ware, "Privacy and Security in Com
puter Systems," American Scientist, March-April 1975,
pp. 196-203.

17. Saltzer, J. H. and M. D. Schroeder, "The Protection of In
formation in Computer Systems," Proceedings of the IEEE,
September 1975, pp. 1278-1308.

18. Turn, R., "Privacy Transformations for Databank Sys
tems," AFIPS Conference Proceedings, Vol. 42, 1973 NCC,
pp. 589-601.

19. Feistel, H., W. A. Notz and J. L. Smith, "Some Crypto
graphic Techniques for Machine-to-Machine Data Communi
cations," Proceedings of the IEEE, November 1975, pp.
1545-1554.

20. Goldstein, R. C., The Cost of Privacy, Honeywell Informa
tion Systems, Brighton, Mass., 1975.

21. Turn, R., "Cost Implications of Privacy Protection in Data
bank Systems," Data Base, Spring 1975, pp. 3-9.

Philadelphia justice information system

by IRVING J. CHASEN
PJIS P-/oject
Philadelphia, Pa.

ABSTRACT

The Philadelphia Justice Information System (PJIS)
concept was designed via a joint study with a major
computer manufacturer. Functions-generally three
fold: (1) Monitor and Control-to act in an active
and directive nature to insure completion of all tasks,
to automatically issue reminders for tasks not com
pleted on schedule, and to make administrative con
tacts for corrective action until all tasks are completed,
(2) Data Collection-merger of and improvement
upon existing data processing systems and (3) Com
munication-to make information available upon re
quest to all cooperating agencies. All agencies re
lated to the criminal court system (e.g., Public
Defender, Clerk of Court, District Attorney, Probation
Department, Prison) will share PJIS Data Base with
Courts and Police. PJIS Data Base will be result of
merger of two extensive existing Criminal Justice
Data Processing Systems-Police and Courts. Goals
of single system-(l) eliminate redundancy, (2) re
duce overall costs, (3) attempt to accomplish conflict
free scheduling, (4) assure back-up capability, and
(5) more effective coordination of man and machine
resources within the courts and agencies of the Phila
delphia Justice Information System to increase fair
and speedy case disposition. Guidelines are being
drawn to build in protection of the individual's right
to privacy.

The Philadelphia Justice Information System (P JIS)
is a computer-based system designed to serve the in
formation needs of all the agencies of the Justice
System. These agencies include the Police, Courts, Dis
trict Attorney, Public Defender, Prisons, and Proba
tion Department. The PJIS concept was designed via
a joint study conducted with a major computer manu
facturer between 1971-1974. The system is being im
plemented by the PJIS Project which is currently
funded through a LEAA Discretionary Grant. The
focal point of this system will be a central computer
with associated programs, centralized data base and
communications network.

Currently, most of the planned functions of the sys
tem are operational. There are automated systems now
serving the Courts, the Prisons (PRINS), the Police

309

(On-Line Booking) and the District Attorney's Man
agement Information System (DAMIS). The next step
will be the incorporation of the existing applications
into one single data base serving the various agencies
with a minimum of data redundancy.

PJIS is oriented around a single Data Base, a central
repository of Justice System information. The justice
agencies share this common fund of information in
performing their separate but related tasks. Each
agency has responsibility for entering information
into the Data Base, and personnel in each agency are
permitted access to information for which they have a
legitimate need. Data Base information is organized
so that each user can refer to it and analyze it accord
ing to his own needs. Thus, each agency may-quite
realistically-view the computeT as being its own. The
single Data Base allows ready access to accurate, cur
rent, comprehensive information. Persons in each
functional area can feel confident that the information
they are using is consistent with that being used in
other functional areas.

Beside the specific information services it provides,
the Data Base also has a more subtle, though im
portant, value. The mere existence of this shared re
source should have an integrative impact on the justice
community, since it enhances the single-process idea
and helps to create an atmosphere in which agency
interdependencies become more apparent and increased
cooperation is seen to be both possible and mutually
profitable.

Each of the Justice agencies is directly linked to the
shared Data Base by a network of computer terminals.
These devices, equipped with a video display, a key
board, and a printer are dispersed throughout each
agency's facilities. Each terminal is a window to the
Data Base: each makes the Data Base continuously
present to authorized persons.

It is through these terminals that each agency enters
its information into the Data Base. It is also through
these terminals that information is retrieved, in one of
several ways:

(a) INQUIRIES: The computer system will pro
vide immediate response to requests for infor-

310 National Computer Conference, 1976

mation; responses are in the form of printed
copy or video display or both.

(b) NOTIFICATIONS: The computer system will
issue unsolicited printed messages whenever it
needs to inform someone of a new responsibility
(Task) assigned to them or when it is necessary
to quickly distribute newly received information
about a particular incident, person, or case.

(c) DOCUMENTS: Whenever practicable, the com
puter system will create file folder documents
on printers located within each agency. This
method of document distribution, when used,
replaces the exchanging of carbon copies.

(d) REPORTS: Statistical analyses, trial listings,
and other reports of that type will be created
on printers located within each agency rather
than being printed at a central location and
distributed manually.

The system provides a common statistical base which
is used to prepare analyses for management use. While
individuals with different viewpoints may question
the significance of certain statistics or may interpret
them differently, everyone in the justice community
will be using figures derived from a single source
the PJIS Data Base.

Because each agency is an active participant in
PJIS, the computer system has the necessary infor
mation to assist in scheduling judicial proceedings. It
knows scheduling rules and case data, and it maintains
availability schedules of courtrooms and of Justice
System professionals. The system uses this informa
tion to recommend conflict-free dates and locations
each time someone indicates a need to schedule a court
room event.

Thus, the system "closes the loop" in its ability to
assist in controlling Justice System activities. It ac
tively participates in scheduling the majority of events,
and then, as outlined earlier, the system actively moni
tors the accomplishment of tasks necessary to make
those events occur as scheduled.

File folders will continue to be used in PJIS, but the
method of creating and distributing many of the docu
ments for those foldel's will change. For example, a
single document showing the known facts about each
new case will be printed onto a single document at the
time a case enters the Justice System. In addition,
a follow-up document, showing data accumulated since
the case entered the system, will be printed each time a
case is due for a court hearing. Interested agencies
receive these documents on printers located on their
own premises. These consolidated information sheets
serve a dual purpose: they keep case folder informa
tion current while using a minimum number of pieces
of paper.

In summary, PJIS interacts with operational and
administrative personnel in the performance of their
daily activities. Through terminals, it prompts them,
and responds to their requests for immediate informa-

tion. As a result of the system's active participation
in events as they occur, the Data Base always reflects a
current and comprehensive picture of the Justice
System and the status of every incident, person and
case. Thus, the system is able to respond to requests
from management and professional staff for informa
tion on demand.

The Data Base integrates Justice System informa
tion into a cohesive collection of related data. It is the
central repository for two general categories of in
formation:

Operational Data-supplied by and used by Justice
System personnel directly in the course of day-to
day operations. This "live" information repre
sents the facts of the Justice System, such as
statistics, historical records, and details concern
ing current cases, incidents, persons, and scheduled
hearings.
Control Data-supplied by Justice System man
agement and used by the computer in its decision
making processes. This relatively static (but
easily changeable) information specifies available
resources, system policy and operating guidelines.
It includes such things as a description of court
room facilities, availability schedules for police,
judges, attorneys (for use in scheduling) ; rules
for granting continuances; allowable intervals be
tween successive stages of defendant processing;
and who is permitted access to what data. This
kind of information will be stored in Data Base
tables rather than being embedded within numer
ous application programs, a scheme which permits
easy modification by authorized persons and en
ables management to readily exercise control over
system operation.

The communication network links remote locations
with the computer and the data base. Online terminals
equipped with video display and printing capabilities
will be placed at strategic locations to allow informa
tion retrieval on demand, and in some cases, to also
permit keyboard entry of data into the data base. In
addition to the local communications network, the sys
tem also includes provisions for exchanging informa
tion directly with State and National Law Enforce
ment data bases (the CLEAN and NCIC Systems).

The independent justice agencies jointly use the sys
tem facilities. These users effectively share a common
fund of information, the PJIS Data Base, in perform
ing their separate but related tasks involved in pro
cess,ing defendants through the Justice System. In this
cooperative effort, each has responsibility for entering
data according to fixed rules, and personnel in each
agency are permitted access to data on the basis of
their need to know.

Data Base information is organized so that all users
can refer to it and analyze it according to their own
needs. The Data Base allows maximum accessibility

to accurate and current information by authorized
Justice System personnel, so that each functional area
can perform its tasks with the knowledge that the in
formation being used is consistent with that used by
other functional areas. While PJIS is intended to
aid operating personnel, it also is the means by which
management personnel can maintain a comprehensive
awareness of overall system status-who is presently
responsible for doing what, when, and where; what are
the sources of recurring problems which disrupt the
system; and in what departments information
handling operations need revision.

The ultimate goal of any information system is to
make reliable data readily available when, where, and
in the form it is needed. Accordingly, the design of
modern automated systems, including PJIS, is directed
away from paper movement and toward the use of data
bases and online terminals for recording, retrieving,
and exchanging information between system users.

PJIS collects, stores, and distributes data concerning
three type of entities:

(a) Incidents: The matter for which a subject (per
son) has entered the Justice System. In most
cases, it is a police incident, but incidents may
also be originated by other means, principally
by the District Attorney's Office which handles
private criminal complaints and investigative
grand juries.

(b) Persons: defendants processed through the
Justice System. At various points in the pro
cessing cycle, an individual may be referred to
as the subject, suspect, arrestee, defendant,
offender, prisoner, parolee, juvenile,
client.

(c) Cases: court units of scheduling.

PJIS could be referred to as an incident-tracking
system, or a defendant-tracking system, or a case
tracking system-and all such descriptions would be
partly correct, because the system does track all of
these entity types rather comprehensively.

PJIS plays an active role in the justice process; it is
far more than a passive record-keeping and reporting
system.

The control capabilities incorporated in the com
puter system design give it the ability to:

Assist in scheduling judicial proceedings
Coordinate tasks and events
Monitor the accomplishment of tasks
Manage the distribution of information
Assist data entry operations
Provide for data security
Assist with enforcement of Justice System rules

Each of these capabilities operates together in a
systematic manner. Numbered steps in the following
narrative refer to correspondingly numbered items in
Figure 1.

Philadelphia Justice Information System 311

(1) Major events are scheduled by persons, not by
the computer system. However, where the
event is a judicial proceeding, the computer
system assists in establishing a conflict-free
date and location for the hearing. It is able to
assist in this way since it maintains avail
ability schedules for courtrooms and for key
participants in the system (Judges, Attorneys,
Police witnesses) .

(2) Each time a major event if.'l scheduled; the Co
ordinate function is informed. The Coordinate
function knows what standard tasks must be
performed before, during, and immediately
after each type of major event. Since it has
been told when a particular event is to occur,
and since it also knows how many days before
or after an event that each task must be per
formed, the Coordinate function can easily
calculate the date by which each routinely
performed task must be completed.

(3) The Coordinate function passes to the Monitor
function information about each task which
must be performed. This information specifies
(a) the identification of the entity (incident,
person, case) for which the task is to be per
formed; (b) a description of the task; (c) who
is responsible for performing it; (d) the time
by which it must be accomplished; (e) the
time when the Monitor function should first
check to see whether the task has been com
pleted. The task is placed into a Pending Tasks
List which is continuously reviewed by the
Monitor function.

(4) Persons may inform the system at any time
that special tasks, not routinely performed for
every entity, must be performed for a par
ticular one.

(5) Each time someone informs the system that a
special task is needed, the Coordinate function
handles it essentially as if it were a normally
required task and places it into the Pending
Tasks List. In addition, the Coordinate func
tion usually issues an immediate notification
to inform the responsible Justice Unit of the
non-routine task to be performed.

(6) Persons spread throughout the Justice System
are continually entering information into the
Data Base through remote terminals equipped
with keyboards and video displays. In doing
so, they operate in a conversational mode with
the computer system which: (a) performs a
security check to uniquely identify each opera
tor and to ensure that persons entering par
ticular kinds of data are authorized to do so;
and (b) guides the operator through succes
sive steps of data entry to ensure, to the maxi
mum extent possible~ that information being
entered is both complete and logically con-

312 National Computer Conference, 1976

8

Request
SpeQ.I T_

Coordinate
Tasks

Notify

Schedule
Major
Event

SA

Notify

Distribute Security • L

Information PrMcy

8

ResponMIto
Inquiries

Q
Figure 1-0verview of "principal capabilities"

sistent. Most input transactions fulfill a re
quirement specified in the Pending Tasks List.
That is so because, ideally, the system (via the
Pending Tasks List) anticipates all input
transactions so that it may remind responsible
persons when input has not been received when
due. It should be noted all input transactions
are automatically logged and time-stamped
within the computer system. This information
is a useful aid in constructing audit trails.

(7) The Monitor function continuously selects
items from the Pending Tasks List which have
become due (each item carries with it the date
and time at which it should be reviewed by the
Monitor function). The Monitor function then
looks at the Data Base to see whether a task
due for completion actually has been accom
plished. Where it has been, no further action
is required. But where it has not, the Monitor

function issues a notification to the appropriate
Justice Unit reminding them that a task for
which they are responsible has become due.
The item is placed back into the Pending Tasks
List for another review a short time later. If
the task is not performed after some period
of time, a notification will be issued to a re
sponsible administrator to inform him of the
exceptional situation.
Of course, the Monitor function also keeps sta
tistics on the types of tasks it is monitoring
and the number of times those tasks are or
are not completed satisfactorily. These sta
tistics will be used by administrative personnel
to evaluate procedures and to determine the
root causes of Justice System problems.

(8) The Distribute function manages the distribu
tion of all information produced by the com-

puter system. This material falls into four
general categories:

(a) Notifications: messages about a single en
tity. They are always created by the com
puter system (not by persons outside)
either to request that someone perform
some specific task or simply to provide
new information as soon as it becomes
available. Whenever possible, notifications
are transfnitted from the computer di
rectly to the Justice Unit for which the
information is intended.

(b) Documents: computer-printed forms con
taining facts about a single entity. They
are generally intended for insertion into
file folders for reference purpose.

(c) Listings (reports) : computer-printed
forms containing information about
groups of entities. They include such
things as trial listings and statistical
analyses.

(d) Responses to Inquiries: the computer sys
tem responds immediately to requests for
information on demand (subject to pri
vacy restrictions). These requests are
made through terminal keyboards at lo
cations remote from the computer site.
Computer responses are in the form of
video displays or printed material or both.
PJIS is heavily oriented toward distribut
ing specific information in this way rather
than through the regular production of
voluminous printed reports. Most infor
mation that is regularly published in
printed form is also available through
terminal inquiry as well. It should be
noted that all outputs are logged and time
stamped within the computer system.

(9) For the present discussion, attention is focused
on notifications, specifically those created by
the Coordinate and Monitor functions. The
Coordinate function creates notifications to
inform Justice Units that special tasks, which
are not routinely performed for every entity,
must be performed for a particular one. Every
task requires entry of information into the
Data Base, even if it is only an affirmative re
port that some task, known to the computer
system, has been performed.
The Monitor function creates notifications to
remind Justice Units that tasks for which they
are responsible are due but have not yet been
reported as accomplished. Before requesting
corrective action by administrative personnel,
the Monitor function usually checks again a
short while later to see whether, as a result of
the prompting, overdue tasks have been ac
complished.

Philadelphia Justice Information System 313

(10) The Monitor function also creates notifications
to inform administrative personnel that the
deadline for accomplishing a certain task has
passed, and some action on their part is re
qUIred. For example, if a psychiatric report
will not be available as ordered, a request for
continuance of a sentencing hearing may be
necessary; or, if no outcome has been reported
for a particular hearing, even after the re
sponsible unit has been reminded of its ab~
sence, an administrative manager is informed
so that he may research the problem.

An illustration of the operational services is pro
vided in Figure 2. This example illustrates the flow of
information that is contained in Agency file folders
and that is also entered into or retrieved from the com
puter system data base. The operations shown occur
in stages or over many stages but are consolidated for
the purposes of this example.

The first entry into the system occurs at the Justice
System Entry stage with a good deal of the informa
tion recorded at booking. The Static Information
Sheets are printed on the agencies' administrative
terminals from which they create their file folders.
The agencies' File Folder Control Unit records the
location and party responsible for file folders checked
in or out.

Updates to the file folders are accomplished with the
Volatile Information Sheets which are produced some
time prior to each hearing. The information that
changes or adds to the Volatile Information Sheets is
stored on the Data Base. The Data Base is constantly
being updated by all agencies over remote terminals
which are also used to retrieve required system in
formation.

The Data Base is updated at the hearings by the
Court Clerk with case proceedings such as judicial
orders, case disposition, next hearing schedule, and
attorney appearances. Each agency's audit unit then
compares the system information recorded in the file
folder at the hearings.

The flow is then repeated for each additional hearing
until the case is completely disposed. The data base in
formation and the file folder for that case are then
purged from active storage but retained in high density
storage for historical purposes.

The above description applies to each agency con
cerned with file folders in the process of the hearing
stages. Although only one agency illustrates the com
plete flow, it actually occurs in parallel with multiple
agencies.

OVERALL SYSTEM BENEFITS

Effective data TecoTding

By requiring information to be recorded only once
and at its source, the system provides the following
benefits:

314 National COluputel' Conference, 1976

TO DA TO I'UIILlC DEFENDER

i i

\2t\2t

AGENCY ADMINISTRATION

HEARINGS

AGENCY AUDIT UNIT

Figure 2-Conceptual Information Flow

1. Complete entry of all data related to each trans-
action

2. Accuracy of data entered
3. Reduction of redundant effort
4. Improved auditing and accountability
5. Reduced paper volume
6. Improved consistency of data

Improved security

PJIS exercises positive control over attempts to ac
cess information thus providing greater security than
is possible with the existing information systems in
Philadelphia.

Improved resource management

1. Flexible resource allocation
2. Increased personnel productivity
3. Better performance evaluation
4. Improved program planning and control
5. Management by exception
6. Concise management reports

Improved communications

1. Intra-agency communications
2. Inter-agency communications
3. Distribution of pertinent notices

REDUCED FILE MAINTENANCE

Reduction of continuances

1. Assistance with conflict-free scheduling
2. Optimum courtroom loading
3. Monitoring preparatory tasks

IMPROVED FEEDBACK AND FOLLOvV
THROUGH ON ALL ACTIONS

Improved public image

Responsiveness to change

1. New applications
2. Changes in law
3. Policy and procedure revisions
4. Data Base content changes

Computers in architecture

by GENEVIEVE GREENWALD-KATZ
Max O. Urbahn Associates
New York, New York

ABSTRACT

The union of computers and architecture has not come
about in spite of glowing predictions over the last ten
years. This paper describes several of the reasons why
this may be so: the complexity of the profession, the
inattention as to how the architects actually design and
the lack of top management dedicaton. The current
state of the architectural profession is explored and
why the architect's entry into new areas should spark
a demand for computer technology is discussed.

INTRODUCTION

Over ten years ago, articles extolling the wonders of
computers and predicting, in glowing terms, their im
pact on architecture began to appear. What has hap
pened to this prediction-why has it failed? To under
stand this turn of events, we must look both at com
puting, and at architecture itself. Perhaps there, we
might find clues regarding the introduction of new
techniques into old professions that might even have
more universal implications. What is the state of ar
chitecture today and of computer utilization in archi
tectural practice? The architectural profession, as we
know it, is going through a major upheaval. The recent
deterioration in the economy has had a strong negative
impact. Statistics from the New York Chapter of the
American Institute of Architects state that architec
tural commissions have declined 55 percent from the
year 1972 to 1973 and dropped an additional 50 percent
in 1974. Reflecting this, the employment level shows
a drop of 75 percent from 1969.

Some architects are now beginning to ask the ques
tion . . . how did we get to be so non-essential? In a
time of rapid technological change and increasing
costs, long established practices must be reevaluated in
order for the profession to continue its existence. Ar
chitects are still designing buildings by hand-row
upon row of people bending over drafting tables draw
the details of each building.

In situations where resources are limited, the archi
tect must be able to explore alternatives to building, to
financing and to forms of energy utilization. With

315

costs escalating, he must solve problems that are more
complex and solve them faster than he ever has before.
The architect must recognize these new needs and
adapt his skills to solving these new problems.

Shrinking staffs and lack of work, however, is not
being experienced by all firms. There are some firms
that are expanding their offices. Some who are expand
ing currently are those who are using computers. It is
not the "magic" of the machine that is doing this,
rather, the computer can be seen as being symbolic of
the architect's ability to learn new skills, handle large
amounts of data and apply his expertise to the broad
areas surrounding that of building. Let us look more
closely at this phenomenon.

HISTORY

The coupling of computers with architecture began
about ten years ago. '\Xlhile computers had been in use
long before that, the period between 1963-1966 was
marked by a significant development in computer
graphics.

In 1963, direct-view bistable storage tubes were first
used in terminals. That year, at the Spring Joint Com
puter Conference, Timothy Johnson and Ivan Suther
land announced their development of Sketchpad. That
program made it possible for the architectural de
signer to input pictorial data into a computer by draw
ing on an electronic tablet. The drawing was displayed
on a C.R.T. and could be modified with a light pen. The
Rand tablet (the device used by Sketchpad) made its
appearance at the Fall Joint Computer Conference in
1964.

Responding to the new advances being made, the
First Boston Architectural Center Conference, held in
December of 1964, had as its theme, "Architecture and
the Computer." It was well attended and included
many of the persons who were to make advances in
computers for architects. Articles linking computers
with architecture began appearing in architectural
journals and trade magazines. Predictions ranged
from computer takeover and subsequent dehumaniza
tion of architecture to an office where the computer
would be the powerful servant of the architect, reliev-

316 National Computer Conference. 1976

ing him of all tedious tasks and leaving him free to
spend all his time designing and dealing with high
level abstractions. The dire predictions of computer
takeover ha've not occurred and fears along that line
have been quieted. Articles anticipating the widespread
use of computers by the architectural profession how
ever, continue unabated.

The time frame for this transformation was always
within the next ten-year range. The ten years are now
up. The tone of the articles has changed from enthu
siasm about the use of the computers to bewilderment
as to why the architectural profession has snubbed the
computer, and finally to philosophizing that perhaps
architecture and computers are totally incompatible.
But what actually is happening?

I do not believe that architecture and computers are
incompatible. However, I do feel that many of the
people who would like to see computers being used
more by architects:

(a) Do not understand what motivates the archi
tect.

(b) Do not have a grasp of the complexity and
variety of disciplines which the architectural
profession encompasses.

(c) Have no idea as to how architectural offices
function and in turn, how they effect how the
architect works.

Furthermore, advancement in computer technology
takes place primarily in the university, and many of
the students are only remotely aware of how architec
ture offices work. Many of the programs developed in
the academic environment are directed more towards
the purpose of understanding the discipline of archi
tecture than towards advancing the practice of archi
tecture. I am not here questioning if it could or should
be otherwise, but trying to explain why some of the
"advances" do not make it to the office.

HOW WIDESPREAD IS THE USE OF
COMPUTERS

First of all, the architecture profession is a small
one. Figures from the 1970 U.S. Census show the
comparative size of various professions:

Architects
Engineers
Lawyers
Physicians

57,081
653,925
264,752
280,557

A tally done by the American Institute of Architects
from the state rosters of registered architects lowers
the figure to 45,000. (The difference between the two
figures can be explained in that "registered" means
holding a license to practice, while in the U.S. Census
"architect" referred to those people who stated that as
their professional status).

While it has been the larger architectural firms that

have gone into computers, the profession is charac
terized by an organization into small offices. Approxi
mately 40 percent of the architectural firms are sole
proprietorships. It is estimated that 90 percent of the
firms employ six people or less. So the small number
of actual users is explained in part by the logistics of
the profession.

It is difficult to estimate the actual number of archi
tectural firms using computers. The New York Times
(August 29, 1971) estimates that of the 15,000 design
firms in this country only 200 use computers. The
15,000 probably represent purely architectural offices
and most likely includes the sole· proprietorship type
of office. To get some idea of the number of large firms,
we can refer to The Engineering News Record which
publishes a list each year of the top 500 design firms.
"Top" refers to dollar billings and the 'types' of firm
include architect-engineers, engineers-architects, con
sulting engineers, architects and design-contractors.
Of the total number of firms listed about half are in
volved with architecture.

The issue for May 21, 1970 also included informa
tion as to the use of computers by these firms. Exclud
ing design-contractors, "357 of the 460 top design firms
reported the use of computers in their operations. Of
the 357 firms, 32 percent rent their equipment, 29 per
cent use a time-sharing system and 13 percent own
their own hardware. The balance used varieties of
rental and time-share plans."

While the established pattern has been for the larger
architecture firms to be exploring the use of the com
puter, there is growing evidence that smaller firms are
also beginning to utilize computers. One of the reasons
for this transition could be the lower cost of hardware.
It is now possible to buy a small, but essentially com
plete computer with one high level language (Basic)
for under $10,000. Ten years ago comparable equip
ment would cost between $30-50,000. Leasing a ter
minal in 1968 cost $100 per month while now terminals
can be had for $50. Time sharing costs ($10-15 per
hour) are essentially the same as they were in 1968.

Smaller firms have an easier time than larger ones
in adapting to the changes brought about by the intro
duction of computers. Organizational changes and
even new directions are not only simpler to effect, but
often the younger members of the firms have less in
vested in the established way of doing things. There
is also evidence that the use of computers by small
firms differ from that of large firms. With large firms,
computer usage is more likely to be only a small part
of the office routine and only used by a small fraction
of the staff. When small firms use the computer, the
whole office may well be organized around its use. The
entire staff is encouraged to put "hands on" the termi
nal. It is this "hands on" approach that allows an of
fice to explore the tool. This exploration can lead to
the application of computer technology to various areas
of architecture. The important thing here is that the

people working in the field are the ones who should
begin to develop the programs.

In order to better understand how firms make use of
computers, the New York Chapter of the American In
stitute of Architects has recently become interested in
what motivates a firm to go into the use of computers.
Some of the reasons given were:

(1) The approval of the systems approach and the
methodology behind computer use.

(')\ 'f'ho noor1 tA l'n'A{>O<:!<:! Uo:><:!t O:>1'YlAllnt<:! AT r1o:>tg in <:!hA1"t \ ~ JI..&.'--' .&. '-'L v'"' ¥..L ___ T """"-' V L4.I..L'-' '-'L.L.&...,, "-'L_ _ ..I..L.L "-'.L,.&.

time.
(3) The entry into a new discipline which has not yet

developed a methodology.
(4) The fascination with the process and a feeling

that this must be the future direction for archi-
tecture.

This last reason is essentially a commitment to archi
tecturalresearch.

Some of the reasons are frankly window dressing
ways of impressing a client with the firm's grasp of
the new technology. But one thing they all have in
common is that using computers involves a top man
agement decision. It is the eye of the vice president
that this tool catches. It involves top management de
cisions as to new directions for the firm. Most certainly
it will involve a considerable investment and (for the
success of the venture) it must have management's
continuing active interest, often in the form of a sin
gle enthusiastic partner. This last factor explains, in
part, why the various branch offices of firms differ
widely in computer usage. In one firm, one office uses
sophisticated graphics and computer-aided design pro
grams, while in another branch, changes to specifica
tions are done by the architect dictating to a secretary
who is seated at a terminal. At one time it was thought
that computers would make inroads into the architec
tural offices by way of the accounting departments.
Unfortunately, once into the accounting office, it rarely
gets out into the design section.

HOW MIGHT NEW AREAS OF INTEREST
INCREASE COMPUTER USAGE?

A new factor which may cause an increase in the
use of computers by architects is the entry by the ar
chitect into fields which are very compatible with com
puter usage: information manipulation, numerical
calculations, linear programming and graph theory.
Because of the decline of building, architects are ex
ploring some of the other areas which are related to
the building process. The architect is now looking into
the processes which are active before the building is
designed, such as economic analysis, building pro
gramming, establishment of standards; processes ac
tive after a building is built, such as evaluation; and
processes involving not-building, such as renovation.
"Programming" for an architect is the assembly of the

Computers in Architecture 317

detailed requirements for a project into a coherent
form, not the writing of computer procedures. Some
of the more specific areas where computers are begin
ning to be of assistance are the following. It will be
interesting to see if in moving into new areas, the ar
chitect accepts the new technology.

LIMITED RESOURCES PLANNING

A decade ago 'limited resources' was a concept that
architects did not have to concern themselves with.
The recognition that earth's resources are finite de
mands that the profession deal responsibly with en
ergy, time, money, land. and space. Today it is irre
sponsible for an architect to plan hospitals without
taking into consideration the logistics of health care
delivery, population trends and availability of techni
cal staffing. There are programs utilizing the tech
niques of linear programming which are useful in this
area. They allow the architect to consider the effects
of a number of variables operating at the same time
to arrive at an optimum solution for that situation.
Graphic output aids in understanding how the various
factors operate.

ECONOMETRIC MODELS

Just as architects use physical models to explore de
sign solutions, they will also use econometric models to
help them with the many other factors influencing de
sign decisions. Life-cycle costing, value analysis and
cost benefit analysis are three current methods in favor
with both the architect and his more sophisticated cli
ent. Computer techniques are extremely useful here
because of the iterative process of the analysis. The
analysis may cover a wide range of items, such as
building components, systems, services and social bene
fits. Solutions are arrived at by combinations and re
combinations of the variables. If many items are to be
considered, the analysis by hand is extremely tedious
and slow.

THEORY OF DESIGN

Not a new area but clearly one of the more favored.
The push to demystify the design process and to un
derstand how the architect evolves his solution is more
in the purview of the architect-computer-researcher
than of the architect-teacher. In order for computer
programs to be able to assist the architect they must
be designed with an understanding of the process
which they are assisting. A comprehensive study of
the design activity in architecture has been carried out
in the Department of Design Research at the Royal
College of Art in London by a team of researchers
headed by Patrick A. Purcell. The study, "Analysis of
Architectural Design Activity in the Working Envi-

318 National Computer Conference, 1976

ronment" attempts both to develop a model of design
activity and to evaluate computer-aided design tech
niques. The study begins to define clearly the points
in the design process when the architect needs infor
mation and how he incorporates various types of in
formation into his "internal representation." Insights
derived from work done on design corroborate the ar
chitect's feeling as to the importance of this area. De
sign and planning may comprise about one half of the
total time of the entire job. In complex building types,
such as hospitals, economies in design and planning
time can save a building from being obsolete upon
completion.

Attempts to deal more objectively with the design
process are being made by design offices. Govern
mental agencies and corporate clients, with increasing
frequency, are asking for an "objective" analysis of
the design. Cluster analysis and hierarchical compo
sition, and resolution are some of the techniques being
used to arrive at decisions. However, sometimes what
is passed off as an objective scientific analysis of the
problem is simply putting numbers on subjective
decisions.

BUILDING PROGRAMMING

Architectural firms which have experience in a par
ticular building type are eminently qualified to write
programs for that type of building. Most firms have
not developed techniques for saving and reusing their
data and so, much of their valuable experience is only
partly carried over to the next job of type.

Non-architectural firms which have become involved
with preparing "Building Programs" have developed
sophisticated data gathering and data processing tech
niques. Architectural firms, in general, have been slow
in utilizing these techniques. And yet, the application
of these techniques could amplify the architect's ex
perience into a powerful programming tool. There is
also an increasing demand for pre-programming anal
ysis of data relevant to the proposed project and this
analysis is becoming so complex that perhaps compu
terization is the only rational way to do it. Feasibility
studies are also used to make some assessment before
proceeding to the long and expensive process of writing
a "building program."

FACILITIES MANAGEMENT

Different from construction management and more
suited to the architectural firm with some expertise in
general management, this area covers the comprehen
sive management of the existing and future building
activity of a large facility. Real estate, financial and
building cost data are manipulated in various ways in
order to arrive at a most beneficial mix for the client.
Again, it is necessary to explore a large range of al
ternatives.

Architecture contains a vast assortment of skills and
disciplines which are necessary to produce a building.
As the profession adapts to new needs, new skills will
have to be acquired. The pattern of growth is out
ward, in the direction of higher order generalities such
as the understanding of the socio-economic processes
which affect the building, rather than towards areas
which are more specific and circumscribed. Perhaps
this fundamental outlook underlies the fact that there
has been no great movement by architects, even in a
time of unemployment, to go into the field of engi
neering.

ARCHITECT-COMPUTER INTERFACE

In designing an architect-computer interface one
should be aware that the architect feels differently
about different areas.

(1) There are things an architect cannot do or can
not do well, but which he is interested in doing.

(2) There are things which he doesn't want to do.
(3) There are things which he doesn't want to do

but he has to.
(4) There are things he does well in which he feels he

doesn't need any help.

1. Things an architect cannot do or cannot do well,
but which he is interested in doing. Computer assist
ance in this area is welcomed by the architect because
with it he can attempt areas previously inaccessible.
An example of this type is Christos Tountas' 3-dimen
sional tent construction program. In it the designer
specifies the anchor points in plan and elevation and
the computer generates the shape of the tent in which
the stresses will be equally developed. The program
will then provide load analysis and coordinates of all
the nodes. The designer can, in addition, specify vari
ous elastic properties to the edge cables and because
the system is interactive, the computer will redraw the
resultant shape of the tent. This technique for design
ing tents far surpasses the method presently used
the construction of actual models.

Any program which allows an architect to design
curved forms as easily as he does in straight lines
would free him from the constraints of his straight line
geometry . It would assist him in conceptualizing
shapes and spaces which are currently too difficult to
draw.

Simulation programs showing movement of material
and people through a building would also be useful.
The architect, while he can visualize space easily, finds
it difficult to visualize continuing processes through
the space. Since he must make design allowances for
them, visual representation can be very helpful in
understanding the problem.

2. Things which he doesn't want to do. If a program
is provided that would simplify these tasks he prob
ably would still rather someone else did them. An ex-

ample of this are programs for structural analysis. Re
gardless of how easy it becomes, on any large project
the architect will still want the engineer to do it.

3. Things which he doesn't want to do-but has to.
These are areas of his responsibility like code compli
ance and specification writing. The simpler the pro
cess, the better. Moreover, it is not what the master
builder will get involved with as much as the guy in the
back room. Furthermore, for a firm to buy a computer
program, it will have to be cost competitive with their
consultant.

4. Things which he does well, such as design, and
feels he doesn't need any help-in fact, he is competi
tive with the computer. However, since these are areas
which he enjoys he is willing to experiment with com
puter assistance providing he is clearly the boss and
sets the pace. He is highly critical of the system de
sign and is intolerant of frustration. Because he
builds up his design on consecutive inputs-turn
around time, machine response must be fast in order
to be useful. This usually works best in interactive
systems. Examples of this area are the various com
puter-aided design programs. They can range from a
printout of the dimensions to a design solution to in
teractive design in three-dimensions with color and
perspective, time sequenced.

Drawing is a relevant step in the architect's strategy
for evolving a design solution because he thinks graphi
cally. He literally "sees" his solution. It is his form of
data compression, data manipulation and data trans
mission. That is why computer use for the architect
must involve graphics. It can be simple tables~ charts,
and even simple line drawings will do. Because the
architect can visualize easily, it is not necessary for an
object to be colored and shaded before he finds it mean
ingful. Because the embellishments are not essential
the architect is not likely to pay for it for himself. The
trimmings are more appropriately saved for the client.
But there is a great difference between designing a
computer program for an architect and for his client.

SCHOOLS

The America Institute of Architects held a seminar
for architectural students on The Changing Role of
Architecture and invited the deans of two eastern
schools. Their answers to the qUestion ",\Vhat are you
trying to teach the students?" -one answered, "To
dream," the other "To think." Needless to say, in these
schools there is little emphasis placed on the use of
computers in architecture. There are schools where
students are taught to think and dream and to use
computers. To visit such a place is an electrifying ex
perience. The Architecture Machine at M.LT., under
the aegis of Nicholas N egroponti is one such place.
Students are expected to investigate, explore and con
tribute to the new technology. These graduates unfor
tunately find little place for their skills in the architec-

Computers in Architecture 319

ture profession and often go back into the university
or to other industries and so the dissemination of new
techniques slowly reaches the profession.

CONCLUSION

And so ... how is the use of computers coming along
in the field of architecture? Slowly, and for good
reasons.

First, it is a complex field which covers many disci
plines and it is difficult to know which parts will take
to computerization.

Second, the computer people have not understood
the architect. They have not amplified his strengths
nor have they mitigated his weaknesses. They do not
know how to bring the computer to him nor how to
bring him to the computer. They don't even know of
what stuff his dreams are made.

Third, progress in computer technology, for the ar
chitect, has been mostly in the universities and in the
larger firms. The universities are often not aware of
the real-life problems of the architect. The larger firms
are too few in number and have too often been content
with the computer's power to impress, rather than its
power to compute.

But, the smaller firms, of which there are many, are
beginning to get into the picture. After all, one can now
buy a computer for the cost of a sports car. Hopefully,
these small firms will contribute to the use of com
puters because more people, who are architects, will
be using them. In addition, the new areas into which
the architect is heading, are eminently suited for com
puter assistance and indeed many of these areas have
been substantially touched by computers. Under the
impetus of becoming extinct, there will be architects
who, with the help of computers will finally make it
into the 20th century.

APPENDIX

A selected list of articles dealing with computers and architec
ture. Most of them have appeared in architectural journals.
They are listed chronologically because it provides an historical
overview of architectural interest in computers and computer
related areas.

1965 Cowan, H. J., "Industrialized Architecture," .. 4 .. 1 ... 4 .. Jour
nal, pp. 51-57, April.

1966 Ludwig, M. E., "Prejudice and the Computer," A.I.A.
Journal, p. 70, July.

1966 Stewart, C. D. and F. de Serio, "Design with Computers?
It's what's Happening, Baby!," Progressive Architecture,
pp. 156-158, July.

1967 Swinburne, H. H., "Change is the Challenge," A.I.A. Jour
nal, pp. 83-90, May.

1968 Berkeley, E. P., "Computers for Design and Design for
the Computer," Forum, pp. 60-65, March.

1969 Catalano, E., "A Case for Systems," Progressive Archi
tecture, pp. 162-166, May.

1969 Farrell, P. B., Jr., "How Computerized Land Development

320 National Computer Conference, 1976

Program Aids Architects, Contractors and Owner/Devel
opers," Building Construction, pp. 68-69, September.

1969 Teicholz, E. D., "Architecture and the Computer," Forum,
pp. 58-61, September.

1970 Katz, Genevieve and Lou Katz, "Capturing the Third
Dimension," Computer Decisions, pp. 50-53, October.

1970 Milne, M., "From Pencil Points to Computer Graphics,"
Progressive Architecture, pp. 168-176, June.

1971 Bazjanac, V., "Computer Simulation: A Realistic Assess
ment," Progressive Architecture, pp. 84-87, June.

1971 Horsley, C. B., "Architects find Computer a Friend," New
York Times, p. 6, August 29.

1971 Miller, W. R., "Computers in Architecture," Datamation,
pp. 20-26, September 15.

1972 Hanon, J., "Designing Buildings by Computer," New
Scientist, pp. 429-432, August 31.

1973 Stewart, C. D. and K. Lee, "Can a 54-year Old Architec
tural Firm Find Romance and Happiness with an Inter
active Computer System?," Progressive Architecture, pp.
64-72, July.

1975 Berger, H., "The Engineering Discipline of Tent Struc
ture," Architecture Record, pp. 81-88, February.

1975 Eastman, C. E., "The Use of Computers Instead of Draw
ings In Building Design," A.I.A. Journal, pp. 46-50, March.

SYSTEMS

Computer Systems
Systems Management
Networking
Business and Industry Systems

Prospective capabilities in hardware*

by MARGARET K. BUTLER
Argonne National Laboratory
" *. _____ Tll! __ !_
.M.~l'>UHHe, ~111HUl::;

ABSTRACT

Today we can look back over the past thirty years and
view the entire history of the electronic digital com
puter! In addressing the topic of prospective capabili
ties in hardware, this paper first attempts to extrapo
late, from today's state-of-the-art and vantage point,
general industry-wide trends and likely achievements.
Then, an effort is made to cover in more detail specific
areas of interest to the ERDA community. Subjects
discussed include available large-scale computers
their architecture and viability. The microprocessor's
impact on computer systems is considered, and poten
tial applications of the microcomputer are identified.
Then mass storage offerings and their role in predicted
memory hierarchies is assessed; progress in the de
velopment of alternate storage technologies is re
viewed. New products and anticipated innovations in
peripheral and input-output equipment, probably the
most lethargic segment of the dynamic hardware mar
ket, are described, and a survey of network and com
munications activity examines future directions this
rapidly-expanding field might be expected to follow.

Whenever possible in each of these areas, examples
with descriptive characteristics, accompanied by cost
and performance statistics, are presented in support of
the initially-forecast broad technological trends. These
examples, chosen for illustration, represent new hard
ware products, advanced technologies in the develop
mental stages, or planned enhancements of existing
product lines.

* 'iN ork performed under the auspices of the U.S. Energy Re
search and Development Administration for ERDA Conference
on Computer Support of Enyironmental ScienCe and i\.nalysis,
Albuquerque, NM, 1975.

1946 ... 1959 ...

INTRODUCTION

Beginning in 1946 with the dedication of the ENIAC
at the Moore School in Philadelphia, this history
is generally perceived as a sequence of eras. These
eras, traditionally referred to as generations, are char
acterized by the technology employed by the computer
industry during that period. The history of the com
puter industry, as customarily represented, is shown
below with the fourth generation introduced to reflect
the technological advances of this decade.

The transition from the first to second generation
is clear-cut, defined by the industry's shift from
vacuum tube to transistor technology. Emergence of
later generations becomes blurred as the increased
investment in the existing technology, coupled with the
need for acceptance on a cost-performance basis, serves
to retard the new alternative technologies. For ex
ample, the incorporation of large semiconductor
memories was postponed by economic considerations
until production quantities reached proportions per
mitting the technology to compete with the entrenched
magnetic core storage.

In addressing the topic of prospective capabilities
in hardware, this paper first attempts to extrapolate,
from today's state-of-the-art and vantage point, gen
eral industry-wide trends and likely achievements.
Then, an effort is made to cover in more detail specific
areas of interest to the ERDA community and the
agency's environmental science and analysis programs.
Subjects discussed include available large-scale com
puters-their architecture and viability. The micro
processor's impact on computer systems is considered,

1965 ... 1971 ...

TECHNOLOGY: vacuum tube transistor integrated large-scale
circuit integration

MEMORY: mercury delay line magnetic core magnetic core semiconductor
or electrostatic or pIa ted wire

Figure I-History of the Computer Industry-Four Generations

323

324 National Computer Conference, 1976

and potential applications of the microcomputer are
identified. Then, the recently-announced mass storage
offerings and their role in predicted memory hier
archies is assessed; progress in the development of
alternate storage technologies is reviewed. New prod
ucts and anticipated innovations in peripheral and
input-output equipment, probably the most lethargic
segment of the dynamic hardware market, are de
scribed, and a survey of network and communications
activity examines future directions this rapidly-ex
panding field might be expected to follow.

Whenever possible in each of these areas, examples
with descriptive characteristics, accompanied by cost
and performance statistics, are presented in support
of the initially-forecast broad technological trends.
These examples, chosen for illustration, represent new
hardware products, advanced technologies in the de
velopmental stages, or planned enhancements of exist
ing product lines.

TECHNOLOGICAL TRENDS

In 1970 the largest second-order suppliers to the
computer industry, the semiconductor manufacturers,
were doing a 348 million-dollar business annually,
producing logic components and peripheral system ele
ments while developing the technology to permit inte
gration of larger logical functions on a single semi
conductor chip.1 Large-scale integration, the hallmark
of the fourth generation, is the name given the tech
nology used to produce high-density electronic circuits.
Although not defined precisely, it is generally inter
preted to imply over a hundred "gates", or individual
circuit functions, at a density exceeding 50,000 com
ponents per square inch.2

Major benefits and industry-wide trends resulting
directly from the steady improvement in production
of LSI modules and fabrication techniques ar~:

• reduced cost per logic function, or memory bit,
with an accompanying decrease in physical size,

• increased complexity with implied enhanced cap
ability and performance, and

• improved reliability.

These trends can be expected to continue. Today,
chips less than a quarter of an inch on an edge in
corporate well over 20,000 components at a cost under
a small fraction of a cent per component. 3 This low
cost is achieved primarily by economies of volume
production, although advances in semiconductor fabri
cation techniques, and adoption of computer-aided de
sign (CAD), manufacturing (CAM), and automated
component testing procedures have played a part. The
reduction in the number of interconnections and com
ponents brought about by LSI has contributed to the
realization of both increased complexity and higher
reliability in the hardware product. It is, and will re
main, expensive to produce custom-tailored LSI; stan-

dardized circuitry is required for low prices. A plot
showing the density and cost of integrated-circuit com
ponents over the 1960-1980 time period reconstructed
from an August 1973 Scientific American article is
shown as Figure 2.4

Semiconductor manufacturers concentrated much of
their early LSI effort on the production of computer
memory arrays because of their inherent regular struc
ture and potential volume market as a replacement for
magnetic-core storage. Fabrication technology known
as MOS, for metal-oxide-semiconductor, was intro
duced to achieve higher-component density than realiz
able with the older, higher-speed "bipolar" technique.
Early utilization of semiconductor memories was
limited, because of cost considerations, to read-only
memory (ROM) control storage or to small arrays of
read/write memory (RAM) employed, in hierarchical
memory organizations, as buffers or caches. In 1971
IBM delivered the first System 370/145 with its semi
conductor main memory, and finally, during the 1972-73
time-period, semiconductor storage overcame the cost
advantage maintained for so long by magnetic-core
technology.

The MOS process was also utilized in the manu
facture of chips for the popular, electronic desk and
pocket calculators, which created a new large-volume
semiconductor market. As an outgrowth of this effort,
and in an attempt to stimulate sales of its semiconduc
tor memory modules, Intel Corporation in 1971 an
nounced the first, programmable, single-chip LSI pro
cessor. Soon other microprocessors appeared; these
"micro" versions of the traditional CPU-the com
puter's control and arithmetic-and-Iogic units-were
quickly incorporated in a variety of applications rang
ing from electronic games to point-of-sale and bank
terminals, and laboratory instrumentation. Combined

1,000,000 1,000
I'

/

100,000

!:;
~
u

10,000 e;
u

f"-
/

/
/

~ /

'"
/

/
/

'" /

100

10 -;;;-
I-
z:

c
w
I-
c::e:
~ 1,000 t.!:l
W
I-
::;
.......
Vl
I- 100 z:
w
z:
0
0-
:E
0
u

10

IY
.-\ V i',c

f '~J' :€
<:::J«; , ,

vr ,
"-

/ \
\

/
,

\
\

LLl

~
I-
z:
LLl
Z

~
:E
0
u

. 1
l-
V)

0
u

.01

.001
1960 1964 1968 1972 1976 1980

Figure 2-Density and cost of integrated circuits for the period
1960-1980

with timing, memory, and input-output facilities the
long-heralded "computer-on-a-chip", or perhaps a few
chips, had arrived. The microcomputer is here, and in
time we can expect a nanoprocessor, capable of instruc
tion times in the range of 100 nanoseconds. Nano
processors can be implemented in bipolar technology if
kept simple; bipolar has yielded speeds well under 100
nanoseconds for l024-bit RAM and ROM chips, and
cost is decreasing rapidly to levels comparable to the
MOS devices.5 A silicon-on-sapphire (SOS) approach
offering increased speed and component density shows
promise for the future.

Entire new areas of applications have become acces
sible to the computer industry with the advent of the
inexpensive yet powerful microprocessor. Trends in
progress, or anticipated, as a result include :1,6,7

• "intelligence" added to practically every type of
control and data entry equipment (i.e. remote
sensor and monitoring devices, automobiles, ap
pliances, process control, data entry, graphics,
and word-processing terminals) ,

• dedicated small digital systems incorporated in
computer subsystems (e.g. computer peripherals
controllers, communications controllers), and

• evolutionary changes in system design occasioned
by the availability of near "zero" cost hardware
and the attendant distributed intelligence pos
sibilities.

In addition to the trends forecast as directly at
tributable to LSI technology and the availability of
microprocessors, a review of characteristics, com
ponents, and the organization postulated for next
decade's computer indicates :8,9

• processor speeds greater than 100 MIPS (million
instructions per second),

• increased size (up to 100 megabytes) of semicon
ductor main memory,

• available on-line archival mass storage facilities
using different technologies,

• architecture directed toward multiprocessor net
work configurations utilizing multilevel memory,
and computer, hierarchical organizations,

• extensive use of microcode to accommodate dedi
cated or special processes and distributed-function
concepts,

: decentralization of communications, input-output,
and peripheral file management subsystems,

• firmware implementation of many of today's oper
ating system features and other system software,

• incorporated performance-measurement monitor
ing, maintenance, and error-logging, and fail-soft
and fault-tolerant design for increased hardware
reliability and a'vailability.

Historically, computers have been classified as small,
medium, or large-scale primarily on the basis of price
and performance. Size defined the minicomputer of

Prospective Capabilities in Hardware 325

the sixties and the microcomputer in this decade. Such
distinctions are no longer relevant; a full spectrum of
computer power from microprocessor to mainframe is
available for the choosing. The user pays his money
and takes his choice, and he has progressively, year by
year, been offered more performance for his dollar.
This trend can be expected to continue, particularly at
the low end of the spectrum. Tomorrow's moderately
priced computer system will afford the user much the
same computing power as today's high-priced spread;
the low-priced system can be expected to provide
moderate capability at a reduced price, etc. Price in
the computer industry is negatively correlated with
quantity, or market volume. This coupling could cause
the most significant impact on the scientific community,
and ERDA, of all these trends. The larger, more
powerful, state-of-the-art processors required for
ERDA's programs will tend to represent an increas
ingly smaller fraction of the market; consequently,
fewer such computers will be developed, and those will
tend to be expensive when compared, on a cost-per
formance basis, to the models produced in response
to market demand. Two possible reactions, should
such a situation come to pass, are the approach taken
by the Controlled Thermonuclear Research (CTR) Di
vision in providing computer capability for its pro
gram, and the action taken earlier by the AEC in
ensuring adequate computational resources to meet
laboratory requirements. The CTR approach is to pro
vide the top-of-the-line, number-crunching capability
at a single-site, the Lawrence Livermore Laboratory,
together with the network and station facilities neces
sary to make this power accessible to off-site program
participants. The LARC and STRETCH projects were
cooperative ventures undertaken by the AEC with
Remington Rand and IBM to develop the computer
capability needed for the Commission's research and
development activities.

LARGE-SCALE COMPUTERS

About four years ago at the Idaho Falls topical meet
ing of the American Nuclear Society's Mathematics
and Computation Division, Jack Worlton of the Los
Alamos laboratory, presented an entertaining talk on a
theme similar to the one covered by this paper. At that
time, he noted that the IBM 360/195 and the CDC 7600,
both capable of executing ten million instructions per
second, were the fastest computers installed, and specu
lated that even faster computers would be delivered
in the next few years. 10

The number of faster computers delivered in the in
tervening years has been dismally small, and their
power has not been uniformly impressive. ILLIAC IV,
the Texas Instruments ASC (Advanced Scientific Com
puter) , and the Control Data Corporation's STAR-100,
all unconventional machines from a system architect's
point of view, have arrived on the scene, each culmi-

326 National Computer Conference, 1976

nating about ten years of research and development
effort. Standing in the wings is CRA Y -1, the initial
product of Seymour Cray's Cray Research, Inc., which
is expected to provide five times the performance of
the CDC 7600 when delivered in January of next year.

Meanwhile, work on the CDC 8600 expected as a
follow-on to the CDC 7600 has been discontinued;
neither the postulated IBM 370/178 nor FS, the giant's
Future System has emerged. Instead, CDC is up
grading their 7600 system, IBM has announced en
hancements to their 370/158 and 168, UNIVAC has
souped-up its 1100 series, and Amdahl recently de
livered its first machine, the 470 V /6 aimed at the
IBM 370/168 marketplace. The future of large-scale,
fast and powerful scientific computers is unclear.

ILLIAC IV is generally described as a parallel com
puter, or array processo.r. The concept was first ex
plored in the early sixties at the Westinghouse Electric
Corporation on the premise that large-scale computing
could be characterized as repetitive execution of the
same algorithm on different data streams.ll The as
sumption that much of the cost of that day's conven
tional computer was associated with the control logic
also had an influence on the design. Inherent in the
Westinghouse SOLOMON design is the concept of
many simple, identical processors, each programmed
by a common central control unit to directly simulate
the physical process being studied. 12 ,13 The basic sys
tem considered, consisted of multiple processing ele
ments, (PEs), configured in an array, with each PE a
complete arithmetic-and-Iogic unit capable of executing
a full instruction set. Each element contained its own
memory unit, could optionally execute or ignore a given
instruction, and could transfer data to any of its four
nearest-neighbors.

During the latter part of 1966 a project was initiated
at the University of Illinois, funded by the Advanced
Research Projects Agency (ARPA), providing for con
struction by the Burroughs Corporation of the ILLIAC
IV parallel computer based on the prototype SOLO
MON studies.14 Sixty-four PEs were implemented in
ILLIAC IV, each with a memory unit capable of stor
ing 2048 64-bit data entities in a variety of 8-, 32-, or
64-bit fixed and floating-point formats. 15 In addition
to this 8.4 million bits of main memory, the machine
has a one-bill ion-bit diskfile secondary memory, and a
one-trillion-bit archival storage subsystem. A front
end Burroughs 6500 computer was incorporated in the
design to control the laser-beam read and record third
level memory, the usual array of peripheral card,
printer, tape, disk and display equipment, and tele
phone-line communications. The machine was designed
to be accessible to ARPA research contractors via
the ARPANET resource-sharing network. Since the
ILLIAC IV project was moved to the NASA Ames
installation in California little has been heard of it,
except for occasional mention of the fact that the sys
tem is not operationalY At the IEEE Lake Arrow-

head Workshop in 1973 D. L. Slotnick, who was re
sponsible for the project at the University of Illinois,
was quoted as commenting that in an up-to-date minia
turized ILLIAC IV the processing elements would be
in the reading heads of a disk. 17

Starting with the overlapping of input-output and
peripheral device operation with CPU execution 15
years ago, designers have successively introduced
forms of parallelism in the initially serial stored
program computer in an attempt to achieve higher
performance with existing components and state
of-the-art technology. Pipelining techniques are
implemented which segment the various stages of in
struction execution and pass operands from one to the
next to allow many operations to be in progress simul
taneously. Multiple functional units are incorporated
to permit several operations to be executed simultane
ously, and microprogram control is utilized to meet the
associated timing constraints. To provide the supply
of operands required at a rate consonant with the CPU
operation memory modules are interleaved, data paths
widened, instruction stacks with "look ahead" logic
and cache memories are added. In three of the avail
able large-scale systems-the CDC ST AR-100, TI's
ASC, and the CRAY -I-vector capabilities have been
included in the machines' instruction sets to achieve
increased processor speed, leading these computers to
be referred to as vector processors.

Development programs for the ST AR-100 and ASC
were initiated in the mid-sixties and, to date, two
STARs and six ASCs have been delivered. Both STAR-
100s are at the Lawrence Livermore Laboratory where
personnel have been involved in the STAR development
from its inception. Three ASCs are in use at Texas
Instruments, one for system development and two on
contract seismic applications; a fourth is employed on
seismic work in the TI Amstelveen, Holland facility,
and the fifth and sixth are at the Army Ballistic Mis
sile Defense Agency Huntsville research center and the
NOAA Geophysical Fluid Dynamics Laboratory at
Princeton University. When Cray Research, Inc. was
established in April of 1972 work began on the initial
CRAY-1 machine. It is expected to be available for
delivery in January 1976, and a second unit is under
construction in Chippewa Falls.

A table summarizing characteristics of these three
machines is shown as Table I.

Several features of these machines deserve mention
as illustrative of the trends projected earlier. In the
STAR-100 the CPU's stream unit, which directs the
instruction and operand streams into the arithmetic
unit, uses microcode resident in two 80-nanosecond
ROM components to initiate and terminate vector and
string operations and to monitor interrupt conditions. IS

When an interrupt occurs, information necessary to
restart is saved, an interrupt flag is set, and the micro
code program triggers the exchange from job to moni
tor mode. In the stream unit, too, is the 256 64-bit

Prospective Capabilities in Hardware 327

TABLE I-Characteristics of the Available Vector Processors

CPU:

Instruction size (bits)
Clock period (nsec)
Instruction stack/buffers

Functional units

Program-addressable registers

MEMORY:

Technology
Word length (bits)
Address space (words)
Data path width (bits)
Cycle time
Size (words)
Organization/in terlea ve
Maximum band width (words/sec)
Maximum band width (bits/sec)
Error checking

LOGIC:**

32 or 64
40

STAR

32 'words (2048 bits)

3
1 string unit
2 floating-point units

25664-bit

magnetic core
64
4X 1012

512 (=1 s (uper) word)
1.28 p's
512K or 1M
32 banks
200X 106

12.8X109

2 parity bits/word

TCS

32
60

ASC

16 or 32 words (512 or 1024
bits)

1, 2 or 4 pipes, with memory
buffer unit & arithmetic
unit

48 or 96 32-bit

bipolar semiconductor
32
16M
256 (=1 octet)
160 nsec
128K to 16M*
8 module
400X106

12.8X109

single-bit error correction
double-bit error detection

ECL

16 or 32
12.5

CRAY-1

256 parcels (4096 bits)

12
3 integer add
1 integer multiply
2 shift
1 pop. count
2 logical
1 floating add
1 floating multiply
1 reciprocal approx.

8 64-element 64-bit
7364-bit
7224-bit
17-bit

bipolar semiconductor
64
4M
64
50 nsec
1M
16 banks
80X 106

5.1 X 109

1 parity bit/word

ECL

* optional MOS semiconductor memory extension of up to 1M words with 1 p's cycle time and 64 X 106 band width
** TCS (transistor current switch), ECL (emitter-coupled logic)

register file which is implemented in read-or-write
semiconductor hardware with a 20-nanosecond cycle
time. The register file provides instruction and operand
addressing, indexing, stores constants and field-length
counts, and is the source and destination for the
register-to-register three-address type instructions.19

Distributed-function architecture is realized in the I/O
Station concept of the STAR system. An I/O Station
consists of a station control unit (SCU) and a station
buffer unit (SEU) together with the hardware for the
particular function being controlled. The SCU is a
16-bit minicomputer with 8-64K words of 1.2 ms core,
CRT display, and refresh micro drum ; the SEU is a
32K 16-bit word core memory. System autoload, diag
nostic testing, and performance monitoring take place
in the Maintenance Control Unit on one of the system's
I/O channels; others accommodate the STAR paging,
unit record, tape, and disk stations.

In the ASC system the peripheral processor assumes
the system control and data management functions. It
is designed as a multiprocessor with eight independent
virtual processors, (VPs), sharing a common 4K 32-bit
ROM, arithmetic unit, instruction processing unit,
central memory, and access to the communication reg
ister (CR) file where control and status information

necessary for system coordination is stored. Use of
these shared facilities is distributed either dynamically,
to suit individual processing demands, or equally with
two 65-nanosecond cycles assigned each VP every 1.4
p..S. The ASC operating system executes in the periph
eral processor taking advantage of its hardware fea
tures. Most important of these, complete access to
central memory, permits a single re-entrant copy of
code to be accessed by all VPS.20 ASC data commu
nications are controlled by a TI980A minicomputer
specially-equipped for the task; transfer rates up to
240,000 bits per second are supported.

The CRAY-l design, which retains much of the fla
vor of the 7600, is based on a 1024-bit, bipolar RAM
chip with a cycle time of 50 nanoseconds. The system
consists of the central processor with 1M words of
central memory, 12 I/O channels, a maintenance con
trol unit, and a CDC 819 disk subsystem. All units are
tightly synchronous with a clock period of 12.5 nano
seconds. The memory is organized as 16 banks of
65,536 64-bit words. Each memory module consisting
of 64 chips, 32 per side, represents a bit position; 64
modules constitute a bank of 65,536 words. Two banks
are packaged vertically per chassis with the eight

328 National Computer Conference, 1976

memory chassis positioned four on each side of the
CPU in the CRAY-1 main frame.

Contained in the central processor are four instruc
tion parcel buffers (IPBs) , over 150 program-address
able registers, and 12 independent algorithm or func
tional units. Each CRAY -1 instruction is either a
one-parcel (16-bit) or two-parcel (32-bit) instruction.
The 64-parcel instruction buffers are organized in 4 to 1
correspondence with the 16-memory banks so that the
first four parcel positions in a buffer are always filled
from bank 0, parcels 5 through 8 come from bank 1,
etc. This feature, combined with the use of four 64-bit
paths, in parallel, between memory and the IPBs,
makes possible a transfer rate of four words per clock
period. Buffers are filled in turn; whenever an instruc
tion fetch from memory is required, the "least recently
filled" IPB is used. The fetched instruction is always
read in with the first parcels regardless of its memory
bank source and associated buffer-position destination.

The machine complement of program-addressable
registers resembles a greatly-expanded CDC 7600 col
lection. Registers have been added to hold vector in
struction parameters and to serve as source and desti
nation addresses for operands in, up to 64-element,
vector arithmetic and logical instructions. In addition,
the eight principal address-length registers used as
address registers for memory reference and index reg
isters, and the eight principal word-length registers
which act as source and destination registers for scalar
operands, are each backed-up by 64 secondary registers
designed to provide quick-access, temporary storage.
Operands can be recalled from secondary to principal
register storage in one clock period, and the secondary
registers can be loaded from memory, or stored away
in stream-fashion with a single block copy command
at the rate of one clock period per operand after a
startup period. Contents of a vector register are stored
in, or loaded from, memory by specifying the initial
address, an increment for succeeding addresses, and
the vector length, at a one-clock-period rate once eight
elements have been transferred.

Functional units are designed with one-clock period
segmentation; the source and destination addresses
are limited, and the algorithm chosen so that the time
required for each unit to complete its task is fixed. 21

In vector mode results are produced at a one-clock
period rate, and these results may interact with other
vector instructions in "chained" operations since all
functional units have the same result rate. Three in
teger add units, an integer multiply, two shift units,
a population counter, two logical operations units, and
floating-point add, multiply, and reciprocal approxima
tion units are included in the central processor. The
machine performs floating-point division by reciprocal
approximation; four instructions are necessary to ob
tain 48-bit precision. When vectors longer than 64
elements are used, programming is required to divide
them into 64-element sequences for processing.

Twelve full-duplex, 64-bit wide, input-output chan
nels are included in the CRAY-1 system; however, the
only peripheral equipment supplied will be the CDC
819 disk which is used as the resident device for the
operating system. The system described is priced at
7 to 8 million dollars and purchasers are expected to
acquire their unit record, disk, tape, display, and ter
minal equipment from other vendors.

Today, although both STAR and ASC systems are in
operation it is difficult to find performance compari
sons with conventional machines or published bench
mark problem results. The "promised" computing
power of vector processors a decade ago has yet to be
realized. The architecture is designed to optimize
vector-mode operations in which the vector elements
are at contiguous storage locations, and the number
of elements in the vector is large; the latter is espe
cially true in the STAR-100 implementation. Conse
quently, it is essential that programs written for these
vector processors exhibit a high ratio of vector to non
vector (scalar, branch, test, execute) instructions and
that both code and data be ordered to minimize memory
references and maximize parallel operations. Over the
past six years LLL computer personnel have been
working on the construction of the STAR operating
system and related software to achieve their announced
goal of incorporating the machines as worker com
puters in the Laboratory's OCTOPUS time-sharing
network. 22 During this same period they have devel
oped techniques and methods for transforming existing
large production codes into "vectorized" STAR code.23

This has proved to be an arduous task. 24

Texas Instruments has, since 1968, been developing
a sophisticated FORTRAN compiler, ASC NX, with
array-oriented language extensions to generate "vec
torized" code for their machine.25 The NX compiler
translates FORTRAN DO-loops into vector instruc
tions, and, if instructed that the code is for a
multi-pipe machine, can introduce parallel instruction
streams. An extensive optimization analysis is per
formed and as output, the programmer receives infor
mation intended to assist hand-tailoring of the source
code to allow further iterative compiler optimization,
if desired. Factors to be considered, and techniques,
for improving the efficiency of execution of ASC scalar
instructions were presented in a recent paper.26 Table
II summarizes performance statistics which have been
reported for the two machines.

The CRAY-1 second generation vector processor is
obviously intended to take care of many of the prob
lems that have been encountered in attempting to use
the first-generation processors, and both CDC and TI
are planning for the future. CDC expects to replace
their core memory with a bipolar semiconductor mem
ory and to add a front-end computer to the system.
Before the year is out, they intend to announce STAR
as a product, send staff to Livermore to assist with
the STAR-OCTOPUS merger, deliver model 103 to

NASA Langley, and add 104 to their own CYBERNET
computer service network. TI is readying a 61,500
word per second mass-storage videotape subsystem for
use with the serial 4 ASC at the Princeton Geophysical
Fluid Dynamics Laboratory, and that machine's main
memory will probably be expanded to 4M words utiliz
ing a 1024-bit memory chip with a 100 nsec store time
instead of the present 256-bit chip. Serial 7 will be
delivered to the Naval Research Laboratory in January
of next year and late in 1976 announcement of a 6-
megaword compatible channel can be expected. Pres
ently being looked at as a cost reduction measure is a
16M-word-memory design incorporating a 4K MOS
chip with 200 nsec access and increased interleaving.
The company is interested, also, in locating a customer
seeking faster scalar capability; they believe a two- to
fourfold increase in speed can be realized within two
years, following such an order.

While the array and vector processors were being
designed and constructed, the mainstream large-scale
computer systems were evolving toward a flexible,
modular architecture in which the major system com
ponents such as memory, processor, and input-output
control are treated as logically separate entities.
Keenly aware of the user's evergrowing investment in
applications programs and computer-based data, man
ufacturers have attempted to structure their product
lines to accommodate the user. The number and per
formance capabilities of the component units can be
tailored to meet budget constraints and growth re
quirements, and technological advances offering im
proved component performance can be incorporated
quickly and effectively, all with minimal impact on the
user's operation. Increasing emphasis is being placed
on system reliability and availability.

Control Data Corporation's 7600 has found wide
acceptance in ERDA laboratories and the nuclear in
dustry where 18 of the 38 delivered systems are em
ployed. Later this year the company plans to enhance
this system with expanded and improved memory com
ponents. Characteristics of the current and proposed
7600 SCM and LCM units appear in Table III. The
CTR Computer Center at Livermore is scheduled to

Prospective Capabilities in Hardware 329

TABLE II-Performance Statistics and Comparisons of Vector
Processors Relative to the CDC 7600 and IBM Model 195

COMPUTATION"AL CDC 7600
MODEL OR OR IBM
PROBLEM 360/195 STAR ASC CRAY-l

Scalar 1 0.25 5
Vector

(10 elements) 1 0.4 6
(25 elements) 1 1
(200 elements) 1 5
(iOOO elements) 1 5 10

Sca tter-Ga ther 1 0.67 5
1-D HYDRO 1 1.6
Matrix Inversion

(25X25) 1 1.58
(50X50) 1 1.75

Matrix Multiplication
(25 X25) 1 1.27
(50X50) 1 1.32

GFDL models 1 3 to 14
GFDL jobstream 1 2.5 to 3

receive the first of the small semiconductor memory
models during the latter half of this year, and the
revamped 7600 can be expected to appear in CDC's
product line about a year later.

IBM announced the 168-3, an enhancement of their
370 Model 168, in March of this year; first customer
shipment is scheduled for June.27 Using a new lK
bipolar chip IBM has increased the machine's 80 ns
cache buffer memory capacity from 16K to 32K bytes.
New microcode in the processor's reloadable control
increases the speed of a number of frequently-used in
structions and internal interrupts. A service processor
added to the 168-3 monitors and stores machine status
information to aid engineers in servicing and diagnosis
of machine failure; the service processor also provides
a teleprocessing interface with the company's Field
Engineering Large Systems Support Center.28 A 5 to
13 percent increase in performance has been predicted
for the improved 168, which is priced at 5 million dol
lars when equipped with the top-of-the-line 8-megabyte
memory.

T ABLE III-Characteristics of CDC 7600 Memories

Technology
Size (words)

Organization (banks)
Cycle time (nsec)

Holding register (words)
Error checking

CURRENT PROPOSED

SMALL LARGE SMALL LARGE

core core semiconductor core
32K or 64K 256K or 512K 64K or 128K 512K,lM,

or2M

16or32 4or8 16 or 32 2,4,or8
275 1760 110 read, 1760

5 parity
bits/word

8
4 parity
bits/word

165 write

16
single-bit error correction
double-bit error detection

330 National Computer Conference, 1976

In March, too, Sperry Univac announced its 1100/40
system, successor to the 1100 as the largest of the firm's
large-scale systems.29 The 1100/40, like the 1110, has
two levels of memory: a primary memory with from
28K to 512K 36-bit words and an extended memory
with 128K to 1M-word capacity. Implemented in 1K
bipolar the 1100/40 main memory offers double the
primary storage available with the earlier plated-wire
technology. This memory has 280 ns read and 380 ns
write time, while the extended MOS memory for the
1100/40 has an 800 ns cycle time. The processor com
ponent in the system is the Command/Arithmetic Unit
(CAU) with 300-nanosecond basic instruction time
and 1.8 MIPS capability.30 Input/Output Access Units
(lOAUs) control communications among system com
ponents and peripheral input-output. Multiprocessor
configurations as announced offer up to four each
CAUs and IOAUs. Gains of 10 to 25 percent in
throughput over the 1110 are expected for the new
system. Recently, NASA selected this system for a
potential 8-million-dollar space shuttle simulation com
plex at the Houston Johnson Spacecraft Center. The
NASA system will have 6 CAUs and 3 IOAUs extend
ing the 1100/40s multiprocessor capability.

Advanced LSI technology is stressed in the newest
entry in the large-scale computer industry, the Amdahl
470 V /6. This machine is designed to compete for the
IBM 370/168 market using slightly-modified IBM
software systems and, like the CRAY -I-letting the
customer select his peripherals from other vendors.
Central processor circuits are custom-designed emitter
coupled logic. 31 The Amdahl LSI chips, 10 mils thick
and measuring 0.154 inch square, can hold up to 100
circuits; speeds on the chip are on the order of 600
picoseconds. Chips are mounted on a ten-layer multi
layer board in specially-designed multichip carriers,
(MCCs), which serve as the field-replaceable unit.
Fifty-one MCCs, each containing about 3000 circuits,
make up the 470 V /6 CPU and channel. From 1 to 8
megabytes of directly-addressable MOS memory is of
fered with a 16K high-speed bipolar cache and 16 I/O
channels in the basic configuration. The channels pro
vide standard 360/370 interfaces for attachment of
peripheral devices. At the system console, equipped
with keyboard/CRT display, minicomputer, cassette
tape reader, modem, and disk storage unit, console op
eration, hardware control, and system maintenance
functions are carried out. The first Amdahl computer,
delivered to NASA's Institute for Space Studies at
Columbia University the beginning of June, was up
and running in a week's time.32 Table IV shows some
reported single-job NOAA benchmark comparisons of
the 470 V /6 with the IBM Model 195.

MICROPROCESSORS AND MICROCOMPUTER
APPLICATIONS

In fiscal year 1974 over half of the computers in the
Atomic Energy Commission were Digital Equipment

TABLE IV-,Benchmark Performance Comparisons of the
Amdahl 470 V /6 with the IBM Model 195

Amdahl 470 V /6

IBM Model 195 CPU Total

1A 1 .71 .69
1B 1 .58 .59

2 1 .52 .56
2 Main step 1 .52 .57

3 1.31 1.06
3 Main step 1 1.30 1.03

Corporation machines.33 A large majority of these
were minicomputers incorporated in dedicated labora
tory applications. It is reasonable to expect that, in
the future, with the growing availability of micro
processors and microcomputers, the instrumentation
and computer requirements for many ERDA labora
tory applications will be supplied by cheaper, smaller,
more specialized, and more reliable LSI technology.
This year DEC introduced an LSI-II microcomputer
at the low end of its PDP-II product line. An LSI-II
configured with 64K bits of read/write memory, 64K
bits of PROM (programmable ROM) memory, a 16-
bit parallel input-output interface, and floating-point
arithmetic is available at a cost of around 1500 dollars.
The PDP 11/40 instruction set is emulated in micro
code.

Two laboratory applications of microcomputers at
LLL were reported in a paper presented at a February
computer conference.34 One dealt with tritium moni
toring in various environments; the second was con
cerned with calculations on spectral data output from
a pulse height analyzer. LSI technology is particularly
adaptable to the area of environmental monitoring,
and the low cost of microprocessors and microcom
puters can be expected to lead to new applications not
previously considered.

MASS STORAGE SYSTEMS

In the past year with the announcements of the IBM
and CDC mass storage systems there has been a re
surgence of interest in archival mass storage to replace
manually-mounted magnetic tape, to allow installations
to service evergrowing numbers of interactive users,
and to place burgeoning data bases on-line particularly
in a multi-computer environment. To appeal, such
systems must be available at a cost approximating that
of magnetic tape and be easily integrated into the
customer's operation.

The IBM 3850 Mass Storage System (MSS) is a
hierarchical storage system capable of storing and
managing up to 472 billion bytes of data on_line.35 ,36

The data is stored on 64-foot lengths of magnetic tape,
about 3 inches wide, "spooled" in plastic cartridges,
4 inches ,vide and 2 inches in diameter. Data re-

corded on the tape as IBM 3336-1 cylinder images,
each cylinder appearing at a fixed location on the tape.
A single cartridge can contain 202 cylinders; a pair of
cartridges, the equivalent of one disk pack, is referred
to as a mass storage volume (MSV). All space in the
MSS is managed in terms of these MSVs. Cartridges
are stored in cells in a honeycomb arrangement in the
unit. Data are transferred from the cartridges to
staging buffers (dedicated 3330 drives) when re
quested. Once staged there, data are accessible just as
any other data resident on a 3330. When no longer
needed, and the space on the staging device is required
for other data, any "cylinder" containing new or up
dated data is destaged back onto the data cartridge.
MSS uses a "least recently used" replacement algo
rithm. Important concepts in the IBM 3850 imple
mentation are the ideas of virtual device and virtual
volume. The virtual device concept allows more drives
to be addressed than actually exist in the hardware
configuration. The virtual volume concept allows many
partial MSVs to reside on a single staging drive, or
different parts of an MSV to reside on several staging
drives. Industry sources believe IBM already has 700
to 1000 firm orders for the 3850.37

The CDC system is composed of a mass storage
adapter (MSA) unit and a mass storage facility
(MSF) with two, three, or four read/write stations
mechanically coupled to a cartridge storage unit. 3

' The
cartridge file provides storage for up to 16 biBion
characters. The MSF may be configured modularly in
sizes greater than 16 billion bytes. A single MSA can
handle up to 8 or 16 elements depending on the model;
an element is defined as either a read/write station or
a cartridge storage unit. Up to 81vISAs can be attached
to a single 3830-2 controller. Data in the MSF are
recorded on 100-inch lengths of 2.7-inch-wide magnetic
tape in a 9-track format at 6250 bpi density. One
hundred and forty-four tracks can be recorded. The
tape strip, containing up to 8 megabytes of infor
mation, is enclosed in a plastic cartridge, measuring
1.125" x 1.25" x 3.3". Two thousand such cartridges are
stored in the rectangular array of cells making up the
cartridge file. When a data set is required the appli
cable data set cartridge is located by its x-y coordinate
address in the file, selected from its cell by the unit's
cartridge selector, a pneumatic pick mechanism, and
transported to a read/write station. At the station the
cartridge is opened, the tape unwound, and drawn into
two vacuum columns for reading. After being read
the tape is rewound into the cartridge, and the car
tridge is sealed and returned to its file location. The
tape is never detached from its protective housing.
Data can be staged to any available disk space in the
host system, or staging can be eliminated altogether.
Data sets can be read directly to main memory and
returned directly to the cartridges, if desired. Two
cartridge I/O drawers, with 8 cartridge slots apiece,
allow the operator to enter and remove cartridges from

Prospective Capabilities in Hardware 331

the unit manually, and a write-inhibit plug can be used
to ensure that master library tapes are not written over
accidentally. A CDC MP16 minicomputer incorporated
in the MSA performs on-the-fly error correction and
detects illegal commands and incorrect sequences. Con
trol Data estimates ten million dollars has been spent
over the past five years developing this system.38 One of
the first systems scheduled for shipment in the fourth
quarter of 1976 will go to LLL.

Two other currently-available mass storage systems
are the CalComp Automated Tape Library (ATL) and
the Ampex TBM Mass Storage System. The ATL was
originally designed and marketed by Xytex Corpora
tion of Boulder, Colorado.39 In early 1974 CalComp
acquired the company, which was formally merged into
XTX, a wholly-owned CalComp subsidiary in January
of this year. ATL is a modular system with a basic
configuration of a control unit, two storage units, a
reel selector mechanism, and one automatic reel
mounting unit servicing one tape drive. This configu
ration is capable of storing 762 tape reels, and can be
expanded by incremental addition of storage units and
tape drives to accommodate 6250 magnetic tape reels
and 32 tape drives. Under computer control the stor
age system automatically retrieves requested tapes,
mounts them on the self-threading tape drives for
system use, and dismounts and refiles them upon job
completion. A complete inventory of status, usage, and
location information for all tape files is maintained.

Ampex's random access terabit memory utilizes
standard 2-inch-wide video tape recorded in a block
format to provide up to 350 billion bytes of data on-line
at a cost of about .0001 cent per bit.40,41 Each block is
identified by a unique address allowing block-address
searches, forward and backward, at 1000 inches per
second. The system is in two parts: a data storage
section composed of the transport modules, transport
drivers, and data channels, and the control section with
its storage control processor for system control and
data channel processors to control data transfer be
tween the TBM and the host computers. Each trans
port module includes two transports and has an 11-
billion-byte capacity; a TBM system can have up to
32 transport modules, and with up to six transport
drivers up to six concurrent accesses are possible. Each
data channel unit performs independent read and write
operations at a rate of 700 kilobytes per second. With
three data channel units, the system maximum, six
simultaneous read/write commands yield throughput
of 4.2 megabytes per second. Switching matrices allow
any transport to be accessed by any driver and data
channel and provide flexibility for dynamic reconfigu
ration and off-line maintenance of part of the system.
The TBM is capable of operating independently of host
processors; when used with host computers, the system
can either stage data to shared disks or route the data
directly to host channels.

The availability of two additional mass storage sys-

332 National Computer Conference, 1976

terns is questionable at this time. These two are the
Precision Instrument trillion-bit laser-based mass stor
age System 190, a follow-on to their UNICON system
which is installed on ILLIAC IV, and the Grumman
Masstape system, presently under reevaluation by its
developers.42

,43 System 190s had been ordered by the
Social Security Administration, and by Holifield N a
tional Laboratory for ERDA Technical Information
Center applications, before the company went into
receivership. Refinancing plans have recently been
announced, and it is now probable System 190 will be
marketed. Characteristics of these two systems, as
well as those of the IVC-I000 video tape recorder being
adapted by TI for the GFDL ASC, have been included
in the Table V mass storage system summary.

ALTERNATE STORAGE TECHNOLOGIES

Alternate storage technologies bridging the classical
memory access gap between main memory and the
peripheral storage devices, and at the same time, offer
ing the per bit cost of the rotating disks and drums,
have been the object of continuing research. During
the past five years three areas in which there have been
significant development efforts are: charge-coupled de
vices (CCD), bubble domain technology, and electron
beam addressed memories. The first two have been
described as belonging to the "moving the bits to the
sensor" philosophy, while the third applies the "mov
ing the sensor to the bits" approach.45

The CCD is, basically, a shift register for analog
signals made in the form of a string of MOS capacitors.
CCD memories, being serial in nature, are block
rather than bit-oriented. Primary incentive for CCD
memory development is its potential low cost derived
from higher packing density and the inherently sim
pler fabrication. One drawback is the long access time
associated with the serial nature of CCD technology.
At this year's National Computer Conference, Fair
child described their CCD 450 9216-bit storage which
is organized as 1024 9-bit bytes. 46 The unit is viewed
as a possible storage unit for portable terminals where
its byte format and low power features can be ex
ploited.

Throughout the past five years magnetic bubble
memories have been envisioned as a technology which
is just two to three years away. Their most attractive
characteristic is their non-volatility. Like CCD tech
nology, the bubble domain systems offer low power
consumption and high density per chip. By November
of last year prototype bubble memory systems had been
constructed by three companies, and Rockwell pre
sented three illustrations of the technology at the
NCC.-17 One application was as a spacecraft tape re
corder replacement, the second as an alternative to a
tape cassette or floppy disk in a data logging device,
and the third example was a block-organized memory
for a data processing system. Access time quoted for

the 64K-I024K, 16-bit, block-organized memory was
0.5 to 1 ms at a 0.05 cent-per-bit price.

Electron beam technology which dates back to first
generation computer memories, is once again showing
promise. General Electric;s Research and Development
Center is presently building 32-million-bit BEAMOS
(Beam-Addressed MOS) memory modules in pilot
quantities.48 The BEAMOS module consists of a mem
ory plane and electron-beam accessing system enclosed
in a glass envelope; it has an access time of 30 ftS and
a transfer rate of 10 megabits per second. A "matrix
electron lens" with 289 lenslets is used to direct the
cathode-ray-tube beam to read, write, or erase at pre
cise sites on the four silicon storage chips of the mem
ory plane. Each of the chips holds 8 million bits. In
a multimodule system, 16 or more tubes can be linked
to provide a 512-million-bit or greater storage capacity.
Data transfer rates of 160 megabits per second could
be realized by accessing a 16-module system in parallel.
Cost of the electron-beam addressed memory system is
estimated to be in the .02 to .1 cent/bit range.

PERIPHERAL AND INPUT-OUTPUT
EQUIPMENT

Although the industry has been actively seeking an
all-electronic auxiliary memory, this has not seemed to
discourage efforts in disk technology. New products
introduced include the Storage Technology 8800 "super
disk" with 800 megabyte capacity and the CDC 819
high-capacity disk subsystem with a 412-million-char
acter capacity. Delivery of the 819, already incorpo
rated in the STAR systems, is scheduled for August.
This disk has an average access time of 50 ms, 8.3 ms
average latency. and a transfer rate of 6.2 million
characters per second. IBM and the IBM-plug-com
patible manufacturers continue to turn out the 3330
200-megabyte disks and the Winchester 3340 with its
25 ms average access time. Electronic News reported
in May that disk drive shipments by U.S. firms were
expected to reach 1.2 billion dollars this year, and tape
drive shipments 1.3 billion. The ANSI 6250 magnetic
tape standard will soon be out for public review and
comment. This tape will become and remain a high
volume product due to its high data rate, low cost, and
interchange capability.

-Three I/O product areas projected for growth are
high-speed printers, intelligent terminals, and floppy
disks. Both Honeywell and IBM have introduced non
impact, high-speed printers. Livermore has had two
of the Honeywell printer subsystems, which use Honey
well 716 minicomputers as controllers, in use off-line
for over a year. Each 12,000-18,000 lpm unit has a
read-only memory character generator which prints
up to 192 characters using an electrostatic technique.
Cost of the Honeywell subsystem is $162,120. In April
of this year IBM announced a printer system that
combines laser and electrophotographic techniques to

Prospective Capabilities in Hardware 333

T ABLE V -Summary of Characteristics of Mass Storage Systems

A~IPEX CALCOMP GRUMMAN
TRVI ATL CDC MSS IBM MSS PI 190 MASSTAPE IVC-1000

Host interfaces: IBM 360/370, IBM 360/370 IBM 370 IBM 370 IBM 37044

CDC, DEC CDC VS only TIASC
Capacity: 350B bytes 762-6250 reels 16B byte 35B-472B bytes 1GB byte l1.8B byte

increments increments- increments
128B bytes

Media: 2" video tape Y2" tape on 2.75" tape in 3" tape in rhodium-coated lh" tape in 1" video tape. on
on 10lh" reel lOlh;; reei piastic cartridge plastic cartridge mylar strip cartridge 121;2" reel

Unit capacity: 11B bytes/ standard 8M bytes
module 3420 tape
(module=2

reels)

Unit cost: $150/reel S15 / cartridge

Recording: transverse longitudinal longitudinal
VTR, block-
addressable

Access time: search 1000 11 to 14 sec 5 sec
ips

Data rate: 4.2M bytes/s 1.25M bytes/sec 806K bytes/s
(6 channels) from disk

400K bytes/s
staging

Price: $400,000 to $70,000 to -$400,000
$1.5 million $250,000 (16B system)

print up to 13,360 lpm on plain paper. It may be pur
chased for $310,000, and first customer shipments are
scheduled for the third quarter of 1976. The 3800 can
be attached to any channel and can print up to 225
characters, in four character sets at a time, on any of
50 page sizes. Characters can be produced in 12 to the
inch, and 15 to the inch, as well as in the standard
10 to the inch size. A number of standard character
fonts are included. Xerox markets a 4000 lpm page
printer, known as the 1200, which is available on a
rental basis only; the cost is $1500/month with a
monthly page charge of 11 mills each for the first
100,000 pages, 7 mills each for the next 200,000, and
4 mills for each page thereafter. UNIVAC is rumored
to be working on a 14,000 Imp laser printer, and at
NCC Canon distributed literature on their off-line 1000
to 4000 lpm laser beam unit. Paper costs for the
equipment vary as shown in Table VI.

Reports on terminals have predicted a rise from
fewer than 200,000 in 1970 to almost 3,500,000 by
1980.49 LSI technology coupled with the growing
trends to communications-based systems and distrib
uted-function architecture make even that estimate
appear conservative.

Floppy disk drive sales are expected to show a five
fold increase between 1975 and 1980. Applications of
floppies are primarily in data entry systems, intelligent
and point-of-sale terminals, and as minicomputer and
microcomputer peripherals. The disk holds up to 1898
128-character records and is a very inexpensive mem-

50AM bytes 200M bytes 36M bytes 9 X 1010 bits

$20/cartridge $20-$25/strip

helical VTR laser beam file-addressable helical VTR

3t08sec 7 to 10 sec track avg 5 sec search 400 ips
access: 220 ms max 15 sec

806K bytes/s 440K bytes/s lOOK bytes/s 1M bytes/s
from disk single file
200K bytes/s 350K bytes/s
staging per host

$700,000 to -$400,000
$4.5 million (16B system)

ory unit; today's prices vary between $4.50 and $8.00
and reductions can be expected as market volume
increases.

NETV/ORK AND COMMUNICATIONS ACTIVITY

The network and communications area is the area
destined to receive the most attention from the com
puter manufacturers in the next five years. An IEEE
Computer Society glossary defines a computer network
as an interconnected group of independent computer
systems which communicate with one another and
share resources such as programs, data, hardware, and
software. Under this definition most of today's com
puter facilities can be classified as networks. With
data traffic in the United States growing at an annual
rate of 35 percent, computer manufacturers have be
come increasingly committed to the development of

TABLE VI-A Comparison of Available High-Speed
Printer Subsystems

Honeywell IBM Xerox

Technology : Electrosta tic Laser Xerographic
Speed (lpm) : 12,000-18,000 up to 13,360 4000
Paper-use fees: $2.61-$2.31/1000 $2.30/1000 1.1 to OA¢/

copy
Purchase price: $162,120 $310,000 NOT SOLD
Rental: $3667 minimum $7,344 $2100 or $2600

334 National Computer Conference, 1976

coordinated hardware and software systems for com
munications-based information networks.

IBM's effort to provide a single uniform environ
ment for data communications is identified as Systems
Network Architecture, or SN A. GO Digital Equipment
Corporation calls its DECNET software a set of tools
to allow intersystem communication,51 and CDC has
opted for the title Network Communications System
(NCS) to describe a set of hardware and software
being produced to accomplish the four processing
functions:

(1) interfacing one or more host computers;
(2) interfacing a great number of terminals, often

of widely varied use and manufacture;
(3) routing data between its sources and its desti

nations;
(4) interfacing, within the host computer, between

user programs and external communication
equipment. 52

The manufacturers are employing state-of-the-art
technology and distributed-processing concepts in im
plementing communications subsystems to perform
some of the functions previously assigned the central
processor, such as communications management, data
formatting, device control, and even application pro
cessing. In addition, they are defining the system soft
ware protocols for interfacing. SN A software elements
defined include: Virtual Telecommunications Access
Method (VTAM) to manage the connection and dis
connection of terminals to application programs; NCP,
the Network Control Program, to perform tasks asso
ciated with physical network requirements; and SDLC,
the data transfer protocol defining the format for data
exchange between two network nodes. NCP can be
resident in a programmable communications controller.

DECNET utilizes three protocols, as well. The first,
DAP, for Data Access Protocol, is designed to allow
programs on one node of a network to use the I/O
services of other nodes; the second, the Network Ser
vices Protocol, handles the routing of messages within
or between systems; and the third, DDCMP, Digital
Data Communications Message Protocol, serves as the
data transfer, or link, protocol. Burroughs recently
released a Burroughs Data Link Control (BDLC)
designated as that company's data transfer protocol.
The next step is to get all computer manufacturers to
agree on common protocol. It appears adoption of an
ANSI standard for data link control is about a year to
a year and a half away. Until such a standard is
adopted the incompatibility of communications hard
ware and software products will deter network growth.
Once the bit-oriented data transfer level standard has
been accepted, standards for the higher-level network
protocols should be forthcoming.

SN A hardware to date consists of terminals and
communications controllers, some general-purpose and
others dedicated to a specific industry, or application.

Any new IBM system line, such as FS, is expected to
be communications-based. CDC's first step in NCS
hardware development was their 2550 Host Communi
cations Processor (HCP) designed to interface termi
nals to a host computer, such as a CYBER 170. The
HCP hardware includes a 16-bit microprocessor and is
scheduled for delivery the latter half of this year.

In addition to the prospects of networking capabili
ties originating with the computer manufacturers, the
Argonne, Berkeley, and Brookhaven laboratories are
scheduled to complete connections to the ARPANET
this year, and the first commercial packet-switched
carrier is expected to begin service to customers in a
seven-city operation soon.53

Four years ago when Jack Worlton concluded his
presentation it was with the thought that the long
awaited computer revolution was still a way off. His
criterion for determining the advent of such a revolu
tion required that the computer effectively penetrate
to a large fraction of the private homes in our society.
At such a time he felt it would be valid to speak of a
computer revolution, and not until then, and he specu
lated that maybe this could happen by 1984. It will
not be long before the microprocessor, incorporated in
washing machines, automatic dryers, etc. will have
done just that! By 1984, a personal computer equipped
with keyboard/CRT, hard-copy device, and floppy disk
could be available for under $500. With corresponding
advances in information processing network technol
ogy, it will at some point become unprofitable to collect
people in office buildings simply to talk to each other
and pass papers. Given suitable computing and com
munications media, work of this nature can be done,
possibly more effectively, on a distributed basis by
people working at home. This "cottage industry" con
cept has some interesting social consequences, not the
least of these is a reduction in the consumption of
energy, which is in short supply, through increased
information processing capability, which appears to
have no perceivable limit. Indeed, the very existence
of the human species is proof that information process
ing "power" does have survival value!

ACKNOWLEDGMENTS

In preparing this paper information and assistance
were requested from a number of sources, who con
tributed written material and presentations of ongoing
research and development efforts. The assistance and
cooperation of the following individuals, associated
with the computer manufacturers listed, is gratefully
recognized:

W. Andreen, D. Baugatz,
P. Crum, R. H. Lee, G. Van
Guilder, and D. M. Wareham

L. Davis, G. Grenander, and
G. Hanson

Control Data Cor
poration

Cray Research

G. Bell, H. Bynum, P. Christe,
R. Corbin, D. Reinke, R.
Rutledge, and R. B. Wham

E. E. Hayes

D. Best, G. Boswell, A. Riccomi,
D. Sifferd, and D. Wedel

P. Dodge, H. Gyllstrom,
F. Lexa, and J. Macina

Digital Equipment
Corporation

IBM

Texas Instruments

UNIVAC

At .LL\..rgonne the secretarial services and editorial
help provided by Catherine Hughes, technical discus
sions with colleagues D. J acobsohn and W. Lidinsky,
and the cooperation of R. Royston are acknowledged
with thanks.

REFERENCES

1. Nelson, James C., "The Economic Applications of Micro
processors on Future Computer Technology and Systems,"
AFIPS Conference Proceedings, May 19-22, 1975, Anaheim,
p.629.

2. Heath, F. G., "Large-Scale Integration in Electronics,"
Scientific American, 222, 2, February 1970, p. 22.

3. Vacroux, Andre G., "Microcomputers," Scientific American,
232, 5, May 1975, p. 32.

4. Hittinger, William C., "Metal-Oxide-Semiconductor Tech
nology," Scientific American, 229, 2, August 1973, p. 48.

5. Laliotis, Theodore A., "Microprocessors Present and Fu
ture," COMPUTER, 7, 7, July 1974, p. 20.

6. Wickham, Robert F., "The Microprocessor Market-Present
and Future," 1974 WESCON Technical Papers, 18, 11/1.

7. Saba, Mona M. and Jack D. Grimes, "Microprocessors: A
Component for All Seasons," 1974 WESCON Technical
Papers, 18, 23/3.

8. Withington, Frederick G., "Beyond 1984: A Technology
Forecast," Datamation, 21, 1, January 1975, p. 54.

9. Joseph, Earl C., "Storage System Architecture: Future
Trends and Technology Implications," 1974 IEEE Intercon
Technical Papers, 23/1.

10. Worlton, William J., "Future Prospects in Computer Tech
nology," in Proc. of Con/. on New Developments in Reactor
Mathematics and Applications, March 29-31, 1971, Idaho
Falls, CONF-710302, Vol. 2, p. 1086.

11. Murtha, John C., "Highly Parallel Information Processing
Systems," Advances in Computers, 7, 1966, p. 1.

12. Slotnick, Daniel L., W. Carl Borck and Robert C. McRey
nolds, "The SOLOMON Computer," Proc. Fall Joint Com
puter Conference 1962, p. 97.

13. Gregory, J. and R. McReynolds, "The SOLOMON Com
puter," IEEE Trans. on Electronic Computers, EC-12,
December 1963, p. 774.

14. Barnes, George H., et aI., "The ILLIAC IV Computer,"
IEEE Trans. on Computers, C-17, 8, p. 746.

15. Slotnick, D. L., "The Fastest Computer," Scientific Ameri
can, 224,2, February 1971, p. 76.

16. Computation Department Annual Report-July 1973 to June
1974, UCRL-50023-74, September 1, 1974.

17. Poppelbaum, W. J., "Information Hardware ... Again,"
COMPUTER, 7, 3, March 1974, p. 36.

18. Control Data STAR-l00 Computer, Hardware Reference
Manual, Control Data Publication No. 60256000-08, Decem
ber 15, 1974.

19. Purcell, Charles J., "The Control Data STAR-100-Per
formance Measurements," AFIPS Conference Proceedings,
43,1974, p. 385.

Prospective Capabilities in Hardware 335

20. Watson, W. J. and H. M. Carr, "Operational Experiences
with the TI Advanced Scientific Computer," AFIPS Con
ference Proceedings, 43,1974, p. 389.

21. The CRAY-1 Computer, Preliminary Reference Manual,
June 1975.

22. Requa, Joseph E., "STAR: A System Programmer's View,"
Proc. IEEE Computer Society Int'l. Coni. COMPCON72,
September 12-14, 1972, San Francisco, p. 13.

23. Kransky, Valere J., E. Dick Giroux and Gary A. Long,
"Parallel Implementation of a Two-Dimensional Model,"
Proc. of the 1973 Sagamore Computer Conf. on Parallel
Processing, IEEE-... A;a..CM-Syracuse Uni~lersitJ,T, ... A;w..ugust 22",21,
un::!, p. 69.

24. Kishi, Tad and Tim Rudy, "STAR TREK," Proc. IEEE
Computer Society Int'l. Conf. COMPCON75, February 25-
27, 1975, San Francisco, p. 185.

25. Wedel, Dorothy, "FORTRAN for the TEXAS INSTRU
ME~TS ASC SYSTEM," Programming Languages and
Compilers for Vector and Parallel Machines, Goddard Inst.
of Space Studies, March 18-19, 1975, New York.

26. Gaulding, Scott N. and David P. Madison, Jr., "Optimiza
tion of Scalar Instructions for the Advanced Scientific
Computer," Proc. IEEE Computer Society Int'l. Conf.
COMPCON75, February 25-27, 1975, San Francisco, p. 189.

27. "Three VS Systems Enhanced by IBM," Electronic News,
March 31, 1975, p. 20.

28. IBM SYl'ltem/370 Model 168-3, IBM Publication G520-2619-1,
March 1975.

29. "Two New Univac 1100s Feature MOS Memories," Elec
tronic News, March 24, 1975, p. 20.

30. SPERRY UNIVAC 1100/40 Systems Hardware, SPERRY
UNIV AC Publication UP-8216, 1975.

31. Amdahl 470V /6 Features, Amdahl Corporation, 1975.
32. "Data Topics," Electronic News, June 16, 1975, p. 44.
33. Inventory of Automatic Data Processing Equipment in the

United States Government for Fiscal Year 1974, General
Services Administration, December 1974.

34. Maples, M. D., "Microprocessors in Computing?" Proc.
IEEE Computer Society Int'l. Conf. COMPCON75, Feb
ruary 25-27, 1975, San Francisco, p. 69.

35. Johnson, Clayton, "IBM 3850-Mass Storage System,"
AFIPS Conference Proceedings, 44, 1975, p. 509.

36. Introduction to the IBM 3850 Mass Storage System (MSS),
IBM Publication GA32-0028, 1974.

37. "Big Mass Storage Market Seen," Electronic News, June
23, 1975, p. 38.

38. CONTROL DATA Mass Storage Facility, Control Data
Publication 201.197, April 1975.

39. CalCornp Newsletter, California Computer Products pub
lication, January/February 1975.

40. Damson, S., et aI., "A Random Access Terabit Magnetic
YIemory," Proc. Fall Joint Computer ConfeTence, 1968,
p.1381.

41. TBM Mass Storage System, Ampex Publication G414R,
May 1975.

42. Gray, Edward E., "Laser Mass Memory System," IEEE
Trans. on Magnetics, MAG-8, 3, p. 416.

43. Schwartz, David J. and Peter Gardiner, "MASSTAPE-A
Systems Solution," Proc. IEEE Computer Society Int'l.
Conf. COMPCON74, February 26-28, 1974, San Francisco,
p.109.

44. Schneidewind, Norman and Gordon Syms, "Mass Memory
System Peripherals," Proc. IEEE Computer Society Int'l.
Conf. COMPCON74, February 26-28, 1974, San Francisco,
p.87.

45. Speliotis, Dennis E., "Bridging the memory access gap,"
AFIPS Conference Proceedings, 44, 1975, p. 501.

46. Amelio, Gilbert F., "Charge-coupled devices for memory
applications," AFIPS Conference Proceedings, 44, 1975,
p.515.

336 National Computer Conference, 1976

47. Ypma, John E., "Bubble Domain Memory Systems," AFIPS
Conference P1'oceedings, 44, 1975, p. 523.

48. Hughes, W. C., et aI., "BEAMOS-A New Electronic Digital
Memory," AFIPS Conference Proceedings, 44, 1975, p, 541.

49. Greenblatt, Bernard J. and Mu Y. Hsiao, "Where Is Tech
nology Taking Us in Data Processing Systems," AFIPS Con
ference Proceedings, 44, 1975, p. 623.

50. Systems Network Architecture, IBM Publication GA27-
3102,1975.

51. DECNET, Digital Equipment Corporation Publication, 1975.
52. Network Com.'I'/?.unications Systems for CDC Compu.ter Sys

tems and Data Netv)orks, Control Data Publication, 1975.
53. "Packet S, ... itching Goes Commercial," Computerworld, June

11,1975.

An evaluation of the East German RYAD 1040 system

by ROBERT A. KOENIG
Control Data Corporation
Minneapolis, Minnesota

ABSTRACT

In the early 1970's, several East European countries
and the USSR developed a compatible computer family
called the Unified System, or RY AD. In 1975, Control
Data purchased the ES-1040, a member of the RYAD
family for testing and evaluation. Performance and
compatibility tests were made and the technology was
assessed. Tests determined that the ES-1040 is com
patible with IBM 360 instruction set. Benchmark pro
grams show the ES-I040 to be twice as powerful as the
IBM 370/145 in scientific/engineering applications,
and at least as powerful in BDP work. The processor,
using TTL IC's lags the U.S. by three years, the core
memory shows a lag of about eight years, while pe
ripheral equipment is eight to ten years behind the U.S.

INTRODUCTION

My purpose is to present an evaluation of the East
European RYAD 1040 Computer System, and to share
with you some of the significant results. Before we go
into the details, some background is necessary to set
the stage for further remarks.

In 1969, the five year plan for the CMEA (Council
for Mutual Economic Assistance) countries specified
the development of a computer family called the Uni
fied System of Electronic Computing Techniques. This
family is commonly referred to as the RY AD which
is the Russian word for series. The CMEA countries
consist of Bulgaria, Czechoslovakia, the German Demo
cratic Republic, Hungary, Poland and the USSR. The
development and production of the various models
were delegated to the different countries, as was the
peripheral equipment. In some cases, variants of a
single model are produced in more than one country.

The family consists of six processors, numbered
from 1010 to 1060, and a complement of peripheral
equipment. The family uses an instruction set com
patible with that of the IBM 360, and has common
peripheral interfaces at the I/O channels. Because of
the strong resemblance to the IBM 360/370, much
of the evaluation is couched in terms of comparison to
the IBM products.

In early 1975, Control Data purchased the largest
available member of the RY AD family, an ES-I040

I

I

I

337

system made by the Robotron organization of the GDR.
The system was received and installed at our Plymouth,
Minnesota facility in July, and later moved to Wash
ington, D.C. It is now installed in a CDC facility in
Vienna.

THE ES-1040 SYSTEM

The system we received consisted of the hardware
shown in Figure 1, together with operating software.
The computer hardware consists of the central proces
sor, an operator console, a main memory of 256 kilo
bytes of core storage, a byte multiplexer channel, and
one selector channel. The peripheral equipment con
sisted of a card reader, card punch, line printer, two
7.25 MB disk drives, and two 79 IPS tape drives. I will
discuss the hardware characteristics somewhat later.

We augmented the system by attaching some CDC
peripheral subsystems normally offered in the plug
compatible market. The augmented system is shown in
Figure 2. The specific items we attached, and used

Console I/O Core Memory Line Printer

10 CPS 256 KB 900 LPM

I Central Byte Mux I
Processor Channel

Selector
Channel

Two Tapes I

I
Card Reader

I
79 IPS 1- 500 CPM

800 BPI

Two Disks Card Punch

7.25 }Ill 100 CPM
156 KBS

I I

Figure 1

338 National Computer Conference, 1976

Core Memory I 0.""" ", I I u,. '"'''' I
I

CDC Train
Printer

I 256 KB 10 CPS 900 LMP 1200 LPM

J
Central Processor Byte Mux

Channel

Selector I ~~ , .. ,,, I
I
~~ 'o,.b I

Channel
500 CPM 100 CPM

I I
Two Disks Two CDC Disks

7.25 MB 29 MB
156 KBS 312 KBS

I I

[Two Tapes

I
Two CDC Tapes Two CDC Tapes

79 IPS 200 IPS 75 IPS

800 BPI 800/1600 BPI 800/1600 BPI

Figure 2

routinely with the ES-1040 consisted of a 1200 LPM
train printer, two 29 MB disk drives, and two mag
netic tape subsystems. One of these tape subsystems
had two 200 IPS dual density tape units, while the
other had two 75 IPS dual density drives. All these
subsystems operated successfully after appropriate
modifications were made.

COMPATIBILITY TESTING

As I noted earlier, the RYAD family uses an IBM
360 instruction set. To test this compatibility we ran
a set of jobs from the Service Bureau Company. In
this test, SBC personnel brought their operating sys
tem, recorded on a 2316 disk pack, customer programs
and customer data. The SBC software, normally run
on an IBM 360, was loaded into the ES-1040 via an IPL,
and the customer programs were successfully executed.
In our programming efforts, we routinely used IBM
manuals, since the Robotron manuals were written in
German, and English language translations were gen
erally not available.

-The peripheral equipment used compatible inter
national standards. We interchanged magnetic tapes
between the ES-1040 and IBM systems with no diffi
culty. We also were able to use a 1316 disk pack for
matted for an IBM 2311 drive on the system, although
we did not test interchangeability since we couldn't
locate a 2311. The card equipment uses standard 80
column cards.

DESCRIPTION OF THE ES-1040

In general terms, the ES-1040 processor can be
classified as a medium to large machine, falling be
tween the IBM 360/50 and 360/65 in terms of com
pute power. It is an integrated circuit machine con
structed from TTL devices produced in East Germany.
These devices are mounted on 72-pack multilayer
boards which average four to five layers. The back
panel is wirewrapped, although fully automatic tech
niques are not used in production. The general work
manship in the processor was very good, and the
reliability extremely high. We experienced one hour
of CPU downtime during five months of operation,
and had no CPU card failures. It is the routine prac
tice to turn off power at the end of each day, turning
it on again the following day.

The operation of the processor is based on the use
of microprogram controL The microprograms are
stored in a ROM core memory containing 3K words
of 130 bits each. This memory has an access time of
100 nanoseconds and a full cycle of 450 nanoseconds,
the latter constituting a major timing cycle.

Insofar as registers are concerned, the ES-1040
looks very much like an IBM 360. For example, it has
16 general purpose and four floating point registers.
Because of its compatibility with the 360, an instruc
tion may consist of two, four, or six bytes. The reper
toire contains 143 commands, of which 87 are basic,
eight deal with decimal arithmetic, 44 are for floating
point operations, two are for storage keys, and the
other two are used for direct control.

There are some important differences between the
ES-1040 and IBM 360 models as far as the internal de
sign is concerned. As I will bring up later, the 1040
performance is hampered by a relatively slow memory.
However, this is masked to a large extent by an in
struction lookahead feature. This allows memory ac
cessing, address modification, and instruction execu
tion to be overlapped. When considering the basic
TTL circuit speeds and the major timing cycle of 450
nanoseconds, the execution times of complex opera
tions, such as divide, indicate that some rather sophis
ticated algorithms have been employed.

ES-1040 MEMORY

The ES-1040 uses a main memory constructed from
21 mil cores. It has an access time of 450 nanoseconds,
and a cycle time of 1200 nanoseconds, although the
effective systems-level time is three CPU cycles, or
1350 nanoseconds. In our machine, the memory is
composed of two 128K independent modules. In a
maximum system of one megabyte, four modules are
used. The access path to memory is eight bytes, with
a theoretical bandwidth of 142 megabits per second
possible when three or more modules are used. The
memory uses a single parity bit for each 8-bit byte.

I/O CHANNELS

As I mentioned earlier, the ES-1040 we received
had one byte mux channel for attachment of low-speed
devices and one selector channel. The I/O structure
can be expanded to include one byte mux and up to
six selector channels. The first selector channel has a
speed of 1300 kilobytes per second. Channels 2 and 3
comprise Group 2 and have an aggregate rate of 1100
KBS. assignable to a single channel if only one is used,
or split ev;nly between the two when both are installed.
Similarly, channels 4, 5, and 6 have a total rate of
900 KBS, which can be used on one channel, or divided
into 300 KBS increments, if more than one is used.
These rates apply when all channels are active.

In general, the channel rates far exceed the capa
bilities of the peripheral equipment used with the
system.

PERFORMANCE EVALUATION

I would now like to discuss some of the evaluation
results. We concentrated most of our efforts in evalu
ating the performance of the processor, since 1/0-
bound jobs would be highly affected by the restrictions
of a single selector channel and by the peripheral
configuration. One of the first things we did was a
Gibson mix analysis. As you are probably aware, this
analysis evaluates CPU performance primarily in a
scientific and engineering environment. The results
are displayed in Figure 3 using 64 bits as the floating
point mode. As can be seen, the ES-1040 is about
twice as fast as the IBM 370/145, two-thirds the speed
of the IBM 370/155, and about half the speed of a
CDC CYBER 73.

We also wrote some FORTRAN programs designed
to test the speed of the 1040 versus the IBM 370/145.
The pure floating point arithmetic tests showed that
the ES-1040 is three to four times faster than the
370/145. On the other hand, a FORTRAN program
stressing memory speed, and using only integer arith
metic showed that the 370/145 ran that program at
twice the speed of the 1040. This result confirmed what
we expected from comparing specified memory speeds.
We also ran a comprehensive FORTRAN test program
submitted by a customer to our benchmark center.
Neither the 370/145 nor the 1040 could successfully
execute this program using single precision REAL

MODEL

IBM 360/50
IBM 370/145
ES 1040
IBM 370/155
CDC CYBER 73
CDC CYBER 173

VA.LUE

6.50
4.95
2.40
1.77
1.23
0.78

Figure 3-Gibson Mix Values

Evaluation of East German RYAD 1040 System 339

varIables. W hen converted to double precision, the
370/145 ran the program in 41 minutes, as compared
to 20.3 minutes on the ES-1040, a ratio closely approxi
mating the 2: 1 obtained in the Gibson Mix.

We were not nearly as successful in testing the 1040
in EDP applications for several reasons. First, we
did not have a COBOL compiler in the Robotron soft
ware product set, and secondly, we had only a single
channel to service both tape and disk. We did write
some assembly language programs using the variable
length instructions. The results of these indicate that
the ES-1040 will be at least as fast as the IBM 370/145
in BDP applications, provided it were similarly con
figured.

I should note that our evaluation would have been
easier if we could have had a manual fully defining
instruction timing. As far as we know, no such manual
exists either in English or German.

SOFTWARE AND DOCUMENTATION

At the time we procured the ES-1040, we also pur
chased a set of operating software known as DOS/ES.
This bears striking resemblance to IBM DOS. The
product set under DOS/ES included a FORTRAN IV
compiler, an assembler, RPG, and PL/l. Notably lack
ing was a COBOL compiler. It is interesting to note
that all compiler diagnostics ,"vere printed in English,
although certain systems messages and diagnostics
were in German.

In addition to DOS/ES, a more advanced system,
called OS/ES, is also offered. From the information
offered, it appears to be very similar to IBM as, offer
ing MFT and MVT options. To our knowledge, no
ES-1040 systems are using OS/ES, probably because
of the lack of adequate mass storage.

The documentation was very mixed in quality. The
programmer manuals available in English were in
adequate to the point that we used IBM manuals in
that area. The German language manuals were bet
ter, but still less than what one receives from a domes
tic manufacturer. The hardware manuals, primarily
for CE use, were very thorough and complete, but
exclusively in German. This was of little concern to
us, since we had Robotron field engineers on-site to
supply maintenance.

COMPARISONS WITH WESTERN TECHNOLOGY

There is a great deal of interest in comparing the
State-of-the-art of Eastern Europe technology with
that of our own. Based on our examination of the
ES-1040 equipment, no single statement can be applied
across the board. Quite clearly, the CPU is the most
advanced element of the system. As I mentioned it is
constructed from TTL devices with an U.S.-type num
bering scheme. The devices used in the ES-1040 are

340 National Computer Conference, 1976

relatively simple members of the family. By knowing
when the equivalent devices were available in the U.S.,
we estimate that an American company could have
completed a 1040 equivalent in 1968 or 1969. Since
the first 1040 appeared in late 1972, we conclude that
a time lag of three to four years exists in processor
area.

The core memory attached to the 1040 is not a good
match considering the power of the CPU. The tech
nology is about eight years behind ours. The power
consumption is about twice that of comparable memo
ries used on domestic machines. The deficiencies of
memory performance were apparently recognized early
in the design cycle, and are effectively masked by the
use of the instruction lookahead and memory inter
leaving features.

The peripheral area in general lags the U.S. by
eight to ten years. The significance of the lag on
general systems performance varies, of course, with
the device. The one of most importance is that of disk
drives. The two disks and the packs we received were
made in Bulgaria, presently the only source of drives
and packs in the CMEA countries. Although Bulgaria
is also the primary disk controller supplier, the disk
controller with the ES-1040 was produced in the GDR.
The disks have 2311 characteristics. Its capacity is
7.25 MB, the transfer rate is 156 KBS, the rotational
speed is 2400 RPM, and the average access time is
about 65 milliseconds, even though a voice coil actuator
is used.

Disk drives of the 2311 class went into production
in the U.S. over 10 years ago, and since that time we
have seen three new generations evolve. As far as
the 1040 is concerned, the disks are clearly inadequate,
not only for the obvious reason of capacity, but also
the other performance parameters.

The ES-I040 tape subsystem, built in the GDR con
sisted of a controller and two 79 IPS drives, using
800 BPI nine-track format. The tape drives used dual
capstans with pinch rollers, an old design approach.
The tape loading process was very tedious and required
considerable manual dexterity. The U.S. was produc
ing comparable tape units over 10 years ago, and
since then we have increased the bit density by a fac
tor of eight and the tape speed by a factor of 2.5.

The line printer and associated controller were built
in the GDR. It uses drum printer technology, operates
at.900 LPM, and has 156 columns. It contains a unique
feature; in effect a split platen, which allows two sepa
rate forms to be controlled independently. Thus, the
printer can appear as two logical units to a program
mer. This feature is supported by the Robotron soft
ware. Despite the technological drawbacks of the
printer, it is adequate for most uses.

The card I/O equipment was made in the USSR,
apparently having been in production for 10 to 15
years. The card reader reads 500 CPM, photoelectri
cally, while the card punch operates at 100 CPM,
punching a row at a time. With the de-emphasis on
card I/O, these units are adequate for most cases.

In examining the equipment, one quickly becomes
impressed by its ruggedness, and high labor and ma
terial content. Workmanship ranges from good to
excellent. Despite some old engineering designs, the
equipment was very reliable. Preventive maintenance
consisted of a daily PM of one to two hours and one
weekly PM of four hours. Included in the daily PM
was checking the adjustment of the positioners on the
disk drive. All PM and EM work was performed by
Robotron field engineers assigned to our system in
accordance with their normal practices.

SUMMARY

I would like to conclude my remarks by making the
following points:

• First, the ES-I040 demonstrated instruction set
compatibility with the IBM 360 line.

• Second, the ES-I040 processor is about twice as
powerful as the IBM 370/145 in scientific and
engineering applications and at least equivalent
to the 370/145 in BDP applications.

• Third, general processor technology seems to lag
the U.S. by three or four years.

• Fourth, the core memory is about eight years
behind.

• Finally, there is a significant lag in peripheral
capability, which we estimate at eight to ten years.

MagicScore howling scorer-A microprocessor application
for fun and profit

by REG A. KAENEL
AMF Incorpomted
Stamford, Connecticut

ABSTRACT

Microprocessors have made the implementation of
automatic bowling scorers practical. A specific scorer
design will be described and illustrated, development
considerations associated with this scorer will be dis
cussed, and the future of microprocessor applications
will be projected.

Automatic scoring has finally come of age. It has
been around for a long time. At stake is a market repre
sented by some 150,000 bov:ling lanes in the United
States aloneo AMF Incorporated demonstrated the first
working model of a mechanical score board in 1946
when it presented the first automatic pinspotter at the
ABC tournament in Buffalo NY (Figure 1). Auto
matic score keeping was way ahead of its time and
far from being economically viable in those days.

Figure l~Sample clip from Buffalo, NY ne',vspapel'S reporting
on AMF's automatic score board (1946)

341

Advances in semiconductor technology rnade auto
matic score keeping increasingly more practical ever
since then. Accordingly, three different scorers were
introduced two decades later with solid-state electronic
control. The Automatic Scorer by Brunswick Cor
poration and the ScoRite scorer by Itek subsidiary,
Doban Laboratories, both used a printing projector,
by which scores were mechanically impact-printed on
transparent pre-printed forms which were projected
onto a screen through an optical system. An experi
mental model of the MagicScore bowling scorer system
by AMF used CRT displays. Detection of standing pins
,\-vas accomplished electromechanically with both the
AMF and Brunswick systems using existing pin light
switch-mechanisms of the automatic pinspotters. The
Itek system used an array of photodetectors and di
rectional light sources to perform this pin detection
function. Each Brunswick console served two pairs of
lanes, each AMF and Itek console one pair of lanes,
but the AMF consoles were controlled from a central
unit (Figure 2) for up to 30 consoles shown in Fig
ure 3. Brunswick was the only company which im
mediately began production of their scoring system.
The recent emergence of the microprocessor provided
the technological advance necessary for making viable
the implementation of a sophisticated automatic self
contained scorer system (Figure 4).

Additional electronic scorers have been introduced
since the demonstration of those first ones. They in
cluded the semiautomatic Scortronic System by Sharp,
the Automatic Scorer by Ikegami Tsushinki, the Meltas
system by :M:itsubishi Electric, the Automatic Bowling
System by Kinetic Systems and the automatic Rapid
Score System by RCA. During this period AMF began
marketing a semiautomatic scorer (i.e., EasyScore)
on an interim basis to bridge the gap until the viable
fully automatic MagicScore bowling Scorer system
became ready for production. Pinfall data is entered
by hand through keyboards with the semiautomatic
syst~ms in contrast to the automatic systems where
data can be keyed in by hand if need be but which
data normally is entered electrically from suitable pin
detectors. All recently introduced systems have self-

342 National Computer Conference, 1976

contained player consoles, except for the RCA system
which uses a central processor and a central printer; all
these systems use CRT display devices for clarity and
simplicity of operation. The AMF and RCA systems
provide for a manager console by which various ad
ministrative control functions can be performed over
player consoles, such as game monitoring, establishing
a practice mode of operation, and displaying the statei
of these consoles.

It is generally acknowledged today that bowlers pre
fer automatic to hand scoring primarily because it
gives more time to socialize and to relax. Hand scoring
is viewed by many bowlers as a disagreeable task which
requires concentration and makes the scorekeeper sub
ject to criticism for making an error. Of hand scor
ing's two major elements, doing the arithmetic is more
objectionable than recording the pinfall, particularly
among women. The reasons why arithmetic is disliked
are the concentration required, the fact that some
bowlers feel inadequate regarding arithmetic, and the
fear of making a mistake. This last reason also applies
to recording pinfaIl. Hand scoring is considered a
nuisance and a distraction from bowling involvement.
It is not that scoring is unimportant, it is simply that
bowlers feel involved in the game without manually
keeping score.

Figure 2-Central electronic 30-console control of AMF's experi
mental);IagicScore bowling scorer system

Figure 3-High-lights of AMF's experimental MagicScore
bowling scorer contained in a 1968 advertisement flyer

Figure 4-Today's self-contained MagicScore bowling scorer con
sole made possible with microprocessors

Figure 5-Close-up view of the CRT display, showing display
format and character font

OUTLINE OF FUNCTIONAL SUBSYSTEMS

The basic format of the bowling score sheet, as ap
proved by the American Bowling Congress, best depicts
the progress of a game of bowling. Accordingly, it was
decided that the bowling scorer display subsystem
emulate its key features, (Figure 5) as well as the
printer subsystem (Figure 6) with which permanent
records of games are produced. A cathode-ray tube
display medium was selected for its outstanding bright
ness and clarity. To maximize size of the pinfall-data
characters (Figure 5), each bowler is designated by
three letters and the frame-by-frame subtotals were

Figure 6-Copy of Sample-Printout

MagicScore Bowling Scorer 343

Figure ?a-Photograph of thermal printer, revealing thermal
prmt-head subassembly, paper-advance stepping motor

omitted on the display. A novel thermal printer was
found to be most cost-effective, reliable, and mainte
nance-free since it has only one moving part (i.e., the
paper-feed stepping motor) and only requires re
plenishment of thermally-active blank paper (Fig
ure 7) ; a total print-out, 1Nhich includes running sub
totals by frames (Figure 6), is produced after the
game ends. Display characters are made up from
dots of a 5 x 7 matrix with a non-interlaced horizontal
raster-scan where the same pattern of dots appears on
adjacent pairs of scan lines; in contrast. printed char
acters use 5 x 5 dot matrix. Extra print-head dot
elements are provided for producing the grid-lines of
the print-outs.

Figure 7b

344 National Computer Conference, 1976

Figure 7c

The following data must be defined at the outset to
initialize a game of bowling: names of the players in
bowling sequence, handicap of each bowler, and the
designation of pacers whose score is not added to the
team totals or blind bowlers who will not physically
bowl but whose game average score is entered during
initiation. The scorer derives representative pinfaIl
data from the average score entered, and displays it
when it is the blind player's turn to bowl as if this
player actually bowled. In addition, the system must
be placed in either the open or league mode of sequenc
ing; in the open playing mode the bowlers assigned to
a Jane bowl in a round.;.robin faRhion~ but in the league
mode the bowlers of a pair of lanes are sequenced to
bowl alternately on both lanes. Initialization of the
scorer is performed through a center keyboard shared
by the players of the pair of lanes served by the par
ticular scorer (Figure 8).

Ruggedness, flat sealed construction, and tactile feel
were guiding requirements for the development of this
and the other scorer keyboards.

During the initialization operation, the operator first
selects the sequencing mode (i.e. Open or League)
which becomes indicated on the console by LED indi
cators. A particular player-row is then chosen by
designating left or right side, if the proper side has
not already been selected, followed by selecting the
proper row. This selection will be visually acknowl
edged by a cursor that appears over the number of
the display row. Next, the field is selected in which
data will be entered from the keyboard. Depressing
the Player Name key produces a cursor on the bottom
row below the 6th player row where the next name
character entered will be displayed. Up to 16 char
acters are accepted and displayed on the bottom row;
but only the first and the next two characters that are

Figure 8-Close-up view of the center section of the keyboard

preceded by a space are displayed in the name field
of the player row selected. In contrast, the full 16
character name appears in this name field of the print
out. All cursors are removed when a new side selection
is made; no cursors are reproduced on the print-out
since they are used only to cue the bowlers during data
entry. Sequence mode selection becomes inhibited when
the first pinfall data is entered; at that time, a player
cannot be unbinded or un-pacered.

Being fully automatic, the bowling scorer begins cue
ing players to bowl once the system has been initialized
with the data of the first players. The players who are
to bowl are called by their full names which are dis
played on the bottom display line on the lane-side they
are to bowl on. In addition, arrows appear in the fields
where the next pinfall data will be entered, pointing
to the lanes from which the data will be taken.

Two extra keyboards, dedicated each to one lane
side, are available to provide for out-of-order player
sequencing and error correction of pinfaIl-data (see
Figure 9). Forcing a player in out-of-sequence is ac
complished by depressing the desired row-number key
on the home-side of the team the player belongs to.

The MagicScore bowling scorer can be operated as
an option in the semiautomatic mode by setting a con
cealed switch to that mode. In this mode pinfall data
is entered by way of the score-key array located on the

Figure 9-Close-up view of the Console Keyboards, showing
center keyboard and dedicated additional keyboards

lane-side where the pinfall data originated. Other than
that, the keyboards serve the functions outlined above.

OUTLINE OF THE ELECTRONIC LOGIC

The electronic scorer logic is contained on two
printed-circuit boards which are mounted behind the
key-board subassemblies on the front panel hinged for
ease of access (Figure 10). The printer drive elec
tronics is contained on a printed-circuit board mounted

Figure lOa-Console open, revealing printing subassembly,
power-supply, MPU electronics board Display Processor elec
tronics board

MagicScore Bowling Scorer 345

Figure lOb

on top of the printer subassembly itself to make it even
more of a readily replaceable functional unit. The
electronic logic is partitioned onto a microprocessor
board (left side board as seen in Figure 11) and a
display processor board (right side board of Figure
11). The overall logic schematic is shovvll in Figure 12.

The microprocessor board contains an M6800 type
microprocessor with three Peripheral Interface Adapt
ers of the M6800 family of components, one Asyn
chronous Communications Interface Adapter which
connects to a common serial communications bus, and
five 2000 x 8 bits read-only memories which store the
scorer control software. It also includes a six-position
DIP switch array by which each scorer can be assigned

Figure ll-Close-up view of the MPU electronics board (left)
and Display Processor board (right)

346 National Computer Conference, 1976

Figure l2-Simplified block diagram of the MagicScore bowling
scorer logic

a unique address which it uses to recognize messages
on the communications bus. The display processor
board contains the random-access memory of the
scorer in addition to the circuits that produce suitable
video signals for the display monitors (Figure 13). A
rechargeable standby battery is provided for these
random-access memories to preserve pinfall data for
many hours during power failures.

The scorer software, whose flow-chart is shown in
greatly simplified form in Figure 14, provides for
processing score data from the keyboard (Figure 9),
the pinsensor~ and the manager console. The pinsensor
receive routine creates a compatible pinfaIl data word
from the incoming width modulated data (i.e., a
binary zero is represented by a pulse of duration

Figure l3-Block diagram of the Display Processor

Figure l4-Flow chart of the software

10 X 8 ms, the left-lane delimiter pulse by a pulse of
duration 16 X 8 ms, and the right-lane delimiter by a
pulse of duration 22 x 8 ms; binary ones and zeros are
serially accumulated in a shiftregister as they arrive
and this word is forwarded to the pinfall-data pro
cessing routine when a delimiter is detected), executes
the manager-console subrouting (i.e., read, interpret,
and execute data received by the asynchronous com
munications interface adapter), increment timers (e.g.,
time-out for clear key-activation and for indicator
flash control), and activate indicators. An executive
program sequentially performs such functions as pro
ducing signals for the printer. calculating score sub
totals, computing the next bowler to play and cueing
him, etc.

During program execution the microprocessor de
posits display and other data in the random-access
memory of the Display Processor board and retrieves
such data from this memory. Concurrently, the dis
play processor electronics fetches data from this mem
ory and processes it for display (Figure 13).

Each row of display characters is made up from 28
scan lines. A complete line of display characters from
both display sides is transferred from the random
access memory into a recirculating shiftregister dur
ing the first two scan-lines of each character row, and
recirculates there for the full duration of this row.
The characters of the left screen are located at even
addresses of the random access memory, those of the
right screen at odd addresses; points to the left and
right side display characters are similarly interspersed
in that shift-register. A character column counter des
ignates the column number of the character that is
being scanned across by the cathode-ray tube beam at
every instant. It is used to read the left-side data from
the random access memory during the top scan line of

each character row and the right-side data during the
second scan line.

As the character count is advanced, the left-side
character is converted into a suitable pattern of seven
dots by means of a character read-only memory. This
pattern is stored in the left-side buffer shiftregister.
The same. process is immediately repeated for the right
side characters. These dots are then serialized and
outputted to the respective display monitors.

A state read-only memory is used to define the width
of each character (i.e. seven counts when part of a
string of characters and ten counts when followed by a
vertical line) , the presence of a horizontal gridline, the
presence of a horizontal synchronization signal, etc.

Means are also provided for selectively directing
either the left-side video signals or the right-side sig
nals to a video bus of the manager console. When both
sides are selected, this is decoded to blank out the dis
play monitors. This switching function is provided by
the manager console which has access to all of ad
dressable space (including RAM and peripheral inter
face adapters) through the microprocessor by way of
the asynchronous communications interface adapter.

MagicScore Bowling Scorer 347

The component efficiency afforded by a micropro
cessor is evident (Figure 11). Not so is the extent
by which the use of a microprocessor facilitated the
developmental task: operational aspects of the control
software were defined as the hardware was being de
veloped, and operational refinements were incorporated
while the system was being tested. The flexibility of a
microprocessor based design made incorporation of
ancillary functions both compelling and practical. The
rnanager console feature is a case in point. It was de
cided to provide flags in random-access memory by
which a manager can remotely control the bowling
scorer consoles via a serial communications bus. The
functions made available through these consoles in
clude blanking out scorers, monitoring lane activity
through respective display, disabling the clear func
tion at a console so as to preserve the count of games
and frames bowled, and projecting messages onto an
individual display screen.

Operational details are described in the User Instruc
tions attached to the MagicScore Bowling Scorer which
will be demonstrated during the presentation of the
paper at the conference.

QLISP-a language for the interactive
development of complex systems

by EARL D. SACERDOTI, RICHARD E. FIKES, RENE REBOH,
DANIEL SAGALOWICZ, RICHARD J. WALDINGER
and B. MICHAEL WILBER
Stanford Research Institute
Menlo Park, California

ABSTRACT

This paper presents a functional overview of the fea
tures and capabilities of QLISP, one of the newest of
the current generation of very high level languages
developed for use in Artificial Intelligence (AI)
research.

QLISP is both a programming language and an
interactive programming environment. It embeds an
extended version of QA4, an earlier AI language, in
INTERLISP; a widely available version of LISP with
a variety of sophisticated programming aids.

The language features provided by QLISP include a
variety of useful data types, an associative data base
for the storage and retrieval of expressions, the ability
to associate property lists with arbitrary expressions,
a powerful pattern matcher based on a unification
algorithm, pattern-directed function invocation,
"teams" of pattern invoked functions, a sophisticated
mechanism for breaking a data base into contexts,
generators for associative data retrieval, and easy
extensibility.

System features available in QLISP include a very
smooth interaction with the underlying INTERLISP
language, a facility for aggregating multiple pattern
matches, and features for interactive control of
programs.

A number of applications to which QLISP has been
put are briefly discussed, and some directions for future
development are presented.

INTRODUCTION

An important byproduct of research in artificial in
telligence (AI) has been the development of program
ming languages that permit instructions to be given to
a computer at a very high level. A second important
byproduct has been the development of highly sophis
ticated, supportive interactive programming environ
ments. Tools of this kind are very important for

349

developing AI programs, which tend to be large, com
plex, and subj ect to frequent alteration. As the needs
of the computing community grow, and the ability of
hardware to perform more calculations in a given time
improves, we believe the programming tools that have
been a necessity to AI will become important tools of
general applicability.

This paper will present a functional overview of the
capabilities and features of QLISP, one of the newest
of the current generation of very high level AI lan
guages that includes MICROPLANNER/ SAIL/
CONNIVER,3 POPLER,4 and others. As such, it will
serve both to introduce the language to the computing
community, and to provide a brief overview of the
features available in the new generation of AI lan
guages. A more extensive treatment of QLISP is avail
able elsewhere.5

QLISP is both a programming language and an
interactive programming environment. It grew out of
the QA4 language6 that was developed at the Stanford
Research Institute from 1969 through 1972. Many of
the basic concepts of the language are derived from the
QA4 work. QLISP embeds an extended version of QA4
in INTERLISP/ a widely available version of LISP
with a variety of sophisticated programming aids. In
addition, it provides many new features not present in
other languages.

In the following section, we will describe the lan
guage features of QLISP, with special emphasis on
those not available in other languages. (Bobrow and
Raphael8 give a comparative description of a number
of these languages.) Then we shall describe the pro
gramming environment provided by QLISP and the
underlying INTERLISP. Finally, we shall give some
examples of the ways in which the language has been
used to create complex software systems.

LANGUAGE FEATURES

This section will discuss the more notable features of
the QLISP language. Most of these are derived from

350 National Computer Conference, 1976

features present in QA4. Some are derived from other
languages. Most have been extended for greater ease
of use, compatibility with the underlying INTERLISP
language, or increased generality.

Data types

QLISP provides a very rich set of data types and
facilities for manipulating them. In addition to the
range of types provided by INTERLISP (including
numbers, arrays, strings, list and binary tree struc
tures), QLISP provides data of type TUPLE, VEC
TOR, BAG, and CLASS.

A tuple is similar to a LISP list, but can be accessed
via associative retrieval as described below. A vector
is like a tuple, but is treated somewhat differently when
evaluated.

A bag is a multi-set, an unordered collection of ele
ments with possible duplicates. For example, (BAG
A A B C) is equivalent to (BAG A C B A) but is
different from (BAG A B C). Bags are particularly
useful for describing the argument lists of associative
commutative relations. For example, if we defined the
relation PLUS to take a bag as its argument, then the
expressions (PLUS A A B C) and (PLUS A C B A)
(which would both be stored internally as (PLUS
(BAG A A B C») would be equivalent by definition.

A class is an unordered collection of elements, with
out duplication. For example, (CLASS A A B C) is
equivalent to (CLASS C B A) .

Associative data base

Expressions composed of any of the data types men
tioned above may be placed in a data base. The data
base is designed for associative retrieval, the fetching
of data by content rather than by name or address. A
request for an item of data may specify values for any
of its constituent elements, leaving the rest to be
matched by the values in the retrieved item. The data
base is maintained in the form of a discrimination net,
a tree-like structure in which the nodes represent tests
to apply to an expression, and the branches represent
the values returned by the tests. In general, these tests
are set up to find the first difference, scanning left to
right, between two expressions.

Canonical representation of expressions

By storing all data in a common discrimination net,
QLISP can represent equivalent expressions uniquely.
In the QLISP net, only one instance of an expression
may occur. Before an expression is entered into the
net, it is transformed into a canonical form. A new
datum will not be created if the expression already
occurs in the net. Thus, continuing our example about

the PLUS relation, (PLUS A A B C) and (PLUS A C
B A) are not only equivalent; they are exactly the
same pointer into the data base.

Property lists

Arbitrary expressions are represented uniquely in
QLISP, just as atoms are represented uniquely in
LISP. Therefore it is possible to assign properties to
QLISP expressions in the same way as LISP atoms.
For instance, we may execute the command

(QPUT (PLUS A B (MINUS A»
SIMPLIFIESTO B) ,

which will put the value B under the indicator
SIMPLIFIESTO in the property list of the expression
(PLUS A B (MINUS A». If this expression, or any
equivalent expression (such as (PLUS B (MINUS A)
A)), is ever encountered again, we can look on its
property list and find a simplification for it.

One particular indicator on the property lists of
expressions is used to represent truth value. When
this indicator, MODELVALUE, has a value T, the sys
tem interprets that expression to be "true." Similarly,
a value of NIL represents a "false" expression. Special
statements exist for manipulating this particular prop
erty. For example, the statement

(ASSERT (AT SRI MENLO-PARK»

would simply place the attribute-value pair (MODEL
VALUE T) on the property list of the tuple (AT SRI
MENLO-PARK) *. The semantics of the statement is
that SRI is in Menlo Park. Similarly, the statement

(IS (AT ~THI~G ME~LO-PARK»

would cause a search of the data base for something
that was known (i.e., was in the data base with
MODELVALUE equal to T) to be in Menlo Park.

The unification pattern matcher

An important activity in AI programs is the con
struction, modification, and analysis of complex sym
bolic expressions. The most powerful tool for this is a
pattern matcher, an algorithm that allows one expres
sion to be used as a template to break up another
expression into components. QLISP extends this facil
ity by providing a unification pattern matcher in which
each of two expressions may act as templates for the
other.

Some examples at this point are appropriate. The

* This paper will avoid almost all need for the reader to cope
with QLISP-specific syntax. It suffices to say that in QLISP
statements, the elements of expressions are presumed to be
constants unless identified as a variable by the prefix ~ or $.
The ~ prefix indicates that the variable is to be assigned a new
value; the $ prefix indicates the previous value of the variable.

QLISP statement MATCHQQ invokes the pattern
matcher directly. The statement

(MATCHQQ (~X~Y) (AB»

will match X to A and Y to B. The statement

(MATCHQQ (~X~X) (AB»

will fail, since X cannot be bound simultaneously to A
and B. The statement

(MATCHQQ (A ~X) (~y B»

will match X to Band Y to A. The statement

(MATCHQQ (A (B ~X) ~Y)
(~X~Z (A(BC»»

will match X to A, Y to (A (B C», and Z to (B A).
The QLISP pattern matcher is based on an extended

unification algorithm that can deal with the variety of
data types available in the language. The matcher is
not complete for complex expressions containing bags
and classes. However, it is adequate for the kinds of
expressions that are almost always used. Pattern
matching is used in QLISP for several central pur
poses. It is used to bind variables and decompose
expressions, as we have mentioned. It is used to con
trol associative retrieval. It is also used to invoke
functions for specified purposes, as we will now show.

Pattern-directed ['unction invocation

Many of the AI languages provide a feature, first
proposed by Hewitt/ whereby functions can be in
voked not only by naming them, but also by checking
to see if they are appropriate for a given argument.
This check is performed by matching a pattern asso
ciated with each function with the given argument.
For example, we might write some functions for an
algebraic simplifier that looked like this* :

PL USSI~GLE :
PLUSZERO:

PLUSMINUS:

(QLAMBDA (PLUS ~X) $X)
(QLAMBDA (PLUSO~X)
(' (PLUS $$X»)
(QLAMBDA (PLUS ~X
(MINUS~X) ~Y)

(' (PLUS 5$Y)))

The PLUS SINGLE function says: given an argu-
ment of the form PLUS followed by any single ele
ment, return that single element. The PL USZERO
function says: given an argument of the form PLUS
followed by any number of elements, one of which is 0,
return the form PLUS followed by all the other ele
ments of the argument.

'!< The doubled prefixes (e.g., $$) indicate that the variable refers
to a fragment of the expression containing it rather than a
single element. The quote mark (') indicates that the following
expression is to be instantiated (following the semantics of
QLISP) rather than evaluated (following the semantics of
LISP) .

QLISP 351

At the user's option, if a function's pattern can
match an argument in more than one way, all possible
matches may be attempted in turn. When one match
leads to a failure, an alternative match is attempted.
The function its2lf will not fail until all possible
rn2tches have beim tried. For example, the following
program will find two friends of JOE who are father
and son:

QLAMBDA (FRIENDS JOE (CLASS ~F ~S
~REST»
(IS (FATHER $S $F))
BACKTRACK)

The program will cycle through all pairs of elements
from the class of JOE's friends and see if one is the
fa ther of the other.

Teams of functions

Functions to be invoked by pattern are typically
defined for application toward a specified purpose.
Some functions are to be used for consequent reason
ing: when a particular consequence or goal (charac
terized by the function's pattern) is desired, invoke
this function to achieve it. Some functions are to be
used for antecedent reasoning: when a particular
antecedent condition (e.g., an assertion in the data
base) (characterized by the function's pattern) occurs,
invoke this function to cause further effects on the
data base.

Typically, all the consequent functions are tried
when a goal is to be achieved, and all the antecedent
functions are tried when the data base is updated.
Only the ones that have a pattern that matches the
goal or assertion will actually be invoked, but a great
deal of overhead must be expended to attempt to match
the patterns of all functions.

This practice is inefficient since many functions may
already be known to be inappropriate, and yet their
patterns will all be checked. QLISP provides a feature
whereby, with each of many kinds of statements that
can invoke functions by pattern, a so-called team of
functions can be specified from which applicable ones
may be drawn. So, in our simplification example, we
could cause one simplification to occur with a state
ment that calls for consequent reasoning:

(CASES (PLUS A 4 CMINUS A»)
APPLY (PLUSSINGLE PLUSZERO PLUS
MIXUS ... ».

The list after the key\vord APPLY is the team of
functions associated with the particular CASES state
ment. The system will attempt to match the patterns
of only these functions with the particular PLUS
expression.

Similarly, a team of functions may be specified with
any ASSERT, DENY, DELETE, or QPUT statement
to perform antecedent-type activities. For example, in

352 National Computer Conference, 1976

a computer system modelling the operation of a library,
a team of functions might be associated with assertions
that modelled a book being checked out. These func
tions might assert that the book was due in three weeks
froni the current date, update a count of books in cir
culation, or even cause the original assertion to fail,
and provide appropriate other action to be modelled if
the person checking out the book had overdue books
outstanding. This activity could be initiated by a
QLISP statement of the form:

(ASSERT (CHECKEDOUT (The Odyssey)
James.Joyce (4 JAN 1918»

APPLY $LIBRARYFNS

where $LIBRARYFNS was bound to the list of rele
vant antecedent functions.

Contexts

The previous discussion has presumed that all ex
pressions were stored in a single, monolithic data
base. In fact, the data base is factored into different
segments, called contexts. Contexts may be thought of
as corresponding to the block structure of ALGOL
like languages. Whenever a QLAMBDA function or
a user-defined block is entered, the current context is
set to be a descendent of the previous context. Variable
bindings and assignment of properties (including, in
particular, truth values) to expressions that are local
to a context are perceivable only from that context or
some descendent. Thus, contexts may be regarded as
particular viewpoints on the data base.

In addition to a default structuring of contexts based
on the structure of the flow of program control, QLISP
provides facilities for manipulating contexts explicitly.
Fu!' example, to prove a proposition of the form:

(P or Q) implies R,

one could set up two parallel contexts with P true in
one and Q true in the other, and try to prove R in both
contexts, as suggested in Figure 1.

Contexts are actually constructed from more ele
mentary entities, which we shall call contags, for want

DESCENDENT
CONTEXT

(ASSERT P)
(GOAL R)

CURRENT
CONTEXT

DESCENDENT
CONTEXT

(ASSERT Q)
(GOAL R)

Figure I-Using contexts to prove a disjunction

of a better term. Contags, which are similar to the
"situation tags" of PLASMA,10 correspond to par
ticular points in time in the evaluation of a program
(typically when QLAMBDAs or blocks are entered).
A context is an ordered list of contags, typically cor
responding to the stack of active function and block
invocations. For the user with sophisticated needs for
data base manipulation, we have provided a set of
QLISP statements that permit a user to construct his
own contexts, or viewpoints on the data base, from the
underlying contags. These statements allow the crea
tion of a context that is a descendent of a number of
independent contexts, a context that is the subset of a
given context not retrievable from a second context,
and a context that revises a given context to appear
as if it were descendent of another arbitrary context.

Generators

The data retrieval statements of QLISP are designed
to find a single instance of a given pattern. To cause
the pattern matcher to continue its search and obtain
other such instances, a user's program must return to
the query statement via the backtracking mechanism
(Le., by failing).

To allow a more natural and inexpensive method of
retrieving multiple instances of a pattern, we have
extended the CONNIVERl approach of using genera
tors. For example, the IS statement that was intro
duced earlier specifies the retrieval of one instance
of a given pattern. There is a generator version of
the IS statement called GEN :IS that finds multiple
true instances of a given pattern. Each time a state
ment such as GEN :IS is called, it produces a number
of instances matching the pattern. These expressions
are put on a "possibilities list" along with a "tag" that
indicates how the generator can be restarted when
more instances are requested, and this possibilities list
is returned by the generator as its value.

If the function TRY:NEXT is called with a possi
bilities list as an argument, it will remove the first
instance from the list and return it as its value. If the
list contains no more instances, the tag is used to
restart the generator. Since calls to TRY:NEXT can
be made from anywhere in a program, this form of
generator separates the retrieval of data elements
from the processing that is done on them in a way that
is not possible in a strict backtracking regimen.

The generator retrieval statements are implemented
using INTERLISP FUN ARGs. A FUN ARG is a data
object that conceptually represents a copy of a func
tion together with that copy's private data environ
ment.

Extensibility

QLISP statements that are not part of the under
lying INTERLISP language are processed by the

INTERLISP error handling mechanism, as will be
explained below. User-oriented tools for accessing the
LISP translation mechanism are provided so that new
QLISP-like statements can be defined easily. Once the
statements have been defined, they are treated by the
interpreter and compiler exactly like other QLISP
statements. Typically, the extension facility has been
used to provide alternative control structures for in
voking the standard QLISP statements, or to provide
special syntax for user-defined QLAMBDA functions.

SYSTEM FEATURES

QLISP is more than just a programming language;
it is an interactive programming environment for the
development or very complex collections of software.
In this section we shall discuss the major features of
this environment that are unique to QLISP.

Integration with INTERLISP

The major advantage of QLISP as a programming
environment, as compared with other new AI lan
guages, is its ease of use. It is easier to edit functions,
create symbolic files, trace execution paths, break into
computation paths, and debug programs in QLISP.
This is primarily due to the choice of IKTERLISP as
the host language for QLISP, and the care that has
been taken in the implementation of QLISP to preserve
the many supportive features of INTERLISP.

QLISP is implemented via the error handling
mechanism of INTERLISP. A valid LISP expression
will never be seen by the QLISP processor. Thus, pro
grams or portions of programs that use only LISP
constructs will run as fast in QLISP as in INTER
LISP.

When the I~TERLISP interpreter encounters an ill
formed LISP expression, it calls an error routine that
in turn invokes an error analyzer. If the expression is
recognized as a valid QLISP form, it is translated to an
equivalent LISP form that is returned to the inter
preter for evaluation. The translation is stored with
the original expression so that the translation need be
done only once.

A similar mechanism causes QLISP code to be trans
lated into equivalent LISP code when it occurs within
a function being compiled. Since the translation occurs
at compilation time, the QLISP interpreter need never
be invoked at all when running compiled QLISP code.

Aggregation of pattern matches

The "apply team" mechanism provides a good means
of reducing the number of unneeded pattern matches
during pattern-directed function invocation. However,
there may still be a lot of wasted effort as the function
invocation mechanism attempts to match each pattern

QLISP 353

in turn to the argument. For example, the simplifi
cation functions described in the preceding section all
begin with PL "CS. They might even be segregated into
a specific team of functions to simplify expressions be
ginning with PLUS. And yet every pattern will be
matched against the argument, and the matcher will
succeed at least as far as matching up the PLUS's.

An option is available to allow the patterns of
QLAMBDAs to be aggregated together in a tree struc
ture. For exarnple, the tree for the simplification
functions listed earlier appears as in Figure 2. A
single operation against the tree can determine the set
of all the QLAMBDA functions that are good can
didates to successfully match a given argument. (The
tests that are applied are cruder than those applied by
the pattern matcher itself, so that the set of functions
may contain some whose patterns won't actually match
when the matcher is invoked.) This set can then be
intersected with the particular "apply team" to deter
mine which functions to invoke.

The tree structure that is used is actually the dis
crimination net that is used as the associative data
base. For "apply teams" of more than fifteen func
tions or so, this feature provides significant efficiencies.

Interactive program control

Since the QLISP backtracking mechanism is imple
mented using INTERLISP's error facility, there are
a number of ways in which the standard INTERLISP
interactive facilities won't work properly. For ex-

1st ELEMENT , , , , ,
2nd ELEMENT

1st ELEMENT OF

PLUSZERO
2nd ELEMENT OF

PLUSMINUS PLUSSINGLE

Figure 2-Pattern selection tree for simplification functions

354 National Computer Conference, 1976

ample, the INTERLISP function tracing facility is
implemented as "break the computation, then print,
then continue." But INTERLISP errors, which are
generated by QLISP to cause backtracking, are trapped
at a break. The solution we adopted to this particular
quandary was to implement a QTRACE facility that
did not generate a break when it printed information
about a function invocation. Similar care was taken
with breaks in computation, the package for manipu
lating symbolic files, and many other system com
ponents to allow a QLISP user to believe that the total
system was behaving exactly as the underlying IN
TERLISP would.

APPLICATIONS

To provide some perspective on the utility of QLISP,
we will briefly describe some of the applications to
which it has been put. The common characteristics of
these applications are that the programs and the con
cepts underlying them could not be specified without
a sustained cycle of programming the best current
ideas about what the program should be doing, ob
serving the program's behavior, and then modifying
or extending the ideas.

Program verification

The first major QLISP program was the program
verifier of Waldinger and Levitt.l1 The verifier was
originally written in QA4. The program includes over
100 functions each encapsulating a specialized piece
of knowledge about the semantics of the language of
the programs being verified. The QLISP version ran
about 30 times faster than the original QA4 program.

A utomatic programming

Subsequent work by Waldinger has used QLISP
for the generation of simple programs from output
specifications. This work makes strong use of the
unification feature of the pattern matcher to combine
the knowledge that is distributed in various QLAMBDA
functions. For example, one function may say, in
effect, to produce a list with some X as its CAR, per
form (CONS X something), where the something is
unspecified. Similarly, another function may say, to
produce a list with some X as its CDR, perform (CONS
something X), where the something is again unspeci
fied. So if the system were given the goal of produc
ing a list with A as its CAR and B as its CDR, the
first function would return (CONS A something), the
second would return (CONS something B), and by
unifying these results the system can produce the cor
rect code (CO~S A B).

General problem solving

A system developed by Sacerdotp2 generates com
plex plans, monitors their execution, and recovers
from unexpected events that cause the execution to
deviate from the expected course of action. This is a
large system (about 60 pages of code) and almost all
of it is in the underlying INTERLISP language. How
ever, the pattern matching and context mechanisms
of QLISP are central to its operation, and the ease
with which the representation of knowledge could be
changed was important in the system's development.

The semantics of the actions that the system plans
for are written in a language extension of QLISP that
has QLISP's semantics but is evaluated very differently.
Strong use of the pattern matcher and of the extension
feature allowed the action language to be readily
changed as the scope of the program increased.

Deductive retrieval

A deductive retrieval package was written by Fikesu

to allow arbitrary deductions to be fired off by a
QLISP-like query. In addition to simply causing as
sociative retrieval from the data base, Fikes' queries
can fire off arbitrary programs to deduce the answer
to the query from other available information. These
query statements, implemented as a language exten
sion of QLISP, make strong use of the generator
facility. Capabilities for modelling state changes,
also part of this package, make strong use of the
ability to associate an arbitrary property list with an
expression.

Computer aided design

The first general-purpose program for computer
aided design that uses AI techniques in a substantial
way has recently been completed. It works by gen
erating a model of the object to be designed in stages
of increasing detail. As each stage is generated, ap
propriate user-supplied design constraints are applied.
The system employs sophisticated backtracking tech
niques to minimize the search for an object that satis
fies all the constraints. The program in its current
form14 is written completely in INTERLISP. The de
velopment of the program was carried out in QLISP,
and the code was gradually cut over to pure INTER
LISP as design ideas gelled and execution speed be
came important. The pure INTERLISP version runs
about ten times faster than the original QLISP version.
The development of the system was greatly facilitated
by the early use of QLISP and the resulting ability to
easily change internal representations and control
strategies.

Econometric modelling

A system has been developed that integrates a
quantitative computer model with an overlay of heu
ristic judgmental rulesY The heuristic overlay is
intended to facilitate interactive use of the econometric
model by making it easy to alter parameters and ad
just boundary conditions. The underlying quantitative
model was implemented in a mixture of INTERLISP
and FORTRAN. The heuristic model was implemented
in QLISP as an ASSERT team, a set of functions ap
plied after an assertion has been made in the model.
The user interface was implemented in QLISP because
of the ease of interaction it provides.

CURRENT STATUS

QLISP has been in active use at SRI for nearly two
years. The version at SRI is implemented in INTER
LISP on a PDP-IO computer using the TENEX op
erating system. It is available for use over the ARP A
net by other users on the network.

A version of QLISP is also available for INTER
LISP-370, a version of INTERLISP that runs on IBM
360 and 370 series computers.

QLISP is not intended to be a performance language.
The programming tools that it provides are of gen
erai purpose. Thus a program written in QLISP will
run slowly compared to a version of the program writ
ten in a language that provides a more restricted set
of data types or less flexible control structures. But
it has been our experience that, when the programs to
be written are large, complex, and subject to frequent
alteration as development proceeds, then the inef
ficiency in the program's execution time is more than
compensated for by efficiencies in the programmer's de
velopment time.

FURTHER WORK

While QLISP is a useful tool for many purposes,
further work will be required to augment the power of
the language to reflect the growing needs of AI pro
gramming. The current version provides an associa
tive data base that must be entirely contained within
the program's core image. S~7stems that operate on
substantial knowledge bases are a focus of current
research interest in AI, and the amount of data that
these systems will use will require that at least part
of the associative data base be resident on secondary
storage. This will require a new data storage and
retrieval mechanism, since those of existing AI lan
guages, including QLISP~ tend to distribute data
randomly throughout the store. The distribution of
data needs to be at least partially based on semantic
criteria, instead of being totally on a syntactic basis
as is done now.

QLISP 355

Another inadequacy of QLISP and other AI lan
guages is that the pattern matcher returns too little
information. Given two patterns to match, it replies
either with an exact matching between the patterns
or with a report of failure. It would often be ex
tremely useful to have a measure of how "close" the
match was to succeeding. Obviously, this would be an
expensive feature, but this kind of "fuzzy" matching
would provide a user with the powerful ability to
1...~_!_"~ ..J_~1 ___ ! .. 1_ ~ ___ •• ~ __ ! ____ ._ ~ _____ ._ .. !_ L.~_!_
U~gUl 1M U~i::U W It.,Il ~lI..111·~>:;>:;lUIl>:; Ull et >:;~llletllt.,l~ /Jet>:;l>:;.

A third area for further development is in the gen
eral category of multiprocessing. While many lan
guages support the use of multiple interdependent
processes, the level of command that they provide is
typically quite low. Typically they are on the level of
"start process," "suspend process," and "wait on
semaphore." It would be very advantageous to have
higher level commands available that would allow the
language system itself to keep track of many processes
at many levels of function calls. Such a mechanism
could be easily tied to the existing " APPLY team"
facility of QLISP.

CONCL USIONS

We have given a brief overview of the capabilities
and features of QLISP. While it is not practical for
use as a production language, it is a time-saving tool
for use in the construction of complex systems that are
subject to significant change during the course of
their development.

ACKNO'VLEDGMENTS

The basic features of QLISP are derived from the
QA4 language, developed at SRI by Jeff Rulifson,
Richard Waldinger, and Jan Derksen. The initial im
plementation of QLISP was done by Rene Reboh and
Earl Sacerdoti. Subsequent development was carried
on by Daniel Sagalowicz and Mike Wilber. Rich Fikes
developed the generator package, and was instrumental
in straightening out the context mechanism. Mal
Newey wrote the pattern matcher, based on a problem
reduction algorithm of Richard Waldinger. Richard
Waldinger has been a major force in setting the goals
of the language de\Telopment. \Varren Teitelman has
provided much help in generalizing the features of
INTERLISP that permit the clean interface to QLISP.

REFERENCES

1. Sussman, G. J. and T. Winograd, MICROPLANNER Ref
erence Manual, MIT Artificial Intelligence Laboratory,
Memo No. 203, July 1970.

2. VanLehn, K. A., ed., SAIL User Manual, Stanford Artificial
Intelligence Laboratory, Memo. AIM-204, July 1973.

3. McDermott, D. V. and G. J. Sussman, The CONNIVER

356 National Computer Conference, 1976

Reference Manual, MIT Artificial Intelligence Laboratory
Memo No. 259, May 1972.

4. Davies, D. J. ~L, POPLER 1.5 Reference 1lJanual, Uni
versity of Edinburgh, TPU Report No.1, May 1973.

5. Wilber; R M.; The QLISP Reference Manual, SRI AI
Center Technical Note 118, March, 1976.

6. Rulifson, J. F., R. J. Waldinger and J. A. Derksen, QA4: A
PTocedural Calculus for Intuitive Reasoning, SRI AI Center
Technical Note 73, November 1973.

7. Teitelman, W., INTERLISP RefeTence Manual, Xerox Palo
Alto Research Center, October 1974.

8. Bobrow, D. G. and B. Raphael, "New Programming Lan
guages for Artificial Intelligence," Computing Surveys,
Vol. 6, No.3, September 1974.

9. Hewitt, C., Description and Theoretical Analysis (Using
Schemata) of PLANNER: A Language for Proving
Theorems and Manipulating Models in a Robot, MIT AI
Memo No. 251, April 1972.

10. Hewitt, C., "How to Use \Vhat You Know," Proceedings of

Fourth International Conference on A·rtificial Intelligence,
pp. 189-198, September 1975.

11. Waldinger, R. J. and K. N. Levitt, "Reasoning About
Programs," A'rtificial Intelligence, Vol. 5, No.4, pp. 235-
316,1974.

12. Sacerdoti, E. D., A Structure for Plans and Behavior, SRI
AI Center Technical Note 109, August 1975.

13. Fikes, R. E., "Deductive Retrieval Mechanisms for State
Description Models," Proceedings of Fourth International
Conference on Artificial Intelligence, pp. 99-106, September
1975.

14. Latombe, J.-C., "Artificial Intelligence in Computer-Aided
Design: The TROPIC System," Preprints of IFIP Work
ing Conference on CAD Systems, Austin, Texas, February
1976, (Proceedings to be published by North-Holland under
the title "CAD Systems") .

15. Coles, L. S., "The Application of Artificial Intelligence to
Heuristic Modelling," PToceedings of Second USA-Japan
Computer Conference, pp. 200-207, August 1975.

User inierface design issues for a large interactive system

by RICHARD WILLIAM WATSON
Stanfor'd .F?'esearch Institute
Menlo Park, California

ABSTRACT

User interface design issues are discussed for a large
interactive system. The assumptions about the user
environment are explicitly described. Issues discussed
include command language syntax, command recogni
tion and completion, subsystem organization, user ex
tension capabilities, user options, and various forms
of prompting, help and feedback. These issues are
discussed within the context of an existing system, the
NLS system.

INTRODUCTION

The large interactive system user interface issues
discussed in this paper reflect experience at Stanford
Research Institute (SRI) over the past twelve years
in the evolution of the user interface to the NLS sys
tem. NLS is a prototype collection of tools in a grow
ing workshop of tools and services to aid knowledge
work. 1

,1 NLS provides facilities to support activities
such as document creation, study and publication, mes
sage handling, information filing and retrieval, and
software engineering. We expect the number of tools
and the vocabulary that controls the use of these work
shops to grow. We further expect that the use of such
workshops will spread throughout those occupations
involved with information in various forms and that
there will be infrequent and casual users of such sys
tems, along with many people who will spend large
fractions of their day using such workshops. One goal
is to match the speed of system responsiveness to the
natural speed and flow of man's thought processes. It is
from these basic expectations that our user interface
wor k has developed.

The sections below enumerate several assumptions
and areas of concern around which the NLS user inter
face has developed to date. A key point to mention is
that we do not consider the NLS user interface a static,
finished product. It will change, based on analysis of
usage experience, and the technology and media avail
able.

357

The user interface has two sides: the input side by
which the user inputs information, indicating by vari
ous conventions and controls what he wishes accom
plished; and the output side by which the machine
provides feedback and other assistance to the user in
command specification, and provides various forms of
information portrayal. Man has many motor and other
capabilities that could be the basis for input and com
mand specifications; similarly he has his full range of
senses that could be targets for system output.

To date, computer information systems make use of
only a few motor and sensory capabilities in their man
machine dialog. An important area of research in
volves exploring the advantages to be gained and the
techniques to be used to extend this range. There is
interesting research going on in areas of speech, eye
movement, brain wave control, hand written script,
and video graphics that will undoubtedly be integrated
into the truly multimedia systems to be built in the
near future.

We call the user's collection of input-output equip
ment, and arrangement of work tables and work space,
the workstation. At the present time, input to inter
active systems centers around various types of key
board devices: standard typewriter-type, function but
ton, keyset (chord), and graphical pointing devices
(mouse, electronic pen-tablet, light pen, joystick). The
dominant output means are teleprinters and displays
of varying capabilities.

The present NLS user interface has been developed
around this equipment, although many of the princi
ples used in its design can be easily extended for use
with other media.:' The prime motivation for the use
of the mouse for pointing and two keyboards (stan
dard typewriter-like and keyset) as the input devices
for the display version of NLS (DNLS), are described
in References 2 and 3. NLS can also be used from
typewriter terminals (TNLS). In this paper, we con
centrate on describing some of the motivations behind
the design of the NLS command language and the
forms of information portrayed to assist the user in
command specification. Forms of general NLS infor
mation portrayal are described in Reference 1.

358 National Computer Conference, 1976

HIGH LEVEL ASSUMPTIONS UNDERLYING
THE DESIGN OF THE NLS USER
INTERFACE

First we describe a few high-level assumptions about
the system usage environment that affect the user in
terface design and then discuss some of the lower level
issues and the specific techniques used to deal with
them.

Coordinated set of llSeT interface principles

There will be a common command interaction disci
pline, over the many application areas in the workshop,
that shapes user interface features, such as the lan
guage, control conventions, methods for obtaining
help, and computer-aided training.

This commonality has two main implications. One,
it means that while each domain within the core work
shop area or within a specialized application system
may have a vocabulary unique to its area, this vocabu
lary will be used within language and control struc
tures common throughout the workshop system. A
user will learn to use additional functions by increas
ing vocabulary, not by having to learn separate "for
eign" langauges. Two, when in trouble, he will invoke
help or tutorial functions in a standard way.

Grades of llSer proficiency

A once-in-a-while user with a minimum of learning
will want to be able to get at least a few straightfor
ward things done. In fact, even an expert user in one
domain will be a novice in others. Users will be clerical
workers, information specialists, executives, engi
neers, and others. Attention to novice-oriented and to
tutorial help features is required.

Users also want and deserve the reward of increased
proficiency and capability from improvements in their
skills, their knowledge, their conceptual orientation to
the problem domain and to their workshop's system
of tools, methods, conventions, etc. "Advanced vocabu
laries," short concise control notation and conventions
in every special domain will be important and un
avoidable.

A corollary feature is that workers in the rapidly
evolving augmented workshops should be involved con
tinuously with testing and training in order that their
skills and knowledge may most effectively harness
available tools and methodology.

Ease of comm1/nications betu'een sllbsets and addition
of workshop domains

One cannot predict which domains or application
systems within the workshop will want to communicate
in various sequences with which others, or what opera-

tions will be needed in the future. Thus, results must
be easily communicated from one set of operations to
another, and it should be easy to add or interface new
domains to the workshop. A corollary is that the total
workshop may contain a very large number of tools
and services. Some users may have access to only a
subset of its capabilities while others will have access
to many or all capabilities.

As described below, we expect the workshop to be
embedded in a computer network and thus communica
tion between tools and between users must take place
across both process and host boundaries according to
well specified conventions and protocols.5 ,6

User programming capability 01' user interface
extensibility

There will never be enough professional program
mers and system developers to build or interface all
the tools that users may need for their work. There
fore, it must be possible, with various levels of ease,
for users to add or interface new tools, and extend the
user language to meet their needs. They should be
able to do this in either a variety of programming
languages with which they may have training, or in the
basic user-level language of the workshop itself.

Range of workstations and symbol 'representations

The range of workstations available to the user will
increase in scope and capability. These workstations
will support use of text with large, open-ended char
acter sets, pictures, voice, mathematical notation,
tables, numbers, and other forms of knowledge. Even
portable hand-held consoles will be available. Indeed
the multiplicity of possible terminals raises the ques
tion of whether a consistent set of control and por
trayal conventions is possible.

As hardware decreases in cost, more and more capa
bilities will be placed in the workstation both in the
form of user interface aids and facilities, and in the
form of frequently used tools.

Distributed nature of the llSer interface processes

The collection of facilities to support interfaces with
the system of tools can be conceived of as a single
service as seen by the user. These facilities may all
reside in a processor in the workstation or be dis
tributed in two or more processors, depending on the
level of their sophistication and state of the art with
respect to cost, hardware capability, and so forth.

Tools embedded in a computer network

The computer-based tools of a knowledge workshop
will be provided in the environment of a computer net-

work, such as the ARPANET.' For instance, the core
functions will consist of a network of cooperating
processors performing special functions, such as edit
ing, publishing, exchanging documents and messages,
data management, and so forth. Less commonly used
but important functions, such as a compiler, might
exist on a remote machine. The total computer-assisted
workshop will be based on many geographically sepa
rate systems.

Once there is a Hdigital-packet transportation sys
tem," it becomes possible for the individual user to
reach out through his processor to other people and
other services scattered throughout a "community."
The "labor marketplace" where he transacts his knowl
edge work will be literally independent of geographical
location.

Specialty application systems will exist in the way
that specialty shops and services now do-and for the
same reasons. When it is easy to transport the ma
terial and negotiate the service transactions, one group
of people will find that specialization can improve their
cost/effectiveness, and that there is a large enough
market within reach to support them. And, in the net
work-coupled computer-resource marketplace, there
will be a growth of specialty shops, such as application
systems specially tailored for particular types of
analyses, or for checking through text for spelling
errors, or for doing the text-graphic document typog
raphy in a special area of technical portrayal, and so
on. There will be brokers, wholesalers, middle men,
and retailers.

The key point to emphasize is that even when hard
ware costs decrease to the point where a user can
perform 90 percent of his work using tools and infor
mation that operate in the processor in his work sta
tion, he will want to have access to a computer network
to:

(a) Communicate in various forms with others
(b) Access very large or special databases
(c) Access special tools that run elsewhere

Problem orientation of the command language and
toleran~e for ambiguity

The user has a task that he wishes performed by the
system. Depending on the nature of the task and
operation8 available to him on the system, he may be
able to express what he wants accomplished in a single
"statement" or command to the machine, or it may re
quire a series of commands.

One of the goals of the designers of the command
language and system is to understand the nature of the
user's application domain so that the user can express
his needs with constructs that are similar to his
thought processes, natural problem solving vocabulary,
and language forms. The machine will then break
down the request into smaller steps as required for in
ternal processing.

User Interface Design Issues 359

If there is ambiguity in the user's command, the ma
chine should recognize it, if possible, and prompt ap
propriately for clarification. There is still much re
search and development required to fully meet this
goal.

Many people hope to allow natural language to be
used in making statements to the machine. This capa
bility will require models of the user and task domains
for understanding.

Even when systems are able to interpret commands
given in natural language, the precision and usage
efficiency of appropriate artificial languages will make
the latter's continued use preferable, especially for
skilled users.

Given the above general considerations as back
ground, we can move on to examine features of the
NLS user interface in more detail.

SOME COMMAND LANGUAGE
CONSIDERATIONS

A command language must allow unambiguous
specification of what the user wishes accomplished.
The operation to be performed, and the entities or in
formation items (arguments) to be acted upon, or used
to determine what is to be acted upon, must be speci
fied. These can be specified in a variety of ways: by
typing them in full or in some form of abbreviation,
by pointing at them on a screen, by pronominal refer
ence, by implication from context, or by use of default
values automatically assumed by the system where
appropriate. The order of their specification, the syn
tax or grammar of the language, can have various
forms. For example, operational command-words can
be specified, followed by the arguments, or vice versa.
Arguments can be in fixed positions or explicitly named
and occur in any order. Some arguments or command
words can be optional and require special characters
to indicate their presence. Arguments or command
words can have defaulted values under certain condi
tions. Pronominal references can be allowed to refer to
previous occurrences. Arguments may be given types
by the system and language designer for more exten
sive error checking and feedback.

Arguments and keywords can be specified by com
plete or partial typein (there are a variety of forms
of command recognition that are discussed later) or
designated by pointing to representations on a display
or by use of specially coded function keys. Or, the
machine may ask questions and the user just fill in the
blanks.

Depending on the characteristics of the computer
and communications system, it mayor may not be
possible to provide command word or keyword comple
tion, prompting or other feedback, argument checking,
default value fill in, and so forth, during the command
specifications.

For example, in line-at-a-time, half-duplex systems,

360 National Computer Conference, 1976

the user usually must complete the entire specification
of the command before transmission to the system,
while in character-at-a-time, full-duplex systems, the
system can react to each character received and pro
vide more extensive aids to the user during command
specification.

The above discussion outlines just a few of the many
choices available to the language designer. As the pur
pose of this paper is not to be a complete tutorial on all
possible choices available and their advantages and
disadvantages, the following discussion gives only the
main NLS command language features and the motiva
tion for their adoption.

THE NLS COMMAND LANGUAGE

The NLS command language generally has the fol
lowing form, where angle brackets group meta
symbols:

(operation specification) (operand specification) (com
mand completion)

The fields in a command are of a fixed order, al
though some commands have optional fields that can
be specifically requested. Other fields can have a sys
tem-supplied default value. Because NLS operates
from a character-at-a-time, full-duplex system, several
levels of help are available, as described later, for giv
ing cues and prompting, explicitly listing options or
syntax, and giving full documentation on what the
system expects next during command specification. It
was not felt that much would be gained for novice
users by allowing fields to be specified in any order by
using explicit field names. Novice users do not need
to be aware of optional fields.

As much as possible NLS makes the operational
specification of the form verb-noun followed by argu
ments and possibly other keywords. We have also tried
to maximize the fullness of the verb-noun matrix.

This approach seemed to be natural, and follows
normal English imperative forms to aid learning. The
choice of verb-noun form seemed to fall out naturally
when considering such important areas as editing. A
given verb or operation, such as DELETE, can natu
rally be applied to many entities, such as ST ATE
MENT (a paragraph, title, equation), CHARACTER,
NUMBER, TEXT, FILE etc. Learning is easier if the
user can form a model of how the system works that
can be consistently applied. In this case, a user can
learn n verbs and m nouns and understand that gen
erally, if it is meaningful, they can be used in pairs.
Having learned n+m vocabulary terms, he can apply
them in the form of n x m commands. For example one
can command DELETE STATEMENT, DELETE
NUMBER, DELETE FILE etc.

We have tried to pick command keywords that have
normal usage related to the operation described. A
synonym capability would be easy to implement.

Four forms of command keyword recognition are
provided to enable the user to choose the one most ap
propriate to his terminal type, system response, previ
ous system experience, and present NLS experience
level. We have worked to pick an operational vocabu
lary for the present system that guarantees keywords
to be unique in a maximum of three characters:

(1) A single-character mode allowing high-speed
single-character recognition of the most commonly
used command keywords; less commonly used com
mand keywords require an escape character followed
by enough characters for unique recognition: With
large and expanding command sets one cannot choose
keywords with mnemonic value and guarantee unique
ness in the first character. This mode is generally pre
ferred by experienced users because of the conciseness
and speed with which frequently used operations can
be expressed. We find that experienced users are very
concerned that commands be formed with the mini
mum number of input operations, and that commands
have the richness needed to specify adjective or adverb
type operations as needed. There is thus some conflict
in certain commands between these goals for the ex
perienced user and the need for command simplicity
for the novice.

(2) A demand mode requiring a special character
to initiate recognition: This has proved to be popular
for new users of typewriter terminals, particularly
those with experience using the TENEX operating
system, under which NLS currently runs.13

(3) An anticipatory mode requiring the user to type
just enough characters for the command to be uniquely
specified; the system then automatically fills in the re
mainder of the command word.

(4) A fixed mode that guarantees recognition on
entry of three characters.

Given the implementation approach outlined later,
it is quite easy to add other recognition modes, such
as allowing the user to choose keywords from a menu
displayed on the screen. However, experiments have
shown that the time it takes to point to an item on the
screen is equivalent to several keystrokes and thus
would be disadvantageous to skilled users, although
possibly of value to novices.2,3

Modes 3 and 4 have turned out not to be heavily
used.

Operand argument specification is contained in a
number of fields that are variable with the type of
command. All commands of a similar type have the
order of the operands as consistent and as natural
(relative to normal English usage) as possible. In
frequently used operand fields are optional and novice
users need not be aware of their existence.

Related to argument specification is the problem
of choosing argument delimiters. There is a need for
the following delimiting functions.

(1) Delimiting command words

(2) Delimiting arguments
(3) Delimiting optional arguments or command

word fields
(4) Delimiting commands
(5) Selecting arguments from a display screen, and

confirming the selections

One could choose separate characters (codes) to
represent each of these functions. To do so seemed to
us to add an unnecessary complication for the user.
Therefore, except for using a special character to indi
cate an optional argument, or command word, a single
code is used for the other functions in NLS. We call
this code "Command Accept" (CA) even though it is
used for other purposes as well. The system allows the
user to define which keyboard character is to serve this
function if he finds the system default to be inconve
nient. One of the buttons on the mouse also serves this
function.

Arguments can be typed in, defaulted where appro
priate, or specified by pointing to appropriate entities
on the display screen.

There are three flavors of command completion.

(1) Command Accept: Completion of the command
indicating execute the command and return to the base
state to await input of the next command. The de
fault indication for this form is one of the buttons on
the mouse in DNLS, which is translated into a control
character. Command completion is defaulted to be
CR in TNLS. The use of CR in TNLS is quite natural
and generally does not conflict with textual input as
most text in NLS is typed in without explicit CRs
and is appropriately formatted by the system for vari
ous output devices. If the TNLS user wishes to input
an explicit CR in his text file, he must precede it with
an escape character. If he has need to enter many
CRs in his text string, he can redefine the completion
character, Command Accept, to be some other char
acter.

(2) Repeat: Completion of the command and re
turn to an appropriate intermediate command state
for quick repetition of the command. Repetition mode
continues until explicitly commanded to escape out of
it. This mode is very useful when a delete or other
operation is repeated several times.

(3) Insert: Completion of the command and entry
to insert-statement mode for addition of new para
graphs or other text statements. This mode is like
command repeat above except that it always takes you
to the insert command. It is used frequently when one
adds, replaces, or moves text, and then wants to follow
it with new statements. It speeds text input when
inserting sequences of paragraphs.

The system is to be used from a variety of terminal
types, including both typewriter-type terminals and
displays. The two-dimensional displays are to be the
preferred workstation types whenever a design deci-

User Interface Design Issues 361

sion must be made between language forms possibly
favoring one type or the other.

We decided to make the command language syntax
for the TNLS version and the DNLS version as close
as possible, except where the difference between the
one-dimensional and two-dimensional media would
clearly prohibit this or would seriously limit one or
the other version. This decision allows people working
in environments consisting of both typewriter and
display terminals Lo move back and forth with ease.

The system has been organized into clearly defined
subsystems with uniform rules for their entry and exit.
Any subsystem can be entered from any other, either
to "execute" a single command with automatic return
or to perform a chain of commands. The user can
return either to a specifically named subsystem in the
path of subsystems traversed, or enter a new sub
system. The issue of how to group commands into
subsystems has to do with training and patterns of use
rather than system constraints. It relates to learn
ability and, to some extent ease of command specifica
tion using single characters as switching subsystems
switches vocabularies, and to "knowing where you
are" in a command or operational space.

One could construct a system where all commands
were in a single subsystem. Study of the command set
of a large system particularly conceived of as a set of
tools shows that onerations tend to group together in
such a way that to~perform a given task, such as send
ing a message or calculating a budget, generally re
quire several related suboperations. Certain opera
tions, such as moving in information space or seeking
heln. tend to be used as suboperations of many or all
task~. This latter observation has led to "universal"
commands available from within any subsystems. One
can also imagine certain commands to be needed fre
quently in just two or more subsystems and thus im
plemented in each subsystem having the need. There
are now no instances of this case in NLS. The ability
to execute a single command in another subsystem with
automatic return has been very useful.

Provision has been made for options that the user
can control as he wishes for the amount of prompting,
feedback, recognition mode, and for setting other user
interface parameters whenever it seemed a standard
interface might not be appropriate to some significant
class of users.

A mechanism is implemented that enables the user,
or someone acting in his behalf, to create a file stating
what options he wants to run with. The system there
after automatically sets these options when he enters.
This facility can also be used with small extensions to
subset commands. This user option capability, when
coupled with the ease by which the user interface can
be redefined using the Command Meta Language de
scribed below, makes possible tailoring the user inter
face to specific users or groups of users.

All operations that have a natural inverse com-

362 National Computer Conference, 1976

mand have been given one (although NLS still does
not have an "undo" facility) Y A general undo/redo
facility has a number of technical difficulties and its
value might be questioned. However, the ability to
undo or redo the last one, two, or three commands
would clearly be useful.

As indicated earlier the ability of the user to extend
the system himself is important. There is a tradeoff
between ease of extension specification and operational
efficiency. In providing such a facility one does not
have to be deeply concerned with efficiency if the task
handled by the extension is performed infrequently.
If the operation is performed frequently, then it should
probably be inserted as a system feature and imple
mented efficiently by professionals. This area is ripe
for much additional development. The extensions must
be specified in some language to indicate what sequence
of events is to take place, what arguments to collect,
and so forth, when a given user action is performed.

NLS now offers two forms of extensibility. The first
allows users with some basic programming knowledge
to write programs in the Algol-like L10 language in
which the system is implemented, calling NLS system
primitives as needed. They can use the Command Meta
Language to specify a user interface if desired.!2 These
programs can be installed by the user as one of his de
fault subsystems, loaded as subsystems as needed, or
used as content analyzer patterns.8

The user can also write sequences of NLS commands
and have these sequences executed at will. A specific
sequence of commands can be automatically invoked
when the user first enters NLS.

HELP, STATUS, AND PORTRAYAL FACILITIES

The user interface must implement a man/machine
dialog. In this section, we discuss issues from machine
to man. The discussion centers around the use of dis
plays, with comments on how the problems are dealt
with for typewriters. Let us examine some of the types
of information that the user needs in order to keep his
bearings.

There are three main areas or dimensions along
which the user needs information to help him (a) to
know where he has been, (b) to know where he is, and
(c) to know where he can go from here. Clearly the
command language and user interface must offer pro
visions to move in these spaces as well as obtain status.

(1) Information Space-The user needs to know
where he is in his information space, and what view or
portrayal of the many possible is being displayed to
him. Generally he arrived at his present position from
previous points and he may want to be able to return
to previous points or views as well as to move on.

(2) Subsystem or Tool Space-In workshops con
taining many tools and commands, the user needs to
know which tool or tools are active, which ones he was

in previously and their order, and which ones he can
enter from here.

(3) Command Syntax Space-During the specifica
tions of a command, the user may need to know what
he can or is expected to do next and how to back up
to a previous point.

The NLS display screen is organized into windows,
as described in some detail in Reference 9. These win
dows are arbitrary rectangles. Windows can be dis
played essentially all the time or overlaid with others.
Windows can grow dynamically. Some windows are
allocated and displayed or not displayed under system
control for status and feedback information. Others
can be created and manipulated by the user for display
of his information space. Items selected from the
screen by pointing at them with the mouse are indicated
with an appropriate feedback mark. With typewriter
terminals, one does not have this two-dimensional ran
dom display capability. While the same information
can be given to the user, less can be given automati
cally, or at least the information must be given in an
altered form.

(1) Information Space-The present NLS informa
tion space is hierarchically organized. A user has a
directory or directories within which there are files. A
file can contain notes on many subjects stored under
various headings, his mail, or single documents. Files
in turn are hierarchically organized as a tree of infor
mation nodes containing text, graphics, or both.

Files can contain cross citations to specific points
within other files or the same file, thus creating net
works. NLS has appropriate commands for moving
within and between files and for obtaining a display
of the path over which one has traveled, and commands
for backtracking along this path.!

Display screens have a limited number of lines within
which to display information, and typewriters, even at
30 chars/sec or higher, cannot quickly and easily print
out large documents. Also, the user often wants to see
a summary or overview of a document or have it for
matted in special ways to aid his understanding. To
meet this need for easy control of information por
trayal, NLS has a concept called "view specification."
The user can change his "view" within the commands
for moving in information space or by separate com
mand. So that he can be reminded of his current view,
the most commonly used view parameters are fed back
to him in a small window in the upper right hand
corner of the screen. When he is at a point in a com
mand where it is permissible to change views, this
fact is fed back both by prompt (if prompts are turned
on) and by enlarging the characters in the view
feedback window. For more discussion on moving,
viewing, and portrayal in NLS see References 1 and 4.

(2) Subsystem or Tool Space-NLS is viewed as a
collection of tools (subsystems) that can be used coop
eratively. Each subsystem contains a number of logi
cally related commands and has a name, such as Base

(the collection of editing and file manipulating com
mands), Calculator, and so on. All the tools work on
information in the same file structure and the user
can move from one tool to another, or execute com
mands on a single command basis in any tool from any
other tool, as mentioned earlier. The user can receive
a display of subsystems available to him or an ordered
list of the subsystems in which he has previously been.

The name of the current subsystem within which
he is operating is fed back in a small window in the
upper left-hand corner of the screen in DNLs and as a
four-character prompt in TNLS.

(3) Command Syntax Space-Several levels of feed
back and types of "help" are available to the user in
formulating a command to the system. Each is de
scribed below. The Help database, to be described,
clearly is also generaliy useful for understanding the
system as a whole.

(a) Command-Word Recognition:
The options here were described earlier and this
m,ode is primarily useful in minimizing keystrokes
and in triggering additional feedback.
(b) Noise Words:
When the system recognizes a commandword or
field, it generates what we call "noise words" set
off in parentheses so the user can distinguish between
what he has entered and what the system has added.
For example, INSERT STATEMENT (to follow),
MOVE WORD (from) aid the user to remember to
designate a statement in the first case, or select the
word to be moved. In the latter case, after selection,
the characters (to) will be fed back to prompt for
the destination of the move. The noise words aid the
user in remembering what to do next. Novice users
report that noise words are one of the most useful
initial aids. As more experience is gained, the other
aids take on more importance. This is an important
point to note: users at different levels of experience
value different forms of feedback. Usefulness is not
only determined by the inherent characteristics of
the aids, but also by how they are implemented.
(c) Prompts:
When the user completes the specification of a field
in a command, he is prompted with some terse char
acters indicating the type of thing expected next and
the alternatives available to him for specifying,
selecting, or addressing the needed argument. In
DNLS the prompts are displayed on the line below
that used to feedback the state of the users command
specification and appropriately positioned horizon
tally. In TNLS the prompts appear in the command
specification feedback as appropriate. Users can
turn prompts off, which some users of TNLS do
when they reach a certain level of proficiency, al
though many highly skilled users always operate
with them on. DNLS users tend to always operate
with them on because the high speed of the display
does not slow down work while providing useful

User Interface Design Issues 363

information. Users can also specify terse prompting,
in which case optional fields are not prompted for.
Beginning users have indicated that prompting is
useful, but would like prompts to be more mnemonic
and of English type and word length.
(d) N ext Options and Syntax:
If the noise words and prompts are not sufficient to
jog a user's memory about what options are available
to him next, he can strike a ? or a < Control-S >. If
he strikes a ?, the system displays, in alphabetical
order, all the command-words that are legitimate for
the next field or more extensive information than
is available in the prompts for other fields. If he
strikes < Control-S >, the system prints out the syn
tax of the command from his present position to the
end of the command. The ? facility is extensively
used and is veri useful in refreshing one's memory
about infrequently used commands or new commands
for a user with only a basic knowledge of command
system concepts and vocabulary. The <Control-S>
feature does not seem to be extensively used at pres
ent and may indicate that the? facility is sufficient.
(e) Help Data Base:
If the above facilities are not sufficient because of
uncertainty about a basic concept or vocabulary word
or the user wishes more information about the effects
or use of a command, he can enter the Help tool.
Entry can be from the basic command level or from
any point during command specification. In the latter
case, the system utilizes the information input up
to this point to take the user to an initial point that
describes the specific command and field where he is
located.10

Once in the Help Database, a simple set of com
mand conventions and the organization of the data
base allow the user to easily examine related subjects
or move to higher level descriptions.10 There are
many unanswered questions about the best structure
of a help database, how to mesh online and offline
documentation properly, and what forms of access
ing mechanisms to provide for novices and skilled
users. We are just beginning to review our experi
ence with online help facilities to this point.
(f) Active Tutorial Help:
The next level of Help facility would be an active
tutorial facility. We have not yet implemented such
a facility but can see its value. An example of such
a facility is the work going on at BBN on the NLS
Scholar system. 11

ERROR MESSAGES AND RECOVERY

Error messages indicating an incorrectly spelled file
name or improperly specified entity are fed back to
the user in a window at the top of the screen. The user
is left at an appropriate point within the command
specification or, where necessary, he must start over
again to respecify the command. The text of error

364 National Computer Conference, 1976

messages is important and should be as specific to the
problem as possible. This has implications within the
system design for trapping error conditions as early
as possible and determining the appropriate message
for the specific error and total context of the user.
While we have made progress in this area, there is
much more that could be done to meet the need stated
above.

There are now no automatic error correction mech
anisms built into the system, such as spelling correction
or "Do What I Mean" type facilities. 14 These would
probably be useful to add when resources permit.

EDITING AND BACKUP DURING COMMAND
SPECIFICATION

The user can perform certain simple editing and
backup operations during command specification. At
any point during command specification he can do a
"command delete," which will take him back to the
basic command level. This is useful if he gets confused
and wants to return to a known state or changes his
mind about which command to perform next.

The user can delete the last character input or last
selection made on the screen with a "backspace char
acter" keystroke or button push on the mouse. He can
repeat this process and continue the incremental
backup process to the basic command state.

He can also delete the last word input, or the field
specified to date, with a "backspace-word" keystroke
or button push on the mouse. He can also repeat this
process backwards to the basic command state as well.

IMPLEMENTATION

The mechanisms and data bases needed to implement
the user interface have been modularized and isolated
as a "Frontend" that can run on a separate computer,
such as a minicomputer close to the user, and communi
cate with the basic tool information processing routines
("Backend") over a communication network. The
Frontend consists of terminal handling capabilities, a
command language interpreter, and two data bases; a
Grammar representing the language syntax and noise
words; and a User Profile indicating how the user
wants various parameters set for him, such as his
prompt and command recognition modes, keyboard key
translations, and so on. The Grammar is generated
from a high-level description of the user interface
written in a language special for this purpose we call
Command Meta Language.12

Given this particular system organization, it is easy
to tailor, subset. or modify the user interface for individ-

uals or groups, or to create interfaces for new tools.
Furthermore all the levels of help information, ex

cept the Help Data Base, are derived from the Gram
mar, which guarantees their correctness as the system
changes and is debugged. Various forms of hard copy
documentation, such as command summaries, are also
derived from the Grammar representation.

ACKNOWLEDGMENT

This work sponsored by the Defense Advanced Re
search Projects Agency and Air Force Systems Com
mand's Rome Air Development Center, Griffis AFB,
N.Y.

REFERENCES

1. Engelbart. D. C., and W. K. English, "A Research Center
for Augmenting Human Intellect," AFIPS Conference Pro
ceedings, 1968 FJCC, Vol. 33, pp. 395-410.

2. English, W. K., D. C. Engelbart and M. A. Berman "Dis
play-selection techniques for text manipulation," IEEE
Transactions on Human Factors in Electronics, Vol. HFE-8,
No.1, March 1967, pp. 5-15.

3. Engelbart, D. C., "Design Considerations for Knowledge
Workshop Terminals," AFIPS Conference Proceedings, 1973
NCC, Vol. 42, pp. 221-227.

4. Engelbart, D. C., R. W. Watson and J. C. Norton, "Aug
mented Knowledge Workshop," AFIPS Conference Pro
ceedings, 1973 NCC, Vol. 42, pp. 9-21.

5. White, J. E., "A High-Level Framework for Network-based
Resource Sharing," AFIPS Conference Proceedings, 1976
NCC, Vol. 45.

6. Postel, J. B. and J. E. White, Notes on a Distributed Pro
gramming System, Augmentation Research Center, Stan
ford Research Institute, Menlo Park, California, March 1975.

7. Roberts, L. G. and B. D. Wessler, The ARPA Network,
Advanced Research Projects Agency, Information Process
ing Techniques Office, Washington, D.C., May 1971.

8. L-10 Users' Guide: Content Analyzer, Augmentation Re
search Center, Stanford Research Institute, Menlo Park,
California.

9. Irby, C. H., "Display Techniques for Interactive Text
Manipulation," AFIPS Conference Proceedings, 1974 NCC,
pp. 247-255.

10. Lehtman, H. G. and K. Kelley, et aI., Query/help Software
and Data Bases, Knowledge Workshop Development Final
Report RADC-TR-75-304, Augmentation Research Center,
Stanford Research Institute, Menlo Park, California, June
1974.

11. Grignetti, M. C., C. Hausmann and L. Gould, "An Intelli
gent" Online Assistant and Tutor-NLS Scholar," AFIPS
Conference Proceedings, 1975 NCC, pp. 775-781.

12. Irby, C. H., "The Command Meta Language System," pri
vate communication.

13. Bobrow, D., et aI., "TENEX, A Paged Time Sharing System
for the PDP-10," Commun. ACM, Vol. 15, pp. 135-143,
March 1972.

14. Teitelman, W., et aI., INTERLISP Reference Manual, Bolt
Beranek and Newman Inc. and Xerox Corp., 1974.

Terminal transparent display language (TTDL)

by CARL E. KREBS, C. BUMGARD~ER and T. NORTHWOOD
INCO, Inc.
McLean, Virginia

ABSTRACT

Terminal Transparent Display Language (TTDL) is
a software language that implements complete and
effective communications in an on-line computer sys
tem containing two or more different types of termi
nals. TTDL integrates differing terminal display tech
niques into a common language, freeing the application
programmer from the specifics of terminal data han
dling and allowing him to concentrate on his primary
function of providing a service to the terminal user.

INTRODUCTION

INCO, INC. developed and is currently implementing
Terminal Transparent Display Language (TTDL) as
part of the Terminal Oriented Support System (TOSS)
Research and Development proj ect for the Rome Air
Development Center (RADC). The purpose of TTDL
is to provide a software language and support system
which will allow communications to different terminal
types without reprogramming. See Figure 1. Under
TTDL, terminal differences become "transparent" and
do not require consideration by the programmer.

TTDL was specifically designed for use on Digital
Equipment Corporation (DEC) PDP-II series mini
computers that are terminal-oriented. TTDL provides
the capability to operate any number of different ter
minal types on this system because it approaches
terminal transparency from a functional standpoint.
TTDL was designed to support the logical functions
required by the intelligence analyst, rather than the
specific terminal devices he might wish to use. For
example, TTDL allows the programmer to specify an
"accentuation level" to emphasize a particular section
of text. This level is then mapped into a specific ter
minal's physical characteristic; this may be blinking
on one terminal, but may be reverse video on another
terminal.

This paper addresses four specific areas of the TTDL
system. Firstly, it describes the Display Specification
Language, the primary communication tool of the
application programmer.

365

Secondly, it describes the seven most important
functional features of TTDL. They are:

• Screen Area
• Command Line
• Select Menu
• Screen Formatting
• Data Checking
• Control Input
• Display Library

Thirdly, it describes the separate software modules
which drive the system. And lastly, it details the
control and flow of data through the system.

By describing TTDL in terms of its user functions,
this paper hopes to present a more meaningful soft
ware description; one from which the reader can
understand TTDL's operation as well as its theory.

DISPLAY SPECIFICATION LANGUAGE (DSL)

TTDL defines displays using the Display Specifica
tion Language (DSL). This language is designed for
use with either FORTRAN or MACRO-II (PDP-II
assembly language). DSL is clear and concise and
allows great flexibility in designing displays. Displays
can be defined in three ways: statically, not changing
during the program; dynamically, using data from the
execution of the program; or a combination of both
ways. DSL provides for naming a field or group of
fields so that they can be referenced by routines which
modify, extract data from, or dynamically accentuate
such named fields. This accentuation can be applied
to any or all fields in the display, either when the
display is defined or later during program execution.

There are 16 levels of accentuation, including the
normal level (no accentuation), and a "zero" or blank
level (data input is not displayed). The blank level is
useful for entering passwords or other classified in
formation, and for entering error messages into the
display, which can then be used merely by dynamically
changing the accentuation level.

DSL provides formatting capabilities, which include:

• Floating tab positions (up to 16) which are set

366 National Computer Conference, 1976

T
INCOMPATIBLE TERMINALS

PROCESSOR

TTDL
FUNCTIONS

t

PDP 11/45

TTDL MODULES PROVIDE
TRANSLATION BETWEEN
TERMINALS AND PROCESSOR

APPLICATION
PROCESSING

1
PROCESSOR APPLICATION

FUNCTIONS REMAIN
INTACT

Figure I-TTDL application.

according to actual data length for the fields and
the width of the target screen display area.

• Right and left justification around a tab position.
• Center text on a line.
• End page.
• New line.
• Justify text against the right margin.
• Fill the space between two fields with dots.

DSL allows the programmer to specify data attri
butes for input fields, such as data type and length.

Data types include:

• String fields which consist of any character in the
print set. Specific string attributes include alpha
betic, numeric, blank, and special characters (all
other printing characters). Any combination of
the four is also allowed.

• Integer fields.
• Real fields in which scientific notation is also sup

ported.
• Minimum-maximum field where the integer en

tered must be between two limits.
• Two character choice fields consisting of one posi

tion where the user must enter one of two specified
characters.

Any of the above fields may also be specified as
mandatorily requiring input as opposed to optionally
requiring input. Input fields can also be accentuated.

DSL thus frees the programmer from varying con
siderations of screen size, display techniques, accen
tuation techniques, input methods, and required hard
ware protocol.

FUNCTION AL FEATURES OF TTDL

Screen areas

The terminal display device can be divided into
multiple independent regions, each known as a Screen
Area (SA). Each SA can be treated as a separate
display, allowing multiple programs to be run simul
taneously on a single terminal. SA's can be defined in
any realistic size.

Command line

Each terminal has a one-line command line. Input
on this line is passed to a command interpreter which
checks the command against a list of system com
mands. The command is then dispatched to the appro
priate routine for implementation. Error messages,
either syntax errors from the interpreter or execution
errors from the service modules, are displayed on the
command line at the end of the entered command.
Current commands include running and aborting
tasks, and display paging commands.

Select menu

A common programming technique is to provide the
user with a list of choices, or selection menu, for the
user to select from. TTDL provides a select construct
in which the programmer merely lists all the choices
in the menu. The prompt line (e.g., ENTER DATA

...) is automatically generated by TTDL, a different
prompt being available for each terminal type. This
construct also allows the terminal user to make full use
of any available input devices which the terminal sup
ports. These may include light-pen, cross-hairs, func
tion keys, or he may simply type in his choice. The
choice made is echoed in the input field of the prompt
line. The program sees only an integer denoting the
choice selected.

Screen formatting

TTDL provides automatic display formatting by fit
ting the logical display to the target SA. The process
includes breaking lines that are too long by backscan
ning for a blank and breaking at that point for a
display-only field, or breaking exactly at the end of the
line for an input field. The display is broken into
pages if it cannot be made to fit on a single page.
Efforts are made to fit the display on one page, such
as ignoring "new line" codes for compression of selec
tion menus. If the display must be paged, efforts are
made to keep a logically connected field from being
broken between pages by moving the entire field to
the next page. Page information is also included at
the bottom of each page, i.e., page number, whether
there are more pages or not, and paging commands
which can be entered by input devices-if they are
available.

Data checking

TTDL provides automatic input editing to insure
that data meets the restrictions assigned by the pro
grammer. The user is not allowed to leave the current
page until all errors are corrected. The number of
errors is displayed on the bottom line of the SA. Fields
requiring mandatory input must also be filled in cor
rectly, although optional fields can be left blank. The
fields are then marked to show the application pro
gram those that had data entered.

In the case of string fields, any spaces not filled in
always appear as nulls to the programmer, no matter
what character is used to reduce the limit of input
fields on the terminal. Selection menu choices are
checked for the validity of the total number of choices
available.

Control input

Control sequences can be entered apart from normal
data input. These sequences trigger control functions
on the SA in which the programmer is working. These
functions include:

• Command line-transfer to enter data on, and
return from command line.

Terminal Transparent Display Language 367

• Paging commands-page forward, page back, first
page.

• Enter data-data is ready to be returned to the
application program.

• Cursor control-move cursor up, down, right, left,
home. Cursor only stops on unprotected areas.

• Tab-tab to next or prior input field, tab to next
field containing incorrect data (flagged by data
checking routines), tab to the first input field on
the next line,

• Move to the next active SA.
• Erase input field.

Each function is declared valid or invalid and ig
nored pursuant to the status of the SA.

Display libra'i'Y

The user can store displays on disk through a dis
play library capability, referring to them by a six
character name. Functions supported are store, re
trieve, and delete. This capability frees the application
program from the storage overhead of having the dis
plays defined internally. Checks are made for dupli
cate names when storing. When retrieving displays,
the actual display name is checked against the active
displays; if it has the same name, it is renamed, and
the new name is given to the program to use. This
allows the same display to be used concurrently by
different terminals controlled by the same program.

TTDL SOFTWARE MODULES

TTDL was designed using two kinds of software
modules: primary modules, which drive the system;
and support modules, which provides sub-processing
and data support for the primary modules.

The primary modules are the Preprocessor, Post
processor, Secondary Input/Output, and Primary
Input/Output modules. They handle the actual trans
fer of data to and from the terminal.

• The preprocessor translates the DSL into a Ter
minal Independent Format (TIF).

• The postprocessor formats the data to fit the SA,
and provides dynamic display paging support.

• The secondary input/output module translates
common capabilities into terminal dependent
functions.

• The primary input/output module transfers data
to and from the terminal.

The support modules are Buffer Manager, Process
Control, Field Routines, Application Interface, and
Display Library modules.

• The buffer manager directs the storage and re
trieval of TIF data.

• The process control module supports intra-task
and inter-task communications.

368 National Computer Conference, 1976

• Field routines allow modification to and retrieval
of data from the display by the application pro
gram.

• The application interface module provides a table
driven interface between the applications program
and TTDL.

• The display library module handles the storage
and retrieval of displays from disk.

The following paragraphs provide a complete de
scription of each TTDL software module.

PRIMARY TTDL MODULES

Preprocessor (PRP)

The preprocessor is a finite-state compiler which
translates the DSL specified by the application pro
gram into a Terminal Independent Format (TIF).
Using state tables, the preprocessor translates the data
from DSL to TIF, which is suitable for storage on
disk and recall for retrieval on any type of terminal.
The preprocessor is completely terminal independent,
requiring no information about the display terminal.

As a finite-state compiler, the preprocessor uses a
series of macros to conduct state-translation process
ing. This construction allows easy additions to the
language by merely making the additions to the state
tables and combining them with the appropriate pro
cessing macros.

Postprocessor (PSP)

The postprocessor formats the TIF produced by the
preprocessor to fit the target screen area. It builds a
transaction file correlating data in the TIF to loca
tions on the SA. Algorithms break lines that are too
long, and automatically pages displays which are too
big for one SA. The resulting transaction file is sent
to the secondary I/O module for further processing.
The postprocessor is virtually terminal independent,
requiring only SA size and the number of display
characters required for certain functions.

Secondary I/O (SIO)

The secondary I/O module produces the actual data
stream sent to the terminal. As input, it uses the TIF,
the transaction file built by the postprocessor, and a
set of terminal dependent protocol tables and routines.

The secondary I/O is table-driven, a feature which
facilitates addition of new terminals to the system.
Addition of a new terminal requires only the addition
of protocol tables and those routines which are unique
to the terminal or new to the system. As more termi
nals are added to the system, the number of new rou
tines decreases; most routines are common to a class
of terminals.

Specific functional capabilities of SIO include: ad
herence to hardware protocol for each terminal; dis
play field accentuation; addition of dots for the DSL
feature; compensation for differences between termi
nal types; and hardware simulation with software
routines.

Primary I/O (PIO)

The primary I/O module handles the actual transfer
of data to and from the terminal. Inputs to primary
I/O from the SIO are the address of the data and its
length. Important features include: interruption of a
read to allow a write to occur, and restoration of the
read at the exact point of interruption; queueing of
other reads while a read or write is in progress; vali
dation of control sequences entered by the user
invalid sequences are ignored; support of zero level
accentuation by echoing blanks to the terminal when
data is entered; and asynchronous operation, by pro
cessing requests on other terminals until recently issued
I/O is completed.

The primary I/O is also table driven, having tables
of write routines, read routines, etc., which are dis
patched by terminal type.

SUPPORT MODULES

Buffer manager

TTDL uses dynamic storage for its work areas, the
majority of which are used for TIF. The buffer man
ager is responsible for handling of these buffers.

TTDL uses 512 byte blocks of dynamic storage allo
cated by the Intertask Coordination Module (lCM) of
TOSS. Using a logical-to-physical mapping algorithm,
the buffer manager translates TIF addresses into a spe
cific block of TIF. The buffer manager pages the buffers
to disk on a demand basis when in-core storage runs
short, using an extensive algorithm to determine which
blocks to write out. A currency concept is also used,
through which a certain buffer is kept current for the
TIF being processed, with a pointer to the current
character in the buffer. Functions include: set cur
rency; get current character; put a character; access
a block; deaccess current block; and map into current
location. This last function allows the requesting
module to directly access the current block.

Process control module

The process control module provides the control re
quired by TTDL to permit the simultaneous support
of multiple tasks, multiple terminals and terminal
types, and multiple screen areas on each terminal. The
process control module assigns a Process Control Block
(PCB) to each individual process. The PCB contains

all appropriate data for the process, including a stack
area where data may be stored if the process is sus
pended. In addition to providing intra-task control,
inter-task communication is achieved by queueing
PCB's from one task to another.

The process control module also resolves resource
contention by suspending a process until the required
resource (such as nodes, buffers, or PCB's) is avail
able.

Process control functions include: passing control
to another process; suspending a process; spa\"llning a
new process; ending a process; and subprocess calling
and return (analogous to subroutine call and return).
These functions manipulate queues of process. A dis
patcher module provides the control mechanism for
dispatching processes to be run and identifying the
task in \rvhich the process resides. The dispatcher also
handles Service Request Blocks (SRB) which are
requests for service issued by application programs
through IeM.

Field 1'outines

Field routines consist of a group of modules which
allow the application programs to interact with the
TIF for their display. Individual modules include:
initialize a field to the null state; set fields to string,
integer~ or real values depending on field type; retrieve
data from string, integer, or real fields; change accen
tuation levels of display fields; test the availability of
input for input fields; and set origins for generated
field names. The largest modular group is a set of
routines to find specified fields in the TIF which the
application programs desire to access. Since the
processing performed by most routines is minimal,
addition of new routines is easily accomplished.

Application interface module (AIM)

The application interface module is the entry point
for all application calls. It checks the format of each
call and formats a service request block for trans
mission to the appropriate TTDL task. The AIM is
FORTRAN compatible, and addition of a new host
language would require only a small system enhance
ment. TTDL task specifications would not be affected.

The AIM is table driven, so that a new call requires
only the addition of two macros. The AIM also pro
vides conversion functions for dynamic display defi
nition from data provided during execution.

Display library

The display library module consists of two parts.
One part performs the directory functions and alloca
tion or disk storage. The second part, the external

Terminal Transparent Display Language 369

processor, performs the formatting of the display TIF
and associated information for storage on disk.

A directory entry consists of a 6-character ASCII
name, the virtual block number of the display, and
the number of blocks allocated. Each directory has a
header \vhich contains a pointer to the next directory
and the number of blocks allocated for a high block
number. Each directory is one disk block long. A
deleted directory entry is marked such that the blocks
may be reused.

1XT'h;10 t'ho ...1;" 1.,,, l;h, ... " lroo.,.,.", +, 1 ... ",of! ...1;",.,.,.ln~T ,., ~~~..&."" U"&'.I.'-' '\A..LU ,.p'U."'J .L.L PJ.L ~.L.J ~l..""',,", PI.;)L ""v.L}" V.L \A~Q ,lJ..&."'J

storage, the external processor formats the informa
tion in the TIF and additional information required
when the display is reformatted. Parameters to the
external processor include a buffer to store the infor
mation in and its length. The external processor can
also be used to send displays to and from other systems.

DATA AND CONTROL FLOW

The following paragraphs describe the typical flow
of data and processing to and from a terminal. This
flow is illustrated in Figures 2 and 3.

Display definition and output

Operations start with a call to the routine DISDEF
(display definition). DISDEF formats a request speci
fying the argument and passes it to the preprocessor.
The preprocessor then maps into the application pro
gram and retrieves the DSL. The DSL is then con
verted into TIF and given to the buffer manager for
storage.

Once the display is defined (by one or more calls to
DISDEF) the program indicates its desire to output
the display via the FLASH call. This is dispatched to
the postprocessor which creates a transaction file based
on the TIF and the size of the target SA. This trans
action file relates TIF data to SA position.

Control is then passed to the secondary I/O module,
which uses the TIF, the transaction file, and terminal
dependent tables and routines to create the output
stream. SIO also adds the hardware protocol for such
features as protected/unprotected fields, emphasis
(blinking, reverse video, etc.), code transliteration,
and cursor positioning.

Finally the buffer containing the output stream is
passed to the primary I/O module, which transmits it
to the appropriate terminal.

Data input

After the display has been output, the SIO then pre
pares to input data. This data can consist of control
sequences or input for the program. The SIO sends a
request to the PIO for each field, stating how many

370 National Computer Conference, 1976

PDP 11/45

I
TTDL FUNCTIONS I APPLICATION PROCESSING

I

I
TIF I

SECONDARY ... BUFFER
INPUT/OUTPUT

,
MANAGER I

=~/ I APPLICA-
DATA TION

TIF

I
GET / CALLS

FROM TERMINAL +
) PRIMARY \I

'f
v INPUT/OUTPUT ~ AIM

FIELD DATA I
ROUTINES

l
I

Figure 2-Input flow.

PDP 11/45

I
TTDL FUNCTIONS APPLICATION PROCESSING

I
I

I APPLICA-

I
TION

DISDEF

~
CALLS

PREPROCESSOR

AIM

TO TERMINALS ,It
I

A I Ij PRIMARY IYUTPUT ~TlF
INPUT/OUTPUT SECONDARY I" BUFFER

"'oj DRIVER BUFFER INPUT /OUTPUT MANAGER I
TlF

I ~ 'V FILE

I POSTPROCESSOR

~
APPLICA-

I

TION
FLASH
CALL

AIM

Figure 3-0utput flow.

characters are required, any accentuation information,
and buffer addresses for the input and output buffers.
The PIO then returns control whenever the number
of control characters or a valid control sequence is
entered. The SIO then either goes to the next field, or
processes the control sequence. When all the data is
entered, the SIO returns control to the application
program, which can then modify or retrieve the data
entered.

Terminal Transparent Display Language 371

SUMMARY

As can be seen from the above discussion, TTDL is a
useful flexible language which can effectively facilitate
communications among the many and various termi
nals of large data processing systems. Such a language
delivers powerful capabilities to system users-capa
bilities which are necessary in the rapidly changing
data processing environment.

Working set restoration-A method to increase the
performance of multilevel storage hierarchies

by PETER SCHNEIDER
Siemens AG
Munich, Germany

ABSTRACT

The emergence of new storage technologies such as
Charge Coupled Devices (CCD) and Bubbles with
access times which lie in the access gap between semi
conductor memories and rotating magnetic storage
media is another important step toward implementing
multilevel storage hierarchies.

However, a comparison between a three-level stor
age system, consisting of cache, page buffer and CCD
main memory, and a conventional two-level main
memory system will show that the three-level hier
archy using the transfer on demand strategy has an
effective access time which is higher by about a factor
of 2.

Yet, through better use of the program locality the
access time of a three-level system can be reduced to
that of the two-level cache/page buffer system. Using
this method, the so-called working set restoration, the
working set of pages of the next program to be run
is loaded into the page buffer during execution of the
active program. The required page transfer operations
are executed concealed and are thus not time-critical
for the processor. This means that for program proc
essing only the access time to the two-level system
becomes apparent.

The advantage of a three-level system of this type
lies not so much in the improved performance but
rather in the lower costs, since it permits the use of
a large-capacity main memory on a technology level
which is cheaper by a factor of 2 to 4 as compared with
MOS RAIM:.

INTRODUCTION

In the planning of large computer systems, there is a
pronounced trend toward increased use of multilevel
storage hierarchies. The first step in this direction
was the development of the software-controlled virtual
memory.

The emergence of the various semiconductor tech
nologies such as the bipolar and MOS technologies,

373

which brought about random access memories of vari
ous densities, speeds and costs, led to the development
of directly addressable two-level main memory struc
tures. These consist of a cache designed in fast and
hence expensive bipolar technology and a main mem
ory designed in cheaper, albeit slower, MOS technol
ogy; see Figure 1. By making use of the locality of
the active programs, the effective access time of the
main memory system can be reduced to nearly that of
the cache. The introduction of a two level main mem
ory system in machines with a virtual memory was
the next step toward a system enhancement through
the use of storage hierarchies, Recent developments
include new storage technologies such as Charge Cou
pled Devices (CCD) and Magnetic Bubble Domain
Devices (MBD) of which some were announced as
products. Their access times lie in the long-existing
access gap between the semiconductor technologies
used in the main memory and those of the secondary
storage media. The per-bit costs are also estimated to
fall in between the price categories of the two known
technologies.

Because the new storage technologies have an opera
tion mode different from that of the random access
storages, they are called Block Access Memories
(BAM).l Whereas with RAMs any bit can be ad
dressed within an equally short time, BAMs require
long access times for single bits while, for a sequence
of bits, the longer access time occurs only at the begin
ning with the remaining bits following sequentially at
a high data rate.

In the system considerations outlined in the follo\v
ing paragraphs, the CCD technology will be used as
an example representative of the above-mentioned new
technologies.

CCD TECHNOLOGY-ITS COST
AND PERFORMANCE

The operation of Charge Coupled Devices (CCD) is
founded on the basic concept of storing information in
MOS capacitors in the form of charge packets and to

374 National Computer Conference, 1976

PERIPHERY

~

MAIN
MEMORY

(MOS)

PAGI NG DEVICE

(DRUM, FIXED HEAD DISK)

Figure I-Two level working memory hierarchy with
paging device

shift it at the semiconductor surface from one capaci
tor to the next. This technology is thus suitable for
generating shift registers for the storage of analog
as well as digital information. The inherent advan
tages of the CCD technology are that it is based on
the tried MOS technology, storage locations can be
extremely small and a high production yield is ex
pected. As compared with MOS RAMs, memory densi
ties greater by a factor of 2 to 4 and per-bit costs
lower by a corresponding factor are anticipated for
the CCD memory chips.

Memory chips implemented in this technology con
tain randomly addressable shift registers which are
closed via read/write terminals. Since, in the CCD

technology as well as in the conventional MOS technol
ogy, information is stored dynamically, a refresh of
the entire information written is needed after several
milliseconds. This is also done by the read/write
terminal. Due to shift-frequency-dependent transfer
losses, which occur when the information is shifted
from one capacitor to the next, the length of shift
register loops is limited. As an example, lengths of
up to 256 bits are believed to be realizable for a shift
frequency of 10 MHz.3

For the following system considerations, devices
with a capacity of 65,536 bits, a setup of 256 loops
with 256 bits each, and a shift frequency of 5 MHz
are assumed. The time required for a complete pass
of the information stored in a loop is then 51.2 p's;
the mean value for accessing an arbitrarily chosen bit
is after one half pass, corresponding to 25.6 p.s. Mem
ory chips incorporating these characteristics will be
available in the near future.

Some system-engineers believe that these new tech
nologies will challenge only drum and fixed-head disk
storages, and thus solely consider the possibility that
these technologies replace the conventional paging de
vice in the virtual storage system. By contrast, a
discussion in Reference 4 is based on the assumption
that the use of a CCD main memory within a three
level directly addressable main memory might obviate
the need for a paging device.

However, since the CCD technology, viewed price
wise, can probably compete with MOS RAMs but not
with secondary-memory technologies, the following
question arises: Can costs be cut maintaining the
same system performance if a two-level main memory
is replaced by a three-level main memory structure
with a CCD main memory, assuming that the virtual
storage concept with a conventional paging device is
retained?

VIRTUAL STORAGE SYSTEM WITH
THREE-LEVEL MAIN MEMORY

To clarify this question, we must first look at the
functions performed by today's main memory.

To ensure efficient utilization of the central unit, it
is necessary to keep the current pages, the co-called
working set5 of several programs in the main memory
even if processing of these programs is interrupted
due to secondary storage accesses. If, for instance, pro
gram pages are missing which have to be fetched from
the paging device and entered in the main memory,
processing of the active program has to be interrupted.
The page entry takes several milliseconds during
which time the central processor would have to wait
with nothing to do if no other executable programs
were available.

However, if several processes are in main memory,
the central unit moves on to another process if the
active process has to be displaced. Among the processes

kept in main memory are those waiting for a page
to be entered from the paging device. This ensures
that, upon reactivation, processes will not have to be
deactivated because pages are missing which were
overwritten just before.

This holding of working sets of several programs
plus the necessity of also having some operating system
routines reside in main memory already require main
memory capacities of 1 MByte or more for today's
timesharing or multiprogramming environments. Due
to the mounting storage requirements of individual
users as well as the increased use of the installations
for multiprogramming applications, an increased mem
ory capacity of over 16 MByte will be needed.

This very fact presents a strong argument in favor
of using a cheaper memory technology in the main
memory. However, measures must be taken to guard
against a loss of system performance. Due to the CCD
memory access time which, compared with random
access working memory, is longer by several orders of
magnitude, an outright replacement of the main mem
ory is not possible because resident operating system
routines must remain readily accessible and the time
of access to data of active programs must likewise not
be adversely affected.

Considerable savings can, however, be achieved in
terms of expensive random access storage capacity by
dividing the main memory capacity into two categories
using the following criteria:

(a) A large capacity memory, which will continue to
be called main memory and is designed in CCD
technology, for storing non-active working sets;

(b) a small-capacity random access memory; the so
called page buffer containing the currently ac
tive process as well as the resident and a small
number of exchangeable operating system
routines.

A strategy equivalent to the virtual memory's paging
on demand might also be used here as a load strategy
between main memory and page buffer. Pages could
then be transferred to the page buffer each time they
have been found missing by a built-in hit/miss logic.
This method will be referred to as transfer on demand.

This division of the main memory results in a three
level main memory system consisting of cache, page
buffer and main memory; see Figure 2. Originally,
this division was made under the aspect of cost advan
tages alone, but we have to examine now whether a
procedure of this kind will not result in a loss of per
formance vis-a-vis a conventional system.

TWO-LEVEL AND THREE-LEVEL MAIN
MEMORY SYSTEM PERFORMANCE
COMPARISON

For a comparison of the performance rate of differ
ent main memory systems, we use the effective access
time for read operations

Working Set Restoration

Teff=hl . tl + (l-hl) . [h2·t2+ (1-h2) ·ts]

since only read operations are time-critical whereas
write operations can in general be run concealed while
the processor is busy. hI and h2 are the hit probabilities
for read accesses, tH t 2, t3 the access times to the differ
ent hierarchy levels.

PERIPHERY

:

PAGE BUFFER

(MOS, BIPOLAR)

MAIN

MEMORY

(CCD)

PAGING DEVICE

(DRUM, FI XED HEAD DISK)

Figure 2-Three level working memory hierarchy with
paging device

376 National Computer Conference, 1976

Let us first consider the two-level memory hierarchy
cache/MOS main memory. Assuming

h 1 =95%, t 1 =100 ns, h 2 =100%, t 2 =1000 ns,

the effective access time Teff will be 145 ns. By com
parison, a longer mean access time of 250 ns results
for the three:"level hierarchy with CCD main memory,
page buffer and cache, when h2=95% and t3=5l.2 p.S.

Since the time of access to the CCD memory (t3) is
much greater than that of the page buffer (t2), the
effective access time of the overall memory is extremely
susceptible to changes in the page buffer miss rate.
If this increases heavily, the effective access time as
sumes values that are too high to be tolerated.

These considerations lead to the tentative conclusion
that under adverse conditions the performance of the
three-level hierarchy will be worse than that of its two
level counterpart when using the transfer-on-demand
strategy assumed here, which works on the principle
that pages are fetched from the main memory only
after a page miss has occurred. In order to allow the
cost-saving three-level hierarchy to be used without
degradation, some means must be found to either pre
vent or at least significantly reduce page misses, which
are responsible for longer access times. This may be
achieved by use of the working set restoration method.

WORKING SET RESTORATION

This term will be used to designate a method designed
to provide a program, upon its reactivation, with the
specific memory environment it requires for optimum
processing. This is where the locality of a program,
referred to as working set of pages,5 comes in. Under
the conventional method, deactivated programs are,
upon their reactivation, provided with that number of
page frames for entering the pages which corresponds
to the actually required number of pages during the
preceding processing interval. In contrast to this, the
method proposed here attempts to retrieve the actual
pages addressed in the preceding interval rather than
mere page frames.

A similar method is discussed by Tung6 who suggests
that shorter transfer times between two memory hier
archy levels be achieved by interleaving the main
memory in as many ways as there are page frames in
the page buffer, i.e., that the number of main memory
modules should match the number of page frames in
the page buffer. The interface width is equated with
the page size. Nevertheless, there are processor wait
times under this system during process changeover
until a new process can be started. Besides, this con
cept would require a main memory with an extremely
large capacity and the use of very wide interfaces
would also pose a problem. Further, it should prove
difficult to ensure an optimum distribution of all active
pages oVer all possible memory modules-a necessity if
the method proposed by Tung is to work properly. For

these reasons, implementation of such a system cannot
be advocated.

Since it does not make any difference in the time total
whether all pages are transferred consecutively or in
dividually upon request, it is suggested here to load the
working set of a program concurrently with the pro
cessing of another process so that it does not occur
time-critically for that process. To allow this, the page
buffer capacity must be expanded by an additional
area so that one area will always be available for pro
gram processing and another for loading the working
set of the successor process. Further, the time avail
able for concealed loading must be sufficient. However,
it can be safely assumed that it is, because it is made up
of the runtime section of the active program and the
operating system execution time for the subsequent
process change.

Through the use of this procedure, the access time
of the three-level system is reduced to the access time
of the two-level cache/page buffer system since the
majority of page misses were forestalled in a non-time
critical manner. The third level will have to be ac
cessed only when pages which reside in the main mem
ory but not in the page buffer are added to the working
set of the active program.

SYSTEM CONFIGURATION

Having explored the theories and facts suggesting
that the use of the working set restoration concept as
a load strategy between page buffer and main memory
seems practical, let us proceed to discuss a sample
system configuration and its management.

The memory system, Figure 3, has a cache with gen
erally known characteristics and of conventional size
at the top level. Since the cache is independent of the
load strategy used between second and third level, it
is excluded from the following discussions.

The 512 KByte (K= 1024) page buffer is divided into
four modules: Modules 1 and 2 are designated for pro
gram processing or for loading the successor process
working set; Module 3 contains resident operating
system routines; Module 4 contains various routines of
the exchangeable operating system.

Each of these modules has a capacity of 128 KByte.
At any given time, the active program is present in
only one of the two modules slated for processing. Both
modules contain the page buffer addresses from 0 to
31 (page size 4 KByte). This ensures that, during pro
cessing of a program in, say, module 1, the successor
process can be entered in module 2 without affecting
program execution. Besides this, the allocation of main
memory and page buffer addresses is simplified in so
far as all main memory addresses are always allocated
to page buffer addresses 0 through 3l.

The page size of 4 KByte is identical to that used in
the virtual memory system. The storage technology
employed in the page buffer must be able to accommo-

I
~

PERIPHERY

HIT/MISSLOGIC

PAGE BUFFER

(MOS, BIPOLAR)

MAIN MEMORY
(CCD)

PAGING DEVICE

(DRUM, FI XED HEAD DISK)

Figure 3-Scheme of the working memory system with direct
paging between CCD-main memory and paging device

date the data rate transferred from the CCD memory
over a data path with a width of, say, 8 Bytes.

A CCD memory of modular design is assumed as
main memory: 144 CCD memory devices with a capac
ity of 65,536 bits contribute one bit each to a 16-Byte
word which is transferred via the 8-Byte interface
using the two-way streaming method. Consecutive
words of a 4 K-Byte page are successively stored in the
CCD loops; thus a page can be read out or written in
51.2 !-,-s with one parallel cycle of all 144 loops. This
corresponds to a data rate of 80 MByte/s. The module
comprises 256 pages, i.e., it has a total capacity of 1
MByte, Figure 4. Depending on the desired system
performance, the CCD main memory can be imple
mented with capacities from 1 MByte to 16 MByte or
more with the aid of these modules.

A hit/miss logic implemented in the form of an

Working Set Restoration 377

ARRAY OF LOOPS ~ 1 PAGE r 4096 BYTE I
\..r---'1 /If'l' ~ // '/ ,

/ I .

R/W-TERMINAL/// ///IU! U DEVICE144
'X---('/ , I '(BJ' J----)~ , I // // .'
, !/ / .'
II 1..1-/ /" 1 1 nr-,""r- A ,ro ,..,.. ,...-. 'k)' /; U UCVIL-C IIO:::l:::ldb tsll J , / '//
k.= _:....v
LOOP 1 LOOP 256

Figure 4-Scheme of a 1 MByte CCD-memory module

associative memory is visualized as a means of check
ing whether the pages requested by the processor are
entered in the page buffer. The associative memory
always describes the specific page buffer module (1 or
2) containing the program (addresses 0 through 31),
and module 4 containing the operating system (ad
dresses 32 through 63). This ensures that the entries,
by virtue of their being located in the hit/miss logic as
they are, point to the page buffer address. Another
section of the hit/miss logic-again with addresses 0
through 3I-will be used for storing the working set
table of the successor process. In addition to the main
memory address entries, there will be a write bit which
indicates whether a page entered in the page buffer was
modified and therefore does no longer match the origi
nal in the main memory,

In the system discussed here (cf. Figure 3), the
exchange of pages between main memory and paging
device is not performed via the central processor as
in so many existing systems, but rather via a storage
processor (SCU) assigned to the memory. This pro
cessor has its own memory for storing the pages to be
exchanged between main memory and page buffer until
they can be entered without interfering with the pro
cesses taking place between main memory and page
buffer. In addition, the storage processor is respon
sible for loading the working set of the successor pro
cess.

After this overview of the system's hardware com
ponents, let us nm·v turn to the specific software re
quirements for working set restoration.

Each process will have a table assigned to it describ
ing these pages (up to 32) that were entered in the
page buffer by that process during the most recent
processing period. These tables are stored in the mem
ory of the storage processor according to their internal
process code numbers and can be directly addressed by
means of these numbers.

In the order to start the working set restoration
procedure, the process requiring loading operations
must be known to the storage processor. This informa-

378 National Computer Conference, 1976

tion is extracted from the process queue maintained
by the operating system and is passed by the central
processor to the storage processor as soon as this inter
rupts a program and changes over to another one.
This information enables the storage processor to con
trol working set restoration proceedings.

FUNCTIONS

We will now discuss page miss handling and activi
ties involved in working set restoration, Figure 5.

Page miss

After address translation in the central processor, a
request address is sent to the memory system. In most
cases, an access can already be satisfied in the cache.
If a cache miss occurs, the address is switched through
to the page buffer. The hit/miss logic then determines
whether the requested address is present in the page
b~ffer. If the desired page is not available there, it
must be fetched from main memory. This is done by
switching'the address through to the main memory,
after which page transfer is started. A processor
requested word within a page is switched through to
the processor during page entry and, on the basis of
the foregoing, will be received after a mean time of
25.6 ftS.

In addition to pages which were read only, the page
buffer also contains pages which were modified. Since
these pages no longer match their original in the main
memory, they must be written back to main memory
before being overwritten. If both the requested page
and the page to be written back are contained in the
same module, this may require two page transfer times.
In order to avoid such displacement procedures with
page miss, one buffer page is always reserved into
which the requested page can be loaded immediately.
If the page released for overwriting by the replace
ment algorithm was modified, it is subsequently written
back in non-time-critical fashion to main memory, and
then becomes a new buffer page. Thus, 32 pages are
active in the page buffer at all times. Yet, since one of
these pages is being marked free, a page entry due to
page miss can be handled in the shortest possible time.

Working set restoration

A working set is to be transferred from the CCD
main memory to the page buffer whenever an active
process is displaced. The central processor immedi
ately switches over to the next process while the stor
age processor starts loading the working set of the
next executable process; see Figure 5. The storage
processor first reads out the 32 hit/miss logic entries
describing the page buffer contents of the program just
displaced, and updates the associated page table. In

N

(START)

f
COMPARE

PAGE TABLES OF
DEACTIVATED AND

REACTIVATED PROCESS

Y

y

START SIMULTANEOUS
PAGE TRANSFER,

BUFFERING OUTPUT
PAGES IN SCU-MEMORY

START OUTPUT OF
THE BUFFERED
PAGES INTO CCD
MAIN MEMORY IF

NECESSARY

START
PAGE INPUT

INTO
PAGE BUFFER

START
SI Mll.TANEOUS

PAGE TRANSFER
BETWEEN PAGE

BUFFER AND
MAIN MEMORY

Figure 5-Flow diagram of the working set restoration activity

the course of this, it determines which pages have to
be displaced from the page buffer and simultaneously
checks to see, by way of a comparison with the suc
cessor process page table, whether any successor pro
cess pages fall into other modules than the pages to be
displaced.

The page buffer and main memory addresses are
then switched through by the storage processor to the
memory control, which is instructed to handle page
transfer. Transferred first are those pages that can
be entered in the page buffer simply by overwriting
unmodified pages.

Transferred next are pages which lie in other
modules than the pages to be displaced. This is done
in the following fashion: the memory locations are
read out of the page buffer in the Read/Update/\Vrite
mode and transferred to the main memory, while data
are simultaneously written in from another main mem
ory module.

The last pages to be entered are the ones which lie
in the same module as the pages to be displaced. Here
too, the data are entered in the page buffer via Read/
Update/Write, but the page to be displaced from the
page buffer must first be transferred to the storage
processor for intermediate buffering. Pages of this
type are entered in main memory after working set
restoration has been completed.

Concurrently with page loading, the main memory
addresses of the respective pages are entered in the
currently unused portion of the hit/miss logic at a
location corresponding to their page buffer address
such that, at process change-over time, not only will the
pages be in the page buffer, but the pertaining address
information will also be stored in the hit/miss logic.

After this discussion of the three-level storage hier
archyJs structure and functions, iet us now examine
its capability as compared with other systems.

CAPABILITY

To measure the capability of the three-level memory
structure, a simulation program was created which
allows an examination of the page miss rate in the page
buffer for the transfer-on-demand strategy as well as
under working set restoration. The different handling
of page fault interrupts as compared with other inter
rupts has been taken into account. When a page fault
occurs, all pages already entered in main memory are
retained, whereas with all other interrupt causes the
number of pages found after reactivation will be less.
This is where the size of the main memory comes in;
it can be calculated as follows: Assume that 100 users
are concurrently attached to a computer system. Five
of these are to be in the active process queue at any
given time. Based on measured values, a mean working
set size of 100 KByte can be assumed, which adds up to
a memory capacity of about 500 KByte for the pro
cesses in the active queue. The remaining 95 users
share the rest of the main memory capacity. If main
memory capacity is 4 MByte, each process will find
an average of 40 KByte available upon its reactivation.
If each process is to find a greater capacity available,
the main memory capacity must be increased if the
length of the process queue remains the same. A greater

Working Set Restoration 379

main memory capacity will then result in increased
capability since pages have to be overwritten less fre
quently in main memory and some of the page faults
for previously used pages can be prevented. This is
taken into account by the simulation program.

The analysis covered address sequences of several
different programs. Table I uses two typical address
sequences (program A and program B) to demonstrate
the impact of main memory size on the page faulting
_~+~ ~~..::J + ~ ~~~~ ~:~~ _~+~ :~ + ~ ~~~~ ~ __ .c~_ _.l.
~al>C aHU "HI:: 1'ao l:: Hl.l~~ ~a"l:: l.ll "HI:: 1'aol:: IJU1J.I::.1· .LV.1· IJVUl

load strategies.
These results yielded by simulation were used for

calculating the effective access times of useful pro
cessor accesses. The term "useful access" is employed
to define only the number of accesses used for actual
program processing, whereas the time needed for ac
cesses during operating system activity is viewed as
waiting time and is thus prorated to the useful accesses.
Using this effective access time, the systems illustrated
in Figures 1, 2, and 3 were analyzed and compared.
The effect of the cache was ignored because it is the
same in all systems.

The following formulae yield the effective access
times for useful accesses.

For a two-level system

Teff1=hpf·tint+hint·~nt+ (I-hpf-hint) ·t2 , and

for a three-level system

Teff2 =hpf • tint + hint ·tint+ (1-hpf-hint-m2) ·t2+m2 ·ts

The same formula applies for the three-level systems
which differ only in the load strategy. Depending on
the load strategy, different miss probabilities (m/) or
(m/') must be expected in the page buffer.

hpf and hint represent the page faulting and interrupt
rates, respectively; m2 is the miss probability in the
page buffer and tint (= 1 ms) represents the operat
ing system execution time for process changeover. t2
(= 1 ,.,.s) is the access time to the second level of the
two-level system, and t2 (= 160 ns) and t3 (=51.2 ,.,.s)
are, respectively, the access times to the second and
third levels of the three-level system. Figures 6a and 6b
show the cost curves of the compared systems: cost

TABLE I-Effect of main memory capacity on page faulting
rate and page miss rate

Page miss rate
Main Interrupt working

memory frequency Page fault transfer on set rest.
Program capacity hillt rate hIli demand(mn (mo")

MB % % % %
A 4 0.07 1.67 4.66 0.93

8 0.07 1.27 4.51 1.13
12 0.07 0.93 4.41 1.30

B 4 0.07 0.38 0.61 0.00
8 0.07 0.24 0.60 0.00

12 0.07 0.18 0.60 0.01

380 National Computer Conference, 1976

curve C2 applies for the two three-level systems differ
ing only in their load strategy, while C1 represents the
conventional two-level system. As is clearly demon
strated, the costs of the three-level main memory are

6 12
11 en

::l

5 10 ~
9 ~ f-

f-4 8 en
en
LW en

7
L.) = L.)

L.) c::(

2 3 5 6 7 8 9 10 11 12 13 14 15 16
CAPACITY IN M BYTES

substantially lower. The figures also plot the effective
access time curve of "useful access" for all comparison
cases as a function of main memory capacity.

The effective access time of a three-level system with
working set restoration T:~: is almost equal to that
of the two-level system TeffH Figure 6a, or can, accord
ing to Figure 6b, even be lower if no page buffer misses
occur and the page buffer's significantly shorter access
time, as compared with a conventional main memory,
can thus be made the most of. The effective access
time of a system with transfer on demand T;g~, on the
other hand, is always less favorable.

CONCLUSION

Through the use of the working set restoration
strategy, a three-level system can in fact always
achieve nearly the same performance level as a con
ventional two-level system, provided that systems with
equal main memory capacity-points 1 and 2-are
juxtaposed. If, on the other hand, systems with equal
cost levels are compared, the three-level system will
always offer a more favorable effective access time
(cf. points 1 and 3) due to the lower page faulting
rate resulting from the greater main memory capacity.

ACKNOWLEDGMENT

The work has been supported under the Technologi-
~3 6
r-
S
LW

5
0::

2

~
:::>
cs
LW
~

Cz cal Program of the Federal Department of Research
and Technology of the FRG. The author alone is re
sponsible for the contents.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
CAPACITY IN M BYTES

Figure 6-Cost and performance curves of the different memory
systems

C1 : Cost of the two level hierarchy
C2: Cost of the three level hierarchy with a 128 KByte

page buffer
T effl: mean access time of the two level hierarchy
T ':t~~ and T ;~f~: mean access times of the three level

hierarchy under the different load strategies
(a) Simulation with program A
(b) Simulation with program B

REFERENCES

1. Bhandakar, D. P., "Cost Performance Aspects of CCD Fast
Auxiliary Memory," Proc. CCD '75', Charge-Coupled Devices
Appl. Conf., 1975, San Diego, pp. 435-442.

2. Boyle, W. S., and G. E. Smith, "Charge Coupled Semicon
ductor Devices," Bell Syst. Tech. J., 49, 1970, pp. 587-593.

3. Ablassmeier, U. and E. Doring, CCD-Schaltungen hoher
Speicherdichte in Al-Si-Gate Technologie, Siemens Forsch.
und Entwickl.-Ber. 4, 1975, pp. 226-230.

4. Schneider, P. and J. Witte, CCD Memories in a Working
Memory System, Siemens Forsch.- und Entwickl.-Ber. 4, 1975,
pp. 231-237.

5. Denning, P., "The Working Set Model for Program Behav
iour," Commun. of the ACM, 11, 1968, pp. 323-333.

6. Tung, C., "On the Apparent Continuity of Processing in a
Paging Environment," IEEE Trans. Computers, C-19, 1970,
pp.1047-1054.

Performance and power dissipation analysis for
CCD memory systems

Burroughs Corporation
Piscataway, New Jersey

ABSTRACT

In CCD memory systems a tradeoff exists between the
frequency at which the memory system is operated
and the power dissipation. The higher the frequency
of operation, the lower is the service time and the
higher is the power dissipation. A close look at the
initial cost of the CCD memory system and the cost
of maintaining these memory systems will show that
the cost of maintenance for a year is nearly equal to
the initial cost. This high cost necessitates an analysis
of the CCD memory system design for service time
and power dissipation.

In this analysis three different states called the
Access, Refresh, and Idle states are defined for a CCD
memory system. Each state is characterized by a
frequency and five different modes of operations are
defined depending on the relation between the fre
quencies. Average service time and power dissipation
equations are then derived and each mode is analyzed.
Contrary to the nonnal belief that the power dissipa
tion increases with access frequency, it is shown that
for certain modes the power dissipation is constant
and is independent of frequency. Finally, a figure of
merit is defined and the different modes are compared.

INTRODUCTION

In the last few years, extensive work has been done
on Charge Coupled Devices (CCD's). These devices
have a potential of becoming basic building blocks to
construct memories for digital computers. Many pa
pers are available that analyze and propose designs
for the basic component and its layout on the chip.l-~
Very little analysis is available on the use of the chip
in a memory system. It is predicted that the cost/bit
for CCD memory systems will be 15 to 30me/biti and
power dissipation of 20 uw /bit. Using a rule of th:umb
of 1 me/uw /year for the operation of semiconductor
memory systems stated by Morton,5 it is evident that
the initial cost and the operating cost for a year are
equal for CCD memory systems even when operated

381

at low frequencies. The situation would be still worse
at higher frequencies.

Here we will analyze some aspects of the CCD's
pertaining to their use in a memory system design.
The analysis will show the tradeoffs of operating and
using different devices and an insight into the design
of the chip.

CCD CHIP PARAMETERS

Most common types of CCD chips being designed
are of the closed loop shift register type. Therefore,
we will analyze such a chip. A typical chip will have
S shift registers with Nt cells in each shift register
(Figure 1). The design of the device will determine
the refresh time (tr), which is the maximum allowable
time before which a new refresh cycle must be started.
Usually a refresh amplifier is available after every N r

cells, and Nt is an integer multiple of Nn with N r and

~iftReg. 9
Idle Frequency f i

Refresh Frequency fr

Access Frequency fa

:'iT
r

= No. of cells between Refresh .A::l;l::':::ie:::,

~t = ~o. of cells in a Shift Regis"':er

S = Total number of Shift Registers

Figure I-Schematic of a closed loop shift register type CCD
chip

382 National Computer Conference, 1976

Chip Parameter

Shift Registers

No. of Cells between Refresh ft.JJlp.

Refresh Time

Symbo:'

1-.1 -t

N
r

Typical Values

2msec. and above

TABLE I-Various Chip Parameters and Their Typical Values

Nt being powers of two. Some typical values for S,
Nb Nr and tr are given in Table I.

MODES OF OPERATION

With the above mentioned basic parameters for the
chip a memory system can now be designed to operate
in three different states. The three states are the
Access state when the data is being accessed (read or
written) from the chip, Idle state in which the chip is
doing nothing and the Refresh state in which the data
in the shift register is being refreshed. * The three
states can be characterized by having three different
frequencies: Access frequency fu Idle frequency fl
and Refresh frequency fro By definition, a memory
system can be in the Access state and Refresh state
at the same time if the frequencies for these two states
are the same. A state transition diagram for the three
states is shown in Figure 2.

In evaluating the performance of the chip, the fol
lowing assumptions will be made:

(1) The refresh state has priority over both the
access and idle state, whereas the access state
has priority over the idle state.

(2) The data transfer in a shift register is always
initiated from the bit addressed as the first bit.
This is not always necessary and different as
sumptions can be treated as special cases and
the analysis pursued here modified accordingly.

(3) A new access for data is not made when a pre
vious access is pending. This assumption im
plies a buffer in which all the requests to the
memory system are stored and serviced with
some scheduling strategy.

(4) There is an equal probability that the refresh,
idle or access states are started at any bit in
the shift register.

(5) The power dissipation is proportional to the
frequency at which the data cells are being
moved.6 Notice that the power dissipation of

* The Access state may be further divided into an Aligning state
and a Transfer state. Presently, we will not make any distinc
tion and the analysis made here can be easily extended to that
case.

Access not
complete

St.art

Access Request &
:l.efresh complete

Refresh complete and

Refresh not
complete

Figure 2-State and transition diagram for the different states
of CCD memory operation

the peripheral circuitry, drivers and the shift
register array is a function of the frequency. 1

(6) The refreshing and accessing can be done simul
taneously, if, and only if, the refreshing fre
quency (fr) and the accessing frequency (fa)
are the same. This implies that the interface to
the CCD memory system always transfers or
receives data at the same frequency.

(7) Once a data transfer is started all the bits in a
shift register must be transferred.

By choosing different values for the three frequen
cies fa, fr and fb the chip and hence, the memory sys
tem can be operated in five different modes (Table II)
requiring one, two, or three clocks. Notice that the
number of clocks required is an indication of the com
plexity of control required by the memory system and,
therefore, in some sense defines the cost for control
circuitry.

The five modes of operation and their implications
are tabulated in Table II. Mode 5 is the most general
mode of operation and the other modes can be con
sidered as a limiting case of this mode. For example,
mode 3 can be considered as a limiting case of mode 5,
when fl tends to fro

Before evaluating the different modes, the implica
tions of the modes of operation on a memory system
design are qualitatively discussed. In a semiconductor
memory system design some maj or parameters of
interest are: (a) power dissipation which influences
the cost of maintaining the memory, (b) access and
service times which influence the performance of the
system, (c) the interface requirements such as, the
data width and data rate, and (d) the control complex-

Performance and Power Dissipation Analysis 383

MODE FREQUENCY METHOD OF OPERATION

Continuous Refresh
1 f = f = f. Most common mode of operation in the near future. a r ~

.uU-rst Refresh
2 Possible low access frequency due to interface requirements.

3 f .J f a r Possible high Access rate. Useful when the memory is expected
to remain idle for a large percentage of the time.

f. = f
~ r

4
Zero idle frequency is possible. Minimum access frequency
determined by the lowest allowable refresh frequency.

f := f
a r

5 f.Jfi.J f a r

Zero idle frequency possible. Interface requirement of low
access frequency can be satisfied.

T ABLE II-Possible Modes of Operations for a CCD Chip

ity which determines the difficulty and the amount of
overhead involved in the design of the memory system.

Mode 1 is a continuous mode of operation in which
all the bits are moving all the time and has the sim
plest control circuitry. This will be the most common
mode of operation in the early systems.

Mode 2 requires two frequencies and, therefore, has
a control complexity higher than Mode 1. One method
of operating in Mode 2 would be to use low idle and
access frequencies and high refresh frequency. Such
a mode is applicable when an external device with low
data rate is interfaced with CCD's and real time trans
fers are made. Also, when memory is operated in a
'vertical mode',7 as is recommended for CCD device,S
it is necessary to shift the bits at a low frequency.

Mode 3 of operation has equal idle and refresh fre
quency and either low or high access rate. The control
complexity is the same as in Mode 2. It is necessary
that fr (=fi) >Nr/tr' Intuitively, such a design is at
tractive only when the memory system is expected to
remain in the idle mode for a high percentage of the
time. Mode 4 of operation is again as complex as
Mode 2 and Mode 3 and can be operated with burst re
fresh and zero idle frequency. Finally, Mode 5 is the
most general mode of operation and will have the maxi-

mum control complexity. A practical application of this
would be: (1) when the system is idle most of the
time, (2) the external requirement necessitates low
data rate, and (3) burst refresh is to be used to refresh
the memory. The analysis later will show that only
some of these modes are advantageous from the per
formance and power dissipation considerations.

On the following pages, equations for Mode 5 of
operation will be developed. Then the equations for the
other modes of operation will be determined as a
limiting case of Mode 5.

ANALYSIS OF SERVICE TIME

Service time is defined as the time elapsed between
the moment a request is made to the memory for some
information to the moment when all the information
is delivered.

When a request is made to a CCD memory system
for particular information, the bits in the shift regis
ters have to be shifted until the shift register is posi
tioned at bit 1 under the read/write circuit. The time
required to do this will be called the access time (ta).
Once the shift register has been positioned then the

384 National Computer Conference, 1976

data may be transferred and the time required to
transfer the data will be called the transfer time (tt).
The service time (ts) is the time required to service a
request and is given by

ts=ta +tt

and the average value of service time (t8) is

ts=ta+tt

Assume that ta is a random variable and can be deter
mined as a sum of three random variables given below.

X r = random variable that represents time spent in
refreshing when a service request is made.

Xa = random variable that represents time spent in
aligning the shift register to bit 1 when a
service request occurs.

Xd = random variable that represents time lost when
a service request cannot be satisfied because
the refresh cycle has to be started before all the
bits in the shift register are transferred.

Then

ta=Xr+Xa+Xd

and because Xn Xa and Xd are independent random
variables, we have

ta=Xr+Xa+Xd

We have to determine the values of Xn Xa and Xd. The
probability density function of Xr is given in Figure 3.
From the figure

X _.!(N r)2.1.
r- 2 fr tr

The value for Xa is simple to calculate and is given by

[for large Nt]

To calculate Xd, notice that if a request arrives at a
time when the shift register is at position N, then the
minimum time required to access and transfer the

N
r
~

r

':7ime --+

Figure 3-Probability density function of Xr

block is given by

Nt+ (Nt-X) 2Nt-X
fa fn

Because the probability that a request occurs at any'
particular bit is the same, the expected value of Xd is
(Figure 4) derived as

Notice that for large values of Nt

(! Nt-i) «i Nt2 and 2Nt«3Nt2

Xd~~(Nt)2 + 3Nt Nr
~ 6tr fa 2trfrf a

Then the average value of ta is

ta= Nt +~[(Nr)2 +1(Nt)2 + 3NtNrJ
' 2fa 2tr fr 3 fa fafr

For a shift register of length Nt and transfer fre
quency fa

- Nt
tt=t;:-

Therefore, the average value of the service time is

ANALYSIS OF POWER DISSIPATION

In CCD's power dissipation is proportional to the
frequency.6 Ameliol gives equation for the average
power dissipated (P d) on chip for a data frequency f
as

Pd=2N (O.2x 10-l2)f

where Pd is the power dissipated due to a shift register
of N bits being shifted at a frequency f.

N
r

f
r
-------_~;~J

Figure 4-Probability density function for Xd when a service
request is made at bit position x

Because the CCD electrodes have a large capacitive
load, the power dissipated in the drivers is much larger
and is given by

'where C is the capacitive load, and V is the voltage
applied.

We will represent the constant of proportionality
between power dissipation and frequency as K. Usu
ally the power dissipation due to the drivers is much
1<;11'"0-01'" t11<;1Tl t110 nrnXT01'" ni<;l<;lin!'ltirm nllP t.fl t.np ~nift,..1...0 "'.L.a._L _ Y"""""_'" """ ... Io.JIoJ ... ,t"'_ _ --- "" _-- --.---

register array and hence, K = CV2.
Then if tH t 2 , t3 . . . tn are different time intervals in

which frequencies f17 f2' ... fn are applied to the chip,
the average power dissipation is given by

15.---" K tlfl +t2f2+ +"tnfn
~ u -- ~~ tl + t2 + + tn

The three different states of the CCD memory systems
will determine three different time intervals and three
different frequencies.

These are:

(1) Total time spent in refresh state (Tr) and
refresh frequency fro

(2) Total time spent in idle state (Ti) and idle
frequency fi.

(3) Total time spent in access state (Ta) and access
frequency fa.

Then the average power dissipation (Pd) is given by

Pd=KfrTr+fiTi +fa'l\
Tr+Ti+Ta

To determine the average values for the different times
we will consider a basic period as the time from the
beginning of one Refresh cycle to the beginning of the
next Refresh cycle. Then

- N r
Tr=f;

The remaining time in a cycle is the sum of the total
idle time and the total service time. Therefore

Ta+Ti=(t r- ~rr)

1\=(t r- ~rr) -1\

To determine the average total time spent in servicing
requests (1\) assume that in any given cycle there is
a possibility of maximum of s accesses. Then let

p (j) = probability that j accesses are made

(j=0, 1,2 ... s)

The average time spent when one access is made is

already determined and is given by ~~at and, therefore,

T ~. (.) 3N t
a= ~J P J -f-

j=O a

s

Let Q= Lj p(j)
j=O

Performance and Power Dissipation Analysis 385

Intuitively Q represents the average number of re
quests per period.

Then

and

T- - 3N tQ
a- o.c

"'.La

Adding the various terms and rearranging gives the
average power dissipation for mode 5 of operation as

j\=K{fi + Nr(l_ fi)+ 3Nt Q (1- fi)}
tr fr 2tr fa

This general analysis for average service time and
power dissipation can now be applied to each mode of
operation.

ANALYSIS OF DIFFERENT MODES

In this section we will analyze each mode of opera
tion. The service time and power dissipation equations
for the different modes derived from the analysis of
general Mode 5 are given in Table III. The graph in
Figure 5 denotes the average service time and power
dissipation for Mode 1 of operation and the graphs in
Figures 6 to 10 denote the percentage improvement in
average power dissipation and percentage degradation
in service time for Modes 2 to 5 over that of Mode 1
of operation.

Mode 1 will be the most usual mode of operation in
the near future. A plot of access frequency vs service

2000

1000 '\ 10.0

"- 0<>'

"- "'..'>,
~t 5.0

500 "- ...,'" ., ~...,

: "- (l,'" 3.0
.z. "-

<;.0';'

~
2.0 200 "-

~
"- 1.0 ..-f 100

t 80 ~~ II

~Q~ 11.1

0.5 50 ~~
"-

O.L

"
0.3

20 "- 0.2

0.1
10

8 10 0.1 V.<' 0.5 3

f a
(MHE)

Figure 5-Graph of service time and power dissipation vs. access
frequency for mode 1 of operation

CD

~
§

8
.:
~
+'

'" .~
'M

~
:<
° p..

386 National Computer Conference, 1976

i' ,
SERVICE TIME POWER DISSIPATION REMARKS I MODE I FREQUENCY 1

r-I~-~r", , r 2 2 1 -, -
I 1 I f' ~ f' '/·'t - t 3N;+ '7I\ +9Nt Nr ~ Kf I' Puwer Dissipation directly
j ·e=·r=L i 2f~ + 2tr 3f~ J a proportional to frequency

I ! I
;-.---t-----.--------------~----------------------__1

,i 2 ,I f J f 13N 1 {if H N2
} "5N N} K {fa + Nt: [1 _ ;:]} I V a r r I t r 7 t / t i ery little advantage over

1

-2f +-2t - + - - -fr I Mode 1 for both service time

I ~ =f' " ",2 ",2 f I 1- - , -. r - L a r or power dissipation
! a 1 r a I

,. 1 I : 1

~ = f.
r 1

I I

I
!J. If I f, a 1

If = f
! a r

!
I I ,

I ! ,
I 5 If /.f/f, a 1

I I i

I
!

I
1

I
I

I
I

Same as Mode 1

Seme as Mode 2

Values of fi=l to 3Mcycles/
sec. are advantageous from
both service time and power
dissipation considerations

For fi = 0 and a given value

of Q, the power dissipation
is constmt

}

For f, =0 and a given value

+ ~ ~ _ fi_t 3NtQ.~ _:-J ~f Q., 1 the power diSSipation
tr LL f;J 2trlL ~ 1S constant. No advantage

over Mode 4 unless f If due
to interface requirenents

T ABLE III-Service Time and Power Dissipation Equations for Different Modes of Operation

time is given in Figure 5. The dominating factor for
service time in the equation given in Table III is
3N t/2fa. At small values of access frequency (fa=
200KHz) the contribution due to the second term is
quite high (about 40 percent), whereas at moderate
values (fa = IMHz) it is about 10 percent and at high
values it is negligible (less than 1 percent). The second
term can be decreased by increasing t r. N r has no
appreciable influence on the service time. The power
dissipation is seen to be directly proportional to fre
quency.

Again, for Mode 2, the dominant term for service
time is 3N t/2fa. The power dissipation equation shown
in Table III has two terms. The first term is the same
as Mode 1 and the second term can be made negative
by making fa>fr.

Figure 6 shows the percentage improvement in
power dissipation and percentage degradation in ser
vice time over Mode 1 vs the access frequency for
different values of fro The results show that either the
degradation in service time is quite high or power
dissipation improvement is quite low. A similar analy
sis for various values of N r will show the same con
clusion. Therefore, this mode of operation has little

advantage over Mode 1. The service time equation for
Mode 3 is the same as that for Mode 2 but the power
dissipation equation is different.

Figure 7 shows the percentage improvement in
power dissipation and percentage degradation in ser
vice time vs the access frequency for various values of
Q. Service time is independent of Q but the improve
ment in power dissipation is reduced as Q increases.
The difference in P d improvement between the lowest
and the highest value of Q is quite small and is of the
order of 10 to 15 percent. Note that there is a rapid
improvement in power dissipation from 1 to 5MHz
and then the improvement tapers off. The worst case
service time degradation is about 8 percent. Therefore,
a good cut-off point for this mode of operation is
around 5MHz when the service time degradation is
about 5 percent.

The variation of percentage improvement in power
dissipation and degradation in service time vs the
access frequency for various values of fr is shown in
Figure 8. It shows that high values of fr are disadvan
tageous from both power dissipation and service time
point of view. Generally, this mode is better than
Mode 2 of operation.

']
~
n
'rl I
~
ctI
P,
·rl
Ol
Ol
·rl
A 6
H
Q)

~
0
/l.t

~
·rl 4
~
~
Qj

!B
P-
o
H

~
H

2

*
0

2

I
)J

____ Power Dissipation
_ - _ - - Service Time

Nt .. ~ 128

N = 64
r

t = 2.Omsec.
r

/"

/ /'
/"

/"
/'

/ -
5

fPc (MH:!:)

Performance and Power Dissipation Analysis 387

f = 1.0
r - ---

6 7 8 9

\CO f = 0.5 r

f = 2.Q
r

10

[

25

20

I

15

10

5

Figure 6---Percentage improvement in power dissipation and percentage degradation in service time vs access frequency for mode
2 of operation

In the Mode 4 of operation the average service time
equation is the same as Mode 1. Physically, this is
understandable due to two reasons: the idle frequency
moves the information bits without doing any useful
work and there is an equal probability of a service
request at any bit.

Power dissipation equation has two terms, one pro
portional to the frequency fi and the other a constant.
By making fi zero, and if the different parameters of
a chip (e.g. Na, tn etc.) are given, then power dissipa
tion is only dependent on Q and is independent of the
access frequency. Notice that increasing tr reduces the
power dissipation. This is again physically under
standable, since the chip will have to be refreshed less
regularly. The power dissipation also can be decreased
by decreasing N r or Nt. Notice that the second term
can never be negative. Therefore, the minimum value
of power dissipation occurs when fi=O. Because the
most interesting point is fi = 0, we will further analyze
this mode at this operating point. With fi = 0 the power
dissipation for Mode 4 and Mode 5 are the same.

Figure 9 shows the percentage improvement in

power dissipation and percentage degradation in ser
vice time vs the access frequency for various values of
Q for Modes 4 and 5. The percentage improvement in
power dissipation increases as access frequency in
creases. Increase in the value of Q decreases the
percentage power dissipation. For smaller values of
access frequency (fa = 1 to 3MHz) the slope of the
power dissipation curve is quite high (40) whereas at
higher values it is small (2). The power dissipation
improvement for values of fa greater than 3.5 to 4MHz
is marginal. Therefore, an optimal point of operation
is fa=3MHz for small values of Q and fa=4.5 to 5MHz
for large values of Q.

Finally, the following observations can be made:
(1) It is possible to operate a memory system at

the highest possible frequency with about 90
percent improvement in power dissipation over
Mode 1 of operation.

(2) It is advisable to make the time between re
freshing (tr) as large as possible both to de
crease the average power dissipation and service
time.

388 National Computer Conference, 1976

~
o
.r!
+'
til
Po

-rl
OJ
OJ
'r!
A

H
OJ
:s:
o
p.,

.9

l'el
l

120j

100

f30

60

________ ~Power Dissi?ation
- - - - - Service Time

Nt"" 128

N ~ 64
r

f1'= IMHz

\:.--= :?o msec.

r

Q=1

Q=10

--- ----. Service Time for all values of Q

O+-------~~----_.------_.r_------._------,_------_r------_,--------r_------,_------_r------~
o 1 2 3 4 5 6 7 8 9 10

f" (MHz)

20

18

Figure 7-Percentage improvement in power dissipation and percentage degradation in service time for various values of Q for
mode 3 of operation

140 / 1 0
/..."

__ Power dissipation / f = o. ~,
r

- - - Service Time /
120 Nt =128 /' 120

Service time gr~phs for f~ = 3.0, 5.0,
N = 64 Rnd 8.0 MHz are very near the ,,/

r
x-;-.x::'s to record. ,,/' Q = 8

~
100 t r = 2 msec. ,,/ OJ

0 100 S
-rl 'r!
+' f =0.2 8
CIl
Po r OJ
-rl 0
OJ

f r =0.5 'r!
OJ t .,;
A 80 f r =1.0 80

OJ

H
CI)

Ql ~
~ f r =2.0 'r!
0
p., ~

~
0
'r!

-rl
60 60

+'
+'

til
'"0

\:: til
CD H

Iii bO
OJ

> A
0 f r =5. 0 H ~

~ 40 40

~

- _ ~fr=O.5-

-20 -- 20

- -- f r =0.8

0 0

0 1 2 3 4 5 6 7 8 9 10

Figure 8-Percentage improvement in power dissipation and percentage degradation in service time vs access frequency for var
ious values of fT for mode 3 of operation

~

~ 60
p..

~
-rl

.p
@
!ii
> o
~

~
H

*-

40

20

___ --'Power Dissipation
- - - - - Service Time

.----------
/----

,/

Performance and Power Dissipation Analysis 389

--

Nt = 1?8

N!, = 1?8

tr = ?msec.

fr = lMHz

. e Time Mode 2-----SeI'Vl.C _-----
Service tL~e fo!' Mode 4 is
sa~e as that for Mode 1 and
therefore, there is no de
gradation in service time.

I

t22
20

:lp. ,--
6

2

8

(;

4

2

~
'rl
8

<g
·rl
>
~
Q)

Cfl

~
·rl

~
0

• .-l
.p
tV
'0
cO
~
bO
Q)

A

*-

O+-----~~----r_----_.------._----_r----~._----._----_,r_----,,----~--------~
o 1 2 3 5 6 7 8 9 10

Figure 9-Percentage improvement in power dissipation and percentage degradation in service time for mode 4 and mode 5 of
operation

(3) The interesting modes of operation are derived
by making idle frequency zero. This is intui
tively valid because moving the bits in a shift
register during idling does not have any advan
tage either from performance or from power
dissipation viewpoint.

COMPARISON OF DIFFERENT MODES

In this section we will compare the different modes
of operation. To make a comparison we will define a
figure of merit (Fgm) as the number of possible ser
vices per unit time per unit power dissipation.

~ _ 1
.... " gm -average service time x average power dissipation

Thus, a mode that has higher Fgm is better than one
that has a lower Fgm.

In Figure 10 we draw a graph of Fgm vs. Access
frequency for various modes. The typical values
chosen for N b N nand tr are 128, 64 and 2msec. The
Refresh frequency, whenever it is different from Ac
cess frequency is chosen as 1MHz. The Mode 1 and
Mode 2 are independent of Q, whereas Modes 3, 4, and
5 are dependent on Q and, therefore, graphs are drawn
for various values of Q.

Mode 2 has the worst Fgm for all access frequencies
and, therefore, is the worst mode of operation. Mode
1 has a typical Fgm of about 5 and is constant over
all frequencies. For values of fa> 1MHz Modes 3 and
4 and Mode 5 are better than Mode 1 for all values of
Q up to 10. For f a=lMHz and values of Q=1,5, Mode
1 of operation is better than Mode 3. Also, for Q= 10
Mode 1 is better than Mode 4 or Mode 5. But notice
that for Q= 10 Mode 3 is the best mode of operation
for small values of fa. At higher values of fa Mode 4
is the best mode, closely followed by Mode 5 for all
values of Q. The Fgm for Modes 3, 4 and 5 is reduced
as Q increases. The reduction for Modes 4 and 5 is
much higher than that for Mode 3.

Table IV lists the various modes and a qualitative
comparison of these modes with respect to control
complexity and cost of design.

CONCLUSIONS

Memory systems built with CCD's are shown to have
three states of operation: The Access state, Refresh
state and Idle state and each state has a frequency
associated with it. Three different modes of operation
are defined and average service time and average

390 National Computer Conference, 1976

MODE

I

2

3

4

5

j
i
:B
~

~
+'

{
I
'H
0

i
~

'" :>:
<.;
0

'"
~

~o~
~oj

100

80

60

50

ll()

1\=128

N",= 64

f",=l.MHz

Mode 4, Q=l

. de 5, Q=l

Mode 1 and ~de 2 are
independent of Q

10

Figure lO-Figure of merit vs access frequency for various
modes of operation

TABLE IV-A Qualitative Comparison of Different Modes of Operation

lITn 0? ':!..0C'!<':9 (" 1"'1'1\ lI1'P ('\T 1
REQUIRED COMPLEXITY cos'r OF DESIGN RE1ARKS

I Minimum Minimum Simplest mode of operation

Moderate
2 Moderately Low Lower than Mode 4 Worst mode of operation

if f. ~ 0
~

2 Moderately High Moderate For small f (f <lMHz) •
A good modeaof aoperation

2 if fi ~ 0 High if fi ~ 0 For f) OOz the best a
1 if f. = 0 Low if f.

~ ~
= 0 Low if f. = 0 mode of operation

~

3 if f. ~ 0 Best mode of operRtion
~ Maximum Maximum except for mode 4

2 if f. = 0
1.

power dissipation equations for a general case of op
eration are derived. Equations for each mode are then
derived as a limiting case of these general equations.
The different modes are analyzed individually and,
finally, a comparison between the different modes is
made by defining a figure of merit. An interesting
result derived is that the power dissipation is constant
and is independent of Access frequency for Modes 3
and 4 when they are operated with fi = o. Mode 4 is
shown to be the best mode of operation. A simple
qualitative comparison is finally made for the cost of
implementation.

ACKNOWLEDGMENT

I would like to thank Dr. Bob Woo for extensive dis
cussions during the development of this work, Mr.
Paul White for comments that improved the quality
of the paper, and Marie Golden for typing this paper.

Performance and Power Dissipation Analysis 391

REFERENCES

1. Amelio, G. F., "Charge Coupled Devices for Memory Appli
cations," AFIPS Conference Proceedings, Vol. 44, May 1975,
pp. 515-522.

2. Carnes, J. E. and W. F. Kosonocky, "Charge Coupled De
vices for Computer Memories/; AFIPS Conference Pro
ceedings, Vol. 43, May 1974, p. 833.

3. Collins, D. R., J. B. Barton, D. C. Buss, A. R. Kinetz, S. E.
Schroeder, "CCD Memory Options," 1973 IEEE Solid-State
Circuits Conference, p. 136.

4. rvIartil1, R. R. and H. D. Frankel, "Electronic Disks in the
1980's," Computer, February 1975, p. 28.

5. Morton, J. A., "Strategy for Memory System Technology,"
IEEE Transactions on Magnetics, September 1971, pp. 333-
336.

6. French, B. T., "Designers Guide to Charge Coupled De
vices," EDN, Jan. 20, 1972, pp. 34-38.

7. R. Papenberg, Applications Using Intel's 2416 16K Charge
Coupled Device, Application Notes, Intel Corporation, 3065
Bowers Avenue, Santa Clara, Calif. 95051.

8. Intel 16,384 Bit CCD Serial Memory, Specification Sheet,
Intel Corporation, 3065 Bowers Avenue, Santa Clara, Cali
fornia 95051.

Intelligent memory

by MURRAY EDELBERG and L. ROBERT SCHISSLER
Sperry Research Cenier
Sudbury, Massachusetts

ABSTRACT

The intelHgent memory is a computer memory formed
of circulating serial storage loops and distributed pro
cessing logic. In addition to the basic information
storage function, the memory performs off-line sort
processing, associative searching, updating and re
trieval. The memory is also capable of dynamically
varying its loop size to accommodate varying data re
quirements.

A number of memory configurations which trade
performance for economy are possible. The options
range from single record per loop and on-chip logic
(aimed at CCD technology) to multiple records per
loop and off-chip logic (aimed at magnetic bubble
memories). The latter option is made possible by a
new sort algorithm named "gyro sort" in which loop
contents are caused to "precess" at appropriate
intervals.

As one component of a storage hierarchy, the intelli
gent memory offers potential performance gains rang
ing from one to three orders of magnitude over random
access memories at comparable cost.

STRUCTURE

The memory contains one or more identical modules.
Figure 1 gives a block diagram of such a module, in
cluding n~2 storage loops labeled LH L2 , ••• ,Ln and n
processing elements labeled PEu PE 2, ••• ,PEn, where n
is even. Each storage loop is a circulating shift
register. All storage loops are shifted synchronously
using a common clock. Processing element PE i is inci
dent with storage loops Li and L i +1.

There are two loop connection states possible within
a processing element. Referring to Figure 2, the loop
connection state indicated by the solid lines within
processing element PEl is the thru state and isolates
storage loop LI and L 2 • The dashed lines indicate the
interchange state which, if held for one complete rota
tion of loops Ll and L~, effects an interchange of the
contents of these loops. The interchange connection, if
held indefinitely, effectively joins the two incident loops
into a single loop of double length. By causing k-1

393

oJ Cp.-
o I-cz:

zcz: ~2 -I-
~! r---.
uu

1
v
I
I
I

L,

,--------------

p.-

~oJ
g~
<I-
~!
IIlU

III
UI

~
III
cz:

•
• •

oJ
0

zcz:

~§
uu

1 1
~ :w: cz:

Cp.- S III

I-cz: oJ ~ i§2 U

Figure l-Intelligent memory module block diagram

contiguous processing elements to hold the interchange
connection, a storage loop of size k times the basic loop
size is formed.

A processing element is inactive if it is simply main
taining the interchange connection indefinitely and
active otherwise. The pattern of active (denoted A)
and inactive (denoted I) PEs is restricted to be of the
form:

II ... I A II ... I A II ... I A --- ---k-l k-l k=l"'

394 National Computer Conference, 1976

~ L,)

c;- L2

~ L3

~ L4

~ lti

•
•
•

Figure 2-Loop connection states

Active PEs fan into two phases: the odd phase con
sists of the 1st, 3rd, 5th, . . . active PEs and the even
phase contains those remaining.

Figure 1 shows distribution of control signals to PEs
within a module via chain control lines (shown dashed)
and broadcast control lines. Broadcast control lines
send the same information to all PEs; chain control
lines send information which may be modified by PEi
before being passed on to PE j+1 • Activity status is as
signed to PEs via chain control lines. Certain broad
cast control signals are made operative only at active
PEs. Moreover, broadcast control signals designated
odd (even) are made operative only at active PEs be
longing to the odd (even) phase. A response line ORs
together responses from all active PEs in the module.
When two or more modules are used in a memory sys
tem, identical broadcast control signals are presented
tv t:a.di, uiHl J. t'::::.PUW,t; :::..i.gHal:::, hum ~adl al'~ OR 'eli 1,0-

gether. Modules are connected in series with respect
to their chain control lines and data ports; special
terminations at the extremes are required.

Table I lists broadcast control modes. Table II lists
individual broadcast control, chain control and re
sponse signals at the module level.

Figure 3 shows a block diagram of the general pro
cessing element PEj. Signals internal to PEi are identi
fied in Table III.

TABLE I-Broadcast Control Modes

SORT <

SORT >
SEARCH

I SEARCH, >J
I

SSARCH <
UPDA.TE

I IILE

~!E

Ai-1

KFE ---.I
KFO ACTIVITY

80 PHASE

KTUE CONTROL

KTUO ~------..---A;

Rl

Xi Vj

MODE {

Xi+1 Vi+l

L-__________________ --.Rj

SS

SSj_1 1--------------------- SSj
STATIC

NR RETRIEVAL
CONTROL

DSA

Figure 3-Processing element PEl block diagram

In Figure 3, inputs from (outputs to) loops Lj and
Li+l are labeled Xb Xi+! (Yb Yi+l) respectively. Four main
components of PEi are shown: loop control (maintains
appropriate loop connection state between loops Li
and Li~l), activity and phase control (maintains ac
tivity status and computes phase for PE i), static re
trieval control (determines whether PEt is a first re
sponder during search operations) , and the comparator
(performs serial comparison and computes internal
control signals).

We estimate PE complexity using MOS logic to be
roughly 100 FETs.

TABLE II-Module-Level Signals

BROAOCAST . CONTROL I

KFE KEY FIELD - EVEN
KFO KEY FIELD - ODD

KTUE
KTUO

KEY, TAG, UFDA TE - EVEN
KEY, TAG, UPDATE - 000

KItE (Assumes one of the eight
states listed in Table 1)

NR NEXT RESPONSE

DSR DISABLE STATIC RETRIEVAL

CHAIN CONTROL I

Ao ' An PE ACTIVATION

SSo' SSn SUCCESSFUL SEARCH

RESPONSE

R SEARCH RESPONSE,
SORT COMPLETION

ER
RC

RL

TABLE III-Internal FE Signals

~YF~D I
KEY, TAG, UPDATE

=~ ~ } STORACC LOOP Li

SEARCH SUCCESSFUL
INTERaiANGE
REPLACEMENT FIELD
REPLACBSIT DATA

FEi AlilIVE

SUCCESSFUL SEARCH BY PEj'
FOR SOME j ~ i

ENABLE RESPONSE
RESET COMPARATOR

RECONFIGURE LOOPS

OPERATION

The intelligent memory provides six primary modes
of operation: sort, load/unload, search, retrieve, up
date and reconfigure. These are described below; per
formance expressions are given with respect to the fol
lowing memory parameters:

Loop Size
One Bit Transfer Time
Loop Cycle Time
Number of Loops

bits
t sec.

r=lt sec.
n

In the paragraphs below, reference is made to sig
nals KFE, KFO, KTUE, and KTUO. Signals KFE
(Key Field-Even) and KFO (Key Field-Odd) define the
bit positions on which a sort or search is to be made
or which are to be updated. There are two such signals
because PEs always are divided into two groups or
phases, even and odd, which receive any specified group
of bits at times separated by half a loop rotation. Sig
nals KTUE (Key, Tag, Update-Even) and KTUO
(Key, Tag, Update-Odd) must also be divided into two
phases. These signals have multiple uses. During a
sort, they are not used; during a search, the part of
KTU gated by KF provides the search key, and any
"ones" in KTU outside of KF define a tag field, in
which the result of the search (signal SS-Search Suc
cessful) is deposited. During an update, KTU supplies
the update data.

Sort

In sort operation, control inputs to the memory con
sist of sort key field definition signals KFE and KFO,
and broadcast control mode signal equal to SORT<, or
SORT>. These control inputs are generated by a
memory controller (not described in this paper). The
externally specified sort key field may consist of any

Intelligent Memory 395

contiguous block of 1 to l bit positions. The operation
of an active processing element PEi during one com
plete cycle of its incident loops Li and Li+1 is as follows.
The cycle begins when the key field portions of the data
records (stored one record per loop) enter PEb high
order bits first. As long as the two bit streams remain
equal, PEi maintains the thru connection state. The
first mixed pair of bits causes PEi to assume either the
thru state or the interchange state, whichever routes
the 0 bit to Li if SORT< is specified, or to Li+! if
C'tn.T>rn~ , ________ ,.t!_.l __ .l -l- _ __ !_-l-_!_ -l-1..._-l- _____ ~-l-! __
~vn,.l -> 11:) I:)IJt:l;Hlt:U, <:I.11U LV 111<:1.111L<:I.111 L11<:1.L "':;Ul111t::"':;L.lUH

state for the remainder of the cycle. Equal key fields
cause PEi to maintain the thru connection for the full
rotation. At a given instant of time during the sort, a
data record may be distributed over as many as three
contiguous loops. The memory (!orrectly performs a
stable sort of its contents on the specified key field,
either ascending or descending, and provides a done
signal at output R upon completion. Maximum sort
time is nr/2 sec. Multiple key and non-contiguous key
sorts are performed by repetition of the basic single
key stable sort.

The algorithm underlying sort operations of the
memory is a circulating, interleaved version of a sort
ing network construction known as odd-even trans
position sort (see Knuth! for a description).

Load/unload

To load a file into the memory, one of the two data
ports is chosen as load port; the other is appropriately
shorted. The memory is cleared. Memory loading is
accomplished by invoking the appropriate sort opera
tion with a key field spanning any data field known to
be non-zero (perhaps the entire record). The file is
presented serially at the input terminal of the load
port.

Memory unloading is performed is a similar manner.
An appropriate constant, 0 or 1, is presented at the in
put terminal of the unload port, a sort operation is ini
tiated, and the file appears serially at the output
terminal.

Loading or unloading the full memory requires nr
sec. Concurrent loading and unloading is possible
whenever the load file has a data field whose values are
uniformly less than (or greater than) the values as
sumed by the corresponding data field in the unload file.
This condition may be enforced by dedicating a single
bit in each file to this purpose. Concurrent load/unload
of the full memory requires nr sec.

Time to load and/or unload may be further reduced
by partitioning the memory into a number of segments
and loading (unloading) the segments in parallel from
the same number of data sources (sinks).

Search

In search operation, control inputs to the memory
consist of search key field definition signals KFE and

396 National Computer Conference, 1976

KFO, search key signals KTUE and KTUO, and broad
cast mode signal equal to SEARCH =, SEARCH <, or
SEARCH>. The externally specified search key field
may consist of any contiguous block of 1 to l bit posi
tions. The operation of an active processing elenlent
PE i during one complete cycle of its incident loop Li
is as follows. PE i compares the data on Li to the key on
line KTU during the interval defined by KF, and classi
fies the data according to whether it is =, < or > the
key. The classification is registered via the internal
state of the comparator (see Figure 3). If this classi
fication agrees with the broadest control mode, signal
SS is raised. In either case, after KF drops, SS may
be written into loop Li as a response or tag bit in any
field specified by KTU. Average search time is 3r/2
sec., including writing the response bit.

By invo.king appropriate sequences of search opera
tions, compound and multiple key searches can be per
formed. For example, three search operations imple
ment a "between-limits" search. The search operations
provided form a functionally complete set. If S1 and
S2 are any two search operations or sequences of search
operations that can be performed by the memory, and
if t1 and t2 are the corresponding response bits, then
logical operators - (NOT), 1\ (AND), and V (OR)
applied to S1 and S2 may be implemented by secondary
search operations as follows:

SJI\S~ tJt2='11'
S1 VS2 t1t2>'OO'

- S1 t 1 ='O'

Direct hardware interpretation of complex data base
queries is an important potential application.

Retrieval

There are two classes of retrieval problems to con
sider: unique response retrieval and multiple response
retrieval. In the former case, responding records, if
they exist, are known to be unique; in the latter case
they need not be.

Unique response retrieval

Immediately following a successful search the re
sponding record is routed directly and persistently to
memory output R. Total average response time is
3r/2 sec.

Multiple response retrieval

The memory provides two options for retrievals in
this class.

Static retrieval

The name of this option reflects the fact that no
inter-loop data movement is involved. After a suitable

waiting period T following a search operation, the
output ER of the static retrieval control (see Figure 3)
is equal to 1 for at most one processing element PE i • If
such a PE i exists, it is the processing element having
smallest index among those performing a successful
search. The responding record on loop Li is routed
persistently to memory output R. The waiting period
T must be at least as large as the time for a signal to
propagate asynchronously through the full chain of
static retrieval controls, conservatively taken to be
nt sec. Total response time is 3r/2+nt+r=nt+5r/2
sec. Retrieval of successive responses is triggered by
pulsing the NR input.

Static retrieval response time can be substantially
reduced by segmenting the memory at retrieval time
and polling the memory segments for a response. In
this case, total response time for the first retrieval is
approximately nt/s+5r/2 sec., where s is the number
of equal-length memory segments. This is minimized
by choosing s= \/n.

Dynamic retrieval

A sort operation is invoked following a search opera
tion, using the search response bit as sort key. One of
the two memory data ports is chosen a priori as the re
trieval port, and the appropriate sort operation is used
to drive responding records to the output terminal at
this retrieval port. Minor additional logic at the re
trieval port allows resetting the response bit in a re
sponding record as it arrives at the output terminal,
and reloading the modified record via the input termi
nal at that same retrieval port. This assures that all
responding records will be both retrieved and pre
served within the memory for subsequent operations.
A "',cragc total l"eSpOnse tinlt: for the .lil':::;i, l'eLl'ievai is
approximately nr/4 sec.

As in the static case, response time for dynamic re
trieval can be shortened by segmenting the memory at
retrieval time.

Update

A replacement update may be performed in parallel
on all records responding to any sequence S of one or
more search operations and tagged, say in bit t. A
search operation for t='l' is performed in order to
cause the appropriate comparators to assume the
= state. This is followed by a mode transition to UP
DATE. The update itself is broadcast on lines KTUE
and KTUO, along with update field information on
lines KFE and KFO. A verage total update time is
5r/2 sec.

Reconfigure

In a reconfigure operation the "shape" of the mem
ory is transformed to accommodate various record

sizes. With n basic storage loops of size l bits, recon
figuration to n/k loops of size kl bits for any k, l::;k::;n,
is possible. The activity and phase control (see Fig
ure 3) implements this structural change to the mem
ory. Sort, load/unload, search, retrieve and update
operations apply to all memory shapes.

PACKED-LOOP VERSION

As originally concei~led, the memory stores one data
record per loop, and is capable of dynamically altering
its loop size to accommodate varying record length re
quirements.

There are cost and technology dependent reasons
why alternatives to short (e.g., 32 character) storage
loops and on-chip processing elements (PEs) are of
interest. For example, while on-chip logic is reason
able for CCD memories, it does not appear feasible
for magnetic bubble memories at present. Off-chip
logic implies long storage loops in order to maintain
reasonable pin counts. Also, longer storage loops imply
lower ratios of PE chip area to storage loop area and
thus lower memory system cost per bit.

Extension of the intelligent memory architecture to
accommodate long loops into which multiple data
records are packed is straightforward, except for the
sort mode of operation which presents a problem. A
new sort algorithm named "gyro sort" was conceived
to solve this problem.

Gyro sort

Suppose we have k~ 1 records per loop and m> 1
loops (see Figure 4) for a total of n = mk records. ~t
rij denote the jth record on loop i, and let R= [rij] be
the m x k matrix representation of the memory
contents.

J
~l

k RECORDS
PER LOOP

~

R~

I"
'12 .

"k l
! rj ~
I

ri2 rik

I
i'm1

i
'm2 'm~

~ ' ___ CIRCULATION

1.1 MEMORY CONTENTS 'h! MATRIX REPRESENTATION

Figure 4-Packed-loop memory

Intelligent Memory 397

One pass of gyro sort consists of the following two
steps:

(1) sort columns
sort the columns of R, say in increasing order
from top to bottom

(2) precess rows

for i = 1,2, ... ,m, apply a circular (say right)
shift of (i -1) mod k record positions to row i

Figure 5 illustrates the idea of row preCession in step
(2). In Figure 5 (a) we are looking down on a stack
of m = 7 loops, each divided into k = 5 record areas.
The top loop is outermost. The numbered circles
identify record areas. Figure 5 (b) shows the re
arrangement of record areas performed by the row
precession. The dotted line shows the spiral move
ment followed by record area 1. This movement, super
imposed on the loop rotation movement, motivated our
choice of the terms "precession" and "gyro" sort.

We further illustrate gyro sort with a numerical
example in matrix form. In this small example, m = 6,
k=3, and records consist of a single integer. Matrix
R2 below results from matrix Ro after one pass of gyro
sort. Matrix Rl results from step (1) and R2 from
step (2).

r
8 3

1,,..1 9
,... 14

118 1

l~l r ~
~ 10

7 II Ii

llO 17
16 4

13J l16
15 18

1
3
4
9

14
17

n r;
12 1111

13J l13
15 17

1
8
7
9

16
15
R2

Jl
121
14J
18

Step (1) may be accompiished for general records
by the odd-even transposition sort algorithm as pro
vided in the basic intelligent memory architecture.
This is subject to a restriction on sort key field position
and is discussed further in a later section. The column
sort proceeds in parallel on all columns, and requires at
most m/2loop rotations to complete. Step (2) requires
a modest amount of additional "precessing logic" and
takes one loop rotation to complete if loops can be in
dependently clocked, and several loop rotations other
wise.

Gyro sort consists of k such passes, after which the
contents of row i are the records which form the ith
block of k records in the final ordered file. Thus a sort
of the file into buckets of size k records has been ac
complished. There is no particular ordering among
the row i records.

Continuing with the example, the second pass yields:

r i 1 2 4 1 2
7 3 3 5 7
8 10 8 10 6

III 9 12 11 9 12
13 15 14 14 13 15
17 16 18 16 18 17

R3 R4

398 National Computer Conference; 1976

'II

Ibl

Figure 5-Loop precession

On the third pass we obtain:

3
4
8

11
14
16

1
5
9

10
13
18
R;;

2
6
7

12
15
17

as claimed. That is, the first three records occupy
row 1, the next three row 2, and so on.

We have proven that this claim is true in general.

Precession subsystem

Storage loop contents circulate under control of a
loop clock. We distinguish between two types of loop
clocking:

(a) Differential loop clocking-the clock signal may
be selectively applied to some loops and not to
others.

(b) Uniform loop clocking-the clock is applied uni
formly to all loops.

Differential loop clocking is feasible in some tech
nologies, e.g., CCD memories, and not in others, e.g.,
magnetic bubble memories. In the latter case, a rotat
ing magnetic field is typically used to perform uniform
loop clocking.

Figure 6 shows the block diagram of a loop preces
sion subsystem. Three elements are represented in
Figure 6: a collection of m storage loops LUL2" .. ,Lm,
a precession register, and a precession control.

Figure 7 illustrates successive states of the preces
sion register for m = 12 and a loop packing factor of 5.
For each state of the precession register, storage loops
Li for which Zi = 1 are advanced one record position
relative to storage loops Lj for which Zj = O.

In the case of differential loop clocking, this is ac
complished simply by using Zi to gate the loop Li clock
signal. This is done by precession control cell L

Figure 8 illustrates precession control cell i for the
case of uniform loop clocking, Le., all storage loops
are clocked uniformly. In this case, storage loop Li is
comprised of two sub-loops, the main loop and the
auxiliary loop. Total capacity of loop Li is l bytes;
this is apportioned into l-o bytes for the main loop and
o bytes for the auxiliary loop, where l is an integer
multiple of o.

Precession control is effected by a 2-input, 2-output
loop switch at the junction of the main and auxiliary
loops which either isolates these sub-loops as in Fig
ures 8 (a) and (b) or interconnects them as in Figures
8 (c) and (d).

The state of the loop switch in precession control
cell i is determined by the logical expression p. Zi as
indicated in Figure 8. When the memory is in preces
sion mode (P=I) the loop switch assumes the isolate
state when Zi = 1 and the interconnect state when Zi = O.
A~ all u~her times (P = 0) the loop switch mamtams
the interconnect state.

IULCI

Y
I

LI~
L2C:::>
L3 c:=::::>

/
STORAGE •
LOOI'S

~~~ = ~~~~:N~:;:; ~~~LOCK} ~~~::T 
PRC - PRECESSION REGISTER CLOCK 
PRDI'fII - PROPAGATE ZEROS 
COMP - COMPLEMENT PRECESSION REGISTER 

'" PRECESSION 
REGISTER 

Figure 6-Loop precession subsystem block diagram 



z, ~ Z3 Z. Zs Ze Z7 Ze Ze Zeo Z. ZI2 

10 0 0 , I 
10 0 0 0 0 01 

io 0 0 0 0 0 G 01 
10 0 0 0 0 0 0 0 0 01 

I' 0 0 0 0 0 0 0 0 01 

10 0 0 , I 

Figure 7-Precession register states k=5, m=12 

Figure 8 illustrates the phase difference introduced 
in precession mode between a loop for which p. Zi = 1, 
(a) and (b), and a loop for which p·Zi=O, (c) and 
(d), during a time interval (l-8)t, where t is the one
byte shift time (in sec.). The triangular marker in 
Figure 8 points to an arbitrary but fixed reference 
position relative to the loop contents. The reference 
position at time 0 is shown in (a) and (c), and at time 
(l-8)t in (b) and (d). A phase difference of S bytes 
has been introduced. 

In (b) the auxiliary loop contents occupy the same 
position relative to the main loop contents as in (a). 
A transition to Zi=O at time (l-8)t will terminate the 
differential phasing while preserving the original or
dering of stored data. If Zi is held at 1 for an integral 
number (say s) of time intervals, each of length (l-S)t, 
then a total phase differential of So is introduced in loop 
Li with respect to a loop L j for which Zj = 0 over that 
time interval. 

MAIN LOOP 

~Xlll""YlOOP (v·oz;·,Oo 
(a) (b) 

(0 p·Z j "0 5 
(e) (d) 

TIME = 0 TIME'" (II -6) t 

LOOP SIZES (BYTES) : 

MAIN LOOP Q - 8} 
AUXILIARY LOOP 8 Q IS A MULTIPLE OF 6 

Figure 8-Loop L\ precession control uniform loop clocking 

Intelligent Memory 399 

Operation 

The same processing element may be used in both the 
packed-loop and single-record-per-Ioop memories. This 
imposes several restrictions on the operation of the 
packed-loop version vis-a-vis the single-record-per-Ioop 
version. The restrictions may be removed at the ex
pense of increasing PE complexity. 

In particular, for packed-loop operation, there is no 
provision for internal memory within each PE to store 
the current record packing factor k and separate status 
information about each of k records. Thus, PE actions 
such as interchanging records, or depositing a tag bit 
or posting an update following a successful search 
operation must be completed during one record in
terval, and not deferred to the next loop rotation. For 
sorting, this means the sort key field must occur at the 
head of the record. It may be of any length, however, 
up to the full record length. For searching, response 
bits cannot be written ahead of the search key area. 

Concerning performance, with a record packing fac
tor of k, gyro sort takes roughly k times longer than 
with one record per loop; but uses fewer processing ele
ments by a factor of k. A similar tradeoff applies to 
packed-loop memory search and update operations. 

Cost comparison 

We assess the cost attainable with the packed-loop 
intelligent memory as compared with single-record
per-loop. Again we assume n=mk records, m loops, 
and k records per loop. We let q be the record size in 
bytes and 1 = kq be the loop size in bytes. 

Suppose we let as denote the chip area (say in nano
acres) for one byte of storage and a p the chip area for 
one processing element (PE). Then the total chip area 
for the packed-loop case is 

nqas+map. 

The PE-overhead, defined as the ratio of total PE area 
to total storage area is 

1 ap 

k qas " 

For the one-record-per-Ioop organization, total chip 
area is 

nqas+nap • 

This assumes that ap is the same in both cases. 
PE-overhead is 

~ 
qas 

Thus the packed-loop organization cuts overhead by a 
factor of k, and reduces total chip area. 

We define the PE-complexity a. as follows: 

ap=a."as. 

Thus a PE requires chip area equal to that of a. bytes 
of storage. Then the ratio of one-record to multiple
record total chip areas is: 



400 National Computer Conference, 1976 

nqas + nlXas q + IX 

n IX 
nqas + l{lXas q + k 

The PE-complexity r.£ is fixed by the PE design and 
the technology used. A conservative estimate for IX 

using CCD technology is 18.75 (equivalent to 150 bits 
of storage). Figure 9 is a plot of cost ratio (one-record
per-loop to multiple-record-per-Ioop) as a function of 
the record length q and the packing factor k, using 
IX= 18.75. Figure 10 is a similar plot, using IX= 187.5 as 
a representative figure for off-chip MOS PEs and mag
netic bubble storage. 

SUMMARY 

We have described the structure and operation of an 
intelligent memory subsystem which combines the 
economy of new serial storage technology with the 
performance of highly parallel execution of data pro
cessing primitives. For a CCD/MOS realization with 
fundamental loops of size 256 bits, we estimate sub
system cost at 0.5¢ per bit; performance figures are 
given below, alongside rough comparable estimates for 
a single CPU and RAM. A memory-resident file of 
32,000 32-character records is assumed in both cases. 
A 10 MHz shift rate is assumed for the intelligent 
memory; a 1 t-ts. cycle time is assumed for the CPU
RAM. 

LOAD/UNLOAD 
SORT 
SEARCH 

Intelligent 
Memory 

1 s. 
CPU-RAM 

SEARCH AND RETRIEVE 
SEARCH AND UPDATE 
RECONFIGURE 

0.5 s 
40 t-tS. 

100 t-tS. 
65t-ts. 
4ms. 

1 s. 
15 s. 
75ms. 
75ms. 
75ms. 

S 
a: 
§ 
a: 
III 

~ 
~ 
..I 
;:) 
::& 

4 

Q 3 
II: o 
CJ 
III 
II: 
III 
..I 
o 
Z 
~ 
o 
~ 
c:( 
II: 
l-

S 

2 

k .. RECORD PACKING FACTOR 

0:'"18.75 

k = , 

4 8 16 32 84 128 256 512 1024 

RECORD LENGTH q (BYTES) 

Figure 9 

S 
II: 

8 
III 
II: 
III 
..I 
1:1. 

~ 
-..I 
::J 
::& 
Q 
II: 

8 
III 
II: 
III 
..I 
o 
Z 
§ 
o 
~ 
c:( 
II: 

~ 
U 

l\' 
7 

6 

5 

4 

3 

k=2 

\ 

k- RECORD 
PACKING 
FACTOR 

/ 2r---__ 

I k=l 

4 8 16 32 64 128 256 512 1024 

RECORD LENGTH q (BYTES) 

Figure 10 

We have shown how performance can be traded for 
economy by extending the memory architecture to ac
commodate packed-loop operation. This is aimed at 
realizations using long storage loops in which lower 
subsystem cost (we estimate 0.05¢ per bit for magnetic 
bubble storage and off-chip MOS PEs) may make large 
capacity intelligent storage subsystems feasible for 
future data-oriented computer systems. 

ACKNOWLEDGMENT 

The authors would like to acknowledge the contribu
tions of T. Bonn to this work. The idea of extending 
the intelligent memory to operate with multiple data 
records per loop, and the idea of precessing loops as 
part of a packed-loop sort strategy are due to him. 

REFERENCE 

1. Knuth, D. E., "Sorting and Searching" The A?·t of Com
puter Programming, Vol. 3, Addison-\Yesley, 1973. 



Approaches to computer reliability-Then and now* 

by ALGIRDAS A VIZIENIS 
University of California 
Los Angeles, California 

To the ingenious designers and programmers 
of the first generation 
Who made their machines work in spite of 
most contrary components 
And inspired their successors to continue 
striving for reliable computing 

ABSTRACT 

Approaches to the attainment of reliable computer 
operation are considered in this paper. The goal is to 
assure correct execution of programs using less than 
perfect components. The discussion includes design 
methodology, fault classification, redundancy tech
niques, reliability modeling and prediction, and ex
amples of fault-tolerant computers. The last section 
identifies some relationships between reliability meth
ods for hardware and for software. 

HISTORICAL PERSPECTIVE 

The problem of reliability has confronted both the 
designers and the users of computing systems since 
the building of the first computers in the 1940's. First
generation digital computers used large numbers of 
vacuum tubes, relays, and other electromechanical de
vices which were notably failure-prone. Various 
methods of failure detection and recovery were in
corporated in the hardware of these machines. For 
example, duplicate arithmetic-logic units were used in 
the EDVAC and UNIVAC computers; various error
detecting codes were used in many others, including 
RAYDAC, IBM 650, NORC, etc.1 

The advent of transistor technology in the second 
generation led to a very large improvement in com
ponent reliability. This improvement, in turn, led to a 
deemphasis of failure detection techniques in the hard
ware. The remaining exceptions were parity checking 
and related techniques in storage and I/O equipment. 
All failures, however, were not eliminated, and the 
absence of hardware checking led to the rapid develop-

* This work was supported by the National Science Foundation, 
Grant No. DCR 72-03633 A03 

401 

ment and extensive use of diagnostic programs. The 
diagnostics were employed to perform periodic check
outs of computers and to assist maintenance specialists 
by identifying failed parts during repairs. Widespread 
use of diagnostics began in the late 1950's and has con
tinued into the present, with microdiagnosis largely 
superseding diagnosis in the middle to late 1960's. 

Diagnosis-aided manual repair, however, proved in 
many cases to be an insufficient solution because of at 
least three reasons: (1) the unacceptability of the de
lays and interruptions of real-time programs caused by 
manual repair action; (2) the inaccessibility of some 
systems to manual repair; and (3) the excessively high 
cost of lost time and of maintenance in many instal
lations. 

Since the early 1960's the scope of computer applica
tions has steadily expanded, encompassing numerous 
areas of critical importance. These applications in
clude real-time control of communication and trans
portation systems, manned space flights, automated 
factories and power plants. At the present, use of com
puters is being considered for the monitoring of criti
cally ill patients in hospitals. The reliability require
ments for computers in such applications far exceed 
the requirements established for the computing systems 
of the 1950's and 1960's. The expected great benefits of 
computer use are balanced against the potentially 
disastrous costs of their failure. 

Another relevant development of the past decade 
has been the wide distribution of computing systems 
throughout the entire planet and their use in space. In
stead of being concentrated in a limited number of 
population centers, computers are now performing im
portant, and even critical tasks in many locations that 
are remote from the service and repair facilities and 
personnel. Computers have been employed in space 



402 National Computer Conference, 1976 

vehicles orbiting the Earth and the Moon, or traveling 
to the other planets of the solar system. In these ap
plications fully automatic detection of faults, program 
restart, and self-repair are either absolute require
ments, or economic necessities in order to provide re
liable computing at an acceptable cost or risk to the 
user. 

In the most general sense, reliable computing means 
"the correct execution of a specified set of algorithms", 
and encompasses all the following elements: 

--correctness and completeness of software specifi-
cations; 

-testing and verification (proofs) of programs; 
-elimination of hardware design errors; 
--continued correct execution of programs and pro-

tection of data in the presence of hardware 
failures; 

-protection of the computing system against error
induced disruption or deliberate invasion of pro
grams and data. 

Attempts to meet the requirement for reliable comput
ing, especially when external assistance by mainte
nance specialists is too slow, too costly, or not available, 
have utilized the two complementary approaches of 
fault-intolerance and fault-tolerance. 2 These ap
proaches are applicable to all parts of the computing 
system, including its hardware elements, micropro
grams, system programs, and user programs. 

In the "fault-intolerance" approach the reliability 
of computing is assured by a priori elimination of the 
causes of unreliability, i.e., of faults. This elimination 
takes place before the normal computing process, and 
the resources that are allocated to attain reliability are 
spent on perfecting the system prior to its field use. 
Since in practice it has not been possIble to assure com
plete a priori elimination of all causes of unreliability, 
the goal of fault-intolerance is to reduce the unreliabil
ity (expressed as the probability of system failure over 
the duration of the specified computing process) or the 
unavailability to an acceptably low value. To supple
ment this approach, manual maintenance procedures 
must be devised which return the system to an operat
ing condition after a failure. The cost of providing 
readily available maintenance and the cost of the dis
ruption and delay in the computing process also are 
parts of the overall cost of using the fault-intolerance 
approach. 

In the "fault-tolerance" approach the reliability of 
computing is assured by the use of protective redun
dancy. The causes of unreliability are expected to be 
present and to induce errors during the computing 
process, but their disrupting effects are automatically 
counteracted by the redundancy. Reliable computing 
is made possible despite the remaining program and 
hardware design errors, hardware failures, and ex
ternal interference with computer operation. The re
sources allocated to attain reliability are spent on 

protective redundancy. The redundant parts of the sys
tem (both hardware and software) either take part in 
the computing process or are present in a standby con
dition, ready to act automatically to preserve its un
disrupted continuation. In contrast, we note that the 
maintenance procedures in a fault-intolerant system 
are invoked after the computing process has been dis
rupted, and the system remains "down" for the dura
tion of the maintenance period. 

It is evident that the two approaches are comple
mentary and that the resources allocated to attain the 
required reliability of computing may be divided be
tween fault-tolerance and fault-intolerance. Experi
ence and analysis both point to the conclusion that a 
balanced allocation of resources between the two ap
proaches is most likely to yield the highest reliability 
of computing. An overview of past practice shows that 
fault-intolerance has been the dominant choice in both 
hardware and software in the 1950's and 1960's. In 
recent years the fault-tolerance approach has been 
making significant inroads in hardware system design; 
its application in software has remained very limited. 
The cost of redundancy has been the main argument 
against the use of fault-tolerance techniques in com
puter systems. The evolution of component technology 
into large-scale integration, the decreasing cost of 
mass-produced hardware elements, the very high cost 
of software testing, and the increasing reliability re
quirements all favor increasing use of fault-tolerance 
in computer systems of the future. The resistance to 
its wider use frequently originates with the practi
tioners of the current fault-intolerance and manual 
maintenance methods. 

DESIGN METHODOLOGY FOR RELIABLY 
OPERATING COMPUTERS 

This section and the subsequent sections address the 
issue of providing undisrupted computing while using 
less than perfect hardware components. The remain
ing aspects of reliable computing remain outside the 
scope of this paper. 

Unreliable operation is caused by imperfections in 
the physical implementation of the computer's logic 
structure. Reliability theory defines the reliability 
R (T) of a system as the probability of its correct 
operation up to the time t= T, given that the system 
was operating correctly at the starting time t= O. Com
puters differ from other systems because in their case 
"correct operation" means the correct execution of a 
set of programs and protection of data, rather than the 
continued functioning of a set of physical components 
of the system. It is the purpose of this section to pre
sent those aspects of computer system design that are 
specifically directed toward the elimination or tolerance 
of imperfections (called "faults") in the components of 
the system. It is to be noted that we discuss correct 
execution of a given set of programs and do not include 



the questions of correctness of the programs, complete
ness of their specification, and of accuracy of the 
algorithms, which remain separate fields of study. 

The architects and the users originate the sets of 
programs and data, the definitions of required opera
tions, the time limits for program execution, and the 
storage requirements. The objective of the designer 
is to raise the reliability (i.e., the probability of correct 
execution of these programs) or availability to an ac
ceptahly high value; given that ()p~ra,Uona,l fa/MUs may 
occur during execution. Such faults are caused by 
three classes of physical events that affect the hard
ware of the system: 

-permanent failures of hardware components; 
-intermittent malfunctions of components; 
-external interference ·with computer operation. 

As discussed previously, two complementary ap
proaches have been employed to attain satisfactory 
reliability. Fault-intolerance is the approach that aims 
to reduce the probability of occurrence of the first fault 
during a specified time interval to an acceptably low 
value. In the "pure" fault-intolerance approach the 
system is designed without redundancy, and every 
component of the system must function correctly in 
order to assure correct program execution. The pro
cedures which lead to the attainment of reliable "fault
intolerant" systems are: 

-the most reliable components are acquired within 
the existing cost and performance constraints; 

-proven techniques are employed for the intercon
nection of components and assembly of subsys
tems; 

-the system is packaged to screen out the expected 
forms of external interference; 

-quantitative prediction of system reliability is 
made using known or predicted failure rates for 
the components and interconnections. 

In the "purely" fault-intolerant (i.e., non-redundant) 
design, the probability of fault-free hardware opera
tion is equated to the probability of correct program 
execution. Such a design is characterized by the deci
sion to invest all the reliability resources into procure
ment of high-reliability components and refinement of 
assembly and packaging techniques. An alternative 
to the "purely" fault-intolerant approach is offered by 
the use of various forms of redundancy to attain fault
tolerance.3 This approach increases reliability by the 
use of design techniques that allow faults to occur with
out disrupting the continued correct execution of the 
programs. Fault-tolerance does not entirely eliminate 
the need for reliable components; instead, it offers the 
option to allocate part of the reliability resources to the 
inclusion of redundancy. The goal of a fault-tolerant 
design is either a reliability (or availability) prediction 
that cannot be attained by the purely fault-intolerant 
design, or a reliability (or availability) prediction that 

Approaches to Computer Reliability 403 

matches the purely fault-intolerant design at a lower 
overall cost of implementation. 

A fault-tolerant computer system must possess the 
following attributes: 4 

-Its description includes a set of components (hard
ware) and a set of programs (software). 

-It is either initially free of design faults or it is 
protected against their disruptive effects during 
program execution. 

-It executes the set of programs correctly in the 
presence of operational faults. 

The first attribute stresses the fact that the ability 
of a computer to continue operating correctly in the 
presence of operational faults depends not only on the 
properties of the hardware, but also on the nature of 
the software, including both the system programs and 
the user programs. For example, the ability to recover 
from the errors caused by transient faults frequently 
depends on special restart features incorporated in the 
system software as well as on proper partitioning and 
state vector storage of user programs. 

The second attribute requires that design faults 
should be eliminated from both hardware and soft
ware prior to the initiation of the computing process. 
As an alternative, protective features for the detection 
and circumvention of design faults in both hardware 
and software must be incorporated to make the system 
fault-tolerant. Design faults are caused by errors made 
during the translation of the original specifications into 
operational forms, that is, into assemblies of com
ponents and of machine language instructions. They 
are eliminated by validation of the hardware and soft
ware designs prior to their operational use. Since 
complete a priori verification cannot yet be assured, 
computers need protective provisions to detect and cir
cumvent abnormal conditions encountered during op
eration which may be symptoms of remaining design 
faults. A completely fault-tolerant operation is at
tained either when all design faults are eliminated 
from the system, or when complete protection against 
remaining design faults is incorporated. 

The third attribute of a fault-tolerant computer 
postulates correct execution of the entire set of pro
grams in the presence of operational faults. Program 
errors that are caused by faults in the hardware can 
be avoided or corrected by means of protective redun
dancy. Protective redundancy may be introduced in 
three forms: 

-additional hardware (hardware redundancy) ; 
-additional software (software redundancy) ; 
-repetition of operations (time redundancy) . 

These redundant features would not be needed in a 
fault-free computer; that is, their deletion does not 
affect computer performance in the absence of opera
tional faults. Given that the faults will occur in the 
hardware, the redundant features provide a fault-



404 National Computer Conference, 1976 

tolerant computing system which carries out its pro
grams correctly in the presence of operational faults. 
Partial fault-tolerance (also called "fail-soft opera
tion" or "graceful degradation") occurs when opera
tion continues, but one or more programs are not cor
rectly executed in the specified time. 

Research results and design experience lead us to 
suggest that the introduction of protective redundancy 
can be accomplished by following a systematic pro
cedure: 4 

(1) Performance requirements are established and 
system architecture is specified with the initial 
assumption that operational faults will not oc
cur (the "fault-intolerant" design). 

(2) Classes of operational faults that are to be 
tolerated in the design are identified, and the 
extent of tolerance is specified for each class of 
faults. 

(3) Cost-effective methods of protective redundancy 
(time, hardware, software) are chosen to cover 
every class of faults identified above, and system 
architecture is modified to incorporate the re
dundancy. 

(4) Analytic or experimental techniques are em
ployed to estimate the extent of fault-tolerance 
that is provided by the protective redundancy. 

(5) Checkout methods are devised to test all re
dundancy features. Where applicable, fault
tolerance is extended to effect automatic mainte
nance of peripheral systems that are connected 
to or controlled by the computer. 

Design experience has shown that several iterations 
of (3) and (4) may be necessary to arrive at a satis
factory fault-tolerant system architecture. The follow
ing sections discuss the techniques for the implementa·, 
tion of (2) to (5) and illustrate their use in recent 
computer systems and in proposed designs. 

CLASSES OF OPERATIONAL FAULTS 

An operational fault is the deviation of one or more 
logic variables in the computer hardware from their 
design-specified values. Faults are caused by failures, 
which are physical changes in the hardware of the 
computer. Hardware failures are of three types: 
"solid" component failures, "intermittent" component 
malfunctions, and externally caused interference with 
the operation of the computer. The immediate symp
tom of any hardware failure is a fault. The fault often 
causes an error in the program being executed by the 
computer: either an instruction is not executed cor
rectly, or an incorrect result is computed. Both types 
of errors may be caused at once by some faults. 

A systematic approach to the choice of redundancy 
techniques in computer design begins with a classifica
tion of faults and identification of those classes which 
are expected to occur in the system being designed. 

Three useful dimensions for the classification of faults 
are:'1 

-duration: transient (intermittent) vs. permanent 
(solid) ; 

-extent: local (single) vs. distributed (related 
multiple) ; 

-value: determinate ("stuck") vs. indeterminate 
(variable) . 

In the design methodology the "permanent vs. tran
sient" classification appears to be most fundamental 
because the two classes usually need different recovery 
methods. A program restart is sufficient to correct 
errors caused by transient faults, while replacement or 
reconfiguration of hardware is needed to eliminate 
permanent faults from the system. The classifications 
according to extent and according to value are applica
ble to both transient and permanent faults. 

The extent of a fault specifies how many logic varia
bles in the hardware are simultaneously affected by the 
fault which is due to a single failure event. Local 
(single) faults are those that affect only single logic 
variables, while distributed (related multiple) faults 
are those that affect two or more variables, one module, 
or an entire system. The physical proximity of logic 
elements in contemporary MSI and LSI circuitry has 
made distributed faults much more likely than in the 
discrete component designs of the past. Distributed 
faults are also caused by single failures of some critical 
central elements in a computer system, for example: 
clocks, power supplies, data buses, switches for com
puter reconfiguration, etc. 

The value of a fault is determinate when the logic 
values affected by the fault assume a constant value 
("stuck on 0" or "stuck on 1") during its entire dura
tIOn. 'The fault value is indeterminate when it varies 
between "0" and "I", but not in accord with design 
specifications, during the duration of the fault. 

It is important to observe that a precise description 
of fault extent and fault value can only be made at the 
source of the fault, that is, at the point at which the 
hardware failure event has actually taken place. The 
introduction of one or more faulty logic variables into 
the computing process will often lead to different or 
more extensive fault symptoms downstream from the 
point of failure. For example, a "stuck on I" local 
determinate fault on the input to a two-input "Exclu
sive-Or" gate will cause the output variable of the gate 
to appear as a local indeterminate fault. Furthermore, 
if this output is supplied as an input to several other 
gates, the set of output variables of these gates will 
appear as a distributed indeterminate fault. 

Ambiguity is avoided when the term "fault" is re
stricted to the change in logic variable (s) at the 
point of the actual hardware failure. The fault-caused 
changes of logic variables which are observed (because 
of faulty inputs) on the outputs of correctly function
ing logic elements are symptoms of the fault and will 



be called errors. This distinction establishes a cause
effect sequence as follows: 

(1) The failure which is a physical event, causes a 
fault, which is a change of logic variable (s) at 
the point of failure. 

(2) The fault, in turn, supplies incorrect input(s) to 
the computing process and causes an error to be 
produced by subsequent operation of failure
free logic circuits. 

The preceding discussion makes it evident that the 
detectability of a fault depends not only on its type, 
but also on the distance (in terms of computing opera
tions) from the point at which the fault occurs to the 
point at which checking (fault-detection) is performed. 
A local determinate fault may cause an extensive error 
pattern to appear at a point that is several computing 
steps (in time, space, or both) removed from the fault 
itself. 

METHODS OF PROTECTIVE REDUNDANCY 

The key to successful application of protective re
dundancy is the systematic and balanced selection of 
suitable methods of its three forms: hardware (addi
tional components), software (special programs), and 
time (repetition of operations). This section reviews 
the basic methods of these forms of redundancy. 

Hardware redundancy 

Hardware redundancy includes the components that 
have been introduced into the system in order to pro
vide fault-tolerance. As long as faults do not occur, all 
these components can be deleted without diminishing 
the computing power of the system. The techniques 
of introducing hardware redundancy may be divided 
(on the basis of terminal activity of modules) into two 
categories: static redundancy and dynamic red un
dancy.5 

The static redundancy method is also known as 
"masking" redundancy, since the redundant compo
nents are employed to mask the effect of hardware 
failures within a given hardware module, and the 
terminal activity of the module remains unaffected as 
long as the protection is effective. The static tech
nique is applicable against both transient and perma
nent faults. All redundant copies of an element are 
permanently connected and receive power. Component 
failures and logic faults are masked by the presence 
of other copies of the same element. The fault masking 
occurs instantaneously and automatically; however, if 
the fault is not susceptible to masking and causes an 
error, a delayed recovery is not provided. 

The original study of the use of static redundancy 
at the logic element level is due to John von Neumann.6 

He considered transient malfunctions of individual 

Approaches to Computer Reliability 405 

logic gates and showed that arbitrarily high reliability 
would be attained with high orders of redundancy. 
Moore and Shannon7 applied the static redundancy 
principle to relay contact networks. In practical ap
plications the order of redundancy has to be as low as 
possible in order to make the cost acceptable to the 
user. Two forms of static redundancy have been used 
in practice: replication of individual electronic com
ponents in the Orbiting Astronomical Observatory 
and triple modular redundancy (TlVIR) with voting in 
the SATURN IV and V guidance computers.8 Several 
other variants of static redundancy have been studied 
but were not employed in practice because of excessive 
cost or the need for practically unrealizable special 
components. It is essential to note that static redun
dancy is based on the assumption that failures of the 
individual copies are independent. When related fail
ures take place, the protection by redundancy is lost. 
For this reason static redundancy (especially at the 
component level) is not applicable within integrated 
circuit packages, in which individual components are 
in close proximity and failure phenomena frequently 
affect several adjacent components. 

In the dynamic redundancy approach fault-caused 
errors are allowed to appear at the terminals of a 
module. Fault-tolerance is implemented by two con
secutive actions. First, the presence of a fault is de
tected, then a recovery action either eliminates the 
fault, or corrects the error. If human assistance is 
completely eliminated, dynamic redundancy (usually 
with software support) results in self-repair of a com
puter system. Limited, that is human- and software
assisted, use of dynamic redundancy techniques in com
puter hardware has been very extensive.1,3,5 The most 
common example is the use of parity to detect errors in 
data transmission and storage. Important early ex
amples of extensive dynamic redundancy with software 
and human support are the ESS systems.9,10 Probably 
the first operational computer with full self-repair pro
visions is the JPL-STAR computerY 

The application of dynamic redundancy to a com
puter architecture requires that a number of decisions 
should be made in the functional design stage. The 
design choices include: level of modularization, fault
detection hardware, type of recovery action, "hard
core" protection, forms of intermodule communication, 
validation of inputs, and interfaces with system soft
ware. 2 The use of dynamic redundancy has been some
what inhibited because of the need for an early com
mitment to it in the hardware design process. In 
contrast, static redundancy (and software redundancy, 
as well) can be applied to an existing non-redundant 
design. 

Software redundancy 

Software redundancy includes all additional pro
grams, program segments, instructions, and micro-



406 National Computer Conference, 1976 

instructions which would not be needed in a fault-free 
computer.2 They provide either fault-detection or re
covery in fault-tolerant computer systems, very fre
quently in conjunction with dynamic hardware re
dundancy. Three major forms of software redundancy 
are: 

-multiple storage of critical programs and data; 
-test and diagnostic programs at various program 

and microprogram levels; 
-fault-tolerance features of the executive program 

which implement program restarts and interface 
with the dynamic hardware redundancy. 

Combinations of all three forms are found in most 
modern fault-tolerant computers. 

Compared to hardware redundancy, an advantage 
of software is the ability to superimpose fault-tolerance 
features after the hardware has been designed. This 
allows the design of fault-tolerant systems using 
non-fault-tolerant 'off-the-shelf' hardware. Another 
advantage is the relatively easier modification and re
finement of these software features after their intro
duction into the system. The main disadvantage of 
software redundancy is the difficulty of assuring that 
the software features will be able to function correctly 
after the occurrence of a fault and that they will be 
invoked sufficiently early, that is, before the fault
caused errors have irrevocably disrupted the programs 
or mutilated the data base. Other disadvantages in
clude the relatively high cost of generating the required 
software, the storage requirements, including the need 
to tolerate failures of memories holding the software, 
and the difficulty of estimating and proving the com
pleteness or the adequacy of the software redundancy 
fe~hrre8. It m.l.1~t he ~tre~Red that dynamic hardware 
redundancy and software redundancy are not mutually 
exclusive in practice.12 A system with all-out emphasis 
on self-contained dynamic hardware techniques still 
needs cooperation from the executive program to com
plete some recovery actions. Conversely, an all-soft
ware controlled fault-tolerant system has high risks 
of excessive delays in initiating recovery without at 
least some hardware methods for fault-detection. It 
also needs redundant storage modules and hardware 
protection of critical decision-making logic. Combina
tions of software and hardware redundancy are em
ployed in most fault-tolerant systems, but they differ 
in the choice of the point in the detection and recovery 
sequence at which software takes over control.9 ,1l-14 

Time (execution) redundancy 

This form of redundancy consists of repeating or 
acknowledging machine operations at various levels: 
micro-operations, single instructions, program seg
ments, or entire programs. It is usually employed to
gether with dynamic hardware and software redun-

dancy techniques. Two distinct goals of time redun
dancyare: 

-fault detection by means of repeated execution or 
acknowledgments; 

-recovery by program restarts or operation retries 
after fault detection or reconfiguration has oc
curred. 

The repeated execution of a program is probably the 
oldest form of fault detection. While suitable to detect 
errors due to transient faults, it is limited by the fact 
that consistent errors will be produced by permanent 
faults, and comparison will fail to reveal the same 
error in the results. The use of retransmission and of 
other forms of acknowledgments ("handshakes") has 
been extensively used in general purpose systems, 
especially for error detection in secondary storage, 
channels, and I/O devices.13,22 

Another common use of time redundancy is found 
in the identification and correction of errors caused 
by transient faults, and in program restarts after a 
hardware reconfiguration.2 This is accomplished by the 
repetition after error-detection or 'rollback' of single 
instructions, segments of programs, or entire pro
grams. While single-instruction retries are transparent 
to the programmer, longer rollbacks require program
ming constraints as well as protected storage for the 
rollback address and for the state vector, including 
its double-buffering. "Singular" events in a computer 
are program-controlled events which should not be 
repeated as part of a program rollback operation, for 
example, real-time output commands which initiate ir
reversible actions in the system under computer 
control. The potential damage makes it imperative 
that the provision for handling of singular events 
should be incorporated in rollLack pl'oCedUi.'eb,~~'" 

Checkout and extension of fault-tolerance features 

The introduction of redundancy poses the problem 
of verifying that the redundant parts are ready to be 
used when faults occur. Implementation of checkout 
encounters difficulties in systems with static hardware 
redundancy, especially in component-redundant sys
tems. 7 ,s Dynamically redundant systems are inherently 
better suited for redundancy checkouts, since they 
possess extensive fault-detection and permit sequential 
switching-in of spare modules to be tested. ll One criti
cal requirement of checkout is the systematic verifica
tion that all fault-indicating signals are operational. 
Self-checking logic15 is suitable for this purpose. In 
software-controlled fault-tolerance this function is car
ried out by a special fault-signal-test instruction.16 

The techniques of fault-tolerance can be systemati
cally extended beyond the boundaries of the fault
tolerant computer to effect automatic maintenance of 
various peripheral systems which communicate with 
the computer. The methodology of extending fault-



tolerance consists of the development of fault-tolerant 
interfaces, introduction of fault-detection methods in 
the systems outside the computer, and programming of 
recovery sequences to be executed by the computer. A 
case study of the application of these techniques in a 
spacecraft system is presented in Reference 17. In 
commercial general purpose systems, the reverse pro
cess has taken place. Because of the relatively high 
unreliability of peripheral mechanical devices, fault
tolerance began at the peripheials and only later was 
brought into the CPU and main memory.28 

FAULT-TOLERANT SYSTEMS 

The currently existing and proposed fault-tolerant 
computer systems may be conveniently classified ac
cording to the method used to control the recovery. 
Hardware-controlled systems use dedicated hardware 
which collects fault indications and initiates recovery. 
While recovery control may be transferred to software 
after its operability has been assured, it is completed 
automatically (without external aid). Software-con
trolled systems depend on special programs to interpret 
fault indications and to carry out the automatic re
covery procedures. Manually-controlled systems re
quire the participation of a maintenance operator in the 
completion of recovery; they are not fault-tolerant in 
the full sense of the "vord, although they may employ 
many fault-tolerance techniques. 

Hardware-controlled recovery 

This approach depends on special hardware to carry 
out fault detection and to control the initial recovery 
procedure. After the procedure has established the 
existence of an operational software system, the com
pletion of recovery is usually transferred to software 
control. It is evident that further software systems 
may be superimposed on the hardware-controlled de
sign, leading to a multilevel recovery procedure. A 
special case of hardware-controlled recovery is found 
in statically-redundant systems in which faults are 
masked by redundant hardware, and are totally in
visible to the software. Two examples of such systems 
are the OAO data processor which used component re
dundancy and the CPU of the SATURN V guidance 
computer, which used TMR protection.8 A separate 
software-controlled recovery system is needed in stati
cally-redundant systems if they are to continue operat
ing in reconfigured mode after the first fault that 
escapes the masking effect and affects the software. 

Dynamically redundant systems usually depend on 
a dedicated hardware module that gathers fault signals 
and initiates recovery. Different uses of duplexing and 
hardware-controlled switchover techniques are found 
in the memory, power supply, and peripheral units of 
SATURN V computer in combination with a TMR-pro-

Approaches to Computer Reliability 407 

tected serial CPU unit. 8 Separate fault-detection and 
switchover-control units were used for every functional 
unit. Probably the first operational computer with 
fully hardware-controlled dynamic redundancy was 
the experimental JPL-STAR computerY Intended for 
self-contained multiyear space missions, this computer 
employs a special Test-And-Repair-Processor (TARP) 
module to control recovery and self-repair. Software 
assistance is invoked only to perform memory copying 
and to resume standard operation after self-repair.14 

The French MECRA computer is another early experi
mental design.18 A few other hardware-controlled sys
tem designs that have not reached operation have 
been described in recent literature.12 ,16 

The principal advantage of hardware-controlled re
covery systems lies in their independence of the opera
tion of any software immediately after the fault has 
occurred. The recovery process is transferred to soft
ware only after its ability to operate has been assured. 
The relatively late appearance of such systems may be 
attributed to the need to introduce the recovery module 
into the design at its inception, thus requiring an early 
commitment to the hardware-controlled approach. 

Software-controlled recovery 

In contrast to the previous class, the software-con
trolled systems depend on special software to initiate 
recovery action upon the detection of a fault. Fault 
signals are obtained by both hardware and software 
methods, for example: parity checkers, comparators, 
power level monitors, test programs, reasonableness 
checks, etc. The main limitation of these systems is 
the need for the recovery software to remain opera
tional in the presence of faults, since recovery cannot 
otherwise be initiated. 

A significant advantage of this approach is that 
existing 'off-the-shelf' hardware system modules may 
be used to assemble fault-tolerant organizations. These 
modules contain various forms of hardware fault-detec
tion, which usually are supplemented by further soft
ware methods. For this reason software-controlled sys
tems have appeared earlier and are currently being 
used in numerous applications requiring high reliabil
ity and availability. While every modern operating 
system incorporates some recovery features, the pres
ent paper "\vill be limited to selected illustrations of 
historically important and advanced systems. 

An important early design of the 1950's with com
plete duplication and extensive recovery provisions was 
the SAGE system.l~ The IBM System/360 architecture 
contains very complete provisions for multi-system 
operation in order to attain high availability, recon
figuration, and fail-soft operation. 21 An early example 
of a multi-system which includes further extensions of 
the System/360 design is the IBM 9020 multiprocessing 
system for air traffic control applications. 13 N ote
worthy are the operational error analysis program and 



408 National Computer Conference, 1976 

the diagnostic monitor of the 9020. The recent IBM 
System/370 hardware incorporates automatic retry of 
CPU operations, error coding to correct single-bit 
errors in processor and control storage, and I/O retry 
facilities. The software provides recovery management 
support routines, I/O and channel error recovery, 
checkpoint/restart facilities, microdiagnostics and on
line diagnostics of I/O device errors.22 An interesting 
illustration of extensive use of backup storage and dy
namic reconfiguration in a general-purpose time-shared 
system is found in the MIT Multics System.23 Another 
experimental system for high-availability performance 
in an interactive time-shared environment is PRIME.24 
The Pluribus is a minicomputer/multiprocessor system 
with extensive fault-tolerance provisions which serves 
as a switching node in the ARPA Network.2o 

Another direction of software controlled system de
velopment is in aerospace applications. The principal 
illustrations of this approach are the SIFT design,2~ 
the RCS system,26 and the C.S. Draper Laboratory 
modular system.2' One more area of application which 
requires fault-tolerant operation and very high avail
ability for several years of continuous operation is the 
control of electronic switching systems for telephone 
exchanges. These systems usually employ manual re
pair by replacement of a failed part as the last (off
line) step of the recovery procedure, while maintaining 
normal operation by means of the remaining system 
modules. A well documented illustration is found in 
the ESS systems of Bell Laboratories.9 ,lo ESS systems 
employ a variety of hardware techniques (duplication, 
matching, error codes, function monitors) and special 
software (check routines, diagnostics, audits) as well 
as software and hardware emergency procedures when 
normal recovery action does not succeed. 

Fault-toleTant memories and processors 

Besides the complete systems discussed above, sig
nificant efforts have been carried out in providing 
fault-tolerance for storage subsystems. This is espe
cially true for secondary and mass storage which has 
been characterized by relatively low reliability in the 
past. Representative error coding applications include 
the use of codes for error control in data communica
tions, magnetic tape units, disc files, primary random 
access storage, and a photo-digital mass store. 28 Single
error correcting codes are used in the control storage 
of ESS No. 1 and the main and control storage of IBM 
System/370 computers.9 ,22 Error-correcting codes have 
been shown to provide a very effective method for fault
tolerance in the storage medium, and remaining prob
lems are concentrated in providing fault-tolerance in 
the memory access and readout circuitry. 

Recent studies have considered the problem of fault
tolerance in associative memories and processors. 29 In 
general, processor fault-tolerance has been provided 
by duplication and reconfiguration at the system level. 

Some investigations have been conducted in the use of 
arithmetic error codes as the means for error-detection 
for processor faults30 and an experimental processor 
has been designed and constructed for the JPL-STAR 
computer.l1 The increasing availability of micropro
cessors makes further emphasis on duplication very 
likely, although error-detecting codes remain a con
venient method for the identification of the faulty 
processor in a disagreeing pair. 

RELIABILITY MODELING AND PREDICTION 

The initial choice of redundancy techniques requires 
verification that the redundant system possesses the ex
pected fault-tolerance. Insufficiencies of the original 
design may be uncovered, and the design can be refined 
by changes or additions of various forms of redun
dancy. The process is repeated until a fully satisfac
tory design is attained. The principal quantitative 
measures are reliability31,32 (with respect to permanent 
faults), survivability4,31 (with respect to transient 
faults), and availability.32 Two approaches to the pre
diction of fault-tolerance are: 

-the analytic approach, in which fault-tolerance 
measures of the system are obtained from a mathe
matical model of the system, and 

-the experimental approach, in which faults are 
inserted either into a simulated model of a system, 
or into a prototype of the actual hardware, and 
fault-tolerance measures are estimated from sta
tistical data. 

A quantitative reliability prediction for the com
puter being designed requires numerical failure rates 
for the components. When technologies ,vhich are 
under development are to be used, the failure rates for 
currently used components need to be extrapolated to 
the new choice of component technology. It is im
portant to recognize that different failure rates or 
distributions may apply to failures causing distributed 
faults. The principal measure of fault tolerance with 
respect to permanent faults is the reliability R (t), 
which is a function of the failure rates and directly 
predicts only the probability of hardware survival. 
Fault-tolerance is attained only if correct program 
execution is maintained by the surviving hardware; for 
this reason transient faults must also be considered. A 
very common quantitative measure has been the MTBF 
(mean time between failures), defined as MTBF= 

1~ R (t) dt. Given the non-redundant reliability R (t) 

=e-"I\t, we have MTBF= l/A, and the comparison of the 
MTBFs directly compares the total failure rates (A) 
of the competing systems. When redundancy is intro
duced, the reliability function R (t) is a polynomial 
in e-At and the R (t) curves of systems being compared 
may have crossover points. Then the area under the 
R (t) curve does not indicate which system is better at 



a given time, and the MTBF may become a misleading 
measure. Given a fixed 'mission time' T, the compari
son of two or more systems requires only the values of 
R (T) in order to select the best system. If a fixed mis
sion time is not available, the time interval during 
which the reliability remains above a given value serves 
as a convenient comparison measure.31 

It is essential to note that reliability modeling re
mains useful even if definite numerical failure rates 

comparison of many alternate designs using normaliza
tion with respect to the (failure rate x mission time) 
product AT. 

Reliability models 

The class of static reliability models is suitable for 
the reliability prediction of systems with static hard
ware redundancy. The non-redundant system or its ele
ment is usually assumed to have the reliability R (t) 
= e-At • The redundant elements are assumed to be 
permanently connected, and to fail statistically inde
pendently. They have the same failure rate and are 
instantaneously available to perform the masking of a 
failure with unity probability of success. Under t"h~se 
assumptions, the reliability of a redundant system is 
obtained as the sum of the reliabilities of all distinct 
configurations (including none or some failed parts) 
that do not lead to system failure. For example, given 
the simplex (one system) reliability R, the reliability 
of a duplicated system is R (duplex) =R2+2R (1-R). 
In general, reliability models of static redundancy are 
found in standard handbooks and textbooks of reliabil
ity theory and are used for reliability analysis of vari
ous physical systems.32 

Dynamic redundancy requires the consecutive ac
tions of fault detection and recovery in order to utilize 
redundant parts. The use of static reliability models 
for the dynamic case is equivalent to assuming unity 
probability of success of both actions; for this reason, 
very high reliabilities can be predicted as the number 
of spares is increased. It was recognized early in the 
studies of dynamic redundancy that imperfect detec
tion and recovery may leave some spares unused. 33 The 
effect of such imperfections was formalized in the re
liability model through the concept of "coverage", de
fined as the conditional probability of successful re~ 
covery, given that a fault has occurred.31 

In general, the dynamic modej31,34,35 must represent 
the complete complexity of the proposed fault-tolerant 
system, including (1) differing failure rates for 
powered and unpowered modules; (2) number of 
spares of each module; (3) imperfect fault detection 
and recovery; (4) method of "hard core" protection; 
(5) existing intra-module fault tolerance; (6) extent 
and value of the faults; (7) duration and distribution 
of expected transient faults. Recent work has con
sidered repairable systems:lG and models that include 

Approaches to Computer Reliability 409 

transient as well as permanent faults. 37 ,3s The principal 
objective of further study remains the development 
of models that integrate the characteristics of both 
hardware and software and consider both permanent 
and transient faults. 

Analytic models of dynamically redundant systems 
are complex because of the number of different param
eters that may be varied in the search for a balanced 
design. A very useful tool for reliability prediction is 
an interactive computer program which permits a 
ready variation of the important parameters of the 
redundant system for on-line design refinement. A 
pioneering effort in automated reliability modeling was 
the REL program, written in the APL language to pre
dict system reliability for a given mission time when 
the system parameters have been specified.31 Recent 
efforts to arrive at general and computationally effi
cient models have resulted in further APL programs.3S 

Experimental reliability prediction 

Two approaches to experimental prediction of re
liability are simulation and experimentation with a 
hardware prototype. While their use is more costly 
and time-consuming, the experimental methods are 
essential when the available analytic models do not ade
quately represent the complex structure of the system 
or the nature of the expected faults. 

An accurate description of the system and char
acterization of the faults are the principal prerequisites 
when simulation is employed to derive the fault-toler
ance estimates for the computer.26 This approach has 
been extensively employed in reliability prediction for 
the redundant SATURN V guidance computer.S ,39 The 
use of hardware prototypes requires a large invest
ment of effort in constructing the prototype, but avoids 
the inaccuracies which may occur in postulating the 
fault effects in a simulated model of the system. Two 
examples of use of hardware prototypes are: the 
switching system ESS No. 1 for which a catalog of 
fault symptoms was compiled by using a hardware 
modeJ,9 and the experimental fault-tolerant JPL-STAR 
computerY In the JPL-STAR computer an electronic 
"black box" was used to inject faults of adjustable 
duration and extent at selected points in the hardware 
of the system. Another example of the experimental 
approach is the OAO processors in which a component
redundant system was completely disassembled to de
termine the number of failed components after 3000 
hours of operation. 

A recent simulation and analysis system to analyze 
the behavior of faulty circuits is the LAMP (Logic 
Analyzer for Maintenance Planning) system.40 In ad
dition, LAMP also performs logic design verification, 
generates fault-detection tests, evaluates diagnostics, 
and produces trouble-location manuals. LAMP ex
emplifies the current trend toward multipurpose simu
lation systems in digital system design. 



410 National C0111puter Conference, 1976 

RELATIONSHIPS WITH THE SOFTWARE 
RELIABILITY PROBLEM 

Discussion of the attributes of a fault-tolerant sys
tem included the goal that one of the two conditions 
should be satisfied with respect to design faults: 

-the hardware and software should be free of de
sign faults prior to the start of the computing 
process; or 

-the system should contain complete provisions to 
detect and to circumvent the effects of hardware 
and software design faults during the computing 
process. 

This means that the software of a fault-tolerant system 
must either be perfect (i.e., fault-free) or fault-tolerant 
in the same sense as the fault-tolerant hardware. The 
basic difference between the two is that operational 
faults in hardware occur after the start of the com
puting process, while design faults in software (and 
hardware, as well) are present at the start, but become 
disruptive only at a later time. However, software 
modifications and corrections of discovered design 
faults occasionally lead to new design faults and there
fore the discoveries of software design faults may be 
expected throughout the useful life of any large soft
ware system, similar to the occurrence of operational 
hardware faults. This practically verified observation 
establishes the relationship between the methodologies 
for dealing with operational faults and design faults: 
the methods of protective redundancy that have proven 
successful in hardware fault-tolerance may be trans
ferable to provide fault-tolerance of a software system 
as well. 

An overview of the procedures currently used to 
attain software reliability shows that the "fault-intol
erance" approach of perfecting the software prior to 
its regular use has been the accepted practice of im
proving software reliability. Three aspects of rele
vance of fault-tolerance can be identified: 41 

-the contribution of hardware fault-tolerant sys
tems in assuring reliable computing; 

-the common aspects of fault-tolerance that are 
equally applicable to hardware and software; 

-the transfer of fault-tolerance techniques and ex
perience from hardware to software, considering: 

-the applicability to software; 
-the potential advantages of software fault-

tolerance; 
-the cost of its use, compared against the tra

ditional fault-intolerance techniques. 

The immediate advantage to a software system 
which results from the existence of a fault-tolerant 
hardware design is the protection of the software 
against disruptions caused by operational faults. In 
the case of a fault, the fault-tolerant features execute 
the corrective action in the hardware and restart the 

software, usually at a programmer-specified restart 
point,H although in some cases there is a single-instruc
tion restart procedure which is transparent to the 
programmer. 27 The cost of utilizing the fault-tolerance 
features to achieve software protection consists of the 
programming constraints that must be observed to 
make automatic hardware initiated restarts of the 
programs possible. The advantages, in addition to the 
protection itself, also include the ability to distinguish, 
with a very high probability of success, whether a sys
tem crash was hardware-caused or not. Furthermore, 
a direct extension of the fault-tolerance techniques may 
be utilized to provide hardware-controlled protection 
of software and the data base against deliberate at
tempts to disrupt its operation and to access privileged 
information. 

An area in which a common ground exists for hard
ware and software reliability efforts is the analytic 
modeling and quantitative prediction of system reli
ability. 31 The recent work on software reliability 
models42

,13 indicates the possibility of mutual reinforce
ment of research that would lead to the development 
of analytical models for the total system reliability, 
including both the hardware and software aspects. A 
second common area is design verification, in which 
the rapidly evolving techniques of program testing and 
proving have obvious applications to the problem of 
verifying hardware designs. 

Finally, we consider the transfer to software of 
those protective redundancy techniques that have been 
successfully used in hardware system design. In the 
static approach, the same computation is carried out 
by two or more independently written programs,4l,H 
The dynamic approach uses an analog of standby spar
ing with fault detection and switching of software 
modules."5 WhIle the cost aspect of both statIcally and 
dynamically fault-tolerant software remains to be ex
plored, the continued use of 'pure' fault-intolerance 
for software reliability cannot be justified by tradition 
alone. It is hoped that the success of fault-tolerant 
hardware will stimulate further studies of the merits 
of fault-tolerance and redundancy in computer soft
ware. 

REFERENCES 

1. Carter, W. C. and W. G. Bouricius, "A Survey of Fault
Tolerant Computer Architecture and Its Evaluation," Com
puter, Vol. 4, No.1, January-February, 1971, pp. 9-16. 

2. Avizienis, A., "Architecture of Fault-Tolerant Computing 
Systems," Digest of the 1975 International Symposium on 
Fault-Tolerant Computing, Paris, France, June 1975, pp. 
3-16. 

3. Avizienis, A., "Design of Fault-Tolerant Computers," 
AFIPS Conference Proceedings, Vol. 31, 1967, pp. 733-743. 

4. Avizienis, A., "The Methodology of Fault-Tolerant Com
puting," Proceedings of the First USA-Japan Computer 
Conference, Tokyo, Japan, October 1972, pp. 405-413. 

5. Short, R. A., "The Attainment of Reliable Digital Systems 
Through the Use of Redundancy-A Survey," IEEE Com
puter Group News, Vol. 2, No.2, March 1968, pp. 2-17. 



6. Von Keumann, J., Probabilistic Logics and the S}'11thesis of 
Reliable Organisms from Unreliable Components," in Auto
mata Studies, C. E. Shannon and J. McCarthy, eds., Annals 
of Math. Studies No. 34, Princeton, University Press, 1956, 
pp.43-98. 

7. Moore, E. F. and C. E. Shannon, "Reliable Circuits Using 
Less Reliable Relays," Journal of the Franklin Institute, 
Vol. 262, Nos. 9 and 10, September, October 1956, pp. 191-
208 and 281-297. 

8. Cooper, A. E. and W. T. Chow, "Development of On-Board 
Space Computer Systems," IBM Journal of Research and 
TO .. T. .' 'rT 1 ct.A .... T ..... T __________ "'{\r"7~ ____ r:-"in 
Uf:,'Uf:,WpInf:,n~, VOl. L<V, ~"O • .1, .J1:I.lIUa..1-Y i01iU, !l!l. u-i01. 

9. Downing, R. W., J. S. Nowak and L. S. Tuomenoksa, "No. 
1 ESS Maintenance Plan," The Bell System Technical 
Journal, Vol. 43, No.5, Part 1, September 1964, pp. 1961-
2019. 

10. Beuscher, H. J. et aI., "Administration and Maintenance 
Plan of No.2 ESS," The Bell System Technical Journal, 
Vol. 48, October 1969, pp. 2765-2815. 

11. Avizienis, A., G. C. Gilley, F. P. Mathur, D. A. l:(.ennels, 
J. A. Rohr and D. K. Rubin, "The STAR (Self-Testing-And 
Reparing) Computer: An Investigation of the Theory and 
Practice of Fault-Tolerant Computer Design," IEEE Trans
actions on Computers, Vol C-20, No. 11, November 1971, 
pp. 1312-1321. 

12. Carter, W. C., D. C. Jessep, P. R. Schneider, A. B. Wadia 
and \V. G. Bouricius, "Logic Design for Dynamic and Inter
active Recovery," IEEE Transactions on Computers, Vol. 
C-20, No.1, November 1971, pp. 1300-1305. 

13. "An Application-Oriented Multiprocessing System," IBM 
Systems Journal, Vol. 6, No.2, 1967. 

14. Rohr, J. A., "STAREX Self-Repair Routines: Software 
Recovery in the JPL-ST AR Computer," Digest of the 1973 
InternaNonal Symposium on Fault-TolerOint Computing, 
Palo Alto, CA, June 1973, pp. 11-16. 

15. Carter, W. C. and P. R. Schneider, "Design of Dynamically 
Checked Computers," Information Processing 68 (Proceed
ings of IFIP Congress 1968), pp. 878-883. 

16. Conn, R. B., N. A. Alexandridis and A. Avizienis, "Design 
of a Fault-Tolerant Modular Computer with Dynamic Re
dundancy," AFIPS Conference Proceedings, Vol. 41, (Fall 
JCC 1972), pp. 1057-1067. 

17. Gilley, G. C., "A Fault-Tolerant Spacecraft," Digest of 
1972 International Symposium on Fault-Tolerant Comput
ing, June 1972, pp. 105-109. 

18. Maison, F. P., "The MECRA: A Self-Repairable Computer 
for Highly Reliable Process," IEEE Tra'nsactions on Com
pute1"S, Vol. C-20, No. 11, November 1971, pp. 1382-1393. 

19. Everett, R. R., C. A. Zraket and H. D. Benington, "SAGE
A Data-Processing System for Air Defense," Proceedings 
of the Eastern Joint Computer Conference, Washington, 
D.C., December 1957, pp. 148-155. 

20. Ornstein, S. M., et al. "Pluribus-A Reliable Multipro
cessor," AFIPS Conference Proceedings, Vol. 44, 1975 NCC, 
pp. 551-559. 

21. Blaauw, G. A., "The Structure of SYSTEM/360: Part V
Multisystem Organization/, IBM System Jou,rnal, VoL 3, 
No.2, 1964, pp. 181-195. 

22. A Guide to the IBM System/360 Model 145, IBM Corpora
tion, Technical Publications Department, White Plains, New 
York, Third Edition, August 1972. 

23. Corbato, F. J., J H. Saltzer and C. T. Clingen, "Multics
The First Seven Years," AFIPS Conference Proceedings, 
Vol. 40 (SpringJCC 1972), pp. 571-583. 

24. Borgerson, B. R., "Dynamic Confirmation of System In
tegrity," AFIPS Conference Proceedings, Vol. 41, Part 1, 
1972, pp. 89-96. 

25. Wensley, J. H., "SIFT-Software Implemented Fault Tol
erance," AFIPS Conference Proceedings, Vol. 41, Part 1, 
1972, pp. 243-254. 

Approaches to Computer Reliability 411 

26. Levy, H. O. and R. B. Conn, "A Simulation Program for 
Reliability Prediction of Fault Tolerant Systems," Digest 
of the Fifth International Symposium on Fault-Tolerant 
Computing, Paris, France, June 1975, pp. 104-109. 

27. Hopkins, A. L., Jr. and T. B. Smith III, "The Architectural 
Elements of A Symmetric Fault-Tolerant Multiprocessor," 
IEEE Transactions on Computers, Vol. C-24, No.5, May 
1975, pp. 498-505. 

28. Tang, D. T. and R. T. Chien, "Coding for Error Control," 
IBM Systems Journal, Vol. 8, No.1, 1969, pp. 48-86. 

29. Parhami, B. and A. Avizienis, "A Study of Fault-Tolerance 
Techniques for Associative Processors," ilFIPS Conference 
Proceedings, Vol. 43,1974, pp. 643-652. 

30. AviZienis, A., "Arithmetic Error Codes: Cost and Effec
tiveness Studies for Application In Digital System Design," 
IEEE Transac;tions on Computers, Vol. C-20, No. 11, No
vember 1971, pp. 1322-1331. 

31. Bouricius, W. G., W. C. Carter and P. R. Schneider, "Re
liability Modeling Techniques for Self-Repairing Computer 
Systems," Proceedings oj the 24th National Conie'renee of 
ACM, 1969, pp. 295-383. 

32. Barlow, R. W. and F. Proschan, Mathematical Theory of 
Reliability, Wiley and Sons, 1965. 

33. Griesmer, J. E., R. E. Miller, J. P. Roth, "The Design of 
Digital Circuits to Eliminate Catastrophic Failures," Re
dundancy Techniques for Computing Systems, Spartan 
Press, Inc., Washington, D.C., 1962, pp. 328-348. 

34. Bricker, J. L., "A Unified Method for Analyzing Mission 
Reliability for Fault-Tolerant Computer Systems," IEEE 
Transactions on Reliability, Vol. R-22, No.2, June 1973, 
pp.72-77. 

35. Ng, Y. W. and A. Avizienis, "A Unifying Reliability Model 
for Closed Fault-Tolerant Systems," Digest of the Fifth 
International Symposium on Fault-Tolerant Computing, 
Paris, France, June 1975, p. 224; full text to appear in 
IEEE Transactions on Computers. 

36. Arnold, T. F., "The Concept of Coverage and Its Effect on 
the Reliability Model of a Repairable System," IEEE Trans
actions on Computers, Vol. C-22, No.3, March 1973, pp. 251-
254. 

37. Merryman, P. M. and A. A vizienis, "Modeling Transient 
Faults in TMR Computer Systems," Proceedings 1975 
Annual Reliability and Maintainability Symposium, Wash
ington, D.C., January 1975, pp. 333-339. 

38. Ng, Y. W., "Modeling and Analysis of Fault-Tolerant 
Computers," Ph.D. Dissertation, UCLA, Computer Science 
Department, University of California, Los Angeles, 1976. 

39. Hardie, F. H. and R. S. Suhocki, "Design and Use of Fault 
Simulation for Saturn Computer Design," IEEE Trans
actions on Computers, Vol. EC-16, August 1967, pp. 412-429. 

40. Chang, H. Y., G. W. Smith. Jr. and R. B. Walford, "LAMP: 
System Description," The Bell System Technical Journal, 
Vol. 53, No.8, October 1974, pp. 1431-1449. 

41. Avizienis, A., "Fault-Tolerance and Fault-Intolerance: 
Complementary Approaches to Reliable Computing," Pro
ceedings of the 1975 International Conference on Reliable 
Software, Los Angeles, California April 1975, pp. 458-464. 

42. Shooman, M. L., "Operational Testing and Software Re
liability Estimation During Program Development," Pro
ceedings of the 1973 IEEE Symposium on Computer Soft
ware Reliability, New York City, 1973, pp. 51-56. 

43. Moranda, P. B., "Prediction of Software Reliability during 
Debugging," P1'oceedings of the 1975 Annual Reliability and 
Maintainability Symposium, January 1975, pp. 327-332. 

44. Elmendorf, W. R., "Fault-Tolerant Programming," Digest 
of the 1972 International Symposium on Fault-Tolerant 
Computing, IEEE Computer Society, 1972, pp. 79-83. 

45. Randell, B., "System Structure for Software Fault Toler
ance," IEEE Transactions on Software Engineering, Vol. 
SE-l, ~o. 2, June 1975, pp. 220-232. 





Failure-tolerant parallel programming and 
its supporting system architecture 

L •. TT TT TTT1\K U-y ft. fl.. ft.lJ.Y.1. 

University of Southern California 
Los Angeles, California 

and 

by C. V. RAMAMOORTHY 
Univers~ty of California 
Berkeley, California 

ABSTRACT 

The state-of-art in software validation as well as the 
continuing growth of the size and complexity of soft
ware subsystems, makes extra costs paid for software 
error tolerance more than justified. A program in 
which software redundancy is incorporated i.e. a pro
gram in which procedures for run-time validation and 
recovery are explicitly specified, is generally called a 
failure-tolerant program. One problem in failure
tolerant programming, which could be particularly se
rious in real-time computing environments, is the pro
gram execution time increased due to incorporation 
of validation and recovery procedures. This paper 
introduces an approach to the solution, called the 
failure-tolerant parallel programming. The essence of 
this approach is to maximally overlap main-stream 
computation with redundant computation oriented for 
validation and recovery. Subsequently, a model sys
tem architecture tailored for efficient execution of 
failure-tolerant parallel programs is described. It is 
of highly general and modular nature and contains a 
novel memory subsystem named the duplex memory. 
Directions of further researches on program structur
ing and expansion of the model architecture are also 
indicated. 

INTRODUCTION 

Computing system reliability is a function of both 
hardware reliability and software reliability. Hard
ware failures occur due to physical component faults 
(i.e., material characteristics) or design errors. The 
former source has been dominating the latter in sig
nificance. Recent advances in hardware component 
technology have substantially reduced the occurrences 
of hardware faults, thus greatly improving hardware 
reliability. On the other hand, all software failures 

413 

are due to design errors. As the size and complexity of 
software subsystems grows steadily, software relia
bility has become a very serious problem and an in
creasingly important factor determining the overall 
system reliability. 

Complete validation, which assures the absolute cor
rectness of a program through verification of its com
plete behavioral characteristics, still remains to be in
feasible with sizable programs.2

,12 On the other hand, 
more popular and pragmatic approaches aiming at 
partial validation with high cost-effectiveness via test
ing cannot, by their nature, insure the absence of er
rors in the program.10.13,16,20,21 The apparent conse
quence is the current practice in which errors remain 
to exist in large programs put into operation. It is 
also this practice that makes software error tolerance 
an important objective besides complete removal of 
software errors at the design stage. 

The concept of failure-tolerant computing i.e., reliable 
computing despite the presence of system component 
failures, was born in the very early days of electronic 
computing.1s ,26 Since then, hardware fault tolerance 
has been a main subject of extensive investiga
tion.1,3,·,25 Redundancy is a fundamental vehicle in 
realizing failure-tolerant computing. A majority of 
previous studies have been centered around the use of 
hardware redundancy and in contrast, very little stud
ies were made on the use of software redundancy. A 
restricted amount of software redundancy has been 
exploited in the form of rollback and recovery defined 
as follows. Let state vector refer to a snapshot of the 
contents of all the variables of the program in execu
tion. Rollback and recovery is a technique of deposit
ing state vectors at several stages in the middle of 
program execution and in case of a system failure, 
resetting the system state by using an old state vector 
and restarting the execution from that stage. How
ever, the way failure detection, state vector saving and 



414 National Computer Conference1 1976 

recovery operations are designed and specified has 
been mostly ad hoc and heuristic. It was only in recent 
years that studies were made on systematic and cost
effective implementation of a rollback and recovery 
schelue.1.5.S.15.1g.22.24 

In case of hardware faults, rollback (possibly com
bined with system reconfiguration using redundant 
hardware components) and re-execution with the 
same program will suffice to get over the situation. 
However, such an approach does not help in case of 
software failures. From the very nature of software 
errors, software error tolerance requires more exten
sive exploitation of redundancy, particularly software 
redundancy which is essentially a design redundancy. 
The method of structuring programs in which software 
redundancy is explicitly incorporated, is generally 
called failure-tolerant programming. It was in recent 
years that software error tolerance became a subject 
of serious studies and research was initiated toward 
the development of structured failure-tolerant pro
gramming techniques. ~.11.14.17 .22.27 

In the next section, a brief overview of those recent 
significant contributions is given. Then some desirable 
directions of extending the state-of-art in failure
tolerant programming, which, we believe, are signifi
cant in real-time computing environments, are pointed 
out. The following section introduces a new approach 
to failure-tolerant programming (termed failure
tolerant parallel programming) devised to be a desir
able extension of the state-of-art, and discusses the 
requirements on the system architecture oriented for 
efficient execution of failure-tolerant parallel programs. 
The following section describes an architecture de
veloped to satisfy the requirements discussed in the 
preceding section. Finally, areas of extension and fur
ther research are disclAssed and then this paper is 
concluded. 

BACKGROUND 

Recent research on failure-tolerant programming 
and software error tolerance made significant con
tributions in the following aspects: 

First, the notion of a failure-tolerant program was 
solidified. A failure-tolerant program is essentially a 
self-checking and recovering program. More specifi
cally, a failure-tolerant program contains specifications 
of the procedures of validating intermediate results at 
various stages during execution and recovering when 
an abnormal condition is detected as a result of the 
check. Thus it consists of two types of program-seg
ments: (1) object segments specifying application
oriented computations, and (2) validation and recov
ery (VR-) segments, each associated with a certain 
object segment and specifying the procedures of vali
dating the results produced by the associated object 
segment and recovering in case of incorrect results. 
Within a failure-tolerant program, powerful facilities 

for validation and recovery can be incorporated in a 
systematic manner to any desirable extent. Here "re
covery" implies not just the repetition of the execution 
with the same object segment (which may have failed 
the vaiidation-test due to the hardware faults or the 
errors contained in it) but rather the provision of a 
set of "alternate" object segments and trials with one 
after another until a certain alternate object segment 
passes the validation test. If all the alternatives fail, 
then either the program cannot be successfully com
pleted or a more global recovery action is incurred, 
provided the failed object segments are nested in an
other object segment and the latter is associated with 
a VR-segment. 

Importance of good structure in failure-tolerant 
programs is evident, since structuring a failure-toler
ant program by introducing VR-segments into a con
ventional program containing only object segments is 
accompanied by an increase in program size and com
plexity. Recognizing this importance, Randell's group 
at the University of Newcastle upon Tyne, England 
developed an experimental scheme called recovery 
block structuring by which validation and recovery 
functions can be embedded, in a well-structured form, 
inside each block in programs written in block-struc
tured languages like ALGOL.1L22 To give some flavor 
to this structuring scheme, the structure of the recov
ery block (Le., the failure-tolerant block) is depicted 
in Figure 1. 

In the diagram, double vertical lines define the bod
ies (Le. scopes) of recovery blocks, while single verti
cal lines define the bodies of primary or alternate ob
ject blocks. The primary object block corresponds 
exactly to the block of the equivalent conventional 

recovery block F 

acceptance test VR 

primary object block 

[ block-body 

alternate object block 

[ block-body 

alternate object block 

[blOCk-bOdY 

o 
n 

Figure 1-A structural model of the recovery block developed in 
References 14 and 22 



(ALGOL-like) program and is a kind of an object seg
ment. The acceptance test is executed on exit from an 
object block to confirm that the object block has per
formed acceptably. If confirmed, the control exits from 
the recovery block. Thus the acceptance test is a kind 
of a VR-segment. If the result produced by an object 
block is determined to be unacceptable, the next alter
nate object block is entered and is required to perform 
the objective operation in a different way or to perform 
some alternate action acceptable to the program as a 
whole. The acceptance test is then repeated. 

The following aspects of recovery block structuring 
are rather fundamental and may be found, possibly in 
different formats, in any structured approach to the 
failure-tolerant programming. 

(1) The primary or alternate object blocks can con
tain, nested within themselves, further recovery blocks. 
(2) When an alternate object block needs to be en
tered after the result of the preceding object block 
fails the acceptance test, the system state must be re
stored to the one current just before entry to the 
primary object block. 
(3) Execution of the acceptance test upon exit from 
an object block generally requires the reference to 
both the original values and the modified values of the 
variables non-local to the object block. 
(4) It is not necessary that every block in a block
structured failure-tolerant program be a recovery 
block. 

Second, a technical basis was established for reduc
ing the overhead involved in saving a state vector on 
entry to each object segment and resetting the system 
state by using a saved state vector during recovery. 
The overhead exists in two forms. One is the processor 
time spent for those activities and the other is the 
store space occupied by saved state vectors. A useful 
property which can be advantageously exploited for 
overhead reduction is that the variables local to the ob
ject segment are irrelevant to the recovery and in many 
cases, only a few of the non-local variables are modified 
by the object segment. 

Based on this, Randell's group developed a scheme 
for state vector saving and system state resetting, 
called a recursi1.:e cache mechanism, to support execu
tion of programs structured by the scheme of recovery 
block structuring. I I The essence of this scheme is to 
save the original value of each non-local variable to
gether with its name (i.e., its logical address) right 
before the variable is modified for the first time in a 
new object block. Thus state vectors are saved in com
pact forms. It is apparently necessary to detect, at 
run-time, whether an assignment to a non-local vari
able is the first to have been made to that variable 
within the current block. This capability is provided 
by the flag attached to each non-local variable. Again, 
to give some flavor to this mechanism, an example of 
the recursive cache is shown in Figure 2. 

Failure-Tolerant Parallel Programming 415 

declare Xl,X2 

redovery block A 

Ir acceptance test LOGICAL EXPRESSION 1 

II primary object block 0 Al 

recovery block B i
de clare Yl, Y2, Y3 

r acceptance LOGICAL EXPRESSION 2 

II II PT::r=!e~ block OBI 
\I 

l ~ altirnate object block °B2 

l allfte object block ° A2 

(a) 

value tag 

Z 4 1- stack marks 

Y3 3 
set on entry 
to recovery ~ 

Y2 5 * block B 

Yl 1 

X21 8 * I stack mark set 

Xll7 * I 
on entry to 
recovery 
block A 

previous 
value 

2 

8 

6 

9 

logical 
address 

X2 

Xl 

Y2 

Xl 

main stack cache stack 

(b) 

Figure 2-(a) A program structured by the recovery block 
structuring (b) A snapshot of the recursive cache during 

execution of (a) 

Figure 2 (a) shows a failure-tolerant program struc
tured by the recovery block structuring scheme. Fig
ure 2 (b) shows a snapshot of the recursive cache taken 
when primary object block OBI is in the middle of its 
execution. There are two stacks, the main stack and 
the cache stack. The cache stack is also divided into 
regions, one for each nested recovery block in "active" 
state. The top region of the cache stack in Figure 2 (b) 
contains previous values of non-local variables together 
with their names i.e., Y2, Xl, X2, which have been 
modified by execution of the current object block OBI. 
The flags attached to those non-local variables in the 
main stack are set accordingly. Similarly, the bottom 
region of the cache stack contains the previous value 
of non-local variable Xl which had been modified by 
execution of object block OM before Om was entered. 
If the result produced by execution of Om fails the ac
ceptance test (LOGICAL EXPRESSION 2), then the 
top region of the cache stack can be used to reset the 



416 N ati.onal Computer Conference, 1976 

content of the main stack to the one current before 
entry to recovery block B. If it passes the test, the top 
region is merged into the bottom region of the cache 
stack so that the result will contain previous values of 
those 'variables '~vhich are non-local to object block 0 Al 

and have been modified since OAt was entered. Thus 
the result will be a single region containing (9, Xl) 
and (2, X2). Flags in the main stack are also adj usted 
such that only flags of Xl and X2 be set. Therefore, the 
combination of the main and cache stacks contain in
formation on the basis of which several old state vec
tors can be reconstructed. 

This is perhaps an oversimplified account of recent 
developments. Yet it is intended to provide all the es
sential backgrounds for clarifying main departures of 
our works presented in the rest of this paper. For 
more information on the schemes described in this sec
tion, readers are of course referred to their original 
reports. H ,22 

DESIRABLE EXTENSIONS OF THE STATE-OF
ART IN FAILURE-TOLERANT PROGRAMMING 

On the basis of recent works in failure-tolerant pro
gramming, particularly those introduced in the pre
ceding section, various extensions can be clearly envi
sioned. Among many desirable extensions, the following 
ones are considered to be of great significance. 

First, one problem in failure-tolerant programming, 
which could be particularly serious in real-time com
puting environments, is the program execution time 
increase due to incorporation of VR-segments. In most 
of the previous approaches including the recovery 
block structuring and recursive cache schemes intro
duced in the preceding section, validation and saving 
01 state vectors tul1y contribute to the increase of the 
program execution time. Consequently, when any non
trivial validation is employed or large numbers of 
non-local variables are modified during execution of 
object segments, the program execution time, even in 
the case of normal failure-free operation, could very 
well exceed the tolerable limit in real-time applica
tions. It is indeed expected that the VR-segment will 
be frequently a quite complex program-segment. Even 
in the recovery block structuring scheme in which only 
a restricted form of a VR-segment i.e. a logical ex
pression is allowed for the sake of reducing error
proneness of the VR-segment, a provision has been 
made to allow procedure calls within acceptance tests 
(i.e., logical expressions) . H 

Second, the rationale underlying the restriction of 
the acceptance test to a logical expression is considered 
a perfectly legitimate one. Yet the logical expression 
is considered an excessively restrictive form of a VR
segment in many environments. For instance, it may 
be desirable to explicitly specify in the VR-segment 
which alternate object segment, among multiple alter
nates, is to be tried next in each case of recovery, rather 

than always letting the system select the next alternate 
obj ect segment randomly or in the order alternates 
are located in the program text. It may also be desir
able to immediately revert to a global recovery if a 
certain erroneous condition is detected by execution of 
a VR-segment, instead of retrying with an alternate. 
That is, allowance of more flexible structures in failure
tolerant programs may be desirable. Furthermore, our 
approach toward the first desirable extension men
tioned above i.e., execution of VR-segments with mini
mal increase in the overall program execution time, 
favors more flexibility in structuring failure-tolerant 
programs. This will become evident in the next section. 

CONCEPT OF FAILURE-TOLERANT PARALLEL 
PROGRAMMING AND REQUIREMENTS ON 
THE SUPPORTING SYSTEM ARCHITECTURE 

Our main concern in this paper is with the first de
sirable extension mentioned in the preceding section, 
that is, incorporation of VR-segments with minimal 
increase of program execution time. 

The fundamental approach we have adopted is to 
maximally overlap execution of object segments with 
execution of VR-segments. Since the VR-segment spe
cifies manipulation on the results produced by its asso
ciated object segment, dependency of the former for 
its initiation on the completion of the latter is inherent. 
However, it is possible to execute the VR-segment as
sociated with an object segment concurrently with the 
successor object segment(s). Figure 3 illustrates this 
concept. There VR-segment VR2 can be initiated only 
after completion of the correspondent object segment 
O2 and VR-segment VR1, but it may be executed con
currently with object segments 0:1, 0 4 , etc. In an ideal 
situation where execution of VR-segments is fully 
overlapped with execution of object segments, the 
amount of increase in program execution time will be 
the time required for execution of the last VR-segment 
(e.g., VRll in Figure 3) since it is the only VR-segment 
which cannot be executed in overlap with object 
segments. 

A failure-tolerant program in which computational 
parallelism, especially parallelism between application
oriented computations and redundant computations for 
validation and recovery, is explicitly indicated, is called 
a failure-tolerant parallel program. That is, the main 
type of parallelism which characterizes a failure-toler
ant parallel program is the one existent between object 
segments and VR-segments. 

This approach requires a new method of structuring 
a failure-tolerant program. The major departure of a 
newly required structuring method from the previously 
developed ones is in specification of the control struc
ture among program-segments. In addition to inherent 
dependency of VR-segments on their correspondent ob
ject segments, dependency of object segments on VR
segments may also be specified in a failure-tolerant 



( 
I 

The section I 
specifying 
validation 
and recovery 
operations 

~05 \ 

Va, ; j 

The section 
specifying 
application 
oriented 
computations 

1\ 

l ~
1 On fo;l *~~~::: ~.~C::lilY 

Yesents a prirhary 
object se.gment and several 

VR C\ alternates. 
n ~ :B~gm~i 

~ ~ : dependency 
[RETURN] 

e.g. VR2 can be initiated only after completion of 02 and Bl' but 

it may be executed concurrently with 0 3, 04' -----. 

Figure 3-A simple example of a failure-tolerant parallel 
program 

parallel program. An example of such a situation is 
when a certain object segment specifies a critical op
eration such as ordering an emergency action, erasing 
a secret file, etc. In such a case it is desirable to sus
pend the execution of the object segment until all the 
VR-segments corresponding to its predecessor object 
segments have been verified. Thus critical operations 
can be controlled to occur reliably. This clearly favors, 
if not requires, the second desirable extension discussed 
in the preceding section i.e., more flexibility in struc
turing VR-segments and overall failure-tolerant pro
grams. Yet such flexibility can be obtained without 
sacrificing most desirable structuring principles (or 
strategies) underlying the developed structuring 
schemes, including the recovery block structuring 
scheme. This aspect will be discussed later. 

On the other hand, the failure-tolerant parallel pro
gramming imposes the following requirements on the 
supporting system architecture i.e., the architecture of 
a system capable of efficient execution of failure-toler
ant parallel programs. 

First and the most obvious of all, the system must 
contain at least two processors, one for execution of 
object segments, called the object p1'OceSS01' and the 
other for execution of VR-segments, called the VR
processor. 

Second, the state vector at the completion of an ob
ject segment is an input data not only to the successor 
object segment but also to the associated VR-segment. 
In the rest of this paper, a state vector refers to a 

Failure-Tolerant Parallel Programming 417 

snapshot of all the variabies appearing in object seg
ments, not including local variables defined in VR
segments, taken at one moment. Furthermore, the 
VR-segment requires the input state vector undestroyed 
until it no longer needs to examine it, while the suc
cessor object segment, by nature, continuously changes 
it into the up-to-date one. It is thus necessary to cre
ate a "copy" of the state vector current at the end of 
the execution of an object segment for exclusive use 
by the VR-proeessor executing the associated VR
segment. Here the process of creating a copy must 
cause no or little delay in executing object segments. 
The store space containing copies of state vectors must 
also be minimized. If either execution time or store 
space exceeds the tolerable limit, the objective of fail
ure-tolerant parallel programming is defeated. This re
quires a new store management scheme sUbstantially 
different from the previously developed ones. This 
point will become clearer when we propose one suitable 
scheme in the next section. 

Third, if execution of VR-segments lags much be
hind execution of object segments, there will be accumu
lated a large number of unprocessed copies of state 
vectors. Thus when all the available store space runs 
out, the object processor must be suspended until the 
VR-processor catches up. In order to avoid this unde
sirable situation, execution of VR-segments must be 
speedy. 

A MODEL ARCHITECTURE SUPPORTING 
F AlLURE-TOLERANT PARALLEL 
PROGRAMMING 

In this section we describe a system architecture 
oriented for efficient execution of failure-tolerant par
allel programs. We call it a model architecture since it 
is of highly general nature and thus is specified at an 
abstract level. Yet it is expected that elaboration of 
the architecture into a specific working system will 
encounter no new logical problems of fundamental 
nature. 

The store management scheme 

Potential power of failure-tolerant parallel pro
grams cannot be realized without accompanying the 
additional cost of the supporting system architecture. 
The additional cost is paid in the forms of both proc
essor redundancy and store redundancy. Since the ob
ject processor runs concurrently with the VR-proces
sor, memory conflicts must be carefully avoided. This 
rules out the feasibility of having a single state vector 
or its portion shared by both processors. Thus each 
processor owns a region of the store during execution 
of a failure-tolerant parallel program. 

The region of the store used by the object processor 
is called the main 'Working store, while the region of 



418 National Computer Conference, 1976 

the store used by the VR-processor is called the VR
sto1'e. The VR-store contains copies of state vectors 
including the up-to-date one plus possibly more than 
one old one. This, of course, does not mean that the 
VR-store contains complete duplicates of several state 
vectors. Let Si, Si+l, - - - - - -, Si+j denote a (chronologi
cal) sequence of state vectors that can be reconstructed 
from the content of the VR-store. Then the VR-store 
actually contains one complete copy of Si (Le., the old
est reconstructable one) and only the differences be
tween pairs of adjacent state vectors in the sequence 
Le. Si+l - Sb Si+2 - Si+l, - - - - - - -, Si+j - Si+j-1' 

More specifically, as the object processor executes 
each object segment, it produces the execution image 
which consists of the values of variables assigned dur
ing execution of that object segment. If a variable is 
assigned several times during execution of the object 
segment, only the latest assigned value is contained in 
the execution image. The execution image produced 
on completion of an object segment represents the dif
ference between the state vector current right before 
entry to the object segment and the up-to-date state 
vector (Le. the one current on completion of the object 
segment). Each execution image is stored in a segment 
of the VR-store called a VR-store-segment. Each exe
cution image is examined by the VR-processor to de
termine the acceptability of the result produced by 
execution of the object segment. 

The execution image of an object segment consists of 
values of both local variables and non-local variables. 
Thus each VR-store-segment consists of two sections, 
one for local variables and the other for non-local varia
bles. On entry to each object segment, memory space 
is allocated for the segment of the main working store 
containing the set of local variables defined within the 
ubjed 8eglnent. At DietL litue, Lhe ::)etme ~l:te uf memury 
space is also allocated for the section of the VR-store
segment containing (a copy of) the set of local vari
ables. However, store space for non-local variables is 
not entirely duplicated. Instead, the section of the 
execution image containing non-local variables is writ
ten in the form of a table in which each entry consists 
of the logical address and the new value of a non-local 
variable. The idea is to take advantage of the useful 
property that in many cases, only a few of the non
local variables are modified by an object segment, while 
the total number of non-local variables defined may be 
very large. Thus the table representation leads to a 
highly compact form of the non-local variable section 
of the execution image. 

As a simple example, consider a block-structured 
program augmented with VR-segments in Figure 4 (a). 
Figure 4 (b) shows snapshots of the main working 
store i.e. the stack used during execution of object seg
ments in the program. In Figure 4 ( c) VR-store
segment 1 (or 2, 3, 4, 5) is used to contain the execu
tion image of object segment 0 1 (or O2, 0 3, 0 4 , 0 5 ). 

Each VR-store-segment except VR-store-segment 1 

of: BEGIN allocate store space for 0 1 & VRI 

O2 :fEGIN "°2 & VR2 

°3 :( ~~~~ "°3 & VR3 
_ - END 

k" - - - - - .\-04 :( ~~~~ 04 & VR4 VR3 :/ B_~_~IN __ 
\ __ -' END 
END .. ___ - - - - - _ .END 

VR4 :(~~_~~ ••. - -°5 : BEGIN 05 & VR5 
END • • ( ------

Jc - _ END 

VR2 =t~:~ At" __ • - • - - .-::--------

VR5 :(B_E __ G_IN__ *** Each "0. : BEGIN --- END" 
representJ a primary object segment 

END plus several alternate object segments. 

(a) 

Figure 4-(a) A failure-tolerant pal'allel program (b) Snap
shots of the mail working store during execution (c) A 

snapshot of the VR-store during execution 

consists of two sections, one for local variables and the 
other for a table holding newly assigned values of non
local variables and their logical addresses. Each VR
store-segment is created on entry of the object proces
sor to the correspondent object segment. 

At the beginning of VR-segment VRg , VR-store
segment 3 contains the execution image of object seg
ment 0 3 and the object processor has probably entered 
into 0 4 , The execution image in VR-store-segment 3 is 
examined by execution of VR3 • When it has been veri
fied or judged to be acceptable, the local variable sec
tion is discarded and the non-local variable section is 
merged into VR-store-segment 2. If two different val
ues of the same variable were contained in both VR
store-segments 3 and 2, the value in VR-store-segment 
2 is the older one and replaced by the value in VR
store-segment 3. At the beginning of VR4 , VR-store
segment 3 does not exist. Then it is no longer possible 
to reconstruct the state vector which was current right 
before entry to 0:1• There will be no need to recon
struct that state vector since VR~ has been successfully 
completed. 

Similarly, upon successful completion of VR2, the 
values of non-local variables in VR-store-segment 2 are 
absorbed into VR-store-segment 1. At the beginning 



of VRG, VR-store-segments 2, 3 and 4 do not exist. 
Then the state vector which was current at the initia
tion of O2 can no longer be reconstructed. 

Here one subtle problem is noteworthy. Consider a 
simple program in Figure 5 (a). Since there are two 
object segments (thus two VR-segments), there are 
two VR-store-segments (1 and 3). The body of object 
segment 1 consists of the upper section, 0 3 and the 
lower section. During execution of the upper section, 
+ha aV"an"+;,,n ;YV>"' ..... a u7;11 ha ",+n ... arl ;n 1T"R_"'+n ... a_"'a ..... YV>an+ 
.... ~.I. ...... '-'~'-'VU."".LV.J..1. .1...1...1..1.'-406"'" t'Y.J..J..L w ...... IVlI..IlJ,L ...... "'" ..1....1.. ...... ..L.,,-uvv ..... ""'-;.J'"'b.J..L.&. .......... .LU 

1. At the completion of 0 3, VR-store-segment 3 con
tains the execution image and the VR-processor may 
start examining it. Then the object processor executes 
the lower section of 0 1 and it stores the execution im-

01 : BEGlli 

°3 r~~~ 
.. _ END 

VR .. 
3 

VR ,# 

1 

.. -

. END 

(a) 

local 'V"ar. _I!~~~l_~:: _ J 
VR-store-segment 1 

- .... 

VR --
3 

(b) 

01 : BEGIN 

- - -

02 : [BEGIN 

.. __ _ END 

03 : [BEGIN 

__ - E:t\1J) 

04 : [BEGIN 

__ . END 
VR --

4 
- - - .END 

VR -
1 

(c) 

!non-local varJ 

VR-store-segment 3 

Figure 5-(a) An unconstrained program (b) A snapshot of 
the VR-stol'e (c) An equivalent program satisfying the 

constraint 

Failure-Tolerant Parallel Programming 419 

age into VR-store-segment 1 which already contains 
the execution image of the upper section. Some values 
in VR-store-segment 1 are now the ones assigned by 
execution of the upper section, while others are the 
ones assigned by execution of the lower section. When 
the VR-processor has successfully compieted VR3 and 
needs to merge the verified execution image into VR
store-segment 1, it is not possible to tell for each vari
able whether the value in VR-store-segment 1 is the 
nlrla ... nnt:> tn~n tnt:> "nt:> in VR_'lt"rt:>_'lt:><TTYlt:>nt ~ "' .... ""' ........... _.&..L_ v ...... _ ........ "' .... __ .1. ... _ .......... T ...... "'-'''' ................ --.0 ...................... "" __ 

This problem can be resolved by imposing an addi
tional constraint on program structuring. That is, the 
upper section and the lower section of 0 1 in Figure 
5 (a) must be changed into O2 and 0 4 , respectively, 
nested within 0 1 • This results in Figure 5 (C). Then 
there will be additional VR-store-segments (2 and 4) 
created during execution, and the above problem disap
pears. Therefore, the constraint is that either each ob
ject segment contains no other object segments nested 
in it or its entire body must be composed of other object 
segments nested in it. This constraint is incorporated 
only for secure allocation of the VR-store. Thus the 
programmer is not required to prepare new VR-seg
ments VRz and VR4 • 

If there are no explicit VR-segments associated with 
some object segments, the system will insert dummy 
VR-segments. Or a variation of the above solution is 
to make the system responsible for restructuring un
constrained programs (e.g., Figure 5 (a» into the 
ones satisfying the constraint (e.g., Figure 5 (c) ), 
rather than imposing the constraint on the program
mer. In any case, the solution does not appear to be a 
costly one. 

The model system structure 

The store management scheme described above will 
work (almost) perfectly if execution images can be 
created in the VR-store without causing any delay in 
execution of object segments. As far as the local vari
able section of the VR-store is concerned, this condi
tion can be met without employing unconventional 
hardware components. Since the same size of the store
segment for local variables is allocated in both the main 
working store and the VR-store, the only requirement 
is to set proper base addresses for both store-segments 
and, for each assignment, write the same value in two 
locations of the same relative address, one in the main 
working store and the other in the VR-store. 

However, the situation is different in creating the 
non-local variable section of the execution image. As 
described before, the non-local variable section is writ
ten in the form of a table. Thus whenever a non-local 
variable is assigned a new value during execution of an 
object segment, the value is written into the corre
spondent location in the main working store and at the 
same time, the value together with the logical address 
is written into an entry of a table in the VR-store. 



420 National Computer Conference, 1976 

If the assignment to a non-local variable is the first 
to have been made to that variable within the current 
object segment, then the new value and the logical ad
dress of that variable are written into the next avail
able (empty) entry of the table in the VR-store. If it 
is not the first, there are two choices. One is to write 
in the same manner as above i.e. write into a new entry 
of the table. The other is to locate the entry of the 
table containing the previous value and the logical ad
dress of the non-local variable and then replace the 
previous value with the newly assigned one. After all, 
only the latest assigned values of variables need to be 
contained in the execution image. The former approach 
leads to the larger table-size than the one resulting 
from the latter approach. In addition, when or before 
the VR-processor executes the VR-segment to validate 
the table, it must discard the entry (of the table) con
taining the older value of each variable for which there 
is another entry containing the later assigned value. 
The latter approach leads to the compact table but it 
requires a special hardware support in order not to 
degrade the performance of the object processor. The 
special hardware requirement can be met by incorpo
ration of the content-addressable (i.e., associative) 
memory module whose access time closely matches the 
one of the location-addressed memory module used in 
the system. In addition, incorporation of such a mem
ory module significantly enhances the performance of 
the VR-processor in executing VR-segments. In view 
of the decreasing trend of the hardware cost and the 
performance advantage, the latter approach is con
sidered favorable. 

It is also necessary to attach a tag to the logical ad
dress of each variable which indicates whether the 
variable is a local one or a non-local one. 

The structure of the model system in which all the 
above decisions are reflected, is depicted in Figure 6. 
The model system contains multiple central processors 
(CP's) and the memory subsystem named the duplex 
memory. 

Each CP may function as an object processor, a VR
processor, a supervisory processor or a spare at one 
time. Employment of general purpose CP's is moti
vated mainly by the consideration of the flexibility in 
system reconfiguration. Yet this is not an absolute ne
cessity and can be compromised for employment of 
processors fixed for a specific function if other factors 
such as cost and performance dictate so. 

The duplex memory contains two types of memory 
modules, location-addressed memory modules and con
tent-addressable memory modules. Location-addressed 
memory modules are further divided into two sets. One 
set of modules provides the main working store for the 
object processor. The other set, together with the set 
of content-addressable memory modules, provides the 
VR-store. Thus the local variable section of each exe
cution image is contained in location-addressed mem
ory modules, while the non-local variable section is 

r ----. I/O processors 

CP 

VR-segme t 

execution 

read/write 

0---------0 0-----0 0-----0 
Location-addressed 
memory modules 

~ 
working store for 
execution of object 

Location-addressed Content-addressable 
memory modules memory modules ---------VR-store 

segments ------------1 
I/O processors 

Figure 6-A system architecture based on multiple CP's and 
the duplex memory 

contained in content-addressable memory modules. 
That is, whenever the object processor issues a "write" 
('()mm~nrl) thf.' V~hlf.' j~ writtf.'Tl into hKlO lo('~tion<:: <::j
multaneously, one in the main working store and the 
other in the VR-store. The latter location is in a loca
tion-addressed memory module if the tag attached to 
its logical address indicates "local" or in a content
addressable memory module if the tag indicates "non
local." 

The VR-processor never accesses the main working 
store except during recovery. The object processor 
never reads from the VR-store. It is a natural property 
of this duplex memory that the partition of location
addressed memory modules consisting of two disjoint 
sets, (one providing the main working store and the 
other providing the local variable section of the VR
store) may change dynamically. 

There is another important reason for employing 
content-addressable memory modules. Execution of a 
VR-segment generally involves not only examination 
of the correspondent execution image but also refer
ences to other ancestor VR-store-segments i.e., ones 
created prior to the VR-store-segment containing the 
correspondent execution image. For instance, when 
the VR-processor executes VR-segment VR4 , in Figure 
4, it examines the content of the correspondent VR-



store-segment 4 and it may access ancestor VR-store
segments 1 and 2. References to ancestor VR-store
segments are for obtaining the previous values of non
local variables (Le., variables non-local to the object 
segment associated with the VR-segment currently in 
execution) . 

It is frequently required for each non-local variable 
to obtain the latest assigned value among all of its 
values contained in ancestor VR-store-segments. The 
desired value may· exist in the local variable section of 
an ancestor VR-store-segment. In this case, the vari
able is defined within the object segment which created 
the ancestor VR-store-segment. The desired location 
(which is in a location-addressed memory module) is 
exactly the one to which the logical address of the 
variable is mapped, and thus it can be directly accessed. 

On the other hand, the desired value may exist in the 
non-local variable section of an ancestor VR-store
segment. For instance, assume in Figure 4 that vari
able Z is defined in object segment 0 1 , initialized with 
"100," assigned "200" by execution of O~ and assigned 
"300" by execution of 0 4 • Let us also assume that the 
VR-processor is currently executing VR4 and it needs 
to obtain the value of Z assigned the latest before the 
object processor entered into 0 4 • The desired value 
is "200" and it is contained in the non-local variable 
section of VR-store-segment 2 since VR~ has already 
been successfully completed. The non-local variable 
section of VR-store-segment 2 needs to be searched in 
order to get the desired value "200." The problem here 
is a little complex since if Z has not been assigned a 
value during execution of O~, the desired value is "100" 
contained in the local variable section of VR-store
segment 1. It is not known in advance which VR-store
segment, between 1 and 2, contains the desired value. 
It is thus necessary to check VR-store-segment 2 first 
and if its non-local variable section does not contain 
Z, then the desired value is read from the location, in 
the local variable section of VR-store-segment 1, to 
which the logical address of Z is mapped. 

In general, it is necessary to search ancestor VR
store-segments in the increasing order of their ages, 
until either an ancestor containing the variable in its 
non-local variable section is found or the ancestor ad
dressed by a portion of the logical addresses of the 
variable is reached. Here employment of content
addressable memory modules for non-local variable 
sections of execution images is the key to the high 
speed of search. It enables simultaneous examination 
of non-local variable sections of all the "ancestor VR
store-segments" which are "descendants" of the one 
containing the variable in its local variable section. 
When the VR-processor issues a command for fetching 
the latest assigned value of a non-local variable among 
its values contained in ancestor VR-store-segments, one 
location-addressed memory module and possibly sev
eral content-addressable memory modules are simulta-

Failure-Tolerant Parallel Programming 421 

neously accessed. The location-addressed memory 
module is the one addressed by a portion of the logical 
address of the variable. The content-addressable mem
ory modules are the ones containing the non-local vari
able sections of those ancestor VR-store-segments 
which are descendants of the one whose local variable 
section is mapped to the above location-addressed mem
ory module. Selection of the latest assigned value 
among all the values of the variable retrieved from 
those memory modules is also a function of the duplex 
memory. With this duplex memory, the VR-processor 
can read or update any value contained in the VR-store 
with the amount of time close to one content-address
able memory cycle. 

Resetting the system state when an execution image 
is evaluated to be unacceptable, is also speedy with this 
duplex memory. It is because the resetting process in
volves basically fetching the previous value of each 
non-local variable which has been assigned another 
value since the object processor entered into the object 
segment whose execution image turned out to be un
acceptable, and then storing it into the location of the 
variable in the main working store. Each non-local 
variable which needs to be restored in the main work
ing store to its previous value is identified by examin
ing the non-local variable sections of the execution 
images produced since the object processor entered 
into the object segment whose execution image was 
rejected. 

Local variable sections of VR-store-segments are 
mapped to location-addressed memory modules in the 
same manner as the main working store is mapped to 
location-addressed memory modules. For some VR
segments, each of their non-local variable sections may 
be mapped to an independent content-addressable 
memory module. For others, their non-local variable 
sections may co-exist inside the common content
addressable memory module, provided some form of an 
identification code is assigned to each section. The 
high speed requirement limits the size of each content
addressable memory module to a small one. It may 
sometimes be necessary to use more than one content
addressable memory module to hold the non-local 
variable section of a VR-store-segment. 

It is believed that this architecture satisfactorily 
meets all the requirements mentioned before. Creating 
a copy of a state vector in this system does not incur 
any delay in processing object segments. The memory 
interference between the CP's executing object seg
ments and VR-segments is absent or negligible. Em
ployment of multiple content-addressable memory mod
ules is believed to be an effective means of achieving 
the goals of low average access time and high store 
utilization. However, successful implementation of a 
system requires careful selection of design parameters 
concerning memory management. 



422 National Computer Conference, 1976 

AREAS OF EXTENSION AND FURTHER 
RESEARCH 

The preceding sections dealt with the concept of 
failure-tolerant parallel programming and effective 
solutions to most fundamental problems involved in 
realizing its potential power. The model architecture 
devised for efficient execution of failure-tolerant paral
lel programs was specified at a highly abstract level in 
order to preserve simplicity and generality. It incor
porated a minimal amount of facility. Naturally, the 
model architecture can be expanded in many directions 
to possess additional capabilities by incorporating 
various proven concepts and schemes. In addition, in 
order to put failure-tolerant parallel programming in 
general use, various program design and engineering 
tools need to be developed. Among numerous desirable 
extensions and research problems, only a few of the 
representative ones are listed below. 

First, development of a language supporting failure
tolerant parallel programming is an immediate require
ment. Such a language should contain more facilities 
for control structuring and data specification than the 
ones in conventional programming languages. No use
ful principles employed in other failure-tolerant pro
gram structuring schemes such as recovery block 
structuring,14 need to be rejected in structuring failure
tolerant parallel programs. In view of the strong rela
tionship between each object segment and the asso
ciated VR-segment, it is almost an indispensable 
requirement to put each pair of segments in a com
partment in the program text. Such a compartment is 
called a failure-tolerant segment. More specifically, 
each VR-segment is directly dependent upon only one 
object segment in a failure-tolerant parallel program. 
Furthermore, the dependency structure among V R
segments is always the same as the dependency struc
ture among object segments. The latter dictates the 
former. Thus the dependency among VR-segments as 
well as the dependency of a VR-segment on the asso
ciated object segment, need not be explicitly specified 
and should become a part of the definition of the 
failure-tolerant segment. 

On the other hand, each object segment may be 
dependent on zero or more VR-segments which belong 
to other failure-tolerant segments. This type of depen
dency needs to be explicitly specified. This and other 
considerations mentioned in the previous section on 
desirable extensions of the state-of-art in failure
tolerant programming, led to the formulation of the 
model of the failure-tolerant segment depicted in Fig
ure7. 

The model is a generalization of the model of the 
recovery block depicted in Figure 1. It consists of the 
segment-head, the primary object segment, several 
alternate object segments and the VR-segment. The 
segment-head specifies the prerequisite condition for 
entry into the (failure.,.tolerant) segment e.g., depen-

failure
tolerant 
segment 

F 

segment-head H : prerequisites for entry, 
initial priority of alternates, 
selection of built-in diagnoses, 

...-, -------...,1 specification of successors, etc I primary ;:ject segment I 
alternate object segment 

°2 

alternate object segment 

° n 

VR-segment VR : validation, system reconfiguration 
and recovery, state vector book-

= VRl , VR2, ---, VRn} keeping, assignment of priorities 
/ to alternates, etc 

Figure 7-A structural model of a failure-tolerant segment 

dency on the completion of VR-segments belonging to 
other failure-tolerant segments. It specifies the suc
cessor failure-tolerant segments i.e. the ones whose 
initiation is dependent upon successful completion of 
the VR-segment. It also contains the declaration of the 
initial "execution priorities" of alternate object seg
ments. It may also specify the types of abnormal con
ditions which may be recognized by the system during 
execution of object segments and the actions to be 
taken on occurrence of each condition e.g., "enter into 
the VR-segment," "record the occurrence and con
tinue," etc. The VR-segment specifies the procedures 
of validation, VR-store management, and recovery in
cluding system reconfiguration and assignment of exe
cution priorities to alternate object segments. The 
primarY or alternate obiect segmentg can contain. 
nested within themselves, further failure-tolerant seg
ments. However, the structuring rule illustrated in 
Figure 5 should become a part of the definition of the 
failure-tolerant segment. 

Therefore, programming of the segment-head re
quires some special language primitives including 
JOIN -like primitive9 used for specifying the pre
requisite condition for entry, FORK-like primitive9 

for specifying the successors, ones for specifying types 
of abnormal conditions and appropriate treatments, 
etc. Programming of the VR-segment also requires 
some special language primitives such as ones for 
referring to the old values of variables, ones for sys
tem reconfiguration, etc. Development of a language 
containing all the facilities mentioned above is urgent. 

Second, if parallelism among object segments is to be 
exploited, the model architecture and the program 
structuring scheme described so far needs to be general
ized accordingly. Such a generalization is expected to 
be a gigantic task requiring a great deal of research. 

Third, it is often necessary to periodically save veri
fied state vectors into the file store either as the spon
taneous action of the system or as controlled by the 



failure-tolerant program. Incorporation of an efficient 
filing capability into the model architecture is an 
essential requirement. 

Fourth, in view of the high cost of a sizable content
addressable memory, it seems both necessary and 
desirable to use location-addressed modules as back-up 
memory when a certain program requires more space 
than that provided by available content-addressable 
modules. That is, additional content-addressable store 
space can be simulated on the basis of location-
addressed modules and store structuring techniques 
such as hash-coding. Incorporation of the virtual 
memory into the model architecture will also be an 
interesting research subject. 

CONCLUSION 

The concept of failure-tolerant parallel programming 
was originated with the objective of utilizing extensive 
validation and recovery facilities at run-time without 
disturbing main-stream computation. The model archi
tecture presented is believed to be a satisfactory solu
tion to the efficient execution of failure-tolerant 
parallel programs. As further researches on the sub
jects mentioned in the preceding section progress, 
more insights will hopefully be gained into the po
tential power of failure-tolerant parallel programming 
and the cost-effective implementation of systems based 
on the model architecture. 

ACKNOWLEDGMENT 

This work was sponsored in part by the Joint Service 
Electronics Program under Air Force Contract 
F44620-71-C-0067 and in part by the National Science 
Foundation under Grant GJ-35833. 

REFERENCES 

1. Avizienis, A. et aI., "The STAR (Self-testing and Repair
ing) Computers-An Investigation of the Theory and Prac
tice of Fault-Tolerant Computer Design," IEEE Trans. on 
Comp., November 1971, pp. 1312-1320. 

2. Boyer, R. S. et aI., "SELECT-A formal system for testing 
and debugging programs by symbolic execution," Proc. 1975 
Int'l Conf. on Reliable Software, pp. 234-245. 

3. Carter, W. C. and W. G. Bouricius, "A Survey of Fault
Tolerant Computer Architecture and its Evaluation," Com
puter, Jan.-Feb. 1971, pp. 9-16. 

4. Chandy, K. M. and C. V. Ramamoorthy, "Rollback and 
Recovery Strategies for Computer Programs," IEEE Trans. 
on Comp., February 1972, pp. 137-146. 

5. Chandy, K. M. et aI., "Analytic Models for Rollback and 
Recovery Strategies in Data Base Systems," IEEE Trans. 
on Software Engr., March 1975, pp. 100-110. 

Failure-Tolerant Parallel Programming 423 

6. Chandy, K. M., "A Survey of Analytic Models of Rollback 
and Recovery Strategies," Computer, May 1975, pp. 40-47. 

7. Chang, H. Y. et aI., Fault Diagnosis of Digital Systems, 
Wiley-Interscience, 1970. 

8. Connet, J. R. et aI., "Software Defenses in Real-Time Con
trol Systems," Digest of the 1972 Int'l Symp. on Fault
Tolerant Computing, pp. 94-99. 

9. Conway, M., "A Multiprocessor System Design," Proc. 
AFIPS Fall Joint Compo Conf., pp. 139-146. 

10. Dijkstra, E. W., "Structured Programming," in J. N. 
Buxton and B. Randell (eds.), Software Engineering Tech
n.iques, report on a Con!. sponsored by the ~r. .. A.Io.TO Science 
Committee, Rome, Italy, 1969, pp. 84-88. 

]1. Elemendorf, \V. R, "Fault-Tolerant Programming," Digest 
of the 1972 Int'l Symp. on Fault-Tolerant Comp'uting, pp. 
79-83. 

12. Elspas, B. et aI., "An Assessment of Techniques for Proving 
Program Correctness," Computing Surveys, June 1972, pp. 
97-147. 

13. Hetzel, W. C. (ed), Program Test Methods, Prentice-Hall, 
1973. 

14. Horning, J. J. et aI., A Program Structure for Error Detec
tion and Recovery, Lecture notes in Compo Sci. Vol. 16, 
Springer-Verlag, 1974, pp. 177-193. 

15. Kennedy, P. J. and T. M. Quinn, "Recovery Strategies in 
the No.2 Electronic Switching System," Digest of the 1972 
Int'l Symp. on Fault-Tolerant Computing, pp. 165-169. 

16. King, J. C., "A Ne\ ... Approach to Program Testing" Proc. 
1975 Int'l Conf. on Reliable Software, pp. 228-233. 

17. Kopetz, H., "Software Redundancy in Real-Time Systems," 
Proc. IFIP Congress 1974, pp. 182-186. 

18. Pierce, W. H., Failure-Tolerant Computer Design, Academic 
Press, 1965. 

19. Pikner, H., "Programmed Restarts," Proc. Annual ACM 
Conf., 1971, pp. 13-27. 

20. Ramamoorthy, C. V., R C. Cheung and K. H. Kim, "Re
liability and Integrity of Large Computer Programs," 
Lecture notes in Compo Sci., Vol. 12, Springer-Verlag, 1974, 
pp.86-161. 

21. Ramamoorthy, C. V. and K. H. Kim, "Software Monitors 
Aiding Systematic Testing and their Optimal Placement," 
Proc. 1st Nat'l Conf. on Software Engr., pp. 21-26. 

22. Randell, B., "System Structure for Software Fault Toler
ance," IEEE Trans. on Software Engr., June 1975, pp. 220-
232. 

23. Rohr, J. A., "STAREX-Self-Repair Routines: Software 
Recovery in the JPL-STAR Computer," Digest of the 1973 
Int'l Symp. on Fault-Tolerant Computing, pp. 11-16. 

24. Rohr, J. A., System Software for a Fault-Tolerant Digital 
Computer Ph.D. thesis, Dept. of Compo Sci., Univ. of 111. at 
Urbana-Champaign, 1973. 

25. Short, R. A., "The Attainment of Reliable Digital Systems 
Through the Use of Redundancy-A Survey," IEEE Compo 
Group News, March 1968, pp. 2-17. 

26. \T on 1--~ eumann, J., "Probabilistic Logics and the Syntll€sis 
of Reliable Organisms from Unreliable Components," in 
Automata Studies, Annals of Math. No. 34, Princeton Univ. 
Press, 1956, pp. 43-98. 

27. Yau, S. S. and R. C. Cheng, "Design of Self-Checking Soft
ware," Proceedings 1975 International Conference on Reli
able Software, pp. 450-457. 





Strategic pianning for ~IIS-A conceptuai framework 

by EPHRAIM R. McLEAN 
Universiiy of California 
Los Angeles, California 

and 

JOHN V. SODEN 
McKinsey & Company, Inc. 
Los Angeles, California 

ABSTRACT 

Increasingly, Management Information Services 
(MIS) divisions within organizations are becoming 
more centrally involved in the mainstream of corpo
rate activities. MIS projects are becoming more com
plex and expensive; are affecting more aspects of the 
business; and are taking longer to design, develop, and 
install. For these reasons, effective planning for the 
MIS function is felt to be of paramount importance. 

In recognition of this, a conference was held on Plan
ning for MIS in 1974, jointly sponsored by McKinsey 
& Company, Inc., and the Graduate School of Manage
ment at the University of California, Los Angeles 
(UCLA). Attending v:ere MIS executives and practi
tioners from both the public and private sectors. Dur
ing the two days of discussions, a number of conclu
sions were reached which are detailed in this paper. 

Building upon this conference, and on other work of 
the authors, the balance of the paper is devoted to pre
senting a framework for strategic planning for MIS. 
Definitions of key terms are included, as well as a dis
cussion of some common planning pitfalls. Finally, a 
list of questions is given, designed to aid the MIS ex
ecutive in carrying out his own organization's plan
ning effort. 

INTRODUCTION 

Mark Twain's remark about the weather might well be 
applied to MIS planning: "Everyone talks about it, 
but nobody does anything about it." The importance 
of planning for improved managerial effectiveness is 
widely endorsed by practitioners and academics alike. 
In fact, given the accelerating pace of change in almost 
every aspect of the economy, planning is frequently 
touted as the key to success--if not to survival. But as 
with the weather, the gap between interest and achieve
ment in the planning area is great. Faced with the 

425 

pressing problems of day-to-day operations, many MIS 
executives have neither the time nor the inclination to 
invest in planning for the longer term. However, there 
are a number of major organizations here in the 
United States that are doing something about planning; 
in particular, planning for Management Information 
Systems (MIS). This paper is about such efforts. 

The term, "MIS," standing for either management 
information systems or management information ser
vices, is being used increasingly throughout the world 
to refer to that cluster of activities which surround the 
computer and its supporting personnel. However, it is 
more than just the data processing department; for it 
includes the planning, analysis, and design activities-
as well as the operational functions-which are neces
sary for effective computer-based information systems. 
For this reason, many MIS groups go under the broader 
title of "Management Services," incorporating not only 
the computer department but also operations research 
and management science staff specialists. In this pa
per, we will use "MIS" to reflect this broader set of 
activities-computer systems, management services, 
and indeed the organization itself which provides the 
foregoing. 

In addressing the topic of planning for this group 
of activities, it is important to establish a proper per
spective. As will be discussed later, planning can be 
looked at from both its time horizon and its focus. The 
former refers to whether it is short term (one to two 
years), medium term (two to five years), or long term 
(five years or more) ; and the latter, to whether it is 
focusing on strategic, managerial, or operational con
cerns. It is our intention here to concentrate on the 
strategic planning issues. 

The reason for this choice is simple. As the MIS 
function assumes a more central role within organi
zations, it becomes vital that this role be properly 
planned for, so that it will be congruent with that of 
the overall organization. No longer is it feasible-if it 
ever were-to have systems for their own sake. This 



426 National Computer Conference, 1976 

is a luxury no organization can afford. And if MIS is 
to be made responsive to larger corporate objectives, 
strategic long-range planning is essential. 

THE McKINSEY-UCLA CONFERENCE 

In recognition of the importance of this issue, an in
vitational conference was held in 1974 at the Univer
sity of California, Los Angeles (UCLA), sponsored by 
McKinsey & Company, Inc., the management consulting 
firm, and the UCLA Graduate School of Management. 
This working conference was chaired by the authors of 
this paper with the assistance of Professor George A. 
Steiner of UCLA. Some two dozen MIS executives 
from major private and public sector organizations 
participated in the two-day conference. A survey was 
administered to them, focusing on the objectives, de
velopment process, and end products of their individual 
long-range planning efforts. 1 Also, these executives 
participated in extensive discussions regarding various 
aspects of their own planning experience as well as 
preparing summaries of the long-range planning ac
tivities of their own organizations. * 

The theme of the conference was focused on those 
aspects of planning that had to do with the central 
issues of the information services organization itself, as 
opposed to the planning for individual information sys
tems projects. The reasons for this focus were twofold. 
First, we wanted the conference to have a broad man
agerial orientation rather than a technical one. In this 
way, we believed that the results would be of interest 
not only to MIS managers and practitioners but also 
to general corporate executives as well. 

The second reason for our choice was the relatively 
virgin nature of the MIS planning field. Had we chosen 
to look at the planning problems associated with the 
design and installation of specific information systems, 
we would have been addressing an area in which much 
work has already been done, with articles and books on 
project and systems management in abundance. How
ever, the literature on strategic and long-range plan
ning for information services is fairly sparse. ** 

In order to obtain a good cross section of various ap
proaches to planning, the conference participants were 
chosen to represent a wide variety of private compa
nies, as well as government and education enterprises 
at the local, state, and federal levels. The average par
ticipant represented an organization that had annual 
revenues or total budget expenses greater than $1 bil
lion, had an annual MIS budget of over $15 million, 
and had been carrying out a formal MIS long-range 
planning effort for more than three years. These par
ticipants, therefore, represented relatively large, ma-

* These papers, together with other chapters on MIS planning, 
are to be published shortly.2 
** For a few note\vorthy exceptions, see References 3 through 
12. 

ture MIS organizations, experienced in planning for 
the information systems effort. 

The following are the major points which emerged 
from the conference discussions. 

1. There is a growing need for more formal long
range information systems planning as systems 
become more complex, require longer to develop, 
involve multiple functions or departments, cost 
more money, and have greater competitive im
pact. 

2. The benefits from long-range planning-im
proved short-term decision making, enhanced 
communication with both top management and 
user groups, and a firmer grasp on resource com
mitments-generally outweigh the costs of the 
undertaking. 

3. Formal planning approaches range from the 
"controlled reaction" tactics of formally evalu
ating and ranking known project ideas, to the 
strategic "top-down" scanning for high-potential 
application opportunities within the context of 
the overall organization's strategic plan. 

4. The selection of a particular planning approach 
requires a careful balancing of factors such as 
the role and charter of the MIS organization, its 
degree of maturity, and the sophistication of the 
overall company and individual "user" execu
tives. 

5. Success in planning for information systems 
hinges on three factors: 

a. The previous credibility of the MIS group in 
managing new project development and on
going computer operations. 

b. The maturity of the overall organization's 
___ • . . J. .." .. _ ." ... .• J...~ ___ 1 _ _ .1 . _ .. _.! J.1 _ .. 

11le:t11e:tgt::1Ut::HL. VL uct::~,::,t:!.'::I, Vi::U L.i\,;UidL ioY W Hi! L t:-

gards to conducting business planning and 
in making capital allocation decisions. 

c. The choice of a particular MIS planning ap
proach which suits the needs and constraints 
of the particular organization at that point 
in time. 

6. In those organizations most advanced in their 
planning, the MIS executives have become an 
integral part of the management team of their 
organization; and, in these companies, MIS strat
egies have a major impact on, and a correspond
ing interrelationship with, the long-range busi
ness plans of the enterprise. In other words, MIS 
planning is "interactive," not "reactive." 

7. If an MIS organization is relatively underde
veloped in terms of standards, computer opera
tions effectiveness, individual project manage
ment capability, and the like, it would be well 
advised to concentrate on the short term, severely 
limiting concern for the long term until the near
term situation has been substantially improved. 

8. Good formal planning must complement, but can-



not replace, the political sensitivity, entrepre
neurship, conceptual contribution, and basic 
business leadership required of the successful 
MIS executive. 

STRATEGIC AND LONG-RANGE PLANNING 

In addition to the preceding findings, another item 
came to light which is worthy of mention. Because of 
the multi-year planning horizon of most computer-
:related projects, it is easy to equate long-range plan
ning with any planning effort which has a horizon 
greater than one year. And thus, fundamental ques
tions such as "Where is the information services or
ganization going?" and "How is it contributing to the 
overall sucCess of the enterprise 1" become confused 
with "What project should be started next?" and "How 
can the continued development of existing projects be 
more effectively coordinated 1" 

Unfortunately, the term "Long-Range Planning"
which was the title of the conference-does little to 
sharpen this distinction. For some conference partici
pants it meant focusing on the former questions; for 
others, on the latter ones. This dual interpretation be
came evident from both the conference discussions and 

Strategic Planning for MIS 427 

the papers which the participants prepared. It can be 
argued, of course, that both uses of the term are 
equally valid and equally important for the success of 
the information services organization. Certainly, if the 
ongoing operations and project development is not ef
fectively pianned and managed, it does little good to 
speculate on where the organization will be five to 
seven years in the future. More than likely, it will be 
an organization with a new cast of characters! 

Ho,vever, as discussed earlier; we wanted the con
ference to focus on the central issues of setting organi
zational objectives and deciding upon appropriate 
strategies and policies. Thus, it seems in retrospect that 
"Strategic Planning" would have been a more appro
priate title than "Long-Range Planning." 

A STRATEGIC PLANNING FRAMEWORK 

Based upon the discussions of the conference, as well 
as on other research and on the industrial and govern
mental experience of the authors, an MIS strategic 
planning framework has been devised (see Figure 1). 
The left half of the diagram portrays the tasks needed 
to arrive at the MIS objectives, strategies, and policies. 
The right half notes the tasks necessary to accomplish 

~-------------------EXTERNAl ENVIRONMEi\lT--~------------------' 

! 
RE9IJI..TS 
OF - Role or MIS in 
TASK~ Overall 

Organlz8'tlon 
Relative to 
Systems, Services, 
ar.d Users 

OBJECTIVES, STRATEGIES, POLICIES, AND PLANS OF HOST ORGANIZATION 

Opportunities 
and Risks To 
Be Consideroo 

FORMALLY 
ASSESS 

ENVIRON
ME:\IT 

• Statemen-: of 
Obiectives, Strategies. 
Policies, and 
Plans of Host 
Organization 

• New Opportunities 

• :\lew Technology 

• New Systems and/or 

I Services 

• MIS Capability 

• Competitive Threats 

• User Markets Served 

! 
S!.Jbobj~cti\·es, 
General Cours~ 
of Act:on, Ty~c;-s 

Actions Describing Gu:delines To Be I ~~b~~~~~;~~~e:~~1 
Hovv Objectives. U!:ed in C2rrying i To t-.c;li~\i~ Stra!e-Desired Results 

To Be Achieved 

SET 
MIS 

OBJECTIVES 

ca~E6:E::~eVOOHout :::::: -j' 9i~:~:~~i~:GE 
MIS MIS ~;M1S PI..ANNI:\IG 

STRATEGIES ! POLICIES I "'" I ICONCE.f>TUAUj 

-------------.. Strat".;c Fit With 
Overall Ccmpany 

• Information S,stems! 
Services Attributes 

• Growth/Continuity! 
Cont.-ibution 

• User OrlentOJtion 

• Concern for Competition 

• Technology Focus 

• Management Processes 

o Asset Sec".ity 

• Or~~n!~a'tiOf1 
Structure 

• R C'".ou ree A \loca
tion Procedures 

• ~u~ing Criteri~ I 
• Da!:a ~':dn~gcment I 

Str:Jctu"c 

• Vend or Selecti ,m I 
Criter:a I 

• Use of Outside 
Services I 

• Sollinq of ServiC<>5 
to Ou;o;ic:'e f 

• MIS Architec~tJre 
to 1\1eet r- uture 
Host Orgar.iziltion 
n.eds 

• Emerging MIS 
Concepts 

.. Brozd T,!pes of 
F'ot~ntia: Resources 
N~~s 

Goa's, Act;on 
Pricrities. 
Resource Levl3!ls. 
S~;;"dards al"'!tj 
Procedures To 
Achieve Strate;ic 
Objectives 

! 
Performance Targ-ets, 
Tasks, S~hedule< and 
S;Jeciflc ResourC4!! 
R~quirE:~ents To 
Achi2ve Stra~eg:c 
Objectives 

. ,I I R~~g~U~~-IS I + RANGE 'V'IS 

I, PLA!'.:NING ~ PLf;N~ING I 
i I!I!.ANAGERIAUI ,oPERATTONAL 

• 111: IS Arc"'tec+ure 
to Meet Present 
Host QrganiZ21tion 
N2eds 

• Ranked Computer 
Application Project 
Port:olio 

e Consolid2ted Proj~ct 
!mplemcnt=tion 
Projections 

• Equipment Acquisi
tion Projections 

• AnnfJel Pian 

• Ind1.'dual Comp". 
ter Appli",,: ion 
Development 
Schedule 

• Expense gud~f!ts 

• Man:>ower Eudg"'''' I 
.. Timet&>les i 

I 

~ ______ IM_P_L_EM_E_N~T~P_~_~ ______ ~14 I 
i 

Organi:zalions 

! .." 

EXISTING MANAGEMENT INFORt1ATlON SEPVICES AND SYSTEtI.S 

L-________________________________________ EXTERNAL ENVIRONMEN~----------------------------------------~ 

Figure l-MIS strategic planning framework 



428 National Computer Conference, 1976 

the more detailed planning efforts within the long
range, medium-range, and short-range time frames. 
First, however, it is necessary that we define what we 
mean by "strategic planning." 

St'i'aiegic lvIIS planning, like Robert Anthony's defi
nition of corporate strategic planning,13 is the process 
of deciding on objectives for the MIS organization; on 
changes in these objectives; on the resources used to 
obtain these objectives; and on the policies that are to 
govern the acquisition, use, and disposition of these 
resources. Strategic MIS planning typically occurs at 
infrequent intervals and is often triggered by the need 
for an enterprise to resolve a particularly substantive 
issue or issues that involves the MIS entity. 

Strategic planning tasks 

Set the MIS mission 

The first task in strategic planning, as shown in Fig
ure 1, is to set the MIS mission; that is, to define the 
charter of the information services organization. This 
broad definition of organizational role must naturally 
be done within the mission and purpose of the overall 
organization of which MIS is a part. Sometimes the 
MIS organization receives this mission as given; other 
times it is arrived at through mutual discussion with 
top management. 

Assess the MIS environment 

Once this mission is set, the next task is to assess the 
MIS environment-to consider the opportunities and 
risks which are present now and might be present in 
the future. This would include consideration of such 
things as: 

1. The objectives, strategies, policies, and plans of 
the host organization. 

2. The competitive position of the overall organiza
tion. 

3. The user groups within the organization-their 
needs, their current use of MIS resources, and 
their perceptions of the capability of the MIS or
ganization. 

4. The present and emerging technology for infor
mation processing. 

5. The ability of the MIS organization to effect 
change. 

Set the MIS objectives and develop the strategies 

With the MIS rr.ission established and a thorough 
appraisal made of the environment, it next becomes 
necessary to set the MIS objectives. There are the de
sired results that are to be achieved by the MIS or
ganization. Closely linked with the statement of objec-

tives is the development of the strategies or broad 
courses of action that will be needed in order to achieve 
these objectives. Thus, objectives and strategies are 
intimately interwoven; consideration of one invariably 
involves consideration of the other. These objectives, 
and their accompanying strategies, typically deal with 
the following types of items: 

1. The fit of the MIS objectives within the overall 
organizational objectives. 

2. The growth, continuity, and level of contribution 
of the MIS function within the organization. 

3. The classes and types of systems and services to 
be offered. 

4. The role of users in systems development efforts. 
5. The types of technology to be employed. 
6. The type of management and staff to be devel

oped. 
7. The posture of the MIS organization vis-a.-vis the 

user, the host organization, the competitive en
vironment, and the professional milieu. 

Define the MIS policies 

The determination of policies is a critical aspect of 
strategic planning. Policies are the guidelines to be 
used in carrying out the strategy. They are specific 
statements that cover such things as the internal orga
nizational structure of the MIS division; the criteria to 
be used in deciding upon overall funding levels and re
source allocations; the use of steering committees; the 
procedures to be used in selecting vendors, buying out
side services, and/or seIling services to outside users; 
the employment of a data base management scheme; 
and so forth. 

Setting the policy for how the company is going to 
decide how much to spend for MIS is seldom directly 
addressed, and it is an area of particular frustration 
for many companies. Sometimes a mixture of tech
niques is decided upon as a means of arriving at the 
MIS budget. These include, for example, a fixed per
cent of sales or assets; comparable expenditures of 
similar companies, adjusted for size and profitability; 
whatever the major company profit centers will agree 
to pay for; base amounts, plus discretionary increases 
for high-potential projects; and/or the amount spent 
last year plus adj ustments for inflation. All too often, 
a lack of policy in this area leads the MIS group to 
concentrate its attention on justifying the acquisition 
of major new computer equipment without giving much 
concern as to underlying reasons for such equipment. 

Policies with regard to the allocation of scarce MIS 
resources are particularly critical since they provide 
the guidelines by which the portfolio of current and 
future projects will be selected, funded, and managed. 
Unfortunately, in many companies where these re
source allocation policies have not been well estab
lished, MIS management has little incentive to perform 



disciplined economic evaluations of new project pro
posals, and general corporate policies are often not 
precise enough to be useful in evaluating these pro
posed projects. Thus, in many instances, the implicit 
resource allocation policy frequently becomes one of 
allowing the MIS division the self-indulgence of se
lecting projects primarily based on its interest in uti
lizing the latest in information processing technology. 

Although such policy setting activity is admittedly 
difficult, it is eSSential that it be done in order that sub
sequent, more detailed planning efforts may have a 
better chance of success. 

Planning to implement MIS strategies 

As sho,\T;n in Figure 2, the plans "\vhich are needed 
to implement MIS strategies can be of several types, 
each of which has the goal of translating the MIS 
obj ectives and strategies into increasingly more 
detailed and specific plans. 

Long-range MIS planning deals with meeting the 
future MIS needs of the host organization. It is largely 
conceptual in character and can have a horizon of 
from five to seven years or longer. It does not deal 
with specific projects or even groups of projects, but 
with emerging types of user needs and approaches 

OVERALL ORGANIZATION OBJECTIVES, STRATEGIES, POLICIES, PLANS 

1 1 1 

• IFLEMENT PLANS 

EXISTING MANAGEMENT INFORMATION SERVICES AND SYSTEMS 

Figure 2-Implementing MIS strategies 

Strategic Planning for MIS 429 

that might be useful in addressing these needs. It must 
also plan for the organizational philosophy to guide 
the MIS organization of the future and for the skills 
and capabilities that will be needed in developing and 
managing future systems. An example of this type 
of plan is the information systems design architectures 
that are being developed within a number of or
ganizations. 

Medium-range MIS planning is what many orga-
nizations call their long-range plan. 
that is necessary to meet the host organization's 
present MIS needs, projected two or five years into the 
future. It is a portfolio of projects, ranked by im
portance, coupled with projections for their implemen
tation. It also involves the planning for hardware and 
software acquisitions and conversions, and for the staff
ing of multi-year projects and development activities. 

Short-range MIS planning is generally equivalent 
to the MIS annual plan. It involves detailed budget 
preparation, manpower scheduling, and the creation 
of timetables for individual projects. It also often 
includes quantitative statements regarding perform
ance targets for the MIS group. It is relatively oper
ational in character. 

The choice of a particular approach or set of 
approaches to MIS planning, assuming that the stra
tegic planning has been properly done, is particularly 
important. Many organizations falter in that they 
attempt to carry out all three types of MIS planning 
simultaneously, before mastering the intricacies of the 
short-term plans necessary for the effective manage
ment of present activities. 

Ideally, the MIS strategy should be translated into 
current-day decisions by sequentially developing first 
the long-range conceptual plan, then the medium-range 
managerial plan, and finally, the short-range oper
ational plan. However, those companies that have very 
short-term MIS strategic objectives, such as to build 
credibility with users or to "get away from the 
crocodiles," should focus first on simple operational 
plans that include very specific quantitative perform
ance measures for effectiveness and efficiency. Then, 
once the MIS organization has mastered its short-term 
challenges, it can extend its planning horizon. 

We believe that a majority of companies would find 
a major investment in long-range conceptual planning 
for MIS to be of little value, for it appears that most 
enterprises have not yet mastered medium- and short
range planning. However, since short-range opera
tional planning is relatively straightforward, we will 
focus our remaining discussion on medium-range plan
ning. The development of medium-range MIS plans 
generally involves the following activities . 

1. Identify potential proiects. Fill a "hopper of 
opportunity" with ideas for projects relating to 
new computer system development efforts, en
hancements to existing computer services, up-



430 National Computer Conference, 1976 

grading of ongoing MIS activities, and strength
ening of the MIS organization and personnel. 

2. Evaluate and rank projects by priority. Filter 
the contents of this hopper of opportunity by 
using the resource aliocation policies and over
all MIS objectives previously established, so as 
both to select those projects that will be under
taken next and to identify the types of projects 
that might be undertaken in future years. 

3. Tra,nslate projects into time-phased profiles of 
activities, resource requirements, and action 
steps. Define the means, requirements, and plans 
of action for implementing the selected MIS 
projects. 

Identifying potential projects 

The first step in the development of an information 
systems plan is to identify those information system 
projects that have high potential for the organization. 
There is a wide variety of approaches that can be used 
to scan for these new opportunities for system devel
opment. The following are some of the most common. 

1. The isolated approach, where the MIS orga
nization reacts to environmental factors by 
modifying existing systems to meet new legal 
requirements; proposes retrofits to existing com
puter systems to enhance their cost and/or oper
ating characteristics; operates on the basis of 
its own "intuition" regarding new opportunities; 
and/ or synthesizes a list of requests for changes 
to existing systems already submitted by user 
managers. 

2. The emulative approach, where the MIS orga
nization picks up ideas for new projects from 
the successful computer systems of other com
panies, similar in size or industry group. 

3. The bottom-up approach, in which MIS systems 
analysts interview either selected user executives 
or, in certain company situations, all major user 
groups so as to identify the major decision areas, 
possible information gaps, and operating in
efficiencies which could be improved through the 
use of better computer systems. 

4. The reactive approach, in which the MIS orga
nization simply responds to decisions made by 
either the chief executive officer or some higher 
level corporate executive as to which are the most 
appropriate new computer system projects for 
the MIS division to undertake. 

5. The derived top-down approach, used when the 
host organization has no overall strategy, in
volves a detailed analysis of the company in 
order to hypothesize an overall corporate busi
ness strategy from which new high-priority com
puter system ideas can be selectively developed. 
These ideas are then further refined through 
interviews and appropriate systems analysis. 

6. The top-down approach, in which the MIS orga
nization develops new services as an outgrowth 
of the existing, substantive company business 
plan. 

7. The interactive approach, in which the MIS or
ganization interacts with other parts of the busi
ness during the normal company planning cycle 
so that the identification of MIS project ideas, 
and assessment of their likely business impact, 
are integrated into the planning activities of 
management throughout the company. 

The important task here for the MIS executive is to 
select the particular approach or combination of 
approaches that best fits the company's unique needs 
at that point in time. 

Project selection 

Invariably, there comes a point in this planning 
process when the collected ideas for new projects must 
be sorted out so that the highest priority applications 
or services can be undertaken in the near term. A 
problem of many planning efforts is the failure to per
ceive, in advance, the need to establish a means for 
conducting such a screening. Since the MIS effort is
or should be-a service function to the entire enter
prise, this sorting out of priorities is difficult, even 
when well-chosen resource allocation policies have been 
established. A simple chart to aid in carrying out this 
ranking is shown in Figure 3, where the project ideas 
are listed, and the previously selected resource allo
cation criteria are applied to each project to the maxi
mum extent possible. The major challenge here is to 
obtain a summary evaluation of these projects without 
entering into a detailed project feasibility study, since 
the primary objective of this effort is to decide just 
which projects should initially be allocated feasibility 
study funds. 

To make these difficult priority rankings, many cor
porations have established computer applications steer
ing committees in which judgments regarding these 
alternate investments in new systems are made on an 
ongoing basis by selected members of top management. 
In this way, a continuing consensus regarding the need 
for new system development activities is obtained; and, 
in cases where trade-offs and compromises must be 
made, the affected individuals and user organizations 
have an active voice in the decisions. Unfortunately, 
many of these committees have not been as successful 
in carrying out their prescribed role as they might 
have been. The overriding problem with ineffectual 
applications steering committees is that they are unable 
to resolve the many competing demands for limited 
MIS resources. The committee either becomes a 
"rubber stamp" for the recommendations of the MIS 
director or a "buck passer," deferring any hard choices 
to a higher level of management. More often than not, 



Strategic Planning for MIS 431 

RESOURCE ALLOCATION CRITERIA 

APPLlCA· DEVELOP· DEVELOP· CORPOR· Mrs 
nON/ BRiEF OPE RATI N...G iOPERAT1NG MENT MENT RISK ATE ARCLfI· OTHER 

SERVICE DESCRIP· EXPENSES BENEFITS USER COST TIMESPAN ,ROI ASSESS· STRATEGY TECTURE CONSIDER· 
IDENTITY TION ESTIMATE ESTIMATE SPONSOR. ESTiIVIATE ESTIMATE ESTIMATE MENT FIT FIT ATIONS 

1. 

~~-- ~--1---t--fU~ED'r~~~~~R~F:-l--t--l--1---
~ ___ . ___ ._~._. ___ . ~::L:~7~::f~A~: _. ____ . __ __ . ~~ ___ ~ 

1 

Figure 3-Sample project portfolio overview 

this failure is due to the absence of a clearcut resource 
allocation policy, one which provides unambiguous 
guidelines for choosing among projects-guidelines 
which are firmly rooted in business considerations, not 
technical ones. 

Develop action plans 

If an appropriate approach to scanning and ranking 
information system development projects is taken, the 
third step in planning-the development of associated 
resources and activity schedules-is somewhat more 
mechanical in nature, although vital in reaching such 
important decisions as computer equipment selection. 
Generally, these project schedules are quite precise for 
the near term and somewhat more general for future 
years. This is as it should be, since the primary pur
pose of the planning effort is to make near-term deci
sions that are consistent with a longer term direction, 
not to decide on specific computer system projects that 
are to be undertaken three or four years in the future. 

FEEDBACK 

It is important to recognize that the planning process 
and resulting decisions are dynamic, not static. As the 
bottom part of Figures 1 and 2 indicate, there is an 
important feedback loop, one which measures progress 
against plans, and ultimately, against the objectives 
and strategies themselves. For nothing should be felt 
to be fixed or "cast in concrete." Many an MIS execu
tive has wailed "But this isn't the way we planned 
things last year" forgetting that a plan is not a fore
cast of the future, but a way of being better prepared 
for the future. Plans and strategies should be flexible 
and able to be modified and changed as circumstances 
dictate. 

CONCLUSION 

Although conceptual frameworks, such as the one that 
we have presented here in this paper, can be helpful 
to the MIS executive, it can never replace the common 
sense and good judgment that an experienced manager 
must possess. The first step that such a manager must 
take in reassessing the MIS planning efforts of his 
own organization is to recognize that the MIS function 
is not an end in itself but a part-and hopefully a 
vital part-of the larger objectives and activities of 
the overall enterprise. Then, in considering how to 
launch a new and/or revised planning effort, the MIS 
executive should seek to answer the following ques
tions: 

1. Are we reasonably adept at estimating costs, 
benefits, and risks of proposed new computer 
projects? 

2. In general, do our MIS project postimplemen
tation audits indicate that the MIS organization 
was able to develop projects within cost and 
timetable estimates, and that users were able to 
achieve the benefits they committed to at the 
outset of the project? 

3. Is the MIS function now operating above aver
age from an effectiveness and efficiency stand
point? 

4. What approaches are we taking to scan for new 
computer investment opportunities within the 
organization? 

5. Do we have agreed-upon documented objectives, 
broad strategies, and policies for the MIS func
tion? 

6. Are we making sure that the MIS plan will 
focus on the company's-rather than the MIS 
division's-use of the computer? 

7. Are the MIS strategy and plans integrated with 
our overall corporate strategy and plans? 



432 National Computer Conference, 1976 

8. What are the respective roles of top manage
ment, the MIS division, and the users groups 
within our organization in the launching and 
conduct of the planning effort? 

9. What will be the end product of this planning 
effort? 

10. Are we monitoring the planning process itself 
so as to be in a position to improve our efforts 
the next time around? 

The answers to these questions should provide not 
only a profile of the current status of MIS planning 
within an organization; but where the responses are 
negative-or vague-they should point the way to 
where beneficial progress can best be made. 

REFERENCES 

1. Soden, John V. and Charles C. Tucker, "Long-Range MIS 
Planning Practices," Journal of Systems Management, 
(forthcoming) . 

2. McLean, Ephraim R. and John V. Soden, (Editors), Stra
tegic Planning for MIS, Wiley Interscience, New York, 
1976. 

3. Albrecht, Leon K., Organization and Management of In-

formation and Management of Information Processing Sys
tems, The Macmillian Company, New York, 1973. 

4. Blumenthal, Sherman C., Management Information Sys
tem.,;: A Framework for Planning and Development, Pren
tice-Hall, Inc., Englewood Cliffs, N.J., 1969. 

5. Fried, Louis, "Long-Range Planning for EDP," Auerbach 
Data Procesmng Management Reports, 1974, 16 pp. 

6. Kriebel, Charles H., "The Strategic Dimension of Computer 
Systems Planning," Long Range Planning, September 1968, 
pp.7-12. 

7. McFarlan, F. Warren, "Problems in Planning the Informa
tion System," Harvard Business Review, March-April 1971, 
pp.75-89. 

8. McFarlan, F. Warren, Richard L. Nolan and David P. 
Norton, Information Systems Administration, Holt, Rine
hart and Winston, Inc., New York, 1973. 

9. Schwartz, M. H., "MIS Planning," Datamation, September 
1, 1970, pp. 28-31. 

10. Siegal, Paul, Strategic Planning of Management Informa
tion Systems, Petrocelli Books, New York, 1975. 

11. Soden, John V. and George M. Crandell, "Practical Guide
lines for EDP Long-Range Planning," National Computer 
Conference Proceedings, 1975, pp. 675-679. 

12. Young, Richard C., "Systems and Data Processing Depart
ments Need Long-Range Planning," Computers and Auto
mation, May 1967, pp. 30-33, 45. 

13. Anthony, Robert N., Planning and Control Systems: A 
Framework for Analysis, Boston Graduate School of Busi
ness Administration, Harvard University, 1965. 



The economics of soft,vare quality assurance 

by DAVID S. ALBERTS 
The Mitre Corporation 
McLean, Virginia 

ABSTRACT 

This paper presents an examination into the economics 
of software quality assurance. An analysis of the 
software life-cycle is performed to determine where in 
the cycle the application of quality assurance tech
niques would be most beneficial. The number and types 
of errors occurring at various phases of the software 
life-cycle are estimated. A variety of approaches in 
increasing software quality (including Structured 
Programming, Top Down Design, Programmer Man
agement Techniques and Automated Tools) are re
viewed and their potential impact on quality and costs 
are examined. 

INTRODUCTION 

Current realities of large scale computer systems have 
provided the impetus to undertake this examination 
into the need for and potential of a quality assurance 
program. Proponents of quality assurance claim that 
significant savings in both cost and time can be 
achieved in addition to improved system performance 
if a quality assurance program is implemented. The 
purpose of this paper is to examine these claims by 
addressing the economics of software quality assur
ance. Software rather than hardware is the subject of 
the analysis since the costs of software have far out
stripped the costs of hardware and the trend seems to 
be continuing in this direction (Figure 1). 

The stakes involved are high. Estimates of recent 
Air Force annual expenditures on software are over 
$1 Billion.'i6 WWMCCS alone was estimated to involve 
$%. Billion for software (about 10 times its hardware 
costs),2 while major software systems also run into 
hundreds of millions of dollars (IBM OS/360 $200M,1l 
SAG E $250Mll and NASA manned space program 
$lB12). Indirect costs must be added to these huge 
sums and are by no means trivial in of themselves. 
For example, software delays often cause delays in 
reaching the operational phase of a system's life. A 
6-month delay (considered almost on-time) translates 
into a $100M loss of services, based upon a projected 
7 year operational life and a $1.4 billion project. 

433 

lOOr 

80 

60 

TOTAL 
COSTS 

40 

20 

1955 

HARDWARE 

1970 

YEAR 

1985 

SOtJRCE: 2 

Figure I-Importance of controlling the cost/effectiveness of S/W 

The actions which could be undertaken under the 
umbrella of a quality assurance plan are quite diverse; 
so diverse that it is difficult to separate these actions 
from project management. However, quality assur
ance is only one aspect of proj ect management. First 
this analysis addresses the software life cycle and the 
relative cost on each portion of the cycle. Next pro
ductivity is considered insofar as the reduction in 
errors in each portion of the cycle impacts cost. Fi
nally a variety of methods, techniques and tools which 
can directly affect the error rate/severity experienced 
will be examined. 

Two questions drive this analysis. First, can QA 
work? and second, Is it worth it? This paper brings 
together the experiences and thoughts currently in 
circulation and forms these into an analysis of the 
issues involved and presents composite estimates of the 
potential target of quality assurance (cost of error) 
and the reported experience of quality assurance pro
grams and methods currently available. Because of 
the difficulty in separating QA methods from project 
management and the absence of good cost accounting 
standards, the costs of a quality assurance program 
are not explicitly treated in this paper. 



434 National Computer Conference, 1976 

PHASES OF THE SOFTWARE LIFE CYCLE 

To ensure a complete and systematic review of the 
potential for a QA plan, each aspect of the software 
Hlife cycle" will be examined to determine at wnat, 
point QA can support substantial improvements. Both 
direct and indirect costs will be considered. 

Direct costs are those associated with the actual 
performance of the particular phase of the software 
life cycle under consideration while indirect costs in
clude schedule slippages, system degradation, and er
rors which contribute or add to the cost of subsequent 
stages in the process. The software life cycle can be 
broken down into four phases: Conceptual, Require
ment, Development and Operations. While other au
thors have broken this cycle down somewhat differ
ently, either by separating Development into two or 
more separate phases or by extending Requirements 
to include part of the development phase, the categori
zation shown here more closely corresponds to distinct 
levels of effort or expenditures. 

After a brief qualitative discussion of the potential 
role of QA in each of the four phases of the software 
life cycle, the amount of time and relative costs in
curred in the performance of each of these phases will 
be reviewed. A vailable data on contributions of errors 
to cost and delay is examined later. 

The conceptual phase 

This phase begins with the recognition of a need for 
the system. The feasibility and general worthiness of 
a proposed system is addressed. Usually a manage
ment decision is required to move into the next phase 
which involves more detailed specifications of perform
anct::: chaJ.'aderi::;Lk~. Thi~ vha~t::: .i~ Lyvilieu uy llUl11t:::l'
ous briefings designed to establish a recognized need 
for and cost/effectiveness of the system vis-a-vis orga
nizational missions and functions. Order of magnitude 
cost figures are the typical modus operandi. 

This phase has a relatively low contribution to total 
cost and may last several years. The question of soft
ware quality assurance is essentially moot throughout 
this phase of the life cycle. However, the role of soft
ware as it may interface with hardware, and gross 
estimates of costs and schedules should be reviewed as 
part of a larger quality assurance effort. 

Failure to adequately address these issues could re
sult in having to incorporate into the software develop
ment functions or design features which could have 
been accomplished better in other ways and which 
restrict flexibility or increase the complexity of the 
software. 

The requirements phase 

This phase of the software life cycle refines the 
conceptual system, further delineating the functions 

and interplay between hardware, software and the 
user. In general, data inputs and system outputs are 
specified and overall load and performance character
istics are determined. In many cases, specific determi
nationlS of lSystern hardware and user-oriented lan
guages are made. A properly designed Request for 
Proposal (RFP), even if the system is to be done in
house (this step in the design process is skipped only 
at considerable risk), treads a thin line between over
specification and insufficient detail. The former is 
often caused by past contractor failures while the latter 
is a reflection of the fact that the user simply does not 
know what he really wants or needs. 

To a large extent, the "die is cast" with the issuance 
of an RFP (or corresponding internal document). The 
constraints placed on system performance, hardware 
and software at this early stage of the life cycle can 
have enormous repercussions on the flexibility, relia
bility, maintainability and cost of the system. Implicit 
trade-offs between system throughput and ease and 
cost of use, enhancement and maintenance are often 
made. 

Realistically one cannot expect a prospective vendor 
to do the necessary work required to examine and weigh 
each of the possible solutions to the design problem. 
Even with the most competent of vendors, their objec
tive function differs from the clients. Specifically, a 
vendor's staff may have certain backgrounds and ex
pertise, or his equipment characteristics more adapt
able to one family of solutions than another. To save 
time or money a vendor may modify an already devel
oped product or assemble a patch work of available 
system modules rather than seek an "optimal" solution. 

Thus, quality assurance cannot begin any later than 
this phase without considerable risk. The phases which 
£0!!0~,Y are ~haracterized by much higher expenditures 
than these first two phases, with the obvious result that 
errors carried forward from this point are very costly. 

The development phase 

This phase is a transitional one bridging the gap 
between a well defined concept and an implementable 
system. The big black box between inputs and outputs 
has to be broken down into programmable units, logic 
determined and finally coded. The testing and valida
tion tasks require the generation of test data and test 
parameters and the development of test tools. Docu
mentation provides the vital link to connect the test 
activities to the designers, programmers and coders. 

It is during this stage that a QA activity reaches its 
peak, for with increasing detail and concreteness comes 
the need for constant monitoring to assure that the 
system in reality is the system in concept. Quality 
assurance in this phase is simultaneously concerned 
with the correctness of (1) functional requirements, 
(2) detailed design, (3) program logic, and (4) code. 
In addition, the specificity and clarity of the documen-



tation is also a proper subject of a QA plan. The 
testing and validation of the system or the "quality 
control" function is the most viable aspect of a quality 
assurance plan. For many developers, all too often, 
it is the QA plan. This tendency is to become lost in 
code is at the risk of deviations from intended system 
functions. Correctness of code is not a guarantee that 
the code is doing what the user required, but rather 
that is doing what it was designed to do; quite a dif-

than errors in logic. 

T he operations phase 

This phase bridges the gap between the developers 
and the users. If QA proponents are correct, some pay
off attributed to QA should be noticed during the imple
mentation part of this phase, but its greatest contribu
tion will appear during the productive part of the life 
cycle which is oddly called "maintenance." This termi
nology may be an indication of the general lack of 
quality assurance which exists. 

More often than expected, the implementation period 
becomes a "field test" with the essential aspects of the 
development phase extending far into the operations 
phase. Design or even worse functional errors are 
frequently uncovered which may require extensive re
programming. The start of implementation is often 
merely an artificial contrivance to cover a scheduled 
deadline rather than at the completion of the develop
ment phase. 

THE SHAPE OF THE SOFTWARE LIFE CYCLE 

To place the various aspects of the quality assurance 
function into perspective, it is necessary to look at the 
relative costs and time requirements of each of the 
phases described in the previous section. Figure 2 
represents the idealized shape of the software life 
cycle/s,u.:ls.:w,lo,.I;; While actual project experience is 
difficult to come by, a search of the literature for real
world cost and time data has been sufficiently produc-

37%-1 
Figure 2-Idealized software life-cycle 

PERCENT OF 
COST 

PERCENT OF 
TIME 

Economics of Software Quality Assurance 435 

tive to enable the construction of a composite software 
life cycle. This composite was developed from bits 
and pieces of available information on different phases 
and parts of phases of large systems. The degree of 
consistency found among projects gives rise to a fair 
degree of confidence that this composite is a useful tool 
in obtaining estimates of the potential benefits of a QA 
plan. Using the composite life cycle concept, this sec
tion relates the time required for accomplishing each 
portion of the cycle to software costs expended. 

The time axis 

The percentages of time thought to be denoted to 
each phase of the software life cycle as implied by the 
shape of the idealized curve are as follows: Conceptual 
15 0/0, Requirements 8 %, Development 40 %, and Opera
tions 37 %. This differed from the reported experience 
of several large DoD proj ects. 33 In actual practice the 
conceptual phase accounted for 30 % rather than 15 %, 
while development took only 12 % (compared to 40 % ) . 
The requirement phase accounted for the same per
centage of time in actual practice as was expected, 
while the operations phase (implementation and main
tenance) lasted longer in actual practice (50 0/0) than is 
implied by the curve (37%). 

In absolute terms, these projects spanned 16 years 
from inception to termination. The percentages trans
late into a conceptual phase of 4%-5 years; a require
ments phase of about 1.5 years (these two were actually 
performed simultaneously for about 6 months) ; 2 years 
for development and 8 years for operations. The re
quirements phase consists of the preparation of speci
fications, drafting an RFP and the evaluation and se
lection of a vendor. About half (31;2 % of Total Life 
Cycle Time) the time was devoted to specifications. 
The RFP's took slightly less (21;2 % TLCT) with about 
4-5 months (2%) devoted to review, evaluation and 
selection. The components of the development phase 
(2 years) are more difficult to characterize by time, 
since the steps within are either overlapping (require
ments analysis and design) or simultaneous (code, test, 
document). 

Relative cost of software life cycle phases 

The relative costs of each of the four phases of the 
software life cycle can also be inferred from the shape 
of curve presented in Figure 2. To verify these in
ferences, data from several studies are pieced together 
and a composite software life cycle (Figure 4) is con
structed and presented in a following section. The 
shape is compared to the idealized versions found in 
the literature. It should be remembered that the pur
pose in developing this composite is to obtain estimates 
of the relative costs of each phase to use in the deter
mination of the potential effects of instituting various 



436 National Computer Conference, 1976 

forms of quality assurance. Therefore, the cost bal
ance between development and maintenance as well as 
among steps in the development phase were of greatest 
concern. 

Operations vs. development 

The balance between development and operation de
pends primarily upon the length of the maintenance 
period used in the calculations. To standardize these 
calculations for comparison purposes a maintenance 
time period equal to 50 % of the total life cycle (or 
8 yrs) will be used. A study9 which monitored costs 
fairly closely from requirements through one year of 
maintenance reported expenditures (in terms of man 
years) for Requirements, Development and Operations. 

These figures were weighted (3 for management; 
2 for programmer and 1 for staff support) to deter
mine costs incurred. Assuming a negligible cost for 
the conceptual phase, say 1 % and an operational life 
of 8 years, the percentage of total costs incurred by 
each of the four phases of the life cycle were calculated 
as follows: Requirements 1.5 7c, Development 51.3 % 
and Operations 46.2 %. The ratio of Development to 
Operations (Implementation and Maintenance) in this 
case would be 1 to 1.1. 

Implementation is difficult to separate from develop
ment and maintenance since it in reality is a transi
tional period between the two. For this reason data 
about implementation is hard to find and interpret. 
This being the case the remainder of this paper treats 
operations as essentially equivalent to maintenance. 

A look at cost data available for development vs. 
maintenance costs for OS releases 18, 19, and 20.013 

are f'w>n m()re he::lvily welghten t0w~r(l TI'lRlnte
nance with ratios of 3 to 1 for OS 18 with only two 
years of maintenance included and 1.25 to 1 for all 
three releases with only one year of maintenance in
cluded. The experiences reported on in this section 
with respect to the balance between development and 
maintenance costs show that the costs of maintenance 
consistently exceed costs of development. Since QA 
would be expected to have the greatest impact upon 
costs in the operations phase, a conservative cost equa
tion (conceptual cost + requirements cost + develop
ment cost = operations cost) will be used to minimize 
the estimated potential for QA. 

Relative costs within the development phase 

The activities undertaken during the development 
phase can be grouped into (1) analysis and design, 
(2) coding and debugging and (3) testing or vali
dation. 

The ratio of the cost of these activities to one another 
is often thought to be a function of the complexity of 
the system to be developed. That is, a non-linear 

A nalysis and Coding and 
Design Debugging Validation 

SAGE 39% 14% 47% 
NTDS 30% 20% 50% 
GEMINI 36% 17% 47% 
SATURN V 32% 24% 44% 
OS/360 33% 17% 50% 
AVERAGE 34% 18% 48% 

SOURCE; 14 

Figure 3-Breakdown of development costs for selected systems 

(exponential) relationship is said to exist between com
plexity and the cost of testing. Testing costs are highly 
related to the number and severity of errors to be dis
covered and fixed, the number of which is related to 
system complexity. Proponents of QA will argue that 
this exponential relationship need not be the case if 
proper management (including a good QA plan) is 
exercised. Since the success of QA is directly related 
to error rates and error rates are the underlying causes 
of the cost relationships among the activities under
taken during development, this section will concentrate 
on the ratio of testing (or validation) to the total of 
development costs. 

A study8 which looked at the r'31ative costs of design, 
coding and debugging in relationship to validation re
ported that the ratio of validation (testing) costs to 
the total development effort ran between Y:J to %. 

Figure 3 gives a breakdown of the development 
phases of five large projects. The results14 are very 
consistent from project to project and in the range of 
the results of the first study referenced. The range 
Ys-% also includes the experience from ALPHA-69 re
ported on earlier in this chapter. 

A composite software life cycle, based upon a 16 year 
length (50 % operational life) and the relative CORtR 
for the four phases given in Figure 3, is presented in 
Figure 4. The shape is far more leptokurtic than the 

1 

1.0% 

47.5%1 
1 
I 
1 

I 
1 
I 

23456 9 

50.0% 

10 11 12 13 14 15 16 

1".--01~ 02 I 03 1 ~.---04-----" 

Figure 4-Composite software life-cycle 



"idealized" curves found in the literature with the 
length of the maintenance tail spreading its significant 
costs over many years. This is due in larger part to a 
contraction of the development phase. The visual 
impact of the meager resources applied to the Require
ment phase also represents a departure from the 
idealized shape. 

THE COST OF ERROR 

A measure of system quality is the number of errors 
which occur. Hence, ratios of one kind of error to 
another have been proposed22 as indicators of quality 
software. It is taken on faith that well designed sys
tems can be put together with little resultant error, 
and for those errors which occur, the mean age of the 
errors becomes a vital statistic with which to judge 
software. 

This section is devoted to estimating the source, 
kind, type and severity of errors generated during 
development. It would be of interest to examine the 
requirements stage to place a value on the "errorsH 

which originate there and trace their impact through
out the rest of the life cycle; but aside from intuitive 
feelings about their impact no real data appears to be 
available. 

FTequency and severity of errors 

No two researchers group errors in quite the same 
way. As a result, the available information on soft
ware errors had to be interpreted and classified based 
upon the explanations provided in individual studies. 
Errors are classified in this paper as either design, 
logic or syntax. These categories are sufficient for the 
purpose at hand. Design errors are those which re
quire changes in the specifications used by the pro
grammers. Usually they represent a lack of under
standing (or proper communication) of a computation 
or process, which results in the wrong "problem" being 
solved. Logic errors occur when the system design is 
translated into programmable form (detailed flow 
charts). Syntax errors are self-explanatory. Few of 
the studies of software errors present actual data per
taining to frequency and severity. Taken together1 ,4,6,8,47 

those that present some data all report design error 
as occurring most frequently. Ranging from a high 
of 64 % 1 to 4670. 6 Syntax errors were reported to be 
about 15 % of the known errors. Logic errors ranged 
from 21 % to 38 %J. The significant point to note is the 
la~(ge percentage of design errors. 

Available data on cost of detection and correction 
reveals that design errors cost the most to diagnose 
and fix. Syntax errors are reported to be more of a 
nuisance than a significant cost particularly with the 
use of automated precompiler processing. 

Economics of Software Quality Assurance 437 

Origin and detection of errOTS 

Where errors originate as well as when and how 
they are discovered are important inputs to the design 
of an effective QA plan. Syntax errors originate, sur
face and are resolved within a brief period of time and 
for all intents and purposes can be considered totally 
encompassed within the process of coding. Such is not 
the case with design and logic errors. Design errors 
('~n hp ('~nO'ht nnrinO' ~ np~iO'n rpviP'W (if tht:>rt:>;1:! nTIt:» ---- ._- ---0--- ------0 -- ----0-- __ ~ __ .T , .. .-. _ ............... _.a._ .............. _" 
during preparation of detailed flow charts or occa
sionally during coding. Simple logic errors (process 
before read) can be caught at compilation time or dur
ing program testing. Because of the numerous paths 
in any program which can be tested many logic errors 
are not observed until the validation, implementation 
or maintenance stages. A study of a large software 
development effortl found that 54 % of the errors 
were not caught until acceptance testing or presum
ably until after development was complete. To make 
matters worse, the overwhelming proportion of these 
were design errors. Reported figures indicated that 
70 % of the design errors were not caught at earlier 
stages while by contrast 80 % of the programming 
or logic errors were caught during development. If 
the mean age of error were calculated for this case 
it would be quite high due to the high percentage of 
design errors involved. 

Estimation of the costs of errors 

Using the three categories of error (design, logic 
and syntax) it appears that design errors account for 
at least 80% of the total cost of error. This percentage 
is arrived at by noting that about % of all errors 
caught are design errors; with logic and syntax errors 
making up about equal proportions of the remaining Ya. 
Compared to the cost of tracking down and correcting 
coding errors, the cost of syntax mishaps is small. 
However, the cost of design errors is more than double 
(2112 times) that of coding error. The calculation of 
the contribution of design error to the total cost of 
error consists of taking the weighted (expected) cost of 
an error [% design errors x 21;2 + % coding + syntax 
errors x 1] and dividing it into the contribution of de
sign [% designx21;2] using the percentage given 
above 83Ya % of the total cost of error can be attributed 
to design errors. This relatively large contribution to 
total error cost should play an important role in the 
design of a QA plan and will be used as an input in 
the calculation of the potential effectiveness of quality 
assurance. 

The next calculation which is required for the assess
ment of the potential of quality assurance is the per
centage of total life cycle cost which can be attributed 
to error. Once this percentage is obtained, an estimate 
of the benefits of a QA plan can be developed based on 
a "tool by tool" analysis of the kind of error it ad-



438 National Computer Conference, 1976 

dresses (design, logic or syntax) and the percent error 
reduction claimed or experienced. These calculated 
benefits can then be compared to the cost associated 
with these components of a QA plan for a final assess
ment of the economics of quality assurance. 

To estimate the cost of error the following method 
was used. For a slightly conservative estimate, it was 
assumed that (i) all costs in design (ii) coding and 
(iii) documentation to be non-error related. All check
out and validation costs (recognizing that only some of 
these costs can be reduced by reducing the number of 
errors, since some costs are fixed) were attributed to 
error. From the ALPHA-6 data then 47% of develop
ment cost (assuming the code, test, and document costs 
were equal) could be traced to errors. Further data on 
developments costs for several large systems (given 
in Figure 3) averaged almost exactly the same per
centage (48 % ) . 

Maintenance costs can be attributed to correcting 
errors and to enhancements, but "enhancements" often 
result from initial design errors. For the sake of dis
cussion assume that half can be directly related to 
error. This amounts to the conservative estimate of 
almost half of the total life cycle costs (47.670) being 
directly tied to error (see Figure 5). On the cost basis 
of a large system, the total cost of error is in the 
hundreds of millions. If quality assurance methods 
can reduce error by even small amounts, they would 
appear to be worthy of serious consideration. For ex
ample, a 10 o/c reduction in error (% Design, Va logic 
and syntax) as they have been reported in the studies 
:reviewed would represent a saving of almost $25 
million based upon a relatively large effort (cost= 
$112 billion over the 16 year cycle). A five percentage 
error reduction (only lj2 design) would result in a sav
i!!g"s af a":er $10 mmio!!. 

THE EFFECTIVENESS OF THE TECHNIQUES 
AND TOOLS OF QUALITY ASSURANCE 

The assurance of quality can be brought about by 
any number of different approaches which have been 

Error % Total Relative % Total 
Type Errors Severity Cost of Error 

Design 2/3 2.5 83+% 
Logic 1/6 1.0 8+% 
Syntax 1/6 1.0 8+% 

Development Operations 
Phase Phase Both 

% Total Life 
Cycle Cost 47.5% 50% 97.5% 
% Cost Due to 
Error 48% 50% 
o/c Total Life 
Cycle Cost 
Attributed to 
Error 22.6% 25% 47.6% 

Figure 5-Error and software life cycle costs 

suggested. These range from essentially project man
agement techniques to methodologies of design to 
syntax checking tools. Many of the methods which will 
be discussed in this section can be expected to have 
a much broader impact on design, development and 
implementation than is pertinent to a discussion of 
quality assurance. This section will address the im
pact these methods have on error rate and error-related 
productivity. 

In some cases, their contribution to quality is rather 
straightforward, particularly for error detection tools. 
However, for those which promise the most sweeping 
reforms, essentially those dealing with management or 
design effectiveness, measurement is difficult and little 
concrete information is available. 

It is the purpose of this section to analyze based upon 
available data the potential of quality assurance in 
terms of the cost of error, development productivity 
and the cost of quality assurance. In the following 
paragraphs, some of the most widely discussed tech
niques and tools will be reviewed. 

Structured programming 

The advantages touted for Structured Programs 
range from improved program design to improved 
documentation. Improved design is linked to fewer 
design errors and fewer logic/programming errors. 
Fewer statement types are linked to fewer syntax 
errors and an almost self-documenting program. Fewer 
errors imply greater productivity during development 
and reduced operations costs. Further, the stream
lined design is claimed to be easier to upgrade and en
hance. Finally, the planning and conceptualization re
quired by Structured Prog-rammin!l is said to enhance 
the performance of project management. 

Reported increases in error free productivity ranged 
from 50 % 25 to 125 % 47 with the introduction of Struc
tured Programming while error reductions of between 
30%-90% were reported by another study.17 Quantita
tive results of ease of enhancements were not found, 
however, a study of the development cycle56 estimated 
25 % reduction in the elapsed time from requirements 
to implementation, from 6 years to 4.5 years. 

Top-down development 

The essence of Top-Down Development is simul
taneous systems integration and development which 
results in a viable, executable, if rather skeletal system 
at an early state. This development approach amounts 
to an ordering of the sequence of system decomposi
tion decisions beginning with a simple description of 
the entire system or process and continuing with 
successive refinements until a programmable design is 
reached. Top-Down Development is a natural com
panion of Structured Programming, so much so that 



the two concepts are often confused. The claimed ad
vantages of this approach include the increased ease 
of implementing a QA plan with a resultant reduc
tion in design error and productivity improvements as
sociated with the systems integration and testing 
efforts during the development phase. 

Perhaps the most significant advantage claimed from 
a QA perspective, is the early existence of a complete 
system's design replete with the design specification 
rr.-t "n'T"ta"l'Yl nATYlT'l/yna..,t" <:>"A ."ta ... -t<:>naC' l\TAt AVI hT Ana", 
'V"...L... IVJ .....,\,.I'-'~.J..1.. vV.l..J..I.,PV.L.1. ....... .I..I..uJV '-".1..1.\..4. .I...1..I..U"-'.L..I..~v'-'l.,). ""'VlJ V.I...I.A.J UVVO 

such a document enhance the changes of a coherent and 
consistent design, but it also serves as a vehicle for 
establishing a correspondence with "user" oriented 
functional specs. The system components are placed 
into perspective for all to see and comment upon. Mis
understandings that often were not surfaced until ac
ceptance testing can be resolved at this time. Design 
problems often not found until systems integration 
may be corrected reducing the high cost currently as
sociated with these problems. 

The incorporation of the testing function throughout 
development, made possible by the continual existence 
of a testable system, offers QA with an opportunity 
to be more of a pro-active force in development. 

There are recognized pitfalls as well. Care must be 
taken to ensure design feasibility in terms of existing 
software and hardware, since actual coding is sig
nificantly delayed. 

Holistic design is difficult to achieve and false starts 
are likely. However, when weighted against the known 
shortcomings of bottom-up design there is little ques
tion that a Top Down approach when combined with 
some common sense offers substantial advantages to 
both developer and user. 

Hard estimates of the reduction in error and in
creases in productivity from the use of this approach 
alone are not readily available. However, when used 
in conj unction with Structural Programming and a De
velopment Support Library/" a productivity improve
ment of over 300% (when compared to a system using 
a Development Support Library alone) was experi
enced. With Structural Programming alone, produc
tivity gains of 507c -100 % were experienced; thus, the 
addition of a Top Down Design approach seems to 
further enhance performance significantly. 

For the purposes of this analysis, the expected per
formance of this approach will be conservatively 
bounded from above. In terms of development produc
tivity, a very conservative range which includes gains 
made by reduced systems integration and testing, and 
by better manpower and computer time scheduling 
would be between a 5-10 % improvement in produc
tivity. This improvement could be reasonably expected 
from the savings in the integration step alone. 

As far as design errors are concerned, the increased 
attention to overall design could be expected to reduce 
configuration and architecture errors significantly and 
virtually eliminate errors in the specification of offered 

Economics of Software Quality Assurance 439 

system functions. One study6 showed that machine 
configuration and architecture errors accounted for 
just over 20% of all design errors while errors in the 
functions offered accounted for about 25 % of the de
sign erorrs. Both are susceptible to being caught 
early. An examination of specs by others not involved 
in their formulation resulted in the detection of be
tween 30 % -40 % of these errors. An increase from 
this to a 50 % rate of error detection might realistically 
h", !:I"hi",u",rI htT th", llQ'" rr.-t 'T'nn nnurn n"'Q; .... .., 
,..., ....... -_ .................................. ,...,,, "' ...... - -. ............. 'V"...L... ..... -.1::"' ~....,1''f.L.L ...., ................ .0 ... .1.. 

Other recent innovations 

In addition to Structured Programming and Top 
Down Development, a number of other approaches to 
improving software quality and productivity have been 
advanced. Among these are the techniques of the Chief 
Programmer Teams, Egoless Programming, and auto
matic or semi-automatic tools ranging from Design As
sertion Consistency Checkers to Automated Test Case 
Generators. 

The management oriented techniques are aimed at 
achieving increased communications and coordination 
while the automated tools seek to provide complete, 
systematic and low cost verification. This section will 
briefly explain some of these innovations concentrat
ing on the contribution or impact likely on the per
formance of the QA functions. 

Programming organizations 

In this section, the effects of the Chief Programmer 
Team, Egoless Programming and Democratic Team 
Organization on the performance of the QA function 
will be addressed. Egoless Programming and Demo
cratic Teams are essentially loosely structured pro
gramming environments in direct contrast to the Chief 
Programmer approach which is highly structured. It is 
interesting that the changes from current practice 
being advanced to improve software quality are in 
opposite directions. Both approaches, however, take 
aim at the individualist who becomes ego-involved 
with code to the extent that error detection is thwarted. 
The loosely structured approaches attack this problem 
directly by eliminating "ownership" of code to reduce 
defensiveness. The Chief Programmer Team approach 
is meant to be employed in conj unction with Structured 
Programming and Top Down Design which systemati
cally eliminates tricks and gimmicks in programming 
and imposes ridged forms. Users of both types of ap
proaches claim better communication leading to re
duced misunderstandings and error rates. On the one 
hand, the Chief Programmer Team approach is criti
cized for being too authoritarian while the other ap
proaches are said to tend to alleviate the individualist 
and require more sophisticated management tech
niques. Experience indicates that managing bright 



440 National Computer Conference, 1976 

Methods of Detection 

Formal 
Methods 

Er'ror ... "1anu,al (Simulation, Tests 
Type Inspection etc.) Runs 

Design 45% 20% 35% 100% 
Logic/ 
Coding 24% 22% 54% 100% 

Figure 6-Error detection for design and logic/coding error 
types 

creative staff is no mean task regardless of the tech
niques employed. The key seems to be in the actions 
taken to increase the understanding and clarity of 
assignments not in what abstract management philoso
phy is employed. 

Automated tools for quality asssurance 

The literature contains countless tools developed to 
check out design, flow charts, code and even documen
tation systematically and quickly. Their performance 
can more easily be measured than the techniques previ
ously discussed, but their contribution to the potential 
of an overall QA plan is limited. Their very nature 
(highly specified and deterministic) limits their effec
tiveness in dealing with other than highly structured 
situations. Thus, these tools are most applicable to the 
detection of errors in code and simple sorts of logic 
errors rather than major flaws in program logic or 
design approach. Nevertheless, they can significantly 
contribute to increased productivity, earlier detection 
~l1n nj:>l1('j:> 'l0fY!1? !"1?r:'hll?ti0!! 0f the ":ripp!e" effe~t (19~c 
of the errors introduced as a result of error correc
tion35). An analysis of error types and means of de
tectionG showed that (See Figure 6) manual inspection 
uncovered only 24 % of logic and coding errors com
pared to 45 % of design errors indicating the potential 
for the use of automated tools. Such tools could have 
an impact in reducing the percentage of logic and 
coding errors (54%) not caught until testing. One 
study gave evidence to support this feeling21 • The 
use of automated instruction and path checkers (AS
SIST and NODAL) reportedly catch between 67%-
100 % of the errors and at between 2-5 months earlier 

than they would have otherwise been detected. Auto
mated error checking is currently at the state of de
velopment where it is either language or application 
specific and it would probably be of marginal value to 
develop such a tool for a specific project. 

Figure 7 summarizes the results with respect to the 
reported effectiveness of quality assurance methods 
and shows the dollar impact that improvements in de
velopment productivity can have based upon a project 
whose total life cycle costs equal $.5 billion. 

SUMMARY AND CONCLUSIONS 

This section places the relevant estimates developed 
during this report in perspective and highlights im
portant aspects in the assessment of the economics of 
Software Quality Assurance. This paper first ad
dressed the software life cycle to identify the areas 
which could be improved by a QA plan. Second, an 
examination of the frequency of software error, its 
sources or origins, methods of detection and associated 
costs was presented. This was followed by an examina
tion of some of the methods and techniques suggested 
for quality assurance. Highlights of these examina
tions and analyses follow. 

Summary of findings 

The examination of the software life cycle revealed 
that costs were concentrated in the Development and 
Operations phases. The typical Development Phase 
accounted for just under 50% of the total costs while 
lasting about 2 years (12% of a 16 yr. cycle). About 
half of the development costs were spent on check-out 

analysis and design and % for actual coding. The 
Operations phase while consuming just under 500/0 
of the total life cycle costs was spread over an eight 
year period. 

Errors were classified into three types (design, 
programming/logic, syntax). The last accounting for 
some 15 % of all errors. Design errors outpaced pro
gram/logic errors by a little less than 2 to 1 accounting 
for a little more than half of all errors. Program/logic 
errors ran about one-third of the total. 

The severity of errors, as measured by the cost of 
detection and correction, was found to be higher for 

Producti'vity $ Impact of 

Technique 

Structured Programming 
Top-Down Design 
Management Organization 
Automated Tools 

Error 
Reduction Range Mid-Point 

1 % Improvement 
In Development 

Potential 
Impact 

30-90% 
Substantial 

Caught earlier 

50%-100+% 
10%-200% 

Up to 25% 

75% 
100% 

10% 

-------------------------
$175 Million 
$250 Million 

$2,375,000 
$ 25 Million 

Figure 7-Performance of quality assurance techniques 



design errors than program/logic or syntax errors 
(least costly). Weighted by costs it was calculated 
that design errors accounted for just over 80 % of the 
total cost of error. In terms of the total software life 
cycle then, with 47.5% of its costs in development and 
507c in maintenance, the cost of error could easily run 
over 50 % of the total software life cycle cost. 

To combat error and improve software quality a 
variety of methods have been suggested. Preliminary 
reports have been encouraging in both the areas of 
productivity improvement and error reduction. 

Conclusions 

While the data drawn upon comes from a large 
variety of sources (different systems, different en
vironments and from studies using different definitions 
and analysis methodologies), the experiences reported 
were so compatible that, while more detailed data is 
necessary for the actual development of a QA plan 
specific to a given set of system and organizational 
circumstances, the conclusion that QA can be cost effec
tive is inescapable. 

From the analysis presented in this paper, the de
velopment of a QA plan should concentrate on tech
niques and methods for the early detection and elimi
nation of design errors. The researchers reporting on 
the development of ALPHA-69 indicated that if more 
resources were applied during design, it would have 
resulted in substantial savings in the costs of testing 
and maintenance. An extrapolation of the data they 
presented gives a multiplicative factor of 5; that is, 
a dollar more spent in design would have saved 5 dol
lars spent on testing and maintenance. While this 
example may be unusual, it, together with the fact that 
a significant portion of total system cost can be at
tributed to error point to the cost impact that a QA 
function can provide. 

A parameterization of the impact that error and 
productivity improvements have on total software 
system costs based upon a $112 billion total life cycle 
cost (about $250 million for S/W Development) has 
been made. For each 1 % of error reduction (1;2 coding 
+ 1;2 design) a savings of just over $11;2 million could 
be expected. For each 1 % improvement in Develop
ment productivity a saving of $2,375,000 could be ex
pected. It should be noted that Design errors have 
more than double the impact than do coding errors. 

Thus the leverage of QA in large programs is sig
nificantly high to warrant serious consideration. The 
costs of developing and implementing a QA plan are 
difficult to specify for a given organization, especially 
in light of their management considerations. However, 
even with the additional expense QA still promises to 
be cost-effective. For example, if management over
head for software development is approximately 5 % 
of development costs and a QA plan increased this 
overhead by %, then a reduction of error by approxi-

Economics of Software Quality Assurance 441 

mately 1 % (coding) alone could offset these additional 
costs. 

REFERENCES 

1. Boehm, B. W., et aI, "Some Experince With Automated Aids 
to the Design of Large-Scale Reliable Software," IEEE 
Tmnsactions on S/W, TRW, March 1975. 

2. Boehm, B. W., "Software and Its Impact-A Quantitative 
Assessment," Datamation, TRW, May 1973. 

3. Brov.;pn, J. R., et al, "Evaluating the Effectiveness of Soft
ware Verification-Practical Experience With an Auto
mated Tool," AFIPS Fall Joint Computer Conference, De
cember 1972. 

4. Shooman, M. L., et aI, "Types, Distribution, and Test and 
Correction Times for Programming Errors," IEEE Trans
actions, Bell Labs, March 1975. 

5. Schneidewind, N. F., "AnaJysis of Error Processes in Com
puter Sofh'lare," IEEE Transactions, Naval Postgraduate 
School, March 1975. 

6. Endres, A., "An Analysis of Errors and Their Causes in 
System Programs," IEEE Transactions, IBM Lab, Germany, 
March 1975. 

7. Rubey, R. J., et aI, Comparative Evaluation of PL/l, USAF 
ESD-TR-68-150, April 1968. 

8. Rubey, R. J., "Quantitative Aspects of Sofhvare Validation," 
IEEE Transactions, LOGICON, March 1975. 

9. Buda, A. 0., et aI, "Implementation of the ALPHA-6 Pro
gramming System, IEEE Transactions," Academy of Sci
ences USSR, March 1975. 

10. Ramamoorthy, C. V., et aI, "Testing Large Software Evalu
ation Systems," IEEE Transactions, CSD, ERL, University 
of California, Berkeley, March 1975. 

11. Alexander, T., "Computers Can't Solve Everything," FOT

tune, May 1969. 
12. Boehm, B. W., "System Design," Planning Community 

Information Utilities (ED) H. Sackman, AFIPS Press, 
1972. 

13. Bany, B., et aI, Software Life Cycle Considerations, IBM, 
January 1974. 

14. Boehm, B. \V., "Some Information Processing Implications 
of Air Force Space Missions: 1970-1980," Astronautics and 
Aeronautics, January 1971. 

15. Vick, C. R., Specification for Reliable Software, EASCON, 
1974. 

16. Brown, J. R., et aI, "Evaluating the Effectiveness of Soft
ware Verification-Practical Experience with an Automated 
Tool," AFIPS Conf., 1972. 

17. Cammack, \V. B., et aI, Improving the Programming Process, 
IBM SDD TR002483, October 1973. 

18. Cheng, L. and J. E. Sullivan, Case Studies in Software 
Design, MTR-2874, Volume I, June 1974. 

19. Boden, W. H., "Designing for LCC," EASCON 74, pp. 624-29. 
20. Knight, C. R., "Warranties as a Life-Cycle-Cost Manage

ment Tool," EASCON 74, pp. 621-623. 
21. Mangold, E. R., "Software Error Analysis and Software 

Policy Implications," EASCON 74, pp. 123-27. 
22. Mills, H. D., "How to Buy Quality Software," EASCON 74, 

pp.120-22. 
23. Nashman, A. E., "Software Development Management: The 

Key to Quality Software Products," EASON 74, pp. 31-35. 
24. Oliver, P., "Observations on Software Reliability," EASCON 

74, pp. 126-29. 
25. Baker, F. T., "Structured Programming in a Production 

Programming Environment," IEEE Transactions on S/W 
Rel. 75, pp. 172-185. 

26. Rain, M., Two Unusual Methods for Debugging S/W Soft
ware Practice and Experience 3, pp. 61-63. 



442 National Computer Conference, 1976 

27. Katzenelson, J., Documentation and Management of Soft-
1care Project, SP & E 1, 2, pp. 147-157. 

28. Peadi, P., Quality Control for Computer Programming: A 
Final Report on an Initial Study, SDC, Santa Monica, 
California, September 1965. 

29. ---, QC for Systems and Programming, A Survey of the 
LiteratuTe, SDC, March 1965. 

30. Connolly, J. T., Software Acquisition Management Guide
book: Regulation, Specifications and Standards, MTR-3080, 
The MITRE Corporation, June 1975. 

31. Clapp, J. A., Major Contributions to Software Engineering 
in the 1980's, MTR-2791, The MITRE Corporation, January 
1974. 

32. ---, A Softwa1'e Error Classification Methodology, MTR-
2648, Volume VII, The MITRE Corporation, June 1973. 

33. Reifer, D. J., "Automated Aids for Reliable Software," 
IEEE Transactions on S/W Reliability, March 1975, pp. 
131-42. 

34. Wulf, W. A., "Reliable Hardware-Software Architecture," 
IEEE Transactions on Software Reliability, March 1975, 
pp.122-30. 

35. Cicu, A., et aI, "Organizing Tests During Software Evolu
tion," IEEE Transaction on Software Reliability, March 
1975, pp. 43-50. 

36. Williams, R. D., "Managing the Development of Reliable 
Software," IEEE Transactions on Software Reliability, 
March 1975, pp. 43-50. 

36. Williams, R. D., "Managing the Development of Reliable 
Software," IEEE Transactions on Software Reliability, 
March 1975, pp. 3-8. 

37. Ceoff, N. S., "Development Project Costs," Journal of 
Systems Management, September 1974, pp. 14-17. 

38. Aror.;IJ. D., Characteristics of the Program System Devel
opment Life-Cycle, IBM FSD 74-0180. 

39. Pietrasanta, A. M., "Resource Analysis of Computer Pro
gram System Development," On The Management of Com
puter Programming, G. F. Weinwurm, (Editor): Auerbach 
Publishers, 1970. 

40. Brooks, F. P., Jr., "Why is Software Late," Data. Manage
ment, Volume 9/8, August 1971. 

41. Clapp, J. A. and J. E. Sullivan, SIMON: Finding the 
Answers to Software Development P"oblerns, MTP-159, 
.,...., .... IrT'""'~ ........ ,.... ....... ... ...... _r 

..LoLlI;; ... t.L..l. ..... .l.\...LJ \""UJ.l'UJ..a.l...lUJ..L, .i.t.J..G\.j ..!...iJ I ':I:. 

42. Cheng, L. L., Some Case Studies in StructU1'ed Program
ming, MTR-2648, Volume VI, The MITRE Corporation, 
June 1973. 

43. Fleischer, R. J., Effects of Management Philosophy on Soft
ware Production, MTR-2648, Volume II, The MITRE 
Corporation, June 1973. 

44. Corrigan, A. E., Results of an Experiment in the Applica
tion of Software Quality Principles, MTR-2874, Volume III, 
The MITRE Corporation, June 1974. 

45. Schiff, J. D., "An Overview of the Software Life-Cycle 
Process," Proceedings of the Aeronautical System Software 
Workshop, Dayton, Ohio, April 1974, p. 108. 

46. Prywes, N. S., Research on Automatic Program Generation, 
Report 74-05 University of Pennsylvania Moore School of 
Electrical Engineering, January 1974. 

47. Boles, S. J. and J. D. Gould, A Behavioral Analysis of 
Programming-On the Frequency of Syntactical Errors, 
IBM RC 3907, June 1972. 

48. McGonagle, J. D., A Study of a Software Development 
Project, J. P. Anderson and Company, September 1971. 

49. Nichols, B. S., Practical Experience With Structured Pro
gramming, Bell Systems, November 1973. 

50. Mill, H. D., "Top Down Programming in Large System," 
Debugging Techniques in Large Systems, R. Rustin (ED) 
Prentice Hall, 1970. 

51. Baker, F. T., "Chief Programmer Team Management of 
Production Programming," IBM Systems Jo'Urnal 11, 1972. 

52. Sackman, A., Man-Computer Problem Solving, Auerbach 
Publishers, 1970. 

53. Weinberg, G. M., The Psychology of Computer Program
ming, Van Nostrand Reinhold, New York, 1971. 

54. Baker, F. T., "System Quality Through Structured Pro
gramming," AFIPS Conference Proceedings, 1972, pp. 339-
343. 

55. McGonagle, J. D., A Study of a Software Development 
Project, James P. Anderson and Company, L{)s Angeles, 
California, 1971. 

56. Haile, A., Command and Control Information Processing in 
the 1980's (USAF-CCIP-85) Presentation in DoD Com
puter Institute Seminar IX, November 1972. 

57. Asch, A., et aI, DoD Weapon Systems Software Acquisition 
and Mallage111..ent Study, Vols. I and II, The MITRE Cor
PUJ.(;li.l:UH, :.;7~-u~CJo, ':~;3 . 



Impiementation of quality controi in software deveiopment 

by FRANK TSUI and LEW PRIVEN 
Tn7lIT 

.l.Di.t'.L 

Gaithersburg, :Maryland 

ABSTRACT 

In recent years, many tools have been deveioped in the 
areas of programming techniques, design methodology, 
development processes, and test strategies. All of these 
are aimed at producing a quality product with a mini
mum cost. Together with emergence of these tools, 
there is a recognition of the problem of how to effec
tively implement them into a total systems development 
environment. One of the factors to a successful de
velopment is the ability to exercise proper control over 
the various development processes. 

We will first establish the objectives for software 
quality control. Then, descriptions of the terminolo
gies defining the various development processes will be 
presented in order to provide a common background. 
A basic philosophy of the entire development proce
dure and the notion of Continuous Integration will be 
presented. The introduction of quality control into 
this procedure will be discussed. Finally, some justifi
cation for such an approach will be shown. 

INTRODUCTION 

A large amount of effort has been spent on developing 
programming and design techniques. The various tools 
and methodologies1 ,2,.l,fi,12.t5 are aimed at different steps 
in the development processes. Basically, these tools 
may be classified into the following categories in terms 
of their intended applications: 

(i) Design, Code and Documentation 
(ii) Test and Verification 
(iii) Control of the Development Processes 

In order to attain a good quality product, it is essen
tial to understand how and where these tools apply in 
the development activities. The subject of this paper 
comes under the third category, Control of the De
velopment Processes. 

In this paper we will present a unifying paradigm of 
the entire development procedure. Within this global 
system, several development cycles for different func
tions may be in progress simultaneously. The develop
ment cycle is similar for each function. That is, the 

443 

activities within each development cycle are fairly 
standard and flow in a fixed sequence much like an as
sembly line. For example, if we examine how a pro
grammer does his job, normally the following activities 
take place: 

(i) Design/Document 
(ii) Code 
(iii) Test 
(iv) Integrate 
(v) Performance Measure 
(vi) Release 

This is a "natural" process; id est, if left alone, most 
programmers would follow this sequence in implement
ing a program, except, possibly for the documentation 
part. Since programming lends itself to a natural flow, 
the process or the development cycle should keep this 
intact. 

In lieu of the yet experimental and basically primi
tive automatic program correctness verifiers,l1 quality 
control is obtained via the introduction of inspections 
and reviews"s into the development cycle. Then two 
additional steps called Error Prone Analysis and Post 
Functional Test Analysis will be introduced to monitor 
the development cycle and the entire development 
procedure. 

GOAL OF QUALITY CONTROL 

Today's environment demands that programming 
products be of "high" quality. From the users' point 
of view this means: functionally complete, easily us
able and installable; and low error rates. Additionally, 
to the developer it means that the schedule must be met 
at the lowest cost. This is certainly a tall order based 
on the past performance of the programming commu
nity, but it can be achieved with the proper manage
ment and quality control techniques. 

The main objective here is to ensure that only a 
minimal number of software problems exist. This may 
not be as obvious as it appears at first glance, for it is 
not sufficient that just the final product contains a 
small amount of problems. It has been the experience l

,7 

that correcting a problem in the final product will 



444 N ationai Computer Conference, 1976 

require much more effort than correcting that same 
problem in the early phase of the development. Thus 
it is essential that errors be detected and corrected as 
early as possible and only a minimal amount of prob
lems be allowed to slip from one phase of the develop
ment to the next. 

The secondary objective, although it may be just as 
important as the main objective, is to increase the ease 
of usage and future maintenance of a product. As the 
cost of producing a completely new system increases, 
the property of being able to enhance and build upon 
the existing system becomes significant. 

TERMINOLOGIES AND DEFINITIONS 

In this section some basic notions of Design, Code 
and Test will be explicitly defined in order to facilitate 
the introduction of the concept of inspection or review. 

The Design phase of the development cycle is com
posed of two levels: High-Level Design and Detailed 
Design. The High-Level Design contains the following 
information. 

(A) An over-all functional specification describing 
what is to be performed. 

(i) For each major function, the modules' 
names should be specified; and within each 
module, the description is carried to the 
level where each statement represents 
approximately 20 lines of executable source 
code. 

(ii) All control blocks with major fields and 
their purposes identified. 

(iii) For each function, all the macros that need 
to be designed should be listed and de
scribed to the depth where each statement 
represents approximately 20 lines of exe
cutable code. 

(iv) For each module, all data files and tables 
should be presented along with a brief de
scription of their purpose and method of ac
cess. 

(B) The dependencies for each major function are 
presented by modules, identifying both internal 
and external cases. 

(i) Internal dependencies specify those macros 
and control blocks which are shared by sev
eral modules. 

(ii) External dependencies indicate all the mod
ules, control blocks, and macros needed 
but were not included in the overall func
tional specifications described above. 

(C) The linkages between functions (by modules) 
are specified. 

(i) Parameter list is identified. 

(ii) All system Generation/Initialization re
quirements must be described. 

(iii) All locks and authorization into data files 
are described. 

(D) For each function, a control flow (in some flow
chart form-preferrably with a predetermined 
Structured flow chart) describing the logic 
should be given by modules. 

The Detailed Design is a refinement of the High
Level Design. Thus the information described above 
for High-Level Design serves as the input to the De
tailed Design phase. The information contained in the 
Detailed Design is used as the input to coding. It con
tains the following: 

(A) A complete "Structured" logic flow (by modules) 
should be given. 

(i) Each box in the flowchart should represent 
approximately 20 lines of executable source 

(ii) Reference to control blocks and data files 
should be by field names. 

(iii) Macro invocations should specify all re
quired parameters (by values). 

(iv) Each predicate in the flowchart should have 
a corresponding "purpose" description. 

(B) Data structure should be clearly specified. Each 
data file and table should be described down to 
each field identifying the following: 

(i) intended usage 
(ii) attributes 
(iii) access method 
(iv) value range (if any) 

The ~0di!1g pha~e '..1ti!ize~ the Detailed De~ig!1 ?.~ it~ 
input. Here the Detailed Design is converted to source 
code and machine compiled or assembled. Each module 
should be at least compilation or assembly error free. 
There should be a module prologue preceding the ac
tual code, stating the following about that module. 

(a) major functions 
(b) control blocks referenced (if any) 
( c ) macros used (if any) 
(d) Entry-Exit conditions (if non-standard) 
( e) linkages (if any) 
(f) I/O parameters (if any) 
(g) list of logic revisions made since last version 

(if any) 
(h) version number and date 
(i) module owner 

An important point here is that the code must fol
low the Detailed Design. Structured flowchart with 
its corresponding Structured Programming Language 
would make this process much easier than otherwise. 

The Testing phase depends heavily upon the docu
ments generated during High-Level and Detailed De
sign. Generally, there are three categories of testing: 



(a) Functional Test 
(b) Component Test 
( c) System Test 

The functional test refers to the verification of each 
function utilizing a series of test cases within the in
tended environment. This may be the most time con
suming test, depending on how detailed the test cases 
are. The component test involves the verification of 
inter-functional activities. The system test is per
formed to insure that 110 part of the system is iIl
affected (including performance) and that the system 
as a whole does not crash even under unusual, non
intended environment. An extensive description of 
testing processes may be found in Reference 6. 

IMPLEMENTATION OF QUALITY CONTROL 

Before we can meaningfully discuss Quality Control, 
there has to be an underly~ng development philosophy. 
In this section, we will first present a paradigm of the 
complete development process. Within that paradigm 
the development cycle with the built-in controls will be 
discussed. 

In order to insure low error rates, some quality con
trol techniques must be utilized. This implies a defined 
procedure that can be instrumented to provide a) the 
necessary points for measurement and b) feedback 
path to correct defects. As stated earlier, the "nat
ural" sequence of activities of Design, Code, Test, In
tegrate, Performance Measure, and Release should be 
kept as part of the process. Together with these ac
tivities, some checkpoint must be obtained before an 
activity is considered complete and another begun. 
The question is whether there is anyone activity that 
plays an overriding role in defining the interaction be
tween the other activities. Design seems to be the 
logical choice, but integration will be shown to be the 
key in defining the sequence of design and develop
ment activity. 

Similar to building a house, the sequence that pro
grams are put together is very important. In the case 
of a house, first the foundation, then the outside walls, 
then the roof, etc. are "put together" in that sequence. 
The parts may be built independently and simultane
ously. Once the "basic" framework of the house is 
completed, the other components such as kitchen cabi
nets, toilets, etc. may be added separately. The same 
concept holds true for programs; there is a main func
tional path that must be completed first. Then the 
other functions can be added until the entire product 
is complete. This technique works best when func
tions are added individually. The technique is called 
Continuous Integration; it provides two significant at
tributes to the programming, development process. 
This is conceptually similar to Iterative Enhancement. 3 

First, by adding functions individually to an already 
working base, error isolation can generally be nar-

Quality Control in Software Development 445 

rowed down to the newly added function or interface 
areas. This is critical as the system becomes more 
complex. Second, the development of each discrete 
function entails the same development cycle and can 
be tracked through the process by a standard set of 
quality control techniques. 

The concept of Continuous Integration can be easily 
demonstrated as follows: 

Ne~·" 
Functions 2 

3 

Mod u les 

A B C 

x X X 

X 

X X X 

Figure 1 

o 

X 

X 

Modules A, B, C and D are already developed, and 
they form the working base. Now, three new functions 
need to be added. 

Figure 1 shows the relationship between additional, 
new functions and the impact to the modules. The 
crosses represent "affected." With Continuous Integra
tion the three functions would be developed indepen
dently; although they can be developed simultaneously. 
As anyone function is completed, it is integrated into 
the working base and a new base is formed. 

Consider the alternative. Had we developed them 
by modules, the delay of anyone module would affect 
the completion of at least two functions. If module B 
is delayed, nothing will be completed. This can be dis
astrous. The testing and verification of functions are 
also difficult with the Modular approach. All affected 
modules must be completed at the same time before 
anyone function can be tested. Suppose modules A and 
C were completed first. Functional verification can 
not be performed until the most "affected" module B 
is completed with all its new enhancement. If the 
modules were developed at physically different sites, 
then the problems are even more complex. 

Continuous Integration utilizes a "blueprint" for 
putting the system together called the system build 
plan. This plan is used to determine in what sequence 
code must be developed and, thereby, the design se
quence. Figure 2 represents a unifying paradigm 
within which Continuous Integration is applied. 

To have the processes started, assuming that the 
product has been defined via the commitment process, 
a system build plan must be produced. As shown in 
Figure 3, the production of the build plan is an itera
tive process, requiring trade offs in resource, function, 
and schedule. Once this has been agreed to for the 



446 National Computer Conference, 1976 

ProjeclWorkbook 

I 

i "."L-" i Measure 

Functional Ten 

Figure 2-Programming processes paradigm 

initial product definition, the processes shown in Fig
ure 2 can be used to control the program production 
and introduction of changes. 

Another area that is significant to the total develop
ment and quality control is documentation. A project 
"workbook" that contains at least the design documen
tation for each function must be maintained in an up
to-date manner. This documentation is used as: 

(1) Source for user publication 
(2) Source for test case development 
(3) Control Information for Continuous Integration 
(4) Source for quality control activities. 

IL i.:::; i1HlJU.fLe:WL LU remellluerl.haL Figure 2 i::; nut a 
time sequence chart for the whole system; however, it 
is for anyone function. At any given point in time, 
some activity will be taking place in each area. The 
processes outlined have many other facets that will not 
be discussed in this paper, for they are not relevant to 
the main topic of quality control. Refer to Reference 
14 for further details. 

In summary, the main features of the paradigm that 
are significant to quality control are: 

(a) Process definition that provides for discrete turn
over points between activities (e.g., design to 
code) . 

(b) Control over the input to the system via commit
ment control. 

(c) A blueprint for putting the product together 
(e.g., system build plan). The system build plan 
is also the mechanism used to review the status of 
each function as well as the integrated system. 

U sing this mechanism, inputs from the quality 
control activities can be used to modify the blue
print and/or reallocate resources to assist areas 
in need. 

(d) Work units (functions to be developed) that move 
through the processes in trackable units. 

(e) Documentation of the design which provides in
dependent source material for quality control 
checking. 

Now, we will show precisely how items (a), (d) and 
(e) mentioned above can be achieved by inserting qual
ity control checkpoints into the development cycle of 
any major function. Recall that several functions may 
be developed simultaneously but they all follow a simi
lar development cycle. 

First a set of inspections or reviews7•s will be in
cluded into the cycle in order to attain the main objec
tive of quality control, which was mentioned earlier. 
That is, with the inspections in place, the number of 
errors passed from one phase to the next will be greatly 
curtailed. Strict Exit Criteria will be imposed at each 
step such that the ensuing step may not start until the 
previous step is completed. In addition to the built-in 
controls of inspections and exit criteria, there should 
be explicit control steps in the development cycle. 
Namely, two new steps (a) Error-Prone :Analysis and 

. Develop Logical 
Build Sequence 
(LBS) 

Prod uce System 
Build PI;m b~c;Pri 
on LBS, Resource 
and other 
Constraints 

No 

No 

IIII"M;f •• , DC 
••• ..... '-'11··1 -- ...... 

Reduce Function 
Change Date, etc. 

Figure 3-System build planning 



(b) Post Functional Test Analysis are included. There 
will also be a Test Planning process in the develop
ment cycle. Finally, we have the complete picture of 
a Development Cycle in Figure 4. All the terminolo
gies (e.g., High-Level Design) follow the definitions 
provided in the previous section. 

Each inspection involves the following 4 steps: 

(a) Preparation 
(b) Inspection itself 
1_'\ n _______ 1_ 

\l;} .n.ewurK 

(d) Follow-up 

In the preparation step, all the appropriate and re
quired outputs for that phase (e.g., Detailed Design) 
must be distributed to the inspectors. The inspectors 
are then given enough time to digest the material be
fore the actual inspection. Typically, the inspectors are 
composed of a moderator, the designer of the function, 
the coder of the function, a testing representative, and 
a publications or documentation representative. Refer 

High-Level Design 
Inspection 1 
Exit Criteria 1 

Detail Design 
Inspection 2 
Exit Criteria 2 

Cude and Desk Check 
Inspection 3 
Exit Criteria 3 

Error-Prone Analysis 
Exit Criteria 4 

Functional Test 
Exit Criteria 5 

Post Functional Test-Analysis 
Exit Criteria 6 

Component Test 
Exit Criteria 7 

System Test 
Exit Criteria 8 

/ Test Pla~nil19 

Inspection 
Exit Criteria 

Figure 4-Development cycle of any function 

Quality Control in Software Development 447 

to Reference 7 for details on inspections. The objec
tive of an inspection is to identify problems as opposed 
to offering solutions and better alternatives. 

The Error-Prone Analysis step follows the coding 
phase. The content of the inspection results from High 
Level Design, Detailed Design, and Code is analyzed. 
Those areas that required continuous corrections and 
changes are identified. The reports generated during 
this step serve two purposes. They will allow the de
velopers to decide whether certain areas should be re
worked before entering the Test phase. The decision 
might require a change to the build plan mentioned 
earlier. The reports can also be used as additional 
guideline to the Testing phase in that the error prone 
areas may require more extensive test effort. 

The Post Functional Test Analysis step, as the name 
suggests, immediately follows the Functional Test. The 
recorded test results are analyzed. Besides identifying 
areas which are functionally weak, the data may be 
used to estimate the number of errors that will occur 
when the system goes into production. This estimate 
is measured against a pre-established error tolerance 
level. Thus the results from Post Functional Test Anal
ysis may be used to determine the quality of the 
final product. 

Due to constraints of available space, we will not dis
cuss each exit criteria. Only the Exit Criteria 1 will 
be described along with recommended tools for the 
High-Level Design phase. 

The output from the High-Level Design is a design 
specification in the form of flow-charts and HIP09,13 
diagrams. The recommended tool here is the struc
tured programming concept in that the flowcharts abide 
by the rules of structured programming. These will be 
used for the inspection. The Exit Criteria 1 contains 
the following: 

(1) High-Level Design inspections results logged into 
an inspection file. 

(2) All necessary rework signed-off by managers and 
logged on the inspection file as complete. 

(3) The updated version of the High-Level Design 
Specification is logged into a project workbook, 
signed-off by managers, and distributed to (i) 
project developers, (ii) testers, (iii) documenta
tion and publications groups and (iv) product as
surance group (if any). 

(4) Each module is assigned an owner. 

Note that the required output, High-Level Design 
Specification, serves, not only as input to the next 
phase of the development, but also as input for (a) 
early test planning and (b) documentation. 

The Development Cycle (Figure 4) may be viewed as 
the static component of development environment as 
every function is produced by going through the same 
cycle. Its dynamics are shown in the Programming 
Process Paradigm (Figure 2). Thus the Development 
Cycle, into which various quality controls are built 



448 National Computer Conference, 1976 

is the static part of a dynamic Programming Process 
Paradigm. 

In the previous section, we have presented an imple
mentation of quality control in software development. 
The Inspections, Error-Prone Analysis, and Post Func
tional Test Analysis are all aimed at attaining the 
main objective of low error rate. The Exit Criteria 
which ensures proper control and certain amount of 
documentation are aimed at achieving the secondary 
objective of easiness of enhancement and usage. 

These objectives of quality control seem to be "user" 
oriented rather than the developers. We believe that 
if properly implemented, the developers will benefit 
just as much. That is schedules will be met, and total 
development cost will go down. This can be demon
strated by comparing the cost of quality control (in 
people hours) against the cost of having to correct the 
errors (in people hours) afterwards. 

Figure 5 shows the estimated person hours to in
spect code and design. Recall that inspections are con
ducted with a designer, coder, tester and a representa
tive from pUblications. One of these may be the 
moderator. So inspections require four people. Figure 5 
shows the cost of quality control in developing differ
ent sized products in terms of people-hours based on 
10 hr/k for High-Level Design, 15 hr/k for Detailed 
Design, and 13 hr/k for Code inspections. (k=l,OOO 
lines of executable code) 

It is conjectured1o that on the average a programmer 
makes 7 errors per 1,000 lines of source code. As
suming that the normal testing eliminates 50 per
('ent. of the error~ and that with the Inspections and 
other quality controls the test efficiency goes up to 60 
percent, then Figure 6 shows the number of errors left 
after release. The range of error-elimination efficiency 
of Inspections is chosen to be 30 percent, 40 percent, 
50 percent and 60 percent. 

It is estimated that each of these remaining errors 
costs approximately 70 people hours to fix. This in
cludes identify the problem, make the correction, 

lK 5K 10K 20K 50K 

High-Level Design Inspection 40 200 400 800 2000 

Detail Design Inspection 60 300 600 1200 3000 

Code Inspection 52 260 520 I 1040 2600 

Error-Prone Analysis 5 5 8 
, 

10 
, 

20 

Post Functional Test Analysis 8 10 15 20 30 

Total 165 775 1543 3070 7650 

Figure 5-Cost. in person hr. 

lK 5K 10K 20K 50K 

Errors Remaining (Normal) 3.5 17.5 35 70 175 

Errors Remaining 
(with inspection - 30%; 2.0 iO.O 20 40 iOO 

Errors Remaining 
(with Inspection - 40% 1.7 8.5 17 34 85 

Errors Remaining 
(with Inspection - 50%) 1.4 7.0 14 28 70 

Errors Remaining 
(with Inspection - 60%) 1.1 5.5 11 22 55 

Figure 6-Errors in released product 

compile or assemble, test, and check the test. In 
some cases where redesigning becomes necessary the 
cost can be much higher. So far, we have assumed 
unique errors. For each of the unique remaining errors 
there may be several ill effects, causing one to spend 
more time in verifying that these are all due to the 
same unique error. We will, however, use the conserva
tive 70 people hours. The question is whether the cost 
of correcting these remaining errors to the level that 
the quality control techniques yield is more than the 
cost of introducing these techniques into the develop
ment. Figure 7 shows the cost of correcting these er
rors to the levels of different Inspection efficiencies. 
For example, it costs 105 people hours to bring 3.5 
errors down to 2 errors. 

A comparison between Figures 5 and 7 shows that 
not until we can conduct quality control to the point of 
60 % error elimination before testing does the intro
duction of these techniques become economically worth
while. In reality, a lower level of quality control pro
ficiency \"':;ould probably suffice, for machine time c03t 
was never introduced into the comparison. Note that 
the quality control techniques here do not require any 
machine time. Furthermore, we assumed a fixed 70 peo
ple hours for error correction. This resulted in a linear 
relationship between the size of the product and the 
error correction cost. A more reasonable relationship 
would show that the cost of fixing an error would be 
higher the larger the product as in Figure 8. 

For small modules, the error correction percentage 
of quality control would have to be high before it is 
economically worthwhile. 

lK 5K 10K 20K 50K 

I To 30% Inspection Efficiencies 105 525 1050 2100 5250 

ITo 40% I nspection Efficiencies 126 630 1260 

I 

2520 6300 

I To"'" '''_'0' 'ff.',""~ 147 735 1470 2940 7350 

To 60% Inspection Efficiencies 168 840 1680 3360 8400 

Figure 7-In people hr. 

I 

I 



1 

30% 
60% 50% 

I I I 
I 20% 

I '" , 
7 / 

, 
Cost / #' , , 

/ '" 
, 

(Cost of Fixing 

'" '" , , Post-Release Errors 
"\a'o\(I'c.J , , ,. ,. ,. to the level achieved 

'" 
,. 

p..~a\ , '" ,. , ,.. 
by Quality Control 

~,.,.;,,,,: ... --,,,,. -- Efficiencies) 
#"f;;:---:.:: - - - .... 

5K 10K 15K 20K 25K 35K 

size 

Figure 8 

CONCLUSION 

In this paper we have introduced a development phi
losophy called Continuous Integration and a general 
software devlopment paradigm which can facilitate 
several Development Cycles. Within anyone Develop
ment Cycle, a set of quality control techniques may be 
implemented. With the implementation of quality con
trol, it is shown that the following can be achieved: 

(1) lower error rate 
(2) ease of maintenance 
(3) lower total cost 

The economical comparison, although still not precise, 
does provide a guideline to the management for evalu
ating quality control techniques. 

Quality Control in Software Development 449 

REFERENCES 

1. 

2. 

3. 

Aron, J. D., The Program Development Process, Addison 
Wesley, 1974. 
Baker, F. T., "Structured Programming in a Production 
Programming Environment," IEEE Transactions on Soft
ware Engineering, Vol. 1, No.2, June 1975, pp. 241-252. 
Basili, V. R. and A. J. Turner, "Iterative Enhancement: 
A Practical Technique for Software Development," Pro
ceedings of the 1st National Conference on Software En
gineering, 1975, pp. 56-61. 

4. Braiman, H. and T. Court, "The Software Factory," 
Computer, Vol. 8, No.5, May 1975, pp. 28-37. 

5. Dahl, O. J., E. W. Dijkstra and C. A. R. Hoare, Structured 
Programming, Academic Press, 1972. 

6. Duke, M. 0., "Testing in a Complex Systems Environment/' 
IBM Systems Journal, Vol. 14, No.4, 1975, pp. 353-365. 

7. Fagan, M., Design and Code Inspections and Process Con
trol in the Development of Programs, TR21.572, IBM Corp., 
Kingston, N.Y. (Available). 

8. Freeman, P., "Toward Improved Review of Software De
sign," AFIPS Conference Proceedings, Vol. 44, 1975, pp. 
329-334. 

9. HIPO, Hierarchical Input-Process-Output Documentation 
Technique: Audio Education Package, Form SR20-9413, 
IBM Corp., Gaithersburg, Md. (Available). 

10. Kraft, P. and G. M. Weinberg, "The Professionalization of 
Programming," Datamation, October 1975, pp. 169-172. 

11. London, R., "A View of Program Verification," Proceedings 
of the International Conference on Reliable Software, 1975, 
pp. 534-545. 

12. Mills, H. D., Mathematical Foundations for Structured Pro
gramming, Rep. FSC 71-0612, IBM Corp., Gaithersburg, 
Md. (Available). 

13. Nassi, I. and B. Shneiderman, "Flowchart Techniques for 
Structured Programming," SIGPLAN 8, 1973, pp. 12-16. 

14. Priven, L., Managing the Programming Cycle, TR21.463, 
IBM Corp., Kingston, N.Y. (Available). 

15. Stockenberg, J. E. and A. Van Dam, "STRUCT Program
ming Analysis System," Proceedings of the 1st National 
Conference on Software Engineering, 1975, pp. 27-36. 





A computer performance prediction model 

by ROBERT W. OTTO and MARK AUERBACH 
Office Chief of Staff, Army 

ABSTRACT 

This paper presents a model '\vhich departs from the 
classical queuing theory approach and uses probability 
to predict computer system throughput. The prob
ability a program desires computer resources (CPU 
or channels) is obtainable from system measurements 
or can be estimated. Knowing these probabilities, the 
multi programing throughput of a system concur
rently executing a number of programs is calculable. 
The multi programing model presented is easy to use 
and requires only the probabilities denoted above. The 
serial model, reviewed briefly in this paper has been 
previously published. 

INTRODUCTION 

The Management Information Systems Directorate 
(MISD) 1 Office of the Chief of Staff, Army, is respon
sible for planning hardware and software expenditures 
for the Army. As the number of Standard Army Man
agement Information Systems grew, Data Processing 
Installations became saturated. The problem was to 
validate installation requirements for a hardware 
upgrade. 

The validation process was two-phased. The first 
phase determined, for the present system, Standard 
Army Management Information Systems runtime pre
dictors. The second phase extrapolated Standard Army 
Management Information Systems runtimes to other 
hardware configurations. 

The time needed for extensive computer benchmark
ing was unavailable. A decision was made to formulate 
a simple analytic model for determining computer 
system relative throughput. This paper describes a 
simple analytic model (in a batch environment) for 
both serial and multiprograming modes. The latter 
formulation is probabilistic and both formulations can 
be exercised with the aid of a desk calculator. 

As a follow-up action, when time was available, 
benchmarks were run. A comparison of theoretical 
and actual results is presented. 

451 

SERIAL MODE FORMULATION 

A computer system processing a program resides in 
one of four mutually exclusive states. These states, a 
function of the Central Processor Unit (CPU) and 
Input/Output (I/O), are: 

1. CPU· I/O (CPU busy and no I/O) 
2. CPU·I/O (CPU busy and I/O) 
3. CPU· I/O (CPU idle and I/O) 
4. CPU· I/O (CPU idle and no I/O) 

A Resource Utilization Factor (RUF) is the propor
tion of processing time expended in one of the above 
states. For a given hardware configuration the RUFs 
are software dependent, and can be obtained by evalu
ating performance monitor data. 

The serial mode formulation evaluates computer sub
system hardware characteristics. For example, the 
evaluation characteristics of a disk subsystem are seek 
time, latency time, and transfer rate. The Resource 
Correction Factor (RCF, which is more fully explained 
in Appendix A) is the ratio of a baseline machine 
characteristic to the same characteristic of the target 
machine. Associated with each RUF is an RCF. 

The Machine Conversion Factor for two computer 
systems operating in the serial mode (MCFS) is the 
ratio of time it takes the systems to execute the same 
program. The MCFS expressed mathematically is: 

where 

MCFS- RUF1 +RUF2 +RUF3 +RUF4 

- RUF1 +RUF2 +RUF3 +RUF4 

RCF1 RCF 2 RCF:; RCF4 

R UF k = proportion of time spent in kth state by 
baseline machine. 

(RUFk/RCFk) =proportion of time spent in kth 
state by target machine. 

By definition the sum of the RUFs for the baseline 
system is unity and the MCFS equation reduces to: 

(1) 



452 National Computer Conference, 1976 

Example 1: Given the following: 

RUF1 (CPU ·1/0) =.4 
RUF2 (CPU·I/O) =.1 
RUF3 (CPU·I/O) =,3 
RUF4 (CPU·I/O) =.2 

compute the MCFS for a CPU four times faster 
(RCF1=4) than the original CPU. Utilizing the above 
equation: 

MCFS= «.4/4) +.1+.3+.2)-1=1.43 

This implies CPU replacement results in a target sys
tem with throughput 1.43 times greater than the base
line system. RUF3 and RUF 4 are unaffected because 
the peripheral subsystem is unchanged. The rationale 
for equating RCF 2 to unity is as follows: 

When the CPU and I/O operations are overlapped 
the effect on RCF 2 is governed by the smaller RCF 
involved. 

Example 2: With the addition of a peripheral sub
system whose transfer rate is twice as fast, compute 
the MCFS using the information in Example 1. 

MCFS= «.4/4) + (.1/2) + (.3/2) +.2)-1=2.0 

In this example the CPU RCF is four and the I/O 
RCF is two. The smaller of the RCFs governs and 
RCF2 is set equal to the I/O RCF. 

MULTI PROGRAMING MODE FORMULATION 

In the multiprograming mode, core resident pro
grams are contending for computer resources (Central 
Processor Unit (CPU) and selector CHannels (CHs». 
Contention is the need for a program to acquire a 
computer resource ' . ...-he!! the resource is unayailable. 
The following formulation assumes (1) resource con
tention is a random event and (2) the probability a 
program requires a resource and the resource is un
available, is the intersection of the probability of the 
program desiring the resource and that at least one 
other program desires the resource. The Degradation 
Factor (the DF is more fully explained in appendix B) 
is the proportionate increase in a program's wallclock 
time attributed to resource contention. (For purposes 
of this paper wallclock time is the interval of time a 
program resides in core.) The DF consists of a CPU 
contention component and CH contention components. 

A computer's operating system services I/O requests 
on a first come, first served basis. Since I/O requests 
have no priorities, the DF CH contention components 
for program i are: 

DFi.j=CHi.j(l-k~(I-CHk,j») (2) 
k;ti 

where 

DF1.j= program i contention for channel j. 
CH1,j = probability program i requires channel j. 
CHk,j= probability program k requires channel j. 

Both i and k range from 1 to N (number of programs 
being processed). Once i is set, k then takes on all 
other values in the range. 

The multiprograming model assumes the scheduling 
algorithm allocates CPU priority equally to all pro
grams. (This model can be modified for a system 
having CPU prioritized scheduling algorithm). The 
DF of the CPU contention component for program i is: 

DFi,c=CPUj(l-k~(I-CPUk») (3) 
k;tl 

where 

DFj.c=program i contention for CPU. (c is the 
number of channels plus unity). 

CPUj = probability program i requires the CPU. 
CPUk = probability program k requires the CPU. 

(Recall that both i and k range from 1 to N.) 
The DF for program i is unity plus the sum of the 

contention components, which expressed mathema
tically, is : 

(4) 

where, as previously defined: 

c=number of contention terms which is number of 
channels plus unity. 

The Machine Conversion Factor for a computer 
system operating in a Multiprograming mode 
(MCFMP) is the sum of the inverses of the DFs. (See 
Appendix B for derivation). Expressed mathematically 
the MCFMP is : 

1;-

MCFMP = ,L,DF1-l (5) 
i=l 

where 

k=number of programs concurrently being pro
cessed. 

Example 1: Given the following Resource Utilization 
Factors (RUFs) for a two channel system: 

Program Program Program 
A B C 

RUF1 (CPU·I/O) .4 .5 .1 
RUF2 (CPU·I/O) .1 .1 .3 
RUFg (CPU·I/O) .3 .3 .1 
RUF4 (CPU;I/O) .2 .1 .5 

and with additional information that the ratios of CHI 
and CH2 usage for the above programs are 3 :1, 1 :1, 
and 1 :3, respectively, compute the MCFMP. 

Adding CPU· I/O and CPU· I/O yields the propor
tion of CPU usage. Adding CPU· I/O and CPU· I/O 
yields the proportion of total I/O usage. Performing 
the indicated additions yields the following: 



Program Program 
A 

CPU .5 
I/O (Total) .4 
I/O (CHI) .3 
I/O (CH2) .1 

CHI contention components are: 

DFl.l=.3(1-(I-.2) (1-.1» =.08 
DFz,1=.20-(1-.3) (1-.1)) =.07 
DF;{,1=.1 (1-(1-.3) (i-.2» =.04 

CH2 contention components are: 

DF],2=.1 (1- (1-.2) (1-.3» =.04 
DF2,2=.2(1-(1-.1) (1-.3» =.07 
DFa,2=.3(1-(1-.1) (1-.2» =.08 

CPU contention components are: 

DF1,:{=.5(1-(1-.6) (1-04» =.38 
DF2,:{=.6(1-(I-.5) (1-04» =042 
DF:{,a=A(1-(I-.5) (1-.6» =.32 

B 
.6 
A 
.2 
.2 

Degradation Factors for each program are: 

DFI = 1 +.08+ .04+ .38= 1.50 
DF2=1+.07 +.07 +.42=1.56 
DF:{ = 1 + .04+ .08 + .32 = 1.44 

and the MCFMP is: 

Program 
C 
.4 
A 
.1 
.3 

111 
MCFMP = 1.50 + 1.56 + 1.44 = 2.00 

Thus, the multiprogramed system executing three pro
grams has twice the throughput of the same configura
tion executing in a serial mode. 

Example 2: Given the following RUFs common to all 
programs processed: 

RUF1 (CPU, I/O) = A 
RUF 2 (CPU ·1/0) =.3 
RUF3 (CPU·I/0) =.1 
RUF4 (CPU ·1/0) =.2 

compute the MCFS and MCFMP if the original is re
placed by a CPU twice as fast (RCF 1 = 2) . 
The MCFS calculation is: 

MCFS= «04/2) +.3+.1+.2)-1=1.25 

The "new RUFs" (RUB's) for the faster machine are: 

RUFk= (RUFk/RCFk) (MCFS) 

where 

(6) 

RUFk = proportion of time spent in kth state by faster 
machine. 

Thus: 

RUF] (CPU,I/O) = (.4/2) (1.25) =.250 
RUF 2 (CPU·I/0) =.3(1.25) =.375 
RUF:{(CPU·I/O) =.1(1.25) =.125 
RUF 4 (CPU·I/0) =.2(1.25) =.250 

Computer Performance Prediction Model 453 

From the RUFs the probability a program requires the 
CPU is .625, and the probability a program requires 
a channel is .50. Given a 3 to 1 ratio for CHI usage 
to CH2 usage, (CHI usage is .375 and CH2 is .125), 
compute the MCFMP for three programs concurrently 
processed. 
The CH and CPU contention components are: 

DFi ,1=.375 (1-(1-.375)2) =.23 
DFi.2=.125(1-(1-.125)2) =.03 
nl4' _ a'JJ:;: {1 {1 a'JJ:;:\ 2\ _ ~A 
.J..J~' i,3 - .v..,u \..1.- \ ..L-.V"'-IU, I - .u":% 

Since all programs have identical RUFs, the DF for 
each program is : 

DF = 1 + .23 + .03 + .54= 1.80 

The MCFMP for a system where all programs have 
identical RUFs is: 

MCFMP= (MCFS) (k/DF) (7) 

where 

k=number of programs concurrently being pro
cessed. 

For this example the MCFMP is: 

MCFMP= 1.25 (3/1.80) 
MCFMP=2.08 

This example demonstrates that, given a set of rep
resentative system RUFs and approximating the aver
age number of programs concurrently processed, the 
MCFMP of a system can be determined. 

FORMULATION REFINEMENT 

If the initial benchmarks are executed in both a 
serial and multiprogramed mode, equation 4 is written 
as: 

(4') 

where 

T = a proportionality constant 

Replacing DF with DF equation 5 becomes: 

k -1 

MCFMP=~DF (5') 

Having an empirical value for MCFMP equation 5' is 
initially solved for T. The MCFMP for the target sys
tems are computed as demonstrated in the multipro
graming mode formulation section with equations 4 
and 5 replaced by equations 4' and 5'. 

LIMITATIONS 

The multi programing formulation is valid for con
current processing of at least two and possibly three 



454 National Computer Conference, 1976 

programs (expected queue lengths are very short). 
When concurrently processing four or more programs 
significant queues will form, and a more complex 
queuing theory formulation is necessary. 

RESULTS 

From hardware monitoring, the average Resource 
Utilization Factors (RUFs) and channel usage for 
Standard Management Information Systems executing 
on an IBM 360/30 were obtained. These R UFs are: 

CPU·I/0=.55 
CPU, I/O = .06 
CPU·I/0=.18 
CPU·I/0=.21 

Channel 1 accounts for 78 percent of I/O activity and 
channel 2 accounts for 22 percent. 

U sing an instruction mix it was determined that the 
average instruction time for an IBM 360/30 is 23.6 
microseconds; for an IBM 360/40 13.6 microseconds; 
and for an IBM 360/50 6.5 microseconds. The follow
ing chart compares the calculated Machine Conversion 
Factor (MCF) using the model, to the actual bench
mark MCF. 

Cal- Cal-
culated culated Bench-
MCF MCF mark 

System (T=I) (T= 1.3) MCF 

30 1.0 1.0 1.0 
30MP (2 programs) 1.4 1.3 1.3 
40 1.3 1.3 1.3 
40MP (2 programs) 2.0 1.9 1.7 
50 1.7 1.7 1.6 
50MP (2 programs) 2.8 2.6 2.6 

The calculated MCFs were used to validate hard
ware requirements at 36 Army Data Processing In
stallations in order to initiate a procurement for the 
necessary upgrades. 

APPENDIX A 

RESOURCE CORRECTION FACTORS 

A Resource Correction Factor (RCF) is the ratio 
of a baseline measurement characteristic to the mea
surement of the same characteristic of the target com
puter system. For example, calculation of a computer 
system's throughput for replacement of a disk sub
system requires two RCFs. One RCF is the ratio of 
transfer rates and is used when I/O is occurring; the 
other RCF is the ratio of seek time plus latency time 
and is used when the device is busy only and no I/O 
is occurring. 

Calculation of a computer system's throughput for 
replacement of a Central Processor Unit (CPU) re
quires an analysis of software. Knowing the instruc
tion repertoire of a computer~ the incidence of use of 
the various instructions can be obtained by software 
monitoring. To obtain a CPU RCF : 

(1) Multiply each instruction's frequency of use by 
the instruction's execution time. 

(2) Sum the results of step one. 
(3) Take the ratio of step two for the baseline 

CPU to the target CPU. 

Example,' Given the following: 

INSTRUCTION 

Load 
Store 
Branch 
Add 

FREQ 

8 
4 
6 
2 

BASELINE CPU 

TIME (FREQ) (TIME) 

4 32 
3 12 
7 42 
2 4 

90 

The CPU RCF is 90/50 = 1. 8 

APPENDIX B 

DEGRADATION FACTOR 

TARGET CPU 

TIME \ FREQJ(TIME) 

1 8 
2 8 
5 30 
2 4 

50 

Multiprograming is the concurrent processing of two 
or more programs and the sharing of computer re
sources by these programs. M ultiprograming increases 
wallclock time (time a single program resides in core) 
and increases total computer system throughput. The 
Degradation Factor (DF) is the ratio of wallclock 
time for a program processing on a computer operat
ing in a multi programing mode to a serial mode. The 
Machine Conversion Factor for the Multiprograming 
mode (MCFMP) is the increase in system throughput 
for a system operating in a multi programing mode 
opposed to a serial mode. The MCFMP can be calcu
lated by taking the sum of the inverses of the DFs. 

Example 1,' Given that programs A and B executed 
with serial wallclock times of 12 units and 8 units 
respectively, and multiprogramed wall clock times of 
15 units and 20 units respectively, compute the DFs 
and the MCFMP. 

.. --- - . -"- ---

j PROGRAM A' J PROGRAM A I ACTIVE (SERIAL) I IDLE 

'tr ........ __ ._-"-
1'2 15 :1 

PROGRAM B ACTIVE (SERIAL) IDLE I ~o- 20 

The DF for program A is 15/12 = 1.25 and the DF for 
program B is 20/8=2.5. The MCFMP is (1/1.25) + 
(1/2.5) =1.2. The multiprogramed system has 1.2 
more throughput than the serial system. 

I 
I 

I 

J 



Computer Performance Prediction Model 455 

Example 2: Assuming both programs in the previous 
example required exactly 20 units of wallclock time 
when multi programed and each program retained its 
ratio of active to idle time, compute the MCFMP. 

PROGRAM A [ __ _ ACTIVE (SERIAL) 

o 
FROGRAH B r .. " .. CTIVE(SERIAL) 

d 
IDLE \ 

I 
20 

The total active (serial) processing time of programs 
A and B, divided by the wallclock time is the MCFMP. 
The MCFMP is (16+8) /20= 1.2, thus verifying the 
method used in Example 1. 





A queueing network model for the effect oi data 
compression on system efficiency* 

by ALAN JAY SMITH 
University of California at Berkeley 
Berkeley, California 

Data compression is often employed in data base sys
tems to reduce the volume and therefore the cost of 
large online data bases. The use of data compression is 
normally assumed to imply a tradeoff-storage space is 
decreased in return for which the CPU is required to 
spend time coding and decoding the data, with a con
sequent decline in system throughput. We employ 
queueing network models with classes of customers to 
show that the effect of data compression on system 
efficiency can be calculated. Our calculations indicate 
that under some circumstances, data compression may 
actually increase system throughput by decreasing 
input/output transfer time and/or increasing the use
ful processing per data record. We formulate and solve 
several models to indicate the power of our technique. 

INTRODUCTION 

Large data base systems exist or are being developed 
for applications including library information re
trieval, such as the Spires system at Stanford Univer
sity and the Intrex System1 at M.LT., for business data 
management, such as IBM's IMS system2 and for mili
tary applications such as the Navy Fleet Material 
Support Office.:l In all data base systems, the cost of 
the online storage devices, be they disks, drums or more 
exotic devices such as the photostore, can be expected 
to be a very large fraction of the hardware cost of the 
system. In standard eomputer systems~ examination of 
manufacturers price sheets suggests that the memory 
hierarchy accounts for about one half of the cost of the 
hardware; in a data base system the storage devices 
can be expected to account for even a larger fraction 
of the system cost. 

Because of the high cost of maintaining information 
online in a computer system, the application of data 
compression has become increasingly attractive. Nor
mally, the use of, data base compression implies a 

* Research sponsored by the Joint Services Electronics Program 
Contract F44260-71-C-0087. 

457 

tradeoff; the decrease in storage space and cost is 
achieved only at a substantial expense in coding and 
decoding the data base. In this paper we develop a 
model for the effect of data compression on system 
efficiency. We show that under certain circumstances, 
system throughput may actually be increased through 
the use of data compression. 

In the next section of this paper we briefly review 
some of the more common and effective methods of 
compression that are applicable to computer files. The 
third section summarizes the mathematical solution to 
a very general class of queueing networks. We analyze 
a simple model of data compression in the fourth sec
tion and present numerical results. Other, more sophis
ticated models that take into account more of the 
characteristics of real systems are presented in the 
fifth section and the mathematical formulation for 
some of these models is given. 

REVIEW OF DATA COMPRESSION METHODS 

Information theory 

In his classic paper in 1948, Claude Shannon created 
the subject of information theory.4 He defined entropy 
as a measure of information and showed how to esti
mate mathematically the amount of information con
tained in a message or set of messages. Although his 
formulation is completely general, the direct applica
tion of his results is difficult; most data compression 
schemes employ simple but effective redundancy re
movai techniques that are not directly derived from 
(although they are certainly related to) information 
theory considerations. Some of these techniques are 
briefly discussed below. 

Null suppression 

Many files are largely composed of "nulls," zeros in 
numeric fields and blanks in character fields. These 
nulls are inserted either because of empty fields or 
because the field length is larger than the data item 



458 National Computer Conference, 1976 

it contains. Simply omitting these nulls (and inserting 
field separators where necessary) can eliminate a great 
deal of redundancy and can substantially compress the 
file. 

Run length coding 

Run length coding involves coding runs of identical 
data items (or groups of data items) as a count of the 
number of occurrences followed by a sample of the 
item (s). Thus a run of five zeros might be encoded as 
"50." This technique is most effectively employed to 
run length encode nulls (zeros or blanks) but may also 
be useful when other characters are repeated. 

Statistical encoding 

Statistical encoding techniques are directly derived 
from information theoretic considerations and take 
advantage of the varying probabilities of occurrence 
of characters or groups of characters. Shorter codes 
are used to represent the most common items and 
longer codes the less frequent. Huffman devised a 
simple and optimum method of statistical encoding. 
Huffman coding is almost always used only on a char
acter by character basis for ease of implementation 
and thus generally produces only limited data com
pression. 

Pattern substitution 

One of the most effective methods of compression is 
pattern substitution. Character or digit strings of 
length greater than one are replaced with shorter 
strings; these shorter strings can be assigned usmg 
Huffman's algorithm. Thus coding and decoding dic
tionaries are created and are used to translate to and 
from the compressed form. 

Front and back compression-differencing 

When a field of a set of records is stored in sorted 
form, only the differences between records need be 
retained. Thus in the phone book, the whole page of 
"Smith's" could be shortened by only giving first and 
middle names. If the loss of information is no problem, 
as in index structures, only that part of a record that 
serves to distinguish it from its neighbors need be 
retained. Thus the trailing part (s) of a record field 
can often also be deleted. 

QUEUEING NETWORKS WITH CLASSES 
OF CUSTOMERS 

In this section we summarize the mathematical 
solution to a very general class of queueing networks. 

The material is entirely drawn from Baskett et al.i> and 
the reader is referred to that paper for a more complete 
presentation. 

A queueing network is a, model of the following 
type: There are a number of service stations (e.g., 
computers, toll booths, checkout counters, work sta
tions), each with one or more individual servers. Be
hind each service station (we use the term server inter
changeably with service station except where confusion 
is likely to result) a queue forms. Customers arrive 
in the queue behind the service station, are served 
according to one of the queueing disciplines discussed 
below, and then each customer, with a certain proba
bility, either joins the queue behind another server or 
leaves the system. Customers can also arrive at a 
given rate at certain servers from outside the system. 

The generality of the queueing network model can be 
extended by allowing customers to be of different types 
(from different "classes") and by allowing each type 
of customer to have different routing probabilities and 
different service requirements. Our models will depend 
hea vily on the use of classes of customers. 

Servers (service stations) may be of one of four 
types for the product form solution (of equation (2» 
to the queueing network to be valid; we present only 
those three types of servers that are relevant to our 
models. 

Types of servers 

Type 1: There is a single server at a service center, 
the customers are served in first come, first served 
order, all customers have the same service time distri
bution at the service center and this distribution is the 
negative exponential. The service rate may depend on 
the number of customers queued and waiting for the 
server. 

Type 2: There is a single server at the service center 
and the processor is shared among all customers wait
ing for the processor (i.e., each customer receives 
service at a rate of l/n when there are n customers). 
The service time distribution can vary by customer 
class and may be arbitrary. Type 2 servers are fre
quently used to model the CPU in a computer system 
and represent quite accurately the operation of a 
processor that is scheduled in a round robin manner 
with a short quantum. 

Type 3: The number of servers in the service center 
is greater than or equal to the maximum number of 
customers that can ever be queued at this server. Each 
class of customer may have a distinct service time 
distribution of arbitrary form. Users at their teletype 
terminals are well described as Type 3 servers. 

All service distributions for Type 2 and Type 3 
servers must have rational Laplace transforms, but 
this requirement is no barrier since any non-patho
logical distribution can be approximated arbitrarily 
closely by one with a rational transform. 

Let us define 1/ fJ.i (j) to be the mean service time at 



the ith server, which is of Type 1, when there are j 
customers queued or in service. Let 1/ j-lir be the mean 
service time of a customer of class r at server i for a 
server of Type 2 or 3. j-l is then the "rate" of service, 
and is equal to the reciprocal of the mean. 

Pi,r :j,~ is defined as the probability that a customer of 
class r, when it completes service at server i will change 
to class s and go next to server j. Let nir be the number 

It 

of customers of class r at service center i. Let ni = "") nir. - ~--

Let N be the number of customers, R the numbe~ of 
classes and M the number of service stations. 

Our models will have exactly one chain; that is, a 
customer at server i in class r can in some manner 
reach server j and be in class s if and only if it is pos
sible for a class s customer to ever be at server j. Thus 
all possible customer states (i,r) communicate with all 
others. In this case we can define a set of equations 
which specify the variables eil' as follows: 

LeiI'Pi.I';j,s+qjs=ejS for all j, s (1) 
VLI' 

where %s is the rate of customer arrivals of class s to 
server j from outside the system (exogenous arrivals). 
If qjs = 0 for all j, s, then the eil' are determined to within 
a multiplicative constant; otherwise they are specified 
uniquely. The eil' can be interpreted as the relative (or 
absolute) arrival rate of class r customers to service 
center i. 

The steady state solution for the queueing network 
we have described has a very convenient form; the 
overall steady state solution is the product of terms for 
each server in the network. Let Yi be the state of the 
it!! server (number of customers, etc., see below). Then 

P(S=YHY2,'" ,Yx) =Cd(S)gl(yJg2(Y2)" .gx(Yx) 
(2) 

where C is a normalizing constant, d(S) is a function 
of the number of customers in the system and gi is a 
function depending on the type of server i. If service 
center i is of Type 1 then 

(3) 

If service center i is of Type 2, then 

(4) 

If service center i is of Type 3, then 

( ) -TI eil'·r It 1 [ In. gi Yi - -,--
1'=1 nil" f-lil' 

(5) 

We note that only the mean service times (l/j-l) ap
pear in the above expressions; thus the steady state 
distributions are independent of the form of the ser
vice time distributions for customers at servers of 
Types 2 or 3. 

We will, for simplicity, consider only models in 

Queueing Network Model 459 

which the number of customers (N) is fixed. This 
represents a situation in which the degree of multi
programming is constant. The extension to open sys
tems (ones with exogenous arrivals and departures) is 
straightforward, but it adds only additional parame
ters to our models and provides no new information. 
For such a closed system, d (S) = 1. 

The normalizing constant may be calculated as 
follows: 

'"' C=l/ L [gl (yJg2 (yJ ... g~dyx)]. (6) 
a II feasible S 

That is, the sum of all steady state (equilibrium) 
probabilities must be 1. The sum is taken over all 
"possible" states S. Possible states are those in which 
the total number of customers in the system is equal 
to the proper figure (in this case N) and all class/ 
server and class/number in class combinations are 
correct. Thus if it is impossible for a class 3 customer 
to be at server 5, then any state with a class 3 customer 
at server 5 is not feasible, and the summation must 
not include such a term. 

We note that for open systems, it is possible to get a 
closed form expression for C, the normalizing constant. 

Prior to the development of solutions for queueing 
networks with classes of customers, queueing networks 
were limited to one class of customer. It was thus 
impossible to differentiate among customers when they 
arrived at a server. By allowing each customer to be 
of a different class, it is possible to route each customer 
differently in the network. By ailowing customers to 
change classes, it is possible to route the same cus
tomer through the same service center more than once 
and to have the customer display different behavior, 
both in service requirements and in departure branch
ing probabilities. In the paper by Baskett et al./ it 
can be seen that this ability to differentiate among 
customers yields measurably different steady state 
probabilities in comparison with the approximations 
employed previously. 

A SIMPLE MODEL FOR DATA BASE SEARCH 

With a single, FCPS, stoTage device 

In this section we will describe, solve and present 
numerical results for what is a simple model for data 
base operation with compression. We have chosen this 
particular model for two reasons: It illustrates vir
tually all of the interesting features of our technique 
and our ideas and it contains a small number of pa
rameters that can be varied intelligently. Formulation 
of more sophisticated or complex models is straight
forward and two such are presented in the next section. 

We will consider a data base system in which the 
only operation to be modeled is the search operation. 
The system will be multiprogrammed to a constant 
factor of N. Each of the N processes (customers) will 
follow the following sequence of steps repetitively: 



460 National Computer Conference, 1976 

1. Computation-The CPU will perform the neces
sary computations on the record just retrieved, and 
then will perform the operations necessary to initiate 
the next read operation (process in class 2). 

2. The process will be suspended while a record is 
read from the secondary storage device and trans
ferred to a buffer area in main memory (process in 
class 1). 

3. The CPU will perform the decompression opera
tions necessary to translate the record into decom
pressed form (process in class 1). Operation continues 
again at Step 1. 

This sequence of operations is diagrammed in Fig
ure 1 where a number of useful parameters of the 
model are also shown. We define these parameters 
below as well. 

The mean time to transfer a record from 
secondary storage to main storage. 
The mean time to decompress a stored record. 
The mean time to perform the computations 
in Step 1 above. 

Server 1, the secondary storage device, will be mod
eled as a Type 1 server. That is, customers will be 
serviced in first come, first served order and the service 
time distribution will be the negative exponential. This 
formulation should be an adequate approximation for 
any I/O device that services the customers in the order 
of arrival with no parallel operation (e.g., disk, drum, 
extended core storage) . 

Server 2, the CPU, will be modeled as a Type 2 
server; the customers will be serviced in processor 
sharing model. We note that since the model yields the 
same steady state probabilities independent of the ser
vice time distribution, the highly skewed service time 
distributions often found in computer systems cause 
us no inconvenience. Such skewed distributions are, 

Server 
Type I 

mean servi ce 

lime = l/fLl 

Server 2 
Type 2 

closs I 

I/O 
Device 

closs I 

...------_+_ decompression 

(mean l/fL211 

- - - - - -14----' 

CPU 
'--------+- computation 

(mean 'h 22) 

class 2 

Figure l-::'.lodel 1 

in fact, unlikely for the applications that we discuss. 
From the above descriptions, it is evident that for 

the transition probabilities we have: 

Pl,l; 2,1=1 

P2,l; 2,2= 1 
P2,2; 1,1=1 
Pi,r; j,s = 0 for all other i, j, r, s. 

(7) 

From equation (1) for the e's, it is clear that the e's 
are all equal and may vary (jointly) by a multiplica
tive constant. For convenience we choose that constant 
so that 

ei,r= 1 for all i, r. (8) 

For only two servers, the product form solution is of 
the form 

(9) 

where 

(10) 
1 

and 

(11) 

Thus 

P(S)=C ______ n~~)! ____ _ 
n l n~l n22 

(12) 

P,l n 21 !n~2 !P,!!1 P,22 

The computation for the normalizing constant is indi
cated in equation (6). 

The pauuneLer of intere~t in this model will be the 
fraction of time that the CPU spends processing class 2 
customers, since that is the computation that is inde
pendent of the amount of compression that is employed. 
If we assume that this computation (on class 2 cus
tomers) represents the "useful" work of the system, 
then we are actually measuring the throughput of the 
system. The figure of merit is thus 

throughput = L P (S) . n~2 . (13) 
v S such that n.) 
U2>O and S -
i. feasible 

Although it is simple to write down a closed form 
expression for the throughput of the system, the large 
number of terms prevents any clear or easy interpre
tation of the resulting formula. Symbolic optimization 
techniques, which are applicable to the models we 
describe in this section, are likewise infeasible. At
tempts to determine the optimum degree of compres
sion, where the effects of compression are indicated in 
equation (13), were unsuccessful using the Macsyma6 

symbol manipulation facility. For this reason we pre
sent only numerical results, as indicated in Figures 
2,3,4, 5, 6,7, 8 and 9. 



THRIZJUGHPUT VS. CIZJMPRESSIIZJN TIME 

1.00 
===================1!IJl-25. N-2 

~ 0.50 l 
~ 0.10 

--~~ 
---~ 

!Sl t 

~1 ~ 0.05 
f-

0.01 
""", •• 5, .75, 1.125, 1.69, 2.53~ 

5.7. 8.54. 12.81. 19.22. 28.83. 43.25. 154.87 
__ I ____ L_LJ L.IJ ______ _ 

0.5 1 5 10 50 
MEAN DECI2JMPRESSII2JN TIME (1/ JJ21) 

Figure 2 

In Figures 2 through 5, the mean service time at 
server 1 (the secondary storage device) has been taken 
to be 25 milliseconds. Figures 2 and 4 display compu
tations for a system with a degree of multiprogram
ming (N) of two; the same data is presented in Fig
ures 3 and 5 for a multiprogramming level of five. 

Both Figures 2 and 3 give the system throughput, 
measured as the useful processor utilization (equation 
(13», for a system in which we have varied the mean 
decompression time (1/ P,21) for different values of the 
mean useful processing time (1/,u22)' The values of 
1/ P,22 were varied from .5 to 64.87 milliseconds; each 
value differs from neighboring values by a factor of 
1.5. We note that in the computations presented in 

THRIZJUGHPUT VS. CIZJMPRESSIIZJN TIME 

I
::J 
(L 
::c 

1.00 

0.50 

~ 0.10 
IS) 

~ 0.05 
f-

0.01 

--~ 
--~ 
--~ 

""", •• 5, .75, 1.125, '-59, 2.53, 3.8'~ 
0.5 1 5 10 50 

MEAN DECIZIMPRESSIIZIN TIME (11 JJ21) 

Figure 3 

Queueing Network Model 461 

THRIZJUGHPUT VS. CIZJMPRESSIIZJN F ACT!ZlR 

1.00~ ~ f~
i iii iii :~. ·>r

1 0.50~ ~ 

~~~J 
~ 0.10 t / ~ _ j

~ 0.05 ~ V'""25' N.2 ~
1/IJ22 s .5, .75, 1.125. 1.159, 2.53, 3.8,

0.01
2 3 4 5 6

CIZIMPRESSIIZIN F~CTIZIR

Figure 4

Figures 2 and 3, we have allowed ourselves no benefit
from the use of compression; compression has neither
increased the amount of useful processing per record
nor decreased the amount of time to transfer a record.
Despite this, it is only when the decompression time
exceeds about one-third of the input/output service
time (transfer + latency) that the system throughput
declines significantly. This decline, and the point at
which it begins, is surprisingly independent of the
amount of normal processing required per record
(1/ P,2Z)' This is accounted for by three observations:
for small useful processing, the system has substantial
excess capacity available for compression and decom
pression, for large useful processing, the compression

THR!ZlUGHPUT VS. CIZJMPRESSIIZJN F ACTIZJR

1.00

0.50

I-
::J
(L
:::c
l!J
::J 0.10
IS)

0:::
:::c
f- 0.05

2 3 4 5 6
CIZJMPRESSIIZJN FACTIZIR

Figure 5

462 National Computer Conference, 1976

time is a small added increment and is only marginally
apparent. In both cases, the effect of the decompres
sion is masked by the input/output service time.

In computing the data displayed in Figures 4 and 5,
we have taken a rather more optimistic attitude. We
assume here that with the addition of data compres
sion, the size of the record transferred and the conse
quent input/output service time is unchanged. The
information content of the record is therefore in
creased by a factor equal to the degree of compression
D. The usefulness of this latter effect applies to those
cases in which we are performing a search; simple
lookup operations to a known location within a record
result in no increase in useful processing time when
the record content is increased. We will let 1/ /J-22 * =
D / /J-22, where 1/ /J-22 * is the effective mean useful pro
cessing time; on the figures we give only the values of
1/ /J-~~' which are unadjusted for the compression factor.

The value for the mean decompression time, 1/ /J-~H
was computed as follows:

1/ /J-2l = eD- l _ .9. (14)

This expression (equation (14» represents our intui
tive idea of the cost of data compression; we have no
set of measurements to justify it. We can observe its
reasonableness when we consider the experiments by
Shannon. 7 Shannon attempted to measure the infor
mation content of English. When considered on a letter
by letter basis, English requires about 4.14 bits/letter
for optimum encoding; for equifrequency coding, it
requires 4.7 bits/letter. When coded in groups of two
letters (digrams), English needs 3.56 bits/letter.
Coding English word by word required about 2 bits/
letter. Shannon then conducted experiments with hu
man subjects in which he asked them to predict the
next letter of a text, given the preceding letters. This
experiment yields a figure of about 1 bit/letter. We
observe that each additional reduction of text size re
quired substantially more processing time and larger
tables; the final and most effective form of compres
sion involved the long range syntactic structure of
English and its semantic content as well. Thus an
exponential increase in compression/decompression
time with an increase in the degree of compression is
reasonable.

It can be seen from both Figures 4 and 5 that the
use of compression has resulted in an increase in the
system throughput of better than a factor of two for
the best value of the degree of compression. The rela
tion of the effect of compression to throughput is most
evident in Figure 5 where the peak in each curve
moves to the left as the value of 1/ fJ-22 increases; com
pression becomes increasingly less useful as the system
utilization climbs until for almost full utilization com
pression is of no use at all; it simply appears as over
head.

We observe in comparing Figures 2 to 3 and 4 to 5
that the change in the degree of multiprogramming

has almost no effect; the shape of the curves is only
slightly changed as are the numerical values displayed.
This effect can be accounted for by remembering that
the bottleneck in the system is the input/output device,
which is a first come, first served, server.

A many spindle parallel service system

In our model, which we analyzed earlier, we postu
lated a single secondary storage device which processed
requests for information in a first come, first served
manner. Such systems exist; an example is the Ingres
System< which currently uses a single spindle disk
drive to hold all data files. At the other end of the
spectrum, one can imagine a system with a very large
number of spindles, overlapped seeks, drums with
sector queueing and multiple channel controllers to
minimize channel interference.9 We can approximate
the operation of such a system with a very simple
modification to our model of Figure 1. We let server 1,
the secondary storage device, be of Type 3 rather than
Type 1. A Type 3 server is one in which the number
of individual servers at the service station equals or
exceeds the number of customers in the queueing net
work. For a large number of spindles and a small
degree of multiprogramming, this provides an excel
lent approximation which allows great computational
efficiency.

We replace the function gl (yJ as defined in equa
tion (10) with the function gl (Yl) as defined in equa
tion (15), below:

1
gl(yJ =--, (15)

n l

n l !/J-l
g~(yJ is as defined in equation (11) ; thus the expres
sion for the state probability is

P(S)=C-------n-~! ____ __
n l nn n 22

(16)

n l !n2l !n22 !/J-l /J-21 /J-22
where the normalizing constant C is defined as in
equation (6).

Figures 6, 7, 8 and 9 correspond to Figures 2, 3, 4
and 5, but employ the model formulation of this sec
tion. As before, the mean secondary storage fetch
time is 25, the mean useful processing time is varied
from .5 to 64.87 and the degree of multiprogramming
(N) takes on the values 2 and 5.

Figures 6 and 7 provide an interesting contrast to
Figures 2 and 3 in two respects. We see that the
throughput drops off almost immediately with the
introduction of compression; a dropoff that wasn't
apparent until the mean decompression time reached
approximately 8 in Figures 2 and 3 is apparent for
values as small as 2 in Figures 6 and 7. This effect is
expected; the secondary storage device was the bottle
neck in the system in our earlier model, but it is much
less so here. Compression, therefore, has a far more
deleterious effect.

THRl2JUGHPUT VS. C0MPRESSI0N TIME

1.00 f'
~ :::: l
& t

~ 0.05 t
I

0.01

, , "'" I 1/ P,.~5. '~; i
~=:====-======~~~
---~j

1/1.122 - .5 •. 75. 1.125. 1.69. 2.53. 3.8.

5.7. 8.54. 12.81. 19.22. 28.83. 43.25. 54.87

0.5 1 5 10 50
MEAN DECI2lMPRESSII2lN TIME (1/ }J21)

Figure 6

The ability of the storage device to process requests
in parallel also introduces a difference between Fig
ures 6 and 7 that wasn't apparent when comparing
Figures 2 and 3. The increase in the degree of multi
programming has resulted in a substantial increase
in the system throughput.

The differences between Figures 2 and 3 and Fig
ures 6 and 7 are repeated when one compares Figures
4 and 5 with Figures 8 and 9. The optimum degree of
compression has decreased, since the system very much
reflects the effect of the processing time required for
decompression. This is most pronounced in Figure 9
in which the system can be seen to attain high through
put through multiprogramming to a degree of five. A
large increase in throughput is also observed when the

THRlZJUGHPUT VS. ClZJMPRESSIlZJN TIME

~~-:: ~
~::~:r ~

~ 1/1.122 - .5 •. 75. 1.125. 1.59. 2.53. 3.8.

0.01 ~ 5.7. 8.54. 12.81. 19.22. 28.83. 43.25. 54.87

0.5 1 5 10 50
MEAN DECI2lMPRESSII2lN TIME (1/ }J21)

Figure 7

Queueing Network Model 463

THRlZJUGHPUT VS. ClZJMPRESSIlZJN F ACTlZJR

"" '" 1

I r~~1
! :::: ~~ I/p,.25. N~l

l/}J22 - .5 • .75. 1.125. 1.59. 2.53. 3.8.

2 345 6
CI2lMPRESSII2lN FACTI2lR

Figure 8

degree of multiprogramming increases in going from
Figure 8 to Figure 9.

Conclusions

The model described in this section has given us
insight into the effect of data compression on system
operation. It can be seen that when the processing
time required for data compression is sufficiently small,
system performance will only deteriorate slightly.
When one takes into account the possible increase in
processing time per record fetched when compression
is introduced, system throughput may increase very
substantially. By substituting into our model the

THRlZJUGHPUT VS. ClZJMPRESSIlZJN F ACTlZJR

0.50

I-
::J
0...
:J:
C!J
::J
lSI 0.10 0::::
:J:
I-

0.05
1/ 1.11-25. N-5

1/}J22 - .5 •. 75. 1.125. 1.59. 2.53. 3.8.

! I
5.7, 8.54. 12.81. 19.22. 28.83. 43.25. 64.87

! ! ! I ! ! I , I , ! ! ! I I I , ! I , I , , I I

2 345 6
CI2lMPRESSII2lN FACTI2lR

Figure 9

464 National Computer Conference, 1976

measured values for Il-H Il-~H Il-~~ and N, one can obtain
a good estimate of the exact effect of data compression.

In addition to giving us useful results, our analysis
has provided a very simple example of a general and
powerfui technique; that of system modeiing with
queueing networks with classes of customers. In the
next section we indicate some of the power of our
techniques with further models.

OTHER MODELS

In the last section we presented a model and its
solution for the operation of a data base system using
data compression. In this section we describe two more
models, of increasing complexity, which capture fea
tures often found in data base systems. Our purpose
is to indicate the generality that the queueing network
formulation for the efficiency problem permits and to
demonstrate the ease with which a system of substan
tial complexity can be modeled.

Both of the models of this section will be primarily
concerned with update operations. The first will as
sume, as did the model of the previous section, that the
file records can be located in one operation; the second
model of this section will consider the use of a tree
structured index.

Model 2

Every process will repetitively follow the following
sequence of steps:

1. Perform whatever computation is necessary to
choose a record to read (process in class 1).

2. Read a record from the I/O device (class 1).
3. Decompress the record just read (class 2).
4. Perform any desired computations and update to

this record (class 3) .
5. Recompress the record after computation and

updating is complete (class 4).
6. Write the record back into the I/O device (class

2) .

A possible extension to this model which may be
straightforwardly modeled is one in which, with a
certain probability p, the update of the record caused
it to expand in size by an amount sufficient to require
that an overflow record be written.

In Figure 10 we diagram Model 2 as we have de
scribed it.

The solution to this model is simple. The e's (of
equation (1» are again equal to 1, since all of the
Pl,r ;j'/s are equal to one.
Then

() n l !
gl y I = ---=--n-

l

(17)

n ll !n12 !Il-I
and

g~ (y~) = ---------!!-=-~n~ n~~ n~a n~4 (18)
n~1 !n~~ !n~:l !n~4 !JL21 JL22 JL23 JL24

The same computations as were used in the previous
section suffice to determine the normaiization constant
C. The figure of merit becomes the fraction of time
the CPU spends servicing customers in classes 1 and
3. Therefore, we determine

.I n~1+n~3p(S) (19)
vs feasible n~

n~>O

which may be calculated quickly on a computer.
It is possible to take into account additional com

plexities in the operation of the system and we indicate
one such possible model in Model 3. This model repre
sents a system with three secondary storage devices,
each of which may have a different service rate. The
records are stored using a tree structured index, as is
used by IBM in its ISAM access method.2 The index
in the case of this model is two levels deep; thus three
read operations are needed to find a record, given the
primary key. We assume that records, once updated,
are rewritten to their original location without the
need to access the index structure. The probabilities
of finding an index or data record on a given device are
specifiable at will in the model. We assume that the
placement of index records is independent of the
placement of data records; by the addition of a large
number of additional classes, this restriction can be
removed. The degree of multiprogramming can be
specified as preferred or the system can be made into
an open one as indicated earlier.

The behavior of a process is as follows:

1. Perform the necessary computations in order to
choose a record to read (class 1) .

Server I
Type I

Server 2
Type 2

-class I

~o~p0e_(~ ~~~

class 3~~-'
~e~m..Er~s_

J=0~p~eJ21.

CPU

Figure lO-Model 2

-class

class 2

I/O device

CPU

class I .£a~'p~e_ class I

class 2 d ~c0J!lP!..es..! class 2

class 3 d!co~p!..e52 class 3

class 4 d!c~p!..e52 class 4

.£o~p~e_ cl ass 5

class 6 r!c~p..!:e~

Figure ll-Model3

2. Read an index record, level 1 (class 1).
3. Decompress the index record (class 2).
4. Read an index record, level 2 (class 2).
5. Decompress the index record (class 3).
6. Read the data record (class 3).
7. Decompress the data record (class 4).

server
type I

server 2
type I

server 3
type i

server 4
type 2

8. Perform whatever update operations and com
putations on the recently retrieved record that are
desired (class 5) .

9. Recompress the data record (class 6).
10. Write the data record back on the secondary

storage device (class 4) .

More complex storage structures and system con
figurations can easily be dealt with by increasing the
number of devices and when necessary, the number of
customer classes in order to differentiate between cus
tomers and between different operations on the same
customer at the same server.

We should mention briefly that as the number of
servers and the number of classes of customers in
creases, the number of system states grows very
quickly and it may be computationally infeasible to
analyze some systems. Some efficient methods for
computing these state probabilities in queueing net
works with classes of customers are described by
Muntz and Wong.10

Queueing Network Model 465

CONCLUSION

In this paper we have demonstrated the use of queueing
networks with classes of customers for modeling the
effect of data compression on system efficiency. The
simple models developed in section IV indicate that
even when compression results in no increase in useful
processing time per record or reduction in record re
trieval time, it may not significantly impair system
performance. When the increase in useful processing
per record is considered, compression can be seen to
substantially increase system throughput. Earlier,
we formulated two more sophisticated models that
indicate the generality possible with our modeling
technique. We expect that the methods demonstrated
in this paper will be of great use to system designers
considering the use of data compression for computer
file systems.

ACKNOWLEDGMENTS

Partial support for this research was provided by the
J oint Services Electronics Program under contract
F44260-71-C-0087. Computer time was furnished by
the Energy Resources Development Administration
(nee AEC) under grant AT-(04-3)-515.

REFERENCES

1. Overhage, C. F. J. and J. F. Reintjes, "Project Intrex: A
General Review," Information Storage and Retrieval 10,
5/6, pp. 157-188.

2. Date, C. J., An Introduction to Data Base Systems, Addi
son-Wesiey, Reading, Mass., 1975.

3. Ruth, S. S. and P. J. Kreutzer, "Data Compression for
Large Business Files," Datamation, September 1972, pp.
62-66.

4. Shannon, C. E., "A Mathematical Theory of Communica
tion," Bell System Technical Journal 27, July 1948, pp. 379-
423, October 1948, pp. 623-656.

5. Baskett, F., K. M. Chandy, R. R. Muntz and F. G. Palacios,
"Open, Closed and :\fixed Networks of Queues with Differ
ent Classes of Customers," JACM 22, 2, April 1975, pp.
248-260.

6. Mathlab, The Macsyma Reference Manual, Version Seven,
The Mathlab Group, Project MAC, Massachusetts Institute
of Technology, September 1974.

7. Shannon, C. E., "Prediction and Entropy of Printed En
glish," Bell System Technical Journal 31, January 1951,
pp.50-64.

8. Stonebraker, M. R. and E. Wong, INGRES-A Relational
Data Base System, Electronics Research Laboratory
Memorandum M-477, University of California, Berkeley,
November 1974.

9. Smith, A. J., "A Performance Analysis of Multiple Channel
Controllers," Proc. 1st Annual SIGME Symposium on Mea
surement and Evaluation, Palo Alto, Calif., February
1973, pp. 37-46.

10. :\funtz, R. R. and J. W. 'Vong, "Efficient Computational
Procedures for Closed Queueing Network Models," Proc.
Seventh Hawaii Conference on Computer and System Sci
ences, January 1974, pp. 33-36.

The Federai Communications Commission and major
policy matters affecting computer communication

b'y FRA1~K J. lv:IARTll~, JR.
Sutherland, Asbill & Brennan
Washington, D.C.

ABSTRACT

This is a time of great change in FCC regulatory poli
cies affecting computer communication. Over the next
several months, the FCC will be called upon to consider
and decide many issues which may well shape the na
tion's data communications for years to come.

This paper briefly reviews the important FCC cases
which set the stage for today's policy issues. These
include the Specialized Common Carrier Decision, the
Domestic Satellite Decision, the Interconnect Docket,
and the Comrruter Inquiry.

Then. the paper analyzes the recent FCC decisions
and pending cases which are of special significance to
the computer community. The AT&T DDS and HI-LO
cases are discussed, as are the Satellite Business Sys
tems proposal, the Telenet v. Tymshare complaint, and
the AT&T DAT ASPEED 40 decision. The paper closes
with a prediction that a new Computer Inquiry seems
likely.

INTRODUCTION

This is an era of great upheaval in communications
policy. In the Specialized Common Carrier Decision/
the Federal Communications Commission (FCC) made
a deliberate decision to expand the domestic private
line common carrier market beyond the two traditional
carriers by authorizing new regulated carriers to enter
the market and provide a range of specialized land
based data and other services in limited geographical
areas. This was followed by the Domestic Satellite
Decision2 in which the FCC adopted a similar policy
of multiple entry in the vitally important domestic
satellite field. This new emphasis on competition in
regulated long haul signal carriage has almost cer
tainly increased the pace of innovation and the flexi
bility available to data communication users and to
private line users generally. However, since AT&T
dominates the entire communications field, and oper
ates the enormously profitable monopoly interstate
switched telephone services, in order to keep competi-

467

tion working the FCC has been forced to tackle the
formidable, perhaps impossible, task of trying to as
sure that AT&T will not cross-subsidize its competi
tive services by use of monopoly profits, or otherwise
use its monopoly control over necessary facilities to
drive out competitors. Moreover, recent FCC actions
having the effect of permitting IBM, the giant of the
data processing industry, to enter the domestic satel
lite field as part owner of Satellite Business System,3

means that the FCC has also taken on the task of as
suring that IBM will not use its dominance in the
closely related data processing field to gain competitive
advantages in the communications field.

In the late sixties the FCC began to question and to
strike down tariff restrictions designed to perpetuate
carrier dominance in the incidental communications
service and equipment fields. Thus, in the so-called
Interconnect Docket (Docket 19528);1 the FCC has
recently striken most of the former tariff restrictions
against use of customer-provided data and ancillary
terminals. The FCC also eliminated the rest of these
restrictions still in effect as to certain voice terminals
and equipment.5

•

Although in its Computer Inquiry6 and in subsequent
authorizations of suppliers of so-called value-added
networks as regulated common carriers/ the FCC
seemed committed to full support of the traditional
carrier restrictions against non-common carrier cus
tomer resale of communications circuits obtained from
carriers, there are now some indications that in its
decision in the Resale and Shared Use Proceeding,S ex
pected sometime in early 1976; the FCC may relax or
eliminate these restrictions altogether so as to permit
resale and sharing on an unregulated basis. This could
involve free entry of new communications middlemen,
and actual detariffing of now regulated value added
carriers and others, with resulting freer operation of
competitive forces on pricing and the available range
of customer choices.

There are also certain pending matters which focus
on possible inadequacies of the FCC's Computer Rules
and which will in all likelihood require some changes
in those rules. In its Computer Inquiry, the FCC re-

468 National Computer Conference, 1976

lied heavily on a distinction between message switch
ing and data processing to distinguish communications
services, which regulated carriers will be permitted to
provide, from data processing services, which carriers
are prohibited from providing except through sepa
rately incorporated subsidiaries. In other words, in
the Computer Inquiry, the focus was on services and
not on equipment and terminals. But now the carriers
are offering PBX's (Private Branch Exchanges) which
incorporate some of the systems architecture and per
form some functions of computers. In addition, AT&T
in particular is seeking to offer intelligent terminals
pursuant to its tariffs. Are such items communications
or data processing devices? Is the offering of such
devices by carriers the equivalent of offering data proc
essing services? (The FCC ruling on AT&T's DATA
SPEED 40 terminal will be discussed below.) Because
of the inherent danger of cross-subsidy and intercon
nection restrictions by carriers, these are important
questions which may affect competition in the terminal
and equipment markets. In addition, the FCC is now
focusing more precisely on some definitional questions
raised in the Computer Inquiry as to what constitutes
integral and incidental data processing or communica
tions functions in a hybrid offering.

THE NEW SPECIALIZED AND DOMESTIC
SATELLITE COMMON CARRIERS

Background: specialized carriers

In 1969 the FCC authorized Microwave Communica
tions, Inc. ("MCI"), to provide point-to-point voice
and data communications as a common carrier over
mi(,rf)w~vP f~('i1itip~ hptwf'en (;hi('a~m and St. Louis. 9

AT&T at first refused to provide local loops or local
distribution facilities to MCI, claiming that such inter
connection would harm AT&T's own communications
network. However, the Commission held that AT&T
did not prove that harm would result and AT&T was
ordered to provide local distribution facilities for its
new competitor.Io

The MCI grant prompted an influx of applications
by others seeking to provide specialized communica
tions services in competition with the established com
mon carriers. Instead of deciding each case individ
ually the FCC initiated a rulemaking proceeding in
Docket 18920.11 Comments on all issues were received,
including the need for more diverse and specialized
data communications services, the impact of competi
tion on the services and rates of established carriers,
and the problem of local distribution, etc. Finally, in
May of 1971 in its First Report and Order in Docket
18920, the FCC adopted a general policy favoring
multiple entry of new specialized carriers. It stood by
this decision on reconsideration, and its policy was
sustained on appeal by the Ninth Circuit Court of
Appeals.

In the Specialized Common Carrier Decision, and
related new authorizations, the FCC thus established a
policy that suppliers of domestic private line services
should be expanded beyond the (then) existing nation
wide carriers to include new carriers operating in
limited geographical areas and offering a range of new
specialized services including facilities for higher
speed and more reliable data transmission at lower
costs. In so doing the FCC stipulated that it would
not provide a protective umbrella for the new carriers
but that competition would rule the day. Existing car
riers were to be allowed to depart from nationwide
rate averaging where justified by costs or competitive
necessity, and to take full advantage of any real econo
mies of scale resulting from their overall operations,
however, existing carriers were not to be permitted,
through exercise of monopoly power, to withhold local
distribution or other essential facilities from their new
competitors, nor were they to be permitted to sub
sidize their competitive offerings by use of profits from
monopoly services to drive their new competitors from
the market.

Quality and reliability inquiry

The Specialized Common Carrier case, Docket 18920,
is still in progress for determination of the measure
of protection subscribers and users should be given
respecting the quality and reliability of data com
munications services. The FCC tentatively decided
against prescribing minimum standards of technical
performance, but has proposed and sought comments
on requiring carriers to specify, in standard termi
nology, the known quality and reliability supposedly
3Tai!able in parti~"-l!ar 0ffe!'i!lg~, ~nd tn m~kp r~fllnn!'l
where these standards are not met. Also, the FCC has
suggested that carriers might be urged to publish
periodic reports as to quality and reliability achieved,
complaints received and refunds made.

In May of 1975, at the instance of one of the new
specialized carriers, Data Transmissions, Inc. "Da
tran"), the FCC clarified the scope of Docket 18920
to include a definition of the scope of specialized ser
vices contemplated by the specialized common carrier
authorizations. I2 The enormous importance of this is
obvious, since it involves the scope of direct carrier
competition to be allowed.

Satellite carriers

In the Domestic Satellite Decision,I3 the FCC sim
ilarly determined that the benefits of satellite tech
nology could best be realized domestically by allowing
multiple entry and competition, and by imposing on
AT&T, the dominant domestic carrier, and Communi
cations Satellite Corporation ("Comsat"), the interna
tional satellite carrier, certain requirements designed

The FCC and Major Policy Matters Affecting Computer- Communication 469

to assure that their other important services would not
be burdened, and that their dominance in other com
munications fields would not be used for unfair com
petitive leverage. Last year, the FCC in essence ap
proved entry in the domestic satellite field by IBM and
Comsat General (a subsidiary of Comsat), who have
recently announced that they, together with Aetna
Life & Casualty Co. will seek FCC authority to estab
lish a $250 million single satellite network for voice,
data and image communications, to begin operatioml in
1979. Customers will access the new satellite network,
which will be known as Satellite Business Systems,
through 16 to 23 foot dish antennas mounted on their
rooftops or elsewhere near their terminal sites, thus
eliminating the need for interconnection with other
carriers for local distribution or local loops.14 Thus,
the FCC has now taken on the task of supervising fair
competition in data communications by the giant of the
data processing industry, in addition to the formidable
task of policing fair competition by the giant of the
communications industry, AT&T.

The major issues.

The task of policing newly authorized competition
has to date involved the two major problem areas
anticipated by the FCC in the Specialized Common
Carrier Decision, namely, (1) the problem of local dis
tribution for the new competitors who as a practical
matter cannot economically duplicate existing local
distribution facilities controlled by AT&T and other
telephone companies, and (2) the enormously complex
problem of distinguishing between improper cross-sub
sidy by AT&T of its competitive services with monopoly
profits, which was to be prohibited, and merely allow
ing AT&T to take full and fair advantage of real cost
economies of scale, which the FCC promised it would
allow.

Local facilities.

The matter of possible anticompetitive withholding
of local distribution facilities arose in the Summer of
1973, when MCI advised the FCC that AT&T had re
fused to interconnect with MCI to provide local distri
bution through local telephone exchanges, even though
AT&T did provide such exchange service in connection
with its own competing private line services. The
Chief, FCC Common Carrier Bureau advised by letter
that under MCI and the Specialized Common Carrier
decisions AT&T was obligated to provide local distri
bution through its affiliated company telephone ex
changes. AT&T answered that it had no intention of
participating in a "through service" with MCI or any
other private line carrier, and that it would connect
to the local exchanges only if state regulatory commis
sions authorized such interconnection. In a letter order,
dated October 4, 1973, the Commission Chairman con-

firmed the earlier advice of the Common Carrier Bureau
Chief, and stated that AT&T should submit its tariffs
to the FCC only, and not to state regulatory commis
sions, since the latter had no jurisdiction of the matter.
MCI then requested further clarification because de
spite the above, some AT&T affiliated companies de
clined to provide local interconnection for foreign ex
change service (FX) or common control switching
arrangements (CCSA) offered by the specialized car
riers. The Common Carrier Rureau Chief again wrote
to AT&T stating that FX, CCSA, and related services
were covered by the Commission's October 4 letter
order. Court contests were begun,15 and in December
of 1973 the FCC initiated Docket 19896/6 ordering
AT&T to show cause why it was not providing local
distribution to the new specialized carriers. In April
1974, the Commission issued its decision in Docket
19896,17 confirming that interconnection for local dis
tribution had to be provided on a nondiscriminatory
basis by AT&T, and this decision was sustained on
review by the Third Circuit. IS In consequence of this,
and further tariff proceedings in Docket 20099 which
followed, the parties eventually reached agreement on
interconnection tariff provisions which the FCC ac
cepted in May, 1975.19

The scope of state authority.

The question of the FCC's exclusive authority, as
against state regulatory authorities, which was raised
by AT&T in the course of its fight to withhold local
distribution service from its new competitors, may
not be entirely settled, however, The question is now
pending review by the U. S. Court of Appeals for the
District of Columbia in an appeal from an FCC order.20
In that case, a petition for declaratory judgment was
filed with the FCC by Southern Pacific Communications
Company ("SPCC"), one of the new specialized
carriers. SPCC claimed that the FCC's decision in
Docket 19896, discussed above, entitled it to an order
directing Pacific Telephone and Telegraph Co. and
Southwestern Bell Telephone Co. to provide local dis
tribution for certain of SPCC's FX and CCSA services,
even though SPCC's facilities in question were located
wholly within one state. In October 1975, the FCC
ruled that it had exclusive jurisdiction to order inter
connection since SPCC's facilities, though located en
tirely within one state, are nevertheless used though
in a majority of instances as links in interstate com
munications. The FCC rejected the telephone com
panies' contention that interconnection to the local
telephone exchanges was within the control of state
utility commissions.21

Cross-subsidization

The vexatious problem of cross-subsidy has been
under study by the FCC for at least 15 years. Recent

470 National Computer Conference, 1976

developments have only resulted in greater urgency for
a solution to an old problem. In Nader v. FCC, the
United States Court of Appeals for the D.C. Circuit
Reverely criticized the FCC's obvious inability to decide
cross-subsidy and other important regulatory questions
within a reasonable time. 22 In response to the court's
order, the FCC was compelled to submit a schedule for
decision of the cross subsidy issue in the Private Line
Case (Docket 18128), and Phase II of Docket 19129
(AT&T Rate Case).

In compliance with that schedule, the Chief of the
Common Carrier Bureau on January 19, 1976, issued a
recommended decision which, if adopted by the Com
mission, will perhaps be the greatest setback ever
experienced by AT&T before the FCC. In effect, the
Bureau Chief held that AT&T has in fact been im
properly subsidizing its competitive services with
profits from its monopoly MTS and WTS services. For
example, in August 1974 AT&T's rate of return on MTS
and W ATS were found to be 8.9 %, and 12.3 % respec
tively, whereas its rate of return in private line tele
phone and telegraph services were found to be 5.5o/c
and -0.3%, respectively. AT&T's overall interstate
rate of return was found to be 8.7 %. Thus, in sum
mary, AT&T's competitive service earnings were found
to be significantly below its system-wide rate of return
of 8.7%, while its monopoly service earnings were
found to be significantly in excess of that system-wide
rate of return.

The Bureau Chief rejected Bell's contention that
fully distributed costs (FDC), the traditional cost
allocation method used in rate making, should not be
used. He refused to adopt AT&T's proposed "long run
incremental cost" method (LRIC), as a substitute for
f'JHy dj'ltriblJted ('()<:!t<:!. Unn!"r T,RTC\ ~<:! ~ilv()('~tpil hy
AT&T, rates for competitive services would be based
on management forecasts of future demand, tech
nological developments, incremental investments and
expenses, and competitive developments, while rates
for monopoly services would be set at a high enough
level to cover all costs, including historical costs, that
were not easily identifiable or attributable to specific
service offerings. The Bureau Chief did not reject alto
gether the concept of marginal cost pricing, i.e., pricing
based on marginal, as opposed to full historical costs of
providing a service, and suggested that Bell should
look into further use of this concept in such things as
peak/off-peak pricing of monopoly services.

The Bureau Chief recommended that AT&T be or
dered to conduct a new comprehensive fully-distributed
cost study for a recent one year test period, and to file
tariffs which assure the minimum allowable overall
rate of return in all categories of services. In early
February of this year, in Docket 20376, AT&T's
allowed rate of return was again increased from the
8.5 % level established in 1972 in Phase I of Docket
19129, to 9.5%.2:l

Exceptions to the recommendations of the Chief of

the Common Carrier Bureau were due March 19. Re
plies are due April 19. Following that the Commission
has promised the Court of Appeals to issue its final
decision in the Private Line Case by August 2, 1976.

In Phase II of Docket 19129, the Commission staff
early this year filed proposed findings recommending
that AT&T be required to divest Western Electric, and
that many reductions be required in its claimed rate
base. An initial decision by the Administrative Law
Judge is, in response to the Court of Appeals require
ment, scheduled for September 15, 1976, and final FCC
action is scheduled for April, 1977.

Rate design issues.

But AT&T's reaction to the new competitors has not
been limited to the struggle over interconnection to its
own facilities, or defending itself against charges of
cross-subsidy in preexisting competitive services. In
November 1973, AT&T filed its so-called Hi-Lo tariff
for its voice grade private line services (Series 2000/
3000). By this filing AT&T sought to depart from its
tradition of nationwide rate averaging and, in order to
compete more effectively with the new specialized
carriers, reduced rates on high-density routes, and
established separate higher rates for short haul services
of 25 miles or less. After an exchange of pleadings
challenging and defending the Hi-Lo concept, the FCC
designated the case for hearing24 as to whether the
Hi-Lo rates were based on cost savings or on com
petitive necessity or some other lawful consideration.
The rates went into effect, subject to an accounting
order and possible refund, on June 13, 1974.

In an Interim Decision issued September 18, 1975,25
the FCC f0'Jnd that the Hi-L0 (-,0!1f?ept ''''H<:! l'e~'l()n~ bJp;

but that AT&T had not carried its burden of proof as
to the reasonableness of the new rates, by showing that
the criteria used for designating high-density, low
density and short-haul routes actually reflected net
work operations and actual costs. It accordingly
remanded the case for further hearings on these
matters.

But in January, 1976, in a surprising volteface, the
FCC ruled that the Hi-Lo rates were illegal,26 It noted
that several parties, including MCI, had complained
that AT&T's failure to carry the burden of proving
claimed cost justification was grounds for outright
rejection of the Hi-Lo tariff, and that in view of
AT&T's persistent refusal to produce cost data, etc. in
response to interrogatories, it would be a denial of due
process to give AT&T a second chance at a further
hearing. The FCC said on reconsideration that it did
appear that AT&T did not have, and could not develop
from records it had maintained, the cost and other data
that would be necessary for possible justification of the
Hi-Lo tariff. It accordingly decided to strike the tariffs
as unlawful rather than allow them to remain in effect
while AT&T developed extensive new studies and data

The FCC and Major Policy Matters Affecting Computer Communication 471

in a further effort to justify them. AT&T was given 90
days from publication of the FCC's January decision
in the Federal Register to file new tariffs, and 60 addi
tional days to complete the cost justification data
specified in the September Interim Decision. The FCC
did not order any refund under the accounting order
because it concluded that it did not have enough data
to prescribe appropriate rates, and because the Hi-Lo
tariff had lowered some rates while raising others with
the result that most customers did not suffer significant
net increase.

A T&T has also responded to the challenge of the
new data oriented services of the specialized carriers
by its ambitious Dataphone Digital Service (DDS)
offering. In early 1973, it sought authority to supple
ment its existing microwave facilities between New
York, Philadelphia, Chicago, Boston and Washington,
D. C. to permit transmission of a digital bit stream,
ultimately at 1.544 megabits per second, in an unused
portion of the baseband on 4 to 6 GHz microwave radio
channels. It was recognized that further approval
would have to be obtained to before commercial service
began under DDS, but even this first foot-in-the-door
was vigorously opposed by Datran, MCI, SPCC, and
other specialized carriers. The White House, through
its Office of Telecommunications Policy (OTP), urged
that any approval of DDS should be conditioned on
strict requirements prohibiting cross-subsidy or other
anticompetitive practices.

The FCC did not want to slow down provision of a
needed service, and decided that the issues relating to
competitive impact could be better addressed when
commercial operating authority was sought. The FCC
believed that by that time it would have concluded
other important rate-making policy cases such as the
Private Line Case (Docket 18128) involving cross
subsidy. In March 1974, AT&T filed its tariff to begin
DDS commercial service, and offered such service
initially between the five cities mentioned above, with
expansion expected to 19 additional cities by late 1974.
The service offered was two-way simultaneous digital
transmission at 2.4, 4.8, 9.6 and 5.6 kilobits per second.
The tariff rates were considerably below Datran's
rates, and Datran and others argued that AT&T was
obviously using its monopoly telephone service profits
to subsidize its competitive digital data services. In
December 1974, the FCC allowed the tariff to become
effective on an experimental basis,27 but ruled that the
low rates would be applicable only in the five cities
pending the outcome of an investigation into the lawful
ness of those rates which it initiated as Docket 20288.
The rates applicable in the additional 19 cities were
to be the same as the higher private line rates for 12
months or until the investigation was concluded, which
ever occurred earlier. The investigation was to in
clude the cross-subsidy issue and also whether DDS
was a class of service separate and distinct from
AT&T's higher priced private line services.

The proceedings in Docket 20288 have been charac
terized by continuing disputes as to the nature and
amount of cost data that AT&T should supply in
response to the FCC hearing order and interrogatories
filed by Datran and the separated trial staff. Proposed
Findings were due to be filed in the case on March 15,
1976, and an Initial Decision is expected sometime later
this year.

Recently AT&T filed tariff revisions to extend the
low DDS rates to the 19 cities as to which higher rates
applied for one year under the FCC's December 1974
designation order. The Independent Data Communica
tions Manufacturers Association (IDCMA) and
Datran opposed this, asserting that the experimental
period had shown an adverse effect on competition and
possible predatory pricing by AT&T. The Commission,
however, refused to suspend or reject the effectiveness
of the low rates in the 19 additional cities.28 Then the
FCC staff asked for reconsideration of this ruling on
the ground that AT&T had admitted at a conference
that it had not kept and could not produce cost data
on DDS to show that the low DDS rates were cost
justified. The staff contended that this showed that the
tariff filing was unlawful. The Chief of the Common
Carrier Bureau declined to reject the filing, but in
timated that AT&T's failure to produce cost figures
might well cause the DDS rates to be ultimately held
illegal,29 In view of the FCC's action this year in the
Hi-Lo case, this does indeed seem quite possible.

CUSTOMER-PROVIDED TERMINAL
EQUIPMENT

In June of 1972 the FCC began the so-called Inter
connect Proceeding, Docket 19528. To assist it in
making its determinations, the FCC established a
federal/state Joint Advisory Board pursuant to § 410
of the Communications Act. 30

After comments and reports on specific questions
were received/1 the Joint Board recommended, as an
alternative to carrier-supplied connecting arrange
ments at customer expense, a type acceptance certifi
cation program to be administered by the FCC. The
J oint Board recommended that the certification pro
gram apply to data and "ancillary" devices, including
extension telephones, but not to other voice terminal
equipment such as private branch exchanges (PBX's),
key telephone systems, and main station and coin
operated telephones. FCC certification would, under
the Joint Board's recommendation, be based on the
applicant's submission of required test data. Also, each
device would have affixed to it installation, maintenance
and operating instructions. Standard plugs and jacks
and other simple connecting devices were to be pro
vided for in carrier tariffs.

In the fall of 1975, the FCC adopted a certification
program similar to that recommended by the Joint
Board.32 In so doing, it noted that it had been seven

472 National Computer Conference, 1976

years since Carterphone and that the carriers had never
come forward with any justification either for the
original tariff restrictions, or for the carrier supplied
connecting arrangements subsequently provided for in
the temporary tariffs.

The FCC ruled that its new certification program
would adequately protect the telephone network from
harm, i.e., from electrical hazards to personnel and
equipment, and from degradation of service to persons
other than the user of a particular device. Instead of
requiring type approval of entire terminal devices,
however, applicants will be permitted to register only
connecting circuitry within any particular device. This
will avoid problems of proprietory information dis
closure raised by IBM and others. The new certifi
cation program, which applies to carrier-provided, as
well as to customer-provided, data and "ancillary"
equipment, including extension telephones, but not
PBX's, key telephone systems and main station and
coin operated telephones, was to go into effect April 1
of this year. However, the FCC has recently post
poned this to May 1,1976. In its recent ruling on recon
sideration of the November decision/~ the FCC also
declined to exempt carrier-supplied terminal equipment
from the new program and in general confirmed its
original ruling.

The FCC followed the Joint Board's lead in leaving
voice telephone equipment (other than extension tele
phones) subject to current tariff requirements for
carrier-supplied connecting arrangements because, it
said, the parties may not have addressed themselves
specifically to this aspect. It did indicate strongly, how
ever, that it saw no technical harm problems and
proposed in the near future to issue further rule
changes to include PBX's. key telephone systems. main
station telephones, and coin telephones in the new
certification program. Such action was, in fact, taken
on March 18, 1976.:11

AT&T and other carriers as well as the National
Association of Regulatory Utilities Commissioners
(NARUC), in petitions for reconsideration and stay
of the new program, objected strongly that AT&T's
"protective module" plan should have been adopted and
argued that the FCC's plan is so deficient technically
and otherwise that it cannot possibly work. They also
argued that it was inappropriate and prejudicial for
the FCC to allow unlimited interconnection of cus
tomer-supplied equipment prior to a determination, in
the Economic Impact Inquiry, Docket No. 20003,35 of
the effect such interconnection will have on monopoly
telephone services and rates. The Joint Board itself
has recently voted to recommend this same course.:'I6

In Docket 20003, the Commission is also considering
the economic impact on the switched telephone network,
and local telephone companies as well, of its recent
authorizations of the new specialized and domestic
satellite carriers, and the extent to which cross-subsidy
of competitive offerings by monopoly carriers might be

prevented by requiring them to make such offerings
through subsidiary companies keeping separate books,
etc.

There is perhaps an outside chance that the inter
connect battle could be decided in a case now pending
in the United States Court of Appeals for the Fourth
Circuit.37 The Telerent Leasing case, which was argued
before the Fourth Circuit in September of last year,
and at this writing has not been decided, involves an
appeal from an FCC ruling in early 197438 that it alone
has jurisdiction over the interconnection of customer
provided terminal equipment, even though such con
nection is to local telephone exchanges regulated by
state utilities commissions. The effect of the Com
mission's ruling was to cancel a North Carolina Util
ities Commission regulation prohibiting interconnec
tion of "foreign attachments" of any kind. Opponents
of the registration program contend that the FCC's
rulings intrude unlawfully on local exchange juris
diction given to state utility commissions by Section
221 (b) by the Communications Act. However, the
FCC ruled in Telerent Leasing, and contends before
the Fourth Circuit Court of Appeals, that the inter
state telephone service, over which it clearly has juris
diction, is not and cannot possibly be provided except
over local exchange facilities, and that it is evident that
its exclusive jurisdiction over interstate communica
tions must therefore extend to interconnection of ter
minal equipment to such facilities.

PROBLEMS RELATING TO THE DISTINCTION
BETWEEN DATA PROCESSING AND
COMMUNICATIONS

In its Computer Inquiry39 the FCC first explored the
increasingly blurred relationship between communica
tions and computers. It decided that whether or not
computers were engaged in communications depended
upon the use to which the computers were put. It
recognized that computers perform communications
functions-namely, message and circuit switching
and concluded that when doing so they are subject to
regulation as a communications service. But the FCC
seemed to say that everything else computers do includ
ing, inter alia, storing, retrieving, sorting, merging,
and calculating according to programmed instructions
is essentially data processing, which should not be regu
lated by the FCC. Because of the intermingling of
communications with data processing in many remote
access data processing offerings, and because such
intermingling could lead to unfair competition in the
data processing field by carriers who might resort to
cross-subsidy of their data processing offerings, or re
strictive interconnection practices as to data processing
offerings of others, it was decided that the FCC would
not permit regulated carriers to offer essentially data

The FCC and Major Policy Matters Affecting Computer Communication 473

processing services, except through separate subsidiary
corporations keeping separate books. Where data proc
essing and communications (including computer con
trolled message or circuit switching) are both involved
in a service (i.e., where there is a "hybrid" service),
then whether the service is deemed hybrid communica
tions, such as may be provided by a common carrier,
or require regulation if provided by others, is a ques
tion of the primary purpose of the offering. If the
primary purpose is found to be to serve signal carriage
and/ or message-switching requirements of a customer,
and data processing is an integral but incidental part
of a package offering, the offering is deemed a hybrid
communications offering and may be offered by carriers
and is subject to regulation if offered by others. On
the other hand, if the primary purpose is to provide
data processing services, and computerized message or
circuit switching (i.e., communications) is an integral
but incidental part of a package offering, the offering is
deemed to be hybrid data processing service and may
not be offered by carriers and is not subject to regu
lation.

To enforce its computer rules, the FCC decided to
rely basically on the regulated carriers from whom
the communications component of any hybrid offering
to be made by a non-carrier would necessarily have to
be acquired. Since the carrier tariffs prohibit cus
tomer resale of communications services, and hybrid
communications offerings would involve such resale,
the carriers themselves were expected simply to refuse
to supply or to continue to supply communications to
anyone planning to resell the same as a component of a
hybrid communications offering, unless the customer in
question had been authorized by the FCC to offer such
service as a communications common carrier.

In recent years pursuant to the p:finciples outlined
in the Computer Inquiry, the Commission has author
ized three so-called value added carriers to offer
"packet switched" data service employing lines leased
from other carriers combined with their own com
puters and software to transmit small groups (packets)
of digitized data using store and forward methods to
take advantage of the best available path through the
network. 40

Telenet v. Tymshare.

In early August of 1975, the tariffs of one of these
newly authorized value added carriers, Telenet Com
munications Corporation, became effective. Five weeks
later Telenet filed a complaint against Tymshare, Inc.,
a time-sharing concern, alleging that Tymshare's
Tymnet data communications network, which also
utilizes store and forward switching computers and
leased communication channels, is physically and func
tionally separate from Tymshare's data processing
computers which are connected to Tymnet. It charged
that Tymshare, Inc. is in reality engaged in two

separate profit making businesses: first, a hybrid
data processing service using the Tymnet network as a
means of communications between customer terminals
and Tymshare's host computers; and, second, a hybrid
communications service whereby it offers use of
Tymnet as a means of communications between cus
tomers' terminals and the customers' own host com
puters. Tymshare, Inc. has answered this complaint
alleging that it is not purely coincidental that Telenet
filed only a few weeks after its tariffs went into effect.
It suggests that Telenet really hopes to use FCC proce
dures to advance what it conceives to be its own com
petitive interests, and points out that the question
whether, and to what extent, value-added carriers and
others may be permitted to lease and resell or enter
into joint user arrangements so as to provide value
added services to others is presently under consider
ation and the Commission's inquiry in the Resale and
Shared Use Proceeding, Docket No. 20097,41 Tymshare
argues that its Tymnet system is operated pursuant to
the so-called joint user provisions of relevant tariffs,
i.e., Tymshare leases lines from AT&T and other
carriers for internal telecommunications and makes
unused capacity available to others under joint user
tariff provisions. In general, these require that the cus
tomer (Tymshare) have its own communications needs
over and above those arising from management of the
joint use arrangement1 and that the customer and the
joint users share the cost of the common carrier service
by each paying part of the rates to the common carrier.
Tymshare further states that the FCC in its order in
initiating Docket No. 20097, expressly recognized that
sharing arrangements could involve a complex com
puter switched network.

Tymshare also asserts that neither it nor even Tele
net is in reality, or ought to be, considered a com
munications common carrier. This contention by
Tymshare is squarely directed at the wisdom of the
FCC's readiness to characterize value added services as
communications because they involve circuit and
message switching. At this writing, the FCC's staff has
queried the carriers who are supplying communications
circuits to Tymshare for their views as to whether
Tymshare is indeed in full compliance with their tariff
provisions prohibiting resale except under bona fide
sharing arrangements. In short, for the time being the
staff is following the FCC's suggestion in the Computer
Inquiry that the carriers should first make the difficult
decision whether a hybrid communications service is in
volved. But it seems inevitable that the FCC will ulti
mately have to decide this tough question as well, and
the Tymshare case bears close watching. 42

Other FCC cases

A similar situation where a carrier is asserting that
a purported data processing service is in reality a com
munication service, involves ITT-Worldcom's pending

474 National Computer Conference, 1976

challenge of the Telepost computerized message service
being provided by TIl Corporation. A customer
signals Telepost that certain prewritten messages are
to be sent to perRonR liRted on various pre-established
customer lists· and the Telepost computer automatically
interprets these signals and sends out the desired
messages to the desired recipients via MAILGRAM.
ITT-Worldcom claims in a petition in the proceeding
that this service is a hybrid communications service
which should be subject to regulation.

New developments in the service business are also
putting to the test the Computer Inquiry definition of
hyorid data processing and hybrid communications.
Western Union has recently petitioned to offer a col
lateral processing service in conjunction with its
SICOM message service for the securities industry.
Under the proposed collateral service, Western Union's
computers would perform order matching based on
information gleaned from the handling of buy and sell
messages. Western Union contends that this is a
hybrid data communications service, since the data
processing functions of order matching are both
incidental to an integral with the SICOM message ser
vice. But this interpretation is being challenged by
CBEMA and ADAPSO. The latter say that the pro
posed service is a data processing service that is neither
incidental nor integral to Western Union's SICOM
communications service. The Commission is being
called upon to interpret its Computer Inquiry rules to
determine whether Western Union will be permitted
to offer this service.

The pattern of competitive response by AT&T,
followed by charges and inquiries whether the com
petitive response is in fact predatory and subsidized by
monopoly profits. has held true in the terminal equip
ment area as well as in the specialized common carrier
services area and others. Such matters are now at
issue in the AT&T Data Modem Rate Investigation,
Docket 19419, which is now in hearing before an FCC
Administrative Law Judge.

AT&T DATASPEED 40 Ruling

Another instance of such a competitive response by
AT&T, which also illustrates the importance of the
Computer Inquiry to the terminal equipment field, as
well as in the service field, is involved in AT&T's recent
tariff filings relating to Dataspeed 40. In these filings,
AT&T sought to provide, subject to FCC regulation,
intelligent remote access terminals with cathode ray
video display. These terminals were designed to be for
use by customers in connection with AT&T's Dataphone
Digital Service, and to be competitive with new ter
minals manufactured by unregulated computer and
data processing manufacturers including IBM. In
petitions to reject or suspend these filings, IBM,
CBEMA and others contended that AT&T's Dataspeed
40 terminals were plainly data processing equipment

since they are in direct competition with IBM ter
minals which are not and should not be subject to
tariffs at all. They argued further that AT&T is pro
hibited from competing in the data processing field in
this manner by a 1956 antitrust consent decree which
limits AT&T to common carrier communication ser
vices and services "incidental" theretoY They argued
that AT&T's filings were unlawful since they did not
demonstrate conclusively that the new terminal was not
being cross-subsidized by AT&T. They suggested
further that if AT&T is, nevertheless to be permitted
to offer data processing equipment, a revision of the
1956 antitrust decree would be required, and AT&T
would have to offer the equipment on an untariffed
basis through a separate subsidiary in accordance with
the FCC's ruling in its Computer Inquiry respecting
data processing services offered by regulated carriers.

The FCC's staff recently rejected the Dataspeed 40
offering, concluding in essence that it amounted to a
data processing, not a communications service;u AT&T
had argued the new terminals were merely evolution
ary improvements of teletypewriter terminals which it
has provided for many years as communications
devices. It argued that if a computer-which consists
of input, output, arithmetic and logic, memory and
control units-is used to execute a program that in
volves data processing, the data processing takes place
only in the arithmetic and logic units of the computer.
The input and output devices perform no data proc
essing since they do not operate on information to
increase its worth to the user through changing its
inherent informational content; instead the input and
output devices merely permit outside entities to con
verse with the central processing unit and are required
because of inherent limitations of the central processing
unit. AT&T argued, therefore, that the Dataspeed 40
terminal performs the same communications function
as that performed by telephones when two human
beings converse remotely.

The staff rejected AT&T's arguments, however
stating that it was clear that the primary function,
design, and marketing of the Dataspeed 40 terminal
was as an integral part of a data processing service
involving the programmed interconnection of the ter
minal device and a central computer processing and/or
storage unit. The FCC staff pointed out, and laid
emphasis on the fact, that the terminals cannot com
municate with themselves without the use of external
data processing equipment.

If the staff's rejection of Dataspeed 40 is upheld,
this bodes ill for AT&T's recently announced plans to
offer, in the latter part of this decade, a new end-to-end,
value added "communications processing" service
designed to provide an alternative to the systems net
work architecture to be offered by IBM. Under this
plan AT&T's computer controlled No.4 ESS switch,
located at the telephone company's central office, would
function for users, on a shared basis, as a substitute

The FCC and Major Policy Matters Affecting Computer Communication 475

for central processor front ends, multiplexors, concen
trators, remote controllers and intelligent terminals.
Users could bypass the profusion of separate systems
for different on-line applications, and disparate outputs
could be loaded into a single system capable of re
arranging each set of bits without changing informa
tional content, to meet requirements of receiving ter
minals. AT&T recently introduced ~'Dimension PBX"
as the prototype for an on site controller which will be
used for sonle applications of the new centralized com
munications processor.

AT&T will have to fight back contentions that its
alleged "communications processing" service is in
reality data processing, and a recent AT&T announce
ment gave a preview of what its position will be on this
issue. It stated that data processing involves altering
informational content of bits, something the centralized
communications processing system will not do. In
stead, AT&T said, the new system will perform net
work control, speed conversion, area control, terminal
polling, message routing and rerouting (to effect prior
ities and avoid busy or down links), formatting, edit
ing, and checking of input and output data. The
announcement further explained that "communications
processing" is but one of three elements of "data com
munications." The other two are transmission/switch
ing/modulation/ demodulation, and media conversion
(e.g., transformation of bit stream to hard copy,
cathode ray tube display (CRT display) or punched
cards) .

CONCLUSION

In a speech made by Walter R. Hinchman, Chief of the
Common Carrier Bureau at the FCC, before the Com
puter Industry Association (CIA) in Washington, D. C.
on February 25, 1976, Mr. Hinchman stated that prob
lems posed by some of the cases discussed above are
causing the FCC to have to focus closely on some of the
ambiguities in its Computer Inquiry rules and, he said,
might lead to a reexamination of these rules to make
them more relevant in the context of changing con
ditions in 1976.45

It appears likely that a new Computer Inquiry will
be launched. And this time it will be considered in a
totally new environment-one with EFTS, privacy,
and technology issues quite different from those dealt
with previously.

REFERENCES

1. In the Matte?' of Policies and Procedures for Consideration
of Applications to Provide Specialized Common Carrier Ser
vice in the Domestic Public Point-to-Point Microwave Radio
Service and Proposed Amendment to Parts 21, 43 and 61 of
the Commission's Rules (Docket 19820), First Report and
Order in Docket 18920, 29 F.C.C. 2d 870 (1971); Memoran
dum Opinion and Order on Reconsideration, 31 F .C.C. 2d

1106 (1971); affirmed, sub nom. Washington Utilities and
Transportation Commission v. F.C.C., 513 F.2d 1142 (9th
Cir.) , cert. denied, 423 U.S. 836, 1976.

2. In the Matter of Establishment of Domestic Communica
tions--Satellite Facilities by Non-government Entities
(Docket 16495), First Report and Order, 22 F.C.C. 2d 86
(1970) ; Notice of Proposed Rulemaking, 22 F.C.C. 2d 810
(1970); Memorandum Opinion and Order Inviting Com
ments on Staff Recommended Decision, 34 F.C.C. 2d 1
(1972) ; Second Report and Order; 35 F .C.C. 2d 844 (1972) ;
Memorandum Opinion and Order on Reconsideration, 38
F.C.C. 2d 665 (1972). See also. AT&T LJomestic Satellite
Authorization, 42 F .C.C. 2d 654, 1973.

3. In the Matter of Petition for Approval of Changes in Cor
porate Structure of CML Satellite Corporation (Docket
20221), Memorandum Opinion and Order, 51 F.C.C. 2d 14
(1975); Memorandum Opinion and Order, - F.C.C. 2d -
(F.C.C. 75-986, released September 26, 1975); FCC Report
Xo.I-204 (Notice of Title III Satellite and Overseas Service
Applications Accepted for Filing) (Feb. 6, 1976). See Wall
Street Journal, December 24,1975, p. 40.

4. In the Matter of Proposals for New or Revised Classes of
Service of Interstate and Foreign Message Toll Telephone
Service (MTS) and Wide Area Telephone Service (WATS)
(Docket 19528), Notice of Inquiry and Proposed Rule
making, 35 F.C.C. 2d 539 (1972) ; First Supplemental Notice
of Inquiry, 40 F.C.C. 2d 315 (1973); First Report and
Order, 56 F.C.C. 2d 593 (F.C.C. 75-1248, released November
7, 1975); On Reconsideration, - F.C.C. 2d - (F.C.C.
76-134, released February 13, 1976).

5. Id., Second Report and Order, - F.C.C. 2d - (F.C.C.
76-242, released March 18, 1976).

6. Regulatory and Policy Problems Presented by the Inter
depe'1ule'ftce of CO~1'iputer a'nd CO'i(~/nu'nicatiol1-3 Se'rvices anAl
Facilities (Docket 16979), Notice of Inquiry, 7 F.C.C. 2d
11 (1966); Tentative Decision, 28 F.C.C. 2d 291 (1970);
First Decision and Order, 28 F.C.C. 2d 557 (1972); affirmed
in part, GTE Service Corp. v. F.C.C., 474 F.2d 724 (2d
Cir. 1973).

7, Packet Communications, Inc., 43 F.C.C. 2d 992 (1973);
Telenet Communications Corp., 46 F.C.C. 2d 680 (1974);
Graphnet Systems, Inc., 44 F.C.C. 2d 800, 1974.

8. RegUlatory Policies Concerning Resale and Shared Use of
Common Services and Facilities (Docket 20097), Notice of
Inquiry and Proposed Rulemaking, 47 F.C.C. 2d 644, 1974.

9. Microwave Communications, Inc., 18 F.C.C. 2d 953, 1969.
10. Microwave Communications, Inc., 21 F.C.C. 2d 190, 1970.
11. See Note 1, supra.
12. 52 F.C.C. 2d 1037 (F.C.C. 75-449, released May 2,1975).
13. See Note 2, supra.
14. See Datamation, February 1976, pp. 114-118.
15. See, e.g., MCI Communications Corp. v. American Telephone

& Telegraph Co., 496 F.2d 214 (3d Cir. 1974).
16. In the Matter of Bell System Tariff Offerings, 44 F.C.C.

2d 245, modified, 44 F.C.C. 2d 914,1974.
17. In the Matter of Bell System Tariff Offerings, 46 F.C.C.

2d 413, 1974.
18. Bell Telephone Company of Pennsyh'ania v. F.C.C., 503 F.2d

1250 (3d Cir. 1974), cert. denied, 422 U.S. 1026, 1975.
19. In the Matter of AT&T Offer of Facilities for Use by Other

Common Carriers, 47 F.C.C. 2d 660 (1973), modified, 49
F.C.C. 2d 729 (1974); Acceptance of Settlement Agreement
52 F.C.C. 2d 727 (F.C.C. 75-450, May 7, 1975) ; Civil Action
No. -, F.C.C. Memo 53813, August 8,1975.

20. U.S. Court of Appeals for the District of Columbia No.
75-2060. See F.C.C. Memo 59036, December 19, 1975.

21. - F.C.C. 2d - (F.C.C. 75-1146, released October 16, 1975).
22. Nader v. F.C.C., 520 F.2d 182, 35 Pike and Fisher, Radio

Regulation 2d 187, September 29, 1975.
23. In the Matter of AT&T Charges for Interstate Telephone

476 National Computer Conference, 1976

Service (Docket 20376) - F.C.C. 2d - (F.C.C. 76-100;
released February 5, 1976).

24. In the Matter of AT&T Charges, Regulations, Classification
and Practices for Voice Grade Private Line Service (High
Density-Low Density Rate Structure) (Docket 19919), 44
F.C.C. 2d 697 (1974).

25. Id., 55 F.C.C. 2d 224, 1975.
26. Id., Decision and Memorandum Opinion and Order, - F.C.C.

2d - (F.C.C. 76-30; released January 22,1976). An appeal
is pending before the U.S. Court of Appeals for the District
of Columbia, Appeal No. 75-2059.

27. In the Matter of AT&T Proposed Tariff F.C.C. No. 267,
Offering a Dataphone Digital Service Between Five Cities
(Docket 20288) 50 F.C.C. 2d 501, 1974.

28. Id., - F.C.C. 2d -, (F.C.C. 75-1341, released December 17,
1975) .

29. In the Matter of AT&T Revisions of Tariffs F.G.C. Nos.
260, 267 and 268, Memorandum Opinion and Order, adopted
January 26, 1976, released January 28, 1976 (F.C.C. Memo
No. 60297).

30. In the Matter of Proposals for New or Revised Classes of
Interstate and Foreign Message Toll Telephone Service
(MTS) and Wide Area Telephone Service (WATS) (Docket
19528), 35 F.C.C. 2d 539, 1972.

31. Id., First Supplemental Notice, 40 F.C.C. 2d 315 (1973).
32. Id., First Report and Order, - F.C.C. 2d - (F.C.C.

75-1248, released November 7, 1975). This case is now
pending on appeal to the Fourth Circuit, Case No. 76-1002.

33. Id., On Reconsideration, - F.C.C. 2d - (F.C.C. 76-134,
released February 13, 1976).

34. See Note 5, supra.
35. In the Matter of Economic Implications and Inte1'relation

ships A rising From Policies and Practices Relating to Cus
tomer Interconnection, etc. (Docket 20003), Notice of
Inquir"t/, 46 F.C.C. 2d 211,1974.

36. Joint Board Recommendation of February, 1976 against
inclusion of PBX's etc. in Certification Program.

37. Telerent Leasing Corp. v. F.C.C., Case No. 74-1220 pending
in the U.S. Court of Appeals for the Fourth Circuit.

38. Telerent Leasing Corp., 45 F.C.C. 2d 204 (February 5,
1974).

39. See Note 6, supra.
40. See Note 7, supra.
41. See Note 8, supra.
42. NARUC v. F.C.C., 525 F.2d 630, 644 (D.C. Cir. 1976) sug

gests that the F.C.C. has very limited discretion in deciding
whether to confer "common carrier status" on a given
entity.

43. Western Electric Co., Inc. and American Telephone and Tele
graph Co., (consent judgment), 13 Pike and Fisher, Radio
Regulation 2143, 1956 Trade Cases, 1[71, 134 (D.C.N.J.,
Jan. 24, 1956).

44. In re AT&T, Transmittal No. 12449, Mimeo No. 61760, re
leased March 3, 1976.

45. FCC release entitled, Remarks of Walter R. Hinchman,
Chief, Common Carrier Bureau, Federal Communications
Commission, Before the Computer Industry Association,
"Current Developments in Common Carrier Communica
tions," Washington, D.C., February 25, 1976.

A new communication protocol for accessing data networks-The
international packet-mode interface

by A. RYBCZYNSKI
BeU Canada
Ottawa, Canada

B. WESSLER
Telenet Communications Corporation
Washington, D.C.

R. DESPRES
Administration Francaise de PTT
Rennes, France

and

J. WEDLAKE
United Kingdom Post Office
London, England

ABSTRACT

Public packet switching networks are at various stages
of development around the world, notably in the U.S.,
Canada, France, the United Kingdom and Japan. The
success of these networks is highly dependent on the
use of an agreed-upon standard device-independent
interface between the packet networks and the user de
vices operating in the packet-mode. This interface
consists of far more than the data link control pro
cedure (Le., HDLC), which administers the physical
transmission medium between the data terminal equip
ment (DTE) and the network. The specification of the
packet-mode interface defines a set of conventions
governing the manner in which DTEs establish, main
tain and clear calls, format control information and
data into packets and manage the flow of data for many
calls over a single circuit to and from the packet net
work.

This paper describes the International Packet-Mode
Interface, developed jointly by Telenet Communica
tions Corp., the Trans-Canada Telephone System
(TCTS), the United Kingdom Post Office and the
French PTT. This interface has been designed to en
able DTEs such as computers, programmable termi
nal controllers and intelligent terminals to gain access
to public packet networks throughout the world. The
present status of international standardization of this
interface within the CCITT is also covered.

Standardization of the International Packet-Mode
Interface is to the advantage of teleprocessing users,

477

manufacturers of data processing and terminal equip-
ment and common carriers.

INTRODUCTION

Te!enet has been commercially available in the U. S.
since August 1975; Datapac will start commercial
operation in Canada next month; the French experi
mental RCP network started operation in 1975 and
Transpac development has been contracted out and
will start providing service in France in 1978; the
Experimental Packet Switching Service of the United
Kingdom Post Office is well into the evaluation stage;
and other public data networks are being planned and
developed in both Japan and the Nordic countries.

The fundamental technology used in all of these net
works is packet switching. In packet switching, all
user data is formed into discrete units called packets.
In addition to the data to be transferred (typically
part of a message), each packet includes a header
specifying control functions and the destination to
which the data is to be delivered. Packets are routed
through the network on a store and forward basis and
travel very rapidly and accurately through the net
work, experiencing only a fraction of a second delay
from source to destination. Additionally, the network
performs buffering functions so that the speed and
format of the data sent into the network can be dif
ferent from those of the data received at the destina
tion.

The packet switching technology described briefly

478 National Computer Conference, 1976

in the preceding paragraph is actually of little direct
concern here, since the sophisticated routing, monitor
ing and error correction techniques internal to packet
networks are invisible to users of the networks.
(Readers are referred to a book edited by Chu l for a
discussion of packet network design considerations).
Rather, the user's primary interests are the character
istics of the service provided by a network and of the
interface between him and the network.

The public data networks listed above are supporting
packet-mode services based on the virtual circuit con
cept. A virtual circuit is a bi-directional association
between a pair of DTEs over which all data transfer
takes the form of packets. Transmission facilities are
only assigned when data or control packets are ac
tually being transferred. The virtual circuit concept
permits a DTE (data terminal equipment) to establish
concurrent communications paths to many other DTEs
over a single physical access circuit (Figure 1). The
high degree of sharing made possible by the use of
virtual circuits enables communication savings to be
passed on to the user. The virtual circuit concept mini
mizes the impact of new packet switching services on
existing user systems.

Two types of interfaces may exist on any packet
switching network. The first type may be called a
device-dependent interface such as would be required
at present for most hard-wired terminals (e.g., point
of-sale terminals, teletype machines). The second type
may be called a device-independent interface which is
applicable to most programmable devices (e.g., com
puters, programmable controllers, concentrators, in
telligent terminals). Because of the large number of

,
",,;~'l

",," ,," I
" " , ,," ,," ,

~ ,," ,
~t---c=-------_-..~"' ... '" Network I

,- ... __ - / - ... (DeE) I
,Virtual / I
'~ircult~/ """", I

\ I , \
\ I '
\ I ' \
~I '~

Figure l-Use of virtual circuits

terminals that require device-dependent interfaces and
because of the large incompatibilities that presently
exist among these terminals, a large number of inter
face specifications are required. On the other hand,
only a single specification of a device-independent
interface is necessary.

The International Telephone and Telegraph Con
sultative Committee (CCITT) in Geneva has recog
nized the need for these two types of interfaces and
has put priority on the development of a recommenda
tion for the second type of interface; that is, a device
independent interface between what it calls a packet
terminal and the packet switching network. A similar
conclusion has been drawn by an Ad Hoc Group of
U. S. ANSI Task Group X3S37 (Public Data Net
works) .2

Likewise, TCTS, the French PTT, Telenet, the
Japanese NTT, and the United Kingdom Post Office
have put high priority on the development and stan
dardization of the International Packet-Mode Inter
face. The specification of the International Packet
Mode Interface was submitted as draft Recommenda
tion X.253 to the CCITT Secretariat for consideration
by the Study Group VII Plenary.

The purpose of specifying the International Packet
Mode Interface is to provide an efficient means by
which a large set of characteristically different tele
processing systems can gain access to the services and
related technical and economic benefits of packet
switching networks.

GENERAL DESCRIPTION

Interface 1'equirements

The basic requirements imposed upon the architec
ture of the interface are introduced below:

1. The interface shall provide a full duplex trans
mission path between the DTE and the network.

2. It shall ensure the integrity and accuracy of the
data transmitted between the DTE and the net
work.

3. It shall provide the DTE with switched and per
manent virtual circuits.

4. It shall be capable of efficiently supporting con
current communication between a packet mode
DTE and numerous other DTEs over a single
physical circuit to the network.

5. It shall allow both DTE and network to control
the flow of data over the access circuit so that
one does not overload the other.

6. It shall provide supervisory and control func
tions to administer calls satisfactorily.

7. It shall do all of above using existing standards
wherever possible.

Interface characteristics

The International Packet-Mode Interface consists of
three distinct levels of control procedures as illustrated
in Figure 2:

1. the Physical Interface
2. the Frame Level Logical Interface
3. the Packet Level Logical Interface

Each of these levels functions independently of the
other levels, with the exception that failures at a level
may affect the operation of higher levels.

The Physical Interface specifies the use of a duplex,
point-to-point synchronous circuit, thus providing a
physical transmission path between the DTE and the
Network. It also specifies the use of an existing physi
cal interface (i.e., EIA RS-232-C standard) between
the DTE and a data set or modem. Therefore, no
changes to the interface hardware of the DTE are
required.

The Frame Level Logical Inter'face specifies the use

process

I
I
I
I
I
I
I

i4---------------+-------- ----------....
: To other User process
I
I
I
I

r-----· -----1--------------1-------------n
Packet ..y ____________ ~----------------
Level I !

DTE

procedure. ~~--_--_-------~ ______________ .. I' packet Level
I LOlical Interface
I (multi-channel)

I
Frame I

Level !4t---.--------~------------.. Network
procedures I"\. Frame Level

Physical

Level

Proceduras

. i

LOllcel Interface
(slnlle data link)

I' Physical Interface
(4-wlre· point-ta
point synchronous

circult)

DCE
(customer Bide of

DTE/DCE interface)

DTE/DCE
INTERFACE (network side 9f

DTE/DCE inlerfsce)

Nole: Network Is tran,pare·nl to proce •• - to - proce s. communication.

DC It. Data Circuit - TerminaU,,- Equipment

Ce.l. data set)

Figure 2-International packet-mode interface architecture

International Packet-Mode Interface 479

of a data link control procedure which is compatible
with the High-Level Data Link Control (HDLC) pro
cedures being standardized by ISO and with the Ad
vanced Data Communications Control Procedure
(ADCCP) being standardized by U. S. ANSI. The
Frame Level Interface uses the principles of a new
ISO Class of Procedure for a point-to-point balanced
system, whereby the DTE and the network node each
have a primary and a secondary function. The Frame
T.aual T,.,ta ... -f<:lt>a ;'" rlafl,.,arl ;,., ta ... 'rVIC' n-f n"';'rVI<:I ... u <:I,.,rl
..L...oIv v '-".I. ~ ... ""v.L """'..... .Ltv """.1..1..1..1.'-""" .1..1.... ~v.L .I..I.J....:J V...L 1:-".1..I..l.I.A/.L.J &.400.1..1..\,..1.

secondary responsibilities, and may be thought of as
two independent but complementary transmission
paths superimposed on a single physical circuit. The
use of this data link control procedure ensures that
packets provided by the packet level and contained
in HDLC information frames are accurately exchanged
between the DTE and the Network. The functions per
formed by the Frame Level Interface are:

1. transfer of data in an efficient and timely fash
ion;

2. synchronizing the link to ensure that the receiver
is in step with the transmitter;

3. detecting transmission errors and taking steps
to recover from such errors;

4. identifying and reporting procedural errors to
higher levels for recovery.

The major significance of the Frame Level Interface
is that it provides the Packet Level Logical Interface
with an error-free, variable delay link behveen the
DTE and the Network.

The Packet Level Logical Interface is the highest
level of the International Packet-Mode Interface and
specifies the manner in which control information and
user data are structured into packets. The control in
formation including addressing information is con
tained in the packet header field and allows the net
work to identify the DTE for which the packet is
destined. It also allows a single physical circuit to sup
port a number of virtual circuits to numerous other
DTEs concurrently.

The Packet Level Logical Interface is further de
scribed in the next section .

THE PACKET LEVEL LOGICAL INTERFACE

Multiplexing at the packet level

The Packet Level Logical Interface accommodates
both permanent and switched virtual circuits. A per
manent virtual circuit is a permanent association exist
ing between two DTEs which is analogous to a point
to-point private line. Thus, it requires no call set up
or call clearing action by the DTE. A switched virtual
circuit is a temporary association between two DTEs
and is initiated by a DTE sending a call request packet
to the network. Call establishment and clearing is de
scribed in the next section.

480 National Computer Conference; 1976

In order to allow a DTE to establish concurrent
virtual circuits with a number of DTEs over a single
physical access circuit, the Packet Level Logical In
terface employs packet-interleaved Statistical Multi
plexing. This multiplexing technique is used to exploit
the fact that a typical virtual circuit to a remote DTE
may actually be carrying data for only a small per
centage of the t:me. Each packet contains a logical
channel number which identifies the packet with a
switched or permanent virtual circuit for both direc
tions of transmission. A packet that contains user data
for example has a three octet header identifying it as
a data packet and specifying its logical channel num
ber as illustrated in Figure 3.

Call establishment and clearing

A signalling method is provided to allow a DTE to
establish switched virtual circuits to other DTEs using
logical channel numbers at each end to locally desig
nate these switched virtual circuits.

A DTE initiates a call by sending a call request
packet, Figure 4, to the Network. The call request
packet includes the logical channel number chosen by
the DTE to be used to identify all packets associated
with that call. It also includes the network address of
the called DTE. A facility field is present only when
the DTE wishes to request an optional user facility
(i.e., network feature) requiring some indication at
call set up. Reverse charging is an example of such a
facility. User data may follow the facility field and
may contain any number of bits up to a maximum of
16 octets.

The calling DTE will receive a response indicating
whether or not the ('~llpn nTR ~(,(,p:rh: th,,- ('~n Wh,,-!'l
a switched virtual circuit cannot be established, the
network will transfer clearing call progress signals

OCTET 1

2

BIT

° 2 3 4 5 6 7

...-_0 _-_0_-0 ___ ---J1, _l~i~l _______ _

Channel Number

peR) I M I pes)

User Data Field

Q - Data Qualifier

M = More Data Indicator

Figure 3-Data packet format

I Type ~
IOata

OCTET 1

2

3

4

5

BIT

° 2 3 4 5 6 7

/--0 __ 0 __ 0 __ 1 _L..il _l_0.9_iC_Q' ______ -' 1,

Channe I Number

Type" Call Request

Calling OTE
Address Length

DTE Address
Field

I Called OTE
Address length

Facility Field Length

Facility Field

User Data
(0 - 16 octets)

Bits of an octet are numbered 0 to 7, where bit 7 is
the low order bit and is transmitted first.' Octets of
a packet are numbered consecutively starting from
1 and are transmitted in this order.

E very packet header has a 4 - bit field which is
effectively reserved for future use, a 12 - bit logical
channel number ond an 8 - bit field used for packet
type information and control. This latter field is
intentionally kept very similar to the control field

of HDlC.

Figure 4-Call request packet fOl'Inat

..
..¥
U
o

0..

to the DTE indicating the reason why the call was not
established; call progress signals are listed in Table I.
Either DTE may clear an established call with this
information being conveyed to the opposite DTE.

Figure 5 is an illustration of call establishment,
data transfer and call clearing.

Data transfer on a virtual circuit

Data packets, illustrated in Figure 2, can only be
transferred on a virtual circuit after the virtual cir
cuit has been established and flow control constraints
are not violated. The third octet of the data packet
header is identical to the control byte of HDLC infor
mation frames except that the poll/final bit is replaced
by the More Data bit discussed later.

T ABLE I-Clearing Call Progress Signals

Clearing Call Progress Explanation Signal

Number Busy

Number Refusing
Collect Calls

Network Congestion

Invalid Call

Access Barred

Local Procedure Error

Remote Procedure Error

Not obtainable

Out of Order

The called number is fully en
gaged and cannot accept anothel'
call.

The called DTE does not accept
collect calls.

Congestion conditions within the
network Leinporarily pi'event the
requested virtual circuit from
being established.

Invalid Facility requested.

The calling DTE is not permitted
to obtain the connection to the
called number. Possible reason is
incompatible closed user group.

The call is cleared because of a
local procedure error.

The call is cleared because of a
remote procedure error.

The called number is not assigned
or is no longer assigned.

The called number is out of order.
Possible reasons include

(1) DTE not functioning;
(2) Subscriber link not functioning;
(3) Frame level not in operation.

P (S) is the packet send sequence number of the
packet. (Only data packets are numbered, modulo 8).
The maximum number of sequentially numbered data
packets that the DTE may be authorized to transmit,
without further authorization from the network, may
never exceed seven. The actual maximum value, called
the window size W, is set for the virtual circuit either
at subscription time or at call set up.

Each data packet also carries a packet receive se
quence number P (R) which authorizes the transmis
sion of W data packets on this virtual circuit starting
with a send sequence number equal to the value of
P (R). If the DTE or the network wishes to authorize
the transmission of one or more data packets across
the interface, but there is no data flow on a given vir
tual circuit in the reverse direction on which to piggy
back this information, it can transmit a Receive Ready
(RR) packet. Flow control based on the conveyance
of P(R) numbers on a virtual circuit basis ensures
that a sending DTE does not transmit data at an aver
age rate which is greater than that at which the receiv
ing DTE can accept that data.

The data field of a data packet to be transmitted on
a virtual circuit may be any number of bits long up to
some maximum value. The latter may be established
independently at each end of a virtual circuit. Every
network will support a maximum value of 128 octets.
It may optionally support other values, possible values

International Packet-Mode Interface 481

CALLII'IG DTE/DCE

IHTE~FACE

CALLED DCE/DTE

INTERP.CE

I CALL REQUEST PACKET . . I
T ------- T

CALL CN'I'ECT[D [STABLISIlM[tIT

INCQMING CALL i"~Ci(£'j'

~~_P_AC_K_ET _':-~~C~T~ PACKET PHlE

ESTABLISHMENT
PHASE

J-
T +- + I

DATA PACKET

IDATA P.Ar.KET __ ___ ---1~

DATA

"ACKET

----- -
_ .>-- _ DATA PACKET

....... --DITA

P SE
4H~--~ ,

DATA
PHASE ----+-.

DATA PACKET DATA PACKET -----------.....

CLEAR INDICATION

P~.CYET C LEAR REQUEST PACKET

------------I~

T
CLE,\R DISCON~IECTION CLEAR

PI'AS[
DISCONNECTION

CONFIRMATION PACKET CONFIRMATION PACKET PHASE

T

Figure 5-lllustration of call establishment, data transfer and
call clearing

being 16, 32, 64, 255, 256, 512 and 1024. The governing
principle is that a virtual circuit is used for the trans
fer of streams of user bits, where packet size may be
chosen in such a way as to locally optimize: access line
performance, cost, error rates, queuing delays, through
put, etc.

In order to facilitate the segmentation and grouping
of the user's data stream into data packets, the user
may indicate in a full data packet whether there is a
logical continuation of his data in the next data packet
on a particular virtual circuit. This he does with the
More Data bit (M) indicated in Figure 3. Only a full
data packet requires a More Data indication since a
partially full packet is treated as if it had the M bit
off. The use of the M bit ensures that two communicat
ing DTEs can each operate at their locally selected
packet sizes.

Two independent mechanisms are provided to trans
fer control information between a pair of DTEs out
side the normal flow of data. The first mechanism
transfers control data within the normal flow control
and sequencing procedures on a virtual circuit. This
is called the data qualifier procedure. The format used
in this procedure is identical to the normal data trans-

482 National Comruter Conference, 1976

fer packet except that the "Q" bit is set (see Figure 3).
The data transmitted is then interpreted by the re
ceiving DTE. An example of the use of the data quali
fier is to transfer device control information such as
echoing or packet forwarding ruies and transmission
control parameters for device-dependent interfaces on
the packet network.

The second mechanism bypasses the normal data
packet transmission sequence providing non-sequenced
interrupt packets. Interrupt packets consist of a short
header identifying the logical channel number and a
one octet data field. Interrupt packets will be trans
mitted by the network without waiting for all other
packets to be delivered and will be delivered to a DTE
even when it is not accepting data packets. They con
tain neither send nor receive sequence numbers. In
this way, interrupt conditions, such as would be gen
erated by the depression of a break key on a keyboard
terminal, can be signalled between DTEs without be
ing subject to the flow control imposed on data packets.

Error recovery

The reset procedure is used to reinitialize the flow
control procedure on a given virtual circuit to the
state it was in when the virtual circuit was established
(i.e., all sequence numbers equal to zero and no data
in transit). To reach this state, all data and interrupt
packets which may be in transit at the time of resetting
are discarded. Reset packets are used in the reset pro
cedure.

The restart procedure is primarily used by the DTE
and provides a mechanism to recover from major
failures. The issuance of a restart request packet is
eouivalent to ~enrlimr a clear re~nef:,t nn R 11 ~wit('hpn

virtual circuits and a reset request on all permanent

virtual circuits. Thus, the restarting procedure will
bring the user/network interface to the state it was
in when service was initiated.

CONCLUSIONS

This paper has presented a description of a new com
munications protocol for accessing packet switching
networks. The International Packet-Mode Interface
has been developed by a number of administrations
and common carriers in cooperation with standards
organizations, users and manufacturers. We strongly
believe that it is to the advantage of teleprocessing
users, manufacturers of data processing equipment and
common carriers that standards and recommendations
continue in this area. The benefits to accrue are sim
plified design and use of equipment, lower cost, higher
transmission efficiency, interconnectivity and en
hanced performance.

The International Packet-Mode Interface has al
ready been implemented in a number of installations
to give access to the Telenet, Datapac and experi
mental RCP networks. It has been specified for use
on the French PTT's Transpac network and for the
Euronet international network being developed by a
large number of European administrations.

REFERENCES

1. Chu, W. W., Advances in Computer Communications,
Artech House Inc., Dedham, Massachusetts, 1974.

2. Cotton, 1. W. and J. W. Benoit, "Prospects for the Stan
dardization of Packet-Switched Networks," Fourth Data
Communications Symposium, Quebec City, Canada, October
7-9,1975.
(""'ff""lT,....~ ~ 1. ,...,.. _ _,.TT,.... j ., 1· ,.... _ 'T"'\ ,

u" VV.J...J....i.. ~"'I.&.u..) 'l.J.LU"""tJ "..L..I.. \.JUHL.H .. H.U,iUll 'IIu. ",",U"",, .LJtl.el..u.ue~

1975. Submitted by the French PTT and U.K. Post Office.

Virtuai circuiis vs. datagrams-Technical and political prohlems

by LOUIS POUZIN
Tnst·itut de Recherche d'Informa.tique et d' ... 4.'utom.a.tiqu.e
(IR/A)
Rocquencourt, France

ABSTRACT

Public packet networks are becoming a reality, and
call for interface standards. Two levels of facilities
have been proposed, virtual circuit (VC), and data
gram (DG). The concepts of VC and DG are already
well developed within computer networks. Their prop
erties are reviewed, along with typical issues such as
out-of-sequence and congestion problems.

Usually DG's are a sub-layer used as a transport
facility by a VC protocol. They also provide the ability
to extend switching functions within user systems.
The characteristics of VC's considered by CCITT are
examined critically, and related to experimental net
works and manufacturer softwares.

VC's and DG's are compared from the viewpoint of
adapting customer systems to public networks. When
the customer is interested in a transport facility, DG's
appear to have an edge. When a network becomes a
terminal handler, adaptations are more complex and
require character stream interfaces. Intelligent termi
nals would make this problem disappear, as they can
use a DG interface.

Although various groups call for a DG interface, the
carriers are opposed to it. Four carriers are rushing
a VC protocol through CCITT. The carrier's goal is
to take over terminal handling, and gradually other
processing functions. DG's would leave too much
freedom to the customer. The political implications
of the carrier policy suggest that better boundaries be
drawn up between carriers and data processing.

THE COMMUNICATION INTERFACE

The development of large scale DP networks has
pointed out the need for a well defined interface with a
communication sub-system, which is termed here a
transport facility. The term transport intends to
emphasize the fact that this facility should move pieces
of information from one place to another, without any
alteration. Ideally, it should be error-free and carry
data instantaneously. In practice, it introduces some
transit delay and some errors.

483

In conventional systems, a widely used transport
facility is a telephone line equipped with modems. The
interface is standardized by CCITT (Comite Con
sultatif International Telegraphique et Telephonique),
and ISO (International Standard Organization). It is
bit serial, at certain predefined speeds. New transport
facilities such as packet switching are now becoming
available. They are based on a combination of tele
phone lines and computers. The interface is more com
plex than for a simple modem. Typically it can be
broken down into 3 components (Figure 1) :

a-A modem interface, as usual;
b-A data link control procedure, such as HDLCl

in charge of the transfer of packets between DP
equipment and communication network equip
ment;

c-A packet protocol, in charge of sending and re
ceiving packets according to a specific set of
rules.

Components a and b do not raise any controversy.
The modem interface is already widely available. The
link control procedure is in the process of becoming an
ISO standard. But component c turned out to be a tug
of war.

Two approaches have been proposed for component
c. One is a virtual circuit protocol, the other is a data
gram protocol.

It is essential to note that the definition of a trans
port interface does not make any assumption on the

, , ,

.... - - - - - - - - - - - - packet protocol - - - - - - - - - - -.,I
I I

!- - - - - - data link control - - - - - ~
, I

1

:. modem :ntertaces .. :

I I

1 1
I-modems _I

I

I
I
I

, __ ports L ____ line adapters _ - __ I

1
1

ports __ I

Figure i-Packet network interface

484 National Computer Conference, 1976

specific techniques used to carry packets within the
transport facility.

Even though some techniques may be more appro
priate, with a certain technology, nothing prevents us
from adopting widely different solutions, when new
technologies become available. Changes need not, and
must not, affect the transport interface.

VIRTUAL CIRCUITS IN GENERAL

A virtual circuit (VC) is a logical path between two
end-entities for the purpose of exchanging data.

The terminology used in various groups is not sta
bilized, as is shown in Table I. In the following, end
entities are called ports.

Any computer network architecture embeds some
form of VC, which is required to implement a logical

association between a pair of correspondents. This is
not so apparent when the pair of correspondents and
their communication medium are represented by a
dedicated set of resources, e.g., terminal control block,
line adapter, telephone line, terminal. But it has be
come standard practice to share resources, such as a
telephone line, between several pairs of correspondents.
Thus, some machinery is required to segregate and
control separately the traffic pertaining to each pair.
This concept of independent logical path, along with an
appropriate machinery, is what is called a VC, or many
other things (Table I).

There has been a number of variations in the design
of VC's. Since they are reviewed and discussed in a
previous paper/ they are only given a short treatment
here.

T ABLE I-Virtual Circuit Characteristics

COHPUTER NETWORKS PACKET NET\{ORKS

ARPA CYCLADES Im1 EPSS trRA..~SPAC TELENET
Host DECNET PTT PTT CCITT
net EIN SNA UK FRANCE USA

logical virtual circuit virtual virtual
VC name connection liaison seSSion

link call vi rtue 1 circuit call/
ci rcui t

End-entity socket
logical

object
customer voie logical logical port unit label logique channe 1 channe 1

Sharable no yes no yes no no no no
en ti ty

Uni- or bi- uni bi bi bi bi bi bi bi
directional

Error control no end end end end step step step

Flmv control end end end end step step step step

Interrupt yes yes yes yes no no yes yes

Call Collision yes yes unknown yes no no unknmvn no
resolved

Use DG's unknmvn not no yes yes yes no yes specified

Transit delay

Although delay presents no advantage, it is a built-in
characteristic which cannot be eliminated. This is due
to intrinsic response times and queueing always as
sociated with resource sharing.

Uni- or bi-directional

It is the ability to transfer information in a Ringle
direction or in both simultaneously.

Permanent or transient

VC's may be set up permanently, or they may be
opened and closed dynamically.

Sharable or busy ports

VC's are attached to ports bearing various names.
In some systems several VC's may be anchored on a
single port. In others, the port is busy when a single
VC has been set up.

Call collision

In some systems, when two ports are attempting
simultaneously to set up a VC with each other, one or
both fail or two VC's are set up. This is a call collision.
In other systems, which resolve collisions, this action
results in a single VC being set up between the two
ports.

Sequencing

VC's deliver information in the sequence it is sent.
This may require a resequencing of fragments, when
an underlying mechanism does not guarantee a se
quenced delivery, e.g., a datagram network.

Error control

Most VC's perform error detection and recovery by
retransmission. But there are two basic techniques:

-step-wise, in which control is applied onto succes
sive legs of the physical path between ports (Fig
ure 2). The reliability of the VC depends on inter
mediate mechanisms.

-end-to-end, in which control is applied by mecha
nisms located only at the two ends of the VC. Re
liability is then independent of any intermediate
mechanism.

Both techniques may be applied simultaneously.
Practically, end-to-end control always embeds some

Virtual Circuits vs. Datagrams 485

C""'-, ----Ie!)
• -step 1- -.. .step2-. .step 3... 4--step 4- -.

Figure 2-Step-wise error control

intermediate controlled legs. But there are step-con
trolled VC's without end-to-end control (Table I).

Flow control

It is the machinery in charge of keeping traffic
within limits acceptable by the receiver, or any inter
mediate bottleneck. As for error control, two basic
techniques are uSed:

-step-wise, in which feedback is applied on inter
mediate queues assigned to each VC;

-end-to-end, in which feedback is applied directly
from the receiver to the sender. In this case, there
is no need for handling intermediate queues per
VC.

Again, both techniques may be applied simultane
ously. However, when end-to-end flow control is used,
intermediate legs are usually controlled in a more
global manner (e.g., node-to-node, or network-to
nehvork) rather than at the VC leve1. This saves a con
siderable overhead~ and allows for adaptive routing.

Interrupt channel

It is used to by-pass the normal flow of information,
when some signal must be transmitted even though
error and flow controls may block up the VC.

Transport protocol

Sending and receiving information through VC's
must follow a set of rules called a protocol. Basically,
this protocol performs four types of functions:

(a) Implement a port name space in order to desig
nate unambiguously sources and destinations at
network level;

(b) Provide for the sending and the sequenced de
livery of data, with error and flow control;

(c) If necessary, fragment items to be sent into

Figure 3-Step-wise flow control

.... ,
itt{+(!)

486 National Computer Conference, 1976

pieces the size of the data field of a packet, and
reassemble them at the receiver end;

(d) Multiplex the traffic of several VC's onto some
common resources, e.g., a physical data link.

As may be inferred from the above, the sequencing
functions require that all packets be routed through a
minimum of two focal points, which insure numbering
and sequenced delivery. Alternate routes can only ap
pear in between the focal points, (Figure 4). The
paths between ports and VC focal points must be
unique and sequential. This creates a reliability prob
lem when ports and focal points are not collocated in
the same equipment.

DATAGRAMS

A datagram (DG) is a packet of information which
is carried to its destination without reference to any
other packet, or prior setting of a data path. In other
words, a DG is a self -contained packet, in terms of
switching.

As compared to VC's DG characteristics are con
siderably less diversified. The transit delay is of the
same order of magnitude, or even shorter, since DG's
do not have to wait for predecessors. All VC features,
which are related to the concept of a logical path, are
not applicable to DG's.

DG's can be sent to any port at any time. They are
delivered in the sequence of arrival in the final queue to
the destination port.

Since they are not related, they may be sent onto,
and received from several physical data links in
parallel.

The DG protocol consists only in formattinl:! packets
to be sent and dispatching received packets to specified
ports. It may also include some conventions for flow
control, when there exists a possibility of flooding
some limited resource along the way.

Thus, DG's appear as a very simple transport facil
ity, without mechanisms normally associated with an
orderly and reliable transfer of information. An im
mediate question is whether DG's are useful.

r - - - focal points- - - I

I

~o-: -::k--:_---..~:.-~;~;:~
-y - - -" - ---- """-0

0- I t t ALTERNATE ROUTES

,
ports

L _ numbering/sequencing ...J

Figure 4-Focal points

At this point, it is interesting to quote a CCITT
document3 giving a definition for DG:

"A user facility in which a message which can be
('()nt!=l1n",iI 1n th", iI!=It!=l fi",li1 nf nnhr Ana n!lrolrat ;'" ila_ -- _ __ "" _ '-"'"_ _ _ v va..&J "' "" "tJ_v.&s..,""v .L"", "'"

livered to the destination identified in its address
field. No reference is noted by the network to any
other datagram previously sent or likely to follow
between the same two DTE's."

As long as the term message means everything or
nothing, the definition is not incorrect, albeit meaning
less. But if message is to have any correlation with a
piece of data fit for processing, the definition is basi
cally erroneous.

Indeed, neither VC's nor DG's can carry within a
single packet messages longer than the maximum
length of the data field (this is a tautology). There
fore, oversized messages are fragmented into pieces
the size of a data field and sent as separate DG's.

At the destination, DG's are reassembled into a copy
of the original message. Duplicates, if any, are dis
carded; missing DG's will be retransmitted if acknowl
edgment conventions have been established with the
sender.

All this sounds very familiar, when compared to a
VC protocol. But it is not a DG protocol. It is a user
oriented protocol interfacing the transport facility
through a DG protocol. In other words, DG's are not
intended to be used as a self -contained transport facil
ity. On the contrary, they should normally be accessed
through an embedding higher level protocol.

This higher level protocol may be a VC protocol, or
any other protocol well suited to a specific class of ap
plications. E.g., if user messages always fit within a
DG, there is no need to invoke a fragmentation/reas
sembly machinery. This is likely to oe the case of large
scale applications, such as point-of-sale terminals.

The out-of -sequence issue

It is sometimes argued that DG's involve a substan
tial overhead at the receiver end to sort out packets,
and put them back in the proper sequence. This is not
the opinion of persons who have implemented protocols
based on DG's. Indeed, in a sensible VC protocol using
DG's, messages are broken down into labeled DG's
carrying a message number and a DG number. All
DG's of a message have the maximum length except the
last one. On arrival, they are placed directly at their
proper location in the message buffer, according to
their number. This is utterly trivial, and needs no
more comment.

It should be recalled also that resequencing is not
peculiar to DG's. A sequential procedure, such as
HDLC, delivers packets out of sequence when the com
mand SREJ (selective reject) is used to trigger a re
transmission.

Out-of-sequence packets could require more buffers

than normally necessary if sequence shifts were fre
quent and had a large value. This is not the case in
well designed networks. The reader may be interested
in some simulation work! performed on this subject.

It certainly cannot be construed that out-of-sequence
delivery carries an advantage per se. It is rather a
non-issue. But the ability to accept out-of-sequence
packets yields a major benefit in making multiple
physical links a casual matter. This is indeed an es-
____ .L~_1 ~ _______ _ '~ ___ .L!.i! ___ l!_L!l!..L __ !_ L_ 'L L..-l ___ _ _! 1
::;eIll,lal lIlgn:!UleIH l.l rellaUl11l,y H::i LU ue La.l\.~H ::;~llUUNy.

The congestion issue

It has been recognized very early5 that an excess of
packets could use up all available buffers and result in
deadlock::;, or complete network jam, like cars in busy
cities. Obviously, some mechanisms are necessary to
prevent an overload of traffic. But the problem is not
as simplistic as just keeping packets at bay. It breaks
down into a number of sub-problems:

(a) Insure that packets do not enter the network
when they would increase a developing con
gestion;

(b) Criteria to select acceptable packets when some
of them must be held outside;

(c) What to do with packets that the receiver does
not accept;

(d) What to do with packets that cannot reach their
destination for any reason;

(e) How to anticipate congestion;
(f) How to optimize (?) network resources.

:Most of these problems could apply to any resource
sharing system, and it is well known tha-t there is no
general solution. But there are numerous partial solu
tions in a given environment.

It is often argued that a VC interface allows better
traffic control. Actually, it only applies to a. No more.

Other schemes applicable to DG's have been studied
and appear to be more effective, since they cope better
with global congestion. The reader is referred to a
very significant work accomplished at NPL.6

Every network designer cooks up some scheme cop
ing with a, possibly at the cost of lowering the rate of
resource sharing. E.g., in Transpac (French PTT),
VC resources are dedicated all throughout the network.

Problem b requires some arbitrary policy including
possibly tariff and marketing considerations. It has
to be acceptable by the customer base. No general rule
applies.

The most reasonable way to handle problems c and d
is probably to destroy packets. As long as the destruc
tion rate is lower than 10-3 or 10-\ efficiency is not
affected. End-to-end protocols handle easily DG loss.
With a VC interface, the problem may require more ex
tensive machinery, because VC's are not supposed to
miss any packet.

Problems e and f are still a research area. They are

Virtual Circuits vs. Datagrams 487

independent of the network interface, be it VC or DG.
To sum up, there are a number of recipes to keep

congestion under control regardless of which type of
interface is used. Actually, carriers use DG's inter
nally, which suggests that they are not so concerned.
But making congestion control efficient is still an open
question, for every network.

THE RELATIONSHIP BETWEEN VIRTUAL

As has been pointed out earlier, the DG is basically
a low level transport facility at the disposal of higher
level transport protocols, (Figure 5). It would be sim
plistic to oppose DG's and VC's, since they actually are
complementary components in a hierarchical structure.

Indeed, computer networks such as CYCLADES7,8
or EIN9,lo,25 use DG's as an underlayer of a VC proto
col. This approach is in line with sound principles in
system architecture, as it decouples the VC protocol
from the characteristics of the transport facility. Thus,
the VC protocol may operate as well over a thin wire,
or a packet network, as long as they both transport
packets.

Even the carriers have been able to understand the
advantages of decoupling the VC protocol from the
transport function proper. DATAPAC (Bell-Canada),
EPSS (UK), TELENET (USA) are typical examples
of packet networks based on this approach (Figure 6).
Thus, it is all the more intriguing that carriers deny
users the privilege to adopt the same principles.

ports ports

transport - - - -protocol

- - - - - ~G interface- - - - - -

'da ta li';lk
control

NETWORK

I
/4-

Figure 5-Protocol structure

488 National Computer Conference, 1976

- VC PROTOCOL - -

D G NETWORK

Figure 6-Two-level packet network

THE SWITCHING POTENTIAL OF DATAGRAMS

Another reason why carriers use DG's within their
own packet networks is that switching DG's is much
more efficient than handling logical paths all through
out a communication network. Intermediate nodes do
not have to keep track of VC status; they only switch
self-contained packets towards their destination. Error
recovery and adaptive routing are much simplified.

Not surprisingly, the switching potential of DG's
has also been put to an advantage by computer system
designers. This stems from two simple remarks made
earlier in this paper:

(a) DG's can be sent to, and received from several
physical routes;

(b) DG's can be used as a transport sub-layer by
several higher level protocols.

Therefore, the DG protocol acts as a switch, and
interface ccn'\:,,"'crtc~, bct,\:.","'ccn u~cr oriented prctocolG
and transport facilities. It can also be used as an in
ternal switch within a DP system. Nothing prevents us
from putting several DG protocols, to deal with several
transport facilities, public or private, or as internal re
lays within a distributed DP system, (Figure 7). This
meshed structure provides for high flexibility and re
liability, as it allows an arbitrary distribution of intel
ligence, without depending on a unique vulnerable
component.

It can be verified easily that several recent computer
system architectures include internal switching func
tions, carefully insulated from other parts of the sys
tem. They carry basic information units which are
functionally equivalent to DG's. Interfacing with a DG
network should require a minimum of adaptations.

Another benefit of the DG switching potential, is to
simplify the interconnection of packet networks at
DG level. 26 This approach has been extensively tested.15

It allows multiple physical routes between networks.
Interconnection at VC level requires additional focal
points, which may render VC's inoperable in case of
malfunctions.

DG PROTOCOL -

data link
control - ..

I 14 - - - -other DG PROTOCOLS - -.

I
1+ - - - - TRANSPORT PROTOCOL S -.

Figure 7-Multi-protocol Die

VIRTUAL CIRCUITS PROVIDED BY CARRIERS

During 1975, four carriers (France, UK, Bell Can
ada, and Telenet) evolved gradually a common pro
posal for a VC interface to public packet networks.
Notwithstanding possible modifications, this proposal
could become a CCITT recommendation, i.e., a stan
dard, if it is agreed by a majority of carriers at the
August 1976 plenary assembly.

At the present time, these four carriers have built, or
are building, national packet networks with different
interfaces. How and when they intend to migrate to
the CCITT interrace, is a moot question. N everthe
less, it seems more useful to concentrate on the CCITT
draft,l1 instead of its ancestors. For ease of reference,
we shall term CVC, (Carrier VC) the particular type
of VC proposed to CCITT.

A subscriber equipment is called a DTE (Data
Terminal Equipment) in CCITT terminology. A CVC
may be summarized by its main characteristics:

(1) A DTE takes a subscription with the carrier
for a certain number of bidirectional logical
channels (LC) labeled 1 to N.

(2) In order to set up a CVC with another DTE,
a calling DTE selects a local free LC number,
and sends a calling packet to the carrier.

(3) Somehow, the calling packet reaches its desti
nation within the carrier network (or another
carrier network) to which the called DTE is
physically linked.

(4) The carrier selects a supposedly free LC num
ber and passes the calling packet to the called
DTE.

(5) If the called DTE accepts the CVC, it returns
an acknowledgment.

(6) The carrier propagates the acknowledgment
back to the calling DTE.

(7) Both calling and called LC's are engaged for
the time the CVC is set up.

(8) If two DTE's call each other simultaneously,
two CVC's are set up, unless one of them
(which one ?) rejects the call (unresolved call
collision) .

(9) Either DTE may decide to break the CVC at
~~~. ~~~~~.j.. 
C:U1.Y l11Ull1C.l1I.. 

(10) The physical link between DTE and carrier is 
controlled by an HDLC procedure (ISO stan
dard). It must be full-duplex. 

(11) The LC between DTE and carrier is controlled 
by a specific procedure that apes HDLC, with
out being identical. 

(12) Packets sent by the DTE on an LC must not 
exceed a certain length agreed with the carrier. 

(13) Packets delivered to the DTE on an LC do not 
exceed a certain length previously agreed with 
the carrier. 

(14) Unless the maximum packet length used by 
both DTE's happens to be the same, there is 
no relationship between packets sent and re
ceived, except that they make up a continuous 
bit stream when concatenated by the receiving 
DTE. 

(15) Message markers may be inserted by the send
ing DTE. This prevents the delivery of con
catenated messages to the receiving DTE. 

(16) Some CVC's may be set up permanently, sub
ject to an agreement with the carrier. 

It would be somewhat tedious to take into account all 
the various options anticipated. They do not alter sub
stantially the general description presented here. 

A few simple analogies may help to understand 
CVC's. 

A DTE is like a PBX with one telephone number and 
a group of lines (LC's) to the public telephone ex
change. A CVC is like a pipe, or a FIFO queue. 

The CVC protocol provides only for interactions be
tween DTE and carrier, not between DTE's. It is a 
step-wise protocol as far as error and flow control are 
concerned. This has strong implications: 

(a) There is no way for a receiver to stop a sender, 
except by letting it fill up the CVC pipe; 

(b) There is no way for a receiver to check that it 
has received its data completely, without altera
tion or duplication. 

In other words: Thou shalt trust the carriers. 
It is not clear why the CVC protocol comes on top 

of an HDLC procedure. They are both local protocols, 
controlling the transfer of data between the DTE and 
its nearest carrier office. If HDLC is presumed to work 
correctly, what is the purpose of a CVC protocol, and 
vice versa. 

It may be argued that the CVC protocol needs more 

Virtual Circuits vs. Datagrams 489 

functions than HDLC. This is correct. But it would 
be perfectly adequate to control each LC with an HDLC 
procedure augmented with appropriate functions, for 
CVC set up, reset, and flow control. This is the way 
IBM does it in SN A. This would do away with one 
redundant layer, and bring the eve protocol closer to 
an existing ISO standard. 

However, due to the lack of DTE-to-DTE control, 
the eve protocol does not meet the qualification of a 
self-contained transport facility. 

As a consequence, users of eve's wiil superimpose 
their own end-to-end protocol, such as a homemade 
VC protocol. Actually, this would happen anyway, 
because computer manufacturers and their customers 
must insure the reliability of their systems regardless 
of the vagaries of carrier facilities. 

DATAGRAMS PROVIDED BY NON-CARRIERS 

The concept of DG has been first experimented in 
the CYCLADES computer network, which uses a VC 
protocolS based on DG's. The CIGALE packet net
workI2 used in CYCLADES is a pure DG facility. 

CYCLADES has been operational since early 1974. 
As opposed to Arpanet, the major part of the packet 
traffic is generated by remote batch jobs. At present, 
the bottleneck is the line printer, not CIGALE. This 
is an indication that DG's are an adequate transport 
facility in a remote batch environment. Conversational 
traffic is actually much less demanding. 

The VC protocol has been implemented in various 
environments: 

-in a user partition of a host computer, 
-in a virtual machine under CP /CMS, 
-within HASP, 
-integrated with a telecommunication access meth-

od in manufacturer software, 
-in a mini-computer as a host front-end, 
-in a terminal concentrator, 
-in a micro-programmed display controller.13 

Another computer network, EIN, is being built on 
the same principles as CYCLADES. So far the par
ticipants have not identified any need for VC's at the 
packet network level. 

An end-to-end VC protocol14 based on DG's has been 
proposed by a working group of IFIP (WG 6.1). To 
date·it is by far the best design which results from the 
largest exchange of ideas, and has received the widest 
acceptance. An early versionI5 of this protocol has 
been in experimental use since mid 1974, between 
France and UK. Although the work accomplished in 
experimental networks has been generously dissemi
nated, it has received little attention from the com
puter manufacturers, except for CII (Compagnie In
ternationale pour l'Informatique) in France, which 
has included VC's with a DG interface in its commer
cial software. 



490 National Computer Conference; 1976 

In addition, a packet switching software (i.e., DG) 
is available on a cn mini-computer. 

Another computer manufacturer product, DEC
NET/6,l. uses an end-to-end VC protocol independent 
of transport facilities, i.e., it can work with DG's. 

IBM has released some documents on SN A/8 in 
which there is an internal boundary with a transport 
facility. The transport interface appears to be of the 
DG type, but at the end of 1975, no information could 
be obtained on network structures allowing alternate 
paths. Furthermore, the transport functions are inte
grated in SN A. Facilities provided by carriers are 
limited to telephone lines. 

VIRTUAL CIRCUITS VS. DATAGRAMS
TECHNICAL 

As seen earlier, staging VC's against DG's in ab
stracto would be nonsensical, since they are indepen
dent layers. What is more relevant is to discuss the 
adequacy of either type of interface when provided by 
packet networks, namely public carriers. Thus, the 
discussion assumes CVC's. 

It seems that all possible types of interfacing with 
public packet networks boil down to two classes: 

-the carrier provides a transport facility in charge 
of transporting bits from one point to another; 

-the carrier provides a device in charge of handling 
remote terminals. 

This classification requires further elaboration. 

Packet network as a transport facility 

A typical situation is a private network in which 
dedicated lines and multiplexers are to be substituted 
with packet switching. What the customer is looking 
for is cheaper lines. 

Only buffered equipment can send or receive packets. 
This rules out asynchronous character terminals, un
less they are complemented with buffers. Normally, 
some kind of synchronous transmission procedure is 
used for the exchange of data. 

First of all, delays introduced by a packet network 
may be unacceptable by application protocols. Assum
ing that this problem could be circumvented somehow, 
the customer would have to replace his transmission 
procedure with the one imposed by the network, i.e., 
HDLC, unless it is already there. 

Then, the customer may subscribe for one or sev
eral CVC's for each piece of equipment, in keeping 
the same virtual topology. CVC's require the addition 
of the CVC protocol. If the customer is prepared to 
rely on the carrier for error and flow control, that's 
all he has to do. Otherwise, he would have to put yet 
another end-to-end protocol (E-E), which would give 
him complete control on the quality of the transmission 
on each CVC (Figure 8) . 

USE R.A 
LgGICAL CHANNELS 

"-
", 

_--+-_O_T_E --;--1 HO L C I 1 H 0 L C 

1 14 - -'1 i'" -·1 

USER.B 

eve· manager 

I 

OTE 

1 cve protocol 1 1 evc protocol 1 
1 14 - - - - +1 i"'- - - - - +i 1 
fo< - - - - - - - - - USER E-E protocol- - - - - - - - - .,j 

Figure 8-Virtual circuits as a transport facility 

If the customer were using DG's, he would have to 
put an E-E protocol of his own choice, and a DG 
protocol. 

To sum up, CVC's may have a minor advantage 
over DG's, when the customer agrees to trust the 
carrier, because a CVC protocol is perhaps a little more 
compact than an E-E plus a DG protocol. But this 
cannot be held true until it has been validated from 
experience for a number of protocols. 

On the other hand, if the customer wants to insure 
his own E-E control, a DG interface would unques
tionably take less overhead than CVC's. 

As we have seen earlier, this latter situation is to 
become the rule rather than the exception, because 
computer manufacturers are introducing systemati
cally E-E protocols in their network architectures. 
This approach has also been constantly advocated by 
users. 19,20,2l,22,23,24 Unlike CVC's, E-E protocols within 
('u~tnmpl" f'llnipmpnt Rr't:' 'It:'lf-containt:'d mechanisms. 
Furthermore, DG's provide for switching capabilities 
and multiple routes, which is a net improvement over 
CVC's in terms of flexibility and reliability. 

Packet network as a terminal handler 

This is the case where the customer wants to use 
a packet network to access non-intelligent character 
terminals. At one end he may have enough intelligence 
to implement whatever protocol would be required, but 
character terminals cannot transmit packets. 

To that effect, carriers are providing functions to 
assist character terminals which they initially called 
packet assembling-disassembling (PAD). But a char
acter terminal needs much more assistance than just 
PAD. E.g.,: 

--character translation, 
-recognition of break characters, 
-timing of mechanical functions, 
-translation of interrupt or error signals, 
-recovery procedure, 
-etc .... 



It is no longer possible to control these functions 
over the packet network, since they are time depen
dent, and require a direct physical interface with the 
terminal. Therefore, the carrier has to do it. But 
terminals have a number of options, which the cus
tomer may want to use, or to vary. This requires 
some conventions whereby the customer, at either end, 
may set up his own menu. It is also nice to use dif
ferent makes of terminals without having to develop 
special adaptations to the customer s:lstems. Thus, 
terminals may access various computers. But a con
nect protocol and command language is necessary to 
specify the computer. And so on. 

Step by step, the carrier is tempted to offer more 
and more facilities, which bear no relation to data 
transport whatsoever. These facilities are a set of 
functions which are logically at the level of an access 
method, such as VT AM. In a sound architecture, they 
should be matched by equivalent layers in the cus
tomer computer system. But, they are not. Flexibility 
has not yet reached that level. 

Unless it is substantially modified, the customer 
system cannot communicate with the carrier as if it 
were dealing with a friendly terminal concentrator, 
because their access methods do not match. A typical 
scheme around this problem is to communicate with 
the carrier in terms of character streams, as if the 
carrier network were a terminal of a certain type, or 
a cluster of terminals. 

Although this kind of interface is somewhat cus
tomized, some carriers appear to be willing to put the 
appropriate adaptation into their own networks, prob
ably as the only way to get customers. Another variant 
is the customer developing a gateway between his 
main frame and the carrier. 

With this approach, the customer delegates com
plete control of his terminals to the carrier. He has 
no way to check that things are running correctly 
save for hearsay from terminal users. This may be 
acceptable for certain classes of applications. 

When the carrier provides the adaptation, the only 
interface visible to the customer is a character stream 
for a certain kind of terminal. Then, the question of 
using DG's or CVC's becomes an internal matter for 
the carrier. As we know, carriers use DG's internally 
to implement CVC's. 

When the customer provides the gateway, he has to 
implement some protocol to exchange packets with the 
carrier. A simple DG interface would not be sufficient, 
as DG's assume an E-E protocol. Since the customer 
has no control on the other end, he has no choice but 
to use CVC's. Perhaps he would just wonder why the 
CVC protocol is that bungled. 

But the real issue is not there. It is in the gateway 
itself. The hardware cost may be insignificant with 
large host computers. It certainly is significant when 
the host is a specialized mini. Furthermore, the largest 
part of the software is devoted to conversion chores, 

Virtual Circuits vs. Datagrams 491 

not to the CVC protocol. This means an inherent 
limitation in traffic throughput and a unique physical 
path to the carrier. Inter-computer communications 
become rather restricted if they have to mimic char
acter terminal traffic. 

A way out of that quagmire is intelligent terminals. 
If it turns out that they can be mass produced at a 
cost close to that of dumb terminals, there will be no 
need for terminal handling. Each terminal, or cluster, 
will contain enough intelligence to handle all necessary 
protocols, either locally or end-to-end. The most eco
nomic sub-layer to E-E protocols is a DG facility. 
As an illustration of that technique, a micro-program
mable display13 has been inserted in CYCLADES. It 
interfaces directly with the CIGALE packet network 
and contains all higher level protocols matching those 
in CYCLADES hosts. This puts terminal handling 
under complete user control, totally independent from 
the carrier. Thus, the packet network would revert 
to its initial destination: a transport facility. 

VIRTUAL CIRCUITS VS. DATAGRAMS
POLITICAL 

It should be apparent by now that there is something 
else than technical under the rug. 

Indeed, manufacturers and users unanimously de
clare the view (as they say in CCITT) that there is 
a need for E-E protocols independent from transport 
facilities. This is an overwhelming position supported 
by scores of papers.19 ,20,21,22,23,2-1,2.,2S ISO has now 
started working on the standardization of an E-E 
protocol (TC 97/SCB/Project 17L which would allow 
data transfer between data processing equipments, 
regardless of the transport facilities used. IFIP-WG6.1 
has already proposed such a protocol,14 after extensive 
discussion and experimentation within network groups 
at international level. Therefore, one might think that 
the carriers would make every effort to take this ap
proach into account in designing interfaces with public 
transport facilities, e.g., make it easy to superimpose 
E-E protocols on packet transport, and avoid the dupli
cation of functions. 

Some computer manufacturers have already ex
pressed their preference for a specific transport fa
cility: the DG. Others have not, and this includes 
IBM. Their position is that they cannot take a stand 
as long as specifications, quality of service, tariffs, are 
not known. Fair enough, because adaptation costs and 
effectiveness cannot be assessed without these essen
tial parameters. But a certain number of institutions 
have already expressed a definite support for a DG 
facility. This includes IFIP-WG6.1,2.,28 the EIN com
munity, the Industrial and Technological Directorate 
of the European Communities, the French Direction 
of Industry, and various users of large private net
works. 

Positions on CVC's are more polite. Everyone sup-



492 National Computer Conference, 1976 

ports more or less CVC's without comment. It is not 
considered as a wise stand to antagonize the European 
PTT's when they are known to be ticklish (PTT's are 
telecommunications state monopolies). Manufacturers 
are even more cautious, since they always have some 
proposal hung up somewhere on a PTT desk. And 
after all, if CCITT standards are awkward, manufac
turers will have a good excuse for selling their cus
tomers additional hardware. In case customers would 
then shy away from public packet networks, God bless 
the CCITT. Private networks are a bonanza. 

Since carriers, and especially PTT's are primarily 
concerned with public interest, one would think that 
there are enough indications for providing both CVC 
and DG facilities. CVC's would be used by carriers 
as part of their terminal handling complex, and DG's 
would meet the requirements of a certain number of 
users. Actually, DG's are the only facility for which 
there has been real insistence coming from users and 
some manufacturers (not IBM). Software products 
using DG's are to be delivered in 1976. 

A carrier's dream 

As mentioned earlier, since mid 75, four carriers 
have been very busy coming to a consensus on a user 
interface with public packet networks (X25). (They 
are: French and UK PTT, Bell Canada and Telenet). 
They assume that CCITT, therefore the whole world, 
will buy up their common proposals at the next plenary 
assembly in August 1976. Due to administrative con
straints, these proposals are practically firmed up at 
the beginning of 1976. 

Conspicuou~]y, the 4-tuple are adamant. again~t DG'~ 
which they have downgraded from essential to op
tional, in opposition to the view of ECMA, IFIP, ISO,30 
and NTT.29 Then, what is wrong with DG's? 

Technical arguments are still used with non-experts, 
who may ignore that carriers use DG's for their own 
needs. The crux of the matter is elsewhere. 

DG's call for E-E user protocols, which imply that 
the user is in control of both ends of the data path. 
In between, the carriers transport bits. But that is 
just a carrier business. Carriers do not want to be 
confined in carrier business any more. They want a 
more glamorous piece of the action: no less than a 
share of the computer market. According to their 
rationale, anything that goes on between a computer 
and a terminal is data transmission and switching. 
Since carriers have a monopoly in switching telephone 
circuits, they consider it a natural extension to demand 
the monopoly of virtual circuit switching for data. 
Terminals being a natural extension of circuits for 
testing, maintenance, and so on, should also belong 
to the carriers, like a phone set or a teletype. 

Additional functions might be required, such as a 

command language, editing facilities, etc., but this is 
a natural extension to a dialing procedure. Carriers 
would standardize all that, and everyone would be 
happy. No less than a lion's share. 

If the user were in control of both ends of the data 
path, nothing could ever happen, because he would 
keep buying total systems from his usual supplier. 
Therefore, it is essential for the carriers to be in 
control of at least one end of the data path. Clearly, 
working from the terminal up is a logical step. This 
is why such things as DG's, E-E protocols, are totally 
undesirable, unless they are completely under carrier 
control. In line with that approach, CVC's do not pro
vide for E-E control at the user level. 

An additional reason why DG's are outlawed is that 
they facilitate switching. That should be a carrier 
privilege. Therefore, it is essential that DG's do not 
spill away into the user domain. The CVC interface 
should be the Chinese Wall that contains DG's within 
carrier boundaries. 

Once the carriers have secured terminal control in 
their networks, they will work at stealing more and 
more functions from the processing industry, to make 
them available within public networks. E.g., text 
handling, data banks,31 data collection, software pack
ages, about everything that is presently offered by 
service bureaus through private nets. Wherever pos
sible, private nets will be outlawed or deterred with 
exorbitant line tariffs. State monopolies can do that. 

Terminal manufacturers will have to queue up for 
months or years to get their products supported by 
public networks. Even if they conform to PTT speci
fications, a stamp of approval will likely be necessary. 
Innovation will be decided by PTT's. 

Small computer manufacturers will be brought to 
compliance with CCITT standards and there will be 
no exception, because everyone else could put it up as 
a precedent. However, CCITT standards will not be 
incompatible with IBM, for practical reasons. 

Carriers are huge bureaucracies. They have split 
viewpoints. Infighting goes on over issues like digital 
circuits vs. packet switching. Most carriers at top 
level are uncertain about choices made and would react 
negatively at the prospect of building a data processing 
empire, especially in Europe, where some of them 
cannot even cope with telephone. So, the packet clan 
has to walk a thin line, and tends to operate by 
political coups rather than by open policy. Occasion
ally, one of them is candid in telling the whole story.32 
Unfortunately, this is an exception. This is one of the 
reasons why discussions about public networks are 
somewhat eerie. In addition to the traditional secre
tive attitude of the European PTT's, there is a touch 
of deliberate covering up. It may explain such ludi
crous documents where handling character terminals 
is just a matter of putting characters into packets, and 
vice versa. This is a model understatement for another 
Babel tower in the terminal jungle. 



CONCLUSION 

The controversy DG vs. VC in public packet networks 
should be placed in its proper context. 

First, it is a technical issue, where each side has 
arguments. It is hard to tell objectively what a bal
anced opinion should be, since there is no unbiased 
expert. This paper argues in favor of DG's, but the 
author does not pretend being unbiased. Even if no 
compromise could be found, the implications would be 
limited to some additional cost in hardware and soft
ware at the network interface. So much resources are 
already wasted in computing and communications that 
the end result may not be affected dramatically. 

Second, the political significance of the controversy 
is much more fundamental, as it signals initial am
bushes in a power struggle between carriers and the 
computer industry. Everyone knows that in the end, 
it means IBM vs. Telecommunications, through mer
cenaries. It may be tempting for some governments 
to let their carrier monopolize the data processing 
market, as a way to control IBM. What may happen, 
is that they fail in checking IBM, but succeed in de
stroying smaller industries. Another possible outcome 
is underdevelopment, as for the telephone. It looks as 
if we need some kind of peacemaker to draw up 
boundary lines before we all get in trouble. 

APPENDIX 

ABBREVIATIONS 

CCITT 

CVC 
DCE 
DG 
DTE 
ECMA 

E-E 
HDLC 
IFIP 

ISO 
LC 
NPL 

NTT 
PAD 
PTT 
VC 
VTAM 

Comite Consultatif International 
TeIegraphique et TeIephonique 
Carrier Virtual Circuit 
Data Communication Equipment 
Datagram 
Data Terminal Equipment 
European Computer Manufacturer 
Association 
End-to-End 
High Level Data Link Control 
International Federation of Information 
Processing 
International Standard Organization 
Logical Channel 
National Physical Laboratory, Teddington, 
UK 
Nippon Telegraph Telephone 
Packet Assembling-Disassembling 
Post Telegraph Telephone Administration 
Virtual Circuit 
Virtual Telecommunications Access Method 
(IBM) 

Virtual Circuits vs. Datagrams 493 

REFERENCES 

1. ISO/TC 97/SC6-High Level Data Link Control Proce
dures, Proposed Draft International Standard on Elements 
of Procedures, Doc. DP 4335, October 1975, 51 p. 

2, Pouzin; L., "Virtual Call Issues in Ketwork Architectures," 
EUROCOMP, BruneI Univ. September 1975, pp. 603-618. 

3. CCITT-COM VII-No 237-E, October 1975, 142 p., Minutes 
of Meeting of Rapporteur's Group on Packet Switching. 

4. Maier, M., "Out of Sequence Problem in a Packet Switching 
Network: A Simulation Approach," EUROCOMP, BruneI 
Univ. September 1975, pp. 191-206. 

5. Davies, D. W. "The Control of Congestion in Packet Switch
ing ~etworks, IEEE Transac. on Comm., June 1972, pp. 
546-550. 

6. Price, W. L., "Simulation Studies of an Isarithmically Con
trolled Store and Fonvard Data Communication Nehvork, 
IFIP Congress, August 1974, pp. 151-154. 

7. Pouzin, L., "Presentation and Major Design Aspects of the 
Cyclades Computer Network," 3rd Data Comm. Symp. 
IEEE, November 1973, pp. 80-85. 

8. Zimmerman, H., "The Cyclades End-to-End Protocol," 4th 
Data Comm. Symp., October 1975, pp. 7.21-7.26. 

9. Barber, D. L. A., "The European Computer Network 
Project," ICCC, Washington DC, October 1972, pp. 192-200. 

10. Barber, D. L. A., Progress with the European Informatics 
Network, ICCC, August 1974,15 p. 

11. CCITT -COM VII-Proposal for Revised Draft Recom
mendation X25, France and UK Post-Office, November 1975, 
67p. 

12. Pouzin, L., "Cigale, the Packet Switching Machine of the 
Cyclades Computer Network," IFIP Congress, August 1974, 
pp.155-159. 

13. Naffah, N., Presentation du systeme Tipac. Doc. Cyclades, 
Ter 524, November 1975, 15 p. French. 

14. IFIP WG6.1-Proposal for an Internetwork End-to-End 
Protocol, September 1975, INWG doc. 96, 29 p. 

15. Gien, M.; J. Laws; and R Scantlebury, "Interconnection of 
Packet-Switched Networks: Theory and Practice," EURO
COMP, BruneI Univ. September 1975, pp. 241-260. 

16. Digital Equipment Corp., Digital Network Architecture: 
Network Services Protocol, July 1975, 44 p. 

17. Teichholtz, N. A., "Digital Network Architecture," EURO
COMP, BruneI Univ. September 1975, pp.13-24. 

18. IBM, Systems Network Architecture-General Information, 
GA 27-3102-0, January 1975, 50 p. 

19. Davies, D. W. "Principles of Packet Switching," 1st Euro
pean Workshop on Computer Networks, ArIes, April 1973, 
pp. 175-190, IRIA edit. 78150 Rocquencourt-France. 

20. Davies, D. W. "Packet Switching, Message Switching, and 
Future Data Communication Networks," IFIP Congress, 
August 1974, pp. 147-150. 

21. Mann, D. W., "The State of the Art in the Evolution of 
Private Data Communication Networks," EUROCOJ.~r1P, 

BruneI Univ., September 1975, pp. 415-432. 
22. Chandler, A. S., "Network Independent High Level Proto

cols," EUROCOMP, BruneI Univ., September 1975, pp. 583-
601. 

23. Pouzin, L., "Standards in Data Communications and Com
puter Networks, 4th Data Comm. Symp. October 1975, pp. 
2.8-2.12. 

24. ISO/TC97/SC6, Documents 1145, 1167, 1173, 1249, 1258, 
contain items on the structure of network protocols. 

25. Poncet, F., J. B. Tucker, "The Design of the Packet Switched 
Network for the EIN Project," EUROCOMP, BruneI Univ., 
September 1975, pp. 301-314. 



494 National Computer Conference, 1976 

26. Pouzin, L., "A Proposal for Interconnecting Packet Switch
ing Networks," EUROCOMP, BruneI Univ. May 1974, pp. 
1023-1036. 

27. IFIP-\VG6.1, Data Communications Standwrds, May 1975, 
INWG Doc. 84, 15 p. 

28. IFIP-WG6.1, Basic Message Format for Inter-network Com
munication, May 1975, IN'vVG doc. 83, 7 p. 

29. ISO/TC97/SC6, Japanese Comment on User Facilities. Doc. 
1199, October 1975, 7 p. 

30. ISO /TC97 /SC6, Doc. 1205, October 1975, 36 p. This docu
ment includes some comments on user facilities, and an 
earlier draft of a vil'tual circuit protocol. 

31. Fedida, S., "Viewdata: an interactive information service 
for the general public," EUROCOMP, BruneI Univ. Septem
ber 1975, pp. 261-282. 

32. Horton, D. J., Presentation of ilatapac. European Symp. on 
Large Scale Computer Networks, Darmstadt, October 1975, 
21 p. 



Neiwork access techniq-ues-A review* 

by ROBERT ROSENTHAL 
National Bureau of Standards 
Washington, D. C. 

ABSTRACT 

The computer industry's ability to serve a diverse and 
expanding user community is evidenced by the rapid 
growth of computer network services. Computer ser
vice providers design and market their own offerings 
as they deem best, given their own market and their 
own set of resources. This has led to a proliferation 
of similar resources requiring different user access 
procedures. With emphasis on currently operating and 
planned systems that assist users in accessing avail
able network services, this paper identifies the tech
niques used in network access devices. By examining 
these devices, the trend toward improving the inter
face between the user and the computer is brought more 
clearly into focus and up to date. 

INTRODUCTION 

Little over a decade ago, when people began to inter
act with computers in the routine performance of their 
jobs, few cared about the differences between similar 
service offerings-all were eager to learn and experi
ment with that new technology. 

Today, with the advent and growth of computer net
works, that modest size group of scientists, engineers, 
and researchers has grown to include professionals in 
all sciences-mathematical, physical, health, and so
cial-as well as students, stock brokers, and reser
vation clerks from many fields. Just as the number of 
users has grown so has the number and diversity of 
computer services. 

Trends in service growth, traceable through indi
vidual families of mainframes, operating systems, and 
service packages, lack direction and consistency from 
the user's point of view. The reason for this frag
mented growth might be justified considering con
straints imposed by telecommunications facilities, 
peculiarities imposed by mainframes and their operat
ing systems, and the personal preferences of system 

* This work was sponsored in part by N SF grant DCR 72-01206 
A06. 

495 

developers. Unfortunately, many of these services are 
characterized by different implementations of the logi-
cally similar steps that users must take in order to 
accomplish productive work. 

Today we have a situation in which more and more 
users are consuming more and more services while the 
services themselves perpetuate differing user proce
dures for access to the same logical services. A reason
able question to ask is "What can be done to help the 
user?" Standardization of access procedures is a 
possible solution. However, a procedure for access 
that makes one service more attractive than another 
through enhanced features should not be compromised 
by a premature effort to standardize such procedures
especially if the standard settles on "lowest com
mon denominator" features. Encouraging competition 
among network service providers can be in the user's 
best interest if it leads to innovation in the amount 
and quality of service received and in the reduction of 
costs in providing the service. Rather than push for 
extensive user-oriented uniformity, it may be desirable 
to continue to permit and encourage such non-uni
formity, but to compensate for it through network 
access assistance to the user. 

ASSISTANCE 

The concept of assisting users is not new to the 
computer industry. The notion of a compiler, for 
example, resulted from this kind of motivation. Un
fortunately, compilers were soon accompanied by com
plex operating system control languages. Once again, 
assistance techniques in the form of a control language 
macro capability or a catalogued procedure capability 
were employed to help the user. With these techniques 
the inexperienced user easily performed complicated 
job steps and the experienced user worried less about 
detail in setting up job steps. 

This type of assistance, extended beyond a single 
computer system and placed in the interactive com
puter network environment, lessens the wearisome 
burden faced by users contending with separate and 



496 National Computer Conference, 1976 

different services that accomplish logically similar 
tasks. In such an environment, the user should have 
resources readily available from different computers 
without regard for the specifics of how to obtain them; 
the user should be more concerned with what services 
are required. 

Early attempts to provide computer network assis
tance are still in use today. One interesting technique 
makes use of function buttons that produce character 
sequences. These sequences represent the appropriate 
user protocols that identify terminals, users, and ser
vices, thus alleviating the need for the user to key in 
the required protocol. The familiar "who-are-you" 
drum is an example of this kind of technique. Other 
devices-stunt boxes, automatic card dialers, and 
paper tape loops-have been used successfully to assist 
users, but all of these devices are usually applicable 
only on dedicated connections to specific computer 
systems and services. In a modern computer network 
other more general techniques can be employed. 

INTERFACES AND PROTOCOLS 

Access assistance techniques in modern computer 
networks try to improve upon the interface that exists 
between a user at his terminal and a network based 
resource. For the terminal user of an interactive com
puter network the interface is two things. First, it is 
the physical equipment-the teleprinter or CRT ter
minal and the communications equipment connecting 
it to the computer. Second, at a higher and more com
plex level, the interface is the protocol that a user must 
know to communicate with the network and its com
puters-to express his needs or demands on the com
puter and to understand the produced reRu1b;:; or prror~ 

from the computer. 
These user protocols, unlike the "well defined" link 

protocols of computer-to-computer communications 
(such as the ARPA Network IMP-IMP, HOST-IMP, 
or HOST-HOST protocols,!) manifest themselves in the 
interactive dialog between the user and the computer. 
And, these user-computer protocols are not "well 
defined." They are typically machine dependent and 
often installation dependent.2 

Interface and protocol standards groups are actively 
engaged in producing outputs directly related to the 
issue addressed here. At least one standards group in 
the Federal Government (FIPS Task Group 20) is 
studying low level user entry and exit protocols and 
procedures. The standards approach to access assis
tance represents a technique that is still in its infancy. 
With a three year projected completion date for the 
development and acceptance of the first entry and exit 
protocol standard for the Federal Government, the 
viability of this technique is yet to be realized. The 
beneficiaries of standards as an assistance technique 
will be the scientists, engineers, researchers, and those 

who work with them, who use or have the potential 
for using one or more computer services. 

TECHNIQUES 

These approaches to solving the problem of network 
access have been utilized by several groups in specific 
implementations of the access function. Pyke, in a 
recent paper,s reviews these efforts with special em
phasis on presently operating and planned access sup
port configurations. Categorizing these examples and 
other related devices as reported in the open literature 
reveals the trend that is evident in network access 
techniques-a trend toward improving the interface 
between the user and the computer through sophis
ticated assistance techniques and devices. By examin
ing these devices-their methodology, their purpose, 
and their scope-this trend is brought more clearly 
into focus and up to date. 

Basic communications assistance 

Minicomputer based concentrators and packet or 
message switchers are well established solutions that 
provide the basic communications required of network 
users. Devices like the ARPA Network TIpl and the 
TYMNET Network TYMSAT5 satisfy these require
ments through data rate identification, terminal com
patibility transformations including carriage delay 
timing functions and character set transformations, 
and host computer selection specifications. 

Over the last few years these devices have been 
modified to reflect the needs and demands of the user 
community. They utilize software packages that map 
charader sets and provide carnage delays to accom
modate different user terminals. These devices con
tinue to evolve in an attempt to follow manufacturers' 
terminal innovations. In response to new terminal 
innovations, devices like the TIP and TYMSA T recog
nize the user's terminal speed; while default terminal 
characteristics for other parameters-parity, full or 
half duplex, tab settings, etc.-are assumed, pro
visions to specify different settings are available. 
Many computer service providers and mainframe 
manufacturers have followed this trend by providing 
communications support for a large variety of ter
minals and by utilizing front end computers with 
appropriate software packages. 

Resource identification 

Access techniques only start with the basic com
munications assistance functions described above. Es
tablishing connections to network host systems, logging 
into host systems, requesting resources, and initializing 
services or databases can be extremely complex and 
cumbersome. In one early ARPA Network attempt, a 



loose leaf notebook containing information on the re
sources available in the Network and on the access 
methods to these resources has met with only very 
limited success. The Network Information Center's 
ARP ANET Resource N otebook6 existed in both an 
on-line and printed form and contained entries for all 
of the resources available at each serving host on the 
network. Unfortunately, no attempt was made to 
facilitate access to these resources other than listing 
individuals to contact. (A more recent edition of this 
notebook has been pubiished in paperback form' and 
includes enough information for a user to access the 
desired resource.) Resource identification techniques 
of a more substantive nature developed. 

The REX system, an ARPA Network based on-line 
user assistance facility, provides resource-specific in
formation. 8 This system, designed with the eventual 
goal of automating access to various network re
sources, finds the location of a resource on the network, 
provides information about the resource on the net
work, and describes the method for acquiring the 
resource on the network. REX provides a facility for 
dealing with a heterogeneous network as a coherent 
entity, regardless of the particular characteristics of 
the individual hosts. 

A user language that provides commands to retrieve 
information about resources and to describe specific 
resources utilizes one of four keyword types-a re
source name, a resource attribute, a resource category, 
or a host name-in conjunction with either a retrieval 
command-FIND or DESCRIBE-or the ACQUIRE 
command. An example is: 

DESCRIBE FORTRAN AT MIT-MULTICS 

The ACQUIRE command establishes a transparent 
connection to the resource without further action on 
the part of the user. 

Resource connection 

Connections to resources that are available in com
puter networks require cooperation between the con
nection initiator-the user or his surrogate-and the 
resource that ultimately provides the service-a co
herent logical entity that exists in order to accomplish 
a specific task as viewed by the user. In a computer 
network environment it is not unusual for a multi-level 
hierarchy of access requests to occur to affect resource 
connection. Cooperation in traversing the network 
hierarchy may require several resource solicited iden
tifications, passwords, and system or service names. 

While the solicitation of user information occurs at 
the user level of interaction, many other protocols are 
used by the communications discipline employed. 
Usually these other disciplines are masked from the 
user and are transparent. In this way, a surrogate-

Network Access Techniques-A Review 497 

usually a process knowledgeable in the protocol or line 
discipline employed-acts on behalf of a user to con
nect him to the requested service. For instance, users 
of the ARPA Network access resources with the coop
eration of a TIP. It is feasible for the acquired 
resource to then request other resources on behalf of 
the user. In this example, the user level of interaction 
is the command language of the TIP; acting as a 
surrogate for the user, the TIP, knowledgeable in the 
IMP-IMP protocols; completes the resource connection 
for the user. 

Hierarchical connections easily occur. In the ARPA 
Network, many host computer resources support a 
service known as FTP (File Transfer Protocol). This 
service establishes network connections to other re
sources on behalf of the user for the purpose of trans
ferring files between host computers. Currently, the 
user need not identify himself to the TIP, however a 
user account is required for the host system to execute 
the service FTP. For FTP to access the file system 
of the other resource, the user level protocols require 
the user identification and password for the other 
resource. 

Resource selection 

Evidence in the published literature indicates that a 
trend in the use of intelligent terminals and their 
close cousins," "clustered" terminals, to assist users in 
the selection of resources is developing. A research 
program currently under way at the RAND Corpora
tion aims to develop a prototype intelligent terminal 
system initially implemented on a minicomputer. The 
system, called the RAND Intelligent Terminal Agent 
(RITA), is based on sets of condition-action rules that 
encode complex sets of heuristics for handling inter
actions both with users and with external systems.9 

RITA is capable of interacting with remote data 
systems, carrying out time-dependent tasks over ex
tended periods of time in a semi-autonomous manner. 
The supposition that a rich set of heuristics for de
ciding communications levels of remote system inter
action and for resource acquisition and graceful re
covery from unexpected failure has in part motivated 
this effort.IO 

At the National Bureau of Standards a minicom
puter-based device called a Network Access Machine 
(N AM) expands user-entered commands into com
mand sequences executable on specific networks and 
host computers connected to that network.ll The N AM 
analyzes system and network responses to assure 
agreement with those anticipated for specific com
mands. Conditional and parameterized expansions of 
user-entered commands are capabilities being added 
to the basic working NAM. This capability will allow 
the use of the same commands to permit access to re
sources on different host computers and different net
works.12 



498 National Computer Conference, 1976 

Other extensions to the N AM are currently being 
implemented. One function is to predict the expected 
response time of a particular computer for use in a 
specific applications area-such as compute-bound 
FORTRAN jobs, small BASIC jobs, interactive edit
ing sessions, or some other category. Good indicators of 
computer response time can be calculated by the N AM 
in the following way. The NAM automatically con
nects to the particular computer in question in order 
to execute a predefined benchmark job representative 
of the applications area. By having the N AM automati
cally time the response for the job execution the NAM 
can present to the user the results of the calculations 
in the form of a prediction of expected response time. 
Several benchmarks have been successfully tried
producing excellent predictions of expected response 
time. 

One other intriguing function being added to the 
N AM is to provide the user with network wide tutorial 
assistance. A profile, maintained for each NAM user, 
reflects the disposition of the user with respect to any 
particular computer that he might use. Data are 
maintained in the profile concerning recent use of 
specific computers, the use of internal indicators, and 
help assistance indicators. Using this data base, the 
N AM acts on behalf of the computer in· assisting the 
user. 

An example of somewhat specialized access support 
to a network user employing a microprocessor is the 
development of· a "line processor" by the Stanford 
Research Institute. This device interfaces a class of 
display terminals together with a pointing device 
called a "mouse" and a one-hand keyboard called a 
"key set" in such a way that the entire configuration 
can provide particularly effective access to a network
based interactive text manipuiation system. The lIne 
processor has potential, however, for application be
yond the initial intended use. 

Service integration 

An important trend, motivated by the desire to 
interface one user to multiple resources, is evident in 
the work done in the information services community 
by Marcus at MIT. He has developed a system that 
involves the coupling of two bibliographic data re
trieval systems in such a manner that the user per
ceives a single homogeneous system.22 Specific applica
tions support built within the MULTICS system at 
MIT includes a master index and thesaurus that stores 
the vocabulary of the separate data bases along with 
index term interrelationships. The user is also pro
vided with a common bibliographic data structure in 
which the data elements for bibliographic information 
are organized and interrelated among different data 
bases. This approach has been demonstrated experi
mentally using the ARPA Network for access to the 

National Library of Medicine Medline service and the 
MIT Intrex retrieval system. 

Another example is the Resource Sharing Execu
tive (RSEXEC) for the ARPA NetworkY This 
executive system provides an environment for "inter
host" user-user interactions, for managing "multi
host" file directories, and for controlling multiple 
"jobs" on several hosts. In addition, the RSEXEC 
serves as a command language interpreter for the 
ARPA Network TIP users. Executing in anyone of 
several available PDP-10 TENEX systems on the 
Network, RSEXEC can maintain communications 
through the Network with other TENEX systems. 
In this way the resources of all of the systems to which 
RSEXEC connects can be monitored and used. Fa
cilities for monitoring status, logged in users, and load 
averages are available as well as the capability to build 
and create a composite file directory incorporating 
files from the various computers in the subnetwork. 
Provision is also available for initiating jobs at one or 
more cooperating sites at which valid accounts are 
maintained. 

Distributed assistance 

Distributed assistance-partially in host systems 
and partially in front end systems-can provide bet
ter network response at less cost. The National Soft
ware Works (NSW) motivated by a desire to provide 
users with access to a number of general or specialized 
software applications packages, resides on a PDP-10, 
but will also be available on a minicomputer such as 
the PDP-11.H NSW provides assistance in such a way 
so as to maintain a consistent user interface from 
:rl=l('k~g~ t" :r?J:,kRg~ ~ve!1 ::t~r0~~ h0st systems. It i~ 

anticipated that heavily used common commands and 
grammars can be executed in the front end systems, 
thus increasing network response times and decreas
ing network communications costs. 

Kimbleton and Schneider emphasize that the NSW 
is intended to be an environment for building soft
ware systems. 15 It is to include program preparation 
tools-cross assemblers and compilers, editors, simu
lators and emulators, performance analyzers, program 
formatters, flowcharters, test-data generators and 
other checking tools-that build software systems. 
These systems will usually be removed and run in a 
different environment, since the NSW is not intended 
to support the recurring execution of end-user applica
tions. 

Minicomputer hosts 

A minicomputer installed as a network host com
puter can also perform substantial access functions 
for a community of users. The ELF system provides 
multiple, concurrent users with local computing and 



file capabiiity including signal processing for speech 
applications as well as flexible access to ARPA net
work resources.16 The ARPA Network Terminal Sys
tem (ANTS) was a mini-host designed to facilitate 
use of the ARPA network by students at the University 
of Illinois. Use of this system promoted RJE use of 
the Burroughs 6700 at the University of San Diego 
as well as RJE use at the Campus Computing N et
work (CCN) at UCLAY 

At the University of Chieago, Ashenhurst has de
veloped an interesting hierarchy of minicomputers and 
large scale computers to assist users in laboratories. IS 

Minicomputers located in science laboratories through
out the campus are served by a larger minicomputer 
at a central site. Large compute-bound applications 
are served when the central minicomputer acquires 
resources on a large scale computer on behalf of the 
laboratory mini. 

Other trends 

The work of V/yatt at Harvard, in planning for an 
access system to couple users to mUltiple serving sys
tems and networks, includes a call for automatic 
transformation of job control statements to match 
those of remote systems and for facilities to support 
"transparent connection" of local terminal facilities to 
various communications nehvorks.19 ,\Vyatt also pro
poses that the "translation/communication system" 
perform comprehensive accounting and billing for 
multiple user accounts. 

ARCHITECTURE 

The preceding examples suggest that alternative 
solutions exist and that the access assistance functions 
can reside in a process executing in a host system, in 
a dedicated minicomputer, or in a single user "in
telligent" terminal or terminal "cluster." 

When supported on a large host computer, the ac
cess assistance functions utilize the sophisticated and 
extensive subsystems that are available-the file man
agement systems, the language compilers, the utility 
processors and on and on. But, this type of application 
can be accomplished with less sophisticated resources. 
For instance, the ARPA Network TIP, in part moti
vated by a desire to move the basic communications 
support and low level access functions out of the large 
host computers and into smaller, less expensive mini
computers, eliminates much of the overhead required 
to handle access functions in a larger host system. 
Minicomputers are often used extensively for store
and-forward functions and other applications such as 
remote concentrators and message switchers; it might 
make good economic sense to put the access function 
in a minicomputer also. 

The minicomputer, placed in the communications 

Network Access Techniques-A Review 499 

link between the user terminal and the serving com
puter network, can allow multiple users to access dif
ferent hosts on one network or even different networks. 
The minicomputer seems ideally suited for such an 
application especially when several users or user 
groups require a moderate file storage capability for 
small files and a minimum computational capability 
for communications processing, signal processing or 
other requirements. 

Tntpllio-pnt tp1"min!'ll~ ('!'In ~l1nn01"t !'I(,(,P~~ to l'Y11lltinlp --- .... ----10----- ------------- ..... _-- --s:'J:' ........ - ------ -- ........................... r--

hosts on a single network or to multiple networks, but 
file storage and other terminal resources appear to be 
too expensive at this time to dedicate to a single user 
terminal. Also, intelligent terminals may require co
operation with larger host systems for initial program 
loads; such cooperation may not be available from 
candidate networks or host computers. At this time, 
the intelligent terminal does not have as great a po
tential as the "cluster" supported minicomputer to per
form the required access functions. Based on pre
dictions that within five to eight years inexpensive 
interactive terminals will be available with the power 
of today's minicomputers, the use of intelligent termi
nals to support the access function will be feasible. 

SUMMARY 

Increased use of computer services by people in the 
routine performance of their jobs continues to grovv 
steadily. To meet the demand, service providers de
sign, implement, and market their services using the 
technologies and resources available to them. With 
the advent and growth of computer network tech
nology it is not uncommon for people to use the re
sources of different computer systems. The non-uni
formity in access to these resources and the services 
provided has led to the development of tools and tech
niques to assist the user. 

Some of the tools and techniques that provide users 
with this access function have been described in this 
paper. By examining these devices-their methodol
ogy, their purpose, and their scope-and by discussing 
the current trends in network assistance architectures, 
a framework has been built for future discussions of 
this very important function that can be provided to 
computer network users. 

REFERENCES 

1. Postel, J. B., et al., ARPA Network Current Network Pro
tocols, Network Information Center NIC 7104, December 
1974 (distributed by NTIS ADjA-003 890). 

2. Neumann, A. J., User Procedures Standardization for Net
work Access, NBS Technical Note 799, October 1973. 

3. Pyke, T. N., Jr., "Network Access Techniques: Some Recent 
Developments," Proceedings Third Annual Texas Confer
ence, October 1974. 

4. Ornstein, S. and M. F. Heart, et al., "The Terminal IMP 



500 National Computer Conference, 1976 

for the ARPA Computer Network," Proceedings SJCC 1972, 
pp. 243-254. 

5. Tymes, L., "TYMNET-A Terminal Oriented Communica
tions NETWORK," Proceedings SJCC 1971, pp. 211-216. 

6. ARPA Network Resources Notebook, The Network Infor
mation Center NIC 6740, Augmentation Research Center, 
Stanford Research Institute, Menlo Park, California, 1973. 

7. ARPANET Resource Handbook, (NIC 23200), Network 
Information Center, Stanford Research Institute, Menlo 
Park, California, 1975. 

8. Benoit, J. W. and E. Graf-Webster, "Evolution of Network 
User Services-The Network Resource Manager," Com
puter Networks: Trends and Applications, IEEE Inc., New 
York, 1974, pp. 21-24. (Proceedings of the 1974 Symposium 
sponsored by the National Bureau of Standards, Gaithers
burg, Maryland and the IEEE Computer Society). 

9. Anderson, R H., "Advanced Intelligent Terminals as a 
User's Network Interface," How to Make Computers Easier 
to Use, (COMPCON 75 Digest of Papers, September 9-11, 
1975) IEEE, New York, 1975, pp. 180-182 (IEEE Catalog 
No. 75ch0988-6c). 

10. Anderson, R H. and J. J. Gillogly, "The RAND Intelligent 
Terminal Agent (RITA) as a Network Access Aid," to be 
published in the Proceedings of the National Computer Con
ference, 1976. 

11. Blanc, R P., "Assisting Network Users with a Network 
Access Machine," Proceedings ACM, November 1974. 

12. Rosenthal, R, "Accessing On-line Network Resources with 
a Network Access Machine," Access to Computer Networks 
(Session 25, IEEE Intercon 75, IEEE Intercon Conference 
Record) IEEE, New York, April 1975, pp. 25/3: 1-4. 

13. Thomas, R H., "A Resource Sharing Executive for the 
ARPANET," Proceedings of 1973 National Computer Con
ference, June 1973, pp. 155-163. 

14. Irby, C. H., "The Control Meta Language System," to be 
published in the Proceedings of the 1976 National Computer 
Conference. 

15. Kimbleton, S. R. and G. M. Schneider, Computer Communi
cation Networks: Approaches, Objectives and Performance 
Considerations," Computing Surveys, Vol. 7, No.3, Sep
tember 1975, ACM. 

~g R"t'!, II I , "EIF-A 8~·"t,,!Y' £0'" :'IJ"tW0!"k: A..t?"",;,,;,," 4.,.f"""~ 
to Compute·r Netu)orks, (Session 25, IEEE Intercon 75, 

IEEE Intercon Conference Record) IEEE, New York, April 
1975, pp. 25/2: 1-5. 

17. Bouknight, W. J., G. R Grossman and D. M. Grothe, "The 
ARPA Network Terminal System-A New Approach to 
Network Access," Proceedings DATACOM 73, 1973, pp. 
73-79. 

18. Ashenhurst, R L., "Hierarchical Computing," in M. Green
berger, et aI., (eds.) Networks for Research and Education, 
the MIT Press, Cambridge, Massachusetts, 1974, pp. 74-88. 

19. Wyatt, J. B., "Management in Applications of Network 
Access," Access to C01nputer Networks (Session 25, IEEE 
Intercon 75, IEEE Intercon Conference Record), IEEE 
New York, April 1975, pp. 25/1: 1-6. 

20. Kriloff, H. Z., "A High-level Language for Use with Multi
computer Networks," Proceedings of 1973 National Com
puter Conference, pp. 149-153. 

21. Luther, W., Conceptual Bases of Cybernet, Computer Net
works, ed. by Rustin and Randal, Prentice-Hall, Inc., New 
Jersey, 1972, pp. 111-146. 

22. Marcus, R S., "Network Access for the Information Re
trieval Application," Access to Computer Networks (Session 
25, IEEE Intercon 75, IEEE Intercon Conference Record) 
IEEE, New York, April 1975, pp. 25/4: 1-7. 

23. Pyke, T. N., Jr., "Some Technical Considerations for Im
proved Service to Computer Network Users," Proceedings 
COMPCON 73, February 1973, pp. 53-55. 

24. Roberts, L. and B. 'Wessler, "Computer Network Develop
ment to Achieve Resource Sharing," Proceedings SJCC 
1970, pp. 543-549. 

25. Reintjes, J. F. and R S. Marcus, Research in the Coupling 
of Interactive Information Systems, Final Report No. ESL
FR-556, Electronic Systems Laboratory, Department of 
Electrical Engineering, MIT, June 1974. 

26. Rosenthal, Rand S. Watkins, "Automated Access to Net
work Resources: A Network Access Machine," Computer 
Networks-Trends and Applications, NBS-leST and IEEE 
Computer Society, May 1974. 

27. Balzer, R M., T. E. Cheatham, S. D. Crocker and S. 
Warshall, National Software Works Design, USC/Informa
tion Sciences Institute, RR-73-16, November 1973. 

28. Carlson, W. E. and S. D. Crocker, "The Impact of Networks 
on the Software :Marketplace," EASCON 74. Record, IEEE 
F~.~~t!"0!!~.f?~ ?-r.d .~e~0~~,?~~ gY'C:1:'2!""'~ t:;0~,"(,",=!:i:~0!!, !E~E, ~T~".'r" 

York, October 1974, pp. 304-308. 



The RAND intelligent terminal agent (RITA) as a network access aid 

by ROBERT H. ANDERSON and JAMES J. GILLOGLY 
The RAND Corporation 
Santa Monica, California 

ABSTRACT 

An operational "intelligent terminal agent" system 
called RITA is described. RITA uses production sys
tems to store heuristics about dealing with the inter
active protocols of external information systems. The 
use of production systems allows RITA to operate in 
either a pattern-directed or goal-directed manner. By 
creating new production rules as part of their opera
tion, RITA agents can exhibit learning. Advantages 
and disadvantages of production systems for creating 
intelligent terminal agents are discussed, and an an
notated transcript of a session with a RITA agent is 
given to illustrate its ability to aid a user in handling 
File Transfer Protocol on the ARPANET. 

INTRODUCTION 

Until recently, most users of information systems have 
been either "computer sophisticates" -such as com
puter programmers-or else users of systems, such as 
airline reservation systems, with a very limited set of 
options. However, with the continuing rapid decline 
in the cost of computer hardware and data communi
cations, many interactive computer-based information 
systems are becoming cost effective for much broader 
categories of users. These newer systems will greatly 
expand the number of people interacting with com
puters in their daily activities, and will give access to 
a complex variety of interactive protocols, interfaces, 
command languages, and remote computing systems. 
People are going to need assistance in tailoring this 
variety of options to their specific needs and especially 
in freeing them from routine interactions and proto
cols which are not directly relevant to the content of 
their task. 

We assume the complexities of dealing with the in
teractive protocols of computer networks are familiar 
to this audience, and are sufficiently documented l not 
to require further elaboration. This paper describes 
one possible solution to the problem of complexity: 
user access to computer networks aided by an "intelli
gent terminal agent." 

What is an intelligent terminal agent and why is it 

501 

useful? The answer involves many aspects of the way 
people interact with computer systems as well as new 
alternatives becoming possible through advances in 
both hardware and software technology. The follow
ing observations concerning man/machine interaction 
and its supporting technologies form the basis for our 
design of such an agent: 

1. Projected computer hardware cost trends and ad
vances in microprocessor technology make it extremely 
likely that interactive computer terminals can be pro
duced within five to seven years containing processing 
power and data storage equivalent to a present-day 
minicomputer, at a cost which is reasonable, assuming 
fairly intensive use of dedicated terminals by profes
sionals as part of their job. 

2. It is important to have certain information stor
age and handling capabilities locally*-most likely 
within the terminal itself--e.g., to provide "instan
taneous" response to simple text manipulation com
mands and to simple error conditions. 

Once local computing power becomes available within 
a terminal, it can be used to aid in interfacing with ex
ternal information systems, such as the ARPANET 
or New York Times Information Bank, where much 
of the interactive protocol involves supplying standard 
responses which are not directly relevant to the task 
being accomplished. It is possible in the system de
scribed in this paper to teach an intelligent terminal 
to deal with such interactive protocols automatically, 
including instructions on dealing with certain error 
conditions, so that these details need not be remembered 
and handled manually by the user. 

In addition, intelligent terminals should allow the 
user to define and set in motion "user agents". Such an 
agent could: 

Look at a calendar of events and start up services 
for the user automatically at certain times and 
dates. By manipulating calendar items, the hu
man manager can progressively modify the plan 

* "Locally" is used here to mean computing power and storage 
dedicated to the individual user and accessible via a very-high
bandwidth link--€.g., sufficient to rewrite a 3,000-character CRT 
display in 0.5 seconds. 



502 National Computer Conference, 1976 

being executed by the machine. For example, by 
changing the due date of a report, the schedule 
will be automatically altered for reminders and 
follow-up queries to be transmitted to persons 
making contributions. 

Monitor the occurrence of various types of events, 
such as the arrival of a certain piece of network 
"mail", or the occurrence of a certain datum in a 
changing data base. 

Deliver "interactive letters" to other users' termi
nals; these letters are capable of carrying on a 
dialog with the recipient, while in the process ex
tracting information from him in a standard for
mat suitable for further automated processing. 
Reference 2 contains an example of an interactive 
letter. 

Manage transactions between a number of com
puterized services distributed on a computer net
work, monitoring their successful accomplishment. 

We believe the desirability of the above list of ser
vices is a compelling reason to explore the design of 
intelligent terminal agents capable of running in 
present-day minicomputers. The remainder of this 
paper describes the design and operation of a system
the Rand Intelligent Terminal Agent (RITA) -which 
has been developed at Rand to meet all of the above 
requirements. RIT A is currently operational on a 
PDP 11/45 minicomputer running the UNIX operat
ing system.3 The next section discusses "production 
systems" as the software technology underlying RITA. 
The third section contains examples of RITA's opera
tion as an interface to computer networks. The fourth 
section concludes with a discussion of RITA's imple
mentation status and some remaining research ques
tions which have been raised by our work to date. 

PRODUCTION SYSTEMS AS THE BASIS 
FOR A TERMINAL AGENT 

The basis for our design of a system meeting the 
above requirements is the use of production systems. A 
production system consists of a set of production rules 
(having a pattern part and an action part), which 
operate upon a data base (which we call a context), ac
cording to the actions of a rule interpreter, or monitor. 

For example, two production rules might be: 

Rule 1 
IF: there is a message whose status is "await

ing action" and the identification-field of 
the message is not in the action-items of the 
user 

THEN: put the identification-field of the message 
into the action-items of the user; 

Rule 2 
IF: the latest-command of the user is "show 

action items" and the state of the system is 
"command unfulfilled" 

THEN: send the action-items of the user to the 
user and set the state of the system to 
"command fulfilled". 

These rules would be part of a larger set of rules 
governing a message-handling user agent. They might 
be interpreted by a monitor that continually tests the 
"if" conditions in each rule of the set, and executes the 
"then" actions in any rule whose conditions are all true. 
Assuming messages with various attribute values, 
such as an identification field and status, are placed in 
the data base by some external (and possibly asyn
chronous) process, the above rules would update a list 
consisting of the identification numbers of all messages 
awaiting action, and show that set to the user upon his 
request. Other rules would themselves, or permit the 
user to, take other actions and as a consequence change 
the status of the messages and remove their identifica
tion number from the set of action items. 

There are a number of interesting options in the 
design of production systems. For example, produc
tion rules can be used in either a goal-directed or pat
tern-directed manner. A goal-directed system has a 
designated goal, and the objective is to execute rules 
whose actions help to achieve that goal. These two 
modes of operation are discussed further under the 
heading "Monitors," below. 

A good discussion of design options in production 
systems is contained in a recent survey article by 
Davis and King.4 That reference, as well as Refer
ence 2, can be consulted for more details. A series of 
articles on the lVIYCIN system;;-~ by E. H. Shortliffe 
and associates at Stanford University describes a par
ticular goal-directed production system which has sig
nificantly influenced the design of the RITA system. 

Our design decisions in creating a production system 
for our particular needs are discussed below under four 
headings: data base, rules, monitors, and system archi
tecture. 

Data base 

The data base upon which RITA rules operate is 
called a context; it consists of an unordered set of ob
jects. Each object has a name, or type, and there can 
be more than one object in the context of the same type. 
There is neither an external structure imposed on the 
set of objects in the context nor a requirement that 
each object have a unique identifier associated with it. 
Each object can have one or more named attributes, 
and all attributes attached to an object must have 
names which are mutually distinct. Each attribute has 
an associated value, which is either a character string 
or an ordered list of values. 



Objects, attributes, and values may be created or 
deleted dynamically by the actions of rules. If an at
tribute being tested by a rule's predicate does not exist, 
it is considered to be "not known." It is possible by a 
rule action (except within a goal-oriented monitor) 
to reset an attribute having a value back to the "not 
known" status. Goal-oriented monitors may not reset 
the value of any attribute; they may only set values 
which were previously not known. This restriction 

upon which chains of logical reasoning are based. 
As an option, it is possible to attach a "level of cer

tainty" to a string attribute value as it is being set. In 
this case, an attribute can have several different values 
associated with it, each with a different level of cer
tainty. Levels of certainty are adjusted as additional 
positive or negative certainty factors for those values 
are asserted by the action of rules. Our use of certainty 
factors has been strongly influenced by their imple
mentation in the MYCIN system, but differs in some 
details which will not be discussed here. 

Figure 1 contains examples of object types and as
sociated attribute names and values which might be 
used in a user agent within the RITA system. 

The data structure we have chosen is not the most 
general one possible. As with other implementation 
decisions, we have chosen what we consider to be the 
simplest format and conceptual structure which allows 
the description of situations and heuristics related to 
intelligent terminal agents. Vv"ith more experience in 
using the RITA system, some of these decisions are 
almost certain to change. 

Rules 

RITA rules are expressed in a finite syntax (tech
nically, parsable by an LR (1) algorithm). We have 
chosen a syntax patterned after the specialized English 

object type 

file 

site 

known_person 

attribute name 

name 
directory 
site-id 
size 
owners-name 

id 
operating_system_name 
machine-type 
guesLaccounLname 
guesLaccount_password 
known -user-set 

name 
primary _site-id 
primary_directory 
primary_password 
secondary -site-id 
secondary_sitELdirectory 
secondary_site_password 

sample value 

"foo.baz" 
"jjg" 
"rand-isd" 
20000 
"gillogly" 

"rand-isd" 
"unix" 
"pdp-ll/45" 
"netguest" 
"netguest" 
("jjg," "rha," "rsg") 

"gillogly" 
"rand-isd" 
"jjg" 
"whumpus" 
"cmu-lOa" 
"g250a12" 
"foo" 

Figure I-Examples of RITA object types, attributes, and values 

RITA 503 

Left-hand-side predicate clauses 

IF: the name of the system is "unix" 

IF: the name of the system is the name of the desire<L 
system 

IF: the name of the system is not known 

IF: there is a response whose arrivaLtime is less than 
the max-expecte<Ldelay of the system 

Right-hand-side action clauses 

THE~r: set the name of the system to "net access program" 

THEN: set the vali<Lid_set of the remote-site to the id of 
every site whose id is known 

THEN: deduce the guesLaccount-Ilame of the remote_site 

THEN: create a remote-Site whose id is "cmu-lOa" 

THEN: receive the next line from the system_IO_pipe as 
the value of the response 

THEN: send "Which rule do you wish to see" to the user 

THEN: return success 

Figure 2-Examples of RITA rule clauses 

output form generated to display MYCIN rules to a 
user. We believe that this syntax is simple enough to 
be read and written by a computer-naive user. Fig
ure 2 contains several examples of clauses which can be 
used in RITA rules; more complete examples are con
tained in the transcript in a later section. 

Such facilities as string manipulation are provided 
in the RITA system by a set of primitive functions 
which may be called in the predicates or actions of 
rules. 

111onitors 

We have found that different types of monitors are 
necessary for various specific tasks and situations, and 
that no one monitor type is sufficient for our purposes. 
For example, interactions with an external informa
tion system to handle routine protocols are best handled 
by a LHS-scan monitor (one which tests the pattern 
part, or left-hand side, of rules against the context to 
determine the next rule (s) to be applied), acting in 
what might be called a "stimulus-response" mode. On 
the other hand, it is sometimes necessary for an intelli
gent terminal agent to make deductions (e.g., about the 
most likely site on the ARPANET for a particular per
son to have a mailbox, given that person's attributes). 
Deductions are best made by a RHS (right-hand side, 
or action part) scan, goal-driven monitor. In this form 
of monitor operation, one specific item of information 
(an attribute of an object) is designated as a goal. 
The monitor seeks to execute rules whose RHS set 
that attribute's value. To execute those rules, their 
LHS must be true when tested against the current 
context. If any such LHS is not true due to the lack 
of information about the value of some other object's 
attribute, that attribute becomes a (sub) goal of the 



504 National Computer Conference, 1976 

system. This process recursively forms a tree struc
ture linking the applicable rules in the system, until 
one of three situations occurs: (1) a rule's LHS 
evaluates as true, so that its corresponding actions can 
be performed and no new subgoals are formed; (2) a 
rule's LHS evaluates as false, which also terminates 
that branch of the goal tree; (3) one or more attribute 
values are needed for the evaluation of an LHS, but 
no new subgoals can be formed because there are no 
other rules in the rule set whose action parts set those 
attribute values. In this latter case, the system queries 
the user for the values as a last resort. The system 
therefore tends to ask questions which "make sense" 
because it is following a particular chain of logic, and 
asks only those questions it needs to reach a particular 
goal, given the current state of its information base. 

We have implemented several different monitors as 
part of the RITA system: 

• LHS scan, with ordered rule set 
• LHS scan, with unordered rule set 
• RHS scan with backward-chaining (implicitly, a 

rule set is treated as unordered) 

Nothing in our implementation precludes the develop
ment of other monitors if the need arises. The top-level 
monitor in a user agent uses a LHS scan with an un
ordered rule set; however, it is possible for the follow
ing action clause of some rule to be executed: 

DEDUCE attribute OF object. 

This clause triggers the operation of the RHS scan 
backward-chaining monitor with the goal of deducing 
the value of the named attribute. Upon completion of a 
deduction, control reverts to the action clause of the 
LHS scan rule following the DEDUCE clause, or if 
there are none, to the next applicable rule chosen by 
the LHS scan monitor. It is not possible to invoke ex
plicitly an LHS scan monitor during a goal-directed 
deductive operation. A discussion of the differences 
between our goal-directed mode and that employed in 
the MYCIN system is contained in Reference 2. 

System architecture 

RIT A has been designed as three cooperating mod
ules, so that only the currently active module need 
reside in core during the operation of a user agent. 
Such modularity is aided by the facilities in the UNIX 
operating system for communication between separate 
processes. 

The user interface module gives the user one or more 
windows within which text can be displayed, with the 
facilities of the Rand Editor (a CRT-based text editor 
with two-dimensional editing features) available for 
text manipulation within those windows. It allows 
creation of rule sets and contexts in a symbolic English
like form, and passes rules and commands to the moni
tor to allow user control over its operation. 

The syntax module contains facilities for compiling 
symbolic form rules and data descriptions into an in
ternallist-structure form. The monitor module accepts 
these "compiled" rules and has facilities for decompil
ing internal forms back into symbolic form upon re
quest. It uses one of the available monitors to apply a 
rule set to a context, and emits trace information to a 
history file for use by diagnostic and tutorial facilities. 

Advantages and disadvantages of production systems 

Why were production systems chosen as the basis 
for the RITA system? The following advantages are 
often cited as accruing from their use. We have listed 
them in what we believe is an approximate decreasing 
order of importance for the particular application for 
which RITA was designed: namely, the construction of 
intelligent terminal agents . 

1. Their explanatory capability . 
Production system rules are intended to be modular 

chunks of knowledge and to represent primitive ac
tions. Thus, explaining primitive acts should be as 
simple as stating the corresponding rule-all necessary 
contextual information should be included in the rule 
itself. Achieving such clear explanations, however, 
evidently strongly depends upon the extent to which 
the assumptions of modularity and explicit context are 
met.4 

The interested reader is referred to the MYCIN litera
ture for an excellent example of the degree of ex
planatory power that can be achieved through careful 
design and implementation. 

2. Simple control structure. 
Due to the simple control structure of production 

systems, especially of the LHS scan type, we can 
imagine the following type of instructions being nearly 
sufficient to introduce a user to the operation of his 
terminal: 

This terminal operates according to a set of rules. 
Whenever it finds a rule that is true, it applies that 
rule. If you want to know why it is asking you 
for some item of information, or why it took some 
action, type "why?" and it will show you the rules 
it followed in taking that action. 

If, in addition, the rules themselves are in simple 
English so that they are directly readable by a user, 
then we believe he will find the operation of this device 
quite understandable. Although the user will of course 
not understand all the nuances of its operation, he is at 
least not bewildered at the start, and can add incre
mentally to his understanding with experience. The 
user must realize, however, during this initial introduc
tion to the system that there are nuances and that he 
should not be overly complacent or trusting of system 
behavior. 



A RHS scan backward-chaining system, although 
more complex in its control structure, can give rational 
explanations of its behavior in a manner that makes 
the flow of control among rules understandable. 

3. Incremental addition of knowledge. 
With proper design, production systems can allow 

gradual, incremental addition of knowledge and heu
ristics in a top-down manner. If the set of rules is un
ordered, then new rules can be added to the set without 
concern for their placement. A particularly appropri
ate time for the addition of new rules to a system is 
when the system, in a goal-oriented mode of operation, 
has asked a question of the user. A possible user re
sponse is to give the system a rule for determining that 
item of information from other information it has; 
upon receipt of that rule, the system will no longer ask 
that question, since it can now form a subgoal by back
ward-chaining through the new rule. In this manner 
gradual evolution of the behavior of the system takes 
place to meet the needs of the user in his possibly 
unique environment. 

4. Trainability and learning. 
Assume production rules are stated in a constrained 

syntax so that their meaning is understandable by 
machines, and that each rule is, to the extent possible, 
a "noninteracting chunk of knowledge or behavior." 
It then becomes possible for a computer program to 
create ruleS in the proPer format and inSert them into 
existing sets of rules to change the behavior of a pro
duction system. For examples of such adaptivity in 
production systems, see References 10 and 11. 

There are also some disadvantages in the use of pro
duction systems. The hvo major ones are: 

1. It can be difficult to code an operation in the form 
of a production system, particularly for goal-oriented 
rule sets. Considerable thought must be given to the 
choice of objects, attributes, and values by which a 
problem area is represented. (However, the problem 
of choosing a good data representation is certainly not 
unique to production systems; the problem lies more 
in trying to fit all applications into this particular pro
crustean bed.) One must also carefully choose certain 
attributes of objects to represent "state variables" 
which encode the state of a computation or deduction. 
The values of these state variables are tested by various 
rules to trigger their potential applicability. In this 
manner, production systems encode explicitly that 
which in ordinary high-level programming languages 
is implicit in the nesting of control statements. For 
example, a traditional nested control structure such as : 

if A then 
if B then C 

else if D then E; else; 
else G; 

might be encoded in a production system in the follow
ing manner: 

if A 
if state_l and B 
if state_l and not B 
if state_2 and D 
if not A 

RITA 505 

then state_I; 
then C; 
then state_2; 
then E; 
then G; 

Such explicitness in a production system allows the 
desired relative autonomy of individual rules, but at 
the price of requiring the programmer to create names 
for many intermediate states of his process. 

In the HIT A systelu, we hope to overCOlue this dis
advantage by having system experts create initial sys
tems and user agents having general applicability. In
dividual users are expected, at least initially, to make 
only rather minor modifications and enhancements to 
the basic system. Therefore, the vocabulary and over
all design of a user agent will be established, providing 
many guidelines and examples for the individual user. 

2. Production systems are often inefficient. It is 
quite easy to design systems in which the pattern parts 
of hundreds of rules are tested against the data base 
before a successful match is found; it is also easy in 
goal-oriented systems to pursue lengthy chains of rea
soning which are not useful. 

Our design of the RITA system has not been sig
nificantly influenced by efficiency considerations. The 
simple user agents which have been constructed to date 
(e.g., for handling File Transfer Protocol interactions 
on the ARPANET) have required only 30 to 40 rules 
and are not inefficient. As more complex agents are 
constructed, we believe there are a number of monitor 
enhancements than can increase efficiency (e.g., 
through hash-coded lookup tables to aid in finding ap
plicable rules) ·which can be added as the need arises. 

EXAMPLE OF RITA OPERATION AS A 
NETWORK ACCESS AID 

The following is an annotated transcript illustrat
ing the operation of a RITA user agent designed to 
assist in file transfers from remote sites over the 
ARP ANET. The agent consists of 42 rules and a con
text having 14 objects. Several representative rules 
from this user agent are shown in the middle of the 
transcript. Annotations are indented and enclosed in 
square brackets. User interactions with the agent are 
shown italicized. 

% file-agent 

UFE: V21 Dec. 16 
PARSER: V22 Dec. 8 
MON: 17 Dec 75 

[" % " is the UNIX system 
prompt. An executable UNIX 
file named "file-agent" con
tains commands to start a 
RITA agent with the rules to 
be read from a file called "ftp. 
rules".] 

[These three header lines are 
displayed by various RIT A 
processes as they initialize 



506 National Computer Conference, 1976 

ftp.rules : 

* run; 

themselves, as an aid to sys
tem developers should trouble 
arise during this session.] 

[Displayed by RITA to show 
this rule set is being loaded; 
any syntax errors, etc. would 
be printed at this time.] 

["*" is the RITA user front
end prompt; the "run" com
mand starts the agent.] 

[The following 6 questions are 
generated by RITA during its 
backward-chaining deduction 
process.] 

What is the name of the current-file? 

draft2 

What is the site-name of the current-file? 

sumex 

What is the host-id of the current-file? 

sumex-aim 

[The file is being retrieved 
from a site that the agent has 
never encountered before, so 
it checks that the site-name 
given is really the official host 
id for that site. As will be 
seen below, it doesn't need to 
be told this again in a subse
quent session.] 

What is the account-name of the current-file? 

kowalski 

What is the password of the current-file? 

Qwerty 

What is the man-number of the current-file? 

why 

[At this point, the user doesn't 
know what data is being 
asked for, so he uses the re
served word "why" to ask the 
agent for the chain of logic 
that led it to ask this ques
tion.] 

That's what I was supposed to deduce. 

What is the man-number of the current-file? 

[This is RITA's answer if it 
has executed the action clause 
"DEDUCE man-number OF 
current-file" in some rule, but 
no goal-oriented rules are 
relevant in helping it deduce 
that; therefore, there is no 

deeper chain of logic that got 
it here. The user wants to 
better understand how the 
man-number is used by the 
agent, so he interrupts the 
agent's operation and returns 
to its command level.] 

* display all goals that test the man-number of the 
current-file; 

[This question lets him see all 
goal-oriented rules (denoted 
by a prefix "GOAL") that test 
that attribute in their "if", or 
predicate, part.] 

GOAL not-known: 

IF: the man-number OF the current-file IS 
NOT KNOWN OR the man-number OF 
the current-file IS " " 

THEN: SET the file-preface OF the current-file 
TO " " 

& SET the file-suffix OF the current-file 
TO" "; 

GOAL before: 

IF: nsubstr (0, 1, the man-number OF the cur
rent-file) IS "<" 

THEN: SET the file-preface OF the current-file TO 
the man-number OF the current-file 

& SET the file-suffix OF the current-file 
TO" "; 

GOAL after. : 

IF: nsubstr (0, 1, the man-number OF the cur
rent-file) IS NOT" <" 

THEN: ~ET th~ fi1~-g'Jffix OF th~ 1?1-':r:r~nt-fU~ TO 
the man-number OF the current-file 

* restart; 

& SET the file-preface OF the current-file 
TO" "; 

[Having seen the above rules, 
the user thinks the system 
doesn't handle TENEX sys
tems correctly, and decides to 
give it a rule which will allow 
it to deduce the man-number 
of a file from the account
number on such systems. He 
therefore reinitializes the 
agent and types in a new rule 
at the agent's command 
level.] 

* goal ten ex 

if: the type of the system is "tenex" 

then: set the man-number of the current-file to 
concat C' <", the account-name of the cur
rent-file, ">"),. 



* run; 

[He then re-runs the agent to 
see how it will act with this 
new rule added.] 

\tVhat is the name of the current-file? 

draft2 

What is the site-name of the current-file? 

sumex 

What is the host-id of the current-file? 

sumex-aim 

What is the account-name of the current-file? 

kowalski 

What is the password of the current-file? 

Qwerty 

What is the type of the system? 

ten ex 

[N ote that instead of asking 
for the man-number of the 
current-file, the system asked 
for the system's type instead, 
through use of the newly
added rule.] 

Will now attempt to retrieve file <kowalski>draft2 
from the sumex-aim system 

Sent: ftp [Lines prefixed with "Sent:" 
and "Received ... " are gener
ated by the agent during its 
operation to show its inter
actions with the remote sys
tem on behalf of the user. The 
agent could easily be modified 
to be less verbose.] 

Received from net: Host: 

Sent: sumex-aim 

Received from ftp: Connections established. 

300 SUMEX-AIM FTP Server 1.44.0.0-at SAT 3-
JAN-76 14 :22-PST 

> 

Sent: user kowalski 

[" >" is the ftp prompt charac
ter] 

Received from ftp: 330 User name accepted. Password, 
please. 
> 
Sent: pass qwerty 

Received from ftp: 230 Login completed. 

> 
Sent: retrieve <kowalski > draft 2 ftpdata 

[Note that this RITA agent 
automatically places retrieved 
files in a local file named 

RITA 507 

"ftpdata"; through the addi
tion of one rule, the agent's 
behavior could be changed so 
that it requests a recipient 
file's name from the user.] 

File has been transferred 

Received from ftp: 255 SOCK 3276899843 
250 ASCII retrieve of <KOW ALSKI> DRAFT2. ;1 
started. 
252 Transfer completed. 

Sent: bye 
Job finished 
done 

% [All ARPANET File Transfer 

% file-agent 

UFE: V21 Dec. 16 
PARSER: V22 Dec. 8 
MaN: 17 Dec 75 

ftp.rules 

* run; 

Protocol interactions neces
sary to retrieve the desired 
file were successfully accom
plished automatically by the 
RITA agent.] 

[The next day, the user wants 
to retrieve that same file 
again, since he just received 
an ARPANET message stat
ing that he should look at 
some late revisions. This gives 
us an opportunity to see how 
much this particular RITA 
agent has learned from the 
previous session.] 

What is the name of the current-file? 

draft2 

What is the type of the system? 

tenex 

Will now attempt to retrieve file <kowalski>draft2 
from the sumex-aim system 

[Note that once it received the 
file name "draft2", it assumed 
all other attributes about the 
file from information received 
during the current session. 
All of this adaptive behavior 
is handled by several RITA 
rules which build new rules 
and data objects as their ac
tions~ then save the revised 
rule set on a disk file.] 



508 National Computer Conference, 1976 

Sent: ftp 

[To tune this agent's opera
tion better, it should also be 
given a rule telling it that the 
type of a system doesn't 
change; once it knows the 
type of a remote system, it 
can assume that it will stay 
constant. With that informa
tion, the agent would stop 
asking for the type of previ
ously encountered systems.] 

Received from net: Host: 

Sent: sumex-aim 

Received from ftp: Connections established. 

300 SUMEX-AIM FTP Server 1.44.0.0-at SAT 
3-JAN-7614 :26-PST 

> 
Sent: user kowalski 

Received from ftp: 330 User name accepted. Password, 
please. 

> 
Sent: pass qwerty 

Received from ftp: 230 Login completed. 

> 
Sent: retrieve <kowalski > draft2 ftpdata 
File has been transferred 

Received from ftp: 255 SOCK 3276899843 
250 ASCII retrieve of < KOWALSKI> DRAFT2. ;1 

started. 
252 Transfer completed. 

> 
Sent: bye 
Job finished 
done 

* exit; 
exiting. 
% 

% file-agent 

UFE : V21 Dec. 16 
PARSER: V22 Dec. 8 
MON: 17 Dec. 75 

ftp.rules 

* run; 

[The "exit" command termi
nates execution of the RITA 
system, and returns the user 
to the UNIX command level.] 

[As a last example, we show 
this RITA agent retrieving a 
different file from the same 
site.] 

What is the name of the current-file? 

draft3 

What is the site-name of the current-file? 

sumex 

What is the type of the system? 

tenex 

Will now attempt to retrieve file <kowalski>draft3 
from the sumex-aim system 

Sent: ftp 

CONCLUSION 

[N ote that this time it asked 
for the site-name, but once it 
received a previously known 
response, it automatically re
trieved other needed attri
butes about that site, such as 
its formal ARPANET host id. 
As mentioned above, the "type 
of system" question is un
necessary, and should be 
eliminated through the addi
tion of another rule.] 

[We omit the remainder of this 
session transcript, since it 
proceeds in the same manner 
as the interactive protocols 
shown above.] 

This paper has discussed the design of the RITA sys
tem. Within RITA, user agents consisting of sets of 
production rules can be created to operate either 
autonomously or in interaction with a user. One major 
application of such user agents is to aid in interactions 
with computer networks and remote information sys
tems. RITA is currently operational on a PDP 11/45 
minicomputer running under the V~IX operating SY;:j

tem. It occupies about 58K bytes of core, allocated 
among two separate processes. User agents compris
ing about 50 rules are now in use, and can, for example, 
handle ARPANET file transfer operations and inter
actions with the New York Times Information Bank. 

This is, however, a report on work in progress. 
Some of the questions that remain unanswered at this 
stage of the research proj ect are: 

• Will a computer-naive user really be able to 
modify the operation of a user agent by adding or 
modifying rules? If so, how long a prior familiar
ization period is required? 

• At what level of size or complexity of a user agent 
will speed of operation and efficiency become im
portant considerations? 

• What about system security? Knowledge about 
passwords, access keys, data formats, and account 
numbers for external systems might well reside 
within RITA user agents, making the intelligent 
terminal itself a valuable target for compromise. 
Even with physical security, such as restricting 
access to the room containing the terminal, often 



there will still remain external communication 
paths to the machine that allow possible access to 
data. We need to understand more about the con
straints which must be placed on access to intelli
gent terminals containing sensitive data in repre
sentative user environments. 

We are encouraged by our initial experimentation in 
the use of production systems to represent heuristics 
governing intelligent terminal behavior. Their ability 
to provide explanations of that behavior, to be modified 
and incrementally extended by a user, and to operate 
in either a pattern-directed or goal-directed manner 
are all potentially vaiuable features. We believe the 
RITA system, whose design we have discussed here, 
provides a good testbed for the demonstration and 
evaluation of these intelligent terminal 
ities. 

ACKNOWLEDGMENTS 

Bob Greenberg designed and implemented many key 
features of RITA's user interface and syntax modules. 
The particular RITA agent whose operation created 
the transcript presented earlier was created by Dr. Don 
Waterman. The support and encouragement to date 
of our prior ARPA program manager, Dr. Craig 
Fields; and our current program manager; Steve 
Walker, are gratefully acknowledged. 

REFERENCES 

1. Anderson, Robert R., "Advanced Intelligent Terminals as a 
User's Network Interface," Proceedings, IEEE COMPCON 
'75 Conference, 9-11 Sept. 1975, Washington, D.C. (Also 
available as P-5445, The Rand Corporation, Santa Monica, 
California, June 1975). 

RITA 509 

2. Anderson, Robert R. and James J. Gillogly, "Rand Intelli
gent Terminal Agent (RITA): Design Philosophy," R-
1809-ARP A, The Rand Corporation, Santa Monica, Cali
fornia, January 1976. 

3. Ritchie, Dennis M. and Ken Thompson, "The UNIX Time
sharing System," Communications of the ACM, Vol. 17, 
No.7, July 1974, pp. 365-375. 

4. Davis, Randall and Jonathan King, "An Overview of Pro
duction Systems," STAN-CS-75-524, Computer Science 
Department, Stanford University, October 1975. 

5. Shortliffe, E. R., S. G. Axline, B. G. Buchanan, T. C. Meri
gan and S. N. Cohen, " ... .t\.n ... A .... rtificial Intelligence Program 
to Advise Physicians Regarding Antimicrobial Therapy," 
Computers and Biomedical Research, Vol. 6, 1973, pp. 544-
560. 

6. Shortliffe, E. R., S. G. Axline, B. G. Buchanan, and S. N. 
Cohen, "Design Considerations for a Program to Provide 
Consultations in Clinical Therapeutics," Proc. 13th San 
Diego Biomedical Symposium, February 4-6, 1974, pp. 311-
<)1 (\ 
v.I.". 

7. Shortliffe, E. H., "MYCIN: A Rule-based Computer Pro
gram for Advising Physicians Regarding Antimicrobial 
Therapy Selection," STAN-CS-74-465, Computer Science 
Department, Stanford University. October 1974. (Also 
available as Stanford Artificial Intelligence Laboratory 
Memo AIM-251.) A condensed version ,vill be published as 
"MYCIN: Computer-based Medical Consultations" by 
American Elsevier Publishing Co., Inc. New York, 1976. 

8. Shortliffe, E. R. and B. G. Buchanan, "A Model of In
exact Reasoning in Medicine," Mathematical Biosciences, 
Vol. 23, 1975, pp. 351-379. 

9. Shortliffe, E. R., R. Davis, S. G. Axline, B. G. Buchanan, 
C. C. Green, and S. N. Cohen, "Computer-based Consulta
tions in Clinical Therapeutics: Explanation and Rule
acquisition Capabilities of the MYCIN System," Computers 
and Biomedical Research, Vol. 8, 1975, pp. 303-320. 

10. ·Waterman, D. A., "Generalization Learning Techniques for 
Automating the Learning of Heuristics," Artificial Intelli
gence, Vol. 1, No.1 and 2, 1970, pp. 121-170. 

11. 'Vaterman, D. A., "Adaptive Production Systems," Advance 
Papers of the Fourth International Joint Conference on 
Artificial Intelligence, 3-8 September 1975, pp. 296-303. Also 
available as CIP Working Paper 285, Psychology Depart
ment, Carnegie-Mellon University, Pittsburgh, Pa. Decem
ber 1974. 





Netlvork interface systems-.A.n evaluation by simulation * 

by JOE B. WYATT and VINCENT 1. POLLEY 
Harvard University 
Cambridge, Massachusetts 

ABSTRACT 

The availability of low-cost digital communication ser
vices has made it productive for computer users to re
motely access multiple computer resources. This is a 
particularly sound strategy for accessing complex re
sources that are infeasible to relocate. At the same 
time, the availability of low-cost and reliable minicom
puter systems which can accommodate sizable numbers 
of terminals has enabled a shift of some interactive 
programming and information processing to these 
small, standalone systems. Although these small sys
tems are powerful and can be configured flexibly, there 
are a number of opportunities to expand the scope of 
an individual user by relating the small system directly 
to other host computers via a network. In accomplish
ing this feat, however, there are a bewildering number 
of technical and economic alternatives. 

This paper addresses one of the issues surrounding 
the development of such systems namely the relative 
performance and cost characteristics of a minicom
puter system in the role of both a standalone processor 
and a network interface. The methodology for the 
evaluation is stochastic simulation. The basic measure
ments for the base line simulations and model valida
tion is a DEC PDP-11/45 computer system operating 
under the UNIX operating system in the Science Center 
at Harvard University. The paper describes the simu
lation methodology and the individual experiments in 
some detail. Several conclusions are drawn about the 
performance and cost characteristics of such systems 
and also about the use of simulation to evaluate these 
characteristics. 

INTRODUCTION 

One of the principal problems confronting a user when 
contemplating the use of a computer network is the 
variety and complexity of the system resources en
countered. Conventions for system log-in, user com
mand languages and terminal hardware interfaces vary 
from system to system. For someone who is neither 
skilled at nor interested in computer technology, it can 

* This work was supported by NSF Grant GJ 40586. 

511 

be a frustrating confrontation. It has appeared that 
interfacing user terminals through a mini-computer 
system programmed to accommodate some of the inter
face functions might increase user productivity sub
stantially. This possibility is particularly attractive 
since it has been demonstrated that small mini-com
puter, time-sharing systems are also highly cost effec
tive for basic computer tasks; e.g., program develop
ment, management of small data bases and the like.1 

In this paper a network interface system (NIS) is 
hypothesized in two configurations. The first configura
tion is a relatively large mini-computer which provides, 
in addition to the network interface functions, basic 
programming and language capabilities as well as file 
storage and retrieval facilities. The second NIS is a 
minimum configuration for handling network functions 
only. 

The basis for both evaluations is the PDP-11/45 com
puter system operating under the UNIX operating sys
tem. Such a system is installed and operational at Har
vard University. This system was used to develop the 
parameters for a simulation model and to validate the 
simulation results for the initial NIS configuration. The 
simulation model was developed using OSSL, a macro
level, stochastic language and processor developed for 
simulating operating computer systems.2 

THE EXPERIMENTAL SYSTEM 

The base case for the initial simulation model is the 
time-shared mini-computer facility located in the Sci
ence Center at Harvard University. This system is 
available for undergraduate teaching and research and 
provides basic hardware and software capability for 
several programming languages, information storage 
and retrieval systems, and a number of basic mathe
matical systems used in teaching programs.3 The con
figuration consists of a PDP-11/45 processor with 120K 
words of executable memory (90K available to users 
jobs), a fixed head disc unit (used for swapping), two 
secondary storage disks available for user files, and two 
magnetic tape units. The system has available 33 ports 
for interactive user terminals (mostly 1200 baud CRT 
terminals) and a high-speed line printer for large vol-



512 National Computer Conference, 1976 

ume hard copy output. It costs about $150,000. The 
system supports several language processors, a file sys
tem and editor, and a host of specialized processors op
erating under the UNIX operating system (supplied by 
Bell Laboratories) . 

The PDP-ll/45 system first became operational in 
September of 1974, and was used primarily to teach the 
introductory computer science course at Harvard. The 
language used in this course was developed at Harvard 
and goes by the name of PPL (polymorphic program
ming language). The students using this language con
stituted over 60 percent of the system load during 
1974-75. In addition to PPL there are also four other 
principal processors supported on the system. These 
include ECL (extensible coding language), another 
Harvard designed language, and also a lightly used 
BASIC compiler. The BASIC compiler functions very 
similarly to PPL and for simulation purposes was con
sidered to be equivalent. An EDIT processor, which in
cludes a file storage and retrieval system, is reasonably 
heavily used. Since the system is also used to teach a 
course which involves assembly level programming, the 
PDP-11/45 Assembler processor also receives some use, 
and is modeled in the ASEM submodule. 

For the simulation of the basic functions of the sys
tem, a mix of typical terminal activities was determined 
from the set of processors above including an additional 
job to represent the execution of a compiled or assem
bled program. This TEST procedure simulates the exe
cution of a job which accepts some user commands, 
executes a relatively large number of processor instruc
tions, and produces a message back to the user terminal. 

The load simulated was a very heavy one so that the 
dynamics of the PDP-l1/45 system could be studied 
under some stress relative to the system scheduler. Data 
was co!!ected fram the Gystcm during a period of i:u.tell
sive use and used to verify the accuracy of the simula
tion model. The basic representation of the Harvard 
UNIX operating system was simulated by a submodel 
developed over a period of a year during which the 
structure and code of the system were closely examined 
and a relatively large number of measurements were 
made of system functions in an attempt to assure a 
valid model. 

In addition to the fundamental processors described 
above, five functions for network interface were con
sidered for the simulation model. These include N AM, 
a network access processor; FTP, a file transfer proto
col; TRAN, a job control language translator; an ac
counting function processor; and an information stor
age and retrieval processor. * The latter two processors 
were treated in a special manner. The accounting func
tions were assumed to be absorbed in the "overhead" of 
the UNIX system (as indeed most are), since the sys
tem offers relatively complex capability for job account-

* The N AM model was developed from the programs and data 
supplied by the National Bureau of Standards Institute for Com
puter Sciences and Technology. 

ing as implemented at Harvard. The information stor
age and retrieval functions which would be associated 
with obtaining network information are represented as 
EDIT jobs in the system (the EDIT jobs rely on the 
UNIX file system for storage, retrieval and process
ing). The former three network functions were simu
lated by discrete submodels. 

The N AM is one of the most complex of the network 
submodels. It simulates the activities of a software 
machine extant at the National Bureau of Standards 
in Gaithersburg, Maryland.4 The NAM is designed to 
effect log-on and subsystem access procedures for the 
user by assuming his duties in the necessary exchange 
of requests and information required while logging 
onto a network computer resource. N AM accepts a 
line of text from a user calling the N AM into opera
tion. It then initiates communication with a remote 
host computer, exchanging between 6 and 18 lines of 
text in order to effect the requested access, and finally 
passes on to the user a "welcome aboard" missive from 
the same remote host. NAM also operates optionally as 
a character Store-and-Forward processor. 

The submodel for the File Transfer Protocol (FTP) 
emulates the shipping of a word package from one host 
to another. The protocol being simulated is much like 
the ARPAnet FTP, wherein the data being shipped 
across the net is broken up into packets (here, of length 
512 words), with receipt of a packet being acknowl
edged only after full error-detection software scans of 
it have finished. This FTP is different from ARPA's 
FTP in that the data shipped from Host A to Host B is 
stored at an intermediate machine (in this case at the 
Network Interface System) instead of travelling di
rectly between the two machines. The NIS performs 
such functions as data transliteration and translation, 
coordination of device speeds (Le., it buffers the trans
mission), and generally makes the whole procedure as 
transparent to the two hosts as possible. As far as they 
are concerned, they are outputting data to a standard 
I/O device. 

The Translation submodel (TRAN) simulates a soft
ware package operational at Harvard's Office for In
formation Technology. This program effects transla
tions of IBM's Job Control Language from one IBM 
system to another. For example, a job designed to be 
run on MIT's IBM 370/168 is passed through the 
Translator to acquire compatibility with the JCL con
ventions extant at Princeton University's IBM 360/91 
Computer System. The TRAN Procedure simulates the 
table-driven translation of a medium-sized JCL deck, 
and is thought to be general enough in conceptualiza
tion to represent other types of simple translation, not 
merely JCL-type control cards. 

These three Network functions, NAM, FTP, and 
TRAN, taken with the five previously discussed produc
tion jobs, make up the eight job types whose impact 
(in various combinations) upon the performance of 



the PDP-II/45 UNIX computer will be the subject of 
the rest of this paper. 

The OSSL developed simulation model consists of 
Procedures to represent the previously mentioned eight 
processes representing the eight basic system tasks, and 
one main Procedure (called SCHED) which simulates 
the actions of the UNIX Operating System. Procedure 
SCHED simulates the scheduling of system tasks, and 
coordinates the running of the other eight Procedures. 

The UNIX method (simply stated) for determining 
which process shall be swapped into executable memory 
goes as follows: 

(0) if a job is ready for swap-in, go to (2) else 
go to (1) 

(1) enter a wait state and remain in it until sig
nalled that a job is ready to be swapped in 
and then go to (2) 

(2) find the job which has been swapped out the 
longest and which is runnable (i.e., it is wait
ing to use the processor) and then go to (3) 

(3) if there is enough core available, swap the job 
found in step (2) into core and go to (1) else, 
go to (4) 

(4) check to see if any jobs now in core are doing 
terminal I/O. If so, swap the first found out 
and go to (2) else, go to (5) 

(5) if the job requesting swap-in has been out for 
3 seconds or more, and if any job has been in 
core for more than 2 seconds, then swap the 
oldest such out and go to (2) else, go to (6) 

(6) since either the oldest job on disc is less than 
3 seconds old, or the oldest job in core is less 
than 2 seconds old, no job is eligible for swap
in. go to (1) 

For simulation, procedure SCHED receives "re
quests" from the other eight procedures, asking that 
the jobs they represent be swapped into core (execu
table memory). It then steps through the above algo
rithm and, when it has finally "swapped the job in," 
notifies the relevant Procedure that its particular part 
of the simulation may continue. 

THE SIMULATIONS 

The subject system under analysis as the base case 
consists of the PDP-II/45 processor, 90K words of 
executable memory (available to user jobs), a fixed 
head disc operating at 250,000 words/sec transfer rate, 
and a secondary storage disk (available for user stor
age) operating at 150,000 words/sec with an 8 msec 
latency and a 25 msec seek time (the latter being an 
optimized 32 msec seek). The operating system is 
UNIX, and the job mix* is as follows: 

* This mix (hereafter referred to as the "standard job mix") re
flects a heavy load upon the system. Indeed, the system is func
tioning in its very worst case when supporting such a user dis
tribution. However, such a load is a frequent occurrence at the 
end of the academic term. 

Network Interface Systems 513 

five PPL jobs 
two ECL jobs 
three EDIT jobs 
one TEST job 
one ASEM job 
one XAM job 
one FTP job 
one TRAK job 

Each of these jobs is under the control of a hypothe
sized user (i.e., there are 15 people actively usl;lg the 
system) at his own 120 character-per-second CRT. 
Each is represented by an OSSL submodel. It should be 
noted that as each of the jobs in the standard job mix 
incurs completion, another of the same type is started 
up. Several "sensitivity" experiments were performed 
as baseline tests of the OSSL simulation model. The 
results of each sensitivity analysis from the simulations 
have been summarized, with two types of parameters 
presented. The first type includes internal system per
formance measurements, e.g., component scheduling 
and use measurements. The second type includes use 
performance measurements of response and through
put, e.g., the response times for individual interactions, 
and the completion rate for jobs. The description for 
each of the two types of parameters is shown in the 
following tables (Tables I and II). 

Basic 11/45 system 

After having run a basic set of models without the 
network interface system functions to validate the 
"stand alone system," the first new configuration was 
simulated with the network interface functions incor
porated into the currently installed PDP-II/45 at the 
Harvard Science Center. The previously defined stan
dard job mix was used in the base line simulation. In 
order to further exercise the base case in an evaluation 
of sensitivities, the system configuration was altered 
in several ways and simulated for the same time period 
with the identical job mix. Since the initial simulations 
indicated a processor intensive (and processor limited) 
system execution, the base line cases were tested on a 
configuration with four different processor configura
tions. The first was the basic PDP-II/45 processor, the 
second was a PDP-II/45 processor with Cache memory, 
the third was a PDP-II/70 processor with Cache mem
ory, and the fourth was a dual PDP-II/45 processor 
system. The results of the base line simulations for the 
system performance and use performance parameters 
(previously described) are shown in Table III and 
Table IV. 

One of the principal purposes of the four base line 
cases was to examine the sensitivities indicated by the 
model as the configuration was changed in order to de
termine the extensibility into further analysis of vari
ous network interface system configurations. It can be 
seen from the data in Table III that the performance of 



514 National Computer Conference, 1976 

T ABLE I-Internal System Performance Parameters 

CPU Busy 

CPU Rejection 

CPU Wait 
mean 

(J' 

maximum 

CPU Wait Until 
50% 
66% 

95% 

PRFR 

Swapping Disc Busy 

Core Rejection 

Total Swap-in 
Average Core Life 

Average Core Used 

-the percent of total time the processor 
has been active 

-the rate at which the processor has 
been requested but has been busy. The 
new request is then queued, and the 
queue residency time is the next figure 
cited (CPU Wait). 

-the average residency time of a queued 
processor request 

-the standard deviation of the residency 
times 

-the maximum residency time of a 
queued processor request 

-the median residency time 
-the time spent in queue by 66 % of the 

requests 
-same as above but for 95% of the re

quests 
-The Processor Request Failure Rate 

(PRFR) is calculated as follows: of 
those requests for the processor which 
were queued, the percentage which 
were not met until 2 or more seconds 
had passed is multiplied by the frac
tion of requests for the processor which 
were queued. Thus, the PRFR reflects 
the chance that a random request for 
the processor will be kept waiting for 
more than 2 seconds. Since the UNIX 
scheduling algorithm allows a job to 
be swapped out of executable memory 
after it has been there for 2 seconds, 
the PRFR is a barometer reflecting 
about ho\v many jobs will get into core, 
request the processor, and get flung 
from core before the request is met. 

-the percent of total time the swapping 
disc has been active 

-~ht? rt?~t?~!!t 0f !C'i:2.1 time the disl: ~to~ 
age unit has been active 

-the percent of swap-in requests which 
could not be met the first time due to 
insufficient free core (required queue
ing) 

-the total number of jobs swapped-in 
-the average time a job spent in core in 

anyone swap 
-the average amount of core in use by 

user jobs. (Also given as a percent of 
total available core.) 

Note: In these reports, unless otherwise stated all times shall 
be in units of seconds, and all sizes will be in units of words (16 
bits to each word). 

the PDP 11/45, given the heavy work load for fifteen 
active terminals, was CPU (processor) limited. The 
CPU was busy almost 95 percent of the time and barely 
four requests in five could be met (the fifth had to be 
queued). The mean time in CPU queue was .87 sec
onds, with a standard deviation of 1.153 seconds and a 
maximum wait greater than five seconds. Since the 
UNIX operating system allows a process to reside in 

TABLE II-External Use Performance Parameters 

EDIT 
mean 
(J' 

max 

MACRO 
mean 
(J' 

max 

ASEM 
ECL 
EDIT 
FTP 
NAM 
PPL 
TEST 
TRAN 

-the timing distribution (mean, standard devia
tion and maximum) for completion of an 
edit command. 

-the timing distribution (mean, standard deviation 
and maximum) for execution of 
a N AM remote system access call 

-the counts reflecting the number of completions 
of the associated Procedure. If none have fin
ished, the count will read zero. If none were 
started up in the first place (i.e., a particular 
simulation is not concerned with the relevant 
Procedure) 
then a dash (-) will appear. 

core normally for two seconds before being eligible to 
be swapped out, the results would indicate that 10 per
cent of the processes were eligible to be swapped out 
of core memory by the scheduler before they emerged 
from their wait for CPU service. None of the other 
performance parameters are particularly alarming. The 
swapping disc, core memory and disk storage are rela
tively modestly used. One might expect that their use 
was limited by the lack of processor capacity. 

The use performance results from the simulation 
model are equally indicative of sluggish system re
sponse and throughput. For example, the mean re
sponse time for an EDIT command was in excess of 
five seconds with a standard deviation of over five sec
onds as well. The maximum recorded wait was 22 sec
onds. The N AM MACRO response is even more indica
tive of the processor bottleneck since MACRO requires 
the execution of a substantial number of instructions. 
The mean response time for MACRO was 196.7 seconds 
with a standard deviation of 56.1. The throughput 
counts for the assembler and the network interface sys-

TABLE III-Internal System Performance 

System 11/45 11/70 
Performance 11/45 CACHE CACHE 2 x 11/45 

CPU Busy 94.9% 91.6% 88.0% 54.3 & 35.3 
CPU Rejection 18.4% 16.9% 14.4% none 
CPU Wait-mean 0.87 0.48 0.23 no wait 

--(]' 1.153 0.64 0.35 
-max. >5.0 5.0 3.2 

CPU Wait-until 50% 0.6 0.2 0.15 no wait 
66% 1.0 0.6 0.25 
95% 3.4 1.8 0.60 

Core Rejection 58% 56% 55% 54% 
Total Swap-in 1181 1317 1328 1448 
A verage Core Life .507 .455 .452 .415 
A verage Core Used 89% 87.8% 84.2% 
Swapping Disc Busy 29.8% 34.8% 39.9% 37.4% 
Disk Busy 14.2% 23.1% 31.6% 35.5% 
PRFR 10.1% 7.6% 3.6% 0 



Network Interface Systems 515 

TABLE IV-Use Performance 

11/45 11/70 
Use Performance 11/45 CACHE CACHE 2X11/45 

EDIT-mean response 5.61 3.47 2.27 2.46 
-IT 5.12 2.87 1.87 2.92 
-max. 22. 12. 10.0 16.0 

MACRO (NAM)-mean response 196.7 192. 92.9 40.5 
-IT 56.1 45. 47.5 9.8 
-max. 190 50 

ASEM 7 11 17 17 
FTP 41 69 116 247 
NAM 2 3 5 7 
TRAN 17 28 38 46 

Note: The ECL, PPL, EDIT and TEST jobs are of sufficient length (5 to 15 minutes 
each) that none complete in the 10 minute base line simulations. A subsequent 
simulation of longer duration demonstrates throughput for these jobs. 

tem jobs indicate a relatively modest completion rate 
for these functions. 

From an examination of the results of the initial 
simulation it appears that the configuration is sensitive 
to the availability of processor bandwidth and possibly 
the amount of available executable memory (since the 
average core used was 89 percent). There is also the 
hint that prioritizing the scheduling algorithm in some 
different manner might affect system performance and 
use performance for a particular type of job. 

11/45 cache processor 

The relatively clear indication for a subsequent sen
sitivity run is to improve the processor bandwidth. As 
a result, the second of the base line simulations incor
porated the use of a Cache memory added to the PDP-
11/45 processor. The results from the effective im
provement in the processor capacity can be observed 
from the results in Tables III and IV. The processor 
busy time has dropped from 95 percent to 92 percent. 
The processor wait time has been approximately halved 
with the standard deviation dropping from 1.15 to .64. 
It is also indicated that for half of the processes the 
residency time in the CPU wait queue dropped from .6 
to .2 seconds. The improvement in CPU bandwidth has 
also resulted in more efficient use of the swapping disc 
and the risk storage unit (increased 5 percent and 
9 percent respectively). The PRFR has also sharply 
reduced as expected. 

Use performance of the system with the Cache has 
improved dramatically. For example, the mean EDIT 
response time has dropped from 5.61 seconds to 3.47 
seconds (standard deviation dropped from 5.12 to 2.87) 
and the maximum dropped from 22 to 12 seconds. 
Throughput improvements average around 60 percent 
as characterized by the FTP job turnaround, which 
increased from 41 completions to 69 completions. 

11/70 processor with cache 

The indications from the prior simulation of the sys
tem with the 11/45 processor and Cache supported the 

notion that the CPU was and remains the limiting com
ponent. A third simulation replaced the 11/45 processor 
and Cache with an 11/70 processor and Cache leaving 
all other characteristics of configuration and workload 
constant. 

This change also significantly improved the perform
ance of the system. Throughput improved by about 60 
percent and interactive response times also dropped. 
For example, the mean EDIT response was reduced to 
2.27 seconds (IT of 1.87) and the maximum to 10.0. The 
N AM MACRO response improved from a mean of 
192.0 seconds to 92.9 seconds. Internal system perform
ance also reflected the improvement with CPU Busy 
time dropping from 91.6 percent to 88.0 percent and 
CPU queuing appreciably reduced. Memory swap-ins 
continued to increase for the period and both the swap
ping disc and the disk storage unit busy times jumped 
appreciably. 

Dual 11/45 processors 

The final sensitivity test in the baseline series ac
commodated dual 11/45 Processors to replace the sin
gle processor configuration. In this case, processor 
queuing was eliminated but some response times 
showed no gain over the uniprocessor 11/70 Cache 
system, reflecting the mixed blessing of two slower 
processors versus one faster processor in a processor 
intensive environment. In general, however, both use 
performance and internal performance were improved 
over the fastest uniprocessor configuration. It should 
be noted that no allowance was made for any increase 
in operating system overhead which might result from 
the dual processor configuration. The UNIX system 
used at Harvard does not accommodate other than a 
uniprocessor configuration and estimates vary about 
the consequences of a multiprocessor modification to 
UNIX. 

Base line simulation conclusions 

The four base line simulation experiments bolstered 
faith in the capability of the model to represent the 



516 National Computer Conference, 1976 

NIS system. The isolation of the processor as the con
straining component in the system and the demonstra
tion of the sensitivity of the model to improvements in 
processor performance seemed in keeping with expec
tations. Moreover, the subtle changes in the internal 
system performance of the other major components, 
e.g., executable memory, swapping disc, and disk stor
age, increased confidence in the model as well. Use per
formance data was also within predicted limits al
though priority modifications in the scheduler might 
have altered the performance of individual processors 
sUbstantially. 

It was particularly interesting in the simulation to 
note the continual improvement of the uniprocessor 
configurations as processor performance improved fol
lowed by the somewhat discontinuous improvement of 
the dual processor configuration which utilized the 
slowest processor. In particular, although overall per
formance indicated substantial improvement for the 
dual processor configuration, some individual processes 
did not perform as well on the dual processor configura
tion as on the fastest uniprocessor. Although in retro
spect the result was not surprising, the ability of the 
model to accurately reflect the mixed blessing of the 
dual processor configuration supported the notion that 
the model was sufficient for more useful analyses. 

WORKLOAD SENSITIVITY ANALYSIS 

The second part of the simulation experiment dealt 
with the evaluation of the relative effect of network in
terface functions combined with basic functions on the 
standalone processor. Specifically it was of some inter
est to learn whether the network interface functions 
hHd mor,=, or ]~gg impact on gygt~m p~rforma!!c~ than 
the basic "standalone" processors. More specifically, it 
seemed meaningful to understand whether the addition 
of n terminals to engage in network access activity 
would have more or less effect on the PDP-II UNIX 
configuration than the addition of the same number of 
terminals for standalone tasks involving PPL, ECL, 
BASIC, and the like. As a result, several simulation 
experiments were conducted to attempt to evaluate the 
sensitivity of the model to these alterations in work
load. For these experiments the PDP-ll/70 Cache con
figuration was selected. The use of this configuration 
rather than any of the others provides a level of pro
cessor power sufficient to make either an increase or de
crease in processor demand more obvious and more 
realistic. 

Twelve terminal standalone 8ystem 

The first simulation consisted of the PDP-ll/70 
Cache configuration with the job mix altered to remove 
the network interface functions. In other words, all 
use of N AM, FTP and TRAN \vas eliminated from the 

TABLE V-Relative Effect on Internal Performance 

II Fifteen I 
Terminal 

I( Standalone 
& NIS) * 

CPU Busy 88.0% 
CPU Rejection 14.4% 
CPU Wait-mean .23 

-(1 .35 
-max. 3.2 

CPU Wait-until 50% 0.15 
66% 0.25 
95% 0.60 

Core Rejection 55% 
Total Swap-in 1328 
A verage Core Life .452 
Swapping Disc Busy 39.9% 
Disk Busy 31.6% 
PRFR 3.6% 

,~ From Table III for comparison. 

Twelve 
Terminal 

( Standalone) 

93.5% 
59.5% 

.40 

.54 
5.0 

.30 

.39 
1.5 

47% 
500 

1.2 
11.92 
3.82 
5.7% 

Fifteen 
Terminal 

(Standalone) 

92.76% 
69% 

.45 

.55 
4.2 
0.3 
0.4 
1.6 

51.6% 
744 

.807 
16.14 
3.53 
9.7% 

workload. In the first case this was accomplished by 
simply reducing the number of terminals from 15 to 12 
removing those three that were engaged in the network 
interface functions. 

The effect of this change in workload upon internal 
performance is shown in Table V. It can be seen that 
there is a general shift toward more processor-intensive 
use of the configuration and less efficient use of both the 
swapping disc and the disk storage units. Even though 
the total number of active terminals has dropped from 
15 to 12, the processor has jumped from 88 percent to 
93.5 percent, and the processor rejection rate (percent 
of requests which must queue for processor use) has 
soared from 14.4 percent to 59.5 percent. Other proces
sor performance parameters, including the queue wait.;. 
ing statistics, further imply a relative increase in pro
cessor demand. On the other hand, the rejection rate for 
memory use has actually dropped from 55 percent to 
47 percent. The total number of swaps has reduced 
dramatically and the average life of a process in mem
ory has more than doubled. At the other end of the 
spectrum the swapping disc busy time has dropped 
from about 40 percent to 12 percent, and disk storage 
unit use has dropped precipitously to only slightly over 
10 percent of its former use level. 

From the perspective of system utilization, the results 
are limited but significant (see Table VI). The inter
active response time as measured by the EDIT proces
sor has remained relatively constant. The mean re
sponse time for the EDIT is at about 2.3 seconds with 
a standard deviation of about 1.9 seconds, for both 
simulations. The maximum response time has increased 
slightly for the non-network configuration. Throughput 
as indicated by the assembler has increased only 
slightly-from 17 to 19 jobs. 

It can be concluded from this initial experiment that 
removal of the nehvork interface functions slightly im-



TABLE VI-Relative Effect on LJse Performance 

Fifteen 
Terminal Twelve Fifteen 

( Standalone Terminal Terminal 
& Nis)* (Standalone) (Standalone) 

EDIT-mean 2.27 2.3 2.59 
response 

--(j 1.87 1.9 1.81 
-max. 10.0 12.0 8.0 

ASEM 17 19 17 
--_._----'-----------'------------

* From Table IV for comparison. 

proves the throughput of the configuration for the 
other jobs but does not substantially alter the response 
time for interactive tasks. From the internal perform
ance data, however, it is obvious that the system is un
balanced in the sense that the processor is intensely 
busy while other critical parts of the configuration, in
cluding executable memory, the swapping disc, and disk 
storage units, are performing well below their most 
efficient levels. Hence, the first indication would be that 
the network interface functions fit into the workload 
environment, for the most part consuming resources 
that are otherwise not critical. 

Fifteen terminal standalone system 

A second experiment to measure the relative effect of 
the network interface functions was conducted with a 
fifteen terminal system. In this case, the network inter
face functions N AM, FTP, and TRAN were replaced 
by standalone jobs representing PPL, SDIT, and 
TEST. This configuration brought the number of ter
minals up to equal the combined configuration tested 
first, but eliminated any network access functions. In 
this way, an indication of the relative effect of the net
work interface functions could be ascertained directly. 

A summary of the results is shown in Table V for 
internal performance and Table VI for use perform
ance. It can be observed that the use performance va
ried only slightly from the other 15 terminal configu
ration. The EDIT interactive response indicated both 
a slight change in the direction of improvement (maxi
mum response dropped from 10 seconds in the combined 
system to 8 seconds) and a slight degradation (mean 
response time rose from 2.27 seconds to 2.59 seconds). 
Moreover, the throughput count for the assembler 
(ASEM) was the same. As a result, the relative effect 
of the network interface functions on system use per
formance is negligible. 

The internal performance data indicates some change. 
The CPU busy rate rose from 88 to 93 percent, and the 
rejection rate soared to 69 percent from 14 percent. In 
addition, the mean wait time for the processor ready 
queue doubled, the standard deviation increased from 
.35 to .55 and the maximum increased by about one 

Network Interface Systems 517 

TABLE VII-Incremental Effect on Internal Performance 

Basic+3* Basic+3+NIS 
11/70 CACHE 11/70 CACHE 

CP"G Busy 92.76% 89.8% 
CPU Rejection 69% 20.3% 
CPU Wait-mean .45 .40 

.55 .46 
-max. 4.2 3.4 

CPU Wait-until 50% 0.3 .38 
66% 0.4 .44 
95% 1.6 1.4 

Core Rejection 51.6% 56.8 % 
Total Swap-in 744 1283 
A verage Core Life .807 .467 
Swa pping Disc Busy 16.14 27.3 
Disk Busy 3.53 39.7% 
PRFR 9.7% 6.1% 

* From Table V for comparison. 

third. The use of executable memory became less con
tentious, however. The core rejection rate dropped 
slightly, the total number of swaps was cut almost in 
half and the average core life jumped from .45 Seconds 
to .81 seconds. Most notably, however, the uses of the 
swapping disc and disk storage were only about forty 
percent and eleven percent respectively of the combined 
configuration! The clear indication from the internal 
performance data is that the network interface func
tions tend to balance the use of maj or system compo
nents more efficiently, reducing processor congestion 
significantly and using the idle resources of the swap
ping disc and the disk storage unit. Thus, the relative 
impact of the network interface functions appears to 
be at worst breakeven (use performance) and at best 
favorable (internal performance). 

Eighteen terminal combined system 
The third and final experiment in this series was to 

determine the incremental effect of the network inter
face functions. This experiment was performed by 
simply adding three terminals with the three network 
interface functions to the fifteen terminal standalone 
configuration previously simulated. The results of this 
experiment are shown in Table VII and VIII. From 
Table VIII it can be observed that the throughput per
formance of the system was reduced only slightly for 

T ABLE VIII-Incremental Effect on Use Performance 

EDIT-mean 
--(j 

-max. 
ASEM 
FTP 
TRAN 

Basic+3* 
11/70 CACHE 

2.59 
1.81 
8.0 

17 

* From Table VI for comparison. 

Basic+3+NIS 
11/70 CACHE 

2.3 
1.6 
8.0 

16 
94 
34 



518 National Computer Conference, 1976 

the assembler while 94 FTP transactions were per
formed and 34 program translations (TRAN) were 
performed. The EDIT response times did not signifi
cantly change. Hence it would appear that the network 
interface functions were performed at a minute incre
mental expense. From the internal performance in 
Table VII it can be seen that the network interface 
functions place almost all of the incremental load on 
the disk storage unit with a noticeable increase on the 
swapping disc and executable memory use as well. Since 
the network interface functions are significantly less 
processor intensive, the average use of the processor 
has dropped modestly and the processor rejection rate 
has dropped dramatically (to 1/3 of its former level). 

Conclusions about the combined NIS 
and standalone system 

It appears that the network interface functions mesh 
well with the characteristics of the standalone UNIX 
system. On a relative basis, replacement of standalone 
functions with network interface functions tended to 
balance the use of the major components of the com
puter system configuration more evenly, thus reducing 
the processor intensivity. This would indicate that the 
configuration becomes relatively much less congested in 
the case where some terminals are engaged in network 
activities. On an incremental basis it appears that a 
few additional terminals could be added for network ac
cess to a standalone configuration with a very modest 
impact on the standalone functions. In addition, the in
cremental effect would be a more efficient use of all of 
the components in the system. Hence, insofar as system 
performance is concerned the network interface func
tion can be integrated into the PDP-II UNIX system at 
a negligible sacrifice in performance of the standalone 
functions and with substantial improvement in the rel
ative efficiency of the major components in the system. 
This result is, of course, more useful with the assump
tion that the Harvard UNIX system is typical of other 
standalone mini-computer system configurations. 

NETWORK INTERFACE SYSTEM 
PERFORMANCE 

The third and final analysis of the investigation deals 
with the development of a mini-computer configuration 
exclusively for network interface functions. The objec
tive is to provide adequate performance capability for 
network access alone at a minimum cost. For this anal
ysis both the job mix and the computer system con
figuration were altered substantially. The job mix rep
resented was felt to be typical of an individual user 
accessing a computer network resource via the facili
ties of the network interface system. 

The essential flow goes as follows: 

(1) A user, having logged on to the NIS system, 

enters the editor (EDIT) and edits a file of 
length 3K words, invoking 20 to 30 edit com
mands. 

(2) Having prepared his file, he next uses the 
N AM to open a connection and log him in to 
a remote host. 

(3) Ready to send his file (constructed in step 1) 
across the network to the remote host, he first 
must make its "JCL" compatible with the re
ceiving institution's conventions. He thus 
translates it using TRAN. 

(4) With the file ready to go and the network con
nections complete, he uses a File Transfer 
Protocol (FTP) to ship the translated file 
over the net. 

(5) With his program ready to run on the remote 
host, he now uses the N AM, in its character 
store-and-forward mode, to send from 6 to 12 
lines of text (receiving the same on a one-for
one exchange basis) to the remote host, set
ting the job up for running, and finally ini
tiating execution by the remote host. 

(6) Execution completed (in zero elapsed time 
for purposes of this analysis) on the remote 
host, the user uses FTP to ship his results 
home. 

(7) And finally, now that he's finished with the 
remote host, he uses the N AM to close his 
network connections. 

This seven-step terminal session is simulated for 
each terminal by the sequential execution of the proce
dures indicated with a variety of use parameters. Upon 
completion of the seven-step sequence, it is reinitiated 
for each terminal. The sequence is started at a random 
paint fo~:· each tcrmitial in. ordel" tv more quickl:>-· :r€ach 
steady state in the simulation. 

Four hardware configurations are examined relative 
to the specified workload. Each configuration is simu
lated for a period of thirty minutes operation. The 
basic hardware configuration includes a PDP-11/20 
processing unit (to replace the prior PDP-II/70 and 
11/45 processing units) and a reduced executable 
memory configuration. The same swapping disc and 
disk storage devices from previous simulations are 
used. The configurations remain constant for the four 
simulation experiments except for the size of executa
ble memory and the number of active terminals on the 
system. The operating system simulated was UNIX 
even though the PDP-11/20 processing unit has a 
slightly smaller instruction set which would require 
some modification to UNIX should it actually be used. 
In the four simulations, the following combinations of 
active terminals and executable memory were ex
amined: 

(1) Ten terminals and 20K executable memory. 
(2) Fifteen terminals and 20K executable memory. 
(3) Fifteen terminals and 32K executable memory. 



(4) Eighteen terminals and 32K executable mem
ory. 

The ten terminal 20K system was chosen as the base 
line configuration. It was hypothesized from the early 
eXDeriments that the PDP-ll/20 processor, which is 
ap~roximately one-fourth the speed of the PDP-ll/70 
with Cache memory, would be adequate to support a 
ten terminal configuration given the seven-step se
quence of operations defined. The 20K word memory 
WH~ p.~timH.tp.c1 in ~ize from the memory use statistics 
~l;~;;d-f;~~-p;io; simulations for the network inter
face function processors. Since there was some feel
ing that the availability of executable memory might.be 
more sensitive in the NIS system than for the prIOr 
combined systems, additional statistics were collected 
from the simulation model for the queueing relative to 
the availability of executable memory. These statistics 
called "core wait" (mean, standard deviation and maxi
mum) and "core wait until" (50 percent, 66 percent, 
95 percent) are analogous to the same statistics col
lected for the central processing unit in prior simula
tions. 

Base line NIS system (ten terminals and 20K memory) 

The summarized results for the four simulation ex
periments are shown in Tables IX and X. Table IX 
indicates the internal performance of the NIS and 
Table X indicates use performance. From the use per
formance statistics it appears that the base line sys
tem is performing within reasonable limits relative to 
system use. The response time for the EDIT proces
sor is about 3 seconds with a standard deviation of 
slightly over 2 seconds. The MACRO NAM processor 
response time is a mean of 31 seconds and a standard 
deviation of about 11 seconds (a performance superior 
to any of the prior configurations). Throughput for 

TABLE IX-NIS Internal Performance 

10 Term 15 Term 15 Term 18 Term 
20K 20K 32K 32K 

CPU Busy 52.7% 72.42% 74.7% 86.9% 
CPU Rejection 19.4% 60.5% 45.8% 63% 
CPU Wait-mean .03 .019 .029 .043 

-q .18 .18 .23 .332 
-max. 4.0 >5. >5. >5. 

Core Rejection 53.8% 61% 54.2% 55% 
Core Wait-mean .40 .91 .361 .45 

-q 1.15 1.62 .94 1.05 
-max. >5. >5. >4.5 >4.5 

Core Wait-Until 50% .15 .20 .15 . 15 
66% .19 .75 .20 .20 
95% 2.75 4.0 2.0 2.5 

Total Swap-in 484 1158 596 918 
Average Core Life 3.72 1.55 3.02 1.96 
Swapping Disc Busy 1.45 3.41% 1.7% 2.5% 
Disk Busy 4.16 6.22% 5.4% 5.7% 
PRFR 0 .24% 0 .485% 

Network Interface Systems 519 

the base line configuration appears to be respectable 
although it cannot be directly compared to the prior 
combined system simulations because of the difference 
in the characterization of the network interface system 
workload. 

The internal system performance for the NIS indi
cates that the processor is only about 50 percent busy 
with a very low request rejection rate and a very mini
mal amount of processor queueing. The rejection rate 
for initial requests for executable memory is about 50 
percent, however the mean wait for executable mem
ory is relatively high with a mean of .4 seconds and a 
standard deviation of 1.15 seconds. The additional 
statistics for executable memory use indicate that 2/3 
of the queued requests were processed within .19 sec
onds and 95 percent were processed within 2.75 sec
onds, still relatively long waits for executable memory 
in a computer system. Offsetting the queueing is the 
indication that the average core life of a process once 
swapped into memory is 3.72 seconds. Both the swap
ping disc and the disk storage are trivially active, in
dicating about 1 percent and 4 percent busy respec
tively. 

Fifteen terminal and 20K memory NIS system 

In the second experiment the number of terminals 
was increased by 50 percent to a total of 15 with the 
remainder of the configuration constant. As a result 
of this increase the throughput of the system increased 
about 33 percent ranging from 27 percent improvement 
for the edit and 42 percent improvement for the NAM. 
This improvement in throughput was accomplished, 
however at some sacrifice in interactive response time. 
The me~n response to EDIT transactions increased 
from 3 seconds to over 4 seconds and the mean response 
for MACRO increased from 31 seconds to 49 seconds. 
These responses are within reasonable limits, but are 
approaching that state which the user might call 
"sluggish." 

An examination of the internal performance data 
indicates that the processor is SUbstantially more busy, 
reaching 72 percent with a rejection rate leaping from 

TABLE X-NIS Use Performance 

10 Term 15 Term 15 Term 18 Term 
20K 20K 32K 32K 

EDIT-mean 3.04 4.39 4.34 6.23 
-q 2.36 3.63 3.73 5.4 
-max . 14. 18. 20. 28.0 

MACRO (NAM)-mean 31. 49.2 42.9 52.6 
-q 10.7 18.9 18.2 21.7 
-max. 60. 100. 90. 120. 

EDIT 11 14 12 9 
FTP 18 24 22 19 
NAM 26 37 30 35 
TRAN 9 12 10 11 



520 National Computer Conference, 1976 

19 percent to 60.5 percent for initial processor service 
requests. Queueing times, however, have not substan
tially increased for the processor. The availability of 
executable memory appears reasonably critical with a 
rejection rate jumping to 61 percent from about 54 
percent and the mean wait in queue more than dou
bling. In addition, the total number of swap-ins more 
than doubled to 1158 from 484 and the average core 
life dropped from 3.72 seconds down to 1.55 seconds. 
It is significant to note, however, that the swapping 
disc and the disk storage unit continue to be hardly 
taxed at all with busy times of 3.4 percent and 6.2 per
cent respectively. 

Fifteen terminal and 32K memory· NIS system 

Since the second experiment which held the con
figuration constant and increased the number of ter
minals to 15 seemed to indicate that executable memory 
was in short supply, the third experiment held the 
number of terminals to 15 and increased executable 
memory to 32K words. This resulted in almost negli
gible change in use performance. Response times 
stayed about the same as the second configuration for 
the EDIT and showed very slight improvement for 
the MACRO processor. The throughput statistics re
mained virtually level for each of the four processors 
(with the exception of NAM which showed a some
what anomalous drop due to the sequence in which the 
15 different seven-set processes completed). In terms 
of internal performance the processor continued busy 
(74.7 percent) and the processor wait in queue times 
increased slightly. 

The executable memory statistics clearly reflect the 
imprnvempnt ('()n('()mit~.nt ~.~Tith greater memcry size. 
The rejection rate dropped from 61 percent to 54.2 
percent and the queueing times dropped as well with 
the mean reduced to .361 seconds from .91 seconds. 
Total swapping was also cut approximately in half 
and average core life improved back to above 3 seconds 
from 1.5 seconds. One might conclude, however, on the 
basis of the use performance, that the investment in 
the additional 12K words of executable memory was 
not returned in visible performance to the user. 

Eighteen terminal and 32K memory NIS system 

As a final sensitivity test, the configuration of the 
system was again held constant and the number of 
terminals increased to 18 from the 32K word memory. 
The increase in terminals from 10 to 18 for the PDP-
11/20 processor begins to show symptoms of a debili
tating nature in this experiment. The processor busy 
time has increased to about 87 percent and the rejec
tion rate has jumped up to 63 percent. Queueing times 
for the processor are at an all-time high mean of 43 
milliseconds with a standard deviation of 332 milli-

seconds. As might be expected, the executable memory 
statistics are approximately the same for memory 
queueing but the number of swap-ins has increased 
from 596 to 918 and the average core life has dropped 
from over 3 seconds to 1.96 seconds. Hence the con
tention for the central processing unit has affected 
the use of executable memory to some degree. 

Conclusions about the NIS system 

For some of the network interface functions, the 
processor is a limiting factor as the number of jobs 
increase. For example, the EDIT processor is ad
versely affected as the number of terminals on the sys
tem increase and the processor remains constant. On 
the other hand, the N AM processor appears consid
erably less affected by the availability of processor 
power, although some constraining does occur. 

It is apparent from all of these results, however, 
that a relatively small mini-computer configuration can 
accommodate a sizeable number of terminals perform
ing network interface functions. For example, the con
figuration with 15 terminals operating on the 20K word 
PDP-11/20 system provides a superior use perfor
mance. There is also a reasonable balance of internal 
performance activity between the processing unit and 
executable memory. In all of the cases, however, the 
swapping disc and disk storage units appear exces
sively powerful for the need. It is reasonable to expect 
that the units simulated could be replaced by others, 
somewhat less sophisticated (and less expensive). 
Should swapping become a problem, it has been demon
strated that modest increases in executable memory 
size can reduce the amount of swapping and hence the 
dependence on a high performance swapping device. 
In addition, the range of performance characteristics 
for disk storage units available for mini-computers 
allows for a great deal of configuration "tuning." 

These two hypotheses were in fact tested by simulat
ing the substitution of a single, relatively slow disk 
storage unit for both the swapping disc and the disk 
storage device. The replacement disk storage unit 
contains two removable "packs" with capacity of three 
million bytes each operating through a single disk con
trol unit. The essential performance characteristics of 
the replacement disk unit are: 

Average Seek Time-35 milliseconds 
Average Latency -12.5 milliseconds 
Transfer Rate -2.5 million bits/second 

The disk replacement was the only alteration to the 
fifteen terminal, 20K executable memory system pre
viously simulated (Tables IX and X). 

The result confirmed the hypothesis that the lower 
performance disk storage unit could replace the sepa
rate swapping disc and disk storage units with modest 
sacrifice in performance (Tables XI and XII). As 
hypothesized, the addition of 12K memory reduced the 



TABLE XI-Single (Slow) Disk NIS Internal Performance 

I Fifteen 
TermInals 

(20K) 
~ . 

I

,-,wappmg 

CPU Busy 
CPU Rejection I 

CPU Wait-,u I 
~ax. 

CPU vVait Until 50% 
66% 
95% 

Core Rejection 
Core Wait-,u 

Max. 
Core Wait Until 50% 

66% 
95% 

Total Swapin 
AVerage Core Life 
Swapping Disc Busy 
Disk Busy 
PRFR 

Disc/ 
Storage 
Disk* 

72.42% 

.019 

.18 
>5. 

61% 
.91 

1.62 
>5. 

.20 

.75 
4.0 

1158 
1.55 
3.41% 
6.22% 

.24% 

* From Table IX for comparison. 

Fifteen 
Terminals 

(20K) 
Slow Disk 

65.36% 
== 1 r,-1 UU • .1. 1(; 

.031 

.23 
4.8 

<.2 
61.8% 

1040 
1.73 

12.43% 
.253% 

Fifteen 
Terminals 

(32K) 
Slow Disk 

73.6% 
AOm 
"i:~ /0 

.037 

. 25 
4.8 

<.2 
56% 

.717 
1.104 
4. 

.18 

.25 
3.0 

675 
2.67 

12.98% 
.25% 

swapping considerably. The use performance statistics 
of the system would indicate that a single disk with 
lower total access time might completely restore the 
performance level. From this result, the configuration 
for the NIS system seems relatively well balanced to 
workload. It is comforting to know, however, that a 
variety of mini-computer system components (proces
sors, Cache memories, executable memories, disks, etc.) 
are currently available at relatively low cost for incre
mentally configuring such systems. 

CONCL USIONS 

On the basis of current computer system pricing, it is 
clear that a computer system configuration approxi
mating that of the final network interface systems 
simulated could be purchased for under $40,000. This 
would include 32K word executable memory, floating 
point arithmetic, a 6 million byte disk storage unit and 
controller, a processor equal or more powerful than 
the PDP-11/20, and a communications interface con
troller and line controller for 16 terminals. The simu
lation analyses indicate that this would provide a sys
tem with adequate performance capability for network 
interface only, for standalone use only, or for a com
bination depending on the specific character of the 
workload mix. In fact, all of the simulations have been 

Network Interface Systems 521 

T ABLE XII-Single (Slow) Disk NIS Use Performance 

Fifteen 
Terminals 

(20K) 
Swapping Fifteen Fifteen 

Disc/ Terminals Terminals 
Storage (20K) (32K) 
Disk* Slow Disk Slow Disk 

EDIT-mean 4.39 4.60 4.39 
-v 3.63 3.95 3.46 
-max . 18. 20.0 16. 

MACRO (NAM)-mean 49.2 59.57 50.9 
--(J' 18.9 21.0 13.6 
-max. 100. 110. 80.0 

EDIT 14 9 12 

FTP 24 16 20 

NAM 37 18 25 

TRAN 12 6 8 

':' From Table X for comparison. 

conducted with very intensive workload characteristics 
and have assumed that all of the terminals simulated 
were simultaneously heavily active. Hence, it seems 
likely that local use patterns for such systems would 
be less demanding than those simulated. Moreover, it 
is relatively easy to visualize the price of small com
puter systems on the order of those simulated to con
tinue to drop dramatically. 

If one amortizes the purchase price of such a system 
over a period of three years, the incremental cost per 
terminal for the network interface system and sub
stantial standalone capability already comes to less 
than $1000. It might reasonably be expected that this 
investment could be recouped several times over in 
reduced networking costs (connect time, etc.) and in 
more effective use of the human user's time. Consider
ing the capability promised by a combination of the 
small standalone computer system in conjunction with 
a hierarchical interface to a variety of network host 
computers, it seems likely that such an investment 
might be wise. 

REFERENCES 

L Marienthal, Louis B., "Small Computers for Small Busi
nesses," Datamation, June, 1975. 

2. vVyatt, Joe B., "Computer Systems: Simulation," Chapter 
19, The Information Systems Handbook, Editors: F. Warren 
McFarlan and Richard L. Nolan, Dow Jones-Irwin, Inc., 
1975. 

3. The Harvard/Radcliffe Student Time-sharing System Ter
minal Users Guide, 1st edition, September 10, 1974, Center 
for Research in Computing Technology, Harvard Uni
versity. 

4. Rosenthal, Robert, "Accessing On-line Network Resources 
With A Network Access Machine," IEEE Intercon 1975, 
IEEE, Nev, York, 1975. 





An overview of the distributed computer network* 

by DAVID L. MILLS 
University of Maryland 
£,,_11 ___ D __ l. 1\11" __ •• l __ -l 
vUllt::~t:: ~ GI.~l\., .L,~a~ y J.a.J.!U 

ABSTRACT 

The Distributed Computer Network (DCN) is a re
source-sharing computer network which includes a 
number of DEC PDP11 computers. The DCN sup
ports a number of processes in a multiprogrammed 
virtual environment. Processes can communicate with 
each other and interface with this environment in a 
manner which is independent of their residence with
in a particular computer. Resources such as proces
sors, devices and storage media can be remotely ac
cessed and shared so as to provide increased reliability, 
flexibility and system utilization. 

The DCN now supports several programming lan
guages and applications packages. Programming 
languages such as SIMPL, LISP, BASIC and others, 
along with an extensive library of interactive graphics 
procedures, can be executed in processes which take 
full advantage of the distributed architecture of the 
network. Many of the components of the Disk Operat
ing System (DOS) for the PDP11 can be executed in 
a special emulator-type virtual process now being 
constructed for this purpose. In this manner the PDP-
11 assembler, FORTRAN compiler and various system 
utilities can be supported in the network environment. 
In cases which exceed the processing power of the net
work, connections are available to two large Univac 
1100-series machines. 

INTRODUCTION 

A resource-sharing computer network is a collection 
of computers and communication facilities in ,:llhich 
resources resident on one computer can be accessed 
remotely from another.9 A distributed computer net
work is a resource-sharing network in which resources 
are managed on a global scale so that files and processes 
can migrate throughout the network as determined 
by user requirements and the current system loading. 
In distributed networks individual users need not 

* This research was supported in part by Contract N00014-67-
A-0239-0032 from the Office of ~aval Research and Grant GK-
41602 from the National Science Foundation. 

523 

necessarily be aware of the physical location of their 
resources. 

The Distributed Computer Network (DCN) project 
started at the University of Maryland in 1973 with a 
single PDP 11/45 which could be connected to either a 
dual-processor Univac 1108 or a single-processor Uni
vac 1106. The PDP11 was to be used to develop a 
virtual-processor based operating system suitable for 
operation on a number of PDP11 computers. The 1106 
and 1108 (hereafter referred to collectively as the 
1100) were to be used for data-base residence and as 
a computational resource. Other papers and re
portsll ,12,H-18,25 have described original design objec
tives for the DCN and the operating systems developed 
for it. 

The DCN has since grown to include several PDP11 
computers and peripherals interconnected by a variety 
of interprocessor links and data communication de
vices. The operating system which controls the re
sources of the DeN exists in two versions. One of 
these, called the Virtual Operating System (VOS), 
supports virtual-processor emulation of standard 
PDP11 programs and requires the storage manage
ment features of the PDP11/45 or the PDP11/70. The 
other, called the Basic Operating System (BOS), sup
ports special-purpose dedicated applications in PDP11 
models without these features, including the GT40 
Display Processor and the LSI-II Microprocessor. 

Design objectives 

The DCN was originally intended as a research tool 
for the development and evaluation of resource alloca
tion and management techniques suited to the dis
tributed environment. Although intended to be used 
by students and faculty, it was not anticipated that 
the DCN would replace other operating systems like 
RSX11 1 and UNIX21 in all, or even most, applications. 
The foremost objectives in the DCN design are sum
marized below: 

1. The supporting network software must be able to 
run in a wide variety of equipment configurations 
and hardware options. In particular, it must be 



524 National Computer Conference, 1976 

possible to support intelligent terminals such as 
the GT40 and LSI-II without requiring major 
system redesign or loss of critical features. 

2. The environment of a process must be uniform 
throughout the network. Requests for network 
services such as activation of programs, access to 
storage media, communication with other processes 
and interface with the network data base must be 
standardized so that program and data files can be 
moved between processing sites with a minimum of 
reprocessing. 

3. The network data base must be accessible to every 
process, regardless of its location. At least in the 
case of simple sequential access, the process should 
not need to be aware of its own location in the net
work or that of a requested file. The data base 
cannot be rendered unusable to all users if a single 
catalog or dictionary fails. 

4. Input/output devices such as card readers, line 
printers and terminals must be accessible from 
anywhere in the network, either directly or through 
a spooling facility. An access method must be avail
able for special-purpose resources such as array 
and transform processors, digital and analog input/ 
output devices, and channels to other machines. 

5. A comprehensive capability for performance moni
toring and functional control must be built into 
the network. Using these capabilities it must be 
possible to experiment with and evaluate a wide 
spectrum of resource-allocation techniques and 
methodologies. Systems for data-base access, pro
cessor scheduling and process residency should be 
modular and separable, so that experimental sub
stitutions can be made. 

6. Finally, the system should be well-structured and 
capable of exploitation by graduate students and 
research workers. Design principles should be 
widely applicable and consistently applied. To the 
fullest extent practicable it should be possible to 
incorporate existing system and application soft
ware into the network without modification and to 
incorporate new hardware and software without 
extensive system redesign. Reasonable insulation 
and protection from software bugs should be pro
vided. 

Several systems now in existence or under develop
ment share some of these objectives. RSEXEC,9,23 
which operates as a subnetwork of the ARPA net
work, provides capabilities for remote file and device 
access. As in RSEXEC, the structure of the DCN is 
based on a virtual-storage and virtual-processor orga
niza tion. Processes, devices and files can be accessed 
from anywhere in the network by a standard com
munication protocol. System integrity is enhanced by 
a hierarchical collection of loosely-coupled service 
processes which monitor user requests and poll each 
other for system status. 

DCS/-8,22 which includes special-purpose hardware 
and communications facilities, incorporates a network
wide standard process naming and accessing protocol. 
As in DCS, DCN processes are named and given a 
unique identity within the network. Re:::;ources are 
identified and accessed with processes. Critical infor
mation is maintained in multiple copies and system 
damage due to lost system components, such as cata
logs, is minimized by use of a standard set of recovery 
procedures. 

Network configuration 

The current configuration of the DCN, shown in 
Figure 1, includes six PDPll CPU's with a total of 
about 360K bytes of processor storage and 13M bytes 
of direct-access storage. Communication bandwidths 
between the machines vary from 30 bytes/sec to about 
300K bytes/sec, depending upon the facilities available. 
The three PDP11/45 machines, some of which cannot 
be dedicated to DCN use at all times, constitute the 
principal supporting resource for the other machines 
in the network. One of these machines includes spe
cial hardware for picture processing, another includes 
special hardware for real-time signal processing and a 
third includes interactive and remote-batch connec
tions to the Univac machines. The GT40, PDP11/40 
and LSI-II are used for specialized terminal support 
and as test beds for the evaluation of small systems. 
Any of these machines can be connected by asynchro
nous lines at speeds to 9600 baud. 

The 1100 machines provide all program preparation 
facilities available at present, including the cross as
sembler, cross compilers and cross link-editor. They 
are connected to the PDPl1 network by either a 1200-
baud a.s:r-lJ.Chrolloil5 il1t~radivt: port, Ly a 9600-Lauu 
synchronous remote-job entry port or by both at the 
same time. This provides facilities for exchanging 
program and data files between the 1100 machines and 
the PDP11 network. 

SYSTEM ARCHITECTURE 

Most DCN operations are performed in the context 
of a process. A DCN process includes procedure code, 
data storage and an interface for communicating with 
other processes and components of the network. Man
agement of this environment is performed by the ker
nel (see Figure 2), which includes mechanisms for 
input/output device interface, storage allocation, 
process scheduling, interprocess communication and 
other similar functions. A hostel is an abstraction of 
a virtual environment in which a set of processes can 
interact with the kernel. An operating system for a 
hostel includes certain components of the kernel resi
dent in the hostel (the supervisor) and, in addition, 
certain processes to manage system resources such as 
input/output devices, catalogs and files. 



262K 
FIXED-HEAD 
DISK 

Overview of Distributed Computer Network 525 

1.2M 
DI SK CARTRIDGE 

I 
PDP 11/45 ~ UNIBUS LINK 

j 
PDP 11/45 

1 
I 32K CORE 

I MEM. MGMT. 
I 

R/T CLOCK 1200 GT40 
asynch. 

8K CORE 

CRT 

UNIVAC PDP 

1106 96K 
Real-Time 

I 

I 

L 

11/45 

CORE 

24K CORE 

MEM. MGMT. 

R/T CLOCK 

---r;---,;:--\ --< 

PDP 

16K 

Real-Time I 
Data I 

RTTY/CW 
CONVERTER 

11/40 

CORE 

(COMPUTER MEM. MGMT. MEM. MGl'vIT. 
Data 

SC IENCE R/T CLOCK R/T CLOCK 

CENTER) (Picture 
Processing) 

Figure i-System configuration 

There are at present two multiprogrammed operat
ing systems for DCN hostels. One of these, called the 
Virtual Operating System (VOS), provides full capa
bilities for user processes in a general-purpose pro
gram development and execution system. The other, 
called the Basic Operating System (BOS), provides 
a limited subset of these capabilities for special-pur
pose data collection and processing systems. Both sys
tems can be intermixed in the network and cooperate 
in providing the services to maintain the distributed 
environment. 

The BOS is designed to operate in a minimum 
PDP11 configuration including at least 4K words of 
storage, an operator's console and a communications 
device for connection to the DCN. The VOS is de
signed to operate in a PDP11/70 or PDP11/45 con
figuration including at least 16K of storage, the mem
ory management (hardware relocation) unit, an 
operator's console and a communications device. A 
rather extensive set of direct-access storage devices 
and communication devices can be supported in either 

system by simply including the appropriate modules 
at system generation time. Examples of supported 
devices include fixed and moving head disks, magnetic 
tapes, synchronous and asynchronous serial communi
cations devices and high-speed interprocessor links. 

The vas and BOS are structured in a similar man
ner. They consist of the supervisor, a set of user 
processes and a set of system processes. The super
visor consists of a number of routines to schedule 
processes, dispatch device interrupts and coordinate 
interprocess communication. User processes are de
signed to execute one or more application programs, 
depending on the particular system configuration. 
System processes include device processes, which man
age the set of input/output devices configured in a 
particular installation, and service processes, which 
perform network management functions. 

In the vas, which requires the memory manage
ment unit, there are two types of processes: real and 
virtual. Real processes share a subset of the virtual 
address space of the supervisor and are designed to 



526 National Computer Conference, 1976 

TAPi: 

DRIVE J 

DISK 

\ 
\ 

I 
USER 

PROCESS 

) 
USER' ) 

'" PROCESS
1 

/ 

, ---------

~-. ~ 

Figure 2-System structure 

support peripheral devices, such as the operator's 
console, communications lines, and direct-access stor
age devices. Virtual processes have individual virtual 
address spaces and are designed to support applica
tion programs and network management programs. 
In the BOS all processes are real, including those 
which support application programs and network 
management functions. 

Figure 3 shows the hierarchical relationships be
tween the various components of the VOS. The BOS 
is constructed the same way but does not have all of 
the functions shown. Level zero, consisting of the 
resident supervisor, provides management of process 
scheduling, interprocess communication, processor 
storage and interrupt dispatching. Level one consists 
of the port dictionary process, which provides access 
to named interprocess communication channels, or 
ports. (The port dictionary process itself is accessed 
by a predefined or well-known-port.) Level two, con
sisting of a set of device processes, provides an ab
straction of the physical devices as a set of processes 
in which all data transfers are in the form of standard 
messages. Level three, consisting of a set of swapper 
processes, manages the virtual-storage operations in 
the system and supervises segment transfers between 
processor and direct-access storage. Level four con
sists of a set of dictionary processes providing access 
to named virtual files. 

The supervisor and levels zero through four are 
specific to each hostel in the network. Processes at 
higher levels are free to migrate throughout the net
work driven by user requests and network manage
ment policies. Level five consists of the catalog sys-

Level 

o 

1 

2 

3 

4 

5 

6 

7 

Component 

Supervisor 
(resident) 

Port 
Dictionary 
(resident) 

Device 
Processes 
(resident) 

Swap per 
Processes 
(resident) 

File System 
(swapped) 

Catalog 
System 
(swapped) 

Stream Demon 
(swapped) 

User Process 
(swapped) 

Services 

message buffering 
system initialization 
interval timer 
prucess scheduiing and iimeslicing 
process synchronization (P, V) 
processor storage allocation and map-

ping 
swap queue management 
interrupt vectoring 

port name/address translation 

operator's console 
interhostel communications 
swap devices 

demand segment-fetch policy 
modified LRU segment-replacement 

policy 
compaction and garbage collection 

volume dictionaries 
capability dictionaries 
access demons 

volume dictionary access 
port dictionary access 
capability dictionary access 

sequential file access 

message interface 
file-system interface 
catalog-system interface 
interrupt management 
virtual-storage management 

Figure 3. System Hierarchy 

tern, a hierarchical set of processes which provides 
access to volume and port dIctIOnarIes by means of a 
sequential decomposition of file and port names. Level 
six, consisting of a set of stream-demon processes, 
provides sequential access to virtual files. Level seven 
consists of a set of user processes. Each of these uses 
the services provided by the preceding levels to create 
an environment in which a conventional application
oriented program can operate. 

Virtual storage management 

The PDPll/45 equipped with the memory manage
ment unit provides a hardware relocation facility 
which can be used to realize a virtual storage system. 
The memory management unit provides three sets of 
relocation registers, one set corresponding to each of 
the user, supervisor and kernel states. Each of these 
states is associated with a distinct processing environ
ment: the kernel state is associated with the basic 
process scheduling and processor storage mapping 
functions; the supervisor state is associated with a set 
of supervisor processes used to manage the input/out
put and swapping functions; the user state is associ-



ated with all other processes, including those for 
resource management and application programs. 

Processor storage mapping functions are handled 
differently in the three states. In kernel state the 
mapping is fixed, since all segments are resident in 
processor storage. In supervisor state the mapping 
includes the particular segment which contains the 
process procedure and, in addition, certain procedures 
of the kernel which can be called by the process. In 
user state the mapping includes only those segments 
which have been explicitly requested by the process 
using a set of supervisor primitives constructed for 
the purpose. 

The virtual storage space available in the three pro
cessor states is shown in Figure 4. The segments ac
cessible in kernel state are resident at all times in 
processor storage. Segments accessible in supervisor 
state for procedure code are made resident as each 
process is installed, which can occur dynamically as 
part of normal system operations. Segments in user 
space are swapped from direct-access storage to pro
cessor storage according to a demand-fetch policy, in 
which the transfer occurs only upon actual reference. 
Segments are removed from processor storage accord
ing to a modified least-recently-used policy. 

All segments in processor storage except those used 
for message buffers, etc., have images on direct-access 
storage as segments of files. The remainder are used 
by the supervisor for scheduling, buffering and mes
sage-transmission operations. Associated with every 

SUPERVI SOR 

SPACE 

(S::?-'.R-'. TE FOR 

LICH PiWCESSj 

Ii\STRUCTION 

MiD 

DATA 

/ 

Figure 4-Storage mapping 

KERNEL 

SPACE 

Overview of Distributed Computer Network 527 

process is a control segment, which contains space for 
scheduling parameters, general registers, storage
mapping registers, and so forth. As each process is 
scheduled its control segment is mapped into kernel 
space, but not into user space. This provides an ex
ceptionally clean and secure interface, since there is 
no way that a virtual process can access any segment 
other than those validated by the supervisor. 

lnterprocess communication and synchronization 

Due to the distributed nature of the DCN, processes 
cannot in general communicate by means of shared 
storage. Instead, a highly-developed stream-oriented 
interprocess communication and synchronization fa
cility is provided. This includes the capability for 
transmitting variable-length messages from any pro
cess in the network to any other and provides for the 
automatic routing of messages between hostels, so that 
the sending and receiving processes are not in general 
aware that their correspondent is in the same or a 
different hostel. 

Functional control over message formatting, flow 
control and routing is provided by the supervisor, 
together with a set of system processes. The supervi
sor includes primitives for sending and receiving mes
sages on a byte-by -byte basis. A set of system processes 
formats them for transmission over a communication 
circuit or interprocessor link as required. A common 
buffer pool is maintained in each hostel so that sepa
rate buffers for each process are unnecessary. 

A message, consisting of a string of bytes preceded 
by a header, is sent by a process to a named connector 
called a port. The concept of port, as used here, is 
similar to those of Walden/"! Farber5 and Carr2 (al
though called by different names). One or more 
named ports can be allocated to a particular process 
on request. A port is always allocated to the receiving 
process, although any number of processes can send 
to it. A port name is accessed in the same fashion as 
a file name. The catalog system (see below) provides 
access to a port dictionary maintained at the hostel in 
which the port is allocated. Each entry in this dic
tionary includes the name of the port, its address and 
a pointer to the process to which it is allocated. 

Ports are identified according to a 16-bit integer 
called the port address. For efficiency in message 
transmission and routing, the port address is split into 
two 8-bit fields: the hostel ID (HID) and the process 
ID (PID). System processes which transmit messages 
between hostels use the HID to determine the routing, 
while the supervisor within each hostel uses the PID 
to determine the particular port within the hostel. 

The use of HID and PID fields in the port address 
would seem to constrain the mobility of ports. In 
fact, as shown in Reference 17, recovery from tran
sient system failures requires that all processes with 
knowledge of a port address be able to correct the 



528 National Computer Conference, 1976 

address if the process to which it is allocated moves 
unintentionally. This is a special case of capability 
revocation (see below). Since in the DCN design in
tentional process movements are not expected to occur 
very often, the same correction mechanism is applied 
in both cases. 

THE CATALOG SYSTEM 

Files and ports are accessed by a hierarchical set of 
catalogs in a manner similar to DCS.6,7 Each catalog 
is associated with a process which provides the name 
of another process when given the fully qualified name 
(see Figure 5). The chain of processes accessed in this 
way terminates either at the dictionary process for 
the volume on which the file resides or the port dic
tionary for the hostel in which the port is allocated. 
The catalog and dictionary structure is such that each 
catalog and its access process can be re-created (per
haps on another volume or hostel) if the storage media 
used to store the catalog or the processor or process 
which services it fails. IS 

At least one volume at each hostel contains the sys
tem catalog, which is at the top of the catalog system 
hierarchy. This catalog is replicated in each hostel 
so that failures do not compromise accesses to files in 
other hostels. Other catalogs may be replicated as 
well in the interest of efficiency and reliability. A sys
tem of continuous consistency checks is now in im
plementation17 to insure that the catalog system re
mains intact in the face of transient system failures. 

'YSTHI 

H.-'lLOGS 

.1'RE'J 

FRED. T 

FRED. QQ 

FRED 

SAM 

HL3 

(hestel 1) 

SAM.XYZ 

SAM.PHT 

(hos tel 3) 

Figure 5-Ca talog system 

l :.'Jstel 2) 

FRED 

SAM 

HL3 

H"3.CRS 

(;,ostel 3) 

HL3. TT~ 

HL3.DK~ 

HL3.CRE 

HL3 

(hostel 2) 

PORT 

DICTIO,\ARY 

THE VIRTUAL FILE SYSTEM 

A file consists of a number of variable-size segments, 
each of which can be assigned one of several access 
keys. The segments can be used in any way required
sequentially or randomly-according to the needs of 
the process. A dictionary is maintained on each direct
access volume in the vas hostel. Each file on the 
volume is represented by an entry which includes the 
fully qualified name of the file and the location, length 
and access key of each of its segments. The dictionary 
is maintained by a special process, called the volume 
dictionary, which responds to requests for additions 
and deletions of dictionary entries and for accesses to 
files on the volume. 

The segments of a file are accessed by first opening 
the file and then mapping the specified segment into 
the virtual storage of the requesting process. A file 
is opened by sending a message through the catalog 
system to the appropriate volume dictionary, which 
returns its port address to the requesting process. A 
segment is mapped into virtual storage by sending 
another message to the indicated volume dictionary 
process, which returns the address of the segment on 
the volume. When the segment is referenced this 
address is sent to the swapper, which transmits the 
segment to processor storage. A service process called 
the stream demon provides for the connection of a 
sequentially-structured file to a selected port for input 
or output. This provides a simple sequential access 
method for use by system translators and utility pro
grams. More sophisticated access methods are cur
rently being considered. 

PROTECTION MECHANISMS AND 
CAP ABILITIES 

The environment accessible to a process is com
pletely determined by the set of port addresses and 
segment addresses known to the process. Each of 
these are protected quantities and cannot be inspected 
or changed directly by the process. A new port as
signment or segment mapping can occur only as a 
result of a designated supervisor primitive in which 
each port address and external address has a local 
name (or table index) known only to the process. 

In order to send a message to a port, a process must 
first obtain its address from the catalog system and 
then obtain authorization from the process which is 
allocated that port. In both of these cases access can 
be controlled by means of a password or key. In order 
to access a virtual file segment the file must be opened 
and the segment mapped into virtual storage. This 
requires obtaining the port address of the dictionary 
process, the address of the segment and the segment 
access key. In addition, every virtual storage segment 
can be assigned a storage access key. An access gen
erated by an application program is checked against 



these keys and is permitted only if validated by both 
of them. Thus, access to a virtual storage segment can 
be controlled by the file system, using a password re
quired to open the file or change the segment access 
key, or by the user process, using the same mechanism 
to change the storage access key. 

These mechanisms can be readily generalized and 
interpreted as capabilities.3 In a very real sense a 
port address is a capability which provides access to a 
port. Only one kind of access permission is implied by 
Ll_.!_. _____ l_!l!L __ L1 __ L _~ _____ 1! ________ . _____ L_ Ll ________ L 

LIU~ CctpctUll1LY-LIlctL U.l ~eIluIIlg IIH~~~ctge~ LU LIle purl,. 

A segment access key of the appropriate type is a 
capability which implies permission to read, write or 
execute the segment. In this context the ability to 
obtain either capability depends upon the knowledge 
of the name of the port or file and the password pro
cedures involved. 

NETWORK FACILITIES 

The mechanisms described so far provide for a uni
form treatment of hostels, processes and interprocess 
communication. It remains to build on this base to 
show how the operations of the network are organized. 
It will be most illuminating to consider the appearance 
of the network from the user's point of view and then 
describe how his requests are processed by the super
visor and system processes. 

The user process 

The DCN appears to a user as an hierarchical col
lection of user processes. A user process can be viewed 
as a region of processor storage into which can be 
loaded or mapped one of a number of application pro
grams. In the VOS the region consists of one or more 
segments of virtual storage as necessary to contain 
the procedure and data segments of the application 
program. In the BOS the region consists of perma
nently resident fixed-size blocks of storage containing 
shared re-entrant code. 

The storage management policy of the user process 
is characterized by a hierarchical overlay structure. 
In the VOS most of the 65K-word virtual space is 
available for the application program. Each overlay 
consists of a program file, which can contain procedure 
and data segments. An overlay is initiated by mapping 
these segments into the virtual storage of a user 
process and allocating a segment of the process file as 
a stack. When one overlay calls another, the virtual 
storage mapping of the calling overlay is saved on 
the process stack, the virtual storage mapping of the 
called overlay replaces that of the calling overlay and 
a new process stack segment is allocated. When the 
called overlay terminates, the process stack segment 
and virtual storage mapping of the calling overlay is 
restored and the stack space released. 

Overview of Distributed Computer Network 529 

Network operations 

When the user process is first invoked a simple com
mand language interpreter (CLI) is mapped into 
storage. The CLI is capable of responding to a number 
of operator commands, including the following: 

1. A set of commands to link to another user process 
and to return to an old user process. 

2. A set of commands to establish an association be
tween a named port and logical port number as 
used by the application program. 

3. A set of commands to send data and control mes
sages to other processes. 

4. A set of commands to select an application program 
(possibly from a library) for execution. 

Additional commands are available in some user pro
cesses for debugging and auxiliary storage manage
ment. A typical set is summarized in Figure 6. 

When a user logs on the system he is connected to a 
system process called the logger. During the log-on 
procedure a user profile is constructed which con
tains such information as the default user name to be 
used in file-access operations and the default hostel 
name to be used in some port-access operations. Fol
lowing the log-on procedure the user specifies the 
name of the user process in which his application pro
gram is to run. This is presently done by specifying 

Command 

ASG <lpn> <portname> 

SEND <lpn> <message> 
EOF <ipn> <message> 
ATTN <lpn> <message> 
CTRL <lpn> <message> 

DISPLAY <bgnadr> 
<nwords> 

ALTER <bgnadr> 
<value> ... 

SENSE <lpn> 
TEST <nlines> <code> 
RESET 

FORK <lpn> <message> 
JOIN <message> 
END <message> 

LOAD <lpn> 
START <adr> <parame-

ters> 

LOGON <parameters> 
PROFILE <parameters> 
LOGOFF 

RUN <portname> <parame
ters> 

LINK <portname> <mes
sage> 

Function 

assign a port to a lpn 

send various types of messages 
to processes identified by Ipn 

commands used for debugging 
and system testing 

commands to initiate and termi
nate user processes and to 
control synchronization be
tween calling and called 
processes 

commands used to load applica
tion programs and initiate 
execution 

commands to log on and off and 
establish user profile (de
faults) 

combination of ASG, LOAD and 
START 

combination of ASG, CTRL and 
FORK 

«lpn> is logical port number) 

Figure 6-Command Summary 



530 National Computer Conference, 1976 

a hostel name (possibly remote) together with a user 
process name in that hostel. 

Connections to the specified user process are estab
lished by searching the catalog system for the process 
name. If found the U8er is connected immediately to 
that process; if not, a new user process is created in 
the hostel indicated in the user profile and the user 
connected to it. In either case, the user profile is trans
mitted to the new process, so that it has access to all 
the files and ports of the old one. In a similar manner 
a user process can initiate another user process to per
form some function while the old process either con
tinues or is suspended until the new process terminates. 
When communications are terminated between the 
user and the original user process, the logger once 
again assumes control and the user can either log off 
or select a new user process. 

APPLICATIONS SUPPORT CURRENTLY 
A V AILABLE IN THE DCN 

The development of the DCN has reached the point 
where many application programs can be supported 
in the network environment. In a complex system 
such as this, confidence in the utility and capability 
of the system is gained only through user experience. 
The facilities described below were developed pri
marily to test the suitability of the DCN for their 
operation. 

A special emulator, now in development, provides a 
virtual-processor environment in which programs 
written for the manufacturer's Disk Operating System 
(DOS) can execute. The emulator includes a set of 
supervisor-call interpreters compatible with DOS and 
with which commands can be entered into input/output 
devices and sequential files. Only those programs 
which are "well behaved" in the DOS sense can be sup
ported (i.e., do not reference device registers directly) . 
Although load modules produced by the DOS assem
bler, FORTRAN compiler and linker are well behaved 
in this sense, some of the system components within 
DOS, in particular the FORTRAN compiler itself, 
require direct file access, which is not supported in the 
DCN. In the FORTRAN compiler direct file access is 
required only to accomplish an overlay function, which 
is provided in a different fashion by the VOS itself. 
Work is under way at the moment both to provide di
rect file access and to change FORTRAN to call the 
VOS overlay facilities rather than its own. 

Several cross assemblers and cross compilers are 
available on the 1100 machines, including the assem
bler, link editor, and the SIMPL and ULP com
pilers.1 ,13,19 Programs in these languages are usually 
compiled and link-edited on the 1100 machines and then 
transmitted to the PDP11 network by means of real
time or remote-batch facilities. In addition, a PDP11 
version of the ULP compiler and real-time inter
preters for LISplO and BASIC are available on the 
PDP11 network. 

Several application packages have been constructed 
for use in the DCN. These include two and three di
mensional graphics transformations (which can be 
used in real-time by the GT40) ,20 an interactive in
struction-trace lIlOnitor and paging simulator, a VO
TRAX speech synthesizer driver and various signal 
processing and recording routines for satellite track
ing and telemetry. 

SUMMARY AND CONCLUSIONS 

The facilities of the DCN are now being used to 
develop several applications packages, including in
teractive graphics and image-processing systems, real
time data collection and processing systems and inter
active calculator systems. These tools are also being 
used to study program behavior in the distributed en
vironment. The distributed nature of the network and 
the organization of the VOS and BOS operating sys
tems have greatly facilitated these tasks and have 
aided in the refinement of the DCN concepts. 

At present many of the original design goals for 
the DCN have been realized. Still remaining to be 
developed are additional mechanisms to aid in a strat
egy for automatic file and process migration, load 
leveling and performance monitoring. These mecha
nisms are of course at the heart of the concept of the 
distributed network and indicate the direction of fu
ture research. The most important aspect of the DCN 
at its present level of development is that it forms the 
basis of a set of tools to study operating systems 
architecture, data-base organization and communica
tions strategies as applied to networks supporting 
distributed resources. 

REFERENCES 

1. Basili, V. R., The SIMPL Family of Programming Lan
guages and Compilers, Computer Science Technical Report 
TR-305, University of Maryland, June 1974. 

2. Carr, C. S., S. D. Crocker, and V. G. Cerf, "HOST-HOST 
Communication Protocol in the ARPA Network," Proc. 
AFIPS, 1970 SJCC, pp. 589-597. 

3. Dennis, J. B. and E. C. van Horn, "Programming Seman
tics for Multiprogrammed Computations," Comm. ACM 9, 
3, March 1966, pp. 143-155. 

4. Digital Equipment Corporation, Introduction to RSXll-D, 
Form DEC-ll-OXINA-A-D, Digital Equipment Corporation, 
1974. 

5. Farber, D. J. and K. Larson, "The Structure of a Dis
tributed Computer System-Communications," Proc. Sym
posium on Computer CommunicOJtions Network and Tele
traffic, Brooklyn Polytechnic, 1972. 

6. Farber, D. J. and K. Larson, "The Structure of a Dis
tributed Computer System-Software," Proc. Symposium on 
Computer Communications and Teletraffic, Brooklyn Poly
technic, 1972. 

7. Farber, D. J. and F. R. Heinrich, "The Structure of a Dis
tributed Computer System-The Distributed File System," 
Proc. ICC-Impacts and Implications, October 1972. 

8. Farber, D. J., "Data Ring Oriented Computer Networks," 



in Cou(,pute·; "fJetwo'rks, R. Rustin (Ed.), Prentice Hall, 
Inc., Englewood Cliffs, N.J., 1972. 

9. Kahn, R. E., "Resource-Sharing Computer Networks," Proc. 
IEEE 60, November 1972, pp. 1397-1407. 

10. Kirby, R. L., PDP11 LISP Documentation, Computer Sci
ence Technical Report TR-400, University of Maryland, Au
gust 1975. 

11. Lay, W. M., D. L. Mills and M. V. Zelkowitz, "Design of a 
Distributed Computer Network for Resource Sharing," 
AIAA Computer Network Systems Conference, Huntsville, 
Alabama, April 1973. 

12. Lay, W. M., D. L. Mills and M. V. Zelkowitz, "Operating 
Systems Architecture for a Distributed Computer Network," 
ACM Conference on Trends and Applications of Minicom
puter Networks, Gaithersburg, Maryland, April 1974. 

13. Lay, W. M., A. K. Stebbens and J. A. Pollizzi, PDP11/ 
Univac 1108 Cross Assembler System, Computer Science 
Technical Report TR-422, University of Maryland, October 
1975. 

14. Mills, D. L., An Overview of the Distributed Computer 
Network. Computer Science Technical Report TR-413, Uni
versity of Maryland, October 1975. 

15. Mills, D. L., W. M. Lay and J. Pollizzi, The Virtual Op
erating System for the Distributed Computer Network, 
Computer Science Technical Report (in preparation). 

16. Mills, D. L., The Basic Operating System for the Distributed 
Computer Network, Computer Science Technical Report TR-
416, University of Maryland, January 1976. 

17. Mills, D. L., Transient Fault Recovery in the Distributed 

Overview of Distributed Computer Network 531 

Computer N etworlc. Computer Science Technical Report 
TR-414, University of Maryland, January 1976. Condensed 
version in: Proc. NBS IEEE Trends and Applications 1976 
Symposium (to appear). 

18. Mills, D. L., Dynamic File Access in a Distributed Computer 
Network, Computer Science Technical Report TR-415, Uni
versity of Maryland; January 1976, 

19. Mills, D. L., Structured Programming and Compiling in a 
Minicomputer Environment, Computer Science Technical Re
port TR-339, University of Maryland, October 1974. Con
densed version in: Proc. IFIP TC-2 Working Conference 
on Software for Minicomputers, Lake Balaton, Hungary, 
Sept.ember 1975. 

20. Mohr, J., A Graphics Supervisor for the GT40, Computer 
Science Technical Report TR-440, November 1975. 

21. Ritchie, D. M. and K. Thompson, "The UNIX Time-Sharing 
System," Comm. ACM 17, 7, July 1974, pp. 365-375. 

22. Rowe, L. A., M. D. Hopwood and D. J. Farber, "Fail-Soft 
Behavior in the Distributed Computer System," IEEE Sym
posium on Computer System Reliability, New York, April 
1973, pp. 7-11. 

23. Thomas, R. H., "A Resource Sharing Executive for the 
ARPANET," Proc. AFIPS, 1973 NCC, pp. 151-163. 

24. Walden, D. C., "A System for Interprocess Communication 
in a Resouce Sharing Computer Network, Comm. ACM, 15, 
4, April 1972, pp. 221-230. 

25. Zelkowitz, M. V., "Simulation and Implementation of Com
puter Networks," Proc. Thirteenth Annual ACM Washing
ton Chapter Symposium, June 1974. 





A network-oriented multiprocessor front-end 
handling many hosts and hundreds of terminals 

1-. •• 'nT T.'I 1\ .... A lIo.TlIo.T C1 1\ .... Al:>lIo.TCrnDTlIo.T ~_.J 1\ .... T.'I TTl:> AT D"" U-y n'. ~'. J.U.t:1.J. 'I J. 'I, o. J.U. V 1.\.J. 'I t..:l 1. ~J.J. 'I tUlU J.U. ~'. .n..~\..t:1..LI~ ~ 

Bolt Beranek and Newman Inc. 
Cambridge, Massachusetts 

ABSTRACT 

The authors discuss the design of a large-scale front
end computer in terms of system requirements, avail
able technology, and the authors' experience with the 
ARP ANET. The design is contrasted with that of the 
ARP ANET TIP. Issues discussed include the ehoice 
of hardware configuration (CPU requirements, relia
bility, modularity, terminal interface units), what 
facilities to provide in the front-end, the communica
tions protocol between front-end and Host, flow control 
on various inter-computer data paths, and data buffer
ing strategies. The resulting system is being installed 
at the Research Computer Center at Bolt Beranek and 
Newman Inc. 

INTRODUCTION 

In recent years there has been a tremendous increase 
in the use of computer terminals and other types of 
remote access facilities. Part of this increase ean be 
attributed to the proliferation of time-sharing systems, 
which by their nature require multiple terminal access. 
But more generally, the growth of data communications 
has gone hand-in-hand with increasing remote usage 
and with the interconnection of remote facilities to 
form various kinds of computer networks. Servicing 
aecess ports, since it can consume a significant fraction 
of the main computer's power, has been off-loaded 
both to specialized I/O ehannel processors and to more 
general "front-end" processors. As time has passed, 
and because of the somewhat speeialized nature of the 
job, the design of such machines has evolved into an 
independent art form. 

Our group at Bolt Beranek and Newman has been 
deeply concerned with the evolution of this sort of 
machine through our work in the development of the 
ARP ANET.l Designing the Interface Message Proces
sors (IMPs) 2 and Terminal Interfaee Message Proces
sors (TIPs) / both based on the Honeywell 316 line of 
eomputers, and later the Pluribus IMP/ has involved 
us in many issues of communications proeessing. 

533 

Recently we have built yet another front-end computer 
to provide connections among several on-site Host 
computers, a number of shared peripheral control com
puters, several network ports, and a large (and in
creasing) number of terminals of various types. As 
such requirements are becoming increasingly common, 
we felt it would be useful to discuss some of the design 
issues we have confronted and the particular solutions 
we have chosen. 

Because requirements have varied widely from one 
site to another, many front-end processors have devel
oped as ad hoc solutions to particular problems (e.g., 
Reference 5). It has often proved difficult to estimate 
how much computer power will be required and to 
anticipate how fast requirements will increase, and in 
a number of instances the resulting systems have not 
proved terribly satisfactory.6 In some eases the front
end processor was underdesigned for the known re
quirements and eventually ran out of proeessing band
width, memory address space, I/O ports, or memory 
channels; in other words, the system reached some sort 
of growth limit. In other cases one or more of these 
limits was reached because the requirements expanded 
much more rapidly than expected. 

One solution to these difficulties is a system capable 
of relatively easy expansion. Over the past several 
years we have been developing just such a line of ma
ehines, known as Pluribus, and have reported on this 
work at earlier National Computer Conferences.4

,7 The 
Pluribus is a modular minicomputer-multiprocessor 
which cannot only meet expanding requirements 
through a smooth process of growth, but can also pro
vide extreme reliability when used with an adaptive 
program able to utilize redundant hardware resources. 
In the following paragraphs we provide a brief update 
to our earlier reports. 

A number of Pluribus machines have been built and 
are now working in a variety of environments. One is 
installed in the ARPANET as a high-speed IMP; it is 
currently connected to four Hosts as well as to five net
work lines, a configuration larger than could be 
handled by previous IMPs. 4, 

7 A second machine, of 
approximately the same size but with different I/O 



534 National Computer Conference, 1976 

equipment and with high reliability requirements, has 
been installed as a Host to provide pre-processing of 
seismic data collected through the network. * Two 
Satellite IMPs (with special time-keeping interfaces 
and a program which implements a broadcast capa
bility) are being used in a development program,8,9 
and several small, single-processor, Private Line Inter
face (PLI) machines10 have been built which can pro
vide an ARPANET user with (secure) communication 
over what appears to him to be a point-to-point private 
line. Finally, a large l3-processor version of an IMP 
is undergoing testing and evaluation.ll 

In general, our ideas concerning modularity and 
reliability appear to be holding up very well, and this 
has encouraged us to consider further applications. 
We have proposed using Pluribus machines in a num
ber of other computer networks now being considered, 
and we are presently engaged in a study to consider 
the suitability of using a large version of the machine 
as the basis for a person-to-person message-handling 
system. In addition we are beginning to explore the 
extension of the basic architectural notions to the next 
generation of multiprocessors. 

FRONT-END REQUIREMENTS 

The growth of the ARPANET has created increased 
demands on a number of network sites which provide 
resources useful to many people. Our own Research 
Computer Center12 is an example of such a resource 
and both the central facility and its accessing mecha
nisms have rapidly been reaching saturation. The cen
tral (PDP-lO) TENEX facility has grown by replica
tion so that several TENEX systems are now housed 
in a common center; this only intensifies the accessing 
and inter-communication problems, however, since it 
is desirable for all terminals to be able to attach to any 
of the Host systems, for the Hosts to be able to com
municate with one another, and ideally for the Hosts 
to share access to I/O devices such as high speed 
printers. Figure 1 shows the configuration we have 
chosen to provide the required interconnections. 

Terminals are currently connected to our TENEX 
time-sharing systems in one of two basic ways: either 
via a more-or-Iess traditional route using a terminal 
scanner connected to a PDP-lO I/O bus (through a 
characteristically messy patch panel), or via network 
access. Terminals that come in through the network 
either connect to a local Terminal IMP (TIP) or are 
associated with some remote network site. We wanted 
to find a solution which provided a homogeneous 
method of access to multiple Hosts for all local ter-

* The seismic Communications and Control Processor (CCP) 
is a four-processor six-bus Pluribus system that serves as the 
central data switching and control node in the ARPA-sponsored 
seismic data collection network. The CCP is installed at the 
Seismic Data Analysis Center in Alexandria, Virginia. 

FRONT END CONFIGURATION 

TWO ~ 
g&~~~E~ONS 
TO ARPANET 

378 
TERMINAL 

LINES 

F 
R 
o 
N 
T 

N 
o 

Figure 1 

PDP-IO 
TEN EX 
SYSTEMS 

INTELLIGENT TERMINAL 
EXPERIMENTS 

SPEECH UNDERSTANDING 
EXPERIMENTS 

SIGNAL ANALYSIS 
TERMINAL 

minals, i.e., all those that previously connected through 
either the patch panel or a local TIP. Manual patch
ing of terminals was recognized as a severe operational 
problem. The number of terminals being serviced was 
already in the hundreds, and may eventually grow to 
as many as a thousand. Furthermore the number of 
Host computers at the site was being enlarged to 
handle increasing demands and it was clear that we 
should be able to attach at least fifteen or twenty Hosts 
of various sorts. Finally, if a single element was to be 
used to connect everything together, it had to be 
extremely reliable since all communications would pass 
through it. A list of these communications includes the 
following: 

1. All intra-site traffic between local TENEX sys
tems. 

2. All traffic between local TENEX systems and 
remote sites in the network. 

3. All traffic between local TENEX systems and 
various local specialized Hosts (e.g., a PDP-II 
which runs a shared line printer facility for the 
TENEXs.) 

4. All terminal traffic (both local and remote) to 
all of the TENEX systems. 

5. All local terminal traffic to access remote Hosts. 



MACHINE SELECTION 

In keeping with our desire to off-load user accessing 
tasks from the Hosts, we first considered connecting all 
local terminals through regular 316 TIPs. We needed 
to handle over 350 terminals to begin with and since 
a TIP can handle at most 63 lines in terms of hard
ware, buffering, and processor capacity, this solution 
would have required six TIPs. That seemed very ex
pensive, not particularly reliable, and would have 
required many interconnections among the TIPs. 
Furthermore the 316 TIP suffers from being limited 
to fixed device-buffers and to a set of rigid protocols, 
both TIP-to-user and Host-to-Host, and also suffers 
from lack of adequate flow control between TIP and 
user.13 Its total bandwidth is limited by the 316's CPU 
and memory channel hardware, and by the TIP-IMP 
interface software. Most of these limitations are 
directly due to the amount of memory which can be 
addressed by the 316. This memory limitation cramps 
the current TIP software: new features are difficult 
to add, device buffers are inadequate, and maj or im
provements are extremely difficult and time-consuming. 
Finally, the TIP protocols for dealing with terminals 
via network connections were designed with network
wide generality in mind and as such are costly in terms 
of Host bandwidthY We felt that something much 
simpler would be more suitable for local terminals. 
For all of these reasons we decided to look for a better 
solution. 

Although there was some temptation to make use of 
front-end technology already developed for such ma
chines as the PDP-11,5,6 it was clear that the mass of 
the problem (number of lines, quantity of traffic, etc.) 
precluded the use of a single such machine. At best, 
a collection of such machines would be required, with 
many interconnections; and since we had already 
developed such a multiple machine, we next turned our 
attention to the Pluribus as a possible solution. 
Perhaps not surprisingly, we found that the Pluribus 
could meet all of our requirements. It is modular and 
can be expanded in a variety of domains: more memory 
can be added as required for additional programs, 
buffers, etc.; more processors can be added to increase 
processing Bandwidth without reprogramming; a large 
address space, combined with a modular physical struc
ture, power, and cooling permits enormous expansion 
of I/O facilities. 

This meant that we could start with a reasonable 
set of hardware and expand as requirements increased. 
In addition the Pluribus had already been programmed 
as an IMP and could handle all required Host connec
tions with plenty of room for expansion. Finally, a 
great deal of attention had been given to matters of 
reliability. 7 We had accepted the idea that parts of the 
machine would gradually and inevitably break, and had 
striven to produce a machine that was totally fail-soft 
and which could be repaired while it continued to work. 

Network-Oriented Multiprocessor Front-End 535 

This unique capability is extremely desirable in such a 
central element of the computer center. 

The Pluribus thus offered an attractive point of 
departure for a solution. A number of ingredients were 
missing, however. In particular, none of the TIP 
features (hardware or software) existed. For the 
hardware we decided that we could adapt our own 316 
Multi-Line Controller15 to the Pluribus and use as 
many as were needed to service the desired number of 
lines, a choice discussed at some length below. The 
absence of TIP software was not such a serious draw
back as it might appear since we would have wanted to 
rework the algorithms in the old TIP anyway to im
prove their efficiency and capacity. We therefore 
decided to proceed with a design based on the Pluribus. 

DESIGN ISSUES 

Dedicated function machines 

One of the issues discussed at the time of the 316 
TIP design was whether to provide terminal handling 
and servicing functions in the same machine that 
housed the store/forward IMP functions, or whether 
to perform these functions in a separate machine that 
would deal with the IMP as a regular Host does. We 
opted at that time for the single machine solution, 
arguing that the efficiencies of intra-machine com
munication would reduce overhead to the point that a 
single machine could do the job. Debate has nonethe
less continued, a strong counter-argument being that 
the IMP code is relatively unchanging and that the 
perpetual modifying and tuning required of the user
interfaced TIP code can endanger the more central 
IMP functions. Bugs in new TIP releases can more 
easily affect the IMP program if both programs reside 
in the same machine. 

This argument, though still true to a certain extent, 
was outweighed by the cost savings and enhanced 
reliability provided by a single large Pluribus machine. 
Under the Pluribus philosophy all functions are com
bined into a single carefully partitioned program and 
all processors work separately at whatever needs to be 
done. This approach facilitates load sharing under 
shifting workloads and enhances reliability. In the 
event of a processor failure, the other processors con
tinue doing aU necessary jobs. If a memory unit fails, 
another memory unit is pressed into service until the 
first unit can be repaired. In contrast to the usual 
state of affairs, we expect larger Pluribus machines to 
be more reliable than smaller ones, since more 
resources are available to be redistributed in case of 
trouble. The Pluribus approach to reliability is based 
on redundancy and self-checking. Bugs of all sorts are 
anticipated, including lingering software and hard
ware bugs, and mechanisms are included both for 
detecting trouble and for correcting the symptoms. 



536 National Computer Conference. 1976 

Terminal interface hard'lDare 

Another design issue was selection of the hardware 
to provide the actual terminal connections. When we 
began, we assumed that the technology had improved 
since 1970, when we had been forced to design our own 
Multi-Line Controller. We thought that a convenient 
off-the-shelf solution would be available and in par
ticular we were hoping to find a multiplexor or con
centrator whose high speed output we could bring 
directly (without demultiplexing) into our machine. 
We wanted to do demultiplexing within the machine, 
through a combination of hardware and software, in 
order to eliminate the need for a large number of in
dividual line interfaces. Using a multiplexor would 
also permit us, later on, to install multiplexors at 
remote locations, near remote terminal clusters, 
thereby saving on line costs. 

Unfortunately we had to deal with at least three 
terminal types: Teletypes, TI Silent 700s, and 1200-
baud scope terminals. Furthermore we had to be able 
to connect any of the three types of terminals to any 
system port, and this meant dynamic programmable 
configuring of the multiplexor. We found that the 
flexibility in commercially available multiplexors was, 
for the most part, limited to strapping options. While 
"Autobaud" features are available, they do not reduce 
the part of the high speed line bandwidth used by the 
port's subchannel. Thus with Autobaud we would have 
had to allocate 1200 baud to all ports even though 
typically a third of the terminals in use at anyone 
time are 1 IO-baud Teletypes. If we took the multiplexor 
high speed line directly into the Pluribus, it would 
have meant either more sophisticated hardware de
illultlpleil..lllg, ur a large amuunL of wasted processor 
and memory bandwidth. 

Thus our review of the multiplexor-concentrator 
field was disappointing. More and more intelligence is 
being added to these systems but they are still being 
treated as subsystems separate from the computers 
which must eventually service the lines. From our 
point of view, inadequate industry attention is being 
given to allowing demultiplexing to be carried out 
directly within the recipient computer system and 
allowing it to control the multiplexors themselves. 

The 316 TIP's Multi-Line Controller is, in fact, a 
local concentratOl'. It is completely programmable as 
to individual port line characteristics and reports 
character/line number pairs to the TIP. It is designed 
to interface directly to a computer, fetching characters 
from and storing characters into memory, and has all 
the necessary features to permit program control of 
line characteristics. In short, the MLC seemed 
eminently suitable for use with our local terminals and 
datasets, so we adapted its 316 interface to attach it 
to the Pluribus. 

The communications protocol 

A third major design question was how to control 
the terminals. In the 316 TIP, a quite general set of 
protocols was provided whereby a terminal user could 
carryon a single control dialogue directly with a Host
like program in the TIP. By talking to this "mini
Host" a user could specify information about what 
network Host he wished to be connected to, what 
transmission modes he wanted, etc. Furthermore the 
"mini-Host", by implementing a modest version of the 
general network-wide Host-to-Host protocol,16 in par
ticular the terminal-handling function (known as the 
TELNET protocol) /6 permitted a user to communicate 
directly with any Host in the network that also imple
mented the TELNET protocol. Unfortunately, server 
Hosts have found the standard Network Control Pro
gram (NCP) 16 to be expensive in terms of machine 
cycles, and the harmful effects of this clearly increase 
with the number of terminals in operation. We there
fore decided on a simplified form of communication 
between our terminal-handling code and the TENEX 
Hosts. At the Host-to-Host level we use a special 
protocol which provides only for buffering and passing 
characters between the terminals and the Hosts. It does 
not include the capacity to recognize escape characters 
in the data stream and thus deflect some of the stream 
to its own intelligent mini-Host system; instead, the 
character stream is treated transparently. 

The user's interface to local Hosts 

The decision to put all of the character interpretation 
fUiidlu1l6 iii tht IIu61 id.i6e~ tIlt .i~~Ut u1 11U", Ule 
terminal-Host connection is established. Since escape 
characters are not provided, a user cannot specify, in a 
subset of his character stream, such things as where he 
wishes to be logically connected. Instead, when he 
starts to use his terminal, he is automatically con
nected to some local Host. Some terminals are "soft
wired," via the front-end, to particular Hosts. The 
other terminals are defined as "wild," which means 
they are automatically connected to any suitable local 
Host. Furthermore, if the Host to which a particular 
terminal is normally soft-wired is inoperative when 
the user starts to use his terminal, a suitable alternate 
can automatically be chosen. The point is that initial 
logical connection is made to a particular real Host, not 
a mini-Host in the TIP. When a user first starts 
typing he is talking to that Host just as with a more 
traditional direct connection. This avoids the sort of 
double login (first to the TIP and then to the Host 
of choice) that we have experimented with (somewhat 
unhappily) in the ARPANET.17 It furthermore re
moves the more sophisticated (space consuming but not 
bandwidth consuming) functions from the front-end 



to the larger Host which is better suited to handle 
them. 

The user then talks directly to a command inter
pretation system in the Host. If he needs to switch 
his logical connection to a different Host, he uses the 
specific Host commands defined for such purposes. If 
the switch is to a different local Host, then a command 
is returned from this Host to the front-end instructing 
it to switch the user's logical connection to the new 
Host. Thereafter his character stream passes through 
.L.l __ 1! _____ L ____ 1 .-l! ____ Ll __ L_ Ll_ .... TT ........... L .... 1! !_L .................... L ___ !LL ......... .l-
LIl~ .LrUIlL-~HU Ulr~\;L1y LU LIlt: nU;:;L U.L lIlLt:rt:;:;L WILIlUUL 

occupying the initial-connection Host at all. All of this 
is in the spirit of Reference 18. 

Interfacing to remote sites 

The approach described above is intended to satisfy 
the needs of a local user on one of our local Hosts. 
Users of the Pluribus front-end who desire to access 
remote network Hosts will initially have to pass their 
character streams through TELNET on a local Host 
(since the front-end has no such facility). This is a 
burden on the local Host which the 316 TIP does not 
impose. 

To relieve the local Hosts of this burden, we intend 
to add the NCP and TELNET functions to the Pluribus 
front-end. This in no way interferes with the simplified 
protocols described above for local users of local facil
ities. The front-end software currently consists of 
four logical modules: an IMP module, a terminal 
handler, a front-end protocol handler, and a Host/IMP 
protocol handler (see Figure 2). Together these pro
vide the usual IMP functions and, in addition, act as a 
very large terminal scanner for the collective TENEX 
systems. With the addition of a fifth, NCP-TELNET, 
module, the front-end could connect its terminals di
rectly to remote Hosts, eliminating the need for a user 

TERMINALS AND DATASETS 

PLURIBUS IMP 

HOST/IMP 
PROTOCOL 

CONFIGURATION, RELIABILITY, RELOAD 

Figure 2 

Network-Oriented Multiprocessor Front-End 537 

to log onto TENEX merely for the purpose of running 
TELNET in order to gain access to a foreign system. 

More generally, the advent of an enlargeable front
end machine opens up the possibility of off-loading still 
more of the communication-handling function from the 
Host computer. Once we have the NCP-TELNET 
module we plan to use it to accept incoming TELNET 
connections and serve as an interface between remote 
users and our TENEX Hosts. The remote user would 
establish a TELNET connection to the Pluribus front
end, and would from then on appear to be a local 
terminal to the TENEX Hosts. This kind of facility is 
the main thrust of several other ARPANET front-end 
projects. 

Flow control-Host to IAfP 

Flow control is an issue in the design of all com
munications systems. One way to stop unwanted flow 
of traffic over an interface is simply to block it until 
such time as we want it to resume. This expedient has 
the advantage that it allows a very simple set of rules 
for the users of the interface. Its major drawback, 
however, is that a single electrical "pipe" is treated as 
a single logical path. In fact, some types of connection, 
such as the one between a Host and an IMP, provide 
for many concurrent logical paths. While blocking 
one or more of them from time to time may be neces
sary, having only one blocking mechanism for the 
entire pipe is clearly undesirable. 

In particular, if we consider the connection as pro
viding only two paths, one for terminal-Host access 
and one for other Host-network traffic, then we can see 
that while it may become necessary to block network 
traffic (due, let us say, to momentary lack of some 
network resource such as buffer space or traffic control 
blocks), it is certainly not desirable to let this interfere 
with terminal traffic which does not require the tem
porarily depleted resource at all. 

We discussed the possibility of using two separate 
hardware interfaces between the Pluribus front-end 
and the TENEX Hosts, one for regular network 
messages (including intra-site Host-te-Host traffic) 
and the other for front-end traffic. This was motivated 
by blocking problems observed at the 316 TIP-Host 
interface. This issue is somewhat similar to the one-or
two-machines question and here again we opted for 
the shared path solution, modifying the software to 
provide an extended, non-blocking IMP-Host protocol. 
The essential idea of this protocol is that the receiver 
will always remove his messages from the pipe, thereby 
guaranteeing that the pipe will keep flowing. If for 
any reason the receiver is unable to process a message, 
he merely throws it away. This of course requires an 
acknowledgment/retransmission protocol to properly 
account for messages. This protocol is being imple
mented as a new ARPANET standard.19 



538 National Computer Conference. 1976 

Flow control and buffering-Front-end to TENEX 

Flow control is also an issue at the terminal level. 
As a terminal user types, characters flow to the Host 
and eventually into some buffer in the Host memory 
which is associated with that particular user. The 
program in the Host takes characters out of the buffer, 
inspects them, and processes them. The buffer is re
quired because the program does not check each line 
constantly but only in turn as determined by the 
swapping algorithm. The larger the buffer, the more 
leisure is permitted to the program, but the greater is 
the cost in space (and response time). 

A flow control mechanism is required to guarantee 
that the flow of characters will stop should the buffer 
ever fill up. In TELNET the mechanism works as 
follows. Initially the receiver allocates some amount of 
buffer space to the line and informs the sender of this 
space allotment. Each time the sender sends off 
characters to the receiver, it reduces the space it 
believes is still available at the receiver by an equivalent 
amount. Correspondingly, as the receiver removes 
characters from the buffer it informs the sender of the 
change, and this increases the receiver's available 
space count accordingly. Since only changes are 
reported, precautions are required to assure that the 
sender's and the receiver's notions of available space 
do not become permanently separated through some 
communications error. 

In addition to this buffering in the receiver (the 
Host for input and the TIP for output) there is addi
tional buffering in the sender. For input, this allows 
the user to continue typing even when his characters 
cannot be sent off immediately because of lack of space 
in the Host. In the 316 TIP fixed buffering is used, and 
tht al110unt uf space availaule f01' Lll.i~ ::;elHiel' ouITering 
is small. So, if the remote Host is at all sluggish in 
taking the characters, the buffers quickly fill and the 
user receives an alarm indicating that some of his 
typing has been thrown away. Even worse, by the 
time he actually stops typing, the blockage will gener
ally have cleared up and the last few typed characters 
may be accepted, leaving a gap where the momentary 
blockage occurred. The user must then delete back to 
the missed section and resume from there, an awkward 
procedure at best. 

The Pluribus's ability to incorporate a large memory 
and a large number of terminals makes a buffer pool 
arrangement more sensible. In the Pluribus front-end, 
if space has been allocated for the user in the receiving 
Host, the user's characters go directly into a message 
for the Host. If the space allocated in the Host be
comes momentarily used up (because the Host does not 
empty its buffer rapidly enough) then sender buffers 
are borrowed as required from the buffer pool in the 
Pluribus to hold any input typing until the Host 
empties the "pipe" at its far end. The buffer pool is 
large and is shared not only among all users for such 

backup of input buffering but also, as we will see 
below, for buffering of output. 

With this scheme, given a sizable buffer pool, the 
user should never see any blockage. Occasionally a 
user will see a delay in rernote echoing (from the 
Host) as the Pluribus stores up input while waiting 
for the Host. A person's natural tendency not to type 
on blindly until he sees echoing will restrain him from 
typing too far ahead and thus depleting the pool. For 
controlling paper tape readers, etc., we plan to provide 
flow control of the XONjXOFF type. 

Flow control and bufjering-TENEX to front-end 

If we now consider output from the Host to the 
terminal we see a somewhat different problem. Output 
typically consists either of slow character-by-character 
echoing of user input or of substantial bursts of out
put characters. The output burst rate is typically many 
times the input rate. Terminals vary in the speed at 
which they can accept output and some (such as line 
printers) may periodically refuse characters for some 
time (e.g., during a page eject). In the TELNET 
protocol, output flow control is handled exactly the 
same way as input flow control, through the use of 
allocated space in the receiver (TIP). The buffers 
used for output are typically larger but the mechanism 
is the same. Buffer sizes vary depending upon the 
type and speed of terminal and are fixed when the 
terminals are installed. 

In the Pluribus front-end a different approach is 
used which takes advantage of increased buffering 
capability to simplify procedures and to virtually 
eliminate sender buffering requirements in the Host. 
The Host simply sends output ad libitum to the 
Pluribus. The Pluribus allocates (50-character) 
buffers from its pool, as required to hold the output 
that comes in, until it can be sent to the terminal. If 
the rate of Host output exceeds a terminal's rate for a 
period, the amount of bufferlng required will even
tually rise above some pre-defined clip level for that 
terminal. At that point a "stop sending" message is 
sent to the Host. Output for the terminal will con
tinue to be accepted and may absorb further buffers 
from the pool. When the Host heeds the request to halt 
output this "overshoot" process stops. As the terminal 
catches up, buffers are released back into the pool and 
when the queue of output buffers drops below a second, 
lower clip level, a "resume sending" message is sent 
to the Host. This sort of "servo" operation allows the 
front-end to maintain terminal output flow over a wide 
range of Host behaviors. It also means that the Host 
sees only occasional "wait-a-minute" and "O.K.-to
resume" messages instead of an allocate message for 
each small set of output characters. * 
* One might ask, why not make changes similar to all of these in 
the 316 TIP? The answer is threefold. First, TELNET is a 
network-wide standard and changing it would require corre-



CJ) 
!.!J 
CJ) 
CJ) 
:;) 

CD 

0: 
g ,,, 
w 
u 
o 
0: 
a.. 

2 PROCESSORS 
EACH WITH SK LOCAL MEMORY 

2 PROCESSORS 
EACH WITH SK LOCAL MEMORY 

2 PROCESSORS 
EACH WiTH 8K LOCAL MEMORY 

S 10 = SYSTEM I/O: 
PID 
REAL TIME CLOCK 
CHECKSUM / BLOCK TRANSFER UNIT 
I/O PARITY 
REMOTE RELOAD 

Network-Oriented Multiprocessor Front-End 539 

SOK COMMON MEMORY CJ) 

n~---------------------~ CJ) 
:;) 
OJ 

>-
0: 
o 
~ 
UJ 

~~------------------~~ 
SOK COMMON MEMORY 

'>----f-----+-+-.-TO 2 ARPANET LINES 

>---++---... TO _ HOSTS 

Figure 3 

HARDWARE CONFIGURATION 

The Pluribus front-end physically occupies eight 
racks, six for the central machine and two to house 
individual line interface units (see Figure 3). Six 
BEN Multi-Line Controllers (MLCs) are included in 
the initial system, providing interfaces for up to 378 
terminal lines. The Host, high-speed network lines, 
and MLC interfaces are mostly duplicated, on separate 
I/O busses, for increased reliability. Our bandwidth 
calculations indicated that four processors were more 
than sufficient to handle the load of the entire system; 
reliability considerations led us to include three proces
sor busses, each with two processors, The con
figuration includes enough memory (80K words on 
each of two memory busses) to allow for ample buffer
ing, both for store-and-forward and for terminal 
traffic. There is also room to expand the code to pro
vide many features, such as the improved user inter
face to TELNET, long desired in the 316 TIP but 
unimplemented due to lack of space. 

sponding changes everywhere else in the Network. Second, our 
protocol does not address all the issues involved around the 
Network. Third, the techniques we use would require more 
main memory than the 316 TIP can address. 

The system design takes full advantage of the relia
bility features of the Pluribus. Sufficient resources of 
each type are provided so that, in the event of any 
single failure (hardware or software), the system will 
continue to run without objectionable degradation, and 
without human intervention. In case of a hardware 
fault, the offending component may be diagnosed, 
debugged, removed, or replaced while the remainder 
of the system continues to run. The system will auto
matically incorporate newly fixed components back into 
the system. 

We did not provide any redundancy in the case of the 
actual terminal concentrator, the MLC. We felt justi
fied in this because of the extremely low failure rates 
of the MLC in our network experience. Since there 
are six MLCs in the configuration, a total MLC failure 
would only knock out a sixth of the TIP's capacity. 
The I/O bus to MLC interfaces are duplicated, so 
failures within the Pluribus, or maintenance activities, 
will not knock out MLCs. 

Since this machine is an IMP, it has all of the usual 
network remote debugging aids such as DDT, reload, 
verification, and restart facilities. A local display 
terminal, programmer's console, and paper tape reader 
augment these capabilities. 



540 National Computer Conference, 1976 

THE FUTURE 

As discussed above we plan to implement NCP and 
TELNET functions in the Pluribus front-end in order 
to off-load these tasks from our TENEX Hosts. Plans 
for the future also include the development of a flow 
control procedure for externally clocked terminals, 
and support for various exotic terminals. While the 
MLC will handle most if not all asynchronous termi
nals, we see a pressing need to handle devices such as 
IBM 2780s, 2260s, and 3270s, which communicate in 
assorted synchronous line protocols. The Pluribus 
hardware already includes interface cards which can 
handle synchronous lines, and an earlier project in 
which an RJE terminal was tied to an IMP through 
a Pluribus-based mini-Host has demonstrated the op
eration of a 2780 using this interface.20 We see no 
particular problems in incorporating this approach 
directly into our front-end eventually, although there 
are no immediate plans to do so. 

ACKNOWLEDGMENTS 

A number of people have contributed to the work de
scribed herein. Front-end requirements were largely 
motivated by discussions with Robert Clements (who 
also made the required modifications to TENEX), 
Stephen Chipman, and Theodore Strollo. Bernard 
Cosell and Eric Roberts helped design the front-end 
protocol, and Martin Thrope built the Pluribus-MLC 
adaptor. Many other members of the Pluribus group 
also made significant contributions. We would like 
to thank Robert Brooks and Sally Schindler for their 
help with the manuscript. 

REFERENCES 

1. Roberts, L. G. and B. D. Wessler, "Computer Network 
Development to Achieve Resource Sharing," AFIPS Con
ference Proceedings 36, June 1970, pp. 543-549. 

2. Heart, F. E., R. E. Kahn, S. M. Ornstein, W. R. Crowther 
and D. C. Walden, "The Interface Message Processor for 
the ARPA Computer Network," AFIPS Conference Pro
ceedings 36, June 1970, pp. 551-567; also in Advances in 
Computer Communications, W. W. Chu (ed.), Artech House 
Inc., 1974, pp. 300-316; also in Computer Communications, 
P. E. Green and R. W. Lucky (eds.), IEEE Press, 1975, 
pp. 375-391. 

3. Ornstein, S. M., F. E. Heart, W. R. Crowther, S. B. Russell, 
H. K. Rising and A. Michel, "The Terminal IMP for the 
ARPA Computer Network," AFIPS Conference Proceed
ings 40, June 1972, pp 243-254; also in Advances in Com
pute?' Communications, W. W. Chu (ed.), Artech House 
Inc., 1974, PI'. 317-328; also in Cf)'n!p!!~er CO'l11.1V1.~!1~?fJation8, 

P. E. Green and R. W. Lucky (eds.), IEEE Press, 1975, 
pp. 354-365. 

4. Heart, F. E., S. M. Ornstein, W. R. Crowther and W. B. 
Barker, "A New Minicomputer/Multiprocessor for the 
ARPA Network;" AFIPS Conference Proceedings _~2, June 
1973, pp. 529-537; also in Advances in Computer Communi
cations, W. W. Chu (ed.), Artech House Inc., 1974, pp. 
329-337; also in Computer Communication Networks, R. L. 
Grimsdale and F. F. Kuo (eds.), Proceedings of the NATO 
Advanced Study Institute of September 1973, Sussex, Eng
land, published by Noordhoff International Publishing, Ley
den, the Netherlands, 1975, pp. 159-180; also in Computer 
Comm-unications, P. E. Green and R. W. Lucky (eds.), IEEE 
Press, 1975, pp. 366-374. 

5. Retz, D., J. Miller, J. McClurg and B. Schafer, ELF Sys
tem Programmers Guide, September 1975, Speech Communi
cation Research Lab Inc., Santa Barbara, CA. 

6. Bouknight, W. J., G. R. Grossman and D. M. Grothe, "The 
ARPA NetwOl'k Terminal System-A New Approach to 
Network Access," Proceedings of the Third ACM/IEEE 
Data Communications Symposium, St. Petersburg, Florida, 
November 1973, pp. 73-79. 

7. Ornstein, S. M., W. R. Crowther, M. F. Kraley, R. D. 
Bressler, A. Michel and F. E. Heart, "Pluribus-A Reliable 
Multiprocessor," AFIPS Conference Proceedings 44, May 
1975, pp. 551-559. 

8. Butterfield, S. C., R. D. Rettberg and D. C. Walden, "The 
Satellite IMP for the ARPA Network," Proceedings of the 
Seventh Annual Hawaii International Conference on Sys
tem Sciences, Honolulu, Hawaii, January 1974, Computer 
Nets Supplement, pp. 70-73. 

9. Interface Message Processors for the ARPA Computer 
Network, QTR No.1, BBN Report No. 3063, April 1975. 

10. Specifications for the Interconnection of a Host and an 
IMP, BBN Report No. 1822, January 1976, Appendix H. 

11. Private Communication, D. C. Walden, January 1976. 
12. Bobrow, D. G., J. D. Burchfiel, D. L. Murphy and R. S. 

Tomlinson, "TENEX, a Paged Time Sharing System for 
the PDP-10," Commu.nications of the ACM, Volume 15, 
Number 3, March 1972, pp. 135-143. 

13. Mimno, N. W., B. P. Cosell, D. C. Walden, S. C. Butterfield 
and J. B. Levin, "Terminal Access to the ARPA Network
~xpenence and Improvements," Proceedings of the Seventh 
Annual IEEE Computer Society International Conference, 
San Francisco, California, February 1973, pp. 39-43. 

14. Walden, D. C., "Host-to-Host Protocols," International 
Computer State of the Art Report No. 24: Network Sys
tems and Software, Infotech, Maidenhead, England, pp. 
287-316. 

15. TIP Hardware Manual, BBN Report No. 2184, November 
1974. 

16. ARPA Netw01'k Current Network Protocols, Stanford Re
search Institute, Menlo Park, California, December 1974. 

17. Interface Message Processors for the ARPA Computer 
Network, QTR No.2, BBN Report No. 3106, July 1975. 

18. Cosell, B. P., P. R. Johnson, J. H. Malman, R. E. Schantz, 
J. Sussman, R. H. Thomas and D. C. Walden, "An Opera
tional System for Computer Resource Sharing," Proceed
ings of the Fifth Symposium on Operating Systems Prin
ciples, November 1975, pp. 25-80. 

19. Specifications for the Interconnection of a Host and an 
IMP, BBN Report No. 1822, January 1976, Section 3.8. 

20. The Remote Job Entry Mini-Host, BBN Technical Infor
mation Report ~o. 93, August 1974. 



Design issues for mixed media packet switching networks * 

by D. HUYNH, H. KOBAYASHI** and F. F. KUOt 
Univer.<:ity of Hawaii 
Honolulu, Hawaii 

ABSTRACT 

In this paper we present some of the important design 
issues for packet switching networks with both satel
lite and terrestrial components-which we call mixed 
media packet switching networks. Satellite packet 
switching has considerable promise for low cost, high 
bandwidth data communications. However there is 
inherent high delay in satellite links which does not 
appear in ground links. Therefore a mix of the two 
communications media offers the advantages of low
cost/high bandwidth together with low-delay communi
cations where required. In this paper we examine a 
number of tradeoffs which offer guidelines for the 
design and optimum utilization of mixed media net
works. 

INTRODUCTION 

In 1968 the Advanced Research Projects Agency 
(ARPA) of the U. S. Department of Defense began 
implementation of a computer-communication network 
which permits the interconnection of heterogeneous 
computers at geographically distributed centers 
throughout the United States. This network has come 
to be known as the ARP AN ET, 1,2 and has grown from 
the initial four node configuration in 1969 to almost 
forty nodes (including satellite nodes in Hawaii, Nor
way, and London) in late 1974. The major goal of 
ARP ANET is to achieve resource sharing among the 
network users. The resources to be shared include not 
only programs, but also unique facilities such as the 
powerful ILLIAC IV computer and large global 

* This report was supported by THE ALOHA SYSTEM, a re
search project at the University of Hav.:aii, which is supported 
by the Advanced Research Projects Agency of the Department 
of Defense and monitored by NASA Ames Research Center 
under Contract No. NAS2-8590 and by ONR Contract No. 
N00014-76-C-0256. 
** Dr. Kobayashi is on leave from IBM Thomas J. Watson 
Research Center, Yorktown Heights, New York 10598. 
t Dr. Kuo is now with the Department of Defense, Washington, 
D.C., 20301. 

541 

weather data bases that are economically feasible when 
\v'idely shared. 

The ARPANET employs a distributed store-and
forward packet-switching approach that is much better 
suited for computer-communication networks than the 
more conventional circuit-switching approach. Rea
sons favoring packet switching include lower cost, 
higher capacity, greater reliability and minimal delay. 
The CCITT (Comite Consultatif International Tele
graphique et Telephonique) , an international standards 
organization, defines a packet as "a group of binary 
digits including data and call control signals which is 
switched as a composite whole. The data, call control 
signals and possibly error control information are 
arranged in a specific format:' 

Multi-access satellite channels 

Communication satellites operating in packet mode 
are becoming increasingly important for consideration 
in the design of large computer communication net
works. In particular, most possess the following char
acteristics which are of special importance: the satel
lite's antenna coverage allows any of a large number 
of ground stations to access it at any time (multi
access), and its transmissions can be received by all of 
these stations at all times (broadcast). 

Up to the present, packet switched computer net
works have mainly utilized terrestrial communications 
links. Recently, Telenet Communications Corporation, 
one of the new value-added carriers3 announced plans 
to offer public packet switched data service in which 
terrestrial and satellite links will be available. ARPA 
has also planned to augment its terrestrial links 
with satellite communications and has commissioned 
several satellite IMPs or SIMPs4 built by Bolt Beranek 
and Newman Inc. (BBN). In mid 1975, BBN and the 
British Post Office jointly conducted a multi-access 
satellite experiment using the Atlantic INTELSAT IV 
satellite with SIMPs located at the ET AM ground sta
tion in the U.S. and the Goonhilly Downs ground 
station in England. 

The basis of this experiment is the work on the 



542 National Computer Conference, 1976 

ALOHANET of THE ALOHA SYSTEM project at 
the University of Hawaii.!i,n,7 The multiplexing tech
nique that is used by the ALOHANET is a multi
access packet switching method that has come to be 
known as the ALOHA technique. 

Based upon the ALOHA multiplexing method or 
variations thereof, a number of techniques have been 
proposed for the utilization of a satellite channel in a 
packet-switched data network in a way which allows 
all stations to dynamically share the channel capac
ity.8,9,1o,1l,12,1:l,H All are based on the division of the 
channel into time slots approximately equal to a packet 
transmission time. The approach described by Roberts8 

and Kleinrock and Lam in References 12 and 13 makes 
use of a technique called "slotted ALOHA random 
access" or "slotted ALOHA." The channel capacity 
of a slotted ALOHA channel was estimated to be 
l/e~36%.8 

Goals of this paper 

In this paper we will examine a number of key issues 
in the design of a packet-switched communication net
work composed of a terrestrial store-and-forward 
packet switching component combined with a multi
access/broadcast satellite as depicted in Figure 1. 

The factors involved in the design optimization of a 
packet switched network are :15 

• Node location and traffic matrix 
• Topology of links 

_._. - mulfi-~ss channel 

--- broadcast chonneI 

@ SIMP 

• IMP 

REGION B 

Figure I-The proposed network model 

• Capacity of links 
• Routing 
• Flow control, other network design, etc. 

To attempt to optimize anyone factor, such a:s I,Ile 

capacity of links, it is necessary to assume that the 
factors higher in the list must be given. However, to 
decide optimum choices for the factors high on the list 
may require detailed calculations of all the lower ones. 
Fortunately, such factors as node location are usually 
not design variables, being fixed by practical considera
tions. Frank, Frisch and Chou16 have developed sub
optimum procedures for the topological layout of a 
packet switched network. Thus we will concentrate on 
the following problems in our paper. 

1. Routing of packets via ground or satellite 
2. Capacity assignments for ground and satellite 

channels 
3. Retransmission strategies 

In this paper we will concentrate on the discussion 
of design issues such as throughput, delay, cost, etc., 
rather than dwell on the theoretical development of 
the design equations which is given in a companion 
paper to be published elsewhere.17 

THE NETWORK MODEL 

The network model under consideration consists of 
a terrestrial store-and-forward packet switching net
work referred to here as the ground subnet, and a 
multi-access/broadcast satellite which together with 
the SIMP ground stations is the satellite subnet. 

For the ground subnet we will use the model given 
in. the p~per by Crov;ther, et aI,'· and "Vvill reproduce 
the succinct definitions of network terminology given 
in that paper: 

Nodes-The nodes of the network are real-time 
computers, with limited storage and processing re
sources, which perform the basic packet-switching 
functions. 

Hosts-The Hosts of the network are the com
puters, connected to nodes, which are the providers 
and users of the network services. 

Lines-The lines of the network are some type of 
communications circuit of relatively high bandwidth 
and reasonably low error rate. 

Connectivity-We assume a general, distributed 
topology in which each node can have multiple paths 
to other nodes, but not necessarily to all other nodes. 
Simple networks such as stars or rings are degen
erate cases of the general topology we consider. 

Message-The unit of data exchanged between 
source Host and destination Host. 

Packet-The unit of data exchanged between adja
cent nodes. 

Ackno'Wledgment-A piece of control information 



Design Issues for Mixed Media Packet Switching Networks 543 

returned to a source to indicate successful receipt of 
a packet or message. A packet acknowledgment may 
be returned from an adjacent node to indicate suc
cessful receipt of a packet; a message acknowledg
ment may be returned from the destination to the 
source to indicate successful receipt of a message. 

Store and Forward Subnetwork-The node stores 
a copy of a packet when it receives one, forwards it 
to an adjacent node, and discards its copy only on 
receipt of an ackno'\:vledgment from the adjacent 
node, a total storage interval of much less than a 
second. 

Packet Switching-The nodes forward packets 
from many sources to many destinations along the 
same line, multiplexing the use of the line at a high 
rate. 

Routing Algorithrn--The procedure which the 
nodes use to determine which of the several possible 
paths through the network will be taken by a packet. 

For the satellite subnet we use the finite population 
model of the slotted ALOHA channel developed by 
Kleinrock and Lam,13 which we call Scheme 1 and we 
also consider a multi-access channel model in which 
there is no retransmission via satellite. This model 
which we denote as MASTER or Scheme 2 is described 
in a later section of this paper. 

The combination of a system that operates in con
tention mode (the satellite) and one that operates in 
queueing mode (the terrestrial store-and-forward net) 
into an overall system model presents many interesting 
problems. These problems are mainly due to the fact 
that with contention systems the throughput increases 
to a maximum and then decreases as system load in
creases while for queueing systems the throughput 
increases to one as system load increases.13 The model 
of a multi-access slotted-ALOHA channel is typical of 
a contention model, and to use the channel optimally 
the system load on the channel must be carefully con
trolled. We have tried to develop an analytical model 
of the overall system so that we may predict and op
timize its performance. Our network model thus con
sists of: 

A. A set of store-and-forward IMP-like devices in
terconnected by capacity limited ground chan
nels (a distributed subnet). For the sake of re
liability this subnet is at least 2-connected, 

B. A set of SIMP-like devices directly connected to 
satellite ground stations. These SIMPs are usu
ally geographically scattered and relatively far 
apart from each other. 

C. A multi-access/broadcast satellite transponder 
linking all SIMPs in a star configuration. 

A SIMP is usually co-located with an IMP at a node 
and both devices have buffering and scheduling capa
bilities. We assume that the ground net is regionalized. 
That is, the ground net is partitioned into regions. 

Every region has a SIMP and the IMPs in that particu
lar region can only go through one and only one SIMP. 
The regionalization is determined by the closeness of 
an IMP to a SIMP in terms of the number of hops and 
the distance between them. Such a structure is shown 
in Figure 1. 

ROUTING 

With a mixed media net,:vork the issue of routing is 
a major concern. With two possible courses to choose 
from--one via satellite and one via ground, the issue 
is to choose the set of routes so as to minimize the 
overall average network delay. The tradeoffs to con
sider are these: the satellite channel has an inherent 
minimum delay of .26 seconds. Ho,\ve\7er, satellite ca-
pacity is less costly than ground channel·capacity for 
medium to long distances, and therefore more satellite 
capacity is available at less cost than comparable facil
ities on the ground. The ground channels are inher
ently faster than the satellite channel, but because of 
capacity limitations, are subject to queueing delays, 
which combined with the store-and-forward nodal 
processing delays may, in heavy traffic situations, re
sult in larger overall delays than the satellite delays. 
To summarize, satellite channels have greater delays 
but also more cost effective channel bandwidth than 
ground channels. 

The routing procedure used in the ARPANET is a 
distributed adaptive algorithm in which each node has 
a routing table which is periodically updated with mini
mum distance estimates from its immediate neigh
borsY Unfortunately the distributed adaptive algo
rithm is extremely difficult to describe analytically and 
could not be applied to our analytical model. Instead 
we have chosen a deterministic split traffic (bifurcated) 
routing strategy 19 which because it allows traffic to 
flow on more than one path between a given source
destination node pair gives a better balance than a 
fixed routing procedure. It should be noted that our 
analytical model does not require any specific routing 
algorithm, but can accommodate any routing algorithm 
that can be modelled mathematically. 

Optimal routing of packets 

Using the network model of Figure 1 the main prob
lem in packet routing is to route packets from one re
gion to another via either ground or satellite links in 
such a way as to minimize the overall average delay of 
the network. Given the topology of the network and 
the capacities of the ground and satellite links, we as
sume a demand matrix [Yij] where Yij is the average 
Poisson input in packets/sec from node i to node j. Let 
us define the routing index gij as the fraction of Yij sent 
through the ground net and let gij= 1-gij be the frac
tion of Yu sent through the satellite net by first routing 



544 National Computer Conference, 1976 

to the SIMP in the region where IMP i resides, then 
transmitting through the satellite channel to the SIMP 
in the region where IMP j resides. As a result, gi.j= 1 
if both IMPs i and j are in the same region. 

Let us define T as being the overall average delay of 
the network, averaged over all source-destination node 
pairs and all routes dictated by the routing algorithm. 
The optimal routing strategy for mixed media net
works can be stated as: 

min T ; su bj ect to {O::; gij::; 1 for all i,j} 
gij 

For our analysis, we define the following notation: 

total traffic in the net 

Tij= average delay for a packet travelling from 
IMP ito IMP j 

u (i) = index of the region (hence that of the corre
sponding SIMP) to which IMP i belongs 

Ts= average delay for a packet transmitted from 
one SIMP to another via the satellite channel 

Tij=overall average delay for a packet travelling 
from IMP i to IMP j (averaged over ground 
and satellite links) 

We can readily derive the following relationships: 

For the ALOHA scheme 

and 

T=l LyijTij 
"I .,j 

~}_" ... r 0" _ -.L (Yo. (_ -.L - .)' -.L _~ "(Yo.,._ 
-- yf:j"JLO'J"J' O·'J\'tO"\"I)' '(f\}J) .J' y"fj0'JPJ'b 

(1) 

(2) 

For the MASTER scheme, in order to obtain an ex
pression analogous to Equations (1) and (2), we fur
ther introduce the notation: 

Pu= probability that a packet transmitted from 
SIMP u into the satellite channel is successful 

Then we obtain 

Tij = gijTij+ g\j[Tiu(i) + Ts + P (f(i)T(f(j)j + (1- P (f(o) T(f(i.)j] 

and 

T=l LYiiTij 
"I i,j 

=l LYij{gijTij+ gij[Ti(f(j) + P(f(i)T(f(j)j 
"I i,j 

+ (1-P(f(i» T(f(oJ} +l LgilYWs 
"I i,j 

(3) 

In Equations (2) and (4) the terms with gij represent 
the portion of traffic from IMP i to IMP j routed en-

tirely through the ground net and those terms with gij 

represent the portion routed from node i to the regional 
SIMP u (i), from u (i) to u (j), the regional SIMP in 
which IMP j resides and then from u(j) to IMP j. 
Thus even in the sateilite routing, there is some asso
ciated ground traffic to get to and from the regional 
SIMPs. Our mathematical model is flexible enough to 
permit SIMPs at every node, and if this were the case, 
obviously the Tiu(i) and T(f(ilj terms would be zero. The 
term Ts is derived from the finite population model of 
a slotted ALOHA channel as originally given in Lam 13 

and in a slightly different form by the authors.17 
Let A/ be the traffic on link l. We can derive Al as a 

function of gij, the traffic demand "Iii and the routing 
algorithm. Since the equation is fairly complex we will 
not give it here but refer the reader to a companion 
paper for its derivation.17 Given Al and neglecting the 
delay due to transmission errors and nodal processing 
and ground propagation time, the average delay along 
any ground link can be described by the M/M/1 queue
ing model by virtue of the well-known independence 
assumption and Jackson's decomposition theorem. 22 

(5) 

where C1 is the capacity of channel land l the average 
jJ-Z 

packet length on that channel. The overall average de
lay can be expressed in terms of the link traffic As, {AI} 
and link delays Ts, {Tz} as 

(6) 

where L = total number of links in the net, and As the 
total traffic rate on the satellite channel, i.e., 

We can show that T in Equation (6) is convex with 
respect to gij so that we can obtain a minimum overall 
delay by varying gij according to a selected optimiza
tion algorithm. The optimum choice of gij depends also 
upon the topology of the network, the location of the 
SIMPs, the capacities of the ground and satellite links, 
the specific terrestrial routing algorithm, as well as the 
traffic demand matrix [Yij], all of which must be speci
fied in advance of the optimization computation. 

Since the optimum selection of g.ij is not critically de
pendent upon a particular optimization procedure, we 
used the algorithm known as the BOX COMPLEX pro
cedure 20 since this is one of the optimization algo
rithms which does not require derivatives of the objec
tive function. 

As an example, consider the network model in Figure 
2 in which the two regions consist of nodes {1,2,3,4} 
and nodes {5,6,7,8}, and the regional SIMPs are located 
at nodes 1 and 7. The traffic demand matrix assumed 
to be uniform with "/ij=20 packets/sec. i=Fj and "/ij=O 



Design Issues for Mixed Media Packet Switching Networks 545 

SATELLITE 

et 
I " -J es '......,-

• location of an IMP 

@ location of an IMP and a SIMP 

Figure 2-The network model considered in numerical examples 

for i=j. The average packet lengths is assumed to be 
512 bits on all ground channels. The packet length on 
the satellite channel is fixed and equals 1 K bit. The 
ground link capacities are all assumed to be Cg =50 K 
bits/sec and the satellite capacity to be Cs =1500 K 
bits/sec. With this information as input to the routing 
optimization program, the inter-regional gij are com
puted and are given in Table 1. Note that we assume 
gij= 1, for i,j in the same region. 

LINK CAPACITY ASSIGNMENTS 

In the packet routing studies above we assume that 
the ground link capacities are given. We also assume 

TABLE I-The ~outmg Indices for Traffic fl'om Region 1 
.L 

to Region 2 

destination 
5 6 7 8 

1 1 0 0 0 
a~ 2 .855 .681 0 .706 tl) 
.~ 3 1 1 0 .315 
0 

4 1 1 0 1 

Note: The Routing Indices for traffic from Region 2 to Region 
1 are symmetrical to those given in Table 1. For instance, 
gS2=g2S=·706; g72=glS=0; etc. 

as given the capacity of the satellite channel. The ca
pacity assignment problem is: for each channel l the 
capacity C1 must be found which minimizes the total 
average message delay T. The problem is most difficult 
if the capacities must be chosen from a discrete set of 
options. Following Kleinrock 2i we assume that the 
capacities of ground links and satellite channel are 
continuous variables and use analytic procedures in
volving Lagrange multipliers to obtain C1• A general 
discussion of our approach followso 

We assume as given the topology of the network in
cluding SIMP locations. We also assume a given de
mand matrix [YiJ. Let AI be the traffic on link l. The 
(continuous) capacity assignment problem can be 
formulated as 

subject to the constraint that the overall budget B 
is specified where B is 

L 

B= L,bICI+bsCs 
2=1 

and bz and bs are cost functions of the capacities Cz and 
Cs respectively. 

In solving the capacity assignment problem, we need 
to know the total allowable budget and unit cost of 
ground and satellite channel capacities. We assume 
the unit cost of ground channel capacities are the same, 
so we can normalize all costs by a unit cost of ground 
channel capacity. In obtaining the following results, 
we further assume a ratio of 1 to 10 for satellite and 
ground channel capacity costs, i.e., 

1 unit cost of 10 unit cost of 
ground channel capacity = satellite channel capacity 

Our program is sufficiently general so that we can 
assume any ratio between satellite capacity and ground 
capacity costs. Perhaps a more realistic ratio to use 
today is a 1 to 3 proportion. 

Without going into the details of the capacity assign
ment optimization scheme, which is quite similar to the 
work of Kleinrock21 and which is described elsewhere,17 
let us discuss a computer program we have written 
which combines the routing and capacity assignment 
algorithms in an overall procedure. The program first 
obtains a solution for the routing assignments includ
ing overall average delay TR, the routing indices gij and 
the channel traffic rates As and Az• Then with the As and 
Al from the routing calculations and with a given total 
budget B and the assumed unit costs of satellite and 
ground channel capacities bs and b l as inputs to the 
capacity assignment routine, we obtain the capacity 
assignments Cs and {Cz} and a new figure for overall 
average delay Te. If Te~TR then the entire procedure 
is repeated with the previously computed values of Cs, 

{Cz} and gij used as input to the routing subroutine. 



546 National Computer Conference, 1976 

The process is iterated until Tr:=Tu to within a speci
fied accuracy or until the maximum time limit allowed 
for the optimization procedure is reached. 

Using the output data from the routing subroutine 
run given in the previous section, the iterative cycle is 
carried out for the network in Figure 2. The input 
data consists of the original demand matrix, initial 
values of CI =50 K bits/sec and Cs =1500 K bits/sec 
and an assumed total budget B in cost units and b l= 1 
and bs =O.1. The final results for {Cz,Cs } and {Az,As } 

after 8 iterations for B = 1,700,000 cost units are given 
in Table II, and those for B = 950,000 cost units after 4 
iterations are given in Table III. For the total budget 
B = 1,500,000 the minimum overall average delay was 
T=.037 sec. whereas for B=950,000, T=1.435 secs. 
We have performed a number of runs with different 
values of budget B and the results show that as total 
allowable budget increases the overall average delay 
decreases as seen in Figure 3. Also the optimum satel
lite capacity decreases and the ground channel capaci
ties increase as the total allowable budget increases. 
This is because we have assumed a 10 to 1 ratio be
tween the cost of unit ground capacity to unit satellite 
capacity. As the total budget grows we have more 
money to spend on the relatively more expensive 
ground channel capacities. As ground channel capaci
ties become large, packets tend to go via ground subnet 
since the minimum satellite propagation delay is high 
(0.26 secs). We can show in general that the T vs B 
curve is a hyperbola and have derived formulas for the 
asymptote S which are given in a companion paperY 

T ABLE II-Optimum Traffic Rates and Channel Capacities for 
B=1,700,000 Cost Units 

Optimum Optimum 
Traffic Rates Capacities 

(packets/sec) (K bits/sec) 
)" CI 

Satellite Channel 2.15 15.966 
Ground Channel 1 67.95 55.196 

2 120.06 88.238 
3 119.80 88.082 
4 92.43 70.967 
5 159.54 112.292 
6 159.43 112.226 
7 92.46 70.985 
8 120.00 88.201 
9 119.81 88.088 

10 67.80 55.097 
11 67.81 55.109 
12 120.09 88.259 
13 119.67 88.001 
14 92.46 70.984 
15 159.55 112.295 
16 159.33 112.163 
17 92.46 70.987 
18 120.00 88.203 
19 119.71 88.025 
20 67.90 55.165 

The minimum delay=.0369 seconds 

T ABLE III-Optimum Traffic Rates and Channel Capacities 
for B=950,000 Cost Units 

Optimum Optimum 
Traffic Rates Capacities 
(packets / sec) (K bits/sec) 

~q CI 

Satellite Channel 270.13 511.770 
Ground Channel 1 93.61 47.405 

2 79.67 40.391 
3 88.29 44.730 
4 77.50 39.298 
5 81.71 41.417 
6 102.99 52.125 
7 77.61 39.351 
8 82.43 41.780 
9 86.86 44.009 

10 93.62 47.413 
11 91.26 46.222 
12 82.50 41.815 
13 85.94 43.547 
14 79.97 40.541 
15 82.07 41.598 
16 103.11 52.185 
17 79.97 40.539 
18 80.43 40.773 
19 89.34 45.257 
20 91.14 46.166 

The minimum delay=1.435 seconds 

THE MASTER SCHEME 

In this section we will describe a scheme in which re
transmission traffic from a multi-access channel is sent 
via the ground net. This scheme will be denoted here 
as the MASTER (Multi-Access Satellite With TErres
trial Retransmission) plan. Under the MASTER plan, 
the up-link of the satellite channel is a slotted multi
access channel and the down-link is a broadcast chan
nel. Unlike slotted ALOHA, whenever a packet colli
sion occurs in the multi-access channel, the MASTER 
scheme does not use the satellite channel for retrans
mission of the rejected packet. Instead the rejected 
packet is sent via the ground net from the source SIMP 
directly to the destination IMP without having to first 
go to its regional SIMP. By sending retransmitted 
packets via the ground net, overall average delay can 
be reduced significantly especially if the traffic on the 
satellite channel is heavy. Moreover, the MASTER 
plan eliminates all possibilities of instabilities that 
might occur in a slotted ALOHA channel under very 
heavy traffic situationsY Thus we see that the MAS
TER channel has no retransmitted packets. Since on 
the down-link broadcast channel each SIMP can hear 
its own transmissions, if a packet collision occurs, the 
source SIMP could reroute the rejected packet through 
the ground net without waiting for an acknowledg
ment from the destination SIMP. Moreover, after 
sending a packet, a SIMP can immediately send again 
in the next slot without waiting for the results of pre
vious transmissions. 



Design Issues for Mixed Media Packet Switching Networks 547 

1.435 

.057 

.~ .~ 11 I~I 11 I.~ I.~ I b I.~ 
budget in million unit costs of grotl/d cllamel capacity 

.7 

Figure 3-Delay-cost trade-offs 

.Q?;! 

J 
1.7 

Now let us turn our attention to a more detailed dis
cussion of the MASTER plan. Consider the satellite 
channel model depicted in Figure 4. Let A.,. [pkts/sec] 
be the average input rate from SIMP a to the satellite 
channel. The probability q.,. that a packet will be trans
mitted from SIMP a in a given time slot, or equiva
lently the traffic rate in a given time slot is: 

A.,. q.,.=--
fLsCs 

where Cs [bits/sec] is satellite channel capacity and 
1/ P-s [bits/sec] is the packet length. 

We define random sequences X,,(k) and Y.,.(k) as 

X.,. (k) = {I if SIMP a transmits in time slot k 
o otherwise 

r 1 if SIMP a successfully transmits in time 
I 

y.,.(k)=~ slotk 

l 0 if otherwise (i.e., no transmission or col
lision) 

Then it follows that 

SIMP I ql XI 

2 q2 X 

M q .. x .. 

~ SATELLITE 
CHANNEL 

Cs 

000 

qIO-PI) ~(J-P2) qJl-P..> 

Retransmit via Ground Subnet 

11 
~ 

Y2 
.~ 

Y .. 
~ 

Figure 4-The satellite subnet model under Master 

By assuming that the streams X.,.(k) from different 
SIMPs are independent we readily obtain 

Pr[Y,,=I] =q.,.P.,. 

where P.,.=II <In with qr=I-<In is the probability of 
T#(f 

success of a packet from SIMP a. The normalized 
throughput S or successful transmission per slot time, 
of the satellite channel is thus 

= I,q"P" .,. 

Note that packets from SIMPs traverse the satellite 
channel once and only once under this operational 
scheme. If we assume the satellite channel transmis
sion errors and nodal processing delay to be small, and 
buffer storage to be sufficiently large, then the average 
delay incurred by a packet when going through the 
channel can be found by using response time formula
tion of an MID II queueing system plus the satellite 
propagation delay Tmin of approximately .26 secs. The 
result of a deterministic service time system is used, 
since in a slotted channel all packets are of fixed length, 
any messages with length less than a specified full 
packet size are filled with blank characters to form a 
full size packet. Thus the average delay experienced 
by a packet travelling from SIMP a through the satel
lite channel is 

T.,.= Tmin + fLs~s{ 1+2(fLs~:-A"')} 
The overall average packet delay of the satellite chan
nel Ts [secs/pkt] can be obtained by averaging over all 
T,,'s 

where 

and 
A.,. 

q.,.=-C 
fLss 

(7) 

It can be shown that for a given total traffic rate As 

= I, A.,. [pkts/sec] Ts takes on its minimum when A/1 .,. 
= As/M, for all a=I,2, .. . ,M. We can also show that 

the condition I, q.,.= 1 is necessary to achieve the .,. 
maximum throughput S. From these conditions we im
mediately see that the best throughput delay trade-off 
is attained for q.,.=I/M, a=I,2, .. . ,M. 

This condition, although the optimum operating 
point, is difficult to attain, since the traffic rates from 
SIMPs are most likely not equal. It is difficult to study 



548 National Computer Conference; 1976 

the trade-off for cases with a large number of hetero
geneous SIMPs. We can obtain some understanding of 
how S varies by investigating the case of M=2. For 
this case, the throughput rate of the satellite channel is 

S=ql(1-q2) +q2(1-q]) =ql+q2- 2qlq2 (8) 

A plot of the throughput S versus the traffic rates ql 
and q:! is given in Figure 5. In the throughput as shown 
in Figure 5, the surface takes the form of a saddle with 
the valley located on the plane ql = q2 which includes 
the S-axis and is at a 45 0 angle from the planes ql = ° 
and q2 = ° (the slashed, diagonal plane shown in Figure 
5 and ridge located on the plane ql + q2 = 1 which is per
pendicular to the plane (ql=q2) and passes by upper
corner end points (1,0,1) and (0,1,1) of the throughput 
surface). Note that the condition 

(9) 

corresponds to a straight line of slope -Ion ql - q2 
plane. As stated above if 

(10) 

we obtain the maximum boundary of the throughput S. 
The ridge of the saddle surface of the throughput S is 
thus the maximum boundary. For this simple case, we 
can further prove that, given the condition in Equation 
(9), S attains its minimum for 

(11) 

which is the line with slope 1 on ql - q2 plane (the line 
at 45 0 degree angle with ql-axis and q2-axis). The val
ley of the saddle surface of the throughput is thus the 
minimum boundary. Also, the overall average packet 
delay, Tj;, of the satellite channel for m=2 case is 

(1,0,1) 

1 (Q,2 q/) 1 
T"=TminT 2As l-ql +1-q2 + J1-sC~ (12) 

s 

S=/-q, 

--+----S2 

Figure 5-Thmughput surface given by equation (8) 

Again, the delay Ts is symmetrical with respect to ql 
and q2. In Figure 6 we show the level curves of the 
delay surface in the (qDq2) plane. Given the condition 
in Equation (9) the delay Ts reaches its minimum for 
ql = q:!. The minima are shown by a dashed line inter
secting the level curves. 

The above results are preliminary. We have not 
computed numerical examples for the MASTER 
scheme. These will be given in a companion paper by 
the authors. I

' 

CONCLUSIONS 

In this paper we have presented some of the important 
design issues for mixed media packet switching net
works. Satellite packet switching has considerable 
promise for low cost, high bandwidth data communi
cations. However there is inherent high delay in satel
lite links which do not appear in ground links. There
fore a mix of the two communications media seems to 
offer the best of both worlds. In this paper we have 
examined a number of trade offs which offer guidelines 
for the design and optimum utilization of mixed media 
networks. 

We have introduced a new communications scheme 
called MASTER (Multi-Access Satellite with TErres
trial Retransmission). We believe that the MASTER 
scheme offers significant advantages over slotted 
ALOHA especially when the multi-access satellite chan
nel is heavily loaded. 

We have not explored the possibility of sending net
work control information along the ground and using 

Figure 6-Level curves of delay surface given by equation (12) 



Design Issues for Mixed Media Packet Switching Networks 549 

the satellite for bulk data transmission. However the 
extension is logical and not difficult to analyze. An
other logical extension of the MASTER scheme is to 
use the satellite channel on a reservation basis, such as 
suggested by Crowther, et aVo Robertsll and Binder,14 
but use the ground channel to set up reservations. We 
plan to explore this idea in a subsequent paper. 

REFERENCES 

1. Roberts, La\vrence G. and Barry D. Wessler, "The ARPA 
Network," in Computer-Communication Networks, edited 
by Norman Abramson and Franklin F. Kuo, Prentice-Hall, 
Inc., 1973, pp. 485-500. 

2. Heart, F. E., "The ARPA Network," Proceedings of the 
NATO Advanced Study Institute on Computer Communica
tion Networks, edited by R. L. Grimsdale and F. F. Kuo, 
Noordhoff International Publishers, 1975, pp. 19-34. 

3. Wessler, Barry D. and Richard B. Hovey, "Public Packet
Switched Networks," DATAMATION, July 1974, pp. 85-87. 

4. Butterfield, S., R. Rettberg, D. Walden, "The Satellite IMP 
for the ARPA Network," Proceedings of the Seventh Hawaii 
International Conference on System Sciences-Sub confer
ence on Compute-;' Nets, \Vestern Periodicals Co., January 
1974, pp. 70-73. 

5. Abramson, Norman, "The ALOHA System," in Computer
Communication Networks, edited by Norman Abramson and 
Franklin F. Kuo, Prentice-Hall, Inc., 1973, pp. 501-518. 

6. Kuo, Franklin F. and Norman Abramson, "Some Advances 
in Radio Communications for Computers," Digest of Papers 
-COMPCON '7.'3, San Francisco, February 1973, pp. 57-60. 

7. Binder, Richard, et aI, "ALOHA Packet Broadcasting-A 
Retrospect," AFIPS National Computer Conference Pro
ceedings, Vol. 44, 1975, pp. 203-215. 

8. Roberts, Lawrence G., "ALOHA Packet System With and 
Without Slots and Capture," ARPANET Satellite System 
Note #8 (NIC 11290), Stanford Research Institute, June 
1972. 

9. Abramson, Norman, "Packet Switching with Satellites," 
ALOHA SYSTEM Technical Report B73-2, University of 
Hawaii, March 1973; also published in AFIPS National 
Computer Conference Proceedings, Vol. 42, New York, June 
1973, pp. 695-702. 

10. Crowther, W., et aI, "A System for Broadcast Communica
tions: Reservation ALOHA," Proceedings of the Sixth 
Hawaii International Conference on SY8tem Sciences, West
ern Periodicals Co., January 1973, pp. 371-374. 

11. Roberts, Lawrence G., "Dynamic Allocation of Satellite 
Capacity Through Packet Reservation," AFIPS National 
Computer Conference Proceedings, Vol. 42, June 1973, p. 711. 

12. Kleinrock, Leonard and Simon S. Lam, "Packet-Switching 
in a Slotted Satellite Channel," AFIPS National Computer 
Conference Proceedings, Vol. 42, June 1973, p. 703. 

13. Lam, Simon S., "Packet-Switching in a Multi-Access Broad
cast Channel with Application to Satellite Com:munication 
in a Computer Network," Ph.D. Thesis, UCLA; also avail
able as UCLA-ENG-7429, UCLA Computer Science Depart
ment, April 1974. 

14. Binder, Richard, "A Dynamic Packet Switching System for 
Satellite Broadcast Channels," ALOHA System Technical 
Report B74-5, University of Hawaii, August 1974. 

15. Davies, D. W., "A Review of Computer Communications 
Technology," Proceedings of the NATO Advanced Study 
Institute on Computer Communication Networks, edited by 
R. L. Grimsdale and F. F. Kuo, Noordhoff International 
Publishers, 1975, pp. 1-17. 

16. Frank, H., I. T. Frisch and W. Chou, "Topological Con
siderations in the Design of the ARPA Computer Network," 
AFIPS Spring Joint Computer Conference Proceedings, 
Vol. 36, 1970, pp. 543-549. 

17. Huynh, D., H. Kobayashi and F. F. Kuo, "Optimal Design 
of Mixed Media Packet Switching Networks: Routing and 
Capacity Assignment" to be published in IEEE Trans. on 
Communication, Autumn 1976. 

18. Crowther, W. R., F. E. Heart, A. A. McKenzie, J. M. 
McQuillan, and D. C. Walden, "Issues in Packet Switching 
Network Design," AFIPS National Computer Conference 
Proceedings, Vol. 44, 1975, pp. 161-175. 

19. Fultz, G. L., "Adaptive Routing Techniques for Message 
Switching Computer-Communications Networks," Ph.D. 
Thesis, UCLA; also available as UCLA-ENG-7252, UCLA 
Computer Science Department, July 1972. 

20. Box, M. J., "A New Method of Constrained Optimization 
and a Comparison with Other Methods," The Computer 
Journal, August 1965, p. 42. 

21. Kleinrock, L., Communication Nets: Stochastic Message 
Flow and Delay, Dover Publications, New York, 1964. 

22. Jackson, J. R., "Job Shop-like Queueing Systems," Manage
ment Science, Vol. 10, No.1, October 1963, p. 131. 





A perspective on network operating systems* 

by STEPHEN R. KIMBLETON and RICHARD L. MANDELL 
USC /'[nforntatioit Sciences Institute 
Marina del Rey, California 

ABSTRACT 

The viability of packet switched computer communica
tion has been demonstrated. The potential for more ef
fective computing through resource sharing and load 
leveling is evident. Realization of this potential re
quires expanded user support to reduce or eliminate 
much of the need for users to learn the command lan
guages of the hosts being accessed and of the commu
nications subnetwork. Such a capability can be pro
vided by a mediating agent providing ease of access to 
resources and control of resource access-a role tradi
tionally ascribed to an operating system in the context 
of an individual computer system. This mediating 
agent, hereafter termed a Network Operating System 
(NOS), requires careful exploration to determine its 
appropriate interaction with the operating systems of 
the hosts within the network. This paper discusses the 
functions required of a Network Operating System and 
identifies major differences between the role of the 
Network Operating System and an individu!ll host op
erating system. As such, it is intended to provide a 
basic perspective on the field of Network Operating 
Systems. 

INTRODUCTION 

Early computing experience quickly demonstrated the 
undesirability of requiring the user to directly interact 
with and control raw physical resources. As a result, 
operating systems were introduced which provided two 
primary functions: (i) provision of ease of access to 
computing resources, and (ii) control of the allocation 
of resources across multiple competing requests. Thus, 
the operating system may be regarded as an agent in
terposed between the user and the system resources. 

Heterogeneous networks, such as ARPANET, 1-4 po
tentially permit both sharing of dissimilar resources 

* Preparation of this paper was supported by the Rome Air 
Development Center. Distributed Computation Study, under Con
tract F30603-75-C-0222. The views and conclusions contained in 
this document are those of the authors and should not be inter
preted as necessarily representing the official policies, either 
expressed or implied, of the Rome Air Development Center, or 
the U.S. Government. 

551 

and balancing of workload across a collection of similar 
resources such as the Operating System Class (OSC) 
consisting of the collection of TENEX operating sys
tems within ARPANET. Presently, the viability of 
packet switched computer communications technology 
as used in ARPANET may be regarded as proved. 
However, the user wishing to make full use of the re
source sharing potential of a heterogeneous network is 
currently faced with a requirement for learning the 
command languages of each separate system being ac
cessed and, additionally, the command language re
quired to support network communication. For the 
casual (non systems programmer) network user, this 
constitutes an immense startup cost which must be in
curred prior to any reasonable use of network re
sources. The natural result is a minimization of the 
tendency to utilize potentially more effective remote 
resources. 

Upon reflection, the obvious conclusion is that an
other entity, hereafter termed a mediator or Network 
Operating System (NOS), is required to interface with 
the collection of host operating systems. In recognition 
of the urgent necessity for such a capability, an increas
ing number of papers are undergoing gestation and are 
scheduled to appear. The objective of this paper is to 
provide a global overview of the subject; to indicate 
some of the major components required for an NOS; to 
discuss the results of an NOS study 5 and to provide 
context for the remainder of the papers in this session. 

It should be noted that the discussion of NOS in this 
paper is predicated upon an assumption that the exist
ing host operating systems must remain essentially in
tact. In the alternative case in which one is free to de
sign the operating systems for both the computer and 
the communications capabilities, substantial simplifi
cations can result as the discussion in References 6 and 
7 demonstrate. 

To provide a perspective for reading subsequent sec
tions, the remainder of this section identifies major 
differences between an NOS and an OS, establishes 
some of the major NOS objectives, and identifies re
quirements implicit in NOS design. The second section 
then discusses the major classes of primitives required 
for NOS implementation. Based upon this discussion, 
the two subsequent sections discuss issues and implica-



552 National Computer Conference, 1976 

tions of the primitives required for data migration and 
network job execution. The fifth section examines the 
relationship of this work to existing capabilities and 
the sixth section closes with some summary remarks. 

NOS-OS similarities and differences 

From the viewpoint of an individual user, the basic 
atoms of both a network and an individual computer 
system are job steps and data. However, several major 
differences exist including: control of individual host 
resources; encapsulation; heterogeneity; geographical 
separation; and differing organizational constraints. 

An individual operating system provides direct ac
cess to and control of individual host resources. In con
trast, a Network Operating System provides a media
tor which, to avoid substantial modifications to host 
operating systems, interfaces with the collection of op
erating systems to effect the requested functions. This 
has the advantage of eliminating the need for writing 
device drivers and many system utilities. The disad
vantage is the need for explicit interfacing with a col
lection of distinct operating systems which may not 
provide comparable collections of capabilities. 

A Network Operating System, in contrast with an 
individual operating system which has total control of 
system resources through effective encapsulation of the 
user, only mediates the interaction of the user with 
the operating system. Thus, the individual network 
user provided with access to a given system is assumed 
to have effectively the same potential spectrum of avail
able capabilities as a local user. Moreover, since the 
user is not encapsulated, and the NOS is designed to 
support general purpose computing, it will usually be 
necessary to have some knowledge of local systems for 
interpretation of diagnostics and miscellaneous system 
responses created by program or programming errors. 
However, remote procedure calls, invocation of de
bugged programs, and many data operations could pro
ceed without such knowledge. 

For some applications, encapsulation may prove man
datory. Thus, the National Software Works provides 
such a capability in the context of providing a software 
production capability. This requires interrupt captur
ing, developing appropriate diagnostic translators and, 
for comparable items of software executing on dis
tinct systems, development of standardized translators 
(grammars). This knowledge of the program to be 
executed is a prerequisite for its encapsulation. En
capsulation clearly provides significantly greater con
trol of both user and host and, conceptually, is closer to 
heterogeneous multiprocessing. In view of the NSW 
demonstration of the feasibility of encapsulation, de
termination of its desirability is effectively a cost bene
fit exercise. 

Host heterogeneity raises issues for both job pro
cessing and data movement. Job processing effective
ness is expedited through provision of a common com-

mand language.8
-

1o However, as discussed above, 
determination of the proper amount of uniformity to 
provide in diagnostic and control messages may be 
regarded as an open issue. The data implication of host 
heterogeneity is reflected in the need for data selection, 
translation and transformation as discussed later. 

The intent within a Network Operating System is to 
provide a collection of capabilities which enables an 
individual user to access remote resources (programs, 
data or systems) just as if the user were local to all 
these resources. Formally, this objective, although 
feasible, still requires caution on the part of the user 
in view of the time delays induced through accessing 
remote resources. This issue has been discussed in 
the context of providing a network based programming 
environmentll and the care required seems similar to 
that required by the advent of virtual systems. That is, 
assuming that virtual memory was identical to real 
memory it could, for programs with poor locality, result 
in both poor utilization of system resources and high 
delay in program execution. It seems likely that im
proper utilization of network resources via an NOS 
will be reflected in the same manner. 

Differing organizations have different viewpoints re
garding sharing, accounting, and control of resource 
utilization. In a local environment these differences 
quickly become known and, through negotiation, be
come acceptable. In contrast, in a networking environ
ment, the identity of the real user would usually be 
unknown and more formalized and rationalized proce
dures must be used. The precise implications of these 
organizational differences in style seem to be an open 
issue whose resolution is likely to be slow. However, 
the implications of poor accounting algorithms are al
ready becoming manifest.12-14 

NOS objecti'ves and requirements 

Five primary issues must be considered in develop
ing a network operating system: 

• provision of a uniform user viewpoint of re-
sources 

• modular expansibility 
• control of host network interaction 
• allocation of global network resources to net

work computing requirements, and 
• implementation mode 

The first objective was discussed above. The second 
is required to permit hosts to provide varying levels of 
NOS support as dictated by need. The third is required 
to assure adequate protection of host interests in a net
working environment. The fourth is required to sup
port efficient network based computing in general, and 
is mandatory for Mission Oriented Networks5 in which 
a "collection" of computers must work cooperatively 
to achieve the organizational information processing 
function. The fifth consideration is required to ensure 



that the stated objectives do, indeed, prove economically 
feasible. 

The developer of an operating system is effectively 
free to start from scratch. In contrast, the developer of 
a Network Operating System must interface with the 
existing software technology. Moreover, to be truly 
useful, the developer must also accept the fact that dif
ferent sites are likely to have differing aspirations re
garding network utilization and, as a result, will be 
likely to support different levels of sophistication in 
their NOS. It follows that a realistic NOS must be 
modularly expansible; the evident corollary is that it 
must support interaction with users not wishing to par
ticipate in the NOS as would be the case in ARPANET 
for users wishing to rely upon the existing protocols. 

In almost any scientific or engineering endeavor, the 
first objective is to show that something can be done. 
The second is to show that it can be done well and the 
third is control. Control, in an NOS context, requires 
control of the host network interaction to prevent net
work demands from unfairly impacting local users. In 
addition, control in the context of a Mission Oriented 
Network4 is also required to balance resource require
ments against resource requests. 

The mediator viewpoint described supports basic im
plementation and refinement of an NOS. The required 
element of control, however, imposes a host require
ment significantly different from that currently exist
ing since the network user is a relatively more un
known issue. As a result, the resource requirements of 
such a user are less predictable and the need for online, 
near real time control is increased. This, in turn, re
quires automated data gathering, archiving, and anal
ysis. In addition, it requires the existence of a cen
tralized network management capability to provide a 
common access point for users, individual installations 
and the network to obtain status and availability infor
mation. Such a capability would also permit balancing 
resource requirements against resources. 

Host operating systems are complex, packet switched 
subnetworks are complex, and it is reasonable to as
sume that a completed network operating system will 
be complex. This necessitates careful consideration of 
its implementation mode. Two major alternatives 
exist: implementation within the host or implementa
tion via augmentation of the host with a separate com
puter interposed between the host and the packet 
switch (IMP). In our opinion, the dramatic decline in 
hardware costs coupled with the increasing expense of 
sophisticated systems programmers argues strongly for 
the augmentation approach. Utilization of such an ap
proach permits centralized design, implementation and 
support of the Network Operating Systems. Thus, only 
the host interfaces need be separately tailored. It should 
be noted that this support processor differs in scope 
from that usually subsumed under the title Front End 
Processor,8 which is primarily concerned with offload
ing common portions of the software required to sup
port ARPANET protocols. However, both have in com-

Perspective on Network Operating Systems 553 

mon the need for case by case implementation of host 
interfaces. 

NOS PRIMITIVE CATEGORIES 

The global objectives of a Network Operating Sys
tem require development of primitives in four cate
gories: 

• user com:munication, 
• data migration, 
• network job execution, and 
• control. 

User communication 

User communication primitives are required since, 
in a geographically dispersed environment, the commu
nication alternatives would require utilization of tele
phone, telegraph, etc. However, in view of the need to 
transmit programs, data, documentation, and user 
guidance (counseling), provision of a suitable mecha
nism within the computer communications network is 
clearly required. It should be noted that some of the 
more sophisticated individual host operating systems 
also provide such a capability,15 Currently, rather gen
eral capabilities for user communication are available 
within the ARPANET for the TENEX subcollection of 
hosts. 

In passing, it is worth noting that although rather 
general capabilities already exist, substantially more 
sophisticated capabilities can be considered. Two major 
branches can be distinguished: message processing and 
teleconferencing. 

Message processing provides five basic categories of 
services :16-18 creation, coordination, forwarding, alert
ing, and event processing. Through their provision, the 
ability of a large organization to respond in a timely 
manner to the dynamics of the environment is substan
tially facilitated. Creation and coordination permit 
generation and refinement of a proposed message by 
the collection of relevant originators. Forwarding en
compasses the transmission process. Alerting supports 
early notification of the appropriate spectrum of re
cipients as determined from the addressee list or via 
content analysis. Finally, event processing can permit 
automatic invocation of computer operations appro
priate to the message content (e.g., inventory reorders 
upon notification of outages in intermediate ware
houses). 

As observed in Reference 4, "Teleconferencing en
compasses both multiparty voice/visual communication 
and a more formalized collection of capabilities related 
to hardcopy message communication.19

-
23 A particular 

form of teleconferencing, computer-based conferenc
ing, provides a natural support basis for communica
tion among geographically dispersed computer users. 
This latter form of communication is also advantageous 



554 National Computer Conference, 1976 

when it is appropriate to maintain permanent confer
ence records, e.g., command and control. The general 
capabilities provided include archiving, indexing, 
searching, and updating of conferences. Through their 
utilization, communication between users is substan
tially enhanced." 

Data migration 

Data migration is the basic capability provided within 
a network for access to remote data. Current AR
P ANET provided capabilities primarily support trans
mission of sequential text files or block transmission of 
binary files. However, as discussed in the following 
section, efficient network utilization requires substan
tially more sophisticated capabilities. The spectrum of 
capabilities required for data migration is discussed 
later. 

Network job execution 

Network job execution differs from job execution in 
an individual computer system in the possibilities for: 
concurrent execution of parallel job steps; migration 
of a given job step to alternative sites; synchronization 
of job step execution across hosts; and the need for 
control of these capabilities. Moreover, in a hetero
geneous network, job execution will generally require 
access to remote data. These and other issues are dis
cussed in the next section. 

Control 

Control in a computer communications nehyork can 
be considered at three levels: 

• subnetwork control, 
• host control, and 
• network (host plus subnetwork) control. 

Current subnetwork control capabilities are primar
ily limited to topology and link capacity modification. 
As a result, the control actions which can be invoked 
are rather static and the time constant for their invoca
tion is on the order of months. 

In the future, such static approaches to control prom
ise to be unacceptable due to the emergent need for 
handling multimodal traffic including :3,27 

• interactive traffic 
• high throughput traffic such as file transfer, 
• real time traffic such as digital transmission of 

speech, and 
• guaranteed bandwidth traffic. 

Since the available capacity directly interconnecting 
any two packet switches is relatively static, assurance 
of an equitable allocation of capacity among these traf
fic types as well as provision of guarantees that limited 

amounts of traffic of each type will get through re
quires careful investigation. An immediate require
ment for such an investigation is online, near real time 
monitoring of traffic conditions and a likely corollary 
is an ability to effect control actions in near real time. 
The importance of research in this area is only begin
ning to be perceived with the transition of packet 
switching communication capabilities from the status 
of a research instrument to the status of a utility. 

In a Value Added Network, by definition,4 individual 
hosts as well as the subnetwork are organizationally in
dependent. As a result, there is little need to coordi
nate and control the effects of job and data assign
ments. In contrast, in a Mission Oriented Network, a 
collection of hosts as well as, perhaps, the subnetwork 
are expected to work together cooperatively to achieve 
the organizational information processing function. 
This, in turn, is likely to require significant host con
trol capabilities in order to ensure effective workload 
processing in the face of dynamically varying job and 
data assignments. 

At the present time, work on centralized host net
work control capabilities is only beginning.24 Their ab
sence reflects the need for control strategies concerned 
with basic issues of: scheduling, major software capa
bilities and the basic hardware architecture of a sys
tem. In a single site computing environment, control 
strategies tended to be a byproduct of control tactics 
used for fine tuning the system.25 Such tactics were pri
marily implemented by systems programmers having 
detailed knowledge of the system, its workload, antici
pated needs, and the informal pecking order of cus
tomer priorities and were oriented toward a fine tuning 
of the system in a manner appropriate to such knowl
edge. It follows that tactics are relatively unsuited to 
centralized implementation while, as discussed in Ref
erence 24, the opportunities for a centralized imple
mentation of control strategies seem reasonable. A 
clear requirement for an effective control strategy is a 
careful, guaranteed delivery of system resources. An 
innovative approach to this subject is described in Ref
erence 26. 

Network (host plus subnetwork) control is clearly 
destined to be a subject of extreme importance in the 
context of Mission Oriented Networks. Existence of 
network control capabilities permits development and 
control of geographically dispersed data bases, trade
offs between computing and communication, and assur
ance that remote users receive service comparable to 
that experienced by local users. 

DATA MIGRATION 

Data migration, as discussed in the Introduction, 
provides the basic capability required to permit a pro
cess executing in one computer to access data contained 
in another computer. Current data migration capa
bilities require that such access be accomplished via 



transmission of the file to the site at which the data is 
to be processed. Although this approach is, perhaps, 
reasonable in the context of an individual computer 
system, it seems unlikely to be acceptable in a data 
processing environment in which, typically, the owner 
of a file is unwilling to permit users to copy the file. In 
addition, for reasons of security and privacy, the 
owner may also be unwilling to let an accessing user 
access the entire file and may instead wish to restrict 
access to limited portions of the file. 

Development of a general data migration capability 
requires three basic capabilities: 

• data selection, 
• data translation, and 
• data transformation. 

Data selection provides the basic capability (daemon) 
for remote accessing of data at the subfile level. As 
such, it should be envisioned as a transaction processor 
co-located with the d!lta which, upon issuance of an 
appropriate request by a remote process, accesses a 
description of the file (specified in some appropriate 
data description language), and reads the requested 
record (s) in order to transmit them to the requesting 
process. At a conceptual level, it follows that the ac
cessing process could therefore treat remote data just 
as it treats local data. At a practical level this observa
tion needs to be tempered by the knowledge that net
work accesses "\-",ill, in general, consume significantly 
more time than local data accesses and, as a result, ac
cess delays must be factored in to determine the rela
tive desirability of utilizing a data selection capability 
versus transmission of the entire file. From an imple
mentation viewpoint, it is of interest to observe that 
the basic data selection capabilities required relate 
closely to those required to support data translation.28 

Moreover, these capabilities also seem required to im
plement an effective locking capability in a networking 
environment.29 

It is well recognized that hosts in a heterogeneous 
network use different bit patterns for encoding infor
mation. Data translation is the basic capability which 
permits hosts to communicate with each other in spite 
of these differences. It follows that a data translation 
capability is central to any effective capability to com
municate among heterogeneous computers. 

Data, particularly in a data processing environment, 
is usually stored as a collection of structured records. 
Effective transmission of data therefore requires aug
mentation of data translation to encompass preserva
tion of record structure. The prerequisite capability for 
such preservation is an ability to describe the record 
structure and this, in turn, requires Data Description 
Languages. 

Data description languages can be structured into 
Logical Data Description Languages (LDDLs) con
cerned with describing the logical structure of the data 
and with characterizing fields, and Physical Data De
scription Languages (PDDLs) which serve as the 

Perspective on Network Operating Systems 555 

mechanism for describing how the data is physically 
laid out on the storage media. 

LDDLs are relatively straightforward and can be 
pursued at various levels of abstraction as discussed in 
References 30, 31 and 32. PDDLs33,34 are also logically 
straightforward but, from a user viewpoint, tedious. 
However, in a non-networking environment, PDDLs 
are clearly required to permit one system to read data 
written by another system. In contrast, in a network
ing environment, it seems feasible to eliminate the need 
fur PDDLs and rely upon the system access routines to 
access the requested data and via a utility program, 
translate it into an appropriate "normal" form for 
transmission to the requesting site where it is again 
retranslated from the "normal" form into an appro
priate local form. An exploratory discussion of this 
approach is contained in the paper: An Approach To 
Data Migration in Computer Networks. 28 It follows that 
data translation in a networking environment seems 
substantially simpler than translation in a non-net
working environment. 

Data transformation provides the basic capability for 
restructuring the logical form of data into a form more 
appropriate to the needs of the user or, alternatively, 
one which the owner of the data is willing to have 
transmitted. (For example, the owner may be unwill
ing to permit certain fields such as salary information 
to be transmitted.) 

Data transformation requires, in general, three basic 
capabilities: 

• arithmetic operations, 
• logical operations, 
• string operations. 

Moreover, to be useful in a generalized data base en
vironment, data transformation should permit opera
tion on multiple input streams to produce multiple out
put streams. 

Currently, some work is being done on the general 
topic of data transformation.28 ,35.36 Moreover, a general 
single input stream single output stream data transfor
mation capability was implemented within ARPANET 
in the context of the Data Reconfiguration Service. 
This system, in view of the primitive nature of the user 
interface and the highly procedural nature of the trans
formations could more properly be regarded as an ex
periment demonstrating the viability of the concept 
and, in this perspective should be viewed as a success. 
However, to be useful as a general purpose tool, sub
stantially more sophisticated interface capabilities are 
required. Moreover, it would be generally desirable to 
permit both distributed and centralized implementa
tions of this capability. 

In summary, the basic needs required to support a 
data migration capability are reasonably clear and can 
be structured in a fairly coherent manner. Moreover, 
many of the required capabilities exist in various ru
dimentary forms at the present time. 



556 National Computer Conference, 1976 

-------.------------------------------------------------------------------------------------------

NETWORK JOB EXECUTION 

We define a network job to consist of a lattice (tied 
tree) of job steps which, as illustrated in Figure 1, may 
each be executed o.n a distinct and possibl~y· dissimilar 
host. The characteristics of a network job are deter
mined by those of the individual job steps. 

In the simplest case, a job step may be a "batch" step 
which, once initiated, requires no further interaction 
with the NOS until termination. Support of the execu
tion requirements of such a step is relatively straight
forward. 

In general, job steps executing in a networking en
vironment may be anticipated to have more sophisti
cated support requirements including: 

• user interaction, 
• remote procedure calls, and 
• synchronization with remote processes. 

(It should be noted that execution of a network job is 
often viewed as an interprocess communication issue 
and thus a process rather than a job viewpoint is 
adopted. This viewpoint is correct for an implementor; 
however, from the viewpoint of the user the issue is 
really whether a remote job can be executed as is evi
dent from the discussion of the Call-Return mechanism 
in Reference 11 as the basic primitive provided to a 
user.) 

Support of user interaction with a network job step 
may prove relatively difficult in some operating systems 
since it tends to conflict with the desire for encapsula
tion of the job step which is useful in carefully con
trolling the interaction of the job step with the local 
host support capabilities such as the file system. 

Provision of a capability to support remote procedure 
calls in a manner analogous to that in which local pro
cedure calls are supported is clearly desirable. One ap
proach to the development of such a capability is de-

Figure I-Job step assignment in a distributed network 

scribed in the paper A High-Level Framework For 
Network-Based Resource SharingY In this paper it is 
observed that this capability is particularly desirable 
to provide an alternative means to the more general 
issue of protocol implementation w~ithin a computer 
network. 

Support of remote procedure calls carries, by analogy 
with the characteristics of local procedure calls, the 
implication that the calling process will terminate exe
cution pending satisfaction of the call. In general, this 
need not be the case and, in view of the relativelY large 
delays likely to occur in calls to remote systems (on the 
order of a few hundred milliseconds minimum due to 
subnetwork delays), more sophisticated capabilities are 
desirable to permit concurrent execution of local and 
remote processes. Thus, synchronization capabilities 
are required. 

Network job execution Tequire·rnents 

Execution of a network job requires four major capa-
bilities: 

• job step assignment and control, 
• step execution monitoring, 
• JCL Generation, and 
• Interprocess Communication Support. 

Job step assignment and control is required for as
signing job steps to processors: arranging for job step 
initiation upon satisfaction of all appropriate prece
dence and priority constraints; migration of files as 
required to permit job step initiation; and communica
tion with the user. Assignment of job steps clearly re
quires a capability to detect any existing (step) par
allelism. Moreover, such assignment may be made at 
the direction of the user, at the request of the host (to 
reduce peak workload), or at the suggestion of some 
centralized network management capability to balance 
global resource requests against resource availability. 

Step execution monitoring is required to interface 
the scheduling of network originated jobs with local 
jobs. In particular, it provides step initiation; moni
tors step execution to provide restart and, potentially, 
recovery capabilities; and notifies the job step assign
ment routines of the termination of one step to permit 
initiation of successor steps. To support the needs of 
a job step to communicate with remote data, the appro
priate data paths with data selectors stored in remote 
hosts must also be arranged. 

Network JCL 

A job control language provides four generic capa
bilities: 

• identifying the precedence and priority condi
tions required for job step execution, 

• making files within a user's directory known to 



the step which usually has its own expectations 
regarding the naming of the files, 

• inserting files generated by a program into the 
appropriate directory, and 

• controlling the assignment of files to devices 
and, for a given file, controlling the layout of the 
file on the device. 

Powerful job control languages, such as are com
monly available with the larger data processing sys
tems provide great power in effecting these functions 
and, as a result, are noted for the complexity of the 
statements required to achieve relatively simple (com
pile-load-go) objectives. In contrast, the JCL's pro
vided with many of the scientifically oriented computer 
systems are quite simple and reflect a more limited 
spectrum of potential user needs. An intermediate 
point in this spectrum is provided by the capability 
which some of the more sophisticated JCL's provide of 
using "canned" procedures to achieve relatively 
straight-forward objectives. In this context, it seems 
likely that interactive approaches to JCL generation 
can be established which expedite generation of the 
appropriate JCL for the broad majority of user require
ments. Users interested in maximum flexibility will 
probably still have to fend for themselves with the 
appropriate JCL. That is, user utilization of remote 
systems can be rendered no simpler than local usage 
if access to the full spectrum of system capabilities is 
to be provided. 

Network IPC 

Interprocess communication is required both as a 
technical prerequisite to building a network operating 
system and as a capability to be provided to users of the 
system to enable them to take full advantage of the op
portunities (remote procedure calls, parallel execution, 
synchronized execution) afforded by the network. User 
IPC primitives are required for data transmission and 
process synchronization and control. Data primitives 
were discussed earlier. Synchronization and control 
primitives required to call procedures or processes, 
transfer data, and synchronize resource utilization can 
be divided into four major types: 

• signal/wait-signal, 
• wait/no-wait, 
• transfer-controijretain-control, and 
• preserve-state/reset-state. 

The first primitive is required to permit a process to 
signal another process or procedure advertising its in
tentions; wait-signal is then required in order to per
mit a process to enter the wait state until receipt of an 
appropriate signal. The second primitive determines if 
parallel execution of both caller and called processes 
(entities) is to be supported The third primitive sup
ports coroutines-in which both the calling and the 
called process have equal status-and the fourth capa-

Perspective on Network Operating Systems 557 

bility is also required to support coroutine calls since 
the return location depends on the call location. 

IPC capabilities can be provided in varying levels of 
sophistication reflecting: quality of the user interface, 
error recovery capabilities, and permissible complexity 
in the parameter string passed to the called procedure 
or process. Careful investigations of the total environ
ment desirable to support effective and efficient IPC 
have been undertaken. Effectiveness issues are discussed 
in Reference 11. while issues of efficiency are discussed 
in Reference 37. lvioreover, alternative message based 
implementation strategies to the connection oriented 
ARP ANET approach to inter-process communication 
are described in Reference 38. 

EXISTING RELATED CAPABILITIES 

An overview of Network Operating Systems would 
not be complete without a discussion of currently exist. 
ing capabilities. Currently, three such major capabili
ties can be distinguished: 

" ARPANET Protocols, 
• RSEXEC, and 
• National Software Works. 

ARP AN ET protocols 

ARP ANET protocols, as illustrated in Figure 2, can 
be structured in a hierarchical manner. The first level 
of user oriented protocols encompasses the three major 
function oriented protocols: TELNET, File Transfer 
Protocol (FTP), and Data Reconfiguration Service 
(DRS). The capabilities provided by these protocols 
have been discussed in the preceding sections and the 
salient factor from the viewpoint of an NOS is the ob
servation that the protocol only standardizes the com
munication path between a user process (with which 

Connections 
-------------

Byte Streams 

Message ID --------
Messages 

Circuits 

Pockets 

Figure 2-ARP ANET protocol organization.43 ,44 Solid lines 
denote real communication; dashed lines denote virtual com

munication 



558 National Computer Conference, 1976 

the user interacts) and a server process (which effects 
the necessary actions). Thus, these protocols at a mini
mum fail to provide program call ability and require 
some degree of reprogramming for its achievement. 

To provide :more directly applicable user capabilities, 
ARP ANET protocols also contain several applications 
oriented protocols such as Graphics39 and the Network 
Voice Protocol40 which are oriented toward provision of 
a specific collection of functional capabilities. As an al
ternative approach, one may wish to consider imple
mentation of a more general user programming en
vironment such as is proposed in the paper: A 
High-Level Framework for Network-Based Resource 
Sharing. 11 

RSEXEC 

The Resource Sharing Executive (RSEXEC) 41 pro
vides a network file system for the TENEX subcollec
tion of hosts within the ARPANET. As such, it pro
vides Network Wide Directories and, in addition, has 
supported system modifications which enable automatic 
file migration for dynamically generated file calls to 
non-local files. The standard set of inter-file manipu
lation commands are also provided. However, in view 
of the homogeneous nature of the hosts, issues of data 
translation did not require consideration and the issues 
of data selection, data transformation, and network 
job execution (excluding network IPC) were not spe
cificallyattacked. 

National software works 

The National Software Works (NSW) 42 is concerned 
with providing a program production capability dis
tributed across a collection of hosts. It thereby poten
tially permits utilization of more sophisticated, rela
tively non-portable tools than would be possible if all 
tools were forced to execute at a single host. 

Achievement of the NSW objectives requires careful 
consideration of many of the issues which are relevant 
in the design of a Network Operating System. How
ever, in view of its more limited objective, substantially 
more sophisticated capabilities can be provided. In par
ticular' in supporting tool access within the NSW 
framework, it proves feasible to render the host oper
ating system apparently invisible to the user through 
effective encapsulation of the user and all interactions 
with the tool. Thus, the mediation role provided by an 
NOS is augmented to encompass encapsulation. In view 
of the magnitude of the NSW proj ect we defer a more 
detailed discussion of NSW capabilities and refer the 
reader to Reference 5. 

CONCLUDING REMARKS 

In summary, we feel we have established the major ob
jectives and goals underlying development of a general 

purpose Network Operating System. Although space 
limitations preclude a general discussion of their feasi
bility and manner of attainment, the interested reader 
may consult a study directed to this end.5 As discussed 
therein, we feel it is reasonable to conclude that the ob
jectives established are technically feasible; their util
ity is clearly manifest; and substantial portions of the 
required technological capabilities currently exist. 

REFERENCES 

1. Roberts, L. G. and B. D. Wessler, "Computer Network 
Development to Achieve Resource Sharing," in Proceed
ings AFIPS 1970 Spring Joint Computer Conference, Vol. 
36, AFIPS Press, Montvale, New Jersey, 1970, pp. 543-549. 

2. Roberts, L. G., "Data By The Packet," IEEE Spectrum, 
February 1974, pp. 46-51. 

3. Walden, D. C., Personal Communication. 
4. Kimbleton, S. Rand G. M. Schneider, "Computer Com

munication Networks: Approaches, Objectives, and Per
formance Considerations," in Computing Surveys, Sep
tember 1975. 

5. Kimbleton, S. R, Final Report, Contract F30603-75-C-
0222, Rome Air Development Center, January 1976. 

6. Hopwood, M. D., D. C. Loomis and L. A. Rowe, "The Design 
of a Distributed Computing System," Department of In
formation and Computer Science, University of California, 
Irvine, California, Technical Report 25, June 1973. 

7. Mills, David L., An Overview of the Distributed Computer 
Network, University of Maryland, College Park, Maryland, 
1976. 

8. Padlipsky, Michael, "A Proposed Protocol for Connecting 
Host Computers to ARPA-like Network via Front-End 
Processors," MITRE Corporation, RFC 672, October 1974. 

9. Rosenthal, Robert, "Accessing On-Line Network Resources 
with a Network Access Machine," IEEE Intercon 1975, 
IEEE, New York, 1975. 

10. Uzgalis, R C., "Four Languages Experiments in Computer 
Language Design," University of California, Los Angeles, 
California, July 1975. 

11. White, James E., A High-Level Framework for Network
Based Resource Sharing, Stanford Research Institute, Menlo 
Park, California, 1976, (invited paper for session on Net
work Operating Systems at 1976 NCC). 

12. Alsberg, P. A., "Distributed Processing on the ARPA Net
work-Measurements of the Cost and Performance Trade
offs for Numerical Tasks," P't"oceedings of the Eighth Hawaii 
International Conference on System Sciences, Honolulu, 
Hawaii, January 1975, pp. 91-94. 

13. Kimbleton, S. R, "Considerations in Pricing Distributed 
Computing," to appear in Proceedings of the ACM Tech
nical Meeting on Pricing Computing Services, Palm Springs, 
California, November 1975. 

14. Proceedings of the ACM Technical Meeting on Pricing 
Computing SM·vices, Palm Springs, California, November, 
1975. 

15. Richie, D. M., D. Thompson, "The UNIX Time-Sharing 
System," Communications of the ACM, Vol. 17, No.7, 
July, 1974, pp. 365-375. 

16. Ellis, T. 0., L. Gallenson, J. F. Heafner and J. T. Melvin, 
A Plan for Consolidation and Automation of Military Tele
communications on Oahu, ISIjRR-73-12, USC/Information 
Sciences Institute, Marina del Rey, California, May 1973. 

17. Oestreicher, Donald, John Heafner, Jeffrey Rothenberg, 
"CONNECT, A User-Oriented Communications Service," in 
Proceedings of the ACM, Annual Conference, San Diego, 
California. Kovember 1974, pp. 531-538. 



18. Tugender, Ronald and Donald R. Oestreicher, Basic Func
tional Capabilities for a Military Message Processing Ser
vice, ISI/RR-75-23, USC/Information Sciences Institute, 
Marina del Rey, California, May 1975. 

19. Carlisle, J. H., "A Selected Bibliography on Human Com
munication in Teleconferencing," Annotated, University of 
Southern California, Information Sciences Institute, AUg-List 
1975. 

20. --- A Tutorial for the Electronic Notebook Conference 
(TEN-C) System on ARPANET, ISI/RR-75-38, USC/In
formation Sciences Institute, Marina del Rey, California, 
August 1975. 

21. Turon, IvI., "Delphi Conferencing: Computer-Based Con
ferencing with Anonymity," Technological Forecasting and 
Social Change, March 1972, pp. 159-204. 

22. Vallee, J., H. M. Lipinski and R. H. Miller, Group Com
munication Through Computers, Vol. 1: Design and Use of 
the FORUM System, Report R-32, Institute for the Future, 
Menlo Park, California, July 1974. 

23. Vleston, J. R. and C. Kristen, "Teleconferencing: 1\. Com
parison of Attitudes "Cncertainty and Interpersonal Atmo
spheres in Mediated and Face-To-Face Group Interaction," 
Report 1, The Social Policy and Programs Branch, The 
Department of Communications, Ottawa, Canada, Decem
ber, 1973. 

24. Kimbleton, Stephen R., "Computer System Design and Con
trol: A Heuristically Based Approach," Proceedings Second 
USA-Japan Computer Conference, Tokyo, Japan, August 
1975, pp. 264-270. 

25. ---, "An Analytic Framework for Computer System 
Sizing and Tuning," Proceedings of the NBS/ACM Work
shop on Performance Analysis, San Diego, March 1973, pp. 
123-126. 

26. Stefferud, E., D. L. Grobstein and R. Uhlig, "Wholesale/ 
Retail Specialization in Resource Sharing Networks," IEEE 
Co7tl,putey, Vol. 6, No.8, August 1973, pp. 31-37. 

27. Opderbeck, H. and L. Kleinrock, "The Influence of Control 
Procedures on the Performance of Packet-Switched Net
works," IEEE 1974 National Telecommunications Confer
ence Record, pp. 810-817. 

28. Shu, Nan C., Vincent Y. Lum and Barron C. Housel, An 
Approach to Data Migration in Computer Networks, IBM 
Research Laboratory, 1976, IBM Research Report RJ1703. 

29. Gray, J. K, R. A. Lorie and G. R. Putzolu, Granularity of 
Locks in a Large Shared Data Base, IBM Research Labora
tory, June 30, 1975. 

30. Codd, E. R., "A Relational Model of Data for Large Shared 
Data Banks," Comm. ACM, Vol. 13, No.6, ACM (Associa
tion for Computing Machinery), New York, London and 
Amsterdam, June 1970, pp. 377-387. 

31. Data LanguagejI-System/370 DOS/VS, General Infor-

Perspective on Network Operating Systems 559 

mation Manual GH20-1246, IBM, White Plains, N.Y., 1974. 
32. Martin, J., Computer Data-Base Organizations, Prentice

Hall, Englewood Cliffs, N.J., 1975. 
33. Smith, D. P., "A Method for Data Translation Using the 

Stored Data Definition and Translation Task Group Lan
guages," in Proceedings of the 1972 ACM SIGFIDET Work
shop on Data Descript-ion, Access and Control, A. L. Dean, 
(Ed.), ACM, New York, 1972, pp. 107-124. 

34. Merten, A. G. and J. P. Fry, "A Data Description Language 
Approach to File Translation," in Proceedings of the 1974 
ACM SIGMOD Workshop on Data Description, Access and 
C()ntr()l, Randall Rustin, (Ed.), ACM, New York, 1974, 
pp.191-206. 

35. Shoshani, Arie, "A Logical-Level Approach to Data Base 
Conversion," ACM Sigmod, International Conference on 
Management of Data, May 1975. 

36. Schneider, G. Michael, "DSCL--A Data Specification and 
Conversion Language for Networks," Proceedings of the 
ACM SIGMOD Conference, San Jose, California, May 1975. 

37. Sunshine, Carl, "Factors in Interprocess COIP..munication 
Protocol Efficiency for Computer Networks," 1976 NCC 
Proceedings, Vol. 45. 

38. Walden, D. C., "A System for Interprocess Communication 
in a Resource-Sharing Computer Network," Communica
tions of the ACM, Vol. 15, No.4, April 1972, pp. 221-230. 

39. Michener, J., I. Cotton, K. Keiley, D. Liddle and E. Meyer, 
Graphics Protocol, Network Working Group, NIC No. 15358, 
April 1973. 

40. Cohen, D., "Specifications for the Network Voice Protocol 
(NVP) ," NCS Note 43 (Revision of NCS Notes 26 and 40), 
October 1974. 

41. Thomas, Robert, "A Resource Sharing Executive for the 
ARPANET," Proceedings of the AFIPS National Computer 
Conference, Vol. 42, 1973, pp. 155-164. 

42. Carlson, W. E. and S. D. Crocker, "The Impact of Net
", .. corks on the Software Marketplace," in Proc. Electronic 
and Aerospace Conference, Washington, D.C., October 1974. 

43. Metcalfe, R. M., Packet Communication, MAC TR-114, 
Massachusetts Institute of Technology, Project MAC, Cam
bridge, Massachusetts, December 1973. 

44. Crocker, S. D., J. F. Heafner, R. 1\'1. Metcalfe and J. B. 
Postel, "Function-Oriented Protocols for the ARPA Com
puter Network," AFIPS Conference Proceedings, Spring 
J oint Computer Conference, 1972, pp. 271-280. 

45. Cerf, Vinton G., Eric F. Harslem, John F. Heafner, Robert 
M. Metcalfe and James E. White, "An Experimental Ser
vice for Adaptable Data Reconfiguration," in IEEE Trans
actions on Communications, Vol. COM-20, No.3, June 1972. 

46. Retz, David L., Bruce W. Schafer, "Structure of the ELF 
Operating System," Stanford Research Institute, January 
1976. 





_4. high-level framework for network-based resource sharing* 

by JAMES E. WHITE 
Stanford Research Institute 
Menlo Park, California 

ABSTRACT 

This paper proposes a high-level, application-independ
ent framework for the construction of distributed 
systems within a resource sharing computer network. 
The framework generalizes design techniques in use 
within the ARPA Computer Network. It eliminates 
the need for application-specific communication pro
tocols and support software, thus easing the task of 
the applications programmer and so encouraging the 
sharing of resources. The framework consists of a net
work-wide protocol for invoking arbitrary named func
tions in a remote process, and machine-dependent sys
tem software that interfaces one applications program 
to another via the protocol. The protocol provides 
mechanisms for suppiying arguments to remote func
tions and for retrieving their results; it also defines a 
small number of standard data types from which all 
arguments and results must be modeled. The paper 
further proposes that remote functions be thought of 
as remotely callable subroutines or procedures. This 
model would enable the framework to more gracefully 
extend the local programming environment to embrace 
modules on other machines. 

THE GOAL, RESOURCE SHARING 

The principal goal of all resource-sharing computer 
networks, including the now international ARPA N et
work (the ARPANET), is to usefully interconnect 
geographically distributed hardware, software, and 
human resources. 1 Achieving this goal requires the 
design and implementation of various levels of support 
software within each constituent computer, and the 
specification of network-wide ~~protocols" (that is, con
ventions regarding the format and the relative timing 
of network messages) governing their interaction. This 
paper outlines an alternative to the approach that 
ARP ANET system builders have been taking since 
work in this area began in 1970, and suggests a strategy 
for modeling distributed systems within any large com
puter network. 

* The work reported here was supported by the Advanced Re
search Projects Agency of the Department of Defense, and by 
the Rome Air Development Center of the Air Force. 

561 

The first section of this paper describes the prevail
ing ARPANET protocol strategy, which involves speci
fying a family of application-dependent protocols with 
a network-wide inter-process communication facility 
as their common foundation. In the second section, 
the application-independent command/response disci
pline that characterizes this protocol family is identi
fied and its isolation as a separate protocol proposed. 
Such isolation would reduce the work of the appli
cations programmer by allowing the software that 
implements the protocol to be factored out of each ap
plications program and supplied as a single, installa
tion-maintained module. The final section of this paper 
proposes an extensible model for this class of network 
interaction that in itself would even further encourage 
the use of network resources. 

THE CURRENT SOFTWARE APPROACH TO 
RESOURCE SHARING 

Function-oriented protocols 

The current ARPANET software approach to facil
itating resource sharing has been detailed elsewhere in 
the literature.2

,3,4 Briefly, it involves defining a Host
Host Protocol by which the operating systems of the 
various "host" computers cooperate to support a net
work-wide inter-process communication OPC) facility, 
and then various function-oriented protocols by which 
processes deliver and receive specific services via IPC. 
Each function-oriented protocol regulates the dialog 
between a resident "server process" providing the serv
ice, and a "user process" seeking the service on behalf 
of a user (the terms ~~user" and ~~user process" will be 
used consistently throughout this paper to distinguish 
the human user from the computer process acting on 
his behalf). 

The current Host-Host Protocol has been in service 
since 1970. Since its initial design and implementation, 
a variety of deficiencies have been recognized and sev
eral alternative protocols suggested. 5

,6 Although im
provements at this level would surely have a positive 
effect upon Network resource sharing, the present 
paper simply assumes the existence of some form of 



562 National Computer Conference, 1976 

IPC and focuses attention upon higher level protocol 
design issues. 

Each of the function-oriented protocols mentioned 
in this paper constitutes the official ARPANET pro
tocol for its respective application domain and is there
fore implemented at nearly all of the 75 host installa
tions that now comprise the Network. It is primarily 
upon this widely implemented protocol family (and the 
philosophy it represents) that the present paper 
focuses. Needless to say, other important resource
sharing tools have also been constructed within 
the ARPANET. The Resource-Sharing Executive 
(RSEXEC), designed and implemented by Bolt, 
Beranek and Newman, Inc.; provides an excellent 
example of such work. 

Experience 'With and limitations of hands-on 
resource sharing 

The oldest and still by far the most heavily used 
function-oriented protocol is the Telecommunications 
Network protocol (TELNET) / which effectively at
taches a terminal on one computer to an interactive 
time-sharing system on another, and allows a user to 
interact with the remote system via the terminal as 
if he were one of its local users. 

As depicted in Figure 1, TELNET specifies the 
means by which a user process monitoring the user's 
terminal is interconnected, via an IPC communication 
channel, with a server process with access to the target 
time-sharing system. TELNET also legislates a stan
dard character set in which the user's commands and 
the system's responses are to be represented in trans
mission between machines. The syntax and semantics 
of these interchanges, however, vary from one system 
to another and are unregulated by the protocol; the 

COMPUTER 1 COMPUTER 2 

IPC CHANNEL 

Figure I-Interfacing a remote terminal to a local time-sharing 
system via the TELNET Protocol 

user and server processes simply shuttle characters be
tween the human user and the target system. 

Although the hands-on use of remote resources that 
TELNET makes possible is a natural and highly visible 
form of resource sharing, several limitations severely 
reduce its long-term utility: 

(1) It forces upon the user all of the trappings of 
the resource's own system. 

To exploit a remote resource, the user must 
leave the familiar working environment pro
vided by his local system and enter an alien one 
with its own peculiar system structure (login, 
logout, and subsystem entry and exit proce
dures) and command language discipline (com
mand recognition and completion conventions, 
editing characters, and so on). Hands-on re
source sharing thus fails to provide the user 
with the kind of organized and consistent work
shop he requires to work effectively.9 

(2) It provides no basis for bootstrapping new com
posite resources from existing ones. 

Because the network access discipline imposed 
by each resource is a human-engineered com
mand language, rather than a machine-oriented 
communication protocol, it is virtually impossi
ble for one resource to programatically draw 
upon the services of others. Doing so would re
quire that the program deal successfully with 
complicated echoing and feedback character
istics; unstructured, even unsolicited system 
responses; and so forth. Hands-on resource 
sharing thus does nothing to provide an environ
ment in which existing resources can be used as 
building blocks to construct new, more powerful 
ones. 

These . inherent limitations of hands-on resource 
sharing are removed by a protocol that simplifies and 
standardizes the dialog between user and server proc
esses. Given such a protocol, the various remote re
sources upon which a user might wish to draw can 
indeed be made to appear as a single, coherent work
shop by interposing between him and them a command 
language interpreter that transforms ·his commands 
into the appropriate protocol utterances.IO,l! The con
struction of composite resources also becomes feasible, 
since each resource is accessible by means of a machine
oriented protocol and can thus be readily employed by 
other processes within the network. 

Standardizing the inter-machine dialog in specific 
application areas 

After the TELNET protocol had been designed and 
widely implemented within the ARPANET, work be
gan on a family of function-oriented protocols designed 
for use by programs, rather than human users. Each 
such protocol standardizes the inter-machine dialog in 
a particular application area. While TELNET dictates 



only the manner in which user and server processes are 
interconnected via the IPC facility, and the character 
set in which the two processes communicate once con
nected, each member of this family specifies in addition 
the syntax and semantics of the commands and re
sponses that comprise their dialog. 

Protocols within this family necessarily differ in 
substance, each specifying its own application-specific 
command set. The File Transfer Protocol (FTP), 12 
for example, specifies commands for manipulating files, 
and the Remote Job Entry Protocol (RJE)13 specifies 
commands for manipulating batch jobs. Protocols 
throughout the family are, however, similar in form, 
each successive family member having simply inherited 
the physical features of its predecessors. Thus FTP 
and RJE enforce the same conventions for formulating 
commands and responses. 

This common command/response discipline requires 
that commands and responses have the following re
spective formats: 

command-name <SP> parameter <CRLF> 

response-number <SP> text <CRLF> 

Each command invoked by the user process is identi
fied by NAME and is allowed a single PARAMETER. 
Each response generated by the server process contains 
a three-digit decimal response NUMBER (to be inter
preted by the user process) and expianatory TEXT 
(for presentation, if necessary, to the user). Response 
numbers are assigned in such a way that, for example, 
positive and negative acknowledgments can be easily 
distinguished by the user process. 

FTP contains, among others, the following com
mands (each listed with one of its possible responses) 
for retrieving, appending to, replacing, and deleting 
files, respectively, within the server process file 
system: 

Command 

RETR <SP> filename 
<CRLF> 

APPE < SP > filename 
<CRLF> 

STOR <SP> filename 
<CRLF> 

DELE <SP> filename 
<CRLF> 

Response 

250 < SP > Beginning 
transfer. <CRLF> 

400 < SP > Not imple
mented. < CRLF > 

453 < SP > Directory 
overflow. <CRLF> 

450 < SP > File not 
found. <CRLF> 

The first three commands serve only to initiate the 
transfer of a file from one machine to another. The 
transfer itself occurs on a separate IPC channel and 
is governed by what amounts to a separate protocol. 

Since the general command format admits but a 
single parameter, multiparameter operations must be 
implemented as sequences of commands. Thus two 
commands are required to rename a file: 

Network-Based Resource Sharing 563 

Command 

RNFR <SP> oldname 
<CRLF> 

RNTO < SP > newname 
<CRLF> 

Response 

200 <SP> Next parameter. 
<CRLF> 

253 < SP > File renamed. 
<CRLF> 

A COMMAND/RESPONSE PROTOCOL, THE BASIS 
FOR AN ALTERNATIVE APPROACH 

The importance of factoring out the command/ 
response discipline 

That FTP, RJE, and the other protocols within this 
family share a common command/response discipline 
is a fact not formally recognized within the protocol 
literature, and each new protocol document describes 
it in detail, as if for the first time. Nowhere are these 
conventions codified in isolation from the various con
texts in which they find use, being viewed as a neces
sary but relatively unimportant facet of each function
oriented protocol. "This common command/response 
discipline has thus gone unrecognized as the important, 
application-independent protocol that it is." 

This oversight has had two important negative 
effects upon the growth of resource sharing within the 
ARPANET: 

(1) It has allowed the command/response discipline 
to remain crude. 

As already noted, operations that require 
more than a single parameter are consistently 
implemented as two or more separate com
mands, each of which requires a response and 
thus incurs the overhead of a full round-trip 
network delay. Furthermore, there are no 
standards for encoding parameter types other 
than character strings, nor is there provision 
for return-ing results in a command response. 

(2) It has placed upon the applications programmer 
the burden of implementing the network "run
time environment (RTE)" that enables him to 
access remote processes at the desired, func
tionallevel. 

Before he can address remote processes in 
terms like the following: 

execute function DELE with argument TEXT-
FILE on machine X 

the applications programmer must first con
struct (as he invariably does in every program 
he writes) a module that provides the desired 
program interface while implementing the 
agreed upon command/response discipline. This 
run-time environment contains the code re
quired to properly format outgoing commands, 
to interface with the IPC facility, and to parse 
incoming responses. Because the system pro
vides only the IPC facility as a foundation, the 



564 National Computer Conference, 1976 

applications programmer is deterred from using 
remote resources by the amount of specialized 
knowledge and software that must first be 
acquired. 

If, on the other hand, the command/response 
discipline were formalized as a separate proto
col, its use in subsequent function-oriented pro
tocols could rightly be anticipated by the systems 
programmer, and a single run-time environment 
constructed for use throughout an installation 
(in the worst case, one implementation per pro
gramming language per machine might be re
quired). This module could then be placed in a 
library and, as depicted in Figure 2, link loaded 
with (or otherwise made available to) each new 
applications program, thereby greatly simpli
fying its use of remote resources. 

Furthermore, since enhancements to it would 
pay dividends to every applications program 
employing its services, the run-time environ
ment would gradually be augmented to provide 
additional new services to the programmer. 

The thesis of the present paper is that one of the 
keys to facilitating network resource sharing lies in 
(1) isolating as a separate protocol the command/re
sponse discipline common to a large class of applica
tions protocols; (2) making this new, application
independent protocol flexible and efficient; and (3) 
constructing at each installation a RTE that employs 
it to give the applications programmer easy and high
level access to remote resources. 

Specifications for the command/response protocol 

Having argued the value of a command/response 
protocol (hereafter termed the Protocol) as th~ foun
dation for a large class of applications protocols, there 
remains the task of suggesting the form that the Pro
tocol might take. There are eight requirements. First, 
it must reproduce the capabilities of the discipline it 
replaces: 

COMPUTER 1 COMPUTER 2 

IPC CHANNEL 

Figure 2-Interfadng distant appEcatjons programs via their 
run-time environments 

(1) Permit invocation of arbitrary, named com
mands (or functions) implemented by the re
mote process. 

(2) Permit command outcomes to be reported in a 
way that aids both the program invoking the 
command and the user under whose control it 
may be executing. 

Second, the Protocol should remove the known defi
ciencies of its predecessor, that is: 

(3) Allow an arbitrary number of parameters to 
be supplied as arguments to a single command. 

(4) Provide representations for a variety of pa
rameter types, including but not limited to char
acter strings. 

(5) Permit commands to return parameters as re-
sults as well as accept them as arguments. 

And, finally, the Protocol should provide whatever ad
ditional capabilities are required by the more complex 
distributed systems whose creation the Protocol seeks 
to encourage. Although others may later be identified, 
the three capabilities below are recognized now to be 
important: 

(6) Permit the server process to invoke commands 
in the user process, that is, eliminate entirely 
the often inappropriate user/server distinction, 
and allow each process to invoke commands in 
the other. 

In the workshop environment alluded to ear
lier, for example, the user process is the com
mand language interpreter and the server proc
ess is any of the software tools available to 
the user. While most commands are issued by 
the interpreter and addressed to the tool, occa
sionally the tool must invoke commands in the 
interpreter or in another tool. A graphical text 
editor, for example, must invoke commands 
within the interpreter to update the user's dis
play screen after an editing operation. 

(7) Permit a process to accept two or more com
mands for concurrent execution. 

The text editor may wish to permit the user 
to initiate a long formatting operation with one 
command and yet continue to issue additional, 
shorter commands before there is a response to 
the first. 

(8) Allow the process issuing a command to sup
press the response the command would other
wise elicit. 

This feature would permit network traffic to 
be reduced in those cases in which the process 
invoking the command deems a response un
necessary. Commands that always succeed but 
never return results are obvious candidates for 
this kind of treatment. 



A formulation of the protocol that meets these 
sp eci fications 

The eight requirements listed above are met by a 
protocol in which the following two messages are de
fined: 

message-type=COMMAND [tid] command-name 
arguments 

message-type = RESPONSE tid outcome 
results 

Here and in subsequent protocol descriptions, elements 
enclosed in square brackets are optional. 

The first message invokes the command whose 
NAME is specified using the ARGUMENTS provided. 
The second is issued in eventual response to the first 
and returns the OUTCOME and RESULTS of the com
pleted command. Whenever OUTCOME indicates that 
a command has failed, the command's RESULTS are 
required to be an error number and diagnostic message, 
the former to help the invoking program determine 
what to do next, the latter for possible presentation to 
the user. The protocol thus provides a framework for 
reporting errors, while leaving to the applications pro
gram the tasks of assigning error numbers and com
posing the text of error messages. 

There are several elements of the Protocol that are 
absent from the existing command/response discipline: 

(1) RESULTS, in fulfillment of Requirement 5. 
(2) A MESSAGE TYPE that distinguishes com

mands from responses, arising from Require
ment 6. 

In the existing discipline, this distinction is 
implicit, since user and server processes receive 
only responses and commands, respectively. 

(3) An optional transaction identifier TID by which 
a command and its response are associated, 
arising from Requirements 7 and 8. 

The presence of a transaction identifier in a 
command implies the necessity of a response 
echoing the identifier; and no two concurrently 
outstanding commands may bear the same iden
tifier. 

Requirements 3 and 4-the ability to transmit an 
arbitrary number of parameters of various types with 
each command or response-are most economically and 
effectively met by defining a small set of primitive 
"data types" (for example, booleans, integers, char
acter strings) from which concrete parameters can be 
modeled, and a "transmission format" in which such 
parameters can be encoded. Appendix A suggests a 
set of data types suitable for a large class of applica
tions; Appendix B defines some possible transmission 
formats. 

The protocol description given above is, of course, 
purely symbolic. Appendix C explores one possible 
encoding of the Protocol in detail. 

Network-Based Resource Sharing 565 

Summarizing the arguments advanced so far 

The author trusts that little of what has been pre
sented thus far will be considered controversial by the 
reader. The following principal arguments have been 
made: 

(1) The more effective forms of resource sharing 
depend upon remote resources being usefully 
accessible to other programs, not just to human 
users" 

(2) Application-dependent protocols providing such 
access using the current approach leave to the 
applications programmer the task of construct
ing the additional layer of software (above the 
IPC facility provided by the system) required 
to make remote re~ources accessible at the func
tionallevel, thus discouraging their use. 

(3) A single, resource-independent protocol provid
ing flexible and efficient access at the functional 
level to arbitrary remote resources can be de
vised. 

( 4) This protocol would make possible the construc
tion at each installation of an application-inde
pendent, network run-time environment making 
remote resources accessible at the functional 
level and thus encouraging their use by the 
applications programmer. 

A protocol as simple as that suggested here has great 
potential for stimulating the sharing of resources 
within a computer network. First, it would reduce the 
cost of adapting existing resources for network use 
by eliminating the need for the design, documentation, 
and implementation of specialized delivery protocols. 
Second, it would encourage the use of remote resources 
by eliminating the need for application-specific inter
face software. And finally, it would encourage the con
struction of new resources built expressly for remote 
access, because of the ease with which they could be 
offered and used within the network software market
place. 

A HIGH-LEVEL MODEL OF THE NETWORK 
ENVIRONMENT 

The importance of the model imposed by the protocol 

The Protocol proposed above imposes upon the appli
cations programmer a particular model of the network 
environment. In a heterogeneous computer network, 
nearly every protocol intended for general implementa
tion has this effect, since it idealizes a class of opera
tions that have concrete but slightly different equiva
lents in each system. Thus the ARPANET's TELNET 
Protocol alluded to earlier, for example, specifies a N et
work Virtual Terminal that attempts to provide a best 
fit to the many real terminals in use around the N et
work. 



566 National Computer Conference, 1976 

As now formulated, the Protocol models a remote 
resource as an interactive program with a simple, 
rigidly specified command language. This model fol
lows naturally from the fact that the function-oriented 
protocols from which the Protocol was extracted were 
necessitated by the complexity and diversity of user
oriented command languages. The Protocol may thus 
legitimately be viewed as a vehicle for providing, as an 
adjunct to the sophisticated command languages al
ready available to users, a family of simple command 
languages that can readily be employed by programs. 

While the command/response model is a natural one, 
others are possible. A remote resource might also be 
modeled as a process that services and replies to re
quests it receives from other computer processes. This 
request/reply model would emphasize the fact that the 
Protocol is a vehicle for inter-process communication 
and that no human user is directly involved. 

Substituting the request/reply model for the com
mand/response model requires only cosmetic changes 
to the Protocol: 

message-type=REQUEST [tid] op-code 
arguments 

message-type = REPLY tid outcome 
results 

In the formulation above, the terms "REQUEST", 
"REPLY", and "op-code" have simply been substituted 
for "COMMAND", "RESPONSE", and "command
name", respectively. 

The choice of model need affect neither the content 
of the Protocol nor the behavior of the processes whose 
dialog it governs. Use of the word "command" in the 
command/response model, for example, is not meant 
to imply that the remote process can be coerced into 
action. Whatever model is adopted, a process has com
plete freedom to reject an incoming remote request 
that it is incapable of or unwilling to fulfill. 

But even though it has no substantive effect upon 
the Protocol, the selection of a model--command/ 
response, request/reply, and so on-is an important 
task because it determines the way in which both 
applications and systems programmers perceive the 
network environment. If the network environment is 
made to appear foreign to him, the applications pro
grammer may be discouraged from using it. The choice 
of model also constrains the kind and range of protocol 
extensions that are likely to occur to the systems pro
grammer; one model may suggest a rich set of useful 
extensions, another lead nowhere (or worse still, in the 
wrong direction) . 

In this final section of the paper, the author suggests 
a network model (hereafter termed the Model) that he 
believes will both encourage the use of remote resources 
by the applications programmer and suggest to the 
systems programmer a wide variety of useful Protocol 
extensions. Unlike the substance of the Protocol, how-

ever, the Model has already proven quite controversial 
within the ARP ANET community. 

Modeling resources as collections of procedures 

Ideally, the goal of both the Protocol and its accom
panying R TE is to make remote resources as easy to 
use as local ones. Since local resources usually take 
the form of resident and/or library subroutines, the 
possibility of modeling remote commands as "proce
dures" immediately suggests itself. The Model is fur
ther confirmed by the similarity that exists between 
local procedures and the remote commands to which 
the Protocol provides access. Both carry out arbitrarily 
complex, named operations on behalf of the requesting 
program (the caller) ; are governed by arguments sup
plied by the caller; and return to it results that re
flect the outcome of the operation. The procedure call 
model thus acknowledges that, in a network environ
ment, programs must sometimes call subroutines in 
machines other than their own. 

Like the request/reply model already described, the 
procedure call model requires only cosmetic changes to 
the Protocol: 

message-type = CALL 
arguments 

[tid] procedure-name 

message-type = RETURN tid outcome 
results 

In this third formulation, the terms "CALL", "RE
TURN", and "procedure-name" have been substituted 
for "COMMAND", "RESPONSE", and "command
name", respectively. And in this form, the Protocol 
might aptly be designated a "procedure call protocol 
(PCP) ". 

"The procedure call model would elevate the task of 
creating applications protocols to that of defining pro
cedures and their calling sequences. It would also pro
vide the foundation for a true distributed programming 
system (DPS) that encourages and facilitates the work 
of the applications programmer by gracefully extend
ing the local programming environment, via the RTE, 
to embrace modules on other machines." This integra
tion of local and network programming environments 
can even be carried as- far as modifying compilers to 
provide minor variants of their normal procedure
calling constructs for addressing remote procedures 
(for which calls to the appropriate RTE primitives 
would be dropped out) . 

Finally, the Model is one that can be naturally ex
tended in a variety of ways (for example, coroutine 
linkages and signals) to further enhance the distrib
uted programming environment. 

Clarifying the procedure call model 

Although in many ways it accurately portrays the 
class of network interactions with which this paper 



deals, the Model suggested above may in other respects 
tend to mislead the applications programmer. The 
Model must therefore be clarified: 

( 1) Local procedure calls are cheap; remote proce
dure calls are not. 

Local procedure calls are often effected by 
means of a single machine instruction and are 
therefore relatively inexpensive. Remote pro
cedure calls, on the other hand, would be effected 
by means of a primitive provided by the local 
RTE and require an exchange of messages via 
IPC. 

Because of this cost differential, the applica
tions programmer must exercise discretion in 
his use of remote resources, even though the 
mechanics of their use will have been greatly 
simplified by the RTE. Like virtual memory, 
the procedure call model offers great conve
nience, and therefore power, in exchange for 
reasonable alertness to the possibilities of abuse. 

(2) Conventional programs usually have a single 
locus of control; distributed programs need not. 

Conventional programs are usually imple
mented as a single process with exactly one locus 
of control. A procedure call, therefore, tradition
ally implies a transfer of control from caller to 
callee. Distributed systems, on the other hand, 
are implemented as hvo or more processes, each 
of which is capable of independent execution. 
In this new environment, a remote procedure 
call need not suspend the caller, which is capable 
of continuing execution in parallel with the 
called procedure. 

The RTE can therefore be expected to pro
vide, for convenience, two modes of remote pro
cedure invocation: a blocking mode that sus
pends the caller until the procedure returns; and 
a non-blocking mode that releases the caller as 
soon as the CALL message has been sent or 
queued. Most conventional operating systems 
already provide such a mode choice for I/O 
operations. For non-blocking calls, the RTE 
must also, of course, either arrange to asyn
chronously notify the program when the call is 
complete, or provide an additional primitive by 
which the applications program can periodically 
test for that condition. 

Finally, the applications programmer must recognize 
that by no means all useful forms of network com
munication are effectively modeled as procedure calls. 
The lower level IPC facility that remains directly ac
cessible to him must therefore be employed in those 
applications for which the procedure call model is in
appropriate and RTE-provided primitives simply will 
not do. 

Network-Based Resource Sharing 567 

SOME EXPECTATIONS 

Both the Procedure Call Protocol and its associated 
Run-Time Environment have great potential for facili
tating the work of the network programmer; only a 
small percentage of that potential has been discussed 
in the present paper. Upon the foundation provided 
by PCP can be erected higher level application-inde
pendent protocol layers that further enhance the dis
trihntl'ln nroO'r!:ll'Yll'YlinO' I'ln'uironl'Yll'lnt hv nro'uininO' I'lvl'ln ---....,......,..--- r .......... o--............................. o _ ...................................... _ ......... ""J r"''''''' ...... _ ......... 0 _ ... _ ... ... 

more powerful capabilities (see Appendix D). 
As the importance of the RTE becomes fully evident, 

additional tasks will gradually be assigned to it, in
cluding perhaps those of: 

(1) Converting parameters between the format em-
ployed internally by the applications program, 
and that imposed by the Protocol. 

(2) Automatically selecting the most appropriate 
inter-process transmission format on the basis 
of the two machines' word sizes. 

(3) Automatically substituting for network IPC a 
more efficient form of communication when both 
processes reside on the same machine. 

The RTE will eventually offer the programmer a wide 
variety of application-independent, network-program
ming conveniences, and so, by means of the Protocol, 
become an increasingly powerful distributed-system
building tool. 

ACKNOWLEDGMENTS 

Many individuals within both SRI's Augmentation 
Research Center (ARC) and the larger ARPANET 
community have contributed their time and ideas to 
the development of the Protocol and Model described 
in this paper. The contributions of the following in
dividuals are expressly acknowledged: Dick Watson, 
Jon Postel, Charles Irby, Ken Victor, Dave Maynard, 
and Larry Garlick of ARC; and Bob Thomas and Rick 
Schantz of Bolt, Beranek and Newman, Inc. 

ARC has been working toward a high-level frame
work for network-based distributed systems for a num
ber of years now. H The particular Protocol and Model 
described here result from research begun by ARC in 
July of 1974. This research included developing the 
Model; designing and documenting the Protocol re
quired to support it ;15 and designing, documenting, and 
implementing a prototype run-time environment for a 
particular machine/6 ,1, specifically a PDP-10 running 
the Tenex operating system developed by Bolt, Beranek 
and Newman, Inc.18 Three design iterations were car
ried out during a 12-month period, and the resulting 
specification implemented for Tenex. The Tenex RTE 
provides a superset of the capabilities presented in the 
body of this paper and Appendices A through C as well 
as those alluded to in Appendix D. 



568 National Computer Conference~ 1976 

REFERENCES 

1. Kahn, R. E., "Resource-Sharing Computer Communications 
Networks," Proceedings of the IEEE, Vol. 60, No. 11, pp. 
1397-1407, November 1972. 

2. Crocker, S. D., J. F. Heafner, R. M. Metcalfe and J. B. 
Postel, "Function-oriented Protocols for the ARPA Com
puter Network," AFIPS Proceedings, Spring Joint Com
puter Conference, Vol. 40, pp. 271-279, 1972. 

3. Carr, C. S., S. D. Crocker and V. G. Cerf, "Host-Host Com
munication Protocol in the ARPA Network," AFIPS Pro
ceedings, Spring Joint Computer Conference, Vol. 36, pp. 
589-597, 1970. 

4. McKenzie, A. A., Host/Host Protocol for the ARPA Net
work, Bolt Beranek and N e\\'Inan Inc., Cambridge, Massa
chusetts, January 1972, SRI-ARC Catalog Item 8246. 

5. Walden, D. C., "A System for Interprocess Communication 
in a Resource Sharing Computer Network," Communica
tions of the ACM, Vol. 15, No.4, pp. 221-230, April 1972. 

6. Cerf, V. G. and R. E. Kahn, "A Protocol for Packet Net
work Intercommunication," IEEE Transactions on Com
munications, Vol. Com-22, No.5, pp. 637-648, May 1974. 

7. Thomas, R. H., "A Resource-Sharing Executive for the 
ARPANET," AFIPS Proceedings, National Computer Con
ference, Vol. 42, pp. 155-163, 1973. 

8. TELNET Protocol Specification, Stanford Research In
stitute, Menlo Park, California, August 1973, SRI-ARC 
Catalog Item 18639. 

9. Engelhart, D. C., R. W. Watson and J. C. Norton, "The 
Augmented Knowledge Workshop," AFIPS Proceedings, 
National Computer Conference, Vol. 42, pp. 9-21, 1973. 

10. Engelhart, D.C. and W. K. English, "A Research Center 
for Augmenting Human Intellect," AFIPS Proceedings, 
Fall Joint Computer Conference, Vol. 33, pp. 395-410, 1968. 

11. Irby, C. H., C. F. Dornbush, K. E. Victor and D. C. Wallace, 
A Command Meta Language for NLS, Final Report, Con
tract RADC-TR-75-304, SRI Project 1868, Stanford Re
search Institute, Menlo Park, California, Decemher, 1975. 

12. Neigus, N. J., File Transfer Protocol, ARPA Network 
Working Group Request for Comments 542, Bolt Beranek 
and Newman Inc., Cambridge, Massachusetts, July 1973, 
SRI-ARC Catalog Item 17759. 

13. Bressler, R. D., R. Guida and A. A. McKenzie, Remote Job 
Entry Protocol, ARPA Network Working Group Request 
for Comments 360, Dynamic Modeling Group, Massachusetts 
Institute of Technology, Cambridge, Massachusetts, un
dated, SRI-ARC Catalog Item 12112. 

14. Watson, R. W., Some Thoughts on System Design to Facili
tate Resource Sharing, ARPA Network Working Group 
Request for Comments 592, Augmentation Research Center, 
Stanford Research Institute, Menlo Park, California, No
vember 20, 1973, SRI-ARC Catalog Item 20391. 

15. White, J. E., DPS-l0 Version 2.5 Implementer's Guide, 
Augmentation Research Center, Stanford Research Insti
tute, Menlo Park, California, August 15, 1975, SRI-ARC 
Catalog Item 26282. 

16. White, J. E., DPS-l0 Version 2.5 Programmer's Guide, 
Augmentation Research Center, Stanford Research Insti
tute, Menlo Park, California, August 13, 1975, SRI-ARC 
Catalog Item 26271. 

17. White, J. E., DPS-l0 Version 2.5 Source Code, Augmenta
tion Research Center, Stanford Research Institute, Menlo 
Park, California, August 13, 1975, SRI-ARC Catalog Item 
26267. 

18. Bobrow, D. G., J. D. Burchfiel, D. L. Murphy and R. S. 
Tomlinson, "TENEX, a Paged Time Sharing System for the 
PDP-10," Communications of the ACM, Vol. 15, No.3, pp. 
135-143, March 1972. 

19. White, J. E., "Elements of a Distributed Programming 
System," Submitted for publication in the Jounwl of Com
puter Languages, 1976. 

APPENDIX A-SUGGESTED DATA TYPES 

The Protocol requires that every parameter or "data 
object" be represented by one of several primitive data 
types defined by the Model. The set of data types below 
is sufficient to conveniently model a large class of data 
objects, but since the need for additional data types 
(for example, floating-point numbers) will surely 
arise, the set must remain open-ended. Throughout the 
descriptions below, N is confined to the range [0, 
2**15-1] : 

LIST: A list is an ordered sequence of N data 
objects called "elements". A LIST may contain other 
LISTs as elements, and can therefore be employed 
to construct arbitrarily complex composite data 
objects. 

CHARSTR: A character string is an ordered 
sequence of N ASCII characters, and conveniently 
models a variety of textual entities, from short user 
names to whole paragraphs of text. 

BITSTR: A bit string is an ordered sequence of 
N bits and, therefore, provides a means for repre
senting arbitrary binary data (for example, the con
tents of a word of memory). 

INTEGER: An integer is a fixed-point number 
in the range [-2**31, 2**31-1], and conveniently 
models various kinds of numerical data, including 
time intervals, distances, and so on. 

INDEX: An index is an integer in the range [1, 
2**15-1]. As its name and value range suggest, an 
INDEX can be used to address a particular bit or 
character within a string, or element within a list. 
INDEXes have other uses as well, including the 
modeling of handles or identifiers for open files, 
created processes, and the like. Also, because of their 
restricted range, INDEXes are more compact in 
transmission than INTEGERs (see Appendix B). 

BOOLEAN: A boolean represents a single bit of 
information, and has either the value true or false. 

EMPTY: An empty is a valueless place holder 
within a LIST or parameter list. 

APPENDIX B-SUGGESTED TRANSMISSION 
FORMATS 

Parameters must be encoded in a standard transmis
sion format before they can be sent from one process 
to another via the Protocol. An effective strategy is to 
define several formats and select the most appropriate 
one at run-time, adding to the Protocol a mechanism 
for format negotiation. Format negotiation would be 
another responsibility of the RTE and could thus be 
made completely invisible to the applications program. 

Suggested below are two transmission formats. The 
first is a 36-bit binary format for use between 36-bit 



machines, the second an 8-bit binary, "universal" for
mat for use between dissimilar machines. Data objects 
are fully typed in each format to enable the RTE to 
automatically decode and internalize incoming param
eters should it be desired to provide this service to 
the applications program. 

PCPB36, For Use Between 36-Bit Machines 

Bits 0-13 Unused (zero) 
Bits 14-17 Data type 

EMPTY =1 INTEGER =4 LIST=7 
BOOLEAN = 2 BITSTR = 5 
INDEX =3 CHARSTR =6 

Bits 18-20 Unused (zero) 
Bits 21-35 Value or length N 

EMPTY unused (zero) 
BOOLEAN 14 zero-bits + I-bit value (TRUE= 

I/FALSE=O) 
INDEX 
INTEGER 
BITSTR 
CHARSTR 
LIST 

unsigned value 
un used (zero) 
unsigned bit count N 
unsigned character count N 
unsigned element count N 

Bits 36- Value 

EMPTY 
BOOLEAN 
INDEX 
INTEGER 
BITSTR 

unused (nonexistent) 
unused (nonexistent) 
unused (nonexistent) 
two's complement full-word valne 
bit string + zero padding to word 

boundary 
CHARSTR ASCII string + zero padding to word 

boundary 
LIST element data objects 

PCPB8, For Use Between Dissimilar Machines 

Byte 0 Data type 

EMPTY =1 INTEGER =4 LIST=7 
BOOLEAN = 2 BITSTR = 5 
INDEX =3 CHARSTR =6 

Bytes 1- Value 

EMPTY unused (nonexistent) 
BOOLEAN 7 zero-bits + I-bit value (TRUE = 

I/FALSE=O) 
INDEX 
INTEGER 
BITSTR 

CHARSTR 

LIST 

2-byte unsigned value 
4-byte two's complement value 
2-byte unsigned bit count N + bit 

string + zero padding to byte 
boundary 

2-byte unsigned character count N + 
ASCII string 

2-byte element count N + element 
data objects 

Network-Based Resource Sharing 569 

APPENDIX C-A DETAILED ENCODING OF 
THE PROCEDURE CALL PROTOCOL 

Although the data types and transmission formats 
detailed in the previous appendixes serve primarily as 
vehicles for representing the arguments and results of 
remote procedures, they can just as readily and effec
tively be employed to represent the commands and 
responses by which those parameters are transmitted. 

Taking this approach, one might model each of the 
two Protocol messages as a PCP data object, specifi
cally a LIST whose first element is an INDEX mes
sage type. The following concise statement of the 
Protocol then results: 

LIST (CALL, tid, procedure, arguments) 
INDEX=1 INDEX/ 

EMPTY CHARSTR LIST 

LIST (RETURN, tid, outcome, results) 
INDEX=2 INDEX BOOLEAN LIST 

The RESULTS of an unsuccessful procedure would be 
represented as follows: 

LIST (error, diagnostic) 
INDEX CHARSTR 

APPENDIX D-A LOOK AT SOME POSSIBLE 
EXTENSIONS TO THE MODEL 

The result of the distributed-system-building strategy 
proposed in the body of this paper and the preceding 
appendices is depicted in Figure 3. At the core of 
each process is the inter-process communication facil
ity provided by the operating system, which effects 
the transmission of arbitrary binary data between 
distant processes. Surrounding this core are conven
tions regarding first the format in which a few, primi
tive types of data objects are encoded in binary for 
IPC, and then the formats of several composite data 
objects (that is, messages) whose transmission either 
invokes or acknowledges the previous invocation of a 
remote procedure. Immediately above lies an open
ended protocol layer in which an arbitrary number of 
enhancements to the distributed programming envi
ronment can be implemented. Encapsulating these 
various protocol layers is the installation-provided run
time environment, which delivers DPS services to the 
applications program according to machine- and pos
sibly programming-language-dependent conventions. 

The Protocol proposed in the present paper recog
nizes only the most fundamental aspects of remote 
procedure calling. It permits the caller to identify the 
procedure to be called, supply the necessary arguments, 
determine the outcome of the procedure, and recover 
its results. In a second paper,I9 the author proposes 
some extensions to this simple procedure call model, 
and attempts to identify other common forms of 
inter-process interaction whose standardization would 



570 National Computer Conference, 1976 

Figure S-Software and protocol layers comprising a process 
within the distributed programming system 

enhance the distributed programming environment. 
Included among the topics discussed are: 

(1) Coroutine linkages and other forms of commu-
nication bet,,'J:/een the caller and callee. 

(2) Propagation of notices and requests up the 
thread of control that results from nested pro
cedure calls. 

(3) Standard mechanisms for remotely reading or 
writing system-global data objects within an
other program. 

(4) Access controls for collections of related pro
cedures. 

(5) A standard means for creating and initializing 
processes, that is, for establishing contact with 
and logging into a remote machine, identifying 
the program to be executed, and so forth. This 
facility would permit arbitrarily complex proc
ess hierarchies to be created. 

(6) A mechanism for introducing processes to one 
another, that is, for superimposing more gen
eral communication paths upon the process 
hierarchy. 

These and other extensions can all find a place in the 
open-ended protocol layer of Figure 3. The particular 
extensions explored in R.eference 19 are offered not as 
dogma but rather as a means of suggesting the possi
bilities and stimulating further research. 



Factors in interprocess communication protocol efficiency 
for computer networks* 

1._. r< A nT A C"'TTlI.TC"'TTTlI.TD 
uy vftn..LI ft. 0U.l.'I0ll.L.l.'I.c. 

The Rand Corporation 
Santa Monica, California 

ABSTRACT 

This paper considers the efficiency of interprocess 
communication protocols for distributed processing en
vironments such as computer networks. Previous re
search has emphasized system performance at lower 
levels, within the communication medium itself, while 
this work examines requirements and performance of 
protocols for communication between processes in the 
Host computers attached to the communication system. 
Efficiency primarily concerns throughput and delay 
achievable for communication between remote pro
cesses. Various aspects of protocol operation are ana
lyzed, and protocol policies concerning retransmission, 
flow control, buffering, acknowledgment, and packet 
size emerge as the most important factors in deter
mining efficiency. Several graphs showing quantitative 
performance results for representative situations are 
included. 

INTRODUCTION 

The tremendous growth of computer communications 
in recent years has provided new problems as well as 
new opportunities in distributed processing. In par
ticular, computer networks such as the ARP ANET7,23 
demand new techniques for providing reliable and 
efficient communication between processes running in 
different Host computers connected to the network. 
Typical network transmission characteristics include 
variable delay, limited bandwidth, and occasional loss, 
damage, duplication, or out-of-order delivery of mes
sages. I

- 3 These transmission characteristics demand 
specially robust protocols, or algorithms and message 
formats for data exchange between remote processes, 
compared to mechanisms appropriate in a centralized 
system with common memory. 

* This work was supported by the Defense Advanced Research 
Projects Agency under ARPA Order No. 2494, Contract No. 
MDA903-76C-0093 with Stanford University. The views and 
conclusions contained in this document are those of the author 
and do not necessarily represent the policies of the Defense 
Advanced Research Projects Agency of the United States Gov
ernment. 

571 

Protocols for such environments are usually based 
on transmission of packets containing data, control 
information such as sequence numbers, and a check
sum for error detection. Correctly received packets 
are positively acknowledged by the destination. If no 
acknowledgment is received at the source within a 
given time-out period, packets are retransmitted. The 
reliability of such Positive Acknowledgment, Retrans
mission (PAR) protocols in the face of network trans
mission characteristics mentioned above has received 
increasing attention. 3 This paper discusses major fac
tors determining the efficiency of protocols for com
munication between remote processes over a packet 
switching network (PSN). Research on interprocess 
communication level protocols has just begun4 ,5 while 
related work on performance analysis of protocols used 
within a PSN is more abundant. 6

- 11 

The two performance measures of primary interest 
are mean delay and mean throughput attainable. 
Throughput may be defined as the transmission rate 
of useful data between processes, excluding any control 
information or retransmissions required by the proto
col. Delay is the time from starting to transmit a 
packet at the sender to successful arrival of the entire 
packet at the receiver in the case of one-way delay, or 
until arrival of an acknowledgment at the sender in 
the case of roundtrip delay. (Note that any waiting 
time between packet creation and start of transmission 
is not included in this delay definition.) Other effi
ciency performance measures of interest include re
transmission rate (the proportion of packets which are 
retransmissions), line efficiency (the ratio of useful 
traffic to total traffic), and buffer requirements. 

Numerous factors such as buffer allocation, receiver 
processing rate, flow control, error rates, error recov
ery techniques, header overhead, and network trans
mission delay and bandwidth help determine protocol 
performance. Some of these factors depend directly 
on communication network design and operation and 
represent essentially uncontrollable characteristics 
from the point of view of an interprocess communica
tion protocol. Other factors depend on the behavior of 
processes communicating via the protocol. 



572 National Computer Conference, 1976 

This paper focuses on a third class of factors which 
are subject to control by the protocol itself. To provide 
efficient communication within the constraints of given 
network characteristics and user process behavior, a 
protocol can. attempt to optimize several internal pa
rameters such as retransmission interval, flow con
trol strategy, buffering, acknowledgment scheme, and 
packet size. In the following sections, the impact of 
each of these parameters on protocol efficiency is ex
plored. For this purpose, some simple mathematical 
models based on probability and queuing theory prove 
helpful. This paper discusses some of the results de
rived from these models, while Reference 5 presents a 
more complete treatment of the subject including full 
derivations of the results presented here. 

RETRANSMISSION 

As noted above, the primary purpose of retransmis
sion is to overcome loss or damage of data packets (or 
acknowledgments) by the communication network. The 
protocol parameter controlling retransmission is the 
retransmission interval, R. If no acknowledgment for 
a transmitted packet is received within time R, the 
packet will be retransmitted. 

The choice of R can have significant effects on both 
throughput and delay. A small R minimizes mean 
delay since lost packets are retransmitted promptly. 
If there is significant variation in network transmis
sion delay for a packet, then quick retransmission may 
reduce mean delay even when no packets are lost or 
damaged. Larger R, on the other hand, tends to maxi
mize throughput since no bandwidth is "wasted" on 
unnecessary retransmissions. Assuming packets need 
not be delivered in order, there is no penalty for wait
ing until loss of a packet is certain before retransmit
ting it, since other packets can continue to be delivered. 

To quantify these general observations, the following 
simple model proves useful. Let the network trans
mission delay be represented by a probability density 
function f (t) to allow for variation in delay. Both 
propagation time through the network (Tprop) and 
transmission time into the network (for a packet of 
length P and Host-to-network bandwidth. of B, this is 
P IB) are included in f (t). f (t) typically has a high 
peak around the "normal" delay, and a small but long 
tail representing the possibility of occasional long 
delays (see Figure 1). If the probability of lost or 
damaged packets is LS, then f (t) includes an impulse 
at t=infinity with value LS (the probability that a 
packet never arrives). 

f (t) and its associated cumulative distribution F (t) 
now represent the behavior of a packet of length P 
transmitted through the network. Assuming packets 
are retransmitted at intervals R, and that f (t) is 
identical for each (re) transmission of a packet (inde
pendence of successive transmissions) /2,13 the cumula
tive delay distribution until the first successful receipt 

fit) I n I 
I, J,WI 

0 Tprop+ P/B 00 

TIME t 

Figure I-Network transmission delay density function f(t) 
including packet loss probability LS 

of a packet, G(t), may be derived from F(t) and R. 

G(t) =Prob{at least one successful delivery by 
time t} 

= 1-Prob{no success by time t} 
n-1 

=1- IT[1-F(t-i·R)] n=it/R, 
i=O 

If f (t) represents roundtrip delay (time from trans
mitting a packet until an acknowledgment is received) , 
then G (t) provides sufficient information to calculate 
the mean delay DL until the first successful acknowl
edged transmission, and the mean number of transmis
sions N. Since each successful transmission requires 
on the average N actual transmissions, throughput 
attainable will be proportional to a throughput factor 
TPretrans equal to the inverse of N. 

To demonstrate this analysis, let f (t) be the Erlang
ian family of distributions: 

(k'u.t) k-l 
f(t) - (k·u)· ·e-k ·u · t 

- (k-l) ! 
With an appropriate choice of the shape parameter k 
(e.g., k = 16), this distribution provides an adequate 
model of typical network transmission delays12 (see 
Figure 2). Applying the above analysis to the Erlang-

Of-

o 2 
TIME t 

3 4 

Figure 2-Erlangian probability density function, f(t), with 
mean=l and shape parameter k=l,4, 16 



Factors in Interprocess Communication Protocol Efficiency 573 

ian f(t) with k=16 gives Figure 3, a plot of through
put versus delay for varying retransmission interval R 
and several packet loss probabilities LS (the results 
for exponential f (t) are shown dotted for comparison). 
The definite "knee" in the curves for nonzero LS indi
cate an optimal value of R. For larger R, delay is in
creased with little savings in throughput. For smaller, 
R, throughput is reduced (due to excessive retrans
mission) at little improvement in delay. This optimal 
TT~ 1 •• ~ ~~ D ~~~ .. ~~ ~+ +h~ +~~~ ~~ +h~ ~ 1+\ ""~TT~ hn 
valUC V.1 .1" V .......... U.l;:, al> I>.llC l>.llllC Hl I>.llC .1 \ I.) \...U.l VC U:f 

which "most" transmissions would have succeeded (if 
no packets were lost or damaged). The optimal R is 
more clearly defined for f (t) with sharp peaks (more 
constant delay) and for higher packet loss probabili
ties. 

To extend this analysis to protocols which perform 
sequencing, the assumption of independent identically 
distributed roundtrip delays for successive transmis
sions must be modified. In particular, loss of a packet 
or its acknowledgment causes acknowledgment of all 
subsequent packets to be delayed until the earlier error 
is corrected, even though other packets are successfully 
received. In this case, negative acknowledgments may 
improve performance by forcing prompt retransmis
sion of the damaged packet, and suppressing retrans
mission of other outstanding packets (c.f. next sec
tion). Although negative acknowledgments help reduce 
performance losses, higher delay and lower through
put must be expected with a sequencing protocol if 
packets arrive significantly out of order. 

FLOW CONTROL 

Roundtrip delay is typically an order of magnitude 
greater than Host-to-network packet transmission time 
over a packet switching network. In this environment, 
a simple protocol that waits for acknowledgment of 
each packet before transmitting the next packet will 

---.J 
o 
>
<C 
---.J 
W 
o 
Z 
<C 
W 
2::: 

3 
- ERL .... NGI .... N 

.•• EXPI1INENTJ .... l 

2 . 

LS-.4 

1 ~~L:_~J 
o 0.5 

THR0UGHPUT TPretrans 

Figure 3-Mean delay DL vs. throughput factor TPretrans for 
Erlangian network transmission delay with mean = 1 and k = 16 

be idle a large fraction of the time. Therefore, to 
achieve higher throughput, the sender must be allowed 
to transmit multiple packets before receiving any 
acknowledgments. Since each outstanding packet re
quires buffering and other communication resources, 
the amount of advance transmission required to achieve 
maximum throughput becomes an important efficiency 
question. 

On the other hand, it is also necessary to limit the 
~"""'''''T _-c ';"..,,-I! ___ C"Ioi-'; __ 4!". ...... ,....,.. "'''''''I''1".ra_ ....... __ .n,.....,.., -4-_ rl_..,.f-':_ni-':,,_ 
llVVV V.1 .lll.1V.llllal>.lVll .1.lVlll ;:'VU.l\...C P.lV\...C;:';:' I>V UC;:'I>.lllal>.lVll 

process. The communication network itself must guard 
against internal congestion by imposing "congestion 
control" constraints on traffic sources.2

,14 More relevant 
to this study, each sender's transmission rate should 
be matched to the receiver's acceptance rate to mini
mize protocol resources required to support the given 
traffic. Achieving this matching is the primary purpose 
of a protocol's flow control mechanisms. 

Most flow control strategies can be described in 
terms of a limited window size of Nwin packets (and/ 
or bits) that may be transmitted but not yet acknowl
edged.1 ,15-18 When this limit is reached, the sender 
must stop transmitting new packets (although retrans
missions of pending packets may proceed) until more 
transmission "credits" are returned by the receiver 
(often associated with acknowledgments). 

This situation can be modeled as a dual-server closed 
queuing system with the transmitter as one server, and 
the network and receiver as the other. (This second 
server is an "infinite" server since packets can proceed 
in parallel through the network.) Service time at the 
transmitter (Tlocal) is the Host-to-network transmis
sion time for a packet (P /E), while service time 2 
(Tnet) which includes propagation of the packet 
through the network, receiver processing, and return 
of an acknowledgment, is the roundtrip delay less 
service time 1. Define RHO as the ratio of service 
time 1 to service time 2. The window size Nwin defines 
the number of customers (packets) in the system (see 
Figure 4). 

The utilization of server 1 (UT) is the fraction of 
time that the transmitter is active (allowed to trans
mit) with a given window size, and hence provides a 
good indication of throughput attainable. Figure 5 
shows this utilization as a function of window size for 
several values of RHO and assuming exponentially 
distributed service times (high variance). Realistic 
values of RHO in a typical PSN are typically about 0.1 
since roundtrip delays are an order of magnitude 
larger than Host-to-network transmission times. 
Throughput rises linearly with window size (note the 
logarithmic scale for window size) up to the half-way 
point, and then somewhat more slowly. For constant 
service times (no variance), throughput would rise 
linearly with window size all the way to its maximum 
value, while service time distributions (roundtrip de
lays) with intermediate variance would behave be
tween these limits. 



574 National Computer Conference, 1976 

Nwin CUSTOMERS 

Server 2 

Figure 4-Queuing model of flow control 

This model provides information for both flow con
trol concerns expressed above. To achieve maximum 
throughput, a window size approximately equal to the 
roundtrip delay divided by the Host-to-network trans
mission time for a packet is optimal (a larger wi~dow 
does not increase throughput much). This confirms 
the intuitive approach of "keeping the pipe full" be
tween sender and receiver. To limit throughput to a 
desired fraction of the bandwidth available, the same 
fraction of this optimal window size should be used. 

As long as packet loss and damage probabilities re
main low, the above analysis shows how throughput 
may be fiow control limited by a small window size. In 
networks where transmission errors are more likely, 
throughput may become retransmission limited be
cause retransmissions of pending packets have priority 
over new transmissions. In general, achievable 
throughput will be the minimum due to either flow 
control or retransmission constraints. 

A third similar constraint may be imposed by the 
source further restricting the window size for a con
nection (below what the receiver might allow) in order 
to share its communication resources fairly among 
all connections. For example, the ARPANET TIp19 
limits each terminal (up to 300 baud) to a window of 
6-12 characters in order to share its relatively scarce 
buffer space among all users. In the next section, the 
effects of destination buffer space limits or protocol 
performance will be explored. 

DESTINATION BUFFERING AND 
ACKNOWLEDGMENT STRATEGIES 

Buffering of received packets at the destination is 

10 100 
\.JIND!Zl\.J SIZE NWln 

Figure 5-Throughput factor UT vs. flow control window size 
Nwin for various RHO-Tlocal/Tnet (the ratio of packet trans

mission time to roundtrip delay through the network) 

necessary to smooth uneven production and consump
tion rates (hold packets until they can be processed) 
and to hold out-of-order arrivals for proper sequencing 
(if the protocol provides a sequencing function). In
adequate space for either purpose means that success
fully received packets may have to be discarded if no 
space is available to hold them, increasing retrans
mission rate and delay. 

In an attempt to avoid these problems, "conservative" 
acknowledgment strategies delay returning permission 
to send new data (c.f. last section) until buffer space 
to receive it has actually been made available by "con
suming" arrived packets or furnishing additional 
space. In this case, no arriving packets need be dis
carded, but roundtrip delay for flow control credits 
is increased because processing time is included, and 
hence throughput may be reduced as shown in the 
last section. 

Under favorable conditions, new flow control credits 
can be returned immediately on successful receipt of a 
packet, reducing the roundtrip time. As long as packet 
arrivals and receiver processing proceed smoothly (at 
regular intervals), no packets will be discarded. A 
larger window size than the buffer space available may 
be used to achieve higher throughput with reduced 
buffering requirements. Storage space along the net
work transmission path actually provides the rest of 
the space in the window. 

Another simple queuing model provides insight into 
the performance of this optimistic strategy. The re
ceiver is represented by a single server with mean 
service (processing) rate u, and size-limited queue of 
Nbuf packet buffers. Packets arrive at a mean rate A 
determined by retransmission and flow control con
straints discussed earlier, and the ratio of arrival rate 
to processing rate is RHO = A/u. Assuming exponential 
distributions, well-known queuing results20 give the 



Factors in Interprocess Communication Protocol Efficiency 575 

probability that an arrIvmg packet will find all the 
buffers full, and have to be discarded. 

RHONbuf 
Pfull(Nbuf,RHO) = (I-RHO) ·1-RHONbUf+! 

Three general cases may be distinguished. 
For RHO> >1, (arrival rate> > processing rate), 

nearly all arriving packets will be discarded regardless 
of the size of Nbuf. In this case, throughput is clearly 
receiver rate limited, and the window size should be 
reduced to limit the sender's transmission rate to the 
receiver's processing rate. 

For RHO< <1, very few packets will be discarded 
even if Nbuf is small. A fast receiver requires very 
little buffering, and buffer pooling among multiple 
connections may be advantageous. 

For RHO= 1, (matched sending and receiving rates), 
the number of buffers required depends heavily on the 
"smoothness" of source and destination activity. Very 
regular activity allows a minimum of buffering. Un
fortunately, irregular packet arrival and processing 
rates are more typical in computer networks, par
ticularly in multiprogramming systems where process 
activity occurs in bursts. If process scheduling inter
vals in multiprogramming systems are large compared 
to roundtrip delays, then large window sizes and buffer 
allocations may be necessary to achieve high through
put. 

PACKET SIZE 

In transmitting large amounts of information be
tween processes, a communication protocol must de
termine the amount of data to transmit in each packet. 
The primary result of varying packet size is to vary 
transmission delay through the network, f (t). Trans
mission delay in a store-and-forward network has a 
large component proportional to packet length because 
the transmission time on each hop between switching 
nodes is equal to packet length divided by bandwidth7 

(although some networks either fragment or combine 
submitted packets before internal transmission). 

Assuming this proportionality holds, shorter packets 
mean lower per packet delay, with ensuing effects on 
protocol performance as described in earlier sections. 
Unfortunately, overhead for short packets increases 
since each packet carries a fixed amount of header and 
control information, and more acknowledgments and 
general processing for the same amount of data will be 
necessary.4 Hence, maximum throughput attainable 
decreases while line efficiency (and total cost in bits 
transmitted) increases for shorter packets. Longer 
packets reduce overhead and allow higher throughput 
at the cost of increased delay. Packet switching net
works typically impose an upper bound on the size of 
packets submitted for transmission in order to man
age their internal resources and to ensure prompt 
access to other customers.2 

u 
w 
U) 

>
<C 
-I 
W 
o 

1.0 r 
o.3

t 0.1 

! 

LETTER SIZE-m.C!Xl 

. . 
)C )C :x. )C )It 

LETTER SIZE.I.Om 

300 1000 3000 
PACKET LENGTH 

. . . '1 
I 
~ 
1 

10000 

Figure 6--Total delay vs. packet length for two block (letter) 
sizes 

Network bandwidth=50 kb/sec 
Number of hops=5 
Header length=200 bits 
Packet less probability=O 

To illustrate some of these trade-offs, Figure 6 shows 
the total time to transmit a large block of information 
using different packet sizes, assuming typical PSN 
characteristics (but no packet loss) and transmission 
delay proportional to packet length. Using the smallest 
packets, throughput is so low that total delay is high. 
For very large packets, the increasing delay per packet 
also leads to high total delay. The "optimal" value for 
this application results from an intermediate packet 
size. 

Other applications may have other priorities for cost, 
throughput, and delay performance.9 Transaction or 
interactive applications may select short packets to 
achieve low delay at somewhat higher cost and reduced 
throughout. Minimum cost or maximum throughput 
users willing to tolerate larger average delays may use 
long packets. "Real-time" traffic requiring moderate 
delay and good throughput for moderate block lengths 
may use intermediate packet sizes. As network band
width increases and error rates drop, the impact of 
packet length on protocol performance should lessen. 

CONCLUSIONS 

Distributed processing environments such as computer 
networks demand new techniques for providing re
liable and efficient communication between remote 
processes. Good performance of communication proto
cols developed for this purpose depends heavily on 
tuning protocol parameters to complement network 
transmission characteristics. This paper has discussed 
the impact on communication efficiency of major pro
tocol policies concerning retransmission, flow control, 
buffer allocation, acknowledgment, and packet size. 



576 National Computer Conference, 1976 

More complete resnlts and more detailed development 
of the models underlying these results are contained 
in another paper by the author." Experiments are 
currently under way to verify the predictions of these 
models using the newly developed Transmission Con
trol Program17

,21,22 as an interprocess communication 
protocol. 

ACKNOWLEDGMENTS 

The author wishs to thank V. Cerf, Y. Dalal, R. Met
calfe, and S. Gaines, for their helpful discussion of the 
issues and review of the manuscript. Personnel and 
facilities at several ARPANET sites were also instru
mental in supporting this work. 

REFERENCES 

1. Pouzin, L., Basic Elements of a Network Data Link Con
trol Procedure (NDLC) , INWG Note 54, NIC 30375, Janu
ary 1974. Also in ACM Computer Communication Re'L"ieu' 
5, 1, January 1975, pp. 6-23. 

2. Crowther, W. and others, "Issues in Packet Switching Net
work Design," Proc. National Computer Conf., 1975, AFIPS 
Press, pp. 161-175. 

3. Sunshine, C. A., Interprocess Communication Protocols for 
Computer Networks, Stanford University DSL Technical 
Report #105, December 1975. (Ph.D. Thesis). 

4. Kleinrock, L., W. E. Naylor and H. Opderbeck, A Study of 
Line Overhead in the ARPANET, INWG Note #71, Sep
tember 1974. Also in C01nm. ACM 19, 1, January 1976, pp. 
3-13. 

5. Sunshine, C. A., Efficiency of Interprocess Communication 
Protocols for Computer Networks, The Rand Corp. P-5614, 
March 1976. 

6. Burton, H. O. and D. D. Sullivan, "Errors and Error Con
trol," Proc. IEEE RO, 11, November 1972, pp. 1293-1300. 

7. McQuillan, J. M., W. R. Crowther, B. P. Cosell, D. C. Walden 
and F. E. Heart, "Improvements in the Design and Per
formance of the ARPA Network," Proc. Fall Joint Com
puter Conf., 1972, AFIPS Press, pp. 741-754. 

8. Pouzin, L., Efficiency of Full-Duplex Synchronous Data 
Link Procedu1"es, INWG Note #35, June 1973. Also NIC 
18255. 

9. Opderbeck, H. and L. Kleinrock, "The Influence of Control 
Procedures on the Performance of Packet-Switched N et
works," Proc. Nwtional Telecommunications Conf., San 
Diego, December 1974. Also INWG Note #62, September 
1974. 

10. Metcalfe, R. M., Packet Communication, M.LT. Project MAC 
Report TR-114, December 1973. (PhD Thesis, Harvard 
University) . 

11. Kleinrock, L. and W. E. Naylor, "On Measured Behavior 
of the ARPA Network," Proc. National Computer Conf., 
1974, AFIPS Press, pp. 767-780. 

12. Forgie, J. W. and C. K. McElwain, ARPANET Delay Mea
surements, NSC Note 70, M.LT. Lincoln Labs, July 1975. 

13. Naylor, W. E., personal communication. 
14. Kahn, R. E. and W. R. Crowther, "Flow Control in a 

Resource-Sharing Computer Network," IEEE Trans. on 
Communications, COM-20, 3, June 1972, pp. 539-546. 

15. Carr, S., S. Crocker and V. Cerf, "Host/Host Protocol in 
the ARPA Network," Proc. Spring Joint Computer Conf., 
1970, AFIPS Press, pp. 589-597. 

16. Belsnes, D., Flow Control in Packet Switching Networks, 
Stanford University DSL Technical Note #50 and INWG 
Note #63, October 1974. 

17. Cel'f, V. G. and R. E. Kahn, "A Protocol for Packet Net
work Intercommunication," IEEE Trans. on Communica
tions, COM-22, May 1974, pp. 637-648. 

18. Zimmerman, H., "The CYCLADES End-End Protocol," 
Proc. Fourth Data Communications Symp., Quebec City, 
Canada, October 1975, IEEE 75 CH1001-7 DATA, pp. 7-21 
to 7-26. 

19. Ornstein, S. M. and others, "The Terminal IMP for the 
ARPA Computer Network," Proc. Spring Joint Computer 
Conj., 1972, AFIPS Press, pp. 243-254. 

20. Kleinrock, L., Queueing Systems, Vol. I, John Wiley, New 
York,1975. 

21. Cerf, V. G., Y. Dalal and C. Sunshine, Specification of 
Internet Transmission Control Program, INWG Note 72, 
revised December 1974. 

22. Cerf, V. G., ARPA Internetwork Protocols Project Status 
Report, Technical Note 68, Digital Systems Lab, Stanford 
University, November 1975. 

23. Roberts, L. G. and B. Wessler, "The ARPA Computer N et
work," in Computer Communication NetwQ1"ks, Abramson 
and Kuo, editors, Prentice Hall, 1972. 



Performance of file directory systems for data bases 
in star and distributed networks* 

by WESLEY w" CHU 
University of California, Los Angeles 
Los Angeles, California 

ABSTRACT 

Three classes of file directories for distributed data 
bases are studied: The centralized directory system, 
the local directory system, and the distributed direc
tory system. The parameters considered are com
munication cost, storage cost, code translation cost, 
query rate, update rate, directory size, and directory 
response time. This study reports the cost perform
ance tradeoffs of these three classes of directory sys
tems in star and distributed networks and provides a 
guide in the design of file directory systems when oper
ating in these network environments. 

INTRODUCTION 

In the automation of large information systems, a 
major portion of the planning is concerned with 
methods of storing, updating, retrieving, and distrib
uting large quantities of information in an infor
mation processing system. Examples of such efforts 
are found in business, medicine, library and manage
ment information systems. These systems, which may 
consist of several geographically separate divisions, 
need to process information files in common and thus 
form a network information processing system known 
as a distributed data base. One of the significant ad
vantages of this network environment is the resource 
sharing capability. Problems that arise in the design 
of distributed data bases include file allocation pol
icy/,2,3 avoidance of file deadlock/ file directory design, 
file partitioning policy, file reliability, privacy, and 
security issues, and interfacing considerations. This 
paper concerns itself with the allocation of directories 
in a distributed data base. 

A directory is a listing of files available to the users 
of the network. Such a directory will enable a user 
at any node to determine where in a network a specific 
sharable file exists. One can consider such a directory 
to be similar to a card catalog of a public library. 

* This research was supported by the U.S. Office of Naval 
Research, Contract No. N00014-75-C-0650. 

577 

These sharable files are referred to as public files. 
Users at each node may offer to list their files in this 
directory of public files for sharing purposes. A user 
may interrogate this list to determine its contents or 
to obtain information on where a specific sharable file 
exists. The list of non-shared files is assumed to be 
stored at the computer that is known to its users and, 
therefore, is not considered here. Further, we assume 
that each computer has its own local directory which 
consists of all the public files stored in that computer. 
To locate a file that is not in the local computer, the 
user must consult the file directory. 

There are several ways to design the file directory: 
centralized file directory, local file directory and dis
tributed file directory. Based on the computer network 
topology, operating cost (communication cost, storage 
cost, and code translation cost), directory query rate 
and directory update rate, we use mathematical models 
to study the operating cost and response time of these 
directory systems as a function of directory query 
rate, directory update rate, and the ratio of storage 
cost to communication cost. Two numerical examples 
are given (one with a star network topology, the other 
with a distributed network topology) to illustrate the 
applica tions of the models. The results provide us with 
insights on how to optimally plan for a file directory 
for a distributed data base. 

THE MODEL 

In this section, several mathematical models are in
troduced to study the performance of file directory 
systems for operating in the star network and distrib
uted network topologies. Let us first consider the 
centralized file directory system. 

Centralized file directory system 

Single master directory 

In the centralized file directory system, a master 
directory is located at one of the computers. When a 



578 National Computer Conference, 1976 

user requires a file that is not stored at his local direc
tory, he consults the master directory to find out the 
location or content of that file. The centralized direc
tory must be updated when there is a change in the 
storage location or contents of a file, or a creation of a 
new version of the file. Directory updating in such a 
system is relatively easy. However, there are com
munication costs incurred for each transaction. The 
operating cost for such a system per unit time is 

Cc=.i CidtsidliI,qij (2+plj) + iI.[Tiqij (2+Pij )] +CdsF 
i=1 j=1 i=1 j=1 i;td i;td 

v 

comm unica tion 
cost 

---...v,----' 
translation 

cost 
stor
age 
cost 
(1) 

Where: mi= total number of files in the ith computer 
n= total number of computers in the net

work 
d= location of the master directory 

Cidt = transmission cost per character and per 
unit distance from the ith computer to 
the master directory 

Sid= distance between the ith computer to the 
master directory. 

li= average record length in characters for 
each transaction at the ith computer, 
i=1,2, ... ,n 

qij = directory query rate by the jth file at the 
ith computer per unit time. j = 1, 2, 
... ,m. 

Pij = normalized directory update rate (the 
ratio of directory update rate to direc
tory query rate) of the jth file gener
ated by the ith computer. 0 ~ Pij ~ 1. 

T! = code translation cost per transaction by 
the ith computer at the master directory. 

Cds= storage cost per character per unit time 
at the master directory 

F = size of the master file directory in 
characters. 

The first term in Equation (1) represents the trans
mission cost for querying and updating the file direc
tory, the second term represents the code translation 
cost (due to non-uniform information representations) 
for transactions (querying and updating) performed 
by all the computers at the directory, and the last term 
is the cost for storing the master file directory. 

To simplify the notation in Equation (1), we let 

qi = ~ qij. The qi is the total number of queries gener-
j=1 

ated per unit time by the ith computer for the directory. 
Further, we assume that all the files at the ith computer 
have the same directory update; that is, Pij=Pi for all 
j. Equation (1) then reduces to 

Cc = i Cidtsidliqi(2+Pi) + i Tiqi(2+P j ) +CdsF 
1=1 1=1 l;td i;td 

(2) 

Extended centralized directory 

In a centralized file directory, once the user finds the 
location or description of a file, he can append this 
information onto his local directory. Should the user 
use this file again, the directory information for this 
file can be obtained from his local directory, thereby 
reducing the communication cost as well as time for 
querying the master directory. However, when the 
information of that file at the master directory is up
dated, we also require updating of the information of 
that file 'in the local directories. Therefore, for notifi
cation of future updates in the master directory, the 
list of local directories that have appended file in
formation is recorded in the master directory. The 
operating cost of such a system is: 

n n 

CEC = L CidtsidliqiPi+ LqiPiTi+CdS(F+Fe ) 

i=! i=! i;td i;td 

+ iaiCisF+ iiqiPi,ski(Cdktsdklk+Tdk) (3) 
1=1 i;tk k;td 
i;td i=! k=! 

where ai = fraction of the master directory being ap
pended at the local directory of the ith 
computer, O~ai~l i=l, 2, ... , n. 

,ski = probability that a file at the kth computer 
has a transaction at the ith computer, 
O~,ski~l, i=l, 2, ... , nand k=l, 2, 
... , n . 

Tdk = translation cost for the master directory 
to perform a transaction with the kth 
computer. 

Fe= the size of the list of all the files stored at 
the master directory that requires notifi
cation for directory updates (in char
acters) . 

We assume that compared with the overall operating 
cost, the first cost of locating a file in the master direc
tory is negligible. The first term in Equation (3) is 
the transmission cost for updating the master direc
tory, the second term is the code translation cost for 
updating the master directory, the third term is the 
cost for storing the directory and the list of the trans
action records for notification of future file directory 
updates, the fourth term is the cost for storing the 
extended file directories at all the local directories, and 
the last term is the communication cost and transla
tion cost for the master directory to update the rele
vant appended local directories. 

Multiple master directories 

When the computers in a network are clustered in 
groups, it is often cost effective to provide a master 
directory at each of these clusters. The savings in 



communication cost for a multiple master directory 
system could far outweigh the cost of storing and 
updating the file directories. We can partition the n 
computers in the system into r clusters (r5n) such 
that 

r 

L.nj=n 
j=1 

where nj is the number of computers in the jth cluster. 
During normal operation, the computers in the jth 
"l""to. ... UT,l1 I"'f"o. ... u tho. ith rli ... o."tn ... u uThi"h i<::! ':l TYltlTYIhtll'" 
""'''''"","U,",,,L YY.L.I..&. ':I.\A."" ... " "' ...... '" J '-.&.1. ............... """'-' ... .., 1"1'.o\..A..I......, • ..L.L1...J L.4.t ... "" ... _ ... "" ... __ .... 

of the jth cluster. One way to partition the n com
puters into r groups is to base on the network topology 
such that the partitioned clusters yield minimum com
munication costs. Another way is to base the clusters 
on directory query rate and directory update rate to 
achieve minimum response time. The operating cost 
for such a system is: 

C = ~1L. Cidktsidkliqi(2+pJ + L. Tiqi(2+pJ I 
:'1 L {i}edk {i}€dk k=1 dk>,i i>,d

k 

r r r 

+ ), Cdk sF L. L. L. (Cdkd/· Stlk<1;r ·li + T dkdg) Piqi ( 4) 
"k=i go=1 k=1 {i}edk k>,g 

where r= number of master directories in the 
system 

dk=the kth master directory, k=l, 2, ... , r. 
{i }€dk = the set of computers that uses the kth 

master directory 
Cdks= storage cost per character per unit time 

of the kth master directory 
Cidkt= transmission cost per character per unit 

distance from the ith computer to the 
kth master directory, i = 1, 2, . . oj nand 
k=l, 2, ... , r. 

The last term of (4) is the communication cost and 
translation cost for updating the rest of the multiple 
directories in the system. For the single master direc
tory case (r = 1), Equation (4) reduces to (2). 

Local file directory system 

In the local directory case, there is no master direc
tory in the system. When a requested file is not stored 
in the user's local directory, the user queries all the 
other local directories in the system until the requested 
file has been located. Such a directory system requires 
high communication cost and translation cost, as well 
as search time for locating the file. For a system of n 
computers, it requires an average of (n-l) /2 directory 
queries to locate a file. Assuming the directory can 
only be updated by its owner, updating is done at its 
local directory which does not require communications 
cost. The operating cost for such a system is 

CL = %[2 ~ t. C"'Slkl'~ 'fu+2~ t. T,,~qij] (5) 
j>,k 1,ok 

Communi~ation Cost Translation Cost 

Performance of File Directory Systems 579 

where Tik is the code translation cost per transaction 
for the ith computer at the kth computer. The first term 
of Equation (5) is the expected communication costs 
for querying to and replying from all the local direc
tories for those files that are not stored in the local 
computer, and the second term is the expected code 
translation costs for transactions with all the local 
directories in the system. The factor 1/2 is for taking 
the average operating cost. Since there is no master 
directory in such a system, there is no storage cost 
in Rllll':ltinn {h' ................. ':1.--"' .... ...., ... .1. '\-J. 

III I 

For simplicity in notation, we let qi= L. qij. Eq. (5) 
j=1 

becomes 
n n 

CL= L. L.[Citsikli+Tik] qi (6) 
i=l k=l 

k>'1 
Let us consider the case where each of the computers 

contains a routing table which routes the directory 
query directly to the other computers rather than 
returning the negative query reply to the sender. As 
a result~ the expected total communication cost can be 
greatly reduced, particularly if the routing sequence 
takes into consideration the probability of finding the 
file in the directory. The total operating cost reduces 
to 

n n n 

CL'=y L.L.[Ciktsikljqi+Tikqi] + .:LCiktsikliqj 
i=1 k=1 i=1 i,ok 

(7) 
where 0<y<0.5. The value of y depends on the net
work topology and the policy used in the routing table. 
The last term of Eq. (7) is the communication cost 
for replying to the queries. 

Distributed file directory system 

In the distributed directory case, each computer in 
the system has a master directory. The advantage of 
this system is its fast response time. The disadvantage 
of this system is the cost of storing master file direc
tories at each computer as well as the communication 
cost for updating all these directories. The operating 
cost per unit time of such a system is 

n n Ill! 

CD = L 2: Cjk tsiklj .L qjjPij 
i=1 k=1 j=1 i;:k 

Communi~ation Cost 

+.Ii T1kI,qjjPjjT iClsF (8) 
i=1 k=1 j=l i=1 i,ok 

Translation Cost 
~ 

Storage 
Cost 

The first term of Equation (8) is the communica
tion cost for updating all the distributed master direc-



580 National Computer Conference, 1976 

tories in the system, the second term is the translation 
cost associated with the updating of all the distributed 
directories, and the last term is the cost for storing all 
the master directories. If we assume that the direc
tory update rates of all the files at the ith computer 
are identical, then P ij = Pi. Again for simplicity in 

m l 

notation, weletqi= Lqij. Then (8) reduces to 
j=1 

n n n 

Cn = L.L.(Ciktsikli+Tik)Piqi+ L.CisF 
i=1 k=1 i=1 i;tk 

OPERATING COST TRADEOFFS OF 
DIRECTORY SYSTEMS 

(9) 

The intersection of two operating cost curves Cx (P) 
and Cy (P) (Figures 1 and 2) represent the cost 
tradeoff point (in terms of update rate) for directory 
systems x and y. If we assume that all the computers 
in the system have identical directory update rates, 
then the operating cost is a linear function of the 
normalized update rate P. Thus Cx(P) and Cy(P) can 
be expressed as : 

Cx(P) =axP+bx 
and Cy(P) =ayP+by 

where ax and ay are incremental costs for directory 
updates and bx and by are fixed directory operating 
costs. The intersection point of Cx (p) and Cy (P), 
P (x,y), satisfies 

P (x,y) (10) 

DISTANCES IN MILES 

Figure I-Performance of directory systems for a star network 
Ct/Cs=10 month/mile---(a) A star network 

C = CENTRALIZED DIRECTORY 
EC = EXTENDED CENTRALIZED DIRECTORY 

700 L = LOCAL DIRECTORY 
D = DISTRIBUTED DIRECTORY 

600 L 

::I: 
I-
2 
0 
~ 500 0 

M 
0 .... 
~ 
I- 400 
CJ) 

0 u 
C!' 
2 
i= 300 « 
a: 
w 
CI.. 
0 

200 

DIRECTORY QUERY RATE, #/MONTH 

(b) Directory operating cost vs. directory query rate 

Let us now consider the intersection of the cost 
curves for the centralized and extended centralized di
rectory systems. From Equation (2), we have 

n n 

ae = L. Cidtsidliqj + L. Tiqi 
1=1 1=1 i;td i;td 
n n 

bc = L. 2Cidtsidliqi+ L.2Tiqi+CdsF 
i=1 i=1 i;td i;td 

From (3), we have 
n n n n 

aEC= L.Cidtsidliqi+ L.qiTi+ L.Lqd~ki(Cdktsdklk+Tdk) 
i=1 i=1 i;tk k;td 
i;td i;td i=1 k=1 

n 

bEc=Cds(F+Fe ) + L.aiCisF 
i=1 i;td 

Substituting ae, aEC, be, and bEe into (10) and simplify
ing, we have 

n n n 

CdsFe - L.aiCjsF+ L.2Tiqi+ L.2Cldtsidliqi 
i=1 i=1 i=1 

P(c,EC) = __ ~i:~d __ n ____ ~i;t~d ____ ~i~;td~ ______ (ll) 

L L. qi/3ki (Cdk tSdklk + T dk) 
i",k k",d 
i=1 



:I: 
~ z 
a 
:5 

300 

~ 250 
M o ... 
~ 
~ 200 
(I) 

o 
u 
(!) 
z 
i= 150 
« 
a: 
w 
Q.. 

o 
100 

50 

o 
o 0.2 0.4 0.6 0.8 

UPDATE RATE/QUERY RATE 

1.0 

~ 
l 
1 
I 

(c) Directory operating cost vs. normalized directory update 
rate. Query rate=1000/month 

In order to simplify equation (11), we assume that 
(1) the communication cost is much higher than the 
storage cost so that the storage cost becomes negligible, 
(2) all the computers in the system are using the same 
software code, thus translation cost is not required; 
that is, Ti=O, and (3) (3ki={3, li=l, and qi=q for all i, 
then (11) reduces to 

P (c,EC) ~ (n-;) . {3 (12) 

For example, if n=10 and (3=1/3, then P(c,EC) =2/3 
= 0.667. Thus for a network with ten computers op
erated in the above stated environment, when the di
rectory update rate of each computer is less than 67 
percent of its query rate, the extended centralized 
directory system yields a lower operating cost than 
that of the centralized directory system. 

We shall now consider the directory operating cost 
tradeoff between the centralized directory system and 
the distributed directory system. From (9), we have 

n n 

aD= LL (Ciktsikli+Tik)qj 
i=l k=l i;tk 
n 

bD= LCiSF 
i=l 

Performance of File Directory Systems 581 

I 1n 1 
'-/ 

DISTANCES IN MILES 

Figure 2-Performance of directory system for a distributed 
network. Ct/CS=10 month/mile-(a) A distributed network 

Substituting ae, aD, be, and bD into (10), we have 

n n n 
- L CisF + L2Cidtsidliqi + L2Tiqi 

i=l i=l i=l 
P (c,D) = _:=i;t:::...d _n __ n_l:.:...·;td-==----____ .....:i;t:.:...~d=____ 

L L (Ciktsikli+Tik) qi 
i=l k=l 
b'k i;td 

(13) 

Compared with the communication cost, the storage 
cost again can be assumed to be negligible. Further we 

1~ 
I 

~ 
6 

:I: 
~ 
Z 
0 
~ 5 
~ 
Iii" 
~ 
~ 
~ 4 
CI) 

0 
(.) 

(!) 
z 
~ 3 
a: 
w 
0. 
0 

2 

DIRECTORY QUERY RATE, #/MONTH 

(b) Directory operating cost vs. directory query rate. Nor
malized directory update rate=O.25 



582 National Computer Conference, 1976 

3.5 
[ NON UNIFORM QUERY RATE 

UNiFORM QUERY RATE 

] 
3.0 L 

::I: 
I-
Z 
0 
:lE 2.5 
~ 

cD 
0 .... 
~ 
I- 2.0 
CI) 

0 
u 
C!) 
z 
i= 1.5 « 
a: 
w 
c.. 
0 

1.0 

0.5 

o 
o 0.2 0.4 0.6 0.8 1.0 

UPDATE RATE/QUERY RATE 

(c) Effect of query rate on operating cost. Master directory at 
computer 1. Uniform query rate query case: qj=1000 queries/ 
month, i=1, 2, ... , 10; Non-uniform Query Case: qi=1500 
queries/month i=1, 2, ... , 5 and qi=500 queries/month, j= 

6,7, ... ,10 

assume that li=l, qj=q, for i=I,2, ... , n; CiktSik== 
CidtStd and Ti=Tik=O. Then (13) reduces to 

P (c,D) == (n:l) (14) 

For a network with ten computers operated in the 
above stated environment, from (14) we know that 
P(C,D) =0.22 which implies that when the directory 
update rate is less than 22 percent of its query rate, 
the distributed file directory yields a lower operating 
cost than the centralized file directory. 

We shall now consider the intersection of the local 
file directory cost curve CL (P) with the distributed file 
directory cost curve CD (P). From (6), we have 

aL=O 
n n 

bL = L L [Cik tsikliql + T Ikqi] 
i=1 k=1 i;<k 

Substituting aL, aD, bL and bD into (10), we have 

n n n 

- L CisF + L L (Cik tSikli + Tid qi 
i=1 i=1 k=l 

P(L,D)= n n i;<k 
""'"'" (r< t", 1 I ..., \~ Lot Lot \ Vik eik1i T .L ikl '41 
i=1 k=1 i;<k 

(15) 

When Cikt»Cis, P(L,D)~1. This implies that when 
the communication cost is high as compared to the 
storage cost and when the directory update rate is less 
than the directory query rate, the distributed file di
rectory system yields a lower operating cost than that 
of the local file directory system. 

Comparing the approximate results obtained from 
Equations (12), (14), and (15) with those from direct 
computation as shown in Figure 3, we note that they 
agree quite well at high communication cost. There
fore (12), (14), and (15) may be used to estimate the 
approximate operating cost tradeoffs for high commu
nication cost cases. 

3.5 

3.0 L 

::I: 
I-
Z 
0 
~ 2.5 
0 

Iff 
~ 
~ 

2.0 I-
CI) 

0 
u 
C!) 
z 
i= 1.5 « 
cc 
w 
c.. 
0 

1.0 

C 

0.5 

o ------~----~----~--__ ~ ____ ~~ 
o 0.2 0.4 0.6 0.8 1.0 

UPDATE RATE/QUERY RATE 

Figure 3-Performance of multiple directory systems for the 
distributed network. Ct/Cs=10 month/mile, and query rate= 
1000 queries/month. For r=2, master directories at computers 
1 and 2; For r=3, master directories at computers 1, 2, and 3 



DIRECTORY QUERY RESPONSE TIME 

In this section, we shall consider the query response 
time for various directory systems. The expected re
sponse time for the ith computer to query its directory 
is defined as from initiation of a query at the ith com
puter to the directory until the start of its reception. 
The expected response time consists of the waiting 
time at the input queue of the directory for processing 
the query tt (i), the waiting time at the output queue 
of the directory for transmission t2 (i), the time to 
transmit the query to and its reply from the directory 
t;{ (i), and the directory processing time t4 (i) . The 
processing time consists of code translation, searching, 
and accessing. It depends on the file structure of the 
directory as well as the access time of the storage de
vice and could be different from one system to another 
and should be known to the users. Here, therefore, we 
only consider the delay incurred at the input queue and 
output queue (s) of the directory, and the time to trans
mit the query on the communication channel. Let us 
denote the sum of these components as ti,d, known as 
the directory query response time from the ith com
puter to the directory; thus 

(16) 

Clearly, the real query response time incurred by the 
users, t r Ld, is equal to the sum of t.d and t4 (i). 

The arrivals at the input queue of the directory are 
the queries and updates generated by all the computers. 
The arrivals at the output queue (s) of the directory 
are the query replies generated at the directory. We 
shall assume these query arrivals can be approximated 
by a Poisson Process. The time between interrupts by 
the computer to process directory queries is 1/ /Ll. Since 
the communication line transmits at a constant rate of 
R characters/second, the time to transmit (send or 
reply) a query of I character is 1//L2=l/R. Under 
these conditions, the waiting time can be computed 
from known queuing theory results. The average wait
ing time for a single server queuing system with Pois
son arrivals and constant service time," M/D/l, is 

1 A 
W=-;. 2(/L-A) 

where 

l/JL=time to service a query in seconds 
A= average number of queries arrived/second 

Assuming that queries and their replies generated at 
the directory input and output queues can be approxi
mated as a Poisson process, then the query response 
time equals 

t t ( .) '(.) t (.) Al A2. 2 ' i,d= 1 1 +t2 1 + 3 1 = 2 ( )+2 ( )+ //L2 /LI /L1 - Al /L2 JL2 - A2 
(18) 

Let us first consider the centralized directory sys
tem. The total number of queries arriving at the di-

Performance of File Directory Systems 583 

rectory, Act, consists of directory queries and their up
dates from all the computers in the system. Thus Al 

n 

= Ad = L qi (1 + Pi). Since the directory does not have 
i=1 

to reply to update traffic, and since each destination 
has its own output queue, the arrival rate at the output 
queue for the ith computer is equal to A2 = Adi = qj. By 
substituting Al and A2 into (18), we have 

n 
~_ 1"1 , _ ~ 

L Yi \. ~ -r ViJ 
t i=1 lqi 21 
i,d= [n J+ 2R[R/l-jq] +l[ (19) 

2,11.1 ,11.1- ~qi(1+Pi) 

For the computer that stores the master directory, 
t2 (d) = t3 (d) = O. The expected query response time 
td . d =t1 (d). 

Let us now consider the extended centralized direc
tory system. For those files that have not yet been 
queried at the directory by the ith computer, the re
sponse time is similar to (19) except that the directory 
query rate is much smaller and the directory output 
queue for the ith computer should also include the up
date traffic (generated by all the computers) for the 
ith computer. For those files whose directory informa
tion has already been appended to the local directory 
at the ith computer, there is no need for the ith com
puter to consult the master directory about these files. 
Thus the query response time reduces to t i,d=t1 (i). 

For multiple master directory systems, since the 
directory queries are shared by the multiple master 
directories, the waiting time for processing the direc
tory queries at each master directory is much lower 
than the single master directory system. Therefore, 
the response time for the multiple master directory is 
lower than that of the single master directory system. 
The query arrival rate at the kth master directory dk is 

n 

Al = Adk = L qi + L Piqi and the query reply rate at the 
{I}fdk i=1 

output queue for the ith computer is A2=qj. Thus the 
response time for the ith computer to the kth master di
rectory can be computed from (19) by replacing the 

n 

L qi (1+Pi) in the first term of (19) by L qi+ L 
j {i}fdJ;: i=1 

Piqi. When directory queries are generated by those 
computers that store the master directories, these 
query replies do not require transmission. Thus the 
response time equals t1 (d). 

For the local directory system whose replies are re
turned directly to the sender (i.e., without routing), 
the ith computer may locate the information of the file 
before reaching the kth local directory. Therefore on 
the average only half of the queries generated at the 
itO computer will reach the kth computer. Thus the 
query arrival rate at the input queue of the kth local 

directory is Al = ~± qi, where qi = directory query rate 
1=1 



584 National Computer Conference, 1976 

generated by the ith computer. Assuming there is an 
output queue for each destination at the kth computer, 
then the arrival rate at the output designated for the 
ith computer is A2 =q!. Substituting Al and A2 into (18), 
we have 

lqi + 21 
2R[R/l-qJ R 

(20) 

Because the local directory system uses routing, 
queries are passed around from one directory to an
other rather than sent directly to the sender. With a 
carefully designed routing strategy, the input traffic 
rate A could be greatly reduced. Further the third term 
of (20) reduces to half of its value. Therefore, the 
query response time for the system with routing could 
be much smaller than that without routing. 

Assuming all the files in the data base are equally 
likely to be stored in any local directory system, the 
time to locate a file by the ith computer is 

(21) 

and the real expected directory response time for the 
ith computer is 

1 11 

t{=2 2: [tik+t4 (k)] 
k=l 

For the distributed directory system, each computer 
has a master directory. Public file information can be 
obtained from the file directory at the user's computer. 
Thus, t2 (i) =t3 (i) = O. The query arrival rate at the 

directory input queue is Al = q{ 1 + ~ Pk)' The ex

pected directory query response time reduces to 

tu = t, (i) = q.( 1 + ~ p, ) / { 21',[ 1" - q.( 1+ ~ p, ) J} 
(22) 

NUMERICAL COMPUTATIONS 

From the models we developed in the last section, 
we know that the operating cost of the directory sys
tem depends on many parameters such as network 
topology, transmission cost, storage cost, translation 
cost, directory query rate, directory update rate, and 
directory size. Although the models are formulated in 
general terms and can be applied to different param
eter values, in order to draw some meaningful conclu
sions as well as limit the number of study cases, we 
shall select two types of network topologies: a star 
network which has the property that the distances from 
the center node to all the computers are equal, and a 
distributed network of computers that forms clusters, 
the distances among these clusters being unequal. In 

our example we assume that all the computers in the 
system have the same storage cost, code translation 
cost, and directory update rate; the size of the master 
file directory is directly proportional to the number of 
computers in the system; all communication channels 
have fun duplex capabilities and the same communi
cation cost. First, we study the star network as shown 
in Figure 1a. We computed the monthly operating 
cost as a function of file directory query rate and di
rectory update rate for various directory systems. 
Numerical results are shown in Figures 1b and 1c. 
The parameters used in this example are: Ct/Cs =10 
month/mile, T /Cs = 2000 byte month/transaction, Cs 
=7.0x10-5 $/byte month, F=6x105 bytes, F 1 =3x103 

bytes, 1=50 bytes, cx.=0.1, ,8=1/3, and q=qi=1000 
queries/month. The directory update rate is expressed 
in terms of the normalized directory update rate which 
is the ratio of directory update rate to directory query 
rate. 

In the same manner, we study the distributed net
work which consists of ten computers that forms into 
three clusters as shown in Figure 2 (a). Using the 
same parameter values as for the star network, we 
compute the monthly operating cost as a function of 
directory query rate and normalized directory update 
ra teo The results are given in Figures 2 (b) and 2 ( c) . 

So far we have assumed that each computer has the 
same directory query rate. We shall now relax this 
assumption and let the query rate at each computer be 
different. In order to compare with the uniform query 
rate case, we let the total number of directory queries 
generated from all the computers remain the same but 
vary the query rates among the computers. For ex
ample, we let computers 1, 2, 3, 4, and 5 have a rate of 
1500 queries/month and others 500 queries/month. The 
results reveal that the operating cost of the centralized 
directory system with the above stated query rate is 
lower than that of the case that 1000 queries/month 
generated from each computer (Figure 2(c». On the 
other hand, if we interchange the directory query rate 
of computers 1 to 5 with computers 6 to 10, then the 
operating cost of the centralized directory system with 
the above non-uniform query rate is higher than that 
of the uniform query rate case. 

Next, we study the operating cost characteristics of 
the multiple master directories system. According to 
the distance among computers, we partitioned the ten 
computers into three groups in which each computer 
belongs to one of the three master directories. We 
evaluate the monthly operating costs as a function of 
directory update rate from Equation (5) and compare 
them with those of the extended centralized directory 
system, the local file directory system, and the dis
tributed directory system as shown in Figure 3. 

Figure 4 shows the operating cost trade-offs for file 
directory systems as a function of the ratio of commu
nication cost to storage cost. The results are obtained 
from the intersection of the operating cost curves un-



IIIi I I I I 111"111 
c5

= 0-----

~ 
1.0 r'l 
0.8 

0.6 ~ O-~~---------O-----------~-~-:-~--DI ~ 
w 
I-« 
a: 
> a: 
w 
:> 
!2 I w 
F-« 
a: 0.4 w 
I-« c 
0-
:> 

0.2 

0 

~ 
(C,D) ~ 6 

I " I 
6-----------------~--------------___ 6 

0.1 

, , '" " I I '" I 

1.0 

COMMUNICATION COST/STORAGE COST 

10.0 

Figure 4-Cost trade-offs for various directory systems. (x,y) = 
cost trade-offs for directory systems x and y- (a) Star net

work 

der various communication cost to storage cost ratios. 
Finally, "\ve study the query response time for the 

three classes of directories. The time between inter
rupts to process the directory is assumed to be equal 
to the time required to transmit the query; that is, 
1/ j1-1 = 1/ j1-2 = l/R, where R is the transmission rate of 
the communication channeL Numerical results of the 

1.0 

0.8 

w 
~ 
a: 
> ffi 0.6 
:> o 
iii 

~ 
w 0.4 

~ 
C 
0-
:> 

0.2 

~ a 

C5 =0 
(C,EC) 

-----------------0 ----~-

0.1 

(C,DI 

(M,DI 

M = MULTIPLE MASTER DIRECTORIES, 
r = 3 

------0 
1.0 10.0 

COMMUNICATION COST/STORAGE COST 

(b) Distributed network 

I 

Performance of File Directory Systems 585 

delay occurring at the directory input queues, directory 
query response time, and the traffic intensities with 
R = 960 char/sec are portrayed in Figure 5. 

DISCUSSION OF RESULTS 

From the numerical examples studied in the last 
section we notice that the operating cost of the file di
rectory depends greatly on the directory query rate 
and the directory update rate. Because of the large 
amount of data communication and translation asso
ciated with the directory updates in the distributed 
directory system, the rate of increase in operating cost 
with respect to directory update rate for the distributed 
directory system is higher than that of the centralized 
directory system. In the local directory system, we 
only need to update the local directory that generates 
the update and no transmission is required. Therefore, 
the operating cost is independent of the directory up
date rate. For a given network topology the operating 
costs of the local directory systems are higher than 
the centralized directory systems. 

Assuming that the transmission cost is higher than 
the storage cost, our study reveals that when the di
rectory update rate is low (e.g., less than 10 % of the 
query rate), the distributed directory system yields 
lower operating costs than the centralized directory 
system. As directory update rate increases, the oper-

0 
w 
CI) 

b 
C '" CENTRALIZED D!RECTORY 

... 100 L = LOCAL DIRECTORY 

.:5. D = DISTRIBUTED DIRECTORY 

w M = MULTIPLE MASTER DIRECTORIES 
::> 
w 
::> 80 0 
I-
::> 
Q.. 

~ 
> 60 
a:: 
0 
I-
(.) 
w 
a:: 
C 40 

w 
J: 
l-
I-
e::( 20 
> 
e::( 
..J 
W D c 

0 
0 80 160 240 320 400 

QUERY RATE (x 103), #/MONTH 

Figure 5-Expected queuing delay time for various directory 
systems-(a) Expected delay at the directory input queue vs. 
directory query rate. Normalized directory update rate=O.5 



586 National Computer Conference, 1976 

I 

[ ~ U 
w 

200 CI) 

M 
(:) .... 
~ 
w 
:1! 160 
i= 
w 
CI) 

C z 
0 
0- 120 CI) 
w 
0:: 

> 
0:: 
w 
:::> 80 0 
> 
0:: 
0 
I-
U 
W 40 
0:: 
is 

0 

0 
0 80 160 240 320 400 

QUERY RATE (x 103). #/MONTH 

(b) Expected directory query response time vs. directory query 
rate. Normalized directory update rate=O.5 

ating cost of the centralized directory system yields 
lower operating costs than the distributed directory 
system. 

Comparing the two types of centralized directory 
systems, the extended centralized directory yields 
lower operating costs than the centralized directory at 
low directory updating (less than 50 % of the query 
rate), and the performance reverses at high directory 
update rates. This is because of the excessive data 
communications required in the extended centralized 
directory system to update all the extended local di
rectories. The exact cross-over point of the operating 
cost curves for these two types of directory systems 
depends on network topology and such parameters as 
storage cost, transmission costs, translation costs, etc. 
As the directory update rate increases, the perfor
mance characteristics of the extended centralized direc
tory system become similar to that of the distributed 
directory system. 

We also studied the influence of the distribution of 
the directory query traffic on the operating cost. In 
order to provide a common base for comparison, we 
kept the total number of queries generated by the 
computers to be a constant, and varied the query traf
fic among the computers. We found that the traffic dis
tribution does not have an effect on the directory op
erating cost when all the computers are equal distances 
from each other, and does have an effect on the operat
ing cost when the distances among the computers are 
different. 

1 0.8 INPUT QUEUE 
OUTPUT QUEUE L/ M, r = 3 

0.6 

Q. 

>-
I-
Ci5 
Z 
w 
I-
~ 
u 0.4 
u::: 
LL 
« 
0:: 
I-

0.2 

L 
o 

o 80 160 240 320 400 

QUERY RATE (x 103), #/MONTH 

(c) Traffic intensity vs. directory query rate. Normalized 
directory update rate=O.5 

When a network of computers forms in clusters 
(Figure 2 (a)) and when their directory update rates 
are low, our studied example reveals that installing a 
master directory at each cluster requires less commu
nication cost and therefore yields better performance 
than the extended centralized directory system as 
shown in Figure 3. 

Figure 5 (a) displays the queuing delay occurring at 
the input of the directory. The queuing delay increases 
as the query rate increases. Except in the local direc
tory case, the queuing delay increases as the directory 
update rate increases. This is because the update mes
sages are considered as input traffic to the directory. 
Since the input traffic to the multiple master directory 
system is shared among the master directories, it 
yields lower queuing delay than the centralized direc
tory system. In the distributed directory system, the 
input traffic consists only of queries generated from 
its initiator and the directory updates generated from 
the rest of the computers in the system. Therefore such 
systems have the lowest delay at the directory input 



queue. Figure 5 (b) displays the query response time 
for different types of directory systems. For the range 
of query rates that we have studied, the time spent in 
transmission to and from the directories constitutes a 
large portion of the delay. Since the distributed direc
tory system does not require such transmission, it 
yields the lowest query response time. In the extended 
centralized directory system, the directory output traf
fic also has to include directory update traffic; there
fore, the query response time of the extended centra
lized directory system has similar characteristics but 
slightly higher than those of the distributed directory 
system. Figure 5 (c) displays the traffic intensity of 
the directory input queue and the directory output 
queue as a function of query rate. The traffic intensity 
provides an indication of the level of traffic at input 
queue and output queue(s) at the directory. 

CONCLUSION 

Based on the computer network topology, communica
tion cost, storage cost, code translation cost, directory 
query rate, and directory update rate, we studied the 
cost-performance tradeoffs of the three classes of di
rectory systems. Assuming that the transmission cost 
is much higher than the storage cost, our study reveals 
that for low directory update rates (less than 10 % of 
the query rate), the distributed file directory yields a 
lower operating cost than the centralized directory 
system. When the update rate is greater than about 
15 % of the query rate, the centralized directory yields 
a lower operating cost than the distributed file direc
tory system and also the local directory system. The 
extended centralized file directory system yields a lower 
operating cost than the centralized directory systems 
at low directory update rate (for example, less than 
50 % of the query rate). For a system which has a 
very low directory update, for example, less than 5-
10 % of query rate, the extended centralized directory 
system should be used. When a network topology forms 
in clusters and when directory updating is greater 
than 5-10% of the query rate, multiple directories sys
tems with a master directory at each cluster yield a 
lower operating cost and directory response time than 
the extended centralized file directory system. 

In the local directory system, because of the large 
amount of communication costs associated with search
ing a file when it is not stored in the user's local file di
rectory, the operating cost is much higher than that of 
the centralized directory system. However, when the 
directory update rate is very high (greater than 50 % 
of the query rate) and when communication cost is 

Performance of File Directory Systems 587 

lower than the storage cost, the local directory system 
yields a lower operating cost than the distributed di
rectory system. Since the local directory system re
quires a large amount of communications as well as 
search time for locating a file, efficient routing strategy 
could greatly reduce the operating cost and query re
sponse time in such systems. 

We have also studied the cost tradeoffs when the stor
age cost is equal to or greater than the communication 
_~~~ 1"\ •• _ ~~ •• ..J •• __ •• ~~ 1~ ~'L..~~ ~'L..~ _~~~ ~.,~n_~ ~ __ ~;~;l~~ 
~U':'I,. VUL ,:,I,UU.Y LI::Vl::cU':' 1,1lal, 1,111:: ~U':'I, ,",Ul. VI::':' al.oe; L).lHH.lal. 

to the cases where the communication cost is higher 
than the storage cost except the intersection points of 
these cost curves differ as shown in Figure 4. 

Since the distributed directory system and the ex
tended centralized directory system (assuming that 
the requested file resides in the appended local di
rectory at the user's computer) do not require commu
nication for querying the directory, they yield lower 
file query response time than those of the centralized 
directory system and the localized directory system. 
When using the multiple master directories, the queries 
generated by the users are shared by the master direc
tories in the system. Therefore, the directory query 
response time for the multiple directory system is 
lower than that of the single master directory system. 

For a given network topology and operating environ
ment, we can use the models developed in this paper 
to study the operating cost tradeoffs and directory re
sponse time for various directory systems. Such in
vestigation provides us with a guide in designing di
rectory systems for distributed data bases. 

ACKNOWLEDGMENTS 

The author wishes to thank E. E. Nahouraii of IBM 
for his stimulating discussion in the formulation of the 
model and David Lee and Shaila V. Kinariwala of 
UCLA for their assistance in performing the compu
tation. 

REFERENCES 

1. Chu, W. W., "Optimal File Allocation in a Multiple Com
puter System," IEEE Transactions on Computers, October 
1969, pp. 885-889. 

2. Whitney, V. K. M., A Study of Optimal File Assignment 
and Communication Network Configuration, Ph.D. disserta
tion, "Cniversity of Michigan, 1970. 

3. Casey, R. G., "Allocation of Copies of a File in an Infor
mation Network," SJCC 1972, AFIPS Press, Vol. 40, 1972. 

4. Chu, W. W. and G. Ohlmacher, "Avoiding Deadlock in 
Distributed Data Bases," Proceedings of the ACM National 
Symposium, Vol. 1, March 1974, pp. 156-160. 

5. Kleinrock, L., "Queuing Systems," Vol. 1, Theory, Wiley
Interscience, 1975 pp. 188-190. 





On r.lleasurement facilities in packet radio systems* 

by FOUAD A. TOBAGI, STANLEY E. LIEBERSON and 
LEONARD KLEINROCK 
University of California, 
Los Angeles, California 

ABSTRACT 

The growth of computer networks has proven both the 
need for and the success of resource sharing tech
nology. A new resource sharing technique, utilizing 
broadcast channels, has been under development as a 
Packet Radio system and will shortly undergo testing. 
In this paper, we consider that Packet Radio system, 
and examine the measurement tasks necessary to sup
port such important measurement goals as the vali
dation of mathematical models, the evaluation of sys
tem protocols and the detection of design flaws. We 
describe the data necessary to measure the many 
aspects of network behavior, the tools needed to gather 
this data and the means of collecting it at a central 
location; all in a fashion consistent with the system 
protocols and hardware constraints, and with minimal 
impact on the system operation itself. 

INTRODUCTION 

This paper is primarily concerned with the unique 
measurement aspects of Packet Radio Systems as 
regards network evaluation, and considers the design 
of a set of measurement facilities, the development of 
data gathering techniques within the framework of the 
system design and the use of these measurements to 
evaluate the system performance and its operational 
algorithms. 

The need for sharing of computer resources by orga
nizing . these resources into computer networks has 
been long recognized! and the feasibility of construct
ing such networks has been demonstrated by many 
successfully operating network systems. Perhaps the 
most prominent example is the ARP ANET,z which 
utilizes the technique of packet-switching, appropriate 
for bursty computer network traffic, thus achieving 
better sharing of the. communication resources. 

The ARPANET emerged in 1969 as the first major 
packet-switching network experiment; since the 
essence of an experiment is measurement, and in line 

* This work was supported by the Advanced Research Projects 
Agency of the Department of Defense (DAHC-15-73-C-0368). 

589 

with Hamming's observation that "it is difficult to have 
a science without measurement", considerable care was 
taken from the beginning in the design and develop
ment effort to include the tools necessary and appro
priate to satisfy the many measurement goals. As a 
result of well designed experiments on the ARPANET 
using these tools, valuable insight has been gained 
regarding the network usage and behavior.3 

The Packet Radio System is another yet different 
example of a computer resource sharing network.4 It 
is being developed by the Advanced Research Projects 
Agency in order to demonstrate the applicability of the 
packet radio concept in organizing computer resources 
into a computer communications network. It is this 
packet radio network which is of concern to us in this 
paper. The network is currently in its design phase, '" 
and, as was the case with the ARPANET, care is being 
taken to include the ability to measure network be
havior. UCLA is in charge of this measurement effort. 

This concern for measurement is due to several 
factors. Firstly, these measurements provide a means 
to evaluate the performance of the operational pro
tocols employed and the identification of their key 
parameters. Moreover, this realistic observation of the 
system behavior will assist in the validation and im
provement of existing analytical models devised to 
study some of these operational schemes, such as the 
access modes and routing strategies. 5,6 Secondly, these 
measurements will allow for the detection of system 
inefficiencies and the identification of design flaws such 
as the inadvertent creation of a deadlock condition. 7 

Thirdly, measurement facilities and data, when used to 
improve network design, are a valuable feedback 
process in which design deficiencies are detected and 
subsequently corrected. Wire networks differ from 
radio networks mainly in the omni-directional broad
cast nature of the communication and consequently the 
protocols employed; therefore, it calls for new ap
proaches in the design and implementation of the 
measurement facilities and their use. 

* A preliminary demonstration of the system is under way. A 
prototype network is being set up in the Palo Alto, California, 
area. 



590 National Computer Conference, 1976 

In the following section, we present an overview of 
the packet radio system concepts and a brief descrip
tion of the currently specified operational procedures. 

In a later section, we describe the network measure-
ment facilities \vhich consist of the measurement tools 
and the techniques for data collection. In the last sec
tion, we identify and discuss in some detail the desir
able measurement functions to satisfy the need for 
validation and performance evaluation outlined above. 

THE PACKET RADIO SYSTEM 

Several papers have already appeared in the liter
ature which describe the packet radio concept and 
discuss many of the issues involved in the system 
design."'-6.8-1o In this section, we briefly describe these 
system components and operational procedures neces
sary to understand the measurement considerations 
presented below. 

There are three basic functional components of a 
packet radio system: 

(i) packet radio terminals-these are the sources 
and destinations of traffic on the packet radio network. 

(ii) packet radio stations-these function as SjF 
switches for local traffic and as interfaces between the 
broadcast system and other computers or networks. 
Also, they perform directory, monitoring and control 
functions for the overall system, and they play a cen
tral role in that all traffic passes through the station, 
i.e., we have a centralized network. 

(iii) packet radio repeaters-their function is to 
extend the effective range of terminals and stations by 
acting as Store-and-Forward relays. 

The repeater, which has been developed by Collins 
Radio and is called a packet radio unit (PRU), con
sists of a radio transceiver and a microprocessor. The 
function of the PRU is to receive and transmit packets 
according to dynamic routing and control algorithms 
specified by the station. For simplicity and uniformity 
of design, the PR U is used as the front-end of terminal 
devices and of stations, interfacing them with the 
radio net. In Figure 1 we show an oversimplified 
picture of the PRU identifying its various sections: 
the radio transceiver, the store-and-forward software, 
the control process, and the measurement process. 

In this initial system, the terminals, stations and 
repeaters are linked together by a single broadcast 
channel using omni-directional antennas. The re
peaters do not determine routes. All the routing com
putations are performed by the station. A hierarchical 
routing algorithm is used which makes the routing in 
the broadcast network resemble routing in a point-to
point network by forming a hierarchical tree structure. 
This structure is constructed by having the station 
assign to each repeater a label which defines its position 
in the tree. A packet is routed along the path deter
mined by the tree, requiring the packet header to con-

r 
..-...---- --------

Radio 
Transceiver 

Store & Forward 
--~-------------~.------------------

Measurement 

Optional Interface / 

~/ 

J 
I 
/ 

i 

/ 

Terminal Device 

Stati ~_~:mputer j 
Figure l-The packet radio unit 

tain a string of appropriate repeater ID's, or labels. 
Thus, neighboring repeaters hearing the broadcasted 
packet but not on the determined path will reject the 
packet rather than relay it. However, this algorithm 
is flexible in that it allows the repeater to seek an al
ternate route for a packet when a path seems to be 
blocked. Moreover, the station with its monitoring 
procedures can dynamically restructure the tree by re
labeling any of the repeaters in response to component 
failures or traffic congestion. 

In order to achieve reliable packet transport, ac
knowledgment procedures are required. There are 
two types of acknowledgments; the end-to-end ac-



Measurement Facilities in Packet Radio Systems 591 

knowledgments (FTE) between end devices, and hop
by-hop acknowledgments (HBH) between repeaters.6 

Except for the last hop on a packet's route, HBH ac
knowledgments are passive in that the relaying of 
a packet over a hop constitutes an acknowledgment 
of the transmission oVer the previous hop; this "echo 
acknowledgment" is due to the omni-directional broad
cast property. At the last hop, an active HBH acknowl
edgment must be generated. 

MEASUREMENT FACILITIES 

Several factors exist in the packet radio system 
which do not allow for a simple transfer of ARPANET
like measurement facilities to a packet radio network. 
Although the latter utilizes the same technique of 
packet-switching, the packet radio concept is unique 
in the constraints it places on all system operations and 
the measurement effort in particular. 

The radio broadcast nature of transmissions is such 
that the transmission of measurement data not only 
introduces overhead over its own path, but causes 
transmission interference at neighboring repeaters 
within hearing distances and creates additional over
head on those PRU's activities. Moreover, the desire to 
keep the components small and portable, as well as the 
limited speed of the IMP's CPU within the PRUs, place 
significant constraints on the measurement facilities 
and their usage. The available storage is extremely 
limited and the overhead placed on the PRU's CPU is 
of utmost importance in evaluating the feasibility of a 
measurement tool and of the collection of data in sup
port of a measurement function. As the operational 
protocols of the net are different from wire nets the 
measurement functions devised to support the e~alu
ation of their performance are unique. Thus, the 
measurement effort consisted of identifying the mea
surement functions (as described in the following sec
tion) and devising the measurement facilities required 
to support those functions under the constraints that 
the system imposes. The development of the tools 
was an iterative design process seeking a balance be
tween supporting the measurement functions and satis
fying the system constraints, as well as making sure 
that the network communication protocols allow the 
implementation and proper functioning of those tools. 

In this section, we describe the various types of 
statistics desired in the Packet Radio Net, * the traf
fic sources required in measurement experiments and 
the techniques available for measurement data collec
tion. We shall postpone until the next section the 
detailed list of the quantities that will be measured by 
each of the types of statistics (tools). 

* These types of statistics, as well as traffic generators, which 
have been widely used in ARPANET measurement experiments 
will differ significantly from those of the Packet Radio Network 
in regards to the specific quantities gathered and the means of 
collecting them at a central location. 

Cu-;n-ulati-ve statistics (C-u-instats) 

As its name suggests these consist of data regarding 
a variety of events, accumulated over a given period 
of time, and provided in the form of sums, frequencies 
and histograms. We shall distinguish between those 
data collected at the PRUs (PRU based Cumstats) 
and those collected at the end devices (the end-to-end 
Cumstats). The PRU based Cumstats provide infor
mation about the local environment and behavior such 
as traffic load, channel access, routing performance, 
and repeater activity. Conversely, end-to-end statis
tics collected at network sources and sinks that is 
stations and terminal devices, will reflect mo~e global 
network behavior such as user delays and network 
throughput. 

Trace statistics 

The trace capability allows one to literally follow 
a packet through the network, and to trace the route 
which it takes and the delays which it encounters at 
each hop. In the ARPANET, selected IMPs gather 
data on packets to be traced (which may include any 
packet) and send this data to the collection point as 
a new packet. In the packet radio network however 
the collection of trace data at the repeat~rs is pro~ 
hibited by the limited size of storage in the PRU. To 
overcome this problem, we have introduced a nevv type 
of packet called the Pickup Packet. * These packets 
are generated with an empty text field by traffic gen
erators at end devices. As these packets flow normally 
in the network according to the transport protocols, 
selected repeaters will gather the trace statistics and 
will store them within the text field of the pickup 
packets themselves. 

Snapshot statistics 

Snapshots give an instantaneous peek at a PRU, 
showing its state at that moment with regard to buffer 
assignment and queue lengths. (In the ARPANET, 
which is a decentralized network in which each node 
contains routing algorithms and data, snapshots also 
include routing related information; in the Packet 
Radio Network, such information is available at the 
station). Changes to appropriate station tables will 
be time stamped and collected as the station's snap
shot function. 

Artificial traffic generators 

Traffic sources 

The creation of streams of packets between given 
points in the net, with given durations, intervals, 

* The notion of the pickup packet was first suggested by H. 
Opderbeck. 



592 National Computer Conference, 1976 

packet lengths, and packet types (Information and 
Pickup Packets) is clearly a requirement of any ex
perimental system. While it might be desirable to 
provide each PRU with the capability of creating such 
traffic, this additional burden on the PRU software can 
be avoided if there exists a reasonable number of 
terminals with processors attached which, along with 
the station, will be programmed to provide the traffic
source functions indicated above. 

Specifically, traffic-source features which the termi
nals (and Station) should provide are: (1) Informa
tion Packets-the user specifies the packet length, 
frequency, destination and duration of one or more 
streams of Information Packets. (The text content 
may be arbitrary.) (2) Pickup Packets-the user 
specifies the packet length, frequency, destination and 
duration of one or more streams of Pickup Packets. 

In the initial system, there will be a limited number 
of system elements, making it desirable to simulate in 
a terminal a multi-terminal environment. That is, the 
traffic generated at a single terminal will emulate the 
traffic that would be generated by several separate 
sources. A great deal of complexity is introduced in 
the design of these devices because of the hardware 
and software capabilities required to support this 
function. Feasibility and techniques of achieving this 
is under investigation. 

Station measurement process 

Since the station is the central node and provides 
central control for the operation of the entire network 
it therefore plays a central role in the execution of 
measurement functions. It is through the station that 
the initiation and termination of measurement ex
periments is controlled. In particular, the station 
enables and disables the Cumstat and Pickup packets 
functions at the PRU's, and assigns to the various 
elements the intervals for Cumstat collections, and to 
the artificial traffic generator, their corresponding 
parameters. Moreover, it is to the station that all 
measurement data is ultimately destined; upon arrival 
at the station, the data is time-stamped and stored in 
a single measurement file for off-line reduction and 
analysis. In addition, all changes to the station's in
ternal tables (routing, connectivity, PRU operational 
parameters, etc.) will be reflected by an entry into 
the measurement file, thus allowing the correlation of 
measurement results to the actual network configura
tion. A (measurement) process at the station will 
perform all of the above functions. 

Measurement data collection 

As mentioned earlier, pickup packets are generated 
at stations and terminals. Those packets generated 
at a terminal are destined to (and collected at) the 
station; those generated by the station will be re-

turned by their destinations to the station as regular 
packets for collection into the measurement file. 

Let us now discuss the techniques for centrally col
lecting cumulative statistics. The data, generated at 
the PRU's or terminal devices, must be transmitted 
to the station using the PR Net itself. One way of 
achieving this is to form at the PRU, at the end of 
each Cumstat interval, a measurement packet called 
the Cumstat packet, which is time-stamped and trans
mitted to the station. The second method consists of 
having the station send at regular intervals to ap
propriate PRU's an executable control packet* called 
an Examine packet which collects time stamped Cum
stat data and which returns back to the station. 

For purposes of analysis, it is desirable for the 
Cumstat data received at the station to correspond to 
equal length time intervals at the generating device. 
This can be achieved in the automatic method if re
liable ETE transmission exists, i.e., if ETE acknowl
edgment capabilities are provided in all terminal de
vices and PRU's, preventing the loss of a Cumstat 
packet from a device on its way to the station. In 
the absence of the ETE capability in the PRU's, one 
may decrease the Cumstat intervals (thus increasing 
the frequency of transmitting Cumstat data), thereby 
decreasing the gaps between correctly received Cum
stat packets. With the Examine method, variable 
length Cumstat intervals will occur since Examine 
packets, sent at regular intervals from the station, are 
subject to (i) the network random delays en route 
to the destination PRU, and (ii) the possibility of loss 
in either direction. 

The choice of a collection method will have to take 
into consideration the overhead that it imposes on 
the PRUs and on the network. 

MEASUREMENT FUNCTIONS 

We have described in the previous section the mea
surement facilities that are desirable in a PRNET to 
support the measurement functions. In this section 
we shall identify and discuss these functions in some 
detail, determine the required data items and describe 
the role of these measurement facilities in supplying 
the data. These include: channel access, operational 
protocols, repeater performance, traffic characteris
tics, and the network's global performance. 

Channel access 

One of the main features that distinguish the Packet 
Radio Network from point-to-point networks is that 

* An executable control packet is a packet that originates at the 
station and is destined to a PRU. It contains code to be executed 
by the destination PRU. In particular, the Examine packet 
contains the necessary code to load the contents of specified 
memory locations into the text of the packet for shipment back 
to the station. 



Measurement Facilities in Packet Radio Systems 593 

devices transmit packets over a broadcast channel by 
using a random access scheme. These random access 
schemes are characterized by the sharing of a single 
channel in a multi-access fashion, thus allowing for 
packet interference to occur. Considerable progress 
has been made in analyzing these access modes, which 
include pure and slotted ALOHA and the more recently 
developed techniques of Carrier Sense Multiple Access 
(CSMA) .5,1l-1~ In the initial experimental system pure 

... 11.LLOHA, I-persistent CSMA and non-persistent CSMA 
will be available. Our measurement aims are to vali
date the analytical models of the three access modes 
and to evaluate their performance in realistic environ
ments. 

In evaluating terminal access in a single hop system 
(a model commonly used in analysis), we consider an 
environment consisting of a single station and a popu
lation of terminals within range and in line-of-sight 
of the station. In order to determine the relationships 
between the network throughput (rate of successfully 
received packets at the station) and channel traffic 
(rate of packet transmissions over the channel), as 
well as the relationships between the network through
put and packet delays, the following quantities will 
be measured: 

(a) the number of transmissions a packet incurs 
before success 

(b) the one-hop packet delay: time elapsed since 
the packet is ready for transmission until it is ac
knowledged, i.e., until its acknowledgment packet is 
received from the station 

(c) network throughput: average number of pack
ets received at the station per unit time 

Items (a) and (b) are obtained in the form of 
histograms by the Cumstat tools at the PRD and the 
end device respectively. Item (b) may also be ob
tained individually for each Pickup packet by having 
the originating device store in it its time of generation 
and its transmission times, and in the succeeding 
Pickup packet, store the time its acknowledgment ar
rived. Item (c) is obtained at the station from end-to
end cumulative statistics. 

The task of measuring performance of terminal ac
cess techniques in multi-repeater environments differs 
from the previous one in that repeater-to-repeater 
traffic is present contending on the same channel. The 
environment consists of a number of repeaters and 
stations and a population of terminals, not necessarily 
all within range and in line-of-sight. The same quan
tities as listed above, measured over the terminal-to
repeater hop, will be collected using the same tools. 

Operational protocols 

Acknowledgment protocols 

Echo acknowledgment suffers from packet inter
ference. The delay until the echo acknowledgment is 

received at the transmItter is random. Thus, the 
packet may incur some additional transmissions be
yond the first successful one creating additional over
head on the channel and in the PRDs. This number 
of additional transmissions is a measure of the in
effiL~ncy of echo acknowledgments; so too will be the 
number of packets discarded at the transmitter be
cause of lack of reception of the echo acknowledg
ment. That is, the transmitter reached the maximum 
number of retransmissions of a packet before the echo 
acknowledgment was received; although the packet 
may have been successful, the transmitter declares 
itself unsuccessful in establishing communication! 

Thus, we shall measure the efficiency of the Echo 
Acknowledgment protocol by measuring the number of 
additional transmissions beyond success incurred by a 
packet. To compute this number, a PRD must have 
two pieces of information; it must know how many 
times the packet has been transmitted, and it must 
also know which of those retransmissions was the one 
that reached the next repeater successfully. This in
formation will be contained in two fields in each packet 
header, which we refer to here as fields A and B. Field 
B is used by the PR D to store the current transmission 
number of the packet. When the packet is successfully 
heard by the intended receiver, the contents of field B 
are saved by being stored into field A; when the Echo 
acknowledgment is successfully heard by the sending 
PRD, field A of the echo acknowledgment is compared 
with the current number of transmissions of the 
packet, i.e., the contents of field B in the sender's copy 
of the packet. If these two numbers differ, then the 
magnitude of that difference represents the number 
of times that the packet was retransmitted after it had 
already been successfully received at the next hop. 
This data is collected as part of the cumulative sta
tistics of the sending PRD. 

Routing protocols 

Earlier we introduced the hierarchical routing 
scheme in use, which is based on a tree structure with 
the station as its root. The initial tree structure is 
created dynamically by the Initialization Procedure 
in which the station uses PRD connectivity informa
tion to create a tree that minimizes the number of 
hops between each repeater and the station. Thus the 
routing strategy initially performs shortest path (min
imum hop) routing from repeaters to station and 
from station to repeaters. However, when the first 
choice shortest path cannot be used, the packet departs 
from this path and uses a shortest path from its new 
location. This will occur when a repeater has trans
mitted a packet over a hop the maximum number of 
times allowed without receiving an HBH acknowledg
ment; the repeater then alters the packet's header (to 
what is called the "ALL" label) so that any repeater 



594 National Computer Conference, 1976 

within hearing distance and able to relay the packet 
in its intended direction will do so. This packet is 
then said to be alternately routed. It is retransmitted 
with its "ALL" header until either an HBH acknowl
edgment is received or the maximum number of re
transmissions is once again reached, at which time 
the packet is discarded. 

The analysis of a routing algorithm, particularly in 
a broadcast, and thus mobile, network, is a complex 
task, in that routing is topology- and load-dependent, 
and involves, with varying degrees of subtlety, all of 
the system's protocols. Thus, routing considerations 
are really a synthesis of most elements of the system 
design, and as such, the measurement of the algorithm 
involves at times the study of the interaction of the 
many system protocols. 

Given the patterns of input load on the network, the 
distribution of traffic flow in the net is an indication of 
the behavior and efficiency of the routing and initiali
zation algorithms. One may detect the concentration 
of traffic on specific routes creating congestion while 
alternate routes are not assigned; thus smaller delay 
routes may have been ignored in favor of the shorter 
routes provided by the initialization procedure. 

To obtain the distribution of traffic flow, the follow
ing quantities are to be measured. 

(a) the total number of packets received and trans
mitted at each repeater (obtained in the PRU Cum
stats) 

(b) the fraction of time the transceiver is busy 
(obtained by snapshot statistics, or in the PRU Cum
stat by regular sampling of the transceiver's state) 

Also, the point-to-point nature of this routing 
algorithm, restricting a packet at a given hop to a 
single repeater as its immediate destination, does not 
take advantage of the broadcast nature of the channel, 
in which several neighbors may actually hear the 
transmission and be capable of relaying the packet. 
Thus the following quantity is relevant: 

(c) the number of packets correctly received and 
discarded because they are destined to other com
ponents in the net (obtained in the PRU Cumstat). 

Moreover, to measure the potential of each neigh
boring repeater (say, repeater "n") as an immediate 
destination, it is essential to know the probability of 
success P (n) repeater n has to correctly receive a 
broadcast packet. This we do by maintaining in each 
PRU a table counting the number of successfully re
ceived packets from each immediate neighbor. The 
ratio of the number of packets correctly received from 
a given neighbor, to the number of packets transmitted 
by that neighbor, is a measure of P (n). 

Another important feature of a routing algorithm 
is its adaptability to network changes: input traffic 
load, connectivity and component failure and repair. 
In evaluating the dynamics of such an algorithm, three 

factors must be examined: the time required to detect 
the network change, the time required to respond, and 
the quality of the response. The data items at each 
PR U necessary for these studies, which include some 
of those mentioned earlier, are: 

(a) tables counting the number of packets correctly 
received from immediate neighbors 

(b) number of packets alternately routed 
(c) number of packets discarded, suggesting route 

congestion or component failure 
(d) percent of time repeater is busy transmitting 

and receiving 

These are obtained as cumulative statistics in the PRU. 
In addition, the Pickup packet is a valuable tool in 

routing studies in that it contains the actual and com
plete route taken by the packet (pinpointing alternate 
routing), as well as time stamps to compute the queue
ing and transmission delays incurred at each repeater. 

Repeater's performance 

The evaluation of the performance of a repeater is 
most important in the analysis of network behavior; 
it allows us to break down key network measures 
(such as packet delay and throughput) into their ele
mentary components and to examine the effects on 
these measures of the repeater activity and design 
(including buffer management, queueing discipline, 
and packet processing priorities) . 

The quantities relevant to packet delays are: 

(a) The processing time of a packet flowing through 
a repeater; this is counted in Pickup Packets as the 
time lapse between the packet's arrival and the time 
it is placed on the transmission queue. This process
ing includes various checks such as checksum, packet 
type, routing labels, etc. 
(b) the packet queueing delay at a repeater; this is 
also counted in Pickup Packets as the time elapsed 
from when the packet is placed on the transmission 
queue until it is considered for transmission (i.e., 
until it is at the head of the line, in a first-come-first
served discipline). 
(c) the packet's service time; this is also counted in 
Pickup packets as the time elapsed from when the 
packet is at the head of the queue until its echo-ac
knowledgement is correctly received. Note that the 
actual service time (time until the packet is correctly 
received at the next repeater) is smaller than the one 
measured here due to the echo acknowledgment pro
tocol used in this system. Note also that the service 
times of consecutive packets are correlated. 

The quantities related to a repeater's communica
tions activity are: 

(d) percent of time the PRU transceiver is busy trans
mitting and receiving; this can be obtained in the PRU 



Measurement Facilities in Packet Radio Systems 595 

Cumstat by regular sampling of the transceiver's 
state. 
(e) the total number of transmitted packets at each 
repeater relative to the number of successfully trans
mitted packets. The latter number is obtained for 
each neighboring repeater by examining its table 
count which gives the number of packets correctly re
ceived from immediate neighbors. 
(f) the percent of traffic received with checksum er-
ror (obtained in the PRU Cumstats). 
(g) the percent of traffic received correctly but not 
intended for this repeater (obtained in the PRU Cum
stat) . 

The quantities relevant to buffer management and 
occupancy are: 

(h) the percent of time packet buffers are in a given 
state (free, queued for packet transmission, reserved 
for packet receive). This can be obtained in the PRU 
Cumstat by a regular sampling of the buffer states. 
(i) the frequency of buffer overflow as a function of 
the load, and this is obtained also in the Cumstats by 
counting the number of packets discarded due to lack 
of buffer space. 

Traffic characteristics 

In determining the traffic characteristics, one should 
distinguish between external traffic (the input traffic 
generated by network users and traffic sources) and 
internal traffic (traffic relayed and generated at re
peaters). The measurement functions determining the 
external traffic characteristics are not necessary when 
the entire traffic is artificially generated. They include: 

(a) the geographical distribution of the input load 
(obtained in the end device Cumstats) 

(b) characteristics of the terminal input processes 
(obtained in the form of histograms of packet inter
generation time from the end device Cumstats) 

(c) the amount of traffic generated at repeaters for 
special purposes such as: control, measurement, etc. 
(Le., overhead traffic) (obtained in the PRU Cum
stats) 

The characterization of internal traffic is crucial in 
the creation and validation of assumptions made in re
peater models aimed at an analytic prediction of the 
performance of multi-repeater- packet radio networks. 
To characterize this internal traffic, we may measure 
the following quantities at each repeater: 

(a) interarrival time (defined as the time between 
the arrivals of two successive packets that have been 
correctly received and are destined to that repeater). 

(b) interdeparture time (defined as the time elapsed 
between the acknowledgment of two consecutively 
transmitted packets) . 

Histograms of these quantities can be created from 
the information contained in the Pickup Packets. 

Network's global performance 

The ultimate goal of all system considerations is to 
create a network of high capacity providing minimal 
user (end-to-end) delay. We examine the success in 
achieving this goal by measuring the end-to-end delay 
and the network throughput (counted as the number 
of packets received at their respective destinations), 
under various patterns of input load, as well as the 
frequency of lost and duplicated packets. 

It is important to note that these quantities are fun
damentally affected by all the operational protocols. 
They allow us to obtain the main performance curves 
of throughput and delay. 

The role of mea.r;;urements in ;flO1.0 control 

The station has the responsibility for centralized 
control over the entire network. To carry out this re
sponsibility, the station requires various indications of 
network activity and performance. Some of this in
formation will be acquired from incoming traffic; but 
much of this information must be specifically obtained 
by having monitoring procedures collect, from the va
rious devices, a subset of the measurement items that 
have been seen presented throughout the paper. 

CONCLUSION 

In this paper, we have presented some of the results of 
our activities in the measurement aspect of the ARPA 
Packet Radio Project. We described the Packet Radio 
Network measurement facilities, consisting of the 
measurement tools and the techniques for data collec
tion. ,\Ve also identified and discussed the measure
ment functions required to gain insight into the be
havior of this broadcast network. In so doing, we 
determined the data items required to support these 
functions and the means for their collection. This in
formation is summarized in Table I. 

In the design of these measurement facilities, a con
stant concern is to keep the overhead they create at 
the components and on the broadcast channel at a low 
level. An important activity will be to evaluate the 
cost of each element of the facilities in the prototype 
network, and to assess their impact on the network 
operation so as to design and conduct experiments in 
a manner that will minimize the bias introduced. 

ACKNOWLEDGMENTS 

We would like to acknowledge the Packet Radio Work
ing Group and particularly Ralph Jones, David Retz, 
Ron Kunzelman and Don Nielson from Stanford Re
search Institute and Dick Sunlin from Collins Radio 
Corporation for the fruitful discussions that have 
taken place with them. 



596 National Computer Conference, 1976 

T ABLE I-Summary of Measurement Items 

Pickup Packets (at each PRU, the following data items are 
collected in the Pickup packet) : 

time of arrival of the packet at the PEU 
time the Pickup packet was first placed on the transmit queue 
time of each transmission 
time HBH ack arrived (stored in next Pickup packet) 
the current PRU ID 

PRU based Cumulative Statistics 

# of packets received in error 
# of packets received but not intended for this PRU 
histogram of # of transmissions per successful packet 
# of unsuccessful packets (dropped because of lack of ack) 
# of packets discarded because of lack of buffer space 
# of alternately routed ("ALL") packets received 
table counting number of correctly received packets from 

immediate neighbors 
# of transmissions beyond success 
# of packets incurring transmissions beyond success 
table sampling frequency of buffer states (and transceiver 

states) 

End-Device Cumulative Statistics 

histogram of round-trip times 
# of packets transmitted 
# of duplicate packets detected 
# of packets discarded by the sender because of lack of ETE 

ack 
histogram of # of transmissions per successful (ETE) packet 
histogram of packet intergeneration time 

Note: certain Cumstat items will distinguish between inbound 
(to the station) and outbound (from the station) traffic. 

REFERENCES 

1. Roberts, L. G. and B. D. Wessler, "Computer Network 
Development to Achieve Resource Sharing," Spring Joint 
Computer Conference, AFIPS Conference Proceedings, 1970, 
Vol. 36, pp. 543-549. 

2. Kleinrock, L., Queueing Systems, Vol. II, Computer Applica
tions, Wiley Interscience, 1976. 

3. Kleinrock, L. and W. Naylor, "On Measured Behavior of the 
ARPA Network," in Nat. Comput. Conf., AFIPS Conf. 
Proc., Vol. 43. Montvale, N.J., AFIPS Press, 1975, pp. 
767-780. 

4. Kahn, R. E., "The Organization of Computer Resources into 
a Packet Radio Network," in Nat. Computer Conference, 
AFIPS Conference Proceedings, Vol. 44. Montvale, N.J., 
AFIPS Press, 1975, pp. 177-186. 

5. Kleinrock, L. and F. Tobagi, "Random Access Techniques 
for Data Transmission over Packet-Switched Radio Chan
nels," in Nat. Comput. Conf., AFIPS Conf. Pro c., Vol. 44. 
Montvale, N.J., AFIPS Press, 1975, pp. 187-201. 

6. Frank, H., 1. Gitman and R. Van Slyke, "Packet Radio 
System-Network Considerations," in Nat. Comput. Conf., 
AFIPS Conf. Proc., Vol. 44. Montvale, N.J., AFIPS Press, 
1975, pp. 217-231. 

7. Kleinrock, L. and H. Opderbeck, "Throughput in the 
ARPANET-Protocols and Measurement," Fourth Data 
Communications Symposium, IEEE Catalog Number 75 CH 
1001-7 DATA, Quebec, October 1975. 

8. Fralick, S. and J. Garrett, "Technological Considerations 
for Packet Radio Networks," in Nat. Comput. Conf., AFIPS 
Conf. Proc., Vol. 44. Montvale, N.J., AFIPS Press, 1975, 
pp. 233-243. 

9. Burchfiel, J., R. Tomlinson and M. Beeler, "Functions and 
Structure of a Packet Radio Station," in Nat. Comput. 
Conf., AFIPS Conf. Proc., Vol. 44. Montvale, N.J., AFIPS 
Press, 1975, pp. 245-251. 

10. Fralick, S., D. Brandin, F. Kuo and C. Harrison, "Digital 
Terminals for Packet Broadcasting," in No;t. Comput. Conf., 
AFIPS Conf. Proc., Vol. 44. Montvale, N.J., AFIPS Press, 
1975, pp. 253-261. 

11. Tobagi, F., "Random Access Techniques for Data Transmis
sion over Packet Switched Radio Networks," Ph.D. disserta
tion, Comput. Sci. Dep., School of Eng. and Appl. Sci., Univ. 
of California, Los Angeles, rep. UCLA-ENG 7499, Dec. 
1974. 

12. Kleinrock, L. and F. Tobagi, "Packet Switching in Radio 
Channels: Part I-Carrier Sense Multiple Access Modes 
and Their Throughput Delay Characteristics," IEEE 
Trans. Commun., December 1975, pp. 1400-1416. 

13. Tobagi, F. A. and L. Kleinrock, "Packet Switching in Radio 
Channels: Part II-The Hidden Terminal Problem in Car
rier Sense Multiple Access and the Busy Tone Solution," 
IEEE Trans. Comun., December 1975, pp. 1417-1433. 



Monitoring and access control of the London node of ARPANET 

by ADRIAN V. STOKES, DAVID L. BATES* and PETER T. KIRSTEIN 
University College London 
London, England 

ABSTRACT 

At University College London, we have developed a 
novel way of monitoring a network node using a sepa
rate processor and have applied this technique to the 
London node of ARPANET. A monitoring program 
on a PDP-9 records usage of the London-TIP via the 
dial-up ports and these data are sent to the Rutherford 
Laboratory IBM 360/195 for detailed analysis. In this 
paper, we describe the method we have developed and 
present some of the results we have so far obtained. 

INTRODUCTION 

The ARPA computer network1 has been operational 
for oVer six years. During this time, there have been 
extensive measurements on the performance of the 
communications subnetwork, particularly by the N et
work Measurement Center at the University of Cali
fornia2

,3 and Bolt, Beranek and Newman.1 There have 
been extensive measurements of usage of specific hosts, 
for example by the National Bureau of Standards. 
There have also been certain measurements of the net
work usage made for certain large applications to 
justify the cost of running the network. There have 
not, however, been any consistent measurements of 
network usage via one site. There are several reasons 
for this omission. Partly it is due to there being no 
mechanism by which US users of ARPANET could be 
forced to keep statistics of their usage, and partly it is 
due to there being no automatic accounting system for 
the use of the network. 

An attempt was made in late 1974 to introduce an 
automatic accounting system into the subnetwork. The 
mechanism ,:flas that each communication computer 
would connect to a specific Access Control Host before 
it permitted a connection to be opened to any other 
Host. Further connections were permitted only if the 
correct user/password combination was given; after 
each session over a virtual circuit, the accounting Host 
was informed of the length of the connection and the 
number of packets transferred (unless the Access 
Control computer was not available, in which case the 
statistics were stored for later transmission). This 

* D. L. Bates is now at CERN, Geneva, Switzerland. 

597 

mechanism was abandoned after a few weeks for sev
eral reasons; amongst these were the difficulty of main
taining the password file on the Access Control Host 
and the sluggishness of the response of the access 
control mechanism. 

At about the same time we, at the University College 
London (UCL) node of ARPANET, became interested 
in providing access control and accounting. There 
were two reasons for this. Many bodies wished to 
analyze the extent and value of usage of the AR
PANET link via the DeL node; they also wished to be 
able to control the access-particularly via the Public 
Switched Telephone Network (PSTN). Because we 
were a node like any other, it was not possible to put 
any special code into the Honeywell 316 Terminal 
Interface Message Processor5 which acts as the com
munication processor to the UeL site. Instead, any 
such code had to be provided outside the subnetwork. 
However, since all the use of the VCL node is purely 
experimental, we were entitled to enforce any extra 
login procedures we wished onto OUr users. We have 
been looking at three different types of measurement: 

(a) Characteristics of usage of Hosts via the UCL 
node 

(b) Characteristics of the data traffic for several 
specific applications 

(c) Overheads incurred in the different levels of 
protocol 

This paper is concerned only with the first of the 
above; the others will be discussed in later papers. 
Only sample measurements will be presented here; 
fuller measurements will be discussed at the Confer
ence and are really more appropriate to a Technical 
Report. 6 In order to provide meaningful statistics, we 
also have had to provide access controls; this subject is 
also considered here. 

At UCL is sited a TIP; two PDP-9 computers are 
connected to the TIP, one of which acts as a gateway 
between various computer networks, in particular, be
tween ARPA and the Rutherford Laboratory (RL) 
star network based on an IBM 360/195.7 The second 
PDP-9 is used both as a development machine and for 
monitoring and access control of the ARPANET; it 
also provides a simple form of access to the National 
Library of Medicine (NLM) Medline system. It is 



598 National Computer Conference, 1976 

the measurements made using this machine which are 
the subject of this paper. 

OVERVIEW OF THE SYSTEM 

The TIP has 8 slow (300/300 bps) and 1 faster 
(1200/75 bps) dial-up ports as well as three leased 
lines. The PDP-9 used for this work (known as 
PDP-9B) is connected to the TIP as a Host. It has 
32K words of core (18 bit), a 256K disk and various 
other peripherals. 

DESCRIPTION OF THE QUES PROGRAM 

The program which performs the actual monitoring 
and access control is called QUES. This is one segment 
of a network system which runs on the PDP-9. When 
the system is initialized and has established communi
cation with the TIP, QUES sets up a control connec
tion to a specific port on the TIP; via this connection, 
QUES attempts to connect to other TIP ports (which 
are specified by entries in a disk file which may be 
modified easily). Each port may be in one of three 
states. The first is WILD, in which case there is no 
user connected; in this state, QUES may (and indeed 
does) make the connection. When a user dials in, this 
connection is broken and, on noting this, QUES re
makes it and interrogates the user by asking for sur
name, TIP password and number of required Host (a 
typical scenario is shown in Figure 1). To save time, 
a user may give all three replies in response to the first 
question. 

If the replies are satisfactory, QUES then breaks 
the connection and waits 20 seconds before attempting 
to remake it. If the replies are unsatisfactory, the user 
is allowed a second attempt then, if still incorrect, he is 
disconnected. It would have been possible for us to 
have better access control by making the connection for 
the user. This would require, however, a considerably 
hea vier cpu load and to reduce this, we only make the 
connection in the specific case that we wish to record 
the whole dialogue for subsequent analysis (as we do 
in the case of MEDLINE; see below). 

If the user gives correct answers and succeeds in 

LONDON-TIP MONITORING SERVICE. 

SURN AME >stokes 
TIP PASSWORD> X X X 
PASSWORD UNKNOWN-REENTER >indra 
HOST NUMBER >42 
OK-BYE 
Closed * message from the TIP 
@L 42 * user logs in to host 

@C * close connection to host 
Open * message from TIP 
NEXT HOST NUMBER OR RING OFF NOW> 

Figure 1-A Typical QUES Scenario 

connecting to the Host within the requisite time, QUES 
enters its third phase in which it attempts (at one 
second intervals) to reconnect to the port. 

When the user closes his connection to the remote 
Host, QUES is once more able to connect to him and 
requests the number of the next Host required (name 
and password are not requested again). This pro
cedure is then repeated continuously. 

The only exception to this procedure is in the special 
case where the Host the user wishes to access is the 
National Library of Medicine (NLM). The British 
Library, as part of its Short Term Experimental Infor
mation Network Project (Ref. 8) has a number of 
centres which access the MEDLINE system on the 
NLM IBM 370/158. This machine is not connected 
to ARPANET as a conventional Host, but rather simu
lates five interactive terminals on the National Bureau 
of Standards (NBS) TIP. 

Since this makes the process of connection extremely 
inconvenient and also provides little status informa
tion, we have written a program which also runs under 
our network software on the PDP-9 and which auto
mates the connection procedure. This program will be 
described in detail elsewhere; however, it should be 
noted that, if a user specifies that he wishes to access 
the MEDLINE system (by giving the NBS-TIP num
ber or MEDLINE when asked for Host number), he is 
automatically routed to this program. If this program 
is unable to make the connection (or if the user states 
that he does not wish to use the program by specifying 
the Host as NLM), QUES allows the user two minutes 
rather than the standard twenty seconds to make the 
connection since the procedure is considerably more 
complicated in this case. 

All the data supplied by the user are printed by 
QUES onto a paper tape (thus obviating problems such 
as closing files after a system crash) ; similarly, when 
the user disconnects from his Host, his connect time is 
recorded on the tape. 

In the unlikely event that the system does crash, it is 
convenient to know the time, and this may prove diffi
cult at night when there is little activity. For this rea
son, QUES prints a message to indicate that it is still 
running every half-hour. 

A sample of the output from the program is shown 
in Figure 2. 

DESCRIPTION OF THE ANALYSIS PROGRAMS 

A paper tape, as in the above section, is converted 
into a 360 job by the addition of a few lines of Job 
Control Language. This job is then sent to the RL 
machine via our other PDP-9. 

Such tapes may have many errors. For example, due 
to system crashes, the "MONITORING TERMI
NATED" message may not have been printed; due to 
hardware problems, characters may be missing etc. 
Also, each interaction has generated two lines of out-



London Node of ARPANET 599 

14 JUL 75 1245 QuE: 1 **QUES MONITORING 6 PORTS FROM PORT£ 70 
14 JUL 75 12 46 MED: 5 TIME MCH MLNS UCH ULNS @S "STO "PRI 
14 JUL 75 13 05 QUE: 2 UNKNOW~ HOST NUMBER 
14 JUL 75 13 05 QUE: 724 QMC 87 
14 J"CL 75 13 05 QUE: 724 QMC 86 
14 JUL 75 13 10 QUE: 74FORSEY WESS 147 
14 JUL 75 13 10 QUE: 74FORSEY WESS 147 
14 JUL 75 13 13 MED: 74 000106 0147 008 027 003 00 00 00 
14 JUL 75 13 13 QUE: 74000105 
14 JUL 75 13 14 QUE: 75FORSEY WESS 147 
14 JUL 75 13 14 MED: 75FORSEY WESS 147 
14 JUL 75 13 18 MED: 75 000130 0000 011 036 004 00 00 00 
1 A TTTT '7k 1') 1 Q ATT];,. '7t::",,{H 0(\ 
..I.."'X U '\,.,I..L..J IV.LV.J..V "",U.L.:..l. 'UVVv~.wJ 

14 JUL 75 13 18 QUE: 2 UNKNOWN HOST ~UMBER 
14 JUL 75 13 18 QUE: 75FORSEY WESS 146 
14 JUL 75 13 19 QUE: 75FORSEY WESS 147 
14 JUL 751319 MED: 75FORSEY WESS 147 
14 JUL 75 1321 QUE: 6 QUES OK 
14 JUL 75 13 21 MED: 75 000033 0000 003 009 001 00 00 00 
14 JUL 75 13 21 QUE: 75000032 
14 JUL 75 13 21 QUE: 2 UNKNOWN HOST NUMBER 
14 JUL 75 13 21 QUE: 75FORSEY WESS %HME 
14 JUL 75 13 21 QUE: 2 UNKNOWN HOST NUMBER ... ACCESS PROHIBITED 
14 JUL 75 1321 QUE: 75FORSEY WESS %HME 
14 JUL 75 13 52 QUE: 72003810 
14 JUL 75 13 52 QUE: 724 QMC 66 
14 JUL 75 1357 QUE: 6 QUES OK 
14 JUL 75 14 13 QUE: 72001652 
14 JUL 75 14 18 QUE: 8 MONITORING TERMINATED 

Figure 2-Sample PDP-9 (B) log output 

put, the first when QUES interrogated the user, the 
second when the user closed his connection to the re
mote Host. 

Therefore, the first phase of analysis consists of a 
program called LOG B. This program checks the input 
for errors, removes superfluous lines (e.g., "QUES 
OK"), removes lines where the user has given an in
correct password or Host (these are printed out for 
inspection, but not passed onto the analysis programs) 
and compresses the data. In particular, the connect 
time is appended to the message generated when the 
user logs in. Two problems arise. The first is that 
monitoring may be terminated while a user is still 
logged in; in this case, the QUES program prints out 
the connect time up to the termination and so the time 
recorded is an underestimate. This of course presents 
no problems to LOGB, since there is no difference be
tween such a message and a genuine log out. The 
second case, when the system crashes while users are 
logged in, does present a problem; in such a case, 
LOGE detects this by the occurrence of a "MONITOR
ING STARTED" message not preceded by a "MONI
TORING TERMINATED" message. It generates the 
latter and the associated logout messages at the last 
time for which it had a valid message (hence the rea
son for the production of the "QUES OK" messages). 

The program also produces messages indicating the 
number of ports in use. Due to a temporary restriction 
on the number of channels available in the PDP-9, 
QUES only monitors six ports at present. It is a 
simple matter for LOGE to record the number of ports 

in use except for one case, when QUES starts monitor
ing. In this case, ports may already be in use; the 
version of QUES to which we are referring did not 
attempt to distinguish whether the port was in use by 
a genuine user or not (e.g., someone having dialled 
the TIP number by mistake). This distinction can be 
deduced by QUES with a reasonable degree of cer
tainty by knowing the TIP timeout period. This will 
be done in future, but the timeout period is not guar
anteed to remain constant and the method is not com
pletely reliable. In the data we present here this was 
not done, and LOGE had to deduce the number of ports 
in use. Due to the mode of operation of the telephone 
system, a user is allocated to the lowest numbered free 
port on dialling up. At present, we monitor ports 70 
to 75 (octal). If the first port to be used after QUES 
was initialized was 71, LOGE would assume that port 
70 was in use at that time. LOGE takes steps to en
sure that such an error is not propagated if the port 
was not in genuine use. 

Thus LOGE produces an output file, an example of 
which is given in Figure 3 (the output is that produced 
with the data in Figure 2 as input). This file is in a 
standard format and may be assumed to be error free. 
It is then passed to a set of analysis routines called 
XFST ATS for analysis. It was not expected that 
all the analysis functions which might at some time 
have been required could be specified in advance; there
fore XFST ATS was written in a flexible, table-driven 
manner. The initial phase of the program consists of 
reading a file of control cards which are parsed. It then 



600 National Computer Conference, 1976 

14 07 75 12 45 Q£1 
14 07 75 13 05 Q72 4 
140775 1305 Q£9 03 
1407751310 Q74 FORSEY 
14 07 75 13 10 Q£9 04 
14 07 75 13 13 Q£9 03 
14 07 75 13 14 Q75 FORSEY 
14 07 75 13 14 Q£9 04 
14 07 75 13 18 Q£9 03 
14 07 75 13 19 Q75 FORSEY 
14 07 75 13 19 Q£9 04 
14 07 75 13 21 Q£9 03 
14 07 75 13 52 Q£9 02 
14 07 75 13 52 Q72 4 
14 07 75 13 52 Q£9 03 
14 07 75 14 13 Q£9 02 
14 07 75 14 18 Q£8 

QMC 86 00 38 10 

WESS 147 00 01 05 

WESS 147 00 01 29 

WESS 147 00 00 32 

QMC 66 00 16 52 

Figure 3-Sample output from the data reduction program LOGB 

reads the file output by LOGB, selecting only data be
tween the dates specified by the control file. These 
data are mapped into a structure in core, then, de
pending on the control cards, various analyses are 
performed, for example, a matrix of connect times for 
each host and user (see Figure 4). 

RESULTS OF ANALYSES 

In a paper such as this, it is neither possible nor 
desirable to give a full analysis of the results we have 
obtained (these are available in Reference 6), and we 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
+ + + + + + + 

+IrcNTS+ 66 70 + 86 + 106 + 134 + 147 + TOTAL+ 
T + + + + 
++++++++++++++++++++++++++++++++++++++,+++++++++++++++~++ 

* * * * * * .. 
* PT K * 00425* * 00425* 

* * * * 
**********************~************~********************* 

* * 
* e LRO "* * 00053* 00053* 
it 

**********************************ir****~**~****~***~*~*** 
* .. * .. * * 

* :: ~L * 00003* .. 00130* 00027" ~. 00808* 00968": .. .. 
********************************************************* 

* .. * 
* oo008~ * 01049* * 01057* 

************************~************.******************* 

* * 
* KING * * 00188* oo023~ * 00211* 

********************************** .. ******* •• ******* .. ** ••• . 
* ;, DUG * 
* * 

* 00007* .. 000<:'2* 00029* 

*********************************~**~*******4***~***~**** 

* 
.. \V~SiI. * * 00026* 00004* * 00365* 00395" 

****************************.********~******¥************ 

.. T I-<A'.( * 00355* * 00003* * 00358" 

******************************.****~*~ ~**~**;*******.*~*~ 

+ + + + + -+ 

+T::TIILS+ OLJ358+ 00188 ... 00522+ 00031 ... :J'1:J4~-t [11248.,. 03,,96, 
+ 

++;- +..;..+++++ +++++++++..,.+ ++++ ++ + + ++ ..... -t -r 1- -i-·-"f +1"'+++.,.....;... ..... ++++ .\- .... +...i. 

Figure 4 

concentrate on three aspects of the results. In the fol
lowing, the data to which we refer is, in the main, that 
obtained in July 1975. A single month provides a rea
sonable volume of data covering various times of day. 
July was chosen specifically since it was the month in 
which we did most monitoring; PDP-9B is also used 
for system development and monitoring is only per
formed when it is not used for that purpose. Thus the 
amount of monitoring varies considerably from week 
to week and much of the monitoring is at night and 
weekends with few users; at such times, the main 
value of the system is for controlling improper access. 
In the month concerned, we monitored the TIP for 525 
hours (70 percent) broken down in the following way: 

0000- 0800- 1300- 1800- Week-
0800 1300 1800 2400 ends 

Total (mins) 9120 5571 1713 4426 10674 
Mins/day (av) 397 242 74 192 1334 
% of time 

monitored 82.7 80.7 24.8 53.5 92.7 

The three aspects with which we will concern our
selves are: 

(i) The global picture: overall usage and general 
statistics 

(ii) The pattern of usage by one specific user 
(iii) The pattern of usage of one specific host 

On the global picture, we monitored the TIP for 
31,504 minutes in the month. The total time users were 
connected to various Hosts was 10,761 user minutes, 
giving a usage of the six ports monitored of 5.7%. 
However, much of the time monitored was at weekends 
and night and the breakdown of this figure over the 
time periods used above is: 

0000- 0800- 1300- 1800- Week-
0800 1300 1800 2400 ends 

Time*ports 94 8039 1443 462 723 
% ports used 0.2 24.1 14.0 1.7 1.1 
Logins 2 435 62 42 44 



(where the percentage referred to is the percentage 
port utilization). The high figure in the 0800-1300 
time is due to the non-availability of many US hosts to 
us in their prime shift (1300 onwards, UK time). This 
restriction applies to the two Hosts that were used 
most heavily, NLM and the Information Sciences Insti
tute (IST) PDP-lOX. A general matrix is produced 
of the usage at each Host by each user group. The 
complete matrix in our case would be 100 x 40 and 
would be quite unreadable. A partial matrix is sho'wn 
in Figure 4. The two most heavily used Hosts during 
this period were Host 147 (64 percent) and lSI (9.4 
percent). The reason that the former was used so 
heavily was that it had been unavailable for most of 
June; in addition, the general university usage was 
low in July because of the onset of holidays. 

The pattern of usage overall is much as expected and 
is shown in Figure 5. In this, attempts to connect to a 

Il 
T~ I -, 
1\01 -, 

I 
I 

Kit i 

a 

=~.--:-

~1~'J 

(r~l 

2 4 

Figure 5 

London Node of ARPANET 601 

~ 
1.5_ m l 
1.D- III 

Port usage· Ports in use * ti~e 
Time Monitored 

:::-1 jlllilL 
6 12 15 18 21 24 TIn: (i-Ui<S) 

Figure 6 

Host which was not available are excluded (QUES 
records this as a connect time of zero; there were 115 
such occurrences in July) . The second histogram shows 
the zero to ten minutes segment on a larger scale; the 
zero to thirty seconds time period contains many users 
who, although connected to the Host, were unable to 
log-in either due to the Host refusing to allow the log-in 
or rejecting it due to illegal account parameters. 

It is of considerable interest to determine the num
ber of connections made and ports occupied and these 
are best normalized with respect to the average number 
of ports in use. Typical results of the ports in use over 
particular periods are shown in Figure 6. We also have 
histogram information on the number of ports in use at 
anyone time. This information can be used to guide 
the TIP owner on the number of dial-up ports he 
should provide. 

The second aspect which we wish to examine is the 
pattern of one specific user (Peter Kirstein). His usage 
this month was confined exclusively to one Host, lSI, 
and there were three types of usage; these are clearly 
reflected in the connect times (Figure 7). The first is 

NO. 
~ Usage (July) 

o Usage (1.lay. June. 

August 

o~~~~LQ __ ~L-LL 
o 30 60 9J 120 TIM: CMlNs) 

Figure '7 



602 National Computer Conference, 1976 

usage such as reading mail or sending messages. This 
takes a relatively short time, of the order of ten 
minutes. The second usage is editing documents and 
this gives rise to connect times of the order of half an 
hour. The third usage is entering documents and, to a 
greater extent, teleconferencing where connect times 
are of the order of hours. This pattern shows up 
clearly in the histogram of Figure 7 but, since there 
were only nineteen logins recorded in the month, we 
also give the corresponding histogram for the four 
month period May-August 1975 when there were 59 
logins. 

The last usage we consider is that of a specific Host. 
As we mentioned above, a number of centres in Britain 
access the MEDLINE system on the NLM IBM 
370/158 to perform bibliographic searches. In addi
tion to the QUES monitoring, we are able to monitor 
other details since each line from the user and from 
NLM passes through the PDP-9. In particular, we 
monitor the number of characters and lines each way. 
We also record the number of searches carried out, but 
this depends on the user specifying this number ac
curately to NLM; also, the actual number is, to a cer
tain extent, subjective. Therefore, we do not make 
significant use of this information. 

In the month we are considering, we recorded 148 
logins to NLM, giving a total connect time of 7385 
minutes. Eliminating those logins where MEDLINE 
was not available (shown by a very short connect time 
-of the order of a few minutes-and the user specify
ing that no searches were done and giving no "PRINT" 
commands) , we had 87 logins. 

Although the number of observations is reasonably 
high, the variation in the parameters was surprising. 
The greatest consistency was in the time spent logged 
in, an average of just under 33 minutes with arms 
deviation of 11 percent of this value. Two parameters 
which might have been expected to be fairly consistent, 
the average number of characters per line to and from 
NLM each session, showed wide variations over the 
recorded sessions. The averages were 16.64 and 13.65 
respectively with rms deviations of 31 percent and 49 
percent of those figures. Similarly high deviations 
were shown in the ratio of the lines from NLM to lines 
from the user (52 percent), the time per line from 
NLM (46 percent) and the time per line from the user 
(58 percent). These results are tabulated in Figure 8. 

The results we have presented above for the use of 
NLM are our initial results and will be supplemented 
with more detail when our current extensions to the 
monitoring system are completed. In this, all inter
actions with NLM may be copied onto magnetic tape 
and hence a complete analysis may be performed. 
These data will be used partially to check the data gen
erated by some of the users under the project of Refer
ence 8. They will be of particular use in providing a 
quantitative basis for certain subjective criteria, for 
example, response times. It is hoped, at a later date, 

RMS 
Total Average Deviation 

Time logged in 171349 1969.53 216.83 
Characters from NLM 551925 6343.97 5318.70 
Lines from NLM 32569 374.36 284.04 
Characters from user 105979 1218.15 2087.59 
Lines from user 8554 98.32 171.23 
Average time per line from 

NLM 5.66 2.57 
Time per line from user 42.01 24.26 
Characters per line from 

NLM 16.64 5.16 
Characters per line from user 13.65 6.65 
Lines from NLM/Lines from 

user 7.86 4.05 

Figure 8-Characteristics of NLM usage (times in seconds) 

to extend this system so that it may be used to monitor 
the interactions with any Host on ARPANET. 

CONCLUSIONS 

The method of monitoring and access control we have 
developed is not of general application, particularly 
since it requires a dedicated processor in addition to 
the one being monitored and, in the general case, it is 
obviously simpler to put these functions in the latter. 
However, the introduction of monitoring and/or access 
controls into a computer brings with it a loss of re
liability (since, not only does it increase the complexity 
of the software but also it requires additional hard
ware). This loss of reliability may not be acceptable 
and so our technique may be of more general ap
plicability. 

An example of this is evinced by ARPANET. Access 
controls were introduced into the TIPs in late 1974 
and, for a number of reasons (in particular, the de
crease of reliability that backing store would intro
duce and the problems of maintaining the password 
data base) it was introduced in a way that led to in
convenience for users and large network overheads. 
Although our approach would not obviate the problem 
of maintaining the data base, it would certainly not de
crease the reliability of the TIPs. At the present time, 
the LONDON -TIP is the only node on ARPANET on 
which monitoring of users and access control is being 
carried out. 

By use of this technique, we have obtained con
siderable monitoring data and have used this to explore 
the methods of usage of the network. Weare currently 
developing other means of monitoring in conjunction 
with QUES to enable us to obtain a more complete view 
of the usage of our node. The above types of figures are 
useful in giving a general overview of the extent of 
usage of the network for different applications. The 
measurements give an excellent cross-check on subjec
tive reports from user groups on their usage of specific 
Hosts (Reference 9). Over a period of time, we expect 
these measurements to be extended also to leased line 
ports and so to give us a complete picture of the usage 
of ARPANET via the UCL node. 



ACKNOWLEDGMENTS 

We wish to acknowledge support by the British Library 
under grant SI/G/093. Also, such research would not 
be feasible without support of the many bodies for the 
ARPA project at University College, in particular, the 
Science Research Council (B/RG/5981), the US Ad
vanced Research Projects Agency (N00014-74-C-0240) 
and the UK Ministry of Defence (AT/2047/064). 

We also wish to acknowledge the contributions of 
many people or the INDRA group at University College 
to this project, in particular, to Roger Gould and Peter 
Mott who did much of the coding and debugging of the 
programs mentioned. 

REFERENCES 

1. Roberts, L. G. and B. D. Wessler, "The ARPA Network," 
Computer Communication Networks, Prentice-Hall, pp. 485-
499,1973. 

London Node of ARPANET 603 

2. Kleinrock, L. and W. Naylor, "On Measured Behaviour of 
the ARPA Network," Proc. AFIPS NCC, Vol. 43, May 
1974, pp. 767-780. 

3. Opderbeck, H. and L. Kleinrock, "The Influence of Control 
Procedures on the Performance of Packet-Switched Net
works," Proc. Nat. Telecomm. Conf., San Diego, Dec. 1974. 
pp. 810-817. 

4. Bolt Beranek and Newman, Quarterly Technical Report 
No.2 (1 April-3 June 1975), Report No. 3106, July 1975. 

5. Ornstein, S. M. et aI, "The Terminal IMP for the ARPA 
Computer Network," Proc. AFIPS SJCC, Vol. 40, May 1972, 
pp. 243-254. 

6. Stokes, A. V., Anaiysis oj Usage oj the British Node oj 
ARPANET, July-December 1975, TR-30, Department of 
Statistics and Computer Science, University College London, 
1976. 

7. Stokes, A. V. and P. L. Higginson, "The Problems of Con
necting Hosts into ARPANET," Proc. Eur. Conf. Comm. 
Networks, pp. 25-33, 1975. 

8. Holmes, P. L., An App·roach~ to th,e Development of Lib·ra'i"Y 
and Information Networks with Special Reference to the 
United Kingdom, AGARD-CPP-158, p. 6-1, 1974. 

9. Kirstein, P. T., "Distributed Computer Networks," Nature, 
Vol. 257, Oct. 1975, pp. 549-554. 





Office automation project-}\ research perspective 

by HOWARD LEE MORGAN 
Universiiy oj Pennsylvania 
Philadelphia, Pennsylvania 

ABSTRACT 

This paper attempts to place some perspective on the 
research and developments going on in office automa
tion. It describes the functions which can be assisted 
by computers, and indicates where more research may 
be needed. A brief description of the Office Automation 
Project at the Wharton School is provided. The sys
tems being developed include word processing, elec
tronic mail, decision aiding technology, and integration 
with various databases. This effort is compared with 
some of the other, complementary research projects in 
office automation under way around the country. 

INTRODUCTION 

Having successfully occupied the accounting and finan
cial centers of business for almost two decades, and 
the production control centers for one decade, the com
puter industry is finally beginning its march on the 
office. Until now, this was the last stronghold of human 
activity in many of our large business and government 
organizations. Office automation, of which word 
processing is but one element, is one of the fastest 
growing segments of the marketplace. A large number 
of companies have entered the field, and sales of word 
processing equipment alone should reach $.75 billion 
in calendar 1976.10 

This paper is an attempt to place some perspective 
on the research efforts going on in office automation, 
with some emphasis on structuring the many different 
services which can come under this heading. It also 
tries to indicate where there are problems of research 
rather than development interest, with the hope that 
this may stimulate various groups to begin work on 
them. Finally, it describes the efforts under way at 
The Wharton School in this area, the Office Automation 
Proj ect (OAP) . 

ASSUMPTIONS 

This author has based his research on the following 
assumptions. These are not all universally accepted, 

605 

although I have found agreement on some of them in 
each of the maj or research efforts studied. 

1. More efficient production of paper is not the 
ultimate goal of office automation. While a side 
benefit may be that documents, letters, etc., can 
be produced and changed more efficiently, one 
hopes to eliminate more paper than is produced 
in order to attain a truly automated office. 

2. The burden of proof is on those making changes. 
Whenever we propose to make radical changes in 
the way in which offices function, we should be 
prepared to justify these changes. Technology 
itself is not sufficient reason to introduce change. 
A corollary to this assumption is that in order to 
have the change accepted, there must be some 
short term payoff to those who must use the 
system (managers and clerical workers). 

3. Office problems are not well structured. The 
reason that computers have been able to take over 
accounting and financial departments is that the 
problems there are relatively well understood and 
structured. The type of activity and decision 
making which characterizes most offices does not 
lend itself to such clear structuring, and thus 
demands different solutions. 

4. Both technological and organizational research 
challenges remain. Because of the semi-struc
tured nature of office problems, new data struc
tures, program structures and even hardware 
may have to be designed to really attack the 
problems. Also, since telecommunications may 
permit automated offices to exist in quite a differ
ent physical manner than at present (e.g., offices 
in the home), the impact on organizational de
signs and strategies require much research. 

These assumptions have led us to the particular analy
sis and development approaches used in my contribu
tions to the Wharton Office Automation Project. 

FUNCTIONS 

Top down methodology is much in vogue these days, 
for its supposed clarity and completeness. Here, a top 



606 National Computer Conference, 1976 

down analysis would begin with the functions per
formed and the people performing them. We should 
note that the actual system development and imple
mentation at Wharton is being done in Ness' "middle 
out" approach,IG which tends to lead to greater user 
involvement and short term payoffs. 

Since office functions are in some sense dependent 
on the particular business, we must describe the en
vironment in which we work. The impetus for the 
Wharton project came with the formation of the new 
Department of Decision Sciences at The Wharton 
School. This consists of 15 teaching research faculty, 
about 25 support personnel (secretaries, research as
sistants, etc.) and has a consolidated budget of slightly 
under $1 million/year. There are several middle man
agers (typically principal investigators on projects) 
and a department chairman, who may be considered a 
more senior manager, since he must worry about the 
consolidated budgets from teaching and research 
grants. We suggest that our office is therefore similar 
to offices in information oriented companies, e.g., bank
ing, insurance, R&D, rather than product oriented 
companies. We are aiming at aiding the middle man
ager in performing his or her functions. These func
tions fall into six major classes. For each, we discuss 
what has been done by the industry to automate it, and 
what might be done. 

Communications 

Mintzberg, in his study of managerial functions, re
ports that almost all of most managers' time was spent 
on communication.14 This is borne out by the fact that 
it is in this area that the most work on office automation 
has proceeded. We divide communications into a num
ber of categories for purposes of discussion. 

1. formaljinformal 
2. reply required/no reply required 
3. message/document (short/long) 
4. internal/external 
5. voice/text/graphics 

The word processing industry has realized the amount 
of time and money spent in the average office on com
munications and has attempted to automate some of 
these tasks. They have had much success with long, 
formal texts, as typified by legal contracts, large 
reports, and mass letter writing examples. The main 
technology involves text editors, about which we shall 
have more to say later. 

The informal message area has proven of tremen
dous value to those organizations that have imple
mented systems such as electronic mail. In one large 
New York bank, for example, the time to get messages 
and memos from Wall Street to Midtown was cut from 
four hours to five minutes. The ARPANET com
munity has also noted the powerful sense of community 
which the mail facility can create.5 

In the Wharton system, features for extracting 
replies are a part of the electronic mail system, but are 
just beginning to be used. The phone or voice com
munications area is untapped. Services such as logging 
calls, handling of phone messages, etc., could be pro
vided. Some recent research,2 has indicated that for 
office type of problem solving, voice may be more 
effective than face to face communications, even given 
the lack of graphics. 

One West Coast research group is working heavily 
in the area of computer graphics integrated into a word 
processing system, and the Binary Image Processor 
created to store and retrieve technical manuals also is 
attacking this area.15 

Information storage and retrieval 

Almost all of us keep files of one sort or another in 
our offices. Names and addresses, correspondence, task 
related work, all seem to accumulate in our file drawers. 
An informal survey of the faculty members in the 
Department reveals that the middle managers have 
on the order of 1,000 files, and the chairman has about 
2,000 separate file folders. Most of us seem to be able 
to index the information in these files in our heads, or 
with simple filing schemes. The research literature on 
information storage and retrieval tends to lead to 
strategies which may be more rigid than those we use 
when searching our own files. For example, I may store 
a letter in a folder with the recipient's name on it, or 
in a folder with the name of a paper he or she has 
written, or in some other task related file. Yet I can 
usually retrieve all correspondence to a person by 
remembering the subjects of the letters. 

There are basically three problems to effective stor
age and retrieval. First, storage of full texts is ex
pensive. For the number of times which I typically 
reexamine a letter, it would be hard to justify online 
storage, even with the relatively cheap terabit mem
ories. This can be alleviated by storing only the index 
online, perhaps with abstracts, such as is done for 
document collections.21 

Second, there is the problem of data input. Letters 
or documents prepared on an automated system can 
be easily stored. However, material received on paper 
from the outside incurs additional costs for input. As 
the use of electronic mail increases, this problem too 
may be overcome. 

Finally, there is the problem of indexing. Automatic 
indexing of the type done in library systems22 is con
tent oriented. The degree of success of the automatic 
methods depends greatly on the threshold values in the 
algorithms. Short letters are quite hard to index, 
because few of the terms occur frequently enough to 
exceed thresholds. 

One research group has suggested that the best aid 
would be to simply show the user a large number of 
file folder headers, much as one would see them as one 



opened the drawer, and let the human pattern recogni
tion and search process be used to select from that set. 
Depending on the hardware, one could show from 50 to 
several hundred such folder names simultaneously. 
This scheme should work for the few thousands of files 
discussed so far. If we wish to integrate several 
people's files, this approach is not the one to follow. 

Data analysis 

Tools for analyzing numeric data have been available 
and in use by sophisticated managers for years. Re
gression, statistical packages, forecasting models, etc., 
have all been well developed to suit this market. Analy
sis of the other types of data which a manager sees, 
such as newspapers, magazines~ reports, etc., is still 
beyond present day capabilities. 

The Very Large Database (VLDB) project being 
sponsored by ARPA, 7 is attempting to examine some of 
the problems of analyzing this "intelligence." For 
example, we may wish to examine all of the data link
ing our company and research in computer databases. 
This necessitates bibliographic searches, calls to 
friends in other universities, etc. Learning to use even 
the available systems (NY Times Index, MEDLINE, 
etc.) is hard enough without trying to integrate these 
and automate access to them. 

Decision making 

Most middle managers are not making repetitive, 
routine decisions but rather are making semi-struc
tured decisions which recur on an irregular basis. 
These tend to be tactical rather than strategic deci
sions. As part of an ONR sponsored effort we are 
building DAISY, 1:~ a decision aiding information sys
tem. This attempts to automate the memory of an 
organization to support a manager making decisions, 
while still giving the manager the freedom to make 
the decision. Some examples of such semi-structured 
decisions are choosing an acquisition partner, deciding 
upon a battle plan, or trying to allocate fire fighting 
units in a municipality. 

A budget planning process has been implemented 
and partly integrated with the OAP and DAISY by 
Purves and Godard.20 With this, a professor can learn 
how to budget for a research proposal, go through the 
calculations with a program, and dump the results in 
text format into the budget pages of a formal proposal. 
We are working with other decision processes, but are 
excited about the potential for linking this type of 
system to both the communications and the information 
storage and retrieval functions of the OAP. 

Personal assistant 

Goldstein~ has described an artificial intelligence 
system for aiding in preparing schedules. This type 

Office Automation Project 607 

of activity is categorized as a personal assistant. It 
understands some portion of the manager's decision 
rules, priorities, and requirements, and attempts to 
maintain schedules. In the Wharton OAP, Ness has 
implemented a simple scheduling system which permits 
a person to store and retrieve his or her calendar for 
any day or group of days. It also automates the 
reminder function, by printing, in priority order, items 
which users have placed on lists (e.g., Write letter to 
X, BUJt '\'vife's birthday present, etc.). 

The short term payoff and appeal of a personal 
assistant is quite high. It tends to draw less computer
oriented people into using the system. Other possible 
personal assistants might include arranging travel 
reservations, maintaining working paper distribution 
lists, and choosing appropriate referees for journal 
papers. 

In the long run, such applications of Artificial In
telligence and knowledge based systems12 will be rou
tine. They offer a great potential area for research in 
the fertile office automation applications area. 

Linkage to corporate databases 

Under communications, we discussed the interactions 
between people. Managers and other office personnel 
also routinely examine and update various corporate 
databases. These databases are maintained by and 
under the control of other offices, typically the data 
processing department. 

It is desirable to permit the office automation system 
to have direct access to these databases. For example, 
the budget planning system described under decision 
making should not only feed the text processing parts 
of the office system, but should be able to create the 
proper entries in the accounting database to create 
the new project which has been proposed and bud
geted. Other examples of such linkages might include 
moving name and address information from personal 
mailing lists into corporate customer databases, and 
examining personnel databases for skills required on 
particular proj ects. 

The key research problem posed by providing this 
function is that of designing a simple query language 
for the databases. This is being examined at the 
present time by the End User Facilities Task Group of 
the CODASYL Committee.-! 

PRODUCTS 

The functions described above have led to the devel
opment of a number of products in attempts to auto
mate one or more of these. First and foremost are 
text editors. These have been around for a long time 
and are the backbone of most timesharing systems. 
Unfortunately, few of these line oriented editors are 
very good for office automation. Several major research 



608 National Computer Conference, 1976 

groups (SRI-ARC, Xerox, USC-lSI) have all realized 
that good editors require separation of the editing 
commands from the text being edited. This can be 
done on CRTs, but not on the typewriter like devices 
which most timesharing systems have to support. The 
NLS system l is an excellent example of sophisticated 
edi ting. This system also changes the way in which 
people think about documents, emphasizing the hier
archical nature of long documents, and the ability to 
view a document at various levels of detail, i.e., chapter 
headings, section headings, etc., down to sentences and 
paragraphs. 

The sophisticated editors at another installation not 
only separate command and text being edited, but also 
always try to show the user final formatted copy, even 
if this involves multiple fonts. The VyDec word 
processing system also works in this mode, which is 
quite appealing to secretaries and other initial docu
ment entry personnel. Since they can see an attractive, 
finished form as they enter a draft, a reward is present, 
reinforcing their desire to use the system. 

One conclusion that can be drawn from studying the 
best editors available is that they require much more 
in the way of CPU and memory resources than most 
people estimate. To present an 8.5 by 11 inch screen 
with several type fonts may require one million bits 
of storage for the image alone. 

Electronic mail packages are provided on ARPANET 
and have been developed in house by a number of 
companies8 and timesharing bureaus. Except for the 
Wharton system, most of these seem to treat all mail 
the way the US Postal Service does, i.e., as first class 
mail, without any real indication of the type or con
tent. 

Integrated word processors are machines combining 
an editor with some minicomputer and storage devices. 
These go under a number of names, but are really 
automated typewriters. Unfortunately, most of them 
lack communications ability, and hence could not serve 
for the full range of functions mentioned in the FUNC
TIONS section. 

Database manage1's for handling the semi-structured 
types of information used in organizations are avail
able. Many firms market name and address list main
tenance programs, and the general database manage
ment systems can easily be used for these purposes. 
It is important that these systems permit easy addition 
of fields, storing of textual information, and extraction 
from files. 

These are just some of the products under develop
ment or available for commercial use. We next describe 
briefly the first product of the Wharton OAP, the 
Office Automation System (OASYS). 

OASYS 

Figure 1 is a block diagram of the maj or functional 
pieces of the Wharton Office Automation System, 

designed and developed for the PDP-IO in MACRO by 
Professor David Ness. Those marked with asterisks 
are being reprogrammed or added by the author and 
others, using higher level languages, and DBTG data
base technology. 

The text processing and runoff systems are a set of 
extensions to the DEC Runoff program for producing 
formatted text. Some of the more interesting features 
created by Ness are in the personalization, history and 
profile areas. 19 Each of the programs in OASYS is 
designed to deal with several people. The "for" user 
is the manager for whom the program is being used. 
The "by" user is the person who is actually at the 
terminal, e.g., a use of the schedule program by' a 
clerical worker for a manager. The profiles tell these 
programs what input forms the by user desires de
pending on level of skill, etc., and what output forms 
the for user demands. The history features permit the 
system to inform each user when any of the questions 
or commands have changed, or when new features 
are added to the system. This is done by recording for 
each user, module, and command, a level number. 
Before the system asks a question, it determines 
whether or not the user has seen this version. If not, 
it is prefixed by (NEW). 

The profile permits users to further personalize the 
modules by specifying a user/module combination 
which questions or prompts may be skipped. Thus, in 
creating name and address files I am asked for home 
address, which I routinely keep, but Professor Ness is 
only asked for business address. 

The electronic mail system has several types of mail. 
A user is told how much of each class is waiting for 
him or her at login time. Currently, the system permits 
us to distinguish among BUG mail, relating to system 
bugs, regular mail, return receipt mail, which auto-

Figure 1 



matIcallY sends a receipt to the sender when it is 
examined, control mail, which deals with system opera
tion, and LOG mail, which deals with account usage. 
In addition, regular mail is prefixed with an indication 
of the mailing list used to send it, or (PERSONAL), 
if it was individually addressed. 

Users report bugs by specifying the module with the 
bug and writing a message. The system sends this to 
a responsible party, noting that users have reported 
bugs. Users are automatically notified through the 
mail system when the staff has received the bug report 
and when they have disposed of it. 

Working in the POp2 language, the author and Mike 
Zisman have recently integrated processing of data
bases, letter writing, and complex processing for 
handling manuscripts being considered for publication 
in professionai journals. TnIS inclUaes seleCtIng 
referees for papers and writing the appropriate cor
respondence for the referees and authors from the 
editors. 

More information on OASYS is available in de 
Blasis:l and in NessY, 18 

TECHNOLOGIES 

One of the key questions in office automation is the 
type of hardware and software technology which 
should be used for developing products. Wharton and 
SRI-ARC have both chosen to work on large central 
processors with communications facilities and rela
tively unintelligent terminals. Others have chosen 
more distributed technology, emphasizing minicom
puters and some communications ability. This author 
feels that the latter route is the one likely to triumph 
in the medium term, but that we are likely to see a 
relatively large minicomputer supporting a cluster of 
terminals in one office, rather than one at each ter
minal. All of these minicomputers would, of course, be 
connected together for mail and database access. 

As noted under products, some form of video display 
terminal (CRT, plasma panel, etc.) which can handle 
full graphics is required for the long term solution. It 
is not clear whether or not we should retain the present 
aspect ratio dictated mostly by the availability of cheap 
television (525 line scan) devices. In any case, the 
speed with which the display communicates with the 
machine for output should be as high as possible. 
Graphical input devices are also required, and the 
"mouse,"6 a device which is rolled around on a hard 
surface and tracked by a cursor on the display, seems 
to be an attractive current answer. 

On the software side, systems have been developed 
in languages ranging from assembly to INTERLISP. 
One would hope that higher level languages would be 
used more extensively, but since editing is often char
acter oriented, reasonable efficiency can be achieved 
on many machines only by staying close to assembly 

Office Automation Project 609 

leVel. Languages such as BCPL and BLISS permit 
this, while still retaining advantages of high level 
languages. 

Sorting is such a fundamental operation that it must 
be considered a part of the software technology. In a 
similar vein, good man/machine dialogues are needed 
for any system which is going to have unsophisticated 
users. Martinll describes these techniques in quite a 
bit of detail. 

RESEARCH AREAS 

While much has and continues to be done in the office 
automation area, I have identified three major tech
nological and two major organizational areas which 
are ripe for research. Some of these areas are begin
ning to be examined by members of the OAP at 
Wharton. 

1. Input processing. Almost all of the functions 
which have been automated involve the production of 
output. How can we efficiently handle input in auto
mated ways? Some OCR technology, some automatic 
indexing technology, and man/machine interaction 
technology must be brought to bear on this problem. 
Even if we begin to receive a large portion of our 
mail electronically (and several ARPANET users now 
get more than 50 % of their mail through the network) , 
the time and difficulty of entering externally supplied 
information must be cut down. 

2. Integration of databases. Integrating databases 
more complex than names and addresses is not avail
able in most office automation systems. How to present 
a clear and simple interface to the end user is the 
major problem here. 

3. Using artificial intelligence methods. We have 
begun work on a knowledge based system to assist me 
in processing papers for the journals on whose edi
torial boards I serve. This will "understand" the types 
of interactions I have with authors, referees, and other 
editors, and will try to generate the proper corre
spondence, database updates (i.e., correspondence log
ging) , and action requests. There are many other 
places where AI can contribute. 

4. Amount of personal communications needed. Or
ganizational studies on the effectiveness of dispersing 
the office personnel to separate locations, communicat
ing only through the system, must be made. Chapanis2 
has done some work on problem solving with various 
communication modes, but we really know very little 
about the best ways to do this. Should the people meet 
face to face once a week? Once a month? 

5. Who gets the terminals. For years people in the 
MIS field have seesawed on whether or not the man
agers or their staff assistants will actually have the 
terminals on their desks. Someone should attempt to 
answer this question through controlled experiments. 



610 National Computer Conference, 1976 

SUMMARY 

Office automation is a growing area of concern for 
computer and organizational researchers. The efforts 
to date have focussed mainly on word processing, 
which is only a part of one of the office functions. 
Much more attention needs to be directed to the other, 
higher impact, less structured activities which take 
place in offices. This should yield a set of high quality 
products which will change the way in which offices are 
run over the next two decades. 

The Wharton Office Automation Project is attempt
ing to attack some of the non-word processing areas, 
paying particular attention to database integration, 
good user interactions, and handling of decision 
processes. We realize that our comparative advantage 
is not in the hardware area, and hence are trying to 
build modules of a system which can be grafted onto 
good hardware as it develops. 

It is only a matter of time before most of us will be 
interacting with other people with the aid of computers 
as an everyday occurrence. We owe it to ourselves and 
the field to ensure that this happens in an efficient and 
socially responsible manner. This paper has not dis
cussed the obvious privacy/ security requirements 
which will be necessary in office automation systems, 
but they must be thought of at the beginning of any 
design projects. 

This paper has attempted to set down something of 
the state of research in the area in late 1975. Func
tions, products, and technologies have been character
ized with an eye towards possible research topics. The 
author hopes that those who work on these topics will 
communicate with him. 

ACKNOWLEDGMENTS 

The Office Automation Project was the result of neces
sity and a number of discussions among Professors 
David Ness, E. Gerald Hurst, Jr., Thomas Johnson, 
Rob Gerritsen, and myself. Dave Ness has spearheaded 
the effort and did almost all of the programming for 
the first generation OASYS. The author has benefited 
from the above individuals' comments, as well as the 
recent programming and intellectual support of 
O. Peter Buneman and Michael Zisman, and the edi
torial assistance of Dorna Caskie. 

REFERENCES 

1. Augmentation Research Center, NLS-8 Glossary, Stanford 
Research Institute, Menlo Park, CA, July 1975. 

2. Chapanis, A., R. Ochsman, R. Parrish and G. Weeks. 
"Studies in Interactive Communication: 1. The Effects of 
Four Communications Modes on the Behavior of Teams 
During Cooperative Problem Solving," Human Factors, 
1972, pp. 487-509. 

3. de Blasis, Jean-Paul, "An Interactive System for Office Auto
mation: Some Organizational Implications," IRIA Colloques 
January 14-16, 1976. (Available from Institut de Recherche 
d'Informatique et d'automatique, BP5-Rocquencourt 78150 
Le Chesnay France) . 

4. Ledgard, H. (ed.), "Report of the CODASYL End User 
Facilities Task Group," FDT 7, March 1976. 

5. Englebart, Douglas, Richard Watson and James Norton, 
"The Augmented Knowledge Workshop," Proceedings of the 
National Computer Conference Vol. 42, June 1973, pp. 9-21. 

6. Engelbart, Douglas C., "Design Considerations for Knowl
edge Workshop Terminals," Proceedings of the National 
Computer Conference 42, June 1973, pp. 221-227. 

7. Gaines, R. S. and R. Gammill. Very Large Data Bases: An 
Emerging Research A rea, Informal working paper, RAND 
Corporation, Santa Monica, CA. 

8. Galbraith, Jay, Electronic Mail Systems, Unpublished re
port, The Wharton School, December 1975. 

9. Goldstein, Ira, "Bargaining Between Goals," Proceedings 
of the Fourth International Conference on Artificial In
telligence Tblisi, USSR, August, 1975. 

10. Johnson, Tom, Word Processing, Working Paper #76-02-01, 
Department of Decision Sciences, The Wharton School. 

11. Martin, James L., Design of Man-Computer Dialogues. 
Prentice-Hall: Englewood Cliffs, NJ 1974. 

12. Martin, William, "Interactive Systems-Theories of Im
plementation," Proceedings of the Wharton/ONR Confer
ence on Interactive Decision Support Systems (to appear) 
1976. 

13. Morgan, H. L., "DAISY: An Applications Perspective," 
Proceedings of The Wharton/ONR Conference on Decision 
Support Systems (to appear) 1976. 

14. Mintzberg, Henry, "The Manager's Job: Folklore and Fact," 
Harvard Business Review 53, 4, July August 1975, pp. 
49-61. 

15. Ness, David, private communication, 1974. 
16. Ness, David, "Interactive Systems-Theories of Design," 

Proceedings of the Wharton/ONR Conference on Interactive 
Decision Support Systems, (to appear), 1976. 

17. Ness, David, Office Automation Project: Text Processing, 
Working Paper #75-05-02, Department of Decision Sciences, 
The Wharton School. 

18. Ness, David, Office Automation Project: Overview, Working 
Paper #75-05-03, Department of Decision Sciences, The 
Wharton School. 

19. Ness, David, Office Automation Project: Personalization 
and History Features, Working Paper #76-02-10, Depart
ment of Decision Sciences, The Wharton School. 

20. Purves, Arthur and M. Godard, An Interactive Budget 
Planning System, Internal Report, Department of Decision 
Sciences, The Wharton School, Fall 1975. 

21. Salton, G., Automatic Information Organization and Re
trieval, McGraw-Hill, 1968. 

22. Salton, G., A. Wong and C. Yang, "A Vector Space Model 
for Automatic Indexing," Communications of the ACM 18 
(November 1975) pp.613-620. 



Evaluating the impact of office automation on 
top management communication 

by JAMES H. CARLISLE 
University of Southern California 
Los Angeles, California 

ABSTRACT 

This paper is concerned with the impact of new com
munication technologies on the effectiveness of top 
management decisionmakers. Word processing tech
nology is only the beginning of a revolution in office 
automation and managerial communication which will 
include teleconferencing, electronic mail, and wide 
availability of personal computer-based systems. The 
potential problems and benefits must be considered in 
the context of the overall communication system and 
management needs of an organization. A research 
methodology is described which leads to the develop
ment of organizational models within which: (1) man
agement communication problems can be anticipated, 
(2) solutions can be proposed and compared, (3) spe
cific office automation systems can be designed, and 
(4) the impact of alternative systems on organiza
tional effectiveness can be predicted and evaluated. 

INTRODUCTION 

Office automation is one of the new buzzwords used to 
describe the computer augmentation of day-to-day 
office functions. Most of these functions involve some 
aspect of the increasing volume of interpersonal and 
formal communications which take place within or
ganizations. Facsimile, electronic mail, word process
ing, teleconferencing, on-line calendars, information 
storage and retrieval and general management infor
mation systems are available today to top management 
and even to middle management in many organiza
tions. The combination of these (and more) functions 
into an integrated, computer-based system for use in 
managing organizations is likely to bring about an or
ganizational revolution for white collar workers com
parable in magnitude to that resulting from the intro
duction of the assembly line to blue collar work. 

Anticipation of the organizational impact of this 
new communication technology is essential to the long 
range planning of both system developers and even
tual user organizations. There is currently a lack of 
any generally accepted theory and methodology for 

611 

evaluating the impact of today's office automation sys
tems. Between now and the time when computer ter
minals and digital voice coder boxes sit on every man
ager's desk, there is an opportunity to study and 
improve the effectiveness of such systems. We need to 
study how and why the early systems are being used. 
More importantly, we need to understand how these 
systems impact the overall communication system of 
an organization and its management. 

This paper describes the design of a scientific analy
sis of top management communication. This analysis 
results in a model of communication activity for the 
particular organization and manager studied. This 
model then supports a strategic analysis of manage
ment problems arising out of increased demands for 
communication and the evaluation of new communica
tion technologies coming onto the market to "solve" 
those problems. 

The orientation of the research described in this 
paper is top management effectiveness, not computer 
technology. Office automation should not be studied 
as an end in itself, but as a means to improved man
agerial performance. Top management stands to gain 
or lose the most from this new technology. Their 
valuable time and energy is largely devoted to com
munication activity of one sort or another. Freeing up 
time for top management and giving them increased 
potential for effective and rapid communication within 
and among organizations are attractive payoffs. On 
the other hand, if office automation is developed and 
introduced incorrectly, it could disrupt office commu
nications, making them even less efficient, and create 
serious resistance to all of the new communication 
technologies. If office automation fails to gain accept
ance and demonstrate value in the executive suite, it is 
unlikely to receive adequate financial support to be 
properly used throughout the organization and 
throughout society. 

THE NEED FOR OFFICE AUTOMATION 

One of the most significant problems facing manage
ment in the coming years is the rapidly increasing 



612 National Computer Conference, 1976 

complexity of the information environment in which 
both long range and day-to-day decisions must be made. 
In his article on "The Future-Oriented Corporation," 
Dr. Burt Nanus observed that 

We live in an age of increasing complexities, 
an age of macrosystems in which everything 
of importance that occurs anywhere in the 
world is immediately known everywhere else, 
thereby precipitating consequences which, in 
their own turn, provoke still other changes. 
The recent energy crisis is an excellent exam
ple of the interrelationship of political, eco
nomic, and technological factors and the enor
mous significance for corporate decision 
making. 1 

So far these crises have been few and temporary in 
nature. Structured management information systems 
have, unfortunately, proved inadequate to supply the 
information needed. Much of the communication in 
such crises is unstructured, informal, and contains sub
jective and up-to-the-minute data. Today's organiza
tions, with their traditional methods of processing let
ters and reports and their reliance on telephone, telex, 
mail and personal meetings for informal communica
tions are ill-equipped for the volume of critical infor
mation flow during even a minor crisis. The problem 
is already with us, since past crises have been merely 
amplifications of the normal day-to-day flow of struc
tured and unstructured communication within our 
increasingly interconnected communications environ
ment. 

Few managers escape the daily avalanche of un
structured communications from both inside and out
side their organization. Fewer still have a clear enough 
model of their communication environment to support 
efficient and effective utilization of their time through 
scheduling and monitoring selectively those communi
cations with the highest priority. There are secretaries 
and managerial assistants who perform this function 
quite well. The drawbacks to this solution are that it 
is becoming increasingly expensive and it leaves the 
manager highly dependent on that other person. 

POTENTIAL PROBLEMS IN IMPLEMENTATION 
OF OFFICE AUTOMATION 

The realization that we are rapidly entering an era 
in which information and communications are the lim
iting factors in performance of a majority of organi
zations is reflected in the recent excitement over office 
automation. Corporations are reaching for the elusive 
carrot of "cost reductions in word processing" -often 
irrationally and often with little understanding of the 
far reaching effects that the new communication tech
nologies are having on their users. Most automated 
office projects up to this time have been fiascos. 2 Major 
suppliers of the hardware and software for "word 

processing" seem to know almost nothing about the 
informal organizational environment into which their 
systems have brought chaos. Not only have customers 
had serious organizational problems, but even the ven
dors themselves have had trouble with inhouse. imple
mentations of their text-editing and document prepa
ration systems. The computer industry vendors seem 
to think that management communications can be im
proved just by speeding up the production of error
free text. 3

,4 It's important to keep in mind that the 
"word processing" aspect of office automation is to 
communication automation what keypunching was to 
management information systems-only the tip of the 
iceberg. 

There is a strong possibility that all the mistakes of 
the management information system era of the '60s 
will be repeated with office automation due to the zeal
ous marketing of computer companies and manage
ment consultant firms hoping to jump on the band
wagon of this new communication technology. 

One of the reasons which has been most frequently 
pointed out for the failure of management information 
systems and management science in general has been 
the lack of understanding on the part of top manage
ment itself of the theories on which these decision sup
port capabilities were based. A second reason is the 
lack of understanding on the part of the system de
velopers of how people within the organization actu
ally do their work. Too many computer-based systems 
have already been designed on the basis of technologi
cal breakthroughs and innovations which were insen
sitive to the limit on man's rationality and the social 
needs that must be satisfied within organizational 
structures. 

It is as if Russell Ackoff's plea to avoid the develop
ment of "Management Misinformation Systems" was 
ignored by computer system designers.5 It is as if 
Chris Argyris' analysis of "Management Information 
Systems: The Challenge to Rationality and Emotional
ity," was understood only by those managers who had 
personally suffered the neglect or outright sabotage of 
management databases.6,7 The computer industry has 
not responded adequately to the real challenges of pro
viding useable and responsive management decision 
support systems. We are now at a point in time where, 

The managements of using organizations are 
becoming hardened to the computer as they 
see frequently unfulfilled promises on the part 
of the vendors and their internal staffs. The 
net effect is a diminished esteem and an in
creased skepticism about the potential of the 
computer.8 

Despite the skepticism, which is probably only really 
a reflection of despair, the automated office is on the 
way. A U.S. Department of Labor report in 1970, de
scribing patterns of U.S. economic growth, indicates 
that office computing and accounting machines are the 



fastest growing industry in the United States, with an 
average annual growth rate of over 10 percent.9 Recent 
introduction of digital data networks such as the 
ARP A network, and value added networks such as 
TELENET, offer new telecommunication services 
which are highly competitive with telex, telephone, and 
the post office, as well as a viable alternative to at least 
some business transportation. 

COMMUNICATION NECESSARY? 

The question of paramount importance is how do we 
get to the office of the future without destroying the 
social fabric of today's organization and without fur
ther dehumanizing communication within our society? 
To answer this question we must have a better under
standing of the office of today, based on scientific ex
amination of management behavior. The needs for 
any new communication technology should then be de
rived from analysis of that behavior and consideration 
of personal and organizational values. 

Most of what little we do know of managerial be
havior has been learned with primary concern for 
leadership style, rationality of decision-making and de
terminants of satisfaction and motivation. The com
munication needs and behavior of management are 
only a recent focus of investigation. Henry Mintzberg, 
who conducted one of the most extensive investigations 
of managerial work, recently noted that 

I was struck during my study by the fact 
that the executives I was observing-all very 
competent by any standard-are fundamen
tally indistinguishable from their counterparts 
of a hundred years ago (or a thousand years 
ago, for that matter.) The information they 
need differs, but they seek it in the same way 
-by word of mouth. Their decisions concern 
modern technology, but the procedures they 
use to make them are the same as the proce
dures of the nineteenth-century manager. 
Even the computer, so important for the spe
cialized work of the organization, has appar
ently had no influence on the work procedures 
of generalnw,nagers. In fact, the nw,nager is 
in a kind of loop, with increasingly heavy 
work pressures but no aid forthcoming from 
management science. to 

With the exception of Mintzberg's study, which 
proposed and supported an intriguing theory of man
agerial work roles, most of the research on manage
ment communication has attempted to measure 
attitudes and preferences among alternative communi
cation media. This latter research has been supported 
or conducted primarily by the telephone companies of 
the U.S., Canada and Great Britain as a form of mar
ket analysis for picturephones. It should be noted that 

Evaluating Impact of Office Automation 613 

attitudes are not always correlated with behavior. 
Even behavioral studies with college sophomores con
ducted in research laboratories offer only limited in
sight into the needs and behavior of top management 
in today's organizations, let alone the office of the fu
ture. We currently lack theories and models with sub
stantial empirical support with which to anticipate 
and evaluate the impact of office automation on organi
zational communication systems. 

WHAT ARE THE OBJECTIVES OF CURRENT 
RESEARCH? 

The remainder of this paper describes a project un
der way to anticipate and evaluate the impact of office 
automation on top management communication in a 
large decentralized organization. This project is de
signed to lay the groundwork for management plan
ning concerning the use of information technology to 
support unstructured management decision making 
and communication. The primary objective of the 
project is the development of a behavioral science 
model within which 

• management communication problems can be 
an tici pa ted, 

• solutions can be proposed and compared, 
• specific office automation systems can be de

signed, and the 
• impact of alternative systems on organizational 

effectiveness can be predicted and evaluated. 

Such a model provides top management with an alter
native to computer vendor systems analysis, This proj
ect incorporates several theories of organizational 
behavior and human performance. It is directly respon
sive to recent proposals for designing more people
oriented computer systems. Most importantly, the 
model addresses the complexity of management be
havior and of the organizational environment onto 
which any computer based management support sys
tem might be imposed. 

This approach to the improvement of managerial 
communications is based on the contentions that (1) 
human resources in organizational management are 
more valuable and less well understood than the hard
ware and software that might be designed to support 
them, and (2) that person-computer communication 
can best be understood and improved by developing a 
better understanding of how people communicate with 
each other. 

This is an ambitious project. No behavioral science 
or management science theory has offered a viable so
lution to the problems we are addressing. Surprisingly 
few have even tried. Our confidence in success is based 
on development of a new research methodology and on 
asking, at the outset, what we believe to be the right 
questions. For example, the models developed in this 
project should be able to answer the following ques-



614 National Computer Conference, 1976 

tions regarding the need for or evaluation of alterna
tive management communication or decision support 
systems: 

1. How would the nature of management behavior 
be changed? 
A. How would overall efficiency be improved? 
B. How would overall effectiveness be improved-? 
C. How would tasks be redefined by the manage

ment? 
D. How would behavioral alternatives be rede

fined and expanded or limited in number? 
2. How would manager interaction be changed? 

A. Which responsibilities and interdependencies 
would be affected? 

B. Which communication patterns would be af
fected? 

3. How would resource consumption be affected? 
A. How would travel patterns be altered? 
B. How would telecommunication patterns be al-

tered? 
C. How would computer resources be utilized? 
D. How would secretarial resources be utilized? 
E. How would managers' time allocation be af

fected? 
4. What would the impact be on attitudes and mo

rale in the organization? 
A. What aspects of the system would meet with 

strong resistance? 
B. What aspects of the system would be readily 

accepted? 
C. In what ways would the system support man

agement growth in communication? 
5. How would the important relationships between 

management support, management behavior, and 
managerial performance be affected? 

The development of models to guide the examination 
of these and related questions is a necessary first step 
to rational strategic planning for the office of the fu
ture. As Peter Drucker has pointed out, 

The future manager will find the computer as 
much a fact of life as children today find the 
telephone . .. the computer is a tool of libera
tion if used correctly. Otherwise, you become 
its servant. It should liberate you from being 
chained to operations and to your desk and en
able you to have time for people and for the 
outside, where the results areY 

Drucker's optimism is encouraging, but unfortunately 
not supported by the history of the computer industry. 

Improperly anticipated and poorly designed, the 
office of the future may lead to alienation, job fragmen
tation, regimentation and the 1984 horror of monitor
ing of all electronic communications. Properly de
signed, the office of the future could, instead, increase 
the manager's control over his or her information 
space, expanding the rich array of communication 

channels and formats available for effective organiza
tional management. This project is investigating un
structured managerial communication as a first step 
in anticipating and evaluating the impact of office au
tomation on organizational communication systems. 
Four basic goals guide this research: 

1. Increased ability to deal with more complex in
formation environments without increasing 
the number of managers in an organization. 

2. Freedom for the manager from his or her desk 
and office as the central communication and 
information processing station. 

3. Consolidation of management communication, 
scheduling, and decision making activities and 
support technology. 

4. Increased effectiveness and efficiency in deal
ing with unstructured management communi
cation tasks. 

RESEARCH METHODOLOGY 

The methodology used in this research is both em
pirical and theory-driven. It involves unobtrusive ob
servation and analysis of managerial behavior, on the 
job, over a period of one or more weeks. From this 
analysis, a scenario is constructed which highlights 
key management communication activities. Both struc
ture and content of these communications are analyzed 
to identify opportunities for increasing managerial ef
fectiveness and efficiency. The critical part of the anal
ysis is the construction of models of the individual 
manager's task and communication structure. Based 
on these models, additional scenarios are constructed, 
showing the impact of alternative management com
munication support technologies for each manager. 
This approach is holistic in that the full range of or
ganizational and decision making activities is consid
ered. It uses case study analysis to model the complex 
reality of individual managers. 

This data collection process, referred to as "struc
tured observation," derives from anthropological and 
sociological research. More recently a research group 
at the USC/Information Sciences Institute has been 
using a form of structured observation to study human 
dialogue as a means of improving man-machine inter
action.12,13 

The most significant application of the structured 
observation methodology in the area of management 
work activity was a study conducted by Henry Mintz
berg, while a graduate student at M.I.T.H That study 
involved the detailed observation and analysis of work 
activity of five chief executives over a period of a week 
each. His results provide important motivation and 
direction for the development of models of managerial 
communication. Whereas Mintzberg decided to omit 
from his analyses all interaction between the manager 
and his secretary and to classify individuals with 



whom the manager interacted only as outsiders, supe
riors or subordinates, this project will analyze commu
nications with respect to specific individuals and tasks. 

The theoretical foundation on which data collection 
and analysis are based in the current project includes 
a novel conceptualization of managerial activity as 
communication acts intended to accomplish some spe
cific purpose. These purposes are characterized as 
tasks which may be in various stages of completion, 
once initiated. The actual model of tasks, their states, 
and the effects of individual communications will be 
formulated out of the analysis of structured observa
tion of individual managers on the job. Thus, the data 
collection is partially structured prior to its initiation 
and is augmented by interpretations made during and 
after the actual observation. 

One of the compelling virtues of this methodology is 
its inclusion of far more of the manager's work en
vironment than a typical laboratory study or question
naire survey would permit. This approach requires 
cooperation and a high degree of trust between re
searcher and manager, but offers significant joint 
learning opportunities for both. This methodology re
quires a minimum of conscious effort on the manager's 
part to generate data while maximizing the opportu
nity for interpretation of ambiguous behavior by the 
manager. Perhaps most importantly, the methodology 
eliminates any need for deception by the researcher 
and assures the manager of full confidentiality at all 
stages of data collection and analysis. The most seri
ous drawback of the methodology is the enormous 
amount of time involved in coding and recoding de
tailed observation data. This extensive analysis is jus
tified by the insight gained into the managerial process 
with respect to the particular questions and problems 
being investigated. 

Following preliminary analysis of the structured ob
servation data, models of the manager's communication 
activity and sample scenarios are presented first to the 
manager and then to a group of managers in the 
organization. These scenarios are revised and personal
ized by the group as part of the generation and evalua
tion of ways for improving unstructured top manage
ment communication in the organization. There is 
considerable evidence that managers react to idealized 
scenarios about the future with considerably more in
sight and enthusiasm than they respond to other needs 
analysis techniques (such as questionnaires and inter
views) or functional specifications of proposed sys
tems.15 

The collection of scenarios agreed upon as repre
senting information processing activities for a variety 
of managers are then used to define a set of primitive 
information processing capabilities and a set of neces
sary hardware capabilities for making the scenarios 
possible. These primitives and this functional analysis 
form the basis for an information system design to 
support and improve managerial communications. 

Evaluating Impact of Office Automation 615 

CONCLUSION 

An important advantage of this methodology is that it 
gets many, if not all, of the organizations' top manage
ment involved in the iterative design of their own com
munications system. When an operational system is 
finally available they should already be knowledgeable 
as to its functional capabilities and cognizant of the 
likely organizational impacts. 

The action research approach described above leads 
to the development of systems custom-tailored to the 
needs of users, even if the primary hardware and soft
ware still come from established computer manufac
turers. Several key characteristics of the approach 
deserve reiteration: 

1. The spirit of the project is one of cautious and 
rational planning for the future by develop
ment of a necessary understanding of today's 
top management communication activities. 

2. System design proceeds by interpretation of 
an holistic model of managerial activities. 
Scenario evaluation and development brings 
out the values and perceived needs of the man
agers themselves. 

3. Structured observation of management com
munication behavior and preliminary design 
specification are not "technology driven," but 
reflect characteristics of the client organiza
tion. 

4. The research methodology has the open in
tention of gradually educating the managers 
themselves so that they can contribute knowl
edgeably and efficiently to any eventual system 
design and implementation. 

5. The project focuses on top organization man
agement on the assumption that their time is 
most valuable to the organization and thus can 
most significantly be affected by the quality of 
unstructured communications support systems. 

REFERENCES 

1. Nanus, Burt, "The Future-Oriented Corporation," Busi
ness Horizons, February 1975, pp. 5-12. 

2. "The Office of the Future: An In-depth Analysis of How 
Word-Processing Will Reshape The Corporate Office," 
Business Week, June 30, 1975, pp. 48-84. 

3. "Toward the Automated Office," Datamation, February 
1975, pp. 59-62. 

4. "\Vord Processing and the Computerized Office," Computers 
and People, September 1975, pp. 27-30. 

5. Ackoff, Russell, "Management Misinformation Systems," 
Management Science, Vol. 14, No.4, December 1967, pp. 
147-156. 

6. Argyris, Chris, "Management Information Systems: The 
Challenge to Rationality and Emotionality," Management 
Science, Vol. 17, No.6, 1971, pp. B274-292. 

7. Argyris, Chris, "Resistance to Rational Management Sys
tems," Innovation, No. 10, 1970, pp. 28-35. 



616 National Computer Conference, 1976 

8. Tomeski, Edward A. and Harold Lazarus, People-Oriented 
Computer Systems, New York, Van Nostrand Reinhold, 
1975. 

9. Patterns of U.S. Economic Growth, Washington, D.C., 
U.S. Department of Labor, 1970. p. 33. (Reproduced in 
Tomeski and Lazarus, op cit.) 

10. Mintzberg, Henry, "The Manager's Job: Folklore and Fact," 
Harvard Business Review, July-August 1975. 

11. Drucker, Peter F., quoted in Tomeski and Lazarus, op cit., 
p.163. 

12. Mann, \Villiam C., James A. Moore, James A. Levin and 

James H. Carlisle, Observation Methods for Human Dia
logue, ISIjRR-75-33, Marina del Rey, CA: Information 
Sciences Institute, June 1975 (NTIS #A013242). 

13. Carlisle, James H., Why Human-Computer Interaction 
Doesn't Work Like Human Dia,[ogue, working paper, pre
sented at ASIS Annual Meeting, Boston, MA, October 1975. 

14. Mintzberg, Henry, The Nature of Managerial Work, New 
York, Harper and Row, 1973. 

15. Ackoff, Russell L., Redesigning the Future-A Systems 
Approach to Societal Problems, New York, John Wiley, 
1974. 



The evolving market for word processing and typesetting systems 

by J. CHRISTOPHER BURNS 
Arthur D. Little, Inc. 
Cambridge, Massachusetts 

ABSTRACT 

The word processing, text editing and typesetting in
dustries have become an important market for com
puters and computer software. Industry installations 
are described and sales are forecast for maj or systems 
components over the next five years. An evolution is 
suggested which will link word processing, in-plant 
publishing, text editing and business data processing 
systems over the near future. 

More than 100 billion words are set in type each year 
in the United States-about 10,000 times what an av
erage person could read if he did nothing all year but 
read. There are two interesting facets to this figure: 
first, it seems to be rising, not only in absolute terms 
but in proportion to the population. As nearly as we 
can tell words set per capita in the United States has 
risen 16 percent in the last ten years, this in spite of 
increased television broadcasts and a decreasing per
centage of the population attending public and private 
schools and colleges. 

The second facet is that with all this information to 
exchange we are still choosing to set it in type. Over 
the past ten years we have seen the development of in
expensive display terminals, high-speed non-impact 
printers and microprocessors which could bring this 
information directly into the home, bypassing the 
centuries-old tradition of typesetting. Yet, except for 
specialized financial applications, we are not using the 
new technology. Today nearly 70 percent of what you 
read has passed through a computer in machine read
able form at least once, and yet the product does not 
differ much from its 14th century Chinese ancestor. 
We are here talking about typesetting not as a dusty 
curio but as a market for computers, and the reason 
for this is fundamental to an understanding of how the 
market will evolve and the demands it will make on 
the successful vendor. 

Let's look for a moment at typesetting: This is an 
example of how the news might look if it came over 
communications lines to a home terminal (Figure 1) 

617 

and this is how the news looks on a typical newspaper 
page (Figure 2) . 

Or this example: An entry from a parts catalog as it 
might appear on a computer printout (Figure 3) and 
the same data displayed using typography (Figure 4). 

The point, of course, is that typesetting makes it 
possible to mix sizes, type styles and different layouts 
in order to present information with greater efficiency, 
leading the eye, providing ready visual tags to aid re
trieval, defining the nature of the information and or
ganizing it for ready reference. Typography is a com
plex language which can support or overwhelm the 
message it carries, and mastering this language re
quires similarly complex commands. 

The catalog entry shown, for example, required 104 
separate instructions imbedded in the text to select 
type style, size, line length and so forth, all in compos
ing a block of about 210 words. The development of 
computer systems to control typesetting has been a sur
prisingly difficult task. In the ten years since the first 
work was done on computer assisted typesetting we 
have only accomplished half the things we knew then to 
be possible. Hyphenation and justification have been 
done as well as stored formats, tabular work, run 
arounds and rudimentary pagination, but there is still 
no generally accepted system to handle the simultane
ous composition of multiple columns, copy fitting, lay
out assistance, complex chemical and technical type
setting or proofreading, through each was foreseeable 
as early as 1967. 

Typesetting systems today are about where business 
data processing systems were in the days of the 1401, 
batch oriented, close operator involvement, lots of 
home-grown software around, little or no full systems 
integration and occasionally brilliant installations in 
a general population of ill-fitted, commonplace and 
troubled efforts. 

There are about 800 such typesetting systems in
stalled in the United States today (Figure 5). The 
earliest of these-the IBM 1130-was equipped with 
excellent field developed software and became widely 
popular in the late 1960's although it was only a pro-



618 National Computer Conference, 1976 

l ': C 1 , 1 II , 2 ':l , 1 2 J l v t d r t 11 U r .j. 1 itt l e ~ t ~ r y 1 

C I J ""1 p!~ i~" V U ALI F' 1 CAT I [JrJ:; A K r H URI). L 1 TTL r., 1 N C. A r = 
(. n u r L I. Lit t ! e, 1 n c. i son e 0 t t n e 'v\ 0 rid • sol (] e 5 t, 1 rt r g est, (~ n d m 0 S t d 1 

v ~ r sit i e (1 res e·3 r c h, ell q i nee r in q, and m n n t3 9 erne n t con S u 1 tin q 

oroaniz~tions. Establisned in 1~8b, ADL has a statf of more than 

1,5UO oersonnel witn neadquarters offices and laboratories in Cam= 

D rid ~ e, n ass a c nus e t t s, 0 f f ice 5 i n ;"J d 5 h i 11 q ton and San f ran cis co, 

Ii n d 5 U t,(i~d i a r i e sin Can a d a, H r a z i l, Lon d 0 f', I:' d r is, and 8 r u 5 s e 1 s • 

jvl 0 ret ii·=i n n a 1 f 0 t 01] r s tat f i 5 com p r i sea 0 f sci en ti s t san den gIn e e r s 

re;:rt·>s;.~:")tl"1'1 nedrly ever}' field ot science, tect1nology, and business; 

~~ are t~us aole to provide a uniquely comprehensive approach to 

t:H~ solution of sCientific, technoloqical, rnanaqement, and economic 

prOblef11s./l 

~e n3ve available witni~orr or~anization a combination of highly 

qUdlified technical, scientific, and mandlerlal talent: extensive labO= 

rdtories, computer facilities, and tdbrication facilities which permit 

us to cdrry a croject trom the initial te~sioility and system analysis 

stayes throuqh to the faorication ana testing of experimental pro= 

totyoes ot completed specialpurpose hardware./l 

we are, by the nature of our organization, committed to the purely 

o~jective treatment of tnose proolems we undertaKe to investigate. 

AS an inaependent, protlt-mak1ng research orqanizatlon, we are criti= 
~ 

cally dependent upon originality of thouqht and impartiality ot judg= 

ment in prosecutinq our ~ork. Our task has Often been to define 

Figure 1 



Power Pioneers 
Some Small Innovators 
Heat Homes by Sun, 
Light Them by Wind 

Experimenters Find Gadgets 
Expensive but Satisfying; 
Research Funding Elusive 

Disguising a Tank as an Urn 

By DAVID BRAND 
StafJ Reporter 01 TBII WAt;L STun JOUllN.lL 

TIJERAS, N.M. - 80 - far as Robert 
Reines 1s concerned, Arab cOlDltries can 
turn otf the oil tomorrow and electricity 
costs can go through the root. He 1a tnau. 
lated trom all that. 

Mr. Reines lives in a Igloo-llke white 
dome that gets its heat from the sun and its 
electricity from the wind. 

The dome home is on a .hillside some 20 
roUes from Albuquerque. At nigh~ with the. 
lnslds lights shl.'l!.'1g through the dome's 
portholes, the acene 1a remJn1acent of an H. 
G.· Wells futuristic novei, In fact, Mr. 
Rein!!s seea himsel! u pioneering an age 
when whole communltie. w1l1 be energy
lufficient. 

"I have freedom because I have all the 
energy I need, and that'a reai freedom," he 
says with a fervor that almost bristles. 
Sun Buaine&8es BIOlJlOm 

Already In the U.S., acCording to & Uni
versity of Colorado survey, are nearly 200 
Bolar-heated houses built. under construc
tion or planned. To equip these homes, more 
than 100 solar-equtpmeht makera have 
emerged, many of them small, backyard 
concerns. The solar·power market, accord
ing to a stUdy by the research finn of ~ 
thur D. Little, could reach $1.3 bUlion by 
1985 lIif industry, with effective government 
support. moves ahead promptly to introduce 
solar hardware into the marketplace." 

Now this hardware is high-priced. U's 
largely handmade from expensive matertala 
such as copper, anti large amoWlts of the 
materials a.re necessary. A commonly used 
rooftop solar panel is a glass-covered alumt
num or steel tray in which intifreeze, water 
or a.ir 1a heated 8IJI it moves through black· 
ened copper tubing. In many part. ot the 
U.S., such heat collector. must cover at 
least 50% of the roof surface to provide 
about 80% of a bouse's central heating. 

Word Processing and Typesetting Systems 619 

Bonanza forecast for 
US communications 
CAMBRIDGE, tv1ASS: Ail ex
ptosive grCJWth in electronic 
business communications, 
brought about by a combina
tion of advances in techno
logy and changes in regula
tions, has been forecast by 
two membp.rs .. of. .the staff of 

... !""!_ c __ 1 __ .......... __ .• _ .... 
VI\;c:' lUI IC':':' i11'"lry-_ 

One impiicat ion of new 
developmtnts is that thl' 
volume of mail now associated 
with business operations may 
be limited as electronic devlct's 
with increasingly attractive 
cost/performance character-
istics offer this opportunity. 

ADL Predicts U.S. Telecommunications 
User Bonanza 
"In the early 1980s, U.S. 
telecommunications users in business 
and government will be treated to a 
bonanza-new services, more service 
options and flexibility, much wider 
choice among suppliers and 
significantly revamped rate structures. 
In some cases they will literally be 

TELECOMMUNICATIONS, 
Mar., 1975 

Communications 
Services To Expand 
h~ the Next Decade 

attractive cost/performance 
characteristics will offer significant 
opportunities to limit the volume of 
mail now associated with business 
operations. In 10 years they may even 
begin to affect the amount of business 
travel if the result of current 
teleconferencing experiments prove 
encouraging. 
According to Roetter and Shapiro: "In 
1974 total U.S. telecommunications 
expenditures by business and 
government were approximately 
$18-20 billion, compared with mailing 
costs of $8-9 billion and travel 

In the early 1980's US telecommunications users in business and 
government will be treated to a bonanza-new services, more service 
options and flexibility, much wider choice among suppliers, signifi
cantly revamped rate structures. In some cases they will literally be 
getting more service for less money, Martyn Roetter and Peter S.hap
iro predict in their current Arthur D. Little IMP ACT study, Busmess 
Communications, 1975-1985. 

New telecommunications services only now in their infancy will 
playa major role in business communications by 1985, they observe. 
Electronic devices with increasingly attractive cost/performance 
characteristics will offer significant opportunities to limit the volume 
of mail now associated with business operations. In ten years they 
may even begin to affect the amount of business tzavel if the results 
of current teleconferencing experiments prove encouraging. 

According to the authors totai US teiecommunications expendi
tures by business and government were approximately $18-20 billion 
in 1974, compared with mailing costs of $8-9 billion and travel ex
penditures of $16 billion. Even though telecommunications expendi
tures may be a bit slow in 1975, they should experience healthy 
0:owth throu~h 1980. reachin~ some $30 billion bv then. 

Figure 2 



620 National Computer Conference, 1976 

DUAL-CAPACITY GAS WALL FURNACE 
WIT~-HI AND La HEAT. 2-SPEED FAN S229.95 

50.000 
BTUH 

5) TWO-SPEED FAN CYCLES AUTCMATICALLY BETWEEN HI AND LO FOR HEATING CA~ ALSO 
BE USEO FOR CONTINUOUS AIR CIRCULATION IN SUMMER WITHOUT HEATING. TWO

STAGE BURNER IGNITION. MANUAL SELECTOR ON GAS VALVE FOR HI OR LO GAS INPUT. 
BEIGE ENA~ELED STEEL CABINET VINYL WOOD-GRAINED CONTROL-PANEL. CAN BE WALL-MOU 
-NTED OR RECESSED INTO SINGLE STUD SPACE. VENTS FROM DRAFT DIVERTER AT TOP •• USE 
~-INCH GAS VENT KIT 42 AY QS767N (SOLD BELOW). ORDER OPTIONAL REAR REGISTER KIT 
AND BACK VENT KIT BELOW. FURNACE MEASURES 72 INCHES ~IGH. 14 INCHES WIDE. 

50.000 BTUH MODEL 10 1/2 IN. DEEP WALL-MOUNTED. 6 5/8 IN. DEEP RECESSED. 
FAN 300 CFM. MAXIMUM USES 106 WATTS. 65.000 BTUH MODEL 14 IN. DEEP WALL-MOUNT 
-EO. 10 1/8 IN. DEEP RECESSED. FAN ~35 CFM MAXIMUM USES 186 WATTS. 

t-IGH INPUT 
50.000 B TUH 
65. 000 BTUH 

LOW INPUT 
30.000 STUH 
40.000 BTUH 

"'ATURAL GAS 
42 AY 73631N 
42 AY 73632N 

LP(BOTTLEO)GAS 
~2 AY 73635N 
~2 AY 73636N 

SHPG. WT. 
100 POUNDS 
125 POUNDS 

PRICE 
S229.95 
$264.95 

REAR REGISTER KIT FOR FURNACE (5) ABOVE. SuPPLIES LIMITED TO HE-AT ROO'"' 3EHIND 
FURNACE THROUGH REAR WALL. INCLUDES REGISTER WITH DAMPER AND FITTINGS. 
~2 AY 7310 - SHIPPING WEIGHT 6 POUNDS ••••••••••••••••••••••••••••••• KIT ~12.00 

•• ******** ESTIMATED CHARGE FOR PRINTING 53 LINES IS $.06 

Figure 3 

duction system and allowed no text editing or format
ting. 

The CSI Photo set and the Digital Equipment Type
set 8 were competitors to the 1130, the Logicon and 
Sun Com systems were imitators-literally seIling the 
same 1130 with slightly different software. All of 
these products did hyphenation and justification and 
formatting, much of which can now be done within the 
typesetter itself;; 

Group C on this table represents the main contenders 
in the market of the early 1970's. Typically they use 
a 32K PDP-8 or Nova to support a 2.5 megabyte disk, 
8 video terminals, an optical scanner and an interface 
to the phototypesetter. These are dedicated systems 
with vendor software and almost no general-purpose 
capability. Rarely are these systems even sold with a 
compiler. They handle classified ad production for 
newspapers, text editing, limited file management and 
occasionally crude operator statistics and production 
reports. 

Dual-capacity Gas Wall Furnace 
with Hi and La heat, 2-speed fan 

In Group D are the larger systems in the market 
today: DEC's Typeset 11, the large Hendrix text edit
ing system, SDC and the large Tal-Star system. Prod
ucts in this group typically support 32 to 64 video ter
minals and have been sold almost exclusively to large 
metropolitan newspapers. Some of them do limited 
business data processing. 

The last group includes the very big systems. DEC 
has written a full typesetting system for its PDP-10. 
Harris has built several large systems based on the 
PDP 11, and there are several major daily newspapers 
who have written their own software for the IBM 370. 

A note on systems which do not appear on this table: 
IBM has announced but to my knowledge not delivered 
a typesetting system for the 370 called Printext 370. 
Univac has announced a typesetting system called 
Newscom. Dolphin Graphics has acquired the U.S. 
marketing rights for MOP AS, a European system of 
some promise and there are at least six other suppliers 
of typesetting systems in varying stages of specula-

-22995 50.000 
Btuh 

5 Two-speed fan cycles automatically between Hi and Lo for heating; can also 
be used for continuous air circulation in summer without heating. Two-stage 

burner ignition. Manual selector on gas valve for Hi or Lo gas input. Beige enam
eled steel cabinet; vinyl wood-grained control panel. Can be wall-mounted or 
recessed into single stud space. Vents from draft di.verter at top .. use 4·inch Gas 
Vent Kit 4Z AY 98767N (sold below). Order optional Rear Register Kit and Back 
Vent Kit below. Furnace measures 72 inches high, 14 inches wide. 

50,000 Btuht model: 10\12 in. deep wall-mounted, 6% in. deep recessed. Fan 
300 CFM* maximum; uses 106 watts. 65,000 Btuh model: 14 in. deep wall
mounted, 10% in. deep recessed. Fan 435 CFM maximum; uses 186 watts. 

Rear Register Kit for furnaca (5) above. Supplies limited heat to room behind 
furnace thro'!8h rear wall. Includes register with damper and fittings. 
42 AY 731O-Shipping weight 6 pounds ...................... __ ..... Kit 912.00 

Figure 4 



Systems 

Group A 

Group B 

Group C 

Group D 

Group E 

IBM 1130 

CSI Photo Set, DEC Typeset 8 
Logicon-Intercomp, Sun Com 

DECset 8000, Dymo CPS 500 & 
700, Tal-Star 1000, 
CSI 24/32, Hendrix, Harris, 
.i\.tcx 

DEC Typeset 11, Hendrix 3400, 
SDC Text II, Tal-Star 4000 

DEC Typeset 10, Harris, IBM 
370 with field developed soft-
ware 

Sys-
tems 
In-
stalled 

300 

225 

180 

60 

35 

800 

Average 
Price 

$50-75K 

$60-150K 

S100-300K 

$300-700K 

$700K-1.6M 

<1'1 oc Ollif 
tp.LtJu.u .... y.l. 

Figure 5-Computer Typesetting Systems Installed 1975 

tion, product announcement, and field testing. The 
most interesting non-system is the Newspaper Systems 
Development Group, a consortium of eight U.S. news
papers who have contracted with IBM's Federal Sys
tems Division to design and build a full page composi
tion system capable of halftone composition, layout 
assistance, full page make-up and multi-column com
position. It does everything we think a computer can 
do for a newspaper and a few things over which there 
is healthy debate. The project is over budget and at 
least two years behind schedule. 

But the U.S. Printing and Publishing Industry has 
been willing to spend over $700 million on new tech
nology in the past five years (Figure 6), primarily on 
phototypesetters and small production oriented com
puter systems. Newspapers have been the most aggres
sive sector here, and for good reason: payout on a 
typical newspaper system can be achieved in less than 
18 months if the labor situation is right. Newspapers 

COMPOSITION SYSTEMS SALES: 1970-1975 

Component Unit Sales Value 

Typesetting Computer Systems 500 $100M 

Optical Scanners 2,000 $60M 

Editing Terminals 3,500 $35M 

Phototypsetters 20,000 $500M 

$695M 

COMPOSITION SYSTEMS SALES: 1976-1980 

Typsetting Computer Systems 1,500 $220M 

Optical Scanners 2,000 $50M 

Editing Terminals (including video 
display word processing equipment) 25,000 

Phototypesetters 25,000 

Figure 6 

$250M 

$400M 

$920M 

Word Processing and Typesetting Systems 621 

report that conversion from hot metal to computerized 
photocomposition has cut as much as 50 percent off 
their composition and production costs, often equiva
lent to an increase of 10 percent in profit before taxes. 

Over the next five years the market is likely to be
have some\vhat differently. A major increase in small 
word processing and text editing systems sales is ex
pected, with floppy disk-oriented systems available for 
below $50,000. Optical scanners are likely to lose sales 
momentum and may in fact experience declining sales 
by 1980, functionally replaced by communicating ter
minals and word processing equipment. And I think 
it's clear now that Xerox, Redactron, IBM, Digital 
Equipment and others intend to turn memory and dis
play typewriters into a billion dollar a year business 
by 1980 with the probable result that at least 25,000 
communicating and display type"writers '\vill become 
terminals for typesetting systems. Phototypesetters 
will continue to sell, though at a lower price. At the 
center of this growth is an enormous potential for 
small and distributed computer systems which not only 
can meet the composition needs of the user but also can 
perform file management, message switching, data 
storage and retrieval by key word or subject as well 
as inter-computer communications. 

It is probably useful at this juncture to point out 
that there are more than 30 suppliers now trying to 
capture a share of this market, with only four achiev
ing annual sales over $10 million and at least 12 oner-
ating on sales of $2 million or less. ~ 

Who will the customer be over the next five years? 
(Figure 7) Certainly the printing and publishing in
dustry is the primary target and within that the daily 
newspaper continues to be the most attractive sector. 
although our own figures are now suggesting a greate~ 
saturation of that market than most other forecasts 
indicate. 

Establish-
Number of ments Annual Percent 
Establish- with 20+ Composition of 

:Market Sector ments Employees Volume :Market 

Daily 
Newspapers 1,770 970 55M Words 86% 

Weekly 
Xewspapers 9,500 300 .9:M 1 

Magazine 
Publishers 2;500 500 .5 1 

Book 
Publishers 1,200 300 1.9 3 

Miscellaneous 
Publishers 2,000 250 .4 1 

Commercial 
Printing 22,400 3,800 1.0 2 

In-Plant 
Publishing 48,000 5,000 3.8 6 

87,340 11,120 63.5 100% 

Figure 7-The U.S. Market for Typesetting Systems 



622 National Computer Conference, 1976 

While there are a great number of establish
ments-an astonishing number, really-less than 13 
percent of these shops have more than 20 employees, 
a minimum number in my opinion to qualify the es
tablishment as a potential site for a computer-based 
typesetting system. (Smaller shops will certainly buy 
phototypesetters and some may buy stand alone edit
ing terminals, but few will be able to spend more than 
$30,000 on composition systems.) We have to ask a 
second question: How much typesetting is done? Fewer 
than a thousand newspapers, for example, set 55 mil
lion words a year while more than 3,800 commercial 
printing shops set only a million words. Analyzing the 
market this way suggests that of establishments with 
more than 20 employees, 970 daily newspapers set 86 
percent of the type and therefore still constitute the 
giant share of the market. But the same 970 news
papers probably account for 650 of the typesetting sys
tems already installed, leaving an untouched market of 
little more than 300. 

Weekly newspapers, magazines and book publishers 
present perhaps a more interesting opportunity. There 
are 1,100 potential systems sites here and we estimate 
that only 150 systems have been installed. The oppor
tunity for composition savings is not as great in these 
sectors and the publications are less sensitive to dead
lines, therefore less demanding of speed. But major 
magazines have installed such equipment and are look
ing now for communications capability, and book pub
lishers are trying to sort out the choice between word 
processing and communicating text editing. 

The In-Plant market at the bottom of this figure is a 
tantalizing puzzle. Major corporations maintaining 
their own print shop will certainly buy typesetting sys
tems. How medium-sized businesses ($25 million to 
$100 million) respond will be influenced dramatically 
by the shape of new word processing systems. Let me 
take the last few minutes to describe how I think this 
market will evolve. (Figure 8) 

It is probable now that the sale of memory and com
municating word processors will grow at a rate of 21 
to 25 percent per year, reaching an installed popula
tion of 750,000 in 1980. The equipment will be used by 
secretaries and in administrative service centers to 
prepare reports, letters, legal documents, telephone di
rectories and memorandums, many of which will be 
simultaneously stored in machine compatible media 
like magnetic card, cassette or floppy disk. This is the 
so-called word processing market. 

We expect another development to occur at the same 
time: the general adoption of mini-computer based 
text editing and composition systems. By 1980 there 
will be as many as 1000 of these in medium to large 
businesses preparing formal reports, pamphlets, manu
als, large directories and catalogs. This is what we re
fer to as the in-plant publishing market. It is obvious, 
I think, that in a short time these two independent com
ponents-the word processing world and the text edit-

Secretarv 

In-Plant 
Publishing 

Mail Room 

Mail Room 

Secretary 

Reader 

Word Processing 

Text Edit 
and Typeset 

Facility 

Text Edit 
and Typeset 

Facilitv 

Word Processor 

Figure 8 

File~ 

Central Business 
Computer 

ing world-will begin communicating. Material drafted 
on word processors will be composed in a central fa
cility, long contracts stored in a central computer will 
be retrieved by the word processor to be revised. Prod
uct definitions will blur-"Is it an intelligent terminal 
or a communicating word processor." Alert suppliers 
will identify and provide a full range of compatible 
products and we will hear advertising slogans that talk 
about a "total information system." 

And there is another development possible. In our 
own work evaluating and sometimes designing such 
systems we have seen cases where communications 
capability was required not only from the remote ter
minal to the central facility, but from the central fa
cility to the main business data processing system and 
occasionally from facility to facility over packet 
switched communication networks or even dial-up 
lines. 

What we are talking about here is a new business 
communications system that will provide a rapid, low 
cost alternative to the present process of typing, du
plicating, mailing, distributing and filing. This has 
some important implications for those who would par-



ticipate in the market. It means message switching, 
privileged access, hierarchical organization of files and 
cross indexing, all this in addition to the communica
tions and support systems. 

For years we have used the phrase data processing 
to mean the manipulation of measurements. With the 
rapid introduction of computers to typesetting, text 
editing and word processing we are beginning to pro
cess ideas, to gather and select them, store and retrieve 
them, to format and present them in a way that will 
enhance their meaning. The associational structure of 
ideas and messages differs profoundly from the struc-

Word Processing and Typesetting Systems 623 

ture of numbers and we will need new strategies for 
storage and retrieval. The typography of an idea is no 
less important than the design of a complex statistical 
report, so we will need new commands, perhaps a new 
composition language. But the opportunity is enor
mous and the rewards for both business and society 
are rich. As computers become smaller, cheaper and 
more powerful we have the chance to use them for 
more than the measurement of work accomplished, we 
have a chance to move them out to the work site itself 
to speed and clarify the communications on which that 
work is based. 





The computer as a tool in the processing of text 
for periodical publications 

by 'VILLIAM J. HAMMOND 
Publisher's C01npu-Type Service, Inc. 
New York, New York 

ABSTRACT 

This paper traces the introduction and initial appli
cations of computer technology into the magazine pub
lishing industry. It reviews developments leading up 
to our present state-of-the art. It continues with an 
overview of today's systems. And, it concludes with a 
preview of future advancements designed to enhance 
the publishing of periodicals. 

Since its introduction into the typesetting process in 
the early 1960's, the computer has proven itself to be 
not just a useful tool, but an almost indispensable one, 
in all areas of the publishing field. The techniques of 
setting type photographically had been successfully 
mastered in the late 1950's. The marriage of the com
puter to phototypesetting freed both the typographer 
and the publisher from the limitations and the con
straints of three dimensional "hot metal" typesetting. 

The first functions assigned to computers were those 
involving "end of line" decisions resulting in the jus
tification of a line of type. Justification is the process 
of making a line of type fit evenly within the specified 
line measure. The computer freed the keyboard oper
ator from having to determine when and how to hy
phenate words, and from calculating how much space 
to allow between words. Thus freed, the operator 
could concentrate on improving the speed with which 
he could convert a manuscript into coded paper tapes 
to be processed by the computer. A new, justified 
paper tape version of the story could then be typeset on 
a phototypesetting device. 

In the late 1960's, automation of typesetting pro
cesses began to make real progress as a result of the 
introduction of minicomputers. The "minis" may not 
have been as fast at internal computations as their 
big brothers, but they were fast enough to perform the 
many repetitive calculations involved in the justifi
cation process tirelessly and accurately, and still keep 
up with the relatively slow speeds of input and output 
peripherals. The comparatively low cost of mini
computers permitted the widespread introduction of 
computerized typesetting systems into an industry 
composed largely of small shops. 

625 

Initial acceptances of computerized typesetting in the 
publishing field were in the newspaper, book and cata
log fields. Newspapers were quick to capitalize on the 
speed advantages offered by computers while books 
and catalogs found justification in their use based upon 
reprocessability for republication purposes. Periodical 
publishing lagged behind in its use of the computer 
because of its one-time usage of typeset matter and the 
relatively high degree of alteration of text prior to 
publication. 

The introduction of "minis" not only permitted the 
widespread use of computers in the industry, but 
allowed systems to be developed with sizable on-line 
mass memory and more sophisticated programs to 
handle storage and editing requirements as well. Lees 
look at editing for a moment. Editing is the process 
of making words suitable for public presentation. It 
does this by performing a number of functions such as : 
selecting, compiling, writing, rewriting, altering, and 
formatting. The purpose of editing is to bring about 
conformity with a set of standards to suit a particular 
purpose. These standards, generally set by the pub
lisher, might include: clarity of meaning; accuracy 
of spelling and hyphenation; and an effective or pleas
ant appearance of the final printed product. Editing 
is, in fact, a process of manipulation; manipulation of 
text, of words, of data. And, data manipulation is a 
process that readily lends itself to the electronic tech
nology of computer processing. It is only natural that 
computers should prove to be useful and valuable tools 
for facilitating the text editing process. 

Today's computerized typesetting and text process
ing systems are a far cry from those of 10 years ago. 
A modern system will include one or more powerful 
minicomputers. It will accommodate a wide variety of 
input and output devices. It will employ large random 
access disc systems for one-line storage and video dis
plays for on-line editing and updating of files. And, it 
will have data communications capabilities to handle 
remote input and output to remote printing and pub
lishing locations. 

The modern computerized typesetting and text pro
cessing system affords periodical publishers and editors 
a number of facilities to improve their functions. 



626 N a.tional Computer Conference, 1976 

First, and foremost, is control. For the first time in 
many instances, control of how, when, and where type
setting is done is in the hands of the periodical pub
lisher. Consistency and accuracy in typographic speci
fications and style integrity can be guaranteed. A 
publisher no longer has to depend upon a particular 
shop, or more likely a specific individual, to interpret 
an editor's marginal notes concerning style. A few 
simple control codes can cause the computer to recall 
preprogrammed rules concerning: the type faces and 
sizes to be used; the relationship of various elements of 
the story; rules for the usage of intraword spacing; 
specific rules for word hyphenation and exceptions to 
those rules, etc. 

The physical layout of text columns on a page is 
easily controlled. A predetermined size and shape for 
any column of text can be given to the computer and it 
will mold the text to fit the desired configuration. Both 
regular and irregular shapes of blocks of text can be 
used, resulting in more artistically pleasing relation
ships between text and illustrations on a page. Entire 
pages can be composed electronically with all typo
graphic elements assembled in their proper position, 
thus saving both time and cost of assembling the ele
ments by hand. 

The correction processes are greatly facilitated by 
changing only the words or the individual characters 
requiring change. Formerly, changing even one letter 
on a line necessitated resetting the entire line; chang
ing a word often involved resetting several lines. One 
of the great dilemmas of a publication editor has finally 
been resolved. Often, an editor had to decide between 
making the most effective change from the point of view 
of clarity of meaning, which could result in massive 
resetting of type, or making a less effective change and 
avoiding costly and time consuming resetting. Since in 
today's systems, the text stream and configuration of 
text columns operate independently, the editor no 
longer need hesitate to make the most effective changes. 

We are living in the midst of what has often been 
referred to as an "information explosion". The need 
to know is steadily growing, and timeliness is being 
equated with newsworthiness. This is as true of the 
monthly trade magazine as it is of the national news 
weekly. The modern computer system is satisfying 
this need too. It has permitted tightening of schedules 
to the degree that news stories can break within hours 
of the time the presses must roll and still make the 
edition. Turn-around times for both original type
setting and corrections are such that many news maga
zines have justified systems on that basis alone. 

Freedom from fear was promised 200 years ago, but 
it has only recently found its way into periodical pub
lishing. With a modern computer system incorporat
ing a high speed data communications network, pub
lishers of large volume national news weeklies have 
been able to print identical, accurate versions of the 
news in multiple printing locations. They can now en-

joy the advantages of multiple distribution points with
out the fear that different printers may have slightly 
different versions of the news. Control is in the hands 
of the pUblication. All magazine publishers, at one 
time or another, know the fear of having to move 
from one printer to another. Invariably, the most 
traumatic part of the move is the disruption and chaos 
resulting from moving the typesetting operation. "That 
little old typesetter with the green eye shade is the 
only person in the world who knows what the editors 
want !" With an in-house, or nearby service bureau 
handling the typography, the transition can be made 
without having to change editorial practices or pro
cedures. Possibly the greatest fear of a publisher is 
the sudden, unexpected loss of services of the printer. 
Again, with the service bureau at hand, the publication 
is free to locate and switch to a new printing facility 
on a moment's notice without fear of major disruptions 
in its editorial process. 

Control, freedom, and flexibility make the computer 
an invaluable tool in the periodical publishing indus
try. These factors have taken typography out of the 
manufacturing process and put it back into the pub
lishing process where it started. 

What of the future? What additional benefits can 
the publisher look to derive from the computer? 

Many of the future benefits of computer usage are 
on the drawing boards and in the laboratories right 
now. The periodical publisher can look forward to 
systems that not only generate his typography, but 
also produce his illustrations; thus giving him the ulti
mate in control of the pre-press processes. In the 
area of marketing and distribution, computers will 
permit the manufacturing of personalized editions of 
his magazine for each individual subscriber. Adver
tisers will be able to direct their messages to highly 
specific audiences getting maximum effective exposure 
for their advertising dollar. Through modeling tech
niques, publishers will be able to specify the optimum 
combination of components in an issue, or they will be 
able to predetermine which of a number of suppliers 
is best able to produce a particular product. Of course, 
data base publishing will come into more and more 
sophisticated use. Libraries of past issues can be 
easily retained on magnetic tape with possibilities 
opening up for indexing, abstracting, and reprinting 
in new formats. Finally, with the perfecting of graph
ics generating typesetters, micro-publishing will begin 
to make inroads into conventional publishing methods. 
Someday, maybe soon, magazines will be entirely pro
duced on microfilm or transmitted electronically di
rectly into the subscriber's home. 

If this sounds like "blue sky," just reflect for a 
moment on how far electronic technology has pro
gressed in the past ten years, or even in the past five 
years. As technology continues to make giant steps 
in progress, that "blue sky" will rapidly come down 
to the solid reality of ground level. 



The integration of microfilm and the conlputer 

by DENNIS R. NEARY and TERRENCE H. COYLE 
Eastman Kodak Company 
Rochester, ~~ew York 

and 

DON M. A VEDON 
National Micrographic Association 
Silver Spring, Maryland 

ABSTRACT 

A discussion of the nature of information and how 
data flows through a basic data processing system. The 
key functions of INPUT, PROCESSING, and OUT
PUT are reviewed, with emphasis on data capture and 
output reporting. After a typical information system 
is described, the various places where micrographics 
fits are analyzed. Microfilm is shown as a complement 
to the modern information system. The basic micro
graphics concepts are discussed. Rotary and planetary 
cameras are explained, as well as the various micro
forms that they can be used to create. Coding tech
niques and retrieval equipment are reviewed, and the 
value of microfilm as a storage medium is explored. 
The nature of the COM concept is explored to establish 
where and in what situations it may, or may not, be 
valuable. Cost justification is explored as well as sys
tems benefits. COM technology is explained, and the 
future of COM will be projected. An exploration of 
the concept of capturing source documents in random 
sequence on microfilm and using a computer generated 
index to assist in retrieval. The actual hard wire inter
face of a computer and a microfilm display device will 
be discussed. The future of computer assisted retrieval 
will be projected. The integration of data capture and 
microfilm will also be discussed. A projection on the 
status of data processing five years from now, and 
how microfilm will fit in the information systems of 
the 1980's. 

INFORMATION FLOW ANALYSIS 

In analyzing any basic data processing system, the 
major operations can be divided into input, process
ing, and output. Data is abstracted and captured from 
source documents, converted to machine language, and 
electronically transferred to the central processing 
unit, which processes that raw data in conformity with 

627 

a standard application program. As a result of that 
processing, master files are updated and maintained, 
transactions are reported, and current status is up
dated and reported. The reporting has been done 
historically on paper and more recently with video 
images on CRT terminals. A third output image that 
has gained prominence in the last few years is the 
micro-image, created through computer output micro
filmers. 

The data processing system has undergone an infor
mation explosion. Bulging files, misfiled papers, long 
searches through millions of manila folders in thou
sands of offices all over the world, reams and reams of 
computer output, and expensive, complex on-line sys
tems have strangled the typical modern business. Let's 
take a closer look at a typical data processing system 
and see where the micro-image can begin to increase 
the effective utilization of the entire system. 

Information is first abstracted and captured from 
the source document. Keypunching, key to tape, key 
to disc, on-line terminals, and optical scanning are the 
major ways in which information on the source docu
ment is converted to machine language and ultimately 
transmitted to the mainframe. After the information 
is fed into the computer, what remains is the stagger
ing problem of sorting, filing, and controlling the ocean 
of source documents. See Figure 1. 

Source documents can be categorized as bulk file 
(unit data) or folder file (co-related data). Generally, 
bulk file consists of one type of document, and retrieval 
requires manual search of a paper file for one or more 
of these documents. Examples include checks, sales 
slips, time cards, stock certification, and the like. 
Folder file describes those groups of source documents 
which contain several types of inter-related data and 
require merging or updating. Examples include loan 
application files, insurance policy files, order entry files, 
and so forth. A key point in the definition of folder 
file is that folder file information requires inter-active 
updating. When a folder file becomes a dead record, 



628 National Computer Conference, 1976 

~~ or············· .. ································· ....................... . 
gji!::
~-. 

• CRT' 

$(.'II".t' 

O{Jcume!lf~ 

• CaldReadfot" ........................................................................... 
KODAK KOM MlaofilfT'lllf 

~ 
M.Igne'I,c Ink CharacTP' 
ReaderlM1Cl=ll 

IiiiiI 
~,., 

Figure 1 

or purged information, it is then considered bulk file 
information. Regardless of whether a source document 
is maintained in a bulk or folder file, the micro-image 
can provide two major benefits: space savings and file 
management. 

Space 

The benefits of space savings are important to any 
growing business. 

1. Opportunity Cost-The Micro-Image provides the 
opportunity to use expensive floor space for gen
erating profit, not storing files. 

2. File Location-The Micro-Image condenses files so 
that they can be located near the end user. 

3. Duplication-Too many duplicate copies of dead 
records are a problem in many office environments. 
The Micro-Image solves the problem. The user can 
retain one microfilm copy and create paper copies 
only when needed. If duplicate copies of the entire 
file are required for several users, they can be 
generated at lower cost, occupying less space. 

4. Expansiveness-Files can become so expansive that 
they not only occupy valuable space, but become 
unmanageable with both on- and off-premises stor
age. The Micro-Image can provide a 98 percent 
space savings, and virtually eliminate the need to 
selectively purge paper files. 

FILE MANAGEMENT 

The benefits of file manageability are benefits affect
ing the company's lifeblood, the flow of needed infor
mation. 

1. Operating Costs-Paper files are labor intensive, 
making for a wast~ of talent in an organization. 
The Micro-Image with automated filing and re
trieval helps reallocate talent, saving money for the 
prospect. 

2. Accountability-Files document business opera
tions, providing the basis for answering customer, 
management, or interdepartmental inquiries. The 
Micro-Image provides audit trial control over files, 
and eliminates the national average of nearly six 
percent of misfiles and lost documents in the source 
document area. The Micro-Image provides file 
integrity. 

3. Manageability-The Micro-Image organizes files so 
they are of manageable size and format. And it 
pulls these files together so that they can be easily 
co-related on request. The Micro-Image manages 
the file through automated information handling. 

4. Security-Paper can be easily tampered with, 
stolen, or destroyed. The Micro-Image is discrete, 
easily and safely stored, and can be duplicated with 
extra copies kept off-premises. 

5. Convenience-The Micro-Image assures that the 
record is there, or it simply does not exist. Records 
can be accessed faster and more easily with any of 
the available formats. 

6. Human Factors-Paper is essential. But after a 
message or order has been communicated and docu
mented on paper, the manual filing process remains. 
Automated Micro-Image systems can also provide 
job enrichment to reduce employee turnover. 

Microfilming of the source document can take place 
either prior to or subsequent to data capture. Micro
filming can be performed in such a manner that the 



information is accessible through various techniques 
which will be described later in this report. However, 
one approach which is gaining prominence in the re
cent past is the filming of the source documents in 
random order, and the assignment of a film address, a 
roll and frame number. This film address is captured 
with the other information passed on to the computer 
which in turn creates an index to the address by any 
number of parameters which the end user might re
quire, This index can be reported out on paper~ or 
can be maintained on-line, and allows the user to access 
information from a random film file with the assistance 
of the computer generated index. 

After the information is processed and master files 
are updated, the computer produces a large number of 
reports. These reports are typically printed out on an 
impact printer on paper. Another approach is to main
tain the report information on-line in a direct-access 
storage device and reference the information selec
tively through a computer terminal. The disadvantage 
of printing on paper is the tremendous time it takes
approximately 1,000 to 2,000 pages per hour-and the 
cost of paper and printing, and the problem of main
taining large volumes of paper reports for information 
retrieval. 

The disadvantage of the on-line approach is the tre
mendous cost to store all the information in the direct
access storage device, transmit the information through 
a telecommunications system to the terminal, and the 
software to control the entire teleprocessing system. 

A third alternative which has gained prominence 
in the past few years is a compromise between the two. 
Rather than maintain the information on-line at ex
treme cost, it is printed out; but not on expensive 
paper through a slow printer; but rather on inexpen
sive microfilm through a high-speed computer output 
microfilmer. Through this technique, users are finding 
that they can provide much more information faster 
to a wider number of users at a much lower cost than 
they could with either paper output or on-line CRT 
display. 

We have seen where microfilm is used to capture 
source documents prior to or subsequent to data cap
ture. We also see the part that microfilm can playas an 
output medium instead of a paper or a CRT image. 
These two disciplines can also be integrated to pro
vide a total information file which incorporates both 
paper, electronic image, and a micro-image. Consider 
source documents which are filmed and the address of 
that micro-image is passed through the computer to an 
output report. That output report is produced on a 
computer output microfilmer, and serves as the index 
to retrieve the source documents on microfilm. Another 
group of source documents is captured in the same 
way, but their particular output report is printed out 
on hard copy. A third group of source documents are 
microfilmed, and their address is maintained on-line 
in a direct-access retrieval system. N ow the user can 

Integration of Microfilm and the Computer 629 

retrieve source document information by either in
quiring to a file with an on-line CRT which directs the 
user to the image on film, or the user can reference a 
hard copy report which provides direction to retrieval 
to the source document on film, or the user can refer
ence an index on microfilm created by the COM, which 
also keys the end user back to the source document 
on film. 

To take this inter-relationship one step further, a 
CRT terminal can be interfaced to a microfilm retrieval 
device so that when an inquiry is made to an on-line 
data base, the resultant micro-image of the source 
document can be electronically transmitted directly 
to the microfilm reader and the image subsequently 
displayed automatically. Systems of this type have 
been installed and operating for several years, and 
promise to proliferate in the near future. Now in order 
to better understand the advantages the micro-image 
can play in a data processing system, we will take a 
closer look at how microfilm is actually created and the 
various ways in which it can be retrieved. We will also 
look in more detail at the concept of computer output 
microfilming-how it is done and what advantages it 
provides over on-line access and paper printing. We 
will then review the advantages of computer assisted 
retrieval and project the future of the integration of 
microfilm and the computer over the next five years. 

MICROGRAPHICS-INPUT AND RETRIEVAL 

Subject 

How microfilm is created and the various ways it can 
be retrieved. 

Topics to be covered: 

• Micrographic Concepts 
• Rotary and Planetary Microfilmers 
• Microforms 
• Encoding Techniques 
• Retrieval Techniques 
• Microfilm as a Storage Medium 

Theme 

A basic microfilm system follows a parallel path to 
a basic data processing system. Our first speaker has 
presented a hypothetical data processing system con
sisting of input, processing and output. Since my topic 
follows a parallel path to this flow, I will use this same 
model to show "How Microfilm Is Created and Re
trieved." See Figure 1. 

While we are dealing with two distinct disciplines, 
there is some common ground. You are concerned with 
the creation, movement and use of "data records"; and 
we in the microfilm community are concerned with 
the creation, formatting and use of "film records." 



630 National Computer Conference, 1976 

For our purposes today, I will be discussing two 
types of "film records" -roll microfilm and microfiche. 
When I refer to roll film I am thinking of a reel of 
film 16 mm wide and either 100 feet or 215 feet long. 
And when we discuss microfiche I am thinking of a 
sheet of film 105 mm high by 148 mm wiqe. See 
Figure 4. 

The parallel path I mentioned starts when we con
sider the data for the creation of both the "data record" 
and the "film record" is common-the same source 
document. You capture data magnetically and we cap
ture the image photographically on film. The parallel 
continues until the end of the information path when 
you visually display "data records" and we visually 
display "microfilm records." 

Let's begin our analogy by looking at input. You 
must extract pertinent data from source documents 
and enter it in your information system. You have a 
number of options-keypunch, key-to-tape, key-to-disk, 
on-line terminals and scanning. We are also interested 
in the input document, but from a different vantage 
point. We are not interested in extracting data, but in 
capturing the entire document image. To accomplish 
this task, there is one major option to consider-what 
type of microfilm camera do I use? 

There are two basic categories of source document 
microfilmers-planetary and rotary. While there are 
numerous models of each, I will treat them in these 
two broad categories. 

Planetary cameras are manual in operation. Docu
ments to be microfilmed are placed on a copyboard 
and by depressing an exposure button the image is re
corded onto microfilm. This procedure will be repeated 
from 3,000 to 4,000 times thus resulting in a completed 
roll of microfilm. 

This type of camera is normally used when dealing 
with large documents or for precision microfilming 
jobs. Those of you from industrial or engineering 
firms may be familiar with engineering drawing ap
plications utilizing 35 mm microfilms. 

When dealing with normal business documents how
ever, a rotary microfilm camera may be a better alterna
tive. Rotary microfilmers can be used to greatly increase 
the speed at which microfilming takes place. This is 
possible because of automatic feeding devices which 
allow for creating microfilm images on the fly. In this 
instance, microfilming speeds of up to 615 documents 
per min ute are easily achieved. Rotary microfilmers 
also offer other advantages, such as packing 15,000 
check size images onto a 100-foot roll of microfilm and, 
at the same time, pictures can be taken of both the 
front and back of a document. These features, as well 
as automatic numbering and indexing, can be accom
plished with no loss of throughput speed. 

Now let's move from the input devices to the medium 
on which the data will be recorded. In our data pro
cessing model, data will be recorded on some magnetic 
medium--:-tape, disc, floppy disc, etc. While the medium 

is generally magnetic, the format does change. The 
same holds true for microfilm. While the medium is 
always constant, it can take different formats. See 
Figure 4. 

16 mm roll film is still the most predominant format. 
Images are organized serially along the length of the 
film. We will explore how we locate an image in a few 
moments. However, if serial organization does not 
suit our needs, the roll of microfilm can be auto
matically cut up and added to a microfilm file folder 
called a jacket or film folio. This approach unitizes 
various pieces of data which have been received over a 
period of time. In this instance, the film file folder is 
identified by a descriptor such as account name or ac
count number. The folder then becomes the repository 
for all documentation relating to that descriptor. 

But let's go back to indexing. When you begin 
processing or moving "data records" you continually 
address (or index) the current location of that record. 
When microfilm is the medium, we must also be con
cerned with where images have been recorded. If a file 
is already serial we have no difficulty. A simple from-to 
label on the outside of the reel identifies the contents. 
The thousands of images on the roll can then be located 
by techniques such as codeline and odometer indexing. 
See Figure 4. 

Codelines appear as solid bars between the microfilm 
images. Codelines equate to the parameter by which 
the file is organized. As the parameter changes to a 
higher value, the position of the codeline also advances. 
As film is advanced in a microfilm reader, the codelines 
appear as a solid bar on the reader screen. By estab
lishing a scale on the side of the reader screen, film can 
be advanced until the codeline moves into the desired 
range of numbers. 

Odometer indexing operates on much the same prin
ciple as a home audio tape deck. By noting the footage 
locations of where a given song starts, we can at any 
time go immediately to that piece. The same holds 
true with microfilm, except that we would be noting 
where a given range of numbers or names are located. 
Codeline and odometer indexing are generally used 
when dealing with general records retention applica
tions. However, as we move into more dynamic en
vironments the ground rules change considerably. In 
our data processing model, input is normally in a batch 
or random mode. If we are to microfilm these docu
ments at random, we must then be able to establish film 
addresses for subsequent retrieval. 

Our first speaker established one option for this 
type of retrieval. When a document is microfilmed it is 
identified by a "roll and frame number." In the micro
film community this approach is referred to as image 
control of item address. This film address is carried 
through your processing cycle and is available by inter
rogation of your master files, or on a report generated 
by your system. Once the microfilm address is identi
fied, the proper roll of film is inserted in the microfilm 



retrieval device and the image control number is en
tered in the retrieval keyboard. The device then counts 
forward to display the information located at that ad
dress. See Figure 6. 

A second alternative for random microfilming oper
ates independent of computer processing for establish
ing the film location of a document. This technique in
volves the placement of a binary code on the microfilm 
adjacent to the image of the document. See Figure 4. 
The encoding takes place at the microfilm camera as 
the documents are being filmed. Retrieval is now ac
complished by interrogating your film files by the 
descriptors which were encoded; example, account 
number, invoice number, etc. At this point we have 
followed our model system to the point of output. You 
are all well aware of your options for making infor
mation available to your users. Your options include 
on-line terminals, printed reports, audio-response, etc. 

Our first speaker has already exposed you to Com
puter Output Microfilm (COM) as another option, and 
our next speaker will elaborate on the benefits of this 
approach. However, COM also introduces new micro
film formats and indexing techniques which I will 
cover briefly. 

Earlier I discussed two microfilm formats-16 mm 
roll film and unitized microfilm file folders. Both of 
these formats are available when utilizing COM. The 
first roll film is available for serially organized files. 
The second, the unitized format, is accomplished by 
automatically inserting images in a microfilm file 
folder. But now I would like to introduce two formats 
available from COM-35 mm roll film and microfiche. 
See Figure 4. 

35 mm roll film is similar to 16 mm roll film except 
that it is approximately two times wider. With 35 mm 
film, we can now print up to 16,000 images per 100 foot 
roll which is two and a half times our best alternative 
with 16 mm film. This is accomplished by printing 
five "tracks" of film images across the width of the 
film as compared to the two "tracks" available on 
16 mm. The 35 mm five "track" format is particularly 
desirable where an extremely large data base or report 
is to be converted to microfilm via COM. Microfiche 
is a 105 mm by 148 mm sheet of film which can hold up 
to 288 data pages. Each microfiche is easily titled by 
report name and from-to report information. An index 
can also be created to locate the column and row loca
tion for each image on that particular fiche. 

Microfiche is desirable for a number of reasons: 

1. Large reports which will be used by many people 
are split into more manageable units. A person 
referencing a microfiche only removes up to 288 
data pages from the file. By comparison, a person 
removing one roll of 35 mm film could be removing 
up to 16,000 data pages, thereby tying-up the file 
from any other user. 

2. Small reports can be easily produced on one or two 
microfiche. Using 16 or 35 mm roll film would 

Integration of Microfilm and the Computer 631 

create many reels of film only partially filled which 
would have to be maintained in the microfilm file. 

3. Perhaps the greatest advantage of microfiche is the 
low cost viewing devices which are available. Micro
fiche readers cost from $100 to $300, where a roll 
film reader could cost $1,000 to $2,000. I will come 
back to this point momentarily. 

The introduction of COM into our model system also 
provides new opportunities for indexing our microfilm 
outputs. 

Since the data to be recorded on microfilm is a 
product of your computer system, indexing can be ac
complished under software control. Software has been 
designed by most COM vendors to : 

1. Examine data fields to automatically generate code 
lines which correlate to the parameter by which 
the file is organized. 

2. Examine data fields to automatically generate re
trieval code used on Kodak Miracode equipment 
which corresponds to the descriptors known by the 
user of the file. 

3. Abstract data fields to create an image control in
dex to all data pages on a roll of film. This index 
page normally appears as the first image on a roll 
of film. 

4. Abstract data fields to create an odometer index 
to key points in the given report. 

An additional indexing technique not mentioned previ
ously is also available when using COM. This tech
nique, 

5. examines data fields anywhere on a page and prints 
it anywhere on the microfilm image as a large eye
ball code. 

See Figure 4 for a complete review of all microfilm
ing techniques. 

The eyeball code is the technique used to generate 
the title and column heading information on micro
fiche. However, this technique can be used most effec
tively on 16 or 35 mm roll film applications to make 
these formats more retrievable for end users. In this 
case the large eyeball characters are normally printed 
at the bottom of a data page and correspond to the 
information by which the report is organized. 

I fully realize that we have examined a great many 
concepts and new terminology in the past half hour. 
My intent has not been to confuse you, but to expose 
you to the tremendous flexibility of the microfilm 
medium. For you to use this information, it will be 
necessary for you to delve into the world of micro
graphics to determine which combination of microfilm 
cameras, microfilm formats, microfilm encoding tech
niques and retrieval options will best suit the needs of 
your organization. I will use an example to clarify this 
point. 

A moment ago I said that one of the greatest ad
vantages of using microfiche is the low cost of the 



632 National Computer Conference; 1976 

microfiche viewer. However, if we are dealing with an 
extremely large and centralized microfiche file this may 
not hold true. In this case it is conceivable that so 
many microfiche are created that a filing and retrieval 
problem is created. The result may be that the look-up 
time to retrieve an image is too long to satisfy a custo
mer telephone inquiry. To satisfy this situation maybe 
a more automated roll microfilm format will better suit 
your needs. Indexing and retrieval options such as 
binary code and image control can be used to support 
roll film applications. While these options may cost 
many times more than microfiche viewers, the im
proved response time may well justify the differential. 
Only a thorough analysis of all available options will 
result in the most cost effective format and encoding 
technique. When we go back and examine our model 
data processing system in Figure 1, I hope that you 
would now agree that the "creation and retrieval of 
microfilm" do follow a parallel path. In many cases 
the design of effective source document microfilm sys
tems will be dependent on your cooperation and imple
mentation. But hopefully microfilm· can do something 
for you as data processing people as well. This is the 
subject of our next speaker, so I will turn the pro
gram over to Mr. Don Avedon who will be discussing 
the COM concept and those situations where it may, 
or may not be valuable. 

COMPUTER OUTPUT MICROFILM 

We are a computer-dependent society. Thanks to 
computers, information can be stored, retrieved, ma
nipulated and otherwise dealt with at electronic speeds. 
We know the information we need is there-and we 
need it fast! 

For computer information to become human read
able in permanent form, the output typically takes the 
form of paper. These massive amounts of computer
produced paper contain more information for use in 
our society than ever before . . . but in a form that 
is extremely bulky, cumbersome to retrieve, time-con
suming to produce, expensive to store and costly to 
duplicate. As you know computers operate electroni
cally at the speed of light in manipulating information, 
but in the printing out of the information, these elec
tronic speeds are shackled to the slow speed of the 
paper-generating printer. While mechanical printer 
technology continues to produce higher and higher 
speed capabilities, accelerated paper printout today 
falls short of solving the demand for information when 
it's needed. 

Consider the large, familiar accordion-folded com
puter printout sheets. To get at this information in 
this form, pages have to be leafed through, heavy 
volumes must be removed from shelves or file drawers 
. . . to disseminate information in this form means 
carrying, mailing, trucking or otherwise transporting 
bulky, cumbersome material at appreciable effort and 

expense. To store information in this form means con
siderable expenditure of space and money. 

It does present a problem. We've all become so de
pendent on the computer that it is now part of our 
everyday lives both at work and at home. Paychecks, 
bills, reports, medical records, charge account files, 
business documentation, scientific data and virtually 
every type of information we need is now produced 
by the computer. The net result has been a data bottle
neck, instead of a smooth, even flow of information in 
immediate response to today's high-speed demands. To 
give us our information, impact printers grind out 
heavy, bulky, expensive reams of paper that we humans 
must spend time, bursting, collating, filing, binding, 
shuffling through and spending lots of money on mov
ing from place to place. Then we have to spend hours 
looking for what we want in a sea of paperwork. Com
puters have solved a lot of problems for us . . . but 
along the way they've created a lot of new ones! 

Fortunately, a way has been found to solve the data 
bottleneck dilemma . . . a way that gives us informa
tion when and where it's needed. It is based on the 
meshing of two of man's most modern technologies
computers and micrographics. We have a three-letter 
word for it--COM-Computer Output Microfilm. 
Briefly, COM is the process of converting the output 
of a computer directly into a human-usable form that 
can be read by people and recorded on microfilm. 
Think of COM as THE OTHER WAY to make the 
conversion. The paper way consists of the computer's 
familiar accordion-folded page-which may run for 
hundreds of pages. The COM process reduces the same 
information to microfilm, achieving an enormous re
duction in size. The result is a microform that offers 
many advantages which we will soon discuss. While 
speed output is not the major advantage COM pro
vides, it is significant that COM outpaces impact 
printers and even the newer page printers. 

Let's briefly review some speed comparisons and 
then move on to discuss the many advantages COM 
provides to its users. The line rate of the COM re
corder is 32,000 lines per minute. The typical impact 
printer in widespread general use in the average Elec
tronic Data Processing installation prints 2,000 lines 
per minute. As we mentioned, there are page printers, 
expected to gain increasing prominence which can 
function at 12,000 to 18,000 lines per minute and be
yond. So you see, one of COM's advantages is a speed 
factor 16 times faster than the impact equipment used 
in today's typical systems and twice the speed of the 
new page printers. 

So much for speed comparisons. COM's major ad
vantages emerge when we compare COM-produced in
formation with the same information in paper form. 
We will show how COM breaks the information bottle
neck by making information human-usable-cheaper 
and faster. 

Let's consider a typical computer printout of ap-



proximately 3,600 pages of 11 by 14-inch paper. The 
paper alone will cost about $35 and will weigh nearly 
40 pounds, filling a large carton. If you want to send it 
coast-to-coast, you have to spend approximately $11. 
If you COM-process the same amount of data into 
microfiche, it will weigh only two ounces and will con
sist of fourteen 4 by 6-inch microforms which can be 
mailed FIRST CLASS (and will actually travel as Air 
Mail) for less than fifty cents. Besides this, the mate
rials cost for the microfiche is under bovo dollars. COM~ 
produced information in such microforms as cassettes, 
rolls or cartridges will, of course, reflect reductions in 
comparison with our carton of paper. See Figure 2. 

We have talked about two advantages of COM: much 
greater speed and easier distribution. Before we go on 
to other advantages, let's pause and briefly examine the 
process by which data from a computer is converted 
into human-readable form and recorded on microfilm. 
Although the conversion process can initiate either di
rectly on-line from the computer, it is usually done off
line from a magnetic tape unit for reasons which in
clude not tying up mainframe time and equipment. 

From the computer or the magnetic tape unit, the 
electronic signals that comprise the computer's data 
move to the COM recorder. In the most widely used 
method, the signals are reformatted to permit their 
processing through a cathode-ray tube ... a CRT 
... where they become human-readable light images 

•• 

BASIC COMPONENTS 
OF A COM RECORDER 
While. they may differ subltantiallV from one another, the COM recorden in use today 
combine a number of basic functional sections to fulfill their task of oonverting COrn
PlIt8r-encodedbinaryinformatjonintohurNI"Ireadabieinformationonmiaofilm.The 
c:omponen1S of an alph"ullneric OOM recorder include: 

TAPE 
DRIVE 
ELECTROI<IC 
INTERFACE 

I""",SecIian 
This component receives 
binary dat,from the 
computer. Since most 
COM sysums lItilize off
line operation, the binary 
data is rec:eiWld from a 
magnetictapetrmsport 
unit. In In oo~inelVS1em. 
data isreceiWlddil1lCdV 
from ............... 
mainfr.rw. The Input 
Sectionsa1dsaneAecrrical 
slgnaltom.Logic:~on. 

CODE INTER 
PRETATION 
AND LOGIC 
CI RCUITS 

LogIc Section 
In this section. the input 
data is interpre1lKi and sub
jectedto logicconW!fSion 
to g81Wate the requirm 
s~lsforthelogic 
Mctions - such • film 
""""ipul~ion.ootpt.Jt 

=~:!:and 

Ai\ALOG 
CO_~VERSIO,~ 

Or DATA 70 
DEFLECTION 
CURRENTS 

ComwoianSection 
BiNiryClatarecelvedtrom 
the LogicSectionisoon
.....-mdtotheMWtfog 
.. ,....-ytodri ... 
thllldetiection.vKtdrspiay 
sections which convert 
th@dIt.atohl.mll"!!"e8d· 
abhtalphanumericor 
graphicintormation. 

Integration of Microfilm and the Computer 633 

Approx. 16mm lliaotilt,,- Microfiche ComputerP .... 
3500 Pages in a Cartridge Printout (preprinqd 
(11"x14'" singl. part forms' 

Weight {incl. One Roll 14 Fiche One Carton 
container or 70z. 20z. 40 Lbs. 
i!!!Vllol!!:l 
Postage 1st Class 1st Class Parcel Post 

One Roll 14 Fiche (1000 Miles) 
80 Cents 20 Cents $4.25 

Materials One Roll 14 Fiche One Carton 
Cost $4.50 $1.82 $35 

Figure 2 

which are microfilmed by a camera built into the film 
handling section. See Figure 3. 

The exposed film from the COM recorder now goes 
through processing. It is usually standard procedure 
at this point to make a security copy of the informa
tion to guard against loss or damage. See Figure 4. 
Let's look at the aspects of COM processing. For one 
thing, the system may be set to produce direct posi
tives-that is black-on-white--or reverse forms in 
which the text or other printed matter appears as 
white characters against a black surface. Doing this 
is simply a matter of photographic chemistry. Micro
graphics specialists maintain that many microforms 
achieve higher visibility when viewed "in reverse," 
but a positive black-on-white is better for producing 
hardcopy. 

-ControisthelXlSitioning 
oftheimages!or''wr·lting 
spot'1ontheCRTor 
directly on the film. 

\ 
\ 

.,..,..,-
Here the comput.--generat.d data 
iscorwerted into human readlble 
formthrotJ(tl (a. Cathode A.ay Tube 
CCRTl_Cb/EIecb'on-' 
"""" • .,.IEBRI.lel Loght
Eminlng Diodes (LEOs). or IeII 
!..!Iser Beere Aeocrdln; ~U!Rl. 
Each of these mI1hodswili be 
discussed in further detait on 
~13-14. 

FORMS 
PROJECTOR 

~~I~~ / 

• • • 

FlmIWdlngSection 
Consistsofa lens and the exposure 
and film handling mechanisms. 
It is in this section the hum.n readab&e 
images are photographically reduced 
and recorded on film. This section 
aIsocontainsthein'lporta"ltforms 
overlay function which allowspr:e
printed forms to be used in con
;unction with thedlta. 

.~ •••• '''I 
MIRROR 

MICROFILM 
TRANSPORT 

Figure 3 



634 National Computer Conference, 1976 

COM RECORDING FORMATS 
COM _ing ........... __ .. lD1imm I--"V 
cut into fiche Iile of 1O&nm If. 148mm). lImm, Iftd 18mm 
fonnIb. n. ... of sand..t fomwts is ..,-.1'-1 to syllllmS _'ty.ThoNMA ___ -' .. COM 

whtdIprovdt1he"""iouItechnlCllldttlliis,indtxiingeklC1 --___ ....................... orpolithre ........ 

.... ~-..... ... ""-... -. 
:;::,..-

\ 
-.. -

/ 

r 
IJ 

0002 ACCOUNTSl ATUS 000-02-7412-H3 

-
~I·------~~--------~·I 

-_ ... COII 

.... x1 ..... r_l"'_ 
, 
f .... x 

COM , 
..... 
01" -
---.... 

~1 ~~·i i~··?·; ilfi";;;; :!tr~} 
JLit~ ~ ~ ~ t!~~~ 
16mm RoIMicrofiIm 

36mm Roll Mlcrofikn 

IMAGE ORIENTATION 

ImIgIJ oriente1ion can be comic or cine mode depending on 
theapplica1ion. 

COM RETRIEVAL CODING 
The miaofilm often ha code "*", or indeK milk, on the 
film to -at in retrieve! ..:I in Ioc;Ming rm.ga. Son. of the 
~oommon COM ~ mt1hodI .. : 

I: lil= i:J ili il 
IIMII' 0CMIt: milks {bliPII recom.d by the COM dftice bIIow 
eec:ta frll'M", COWlIed etec:tronicaUy IrId l.-:f to control 
imegenrtrieoMlinllllQuentilllmlmlBf'. 

a. or .. line: .., or linn between 1he fnmII hne 
positioMl Wllue as rUled to elCllellq1heldglof the. 
remeror ........ -printerta"M'l. 

J :~ l:~~ E • ; ~II 
-..v ClOCk documIntrunblnorindtxwms .. rKIOrdId 
by ... COM_In.bInory ..... ~"' .. __ -,.-_---_ .... _. 
For more efficient retriewII of fihn codIdtu I .... .-.e or 
!J'OUPof~,1hIrelldentn:l ...... ..pirIW1.-:1tobe 
equipped to '0r.:!" the mding ..... Aa:onIntIY. tIw ~ 
will need to mnaider the coding OIlndtk mtIhod which win 
be u.I ~ mlking WI equipn'll:nt: 1IIlIction.ln IKh 01 tt.. 
ilYlllgt ~ sysbJrnI, the microimlge CIn beenlqld8nd 
"-onlnYr-.derorre.ter-prinwof .. ~,....,ifi. 
CMionwlM1herornotthecocingorindnintsystemilutliZld. 

Simpl,'liId flow dll9'lm of the steps 'n ill COM ptQq'arn - • 0 ~ 
Jftderorreproduced ;nhardcopy form. 
from Its 01'"l9m at the computer to the Image retrieved on a ~ • _ 0 0 0 _] 

~~'~~~-::~:. ~t£l-'."~ §-. ~.~:"D ~O~~2. i-5:::--~.ii ~l. ~-= .. II • i ~O~,: _~ __ 
~ I.....i --' - ,_ .<"o.,~, 

""""" ""'"''".,,'" ,,,.,,,,',,"0" i~ ._11 __ 
Figure 4 

The next step is duplicating, where one of COM's 
major benefits becomes visible. With COM, once the 
master is produced, as many duplicate microforms may 
be made as needed, from one to hundreds. Instead of 
activating the computer or off-line tape unit for each 
set of duplicates required, the task is done by the COM 
duplicator at a fraction of the cost, and without tying 
up expensive EDP equipment time. . 

With COM, the user has a number of options in 
duplication. The most popular and widely used form 
typically produced at this stage is the familiar 4 by 
6-inch microfiche which originates from 105 mm rolls. 
The COM user, however, may also select 16 mm rolls 
for loading into cartridges or cassettes, and another 
form-35 mm rolls-which are the most frequently 
used in tab size cards. And so, here you see another 
feature of COM systems-versatility. Many micro
forms for many uses! An insurance firm which needs 
to send data to 1,000 agents would use that many 
microfiche. A government agency might require a 
series of cartridges to keep track of personnel records 
... an engineering company can COM-produce its 
drawings on 35 mm film for mounting on aperture 
cards . . . and would generate that microform . . . 
it's all up to the user . . . and COM has the versatility 
to meet the need. 

Now we are at the stage where the COM-produced 
microforms become the actual working tools for which 
they were designed. Distribution becomes simple, com
pared with handling and shipping bulky printed paper. 
'rhe microforms can be mailed as easily as letters, sav-

ing time and expense. In filing, thousands of docu
ments can be kept in a fraction of the space required 
by paper files . . . and in retrieval, information can 
be located instantly where it might take hours and 
sometimes days to hunt through unwieldy volumes of 
paper. 

Now with COM-generated microforms in hand, we 
can gain access to this information with a microform 
reader. Selection of a reader is simply a matter of 
matching the reader to the microform system being 
used. There are compact, portable readers powered by 
house current or by self-contained batteries-even 
some that operate from the cigarette lighter outlet in 
your car. Most offices make use of desktop readers 
for personalized use, while many firms maintain free
standing readers for shared use within a group or de
partment-all to insure speedy access to needed in
formation. 

And today, there are reader-printers, dual-function 
units that not only display all of your microform data, 
but also permit you to make hardcopy printouts when 
desired. Made at the touch of a button, these printouts 
may be produced in all standard sizes, including the 
'Computer-format size of 11 by 14 inches-all at the 
same high speed. 

Enlarger printers are now in use which print out as 
many as 2,400 copies an hour from microforms. This 
speed factor adds high-volume production to their 
many other advantages and, of course, the over-all 
COM process has eliminated the need to first print out 
high volumes of paper or to make multiple printout 



runs to obtain muitipie copies. The ease in retrieving 
COM-generated information we spoke of earlier can 
be achieved by many systems now available. There 
are completely automatic systems which retrieve a 
microform at the touch of a few keys on a control con
sole. For these automated systems using continuous 
roll microforms in cartridges or cassettes, COM meth
ods are available to locate the desired images from 
coding placed directly on the film, an invaluable aid 
for rapid data retrieval. The user may choose among 
the various retrieval codes previously discussed. 

Let's just pause here and review COM's major 
benefits. 

Speed-Two million lines an hour as compared 
with 120,000 for impact printing. 

Economy-Material costs drop to 20% of paper 
printouts. 

Distribution-Pennies instead of dollars every 
time you must handle, transport, ship or mail
all with a speed of movement impossible with 
the former bulk and weight. 

Retrieval-Data location in seconds instead of 
minutes or hours. 

Storage-Reduced to less than 1 % the space re
quired by paper. 

Copy-Hard copies of any microfilmed informa
tion on demand in selection of paper sizes, in a 
matter of seconds. 

These advantages have eievated COM into increas
ingly prominent use in just about every area of 
business and commerce. Typical COM- business appli
cations using aphanumeric equipment include micro
filmed parts catalogs, customer/employee/vendor lists, 
financial records, transportation schedules, accounts 
receivable/pa-yable, inventories, name / address/account 
number lists-and general business and governmental 
documents. 

In many applications, the system user requires in
formation to be generated in a special format. When 
alphanumeric information and forms must be com
bined COM saves both time and money. With com
puter impact printers this means that the paper must 
first be imprinted in order to receive the alphanumeric 
output. COM eliminates this need by simultaneously 
generating the column headings, lines, charts, graphs 
or other special artwork, and blends this with the 
alphanumeric information in the format that is wanted 
as the system is receiving the computer output. 

Now, COM graphics recorders are available, systems 
that combine the alphanumeric capability with an un
precedented ability to handle graphics for such applica
tions as scientific, engineering and business needs. This 
equipment is ideal for visualizing computer output in 
the form of bar charts, graphs, maps and diagrams. 
Progressing well beyond their function as high-speed 
substitutes for impact printers, COM systems are in 
use that are complete graphic arts recorders. They are 

Integration of Microfilm and the Computer 635 

able to produce high-quality graphics in any form that 
can be generated by the computer. COM-oriented 
graphic arts recorders are now producing engineering 
plots, line drawings, schematic and wiring diagrams, 
three-dimensional drawings, color charts, and even 
pictures, photo composition and movies. 

COM applications are virtually limitless. It almost 
seems that each time a computer specialist and a micro
graphics specialist meet another COM use develops. 
Government agencies using COM include the Social 
Security Administration, which is probably the world's 
largest user of micrographics, the Internal Revenue 
Service and many other entities at the Federal, State 
and Municipal level. 

Here, in summary, is the story of COM ... the 
story of the solution to a paradox . . . computers 
capable of providing us with so much needed informa
tion can now function free of the data bottleneck that 
impact-printing imposes. COM systems are now at 
work serving all of us with the vital information we 
need in our business and personal activities ... and 
the number of systems is growing. 

COMPUTER ASSISTED RETRIEVAL 

We have seen now the micro-image fits in the data 
processing system. Microfilm is used to capture source 
documents and it is used for output reports. The two 
technologies, data processing and micrographics, can 
be combined to provide in extremely powerful informa
tion storage and retrieval system. 

Source documents are filmed in random order and 
assigned a sequential roll and frame number, a film 
address. The address is captured along with the data 
normally abstracted from the document, and processed 
by the computer. A cross index to the source document 
by one or more search parameters is created and either 
stored on-line, or printed out on paper or microfilm 
thru a COM. See Figure 5. When the index is stored 
on-line, it can be accessed via a remote terminal which 
is, in turn, connected to a microfilm display terminal. 
The user can now request dynamic information from a 
data base and, thru the index, retrieve source docu
ments to support the data base information auto
matically. 

THE FUTURE 

Most people in the data processing community gen
erally agree that we have progressed thru three genera
tions of computers. Some feel that the fourth will be 
characterized by the creation and effective utilization 
of the data base concept. The fifth generation will 
provide hardware and software that will allow the 
ultimate user to comfortably interact with the data 
base. 



636 National Computer Conference, 1976 

Figure 5 

The trend toward large centralized computing sys
tems with extensive data bases appears to be supported 
by the recent introduction of IBM's 3850 Mass Storage 
System, an automated tape cartridge library that 
provides up to 472 billion bytes of memory on line. In 
order to maximize the effectiveness of these massive 
systems, efforts will be made in the next five years to 
distribute processing capability and provide informa
tion at decentralized offices for convenience, improved 
service and reduced operating expense. One of the keys 
to the success of providing massive computer power 
to geographically dispersed users lies in the techno
logically complex area of telecommunications. 

Although it is fair to say that problems in telecom
munications have been a stumbling block to date, there 
have been some recent events that seem to project a 
brighter tomorrow. IBM, Aetna and Comsat have 
announced a joint venture to provide satellite com
munications service. Technological advances in the 
field of Packet Network Switching promise to cut the 
cost of data transmission in half and several inde
pendent networks are already in service. The explo
sion of microprocessor technology will lead to more 
intelligent computer terminals and by 1980, many of 
the inconsistencies that presently impede the progress 
of telecommunications will be resolved, primarily with 
the emergence of IBM's SDLC standard. By 1980, we 
should have a new generation of mainframes which 
contain millions of bytes of MOS internal storage and 
billions of bytes of auxiliary disk storage. Although 
bubble memory and charged-coupled devices also 
promise to provide vast amounts of inexpensive aux-

iliary. storage, their universal acceptance is still over 
five years away. On the other hand, the next five years 
will see significant improvements in MOS and disk 
storage. We will also continue to strive toward the 
concept of one massive integrated data base which 
will be maintained on-line to support a variety of batch 
tasks as well as interactive inquiry. However, it is 
doubtful that this utopian approach will be achieved 
by 1980. Real problems in file protection, contention 
and logic still remain to be solved. In practice, we will 
continue to employ, over the next five years, several 
data bases which are connected primarily by program 
logic. 

There will be a proliferation of a variety of intel
ligent terminals to provide access to these data bases. 
Data Collection techniques will also improve as the 
flexible diskette, optical scanners and electronic funds 
transfer all mature. There are, however, still some 
problems. Even though auxiliary storage is decreasing 
in unit cost, we seem to have a multiple propensity 
to consume all available storage. After we load in the 
extensive data bases of the future along with a file of 
current records, we will still have to find a place to 
store documents, archival records, and reports of the 
processed transactions. The micro-image can play an 
extremely important part in satisfying that need. 

The speed of output also continues to retard effec
tive utilization of the computer system. Impact print
ing is not expected to progress to any great extent. 
However, non-impact printing should continue to enjoy 
technological advances that will increase its current 
capability. Computer output microfilming in particular 
will adapt to the computer environment and provide 
more convenient output at reduced cost. This trend in 
COM will further stimulate the integration of micro
film and the computer. 

Most large computer installations and many moder
ate and small installations have already accepted COM 
as a viable solution to the expensive cost of paper forms 
and the bottleneck of impact printing. They are pro
cessing transactions, updating the data base, and re
porting the transactions on microfilm thru COM. Re
trieving the recorded transaction still presents a prob
lem. A potential solution is to use the data base as an 
indicator of the address of the transactions on micro
film. Thus, the on-line interactive system will use the 
data base to assist in the retrieval of the micro-image. 
The computer will also serve to temporarily update the 
micro-image until it can be re-created. 

And what about all those source documents? A 
discernible trend has already begun. That is to capture 
the source document on microfilm in random order 
and assign it a film address, a roll and frame number. 
This address becomes another element of collected data 
and is stored in the data base or is processed and in
corporated in an output report that serves as an index 
to the original source document. 

The problem today is that it is usually a two step 



operation, microfilm and data capture. But the philoso
phy of synergistic design will surely prevail and by 
1980 we can expect hybrid, if not integrated devices 
that simultaneously capture the data for the main
frame and capture the document on a micro-image. 
Both the data and the document will be forever con
nected by the film address. Already today, high speed 
scanners are available with a microfilm camera option. 

The discussion thus far, has been oversimplified. 
There are a multitude of variables and alternatives that 
will produce many variations of the basic theme. Will 
the computer be a mainframe, or a minicomputer, or a 
timeshare service? Will the inquiry be batch processed 
or interactive? Will the user be local or remote? Will 
he use a CRT, printer, audio response, or something 
else? Will the input camera be rotary or planetary, 
and at what reduction ratio? Will the micro-image 
medium be roll, microfiche, jackets, aperture cards or 
something new? All of these alternatives will provide 
tremendous flexibility in designing information sys
tems to satisfy the needs of tomorrow. 

And so what about the question of when to use micro
film versus on-line interactive terminals versus some 
other alternative? Well, that answer will be dictated 
by the specifics of each individual application. As we 
progress, trends will evolve. The integration of micro
film and the computer already has established a viable 
means to store, retrieve and update source documents 
in such vertical market applications as law enforce
ment, order entry, accounts payable and scientific files. 
Computer assisted retrieval is also currently being 
used on such computer output files as telephone infor
mation, financial statements, inventory control reports 
and computer generated accounting documents. The 
number of source document and computer report ap
plications will continue to grow and the scope of their 
coverage will also expand. 

The integration of microfilm and the computer will 
take time, but it has already begun. The next few years 
will see several vendors testing the market with hybrid 

Integration of Microfilm and the Computer 637 

systems that interface computer terminals to micro
film retrieval displays. The terminals will, in turn, be 
connected to a mainframe, or a mini computer, or a 
timeshare service. By 1980, integrated devices should 
evolve that combine the functions of the terminal and 
microfilm reader. In fact, some are already available 
today. Data capture microfilmers should also be a 
reality by 1980, including both the manual and auto
mated high speed variety. 

The most significant challenge will be in the areas 
of system design, software, and fiie maintenance. Soft
ware will be required to generate screen formats to 
make the terminal easy to use for data collection and 
retrieval. 

Search routines will need to include and/or logic 
with range capability, as well as the ability to handle 
update messages. Because of the size of the average 
file, unique techniques will be required to pack millions 
of characters into a minimum of storage. As these 
challenges are met, computer assisted micro-image 
retrieval systems will flourish. 

What the computer and microfilm industries need 
most now is mutual understanding. They need to 
realize that they are not competing with one another, 
and that if they are successful in getting it together, 
we will all benefit. 

The integration of microfilm and the computer will 
require the cross-training of the EDP and Micrographic 
communities. This training, in the form of seminars, 
lectures, formal curriculum and correspondence type 
courses could be provided by the various EDP and 
Micrographic vendors. In fact, some commendable 
work in this area has already been done and has been 
well received. Now what is needed is a cooperative 
effort on the part of the various national organizations 
representing these two disciplines. When workshops 
on data processing techniques are delivered at micro
film conventions and micrographic seminars are offered 
at data processing meetings, we will be well on our 
way to ultimate integration. 





The AlDUS system-Automated capture~ update and 
republication of maintenance manuals 

by ARNOLD K. GRIFFITH 
Information International, Inc. 
Culver City, California 

ABSTRACT 

The AlDUS system is a hardware/software configu
ration which reads printed aircraft maintenance 
manuals, provides computer text-editing facilities for 
their update, and automatically republishes them onto 
microfilm. Page layout information is entered by a 
human operator at a digitizer tablet. This information 
is used to guide an OCR system in the capture of the 
text. The layout data is merged into the text output 
file, resulting in a computer readable file containing all 
the information from the original manuals except for 
the illustrations. The latter are captured photographi
cally on a roll of 105mm film, which is keyed to the 
text/page-layout information file by means of bar 
codes on each frame. Updating of any aspect of the 
text or layout of the manual may be performed at CRT 
terminals using text editor programs.. Illustrations 
may be modified by re-drawing, re-photographing, and 
splicing the resulting frames of film into the 105mm 
illustration film at the appropriate locations. After 
revision, the data file and 105mm illustration film are 
presented to the photocomposition portion of the sys
tem, which automatically produces a revised version 
of the manual, complete with optically merged illus
trations and an index accommodating the revised pagi
nation. This system, in use in an actual working 
environment, allows the update of technical manuals 
at about one sixth the cost, and with a fraction of the 
turnaround time, of previously used cut-and-paste 
methods. 

Update and distribution 

The motivation for the use of the AlDUS system is 
the increasing volume of maintenance manuals for out
of-production aircraft in use by the Navy. It is the 
Navy's responsibility to keep these manuals updated 
and to distribute updated versions to remote points on 
land and to ships at sea. 

Today fewer new aircraft are developed and only a 
limited number of each are built. As a result, the Navy 

639 

keeps them in service for a longer time. This trend to 
shorter production runs, longer in-service life and the 
increasing complexity of each new generation of air
craft has placed an ever-expanding burden on the Navy 
for accurate and timely documentation. 

To illustrate the problem of increasing complexity 
faced by the Navy in publication activity; consider the 
A-3 aircraft built around 1955. It required 69,000 
pages of documentation which was distributed across 
some 460 manuals. Ten years later the A-7 aircraft 
required 135,000 pages in over 1,000 manuals. Cur
rently the Navy has approximately 17,000 technical 
manuals for the maintenance of these out-of-produc
tion aircraft, consisting of over one million pages and 
requiring continual update. This represents a formi
dable publication task and it is expected to more than 
double in scope over the next few years. 

To facilitate distribution of these manuals, the Naval 
Air Rework Facility, the unit responsible for aircraft 
maintenance, implemented a prototype system by 
which the manuals would be reduced to microfilm and 
distributed in the form of extremely compact car
tridges containing about 2700 pages each. Initially, 
22 sets of paper manuals, each comprising 101 volumes, 
were removed from the A-4 assembly line and replaced 
by five microfilm reader/printer devices. The paper 
manuals having been updated and microfilmed, each 
set of manuals (101 volumes) was now contained on 
16 microfilm cartridges, consisting of some 48,000 
pages. After a one-year evaluation period, the system 
was funded and implemented for N A V AIR-wide use 
and designated MIARS (Maintenance Information 
Automated Retrieval System). 

Having demonstrated the utility of the use of micro
film as an aid to distribution, the Navy turned to the 
problem of devising a means for the efficient and timely 
update of the contents of the manuals. After a three 
year study, it became apparent that this could be effec
tively accomplished by a total conversion of the text 
portions of the manuals, with update being accom
plished by computer word-processing procedures. 



640 National Computer Conference, 1976 

THE ANATOMY OF AN AIRCRAFT 
MAINTENANCE MANUAL 

A major problem in the conversion of the 17,000 
maintenance manuals under Navy jurisdiction is the 
fact that virtually every page of every manual has a 
unique layout. This is due in part to the intrinsic com
plexity of the subject matter. In addition, the manuals 
were created by numerous different manufacturers 
over a span of more than a dozen years. Finally, the 
manuals have a variety of purposes ranging from the 
cataloging of parts to the description of maintenance 
procedures. 

Simple text, constituting less than half of the total 
page area, is set in any of several dozen type faces and 
point sizes. This kind of text may be set on a page in 
two side-by-side columns, or be set in a single half 
width, one-third width, three-quarter width or full 
width column. In addition, the text contains figure and 
table references, whose location must be explicitly 
captured, since their location affects how the corr
sponding figures and tables may be laid out relative to 
the text. 

Approximately one fourth of the total page area of 
these manuals consists of tables of one sort or another. 
The most prevalent type of table consists of a running 
parts list accompanied by a sequence of parts break
down illustrations. These tables consist of up to a 
dozen tabulated columns, with a common heading on 
consecutive pages to identify the contents of each 
column. Although these tables continue for up to 
several dozen pages, their handling is complicated by 
the fact that the contents of the table must remain in 
step with the accompanying illustrations. In addition, 
the entries in certain columns of these tables are in
dented to varying degrees according to which level in 
a sub-assembly hierarchy the corresponding item be
longs. Another type of table consists of a number of 
text passages or numerical data within a grid of ruled 
boxes. The structural constraints on such tables are 
minor. For example the heights of two boxes at differ
ent vertical positions within the table need not be the 
same, and a dividing rule need not extend all the way 
to either edge of the table. A third type of table, quite 
common in running text passages, consists of a number 
of lines of data tabulated in two or three columns. 

More than one fourth of the manuals' page area con
sists of illustrations. These may be halftones or line 
drawings, or both. They may occupy any position on a 
page, and either extend the full width of the page or 
occupy only one column. There may be several different 
illustrations on a single page with text interspersed. 

Besides these major components, the manual pages 
also contain numerous items such as: running page 
titles at the top, or bottom, or both; page numbers; 
chapter titles; section titles; and centered captions 
over warning and caution notices. 

INPUT PREPARATION 

The data input process performed by the AlDUS 
system involves in the reduction of a paper manual to 
a computer readable data file containing all the text 
and page layout information, and a roll of 105mm film 
containing all the illustrations. Although the filming 
of the illustrations is a relatively simple one-step pro
cess, the capture of the text and layout information 
requires a series of steps. This series of steps may 
be divided into two phases, the first of which is termed 
the "Data Preparation" phase. 

The first step in the "Data Preparation" phase is the 
punching of registration holes in the original pages. 
These holes are punched in a fixed relation to the ma
terial printed on the page, and are necessary for con
trolling the alignment of the text during reading, as 
well as the alignment of the illustrations during film
ing. In addition, unique serial numbers are printed on 
each page. Since each page is processed as a separate 
unit, three numbers are used as a common identifier 
for the various files created as the page passes through 
the successive stages of the data input process. The 
numbers are used to identify the illustrations as well. 
When a set of illustrations from a particular page is 
captured on a frame of 105mm film, it is this number 
which is bar coded at the edge of the frame. 

The next step of the data input phase is the filming 
of all pages containing text on a 35mm planetary 
camera. GRAFIX I, the OCR component of the AlDUS 
system, reads only from microfilm, so that paper docu
ments must be filmed prior to being read. There are, 
in general, several important advantages to this ap
proach. The most important factor is that pages of 
any size may be optically reduced to a common film 
size, making page advance and page finding-the first, 
crucial stem in the recognition process-fast and ac
curate. Moreover, measuring the transmitted light 
passed through the film achieves a more consistent 
image quality than can be obtained by reflected light 
from the original paper documents. Another advantage 
is that the data can be filmed at the originating site and 
checked for completeness, avoiding the risk of lost or 
damaged material. 

The final step of data preparation is called the "Page 
Descriptor Entry" procedure, and involves the enter
ing of page layout data by means of a data tablet. Prior 
to the actual entry, a page is marked up by an editor 
to record which fonts are present, as well as to re
solve certain unusual or ambiguous situations which 
might slow down the data tablet operator. After 
markup, the page is aligned on registration pins on the 
data tablet by means of the holes previously punched 
in the pages. The data tablet operator enters geo
metric information by touching various points on the 
page with the data tablet stylus. Logical information 
is entered by touching one or another of a "menu" of 
captioned boxes fixed permanently to the data tablet 



next to the page. For example, the page number is 
entered by touching, in order, the various boxes on the 
menu which contain the digits of the page number. The 
location of the text is entered by touching a box marked 
"text" on the menu, and touching the upper left and 
lower right corners of the actual blocks of text on the 
page. The layout of the various types of tables is en
tered by a similar, but more elaborate process, as well 
as the locations of the tab stops, titles, locations of 
cautionary notes in the text, various fonts, and other 
features of the page. The entire Page Descriptor 
Entry process, exclusive of markup, requires on the 
average of less than a minute per page. 

TEXT CONVERSION 

The second phase of data capture consists in reading 
the text of the manual pages to produce an output file 
containing text and page layout information, and sub
jecting this file to a proof and edit cycle to insure its 
accuracy and completeness. 

The reading of the text is carried out on the 
GRAFIX 1,1.2 a commercial optical character recogni
tion system. GRAFIX I consists of three components. 
The first of these is a high precision flying spot scan
ner. The second component is a medium-scale general 
purpose time-shared computer. The third component 
is a slave processor called the Binary Image Processor,l 
which performs a wide range of inner-loop recognition 
and image processing tasks at very high speeds. 
GRAFIX I has been successfully employed for numer
ous other multi-font character recognition tasks, and 
even reads intermixed alphanumeric handprint. 3 

Recognition of the individual characters of the text 
is performed by a mask-matching algorithm. Recogni
tion is dependent on the successful location of the suc
cessive characters in a line of text. This is performed 
automatically, sometimes by rather complex character 
separation algorithms, once the appropriate location 
and angle of the baselines of the entire line of text has 
been established. This baseline is, in turn, found auto
matically, given the location and orientation of the 
entire paragraph or column of text. This latter infor
mation is supplied to the computer during the Page 
Descriptor Entry procedure. The output file contains 
the passages of text together with imbedded typo
graphical commands, which incorporate all of the page 
layout information entered during the Page Descriptor 
Entry procedure. In general, the structure and form 
of the page layout information, as entered during the 
Page Descriptor Entry procedure, is quite different 
from the corresponding layout commands as they ap
pear in the text. But the process of generating these 
latter commands is rather straightforward. Certain 
additional commands are put into the output stream 
based on factors determined during the character 
recognition process itself. One such is the command 
indicating the beginning of a paragraph, which is 

The AlDUS System 641 

generated by detecting the level of indent, and from 
certain textual clues. 

Besides the text and layout commands, the output file 
from OCR contains the images of every character, 
which the system did not recognize, imbedded in the 
text at the point at which the character occurs, 

The second step in the data capture phase is to sub
ject this output file to a "Reject Conversion" process 
whereby a new file is created identical to the previous 
one except that the appropriate ASCII codes replace 
the images of the unrecognizable characters" This pro
cedure is performed by reading in the successive lines 
of text until one is found with a "rejected" character, 
displaying this line of text together with the image of 
the character at a CRT display terminal, and having 
the operator key in the correct identity of the character 
at a keyboard. By this process more than 3000 rejected 
characters may be identified per hour. 

The third step attempts to automatically identify 
recognition errors in the text output file. In certain 
instances, a positive identification of an error may be 
made, such as in the case of a numeral "I" appearing in 
the middle of a lower case word, which almost cer
tainly is actually a lower case "L". These errors are 
automatically corrected. Another procedure, using a 
dictionary, flags seemingly unusual words as possibly 
containing letter substitutions. 

The entire file, complete with embedded layout com
mands, is now printed out on a high speed lineprinter 
for proofreading against the original. When the dic
tionary procedure is used, words flagged by the dic
tionary process are underlined in the listing, and 
proofreading is largely a matter of examining these 
underlined words and checking for completeness. The 
layout commands are also subject to proofreading at 
this point, since the layout command language was spe
cifically designed with this in mind. Proofreading is 
followed by an editing of the file at a CRT jkeyboard 
station to incorporate any necessary modifications. 

REPUBLICATION ONTO MICROFILM 

At this point a manual is transferred to magnetic 
tape, which is mounted, together with the appropriate 
105mm illustration film, onto the COMP80. The man
ual, including all text, tables, and illustrations, is auto
matically republished onto microfilm in a recomposed 
form, complete with illustrations and an index revised 
to accommodate the new pagination. 

Simultaneously, a data tape is created which is virtu
ally identical to the input tape except that page and 
line breaks are in the same places as in the version 
being written onto microfilm. This tape is transferred 
to the GRAFIX I system where it is converted to a 
slightly different tape form for archival purposes. This 
archival tape is stored as the digital version of the 
manual; and it is retained and retrieved at a later 
date when a revision of the manual is necessary. 



642 National Computer Conference, 1976 

The process of creating a file for input to the 
COMP80 includes the checking of all composition and 
format statements for validity and plausibility of their 
respective numerical arguments. In the event that a 
statement does not pass these tests, an error message 
is printed, the file in question is edited, and the process 
is repeated. Since each page of text is converted as a 
separate data file, the various files constituting a man
ual are appended in the course of creating this output 
tape. In addition, since in general several manuals are 
composed on a single film, the various constituent 
manuals are concatenated onto a single tape. The 
selection of manuals to be placed on a single film is 
based on factors of convenience, and on the restriction 
that the total number of pages per film must not ex
ceed 2700. 

Since output is composed and typeset automatically, 
hand stripping and pasteup are eliminated. The labor 
and time normally associated with book make-up 
operations is drastically reduced. Rather than a six to 
18 month production cycle, manuals can be updated and 
distributed in as little as 60 days. 

Another aspect of GRAFIX I/AIDUS output capa
bility is that publication formats can now be stan
dardized uniformly or modified for new distribution 
requirements. The updated Navy technical manuals 
will now have a uniform format as documents from a 
wide variety of sources are recomposed and repub
lished. In addition, a proportionally spaced type font 
was designed for the microfilmed manuals which at
tempts to be compact but maximally readable with the 
MIARS film reader. 

UPDATE FOR PUBLICATION OF 
REVISED VERSIONS 

When it is necessary to revise a manual, its archival 
tape is read back into GRAFIX I disk storage and di
vided into its individual pages. These pages are edited, 
and the publication cycle described in the preceding 
section is repeated. In addition, any revised illustra
tions are re-filmed and spliced into the 105mm illustra
tion film. 

Editing is performed on a per-page basis by GRAFIX 
I's special editing software. Using on-line CRT /key
board terminals, editors may work from either the 
terminal display, hardcopy printout, or composed film 
proofs of the converted text. Material to be updated 
can be accessed by manual, section, chapter, and page 
number. Updated portions on film may be identified 
by vertical change bars in the margins; previous 
change bars are automatically deleted in update runs. 

Updating functions include text deletion, replace
ment or insertion; arbitrary layout changes, accom
plished by modifying the page layout commands im
bedded in the text; modification of tables including 
content and layout; illustration additions, deletions, 
replacements or size changes. 

New or updated illustrations are filmed and merged 
with the illustration file previously filmed during Input 
Preparation. When a particular illustration is sup
planted, its successor is assigned a number higher than 
any so far on the film, and this number is bar coded on 
the edge. The frame is spliced into the film in place of 
its predecessor. A simple change of reference number 
in the text file completes the process. New illustra
tions may be added by a similar procedure. 

CONCLUSIONS 

We have described the AlDUS system, which consists: 
of an OCR device, CRT/keyboard facilities for per
forming text editing, and a photocomposition system. 
We have shown how, with a judicious combination of 
filming, human interaction, and optical character rec
ognition, this system is capable of reducing the entire 
contents of complex technical manuals, including lay
out data, to an illustration merge film and a computer
processable data file. In this form, the manual may be 
easily revised and subsequently republished onto micro
film. We have described an actual working environ
ment in which this system is used, namely the update of 
maintenance manuals for out-of-production Naval air
craft. In this environment, the system performs up
date and republication at a projected long-range cost 
of 15 percent of that of cut and paste methods previ
ously employed and at a fraction of the turn-around 
time. 2 This system appears to have a wide range of 
application such as parts catalogs, and maintenance 
and technical manuals of all sorts. 

ACKNOWLEDGMENTS 

Designers of the system include, besides the present 
author: Richard Martin, Russell Ham, Ron Traver, 
David Meredith, Carol Gillespie, and Dan Forsyth. 
Other contributions were made by: Steve Gray, Mary 
Strobel, Glen Williams, Nada Berger, and Norm 
Gilbreath. 

REFERENCES 

1. Griffith, A. K., "The GRAFIX I Image Processing System," 
AFIPS Proc 1974 National Computer Conference, pp. 267-
272. 

2. Information International, The GRAFIX I Automated Data 
Base Conversion System, Document 90475-5M, Information 
International Inc., Culver City, California, 1975. 

3. Griffith, A. K., "Handprint Recognition on the GRAFIX I: 
A Commercial Application of Heuristic Programming," 
Proceedings of the ACM Annual Conference, pp. 368-372, 
November 1974. 

4. Gray, S. B., The Binary Image Processor and Its Applica
tions, Document 90365, Information International Inc., 
Culver City, California, 1971. 



The CMU RT-CAD system-An innovative approach to 
computer aided design* 

by DANIEL P. SIEWIOREK and MARIO R, BARBACCI 
Carnegie-Mellon University 
Pittsburgh, Pennsylvania 

INTRODUCTION AND MOTIVATION 

As technology has evolved the primitive components 
available to a digital system designer have changed 
dramatically. Twenty-five years ago the designer con
structed systems out of circuit level components such 
as resistors and diodes. Subsequently switching circuit 
level components, as represented by gates and flip-flops, 
became available as small scale integration (SSI) com
ponents. With the introduction of medium scale inte
gration (MSI) register transfer level components ap
peared: arithmetic and logic units, registers, shift 
registers, etc. The advent of large scale integration 
(LSI) has made memories and even processors primi
tive components from which systems are designed. 
Two trends can be observed from this technological 
evolution: (1) primitive components continue to in
crease in complexity and (2) the rate of introduction 
of new components continues to increase. 

In response to the first trend, designers have been 
limiting their excursions into switching circuit level 
design to only small portions of the system (e.g., bus 
controllers, etc.). In some register transfer level module 
sets/,2 these excursions have been completely elimi
nated. 

Because of the second trend, rapid technology evolu
tion, there is a need to shorten the delay time between 
the introduction of a technology and its effective use 
in new computing systems. The design process must, 
therefore, be accelerated if the potentiality of the im
proving technology is to be realized. 

This paper describes a set of design programs, the 
RT-CAD system, developed at Carnegie-Mellon. The 
ultimate goal is to minimize the effect of changing 
technology by building a Computer Aided Design Sys
tem that implements a technology-relative design 
process. 

* This work was supported by the National Science Foundation 
under Grant GJ-32758X. 

643 

OVERVIEW OF THE AUTOMATIC DESIGN 
PROCESS 

Given the complexity of a digital system, designers 
have sought to develop automatic means to reduce the 
cost and time of the design process. The objective was 
to relieve engineers of repetitive, time consuming tasks 
such as: 

(1) The generation of detailed design informa
tion (gate and chip types, etc.) 

(2) The control of changes in the design docu
ments 

(3) The checking of the system for electrical, 
logical, and physical compatibility (fan-out 
limits, etc.) 

(4) The generation of detailed manufacturing in
formation (chip placement, board layout, 
etc.) 

This early view of design automation limited itself 
to filling the gap between the low-level design specifi
cations and the manufacturing data. Behavioral spec
ifications were in the form of Boolean equations and 
the design programs translated them into their equiva
lent logic diagrams and wiring lists. Most of the syn
thesis algorithms at this level dealt with the problem 
of reducing or simplifying the Boolean equations.3 

Subsequent efforts were directed towards a system 
capable of accepting a higher level of behavioral de
scription, although still oriented towards a gate level 
implementation.4 ,5 

Current design automation effort is shifting from 
implementation in terms of the switching circuit level 
to implementation in terms of the Register Transfer 
Level (Although the components have changed, the 
specification of fabrication information such as PC 
board layout, chip placement, wiring and cabling, still 
has to be performed in more or less the same fashion as 
before). Register Transfer level simulators have pre
ceded this trend by several years.4 ,6,7 The closeness of 



644 National Computer Conference, 1976 

RT level descriptions to conventional programming ac
counts for this early success. Register Transfer level 
descriptions are easy to transliterate into executable 
programs in a conventional programming language 
(e.g., FORTRAN, Algol, etc.), thus providing inex
pensive and fast simulation (although in many cases 
R T languages are compiled directly). Register Trans
fer level synthesis algorithms have been less successful. 
A few programs have been developed that take an RT 
level description as input and compile it directly into 
a known set of RT level hardware modules (for in
stance, CHARTW AREs and AHPL9). Figure 1 depicts 
a typical RT design automation system. The RT level 
description serves as input to several software modules. 
Syntax checking insures a well formed description. 
Static checking attempts to locate logical design errors 
(such as deadlocks, redundancy, etc.). The simulator 
is used to debug the design dynamically. Finally, the 
description is cast into hardware via the physical de
sign programs. 

The essential feature lacking in conventional RT De
sign Automation (DA) systems, and DA systems in 
general, is the exploitation of alternative implementa- . 
tions derived from the initial behavioral specification. 
Consider the augmented DA system depicted in Figure 
2. The inputs are the RT level description and designer 
given constraints. The output is the specification/ 
simulation of the hardware that attempts to optimize 
the system according to the design constraints. By al
lowing the description of alternative module sets the 
system can perform design relative to technology thus 
speeding up the incorporation of new technology into 

SYSTEM 
DESCRIPTION 

TEST 
SPECS. 

COMPONENTS 
LIBRARV 

Is,nl" C .... 

REPORT 

1---1> 

STATIC SPECIFICATIONS 

1---1> 

TEST RESULT _____ -J 

WIRING LIST 

Figure I-A conventional register transfer level design auto. 
rna tion system 

SYSTEM 
DESCRIPTION 

TEST 
SPECS. 

GOALS/CONSTRAINTS 

TEST SPECIHCATIONS 

REPORT 

STATIC SPECIFICATIONS 

TEST RESULTS ----' 

Figure 2-An augmented register transfer level design auto
rna tion system 

the design process. Also, such a system will allow ex
perimentation with multiple module sets, each tailored 
to a specific class of problems. The system would also 
facilitate the design of the module sets themselves. 
Since the system operates on a symbolic description of 
the modules, a non-existing module set can be fed to 
the system for experimentation purposes. Such experi
ments will point out the advantages and disadvantages 
of a proposed module set. 

At this point it would be instructive to describe the 
order in which the DA programs are typically used in 
the design process. This will serve to place subsequent 
discussions in perspective. Given a computational task, 
there are usually several algorithms that can be em
ployed. The algorithm that is selected by the designer 
is described to the design automation system (Figure 
3) and placed in a data base. Subsequently all design 
automation programs will use this data base. A high 
level simulator can execute from the data base to fa
cilitate user debugging of the initial description. 

N ext some evaluation and reshaping of the algorithm 
is undertaken. Analysis tools have been developed to 
check the algorithm for well-formness (e.g., deadlock 
conditions, etc.) .10 Perturbations of the basic algorithm 
can also be attempted such as: series-to-parallel trans
formations, replacing loop counters by wired-in con
trol, and using table look-up in lieu of computing the 
value of functions. Thus attempts are made to first 



ALGORITHM VARIATIONS 
- Series-Parallel 
- Wired-in Control 
- Tebkl Look-up 

CONSTRAINTS 

ALLOCATION VAR[ATIONS 
- Registers 
- Data Operator. 
- Control Oper.tQr, 
- BUI/links 

MODULE SET [NFORMA TION 

Fig-IHe 3-The design process in a RT level design system 

bind those design decisions with global implications. 
While these perturbations can be performed indepen
dent of the physical design, the evaluation of their 
ultimate desirability may depend upon the module set 
used to implement the final, physical design. 

Finally, the actual phy·sical design is performed in 
terms of RT level modules. The module set can be se
lected from a library of module sets or a user described 
set. At this level several forms of allocation variations 
are encountered: 

-Registers. Determine the allocation of the ab
stract variables to registers and memory. 

-Data operators. Determine the number of op
erators of each type in the design. 

-Control. Select control schema from among 
unary state encoding, binary state encoding, 
microprogram control, etc. 

-Bus-Link clustering. Many RT designs start 
with a set of registers for variables and inter
ccnnect them with links to operators (add, shift, 
multiply, etc.). After a point the interconnec
tions between certain registers and operators 
become numerous enough to warrant replace
ment by a bus. 

-Operator interconnection. The interconnection 
of operators has been shown to have a signifi
cant effect on the test generation effort required 
for the physical implementationY 

The signal level design verifier can be used to an
alyze the intermodule signal relationships in proposed 
module sets. Even well-established module sets have 
exhibited deadlock behavior in what appear to be 
straightforward interconnections.10 

A first version of the above system has been imp le-

The CMU RT-CAD System 645 

Alcorithm Variationa 

Transformations 

- Cost/Speed Trade-offs 

Allocation V.riations 

- ReCilter. 
- Oat. Oper.tors ,~ 

I , 

~----, 
Figure 4-The design process in the CMU-RT-CAD system 

mented at Carnegie-Mellon and is shown in Figure 4. 
The behavioral specifications of the system to be de
signed are provided in terms of the ISP language.12 

The compiler produces an "object"* program which is 
then loaded into the data base and manipulated by the 
different design programs. 

The next six sections will treat the applications pro
grams in detail. The third section describes EXPL, a 
module independent design program that examines 
series-parallel variations in the original algorithm. 
The fourth section presents the physical allocators for 
two existing RT module sets-RTMs and Macro
modules (MM). The fifth section discusses the heuris
tics used by EXPL to explore the design space. Sample 
design spaces, examples of the application of the heuris
tics, and some observations are presented in the sixth 
section. Design verification is discussed in the seventh 
section. The last section concludes the presentation of 
the existing system by briefly outlining the remaining 
application programs. 

AUTOMATIC DESIGN SPACE EXPLORATION 

EXPL12 takes as input the object code produced by 
the ISP compiler, together with a set of user given 

* The compiler produces an "object" program in terms of a set 
of Register Transfer level primitive opel'ations. This program 
appears in the form of an executable BLISS program where each 
Register Transfer operation is represented by a call to a user
provided subroutine. By changing the set of subroutines, the 
compiler can support many diverse activities. The creation of 
the data base is, in fact, done by a specific set of subroutines. 
The compiler and the language are therefore independent of the 
applications. The uniform compiler output and the flexibility 
of the subroutine-call mechanism has simplified the interfacing 
to other application programs. 



646 National Computer Conference, 1976 

speed/cost constraints/tradeoffs. The compiler output 
is used to generate a graph representation of the be
havior of the system. Subsequently, various series-to
parallel and parallel-to-series transforms on the graph 
are attempted to establish a new design. Several alter
native designs are generated and passed to module set 
evaluators which complete and evaluate the design in 
terms of its hardware module set. Using this evalua
tion and a set of heuristics, EXPL decides which so
lutions should be kept to generate other solutions by 
yet another application of the graph transformations. 

Figure 5 is the ISP description of an 8-bit multiplier 
that will be used as a running example to illustrate var
ious aspects of EXPL. The algorithm is a variant of 
the shift-and-add algorithm. The multiplier is in the 
P register and the multiplicand is in the MPD register 
and is assumed to occupy the leftmost 8 bits of the 
register. The product will be in the P register. The 
partial products are formed in the left hand side of the 
P register and shifted to their appropriated position 
in the final product. A counter, C, is used to keep track 
of the number of times the basic multiplication step 
has been p~rformed. Additional details about the al
gorithm can be found in Reference 1. 

The description begins with the specification of the 
label for the program (MULTIPLIER). Labels are 
used in ISP to identify activities so that they can be 
branched to, or used as subroutines. 

The program itself is enclosed in parentheses, and 
consists of two parts. The declarations and the specifi
cation of the behavior. The former are specified as a 
list of individual component declarations (multipli
cand, multiplier/product, and step counter), using the 
reserved identifiers DECLARE and ERALCED as 
brackets. The specification of the activities of the sys
tem is given as a list of two sequential steps. The first 
step (C~8) initializes the counter and the second is 
given by a labelled (L1) block of activities. These 
consist of a sequence of three steps. The first one per
forms the basic multiplication operation; the second 
step decrements the counter; the third step tests the 
counter to see if the operation has been completed. If 
the value of the counter has not reached 0 then a jump 
to the label is indicated by using the label as an ac-

MULTIPLIER: = 
(declare 

MPD<15:0>; 
P<15:0>; 
C<15:0> 

eralced 
C+-8 next 
L1:= ( (decode P<O>=> 

P+-PjSRO 1; 
P+-(P+MPD) jSRO 1) next 

C+-C-1 next 
(if C neq O=>L1) 

Figure 5-The ISP description of the multiplier 

tivity. If the counter is 0 then control flows out of the 
labelled statement and reaches the end of the program. 

The basic multiplication operation is described us
ing the DECODE control operation. It implements an 
n-way branch depending on the value of the expression 
following the operator. The alternative paths selected 
by this operation are given as a list using the ";" as 
delimiter. The first path (P~P jSRO 1) is selected if 
the value of the controlling expression (P<O» is 0; 
the second path (P~(P+MPD) jSRO 1) is selected 
if the value is 1. The operator jSRO represents a shift 
right inserting zeroes. The number of shifted positions 
is given by the second operand (in this case the in
teger 1). 

Figure 6 shows the graph representation of the ISP 
description. The mapping from the ISP description to 
the graph form is apparent from the example. The 
system graph contains a unique entry point (the 
START operation) and a unique exit point (the STOP 
operation). In addition to these two operations, there 
can be five other types of operations in the graph 
model: 

-branch, activates one of the output paths de
pending upon the value of some operand. 

Figure 6-Multiplier graph 0 (original) 



-serial-merge, activates its output path when any 
of its input signals arrive 

-diverge, activates concurrently all of its output 
paths. 

-parallel-merge, activates its output path when 
all of its input signals arrive. 

-data-operation (other). 

Examination of the graph for the multiplier exam
ple indicates several possible alternative designs. For 
instance, the computation of the loop count (C~C-l) 
does not depend on the shifting and adding steps (P~ 
p iSRO 1 and P~(P+MPD) iSRO 1) ; the two sets 
of operations do not have variables in common. Thus 
the decrement of the loop counter can be performed in 
parallel with the basic multiplication step, as shown in 
l4'; 1V1' ~o '7 
~. ~5U.~V I. 

The graph thus obtained shows that the testing of 
the loop counter, although independent of the multipli
cation steps, cannot be performed in parallel with the 
decrement of the loop count. This fact rules out a 
transformation similar to the one used previously. 

~ 
$ 

Figure 7-Multiplier graph 1 

The CMU RT-CAD System 647 

However, it is possible to insert the testing step in the 
same· path as the decrement. This preserves the re
quired ordering of the counter operations but now the 
testing is done concurrently with the mUltiplication 
step as shown in Figure 8. 

The last graph represents an "optimal" speed im
plementation. We are not considering, at this point, 
specific module-set-dependent optimizations. For in
stance, register allocation in RTMs or data operator 
allocation in MMs. This type of optimization is left 
up to the individual technology-dependent evaluators. 

It should also be noted that, in the example above, 
although it took two steps to arrive at the final design 
we could have taken the two counter operations (dec
rement and testing) as one group, and place the group 
in parallel with the basic multiplication step. In other 
words, we can achieve the same final result in one step 
by varying the size of the graph partitions. 

These graph transformations have taken us from an 
original solution, to two additional design alternatives. 
Both represent an improvement in speed with respect 
to the initial design. The design space, explored auto
matically by EXPL, can be represented as a two di-

~ 
I c+-s I 

i 

Figure 8-Multiplier graph 2 



648 National Computer Conference, 1976 

mensional plot. Each design is represented by its cost 
and time coordinates, computed by the technology
dependent design evaluators. 

The multiplier example was implemented using both 
RTlVI's and macromoduies and the design spaces are 
shown in Figures 9 and 10. In both plots, point 0 rep
resents the initial solution and points 1 and 2 repre
sent the alternative designs. Arrows indicate the steps 
taken in the derivation of the alternatives. 

The position of the alternative design in the design 
space is dictated by the evaluation of its cost and speed. 
These two parameters are measured in terms of a spe
cific technology, using specialized evaluator routines; as 
described in the following section. 

MODULE SET EVALUATORS 

Given a candidate design, whether it is the initial 
graph or one obtained by a transformation, its cost 
and speed must be measured to ascertain its relative 
position in the design space. This position indicates the 
quality of a solution. The evaluation process is clearly 
dependent on the module set used and is currently per
formed by ad-hoc routines, independent of the graph 
transformation algorithms. This section describes the 
evaluation procedure used for RTMI and Macromodule2 

systems. 
The candidate design is represented by a description 

of its behavior i.e., a graph. In this representation the 
control and data operations are not bound to specific 
physical components. The evaluation is performed by 
applying a series of binding algorithms that map this 
(abstract) behavioral description into a physical de
scription. This is the representation which is then 
evaluated. It should be pointed out that the design 
space we are dealing with is really an evaluation space, 
not a structural space. In other words, for each point 
in the evaluation space there may be more than one 
structure. 

Different design spaces are explored by using either 
the RTM or Macromodule evaluator. The reason for 
this is inherent in the interconnections of the data and 
memory components allowed by each module set. Spe
cifically, in the RTM set (Figure lIb) the inputs to 

Cool 
111. 

Figure 9-The multiplier design space (macromodules) 

:----: .......... -:- ... _--,----_. __ : ...... __ :---:-_ ... __ :---_ ... -:.--- ... _ ...... : ...... 

Figure lO-The multiplier design space (RTM) 

the data operators are permanently connected to mem
oryoutputs (DMgpa). This means that some form of 
register allocation must be done to insure that at all 
times the proper operands are present at the input of 
the data operators. The RTM set also provides a com
mon bus inferconnection between the modules. This 
allows memories not directly connected to data opera
tors to share the centralized DMgpa much as a com
puter's main memory shares the data operators con
nected to the central registers. In contrast, the Mac
romodule set represents a different style of design. 
Memory and data elements come in separate modules 
that are directly connected with data cables or links. 
Instead of sharing the data operators, each operand 
is bound to a register with· only the necessary data 
operators connected to it (Figure 11a). The resulting 
Macromodule system has relatively expensive data op
erators and links for each operation, whereas an RTM 
system will share data operators and links (buses) 
with all of the operands. 

Figure 12 illustrates how the concept of a design 
style is incorporated in the physical allocators of the 
RT-CAD system. RTM and Macromodules represent 
two differing register transfer level design styles: 

Con~ro! !:"Itry : ._-_ 

(a) Macromodules 

CONTROl PART 

Contro'"nlry 

DATA PART RTM BUS 
(p .. wirodl 

(b) Register Transfer Modui". 

Figure ll-Macromodules and RTM systems to implement 
B~A next C~B+l 



central accumulator, and distributed data and memory, 
respectively. In addition, other design styles such as 
pipelining can be defined. An abstract system descrip
tion is presented in graph form to one of the design 
style allocators. Each design style allocator has its 
own procedure for allocating o!,erands to memories and 
data operations to operators. Temporary registers and 
extra register transfers might be added to the abstract 
design so that it will conform to physical design 
constraints. The result is a perturbed graph that re
flects a specific design style and module set. The graph, 
which now represents a physical design, is evaluated 
using the costs and speeds given in the module set de
scription. The results of the evaluation are then used 
by EXPL to produce an alternative design. 

The allocators must be able to work interactively 
with the module independent subcomponents, design
ing and evaluating at varying levels of detail in the 
design process. At the style level, the allocator begins 
binding variables and operations to physical compo
nents using a set of allocation algorithms specific to the 
design style but general enough for any module set re
flecting that design style. At the module set level, in
formation specific to an individual module set is read 
from the module set description and used to help com
plete the allocation. In this way the allocator can 
function with several different module sets reflecting 
the same design style. An example of this can be 
found using the RTM set. Consider a module set simi
lar to RTM except that the A and B registers of the 
DMgpa are symmetric. The allocation algorithms are 

Figure 12-Module set relative design process 

The CMU RT-CAD System 649 

very simiiar except for a few details such as not being 
able to produce ~B - A in one register transfer in the 
real RTM (although ~A-B is available). 

The module set level of the allocation uses a set of 
templates to map the abstract operations in the graph 
into a module set specific structure. These templates, 
produced by the template generator from the module 
set description, act like macros in an assembly lan
guage. For each abstract data operation in the graph 
there is a set of templates that indicate, for example, 
the different groups of RTlvI operations that can be 
executed in order to achieve the desired effect. An 
operation like A~B + C, where A,B, and C have been 
allocated to memories without data operators (cen
tral accumulator design style allocation) is mapped 
into a sequence of RTM primitive operations like: 
DMgpaj A~B ; DMgpajB~C ; A~DlvIgpaj A + DMgpaj 
B (module set level allocation). 

Templates of this nature are used by the Macromod
ule evaluator, although the nature of MMs allows more 
flexibility than RTMs. For instance, using the above 
RTM example, there are several ways of implementing 
the statement in Mlvls and the choice may be critical. 
With all variables allocated to registers and the neces
sary data operators connected between the registers 
(distributed data and memory design style allocation), 
the statement A~B+C can be implemented alterna-
tively as A~B; A~A + B, or A~C; A~A + B, since 
at the module set level of allocation it is found that all 
data operations have the destination variables as one 
of the source variables. (A module set without this 
restriction could use the same design style allocator.) 

This decision is critical and depends upon the data 
operators already connected to a given register (in 
this case, register A) or which will be connected in 
order to implement subsequent operations. If the 
operator A~A+C has already been placed in the stack 
of register A, the first option is clearly the one to 
adopt. On the other hand, if none of the operators 
exist then the template adopted depends upon the 
future uses of the operator, a decision based on a 
global analysis of the graph. 

In addition, a module set may contain a data oper
ator which cannot be described in a simple ISP state
ment. For instance, the RTM DMgpa can operate on 
two operands and then shift the result right in one 
register transfer. Operations such as this require that 
the allocator scan the graph for occurrences where the 
special operator can be used. Detecting these occur
rences usually accounts for major optimizations in the 
final design. In fact, most good designers look for 
special features of module sets and try to utilize them 
wherever possible. The Macromodule allocator was 
written to search for special operations such as: 

-Invariant bit mapping within an operand (field 
extraction, bit swapping, etc.) 

-Comparing with constants, 
-Comparing constants with bit fields, 



650 National Computer Conference, 1976 

Macromodules have special physical constructs that 
allow the above operations to be done easily. This 
specific information about the Macromodule set in
jected at the module set level of the allocator allows the 
automatically generated designs to approach designs 
produced by a good designer. 

Table I compares some sample designs produced by 
hand and by the RT -CAD system. 

HEURISTICS AND DESIGN SPACE 
TRADE-OFFS 

Due to the interaction between series/parallel trans
formations in EXPL it is a difficult task to formalize 
the optimization (improvement of alternative struc
tures) as a mathematical optimization problem. The 
main difficulty is the fact that transformations apply 
to subgraphs of arbitrary size and, as a consequence 
transformations in a given alternative structure may 
or may not be feasible or desirable in structures 
derived from it. It is also the case that new cases of 
transformations become feasible or desirable only after 
a specific sequence of transformations has been applied. 

Two parameters will be used to describe the design 
space: The cost of the hardware involved and the 
operational time. The former is obtained by adding 
the costs of the components used in both the data and 
control structures. The latter is obtained from the 
average speed of the operations involved. 

For a straight sequence of operations the time re
quired is the sum of the individual times. In the 
presence of concurrent activities, the operation time 
is that of the longest (timewise) sequence. 

When computing the times required by the alterna
tive paths of a branch operation EXPL assumes, by 
default, that all such paths have equal probabilities of 
being executed (the probability being l/n for n-way 
branches). This default can be overruled by the user 
by specifying the branching probabilities for the in
dividual paths. The computation of the times required 
by the paths is then weighted by the branching prob
ability associated with the path. The execution time 
is then the sum of these weighted path times. 

The presence of cycles (loops) adds some complexity 
to the estimation of the operation time. In this case 
the level of nesting is assumed to be proportional to the 
frequency of execution of the operations. Conceptually 
this is equivalent to replacing the cycle by a sequence 
of multiple copies of the individual operations. Since 

TABLE I 

Design Hand Design RT-CAD Design 

Minicomputer Cost $6250 $6500 

Time 3.90usec 3.92usec 

MSG Cost $6000 $7450 
Time 7.1usec 13.1usec 

~:Iultiplier Cost $3900 $3900 
Time 5.7usec 5.7usec 

the number of times a loop is executed (i.e. the num
ber of copies) is usually unknown, a default (2) is 
assumed (this is a consequence of the default 50 
percent probability of branching back to the loop 
head). This default may be overruled by the designer 
by specifying an estimate loop count or, alternatively, 
simply the branching probabilities if the loop count is 
not known. 

Having defined the parameters of the design space 
we can now describe the trade-offs involved in the 
transformation rules. Connectivity and data depen
dency are used in the system to indicate the feasibility 
of a transformation. Feasible transformations, how
ever, do not imply necessarily any advantage in their 
application and the desirability of such a transforma
tion is indicated by a different set of conditions. 

The exploration of the design space in our system is 
performed by a group of heuristic routines that pro
duce alternative designR in a goal oriented fashion; the 
goal being specified by the designer. Ideally, the goal 
is to find an alternative structure whose position in 
the design space is as close as possible to the origin 
(0 cost and 0 time). This ideal case is, however, not 
easily found in real solutions. The usual case is that the 
least expensive solution is not the fastest and vice 
versa. This characteristic provides a rough classifi
cation of the design objectives into two classes: 
minimal cost and minimal time. 

Although a designer's aim can be classified accord
ing to these objective functions, it may be the case that 
the real objective is more complicated in nature, 
namely, some combination of time and cost. For in
stance, the objective could be something like: "the 
fastest alternative structure not costing more than x 
dollars". 

For simplicity, the subspace of acceptable solutions 
will be defined by a set of straight-line segments whose 
slopes reflect the objective functions. In the example 
above a single straight line, parallel to the cost axis, 
would be used to divide the space in two halves. Only 
those solutions that lie in the semispace containing 
the origin are considered acceptable. These solutions 
represent improvements along the design goal. 

More complex constraints can be described by using 
lines of the form C=m*T+b, where m is a parameter 
indicating how many dollars the designer is willing to 
pay for each time unit saved (if time is the primary 
goal) or how many time units the designer is willing to 
sacrifice for each dollar saved (if cost is the objective). 
m is termed the cost/speed trade-off factor. An 
example, Figure 13, will clarify this description. 

Assume that the primary objective is a reduction in 
time and that the designer wants a cost/speed trade-off 
of at most m dollars for each time unit improvement. 
Furthermore, assume that the original design is char
acterized by C1 and Tl. The "acceptable trade-off" 
subspace would thus be delineated by two line seg
ments : one parallel to the cost axis starting from 



Figure 13-Design space reduction 

(T1,Cl) to (T1,O), and the other through (T1,C1) 
with slope - m. Further assume that by studying the 
control flow and data dependencies in this original 
structure, four transformations are available which 
yield four alternative solutions derived from the orig
inal one: A,B,C,D. 

By dividing the space according to the trade-off lines 
alternatives B, C, and D can be rejected because their 
characteristics are not within the acceptable subspace 
(i.e., they take more time or the decrease in time costs 
too much). The alternative left, A, represents im
provement in time while the cost to achieve the im
provement is under the cost/speed trade-off threshold. 

The process can now be applied to A in an identical 
manner. Design A is taken as the new initial solution 
and a new "acceptable trade-off" subspace is defined by 
a line segment (T2,C2) to (T2,O) and a line with 
slope -m through (T2,C2). Since in some cases more 
than one alternative can be left for further exploration, 
this process takes the form of a tree walk where the 
nodes represent alternative solutions and the edges are 
the transformations applied. In some instances, iden
tical structures can be obtained by different sequences 
of transformations and the exploration of the design 
space is a graph-walking process. In any event, a 
path ends when no alternative solutions worth explor
ing can be reached from a given point. When all 
possible paths have been explored the end nodes are 
measured against the primary objective and the best 
one chosen. 

In general, the space of alternative solutions looks 
more like a graph than a tree. Several paths (Le., 
sequences of transformations) may lead to the same 
solution .. Thus, it is important to detect points in the 
space that have already been examined. Other prob
lems that arise in the exploration process have to do 
with the cost of the process itself. EXPL does not 
perform a brute force search. Accepting an alternative 
solution for further exploration depends upon the 

The CMU RT-CAD System 651 

goals indicated by the user. Besides the main goals 
(speed, cost, and a trade/off factor) mentioned before, 
the user can also specify a minimum percentage gain 
for a transformation-derived solution to be acceptable. 
This is called the improvement factor. If the gain falls 
below the improvernent factor, the new design is 
rejected. 

This pruning process, when applied indiscriminately, 
can lead to an incomplete exploration. It may be the 
case that, although a derived solution is worse (accord
ing to the goals) than its parent solution, solutions 
derived from the former could in fact be better than the 
parent. EXPL handles the detection of this type of 
local optimality by allowing the user to specify a rejec
tion level. The rejection level indicates whether or not 
non-improving solutions are to be further explored. 
The user specifies the maximum length of such non
improving paths. 

The following section briefly presents several 
examples of design spaces. The examples illustrate 
some of the points discussed previously. 

SAMPLE DESIGN SPACES 

In this section we will present three examples of the 
design spaces explored by EXPL. We will not discuss 
the specific systems whose design spaces are depicted 
in Figures 14, 15, and 16. The examples will be used 
to show the characteristics of the design spaces and the 
exploration procedures. 

Figure 14 shows the design space for a RTM sys
tem that is used as a controller for the X- and Y-plates 

eo.. S3300 ___________ - __ 

2 buses 

Figure 14-RTM design space (MSG system with 10 percent 
improvement factor) 



652 National Computer Conference, 1976 

:: ! 
~----- ------- --------;;;;---;;;;----;;~---- -------- -------- '-

Figure 15-RTM design space (MSG system with 20 percent 
improvement factor) 

of an oscilloscope. The system is used at CMU for 
RTM demonstrations (the "Munching Squares Gener
ator"). Evaluations of individual designs are repre
sented by a cross. A circle denotes that more than one 
design had the same evaluation. The first character
istic that can be noticed in this evaluation space is the 
stratification of the alternative designs. The solutions 
appear in horizontal bands representing solutions of 
similar cost. This is due to the high cost of the RTM 
buses compared with the cost of the other modules in 
the R TM set. The space is divided into bands cor
responding to the 1, 2, 3, and 4 bus solutions. 

The figure shows the degrading effect in RTMs of 
sharing variables between concurrent computations. 
The best solution (in terms of speed) used 3 buses and 
is faster than the 4 bus solutions. The algorithm is 
such that although it allows a high degree of con
currency, 'when this degree exceeds a certain threshold 
there is a loss of speed in the total system due to the 
overhead of establishing the concurrency. The path 
followed to find the best solution is indicated in the 
figure. It is interesting to observe the transition from 
solution 2 to solution 3. There is a substantial gain in 
speed together with a reduction in cost. The explana
tion is that once the cost of a bus has been accepted as a 
reasonable price to pay for a given gain in speed it 
does not cost much to spread the load and perform 

:--------:---------:---------:---------: ---------: --------:--------- :-----.,--- : --------- ;--------_. 
,~;.c·:o '61.00(1 '63000 165 O!!C 

Figure 16--Macromodule design space (conveyor-bin system) 

more operations concurrently. Indeed, as the example 
shows, alternative allocation of the computations to 
the buses, for a fixed number of buses, is crucial. 

When a solution is analyzed the set of feasible trans
formations that can be applied to its graph is tabulated. 
The improvement factor specified by the designer is 
then used to prune this table. This pruning takes place 
before a transformation is applied and is based on a 
preliminary "best case" analysis of a candidate trans
formation. The solution derived by applying the trans
formation mayor may not realize the potential gain 
indicated by the preliminary analysis. This reduction 
in the predicted gain is due to several causes. If the 
goal is a reduction of cost, performing two concurrent 
operations in sequence may not in the case of RTMs 
result in a reduction in the number of buses (other 
computations may require the bus that was thought to 
be expendable). If the goal is a gain in speed, adding 
buses may result in a loss of speed due to the time 
required to copy and move variables between the buses 
in the system. Similar considerations can be applied 
to the case of Macromodules. 

Figures 14 and 15 correspond to the design space for 
the same R TM system explored using the same cost/ 
speed trade-off factor ($100/microsecond) but using 
different improvement factors. In the space shown in 
Figure 15, the preliminary improvement factor was set 
to a higher level (20 percent) than in the space shown 
in Figure 14 (10 percent). An interesting phenomenon 
occurred. The transformation indicated by the directed 
line in Figure 15 had a very promising preliminary 
evaluation (over 30 percent predicted gain). When 
the transformation was applied, the new solution did 
not realize the predicted gain. It was, nevertheless, 
better than the original solution and was later chosen 
by the system as the best solution. All feasible (Le., 
applicable) transformations to this new solution were 
then examined and none of them promised to be better 
than the improvement factor. All of these transforma
tions were rejected and the exploration path was ter
minated. When the same situation appeared in the 
example of Figure 14, there were several transforma
tions that were better than the new, lower, improve
ment factor. One of them led in fact to the best solu
tion of the space of Figure 14. It is interesting to 
observe in Figure 14 that the slope of the transfor
mation from solution 1 to solution 2 indicates a better 
cost/speed trade-off than the transformation for the 
original solution (point 0) to solution 1. The gain in 
speed produced by the transformation, although 
smaller than the improvement factor used in Figure 
15, was achieved completely; there was no overhead 
added to the system by the extra concurrency. 

This type of anomaly is not uncommon in the mod
ular design spaces explored so far, if anything, they 
tend to be the rule rather than the exception. The 
pruning of the applicable transformations, based on a 
preliminary analysis, can lead us to ignore certain 



transformation paths that may yield better solutions. 
It is valid to ask, "why then should the system do any 
pruning at all?" The only reason we can provide is 
based on the analysis of the cases studied so far. 
Applying a transformation without any considerations 
to its possible gain is an expensive proposition. For 
any solution, branching factors (Le., number of feasible 
transformations) of 30 to 50 are not uncommon. 
Applying a transformation implies a reconfiguration 
of the Ilranh and the recomnutation of several asso
ciated tabl~s-an expensive ~peration in the current 
implementation. Applying each feasible transforma
tion can lead to a very expensive design process. For 
example, when EXPL explored the design space of 
Figure 14, 454 transformations were analyzed. Of 
these, 337 were deleted for not meeting the improve
ment goal. The resulting 117 transformations (26 
percent of the original) were applied to obtain new 
designs. Of these, 87 were deleted for not meeting the 
cost/speed trade-off or for being duplicated designs 
("loops" in the design space exploration). As a result, 
only 30 transformations (6.5 percent of the original) 
produced designs that were improvements over their 
predecessors. For large systems, the combinatorial 
explosion of possible designs is prohibitively expensive. 
More intelligent heuristics are required to home in on 
the most interesting parts of the design space. Once 
these areas are located a near exhaustive search can 
perform the final selection. One such intelligent 
heuristic would be to identify the loop structure of the 
algorithm and apply transformations to the innermost 
loops. A variation of this might be transforming those 
loops whose (improvement factor) x (cycle count) 
product is largest. Furthermore, loop control and loop 
computation are parallelizable in many circumstances 
and their identification could speed up the transfor
mation search which is seeking to identify any po
tential parallelism. Research into better heuristics is 
being actively pursued. 

The system as implemented allows the designer to 
guide the exploration via an interactive command lan
guage. In the interactive mode, EXPL does not per
form any pruning and the designer is free to order 
the system to perform any feasible transformation, 
regardless of its predicted gain. The automatic mode 
of exploration can therefore be used selectively under 
user guidance, assisting the application of the 
heuristics. 

Figure 16 shows the design space for a system 
designed as a controller for a conveyor-bin unit. The 
design space corresponds to the alternative designs 
implemented using Macromodules. The figure is a good 
example of a design space with multiple paths leading 
to the same solution. The space configuration also 
indicates the characteristic of Macromodular systems. 
Once a basic design is implemented, variations in the 
level of concurrency do not present the radical changes 
in cost typical of RTM system. The basic costs of the 

The CMU RT-CAD System 653 

Macrolilodular syste:m are given by the memory and 
data operation modules (the "stack"). Variations in 
concurrency only imply adding or eliminating control 
modules and cables, a minor fraction of the total cost. 

VAS AND DESIGN VERIFICATION 

It is possible to develop an ISP description that is 
syntactically correct but that does not make sense 
logically. Figure 17.a depicts a syntactically correct 
ISP while Figure 17.b illustrates the corresponding 
graph. The graph is essentially the same one produced 
by the ISP compiler. The data operations have been 
deleted as a notational convenience (we can think of 
the data operations as being assimilated into the arcs 
connecting the control operations). 

In the case of x = 1 the right half of the parallel 
merge in the graph would receive two control signals 
(one from the right half of the diverge, the other from 
the left half via the branch). The other input to the 
parallel merge would not receive a control signal and 
the system would deadlock at the parallel merge. 
Analytical tools based on the vector addition system 
(VAS) 10 have been programmed to detect such design 
flaws. 

The V AS is best introduced by example. Consider 
Figure 17.b. The arcs in the graph represent register 
transfers while the vertices represent control primi
tives. Each arc may contain tokens representing evo
cation of the associated register transfer. Graphically 
a token is represented by a dot on an arc. A marking 
of a graph with r arcs is a mapping from the set of r 
arcs to an r-dimensional vector of nonnegative 
integers, each of which represents the number of tokens 
on the corresponding arc. 

A vertex with a token on its single input arc is said 
to be enabled. Only enabled vertices can fire. The 
firing of a vertex removes a token from the input arc 
and deposits a token on its output arc. For the case of 
multiple input arcs there is an associated logic con
dition, either disjunctive (signified by a+) or con
junctive (*). A vertex with disjunctive input arcs is 
enabled when any input arc has a token. Firing the 
vertex removes a token from one input arc. This 
corresponds to a serial merge in the compiler producer 
graph. A conjunctive input condition requires tokens 
on all input arcs before the vertex is enabled (parallel 
merge). Firing the vertex removes a token from all 
the input arcs. Likewise a set of output arcs can be 
disjunctive or conjunctive. When a vertex with dis
j unctive output condition fires it places a token on 
one of the output arcs (branch). The conjunctive con
dition places a token on all the output arcs (diverge). 
A simulation is a sequence of permissible vertex 
firings. 

Simulations are conveniently represented by the 
Vector Addition System (VAS) .10 Figure 17.c depicts 
the V AS for the graph in Figure 17.b. The V AS con-



654 National Computer Conference, 1976 

Arc 
0 
1 
2 
3 
4 
5 

TEST := (~~C~;~t ~~\i~Z>i=B:~~~~j; C<15:0>; X<>; N<15;O' cO ok,,'; 

Operation 

A .... A+C 
N<-2 
A ... S+C 

e ... o 

) (A+-A+C nexl (decode x~> C .. Ol (COol next LABEL))) 

START 

(a) ISP Description 

Associated Displacement 
O-Index Vertex in (b) Vectors 

01 
02 
D3 
04 
D5 
06 

Diverge 
Serial Merge 
Serial Merge 
Parallel Merge 
Branch 
Branch 

-I 1 1 0 0 0 0 
o 0 0 1 0 0-1 
o 0 -1 1 0 0 0 
o 0 0 -1 1 -1 0 
0-1 0 0 C 1 0 
0-1 0 0 0 0 1 

Initial Marking MO ~ 1 0 0 0 0 0 0 

arc 0 i 
(c) The Vector Addition System 

for the Graph in (b) 

Ire 6 i 

(b) Graph Model Illustrating Deadlock 

Figure 17 

sists of an initial marking vector Mo and a set of 
displacement vectors which correspond to vertices. 
Each component of the vector corresponds to an arc. 
All valid firings (new markings) of the graph can be 
determined by adding a displacement vector to the 
current marking Mi. Those additions which result in 
all marking vector components being nonnegative are 
valid markings and can be used to establish sub
sequent valid markings. For example, the only valid 
marking from the initial marking Mo resulting from 
the addition of a single displacement vector (e.g., D1) 
in Figure 17.c is (0,1,1,0,0,0,0,). The displacement 
vector D2 does not lead to a valid marking since the 
result of its addition to MO is (1,0,0,1,0,0,-1). 

A control flow tree depicting all possible markings 
(or states) of the V AS can be constructed. A portion 
of that tree for our example is shown in Figure 18. 
Nodes are appended to the tree until, for each leaf, 
either its marking is identical to that of one of its 
ancestors or no displacement vectors can be applied. 
In either case the node is called a leaf. 

I 000 000 

J 01 

o 1 1 0 0 0 0 

03/ ~D8 
010 1 000 o 0 1 000 

05 J J 03 
000 J o 1 0 000 100 

04 J J 02 
o 0 0 0 100 000 2 0 0 0 

Figure 18-Portion of the control flow tree for the example of 
Figure 17 

Properties of this tree can be used to detect prop
erties of the graph. For example, the leaf (0,0,0,0, 
1,0,0) represents a properly terminating sequence 
since there is a single token on arc 4. By contrast, leaf 
(0,0,0,2,0,0,0) represents two tokens on arc 3. No 
tokens are on the exit arc. This is the deadlock situ
ation alluded to earlier. Furthermore, depending on the 
actual physical implementation of the graph, this leaf 
may indicate a lost signal. 

OTHER DESIGN TOOLS 

One of the traditional design automation tools has 
been the simulation of a digital system. The RT-CAD 
system includes a simple simulator (SIMU10) which 
interfaces with the machine descriptions stored in the 
data base. Data base objects consist of two com
ponents: a symbol table and a flowchart. The former 
contains the description of the digital system com
ponent (registers, flags, memories, constants, etc.). 
The latter contains the data and control operations 
describing the behavior of the system. By stepping 
through the flowchart, SIMU10 can emulate the be
havior of any digital system stored in the data base. 
An interactive command language allows the user to 
set and display the contents of the registers and 
memories of the system. The command language allows 
the user to set and reset arbitrary breakpoints and to 
interpret command files, created off-line, instead of 
prompting the user directly. 

It is also desirable to produce designs according to 
criteria other than the traditional cost/speed criteria. 
One such criterion is testability. The structure of the 
final design substantially determines the ease with 
which tests can be generated for the design. A test
ability measurell has been developed that correlates 
well with actual test generation effort. It is important 
to note that the common representation used as input 
to the various design programs is a critical feature 
that insures that the algorithm being evaluated is ac
tually the one being implemented, verified, or simulated 
by the other design programs. 

It is worth mentioning that some of the RT-CAD 
system components have been exported and are being 
used in places other than CMU. One of the more 
ambitious projects is the Computer Family Architec
ture (CFA) being developed by the Naval Research 
Laboratory. The objective is the implementation of a 
generalized Architectural Research Facility (ARF). 
NRL is currently using the ISP compiler and SIMU10. 
The ultimate goal is the implementation of a system 
that will emulate large machines described in ISP. 
Interactive facilities will assist the user in evaluating 
the described machine. Thus, proposed machines can 
be evaluated and their architecture tuned prior to 
production. The emulator will be entirely resident in 
the control storage of a dedicated PDP-11/40E (a 
commercially available, modified PDP-11/40 that 



allows the coexistence or user written microcode to
gether with the standard, DEC provided microcode 
that implements the PDP-II instruction set). 

FUTURE DIRECTIONS 

To achieve the goal of automatic design relative to 
technology a mechanism is required that would take 
the description of a module set and create the equiv
alent of the ad hoc module set evaluators currently in 
use. It was also noted earlier that the order of physical 
allocation (registers, buses, operators, etc.) is a strong 
function of the design style imposed by the module set. 
This information would also have to be extracted from 
the module set description. 

This preliminary design automation system and a 
machine relative optimizing compiler-compiler project 
serve as a stepping stone to an even more ambitious 
project termed the Symbolic Manipulation of Com
puter Descriptions (SMCD) 14 depicted in Figure 19. 
There is a continual stream of new machines spurred 
by the advent of minicomputers and microprocessors. 
Each machine has a different instruction set. The 
emergence of microcoded systems with the option of 
user-defined instruction sets has increased this flow of 
instruction sets. Each new system requires supporting 
software and the amount of software grows for any 
individual system as user requirements grow. 

One direction in which to seek a solution to ease the 
burden of software deveiopment is to relativize the 
production of software to the description of the ma
chine. The central ingredient of this approach is the 
description of computer systems in a symbolic form, 

Simulator 

Computer Description 
le",u.,. 

1 

Manual Generator 

Hardware Des~n D9B~n Verificltion 

Compiler-Compi"r 

Figure H)-The symbolic manipulation of computer descriptions 

The CMU RT-CAD System 655 

such that a range of problems can be solved by manipu
lation of these descriptions. 

Figure 19 depicts the scope of t,he SMCD project. 
The ultimate goal would be to produce and evaluate a 
computer system from its behavioral specifications, 
together ,vith the documentation and system pro
grams. Thus the delay from the conception of a new 
architecture to the time it is implemented and ready 
for users can be significantly reduced. 

ACKNOw~LEDGlVIENTS 

We would like to thank the many individuals whose 
work contributed to the results described in this paper. 
Steve Goldman, Ross Scroggs and Phil Karlton assisted 
in the development of the ISP compiler. Vittal Kini im
plemented the V AS, Don Thomas implemented the MM 
evaluator, and Steve Rodkey implemented SIMUI0. 

REFERENCES 

1. Bell, C. G., J. Grason and A. Newell, Designing Computers 
and Digital Systems, Digital Press, Digital Equipment 
Corporation, 1972. 

2. Clark, W. A., "Macromodular Computer Systems," AFIPS 
Conference Proceedings, Vol. 30, SJCC 1967, pp. 335 :402. 

3. Breuer, M. A., "Recent Developments in the Automated 
Design and Analysis of Digital Systems," Proceedings of 
the IEEE, Vol. 60, No.1, January 1972, pp. 12:27. 

4. Darringer, J. A., The Description, Simulation and Auto
matic Implementation of Digital Computer Processors, PhD 
Thesis, Department of Electrical Engineering, Carnegie
Mellon University, May 1969. 

5. Friedman, T. D. and S. Yang, "Methods Used in An Auto
matic Logic Design Generator (ALERT) ," IEEE-TC, Vol. 
C-18, No.7, July 1969, pp. 593:614. 

6. Mesztenyi, C. K., Computer Design Language. Simulation 
and Boolean Translation, Technical Report 68-72, Computer 
Science Center, University of Maryland, June 1968. 

7. Rozenberg, D. P. and R. L. Savage, "A Proposal for the 
Computer Design Process Based on Multi-Level Simulation," 
IFIPS Congress, 1971. 

8. Digital Equipment Corporation, PDP-16 Computer Design
ers Handbook, 1971. 

9. Hill, F. J. and G. R. Petersen, Digital Systems: Hardware 
Organization and Control, Wiley, New York, 1973. 

10. Huen, W. H. and D. P. Siewiorek: "Intermodule Protocol 
for Register Transfer Level Modules: Taxonomy and 
Analytic Tools," Proceedings of the Second Annual Sym
posium on Computer Architecture, Houston, Texas, Feb
ruary 1975. 

11. Stephenson, J., A Testability Measure for Regw.ter-Transfer 
Level Digital Circuits, PhD dissertation, Electrical En
gineering Department, Carnegie-Mellon University, 1974. 

12. Bell, C. G. and A. Newell, Computer Structures, Readings 
and Examples, McGraw-Hill Book Company, New York, 
1971. 

13. Barbacci, M. R. and D. P. Siewiorek, Some Aspects of the 
Symbolic Manipulation of Computer Descriptions, Depart
ment of Computer Science, Carnegie-Mellon University, 
1974. 

14. Barbacci, M. R. and D. P. Siewiorek, "Automated Explora
tion of the Design Space for Register Transfer Systems,' 
Proc. of the First Annual Symposium on Computer Archi
tecture, University of Florida, Gainesville, ACM SIGARCH, 
Computer News, Vol. 2, No.4, December 1973. 





Some computer-related advancements for enhancing 
U. S. shipyard productivity 

by RICHARD B. WISE and DOUGLAS J. MARTIN 
IIT Research Institute 
Chicago, Illinois 

ABSTRACT 

An exciting new cooperative program for enhancing 
productivity in the shipbuilding industry through im
proved automation technology is described. This pro
gram, designated as the REAPS (Research and 
Engineering for Automation and Productivity of Ship
building) Program, entails joint efforts of the Mari
time Administration and the U.S. shipyards toward 
new capability development. 

Four on-going hardware/software-related projects 
currently under way are described in some detail. 
These include: a major software system (AUTO
KON-71) for design and construction of ships; a 
specialized CAD/CAM remote batch graphics terminal 
to better serve shipyard needs; an interactive graphics 
system for pipe detailing; and a minicomputer-based 
numerically controlled frame bender. 

A number of other hardware/software development 
programs currently approved but not as yet funded 
are also discussed. 

THE NEED 

Over the years a decided productivity lag has de
veloped between U.S. shipbuilders and other shipyards 
around the world. For instance, a few years ago it was 
shown that U.S.-built container ships typically re
quired 120 man-hours per delivered ton, while the 
equivalent ship built in West Germany required 90 
man-hours per delivered ton. For ore carriers the U,S, 
required 75 man-hours per delivered ton whereas Japan 
required 59 man-hours per delivered ton. 

Until 1970 the only recourse available to the U.S. 
Government to keep our Merchant Marine facilities 
competitive was to provide a subsidy program which 
reimbursed ship operators and ship builders the differ
ence between the cost of materials and labor in the U.S. 
and those of competitive foreign countries. 

In 1970, however, new laws were enacted which set 
in motion a large-scale research and development pro-

657 

gram in cooperation with U.S. shipbuilders and ship 
operators aimed at reducing costs and to improving 
productivity rather than merely reimbursing ineffi
ciency. 

THE SOLUTION 

As a first step toward administering this program 
for the shipbuilding industry, the U.S. Maritime Ad
ministration convened a group of industry experts to 
identify where the most critical deficiencies existed 
and to provide guidance as to the best means for resolv
ing them. The recommendations of this Technical Ad
visory Group resulted in the formulation of a number 
of Mar Ad supported research and development activi
ties addressing six major development areas: computer 
automation, welding technology, surface preparations 
and coating, materials handling, ship producibility, 
and general projects. 

In an effort toward developing a coordinated thrust 
in administering the resulting programs for applying 
automation and computer technology to shipbuilding, 
the REAPS Program was born. REAPS, an acronym 
for Research and Engineering for Automation and 
Productivity in Shipbuilding, is a cooperative program 
involving the U.S. shipyards and the Maritime Ad
ministration in a total system approach designed to 
identify and take advantage of productivity opportuni
ties through the application of automation technology. 
Developments associated with this program are keyed 
to specific applications. Projects are not considered 
complete and successful until they have been imple
mented under shipyard production conditions. This 
implementation phase precludes the possibility of a 
project failing because of poor implementation of a 
sound development. It also insures that only those 
projects with valid objectives will be undertaken. 

The REAPS program itself is funded jointly by 
Mar Ad and the participating shipyards and is admin
istered by a contractor (lIT Research Institute). Its 
activities entail three major efforts: (1) Advance 



658 National Computer Conference, 1976 

planning to recognize future productivity opportuni
ties; (2) Library and information services to apprise 
the industry of the latest available information on tech
nology; and (3) R&D Program formulation. 

The advance planning activity involves the identi
fication of high-cost areas and subsequent target oppor
tunities for new hardware and software research and 
development efforts. 

The library and information services activity in
volves: (1) the quarterly publication of a Shipbuilding 
Technology Update Bulletin containing selected up-to
date citations and abstracts on world-wide publications 
of interest to shipbuilders; (2) maintaining a library 
of shipbuilding technology information and selected 
software programs; (3) distributing a library catalog 
and copies of the Update Bulletin to all major U.S. 
shipyards and providing a document reprint and soft
ware distribution service; and (4) holding an annual 
REAPS Technical Symposium where industry leaders 
are invited to discuss new advances in shipbuilding 
automation. 

The R&D program formulation activity entails both 
project initiation and project monitoring. The advance 
planning activity identifies opportunities for produc
tivity enhancements. Representatives from the REAPS 
yards then collectively prioritize these indicated re
quirements, develop project briefs defining detailed 
needs, solicit proposals from competent agencies for 
fulfilling these needs, and determine the best source for 
their realization. 

The resulting development projects are then carried 
out on a cost-sharing basis with Mar Ad funds, with 
monitoring of all progress being pursued under the 
cognizance of the REAPS program. 

ONGOING PROGRAMS 

The remainder of this paper will be devoted to de
tailed discussions of the extant and contemplated com
puter-related projects within the REAPS Program. 

AUTOKON SUPPORT PROGRAM 

Background 

The AUTOKON Support Program is actually the 
charter REAPS activity. Its genesis stemmed from ac
tions taken by a U.S. shipbuilding industry advisory 
group in 1971 in response to a recognized void within 
the industry in the area of computer-aided shipbuild
ing. This requirement was most pressing for hull fair
ing functions and for numerically controlled burning 
of steel plates. 

Accordingly, to resolve this deficiency, the Mari
time Administration, acting on the advice of this 
Technical Advisory Group, purchased U.S. rights to a 
software system developed by a Norwegian Shipbuild-

ing firm, the Akers Group. This system, known as 
AUTOKON-71, was in active use in more than 40 
European shipyards. 

Mar Ad then sublicensed A UTOKON use rights to 
U.S. yards. The AUTOKON Support Program, as it is 
now called, was then established to provide a mecha
nism for adapting this system to the U.S. shipyard 
environment. 

A detailed discussion of the A UTOKON -71 system 
itself is contained below. Following that is a discussion 
of the activities of the AUTOKON Support Program 
for effecting enhanced productivity through coopera
tive efforts in adapting the system for U.S. require
ments. 

A UTOKON features and structure 

Overall organization 

The overall organization of the AUTOKON-71 sys
tem is shown in Figure 1. The system itself is com
pletely modular, thus allowing shipyards to pick and 
choose among the modules to best serve their individual 
needs, with the ability to easily substitute alternate 
programs if they desire. 

As shown in the figure, the entire system is tied 
together through the use of a common database. The 
relationship of each of the AUTOKON subsystems to 
this database will be elaborated below. In general, 
however, all new data generated by the modules of 
each of the subsystems are accumulated within the 
database and any subsequent module may reference 
previously-generated data from the database. Thus it 
is possible to gradually accumulate the information de-

Figure I-The Autokon-71 system 



nnmg a ship, in effect allowing it to be constructed 
within the database prior to its actual erection. 

In addition to the usual economies in data mainte
nance and storage costs resulting from the minimiza
tion of data plethoration, further benefits are achieved 
in the design and construction cycle since all per
sonnel using the system have access to identical in
formation for consistency and efficiency. 

With two exceptions (Modules ALKON and DUP
see below) each of the modules comprising the various 
AUTOKON-71 subsystems are applied in a simple 
straightforward manner involving submission of a 
minimal amount of data in fixed-field format on pre
printed data sheets. Following the commands and in
formation on the input sheets, additional information, 
as required, is automatically retrieved from the data
base, appropriate computations are carried out, and 
results are recorded on the database and output list
ings, with graphical plots and/or N/C tapes also pro
duced as necessary. The N/C tapes may be input to a 
drafting table, flame cutter, or alternatively, via a post
processor, to a Tektronix CRT display or Calcomp 
drum plotter for quick-look review. 

The two exceptions alluded to above are equally 
simple to apply but incorporate an interpretive com
mand language in lieu of the fixed input format. 

The entire system is structured to effectively fit 
within existing working conditions at a shipyard, with 
the overlying philosophy assuming that the users of the 
system are subject knowledgeable but have no back
ground in computer processing. 

Except for a handful of assembly-language pro
grams for handling computer-dependent functions and 
inner-loop subroutines, the entire A UTOKON -71 sys
tem is written in Fortran. Thus, the system is almost 
completely computer-independent, with functionally 
identical versions operating on Univac 1100, IBM 
360/370, Honeywell 6000, and CDC Cyber 70 systems. 

A detailed discussion of the AUTOKON-71 database 
and each of its subsystems follows. 

Database management subsystem and associated 
utilities 

The database itself is physically assigned to direct 
access storage (drum, disc, etc.) and accumulates to 
the order of two million computer words for a typical 
ship, such as a large tanker or container ship. Data 
are stored in an arbitrary number of variable-sized 
indexed-sequential files each residing in one or more 
fixed-size physical blocks as required. Every file con
tains a number of variable-sized logical records (desig
nated as "matrices") each incorporating information 
of a specified type and having a specific format. 

Files are addressed using a six-integer identifier. The 
meaning associated with each of these six integers is 
established according to a fixed set of conventions, 
which for each shipyard, are adapted to best adhere to 
local procedures and techniques. 

Enhancing U.S. Shipyard Productivity 659 

The AUTOKON-71 database access and control sub
system is embedded in a module designated as the 
A UTOBASE module. These A UTOBASE routines, 
which are completely invisible to the user, provide an 
efficient access method for operating on the database. 
"lNhenever a specific six-integer identifier is referred 
for storage or retrieval (see Figure 2), a hashing 
algorithm is applied to the numbers to identify a 
unique page in the file catalog containing information 
on that identifier. That one page of the file catalog 
is then searched seqUentially to find the most recent 
version of the desired file (grandfather versions of all 
files are optionally retained in the database to allow 
backup). The matching entry in the file catalog then 
contains a direct-access pointer to the desired file. The 
file, in turn, contains a File Table of Contents for 
accessing the desired matrix. 

Thirteen independent utility modules are provided 
as an aid in administering the database. Nine of these 
are used to facilitate establishment and modification of 
the database, and three others for storing and retriev
ing data directly to and from the database, bypassing 
the other modules-useful for transferring data from 
N/C tape images, from a digitizer or to or from an
other database. 

The last utility module, designated as DUP (Data
base Utility Program) is a stand-alone system for 
manipulating the database contents, for creating mag
netic tape backup, for copying specified portions of 
the database onto another database, and for generating 
an annotated table of contents for the database. Unlike 
the other modules, DUP is an interpretive system using 
a set of commands specified free-form on punched 
cards. Typical commands include: READ, WRITE, 
DELETE, CONTENTS, COMPRESS, DUPLICATE, 
etc. Each command is usually followed by one or two 
parameters describing the data affected. 

I 

;' 

I 

I 
I 

I 

/ FILE TABLE OF COf..lTENTS 

I 
,~TRIX2 

MATRIX 3 
MATRIX/' 
MATRIX 5 

."IATRIX3 

MATRIX 5 

Figure 2-Database access mechanism 



660 National Computer Conference, 1976 

Hull fairing subsystem 

The AUTOKON-71 hull fairing subsystem is actually 
comprised of three modules: FAIR for the actual 
fairing of the ship's lines ; DRAW to generate N/C 
drafting table drawings of the faired lines; and 
TRABO for TRAnsferring the final BOdy plan to the 
A UTOKON database. As shown in Figure 3, the fair
ing process is carried out using a sequential file for 
storing the offset information. Because the fairing 
activity involves an iterative man-machine process, 
significant economies can be effected by performing 
the initial fairing runs independent of the database, 
incorporating only the final faired lines into the data
base. 

The purpose of the FAIR module is to perform the 
fairing of ship lines and to transform these lines into 
a numerical form suitable for further computer pro
cessing. The basis for performing the fairing process 
is a preliminary lines drawing in a suitable scale. 
Normally 200-400 data points for an entire ship are 
lifted from the lines drawings, the number depending 
upon the extent of shape incorporated in the hull form. 

Input consists of some key curves and selected points 
on frames, waterlines and/or buttocks. The fairing 
is performed automatically from the data points se
lected by the user, and results are presented in printed 
form and, via the DRAW module, in N /C form for 
subsequent drawing on an N /C drafting table. Draw
ings are automatically produced, as desired, for all 
curves faired. 

In use, FAIR may be employed as desired to generate 
an entire ship or as little as one-fourth of a ship. The 
different parts of the ship may then be "hooked up" to 
form the complete ship. As any of these hull repre
sentations is satisfactorily developed, it may then be 
transferred from the working storage used by FAIR 

Figure 3-Hull fairing subsystem 

AUTOKON 
DATABASE 

into the database for the desired hull and added to 
whatever previously exists. This body plan transfer 
is accommodated through the use of the TRABO 
module. 

Longitudinal detailing subsystem 

Once the hull data are incorporated within the data
base, this subsystem can then be applied to strake the 
shell by fitting longitudinal curves to the hull surface. 
Using a module called LANSKI (a Norwegian mne
monic standing for longitudinal details), contours for 
seams, longitudinals, stringers, bulkheads, decks, etc. 
can be automatically defined. 

Input to the program consists of a few points for 
each seam and for each longitudinal from its start 
point and end point, together with a simple identifica
tion of desired cutouts and of the first and last trans
verse frames along the shell to which the cutouts are 
to be applied (also using INCLUDE or EXCLUDE 
operators to identify explicit frames where cutouts are 
to be omitted). 

As output, a Table of Details is produced, both in 
the database and as a tabulated listing, describing how 
and where the longitudinals, seams, and decks cut 
through transverse frames, bulkheads, etc. The space 
angle between two intersecting parts is computed and 
stored to provide automatic correction of the nominal 
dimensions for clearance, on height, width, and, if 
necessary, on the thickness and angle of flange, etc. 
Plots of the body plan with the longitudinal curves 
superimposed, and other drawings for checking pur
poses are prod uced. 

Parts programming subsystem 

The subsystem for parts detailing, designated as 
ALKON (standing for ALgorithmic CONstruction), 
is by far the most sophisticated element of the AUTO
KON-71 system. Input for this module is specified in a 
very powerful Fortran-like problem-oriented language. 
While it is primarily a plane geometry definition tool, 
ALKON boasts of many other powerful features in
cluding: 

• Fairing of individual curves 
• Detailing of complex steel structures 
• Production of drawings with augmented text 

(drafting automation) 
• Production of data for N/C control (drafting, 

flame cutting, milling, etc.) 
• Definition and printing of miscellaneous tabular 

information 
• Definition of standard details (parametric de

scriptions of stringers, scallops, etc.) 
• Formalization of design and production prac

tice (accumulation of experience) 
• Definition of identification system and data 

structures 



The ALKON language is completely flexible, provid
ing the user with tools to replicate the functions of 
literally any of the other AUTOKON modules if de
sired. It should be noted that while the grammar and 
meaning for every vocabulary word is explicitly defined 
within the system, the spelling associated with each 
of these words is not; thus each yard is able to define 
its own version of the vocabulary, incorporating what
ever abbreviations and localized spellings are desired, 
taking full advantage of local customs and nuances. 

One of the most powerful adjuncts of the ALKON 
language is represented in its ability to allow definition 
of norms (i.e., subroutines and functions). Norms may 
be given dynamic names and may be defined and called 
at any time. Norms are stored in the database just as 
any other AUTOKON information, are re-entrant, and 
may be executed recursively. 

Since norms are, in effect, extensions of the ALKON 
language, the capabilities of the ALKON system are 
virtually limitless. In practical use within a shipyard, 
norms are applied in a hierarchical manner: Very 
basic norms are used to define elementary items such 
as cutouts, holes, etc. Other norms combine them into 
series of holes, contours with cutouts incorporated, etc. 
Still other norms can be used to generate complete 
parts to produce web frames, floors, etc. It is even 
theoretically possible to write a norm to design an en
tire ship. 

The ALKON processor itself is organized in two 
passes, translation and processing, which are executed 
in sequence. All input for a run is translated before 
the processing pass is activated, with all data transfers 
between the passes being handled by the A UTOBASE 
routines. 

Input to ALKON is normally on punched cards. 
This input information is read into the ALKON pro
cessor one card at a time by the Translation module. 
Each line is listed on the line printer and is then trans
lated from the higher-level, external representation of 
words and numbers into a binary format. At the same 
time, a few special symbols are interpreted with ap
propriate actions taken, and a check is made on the 
formal correctness (syntax) of all the other input code. 
Misspelled words are rej ected, missing parentheses are 
noted, etc. If complete fields in a statement are 
missing, a default value is substituted. This default 
feature makes it possible to write statements in a very 
simple way for common situations while allowing the 
same statements to be used in a sophisticated manner 
for more complex situations. Vocabulary definitions 
are also accommodated at this point as well as Com
ment statements which are recognized and immediately 
discarded. 

All the major fixed internal logic for Translator 
processing is handled through the use of three sets of 
joblists together with vocabulary tables and decision 
tables. Through the use of these tables, all other state
ment types not mentioned above are efficiently trans-

Enhancing U.S. Shipyard Productivity 661 

lated from the character representation of the input to 
a binary (inverse Polish) notation and passed on to the 
Processing Module via a set of database records desig
nated as code blocks. Newly defined norms are also re
tained as code blocks as are previously-defined norms. 

Following completion of translation, control is then 
passed on to the Processor. Here the code blocks for 
manuscripts are returned from the database one at a 
time, and the statements are acted upon. If a call for a 
norm is encountered, the processing of the manuscript 
is temporarily suspended while the statements of the 
called code block are acted upon. If another norm call 
is encountered, the processing of the present code 
block is again suspended and the new code block acted 
upon. This process may be repeated to any depth, the 
processing of the previous code block being resumed 
when the processing of the called code block is com
pleted. 

When processing of the code block for a manuscript 
is finished, the next manuscript code block is then re
trieved from the database and processed in the same 
manner. Finally, when there are no more manuscript 
code blocks, processing is completed and the present 
ALKON run is terminated. 

The ALKON code for a simple part is shown in 
Figure 4. As previously indicated, the fairing sub
system results in the storage of the ship's lines in the 
database. The use of simple norms for retrieving this 
information is illustrated in Figure 5. The norm calls 

FETCH TFRAME (89) AT SHELL' 

instruct the system to retrieve the file containing the 
contour defined by the intersection of Transverse 
Frame 89 with the outer shell of the ship. The norm 

FETCH LeON' 

then instructs the system to retrieve the specific matrix 
in the file for the desired lofting contour. This code 
can then be embedded within a new contour definition, 
as shown in Figure 6, to define a part made up of this 
contour. 

The Longitudinal Detailing subsystem generates 
tables of details for all required cutouts and stores them 
in the database. The ALKON code shown in Figure 7 
illustrates how the wire frame norms can then be ap
plied to automatically modify a lofting contour to 
incorporate these cutouts. The norm 

GEN AeON ( 

retrieves the various tables of details, previously stored 
by the LAN SKI module, references the appropriate 
norms for the cutout definitions and automatically 
generates the augmented contour incorporating all the 
desired cutouts. 

Plate development subsystem 

Concurrent with the parts detailing activity but 
somewhat after the LAN SKI runs incorporating the 



662 National Computer Conference; 1976 

'" 

AlKOtJ MA.N U S(RI PT 
TEMP' 

ON (CT) 
C;PT' 

Sl: EPT(IOOO) 
~L: EPTllOOO +bOO) 
SL: DI.R(lSO) EPT (2004 bOO) 
CIR: SDIR(l80) EPT(O","400) 
Sl: EPT' 
E:ND LGEO' 
NC. C.ON' 

(~OO)·.oo) . ... 
, 

/ 

./ 

, , 
• 

(1000,1000) 
- -- ---e 

~TA.ttT Po'INT 
(0,0) 

------ -----
~ooo,o 

Figure 4-ALKON code for simple part 

LOnING CO'-lTOUR - FRAME 89 

lOFTSMAN'S ~C('[SS: 

T-=:~AME. (6CJ) AT SHELL" FE.TCH LC.ON' 

Figure 5-U se of wire frame norms 

~u.,xoaJ 
-- - --oJ 

/ 

/"-
,."lUI'IE." 

~~~,:~:;-
-----_._---

TEMP'
TFRlME(8') AT 5HELL' F£.TC.H LCO~'
SlRi R4E.O'
OW (C.T) ~PT ('3'>+ (33,Lf.,Q'»
~L: DIR{o) INT(~7>~<33»)
CotJ' INT'
~l: {)"IR (90)
EPl ("3)"- <33J4-~»)
~[) RGtO'

Figure 6-ALKON code for web frame

AUG-ME.W1E.D COij1QU R VIA. NORM

NEW ,aUF'
TFRAHE (8ct) ~,. SHE.LL'

G~N ~c.oN lT8UF + "

Figure 7-Augmenting lofting contour with cutouts

seams and butts in the database, use of the shell plate
development subsystem normally commences. This
subsystem is comprised of two AUTOKON-71 modules,
aptly designated as SHELL and TEMPLATE.

Shell is used to develop the steel plate required for
the outer shell of the ship and TEMPLATE generates
the roll sets to be used in forming them. For each de
sired shell plate, input consists of butt locations (stated
as axial distances from transverse frames) and seam
identifications together with an indication of which of
two alternate expansion methods is desired. Tne
SHELL program retrieves the required hull form and
longitudinal curve information from the database and
generates 2-axis or 3-axis N /C tapes for cutting and
marking the plates. It also generates N/C drawings in
various scales to be used for checking, planning, or
optical burning. The locations of the rolling lines and
any stiffeners are automatically punch marked on
the plate, or indicated in the drawing by dashed lines.

The TEMPLATE program uses essentially the same
input and generates N /C tapes for plots of roll sets
for the shell plates, or the roll sets themselves. Infor
mation for three templates is produced for each plate:
at the first transverse frame, the last frame and the
middle frame. This module may also be used to gener
ate dimensions for the production of 1: 1 wooden tem
plates for shaping transverse frames.

Part nesting subsystem

Most parts developed with the parts programming
subsystem are not directly cut but rather are stored
on the database for subsequent nesting on a rectangu
lar steel plate so that the steel is used efficiently. The
AUTOKON-71 NEST module is utilized for this ac
tivity. Working with appropriately scaled part draw
ings, the placement of the parts on the raw plate is
determined manually. Input to the NEST module then
consists of the part numbers for each of the nested
parts, their relative location and orientation (normal
or mirror) on the plate, approximate cutting bridge
placement, and (forward/backward) cutting sequence
for each part. The program automatically retrieves
the contour and auxiliary function information from
the database for each part specified, and generates the
required N /C tape for plotting and flame cutting of the
nested format. The plots can be used for checking,
planning or optical cutting.

Planning and production data subsystem

This subsystem is embodied in the AUTOKON-71
PRDO (PROduction DAta) module which is used
to extract data from the database to provide useful
information for planning and production purposes.
Output produced includes: (1) burning time and
cutting length for nested formats and single parts;

Enhancing U.S. Shipyard Productivity 663

and. (~) area, volume, and weight information for
single parts or, optionally for an aggregate series of
parts.

Design analysis subsystem

This subsystem, as incorporated within the AUTO
KON-71 system, is collectively designated as the PRE
LIKON (Norwegian mnemonic for Preliminary Lines)
package. It is comprised of 23 modules which are used
for both preliminary and final naval architecture cal
culations and for automatic production of various
tables and plots normally required on delivery of the
ship.

All computations are performed on an independent
database. Initial establishment of this database is
achieved with the Hull Definition module or the Hull
Variation module, the latter of which can be used to
apply minor changes (LCB,CB, or main dimensions)
to elements of a library of hull forms.

The AUTOKON-PRELIKON linkage module, which,
in effect, retrieves the body plan from the AUTOKON
database and maps it into the PRELIKON database,
may be used later to allow the modules below to be
applied for final calculations.

Modules are also provided for the following compu
tations:

• Hydrostatics
• Load Distribution and Balancing
• Resistance
• Bon Jean Tables and Plots
• Transverse Stability
e Floodable Lengths
• Launching
• Trim Tables and Plots
• Capacity, Sounding, and Ullage Tables
• Grain Stability
• Longitudinal Strength

Program support activities

The AUTOKON Support Program can be defined
as a special interest activity being pursued under the
auspices of the REAPS Program. As previously stated,
the basic purpose for this program is to provide an
organized mechanism for maintaining and enhancing
the AUTOKON-71 system for optimal use in the U.S.
shipbuilding environment. Activity towards this end
falls into three categories: Software Support, Infor
mation Dissemination, and System Enhancements Re
quirements and Planning.

For software support, all the expected system sup
port activities are being pursued under this effort. A
formal mechanism has been established for reporting
system failure information for subsequent resolution
by the REAPS Program staff. Periodically, all the
accepted fixes are incorporated into the system and a

664 National Computer Conference, 1976

new Standard System is distributed to the participat
ing yards. Tapes and complete update documentation
are provided. Implementation assistance is also made
available to new system users. A new four-volume
AUTOKON Users Manual has been written and made
available to participating yards, and training courses
have been developed and given.

Proposals for major system capability enhancements
are periodically reviewed by the A UTOKON Support
Program Technical Representatives, with resultant
recommendations made for Mar Ad funding for those
deemed to merit implementation.

PIPE DETAILING SYSTEM

The following describes the results of a preliminary
systems design recently carried out by Newport News
Shipbuilding and Dry Dock Co. in the first phase of a
two-phase effort to design and implement a minimum
cost system for pipe detailing. The purpose of this
effort was to identify an input station configuration for
use in digitizing piping design data that would sub
stantially reduce the cost of preparing input data for
various computer-based systems used for the produc
tion of pipe manufacturing documents.

Operational overview

Functionally, the desired system must accommodate
four major tasks: data input, document production,
data revision and updating, and data communication.
These tasks are described below in the context of a
typical operational sequence.

At the beginning of a typical design session, the
designer will retrieve the appropriate piping arrange
ment plan or preliminary design drawing and mount
this document on an X-Y digitizer, along with the
command menu list to be used in the input process.
Next he must retrieve from a hull structural database
(e.g., an AUTOKON database) the necessary struc
tural reference data (transverse frame, deck, bulk
head locations, etc.) such that geometric data for the
piping system may be conveniently referenced to these
locations. Using these reference locations, the designer
will then calibrate the drawing(s) on the digitizer by
touching the positions of these structural landmarks
with the free cursor. The system is then prepared to
accept digitizer input.

The designer then proceeds to input the piping sys
tem geometry and details utilizing the digitizer, a key
board or CRT cursor picks. These picks relate to a
CRT display of the current definition of the piping
system which is built up during the input process. The
CRT display also serves as a check on the designer's
work as he proceeds.

Keyboard input of piping geometry may be in the
form of coordinates relative to the structural reference

locations retrieved from the hull database, absolute
coordinates or coordinates relative to other points al
ready defined in the pipe geometry itself.

An important feature of the system is the capability
to automatically select specific components based on a
predefined set of component selection rules applicable
to a particular piping system. This feature, for ex
ample, will allow the designer to specify a condition
generically (e.g., TURN) during the input process.
Then, a post processing operation will automatically
determine the specific fitting, etc., to be substituted
(e.g., a bend or a 90 0 or 45 0 elbow) for the generic
condition through an analysis of the component selec
tion rules.

Regardless of whether components are explicitly
referenced by the designer, or automatically selected
as described in the preceding, the system will proceed
to automatically determine the required orientation in
space of the component based on its local geometry and
the geometry of the connected piping. Additionally,
error checks are performed on the geometry of bent
pipes, to insure that they may be produced by the
yard's pipe bending machines, as well as on joints in
the piping system to verify the compatibility of mem
bers at the joint in terms of diameter, end type, and
alignment.

At the completion of an input session, or at any time
during the input process, the designer may request the
system to produce checking documents. These include
a centerline check print (plot), consisting of a single
line drawing of piping centerlines drawn to the same
scale as the drawing from which the piping geometry
was lifted such that it may be overlaid on the original,
a piping system data list, and a listing of missing data
(see Figure 8). This latter list is required if the de
signer is working from a preliminary design drawing
which will not contain all necessary detail information
required to complete the design. In this case, the sys
tem notes the locations where information is lacking,
but allows the designer to proceed with the input
process. Then, at a later date, when the designer has
determined which details are to be used for this specific
system, he can return to the incomplete system defini
tion to fill in the missing information.

Figure 8 is an example of such a checking document
as might be produced by the system. Note that graphi
cal prototypes of the defined fittings are also presented.
Also indicated are two sectional views of the system,
defined by the user. The user may select views of the
system by one of three methods:

1. by identifying several structural reference points
which are to be included in a plan, section or
elevation view;

2. by identifying a pipe leg which will serve as a
view axis or a pair of intersecting legs the nor
mal to which will serve as the view axis;

3. by specifying cross-sections through an existing
view (e.g., Figure 8).

ID

2131
2105
5421
7137
7138

71 IN

5421 17 IN

..........................

B

~

~
Flange
Flange
Elbow
pipe
pipe

SIZE

3 in
3 in
3 in x 3 in
3 in x 62.5 in
3 in x 12.0 in

25 IN Al
/

A.J
/

/
/

/
2105

A-A
SOURCE

SN71344
P0591-73-66l
P0591-77-005
SN62131
SN62131

Figure 8-Typical pipe detailing system plotter output

At the conclusion of an input or modification session,
the designer may either dump the specific piping sys
tem database to magnetic tape for later retrieval and
additional detailing work or, if the system is complete,
transmit the database to the central database for ac
cessing by engineering analysis, material and produc
tion control, and manufacturing document production
programs.

System configuration

Figure 9 is a schematic representation of the pro
posed input terminal configuration. Each such termi
nal may support from one to four input stations each
consisting of a digitizer, a keyboard, an output graphi
cal display device and an output alphanumeric display
device (either a teleprinter or character CRT). The
box labeled "Printer" may actually consist of one of
two alternative configurations; an incremental pen
plotter for the production of centerline check prints
and a medium speed line or character printer for pro
ducing data lists, or a single electrostatic printer /
plotter which would satisfy the requirements for both
applications. The communications interface and modem
will support 1200 baud synchronous communications
between the minicomputer and the central site facility,
a Honeywell 6080, via a Datanet 355 communications
front-end.

All database operations will be implemented within
the framework of a vendor-supplied database manage-

Enhancing U.S. Shipyard Productivity 665

INPUT STORAGE OUTPUT

I DIGITIZERS

MIN \ CO~IPUTER

Figure 9-Hardware environment for pipe detailing system

ment program which conforms to the recommendations
of the CODASYL committee. A database network
structure has been defined for the representation of
piping data interrelationships which uses a subset of
the CODASYL specifications and which is compatible
with several commercially available minicomputer
based DBMS.

The final, or development phase of the work reported
here is currently under way at Newport News and is
scheduled for completion in early 1978.

SHIPYARD GRAPHICS AND COMMUNICATIONS
TERMINAL

The following discussion reports on the results of a
design effort carried out by lIT Research Institute to
develop a low cost remote terminal configuration for
use by shipyard loft departments in processing the
input and output of N /C software systems such as
A UTOKON and others.

Background

This project was initiated with the intent of develop
ing a terminal design which was modular, for ease in
configuring various throughput/cost configuration al
ternatives, as well as to minimize the cost of each such
configuration throughout the range of these capability
alternatives.

666 National Computer Conference, 1976

Functional requirements

The functional requirements of the terminal, de
veloped as a result of interviews with the personnel of
various shipyards in the U.S., are as follows:

1. The terminal must provide a Remote Job Entry
(RJE) capability for a variety of mainframes via
emulation of various remote batch terminal pro
tocols typically associated with these main
frames.

2. It must provide a local facility for reviewing
numerical control (N/C) data graphically on a
cathode ray tube (CRT) display and on an auto
matic drafting machine (ADM) in the following
modes:

a) ESSI verification
b) Drafting

Additionally, the system must be capable of
punching, on paper tape, the final verified ESSI
file for transmittal to the burning shop to be used
to direct N IC flame cutters.

3. It must provide the necessary data management
and storage facilities to support the above-men
tioned activities efficiently.

4. It must finally, provide an operating environment
in which software tasks associated with the above
functions may execute concurrently in servicing
one or more users.

Operational environment

The terminal user/operator, as with other remote
batch operations, will load the appropriate RJE emula
tion software into memory from local mass storage and
establish communications with the central site facility.
Once loaded, the emulator is prepared to accept for
transmission a user input deck. The user loads the deck
in the card reader and instructs the emulator to trans
mit the input stream to the central site.

At the central site, the appropriate N /C software
system module is invoked and executed and the out
put of the run queued for transmission back to the
originating terminal site. Output from these pro
grams is of two forms: the normal printed output (or
Print File) which will be directed to the terminal's
line printer, and the resultant ESSI code describing
the geometry of the part, plan, etc., produced by the
run. This file will be treated by the central site as a
Punch File and addressed to the terminals' punching
device. In practice, however, this file will be auto
matically written to the terminal's local mass storage
device and catalogued under a file name consisting of
the unique run identification information assigned by
the central site.

Upon reception of these files, the user may then re
ferring to the run LD. appearing on this printed out
put, initiate a graphics session at the CRT console and
call out the appropriate "Punch File" for graphics
processing.

The graphics processing system will allow the user
to plot the ESSI data on the CRT for a quick check
of the data or produce an ADM drawing of the data
by simply specifying the desired output device. If the
user of the CRT is not the originator of the run, this
terminal operator may simply produce a hardcopy of
the CRT check plot on the optional hardcopy device
for delivery, along with the printed output listing, to
the run's originator for review. After review of the
run results, the loftsman or designer who initiated the
run may request the operator to either plot the cata
logued Punch File on the ADM, if the results are satis
factory, or purge the file if an additional run will be
required. A punch tape of the file will also be re
quested if the file is to be used by the N/C burning
shop.

System description

Figure 10 represents a typical configuration of the
terminal being described. One of the more interesting
features of the system is the block labeled "Table Con
trol." This is a microprocessor-based control unit con
taining all the required logic for linear and circular arc
interpolation and the generation of slope and acceler
ation control required by the head drive electronics of
the ADM itself. This capability relieves the system
processor of the requirement of computing and out
putting incremental positioning data for each step of
the ADM's resolution (i.e., 0.001").

The controller can be interfaced to the system pro
cessor via standard EIA serial interfacing, further
simplifying the overall terminal configuration.

The CRT device is of the storage tube variety and
is also interfaced to the system via an asynchronous
EIA RS 232 interface. It will operate nominally at
9600 baud. It is equipped with a thumbwheel cursor
for use in the graphics processing software for digital
coordinate input.

Figure IO-Typical RJE/graphics terminal configuration

The system console may alternatively be a character
CRT display or teleprinter device.

Graphics software

As mentioned previously, two distinct modes of
operation of the graphics processing system are avail
able. The first, or ESSI verification, mode of operation
in addition to producing plots of geometry described
by the ESSI data, also checks the ESSI auxiliary func
tion codes (e.g., center torch on/off, rapid traverse
on/off, left/right kerf width compensation on/off,
etc.) for consistency. In this mode, auxiliary function
code annotation is added to the geometry display/plot
and errors reported (e.g., both center torch and rapid
traverse on concurrently) on the user console.

The second, or drafting mode, ignores all but the
center torch auxiliary functions which serve as the
pen up/down commands. This mode is of particular
value in reviewing ESSI output from the N/C soft
ware modules which are not directly concerned with
flame cutting. These would include, for example, the
AUTOKON FAIR and LAN SKI (see the discussion of
AUTOKON in this paper) modules which output
ESSI representations of hull lines (e.g., bodyplan,
buttocks, waterlines, shell plate seams, etc.) and longi
tudinal structure traces. For these applications, the
user may make use of the graphics processor's window
ing (or zoom) capabilities to good advantage to ex
amine more closely potential problem areas requiring
greater visual definition. Also implemented in the
graphics system software are 3-dimensional display
and transformation routines to support future appli
cations in the design area.

Capabilities summary

A modular, multi-user RJE/Graphics terminal sys
tem for shipyard use has been designed. The system's
capabilities (summarized in Figure 11) include RJE
communications, for a variety of main-frames, which
may be executed concurrently with one or more graph
ics processing sessions or with various utility programs
operating in background mode. The graphics process
ing software allows interactive view modification at a
CRT or a simple batch type mode of operation ap
plicable to both CRT and ADM.

N /C FRAME BENDING MACHINE

The following describes a development effort carried
out by Case Western Reserve University which has
resulted in the production of a prototype, fully auto
mated frame bending machine.

Enhancing U.S. Shipyard Productivity 667

TABLE I-FRAME BE~DER CONTROL ALGORITHM

1. OPERATOR INSERTS BEAM INTO FRAME BENDER

~ OPERATOR CLAMPS TRANSDUCER AT END OF BEAM

3. INPUT THE DESIRED BEAM SHAPE

A. ESSI model of circular arcs and straight line segments
(can be piecewise linear)

B. From AUTOKON paper tape, teletypewriter, or disk file
C. ASCII or EIA character codes

4. INPUT THE BEND PARAMETERS

A. Work length minimum and maximum
B. Initial unbent length at end of beam
C. Clamping mode
D. Tolerances for feed distances and bend angles

5. CALIBRATE TRANSDUCERS WITH AID CONVERTERS

6. SET UP IDEAL MATHEMATICAL MODEL OF BEAM

A. Work points are preferred at junctions of ESSI ele-
m~~ .

B. The last work section may overlap the second last one
C. The tangent vector at each work point is determined

from the ESSI model
D. A table summarizing ideal model of beam can be printed

7. EACH WORK SECTION IS PROCESSED AS FOLLOWS:

A. Feed beam and adjust moving head to position new work
section behyeen the fixed and moving heads

B. Update model of actual beam to reflect feeding
C. If necessary, move transducer to new point on beam,

find new reference point on model of actual beam, and
find corresponding point on ideal model

D. Calculate (X, Y) aim coordinates for t~ansducer refer
ence point from ideal model

E. Bend to Y coordinate of aim point, release, and measure
spdngback

F. Until bend angle tolerance is satisfied (but never more
than 2 iterations), Tecalculate required "overbend" based
on springback just observed, bend to new Y coordinate,
release, and meaSUTe springback

G. U pda te model of actual beam to reflect bending of this
\york section

H. Feed to X cooTdinate of original aim point

8. WHEN EKTIRE BEAM IS FDHSHED, OPTIONALLY
PRIKT A TABLE SU~n'IARIZING THE MODEL OF THE
ACTuAL BEA}''I

9. OPTIONALLY PRINT A TABLE COMPARING THE
IDEAL ~10DEL WITH THE MODEL OF THE ACTUAL
BEAM

Background

Historically, frame bending in the shipyard has
been carried out by one of two methods: hot siabbing,
which requires the shape to be furnaced until the ma
terial becomes plastic and then forced against a full
sized template through use of a hydraulic ram, or
three-point cold form bending, in which the operator
of the three-point machine iteratively applies a force
on the shape between two fixed support points until
the desired curvature has been produced.

Each of these techniques has substantial drawbacks.
Both require the production of full-sized templates.
The hot slabbing process requires a furnace facility

668 National Computer Conference, 1976

CAPABILITY SUMMARY

1. TASK CONCURRENCY:

RJE COMMUNICATIONS WITH GRAPHICS MONITOR JOB

- OR -

BACKGROUND FILE MANIPULATION

(E.G. DISK FILE TO PTP
PTR TO DISK FILE
DISK TO DISK COPY
TEXT EDIT)

PROGRAM DEVELOPMENT~ ETC.

2. ESSI DRAFTING PLUS VERIFICATION FOR EITHER
CRT OR DRAFTING TABLE

FEATURES: WINDOWING
ZOOM
ROTATION
MIRROR IMAGE
AUXILIARY FUNCTION ANNOTATION
DRAFTING TABLE CONTROL
CONSOLE EMULATION
3-D CAPABILITY FOR FUTURE
APPLICATIONS

3. EXPANDABILITY

To 128K WORDS MEMORY
To 8 DISK DRIVES
MULTIUSER
MULTI TABLE

Figure ll-Shipyard graphics terminal capabilities summary

and is very labor intensive. And the cold bending is
slow, requires a skilled machine operator and, most
significantly, produces out-of-plane bending, buckling
and twisting (i.e., the plane of deformation of the
shape and the plane in which the bending moment is
applied may not coincide) .

The CWRU frame bender represents a unique solu
tion to these problems. The prototype itself is a 1/6
scale version of a full scale device which can accommo
date interchangeable dies, automatic clamping, auto
matic feeding and provision for operation in either a
completely autonomous, computer-controlled mode or
by manual control.

1~f ode of operation

Figure 12, reproduced from Reference 2, depicts the
control loop involved in directing the machine. Feed
back signals from the transducer group are fed through
a multiplexed 12-bit A/D converter to the computer
(a 32k Nova 2/10). Based on the current and desired
frame contour (acquired from the ship structural

J!YL?RAULIC P/?cSSURE

PISTON
DISPLACEMENT

STRAIN 9AUG,ES

CONTR,OL SIGtNALS
FEED.MOTOR
CLAMPS
IN-PLANE PRES.sv.eE
OVT-Or-PLANE PRE.!.
TWIST PRESSU,t(E

Figure 12-Controlloop for automatic frame bender

database, e.g., AUTOKON) the computer calculates
the necessary bending to be applied and outputs this
data, via a D/ A converter, to control hydraulic valves
on the machine. This process is an iterative one in
which short segments of the frame, called work sec
tions, are processed sequentially. For each work sec
tion a target or "aim" point is computed such that
cumulative error is minimized. The work section is
then bent, taking into consideration the approximate
spring back of the frame, in an attempt to position a
reference point near the original end of the frame on
the aim point. If the two points do not coincide after
bending and springback, the work section is again
bent on the basis of the springback measured after the
last bending operation and the deviation of the refer
ence point from the aim point. Throughout this pro
cess, for frames with non-symmetrical cross-section,
hard wired logic maintains the appropriate in-plane
bending through control of a servo valve.

Three separate mathematical representations of the
frame are maintained by the minicomputer during the
bending process. The first is the ESSI (Le., N/C
contour) model of the frame as retrieved from the
A UTOKON database. The "ideal" model is derived
from this ESSI model prior to the initiation of bending
by segmenting the ESSI elements into work sections
(see Figure 13) according to a set of segmentation
rules, and computing vectors tangent to the ESSI
model data at all work points for alignment of the
frame. Finally, the actual model, developed during the
bending process, represents the true shape of the frame
based on actual curvatures applied and work section
lengths fed. From this model, a table of discrepancies
can be produced relating the final actual to desired
shape.

3
ESSI

25"

ViORK SECTION 4

TABLE OF ESSI ELEMENTS (100 UNITS/INCH)
-- - -- ---- --

1322 -2205 -1178 -2205
382 -1328 2500 0 +

425 -678
172 -246 2542 1594 +

Figure 1S-Example of an ESSI model and its ideal work section
model

FUTURE PROGRAMS

Consistent with a broadening of the technical scope
of, and shipyard participation in the REAPS Program,
is a shift in emphasis in the program's R&D efforts
to the development of programs or systems which do
not rely on any of the several individual NIC software
or other production-oriented systems for applicability.

Enhancing U.S. Shipyard Productivity 669

Some examples of proj ects to be undertaken in the
near future are listed below.

1. Structural Detailing System-for definition of
stiffener intersection details including N IC de
scriptions of end-cuts for subsequent use by N/C
fabrication equipment.

2. A Low Cost Parts Definition System-for quickly
entering or modifying existing part geometries in
an interactive mode through use of a minicom
puter-based digitizer system.

3. Sheet Metal Template Generation System-for
use in developing sheet metal ducting details and
subsequent template preparation.

4. Structural Assembly Aids System-for produc
ing parts explosion type drawings of structural
units to assist assembly crews in fabricating
structural units quickly and accurately.

Such developments it is felt will now and in the
future provide U.S. shipbuilders with cost-effective
technological problem solutions which will serve to
enhance shipbuilding productivity.

REFERENCES

1. "AlJTOKOX Users ::\Ianual," Vols. 1 to 4, lIT Research
Institute, 1975, 1976.

2. Braun, D. C., "The Case Western Reserve K/C Frame
Bending }Iachine," Proceedings of the 1975 REAPS Tech
nical Symposium, June 1975, pp. 219-246.

3. Landmark, Anton, "ALKON-A Language for Algorithmic
Design," ICCAS (International Conference on Computer
Applications in the Automation of Shipyard Operation and
Ship Design) Proceedings, August 1973.

4. l\Iartin, D. J., "A Graphics and Communications Terminal
for Shipyard Applications," Proceedings of the ThiTteenth
Annual Numerical Control Society Technical Conference,
March 1976.

5. Moore, R., "The AUTOKON System at Kewport News,"
Proceedings of the 1974 REAPS Technical Symposium,
June 1974, pp. 39-50.

6. Rourke, P. W., "Software Engineering for Digitizer/Mini
computer-Based Piping Data System," Proceedings of the
1975 REAPS Technical Symposium, June 1975, pp. 89-110.

Computer analysis and evaluation of marine structures

by DONALD LIU and MATIAS E. WOJNAROWSKI
Ame1'!:can Bureau of Shipping
l~ ew· Y ork, :r~ ew York

ABSTRACT

The marine industry in general and the American
Bureau of Shipping in particular have turned to the
extensive use of computers for the solution of the
problems encountered in the design, analysis and con
struction of ships and other marine structures. Mathe
matical solution techniques have been available for
some time, but the complexity of the necessary calcu
lations precluded their use. The advent of electronic
digital computers with their powerful, constantly ex
panding "number-crunching" capabilities has bridged
this gap, leading to the application and further ex
pansion of available techniques.

The most useful and usable tool is the finite element
method, which has found widespread use and has
been extensively applied for structural, dynamic and
thermal analyses of marine structures, ranging from
entire vessels to local structural details. Descriptions
and examples of such analyses are given in the paper.

Other facets of computer versatility applicable to
and used by the industry include conversational pro
grams, naval architecture programs, computer graph
ics and information retrieval. These subjects are pre
sented and discussed in the paper.

Looking ahead, future trends of computer applica
tions in the industry are mentioned.

INTRODUCTION

The American Bureau of Shipping (ABS) is a ship
classification society which performs the primary ser
vice of certifying the soundness and seaworthiness of
merchant ships and other marine engineering struc
tures. ABS establishes standards known as "Rules"!
for the design, construction, and periodic survey of
vessels. By applying these internationally accepted
"Rules", ABS classes ships, that is, assures that ships
are fit for their intended service. Classification pro
vides assurance to owners, purchasers, shippers, un
derwriters, and other interested parties that a par
ticular vessel possesses the structural and mechanical
capability for safe performance.

671

Realizing the power of the computer and its applica
tion as a valuable engineering tool for vessel classifica
tion services and such fields as naval architecture and
structural engineering, the American Bureau of Ship
ping has been in the forefront of the development and
usage of computer programs in the marine industry.
As a service organization to the industry, ABS has
also adopted a policy of making known to interested
parties the methods it employs in computer-related
activities. This paper is a small coIitribution toward
that goal.

The complexity of engineering problems encountered
in the marine industry has led to extensive and ever
expanding computer usage,2 In addition to the con
ventional static and dynamic problems of design, the
problems encountered in assessing marine structural
response are compounded by the unpredictable nature
of sea, and sometimes cargo, loads. Sea conditions
represented by wave heights, wave lengths and wind
speeds are measured and the information is compiled
statistically. Structural design is based on sea condi
tions with a probability of occurrence of 10-8

, which
corresponds to an event occurring once during an as
sumed ship service life of approximately 25 years (20
years at sea). Special phenomena associated with the
dynamic interaction of waves and ships at sea must
be taken into account. Springing, for example, is a
vibration of the complete vessel induced by the wave
frequency in conjunction with the ship's elastic prop
erties. Other areas of concern are local vibrations,
which may be induced by waves or action of the pro
peller and drive shafts. Other loading conditions in
clude those due to thermal effects, sloshing of liquid
in cargo tanks and sea ice.

Mathematical techniques, such as matrix methods,
finite element methods and statistics, have been avail
able for a long time. I t has taken the advent of elec
tronic digital computers to make possible the full
utilization and implementation of these techniques into
an efficient engineering approach to the solution of the
numerous problems associated with the design, con
struction and analysis of ships and other marine
structures.

672 National Computer Conference, 1976

FINITE ELEMENT METHODS

The finite element technique is a relatively new and
very useful method for stress analysis of structural
continua. The method relieS strongly on the matrix
formulation of structural analysis introduced mainly
as a result of the increasing use of computers. There
has been a concurrent and rapid development of elec
tronic computers, matrix methods and finite element
techniques.

In the finite element method, a solid continuum is
subdivided into an assemblage of discrete elements of
finite dimensions.3 In effect, the real system or struc
ture is modeled by a simplified, idealized system for
which a solution is available. The idealized model is
then analyzed by one or more of the available methods
of analysis.

The finite element technique has a sound theoretical
basis within the framework of the classical theory. It
may be interpreted as a close relative to the well-known
Ritz method, in which the displacement field in a con
tinuum is usually described by means of a sum of pre
selected functions, each multiplied by a constant. The
constants are determined by means of the condition of
minimum potential energy.

While in the classical Ritz procedure one set of
functions describes the displacement field in the entire
continuum, the finite element method assumes individ
ual displacement fields for each of the elements. The
internal displacements in the elements are uniquely
defined in terms of the nodal point values, and the
entire displacement field is assumed to consist of a
large number of piecewise continuous fields, each cov
ering the extent of one element. The conditions of
equilibrium of the nodes may be shown to yield the dis
placement field corresponding to minimum potential
energy for the selected displacement pattern. As in the
Ritz procedure, the solution will generally be approxi
mate, but the method converges toward the correct
solution.

Many new developments and refinements are con
stantly being added to the existing finite element pro
grams. One of the most promising of these extensions,
extremely useful in the analysis of complex structures,
is the substructuring capability. Substructures are
assemblages of basic elements (beams, plates, etc.)
which serve as building blocks for the representation
of larger, more complex structures. Substructuring
decreases the amount of input data required to gen
erate the structure, particularly for repetitive struc
tural arrangements. It also decreases the number of
unknowns encountered in the solution of the problem,
with a corresponding reduction in computer require
ments.

An improved substructuring concept involves the
use of the "reduced substructure" technique,4 in which
kinematic constraints are applied on the boundary so
as to reduce the number of interaction freedoms. This

insures displacement compatibility along the bound
aries between adjacent substructures and/or elements.

Some examples of the numerous finite element ap
plications in the marine industry are given in the
following sectionlS.

STRUCTURAL ANALYSIS

Discretization is an essential part of the structural
analysis problem.5 In general, discretization introduces
approximations into the analysis; for example, a
finite element idealization generally involves approxi
mations both of the geometric form of the structure
and of the displacements which it develops. The de
gree of refinement which is employed in the finite ele
ment mesh should be based on the analysis require
ments, i.e., a .fine mesh is needed in regions where the
structural behavior is most complex. Moreover, the
mesh must be particularly fine if the primary objective
of the analysis is stress distribution rather than de
flection, because the derivatives of the displacements
are represented less accurately than are the displace
ments themselves when applying the more commonly
used displacement method.

The finite element method has been extensively ap
plied to all types of marine structures. The first ap
plications were for the analysis of supertankers (large
tankers with deadweight tonnage above 200,000 dwt) ,
as a result of their rapidly increasing size and as
sociated changes in ship configuration.2 Classification
society rules based on previous design and experience
were not adequate for these new ships, and consider
able structural damage was sustained by some of the
earlier supertankers. Computerized structural analy
ses have provided the means to overcome Rule limita
tions and to provide the required structural integrity
and design efficiency.

Other marine structures such as containerships, ore
or bulk carriers, liquefied natural gas (LNG) carriers,
submarine structures, surface effect ships, hydrofoils,
ice breakers, drilling rigs (fixed and floating), off
shore platforms, etc., have been extensively analyzed
by computerized methods.

Some examples of these analyses by means of the
ABS/DAISY (Displacement Automated Integrated
SYstem) program6 are shown in Figures 1 through 4.

Figure 1 shows the displacements of the deck and
the lateral expansion of the front hatches of a con
tainer vessel in oblique waves, subject to combined
vertical, lateral and torsional loads. 7 Figure 2 shows
the extent of a three-dimensional model of an LNG
carrier.8 Figure 3 shows a typical transverse web
frame of an oil tanker, its idealization by finite ele
ments, calculated displacements and corresponding
stress contours. Figure 4 shows the various design
improvements of a shell longitudinal connection to a
horizontal oiltight bulkhead girder in a supertanker.9

Computer Analysis and Evaluation of Marine Structures

Deck Centerline Vertical and Longitudinal Displacements_

L-...l-----l
o jO ZO

CM

Figure l-Overall displacements of deck and front hatches diagonal expansions

Figure 2-Extent of three-dimensional model for independent tank LNG carrier

673

674 National Computer Conference, 1976

Transverse

'\ Web
Frame

I

2?l.5 ... m rt..~ eo~TOM L.~"'Cl'l. 5PACI NCI" 1000 mm
....... -------'"- 800 -,0 1<;' 'It '" 200" ?>~, ~4=';~'-------;

eCCOmm

'Z4.G5m

Figure 3-Two-dimensional web frame analysis

STRUCTURAL DYNAMICS

Generally speaking, the concepts of structural dy
namics are not new; both mode-superposition proce
dures and direct time-integration analyses of the
equations of motion were well understood many
decades ago.5 However, the finite element method
provides a unified approach to discretization which
can be applied to completely arbitrary and highly
complex structures, and the modern digital computer
makes possible the routine solution of the resulting
equations of motion, which may involve hundreds or
thousands of degrees of freedom evaluated at hun
dreds of time intervals during the dynamic response.
Thus, these new tools make it possible to meet current
structural dynamic analysis needs in fields such as the
design of offshore oil drilling platforms for wave, wind
and earthquake loads, the design of supertankers and

other ships for wave loads and other hydrodynamic
forces, etc.

Some examples of the application of computerized
dynamic analysis are shown in Figures 5 and 6.

Figure 5 shows the idealization of an entire cargo
ship for the study of vibrations and slam response by
means of the SHVRS (Ship-Hull-Vibration Response
System) program.10 Figure 6 shows an isometric view
of the model used for the vibration analysis of a super
tanker.ll The model consists of one-half of the entire
vessel, and was plotted with the aid of the SAP IV
(Structural Analysis Program) plotting routines.12

Figure 7 shows the wave-induced, springing and com
bined bending stresses at the midship section of a
Great Lakes ore carrier as a function of the wave
frequency. This was calculated and plotted with the
aid of dynamic analysis programs being developed at
the American Bureau of Shipping,

Computer Analysis and Evaluation of Marine Structures 675

Plot of Stress Contours

Figure 3 (continued)

THERMAL ANALYSIS

Thermal stresses and deformations are produced by
changes in temperature distribution, and high tem
peratures influence the mechanical properties of a
material to a great extent.13 Ship structural members
and machinery parts are often subjected to various
kinds of heat treatment, producing thermal stresses
which may result in residual deformation. Tempera
ture differentials of cargo and surroundings, as for
example in the high temperature range of hot asphalt
(300 0 F.) or in the very low temperature range of
LNG (-260 0 F.) produce high thermal stresses and

deformations which must be considered in the overall
design and analysis of a vessel. The magnitude of
thermal stresses developed in a hull structure is gov
erned by the restraints provided by surrounding struc
ture and by the non-uniform temperature differences
in the hull due to the ship's internal and external en
vironment.

The finite element method is a powerful tool to obtain
thermal stress distributions and deformation patterns.
Some examples of its application are shown in Figures
8 and 9. Figure 8 shows thermal loads and calculated
stresses on a typical transverse web frame of an as
phalt tanker carrying cargo at temperatures of up to

676 National Computer Conference, 1976

MAIN-HULL LUMPED MASSES

• __ L~EFLECTED SHAPE

EEit------ --

Max. tensile stress in
face plate 2"00 kg/ cm 2

MODIFIED DESIGN

__ _ L_ D~FLECTED SHAPE

.. e:nmfi_U;~II~~;~~-m:I-~--I-I-~--~-~-i--i-ij--
Max. stress intensity '. i"H
plate 2500 kg/cm 2 -H:o':i\"!~t----L;~$I~"';4':/<

~~~~~~~~~-~~Hr 

MODIFIED DESIGN 

Figure 4-Effect of connection detail on stress concentration 

MAIN-HULL 

(
ELASTIC 

. _~XIS 

Figure 5-Complete ship idealization 

r-~--
~ 
/"b ="~====4. 

I 
,I 

I 
/ 



• + 

~I 
~ r 

r . 
lL::. 

Computer Analysis and Evaluation of Marine Structures 677 

265000 OWT OIL TANKER 

Figure 6-Isometric view of ship model (port) 

.1"1 

~ L-I ----::-':::=:---t"-=----t"-;;:----'~:;:_"_-. T~~::----:-:;;;--~:;----~I .• -4 ~1_-82 - -~.oo 
Frequency C!'ad./sec.} 

Longi tudinal Stresses 

Figure 7-Dynamic midship bending stresses Figure 8-Thermal analysis-Asphalt carrier 



678 National Computer Conference. 1976 

Spherical-Tank LNG Carrier At Sea 

F ini te Element Model Deformation due to 
Thermal Loads 

Figure 9-Structural analysis including thennal effects-LNG 
carrier 

300 0 F.14 Figure 9 shows a picture of a spherical tank 
LNG carrier, a finite element model used for its analy
sis, and the thermal deformation of a portion of the 
tank consisting of the dome, the spherical tank shell 
and the cylindrical supporting skirt.15 

NAVAL ARCHITECTURE PROGRAMS 

Numerous computer programs have'been developed 
over the years to perform various naval architecture 
calculations such as hull girder shear and bending 
moment, section modulus, hydrostatic stability and hull 
characteristics. These calculations all require a de
scription of the hull geometry, usually in the form of 
offset data. Perhaps the most widely used and com
prehensive hull characteristics program is SHCP (Ship 
Hull Characteristics Program) .16 This program de
velops both intact and damage stability characteristics 
for ship forms by conventional methods. Hull girder 
shear and bending moments can also be calculated. 
Computer-generated plots can also be produced, such 
as Figure 10, showing hydrostatic curves, and Figure 
11, showing the transverse sections of the hull outline 
of a vessel. 

In addition to comprehensive computer codes such 
as SHCP, special purpose programs for calculating 

grain stability, tank ullage, and section modulus are 
also available to naval architects. As a description of 
the hull form is a requirement for all of the above 
calculations, establishment of a common data base for 
the hull surface geometry is highly desirable. 

Computer programs based on the classical naval 
architecture approach to stability of ship hulls are not 
easily adaptable to offshore drilling rigs such as the 
semi-submersible and self-elevating types. These rigs 
are generally composed of assemblages of tubular sec
tions and/or geometric shapes having planar surfaces. 
Use of conventional offset data to describe their un
usual shapes can be difficult and complicated. To 
handle drilling rigs, stability computer programs have 
been developed to perform intact and damage stability 
calculations for mobile drilling rigs. To overcome 
difficulties in describing the unusual and multi-con
nected shapes of these rigs, a typical program such as 
the ABS-developed DRILRIG17 contains a library of 
solid element shapes (cylinders, tetrahedrons, hexa
hedrons, hemispheres, etc.) which are readily defined 
with a minimum of data. The user selects the shapes 
and assembles them so as to represent the compart
mentation and geometric configuration of the rig. 
Stability calculations are then performed by conven
tional methods. 

CONVERSATIONAL PROGRAMS 

Conversational programs, which provide for back
and-forth communication between the engineer and the 
computer, have been successfully applied to obtain 
ship scantlings (structural properties, such as plate 
thicknesses and beam sizes) based on classification 
society rules. 

Such a typical computer approach to ship design is 
the ABS/RULESCANT (RULE SCANTlings) systems 
of time-sharing programs that determine scantlings 
satisfying the ABS Rule requirements for midship 
sections of oil, ore or bulk carriers.Is The input typed 
by the user at a time-sharing terminal consists of the 
basic configuration of the vessel, the plate and stiffener 
sizes and the location and arrangement of structural 
members. A data base (file) of all the processed ship 
information is created for use by the many output 
subprograms which can be individually selected for 
execution by the user at the terminal. 

One of the programs is used to check scantlings of 
the midship section. The program determines the 
Rule-required plate thicknesses and stiffener and hull 
girder section moduli. It also calculates the weight per 
unit length, and the allowable shear stress and shear 
force. The formulas used by the program in deter
mining the Rule requirements are also listed, as a 
matter of information to the user. After viewing the 
results, the user can dynamically change any of the 
input, including the given values of the plating and 



-60 -50 ·4~ 

j 
I I 

I 
35

1 
+ 

w 
"j 
~j 1-. 

'< c::: 

~ ?~ 
=< 
w 
::;: 

15 

let 

'v I I 
0 2000 4000 

5 10 

Aft 

Computer Analysis and Evaluation of Marine Structures 679 

48 !:;O S2 5'" 56 KHi FEE r 

::-'.:C 30C 4:lQ 50C GeG 70(; Ki-IL ~Hr 

·30 ·20 -10 G 10 20 LGF ,Lee FE£T FRCr~ HHlSl-tIPS. KB FEEl .~f3Cjvt P..',StLINC: 
I I -----+--------+---- I "" '~l 

\ \ / \ / / ! 

\ Ie r x / I \~ 
\ \ / "- / t 

t 

.,/ 
t 
t 

1 
+1-.,. + 

t 
Q" 

t 
t 
t 
t 
+ 
+ 
+ + 
+ 
+ 
t 

f 
I I I I I I I I I I 

6000 8000 lCOOO 12C:~ 14000 lS0Ce 18000 20000 OISPL TCrl5 511 

15 20 2S 3[, 35 4C ~S 50 Eo5 WI lCUS/lNC;H 

0 20C ~oo GOC eoo 1000 l20C :Hl 
r·OC!-:OI'~S 

Figure 10-Computer plot of hydrostatic curves 

Forward 

_.-.--- -- -- ... --~--

I I 

stiffener sizes. Then he can rerun the program while 
at the terminal and obtain answers within minutes of 
altering the input. 

There is also a preliminary design subprogram, 
which requires input of only a basic definition of the 
midship geometry. The program then determines the 
minimum Rule requirements for the midship section, 
which can be used for preliminary design purposes. 

Many more sections of the Rules will be integrated 
into a computerized system similar to ABSjRULE
SCANT. 

COMPUTER GRAPHICS 

Figure ll-Body plan-Transverse sections of hull outline 

With the improvement of the general purpose struc
tural programs to analyze large and complex structures 
economically, the need for efficient methods of checking 
input data and reviewing output results becomes more 
pressing.19 The field of computer graphics satisfies this 
need by producing visualizations of the structural 



680 National Computer Conference, 1976 

Generation 0: Key Points, 
Straight Lines and Circular Arcs 

Line Load 

(only boundaries displayed) 

Fini te Element !1odel Displayed 

with a Diffe:'ent '/iew Point 

and Viewine Ang2.e 

Load Display 

wi th Elements Included 

Figure 12-Graphical displays of ship segment 

models and stress patterns. The inherent advantages 
and disadvantages of the two basic methods of com
puter graphics, passive and interactive, dictate the 
usefulness and areas of application of each method. 

Passive graphic systems include plotters (flatbed, 
drum, and electrostatic) and microfilm recorders. The 
nature of these devices precludes user interaction, and 
therefore they are best suited to applications where a 
user has time to review the resultant plots before mak
ing any changes or going on to the next step. The most 
popular applications include plots of the geometric 
model (input) and deflected shapes and stress con
tours ( output) . Since turnaround requirements for 
these applications can usually be measured in hours, 
the normal operating procedure is to run these jobs 
in the batch mode on large computer systems and pro
duce tapes which can subsequently run on the plotters. 

Most of the large finite element programs have 
plotting capabilities as part of the basic program or 
as separate add-on modules. In addition, there are 
many general purpose plotting programs that can use 
the output files generated by most finite element pro
grams, although in some cases interface programs 
must be written. Input geometrical plots (two- and 
three-dimensional perspective views) and a wide 
variety of output plots (deflected shapes, force and 
moment diagrams, stress contours) form the most 
generally available plot features. 

The basic advantage of the passive system is that 
large amounts of data can be processed economically. 
The plotter is the only additional equipment needed, 

and the actual computer runs necessary to generate 
the plots can be run in the batch mode, with minimal 
impact on a large computer system. The obvious dis
advantage is the lack of interaction. Incremental 
mode plotters are relatively slow (detailed plots can 
take many hours), but electrostatic plotters can pro
duce hard copies at rates comparable to most repro
ducing machines. 

Interactive graphics systems consist of display con
soles, means of entering and editing data (usually 
cathode ray tubes, tablets, keyboard devices), and a 
computer system to maintain the data files and perform 
the calculations needed to produce the plots. 

Interactive systems find their greatest use in design 
work. The designer is able to communicate with the 
computer, see the results, and make the necessary 
changes. The earlier systems required either a totally 
dedicated medium-sized-computer or a large portion 
(partition) of the resources of a large computer. In 
recent years, the availability of time-sharing systems 
and powerful minicomputers has relaxed these re
quirements. 

The GIFTS (Graphics-oriented Interactive Finite 
Element Time-Sharing Package) system,2° designed 
primarily for ship structures, is one widely used 
interactive package. The entire system accesses a 
Unified Data Base (UDB) which stores all pertinent 
data on a set of random access files. Each individual 
module can access and operate on the UDE. After the 
entire model has been verified, part of the UDB forms 
the input to a general purpose analysis program such 
as DAISY, NASTRAN (NAsa STRuctural ANalysis) ,21 

or SAP IV. The output from the analysis program is 
then incorporated into the UDB and additional mod
ules can display results. 

Some of the displays obtained during the various 
phases of the analysis of a vessel are shown in Figure 
12. 

INFORMATION RETRIEVAL SYSTEMS 

The service experience of vessels at sea provides a 
wealth of data to evaluate ships. Information on oc
currences of structural and mechanical damage and 
failures must be collected and statistically analyzed. 
Subsequent feedback of this information will enable 
shipbuilders and designers to incorporate this knowl
edge into future improvements in design, construction 
and analysis techniques. The only means to efficiently 
handle the vast amounts of data involved is through 
information handling systems. 

A comprehensive computerized system for informa
tion storage, correlation and retrieval hns been imple
mented at ABS. This system, known as ABSIRS 
(American Bureau of Shipping Information Retrieval 
System) 22 handles data concerning shipowners, ship
builders, ship characteristics, service histories and 



Computer Analysis and Evaluation of Marine Structures 681 

other pertinent data relevant to merchant vessels of 
the world. ABS uses its vast stores of information and 
worldwide telecommunication facilities to provide easy 
and rapid accessibility to the industry. 

The ABSIRS system consists of seven files, whose 
functions can be summarized as follows: 

Master File is the nucleus of ABSIRS. It contains 
all the data in the published RECORD of the American 
Bureau of Shipping,23 a ship registry that contains 
pertinent characteristics of more than 42,000 vessels
virtually all sizeable vessels in existence-including 
the more than 13,000 vessels that have been classed 
by ABS. 

Technical Notes File contains service data limited to 
statistical compilations and correlations of damages or 
casualties in vessels classed with ABS since 1965. Hull 
or machinery failures that are considered significant 
are entered in the file, i.e., those failures that may 
eventually show a recurring problem and thereby 
prompt Rules changes or revisions in existing con
struction techniques. The File contains a brief descrip
tion of hull damages according to type (buckling, 
welding, cracks, corrosion, etc.). 

Construction File stores additional information on 
vessels of ABS classification, including particulars 
on characteristics of hull construction and materials 
and machinery items and associated components. 

Dead File stores data on ships that have ended 
service life. The recorded data passes from the Master 
File to the Dead File, insuring a preservation of the 
vessel's history. 

On-Order File carries data on vessels in excess of 
1,000 gross tons that are either being constructed or 
are under contract to be built in shipyards around the 
world. 

Owners File is a record of the names and addresses 
of owners, agents, and operators of ABS-classed ves
sels appearing in the RECORD of the American Bu
reau of Shipping. 

Shipbuilding and Drydock File lists the names, loca
tions, capacities, and descriptions of shipbuilding, 
drydock, and repair facilities available throughout the 
world. 

Each file can be searched separately and there is a 
multi-file capability that allows the information within 
each file to be cross-correlated with data in any other 
file or files. Inquiries may be based upon any category 
stored in the computer, and many report formats are 
available to suit the user's needs. 

CONCLUSIONS 

Computer usage in the marine industry is extensive, 
diversified and expanding. It combines the use of 
mathematical techniques with the latest technical 
facilities of computers, software, hardware and com
munication with the user. 

The developments of computer analysis in the in
dustry point to the following future trends: 

1. More intelligent use of the computer as an en
gineering tool will result in more economical 
analysis methods. For example, advanced tech
niques such as substructuring will find increased 
applications in the design and analysis of ship 
structures. 

2. Increased use of computer graphics display ter
minals will facilitate the automatic generation 
and verification of the large amounts of data 
necessary to create an extensive finite element 
model. 

3. Engineering analysis programs will acquire a 
more interdisciplinary character. For example, 
the hydrodynamic forces acting on a ship will be 
calculated by the same computer program that 
determines the resulting structural response. 

4. More interactive programs emphasizing user
computer interaction will result in a greater 
variety of applications among a wider spectrum 
of users. 

REFERENCES 

1. American Bureau of Shipping, Rules for Building and 
Classing Steel Vessels, 1975. 

2. Kamel, H. A., D. Lin and S. G. Stiansen, "Naval Trans
portation," presented at the Society of Enginering Science, 
Inc., 12th Annual Meeting, Austin, Texas, October 1975. 

3. Moe, J., "The Finite Element Technique-A New Tool in 
Structural Analysis," Finite Element Methods in Stress 
Analysis, edited by 1. Holand and K. Bell, Tapir, Trondheim, 
Norway, 1969. 

4. Kamel, H. A., D. Liu and E. 1. White, "The Computer in 
Ship Structure Design," Numerical and Computer Methods 
in Structural Mechanics, edited by S. J. Fenves, N. Perrone, 
A. R. Robinson and W. C. Schonbrich, Academic Press, 
N ew York, 1973. 

5. Clough, R. W. and K. J. Bathe, "Finite Element Analysis 
of Dynamic Response," Advances in Computational Meth
ods in Structural Mechanics and Design, edited by J. T. 
Oden, R. W. Clough and Y. Yamamoto, UAH Press, Uni
versity of Alabama at Huntsville, 1972. 

6. American Bureau of Shipping, Research and Development 
Division, DAISY Users Manual, 1975. 

7. Elbatouti, A. M., D. Liu and H. Y. Jan, Structural Analysis 
of SL-7 Containership under Combined Loading of Vertical, 
Lateral and Torsional Moments Using Finite Element Tech
niques, Ship Structure Committee Report SSC 243, 1974. 

8. Amel'ican Bureau of Shipping, Research and Development 
Division, Structural Analysis of 130,000 M9 LNG Carrier, 
Technical Report RD-73006, December 1973. 

9. American Bureau of Shipping, Research and Development 
Division, Structural Analysis of Longitudinal Stiffener 
Connections to Transverse Bulkheads, Technical Report 
RD-75010, April 1975. 

10. Kline, R. G. and E. U. Shipe, US€1's Guide for Simulated 
Ship-HUll Vibration, U.S. Steel Computer Program Docu
mentation, 1971. 

11. American Bureau of Shipping, Research and Development 
Division, V£bration Study of 265,000 DWT Oil Carrier
Part 1-Analysis and Correlation, Technical Report RD-
75001-1, July 1975. 



682 National Computer Conference, 1976 

12. Bathe, K. J., E. L. Wilson and F. E. Peterson, SAP IV-A 
Structural Analysis Program for Static and Dynamic Re
sponse of Linear Systems, Report No. EERC 73-11, College 
of Engineering, University of California at Berkeley, April 
1974. 

13. Veda, Y. and T. -::{amakawa, "Thermal Nonlinear Behavior 
of Structures," Advances in Computational Methods in 
Structural Mechanics and Design, edited by J. T. Oden, 
R. W. Clough and Y. Yamamoto, UAH Press, University 
of Alabama at Huntsville, 1972. 

14. American Bureau of Shipping, Research and Development 
Division, Thermal Stress Analysis of Oil Tanker for Carry
ing Hot Asphalt, Technical Report RD-73004, August 1973. 

15. American Bureau of Shipping, Research and Development 
Division, Structural Analysis of 125,000 M9 Spherical Tank 
LNG Carrier, Technical Report RD-73001, April 1973. 

16. Naval Ship Engineering Center, Department of the Navy, 
Ship Hull Characteristics Program-SHCP Users Manual, 
CASDAC #231072, January 1976. 

17. American Bureau of Shipping, Research and Development 

Division, DRILRIG Users Manual, October 1975. 
18. American Bureau of Shipping, Research and Development 

Division, RULESCANT Users Manual, July 1975. 
19. Stiansen, S. G., "Structural Response and Computer-Aided 

Design Procedure," presented at the SSC-SN AME Ship 
Structure Symposium, Washington, D.C., October 1975. 

20. Kamel, H. A. and M. W. McCabe, A Graphics Oriented 
Interactive Finite Element Time Sharing Package (GIFTS), 
Office of Naval Research Report, Contract No. N00014-67-
A-0209-0016, July 1973. 

21. Butler, T. G. and D. Michel, NASTRAN-A Summary of 
the Functions and Capabilities of the NASA Structural 
Analysis Computer System, National Aeronautics and Space 
Administration, NASA SP-260, 1971. 

22. Mole, K. M., "Computer Usage at the American Bureau of 
Shipping," presented at the International Conference on 
Computer Applications in the Automation of Shipyard 
Operation and Ship Design, Tokyo, Japan, August 1973. 

23. American Bureau of Shipping, RECORD of the American 
Bureau of Shipping, 2 Vols., 1976. 



Evolution of automation in terminal air traffic control 

by HOWARD R. McGLAUFLIN 
Federal.i.4 viation .4.dministration. 
Burlington, Massachusetts 

ABSTRACT 

The Evolution of Automation In Terminal Air Traffic 
Control was written to provide the reader with an over
view of the why, when and how of the needs of air 
traffic controllers in the terminal. This paper com
pares systems and a decision to award contracts. This 
paper contains a description of the subsystems used 
at ARTS III facilities and its capability for expan
sion. Attachments to this paper show a radar display, 
an ARTS III display, a system design and a work 
flow-through design, basically how it works. 

The intention of this paper is to provide an overview 
of the evolutionary process of system automation in 
the Terminal Air Traffic Control environment, and 
provide a look at the basic flow of data through the 
existing system. 

To do his job in the 1920's, the controller had only 
to wave a green or red flag; in the 1930;s he operated 
a radio in a control tower; in the 1940's he had to 
learn to operate a radar set; and now he must start 
learning to communicate through a computer. 

The need for some degree of automation to assist 
controllers in Terminal Air Traffic Control has been 
apparent for some time. Air Traffic volume has been 
increasing and is forecasted to increase so that many 
terminals will be taxed to capacity. Delays at the 
busiest airports are frequent, and all too often, lengthy. 

The formal initiation of plans to develop an auto
mated system for terminal traffic control occurred in 
March 1961, when the Project Task Force was estab
lished. The result was the Project Beacon Report, 
which was submitted to the FAA (Federal Aviation 
Administration) and then to President Kennedy in 
September of 1961. One significant recommendation 
of this report was, "utilization of general purpose 
digital computers to provide controllers with aircraft 
position information."l 

Subsequently, the FAA's System Design Team was 
established to fulfill the requirements of the Project 
Beacon Report; a functional specification for an ex
perimental model of an automated radar terminal sys
tem that could be used for appraisal of the concepts 

683 

in a field environment was developed. In 1963, the 
FAA awarded a contract to Univac to provide the 
computers, software, and system integration efforts 
for the establishment of this model known as Ad
vanced Radar Tracking System I, in the Atlanta, 
Georgia, terminal. After field testing, this system was 
implemented and has been in use since 1966. Basically, 
Advanced Radar Tracking System I, utilizes a general 
purpose digital computer together with video digitizers 
and displays to increase the radar and beacon video on 
a controller's console. It does so by the display of 
alphanumeric aircraft identity and altitude informa
tion which is automatically associated with the proper 
video returns. 

The next activity involving terminal air traffic con
trol was the implementation of an automation system 
in the New York Common Instrument Flight Rule 
Room. This room was implemented in 1968, located at 
Kennedy Airport in New York City, and permits the 
individual airspaces over Kennedy~ LaGuardia, and 
Newark Airports to be combined into a single opera
tion by utilization of comp~ter assistance. This sys
tem is called Advanced Radar Tracking System lA, 
"this system differs from the Advanced Radar Track
ing System I in that it uses two separate, non-collo
cated radar and beacon inputs."2 

In 1969, the FAA arranged for implementation and 
demonstration of a terminal automation system suit
able for medium traffic load in Knoxville, Tennessee. 
The purpose was to demonstrate that a small, stored 
program computer offers more flexibility and capability 
than special purpose calculating devices, which had 
been devised for the detection and display functions 
at smaller installations. After these hardware im
plementations were carried out, in December of 1969, a 
committee was organized by the Department of Trans
portation (commonly called the 1980 Committee) Air 
Traffic Control Advisory Committee whose duty it was 
to project air traffic requirements until the 1980 and 
1990 time frame. This Committee report was released 
and is now being used as guidelines for automation 
development and enhancement. One maj or recommen
dation of the 1980 committee's report affecting termi
nal automation was, "The addition of more capability 



684 National Computer Conference, 1976 

to the terminal automation system in order to provide 
such functions as command and control sequencing, 
conflict detection, and collision avoidance, and other 
functions which can increase safety or maximize ter
minal system aircraft acceptance rate."3 

Based on experience gained from the operation of 
ARTS I and lA, as well as continuing analysis of the 
present and projected air traffic situation, the FAA de
veloped a design for an improved air traffic control 
system. The Advanced Radar Tracking System III, 
ARTS III, was designed to simplify the acquisition and 
maintenance of radar identification, display beacon 
derived altitude data, simplify intrafacility and inter
facility coordination procedures and reduce the com
munications workload. (See Attachment #1) The re
sult is a more efficient utilization of terminal airspace 
and air traffic control personnel and an enhanced safety 
system. The ARTS III system is now being im
plemented at 62 major air terminals, and at the FAA 
Academy in Oklahoma. It is intended to be a first step 
for many in terminal automation of air traffic control 
and to provide an automation basis on which to build. 
In order to provide the capability for growth of sys
tem functions at the same pace with increased require
ments and resultant developments, ARTS III was 
additionally designed to be built with a modular ex
pandable concept. Because software is, of its own na
ture, modular expandable when using the executive 
program/sub-program hierarchy, and also dependent 
on the hardware modularity, the primary design con
siderations were related to the hardware. Being an 
add-on system, basically, the major sUb-systems were 
added to the existing terminal area equipment: Data 
Acquisition Subsystem (DAS), Data Processing Sys
tem (DPS), Data Entry and Display Subsystem 
(DEDS) . 

The following is a description of the three sub
systems used in the ARTS III system: 

(1) The ARTS III DAS, which will accept inputs 
from a variety of airport surveillance radars and bea
con interrogators which consist of the azimuth, range 
and timing group, the beacon reply group, and the 
azimuth pulse generator. The azimuth, range and tim
ing group generates all the basic timing pulses for use 
by the DAS. The beacon reply group detects and in
terprets the beacon video signals; the azimuth pulse 
generator, physically mounted to the radar pedestal, 
converts radar antenna position to digital position 
data. 

(2) The DPS consists of the data processor (lOP) 
and its peripheral equipment, as well as the opera
tional computer program. (See Attachment #3) The 
lOP receives digitalized beacon target report messages 
from the DAS. It also receives flight plan data from 
a computer in the enroute center via the ICA. The lOP 
also receives controller-initiated messages from the 
DEDS. The lOP provides the system with a capability 
for arithmetic computation, logical decision making, 

data processing, and overall system coordination. Op
eration of the lOP is controlled by a stored program 
located in the memory bank with each major process
ing task organized into a sub-program. The lOP then 
employs an executive control SUb-pl'ogralIl that with
out performing any processing tasks itself, serves to 
control the execution as needed, rather than in fixed 
sequence. The task selected depends upon an assigned 
priority scheme that adapts to changes in the system 
processing load and permits the processor to respond 
to simultaneous external demands. Some tasks are 
executed on the basis of a fixed time interval, while 
others depend upon the completion of prerequisite 
processing of external events. The lOP provides con
trol of overall communications between the DAS, the 
DEDS, and the peripheral equipment via high speed 
digital input/output channels. 

The basic DPS includes peripheral equipment com
monly found in a data processing application: 

(1) A magnetic tape unit provides permanent stor
age for the computer programs, and is used to load the 
programs into computer memory. In addition, selected 
data obtained during system operation may be re
corded on magnetic tape for future processing and 
analysis. 

(2) An input/output console containing a low speed 
printer, typewriter and keyboard, and paper tape fa
cilities is provided for controller communications with 
the lOP. This console is used off-line to enter variable 
parameters required by the system and is used as a 
back-up device to load programs when the magnetic 
tape unit is unavailable. It also provides on-line print
out capabilities for various sub-programs. The hard 
copy may provide alarm, recording on requested func
tions. Alarm printouts result from program-detected 
malfunctions in hardware and errors in input. 

(3) The DEDS consists of a common equipment as
sembly, display consoles, and data entry sets. The 
DEDS provide the man-machine interface between the 
air traffic controllers and the automation equipment. 

Since the ARTS III system has been in operation at 
Chicago O'Hare Field since May of 1971, many ques
tions have arisen and one point has been made very 
clear, "the automation applications made to date in the 
air traffic control system do not seem to have increased 
the capacity and productivity of the system, even 
though there are some indications of increased safety 
and relief in the workload of the controller ."4 

This paper has attempted to provide an overview of 
the evolutionary process of system automation in the 
Terminal Air Traffic Control environment. 

BIBLIOGRAPHY 

1. "An Analysis of Project Beacon," LTnited States Federal 
Aviation Agency, Air Traffic Service, Washington, D.C., 
November, 1962. 



2. Anderson, K ti., ··lJata Yrocessing in the _'\e,v York Com
mon IFR Room," Sperry Rand Engineering Review, 1967. 

3. "Report of Department of Transportation Air Traffic Con
trol Advisory Committee," Volume I, Dept. of Transporta
tion, December 1969. 

4. Hill, J. R., "Advanced AT}fS and Controller Responsi-

Automation in Terminal Air Traffic Control 685 

bility,-" The Journal of A'lr T'ra/fic Co'ntrol, January/Febru
ary, 1973. 

5. "ARTS" Sperry Rand, PX6508, July 1971. 
6. Sperry Rand Engineering R,e'vietv, Volume 24, Ko. 2, 1971. 
7. White, Peter T., "Behold the Computer Revolution," Na

tional Geographic, Volume 185, No.5, November 1970. 



686 National Computer Conference, 1976 

@ 
i 

LEGEND: 

Primary Radar Return 

--Beacon Radar Re turn 

Emergency Beacon 

Alpha-Numeric Display 

Tracked targets, indicated with alphanumerics, may be offset to any 
45° direction. Untracked targets are always offset to NE. 

Attachment #l-A Representation of the ARTS III Vdieo Screen (Alphanumeric Display) 



L liM 1411: Tracked handoff from Controller A to Controller F 
(Format blinks after F accepts) 

2. TWA 70: Tracked by Controller A full data block displayed. 
(Alt: 7400 ft., ground speed 250 kts.) 

3. QAN322: Tracked by Controller A, Radio failure (RF blinks) 

4. BOA14B: Tracked by Controller E at enroute center, handoff from 
Controller E to Controller A (format blinks). 

5. JAL 103: Tracked by Controller B, "Quick Look" by Controller A 
caused the data format to appear. 

6. Coast/suspend list - provides identification of aircraft under 
control of Controller A but which are not currently being tracked. 

7. ne": tracked by Controller C no data fermat appears since 
target is being controlled at another display. 

8. "A6": tracked by Controller A target has been assigned temporarily 
to a "Suspend" status as indicated by line identifier "6". 

9. System Data Area - Provides current time, altimeter setting, selected 
beacon codes untracked emergency/radio failure indicators and 
memory readouts. 

10. Previet-. .T Area - Provides keyboard entry characters and controller 
requested data (e.g. flight plan data). 

11. * Untracked, limited data block. 

12. Arrival/Departure List - Provides identification of aircraft which 
are scheduled to arrive at the entry fix or depart the airport 
within a few minutes and will be controlled by Controller A. 

13. Untracked, emergency (format blinks). 

Attachment # lA-Legend of Alphanumeric Display 

~1.i.(0uJ.'~ 

ATe 
GOMPUTER 

Input/Output Processor 
(IOP) 

Attachment #3-Block Diagram of DPS and related equipment 
prepared by H. R. :McGlauflin, Plans and Programs Specialist, 

Air Traffic Division, Burlington, MA 

Automation in Terminal Air Traffic Control 

Non-Alpha-Numeric: Display 

Primary Radar Return 

Beacon Radar Return 

Emergency Beacon 

Attachment #2-Non-alphanumeric Display 

687 



688 National Computer Conference, 1976 

The fallowing illustration shows the basic flow of data through the system. 

v 
ITTYI 

Attachment #4-Basic Flow of Data Through the System, pre
pared by T. Pastore, Secretary, Boston Tower. 



COlnputer graphics in an automatic aircraft landing system * 

by E. H. REITAN 
ITT Gilfillan 
Van Nuys, California 

and 

S. H. SAIB 
University of California 
Santa Barbara, California 

ABSTRACT 

The Marine Air Traffic Control and Landing System 
(MATCALS), being implemented by the Naval Elec
tronic Systems Command, provides advanced capabil
ities for fully automatic all-weather landing. Using 
radar-derived aircraft position reports, a ground com
puter provides appropriate guidance commands, which 
are transmitted to the aircraft's autopilot, and used to 
fly the aircraft automatically to touchdown. 

Due to severe system requirements of one-half 
minute landing intervals, and six aircraft simulta
neously on final approach, a unique combination of dis
play presentation and operator interaction techniques 
must be used. These support ground operators who as 
controllers are responsible for initialization of each 
landing sequence, monitoring its progress, and abort
ing the sequence if an unsafe condition develops. 

A display concept has been developed for MATCALS 
with the goal of reducing the controller's workload and 
increasing his effectiveness. The display is used as a 
single working surface for both output and input func
tions. A dynamic, graphical display format presen
tation, with alphanumeric annotation, and alert in
formation is displayed for the operator in multiple 
colors. More than 150 system controls are organized 
on the same display as a highly structured hierarchy 
of virtual control buttons grouped into menus. The 
operator is prompted through all data entry and con
trol sequences. All operator entry is made by using 
a "Rand" type data tablet. 

MATCALS OVERVIEW 

A simplified block diagram of MATCALS is shown 
in Figure 1. MATCALS is organized into three main 

* The comments made herein are those solely of the authors since 
they pertain to early research and development and do not 
necessarily represent exact Government or technical require
ments of the United States Marine Corps and the Naval Elec
tronic Systems Command. 

689 

AIR TRAFFIC CONTROL SUBSYSTEM 
(ATCS) 

CONTROL AND CENTRAl.. SUBSYSTEM 

All WEATHER LANDING SUBSYSTEM 
(ALS) 

COMMUNICATIONS UNK 

Figul'e I-MATCALS system overview 

system segments: the Air Traffic Control Segment, 
the All-Weather Landing Segment, and the Control 
and Central Segment. 

The system normally operates from the Control and 
Central Segment which receives information from the 
two other segments. The Air Traffic Control Segment 
provides automated surveillance and traffic control 
within 60 miles of the airfield. Specifically, MATCALS 
provides for surveillance, identification, tracking, 
sequencing, vectoring, and inter-facility coordination 
for all approach, departure and overflight operations 
within the terminal area. 

The MATCALS Landing Segment provides for fully 
manual to fully automatic landings. The sensor for 



690 National Computer Conference, 1976 

the landing segment is the AN /TPN -22 radar system 
shown in Figure 2. This precision approach radar pro
vides the necessary positional reports with sufficient 
accuracy for automatic landings. 

Three modes of landing are available to an aircraft. 
In Mode 1, ground derived steering commands are 
transmitted over a data link and directly introduced 
into the aircraft autopilot. 

Under Model I, the system is able to transmit course 
deviations to any cross pointer equipped aircraft via a 
variety of data links. Specific up-links which have 
been implemented include pseudo-ILS signals receiv
able on standard airborne ILS equipment and side-band 
coded signals on a UHF voice channel. Pseudo-MLS 
signals receivable on the planned standard MLS air
borne subsystems will be implemented later.1 

In Mode III, ground derived approach course devia
tions are displayed to the landing controller who ver
bally transmits the landing correction commands to 
the pilot. The Landing Segment also provides for main
taining inter-aircraft separation minimums, monitors 
the approaching aircraft for acceptable positioning 
within defined boundaries, and provides for automat
ically aborting unsafe landing sequences. 

CONTROLLER DISPLAY DESIGN OBJECTIVES 

Emphasis has been placed on the selection of the 
computer graphics display formats and the type of 
operator interaction mechanisms which will support 
the MATCALS Landing System display requirements. 

The display system must provide for the monitor
ing and control of up to six simultaneously landing 
aircraft. Inherent in the concept is the facility for 
controllers to assume responsibility for additional air
craft control in the event of failure of other display 
consoles. The overall objective is reduction of con
troller's workload and increase of landing safety in a 
multiple landing aircraft environment. A number of 
assumptions were made and desirable features were 
identified concerning characteristics of operator abili
ties, the varying difficulty of the operator's task during 
downgraded conditions due to hardware failures and 
reduced manning support, and the operational mission 
of the MATCALS production system. 

It is' first assumed that the console users in general 
will have little or no computer training. It is therefore 
unrealistic to impose any unnatural input techniques 
or display format output techniques. The operator / 
computer interface has to be as natural as possible and 
tailored to his conception of the landing operation
not just to simplify computer requirements. Ideally, 
representation of data or conditions should be done 
pictorially using a situation display type of abstraction. 
Auxiliary information may be presented alphanumeri
cally to reinforce the pictorial representation. This 
auxiliary data assists the operator with his evaluation 
of the present operational situation. It is felt that 

Figure 2-AN/TPN-22 precision approach radar system 

graphical presentations lend themselves to rapid quali
tative operator evaluation of global relationships of 
the data, while alphanumeric data presentations am
plify and quantify the details of the landing situation. 
Both types of presentation (viewed as hierarchy of 
information) are necessary, and are most desirable 
if presented simultaneously on the same display sur
face. 

The parallel presentation of pictorial (graphical) 
and tabular (alphanumeric) information simplifies not 
only the learning of the system but reduces the reaction 
time during critical and alert periods of system opera
tion. The operator should not be required to divert his 
eyes to other presentation panels in order to make de
cisions, instead he should have available on a single 
display surface all pertinent information within his 
field of view. This allows him to assess the situation 
and make a corrective decision. 

The complexity of the display format must be kept at 
a minimum. The state of the landing mission environ
ment is presented as directly as possible. Information 
should be non-redundantly presented to the operator to 
assist and not hinder his evaluation of the situation. 

All input mechanisms should be as direct as possible. 
Operator input should not be alphanumeric in nature 
(which is harder to understand being another level of 
abstraction). The MATCALS operational environment 



Computer Graphics in Automatic Aircraft Landing System 691 

cannot tolerate lengthy input sequences such as from 
a physical AjN or function keyboard. Inputs instead 
should be implemented by operator selection of com
mands and controls from a list of alternatives pre
sented on the display. This list must contain the com
plete set of controls for system operation. The range 
of his possible input responses to the output data may 
be limited by the computer system to those which are 
correct for that instance of time. The computer there
fore guides the operator through entry sequences and 
prompts him as necessary for correct sequences of data 
entry. Menu groups of virtual control buttons are 
organized as a hierarchy into a tree. The operator 
progresses through the branches of the tree for all 
control and data entry functions. At any point in time, 
the interaction sequence is clear to the operator. In 
addition, the interaction method of implementation 
should be flexible to system enhancements. 

Both output and input functions are performed 
through a single display working surface. All input 
controls are immediately adjacent to the output infor
mation from which a control decision must be made. 
Also, input controls are immediately available for 
operator actions. This varies from the conventional 
approach in that it eliminates additional hardware con
trol panels and switches which add to the system com
plexity. The operator does not have to divert his atten
tion from the single working surface display to search 
and locate other hardware controls. 

Finally; the display must be responsive to operator 
requests. This requirement is satisfied by a careful 
design of both the hardware and software system. The 
level of responsiveness may vary, however, with the 
operator's evaluation of the complexity and importance 
of the requested service. As an example, the execution 
of a command to abort a landing sequence (a wave-off) 
should be immediately serviced and feedback acknowl
edging the action returned to the operator in a frac
tion of a second. Conversely, the request for a change 
of the display scale range may be delayed for several 
seconds with little operator dissatisfaction. 

SYSTEM CONFIGURATION 

Figure 3 is a simplified block diagram of the MAT
CALS System at Patuxent River, Maryland showing 
major hardware devices. The system is configured 
around a Univac AN jUYK-7 general purpose computer 
with 48K words of memory (32 bit words, 1.5 p's cycle 
time). The ANjUYK-7 is a medium scale, single ac
cumulator machine which has floating point hardware 
and four independent data channels. Software for the 
AN jUYK-7 computer was developed in the CMS-2 
language operating under an executive configured from 
the Common Program. 

The central computer receives aircraft position from 
the precision approach radar, an ITT Gilfillan AN j 
TPN-22 radar with a nominal coverage of 10 miles in 

AN/iPN-22 
PRECISION 
APPROACH 

RADAR 

AIR TRAffiC 
CONTROL 
COMPUTER 

(FUTURE) 

I AN/UYK-7 
AUTOMATIC LANDING 

I SySTEM COMPUTER I 

PDS-1D 
IMLAC 
DISPLAY 

COMPUTER 

CPS 
COLOR DI5PLA Y 

DIGITAL 
DATA 
liNK 

Figure 3-MATCALS landing system test bed configuration 

rangeJ 46 0 in azimuth, and 8 0 in elevation. The radar 
system itself contains a minicomputer and provides 
stand-alone capability for Modes II and III landings 
in the event of a failure of the central system. 

The ANjUYK-7 computer calculates the flight path 
corrections and transmits the results to the aircraft 
via the digital data link. These corrections take the 
form of pitch and bank commands which are fed 
directly to the aircraft's control surfaces. 

The IMLAC display computer with its associated 
CPS-8001 color slave display console and Computek 
data tablet constitutes the primary interface between 
the operator and the landing system. The IMLAC 
computer is a single accumulator machine with 16 bit 
words, 16K memory, 1.8 p's cycle time. The data tablet 
is utilized as the main interaction device. Unlike the 
conventional trackball, joystick, and lightpen, constant 
monitoring of the device by the computer cursor track
ing calculation is unnecessary. There is no loss of 
track problem as with light pens, no wrap around 
problem as with trackballs, and no slow positioning as 
with trackballs and joysticks. Both functions of posi
tioning and selection are provided by the stylus and 
tablet combination. 

The division of responsibility between the central 
landing computer and the remote display computer 
was designed to 

(1) reduce loading on a saturated ANjUYK-7 com
puter 



692 National Computer Conference, 1976 

(2) minimize the message transfer rate between the 
ANjUYK-7 and IMLAC computers 

(3) provide for functionally partitioning display / 
interaction tasks from the landing guidance 
computer to allow easy extension for future 
multiple display support. 

DISPLAY DESIGN 

Design features 

Based on the design objectives of the previous sec
tion, techniques were introduced which reduced the 
complexity of the display, assisted the operator in his 
interaction with the system, eliminated keyboard en
tries, and increased operator acceptance of the display 
format. These features were added without any deg
radation to the basic system requirements. The opera
tional requirements for the MATCALS mission state 
that up to six aircraft may be simultaneously on final 
approach. The design therefore, has been predicated 
on a combination of display output and input tech
niques to allow the monitoring of the maximum number 
of aircraft by one operator, and a desired attainment 
of the control of six Mode I landing aircraft by a single 
operator. 

Although it is doubtful that the single operator 
situation is desirable (with probably one operator for 
each two aircraft on a final approach being optimum), 
it is still mandatory that an operator have cognizance 
of all other aircraft on approach for safety reasons. 
The relationships of the aircraft under his control with 
those of other controllers must be continually moni
tored. In addition, it may also be postulated that due 
to hardware failures of other display consoles (and 
computer sections), or insufficient console manning 
resources, it is necessary that each operator can assume 
responsibility for more aircraft than is usual. This 
type of inherited fail-safe protection is a spin-off of 
the six aircraft status display requirement. The design 
of the MATCALS landing display format was there
fore made with the assumption that data for all six 
aircraft on final approach be simultaneously presented, 
and that any individual operator can assume control 
of any or all aircraft. 

Obviously this specification places an inordinate 
burden on the operator if conventional display and 
hardware techniques are utilized. Figure 4a depicts 
a conventional display which is used in the landing 
of a single aircraft. One could imagine the complexity 
of the hardware control panel if it were expanded to 
allow the landing of six aircraft. A system of this 
complexity would deluge the operator with controls, 
displays, and possible operational input combinations 
and confusing input sequences. On the other hand, 
Figure 4b shows the display hardware used in the 
MATCALS system to land six aircraft with just the 
single display surface and the tablet. 

Displa.y fOl'ma.t des1:gn philosophy 

The simpler hardware is possible due to the imple
mentation of techniques wherein the computer or
ganizes the type and format of data graphically or tab
ularly presented to the operator. The operator executes 
all data entry and request sequences to display auxiliary 
information, monitors the operation of the radar and 
computer hardware and software, analyzes and ob
serves landing sequences, and is notified of any abnor
mal alert or danger conditions. 

Four distinct types of information are presented on 
the display CRT face (Figure 5) : 

Graphical-Presentations with amplifying alpha-
numeric information 

Tabular Parameter Data 
Alerts and Status Information 
"Virtual" Pushbutton Menus 

Up to now, situation data of radar video presenta
tions have been the conventional and common method 
of information presentation in aircraft control and 
aircraft landing display systems. To clarify the data 
on the screen, graphical and pictorial information has 
been added in some cases, often annotated by limited 
amounts of alphanumeric information (such as track
ing data blocks for air traffic control systems). 

The display format implemented for the MATCALS 
effort extends these concepts. In addition to graphical 
information, critical landing system parameters are 
presented grouped as tabular listings of alphanumeric 
data. Alert messages of hardware or software mal
functions and/or landing system safety irregularities 
are presented as necessary along with system status 
information as requested by the operator. Instead of 
hundreds of hardware control buttons continually be
ing allocated space on a panel, the computer dynami
cally presents "virtual" control button panels which are 
displayed on the face of the CRT only when they are 
necessary and removes the panels when their use is no 
longer required. For example, it is necessary to have 
the controls which initialize various parameters to de
fine an impending landing sequence (such as entering 
aircraft type and aircraft tail number) only at specific 
time intervals during the landing sequence. At other 
times these controls are extraneous. The display to be 
implemented as part of MATCALS utilizes this tech
nique of control panel variability to simplify input 
operations and to reduce display format complexity. 

The MATCALS Display presents all system status 
and controls in a single basic display format to the 
operator. Extending this concept to overlay the display 
graphical situation data with background air-search 
radar or precision approach radar video is practical 
using time compression display techniques. Whereas 
older conventional displays commonly used round 
CRT's, the MATCALS display organization, using mul
tiple output data types, calls for a rectangular display 



Computer Graphics in Automatic Aircraft Landing System 693 

Figure 4-Evolution of landing controller operational consoles 
a-Older conventional console for a single aircraft system 

Figure 4b-Interactive computer graphics console for a six 
aircraft system 



694 National Computer Conference, 1976 

~~~~~ } r :::---.:-:.:::::.:= I BUTTONS ~_ =_-___ -_-_-_-.:.:::::: _ 
I I I I I

) -------HIGH PRIORITY I
ALERT
MESSAGES
(BLINKII\!G) , ~

INTERACTIVE SYSTEM-'/ ...,..----...... -~
CONTROL VIRTUAL
BUTTONS

t AIRCIIIIf'T l'~HER DA TA
J (TAB~ "t'N'1». TA)

} AZ,'< SYNTHEne ""'lAY

GRAPHICAL WIDTH-HEIGHT DISPLAY
NUMERICAL KEYBOARD
AIC TRACK NUMBER SELECTION
GENERAL PURPOSE INDEX ENTRY

Figure 5-Display format areas

format (21 inches is sufficient). The use of a round
CRT compromises the optimum positioning of the tabu
lar parameter, alert messages, status data, and virtual
control buttons. Air traffic control displays which use
round CRT's often place short tabular preview lists
in portions of the situation surveillance area-and
thereby obscure and mask possibly important data.

CODING MODALITIES

A number of coding approaches are being utilized
in the MATCALS display format and interaction
sequence. The modalities of color, intensity, line type
(dot-dash), shape, blinking, and sound have been used
to increase the range of coding dimensions, simplify
the display format, and attract attention to specific
information on the screen (Figure 6).

Burdick2 has published the number of identifiable
coding levels associated with these modalities:

Modality

Color
Intensity
Shape (abstract)
Flicker (Blinking)
Line Type (dot, dash)

Coding Levels

3-10
2-4
8-16
2-4
3-4

These modalities allow additional data to be dis
played and absorbed by each operator so as to mini
mize the number of consoles and operators.

Color

The most intriguing modality, color is provided by
the use of a slave beam penetration tube display, con
nected to the IMLAC. Assignment of display entities
to the displayed four colors is as follows:

GREEN All background in/ormation, parameter
tables, time, wind, axes and labels,
status, and control pushbutton menus.

YELLOW AiTcra/t and higheT priority entities,

Color Slave Color Slave Monitor &
Monitor Imlac Monochrome DisElay

Item Line
Color Intensity ~ Blink/Flicker

Background GRN

A/C Parameter Table Med

.Axes Low

Input Menus Med

System Parameter Readouts Low

Wave Off Buttons YEL Med

Glide Slope ORN

AZ -EL Glide Slope Low

Aircraft Med

Acquisition Gate YEL Med Dash

Alerts RED High High/Low

Wave Off Confirm Button RED High

Figure 6-Coding modalities

wave-off buttons (turns red when con
firm is required), acquisition gate.

ORANGE Entities higher in importance than
above, aircraft symbols and tracking
alphanumeric data blocks, glideslope
vector.

RED Alert or Danger Indicators, wave-off
button confirmation, alert messages,
symbols of aircraft in unsafe situations.

It is recognized that color increases the effectiveness
and information content of a display. Search time,
selection accuracy, discrimination and counting of
classes is minimized by the use of color coding. Color
is also used in MA TOALS to direct attention to por
tions of the displayed information base. The increased
operator speed and accuracy due to the increased in
formation content, realism and recognition is manda
tory for MATCALS.

Intensity

Three intensity levels are being used:

HIGH Alerts, wave-off confirm (used to draw
attention)

LOW Axes, and other background information
(lowers the tendency of the display to
be cluttered by low priority data)

NORMAL all other data

Shape

The aircraft symbols are encoded as six uniquely
shaped symbols (triangle, square, circle, half circle,

Computer Graphics in Automatic Aircraft Landing System 695

diamond, and inverted triangle). These symbols are
displayed on the Az-EI surveillance area portion to
indicate relative position, and displayed on the wave
off button and parameter list entry rows to allow rapid
correlation and association of information by the
operator.

Flicker

A combination of color, sound, and flicker was used
to present alert messages. Blinking of messages annoys
the operator. Red, while attention gathering, forces
the operator to divert his eyes even after the message
has been sensed. Inspired by Kubrick,:{ the display of
a new alert message is initially red with a rapid flicker
accompanied by a low pitch buzz sound. It then auto
matically changes to a silent, steady state red. W-hen
the operator first acknowledges the message, the color
changes to a less annoying green. Subsequent acknowl
edgment deletes the message from view. Acknowl
edgment is accomplished by merely pointing to the
message with the tablet pen.

VIRTUAL BUTTON CONCEPT

The graphical equivalent of hardware control but
tons is presented on the face of the display. The
operator may point to these "virtual" control buttons
and the corresponding control function will be executed
through the computer software.

For the MATCALS Display Console, a "Rand" X-Y
data input tablet is used as the primary input device.
The operator holds a stylus over a tablet surface hori
zontally mounted below and in front of the display
CRT. This stylus can be randomly pointed to any posi
tion on the tablet surface. The computer system may
read the X-Y position of the stylus over the pad (even
when the operator holds the stylus some distance above
the surface) and generates a cursor symbol (a small
cross) on the face of the display. As the stylus is
moved, the cursor on the display tracks the operator's
hand-held stylus position on the pad as a feedback
mechanism. A micro switch in the tip of the stylus
is activated when the pen is pressed to the surface of
the tablet. Therefore a button "push" is executed by
the operator moving the pen to position his cursor over
the "virtual" button he desires to push, and depressing
the stylus. The operation is analogous to "pushing" a
hardware button. This input strategy is very natural
and the operator becomes immediately accustomed to
its use.

HIERARCHICAL ORGANIZATION OF
COMMANDS

The MATCALS Display organizes the operator's
data input and system controlling actions into cohesive
and logical multileveled groups. Each group consists

of a number of menus of displayed virtual control
buttons.

The hierarchical ordering of button menus allows
the manipulation of commands and information re
quests. The command groups are ordered into a tree
structure of usage and inter-relations. The user
tra verses branches of the tree (commands) as he pro
gresses through the structure. This model attempts
to describe the control relationships identical to the
user's conceptual understanding and to guide him
f-'h n.'1'noh 1,;~ ;'1"'IIf-n.".on-f-;","t"'.I ",.;+'h +1-.1"\. u''\,'"4-..... nl ""+ 'n+.., n.
1J..I..a.~VUO..l..l .1..lJ.Q .1...I..ll.Jv~Uv\.l..l.V..l...1. YV..I.IJ.LJ. lJ.L.l.v \..-V..I.J..IJ..I.V.L Q"'..1. u lJuJ..OC;;.

Normally only classes of important control are dis
played. When the user selects a class of commands, the
detailed control types of sub-menu commands appears.
When the user completes his interaction and use of
these commands, he may return back to the higher
1"",,1 ".; ,.." + ... ,,1 +"'...,." n rl ,.." n rl ,..In,,,",,,,, 'fI1-." l"uu·
..I.vvt::a~ V.l... VJ.llJ~V..l. I.JJ }-Iv.::) GI,o.1.J.\.A. V.1.J.J.J...i.J.a..a.lu1.a.::)~vQ • .L.1..1.'C:' .1.u't'vC..I.

level is then automatically removed from the screen.
We therefore have dynamic display and removal of
command pushbuttons depending upon their syntactic
requirement during an entry sequence. Extraneous
and unnecessary controls are not continually displayed.
A particular button menu is displayed only when its
requirement is logically necessary. Any tendency to
ward a complex, cluttered, and confusing control panel
presentation is avoided. The user can always quickly
return to a higher command level even before making
an actual entry at that level by pushing a "RETURN"
button (vlhich is ahvays present). He may also directly
return to the top level of the command class menu of
virtual buttons when desired. All controller interac
tions with the system are checked for errors and pro
vide feedback as to the entered quantity or function.

Interaction description

Figure 7 shows a primitive controlling initialization
sequence to define an impending landing sequence.
When he pushes the button "Select Landing Sequence,"
a new set of buttons appears. The operator may manu
ally define the glideslope (and be taken down another
branch where he enters a numerical value), enter the
radar acquisition position, or (as is shown) select the
desired Landing Mode. When this is pushed, the menu
list allows him to select modes I, II, or III. As there is
no computer communication with the landing aircraft
in mode III, there is no need to enter a data link address
and he is returned to level B and allowed to continue
his data entry. If I or II is selected, he is allowed (at
D) to enter an octal data link address. If he wishes to
do so, a graphical numerical keyboard appears. In
sequence, he may point to the desired keyboard buttons
and the entered numerical value is accumulated. When
he is satisfied with the value, he enters it by pushing
the return button.

If no entries are made at a particular level, previ
ously defined default values are assumed and used by
the system.

696 National Computer Conference, 1976

STEP 1 (A)

STEP 11 (8)

STEP 111 (C)

STEP IV (D)

STEP V (E)

9 B 7

6 5 4

3 2 1

o

DATA UNK ADDltfSS
READ

RETURN

Figure 7-Hierarchical command selection sequence

This approach to computer input takes full advan
tage of the graphic display and of the human eye's
ability to scan rapidly a single menu of commands.
The entry rate is higher than by using a multi-function
keyboard or array of hardware pushbuttons. The slow
ness associated with these hardware devices is due to
the finite search time required to find the desired button
and diversion time of the operator's eyes away from
the primary display surface. The user does not have
to recall a specific input control response (as with a
keyboard) as all allowable responses are displayed.
All displayed system status information necessary to
make a decision is adj acent to the selection area.

Two different approaches to the ordering of levels
must be mentioned. Generally, for initialization of a
number of parameters a sequential multileveled order
ing is optimum (a tall tree). Each group has a few
selection buttons in each level menu. This forces the
user to step through all the control initialization op
tions to enter either the required data or to acknowl
edge that the system default value may be assumed
(when he elects to go on in the hierarchy sequence
without a data entry). This insures that an operator
decision was made on all critical system parameters.

However, for modification of previously entered
data, the scheme above would be frustrating to the user
if he had to go through all parameters to get to the
one he wished to modify. So instead, a shallower short
tree of fewer levels is used for this case. However,
each level has many buttons in each menu to allow the

selection of the entity to be modified in a parallel
fashion from a large list.

MATCALS utilizes two distinct multi-level trees:

a. Wave-Off Initiation Buttons
b. System Control and Parameter Input Buttons

The entire tree data structure is shown in Figure 8.
The System Control and Parameter Input Tree is the

most complex example of hierarchical interaction with
up to 6 levels of menus. Typically, the operator is
lower than the third level only for brief times. The
controls are grouped into six distinct classes:

a. Landing Channel Definition (aircraft initializa-
tion)

b. Landing Procedure Initialization
c. Landing Mode Selection
d. Radar Track Acquisition
e. Systems Controls (data recording and simula

tion)
f. Display Controls (range scale and other display

format selection)

Within these classes are the levels of sets of virtual
button menus that control the system or are used to
enter system data. There are 2-6 buttons in each menu
set. At many stages of data entry, general purpose
menus are presented in the general scratch pad area
to perform:

a. The entry of numerical values (using a virtual
graphical keyboard)

b. The selection of an aircraft track number
c. The selection of a general purpose index

These general purpose menus may be thought of as
interaction subroutines which may be used in any place
in the controljdata entry hierarchy. These graphical
interaction subroutines appear only when required.

The use of hierarchically organized dynamic com
mand panel menus in the MATCALS display system
provides:

a. insured accessibility to information-fast up
date, reduced delay time, and improved spatial
accessibility (no longer the need to search for
that one correct button in a haphazard fashion) .

b. increased reliability from the use of software to
implement these complex control relations in
stead of the multi-wire/hardware switch ap
proach.

c. increased flexibility-easier to adapt to required
changes in types of controls.

d. increased utilization and efficiency of the control
actions-improved vigilance of the observer
increased data input rate for untrained opera
tors.

e. Commands may be tailored to the system under
standing and educational level of the user/opera-

Computer Graphics in Automatic Aircraft Landing System 697

101

I

WAVE OFf STRUCTURE
1'10

.6

RECORDING DATA
GROUP INDEX

lAM
MONITOR STATE ENTRY fUNCTIGNS

Figure 8-MATCALS interaction tree

tor. The commands are organized to allow the
operator to teach himself the man/machine inter
action.

Human factors considerations

Some quantitative research has been made on hier
archical dynamic controls using displays. Uber.! has
published that a maximal response time to this type
of request is 0.5 seconds, which is one of the reasons
for the high level of intelligence utilized in the
MATCALS local display processor. Uber has also
analyzed the optimal number of menu selection buttons
per level. With a typical scan time of 0.5 seconds per
entry, and selection time of 2 seconds per entry, the
menu length is 7.7 entries. Experimental and trained
users can have practical menu lengths of 10 to 40.
Because of the possible background of the MATCALS
user, a maximum menu length of 6 buttons has been
selected.

DISPLAY FORMAT

Introduction

The display is divided into the following general
areas: (Figure 5)

-Az-EI Display
-Aircraft Parameter Table
-Wave-off Buttons
-Alert Message Area
-Interactive Control Buttons
-Width-Height Display

The Az-EI area is the primary observation area.
Glideslope angle and centerline, acquisition gate posi
tioning, aircraft positions (6), and associated tracking
data blocks are graphically represented. Three scales
are selectable. Wind and time of day information is
also presented. Aircraft positions on the display are
rapidly updated to show relative motion of the aircraft.

The aircraft parameter area is a tabular alpha-

698 National Computer Conference. 1976

numeric listing of detailed information associated with
each aircraft. Its use is considered secondary to the
Az-EI area, and more of a reference to less often needed
data. The necessity for each type of data to be dis
played for each aircraft will be evaluated dudng actual
landings.

Wave-off buttons are continually displayed so they
may be immediately accessible to the operator. Alert
messages are pres-en ted in the lower corner of the Az
EI area where they are immediately noticed.

The menu of hierarchical interactive virtual push
buttons is presented on a row adj acent to the Az-EI
area for easy reference.

A Width-Height display (WHI) is presented at the
right of the lower portion of the display. It is of fixed
scale, and only one aircraft is shown. The WHI is
primarily used for only the terminal portions of a land
ing sequence near touchdown.

Detailed description

A detailed description of the major display format
areas as shown in Figure 9 is given in the following
paragraphs.

Aircraft pa'rameter table

Each aircraft is allocated one line in the aircraft
parameter table located across the top of the screen.
Each line of data is identified by the aircraft index and
the associated symbol to be plotted on the Az-EI and
WHI displays. The aircraft parameter table contains
alphanumeric data associated with each aircraft, in
cluding static parameters describing the particular
aircraft and dynamic values related to the aircraft's
position and movement. The static quantities remain
fixed throughout a track while the dynamically varying
data is updated every half second. Static quantities
are side number of the aircraft, aircraft type (A7, F4,
etc.), communication channel address, landing mode
(I, II or III) , and glideslope angle.

Dynamic quantities displayed alphanumerically are
pitch and bank angle commands being transmitted to
the aircraft (Mode I), sink rate (fast/sec), speed
(knots), range (tenths of miles), height (feet), height
error from the desired glideslope (feet), azimuth posi
tion (feet) and time-to-touchdown (in seconds). Cor
responding parameters for each aircraft are arranged
in columns and are appropriately labeled.

Wave off area

A row of wave off initiation buttons is placed im
mediately below the parameter table. This position
puts the wave off area in close proximity to both the
parameter table and the Az-EI portion of the display.
The wave off area is maintained separate from other

interaction functions to allow continual and immediate
availability to the operator. To speed up the wave
off process, each aircraft is provided with a separate
button, identified by the correlated aircraft index and
symbol. vVhen a wave off Lutton is seiected the opera
tor is then required either to confirm that a wave off
is to be generated or cancel the wave off request. Con
firmation of a wave off request is required to lessen the
probability of accidental pushing of a wave off button.

Az-El display

The Az-EI display is centrally located and occupies
the major portion of the display area. Aircraft height
versus range is presented in the upper half of the Az-EI
display area and lateral position versus range in the
lower half.

Provision has been made for a selection of three
scales. Twelve mile, six mile and 1.2 mile ranges are
selectable with a corresponding change in the vertical
and lateral scales. Logarithmic or expanded linear
scales are desirable alternatives that will be considered
for future implementation. Axes are labeled for ease
in estimation of aircraft positional relationships and
the touchdown position is offset from the edge of the
display to allow tracking for a short distance after
touchdown.

A unique identifying symbol is used to plot each air
craft's position. The symbol is also shown in the param
eter table to correlate the tabular and graphical pre
sentations. In addition, a tracking alphanumeric data
block is displayed adjacent to each aircraft position,
connected to the aircraft symbol by a short leader. The
aircraft index, side number, landing mode, simulated
target tag, range, velocity and vertical and lateral
glides lope errors can be read directly from Az-EI dis
play without consulting the parameter tables.

The time-of-day, wind speed and heading, displayed
glideslope angle, and runway heading are listed in
unused portions of the Az-EI display area. The time
is updated every second and is an indication to the
operator that the control computer is active. High
priority alert and warning messages appear in the
lower left corner of the azimuth display.

Interaction and monitor area

The lower portion of the screen, approximately one
fourth of the total area, contains the interaction func
tions. All operator/system interactions except wave
off initiation and positioning the acquisition gate di
rectly on the Az-EI display are accomplished in this
part of the display.

The function selection menus consist of several
sensitive buttons that can be selected by positioning
the tablet pen within the button boundaries. The
display processor reads the pen position and deter
mines what action is to be taken. A message accom-

Computer Graphics in Automatic Aircraft Landing System 699

Figure 9-Display fonnat

panies each menu to help direct and cue the operator's
actions. Each button is labeled indicating its associ
ated function.

When input of numerical data is required, a ten
digit numeric keyboard appears in the interaction area
with additional keys for minus sign and decimal point.
The data is entered by sequentially pushing the ap
propriate buttons with the tablet pen. The accumu
lated digits are displayed as they are entered by the
operator. Buttons are provided to allow the operator
to clear the accumulator and begin again, enter the
value if all digits are correct, or return with no data
entry being made. When the numeric keyboard is no
longer necessary in a data entry sequence, it is re
moved from the screen.

The rightmost lower portion of the display is used
for the Width-Height Indicator (WHI) display to be
used in conjunction with the normal Az-EI display.
Vertical and lateral glideslope errors can be plotted

for anyone of the aircraft shown on the Az-EI display.
The WHI has a higher resolution scale (±200 ft.)
than the Az-EI display and is used to determine more
accurately the aircraft position close to touchdown.
The system automatically selects the aircraft closest to
touchdown for display unless this selection is over
ridden by the operator. The symbol correlated with
the index number for the aircraft is used to plot the
aircraft position on the WHI.

MULTILEVEL SOFTWARE DEVELOPMENT

Implementation of the display software was con
ducted in a top-down manner using the chief program
mer team management philosophy and the guidelines
of structured programming. 5 The system was devel
oped in evolutionary stages with the first stage testing
the high risk area of intercomputer communications

700 National Computer Conference, 1976

and the central computer's operating system. In the
first stage of the display program, skeleton modules
ran under a primitive executive. As the implementa
tion progressed, increasingly complex functional as
pects of each module were developed.

The most important benefits of this approach were
the early visibility of a working program, early assess
ment of the hierarchical interaction concept, simplified
testing and integration with the risk reduction of
integration problems, and elimination of the "90 %
complete" syndrome. Code review and the use of a
program librarian were not significantly successful.
The program team did achieve the ability to review
each other's system designs and description with free
dom from insulting each other's egos.

SUMMARY

The approach taken in this display design has led to
an operational system which meets the objectives set
forth in the introduction. Operators have complete
control of the All-Weather Automatic Landing System
from a single display console which presents an un
cluttered view of the landing situation. The system is
easily learned, operated, and requires no knowledge of
computer systems. The hierarchical interaction strat
egy for data entry and system control has been proven
to be both accurate and fast. Measurements taken on
operator performance have determined that a 0.7 sec
ond per button selection rate can be maintained with
the hierarchical interaction technique. The operator
entry of all initialization data required for an auto
matic landing sequence (some seventeen virtual button
selections) is accomplished in only twelve seconds. The
operator is aware at all times of the permissible con
trols which are active and what possible actions he may

take. Favorable comments have been received from a
number of experienced landing system controllers, who
feel the interaction and display concepts will increase
operational safety.

ACKNOWLEDGMENTS

This effort was supported under Contract N00228-75-
C-4544 with Mr. John Mulhern of the Naval Electronic
Systems Engineering Center, Vallejo, providing many
helpful technical suggestions. Discussion with Mr.
Richard Wilz, NAVELEXSYSCMD, Washington, and
Mr. Ken Pot yen, NESTED, Patuxent River, Maryland,
were also valuable during the development of the dis
play system.

Implementation of the computer programs was accom
plished by George Firkins, Susan Rubin, Lowell
McMahan, Leo Hoffman and Al Crown. Project sup
port was provided by R. L. Goodman and R. L. Johnson.

REFERENCES

1. \Vilz, R. R. and A. Warmack, "MATCALS: Expansion of
Capability for Expeditionary Airfields," 20th Guidance and
Control Panel Symposium, North Atlantic Treaty Organiza
tion, Cambridge, Mass., 20 May 1975.

2. Burdick, D. C., et al. (Naval Research Lab) Color Cathode
Ray Tube Displays in Combat Information Centers, u.s.
Naval Research Laboratory, Washington, D.C., Report NRL-
6348, October 1965.

3. Kubrick, S., ;2001 : A Space Odyssey, MGM, 1968.
4. Uber, G. T., Williams & Hisey, The Organization and For

matting of Hierarchical Displays for the On-Line Input of
Data. FJCC, 1968, pp. 219-226.

5. Baker, F. T., "Chief Programmer Team Management of
Production Programming," IBiVI Systems Journal, January
1972, pp. 56-73.

Libraries and the implications of computer technology

by MURRAY TUROFF and MARION SPECTOR
ZVew Je,usey Institute of Technology
Newark, New Jersey

ABSTRACT

This paper examines the potential impact of computer
and information technology on the role and mission of
the library. In an indirect, but no less significant sense
it also considers the impact of the library on the tech
nology. The specific concerns focus on the library as a
mechanism for making computer and information tech
nology directly available to the public. The paper also
reviews a pilot project being conducted by the New
Jersey Institute of Technology involving the Newark
and Millburn public libraries in New Jersey.

INTRODUCTION

As of January, 1976 a number of powerful calculators
have been installed in the Newark and Millburn Public
Libraries as well as the library of the New Jersey Insti
tute of Technology. The Newark Public Library serves
an urban community which reflects the diversity of
population and the multiplicity of problems facing
most major urban areas in the country. In addition,
the Newark library is the official state regional library
for the northern New Jersey area and as such offers
a number of unique collections pertinent to this mis
sion. The Millburn Public Library reflects an upper
middle-class suburban community. A majority of the
high school students go to college and the working
adult population is largely businessmen or profes
sionals. The N JIT library services a scientific and
technically oriented university community of about
5,000 students. It is largely a commuter-oriented insti
tution for northern New Jersey and the Metropolitan
New York area. A significant proportion of the stu
dents are from blue collar families and a very active
program for the disadvantaged has attracted a good
number of these students into the engineering and
technical programs.

N one of the above mentioned libraries have had any
previous experience with computer or information
technology. They have not utilized the marvels of
computerized reference services, data bases, automated
cataloging, etc. Although a calculator might seem a
limited aspect of computer technology, in the environ-

701

ments under consideration the introduction of these
devices represents a major shift of perspective along
with a rethinking of roles, missions, and objectives.

Principally, this equipment is for the explicit use of
patrons for any purpose they wish. The primary goal,
as stated in public flyer, is making directly available
to the public via the public library various computer
and information services. This is not to say librarians
do not use the machines. In fact, the machines in
stalled are in the five hundred dollar range and con
siderably more convenient then the machines that
existed solely for internal use.

No project of this type exists because of anyone ra
tionale. The members of the project team, users,
librarians, sponsors, manufacturers may very \-vell
perceiv:: this project differently. The implications are
perhaps best understood by viewing a number of
alternative rationales that are or could be representa
tive of the parties involved.

SOCIAL CONCERN

Approximately two years ago one of the members
of the project team was in a Washington, D.C. depart
ment store and happened to observe a salesman driving
away some young children who wanted to play with
the calculators on display. Evidently he did not per
ceive them as likely customers. To those of us who
have envisioned computer technology as accessible to
the public such an occurrence is personally disturbing.
However, disturbances of this type have a way of gen
erating reflection.

It seems that for many years the view of many
professionals was that the all-encompassing computer
'utility', because of economics of scale, would be the
mechanism for bringing computer power to the people.
While hardware costs have demonstrated their eco
nomics of scale, software and communications will re
main a bottleneck for quite sometime. Even while this
orientation toward the grand large scale system con
tinues for a vast number of prophets in the field, it has
turned out that for the people 'it is the little things
that count'. * The calculator is the first major item of

* Attributable by the authors to Richard Wilcox.

702 National Computer Conference, 1976

computer and information technology to fall in the
hands of the public on any wide-scale basis.

Perhaps the events arising out of the selection
process that occurs in a competitive market place are
hinting that it is not large scale but the small scale
we should be looking at for delivery mechanisms. There
have been in the past few years a growing number of
such small scale-efforts-Resource One in the San
Francisco area for example. 1 The majority of en
deavors appear to be the volunteer efforts of concerned
professionals and community groups. Unfortunately,
because of the nature of these activities many of them
lack documentation and very little evaluation is ac
complished. While many of the individuals behind
some of these programs might scoff, we feel they have
suffered from a lack of institutionalization. What is
sacrificed, of course, is the opportunity for permanency
and wide scale transferability.

With these considerations in mind our choice was to
start at the bottom, utilizing a variety of calculators
with performance and associated price above the level
the average person could afford. It was also a conscious
choice to institutionalize the effort-but why the li
brary? In one real sense it is like the explanation of
why people climb mountains: they are there. The
library is an institution that is available to the public,
its personnel are familiar with serving the public, and
it is relatively neutral with respect to political, social,
ethnic, and organizational polarizations. From the
point-of-view of a person who is interested in deliver
ing computer technology to the public the library is
the convenient place to do it.

Why one wants to put advanced technology in the
hands of the public is probably a question each indi
vidual should answer for himself. However, one view
is that it may be increasingly difficult to exercise the
privileges of an intelligent citizenry in a democratic
society without an understanding of the capabilities
and limitations of the technology which is beginning
to monitor, regulate, and perhaps control aspects of
that society.2 The key issue seems to be: "Will the
utilization of this technology by society be such that
each citizen must have a right of access and avail
ability in order to function as a part of the society?"
Suppose today we took a group within our society
and denied them use of the telephone? One could easily
list a set of severe consequences for such a group.

LIBRARY MISSIONS

The average person probably equates the usual
library with vast arrays of printed material such as
books or other physical images like films, records, etc.
The more appropriate view for our purpose is to con
sider the library as an institution for allowing people
to utilize information. Utilization implies not only
storage and retrieval, but creation, organization, and
manipulation as well. The use of the technology to

allow patrons to be able to directly perform these latter
operations implies a host of information services that
have not previously been possible:

• Allow the library to support transient information
needs of its user community.

Individuals able to develop their own personal
data files and text files on electronic storage
media such as floppy disks-to manipulate,
update, and edit these as need be.

• Provide mechanisms for patrons to exchange in-
formation.

Essentially the community electronic bulletin
boards and the computerized conferencing3

with discussions going on of any topics of
interest to the users of the library.

• Establish the Library as a Learning Resource
Center.

A place where individuals of ages 5 to 85 can
go to take advantage of the educational op
tions offered by the technology.

The possibilities stretch from rather straightforward
electronic bulletin boards, text processing, discussion
systems and CAl implemental on microprocessor
oriented intelligent terminals with floppy disks or digi
tal cassettes to more future oriented visions as those
expressed eloquently by such individuals as Kagan and
Nelson. 1

In essence the key ingredient is the concept of easily
dealing with "variable" information. Information sub
ject to change and modification on a frequent but un
predictable basis.

The choice of the library and its institutional char
acteristics has led us to another premise in our de
sign of this effort. Most libraries have been reasonably
successful in the performance of their mission because
the services they provide have no short term de
pendency on other organizations in the delivery process.
Short of the dramatic act of closing a library, most
sponsoring institutions do not (at least not yet)
instruct libraries to sell books to raise money,
whereas colleges can be told to cut down enrollments,
offer less courses etc. With this in mind a choice has
been made to focus on equipment which is self-suffi
cient, and not dependent on outside computer power.
This is not to say that if we install at some point, an
intelligent terminal or word processor, it will not have
the dual-use capability of being able to talk to a com
puter. In fact, any reasonably sized organization buy
ing word processing equipment that cannot be up
graded for this, has not looked to the immediate future.

EDUCATIONAL ASPECTS

Although there are public schools which offer ex
perience with computer technology, they present a

Libraries and the Implications of Computer Technology 703

distorted perspective of the extent to which technology
is actually being taught to the public. There are many
outstanding programs in largely upper middle-class
communities or in communities in proximity to a uni
versity. These efforts represent only a fraction of the
pupil population. For example, in the near future, it is
unlikely the Newark New Jersey school system would
be able to replicate the six thousand dollars worth of
calculator equipment available in the Newark Public
Library 'within each of its schools. Even if it did; the
equipment would not then necessarily be available to
other specialized educational programs without added
staff costs to open school facilities after school-hours.

In the case of a public library, one must consider a
diversity of user needs for computer technology that
must be met. They run the gamut from advanced
research to recreation. The objective of expanding
computer technology depends, as well, on the nature
of the user population. In the case of this study, equip
ment for the Newark Public Library (a lower-income
area library) may not be appropriate for Millburn (an
upper-middle income area library)." Similarly, one
would allow for more sophisticated equipment to be
included in the library at NJIT, a technical college
library. The sample of this study was especially chosen
to represent two socio-economic communities as well
as a technical college community. It will thus be pos
sible to evaluate differences between the groups from
the point-of-view of the appropriateness of the new
equipment. The principal question to be answered is
whether this advanced media equipment represents any
improvement over past services.

The library has traditionally been the place where
individuals go to learn on their own. It serves as an
important place where users can pursue their own in
formation needs. Librarians continue their efforts to
encourage users to consider learning as a life-long
process. Therefore, an objective of this study is to
investigate if the library cannot serve as an improved
educational agency. In addition to introducing com
puter technology to the public, this service of the
library could be used efficiently in the educational
process.G

It is clear that the adult population particularly
from thirty on up has not been adequately serviced by
traditional educational programs. Many adults no
longer have the opportunity to attend school. For those
that do, there are many problems associated with re
turning to college or even to graduate school. Imagine
a practicing engineer in a class of engineering students
becoming aware that he knows less than some of the
young students! Technical areas of instruction, par
ticularly where updating is concerned, are ideally
suited to CAl (Computer Assisted Instructional Sys
tems) made available on a self-service basis in li
braries. One of the earliest lessons to be learned by
those involved in designing operational Management
Information Systems is if you want senior managers

to use these systems and do not have enough terminals
for every office, you put it on wheels so the manager
can take it into his office and not publicly demonstrate
to younger employees the mistakes he is making in
learning the system.

NJIT has developed a number of specialized educa
tional programs to provide opportunities for disad
vantaged students to enter technical fields. These pro
grams have partially blurred the distinctions between
course materials offered in the high school and in
special first year programs at the university. They
have entailed tutoring efforts, summer sessions and
weekend classes for high school students, special classes
for high school teachers, as well as the development
of instructional materials for the use of high school
teachers.

Educational institutions involved in the programs
for the disadvantaged, could pool their resources, and
invest in Learning Resource Centers located in li
braries. From an educational standpoint the avail
ability of computer technology able to support drill and
practice as well as the updating of basic knowledge,
would greatly alleviate the coordination difficulties that
result from offering remedial services in public schools,
universities, and adult programs.

This pilot project will emphasize guidance and in
struction in the use of computer technology to teachers.
Their willingness to use the media made available is
essential to the success of this program. Their percep
tion of the role of educational technology is of the ut
most importance.' It will determine the length of time
they are willing to spend developing specific educa
tional lesson plans for the equipment. They will be
encouraged to take advantage of the calculators to de
sign stimulating assignments for children. In mathe
matics, children could easily handle more challenging
problems such as computing a growth curve to fit the
daily growth of a classroom avocado plant. This com
putation would normally be too laborious without the
use of a calculator.

From the point-of-view of educational theory, there
appears to be a shift from concern with teaching to a
concern with learning. Whereas, teaching provides a
framework for learning, teacher-centered learning does
not develop independence in the learner. Teaching is
done to the individual, not by the individual.

Educational technology may be an effective technique
for students to acquire skills independent of the
teacher.

A question to be explored is what types of indi
vidualized learning experiences students can handle in
different grade levels as a result of educational tech
nology? Also, computer technology is especially im
portant for providing work at varying rates for stu
dents at the extremes (faster or slower) than the
average classroom. It is expected the library could
serve as an adjunct to the teacher for these students.
For example, this study will use drill and practice

704 National Computer Conference, 1976

techniques as one effort for those needing remedial
mathematics. Applying the psychology of learning to
practical teaching problems, the student is presented
with individualized instruction in arithmetic. S Actively
involved with his own performance of arithmetic prob.;
lems, the correct answers via computer print-out serve
as an incentive in the learning of repetitive tasks. It is
no longer necessary to wait to have a test scored. As
far as assisting the classroom, drill takes up consider
able time. Drill and practice take time away from
teacher-contact with students that could be used in
better ways.

Generally schools and libraries have co-existed as
separate units. An objective of this study is to deter
mine professional (librarians and teachers) roles in
the use of educational technology. It is possible that
teachers will be more receptive to educational technol
ogy when it is in the library. They may not sense
the equipment as a threat to the teaching force.

Many teachers have been dubious regarding the im
portance of the new material and have not taken it
seriously. This study will utilize survey instruments
as well as interviews to evaluate the attitudes of
teachers and librarians.9

-
10 They will also be working

with the media specialist in the selection and utilization
of materials. Results from questionnaires will serve
as an up-to-date monitoring system to determine which
tools are serving advantageously and which are falling
short of expected outcomes. The results will be used
as a basis for future priorities, deciding the long-range
goals of this program.

PROFESSIONAL CONSIDERATIONS

The concept of technology assessment has emerged
in recent years as an issue of primary concern to so
ciety.l1 Most assessment studies have been executed
as paper and pencil efforts. It has yet to be realized
that there exists a need for assessment by experimenta
tion. From one view this effort could be considered a
'live' technology assessment. A major goal in this as
sessment effort is to gain insight into the unexpected
consequences of technology. We expect to observe re
sults we could never have predicted. A few unanswered
questions in this area are:

(1) For what purposes will the technology be used
by the public and what are the benefits or limita
tions?

(2) Will the library schools have to train educa
tional librarians (will SLA add a new compo
nent to its membership) ?

(3) Is the technology designed to really meet the re
quirements of this mission?

(4) While we have in Information and Computer
Science had some success in designing to deliver
"Information," do we know how to design to de
liver "Information Technology"?

Even at the calculator level the variability in human
interface for machines of similar capabilities is quite
significant. In terms of advanced machines, the layout
of the keyboard and the associated instruction manuals
appear to be either for the sophisticated user or the
individual who must learn to use the machine. The de
velopments in this area have been so rapid that few
of the companies appear to have made any evaluation
efforts in terms of market assessment or product de
velopment. This may change as the market saturates.

Another aspect of the assessment issue is the obser
vation that Congress seems to be dragging the National
Science Foundation, kicking and screaming, towards
a program called 'Science for the Citizen'. Noone at
this point seems to be sure what that program might
encompass. One would hope the delivery of advanced
technology would be a key aspect. It is quite clear
that organizations such as the National Association for
the Public Assessment of Technology would tend to
support a view that the public should have a right of
access to information and information technology if it
is to have an equal voice with those institutions that
can afford these benefits.

Technology has moved so rapidly it always appears
that implications for the training of professionals in
these fields takes place as a reactive process as opposed
to an anticipatory one. For example, the vast majority
of development and design activity in the professional
community represented by ASIS has dealt with the
technical means of retrieving data for the user but not
the processes of allowing users to create, store, manipu
late and update data.

We can foresee that as a result of programs designed
to improve the availability of technology for the public,
there will be a further blurring of the divisions between
Computer Science, Information Science, Library Sci
ence and the Social Sciences related to educational
processes.

ISSUES AND PROBLEMS

This paper has raised a number of issues and prob
lems. Whether it be at the limited level of the calcula
tors, or the more sophisticated equipment we hope to
incorporate later, the following is a summary of issues
that must be examined, evaluated and resolved before
one can expect any wide scale implementation of pro
grams of this type.

Community acceptance

There are a great many individuals with unimpeach
able credentials whose current reaction to computer
and information technology is to avoid it like the
plague.

One can point to the existence of this antagonistic
attitude represented even on our own faculty. Perhaps

Libraries and the Implications of Computer Technology 705

more serious a concern is the feeling that the technol
ogy is an influence in widening the gap between the
disadvantaged and the rest of society. Apparently
some community organizations have taken positions
that they do not want calculators allowed in public
schools because it will degrade the child's learning
of basic math. Also, some experiments with the avail
ability of CAl systems, have indicated that a child
having difficulty in relating socially to other children
may further withdraw.

This latter phenomenon is also behind some success
stories with Management Information Systems. Given
an organizational environment that has severe restric
tions on human communication, an MIS system that is
designed to be very reactive at a terminal, can easily
become an unconscious surrogate for human communi
cations-the computer becomes someone who will
listen, obey and respond.

One key element in the library approach is the
volunteer nature of the effort. The use of the calcula
tors is a self-made choice by the individual. This may
lessen possible friction involved if these were imposed
directly into an educational program. We are trying
to maximize the availability of material on games and
puzzles which represent an unconscious form of learn
ing, and the existence in the program of the 'Computer
Tutor' and the small 'Quiz Kid' means the teacher can
encourage those children who need basic drill and
practice to engage in such. The more advanced ma
chines for either business or scientific use can only be
mastered if the individual knows or attempts to learn
the basic applied math concepts that are presumed in
their design. Also we have undertaken to instruct
those teachers who want to learn as to the types of
lessons that could be assigned in math and science areas
that would not be convenient without these machines
e.g., curve fitting to plant growth data. Since we are
not set up to have a full-time educational staff avail
able, the procedures encourage people to help one an
other to learn. Initial eyeballing of what is taking
place appears to indicate that children are most often
learning and doing on a machine in groups of two or
three rather than one alone. Maybe our concept of a
CAl workstation, with one child working alone at a
terminal, bears re-examination.

CAl design

The CAl area can be characterized today by two
diametrically opposite approaches: One is the large
system with a great many hours of effort put into de
veloping a single lesson by specialists trained in the
intricacies of the system. This could be represented by
the PLATO system and the TUTOR language at the
University of Illinois. An alternative approach is the
PILOT CAl language which represents ten simple
commands that can be taught in about one hour and
allow any teacher to prepare straightforward lessons
to be used by students. Interestingly, the PILOT has

been implemented on the DAT APOINT Intelligent
Terminal, and can be implemented on any of the similar
devices made by such companies as DEC, WANG, etc.
The PILOT language can also be taught to sixth
graders on up and utilized to allow students to design
lessons for other students which represents another
intriguing learning approach, particularly for the stu
dent designing the lesson.

Basically, these two approaches can be distinguished
by: one, canned lessons prepared by specialists and
two, tailored lessons modified or created by the indi
vidual teacher and the students. The latter is imp le
mentable on stand-alone devices costing today about
twelve thousand dollars. One can infer from other
parts of this paper that we feel this latter small scale
approach belongs in public libraries as part of a Learn
ing Resource Center concept.

Some other rather obvious issues we have already
discussed are:

Institutional Cooperation-Ultimately the problems
of cooperation of educational and library institutions
have to be faced, not only at the funding and admin
istrative level, but at the training level of professionals
employed by these institutions as well as the research
and evaluation efforts associated with these endeavors.

Recreation and Learning-It is really not clear that
we understand these processes or their relationships
and potentials within the context of the technology we
have been describing. The little calculator has already
raised issues about possible dis-benefits to the student
without accurate evaluation to support any of a multi
tude of views. The calculator is only the tip of the ice
berg with respect to the potential technology.

Equipment Design-Current equipment design is far
from satisfactory for the purpose of general public use.
This is even more true as we move up the ladder to
intelligent terminal capabilities. Also, instructional
material supplied by manufacturers is usually written
with the assumption the user has to learn the machines.
Security of the equipment is another aspect that has
only received minor attention from some manufac
turers.

Problems with Change-Both librarians and educa
tors can suffer from the same psychological resistance
as other adults reluctant to reorient or engage in up
dating their knowledge and rethinking basic goals of
their endeavors. As a whole, we have been very
fortunate with the individuals involved in this project.
However it does take time and patience to bring about
an understanding of an endeavor of this type as it is
not established practice for libraries. Also, a number
of libraries that have made available simple hand-held
calculators, in the twenty dollar range, have had to
drop the programs because of maintenance and loss
problems. Most public libraries do not usually have the
background to judge the machines required and to
evaluate their capabilities. It has been our approach
to provide the expertise to utilize advanced equipment

706 National Computer Conference, 1976

that is not competitive with what the average person
can afford. This then provides the library patron a
service that is potentially attractive in terms of what
he or she may need to accomplish.

REFERENCES

1. Colstad, K. and E. Lipkin, CompU'ters and Society, Vol. 6,
No.4, Winter 1975.

2. Turoff, Murray, "View of the Future," AFIPS Conference
Proceedings, Vol. 42,1973 NCC.

3. Turoff, Murray, "The Future of Computerized Conferenc
ing," Futurist, Vol. IX, No.4, August 1975 and The Delphi
Method, edited by Linstone and Turoff, Addison Wesley,
Advanced Books, 1975.

4. Kagan, Claude and L. G. Scher, "The Home Reckoner," and
Nelson, T. H., "A Conceptual Framework for Man-machine
Everything," AFIPS Conference Proceedings, Vol. 42, 1973
NCC.

5. Gaver, Mary, Effectiveness of Centralized Library Services
in Elementary Schools, Rutgers University Press, New
Jersey, 1963.

6. Enright, B. J., New Media and the Library in Education,
Linnet Books, Hamden, Connecticut, 1972.

7. Suppes, Patrick and Mona Morningstar, CAl at Stanford
1966-68, Academic Press, New York, 1972.

8. Suppes, Patrick, Max Jerman and Guy Groen, Arithmetic
Drills and Review on a Computer Based Teletype, EIC ED
014 215, November 1965.

9. Darby, Charles, A. and Arthur Korotkin, The Computer in
Secondary Schools, Praeger Publications, American Insti
tute for Research, New York, 1972.

10. Goodlad, John, John F. O'Toole, Jr. and Louis L. Tyler,
Computers and Information Systems in Education, Har
court Brace W orId, New York, 1966.

11. Mitroff and Turoff, "Technological Forecasting and Assess
ment: Science and/or Mythology," Journal of Technological
Forecasting and Social Change, Vol. 5, pp. 113-134, 1973.

APPENDIX-SCENARIOS

One way to place the goals of this program into con
crete terms is to list some specific scenarios which show
the various uses to which this technology located in
the library can be put.

A high school student uses a calculator to do some cal
culations on physics homework.

A housewife uses a calculator to balance the family
checking account and evaluate the impact on the
planned budget.

A professional (engineer, accountant, etc.) comes to
the library to utilize a more powerful calculator than he
or she could normally afford.

Many teachers at local schools can restructure their
homework assignments in the math and sciences to
reflect the availability of calculators at the library.

A secretary and/or treasurer of a local club, organiza
tion, community group walks into the library carrying
his data file on membership and finances in the form

of a small digital storage device-e.g., digital cassette,
minitape, floppy disk, etc. He or she goes and sits
down at an intelligent terminal that has been set up as
a text editing and composing device and performs the
updating on recent changes in addresses, membership,
dues, expenses, etc. He or she then prints out a sum
mary and duplicates copies for the membership.

A student utilizes this same storage media and terminal
to compose and edit term papers over a period of time.

A new form of book called the 'interactive book' has
become very popular. With this book stored on a
digital storage medium, the reader can play the role of
one of the characters so that as he reads he can make
choices at strategic moments in the plot which result
in different plot resolutions.

Even the librarian can utilize the word processing
equipment to prepare various reference lists with con
tinuous updating capability.

A young couple walks into a library and asks for the
digital cassette holding the advertisements of baby
sitters available in the neighborhood: a teenager walks
in to add his name and description to the same cassette.

A teenager requests the cassette or floppy disc advertis
ing part-time help available for cleaning, gardening,
snow clearing, etc., so he can add his name and capa
bilities to it.

A citizen requests the cassette devoted to discussing
a new and provocative book so he may review what
other people have said and add some of his own com
ments.

A teenager requests the cassette of an anonymous dis
cussion of dating problems by teenagers. An adult re
quests the cassette dealing with marital problems.

A group of local businessmen or procurement officers
have a cassette on which they are exchanging notes on
the performance of various supplies, equipment and
suppliers.

A cassette is being used by people in the community
to discuss their views on various local issues, say a
rezoning item. A copy is sent once a week to the gov
ernment group involved.

Various cassettes have been prepared and are main
tained by various local government and community
groups to provide information on services, volunteer
work available or needed, etc.

A psychologist is utilizing cassettes in the library as a
form of random group therapy sessions.

A social worker has organized and monitors a number
of problem oriented conferences among people having
similar difficulties.

A class discussion cassette has been established with a

Libraries and the Implications of Computer Technology 707

local teacher to augment the regular class hours and
provide more opportunity for free discussion. This is
a particularly popular facility for use in adult educa
tion courses.

A group of stamp collectors utilize a cassette to bid on
stamp trades.

A group of professionals in a common area of endeavor
utilize a cassette to exchange information on recent
papers and findings in their field.

A teacher delivers to the librarian a floppy disk con
taining a CAl lesson she has prepared for use by her
class.

The expanding role of on-line interactive searching

by VIVIAN S. SESSIONS
Tl~e City [}niversity of ft-lew York
New York, NY

ABSTRACT

On-line interactive searching represents the newest
thrust in information retrieval. The combined tech
nologies make available to librarians and other in
formation professionals large volumes of bibliographic
data which reside in computers as remote as thousands
of miles from the terminals using them. Pres en tly the
individual data bases that furnish the examples of
actual usage (ERIC, NTIS, Psych Abstracts, etc.),
are accessed primarily via Lockheed, SDC, Medline,
and the SUNY Bio-Medical Network. Although it is
difficult to give a definitive statement on the propor
tionate economic contribution of this kind of informa
tion retrieval to the entire computer economy, esti
mates of numbers of characters of information on-line
(25-50 billions), indicate a significant dollar involve
ment. It is in this framework that bibliographically
oriented members of the computer community urge
their non-bibliographic colleagues to understand in
formation retrieval and to heed its requirements for
further development.

Of all the library and information center usages of
computers, the one that concerns this paper is on-line
interactive information retrieval. It is retrieval in the
sense of finding references to documents relevant to a
particular problem in data files that are comprised of
bibliographic records. Not all such data files can be
used either interactively and/or on line, but those that
do not qualify on both counts .are excluded from this
discussion in order for us to zero in on the I.R. mode
that is today most visible in terms of public discussion,
in terms of growth, and in terms of challenges to the
computing community.

A typical form of on-line interactive retrieval would
be the situation in which an information professional
uses a terminal with dial-up capabilities to log into,
say, Lockheed Information Systems in California via a
communications network. S/he indicates a particular
data base (the Educational Resources Information
Center (ERIC) is a good although over-used example),
and then proceeds to process such a query as the one

709

recently done at the Center for the Advancement of
Library-Information Science at the City University
of 1'~ ew York. This particular query "vas for references
to materials on collective bargaining in higher educa
tion. The CRT quickly indicated that the particular
way in which the query was asked would yield 367
references in the ERIC data base. The terminal opera
tor asked to· have a few displayed, and when all of
them seemed on target to the requestor who was sitting
by, a message was sent to have the entire number
printed out on the high speed printer in California.
In a few days the information arrived in New York.

As this was one of the less expensive data bases, and
very little computer time was needed to develop a
strategy, the total bill was about $40 for the combined
use of the data base, the communications network, and
the high speed printer-mostly the latter, with 367
citations @ 10¢ per citation printed. This cost ex
cludes, of course, the original investment in the termi
nal anq the time of the information scientist 'who
served as the interface between the requestor and the
system. Since the requestor was satisfied with 367
references, there was no attempt to query the file with
alternative strategies, thereby keeping the connect
time, the most important cost item, at a minimum.

Characteristic of the kinds of systems under discus
sion in this paper is the fact that the data bases are
loaded on computers that are remote from the termi
nals accessing them-remote not just in the sense of
being in a different part of the same building as the
terminals, but remote as measured in hundreds or
thousands of miles, and housed in different organiza
tions. Even the creators of the data bases (The N a
tionai Technical Information Service, American Psy
chological Association, to name a few), once they send
their regularly scheduled up-dates to Lockheed or SDC,
then access their own files over the same kinds of
terminals and via the same kinds of communications
networks as the users of their data bases. (Some spe
cialized exceptions do not affect the general situations.)

Remote on-line information retrieval only became
a publicly available resource in libraries and informa
tion centers in 1972, with a limited number of files.
By 1974 Lockheed and SDC had developed their re-

710 National Computer Conference, 1976

spective capabilities to the point that the Information
Industry Association awarded them jointly the Prod
uct-of-the-Year award in 1975. In the year since the
award they have made considerable advances in the
terms or services and customers. Together these two
private corporations now account for two-thirds of the
kinds of bibliographic data now available for on-line
remote searching in the U.S., the other third being
provided by public systems, the files of the National
Library of Medicine and those of the SUNY Bio
Medical Network. Although there are large overlaps
in the data bases handled by these four systems, they
can be considered as being independent contributors to
the computer economy, for reasons that will be pointed
out shortly.

The fact that some of the Lockheed and SDC data
bases are government-created and some are private in
origin, such as the Institute for Scientific Information
(lSI), is of significance to the user only inasmuch as
the privately created data bases are more expensive;
methodologies for using them differ to the extent that
every data base has its own characteristics as to cover
age, access points, and hard copy aids to users. And
all these are constantly changing.

In the decade before the remote on-line interactive
developments, many librarians were already involved
in information retrieval. If they worked for organiza
tions with the resources necessary to mount their own
bibliographic information systems, they could directly
participate in the vanguard of their profession. How
ever, these opportunities were limited to librarians in
large corporations and government agencies; the pub
lic and university librarians were out of it except for
those few places that had contact with information
dissemination centers.

Now, however, direct participation in the informa
tion retrieval process is possible to anybody having
access to a terminal with dial-up capabilities, access to
a purchase order of a few thousand dollars, and access
to some training (more is obviously preferable). Al
though many information professionals may be forced
by institutional reasons or personal inclination to con
tinue depending on intermediate search centers, the
desire to be independently on-line to immense store
houses of bibliographic data is less a matter of wishful
thinking and more a matter of persuading internal
management of the desirability of such action. The
advantages to the individual information professional
for upgrading his/her skills aside, the advantages
to the organization are enormous. The more its own
professional information staff knows about informa
tion retrieval, the more that organization is going to
profit from it.

"On-line" and "interactive" are usually stressed
rather than the "remoteness" of the data bases in
present-day discussions of information retrieval. All
three are intertwined. It is the on-line capability that
brings remote access to life, and it is the interactive

characteristic that really separates on-line from batch
searching. Without the interaction, information re
trieval on-line offers little advantage in search strategy
to the batch mode.

The interaction now possible on the standard on-line
information retrieval system is not as conversational
as the term implies, but has divided itself into systems
-type interactions (such as the user being told that
the host system is on line, or that the operator has
made a syntactical error), and interaction wherein
the user knows immediately (computer-time immedi
ately) how many document references would be re
trieved in the NTIS system by using the search terms
being investigated. For instance, how many "hits"
by using the search term "service industries", how
many would be found by the term "innovation", and
how many by the combination of the two in an AND
strategy? It quickly developed in this search that the
results would be insufficient unless "service industries"
was broadened to include "services" in general in an
OR relationship.

To illustrate another interactive feature in the very
versatile NTIS file, the information professional look
ing for material on "information theory" might do well
to use the EXPAND command, which would then put
on the CRT all the descriptors in which "information
theory" is only the first part of a multi-word descrip
tor. This could result in a decision to either broaden
or narrow the search, the latter being done by asking
only for "information theory, band widths", if that is
more appropriate. The EXPAND capability is par
ticularly important in systems that either have no
printed thesauri, or in situations in which the user
has no immediate access to the thesaurus.

One of the most powerful features of interaction has
already been mentioned in connection with the ERIC
search earlier: the ability to display a few citations
to see if . they are on target, thereby enabling the
searcher to decide whether to continue modifying the
strategy, or to work with what has been retrieved, and
order a print-out. If the searcher is using a terminal
with a printer attachment, or a printing terminal, the
only decision left is whether the results are either
sufficiently short or sufficiently urgent to have them
printed out on the spot, or to leave them to the high
speed printer and the mail. These few examples of the
effects of interaction on search strategy merely scratch
the surface.

The intricacies already mentioned of searching in
teractively, and many other fine points extending the
possibilities, are starting to be taught to the librarians
or other information professionals in a variety of for
mats. This is quite different from library automation,
which concerns itself with circulation control, cata
logue card production (now handled in volume through
the Ohio College Library Center) and related admin
istrative tasks. While such uses (If the computer con-

Expanding Role of On-Line Interactive Searching 711

tribute heavily both to the smooth functioning of the
library and to the computer economy, it is informa
tion retrieval which responds to the expectations of the
information user community.

Although the ERIC search on collective bargaining
mentioned as an example seems to meet those expecta
tions completely, it worked out so well only because
of specific conditions that existed. All the tricks of
computer technology would have been to no avail if
tllere had not existed a data file in ~l{hich there ,"las a
high probability of the information existing, if the in
formation professional did not know of the existence
of the file and how best to access it, if she had not had a
purchase agreement with Lockheed and an appropriate
terminal at her command.

If these facts seem elementary, it will surprise the
computer community to report that great numbers of
people with some knowledge of computing call our
office without either knowing or being willing to learn
these basic facts. And these callers are not limited
to those whose knowledge of computing is purely pe
ripheral. A gamut of callers assume that because
they have access to the University's central computer
facility they therefore have access to either ERIC or
the other files on the Lockheed, SDC, Battelle, Medline,
N.Y. Times, or other systems. It is an unpleasant job
to convince them that their research allocation of $400
will not contribute one dollar to the cost of using any
of the bibliographic data bases that are available in
the interactive, on line mode that they are starting to
hear so much about.

This type of problem occurs most often with seekers
of information who are neither library nor computer
professionals, although even with those groups some
confusion exists. The real problem with the computer
professionals, however, is that although they under
stand the concept of files and differing conditions
through which they may be accessed, they often have
little understanding of how bibliographic files are
created; this makes it difficult to carryon a meaning
ful discussion on how to use them for information re
trieval, whether on-line or in batch. Too many gradu
ate computer scientists confuse the experimental work
being done in automatic content analysis with the real
world in which the analysis is done by human beings,
and where data bases are created using descriptors, or
subject terms, from a controlled vocabulary usually
called a thesaurus.

And everybody is confused by the constant change
in what is possible. Each data base has its own char
acteristics, which influence the way it can be accessed
either at all or most effectively-however these char
acteristics change so rapidly that a file which one day
can only be accessed by descriptor may, shortly after,
be searchable for any word in the abstract (COM
PEND EX is the most recent example). Also, new
data bases are being added so frequently that a query
which a few weeks ago might have been relevant to

only one data base should now be considered from the
point of view of, say, Dissertation Abstracts.

It is no more reasonable for me to expect computer
scientists to keep up with every change in information
retrieval than it would be for you to expect me to be
completely au courant in the hardware. What I do
ask in this area is that the computer professional be
sufficiently educated about the conditions of on-line
interactive retrieval so that he can play a positive
role in the further development of this important
sector of the computer economy. The exact nature
of the role may vary all the way from not being a
hindrance to affirmatively helping solve some of the
problems in computing that affect many usages besides
I.R.

The "not a hindrance" part of this request has two
categories, the first of which is not to play pro in LR.
if your computer expertise is in other areas and, two,
not to downgrade I.R. by giving it low priorities in
terminal availability, budget for external computing,
and training opportunities. Information professionals
involved in on-line retrieval deserve terminals that are
at least the equal of those assigned to the programmers
in the organization. They have enough problems deal
ing with the intellectual problem of I.R. without in ad
dition having to fight the equipment.

Both the "no hindrance" and the much more active
involvement in on-line I.R. to be mentioned shortly
are really problems that transcend a particular com
puter installation, and therefore belong in the domain
of the entire computer economy as represented in the
Conference. Anyone manager has his/her own budget
to optimize, his/her organizational hierarchy which
determines priorities apart from any personal interest
in I.R., and assorted additional internal computing
problems that take immediate precedence over an
operation that is on-line to an external system. The
economic contributions of I.R. in any mode, and
especially in the on-line interactive mode, are to the
industry as a whole, and that is the reason for their
being presented in a conference that represents the
industry as a whole.

It would be easier to make the point if it were pos
sible to make some claims for I.R. in terms of its pro
portionate value to the industry. What proportion of
CPU time in the country is devoted to I.R.? What pro
portion of equipment costs, mainframe and periph
erals? What is the proportionate use of programmers
systems, analysts, data communications experts? Un
fortunately, these questions are impossible to answer,
even if put in absolute rather than proportionate
figures.

Trying to arrive at some other measures for evaluat
ing the role of on-line interactive information retrieval
in the computer economy, some interesting estimates of
absolute figures did emerge. The Lockheed Informa
tion System has eight billion characters of information
on-line 14 hours a day (they start before dawn New

712 National Computer Conference, 1976

York time in order to accommodate European users).
SDC contributes a like number of characters of infor
mation, and the bio-medical information systems (the
National Library of Medicine and the SUNY Bio
Medical Network) a little over another eight billion
together. These four systems are, therefore, making
between 24 and 25 billion characters of information
available currently in the interactive mode, most of
them being used in the U.S. in locations remote to the
residency of the data bases. Martha Williams of
ASIDIC estimated recently that one million searches
a year were being done on those four systems.

Since the figures as to sizes of the on-line systems
were estimates of current availability obtained by
informal telephone calls to appropriate people rather
than from official reports, the same informality (com
bined with other conversations) persuades this writer
that by the time this paper is actually presented, closer
to 50 billion characters will be available for on-line
interactive searching in the U.S.-especially if one
takes into account the information systems available
through Battelle, The Information Bank (N.Y. Times),
the various ones now just coming up, and the normal
growth in the size of files already in existence, as well
as the expansion in amount of information in those
files that can be searched interactively. There are also
many international systems (the International Labour
Organization, the World Health Organization, the U.N.
Environment Centre, etc.) that seem on the horizon
for direct access by U.S. information professionals,
that will either contribute to the fifty billion figure or
enlarge it.

The point to using characters of information as a
measure of size is first its availability, and second its
meaning to the computing community in what this
means to the economy in terms of systems and pro
gramming support, hardware investment, and CPU
utilization.

This approach does not solve the problem of how
large information retrieval is proportionately to all
other uses of the computer, including those for library
administration, but it does indicate a contribution suf
ficiently large to make the point that the needs of in
formation retrieval should be seriously considered in
future developments of the industry. The size of in
formation retrieval should also spur all information
professionals, whether library trained or with other
backgrounds, into demanding more than mere "no
hindrance" policies mentioned earlier.

The most obvious need is for more education, edu
cation in which the computer professionals and the
information professionals cooperate. Even with the
development of such courses as those that have been
offered in the City University's Professional Develop
ment Program for Library-Information Science, too
few people have faced the problem of really bridging
the gap between computer science and its bibliographic

information systems implementation. Courses in pro
gramming only begin to bridge the gap; they must
be supplemented by courses in how to measure the
effectiveness of various kinds of programming. In the
on-line remote environment, data communications can
scarcely be ignored or confined to sociological discus
sion. The examples can be multiplied; the point is that
educational efforts must be made by all segments
represented by AFIPS because they are all involved
in information retrieval.

A second "must" lies in the area of data storage. The
closets are becoming filled, and will be more so when
there are significant breakthroughs in input methods.
The possible argument that information personnel al
ready has at its command the very large amounts of
bibliographic data already mentioned is not valid, if
one starts to point out the large gaps in the biblio
graphic coverage of the literature, particularly in the
social sciences. The systems need large capacity, and
the librarians will have to learn to work with those
larger capacities.

A third "must" lies in the area of referral vs. biblio
graphic services. There is too large a duplication of
the latter-the overlap in data bases between SDC and
Lockheed, for example, may be anti-monopolistic, but
it uses capacity that might better service society's total
communication needs by the provision of more re
ferrals from file to file. As the number of files on-line
grows, so will the necessity to refer even the expert
to the correct file, and to instruct him/her properly in
how to convert a question from one system to another
(assuming that total file compatibility is an ideal
rather than a complete reality) .

A fourth "must", at least to this writer, is for a
more imaginative use of terminals in information re
trieval. We now have two possible ways of using the
terminal on-line: letting the information roll off the
screen or, if available, transferring it to a printing
device. Some exploration might well be made of the
divided screen, so that information (perhaps on
strategy) can be kept in view while the materials to be
scanned are rolling off the screen. The technology is
presently used in another type of information system,
and its application to LR. use merits some study. Per
haps several screens, with or without divisions, will be
needed to make full use of large volumes of material
being on-line at once.

The topic of this session: "Enhancing Library Ser
vices Through Computer Technology" could have been
interpreted as supplying the specifics for on-line inter
active searching. However, those details are findable
to the kinds of librarians and information center pro
fessionals who are likely to attend this meeting. This
occasion should be used instead to broaden the strokes,
to enlarge the possibilities, to engage the cooperation
of the entire industry. It is my earnest hope that this
has happened.

SCIENCE AND TECHNOLOGY

Computer and Data Base Architecture
Software
Computer Science
Applications of Computer Science

Developing application oriented computer architectures
on general purpose microprogrammable machines

by TOMLINSON GENE RAUSCHER
NCR
Cambridge, Ohio

and

ASHOK KUMAR AGRAWALA
University of Maryland
College Park, Maryland

ABSTRACT

Surveying contemporary commercially available com
puters reveals a general incongruity between computer
architectures and the problems the computers are
being used to solve. Surveying the commercial appli
cations of microprogramming reveals that micro
programming remains largely an alternative technique
for manufacturer implementation of basic machine
language instruction sets. With the large number of
contemporary general purpose microprogrammable
computers (especially minicomputers), the advantages
of microprogramming are available to ordinary users
for solving specific problems. From a pragmatic view,
the architecture of a computer is defined by the micro
programs resident in its control store. Changing the
microprograms in a computer's control store there
fore redefines its architecture. Architectures may be
defined for specific problems by changing the micro
program in control store for each problem. As prob
lems are represented by higher level language pro
grams, compilers can automatically generate a micro
program for each higher level language program. The
generated microprogram, when loaded into control
store prior to program execution, defines an architec
ture that efficiently supports program characteristics.
The advantage of this scheme is that it utilizes the
power of microprogramming for each user's specific
problem without forcing the user to comprehend the
implementation complexities of a particular micro
programmable machine. This paper investigates
several techniques for architecture redefinition via
microprogramming.

INTRODUCTION

Motivation

Problem solving with the assistance of a modern
general purpose digital computer generally involves a
sequence of processes.

715

(1) The programmer writes a program to effect his
algorithm in some higher level programming
language.

(2) The analysis phase of a compiler for the pro
gramming language transforms the program
into some intermediate language representation.

(3) The synthesis phase of the compiler transforms
the intermediate representation into a machine
language program.

(4) A microprogrammed interpreter (Le., an emu
lator) directs the interpretation of the machine
language program by the machine hardware to
produce results.

This problem solving process may be considered to be
a series of transformations on various representations
of an algorithm to solve a particular problem. Most of
the representations have been studied in some detail,
and as a result there are well-known algorithm repre
sentations, higher level languages, and intermediate
language representations. Similarly, most of the
transformation processes have been studied in some
detail, and as a result there are well-known program
ming techniques, formal language analysis techniques,
semantic analysis and code generation techniques, and
hardware transformation units. In contrast, the
design of machine language instruction sets and the
microinstructions that interpret them have been given
relatively little consideration.

Some things have not altered, or only slightly, so,
like the Model T, they have remained invariant, up
right, slow, inefficient and immune to the winds of
progressive technological improvement I am
referring to the basic form and rigid format of our
instruction sets.1

The instruction sets of many contemporary computers
were designed with hardware realization as the Jore
most constraint. Little attention has been given to the
types of operations the computers will perform. As a

716 National Computer Conference. 1976

result, machine language representation of program
constructs are often awkward, and the efficiency of ma
chine code for programs is seldom high. "The majority
of the . . . required work is involved with placating
the computer, while a relatively small portion of the
work is actually applied to the job."1 "In this regard
it is interesting to note that ... most of the instruc
tions executed, even in scientific applications, are used
for "housekeeping' details."2

Microprogramming was formulated more than
twenty years ago as a systematic alternative to the
usual somewhat ad hoc procedure for designing the
control section of a digital computer. Although micro
programming has been used commercially for more
than ten years, it generally remains a technique for
the implementation of basic machine language instruc
tion sets. Recent developments, such as the avail
ability of fast writable control stores, have sparked
investigation into other applications, however, these
are mainly special purpose and not immediately gen
eralizable.3

The advantages of microprogramming have been
mainly engineering aspects: low cost, flexibility, and
ease of development and maintenance. Because micro
programs interpret instruction sets, microprogram
ming can be applied to general purpose problem
solving to overcome inefficient machine languages.

EnviTonment

Problems to be solved will be represented in proce
dure oriented higher level programming languages.
For the higher level language there is a compiler con
sisting of two parts:

(1) an analysis phase which transforms the higher
level language program into an intermediate
language representation and,

(2) a synthesis phase which transforms the inter
mediate language representation into machine
language.

Since a majority of optimization techniques are ma
chine independent, the first compilation phase performs
all the machine independent optimizations (such as
folding, eliminating redundant operations, moving in
variant operations, reducing strength of operations,
and eliminating dead variables and assignment oper
ations) before it produces the final intermediate repre
sentation of the higher level language program. A
general purpose dynamically microprogrammable com
puter interprets the compiler generated machine code
to produce results. "Dynamically microprogrammable"
means that the computer has a fast writable control
store (much faster than main memory) that can be
loaded under program control. Once compiled and
debugged, programs will be executed repeatedly. Fig
ure 1 summarizes the problem environment.

Representations Transformations
(Processors)

Programner

AnalysiS
Phase of
Compiler

Synthesis
Phase of
Compiler

Micro- /
programs /

/

/
/

/
/ Hardware

Figure I-Problem solving with the assistance of a modern
general purpose computer

Problem definition

Basically, the problem is that computers understand,
i.e., perform, machine oriented instructions, and as a
result problems expressed in higher level languages
must be transformed into machine language programs.
The resulting machine language representations of
programs are almost always inefficient, and hence the
process of computer assisted problem solving in the
environment discussed is inefficient. The genesis of
this problem has been observed in the constraint of
contemporary computer instruction sets to machine
oriented operations rather than problem oriented oper
ations:

When engineers begin to seek more efficient encod
ings for commonly used sequences of instructions,
progress toward the modern computer may begin.4

It has been observed that contemporary machines
use inefficient machine languages to represent algo-

Developing Application Oriented Computer Architectures 717

rithms. More generally, the architectures of computers
do not efficiently support programs being run. By com
puter architecture we mean the attributes of a com
puter as seen by the programmer, i.e., the conceptual
structure and the functional behavior. The conceptual
structure comprises such considerations as the memory
hierarchy (registers, main memory, external store, etc.
and their logical connections), the representation of
data and instruction sets, and addressing schemes. The
functional behavior is determined by the machine
language instruction set, the instruction interpretation
process, and the instruction execution process. The
architecture of a computer is to be distinguished from
its implementation which includes the entire set of
machine registers (including the various memories),
the physical connections among the machine registers,
the Inapping of the conceptual structure onto the
physical structure, and the implementation of machine
language instructions. The efficiency of solving a par
ticular problem on a computer depends primarily on
the degree to which the architecture of the computer
supports the problem primitives. The primitives of
maj or concern in expressing a problem are the data
structures inherent in the problem, the operations
(transformations) that manipulate the data struc
tures, and the flow of control or sequencing among the
operations. These primitives are employed in the
formation of a program which represents an algorithm
to solve the problem. Since there is a wide range of
problems and algorithms (programs) for solving them;
each problem would be handled most efficiently by a
computer whose architecture supports the primitives
of the algorithm that solves the problem. To realize a
variety of algorithms efficiently, it is therefore neces
sary to define architectures for the different problems.

With a given control store size, the factors of concern
that measure the performance of a machine in exe
cuting a program are the time required to execute the
program and the main memory space required to store
the program. While time and space are also functions
of the machine realization (e.g., the technology from
which the memories are fabricated), here we are in
terested only in the architectural changes that affect
the time and space required to execute a program.

The problem under study may be summarized as
follows:

Given a higher level language program and a dynam
ically microprogrammable computer with a fixed size
control store, design an architecture (including the in
struction set into which the program can be translated)
that (when interpreted by the machine) minimizes the
execution time and main memory requirements for the
program.

Related work

A design approach that is presently being popular
ized commercially is language directed computer archL

tecture. As early as 1967, McKeeman noted the absur
dity of expecting modern digital computers (which
are designed to be very fast automatic desk calculators)
to be suitable hosts for supporting such diverse appli
cations as operating systems and compilers.4 In the
Burroughs B1700 computer,5 there is a novel "S-Lan
guage" for each higher level language. The S-Lan
guages are interpreted by microprograms that reside
in main memory or in a faster writable control store.
While language directed computer architecture shows
considerable improvement over the traditional single
machine language architecture, there is still consider
able disparity between language directed instruction
sets and ideal instruction sets for programs.

Microprogramming has been used to improve the
performance of programs in several application areas. 3

Inserting microprograms into control store to support
a class of problems results in application or environ
ment oriented architectures. The success of this ap
proach depends on the size of the application area.
Good results may be obtained for small, well defined
application areas.

The approach developed subsequently is an exten
sion of the language directed and environment directed
approaches that does not rely on characteristics of par
ticular languages or characteristics of particular en
vironments.

APPROACH

Implementing problem oriented aTchitectU1'es via
microprogramming

Within the given environment there are alternative
approaches to implementing performance improvement
by redefining computer architecture for individual
problems. Of concern are the flexibility of the imple
mentation and the binding time of the redefinition.

Since it is necessary to define an architecture for
each problem, one approach to implementing archi
tecture definition is to design for each problem a
special purpose machine based on the structure of the
algorithm and its intrinsic data structures. This ap
proach has been used by Shay6 in designing machines
whose algorithms exhibit natural parallelism. Such an
implementation, however, yields a special purpose ma
chine for each class of similarly structured problems.
The expense in building a special purpose machine can
generally be justified only in dedicated situations, such
as real time radar signal processing.

From a pragmatic view, the architecture of a general
purpose computer (especially the machine language in
struction set) is defined by microprograms resident in
the control store and the associated implementation
which the microprograms control. The microprograms
interpret the machine language instruction set and thus
define the instruction format, the instruction set, the
instruction interpretation process, and the addressing

718 National Computer Conference, 1976

schemes. Since microprograms control the referencing
of machine registers, the microprograms also determine
the conceptual structure of a computer's architecture.
Changing the microprograms in the control store of a
machine therefore redefines the architecture of a com-
puter. Since the problem environment under consider
ation specified dynamically microprogrammable com
puters (to reflect capabilities of a large number of
contemporary machines), changing the microprogram
is a simple task.

Dynamic redefinition

Defining architectures for specific problems requires
changing the microprogram in control store for each
problem. As problems are represented by higher level
language programs that are analyzed by compilers, it
is natural to have the compiler generate micropro
grams.

The approach then is to replace the code generation
phase of a compiler by a procedure that performs the
following operations:

(1) generates a microprogram that defines an archi
tecture for efficiently supporting the higher level
language program being compiled (this includes
interpreting the machine language programs of
the architecture) and

(2) generates the machine language program for
the defined architecture that represents the
higher level language program being compiled.

To execute the compiled program, the generated micro
program and machine language program are dynam
ically loaded into control store and main memory to re
define the architecture of the general purpose host
machine. This approach is called dynamic problem
oriented redefinition of computer architecture via
microprogramming.

Because control store is such a limited resource,
translating each higher level language program di
rectly into microcode is not feasible; there would be
too many microinstructions for the control store to
hold. The compiler, therefore, must still generate a
"machine language" program that, when interpreted,
effects the algorithm. This means that there is an al
most infinite variety of "machine languages".

Elfect of control store availability

Since control store is a limited resource, the per-
. formance of the procedure that generates micropro
grams depends on the amount of available control
store. Usually control store is small compared to main
memory, so the number of generated microinstructions
cannot be large. This means that the number of
special instructions is small and that most program
operations are represented by instructions in a basic
machine language.

The instruction sets of the large majority of con
temporary computers are redundant in that many op
erations can be implemented by several different
sequences of machine language instructions. As an
early example of redundancy in instruction sets, one re
search group found that "from the programming point
of view, little flexibility would be lost if the set of in
structions on the CDC-3600 were reduced to less than
% or % of the instruction options now available."2
Similar remarks apply to almost all contemporary com
puters.

Since machine language instruction sets are so re
dundant, an obvious way to obtain more control store
for use in architecture redefinition is to remove the
microprograms that interpret superfluous machine
instructions. A machine instruction is superfluous if
none of the operations in the program need be imple
mented using that instruction. While this method can
provide more control store, it has disadvantages. Upon
removal of some machine language instructions, the
instruction set, though still complete, may be very in
efficient. That is, it may require several machine lan
guage instructions to implement an operation that
formerly required just a few machine language in
structions. The instruction set may not be well
rounded, i.e., some operations could be easily imple
mented while others would be implemented inefficiently.

A better approach would be to design a "kernel"
machine language which is simple, complete, balanced,
and does not have trivial redundancy. Operations in
the kernel machine language should include operations
for flow of control constructs, arithmetic and logical
operations to manipulate the primitive data types, I/O
operations, etc. The actual language of course depends
on the environment in which programs will run, e.g.,
for simple business applications there is little need for
data types like real and complex or for data structures
like sets and lists. Even within a single computer
system it is feasible to have a variety of kernel lan
guages for application to a variety of problem types.
The microprogrammed implementation of kernel ma
chine language instruction sets uses only a small por
tion of control store. It is not minimal but reasonable
in its implementation of program operations.

METHODS FOR DEFINING NEW
INSTRUCTION SETS

Instruction sequence method

Many researchers have observed that instructions in
the static representation of a program fall into natural
sequences.2

,7 That is, having seen an instruction at a
certain location in the program, some instructions are
more likely to follow it than other instructions. Con
temporary machine languages generally do not take
advantage of this dependence. When considering par
ticular programs to be run on a computer, the obser-

Developing Application Oriented Computer Architectures 719

vation about dependence between pairs of machine lan
guage instructions can be extended to operations in
intermediate language programs. It is characteristic
of programs to use the same sequence of operations at
many points. This observation is the basis for the
sequence method of defining new "machine language"
instructions.

The sequence method analyzes the intermediate lan
guage representation of a program to find all sequences
of instructions and the number of times each sequence
appear::;. The method then corIlpares the micropro
grammed implementation of each sequence to its ma
chine language implementation. The microprogrammed
implementation of a sequence will show improvement
over the machine language implementation because it
represents a sequence by a single operation code in
stead of many operation codes. The sequences that
yield the most savings are selected as new "machine
language" instructions.

As a result of developing new instructions that re
place several instructions, the sequence method will
also reduce program execution time. The improvement
does not usually approach optimality because the
method does not take into account the interaction of
sequences, especially the dependence between sequences
and their subsequences. As the sequence length in
creases, the number of occurrences of different se
quences decreases. Thus there is a tradeoff in imple
menting sequences of different lengths as new instruc
tions. 'V'hile representing each occurrence of a long
sequence by a new instruction reduces memory size
(and execution time) more than replacing its constit
uent short sequences does, it may be advantageous to
use the available control store to interpret instructions
that represent short sequences because they appear
more frequently in the intermediate language program.

Program structure method

The intermediate language representation of a higher
level language program has been used as input to the
architecture redefinition process. This static descrip
tion of the program does not directly provide infor
mation about the run time behavior of the program.
To minimize execution time, however, the architecture
redefinition process requires knowledge of the run time
behavior.

One way of learning about the run time behavior of
a program is to execute it many times with several
representative data sets. By monitoring these execu
tions, information about the run time behavior may be
gathered for analysis. An alternative method is to
estimate the dynamic behavior using knowledge of
input data and statistical techniques. The program
structure method for defining new instructions
assumes knowledge about the execution behavior of a
program. More specifically it assumes knowledge of
the frequency of execution of program blocks, i.e.,

sequences of operations that are executed sequentially
with no branching or selection. (Thus if the first oper
ation in a block is executed, all the operations will be
executed.)

For each block, the program structure method com
pares the execution times of the microprogrammed
implementation and the machine language implemen
tation. The microprogrammed implementation will
require less execution time than the machine language
implementation because few instructions need to be
fetched and decoded. The method then multiplies the
difference by the number of times the block will be
executed.

The blocks that yield the most total execution time
improvement are selected as new "machine language"
instructions.

Some empirical evidence has been reported to sup
port the efficacy of this method. In one study, Knuth
"found that less than four percent of a program
generally accounts for more than half of its running
time."s Given that forty percent of the time involved
in performing machine language instructions is
devoted to fetching and decoding the instructions,
Knuth's findings imply that this architecture redefini
tion method can easily reduce execution time by twenty
percent.

A combined method for architecture redefinition

The two methods presented for defining applications
oriented architectures may be criticized for using only
some of the available information. The sequence ap
proach defines instructions that appear globally
throughout a program, however, it does not consider
program behavior at execution time. The structure
approach defines operations that are local to a part of
the program, however, it does not consider the oper
ations that constitute the blocks throughout the pro
gram. For these reasons we consider a combined
approach.

As in the sequence method, the combined method
first finds the different instruction sequences, the places
they appear in the program, and the differences be
tween the execution times of the microprogrammed
implementation and the machine language implemen
tation. For each sequence, the combined method then
multiplies this savings by the expected frequency of
execution of the sequence. For all occurrences of a
sequence throughout a program, these products (sav
ings times execution frequency) are added. The re
sulting sums represent for each sequence the total exe
cution time saving when the program is run. Those
sequences with the highest savings can then be micro
programmed as new "machine language" instructions.

Defining new architectures in this way reduces pro
gram execution time for two reasons. First, fewer
"machine language" instructions need to be fetched
from main memory and decoded because several oper-

720 National Computer Conference, 1976

ations have been represented by a single new operation
code. Second, the microprograms that interpret the
new instructions may be optimized. The amount of
space required to store the program will also be re
duced because several sequences of machine language
instructions are replaced by single new instructions.

EXAMPLE IMPLEMENTATION

Environment

An example implementation has been developed to
demonstrate the practicability of problem oriented re
definition of computer architecture by microprogram
ming. The implementation consists of:

(1) the analysis phase of a compiler for a higher
level structured programming language,

(2) a procedure that takes the output of the analy
sis phase and generates microprograms that
define an architecture to support the higher
level language program being compiled and also
generates machine language instructions to
represent the higher level language program,
and

(3) a simulator that interprets the microinstruc-
tions of the host machine.

The higher level language chosen for the implemen
tation was ULP,9 a language that is simple in struc
ture and general in scope, yet maintains the philosophy
of structured programming. The simulator was devel
oped for the Digital Equipment Corporation PDP-
11/05 (See Figure 2) with some minor differences. The
most important difference was the assumption of a
writable rather than a read only control store. This
machine was chosen because good documentation was
available on the microinstruction format and the ma-

Figure 2-0rganization of the PDP-ll/05

chine language emulator, the microprogram level archi
tecture was fairly simple and general (if somewhat in
efficient for general purpose use) , and the machine size
epitomizes situations where architecture redefinition
would be beneficial. The simulator simulates micro
instructions that interpret machine language instruc
tions. The architecture redefinition program takes the
intermediate language representation of a higher level
language program generated by the ULP compiler and
performs the combined procedure using a kernel lan
guage as described previously.

With the ULP language and compiler, the archi
tecture redefinition program, and the PDP-ll/05 simu
lator it is easy to compare the performance of a pro
gram as executed on the PDP-II architecture to the
performance of the program as executed on the re
defined architecture.

Simulation 'J'esults

For the simulations, two ULP programs were
selected. The first program is a part of a program
ming system developed to design telephone exchanges,
and the second program computes operator precedence
relations for an input grammar. Each program was
simulated nine times on each of two different input
data sets, for a total of thirty-six simulation runs. Of
the nine simulations for a program on one set of data,
the first represented the standard PDP-II architecture
interpreted by the PDP-ll/05 emulator. The remain
ing eight simulations represented the kernel and re
defined architectures (generated by the architecture
redefinition program) using control store sizes ranging
from 64 to 512 words in increments of 64 words. Each
simulation recorded the execution time, the number of
machine language instructions executed, and the num
ber of microinstructions executed.

As illustrated in Figure 3, execution time for the
simulated programs decreased as the amount of avail
able control store increased. Especially important are
the decreases in execution time of the redefined archi
tecture using 256 control store words compared to the
PDP-II architecture (which also uses 256 words of
control store). The execution time improvement of
more than twenty-five percent may be somewhat modest
because small data sets were used to keep simulation
times reasonable (less than ten minutes on a UNIVAC
1108). In retrospect, larger (and more typical) data
sets would have resulted in the programs spending
more of their time in frequently executed program
loops. As these loops contained new instructions, sig
nificant additional time savings would accrue.

Figure 4 illustrates the effect of the new instruction
set on program execution. It shows that the number
of executed "machine language" instructions on the
new architecture was less than half of the number of
machine language instructions executed by the PDP-II.

Developing Application Oriented Computer Architectures 721

" " o

"
o

~

" o

"
Q)

" OJ

}
l15

1.50

:::r I

POP-II ~ 12~

.~
r.--~ ______ ~ __ __

.:: : : :
192 2$ft. .!oZO 3'''' -I,,"' SIZ

Control Store Size

Figure 3-Program execution time vs. control store size for
simulated programs

The defined architectures were indeed oriented toward
the particular applications.

SUMMARY

The purpose of this paper was to investigate techniques
involved in defining architectures to support different
problems solved on general purpose computers. In the
selected approach microprograms are generated by a
compiler and loaded into the control store of a com
puter thus redefining the machine architecture for the
particular problem program.

The first technique for designing new instruction sets
was motivated by the observation that instruction exe
cutions exhibit repeated sequences of operations. The
sequence approach searches through the intermediate
language representation of a program and represents
commonly occurring sequences as new machine instruc
tions. The second technique was motivated by the ob
servation that different program parts are executed
with different frequencies. From the dynamic behavior,
the program structure approach represents the most
frequently occurring program blocks as new instruc
tions. The architecture redefinition procedure devel
oped to solve the problem combined the techniques used
in the sequence and program structure methods.

Co!!.trol Store Size

Figure 4-Number of executed machine instructions vs. control
store size for simulated programs

An example implementation using this procedure was
developed. Simulations provided empirical verification
of the procedure in improving performance by defining
architecture oriented toward particular applications.

REFERENCES

1. Church, Charles C., "Computer Instruction Repertoire
Time for a Change," 1970 Spring Joint Computer Confer
ence Proceedings, AFIPS Press. Montvale, New Jersey, pp.
343-349.

2. Foster, Caxton C., Robert H. Gonter and Edward M. Rise
man, "Measures of Op-Code Utilization," IEEE Trans
actions on Computers, Volume C-20, Number 5, }Iay 1971,
pp. 582-584.

3. Agra,vala, Ashok K. and Tomlinson G. Rauscher, Founda
tions of Microprogramming: A rchitectu're, Software, and
Applications, ACM Monograph Series, Academic Press, New
York,1976.

4. McKeeman, \-V. M .. "Language Directed Computer Design,"
1967 Fall Joint CO'mputer Conference Proceedings, AFIPS
Press, Montvale, New Jersey, pp. 413-417.

5. Wilner, W. T., "Design of the Burroughs B1700," 1972 Fall
Joint Computer Conference Proceedings, AFIPS Press,
Montvale, New Jersey, pp. 489-497.

722 National Computer Conference, 1976

6. Shay, Barry P., A Microprogrammed Implementation of
Parallel Program Schemata, Ph.D. Dissertation, University
of Mal'yland, Department of Electrical Engineering, 1975.

7. Saal, Harry J. and Leonard J. Shustek, "Microprogrammed
Implementation of Computer Measurement Techniques,"
Fifth Annual Workshop on MicTop'rogramming Preprints,
. i\'C~1:, September 1972, pp. 42-50.

8. Knuth, Donald E., "An Empirical Study of FORTRAN
Programs," Software-Practice and Experience, Volume 1,
1971, pp. 105-133.

9. Mills, David L., Structured Programming and Compiling in
a Minicomputer Environment, Computer Science Technical
Report Series, Technical Report TR-339, University of
Maryland, October 1974 .

A pipeline polish string computer*

by GERARD G. BAILLE and JEAN P. SCHOELLKOPF
Co--,np'uteT ATcli-itecture Group
Grenoble "University, France

ABSTRACT

This paper describes a new computer organization
which allows the pipeline execution of a polish-string
code. The central characteristic of the proposed orga
nization is a FI-FO queue, that holds values just ac
cessed by an Access Station, until they are used as
operands by an Execution Station for an arithmetic or
logical operation. Operands are taken out of the queue
by means of two pointers whose modifications are
managed by a Control Station. This new computer
organization is capable of high performance, since
access to variables and execution of operations are
performed in parallel with control functions required
by the input program. A solution to access conflicts is
proposed, using a content addressable memory that
holds the names of the variables whose modification is
deferred. This architecture is currently in application
for the design of a high-level PASCAL computer.

INTRODUCTION

Design of high performance computers can be achieved
using the technique that is called "pipeline" design,
characterized by the fact that concurrent operations
are supported by the machine.10 A high-level instruc
tion can be initiated within a module, and in the same
time the other modules are executing some operation
related to a preceding instruction. The IBM 360/911

and the CDC 6600 2 are two examples of pipeline execu
tion. Efficiency of pipeline computers depends strongly
on the way that they are programmed. Many attempts
were made to solve this problem and several techniques
are proposed for generating optimized code in terms
of pipeline execution.3

-
5 These techniques imply an

important amount of preprocessing, which does not
always justify the complexity of pipeline execution.

The solution proposed in this paper is based on a
natural decomposition of the work to be executed in a

* The research reported on this project is sponsored by the
French Comity for Computer Science Research under contract
SESORI No. 74-156.

723

pipeline manner. The first aspect of a natural decom
position is related to the kind of language proposed to
the machine. Tomasulo9 gives an efficient algorithm
for exploiting a pipeline architecture, but its applica
tion is limited to a low level language. On the other
hand polish-string code appears as best suited for the
execution of high level language.6

Stones' proposes a pipeline architecture for a push
down stack computer, but he suggests to translate the
input polish-string code into three address instruction
code. This paper shows, in a first section, how polish
string code can be directly executed by a pipeline com
puter. The second aspect of a natural decomposition,
as shown by Abrams,8 is related to the decomposition
of input string code execution into three natural pro
cesses that are control, access to operands and execution
of operators. It would be interesting to have the three
above processes concurrently running in a pipeline
manner: the execution of an instruction would be ini
tiated within the control station, and in the same time
preceding instructions would be currently in process
either within the access station or within the execution
station. Such a pipeline organization is made possible
using a FI-FO queue instead of a push-down stack as
a work area for expression evaluation. Operands are
accessed from the queue by means of two pointers
whose modifications are controlled by the control sta
tion which generates extra-orders. The generation
algorithm is presented and the rate of extra-orders is
evaluated in the first section.

The second section of this paper gives the general
architecture of the pipeline polish string computer.
Concurrency between access to operands and evalua
tion of expression to be assigned to variable leads to
the well-known problem of reading the value of a vari
able whose modification is not yet performed. This
problem, that is called "dependency" problem, is solved
at execution time using a content-addressable memory
which holds the name (not the address as in classical
pipeline computers) of the variables whose modifica
tion is deferred.

A brief summary is given at the end of this paper,
which shows the possible applications of the proposed
pipeline architecture.

724 National Computer Conference, 1976

PIPELINE EXECUTION OF POLISH STRING
CODE

This section first explains the choice of a FI-FO
queue as a work area for evaluation of polish string.
A model is introduced for polish string expressions
which allows the definition of two pointers for operand
access. The operator set is reduced to monadic and
diadic operators. The management of the two pointers
is controlled by special extra-orders generated by a
Control station. The generation algorithm is presented
and discussed.

The central characteristics of the pipeline execution
is that the input polish stream is analyzed by a proces
sor which generates two parallel instruction streams
towards two concurrent processors specialized the one
for access to operands, the other for execution of
operations.

Polish string evaluation

A polish string can be seen as a sequence of groups,
each group being a sequence of operands followed by
a sequence of operators. An operand is either an im
mediate value or the internal name of a variable (for
example, lexical level and offset) which allows the cal
culation of the variable address in main memory.

example:

[A,B,C,D,+,*,] [E,F,+,] [G,*,+,-]

group 1 group 2 group 3

The evaluation of such a polish string requires the
use of a working storage classically organized as a
push-down stack.

All the operands of a given group are pushed, one
after the other, into the stack, in the same order as
in the input string, next operators are sequentially exe
cuted, poping the two topmost elements from the
stack, and pushing the result onto the stack.

When all the operators of the current group are exe
cuted, the operands of the next group are pushed onto
the stack, and the above process is performed again.

Therefore, two processes appear when evaluating a
polish string:

-an ACCESS process which stores the operands
into the working storage (either from the string
when immediate access, or from main memory in
the other case)
-an EXECUTION process which executes the
operators, taking its operands out of the working
storage and storing intermediate results into it.

Using a push-down stack as working storage implies
the sequentiality of the two above processes. The aim
of this paper is to propose an evaluation method
which allows parallel execution between ACCESS and

EXECUTION process: parallelism is made possible
using a FI-FO queue instead of a PUSH-DOWN stack.

Organization

The above two processes are executed by two inde
pendent processors. Let PAC be the processor which
stores the operands into the FI-FO queue, and POP
be the processor which executes the operators, taking
its operands out of the queue.

Hence, when POP is executing an operator, PAC can
ACcess to a new operand and store it into the queue.

example:

sequential execution ABC D + * E F + G * + _
(using a STACK) I I I I I I I I I 1 I I I I

parallel execution

(using a QUEUE) • •• ABC D E F G • • • • • • • • • • • • • • •• (PAC)
J I I I I I I I

+ *+* + -
I I I i I I I

(POP)

Such an organization requires a third processor
which is called PAN, whose work is the ANalysis of the
input polish string in order to generate instructions
for both processors (PAC and POP).

The architecture is given by Figure 1.

THE EVALUATION PROCESS USING A FIFO
QUEUE

Variables whose names appear in the input polish
string are stored into the FIFO queue by the Access
Processor. The sequence of the access instructions is
the same as the sequence of the variable names in the
input string. So, we can define the relative location of
any variable in the queue, depending on its relative
location in the input string.

Let S= (VII, ... , VIDI, 011 ... Olmt, ... , V/ ... VpDI',

polish string

PCP

instruction
queue

~ [rI~O ()QElIE I~

UAI!I 1::::::r:ORY

FiguTe 1

0 1,1 ••• Oflmp) be the input string, where Vij is a vari
able name, and Oij is an operator name.

If the relative location of the first variable VII is
equal to 1, then the location of any variable Vij is given
by the formula:

i

1 (Vij) = Ln2+j, with no=O
r=o

How can we access to the operarti1s located in the queue

The evaluation of polish string is a sequence of
monadic or diadic operators execution. In a first ap
proach, let us consider that all the operators are diadic
ones. We must associate to each operator its two
operands, whose locations are partly defined by the
next two rules:

RULE 1: if Oil is a diadic operator, then its second
operand is variable vini, and its first operand is either
variable V/\-l if ni> 1, or the result of the immediately
preceding operator Oi-1 mi-l if ni = 1.

RULE 2: for j = 2 to ni, the second operand of opera
tor Oij is the result of the preceding operator Oij-1

•

We see that the variables are not referred to as
operands in the same order as in the input string:

for each group Gi= (V/; , , ., Vti, Oil, .. '; Oimi) the
first accessed variables are V{i and v i ni-1 as operands
for operator 0/, the last accessed variable V/.

Hence, it is idle to pull the operands out of the queue
in a FIFO mode, since it should be necessary to store
them again into another memory, organized as a Push
down stack.

So, we propose to use the queue as a working storage
from which operands are accessed by means of two
pointers, and into which intermediate results are stored
during the evaluation process.

Definition of two pointers

Let us define PI and P2 as two pointers which hold
respectively the address of the first and second operand
of any diadic operator during the evaluation process.

As an example, let S= (VII, V/, V1 3, 01\ 0 12
, V2\

V22, O2 \ 0 2
2

) be the input string. The variables are
stored into the queue in the following manner:

1 2 3 4 5 .-.. -R
I

2 v3 vI 2 v 1 1 2
V

2 ... -...

t
first-in last-in

A Pipeline Polish String Computer 725

Push-dm-!Il stack !"I-FO

ITJJIII GJ Ii' ;;:::- FOP
'J I '

Figure 2-Classical organization

The input polish string defines the sequence of oper
ations as follows:

Figure 3

We must generate orders for initializing P2 on vari
able VIS, PIon variable V1 2 before executing operator
0/, whose result is immediately used as second operand
for the next operator 0/, whereas pointer Pl must be
decremented by one in order to give the address of
variable VII as first operand for operator 0 12

•

The next diagram shows the successive states of the
queue and the successive values of pointers PI and
P2.

Initialization of pointers

Both pointers PI and P2 must be initialized after
execution of the last operator of group Gi-1 (Oi-1 mi-1)
and before execution of the first operator of the next
group Gi(O/). We know that pointer P2 gives the
address of the location which holds the results of oper
ator r (Oi-l mi-1) : this address is equal to 1 (Vi_1ni-l). We
must assign to P2 the address of the second operand
of operator 0/, which is variable vimi (from rule 1),
whose address is equal to

i i-I
1 (V{i) = L nr= L nr+ni

r=o r=o

= 1 (Vti-1) +ni

So we must increment the previous value of P2 by nl·
Moreover, pointer PI must hold the address of the first
operand of operator 0/, which is either variable Vti-1

if ni> 1, or the result of operator Oi-l mi-l if ni = 1.

726 National Computer Conference, 1976

initial state

1
after 01

2
after 01

1
before 02

1
after 02

I v~

I v!

PI

1
VI

P1

vi
1

v
2
1

PI

2
VI

v2
I

v2
1

v 3
1

vI
2

v
2
2

P2

1
r(OI)

1
V

2
2

v
2

P2

r(o~) I 1
v

2
2

v
2

t
p2

r(o~) I v1
2

v2
2

P1 p2

after o~ ~_v_~ _'----_--'-__ -L __ ----L-__ ~
final state

PI

Figure 4

In both cases:

Pl=l(vi_1ni-1) =1 (Vini) -1=P2-1 ifni>l,

Pl= 1 (vi_1ni-1) =1 (Vini) -ni=P2-1 if nj=l

p2

So, we define an EXTRA-ORDER, generated between
the execution of Oi-l mi-l and the execution of Oil, called
UP (ni), which is interpreted as:

n. > 1
l.

p2 ... p2 + n. ; pI ... p2 - 1
l.

I m. 1 ,r(Oi~~)
1

Vi
, ...

p2
+ n.

l.

I
1 mi _ 1 v~ _I r(Oi_l) ".

l. I

Figure 5

ni'-1 I n.
V.l. before UP(n

i
)

Vi l.

n
i

_
1

n.
V.l. after UP (n.) V.

l. l. l.

t t
PI p2

The intel'mediate states of the queue

Each time a diadic operator is executed, the location
which holds the first operand will be no more accessed:
we say that a "hole" is created or the the location be
comes "empty". So, during evaluation process, the
state of the queue is defined as a sequence of empty
locations followed by full locations which hold either
not yet accessed variables or intermediate results. We
associate to the state of the queue, after execution of
any operator Oi j a finite sequence

{(d1, t1), (d2, t 2), •••• " (dk, tk)}, where each di is
the length of a full location sequence, and each ti is the
length of an empty location sequence

FIRST-IN
d

1

I~I· .. I
LAST-IN

t t
p1 P2

The successive values of pointers PI and P2 can be
defined related to the state of the queue:

P2 must hold the address of the result r (Oi j
), and PI

must point to the full location downstream of the
location pointed by P2.

Each time an operator is executed, a new hole is
created, therefore the last element of the sequence
{(djJ tt)} must be modified: tk is incremented by 1 and
dk is decremented by 1. During execution, pointer PI
will be decremented by one. However, dk may become
zero, in which case pointer PI must be decremented
again by a value equal to tk-t, in order to point to the
first full location downstream of P2.

In the same time, the queue state is updated, by sup
pressing the last element

before o~
~

af'ter o~

C
k

p\ J

k ... k-l

,
pi

!~. -
! ,/ /.-- /

Figure 6

,
P2

p~

Conclusion-An extra-order called DO\VN must be
generated by the PAN processor, when the queue state
is updated: its execution is defined by: Pl~Pl-n,
where n is equal to tk-1 , when the order is generated.

Modification of the queue state before execution of a
new group

Between execution of operator Oi_lm-
1 (the last oper

ator of group Gi-1) and execution of operator 0/ (the
first operator of group Gi), an extra-order UP must
be generated. This movement of pointers corresponds
to a modification of the queue state: a new element
(dk+1, tk+d is created, initialized as follows: the new
group Gi is defined as a sequence of ni operands, hence
dk"'l~ni' and zero hole has been created, hence tk+l~O.

Conclusion-An extra-order called UP must be gen
erated by PAN processor in order to update the queue
state before the first operator of a new group. Its
execution is defined by:

P2~P2+n ; Pl~P2-1

where n is equal to dk=nh when the order is generated.

GENERATION OF EXTRA-ORDERS FOR THE
MANAGEMENT OF THE POINTERS

The proposed evaluation process using a FIFO queue
requires the generation of extra orders for the manage
ment of the pointers. As shown above, three kinds of
orders must be sent to the execution processor:

or

-the first kind consists in all the monadic or diadic
operators, whose execution is defined by:

Q(P2)~Q(Pl) <Op>Q(P2) (diadic operator)

Q (P2) ~<Op>Q (P2) (monadic operator)

The arithmetic or logical diadic operation is
followed by a modification of pointer PI :

Pl~Pl-l

'\ tk

1 ~1r(O~i-l) I ni
BEFORE V. Vi ;:::;; /%: 1.-1 1.

t:
Pi, p2

~= 0

, ~'"i-1 ,
I

d
k

_
l

t
k

_l

r0~~ m. 1 I v:i
AFTER /":</': /' '0 1.-1) v. ////Ir'i-l 1.

-1 t
Pl ?2

Figure 7

A Pipeline Polish String Computer 727

-the second kind is the UP (n) extra-order which is
executed when a new group is entered. It is
defined as:

P2~P2+n;

Pl~P2-1.

-the last kind is the DOWN (n) extra-order, which
consists in the updating of pointer PI; it is defined
as:

Pl~Pl-n

Evaluation of the number of extra-orders to be
generated

The number of extra-orders (nUp+ndOwn) to be gener
ated only depends on the input string.

Let S= (V/, ... , V/'\ all, ... , Olm\ ... , Vp \ •••

Vl'np , 0/, ... , O"ml') be the input string.

Such a string contains
p

N = :L.nr variable names, hence N access instructions
r-l

for the access processor PAC, and
p

M = 2:,mr operators, hence M instructions for the ex-
r-l

ecution processor POP. If all operators are diadic
ones, then M=N -1, but in general we have M~N-l.
Hence the initial number of orders is equal to
M+N~2N-l.

Each time a new group is entered, one must jump
over its sequence of variables, that is to say that the
number of extra UP orders to be generated is equal to
the number p of groups in the input string. The evalu
ation of the number of extra DOWN orders is a bit
more difficult to do. Let ki be the number of extra
DOWN orders generated during the execution of group
Gi. The maximum value of ki is equal to i-I, since the
queue has a maximum number of holes equal to i-l.
Furthermore, each executed DOWN order decreases
the number of further possible DOWN orders by 1,
since one hole is suppressed.

i-I

Hence we have O:S;k(~;: (i-I) - 2:,kj , for all i.
j=1

When adding the above formula for all i, we get:

~_../-.. ~,.~, r~.
US~Kj:S;~ ~J-l} -L~Kj+.

which becomes:

Hence we have the number of extra Down orders given
by

O:S; tkj:S; p (p; 1)
J=1

(p-l) (p-2)
2

p-l.

728 National Computer Conference, 1976

However, if the number N of variables is less than 2p
(N S 2p), than the maximum number of diadic oper
ators is less than 2p-1. As the p operators all, 0 21 ... ,
Opl cannot imply the generation of a DOWN order, we
have only p-I operators which can do so. Hence the
maximum number of extra DOWN orders is equal
either to

N -p-1 ifp+1SN S2p, or to p-1 if N~2p.

Now it is easy to see that the minimum rate of extra
orders is given by:

P
MINRATES 2N-1

and the maximum is given by:

N-1
MAXRATES 2N -1 ifp+1SNS2p,

2p-1
MAXRATES 2N -1 if N~2p

Example:

S= (A, B, C, *, +, D, -)

In this case, there are p = 2 groups, and N = 4 variables.
Hence N~2p

MINRATES~

MAXRATEs~

Trade off between compile time and execution time for
the generation of the extra-orders

The generation of the input string is performed by
the compiler, which could easily generate extra-orders.
However, the compiler becomes machine dependent in
such a case, and the size of generated code is increased,
as the number of instruction fetches from main

42

50

10

!J o:>erClnc1s in 5 Cjrours

N = number of oper3.nds

10 15

Figure 8

memory at execution time. Hence, the best solution
consists in the analysis of the polish string at execu
tion time, since the compile time solution would slow
down the global performance of the machine. The
generation is made by the analysis processor PAN,
which can be considered as the control processor, and
execute all the control function of the computer.

Algorithm for the generation of extra-orders at
execution time

Generation of orders is performed by the analysis
processor PAN. Given the input polish string, this
processor must generate orders towards both pro
cessors PAC and POP, using the theoric state of the
queue, represented by the sequence {(dit t i)} defined
earlier. The sequence {(diJ t j)} can be managed using
a push-down control stack. Let TS and STS be the
two topmost elements of the stack, which respectively
hold the couples (dk , t k) and (dk - 1, t k - 1). These two
variables TS and STS are structured as two fields
called D and T, so dk is equivalent to TS.D, tk to TS.T
etc.

The generation algorithm is illustrated in Figure 9,
where the symbol (Fd represents the name of the func
tion to be executed when the next symbol in the input
string defines the state transitions. The next symbol
type is represented either by [variable] or by [oper
ator].

[variable]

fo.nerator]

Figure 9

Function F1 initializes the queue state, by pushing
the couple (-1,0) onto the control stack.

Function F2 generates an Access Order towards the
Access Processor, next counts the number of variables
in the current group, by incrementing the top of stack

(TS.D~TS.D + 1)

Function F3 is executed when the first operator of
the current group is encountered. It occurs on the
+_~~N~+~~~ .c_~_ ~T ni +~ 1"\ 1 T+_ .c .• _~+~~_ !_ +l,..~ ~~_~_
I.LC:UICll.lVU LLV111 Vi - I.V vi' Ll.;::) .LUl1\JI.IVl.i. 1;::) 1.11C ~CllCL-

ation of an UP extra-order, with a parameter n equal
to the number of variables in the current group, which
has been evaluated by function F2 (the parameter is
equal to ni since F2 has been executed ni times).

Function F4 generates an Operation order towards
the execution processor POP. If the operator is a
diadic one, then the queue state is updated, modifying
the top of stack element: TS.D~ TS.D -1 since there
is one less operand in the last group, and TS. T
~TS.T+ 1 since there is one more empty location in the
last group.

If TS.D becomes zero, an extra-order DOWN is
generated, with a parameter n equal to the second top
of stack element STS: one generates DOWN (STS.T).
Next the queue state is modified:

STS.T--;-STS.T+TS.T since the length of the hole
must be incremented and PULL (TS) since the top
most element is deleted (STS becomes the top of stack).

Function F5 is executed on the transition from Oimi

to Vi+1 \ Le. when the first variable of a new group is
encountered. This function initializes a new element on
the stack, only if the previous top of stack represents
a real group.

if TS.D>O then PUSH(l,O)
else (TS.D~l, TS.T~O).

Function F6 is executed on the occurrence of the end
symbol, which is any separator symbol between two
expressions (e.g. an Assign Symbol). It only verifies
the correctness of the control stack state, which must
be the empty state.

ARCHITECTURE OF A HIGH-LEVEL
PIPELINE COMPUTER

The first section of this paper has shown that pipe
line execution of polish string code is made possible
using a FI-FO queue.

In this section, an architecture is presented for a
high-level pipeline computer whose code is in polish
string format. The dependency problem is first studied
and a solution is given.

THE DEPENDENCY PROBLEM

Suppose, for example, that the high level instruction
"X~<exp>" has been prepared in both PAC and POP

A Pipeline Polish String Computer 729

instruction queues, or is in the process of execution
by processor POP, when the access to variable X in
struction enters the access processor PAC. The access
processor must be able to detect the fact that both
instructions refer to the same variable X, and that the
second instruction might have to be deferred until the
completion of the first instruction, since a reference
to the location of X in main memory would not give
the true value of variable X, but its old value.

The solution consists in the definition of a content
addressable memory, organized in a FI-FO mode,
which holds the name of the variables whose modifi
cation is deferred, and the name of the variables which
have been just modified. In the first case (deferred
modification), any reference to the variable is pro
cessed as an indirect reference by creating a link be
tween the assignment and all the deferred references.
In the second case a reference to main memory is
eliminated, since the current value of the variable is
available in the content-addressable memory after the
completion of the last assignment.

Using the above mechanism, the access instruction
(VALUE X) can be deferred until the completion of
the assignment. All the deferred references are linked
together, eliminating a number of memory references
equal to the number of linked locations.

THE CONDITIONAL BRANCH PROBLEM

Both PAC and POP processors may be considered as
SLAVES of the PAN processor in the following sense:
then only execute the internal instructions that they
receive from the PAN processor. Moreover, every in-

• A +- <expl>

1\ B C D E F G conten addressableB +- <exp2>
C +- <exp3>

v V v V D <exp4>

1\ A A 11.. @ @ @ E +- <exp5>
L L L L cortent
U U (J U - - - F +- <exp6>(••• E •••)

e E E E

JI

~rk am I ~ I
<exp5>

t Assign E

I when here

e:-:pression 1:1
execution process

\.

I
Assign F

when here

Figure 10

G"'" <exp7>(••• E ••• F.

H <ex!>B>(••• F •••)

""

~ I \

~ ~ I II
t

PAC pointer
<ex!'7>

1'.ssiqn G

"Then here

730 National Computer Conference, 1976

struction belonging to the input string is fetched by the
P AN processor. So, this processor can be considered
as the MASTER of the control, and it is involved in all
control functions in the computer during execution of
a single high-level program.

When a conditional branch occurs, the PAN pro
cessor is not able to fetch the next instruction, since
the conditional expression is currently in the process
of evaluation. However, the PAN processor may
choose one instruction among all the possible next in
structions (generally two). The probability of a bad
choice strongly depends on the context of the con
ditional branch: it is much lower for a LOOP state
ment than for an IF statement.

When a choice is made, we say that the PAN proces
sor enters a Conditional State, characterized by the
fact that its activity is limited to a preparation work.
Especially, if a conditional branch occurs during this
conditional state, no choice is made, the processor wait
ing for the resolution of the first conditional branch.

When the value of the conditional expression is avail
able, two cases may occur: either the choice was good,
in which case the process goes on without any modi
fication, or the choice was bad, in which case all the
prepared work must be disabled. This is simply
achieved by writing as "empty" the input instruction
queues of both PAC and POP processors which hold
bad instructions and updating both evaluation and
dependency queues by deleting the sequence of "bad"
operands or "bad" deferred variables (they are "bad"
because they belong to the bad choice).

HOW TO SAVE THE EVALUATION CONTEXT

The evaluation context (intermediate state of the
evaluation queue) must be saved when a "function
call" occurs within an expression. Function calls are
introduced in the input polish code in the following
manner: any operand can be either a variable name or
a function call.

The syntax of a function call is

(FCALL <name>, <parameter-list>, ENTER).

When FCALL is decoded by the analysis processor
PAN, a special order is sent to the PAC instruction
queue that calls for the address of a save area. This
area is allocated on the top of a push-down stack, since
several function calls can be nested. Next, processor
PAN, which knows the current state of the evaluation
queue, generates a sequence of DOWN and SAVE
orders towards the POP instruction queue. Hence the
current state of the evaluation queue can be saved be
fore the function is entered, all previous results being
compacted into the save area.

When the function is returned, processor PAC is
capable to restore the initial state, pushing the func
tion result just after the restored values, and the evalu
ation process goes on.

THE GLOBAL ARCHITECTURE OF THE
COMPUTER

The pipeline computer architecture is shown by
Figure 11. Each of the three processors can run con
currently. Their synchronization is data-driven. Pro
cessor PAN fetches high-level polish form instruction
stream from Main Memory, and executes all the con
trol instructions (IF, LOOP, GOTO, ...).

It analyzes input expressions and generates two in
ternal instruction streams towards both PAC (access
instructions) and POP (execution of operation).

Two synchronous exchanges occur: the first one is
concerned with the transmission of the entry address
when a procedure is entered. The second one is the
completion of a conditional expression which can dis
able the choice made by processor PAN on the occur
rence of a conditional branch.

SUMMARY

The pipeline architecture described in this paper is
potentially capable of high performance. Its input code
is in a polish string format that can be directly trans
lated from a block structured high-level language. The
pipeline execution is based on a natural decomposition
into control, access to operands and execution of oper
ations, executed by three concurrent processors.

PROr.RAM STORAGE

Figure ll-Architectul'e of the pipeline computer

This computer architecture is currentlJT in applica-
tion for the design of a PASCAL computer. Each of
the three processors is in design using high speed
macrologic components in Low Power Schottky Tech
nology. 11, 12

ACKNOWLEDGMENTS

The authors would like to thank Dr. F. Anceau for his
constant encouragement and helpful discussions and
all members of the Computer Architecture Group of
the University of Grenoble for their constructive crit
icism. Special thanks go to Mrs. H. Diaz for preparing
the paper.

REFERENCES

1. Anderson, D. W., F. J. Sparacio and R. lVI. Tomasulo,
"Systemj360 :Model 91: Machine Philosophy and Instruction
Handling," IBMJR&D, 11, No.1, January 1967, pp. 8-24.

2. Thornton, J. E., "Parallel Operation in the Control Data
6600," AFIPS FJCC Con!. Proc. 26, Part II, Washington,
D.C., Spartan Books, 1964, pp. 33-40.

A Pipeline Polish String Computer 731

3. ~ elsoll; H. L.; Progmm, Optimizing Techniques for the CDC
6600 Central Processor, UCRL-12489, University of Cali
fornia, Lawrence Rad. Lab. 1965, also KASA N66-20536.

4. Squire, J. S., "A Translation Algorithm for a Multiple
Processor Computer," Proc. 18th ACM Nat. Con!., Denver,
Colorado, 1963.

5. Baer, J. L. and D. P. Bovet, "Compilation of Arithmetic
Expressions for Parallel Computations," IFIPS Congress
68, August 1968, pp. B4-B10.

6. BURROUGHS B5500 Information Processing Systems Re!
ence Manual, Burroughs Corp., Detroit, Michigan, 1964.

7. Stone, H. S., "A Pipeline Push-down Stack Computer,"
Parallel Processor Systems, Technologies and Applications,
Chapter 12, pp. 235-249.

8. Abrams, An APL Machine, Stanford University, No. CS
70158, 1970.

9. Tomasulo, R. :M., "An Efficient Algorithm for Exploiting
:vIultiple Arithmetic Units," IBM Journal, January 1967.

10. Flynn, M. J., "Very High Speed Computing Systems,"
Proceedings of the IEEE, Vol. 54, No. 12, December 1966.

11. Baille, G. G. and J. P. Schoellkopf, "Evaluation of a Polish
Form Expression on a FI-FO Queue," 1975 SAGAMORE
Computer Conference on Parallel Processing, August 19-22,
1975, p. 200.

12. Anceau, F., G. G. Baille and J. P. Schoellkopf, "Conception
Descendante des :Machines Informatiques, Application it Une
:Machine PASCAL," Rapport Contrat IRIA-SESORI No.
74-156, October 10, 1975.

Evolution of computer luemory structure*

by YAOHAN CHU
University of Maryland
College Park, Maryland

ABSTRACT

The memory structure of a computer refers to those
hardware elements that store the data elements and the
related information during program execution. It has
a great impact upon the usage and the programming
of the computer. Since the advent of commercial elec
tronic digital computers, the memory has made great
hardware advances in speed, capacity, size, cost and
reliability. It has also made great organizational
changes.

This paper reviews the memory structure of typical
computers from the viewpoint of the software need.
It emphasizes the structural advances in satisfying the
software need of various types of data elements and
data structures. It presents observations of the evolu
tionary nature of the memory structure development
toward the high-level language architecture.

MEMORY STRUCTURE OF VON NEUMANN
MACHINES

Von Neumann machines refer to those computers
which make use of a random-access memory (often
known as the main memory), in which the program
and data are stored. One unique characteristic is that
the program is a sequence of instructions, and each in
struction typically has an op-code to represent an
operator and an address to locate an operand in the
main memory. Another unique characteristic is that
there is no distinction between the program and the
data that are stored in the main memory; thus, an in
struction can be treated as the datum and vice versa.
Most of the electronic digital computers that have been
built are V on Neumann machines.

IBM 7090/7094 computers

The IBM 7090/7094 family of computers were among
the most popular large-scale computer systems during

.r. This research is supported by Grant NSF DCR75-05505 from
the National Science Foundation to the Department of Com
puter Science of The University of Maryland.

733

the period of the early 1960's. The memory structure,
shown in the block diagram of Figure 1, is quite simple.
It consists of a main memory \:tlith a capacity of 32K
36-bit words, and 3 or 7 index registers. The struc
ture recognizes only binary numbers; integers and real
numbers have different formats. It did not recognize
characters, strings, stacks, and the like; they must be
interpreted by means of subroutines or program seg
ments. It is apparent that the memory structure is
rather rudimentary for high-level programming lan
guages.

IBM 360/370 computers

Since 1964, IBM introduced System/360 family and
iater in 1969 System/370 family of computers.1 The
memory structure, shown in the block diagram of Fig
ure 2, consists of a main memory, 16 general registers
(each of 4 bytes), and four floating-point registers
(each of 8 bytes). The main memory can be expanded
to a maximum of about 16-million bytes. It can recog
nize binary and decimal numbers, strings of a varying
number of characters, and strings of a fixed number of
bits. There are four formats for binary numbers, two
formats for decimal numbers, one format for a string
of bits and one format for a string of characters.
There are four kinds of operands that can be ad
dressed: the register operand, the storage operand, the

3 or 7 15-bi.t
index. registers

main

memory

Figure l-Memory structure of the IBM 7090/7094 computers

734 National Computer Conference; 1976

4 floatL."1g-point

\8-b'te regbten

I

16 general purpose 4_b'l' main

Figure 2-Memory structure of the IBM S/360 and S/370
computers

immediate operand and the string operand. It is
obvious that the memory structure is more sophis
ticated than those of the IBM 7090/7094 family of com
puters, but it is still far from adequate for high-level
programming languages.

IBM S/360-S5 system was the first to have the so
called "cache memory."13 It was a buffer memory in
stalled between the main memory and the CPU. It
was a very-high-speed semiconductor memory, whose
presence was transparent to the programmer. The use
of the very high-speed cache memory can greatly im
prove the speed of computer operation without in
creasing the speed of main memory operation. Thus
the use of a buffer memory enhances the memory speed
by means of memory organization.

The current IBM S/370 family of computers which
succeeds the IBM S/360 family extensively provides the
virtual memory. A virtual memory makes the main
memory appear to have an enormous capacity to the
programmer. It has been implemented by a com
bination of hardware and software to appear as a one
level memory. Thus, the use of one-level memory en
hances the memory capacity by means of memory
organization. The virtual memory was first made
commercially available in Burroughs B5500 system
early 1960's.11 A hardware virtual memory (virtual
memory becomes a misnomer) was demonstrated in the
Symbol system early 1970's.12

MEMORY STRUCTURE OF STACK-ORIENTED
MACHINES

Stack-oriented machines are those machines where
there is a hardware stack. This stack is provided to
perform only some of the functions in program execu
tion control, data handling and referencing, and ex
pression evaluation. For this reason, it is called a
stack-oriented machine. It is a step in memory struc
ture evolution. It is an intermediate between a Von
Neumann machine and a stack machine. The memory
structures of Intel SO OS and SOSO, the DEC PDP 11/45
and the Burroughs B1700 systems are introduced
below.

Intel 8008 and 8080 structures

The Intel MCS-S and MCS-SO microcomputer sys
tems are stack-oriented machines. The hardware stack
is used only for subroutine return linkage and tem
porary operand storage. It is not used at all for
arithmetic expression evaluation.

The Intel MCS-S microcomputer system makes use
of an Intel SO OS microprocessor. 9 It executes a typical
instruction in 12.5 microseconds, and recognizes only
an S-bit binary number. The memory structure is
shown in Figure 3. It consists of a main memory
expandable to 16K bytes, an address stack of eight 14-
bit registers and seven S-bit registers. The address
stack stores the return addresses of subroutine calls,
which is transparent to the programmer. One of the
seven registers is the accumulator; nearly all arithmetic
and I/O operations use it. Because the SOOS does not
have instructions that have direct addresses, two of
the remaining six registers are used for all references
to main storage. In order to fetch an operand from
storage, the program must load an address into two
specific registers. This means that at least three in
structions must be used to refer to the arbitrarily
placed data, this is a major disadvantage.

The Intel MCS-SO microcomputer system10 is an out
growth of the MCS-S. It makes use of an SOSO micro
processor. It executes a typical instruction in 2 micro
seconds. It recognizes only an S-bit binary number and
has only addition and subtraction instructions. The
SOSO microprocessor offers 30 additional instructions, a
speed improvement of at least 10 times, and possible
code reduction of up to 30 percent. The memory struc
ture shown in Figure 4 consists of a main memory with
a maximum capacity of 64K bytes, six 16-bit registers,
and an accumulator. Of the six registers, one is a sta.ck

~stack
~ pointer

1

I

address
stack

8 14-bit
registers

L
H

.1
D
C
B
A

8--bitreiisters

Main Memory

(ROM & RAM)

(Expandable
to 16K bytes)

Figure 3-Memory structure of the Intel MCS-8 system

registers

Z(B) WeB)
L H
E D
C B

stack pointer(16)
program counter

! Accumulator (8) !

Main Memory
(ROM & RAM)

(Expandable
to 64K bytes)

Figure 4-Memory structure of Intel MCS-80 system

pointer. The stack pointer is used to place all return
addresses in the stack which is in the RAM. Instruc
tions are available for directly handling the stack.
Another of the six registers is the program counter.
The Z and W registers are for the internal use of the
microprocessor. The remaining three 16-bit registers
can also be addressed as eight-bit registers.

r -------- j

I descriptor
8 data

Evolution of Computer Memory Structure 735

The 8080 allows no index addressing, but it has in
structions that permit explicit addressing of storage
locations. Where the 8008 only allows a single pair of
eight-bit registers to address the memory, the 8080
permits any of the three main registers to hold and
output an address when using register-indirect address
ing.

DEC PDP 11/45

The DEC PDP 11/45 is a stack-oriented minicom
puter system.~ It accepts a conventional machine-level
language. Although it provides optional hardware for
memory segmentation, its facility for the hardware
stack is rather limited.

Memory structure

The memory structure of a PDP 11/45 with the
memory segmentation hardware is shown in Figure 5.

general register set 0

registers: -----1----,----1
~A===

Main Memory

I ----~

8 Instruction
Descriptor
Registers supervisor stack

register

kernel stack

general register set 1

R~' i I ~To se_nt registers
for kernel

~ To segment registers

Segmentation Registers
(For one mode)

Figure 5-Memory structure of the DEC PDP 11/45

for "supervisor

736 National Computer Conference, 1976

There are two sets of general purpose registers; each
set has six 16-bit registers. Only one set is active at
a time. Each set can be used to store either two 8-bit
bytes, a 16-bit binary number, or a pointer to a seg
mentation register. There is also a program counter
which points to the code currently being executed.

There are three modes (or states) in which the hard
ware may run: the kernel, the supervisor, and the
user modes. There are three sets of segmentation
registers; each set has 16 32-bit registers. Each set is
for each mode; there is a total of 48 registers. Each
16-register set can be split into two sets of 8 registers:
8 Data Space Descriptor Registers and 8 Instruction
Space Descriptor Registers. There is also one hard
ware utilized top-of-stack pointer register for each
mode.

Hardware recognized data elements

The data elements that the hardware can recognize
directly are a one- or two-byte string, or a 16-bit binary
number.

Recognized data structure

The only data structure it recognizes is a stack which
is in the main memory. The stack is used by the hard
ware only for subroutine and interrupt return linkage.

Referencing

The PDP 11/45 is interesting in that it is a byte or
a word (2 bytes) addressable machine. There are two
classes of instructions (including two types of load
and store) ; one is byte-oriented and the other is word
oriented. The hardware stack can also be referenced
by the software by the use of a powerful auto-increment
and auto-decrement class of instructions.

All data elements and structures in the main memory
are referenced indirectly through one of the 16 active
segmentation registers. The referenced segmentation
register contains a special pointer to an area in main
memory. This pointer is called a descriptor. It not
only points to the address of the area but also specifies
other information 'about the area. A segmentation
register descriptor basically specifies the main memory
address of an area and its length, whether the area is
stack or not or whether the area is read-only or read
write.

The stack (which is in main memory) is used by the
hardware only for subroutine and interrupt return
linkage.

Burroughs B1700 structure

The Burroughs B1700 is a recently available small
scale micro-programmable computer.{ Like the Intel

8008 and 8080, it is a stack-oriented machine. The
major innovation of the B1700 is the use of a writable
control memory to store the microprograms. The ma
chine-level language is an assembly-level but syntax
oriented language called S language. A high-level
language source program is translated by a compiler
into a S language code which is interpreted by a
matched microprogram. There can be more than one
pair of a S language and its matched microprogram.

Memory structure of the B1700

Figure 6 shows the memory structure. There are 6
general-purpose registers, a hardware stack for sub
routine return linkages and for general operand stor
age, a control memory for microprogram, a register
table to hold either base registers or general operands,
register F to reference the contents of the main memory
itself. Register MAXS specifies the maximum size of
the main memory. Also shown in Figure 6 are two
registers, BR (base register) and LR (limit register) ;
they are used to mark the start and the end of the data
area in the main memory of the current program. All
da ta accesses made by the program are checked by the
hardware to insure that they do not exceed these
bounds.

The microprogram is stored in the control memory,
but it can be extended into the main memory. Register
MBR points to where the microprogram code overflow
starts in the main memory. Register A is the micro
program instruction counter. The read-only register
MAXM stores the available control memory. Register
TOPM points to the end of the microprogram in the
control memory.

Hardware recognized data elements

The B1700 hardware is capable of recognizing vari
able length binary numbers (1 to 24 bits in length),
variable length decimal numbers (1 to 6 digits in
length), and variable length strings (1 to 3 characters
in length) explicitly. It can recognize any of these
elements in longer lengths but the use of more than
one micro-instruction is needed.

Hardware recognized data structures

Aside from the either 16 element (B1714 and B1716)
or 32 element (1724 and B1726) hardware stack, the
B1700 memory structure recognizes no data structures.

Referencing

Any data element in a register is referenced directly
by the register name. Certain registers, as shown in
Figure 6, have addressable fixed subfields. Register T

rq~isters

CAD

L

control memory

Hicto Code

register table

Evolution of Computer Memory Structure 737

registers

'(-LiQriLJ
I MAXI-I I

-tLJ

\

~M;:;;a:.:::in::.::....:;~i:;;.em=o:.:r'.LY ___ ---, r--- jHAXS I
~------------~<----{][]

T 11... ___ :--____ -'
portion A portion B

151~ __________ ~ ______ ~ data

x ~41
y

'rAS

o

Micr~_~e . ~

::-~ LIN,,":

(I ~ I ~ I
reg1st~r F

stacK A

Figure 6-Memory structure of the Burroughs B1700 system

is also provided with special hardware so that any field
of this register may be accessed. A data element in
main memory is accessed by placing a data descriptor
in register F. The format of this data descriptor, iden
tical to that of register F shown in Figure 6, has four
basic fields: FA (Field address), FU (Field unit), FT
(Field type), and FL (Field length). Micro-instruc
tions are available to transfer anyone of these fields to
some registers. Field FA contains the absolute bit
address of the data area. Field FU may contain the
number of bits per byte in the data item (e.g., binary
is 1 bit/byte, octal is 3 bits/byte, etc.). Field FT may
hold data type. Field FL may hold the length of the
data area.

MEMORY STRUCTURE OF STACK MACHINES

Stack machines are those machines which have a
hardware stack. The stack is particularly necessary
for machines whose machine-level languages have a
high-level syntax such as the polish notation. Bur
roughs B5500 system was the first stack machine.

In a stack machine, the hardware stack can push

down or pop up an operand. It can test for stack over
flow or underflow. It can be used for expression evalu
ation. It can store the return address and pass pa
rameters of a procedure call. It can handle the
interrupts. In fact, all operands go through the stack.

This section briefly describes the memory structure
of the family of Burroughs B5500, B6700, and B7700
stack machines.

Burroughs B5500 structure

Burroughs achieved a great stride in computer archi
tecture through the introduction of the B5500 system
in early 1960.2

,3 This system was specifically designed
for the execution of a high-level language called
Extended Algol which is a dialect of Algol 60.

It is important to note that the philosophy of the
design of the B5500 was to eliminate the assembly
language programming. Aside from some rather rare
occurrences within the operating system, this goal has
essentially been achieved.

The B5500, as well as the B6700 to be mentioned
later, is a stack machine. The stack is not only used for

738 National Computer Conference, 1976

subroutine and interrupt return linkage but also for
arithmetic evaluation and procedure parameter storage.

Memory structure of the B5500

The memory structure of the B5500 is sketched in
Figure 7. There is a main memory with a capacity of
32K of 48-bit words, two registers Sand R pointing to
the main memory, two top-of -stack buffer registers A
and B, two registers G and H which indicate a bit posi
tion within the A register, and two registers K and V
which indicate a bit position within the B register. The
pairs of G, Hand K, V registers allow accessing any
contiguous string of bits in either the A or B registers.

Hardware recognized data elements

The hardware can directly recognize and manipulate
binary and decimal numbers, strings of a varying num
ber of characters, and strings of a varying number of
bits. There are two formats of binary numbers (real
single-precision and real-double-precision), one format
of decimal numbers, and one format of character
string, and one format of bit strings.

Hardware recognized data structures

The B5500 hardware directly interprets stack, single
dimensional array structures, and singly linked lists.

Data area

Data area

I/O Area

Data Area

Code Area

Hain Demory

PRJ: (in main L:!ii!cory)

I I ') i·' i_ re~ter
!~

register A i

I yg, sttrs
r-- GH

~----!

.stack(in main 1.lle=ry)

register
~-----1~12.J

(

Figure 7-Memory structure of the Burroughs B5500 system

Referencing the data structures and data elements

Each program in execution has a PRT (Program
Reference Table) which contains all scalar data ele
ments and pointers to all arrays in addition to a hard
ware maintained stack. As shown in Figure 7 register
R points to the base of the PRT of the currently exe
cuting program. Registers A and B contain the top
two elements of the hardware maintained stack, while
register S points to the top stack element in the remain
der of the stack which is in main memory.

The B5500 has four different types of addressing it
can perform: (a) R-relative (address an element of
the PRT), (b) top-of-stack (e.g., multiply top two
elements of stack), (c) stack relative address (a proce
dure programmer), and (d) absolute addressing.

R-relative addressing allows the accessing of binary
numbers and bit strings less than 48 bits. in length.
Top-of-stack addressing allows the use of the stack for
evaluating arithmetic expressions and is also used for
all temporary workspace (e.g. index operations are
performed in the stack).

In order· to access the other data types of decimal
numbers, character strings, bit strings of 48 or more
bits, and arrays, a combination of these addressing
types is used. Each datum in main memory which is
not merely a binary number or a 0-47 bit bit-string is
pointed to by a special pointer in the PRT. This pointer
is called a data descriptor. The data descriptor has 3
hardware recognized fields: P, WC, and ADDRESS.
The one-bit P field indicates if the descriptor points
to an area in main memory or on the disk memory. The
VC field specifies the size of the area in 48-bit words
(or 8 characters). The ADDRESS specifies the loca
tion of the data area either in the main memory or disk
(depending on field P) .

In order to reference a data item described by a data
descriptor, an index (if needed) and the descriptor
(via R relative addressing) are first pushed onto the
stack. Next, if an index was specified, the hardware
checks to see if it is within the size of the WC field.
If it is, the index is added into the ADDRESS field of
the descriptor to give the absolute address of the data
item.

The descriptor can be used to either load or store a
value into the item referenced. For example, to refer
ence A [3], the value of the index, 3, is placed on the
stack and a "value call" operator on the address of A
is performed by the software. The hardware automat
ically: (a) add the index to the array's descriptor,
(b) make sure the subscript is in bounds, (c) delete
the index from the stack, and (d) place the addressed
array element on the stack.

There is also a special instruction, LINKED-LIST
LOOKUP, which searches a singly-linked list. This
list is created by software.

Burroughs B6700/7700

The Burroughs B6700 and B7700 systems are basi
cally large-scale, improved-versions of the B5500 sys
tem, commercially becoming available almost 15 years
ago. Rather than indicating that the architecture of
the B6700 and B7700 is antiquated, the fact is the
architecture of the original B5000 and B5500 was
greatly in advance of the time. The Burroughs B6700/
7700 systems are perhaps the first stack machines,
where all data storage other than arrays is actually
performed by the powerful stack organization.

Memory structure of the 86700/7700

The memory structure of the B6700/7700 family of
computers fi

.••
H is sketched in Figure 8. As shown, reg

isters A, X and B, Y store the top two elements of the
current stack (four registers for two double precision
operands). Registers BOS, S, and LOS point to the
base, the current top, and the limit of the current stack
in main memory, respectively. There is a software
maintained but hardware-accessed Stack Vector Table
in main memory. The Stack Vector Table stores one
pointer to the base of each stack in main memory. The

registers

A r--------f
registers

B ~-------1

current
stack

,
X ~-l
y f-------

register

register

Evolution of Computer Memory Structure 739

table entry for the current stack is pointed by register
SNR.

Also shown, there is a 32-entry register-table D
which is used for addressing and an associated register
LL which specifies the highest register in the D table
which is valid. There are 3 "vector mode" registers
for storing Pointer A, Pointer B, and Pointer C; these
are index registers for efficient one-dimensional array
accessing.

Hardware recognized data elements

The B6700/7700 hardware recognizes by means of
data descriptors binary numbers, strings of a variable
number of 1 to 48 bits, decimal numbers, strings of a
variable number of characters (either 6 or 8 bits).
There are two formats of binary numbers: single
precision real and double-precision real. There is one
format of all other types of data elements.

Hardware recognized data structures

The B6700/7700 hardware recognizes stacks, multi
dimensional arrays, and singly linked lists.

Register table D

c==J 31

i:l

~20 bits---=,

6
5

xreristtr LL
2
1
o

, Stack Vector Table
I

register \

register ~
registers

pointer A

pointer B

pointer C

Main Memory

Figure 8-Memory structure of the Burroughs B6700 and B7700 computers

740 National Computer Conference, 1976

Referencing

Every memory word has a 3-bit tag. To address a
memory word, the hardware has three different ad-
dressing schemes ,vhich depend on "'l-lhether the memory
word to be addressed is in the current stack, in another
stack, or external to all of the stacks (e.g., an array or
a string). Figure 9 illustrates the stack addressing
scheme. As shown, for each block level of the sample
Algol program, there is a corresponding entry in the D
register table which points to a special set of control
words (i.e., MKSW and RCW) for that block. Above
these control words are stored the declared simple
variables for the block.

Representation of a three-dimensional array in the
memory structure is illustrated in Figure 10. The
array is structured as a tree with the first level having
the array descriptor, the second and third levels having
dope vectors of data descriptors, and the fourth level
being actual array elements. To address array ele
ment A [1,1,1], each index is placed onto the stack and
then a "value call" is performed on array A by soft
ware. The hardware automatically follows the data
descriptors as indicated by the indices on the stack. It
automatically deletes the indices and places the correct
array element on top of the stack. It automatically
checks the number of subscripts to see whether they
are in bounds when the reference is made using the
contents of the data descriptor dope vectors.

The B6700 (optionally) and the B7700 (standard)

real A. B;

level level
2 3

begin

real C; D;

real A, B;
leve

{

begin

4 XXX:

end;

end;

end;

register
table D

~ster

~ -----=;, ; f-----'---l

~ f----=-~--
0L-__J

B E--[I] register
A

RCW
MKSW

D

RCW
MKSW

B
A

RCW
MKSW ~ register

user stack
(in main memory)

(setup when execution is at XXX)

Figure 9-Stack addressing scheme in the B6700j7700

have three hardware index registers which are used in
a special hardware "vector mode" to allow very efficient
access to single-dimensional arrays.

The hardware references the stack by using the
hardware top-of-stack pointer; register S.

The hardware has a special linked-list search oper
ator which will follow a software-constructed singly
linked list until the current mode has a value greater
than or equal to a specified value.

In addition, the B6700/7700 systems have an in
teresting hardware operator which serially searches a
data area from the end to the beginning for a data ele
ment identical to the given argument. This operator
allows an easy software simulation of an associative
memory.

Speed improvements in 87700

The Burroughs B7700 memory" has some major
differences from the B6700 memory: a clock rate of 3
times as fast, extensive incorporation of fault detection
circuitry, single-bit error correction in memory, 4-way
interleaving of the main memory, sophisticated I/O
operations, and the use of an associative memory.

The most interesting aspects of the B7700 memory
structure is the use of a high-speed semiconductor
memory and an associative memory to assist in stack
handling. The high-speed semiconductor memory is
basically used as a cache memory to hold the top words
of the current stack. This memory can hold a maximum
of 32 words, which can be operands, data descriptors,
code descriptors, etc. The 32 51-bit word associative
memory contains the most frequently-used operands
and descriptors in the stack which are not in the semi
conductor memory but can be any other words of the
stack. Each entry in the associative memory essen
tially has two fields: a 20-bit address indicating the
memory location of the original operand or descriptor,
and a 51-bit copy of the operand or descriptor.

When any memory reference is made on the B7700,
the storage control unit first checks the semiconductor
memory and associative memory for the data item.
If it is found and if it is a read operation, the refer
ence is complete. If it is found but if it is a write
operation, the word is overwritten in the semiconduc
tor memory or associative memory. A write request to
the main memory is hardware-queued for the memory
controller so that the original item in the main memory
is also updated.

MEMORY STRUCTURE OF THE SYMBOL
SYSTEM

An historical event in computer architecture oc
curred during the 1971 Spring Joint Computer Con
ference. Rex Rice and othersU of Fairchild presented
a series of papers which described the design and con-

Evolution of Computer Memory Structure 741

I

1, ~-J
/ t-I --"'.JL-~",""",-----_-flr--..-""""" ' I -. --I

. /
Descr~ptor

for Array A
Dope Vector

of data descriptors
for first dimension
(in main memory)

User stack

declare array A[O:2,O:1,O:1]; Dope vector
of data descriptors
for second dimension
(in main memory)

8
actual array
elements

(in main memory)

Figure lO-Representation of an array in main memory

struction of the Symbol computer system. The Symbol
system has a high-level Algol-like machine language,
called Symbol, which is additionally capable of describ
ing variable length data and requires no type and size
declarations (as conversion and memory allocation are
handled automatically). It has no conventional set of
instructions. It directly accepts programs written in
the Symbol language. It is a functionally-organized
multi-processor system and designed for multiple
access by terminals. In addition to an arithmetic
processor, a channel controller, and a disk controller,
there are a hardware translator, a hardware text
editor, a hardware format processor, a hardware refer
ence processor, a hardware system supervisor, and
hardware virtual memory. There is very little soft
ware. The Symbol system is now being evaluated at
Iowa State University under the sponsorship of the
U.S. National Science Foundation. This project has
undoubtedly demonstrated the feasibility of a com-

puter system whose machine language is a high-level
language.

Hardware virtual memory

The memory structure consists of a main memory,
an associative memory, and a paging disk memory. It
is organized as a virtual memory with fixed-sized
pages. There are 206 words in a page and 64 bits in a
word. The main memory and the paging disk memory
are divided into pages. There are 32 pages in the main
memory. The associative memory has 32 words, with
one word representing one page in the main memory.
By means of the associative memory, the virtual
address is translated into the physical address.

The pages are linked into page lists. There are many
types such as available page list, user's page list, space
available list and in-core list. A page is brought into

742 National Computer Conference, 1976

T ABLE I-Symbol Memory Operations

Symbol

KP
AG
IG
FF
FR
FL
FD
SA
SO
SI
SD
DE
DS
DL
RG

Memory Operation

no operation
assign group
insert group
fetch and follow
fetch and reverse follow
follow and fetch
fetch direct
store and assign
store only
store and insert
store direct
delete to end
delete string
delete list
reclaim group

the main memory upon demand and returned to the
same page location on disk when it is purged. Paging
is managed by the hardware system supervisor.

Hardware linked structure *

Each page in the main memory has three regions:
the page header, the group-linked words, and the data
space group. The page header occupies 4 64-bit
memory words. Each group link word occupies one
word. Each data space group has eight consecutive
memory words (which is the smallest unit for data
memory allocation).

There are 28 group linked words and 28 data space
groups with one group link word for each data space
group. The link word stores the forward and back
ward links of the data space group. By means of these
link words, the data space groups are doubly linked
into list structures. The page header stores the list
heads.

There is a Memory Controller associated with the
main memory. This Memory Controller can perform
14 memory operations which are shown in Table I.
These operations are available to all of the processors
in the system, and are used in memory word linking
and memory space allocation, but the processors do not
have to directly keep track of the memory addresses.

Data types and structures

The memory structure can recognize numbers and
strings. The numbers are of variable-length, packed
decimal, floating-point numbers, and carry a precision
designation. Each string is represented by the special
character SS, followed by a variable number of charac
ters and terminated by the special character SE. Note
that the information related to the data is carried and

* Figures 11 through 13 are taken from Reference 12.

stored with the data itself. Source programs are a
special form of strings.

The memory structure allows a linked data struc
ture, which can be a varying length group of data ele
ments where the data element can be a number, a
string, or an address link to another group of data
elements. With this recursive definition, this structure
can represent a vector, a matrix, or a linked structure.
An example of the matrix description by symbol lan
guage and representation by this structure is shown
in Figure 11. Note that the special characters in Figure
11 are listed in Table II.

As another example, a source string and its object
string of an assignment start name table are shown in
Figure 12. The storage of the source string, the object
string, and the name table, are shown in Figure 13.
The object string is composed of name table addresses,
literal data, operators, and links to the source string.
Each identifier in the name table is associated with a
control word. All references in the object string of the
identifier point to the corresponding control word. The
object string and the name table are totally indepen
dent of the future size and the data type of the variable.

MEMORY STRUCTURE FOR HIGH-LEVEL
LANGUAGE MACHINES

High-level language programmers need to describe
the high-level data structures such as stack, queues,
tables and files as often used in the software design.
If a highly descriptive, high-level programming lan
guage is used to write the program, this programming
language should have language constructs that are
capable of explicitly describing these high-level data
structures. The hardware memory structure of a com
puter offers the structure for storing the data elements
and the data structure that are specified in a program.
If this is a high-level language memory structure, it
should be capable of directly imaging these high-level
language constructs.I6

A memory structure is conceived for high-level lan
guage machines. l5 This structure is shown in Figure
14. It consists of a virtual memory, an associative
memory and a data interpreter. The virtual memory
stores the data elements, while the associative memory
stores the structure names, the data types, the struc-

T ABLE II-Special Symbols in SYMBOL System

special characters

SS
SE
EV
CW
<
>
I

name

string start char
string end char
end vector
control word
left group mark
right group mark
field mark

Evolution of Computer Memory Structure 743

« 2 N 432 I P N P t 1
(2 N 7 0 8 APe 1 4 3 "'

7)
NPN . 3 8 »

Sl
E

Group Link Level

2N708AP

I'. t

Figure ll-Symbol representation of a simple two dimensional array and its storage as three variable length memory strings

ture types and other necessary information. The data
interpreter makes entries into the associative memory
when the high-level language declarations are scanned.
It then interprets the data when the data names are
referenced. This is now illustrated for the data struc
tures of stacks and table.

C)ource String:

Alpha +-- Beta * 3.2 - (Long Name join Beta);

Object String

A[Alpha] A[Beta] 3:2 * A[Long Name] A [Seta] join - +-;

Figure 12-Source string and object string of a symbol assign
ment statement

Source String
A I p h a
8 eta
. 2 - (

Object String Storage:
A
A

g' : N a j TO
Data
Values

Figure l3-Storage of a source string, its object string and its
name table

744 National Computer Conference, 1976

Associative

memory
I virtul I

Data

lntei'preter

memory

Figure 14-A hardware organization for data interpretation

Stacks

Stack is a vector with a changing number of data
elements. Only at one end of the stack can the element
be added (or pushed down) or deleted (or popped up),
and only one element can be added or deleted at one
time. A pointer is normally associated with the stack;
it points to the top element where addition or deletion
is permitted. It is a first-in-Iast-out structure. Each
data element of the stack may have one or more fields;
in this respect, a stack appears like a table. A stack is
highly useful for handling subroutine calls, in evalu
ating expressions, and in traversing a tree.

stack
n.lme

S

S .NAI·1E

S. VALUf,

Stack 01 S, CHAR=10, MAXSIZE:-a.

02 NlJ.1E, CHAR=6,

02 VALUE, CHAR=4;

structure data data max
type type length size

stack char 10 8

stack char 6 ---
stack i char 4 --

Associative Memory

cur.
size

4

--
--

Stack declaration

The present high-level programming languages have
no explicit declarations for declaring the structure of
a stack. In the case of Fortran, for example, a one
dimensional array is declared to describe the stack.
Such a deficiency in the language construct is due to
the inhibition of the language designer toward the
conventional memory structure, though the stack
should be and could be declared as descriptive and as
concise as possible. Shown below is an example of a
stack declaration:

Stack 01 S, CHAR = 10, MAXSIZE = 8,
02 NAME, CHAR=6
02 VALUE, CHAR=4

This statement declares a stack whose name is S, whose
data element is 10 characters, and whose maximum
number of elements is 8. Each stack element has two
fields, the NAME field of 6 characters and the VALUE
field of 4 characters.

Stack internal representation

The structural information of the above stack Scan
be stored in the associative memory as the three en
tries shown in Figure 15. Each entry has 7 fields. The
first five fields store the stack name, the structure type,

location
pointer

-
""" ~ JOE 101 - A 1456

JOHN 54123 - C 7612

Virtual Memory

Figure 15-Intemal representation of stacks

the data type, the data length and the maximum length
of the stack. The current size field stores the relative
location of the top element of the stack. The pointer
field stores the memory address of the top element of
the stack.

Interpretation of a stack declaration is to generate
associative memory entries as shown in the flow chart
of Figure 16. As shown, when a declaration is recog
nized, it recognizes the first token of the declaration.
This token reveals the structure type. I t can be a
stack, a table, a qUeue, etc. In case it is a stack, it
recognizes the stack id, continues to scan the declara
tion, creates one or more entries for the stack, and
stores the entries in the associative memory. A memory
allocator is called to allocate the main memory space
for the stack. This process is repeated until no more
stack id is found in the declaration.

Notice the closeness between the stack declara
tion and the stack internal representation; this close
ness means a simple interpretation of the stack
declaration.

table

Entry after recognizing
a declaration

I

recognize the
first token of
the declaration

.--------;""""'-i stack

recognize the
next stack name
in the decla
ration

continue to scan
creat one or more
entries for the
stack

store the
entries in the
assc. memory

no.
exit

structure

Figure 16-Interpretation of a stack declaration

Evolution of Computer Memory Structure 745

Stack references and operations

After the stack declaration is interpreted, the de
clared stacks can now be referenced. Some examples of
referencing the previously-declared stack S are shown
below.

B:=S(TOP) ;
B:=pop S;
B:=S(TOP) +S(TOP-l);
..:1 • - c;;:. 'T()P N ..:1 MR \L.-~\. '-' , ... " -../,

where B and A are char-string buffers. The first state
ment assigns the value in the top element of stack S to
buffer B; the value in the top element is not changed.
The second statement pops out the top element of stack
S to buffer B; the original value in the top element is
lost. The third statement stores the sum of the values
of the two topmost elements in buffer B. The fourth
statement assigns the value in the NAME field of the
top element to buffer A.

Interpretation of stack reference and stack oper
ation during the direct execution of a high-level lan
guage program is shown in the flow chart of Figure 17.
As shown, when an id is recognized, the associative
memory is searched for the id. A message is printed

; structure
i, type?

print message
"undeclared 14"

Figure 17-Interpretation of a stack operation or a stack refer
ence during the direct-execution of a high-level language

program

746 National Computer Conference, 1976

out if the id is not found. When it is found, the entry
is read out and stored in a register. When the struc
ture type is recognized from the register to be stack,
the interpreter scans for the required operation.

(a) If it is a stack pop-up operation, the stack under
flow is checked. If there is none, the data element
pointed by the location pointer in the register is fetched
from the virtual memory. Both the current size and
the location pointer are then decremented.
(b) If it is a push-down operation, the stack overflow
is checked. If there is none, both the location pointer
and the current size are incremented and the data ele
ment is then stored in the virtual memory.
(c) If subscript TOP is found, it is a reference oper
ation; the subscript expression is evaluated. If the
val ue of the expression is within the current size, the
stack element is fetched from the virtual memory;
otherwise, a message is printed to indicate a bad stack
subscript.

Tables

Tables are two dimensional arrays which permit
different data types among the fields (or columns) of
the table. A table can be of a fixed or varying size. All
entries of the table are accessible for examinations or
modifications. The entry of a table can be located by

n~mc

X

X.SIZE

X.DESC

X.NUM

X.HISC

table 01 X with entries-6,

02 SIZE, CHARaS'.

02 DESC, CHAR=ll,

02 nID1, DIGIT=-3 ,

02 MISC, CUAR"'lO;

structure data data
type type length

table -- 29

table char 5

table char 11

table digit 3

table char 10

Associative Memory

dimen entries

4 6

- -
- -
- -
- -

using a subscript or by matching an argument with the
contents of a field of the table.

Table declaration

The current high-level languages have a structure
declaration which can declare the table structure.
However, a table cannot be declared explicitly and
directly. An example of the table declaration is:

Table 01 X with entries = 6,
02 SIZE, CHAR=5,
02 DESC, CHAR=ll,
02 NUM, DIGIT=3,
02 MISC, CHAR = 10;

This statement declares a table with name X which has
6 entries. There are four fields in each entry: the
SIZE field of 5 characters, the DESC field of 11 charac
ters, the NUM field of 3 digits and the MISC field of
10 characters. For simplicity, one digit and one charac
ter are assumed of the same length.

Table internal representation

The structural information of table X can be stored
in the associative memory as the five entries shown in
Figure 18. Each entry has 7 fields. The first four fields

pointer
~
~

...
BA

BA + 0

BA + 5

BA + 16

BA + 19

Virtual Hemory

Figure I8-Internal representation of a table

store the table name or the column name, the structure
name, the data type and the data length. The dimen
field and the entries field specify the numbers of
columns and rows in the table, respectively. The
pointer field stores the location of the table in the main
memory. Note that the value of the data length field
is the sum of the data lengths of all the fields of the
table. Again, the syntax and the semantics of the table
declaration are very close to the internal represen
tation, allowing a simple interpretation of the table
declaration.

Table references

After the table declaration is interpreted, the de
clared table may now be referenced. Some examples of
table referencing are:

X[2] := ("4x3", "TILE", "BLACK") ;
X.SIZE [3] :"JOHN";
B:=X[X.DESC='JOHN'] ;
B : = X.SIZE [X.DESC = 'JOHN'] ;

The first statement stores strings "4x3", "TILE" and
"BLACK" to the SIZE, DESC, and MISC field of the
second row of table X, respectively. (Nothing is
changed in the NUM field.) The second statement
stores string "JOHN" to the SIZE field of the third row
of the table. The third statement searches for that
entry in table X whose DESC field contains string
"JOHN" and assigns this entry to buffer B. The
fourth statement performs the same operation as the
third statement except that the fourth statement
assigns the SIZE field of the found entry to buffer B.
The above four examples show that the table can be
referenced either by a numerical subscript (in a square
bracket) or by a search subscript (a qualified name
indicated by a dot between the table name and the field
name).

Interpretation of a table reference during the direct
execution of a high-level language program is shown
in the flow chart of Figure 19. After the identifier is
recognized to be a table name, the associative memory
is searched for the table name. (e.g., X); if it is
found, this entry is read out of the associative memory
and placed in buffer Ml. Next, it is determined whether
the table name is a qualified name (Le., name with a
field name). If it is, the associative memory is again
searched and the entry is now read into buffer M2.
Finally, the subscript type is determined.

(a) If it is a numeric subscript, it is checked to see
whether the subscript is within the range.
(b) If it is a search subscript, the associative memory
is searched for the search subscript, and the found
entry is read into buffer M3. Then, the data length
and pointer fields in buffer M3 and the data length
field of buffer M1 are used to determine which column
is located the table element. The entries field of buffer

Evolution of Computer Memory Structure 747

stack

test the structure type

table

yes

qIMU.

uee the data length and.
pointer fields of MJ tid
the data length field of
M1 to indicate which
colUlll11, and the entries
field of M1 to indicate
the no. of rows. Search t e
table in virtual memory
for the entry

use the data length and pointer se the dsta length and
fields of M2 and the data inter fields of M1 to
length field of M1 together ccess the entire table
with the subscript to aCCe8S if no subscript, or to
the desired table element in Fccess the desired entry

I virtual memory. If no subscript if subscripted. I
~p~ri=n~t~er~ro~r~_~s=u~g~e ______ ~ .

Figure 19-Interpretation of a table reference during the direct~
execution of a high-level language program

M1 is used to indicate the number of rows. The table
in virtual memory is then searched for the entry. If
this is not found, a "not found" message is printed
out. Otherwise, the subscript is converted into a nu
meric subscript.

At this time, either of the above two cases has a nu
meric subscript. If buffer M2 is empty, it calls for a
field of the table entry; otherwise, it calls for an entire
entry.

(a) If a field is needed, the data length field and the
pointer field of buffer M2 and the data length field of
buffer M1 together with the subscript are used to ac
cess the desired table element in the virtual memory.
If there is no subscript, an error message is printed
out.
(b) If an entire entry is needed, the data length field
and the pointer field of buffer M1 is used to access the
entire table if there is no subscript, or to access the
desired entry if there is a subscript.

748 National Computer Conference, 1976

At this point, the reference of a table name in either
of the above cases is completed.

Other data stru,ci11.,res

The memory structure shown in Figure 14 has been
described for the declarations, the internal represen
tations and the references of stack and table. This
memory structure can similarly be used for other high
level data structures such as buffers, arrays, queues,
structures and files. 15

CONCLUDING REMARKS

Since the advent of commercial electronic digital com
puters, the memory has undergone an evolution dur
ing the past 20 years. It has made great hardware ad
vances in speed, capacity, size, cost and reliability. The
increase in memory speed has been realized not only
by electronical technology but also in memory organi
zation by using a memory buffer (Le., cache memory).
The increase in memory capacity has been realized not
only by electronical technology but also in memory
organization by using a one-level memory (Le., vir
tual memory). The memory has also made signifi
cant structural changes in recognizing data elements
and data structures. It can recognize number (fixed
and/or floating-point binary and decimal), character
strings for a set of 64 characters, and logical words.
However, the hardware implementation of data struc
ture is practically none except the memory structures
of two recently available, commercial computers, where
a hardware stack (this stack is not for the program
mer to use in his program) and hardware arrays are
implemented.

Where do we go from here? The memory structure
of a computer has a great influence on the computing
and processing capability of the computer. The usage
of this capability is through programming. The pro
grammer makes use of the memory structure to sa t
isfy his software needs in implementing such data ele
ments as numbers, characters, strings, pointers, and
program segments and such data structures as stacks,
tables, queues, arr~,ys, tree, buffers, structures, and

files. Therefore, it is apparent that the future memory
structure would advance toward satisfying such soft
ware needs, and the hardware implementation of these
data elements and data structures represents one of
the most challenging structural advances in the forth
coming computer structures.

REFERENCES

1. IBM System/360 Principles of Operation, IBM System Ref
erence Library, File No. S360-01, GA22-6821-7, 1970.

2. Burroughs Corporation, "A Narrative Description of the
Burroughs B5500 Disk File Master Control Program,"
Detroit, Michigan, October, 1966.

3. Burroughs Corporation, "Burroughs B5500 Information
Processing Systems Reference Manual," #1021326, Detroit,
Michigan, May 1969.

4. Burroughs Corporation, "B1700 Systems Reference Manual,"
#1057155, Detroit, Michigan, April 1972.

5. Burroughs Corporation, "Burroughs B6500 Information
Processing Systems Reference Manual," #1043676, Detroit,
Michigan, September 1969.

6. Burroughs Corporation, "Burroughs B6700 Handbook, Vol
ume 1," #5000276, Detroit, Michigan, January 1972.

7. Burroughs Corporation, "Burroughs B7700 Information
Processing Systems Reference Manual," #1060233, Detroit,
Michigan, January 1973.

8. Digital Equipment Corporation, "PDP 11/45 Processor
Handbook," 1971.

9. Intel Corporation, "MCS-8 8008 8-Bit Parallel Central
Processor Unit, Users Manual," Santa Clara, California,
November 1973.

10. Intel Corporation, "Intel 8080 Microcomputer System Man
ual," Santa Clara, California, 1975.

11. MacKenzie, F. B., "Automated Secondary Storage Manage
ment," Datamation, November 1965, pp. 24-28.

12. Smith, William R., et. al., "SYMBOL-A Large Experi
mental System Exploring Major Hardware Replacement of
Software," Proceedings of the Spring Joint Computer Con
ference, pp. 601-616, 1971.

13. Liptay, J. S., "Structural Aspects of the System/360 Model
85 II The Cache," IBM Systems Journal, Volume Seven,
Number 1, 1968, pp. 15-21.

14. Organick, Elliott I., Computer System Organization, Aca
demic Press, Inc. 1973.

15. Yaohan, Chu and E. R. Cannon, High-level Language
M emory Structure, Technical Report TR-409, Department
of Computer Science, University of Maryland, September
1975.

16. Chu, Y., (Editor), High-level Language Computer Archi
tecture, Academic Press, Inc. 1975.

Cache system design in the tightly coupled multiprocessor system

by C. K. TANG
IBM Corporation
Endicott, New York

ABSTRACT

Cache is a fast buffer memory between the processor
and the main memory and has been extensively used in
the larger computer systems. The principle of operation
and the various designs of the cache in the uniprocessor
system are well documented.1

-
9 The memory system

of multiprocessors has also received much attentionlO-17
recently; however, they are limited to the systems
without a cache. Little if any information exists in the
literature lk

-
2o addressing the principle and design con

siderations of the cache system in the tightly coupled
multiprocessor environment. This paper describes such
a cache design. System requirements in the multipro
cessor environment as well as the cost-performance
trade-offs of the cache system design are given in de
tail. The possibility of sharing the cache system hard
ware with other multiprocessing facilities (such as
dynamic address translation, storage protection, locks,
serialization, and the system clocks) is also discussed.

CACHE SYSTEM REQUIREMENT OF
MULTIPROCESSOR SYSTEM*

In a multiprocessor system, the main store is shared
by all the processors. A single copy of the operating
system in the shared main store controls the entire
system. Since the main store can be accessed by all
the processors, it is also used as the 'mailbox' to pass
messages between the processors. IO

,16 In addition to the
shared main store, some multiprocessor systems may
use the 'private stores', each of which can be accessed
by only one processor. IO

•
I

• 'Private stores' are used to
store tables of frequently used subroutines, tables for
allocation of private resources, etc. Since the 'private
stores' do not communicate with each other, they are
not to be confused with the caches in the multiproces
sor system. Furthermore, a multiprocessor system
with cache (such as the IBM System/370 Model 158
MP and Model 168 MP) will not need the 'private
stores', because the cache will provide the performance

* NOTE: Hereafter, all references to the "multiprocessor sys
tem" will mean "tightly coupled multiprocessor system."

749

advantage that the 'private stores' offer. As a result,
this paper will not address the 'private stores'.

A multiprocess system can have multiple tasks dis
patched simultaneously, and each processor can inde
pendently execute its instructions. Hence from each
processor's standpoint, it will have the complete access
to the main store without the awareness of the exis
tence of the other processor (s) .16 The logical relation
between the processors and the main store can be
shown in Figure 1. The I/O channel is an I/O proces
sor; thus, from the main stores point of view, the
I/O channel is logically equivalent to the other instruc
tion processors. Figure 1 can also represent the 'time
share' or 'common bus' main store system designY
Although 'crossbar switch' and 'multiple-bus' are fre
quently used in the main store system design for per
formance reasons (Figure 2 and Figure 3), the logicai
relation between the processors and the main memory
remains the same. If a cache is attached to each proces
sor, then logically the caches should be considered as
a part of the main store, since each cache should be
transparent to each processor in the same way that the
cache is transparent to the processor in a uniprocessor
system. Figure 4 describes such a relationship. The
channel usually doesn't need a cache for performance
reasons, but will be involved in the cache system de
sign to maintain the cache transparency to the chan
nel. Comparing Figure 4 to Figure 1, one can easily
see that the communications among the caches and
the channel are necessary so that the main store sys
tem will still preserve the logic view of Figure 1 to
the processors. The basic cache design itself (e.g., the
directory, the set associativity, the block sizes, etc.)
should be the same as the cache of a uniprocessor. 1

-
8

In the following section, communication among the
caches and the channel in the multiprocessor system
will be given in detail, as well as the portion of the
basic cache design that relates to such communication.

CACHE SYSTEM DESIGN IN THE
MULTIPROCESSOR SYSTEM

In a typical uniprocessor cache design,5 a directory
is used to translate the main store addresses to the

750 National Computer Conference, 1976

1---- ----,

I I

I I
I I
I I Main
I I Store
I I System

I I
I I
I I
L ___________ ~

Figure I-The logical relation between processors and the main
store

110
Channel

Processor

Main Store System

I-
I
I
I
I
I
I
I
I
I
I
L_

1--

I
I
I
I
L

Crossbar
Switch ---,

I
I
I
I
~

I
I
I
I

I
I
I
I
I
I

--------~

Figure 2-The crossbar main store system

I
I
I
I
I
I
I
I

I
I

I Main
I Store I System

I
L_

I
I
I

-----------~

Figure 3-The multiple-bus main store system

I/O
Channel

Processor Processor

Mai
Store
System

,- - - - - - - - - - - - -f- - -l

I I
I
I
I

I
I
I
I
I

I
I
I

I Cache I I Cache I
Backing
Store

1- - ~ - - - - - -I- - - - - - I- - I

I
I
I

:1 r Store I Module I Store 1
Module I

Store I
Module

I I L _______________ ~
I I L _______________ ~

Figure 4-A multiprocessor system with caches

cache location of the data block in cache. Figure 5
shows the logical organization of such translation. No
hardware detail is given since various designs are pos
sible1 and is irrelevant to the description of the sub
ject issues.

In a multiprocessor system, the same cache organi
zations can be used for each processor, with the ad
ditional controls to facilitate the communication among
the caches and the channel. The following definitions
are needed to describe the communication:

Block the unit of translation, which is usually
also the unit of data transfer between
the cache and the main store~

Line block (s) that are associated with a
given main store address. In a uni
processor cache, a line is a block, where
as in the multiprocessor system, a line
can exist in more than one cache. For
example, a main store address refers to
64 bytes of data, and these 64 bytes
of data exist at two caches, which can
be addressed by each correspondent
processor using the line address.

Shared Line a line that exists at the cache (s), which
has not been modified (written) with
respect to the copy at the backing store
by the processor. The line is transferred
to the cache from the backing store
when the processor makes read refer
ence and misses the line in the cache.
A shared line should be allowed to exist
simultaneously in more than one cache
so that 'read only' data can be accessed
more efficiently in the multiprocessor
system.

Private Line a line that exists in a cache which has
been modified (with respect to backing
store) or is going to be modified by its
corresponding processor. A private line
should exist in only one cache so that
at any moment, throughout the system,
only one version of data exists for any
address. This is a requirement implied
by Figure 4 (cache transparency).

Directory Cache

Main Store Address Cache Block Location Data Block

Main Store Address Cache Block Location Data Block

Main Store Address Cache Block Location Data Block

· · · . · · · . · · ·
Figure 5-Cache organization in a uniprocessor

Cache System Design 751

Status bits would have to be used in each entry of the
cache directory to identify each line (shared or pri
vate).

There are many 'store algorithms' in a cache de
sign.' In this section, the 'store only in cache' algorithm
is used. It means that if the processor wants to write
and a miss occurs in cache, then the line is always
brought to the cache so that the processor can always
write to cache. Minor changes would be necessary to
the description below if another algorithm is used.

To control the communication among the caches
and the channel, a 'store controller' is necessary (Fig
ure 6). A set of commands from the caches to the
store controller and another set of commands from the
store controller to the caches are defined below. To
perform the control functions, the store controller
would have to know, at all times, the status of every
cache, namely, what lines (shared or private) exist at
which cache. This can be done in two ways: (1) use
the store controller 'central directory' to keep track of
every line in each cache, or (2) interrupt the caches
to find out. The former approach certainly has the
performance advantage, especially when the system
has more than two processors. The description of the
commands given below corresponds to the former ap
proach; obviously a change of description should be
made if the latter approach is used.

I/O
Cache Channel

De'nt'" Directory

Data

J
r

Store

1 I Store I [Module Module

Backing Store

R i i

I
Store

Module

Comma nds
ta and Da

j
)

Stor e
troller Con

Figure 6--Store controller and control directory

752 National Computer Conference, 1976

COMMAND FROM CACHE TO THE
STORE CONTROLLER

• Shared Read-This command is used when the pro
cessor wants to read (the main store) and a cache
fault (miss in the cache) occurs. This command will
signal the store controller to bring the line from the
backing store to the cache. The line will be marked
as a shared line in the cache directory and the central
directory should record the fact that this cache (the
cache that issues this command) contains the line as
a shared line.

• Private Read-This command is used when the
processor wants to write and a cache fault occurs.
This command will signal the store controller to bring
the line from the backing store to the cache. The line
will be marked as a private line in the cache directory.
The store controller should make sure (by using the
store controller-to-cache commands described later)
that only this cache has this line as a private line; no
other caches can have this line shared or private. Such
a fact should also be recorded in the central directory.

• Declare Private-When the processor wants to
write, and if the line exists in its cache as a private
line, the processor can write to cache and the line will
remain private. No communication to the store con
troller would be necessary in such a case. On the other
hand, if the line exists in its cache as a shared line,
the line has to be converted to a private line before
the writing to the cache can take place. Thus, this
cache will change the status of the line in its directory
from shared to private, and will inform the store con
troller of the change using this command. Upon re
ceiving the command, the store controller will record
the change in the central directory. In addition, the
store controller will examine the central directory. If
the central directory indicates that some other cache (s)
has (have) this line as a shared line, the store con
troller will use the store controller-to-cache command
(described later) to remove such a line from the
cache (s). The removal is necessary since a private
line in a cache means no other cache can have the same
line shared or private. No data transfer is involved
in this command.

• Replace Private Line-Replacement of the line in a
cache is necessary to make room in the cache for the
new line coming from the backing store. If the line
being replaced is a private line, the backing store has
to be updated using this command since the data in the
cache have been modified with respect to the backing
store. In addition to the data transfer from the cache
to the backing store, the removal of the private line
from this cache should also be reflected in both the
cache directory and the central directory.

• Replace Share Line-If the line being replaced is a
shared line instead of a private line, no data transfer
from the cache to the backing store is necessary. The

cache directory and the central directory should reflect
such removal, and this command is used to signal the
store controller to update its central directory for the
removal. In hardware design, this command can be
issued simultaneousljT ,:vith either the 'shared read' or
the 'private read' for performance reasons, since these
two commands cause the replacement.

COMMANDS FROM THE STORE CONTROLLER
TO THE CACHE

• Unprivate Line-When some other cache issues a
Share Read command to the store controller, the store
controller will search its central directory for any
cache that contains the line involved as a private line.
If such a cache is found, this command will be issued
to the cache found. Upon receiving this command, the
cache directory of cache found will be changed to
indicate that the line exists now as a shared line. The
store controller will also update its central directory
to reflect such a change. In addition, the line will be
transferred from this cache to the backing store for
updating since a private line contains modified data
with respect to the backing store. This command is
also used when the channel reads the main store
directly.

• Remove Private Line-When some other cache issues
a Private Read command to the store controller, the
store controller will search its central directory for
any cache that contains the line involved as a private
line. If such a cache is found, this command will be
issued to the cache. Upon receiving this command, the
cache will remove the line from its directory. The
store controller will also update its central directory
to reflect such a change. In addition, the line will also
be transferred from this cache to the backing store for
updating. This command is also used when the chan
nel writes to the main store directly.

• Remove Shared Line-When some other cache issues
a Private Read command to the store controller, the
store controller will also search its central directory
for any cache(s) that contains the line involved as a
shared line. More than one cache may contain such a
line. The store controller will issue this command
simultaneously to the cache (s) that contains such a
line. Upon receiving this command, the cache (s) will
remove the line from its (their) directory (direc
tories). The store controller will also update its central
directory to reflect such change (s). No data transfer
from the cache to the backing store is necessary. This
command is also used when the channel writes to the
main store directly.

It should be clear now that by using the set of eight
commands outlined above, in conjunction with the
basic uniprocessor cache design, the multiple-cache
system can meet the cache transparency requirement

described previously. The channel still addresses the
store controller using the ordinary 'Read Main Store'
and 'Write Main Store' commands, which will invoke
the store controller to issue the store controller-to
cache commands to maintain the cache transparency.
For example, when the channel issues a Read Main
Store command to the store controller, the store con
troller has to search its central directory for any caches
that contain the line involved as a private line. If
Trl11nrl tho TTnn-riu<:lto T .ino {o{)TY1TY1!:lnrl ic::! ic::!c::!110rl +() tho -...."1."' , vL.......,L y.L "'" 'I' ~ _:..1."'....... __:. _ _ ___

cache that contains it, and the store controller will also
update its central directory to reflect such change. The
backing store also has to be updated by the private line
in the cache before the data can be transferred to the
channel. Similar operation by the store controller is
necessary when the channel issues the Write Main
Store command.

CONCLUSION

A practical cache system design for the multiprocessor
system is outlined in this paper. Although it does not
represent exactly any of the cache system designs of
the existing multiprocessors, it does illustrate the
system requirement and design concept of the cache
system. The use of a store controller was chosen (for
managing the central directory, etc.) instead of using
the interrupt approach. The store controller approach
certainly requireS more hardware, but offers much
better performance especially when the multiprocessor
system contains more than two processors. This should
be apparent from the fact that a simple Share Read
issued by a cache will cause the interrupt of all the
other caches in the interrupt approach.

Many other system elements have to be handled with
extra hardware facilities in a multiprocessor environ
ment in addition to the hardware in a uniprocessor.
These inclUde the dynamic address translation, storage
protection, locks, serialization, system clock, etc. I6

,17

They all require communication between the caches/
processors. This extra hardware can be conveniently
incorporated into, the store controller and can be used
for these functions. These shared uses of the store con
troller would make the cost of the store controller less
formidable.

ACKNOWLEDGMENT

The author wishes to thank many of his colleagues for
the numerous discussions on the subject issues.

Cache System Design 753

REFERENCES

1. Conti, C. J., "Concepts for Buffer Storage," IEEE Com
puter Group News, Vol. 2, 1\0. 8, March 1969, pp. 9-13.

2. Liptay, J. S., "Structure Aspects of the System 360 Model
85, II-The Cache," pp. 15-29, IBI"! System Journal, 7/1/68.

3. A Guide to the IBM System/370 Model 165, IBM Corpora
tion Form GC20-1730, 1970.

4. A Guide to the IBM System/370 Model 155, IBM Corpora
tion Form GC20-1729, 1970.

;y. Katzal1, H., JT., "Storage Hierarchy System," Proceedings
of the Spring Joint Computer Conference, 1971, pp. 325-
336.

6. Kaplan, K. R. and R. O. Winder, "Cache-Based Computer
Systems," Computer, Vol. 6, No.3, March 1973, pp. 30-36.

7. Bell, J., D. Casasent and C. G. Bell, "An Investigation of
Alternative Cache Organizations," IEEE Transaction on
Computers, Vol. C-23;)Jo. 4, April 1974, pp. 346-351.

8. Meade, R. M., "On Memory System Design," Proceedings
of the Fall Joint Computer Conference, 1970, pp. 33-42.

9. Laliotis, T. A., "Main Memory "Technology," Computer,
Vol. 6, No.8, August 1973, pp. 21-28.

10. Searle, B. C. and D. E. Freberg, "Microprocessor Applica
tions in Multiple Processor Systems," Computer, Vol. 8, No.
10, October 1975, pp. 22-30.

11. Juliussen, J. E. and F. J. Mowle, "Multiple Microprocessors
with Common Main and Control Memories," IEEE Trans
actions on Computers, Vol. C-22, No. 11, November 1973,
pp. 999-1007.

12. Kurtzberg, J. M., "On the Memory Conflict Problem in Multi
processor Systems," IEEE Transactions on Computers,
Vol. C-23, 1\0. 3, March 1974, pp. 286-293.

13. Bhandarkar, D. P., "Analysis of :rffemory Irlterierence in
Multiprocessors," IEEE Transactions on Computers, Vol.
C-24, No.9, September 1975.

14. Sastry, K. V. and R. Y. Kain, "On the Performance of
Certain Multiprocessor Computer Organizations," IEEE
Transactions on Computers, Vol. C-24, No. 11, November
1975, pp. 1066-1074.

15. Baer, J. L., "A Survey of Some Theoretical Aspects of
Multiprocessing," ACM Computing Surveys, Vol. 5, No.1,
March 1973, pp. 31-80.

16. Mackinnon, R. A., "Advanced Function Extended with
Tightly-Coupled Multiprocessing," IBM System Journal,
Vol. 13, No.1, 1974, pp. 32-59.

17. Enslow, P. H., Jr., Multiprocessors and Parallel Processing,
John Wiley & Sons, New York, 1974.

18. A Guide to the IBM System/370 Model 158, IBM Corpora
tion, Form GC20-1754.

19. A Guide to the IBM System/370 Model 168, IBM Corpora
tion, Form GC20-1755.

20. Noguchi, K., I. Ohnishi and H. Morita, "Design Considera
tion for a Heterogeneous Tightly Coupled Multiprocessor
System," Proceedings of the National Computer Conference,
Vol. 44, May 1975, pp. 551-559.

Coupling small computers for performance enhancement*

by FERNANDO C, COLON, ROBERT M. GLORIOSO, WALTER H. KOHLER and
DOMINIC Wo LI
University of Massachusetts
Amherst, Massachusetts

ABSTRACT

The advent of the microprocessor has opened up new
avenues for the system designer to provide more
powerful, more reliable and more user oriented com
puter systems to the user community for the same or
lower costs. The problem confronting the designer is:
How to achieve these goals? This paper describes one
such method called Distributed Function Multiple
Processor (DFMP).

The system described uses several micro processors
each with its own memory to form a cluster. These
processors are differentiated by the functions they per
form such as file managing, intelligent terminal, etc.
and communicate via a Restricted Cross Bar Switch
(RCBS). Further, several clusters or nodes can be
linked to form a local network. Interprocessor and
internode communications are controlled by a special
processor called the Interprocessor Controller (PC)
located in each node. The IPC's use an adaptive tech
nique to determine traffic flows.

INTRODUCTION

Rapid advancements in IC technology have increased
the performance of logic circuits in terms of speed,
gate density, reliability, and power consumption. Also,
quantity production of LSI (Large Scale Integration)
chips has made complex microprocessors and large
memories available at low and decreasing costs. Such
developments are beginning to force changes in some
basic concepts of computer system design. Already,
there exists computers on-a-card which include a rea
sonably fast CPU and basic memory. This cost is only
a relatively small part of the total system cost. In
many instances, peripheral devices and their con
trollers cost more than the CPU and basic memory.
Therefore, the traditional concept of keeping the CPU
and central memory fully utilized is becoming less and
less important. One trend in computer design is to
replace multitask monoprocessor systems with multi-

* This work was supported in part by a grant from the Digital
Equipment Corporation.

755

processor systems. These multiprocessor systems im
prove cost-performance by sharing expensive periph
eral units. Computer networking is another approach
that has become popular. A set of remote computers
are interconnected through communication links in
order to share resources. The potential advantages of
building both type of systems include: (1) the sharing
of resources (data; programs; special hardware); (2)
reliability and availability; and (3) performance en
hancement.

Although multiprocessors and computer networks
can be conceptually described as a set of interconnected
nodes, they are significantly different in terms of the
amount of "coupling" present I Multiprocessor systems
are "tightly" coupled in the sense that the processors
share memory, I/O devices, and execute procedures
under a single integrated operating system. Data in
multiprocessors can be effectively transferred by the
movement of pointers, as all processors share the same
physical address space. Enslow2 provides a historical
perspective on the development of multiprocessors and
discusses most of the maj or multiprocessor systems
being considered or implemented today, and Baer3 pro
vides an excellent survey of the most important aspects
of multiprocessing.

Computer networks, as exemplified by several loop
systems and the ARP A N etwork,4-6 are "loosely"
coupled. There is no sharing of memory and the inter
connecting media are fixed communication links where
a datum of information is sent serially at rates of 100
to 50 Kbaud between nearly autonomous computers.
While each computer can operate independently, it has
higher effective capability when networked to the
others. The papers by Farber' and Pyke8 review the
highlights of computer network technology and ex
amine seven typical networks. Most of the research
conducted in the area of computer networks that re
lates to this paper can be classified as follows: (1)
models and analytic methods for network design;9
(2) routing strategies ;10-12 and (3) coordination of
processes and protocols.13

-
15

The multi-user, multi-task, distributed function,
multiple-processor system DFMP to be described is

756 National Computer Conference, 1976

designed to take advantage of the emerging technolo
gies and to incorporate features of both multiproces
sors and networks in an integrated manner. The basic
element of DFMP is a microprocessor with its own
memorjT. Collections of microprocessors are connected
through a restricted cross bar switch to form a node
of the system. Each node operates as a multiple
processor system which is coordinated by a special
processor called the INTER PROCESSOR CON
TROLLER (IPC).

The use of microprocessors in multiple-processor
systems is certainly not new. (See the work by Ravin
dran16 and Jordan17

.) However, research in this area
has concentrated on "tightly" coupled systems and the
problem of mismatch between microprocessor and
memory cyle times. We have taken another approach.
In D FMP each microprocessor is called a functional
unit and is similar to a Computer Module (CM) .18

Basically, the functional units are processor-memory
pairs with several special ports (connections to the
restricted cross bar switch) or bus interfaces. There
is no central shared memory in the sense of C.mup or
HSM Implo and the physical address space is the sum
of all local memories. Thus, we will see that the func
tional units are more tightly coupled than the nodes of
a computer network, yet less tightly coupled than the
processors in conventional multiprocessor systems. The
resulting intermediate coupling is a distinctive char
acteristic of the D FMP system, and for this reason
we shall refer to it as a multiple-processor system.

The a priori design constraints for the system were:

(1) low cost processors must be used;
(2) the cost of the control and communications must
each be limited to the cost of a single processor;
(3) the operating system must be incorporated as
much as possible into the firmware and hardware;
(4) the system must be expandable with minimal
modification to the operating system;
(5) to each user the system must appear as a
medium powered general purpose computer.

Additional details of the design are presented in the
following sections which are organized as follows. The
second section discusses the system architecture; the
third section is concerned with the execution of user's
jobs in the system and the deadlock problem, and
finally, the fourth section summarizes the concepts
incorporated in our design.

SYSTEM ARCHITECTURE

An initial global view of DFMP reveals a network
of independent computer systems, called nodes, inter
connected by explicit communication links. The net
work may be a geographically localized one (i.e.,
installed in the same room) or a geographically dis
tributed one (the nodes are far apart, i.e., in different
states). The advantages of localizing the network are

lower communication cost, simple network interfacing
hardware, richer connection of the nodes, and a simpler
communication routing procedure. In this initial phase
of the design, a localized network is assumed, although
the design principles in'\rolv"ed apply to a geographicall:;,"
distributed network as well.

Figure 1 shows the block diagram of DFMP. For
illustrative purposes only three nodes are shown, al
though in practice the number of nodes is only limited
by the cost of the interconnecting cables and communi
cations hardware. Each node is a distributed func
tion, multiple-processor computer system consisting of
three basic components: (1) a collection of Functional
units; (2) an Interprocessor Controller (IPC); and
(3) a Communications Switch. The main functions
and the hardware structure of each element are de
scribed below.

(1) Functional Units-The functional units are
the basic building blocks of a node. As will be described
in the next section, jobs submitted by the users are
dynamically partitioned into subtasks which are exe
cuted by specialized functional units. The hardware
structure of a typical functional unit is depicted in
Figure 2. It consists of a processor, local memory and
interprocessor communication hardware. Each unit
belongs to a particular class depending on the functions
it performs, and may have additional hardware or

F.U.=Functional Unit
E.C.=Expllcit Communi

cation Channel.

~etwork J
Communication
Links

Communication
.--___ --,/~ Link to ~;ode2

\

V
Figure I-A global view of DFMP reveals a network of com
puter systems, called nodes. Each node is itself a multiple

processor system

Explicit Communication
Channel to the
Communication Switch

Inter-Processor
Communication
Hardware

I
J

Communication path
to the lPC

Figure 2-Block diagram of a typical functional unit. While all
functional units have the processor, local memory, and inter=
processor communication hardware, the I/0 devices and con-

trollers are present in some functional units only

software peculiar to that class. For example, if the
functional unit is specialized in Input/Output func
tions, it will also have its own I/O devices and I/O
controllers as well.

(2) Interprocessor Controller (lPC)-The func
tional units can be regarded as autonomous system
resources which are allocated and deallocated through
out the process of running a user's job. The main pur
pose of the IPC is to serve as the resource manager
and network coordinator for a node. The hardware of
the IPC (Figure 3) consists of a relatively fast proces
sor and a local memory which stores the IPC control
functions and the resource allocation tables. All local
functional units are connected to the IPC via a direct
Communication Bus. If the node is networked, the
IPC also has (i) control lines for the Network Com
munication Links and (ii) a direct communication
path to adjacent IPC's for network coordination.

(3) Communication Switch-The function of the
Communication Switch is to provide for the inter-

Communication Paths to the local Functional Units
or the lPC's in the networked ~odes

_....::I~..:.l ____ --,r--___ -=----.:!l~ Communica tion
Bus

____ . ___ -} Network-Communication-
L--_-..-_--' Links Controls

Figure 3-Block diagram of the IPC

Coupling Small Computers 757

processor communications (both intra-node and inter
node) among the functional units. Several alternatives
for the switch were examined: a fast processor serving
as a communication processor; a common bus; and dif
ferent kinds of cross-bar switches. Considering their
efficiency in terms of speed, cost, reliability, availability
and ease of networking, a Restricted Cross-Bar Switch
(RCBS) was chosen. The cross-bar switch is re
stricted in the sense that

(a) only one-to-one connections are allovled, but
there can still be many different one-to-one simul
taneous connections;
(b) data transfer is done bit serial, synchronously
through the switch, but the bit serial rate is high and
the transfer time of one memory word is of the same
order as the processor instruction cycle time.

The RCBS consists of the following four parts (see
Figure 4(a) :

(a) Port-A port may be connected to a local func
tional unit, or a port of another node to form a network
link. Physically, a port is simply a socket in the RCBS
module.

(b) Cross-points-A cross-point can be considered
as a unit cell in the RCBS. The number of cells in a
RCBS having N ports is N (N -1) -7-2. They are inter
connected in such a way that each port can be con
nected to any other port by "turning on" a single cross
point. After turning on the particular cross-point,
signals can be transmitted between the pair of ports.
As shown in Figure 4 (b), a cross-point can be simply
made from four open-collector NAND gates and a
single NOR gate. A full-duplex bit serial transmission
path is accomplished by using two NAND gates to pass
the bit serial data plus the clocking signal in each di
rection. The remaining NOR gate is used to turn on
the cross-point when the input conditions are met (See
below) .

(c) Port Selection Logic-The port selection logic
consists of l-of-N demultiplexers, with one for each
port. The input signals from a port to the demultiplexer
contain the name of the port to which a connection is
desired. The outputs of the demultiplexers are con
nected to the respective cross-points in such a way that
a cross-point is turned on if and only if each port selects
the other.

(d) Interrupt Logic-The interrupt logic also con
sists of l-of-N demultiplexers, one for each port. The
input to a demultiplexer gives the name of the func
tional unit to be interrupted. The use of this interrupt
logic enables the functional units to synchronize their
communications without going through the IPC.

The example in Figure 5 shows how the RCBS is
used to facilitate both inter-node and intra-node inter
processor communication. In the next section we will
describe how the different components of DFMP inter
act to carry out a user's jobs.

758 National Computer Conference, 1976

--}---~
, , Interrupt m,l.,

, Control
- - - - - ..

2Rl 4Rl
3Rl

,------1

Notations:

1 R4

H--If--2R4
I 3R4 Cli'; 2 cl.t.,i C3 CliC4 .\ 1\ .\ /. :. '.,

152 251 154 451
153 3S1

C1 i Cj :A Cross-ooint between
Port i and Port j.

1Sj j5i

1Sj :Port i selects Port j
for communjcations.

1Rj :Port i interrupts Port j
to synchronize a
communication.

i'O'MUxl:Demult;Plexer.

~DemultlPlexer strobe.

Port 3

Figure 4 (a) -A RCB S having four ports

C +t--------------.
2

1 R2
3R2 --I-H l-+--~

4R2

3

hlr __ ~_D_'a_ta_frol:l Port. j

~romportj
Data from FO~ I

Cl"k from Fort 1 I ~;-t-I--

\ 6)
lSj ___ '1r_-l <-I ____ jS1

Figure 4(b)-A cross-point between port i and port j. The con
trols iSj and jSi are normally high. The cross-point is turned
on if and only if both lines are low (when both ports select

each other)

JOB PARTITIONING

The processor-memory pairs described earlier are
grouped into different classes according to the func
tions they perform. Units from each class are re
quested as needed and coordinate their actions to carry
out the execution of jobs submitted by users. This is
an example of the division of labor method introduced
in the GAMMA 60 design and further explored by
Foster20 and Spier.21 Although the number of different
classes and the mix of units is application dependent, in
a general purpose environment there are five readily
identifiable classes:

(1) Intelligent Terminal (l.T.)-An intelligent
terminal is assigned to each user and remains dedicated
to that user until his requests are completed and he
relinquishes the unit. An LT. enables interaction with
the system and provides support to the user by per
forming functions such as command prompting, line
editing, message buffering and command interpreting.

(2) General I/O-A functional unit in this class
handles I/O devices such as line printers, paper tape
readers/punchers, and cassettes. It performs I/O
transfers between its devices and other functional
units. This unit alleviates the problem of mismatched
speeds between functional units and I/O devices by
using a spooling system to handle all I/O requests.

(3) Execution-A unit in this class responds to the
requests of an LT. or another execution unit to execute
a user-generated computational procedure. The micro
processors in this group may have extra hardware such

Coupling Small Computers 759

as an extended arithmetic element. Also, they have
special routines for linking and loading the appropriate
segments of a user's program.

(4) Program Development-A unit in this class
executes sharable re-entrant system programs such as
compilers, assemblers, and text editors that are stored
in local ROM's. It receives requests from other func
tional units and performs software support functions.

(5) File Management-A unit in this class manages
a secondary storage system (disk, drum, extended core;
etc.) and executes file functions such as HCREATE",
"DELETE", "RENAME", "APPEND", and so forth.
Furthermore, a File Manager stores and retrieves state
information on logical tasks which have been sus
pended. The details of the "suspension" mechanism
will be given in the next section.

Next, let us consider the actions and coordination
of functional units in the execution of a user's task.

Resource allocation

In order to understand the coordination primitives
used by the system and the different levels of inter
action present among the functional units, we will fol
Iowa user's task through the system. First, the user
logs into the system and is assigned an Intelligent
Terminal. This LT. will serve as the user's representa
tive in his transactions with the system. The LT. is
the only functional unit whose binding to the user and
user's job is permanent and thus independent of such
factors as system loading, failure of other system
functions, and so forth.

In general, the 1. T. receives commands for the execu
tion of jobs through a job control language. Typical
commands would be: RUN, COMPILE, CREATE
FILE, and EDIT. Also, each command would include
an aggregate of information to make the command
executable. For example, the "COMPILE" command
would include the name of the compiler needed, the
name of the source code, and the I/O devices involved.
The LT. interprets this system command language
and transforms it into a sequence of subtasks and re
source requests. In this way the "RUN" command
would be transformed into the following sequence of
subtasks:

(1) Cornpile (SOURCE NAME/LaC, OBJECT
NAME/DEST)

(2) Execute (OBJECT NAME/LOC).

These subtasks may, during their execution, create
other subtasks, i.e., the Compile task above would
probably generate subtasks that involve file transfers
and I/O listings. This description completes the discus
sion of the first level of interaction present in the sys
tem, that is, user to functional unit interaction.

The subtasks created by the system commands are
considered as a series of resource requests. Hence, it

760 National Computer Conference, 1976

To He +----11 ~_--+ro He

IPC Commun1cation Bus

Figure 5-An example on the use of the RCBS to form a two nodes network. If a port is connected to a functional unit, the
inputs to the demultiplexers (for the selection and interrupt controls) are controlled directly by the functional unit. If a
port is used to form a network link, the demultiplexers are controlled by the IPC's in such a way that the network link is made

transparent to the functional units in the two nodes

is the responsibility of the I.T. to initiate these requests
by posting them with the resource allocator (the IPC)
within the node. This interaction between functional
units and IPC represents the second level of interac
tion. Such interactions are needed whenever tasks
executing within the functional units come to a point
where additional resources are needed to complete
their work. In the present example the "COMPILE"
task would require the allocation of a Program De
velopment unit (P.D.) in order to complete its work.
Such requests must be posted with the IPC.

'Upon acknowledgment of the request, the IPC
would initiate a search for a free unit of the resource
type requested. This search involves a two-stage de
cision, where first a node and then a specific func
tional unit within that node is selected. The selection
of the node will be based on the adaptive scheme of
Glorioso and Colon.22 The IPC makes its node selection
using a set of network statistics. These network sta
tistics are a measure of the likelihood of obtaining the
desired resource for each node (including the local

node) present in the system. Following the selection
of a node, the requesting IPC will inform the selected
node's IPC of its request. This involves a third level
of interaction, namely IPC to IPC.

Within the selected node, a much simpler method
is used to select a specific functional unit to service the
request. Each node has an associated Availability
Status Register for each of its resource classes. This
register contains the status information (either busy
or free) of each functional unit in the particular re
source class. Therefore, the decision at this stage is
made by a scan of the corresponding register for a
free unit followed by allocation of this unit, if one is
found. If no such unit is currently available, the pend
ing request will be queued with all other requests in
that node waiting for the particular resource type.
This information and the queue length will be passed
back to the node that originated the request (not neces
sarily a different node) to be used in the updating
process of its network statistics. For a more detailed
description of this process, see References 22 and 23.

The advantages provided by the selection scheme are
as follows:

(1) The need for constant exchange of complete
status information between nodes is eliminated. Con
sidering the number of functional units within a
node and a richly connected network, constant status
information exchange can seriously degrade the per
formance of the system.

(2) Automatic load leveling is accomplished. That
js~ when functional units of a certain ciass are used
up, the likelihood of selecting the corresponding node
is "dynamically adjusted" by the adaptive scheme.
Hence, the load will be diverted to other nodes in the
system.

(3) Failsoft behavior is realized. Since failure of
nodes will be reflected in the likelihood of service
statistics from that node, the IPC's will avoid failed
nodes.

Once a functional unit is selected, the selected unit is
informed (by the IPC in the selected node) of the
identity of the requesting unit, and the requesting
unit is informed (by the IPC in the requesting node)
of the identity of the selected unit. At this point it is
the responsibility of the two units to establish a com
munication path through the RCBS and to coordinate
their actions. This process involves the fourth and last
level of interaction, namely functional unit to func
tional unit. In our example the LT., after receiving
the identity of a P.D. unit from the IPC, will initiate
the compilation by transferring the necessary con
trol information (SOURCE NAME/LOC, OBJECT
NAME/DEST) to the P.D. unit. The P.D. on the other
hand will proceed with the compilation task until com
pletion or to a point where additional resources are
needed. If additional resources are needed, the se
quence of steps described above will be repeated with
P.D. as the requesting unit.

Notice that as the user's job proceeds through the
system, it is segmented into finer and finer procedures
some of which may execute in parallel. This parallelism
can be graphically represented by a timing diagram
and a static tree representation. When a timing dia
gram is used, (See Figure 6 (a» resource allocations
and deallocations are shown as vertical lines and the
usage of resources is depicted as horizontal lines. It
reflects the dynamic history of requests and allocations.
On the other hand, a static tree representation, (See
Figure 6 (b» can be considered as a snapshot of the
system's outstanding requests at a particular time. It
shows the logical relationship between units, i.e., who
initiated whom.

When a task is completed by a functional unit, the
functional unit is deallocated. Allocation and dealloca
tion of resources continues until all tasks and subtasks
are finished and the user is informed. Now, let us shift
our attention to the tasks and their corresponding state
transition diagrams.

IT

EX

PO

I/O

FM

Coupling Small Computers 761

:,
I

I

t-
1

i
I

I PO

t::
"L

I

(a)

tz
I

I

I
I

I/O

(b)

Figure 6-(a) Timing diagram representation
(b) Tree representation

STATES AND STATE TRANSITION DIAGRAMS

Tasks occupy one of the five states shown in Figure
7. A task is

(1) terminated before it has been created and after
it has finished;
(2) ready if it has been created or reactivated by its
parent but it is not yet bound to a functional unit;
(3) waiting while it is

(a) requesting additional resources for a sub
task it is creating, or
(b) waiting for coordination with a subtask it
has created;

(4) running while it is bound to a functional unit
but not in the waiting state;
(5) dormant if it has been preempted while waiting,
or after using a resource for a prespecified time
limit.

Each tas~ is created by another task, its parent. A
newly created task enters a queue of tasks which are
ready to run but are waiting for a functional unit. This
queue of ready tasks is maintained by the IPC. When
a functional unit becomes free, the IPC passes the

762 National Computer Conference, 1976

Actions :

(1) Reactivated
(2) Create Task
(3) Preempted
(4) Pre~mtJted
(5) Obtain Functional Unit
(6) Comn1ete "Task
(7) Request Satisfied
(8) Request additional resources or

coordination with subtask

Figure 7-Task's state transition diagram

unit's identity to a parent of a task waiting for that
type of unit. If the free functional unit and the parent
task are successful in establishing a communication
path, the ready task becomes bound to the functional
unit and enters the running state. Tasks in the running
state may create subtasks or request coordination with
tasks they have already created. To do this they must
enter, and then remain in, the waiting state until the
request is completed or the task is preempted (for
waiting too long for example). Preempted waiting
tasks enter the dormant state as do preempted running
tasks. When a task enters the dormant state, its state
vector is stored and its associated functional unit is
deallocated. A dormant task is reactivated at a later
time by its parent.

Each task is a logical entity and is only bound to a
physical functional unit during the running and wait
ing states. To describe the status of each functional
unit we will use the state transition diagram given in
Figure 8. Each functional unit is in one of the follow
ing four states:

(1) free if it is not bound to a task;
(2) waiting if it is bound to a task and the task is
waiting for coordination with a subtask it has
created;
(3) running if it is bound to a task that is in the
running state;
(4) posting request if the task to which it is bound
is entering a request for additional resources.

~:

(1) Bind to a task
(2) Task preempted

W i:~~ ~~7i~:i~~e~r preempted
(5) Wait for subtask coordination
(6) Request innediate coordination
(7) Request additional resources
(R) Request posted on IPe's queue

Figure 8-Functional unit transition diagram

These states parallel those of a task since each task
is executed in a functional unit. The Availability Status
Register bit associated with each functional unit is
enabled (set to one) when it becomes free. When a
unit becomes bound to a task, two hardware timers are
initialized. One is enabled whenever the functional
unit is in the running state and the other whenever it is
in the waiting state. If either of the accumulated times
exceeds the prespecified system limits, the task will
be preempted and the functional unit will be deallo
cated once the state of its associated task has been
saved to enable restart. When a running task creates a
subtask, it notifies the functional unit to which it is
bound to post a request for an additional resource. The
functional unit will then enter the posting request state
and communicate the request to its IPC. If the task
is able to continue running independently of the sub
task,the functional unit will return to the running
state; otherwise, it will enter the waiting state. In the
DFMP system, each task will interact with its parent
task and its subtasks by means of a small local monitor
in the functional unit to which it is bound. These moni
tors will be the building blocks of the distributed
operating system of DFMP.

Deadlock prevention

Whenever concurrent tasks contend for system re
sources a condition of deadlock may occur. This phe
nomenon has been studied extensively in connection
with the design of computer operating systems and
sufficient conditions for the prevention of deadlock are

well-known.21
,25 One solution to this problem is to im

pose a linear ordering on all resource (functional unit)
classes. If a task has been allocated a functional unit
in class R [i] it may subsequently create a concurrent
subtask requiring a functional unit in class R [j] only
if j > i. This eliminates the possibility of a circular
waiting condition. The linear order we have adopted
is shown in Figure 9. We can in fact relax the require
ment that j > i and allow j = i if a functional unit in
class R [j] is immediately available. In this case the
request need not to be queued and circular wait is pre
vented. When a functional unit is not immediately
available and j = i, the requesting task must cancel its
request and proceed to execute the subtask sequentially,
using the functional unit in that class which is already
bound to it. This modified rule allows parallel tasks
using identical resources to be created as long as the
system is not saturated. If saturation occurs, the po
tentially parallel tasks will be forced to run se
quentially.

Task preemption and reallocation of resources

Preemption of a task enables the system to avoid
the monopolization of resources by a group of one or
more users. Preemption occurs when a functional unit
has been in the waiting or running state for more than
the specified time limit. We will describe this pre
emption process using an example. Assume that pre
emption occurs at time t in Figure 6 (a). A snapshot
of the state of the user's job at time t reveals the con
current task structure represented by the tree in
Figure 6 (b) . We will assume that the preemption oc
curred in the Program Development unit while in the
running state. Upon encountering this condition, the
local monitor would initiate a series of procedures to
save the state vector of the interrupted task T and to
then deallocate the functional unit. These procedures
would carry out the following actions:

(1) Interrupt T's parent P.
(2) P becomes the logical parent of T's subtasks
T I ,. •• ,Tn.
(3) Interrupt TH ••• ,Tn and notify them of change
in parent.
(4) Save T's state vector.
(5) Deallocate resource.

The state of the user's job following T's preemption
is shown in Figure 10.

Class

R[l]
R[2]
R[3]
R[4]
R[5]

units

Intelligent Terminals
Execution Units
Program Development Units
File Management Units
General I/0 Units

Figure 9-Hierarchy of classes of functional units

SUMMARY

Coupling Small Computers 763

.. +
"2

denotes logical connection
between parent and offspring

Figure lO-Task preemption

deallocated

The design of a networked multiple processor system,
DFMP which has characteristics of both multiproces
sors and computer networks has been presented. DFMP
has a unique structure wherein many microprocessors
each with its own memory and specialized in function
are coupled to form a multiple processor. Also, several
multiple processors can be joined into a computer
network.

The operating system is distributed in each of the
functional units. There is no central scheduler in
DFMP but an Inter Processor Controller in each Multi
ple-Processor to coordinate communications between
the functional units within and between nodes.

At this time DFMP exists only on paper. However,
work on a single node using five Digital Equipment
Corporation's LSI-II Microprocessors is under way.

REFERENCES

1. Fuller, S. H. and D. P. Siewiorek, "Some Observations on
Semiconductor Technology and the Architecture of Large
Digital Modules," Computer, Vol. 6, No. 10, pp. 15-21, Oc
tober 1973.

2. Enslow, Jr., P. H., COMTRE Corporation: Multiprocessors
and Parallel Processing, John Wiley and Sons, New York,
1974.

3. Baer, J. L., "A Survey of Some Theoretical Aspects of
Multiprocessing," ACM Computing Surveys, Vol. 5, No.1,
pp. 31-80, March 1973.

4. Pierce, J. R., "How Far Can Data Loops Go?" IEEE
Transactions on Communications, Vol. COM-20, No.3, pp.
527-530, June 1972.

5. Roberts, L. G. and B. D. Wessler, "Computer Network

764 National Computer Conference, 1976

Development to Achieve Resource Sharing," SJCC, AFIPS
Coni. Proc., Vol. 36, pp. 543-549, May 1970.

6. Farber, D. J. and K. C. Larson, "The System Architecture
of the Distributed Computer System-The Communication
System," Symposium on Computer Network and Tele
traffic, Polytechnic Institute of Brooklyn, Vol. 22, pp. 21-27,
April 1972.

7. Farber, D. J., "Networks: An In1rroduction," Datamation,
Vol. 18, No.4, pp. 36-39, April 1972.

8. Pyke, T. N., "Computer Networking Technology: A State
of the Art Review," Computer, Vol. 6, No.8, pp. 13-19,
August 1973.

9. Kleinrock, L., "Survey of Analytic Methods for Computer
Network Design," in Computer-Communication Networks,
edited by F. F. Kuo, Prentice-Hall, Englewood Cliffs, 1973,
Chapter 4, Section 2.

10. Fultz, G.L. and L. Kleinrock, "Adaptive Routing Techniques
for Store-And-Forward Computer Communication Net
works," Proc. International Conlerence on Communications,
pp. 39/1-8, Montreal, Canada, June 1971.

11. Chou, W. and H. Frank, "Routing Strategies for Computer
Network Design," Symposium on Computer Communication
Networks and Teletraffic, Polytechnic Institude of Brooklyn,
Vol. 22, pp. 301-309, April 1972.

12. Gerla, M., "Deterministic and Adaptive Routing Policies in
Packet-Switch Computer Networks," Data Communication
Symposium, pp. 23-28, St. Petersburg, Florida, November
1973.

13. Metcalfe, R. M., "Strategies for Interprocess Communica
tion in a Distributed Computing System," Symposium on
C omputer-C ommunication-N etwork and Teletraffic, Poly
technic Institute of Brooklyn, Vol. 22, pp. 519-525, April
1972.

14. Haberman, A. N., "Synchronization of Communicating
Process," Comm. 01 the ACM, Vol. 15, No.3, pp. 171-176,
March 1972.

15. Wecker, S., "A Design for a Multiple Processor Operating
Environment," Compo Coni. 73, Digest 01 Papers, IEEE,
pp. 143-146, New York, February 1973.

16. Ravidran, V. K. and T. Thomas, "Characterization of
Multiple Microprocessor Networks," Comp Coni 73, Digest
01 Papers, IEEE, pp. 133-137, New York, February 1973.

17. Jordan, B. W. and E. L. Baatz, "C.mup-North Western
University Multimicrocomputer Network," Proc. 1974 Sym
posium on Computer Networks, Gaithersburg, Maryland,
May 1974. Also, available from IEEE, New York
(74CH0835-9C) .

18. Fuller, S. H., D. P. Siewiorek and R. J. Swan, "Computer
Modules: An Architecture for Large Digital Modules,"
Proc. First Symposium on Computer Architecture, Com
puter Architecture News, Vol. 2, No.4, December 1973.

19. Heart, F. E., S. M. Orstein, W. R. Crowther and W. B.
Barker, "A New Minicomputer IMultiprocessor for the
ARPA Network," FJCC, AFIPS Coni. Proc., Vol. 42, pp.
529-537, 1973.

20. Foster, C. C., "A View of Computer Architecture," Comm.
ACM, Vol. 15, No.7, pp. 557-565, July 1972.

21. Spier, M. J., T. N. Hastings and D. N. Cutler, "An Experi
mental Implementation of the Kernel/Domain Architecture,"
Proc. 4th ACM SOSP, pp. 8-21, October 1973.

22. Glorioso, R. M. and F. C. Colon, "Cybernetic Control of
Computer Networks," Modeling and Simulation, Vol. 5,
No.2, Proc. Fifth Annual Pittsburgh Conference, pp. 819-
824, April 1974.

23. Glorioso, R. M., D. W. Li and F. C. Colon, A Schema lor a
Multiple-Microprocessor System, Report DEC-3, University
of Massachusetts, Amherst, February 1975.

24. Coffman, E. G., M. J. Elphick and A. Shoshani, "System
Deadlocks," ACM Computing Surveys, Vol. 3, No.2, pp.
67-78, June 1971.

25. Holt, R. C., "Some Deadlock Properties of Computer Sys
tems," ACM Computing Surveys, Vol. 4, No.3, pp. 179-196,
September 1972.

The CERF computer systenl

by NEIL WILHELM, DAVID PESSEL and CHARLES MERRIAM
University of Rochester
Rochester, Xe'\v y"'ork

ABSTRACT

Multiprocessor systems are becoming increasingly
popular because of the increased throughput possible
and the possibility of system availability despite the
failure of some of the processing units. This paper
describes an innovative concept in multiprocessor sys
tem design, and suggests some of the research areas
which have not yet been resolved but which can be
studied on this system. The system architecture is
patterned after Control Data Corporation's peripheral
processor "barrel" except that it possesses much more
powerful functional capabilities. In addition, high
speed minicomputers were used to handle all of the
system I/O requirements. Research areas for which
this system is particularly appropriate include com
puter architecture-operating systems tradeoffs and
multiprocessor operating systems design and imple
mentation. The hardware system is entirely micro
programmable, allowing for increased flexibility in
evaluating various research strategies.

INTRODUCTION

Two major questions present themselves in the design
of multiprocessor computer systems:

(1) How can operating systems be designed to effi
ciently handle processor scheduling, memory manage
ment and file and I/O management on a multiprocessor
system? An important aspect of this question concerns
the management of the operating system itself: should
it be executed by one dedicated processor or should its
functions be distributed throughout the system in some
fashion?

(2) What are the appropriate architecture and
operating systems tradeoffs? Because of reduced hard
ware costs, it is becoming increasingly possible to
implement many ramifications of this issue including
the general ability to modify hardware implementa
tions once they are completed without a major cost
to the system.

We plan to investigate these questions, with the

765

assistance of a unique tool: our Computer Engineering
Research Facility (CERF) Computer System. This
computer system, and some of our research objectives,
are described on the following pages.

SYSTEM DESCRIPTION

The eERF Computer System is depicted in Figure 1.
The primary elements of the system are the four
Central Processing Units (CPU's). These are inde
pendent, microprogrammable processors, featuring 64
bit data paths and 72 bit microinstructions. Each
processor has its own scratchpad of 64 (64-bit)
registers, although microinstructions are fetched from
a common (and expandable) 1024 storage. Each micro
instruction features field extraction and branch cap
abilities, automatic stacking of subroutine return ad
dresses to a depth of 16, indirect register references
with no time penalty, and a large Selection of arith
metic and logical operators. The processor clock is
10 MHz, providing 400 ns microinstruction execution
times (all microinstructions take the same time).

The CPU's communicate to the external world via
two buses, the Stunt Box Bus, and the Memory Bus.
The Stunt Box Bus is used for the attachment of spe
cialized hardware, such as multipliers, dividers, target
machine instruction decoders, etc. The Memory Bus
connects the CPU's to the main memory, which ini
tially will be 128K bytes, arranged as 64-bit words,
of solid state memory. Error detection and correction
will be provided by an 8 bit Hamming code appended
to each memory word.

I/O devices are divided into two categories, high
speed and low speed. High speed devices, such as the
disc (an 80 megabyte moving-head disc) or drum (a
one megabyte fixed-head disc), are each connected to
the I/O Bus via two Selector Cbannels. These channels
are extremely fast, special purpose, programmable
computers with 16-bit words.

Low speed devices are connected through an Inter
data 7/16 minicomputer with 16k bytes of 1000ns pri
mary memory. The card reader, printer and other
miscellaneous peripherals are a~ached to the 7/16 by a

766 National Computer Conference, 1976

special interface called the Multiplexor Channel. This
channel provides these peripherals with direct access
to the 7/16's memory on a time-multiplexed basis. The
CPU console is simulated by an interface to the Multi
plexor Channe1. Terminals and communication equip
ment are connected to the 7/16 by the Terminal Con
troller, which is a very fast programmable computer
similar to the Selector Channels. The Terminal Con
troller also provides the path between the 7/16 and the
primary memory of the CPU.

In addition to handling the low-speed peripherals,
the 7/16 assists in debugging the hardware via the
simulated console, and, with its core memory, is a con
venient means of bootstrapping the system.

CERF CPU description

The need to have multiprocessing capability with
three or more processors poses a number of potential
design problems, primarily problems with priorities,
interference, and processor lock-out. In addition, hav
ing multiple processors generally means having multi-

Interdata
7/16

Stunt Box
Bus

Four CPU's

Memory
Bus

Main
Memory

I/O
Bus

Terminals

Card Reador

Line Pr inter

Mag Tape

Internal CPU Functions

Figure i-Computer Engineering Research Facility (CERF)
computing system

pIe copies of the same hardware. All of these problems
can be solved by a design technique similar to one used
by Control Data Corporation1 for the peripheral pro
cessors in their 6000 and 7000 series systems. The
CERF central processor hardware is divided into four
disjoint subsets, corresponding to four stages of micro
instruction execution. Thus a processor, at any stage
of a microinstruction's execution, needs only one of the
four parts of the hardware, so that four processors
can share the same hardware provided each is in a dif
ferent stage of microinstruction execution. Such an
arrangement, with several processors cycling through
the same hardware, is often called a "barrel".

Figure 2 shows the data flow paths of the four
processors. Each processor has its own bank of 64
registers of 64 bits each; these are the only elements
which are not shared among the processors. The func
tional elements, which operate on data, consist of the
field extractor, which can extract any field of contigu
ous bits from a word, the field depositor, which can
deposit an arbitrary length field into a word, and the
arithmetic-logic unit (ALU) which can perform the
usual arithmetic and logic operations plus a number of
specialized ones. Note that the B-bus, which provides
one of the two operands required by the AL U and field
depositor, is fed by the field extractor, so that one of
the operands could in fact come from any field of a
word in a register.

An important issue which must be considered is
whether or not the operations shown can be done with
reasonable dispatch, so that the processors are fairly
fast. Calculations, using manufacturer's worst-case
propagation delay specifications, show that a staging
time of less than 100 nanoseconds, i.e., a clock rate of
10 MHz, is feasible. This yields a microinstruction
time per processor of 400 ns which, from the rule-of
thumb that 10-30 microinstructions are required for
each target machine instruction, implies a target ma
chine instruction execution time of 4 to 12 micro-

Reg ister Banks 5 - Selector

Figure 2-CERF computer system data flow

seconds on each processor. The overall execution rate
would be 10' microinstructions per second, and .3 to
1 million target machine instructions per second.

It is essential that the microinstruction set be adapt
able and powerful. To understand what this implies
in terms of microinstructions, one must first realize
what consumes most of the effort of emulators: decod
ing the instructions of the target machine. To reduce
this overhead the set of microinstructions must in
clude ones for extracting fields of bits from words
and for making conditional branches and subroutine
calls. All of these objectives are met with the CERF
CPU microinstructions.

The design of CERF is presently complete, and it is
anticipated that its construction will be complete by
June, 1976. Its design has been made in full cognizance
of and with careful consideration for the research
areas described here. CERF will provide a unique re
search vehicle, and has been configured in such a way
so as to provide a general purpose timesharing system
to the University community. This user community is
necessary to provide a load on the system during the
testing of research problems.

We now describe some aspects of the hardware
implementation.

HARDWARE IMPLEMENTATION

The CPU's

The Schottky TTL logic family was selected for the
implementation of the CPU's. Emitter-coupled logic
(of the ECL 10K family) was considered, but it was
rejected because of power consumption, wiring (par
ticularly the need for pulldowns), and interfacing
problems (requires level translators to mate with other
logic families), because of a shortage of MSI and LSI
function as compared with TTL, and because of its
high cost. An ECL or ECL-TTL hybrid system could
easily run twice as fast.

Recent advances in bipolar memory technology not
only reduced circuit complexity over preliminary esti
mates, but also reduced system cost. Processor register
banks are implemented with 64x9 RAM's (Fairchild
93419) which provide a worst-case access time of 50ns
(actual measurements with a IGHz sampling system
show an address-to-output access time of about 30ns).
Thus the entire set of four banks of 64 x 64 registers
requires only 32 integrated circuits. The microstore
is constructed from 1024 x 1 bipolar RAM's (Fairchild
93415) with a worst-case access time of 70ns (measure
ments show a typical access time of about 37 ns),
requiring only 72 integrated circuits for a 1024 word
storage.

The primary limiting factor in CPU speed is the
delay in the ALU-test-branch decision path. Because
branch options on every microinstruction are desirable,
and because branching should carry no time penalty
(since it is done so frequently in microprograms), this

The CERF Computer System 767

path is crucial to the machine's performance. The
only solution is to calculate both of the possible suc
cessors to each microinstruction, and select the correct
one at the last possible instant.

Dynamic MOS RAM's were the choice for the main
memory, because of their low cost, availability, and
reliability. Memory system reliability is enhanced by
using an 8 bit Hannning code, which provides single
error correction and double error detection, on each
64 bit datum. Thus memory words are 72 bits in
length.

Four-way interleaving is used to increase memory
bandwidth which, for an approximate cycle time of 500
ns, is 8 megawords or 64 megabytes per second. The
useable bandwidth is somewhat less than this. New
memory accesses can be initiated while others are in
progress, thereby reducing idle time.

Selector channels

The selector channels are implemented with 4-hit
slice processor elements (AMD 2901), being essen
tially very fast 16 bit minicomputers. Each has typi
cally 1024 words of bipolar memory (the same as the
microstore) for programs and data. Special "vector"
instructions are used to handle the extremely high
data rates of the disc drives. Special functions, such
as error correcting coding, are implemented in hard
ware.

RESEARCH GOALS

Most conventional operating systems are almost
exclusively oriented towards the concept of single
processor systems. Although these operating systems
may allow multiprogramming, the ramifications of
multiprocessing are generally avoided. Multiprocess
ing systems have been examined in limited detail
elsewhere. 2

• 3 This study will consider in depth various
aspects of multiprocessor operating systems. In par
ticular, we will study whether one operating system
can effectively and efficiently coordinate the activities
of more than one processor in a multiprocessor system.
In a multiprocessor system each processor may have
an independent address space mapped onto one physical
memory, or independent memories may be available to
each processor. In either case, the operating system
is now faced with the task of coordinating various
memory maps. Similarly, each processor in a multi
processor system may execute programs from inde
pendent job streams or there may be only one job
stream being scheduled onto all of the processors. In
both cases, the operating system must handle schedul
ing of a far more complex form than on a uniprocessor
system. Finally, a separate file and I/O system may
exist for each processor. This results in yet another set
of operations more complex than on conventional sys-

768 National Computer Conference, 1976

tems. Various problems may arise as a direct result of
this type of system. Among these are: (1) primary
memory contention: since more than one simultane
ously active processor and task can address the same
memory module, techniques must be explored to reduce
or avoid memory contention at that module, and (2)
file protection: adequate file protection is complicated
because of the existence of simultaneously active
processors and tasks which may access the same files.
File structures which insure data integrity must be
developed and implemented.

A second area to be considered concerns architecture
operating systems trade-offs. An operating system is
very dependent upon the architecture (i.e., the instruc
tion set, registers, etc.) of the processor on which it is
run. This relationship is so close that not only the
effectiveness and efficiency of the operating system but
the very structure of the operating system is deter
mined by the processor architecture. For example,
the "cactus stack" design of the B-6700ot leads naturally
to the tree-like hierarchy of processes used by the
operating system. Of course one can always impose
an operating system design on an unsuitable processor,
at the risk of losing efficiency.

We can delineate three basic areas in which the
operating system-processor interaction is crucial.
These are processor scheduling, memory management
and file and I/O management. For each of these areas,
trade-offs can be made between performing important
functions as "hardware macro's" (e.g. as special
processor instructions or using dedicated processors)
or as "software macro's" (i.e., aggregates of primitive
hardware instructions) . We can increase system speed
by using more "hardware macro's" in exchange for
greater processor cost and complexity and reduced sys
tem flexibility. On the other hand, we can reduce sys
tem cost and increase flexibility by using "software
macro's", but at a reduction in efficiency.

Existing systems are examples of a priori decisions
regarding the distribution of functions between hard
ware and software. For the IBM S/360,5 essentially
all operating system functions are implemented with
out hardware assistance. On the other hand, the
Berkeley Computer Corp. BCC-5006 (now at the Uni
versity of Hawaii) features specialized processors per
forming such functions as scheduling and memory
management.

We propose to investigate, theoretically and em
pirically, several specific areas of operating system
architecture tradeoffs, using the CERF multiprocessor
computer system as a tool. One of these areas is the
design of operating systems for multiprocessors, em
phasizing the synchronization primitives and the
architectural features necessary to support them.
Hardware provisions for mutual exclusion are espe
cially important in a multiprocessor system, since the
simple expedient of turning off the interrupts and
simulating mutual exclusion primitives in system

software works only for a uniprocessor system. Since
P and V operations may imply changes in processor
scheduling, the relationship between the hardware and
software is very close at this point.

,LA ... nother important consideration is the distribution
of the operating system functions to various system
processors. Should important functions such as proces
sor scheduling be shared among the central processors
(as in the original plan of the CMU Hydra system),
should one of the central processors be dedicated to
these operations, with the other processors as slaves,
or should these functions be distributed to more spe
cialized "peripheral processors" (as done in the BCC-
500 and the CDC 6000 and 7000 series)? The CERF
system is ideally suited for this type of investigation.
One could write special microcode for one of the central
processors, making it the master. On the other hand,
the drum controller can be reprogrammed to handle the
memory management, or the Interdata 7/16 could be
programmed to perform processor scheduling.

Our current plan, now under way, is to develop an
initial target architecture which is "extensible" so that
we may add the features we need with relative ease,
and is also well-structured, so that ALGOL-like lan
guages can be fully-supported and compiled efficiently.
Because the basic machine architecture will remain
relatively fixed, we can expect to get meaningful per
formance comparisons as we explore the various pos
sibilities.

CONCLUSION

We have described an innovative approach to multi
processor system architecture, yielding greatly in
creased hardware flexibility and applicability at only a
slight increase in cost. This system provides a unique
vehicle for research in multiprocessor architecture and
operating systems. The research objectives have been
briefly described, and the results of these studies will be
presented in future publications.

ACKNOWLEDGMENT

The authors gratefully acknowledge the support of the
College of Engineering and Applied Science in funding
this project.

REFERENCES

1. Thornton, J. E., "Parallel Operation in the Control Data
6600," AFIPS SJCC, Volume 24, 1964.

2. Wulf, W. A. and C. G. Bell, "C. mmp-A Multi-Mini
Processor," AFIPS F JCC, Volume 41, 1972.

3. Baskin, H. B., B. R. Borgerson and R. Roberts, "PRIME
A Modular Architecture for Terminal-Oriented Systems,"
AFIPS SJCC, Volume 40,1972.

4. Ol'ganic, E. I., Computer System Organization: The B5700/
Bfi700 Series, Academic Press, New York, 1973.

5. IBM, IBM System/360 P?'inciples of Opemtion, File No.
S360-01, November 1970.

6. Wall, C. F., Design Features of the BCC 500 CPU, TR R-1,
January 3, 1974.

A parallel processor for evaluation studies

by GARY J. NUTT
University of Colorado
Boulder, Colorado

ABSTRACT

The Multi Associative Processor system is a multiple
control unit parallel processor capable of executing a
maximum of 8 single-instruction-stream, multiple
data-stream programs simultaneously. The architec
ture supports parallelism at two levels: the lower level
is the tightly coupled parallelism typical of array
processors, and the higher level is the more loosely
coupled parallelism between independent processes.
The architecture of the machine is described and an
example program for the machine is given to illustrate
many of the concepts of the architecture. Measurement
and evaluation studies on the machine are also briefly
discussed,

INTRODUCTION

The needs of present day, large scale computer users
have led to the development of a variety of parallel
processor systems. The exploitation of parallelism
becomes necessary for these users since electronic sig
nal propagation has become a limiting factor to the
speed with which certain computation can be carried
out on a sequential processor.2 There exist a number
of architectural families that exploit parallelism in one
way or another-pipeline processors, vector machines,
multiprocessors, array processors, and associative
processors.6 The inherent complexity of these proces
sors magnifies the need for measurement .and evalua
tion techniques to design and tune the systems. The
design of a system includes the organization of the
software as well as the hardware; performance evalua
tion has often been shown to be important in the design
phase of sequential processor systems, e.g. see Refer
ence 5. Past experience has also pointed out the need
for evaluation techniques in tuning sequential proces
sor systems, e.g. see Reference 9. Since the parallel
processors must include more complex hardware and
software, the need for sound measurement and evalua
tion techniques is even more important than it was for
the third generation sequential processor systems.

In order to investigate design and evaluation tech
niques for any given class of computer systems, one

769

must either employ a prototype system, or construct
a model to represent members of the class. The ultimate
test for any hypothesis is to carry out experiments
with the real subject; in the case of measurement in
vestigations for computer systems the ultimate test
is to try techniques on a physical computer. There are,
however, certain advantages to experimenting with
models rather than the real system: economics is an
obvious advantage. Other advantages include the
ability of the model to ignore certain factors in the
analysis. It is also easy to try various designs and
configurations with a model, where real systems are not
only expensive to modify but also time consuming to
test. Extensive modeling should precede prototype
testing.

In this paper a hypothetical associative array pro
cessor system is described, where the primary intent
for introducing another "paper" machine is not only to
display a novel architecture, but also to provide a
model to be used for investigating measurement and
evaluation techniques for parallel processors. To help
explain the design concepts of the machine, a sample
program is provided, following the architecture de
scription. The paper serves to document the system
model, to display the current state of work on the
proj ect, and to describe future work.

THE ARCHITECTURE OF THE SYSTEM

The medium of this study is called a Multi Associa
tive Processor (MAP) computer system. The machine
is a member of the class of single-instruction-stream,
multiple-data-stream (SIMD) parallel processors. 6

These computers employ a control unit to decode a
string of instructions stored in a main memory and to
cause a collection of arithmetic units to execute the
instructions on data stored in private memories as
sociated with each arithmetic unit. Some prominent
members of this class of computer systems include the
ILLIAC IV,3 the PEPE system,' and the Goodyear
STARANY The MAP system shares many properties
of these systems, but also has others unique to its
architecture.

Figure 1 is a block diagram of the system, and the

770 National Computer Conference, 1976

MAIN
MEMORY

I/O SUBSYSTEM

DISTRIBUTION
SWITCH

Figure I-MAP block diagram

components are first briefly described with more de
tailed description given in subsequent subsections. (An
even more detailed description of the components is
given in Reference 1). The most striking difference
between MAP and the production systems mentioned
above is the existence of eight control units rather than
one. Each control unit (CU) along with a subset of
the arithmetic units, (called processing elements or
PEs), corresponds to a SIMD architecture; MAP sup
ports eight SIMD programs simultaneously. Another
prominent difference is the absence of a "host pro
cessor" to execute system software, e.g., the operating
system, compilers, etc. All system software is executed
on the MAP by a CU and one or more PEs. The main
memory system incorporates eight memory modules
interconnected by a bus connected to the I/O system
and by a bus connected to each control unit; each
memory module (MM) is preferred by one CU and,
normally, the instruction stream for CUi is stored in
MMi. * The distribution switch shown in the figure
routes commands and data from a CU to the subset of
PEs currently allocated to that CU, and between PEs.
The I/O subsystem is one of those portions of the
system for which no explicit design has been consid
ered. It is assumed to be a conventional system that

* If a distributed operating system is employed in MAP, then
the program for CU! may not be stored in MM 1, but may either
be distributed over the modules, or a ninth module for operating
system code and data might be incorporated.

handles peripheral devices and provides for the trans
mission of data to and from the main memory.

The control unit organization

The primary purpose of each CU is to implement
the concept of a process. Each process that is imple
mented on a CU is assumed to be decomposed into a set
of identical tasks which can be executed in parallel by
a set of PEs. Other instructions decoded by the CU,
such as branching instructions, are executed directly
in the CU without referencing the set of PEs. The CU
must also implement interprocess communication be
tween processes on different CUs.

Figure 2 is a conceptual block diagram of a control
unit. The main memory interface consists of three
registers: the Data Register is used to transmit data
words to/from the main memory, the Address Register
is used to send CU-generated addresses to the main
memory address register, and the Instruction Word
Register holds an instruction word from main memory
that is to be decoded and executed. It would be pos
sible to replace the Instruction Word Register by a
look-ahead buffer to decrease CU idle time while wait
ing for the next instruction to be read from main
memory. (Current work on this approach is in prog
ress.) The Index Register, CX, allows indexed ad
dressing of the main memory by the CU.

The CU Instruction Processor executes those instruc
tions that are not broadcast to PEs for execution. The
functions implemented by this processor include con
ditional and unconditional branching, (using CX and
the Compare Register, CR) ; and CU intercommunica
tion instructions, (using the 8-bit Signal Register and
the 8-bit ID Register). Most conditional branches are
determined by inspecting the relationship between
contents of CR and CX, or only the contents of the
main memory index register, CX. The use of Signal
and ID in interprocess communication is discussed in
a later portion of the paper.

The Data Input (Output) Broadcast Register is used
to send (receive) data from the currently allocated set
of PEs via the distribution switch. Loading or unload
ing of the registers is controlled by the Instruction
Processor under the supervision of the Instruction
Decode Unit.

The Instruction Decode Unit invokes the Instruction
Processor for the execution of CU-executable instruc
tions, and generates the sequence of microinstructions
that are to be executed by PEs. The 6-bit Instruction
Broadcast Register is used to put a single microinstruc
tion into the distribution switch, which subsequently
routes the microinstruction to the set of PEs currently
allocated to the given CU for execution. The decode
unit must handle all timing considerations for broad
casting microinstructions and data over the distribu
tion switch. It must also coordinate its operation with
that of the distribution switch.

Parallel Processor for Evaluation Studies 771

To MM To MM From MM

MAR MDR

t
Address Instr. word
Register

Compare
Register

Register,CR

/

Index
Register, CX Instruction

Instruction Instruction Counter,IC

Processor

r S1 gnal l~
Decode
Unit

Register

to Dist. Sw.
Controller

7 o
10
Register

Data Input
Broadcast Register

Data Output
Broadcast Register

Instruction
Broadcast

To Dist. Sw. To Dist. Sw. From Dist. Sw. To Dtst. Sw.

Figure 2-Control unit organization

The processing element organization

PEs correspond to the arithmetic/logical unit of a
conventional computer system. Their purpose is to
carry out a particular microinstruction execution on
multiple data items in parallel with one another. All
PEs are treated as identical resources, and concep
tually, there is no addressing relationship between any
two PEs; no linear relationship exists between PEs as
it does in the ILLIAC IV.3

Figure 3 is a block diagram of the PE organization.
The dynamic connection of PEs and CUs takes place
via the distribution switch discussed in the next sub
section, and the interface to this bus system takes
place at the Instruction Selection Unit, the Input
(Output) Data Register, IDR (ODR), and the Input
(Output) Control Register, ICTL (OCTL). The In
struction Selection Unit contains an 8-bit Owner
Register; when a PE is allocated to a CU, the owner
register of the PE is set to match the ID Register of
the CU. Each microinstruction broadcast by a CD is
tagged with the ID Register content, and the Instruc
tion Selection Unit compares ID and Owner Registers
to identify microinstructions intended for the given

PEe The microinstruction is then passed on to the
Associative Unit of the PEe

The architecture of a SIMD processor allows all PEs
allocated to a CU to simultaneously execute a micro
instruction, but in most programs, it is necessary to be
able to selectively deactivate some of the PEs during
the execution of some code segments. For example, a
program may be organized such that each element of an
n dimensional vector is loaded into a distinct PE
memory and that the PEs should perform a computa
tion sequence on only those coordinates in the vector
that are greater than zero. The code sequence would
cause each coordinate to be loaded into a PE register
from the respective PE memory, and then only those
PEs whose register content is greater than zero would
continue to execute microinstructions, while the re
maining PEs would remain idle. The Associative Unit
is used to control this selective activation/deactivation
on the basis of conditions that exist in a PE at any
given time. PE selection status is determined by the
contents of the programmable 8-bit Key, Mask, and
Select Register within the Associative Unit as follows:
If Mask bit i is set then Key bit i is compared with
Select bit i, and if all such bits have the same value,

772 National Computer Conference, 1976

MICROINSTRUCTION BUS

INSTRUCTION
SELECT

UNIT

INPUT DATA BUS

OUTPUT DATA BUS

Figure 3-PE organization

the PE status is active. In the case that Mask bit i is
reset, the Key and Select bits are ignored. For example,
if Key = 10101010, Mask=00111100, and Select=
01101011, then the PE is active; if the same Key and
Select are used with Mask=00001111, the PE is deacti
vated because the least significant bits of Key and Select
do not match. This approach allows up to eight inde
pendent activation conditions to be stored in the regis
ters, implying that extensive subsetting of PE con
ditions can be saved without recomputing those
conditions. All three registers can also be stored/
loaded to/from the respective PE memories if more
than eight activation conditions are to be used in a
code segment.

The Associative Unit modifies Key and Mask when
ever an associative instruction, (i.e., microinstruction
sequence) is broadcast to redefine conditions under
which PEs allocated to the CU should be activated or
deactivated. The Select register contents are deter
mined by a different set of associative instructions that
are related to PE arithmetic register contents. Ex
amples of the use of the registers are given in a subse
quent sample program segment.

The Arithmetic/Logical Unit is a small processing
unit with a double-length accumulator and a PE index
register. Operands for the ALU may be stored in the
PE Memory (accessed with the PE index register),
or may be global operands loaded from (stored into)
the IDR (ODR). The ALU executes floating point and
integer arithmetic instructions, and logical instruc
tions.

The interchange of data between PEs and a CU over
the distribution switch uses the ICTL and OCTL in
conjunction with the IDR and ODR respectively. A
discussion of their use appears in the next subsection.

The distn:bution switch oTganization

The distribution switch is used to route microin
structions from a CU to an arbitrary subset of the PEs,
to route data between a CD and an arbitrary ::;ub::;et
of PEs, and to route data between individual PEs.

The mechanism for routing 6-bit microinstructions
is a crossbar switch, where crosspoint connections are
determined by ID and Owner registers in CU s and PEs.
The connection mechanism precludes a requirement for
resolution and queuing mechanisms at each crosspoint.
It also disallows any form of simultaneous PE sharing
by two or more CU s. This approach has been taken
since CU s are expected to broadcast microinstructions
at a high rate-on the order of one microinstruction
per 100 ns.

Data transfers occur much more infrequently
previous MAP interpreter monitor results indicate that
data (or a PE memory addresses) are broadcast about
once every six microinstruction cycles.11 Since the
data bus is expected to be much wider than the micro
instruction bus, a combination of bus sharing and a
crossbar switch has been employed in the design.
Figure 4 is a diagram of the data bus organization; it
consists of an 8xk crossbar switch where 8<k<12
Each of the k buses, called bus sectors, are sh;red b;
approximately 100 PEs for data transmission. In a
previous study, it was shown that this ,configuration
does not introduce appreciable performance degrada
tion due to bus conflicts.l1 PEs from a given sector
may be allocated to any CU, but sector conflicts are
minimized if the number of CUs owning PEs in any
given sector is minimized. In another study, some PE
allocation algorithms that reduce sector sharing among
CUs were investigated, and cost-effective algorithms
for the sector organization were determined. 12

Data is transferred over the bus system using the
ICTL and OCTL registers mentioned in the PE descrip
tion. Input and output operations are symmetric, and
so only the input operation is described. The ICTL is
initially loaded with a value representing a delay time.
For each cycle to which the CU controlling the opera
tion has access to the data bus, ICTL is decremented by
one. When the ICTL reaches zero, the data currently
on the input bus sector for the PE is gated into the
IDR of the PE. By setting the ICTL registers of PEs
to different values, it is possible to rapidly transfer an
entire data stream from the main memory into a set
of distinct PEs; the ICTL and OCTL can also be used
to transfer data from one PE to another via the bus
system and the data registers in a common CU. In the
case that two or more PEs have identical ICTL con
tents, all such PEs retrieve data from the input data
bus, if two or more PEs have identical OCTL contents,
the data placed on the output data bus is the logical
OR of all ODRs.

V')
V') V')

=> => a:l => a:l a:l
l- I- l-=> => => c.. c.. c..
l- I- l-=> => 0 S a
0

0 0 z: z: z: c:(
c:(c:(

l- I- l-=> => => c.. c.. c..
~ ;::; ~

s~--------~----~----------~
•

~ I

Er-i~1 -+--1 ----rl
Figure 4-The distribution switch

The main memory sUbsystem

The main memory subsystem can be accessed by the
I/O subsystem or the set of CUs, as indicated in Figure
1. Each main memory module is preferred by a par
ticular CU, although any CU can access any module.
The rationale for this organization is to reduce memory
conflicts due to CU access. Previous work indicates
that this main memory organization using core tech
nolog'J is an acceptable design, for most applicationsY

Control unit intercommunication

The mechanism for allowing communication among
the various control units is open to revision and refine
ment as experience in the design of an operating sys
tem progresses. The mechanism should allow a variety
of system implementations ranging from a basic
operating system that is executed on a single CU which
supports only uniprogramming on the remaining CUs,

Parallel Processor for Evaluation Studies 773

to a more sophisticated distributed system that runs on
any CU, perhaps in parallel with itself. This latter
design strategy would also support multiprogramming
of all CUs.

The process identifier is the ID register content. Let
IDK (i) denote the Ktll bit of the ID register in CD
number i. If IDK (i) ;\IDrdj) >0 for some bit K, then
CUi can cooperatively communicate with CU j , and vice
versa; otherwise, no communication is possible between
the two control units. Suppose that in addition, IDK (j)
<" Tn __ {; I .;" ... 0:>11 U 'T'han ("TT. t>o:>n t>"YYlYYllln;t>o:>ta ur;th
--=::::~..LJ.K \~I .L'\J..L ~"'.1. ..1..1. ..L1. '-" '-'1 "-'''''''''' ... "-''-J.LLl.L \A.I. '''''''''v 1'1' ..LvI.

CU j in a privileged manner, (it is not allowed for two
CUs to have exactly identical ID registers) ; privileged
communication implies cooperative communication.

Each CU contains three I-bit registers to aid in
communication: ARMi is used to disable any privileged
interrupt directed to CUi if .i\.RMi = false. Similarl:}T,
ABLEi is set to false if CUi cannot accept an interrupt
in a cooperative manner. The ACK bit is used to
acknowledge the receipt of an interrupt. An interrupt
register contains an address to be branched to when a
cooperative interrupt is received. The Signal register
is used to designate the CD that is to receive a message.

Only some of the CU intercommunication instruc
tions can be executed successfully by CUi if CUi has
privilege with respect to CU j • The PREEMPT instruc
tion allows CUi to interrupt CUj provided that ARM j =
true,. otherwise, the interrupt is refused, and ACKi =
false. (CU j cannot disarm itself.) The preemption
results in CUj being disarmed to prevent other inter
ruptions from occurring, CUj finishing its current
machine instruction execution, saving the instruction
counter in main memory module j at location zero,
and restarting CUj on another code segment after pass
ing an address through the ex registers. CUi then
continues execution.

Once CU j has been preempted by CUh CUi can alter
the ID register of CUj ; the new ID register content is
determined under the following restriction:

IDK(j) ~IDK(i)-y

where

O::;;y::;;IDK (i)

i.e., CUi can define any new ID register content for CUj

(or itself) as long as no bit in ID of CU j is set when
the corresponding bit in CUi is reset. This prevents
a CU from increasing its communicative power either
directly or indirectly. Whenever a preempting CU
returns a preempted CU to its state preceding the in
terruption, it must restore the state of the interrupted
CU.

The above discussion was concerned with communi
cation in a privileged manner; cooperative communica
tion is implemented as follows:

When a SIGNAL instruction is executed by CUj with
ID j == Signalh an interrupt is passed to CUj provided
that ARM j is true and ABLE j is true. The interrupt
activity includes temporarily preventing a PREEMPT,

774 National Computer Conference, 1976

and disabling cooperative interruption. The current
instruction count of the signaled CU j is saved in
memory module j at location 1. The address of the next
instruction is then obtained from the interrupt address
register. CU j is then armed for privileged communica
tion and remains disabled for cooperative communi
cation until an EN ABLE instruction is executed by
CUj • A BLOCK command can be used after a SIGNAL
to wait for a response from the signaled CU.

If a CU is executing in disabled mode, then any
signal directed to the process might be queued on the
process descriptor that has an ID content matching
the signaling CU signal register. No hardware pro
vision is made for actually appending signals to process
descriptors of processes not currently running on a
CU, nor for handling signals to nonexistent processes
since these are software tasks of individual operating
systems. The operating system design must handle
such situations, perhaps in a manner similar to the
message buffering scheme used in the RC 4000 multi
programming scheme.-1

SAMPLE MAP PROGRAMS

Previous machines have often been aimed at par
ticular application areas, e.g., the Illiac IV is primarily
intended for floating point matrix computations, while
PEPE and STARAN have often been used to do non
numeric processing. MAP is an attempt at a design
appropriate for both areas, although it is weak in its
I/O capability. To illustrate the design philosophy, a
brief description of a MAP algorithm is now presented.

A typical numerical algorithm employed in matrix
computation is the Gaussian Elimination Method for
solving a system of linear equations. The method can
be efficiently implemented on MAP as the Gauss-Jordan
method with full pivoting. It is assumed that the
coefficient matrix and column vector of the right sides
of the equations have been stored in the main memory
module of a CU. The method employs n+l PEs for an
n x n system of equations, and each PE is loaded with
one column of the coefficient matrix: the right side
column vector is loaded into the n + 1st PE. PE memory
loading is accomplished by the following code segment
(stated in prose form rather than as mnemonic MAP
instructions) :

1. Clear all Select Registers.
2. Deactivate all PEs but one and set its Select bit 0

(bit 0 corresponds to the condition that the PE
is being loaded).

3. Load a column vector from main memory using
CX to index main memory, PX to index PE
memory.

4. Reset Select bit 0 and set Select bit 1. (Bit 1
indicates that the PE is loaded.)

5. Activate all PEs such that Select bit 1 is reset.
6. If at least one PE is active, go to step 2.

This code segment requires about 10-15 MAP instruc
tions, and is executed n + 1 times. *

In the next part of the program, the elimination
algorithm is implemented. Select bit 0 is used to save
various temporary conditions in searching for a pivot
element, bit 1 marks the PE containing the maximal
element in any row of the coefficient matrix, bit 2
marks columns to the right of the column being re
duced, bit 3 marks the PE containing the columns
currently being reduced, bit 4 indicates that a column
has already been reduced, and bit 5 marks the PE
containing the right side vector. The algorithm re
quires n loops through code that determines the largest
coefficient in a row, and after determining a maximal
coefficient, row transformation is accomplished by
activating all PEs and executing two indexed loads and
stores on the two rows to be interchanged. Column
transformation is implemented by exchanging column
number identifiers stored in the PEs and requires only
4 instructions. (A copy of the original column numbers
must also be saved in each PE in order to trace the
column transformations performed during the execu
tion of the algorithm.) The elimination process re
quires n loops through code containing a division, a
multiplication, and a subtraction, where each operation
is applied to all columns (PEs). The order of time for
executing this Gauss-Jordan algorithm on MAP is n2
compared to n:l on a sequential processor. The algo
rithm could be speeded up by using n2 PEs, or by
skewing matrix entries in the PE memories as is
commonly done in the ILLIAC IV.s The order of the
algorithm reduces to linear time if n2 PEs are used,
since all rows can be reduced simultaneously, and
pivot elements are determined by one associative
instruction.

THE EVALUATION STUDY

As stated in the introduction, MAP is being used as
a medium to test evaluation and monitoring techniques
for associative and array processors. The basis for
much of the work is an interpreter for individual MAP
programs, called MAPSIM.lO The program represents
one CU and an arbitrary number of PEs as required by
a MAP program. It ignores bus and memory conflicts,
but allows one to write and test individual programs
for the machine. Each program can be monitored dur
ing execution, with monitor resolution at the machine
instruction (not microinstruction) level. Using this
method, a detailed description of the effect of any given
job can be measured and the data can be used to drive
other high level models that introduce resource com-

* The PE loading is a sequential task, but the perfonnance can
be increased by loading the PEs one row at a time rather than
by columns. To do this, the ICTL registers of all PEs are used
to "stream load" the rows fro~ main memory, where only one
PE is removing data from the input bus at a time, but the time
between PE load operations is small.

petition due to the existence of multIple l;Us. The
investigations of the memory and bus system design
were carried out in this manner. A drawback to this
approach is that it is difficult to effectively study CU
intercommunication.

N ow that the design has stabilized to some degree,
current evaluation studies are directed at two major
areas: operating system design and user program
measurements. The approach taken in the operating
systems work is to first compare three families of
systems. The first strategy employs a dedicated con
trol unit for the operating system and the remaining 7
CUs are uniprogrammed. The second strategy again
uses a dedicated CU for the operating systems, but
implements multi-programming on the remaining CUs.
The final strategy multiprograms all CUs and executes
the operating system as a set of high priority processes
on all CUs. A comparison of the three strategies is
forthcoming.

User program measurements can be carried out
directly on MAPSIM. In conventional processors, a
typical measurement of a user program results in the
generation of an instruction execution distribution to
determine frequently-used portions of the code. This
measure is appropriate for MAP programs, but ad
ditional information about PE activation/deactivation
is perhaps even more important. Current and future
work on MAP is concerned with the investigation of
such measures, and the implied monitoring tools re
quired to obtain such measures.

ACKNOWLEDGMENT

The National Science Foundation has supported the
study of MAP under Grant number GJ-42251. The
original concept of the machine came from many long
discussions with Clarence Ellis; the following graduate

Parallel Processor for Evaluation Studies 775

stuaents at tne University of Colorado have partici
pated in the subsequent development: Roger Arnold,
Karl Williamson, and John Burke.

REFERENCES

1. Arnold, R. D. and G. J. Nutt, The Architecture of a Multi
Associative Processor, University of Colorado, Department
of Computer Science, Technical Report No. CU-CS-070-75,
June, 1975.

2. Baer, J. L, "A Sl.1YVey of Some Theoretical Aspects of
Multiprocessing," ACM Computing Surveys, Vol. 5, No.1,
pp. 31-80, March, 1973.

3. Barnes, G. H., et aI, "The ILLIAC IV Computer," IEEE
Transactions on Computers, Vol. C-17, No.8, pp. 746-757,
August, 1968.

4. Brinch Hansen, P., "The Nucleus of a Multiprogramming
System," Communications of the ACM, Vol. 13, No.4, pp.
238-241, April, 1970.

5. Campbell, D. J. and \V. J. Heffner, "Measurement and
Analysis of Large Operating Systems during Systems De
velopment," AFIPS Proceedings of the FJCe, Vol. 33, pp.
903-914,1968.

6. Flynn, M. J., "Some Computer Organizations and Their
Effectiveness," IEEE Transactions on Computers, Vol. C-21,
No.9, pp. 948-960, September, 1972.

7. Githens, J. A., "A Fully Parallel Computer for Radar Data
Processing," NAECON '70 Record, pp. 290-297, 1970.

8. Kuck, D. J., "ILLIAC IV Software and Applications Pro
gramming," IEEE Transactions on Computers, Vol. C-17,
No.8, pp. 758-770, August, 1968.

9. Lucas, H. C., "Performance Evaluation and Monitoring,"
ACil-l CO-inputing Surveys, Vo1. 3, No.3, pp. 79-91, Septem
ber, 1971.

10. Nutt, G. J., "Some Uses of Simulation in Systems Design,"
Proceedings of the ACM-NBS Third Symposium on the
Simulation of Computer Systems, pp. 221-228, August, 1975.

11. Nutt, G. J., "Memory and Bus Conflict in an Array Pro
cessor," Submitted for pUblication.

12. Nutt, G. J., "Some Resource Allocation Policies in a Multi
Associative Processor," Submitted for publication.

13. Rudolph, J. A., "A Production Implementation of an Asso
ciative Array Processor," AFIPS Proceedings of the F JCC,
Vol. 41, pp. 229-241, 1972.

Asynchronous speed-independent arbiter in
a form of a hardware control module

by H. SECHOVSKY and S. JURA
Research Institute for Mathematical Machines
Prague, Czechoslovakia

ABSTRACT

The attained parameters and the development trends
of LSI circuits make possible the realization of un
traditional computer structures with higher number of
cooperating processor and control units or modules.
The parallel processes realized in these modules are in
majority mutually asynchronous and the length of
duration of individual parts of these processes and
their mutual time relation cannot be determined in
advance. In hardware realization of such systems it
is often most convenient when the individual modules
behave toward each other like asynchronous speed
independent automata. For interconnection of such
modules and for synchronizing the processes realized in
them it is advantageous to use so-called arbiters (also
called semaphores) whose formal description has been
introduced in the theories of parallel processes.

The text contains a detailed description of a hard
ware construction of the arbiter having the character
of a universal control module guaranteeing the reliable
function at arbitrary time sequence of input requests.
This quality is important in view of the danger of
metastability so that an arbiter cannot be excluded.
In the design of the circuit the simplicity and speed
of function have been especially considered and the
measured time parameters of the arbiter are quoted.

INTRODUCTION

If we analyze the development trends of the computer
technology and the influence (especially of the param
eters) of the LSI circuits on the evolution of the
structure of computer systems, we have to conclude
that the increasing interest in the theories of parallel
processes and multiprocessor, e.g., micro-multipro
cessor systems is conditioned especially by reality,
that the speed of the circuits produced by the tech
nology of the semiconductor integrated circuits is com
ing close to the limit value for this technology, there
fore the achievement of substantially higher speeds by
its further development cannot be expected. Nor in

777

the coming years an essential change in the technology
of computer circuits is to be expected, considering the
facts of low costs, easy mass-production and a high
reliability at the same time-the facts imply that the
semiconductor technology has nowadays no serious
competition. The technology thus defines the speed
limits which cannot be surpassed by one-processor
system. This problem is solved with multiprocessor
systems and other systems with parallel processes that
enable, among other things, the achievement of higher
speeds.

In all such systems, it is necessary to solve the
problem of synchronization of parallel processes and
of allocation of shared sources e.g., memories, periph
erals, registers, information buses etc. This synchro
nization should be solved in hardware in case the
system cannot be designed in the way of synchronous
automata system with common clock signal.

A very broad application in the coordination of
parallel working hardware modules has the arbiter,
having generally n couples of speed-independent input
and output signals: RHA1 ••• Rn,An. (See Figure 1.)
The function of the arbiter is outlined in Figure 1 and
it can be described on Petri-net. (See Figure 2.) The
token from the initial place can fire only one of the
transitions controlled by input signals R1 ••• Rn. The
firing of these transitions is determined partly by the
time sequence of logic ones arriving to inputs R 1 ••• Rn

(R~oAi.=1)--(i RjoAj=O)
J=1
J#

Figure 1

i~
:
I
I

778 National Computer Conference, 1976

R11----~
O~A1

O~A2.

Figure 2

partly by the algorithm of the priority allocation to
these requests. Under references to Petri-net in this
paper, the authors have in mind so-called safe Petri
net, whose properties are described in detail in Refer
ences 1, 4 and 8.

The important quality of the arbiter is the priority
allocation only to one request Ri and sending out the
logic one only to one output Ai. The signals RbAi are
in the hand-shake relation that guarantees the speed
independence of the circuit.4 But the speed-indepen
dence of the couples RbAi is the only regularity that
is guaranteed for the input signals. The arbiter must
work reliably in a common case when the time interval
between leading edges of two requests Ri,R j is not
defined. In this case the occurrence of so-called meta
stable state in the flip-flops of the arbiter is possible.3

,6,7

In addition to the fact that during the metastable state
the flip-flop output signals are outside of the tolerance
field of logic one and logic zero it should be stressed
that occurrence interval of that state is theoretically
unlimited. For the security of reliable function of the
arbiter the metastable state has to be considered and
its unfavorable influence on the outputs Ai must be
eliminated.

Inic;aiing
condition

Figure 3

r -------- - ----I
I I
I I
I r L,.;.;..;~,;"",, __ ...,..._

A2

• An.

CR

Figure 4

CONNECTION AND FUNCTION

For eliminating the undesirable influence of contin
gent metastable state the structure of circuit in Fig
ure 4 has been selected. Let us suppose initially that
the output CR is connected with the inputs CH,CA
and the input signals R i ••• Rn being of zero value. In
this case CR=CH=CA=O, the output gate is closed
and the input one is open. The block denoted D repre
sents a time delay T of the leading edge. In this state
the contingent requests on the inputs R i ••• Rn are re
corded into the input register and at the same time are
detected by the OR gate. On coming request Ri the OR
gate generates signal CR = 1, closing the input gate
and in this way recording of further request is in
hibited. The priority circuit respecting only the record
of the request with highest priority erases in the input
register all the contingent lower ones. Provided that
during the closing of the input gate arises a metastable
state in the input register all the time of its duration
a zero output is generated by the detector of the meta
stable state and through the feed-back forces the rele
vant bit of the input register in the value one.3 ,6,7 This
is shortening the time of duration of the metastable
state. On finishing of the metastable state the output
gate is opened with the delay T. The connection of the
arbiter with four inputs and four outputs is given in
detail in Figure 5. By signals M,CR,CH,CA the algo
rithm of the arbiter can be modified. If M = 1, the
requests with lower priority in the input register are
erased in the described way. If M=O, all the requests
which have had logic one before the closing of the
input gate continue being recorded. But logic one is
transferred only to one of the outputs Ai correspond
ing to the recorded request with the highest priority.
On zero coming to the input of this request the input
gate continues-the opposite of the case M=1-to be

Asynchronous Speed-Independent Arbiter 779

,- - - ---------------- r-------l r-------------------------,
r-----' II I I
, I I I' I

~-----;I--t I I I I A
I I 0 I 1 ~
I I

R1 I I
1

Rz

R3

RI,
I
I
I
I
I II 1 __ . ________________ J L ____ _

C.R

I
I
I
I
I

_1_1!.2 __
! - .~

I
[

A3

Figure ij

closed and the priority is allocated to one of the re
maining recorded requests. This way all the recorded
requests are consecutively executed and then on exe
cuting the last one, the input register is completely
in zero state, signal CR turns to zero and the input
gate reopens.

By the general connection of signals CR, CH and
CA a further modification of the algorithm is possible.
CR and CA represent a couple of speed-independent
signals through which the arbiter can be connected
with any other speed-independent automata. CR has a
purport as a request of the arbiter for the approval
of the priority allocation for the input signals Rl - Rm
signal CA with value one makes this allocation pos
sible. The connection of the signal CH either to CR or
to CA determines whether the input gate will be
closed already after the detection of the first request
Ri or only when logic one is appearing on the input
CA. Between leading edges of signals CR and CA gen
erallya delay of any length can appear.

The block denoted D' in Figure 5 represents the
delay of the trailing edge, blocks denoted DM repre
sent the detectors of metastable state. The metastable
state may occur only on appearance of logic one on the
input Ri. During this state block DM on the one hand
by one of its outputs sets the i-th bit of the input

register to the value one and in this way shortens the
duration of the metastable state, on the other hand by
its second output it inhibits the opening of the output
gate.

Signals CR,CA may be used, e.g., to form an arbiter
with a larger number of inputs by connecting several
smaller arbiters. The principle of such connection is
demonstrated in Figure 6. By the concrete connection
of signals M and CH of individual "elementary" arbi
ters a modification of the allocation algorithm accord
ing to the needs of desired application is possible.

In Figure 7, we can see Petri-net describing the
behavior of the arbiter whose connection corresponds
to Figure 5.

Though the connection in the Figure 5 is compara
tively simple and contains a low number of gates, there
are a number of applications of the arbiter in that the
signals CR,CA,CH,M are not used for any specific
purpose. In many cases like that also only a two-input
arbiter may be used. For these applications the con
nection given in Figure 8 is more advantageous. An
R-S flip-flop represents the input gate, register and
priority circuit at the same time. Expanders SN 7460 N
are used for the detection of the metastable state.

At the initial state, when signals RHR~ are logic zero
the flip-flop is in so-called undefined state when both

780 National Computer Conference, 1976

A1

Figure 6

its outputs are logic ones. The voltage on the resistor
in this state, the same as in the metastable state, is
in the tolerance of logic one and the output gates are
closed. In the case of simultaneous arrival of the
leading edges of the signals RUR2 the output gates
continue to be closed all the time of contingent meta
stable state and they are opened by the detector of
metastable state only when R-S flip-flop turns to the
normal state, when the levels of its outputs are in a
secure distance to the decision level. At this connec
tion, nevertheless, the detector does not shorten the
duration of the metastable state whose length is, theo
retically, unlimited.

(
i-i)

S..:, = L Aj
J -1

Figure 7

"!2SN7ItOON SN 7't60N

Figure 8

If on the contrary an arbiter with a larger number
(e.g., eight) of inputs is needed and the speed requests
do not allow use of the cascade connection (Figure 6),
it is possible after some modification of the connection
to use standard modules MSI but at the cost of lower
universality.

THE EXPERIMENTAL RESULTS

For testing the function of the arbiter a sample
connected according to Figure 5 has been built. On this
sample the reliability of function even for the case of
the occurrence of metastable states has been tested.
The delay of the trailing edge in the block D had been
adjusted T=30 nsec. Three kinds of circuit delay have
been measured. (See Figure 9.) The delay TLH 1 is
defined as the length of the interval between the lead
ing edges Ri and Ai when the others R j =1= Ri are of
logic zero. TLH 2 is defined as the length of the inter
val between trailing edge R j and leading edge Ai when
Ri = 1 and Rk = 0, k=l=i,j. THL is defined as the length
of the interval between trailing edges of signals Ri

Ri. r
TLH1

At: ""'

- TLHZ THL . ~
Rj

AJ
\

THL_ J

Figure 9

and Ai' The found out values in nsec are given in the
following table:

TLH 1 TLH2 THL Remark:
90 110 20 i=l, j =2 without metastable

state
135 i=l,j=2 with metastable

state
90 110 40 i=2, j=1 without metastable

state. regarding the
___ ~ _ __ !L ___ .J! on _L
prlurlLY Ui fi1 at,

metastable state
it changes to j = 1,

j=2.

For the realization of the circuit the integrated cir
cuits of series SN 74 N produced by Texas Instru
ments have been used. In the case of higher speed
requirements the same connection may be realized on
faster elements, e.g., series SN 74 S.

EXAMPLES OF APPLICATION

Besides the application of the arbiter as a control
module in the systems with the structured hardware/,4
the circuit may find a broad application in classic
computer and NC systems. In Figure 10, an applica
tion of arbiter for synchronization of external signal X
by the clock signal Cl is demonstrated. The arbiter
with two inputs is making use of the described prin
ciple of shortening and limiting the length of duration
of the metastable state, flip-flop used is of the type T,
sensible to the leading edge of the signal Cl. Applicat
ing the arbiter we avert the occurrence of metastable
state in the flip-flop T. The contingent signal XT of
the value one passes namely through the arbiter at
least in the time TLH 1 after the leading edge of the
signal CI, e.g., for the mentioned realization of the

y

x

Figure 10

Asynchronous Speed-Independent Arbiter 781

arbiter in 135 nsec. If the period of the clock CI is
long enough the constant value of the signal XT in the
proximity of the leading edge of the clock is guaran
teed.

In Figure 11, we can see a typical application of the
arbiter for the control of communication of modules
M1 ••• Mn with a shared source e.g. with the memory
SM and by that as well for the control of the commu
nication on the bus. The module Mi transmits the

nication with SM. The arbiter reports the allocation
of the priority by logic one on the signal Ai' Mi holds
the logic one on the signal Ri during the communica
tion with the SM, on the arrival of logic zero on the
signal Ri arbiter is released for further operation. The
interconnection of signals CR,CA with SM makes the
priority allocation possible only in the moment when
SM is ready for the communication. The connection
of the input M, M = Rn-2 + Rn-1 + Rm guarantees to the
modules Mn-2,Mn-l.Mn the allocation of SM after a
certain time even in the case of "continuous" queue of
requests R1 ••• Rn-3 having in the arbiter higher priori
ties.

-H-~~--~----'~ - - - ----fY>----------=-i:>n
~--+--_+______.._f _ _ _ I ~ <:~ SM I

.~ TI·
Rn /r.An I

a)

~ --------------------------~i

Ai. ~

~P(S) (Dijks::_a) criticloL secti.DI'I. V(s)

/"equest operation release

b)

Figure 11

782 National Computer Conference; 1976

REFERENCES

1. Dennis, J. B., "Modular Asynchronous Control Structures for
a High Performance Computer," Conference Record of the
Project MAC, Conference on Concurrent Systems and
Parallel Computation, ACM, New York 1970, pp. 55-SO.

2. Plummer, W. W., "Asynchronous Arbiters," IEEE Trans
actions on Computers, Vol. C-21, No.1, January 1972, pp.
37-42.

3. Chaney, MolInar, "Anomalous Behaviour of Synchronizer and

Arbiter Circuits," IEEE Transactions on Computers, April
1973.

4. Dennis, J. B. and S. S. Patil, "Speed Independent Asyn
chronous Circuits," Fourth Hawaii International Conference
on System Sciences, January 1971, pp. 55-5S.

5. Dijkstra, E. W., "Cooperating Sequential Processes," Pro
gramming Languages, Academia Press, 1965.

6. Pechoucek, M., The Connection of Flip-flop Circuit for Pro
cessing of Asynchronous signals, PV 292-75, Patent Registra
tion, CSSR.

7. Jura S., M. Pechoucek and H. Sechovsky, The Asynchronous
Arbiter, PV 7726-75, Patent Registration, CSSR.

Log-sum multiplier

by J. P. AGRAWAL and V. U. REDDY
Indian Institute of Technology
:M:adras, India

ABSTRACT

~~ scheme for implementing a fast parallel multiplier
based on a log-sum method is presented. The scheme
for an n-bit by n-bit multiplication uses Q, least integer
greater than or equal to (n2-n) /4, 4-bit Carry-Look
Ahead (CLA) adders. The worst case time for multi
plying two sign + 12-bit numbers is estimated to be
180 ns when TTL 7400 series I.e.s are used. The
scheme can easily be modified to use M-bit (M>4)
CLA adders if and when available.

INTRODUCTION

Multiplication of an n-bit number A(an an-I' .. al) by
another n-bit number B (bn bn-I ... b l) involves reduc
tion of n2 summands aj' b j , i, j = 1,2, ... n, arranged in
(2n-l) columns and n rows, into one 2n-bit row
(P2n P2n-1 ••• PI), as shown in Figure 1. The sum
mands are generated in parallel using n2 AND-gates.
A number of schemes have been given in the pastl - 4

for implementing fast parallel multipliers which are
different basically in the procedure used for the reduc
tion of summands. Dadda'sl and Wallace's~ schemes
are equally fast and take approximately log1.3n1-bit
adding-stages (successive additions) to reduce the
summands to two G (least integer ~ 2n-2-log1.3n)-bit
numbers, which may be added using a G-bit Carry
Look-Ahead (CLA) adder or a ripple adder. Wallace's
scheme, however, requires a larger number of adders.
The carry-save schemel takes (n -1) I-bit adding
stages to reduce the summands to two (n-l)-bit
numbers. Both Dadda's and the carry-save schemes
require (n2-2n) I-bit full adders (FA) and n I-bit
half adders (RA).

Habibi and Wintz4 have shown that the carry-save
scheme is slower than Dadda's but cheaper since it
makes greater use of 4-bit FAs. However, in both the
schemes the 4-bit F As are connected in such a way
that the fast carry generation property of the 4-bit
FA I.C. chip is not utilized.

The purpose of this paper is to present a log-sum
configuration for the reduction of summands, in which
the numbers of I-bit FAs and I-bit HAs required are

783

the same as in Dadda's and the carry-save schemes.
But these adders can be replaced fully by Q 4-bit F As
taking full advantage of the fast carry generation.
Q is the smallest integer greater than or equal to
(n2-n) /4. Hence, the log-sum scheme is more eco
nomical than any other parallel multiplier and at the
same time yields a high speed of operation. Another
feature of the scheme is that it can easily be modified
to adopt longer FAs if and when I.C. technology makes
them available.

In the second section, we give a general scheme for
reduction of summands using I-bit F As and HAs and
then modify it for 4-bit CLA adders. In the third
section, we present cost and speed analysis for the
log-sum multiplier and compare it in the fourth section
with other schemes. In the fifth section, we discuss
how the scheme can be extended for M-bit F As, and
to include 2's complement multiplications.

THE LOG-SUM MULTIPLIER

In the log-sum method5 the addition of n rows is
performed in log2n adding-stages where each adding
stage reduces the number of rows by a factor of 2.
Therefore, the adder-rows (row of adders to add two
rows) required for the first, second, ... (lOg2n) th

adding-stages are ~ ,~, ... 1, respectively. This

method of addition is used to yield economic and fast
multiplication.

PreliminaTY scheme

The n rows, shown in Figure 1, are grouped into
(n+k)/4(=L) sets (k=0,1,2 or 3 such that L is an
integer), the last set consisting of (4 - k) rows and
the others 4 rows each. The 4 rows in a set are reduced
to two rows by first stage addition and then reduced
to yield one (n + 4) -hit row by second stage addition,
as shown in Figure 2 for n=7. As illustrated in the
Figure, (n-l)-hit and (n+2)-bit adder-rows are re
quired for first stage and second stage additions, re
spectively. Also, it is seen that in this configuration
(i) the outputs of two successive sets always overlap

784 National Computer Conference, 1976

an a 3 a 2 a l

bn b3 b 2 b l

a~bl ... aSb
l aibi aibl rowl

a nb2 ... a:ib 2 aib 2 row 2

anbn_1 an_Ibn_1 a:ibn_1 aibn_1 row n-l
a~bn a~_1 bn a~_2bn aibn rown

P 2n P 2n-1 P 2n-2 P 2n-3 P n P
3 P 2 PI

Figure l-Multiplication of two n-Bit Numbers A (an· .. a l) &
B(bn · .. b l)

in n-bit locations and (ii) each mth set has an half
adder in (n+4m-3)th column. Therefore, outputs of
the mth and (m+ l)th sets are added using one n-bit
adder-row, feeding the overflow bit from this to the
corresponding half adder in (m + 1) th set. This cor
responds to the third stage addition. In the same
manner, only n-bit adder-rows are required for each
of the 4th, 5th, ... and (lOg2n) th adding-stages. The

Set

total number of I-bit full/half adders required in this
scheme may, therefore, be written as,

n n (n n n) N=2(n-I) +4(n+2) + 8+ Hi + ... +2 j n

3n2 n 2

=T+T(1-2-j)=n2 -n, where j=log2(n/4);

which is same as required by Dadda's scheme.

°7 °6 °5 Q4
b7 b6 b5 b4

---- ----

°3 °2 °1
b3 b2 b1

--- -xl x
x I

I
I

D ~First-stage Adder

D -Second-stage Adder

D-Third-stage Adder

)(= Qj.bj, i =1,2 7,
j =.1.2 7.

• = Final Product bits
(i.e.,P14,P13 Pl)

H = Half adder

Figure 2-General scheme for 7-bit x 7-bit log-sum multiplier

Final scheme

A fast and economic multiplier is realized by re
arranging a few adders in the above described scheme
as follows.

(i) All the adders in the final propagation path
which includes the final adding-stage are aligned in
one row.

(ii) After (i) has been completed some adders are
moved from one adder-row to the other and rearranged
such that the number of adders in each row (except
in one row if N/4 is not an integer) is a multiple of 4.
An adder that is moved from one adder-row is re
arranged in another adder-row, as far as possible,
corresponding to the equivalent or higher adding-stage.
This is illustrated in Figure 2 for n=7, where five
adders marked 1 to 5 are rearranged to yield the final
scheme.

(iii) The strings (or rows) of I-bit full/half adders
in (ii) are replaced by the strings of 4-bit adders.

(iv) In general, the least significant bit (Isb) adder
in each adder-row is a half-adder. Such an HA in a
particular adding-stage is interchanged with a corre
sponding FAin a lower adding-stage if it allows to
reduce carry-dependence in that adder-row. This is
illustrated in Figure 4 which gives final scheme for a
12-bit x 12-bit multiplier.

If the above four steps are carried out in the order

To be replaced by
4 bit full adder ~--r-----

x

I x
I X
L.: __ _

Log-Sum Multiplier 785

listed above, logzn successive additions (Le., one 4-bit
addition in each adding-stage) would yield approxi-

mately ~ + 1 Isb's (al· b1 being the first Isb) of the

final product, as seen from Figures 3 and 4. This is so
because the two inputs to the final-adding stage are

n n
the sum of first 2 rows and the sum of last 2 rows,

which are displaced by ~ bits.

COST AND SPEED ANALYSIS

In this section we give expressions for the cost and
the multiplication time of the log-sum multiplier. Costs
and speeds of the 7 -bit x 7 -bit and 12-bit x 12-bit
multipliers are computed from these expressions as
suming Texas Instruments (TI) TTL 7400 series LC.
chips. Prices have been taken from the 1974 "Cramer
Electronics Catalogue" and delays from 1974 Texas
Instruments 'The TTL Data Book for Design Engi
neers'.

Cost estimation

The log-sum multiplier requires n2 AND-gates for
generation of summands and Q 4-bit F As for reduction

OJ ":'b u~ °4 °3 °2 °1
b7 b6 b5 b4 b3 b2 bl

~ >f-
x

(symbols given in Fig.2)

Figure 3-Final scheme for 7-bit x 7-bit log-sum multiplier

786 National Computer Conference; 1976

of summands. Hence, the cost of the log-sum multiplier
may be written as

C=cl·R+c~·Q

where C1 and C 2 are the prices of a quad 2-input AND
gate chip and a 4-bit FA chip, respectively. R is the
least integer greater than or equal to n2/4 and Q is the
least integer greater than or equal to (n2-n) /4.

The 7 -bit x 7 -bit log-sum multiplier requires 49
AND-gates and, hence, 13 quad 2-input AND-gate chips
(SN 7408), and, 11 4-bit FAs (SN 7483A). The
12-bit x 12-bit multiplier requires 36 quad 2-input
AND-gate chips and 33 4-bit F As. The corresponding
costs are about $40 and $115, respectively.

Speed estimation

As indicated earlier, ~ + I Isb's of the final product

are obtained in log2n 4-bit successive additions. The
time required to obtain remaining product bits is

the carry-propagation delay from (~ + 1) th bit to

(2n-l)th bit. Therefore, the multiplication time re
quired by the log-sum multiplier is given as

T)I=tg+tad'IOg2n+tc'(2n-2-~)/4

= tg+tad,log2n+ (3n-4) ·tc/8

i I

where t g is the time required for the generation of
summands (Le., propagation delay of one 2-input
AND-gate), t nd is the addition time for a 4-bit FA and
t(. is the carry-propagation delay of the 4-bit FA.

Maximum values of tg, tad and t c , as given in TI 1974
catalogue, are 27 ns, 24 ns and 16 ns, respectively.
Hence, the worst case multiplication time for n=7 and
n = 12 cases are 130 ns and 180 ns, respectively.

A 7 -bit x 7 -bit multiplier was built on a printed
circuit board, using the scheme given in Figure 3, for
use in a special purpose signal processor. 6 The multi
plication time required for each possible combination
of inputs was measured. The maximum time was
found to be less than 110 ns which is well below the
estimated worst case value of T)f'

COMPARISON WITH OTHER SCHEMES

Cost comparison

The log-sum multiplication scheme is most- econom
ical of all the array multiplier schemes, since it employs
minimum number of 4-bit F As. Each of the other
schemes requires I-bit and/or 2-bit F As in addition to
4-bit F As or can be implemented using larger number
of 4-bit F As. The adders required by the carry-save
scheme, which is more economic than any other past
schemes, are compared with those required by log-sum

a l2 all a10 a9 "a a7 a6 a5 Q, QJ
b l2 b ll b10 bg be ~ bs bS bt. bJ

0--4 til Stagf-adder

(othfr syMbols given in Fig. 2 l

Figure 4-Final scheme for 12-bit x 12-bit log-sum multiplier

k Scheme

0 Log-sum

Carry-save

1 Log-sum

Carry-save

2
T ___ •• _

.L.iVl5-i::)u..J..!J.

Carry-save

3 Log-sum
Carry-save

TABLE I

Number of adders required
4-bit F As 2-bit F As 1-bit F As/HAs

Q
Q_3n

4

Q-1
Q_ 2n+2

4
A 1
"t-.L

Q_ n +2
4

Q
Q

1
n

n

scheme for various values of k (defined in an earlier
section) in Table I.
As seen from this table, the cost of the log-sum multi
plier is at most equal to that of carry-save multiplier.

Speed comparison

Dadda's scheme requires roughly log1.5n= 1.71 log2n
adding stages. The multiplication time required by
Dadda's scheme, therefore, is approximately given by

T t t 1 7 I 2n-2-1.711og2n
:\m= g+ ad' • 1 Og2n + 4 ·te

assuming 4-bit FAs throughout (including the final
addition). It is clear from the expressions for TM and
T:\lD that for all n, T:\ID~T:\I' The worst case values of
T:\I and T:\ID for n=7, 12 and 32 are given in Table II.
If a G (let G be the smallest integer~)-bit CLA adder,
built from Schottky TTL I.C. chips, is employed to
add the final two numbers in Dadda's scheme, T)ID
reduces significantly. However (i) use of Schottky
TTL I.C.s increases the multiplier cost enormously,
and (ii) T:\ID reduces to less than or equal to T:\I only
for large values of n (>32).

Pezaris' has given a 40-ns 17-bit x 17-bit array
multiplier, using basically the carry-save scheme. How
ever, he has used ECL logic and, hence, the cost and
speed of his multiplier cannot be compared with those

TABLE II

Log-sum scheme Dadda's scheme
n TM (ns) TMD(ns)

7 130 170
12 180 230
32 330 450

Log-Sum Multiplier 787

of log-sum multiplier using TTL logic, presented in
this paper.

DISCUSSION

The configuration presented in this paper yields a
fast multiplier using the optimum number of 4-bit CLA
adders. The scheme can be adapted to M-bit CLA
adders by making the number of adders in each row a
multiple of lVI instead of a multiple of 4 in step (ii) of
the second section of this paper.

The scheme has been presented for the multiplica
tion of two sign+n-hit numbers. The sign of the prod
uct is generated separately. Baugh and WooleyS have
given an algorithm for 2's complement array multi
plier. in which the multiplication process is same as
given in Figure 1 except that the number of rows
increases from n to n+2. Therefore, the 2's comple
ment multiplication can easily be implemented by log
sum scheme.

A 4-bit x 4-bit multiplier from TI (requiring two
chips, SN 74284 and SN 74285) costs approximately
$26, and, the worst case and typical values of multi
plication time are 60 ns and 40 ns, respectively. The
same multiplier based on log-sum scheme costs ap
proximated $11, while the worst case and typical values
of multiplication time are approximately same as
above.

Finally, the log-sum scheme fully exploits both the
cost effectiveness and speed effectiveness of the 4-bit
F As and, therefore, is well suited for multipliers in
special purpose hardware requiring high speeds of
operation.

REFERENCES

1. Dadda, L., "Some schemes for parallel multipliers," Alta
Frequenza, Vol. 34, pp. 349-356, March 1965.

2. Wallace, C. S., "A suggestion for a fast multiplier," IEEE
Trans. Electronic Computers, Vol. EC-13, pp. 14-17., Feb.
1964.

3. Braun, E. L., Digital Computer Design. New York, Academic
Press, 1963.

4. Habibi, A. and P. A. Wintz, "Fast multipliers," IEEE Trans.
Computers (Short notes), Vol. C-19, pp. 153-157, Feb. 1970.

5. Kuck, D. J., "Illiac IV software and application program
ming," IEEE Trans. Computers, Vol. 17, pp. 758-770, August
1968.

6. Agrawal, J. P., V. U. Reddy and H. Renganathan, Design
and Test Evaluation of Arithmetic Unit for FFT Processor,
Technical Report, CSD/TR/A12-2/19, Sept. 1974, lIT,
Madras.

7.

8.

Pezaris, S. D., "A 40-ns 17-bit by 17-bit array multiplier,"
IEEE Trans. Computers (Short Notes), C-20, pp. 442-447,
April 1971.
Baugh, C. R. and B. A. Wooley, "A two's complement parallel
array multiplication algorithm," IEEE Trans. Computers,
Vol. C-22, pp. 1045-1047, December 1973.

Distributed information systems

by GRAYCE M. BOOTH
Honeywell Information Systems
Phoenix, Arizona

ABSTRACT

Distributed information systems represent an increas
ingly important trend to computer users. Distributed
processing is a technique for implementing a single
logical set of processing functions across a number of
physical devices, so that each performs some part of
the total processing required. Distributed processing
is often accompanied by the formation of a distributed
database. A distributed database exists when the data
elements stored at multiple locations are interrelated,
or if a process (program execution) at one location
requires access to data stored at another location. Ex
amples of how these techniques are being used are
provided, with comments on the advantages and disad
vantages of the distribution of processing and data
bases in the current state-of-the-art.

INTRODUCTION

This paper discusses distributed information systems
-what they are, and why they will become increas
ingly important to computer users. Distributed sys
tems-also called distributed database systems-are in
the early stages of development as yet, so much of this
discussion will be theoretical. Whenever possible, how
ever, practical examples will be supplied from systems
now being planned, implemented, or in use.

DEFINITIONS

In/ormation network

A distributed database system always exists within
an information network environment. An information
network is a combination of information processing
facilities, data communications facilities, and endpoint
facilities. Together these support the movement and
processing of files, programs, data, messages, and
transactions. An example of a complex information
network is shown in Figure 1.

Data communications facilities include the transmis
sion ("telephone") lines, coupling devices such as

789

modems, and concentration devices such as multi
plexors and terminal concentrators. The endpoint fa-
cilities include terminal devices, and also satellite
processors used both as endpoints and for localized
information processing.

Distributed processing

Distributed processing exists when a single logical
set of processing functions is implemented across a
number of physical devices, so that each performs
some part of the total processing required. Two types
of distributed processing have been defined, horizontal
and hierarchical (or vertical) .

In horizontal distribution all devices cooperate at an
equal level, logically, to perform a set of tasks. There
is no hierarchical relationship among the devices.

In vertical distribution the interconnected devices
form a hierarchy, sharing tasks in a structured way
with each component to some degree controlled by the
higher-level member (s) of the hierarchy.

In a complex system, such as the Figure 1 example,
both types of distributed processing may be present.
Horizontal distribution is shown in the example be-

INFORMATION
PROCESSING
FACILITIES

TAANSMISSlON liNE

T TERMINAL

,--_~\" r

SATE.LL.I":-E.
PRoceSSOR I

I I
J

~ 1 ~
Figure I-Information network

790 National Computer Conference, 1976

tween the two information processors, and hierarchical
distribution is shown between Information Processor
#2 and its satellite processor.

Distributed database

Whenever multiple processing devices are configured
in an information network the possibility of a dis
tributed database exists. In the broadest sense the data
stored at all locations could be considered to form a
distributed database. However, for practical purposes
a distributed database exists only when the data ele
ments at multiple locations are interrelated, or if a
process (program execution) at one location requires
access to data stored at another location.

A distributed database may consist of a single copy
of a set of information, divided into increments which
reside at multiple locations. This form is called a parti
tioned database.

A distributed database may also consist of a set of
information, all or selected parts of which is copied at
two or more locations. This form is called a replicated
database. A single distributed system may make use
of both of these forms of database.

EXAMPLE SYSTEMS

This section presents a small sample of distributed
database systems which are now in the planning and/or
implementation process.

Example #1

The first example, shown in Figure 2, is a hori
zontally distributed system. Two large-scale informa
tion processors, located remotely from each other, are
linked using communications facilities.

SYSTEM A

IN CITY A LARGE·SCALE

INFORMATION
PROCESSO.R

LARGE·SCALE
INFORMATION

PROCESSOR

SYSTEM B
IN CITY B

Figure 2-Horizontally distributed system

The two computers communicate by exchanging
files. A file may be a source-level program; in the
company shown most program development takes place
in City A, and copies of new programs are transmitted
to City B for use there.

A file may also represent a job (an executable pro
gram and its accompanying input/output data), which
is transmitted from one information processor to the
other for load leveling purposes.

This example represents a "loosely-coupled" dis
tributed system. The two information processors are
largely independent, and exchange data only occasion
ally. A distributed database is not required to support
this mode of operation.

Example #2

A manufacturing control system (Figure 3) is the
second example. In this system the large-scale infor
mation processor is not directly involved in real-time
process control. It maintains the master database,
which is used for overall scheduling and control of the
man ufacturing process.

At the next level in the hierarchy there are several
satellite processors, implemented using minicomputers.
Each satellite handles a part of the manufacturing
process, and maintains its local database, which is a
subset of the central database and contains only the
data applicable to the local task. This is an example of
a replicated database.

The next lower level of the hierarchy consists of
terminal concentrators. These minicomputers link the
satellites to the lowest-level devices, concentrating data
from many devices onto a few communications links
and/or direct cables to each satellite processor.

The lowest-level minis (in some cases microcom
puters are used) monitor and control the factory equip-

Figure 3-Hierarchically distributed system

ment. Process status information is sent up to the satel
lite processors, while control commands are received
from the satellites to guide the manufacturing process.

Distributed system architecture

The two major forms of distributed system archi
tecture are horizontal distribution and vertical (or
hierarchical) distribution. In a very complex system
both forms ma:l be used.

HORIZONTALLY DISTRIBUTED PROCESSING

The horizontal distribution of processing functions
involves the interconnection of two or more com
ponents which are logically equal. Note the term
"logically"; the components may be physically unlike
and of different capacity and power. The important
aspect is their logical relationship within the dis
tributed system.

In a horizontally distributed system multiple infor
mation processors most often cooperate to exchange
jobs and/or transactions so that the total workload
is suitably distributed. An example is shown in
Figure 4.

The example shows three information processors,
geographically distributed but interconnected via data
communications facilities.

In a configuration of this type each information
processor will normally handle jobs/transactions which
originate locally. The interconnections can be used for
load leveling among the three information processors.
Candidates for load leveling could range an the way
from compilations to complex jobs which require that
the referenced files be transferred between cities with
the jobs.

This illustrates one trend among current users; the
interconnection of hitherto independent computers to

Figure 4--Interconnected computer service centers

)
/

/"

Distributed Information Systems 791

gain the advantages of load leveling and common ac
cess to all files (which may form a distributed data
base) .

HIERARCHICALLY DISTRIBUTED PROCESSING

Probably the most basic rule in designing hierarchi
cally distributed systems is to spread the processing
load up and down the hierarchy by locating functions
'\-",here they can be performed with the best cost/per
formance ratio. Functions which are required re
peatedly and with quick response are moved out (or
down) into the hierarchy as far as feasible. Other
functions less often executed and/or with less stringent
response requirements tend to move upward toward
the center of the hierarchy.

As functions are relocated within the hierarchy the
data which supports these functions must move with
them, leading to the formation of distributed data
bases.

An example three-level hierarchy is shown in Fig
ure 5. At the top of the hierarchy is a central comput
ing complex, consisting of one or more large-scale
information processors. At the next level there are
several satellite processors, placed in factory locations,
warehouses, or bank branches, depending on the type
of application. At the lowest level there is a potentially
large number of controllers; to which the terminals
and/or other input/output devices (such as process
control equipment) are attached.

It is easy to visualize hierarchical systems with
fewer levels or with more levels, although three is
probably most typical today. A two-level hierarchy
~ight ~mit the terminal controllers and handle the
terminal/device interfaces directly from the satellite
processors. A four-level hierarchy might separate each
satellite processor into a local information processor
and a terminal concentrator.

TERMINAL!

DEVIC~ \
CONTROLLERS

'----7~...--\~

CENTRAL
INFORMATION
PROCESSOR lSI

6
I

I \

TERMINALS AND/OR OTHER INPUT/ou'-'UT DEVICES

Figure 5-Computer hierarchy

7 \

792 National Computer Conference, 1976

Distributed database architecture

In many distributed processing systems there is a
strong probability that a distributed database will be
required. Distributed databases can be separated into
two categories:

• Partitioned databases
• Replicated databases

PARTITIONED DATABASES

The first category of distributed database exists
when a conceptual database is separated into sections
and spread across multiple computers. The term "con
ceptual" is used because in general a single database
is not created and then partitioned; instead, the data
base is designed as a logical entity but actually only
created in the form of its partitions. The separate sec
tions, because of their interrelationship, logically form
a single database.

Database access partitioning

Database partitioning often follows the natural
distribution of database access requirements.

As an example, consider a wholesale company with
two information processors. Their total database will
probably be split into two partitions, and one attached
to each computer. This separates both the processing
load and the database accesses between the two infor
mation processors. If the company operates nation
wide within the United States, the information proces
sors might be located as shown in Figure 6.

In the example system it is logical to locate database
partitions heavily accessed by east coast users at the
eastern information processor and locate those most

Figure 6-Geographically partitioned database

accessed by west coast users at the western informa
tion processor. Accesses from intermediate locations
must be equitably distributed between the two com
puters.

An important reason for geographical grouping of
data is the cost of transmitting data to/from remote
locations. In general, the shorter the transmission
distance the lower the cost .

In the Figure 6 example provision must be made for
at least some use from outside of the area where the
database partition is located. The east coast database
partition will no doubt sometimes be accessed from
west coast locations, and vice versa. In a distributed
database system such accesses must be allowed. How
ever, the great majority of the accesses to each section
of the database will originate locally. If this is not the
case, the database has not been partitioned correctly.

Vertical hierarchy partitioning

Another example of the use of a partitioned database
is shown in Figure 7. In this case the database is parti
tioned over a hierarchy, rather than across a hori
zontally distributed system.

This example shows a processing hierarchy which
corresponds to the organizational hierarchy-a fairly
typical case. The large-scale information processor
handles corporate-level processing, with a corporate
database attached. Each division has its own satellite
processor-two of these are shown. Each divisional
satellite processor has associated with it a satellite
database. This example assumes that there is no dupli
cation of information among the databases shown. In
effect, therefore, the data elements at all locations form
a corporate database, which has been partitioned
across the hierarchy.

CORPORATE [T_

TERMINALS 1: T

DIVISIONAL
PROCESSING
CENTERS

~
DIV A TERMINALS

LARGE·SCALE
CORPORATE

INFORMATION
PROCESSOR

~
DIV..!!..TERMINALS

Figure 7-Vertically partitioned database

Information is exchanged in both directions across
the hierarchy. Corporate-level reports require infor
mation from the divisional database for consolidation
with corporate data. Data also travels down the
hierarchy, as goals and budgets are established at the
corporate level and are passed down to the divisional
level.

REPLICATED DATABASES

The replication of all or part of a database at two
or more locations is another way to create a distributed
database.

An example of the use of a replicated database is
shown in the Figure 8 illustration of a complex banking
system formed of the interconnection of two hier
archies.

In this system the central information processors
maintain the master database of customer accounts,
with the total set of customer records partitioned be
tween the two computers. Each satellite processor
maintains a database containing the accounts for its
local customers. Each local database is created by
copying the necessary information from one of the
partitions of the central database.

The local databases are essentially work files, re
freshed each night from the master database. On-line
activity during the day is posted to the local databases;
these are used for withdrawal authorization and simi
lar functions. At night all activity is batched and used
to update the master database, from which new local
databases are then created, and the cycle repeats.

Distributed database system use

The two forms of distributed system architecture
horizontal distribution and hierarchical distribution
-and the two categories of distributed database
replicated database and partitioned database-can be
combined in a variety of ways.

Figure 8-Complex banking system

Distributed Information Systems 793

DYNAMIC LOAD LEVELING

A distributed system can be used to dynamically
spread the total processing/database access load across
the available computers. In general, this mode of use
is associated with horizontally distributed systems.

In a relatively straightforward situation an organi
zation might have three identical information proces
sors, as shown earlier in the Figure 4 example.

If all three information processors have the same
capabilities, then jobs/transactions can be moved
freely among them. It may be desirable to execute a
specific job in a particular computer because it requires
access to a database associated with that computer. On
other occasions it may be desirable to move jobs, pos
sibly accompanied by their data, from an overloaded
mrormation processor to one which has available
capacity. The choices for load leveling can be sum
marized as follows:

• Move the process to the data
• Move the data to the process

In a batch-oriented environment the tendency is to
transmit a job, or a subdivision of a job, to the infor
mation processor where the database is located. Be
cause a batch job often does extensive processing
against the database, and database size is typically
large, it is more economical to transmit the job and its
input/output data than to transmit the database.

In the Figure 4 example, if a job is entered at City A
but requires access to Database B, then the job will
normally be transmitted to Information Processor B,
executed there, and output returned to City A if neces
sary.

In inquiry/response applications, in contrast to batch
processing, usually only a small part of the database is
accessed. It is therefore feasible to consider trans
mitting the data to the process and returning only up
dates (if any) to the computer where the data is stored.
In this case the process, as specified by its process-state
and program, may be considerably larger than the data
involved.

STATIC LOAD LEVELING

In the second method of organizing a distributed
database system the total load is leveled by preassign
ing functions and database segments to processors
statically.

This method is most often used in a hierarchically
distributed system, which may be formed of unlike
computers; i.e., large-scale information processors,
minicomputers, terminaljdevice controllers, and micro
computers.

In this situation control of a distributed database
is somewhat less complex than in the preceding case.
The functions which must be supplied are: (1) provide
remote as well as local access to parts of the distributed

794 National Computer Conference, 1976

database; and (2) move parts of the database up and
down the hierarchy.

Referring to the complex banking system shown
earlier in Figure 8, in this system enough information
is included in each satellite processor's database to
handle approximately 80 percent of the transactions
which originate at the local terminals. Deposits and
withdrawals can be handled by the satellite, provided
that the customer's home branch is within the satellite
processor's local area.

Conditions which the satellite cannot handle include
withdrawals for a customer whose account is in a
remote branch, and complex transactions such as loan
applications and credit card applications. For this
particular bank 80 percent of all transactions can be
handled by application programs resident in the satel
lite processors, working with their local databases.
The complex transactions are sent up to the large-scale
information processors; these have a more complete
set of application programs and a much larger data
base.

Perhaps the most complicated case to handle occurs
when a customer enters a branch remote from the
branch at which his account is maintained, and re
quests a withdrawal. Approximately 3 percent to 5 per
cent of all transactions are of this type.

In this case the withdrawal transaction is passed on
by the satellite processor where entered, and travels up
the hierarchy to the nearest central information pro
cessor. From there it is passed, via the other informa
tion processor if necessary, to the satellite which
handles the customer's home branch. The withdrawal
is processed by that satellite, using its local database,
and the response is returned to the satellite where the
transaction entered.

The banking system is a good illustration of the
principles of distributing functions-application pro
cessing-and database information as close as feasible
to the point of transaction origination. It also illus
trates the principles of centralizing the handling of
small numbers of complex transactions which cannot
economically be handled by each of the satellite pro
cessors.

SUMMARY

Today the computer industry and its users are in the
early stages of a developing trend toward the use of
distributed database systems. Not all information sys
tem users will follow this trend; many will continue
to be served satisfactorily by more conventional cen
tralized system structures.

However, advances in both hardware and software
technology will make distributed architectures attrac
tive to an increasing number of users. Information
networks will become more and more common in the
next five to ten years. Accompanying these informa
tion networks and distributed system architectures
will be an increased use of distributed databases.

These distributed database systems, although com
plex, will provide a degree of efficiency and cost/effec
tiveness often impossible to achieve in centralized sys
tem architecture.

ACKNOWLEDGEMENTS

I am indebted to many of my colleagues at Honeywell
Information Systems, especially the Distributed Pro
cessing Technology Group under M. Canepa, for their
significant contributions to this work.

Error detection in data base systems*

by MICHAEL HAMMER

Cambridge, Massachusetts

ABSTRACT

Incorrect data pOSeS a serious impediment to the effec
tive use of computerized data bases. Conventional ap
proaches to the design and implementation of auto
mated data error detection systems are inadequate for
large and complex data bases. Partly, this derives from
the inherent intricacy of the problem, with decisions
being required as to what checks to perform, how and
when to do the checking, and how to respond should an
error be found; writing procedures to accomplish these
functions is a difficult programming task. Also at fault
is the unrealistic and overly simplistic view of data
correctness embodied in most contemporary systems.

"Intelligent" data checking systems are required,
which possess more extensive knowledge of the data
base environment. They will need to understand the
structure of the world which the data base models; the
way the data base is used, and the relative importance
of its various components; the sources of the errors
that might occur and the costs of detecting them; and
the patterns and rates of errors that actually do occur.
Such a system would then be in a position to detect a
wide range of errors, allocating its resources in a sys
tematic fashion and responding appropriately to differ
ent error situations.

INTRODUCTION

It is a truism that any decision-making system is only
as good as the data which it uses; this is especially true
of computer-based information systems. Yet while the
number and complexity of such information systems
have been dramatically increasing in the last few years,
supported by great enhancements in the technology of
data base management systems, comparatively little
has been done to assure the quality and reliability of
the data on which these systems depend. Many com
puterized data bases in use today suffer from high error
rates in the data they receive, and are consequently

* This research was supported by the Advanced Research
Projects Agency of the Department of Defense and was moni
tored by the Office of Naval Research under contract number
N00014-75-0661.

795

riddled with bad data. And with incorrect data, the
most efficient and sophisticated system is well-nigh
useless.

There are numerous potential sources of error in a
computer data base. Some of these originate in the
computer system itself, deriving from such causes as
hardware failure or interfering concurrent users; how
ever, these are generally secondary sources and can be
controlled by existing technology. The maj or error
problem lies in data that arrives at the computer al
ready corrupted. The possible reasons for this corrup
tion are manifold, including human error in the initial
recording or formatting of the data; faulty transcrip
tion of the data, either by human or machine (e.g., OCR
scanners) ; accidentally lost, forgotten, or delayed data;
deliberately falsified or omitted data; and the like. It
is also useful to include in our notion of erroneous data
those cases where no error has occured in the tran
scription or transmission of the data, but rather where
the data faithfully represent an illegal or impossible
event. That is, the error is not in the data, but in the
information it conveys.

In this paper, we consider the problem of detecting
errors in data bases. We begin with a re-examination
of the concept of data errors, and consider both the
problems that they can cause and the difficulties that
can arise from attempts to detect them. This leads us
to consider the issues and problems of error detection,
and the inadequacies of the current technology in this
field. We proceed on the basis of this analysis to pro
pose an alternative way of thinking about data integ
rity, an approach which has major implications for
the design of error detection systems.

DATA ERRORS AND DATA INTEGRITY

It is worthwhile to re-examine the concept of error
in the context of a data base. A data base is not just a
collection of values; it serves as a model of some lim
ited universe. At every point in time, the contents of
the data base represent some configuration of that ap
plication world. Every such world is governed by some
set of rules that determines the legitimacy or plausi
bility of its states, that specifies which configurations of

796 National Computer Conference, 1976

the world are reasonable. Consequently, every correct
version of the data base must obey these rules as well.
If the values in the data base do not represent a legal
configuration of the world, then there is' an error in the
data base.

In addition, every world has rules which do not con
strain its instantaneous versions, but rather restrict
the legitimate transitions between its valid configura
tions. Such rules are not violated by particular in
stances of the data base, by illegal transformations
of the data base from one consistent version to another.
For example, the rule that "salaries do not decrease"
would be violated by a change to the data base which
decreased some salary, though both the before and
after states of the change might be internally consis
tent and legitimate.

The foregoing concept has been referred to as the
"logical consistency" or "semantic integrity" of a data
base.1 ,3,4,5,7 This property is violated when the data
base no longer reflects a legal world instance, or when a
change is made to the data base that does not obey the
constraints on world actions.

It is useful to consider two generalizations of the
foregoing idea. First of all, many application domains
are not governed exclusively by rules of a black-or
white character, which specify certain situations as
perfectly legal and all others as totally illegitimate.
Rather many worlds make extensive use of the notions
of probability and likelihood. For example, it may not
be impossible for an employee to get a 100 % raise, but
it is implausible. Therefore, we could not immediately
classify data attesting to such a condition as being er
roneous, but we would have to look at it askance; and
should we note many such instances, our skepticism
would begin to rise.

The second generalization is that errors are really
just one kind of exceptional condition. Data that re
flects situations that are in the norm can, in some sense,
be said to have been anticipated, and so their occur
rence requires no system response. However, unusual
data, that either is faulty or represents a surprising
turn of events, is noteworthy and demands special at
tention and response. Thus, any violation of the rules
of a world model, whether caused by faulty data or by
an illegal activity, requires detection.

We can identify several types of errors in a data
base, which are of increasing complexity and difficulty
to detect.

1. Most simply, an individual value which is inap
propriate for the field which holds it. For example, the
value may be of the wrong data type (e.g., a salary
which is not numeric) or of the wrong magnitude (e.g.,
a salary less than $4000) .6

2. An inconsistency between different fields of the
same record. For example, an individual's salary may
not be consistent with his job classification. Here we
encounter the problem of localizing the error: though
we know which record is faulty, we have to determine

which of the two fields is the one causing the problem.
We may have to draw upon additional information to
resolve this.

3. An inconsistency between field (s) of one record
and fields (s) of related record (s). For example, there
might be a rule that no individual's salary may be
greater than that of his manager. Should this rule be
violated by the data base at some point, the error could
only be localized to one of two possible offending
records.

4. Some global pattern out of order in some set of
records or in the data base as a whole. This would be
a violation of some restriction, not on individual entities
of the application domain, but on collections of them.
These global patterns may involve aggregate functions
(the average salary of all employees should not exceed
$12,000), functionality relationships (every depart
ment has exactly one manager), .and subset require
ments (every manager is also an employee). These
global pattern violations usually indicate not the pres
ence of some particular faulty value, but rather of a
general trend which violates expected norms. In these
cases, it is often not the data that is wrong, but the
events that they report, or sometimes even the the rules
which define right and wrong in this environment.

5. Missing data. This notion includes blank fields,
obsolete values (the new data is missing), entire rec
ords which are referenced but cannot be found, and
lacking data which cannot be localized.

DATA ERRORS VERSUS DATA CHECKING

The hazards of allowing erroneous data into a data
base hardly need belaboring. They include the obvious
results of improperly executed operational activities
and faulty decisions based on incorrect information.
But bad data can also cause the malfunction.of applica
tion programs that use the data base and can even de
grade the performance of the data management soft
ware itself, sometimes to the point of failure; this
occurs because programs frequently implicitly assume
that the data which they manipulate are semantically
reasonable and consequently satisfy various criteria.
On a more systemic level, erroneous data can destroy
the confidence of an organization's personnel in the
entire information system, with a deleterious impact
on morale; frequently the result is an atmosphere
which fosters even higher error rates, due to negligence
and disinterest.

While it is easy to recognize the dangers of allowing
erroneous data into a data base, there are also poten
tial hazards in attempting to prevent this eventuality
from occurring. The major pitfall in this regard is an
overzealous commitment to the notion of data correct
ness, whereby the error detection process becomes an
end in itself. This condition results from a loss of per
spective, wherein the actual dangers of the errors that
do occur are not accurately assessed nor the costs of

their detection weighed against the damage they can
cause.

In reality, not all data errors are of equal significance
in the context of a particular information system. Dif
ferent parts of a data base are used for different pur
poses, and consequently have unequal degrees of im
portance; this ought to be recognized by the error
detection system. Any aspect of the data base may be
said to have both a "sensitivity" and an "impact" with
respect to its being in error. For example. the salary
field in a personnel file is very sensitive to error; any
faulty value will give rise to an improper action
(namely, the cutting of an incorrect salary check). On
the other hand, the age field, if used primarily in pro
jecting future manpower requirements, is compara
tively insensitive; it would take many erroneous values
to diminish the utility of the aggregate of the age field
values. Yet the potential impact of the latter error
situation may be much greater; a bad high level de
cision, in contrast to one inaccurate action. It would
be appropriate, then, for a data checking system to
expend its resources in proportion to the importance
and severity of the errors it is trying to detect.

If the foregoing idea is not appreciated, a dispro
portionate amount of system resource may be invested
in error checking, well beyond what it realistically de
serves. This investment may manifest itself in the
expense of constructing a powerful and "complete"
error checker, or in the actual processor time allocated
to this function. There may be more insidious side
effects as well: over-emphasis on error detection may
impair the performance of the data management system
as a whole. Excessive timidity in the presence of pos
sible errors can delay the entire decision-making proc
ess, or may even reduce the over-all functionality of
the whole information system. On the other hand, an
unwarranted over-confidence in a faultily performing
error checking system can lead to a false level of con
fidence in a data base that may be in fact contaminated
with much bad data.

CONVENTIONAL APPROACHES

The state-of-the-art in automatic error detection/
correction has not been highly developed. Most data
editing that is currently done is usually confined to
the simplest validity checks, assuring that various fields
are of the appropriate data types or are within specified
ranges. The structure of mc£~ error systems is that
they are comprised of a collection of hand-coded, special
purpose procedures (written in assembly code or some
conventional programming language), each of which
is designed to monitor some particular transaction with
the data base, and assure both that the transaction is
legal and that it leaves the data base in a consistent
state. These programs are generally entirely ad hoc,
and follow no well-defined approach or methodology.2

This approach to error detection does not satisfac-

Error Detection in Data Base Systems 797

torily address the problem of complexity. Any data
base that represents a real world system of interest is
almost certain to be governed by a large and rich set of
complex rules which delimit the legality of its data
values. To reliably and effectively capture these rules
in a disconnected set of procedures written in a con
ventional programming language is a task that strains
the effective capability of contemporary programming
technology.

In consequence, current data checking systems are
frequently verjr expensi,re to build and, once built, are
often highly unreliable. Furthermore, they are almost
impossible to modify in an orderly and consistent way
in order to meet new requirements, either in terms of
evolving definitions of the errors to be detected or in
modified characteristics of the operating environment.

Conventional methods of error detection usually
check for error conditions on the occasion of every
(primitive) update (insert, modify, delete) to the data
base. This is expensive and can also lead to anomalous
results. Consider for instance the restriction that no
employee is to make more than his manager, and a
series of transactions that increments everyone's salary
by 8 percent. If an employee's raise is processed be
fore his manager's, application of the test would com
pare a new salary with an old one and might raise a
spurious flag, reflecting a transient condition in the
data base.

In addition, current error systems are cumbersome,
relying on primitive brute-force techniques to do the
data checking; in general, they operate in a very in
efficient manner. Partly this is a consequence of the
complexity problem; the incorporation of any but the
simplest techniques in the system structure described
above might topple the entire structure. In another
sense, this clumsiness is a result of the rigid and in
flexible view of data correctness alluded to earlier.
In this view, every datum is viewed as being either
correct or incorrect, and all errors are assumed to be
catastrophes of equal magnitude. There is no apprecia
tion of the fact that while some fields must be error
free, others (because of the way they are used in the
information system) can tolerate some measure of
error; nor does it take into account the concept that the
severity of an error might be measured in terms of its
deviance from a legitimate value. Thus there is usually
little relation between the importance of an error and
the amount of resource expended to detect it.

N or does the conventional system structure provide
a systematic capacity for response to an error situation.
Once the presence of an error has been detected, it is
then necessary to localize the error and specify exactly
which data value is at fault; in many cases, the state
of-the-art is incapable of doing this satisfactorily. After
an error has been identified, there are several possible
responses. The options include rejecting the erroneous
data; allowing it into the data base, signalling its occur
rence and/or marking it as questionable; putting it

798 National Computer Conference, 1976

into a suspended status, pending the receipt of addi
tional clarifying information; attempting automatic
error correction. The choice of response should be
determined by the importance of the error, the relia
bility of the error detection procedure; and the particu
lars of what causes the error. However, current sys
tems are inflexible in this regard. They are especially
weak in automatic error correction, relying on ad hoc
techniques which can easily go astray.

All of these problems are greatly exacerbated in the
context of large data bases with high data input rates.
There the requirements of the data checking system
can easily overwhelm the available system resources.
These circumstances have resulted in data bases that
are full of bad data despite extensive data checking,
and whose utility is grossly restricted because of the
unreliability of much of the data.

In some applications, the current technology is ade
quate, because of the simplicity of the world of appli
cation and the consequent limited range of possible
data errors. However, the current state-of-the-art will
not be able to meet the demands of data bases of in
creasing size, complexity, and sensitivity. As data bases
are used to model ever larger and richer domains, and
are relied on for more critical decisions, the need for
reliable data will be ever more pressing and more diffi
cult to satisfy.

AN ALTERNATIVE APPROACH

In view of the problems that have arisen as a result
of a non-systematic approach to error detection, we
propose the following basic principles to be adhered
to in the design of error detection systems.

1. Expect errors, and be prepared to fail because
of them in a "soft" manner. Do not design the kernel
of the information system under the hypothesis that
all data is correct, and then delegate to an error-check
ing subsystem the responsibility of bringing about that
state of affairs. The goal of perfectly correct data is
an unattainable one. We can minimize the presence of
certain errors subject to various constraints, but can
not expect to eliminate them altogether.

2. Formulate the rules of the application world first;
then relate them to the constructs of the data base;
and then identify potential logical errors in terms of
the data base transactions. Attempt to ensure the com
pleteness and consistency of the world model before
proceeding further.

3. Evaluate the importance of the various error
types with respect to the decision process, considering
both sensitivity and impact. Allocate the resources
of the data checking system in line with this evaluation.

4. Anticipate the kinds of errors that may occur,
identifying their sources, estimating their relative
frequencies, and determining the costs of defecting
them. Be prepared to adapt to changes in any of these

factors: in the definitions of what constitutes an error;
in patterns of actual error occurrence; in relative im
portance of errors; and in the costs of error detection.
Learn from historical situations and detect emerging
patterns as well.

We believe it is possible to construct an error-detec
tion system in accordance with these principles, and
are in fact currently engaged in such an effort. Below,
we summarize the most salient features of the system
design.

1. The system will be declarative, rather than proce
dural. That is, the rules governing the legitimacy of
data values will not be implicitly embedded in the code
of the procedures that perform data-checking, but will
be stated as explicit assertions by an individual knowl
edgeable in the domain which the data base is model
ling. The primitives used in the expression of these
rules (called constraints) will be chosen to be naturally
descriptive of the kinds of worlds most frequently rep
resented in data base systems; thus a non-programmer
would be able to describe the constraints directly, with
out programmer intervention.1 ,3,4,5,i

The declarative approach has numerous advantages
over procedural techniques, besides ease of expression.
Because the rules are all listed in a single place, it is
possible to make modifications to them in a reliable
and simple fashion. Since the procedure that uses the
constraints to check the data is only written once, it
is possible to verify its accuracy reliably and hence
have confidence in its correct operation. In addition,
the system (rather than an applications programmer)
will bear the responsibility for determining and check
ing all the appropriate rules for a given transaction.
Finally, it will be possible to examine the explicit con
straints themselves, looking for incompleteness, redun
dancy, and inconsistency.

2. The constraints will do far more than express
legal ranges of values for specific individual fields; they
will describe rich structural aspects of the world in
question, thus enabling far more sophisticated error
checking than is currently done. In order to detect
many kinds of errors of this sort, it is necessary for
the checking program to possess a good deal of rich
and complex "knowledge" of the domain in question.
Conventional data base management facilities, and
data editing programs that rely on them, do not have
the capability to represent and utilize knowledge of the
requisite form.

3. The occasions at which errors will be detected
will correspond to "conceptual transactions" or "struc
tured operations" with the data base3

,5 ; these are appro
priately selected sequences of data base transactions
that form representations of real-world events. It is
these complex transformations that actually occur in
the world that the data base models, and so it is appro
priate to check them (rather than each of their primi
tive constituents) for validity. This approach will

avoid many spurious situations and will facilitate suit
able response to the detection of an error.

4. The system will be designed to operate independ
ently of the actual data base system, and to reside on a
remote processor. This processor will be dedicated to
the task of data checking, but it will be able to com
municate with the data base facility itself by means of
a communication link. It will utilize the constraints
which model the domain of the data base to examine
data to be submitted to the data base; should it detect
an error, the offending transaction can be identified
and appropriately handled.

In order to rule on the validity of a transaction, the
checking processor may need to inspect some of the
values in the data base itself; it will obtain the items
it needs by issuing a request for them to the data man
agement system over the communication channel, re
ceiving the results in the same way. As time goes on,
the checking processor will build up a local version of
those parts of the data base which it most frequently
requests, thus obviating the need for much of the data
transmission.

This strategy opens up several important possibili
ties. First of all, by detecting errors closer to the
source of their occurrence, the opportunity for their
timely correction is greatly enhanced; thus the overall
performance of the information system is improved.

Furthermore, the data checker can be made relatively
independent of the actual data management system
which is responsible for the data. Variations in the
"back-end" data manager need only have a minor
reflection in the operation of the "front-end" error de
tection processor. This is especially important in an
environment where one conceptual data base may be
distributed among several data management systems.
A final potentiality is for distributed data checking,
with multiple front-ends, each processing a separate
stream of source data. This can address the problem
of checking the correctness of large data bases with
high input data rates.

5. The system will adopt a flexible view of the con
cept of error. While perfectly correct data is a laudable
goal, in reality it is an unattainable one, and com
promises must be effected in its pursuit. The system
will make the necessary trade-offs, in the realm of effi
ciency versus accuracy, in a systematic fashion. Rather
than swamping its resources with a futile and inappro
priate effort to detect all errors, the system will con
centrate on validating those items that require the
highest levels of accuracy. Resources will be allocated
to checking other fields based on their relative impor
tance. The data base administrator will provide the
system with the information regarding the comparative
significance of various data items in the decision mak
ing process.

In deciding how to allocate its resources, the system
will also consider the effectiveness of the various
checks. It will have to determine the actual frequencies

Error Detection in Data Base Systems 799

of various errors; combining this information with an
estimate of the cost of detecting each of the errors in
question and with a measure of the importance of the
item being validated, the system will be able to proceed
in an optimal fashion. The system will also be adaptive,
automatically adjusting to changing patterns of errors.

6. The system will possess the degree of "world
knowledge" needed to process errors in an intelligent
fashion. The first aspect of this is error localization,
identifying exactly which data values are at fault.
Once an error has been detected and localized, an appro
priate response must be made. The range of such
responses is great, and the one to choose may depend
on numerous factors and, for a given error type, may
even change over time. The system will be flexible
enough to accommodate many possible responses, and
will be in a position to select the right one.

The most ambitious of all responses is, of course,
the automatic correction of the error in question, to
restore the original value. The system will possess a
facility for the data base administrator to provide a
model of the error-making process in the system in
question, which describes the loci where, and means
by which, errors do. occur. In those circumstances
which the data base administrator identifies, this model
can be utilized to reverse errors that do occur.

The ultimate goal of any error system should be
error prevention: the identification of the sources of
the errors that actually occur, and the instigation of
remedies to forestall their further occurrence. The sys
tem will utilize the model of the error process, together
with observed patterns of error, to pinpoint the origins
of the most common errors and identify them to the
data base administrator.

In order to achieve the capabilities just outlined, it
will be necessary to utilize novel implementation tech
niques of a statistical character, that will enable the
system to attain maximum data reliability subject to
the constraints imposed by available resources. For
example, the system could sample the incoming data
in order to determine the actual rates of different trans
action types and errors. If some errors are found to
occur extremely infrequently, then those parts of the
system used for their detection can be temporarily
disabled. This may allow some erroneous values to slip
by undetected, but this should be acceptable if the fields
in question can tolerate the expected level of error. The
sampling should be reactivated from time to time to
ensure the constancy of the error rate. This approach
results in application of resources where they are most
needed. Other useful statistical information would in
clude various summaries of the data base contents (in
order to detect emerging global patterns) as well as
patterns of error types and erroneous fields. These
can be used to pinpoint the sources of the most common
errors as well as indicate when an error is not in the
transaction but in the master file itself.

To satisfactorily address the manifold demands of

800 National Computer Conference, 1976

large and complex data bases, it will be necessary to
rely on heuristic techniques that gain efficiency at the
expense of perfect accuracy. For example, we might
associate with various fields of the data base different
levels of reliability, based on observed error patterns.
These measures can help in localizing an error indi
cated by a data base conflict. Another idea would be to
utilize concepts from "fuzzy logic," and abandon the
notion of situations being only correct 'or incorrect.
We might evaluate some predicate at a given time
and find it to be "very true", so entirely satisfied that
in all likelihood it would take a very long time for a
normal series of transactions to make it turn false; we
could then reasonably suspend the further checking
of this predicate for a long time.

ERROR PREVENTION

Perhaps more important than these techniques which
can be used to implement or facilitate error detection,
are those measures that should be taken to prevent
errors from occurring in the first place, or diminish
their potential for harm if they do occur. Primary
(and most obvious) of these is the adequate training
of those who collect, record, and transmit data. But
these individuals must also be provided with incentives
to encourage accuracy in the submission or processing
of data; someone who feels he derives no benefit from
an information system is unlikely to expend much
effort on its behalf. There are other "human factors"
issues that can have enormous impact on the error
rate. For example, the design of the forms on which
data is recorded is a very important consideration,
which when improperly done, can have disastrous con
sequences. Such questions as the layout of a form, the
size and location of the different fields it contains, the
redundancy of the information it carries, and the ex
tent to which it is prefilled, all require careful thought.

The global structure of the information system will
also impact the reliability of the data base. For ex
ample, it is important to provide multiple levels of pro
tection, so that should an error get past one level of
detection it will not immediately get into the data base
and linger there forever. One mechanism to achieve
this is a feedback system, whereby parts of the data
base are directed to those responsible for (or familiar
with) them, and then subjected to human review. Dis
tributed data checking is another technique that can
contribute to data reliability. It results in more timely
error detection and more rapid correction of errors
because of proximity of the detection to the source.
It also makes for greater system efficiency, with the
data base computer only checking for errors that can
not be caught at the source.

The structure of the files that actually comprise the
data base also has an effect on the reliability of the

data base. Some contemporary information systems
are based on a single large file, consisting of a great
number of identically structured records, each with
many fields. Such a structure does not facilitate the
prevention or detection of enol's. Every transaction
has potential access to all fields of a record and, should
it go awry, can have unlimited consequences within the
record. Thus, to prevent disastrous situations, all
transactions require inspection and validation. A dif
ferent kind of file structure can be more conducive to
data correctness. For example, a multi-file structure
wherein critical data is not stored together with less
critical information enables us to concentrate our
checking resources on transactions that manipulate
the former. Similarly, a separation of stable, seldom
changing data from that which is highly volatile can
prevent erroneous transactions with the latter from
influencing the former. Indeed, it may be appropriate
to impose a multi-level structure on the data, for ex
ample by age. The first level might be the most recent
data, not yet fully verified as to its accuracy; the
second, the currently active data, into which new data
is moved as it is validated; and the third, old seldom
used data, including statistical summaries. The record
structure should also be carefully chosen to encourage
intra-record checking, and to facilitate inter-record
checking when it must be done.

CONCLUSION

In this paper, we have presented the framework of
an approach to the construction of "intelligent" error
detection systems. Further research is needed to for
mulate and develop the principles which underlie the
advanced approach to error processing described above;
having developed these concepts, it will be necessary
to assure their viability and practicality by building
systems that embody them, and use these systems in
realistic problem environments. There are' several
maj or conceptual areas which require substantial de
velopment in the course of this research: the repre
sentational scheme for data base constraints; optimiza
tion techniques for efficient data checking; communica
tion between a front-end processor and the back-end
data base; measures of criticality and reliability of
data, and the heuristics that make use of them; error
correction as driven by a model of the error process.
Nevertheless, this approach holds great promise for
attaining the needed levels of reliability in the large
and complex data bases of the future.

REFERENCES

1. Florentin, J. J., "Consistency Auditing of Data Bases," The
Computer Journal 17 (1), February, 1974, pp. 52-58.

2. Gosden, J. A., "Large Scale Data Base Systems-Current

Deficiencies and User Requirements," in D. Jardine (ed~);
Data Base Management Systems, Korth-Holland Publishing
Company, Amsterdam, 1974, pp. 105-115.

3. Eswaran, K. P. and D. D. Chamberlin, "Functional Specifi
cations of a Subsystem for Database Integrity," Proceedings
of International Conference on Very Large Data Bases,
Framingham MA, 22-24 September 1975.

4. Graves, R W., "Integrity Control in a Relational Data
Description Language," Proceedings of ACM Pacific Con
ference, San Francisco CA, 17-18 April 1975.

3. Hammer, M. M. and D. J. McLeod, "Semantic Integrity in a

Error Detection in Data Base Systems 801

Relational Data Base System," Proceedings of International
Conference on Very Large Data Bases, Framingham MA,
22-24 September 1975.

6. McLeod, D. J., "High Level Domain Definition in a Relational
Data Base System," Proceedings of 1976 ACM SIGMOD
SIGPLAN Conference on Data, Salt Lake City, UT, 22-24
March 1976.

7. Stonebraker, M. R, High Level Integrity Assurance in Re
lational Data Base Management Systems, Electronics Re
search Laboratory Report ERL-M473, University of Cali
fornia, Berkeley CA, 16 August 1974.

A framework for federal health data collection

by N. PHILLIP ROSS
Department of Health, Education, and Welfare
Rockville, Maryland

and

MEYER KATZPER
Systems and Informations Analysis
Rockville, Maryland

ABSTRACT

Large scale health data collection under Federal aus
pices is examined in this paper. The system planning
for establishing the data base is intertwined with the
vagaries and complexities of the Federal health ad
ministrative structure. This paper addresses the prob
lem of how data can be structured in such a manner
that it will give rise to maximum utility across the
Federal bureaucracy. At present, minimum linkage
between Federal agency data bases is possible. Estab
lishment of linkages between different types of data
collected is vital. In the Development of the data base
design, careful considerations is given to the human
element within the system structure. Mechanisms for
human interface in the monitoring and control of data
collection and processing are vital if the data is to be
put to use.

The new opportunities that can be presented by
large scale data collecting are explored briefly in this
paper. The necessity for common coding systems and
decisions as to storage of the data and form of record
ing are addressed. The data base is considered as the
core element in an entire system design concept, which
cuts across Federal, State and local levels.

INTRODUCTION

The Federal collection ot health related data is con
tinually expanding. This large scale data collection is
intimately linked to the goals of many health programs.
In most general terms the motivation behind these pro
grams is to improve health care and lower costs. The
amount of data collection and analysis necessary for
the accomplishment of these goals is made feasible by
computer technology. This paper deals with some
aspects of the requirements of data systems to achieve
programmatic goals. In particular, we indicate the
framework and some of the planning and procedures

803

for the data collected to be effectively transferred and
used throughout the Federal health administration
structure. Data bases that are set up can be used to
achieve objectives under the jurisdiction of different
departments only if they are well designed and easily
accessible to all users. For this purpose appropriate
technical considerations are insufficient. In terms of
the entire system, there must be responsible people as
checkpoints to review, pass on and act on the data
collected. Such a simple question as the length and
mode of storage of the large volume of data collected
requires a fun understanding of the possible uses of
the data in the system. In view of the costs of the
administrative structure and the burden of collection,
structuring, processing and disseminating the data, a
plan must be formulated to optimize possible data
usage.

In this paper, we deal with the problems of a politi
cal and organizational nature within the health bureau
cracy only from the point of view of the flow of data.
However, this alone requires a framework for coordi
nation and synthesis of activities and a network of
responsible people to monitor and review data usage.

DATA BASE DEVELOPMENT

With the ever increasing involvement of the Federal
government in the financing and regulation of the
nation's health care, enormous fragmented bureaucra
cies, with numerous departments looking after specific
aspects of health care, are being created. Under the
Public Health Service alone, there are seven (7) sepa
rate agencies (See Table I) with different and overlap
ping responsibilities in areas of national health care.
This expansion of the Federal bureaucracy has not
been accompanied by the development of an organiza
tional structure capable of coordinating the various
components and, as a result, data collection activities
are duplicated and health data systems are generated

804 National Computer Conference, 1976

TABLE I
-------.-----------.-----------

DEPARTMENT OF HEALTH, EDUCATION AND WELFARE
PUBLIC HEALTH SERVICE

I
OFFICE OF CHILD st-- OFFICE OF THE OEPUTY
HEALTH AFFAIRS ASSISTANT SECRETtI.RY FOR

aUALITY ASSURANCE

'1N15 r-- --.,

I OFFICE OF PROGRAM :,~ (1N12' • IMPLEMENTATION I
11N13' OFFICE OF I

OUALITY STANDARDS ___ I H I OFFICE OF PUBLIC AfFAIRS}- I
ASSISTANT SECRETARY FOR HEALTH 11N041

I (TNOn
11N031 I

OFFICE GF ~ DEPUTY ASSISTANT SECRETARY I NURSING HOIo{lE AFFAIRS I OFFICE OFI~
FOR HEA~TH ---

INTERNATIONAL HEALTH I'N01I • t1NOBI I
(1 NOS) EXECUTIVE OFFICER, PHS I

---i
OFFICE OF 1NOII I

I
OFFICE OF }- POPULATION AFFAIRS __ J

HEALTH LEGISLATION
11NOS)

',N(9)

I OFFICE OF EaUAL J-- PRESIDENT'S COUNCIL ON
PHYSICAL FITNESS

EMPLOYMENT OPPORTUNITY AND SPORTS

11N11l
flN141

1
OFFICE OF OFFICE OF OFF:CE OF

ADMINISTRATIVE POLICY DEVELOPMENT REGIONAL O?ERATIONS
MANAGEMENT AND PLANNING

UN1S) (1N331 (1N371

I I I I
ALCOHOL. DRUG ABUSE, CENTER FOR FOOD AND DRUG I HEALTH RESOURCES HEALTH SERVICES NATIONAL INSTITUTES
AND MENTAL HEALTH DISEASE CONTROL ADMII'lISTRATION ADMINISTRATION AOMINIST'IATION OF HEALTH

ADMINISTRATION

tel IPI

with overlapping purposes. At the State and local level
this duplication results in the imposition on local health
agencies of an intolerable amount of redundant data
collection and routing requirements. For example,
Table II lists several data elements wh;ch Missouri
State hospitals are required to collect for the different
Federal, State and local (FSL) agencies listed in
Columns 2 through 8. In almost all instances, the same
data element is required by more than one agency and
on a different form. Because of this duplication and
the resulting burden on providers of health data, the
health data users of Missouri are presently examining
the possibility of entering into a Cooperative Health
Statistics System* (CHSS) in which the users will
define their needs, establish a "data broker" who will
collect and aggregate data from all providers within
the State and provide each user with needed data.

* CHSS are Statewide systems funded in part by the National
Center for Health Statistics/Department of Health, Education,
and \Yelfare,

161

PUBLIC HEALTH SERVICE
REGIONAL OFFICES

171 131

In order for the data collected within any specific
region, such as in the Missouri region, to be useful on a
national scale, an overall system must be designed
which relates Federal, State and local data needs both
in terms of basic sets of core data and the need for
special data collection specific to a given area or ac
tivity. The entire system will only be of use if it is de
signed in such a way that necessary information can
be retrieved from one source and linked with informa
tion from other sources. Data within the system must
be in unit record form and the units must be of suffi
cient disaggregation to permit the study and analysis
of variables affecting the supply and demand of health
resources. Not all variables of interest can be main
tained in a single base. Linkage between data bases
will allow the integration of unit records; thus, in
formation on manpower in hospitals could be combined
with information on patient hospital stays. Linkage
of such data bases will enable the health planner to
quantitatively describe the health care system in order

!Ill

Framework for Federal Health Data Collection

TABLE II

Data Ite::!

Provider ~ane "••..... __ _
A.c!dre5s (ei t/. County & State)•..... ---xx --xx- ---xx-
!\'w:lber (Assil:nt'd b:-' ~lcdicare) __ ._

Patient's "':lrne ,•....•. ~
Addl~5S {City, County ~ State} •..•....•.. _~
Zip ,", """" .~-~
Social Security :-;urnbcr ~
Claim Cert iii.:ate l.!l. ~;o. ~ledicare ~
Claim Certificate LD. ~o. Medicaid ~_
~Iedical Record :\umucr .. ,•...•.... ~
Date of Birth•......... ~
5ex .••••.•.•.•.•.••.•.•.•.••••..••.••.•.• 2~
Race•........................ -~
~larital Status•. __ _
Educational Level•............. __ _

Admission Date (~10 .• Day. Yr., Hr.) _X_X_
Nature of Admission••..•.... __ _
Admitting Di.Jl:noses __ _
Admitting Service __ _
Site Admitted From __ _
Expected Principal Source of Payment ~
Seconda.y :'a)'or• ~
Dates of Qaalifying Stay __ _
Certification Status __ _
Days Certified Initiallr __ _

Attending Physician•............ ~
Social Security ~l1::thc:r ~

Operating Physician ~
Social Sc.:urity :-;umber ~

Consultat ivns (!'\umher)•.......... __ _
Type or Identity ..•...............•••..•. __ _

Pa.tient tli!==.tory ••. " .. ~ "."." ••....•. ". " __ _
Diagnoses (Principal) _ ~

Othcr "., ... , ~
Coded Di J!!noses ~
Proc('dures anc! Dates ~
Coded Procedures ~
Ancsthi;; __ _
Ti.;sue Pc-port , . __ _
COiTlplicCltlons ,,:, _ •• ___ _

Discharge ['ate (~Io .• Day. yr.) ~
Dis.:harg.: Service __ _
Number ot' Rt'qUl'q.S for Extension __ _
T:-t:ll ~a~s (crt ifi~d ---xx-
DlspoSltlcon of PatH'nt ___ .

Transfusion•.................•...... __ _
Accomodation (Bcd)•...•..•........ __ _
Special Units Used __ _
Thera py - - Dru!', S ••••••••••••••••••••••••••• __ _

Lab ~ CI inical Tl'sts I; Exams (temp .•
blood pres,. he::l:ltology. function. etc.) ... __ _
Other Services (pharmacy. radiology.
physical therap~·. etc.) " __ _
Charges for Serv ices•..•• , .• " ..•.. __ _

Deductibles ' " __ _
Date Guarantee of Payment Began .•........•. __ _
Dale UR Notice Received " __ _
Date Active Care I'nJcd __ _
Date BeneiitsLxh.luSi.l'J••••••••••••••• __ _
Lifetime Reserve !Jays Used __ _
Non-Co\'ered ("lays•..•..•••.•. , .• __ _
Covert-d [lays•.•...... , __ _
Date of rrepar3t ion ...•.............•...... ~~
Signature of Pr.l'.'ider's Rl'pn'sentat ive ~
Patit'nt ,\uthuri:ation to Releasc Info __ _

XX
--xx- ----xx

XX .\" ----xx-

--xx- --xx-
---xx xX-
---xx ---xx
--xx- ---xx-

C)l'f-

xx- XX
---xx --xx-

----xx-
0i'T

-X-X- XX

-----xx-
XX

XX
xx-

--xx-
-X-X-

~
OPT

XX --xx-
-xx- ---xx-

----xx-
-U- ---xx-

xx-
~'

~
OPT

XX xx
XX

--xx-
OPT

0i'T
-OPT

OPT

~~
~iC
0
U.

XX
--xx-
---xx-

XX
--xx-
--xx-
----xx
-X-X-

-xx-
----xx

XX

XX

,-E-

xx---xx-

XX

---xx-
~xx-
-:\X
--xx-
---xx-

XX

XX
-----x-x-
------xx-

XX

XX

XX
--xx

XX -,,-,,-
--xx-
--xx
XX
-----u--,,-x-

XX

----xx-
XX

~I

~

xx-

~

-xx-----xx-
--xx-
---xx

XX
----xx
--xx-
--xx-
--xx-

---xx-

~

--xx-
---xx-
---xx-
---xx-
--xx
-~

-----xx
-xx-
---xx ---xx
--xx
-XX

XX

-xx-
---xx-
----xx-

XX

------xx-
--xx

XX

XX
OPT

"I
-:J 0
tI· ..
.... ..-
:::J ~

-:J 0 =.0 -<

XX
---xx-

-X-X-

---xx

xx-
---xx-
--xx-
-X-X-

xx

XX

---xx-

3J
Co

~~
x:..

---;:r-
xi""-

XX
~
---n-
--u--
----x1-
---xx-
---xx-
---xx
xx---xx-
---xx-

xx
--xx
---xx-
--xx-
--xx---xx-
xx--xx-
---xx-

XX

XX
----xx---xx-
--xx--rr-
--xx---xx -xx-

XX....=
XX

-XX'-
-;;:x--
--xx--xx--

x:<_

XX
-n-
----x\-
----x\ '
--rr-

XX
--xx-
----xx-

___ \X-

U

XX
XX

XX
--u-
XX
""\x-
XX

.....
-----u-
---xx-
---xx-
--u-
----n--

805

806 National Computer Conference, 1976

to plan for future allocation and development of re
sources.

It will also be possible to conduct many different
types of studies and employ a variety of analytical tech
niques for monitoring of the nation's health services.
For example, in Professional Standards Review Or
ganization (PSRO) program data is collected from
the hospital medical record. This involves abstracting
from the record of each patient information such as
diagnosis, age, length of stay, etc. Once a national
program is under way and data is available on all dis
charges, it would be of interest to examine possible
correlations involving environmental or demographic
variables with PSRO data such as length of stay, fre
quency of diagnosis, morbidity and mortality. Since
geographic and demographic information is not avail
able from the PSRO data base, the ability to link with
data bases generated by other programs such as the
Health Resources Administration's (HRA's) Hospital
Discharge Survey (HDS) and the Area Resource File
(ARF) is necessary for conducting meaningful epide
miological studies.

DATA BASE DESIGN

In attempting to advance the health care services
of our citizens, data collected has many roles to play.
It can be used for monitoring, evaluation, information
exchange, research and determination of policy. As
such, we can expect a great deal of separate data
collection and processing by the various government
agencies. However, we expect a significant portion of
the data elements in the separate data collections to
overlap. The advantages of having a common coding
system for the data elements and of structuring the
elements into data bases which can be linked are self
evident. To achieve such a goal requires multiple
planning in that the original work of the respective
agencies must be collated, reviewed and restructured.
The same holds true for the establishment of pro
cedures and standards for data collection.

In structuring such a system, one must consider
necessary features of the data base. The volume of
data will be very great. In order to access and manipu
late the data rapidly, the system must be modular.
Separate files must be self-contained with respect to
special topics. Thus, there can be a separate man
power file with geographical regions forming its sub
files. However, the file must contain crosslink indica
tors to all other relevant files and alternative classifica
tions. If all of this is done, the data will be widely
probed and unforeseen uses and requests will arise.

The data base design must be justified as an element
of an information system. The criteria for rational
design of information systems must be based upon the
needs of the users in the performance of their activi
ties. Information systems or services which are not
designed on this basis will inevitably fail to meet user's

needs. A logical first step in the analysis of the ade
quacy of existing systems and in the design and imple
mentation of new ones, is the determination of the
functions and activities of the potential users. This
.c. L L 11 _ J1 , J • J. P " , 111'SL SLep allOWS LIle ueLermmauon or otner neeas.

The definition and enumeration of categories of use
for better care includes:

• Policy, planning and program management and re
solution at the Federal, State and local levels.

• Research at all national institutions.
• Application, i.e., the community which translates re

search results into practical applications.
• Implementation, i.e., those groups of individuals or

organizations who are directly responsible for ini
tiating health care actions.

• Dissemination, i.e., ensuring that the information
is made known to those who may need it.

As an example, a health warning system may be
set up as a major use of the data collected. The large
amount of data collected will allow for the establish
ment of meaningful norms and expected deviations.
It will be possible to use the data to establish baselines
and look out for trends. Based on the deviations from
established norms the impact of a given disease on an
area could be determined.

In the massive collection of data the data elements
must be standardized and organized into identically
formatted records at the various source collection
points. If this is not done, large processing costs will
be incurred in attempting to use the data. However,
these eminently practical procedures put a damper on
the use of the data collected for creative investigation
of medical questions. Let us consider an example.
There is reason to believe, based on international evi
dence, that cancer of the colon is caused by either large
meat consumption or low consumption of cereals. 1 This
is established by showing the correlation between the
incidence of cancer and meat consumption in 23 coun
tries. The data are adjusted to eliminate differences in
age distribution in the population. The possibility
exists that it is not meat consumption, per se, but some
other factor associated with meat consuming countries
which gives rise to the correlation. A question worth
answering in this regard is with respect to the United
States population: "Does higher meat consumption
appear to be a causitive factor in cancer?" To answer
this question, it is necessary to obtain data from people
whose environment and life styles are very similar
except for their meat-eating habits. We can achieve
our goals by carrying out physiological studies and
comparing the hospitalization records of vegetarians
with a socio-economically equivalent group of meat
eaters. Here is where the catch is. This is not the sort
of information that would be entered as part of the
standard records collected on health care (and it should
not be routinely ·collected). This means that a special
effort must be made to obtain this information, most

likely surveying the former patients for this one detaiL
However, the standard records that comprise the data
base will, in our suggested record design, allow for a
preliminary search to determine the target population
for the survey. They will also contain most of the
auxiliary information that is required; thus limiting
the data collection needs. A very striking example is
the case of the clinical trials which were planned to see
whether people can voluntarily decrease their risk of
heart disease by watching their diet carefully; in par
ticular, whether reduction of cholesterol will have a
significant effect on decreasing the risk of heart attack.2

In attempting to carry out the clinical tests large
sample sizes were needed in order to obtain a statisti
cally valid analysis. The initial costs were expected
to be 80 million dollars. Due to inflation and unan
ticipated costs, these trials will cost at least 200 million
dollars. A large part of the cost is due to the large
population sample that must be taken in order to assure
that enough subjects within the sample will develop
heart problems during the study period. If we con
sider the case where we have a large data base, we
can choose the target population from out of our data
base records and conduct a retrospective study. In
this way, the information may be obtained at a much
lower cost. Since retrospective studies are never as
good as studies which are monitored from the start,
another possibility is that the retrospective studies
could be used to supplement clinical studies of a smaller
scope; the combination of both types of studies will
lend to greater validity of results. In addition, the
retrospective study can be used to characterize the
patient type who is more susceptible to a given type
of disease and, in this VlaY, allO\v for better clinical
screening reducing the need for large samples in cer
tain clinical studies. All of these possibilities exist. To
what extent they can be implemented with the use of
mass data collection depends on the proper planning
and layout of the data elements to allow for such
usages.

Within recent years the Federal Government has
been heavily involved in efforts to standardize data
sets based on hospital stay. In 1971, the Department
of Health, Education, and Welfare (DHEW) examined
the possibility of requiring a uniform set of data on
all federally funded discharges from short stay, acute
care hospitals. The Uniform Hospital Discharge Data
Set (UHDDS):u was designed as the minimum data
set, uniformly defined, capable of providing all users
basic and comparable information on all hospital dis
charges. In 1972, the Uniform Hospital Abstract Form
Subcommittee of: the U.S. Committee on Vital and
Health Statistics recommended the minimum basic
data set. Minor modifications of this data set were
made in 1974 for use in DHEW programs. The modi
fied UHDDS with definitions is presented in Table III.

The long range goal is to have all users of the
UHDDS, including PSROs (explained in Reference 5) ,

Framework for Federal Health Data Collection 807

TABLE III-Uniform Hospital Discharge Data Set (UHDDS)

Person Identification
Each admission is to be reported by the patient's unique Social
Security number.
Date of Birth
Sex
Race
Residence
Hospital Identification
The provider number assigned by the Medicare Program and
used by Medicare and Medicaid in the hospital certification
process.
Admission Date and Hour
Month, day, year and hour of admission
Discharge Date
Month, day and year of discharge
A ttending Physician
This is the physician primarily responsible for the care of the
patient from the beginning of this hospital episode.
Operating Physician
This is the physician who performed the principal procedure.
Diagnoses (Principal and Other)
Procedures (Principal and Other)
Disposition of Patient
a. Transferred to another short-term general hospital
b. Discharged or transferred to skilled nursing facility (SNF)
c. Discharged or transferred to an intermediate cal'e facility

(ICF)
d. Discharged or transferred to another institution
e. Discharged to home or self-care (routine discharge)
f. Discharged to home under care of an organized home health

service.
g. Left against medical advice.
h< Died
Expected Principal Source of Payment
a. Self-pay
b. \Yorkmen's compensation
c. Medicare
d. Medicaid
e. Other Government Payment (e.g., CHAMP"GS)

(1) Title V
(2) Other

f. Blue Cross
g. Insurance Company
h. No charge (free, charity, special research, or teaching)

claim payment agencies, State Cooperative Health Sta
tistics Systems, discharge abstract services and plan
ning agencies, receive these data through the use of
a standard form and standard tape format. This ap
proach would substantially reduce the data collection
efforts within hospitals and provide all users with con
sistent, compatible data to be combined with data from
other sources to meet total data needs.

At the Federal level several agencies have similar
data requirements; however, at present there is no
method of coordinating and linking these data bases
for use by any agency. There is no reason, in principle,
that one agency could not collect and disseminate all the
required data. However, many different sub-agencies
have their own mission and legislatively ordained func
tions to follow. As a result the entire array of inde
pendent requests for data from different agencies
arises. The data collected under present conditions
will form independent data bases which have a large

808 National Computer Conference, 1976

amount of redundancy, but cannot be used in conjunc
tion with other data bases in any simple manner. In
compatibility of the data files and data bases collected
by different agencies will make it very costly to retrieve
information with cross-agency applicability. The piece
meal specification of data bases is almost guaranteed
to cause enormous duplication effort with resultant
products of limited use. At the very least a general
systems plan should be formulated to lower costs of
collection, storage, software development for analysis
and processing cost. Consider, for example, the com
puterized health resources information system known
as the Area Resource File (ARF) which has been de
veloped for the Bureau of Health Resources of DHEW.
The County file unit identifier uses the Federal Infor
mation Processing Standards (FIPS) code for State
and county locations. This sounds like an excellent
means for standardization. However, in order to pro
vide for the possibility of analysis of the data according
to different ways of grouping counties, the following
additional area identifiers are included:

1. State Economic Areas (SEAs) and Economic Sub-
regions

2. Standard Metropolitan Statistical Areas (SMAs)
3. OBE Economic Areas
4. Federal Regions
5. Ranally Major and Minor Areas
6. D MI Place Sizes
7. Comprehensive Health Planning Areas
8. Professional Standards Review Organization Areas

With all of these identifiers only classifications which
group whole county units are meaningful. In addition,
the ARF is under revision with a contract out to re
structure the basic file and add new elements. Among
these new elements are further area identifiers such as
the DHEW region code. It is easy to see how with
time identifiers can keep on proliferating.

SYSTEM DESIGN CONSIDERATIONS

Since we must deal with many uncoordinated on
going activities, the first requirement is to discover
what present data collection and storing is related to
health and what is planned for the future. Each of
these activities must be evaluated in terms of its own
mission and the potential meaningfulness of its inter
action with other activities. Some of the factors which
must be taken into consideration are:

1. Collection of Data,
Quality
Reliability
Duplication
Meaningfulness of relationship to other data col-

lection
Cost
Value
Burden of collection on institutions.

2. Processing of Data
Error checking
Avoiding redundancy
Assuring timeliness
Ensuring availability and transferability
Analysis of data
Establishing norms and checking deviations
Determining policy and operational impact
Investigating linkage
Determining level of usage of data

An approach to coordinating and making the col
lected information accessible through the system struc
ture is by means of a hierarchical catalog. The
catalog will contain information on all large data bases
which involve interface uniformity. At the peak of
the hierarchy are all the most generalized controlling
data summaries, which may have a series of underlying
data bases to support them. Thus, we might consider a
possible chain of data bases each at a more detailed
level:

• DHEW
• BQA
• Local PSRO
• Hospital
• Doctor (Patient)

Top level summarized catalog information may also
refer to a segment of an independent data base with a
different orientation. Thus the budget data of the
Office of Management and Budget (OMB) summarizes
all Federal funding of medical services. Another ex
ample would be analogous to the present computerized
Program Review and Evaluation System of the En
vironmental Protection Agency (EPA). This program
compiles in one location information on all monitoring
programs operating throughout EPA. The control file
can then be used as a starting point to identify and
locate any specific monitoring operation. In our case
the file would record all environmentally oriented data
bases which have a health care impact.

The data base catalog at the top level would contain
in its enumeration of data bases such information as
the organization or agency and/or person in charge,
the descriptors of the file structure, the sub-files (if
any) that the data base derives from, the period
covered, the area involved, and the major intended use.

At each succeeding level there will be a directory
of the major segments into which that level is divided.
Each "layer" performs its own set of operations and
interfaces with levels above and below. Basic keys in
each level allow for interfacing. The keys and links
allow full reformulations of the data bases for special
purposes, such as merging with another file. By keep
ing the data structure simple it allows for each creation
of a new special purpose data bases with minimal pro
gramming. Note, the hierarchical classification and its
tree structure refer only to the organization of the data
bases themselves and not to the contents of the data

bases. Insofar as possible, relational information
should reside in the data itself or be explicit. It should
not reside in the structure itself, for then two different
data bases could not easily be combined.

A review of the present data gathering activities
and existing data bases should lead to the definition
of an overall system structure. All elements of this
conceptual system must then be evaluated in terms of
their aims and interactions with other parts of the
system. The critique should lead to some degree of re
design with emphasis on factors such as the following:

• All data bases shall possess the flexibility to adapt
to new requirements.

• The data base system shall be modular in nature in
order to provide for future processing capabilities.

• The software support systems shall be:

(1) high-level language
(2) relatively machine independent

The data should have linkages to allow for the merg
ing of subsets of different data bases. Planning must
include flexibility which in the case of the data base
means reserving unused pointers for future linked list
expansions.

HUMAN INTERFACE WITH SYSTEM

A data base which covers a large segment of the
population can give statistically valid answers to ques
tions addressed to the data. For example, in the case
of the elderly their insurance by Medicare ensures that
most illnesses causing hospitalization will be recorded
and reported. To the extent that their illness has been
properly diagnosed, encoded and stored in the data
base, one can obtain interesting profiles of the relative
frequencies of major illnesses of the elderly. This
information in turn can be distributed to local health
planning agencies and used within the Federal Govern
ment to better determine resource allocation. How
ever, these uses, as shown in our general analysis, de
pend on having responsible people scanning the data
and taking action where necessary or passing the
information to those responsible to act. There is no
way of guaranteeing that proper action (or any action)
is taken; however, in the design and description of hu
man interactions which will insure that the large
masses of data are reviewed and channeled to the
proper agencies for appropriate action.

In terms of the data we wish to achieve compatibility
and transferability of the data for use in the different
agencies. The larger question we face is how to en
sure that appropriate data will be used and shared and
acted upon. This depends upon both the system and
the people. Responsible and authoritative personnel in
key positions can act as control points to spot unusual
occurrences and optimize ordinary workflow. How
ever, the fragmentation of the governmental health

Framework for Federal Health Data Collection 809

establishment (DHEVn makes meaningful fio'\v of
data difficult. ~ A coordinating and controlling body is
therefore vital to support and expedite data transfer
activities. In fact, DHEW requires a coordinating
mechanism which will allow for review of all the data
collecting needs and requirements of its various
agencies.

Data input to the information system must reflect
the realities affecting the providers of the data, i.e.,
physicians admissions officers, record librarians, fiscal
intermediaries and patients. Requirements or requests
for more data may not be relistic unless they bear
directly on improving patient care and providing better
health services. G

Information systems are often designed in the
vacuum of the bureaucracy in a manner dictated by
logic and efficiency. This approach is acceptable in
the technological environment of the business world,
but in the humanistic world of medicine, the patient
physician relationship determines and moderates the
exchange and availability of various types of health
data.

Concomitant with the input of data to the system is
user access. Individuals must be able to determine
where the data of interest resides within the system,
who to go for access and how to use the information
obtained. The overriding concern relevant to both in
put and access is confidentiality of the data-the pro
tection of the physician-patient relationship from the
potential abuse inherent in a massive system capable
of linking various data sets into single comprehensive
records.

As stated, we are dealing with sensitive medical data
where human judgment is essential at all steps in the
routing and processing of the data. Therefore, the
controlling body will have to be supported by a large
network of people sensitive to the needs of the medical
community. At each point along the way these re
sponsible persons will try to flag vital aspects of the
data and bring it to the attention of those who might
act upon it. It is essential that the individuals re
sponsible for evaluating data have relevant back
grounds to make such evaluations. For example, as in
formation comes into an organization and is analyzed
by some statistical group whose function is to estab
lish, maintain or review medical norms for various
sections of the country, one of the people who looks over
the work of the group must be familiar enough with
norms and medicine so that if an unusual deviation
occurs, he will alert the local medical authorities of
such a development and appropriate action will be
taken. This might be considered to be analogous to the
Center for Disease Control's monitoring of potentially
epidemic diseases on a national and regional basis. If
someone at a higher level notices a long term range
increase in the incidence of a given disease, unless he
is in the position to initiate action, the data will merely
be published in some official bulletin and set to rest in a

810 National Computer Conference, 1976

convenient archive. It is important that throughout the
system there are checkpoint people who make sure that
when data is important, it is routed, flagged and given
high priority; when it is not important they will sug-
gest the remo\ral of data from the s:ystem that need
not be collected. What this amounts to is that with the
planning of the hardware and collection network there
also must be planned a software network of people, so
that not only is the normal flow of data expedited in
the ordinary manner, but action outside of the normal
flow can be taken.

SUMMARY AND CONCLUSION

Once established, the system could provide health
planners, epidemiologists and other researchers with
the means to undertake studies of a type and magni
tude not heretofore possible. For example, PSRO activi
ties will result in the establishment of a national data
base containing unit record discharge data on all Fed
eral discharges from short term acute care hospitals
across the nation. The ability to link this health data
geographically with data contained in the Environ
mental Protection Agency and Department of Labor
or other Federal data bases on industrial pollutant
levels would allow epidemiological studies of the rela
tionship of pollutants to hospitalization, disease etiol
ogy, frequency of surgical procedures, etc.

Linkage of hospital utilization data with the geo
graphically coded Area Resource File data bases con
taining facility and manpower data could provide in-

formation over time on trends in manpower and
facility availability relative to hospital utilization;
providing health planners with the means to predict
the need of any given area in the country and make
appropriate recommendations for future facility cun
struction and health manpower allocation.

Once established with the Federal health system,
the utilization of an information system capable of
linking data from many sources is limitless. However,
the system is only as good as the people running it.
It is essential that all along the flow of data through the
system that human checkpoints be established to moni
tor and appropriately act upon the output of the
system.

REFERENCES

1. Cairns, J., "The Cancer Problem," Scientific American,
Vol. 233, No.5, 1975.

2. Murnaghan, Jane H., "Health Service Information Systems
in the United States Today," The New England Journal of
Medicine, Vol. 290, No. 211,1974.

3. Murnaghan, J. H. and K. L. White, (Editors), Hospital
Discharge Data, Report of the Conference on Hospital Dis
charge Abstracts Systems, Lippincott, 1970.

4. Hodgson, D. A., L. E. Kucken and J. M. Ensign, The Uni
form Hospital Discharge Data Demonstration Summary
Report, DHEW (HRA-74-3102), 1973.

5. Goran, M. J., J. S. Roberts, M. A. Kellogg, J. Fielding and
W. Jessee, "The PSRO Hospital Review System," Medical
Care, Vol. 13, No.4, 1975.

6. White, K. L., "Priorities for Health Services Information,"
Health Se1"/:ice RepoTts, Vol. 88, No. 22, 1973.

Data base processor technology

by DONALD R. ANDERSON
Sperry Univac Defense Systems Division
St. Paul, Minnesota

ABSTRACT

The ability to achieve significant amounts of mass
memory has not been matched with a capability for
processing data stored within the mass memory. The
concept of a dedicated data base processor that would
implement microprogrammed data base primitives
with high speed microprocessor technology appears to
be a plausible means of obtaining higher performance
data base processing systems. The premise of this
concept is that simple operations that manipulate data
base information can be included in a separate, simply
structured processor that operates in parallel with the
central system. In doing so, parallel execution benefits
are realized that could lead to higher system perform
ance levels.

The technology that supports the dedicated data base
processor concept, system architectural considerations,
the application of the concept to both distributed and
centralized systems, and areas of needed research are
described in this paper.

INTRODUCTION

Memory technology developments are providing an in
creasing number of alternatives for achieving signifi
cantly large amounts of system storage at differing
levels of performance and cost. These alternatives
presume conventional system architectures which are
not optimized to permit higher performance levels
based upon the parallel processing that is felt to be
inherent to data base processing problems. Newer
memory devices, Charge Coupled Devices (CCD) and
Bubble memory, are taking their places along with im
proved disk capabilities and the newer cartridge units
to provide for storage of 109 bits or better but these
memory technologies seem deficient in that while they
extend the system mass memory capacity, they do not
provide additional system processing ability.

This paper describes the concept of a Data Base
Processor (DBP) which specializes data base process
ing functions within a processor that is closely asso
ciated with mass memory. These processing functions
are normally time-shared on the central processors with
other user functions. The data base processing concept
recognizes that a system containing significant mass

811

memory has a dominant part of its resources expended
toward processing mass memory data and that spe
cializing data base processing functions in a separate
and independent processor could yield substantially im
proved system pel'formance.

THE DBP CONCEPT

There are many data processing applications where
the data processing system is designed to process in
formation. stored on mass storage devices in the form
of a regularly structured data base. These applications
differ from command/control or process control in that
significant amounts of data move to/from mass storage
devices in the normal processes that occur during sys
tem operations. Data base systems also have less strin
gent real-time (i.e.; second versus millisecond response
times) requirements than the process control or com
mand/control systems.

In applications where data base operations predomi
nate it appears reasonable and profitable to consider
an alternative to conventional system architecture to
provide more balance between lower-level mass memory
access/processing operations and data base information
manipulations to achieve higher system performance.
The DBP architectural concept is to move a subset of
the overall data base processing away from central
processing facilities into a processor that is intimately
associated with the mass memory upon which the data
base is stored (Figure 1) and which has only high
level function characteristics (instructions) for data
base processing. In effect, a parallel processing archi
tecture is created in which memory access/processing
operations are performed in parallel with central proc
essing operations.

The advantage of the DBP architectural concept can
be illustrated by considering the processing of rela
tional data base information. In a conventional archi
tecture, relation content processing is performed by the
central processor and intuitively, there are instances
where the entire relation content is not needed, espe
cially where decisionary processes that select or re
ject data are involved (as in the case of linked files).
The access to, movement of, and subsequent examina
tion of the relation content represent unnecessary sys-

812 National Computer Conference, 1976

COMPUTER

\r
MASS

MEMORY

CONVENTIONAL
ARCHITECTURE

1
DATA BASE/DATA

MANAGEMENT
PROCESSING

VS

COMPUTER

}\
DATA BASE
PROCESSOR

MASS
MEMORY

DISTRIBUTED
DATA BASE
PROCESSING

Figure 1-Distributed data base processing concept

tem overhead if the end-object desired is not in the re
lation accessed. A data base query, for example, that
builds a list of all employees who are female would
require, in a conventional architecture, the movement
of an entire relation content into the central processor
even though only part of the relation is needed in order
to establish the desired list. Contrastingly, in the postu
lated DBP architecture concept where the processing of
the relation content occurs away from the central
processor, the only information that is provided to the
central processor is that which is the result of process
ing the relation data. This reduces central processor
loading allowing more central processor time for fur
ther processing of the file information.

Linked files are another example where the DBP ar
chitecture concept would provide higher performance.
With linked files the desired information is accessed
through a series of files each of which contains infor
mation that, in effect, points to or links to succeeding
information. Ultimately the decision process links to
the end-object desired. In a conventional architecture
each succeeding file must be moved into the central
processor for examination, which requires physical
movement of the file into the central processor, syn
chronization with concurrently executing tasks, bind
ing the data to the process which examines the file
data, and then initiating access to the succeeding file
should one be desired. With the DBP architecture con
cept, most of this could be eliminated by performing
the search and decision process within the DBP.

Conceptually, the DBP is a semi-independent, simply
structured, special-purpose processing unit that oper-

ates under high-level control of the central processor.
The DBP can be interconnected with a central proces
sor in any of several ways discussed later and is
interfaced with mass memory as dictated by the mass
memory interface characteristics. The DBP contains
data base processing primitives to which it is directed
by the central system. When executing its own pro
gram, the DBP operates independently of the central
system, accessing and using mass memory facilities as
directed by its internal program. The DBP contains its
own independent buffering facilities for holding data
base information to be processed and is programmed
as a special-purpose microprogrammed processor with
separate microprograms implementing high level proc
essing functions.

DBP TECHNOLOGY FACTORS

There are four technology factors which support
specializing data base processing functions: Distrib
uted Processing, Data Base Languages, Microproces
sors, and Mass Memory Technology. Each of these
factors contributes to the overall concept, but none com
pletely provides a total solution. When supplemented
with additional research, however, these factors indi
cate feasibility of the DBP concept.

Distribu.ted processing

Functionally distributed processing principles seem
applicable to the DBP concept. Microprogrammed data
base processing functions are separate and independent
processes executing in specialized processing facilities1

(i.e., functional distribution).

Data. baBe la.nguages

High level data base processing languages form a
uniform and consistent method of expression through
which data base processing problems are solved. The
syntax and semantics of these languages incorporate
subprocesses which, when partitioned, resemble primi
tive functions that could exist as microprogammed
processes in a data base processor.

Microprocessors

Economical integrated processing logic is available
at very attractive performance levels. 2 Many special
purpose functions can be implemented with signifi
cantly improved execution times.~;

1~f ass memory technology

Through magnetics, CCD,~ and Bubble5 memory, mass
memories of greater than 1011 bits may be built. An in-

telligent memory which would combine on-chip proc
essing with semiconductor logic would extend to the
data base processor concept.

SYSTEM ARCHITECTURE CONSIDERATIO~S

Distributed and centralized systems

The data base processing concept applies to both dis-
..f- ;h"l'+Ar1 n-nr1 ru,\,.,{--ro l;P'7nrl 'Y\ I"'\~aC'c:d'Yln- C""t7C!to:rYlC Tno ;n1_
lJ~ ~ U U Leu a.~.1U \ .. ,,'c .. .1.1!. U.l.1~'-'U p..L v ""lo..Ju~~~b j.JJ IV' V_~J."'''''''. ~ _

plementation may differ with the architecture into
which it is merged, however, the basic principles of the
idea remain unchanged. A distributed system is a sys
tem of independent computers interconnected with a
mechanism for information transfer between the inde-
pendent computers which may be a packet s'v;litched
communications network or a specialized ring struc
ture.H

,. A centralized system is a conventional unit
computer or multiprocessor system whose cental proc
essor facilities are not physically dispersed. Remote
terminals may be located away from the central proc
essor in a centralized system.

The architecture principles of the data base process
ing concept that apply to both distributed and central
ized systems are the at-location processing of data base
information which lessens the central processor over
head and the implementation of a system-parallel data
base processing capability. In a nehvork distributed
system, communications loading would also be lessened.

In distributed systems where the communications
network utilizes common carrier lines (50 kb/sec line
interconnections, for example) the DBP could inter
face '.vith a central processor which \vould provide it
with the high level commands (Figure 2). The central
processor in this instance provides the necessary inter
faces with the network protocol, the translation of re
quests from users into DBP commands, the translation
of DBP responses into network format, and the return
of the network formatted data to the user. In instances
where the interconnecting network is a special or dedi
cated structure (Figure 3) or where it is desirable that
the DBP directly interface with the network, the DBP
would interpret protocols and multi-user data base in
quiries in addition to the retrieval and manipulation of
the data base information.

M emory hierarchies

The practical achievement of a significant mass mem
ory is governed by economics. The most plausible and
practical way of implementing a mass memory today is
through a combination of technologies which implies a
hierarchy of mass memory storage and the ability to
control the movement of information between hier
archy levels.'< The DBP, if it is assumed to be used with
a hierarchical mass memory system, must provide for
information movement between various levels of the

Data Base Processor Technology 813

6
I PROCE55UR I
I i

DATA BASE
PROCESSOR

MASS
MEMORY
SYSTEM

Figure 2-DBP network interconnection through host

hierarchy and for handling interfaces unique to the dif
ferent mass memory devices used.

DBP-hardware interfaces

The general architecture design of the DBP must ac
commodate three classes of hardware interfaces-net
work, central processor, and mass memory-in order
to be applicable to a wide variety of system architec
tures. In the network system, when the DBP assumes

CENTRAL
PROCESSOR

DEDICATED NETWORK

CENTRAL
PROCESSOR

DATA BASE
PROCESSOR

MASS
MEMORY
SYSTEM

Figure 3-Direct DBP network interconnection

814 National Computer Conference, 1976

a host-equivalent role it must also assume the interface
responsibilities that a host assumes. This includes phys
ical hardware interfaces (serial, parallel, rates, cod
ing format, control signals) and the ability to act as a
receptor /transmitter and interpreter of message con
trol (protocol) information. The network interface
problem appears to dictate a multi-form network inter
face module that can be used for interfacing with either
special purpose interconnects or general purpose net
works. Different versions of this module would pro
vide a standard internal DBP interface.

Two classes of central processor interfaces are
needed in the DBP architecture: I/O channel and
DMA. The I/O channel interface seems to be the most
important considering the general philosophy of the
DBP architectural concept. However, a DMA capa
bility coupled with suitable memory protection could
provide a means of common memory communication
between the DBP processes and the general data man
agement processes which are performed by the central
processor. The I/O channel interface should be capable
of handling multiple users, either as a multiplexed sin
gle channel, or as separate physical I/O channels mul
tiplexed internally within the DBP. The DMA inter
face with the central processor should incorporate
memory protection controlled by the central processor.
This is especially needed when virtual environments
are provided by the central processor.

Future mass memory technologies that can be ex
pected to be used with the DBP are block organized;
discs, MNOS BORAM, CCD and Bubble memory de
vices, magnetic tapes, magnetic cartridges, etc. The
DBP architecture must be able to accommodate,
through interface modules, different mass memory in
terfaces. In the case of some mass memory technology,
disc technology in particular, the interface module
could be identical to the central processor interface
module. Support of the mass memory interface through
microprogramming appears to be a requirement.

DBP ARCHITECTURE REQUIREMENTS

The DBP system requirements form a general bound
for the DBP design. In a sense, the DBP extends data
base management to a parallel processing environment
in which one of the processors is specialized for inde
pendently processing data base information.

Modular structure

The DBP should be organized in modular fashion
(Figure 4) in order to accommodate different inter
faces and be usable in different system architectures.

Primitives

The DBP shall implement microprogrammed primi
tive functions that can be used by the operating system

I
I
I

CENTRAL SYSTEM

I MICROPROCESSOR UNIT/STORAGE

I
I
I MASS MEMORY INTERFACE

I
L________ _ ______ ----1

MASS MEMORY

Figul'e 4-DBP modular structure

or data management system for processing of file data
concurrent with central system operations.

DBP-internal processing

The DBP shall be capable of independently process
ing data stored on mass memory or in its own internal
memory.

Multi-operation processing

The DBP shall be capable of performing a limited
number of operations concurrently to permit efficient
usage of the DBP where interfaced with mass memory
with significant latency times.

M emory hierarchy

The DBP shall contain the necessary interfaces and
control programs to support a mass memory hierarchy
and to transfer information between hierarchy levels.

Rate/format matching

The DBP shall provide the buffering/processing re
quired to match mass memory intrinsic speeds and for
mats to central system transfer capacities and formats.

MAJOR DBP ELEMENTS

The DBP system architectural concept uses special
ized, independent microprocessing logic to perform
data base processing operations. The elements needed
to implement the DBP modular structure are described

in preliminary fashion to indicate hardware technology
that could be used.

Processing element

The DBP processing element will be a 16-bit, high
speed (200 ns cycle time), microprogrammed unit with
separate micromemory and buffer storage. Internally
the processing element will be an asynchronous bussed
structure.

Buffer storage

The DBP will have a word organized, high speed
buffer memory (4,096 words) for command storage,
intermediate storage of file data, and rate matching
between mass memory and central system interfaces.

Input/output inter/aces

The DBP will have both byte and word parallel I/O
interface modules capable of multiplexed and non
multiplexed operations.

Afass memory inter/aces

The DBP will support wide word (in excess of the
DBP internal word width), narrow word (less than
DBP internal word width), and serial mass memory
interfaces.

DISTRIBUTED DATA BASE SOFT"\VARE
DESIGN

Implementation of the DBP concept requires re
thinking of the major system software elements. The
DBP concept is intended to relieve conventional system
processors of their workload and in doing so, modifica
tions of existing software structure must be antici
pated. At this time, three software-related problem
areas have been identified. These are the modified op
erating system software structure, the definition and
design of microprogrammed primitives, and user con
trol of the primitive operations.

Operating system so/tware/DBP inter/aces

A simplified diagram of a conventionl data base
management software structure is shown in Figure 5.
Conventionally, the operating system interfaces di
rectly with secondary storage on which the data base
is stored to move data between the secondary storage
and the system buffer allocated in the computer main
memory. User programs and the Data Base Manage
ment System do not interface with secondary storage
but with the system buffers.

Data Base Processor Technology 815

PRIMARY STORAGE

OPERATING SYSTEM
[,- t

ECONDARY(. +3 STORAGE ~CHEMA (OBJEC' SUB-SCHEMA-l SUB-

J 41
VERSION) (OBJECT SCHEMA~

2 ! J. VERSION) N

DATA
BASE !

I
I MANAGE- ~SER-PROGRAM - 1 I USER-PROGRAM - N I

MENT
SYSTEM

S

I
DATA

I
1
9

BASE

1
7

SYSTEM
LOCATIONS

SYSTEM

'\
BUFFERS ~ ~ SYSTEM

\
USER- LOCATIONS

WORKING
AREA

USER-

~ WORKING

....... f4 AREA

Figure i)-Conventional DBM software structure

Incorporation of processing capabilities within the
secondary storage poses questions of which software
elements should directly relate with and access the
data base. The existence of processing primitives at
the data base in effect causes the user program to
transcend the primary store-secondary store interface;
i.e., the execution of a user program takes place in two
places with possibly intervening sofh-vare elements that
do not necessarily permit direct communication be
tween concurrently executing parts. The enumerated
paths provide a depiction of the operations which
transpire in the conventional software structure:

"I" a call for data by the user program
"2" DBMS supplements the call arguments with

schema information
"3" DBMS requests I/O operations from the Oper

ating System (OS)
"4" The OS interacts with secondary storage
"5" The OS transfers data between secondary stor

age and system buffers
"6" DBMS transfers data between system buffers

and the program working area
"7" DBMS provides status information to the call

ing program
"8" Data in program's working area manipulated as

required using host language
"9" DBMS administers the system buffers

Primitives implemented in a data base processor
would modify the DBM software structure (Figure 6).
In this proposed structure, operations would:

"I" a call for process execution by the user pro-

816 National Computer Conference, 1976

PRIMARY STORAGE

SECONDARY DATA BASE
L OPERATING SYSTEM

;r----~r~~~I------~I------~----~ STORAGE PROCESSOR

II 4A

DATA BASE
PRIMITIVES

.... ~
4B

t4D
PA T A BASE I-----+-=~--I

DBP
BUFFER

.... 4t

\
I~

.. - SCHE MA jSUB-SCHE MA I SUB-
(OBJECT (OBJECT SCHEMA
VERSION VERSION) N

2,L. J. 4
DATA BAS~~1===~==jC~----JL ____ ~
M~NE~G;- USER ..

SYSTEM I 1 PROGRAM'
"+-~ 4

19

SYSTEM
BUFFERS

SYSTEM T
LOCATIONS

USER
WORKING

AREA

USER
PROGRAM

N

SYSTEM
LOCATIONS

USER
WORKING

AREA

Figure 6-Modified DBM software structure

gram. This extends the original structure
concept by including the capability of the user
program to request a process to be executed
and relying on the DBMS to formulate and
control the requested process. Previously this
was limited to a call for data which eventually
was manipulated by the user program.

"2" DBMS supplements the call arguments with
schema information.

"3" DBMS requests I/O operations from the Op
erating System (OS). In this operation,
modifications may have to be made to expand
the I/O function to include a differentiation
between DBP function commands to be sent
to the DBP (or status information requested
from the DBP) and normal buffered data
transfers.

"4A" The as interacts with the DBP. The DBP
acts as the as/DBMS agent to perform,
through execution of primitives, the opera
tion requested.

"4B" The DBP interacts with the secondary stor
age to perform, in association with its in
ternal storage, the operation requested.

"4C" The data base information is transferred from
secondary storage to the DBP buffer for
processing and returned to secondary storage
should it be required.

"4D" The DBP accesses its internal storage in
operating on the data base information.

"5" The as transfers data between the DBP
Buffer and the System Buffer. To the as no
change should be apparent during this step.
The secondary store/DBP would appear as a
buffered secondary storage system.

"6"-"9" No major changes apparent in these opera
tions.

The DBMS, rather than the as, software design
would be impacted the most by inclusion of DBP
primitives. These impacts would center heavily on
including capabilities to operate a concurrently exe
cuting process in parallel with user program execution.
The overall DBMS control strategy and methods
definitely require further research.

Definition of microprogrammed primitives

The intent of the DBP is to provide improved sys
tem performance through the use of microprogrammed
primitives. The definition of the primitive operations
to be performed is difficult. User program needs,
DBMS needs, and the practical capabilities that can be
incorporated into hardware all impact the primitive
function definition. Considerations in defining the
primitive function set include:

General purpose vs special purpose

A truly general purpose set of primitives that benefit
all possible user programs is probably unattainable
given realistic development resources. A totally spe
cial purpose primitive function capability, on the
other hand, would create an unnecessary burden on
many users because they would be required to develop,
or modify for use, the basic operations needed to inter
face with secondary storage. The eventual solution
would appear to be a compromise between these ex
tremes implementing a selected set of general purpose
primitives that would be useful in many user applica
tions and supplementing that general purpose set with
a user capability for creating special purpose func
tions that are of immediate and direct benefit.

Dynamic vs static primitive function sets

Dynamically changing machine instructions (primi
tives) that make multiple usage of the same logical
operation codes create system state management dif
ficulties. Dynamic primitive function sets are desir
able in processing environments that presumably
service many different users. Environments which
tend to be application-static do not appear to require
dynamic function sets.

Direct HOL vs machine level operations

Direct implementation of DML (or other data base
languages) elements through microprogramming rep
resents an approach to the design of the primitive
function set. At the other extreme, the primitive func
tion set could be defined to encompass the functionality

of conventional mach me instructions. The necessary
properties of the primitive function set seem to be to
provide the user the freedoms of high level code, but
also allow him, at some time during the system devel
opment and design process, machine level specification
of the primitive processes.

Data base management vs file processing

Data Base IVlanagemcnt is the organization and
management of the system of information rather
than the manipulating and processing of data base
information subsets (File processing). User pro
grams are most probably concerned with the latter,
whereas the Data Base Management System is con
cerned with the former. Neither should be neglected
in the definition of the primitive function set. The
DBMS, in managing large data bases with a signifi
cant number of uniquely identified information ele
ments, encounters difficulties analogous to the diffi
culties encountered by user programs, namely move
ment of files between mass storage and primary
storage, processing of those files, etc.

Mixed language primitives

A choice exists between defining primitives which
are total process entities (i.e., single user statement,
single process) and defining user-apparent primi
tives that are a mixture of interpreted language
statements and microprogrammed processes. The
mixed-language primitive approach supports stan
dardized primitives but still retains primitive cus
tomization capabilities.

Standardized relations

Standard file manipulation relations have been
defined for file processing. These include cartesian
product, union, intersection, projection, diadic re
striction, monodic restriction, join, composition,
permutation, computation, difference, inversion, and
ordering and are representative of standardized
functions that would form the basis of a primitive
function set, Other standardized relations for mov
ing data between hierarchies should also be consid
ered.

User control of primitive operations

There are two kinds of users of the DBP. One is the
application user represented by the user programs in
the machine. The other is the systems programmer
who is represented by the DBMS/OS software. DBP

Data Base Processor Technology 817

primitives should support both users. HOW these users
control data base processing operations through primi
tives depends to a large extent on the kind of
computer system operating environment they are oper
ating in. In very specialized systems where the appli
cations code and the system software are part of an
integrated design, it is possible to have application
user programs directly command and sequence primi
tive operations. In general purpose systems where
predesigned operating systems and data base manage
ment software exist, control responsibilities would
probably be relinquished to the DB)IS. The specific
choice of how the user controls primitives remains a
function of the operating environment.

A common problem that will be encountered by both
kinds of users will be the control of parallel execution.
The DBP, as an independent processor, represents a
specialized computation resource which can operate
in parallel with other processors. Computation results
from the DBP must be merged with program main
stream which requires that methods of controlling
parallel processes be established. To some extent these
methods have been researched for multiprocessors. At
the applications user level, however, DML languages
have as yet no provision for invoking, staticizing, or
merging parallel processes. At the system user level,
the DBMS will require modifications such that utiliza
tion of a parallel processing capability is possible.

SUMMARY

The DBP concept has been depicted as a promlsmg
architectural approach for building higher perform
ance data base processing systems. Intuition indicates,
however, that higher performance will not be attain
able without expending effort in system research. Re
search is recommended in areas of DBMS, as, and
system organization to define strategy, functional de
sign, and to evaluate primitives:

Strategy analysis

The fundamental objective of the DBP architecture
is higher performance in the processing of data base
information. Key to the attainment of this objective
is the apportionment of data base processing functions
between hardware (the DBP) and software (DBMj
OS). Apportionment decisions are most appropriately
based upon well defined system strategies formulated
knowing the performance impacts of different strategy
alternatives. Conventional system strategy and orga
nization can be expected to be modified but intensive
examination of the modified strategy is needed in
order to make apportionment decisions. Available
technology will impact apportionment decisions.

818 National Computer Conference, 1976

Functiona,l design

Once apportionment decisions have been made, the
functional design of a DBP should be investigated.
In this design, DBP interfaces, architecture, tech
nology, and primitive functions require specification
in concert with the specification of the functional in
terfaces with the companion central system. Use of
primitives and identification of modified central system
software and hardware require description.

Environmental primitive evaluation

Primitives, once defined, require evaluation for per
formance and functional capability. Laboratory im
plementation of primitives with a modified current
system seem relevant to establish practicality and to
provide a first approximation to attainable perfor
mance.

REFERENCES

1. Peebles, R., and E. Manning, "A Computer Architecture for
Large (Distributed) Data Bases," ACM Proceedings Inter
national Conference on Very Dc/,rge Data Bases, September
1975.

2. Weissberger, A., "Keeping Pace with a 16-bit Microproces
sor," AFIPS 1975, National Computer Conference.

3. Freeman, H. A., "More Zip in Your System with Customized
Firmware," EASCON Proceedings, September 1975.

4. Amelio, G. F., "Charge-Coupled Devices for Memory Appli
cations," AFIPS 1975, National Computer Conference.

5. Ypma, J. E., "Bubble Domain Memory Systems," AFIPS
1975, National Computer Conference.

6. Moran, D. M., "Memory Multiplexer Data Link-An Inter
modular Network," EASCON Proceedings, September 1975.

7. Anderson, D. R., "The EPIC-DPS-A Distributed Network
Experiment," EASCON Proceedings, September 1975.

8. Madnick, S. E., INFOPLEX-Hierarchical Decomposition of
a Large Infonnation Management System Using a Micro
processor Complex, MJT Report CISR-7, SLOAN WP-770-
75, March 3, 1975.

Integrity aspects of a shared data base

by EDUARDO B. FERNANDEZ and RITA C. SUMMERS
IBM Los Angeles Scientific Center
Los Angeles, California

ABSTRACT

A simple model is formulated to represent integrity
constraints and to describe the evaluation and enforce
ment of these constraints in a shared data base envi
ronment. The proposed model is applied to define the
integrity facilities of a relational data base. This data
base consists of a set of base relations, which are
presented to the user through application-oriented
views. These views are basically joins or projections
of the base relations, and the data base is accessed
through a language which by referring to predefined
views, makes explicit the intentions of application
programs. The types of integrity rules incorporated
in this system, their description, their evaluation, and
the propagation of changes to views into the shared
data base, are discussed.

INTRODUCTION

Information protection, i.e., the prevention of illegal
disclosure, modification, or destruction, and of invalid
modification, of the contents of the data base, is one
of the most critical problems of data base systems.
For this effect, the data base should include an au
thorization system to prevent illegal access to the
information, and an integrity system to prevent some
types of inconsistencies, introduced by errors of the
users or their application programs. By enforcing
semantic restrictions on the information, it is possible
to insure that the contents of the data base are at
least plausible, if not correct, and that no inconsis
tencies exist between related information.

An integrity system for a data base consists of a
set of assertions about the contents of the data base
(expressed in some suitable language), a validation
mechanism that checks changes to the data base for
compliance with the integrity assertions, and an en
forcement mechanism that performs some predefined
actions upon detecting that one or more of the integrity
assertions have been violated. In those systems where
users have access to a shared data base through
views,3,17 the integrity system should also contain
specifications about how changes are reflected to the
shared dataY

819

Typical integrity assertions are statements such as:
"Salaries must be positive." "Salaries must be non
decreasing," "Student numbers must be present in en-
rollment lists." Present commercial systems have only
basic capabilities to define and enforce these types of
statements,9 and more advanced integrity checking is
left to the application programs. In large shared data
bases, it is clear that preserving integrity should be
a system function, not left to the individual applica
tions.

A model for the functions of an integrity system is
presented in this paper (second section), which de
scribes the structure of the integrity constraints, their
evaluation, and their enforcement. This model is
applied in the following sections to define an integrity
system for a shared relational data base described in
previous papersy,ls The third section contains a brief
description of this data base, the type of integrity
assertions included in it, the association of these asser
tions with data objects, the way of describing the
assertions, and their evaluation. The use of compile
time actions to prepare integrity checking, and the
effect of changes to the data base through views, are
considered. The fourth section compares this approach
to other proposals, while a final section provides some
concl usions.

A MODEL FOR INTEGRITY

A simple model for integrity is now presented,
which can accommodate most of the features found in
recent discussions of integrity characteristics. i . o.lo ,12,13,17
It is described in terms of a relational model of data/
and it is used to guide the selection of integrity fea
tures for a relational data base. However, a substan
tial part of the subsequent development could be
applied to other logical models of data as well.

Integrity rules

An integrity 'fule is the 5-tuple (Ol,tk,pq,cmem), where
Ot is the data object to which the rule applies, tk is an
access type which indicates for what type of data base
access the rule will be invoked, pq is an assertion

820 National Computer Conference, 1976

stating a semantic constraint which must be true for
an occurrence of the object 0/, Cn is a predicate ex
pressing a condition which must be true in order for
pq to apply to 0/, and em is an enforcement type that
specifies the action that will be taken by the system if
pq is not true.

For specific systems it may be convenient not to
separate the five components of the rules; for example
tk and Cn could be combined to specify a condition for
application of Pq, or Cn could be part of pq.l0,17 Also,
in most cases the tk'S are a small and predefined set,
and the specification for tk need not be explicit. How
ever, it is important for conceptual clarity in the de
sign of the integrity system, to separate these com
ponents as independent units.

As an illustration let us consider a student data base
where record type or relation STUDENT contains the
fields NAME, ADDRESS, COURSE, and GRADE.
An integrity rule for object STUDENT. GRADE
could contain an assertion pq such as "Grades must be
'A' or 'B' or 'C' or 'D' or 'F'." This assertion would be
enforced whenever some access actions involving field
GRADE, specified by tk, are performed; for example
if tk indicates "update, insert," then validation of new
values for field GRADE will be performed. However,
if a condition Cll is specified, for example: "When
COURSE#'123A'," the validation test will only be
applied for those tuples where the COURSE field value
is not '123A'. An enforcement type specification could
indicate "log and record invalid tuple (s) in IN
VALID," indicating that on violation of the assertion
the name of the program, time of day, etc., will be
logged and the tuple or tuples not satisfying the asser
tion will be stored in a special table called INVALID.

In a system containing many interobject constraints,
each of them involving several objects, a more con
venient definition for an integrity rule would replace
object 0/ by a set of objects to which the assertion
applies. However, most of the interobject constraints
found in practical systems involve only two data ob
jects, such as "Enrolled students must be registered
students." In this case, it suffices with splitting the
constraint into two constraints of the form indicated
earlier, and associating each constraint with each ob
ject. In the example, we obtain two assertions: "The
set of enrolled students is included in the set of
registered students," associated with object "enrolled
students," and "The set of registered students includes
the set of enrolled students," associated with object
"registered students."

In a relational system the objects 0/ are either do
mains or relations. In those data base systems which
do not have domains as separate entities,18 domain
constraints are replaced by constraints associated with
field types, where a field type is a prototype for fields
that carries a set of attributes that apply to all the
fields based on the corresponding type. The integrity
constraints associated with a given type apply simi-

larly to all the fields based on the type. Relation con
straints include interrelation between fields or con
straints that apply to specific fields in the relation.

There is sometimes a rather fine line between an
integrity rule and an access rule. An access rule was
described in References 11 and 19 as a tuple (ShOI,tk,
Pq,em), where Si is a subject or requesting entity, and
all the other terms are the same as in integrity rules
but with a different interpretation. There, 01 is the
object accessible to Si; the type of access authorized to
SI for 01 is given by tk, and it is only granted if predi
cated Pq is true. Finally, em specifies an action to be
performed by the system if an illegal access is at
tempted. As either access or integrity rules include
predicates, application of an integrity rule can depend
on the identity of the user, and an access rule can
depend on data values. However, access can be decided
in some cases by looking only at the names of the
requested objects, while integrity control depends al
ways on the contents of the objects involved. Further,
the access types tk specified in an integrity rule always
refer to access that modifies the data base, while access
control refers to any type of access, including just
inspection of the contents of some data unit. Notice
also that access rules do not include conditions for
their application, but every access must be validated
by the system.

Validation of integrity rules

Integrity assertions can be classified into a few basic
categories il ,l9,1:l which correspond to specifications of
range, sets of permitted values, format, uniqueness of
some value, non-missing values for a field, new vs. old
values (transition assertions in Reference 10), and
interfield assertions. Validity tests for these categories
can be symbolically described as follows.

(a) Update validity test.

Let v be a new value for a field fh corresponding to
domain or type F h, which is part of relation R j • Then,
the validity condition is

is-valid (v,fhR j) ~

for P={pql (01= FhVR j) 1\ (tk='update')
1\ (cn = 'true')},
p (v) = 'true'.

This test establishes that all the predicates of the
integrity rules that apply to object 01 and for which
their condition predicates are true must be satisfied,
in order for the new tuple including the changed value
v to be acceptable. The object 01 is taken to be either
the field type for fi or the relation including fi' since
either of these can contain assertions relevant to f i •

(b) Insertion/deletion validity test.

Let (VllV2 , ••• ,vz) be a tuple to be inserted into or
to be deleted from relation R j , and that specifies values

for news f Hf 2 , ••• fz, respectively, corresponding to
domains FuF2'" .,Fz, respectively.

N ow the validity condition is

is-valid «VU V2,. •• ,vz), (flJf2" .. ,fz),R j):;;:::=
for P1={pql (oz=FiVR j)!\ (tk = 'insert' (delete»

/\ (cn = 'true')}
Pi (Vi) = 'true', l::;i::;k.

These validation tests assume that the assertions are
associated with all the relevant fields. For example an
assertion "Field fl must be a subset of field f/' would
also imply the assertion "f2 includes f/'.

When users have access to the shared data base
through application-oriented views,:l,17,1~ it is necessary
to have special reflection rules which specify how
changes to the views are reflected to the shared data
base. The resultant tuples, which are tuples of the
base relations, must then be validated as above.

A reflection rule has the general structure (Vi,oz,tk),
where Vi is the view to which the rule applies, 01 is a
data object, and tk an access type (which for fields
can be 'null' or 'update', and for relations can be
'null', 'insert', or 'delete'). A rule of this type specifies
that for view Vh a change of type tk to object 01 in the
view results in a corresponding change on Ot in the
shared data base.

The following example illustrates the reflection rule
mechanism. Let VI (flJf 2,f3,fH I.,) be a view including
fields fu ... ,f;;, and formed by the join of relations
Ru R2 , and Rl, such that flJf2 E R1, f2,f3 E R2 , f3,fHfG E R3
(that is, f2 and f3 are the joining fields). Let the
following reflection rules be defined (VlJflJ update),
(VlJf:l' update), (v1,f4 , update), (vHRH insert), (v1,R3,
insert). Updates through VI are then reflected as fol
lows: update f 1 in RH update f3 in R2 and R3, update
f4 in R3 • Integrity constraints referring to the fields
of the base relations can now be applied. Insertions
through VI are reflected as: insert tuple in RH insert
tuple in R3 (subject to any integrity constraints affect
ing R1 and R~). Notice that if we had an additional
reflection rule such as (vuf 2 , update), then updates to
both fl and f2 are effectively insertions into RJ and
must be reflected as such. Also if the views are formed
with projections of some of the relations, then some
of the reflected tuples will have unspecified fields, and
may thus violate integrity constraints that prescribe
specified values for given fields.

FUNCTIONAL SPECIFICATIONS FOR AN
INTEGRITY SYSTEM FOR A
SHARED DATA BASE

The model of the previous section includes most of
the features which are of importance in a practical
system. It is used in this section to define an integrity
system for a shared data base proposed in previous
papers,ll,l~ The data description languageJ\; is used

Integrity Aspects of a Shared Data Base 821

to present the functional capabilities of the system. A
mechanism to support these functions is given in the
fourth section of this paper.

The data base system

This data base consists of a set of base relations (or
Data Base Structures), which are presented to the
end uSers through application-oriented vieWS. TheSe
views, or templates, are basically joins and/or projec
tions of the base relations, constructed for specific
purposes. The data base is accessed through an ex
tended high-level language, which, by referring to pre
defined templates, allows the user programs to manipu
late data base elements as any other program variable.
The organization of this data base lends itself very
well to apply to it an authorization model,ll which,
due to the fact that the extended language makes
program data intentions manifest, can be enforced
partially at compile time. Even those access decisions
which are data-dependent and cannot be enforced at
compile time can be prepared at this time, thus de
creasing validation overhead at execution time.

The model of data described in Reference 18 uses
four kinds of data objects: templates, data base struc
tures, fields, and types. (The term type replaces the
term field type used in earlier papers.) The DB struc
tures constitute the shared system view of the data
base, and they are composed of one or more fields.
Types, which carry attributes, serve as prototypes for
fields. A template is an aggregate (typically a join)
of DB structures that is constructed for a specific
purpose. A template includes a defining expression,
which indicates which DB structures participate in its
construction and how they are combined. An appli
cation program views the data base as a set of tem
plates. The terms DB structure and template will be
used in two senses: as structural entities or defini
tions, and as sets of occurrences of those entities.

Four basic roles for users are contemplated in this
system-data base administrators (DBA) define and
maintain the shared DB structures and their integrity
and authorization rules; data base designers build
templates to perform specific functions; application
programmers use the predefined templates to write
application programs; application uSers invoke their
authorized programs to perform specific actions on
the data base.

A data description language for this data base has
been proposed in Reference 19, where its functions,
use, and syntax are presented in some detail. As its
syntax is simple and almost self-explanatory we shall
use this language in our examples without further
explanations. Weare not concerned here with syntac
tical details and the use of this language is purely to
illustrate the functional capabilities of the system.

822 National Computer Conference; 1976

Integrity rules

Integrity rules can be associated with both types and
DB structures. They can be given as part of the object
declaration or as independent rules. A rule associated
with a type automatically applies to all fields based on
that type. The goal is to simplify the descriptive
tasks-if a rule is specified for a type, it need not be
written for all the fields based on that type. DB
structure rules, enhanced by the relevant type rules,
are the basic integrity rules for the shared data base.
In addition, the template's defining expression pro
vides criteria for new occurrences created through that
template.

An integrity rule can contain references to either
built-in functions or procedures provided by an instal
lation. These latter are data base procedures in the
sense of the CODASYL DDL report,4 or formulary
procedures,IG and should be carefully certified. Data
base procedures also playa role in the enforcement of
integrity and security. Both integrity rules and access
rules include an enforcement type, which specifies the
name of another system object called an action.
Some action names are built-in (for example LOG,
NOTIFY_SECURITY_OFFICER) ; other actions are
defined by ACTION declarations, which can specify
procedure names.

The following are examples of type declarations in
cluding integrity assertions:

DECLARE EMPNO TYPE WHERE (*>10000 &
*<100000) ; DECLARE STATUS_CODE TYPE

FIXED BINARY WHERE (*<100);

The declarations for EMPNO and STATUS_CODE
specify ranges of admissible values. (The asterisk is
used in place of the type or component name.)

The declaration of a DB structure specifies the fields
of the structure (by reference to types) and integrity
rules. The following are examples of DB-structure
declarations:

DECLARE 1 SUPPLIER DB STRUCTURE
WHERE (NUMBERi= MISSING),
2 NUMBER LIKE SUPPLIER_NUMBER,
2 NAME LIKE BUSINESS_NAME,
2 STATUS LIKE STATUS_CODE,
2 CITY;

DECLARE 1 PART DBSTRUCTURE WHERE
(NUMBERi= MISSING),

2 NUMBER LIKE PART_NUMBER,
2 NAME,
2 COLOR,
2 WEIGHT;

DECLARE 1 SP DBSTRUCTURE,
2 SPKEY,

3 S_NO LIKE SUPPLIER_NUMBER,
3 P_NO LIKE PART_NUMBER

2 QUANTITY;

SUPPLIER is a DB structure with four fields. The
value of SUPPLIER. NUMBER is required; that is,
it cannot be undefined (denoted by MISSING in this
particular syntax). LIKE indicates correspondence
between fields and types, Le., NUMBER must obey
the integrity rules of the type SUPPLIER_NUMBER,
CITY of the CITY type, etc. Uniqueness requirements,
and integrity rules that involve DB structures other
than the object of the rule, are discussed in the fourth
section of this paper.

The previous examples expressed integrity asser
tions as part of the object's declaration. If there is
more than one rule for an object, if the rule is com
plex, or if more dynamic integrity assertions are re
quired, separate statements can be used. The follow
ing rule, for example, states that an attempt to set
STUDENT NAME to MISSING causes the entire oc
currence of STUDENT to be deleted. DELETE is a
built-in action.

STUDENT IS CONSISTENT WHERE(NAME!=
MISSING) ENFORCE (DELETE) ;

The following rule states the requirement of no A's
in a specific course:

ENROLLMENT IS CONSISTENT WHERE
(GRADE;='A') ENFORCE (LOG)

WHEN (CN='CS123A') ;

The WHEN expression is evaluated first and deter
mines if the WHERE expression is to be evaluated.
Unqualified names on the left side of comparisons in
the expressions are implicitly qualified by the object
name. Reference is to the new value of the occurrence,
unless the old value is explicitly specified, as in

WHERE (COUNT>OLDVALUE (COUNT»

Integrity expressions may be specified in three ways:
WHERE, WHERE SOME, and WHERE NONE. The
meaning of each form is given in a later section. SOME
can be used, for example, to express the requirement
that CITY must be an element of CITYV AL, as in

CITY IS CONSISTENT WHERE SOME
(CITY=CITYVAL) ;

To require that PART.NAME be unique, we write,

PART IS CONSISTENT
WHERE NONE(NAME=OLDVALUE
(NAME» ;

However, this last constraint is awkward, and could
be simplified by introducing the concept of uniqueness
in the DDL (see for example Reference 10).

Actions

The concept of an action provides a generalized way
of making events contingent on the state of the data
base system. Logging, report generation and various

periodic activities are declared as actions. Logging of
data accesses is a valuable security tool if the content
of the log can be dynamically controlled and if access
to the log itself is also controlled. (We refer here to
selective logging as opposed to complete journalling
that is done for recovery purposes.) Actions also pro
vide a way to start and stop the gathering of statistics
or performance measurements.

An action is specified as either (1) a procedure in
vocation, or (2) combinations of other actions, de
clared or built-in. It can have initiating conditions
specified in the form of a WHEN expression, or can
be initiated as enforcement of an access or integrity
rule. Built-in actions execute with the rights of the
system. Administrator-defined actions execute with
the rights of the DBA application and the user class of
the definerY The WHEN expression can refer to sys
tem data only. For example, to initiate an action when
ever a new part is added to the data base

DECLARE NEW PART ACTION(LOG,PROC
(PI))

WHEN (REQUEST.OBJECT='PART' &
REQUEST.ACCESS='ALLOCATE') ;

In the example above, LOG is a built-in ACTION.
PI is a procedure declared by the administrator, and
REQUEST is a system DB structure. The REQUEST
and SYSTEM data values are available to the pro
cedure; it can use any other data base items accessible
to its application and user class.

There exist some problems associated with the use of
actions, not all of which have satisfactory solutions
until now. Some of these problems are:

(i) integrity violations within actions, which could
result in a never-ending sequence of actions invoking
actions;

(ii) name resolution at the moment of invocation of
the procedures in the actions;

(iii) access rights of the invoked actions.

A simple, although somewhat unsophisticated solution
for (iii) is given in this section. Problem (ii) is dis
cussed later.

Updates through views

From the viewpoint of an application program, all
modification of the data base occurs through templates.
From the viewpoint of the system as a whole, all modi
fication is effected through changes to DB structures.
One of the functions of the view mechanism is to pro
vide the transition from a template-expressed change
to an unambiguous DB-structure change. Many prob
lems arise in this context, not all of which have been
solved.6 It is clear, however, that the system's basic
integrity rules apply to DB structures. The template

Integrity Aspects of a Shared Data Base 823

definition can place additional constraints on changes
made through that template.

A template, like a DB structure, is a structure that
can also be viewed as a relation or table. A template
can join two or more DB structures, eliminate rows
and columns of the resulting table, and permute and
rename columns. For example, using the data base
definitions, the following template joins SUPPLIER
and PART, using SP as intermediate. It also deletes
"'-"1._ ~_1...J_ 1'I.TTT1\/I"UDU __ ..1 C'mAmTTC' -c ___ C'TTDDTTDU
UIt:: llt::IU;:; .1.'1 U.l.V.lD.cJ.(\, dHU 0.lr1..l U0 .l~UIH 0U.r:.r: .I..J.l.cJ.l\,

and all fields but NAME from PART, renames CITY to
PLACE, and reorders the remaining fields.

DECLARE 1 PARTSLOC TEMPLATE
WHERE (SUPPLIER.NUMBER=SP.S~O

& SP.P_NO=PART.NUMBER),
2 SUPPLIER,

3 PLACE LIKE CITY,
3 NAME,

2 PART,
3 NAME;

The WHERE expression could have been extended by,
for example,

& SUPPLIER.CITY;= 'LONDON'

to eliminate rows or occurrences. If a template in
volves only a single DB structure, and does not select
rows, no WHERE expression is needed.

If two fields compared in the WHERE expression
are not based on the same type, the template designer
receives a warning; if the two cannot legally be com
pared (according to PLjI rules), the template is re
jected. When two fields with unlike attributes are com
pared, conversion takes place. Attributes may appear
on field names in the template; if they do, conversion
from or to the attributes of the type will occur when
data is accessed.

The template has a visible aspect (the portion that
appears in the declaration below the defining expres
sion) and a hidden aspect (all other fields of the par
ticipating DB structures). A program can use only
the visible aspect; access and integrity rules can also
refer to hidden fields. The user who defines a template
must have READ NAME access to all objects whose
names appear in the templateY

To summarize the definition of a template, it is a
projection (not purged of duplicates) and permuta
tion of a subset of the cartesian product of the DB
structures named in the defining expression and in the
visible aspect. The subset is specified by the defining
expression, the projection by the fields appearing in
the visible aspect, and the permutation by the order in
which the fields appear.

Each template represents a specific intent with re
spect to data base access. Not all templates are in
tended to be used for changing the data base, for ex
ample. Those that are have attributes that limit the
kinds of changes that can be made through the tem-

824 National Computer Conference, 1976

plate and that resolve any ambiguities about how the
change is made.

The UPDATE attribute can appear on template
fields. ALLOCATE and FREE are attributes of the
template. Allocation of a template by a program, fol
lowing by setting of field value means: "ensure that an
occurrence with this value exists in the" data base".
This could possibly require adding occurrences to more
than one DB structure. The ALLOCATE attribute
can limit which DB structures will be affected, as in the
following attribute for the P ARTSLOC template

ALLOCATE (SP)

which does not allow occurrences of SUPPLIER or
PART to be allocated, but only of SP. If there existed
no occurrence of SUPPLIER with the NAME value
of the new template occurrence, the ALLOCATE would
be rejected and an error condition raised. A template
with no ALLOCATE attribute cannot be used for al
locating. The FREE attribute allows FREE opera
tions to be performed on a template and resolves any
ambiguities about which DB-structure occurrences
are to be deleted. For example, the program statement

FREE P ARTSLOC;

could be implemented by deleting occurrences of any of
three DB structures. The template attribute

FREE (SP)

specifies which DB structure is intended.
The UPDATE attribute specifies that a template

or a template field can be updated, and may also specify
propagation of the update to other (possibly hidden)
fields of the template. For example, the following
template, which is used for changing a part number,
updates PART (its source DB structure) and also
SP.P _NO, which is compared for equality with PART.
NUMBER in the defining expression.

DECLARE 1 CHGPN TEMPLATE WHERE
(PART.NUMBER= SP.P __ NO),

2 PART,
3 NAME,
3 NUMBER UPDATE (EQUAL) ;

The template's defining expression acts as an in
tegrity rule, since all updates made through the tem
plate must satisfy the expression. (Updates need not
satisfy the application program selection expression,
however).

The UPDATE, ALLOCATE, and FREE attributes
specify what can be done through a template, regard
less of application or user class, i.e., they implicitly de
fine reflection rules. Access rules further constrain
use of the template in specific contexts. A more gen
eral mechanism to specify reflection rules could be
constructed by the use of actions.

AN INTEGRITY MECHANISM

General aspects

It is clear that a mechanism to perform validation
and enforcement of the integrity assertions discussed
earlier will involve a good increase in overhead with
respect to a system not providing these functions. It is
then important to define a mechanism able to support
the desired functions at the lowest possible cost. The
cost function to be minimized will be the amount of
CPU time involved in validating the assertions, and
it will be shown that the data base architecture under
consideration provides a convenient environment for
efficient evaluation of integrity constraints. As it has
been pointed out by several authors,I2,14,15 the way in
which the data base is structured has a significant
effect on the validation effort as well as on the type of
inconsistencies that can occur. However, neither the
model described here nor this data base have anything
special to offer in this respect, and the performance
implications of data base structuring will not be con
sidered.

Evaluation and enforcement of integrity rules

As indicated by Florentin,12 a basic condition to have
an effective validation system is a user interface con
sisting of preformatted transactions. This is the case
in this data base, where all manipulations on the data
base are made through predefined templates. The pre
specified structure of the template makes it possible to
validate integrity assertions in a systematic and disci
plined way.

-Any change to the data base must satisfy both the
template's defining expression and all integrity rules
for all the DB structures that are changed. The defin
ing expression is first evaluated on the new template
occurrence, and the change is rej ected if the expression
is false.

Integrity rules associated with a DB structure can
involve fields in other DB structures. For example,
values of one field may be required to be a subset of the
values of another. The concept of an integrity template
is introduced to define how these rules are evaluated
when the DB structure is updated. There are three
interpretations of the integrity template, correspond
ing to WHERE, WHERE SOME, and WHERE
NONE.12 Assume a new or changed occurrence of a
DB structure DBI, with a new value of dbi. For each
integrity rule that has DBI as an object, we consider a
WHEN-template whose defining expression is (DBI=
dbi & when-expr). If the WHEN-template is empty,
the rule is ignored. For each category of WHERE, we
consider an integrity template that is the cartesian
product of all DB structures appearing in the effective
integrity expression (which is the AND of the remain
ing rules), selected for (DBI=dbi). Then, depending

on the category, we require that the effective integrity
expression be

(1) true for all occurrences (WHERE)
(2) true for at least one occurrence (SOME), or
(3) true for no occurrence (NONE) of the integrity

template.

Changed occurrences become a part of the shared
data base when unlocking occurs. During the interval
hetween update and unlocking, violations of certain
types of integrity rules may exist, but these are seen
only by the process making the changes.

As the data manipulation language used in this sys
tem makes explicit the data actions of application
programs, it is possible to determine at compile time
exactly what the program is intending to do with
respect to the data base. This allows to generate code
at this time to evaluate and to enforce access rules. 7

,1l

In a similar way, code can be generated to evaluate
integrity rules. In effect, by looking at the type of ac
cess of the program with respect to a given data object
0/, it is possible to decide by looking at the tk of the
integrity rules for oz, which of these rules apply to the
given program. The conditions for the relevant rules
will normally only be able to be evaluated at execution
time since they are usually data dependent, and the
same is true for the predicates pq. However, as the
data objects which have to be retrieved to evaluate
these predicates are known at compile time, code can
be generated for their efficient access. At the same
time, code to perform any enforcement action can be
generated. Problems with name resolution in the pro
cedures that can be present in Pq, cn , or em, can be de
cided if compile-time actions include flow of control
analysis. 1 Naturally, compiled programs become sensi
tive to changes in the relevant integrity rules, which
result in recompilation of all the programs where they
are used.

All this early p'rocessing permits considerable reduc
tion in the overhead necessary to perform access con
trol and integrity checking at execution time. For
systems where even this overhead is excessive, in
tegrity rules can be evaluated periodically rather than
at every modification of the data object. This can be
done easily in this system by defining an action to be
an integrity check, and giving that action an appropri
ate WHEN condition. For example,

DECLARE Al ACTION (INTEGRITY (PART))
WHEN (SYSTEM.TIME='OOOO') :

As in this system file descriptions are external to
application programs, it is possible to use as a mecha
nism for enforcement a strategy similar to the one
proposed in Reference 8, where "surveillance routines"
are attached to files where given conditions should be
enforced. The only difference is, that instead of these
routines being attached by the execution supervisor to
the application programs accessing the file, they are at
tached at compile time.

Integrity Aspects of a Shared Data Base 825

DBA facilities

A fundamental requirement of an integrity system is
to provide a convenient interface for the data base ad
ministrator, to permit an easy, consistent, and efficient
way of defining and maintaining integrity rules. The
data description language presented here in distributed
form has been designed to be simple and complete.
The integrity rules are themselves stored together with
all other data definitions, access rules, action declara
tions, etc. using the same mechanism as the data files
of the shared data base.19 In other words, integrity
rules and all other data descriptions are data base
structures and constitute a "data base about the data
base," which incorporates the information usually
associated ,:vith data dictionaries/directories.20 Some
of the integrity rules therefore, could refer to the con
sistency of the relations storing integrity rules. Also,
information about which programs are affected by
changes to a given integrity rule should be part of this
facility.

RELATED WORK

The separation between the logical and physical
aspects of a data base makes it possible to define high
level integrity systems which can be analyzed for con
sistency and completeness. This has resulted in sev
eral approaches to integrity.2.3,4,9.10,12,13,14,15 It is then
important to compare our results to these to put things
in perspective.

With respect to integrity, the CODASYL DDL4 pro
vides the CHECK clause, which can specify either
ranges of values, expressed in literals, or the name of
a data base procedure. The value range is only one of
many types of required integrity constraints; and the
procedure invocation mechanism allows integrity re
quirements to be buried in procedural code, as they are
buried in application code in today's data base sys
tems. Such a mechanism has to be provided, but as a
last resort after more explicit ways of expressing in
tegrity have been exhausted.

A comprehensive treatment of integrity is given by
Stonebraker17 in describing the INGRES system, in
which an integrity assertion is stated as one or more
range statements, plus an integrity qualification. The
range statements define a cartesian product, and the
qualification is true or false for each tuple in that
product. This is equivalent to our integrity template,
but the lack of a WHEN specification causes rather
awkward qualifications. For example, the rule that
everyone in the toy department must make more than
$8000 is expressed in INGRES as

RANGE OF E IS EMPLOYEE
INTEGRITY E.SALARY>8000 or E.DEPT=;I='toy'

826 National Computer Conference, 1976

as opposed to our

EMPLOYEE IS CONSISTENT WHERE
(SALARY> 8000)

ENFORCE WHEN (DEPT= 'TOY') ;

Another important relational data base is the SE
QUEL system,2.3 whose integrity aspects are discussed
in References 2 and 10. The functional specifications
of the integrity subsystem of SEQUEL are in general
consistent with the approach presented here. The con
cept of condition in their integrity rules is imbedded
in the assertions. The concept of action is present in
their "failure actions," which define how the system
responds to integrity violations. Update through views
is discussed separately from integrity.3 The view con
cept of the SEQUEL system allows the subschema to
define joins (as well as other structures) and to con
vert between units (such as dollars and lire). The
template differs from the SEQUEL view primarily in
the handling of changes to the data base. A template
is the concrete representation of a specific intent re
garding use of the data base. Rather than being de
fined by the casual user of a query language, it is
designed by a professional application designer and
installed by a DBA.ls Therefore, rather than applying
the "uniqueness rule" of Reference 3 (that a change to
a view is permitted only if there is a unique change to
the underlying base relations that will result in the
view change), we allow the template's definition to
choose one of several possible changes, or to disallow
a unique change. In any case, it is clear that a system
like SEQUEL is compatible with this latter approach,
i.e., it would be possible to have data base administra
tors and application designers building views for
casual users.

Florentin 12 has studied integrity from a more theo
retical point of view, stressing the value of predicate
calculus in defining and evaluating integrity condi
tions. However, his cost function for the calculation of
integrity constraints is based on the number of se
quential file searches instead of minimization of CPU
time as in our case. Graves has given a very complete
discussion of the functions needed in any data descrip
tion language for integrity purposes.13 Our concept of
condition, and the delayed assertions of Reference 10
are found in his specifications. The syntax of his DDL
is COBOL-oriented while our syntax is PL/I-oriented,
however most of his concepts are consistent with our
approach. He was also the first one considering update
effects an integrity problem. Hammer and McLeod14

have provided a detailed discussion of the nature of
integrity constraints; however, they do not consider
the problem of updates through views or the evaluation
of the constraints. Their work is of great value to
define the descriptive aspects of integrity constraints
and the functional capabilities of the supporting
system.

CONCLUSIONS

A model of the functions of an integrity system for
a shared data base has been proposed. Such a model
is valuable to guide the design of the functional speci
fications of integrity systems for specific data bases.
The model includes not only the characterization of
integrity constraints but also the handling of updates
to the data base through views, which is considered
here as an important aspect for preserving the se
mantic integrity of the information stored in the data
base. The model puts together different aspects of
integrity, which until now have only been partially
present in specific proposals.

A relational shared data base presented in earlier
papers18 is then shown to represent a very convenient
embodiment of the integrity model. The particular
characteristics of this data base, i.e., use of an ex
tended high level language. for data manipulation, di
rect reference to the data base variables, view interface
for end users, use of compile-time actions, provide an
environment in which the definition, evaluation, and
enforcement of integrity constraints can be performed
with relatively low overhead, with respect to systems
incorporating similar functions.

REFERENCES

1. Allen, F. E., "A Basis for Program Optimization," Proc.
IFIP Congress 71, North-Holland, Amsterdam, 1972.

2. Boyce, R. F. and D. D. Chamberlin, Using a Structured
English Query Language as a Data Definition Facility,
IBM Research Dept. RJ1318, December 1973.

3. Chamberlin, D. E., F. N. Gray, and 1. L. Traiger, "Views,
Authorization, and Locking in a Relational Data Base
System," Proc. 1975 National Computer Conference, AFIPS
Press, Montvale, N.J., 1975.

4. CODASYL Data Description Language, Journal of Develop
ment, Handbook 113, Natl. Bureau of Standards, Washing
ton, January 1974.

5. Codd, E. F., "A Relational Model of Data for Large Shared
Data Banks," Comm. ACM, 13, 6, June 1970, pp. 377-387.

6. Codd, E. F., "Recent Investigations in Relational Data
Base Systems," Proc. IFIP Congress 74, North-Holland,
1974.

7. Conway, R. \V., W. L. Maxwell, and H. L. Morgan, "On the
Implementation of Security Measures in Information
Systems," Comm. ACM, 15, 4, April 1972, pp. 211-220.

8. Conway, R. W., \V. L. Maxwell, and H. L. Morgan, "A
Technique for File Surveillance," Information Processing 74,
North Holland, 1974, pp. 998-992.

9. Date, C. J., An Introd1{ction to Database Systems, Addison
Wesley, Reading, Mass., 1975.

10. Eswaran, K. P. and D. D. Chamberlin, "Functional Specifi
cations of a Subsystem for Data Base Integrity," Proc.
ACM-RAND Symposium on Very Large Data Bases, Boston,
1975, pp. 48-68.

11. Fernandez, E. B., R. C. Summers, and C. D. Coleman, "An
Authorization Model for a Shared Data Base," Proc. ACM
SIGMOD Int. Conf. on Management of Data, pp. 23-31,
ACM, New York, 1975.

12. Florentin, J. J., "Consistency Auditing of Data Bases," Com
puter J. 17, 1, February 1974, pp. 52-58.

13. Graves, R. W., "Integrity Control in a Relational Data

Description Language, Proc. AMC '75 Pacific, pp. 108-113,
ACM, Ne\v York, 1975.

14. Hammer, M. M. and D. J. McLeod, "Semantic Integrity in a
Relational Data Base System," Proc. ACM-RAND Int. Sym
posium on Very Large Data Bases, Boston, 1975, pp. 25-47.

15. Heath, I. J., "Unacceptable File Operations in a Relational
Data Base," Proc. 1971, ACM SIGFIDET Workshop, pp.
19-33, ACM, New York, 1971.

16. Hoffman, L. J., "The Formulary Model for Flexible Privacy
and Access Controls," Proc.1971 FJCC, AFIPS Press, Mont
vale, N.J., 1971.

17. Stonebraker, M., "Implementation of Integrity Constraints

Integrity Aspects of a Shared Data Base 827

and Views by Query Modification," Proc. 1975 ACM
SIGMOD Conference, May, 1975.

18. Summers, R. C., C. D. Coleman and E. B. Fernandez,
"A Programming Language Approach to Secure Data Base
Access, Proc. ACM Pacific 75 Reg. Conf., pp. 114-118, ACM,
New York, 1975.

19. Summers, R. C. and E. B. Fernandez, Data Description for a
Shared Data Base: Views, Integrity, and Authorization,
Report G 320-2671, IBM Los Angeles Scientific Center,
August 1975.

20. Uhrowczik, R. P., "Data Dictionary/Directories," IBM
Systems J., 12, 4, 1973, pp. 332-350.

Designing optimal data structures

by LARRY CLOUGH, WILLIAM D. HASEMAN and YUK HO SO
Carnegie-M ell an University
PittsbuTgh, Pennsylvania

ABSTRACT

This paper is concerned with developing a methodology
for designing optimal network data base structures.
The model uses as an input the logical description of
the files and existing network structures which are to
compose the new network structure, along with a list
of the functional dependencies of each file. From this
input, a canonical plex structure is generated which
contains all the known data and its relationships in a
non-redundant form. This canonical form can be modi
fied by adding additional sets and indexing schemes
which can improve the retrieval efficiencies at the
cost of additional storage. Given the set of queries or
data requests and their relative importance, an opera
tions research model can develop an optimal data struc
ture which minimizes a multiple objective cost func
tion. A methodology is then proposed for loading this
optimal structure as well as for detecting when a re
organization or new network structure is necessary.

INTRODUCTION

In the past few years there has been a great deal of
research directed toward the development of gen
eralized data base management systems. The major
objective of this research was to develop systems which
could (1) eliminate redundant data, (2) store all data
in one centralized data base, and (3) store not only the
data but also the relationships between the data. This
need to express relationships between data was the
impetus for the work which led to the development of
the CODASYL DBTG report of 1971.1

- 4 Part of this
need grew out of the fact that when several files were
combined to form a data base and therefore redundant
data was removed (Le., social se<.;urity numbers existed
in more than one file), some mechanisms or relation
ships needed to be created to represent that informa
tion (Le., something needed to be created to link to
gether those files) . In the terminology of the
CODASYL report this relationship is called a set. A
set consists of an owner-member relationship which
is always a one-to-many relationship.

829

A second research effort which has been concerned
with this question of relationships among data are the
proponents of the relational approach,5-11 which was
nurtured by E. F. Codd of IBM San Jose Lab. In this
approach the data is viewed as a set of tables where
all the data contained within a row of that table
(tuple) is related. This approach leaves the redundant
data in the data base, at least at the logical level, and
allows the user to join together various tables of data
using the known relationships between the tables. The
early work demonstrated that some of the required
operators were not valid unless the tables were in a
specified or normalized form. The process of convert
ing raw data into the third normal form involves re
moving repeating groups (such as arrays) as well as
removing various functional dependencies. These
functional dependencies are indeed some of the rela
tionships between data that the CODASYL report was
concerned with representing.

A third research effort in this area has been the
work being performed in the file conversion area.14- 36

This work, though preliminary in nature, has been
concerned with developing techniques for converting
data from one file structure to another. Most of these
processes involve defining the input file (source file)
and the output file (target file) through the use of a
data description language. The programmer then de
fines the actual conversion process which is then per
formed to convert the source to the target file.

The objective of this paper is to combine the knowl
edge gained by the aforementioned research to develop
a methodology for automatically designing and loading
optimal data base structures. Since the CODASYL
approach is currently the accepted generalized data
base system, the data structures to be generated will be
network or plex structures, which are supported using
the set concept. This is not meant to exclude the re
lational approach in that B()nczek, Haseman and
Whinston12 have demonstrated that a network can be
used to store a relational data base and Clough and
Haseman13 have proven that the network approach is
an efficient method for storing relational data bases.

It will be assumed that the data to be stored within
this optimal data base will consist initially of either a

830 National Computer Conference, 1976

number of networks and/or COBOL files and each will
be described using a common data description lan
guage. The COBOL file structure is the most common
file structure currently being used and most other file
structures are a subset of it. It will also be assumed
that all functional dependencies are known for each
file involved. In order to generate an optimal data
structure the list of queries or data requests and their
importance must also be known.

OPTIMAL DATA BASE DESIGN

This section of the paper will be concerned with
converting the logical description of the input files
and networks into a logical description of the optimal
network. This entire section will be concerned with
only the data description language (logical descrip
tion) and the data requests (queries) for the result
ing data base, and not with the actual data files. This
approach of first manipulating the data description
language without involving the actual data appears
to be a unique idea.

The drawing shown in Figure 1 demonstrates the
processes which are discussed in this first section of
the paper. The first stage of the design involved

COBOL
Files

STAGE 1

File
Descriptions

STAGE 2

(1) developing a data description language (DDL)
to describe the input files and their associated func
tional dependencies and (2) converting those existing
networks into hierarchical file structures, so they will
be consistent with the COBOL-like files. The DDL
which has been developed is an extension to the
GPLAN DDL/ which is consistent with the DDL pro
posed by the CODASYL DBTG report. The process
involved with converting an already existing network
into a group of COBOL-like files is discussed in the
third section of this paper.

The primary reason for converting all existing data
structures into a hierarchical file is because the second
stage can consistently convert each of these files into a
normalized form. To first convert a COBOL file into
an un normalized relation the repeating groups must be
eliminated and a set of keys for each relationship must
be determined using the functional dependencies. The
process of converting the unnormalized relations to
normalized relationships has been discussed by Codd
et a1. 5 This is discussed later.

The third stage of the project is concerned with de
veloping a canonical plex (network) structure from
the given set of normalized relations. This canonical
form contains all the data and all of its known relation-

STAGE 3 STAGE 4

Figure i-Structure of the data base design

ships. In the context of the relational terminology,
this structure can support a relationally complete lan
guage. U This structure has the network properties of
containing no redundant data and no extra set rela
tionships. Since this structure will support any re
quests for data, this canonical structure could be
viewed as being the ideal structure if the types of data
requests (queries) are unknown. This structure may
also be ideal if the types of data requests are dy
namically changing. The discussion in a later section
T\1"'t:>,u>nt.:! ,uyrnt:> of tnt:> OT\t:>1"'!:ItOl"Q 1"t:>l'fll11"t:>rl to f01"'ITl t.hl~ .t" _"-"_A ... """-" f,JL __ - -1::'-... _ _ -":1.- _- -- --_ _ po,J

canonical structure along with preliminary algorithm
for forming the actual structure.

The fourth stage of the project involves trying to
optimize this canonical structure in order to answer
a given set of queries more efficiently. Various tech
niques such as adding additional sets or links, creating
indexed sets and look-up tables, and splitting apart
various relations can possibly increase access efficien
cies at the cost of increasing structure costs. The pre
liminary model presented later looks at how these
options can be evaluated in terms of an operations
research type of mode!. This model is concerned with
the methodology behind developing criteria for optimal
network structures. It is clear that the optimal struc
ture must be an outgrowth of the canonical form to be
feasible, however the amount of optimizing must de
pend on the tradeoffs between access time and mass
storage demands.

The following then is a more detailed discussion of
the four stages which compose the first phase of the
project.

STEP I-CONVERTING A NETWORK INTO
TREES

In order to facilitate the restructuring process, we
have chosen the tree representation as the starting
data structure for the source files. Since some source
files may have network structures, it is necessary to
convert them into the corresponding tree structures. In
this section we shall investigate preliminarily into this
restructuring problem.

The assumed criterion in decomposing the network
is to create the least number of trees required to en
compass all the data relationships in the network.
Th us, the order in which the records are selected as
roots plays an important role in the restructuring
process. We shall provide in the following the criteria
we use in selecting roots in the tree creating process.
First, the definitions for the in degree and outdegree
are given.

Definition: The in degree of a record x, denoted
id (x), is the number of times that x appears as a
member of a set relation in the network.

Definition: The outdegree of a record x, denoted
od (x), is the number of times that x appears as an

Designing Optimal Data Systems 831

o"\vner of a set relation in the network.
The selection criteria

(i) Records with outdegree zero will not be used
as roots.

(ii) For all other records, group them according
to their indegrees.

(iii) Rank the groups in ascending order of in
degrees.

(iv) Rank the records within each group in de
scending order of outdegree.

An example of the selection criterion is shown in
Figure 2.

Notations:
(1) N = { (a, b) : record a is the owner and record b

the member of a set relation in the net
work}

Thus, the data relationships in the network are com
pletely described by N which can be constructed from
the DDL description of the network.

(2) R is a set of records rank-ordered with respect
to their desirability as roots using the criteria de
scribed above.

(3) Ti={ (a, b): (a, b) is a set relation, with owner
record a and member records b, in tree i}

TN i = {x : x is a record in tree i}
Vi = {x: x is a record to be further expanded in

tree i}

The Tree Structuring Algorithm:

(1) i= 1
(2) If N is empty, then stop.
(3) r=POP (R) *.

(r is to be used as the root of the next tree to be
built)

(4) TNi= {r}; Vi= {r}; T= { }
(5) k=POP(Vi)
(6) A= { (k,y) : (k,y) ION and y¢TN;}

Ti=Ti UA
(For all y, if y is not already a record in the tree,
add all set relations (k,y) in N to Ti)

':' X = POP(L)
(i) x is the first element in L if L is an ordered list. If L is
an unordered set, then x can be any element in L.
(ii) x will be deleted from L.

A

B

C

D

E

F

G

indegree outdegree

0

1

2

1

1

3

1

Ranke'd cand ida te roots:
(A, B, D, E)

3

3

0

2

1

a
0

Figure 2-Example of selection criteria

832 National Computer Conference, 1976

(7) N=N-A
(Delete the set relations, which have been ac
counted for in the tree structure, from the net
work data base)

(8) TNi=TNi U RA~CE (A) **.
(Add the newly attached records to TNi)

(9) Vi=ViU{X:x t RANGE (A) and od(x) >O}
(For all newly attached records, if their out
degrees are not zero, that is, if they are expand
able, add the records to Vi)

(10) If Vi is not empty, then go to (5)
(11) i=i+ l.
(12) Go to (2).

The example in Figure 3 demonstrates how the net
work structure shown in Figure 2 would be converted
into a group of tree structures using the restructuring
algorithm. In this example four COBOL files could be
used to demonstrate the designed network structure.
It should be reinforced that only the DDL for the new
files is being generated, and the actual data is not being
converted.

STEP 2-NORMALIZING HIERARCHICAL FILES

C. Delobel1o has developed a rigorous theory of data
in an information system which supports the relational
model. He derives the essential aspects of the rela
tional model from the concept of an elementary func
tional relation between two sets of attributes in an
information system. These elementary functional rela
tions define the data structure. All possible relations
in the system may be derived from them by use of the
join and projection operators. Delobel shows how an
elementary set of functional relations may be derived
from an arbitrary consistent set of relations. He also
addresses the problem of decomposing a collection of
data into a set of smaller units which are determined
by a set of elementary functional relations and a set
of user-supplied constraints upon such decomposition.
Delobel presents algorithms for performing these
operations.

Bernstein, Swenson, and Tsichritis present a similar

H RANGE(M) = {y:M is a set of ordered pairs and (x,y) EM,
V x}

Figure 3

approach to defining data structure.'" They show how
a rigorous and simple relational description of data
relationships form the functional dependencies. They
use a constructive approach and show that relations
may be synthesized from functional dependencies
algorithmically.

Functional relations are many-to-one relationships
among attributes; owner-coupled sets are one-to-many
relationships among records. Can the synthesis of rela
tions from functional relations be used to produce an
optimum network structure? A transformation be
tween a relational description of data and an owner
coupled set network description is not simple because
of the different modes in which information is stored
in the two models of data structure.

(1) Order is used to store information essentially
in an owner-coupled-set.

(2) Relationships among data items are stored both
in the· set structure and in the conj unction of data
items in a record.

(3) The data-item/data-item-value distinction does
not capture the domain/attribute value distinction
which is present in the relational model.

(4) Owner-coupled-sets are named, and that name
contains essential information. Codd has shown that
if owner-coupled-sets are treated as analogues of func
tional relations, spurious information may be created
by such associations (see "the connection trap"6). For
example, there may be more than one owner-coupled
set relationship between two records. A processor
which is traversing the network must be sophisticated
enough to choose which relationship is appropriate.
A relational processor may be more naive because any
relationship which it derives will be meaningful if the
initial set of functional relations is consistent.

There are three functions which owner-coupled-sets
may serve in a network implementation:

(1) elimination of redundant data;
(2) expression of elementary relationships between

two records;
(3) improvement of access speed by expression of

transitive relationships-Le., composition of elemen
tary relationships.

Few of the previous objections apply to the conver
sion of COBOL files into relational form. A COBOL
file is very similar to an unnormalized relation. The
main difference is that it may have a limit upon the
number of occurrences of a repeating group. So it
may be transformed almost directly into an unnor
malized relation and then normalized. The only sig
nificant problem is in determining the primary keys
of the unnormalized relations.

DelobeP' has shown how we may derive a set of ele
mentary functional relations from an initial set, and

from that elementary set. det.ermine a key for a rela
tion. The initial set of functional relationships must
either be specified in advance or determined from the
set structure of the initial files.

STEP 3-BUILDING A CANONICAL NETWORK
FROM RELATIONS

In this section, we shall look into the restructuring
problem in consolidating a collection of normalized
relations into a network data base. The present stage
of the restructuring work is to build a base network
structure which will preserve all the data relationships
presented in the relations. By creating a network,
the data interdependencies across relations are ex
plicitly recognized. This is done by joining the rela
tions on their common domains. Thus, all common
domains are represented only once in the network.
However, further optimization of the network, such
as the splitting of records for efficient accesses or stor
age savings purposes, will be presented in stage 4.

Three functions used in the restructuring model are
described. They are SPLIT, MERGE, and JOIN.

(a) SPLIT
SPLIT is used to extract a specified attribute group

from a given relation and to create the linkage (set
relation (s» between the two split parts. First, some
notations used will be described.

R: the relation to be split.
DR: the attribute domain set of R.
E: the attribute group to be extracted from R.
E'=D1t-E
R'=R[E'] (the projection of R on E').
SPLIT (R, E) : the SPLIT function.
Depending on the functional relationship between E

and E', three types of splitting might be resulted:
(1) If E uniquely determines E', then create a set

relation with owner record E' and member record E.
(2) If E' uniquely determines E, then create a set

relation with owner record E and member record E'.
(3) If E and E' assumes a many-to-many relation

ship, then create a dummy record EE' and two set re
lations, one with owner record E and member record
EE' and one with owner record E' and member record
EE'.

(b) MERGE
The function of MERGE is to combine two sets of

occurrences of the same record type. The occurrences
probably differ in the number and types of set relation
pointers. Thus, by MERGING, the occurrences will
have a compatible set of pointers.

MERGE (Ml,M~): the MERGE function where Ml
and M2 are two sets of record oc
currences for the record type M.
M; is to be merged into M2.

Designing Optimal Data Systems 833

m: the record occurrence indicator (i.e., without
considering the set pointers) .

m): the record occurrence, with indicator m, in Ml
(m 1 includes all set pointers pertaining to M1)

m~: the record occurrence, with indicator m, in M2 •

The process:

(1) for all m, mE (M1 n M 2), add all pointers in m1

to m~.
(2) for all m, mE(M 1 -M2), add m 1 to M2 and attach

null pointers to m,.
(3) for all m, nlE(M2 -MJ) attach null pointers to

m2 for all owner pointers pertaining to M 1 •

An example is shown in Figure 4 of two records
being merged.

(c) JOIN
There are two portions of the JOIN operation: (1)

to extract a specified attribute group from a given rela
tion; and (2) to merge the extracted group into one al
ready outstanding in the network. Therefore, the func
tion of JOIN is to connect two or more relations on
their common attributes.

JOIN (Mu R) : the function

Before Merge:

~:
r

l I
r 2

r3

I r 2

I r3

I r 4

I:
After MERGE:

~: ,
j r l
I
' r 2

I r3

r r 4

I

M1 : the attribute group to be extracted
and merged into M 2•

R: the relation from which Ml is ex
tracted.

M 2 : the outstanding attribute group
with the same type as M 1 •

POI PM2 P03

POI PM2 P03

POI PM2 Poo

Set Pointers

P04 ! POS PM6 PM7

P04 I P0'7. PM6 PM7

P04 I POS PM6 PM]

Set POinters

POI PM2 P03 P04 POS

POI PM2 P03 P04 POS PM6 PM7

POI PM2 P03 P04 POS PM6 PM]

POI P03 p04 POS PM6 PM7

Figure 4

\

834 National Computer Conference, 1976

The process:

(1) SPLIT (M H R).
(2) MERGE (MH M2)'

Notation:
Cj: the set of common attribute groups in relation i.
N: the set of attribute groups in the network.

The network gene1'ating algorithm:

(1) Number the relations Rh i=l, 2, ... , n.
(2) Determine Cj for each R i .

(3) N={ }.
(4) i=1.
(5) If Cds empty, then go to (11)
(6) Select and then delete an attribute G1 from Ci .

(7) If G1=DRj then (i) if G1€N,
then MERGE (Gu G2)

else add G1 to N.
(ii) go to (11).

(8) If G1€N, then JOIN (Ga RJ
else SPLIT (Gu Rj) .

(8a) N = (N - {Rd) U{Glo Gr'}
(9) Rj=Rj[G1].

(10) Go to (5).
(11) i=i+1.
(12) If i>n, then stop.
(13) Go to (5).

Given the following set of relations and the following
assumptions on functional relationships, the network

~
I (C, D) I

(i) SPLIT ((A,B), Rl) (ii) SPLIT ((D), (C,D))

(A, B) H (G, H) I
~

H DIII1 H
(iii) JOIN ((A,B), R2)

(iv) JOIN ((A, B), R3)

E H DUM2 H (A, B) H (G, H) I
i LH,m. H'~

(vi) JOIN ((D). R4)

Figure 5

shown in Figure 5 demonstrates the use of this algo
rithm.

Relations:
Rl (A, B, C, D)
R2(A,B,G,H)
R3(A,B,D,E)
R4 (D, I, J)

Cl= {(A,B), DJ
C2= {(A,B)}
C3= {(A,B), D}
C4= {(D)}

Assumptions on functional relationships:

(1) (A,B)*-(C,D)
(2) C-frD A D.f7C
(3) (A,B)-"7(G,H)
(4) (A,B)-/7(D,E) A (D,E)-j7(A,B)
(5) E-"7D
(6) (I,J)-"7D

STEP 4-DESIGNING OPTIMAL PLEX
STRUCTURES

In order to develop an optimal plex structure it is
necessary to investigate what effect the addition of
extra sets or access methods will have on the canonical
plex structure. In order to evaluate these methods, the
demands or queries to be placed on the data structure
must be known. Since it is likely that some queries will
occur more often than others, it is also nice to know
a measure of the frequency with which the query will
be asked. For example:

LIST CITY FOR STATE = 'INDIANA' .039"0
LIST NAME FOR CITY=

'INDIANAPOLIS' AND STATE=
'INDIAN A' .059"0

Once this information is obtained it is possible to
identify where the various techniques for decreasing
access time may be applied. Initially there appear to
be four possible alternatives:

(a) split an existing record
(b) create a new path which bypasses record occur

rence
(c) use the CALC option to locate a member directly
(d) use the dynamic pointer to create an inverted

structure.

Although other alternatives might exist, this prelimi
nary look will only consider these four techniques.

The format of the queries determines which nodes in
the canonical plex structure are to be considered for
the optimizing functions. For example, the following
query:

LIST POPULATION FOR STATE = 'INDIANA' AND
CITY = 'LAFAYETTE'.

would suggest that the structure shown in Figure 6
might be a candidate for splitting as well as for using
the CALC option. In order to evaluate the increase
(or decrease) in core requirements for selecting either
or both of these options and the decrease in access time
it is necessary to make some assumptions about imple
mentation techniques and size of fields.

Assumption 1. The canonical plex structure is imple
mented using a doubly linked list structure, when data
and pointers are stored together.
Let:

Na N umber of distinct values for variable
STATE

N b Number of state-city combinations
La Length (bytes) of STATE field
Lb Length (bytes) of CITY and POPULA-

rI"TI'Ylt.T ~_1,1
.1..1.V.l.'i lU::lU

So Number of sets existing record is an
owner of.

8m Number of sets existing record is a
member of.

P Length (bytes) for each set of pointers.
c Storage requirements before split.
e Storage requirements after split

ac=c'-c Change in storage requirements

The drawing in Figure 6 demonstrates each of these
variables. In order to calculate the storage require
ments, the following equation can be used to determine
core requirements before (e) and after (e') splitting
the record:

c= Nb (La + Lb + P*So + P*Sm)
c'= Na(La+P* (Sm+1» +Nb(Lb+P* (So+1»

I STATE CITY POP. 0
1

oso l1. ~M

~ La J. ~ --1... p...J
r I

I r- p*sO -+-P*~-1
(N

a
) (~)

(a) Before record spUt

(b) After record .pUt

Figure 6--Splitting a record

Designing Optimal Data Systems 835

AC==C' -c
ac= La (Na-Nb) +P*Sm (Na-Nb) +p* (Na+Nb)

where the value of ac will be the increase (decrease)
in number of bytes of storage required to store the
record if it is split. It will normally be assumed that
this will always be an increase, but for some situations
it might possibly be a decrease.

In order to determine the change in access time (at)
some assumptions will have to be made.

Assumption 2. If the doubly linked list structure is
used to locate a single record, it will require looking
at one-half the record occurrences on the average.

Assumption 3. The access time T is proportional to
the number of records accessed.

Let:

t
t'

at=t' -t
T=wkat

w

Records accessed before split
Records accessed after split
Change in records accessed
Change in access time
Percent of time specific query requested

Then:

t=Nb/2
t'= Na/2+NI:t/2Na

at= 1/2 (Na-Nb+Nb/Na)
T= wk/2 (Na -Nb+Nb/Na)

This sort of process can be repeated for each of the
other possible optimizing alternatives in order to de
velop the necessary data for the following model.

Let:

Xi = 1 if optimization alternative i is selected
o otherwise for i = 1, 2, ...

Cmax = Maximum additional storage available
We = Dollar cost per additional bytes of storage
Wt = Dollar cost per additional second of access time

Tmax= Maximum access time permitted
aCi= Change in storage requirements for alterna

tive i
Ti= Change in weighted access time for alterna

tive i

Model:

min Wc.6.cx+ WtTx
L

s. t. L. CiXi:::; Cmax
t=l
L

LTixi:::;Tmax
i=l

Xi~O
Xi:::; 1
Xi integer

minimize total costs

memory constraints

access time constraints

where the solution to the problem is those alternatives
for which Xi = 1 are selected and all others are rejected.
The problem of applying multiple options to one record
are handled as follows: (See Figure 6)

836 National Computer Conference, 1976

Xl-split record
x~-form CALC for STATE
x3-split and form CALC for State

U sing this technique more variables will be generated,
however, all intersections can be handled using a linear
formulation.

Although this rudimentary model needs further ex
tension, it does propose an approach to solving the
question of an optimal network data structure. All
of the variables in the model with exception of the
weights are included in the proposed data description
language which describes the input data files. The
selection of the weights, particularly WtJ allows the
designer some flexibility to investigate different alter
natives. Although the solution to this proposed prob
lem for a large data base may be formidable, it doesn't
appear to be totally out of the question.

AUTOMATED DATA LOADING

The second phase of the project involves the devel
opment of the methodology for automating and even
optimizing the process of loading the data from the
specified source files into the optimal plex structure.
The initial premise is that the work being done by
Ramirez23 will lead to techniques for generating the
code necessary to convert the source file into the target
file in a process similar to that shown in Figure 1.
Since the input files are initially defined by the data
description language and the output of the first phase
of the project is a DDL for the target structure, the
only missing link will be this code which directs the
file conversion. It will be during this second phase that
the actual data files will be handled in this data base
loading problem.

AUTOMATED RESTRUCTURING

As should be noted in the description of phase 1 of
the project, the input files can include existing network
structures. The reason for extending the model to
include these was to allow for the model to restructure
existing data bases. It is clear such an event is neces
sary when new data items and records are to be added;
however, it should also seem clear that if the set of
queries or data requests changes significantly, a new set
of Xi might be appropriate. The work in this phase
will look at extending the model to include the costs
of restructuring, so that it can predict at what point
the query batch has changed significantly to economi
cally justify reorganizing the logical data structure.

It appears that if no new data is to be added, that
the canonical structure will be the same, and only the
x/s will change. It also appears that the loading pro
gram might be able to take advantage of this fact and
try to minimize the amount of data which has to be
physically reloaded. It would appear that this tech-

nique would offer a viable solution to the future re
quirements of a dynamically restructuring data base.

CONCLUSION

The work described in this paper's relevance can be
summarized in three areas:

(1) the development of a criterion for "optimal"
network structures, using a multidimension objective
function;

(2) proposing a methodology of automating the
process of designing structures for large data bases;

(3) an attempt to use the work of the CODASYL
and relational approaches in a constructive rather than
a destructive manner.

As the research on the automation of data loading and
restructuring is completed, it is felt that this method
ology will lead to great advances in the data base
management area.

REFERENCES

1. CODASYL Committee, Data Base Task Group Report,
Association for Computing Machinery, April, 1975.

2. Haseman, W. D., J. F. Nunamaker and A. B. Whinston, "A
Partial Implementation of the CODASYL DBTG Report as
an Extension to FORTRAN," Management Datamatics,
September, 1975.

3. Haseman, W. D., A. Z. Lieberman, A. B. Whinston and
J. F. Nunamaker, Generalized Planning System/Data Man
agement System (GPLAN/DMS) User's Manual Krannert
Graduate School of Industrial Administration, December,
1973.

4. Haseman, W. D. and A. B. Whinston, "A Data Base for
Nonprogrammers," Datamation, May, 1975, pp. 101-107.

5. Codd, E. F. and C. J. Date, "Recent Investigations in Rela
tional Data Base Systems," Information Processing '74,
North-Holland, Amsterdam, 1974.

6. Codd, E. F., "A Relational Model of Data for Large Shared
Data Banks," Communication ACM 13, No.6, June, 1970,
pp.377-387.

7. Codd, E. F., "Further Normalization of the Data Base
Relational Model," in Current Computer Science Symposia,
Vol. 6, "Data Base Systems," R. Rustin (ed.), Prentice
Hall, Inc., Englewood Cliffs, N.J., 1972.

8. Date, C. J., "Relational Data Base System: A Tutorial,"
Information System COINS IV, J. T. Tan (ed.), Plenum
Press, New York and London, 1974.

9 Date, C. J., An Introduction to Data Base Systems, Addi
son Wesley, 1975.

10. Delobel, C., A Theory about Data in an Information System,
IBM Report RJ964 (#16673),1972.

11. Codd, E. F., "A Data Base Sublanguage Founded on the
Relational Calculus," Process, ACM SIGFIDET Workshop,
1971.

12. Bonczek, R., W. D. Haseman and A. B. Whinston, "Struc
ture of a Query Language for a Network Database," 1975.

13. Clough, L. and W. D. Haseman, "Efficiency of Network
Structure for Relational Data Bases," 1975.

14. Gasden, J. A., "Report to S3 on Data Definition Languages,"
SIGFIDET 1,2 (December, 1969).

15. Gosden, J. A., "Software Compatibility: What Was Prom
ised, \Vhat We Have, What We Need," Proc. AFIPS 1968
FJCC, Vol. 33, AFIPS Press, Montvale, ~.J., pp. 81-87.

16. ECJYIA/TC15/69/15, Pi'rst Preli'mina'ry D'ra/t Report on the
ECMA Data Definition Language.

17. Fry, J. P., "Introduction to Storage Structure Definition,"
.4CM SIGFIDET Workshop on Data De8cription and
Acce8s, 1970.

18. McGee, W. C., "Informal Definition for the Development
of a Storage Structure Definition Langu,age," Ibid.

19. Young, J. 'V., Jr., "A Procedural Approach to File Trans
lation," Ibid.

20. Sibley, E. H. and R. Vi. Taylor, "Preliminary Discussion of
a General Data-to-Storage Structure Mapping Language,"
Ibid.

.G.l. Taylor, R. 'll., Ge·neTalized Data Base 1l1a?tagement System
Data Structures and Their Mapping to Physical Storage,
Ph.D. Dissertation, University of Michigan, 1971.

22. Smith, D. B., An Approach to Data Description and Con
version, Ph.D. Dissertation, University of Pennsylvania,
1971.

23. Ramirez, J. A., Automatic Generation of Data Conversion
Progra1t'vS Using a Data Definition Langua,ge (DDL), Vols.
I and II, University of Pennsylvania, May 1973.

24. Fry, J. P., D. P. Smith and R. W. Taylor, "An Approach to
Stored Data Definition and Translation," ACM SIGFIDET
Workshop on Data Description and Access, 1972.

25. Fry, J. P., R. L. Frank and E. A. Hershey, III, "A De
velopmental Model for Data Translation," Ibid.

26. Smith, D. P., "A Method for Data Translation Using the
Stored Data Definition and Translation Task Group Lan
guages," Ibid.

27. Sibley, E. H. and R. W. Taylor, "A Data Definition and
Mapping Language," CACM, December 1973, Vol. 16, No. 12.

28. Lum, V. Y., N. C. Shu ~nd B. C. Housel, Data Translation,

Designing Optimal Data Systems 837

Part I.- .A. General 11,1 ethodology for Data Con1-'ersion and
Restructuring, IBM Research Report 1525, July 22, 1975.

29. Housel, B. C., D. P. Smith, N. C. Shu and V. Y. Lum, Data
Transla,tion: Part II: DEFINE-A Nonprocedural Data
Description Language for Defining Information Easily, IBM
Research Report 1526, May 6, 1975.

30. Shu, N. C., B. C. Housel and V. Y. Lum, Data Translation,
Part III: CONVERT-A High Level Translation Definition
Language for Data Conversion, IBM Research Report 1515.

31. Ramirez, J. A., N. A. Rin and N. S. Prywes, "Automatic
Generation of Data Conversion Programs Using a Data
Definition Language," Proceedings of 1974 SIGMon Work
shop on Data Description, Access and Control, Ann Arbor',
Michigan, May 1-3,1974.

32. Lin, S. and J. Heller, "A Record Oriented, Grammar Driven
Data Translation Model," Ibid.

33. Fry, J. P. and A. G. ;'\ierten, "A Data Description Language
Approach to File Translation," Ibid.

34. Joint Guide/Share Data Base Requirements Group, Data
Base System Requirements, November, i970.

35. Everest, G. C. and E. H. Sibley, "Critique of the Guide/
Share DBMS Requirements," SIGFIDET, 1971.

36. Housel, B. C., V. Y. Lum and N. C. Shu, "Architecture to an
Interactive Migration Systems (AIMS) ," Proceedings of the
1974 SIGMOD Workshop on Data Description, Access and
Control.

37. Bel'stein, P. A., J. R. Swenson and Tsichntzis, D. C., A
Unified Approach to Functional Dependencies and Relations,
TR-CSRG-50, February, 1975, University of Toronto.

38. Gerritsen, R., Understanding Data Structures, Ph.D. Thesis,
Carnegie-Mellon University, Pittsburgh, PA, 1975.

REGIS-A relational information system
with graphics and statistics

by J. D. JOYCE and N. N. OLIVER
General Motors Corporation
\Varren, Michigan

ABSTRACT

While the relational data management model has been
known for some time, it has yet to be proven that such
systems can perform efficiently in an industrial en
vironment. This paper describes user experience with
and the external highlights of the RElational General
Information System (REGIS) which is currently being
used within General Motors. This data analysis system
combines the features of relational information
handling along with graphical, interactive and statisti
cal capabilities. REGIS provides the flexibility of
handling unforeseen queries and enables the user to
interactively analyze his data by entering commands
from terminals. Its use does not require any conven
tional programming effort. It is possible to interface
to user written functions if the need arises.

INTRODUCTION

Although the relational data management approach
has been known for some time,I,2 it has yet to be proven
that such systems can perform effectively in an in
dustrial environment. These new concepts have been
implemented in the REGIS (formerly RDMS3,~,5) rela
tional data management system. This paper describes
the highlights of and user experience with this system
which is currently being used within the General
Motors Corporation.

The RElational General Information System
(REGIS) is an interactive (conversational) system de
signed to provide convenient, powerful and flexible
information manipulation facilities for information
storage, retrieval and analysis. This is an area where
long range data management system requirements
have been poorly met.6 Its main power is in its ability
to handle unplanned queries and enables the user to
utilize intermediate results to determine the future
course of his analysis. An emphasis is placed on pro
viding a view of data in which the relationships are
easily understandable and easily manipulated to derive
new relationships. Of particular importance is the

839

capability to handle groups (sets) of information.
This is different frorn handling one record at a time
such as in the CODASYL Data Base Task Group ap
proach.' With each REGIS command information may
be extracted from a whole set or from the interaction
of sets of information.

Capabilities are integrated into the system for those
users whose main interests are to use flexible graphical
tools to view their data. Other users may want to place
an emphasis on statistical analysis of data. REGIS
contains elementary statistical programs and planned
interfaces to make reasonably smooth transitions be
tween REGIS and advanced statistical packages. The
user can prepare his data for analysis utilizing the
(relational) data management facilities, analyze it
with the statistical operators and plot the results all
within one package. Some users have found that the
integration of these three broad capabilities in one
package is the most useful feature. It is also recog
nized that other classes of applications will have par
ticular needs for special functions. REGIS provides
a simple interface to such functions.

Extensive performance monitoring tools have been
installed in REG IS. These will be used primarily by
system implementors to measure and assess the effects
of new algorithms and any improvement in the existing
ones.

SYSTEM OVERVIEW

Figure 1 gives an overview of the major components
of the system. The central part of the system consists
of the relational information handling capabilities.
The graphics part of the system consists of some
built-in facilities which will operate on dial-up type
writer or alphanumeric CRT terminals and an integral
link to the SIMON graph plotting system. (See the
SIMON command description in the Appendix for in
formation about this interactive graphics system.) The
SIMON capabilities are invoked with a REGIS com
mand just like any other REGIS facilities. The statis
tics component includes a number of built-in functions

840 National Computer Conference, 1976

as well as interfaces to other statistical systems. An
interface is planned for a general purpose statistical
package, a Monte Carlo Simulation system,S and a
"snowflakes" package. This "snowflakes" (circle dia
grams) package is a graphical technique for "brows
ing" through multivariate data as is indicated in a por
tion of Reference 9.

REGIS is designed primarily for an interactive mode
in which the user can extract and analyze informa
tion and make new analyses based on the information
which he has just learned. Thus by continuous refine
ment of the information analyzed, a user can proceed
to conclusions by procedures or data dependent methods
which might not be evident in the beginning. The user
has available a variety of commands which are in
terpreted as they are entered at a computer terminal.
See the Appendix for description of some of the com
mands, or the Examples section which illustrates their
use. The tools of the REGIS system are intended to
serve applications where all the queries cannot be de
fined ahead of time to fully serve an application.

REGIS is available to any user having access to a
typewriter or CRT terminal. It runs on an IBM
370/168 computer under the TSS operating system.10

USER VIEWS OF DATA AND RELATIONAL
SYSTEM

The users view of a relational data handling system
is markedly influenced by the approach and terminol
ogy by which this subject is introduced to him. Some
of the precise terms of relational theory are simply
not appropriate to use with potential users. The user
must be approached with simple terminology and
meaningful explanations of the concepts and ideas in
volved. It was determined that potential users, in
cluding experienced mathematicians, were decidedly
turned off by the terms 'ntuple' and 'domain', for ex
ample. Replacement of these terms by 'row' and
'column' greatly expedited the communications with

t
fREGIS COMMAND INTERPRETERj

t
STATISTICS GRAPHICS

RELATIONAL
STATISTICAL BUILTH; TYPEWRITER SIMON

PACKAGE STATISTICS DATA GRAPHICS GRAPH

A"'D A TOOLS PLOTTING
MONTE MANAGEMENT SYSTEM
CARLO AND A I SlMULATlO, "SNOWFLAKES"
SYSTE}! PACKAGE

(fl'Tl'RE) l'SER HRITTEN
Ft:NCTIONS

Figure 1

NAME SOCSEC# SEX BIRTH
DALEY 371568394 M 40/05/31
SMITH 384246893 F 38/12/23
KINGSTON 354234876 M 45/08/12
"\VARREN 358123415 l'vl 47/06/12

Figure 2

new users. This naturally leads into a users view of
his data as being made up of simple rectangular tables
of rows and columns.

Data views

The ability of the user to relate views of data to
simple rectangular tabular representations provides a
common starting point for a wide spectrum of users.
Tables were a common denominator for representing
data before the advent of computers and continue to
be a common representation of data. From these
simple concepts, it is relatively easy to lead new users
thoughts into understanding that in addition to a table
being a· repository or collection of data it also repre
sents relationships among the data items in that table.
These relationships may be referred to as attributes,
or properties of items in the table. Figure 2 shows an
example of such a relationship where each person
whose name is given in the first column is described by
the attributes of social security number, sex and birth
date.

Figure 3 shows another type of relationship which is
also contained in a simple table. This example shows
a relationship in which the two objects represented by
STUDENT and CLASS columns are tied together by
the attribute GRADE. The attribute of GRADE does
not solely describe either the STUDENT or the CLASS
but rather describes the connection (relationship) be
tween the two objects. Other types of relationships
could be shown, but the key point, however, is that each
relationship can be expressed in a simple tabular form.

After a user has expressed part of his information
in a table, it is a natural extension to view his entire
data base as a collection of unique groups of data. Ad
ditionally, our users view the tables as being related
to one another through various common elements of
the tables.

STUDENT GRADE CLASS
JONES A BIOLOGY
SMITH C PHYSICS
JONES B CHEMISTRY
ADAMS D ENGLISH
MARTIN B PHYSICS
ADAMS B CHEMISTRY
ADAMS A PHYSICS

Figure 3

Two observations can be made here from dealing
with users in introducing the concepts of relational
data bases. The first observation is that users who
have been doing computer processing of some of their
data have been molded by the computer tools previ
ously available. One impact of this is that users attempt
to cram all their relationships into a single table by
highly coded representations and replication of data.
This has undesirable side effects relating to updating
and deletion. Another impact is that significant related
data has been ignored in many applicaLions sh"nply be
cause of the lack of facilities to handle multiple rela
tionships. The second observation is that the users find
this view of data somewhat simpler than the mechanics
of hierarchies or networks. This probably arises from
both the backgrounds of the users and the fact that
relational implementations generally provide a higher
level interface to the data than do the data base pack
ages which require the user to know about the net
works and hierarchies.

Relational system views

Once the user has established his external views of
the data, his views of the system are much simplified,
providing that one can reasonably stay clear of con
fusing or ominous terminology. The applications to
which relational data base techniques are applied tend
to be those which the user is examining, condensing,
extracting new relationships or insights from groups
of data rather than examining or updating individual
pieces of data. This acclimates the user to thinking in
terms of operations which operate on tables of informa
tion. The tables are actually sets of information and
the user is frequently applying operators whose foun
dation is set theory. The user can learn from simple
examples about the functions performed by the rela
tional operators. Thus the system appears as a new
set of tools to solve his problems quicker and easier.
The aura of mystique about relational ideas has been
removed and we can move on to the problems of mak
ing the systems useful and practical.

APPLICATION EXPERIENCES

Some highlights of feedback from actual applications
of a working relational data base manager will be pre
sented here. One application involved personnel data
where the information was primarily names, text,
codes and dates. One of the areas in this application
where the new operators proved to be very useful was
in input data validation. By looking at large clumps of
data and grouping items together in various ways,
many errors either in spelling or in erroneous manual
coding of data were isolated. These validation proce
dures were not carried out before by special programs
because of the programming effort required to write

REGIS 841

and debug COlnputer programs. The relational opera
tions further came into play by making it easy to ex
amine relationships between tables and isolating un
usual items for further examination.

It was recognized by the implementors that data
handling, whether relational or otherwise, was not an
end in itself. Graphical facilities to see data and a rea
sonable complement of statistics to massage data were
an integral part of the design. Feedback from our
users indicated that these features which could have
been built into many conventional data base paclcages
(and have been in some cases) were sometimes more
valuable than the relational power available. The abil
ity to perform aggregate operations (grouping com
bined with arithmetic functions), joining tables to
gether, subsetting, and selecting items from one table
based on criteria from another table have proved to be
the most valuable operations to date. Another applica
tion consisting mainly of numerical data for an experi
mental engineering program on noise reduction in new
equipment made particularly heavy use of the aggre
gate functions and the selection of items from one
table based on criteria in another table. It is also evi
dent that higher language levels are desirable provided
that they can be implemented without significantly in
creasing the complexity of the language.

EXAMPLES OF DATA QUERIES AND ANALYSIS

Two examples are included to give a flavor of how
REGIS is being used at General Motors. (Commands
and keywords are shown in capital letters while the set
and column names are shown in lower case letters.)

The first example deals with the information in the
relationship (or table or set) entitled "failures." This
set with its labelled columns is represented as:

failures (fail# faildate failtime operator machine#
failtype severity fixdate)

The question in the first example is: "Do certain
machine operators show a propensity to having par
ticular types of failures when they are operating the
machines ?"

opfail=PROJECTION failures operator failtype
op=AGGREGATE opfail operator COUNT cntop
op=SUBSET op WHERE cntop GE 10
opt ypes = AGGREGATE opfail operator failtype

COUNT cntfail
counts=optypes JOIN op operator
COLUMN counts percent FLOAT
counts = counts COMPUTE cntfail * 100 INTO

percent
counts = counts COMPUTE percent / cntop
result IS SUBSET counts WHERE percent GT

35.0

The PROJECTION command in the first line simply
extracts from the source set those columns of interest.

842 National Computer Conference, 1976

The AGGREGATE command in the second line groups
the rows by operator and counts how many rows of
failure data are associated with each operator. Now if
the user knows that a number of the operators have
had only a fe\-", failures he might wish to eliminate
those operators from further analysis. This is done in
the third line with the SUBSET command which se
lects only those operators who have had 10 or more
failures. The next use of the AGGREGATE command
in the fourth line groups the rows of failures based on
unique combinations of operators and failure types. At
the same time this command counts the number of
rows in each combination and stores these counts in the
column entitled "cntfail." The JOIN command in the
fifth line combines the data relationships in the two
sets "optypes" and "op." The results of this command
are that the operators who had less than 10 failures are
eliminated from further consideration and the counts
of each operator by failure type and the total number
of failures for each operator are stored in adjacent
columns. The next three commands (sixth through
eighth lines) generate a column for a percent value and
compute each failure type as a percent of all the fail
ures for each operator. The SUBSET command in the
last line singles out those operators who have an ab
normally high percentage of failures of any particular
type.

This procedure is one arbitrary solution to a general
question. Other solutions could have taken into ac
count absolute numbers of failures by operator and
type. Other possibilities include looking at deviations
from averages or generating some data which could be
plotted to show some deviations from trends.

The next example illustrates use of some of the sta
tistics and graphics procedures. The input data con
sists of one set with only two columns. A set on quality
control data contains the supplier column and the mea
sured hardness of the material in each of a sample of
parts in the second column. The set is represented as
follows:

qcdata (supplier, hardness)

The desired analysis is stated as follows: "Obtain
statistics about the hardness data, then fit a wei bull
curve and plot a comparison of the raw distribution to
a generated wei bull curve to give a visual indication of
the closeness of fit."

stats=STATISTICS qcdata
tempset= PROJECTION qcdata hardness SORT
wb = WEIBFIT tempset
wbcurve=CURVE wb
DEFAULT INTERVALS 12
rawdata=DISTRIBUTION qcdata hardness 100

BY5
comb = wbcurve COMBINE rawdata
SIMON comb
GRAPH frequency VS hardness
ADDGRAPH yhardness VS xhardness

The STATISTICS command in the first line stores
in the "stats" set statistics about all the numeric col
umns in the "qcdata" set (in this case only the hard
ness column). The PROJECTION command in the sec
ond line sorts the hardness data in preparation for the
weibull fit command which follows. After the weibull
parameters are generated (third line) a curve contain
ing 100 points will be generated with the CURVE com
mand in the fourth line. The next two commands set
up the parameters for and generate a distribution of
the raw data. The COMBINE command (seventh line)
merely puts the data for the two curves in one set in
preparation for the graph plotting command which
must have all its data in one set. The SIMON com
mand brings the user into a graph plotting system
which permits the use of any of the SIMON commands
to overlay curves, label axes, add titles, add legends,
etc. The GRAPH and ADDGRAPH commands in the
last two lines of the example illustrate the commands
necessary to plot two curves on the same graph.

For more information about the command language
see the Appendix.

PERFORMANCE MONITORING

REGIS contains automatic performance monitoring fa
cilities which continuously record various phases of
its performance for the usual purposes of locating in
efficiencies and predicting performance (cost and re
sponse time) as a function of command sequences and
data base sizes. In addition, command sequences are
monitored to determine whether certain commands
should be restructured in simpler or more powerful re
lational commands for the user. Since there is a wide
variety of applications and users with diverse back
grounds, the data concerning performance and distri
bution and usage of commands in user environments
will also be useful to designers of data base hardware
and firmware which incorporate relational operations.
The monitoring information collected is stored in nor
mal REGIS sets and thus can be later analyzed utiliz
ing this data analysis package.

CONCLUSIONS

The development of a relational data base implementa
tion has resulted in a worthwhile tool for a wide va
riety of applications. The new relational concepts are
practical in a problem solving environment for indus
trial applications. Concern over efficiency of such a
generalized approach is still justified. However, use
of the system does eliminate the traditional specialized
programming effort. We feel that this savings has
greatly offset any execution inefficiencies in this gen
eral purpose package. I t is also clear from the per
formance monitoring data that substantial improve
ments in efficiency can be made. Improved sorting and

searching capabilities will make such systems economi
cally applicable to even wider classes of applications.

Simple views of the data to be handled and the com
mands for manipulating the data have been very at
tractive to users. A manual explaining the concepts in
simple terms and augmented with a few examples has
been sufficient for a number of users to make effective
use of the system without any training or consultation.
The ability to carry out unplanned queries and data re
duction interactively (either via local or remote dialup
terminals) has been valuable to users. A type of macro
facility in which a knowledgeable user prepackages
command sequences for other less knowledgeable users
has been useful in those applications where sequences
are often repeated. User acceptance of the system was
greatly encouraged by the provision of a comprehen
sive variety of graphical and statistical analysis capa-
bilities as supplements to the relational data handling
facilities.

APPENDIX-COMMAND LANGUAGE

The REGIS command language is a non-procedural 11

relational algebraic language believed to encompass
the most useful relational functions. Commands have
the following general format:

[set 1I~} [set]] KEYWORD [parameter ...]

(N otation explanation: Uppercase words denote a
keyword that must appear as shown; items contained
within square brackets [] are optional; items fol
lowed by the ellipses ... may be used once or more;
multiple items stacked and enclosed in braces { }
represent alternatives for a choice of one item.)

This command language operates i~ anyone of two
modes depending on the leftmost word of the com
mand: Either it is a command name in which case it is
usually a control command and the results are dis
played at the terminal, or it is a set name in which
case a new (or old) set is used to store the results of
the specific operation. Varying number of options (if
any) can be specified in the parameter field of each
command.

Examples:

COMMANDS FROM set
LIST set
set=SUBSET set
set IS set! UNION set2

The syntax and brief description of the most useful
commands follows. For additional information see
Reference 12.

COLUMN set column [type]

The COLUMN command adds a new column with the
specified name to the specified set.

ADDROW set rowvalues ... $END

REGIS 843

This command adds row(s) to the specified set.

COMMANDS i F~gM} file

COMMANDS enables the user to store and/or exe
cute more than one command at a time. It is a con
venient facility through which a long sequence of com
mands can be executed by entering only one command.

SPECIAL name setin setout

The SPECIAL command allows the user to execute
any program which he has previously created. Thus
the user is able to add to the REGIS package extra
capabilities tailored to his specific needs. (For exam
pIe: a report generator.)

BARCHART set column [minimum [{~~ ~~~!:~:}JJ

BARCHART produces a horizontal bar chart of the
values in a specified range of one column of a set.

SIMON set

This command invokes the SIMON PLOTTING
SYSTEM to obtain graphs of REGIS data. This sim
ple graphics system, developed at General Motors Re
search Laboratories, enables the user to produce good
formatted graphs of data stored in any REGIS set. The
user can restyle the graph via SIMON interactive
commands. The graph is generated on the TEK
TRONIX storage tube terminal while hardcopies can
be generated on CALCOMP plotters or SC4060 film
recorders.

REVISE set column [# [TO #]] WITH newvalue
[increment]

REVISE enables replacing a specified range of col
umn values in a set with a constant and optional incre
ment.

resultset=PROJECTION set columns ... [ETC]
[SORT [WEED] [DESCENDING]]

The specified columns of the source set are copied to
the resultset. If the SORT option is specified then the
resultset is sorted on these columns.

resultset= SUBSET set

I! ~£i~#bompare {~:} Compare] ···ll
Ll SAMPLE samplevalue / JJ

The Compare syntax is: columna Operator {COIUmnb}
value

Operator can be any of the following: =or EQ; > =or
NE; >or GT; >=or GE; <or LT; <=or LE. -,

SUBSET places rows of set into resultset. The
WHERE clause compares values from columna to
either values in columnb or a constant value. The com
parison conditions can be nested in multiple levels.

844 National Computer Conference, 1976

rset=set COMPUTE \columnal 0 at Jcolumnb/
-l value) per or l value)

[INTO columnc]

Operator can be any of the logical operators de
scribed with the SUBSET command and also any of
the following: + (plus): - (minus);* (multiply);
j(divide) ; EXP; REM or TRUNC.

This command performs the arithmetic operation on
all elements of the specified columns. The arithmetic
operation between each value of columna and the cor
responding value of columnb, or constant values, is
performed and the result is placed in columnc.

resultset=AGGREGATE set columns ... [COUNT
column] [SUM columns '"] [AVERAGE
columns ...] [MINIMUM columns '"]
[MAXIMUM columns ...]

The source set is subdivided into groups based on
distinct combinations of values for the specified col
umns. One row for each group is placed in the result
set. A count, sum, average, minimum and maximum of
the consolidated columns can be optionally obtained.

resultset= STATISTICS set [column ...]

This command calculates values such as: minimum,
average, maximum, sum, standard deviation etc.

gri£~SECTION !
XOR set2 [colsl. ..
DIFFERENCE [MATCH cols2 ...]]
JOIN
COMPOSITION

rset=set!

The UNION and XOR commands place in rset rows
from set! and set2; UNION places all rows of set!
and all rows of set2 which are different in the matching
columns into rset; XOR places only those rows of
either set which are not in both sets into rset. Rows are
compared on the basis of named columns from set!
matched up with the named columns from set2. The
INTERSECTION (DIFFERENCE) commands place
in rset rows from set! when the specified columns of
the row in set! match (do not match) those of set2.
The JOIN and COMPOSITION commands place in rset
combinations of rows whose specified columns match.
JOIN places all columns of set! and set2 in rset.
COMPOSITION, on the other hand, excludes the
matched columns.

resultset=SELECTION set! [FOR column1a]
WHERE column 1b ~EQANYOFl column2

l EQALLOF J IN set2

For the EQANYOF option, this command places in

resultset those rows of set! for which the value of
columnlb is equal to any value of column2 in set2. The
EQALLOF option partitions the rows of setl into
groups, one group for each distinct value in columnla.
If the values of columnlb for a group include all the
different values of column2 in set2, then that entire
group of rows is placed in resultset.

ACKNOWLEDGMENTS

We wish to acknowledge the contributions of Kevin
Whitney to the original experimentation, design and
implementation of the system. Others who contributed
to the design and implementation include Karen Niel
sen, Steve Holland and Dick Rawson. We would also
like to thank G. G. Dodd for his support of this project
and advice during the course of its development.

REFERENCES

1. Codd, E. F., "A Relational Model of Data for Large Shared
Data Banks," Communication of the ACM, XIII, 6, June
1970, p. 377-387.

2. --, "Nonnalized Data Base Structure: A Brief Tu
torial," Proceedings of the 1971 ACM SIGFIDET Workshop,
pp.1-18.

3. Whitney, VK. M., "A Relational Data Management System
(RDMS) ," Proceedings of the COINS-72, December, 1972.

4. --, "Fourth Generation Data Management Systems,"
Proceedings of the National Computer Conference, 1973.

5. --, "Relational Data Management Implementation
Techniques," ACM SIGFIDET Workshop on Data Desc1'ip
tion, Access and Control, Ann Arbor, Michigan May 1-3,
1974.

6. Joyce, J. D., J. T. Murray and M. R. Ward, "Data Man
agement System Requirements," Data Base Management
Systems, edited by D. A. Jardine, North-Holland Publication
Co., pp. 115-128.

7. CODASYL Data Base Task Group Report, ACM, New York,
NY, April, 1971.

8. "Search," General Motors Research Laboratories, A New
Dimension in Dimensional Tolerancing, Vol. 9, 6, December
1974.

9. McDonald, G. C. and J. A. Ayers, Some Applications of the
"Chernoff Faces": A Technique for Graphically Rep1'esent
ing Multivariate Data, Research Publication GMR-1555,
General Motors Research Laboratories, January 1974.

] O. IBM System/360, Time Sharing System, Command System
User's Guide, Order No. GC28200l.

11. McLeod, D. and M. Meldman, "RISS-A Generalized Mini
computer Relational Data Base Management System," Pro
ceedings of the National Computer Conference, 1975.

12. Joyce, J. D. and N. A. Oliver, Preliminary Users Manual for
REGIS Infonna'tion System, Research Publication GMR-
2008, General Motors Research Laboratories, Warren, Michi
gan.

Query-hy-example-Operations on hierarchical data bases

by MOSHE M. ZLOOF
IEJ1,f Tho17taS J. VVat301~ Research Center
Yorktown Heights, New York

ABSTRACT

OllPrv-hv-F.xamnlp. i~ a hiQ"h level non-nrocedural data
ba-s~oJI~~g~~~~--~hi~h -pr;vides the e~d user with a
simplified unified interface for querying, updating, de
fining, and maintaining, the data base, as well as im
bedding various integrity and authority constraints.
When querying the data base the user fills in, through
a keyboard display, an example of a possible answer in
a skeleton of the logical structure of the data base. As
demonstrated in previous work, when the data base is
relational, skeleton tables are used. In this paper, we
show that the Query-by-Example operations are in fact
independent of the structure of the data base. In par
ticular; we demonstrate that if the view at the user
interface level is hierarchical, the query is again ac
complished by filling-in an example of a possible an
swer, but, in this case, a skeleton of the hierarchy is
utilized. It is, also, shown how the user can map a
relational view into a hierarchical view and vice versa,
formulating queries that involve both views simul
taneously. Finally, a linear version of Query-by-Ex
ample is made available for situations where a display
facility is unavailable.

INTRODUCTION

Query-by-Example is a high level non-procedural data
base language which provides the end user with a sim
plified unified interface for querying, updating, de
fining, and maintaining the data-base, as well as em
bedding various integrity and authority constraints.
When querying the data base the user fills in, through
a kevboard disnlav. an example of a possible answer
in a ~skeleton of th~ logical st~ucture of the data base.
Our main philosophy behind Query-by-Example was to
allow the user to learn very little to get started, and
keep the number of objects and concepts that has to
subsequently be learned, to cover the whole language,
at a minimum. And in fact, the results of various be
havioral tests conducted in our labs to teach non-pro
grammers the Query-by-Example language5 showed
that in less than three hours the users could ask quite
complicated queries as powerful as first order predicate
calculus.

845

Initially, Query-by-Example was started as a query
language for relational model of the data basel,:! as was
introduced by E. F. CoddlO ,12 but since then it was
extended to a whole data base language with facilities
to update, define, and maintain the data-base ;3,14 how
ever, to keep the simplicity of the language intact, most
of the operations used for querying the data base are
kept in use for updating, defining, and maintaining
that data base, thus providing the user with only one
unified interface. For that reason we did not feel it
is necessary to change the name of the language for the
other modes of operations, such as Define-by-Example
or Update-by-Example etc., since the same Query-by
Example operations are also used for these modes.

In this paper we introduce Query-by-Example op
erations on a hierarchical view of the data base (view
being what the user sees at the user interface level,
independently of its underlying model-for example,
a hierarchical view can be built on top of a relational
model of the data). Here a query is again formulated
by filling in an example of a possible answer through
a keyboard display, but in this case a skeleton of the
hierarchical structure is utilized. It is also shown how
the user can map a hierarchical view of the data into
a relational view and vice versa. This implies that the
Query-by-Example operations are independent of the
view of the data base be it relational, hierarchical, net
work, or any combination of the three.

The reason why the user should be given the options
to view the data base in the above three different ways
are as follows:

-It is sometimes more intuitive for the user to view
part of his data base as a hierarchical tree (such
as an organizational chart), although the under
lying model may be relational.

-Although we are of the opinion, as are many
others, that the relational approach which was
proposed by Codd, will in the future be imple
mented on large-scale systems, the current large
scale implementations, however, are primarily
hierarchical or network.

Therefore, given a currently standing hierarchi
cal data base model (such as IMS) with a pro-

846 National Computer Conference, 1976

grammer who is already trained to work with
such a hierarchical structure, it would be advan
tageous to be able to replace current procedural
data languages (such as DL/1 or GIS) by a high
level non-procedural language (such as Query-by
Example) that operates on the same hierarchical
views of the data base.

While the procedural language programmer
must have knowledge of the hierarchical structure
and access paths of the data base in order to 'navi
gate' through the tree paths, the Query-by-Ex
ample user is only required to have knowledge of
the data base structure. The transformation of a
non-procedural Query-by-Example statement into
a procedure in a lower level language is done by the
system through a proper interpreter.

The last reason is that of enhancing performance.
If in a given system performance is a major fac
tor, one can enhance it by letting the user view
the data base as a hierarchy. Once he is aware
that certain paths are more efficient than others,
the user may have some control over the per
formance of the system even though the language
is still non-procedural.

A summary of the basic concepts of Query-by-Ex
ample as they apply to a relational view of the data
base is presented in the second section of this paper.
In addition, a linear version is introduced for situations
where a display facility is unavailable. In the third
section, we introduce Query-by-Example operations on
a hierarchical view of the data base. Section four is
a combination of the basic concepts of the second and
third sections, such that the user can formulate a query
concerning both relational and hierarchical views
simultaneously. It is also shown how the user can map
one view into another. In the fifth section, we comment
on how the user can participate in enhancing the per
formance of the system.

SUMMARY OF THE MAIN FEATURES
OF QUERY-BY-EXAMPLE

When dealing with a relational data base, the user
basically formulates his query by filling in skeleton
tables with an example of a possible answer through a
keyboard display. In fact, to get started on the system,
the user need only distinguish between the following
two entities:

1. The 'example element' (variable) which must be
underlined and

2. The 'constant element' which should not be un-
derlined.

In addition, the function denoted by 'P.' stands for
'print': the user inserts 'P.' before any data he wishes
to be outputted.

A relation is basically a table, and an example of
such a table is the employee relation given in Figure 1.

EMP NAME SALARY MANAGER DEPARTMENT

ANDERSON 8K SMITH TOY
MORGAN 10K LEE COSMETICS

Figure i-Employee relation

As in Reference 1, the concepts of Query-by-Ex
ample are introduced through illustrations of queries
and their answers. The queries are drawn from the
following relations which are a part of a department
store data base.

-EMP (NAME, SAL, MGR, DEPT)

-SALES (DEPT, ITEM)

-SUPPLY (SUPPLIER, ITEM)

-TYPE (ITEM, COLOR, SIZE)

The EMP Table specifies the name, salary, manager,
and department of each employee.

The SALES Table is a listing of the items sold by
departments.

The SUPPLY Table is a listing of the items sup
plied by suppliers.

The TYPE Table describes each item by color and
size. A sample of the above data base is shown in
Figure 2. At this point we are assuming that these
tables are made available to the user upon calling
them by name.

Actually, in a current implemented prototype,I3 the
sequence of user operations in constructing a query is
as follows:

EMP NAME SALARY MGR DEPT

JONES 8K SMITH HOUSEHOLE
ANDERSON 6K MURPHY TOY
MORGAN 10K LEE COSMETICS
LEWIS 12K LONG STATIONARY
NELSON 6K MURPHY TOY
HOFFMAN 16K MORGAN COSMETICS
LONG 7K MORGAN COSMETICS
MURPHY BK SMITH HOUSEHOLD
SMITH 12K HOFFMAN STATIONARY
HENRY 9K SMITH TOY

SALES DEPARTMENT ITEM SUPPLY ITEM SUPPLIER

STATIONARY DISH PEN PARKER
HOUSEHOLD PEN PENCIL BIC
STATIONARY PENCIL INK PARKER
COSMETICS LIPSTICK PERFUME REVLON
TOY PEN INK BIC
TOY PENCIL DISH DUPONT
TOY INK LIPSTICK REVLON
COSMETICS PERFUME DISH BIC
STATIONARY INK PEN REVLON

PENCIL FARKER I HO'CSEHOLD DISH
STATIONARY PEN
HARDWARE INK

TYPE ITEM COLOR SIZE

DISH WHITE M
LIPSTICK RED L
PERFUME WHITE L
PEN

I

GREEN S i PENCIL BLUE M

I
INK GREEN L

I INK BLUE S
PENCIL RED L

I PENCIL BLUE L

Figure 2-Sample data base

j

I

The user is initially presented with a display with a
blank skeleton table in which he enters through a key
board, the appropriate table name in the table name
field. Upon pressing a function key, the column names
are automatically filled in by the system. If needed,
a different function key will create additional blank
skeleton tables etc. After having on the screen all the
required skeletons with their column names, the user
proceeds to fill in these tables with elements to satisfy
the stipulation of the query. For more details, please
see Reference 13.

Let us now proceed with query examples.

Examples:

Q1. Print the red items.

The user fills in the TYPE Table in the following
manner.

TYPE ITEM COLOR SIZE

P.PEN RED

Explanations:

Since the query is concerned with red items, RED is
a constant element and is, therefore, not underlined.
On the other hand, the underlined element PEN is the
example element and is entered as an example of a pos
sible answer. Actually, a pen may not necessarily be
an element of the data base and can be substituted by
DRESS, WATER, or a variable X without altering the
meaning of the query. One of the reasons we are using
an example element is that it gives us the freedom to
use an entity which is partially variable and partially
constant (such as PEN, meaning: Print the red items
that start with the letter P). Also, for the above simple
query, one can dispose of the example element PEN
altogether, entering only 'P.'. The SIZE Column can
be left blank or filled in with an example element.

Considering the sample data base, the answer to Q1.
is:

ITEM

LIPSTICK
PENCIL

For cases where a display is not available, a linear
version of Query-by-Example, which is a straight for
ward mapping of the tabular version, is also available,
and Ql in linear form will be written as follows:

Q1. TYPE (ITEM :P.PEN,COLOR :RED)

Q2. Find the department(s) that sell (s) an item (s)
supplied by the supplier Parker.

Here the user fills in both the SALES and the SUPPLY
Tables as follows.

SALES

ANS:

DEPT ITEM

P.TOY PEN

DEPT I
HOUSEHOLD

~~iTIONARY I
HARDWARE

Query-By-Example 847

SUPPLY I
PEN PARKER

ITEM SUPPLIER

The example element PEN (linking variable) is in
cluded in both tables, implying if an item is sold by
the department in question, that same item has to be
supplied by Parker.

In linear form Q2 will be written as follows:

Q2. SALES (DEPT :P.TOY,ITEM :PEN)
SUPPLY (ITEM :PEN,SUPPLIER :PARKER)

If the user wishes to retrieve information from two
or more tables in the form of a new relation (table),
he first sets up a skeleton of the required table by
specifying its attributes, and then fills in this skeleton
table with linking elements. The assignment of a
name to the new relation being outputted is optional.
This is illustrated in the next query.

Q3. List the departments and their corresponding
suppliers.

SALES SUPPLY

STTPPT.TRR I

P~~~:---·I

Explanation:

Here the user groups the two columns DEPT and
SUPPLIER to form a skeleton of a table (which may
or may not be identified by name). The example ele
ment PEN appearing in both the SALES and the
SUPPLY tables indicates a natural join on the common
domain ITEM.

Q3 in linear form:

Q3. SALES (DEPT :TOY,ITEM :PEN)
SUPPLY (ITEM :PEN,SUPPLIER :BIC)

(DEPT :P.TOY,SUPPLIER :P.BIC)

If the user wishes to save an intermediate relation,
which he created from columns of existing ones, for use
in subsequent queries, he must assign a name to this
relation and precede it by the command 'SAVE.'.

Q4. Create an intermediate table DEPT-SUPP such
that it contains all the departments and their cor
responding suppliers.

848 National Computer Conference, 1976

SALES DEPT
ITEM I SUPPLY

SAVE. DEPT-SUPP. DEPT

~ I

Explanation:

The 'SAVE.' command will save this intermediate re
lation DEPT-SUPP. The user can now call this table
by name and query it in the usual manner. A 'P.' in
front of TOY & BIC would cause the system to print
out the data (in addition to saving it), which would
be the same as the table outputted in Q3. A second
command, 'REMOVE.', is used in the same manner
as 'SAVE.' to dispose of intermediate relations when
no longer required. *

Q4 in linear version:

Q4. SALES (DEPT :TOY,ITEM :PEN)
SUPPLY (ITEM :PEN,SUPPLIER :BIC)
SA VE.DEPT-SUPP (DEPT :TOY,SUPPLIER:
BIC) --

Q5. Find the name (s) of any employee (s) who earns
more than his (their) manager (s) .

EMP

ANS:

Explanation:

NAME

P.JONES

HARRIS

NAME

LEWIS
HOFFMAN

SAL MGR DEPT

> .!.Q!. HARRIS

10K

If HARRIS is an example of such a manager and if
HARRIS earns 10K (as an example) then JONES is
an example of an employee who earns more than 10K
(indicated by the comparison operator "greater than",
or ">"), and therefore more than his manager. It
should be noted that the order of the rows is
immaterial.

The above examples briefly demonstrate the con
cepts of Query-by-Example. For more details and for
reformulation of the queries in predicate calculus, see
Reference 1.

Q5 in linear version:

Q5. EMP (NAME:P.JONES,SAL:>10K,MGR:
HARRIS) -

EMP (NAME :HARRIS,SAL :10K)

* The 'SAVE.' & 'REMOVE.' commands were not included in
the original version of Query-by-Example. They will be added
to the revised version which will be published soon.14

OPERATIONS ON HIERARCHICAL
STRUCTURES

In this section we assume that the user is familiar
with the hierarchical data ba~e Inudel and view~ the
data as a collection of logical hierarchical structures.
He formulates his queries by filling in skeletons of the
structure of the logical data base through a key
board display with an example of a possible answer.
These skeletons are initially displayed on the screen
by entering their name, in much the same manner that
skeleton tables are displayed in the case of a relational
view.

The Query-by-Example operations are again intro
duced through illustrative examples, and a linear ver
sion of these examples is given for cases where a dis
play facility is unavailable.

Let us consider a sample hierarchical data base
taken from "An Introduction to Data Base Systems" by
C. Date.15 Figure 3 illustrates the various data base
record types of an educational system whose function
is to run a number of training courses. Each course
is offered at a number of different locations.

-For each course: course number (unique), course
title, course description, details of prerequisite
courses (if any), and details of all offerings (past
and planned)

-For each prerequisite course for a given course:
course number and title

-For each offering of a given course: date, location,
format (for example, duration, full-time or half
time), details of all teachers, and details of all
students

-For each teacher of a given offering: employee num
ber and name

-For each student on a given offering: employee num
ber, name, and grade

As shown in Figure 3, there are five types of seg
ment: COURSE, PREREQ, OFFERING, TEACHER,
and STUDENT, each one consisting of the field types
indicated. COURSE is the root segment type; the
others are dependent segment types. Each dependent

PREREQ

I COURSE/!

Figure 3-The education data base record type

has a parent-for example, the parent of TEACHER
(and STUDENT) is OFFERING. Similarly, each
parent has at least one child-COURSE, for example,
has two.

Figure 4 ill ustra tes specific instances (occurrences)
of the data base. For example, COURSE M23 has
three OFFERING occurrences, in Oslo, Dublin and
Madrid. Madrid's OFFERING, in turn, has three
STUDENT and one TEACHER occurrences.

CUUHSE

11123 Dynamics!
. I

PREREQ E_;---d~~
PREREQ i)116 i Trigonometryl

1 Sharp~

i750106 i OSlO~ OFFERING

1741104; Dublin I F31 OFFERING

1730813 [Madridl F31 OFFERING

I
/761620 I Tallis, T. I BI STUDENT

11830091 Gibbons, o. / AI STUDENT

1_102141 1 Byrd, 1'1. 1 B 1 STUDENT

Figure 4-Sample occurrence for the education data base

We now proceed with examples of queries on this
data base, some of which are also taken from Refer
ence 15.

Q6. Get the dates of all the OFFERING occurrences
where the location is Stockholm.

The user fills in the skeleton of the logical data base as
follows:

COURSE

ICOURSE # I TITLE I DESCRIPTION

l I I

OFFERING

I DATE I LOCATION I FORMAT

I STOCKHOLM I

Explanation:

Since there are no conditions on the COURSE fields;
they are either left blank or filled in with example ele
ments (underlined); the same is true of the DATE
and the FORMAT fields in the OFFERING segment.
STOCKHOLM is, therefore, the only specified constant
element. The function 'P.' under the DATE field indi
cates that we want the dates to be printed out.

Linear version:

Q6. COURSE
COURSE ;OFFERING(DATE :P. ,LOCATION:
STOCKHOLM)

Query-By-Example 849

E xplwnation:

The segment name COURSE in the first row specifies
the root of the logical data base. The segment name
COURSE in the second row followed by a semicolon
indicates that COURSE is a parent (not necessarily
the immediate parent) of the OFFERING segment.
The condition Stockholm Location and the function
'P.' are specified in the parentheses. It should be
pointed out that since the system has the knowledge
of the logical data base, in this case it is sufficient to
simply put the query in the following short form.

OFFERING (DATE :P. ,LOCATION :STOCKHOLM)

The system will be able to trace the OFFERING seg
ment to its parent segment. We originally specified
the COURSE segment for clarity, so that the user will
get the feel for the hierarchical tree.

Q7. List the names of all the students who achieved
grade A where the offering location is Stockholm.

COURSE

DESCRIPTION

LOCATION FORMAT

I STOCKHOLM
I_-------L._~---'----l

STUDENT

NAME GRADE

P.ED A

Linear version:

Q7. COURSE

COURSE ;OFFERING(LOCATION:
STOCKHOLM)
OFFERING ;STUDENT (NAME :P.ED,GRADE :
A)

It should be noted that the sequence of the rows is
immaterial. Furthermore, as the above examples il
lustrate, in this language, whether in the graphical or
in the linear form, the user simply has to state what
he requires to be retrieved; he does not have to be con
cerned with particular hierarchical sequences or hier
archical paths of the data base. In a procedural lan
guage, on the other hand, the user has to be concerned
with hierarchical sequences of the data base, so that
he can 'navigate' through the tree paths. As an ex
ample, let us reformulate this query in a simplified
version of the DL/l Language, which is the data sub
language for IMS.

850 National Computer Conference, 1976

Q7 in DL/1 is classified as a sequential retrieval with
a conditional segment search argument (SSA).

GU COURSE

OFFERING
(LOCATION ='STOCKHOLM')

STUDENT (GRADE='A')

NSA GN STUDENT (GRADE='A')

go to NSA

Here the user has to be familiar with the IMS search
paths in order to structure the query accordingly. In
the cases where the search is forward, the formulation
of the query is relatively easy; however, it becomes
much more complex when a backward search path is
required. One can say that here "the user is forced to
devote time and effort to solving problems which are
introduced by the model and are not intrinsic to the
questions being asked."15

Q8. Get the teacher's name of an offering (of any
course) attended by student 183009.

COURSE

ICOURSE # I TITLE I DESCRIPTION 1
I I I I
OFFERING I

[DATE I LOCATION r FORMAT I

I I I I
I

TEACHER I STUDENT 1
IEMP# NAME I IEMP# I NAME 1 GRADEl

1 P.ED 1 1183009 I I

Explanation:

Here the STUDENT occurrence (EMP# 183009) and
the required TEACHER occurrence must be linked to
the same OFFERING occurrence. This link is indi
cated by a line connecting the three segments and can
be thought of as having two relations, OFFERING
STUDENT relation and OFFERING-TEACHER rela
tion, linked by example elements as follows.

OFFERING TEACHER

FORMAT EMP#

I

Note that the x y z links indicate that the TEACHER
and the STUDENT have the same parent OFFERING.

Q8 in DLj1 is classified as use of command code F
query.

GU

NO GN

COURSE

OFFERING

GNP STUDENT (EMP# = '183009')

if not found go to NO

GNP TEACHER*F

Explanation:

In IMS, certain command codes are introduced to give
the language more flexibility for such cases as when
the user wants to search the path backwards. Q8 is
an example of such a case. If we used GET NEXT
WITHIN PARENT (GNP) TEACHER (without the
code "*F"), the answer would be "segment not found",
since the search would be in a forward direction and
teachers precede students in the hierarchical sequence.
What is required is a means of stepping backwards
under the current parent and this is accomplished by
the code "* F" .

When we wish to relate segment occurrences to two
or more occurrences of the same parent we have to
qualify these parents accordingly. This is illustrated
in the next example. Consider the following data base.

MGR

EMF

Q9. List the employees' names who earn more than
their managers (same as Q5.).

MGR MGR

NAME SAL NAME SAL

P.~ >.lQ!5. SMITH 10K

Explanation:

Here a separate skeleton is used for each occurrence of
the MGR. The line connecting SMITH and JONES
indicates that SMITH is JONES' manager. In order

to find SMITH's salary we have to search for SMITH
in an occurrence of the EMP segment; however,
SMITH in the EMP segment has a manager of his
Qwn(say LEWIS) as indicated by the connecting line.

Linear version:

Q9. MGR (NAME :SMITH)

MGR (NAME :SMITH) ;EMP (NAME :P.JONES,
SAL:>10K)

MGR (NAME :LE'VIS)

MGR (NAME :LEWIS) ;EMP (NAME :SMITH,
SAL:10K)

Explanation:

The manager qualified by the name SMITH is the
parent of the employee whose name we wish to be
printed out, and the manager qualified by the name
LEWIS is the parent of the employee SMITH.

Note that here we cannot dispose of parent qualifi
cations, without which the system will not be able to
relate an employee to his manager.

The next query is an example of relating two differ
ent Logical data bases. Consider the following two
data bases.

DEPT

d
AME

ITEM

I NlI.MR
L==-------.J

SUPPLIER

d
AME

ITEM

I NA.M.E I

Q10. List the department names that sell items sup
plied by Parker (same as Q2.).

DEPT SUPPLIER

Linear version:

Q10. DEPT (NAME :P.TOY)

DEPT ;ITEM (NAME :PEN)

SUPPLIER (NAME :PARKER)

SUPPLIER ;ITEM (NAME :PEN)

We will end this section by a query that requires uni
versal quantification.

Q11. List the department(s), each of which, sells all
the items supplied by Parker.

Query-By-Example 851

DEPT

NAME

[

ALL PE~l

• J
ALL PEN

For more details see Reference 1.

Linear version:

Q11. SUPPLIER (NAME :PARKER)

SUPPLIER; ITEM (NAME :ALL PEN)

DEPT (NAME :P.TOY)

DEPT; ITEM (NAME: [ALL PEN,.])

MAPPINGS

In this section we demonstrate how the user can
map a hierarchical (H) view to a relational (R) view
and vice versa. An example of a query involving both
views simultaneously is given.
a. Mapping a hierarchical to a relational view

(H~R)

Consider the following data base.

MGR

INAME II
EMF

I NAME I SAL

Q12. Convert the above data base to a relation called
EMP1 and save it.

MGR

SAVE.EMP1 NAME SAL MGR-NAMEI

10K ED TOM

Linear version:

Q12. MGR (NAME :ED)

MGR ;EMP (NAME :TOM,SAL :10K)

SA VE.EMP1 (NAME :TOM,SAL :10K,
MGR-NAME :ED) -

852 National Computer Conference, 1976

If we just want a printout in the form of a relation,
without being concerned with saving it, we fill in the
following skeleton.

NAME SAL MGR-NAME

P.TOM P.1OK P.ED

Linear version:

(NAME :P.TOM,SAL :10K,MGR-NAME :P.ED)

This is consistent with the examples in Q3 and Q4.

b. Mapping a relational view into a hierarchy

Consider the SALES relation in Figure 2.

Q13. Construct and save a hierarchical view from the
SALES relation, where the root segment is
DEPT.

SALES SAVE.DEPT

Linear version:

Q13. SALES (DEPT :TOY,ITEM :PEN)

SAVE.DEPT (NAME :TOY)

DEPT; ITEM (NAME :PEN)

Consider the following data base which combines
hierarchical and relational views.

MGR

SALES DEPT ITEM

EMP

The following query is formulated using both views
sim ultaneously.

Q14. Find the employees who are managed by Jones
and work in a department that sells pens.

MGR

NAME SALES DEPT ITEM

JONES TOY PEN

EMP

NAME SAL DEPT

P.ED TOY -

Linear version:

Q14. MGR(NAME:JONES)

MGR; EMP (NAME :P.ED,DEPT :TOY)

SALES (DEPT :TOY,ITEM :PEN)

PERFORMANCE CONSIDERATIONS

Where the performance of the system is a major
factor, and it is particularly so when the data base is
large, one can improve the performance by making
the user cognizant of the fact that certain paths are
more efficient than others; this will probably encour
age him to use a more efficient approach. For example,
take the TYPE relation that has ITEM and COLOR
as column names and consider the following two
queries.

Q15. Find the red items.

TYPE ITEM COLOR

P. RED

Q16. Find the colors of ink.

TYPE ITEM COLOR

INK P.

The above two queries are completely symmetric
(which is, of course, one of the merits of the relational
approach).

We now view the above data base as hierarchical
with the ITEM segment as the root.

ITEM

COLOR

Q15 and Q16 will look as follows.

Q15. ITEM Q16. ITEM

I~ ~

~ ~
~ NAME

'Opn
I L~ __ • __ I 1---

If the user is told that queries involVmg an "up
ward" search path, such as Q15, are less efficient than
queries requiring a "downward" search path, such as
Q16, he "vill then try to keep the number of qUeries
formulated in the form of Q15 to a minimum. If many
queries inevitably involve the same upward path, he
may improve the performance by constructing another
logical data base which is the inverse of the first, thus
diverting the search to a downward path.

This is just a simple example of how the user can
participate in the performance. It remains to be seen
whether this concept can be generalized to a practical
size data base, involving queries of a practical com
plexity.

CONCLUSIONS AND REMARKS

In this paper we demonstrated that Query-by-Example
operations are independent of the view of the data base.

The feature of printing-out part of the data (such
as, 'only one element' or 'the first five') is yet to be
embedded in Query-by-Example. At present the 'P.'
operator means 'print all the elements'. It may be
possible to specify the number of elements to be printed
out following the 'P.'. Example: 'Po (1) PEN' will
print out one item, and 'Po (5) PEN' will print the first
five items, etc.

The feature of ordering the outputted set is also not
as yet included in Query-by-Example.

Query-By-Example 853

ACKNOWLEDGMENTS

To Peter deJ ong I am most grateful for his helpful
discussions, suggestions, and interest throughout the
preparation of this paper.

I also wish to thank my wife Rosy for correcting
the manuscript and for many helpful suggestions.

REFERENCES

1. Zloof, M. M., "Query by Example," Proc. National Com
put(y{~ Conte'rence, AFIPS Pl'E:SS, Vol. 44, 1975, pp. 431-438.

2. Zloof, M. M., Query by Example, IBM Research Report
RC 4917, July 1974.

3. Zloof, M. M., Query by Example, The In'uocation and Defi
nition of Tables and Forms, IBM Research Report RC 5115,
February 1975, also appears in the proceeding of The
International Conference on Very Large Data Bases, Boston,
Mass., Sept. 22-24, 1975.

4. Zloof, M. M., Query by Example: Operation on the Transi
tive Closure, IBM Research Report RC 5526, July 75.

5. Thomas, J. C. and J. D. Gould, "A Psychological Study of
Query by Example," Proc. National Computer Conference,
AFIPS Press, Vol. 44, 1975, pp. 439-445. (IBM Research
Report RC 5124), November 1974.

6. Scholz, K. W., An Algorithm for the Implementation of
Query-by-Example on a Small Machine, IBM Research Re
port RC 5394, June 1975.

7. Zloof, M. M. and S. P. deJong, The System for Business
Automation: Programming Language, IBM Research Report
RC 5302, March 1975. Also to appear in CACM.

8. deJong, S. P. and M. M. Zloof, Application Design Within
the Sys.tem for Business Automation (SBA) , IBM Research
Report RC 5366 April 1975.

9. deJong, S. P. and M. M. ZIoo!, System for Business Auto
mation: Representation of Business, IBM Research Report
in preparation.

10. Codd, E. F., "A Relational Model of Data for Large Shared
Data Banks," Comm. ACM, Vol. 13, No.6, June 1970, pp.
377-387.

11. Codd, E. F., "Further Normalization of the Data Base Re
lational Model," Courant Computer Science Symposia, Vol.
6, Data Base Systems, Prentice-Hall, New York, May 1971.

12. Codd, E. F., "Normalized Data Base Structure: A Brief
Tutorial," Proc. 1971 ACM SIGFIDET Workshop on Data
Description, Access and Control, San Diego, November 1971.

13. Niebuhr, K. E. and S. E. Smith, Implementation of Query
by-Example on VM/370, IBM Research Report in prepara
tion.

14. Zloof, M. M., Query-by-Example (revised) including a
linear version, Formal Syntax and Semantics, IBM Research
Report in preparation.

15. Date, C. J., An Introduction to Data Base Systems, Addi
son-Wesley, 1975.

A virtual memory system for a relational associative processor

by S. A. SCHUSTER, E. A. OZKARAHAN and K. C. SMITH
Un-l-uen;-iiy of Toronto
Toronto, Ontario, Canada

ABSTRACT

The Relational Associative Processor (RAP) is an
experimental "backend" cellular processor for imple
menting data base management systems. RAP is par
ticularly well suited to supporting Codd's relational
model of data. The capacity of a RAP device imple
mented with current IC and memory technology can
be estimated to contain 10~ to 10~ bits of associatively
processable data. Because many data bases are larger,
a virtual memory environment for RAP has been pro
posed and its performance simulated. The environ
ment incorporates conventional memories for bulk
storage and a single RAP processor-both controlled
by a general purpose front-end computer. The systenl
requires that the entire relational data base be divided
into pages of size equal to one RAP cell memory. A
buffer memory is added to RAP to permit the overlap
of paging with processing. It has been found that user
environments containing small relations or queries ex
hibiting either long processing times relative to paging
requirements or some "locality" (defined as the degree
to which sequences of queries reference some relations
more than others) can efficiently page data between
large data bases and data base machines without sig
nificant losses in performance.

INTRODUCTION

The relational model of data is an important approach
to data base management because it presents its user
with a simple, consistent, and operationally complete
view of data. 1 However, its high-level user-oriented
'view creates serious problems for efficient generalized
implementation on conventional hardware. We briefly
review the relational model and a special purpose
peripheral processor called RAP which is designed to
provide high performance relational data base opera
tions. 2- 1 A small prototype version of RAP is being
implemented at the University of Toronto. This paper
concentrates on the problem of using RAP to support
large relational data base applications. To do this, we
propose several architectural extensions and a soft
ware support system to create a virtual memory envi
ronment for a RAP processor. A model of the virtual

855

memory environment has been simulated and the re
sults are presented and analyzed.5

THE RELATIONAL ASSOCIATIVE
PROCESSOR "RAP"

A relation can be viewed as a table whose rows
contain data about a set of similar entities. The table's
or relation's name identifies the set of entities being
described and the column headings are the names of
the attributes which are used to describe the charac
teristics of each entity. Each row contains an n-tuple
of values-one for each attribute-which uniquely de
scribe each entity. The set of values that can be taken
by an attribute is called a domain. A relational data
base is composed of a collection of time-varying rela
tions that may change because of modifications, inser
tions, and deletions. Several relations can be inter
related through common domains to formulate complex
queries.

The Relational Associative Processor (RAP) is an
experimental "backend" non-numeric processor de
signed to efficiently implement data base management
systems. Its architecture and instruction set is par
ticularly well suited for supporting the relational model
of data. In addition, recent research indicates that
RAP is sufficiently generalized to support set-oriented
hierarchical and network views of data. This paper
concentrates on RAP's relational aspects.

RAP architecture is based on the observation that
relational operations of search, retrieval, statistical
computation, and update are inherently associative and
set-oriented. The basic organization of RAP is shown
in Figure 1. The design incorporates an array (i.e.,
parallel set) of circularly connected associative cellu
lar processors which are driven by a central controller
and statistical processor. A RAP instruction is a data
base operation which is executed by each cell in par
allel directly on the cell's memory. Each cell is com
posed of a microprocessor and a sequential circulating
memory (e.g., a track of a drum or disk, CCD's, bubble
memories, etc.). The rows of a relation are stored as
blocks of data on one or more cell memories. The RAP
data structure allows rows to be duplicated.

856 National Computer Conference, 1976

RAP

CONTROLLER
and

STATISTICAL ALU

Programs Data

FRONT -END
COMPUTER

USERS

-s. 'j

RAP

Figure I-Basic organization of RAP architecture

Relational queries can often be constructed from just
a few RAP primitives and often only a single RAP
primitive is required. The RAP system is designed to
execute its most important instructions within one
parallel rotation of the cell memories. Because opera
tions are accomplished in parallel on the entire storage,
RAP is an effective associative processor providing
significant search and manipulation efficiencies. That
is, RAP accomplishes relational data base management
without complex data structures and software aids
such as inverted lists and hashing for multi-key search
ing required in conventional systems. This is especially
important for applications which have extensive up
date activity. The extra indices and ordering require
ments must be maintained whenever an update occurs
in a conventional data base system. In RAP, only the
relation itself has to change and this is accomplished
directly on the data without having to move any por
tion of the data base to the front-end processor.

An analytical model was constructed which com
pared the performances of RAP to a conventional data
base management system. I.'; The model considered
resident data bases for RAP and fast access paths in
the form of inverted lists for the conventional system.

The results showed that significant gains in query
execution speed can be achieved by the RAP architec
ture over the conventional system even if it uses fixed
head disk memories. The model includes queries of the
form: simple Boolean selection retrievals or updates,
retrievals including statistical criteria in the query
qualification, and retrievals involving implicit joins.
This study indicates that, under many circumstances,
on-line retrieval and updates of large data bases may
only be possible with the aid of RAP-like systems.

The concept of providing large scale associative pro
cessors and memories for data base management are
also currently being explored by others. ;-10 These de
vices are generally referred to as "data base machines".
Most of the discussion to follow may also be applicable
to the general theory of data base machines.

The maximum capacity of a single data base machine
implemented with current IC and memory technology
can be estimated to contain from lOR to 109 bits of
associatively processable data. 4 Data compression, of
course, should be exploited. This capacity may be suf
ficient for many applications but there are others
which require larger storage. The costs of data base
machines may not permit them to be casually dupli
cated when larger storage is required. This then raises
the question as to what architectural extensions and
software techniques can be explored to efficiently ex
tend the address space of RAP-like data base machines.
A virtual memory system for RAP is proposed which
incorporates conventional disk memories for bulk stor
age and a single RAP processor-both controlled by a
front-end general purpose computer.

RAP ARCHITECTURE FOR LARGE
RELATIONAL DATA BASES

The need for the virtual memory system arises when
the data base is larger than RAP memory capacity.
However, it is assumed that all the pages for a query
can be contained within RAP memory. This assumption
is reasonable in light of the expected memory capacity
for RAP (lW to 109 bits). For applications requiring
very large relations, partitioning of large relations
into smaller ones containing the same columns may be
required. This would require a user to create a' se
quence of tasks to process several subqueries over the
smaller relations and assemble or interrelate their
results.

The proposed virtual memory system requires that
the entire data base be divided into fixed size pages
equal to the capacity of one cell. A page contains rows
from only one relation. Each page has a unique identi
fication. Therefore, the set of rows for a complete
relation can be specified by indicating the pages that
contain the rows.

The extensions to RAP architecture for implement
ing a virtual memory system are displayed in Figure 2.
In this configuration, the front-end general purpose

computer contains a virtual memory monitor and acts
as an I/O interface for paging data between conven
tional bulk memories (e.g., direct access secondary
memory devices) and RAP. A large portion of the
data base resides on the bulk memories and only the
"working set," that is the collection of pages contain
ing the relations required by the currently processing
queries, resides in RAP memory.

In order to reduce paging overhead, overlapping of
paging Ilia with query processing is essential. To
achieve this, each cell has been extended to contain
two memory components. At a given time, one serves
as the active or processor memory while the other acts
as the buffer or alternate memory. The memory serv
ing as the active memory is used in query processing
while the other acts as the I/O buffer to permit paging
to take place concurrently with query processing. The
roles of the memories can be reversed for each cell
independently as required during the operation of the
system. Thus, RAP logically contains two cyclic mem
ories-one serving as the active associative memory
while the other is a buffer. The hardware logic for
switching between cell memory pairs has been designed
in detail for RAP.1 The extra logic required for doing
this adds little to the complexity of the overall system.

The RAP controller is still connected to the front
end computer via a dedicated channel to receive pro-

RAP

~6
\ ,

(lGJ

FRONT -END
COMPUTER

/
/

Pages

RAP

Pc = ce 11 processor
Mp = p'rocessor memory
Mb = buffer memory

Figure 2-Hard\vare architecture of the virtual memory system

A Virtual Memory System 857

grams and transfer results of users' requests. How
ever, the current buffer is driven by a separate I/O
controller which is connected to the front-end computer
by a separate channel. The paging to and from the
buffer is accomplished by standard channel programs
before a new query is processed.

The paging for a waiting query is overlapped with
the processing of a currently executing query. Look
ahead paging is possible because RAP associatively
processes all the pages of the relations referenced in a
query. Since each query must specify which relations
are to be processed, it specifies which pages are to be
processed at the same time. Once the required pages
are transferred and execution of the current query is
finished, the roles of the memory pairs can be switched.

There are two other features of the RAP design
which are not shown in Figure 2 that help to increase
the efficiency of the virtual memory system simulated
in this study. They are the fast read-out scheme and the
multiprogramming facility.l The fact read-out scheme
for retrieval queries interleaves selected tuples from
different cells during a memory revolution to maximize
the channel utilization. The multiprogramming facility
allows queries to be divided into two priority classes
and executes them with respect to a preemptive sched
uling discipline to provide a foreground-background
query execution facili,ty. This allows the RAP pro
cessor to control query execution by not allowing a Icing
query to tie-up the device. The logic for implementing
hard-wired two-task multiprogramming requires the
duplication of less than 10 percent of the cell hard
ware.4

A VIRTUAL MEMORY SYSTEM

Locality

The virtual memory system to be discussed is de
signed to exploit user characteristics that affect total
system performance with respect to paging. In con
ventional virtual memory systems, the important prop
erty of locality of address references in a user program
is used to reduce paging. In an analogous way, we
define "locality of query references" or simply "local
ity" as a phenomenon which is manifested by a non
random distribution of references to the relations in a
data base during the execution of a sequence of queries.
High locality is reflected when a small subset of the
relations in a data base are referenced more often than
the other relations, i.e., the frequency of relation ref
erence is described by a distribution with low variance.
The effect of varying degrees of locality is studied in
the simulation.

Unfortunately we lack experimental data and are not
aware of any studies performed in connection with
locality in relational data bases. However, we will
present some ad hoc arguments for its existence. Lo
cality will be loosely examined with respect to four
classes or environments of processing.

858 National Computer Conference, 1976

There are many data processing tasks that occur in
a reservation system environment such as for hotels,
airlines, shipping, etc. As a deadline approaches for
an entity, e.g., the scheduled time for a plane flight,
the activity in the data base is expected to become con
centrated within the area representing this entity. If
there exists a relation for each flight which records
the passenger reservations for a particular flight, then
the access to those relations scheduled to depart shortly
will have greater frequency of reference resulting in
high locality.

A second argument for high locality is that the use
of high level interactive query languages encourages
"browsing". In such an environment, a user can inter
actively search for relevant data by step-wise refine
ment of queries on the same relations. The iterative
refinement of queries can cause the same relations to
be accessed repeatedly during a short period of time.

In a data processing environment using batch multi
programming, we expect that queries are generated
within the constructs of host language programs.
These programs are usually involved in the generation
of complex reports or batch updating. The logic of
such programs is often repetitive which cause queries
to be embedded within program loops. This could cause
sequences of queries to concentrate references over a
subset of the relations in the data base.

A fourth argument for high locality is that certain
relations may play an important role by interrelating
other relations. These relations have a high percentage
of attributes whose domains are common to other rela
tions. These relations must be referenced extensively
to link data in different relations in the formulation
of many queries. Because these "linking relations"
may be referenced often, queries over such a data base
could exhibit high locality.

The system presented was designed to exploit high
locality characteristics when they exist. The results
will show that a modest amount of locality can greatly
extend the processing efficiency of a data base machine
for processing data bases which are large relative to
the capacity of the machine's memory.

The virtual memory system structure

The principal modules and data flow of the virtual
memory system are shown in Figure 3. The overall
control of the system is concentrated in a central
MONITOR. The MONITOR is' also responsible for
communicating the block of individual operations of a
query to drive the RAP processor.

As jobs enter the system they are classified by the
CLASSIFIER module as either class-lor class-2.
Class-l jobs are queries that have high priority and
are to be processed uninterrupted such as on-line re
trievals or any update. Class-2 jobs are retrieval
queries with long processing times which can be run
in the background, interrupted by class-l jobs, and

FI Fa Queue
of

Cl ass-l Job
Subsets

--~) Job Flow

____ ~ Control

_. -.-~ Page Flow

JOBS

_____ 1

I
I
I

I
I
I

------1
I
I

Class-2 Jobs

FIFO Queue
of

Class-2 Jobs

____ ~ PAGER

1'1'
r-·-· .
. I
I r--.JL •:L-....,

Figure 3-Structure of the virtual memory system

then resumed when no class-l jobs are waiting to be
processed. We will assume that all class-2 jobs can be
resumed from their point of interruption regardless of
possible effects of an intervening class-l update job.
If the semantics of the query is such that it must be
completed in its entirety before any of its relations
can be updated, it would be classified originally as a
class-l job. The data for each job that determines its
class can be either found by examining the query's
instructions or by user specified parameters. We fur
ther assume that all jobs classified as class-l can be
reordered during a small segment of time. (This pol
icy has been made over-simplistic for purposes of the
simulation. It is acknowledged that updates must often
execute in a specific order.)

After classification, class-2 jobs simply enter a
class-2 FIFO queue. Class-l jobs, however, are kept
in a job pool by the COLLECTOR module. Under the
direction of the MONITOR, all class-l jobs in the pool
will be released to a module called the SCHEDULER.
Two policies have been suggested for controlling the
COLLECTOR. Only the first has been simulated. In
this case, class-l jobs are collected as long as there
exist previously scheduled class-l jobs that are wait
ing and/or processing. When such jobs no longer exist
the COLLECTOR releases its jobs to be scheduled. If
no class-l jobs have been collected, then the current
class-2 job is started or resumed if a preempted one

eXIsts. The class-2 job is allowed to process until the
next class-1 job is received and preprocessed. The
single class-1 job is immediately scheduled and, when
its paging requirements have been satisfied, it then
preempts the class-2 job and acquires the processor.

The second policy is to let the COLLECTOR coIled
jobs for a fixed amount of time which would be deter
mined by the MONITOR. In retrospect, it is felt that
this would have given better results because larger
pooh;; will be presented to the SCHEDULER which is
designed to exploit high localiLy by reducing page
faults through job reordering.

The SCHEDULER receives the pool of class-1 jobs
and orders them by first finding the job which causes
the least amount of page faults with respect to the
current contents of RAP memory. This can be done
because the relations referenced in the queries are
known by the MONITOR. It continues to order the
rest of the jobs by finding the next job whose pages
most overlap RAP and so on. The ordered pool of jobs
are then partitioned into an ordered set of job subsets
such that all the relations for each subset can be con
tained within the data base machine memory. The
ordered subsets are then placed in a FIFO queue to
wait for the processor.

The final module to be discussed for the virtual
memory system is the P AG ER. It is responsible for
the paging or buffering strategy and the page replace
ment policy. Paging is performed on a non-demand
basis. This is possible because the pages required by
a subset are known before processing starts. The
demand paging philosophy encountered in program
ming systems does not apply here, because, having job
subsets sitting in the queue, one can start the process
ing of a current subset and at the same time start
paging data into the buffer for the following subset.
This scheme is aimed at reducing the average amount
of idle processor time that a subset causes due to
paging.

The replacement policy for pages in the data base
machine memory is to first replace any pages that have
not been updated and are not referenced by jobs in
the ordered subsets waiting in the queue. If more
space is required, then those referenced farthest in the
job subset are replaced. An actual page-out occurs
only if the replaced page was updated, otherwise it is
simply overwritten in the buffer. Page-outs occur after
the role of the cells' memories, which contain the pages
to be replaced or paged-out, are switched from active
memory to buffer memory.

The effectiveness of the SCHEDULER and PAGER
in exploiting locality is measured by an index called
"system locality (SLOC)". SLOC is defined as follows.
Let pg [i] be the number of unique pages that are re
quired by subset i and pgcom [i] be the number of
pages in common between subset i and the contents of
RAP memory at the time when paging for subset i is
to take place. Thus,

A Virtual Memory System 859

11 11

SLOC= L pgcom[i]/L pg[i]
i=l i=l

for i=1,2, ... , n consecutive class-1 job subsets. The
system locality will be near one for environments re
quiring little paging between subsets and near zero
for environments requiring excessive paging. System
locality depends on the degree of locality, the number
of pages in the entire data base relative to the number
of pages that can be contained in RAP memory, and
the :::;ize of the relations in the data base.

SIMULATION OF AN ON-LINE ENVIRONMENT

Lacking experimental user data, an on-line environ
ment has been hypothesized and simulated for the
described virtual memory system.'; The data base ma
chine is modelled with the expected parameters for a
moderately large size RAP processor. The simulation
was coded in GPSS on an IBM 370/165.

The on-line environment

The application environment studied could be con
ceptualized either as an on-line reservation system for
hotels or airlines or a parts distribution and inventory
system. Most of the jobs fit the class-1 description
with a few class-2 background batch jobs representing
management reporting, billing, financial accounting,
payroll, etc. The arrival rate of queries is fast and
most require short processing times. Most queries
involve only a few relations. The following is a list of
parameters used in the experiments. The times are
given in terms of the number of revolutions or circu
lations of the RAP memory.

RAP:
(a) 1 revolution (rev) =50 milliseconds
(b) RAP processor = 200 cells
(c) RAP memory capacity=400 pages
(d) active memory = buffer memory=200 pages
(e) page size=0.5*106 bits
(f) paging rate = 1 page/rev

Data base:
(a) total data base size = 2000 or 5000 pages
(b) number of relations for short jobs=exponen

tial (mean = 1.5 relations)
(c) number of relations for long jobs=exponen

tial (mean=3 relations)
(d) number of pages per relation = 5, 10, 20, or

25 pages

Locality:
(a) low-modelled by a uniform distribution
(b) medium-modelled by an exponential distri

bution
(c) high-modelled by a hyperexponential distri

bution

860 National Computer Conference, 1976

As each job (query) is generated in the simulation, one
distribution is referenced, depending on the locality
being simulated, to determine the relations needed by
the job.

Arrival and processing time distributions:
(a) job interarrival time=Poisson (mean=40

rev/job)
(b) processing time for short jobs=exponential

(mean=4, 8, 16, or 32 rev)
(c) processing time for long jobs=Erlang-2 for

class-2 and exponential for class-1 (both with
mean = 104 rev)

(d) processing time for class-1 jobs=hyperexpo
nential (due to (b) and (c»

(e) processing time for class-2 jobs=processing
time for long jobs (due to (c»

Job proportions:
(a) proportion of class-1 vs. all jobs=0.90
(b) proportion of updates vs. all jobs=OAO
(c) proportion of long updates vs. all jobs=0.03

The above parameters were chosen in such a way as
to create a system load which guarantees that a class-1
and/or class-2 job would almost always be present in
the job mix. Thus, the RAP processor in this experi
ment would rarely be idle due to empty job queues.
However, idle processor time would be caused by ex
tensive paging requirements.

Simulation results

The goal of this study was to determine the relative
effects on the average time-in-system, referred to as
the response time, for a class-1 job when the following
were varied:

(a) short job mean processing time
(b) number of pages per relation
(c) locality
(d) data base size

Also studied was the effect of these variables on system
locality which reflects the paging performance from
the system's point of view.

Figure 4 shows the effects of processing time for
short jobs (proctime), locality, and data base size
(dbsize) on RAP system response for class-1 jobs.
For this experiment the number of pages for a relation
was fixed at 10. The response time, RTIME, indicates
the average time a class-1 job spent in the system. The
results can be approximately summarized as a family
of straight lines of the form "y=a*x+b". For the
experiment we get:

RTIME:= proctime+ «(log dbsize) /locality)

where" : =" means "proportional to." That is to say,
response time is directly proportional to processing
time, as would be expected, with an upward shift
depending on locality and data base size. The line

"y=x" is shown because it represents the theoretical
optimum for the environment simulated. The average
response time can never be less than the average time
it takes to process a job.

The somewhat lineal' upward shift in the curves
away from the optimum is due to idle processor time
because of paging. The paging requirements are re
duced by high locality, but increased in a diminishing
way (this will be explained later) when the total data
base size grows larger relative to RAP memory ca
pacity.

It should be noted that the curves slowly converge
toward the optimum for longer processing times. This
is to be expected since the number of pages for a
relation are fixed in this experiment. Longer process
ing times allow more paging to overlap with processing
and, when the processing times are long enough, there
will be time to do all paging before the next job subset
is to be processed.

Figure 5 shows the effects of relation size in terms
of the number of pages (npgrel), locality, and data
base size (dbsize) on RAP system response time for
class-1 jobs. For this experiment the average pro
cessing time for a short job was set at 8 revolutions.
The results can be summarized as follows:

RTIME: = ((log dbsize) /locality) * npgrel+ proctime

That is to say, response time is directly proportional
to the size of relations and the slope of the relationship
is affected by locality and data base size. The line
"y = proctime" is shown since it represents the average
experimental optimum as discussed earlier.

The fact that response time is directly related to the

50

I:
0

40

]
.0
0 ...,

30

'" u

..
0

~ 20 ---- = 5000 page data base

MEO
- = 2000 page data base

I:

~
OJ
01

'" 10 ..
OJ
> ..:

10 20 30 40 50

Average Processing Time for a Class-l Job (Revolutions)

Figure 4-The effect of locality, processing time, and data base
size on system response

;t
0

::>

0

W[~
.0
0

U

'" 30 r
'-

I
0
E
OJ

,.,

--
20 r 2

OJ
on
'-
."
> «

10

---- ; 5000 ;Jage data base
- ; 2000 oage data base

/ o
/

I

I

I
I

I

I
I

I

pLOW

/ LOW

/ ..£) MED

~ ,jJ--

,
/

~
~MED

Theoretical Optimum
(computed average class-l job processing time)

30 40

~verage NumbEr af Pages for a C1 ass-l Job

50

Figure 5-The effect of relation size, locality, and data base
size on system response

average number of pages occurring in relations of the
data base is not surprising. Since all pages of a rela
tion are required to be in RAP memory to be processed,
the more pages required, the more paging is to be
expected. Given a fixed average processing time, we
expected and also observed that response is degraded
when large relations must be paged.

However, the effect of locality can be profound be
cause it affects the slopes of the response time curves.
When the locality is higher, there is a good chance
that some of the relations currently in RAP memory
will be needed by the following job subset. Therefore,
the effect of paging larger relations will not be so
dramatic.

Data base size also affects the slope of the response
time curves. As the data base gets larger relative to
RAP memory, the effect of locality is diminished. That
is, the same pattern of locality will be spread over
more relations causing the locality to appear more
random. It should be noticed that for the low (random)
locality curve, the effect of increasing the size of the
data base was very small. It is observed that paging
due to random locality will be independent of data base
size. When extensive paging is required because of
random reference, it does not matter what size of
pool contains the pages.

Figure 6 shows the effects of these experiments on
the average system locality (SLOC). The data from
which these curves are derived also showed that sys
tem locality is independent of a job's processing time
or relation size for a fixed locality distribution. The
results can be summarized as follows.

A Virtual Memory System 861

SLoe: = (1/ (log dbsize)) * locality

That is, the higher the locality the better the system
will perform since less paging will be expected. How
ever, as the data base size grows, the effect of locality
will diminish and performance will approach that of a
random locality environment.

SUMMARY AND CONCLUSIONS

The Relational Associative Processor (RAP) is an ex
perimental "backend" non-numeric processor for im
plementing a data base management system which
supports Codd's relational model of data. RAP archi
tecture is based on the observation that relational
operations of search, retrieval, statistical computation,
and update are inherently associative and set-oriented.
The design incorporates an array (i.e., parallel set)
of interconnected associative cellular processors which
are driven by a central controller and statistical pro
cessor. Each cell is composed of a microprocessor and
a sequential circulating memory (e.g., a track of a
drum or disk, CCD's, bubble memories, etc.). Each
data base operation is executed within the cells which
operate in parallel directly on their memories. RAP
accomplishes a complete set of data base operations
without the need for indexing and its associated soft
ware and maintenance.

u

~
OJ
en

'" ...

The capacity of a RAP device implemented with

10~

0.8

~
:::. 0.6

'" u

.3
E

~
VI

(;i
OJ
C'

'" ...
~ «

0.4
5000 page
data base

O.~----------------~------------------~--
LOW MED HIGH

Locality of Relation References

Figure 6--The effect of locality and data base size on system
locality

862 National Computer Conference, 1976

current IC and memory technology can be estimated
to contain from 10' to 109 bits of associatively process
able data. Because of this limitation, a virtual mem
ory environment for RAP has been proposed and its
performance simulated. The environment incorporates
conventional memories for bulk storage and a single
RAP system-both controlled by a front-end computer.
An entire relational data base is divided into pages of
size equal to one RAP cell memory. A buffer memory
is added to RAP to permit the overlap of paging with
processing.

Each RAP program represents one relational query
(job) on one or more relations. The system maintains
an ordered queue of waiting queries. Before the next
selected query is processed on RAP, a table look up is
made to determine if all the pages for the query are
present in RAP memory. If any pages are not cur
rently residing in RAP, they are paged in replacing
the pages for the relations referenced farthest in the
job queue and/or those not needed at all such that
pages that have not been modified are replaced first.
The jobs waiting to be processed are scheduled by
ordering them into a queue in such a way that paging
is reduced. It has been found that user environments
which contain small relations or process queries ex
hibiting either long processing times relative to paging
requirements or some "locality of relation reference,"
can efficiently page data between large data bases and
data base machines without significant losses in per
formance.

ACKNOWLEDGMENT

The authors are happy to acknowledge the contribution
of Raymond Nakano who developed the simulation

program and made many valuable com:ments through
out the preparation of this paper.

This work has been supported by the Federal De
partment of Communications, the Department of Sup
plies and Ser,7ices, and the National Research Council
of Canada.

REFERENCES

1. Codd, E. F., "A Relational Model of Data for Large Shared
Data Banks," CACM 13,6,1970, pp. 377-87.

2. Ozkarahan, E. A., S. A. Schuster and K. C. Smith, A Data
Base Processor, CSRG-43, Computer Systems Research
Group, "University of Toronto, September 1974.

3. Ozkarahan, E. A., S. A. Schuster and K. C. Smith, "RAP
An Associative Processor For Data Base Management,"
AFIPS Conf. Proc., Vol. 44, 1975, pp. 379-87.

4. Ozkarahan, E. A., An Associati've Processor For Relational
Data Bases-RAP, Ph.D. Thesis, Dept. of Computer Science,
University of Toronto, January, 1976.

5. Nakano, R., A Simulator for a RAP Data Management
System, M.Sc. Thesis, Department of Computer Science,
University of Toronto, 1976.

6, Ozkarahan, E. A., S. A. Schuster and K. C. Sevcik, Pe1'
formance Et'aluation of a Relational Associative Processor,
CSRG-65, Computer Systems Research Group, University of
Toronto, January 1976.

7. DeFiore, C. F. and P. B. Berra, "A Data Management
System Utilizing an Associative Memory," AFIPS Conf.
Pro c., Vol. 42, 1973.

8. Moulder, R., "An Implementation of a Data Management
System on an Associative Processor," AFIPS Con!. Proc.,
Vol. 42, 1973.

9. Su, S. Y. W .. and G. J. Lipovski, "CASSM: A Cellular
System for Very Large Data Bases," Very Large Data
Bases Con!. Proc., Vol. 1, No.1, September, 1975.

10. Lin, C. S., D. C. P. Smith and J. M. Smith, "The Design
of a Rotating Associative Memory for Relational Data
Base Applications," to appear in TODS, Vol. 1, No.1, 1976.

Managing the census data base-Data

description~ acquisition~ and manipulation

1.. T A",T T ATTTOV 'tXTVT nA1'I.T uy d..t1..l.-DVU.L0D HD.LU.JVJ.'I

New York University
New York City, Xe\v York

ABSTRACT

The U.S. Bureau of the Census collects and maintains
a broad base of socio-economic and demographic data
on population and housing in the United States. Sum
marizations and statistical information from this data
base are made available to the public in printed re
ports. In addition, portions of the data are made
available in machine-readable form, and thus are appro
priate input for further research studies.

For most potential users, however, many obstacles
exist in making use of the machine-readable Census
data. These obstacles may be classified into three
areas: the identification and selection of relevant data
items from the available data to support a given re
search objective, the acquisition of accurate and com
plete data, and the physical storage and processing of
such a large data base.

This paper discusses each of these problem areas
and identifies the factors involved. Illustrations of pos
sible solutions are presented, based on the author's
experience with the Census data. base at the Univer
sity of Pennsylvania. Guidelines for dealing with such
problems are provided for other prospective users.
Finally, some general recommendations are made for
avoiding or reducing these types of problems in future
Census data products.

INTRODUCTION

The basic Census data base, as maintained by the U.S.
Bureau of the Census, contains the actual (or encoded)
responses for each individual who completed a Census
questionnaire in the 1970 Census of Population and
Housing. Portions of this data base are made avail
able to the public in three forms :9,10,11

(i) printed census reports, which summarize vari
ous responses for certain geographic areas;

(ii) summary data tapes, which also contain re
sponse data summarized by geographic area
but in computer-readable form; and

863

(iii) sample data tapes, called the Public Use
Sample, which contain selected data records
from the basic Census data base, also in com
puter-readable form.

The printed reports are the most frequently avail
able and immediately usable of these three forms.
These reports are available in most libraries and pro
vide summarizations of basic housing or population
characteristics for the most commonly accessed geo
graphic regions. For example, from the reports a
researcher may gather data on counts of housing units
or on population by age or sex for counties or states.
'VVhile convenient, the printed reports may not suffice
for many researchers. For example, data may be re
quired on more specialized data items, or by smaller
geographic areas. For computer analysis, the re
searcher may wish to obtain a large volume of data
records in computer-readable form. In these latter
cases, the summary tapes and the Public Use Sample
are required as data sources.

The summary data tapes, organized into six parts
called "Counts," contain the summarizations from
which the printed reports were developed. The six
Counts differ with respect to the data tabulations they
contain and the size of the geographic areas for which
these data are summarized. Each tabulation represents
the result of cross-tabulating one or more questions
from the Census questionnaire. As such, more than one
data item (or cell) may be contained within one tabu
lation. For example, the tabulation "Population by
Race" requires four data cells, corresponding to three
racial groups plus the total. The geographic area for
which the tabulations are summarized are identified in
each record by a set of codes. The summary data tapes
contain summarizations for states, counties, and Stan
dard Metropolitan Statistical Ar~as (SMSA's), as well
as for smaller areas, such as census tracts, blockgroups,
and Minor Civil Divisions (MCD's).

The Public Use Sample tapes contain data records
of actual questionnaire responses with most identify
ing information removed. These records are selected
according to different sample sizes and for different

864 National Computer Conference, 1976

geographic areas, and grouped into six files according
to these two characteristics. The data items in the
Public Use Sample records are coded responses rather
than counts or tabulations. However, coded geographic
information is used to identify each record, as in the
summary data.

The decision to use and/or acquire either type of
computer-readable Census data forces the researcher /
user to confront a number of problems. The problems
encountered can be classified into three general areas:
data description, acquisition, and manipulation. Prob
lems in data description arise when the user attempts
to identify and/or select the data items and geographic
areas most appropriate for his/her research. Data
acquisition problems center around the user's ability
to obtain complete and accurate data in a form com
patible with his/her computer installation. Manipula
tion problems are largely due to the overwhelming
size of the Census data base (over two thousand reels
of computer tape, as originally produced from the
Bureau of the Census). The user/implementor is faced
with questions of how to store and access this large
data base in the least expensive fashion.

This paper addresses each of the three problem areas
and presents guidelines for potential census users in
each area. These guidelines are based on experience
with the implementation and use of the Census data
base in a university environment. In addition, recom
mendations are made for improving future Census
data products and services.

IDENTIFICATION OF DATA TABULATIONS
AND AREAS

Before evaluating alternatives for Census data ac
quisition and manipulation, the prospective user must
be able to identify and select those data items which
are required for his research. The two-dimensional
logical structure of the computer-readable Census data
base requires that a potential user select both the
tabulations he wishes to use and geographic areas for
which these tabulations are summarized.

Selection of tabulations

Problems in identifying and selecting appropriate
tabulations from those available arise due to (i) dupli
cation of variables, and (ii) questions of data reliabil
ity. The same variable (e.g., housing unit value) may
appear in several summary data Counts, though in a
slightly different context in each (see Table I). User
aids, such as the 1970 Census Data Finde1', should be
consulted to locate the tabulations that may be of in
terest under more general subject headings. In every
case, the user should refer to the formally defined
Census Concepts9 to insure proper interpretation of the
terms used, e.g., "mixed parentage" under race.

TABLE I-Representative Tabulations Relating to Value of
Housing Units in the Census Summary Data

Tabulation
Item Number Count

Aggregate $ value (of housing unit) 17 First
Units for which value is tabulated 35 First

by value class, by race
Aggregate $ value for units with all 27 Second

plumbing facilities
Value, type of household, age and 57 Second

race of head
Aggregate $ value 1 Third

Value 22 Third
Aggregate $ value 1 Fourth-Housing
Value, occupancy status, and race of 52 Fourth-Housing

head

Reliability problems include questions of sampling,
allocations, and actual errors in the data. Since a mini
mal number of questions (e.g., five on Population)
were asked of all Census respondents, all other tabula
tions are based on questions asked of a sample of
respondents. These sample counts are weighted to
approximate the total, but actual totals and weighted
totals may not agree in every case. Further, users of
tabulations or small geographic areas, such as block
groups or enumeration districts, may find that the totals
on a sample question reflect the responses of an un
acceptably small number of actual responses. For ex
ample, a 5 percent sample item on a 300-household
census tract would reflect only 15 actual households.
For items that are further divided, e.g., into rental or
owner-occupied, the count will be even lower.

"Allocations" are substitutions made by the Bureau
of the Census for data items missing from the original
Census responses. This procedure is documented and
data indicating the allocations that were made exist
within the Census data base. However, a user who
makes a hasty selection of tabulations without investi
gating the impact of these pseudo-data may be jeop
ardizing his results. A high proportion of allocations
for any data item affects the reliability of all tabula
tions utilizing that item.

Certain tabulations may be missing entirely from
the summary data tapes. In cases of small area tabu
lations, the Bureau of the Census often suppresses
data items that may impair confidentiality. For ex
ample, income tabulations might be suppressed for
block groups containing only two individuals older
than 65. These situations are indicated by a series of
suppression codes placed into the data record at the
time of suppression. The user must simply be aware of
their meanings and make sure any access software
handles these zero-filled fields accordingly.

Incorrect tabulation data discovered by the Bureau
of the Census are generally reported in Bureau publica
tions, such as the Data User. News (formerly called

Small Area Data .. Votes). Ho"\vever, it behooves the
user to be alert to these announcements, since error
correction is the responsibility of the owner of the
data, not the Bureau. Further, such errors are reported
as they are discovered and are not reflected in the
primary documentation accompanying the receipt of
Census data. Thus, a diligent user is forced to scan
back issues of Census publications to spot errors that
may affect his analyses.

Selection of geographic areas

In selecting geographic areas, the user is faced with
problems involving geographic codes, record-sequenc
ing, area matching, and missing data. All geographic
areas represented in the Census summary data are
identified by numerical codes. The Census Bureau pro
vides a user aid called the Master Enumeration District
List (MEDList) in which each code is associated with
the corresponding state, county and area or place
names. In order to access the summary data for any
area, the user must know the codes of the areas desired,
since no names exist on the tapes. While codes are
also used in the Public Use Sample, no corresponding
list exists for these codes. To further complicate the
issue, the codes used in the P.U.S. are not always the
same as those in the summary data.

A user who is dealing with regions or areas that do
not coincide with census geographic areas must match
the census designations with the region desired. Doing
this may require overlaying the boundaries of these
"special" areas on Census maps or using the Address
Coding Guide (ACG). The latter is a list of block
faces and their associated census tract designations
originally used to properly sort Census responses.
Using the ACG may enable a user to convert his
"special" regions into tabulated areas. Or, at worst,
he can describe these regions in terms of addresses
and request a special tabulation from the Bureau.

Even for fairly standard geographic areas, the
sequencing of the summary tapes may prove an ob
stacle to easy access. A "sequencing key" field, made
up of various geographic codes plus category codes
added for the summary, exists in each data record and
the order of the records in the file is based on this
field. As a result, the order of the data records may
differ substantially from the order a user might expect.
The physical sequence, of course, influences the length
of search and access time for data records in a sequen
tially organized data file, thus affecting the user's proc
essing costs.

Missing data records that are lost due to processing
errors (e.g., in tape copying) or are truly non-existent
(because no tabulations exist for that Census tract)
present another costly dilemma for the user. Such
omissions are usually discovered as the data are pro
cessed, and thus may force the user to suspend or re
design his analyses in mid-stream. Unfortunately, pre-

Managing the Census Data Base 865

liminary completeness checks are also costly unless th.ev
can be performed as a by-product of tape copying (~.g:,
a list of all geographic areas represented on file).

ALTERNATIVES FOR DATA ACQUISITION

To the potential Census data user, the next step is
obtaining access to the data he or she needs. In addi
tion to the Census Bureau itself, there are several other
types of agencies through which Census data are avail
able. These agencies fall roughly into three categories:
Census-designated processing centers, data suppliers,
and suppliers of computer services.

Organizations which are designated by the Census
Bureau as processing centers provide data retrieval
and tape copying services for census data users. These
centers may be private or public, and operate for
profit or on a nonprofit basis. They are not controlled
or certified by the Bureau of the Census, but once
recognized they are added to a list of such centers which
is available from the Bureau on request. Since each
center is operated independently, a user may find from
one tape reel to the entire Census available at the cen
ters in his location.

Various private companies serve as intermediaries
between the Census Bureau and Census data users.
These organizations operate in a "value-added" mode,
supplying users with data that is in a more efficient
format than that provided by the Bureau. A most
extensive variety of services, such as special tabula
tions and software products, also available from such
agencies. Two organizations which supply Census data
and services in this vein are the National Data
Use and Access Laboratories of Rosslyn, Virginia
(DUALabs), and the National Planning Data Corpo
ration of Ithaca, New York.

Some organizations that market computer batch
processing or time-sharing offer Census data services
to their users. Such services include access to selected
portions of the Census data and/or software access
and display packages. Those services available over
time-sharing networks, such as CENSAC on National
CSS, Inc. and CENSTAT on CDC's CYBERNET
usually include data access plus software. Smaller serv:
ices bureaus, such as UNI-COLL, Inc., Philadelphia,
Pa., offer customized software systems to process data
obtained by the uSers.

The advantages to using any of these secondary
sources for Census data are ease of access and the
availability of special services, e.g., consulting or soft
ware. However, ease of access is limited to those data
made available by the organization selected. Many of
these agencies concentrate on a few oft-requested tabu
lations or on one geographic region. Even those from
which all data is available may charge more for access
to data items that are rarely used. Further, the soft
ware services provided are usually standardized, with

866 National Computer Conference, 1976

customized processing or special tabulations available
at extra cost.

A user who wishes to obtain the original tabulations
and do his own processing has the choice of dealing
directly with the Census Bureau or "\vith one of the
secondary sources that provide tape copying services.
The advantage of the latter is the receipt of data in a
much more efficient form. For example, as offered by
the Bureau of the Census, most Counts are supplied
on a one state per tape reel basis-quite uneconomical
in terms of storage and processing costs.

MANIPULATION OF THE CENSUS DATA BASE

The Census Bureau had maximum transferability
as its objective in structuring the files of Summary
Data and the Public Use Sample. In response to this
objective, the data are made available in the most
standardized fashion: in sequential organization, on
magnetic tape, recorded at low density, encoded in one
of two standard character codes (EBCDIC or BCD),
often one state per reel, and with equal, fixed-length
records. These characteristics, however, inflate the
size of the Census data base and make its manipula
tion most inefficient. To improve storage and process
ing efficiency, the user should investigate changes in
form and size, storage medium, and organizationY

The size of the Census data base is unnecessarily
inflated by the use of equal-length data records and
standard character codes. The former necessitates a
large proportion of blank characters in many files, to
fill fields unused in those records. The latter requires
larger data fields for numeric values than would be
necessary if binary representation were used. After
making the above changes the user may be well-advised
to pursue further reductions in data base size through
the application of data compression techniques.5 Zero
suppression and simple character packing (two digits
per byte) achieved compression ratios from 43 percent
to 73 percent in the University of Pennsylvania Census
data base.12

An appropriate change in storage medium, e.g., from
magnetic tape to disk, must be determined with respect
to the user's processing installation. The factors in
volved include the amount of data to be stored, the
relative costs of tape versus disk processing, and the
extent and frequency of processing anticipated.13 In
the University of Pennsylvania environment, transfer
of user-requested tabulations from tape to disk as
needed resulted in a sizable reduction in processing
costs for a modest (and temporary) increase in storage
charges.

Efficiency in accessing Census data can be further
improved by changes in the organization of the data.
Access to the Census data, as originally produced, is
constrained by all the limitations of sequential files:
variable access times for data dependent on location
within the file, linear search for desired data, and a

minimum number of data relationships actually repre
sented by the file structure (e.g., geographic proximity
or association by household). However, radical varia
tion from the original organization puts the user and
his data at variance with the published documentation.
While this may be acceptable for a small portion of
data, users maintaining a full Census data base, e.g.,
for a university community, would find the extra docu
mentation burden unwieldy.

The approach to change in Census data organization
at the University of Pennsylvania was to retain the
original sequence of data records while regrouping
these records into separate sub-files, and building an
index to the new sub-files. Sub-files were defined either
by geographic region (e.g., counties) or by record
count (e.g., 500 records). In both cases, access costs
for data in these files was substantially (50 to 60 per
cent) less than for access to the original state file. The
level of indexing employed, however, still required
sequential search within the sub-files and use of the
index to locate specific records was limited by the
sequencing imposed on the original file.

CONCLUSIONS AND RECOMMENDATIONS

The problems that face potential Census data users
with respect to data description, acquisition, and ma
nipulation indicate that the Census data base is not
readily available to most researchers. With the next de
cennial Census rapidly approaching, it behooves those
who have experienced some of these problems to sug
gest ways in which they might be ameliorated.

One recommendation would be that the Census
Bureau assume the role of data base administrator
(DBA) for the Census data base. That implies that
while making the data available to a wide range of
users, the Bureau would retain control over the data
base. A radical means of doing this, that is now tech
nically feasible, would be to make the Census data base
available over a nation-wide network which users pay
to access. In this way, the Bureau would physically
retain control over the data and be able to assure
their physical integrity and structural validity. Access
methods and utility programs could then be standard
ized and shared amongst all Census users.

Another approach would have the Census Bureau
retain only logical control over the d~ta base. This
would be an extension of the Bureau's current mode of
operation. Portions of the Census data base would be
physically transferred to users (for a fee) but the
Bureau would be responsible for promoting accurate
and efficient manipulation of Census data by applying
the tools of documentation and standards.

To fulfill such a role, Census documentation would
have to be improved in the following ways:

(a) It must be structured and cross-referenced as
an integrated hierarchy, where the user could
start at a general subject area and easily locate

all relevant information down to the nature of
specific tabulations and areas;

(b) it must be dynamic, so that continuing notices,
error advices, and new data products could be
easily reflected when they are pertinent; and

(c) it should be priced in such a way that partici
pating research organizations and libraries
would be motivated to purchase the entire set,
not isolated fragments.

The concept of standards with respect to Census
data would also have to be broadened. In addition to
formatting standards required for transferability, the
Bureau could provide standard access routines) oft
requested utility routines (e.g., for elementary statis
tics) or interface routines for the most common sta
tistical packages, e.g., SPSS or BIOMED. For users
with incompatible processing environments, these
standards could be set forth in the form of guidelines
or logic flowcharts, from which users could create
their own software.

As with any other data base, once administrative
tasks are removed from each group of diverse users
and returned to a centralized agency of control, access
and integrity will be improved. To do less with a data
base of the size and importance of the Census, is to
implicitly restrict public access to a valuable national
resource.

ACKNOWLEDGMENT

The author wishes to express her appreciation to Mr.
David F. Sanford, Wharton Econometric Forecasting

Managing the Census Data Base 867

Associates, Philadelphia, Pa., for his consultation and
advice on this paper.

REFERENCES

1. CENSAC Users Guide, NCSS Form 954, National CSS, Inc.,
300 Westport A venue, Norwalk, Conn. 06851, January 1973.

2. CENSTA.T Information Manual, Pub. No. D0001902501,
CDC Data Services, December 1970.

3. 1970 Census Data Finder, Clearinghouse and Laboratory
for Census Data, Suite 900, 1601 North Kent Street, Rosslyn,
Va. 22209.

4. Data User News, Subscriber Services Section (publications),
Bureau of the Census, Washington, D.C. 20233.

5. Kreutzer, P. J., Data Compression in Large Business
oriented Files, Navy Fleet Material Support Office, AD-
734394, October 5, 1971, NTIS, Springfield, Va. 22151.

6. National Data Use and Access Laboratories (DUALabs),
1601 North Kent Street, Rosslyn, Va. 22209. .

7. National Planning Data Corporation, 20 Terrace Hill,
Ithaca, Ne\v York 14850.

8. UNI-COLL Bulletin, "Census Information System," UNI
CaLL Corporation, University City Science Center, Phila
delphia, Pa., Summer 1973.

9. U.S. Bureau of Census, 1970 Census User's Guide-Part I,
IN ashington: Government Printing Office, 1970a.

10. U.S. Bureau of Census, 1970 Census User's Guide-Part II,
Washington: Government Printing Office, 1970b.

11. U.S. Bureau of Census, Public Use Samples of Basic Records
from the 1970 Census: Description and Technical Docu
mentation, Washington: Government Printing Office, 1972.

12. \Veldon, Jay-Louise, Data Storage Decisions for Large Data
Bases, Doctoral dissertation, University of Pennsylvania,
August 1975a.

13. \Yeldon, Jay-Louise, "Implementation Strategies for the
Census Data Base" (abstract), P1"oceedings of the Interna
tional Conference on Very Large Data Bases, September
1975b.

Defining management's information needs

by TREVOR JOHN BENTLEY
Tilling Construction Services Ltd.
Collingham, England

ABSTRACT

Before we can discuss Management Information Sys
tems on a coherent and beneficial level we must know
the needs of those at whom the information is directed.
It has been said that a good salesman can create needs
for his product and there is no doubt that this is what
has happened in the development of computer based
systems. It is time we found out what our customers'
real needs are and it is time that we admitted to our
selves that these needs may not always require the most
sophisticated solution.

This paper describes a survey which sets out to
establish management's information needs by focus
sing on the decisions taken by the managers and the in
formation necessary to provide the input for the deci
sion process. This identification of decision points and
the subsequent analysis of information needs is an es
sential prerequisite for the successful design of mean
ingful information systems. The steps to be taken
are set out in detail together with my comments based
on the practical experience of carrying out such an
analysis. At this time the survey has not been com
pleted but by June '76 results should be available
for discussion.

THE PROBLEM

The problem to which this research addresses itself
was clearly defined by James D. Gallagher who sets
the following goal for an information system.

"The ultimate goal of an effective management
information system is to keep all levels of man
agement completely informed on all developments
in the business which affect them .. To do this, the
data-processing personnel and those entering in
formation into the system should know exactly
what data to collect and which to tabulate, and
management on its part has the obligation to be
able to write down its actual requirements for
internal information."!

The problem of knowing "exactly what data to col-

lect and which to tabulate" is not new to management.
Edward T. Elbourne recognized this in 1914 when he
wrote.

"It is quite possible for the Management to collect
more information than it can use to advantage, or
which is more costly, or hinders production more,
than the information is worth. This is a real
danger that has to be guarded against continu
ously, for routine that serves a valuable purpose
when initiated may cease to be useful by some
later change in conditions."2

Information is the raw material which the manager
needs to make a decision. Without information the
manager is unable to carry out his function in the
organization.

"The manager needs information to assist him to
select courses of action i.e., take decisions, to con
trol the implementation of action and to record the
success or failure of the action taken. It is neces
sary therefore to define the decision making areas
of each manager's job in order to provide informa
tion which will be of help."3

The relationship of information to decisions is funda
mental to the research and is clearly a vital considera
tion in the development of the right approach to the
problem. The manager must then receive information
related to his job, his responsibilities and the decisions
which he takes. Such information can be broadly
categorized.

869

"The manager needs several kinds of information:

(a) the objectives which he is to attempt to achieve;
(b) technical information about specific jobs, for

which he is responsible;
(c) control information based on feedback of the

results of decisions so that corrective action can
be taken;

(d) background information about activities related
to those for which he is responsible and of the
company and the environment in which he is
operating."

870 National Computer Conference, 1976

OBJECTIVES

TECHNICAL DECISION CONTROL

BACKGROUND [4]

Some of this information will be available, some will
not. It is obtained from both internal and external
sources. Managers already have sources of informa
tion which they use for making decisions and the re
search must start from the present position and
examine-

1. The information presently used,
2. The information needed but not available, and
3. The information which cannot be obtained.

"The manager will never be able to get all the facts
he should have. Most decisions have to be based
on incomplete knowledge--either because the in
formation is not available or it would cost too
much in tim~ and money to get it. To make a
sound decision, it is not necessary to have all the
facts; but it is necessary to know what informa
tion is lacking in order to judge how much of a
risk the decision involves, as well as the degree of
precision and rigidity that the proposed course of
action can afford. For there is nothing more
treacherous---or alas, more common-than the at
tempt to make precise decisions on the basis of
coarse and incomplete information."5

The research will aim to answer the following ques-
tions.

1. How can key decisions be isolated?
2. Can a decision structure be devised?
3. How can the information requirements of the

decisions be assessed?
4. Can the utility of the information be deter

mined?
5. How can the degree of risk be related to the

availability of information?
6. Can an information system be designed to

satisfy management's needs?

Information is a peculiar thing which varies depend
ing upon when it is received, how it is received and who
receives it. The same piece of information may be in-

terpreted differently by different managers depending
upon their attitudes and approach to the decision
concerned.

"Like management itself, management informa
tion has vital human implications. . . . To
demonstrate a point, then, let's consider the impli
cations to various people of a train whistle pene
trating the evening dusk.

To the saboteur crouching in a culvert it might
signify the failure of his mission because the
whistle indicates that the train has already passed
over his detonating charge without causing an
explosion. To the playboy it might presage the
imminent arrival of a transgressed husband. To
the fireman in the cab of the locomotive it indicates
a drop in steam pressure and the need for restok
ing the furnace. To the lonely wife it means the
return of her travelling husband. To the man with
his foot caught in the switch down the track it pre
shadows doom For another (preparing to
retire) it signifies time for prayer In brief,
the nature and significance of any information are
fundamentally and primarily functions of the atti
tudes, situations, and relevant responsibilities
with respect thereto of the people involved with
it

. . . Information is management information
only to the extent to which the manager needs or
wants it; and it is significant to him only in terms
of its relation to his accumulation of relevant
knowledge and plans and to his personal responsi
bility."6

The problem being faced is therefore a complex and
difficult one. There is unlikely to be a specific solu
tion, but if a way can be defined to analyze and cate
gorize information needs then the aim will have been
achieved.

". . . There is a frighteningly common desire
today to prove that incredible amounts of infor
mation can be developed with electronic devices
by preparing business reports that are incredibly
long, incredibly dull, and, all in all, just plain
incredible.

Information alone is not enough. Try visualizing
for example one of our big daily newspapers if it
were presented straight off the wire in continuous
columns, with no headlines, no attempt to avoid
duplication, and no simple means of judging the
relative importance of the various news stories
or putting them in proper perspective. Would you
even attempt to read such a paper? I think not.
Yet management is frequently forced to hunt
through a haystack of irrelevant information in
its reports in order to find for itself the needle of
pertinent fact. What is needed, obviously, is a
planned system of business intelligence-or, as the

author of this report prefers to call it-a "man
agement information system" which selects, re
jects, edits, and headlines business information
in short, which turns it into business intelligence.'

THE SURVEY

Meaningful information

Meaningful information can be defined a8 follow8:

(a) For data to be called information it must add to
the manager's store of knowledge.

(b) To be meaningful the increase in knowledge
must be relevant to the manager's decision
making activities.

For example there is no point whatsoever allocating
overheads to cost centers when the cost center man
ager has no control over those costs. N either control
nor information will be improved by such arbitrary
accounting conventions.

It must be realized that the majority of the data pre
sented in monthly accounting reports does not fall into
the category of 'meaningful information', as most
of the data contained in the accounts is already known
to the manager from whose activity it originated. It
is certainly not new to him. It has simply been con
verted into misleading monetary terms. This is par
ticularly so in a period of high inflation. It is quite
clear that we must provide data in terms of quantities
and hours and other inflation-proof measures.

Defining management's needs

It is vital that management's information needs are
examined so that meaningful information systems can
be designed. The System Designer, however, must not:

(a) Ask the manager what he wants; simply because
he will not be able to answer, unless the question
can be related to his decision areas.

(b) Tell the manager what he needs; this will and
does cause resentment and leads to systems
oriented managers rather than management
oriented systems designers.

(c) Give the manager what is available; this is the
most common practice and has, I believe, led to
the paperwork explosion that is burying man
agement in useless data. The computer has un
fortunately added to the paperwork explosion
by providing more information which is now
more readily available, a good deal of which is
irrelevant.

The systems designer and the manager working to
gether must establish the following.

(a) The decisions taken by the manager.

Defining Management's Information Needs 871

(b) The information ideally required for those de
cisions.

(c) The information currently available.

It is probable that this analysis will result in the situa
tion depicted in Figure 1.

Achieving the above is more difficult than it might
appear, and unless a carefully structured approach is
taken it will be impossible. There is no alternative to
a detailed systematic analysis on the following lines.

Step 1: Deter'mine decisions-This can only be done
by spending some time with the manager and learning
from observation and analysis the decisions he takes.
It will be apparent from this that his decisions will fall
into the following categories.

Routine: taken regularly; highly structured with
easy access to the data required, e.g., rais-
ing a credit note for a pricing error.

Mechanical: taken less frequently, but still struc
tured with known data requirement,
e.g., producing a production schedule.

Complex: taken infrequently, unstructured, depend
ing largely on current circumstances. Un
known information requirement, i.e., can
not be predetermined.

If the impact of these decisions on the managers' re
sults can be assessed, then a Decision Grid can be
completed for each manager. (See Figure 2)

InforillO"tiGr.
needed.

Probiem

Provide

Satisfactol"l'
Information

• I
I
I

Figure 1

Elimirute

InformatiOl!
eni';'ble.

""

872 National Computer Conference, 1976

KEY DECISION GRID

Minor Important

COMPLEX

f.£CHANICAL

ROUTINE

Figure 2

~ V ITA L

Available

and

used

Available

not

usrd

Not

currently

available

Vital

Step 2: Information Analysis-For each of the deci
sions on the Decison Grid it is necessary to produce an
Information Analysis Grid (See Figure 3), which
records the information ideally required in the follow-
ing sections.

Class: Available and used
Available not used
Not currently available

and

Category: Vital
Desirable-economic
Desirable-uneconomic

It is then important for the manager to assess the
degree of risk if the information is not available. This
can be recorded as HIGH, LOW, or by the use of prob
ability scales.

Step 3: Decision Analysis-With the above informa
tion it is now possible to complete the Decision Analysis

INFORMATION ANALYSIS GRID

DESIRABLE
Degree of RISK if
onformiltlon is not

economIC uneconomIc available

Figure 3

Defining Management's Information Needs 873

DECISION ANAL VSIS

DECISION

TYPE INFCRMAT!ON REQUIRED cla~s cal

I ObjectIve

I

Technical

I
Control

Background

Class: A available and used
B avaIlable not used
C not avaIlable

I

I I

Cat: A vital inform on
B desirable and economIC
C desirable but not economIC

Figure 4

(See Figure 4) which is the master document for the
design of the system. On the Decision Analysis the
information requirement is split into the four main
types of information-

Objectives (Plans)
Technical

Control
Background

This will be used to define where the information comes
from, the frequency, content, accuracy level, etc. All
important points for effective systems design.

Step 4: Providing the Information Required-Re-

874 National Computer Conference, 1976

ferring to Figure 1, Action should be taken to

(a) produce the information required,
(b) eliminate the information not required.

Producing the required information may take some
time to achieve as it will call for the amendment of
some systems and almost inevitably the re-design of
other systems. A good deal of useless information can
be dropped fairly quickly and this should provide some
relief for the inundated manager.

The above steps are implemented in the following
way.

(a) The managers concerned are invited to a sem
inar which explains the relationship of infor
mation to decision making and its importance
to their individual performance.

(b) Following the seminars the managers are vis
ited and interviewed by the researcher who
assists in the completion of the Decision Grid
and Analysis Sheets.

(c) The researcher then analyzes the results and
presents a report covering:

(i) The decision points.
(ii) The importance of each decision.

(iii) The information required.
(iv) The existing source, if any.
(v) The basis of the new system if one is

required to provide information not cur
rentlyavailable.

Throughout the above the researcher must act only
as an adviser and analyst, it is imperative that the
manager assesses his own information needs related
to the decisions which he takes.

BASIC INFORMATION SYSTEM CONCEPTS

When the manager's needs have been established the
kind of Management Information system which is
most suitable for the circumstances must be examined.
It is fatuous to think that the existing system is of any
use whatsoever until the comparison between what is
needed and what is available has been made.

There are three principal categories of Management
Information Systems.

(a) Data Bank
All data is recorded for every transaction and
placed on file. It is then available for answer
ing questions.

(b) Systems Basis
Information flow designed to accept and proc
ess data as a management tool. Leads to ex
tensive systems with complex programming.

(c) Combined Systems/Data Bank
This is a Decisions Based System approach and
provides systems for certain areas oriented to
decision making and a data bank for others
dependent entirely on management needs.

The most applicable approach for the majority of
companies is that indicated in (c) above, namely a
combined systems/data bank approach, the reasons
for this are as follows:

(a) Complete data banks are impracticable, in that
much of the information is obsolete before it
reaches the file and even when it is there it can
be very difficult to retrieve. Questions cannot
be sufficiently pre-determined to allow for an
adequate questioning sequence to be built into
the file. Some of the underlying concepts of
this approach are not acceptable e.g., all data
is not valuable and generally it depreciates with
time. In addition to which the form content and
frequency of information should not be dictated
by the systems, but by the needs of the decision
making process.

(b) The total system approach requires extremely
complex systems designed on the basis of how
information can be used by functions and the
understanding of the flow between functions
and processes. This makes the whole informa
tion network system oriented, inflexible and
too complex to be understood by the manage
ment using the information.

Decision based systems have several advantages.

(a) It is necessary to identify decision areas and
then ensure that resources are available.

(b) Management's information needs must be
clearly defined and it is usually established that
less but more relevant information is required.

(c) Information is directly related to the task and
thus ensures it is available in the right quan
tity, of the right quality, and at the right time.

(d) More efficient use of computer hardware is pos-
sible when it is directed towards management
needs.

(e) The production of relevant information for
making decisions should lead management, if
they use this information correctly, towards
making better decisions.

COMPUTERS AND MANAGEMENT
INFORMATION SYSTEMS

The term Management Information System is linked
in most people's minds inexorably with computers.
This link is understandable as all current literature
on Management Information Systems concerns itself
exclusively with computer based systems. It is not, of
course, necessary to use computers when discussing
information systems, they do have their place and it
is part of the System Designer's function to recognize
when to use computers and when not to use computers.

The computer's main strength lies in three areas.

(a) Routine Data Processing.

(b) High capacity fast access storage and retrieval
facilities.

(c) Mathematical models for simulation.

Routine data processing is mainly concerned with
accounting procedures and related analysis for infor
mation purposes. This is still the major application
area, particularly in the U.K. The computer's ability
to handle large volumes of routine data extremely
quickly in batch mode has led to the wide development
of such routine batch processing applications. They
are not as glamorous as the so called "Integrated
Management Information System" applications few of
which exist.

The use of high capacity, fast storage and retrieval
facilities has led to the growth of on-line and real-time
operating systems, which however effective at con
trolling airline bookings, do not provide much if any
management information. A large UK holiday com
pany used real-time systems for booking control, and
then batch processed the data for accounting and in
formation purposes. Unfortunately the company went
bust.

Simulation models are undoubtedly a valuable man
agement tool and can aid decision making. However,
their development requires a high degree of mathe
matical competence, and a profound understanding of
the business problems. Attributes rarely possessed by
the same manager. If models are to be used effectively
then they must be-

(a) Small and relatively simple,
(b) Used regularly, and
(c) Built by managers.

One of the risks of using computers in decision
making is that the model builder will attempt to con
struct programs containing value judgments, and it is
here where failure must occur. In addition the social
aspects of decision making cannot be programmed.

"Since no computer programs have yet been written
which pick from an open-ended range of possible
selections, it is now impossible to arrive at 'mana
gerial' decisions by automatic process."s

The system designer must first assess the problems
before he attempts to develop any single approach to
the solution. I personally believe that the computer
specialists have for too long been offering management
a solution in search of a problem.

It would be of great benefit to most companies if
the systems designer obtained answers to the follow
ing questions before computers were included in the
plans.

(a) Is the existing non-computer system the best
possible?

(b) Is there any other way?
(c) Do the system requirements fall within the

strengths of the computer?

Defining Management's Information ~eeds 875

(d) Five reasons why a computer must be used over
any other system.

(e) The importance of the system to the company.
(f) What will the company lose if the system fails?
(g) What are the benefits in £p from successful

implementation?

STAGES IN DEVELOPING THE
MANAGEMENT INFORMATION SYSTEM

As we have already seen the systems designer is
faced with three major problems in designing a deci
sion based information system.

(a) Obtaining an understanding of information and
its importance to the managerial function.

(b) How to establish what information any par
ticular manager requires in order to meet his
decision making needs.

(c) The means by which this information can be
collected, stored, processed and retrieved.

At the beginning of this paper I suggested a means
of establishing management's information needs. The
systems designer, by using the approach indicated,
should have obtained answers to the following ques
tions.

(a) What are the key decision areas at each level
of activity?

(b) Vvhat information is required to make the deci-
sions?

(c) What information is lacking?
(d) How can it be obtained and at what cost?
(e) Does it require amending existing systems or

introducing new ones?

A systems framework can be established which will
indicate what work has to be done to provide the needs
of management. Existing systems cannot be with
drawn and replaced overnight, so a plan has to be
formulated. Rationalizing existing systems based on
this framework will produce the most immediate bene
fits. This is done in two stages:

(a) Prepare improvement program indicating the
priority areas.

(b) Simplify existing procedures.

The flov~'" of information from computer based sys
tems must be examined to ensure that the files hold
data in the most useful form for meeting the informa
tion requirements of management. The conflict arises
as follows and limits the effective use of the computer.

(a) Files are designed to hold information in the
sequence most appropriate to the operation of
the computer systems.

(b) Information required is seldom needed in the
same sequence that facilitates rapid operation
on the computer.

876 National Computer Conference, 1976

The possible solution is to create files based on in
formation needs and secondary files or improved sys
tems to handle the operational data needs.

The provision of an information system for man
agement must be tackled slowly with the develop:ment
of individual subsystems linked together by the deci
sion based reporting system.

Developing new systems should be one of evolution
for the following reasons.

(a) Too many activities to be absorbed at one time.
(b) Human effects of change.
(c) Complexity of changes.
(d) Limitation of available man hours for effective

systems design.

CONCLUSION

I am convinced that the provision of

the right data, at
the right time, in
the right place, for
the right reasons,

is the principal aim of the systems designer, however,
he cannot achieve this aim without a close involvement
with management and a deep understanding of man
agement decision making processes.

REFERENCES

1. Gallagher, James D., Management Information Systems and
the Computer, American Management Association, New York
1961.

2. Elbourne, Edward T., Factory Administration and Accounts,
The Library Press, 1914.

;~. Bentley, Trevor J., "Designing a Management Information
System," Conference Proceedings, 0 & M International, 1975.

4. Bentley, Trevor J., "Designing an Information System That
Meets Management's Needs," Management Accounting, No
vember 1974.

5. Drucker, Peter F., The Practice of Management.
G. Dwyer, Edward D., "Some Observations on Management

Information Systems," In Advance in EDP and Information
Systems, American Management Association, New York,
1961.

7. Phillippe, Gerald L., "What Management Really Wants from
Data Processing, Data Processing Today, A Progress Report,
Management Report No. 45, American Management Associa
tion, New York, 1960.

8. Jones, Curtis R., Harvard Business Review, September!
October 1970.

Managerial response to an information system

by ROY H. IGERSHEIM
Alne-rican ... n,ianagement Systems Inc ..
Troy, Michigan

ABSTRACT

One of the most common problems in implementing a
successful information system is its threatening nature
to users of the system-particularly middle managers.
The behavioral implications inherent in the imple
mentation of an information system were studied by
testing the following two propositions:

• Acceptance of an information system is positively
related to involvement in the implementation of
the information system.

• Acceptance of an information system is negatively
related to the perception of the system as threaten
ing.

Three hundred thirty one middle managers from
five different organizations were sampled. An overall
response rate of 72 percent was achieved utilizing an
anonymous three-part questionnaire. Various statisti
cal techniques were utilized to validate the proposed
scales used in testing the hypotheses.

Based upon the data analysis, the two propositions
are strongly supported. There is a definite positive
relationship between a middle manager's acceptance
of an information system and his participation in the
analysis and design of the system. In addition, there is
a negative relationship between a manager's accept
ance of an information system and the perceived threat
of the system to such behavioral factors as job satis
faction, job skill, job opportunity, job originality, job
status, and job salary.

INTRODUCTION

The entire management information system (MIS)
field must still be considered to be in its embryonic
stage. For approximately the last two decades com
puter-based information systems have been utilized
by industry and government and the computer's po
tential recognized as a vital management tool in daily
operations. This increased capability has brought
about complex data processing (D.P.) applications and
a growing awareness of the need to integrate these
applications in the form of a MIS. In turn, this has

877

led to numerous technical and personnel problems that
must be overcome if such systems are to be successful.

One of the most common problems in implementing a
successful information system has been its threatening
nature to users of the system-particularly middle
managers. It is a widely accepted tenet that informa
tion systems should be designed, developed, and imple
mented for middle managers. Generally, however,
their needs and perceptions about the system have been
given little, if any, consideration. If these middle man
agers fail to understand or accept the system, it is
not likely that they will use it to perform their job
more effectively.

The behavioral implications inherent in the imple
mentation of an information system were, therefore,
studied. Specifically, the study determined whether
or not middle managers in five selected organizations
perceive the MIS as threatening in terms of various
behavioral criteria factors and whether or not they
accept the MIS. The following two propositions were
primarily examined:

1. Acceptance of an information system is positively
related to involvement in the implementation of the
information system.

2. Acceptance of an information system is negatively
related to the perception of the system as threaten
ing. The following behavioral variables were ex
amined in this regard: job satisfaction, job skill,
job opportunity, job originality, job status, and job
salary. The interrelationships of these variables
were also examined; therefore, as a corollary to the
two primary propositions, it was proposed that a
positive relationship exists between each of the be
havioral variables.

It is surprising that the behavioral problems associ
ated with information systems have not previously
been investigated. Much has been written describing
the characteristics of a successful management infor
mation system. However, the main emphasis has been
in the direction of technical factors-hardware and
software-and overall MIS considerations such as
problem definition, problem analysis, and problem solv
ing. Research in the area of user response to the MIS

878 National Computer Conference, 1976

and how acceptance/lack of acceptance is related to
their involvement in the implementation of the MIS
and the perceived threats that the MIS has to them has
not yet been undertaken. There has also been ex
tensive research in the area of attitude measure
ment,9,12.18,20 but little of this area pertains to informa
tion systems. Instead, research has disclosed that
there are few operational computerized management
information systems considered to be successful-pos
sibly because the human factor was not given enough
consideration. As Allen Rowe observes, people are the
key ingredient in a MIS.19 M. Scott Myers actually
defines a MIS as a "process of people interacting in
order to apply resources for the achievement of various
goals."16 Neither of these authors, however, nor any
others present any empirical evidence regarding the
behavioral implications of a management information
system.

It is also necessary to note that during the past
decade numerous terms were used to describe the
different types of computer and systems applications
that were being developed. The same term has been
defined in different ways by various authors and in
different disciplines.4 ,;,21,23 For this reason and to
avoid any possible misinterpretation the following
meanings are to be given to the following terms.

A. Management Information System-or Informa
tion System for Managers-a system that provides
the proper information to the proper person, at the
proper time and at the proper cost.

E. Middle Managers-composed of those members
of management above the level of foreman and below
the level of vice president.

C. Perceived threat-the perceived potential forced
movement away from a desired position or date.

METHODOLOGY

The sample consists of 225 middle managers from
five organizations possessing an actively-utilized, com
puter-based management information system. Two of
these five organizations are agencies of the United
States Government based in the Washington, D.C.
metropolitan area; the other three are large eastern
industrial corporations. Middle managers were se
lected as subjects because they are the prime users of
the MIS. In the governmental agencies, this group was
comprised of GS12's, GS13's, GS14's and selected
GS15's. A breakdown of subjects by organization can
be found in Table I. A total of seventy-two percent
(246 respondents) of the questionnaires distributed
(341) were returned and found usable.

Data was collected from July through October 1973.
All participants completed a three-part questionnaire
developed for this study. Subjects were in no way
asked to identify themselves-either by name or job

function. This questionnaire required the respondents
to react along a six-point continuum to 57 attitudinal
statements concerning the MIS and to six statements
measuring their involvement in its implementation
process. The statements asked and the variables being
measured were arrived at based upon a review of the
MIS and behavioral science literature and the author's
prior experience in the field.

Top management distributed the questionnaires with
a cover letter as subjects were from several different
departments and often different physical locations.
Also, the subjects in this study within the industrial
organizations worked on different shifts and previously
started vacations of the subjects could not be re
arranged. The direct support of top management and
anonymous nature of the questionnaire assured a
greater response rate. At least one follow-up letter
was sent to all participants in this study approximately
one week after the initial distribution of the question
naire. In two organizations, questionnaires were re
turned anonymously to top management and then
forwarded to the author; in the other three organiza
tions, subjects were furnished stamped, self-addressed
envelopes and questionnaires returned directly to a
Box number. As can be observed from Table I, the
response rate was not affected by the different methods
of questionnaires return.

Factor analysis13,15.21 was used to test the a priori
scale structure. The purpose of this analysis was to re
duce the number of variables to those showing a com
mon variance and to determine if the items making
up each a priori scale were in fact parallel. The a
priori structures did generally, in fact, hold up.

The a priori scales were then modified as a result of
the factor analysis and these modified scales were then
used.

The mean score and standard deviation of each of

TABLE 1*

Total
Total Question- Total

Subjects naires** Usable
Returning Distributed Response Ques-
Question- Within Rate tion-

naires Organization In % naires

Organization 1 59 86 69 54
Organization 2 55 83 66 51
Organization 3 33 44 75 30
Organization 4 57 73 78 49
Organization 5 42 55 76 41

Total 246 341 72 225

* The participating organizations wished to remain anonymous;
therefore, no organization names will be given. Organizations
1 and 2 are governmental agencies; organizations 3, 4, and 5
are industrial firms.

** The distribution of questionnaires within each organization
included all middle manager/users of the management infor
mation system within one or more specific departments.

the scales was computed and then the scales were cor
related using the Pearson Product Moment Correlation
in the SPSS statistical packageY The scales were cor
related on an individual basis by organization and then
these organizations were combined and grouped to
gether as a composite (Table II).

RESULTS

The re~mlts of this study are presented in Table II:
Columns 1 through 5, for each behavioral factor, con
tain the correlation coefficient of one individual or
ganization. Column 6 for each behavioral factor con
tains the correlation coefficient for the entire sample.
As can be observed the scale reliability using the
Veldman test (a.) for each of the factors is greater
than .632 which appears to indicate that the resultant
scales, based upon the factor analysis, are quite re
liable. In fact, the reliabilities of the involvement, ac
ceptance, job satisfaction and job originality scales
are greater than .8.

In addition, many of the correlation coefficients have
a significance level of greater than .001. This indicates
that the proposed relationships for each individual or
ganization and for the composite grouping of organiza
tions strongly support the basic propositions. For ex
ample, the correlation coefficient between perceived
job satisfaction and acceptance of an information sys
tem for all 225 respondents is .72. Given that the
significance level of .001 is .020, this result appears
to be quite significant. This implies that there is a
strong positive relationship between acceptance of an
information system and job satisfaction.

The data should be interpreted by using the follow
ing procedure. A high positive correlation statistic on
the behavioral factors-job satisfaction, job skill, job

Managerial Response to an Information System 879

opportunity, job originality, job status, and job salary
-implies that there is low threat to those factors while
a high negative statistic implies that there is a high
threat to those factors.

DISCUSSION

To describe and analyze the data presented in
Table II, this section examines each of the factors, de
termines '\vhich relationships exist; why they exist; and
whether or not any pattern can be observed. In order
to determine relationships between scales, each of the
hypotheses will first be analyzed by individual or
ganizations and then in composite form. Thus, the
individual organizations participating in the survey
can compare their data to other organizations and to
the composite grouping.

Organization 1

The data for this organization shows that a strong
positive relationship exists between acceptance of an
information system and a manager's involvement in the
implementation of that system (.36). This occurs pos
sibly because the information system was designed by
this organization's management and by a group of
external consultants. This system was designed on a
large scale third generation equipment, taking into
account all of the users of the system. With regard
to a manager's acceptance of an information system
and a manager's perceived behavioral threats, a very
strong positive relationship exists between acceptance
and job satisfaction (.67), job skill (.64), job original
ity (.62), and job status (.60). In addition a strong
positive relationship exists with the other behavioral

TABLE II

:CL~RELAT lor. CO~FF rCIE\TS !=":)R ALL I :.DIV:OLAL O~GA"j:ZATIO\1S

ANCFORTHEC(}1PQSTE**

-,-------~----------·-,----------,----------,I-----------,----------,

~~~~ 5 ! 1 2~~-5~_~_~_~_; __ !~_J_~_:_~_:_'~_Y_6~:--1_2_--:-~-'5-5 ___ ~II_l_2_~_:_~_~_5_6~-1--2-3-4-'-"-6~ 

H'L-J-Cg-S-,-l-SF-AC--:o-'+---------~---------~I ------~" ! 

~ ~ .82' ! 6, ;3.', _2' _53_~ ___ . ____ ----,---__ ! ----l--------+------------1 
~OB = SK~~~ I .64 .d6 .71 .45 53 73 : 72.92 .cu .5i .75 3: I I I I 

A;:CEP-A~CE 

0...".833'" 

JOB OOPORTU N ~ Ty 
<:><.-= 729 

, .:: .:: .:: :2: .:: ::: .:: .:: .:: .:: ::::: '::9: -:, ::: ::-=-C-" 65.66 --==:11 =======----1-+-: - -'I 
r-----J08-S--.--US--~-·------·-t---- ---------+- i . +- . 

Q(. = 645 I 5;) 83 .'3 .'3 28 .53 .f8 .86 4j .41 6J 7C I .59 .85 ,33 .26 .55 .68 : .'2 72, 3::; .3:' .E2 .~8 72 33 .55 .t.: .5; ,:': I 
~a:s~~j~y -+-.~--59-.'-9 ·-33-:-6 "-35-----j·-::.9 .74 .5u ,(3 45.57 .34 72 .49 .~3 .23 ~5 55078 57.6-' .70 .67--55-_'-'-5-5 .-Z"?-.2-'-53~:-.3-5-.~::J-"-:'-"1-' -.32-_-;.9--+-------------------1 

___ ;;V_~L_V~~_.~~_: __ .~3_6 __ 55_-'_'_-39_34 ~"o .48 .31 .1::1 39.39 : .30 .55 .S4 ,35 25 41 36 .-C.g .36 .22 ,-~i"l~-_-;-_8_-68_-_~_---~_~·~-'1~_.-' __ .2S_-_q_-G_'_=::;'_._39_,:_1 _.::15_._,,_.'_3 _;1;_"_30_.2_' ____ "_---l_---', 
'" ine ot...coefficientequdtes to the reliability of the s:ale using :heVeldman test This test:s based uoon the entire sar.1ple c ... ns ::c1ses, 

""" Column 1 thru 5 for each scale contdins the corre1atlon ~oeffic1e:t of one individual orqarJizdtion. 

Col un ... 1 is data based upor 54 case,; & its sigrllfiC<:lnce level is i 001 > G2 C~lu""" 2 1$ data based upon 51 cases & its s'gni ~lcance level is J.om ., . .i2 
l.005> .35 l.005> _36 

Colum 4 is date'! oased upon 30 ce'!ses & its significance level is J .OCI1 > .52 Colul1I'I 5 is data base.:i upon .:11 cases & its S'S~i ~lcance level is J .001 > .114 
tOO5 > .~6 l.005 > .38 

Coluunsl&2contalndatafromtwolargegoverrmentala'Jencies. 

Co lumr. 3 is data based U:lor, .0.9 rase~ & lts. s.lgni 7"i eanee level ; s. r.OOl " .4: 
1. 005 >.3; 

Column 6 foreachsca1e:or.talns. "the correldtion coefficient of 
the entirE:. samole grouped together ~ its significance level {,OOl > .020 
based on 225 cases is .005>.017 

Colums 3, 4, 5 contain data from three large ll"dustrial ""inns. 



880 National Computer Conference, 1976 

criteria and acceptance-job opportunity (.30), job 
salary (.35) and involvement (.36)-but they are not 
as strong as the former scales. This indicates that job 
opportunity, job salary, and involvement are not per
ceived as important as the other factors as it relates 
to acceptance. The data, therefore, appears to indicate 
that those individuals accepting the information sys
tem do not in any way feel threatened by it. Indi
vidual middle managers within this organization are 
very satisfied with their job, perceive that they have a 
high skill level, possess much job originality, and have 
a high degree of job status. 

Upon examining the interrelationships of the various 
behavioral factors, generally one finds a strong positive 
relationship. The only major exception is the inter
relationship of job salary to involvement (.05) which is 
not significant. 

Organization 2 

The data for this organization, a large governmental 
agency based in the Washington, D.C. area, indicates 
that all the proposed relationships are true. This or
ganization has large third generation IBM computing 
equipment on which their information system was 
implemented in 1970. Primarily this information sys
tem is an output reporting system designed by external 
consultants with the advice of this organization's top 
management. 

There appears to be a very strong positive relation
ship between acceptance of an information system by 
managers using the system, their involvement in it 
(.55) ; and acceptance of the information system and 
the lack of threat of the system. Individuals within 
this organization do not find the information system 
threatening. For example, the relationship between 
job satisfaction and acceptance (.83) is very strong in 
a positive way when one considers that a significance 
level of .001 is .42. The corollary propositions-the re
lationships between the behavioral variables-is also 
very strong. The data for this organization in com
paring it with the other organizations is far greater 
than those in significance level and strength. All this 
appears to indicate that the individuals in this or-

ACCEPTANCE 

PARTICIPA TION ..... (E------------~~THREA T 

Figure I-Visual results of hypotheses 

ganization are not threatened in any way and accept 
the information system. This fact could be the result 
of employment by the government from which one's job 
is quite secure. 

Organization 3 

The data for this large industrial firm is quite simi
lar to the data for organization 2. This organization 
primarily uses its information system in the evaluation 
of various centers. As a consequence, therefore, it was 
designed by accountants for accountants to meet their 
needs. This small IBM computer system is used also 
to keep track of inventories and for warehousing 
purposes. 

A very strong positive relationship exists between 
acceptance of an information system and involvement 
and acceptance and all the behavioral factors. It ap
pears that the three most important factors relating to 
acceptance are job satisfaction (.76), job skill (.71), 
and job originality (.76). The other factors, though 
significant, are not as important. A conclusion that 
could be reached is the more satisfied a person is with 
his job, the more likely he is to accept the information 
system. 

Among the interrelationships of the behavioral fac
tors, job status appears to be less significant than the 
others. For example, the data appears to indicate that 
there is no relationship between job status and job 
salary or job status and involvement. This appears to 
indicate that salary and the amount of involvement 
in the information system by the manager has no bear
ing at all on his job status. This conclusion is quite 
plausible as the information system in this organiza
tion was primarily designed by the controller and his 
staff and many users of the information system were 
not involved in its analysis and design. 

Organization 4-

This organization, headquartered in a small city 
with rural plant sites, has an IBM computer system 
upon which the information system has been imple
mented. Managers in this organization really did not 
participate in the implementation process, but were 
forced to use the outputs of the system. Also many 
of these managers are located at various plants within 
a fifty mile radius of headquarters. 

The data for this organization differs quite ap
preciably from the data from the other organizations. 
N one of the propositions are strongly supported. In 
fact, acceptance of an information system is nega
tively related to perceived job salary (-.33). This 
implies that an individual's acceptance of an informa
tion system is threatening to his perceived salary level. 
Interpretation of this fact could lead to the conclusion 
that salary level is perceived to be lowered because of 



the information system. In addition, there appears to 
be no significant relationship between acceptance and 
job opportunity. Maybe the people in this organization 
do not feel that the information system gives them 
many additional opportunities possibly because of the 
location -of this company and/or the backgrounds of 
the individual participants. 

The remainder of the data generally supports the 
positive relationship purported. It does not appear to 
be as conclusive as the other organizations because the 
significance level is .005. Some of the interrelation
ships of the various behavioral factors are very low. 
For example, the following factors are quite low-job 
skill to job salary (.13), job status to job salary (.14), 
involvement to job status (-.01), job salary to in
volvement (-.19). 

Organization 5 

The data for this organization in general supports 
the propositions undertaken in this study. The re
lationship between acceptance of an information sys
tem and a manager's involvement in the implemen
tation process is positive but less than the .005 
significance level (.34). This statistic indicates that 
involvement is not as important a factor relating to 
acceptance as some of the other factors. The relation
ship between acceptance of an information system and 
an individual's perceived job satisfaction (.53), job 
skill (.53), and job originality (.59) is positive and 
very strong indicating that these factors are more 
important to an individual's acceptance of an informa
tion system. 

The relationship between acceptance of an informa
tion system and job opportunity (.40) and job status 
(.28) is positive, but not as strong as the previous 
relationships. There is no appreciable relationship 
positive or negative (.06) between acceptance of an 
information system and perceived job salary. No pos
sible explanation for this relationship could be found. 
The various interrelationships of the behavioral fac
tors are all positive and generally they are quite strong. 
In fact the relationship between job satisfaction and 
job originality (.88) is extremely strong. 

The composite 

Upon examining the composite data (Column 6, 
Table II) one can observe that a very strong positive 
relationship exists between acceptance of an informa
tion system and the amount a manager was involved 
in its implementation and acceptance of an information 
system as it relates to each of the behavioral factors. 
It appears, however, that the data falls into two group
ings: 

-acceptance of the information system with job 
satisfaction (.72), job skill (.73), job originality 
(.70) and job status (.63). 

Managerial Response to an Information System 881 

-acceptance of an information system ",vith job op~ 
portunity (.42), job salary (.35), and amount of 
involvement (.43). 

Both of these groupings have a greater than .001 sig
nificance level but the first one ranges from .63 to .73 
while the second one ranges from .35 to .43. This data 
implies that the key factors relating to acceptance of 
an information system are perceived job satisfaction, 
perceived job skill, perceived job originality, and per
ceived job gtatus. What appears to be a significant find
ing is that involvement in the information system is not 
as important a factor as those above. Also, these com
posite findings, in general, support the findings of each 
organization. 

In addition, the correlational data presenting the 
interrelationships of the various behavioral factors 
are all positive, have a significance level of greater 
than .001 and with the exception of involvement, are 
very strong. The following relationships appear to be 
the strongest: job satisfaction with job originality 
(.87) and job satisfaction with job skill (.81). 

CONCLUSION 

Based upon the data analysis, the two propositions ap
pear to be strongly supported. There is a definite posi
tive relationship between a middle manager's accept
ance of an information system and his participation in 
the analysis and design of that system. In addition 
there is a negative relationship between a manager's 
acceptance of an information system and the perceived 
threat of the system to such behavioral factors as job 
satisfaction, job skill, job opportunity, job originality, 
job status, and job saiary. The data presented in Table 
II clearly indicates that a manager who accepts the 
information system generally was involved in its 
analysis, design, or implementation and does not feel 
threatened by the system. Another way to demonstrate 
this conclusion is in Figure 1. This figure shows the 
positive relationship that exists between acceptance 
and participation and the negative relationship that 
exists between acceptance and threat and participation 
and threat. 

Based upon the data presented it appears that in or
der to implement a successful information system the 
needs of the users (middle managers) must be taken 
into consideration. This can best be accomplished by 
getting them involved in the impiementation process. 
If they participate in the design of the MIS, they will 
be more likely to accept it and use it as an aid in the 
decision making process. This fact should be con
sidered by all systems analysts when designing infor
mation systems. 

REFERENCES 

1. Avots, Ivan, "The MIS Mystique, How to Control It," Man
agement Review, October, 1970. 



882 National Computer Conference, 1976 

2. Canning, Richard G., "Trends in Data Management," EDP 
A nalyze?', May, 1971. 

3. Cougar, J. Daniel, "Seven Inhibitors to a Successful MIS," 
Systems and Procedures Journal, January/February, 1968. 

4. Dearden, John, "The Myth of Real-Time Information," 
.Tiar-vard Business Review, IVlay/June, 1966. 

5. ---, "MIS is a Mirage," Harvard Business Review, 
January/February, 1972. 

6. ---, McFarlan and W. Zani, Managing Computer Based 
Information Systems, Homewood, Illinois; Richard D. Irwin, 
Inc., 1971. 

7. Edelman, Franz, "The Manager Looks at MIS," Computer 
Decisions, August, 1971. 

8. Field, Roger, "Bringing the Universal MIS Down to Earth," 
Computer Decisions, June, 1971. 

9. Fishbein, M., Readings in A ttitude Theory and M easure
ment, New York, John Wiley and Sons, Inc., 1967. 

10. Hanold, Terrance, "An Executive View of MIS," Data
mation, November, 1972. 

11. Head, Robert, "The Exclusive MIS," Datamation, September 
1,1972. 

12. Johnson, Richard A., Fremont Kast and James Rosenzwerg, 
The Theory and Management of Systems, New York, Mc
Gra,,;-Hill Book Company, 1968. 

13. Kerlinger, Fred N., Foundations of Behavioral Research, 
New York, Holt, Rinehart, and '''inston, 1964. 

14. Kriebel, Charles, "The Future MIS," Business Automation, 
June, 1972. 

15. Likert, Rensis, The Human Organization, New York, Mc
Graw-Hill Book Company, 1967. 

16. Myers, M. Scott, "The Human Factor in Management Sys
tems," Journal of Systems Management, November, 1971. 

17. Nie, Norman, Dan Brent and C. Hadlai Hall, Statistical 
Package for the Social Sciences, New York, McGraw-Hill 
Book Company, 1970. 

18. Porter, Lyman and Edward Lawler, Managerial Attitudes 
and Performance, Homewood, Ill., Richard D. Irwin, 1968. 

19. Rowe, Allen S., "Coming to Terms with Computer Manage
ment," Financial Executive, April, 1968. 

20. Schwartz, M. Herbert, "MIS Planning," Datamation, Sep
tember 1, 1970. 

21. Siegel, Paul, "MIS vs. EDP," Modern Data, June, 1970. 
22. Spaulding, Asa T., "Is the Total Systems Concept Prac

tical?" Systems and Procedures Journal, January/February, 
1964. 

23. Stern, Harry, "Management Information System-What is 
It and Why?" Management Science, October, 1970. 

24. Thurstone, Louis L., Multiple Factor Analysis, Chicago, 
University of Chicago Press, 1947. 

25. Trandis, Harry C., A ttitude and A ttitude Change, New 
York, John vViley and Sons, Inc., 1971. 



Transaction queuing and cylinder logic access in the 
Time, Inc. magazine/hook/record system 

L __ r1 A"nT T) r1T.'1T) A 1\KT 
uy \..J.tl.n..1..J n.. U.!!Jn..tl..lU.l 

Time, Inc. 
Chicago, Illinois 

and 

T. RUSSELL SHIELDS and RICHARD J. WEILAND 
SEI Computer Services 
Chicago, Illinois 

ABSTRACT 

BRGE, the Time, Inc. Magazine/Book/Record online 
computer system manages one of the largest existing 
data bases directly updated online (five billion char
acters). System activity is managed by an extended 
CICS system with the ability to route and reroute 
transactions to appropriate terminals. A conglomerate 
transaction journal is maintained to serve as an audit 
trail and as the primary backup mechanism for re
starts and recovery. When file restoration is necessary, 
the journal is simply used as a transaction source, and 
restoration is concurrent with continuing data entry. 
The data base is maintained on twenty-five 3330-II 
disks using the Cylinder Lists of Data (CLOD) file 
organization method, and accessed via the Cylinder 
Logic Access Method (CLAM). These permit both se
quential and random access to a file, and handle over
flow in a monolithic and extremely speedy manner. 

INTRODUCTION 

The Time, Inc. Magazine/Book/Record system 
(BRGE) is a CICS-based system running on an IBM 
370/168 MP mainframe with 6,144K (6 megabytes) of 
main storage. The principal extension to CICS is the 
replacement of vendor-supplied file access methods 
with new file organization and access methods that give 
greatly improved access times and considerable addi
tional maintenance flexibility and data base integrity. 
The system provides subscription fulfillment and re
lated services for a customer community of 26 million 
subscribers. 

About one-half of the customers are magazine 
subscribers to Time, Sports Illustrated, }rloney, People, 
and Fortune. The remainder are subscribers to book 
series (The Old West, Life Science Library, etc.) and 
record series (The Story of Great Music, The Swing 

883 

Era, etc.) offered by Time. About two-thirds of system 
activity surrounds books and records, where customer 
activity tends to be roughly bimonthly rather than 
roughly annual as it is for magazines. 

The system processes all transactions relevant to ful
fillment, about 750,000 transactions per week. The 
transactions come from an optical scanner reading 
machine printed documents, and from 200 CRT termi
nals housed at the Time and Life Building in Chicago. 
BRG E handles incoming orders, payments, account 
adj ustments, address changes, and provides a facility 
for customer services inquiries. In addition to the 
customer data base which will be described in some 
detail below~ BRGE is also responsible for maintenance 
of ancillary files including the inventory file, the prod
uct dictionary (which translates product codes to prod
uct descriptions), the effort key file (which maintains 
statistics including product prices for each individual 
promotion generated for magazines, books, and rec
ords), and the postal guide (which maintains the cor
respondence between city/state and zip code*). The 
combined data base resides, in compacted form, on 
twenty-five 3330-II disks, and is backed up weekly onto 
tape. 

This paper describes processing in BRGE, with par
ticular emphasis on the control of information flow 
within the online portion of the system, a transaction 
j ournaling/backup scheme 'which has proved most suc
cessful in maintaining file integrity and processing 
continuity, and a database organization and access 
method (CLOD/CLAM) that permits smooth and 
transparent file growth and maintenance and which 
gives, in a 200-terminal, 150,000 transaction-per-day 
online system, a response time of approximately one 
second. 

':' It is an interesting historical note that zip codes were developed 
by the United States Post Office as an outgrowth of Time's 
routing codes. 



884 National Computer Conference, 1976 

Significant features, in brief, include: 

• Consistent processing of all transactions regard
less of source. 

• Maintenance of a conglomerate transaction jour
nal that permits rapid and transparent restart/ 
recovery procedures. 

• A multiple queue online transaction processing 
scheme which directs transactions to the terminal 
best able to handle them, and redirects transac
tions automatically in case of problems. 

• The Cylinder Lists of Data (CLOD) file organiza
tion method and Cylinder Logic Access Method 
(CLAM) which permit both direct and sequential 
file access simultaneously, and which manage very 
large quantities of overflow information without 
noticeable loss of response speed. 

TRANSACTION PROCESSING AND 
JOURNALING 

All transactions in BRGE, regardless of source, are 
processed in a consistent manner. The primary mecha
nisms that permit this are a Front End that trans
forms an incoming transaction into a consistent inter
nal format for further processing, and a Back End that 
performs all physical file maintenance and maintains 
the Transaction Journal. 

Remaining processing of the transaction is per
formed by programs running under CICS, which make 
reference to the transaction via a consistently for
matted 1K-byte internal transaction area (ITA). Each 
transaction type interacts with the Front End to place 
information from the transaction into predefined loca
tions within the ITA. No program except the Front 
End modifies the IT A, and program problems else
where cannot affect transaction integrity. Once in
formation is in the IT A, processing proceeds based 
exclusively on the transaction type itself, and the in
formation it supplies. The origin of a transaction, 
whether from a CRT, from an optical scanner, or from 
the backup Transaction Journal, becomes essentially 
transparent at this point, except that the source is 
noted for error notification and later operating sum
maries. 

As control passes among the programs that process 
a transaction, additional information supplementing 
the IT A is gathered on validation, invoicing, and sta
tistics generated from processing. Records relevant to 
the processing of the transaction are obtained and put 
in associated buffer areas from which inquiry infor
mation is extracted, and into which requested changes 
are placed. 

After activity on a transaction is complete, whether 
by satisfying the transaction through normal pro
cessing, or through error termination, control passes 
to the Back End. 

The Back End has two primary functions. If a book/ 

record transaction completes normally, the Back End 
rewrites all modified records as appropriate. In case of 
error termination, the Back End consults the error 
code posted by the program which discovered the prob
lem and the transaction source indication, to determine 
where the transaction should be referred for further 
handling. This process is discussed in more detail later. 

Regardless of errors, the Back End releases any 
record buffers reserved for the transaction, and writes 
a Transaction Journal Entry (TJE) to tape. The TJE 
contains an image of the entire IT A, plus information 
on the disposition of the transaction, and statistical and 
financial information for later report generation. When 
completion is normal, invoice data, and the text of form 
correspondence with appropriate blanks and options 
filled in may also be included in the TJE. Bills and 
correspondence are generated directly from the Trans
action Journal, respectively daily and weekly. 

Two copies of the Transaction Journal are written 
simultaneously on two separate tape units. Each TJE 
is a variable length record, up to 6250 bytes in length, 
and a fixed number of TJE's is written to any par
ticular tape reel to promote interchangeability of 
volumes between the two copies written. 

The Transaction Journal serves two purposes. The 
first is to maintain an audit trail for magazine, book, 
and record processing, and to provide a medium from 
which operating statistics, operator performance mea
sures, and financial summaries can be created. The 
second is to provide coordinated backup of the activity 
of the system. In case of operating system crash, or 
disastrous data loss through hardware or human 
failure, the Transaction Journal provides a mechanism 
for restoring the current state of the system without 
needing to re-enter any transactions manually. 

For soft crashes without data loss, the last reel of 
the Transaction Journal is scanned to determine which 
transaction was the last accepted from each terminal, 
to notify the operator where to resume. Tapes from 
the optical scanner are similarly and automatically re
positioned. Once notification to the terminals and 
scanner tape has been given, data entry resumes. 

In the rare case that the files are lost, the files are 
initially re-created from tape copies that are generated 
weekly. Concurrent with data entry, which resumes 
following initial re-creation, the Transaction Journal 
is mounted and read as though it were an additional 
transaction source. TJE's corresponding to invalid 
updates and to inquiries that did not require a data 
base change are bypassed. Valid update transactions 
are reprocessed, with the IT A from the Transaction 
Journal moved back into memory for processing. A 
new version of the Transaction Journal is created, re
flecting both the file restoration process and the con
current entry of new data from the CRT's and scanner. 

Although plans are in progress to put magazine file 
updates online like book and record processing, the 
magazine portion of the system currently performs 



Transaction Queuing and Cylinder Logic Access 885 

updates in a weekly sequential run. The system vali
dates transactions against the data base online, and 
saves them in the Transaction Journal for later appli
cation. The Transaction Journal processing facility 
provides the ability to draw selected types of transac
tions from the journal (in this case, magazine up
dates), so that no special segregation of transactions 
is required. 

TRANSACTION QUEUES AND ERROR PATHS 

It is expected in the course of routine processing that 
a variety of error conditions will arise, due to misenter
ing of information, inconsistencies between the trans
action and the data base (e.g., customer sends money, 
file shows nothing owing), or program and system 
errors. In addition, conditions may arise that are not 
within the purview of the CRT operator who origi
nated a transaction. 

The basic philosophy of BRG E is to make these ex
ceptions as transparent as possible to the operator if 
the operator cannot be expected to handle them him
self. An association is made between varieties of ex
ceptions and a series of special handling queues. When 
an exception arises, control passes to the Back End for 
furth~r processing. If the Back End determines that 
the error can be handled by the originating operator 
(for example, a miskeyed data item, or incomplete in
formation entered) , an appropriate screen is displayed 
to the operator requesting the correction or clarifica
tion. Once the requested information is entered, the 
transaction is reprocessed. 

However, if the error discovered is identified as not 
being handleable by the originating operator (usually 
a file anomaly or inconsistency requiring discretionary 
action at a level above that of the operator), or if any 
inconsistency is detected on transactions from the 
optical scanner, the transaction and associated in
formation is queued for action at an exception termi
nal. Alternatively, an operator may force a transaction 
into an exception queue when, regardless of program 
decision, the operator does not feel capable of handling 
a problem transaction. Each exception terminal is 
staffed by personnel specially trained to manage a 
particular class of problem ( e.g., city/zip code in
consistencies) . 

When a transaction is switched by program decision 
to an exception queue, it will appear to the oriQ"inatinQ" 
operator to have processed normally. The~ desig~ 
parameter here is that since the operator is not 
equipped to handle the condition that has arisen there 
is no point in troubling him about it. ' 

A special case is a situation in which, during trans
action processing, a program interrupt occurs, as 
distinguished from a program-detected anomaly or 
decision point. The most frequent cause of such an 
interrupt is simply a bug in one of the transaction ap
plication programs. In this case, the transaction and 
associated information is placed in a special queue for 

programmer attention. This convention has proved 
enormously useful for helping to detect and eradicate 
bugs that are highly data and circumstance dependent. 
Having available the exact data that generated an in
terrupt makes this level of debugging far easier to deal 
with than having only the knowledge that an interrupt 
occurred. And again, the originating operator is not 
distracted or delayed by a condition over which he has 
no control. 

At the terminals that draw from the excention 
queues, whether they are exception terminals or~ p~o
gramming terminals, a consistent mode of operation 
is maintained. When a terminal assigned to a par
ticular exception queue indicates its readiness to pro
ceed, the interrupted transactions are called up and re
executed one at a time. 

In most cases, the error condition that initiated the 
transaction's being placed in the queue will recur. 
Now, however, the terminal initiating the transaction 
is the terminal capable of handling the problem. An 
appropriate error report is given, and the exception 
operator can take the action he sees fit including, when 
necessary, re-directing the transaction to another 
queue. In addition, it will sometimes happen after one 
problem has been dealt with that another problem will 
arise, requiring the requeuing of the transaction to 
handle the subsequent problem. 

In some cases, when a queued transaction is called 
up for re-execution, the error will not recur. Often the 
cause of this non-replication is that an anomaly be
tween transaction and file has disappeared through 
other file maintenance that took place between the 
original exception and the re-execution. 

A common program interrupt is one due to a dead
lock situation that was detected by BRGE. In its 
simplest form, deadlock will occur when transaction 
X already has record A and also requires record B in 
order to proceed; and transaction Y has record Band 
requires record A to proceed. If a set of transactions 
are in this kind of contention, BRG E cancels all but one 
of them, and requeues the cancelled transactions for 
later processing. Cancelling the transactions releases 
the records under their control to permit the remaining 
transaction to complete. When called back up, a can
celled transaction will typically not encounter record 
contention again, and will simply run normally to 
completion. 

Personnel at the exception and programming termi
nals will be unaware of transactions that upon re
execution complete normally. Their attention will be 
requested only when the error recurs. 

DATA BASE 

The BRGE data base consists of the customer/sub
scriber file and a series of ancillary files. 

• Customer File. This file consists of five billion 
characters of customer information, one record 
per customer, in segmented form. Magazine data 



886 National Computer Conference; 1976 

is currently kept separate from book/record data. 
A customer will appear in the file for each of his 
magazine subscriptions, and once if he is a sub
scriber to one or more book/record series. Each 
record has a root segment containing identifying 
information, credit status, and a summary of in
formation in the remaining segments (if any). 
~agazine records have only a root segment. In 
the book/record portion of the file, a segment 
represents purchases in a book or record series. 
Plans are in progress to reorganize magazine 
information into a unified scheme like books/ 
records. 
Book/record customer records are processed using 
a segment logic facility. In memory, each segment 
appears as an individual variable length record, 
locatable by application programs in well-defined 
spots in memory. The segments are gathered to
gether and combined into a single variable length 
record for peripheral storage. When read back 
into memory, the combined record is redistributed 
into individual segments for processing, but only 
when a segment other than the root is required. 

• Inventory File. This file applies primarily to the 
book/record portion of BRGE, and contains in
formation on the quantity and location of each 
product available for sale. Time currently main
tains an inventory of 646 different titles in 13 
warehouses in the U.S. and Canada, shipping ap
proximately 1.25 million items a month. Up to 
three hundred different inventory items are in
cluded in the inventory file for each warehouse 
location. Online order entry makes direct adjust
ments to the inventory file. 

• Product Dictionary. The product dictionary main
tains, for each book and record series, a transla
tion between the series code and descriptive names 
for the series. Several descriptions of varying 
lengths are maintained, for use in a variety of con
texts. Similar code-to-description tables are kept 
for each item within a series. 

• PostaZ Guide. The postal guide falls into two 
parts. The first is an alphabetical listing of U.S. 
cities, states, and zip codes, with variants and 
probable misspellings. A corresponding Canadian 
list is also maintained. When a city/state/zip is 
entered into the system it is verified through this 
alpha listing. If no match is found, the entering 
transaction is rerouted to a postal specialist for 
examination and correction. A special keying 
feature is used in alpha lookups: The access 
method provides for access on partial keys; that 
is, presentation in sequence of all records whose 
leading key positions match a given partial key. 
But in addition, records in a file may have desig
nated short keys: Any requested key whose lead
ing portion matches the designated short key will 
select the record containing the key. In particular, 

if a unique city name or a leading portion of such 
a name corresponds to exactly one zip code, it may 
be designated as a short record key. Regardless 
of misspelling or variation of the state, if the city 
is entered correctiy with zip code, a postal guide 
match will be made. This feature is also useful 
for cities with multiple zip codes. For example, 
Chicago can be entered (along with variants) as 
Chicago,IL 606 and an entry with the proper lead
ing digits of the zip code present would cause a hit 
on the file. As added verification in this case, a 
range check is also made on the trailing digits, 
once a file hit has been accomplished, eliminating 
the need to enter all 80 Chicago zip codes sepa
rately into the postal guide. 
The second portion of the postal guide is a nu
meric zip-to-city /state translator. Once data entry 
is verified, the zip code is maintained in a customer 
record, and city/state information is excluded. 
City/state is reassociated with a record (for label 
printing purposes, for example) through this 
second postal guide section. 

• Effort Key File. An effort key is a code assigned 
to each individual promotion made in magazine, 
book, and record marketing efforts. The effort 
key file maintains statistics on the results of each 
promotion to date, and includes the specification 
of rules for fulfilling the promotion, including 
prices for the items promoted, sequence for 
shipping of items in a series, payments terms, 
special conditions, etc. Terminals in Time's New 
York corporate offices monitor the daily activity 
of this file to help guide the overall marketing 
effort. Online order entry causes immediate up
date of effort key statistics, so that this file is al
ways current to the moment. 

FILE ORGANIZATION AND ACCESS 

All of the files described in the previous section are 
maintained together as a single as file to minimize job 
control, system control information, and interaction 
with the operating system. The logical independence 
and identity of the files is maintained via a file or
ganization method called Cylinder Lists of Data 
(CLOD), and a corresponding Cylinder Logic Access 
~ethod (CLA~). CLA~ is an EXCP-Ievel access 
method that operates on IB~ 360's and 370's under 
OS and VS, to permit sequential and random file access. 

The only consistency that CLOD requires among the 
files it controls is that they use a common block size, 
and are located physically on the same variety of stor
age device (3330-II drives at Time). CLOD main
tains, for the disk extents made available to it, a list of 
available cylinders for allocation to the logical files it 
controls. Similar lists are developed for each file as 
cylinders are allocated to the individual files. Records 
within the files are maintained in order by key. Ignor
ing overflow for the moment, reading records cylinder-



Transaction Queuing and Cylinder Logic Access 887 

wise according to a file's cylinder list results in the file's 
records being read in order. Any file may be main
tained either in ascending or descending key order. 
The cylinder list itself is in correspondence with the 
allocation sequence, but has no intrinsic numeric order. 

When a file requires an additional cylinder, it is al
located from the extent that has the fewest cylinders 
currently allocated. One of the effects of this alloca
tion scheme is that files tend to be evenly spread over 
all available extents, minimizing the contention on a 
particular volume for access to a heavily used file. Ad
ditional volumes and extents may be added without 
interrupting processing, and CLAM will display oper
ating and access statistics on request, to assist in per
forming load leveling. . CLAM provides the ability 
during normal execution to transfer cylinders of data 
among extents to spread out heavily accessed portions 
of a file. 

The key file consists simply of the sequence of first 
keys from each block. Given the cylinder list and the 
block size, the correspondence between the nth key 
in a key file and its block is readily and speedily estab
lished. Key files may be kept on a direct access medium, 
or in memory. In BRGE, which uses full-track block
ing, only the customer/subscriber file's key file is kept 
on peripheral storage. 

One additional level of indexing is always present, in 
the form of a core index to the key file. The core index 
is an index to the blocks of the key file, exactly in the 
same manner that the key file indexes the main file. 
With the choice of a reasonable block size, there is 
never any reason to keep this core index anywhere but 
in main memory. For the subscriber file, with five 
billion characters of data across twenty-five packs, the 
core index occupies only about 3K bytes of storage. 

CLAM resembles ISAM and VSAM in that it per
mits both sequential and random file access. How
ever, CLAM operation, particularly regarding the 
handling of overflow, is quite different. The handling 
of overflow records is designed to minimize the number 
of additional seeks needed to find the records. This 
is accomplished by keeping records that overflowed 
from the same block physically together to the greatest 
degree possible. 

To describe overflow processing, two levels of record 
collections in addition to the block and the logical rec
ord are needed: the bundle and the span, 

A bundle is simply a related collection of one or more 
logical records. Several bundles may be combined to 
form a block. 

A span is the collection of all logical records ad
dressed by a single entry in the key file. If a main data 
block has no associated overflow records, a block and a 
span are identical. However, if overflow records are 
associated with a block, the span includes the main 
data block plus all associated overflow records. The 
records which constitute a span are logically all in 
order by key. 

At the point that a main data block overflows, a 
bundle is created from the logical records that will not 
fit into the main data block. In particular, trailing 
records from the end of the span are placed into an 
overflow bundle, leaving a full block of records from 
the beginning of the span in the main data area. This 
overflow bundle may be combined with other overflow 
bundles to form a block within an overflow cylinder. 
(All files controlled under the CLOD share the same 
overflow cylinders). A flag and pointer are included 
with the main data block to direct CLAM to the ap
propriate overflow block when necessary. Such an ad
ditional access will be made when the flag is set, and 
when (assuming ascending file order) a desired rec
ord's key lies between the key of the last record actually 
in the main data block and the key beginning the next 
sequential span. 

CLAM's speed in locating overflow records comes 
largely from a very dynamic control of the overflow 
area, insuring that overflow records from the same 
span stay together. When adding a new record to an 
overflow bundle, it may happen that this newly en
larged bundle, plus the other bundles from the same 
overflow block no longer will fit into a single block. In 
this case, the just-modified overflow bundle is split 
away from the other bundles, and placed into a new 
block which will accommodate it. 

As a consequence, finding an overflow record never 
requires more than one additional seek, unless more 
overflow records exist for a single span than will fit 
into an entire block. In addition, if space becomes 
available in the main data block through deletion of a 
main block record, the span is reapportioned to move 
overflow records back into the main data block. Freed 
space is immediately available for reuse. 

Although CLAM/CLOD include provision for intro
ducing slack space into main data blocks at the time 
that a file is created or reorganized, the speed of 
handling overflow generally makes such provision un
necessary. Situations have been observed in which the 
presence of more than 2,000 cylinders of overflow 
records had no noticeable effect on online response 
time. 

All files organized together under CLOD share the 
same pool of buffers (hence the requirement for con
sistent block size). A program may specify whether 
CLAM should return the address of a record within a 
buffer for direct processing, or move the data to a pro
gram-defined area. When a data buffer is freed, it is 
linked to the end of the chain of available buffers. If a 
request is made for a record in a freed buffer in which 
no errors appear, before the buffer is reused, the re
quest will be satisfied without any I/O operations, by 
reactivating the buffer and removing it from the avail
able chain. 

CLAM permits a file to be accessed simultaneously as 
though it were two independent files. I t is possible for 



888 National Computer Conference, 1976 

a program to process a file sequentially, and also peri
odically request a record from the same file randomly 
by key, based for example ona flag and pointer present 
within the record being sequentially processed. Se
quential processing, when resumed will continue with 
the next logical record. 

CLAM has its own facilities for providing exclusive 
control of blocks to programs performing update ac
tivities, and includes tests for determining deadlock 
situations. A program specifying read-only file use is 
not restricted from access to a file, even when an up
date is taking place. A specific block being updated is, 
of course, locked up for the duration of the update. 

Other facilities contained directly within the access 
method include: 

• Record compaction/expansion exits. Routines may 
be supplied for any CLOD logical file to perform 
compaction and expansion of logical records. On 
input, CLAM will locate a compacted record, call 
upon the expansion routine supplied for this file, 
and return control to the program requesting the 
record as though an uncompacted record had been 
read from the file directly. The converse opera
tions are performed for output. 

• Record segmentation facilities. CLAM will accept 
a collection of record segments, each with the ap
pearance of an individual variable length record, 
and combine the segments into a single variable 
length record for placement in the file. The record 
may be composed of up to 64 segments correspond
ing to a bit table or to a combined key area at the 
front of a combined record. CLAM will resegment 
such a record for program use upon request. Both 
segmentation and compaction may apply to the 
same file. 

• Handling queue files. CLAM commands provide 
for the special handling of queue files. Basic fa
cilities include the ability to add records (mes
sages, transactions) to the end of the file, and to 
draw records from the front of the file in standard 
first-in, first-out fashion. Multiple sources and 
draws may be operating on a queue simulta
neously. In addition, facilities are available to ex
amine records beginning at the front of the queue, 
or to search for records with special keying within 
the queue. Records are actually deleted from the 
queue only on specific command to do so. 

• Access from all languages. Primary use of CLOD 
and CLAM to date has been via assembly lan
guage, in which a complete set of macros are 
available to direct file activity. In addition, a sub
routine SEICAM, accessible via standard call 
from all high level languages provides these lan
guages with EXCP-Ievel CLAM access to CLOD 
files. Commands are included to read and write 
records, open and close logical files, add extents, 
perform segmentation and combination, and to 
retrieve statistics on file activity. 

HISTORY AND CONVERSION 

Until 1974, Time operations were carried on via 
emulation of IBM 7070 on an IBM 370/158. Each 
magazine and book/record series had its own master
file, and each was processed separately in a classical 
card-tape environment. Time developed a design for 
conversion to a unified system, but found that operat
ing costs and times were unacceptable using standard 
vendor-supplied software. Implementation of the uni
fied design through an extended CICS system with new 
file organization and access techniques was accom
plished through a combined effort of Time, Inc. per
sonnel and SEI Computer Services. Principal design 
for CLOD/CLAM was done by T. R. Shields of SEI. 
Implementation began in May 1973, and conversion 
and production on the new system both began in April 
1974. Conversion was accomplished by a straightfor
ward translation of old masterfiles into BRGE trans
actions. BRGE itself was used to process the transac
tions and thereby enter the content of the old 
masterfiles into the unified customer database. Product 
files were so converted over a period of about five 
months. At the point that a product was designated 
for conversion, activity on the product was suspended 
while conversion took place, after which activity re
sumed under the new system. Conversion suspensions 
of activity were typically two to five days, but only on 
the one product being converted. For all other prod
ucts, activity continued as usual. The system was fully 
operational and converted in September, 1974. At that 
time BRGE ran on an IBM 370/158 under SVS. The 
system is currently running on an IBM 370/168 MP 
under MVS. 

One additional point on the conversion process is 
worthy of note, namely that conversion using the new 
system itself provided a thorough check-out of system 
features and intercommunications. Particular use was 
made of the programming exception terminals for 
locating and fixing bugs. Although considerable quanti
ties of transactions would appear in the program bug 
queues, the catching and fixing of a bug would typically 
cause the uninterrupted flush-through of a large per
centage of the queued transactions. During the con
version process, a peak transaction processing rate 
of 80,000 transactions per hour was observed. The 
system retains the capacity to process at this rate, but 
normal operations have not to date been able to gen
erate transactions at a rate corresponding to the sys
tem's full capacity. 

BIBLIOGRAPHY 

1. IBM Corporation, IBM System/370 Principles of Operation, 
Form GA22-7000 

2. IBM Corporation, Customer Information Control System 
(CICS/VS), General Information Manual, Form GH20-12S0. 
System/Application Design Guide, Form SH20-9002 

3. SEI Computer Services, SEICLOD Data Management Sys
tem, "User's Guide, October, 1975. 



Generalized soft,vare for translating data * 

by EDWARD w. BIRSS and JAMES P. FRY 
University of Michigan 
... A .... nn ... A .... rbor, Michigan 

ABSTRACT 

Many data processing installations are confronted with 
the problem of data conversion. Some of the conver
sion problems are conversion of files foreign to the 
installation, conversion of files into a data base man
agement system format, and conversion of all data to 
upgrade hardware or software. Simple file organiza
tions pose few conversion problems, while logically 
and physically complex data bases emphasize many 
conversion problems. The current approach of writing 
specific translation programs is time consuming and 
frequently inaccurate; a new approach is desirable. 

To address these conversion problems, The Univer
sity of Michigan Data Translation Project has devel
oped a generalized translation methodology. This 
methodology has been applied in the development of 
several prototype data translators. These translators 
have progressively advanced the physical transforma
tion capabilities (reformatting) and the logical trans
formation capabilities (restructuring). The reformat
ting capabilities of the translators include the ability 
to access and modify the physical storage structures 
which support sequential, indexed sequential, and net
work organizations. The restructuring capabilities 
allow complex restructuring of lists, trees, and net
works. 

Future extensions to the translation methodology 
include the decomposition of the translation process 
into small, but specific steps. Languages would be 
developed to address each of these small translations, 
and could lead to a generalized accessing mechanism 
and a data interchange form. 

INTRODUCTION 

The computer field is a rapidly expanding area with 
advancements in computer hardware and software 
technology that are paced by the increasing sophis
tication and awareness of the users. Expanding utili
zation of computer facilities and the ever increasing 

* This work was supported by the Department of Defense, 
Defense Communications Agency, WWMCCS ADP Directorate, 
Reston, VA Contract No. DCA lOO-75-C-0064. 

889 

application demands continue to usurp valuable re
sources. Caught in the middle of this situation is 
the data processing manager; who must satisfy the 
demands of the user community and yet maintain the 
economic attractiveness of the computer system. 

One of the many problems facing a data processing 
installation is the conversion and transformation of 
data bases. Typically this problem ranges from the 
conversion of computerized files from other instal
lations (foreign files), the restructuring and reformat
ting of extant data bases, to the translating of data 
into various forms required by different applications. 

Concomitant with the increased use of data base 
management systems, the data base administrator is 
faced with the necessity of creating and/or integrating 
existing files into data bases or of restructuring exist
ing data bases. The latter capacity, while necessary 
to make effective use of the data base, is not typically 
found in data base management systems. 

To take advantage of the economic benefits of new 
hardware/software capabilities and data base manage
ment systems, the data processing manager and the 
data base administrator need a variety of data base 
conversion tools. The current manual approach of 
writing specific programs for each conversion is both 
time consuming and costly. A fresh approach to the 
problem is therefore needed. 

In order to address the data conversion problems of 
the Data Processing installation, a new software tech
nology has been developing over the past five years 
called data translation. One group developing a data 
translation methodology is The University of Michigan 
Data Translation Project, where several prototype 
data translators have been developed. These develop
ments and related activities are aimed at providing 
both the data processing manager and the data base 
administrator with facilities for foreign file conver
sion, data base integration, data base restructuring, 
and data conversion resulting from upgrading hard
ware or software and changing user requirements. 

The purpose of this paper is to describe the progress 
at The University of Michigan on data conversion 
based on the development of a data translation meth
odology. The paper identifies those areas of data base 



890 National Computer Conference, 1976 

conversion in which the translation methodology has 
been successfully developed and is ready to be applied 
to current data processing problems. It describes cur
rent areas under development and those which are in 
need of further research. 

The paper begins by describing the current research 
on data base conversion and develops the data trans
lation approach. Next, the evolution of data trans
lators at The University of Michigan is traced in terms 
of their logical and physical capabilities and in terms 
of generality achieved. The paper concludes with some 
observations on a generalized data translation meth
odology and enumerates those areas which need to be 
researched. 

BACKGROUND AND APPROACH 

Within the last five years, a means of attacking the 
data base conversion problem in a general manner has 
been proposed. l

-4 It is interesting to observe that all 
of these efforts employ some degree of generality and 
are based on a descriptive approach, which describes 
the source and target data bases and the necessary 
transformations required to derive the target data 
base instances from the source. These descriptions, 
couched in a high-level declarative language, provide 
the basis for two implementation approaches for a 
generalized translator. The interpretive approach 
develops a generalized processing program, l and the 
generative approach creates a specific translation pro
gram4 for each conversion. 

The University of Michigan Data Translation 
Project's approach,5 emblematic of others, consists of 
two steps: 

1. The user specification of the necessary descrip
tions, and 

2. The execution of data translator based on these 
descriptions (Figure 1). 

The user supplies descriptions of the logical, phys
ical, and relational aspects of the source and target 
data bases, along with the specifications of the restruc
turing transformations required to map source data 
into the target data. Two languages were developed to 
provide these descriptions; the Stored-Data Definition 

USER 
SFECIFICATION 

TRANSLATO~ 
EXEGrTION 

S:1OREl>-fJAIA RESIRUCIURING STORED-DATA 
DESCRIPTION DESCRIPTIO~ DESCRIPTION 

Figure i-Data description approach 

(SDDL) which is used to describe the source and 
target data bases, and the Translation Definition Lan
guage (TDL) used to describe the restructuring 
transformations. 

The SDDL is based on the language proposed by 
Taylor.6 This high-level language uses a modified 
CODASYL model of data. At first glance, the SDDL 
is similar to the data description language of a data 
base management system, . but a closer look reveals 
several important differences. The stored-data defini
tion language, based on common data definition prac
tices, is actually an extension of the logical DDL to the 
more physical implementation aspects. It describes the 
mapping of the user logical structure to physical stor
age structure, the mapping of the physical storage 
structure to a storage device, and the access paths to 
the data. 

The Translation Definition Language, on the other 
hand, deals primarily with logical transformations of 
data and describes the translation of source instances 
to target instances. The language was developed at 
The University of Michigan and began as a simple 
association list of source item names and target item 
names, but it has since developed into a powerful 
restructuring language. Detailed discussions of these 
languages can be found in References 5 and 7. 

The SDDL and TDL descriptions are processed by 
an Analyzer which produces an Encoded Stored-Data 
Description (ESDD) and an Encoded Restructuring 
Description (ERD) respectively, which in turn are 
used to drive the translator. 

An anxiliary module which need not be generalized, 
the DDL Writer, uses the Encoded Stored Data Defini
tion of the target to construct a data definition of the 
target data base in the language of the target DBMS. 
Major benefits of this module include not only the 
immediate use of the data base by application pro
grams, but more importantly, the user verification of 
the target description. The DDL Writer allows the 
user to verify in a language familiar to the user that 
the target data description is consistent with his view 
of the target data base. 

The second step in the translation process is the 
physical transformation of the source data into the 
target data. Driven by the data descriptions prepared 
in the first step, the second step employs three com
ponents; a Reader, a Restructurer, and a Writer 
(Figure 2). The Reader accesses the source data base, 
the Restructurer transforms the source data into a 
form suitable for the target, and the Writer creates 
the target data base. 

The Reader module, driven in part by the source 
ESDD, performs many functions; sequentially ac
cessing physical records, physically deblocking these 
records, logically identifying their components, and 
automatically creating an internal data base process
able by the Restructurer. In dealing with complex 
data base structures, the Reader must keep track of 



Figure 2-Components in the translation process 

access paths between these unblocked records so that 
the Restructurer is provided with an accurate represen
tation of the source data base. 

The Restructurer accesses the internal represen
tation of the source data base and converts it to a 
representation of the target data base. The conversion 
from source to target is a transformation of the logical 
structure and is directed by the ERD which contains 
the restructuring specifications. 

The Writer, driven in part by the target ESDD, 
creates the target data base by constructing target 
data derived from the Restructurer's internal data 
base. 

The approach by The University of Michigan, 
described above, is an interpretive translation approach 
in which stored-data descriptions provide parameters 
to a generalized translation algorithm. An alternative 
approach, a generative one, creates specific translators 
for each translation4 (Figure 3). There is, of course, a 
hybrid approach in which some of the components in 
the model of the interpretive approach produce execut
able code, while other components remain interpre
tive.2 The interpretive approach was chosen because it 
provides a good research tool and facilitates the build
ing of series of data translators. 

EVOLUTION OF DATA TRANSLATORS 

The translator development at The University of 
Michigan has designed four translators: a Prototype, 

Translator 
Generator 

Translator 

Figure 3-Alternative DDL driven data translation 

Generalized Software for Translating Data 891 

Figure 4-Prototype translator 

Version I, Version II, and Version IIA. Only three of 
these designs, however, have been implemented; Proto
type, Version I, and Version IIA. The various designs 
were developed to address different problem areas, and 
each translator design has produced a major contri
bution to the generalized translation process. 

The translator's capabilities are divided into two 
categories; physical and logical. The Translator's 
physical capabilities are characterized by the Input/· 
Output processing ability of the Reader and Writer. 
The translator's logical capabilities are measured in 
terms of the restructuring proficiency of the trans
lator's Restructurer component. 

In the remaining portion of the paper, the purpose, 
architecture, major contribution, physical capabilities, 
logical capabilities, generality, and implications of each 
design are discussed. 

Prototype tra'nslator 

The prototype translator was developed to provide 
a framework for further research and to verify that 
the proposed technical approach was sound.8 The 
architecture of the prototype translator was very 
similar to the translator model described in the pre
vious section (Figure 4). The Restructurer, however, 
only performed an identity transformation, merely 
associating source item names with target item names. 

Prototype's physical capabilities 

There was not a great deal of generality in the proto
type; the Reader module only accessed one source data 
base; and the Writer module only created a single out
put. The source data base was a NIPS data base un
loaded in a variable blocked sequential format (Figure 
5A). NIPS ran on the IBM 360/370 series of com-

Figure 5A-NIPS format 



892 National Computer Conference, 1976 

Figure 5B-H6000 system standard format 

puters and allowed two-level hierarchical structures 
with a maximum 256 different groups. 

The Writer was also straightforward. It constructed 
a structure similar to the NIPS data base structure in 
the Honeywell 6000 System Standard Format. The 
H6000 System Standard format was similar to the 
IBM variable blocked format (Figure 5B). 

The Reader and Writer operated with sequential 
media, and physical concatenation (i.e., a simple map
ping algorithm) was used to maintain the hierarchical 
relationships in both systems. Both systems used 
similar mapping, so reordering of record types was 
not necessary. 

Prototype's logical capabilities 

The Prototype translator does not perform restruc
turing, and when no records were eliminated, a one-to
one correspondence existed between group instances in 
the source data base and those in the target data 
base (Figure 6). Consequently, the Restructurer only 
processed one group instance at a time. It performed 
item conversions as necessary and allowed the user to 
modify the order or storage representation of items 
within a group. 

Generality 

The only general module (not coded specifically for 
the NIPS to H6000 System Standard Format) was the 
Restructurer. Its generality was possible because of 
the level of insulation provided by the encoded forms 
of the SDDL and TDL languages which provided all 
the necessary information for the table driven archi
tecture of the RestructureI'. In contrast to the Restruc
turer, the Reader and Writer were very specific and 

A NIPS Schena H6000 COBOL Schema 

Figure 6 

used the operating system facilities to perform input/ 
output. 

Design implications 

Although the prototype performed a very simple 
translation, its major contribution was the framework 
for a series of generalized translator implementations. 
The Prototype design provided a consistent set of 
interfaces: between the languages and translator 
modules, through the encoded tables, and among the 
translator modules by a set of table access routines and 
common data formats. Throughout the development of 
generalized translators, this basic architecture has 
proven to be technically sound. 

Version I translator 

The Version I translator (Figure 7), although very 
similar to its predecessor, made some progress toward 
generality. Version I was developed to perform both 
the forward and reverse translations (NIPS~System 
Standard format and System Standard forma~ 
NIPS) . Furthermore, the COBOL System Standard 
format files were constrained to a format acceptable 
to WWDMS, a data management system on the H-6000 
computer system. 

The purpose of this translator was to further verify 
that the translation methodology was sound and to 
demonstrate that the translation was reversible with
out loss of information. The latter proved to be an 
interesting technique to verify that a translation was 
correctly performed. 

Version I's physical capabilities 

The Reader and Writer were required to access and 
create both NIPS and H-6000 formats (Figure 5B). 
The Reader and Writer modules were parameterized 
to enable them to read and write both organizations. 
Additionally, the Reader was generalized by taking 
greater advantage of the Encoded SDD. Thus, the 
Reader's capabilities were generalized to handle most 
sequential tape formats. 

Figure 7-Version I translator 



Version 1'8 logical capabilities 

The maj or difference between the Version I trans
lator and the Prototype translator is the addition of a 
basic restructuring capability. The major objective of 
Version I was to demonstrate that the inverse trans
lation (source-target-source) was feasible and indeed 
produced the "original" data base. Restructuring was 
often required, because the source, COBOL-WWDMS 
data bases, had eight levels of hierarchy, but the target, 
NIPS, could only handle a two-level hierarchy. To 
permit such translation, the first restructuring capa
bility developed was compresswn of hierarchical levels. 
For example, a two-level target schema was constructed 
(Figure 8) from the multiple level source schema. In 
order to preserve the information of the source data 
base, the Restructurer created a new group PROD
P ARTS and replicated the PARTS information in this 
new group of target data base. 

Generality 

The increase in generality of the Version I trans
lator occurred primarily in the Reader and Restruc
turing components. A new section of the SDDL was 
developed to provide a better description of physically 
sequential media. This additional section permitted 
the deblocking, spanning, and identification operations 
to be generalized. The Restructurer increased in com
plexity through addition of the parsing and restruc
turing functions. These additions to the Restructurer 
were driven by additions to the SDDL and TDL. Thus, 
these language additions maintained the generality of 
the Restructurer component. 

The Restructurer became complex, but the software 
architecture insulated it from the source and target 
data bases. Its complexity was isolated and could be 
addressed by revising single modules, as opposed to 
developing a new translator. The compressing restruc
turing capacity proved to be quite general. Not only 
could adjacent levels of the hierarchy be combined, but 
multiple levels of the hierarchy could be combined into 
a single level. 

Source Schema Target Schema 

Figure 8 

Generalized Software for Translating Data 893 

Design implications 

The Version I translator design required the capa
bility to compress schemas. The compression operation 
required access to an entry instance. An entry in
stance can be very large, and a mechanism was added 
to the translator to give the Restructurer direct access 
to the entry instance. This mechanism was termed a 
Virtual Address Space (VAS) . The Reader con
structed the V AS from group instances contained 
within one entry instance. 

Ve-rsion I I translator design 

The objective of the Version II design was to in
crease the input and output data base classes and to 
expand the restructuring capabilities of the translator. 
The architecture of the Version II design was different 
from the previous translators (Figure 9). 

The main difference between the Version II trans
lator and previous designs resulted from the realiza
tion1 that the more complex restructuring operations 
became, the greater the volume of data required. Such 
complex restructuring also required broader accessi
bility to the data base. Because the Restructurer re
quires many access paths to data, some of which are 
not available in the source data bases, an internal form 
of the source data was designed, the Restructurer In
ternal Form (RIF). A data management function 
was also incorporated to manage the RIF which allowed 
the Restructurer to access the RIF directly. 

Version II's physical capabilities 

The capabilities of the Reader and Writer were to be 
increased to handle sequential, indexed sequential 
(ISP) , and network (IDS) structures (Figure 10 
A,B,C). 

These capabilities were to be implemented using a 
general control structure in the Reader for invoking 
the specific accessors for the different organizations. 
The lowest level components were parameterized. 

~ data 

---~ control 

RIF ENCODED 
TABLES 

Figure 9-Version II design 



894 National Computer Conference, 1976 

Index 

Data 

~
l 

R2 

Rn 

Rl 

R2 

Rn 

SEQUENTIAL INDEXED SEQUENTIAL NETWORK 

Figure lOA Figure lOB Figure laC 

Figure 10 

Version II's logical capabilities 

The general problem in restructuring data bases was 
a very difficult and complex one with no established 
solutions. The initial research9 indicated that restruc
turing for hierarchical structures was feasible, but was 
yet to be implemented. Consequently, Version II was 
designed to perform restructuring within hierarchical 
structures, which could possibly be subsets of network 
structures. 

The Restructurer's design facilitated the creation of 
any target logical structure derivable through re
peated applications of Expansion, Compression, Par
titioning, and Merging restructuring operations on 
the source logical structure. Examples of these restruc
turing operations are shown in Figure 11. 

Generality 

Extending the capabilities of the Reader and Writer 
from Version I's sequential representations to the 

compression 
.~ 

.... expanS10n 

... partitioning 

merging 

Figure ll-Restructuring capabilities 

sequential, indexed sequential, and network represen
tations of Version II had an impact on generality. The 
sequential Reader of Version I was reasonably general, 
but the implementation of the SDDL's extended capa
bilities to handle the representation of complex logical 
structures on disk media proved extremely difficult. 
Consequently, accessors, low level routines coded spe
cifically for each organization, were designed for the 
more complex input/output operations and interfaced 
with the general software in the Reader. The Restruc
turer provided an increased level of generality by 
providing a comprehensive set of restructuring capa-
bilities for hierarchical structures. • 

Design implications 

The complex restructuring operations desired for 
the Version II frequently required access to the entire 
data base. This requirement led to the development of 
a Restructurer Internal Form (RIF) in the Translator 
and the result that the read function had to be per
formed completely before the Restructurer was en
voked. In order to help manage the complex and volu
minous RIF data base, a data base management 
systemlO was added as a major component of the 
Translator's design. This DBMS was used not only to 
provide direct access to information stored in the RIF 
but also was used to manage the internal tables. ' 

Version IIA translator 

After evaluating our design of the Version II trans
lator and some actual data base reorganizations, a de
cision was made to emphasize restructuring at the 
expense of the physical capabilities-reading and writ
ing. An alternative design, the Version IIA translator, 
was developed which focused on the restructuring 
within the I-D-S data base organizationsY The spe
cific nature of the translator allowed the design effort 
to focus on user orientation as well as restructuring. 
It was decided that an expanded version of the I-D-S 
DDL could be used for the description of the source 
and target data bases. The I-D-S DDL was augmented 
by u~ing Level 66 descriptions. Another DDL analyzer, 
specIfic to I-D-S, had to be developed, which not only 
processed the extended DDL but also produced the En
coded SDD (Figure 12). 

Version IIA's physical capabilities 

Since the Version IIA had to restructure I-D-S data 
bases, the input/output class of the Reader and Writer 
were limited to these structures (Figure 10C). How
ever, the Reader was generalized to populate the RIF 
from multiple source I-D-S data bases which allowed 
the integration of I-D-S data bases, the addition of new 
data and structure, and the addition of new relation
ships among existing data instances. 



---r concrol 

ENCODED 
TABLES RIF 

RESTRGr.TTTRER 

Figure 12-Version IIA translator 

The Writer, since it was coded for I-D-S data bases 
and used the I-D-S access methods, could perform lim
ited storage optimization through reformatting of the 
target data base. The various storage parameters 
(place near, ... ) available in the I-D-S DDL could be 
used to create more efficient target data bases. 

Version IIA's logical capabilities 

The Restructurer made a major research and de
velopment step by extending its capabilities to network 
structures. The Restructurer implemented was ex
tremely powerful and could not only change the imple
mentation structure of existing I-D-S relationships, 
but also had the capability to create structures more 
powerful than I-D-S I could process. Some of these 
restructuring capabilities developed in addition to the 
Version I capabilities are shown in Figure 13A-13C. 

Generality 

Overall the Version IIA translator is less general 
than the Version II design chiefly because the Reader 
and Writer were tailored to process I-D-S data base 
thereby simplifying the coding effort. The specific ap
proach to the Reader and Writer stemmed from the 
Version IIA emphasis on the Restructurer, and the 
difficulty of implementing the extended SDDL to de
scribe complex structures residing on disk media. The 
Restructurer, however, maintained its generality by 
the table driven architecture and greatly expanded its 
capabilities from hierarchical to network structures. 

Figure 13A-Changing from duplicated data to non-redundant 
representa tion 

Generalized Software for Translating Data 895 

Fig-u.re 13B-Creating a relational entity AC from AB and Be 

Summary of capabilities 

During the evolution of the Michigan data transla
tors, both the Physical and Logical Capabilities of the 
translators were increased in incremental steps. The 
capabilities of the Reader and Writer modules have 
been extended from sequential to network data base 
representations with some loss of generality. Restruc
turing capabilities have increased from simple renam
ing of structures, through hierarchical restructuring· 
to network restructuring. Although it was necessary 
to expand the Restructurer's accessibility of the data 
base from a single record to the entire data base in 
order to achieve these sophisticated restructuring capa
bilities, the generality of the Restructurer was pre
served through the RIF and the DBMS. In addition to 
the translation capabilities, it became clear that addi
tional capabilities of adding data and new relation
ships to the data base were necessary and implemented 
in the Version IIA. The evolution of the basic capa
bilities of the various Michigan translators are sum
marized in Figure 14. 

REFLECTIONS ON THE DEVELOPMENT OF 
DATA TRANSLATORS 

Over the past four years, The University of Michi
gan Data Translation Project has developed a series of 
increasingly more general data translators based on a 
stored-data definition language approach. In reality, 
a general data translator is a series of three interpre-

MA.'lAGE 

Figure 13C-Changing implementation of the relation (involv
ing merging also) 



896 National Computer Conference, 1976 

PHYS ICAl 
CAPABILITIES 

PROTOTYPE SEQ 

VERSION I SEQ 

VERSION I I SEQ, ISP, IDS 

VERSIDN IIA IDS 

lOGIC.~l QUANTITY OTHER 

~:::"' ~ ::~::A I ::::::::,FO SEQ READER 
HIERARCHICAL REST. DhTABASE I 
NETWORK REST. DATABASE DATA ADDITION 

__ INTEGRATIO~I OF DATA BASES 

Figure 14-Comparison of capabilities 

tive mini-translators; a Reader, Restructurer, and 
Writer. In order to perform a translation from a 
source data base to a target data base, the Reader ac
cesses the source data base, the Restructurer performs 
the required logical transformations on the source and 
develops the target structure, and the Writer con
structs the target data base. These mini-translators 
may be categorized according to the type of transfor
mation performed-either physical or logical. The 
Reader and Writer perform primarily physical trans
formations, while the Restructurer performs a logical 
transformation. The requirement to perform complex 
logical transformations in the Restructurer had a sub
stantial impact on the architecture of the Translator 
particularly in the areas of data handling and repre
sentation. The complexity of the transformation re
quired direct access to all components of the data base 
and an internal form of data was developed for the 
Restructurer. To address representation of complex 
logical structures for the internal form and to provide 
direct data access, a data management facility was im
plemented within the Restructurer. 

The efforts at The University of Michigan and 
Honeywell have established that it is technicalIv fea
sible to convert data bases created by one DBMS into 
a form required by another DBMS in a reasonably gen
eral manner. The generality is achieved through a 
stored-data definition language which directs the trans
lation process. The translation can be quite complex; 
for example, changes in word length, blocking factors, 
data representations, and logical structures. Addi
tional translator capabilities include: the addition of 
data, addition of relationships, and integration of data 
bases. 

The economic feasibility of the SDDL driven ap
proach has been demonstrated for simple data base 
structures and representations. However, as the gener
ality of the translation process increases, the complex
ity of the language increases correspondingly. An alter
native approach would use the host DBMS DDL to 
produce the ESDD (as in the Version IIA). This would 
simplify the user's task but would require a DBMS spe
cific program to construct the ESDD. Such an ap
proach would allow translation with only one unfa
miliar language, the Translation Definition Language. 

FUTURE DIRECTIONS AND DEVELOPMENTS 

The interdependency of the logical and physical as
pects of data, coupled with the dependence of the physi
cal transformation on the hardware/software envi
ronment, makes generalized data base conversion a 
complex but challenging problem. The data translation 
methodology developed separates this problem into a 
logical and physical transformation processes which 
allow specific modules to address these transforma
tions. Significant results have been achieved in gen
eralizing the logical transformation process-the 
research, development and implementation of a gen
eralized Restructurer. Although a generalized Restruc
turer has been shown to be technically feasible, its eco
nomic justification has not been demonstrated. The 
economic feasibility of the approach is in doubt because 
of the slow execution speed of the Restructurer (Ver
sion IIA), however, an optimization effort has been 
initiated which should greatly improve the efficiency 
of this process. 

The achievement of complete generality in the physi
cal transformation process has yet to be achieved. It 
appears much more difficult since the deeper one goes 
into the actual representation, the more complex the 
description process and the implementation of the 
physical transformation modules. For example, in
verted structures that are implemented in SYSTEM 
2000 and ADABAS are extremely difficult to translate 
because the SDDL for such organizations must not 
only describe the data, but also describe the format 
and semantics of the indices. Extending this part of 
the SDDL, the Reader, and the Writer modules to 
handle these organizations would require a substantial 
effort. At this point in the research, the development 
of a completely general physical transformation mod
ules does not appear to be economically justifiable. 

Building on this result, a vehicle for further decom
posing this complex process into its physical and logi
cal components needs to be developed. One such can
didate is a common Data Interchange Form (DIF) for 
the transferability of structured data bases. Although 
the development of the Data Interchange Form is not 
easy and requires an additional transformation in the 
translation process, it would nevertheless be a simplify
ing ingredient. The design and specification of a com
mon Data Interchange Form would result in: 

(i) Separation of the hardware/software en
vironmental considerations; 

(ii) Development of specific accessors and con
structors to address the physical transfor
mation process; 

(iii) Distribution of the effort between the source 
and target machines; 

(iv) Development of a more efficient internal 
form of data for the Restructurer. 

Further, the development of a Data Interchange 



Form would facilitate the general transportability of 
structured data bases. Such transportability would 
not only occur using interchange media (e.g., tapes), 
but also occur over communication networks (e.g., 
ARPANET). 

Another argument for a Data Interchange Form is 
that it allows the translation process to be more ex
plicitly decomposed. The stored-data definition lan
guage could be divided according to individual trans-
formation, vvhich '\vould allo"~l different forms and types 
of the language to address the differing levels of detail 
in the translation process. The translation modules 
would be more dependent on their respective environ
ments and, consequently, easier to build. Further, such 
a decomposition would allow optimization to take place 
at different stages in the translation process. 

The design and specification of a common Data In
terchange Form still requires research and develop
ment. It must be self-describing in that it would access 
interpretively, independent of the environment in 
which it was created. The Data Interchange Form 
must be logically capable of expressing the most so
phisticated data base structure known, but be physically 
simplistic without being overly inefficient. Conse
quently herein lies a direction for future research. 

REFERENCES 

1. Fry, J. P. and D. W. Jeris, "Towards a Formulation and 
Definition of Data Reorganization," Proc. 1974 ACM 
SIGMOD Workshop on Data Description, Access and Con
trol, R. Rustin (Ed.), Ann Arbor, Michigan, May 1974, 
pp.83-100. 

2. Bakkom, D. E. and J. Ao Behymer, "Implementation of a 
Prototype Generalized File Translator," Proc. 1975 ACM 
SIGMOD International Conf. on Management of Data, 
W. F. King (Ed.), San Jose, California, May 1975, pp. 
99-110. 

3. Shoshani, A., "A Logical Level Approach to the Data Base 
Conversion," Proc. 1975 ACM SIGMOD Conference, W. F. 
King. (Ed.), San Jose, CA, May 1975, pp. 112-122. 

4. Rameriz, J. A., "Automatic Conversion of Data Conversion 
Programs Using a Data Description Language," Proc. 1974 
ACM SIGFIDET Workshop on Data Description, Access and 
Control, R. Rustin (Ed.), Ann Arbor, MI, May 1974, pp. 
207-225. 

Generalized Software for Translating Data 897 

5. Lewis, K. H., et al., "Translation Definition Language 
Reference Manual," Data Translation Project, The Univer
sity of Michigan, 1976. 

6. Taylor, R. W., "Generalized Data Base Management System 
Data Structures and Their Mappings to Physical Storage," 
PhD Dissertation, The University of Michigan, December, 
1971. 

7. Birss, E. W. and J. P. Fry, "A Comparison of Two Lan
guages for Describing Stored-Data," Data Translation 
Working Paper #401, The University of Michigan, 1975. 

8. Fry, J. P., R. L. Frank and E. A. Hershey, III, "A Devel
opmental Model for Translation," Proc. 1972 ... 4Cl1! 
SIGJI'IDET Workshop on Data Description, Access and 
Control, A. L. Dean (Ed.), Denver, Colorado, November 
1972, pp. 77-106. 

9. Navathe, S. B. and J. P. Fry, "Restructuring for Large 
Data Bases: Three Levels of Abstraction," ACM Trans
actions on Database Systems (1 :1), March 1976. 

10. Hershey, E. A., III and P. W. Messink, "A Data Base 
lvianagement Systeni fOl" PSA Based on DBTG 71," ISDOS 
Working Paper #88, ISDOS Research Project, The Uni
versity of Michigan, 1975. 

11. Birss, E. "V., M. E. Deppe and J. P. Fry, "Research and 
Data Reorganization Capabilities of the Version IIA Data 
Translator," Data Translation Working Paper (no num
bel') , The University of Michigan, 1975. 

12. CODASYL Systems Committee, A Feature Analysis of 
Generalized Data Base Management System, 1971. 

13. Merten, A. G. and J. P. Fry, "A Data Description Ap
proach to File Translation," Proc. 1974 ACM SIGMOD 
Workshop on Data Description, Access and Control, Ann 
Arbor, Michigan, May 1974, pp. 191-205. 

14. Housel, B., V. Lum and N. Shu, "Architecture to an Inter
active Migration System (AIMS) ," Proc. 1974 ACM 
SIGFIDET Workshop on Data Description, Access and 
Conirol, R. Rustin (Ed.), Ann Arbor, MI, May 1974, pp. 
157-169. 

15. Housel, B., D. Smith, N. Shu and V. Lum, "Define: A 
Non-Procedural Data Description Language for Defining 
Information Easily," Proc. of 1975 ACM Pacific Conference, 
San Francisco, CA, Apri11975, pp. 62-70. 

16. SDDTTG, "An Approach to Stored-Data Definition and 
Translation," Proc. 1972 ACM SIGFIDET Workshop on 
Data Description, Access and Control, A. L. Dean (Ed.), 
Denver, CO, November 1972, pp. 13-55. 

17. SDDTTG, "A Stored-Data Definition Language for the 
Translation of Data," The Stored-Data Definition and 
Translation Task Group of CODASYL Systems Committee, 
1976, (Draft). 

18; Smith, D. P., "An Approach to Data Description and Con
version," PhD Dissertation, The University of Pennsylvania, 
December, 1971. 





Experiments with a symbolic evaluation system 

by WILLIAM E. HOWDEN 
Un,iversity of California at San Diego 
La J oUa, California 

ABSTRACT 

Symbolic evaluation techniques can be used to deter
mine the cumulative effects of a program's calculations 
on the branching predicates and output variables in the 
program. If the evaluation techniques are carefully 
and selectively applied, they can be used to generate re
vealing symbolic representations of the computations 
carried out by the paths in a program, and of the 
systems of predicates that describe the input data that 
causes program paths to be executed. A symbolic 
evaluation system called DISSECT is described which 
can be used to analyze FORTRAN programs. The 
system includes a sophisticated command language 
that allows the user to selectively apply symbolic 
evaluation techniques to different program paths and 
subpaths. The command language allows the user to 
carry out different levels of symbolic testing of a 
program and to construct systems of predicates that 
can be used to automate the generation of numeric test 
data. Experiments with the system which illustrate its 
advantages and limitations are included. DISSECT 
can be used to carry out a systematic, documented 
reliability analysis of a program. The paper concludes 
with a discussion of the potential use of systems like 
DISSECT as the basic software certification tool in the 
software development process. 

INTRODUCTION 

When a program path is executed by running the pro
gram on a given input, the correctness of the path for 
that input can be determined by examining the effects 
of the calculations carried out by the path. If the path 
is executed "symbolically" rather than with actual 
data, it may be possible to use a single execution to 
illustrate its correctness on a large subset of the input 
domain rather than on just a single value. Symbolic 
execution of a program is carried out by giving dummy 
symbolic values rather than actual numeric (string, 
logical etc.) values to all or some of the input variables 
of the program. An expression in the program involv
ing variables with symbolic values is evaluated by 
substituting the current symbolic values of the varia-

899 

bles into the expression. The resulting expression is 
then simplified algebraically. All operators having only 
actual as opposed to symbolic operands are evaluated 
in the normal way. The resulting expression is the. 
symbolic value of the original expression. 

Figure 1 contains a program for carrying out poly
nomial interpolation. l The documentation for the pro
gram describes it as consisting of four segments, each 
of which computes part of the interpolation process. 
Lines 34 through 48 are supposed to compute a set 
of coefficients ai which are given in terms of Yi and a i 
by the formula: 

Yk k-l aj 
ak = :;-k----=-l--- - :L.,.---k----;-l-"---

II (ak-aJ j=l 11 (~k-~J 
1=1 I=j 

The program is written so that ak corresponds to 
A(k),aitoDELTA(i) andYitoY(II+i-1). Symbolic 
values are designated by alphanumeric strings sur
rounded by quotes. Suppose "11," "DELTA (I)" 1=1, 
10 and 2 are assigned to 11, DELTA(I) 1=1,10 and 
NTERMS at statement 36 and "A (1)" to A (1) at 
statement 37. Then the effect of the calculations car
ried out in a single iteration of the loop in lines 34 
through 47 can be determined by symbolically execut
ing the code and printing out the values of A (1) at 
statement 36 and A (k) at statement 46. Figure 2 
contains these symbolic values. The quotes designating 
symbolic values are deleted from the output to increase 
readability whenever this is unambiguous. Inspection 
of the values reveals that they agree with the formula 
and that this part of the program is correct for all 
input data having NTERMS=2. 

Symboiic evaluation can be used to generate symbolic 
representation of the effects of the calculations carried 
out by paths in a program. It can also be used to gen
erate sets of predicates in input variables which 
describe the input data that causes different program 
paths to be executed. A "complete" symbolic evaluation 
analysis of a program can be used as the validation 
documentation for the program. 

Certain features must be present in an automated 
symbolic evaluation system in order for the system to 
be useful in analyzing realistic programs. The user 



900 National Computer Conference, 1976 

SUBROUTINE INTERP (X, Y, NPTS, NTERMS, XIN, YOUT) #0 
DOUBLE PRECISION DELTAX, DELTA, A, PROD, SUM #1 
DIMENSION X(l), Y(l) #2 
DIMENSION DELTA (10), A (10) #3 

C #4 
C SEARCH FOR APPROPRIATE VALUE OF X(l) #5 
C #6 

11 DO 19 1=1, NPTS #7 
IF (XIN -X(I» 13, 17, 19 #8 

13 11=I-NTERMS/2 #9 
IF (11) 15, 15, 21 #10 

15 11=1 #11 
GO TO 21 #12 

17 YOUT=Y(I) #13 
18 GO TO 61 #14 
19 CONTINUE #15 

I1=NPTS-NTERMS+1 #16 
21 12=I1+NTERMS-1 #18 

IF (NPTS-12) 23, 31, 31 #19 
23 12=NPTS #20 

11=12-NTERMS+1 #21 
25 IF (11) 26, 26, 31 #22 
26 11=1 #23 
27 NTERMS=12-11+1 #24 

C 
C EVALUATE DEVIATIONS DELTA #26 
C #~ 

31 DENOM=X(Il+1) -X(Il) #28 
DELTAX=(XIN-X(I1»/DENOM #29 
DO 35 1=1, NTERMS #30 
IX=Il+I-1 #31 
DELTA(I) = (X(IX) -X(I1) )/DENOM #32 

35 CONTINUE #32.1 
C #M 
C ACCUMULATE COEFFICIENTS A #34 
C #~ 

40 A (1) = Y (11) #36 
41 DO 50 K=2, NTERMS #37 

PROD=1. #38 
SUM=O. #39 
IMAX=K-1 #~ 
IXMAX=I1+IMAX #41 
DO 49 1=1, IMAX #42 
J=K-I #43 
PROD=PROD * (DELTA(K) -DELTA(J» #44 

49 SUM=SUM-A(J)/PROD #45 
A(K) =SUM+ Y(IMAX)/PROD #46 

50 CONTINUE #47 
C #~ 
C ACCUMULATE SUM OF EXPANSION #49 
C #50 

51 SUM=A(1) #51 
DO 57 J =2, NTERMS #52 
PROD=1. #53 
IMAX=J -1 #54 
DO 56 1=1, IMAX #55 

56 PROD=PROD * (DELTAX-DELTA(I» #56 
57 SUM=SUM+A(J)*PROD #57 
60 YOUT=SUM #58 
61 RETURN # 59 

END #~ 

Figure 1-lnterpolation subroutine 



Experiments With a Symbolic Evaluation System 901 

A(l) =Y(Il) 
A(2) = (Y (11+1) / (DELTA (2) -DELTA (1») 

- (A(1)/(DELTA(2) -DELTA (1») 

Figure 2-Symbolic values for A(l) and A(2) 

must be able to easily set up and carry out a number 
of different analyses. He must be able to select sub
segments of a program and individual paths or classes 
of paths. The system mm;;t contain facilities for assign
ing actual or symboiic values to variables and for 
printing out values of variables at different points in 
a program. The user may also wish to print out sys
tems of predicates formed by symbolically evaluating 
the branch conditions in a path and to check the 
consistency of these systems. 

The remaining sections of the paper describe a 
sophisticated symbolic evaluation system called DIS
SECT and a number of experiments using the system. 
DISSECT can be used to analyze programs written in 
ANSI Standard FORTRAN. In the experiments the 
system is used to analyze two complex statistical 
routines taken from Reference 1. 

THE DISSECT SYSTEM 

(a) Structure of DISSECT-The DISSECT system 
operates on two input files and produ~es an output file. 
One of the input files contains a FORTRAN program 
to be analyzed and the other contains the DISSECT 
commands which tell the system what kind of symbolic 
evaluation analysis to carry out. The output file con
tains the results of the analysis. 

The command file for a DISSECT analysis is divided 
into a number of cases. The program in the input file 
is processed completely for each case. Each case has a 
section for a text description of the part of the program 
to be analyzed by the case. This text is not processed 
by the system and is considered to be the specification 
for the case, The rest of a case contains commands 
which identify the part of the program which corre
sponds to the case, commands which assign (symbolic) 
values to variables and commands which specify what 
output is to be generated. 

The output file which is generated by a DISSECT 
analysis is also divided into cases. Each output case 
contains the case specifications and commands as well 
as the output generated by the system for that case. 
The user can check the validity of his program by 
comparing case specifications with system output for 
cases. 

A program path is a possible flow of control through 
the program. A path is feasible if at least one element 
of the program's input domain causes that path to be 
executed. In general, a complete set of DISSECT cases 
for a program should "cover" the program in some 
sense. One approach is to analyze each feasible path 
(up to some number of iterations of loops). Complex 

programs having many paths can be divided into seg
ments and analyzed using separate cases. 

(b) DISSECT commands-The DISSECT com
mands can be divided into three groups: path selection, 
output and value commands. The commands can either 
be given in the global commands section of a DISSECT 
command file or can be given as part of a case. If they 
appear in the global commands section they apply to 
all cases. The commands can be used with or without 
a statement sequence number. In general, when used 
with a sequence number they are eXecuted only when 
the sYRtem is evaluating that statement. Otherwise 
they are used for every statement or, in some cases, 
are only applied at the end of the DISSECT analysis 
of a program path. 

(c) Path Selection Commands-DISSECT processes 
a case by symbolically evaluating one or more paths in 
a program. The path selection commands cause DIS
SECT to select part of a program for analysis by 
directing it to follow certain paths through a program. 
The "SELECT" command is used for directing DIS
SECT to follow a specified branch or branches from a 
conditional branching statement. The "LOOP" com
mand directs DISSECT to carry out a given number 
of iterations of a loop. Loops are specified by naming 
the statement number of the first statement in the loop. 

(i) n SELECT .GT. will cause DISSECT to select 
the .GT. branch from an arithmetic conditional 
statement n. 

(ii) n SELECT ALL will cause DISSECT to set up 
a subpath for each branch from conditional state
mentn. 

(iii) n LOOP k will cause DISSECT to iterate loop n 
k times. 

(iv) n SKIP m will cause DISSECT to skip from 
statement n to m during processing of a program. 
SKIP can be used to set up cases which only deal 
with paths through segments of a program 
rather than the whole program. 

(d) Output commands-The user of DISSECT can 
generate several different kinds of output. The PATH 
command causes the system to print out the sequence 
numbers of the statements in the paths in a case. 
PATH DESCRIPTION will cause the output of all of 
the statements in the paths. PREDICATES will result 
in the construction of symbolically evaluated systems 
of predicates which describe the input that causes 
paths to be followed. The OUTPUT command can be 
used to print out the symbolic values of variables, 
symbolically evaluated subroutine calls and symboli
cally evaluated program output statements. If an 
output command is preceded by a statement sequence 
number then the command is invoked when the system 
encounters that statement during its symbolic evalua-



902 National Computer Conference, 1976 

tion of the program. If the command is not preceded 
by a statement number then, in general, it is invoked 
after the completion of any path belonging to the case 
containing the output command. 

(e) Value commands-The most important value 
assigning command in DISSECT is the ASSIGN com
mand. ASSIGN can be used to assign either actual or 
symbolic values to any variable at any point in the 
processing of a program. The DISSECT system is 
designed so that symbolic values are automatically 
assigned to variables whenever the variables appear in 
SUBROUTINE headers or COMMON or input state
ments. The automatically assigned symbolic values are 
text strings formed from the variable names. ASSIGN 
can be used to override these default symbolic value 
assignments or to assign actual values. 

ASSIGN is used in basically two different ways. In 
many situations, the user will want to carry out a 
symbolic evaluation of a path in which some of the 
variables are given actual values. He can use ASSIGN 
to give these values to the variables at the beginning 
of the path. In other situations a complicated segment 
of calculations on several variables divides naturally 
into several segments and a user will want to print out 
the symbolic values of one or more variables at the end 
of one segment and then reset the values of the vari
ables to simple symbolic values before continuing with 
the processing of the next segment. The ability to do 
this avoids the necessity of having to analyze compli
cated symbolic expressions resulting from the symbolic 
execution of several conceptually distinct sequences of 
operations. 

(f) Conditional Execution of commands-There are 
two ways in which a user can specify that a DISSECT 
command is to only be applied under certain conditions. 
The first involves the use of a conditional fOTm. If a 
command appears in the form "IF condition THEN 
command 1 [ELSE command 2]" then command 1 is 
only carried out if the condition holds (and command 
2 if the condition does not hold). Conditional forms 
are not commands and cannot be nested. 

Conditions are constructed using three types of ex
pressions. The first consists of ordinary program ex
pressions in program variables. The second consists 
of the special variable ATTRIBUTE and the third the 
special function LOOPCOUNT (n). DISSECT contains 
a number of commands for attaching attributes to 
paths during their symbolic evaluation. It is possible 
to specify that the execution of a DISSECT command 
is conditional upon association of a given attribute 
with a path. LOOPCOUNT(n) returns an integer 
giving the number of times that loop n has been iter
ated by the path currently being traversed. When the 
function is called it is assumed that the statement 
currently being -processed by DISSECT is in the loop 
and that LOOPCOUNT (n) is the number of iterations 
that have been completed during the current traversal 
of the loop. 

The second way of conditionally carrying out a 
DISSECT command involves the use of the CONSIS
TENCY option. Many of the DISSECT commands 
can be used with several flags. When the CONSIS
TENCY flag is attached to a command the system 
constructs the predicate that would be added to the 
system of predicates for the current path if the com
mand were to be executed. If the addition of this 
predicate to the system would cause the system to be 
inconsistent then the command is not executed. The 
CONSISTENCY option can be used to stop DISSECT 
from traversing program paths that would result in 
the generation and analysis of infeasible program 
paths. The consistency routines which are currently 
implemented are very simple. Although they will 
catch only certain kinds of inconsistencies they have 
proved to be very powerful. 

A related feature in DISSECT is the DEFAULT 
option. DISSECT expects that certain kinds of pro
gram statements will always have a command asso
ciated with them. It expects the command file to con
tain, for example, path selection commands for each 
conditional branching statement which it encounters 
when it is processing a program path. In general, a 
user may only want to construct commands for a 
fraction of the branching statements in a program. He 
can "cover" the remaining branching statements by 
constructing selection commands which have no state
ment number and which include the DEFAULT option. 
When DISSECT reaches a conditional statement it 
first looks to see if there are any selection commands 
for the statement which do not have the DEFAULT 
option set. If there are none it then tries to find a 
selection command that it can apply which has the 
DEFAULT option set. Recall that DISSECT com
mands which do not have statement numbers are ap
plied by DISSECT to all appropriate statements during 
the processing of the program. 

EXAMPLES 

(a) Interpolation Example-The first example de
scribes the use of DISSECT in analyzing the interpo
lation program in Figure 1. In both this and the next 
example DISSECT was used to confirm that the pro
gram agreed with its specifications. The INTERP 
routine is written so that the number of points 
NTERMS used in the interpolation process may be less 
than the number of points available (NPTS). The 
first segment of the routine, lines 1-25, decides which 
points to use. It involves choosing a value for 11. The 
points X(I1), X(I1+1), ... , X(I1+n-1) in the pro
gram correspond to the points Xu x2 , ••• , Xn in the 
documented formulae (n=min{NPTS, NTERMS}). 
The documentation states that Xl (i.e. X (11» "is 
chosen so that Xl and Xn straddle x". "If the value of x 
is too close to the lower or upper limit of the values of 
XI, the corresponding value of Xl or Xn is set equal to the 
limiting value." 



Experiments With a Symbolic Evaluation System 903 

The documentation for this segment of the program 
is quite vague. A casual reading of the program re
veals that the segment is of some complexity and has 
a number of paths. The process that is to be carried 
out by the part of the program appears to be typical 
of the types of processes that may not work for limit
ing values in the input. It was decided to examine the 
paths through this section of code for NPTS = 1 and 2 
(the limiting cases) and also for NPTS=3. The DIS
SECT command file for those three cases is given in 
Figure 3. 

These three cases cause DISSECT to analyze all 
paths in the program up to statement 28 for NPTS = 
1, 2 and 3. Case 1 has 10 paths, case 2 17 paths and 
case 3 24 paths. This is a large number of paths but 
it was found that the output for each was easy to read 
and that it was easy to determine if the program was 
correct for the case. The output for each case is di
vided into subcases, several of which are reproduced 
in Figure 4. Each subcase corresponds to a path. 

The structure of the code in the first segment of the 
program is such that the complete set of paths for 
cases one, two and three indicates that the segment is 
correct. Note that we have not formally proved that 
the segment is correct. The symbolic predicates and 
values which are produced assist the user in reading 
the code and in carrying out a proof which is partly 
formal and partly informal. 

The second segment of DISSECT, lineS 26-33 is 
supposed to compute the following values of .6. and .6.i ' 

TITLE: ANALYSIS OF INTERP 
GLOBAL COMMANDS: 

MAXPATHS 300; 
MAXLENGTH 200; 

The correctness of this segment is easily confirmed 
with two or three simple cases. The commands for the 
case where NPTS=2 are given in Figure 5. 

The output for this case is given in Figure 6. In the 
program A. is represented by DELTAX. In reading the 
output recall that Xi is represented by X(II+i-l). 

The Case 6 command ASSIGN 11="11" ensures that 
the output for Case 6 will use the symbol II to stand 
for 11 rather than the value it may have as the result 
of earlier calculations. 

Symbolic output for the code in the third segment, 
lines 34 through 48, appears in Figure 2. The segment 
was thoroughly examined by looking at the output for 
the cases where NPTS = 3 and 4. 

The final segment of the program, lines 49 through 
60, is supposed to compute the formula: 

y(x) =a,+ t,[ a; ft (d-d,) J 
This segment can be checked by constructing cases 
corresponding to n=l, 2 and 3. The case containing 
the commands for n=2 appears in Figure 7. The pro
gram uses the variable YOUT to represent the value 
y (x). The output for the case appears in Figure 8. 

(b) Correlation Example-The complexity of the 
INTERP routine is due both to its control logic and its 
array manipulation operations. DISSECT was useful 
in analyzing INTERP by allowing the user to look at 
how the program operated for arrays of given dimen
sions. 

In the correlation example, DISSECT was used to 

DEFAULT LOOP ANY CONSISTENT (1-10); 
DEFAULT SELECT ANY CONSISTENT; 
PATH; PREDICATES; 

CASE 1: ANALYSIS OF SEGMENT OF CODE THAT DETERMINES 11. 
SET NPTS=1 

CASE COMMANDS: 
OUTPUT 11, NTERMS; 
SELECT ALL; 

7 ASSIGN NPTS=1; 
28 HALT; 

CASE 2; SET NPTS=2. 
CASE COMMANDS: 

OUTPUT 11, NTERMS; 
SELECT ALL; 

7 ASSIGN NPTS=2; 
28 HALT; 

CASE 3: SET NPTS=3. 
CASE COMMANDS: 

OUTPUT 11, NTERMS; 
SELECT ALL; 

7 ASSIGN NPTS=3; 
28 HALT; 

Figure 3-DISSECT commands for first segment of INTERP 



904 National Computer Conference, 1976 

CASE 1.1 
PATH: 0-1218-24 

PREDICATES: 
: 1 0 SUBROUTINE INTERP(X,Y,NPTS, NTERMS, XIN, YOUT) 
: 7 8 XIN -X(1) .LT.O 
: 9 10 1- (NTERMS/2) .LE.O 
:13 19 1-NTERMS .LT. 0 
:16 22 2-NTERMS .LE. 0 

OUTPUT: 
:18 28 11=1 

NTERMS=1 

CASE 2.3 
PATH: 0-1218-19 

PREDICATES: 
: 1 0 SUBROUTINE INTERP(X,Y,NPTS, NTERMS, XIN, YOUT) 
: 7 8 XIN -X(1) .LT.O 
: 9 10 1- (NTERMS/2) .LE.O 
:13 19 2-NTERMS .GE. 0 

OUTPUT: 
:13 28 11=1 

NTERMS =NTERMS 

CASE 3.11 
PATH: 0-8157-1018-24 

PREDICATES: 
: 1 0 SUBROUTINE INTERP(X,Y,NPTS, NTERMS, XIN, YOUT) 
: 7 8 XIN -X(1) .GT.O 
:11 8 XIN -X(2) .LT.O 
:13 10 2- (NTERMS/2) .GT.O 
:15 19 2+NTERMS/2-NTERMS .LT. 0 
:18 22 4-NTERMS .LE. 0 

OUTPUT: 
:20 28 11=1 

NTERMS=3 

CASE 6.1 

Figure 4-DISSECT output for first segment of INTERP 

CASE 6: TEST SECOND SEGMENT WITH NPTS =4. 
CASE COMMANDS: 

OUTPUT,DELTAX,DELTA; 
7 SKIP 28; 
28 ASSIGN NTERMS=4; 
28 ASSIGN 11="11"; 
36 HALT 

Figure 5-Case commands for symbolic evaluation of second 
segment 

PATH 0-3 28-32.1 30-32.1 30-32.1 30-32.1 30 

PREDICA TES: 

OUTPUT: 
: 1 0 SUBROUTINE INTERP(X,Y, NPTS, NTERMS, XIN, YOUT) 
: 6 28 **ASSIGN 11=11 
:29 36 DELTAX=(XIN-X(I1»/(X(I1+1)-X(I1» 

DELTA(4) = (X(I1+3) -X(I1) )/(X(I1+1) -X(I1» 
DELTA(3) = (X(I1+2) -X(I1) )/(X(I1+1) -X(I1» 
DELTA(2) = (X(I1+1) -X(I1) )/(X(I1+1) -X(I1» 
DELTA(1) = (X(I1) -X(I1» / (X(I1+1) -X (11» 

Figure 6-Symbolic output for analysis of second segment 



Experiments With a Symbolic Evaluation System 905 

CASE 9: ANALYSIS OF SEGMENT FOR COMPUTING FINAL VALUE OF Y. 
NTERMS=2. 

CASE COMMANDS: 
OUTPUT YOUT; 

7 SKIP 51; 
51 ASSIGN NTERMS=2, A="A", DELTAX="DELTAX"; 
51 ASSIGN DELTA="DELTA"; 

Figure 7-Case commands for analyzing last segment of program 

analyze a program whose cumplexity is entirely due to 
its control logic and to the computations it carries out. 
The program has no arrays and is not complicated by 
looping mechanisms for carrying out array operations. 

The PCORRE routine is used to determine the prob
ability Pc (r,N) that N random data points would yield 
a linear-correlation coefficient as large or larger than 
an observed correlation value Irl. The documentation 
for PCORRE lists two formulae which are supposed 
to be computed by the routine. For v = N - 2, one of the 
formula is for v even and the other for v odd. The 
formula for v even is 

P ( N) -1-~ r [ (v + 1) /2] 
c r, - -v:;; r(v/2) 

~ ( -1) (1_ i) ! i! 2i + 1 {
I [ i I ! I r 1

2i
+ 

1 
] I 

where 1= v; 
2 

and r is the gamma function. The for

mula for v odd is equally complex. 
The PCORRE routine divides naturally into three 

segments. The first determines the quantity v and 
whether it is even or odd. The second and third com
pute Pc(r,N) for even and odd v. The part of the 
code that computes Pc (r,N) for v even is reproduced 
in Figure 10. 

A command file containing the case in Figure 11 was 
constructed for analyzing PCORRE. The output for 
one of the subcases which analyzes the first two seg
ments of the routine is reproduced in Figure 12. 

The text strings in quotes after some of the com
mands in Figure 11 are attributes. Each time a path 
follows a branch associated with a particular SELECT 
command, the path is assigned any attributes listed for 
that branch. The complete collection of attributes for 
a path is printed along with the output for the path. 
The use of attributes makes it easy to identify paths 
in terms of particular properties associated with the 
branches in the paths. 

CASE 9 
PA TH: 0-3 51-56 55 57 52 58-59 
PREDICATES: 
OUTPUT: 

: 6 51 ** ASSIGN A=A 
: 7 51 **ASSIGN DELTAX=DELTAX 
: 8 51 **ASSIGN DELTA=DELTA 
:21 59 YOUT=A(1) +A(2) * (DELTAX-DELTA(1» 

Figure 8-0utput for Case 9 

It is evident from this output that the formula is 
correct for the case where v is even and (v-2) /2=1 
DISSECT was also used to generate symbolic out 
for the cases where (v-2) /2=2 and (v-2) /2=3. This 
output taken together with the pattern of the code in 
the program, indicates that the program computes the 
correct formula for v even. DISSECT was also used 
to generate symbolic output for the code which calcu
lates Pc(v,N) for v odd. 

RELATED WORK 

The DISSECT system is built on an earlier path 
analysis system2 which can be used to generate descrip
tions of the sets of input data that cause classes of 
program paths to be executed. The major improvement 
is the addition of a command language which allows 
the user to selectively control the application of the 
analysis routines. In addition, DISSECT has many 
features not present in the previous system. 

Several systems have been constructed which can be 
used to carry out program analysis similar to those 
which can be carried out with DISSECT. The EF
FIGY,3 SELECT/ RXVp5 and the system described 
by Clarke in Reference 6 all allow the selection and 
evaluation of .paths in computer programs. The DIS
SECT system is closest to the EFFIGY and SELECT 
systems. Symbolic evaluation can also be used in con
structing program proofs.',8 

DISSECT is unique in its use of cases to structure 
the validation analysis of a program. It is also the only 
system that includes a language that allows a user to 
write simple analysis procedures (the command lan
guage). The EFFIGY and SELECT systems are path
following procedures which the user directs by select
ing conditional statement branches interactively. 

CONCLUSIONS 

In the experiments with DISSECT which are described 
above, the user was faced with analyzing and deter
mining the validity of a program he had not seen 
before. He was provided with the program and docu
mentation and no outside help. The pattern of usage 
of DISSECT was one in which the user alternated 
between reading a program and running DISSECT. 
First the program and the documentation were studied 
and a preliminary command file constructed. The 



906 National Computer Conference, 1976 

FUNCTION PCORRE (R,NPTS) 
DOUBLE PRECISION R2, TERM, SUM, FI, FNUM, DENOM 

C 
C EVALUATE NUMBER OF DEGREES OF FREEDOM 
C 

C 

11 NFREE=NPTS-2 
IF (NFREE) 13, 13, 15 

13 PCORRE=O. 
GO TO 60 

15 R2=R**2 
IF (1.-R2) 13,13,17 

17 NEVEN =2* (NFREE/2) 
IF (NFREE-NEVEN) 21, 21, 41 

C NUMBER OF DEGREES OF FREEDOM IS EVEN 
C 

21 IMAX= (NFREE-2)/2 
FREE=NFREE 

23 TERM=ABS (R) 
SUM=TERM 
IF (lMAX) 60, 26, 31 

26 PCORRE=1.-TERM 
GO TO 60 

31 DO 36 1=1, IMAX 
FI=I 
FNUM=IMAX-I+1 
DENOM=2*1+1 
TERM=-TERM * R2 * FNUM/FI 

36 SUM=SUM+TERM/DENOM 
PCORRE=1.128379167 * (GAMMA ( (FREE+1.)/2.)/GAMMA(FREE/2.» 
PCORRE=1.-PCORRE*SUM 
GO TO 60 

Figure 10-First two segments of PCORRE 

#1 
#2 
#3 
#4 
#5 
#6 
#7 
#8 
#9 
#10 
#11 
#12 
#13 
#14 
#15 
#16 
#17 
#18 
#19 
#20 
#21 
#22 
#23 
#24 
#25 
#26 
#27 
#28 
#29 
#30 
#31 
#32 

CASE 1: MINIMUM CASE TO ILLUSTRATE THE PCORRE FORMULAE. 
CASE COMMANDS: 

OUTPUT PCORRE 
7 ASSIGN NFREE="V"; 
7,11 SELECT .GT.; 
13 SELECT .GT. "DEGREES OF FREEDOM ODD."; 
13 SELECT .LE. "DEGREES OF FREEDOM EVEN"; 
21,39 SELECT .LT. "SUMMATION MAX NEGATIVE-NO CALCULATION"; 
21,39 SELECT .EQ. "SUMMATION MAX ZERO-NO SUMMATION"; 
21,39 SELECT .GT. "SUMMATION MAX POSITIVE"; 

Figure 11-Case commands for analyzing PCORRE 

CASE 1.1 
ATTRIBUTES: SUMMATION MAX POSITIVE. DEGREE OF FREEDOM EVEN 

PATH: 1-7710-2124-292430-3249 

PREDICATES: 

: 1 1 FUNCTION PCORRE(R,NPTS) 
: 5 7 V .GT. 0 
: 7 11 1.0-R**2 .GT. 0 
: 9 13 V -2* (V /2) .LE.O 
:14 21 «V -2) /2) .GT.O 
:21 24 ( (V -2) /2) .GE.1 

OUTPUT: 

: 1 1 FUNCTION PCORRE (R,NPTS) 
:26 49 PCORRE=1.0-1.128379* (GAMMA «1.0+ V) /2.0) / 

GAMMA (V /2.0) )*ABS(R) + 
1.128379* (GAMMA «1.0+ V) /2.0) / 
GAMMA (V /2.0» * «ABS (R) *R**2* ( (V -2) /2) ) /3) 

Figure 12-Symbolic output for case 1.1 of analysis of PCORRE 



Experiments With a Symbolic Evaluation System 907 

command file was based on an initial understanding of 
the structure of the program. The output which was 
generated by DISSECT from the preliminary com
mand file was often inadequate. In some cases, too 
many paths were generated for a piece of code. In 
other cases, more analysis of a piece of code, or analysis 
with different actual or symbolic assignments of vari
ables, was needed. A second DISSECT analysis re
sulted in a better understanding of the program which 
sometimes prompted the user to carry out a third 
analysis. 

The readability and usefulness of DISSECT output 
can be judged from the above examples. The output 
was generated from either the first or second command 
files which were constructed in the process of analyz
ing the programs. One or two additional versions of 
the command file would produce what would probably 
be the final version. 

It is our experience that systems like DISSECT can 
be useful in two ways: The first is the help that the 
system can give the user in carrying out a validation 
analysis of a program. The output from a symbolic 
evaluation of a piece of code is often much more reveal
ing than output from an execution with actual data. 
Similarly, the symbolic evaluation of a system of predi
cates associated with a path provides documentation 
describing the input associated with the path. 

DISSECT can be useful in helping to "unravel" the 
computations carried out by different types of pro
grams. Some programs are complicated to read be
cause they are cluttered with the control structure 
needed to carry out an operation iteratively over the 
elements of a data structure. The validity of these 
programs can often be checked by looking at the ma
nipulations that are carried out for structures of fixed 
sizes. DISSECT can be used to generate descriptions 
of these manipulations. Other programs are compli
cated to read because they contain control structure 
for constructing, and at the same time computing a 
value for an iterative formula. The number of itera
tions used in constructing the formula is often depen
dent on an input variable. DISSECT can be used to 
generate the instances of this formula that are com
puted by the program for different numbers of itera
tions. These instances, together with a knowledge of 
the structure of the iteration used by the program are 
often enough to convince the user that the program is 
correct. Examples 1 and 2 illustrate this use of DIS
SECT for programs of this type. 

The second way in which DISSECT can be useful 
is in forcing a systematic, intuitively meaningful vali
dation discipline on the programmer. DISSECT can be 
used as the basis of a validation methodology for a 
verification group. In verifying a program, the user 
must first break the specifications for the program 
down into cases. Each case is then described in terms 
of a case specification. The parts of the program which 
are supposed to take care of these cases are identified 

using the command language. The system carries out 
the specified analysis and the user compares the output 
with the case specifications. After several rounds of 
improving the cases and possibly correcting program 
errors, a full validation document is produced. Experi
ence may indicate that other types of validation analy
sis facilities should be added to the DISSECT without 
changing the basic structure of the system. 

There are several situations in which systems like 
DISSECT may fail or not be useful. If a program is 
in error because some case was not coded into it~ and 
no DISSECT case is constructed to correspond to this 
forgotten case, then the error may not be discovered. 
It is suspected that DISSECT may not be as useful 
for assembly language programs as it is for high-level 
language numeric programs. Since, in theory, a well
structured program is self-documenting and it is pos
sible to understand the code by reading it, it might be 
argued that DISSECT will only be useful for programs 
written in languages like FORTRAN. This is only 
partly true. The observations made above about pro
gram complexity due to the mixing together of control 
structure for manipulating data structures and the 
computations to be carried out on the structures are 
true for most programming languages. The same thing 
is true of complexity due to mixing together the code 
which constructs an iteratively defined formula to
gether with the computations for evaluating the for
mula. 

Further experiments will be carried out with DIS
SECT and improvements to the system are planned. 
The system will be used to analyze programs known to 
contain errors in order to determine its usefulness in 
detecting bugs. Use of the system in a full-scale soft
ware development project is also being planned. 

ACKNOWLEDGMENTS 

The DISSECT system was programmed by the author 
and R. Hoffman. Mr. Hoffman is primarily responsible 
for the symbolic evaluation and output routines. 

Part of the algebraic simplifier in the output routine 
was derived from a program which is part of the 
SELECT system. -l The use of the program is gratefully 
acknow ledged. 

The research described in the paper was carried out 
as part of a McDonnell Douglas Astronautics project 
in program testing which is funded by the National 
Bureau of Standards. The project is supervised by Z. 
Jelinski and Leon Stucki of McDonnell Douglas. Mr. 
Stucki cooperated in the design of the DISSECT 
command language. 

REFERENCES 

1. Benington, Philip R, Data Reduction and Error Analysis 
for the Physical Sciences, McGraw-Hill, 1969. 



908 National Computer Conference, 1976 

2. Howden, William E. and Jeffrey Laub, "Automatic Case 
Analysis of Programs," Proceedings of Computer Science 
and Statistics: 8th Annual Symposium on the Interface, 
Los Angeles, February, 1975. 

3. King, James C., "A New Approach to Program Testing," 
Proceedings of the International Conference on Reliable 
Software, Los Angeles, April 1975. 

4. Boyer, Robert S., Bernard Elspas and Kan N. Levitt, 
"SELECT-A Formal System for Testing and Debugging 
Programs by Symbolic Execution," Proceedings of the 
International Conference on Reliable Software, Los Angeles, 
April 1975. 

5. Miller, E. F., "RXVP: An Automated Verification System 
for FORTRAN," Proceedings of Computer Science and Sta
tistics: 8th Annual Symposium on the Interface, Los 
Angeles, February 1975. 

6. Clarke, Lori, A System to Generate Test Data and Sym
bolically Execute Programs, Department of Compo Science, 
University of Colorado, CU-CS-060-75, February 1975. 

7. Deutsch, L. P., An Interactive Program Verifier, Ph.D. 
dissertation, University of California, Berkeley, May 1973. 

8. Burstall, R. M., "Proving Correctness as Hand Simulation 
with a Little Induction," Proceedings of IFIPS 74, North 
Holland Publishing Company, 1974. 



Some experience with DAVE - A Fortran program analyzer* 

by LEON J. OSTERWEIL and LLOYD D. FOSDICK 
University of Colorado 
Boulder, Colorado 

ABSTRACT 

This paper describes D ... ~ "E, an automatic program 
testing aid which performs a static analysis of Fortran 
programs. DAVE analyzes the data flows both within 
and across subprogram boundaries of Fortran pro
grams, and is able to detect occurrences of uninitialized 
and dead variables in such programs. The paper shows 
how this capability facilitates the detection of a wide 
variety of errors, many of which are often quite subtle. 
The central analytic mechanism in DAVE is a depth
first search procedure which enables DAVE to execute 
efficiently. Some experiences with DAVE are described 
and evaluated and some future work is projected. 

INTRODUCTION 

There is currently a great deal of interest in creating 
systems capable of assisting in the development of 
error-free programs. This interest results both from 
an awareness that erroneous programs are expensive 
and potentially lethal and from the fact that the prob
lems involved in producing error-free programs are 
challenging and stimulating. As might be expected in 
the case of such a problem, which has enormous eco
nomic significance and high intellectual appeal, the 
approaches to its solution are numerous and diverse. 
This diversity is shown by the following list of ap
proaches, which is intended to be indicative and not 
exhaustive: 

• Devise error resistant design and coding practices: 
The terms Structured Programming,1 Stepwise 
Refinement,2 and Top-Down Design3 are often as
sociated with work in this area. 

• Create error resistant languages: Such investiga
tors as Wirth-1 and Gannon and Horning5 have 
identified error-prone language features and pro
posed languages which avoid them. 

• Devise better organizational strategies for pro
gramming: The Chief Programmer Team strategy 
of Mills and Baker6 ,7 is notable in this area. 

* This work supported by NSF Grants GJ-36461 and DCR75-
90072. 

909 

• Prove the correctness of programs: This is a rela
tively difficult and time consuming process, which 
has been successful largely for relatively small 
programs. Current work,8 however, offers hope 
that machine aids may eventually facilitate pro
gram proving for large programs as well. 

• Build automated program testing aids: These aids 
can do such things as monitor program execu
tion,9,10,11 perform static diagnostic scans,12,13 and 
help generate test data.13

,H 

It seems clear that in the future the results of work 
in several of these areas will be coordinated in any 
effort to produce high quality, error resistant pro
grams. We feel certain, however, that because humans 
will always have faulty memories, be prone to commit 
keyboard errors, and will inject various other errors 
into their programs, that any such coordinated attack 
will surely incl~de a testing activity. This activity 
should rely heavily upon automated program test aids. 
In addition, we feel that automated test aids are of 
particular importance at present, because they, unlike 
most of the other current approaches, offer some hope 
of helping determine the validity and worth of some of 
the enormous body of programs already in existence. 

For these reasons, we created DAVE, an automated 
program testing aid which, we believe, embodies im
portant new diagnostic capabilities. 

DAVE AS AN AUTOMATED TESTING AID 

DAVE performs a diagnostic scan of an ANSI 
Standard15 Fortran program for the purpose of detect
ing erroneous or suspicious situations. Systems such as 
this are often referred to as static analysis systems, in 
that they do not require that the program be executed. 
As a consequence, their analytic results are not re
stricted in their applicability to a single execution. On 
the contrary, in DAVE's case it is possible to simulate 
in a limited way the effect of executing all sequences of 
statements in a program. Hence DAVE is able not only 
to detect errors, but, more important, it is also able to 
determine the absence of certain types of errors or 
suspicious situations for all possible executions of the 



910 National Computer Conference, 1976 

program. Because of this latter capability DAVE is a 
valuable tool in examining existing programs for the 
purpose of validating them. 

Should DAVE detect an error or suspicious situation 
along some execution sequence through the program an 
error or warning message describing the situation is 
produced. A human analyst must then determine the 
true importance of the message. At this point a dy
namic analysis system might be used to instrument the 
program and gather detailed information about the 
progress of an actual execution of the sequence of 
statements which DAVE had pinpointed. Hence in this 
way DAVE is also useful as a debugging aid during 
program development. 

ERRORS DETECTED BY DAVE 

All program testing aids are incapable of determin
ing whether or not a program is completely correct. 
A program testing aid can at best determine whether 
or not a program adheres to some specified standards. 
A violation of such a standard may be taken to be an 
a priori error or a suspicious condition, symptomatic 
of some other error. Hence in all program testing aids 
there must be an initial understanding of the standards 
against which programs are to be measured. In DAVE 
these standards all relate to the correct flow of data 
through a program. It is our contention that in a cor
rectly executing program two rules should always be 
obeyed: 

1. No variable will be used in a computation (refer
enced) until it has previously been assigned a 
value (been defined). 

2. A variable, once defined, will subsequently be 
referenced before the variable is redefined or the 
program terminates. 

DAVE's diagnostic scan determines whether either 
of these two rules can be violated for any sequence of 
statement executions. A violation of the first, called a 
type 1 anomaly, is a violation of the ANSI Fortran 
Standard15 and is considered to be an a priori error. 
A violation of the second, called a type 2 anomaly, is 
considered to be a symptom of some other error. DAVE 
is able to detect a type 1 anomaly for any possible 
execution sequence. Thus if DAVE does not detect such 
an anomaly then none exists within the program. Hence 
DAVE is able to both detect the presence, and assure 
the absence of data flow anomalies. The former capa
bility we refer to as error detection and the latter we 
refer to as validation. Clearly the foregoing implies 
that DAVE is able to validate programs for the absence 
of uninitialized variables. 

In practice we have found, however, that anomalies 
of both types are usually symptoms of other errors. We 
have been gratified to find that the range of errors 
symptomatized by type 1 and type 2 anomalies is quite 
large, extending from misspellings to subprogram invo-

cation errors. Because of this phenomenon of anoma
lies occurring as symptoms of other errors, it has 
turned out that DAVE has been most useful in indi
rectly detecting errors other than uninitialized and 
dead variables (in the sense of Reference 16). 

More specifically, a large measure of DAVE's in
direct error detection capability arises from the fact 
that DAVE performs its data flow analysis across sub
program boundaries. This data flow from one program 
unit to another must be completely determined if all 
possible anomalies are to be detected. Having made 
this complete determination, however, DAVE is in a 
position to also detect a variety of program unit 
communication errors such as illegal side effects and 
inconsistent COMMON declarations. Because this in
terprocedural data flow is often quite subtle, errors 
involving it are likewise often subtle and difficult for a 
human to identify. Hence it is not surprising that 
DAVE's error detection capabilities in this area have 
proven to be among its most useful features. 

AN EXAMPLE 

Figure 1 shows a somewhat contrived Fortran pro
gram which is designed to illustrate some of the error 
detection capabilities referred to in the previous sec
tion. The purpose of the program is to compute and 

COMMON IBI AREA, COST 
READ (5,1) PSF, LCRT, Dl, D2 
PI=3.1416 
IF (LCRT .NE. 1) GO TO 10 
AREA=AREAR (Dl, D2) 
GO TO 100 

10 IF (LCRT .NE. 2) GO TO 20 
AREA=AREAC (P, Dl) 
GO TO 100 

20 CALL AREAT (Dl, D2, AREA) 
100 CALL DOLS (PSF) 

WRITE (6, 2) COST 
STOP 

1 FORMAT (F6.2, 12, 2FI0.4) 
2 FORMAT (IH, FS.2) 

END 
FUNCTION AREAR (A, B) 
AREAR=A * B 
RETURN 
END 
FUNCTION AREAC (PI, RAD) 
AREAC=PI * RAD ** 2 
RETURN 
END 
SUBROUTINE AREAT (B, H, AREA) 
AREAT=0.5 * B * H 
RETURN 
END 
SUBROUTINE DOLS (PSF) 
COMMON IBI COST, AREA 
COST=PSF * AREA 
RETURN 
END 

Figure I-A program illustrating some of the error detection 
capabilities of DAVE 



print out the cost of covering an area with some cover
ing material. The program reads in PSF, the cost per 
square foot of the material; LCRT, an integer used to 
denote whether the area is a rectangle (if LCRT is 1), 
a circle (if LCRT is 2), or a triangle (if LCRT is 3) ; 
and D1 and D2, the two dimensions of the area (D2 is 
unused if LCRT is 2). The program then branches on 
LCRT to three different subprograms, AREAR, 
AREAC, and AREAT, which are supposed to compute 
the area of the rectangle, circle or triangle (respec
tively), and place the value of this area in the variable 
AREA. Subroutine DOLS is then called to compute 
COST, the product of AREA and PSF. Finally COST, 
the desired result, is printed out. 

Close inspection of the program reveals that it con
tains errors, some of which are not very obvious. Per
haps the most obvious error is that the valUe of pi is set 
into the variable PI, but the variable P is used to pass 
this value into AREAC, the subprogram which requires 
it. A second error is that there is a misspelling in the 
subroutine AREAT. The third parameter is named 
AREA, but the body of the subroutine defines a value 
for the variable AREAT instead. Hence upon return 
there is no value given to the main program variable 
AREA, which is referenced in a subsequent computa
tion. A third error involves the COMMON block B, 
which is used for communication between the main 
program and DOLS. B contains the variables AREA 
and COST. DOLS, ·which expects AREA to contain the 
computed area, uses it to compute the value of COST, 
which is then passed through B back to the main pro
gram. Unfortunately, the order of declaration of AREA 
and COST in the main program is the reverse of the 
order of declaration in DOLS. 

Detection of these three errors would most likely be 
at least tedious using conventional debugging methods. 
The third error would cause any execution to be errone
ous, but each of the first two would cause an erroneous 
execution only for a single specific value of LCRT. 
Hence it is reasonable to expect that the three errors 
would be ferreted out one at a time, perhaps with some 
difficulty, if the usual procedure of running test cases 
was followed. 

DAVE would facilitate the detection of all three 
errors in only one diagnostic scan because each one 
causes data flow anomalies. In the case of the first 
error, DAVE would identify the definition of PI with
out subsequent reference as a type 2 anomaly. DAVE 
would also determine that the first argument in any 
invocation of AREAC must carry in a value. Hence in 
analyzing the main program DAVE would conclude 
that the invocation of AREAC would cause a type 1 
anomaly, and would print an appropriate message. 
DAVE is unable to state directly the true error
namely a misspelling. The two anomaly messages, 
however, point strongly to the true error. 

The second error, also a misspelling, is likewise 
strongly indicated by anomaly messages. In analyzing 
AREAT, DAVE would discover that the local variable 

A Fortran Program Analyzer 911 

AREAT is never referenced after definition, and print 
a message describing this type 2 anomaly. DAVE would 
also determine that the parameter AREA is neither 
referenced nor defined in the subroutine. This is re
garded as a suspicious situation, and DAVE would 
produce a message describing it. Finally, in analyzing 
the main program, DAVE would discover that there is 
a sequence of statements leading up to the invocation 
of DOLS which does not cause the variable AREA to 
be defined (namely the one which includes the invoca
tion of AREAT). No anomaly message will be printed 
because, as shall be seen, the third error causes DOLS 
to make no use of AREA. Had the third error not been 
present, however, a type 1 anomaly message would 
have been printed. In this case the interaction of two 
errors causes the suppression of one anomaly message. 
DAVE, neVertheless, prodUCeS two other messages ir; 
reponse to the second error. 

The third error is a transposition of variables in a 
COMMON statement. DAVE would analyze DOLS and 
determine that it requires a value to be passed in 
through the second variable in COMMON block B, and 
that it passes out a value through the first variable in 
B. Upon analyzing the main program DAVE would 
find that COST, the second variable in COMMON 
block B, is never initialized before the invocation of 
DOLS-hence a type 1 anomaly message would be 
printed. DAVE would also discover that AREA, the 
first variable in block B, generally has a freshly com
puted value when DOLS is invoked. DAVE would ob
serve the DOLS resets this value before it is ever 
referenced and print a type 2 anomaly message. 
Finally, DAVE would observe that AREA, the first 
variable in block B, is never referenced after its defini
tion in DOLS and print another type 2 anomaly mes
sage. Here too, it is clear that these three messages 
strongly illuminate the transposition error, although it 
is never explicitly identified. 

This brief example is intended to give an impression 
of how DAVE's analysis can assist in isolating subtle 
errors. We expect that the reader can see how DAVE 
is also useful in detecting other errors such as trans
posed statements, illegal side effects, and mismatched 
argument and parameter lists. Likewise the reader 
should be able to see that the use of an automatic aid 
such as DAVE is far more necessary in analyzing a 
large, complex, real-world program than in detecting 
the errors in this small, simple, contrived example. 

THE DESIGN OF THE DAVE SYSTEM 

DAVE performs its analysis by passing over the pro
gram units of a program, from the lowest level sub
programs upward to the main program, analyzing each 
program unit exactly once, employing a depth-first 
search of a labelled flow graph of the program unit. 
Details of the system's design and implementation can 
be found in References 17 and 18, and hence are 



912 National Computer Conference, 1976 

omitted here. For completeness, however, a brief sim
plified overview shall now be given. 

DAVE's analysis is performed on labelled flow 
graphs, where a different graph represents each of the 
program units of the program. The nodes of a flow 
graph represent the program unit's statements and the 
edges represent intra-program-unit control transfers. 
Each node's label describes which variables are defined 
and referenced during the execution of the code cor
responding to the node. These graphs are constructed 
at the start of DAVE's analysis. The graphs are easily 
constructed, but they cannot immediately be completely 
labelled, due to the undeterminable status of variables 
which are used as arguments to subprograms. Hence 
the graphs are left only partially labelled until a later 
phase of the analysis. All invocations of subprograms 
which are made by a program unit are carefully noted, 
however. After the last program unit flow graph has 
been created and partially labelled, the totality of these 
invocations is used to construct the program call graph, 
a graph whose nodes represent the program units and 
whose edges represent the subprogram invocations. 
Due to the impossibility of recursive calling chains in 
ANSI Standard Fortran, it is expected (although not 
always true) that the call graph will be acyclic. Hence 
there will be leaf nodes (nodes without any outedges) 
in the graph. These represent program units which 
do not invoke any subprograms. Hence the flow graphs 
for these program units are known to be completely 
labelled. DAVE now continues by carefully analyzing 
these program units' flow graphs. 

Once a program unit's flow graph is completely 
labelled it is possible to determine the pattern of refer
ences to and definitions of each of the program unit's 
variables for each of the program unit's execution 
sequences. Uninitialized and dead variables are found 
by examining these patterns. In DAVE a variable's 
pattern of references and definitions is determined and 
examined by a depth-first search procedure (described 
in detail in Reference 18) which executes in time pro
portional to the number of edges in the flow graph. 
The search procedure is repeated for each variable in 
the program unit. It classifies each variable as either 
non-input, input or strict input and either non-output, 
output or strict output. A variable is classified input if 
along some, but not all, execution sequences through 
the program unit the variable is referenced before it is 
defined. If there is no such execution sequence, the 
variable is classified non-input. If the variable is refer
enced before definition along all execution sequences, 
the variable is classified strict input. Similarly, the 
variable is classified output if along some, but not all, 
execution sequences in the program unit the variable is 
defined. If there is no such execution sequence the 
variable is classified non-output. If it is defined along 
all execution sequences, it is classified strict output. 

These classifications having been made, DAVE be
gins its search for anomalies. If a local variable is 
classified strict input, it is clear that a type 1 anomaly 

will occur, and an error message is produced. If a local 
variable is classified input, then a type 1 anomaly exists 
for some, but not all, sequences of statements. In recog
nition of the fact that these sequences may not actually 
be executable in response to any input data, DAVE 
produces a warning message describing the possibility 
of executing an anomaly bearing sequence of state
ments. DAVE performs similar scans for type 2 
anomalies by executing searches from a definition of a 
local variable to determine whether the subprogram 
terminates or redefines the variable before referencing 
it. 

The determination of the input/output status of non
local variables (Le., parameters and COMMON vari
ables) of leaf subprograms is not used immediately in 
the detection of anomalies, but rather is used to enable 
DAVE's analysis to continue for higher level program 
units. The program call graph is used to locate all 
invocations of the leaf subprograms, and now the nodes 
corresponding to these invocations are labelled. At the 
end of this process, some non-leaf subprograms have 
become completely labelled and the depth-first search 
procedure can be applied to them. This process con
tinues until eventually the main program itself is 
searched. 

The process of using the input/output classification 
of a non-local variable of an invoked subprogram to 
label an invoking node is worthy of some elaboration 
here as it incorporates a number of useful error checks. 
DAVE first compares argument and parameter lists for 
agreement in length and type. Lack of agreement is 
considered an error. Next, parameter output classifica
tions are compared to arguments. If a parameter is 
classified as output or strict output and the correspond
ing argument is a constant, expression or subprogram 
name, DAVE produces a message. COMMON variables 
which carry data into or out of the invoked subprogram 
are identified at this time and messages describing 
them are made available for use as documentation. 
Finally, the variables in the invoking statement are 
examined to see whether any of them is used both as an 
input and an output in separate subprogram invoca
tions. If so, DAVE has detected an illegal side effect, 
and produces a message identifying it. 

After DAVE has searched the main program, it 
examines the input classifications of its COMMON 
variables. Error or warning messages are generated 
for each COMMON variable which is typed strict input 
or input but is not initialized in a BLOCK DATA 
subprogram. 

IMPLEMENTATION DATA 

DA VE is implemented as a Fortran program consist
ing of approximately 25,000 source statements. It 
operates in four overlaid phases, the largest of which 
occupies 50,000 decimal words of central memory 011 

the CDC 6400. DAVE is written almost entirely in 



machine independent ANSI Standard Fortran, Some 
non-Standard and machine dependent coding practices 
seemed expedient, however, and they are quarantined 
to a small number of small subprograms. DAVE was 
developed on the CDC 6400 at the University of Colo
rado, but has been successfully moved to a CDC 7600 
and two machines in the IBM 360/370 series. Installa
tions on a Univac 1100 series machine and a Honeywell 
6000 series machine are planned for the near future. 

Under its current configuration DAVE is able to 
process a program consisting of a few dozen subpro
grams, each of which may contain no more than 200-
250 source statements. These limits depend entirely 
upon internal table and scratch array sizes, and have 
been quickly altered to produce different experimental 
configurations. At this writing, the largest body of 
code which DAVE has processed has been a 2700 source 
statement subprogram library. DAVE is currently 
operational, however, on a machine with sufficient 
central memory to enable it to process its own source 
code, and this should be accomplished in the near 
future. The analysis of a source program by DAVE has 
been observed to require an average of 0.3 seconds of 
central processor time per source statement on the CDC 
6400 and to cost approximately six to eight cents per 
source statement under the University of Colorado 
Computing Center charge algorithm. 

SUMMARY OF EXPERIENCE TO DATE 

DAVE has been operational on an experimental basis 
for a few months to date. During this time we have 
seen evidence that it can be a valuable tool in the pro
duction of high quality, error-free programs. Most of 
our experience has come from using DAVE in vali
dating completed programs. These included a highly 
respected matrix manipulation system, several recent 
algorithms taken from the ACM Transactions on 
Mathematical Software, and a program submitted as a 
part of a Master's Thesis in Computer Science. Errors 
were detected in some of the algorithms, and the 
Master's Thesis was found to have numerous errors. 
In most cases the errors were of the type that would 
hamper program portability, such as reference to un
initialized variables which should have been initialized 
to zero, reference to exhausted DO loop indices and sub
program invocations with mismatched argument and 
parameter lists. In each case, the errors did not seem 
to prevent successful execution on the author's com
puter, but seemed likely to cause trouble if executed 
elsewhere. (There was some suspicion, however, that 
some of the erroneous subprogram invocations were 
imbedded in program segments which had never been 
tested or were unexecutable.) 

Perhaps the most surprising observation was that 
DAVE's messages often gave unexpected insight into 
the author's coding style. For example, a program for 
which DAVE produced numerous type 2 anomaly 

A Fortran Program Analyzer 913 

warning messages did not prove to be incorrect, but 
rather it contained numerous loops in which indices 
and counters were updated immediately before DO loop 
endings. It was discovered that the author tended to 
favor WHILE loop constructions which are often 
awkward in Fortran. This was observed by DAVE. 
As another example, some programs contained sub
routine definitions which did not use some parameters 
either as input or output. This was observed to be a 
symptom of the fact that the code had evolved, but not 
been carefully polished. vVe acknowledge that in the 
first case the author should probably have coded in a 
more comfortable language, and in the second the 
program was probably not thoroughly designed before 
coding began. DAVE can do nothing to prevent these 
serious breaches of good programming practice. It was 
surprising and gratifying, however, to discover that 
DAVE could often strongly indicate their presence-a 
capability which we believe is quite useful. 

We have had less experience in using DAVE as an 
error detection aid during program development. This 
seems paradoxical because we feel that DAVE is very 
well suited to aiding the detection of subtle errors, 
thereby speeding program development. The high cost 
of using and the awkwardness in accessing the current 
version of DAVE, however, forestalled its use in many 
cases. DAVE's accessing procedures have recently 
been streamlined, but the high cost of using the system 
is attributable to a decision made during development 
of the prototype system to favor flexibility over 
efficiency. Hence high costs are likely to remain for the 
foreseeable future. As a consequence of this, the few 
programs which DAVE helped to debug all had subtle 
errors which had defied earlier concerted efforts at 
detection. DAVE was usually able to point rather di
rectly at these. Such errors as camouflaged misspell
ings (e.g., CARD instead of CARDS) and mismatched 
argument/parameter lists were discovered in this way. 

Our experience has not been entirely positive. An 
obvious and troublesome difficulty is DAVE's copious 
output. As already illustrated, a single error often 
generates numerous messages. Moreover, we have ob
served that some messages are rarely symptoms of 
errors. The net effect is that human analysts are often 
reluctant to pursue all of DAVE's messages, thereby 
raising the possibility that errors whose symptoms 
have been detected will go unnoticed. DAVE users 
have also complained about the unclear wording of 
many messages. All of these human interface problems 
must be solved lest DAVE's useful capabilities be 
buried under an avalanche of opaque verbiage. 

PROBLEM AREAS AND FUTURE WORK 

We consider the current DAVE system to be a work
ing prototype. Consequently, as might be expected, it 
has neither the speed nor complete processing capa
bilities which might be expected of a polished system. 



914 National Computer Conference, 1976 

The purpose of this section is to describe the areas in 
which we feel DAVE is deficient and to indicate where 
and how improvements might be made. 

One of the most immediate problems is that DAVE 
was designed to analyze only programs written in 
ANSI Standard Fortran. DAVE has since been liberal
ized to accept most of the Fortran dialects available 
on CDC equipment. Little effort, however, has been 
devoted to the problems of accepting other dialects. 
Many of the changes required in order to accept such 
dialects appear to be straightforward, but it is worth
while to note that some features of some dialects (e.g., 
the ENTRY feature found in FORTRAN V19) cannot 
be properly analyzed by DAVE without substantial 
alterations. 

More serious is the fact that there are a number of 
features of ANSI Standard Fortran which are cur
rently incorrectly or inadequately handled by DAVE. 
A notable and discouraging example of this is the treat
ment of arrays. Currently DAVE treats all arrays as 
simple variables, thereby blurring all distinctions be
tween array elements and eliminating the possibility 
of detecting certain anomalous uses of the individual 
elements. Unfortunately, there are fundamental theo
retical reasons why patterns of array references in an 
arbitrary program can never be completely analyzed 
by a static analysis system such as DAVE. 

As already noted, the call graph of a Fortran pro
gram may not be acyclic even though the program is 
incapable of ever executing a recursive calling chain. 
Such a program cannot be analyzed by DAVE. The 
most promising solution to this problem seems to be to 
adapt DAVE so that it is able to analyze recursive 
programs. This is an interesting and worthwhile prob
lem which seems solvable, and would move DAVE in 
the direction of being able to analyze programs written 
in other languages such as ALGOL and PLjI. 

DAVE is also currently unable to build the complete 
call graph for programs in which subprogram names 
are passed as parameters. Hence DAVE cannot 
analyze such programs. As algorithm due to Kallal 
and Osterweil20 is capable of building the call graph 
of such a program. This algorithm will probably be 
incorporated into future versions of DAVE. 

Other problems are encountered by DAVE in trying 
to analyze programs containing extensive or tricky 
uses of aliasing constructs such as EQUIVALENCE 
statements and restructured COMMON lists. Most of 
these will be overcome in future versions of DAVE 
by using well-known compiling techniques. Others, 
such as using two EQUIVALENCE'd variables as 
arguments to the same subprogram, challenge some of 
DAVE's basic assumptions, and may never be satis
factorally solved. 

Programs in which variables become undefined (e.g., 
the exhaustion of a DO loop causes the undefinition of 
the DO index) may, under certain unusual circum
stances, be incorrectly analyzed. This results from our 
tardy recognition that variables must be typed with 

respect to undefinition just as they are typed with re
spect to input and output (i.e., they must be typed as 
non-undefined, undefined, or strict undefined). We have 
developed algorithms for performing and correctly em
ploying this typing of undefinition, but have not yet 
incorporated them into DAVE. 

Finally, we are actively exploring the relationship 
between static testing aids and global program op
timization. Our investigation21 has shown that exist
ing algorithms in global optimization can readily be 
harnessed to do much of the analysis done by DAVE. 
Hence we foresee the incorporation of systems such as 
DAVE into a future generation of compilers. 

REFERENCES 

1. Dijkstra, E. W., "Notes on Structured Programming," in 
Structured Programming, by O. J. Dahl, E. W. Dijkstra 
and C. A. R. Hoare, Academic Press, London and New York, 
1972. 

2. Wirth, N., "Program Development by Stepwise Refinement," 
CACM 14, pp. 221-227, April 1974. 

3. Mills, H. D., "Top-Down Programming in Large Systems," 
in Debugging Techniq11es in Large Systems, R. Rustin (ed.), 
Prentice-Hall, Englewood Cliffs, N.J., 1971, pp. 41-45. 

4. \Virth, N., "An Assessment of the Programming Language 
PASCAL," IEEE Transactions on Software Engineering, 
SE-1, pp. 192-198, June 1975. 

5. Gannon, J. D. and J. J. Horning, "Language Design for 
Program Reliability," IEEE Transactions on Software 
Engineering, SE-1, pp. 179-191, June 1975. 

6. Mills, H. D., "How to Write Correct Programs and Know 
It," Proceedings of the 1975 International Conference on 
Reliable Sofhva1'e, IEEE Cat. No. 75CH0940-7CSR, pp. 
363-370. 

7. Baker, F. T., "Chief Programmer Team Management of 
Production Programming," IBM Systems Journal, 11, pp. 
56-73, 1972. 

8. Good, D. 1., R. L. London and W. W. Bledsoe, "An Inter
active Program Verification System," IEEE Transactions 
on Software Engineering, SE-l, pp. 59~67, March 1975. 

9. Balzer, R. M.. "EXDAMS: Extendable Debugging and 
Monitoring System," AFIPS 1969 SJCC, 34 AFIPS Press, 
Montvale, N.J., pp. 567-580. 

10. Fairley, R. E., "An Experimental Program Testing Facil
ity," Proceedings of the First National Conference on 
Software Engineering, IEEE Cat. No. 75CH0992-8C, pp. 
47-52. 

11. Stucki, L. G., "Automatic Generation of Self-Metric Soft
ware," Proceedings of the 1973 IEEE Symposium on Com
puter Software Reliability, IEEE Cat. No. 73C40741-9CSR, 
pp.94-100. 

12. Ramamoorthy, C. V. and S-B. F. Ho, "Testing Large Soft
ware with Automated Software Evaluation Systems," IEEE 
Transactions on Software Engineering, SE-1, pp. 46-58, 
March 1975. 

13. Miller, E. F., Jr. and R. A. Melton, "Automated Generation 
of Testcase Datasets," Proceedings of the 1975 International 
Conference on Reliable Software, IEEE Cat. No. 75CH0940-
7CSR, pp. 51-58. 

14. Krause, K. A., R. W. Smith and M. A. Goodwin, "Optimal 
Software Test Planning Through Automated Network 
Analysis," Proceedings of the 1973 IEEE Symposium on 
Computer Software Reliability, IEEE Cat. No. 73C40741-
9CSR, pp. 18-22. 

15. American National Standards Institute, FORTRAN, ANSI 
X3.9,1966. 



16. Schaefer, M., A. Mathematical Theor'lJ of Gloha.! Program. 
Optimization, Prentice-Hall, Englewood Cliffs, ~.J., 1973. 

17. o sterweil , L. J. and L. D. Fosdick, Data Flow Analysis as 
an Aid in Documentation, Assertion Generation, Validation 
and Error Detection, University of Colorado Department of 
Computer Science Technical Report No. CU-CS-055-74. 

18, Osterweil, L. J. and L. D. Fosdick, "DAVE-A Validation, 
Error Detection, and Documentation System for Fortran 
Programs," Software Practice & Experience (to appear). 

A Fortran Program Analyzer 915 

19. Univac Division of Sperry Rand Corporation, UNlV AC 
1108 FORTRAN V, Cat. No. UP-4060 Rev. 1, Sperry Rand 
Corporation, pp. 4-18 to 4-19. 

20. Kallal, V. and L. J. o sterweil , (to appear as University 
of Colorado Department of Computer Science Technical 
Report). 

21. Fosdick, L. D. and L. J. Osterweil, "Validation and Global 
Optimization of Programs," Proceedings of the Fourth 
Texas Conference on Computing Systems, 1975. 





A Dynamic (FORTRAN) programming system 

by JULIUS A. ARCHIBALD, JR. 
State "lII1,iversity College 
Plattsburgh, New York 

ABSTRACT 

In recent years, ne,\x/ insights into the nature of pro
gramming languages have been obtained from the 
comparative study of natural and programming lan
guages. These studies reveal that programming 
languages are deficient in their ability to adapt both to 
new requirements and new means for communicating 
thoughts. A means of alleviating these difficulties, 
through a dynamic, structured expansion of an estab
lished programming language (FORTRAN) is pro
vided. 

INTRODUCTION 

During recent years, there have been some rather 
significant advancements in man's understanding of 
programming languages. Some ten or so years ago, 
and continuing into the present, we find a continuing 
growth of interest in the concepts of structured pro
gramming.1 ,2 More recently, there has been the sug
gestion that the nature of programming languages 
can be better understood by the study of natural 
languages and the drawing of analogies between these 
two different types of languages.3 One particularly 
useful analogy has been suggested, that between 
English, a poor, but useful natural language, and FOR
TRAN, a poor, but useful, programming language.4 

In doing this, we note that one of the major differences 
between these media of thought is their adaptability to 
changing requirements. Specifically, we note, both 
through a study of literature, and a review of our own 
usage of the language, that English has readily adapted 
both to the needs of expressing new thoughts: and to 
the needs of better ways of expressing and com
municating old thoughts. English has thus evolved in 
a timely manner. Indeed, the development of English 
has been concurrent with, rather than lagging behind, 
the development of human knowledge. We also note, 
regretfully, that programming languages in general, 
and FORTRAN in particular do not share this char
acteristic. Programming languages as we now know 
them, are incapable of dynamic development or evolve
ment. Programming methods have changed, and lan
guages have failed to keep pace. 

917 

The static nature of programming languages is a 
problem of particular concern today. The earliest 
programming languages, such as FORTRAN, were, 
of necessity, created before our present day under
standings of the nature and structure of algorithmic 
processes and programming languages were attained. 
(Versions of FORTRAN were in use some ten years 
before the notion of structure was developed.) The 
time has come for us to benefit from the new under
standings of the structure of algorithmic processes 
and programming languages developed in the last ten 
years within the framework of FORTRAN. The ideal 
solution would be to extend FORTRAN so as to in
clude the new structures. 

There are two problems. First of all, FORTRAN 
has been standardized.5 ,6 On the positive side; this was 
good for purposes of definition. We now have a precise 
understanding as to exactly what is FORTRAN and 
what is not FORTRAN.- Even more important, this 
understanding is the same in Boston, Atlanta, Los 
Angeles, and Seattle. The definition is not subject to 
local dialects. On the negative side, however, along 
with standardization came stagnation. The existence 
of a standard has successfully stifled the initiative 
needed to make the language flexible, and adaptive. 
To further complicate matters, those who were not 
content with the status quo mandated by the standard 
have ventured off into their own private extensions in 
such a manner as to produce a set of mutually incom
patible super-languages of the original common lan
guage. The overall effect has not been beneficial to the 
development of programming languages. 

The second problem is, in reality, not a problem of 
the programming languages themselves, but rather a 
problem resulting from differences in the use of natural 
and programming languages. The constructs of En
glish become meaningful as a result of interpretation 
by thought processes resident in the human brain. The 
constructs of FORTRAN become meaningful as a result 
of interpretation by compilers (or interpreters) resi
dent in a computer's memory. Thus, the increased 
flexibility (or adaptability) of natural languages over 
programming languages is not a question of the rela
tive merits of the languages themselves, but rather 



918 National Computer Conference, 1976 

a matter of the superior ability of the human brain, 
as compared to a compiler, to program itself (or be 
programmed) to interpret new constructs. Thus, in 
order to attain for a programming language the flexi
bility and adaptability of a natural language, we must 
consider not only the language itself, but also the 
compiler (at least in general terms), as they are known 
to exist for the language. We thus must act upon 
Wirth's conclusion that "Language design is compiler 
construction. "7 

We refer here to a programming system on a given 
machine as being made up of a specific language and 
the compiler or interpreter used to interpret that 
language on the machine of concern. We will also refer 
to FORTRAN programming systems on a machine 
independent basis in the same manner that FORTRAN 
as a language is regarded on a machine independent 
basis. In the remainder of this paper, we will be work
ing on obtaining flexibility and adaptability not merely 
for the language itself, but rather for the overall pro
gramming system. The objective is a dynamic, flexible 
extension of FORTRAN, as previously defined. 5 It will 
be accomplished through modification of the FOR
TRAN programming system. 

It is noted in passing that the present use of static 
structured extensions of FORTRAN, which must be 
converted to standard FORTRAN, through the use of 
preprocessors, falls short of the above stated objective. 
They provide structure without flexibility. The need 
for a dynamic language has already been noted in 
the literature. 8 Conventional pre-processors simply 
are not dynamic. A second problem is that the pre
processors are not always machine independent. The 
various extensions themselves are not all consistent. 

The approach of limiting oneself to a subset of the 
existing, standard FORTRAN from which things re
sembling structures can be formed is also inappro
priate. This approach involves the further limitation 
of an already inadequate medium, rather than an 
extension of the medium to meet new challenges. Said 
in other words, this approach also fails to provide 
flexibility. 

There is one more remaining question: "Why FOR
TRAN?" Again, the analogy with English. Users of 
English (both native and adopted) love to sit around 
and complain about how poor a language it is, how bad 
the grammar is, and how impossible spelling is. No 
one, however, has taken any serious steps to eliminate 
English. The best effort, to date, was the invention of 
a contrived artificial language, Esperanto,s a language 
with lots of merit and no potential. The problem is 
that too many people have already done, and are 
continuing to be doing, too many things with English 
to make a change feasible. Consider, for a moment, 
the problems that some of us are already experiencing 
from the change of just one small part of the language, 
namely the system of measures, to metric units. The 
same is true of FORTRAN, too many people have 

already done, and are continuing to do, too many things 
in FORTRAN to make a change feasible. FORTRAN 
is where the action is. The language, PL/I, intended to 
be a partial remedy, has no more potential than 
Esperanto. Weare, as a matter of fact, suffering from 
addiction to FORTRAN. In the present situation, the 
pain of continued use is less than the pain of with
drawal. We thus support previous conclusions of 
others3 as well as ourselves.9 

IMPLEMENTATION 

It has been shown that all programs, regardless of 
the language in which they are written, can be com
posed of three fundamental structures. 1 These struc
tures consist of a sequential or composite structure, 
some variant of a predicate structure, and some variant 
of a repetitive structure. Regardless of the choice of 
variant, the result, that these structures are sufficient, 
remains valid.10 (We do include, in our implementation, 
a fourth structure, the case structure, fully realizing 
that its use is not essential.) Thus, as will be seen, 
we will limit ourselves to D, D', and BJn structuresY 
The point is that each structure is made up of certain, 
fixed parts, which, because they are independent of 
the language concerned, are referred to by psycho
linguists as being "linguistic universals." 12 

The method of implementation that we use is to di
vide each program into two divisions. The first division 
consists of a definition of the form to be used for each 
part of each of the fundamental structures (or variants 
of the structures) to be used within the program. 
(We note that there may be several different definitions 
for each of the fundamental structures within the 
programs.) These structure definitions are followed 
by the second division, consisting of the source pro
gram itself, written in standard FORTRAN augmented 
by the just defined structures. Each programmer is 
free to define the fundamental structure in any manner 
that suits his (or her) convenience, thereby providing 
flexibility. Division one of the compilation will be the 
conversion of the user defined structures within the 
source program into standard FORTRAN statements, 
and the insertion of the resulting statements into ap
propriate places of the original source. In most situa
tions, we "very strongly convert" in the sense of 
Ledgard and Marcotty, the various D, D', and BJn 
structures to standard FORTRAN structures.l1 This 
conversion is followed by a routine FORTRAN com
pilation of the entire converted program. Any con
struct not part of standard FORTRAN must have been 
defined· and converted. A program without structure 
definitions is assumed to be in standard FORTRAN, 
and, as such, does not require a division one of the 
compilation. 

This differs from pre-processing, as it already exists 
today, in that each programmer, on a dynamic basis, 
creates his own form or forms for the fundamental 
structures. We reiterate that several different forms 



of each structure may be used in each program. There 
are no pre-established forms for the structures them
selves, only the parts of the structures remain in
variant. This is the feature that provides the flexibility 
absent in the more conventional pre-processing. 

All terminology used in describing structures will be 
compatible with FORTRAN usage. Thus, if in defining 
a predicate structure, the condition itself is referred 
to as being a logical expression, then the condition 
will require no further definition. Rather, it shall be 
~~~ •• ~~...l +1..~+ ~11 N4! +1.." ... ++ ... ;}.,,+"co ....... ,1 "1. ......... ,,+o ... ;co+;,.,,, ",-F 
(1.~i:')U.l.llt:U lJ.1J.Cl,t" (l,J..l V..L1..1...:; "'LJI.J~~IrJu. vo ",.1..1.\,...1. \..t.l..I.UO.l.UO'vll'\l..I.QLI.&. '-=' V..I..

FORTRAN logical expressions will apply.
This compatibility with FORTRAN will also apply

to the structure definition statements, e.g., such state
ments will begin in Column 7, etc.

As a specific of the implementation, the actual con
version of the user defined structures into FORTR"J\.l'r
must itself be done in FORTRAN, and the resulting
conversion must result in standard FORTRAN state
ments.5 (This in itself is difficult because of the in
complete manner in which strings are defined in FOR
TRAN.) The conversion of user defined structures will
require the insertion of new statements labels, and
may, as well, require new variable names. In those
cases where the existing FORTRAN can readily be
adapted to accept variable names and statement labels
beginning with previously illegal characters, such as $,
or #, the conversion will be simplified. In some other
cases, the implementation may permit the programmer
to designate and reserve specific sets of labels and
names for the conversion process. Neither of these,
however, can be a limitation, and, in the general case,
the source program must be completely pre-scanned so
that blocks of legal, unused statement labels and
variable names may be identified for use in the struc
ture conversion.

As a part of the structure conversion phase, the
original structure statements will be converted into
comments, so that they can be retained for documen
tary purposes.

STRUCTURE DEFINITION

It is emphasized that, on a program by program
basis, the programmer is free to define any number
of structures (including none at all) that suits his (or
her) convenience in the writing of the program. The
programmer will be free to define his own structures,
so long as he (or she) retains all of the essential parts
for each structure. Thus, in what follows, the method
of definition will be presented. Examples will be in
cluded for illustrative purposes only.

While no attempt is made to either prescribe or limit
the forms of specific structures, certainly, all of the
control structures occurring in the more common lan
guages (e.g., ALGOL), expressed in any natural lan
guage using the Latin alphabet, should be definable
for use in the dynamic FORTRAN programming sys-

A Dynamic (Fortran) Programming System 919

tern. In our dynamic system, words like "si", "alors",
and "autre" could easily be used in place of "if",
"then", and "else".

As indicated previously, the actual form of the struc
ture definition depends upon the structure itself. The
structures to be used are defined in a "structure divi
sion", placed in front of the main program. The first
statement of each definition (beginning in Column 7)
will be one of the following depending upon the
structure:

STRUCTURE SEQUENTIAL
STRUCTURE PREDICATE
STRUCTURE REPETITIVE
STRUCTURE CASE

Each of these structures has its own, unique parts,
which must be defined. Starting in Column 7, the com
ponent of the structure is indicated. That is followed
by the statement to be used in the program to define
the structure.

As an overall program organization, each program
consists of a large sequential structure (which need
not be explicitly defined). Within this structure, predi
cate, repetitive, and case structures, if needed, must be
programmed in a form defined either in the structure
section, or in standard FORTRAN. Structures may
be nested within other structures. Indication of se
quential structures is optional, except that they must
be indicated explicitly when they are made up of more
than one statement and are contained within predicate,
case, or repetitive structures. At the other extreme,
each statement is, by default, a sequential structure
of one statement. There is no need to ever explicitly
define a sequential structure of only one statement,
even when it is inside of a predicate, repetitive, or case
structure.

DEFINITION OF SEQUENTIAL STRUCTURES

The sequential structure is extremely trivial. To de
fine a sequential structure or a sequential block, it is
merely necessary to indicate its opening and its closing
form. For example, a programmer might define the
structure as follows:

STRUCTURE SEQUENTIAL
OPENING BEGIN
CLOSING END

This will cause the programming system to recognize
groups of statements and/or structures between the
defined OPENING and CLOSING statement brackets
as a sequential structure. Each individual statement
will be treated as a sequential structure without being
so defined, and without having statement brackets. In
the general case the defined OPENING statement will
be converted into a comment, and otherwise ignored.
The defined CLOSING statement will be converted into

920 National Computer Conference, 1976

a comment, and a CONTINUE with a legal label will
be inserted just ahead of the converted END. The
following special cases are recognized:

1. If the entire program is included as a sequential
block, the defined CLOSING statement is con
verted into a conventional FORTRAN END
statement. (It is anticipated, however, that non
executable statements, such as DIMENSION and
FORMAT, will be placed outside of such blocks.)

2. If the structure is the THEN or ELSE part of a
predicate structure, a PROCEDURE part of a
replicative structure, or an ALTERNATIVE
part of a case structure, a CONTINUE with a
legal label is inserted just after the converted
OPENING statement.

3. If the defined OPENING statement is labeled, a
CONTINUE statement with this label is inserted
just after the defined OPENING statement.

4. If the defined CLOSING statement is labeled, this
label will be used on the CONTINUE inserted
just before it.

DEFINITION OF PREDICATE STRUCTURES<

The predicate structure consists of from two to four
parts: a condition, an affirmative or condition-true
alternative, an optional negative or condition-false
alternative, and an optional closing. The condition
itself functions as the opening of the structure. The
two alternatives will be identified as sequential struc
tures (possibly containing other structures). A closing
may optionally be defined for the structure. If, how
ever, no such closing is defined, the structure will be
assumed to terminate at the end of the negative alterna
tive, if any, or at the end of the positive alternative if
there is no negative alternative.

As an example, consider:

STRUCTURE PREDICATE
OPENING IF (logical expression)
AFFIRMATIVE THEN (structure)
NEGATIVE ELSE (structure)
CLOSING END IF

(The use of parentheses is for generic purposes, i.e.,
any logical expression legal within FORTRAN, or any
structure defined for the current program, may be
used.)

The opening statement will be converted to a com
ment. A standard logical IF for the negative of the
logical expression in the opening statement will be
created to transfer to the negative alternative (or the
closing if there is no negative alternative). This state
ment will carry the same label as the original opening
in the structured form, if any. The positive alternative
(a structure) will follow, in line, terminating with a
converter generated GO TO the closing of the predicate
structure. The negative alternative will then follow

in line. A labeled CONTINUE will be inserted as the
final statement (or closing) of the predicate structure.
The user supplied indicators of the alternatives and the
closing will be converted into comments.

It is noted that the requirement for a condition and
an affirmative alternative structure precludes the in
terpretation of a standard FORTRAN logical IF as a
defined structure. Use of the standard logical IF,
followed by a single statement "then procedure" (other
than the GO TO) is encouraged in the dynamic FOR
TRAN programming system. Such logical IF's possess
all of the virtues of structure. Moreover, as part of
standard FORTRAN, they require no further defini
tion.

DEFINITION OF REPETITIVE STRUCTURES

The repetitive structure is, perhaps, the most difficult
to define. This is a natural result of the fact that the
repetitive structure permits a large number of varia
tions. A controlled loop, whether or not it is arranged
as a definite structure, has certain recognizable parts.
These always include a body or procedure that is re
peated many times, and a test that is performed many
times, to determine whether or not to leave the loop. In
some cases, the loop is controlled by a counter or index
that must be initialized once and incremented many
times. In some cases, there are data values to be
initialized once. The testing may be done before each
performance of the procedure, after each performance
of the procedure or at a specific point within the pro
cedure. "In the latter case, there are, in effect, two
procedures separated by a test, and organized in such
a manner that there will be many performances of the
two procedures, in order. (In what follows, we will not
be limited as to the number of possible procedures to be
repeated. We have implemented the full Omega-K
structure of Bohm and JacopinU) We note, further,
that there are two possible tests for leaving a loop:
the loop may be continued UNTIL a certain condition
becomes true, or it may be continued WHILE a certain
condition remains true. (These are reverses of each
other. In the former case, repeat on condition false,
in the second repeat on condition true. Negating the
condition permits switching of the test.)

Thus, in describing a repetitive structure, there is a
mandatory opening section, an optional initialization,
one or more procedures to be repeated, one or more
tests for continuation or completion of the loop either
before the first procedure, after the last procedure,
or between any two procedures and finally a structure
closing.

As an example consider:

STRUCTURE REPETITIVE

OPENING PERFORM

INITIAL ESTABLISH (structure) *
* The INITIAL part is optional.

CONTINUE or . .
COMPLETE TEST (logIcal expreSSIOn) t

PROCEDURE (structure) **
CONTINUE or TEST (I . I .) COMPLETE ogIca expreSSIOn +

PROCEDURE (structure) **
CONTINUE or
COMPLETE TEST (logical expression) t

CLOSING END PERFORM

During the structure conversion phase of the pro
gram, the opening statement will be converted to a
comment, and the initialization part expanded as previ
ously described. A labeled CONTINUE statement will
be inserted either immediately after the initialization,
if any, or after the opening. Each continue part or
complete part will be preceded and followed by labeled
CONTINUE statements, to be inserted if not provided
by the programmer. (Two of these parts coming to
gether, however, will not have a CONTINUE inserted
between them.) The continue and complete parts, as
logical expressions, will be incorporated into logical
IF statements, as follows:

CONTINUE part
IF (.NOT. expression) GO TO closing

COMPLETE part
IF (expression) GO TO closing

The various procedure parts will be converted as previ
ously described. Immediately before the closing com
ponent, a GO TO the beginning of the first procedure
will be inserted by the converter. The closing itself
will be converted into a labeled CONTINUE. As in
the case of all structures, all statements requiring
conversion will be converted into comments.

DEFINITION OF CASE STRUCTURES

The case structure involves the identification of an
(integer-valued) arithmetic expression which func
tions as an index and a set of alternatives or choices
to be executed depending upon the value of the index,
Le., if the index is 1, choice 1 only will be executed, etc.
For purposes of implementation, the arithmetic ex
pression functions as the opening of the structure. A
closing part is mandatory.

As an example, consider:

STRUCTURE CASE

OPENING EXAMINE (arithmetic expression)

** One PROCEDURE part required, the remainder are optional.
:j: One CONTINUE or COMPLETE part is required, the re
mainder are optional. A repetitive structure may be defined with
both a continue and a complete part.

A Dynamic (Fortran) Programming System 921

ALTERN ATIVE n CASEn (structure) *

CLOSING END CASE

The opening statement itself is converted to a com
ment. If the arithmetic expression is not an integer
variable name, an arithmetic assignment statement
will be generated, setting the expression to an integer
variable. The IFIX function 'llill be inserted if needed.
A computed GO TO statement will then be created, to
send control to an appropriate alternative. The arith
metic assignment statement, if any, or the computed
GO TO if no assignment statement is needed, will carry
the same label as the original opening in the structured
form, if any_ Each of the alternatives '''lill end \v"ith a
GO TO the closing statement, which, itself, will be con
verted to a CONTINUE with a system generated
label.

GENERAL PROVISIONS

During the process of interpreting the user supplied
structure definition, the definition statements will be
converted into comments. A blank comment statement
will be inserted following every closing component.

All comments included in the original program will
be retained during structure conversion.

It is generally recommended that structures be in
dented to facilitate their recognition. In using this
dynamic programming system, no indentation rules are
imposed upon the user. Indentation supplied by the user
(if any) will be retained by the converter.

SAMPLES

In what follows, learning exercises will be shown
written in a form for the FORTRAN programming
system, and then converted into standard FORTRAN.
They are intended purely as a demonstration of the
concepts previously described.

Sample 1.-Table of roots of integer valued real
numbers.

A. Source in Dynamic FORTRAN

STRUCTURE SEQUENTIAL
OPENING START
CLOSING FINISH
STRUCTURE REPETITIVE
OPENING REPEAT
INITIAL SET
PROCEDURE

* Normally, there will be three or more of these components. The
lower case n is used to indicate an integer number: 1,2, ...
maximum value.

922 National Computer Conference, 1976

Sa,mple 1 continued
A. Source in Dynamic FORTRAN continued

COMPLETE TEST
CLOSING END REPEAT
STRUCTURE REPETITIVE
OPENING ITERATE
INITIAL SET
PROCEDURE
COMPLETE CONVERGE
CLOSING END ITERATE
DIMENSION Y (10)
START
WRITE (6,1001) (N,N=1,10)
REPEAT

SET
1=1
START
X=FLOAT(I)
Y(1) =X
REPEAT

SET
J=2
START
ITERATE

SET
START
V=FLOAT(J)
Z3=1.
FINISH
START
Z=Z3
Zl= (V-1.)*Z
Z2=X/Z** (J -1)
Z3= (Zl+Z2)/V
FINISH
CONVERGE
ABS(Z-Z3) .LT. X*1.E-6
END ITERATE

Y(J) =Z3
J=J+1
FINISH
TEST
J .GT. 10
END REPEAT

WRITE (6,1002) Y
1=1+1
FINISH
TEST
I .GT. 50
END REPEAT

STOP
FINISH

1001 FORMAT (1H1, 10 (3X,5HROOT ,12»
1002 FORMAT (1H ,10F10.6)

END

B. Converted Standard FORTRAN
C STRUCTURE SEQUENTIAL
C OPENING START

c
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C

C
C

90001
C

C
C

90002
C
C
C
C

90003
C
90004
C

90005
C
C

90006
C

90007
C

CLOSING FINISH

STRUCTURE REPETITIVE
OPENING REPEAT
INITIAL SET
PROCEDURE
COMPLETE TEST
CLOSING END REPEAT

STRUCTURE REPETITIVE
OPENING ITERATE
INITIAL SET
PROCEDURE
COMPLETE CONVERGE
CLOSING END ITERATE

DIMENSION Y(10)
START
WRITE (6,1001) (N, N=1,10)
REPEAT

SET
1=1
CONTINUE
START
X=FLOAT(I)
Y(l) =X
REPEAT

SET
J=2
CONTINUE
START
ITERATE

SET
START
V=FLOAT(J)
Z3=1.
CONTINUE
FINISH
CONTINUE
START
Z=Z3
Zl= (V -1.) *Z
Z2=X/Z** (J -1)
Z3= (Zl+Z2)/V
CONTINUE

FINISH
CONVERGE
IF (ABS(Z-Z3) .LT. X*1.E-6) GO

TO 90006
GO TO 90004
CONTINUE
END ITERATE

Y(J) =Z3
J=J+1
CONTINUE
FINISH

Sample 1 continued

B. Converted Standard FORTRAN continued

C TEST
IF (J.GT. 10) GO TO 9000S
GO TO 90002

9000S CONTINUE
C END REPEAT

90009
C
C

90010
C

WRITE (6,1002) Y

CONTINUE
FINISH
TEST
IF (1 .GT. 50) GO TO 90010
GO TO 90001
CONTINUE
END REPEAT

STOP
90011 CONTINUE
C FINISH

1001 FORMAT (lH1, 10 (3X,5HROOT ,12))
1002 FORMAT (lH ,10F10.6)

END

Sample 2.-Replacement sort of forty random numbers

A. Source in Dynamic FORTRAN

STRUCTURE SEQUENTIAL
OPENING BEGIN
CLOSING END
STRUCTURE PREDICATE
OPENING TEST
AFFIRMATIVE THEN
CLOSING END TEST
STRUCTURE REPETITIVE
OPENING LOOP
INITIAL SET
PROCEDURE
CONTINUE WHILE
CLOSING END LOOP
DIMENSION D(40)
BEGIN
WRITE (6,91)
LOOP

SET
1=1
BEGIN
CALL BGHT (D (1))
WRITE (6,92) D (I)
1=1+1
END
WHILE
I .LE. 40
END LOOP

WRITE (6,93)

A Dynamic (Fortran) Programming System 923

LOOP
SET
1=1
BEGIN

LOOP
SET
BEGIN
IMIN=I
J=I+1
END
BEGIN
TEST

D (J) .LT. D (1M1N)
THEN
IMIN=J

J=J+1
END
WHILE
J .LE. 40
END LOOP

T=D(I)
D (I) =D (IMIN)
D(IMIN) =T
1=1+1
END
WHILE
I .LE. 39
END LOOP

LOOP
SET
1=1
BEGIN
WRITE (6,92) D (1)
1=1+1
END
WHILE
I .LE. 40
END LOOP

STOP
END

91 FORMAT (lH1, 3SHSORT OF FORTY RANDOM
NUMBERS, UNSORTED, / /)

92 FORMAT (lH ,E15.S)
93 FORMAT (lHl, 36HSORT OF FORTY RANDOM

NUMBERS, SORTED, / /)
END

B. Converted Standard FORTRAN

C STRUCTURE SEQUENTIAL
C OPENING BEGIN
C CLOSING END
C
C STRUCTURE PREDICATE

924 National Computer Conference, 1976

Sample 2 continued

B. Converted Standard FORTRAN continued

C OPENING TEST
C AFFIRMATIVE THEN
C CLOSING END TEST
C
C STRUCTURE REPETITIVE
C OPENING LOOP
C PROCEDURE
C CONTINUE WHILE
C CLOSING END LOOP
C

DIMENSION D(40)
C BEGIN

WRITE (6,91)
C LOOP
C SET

1=1
90001 CONTINUE
C BEGIN

CALL BGHT (D (l))
WRITE (6,92) D (I)
1=1+1

90002 CONTINUE
C END
C WHILE

IF (.NOT. (l .LE. 40» GO TO 90003
GO TO 90001

90003 CONTINUE
C END LOOP

WRITE (6,93)
C LOOP
C SET

1=1
90004 CONTINUE
C BEGIN
C LOOP
C SET
C BEGIN

IMIN=I
J=I+1

90005 CONTINUE
C END
90006 CONTINUE
C BEGIN
C TEST

IF (.NOT. (D (J) .LT. D (lMIN) »
GO TO 90007

C THEN
IMIN=J

90007 CONTINUE
C END TEST

J=J+1
90008 CONTINUE
C END

C WHILE
IF (.NOT. (J .LE. 40» GO TO 90009
GO TO 90006

90009 CONTINUE
C END LOOP

T=D(I)
D(I) =D(IMIN)
D(lMIN) =T
1=1+1

90010 CONTINUE
C END
C WHILE

IF (.NOT. (I .LE. 39» GO TO 90011
GO TO 90004

90011 CONTINUE

C
C

END LOOP
LOOP

SET
1=1

90012 CONTINUE
C BEGIN

90013
C
C

WRITE (6,92) D (l)
1=1+1
CONTINUE
END

WHILE
IF (.NOT. (l .LE. 40» GO TO 90014
GO TO 90012

90014 CONTINUE
C END LOOP

STOP
90015 CONTINUE
C END
91 FORMAT (lH1, "SORT OF FORTY RAN-

92
93

DOM NUMBERS, UNSORTED" I j)
FORMAT (lH ,F15.8)
FORMAT (lH1, "SORT OF FORTY RAN

DOM NUMBERS, SORTED" II)
END

CONCLUSIONS

The foregoing discussion and samples demonstrate a
method for moving the practice of programming into
the nineteen seventies without abandoning FORTRAN.
The following observations are made:

1. The user defined structures so dominate the pro
gram that, in its unconverted form, it is difficult
to recognize it as FORTRAN at all.

2. The original source is free of GO TO statements,
thus re-enforcing Dijkstra on the subject of that
statement. 11

REFERENCES

1. Bohm, C. and G. Jacopini, "Flow Diagrams, Turing Ma
chines, and Languages with only Two Formation Rules,"
Communications of the ACM, Volume 9, No.5, May 1966.

2. Dijkstra, E. W., "Notes on Structured Programming," in
Dahl, Dijkstra, and Hoare, Structured Programming, Aca
demic Press, 1972.

3. Naur, P., "Programming Languages, Natural Languages,
and Mathematics," Communications of the ACM, Volume
18, No. 12, December 1975.

4. Ralston, A., Private Communication with this author, June
16,1975.

5. X3.9.1966 American Standard FORTRAN, American Stan
dards Association, Washington, 1966.

6. X3.10.1966 American Standard Basic FORTRAN, American
Standards Association, Washington, 1966.

7. Wirth, N., "On the Design of Programming Languages,"
Proceedings of the IFIP Congress 1974, North Holland, 1974.

A Dynamic (Fortran) Programming System 925

8. Johe, J. M., "Comments on the Topic 'Programming, and Its
Implications on Programming Languages," ACM '75 Pro
ceedings of the Annual Conference.

9. Archibald, J. A., Jr. and M. Katzper, "On the Preparation
of Computer Science Professionals in Academic Institu
tions," AFIPS Conference Proceedings, Volume 43, 1974.

10. Dijkstra, E. W., "Go To Statement Considered Harmful,"
Communications of the ACM, Volume 11, No.3, March 1968.

11. Ledgard, H. F. and M. Marcotty, "A Genealogy of Control
Structures," Communications of the ACM, Volume 18, No.
11, N o'~lcmber, 1975.

12. Fodor, J. A., T. G. Bever and M. F. Garrett, The Psychology
of Language, McGraw-Hill Book Co., 1974.

GPMX-A portable general purpose macro processor
adapted for preprocessing FORTRAN

by ROBERT C. GAMMILL
The Rand Corporation
Santa Monica, California

ABSTRACT

GPMX is an extension of GPM, a simple, elegant yet
powerful language independent macro processor de
scribed by Strachey.l Unextended, GPM is not suited
for preprocessing languages which use column position
and end of record to delimit statements. Examples
are FORTRAN and many assembly languages. Many
programmers are constrained to work in such limited
languages and G PMX is a simple yet powerful tool for
extending and modifying these languages. Others6

have developed preprocessors dedicated to a particular
language. This has advantages for the implementor,
but requires the user to learn a different preprocessor
for each language he uses. GPMX is designed to work
on any language so that the (non-trivial) effort of
learning to use it need not be repeated later. Exten
sions in GPMX include macro control over: files, record
input and output, spacing, conditional macro pro
cessing and compilation, access to input and output
buffers, and dynamic changing of the macro flag
characters. Most of the extensions are accomplished
simply by putting the control information on the macro
stack where the processor has access to it (ala von
Neumann). GPMX has been implemented in ANS
FORTRAN for portability. Several applications are
shown, including GO-TO free control structures for
FORTRAN. Source is available.

GOALS AND PHILOSOPHY

An important goai of this work was the development
of a flexible software tool. To be called a tool (using a
restrictive definition) software must be suitable for a
variety of tasks, on the scale of a single human being
(the user) and not dependent upon any unusual aspect
of the environment (i.e., adaptable). To make an
analogy, a Boeing 747 would not qualify as a tool,
(under this definition) for although it is suitable to
some tasks, it is not at a human scale (e.g., in terms of
maintenance or costs) nor is it adaptable to different
environments (e.g., small airports, short hauls, low

927

load levels). However, a crescent wrench would qualify
as a tool, since it is suitable to many tasks, at a human
scale (e.g., purchasable, maintainable and portable)
and can be used in almost any environment (e.g., under
water). Many language processors do not qualify as
tools. They have been designed for a specific task and
environment, so when the situation changes they prove
to be clumsy or useless. Then, the large size of most
language processors makes them difficult to modify or
adapt to the new situation. The lack of adaptable tools
has made software development needlessly complex.

GPM qualifies as a tool. It is suitable to a number
of tasks and on a human scale. The original imple
mentation of GPM in CPL was extremely compact, and
was listed in the last three pages of Reference 1. Gries5

suggests its implementation as a student exercise
(page 433). GPMX appears, to the untrained eye, to
be unchanged from GPM. This is because the exten
sions have been carefully designed to minimize the
structural change in GPM. Most of the changes have
been accomplished by adding a few primitive macros
and by putting the processor input-output and control
information on the stack as the values of defined
macros, available for use and modification. This is a
simple application of the von Neumann stored program
concept, and it provides the same startling increase of
power to GPM that it provided to the early computers.
Finally GPMX has been implemented in ANS
FORTRAN for portability.

Although GPMX is a tool, we do not want to imply
that it is simple for an inexperienced programmer to
learn to use all its power. Simple applications of
GPMX can be easy to understand, but an application
that uses its full power can be extremely difficult to
follow. Perhaps it is best to characterize GPMX as
a tool for the advanced scientific or systems program
mer, who finds it necessary to write programs in
limited languages (such as FORTRAN and assembly)
because of special properties they possess, yet desires to
have a flexible and powerful macro processor for ma
nipulating his source text.

GPMX provides the following capabilities:

(a) Conditional compilation-so alternative ver
sions of a subroutine need not require multiple
source files.

(b) Macro processing-allowing insertion of the
same declarations in many subroutines or selec
tive use of open or closed code.

928 National Computer Conference, 1976
~"~O~·~.~.~_~_~-~ o~~~·~,~"-~~~_~~o~~·=·_·~._·_ ~ _________________________________ _

(c) Text compacting-allowing reduction of blanks
and other unused redundancy.

(d) Syntax extension-such as adding GO-TO free
control constructs to FORTRAN.

(e) Language independence-since information
about the language processed is carried in
macros not in the processor.

(f) Power and flexibility-the elegance and sim
plicity of GPM has been kept while its con
siderable power has been increased.

DESCRIPTION OF GPM

In recent years a number of language independent
macro processors have been introduced.2

,3,4 GPMl is
one of these. In this section we will briefly survey the
characteristics of G PM. G PM uses marker characters
to indicate where a macro call begins "[", ends "]"
and the separations between arguments" :". GPM has
only six primitive (built-in) macros. An example
showing the use of three of these is :

[DEC:[BAR:+ :[BIN:3] :[BIN:2]]] (1)

GPM has two data types, "binary" integer and char
acter string. BIN converts from character string to
integer and DEC does the reverse. BAR allows integer
arithmetic (+ - * /). Example (1) produces the char
acter string "5" as its result. The most important
primitive macro DEF allows definition of new macros.

[DEF: +:< [DEC:[BAR:+ :[BIN:%I]:>
<[BIN:%2]]]>] (2)

A call on the defined name "+" causes evaluation of
its body (second argument of DEF).

[+ :3:2] (3)

Example (3) will also produce "5" as its result. Ex
ample (2) introduced string quotes « and» and
formal parameters (Le., % 1). Evaluation of nested
quotes removes the outermost pair. Macro bodies are
normally protected from evaluation at definition time
by quoting them. Access to the body of a macro with
out evaluation is provided by VAL.

[VAL: +] (4)

Example (4) will return the body of the + macro, the
quoted string from example (2). UPDATE stores new
values in the bodies of macros.

[UPDATE:+ :<This is a new body for +.>] (5)

The marker character set being used here is different
from that used in GPM.l GPMX allows these to be
changed at will, so their selection is dictated only by
esthetics and local constraints.

An important feature of GPM is that macro calls
are allowed anywhere. For example, [[A]: [B]] is a
call on a macro whose name is the result of [A] and
whose argument is the result of [B]. Also, since macro

definition is done by a macro call, macro definitions
may be created in unusual ways. One use of this in
GPM is the temporary macro definition. If a macro
definition is created in the argument sequence of a
macro call, that definition will exist only so long as the
called macro is being evaluated.

[A: [DEF:N: [BIN :3]]] (6)

In example (6) the macro N will be defined (with
value 3) only so long as macro A is being evaluated.
If there was a previous definition for N, it will be
temporarily superseded by this one. One of the im
portant uses of temporary definitions is for self-defin
ing macros, where the definition of the macro occurs in
its own argument sequence.

[DEF :EV AL: < [X: [DEF:X: % 1]] >] (7)

Every time the macro EV AL is called, the macro X is
temporarily defined and then called. Since a macro
body is evaluated when its name is called, this means
that the result of a call on EV AL will be the result of
evaluation of its first argument. Using EVAL to cause
evaluation and string quotes to defer it gives the ability
to specify when evaluation is to be carried out. Thus,
although Brown4 characterizes GPM as passing param
eters "by value", as shown in (10), it is possible to
pass them "by name", as shown in example (9).

[DEF:N:3]

[DEF:A:< [UPDATE :N:[+ : [VAL:N] :1]]>

< [EVAL: <yo 1] >] (8)

[A: < [VAL :N] >]

[A: [VAL:N]]

<BY NAME>

<BY VALUE>

(9)

(10)

Another important result from the ability to create
temporary definitions, is that a conditional macro can
be defined.

[DEF:COND:< [%1: [DEF:%I :%4] >
<[DEF:%2:%3]]>] (11)

The COND macro depends upon the fact that the most
recent definition is used if two macros have the same
name. COND executes its third argument if its first
and second arguments match, and its fourth argument
otherwise. Thus, [COND:A:B:C :D] will produce re
sult D, while [COND:A:A:C :D] will product result C.
Conditional execution gives access to the recursive
calling capability of GPM by allowing termination of
recursive loops. The standard example is the recursive
computation of the factorial function (fact(i) : = if
i=O then 1 else i*fact (i-I)).

[DEF:FACT:<[COND:%I:O:I:<[* :>%1<:»
< < [FACT:[-:> %1< :1]]] >] >] (12)

A more practical example would show how data tables
may be generated using recursion, but such examples
become extremely involved.

EXTENSIONS IN GPMX

In order to make GPM useable as a FORTRAN pre
processor, new capabilities have been added. The
elegance and simplicity of GPM makes this easy. In
adding new capabilities to GPM care was taken to
minimize the set of additional primitive macros, as the
elegance of the original set is one of GPM's best
features.

The most obvious area of need when using GPM
as a FORTRAN preprocessor results from the fact that
FORTRAN is column and line (record) oriented while
GPM deals with a character string. The solution imple
mented in GPMX is the introduction of eleven new
primitive macros which cope with the problems of
record input, output and blank fill. Table I gives the
macros and the output or side effect yielded by execu
tion of each.

These new primitive macros use a special marker
character for bevity and so as not to conflict with user
defined macros which have one character names. In
other words, [5] will not give the same result as $5,
but will seek a user defined macro named 5. An early
version of GPMX used [R] for $1 and [W] for $2, but
access to these was often destroyed by subsequent user
macro definitions. Thus, $0 through $9 are primitive
macros whose meanings cannot be superseded. The
user of GPMX who does not need line and column con
trol and fears that a $ macro may occur in the input
text, can disable this feature by changing the definition
of the $ character to an illegal value. The utility of
very short macros in simple text substitution is appar
ent, so any GPMX macro with a single character name
(not a digit) and no arguments can be called in this
manner. For example, the macro [DEF:S: <$2$6>],
which can be called either as [S] or $S, is useful for
moving to column 7 of the next line.

Another mechanism which has been provided in
GPMX is the line distributor, which controls the dis
tribution of GPMX input records. We are going to
want to make occasional use of GPMX macros in large
existing FORTRAN programs. However, scanning
every character of a large program which contains only
sparse occurrences of macros will be very expensive.

T ABLE I-Semantics of Special $ Macros

MACRO OUTPUT SIDE EFFECT

$0 none dumps the run-time stack
$1 none reads next GPMX input record
$2 none writes next GPMX output record
$3 3 blanks none
$4 4 blanks none
$5 5 blanks none
$6 6 blanks none
$7 7 blanks none
$8 8 blanks none
$9 9 blanks none
$$ $ none

GPMX 929

T ABLE II-Line Distributor Actions Specified by Character
:Modes

~lode Action Explanation

1 Reject No input or output listing.
2 Reject Input list but no output listing.
3 Output Set column 1 to C.
4 Output Set column 1 to blank.
5 Output Leave line unchanged.
6 Scan GP:v1X scan begins at column 2.

The line distributor allows specially marked GPMX
lines to be inserted in ordinary FORTRAN, so that
only the marked lines need be scanned. Column 1 of
each line is reserved for this purpose. The character
punched in column 1 controls the handling of the line,
much the way a C in column 1 of a FORTRAN line
specifies it to be a comment. However, in this extension
to G PM, the mode of a character may be set to any de
sired value (from 1 to 6), allowing succeeding lines
starting with that character to be treated in a specified
manner. Table II gives the mode values and actions.
Default mode value of all characters is 2 except for
" -" which has an initial mode value of 6. The line
distributor mechanism has several uses. One of these
is to provide GPMX comment lines (mode 2). Another
is conditional compilation. Putting a character in mode
4 will cause all lines with that character in column 1 to
be compiled. If that character is set to mode 3 on a
subsequent pass, all those lines will become FORTRAN
comments. GPMX lines can produce widely varying
numbers of output characters, and if blanks are taken
as significant, much of the output becomes unwanted
blanks. Thus, it was decided in G PMX to ignore un
quoted blanks in the input. This is only done on mode
6 lines, which are passed to the GPMX scanner. For
those who use G PMX with another language, the col
umn position of the line distributor control character
can be changed to any desired value, through use of the
UPDATE macro. Also, should the user desire to dis
able the line distributor mechanism, and operate in
GPM mode (scanning every line), that too can be
accomplished through macro calls.

Besides the primitive line format control macros,
several other primitive macros have been added. These
are listed below. Each has been chosen to be of general
use. The second through fourth macros are the char
acter string primitives of PL/l.

(a) [SETMODE: [BIN :5] : < C0123456789>] sets
mode values of line distributor control char
acters. In this case the characters normally
found in column 1 of a FORTRAN line are be
ing set to mode 5.

(b) [LENGTH:[VAL:S]] returns a value (binary
integer) which is the length of its argument. In
this case the result will be 4 (see preceding DEF
of S).

(c) [SUBSTR:<ABCDEFG> :[BIN:3] :[BIN:2]]

930 National Computer Conference, 1976

returns a substring of its first argument. The
second argument tells where the substring be
gins and the third tells how long it is. The
result is CD.

(d) [INDEX:<ABCDEFG> :<CDE>] returns a
binary integer which gives the position where
its second argument first occurs as a substring
of its first. In this case the result will be a
binary 3. If there are no occurrences the result
is zero.

(e) [WEF: [BIN :7]] writes an end-of-file on log
ical unit 7.

(f) [REW: [BIN :8]] rewinds logical unit 8.

Besides the addition of new primitive macros and the
line distributor mechanism, a very important change
has been made in GPMX. This involved moving most
of the important control variables, switches and buffers
to the stack, as ordinary GPMX macros whose values
may be changed by UPDATE. This is a very important
improvement. For example, it allows the macro flag
characters to be changed during macro processing,
and with no new support mechanism required.

* CHANGE CONTROL CHARACTERS
[UPDATE :CONCHR :<@,;?()&>&1

* SET THEM BACK
@UPDATE,CONCHR,([:]%<>$) ;$1

Another important use of this facility is changing
logical unit numbers for the various input and output
streams by means of UPDATE. Logical unit number
zero has been taken to mean that no I/O should occur
on the particular stream. For example, the following
statements will turn on the output listing and turn off
the output, for testing without compilation of the
output.

- [UPDATE: OUTPUT: [BIN:O]]
- [UPDATE: OUTLST: [BIN:6]]

The ability to change the logical unit numbers for the
input and output, in conjunction with the primitive
macros WEF and REW, allows the GPMX pro
grammer complete control over input and output files.
Partitioning of output into two files, one for declara
tions and another for executable code (a frequently
needed capability in a preprocessor) is easy to program
at the macro level. Also, multiple passes through the
input text can be carried out using these facilities.

Other important GPMX control elements can also
be changed using UPDATE or accessed using VAL.
One particularly important macro, COLUMN, contains
the integer which tells in what column the next output
character will go. This is especially useful when writ
ing macros to format the output correctly (e.g., tab
bing). The contents of the input buffer, INBUF, can
be manipulated as a character string (using INDEX,
SUBSTR, VAL and UPDATE) before any macro
scanning takes place, so GPMX can be used as a gen-

eral text processor with controlled input. This is a
capability that Brown7 . puge 51 specifically notes as miss
ing from GPM, when comparing it with the TRAC
language.

GPMX APPLICATIONS

In this section we will examine some G PMX applica
tions. In all cases the examples deal with FORTRAN.
This was done because FORTRAN is widely known and
because it involves most of the unpleasant problems
that will be encountered by a language independent
preprocessor. The first example shows the generation
of local variables and statement numbers as they can
be applied in a DO macro. This example uses the fact
that a macro definition (DEF) which is created as part
of the argument sequence of another macro will exist
only as long as that macro is being evaluated. This
allows temporary variables to be created. Here K is
used to store the local variable name and M is used to
store the local statement number. (Note: % ro1 means
the first argument of the caller's caller).

* GENERATE STATEMENT NUMBER
* OR INTEGER VARIABLE

- [DEF:GENSN:<[DEF:ro1:<77»
< [DEC: [GEN]]] >]

[DEF :GENIV: < [DEF: ro 1: <IV> >
< [DEC: [GEN]]] >]

[DEF:B: [BIN :1]] [DEF:N: [BIN :10]]
* GEN RETURNS THE VALUE
* OF N AND INCREMENTS N.

- [DEF :GEN: < [VAL :N] [UPDATE:N: >
<[BAR:+ :$N:$B]]>]

* EVAL MACRO EVALUATES ITS
* ARGUMENT.

- [DEF:EVAL:< [8: [DEF:8:%1]] >]
* CO NT MACRO PRODUCES A CONTINUE
* CARD
- [DEF :CONT: <$2[% 1] < CONTINUE> >]
* DO MACRO

- [DEF :DO: < [DOBODY: [GENIV :K] >
< [GENSN :M]] >]

- [DEF:DOBODY:<DO $M $K=l,%%l>
< [EV AL: ro %2] [CONT :M] >]

* CALL THE DO MACRO
- $S [DO:<32>:<$SB($K)=A($K»]

The preceding code yields:

DO 7711 IV10=1,32
B(IV10) =A(IV10)

7711 CONTINUE

In this example the body of the DO is not evaluated
until it is passed into the interior of the DO macro.
This is an example of a useful application of passing

arguments Hby name." Here it allows the temporary
macro K to carry the local name for the integer DO
variable. A disadvantage of this example is that the
complete body of the DO must be passed as the second
argument of the DO macro, enclosed in string quotes.
This would be extremely awkward for long DO loops.

One of the goals set for GPMX was syntax extension
of FORTRAN, to allow GO-TO-free constructs such as
if-then-else and while-do to be introduced into the
language. Initially we tried to do this in a manner
similar to that shown in the preceding example for DO
loops. This proved awkward, since the body of code in
each part of an if-then-else had to be passed as an
argument to a macro, tending to overload the stack.
Furthermore, it is very desirable to be able to insert
these control statements within ordinary FORTRAN
code in the following manner:

- [IF] I. NE. 3 .AND. F(I,J).GT. 3. 4 [THEN]
a sequence of FORTRAN statements

-[ELSE]
another sequence of FORTRAN statements

-[FI]

To implement the preceding idea, we create a special
macro whose body will serve as a short push-down
stack for statement labels. Then we define macros to
allow us to PUSH and POP this special stack, as well as
one to anow us· to pick up a copy of the TOP element
(without changing the stack).

- [DEF :PUSH: < [UPDATE: %2-: <fa 1 [SUBSTR: >
<[VAL:%2] :[BIN:l]:>

<[BAR:- : [LENGTH: [VAL:%2]] :>
< [BIN: 1]]]] >]

[DEF :POP: < [UPDATE: % 1: [SUBSTR: >
< [VAL:%l]: [BIN:2]:>

< [BAR:- : [LENGTH: [VAL: 0/01]] :>
< [BIN: 1]]] < >] >]

[DEF :TOP: < [SUBSTR : [VAL: % 1] : >
< [BIN :1] : [BIN :1]] >]

Using the preceding macros, we implement the if-then
else-fi construct as four separate macros, in the follow
ing manner. The definition for GEN was given earlier
in this section.

- [DEF :IF: <$S<IF (.NOT. (> >]
- [DEF:G:«GO TO »]

- [DEF:THEN:«» >$G[PUSH:[GEN]:>
<STACK] <77>[DEC: [TOP :STACK]] >]

- [DEF :ELSE: <SG<77> [DEC : [VAL :N]] >
<$2<77> [DEC: [TOP :STACK]] >

< [UPDATE :STACK: [GEN]: [BIN :1]] >]

GPMX 931

- [DEF:FI:<$B<77>[DEC:>
< [TOP :STACK]] [POP :STACK] >]

- [DEF :STACK:$9]
- [DEF:S: < [COND: [BIN :7] : >

< [VAL:COLUMN] ::<$2$6>]>]
- [DEF:B: < [COND: [BIN :7] : > [VAL :COLUMN]

< <CONTINUE>$2> :<$2>] >]

In this example we have introduced new macros Sand
B for controlling our position in the output card image.
$8 moves us to column 7 of the next line, if we are not
already there. $B moves us to column 1 of the next line,
adding a CONTINUE statement if we are presently in
column 7 of a line. These two macros demonstrate how
we can use COLUMN (the position in OUTBUF where
the next output character goes) to control positioning

As we used GPMX on actual programs, written in
structured FORTRAN, it became clear that our macro
definitions for GO-TO-free FORTRAN had still not
adequately solved all the problems. As a result, we
changed from a single stack to double stacks, one con
taining the label desired for exit from a control struc
ture and the other containing the label desired when
the next cycle (pass) through a control structure is to
be started. The EXIT and NEXT macros, which
generate FORTRAN GO-TO's, require a first argument
which specifies how far out in a nested control struc
ture the jump is to go. We also implemented automatic
indentation of the output text (as dictated by the nested
control structure) and added most of the commonly
mentioned control structures (e.g. CASE, REPEAT,
WHILE, FOR). All of this was carried out completely
at the macro level. Figure 1 shows the use of some of
these capabilities in a simple program. The library of
macros is given in the Appendix.

We now feel that we have achieved a useable set of
macros for GO-TO-free FORTRAN. However, many
further improvements can still be introduced. We note
with satisfaction, however, that although we write and
rewrite macros quite often, changes in the processor
have become an infrequent event. An example of such
an event occurred when moving GPMX to PDP-II
UNIX. It became desirable to allow the GPMX pro
grammer to associate a filename with a logical unit
number, providing complete macro time control over
input and output files. This required the addition of a
new primitive macro which is system dependent (not
definable inside FORTRAN). The macro is [SET
FILE: [BIN: <digit>] : <filename>]. Code written
using this macro acts much like a job control language.
It seems likely that with the addition of yet another
system dependent primitive macro (EXEC perhaps)
allowing execution of assemblers, compilers, loaders
and other system utilities, G PMX could be used as an
extensible job control monitor for minicomputers.

Recalling our earlier description of a tool, we feel

932 National Computer Conference, 1976

* DEFINITIONS OF COMMON BLOCKS
- (OEF:TTTINF:($M/%0/MOVE(64),HOLD(64),IMOVE,MVSEQ(64),SUM(76»

($&,NPLANE(18)$IHOLD,SUM)1
- (OEF:CTRL :($M/%0/ITURN,PLAYERCIO,3},IVAL(2),MVCHR(3),)

(MV4,MVIO$&,NNODES,MOOE,BLANK$IPLAYER,BLANK)]
* MAIN PROGRAM
- (TTTINF] [CTRL] $L DONE,CMPUTR $S <CALL INPUT(l»
- [REPEAT] $S <CALL INITAL>

[REPEAT] $S <CALL INPUT(2»
(REPEAT] $S ITURN=MOO(IMOVE,2)+1

[IF] CMPUTR(ITURN) [THEN] $S <CALL STRAT>
[ELSE] $S <CALL INPUT(3»

$S <IFCMVIO.LE.O) >[NEXT:3]
(FI] $S <CALL ENTER(MV4,MVCHR(ITURN),IVAL(ITURN»>
$S <IFCCMPUTRCITURN» CALL OUTPUTCS»

(UNTIL] DONE(X) {ENDREP] $S MV4=1
[TILNOT] MV4.EQ.2 [ENDREP]

- {TILNOT] MV4.EQ.l (ENDREP] $S STOP $E

* OUTPUT FROM THE MACRO PROCESSOR.
COMMON/TTTINF/MOVE(64).HOLD(64),IMOVE,MVSEQ(64) SUM(76)

*,NPLANE(18) ,
INTEGER HOLD,SUM
COHMON/CTRL/ITURN,PLAYER(10,3),IVAL(2),MVCHR(3) MV4MVl0

*,NNODES,MODE,BLANK ' ,
INTEGER PLAYER, BLANK
LOGICAL DONEtCMPUTR
CALL INPUT(l)

CALL INITAL
CALL INPUT(2)

7710
7712
7714 ITURN=MOOCIMOVE,2)+1

IF(.NOT.CCMPUTR(ITURN»} GO TO 7716
CALL STRAT
GO TO 7717

1716 CALL INPUT(3)

1717
IF(MVI0.LE.0) GO TO 7713

7 71S

CALL ENTER(HV4,MVCHR(ITURN),IVAL(ITURN»
IF(CMPUTR(ITURN» CALL OUTPUT(S)

IF(.NOT.(DONE(X») GO TO 7714
MV4=1

7713 IF«MV4.EQ.2» GO TO 7112
7711 IF«MV4.EQ.l» GO TO 7710

STOP
END

Figure I-Use of GO-TO free control structures with FORTRAN

that GPM and its offspring GPMX are definitely tools.
As we have indicated, with minor modifications these
macro processors seem capable of use as general text
processors, as language translators or as job control
monitors. Of course, the limitations must be recog
nized (as when racing bicycles against cars) but the
flexibility and simplicity seems astonishing.

ASSESSMENT

GPMX is an adaptable tool, easily modified or con
trolled by a sophisticated user. It has been moved to a

wide variety of computers (including minis) in a few
man-hours. A disadvantage of implementation in
ANS FORTRAN is that handling card images via
formatted I/O is inefficient, although essential for
portability. However, the I/O in GPMX is localized
in a few routines, so substitution of non-portable but
efficient I/O is easy.

GPMX is dramatically different from other FOR
TRAN preprocessors, since it is a general purpose
macro processor extended for that use. GPM was not
designed for ease of use by unsophisticated FORTRAN

applications progrannners. Thus, preprocessors (such
as MORTRAN26

) which were designed for that goal,
tend to be more suitable for use by FORTRAN pro
grammers unfamiliar with general purpose macro
processors. However, GPMX has substantially more
computational power than most other FORTRAN
preprocessors, and it is language independent besides.
Although MORTRAN2 and some other FORTRAN
preprocessors also have macro capabilities, in most
cases this is of the pattern match and simple text sub
stitution variety. ~~one of theSe have sufficient com=
putational power to implement stacks or source symbol
generation at the macro level, as demonstrated here.
These advantages make GPMX especially suitable for
use by advanced applications and systems program
mers, for whom FORTRAN preprocessing is only one
_-c -4-\....- ;J_n': __ ,.1 nT'\.T'\.l';nn+';n"·"·~ A C"IT\on;ol or:t"'(7o.n+~n'a. £In_
U.1. lJ1J.t:; UC~.lLCU af:.lyJ.J. alJJ.vJ.J.~. ~ a!-'"G'-'J..iUlJ.. U.u"VUlJ..I.lJUlO '-' v.I.'&'-

joyed by G PMX is that most extensions can be pro
duced by defining new macros, while extensions in
other preprocessors often involve rewriting the proces-

GPMX 933

sor. The most obvious disadvantage of GPMX (like
GPM) is its ugly syntax. The many good features
should overcome this irritation in the appropriate
applications.

REFERENCES

1. Strachey, C., "A General Purpose Macrogenerator," Com
puter Journal 8,3, October 1965, pp. 225-24l.

2. Waite, W. M., "A Language-Independent :YIacroprocessor,"
CA.CM 10, 7, July 1967, pp~ 433-440~

3. Halpern, lVI. 1., "XPOP: A Meta-Language Without :Meta
physics," Proc. AFIPS, 1964 FJCC, Vol. 26, pp. 57-68.

4. Brown, P. J., "A Survey of Macro Processors," Annual
Review in Automatic Programming, Vol. 6, Part 2, 1969,
pp.37-88.

5. Gries, D., Compiler Construction for Digital Computers,
John Wiley and Sons, ~ew York, 1971.

6. Cook, A. James, MORTRAN2 Reference Manual, Compu
tation Research Group, Stanford Linear Accelerator Center.

7. Brown, P. J., Macro Processors and Techniques for Portable
Softwa-re, John Wiley and Sons, New York, 1974.

934 National Computer Conference, 1976

APPENDIX

* GENERATE A LOCAL STATEMENT NUMBER.
- (OEF:NXTNAM:(BIN:IO]]$l INITIALIZE INTEGER FOR LOCAL NAMES
- (DEF:INCR:«UPOATE:%l: (BAR:+: (VAL:%l] :>[BIN:1]<]]>]$1
- [OEF:GEN:«VAL:NXTNAM][INCR:NXTNAM]>]Sl GENERATE A.NUMBER
* DEFINE LINE AND SPACING CONTROL MACROS S, BAND Z.
- [DEF:S:«COND:>[BIN:7]<:[VAL:COLUMN]:<$Z>:<$2$6$Z>]>]$1
- [DEF:B:<[COND:>(BIN:7]<:[VAL:COLUHN]:<ZC$2>:<$2>]>]$1
- (DEF:Z:$9$9$9] [UPDATE:Z:] $1 Z INITIALLY EMPTY STRING
- [DEF:DNZ:<[UPDATE:Z:[SUBSTR:$Z:>$l

[BIN:1]<:[BAR:-:[LENGTH:$Z):>[BIN:3]<]]]>]$1
- [DEF:UPZ:<[UPOATE:Z:Z3]>] $1
* DEFINE MACROS FOR FORTRAN TO HANDLE KEY-WORDS.
- [DEF:G:«GO TO »][DEF:C:<CONTINUE>][DEF:M:<$S<COMMON»]$l
- [DEF:Q:<$S<EQUIVALENCE »][DEF:I:<$S<INTEGER »]$1
- [DEF:U:<$S<SUBROUTINE »][DEF:R:«RETURN»][DEF:F:«FORMAT»]
- [DEF:D:<$S<DATA »][DEF:E:<$S<END>$2>][DEF:&:<$2$5*$Z>]$1
- [DEF:I:«IF(.NOT.(»] [DEF:@:«IF«»][DEF:L:<$S<LOGICAL »]
* DEFINE STACK HANDLING MACROS.
- [DEF:PUSH:<[UPOATE:%2:%1[SUBSTR:[VAL:%2]:>[BIN:1]<:[BAR:-:>

<[LENGTH:(VAL:%2]]:>[BIN:1]<]]]>]$1 PUT ITEM ON TOP
- (OEF:POP:<[UPDATE:%1:[SUBSTR:[VAL:%1]:>[BIN:2]<:[BAR:-:>

<[LENGTH:[VAL:%1]]:>[BIN:1]<]]< >]>]$1 DISCARD TOP
- [DEF:GET:<[SUBSTR:[VAL:%1]:[BI~:%2]:>[BIN:1]<]>] $1 GET ITEM
- [DEF:PUT:<[UPOATE:%2:%1:[BIN:%3]]>] [DEF:TOP:<[GET:%1:1]>] $1
- [DEF:STACK:$9] [DEF:STCKX:$9] $1 MAKE STATEMENT NUMBER STACKS.
* DEFINE CONTROL STRUCTURE MACROS FOR GO-TO FREE FORTRAN.
- [DEF:IF :<S#[PUSH:O:STCKX](PUSH:I:STACK][UPZ]>] $1
- (DEF:THEN :<[PUT:[GEN]:STACK:1]<» >[NEXT:1]>] $1
- [DEF:ELSE :<$S[EXIT:1][NLBL][PUT:[TOP:STCKX]:STACK:1]>] $1
- [DEF:FI :<[COND: [TOP:STACK]: [TOP:STCKX]: :<[NLBL]>]> $1

<[XLBL][POP:STACK][DNZ]>] $1 END OF IF
- [DEF:REPEAT:<$B<77>[DEC:[GEN]] [UPZ][PUSH:[GEN]:STACK]> $1

<[PUSH:O:STCKX]>] $1
- [DEF:UNTIL :<[DNZ][NLBL]Z#» $1
- [DEF:TILNOT:<[DNZ)[NLBL]Z@>] $1
- [DEF:ENDREP:«» >[LPBACK») $1
- [DEF:LPBACK:<$G<77>[DEC:[BAR:-:[TOP:STACK):>[BIN:1]<]]> $1

<[POP:STACK][XLBL»] $1
* DEFINE THE EXIT AND NEXT FUNCTIONS AND LABEL MACROS.
- [OEF:EXIT:<[COND:(GET:STCKX:%l):O:«PUT:[GEN]:STCKX:>%1<]>:]>

<$G<77>(DEC:[GET:STCKX:%1]]>] $1 EXIT THIS STRUCTURE
- (DEF:XLBL:<[COND:[TOP:STCKX]:O::<$B<77>[DEC:[TOP:STCKX]] >]>

<[POP:STCKX]>] $1 GENERATE EXIT LABEL IF NOT O.
- [DEF:NEXT:<$G<71>[OEC:(GET:STACK:%l]]>] $1 GO TO NEXT CASE
- [DEF:NLBL:<$B<77>(DEC:(TOP:STACK]] >] $1 LABEL FOR NEXT CASE

An experiment comparing Fortran programming times
with the software physics hypothesis

by R. D. GORDON and M. H. HALSTEAD
Purdue University
Lafayette, Indiana

ABSTRACT

Recent discoveries in the area of Algorithm Structure
or Software Physics1-25 have produced a number of
hypotheses. One of these relates the number of ele
mentary mental discriminations required to implement
an algorithm to measurable properties of that algo
rithm, and the results of one set of experiments con
firming this relationship have been published.16 That
publication, while significant, made no claim to finality,
suggesting instead that further experiments were war
ranted. This paper will present the results of a second
set of experiments, having the advantages of being con
ducted in a single implementation language, Fortran,
from problem specifications readily avaiiable in com
puter textbooks.

The first section of this paper presents the timing
hypothesis, and the elementary equations upon which
it rests. The second section presents the details of the
experiment and the results which were obtained, and
the third section contains an analysis of the data.

TIMING HYPOTHESIS

Measurable properties of any implementation of any
algorithm include:

YJl = The count of distinct operators
YJ2 = The count of distinct operands

(variables or constants)
N 1 = Total uses of operators
N 2 = Total uses of operands

The vocabulary: 'I}: is given by:

YJ=7Jl+YJ2

and the length, N, is:

N=N1 +N2

(1)

(2)

From these properties, it is possible to obtain the
volume, V, in bits, as:

V=N log27J (3)

and the implementation level, L, where L::;; 1, as:

(4)

935

where 1/1*' the minimum possible number of operators,
will equal 2 for most algorithms. (One for the name of
a function, plus one for a grouping symbol operator).
It has been shown4 that the product LxV is invariant
under translation from one language to another, and
that for programs without impurities :3.6,8

(5)

From this point, the following nine steps yield the
timing equation:

1. A program consists of N selections from 7J ele
ments.

2. A binary search of YJ elements requires log2 7J
comparisons.

3. A program is generated by making N log2 7J com
parisons.

4. Therefore, the volume, V, is a count of the num
ber of comparisons required.

5. The number of elementary mental discrimina
tions required to complete one comparison mea
sures the difficulty of the task.

6. The level, L, is the reciprocal of the difficulty.
7. Therefore, E, the count of elementary mental

discriminations required to generate a program,
is given by:

(6)

8. S, the speed with which the brain makes elemen
tary mental discriminations can be obtained from
psychology26 as :

5::;; S::;; 20 discriminations per second.

9. Therefore, the time to generate a preconceived
program, by a concentrating programmer, fluent
in a language, is :

A V
T= SL (7)

Equation 7 may be expressed in more basic terms by
substituting for V from equation 3, and for L from
equation 4, with 7Jl * = 2, giving:

(8)

936 National Computer Conference, 1976

The effect of possible impurities5 may be eliminated
from equation 8 by substituting for N from equation 5.
Letting S=60 x 18= 1080 will then give, for time in
minutes:

T- 1]IN2(1]l log21]1 +7J2 Iog21]2)log21] (9)
- 21601]2

Each of the variables on the right hand side of equa
tion 9 can be readily measured (or counted) in any
computer program, and the experiment described in the
next section was designed to compare results from that
equation with observed programming times.

EXPERIMENTAL PROCEDURE

Eleven problems were arbitrarily selected from two
published sources. In selecting candidates for the ex
periment, problems were sought which were stated in
a non-procedural form. Further, the problem state
ment had to be complete. That is, in the course of
solving a particular problem, specific laws of physics,
mathematics, etc. would not have to be derived. The
problems finally selected were taken from Knuth,27 and
from Maurer and Williams,28 and cover a wide range
of topics including character manipulation, list pro
cessing, simulation experiments and mathematical
analysis. The source of each problem statement is cited
in Table 1.

On each of eleven days, one of these problems was
implemented by the senior author. In order to main
tain a consistent level of performance all work was
conducted in a quiet room, free from distractions, dur
ing the same period of the day. The time required to
fully implement the problem was obtained. This total
time included the number of minutes spent reading the
statement of the problem, preparing flowcharts and
writing preliminary versions of the code, writing the
final version of the code, desk checking, and the time
spent working to correct errors in the program. Time
to keypunch was not included.

T ABLE I-Experimental Data

Implemen-
Program Specifications Software Parameters tation

Time-
No. Ref.* Page Problem '1]1 '1]2 Nl N2 Minutes

G1 K 158 21 15 11 59 51 19
G2 K 159 23 20 24 231 197 92
G3 K 196 7 16 12 64 49 16
G4 K 377 17 19 21 131 113 39
G5 K 158 22 7 10 38 35 21
G6 K 154 10 9 14 69 62 30
G7 M 32 3.2.21 12 8 30 23 5
G8 M 32 3.2.23 19 15 73 55 24
G9 M 88 8.3.2 22 32 124 104 43
G10 M 89 8.3.4 25 34 261 222 91
GIl M 27 3.2.4 14 10 29 21 5

* K=Knuth 27, lVI=~faurer and WilIiams.28

For a number of reasons, including availability and
fluency, all of the algorithms were implemented in
Fortran. In the course of solving a problem the cor
rectness of the implementation was checked by execut
ing a sufficiently complex test case for which a correct
answer was known. In some cases the solution to a
problem was written as a subroutine and testing re
quired that a main routine be written. In such a case
only the preparation of the subroutine was considered
for the experiment. In addition, several implementa
tions made use of subroutines previously written. Such
routines were also not included.*

After each program was completed, a careful count
was made to determine values of 1]H 1]2' N 1 and N 2' In
obtaining these values all read, write, declarative state
ments and comments were ignored. The results are
shown in Table 1.

ANALYSIS OF THE DATA

The programming time predicted by theory was ob
tained for each program by applying equation 9 to the
data in Table 1. This result, T, can be compared with
the observed value, T, in Table II. In addition, a count
of the number of statements in each program was
obtained, and the programs were ordered according to
these values.

The average of the calculated values, 34 minutes, is
fortuitously close to the observed value, 35 minutes.
The coefficient of correlation is 0.934, only slightly
smaller than the value of 0.952 reported in an -earlier
experiment.16 In further agreement with that experi
ment, the correlation between length and observed
times, 0.887, is lower than between observed and cal
culated times.

In conclusion, it may again be observed that one
more set of experimental data does not contradict the
simple hypothesis. As a result, further carefully con
trolled experiments by others would appear to be
warranted.

* Additional details available from the author.

T ABLE II-Experimental Results

Program Statement
Programming Time-Minutes

Number Count T observed T Equ. 9

G7 7 5 4.6
GIl 8 5 5.4
G5 11 21 2.5
G6 15 30 6.8
G3 18 16 15.6
G1 18 19 14.6
G8 18 24 22.9
G4 32 39 43.6
G2 36 92 81.5
G9 38 43 49.2
G10 59 91 128.5

Means 35.0 34.1

Experiment Comparing Fortran Programming with Software Physics Hypothesis 937

REFERENCES

1. Bayer, Rudolf, A Theoretical Study of Halstead's Software
Phenomenon, CSD Tech. Rept. No. 69, Purdue, May 1972.

2. Bayer, Rudolf, On Program Volume and Program Modulari
zation, CSD Tech. Rept. No. 105, Purdue, September 1973.

3. Bohrer, Robert, "Halstead's Criteria and Statistical Al
gorithms," Proc. 8th Computer Science/ Statistics Interface
Symposium, Los Angeles, February 1975.

4. Bulut, Necdet, Invariant Properties of Algorithms, Ph.D.
Thesis, Purdue, August 1973.

5. Buiut, Necdet and M. H. Halstead, "Impul'ities Found in
Algorithm Implementations," ACM SIGPLAN Notices 9 3
March 1974. ' , ,

6. Bulut, Necdet, M. H. Halstead and Rudolf Bayer, "The
Experimental Verification of a Structural Property of
Fortran Programs," Proc. ACM Annual Conference, San
Diego, 1974.

7. Funami, Yasao and M. H. Halstead, Software Physics
Analysis of Akayama's Debug Data, CSD Tech. Rept. No.
144, Purdue, May 1975.

8. Halstead, M. H., "Natural Laws Controlling Algorithmic
Structure," ACM SIGPLAN Notices, 7, 2, February 1972.

9. Halstead, M. H., A Theoretical Relationship Between Mental
Work and Machine Language Programming, CSD Tech.
Rept. No. 67, Purdue, May 1972.

10. Halstead, M. H. and Rudolf Bayer, "Algorithm Dynamics,"
Proc. ACM Annual Conference, Atlanta, 1973.

11. Halstead, M. H., "An Experimental Determination of the
'Purity' of a Trivial Algorithm," ACM SIGME Performance
Evaluation Review, 2, 1, March 1973.

12. Halstead, M. H., "Language Level, A Missing Concept in
Information Theory," ACM SIGME Performance Evalua
tion Re'1Jiew, 2, 1, March 1973.

13. Halstead, M. H. and P. M. Zislis, Experimental Verification
of Two Theorems of Software Physics, CSD Tech. Rept.
No. 97, Purdue, June 1973.

14. Halstead, M. H., Software Physics Comparison of a Sample
Program in DSL ALPHA and COBOL, IBM Research Re
port No. RJ 1460, October 1974.

15. Halstead, ~:r. H., S()ft'~~a're P,~ysics: Basic P-rinciples, IBl\f
Research Report No. RJ 1582, May 1975.

16. Halstead, M. H., "Toward a Theoretical Basis for Estimat
ing Programming Efforts," Proc. ACM Annual Conference,
Minneapolis, 1975.

17. Kennedy, Dale and Roger Bruning, Childrens Descriptions
of Complex Objects, Report 505-68-6939, Univ. of Nebraska,
Lincoln, October 1974.

18. Kulm, Gerald, "Information Content-An Alternative Mea
sure of Reading Complexity," American Psychological Asso
ciation Annual Meeting, New Orleans, August 1974.

19. Ostapko, D. L., "On Deriving a Relation Between Circuits
and Input/Output by .LA:t..nalyzing an Equivalent Program,"
ACM SIGPLAN Notices, 8, 6, June 1974.

20. Ostapko, D. L., "Analysis of Algorithms Implemented in
Software and Hardware," Proc. ACM Annual Conference,
San Diego, 1974.

21. Zislis, Paul, An Experiment in Algorithm Implementation,
CSD Tech. Rept. No. 96, Purdue, June 1973.

22. Zislis, Paul M., "Semantic Decomnosition of Comnuter Pro
grams: An Aid to Program Testi~g," ACTA Inf;rmatica 4,
pp. 245-269, 1975.

23. Zweben, S. H., Software Physics: Resolution of an Am
biguity in the Counting Procedure, CSD Tech. Rept. No. 93,
Purdue, April 1973.

24. Zweben, S. H., The Internal Structure of Algorithms, Ph.D.
Thesis, Purdue, May 1974.

25. Zweben, S. H., "A Recent Approach to the Study of Al
gorithms," Proc. ACM Annual Conference, San Diego, 1974.

Additional References:

26. Stroud, John M., "The Fine Structure of Psychological
Time," Annals of N.Y. Academy of Sciences, 1966, pp. 623-
63l.

27. Knuth, Donald, The Art of Computer Programming, Addi
son Wesley Publishing Co., Massachusetts, 1969, Vol. 1.

28. Maurer, H. A. and M. R. Williams, A Collection of Pro
gramming Problems and Techniques, Prentice-Hall, Inc.,
New Jersey, 1972.

Representations of networks

by HARVEY J. GREENBERG and .JAMES E. KALAN
Virginia Polytechnic Institute and State Universiiy
Blacksburg, Virginia

ABSTRACT

Bit map and list structures are analyzed for represen
tation of a network, using its adjacency matrix. Stor
age analysis, with reduction for m-partite networks,
reveals a fundamental function of problem dimensions,
called the "index threshold." Several examples, from
industry and government, are cited to illustrate the
analysis. Relative processing merits are studied, and
an equation is derived to relate "processing ratio" to
the ratio of the index threshold to the index size. Fi
nally, conversion algorithms are presented, designed
to minimize extra work space.

PRELIMIN ARIES

Let V denote a (finite) set of vertices, whose ele
ments are consecutive positive integers. (If names are
used, a separate internal structure is employed to
identify a vertex by its index number.) Let A denote a
set of arcs, whose elements are ordered pairs of
vertices. If (i,j) is an arc in A, then vertex j is a
successor of vertex i, and i is a predecessor of j.

For any finite set, S, let 'IS!, denote its cardinality.
For example, IV I is the number of vertices, and I AI is
the number of arcs. The adjacency matrix of a network
is a IV I by /V /, 0-1 matrix with element (i,j) equal to
1 if, and only if, vertex j is a successor of vertex i.
Since the adjacency matrix has I AI nonzero entries,
all of which are 1, Kalan'sll supersparse representa
tion yields a familiar list structure to represent a net
work. 2 Specifically, define a list (or file) with one
record per vertex. The data items in a record are the
successors (if stored by rows) or predecessors (if
stored by columns). The record size is the (positive)
degree of the associated vertex (Le., its number of
successors or predecessors, respectively). Note that
while the adjacency matrix, per se, cannot represent
parallel arcs, its list structure can, if this should be
desired.

Another representation of the adjacency matrix is
the bit map, using one bit per element. For every
vertex, its successor list is identified by a contiguous

939

bit string, having fixed length, IV I. Bit j is on if
vertex j is a successor of the associated vertex; other
wise, it is off. Garfinkel and Nemhauser7, p. 304 alluded
to the use of bit maps to represent an adjacency
matrix, although they did not consider its effect on
processing.

Lefkovitz13 identified the trade-off between bit map
and list structures for set representation as " ... the
dilemma for large-scale data bases, ... " He con
cluded that bit maps take more space when the lists
are short, and less space when they are long.

Orchard-Hays16. p. 81 lind 212 considered, briefly, the use
of a bit map in a network-related context, and the
next section of this study may be considered a gen
eralization of his threshold analysis.

Pooch and Nieder17 provided a general survey of
these two methods. They also observed the natural
correspondence between set operations (e.g., UNION,
INTERSECTION) and logical operations (e.g., OR,
AND) which render the bit map structure attractive
for such processing. However, we shall show how the
apparent superiority of bit maps, in the cases cited
here, really depends upon the density.

A comprehensive study of the interface between
data structures and algorithms was accomplished by
MacVeighY He considered fundamental numerical
algorithms with matrices. We have a different, but
analogous, situation in dealing with operations on the
topology of a network.

It should be noted that analysis of mixed forms of bit
map and list structures follows from this study of the
two pure forms.

STORAGE ANALYSIS

The bit map structure uses IV 12 bits, with one bit
map of length IV I for each vertex. The list structure
uses hi AI bits, where the index size, h, is the number
of bits to store an index.

Define the index threshold as:

H= /V j2-7- I AI.
(This is the reciprocal of the density of the adjacency

940 National Computer Conference, 1976

matrix.) Then, the list structure uses more (less)
space ifh is greater (less) than H.

If we let h be data-driven, then we may use
h= Llog2/V / J. Alternatively, we may fix h to repre
sent any network up to 2b-1 vertices. (The latter
choice is akin to current design of LP software in
representing row indices.) For fixed h, we consider
the range, 15~h~ 18. This permits representation of
networks having more than 32,000 vertices, and the
values in this range are convenient for most computers
(Le., h=15 for CDC 6,000's, h=16 for IBM 370's and
h=18 for UNIVAC 1100's).

Before we examine the relative storage requirements
for a variety of applications, note that the index thresh
old may be expressed in terms of the average degree:

D=/A/+/V/.

That is, D is the average number of successors per
vertex. Then, we note:

H=/V/+D.

(This expression shall be useful when we analyze rela
tive processing efficiency.)

Table I below lists problem dimensions reported by
Glover and Klingman,8 together with their index
thresholds and their average degrees. The Flight Train
ing problem is sufficiently dense that the bit map struc
ture requires less space, even when h= LIOg2/V / J = 10.
The same is true for the first form of the Cotton Gin
problem. However, this is reversed for the reduced and
compacted forms; like the Treasury and Shipyard
problems, the list structure requires less space, even
when the index size is fixed at 18.

Actually, the figures in Table I may be misleading
because, for most applications, the storage require
ments of both structures may be reduced by letting
semantics describe part of the topology. Before we
explain further, let us consider the transportation
problem5 with the present method.

Suppose we have n suppliers and m demand points,
so /V / = n + m. Potentially, there can be nm arcs, one
from each supplier to every demand point. However,
in practice only a fraction, say f, of these arcs are
actually present. This is because a supplier is linked
to this fraction of demand points, on the average (or

T ABLE I-Sample Problems8

Number of Number of Index Average
Vertices Arcs Threshold Degree

Problem (lV/) (fA/) (H) (D)

Treasury 5,000 625,000 40.0 125.0
Cotton Gin

first form 4,200 2,460,000 7.2 585.7
reduced 5,141 95,610 276.4 18.6
compacted 3,441 61,640 192.2 17.9

Flight Training 780 141,200 4.3 181.0
Shipyard 1,020 20,000 52.0 19.6

equivalently, the average number of suppliers for a de
mand point is fn). Then, / A/ = fnm, so the index
threshold is :

H= (n+m)2/fnm.

Let r denote the ratio of number of suppliers to num
ber of demand points (Le., r=n/m). Then,

H= (2+r+l/r)/f.

Since r+ 1/r~2, it follows that H~4/f. Therefore, a
sufficient condition for the list structure to use less
space is that f<2/9. It is not uncommon, in practice/
for the number of links to be less than 20 percent of
the potential number (Le., f<2), in which case the
list structure would require less space, even when we
fix h=18.

N ow let us consider storage reduction for special
networks which arise naturally in practice. The trans
portation problem exemplifies a bipartite network
since the vertex set can be partitioned into two sets
(suppliers and demand points), such that every suc
cessor of a vertex in V I is in V 2' and the vertices in V 2

have no successors. The target-battery network de
scribed by Furman and Greenberg6 is another such
case. Both the bit map and list structures may be re
duced, as we now describe.

The bit map structure requires only /V d IV d bits,
one bit map for each vertex in VlJ each having length
/Vd. The list structure still represents /AI indices,
one per arc, but the value of the index size (h) need
only be L 10gdV d J. When the index size is fixed, its
value can be less than 15, and we can still represent a
large network. For example, if we let h= 10 (con
venient for CDC 6000's), then V2 can contain up to
2,047 vertices; the cardinality of VI does not con
strain h. For the target-battery network, h = 8 (con
venient for IBM 370's) would permit up to 511 bat
teries, which is much more than the applications cited
in Reference 6.

Define the index threshold for the bipartite network
as:

If we continue to assume that only a fraction of the
potential arcs will be present, then we note / AI = f
IVII /V2/, so

H2=I/f.

A sufficient condition for the list structure to take less
space (with h~10) is: f<.10; a sufficient condition
for the bit map structure to take less space (with
h~8) is: f>.125.

We now generalize this reduction. Suppose the ver
tex set can be partitioned into m sets, VI U ... U V m,
such that every successor of a vertex in V k is in V k+I'
For k=m we distinguish two cases: V m+1 == empty set,
and V m+1 == V II (1 ~p~m). The first case is exemplified
by the transportation problem. The second case allows

Ufeedback" from V m to Vp, which we shall illustrate
shortly.

The storage requirement for the bit map is reduced
to:

m

~ /Vk / /Vk~d
k=1

bits, since the bit map for each vertex in V k has length
/Vk +I /.

The list structure still stores / ~/ indices, but we
may reduce h as in the case of the bipartite network.

Define the associated index threshold:

m

Hm= ~ /Vk/ /Vk+1/-,;-/A/.
k=1

(Note that HI is the original H with feedback.)
, Let us consider another problem class which is bi

partite with feedback. (This is topologically equivalent
to an undirected, bipartite graph.) Suppose we have
a collection of elements and a collection of sets. Define
a network with one vertex per set, say VB and one
vertex per element, say V 2. If set i contains element j,
then two arcs are defined: one from the i-th vertex in
VI to the j-th vertex in V2 , and its reverse arc.

The packing/covering/partitioning problem class7 ,I5
may be represented by this type of network. The feed
back is useful for processing since it describes those
to which sets an element belongs.

PROCESSING

There are many algorithms to solve various network
optimization problems. In this section, we shall con
sider two fundamental processes and the relative
merits of the two structures.

One common process is the interrogation of the suc
cessors of a given vertex. This can be expressed as the
transaction, "Fetch the list of successors of vertex i."
For example, most (node/arc) labeling methodsI,2,3,Io,18
use this process.

Clearly, the bit map structure requires unpacking.
However, for certain implementations (e.g. CDC 6000's
and UNIVAC 1100's), the list structure also requires
unpacking, although it is of a different form. The
actual timings depend upon problem and machine char
acteristics, but we can, and shall, develop a representa
tive relative measure for this process. To help fix
ideas, COMPASS macros were written to fetch the
next index or declare no more successors exist. The
loading of base addresses is the same for both struc
tures, but the instructions to complete the fetch de
pends upon the structure. It is this latter difference
which we now consider.

Using four indices per word (i.e., h= 15), the list
structure will execute an average of 3.75D instructions
for a complete interrogation (discounting load over
head common to both structures). More generally, if

Representations of Networks 941

the length of an addressable unit (e.g., word) is w,
then the number of instructions is 3 (1 + h/w) D.

For the bit map, we used the normalization instruc
tion to avoid sequential testing of each bit. If the
length of the bit map is /V /, then the average number
of instructions is /V/(3/20) + 180D-,;-/V/. In general,
the average number of instructions is 3w D -';- /V / +
9 /V / -=- w. For sufficiently large IV I and D, the pro
cessing ratio of bit map to list structure, for the succes
sor interrogation, is approximately:

T= (9/4) /V / -,;-hD.

Therefore, we have

T=2.25 H/h.

For fixed h, the relative processing time depends on
the index threshold: index size ratio. The bit map
structure uses more (less) instructions if this ratio is
greater (less) than 4/9. A consequence of this rela
tionship is that the list structure will process with
fewer instructions if it takes less space (i.e., h<H).

Table II below lists, for each of the Glover-Kling
manR problems, the associated thresholds times the
computed constant, 2.25. Those problems which favor
the list structure spatially must also process with
fewer instructions, on the average, for this transac
tion. Specifically, those problems are: Treasury, Cot
ton Gin (reduced and compacted), and Shipyard. In
fact, the reduced form of the Cotton Gin problem is
expected to process at least 34 times faster with the
list structure! Its first form requires more space to
use the list structure, but it would process faster for
h:::;16. The Flight Training problem processes with
f~er instructions, on the average, using the bit map
structure; hence, for that problem, bit maps are more
frugal with both space and "time."

N ow let us consider another type of transaction
which appears to favor the bit map structure due to
the natural correspondence' between set and logical
operations.

For covering problems, it is useful to test whether
one set is a subset of another.'" p. 302-3 The associated
constraints may include partitioning (or "strict cover
ing") ; then the set difference is desired in case the
subset test passes.

Since we can, and shall, assume the degree of each

TABLE II

Processing Threshold
Problems (2.25H)

Treasury
Cotton Gin

first form
reduced
compacted

Flight Training
Shipyard

90.0

16.2
621.9
432.45

9.7
117.0

942 National Computer Conference, 1976

vertex is available, the test on a pair of vertices can be
branched into a test for equality and a test for proper
inclusion, with the potential subset identified. Further,
we shall assume that the list structure has each succes
sor list sorted.

I t can easily be verified that the coding of the set
equality test is essentially independent of the repre
sentation and can be tested as array-equality compari
son. (It is immaterial whether the elements of the
array are pieces of a bit map or several indices; only
the number of loadable entries in the array counts.)
Thus, the processing ratio for the equality test is:

T=/V/-;.-hD=H/h.

This says that the list structure takes less time to
process an equality test if, and only if, it takes less
space than the bit map structure.

N ow let us consider the subset test. The bit map
can be processed with 8 COMPASS instructions, which
are executed for every word in the bit map. Thus, the
number of instructions executed is 8/V / +-w.

Define b=h/w (=length of a bit map in h units).
The list structure, on the average, executes 6D (1 + b)
instructions for fetch indices, and the average number
of other instructions needed is 3d, where d is the larger
degree. Thus, the list structure uses 9D+6Db+
3 (d-D), on the average.

If we suppose d-D is relatively small (compared
to D), then the processing ratio is approximately:

T : 8/V / BH/h,
9Dw+6Dh

where
B=8b/ (6b+9).

Again, the processing ratio is proportional to the
ratio of index threshold to index size, except now the
constant of proportionality (which depends on h) is
less than 1. In this case the bit map structure processes
with fewer instructions, on the average, if it requires
less space. For example, suppose we have b= 1/6 (i.e.
h= 10 and w=60) for a covering problem having m
elements and an average of e elements per set. Then,

H 2 =m/e
so

T=.0013m/e.

Therefore, despite first appearances, there is a thresh
old whereby the list structure processes faster (and
uses less space) ; that is, the processing ratio is greater
than 1 if m/e> 750. If we have 750 elements, then the
average number of elements per set would have to be 1,
not very likely. However, if we have 75,000 elements,
then we need the average number of elements per set
to be only 100. For some (large) models this is within
reality.

We may infer from these two fundamental processes
that, in general, the influence of density on processing
ratio is the index threshold proportionality relation:

T=kH/h.

When k < 1, the process favors the bit map structure;
when k> 1, the process favors the list structure.
Computation of the constant (k) may be done at the
macro level to predict relative performance.

CONVERSION

In this section we shall present algorithms to convert
from one representation to another, designed to mini
mize the extra work space required.

To conserve space we wish to overwrite as much of
the bit map as possible, while forming the list struc
ture, but we cannot destroy information until it is no
longer needed. Let B be the base address of the bit
map (stored contiguously), and let L be the base ad
dress of the list structure. Let us suppose, for definite
ness, that L<B. Then, B-L is the work space to be
minimized.

The conversion procedure begins with vertex 1 and
unpacks its bit map, starting at B, into the list struc
ture, starting at L. At a general iteration, the bit map
for vertex i is unpacked into the list. Its bit map is
located between B + (i -1) band B + ib; its list structure
is located between L+di-1 and L+dj-1, where dj=sum
of the degrees of the first i vertices. Therefore, to
avoid premature overwrite, it is sufficient to require:

L+di-1~B+ (i-1)b for i=l, ... ,/V/.

Define

M=max[di-ib: l~i~/V/].

Then, we can set

B=L+b-1+M.

To convert from a list structure to a bit map repre
sentation, we transform in reverse order. If the bit
map structure uses a sufficient amount of more space
than the list structure, no other extra space is needed.
Specifically, if b/V/+M+b-1~JA/, then this con
version can be accomplished within the total region
(Lto L+b/V/+M+b-1).

REFERENCES AND BIBLIOGRAPHY

1. Bellmore, M., H. J. Greenberg and J. J. Jarvis, "Multi
Commodity Disconnecting Sets," Mgt. Sci., 16, 6, 1970, pp.
427-433.

2. Barr, R. S., F. Glover and D. Klingman, "An Improved
Version of the Out-of-Kilter Method and a Comparative
Study of Computer Codes," Math. Prog., 7, 1, 1974, pp. 60-87.

3. Berztiss, A. T., Data Structures Theory and Practice, Aca
demic Press, 1971.

4. Busacker, R. G. and T. L. Saaty, Finite Graphs and Net
works: An Introduction with Applications, McGraw-Hill,
1965.

5. Ford, L. R. and D. R. Fulkerson, Flows in Networks, Prince
ton University Press, 1962.

6. Furman, G. G. and H. J. Greenberg, "Optimal Weapon
Allocation with Overlapping Area Defenses," Opns. Res.,
21,6,1973, pp. 1291-1308.

7. Garfinkel, R. S. and G. L. Nemhauser, Integer Program
ming, Wiley, 1972.

8. Glover, F. and D. Klingman, "Network Applications in
Industry and Government," MSRS 75-20, University of
Colorado, 1975.

9. --- and ---, "Capsule View of Future Developments
on Large Scale Network and Network-Related Problems,"
Research Rept. CCS 238, University of Texas, 1975.

10. Hellerman, E. and D. C. Rarick, "The Partitioned Pre
assigned Pivot Procedure (P4) ," in Sparse Matrices and
Their Applications, D. J. Rose and R. A. Willoughby (eds.),
Plenum Press, 1972, pp. 65-76.

11. Kalan, J. E., "Aspects of Large-Scale In-Core Linear PrO
gramming," Proceedings of ACM, 1971, pp. 304-313.

12. Knuth, D., The Art of Computer Programming, volume 1:
Fundarl~ental Algorithms, Addison-"\Vesley, 1968 (rev.,
1973) .

Representations of Networks 943

13. Lefl{ovitz, D., "Tlit1 Large Data Base File Structure
Dilemma," Journ. of Chem. Inf. & Compo Sci., 15, 1975, pp.
14-19.

14. MacVeigh, D. T., Effect of D(hta Representation on Effi
ciency of Sparse Matrix Operations, M.S. Thesis, Depart
ment of Computer Science, University of North Carolina
at Chapel Hill, 1975.

15. Mulvey, J. M., "A Network Relaxation Approach for the
Set Partitioning and Set Covering Models," HBS 75-37,
Harvard University, 1975.

16. Orchard-Hays, W, Advanced Linear Programming Com'[fUt
ing Techniques, McGraw-Hill, 1968.

17. Pooch, U. W. and A. Nieder, "A Survey of Indexing Tech
niques for Sparse Matrices," Compo Surv., 5, 1973, pp. 109-
133,

18. Simonnard, M., Linear Programming, Prentice-Hall, 1966.

A practitioner's guide to the state of large scale
network and network-related problems

by FRED GLOVER

Boulder, Colorado
and
DARWIN KLINGMAN
University of Texas
Austin, Texas

ABSTRACT

The primary purpose of this paper is to identify recent
major accomplishments and prophesy future trends
in the solution, modeling, and human engineering
aspects of network and network-related problems.

Network and network-related problems include such
mathematical problems as assignment, transportation,
transshipment, multi-commodity networks, generalized
networks, plant location problems, fixed charge net
works, and constrained networks. In fact, it has re
cently been shown that the 0-1 integer programming
problems are equivalent to 0-1 generalized network
problems.

Network-related problems that arise "naturally"
(i.e., those whose formulations make conspicuous ref
erence to a network structure) cover a diverse spec
trum of practical applications. These applications in
clude problems in telecommunication, micro data set
merging, cash flow, multi-national currency exchange,
manpower planning, waste disposal, water resource
management, aircraft refueling, student-professor
classroom scheduling, modular design, cutting stock,
machine loading, aircraft scheduling, off-shore oil well
location and drilling, and production and distribution
scheduling, to mention only a few.

SETTING THE STAGE

The primary purpose of this paper is to identify re
cent accomplishments in formulating and solving net
work and network-related problems, and to propose
an integrated sequence of future developments to take
advantage of the rich possibilities for new advances
and applications in the field. To achieve these purposes
with reasonable conciseness, the next section presents
a very brief overview of the recent major developments
in network and network-related problems. These de
velopments are then partitioned and discussed in the
following sections.

945

RECENT HAPPENINGS

The published research on network and network
related problems prior to 1969 primarily focused on
characterizing solution algorithms from a mathemati
cal viewpoint. Very little was done in the way of
investigating how broad algorithmic principles should
be organized and interrelated to provide efficient com
puter implementation. Additionally no intensive com
puter code developments or rigorous empirical studies
were presented. Basically the determination of the
most effective algorithmic principles, and the develop
ment of special techniques for exploiting these princi
ples in a highly efficient manner, were neglected areas.

Things have really changed since 1969! The follow
ing developments have all occurred subsequent to this
date:

(1) The first reported transportation and trans
shipment computer codes based on the dual
simplex method.1o,12,2o

(2) the first reported techniques for streamlining
the out-of-kilter algorithm to enhance its com
puter implementation.1 ,4

(3) a number of special updating and labeling tech
niques and their underlying list structures for
improved computer implementation of network
algorithms. 5,11,13,17 ,19,22,28,32

(4) the first reported transshipment code based on
the primal simplex method.10

(5) the first transportation and transshipment
codes2

,23 designed for solving large-scale prob
lems within reasonable solution times.

(6) major advances in primal simplex network com
puter codes for generalized network prob
lems14,26,27 (in our terminology, the "general
ized" network problem is the "flow with gains
and losses" problem).

(7) the first constrained network computer code.28

These code development efforts have been accompa-

946 National Computer Conference, 1976

nied by rigorous empirical studies to determine the best
solution and implementation procedures. Additionally,
the past six years have witnessed the formulation and
solution of substantially increased numbers of real
world problems as network or network-related prob
lems.6 ,9,21,25 It appears that many researchers are
adopting real world implementation as one of the
major goals of their efforts, and this is beginning to
serve as a driving force in the development of efficient
solution and modeling approaches. Indeed, a number
of new modeling techniques have appeared which have
substantially broadened the class of network-related
problems,9,24,25 including the discovery18 that an 0-1
linear program can be modeled as a 0-1 generalized
network problem or as a "O-U" transshipment prob
lem. Given these advances it is appropriate and neces
sary to ponder and reflect on a number of questions.
For example: What are the implications of these ad
vances for identifying worthwhile directions for fu
ture research? What realms of applications have im
plicitly been opened up that have not yet been fully
recognized? What thresholds are about to be crossed,
and of these, which are the most important to examine
next? What types of interactions are likely to occur
between researchers and practitioners due to the un
precedented practical value of many of these advances?
What supplementary developments for enhancing the
use (and usefulness) of these advances are likely to
emerge? The remaining sections of this paper con
tain some of our more concrete reflections on these
questions.

TRANSPORTATION AND TRANSSHIPMENT
PROBLEMS

This section attempts to summarize recent advances
in the solution of transportation and transshipment
problems. The total work that has been done in this
area since 1969 consists of at least 10 man years of
work by mathematical programmers and systems
analysts. For a more complete discussion of events
prior to 1975 the reader should see Reference 6.

The recent developments of simplex computer codes
for networks were initiated in two major studies:
those of Srinivasan and Thompson31 and of Glover,
Karney, Klingman, and Napier,l2 Both studies intro
duced a variety of refinements and explored techniques
for taking advantage of computational trade-offs that
had been left unexamined in the literature to that time.
One of the significant findings to emerge from these
studies was that the special updating and labeling
techniques of the API methodll (which made use of
Ellis Johnson's triple label list representation22) con
tributed markedly to the efficiency of the procedures of
Reference 12, and when subsequently incorporated
into the methods of Reference 31, improved their per
formance by a factor of 2.5. This validated the ex
pectation that a critical factor in the development of

any network computer code is the manner in which an
effective list structure is integrated with the opera
tions of storing and updating the required information.

Having decided that the API method was the best
updating technique then available, substantial empiri
cal testing was conducted to determine the best start
ing and pivoting rules to use with simplex based
codes.10,12,31 Following this testing the first primal and
dual simplex based transshipment codes were devel
oped by Glover, Karney, and Klingman10 and similar
testing was conducted. These investigations consti
tuted what could be called the "First Generation" of
Modern Transportation and Transshipment Codes
(1969-72). This period significantly advanced the
speed of solving such problems and saw the first in
tensive application of the combined skills of mathe
matical programmers and systems analysts in the net
work area. These investigations uncovered a number
of fallacies in the accepted folklore of that time. For
instance, it was shown10,12 that the new simplex based
transportation and transshipment codes were at least
an order of magnitude (i.e., ten times) faster than the
best available out-of-kilter and dual simplex codes,
and at least two orders of magnitude (i.e., a hundred
times) faster than state-of-the-art commercial LP
systems. Thus, considerable doubt was cast on the
vintage preconception that the out-of-kilter method is
inherently superior to a specialized primal simplex
method, and on the more recent notion advanced by
commercial LP firms that special purpose network
codes are not significantly faster than state-of-the-art
LP systems.

The First Generation of network advances also in
cluded the first major streamlining of the out-of-kilter
algorithm for computer implementation by Barr,
Glover, and Klingman.4 This produced a sixfold
improvement in solution times over previous out-of
kilter codes. Using these improvements the out-of
kilter approach was still unable to overtake the effi
ciency of the best simplex-based approach either in
solution speed or in memory requirements.

Following in the aftermath of all these develop
ments, and taking advantage of them, the Second
Generation may be conceived as originating in 1973
with the development of a new type of list structure
and updating scheme for storing and manipulating the
spanning tree basis. This new approach by Glover,
Klingman and Stutz,17 called the Augmented Threaded
Index (ATI) method, provided both increased effi
ciency and reduced memory requirement over the pre
viously best API method. Mulvey29 elaborated on this
development by integrating the ATI approach with
the distance function concept of Srinivasan and
Thompson.32 Mulvey's integration of the distance
function and the ATI approach improved solution
times another 10 percent at the expense of an addi
tional node-length array of computer storage. One
significant contribution of the ATI method stems from

the fact that it becalne possible to design an in-core
out-of-core simplex transportation code which only
uses four node length arrays to maintain and update
all basis information. This advance is of paramount
importance for solving the extremely large problems
that sometimes arise in practical applications. One of
these is a micro-data set merger problem recently
formulated by the U.S. Treasury. This problem is a
transportation problem which contains 50,000 nodes
and 62 million arcs. The U.S. Treasury requires prob
lems from this class to be solved several times a year
on a UNIVAC 1108, and contracted Analysis, Re
search, and Computation (ARC), Inc. to design and
implement a code capable of meeting these require
ments. By using the ATI labeling and updating
method, such a code2 has been developed in FORTRAN
and to date has run problems with 5000 nodes and
625,000 arcs in less than four minutes of CP time (and
nine minutes total processing time) on a UNIVAC
1108.

The most significant finding of this "Second Gen
eration" in the area of pivot selection strategies was
made by Mulvey/9 who showed that solution times
can be substantially reduced for problems with more
than a thousand nodes by using a special form of a
"candidate list" pivot strategy.

During the early part of this Second Generation,
McBride and Graves2S developed a general technique
called the factorization method. The first implemen
tation of this method in the network setting demon
strated the possibility of specialized application in this
area. The implementation, however, proved to be sub
stantially slower than the API and ATI procedures
and required even more computer memory than the
initial implementation of the API approach. These
limitations were of course due in large part to the
experimental nature and lack of refinement of the first
implementation of any approach. Indeed, a later im
proved implementation by Graves (not reported in the
literature) showed that the method was susceptible to
substantial improvement, although it remained twice
as slow as the implementation of the ATI procedure
reported in Reference 10 and continued to require
more computer memory, when both procedures were
tested on the same computer and same problems at
General Motors, Inc. Nevertheless, the factorization
ideas contain a good deal of ingenuity, and future
implementations may be found that are superior to
those developed so far.

This concentrated burst of activity that we have
called the Second Generation was quite short, and in
referring to it we have indeed included mention of
developments that properly carryover to the present
"Third Generation." We choose to demark the begin
ning of the Third Generation as coinciding with the
development of a third updating and labeling scheme
for improving the implementation of network algo
rithms. On the basis of sound analytical arguments,

A Practitioner's Guide 947

it is quite likely that all updating and labeling schemes
for simplex network codes will henceforth only aug
ment the information kept by this approach. This new
approach by Glover and Klingman19 which appeared
in mid-1974, augments the ATI method with two new
functions, called the "cardinality" and "last node"
functions. The use of these functions in conjunction
with the ATI method makes it possible to update flows
and node potentials at each iteration with a marked
increase in efficiency. Further, both of these functions
together require less work to update than the distance
function. As a final bon us, the "cardinality function"
can accommodate all of the relevant functions filled by
the distance function, and hence can replace it. The
net result of all these advantages produces a sub
stantially improved procedure for implementing basis
exchange operations. These latest developments are
currently being tested and are expected to provide
another twofold improvement in solution speed.

The current work of Aashtiani and Magnantj1 on
improved out-of-kilter procedures bears watching. In
addition, Shapir030 has noted a previously overlooked
distinction between the out-of-kilter method and the
primal-dual method that may hold promise for exploit
ing the latter method by subgradient optimization and
by the techniques of Reference 19. Thus the Third
Generation promises to produce several enhancements
in the implementation of the primal simplex and out
of-kilter approaches and may initiate a new generation
of hybrid solution approaches.

FUTURE DEVELOPMENTS FOR TRANSPORTA
TION AND TRANSSHIPMENT PROBLEMS

In spite of the notable gains in network solution
techniques since 1969, there is still a major area that
remains to be explored. This is the area of designing
appropriate techniques for accommodating and taking
advantage of degeneracy. Computational testing has
shown that approximately 90 percent of the pivots
for transshipment problems with more than 1000
nodes are degenerate. Presently, schemes are being
computationally tested by Elam, Klingman and Stutz to
respond to this situation. The techniques being tested
are designed to circumvent pivots and to make them
judiciously. It is estimated that an effective scheme
for handling degeneracy could easily reduce solution
times by another 50 percent.

Another development which should prove to be a
significant future advance in mathematical program
ming is the implementation of network algorithms on
mini-computers. Given the dramatic recent improve
ments in the speed and memory requirements of net
work methods, and the major advances in mini-com
puter design, it now appears possible to implement
relatively efficient in-core out-of-core transportation
and transshipment codes in an assembly level language
on most mini-computers. This belief is partly based

948 National Computer Conference, 1976

on the work reported in References 2 and 23, which
indicates that simplex based codes do not suffer undue
increases in solution times by keeping the problem
data in external computer memory. Further the
FORTRAN code10 has been tested on the General
Dynamic's Nova computer. Preliminary testing showed
that problems with 200 nodes and 600 arcs could be
solved in less than a minute on the Nova. The emer
gence of network codes on mini-computers would af
ford the potential to substantially increase the use of
mathematical programming in the real world. For
example, such a development would make it possible
to demonstrate OR techniques easily and conveniently
to managers in their own offices, at management semi
nars, and in other countries. Further, since the com
puter could be dedicated to network applications, it
would be feasible and highly desirable to design the
operating system to minimize the human engineering
aspects of problem solving-that is, to minimize the
difficulties of entering, modifying, and verifying prob
lem data, passing the problem data to the solution
code, interpreting the output, and so forth. With a
dedicated system such problems could be almost non
existent to the user.

TRANSFER OF TRANSPORTATION AND
TRANSSHIPMENT TECHNOLOGY
TO RELATED PROBLEMS

Assignment problems

With the exception of the work by Rao and Fong,
very little research has been directed toward specializ
ing the recent network innovations to the solution of
assignment problems. Consequently the most efficient
way to solve assignment problems is currently un
known. Within the next two years this question will
be resolved.

Current research by Barr, Glover and Klingman (to
appear) has resulted in development of a new extreme
point algorithm that computationally overcomes the
"massive degeneracy" that is characteristic of assign
ment problems and drastically reduces computer mem
ory requirements for this class of problems.

Generalized networks

Currently the updating and labeling techniques for
transportation and transshipment problems are being
extended to generalized network problems also called
"weighted networks" or "networks with gains." The
fundamental relationships by which such extensions
can be carried out effectively are developed in Glover,
Klingman and Stutz,18 which shows how the diverse
basis updating configurations (of which there are more
than a dozen separate cases) can be consolidated into
a single "general case." This result builds upon the

early work of Balas and Hammker:l who characterized
the basis structure for this class of problems as a
forest of "I-trees" (i.e., trees augmented by additional
arcs). Additional computational simplifications of the
algorithmic steps for generalized networks have ap
peared. For example, Maurras27 and Glover and Kling
man 15 indicate how to simplify basis updating calcu
lations by characterizing an appropriate sequence for
tracing out paths in the one-trees and for proceeding
through all nodes in a subtree of a one-tree. These
events led to the development of efficient simplex-based
codes for generalized networks by Glover, Klingman,
and Stutz,14 Langley,26 and Maurras. 27 Present com
putational results indicate that generalized network
problems require about four times longer to solve than
transportation and transshipment problems of similar
dimension. However, a series of algorithmic and im
plementation advances in the next several years should
substantially reduce the already impressive solution
times of such problems.

Constrained network

By a constrained network we mean an assignment,
transportation or transshipment problem which also
includes extra linear constraints. Klingman and Rus
sel}24 have developed a special basis compactification
procedure for this class of problems that maintains
all of the network as the "implicit" portion of the
basis. The operations involving the implicit portion of
the basis are simply carried out as they would ordi
narily be for the underlying network. Thus it is pos
sible to take advantage of the efficient procedures
previously described for solving network problems.
Preliminary computational implementations by Glover,
Karney, Klingman, and Russell16 indicate that this
procedure is highly efficient for solving problems with
one or two extra constraints. Such problems typically
required only twice as long to solve as the underlying
network problem. A prototype code using related
ideas to handle more than two extra constraints has
recently been developed by Chen and SaigaF although
without attempting to incorporate the essential refine
ments required to take full advantage of the network
structure or to optimize the computer memory require
ments. We strongly anticipate that refined codes to
handle larger numbers of extra constraints will be
developed in the near future. The results of Reference
16 suggest that these codes will be much more efficient
than general linear programming codes for solving
this class of problems.

The importance of the basis compactification area
for solving constrained network problems is difficult
to overrate. It will probably be the focus of numerous
active investigations and will produce the next break
through, similar to the GUB breakthrough, in the
developments of linear programming codes. This be
lief rests on the observations that

(a) UUtl is a specIailzation of the network basis
compactification procedures of Reference 24,

(b) the network basis compactification extends GUB
in the sense that it eliminates the nonoverlap
ping variable requirement of GUB.

(c) the number of real world LP problems which
have network substructures is quite large.

Modeling

As a result of the projected algorithmic and imple
mentation activities for generalized and constrained
network problems, we foresee a flurry of modeling
advances for these problems. In our opinion, such
problems have a vastly richer domain of application
than ordinary networks; e.g., examples include cash
flow problems, multi-commodity problems, waste dis
posal problems, water resource management problems,
plastic problems of civil engineering, production
scheduling problems, machine loading problems, goal
programming networks, stochastic and constrained
regression problems, and multi-national currency ex
change problems, to mention only a few.

An important educational function that should soon
be adopted by members of the Operations Research
and Management Science fields is to train and guide
modelers and decision makers in visualizing their
problems within network-related frameworks-par
ticularly those of generalized network or constrained
network problems when this is possible. A trend is
already underwaylR,21 toward identifying problems that
can be framed cost-effectively as network-related prob
lems. Network-related problems provide natural for
mulations for a vastly larger number of real world
problems than previously suspected. At the same time,
researchers are discovering that a variety of other
real world problems can be easily transformed into
this format. 1R ,21 Such models and formulation possi
bilities have been virtually unknown in the literature
before now because of the lack of efficient ways to
solve such problems as a class distinct from general
LP models.

It is further believed that the effort to help people
think of their problems in a network-related format
will have far reaching and beneficial consequences in
two ways. First, this type of visualization will enable
decision-makers to formulate their problems initially
by means of drawings and diagrams. This is much
easier for the nontechnical person than trying to for
mulate his problems in terms of equations. The result
will be to provide increased recognition of the per
vasiveness and significance of these types of problems,
and thus to enlarge the number of important real
world problems that are being solved by OR method
ology. The second and probably more significant con
sequence will derive from the fact that these types of
problems can often be solved with dramatic success,
even in large-scale applications. Consequently, a much

A Practitioner's Guide 949

greater appreciation of UJ:{ by industry and govern
ment will come about, permitting the widespread dis
illusionment that followed on the heels of many at
tempted LP and IP implementations to be reversed.
Indeed, it seems conceivable that such developments
may spearhead a new liaison between OR and its users.
We have personally had first hand experience of this
upsurge of interest by industry and government when
such modeling and solution approaches are used. Re
cent real world applications which have been success
fully solved via these modeling and solution approaches
are summarized in Reference 21.

REFERENCES

1. Aashtiani, H. and T. L. M:agIlanti, "Solving Large i:)Cale
Network Optimization Problems," Presented at ORSA/TIMS
conference, Chicago, April 1975.

2. Analysis, Research, and Computation, Inc., "Development
and Computational Testing on Large Scale Primal Simplex
Network Codes," ARC Technical Research Report, P. O.
Box 4067, Austin, TX 78765,1974.

3. Balas, E. and P. L. Ivanescu (Hammker), "On the Gen
eralized Transportation Problem," Man. Sci. 11, pp. 188-
202,1964.

4. Barr, R. S., F. Glover and D. Klingman, "An Improved
Version of the Out-of-Kilter Method and a Comparative
Study of Computer Codes," Mathematical Programming,
7, 1, pp. 60-87, 1974.

5. Bradley, G., G. Brown and G. Graves, "A Comparison of
Storage Structure for Primal Network Codes," Presented
at ORSA/TIMS conference, Chicago, April 1975.

6. Charnes, A., F. Glover, D. Karney, D. Klingman and J.
Stutz, "Past, Present, and Future of Development, Com
putational Efficiency, and Practical Use of Large Scale
Transportation and Transshipment Computer Codes," Com
puters and Operations Research, 2, pp. 71-81, 1975.

7. Chen and Saigal, "A Primal Algorithm for Solving a Capac
itated Network Flow Problem with Additional Linear Con
straints," Presented at ORSA/TIMS conference, Chicago,
April 1975.

8. Elam, J., D. Klingman and J. Stutz, "Degeneracy and its
Computational Resolution," forthcoming.

9. Gavish and P. Schweitzer, "An Algorithm for Combining
Truck Trips," Trans. Sci., 8,1, pp. 13-24, 1974.

10. Glover, F., D. Karney and D. Klingman, "Implementation
and Computational Study on Start Procedures and Basic
Change Criteria for a Primal Network Code," Networks,
4,3, pp. 191-212, 1974.

11. Glover, F., D. Karney and D. Klingman, "Augmented Pred
ecessor Index Method for Location Stepping Stone Paths
and Assigning Dual Prices in Distribution Problems," Trans.
Sci,; 6; 1; pp, 171-181; 1972,

12. Glover, F., D. Karney, D. Klingman and A. Napier, "A
Computational Study on Start Procedures, Basis Change
Criteria, and Solution Algorithms for Transportation Prob
lems," Man. Sci., 20, 5, pp. 793-819, 1974.

13. Glover, F., D. Klingman, and J. Stutz, "Extensions of the
Augmented Predecessor Index Method to Generalized Net
work Problems," Trans. Sci., 7, 4, pp. 377-384, 1973.

14. Glover, F., D. Klingman and J. Stutz, "Implementation and
Computational Study of a Generalized Network Code," 44th
National Meeting of ORSA, San Diego, California, 1973.

15. Glover, F. and D. Klingman, "A Note on Computatjonal
Simplifications in Solving Generalized Transportation .Prob
lems," Trans. Sci., 7, pp. 351-361, 1973.

950 National Computer Conference, 1976

16. Glover, F., D. Karney, D. Klingman and R. Russell, "Solving
Singularly Constrained Transshipment Problems," Research
Report CCS 212, Center for Cybernetic Studies, University
of Texas, Austin, Texas, 1974.

17. Glover, F., D. Klingman and J. Stutz, "Augmented Threaded
Index Method for Network Optimization," INFOR, 12, 3,
pp. 293-298, 1974.

18. Glover, F. and J. Mulvey, "Equivalence of the Zero-One
Integer Program to Discrete Generalized and Pure Net
works," MSRS 75-19, University of Colorado, 1975.

19. Glover, F. and D. Klingman, "Improved Labeling of L. P.
Bases in Networks," Research Report CS 218, Center for
Cybernetic Studies, University of Texas, Austin, Texas,
1974.

20. Glover, F. and D. Klingman, "Double-pricing Dual and
Feasible Start Algorithms for the Capacitated Transporta
tion (distribution) Problems," University of Texas, Austin,
Texas, 1970.

21. Glover, F. and D. Klingman, "Network Applications in
Industry and Government," MSRS 75-20, University of
Colorado, May 1975.

22. Johnson, E., "Networks and Basic Solutions," Opns. Res.
14, pp. 89-95, 1966.

23. Karney, D. and D. Klingman, "Implementation and Com
putational Study on In-Core Out-of-Core Primal Network
Code" to appear in Opns. Res.

24. Klingman, D. and R. Russell, "On Solving Constrained
Transportation Problems," Opns. Res. 1, pp. 91-107, 1975.

25. Klingman, D., P. Randolph, and S. Fuller, "A Cotton
Pickin Cotton Ginning Problem," to appear in Opns. Res.

26. Langley, R. W., "Continuous and Integer Generalized Flow
Problems," Ph.D. Dissertation, Georgia Tech., 1973.

27. Maurras, J. F., "Optimization of the Flow Through Net
works with Gains," MaJthematical Programming, 4, 2, pp.
135-145, 1972.

28. McBride, R. D. and G. W. Graves, "The Use of Inherent
Triangularity in Network Problems," presented at 44th
National Meeting of ORSA, San Diego, November 1973.

29. Mulvey, J., "Column Weighting Factors and Other Enhance
ments to the Augmented Threaded Index Method for Net
work Optimization," Joint ORSA/TIMS Conference, San
Juan, Puerto Rico, 1974.

30. Shapiro, J. F., "A Note on the Primal-Dual and Out-of
Kilter Algorithms for Networks Optimization Problems,"
MIT, March 1975.

31. Srinivasan, V. and G. L. Thompson, "Benefit-Cost Analysis
of Coding Techniques for the Primal Transportation
Algorithm," JACM, 20, pp. 194-213, 1973.

32. Srinivasan, V. and G. L. Thompson, "Accelerated Algorithms
for Labeling and Relabeling of Trees with Application for
Distribution Problems," JACM, 19, 4, pp. 712-726, 1972.

Low-cost residue number systems for computer arithmetic

by BEHROOZ P ARHAMI
A,rya-J.llehT U'nive·/sity of Techn~ology
Tehran, Iran

ABSTRACT

The representation of integers by their residues with
respect to a set of pairwise-prime moduli is known as
the residue number representation system and has been
shown to have several advantages over conventional
number systems for digital computers. In this paper,
residue systems are considered for which each modulus
is of the form 2b-1. Such systems result in relatively
high storage efficiency as well as simple algorithms for
addition, subtraction multiplication, conversion, and
reconversion; hence the name "low-cost." The question
of existence for low-cost residue number systems is
examined. It is shown that the additional storage re
quirement with respect to binary representation is at
most one bit per word. Guidelines are given for opti
mal selection of the set of moduli to represent a de
sired range of integers. Algorithms for various opera
tions in a low-cost residue system are described.

INTRODUCTION

When dealing with large numbers in digital computers,
the computations are slowed down because of the re
quirement for carry or borrow propagation through
many stages of logic in addition and subtraction opera
tions and for long iterative algorithms to perform mul
tiplication and division. Attempts to eliminate the
propagation of carries and borrows have resulted in
proposals for stored-carry! and signed-digit2 number
representation systems. The residue number system3

does not totally eliminate carry propagation but limits
it to within a few stages by representing large numbers
as an ordered set of smaller numbers that can be pro
cessed independently and in parallel. This is particu
larly advantageous in multiplication which becomes
almost as simple and as fast as addition. However, the
complexity of division in residue number systems
makes them unsuitable for general-purpose use.

In this paper, residue number systems are reviewed
briefly and their properties are enumerated. A class of
residue number representation systems which results
in relatively high storage efficiency as well as simple
algorithms for addition, subtraction, multiplication,

951

conversion, and reconversion algorithms is introduced.
The questions of existence, selection, storage efficiency,
and algorithms for such !!low-cost" residue systems are
examined. The storage requirement for each word is
shown to be within one bit of the binary representa
tion. Algorithms needed for basic operations and con
versions are discussed.

RESIDUE NUMBER SYSTEMS

A residue number system-1,5 is one in which a numeri
cal value n is represented by a k-tuple whose compo
nents are the residues of n with respect to an ordered
set of k moduli

(1)

which are relatively prime pairwise. Hence, n is repre
sented by the k-tuple

(2)

such that

(3)

where p=,ul~ means that p is the smallest non-negative
integer satisfying ~=p+{3,u for some integer {3. The
range of a residue system (Le., the number of distinct
values representable) is:

(4)

To represent a negative integer-n, we simply repre
sent the positive integer N -n since we have

Pi! (N -n) =Pi! (-n) ; i=1,2, ... , k (5)

The integer N - n is the additive inverse of n and is
denoted by n. The residue representation r of n has
the following relation with the representation r of n:

(6)

If binary representation is used for the residues, the
number of bits required for storing each value in the
residue system is

k k

B= L bi= Lflog2 Pil (7)
i=l i=l

952 National Computer Conference, 1976

which is always greater than or equal to POg2 Nl, the
number of bits needed for the binary representation
of N distinct values. Hence, a residue number system
is less efficient than the binary representation in terms
of storage space.

Addition and multiplication in a residue system are
done by performing the corresponding operation
(modulo Pi) on the i-th residues of the two numbers,
independently of other residues. Hence, showing the
sum and product of x= <XUX2' ... , Xk> and y= <Yu
Y2, ... , Yk> by sand m, respectively, we can write:

si=pd (Xi+Yi) ; i=1,2, ... , k

mi=Pil (Xi·Yi) ; i=1,2, ... , k

(8)

(9)

Subtraction is performed by adding the additive in
verse, as defined by (6). Thus, the carry propagation
delay for addition and subtraction is reduced and the
construction of very fast multiplication circuits is
made possible. However, comparison of magnitudes,
and hence division, and also detection of overflow con
ditions are fairly complex in residue number systems.
Hence, such systems are not suitable for general
purpose use.

To find the normal representation n of a residue
number r= <r1,r2, ... , rk>, the following equation may
be used

(10)

where the coefficient Ci is selected to be the smallest in
teger satisfying

(11)

for some integer {3i.
Another reconversion process uses the following al

gorithm which is a formalization of the procedure
given in Reference 5.

Algorithm R (12)
[1] v~r; n~O ; w~l; uj~l, j = 1,2, ... , k; i~k
[2] Find smallest integer d such that for some {3,

d= (Vi+{3Pi)/Ui
[3] n~n+wd
[4] For j =1,2, ... , k set Vj~pjl (vj-ujd) and

Uj~pjl (UjPi)
[5] W~WPi
[6] i~i-l
[7] if i>O then go to Step [2] else stop

LOW-COST RESIDUE SYSTEMS

A residue number representation system is low-cost
if each modulus Pi is selected such that:

(13)

The name "low-cost" is justified because of the rela
tively high storage efficiency and the simplicity of addi-

tion subtraction, multiplication, conversion, and recon
version algorithms as will be seen in the remainder of
this paper. In this section, we will only concentrate on
the existence of such systems and their storage effi
ciency.

The selection of bi's must be made such that the re
sulting Pi'S are pairwise prime. It can be proven that
Pi and Pj are relatively prime if and only if the cor
responding bi and bj are relatively prime (see Theorem
1 in the Appendix). Using this result, Table I has
been constructed to show the maximal sets of pairwise
prime b/s for bi "::::::: 20, since making b i larger than 20
may defeat the advantage of residue number systems in
breaking long numbers into several short components.
We define, as a measure of this advantage, the dissec
tion factor:

(14)

Table II shows possible selections of b/s for a given
total number of bits, B, which satisfy the following
criteria, in the order given: (1) Minimum value of 8,
and (2) Smallest number of bi's. The second criterion
is justified by the fact that once the size of the longest
group is fixed at its minimum value, no speed advan
tage results from making the other groups shorter.
Figure 1 shows the same results graphically.

We define as a measure of storage efficiency, the ratio
of N to the range of the binary system with the same
number of bits:

k k

n=N/2B = n (Pi/2b,) = n (1_2-b ,) (15)
i=l 1'-1

It can be proven (see Theorem 2 in the Appendix) that

TABLE I-Maximal Compatible Sets of b/s (bi~20) for Low
Cost Residue Number Systems

Set
No. b1 b2 b3 b4 b5 b6 b7 bS

1 2 3 5 7 11 13 17 19
2 2 5 7 9 11 13 17 19
3 2 7 11 13 15 17 19
4 3 4 5 7 11 13 17 19
5 3 5 7 S 11 13 17 19
6 3 5 7 11 13 16 17 19
7 3 5 11 13 14 17 19
8 3 7 10 11 13 17 19
9 3 7 11 13 17 19 20

10 4 5 7 9 11 13 17 19
11 4 7 11 13 15 17 19
12 5 6 7 11 13 17 19
13 5 7 8 9 11 13 17 19
14 5 7 9 11 13 16 17 19
15 5 7 11 12 13 17 19
16 5 7 11 13 17 18 19
17 5 9 11 13 14 17 19
18 7 8 11 13 15 17 19
19 7 9 10 11 13 17 19
20 7 9 11 l3 17 19 20
21 7 11 13 15 16 17 19
22 11 13 14 15 17 19

Low-Cost Residue Number Systems 953

TABLE II-Best Choices for b:s in a Low-Cost Residue Number System with a Given Total Number of Bits (B)

B b1 b2 b3 b4 b5 6(%) B b1 b2 b3 b4 b5 b6 6(%) B b1 b2 b3 b4 b5 b6 6(%)

5 2 3 60.0 35 7 8 9 11 31.4 57 11 13 16 17 29.8
7 3 4 57.1 36 4 5 7 9 11 30.6 11 14 15 17
8 3 5 62.5 37 7 9 10 11 29.7 58 2 11 13 15 17 29.3
9 4 5 55.6 38 5 9 11 13 34.2 3 11 13 14 17

- - . - - - --
I 1 n 2 3 5 50.0 39 7 8 11 13 33.3 5 7 13 16 17 I ii 5 6 54.5 7 9 10 13 5 9 11 16 17

12 3 4 5 41.7 40 5 7 8 9 11 27.5 5 9 13 14 17
13 6 7 53.8 41 5 11 12 13 31.7 5 11 12 13 17
14 2 5 7 50.0 7 10 11 13 7 8 11 15 17

3 4 7 8 9 11 13 7 10 11 13 17
15 3 5 7 46.7 42 2 7 9 11 13 31.0 8 9 11 13 17
16 4 5 7 43.8 3. 7 8 11 13 59 11 15 16 17 28.8
17 2 3 5 7 41.2 4 5 9 11 13 13 14 15 17
18 5 6 7 38.9 5 6 7 11 13 60 3 11 13 16 17 28.3
19 3 4 5 7 36.8 5 7 8 9 13 4 11 13 15 17
20 5 7 8 40.0 43 7 11 12 13 30.2 5 9 13 16 17
21 5 7 9 4209 9 10 11 13 5 11 13 14 17
22 5 8 9 40.9 44 3 7 10 11 13 29.5 7 8 13 15 17
23 3 5 7 8 34.8 4 7 9 11 13 7 9 11 16 17
24 7 8 9 37.5 5 7 8 11 13 7 11 12 13 17
25 4 5 7 9 36.0 45 5 7 9 11 13 28.9 9 10 11 13 17
26 7 9 10 38.5 46 5 8 9 11 13 28.3 61 5 7 9 11 13 16 26.2
27 7 9 11 40.7 47 2 5 7 9 11 13 27.7 62 7 11 13 15 16 25.8

128 7 10 11 39.3 3 5 7 8 11 13 63 7 11 13 15 17 27.01
8 9 11 48 5 7 11 12 13 27.1 64 7 11 13 16 17 26.6

29 5 7 8 9 31. 0 7 8 9 11 13 8 11 13 15 17
30 9 10 11 36.7 49 4 5 7 9 11 13 26.6 9 11 13 14 17
31 3 7 10 11 35.5 50 7 9 10 11 13 26.0 65 2 7 11 13 15 17 26.2

4 7 9 11 51 7 13 15 16 31.4 3 5 11 13 16 17
5 7 8 11 52 5 9 11 13 14 26.9 5 7 9 11 16 17

32 5 7 9 11 34.4 53 5 7 8 9 11 13 24.5 5 7 11 12 13 17
33 5 8 9 11 33.3 54 7 8 11 13 15 27.8 7 8 9 11 13 17
34 2 5 7 9 11 32.4 55 11 13 15 16 29.1

3 5 7 8 11 56 7 9 11 13 16 28.6

for any low-cost residue number system 0.5<'1]<1 from
which we can conclude

(16)

This shows that the storage requirement for a low-cost
residue system is within one bit of the most efficient
representation. It also shows that N is an increasing
function of B.

To select a low-cost residue system, B must be de
termined first. To do this, we first note that among
all choices for the set of moduli for each value of B,
given by Table II, the one for which mini (bi) is a
maximum results in the largest possible range (see
Theorem 3 in the Appendix). If more than one set
has this maximum value for mini (bi), we look at the
second smallest bi in the sets, etc. Table III gives the

maximum range obtainable for each value of B. Since,
in a low-cost residue system, the storage requirement
is dictated by B and the processing speed by maXi (bi),
the final choice for B among the values which provide
adequate range may involve a tradeoff between these
two factors. For example if B = 51 is sufficient for
some desired range, B = 52 and B = 53 must also be
considered for the final selection, since they provide
higher processing speeds at the expense of more stor
age space.

LOW-COST ALGORITHMS

We first note that in dealing with numbers repre
sented in a residue system, the following operations in-

954 National Computer Conference, 1976

5 (percent)

maxi (b i)

60

50

40

30

20

10

10

maxi (b i)

in bits

20 30

Dissection
Factor (Ii)

40 50 60
Total Number of Bits (B)

Figure I-The values of maxi (hi) and a as functions of B

volving the set of moduli p are required (numbers fol
lowing each operation show the equations where it is
used) :

1. Subtraction from Pi : (6)
2. Addition modulo Pi : (8)
3. Determination of residues with respect to Pi

(3), (6), (12)
4. Multiplication modulo Pi : (9)
5. Multiplication by Pi : (12)
6. Division by Pi : (10)

We will show that low-cost algorithms exist for per
forming all of the above operations in a low-cost resi
due number system. Here, the term "low-cost" refers
to the computer implementation of algorithms, keeping
in mind that in digital computers addition and sub
traction are the fastest and least expensive of the four
basic operations, while division is the slowest and most
expensive to implement. Most of the operations to be
described are also used in encoding, decoding and
arithmetic operations for low-cost arithmetic error
codes. 6 ,7

Subtraction of a bi-bit binary number x from Pi is
quite simple since Pi = 2b , -1 is represented in binary as
bi digits of 1. Hence, the digits of Pi - x are the logical
complements of the digits of x.

Addition of two bi-bit binary numbers modulo Pi is
also simple. It consists of a simple bi-bit binary addi
tion with end-around carry; i.e., the carry generated
by the last digit position is inserted into the first digit
position. This is true since for a sum which is greater
than Pi, we have to subtract Pi=2b,-1 in order to ob-

tain its modulo Pi residue. This is done by subtracting
2h, (discarding the outgoing carry) and adding 1 (in
serting a carry into the first digit position). The only
problem arises when the sum is equal to Pb in which
case we either need special circuitry to detect this con
dition and insert a carry into the first digit position if
it arises, or simply leave the result as it is and have
two representations for zero. This latter approach will
cause no difficulty since in all modulO-Pi operations the
two values 0 and 2b, -1 are entirely equivalent.

To determine the residue of a binary number x with
respect to Ph we simply break x into bi-bit bytes, start
ing at the right end, and add the resulting bytes modulo
Pi. This is true since the residue of 2b

l with respect to
Pi is equal to 1 and the value of x is a polynomial in
2h

" with the values of the bi-bit bytes of x as the coeffi
cients. Hence the residue of x with respect to Pi is the
same as the residue of the sum of these coefficients
with respect to Pi, which is the modulo Pi addition of
these coefficients.

Multiplication in digital computers is usually per
formed through multiple additions, either sequentially
by a single adder or in parallel by using a number of
carry-save adders.8 Hence, modulO-Pi multiplication of
two numbers can be performed through a number of
modulO-Pi additions, the algorithm for which was dis
cussed previously.

Multiplication of a binary number x by Pi =2bl-1
can be done by a single subtraction X.2b ,-X, since X.2b,
can be easily obtained through shifting x to the left by
bi bits (inserting bi zero to the right of x).

Finally, division by Pi (of a number which is a mul
tiple of Pi) can be done by a very interesting algorithm7
which is obtained by observing that x=x.2b l-x.Pi.
Now, the first bi bits of X.2h, are known to be zero and
since we have X.Pb the first bi bits of x can be obtained
by subtraction. These bi bits of x now form the second
bi bits of X.2111 and, hence, the second bi bits of x are
obtained by another subtraction, taking into account
a borrow which may have been generated by the first
subtraction. This process is continued until all the
digits of x are computed.

CONCLUSION

In this paper, we have introduced the class of low-cost
residue number representation systems and studied
their properties. It appears that such systems allevi
ate the storage inefficiency normally associated with
residue number systems and simplify many of the
basic algorithms. The division process, however, re
mains complex. Therefore, such systems are useful
only for special applications.

One disadvantage of the low-cost residue number
system is that the moduli, and hence the residues, are
larger than those for conventional residue systems
with no restriction on p/s. Therefore, carry propaga
tion delay is not reduced by as much. However, this

Low-Cost Residue Number Systems 955

T ABLE III-Maximum Range pf Low-Cost Residue Number Systems with a Given B and with Minimum a

log
B· max N (max N)

5 21 1.322
7 105 2.021
8 217 2.336
9 465 2.667

10 651 2.814

11 1953 3.291
12· 3255 3.513
13 8001 3.903
14 13335 4.125
15 27559 4.440

16 59055 4.771
17 82677 4.917
18 248031 5.395
19 413385 5.616
20 1003935 6.002

21 2011807 6.304
22 4039455 6.606
23 7027545 6.847
24 16548735 7.219
25 30177105 7.480

26 66389631 7.822
27 132844159 8.123
28 266734335 8.426
29 513010785 8.710
30 1070075391 9.029

31 2055054945 9.313
32 4118168929 9.615
33 8268764385 9.917
34 14385384615 10.158
35 33875260545 10.530

disadvantage is more than offset by the many advan
tages which we have enumerated in this paper.

ACKNOWLEDGMENT

The author gratefully acknowledges fruitful discus
sions with Professor Siavash Shahshahani and also
the programming help of Mr. Bijan Aaraam for the
preparation of this paper.

REFERENCES

1. Metze, G. and J. E. Robertson, "Elimination of Carry
Propagation in Digital Computers," Proc. of the Interna-

B

36
37
38
39
40

41
42
43
44
45

46
47
48
49
50

51
52
53
54
55

56
57
58
59
60

61
62
63
64
65

log
max N (max N)

61772533935 10.791
135899574657 11.133
265605682657 11.424
543797467521 11.735 I

1050133076895 12.021

2184820937985 12.339
4202071339935 12.623
8764987527681 12.943

16832955054495 13.226
33731921697439 13.528

67729449077535 13.831
117830685381465 14.071
277472259124095 14.443
505978825461585 14.704

1113153416015487 15.047

2233832636833665 15.349
4351417898969631 15.639
8601640032846945 15.935

17792433492601215 16.250
35442210736330753 16.556

71028895618181759 16.853
142904633121912833 17.158
285803715209210623 17.457
575488792479997953 17.761

1148272730287255039 18.060

2210621488441664865 18.345
4572655407598512255 18.660
9145099114469304447 18.961

18397371556871432703 19.265
36368285000677545089 19.561

tional Conf. on Information Processing, pp. 389-396, Paris,
June 1959.

2. Avizienis, A., "Signed-Digit Number Representations for
Fast Parallel Arithmetic," IRE Transactions on Elect1'onic
Computers, Vol. EC-10, Ko. 3, pp. 389-400, September 1961.

3. Svobada, A., "Rational Numerical System of Residue
Classes," Storje Na Zpracovani Informaci, pp. 9-37, Sbornik
V, Nakl. CSAV, Praha, 1957.

4. Svoboda, A., "The Numerical System of Residual Classes in
Mathematical Machines," Proceedings of Inte1-national Con
ference on Information Processing, pp. 419-422, UNESCO,
Paris, June 1959, Butterworths, London, 1960 .

. 5. Garner, H. L., "The Residue Number System," IRE Trans
actions on Electronic Computers, Vol. EC-8, No.8, pp. 140-
147, June 1959.

6. A viZienis, A., "Arithmetic Error Codes: Cost and Effective
ness Studies for Application in Digital System Design,"

956 National Computer Conference, 1976

IEEE Transactions on Computers, Vol. C-20, No. 11, pp.
1322-1331, November 1971.

7. Avizienis, A., "Arithmetic Algorithms for Error-Coded
Operands," IEEE Transactions on Computers, Vol. C-22,
No.6, pp. 567-572, June 1973.

8. Wallace, C. S., "A Suggestion for a Fast Multiplier," IEEE
Transactions on Electronic Computers, Vol. EC-13, No.1,
pp. 14-17, February 1964.

APPENDIX

THEOREMS AND THEIR PROOFS

Theorem 1: Pi = 2b
l -1 and Pj = 2b

j -1 are relatively
prime if and only if bi and bj are relatively prime.

Proof: (Only if part)-Let bi=zx and bj=zy with
z>1. Then, since an -l is divisible by a-I, PI and Pj
are both divisible by 2z -1 and, hence, they are not rel
atively prime.

(If part)-Suppose there exist pairs of integers of the
form 2bl -1 and 2b

j -1 which are not relatively prime
while bl and bj are. Let 2x -1 and 2y -1 be one such
pair with x>y and x+y a minimum among all such
pairs. Let the odd prime number z divide 2x -1 and
2y -1. Then, z must also divide their difference

(17)

Since z cannot divide 2Y, it must divide 2X
- Y -1. But now

z divides 2x- y -l and 2Y-l with x-y and y relatively
prime (since, by assumption, x and yare relatively
prime) and (x-y) +y smaller than x+y which was as
sumed to be a minimum among all such pairs; clearly
a contradiction.

Theorem 2: If bl~2 for all i and if for i+j, we have
bl+bj, then

k

"/= IT (1-2-bl) >1_2-(milll!';k(bll-11~1/2 (18)
1=1

Proof: The second inequality is obvious upon noting
that mini (b l) ~2. To prove the first inequality, we first
show, by induction on k, that:

k k

IT (1-2-bl) ~1- I,2-bl (19)
i=l 1=1

Clearly this is true for k= 1. To show that if the in
equality holds for k it will also hold for k+ 1, we mul
tiply both sides of (19) by the positive value (1-2-bk+l)
to get:

k+1 k+1 k
IT (1- 2-bl) ~ 1-2: 2-bl + bk+ 1 • I, 2-bl (20)
1=1 1=1 1=1

The right-hand-side of (20) is clearly greater than the
right-hand-side of (19) with k replaced by k + 1. Next,
denoting minj::;:K (bl) by m, we write:

k ex;

1- I,2-bl>l- I, 2-x = 1-2-(111-1 I (21)
1=1

Combining (21) with (19), we get the desired result.

Theorem 3: Given b I <b2 < . . . <bk and b/
l <b' 2

< ... <b'k with b1>b\

and

k k

I,bi = I,b'I=B, (22)
1=1 1=1

we have

k k

IT (2bl-l) > IT (2b'l-l). (23)
1=1 1=1

Proof : Using Theorem 2 and the fact that b/1:S; b I -1,
we can write:

k k

IT (2bl-l) =2H IT (1-2-bl) (24)
1=1 1=1

>2B (1-2-(b]-11)
~ 2B (1- 2-b',)

On the other hand:

k k IT (2b'i-l) =211 IT (1-2-b'l) :S;2B (1-2-b'l) (25)
1==1 1=1

Combining (24) and (25), we get the desired result.

Very fast computation of polynomial remainder
sequence coefficient signs *

J..." T A 1\JrDC< D UTl\T1714'DT u·y d.l'1..J..l".1...J...!.Ilo..) ~" • .L ~.L'~~~..L"'..L

University of Tennessee
Knoxville, Tennessee

ABSTRACT

Polynomial remainder sequences are the basis of many
important algorithms in symbolic and algebraic manip
ulation. In a number of these algorithms, the actual
coefficients of the sequence are not required; rather,
the method uses the signs of the coefficients. Present
techniques, however, compute the exact coefficients (or
a mixed radix representation of them), and then obtain
the signs. This paper discusses a new approach in
which interval arithmetic is used to obtain the signs of
the coefficients without computing their exact values.
Comparisons of this method with analogous standard
techniques show empirical computing time reductions
of two orders of magnitude for even relatively small
cases.

INTRODUCTION

Two occurrences at Mathematical Software III were
especially important to this paper. One was Oliver
Aberth's presentation of some very interesting tech
niques in interval arithmetic. The other was a discus
sion with George E. Collins regarding potential time
reductions in algorithms of symbolic and algebraic
manipulation if approximate or interval arithmetic
could replace some of the exact arithmetic.

One of the author's main interests is the computa
tion of polynomial roots using algebraic algorithms. A
maj or tool in such work is the integer polynomial re
mainder sequence.2

It is important to note that in this application the
exact numerical values of coefficients in a given se
quence are not required. Rather, one is concerned with
the signs of the coefficients.

Two algorithms for computing these signs have re
ceived considerable attention. 2 In one, pseudo-division3

is used to compute a reduced integer polynomial re
mainder sequence; the signs are then obtained from
the integer coefficients. (A greatest common divisor

* Research supported by the University of Tennessee Faculty
Research Fund.

957

algorithm can be added to obtain a primitive integer
polynomial remainder sequence.) In the other algo
rithm, modular methods are used to obtain mixed radix
representations4 of the coefficients. The signs can then
be obtained from these representations without actu
ally computing the integer values.

Since signs, and not numeric values, are required,
the considerations brought up in the first paragraph of
this section seemed particularly relevant to these com
putations.

A SAC-P interval arithmetic package was imple
mented, employing some concepts from Aberth's pre
sentation. The standard SAC-I algorithm for comput
ing the pseudo-remainder of two polynomials3 was then
modified to use this interval arithmetic.

Empirical comparisons of the standard and modified
versions have been very encouraging. Time reductions
of two orders of magnitude have been realized on rela
tively small problems and extrapolations seem to indi
cate even greater reductions for larger cases. For ex
ample, one list of signs which could not be computed in
thirty minutes using the standard pseudo-division al
gorithm was obtained in one second using the interval
arithmetic version.

Section two of this paper discusses the interval
arithmetic algorithms. The modified polynomial re
mainder sequence algorithms are presented in Section
three. Sample empirical computing times are shown in
Section four. Section five summarizes the results.

SAC-I INTERVAL ARITHMETIC

This section discusses the SAC-l interval arithmetic
package used to compute reduced polynomial remainder
sequences. Some initial comments must be made re
garding these algorithms.

First, they are included for completeness of discus
sion and better evaluation of results presented in Sec
tion four, not on any premise of significant develop
ments in themselves. These algorithms were designed
for efficient implementation in SAC-I, and hence to ex
pedite testing of the hypothesis that interval arith-

958 National Computer Conference, 1976

metic could be used to improve polynomial remainder
sequence generation. Given the successful test results,
effort can now be directed to refinement and expansion
of this package to form a viable SAC-1 Interval Arith
metic Module.

Second, and related to the previous paragraph, only
the fundamental operations of the algorithms are
shown. Actual subroutine calls, list operations, and
checks for such things as zero inputs and null lists are
not included. A complete listing and/or card deck of
the actual system can be obtained from the author.

Finally, some notational conciseness has not been
used, in the interest of clarity (e.g., deeply nested if
then-else statements).

Consider an integer A~O, where for some integer
f3>1, f3m~ IAI <f3m+l. Then A can be written as A=

m

L rlj,Bj where rlj=O or sign{rlj} =sign{A}, Irljl <f3, and
j=O
rlm~O. The SAC-1 Integer Arithmetic System5 uses
this technique, representing A as the list (ao, au ... , am)
where aj is the Fortran representation of rlj.

Now consider the interval 1= [f3X{A-E}, f3X{A+E}]
where A is as above, O~E<f3, and O~x<f3. This inter
val is represented in SAC-1 as the list «ao, aI, ... , am),
e, x) where .A= (ao• a l ... , am) is the representation of
A, e is the Fortran representation of E, and x is the
Fortran representation of x.

The interval I is spoken of as "carried to m + 1 f3-
digits." For conciseness, it will be written f3x [A ± E].

The Integer Arithmetic System representation of
A=O is the null list, O. The representation of interval
1= [0, 0] will also be the null list.

The following algorithm is used for interval subtrac-
tion, I-J, where 1=f3x1 [A±EI] = «ao, al, ... , ad), el>
Xl) = (A, eh Xl), J =f3x2[B±E~] = «bo, bI> ... , bd2), e2,

x 2) = (H, e2, x 2), and the result is carried to n f3-digits.

Subtraction:

Step 1: If Xl = X~ then X3~XI ;
Step 2: If XI>X2 then do;

ez~2;

B~(bxcx2' bXI-X2+1, ... , bd2) ;
X3~XI;

end;
Step 3: If X2 >XI then do;

el~2;

A~ (aX2-X1' aX2-Xl+l, ... , ad) ;
X3~XZ;

end;
Step 4: e3~1 +ez ;

Step 5: C~A-B= (co, CU··" Cda);

Step 6: If e3 2f3 then do;
C~ (cH C2• • • ., Cda);

h~1;

e3~2;

X3~X3+1 ;
end;

else h~O;

Step 7: If da - h + 1 > n then do;
m~d3-n+1;

C~ (cnH cm +l , ••• , Cda) ;

e3~2;

x3~xa+m-h;
end;

Step 8: Return C = (C, e3, x3) .

Step 1 through Step 3 modify exponents if necessary.
For example, if Xz> Xl then A would be modified to

X2-X1
- 1

«aX2-XI' aX2-Xl+H ... , ad), 2, x 2). Since p= L
j=O

Irljf3jl <f3X2-X1 and EZ<f3, it follows that p+Ez<2f3X2- Xl and

JlX{ ~ { ",Il'} ±"] c JlX. L~" {",Il'} ± 2} Note that one

could have Xz - Xl > dl, in which case the result is «),
2, x~) =f3x2 [±2].

Step 6 insures that the resulting error term will sat
isfy the definition, i.e., e3 <f3. Step 7 insures that the
interval will be carried to no more than the specified
number, n, of f3-digits.

In multiplying two intervals, the system does three
multiplies of a f3-digit error term, say c, times a f3-
integer, say B. Each result is a single f3-digit error
term, say e, times a power of f3, i.e., IcEI ~ef3x. The fol
lowing algorithm performs this operation. Inputs are
f3-digit c and f3-integer E = (bo, bl, ... , bd2).

Special Multiplication, mpys:

Step 1: G~1 + I bd2-2 I +clbd2-1 1 +clbd2 1f3=
(go, gH ... , gk) ;

Step 2: If k=2 then do;
x~2+1;

e~g2+1;

end;
else do;
X~2
e~gl+1;

end;
Step 3: If e=f3 then do;

x~x+1;

e~1;

end;
Step 4: Return C = (e, x) .

d2 d.-2
Note that clBI =c L Ibjlf3j=c L \bj!f3j+c\bd2-1\f3d2J+

j=O j=O
clbd2 1f3d• < c (lbd2-.\ + 1)f3~-2 + C\bd2-1\f3d2-' + clbd2 \f3d. <
(lbd2-21 + 1) f3~_1 + clbd2-1\f3d2-1 + clbd21,8~ ~ (,8-1) ,8d2+l

+ f3~_1. Hence Step 1 of the algorithm will give a result
which bounds c\EI, and which has k=1 or k=2.

Step 2 sets the exponent and rounds up the error
term. Step 3 insures that the error term is a single ,8-
digit.

The following algorithm uses mpys to perform inter
val multiplication.

Polynomial Remainder Sequence Coefficient Signs 959

~U ultiplication:

Step 1: El~mpys{aB} = (eH f 1) ;

Step 2: E2~mpys{bA} = (e2, f2) ;
Step 3: E3~mpys{a (b)} = (e3, f3) ;
Step 4: G~d3fl+e2{3f2+e3{3f,,= (go, gJ, ... , gf) ;
Step 5: e4~gf+ 1;
Step 6: If e4 ={3 then do;

e4~1;

f~f+l;
end;

Step 7: C~A.B= (co, c], ... , Cd);
Step 8: If f>O then do;

e4~4+1;
If e4 = (3 then do

e4~2;

f~f+l;
end;

end;
Step 9: If d4 -f+ l>n then do:

e4~2;

f~d4-n+l;
end;

Step 10: x4~f+xl+x2;
Step 11: C~(Cf' Cf+l, ... , Cd) ;
Step 12: Return (C, e4, x4).

Step 1 through Step 5 do the standard error term
multiplies, add the results, and round up the final error
term. Step 6 insures that the final error term is a
single {3-digit.

Step 8 checks whether the error has a positive ex
ponent. If it does, some digits of the product C must
be dropped and the error term correspondingly in
creased by one. The increased error term must then be
checked to insure that it is a single {3-digit.

Step 9 computes the length of the product, to see that
it is carried to no more than the specified number of
{3-digits.

PSEUDO-REMAINDERS AND SIGN LISTS

This section describes an algorithm for computing
the pseudo-remainder of two polynomials, and an al
gorithm which uses pseudo-remainders to compute one
standard type of coefficient sign list. The discussion is
abbreviated, since the methods have appeared previ-

A SAC-l interval polynomial has exactly the same
internal representation as an integer polynomial,3 ex
cept that the numerical coefficients are intervals rather
than integers. Hence the pseudo-remainder algorithm
can be applied to either type of polynomial simply by
calling the corresponding arithmetic routines.

The following algorithm computes the pseudo
remainder of two polynomials, P (v) and Q (v). Note
that "deg," "ldcf," and "red" return the degree, the
leading coefficient, and the reductum, respectively.

Pseudo-remainder, psrem:

Step 1: k~eg{P}-d€g{Q}+I;
Step 2: For j~1 to k by 1 do;

d~deg{P} -deg{Q};
if d<O then R~ldcf{Q}· P

else R~ldcf{Q} ·red{P}
Idcf{P} ·red{Q} ·vd ;

P~R;

end;
Step 3: Return R.

The next algorithm applies pseudo-remainders to
compute the list of degrees and leading coefficient signs
in the reduced polynomial remainder sequence for poly
nomials P and Q.

List of Signs and Degrees, lsad:

Step 1: ~ (sign{ldcf{P}}, deg{P}, sign{ldcf{Q}),
deg{Q}) ;

Step 2: While (R=¥=O) & (d=¥=O) & (0 ¢ r) do;
R~psrem{P, Q};
if R=FO then do ;

r~ldcf{R} ;
if 0 f. r then do ;

~sign{r} ;
d~deg{R} ;
L~LII (s, d) ;
end;

else L~() ;
end;

P~Q;

Q~R;

end;
Step 3: Return Lo

Note that there are two return conditions. A suc
cessful return is executed when the pseudo-remainder
is zero or is of degree zero. A failure return is executed
when the sign of the leading coefficient cannot be de
termined. By definition, if R=FO then r=ldcf{R}=FO.
Hence if 0 f r then the failure condition has occurred.
The cause, of course, is that the intervals have not been
carried to a sufficient number of {3-digits.

The latter algorithm can be used with integer arith
metic simply by removing the test for 0 f r:

Step 2: While (R=¥=O) & (d=¥=O) do;
R~psrem{P, Q};
if R=FO then L~L!! (sign{ldcf{R)}, deg

{R}) ;
P~Q;

Q~R;

end;

COMPARISON OF EMPIRICAL COMPUTING
TIMES

The algorithm for computing the list of signs and
degrees, Isad, was applied to randomly generated poly-

960 National Computer Conference, 1976

TABLE I

L (iPlx), L (IQlx) =5

degree
degree of Q

of P pi 5 4 3 2 1

82086 81674 26150 7062 2038 1020
6

822 931 607 424 332 203

16407 14743 4559 1506 707
5

590 416 416 241 138

3195 3122 1040 441
4

324 291 183 91

636 519 274
3

133 103 83

141 150
2

50 33

nomials, first using integer methods and then using
interval methods. The empirical results are shown in
this section.

Random polynomial P, of specified degree and in
finity norm, was obtained. Since Isad{P, PI} is used
often,2 this case was run first. Then, for l~j<deg{P},
random polynomial Q of degree j was generated, and
Isad{P, Q} was computed.

This process was repeated for another polynomial P
of the same degree and norm. The exact number of

TABLE II

L(IPI.,), L(IQI.,)=10,

degree
degree of Q

ofP pi 5 4 3 2 1

353547 335427 101117 27564 7572 3470
6

949 866 783 707 325 241

61244 56543 17614 4884 2147
5

541 475 292 217 133

10766 10725 3437 1423
4

400 250 242 117

1939 1889 774
3

100 125 67

341 349
2

50 50

TABLE III

L(IPlx), L(IQI.,)=15

degree
degree of Q

of P pi 5 4 3 2 1

6
965 858 690 607 316 250

131714 142139 38763 11140 4768
5

516 566 433 292 150

22764 22423 6614 2515
4

350 317 191 100

3969 3944 1423
3

125 133 83

757 683
2

50 42

repetitions for a given entry depended on the time re
quired for each repetition.

The average results are shown in Tables I, II, III,
and IV. In each comparison, the first entry of the pair
is the time (in milliseconds) required for the integer
method. The second entry is the time (in milliseconds)
required for the interval method, using the minimum
possible number of ,8-digits. A question mark indicates
that the set of runs could not be completed in a reason
able amount of time.

TABLE IV

L(IPI",), L(IQI",)=20
._-----

degree
degree of Q

of P pi 5 4 3 2 1

6
940 732 649 541 366 225

? ?
5

541 566 391 250 133

41958 42216 11781 4568
4

275 300 208 108

6898 6623 2438
3

125 133 84
---.---

1157 1206
2

59 33

Polynomial Remainder Sequence Coefficient Signs 961

The time comparisons were made with reduced
rather than primitive integer techniques because of the
direct analogy in algorithms. Modular methods were
not included because, unlike many other instances,
they have not resulted in any consistent improvements
over integer methods.2

Note that the times shown are with intervals car
ried to the minimum number of f3-digits. How does one
determine this minimum? As yet, the" author has found
no way of deriving any theoretical answers to the ques
tion. For the sample runs discugsed~ the minimums
were determined experimentally. Given this situation,
the times shown for the interval method should include
overhead resulting from using too few or too many
f3-digits.

A small percentage of the test runs required five 13-
digits; all others required four or fewer. This result is
very interesting, since coefficients of a hundred f3-digits
were not uncommon in the integer computations. It
suggests an algorithm which simply starts with one
f3-digit, and increments by one until the list is com
puted. This approach was tried, and it gave an average
increase of two to three times the illustrated results.

The observed minimum number of f3-digits seemed
to depend mainly on the degree of Q (or the degree of
P'). Hence the author started at this value and doubled
the number of f3-digits used each time a failure oc
curred. This approach yielded almost exactly the same
set of times as shown in the tables.

SUMMARY

Interval methods appear to have great potential in the
computation of polynomial remainder sequence coeffi
cient signs.

Obviously, more reseach needs to be done in deter
mining how many f3-digits to carry for the intervals.
However, significant improvements seem to be possible
even with simplistic approaches.

It is hoped that these results, in addition to being
useful per se, might suggest further applications of
interval methods in symbolic and algebraic manipula
tion.

REFERENCES

1. Proceedings of Mathematical Software II, Purdue Univer
sity, May 1974.

2. Pinkert, J. R., Algebraic Algorithms for Compwting the
Complex Zeros of Gaussian Polynomials, University of Wis
consin Computer Sciences Department, Ph.D. Thesis, June
1973.

3. Collins, G. E., The SAC-l Polynomial System, University of
Wisconsin Computer Sciences Department Technical Report
No. 115, March 1971.

4. Knuth, D. E., The Art of Computer Programming, Vol. II:
Seminumerical Algorithms, Addison-Wesley Publishing Com
pany, Reading, Mass., 1969.

5. Collins, G. E., and J. R. Pinkert, The Revised SAC-l Integer
Arithmetic System, University of Wisconsin Computing
Center Technical Report No.9, November 1968.

System theoretic implications of numerical methods
applied to the solution of ordinary differential equations

by T. G. WINDEKNECHT and H. D'ANGELO
Memphis State Ul1it'ersity
Memphis, Tennessee

ABSTRACT

This paper presents a system-theoretic analysis of
numerical methods used in approximating solutions of
ordinary differential equations. By representing ordi
nary differential equations with system block diagrams
(Le., interconnections of static elements and integra
tors), a numerical method can be viewed as a process
in which the integrators of a continuous system are
replaced by discrete approximations to the integrators
(Le., by discrete subsystems made up of interconnec
tions of static elements and delays). The main result
of the paper establishes that if the system biock dia
gram corresponding to the original differential equa
tion has no static loops and if the discrete subsystems
used to replace the integrators have no static loops and
no static through paths, then the resulting discrete
system can be characterized by explicit difference
equations. A system-theoretic study is conducted of
several of the more commonly used numerical methods
(the Euler, trapezoidal, Runge-Kutta, and predictor
corrector methods) and the limitations of using these
numerical methods in the real-time analysis of input
output systems are examined.

INTRODUCTION

Important insight into numerical methods used in the
solution of ordinary differential equations can be ob
tained by studying these numerical methods from a
system theoretic standpoint. The system block diagram
(an interconnection of static and dynamic elemental
components) has proved to be particularly helpful in
this regard. With this point of view, a useful categori
zation of numerical methods is obtained.

THE PROBLEM

The problem addressed in this paper is the follow
ing: Determine a numerical solution to the system of

963

ordinary differentiai equations given in the standard
canonical form

where x is an n-vector, u is an m-vector, and f is a
function such that f :Rn+m~Rn.

The ultimate objective in applying a numerical
method is to compute a sequence

x (to),x (to + 8) ,x (to + 28) , ... ,x (t) , ... ,x (tf) (2)

which is, in some sense, a good approximation to the
sequence

x (to),x (to + 8) ,x (to + 28) , ... ,x (t) , ... ,x (tf) (3)

where the continuous variable x, defined on the interval
[to,tfJ is the solution of equation (1).

It is generally computationaliy advantageous to be
able to compute sequence (2) as a solution to a set of
difference equations in the standard state-variable
form

(4a)

x(t) = E v(t) (4b)

where x is an n-vector, v is an N-vector (N~n), u is
an m-vector, and fa is a function such that fa :RX+m~R~,
g is a function such that g :Rn~R\ E is an nxN matrix
of rank n whose elements are either 0 or 1 with one
and only one 1 in each row (thus, the components of
x are a subset of the components of v), and Td is the
discrete time set {to, to + 8, to + 28, ... ,tf }.

The form of difference equations (4), in which fa
does not depend on v (t + 8), is said to be explicit.
Explicit difference equations are computationally at
tractive since, for most functions fIll they allow the ap
proximation sequence (2) to be generated in a straight
forward iterative fashion. More precisely:1

Theorem 1 Explicit difference equation (4) has a
unique solution provided only that fa is defined at each

964 National Computer Conference, 1976

stage of iteration. The solution can be generated on a
computer provided that fa is a computer function and
that Iv(t+8) I is no larger than the largest number in
the computer.

However, under certain severe modeling constraints,
it may be necessary to settle for less attractive numeri
cal methods in which the approximation sequence (2)
is computed as a solution to a set of difference equa
tions of the form

v(t+8) = fs (v (t) ,v (t+8) ,u (t)) (5a)
,v(to) =g(xo), tfTd

x(t) = E v(t) (5b)
where fs is a function such that fs :R2N+m~RN. Differ
ence equations of this form, in which fs depends on
v (t + 8), are said to be implicit. The computational
difficulties associated with implicit difference equations
stem from the fact that, depending on the nature of
the function fs , it may not be possible to solve for
v(t+8) and thus obtain the desirable recursive form
of equations (4). In such cases, where the solutions
are known to exist, and they may not exist, computing
v(t+8) from a knowledge of v(t) and u(t) is not
straightforward. Often, an iterative method of solu
tion, such as a Newton method, with generally un
known convergence properties, is required to approxi
mate v(t+8). Certainly, one should avoid this latter
form if possible.

SYSTEM BLOCK DIAGRAMS

In system theory it is sometimes convenient to repre
sent sets of equations characterizing dynamic systems
by interconnections of elemental components. Systems
characterized by differential equations, and thus de
fined on the continuous time set [t(),tf], tf>to, are called
continuous systems; systems characterized by differ
ence equations, and thus defined on the discrete time set
Td, are called discrete systems. A sufficient set of ele
mental components for synthesizing the necessary in
terconnections consists of the general static element
and two fundamental dynamic elements, the delay and
the integrator. Each elemental component defines a
causal relationship between an output variable and
one or more input variables. The set of elemental com
ponents is defined:

a. A general static element, represented graphically
in Figure la, is a functional relationship between q
input variables and an output variable. It has the form

v(t) =f(vl(t),v~(t), ... ,vq(t» (6)

where f is a function such that f :Rq~R.

b. A 8-delay element, represented in Figure lb, is a
single-input, single-output element satisfying the
quasi-functional relationship between two dynamic
variables v and y

(7)

v (t)
q

,

..

f(·,Cl, ... ,C)

(a) Static element:

)lao

v(t)= f(v1 (t),v2 (t), ... ,vq (t))

- v(t)

v (t) - ~--------:J- Y (t)

(b) Delay element:

y(t+£) = vet)

vet) ---~ y(t)

(c) Integrator element:

Figure I-Fundamental elemental components

c. An integrator element, represented in Figure lc,
is a' single-input, single-output element defined so that
the output is the integral of the input (or, equivalently,
the input is the derivative of the output) :

(8)

Note that the initial condition y (to), as well as the
input variable v on the interval (to,t), is required to
determine the output y (t) .

A fixed-structure discrete dynamic system is any
consistent interconnection of delays and static ele
ments. An interconnection is consistent if no two
outputs of elemental components are connected to
gether (i.e., no two outputs should represent the same
variable). Similarly, a fixed-structure continuous dy-

System Theoretic Implications of Numerical Methods 965

namic system is any consistent interconnection of
integrators and static elements. Such interconnections
of elemental systems are called system block diagrams.

It is important to establish the conditions under
which system block diagrams are characterized by
canonical state variable equations, i.e., by equations of
the form

x(t+&)=f(x(t),u(t» tT (9)
y(t)=g(x(t),u(t», € d

for discrete systems or by equations of the form

dXd(tt) =f (x (t) ,u (t))
, t€[tMtrJ (10)

y(t) =g (x (t) ,u (t))

for continuous systems. Toward this end, the concept
of a proper interconnection is introduced. An inter
connection is proper provided every closed path (in the
direction of the arrows) on the system block diagram
contains at least one delay element (or, in the case of
a continuous system, one integrator). A closed path
that does not contain a delay (or integrator) is called
a static loop. Thus, a system with no static loops is a
proper interconnection.

Two important results relating to system block and
canonical state equations are found in References 2
and 3.

Theorem 2 Every proper interconnection of static
elements and delays admits a state-variable charac
terization of the form of equations (9); every proper
interconnection of static elements and integrators ad
mits a state-variable characterization of the form of
equations (10).

Theorem 3 Every set of difference equations in state
variable canonical form (equations (9» can be repre
sented by a proper interconnection of static elements
and delays; every set of differential equations in state
variable canonical form (equations (10» can be repre
sented by a proper interconnection of static elements
and integrators.

COMPUTATIONAL IMPLICATIONS OF
STATIC LOOPS

Consider the system block diagrams in Figure 2
corresponding to the following two first-order differ
ence equations~ the first explicit and the second im
plicit:

v (t + &) = fa (v (t) ,u (t))

v(t+&) =t(v(t),v(t+8), u(t»

(lla)

(llb)

Note that the explicit first-order difference equation
can always result in a proper system block diagram
(Le., one without static loops), whereas the implicit
first-order difference equation always results in a sys
tem interconnection with a static loop.

For higher order systems, the results are almost the

u(t)-l~
~J

v(t+.';) M
.----'1-. ~f--......--_~ v(t)

(a) 3yste~ block diagra~ for equatio~ (lla)

v(t-tS)

u (t) ---&=;JH-I----'
(b) Syste,-. blciC::: diagra:., fer equation (11 b)

v(t)

Figure 2-System block diagrams for explicit and implicit first
order difference equations

same: Explicit difference equations (4a) can always
result in a proper system block diagram, whereas
implicit difference equations (5a) generally result in
system interconnections with a static loop. The excep
tional case where an implicit difference equation does
not result in any static loops is the somewhat trivial
case where a simple reindexing of variables renders
the set of difference equations in the following "lower
triangular form":

VI (t+&) = fl (v(t) ,u(t»
v2 (t+&) = f2 (v (t) ,VI (t+8) ,u (t»

Vi (t+&) = fi (v (t) ,VI (t+&),v2 (t+&), ... ,
Vi-I (t+8) ,u (t»

v~dt+&) = f:dv (t) ,VI (t+&) ,v2 (t+&), ... ,
VX-I (t+8) ,u (t)) (12)

where v is an N-vector consisting of the scalar com
ponents vH v2' ... ,VK, and fb i=1,2, ... ,N, is a function
such that fi:Rx+i~R. Note that this is a rather excep
tional implicit form in that

a. The sequence v (to),v (to+8), ... ,v (tf) can be com
puted in a simple iterative fashion.
b. This form admits a system block diagram repre
sentation with no static loops.

That the above statements a and b are equivalent state
ments is easily established by showing that equations
(12) can always be put into explicit form by substi
tuting the first equation into the second equation to
eliminate VI (t+8), then substituting the first and new
second equation into the third equation to eliminate
VI (t+.8) and V2 (t+&), etc. Therefore, the computa
tionally desirable form can be associated with system
block diagrams having no static loops and, with the
exception of the "lower triangular forms", the com
putationally difficult implicit form can be associated
with block diagrams having at least one static loop.

DISCRETE APPROXIMATIONS TO CONTINUOUS
SYSTEMS

I t can be shown that every ordinary differential
equation in canonical state-variable form can be repre
sented by a proper system block diagram (Le., an inter-

966 National Computer Conference, 1976

connection of static elements and integrators contain
ing no static loops). For example, the first-order
differential equation

dXd~t) =f (x (t) ,u (t)) (13)

is represented by the system block diagram shown in
Figure 3. Similarly, the set of two simultaneous first
order differential equations

dX1 (t) ~=fl (Xl (t) ,x2 (t) ,u (t))

dXdit) =f2 (Xl (t) ,x2 (t» (14)

is represented by the system block diagram shown in
Figure 4.

One may, taking a system-theoretic viewpoint, in
terpret most numerical methods for approximating
solutions to ordinary differential equations to be
equivalent to substituting discrete subsystems for the
integrators in the system, thus converting the continu
ous system to a discrete system. In some numerical
methods integrators are replaced by single-input,
single-output discrete subsystems on an individual
basis whereas in other numerical methods all the inte
grators are considered to make up a single subsystem
and this subsystem is replaced as a single entity. In
the latter case, the n integrators in a system are con
sidered to be an n-input, n-output subsystem consisting
of n parallel non-interacting integrators; this subsys
tem is then replaced by an n-input, n-output discrete
subsystem. We speak of these subsystems which re
place the integrators in a system as discrete approxi
mations to integration or simply as discrete integra
tors. If the resulting discrete system has no static
loops, such a substitution for the integrators in the
system leads to explicit difference equations (4); if
static loops are present then implicit difference equa
tions (5) are obtained. As far as computational effi
ciency is concerned, we prefer those discrete approxi
mations to integration which result in discrete systems
with no static loops. Since one can always obtain a
system block diagram with no static loops to charac
terize the canonical state-variable differential equa
tions, a condition for the discrete approximations to
integration sufficient to assure that the resulting dis
crete system also has no static loops is easily obtained.

Theorem 4- If the system block diagrams of the dis-

~
dtl71

u(t) -----¥l-' "_) ___)_l.{j_/_I_. x(tl

Figure 3-System block diagram for equation (13)

u(t)--I-

Figure 4-System block diagram for equations (13)

crete approximations to the integrators in a proper
system block diagram of a continuous system have

(i) no static loops
(ii) no static through paths (Le., paths from input

to output without a delay element)

then the system block diagram of the resulting discrete
system is also proper and can therefore be character
ized by the set of explicit difference equations (4).

As an example, consider using the Euler zero-order
approximation to integration4 in obtaining a numerical
solution to the following first-order differential equa
tion:

dx(t)
dt=cos(x(t) u(t», x(O) =1 (15)

The system block diagram corresponding to equation
(15) is shown in Figure 5. An integrator with input
v (t) and output x (t), shown in Figure 6a, is char
acterized by the equation

t~li
x(t+J» =x(t) + Jt v(r)dT (16)

The Euler method approximates the definite integral
by a rectangle:

(t+li J t V (r) d T ~ 8v (t) (17)

Thus, using the Euler approximation in equation (16)
gives the discrete approximation to integration:

x(t+8) =x(t) +Sv(t) (18)

The system block diagram for this discrete approxima
tion to integration is shown in Figure (6b). Note that

Figure 5-System block diagram for equation (15)

System Theoretic Implications of Numerical Methods 967

r-A1
V (t) ---J-lLJ!--~~ X (t)

(a)

~ x(t+~) ~
v(t) ~ 1: · ~----;)I~ x(t)

(b)

Figure 6-An integrator, (a), and the Euler discrete approxi
mation to it, (b)

the Euler discrete approximation to integration has
neither static loops nor static through paths.

Replacing the integrator in the system block diagram
of Figure 5 by the Euler discrete approximation to it,
Figure 6b, results in the discrete system shown in
Figure 7. Importantly, the resulting discrete system
has no static loops and is thus characterized by an
explicit difference equation:

x (t+S) =x (t) +0 cos (x (t) u (t)) (18)

Some other well-known discrete approximations to
integration and their system theoretic interpretations
are given in the following section.

EXAMPLES OF SOME FREQUENTLY USED
NUMERICAL METHODS

In this section some well-known numerical methods
will be studied from a system theoretic viewpoint.
Much of the literature on the numerical analysis of
ordinary differential equations deals with the problem
of finding solutions to the class of differential equations
defined by

dXd~t) =f (x (t), t) (18a)

Note that the class of differential equations defined by
equation (18a) is somewhat narrower than the class
defined by equation (1). Specifically, equation (1) is
equivalent to equation (18a) only for the special case
that

u(i) =i

~ - - - - - - - - - - -;
; f ,;:.fl- l.rJ-rC"KA'rcK'

u(t)-I(')r' '_I:~_~x(t:

Figure 7-The discrete approximation to equation (15)

Figure 8---System block diagram for equation (20)

From a systems standpoint, this is unfortunate since
much of system theory deals with systems defined in
an input-output sense and restricting all inputs u to
be defined by u(t) =t is quite unsatisfactory. As we
shall see, the problem of extending a numerical method
designed for equation (18a) so that it can be used for
equation (1) is not always straightforward and, in a
systems sense, not always possible. Some of the ex
amples in this section will illustrate this.

For simplicity, but with no loss of generality, the
examples will deal with finding solutions of a first-order
differential equation, i.e., equation (13).

(i) The trapezoidal rule: Here the definite integral
is approximated by a trapezoid:

t+5 S Jt v(o) dT=2" (v(t) +v(t+S» (19)

Thus, the relation between the input v and the output
x of the trapezoidal approximation to integration is

x(t+~) =x(t) +~(v(t) +v(t+~» (20)

A system block diagram of the system characterized by
equation (20) is shown in Figure 8. The difficulty
with this system is that although it provides x (t) as
an output, it requires v (t+S) as an input; v (t) should
be the input if this discrete system is to be used as
a substitution for integration. This difficulty can be
resolved by introducing a. time shift in the original
continuous system which is to be discretized for com
putational purposes. For example, the continuous
system shown in Figure 5 can be relabeled with the
necessary time shift as shown in Figure 9. With such
a time shift we can consider using a discrete approxi
mation to an integrator with input v(t+S) and output
x (t+S). Such a subsystem is easily achieved with the
trapezoidal approximation to integration of Figure 8
simply by considering the output to be the input of the
rightmost delay element (i.e., x(t+S) rather than the
output of that delay (Le., rather than x (t)). Figure 10
shows this rearranging.

u(t+~)
dx(t+b)

I ~ __ d_(t_+_j_)_---i""~111 ! I x (t+b)
~ f(~I--: '_} .~ ____ r ~_. ---,1 ~

Figure 9-Time-shifted system block diagram for system of
Figure 3

968 National Computer Conference, 1976

Figure lO-System block diagram for trapezoidal integrator
(Figure 8) redrawn to show x(t=o) as the output

It can be seen that with v (t+8) as the input and
x(t+8) as the output, the trapezoidal approximation
to integration has a static through path. Substituting
the trapezoidal integrator into the time-shifted original
continuous system results in a discrete system with one
static loop (Figure 11) which in turn results in implicit
difference equations.

Note that two delay elements are used in the approxi
mation to one integrator. Thus, two initial values are
required for the resulting discrete system and the
single initial value provided for the first-order con
tinuous system is not sufficient to provide a unique solu
tion for the approximating discrete system. For ex
ample, if the discrete process is started at t= -8, one
must have the two initial values f (x (O),u (0» and
x(O). In this case, computing the initial value f(x(O),
u (0» from the original initial value x (0) and the
initial value of the input u(O) is relatively straight
forward. However, in a systems sense, the time shift
from t to t+8 is a severe modification. As a result of
the time shift, the discrete system operates in future
time (i.e., at time t, the system requires input u (t+~)).
If such an approximating system were required to
operate in real time, then the time shift would repre
sent an impossible realization. Of course one may
decide to use the system, which as an interconnection
of elements is realizable, in real time nevertheless.
This implies shifting time back again from t+8 to t
and starting the process at t=o. The difficulty with
this is that the initial values required now are x(8) and
f(x(8) ,u(8» which, of course, are not generally known
at time t.
(ii) Runge-Kutta methods: The Runge-Kutta methods
are based on computing x(t+8) as a perturbation of
x(t) by approximating the terms in a truncated Taylor
series with comparable terms which do not involve
derivatives. The Runge-Kutta methods are typically

Trapezoidal lntegrator

u(t.,.~) f(.'.)~ x(t+~~

I

I I
~ ___________________ J

Figure ll-Discrete approximation to system of Figure 3 using
a trapezoidal integrator

given as a means to approximating solutions to the
class of differential equations defined by equation (18)
(i.e., the special case of equation (1) where u (t) =t).
Although this is not the class of primary interest in
system theory, let us present the systems implications
of the method in its normal context. We will consider
modifying it later.

Perhaps the most widely used Runge-Kutta method
is of order four: 4

where

kl =f (x (t) ,u (t))

k2=f(x(t) + ~kl' t+ %)

ks=f(x(t) + %k:?, t+ %)

kl=f (x(t) +8k3 , t+8)

(23)

Thus, in this Runge-Kutta method, integration is ap
proximated as follows:

(24)

Figure 12 shows the original continuous system and the
Runge-Kutta discrete approximation to it. It is note
worthy that:

(i) the Runge-Kutta integrator has only one delay
element and no static loops or static through
paths. Thus, only one initial value is required
and, if the original continuous system contains no
static loops, the resulting discrete system con
tains no static loops and an explicit set of differ
ence equations results.

(ii) the Runge-Kutta integrator depends on the func
tion f, unlike the Euler and trapezoidal integra
tors considered earlier. Thus, the Runge-Kutta
integrator is adaptive in the sense that the inte
gration process varies as a function of the signal
being integrated. .

(iii) the values of t+ % and t+8 are obtained in the

system simply by addingfand 8 to t, respectively.

The point to the seemingly trivial observation (iii)
is that static components are used to obtain future
values of time. In particular, the computation of

x (t+8) (for the subsequent evaluation of f(x (t)

+ ~ k j , t+ f), i=I,2, and f(x(t) +8ks, t+8») does not

require the knowledge of any function of time for
values of time greater than t. In trying to use this
Runge-Kutta method for finding the solutions of equa
tion (1) (u(t):;;bt), one is faced with evaluating

f(x(t) +~kh u(t+~)). i=I,2, and f(x(t) +8, u

System Theoretic Implications of Numerical Methods 969

dx(t)
~dtl7l

t ----.lir-~-----Joo)o-!tLJl--.....,..---i.,- x(t)

A 1L-__________________ ~

(a) Systen characterized by equation (18)

~- - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - ~~;,,;~ ~ ~\J~~A - I-~~E ~R-:-r~; ----- ----- I

I

I------------------------------------~~~
I

r-------------------------------~~~
r-------~--~l~i~~~----+-----------~~~ ,~~

t
~ i r ~ 'I ----------+i---lCD--!(;; Li

fe·,,) J 1 rT}{;H te.,') LL~IW r[.,.) LJ I r-1, r::I ,~" . I I X x{{~-';.')
'--_:_-~_-:_r-:l_k]._L5-J 2 __ iTI 11_I_L_'==~ ___ ~_I_k_!I _~~,----~~ , ' I k; 1 z i~1T

I I '- _______________ . _ _ _ _ _ _ _ _____________________________ ..J

Figure 12-A continuous system and its Runge-Kutta discretization

(t+3». This means that at the time x(t+S) is com

puted, the input u must be known for times t + ~ and

t+S as well as for time t. Thus, if a real-time continu
ous system starts at time t=O, the corresponding real
time Runge-Kutta discrete system cannot start until

time t=o, at which time the values u (0), u t ' and

u (0) are available, in addition to the original initial
condition x(O).

IMPLICIT METHODS (THE PREDICTOR
CORRECTOR)

The class of predictor-corrector methods for solving
differential equations provides an excellent example
of how an implicit method can sometimes be utilized
in numerical analysis. In this section the typical
predictor-corrector is defined. The system-theoretic
implications of the predictor-corrector integrator are
noted. In particular, the predictor-corrector approach
to the analysis of discrete systems with static loops is
examined.

The predictor-corrector method is perhaps best in
troduced with respect to finding solutions of the no
input, time-invariant, one-variable system character
ized by

d~~t) =f (x (t)) (25)

Since some of the more accurate numerical integration
methods, such as the trapezoidal method, are implicit
methods (i.e., x(t+S) is used in the computation of
x(t+8», one may be forced to decide between com
putational expediency and computational accuracy. In
spite of the computational difficulties associated with
static loops encountered in using implicit methods, one
may still decide to use them.

Most commonly used implicit methods can be rep
resented by the following difference equation:

x(t+S) =x(t) +c(f(x(t+S)),f(x(t»,
. . ., f (x (t - kS) » (26)

where x(t+8), x(t), and the last k values of x are
used to compute x(t+S). Thus the function c pro
vides the approximation to integration; it is called the
C01'1'ecto1'. If the trapezoidal method is used to solve
equation (25), the result, in a form corresponding to
that of equation (26), is

x (t + s) = x (t) + t (f (x (t + S)) + f (x (t))) (27)

To simplify what follows, but with no loss of gen
erality, consider a corrector which depends only on
x(t+8) and x(t) (e.g., that of the trapezoidal method) :

x(t+8) =x(t) +c(f(x(t+S) L f(x(t») (28)

Figure 13a shows a block diagram corresponding to
the simple corrector system of equation (28). Note
that a static loop exists in the corrector integrator.

970 National Computer Conference, 1976

,..- - - - - - - - - - - - - - - -,
Corrector lntegrator

x(t+S)

~--------~- I
I

'-------' I
~--------------~

(a) ~imple corrector (equation (2B»

r---------------------
I Predictor-Corrector Integrator
I
I

I
I
~ ___________ :.... _________ .1

(b) ~imple ~redictor-corrector (equation (JD»

r--- - - ----- -----------1
Recursive Predictor- t
Corrector lntegrator ,

... ' I

, ,
~ ______ --J I

~ _______________________ J

x(t)

x(t)

x(t)

(c) Simple recursive predictor-corrector (equation (JJ»

Figure 13-Corrector and predictor-corrector discretizations

The essence of the predictor-corrector method lies
in the approach used to eliminate the static loop in
the corrector integrator. An approximation to x(t+8)
is used in the corrector function c rather than x(t+8)
itself (which causes the static loop). The approxima
tion to x(t+8), x Il (t+8), is obtained by using an ex
plicit method requiring only x(t) and the last k values
of x:

xJl (t + 8) = x (t) + p (f (x (t)) , f (x (t - ~)) ,
. . ., f (x (t - k8))) (29)

The function p used to anticipate the value of x(t+8)
for use in the corrector is called the predictor. For
example, one might use the trapezoidal integrator as
a corrector (equation (27» and the Euler integrator
(x(t+8) =x(t) +8f(x(t») as a predictor. Again, for
simplicity, consider a predictor which depends only on
x(t) (e.g., that of the Euler method) :

xp (t+8) =x(t) ~p(f(x(t») (30)

Figure 13b shows a block diagram corresponding to
the simple predictor-corrector system defined by equa
tions (28) and (30). Note the predictor-corrector
integrator has no static loops or static through paths.

For the case that a predictor-corrector method is to
be used for a continuous system with an arbitrary
input (i.e., equation (13», the situation is again more
complicated. Specifically, in real-time situations where
a time-shifted system is not tolerable, one is faced
with the problem of having to predict at time t the
value of input u(t+8), as well as the value of x(t+8).
In theory, since nothing is known about the exogenous
system generating the input u, such a prediction is not
possible. Practically, however, if the input u is not a
totally random signal and I) is not too large, some
method of extrapolation using past values of u might
be used to predict u (t+ 8).

The predictor-corrector configuration is also fre
quently used as the basis for an iterative scheme in
which the predictor provides the first approximation
to x(t+l» and then the corrector, starting with the
predictor's value, is used to iteratively generate a se
quence of subsequent approximations to x (t+I». The
final value of this sequence of approximations to
x(t+8) is then taken to be the best approximation.
The iterative scheme for generating the sequence of
approximations to x (t + 8), for the simple predictor
corrector defined by equations (28) and (30), is as
follows:

X(l) (t+8) = x (t) +p (f (x(t)))
X(2) (t+8) = x (t) +c (f (x(ll (t+l»), f (x(t)))
X(3) (t+8) = x(t) +c(f(x(2' (t+8», f(x(t»)

(31)
X(~-l) (t+8) =x(t) +c(f(x(~-2) (t+I»), f(x(t»)

x (t+8) = x (t) +c (f (X(X-ll (t+8)), f (x (t)))

The lower-triangular form of equations (31) is suffi
cient to assure that the system block diagram corre
sponding to this set of equations can be constructed so
as to contain no static loops. However, an alternate
representation, resulting in a significantly smaller
block diagram, can be obtained by defining a new time
set T d ' such that

T d' = { tOJ to + ~ , to + 2 ~ , ... , to + 8, to + 8 + ~, ... , tf }

(32)

Note that T(lcTd/. With respect to the new time set
Ttl' we write the following set of difference equations:

(
I») (C(f(X(t) +p(f(x(t»),

Xc t+- =x(t) + f(x(t»), t:Td
N c (f (xc (t)) , f (x (t))) , t,T d

(33)

(
8)_/C(f(X(t) +p(f(x(t»),

x t+N - f(x(t»),t€Td
... x(t), t¢Td

where xe (t+ ~) is the corrector estimate of x(t+8).

System Theoretic Implications of Numerical Methods 971

Figure 13c shows the system block diagram corre
sponding to equations (33). Note the subsequence
{x (t ..) ,x(t .. +8) ,x(to+28) , ... ,x(tf)}, corresponding to
the time set T d, obtained from the output sequence of
this system defined on time set T d', is the same sequence
one would obtain from the iterative predictor-corrector
scheme defined by equations (31).

It is significant that an iterative scheme used to
solve the nonlinear algebraic equations resulting from
the existence of static loops in a discrete dynamic sys
tem corresponds to another dynamic system with no
static loops. In essence, then, the static loop of the

corrector system is eliminated by inserting a ~ delay

within it. To complete the iterative scheme, sufficient
logic must be added to initiate the iterative scheme
with the predictor estimate of x(t+8) for eVery t such
that t¢T'1 and to assure that on this new time set,
T,{, x(t) changes only for times t such that t€Td' In
Figure 13c this logic is conveniently achieved using the
time-varying static element, the TdOR, and the time
varying dynamic element, the Td delay.

The TdOR is a two-input (VI and v2), single-output
(v) static element defined such that if the dot input
(i.e., the input associated with the arrow pointing to
the dot) is v H then

{
Vu t¢Td

V = V 2' otherwise

In Figure 13c it is seen that a TdOR is used to decide
whethE!r the predictor estimate of x(t+8) or the cor
rector's own previous estimate of x(t+8) is to be used
in the corrector.

The Td delay is a subsystem which is used to replace
the 8 delays in the original corrector system (defined
on the time set T d-Figure 13a). The T d delay is, in
effect, a 8 delay defined on the new time set T d'. The
Td delay with input v and output x is defined as follows:

x (t+8) = {V (t), t€Td

x(t), t¢Td

Figure 14 shows how a T d delay can be realized using
8

a T dOR and two N delays.

I - - - - - - --- - - - - - - - - - - - 1

Td :J I

V(t)-~[E:---) --+'1"" I ~;]T: - x("c; ; J, U I
. I

~ I ~01 - I
I 1\ I
L ____________________ J

Figure 14-A realization of a T d delay

S Note there are three N delays in the predictor-

corrector recursive system shown in Figure 13c (two
are within the T d delay and thus not shown explicitly

in the figure). The initial value of the ~ delay within

the T d delay which provides the input to the T dOR
must be set to the same initial value given for the state
variable x of the original continuous system (Le., set

to xu); the initial values of the remaining two ~
delays can be set to any values.

CONCLUSIONS

This paper presents a system-theoretic analysis of
numerical methods used in approximating solutions of
ordinary differential equations. By representing ordi
miry differential equations by system block diagrams
(i.e., interconnections of static elements and inte
grators), a numerical method can be viewed as a pro
cess in which the integrators of a continuous system
are replaced by discrete approximations to integrators
(i.e., by discrete subsystems made up of interconnec
tions of static elements and delays). Of special con
cern are questions concerning existence, uniqueness,
and computability by digital computer of the solutions
of the resulting difference equations which character
iZe the discrete system approximating the original
continuous system.

A study is made of the properties of the system block
diagrams characterizing canonical state-variable dif
ferential and difference equations. It is noted that
proper interconnections of delays and static elements
(i.e., discrete interconnections with no static loops)
can always be characterized by explicit difference equa
tions. Thus, a proper interconnection represents a
computationally attractive form and as such is a goal
in devising a numerical method. The main result of
the paper establishes that if the system block diagram
corresponding to the original differential equation has
no static loops and if the discrete subsystems used to
replace the integrators have no static loops and no
static through paths, then the resulting discrete system
has no static loops (and can thus be characterized by
explicit difference equations) .

With the main result in hand, a system-theoretic
study is conducted of several of the more commonly
used numerical methods: the Euler, trapezoidal,
Runge-Kutta, and predictor-corrector methods. For
each of these methods the discrete subsystem used to
replace the integrators of the continuous system is
detailed. The limitations of using these numerical
methods in real-time analysis are examined, particu
larly with respect to the problem often encountered in
which inputs must be anticipated. The system-theoretic

972 National Computer Conference, 1976

implications of using the iterative predictor-corrector
scheme are examined.

REFERENCES

1. Greenspan, Donald, Discrete Models, Addison-Wesley, 1973,
pp.5-10.

2. Windeknecht, T. G. and H. D'Angelo, "A System Graph and

Canonical State Equations," Proceedings Sixth Annual
Southeastern Symposium on System, Theory, Baton Rouge,
1974.

3. D'Angelo, H. and T. G. Windeknecht, "Toward Computer
Aids for Societal System Simulation," Modeling and Simu
lation, Vol. 5, Fifth Annual Pittsburgh Conference, 1974.

4. Daniel, James W. and Ramon E. :Moore, Computation and
Theory in OrdinaTY Differential Equations, W. H. Freeman,
1970, pp. 49-56.

Memory conserving efficient methods for solving
large sets of stiff differential equations

by GRUI.L~:L-C.L'\:LT.L'\:LLIN ROMAN, DAVID GARFINKEL and CARL R MARBACH
University of Pennsylvania
Philadelphia, Pennsylvania

ABSTRACT

Solution of large systems of stiff differential equations
by the most widely used method, that of Gear, is limited
by its requirement for the presence in memory of a
Jacobian matrix, which may become intolerably large.
Methods of alleviating this situation, believed to be
broadly applicable, have been worked out with large
metabolic models. One general tactic is to remove
from the set of differential equations elements which
can be represented instead by algebraic equations:
rate equations for enzymes and equilibrium relations
for very rapid reactions. Another general tactic is to
store efficiently only a part of the sparse Jacobian
matrix containing the non-zero elements, which re
quires the presence of a preprocessor, using algorithms
which are given in the paper. The Jacobian matrix
may sometimes be represented by a diagonal approxi
mation; this works better with the algebraic methods.
Examples of the savings are given. These methods
have been incorporated into BIOSSIM, a machine-inde
pendent simulation language designed for large bio
logical systems, and in our hands have considerably re
duced the cost and difficulty of solving large systems
of stiff differential equations.

Methods of solving "stiff" differential equations have
received considerable attention within the last few
years, and important improvements have recently
been made.! The most important of these is the pre
dictor-corrector method of Gear.2 This appears to be
the most widely used "stiff" differential equation
solver, and is widely considered to be the best one. This
implicit method requires that the Jacobian matrix of
the differential equation variables be present in core
memory. Unfortunately the size of this matrix can
become intolerably large when modeling complex sys
tems. We describe here an economical method of com
puting the behavior of large systems based largely on
modifications of Gear's method, which we have thus
far applied to biochemical systems. The most important
such modification requires the presence in memory only

of the non-zero elements of the Jacobian matrix,
usually a small part of the total for the systems we
have worked with.

Biological systems are often inherently quite compli
cated. Accurate representation of such systems in
terms of differential equations ordinarily results in
"stiffness"; this is widely believed to hold true for
natural systems generally. A common problem in
simulating them is that simplification for the sake of
mathematical tractability often leads to biologically
unrealistic results. Representing a system in terms of
n differential equations (where often n>100) may lead
to the following serious dilemma:

(1) n must be large enough for biological realism;
(2) n 2 (the size of the Jacobian matrix) must be small

enough for available core memory.

The methods we have developed reduce core memory
requirements to a practical range and also save com
puter time. While they are based on the structure of
the biological systems which we have investigated, the
methods can be extended in varying degree to other
complex systems of stiff differential equations.

973

We have used two main approaches:

(1) Replace some of the differential equations with
algebraic equivalents when this is possible.

(2) Reduce the number of elements of the Jacobian
matrix required to be stored in memory for the
Gear method to solve the remaining differential
equations.

While these two approaches can be combined for a
given system, as exemplified later, they are described
separately in the two following sections.

SUBSTITUTION OF ALGEBRAIC
RELATIONSHIPS

The general approach employed is to separate out
from the total system those components whose behavior
can be calculated by algebraic equations rather than
differential equations, thus greatly reducing the num
ber and possibly the "stiffness" of the latter.

97 4 National Computer Conference, 1976

In metabolic models enzyme mechanisms and reac
tions at equilibrium can be separated out and dealt
with by specialized algebraic means:

(1) Individual enzyme behavior in a complex model
can be represented by an algebraic rate law3

which can be determined by standard systems
analysis procedures.± The differential equations
for these enzyme forms are converted to explicit
algebraic equations. The concentrations of the
enzyme forms and the rate at which the enzyme
reactions go are calculated by matrix inversion.5

Only the small molecules involved need be repre
sented by differential equations. The saving of
CPU time and memory is indicated by the last two
columns of Table 1, although a little space is re
quired for the algebraic equations.

(2) Some chemical reactions (e.g., inorganic chela
tions) are very rapid compared to others in the
model and can be represented as always being at
equilibrium. Techniques for calculating these
equilibria, which have existed for some time6 have
been adapted for joint use with differential equa
tions solving7,8 and incorporated into the program
described here. As these reactions (here referred
to as "fast reactions") are the ones with the
fastest time constants, removing them from the
system of differential equations reduces the "stiff
ness".

The differential equations which remain after the
above elements have been separated out are then solved
by the Gear method. The efficiency of Gear's differ
ential equation solver is independent of stiffness over
a wide range of stiffness, although we have been able
to slow it down by making the equations very stiff.
However, if a diagonalized approximation is used9

,lO

for the Jacobian matrix in Gear's method, the sensi
tivity to stiffness appears to increase considerably.
Separating out the fast reactions alleviates this situa
tion by reducing the stiffness. The diagonalized ap
proximation may also be aided by the fact that the
elements removed from the Jacobian matrix in this
process are commonly off-diagonal elements as well as
being the (absolutely) largest ones.

MODIFICATION OF THE GEAR METHOD

In the course of considerable experimentation with
various versions of the Gear method we found it to be
more than satisfactory. We made efforts to improve
its performance by reducing its execution time as
well as the space requirements. These changes can be
considered "tuning" of the Gear method, which speeded
things by 10-15 percent. Analysis of the program's
behavior revealed that a large percentage of the dif
ferential equation solving time is spent in solving a
linear system of equations of the form:

X * J =B (1)

where J is the Jacobian or partial derivative matrix
mentioned above. Furthermore the size of the J is the
factor determining the time spent in finding the solu
tion for X, and reducing the size of J will reduce
execution time as well as space requirements.

It is a fortunate situation that the Jacobian matrix
for biological models representing metabolic systems
is normally quite sparse, so that sparse-matrix tech
niques are applicable. These were applied by Curtis
and Chance in the CHECK and CHECKMAT pro
gramY It is possible to go further because the sparse
ness is structured so that most of the non-zero elements
of the matrix are near the main diagonal, as shown in
Figure 1. Furthermore, the non-zero elements which
are not near the main diagonal may also have a struc
ture which can be exploited; this is in fact done by
the removal of fast reactions described in the preceding
section. It would be desirable to eliminate the zero
elements of the sparse Jacobian matrix from storage
in the most efficient way. However, this could not be
achieved initially due to the method used by Gear to
solve the linear system-backward decomposition with
partial pivoting. The pivoting is dependent upon the
value of the elements of J at each given point. This
makes it impossible to predict how the sparseness of J
is changed by the decomposition algorithm. On the
other hand, we discovered that the partial pivoting
made little difference in the behavior of the Gear's
method and could be replaced by a simpler backward
decomposition procedure. Once pivoting is eliminated,
predicting the effect of the decomposition upon the
sparseness of J becomes possible.

Figure l-Typical sparseness pattern of the Jacobian matrix
representing a metabolic system (non-zero elements are indi

cated in black)

PROCEDURE FOR SPARSE MATRICES

The sparseness prediction algorithm is :

1. i = 1 (the sparseness of the first row will never be
altered by the decomposition process) .

2. i=i+l and j=1 (consider the next row).
3. if i>N go to step 9 (if all N rows of the Jacobian J

have been analyzed, exit the loop) .
4. increment j until the next non-zero element is

encountered (all zero elements skipped HO far on the
row i will always remain zero) .

5. if i=j go to step 2, (the sparseness of row i was
determined) .

6. if j > i stop-the matrix J is not a Jacobian.
7. all elements J (i, t) for which t>j and J (j, t) #=0

will be marked as non-zero, unless they are already
marked as such.

8. go to step 4.
9. the algorithm stops:

all elements of J which have not been marked as
non-zero will in no circumstances become non
zero as a result of the decomposition process.
The decomposition algorithm will be described
below.

Example: application of the sparseness prediction
algorithm to a sample Jacobian. In the following, '*'
will indicate original non-zero elements, while a '+'
will signify that the given element was marked as non
zero during the application or the algorithm. All
elements left unmarked by the sparseness prediction
algorithm need not be present in core during the
integration process.

row 1 row 2 row 3 row 4 row 5

*0*0* *0*0* *0*0* *0*0* *0*0*
0*0*0 0*0*0 0*0*0 0*0*0

0*0*0 *0*0+ *0*0+ *0*0+
*0*00 *0*00 00**+ 00**+
00**0 00**0 00**0 0*0+*
0*00* 0*00* 0*00* 0*00*

Subsequently, the sparseness prediction algorithm
is used to create two arrays WI and W J. For each
non-zero element in J an entry (indicating the column
number of the non-zero element) is made in WJ. All
entries in "\V J are ordered by rows and the elements in
each row ordered in increasing order (by column
numbers). Furthermore, for each row a pointer in
array WI is set to indicate its beginning (e.g., the
column of the first non-zero element of row i is given
by WJ (WI (i»). An additional pointer binds the last
row. In the case of the Jacobian used in the previous
example, the arrays WI and W J take the following
form:

WI: 1 4 6 9 12 15
WJ: 135 24 135 345 245

Stiff Differential Equations 975

The preprocessor will pass to the simulator not only the
dimensions of WI, WJ, and WPW (the Jacobian dimen
sioned to the same size as W J), but also the content of
WI and WJ.

The saving of memory space resulting from this
process becomes more significant in the case of our
implementation, described below, which is composed
of two programs: a preprocessor (called the genera
tor), and the simulator program which actually solves
the differential equations. The generator receives as
input the set or chemical reactions to be represented
by a set of differential equations and, on analyzing it,
dimensions the simulator's arrays to the exact length
required by the specific system. It then derives the set
of differential equations themselves, following which
the task of determining the initial sparseness of the
Jacobian becomes trivial.

Whenever required, the simulator will compute the
values of the Jacobian elements and store them in the
appropriate locations of WPW. The following decom
position routine will replace WPW by a triangular
matrix (stored in the upper corner of the Jacobian)
and a triangular multiplication factor matrix (stored
in the lower side of the Jacobian). The decomposition
algorithm is quite similar to the sparseness prediction
algorithm since the latter mimicks the actions of the
former (N is the number of variables involved; J is
the conceptual Jacobian, not to ·be identified with its
program implementation WPW) :

1. i = 1 (the first row is unchanged) .
2. i=i+ 1 and p=O (consider the next row).
3. if i>N go to step 9 (the triangularization is com

plete) .
4. find next non-zero element on row i : J (i, j) #= 0, i.e.,

repeat j=WJ(WI(i+p» and p=p+l until WPW
(WI (i+p» #= 0 (note that j steps over the ele
ments which are known to be zero) .

5. if i=j go to step 2.
6. if j >i stop-programming error.
7. (a) set J(i,j)=K (i.e., WPW (WI(i+p»=K)

where K= -J (i, j) /J (j, j).
(b) add row j to row i starting with the column
j+1.

8. go to step 4.
9. stop-algorithm is completed.

By using the result of this decomposition routine, the
solution routine will compute the value of the un
knowns of the equation (1) for each given B.

In accordance with our expectation, the predictive
sparseness method resulted not only in substantial
savings in core but also in a significant improvement
in the speed of Gear's method: the time required to
solve the differential equation system decreased con
siderably. The advantages resulting from this method
become more important with increasing system size.
To our knowledge, the only other successful research of
this type resulted in a (DEC-IO) machine-dependent

976 National Computer Conference, 1976

program (M. Pring, to be published) which is not yet
available for consultation.

The predictive sparseness method is the last of a
large series of experimental methods which unfortu
nately could not pass our acceptance criteria-they had
to prove themselves faster than the regular Gear
method. In our first attempt, we tried to use a varia
tion of Gear's method where the Jacobian is replaced
by a diagonal approximation, and this was excessively
slow for large stiff systems and suffered a loss in
accuracy when the same relative error parameter was
used. We also tried a new version of Gear's package,
GEARBlo which replaced the Jacobian by a diagonal
band of chosen width. Since most of our systems
involve J acobians which are concentrated around the
diagonal (Figure 1), the chances of success seemed
good. Furthermore, our experiments showed improve
ments in the execution speed when the Jacobian indeed
had all the non-zero elements inside such a band. How
ever, the method was rejected on further testing, which
revealed that as soon as elements outside the band
became slightly significant the behavior of the program
is adversely affected.

A second group of experiments followed in an
attempt to use a Gauss-Seidel iteration procedure to
solve the set of linear equations (1). In the belief that
the slowdown encountered in the previous cases was
due to a poor approximation of the Jacobian, we
attempted to use the solution given by the diagonal
band as a starting point for the iteration process.
However, the convergence was much too slow, espe
cially for large systems.

POSSIBLE ALTERNATIVE METHODS

As mentioned before, the predictive sparseness
method gives good results and the larger the number
of differential equations, the greater the improvements
appear to be. However, alternative differential equa
tion solving methods are available to the user of our
program: Euler, regular Gear, or Gear with the
Jacobian replaced by a diagonal approximation. All of
these methods may also be combined with the fast
reaction method mentioned above.

The Euler method is rarely used to integrate stiff
differential equations, but past experience has shown
it to work as well-or as badly-as the more sophisti
cated non-stiff methods when faced with a stiff system.
Since decreasing stiffness improves the behavior of
Euler, it may sometimes be used in conjunction with
the fast reaction method; if the latter greatly reduces
the degree of stiffness, this combined method will give
an accurate solution in a reasonable time for systems
where Euler alone would fail. Since the Gear method is
"slow-starting" the Euler method is at a relative ad
vantage for short-time calculations, as seen in the first
two columns of Table 1 (the second column includes
editing time, the first does not) .

TABLE 1

Computing times to solve three different test systems on the
PDP-I0 computer. Except for the first column, these include a
considerable computer expenditure for graphing and tabulating
the solutions. The programs involved are all in FORTRAN
except for the ones to algebraically handle enzymes, which are
in assembly language (here the advantage in speed over
FORTRAN is particularly great). J is Jacobian size (unaffected
by fast reactions) .

Test Systems

Size
Description No fast reactions,

Method of
Solution

Euler
with fast
reactions

Gear
diagonal
approxima-
tion
with fast
reactions

Regular
Gear
with fast
reactions

Gear-
predictive
sparseness
with fast
reactions

no enzymes, not very
stiff
time = 1500 time=15

29.3 sec 15.5 sec
J=O J=O

26.1 sec 15.9 sec
J=9 J=9

8.8 sec 24.5 sec
J=81 J=81

6.6 sec 20.8 sec
J=34 J=34

N=65
No fast reac- Fast
tions, reactions,
not very stiff, enzymes
enzymes repre- repre
sented by differ- sented
ential equations algebrai-

cally

67.9 sec
J=O

unwork-
able

18.6 sec
J=20

12 min 25.9 sec 22.2 sec
J=4096 J=400

41.4 sec
J=400

6 min 43.3 sec 17.0 sec
J=I715 J=47

40.8 sec
J=47

The diagonal approximation of the Jacobian suffers
from many of the same weaknesses as Euler, but to a
lesser degree. However, when properly combined with
the fast reaction method, surprisingly enough, it is
faster than the regular Gear method, for some medium
sized systems tested. This is very significant when we
think that only N locations are needed for the Jacobian
in place of N*N. This method is still under investiga
tion, but we do not hope for equally good results with
larger systems. Moreover, the fast reaction method
has applicability restrictions (e.g., it requires a clean
distinction between fast and non-fast reactions) which
make it unsuitable in many cases.

The predictive sparseness method will not work
where the user interferes with the derivative evalua
tion routine (written by the preprocessor) by inserting
additional (FORTRAN) coding and artificially creat
ing partial derivatives of significant size, which can
not be predicted since they are not derived from the
original differential equations. The unmodified Gear
method does work in this situation.

A short comparative study of the various methods
available in the system is summarized in Table 1 (CPU

time for integration and the size of core used for the
Jacobian) .

DEPENDENCE ON WORDLENGTH

During our investigations12 we were able to run our
program on three different machines, the Control Data
6400, the IBM 370/165, and the Digital Equipment
PDP-I0 (with which the bulk of the work was done).
'Ve v:ere investigating the effect of wordlength of the
accuracy and number of calculations required to solve
a test problem. As expected, the 32 bit processor
(IBM) gave slightly less precision and performed
more calculations in reaching a solution than did the
PDP-10. Surprisingly the 6400 (60 bits) performed
even more calculations than did the 32 bit IBM 370.
Further investigation showed that a minimum number
of calculations occurred at wordlengths of 36 to 40
bits.

Since the Jacobian is formed by numerical differ
encing within the Gear program, increased wordlength
will lead to some elements being very small but finite
where shorter wordlength would result in such ele
ments being set to zero. If too many are set to zero,
accuracy can be lost in forming the Jacobian, thus
requiring more evaluations for convergence. If too few
are set to zero, there should be no problem. The
pivoting strategy used in the matrix decomposition
routine in the original Gear program employed no
scaling, so that these small elements affected the pivot
with a similar loss in accuracy causing additional
matrix evaluations. An earlier version with scaling did
not demonstrate this phenomenon. Since our latest
method does not employ pivoting, the problem has been
eliminated. This is mentioned here because this result
is so unexpected: increased wordlength is generally
believed to improve the efficiency of matrix computa
tions.

IMPLEMENTATION IN A SIMULATION
LANGUAGE: BIOSSIM

Application of these methods of handling the Gear
matrix necessarily requires a preprocessor of some
kind to determine what non-zero derivatives are possi
ble in the Jacobian matrix and to construct pointers
for them. We have combined the Gear method into
a machine-independent two-pass language biochemical
simulation language which we have been using for
some time. I:l This language which writes and solves
differential equations can perform the necessary opera
tions in its first pass. Our research into methods for
solving stiff differential equations grew out of the need
to make this language more efficient. It has otherwise
been updated considerably, and a report of this will be
submitted elsewhere. A most important aspect of this
updating is that the program implementing the lan
guage have been "structured" to permit modification by

Stiff Differential Equations 977

the user.14 Gi,,"en the capabilitJT of such modification
and the ability to write as well as solve ordinary
differential equations, this language can probably be
applied to systems of equations far removed from those
for which it was designed. It has already been used
for problems which are more nearly physiological than
chemical in their definition and for ecological problems.
As communication about such usages would be con
siderably facilitated by having an acronym for the
language, we have named it BIOSSIM (for BIOlogical
Structured SIMulator) .

The ability to solve large numbers of stiff differential
equations is expected to considerably assist the study
of biological systems by mathematical means, because
the equations can be sufficiently complex to meet the
need for realism. It has been difficult to develop such
computer models in the past because of the cost of
computer time, and the unfavorable running restric
tions (e.g., nighttime access only, because of the large
core requirement). There is reason to hope that the
biological models that are feasible to compute with the
methods here described will be realistic enough to be
of value for clinical and industrial applications.

The BIOSSIM program will be available, as its pred
ecessors for some time have been, through the SHARE
Program Library Agency (Library No. 360D-
03.2.008), and possibly in other ways as well.

SUMMARY

A method of decreasing both the running time and
the core occupancy of the Gear stiff differential equa
tion solver by "compacting" its large Jacobian matrix
with a preprocessor and auxiliary programs is de
scribed. This may be further assisted by separating
out appropriate subelements of a large set of stiff
differential equations and treating them by algebraic
methods instead. In our hands these methods have
had a very large impact on the difficulty and cost of
solving complex systems of stiff differential equations.

This project was supported by NIH grants GM
16501, HL 15622, and RR 15.

REFERENCES

1. Willoughby, R., ed., Stiff Differential Equations, New York,
Plenum Press, 1974.

2. Gear, C. W., "The Automatic Integration of Ordinary Dif
ferential Equations," Comm. ACM 14, pp. 176-9, 1971.

3. Rhoads, D. G., M. J. Achs, L. Peterson, and D. Garfinkel,
"A Method of Calculating Time-Course Behavior of Multi
Enzyme Systems from the Enzymatic Rate Equations,"
Comput Biomed Res 2, pp. 45-50, 1968.

4. Garfinkel, L., M. C. Kohn and D. Garfinkel, "Systems
Analysis in Enzyme Kinetics," CRC Crit Rev Bioeng, in
press.

5. Rhoads, D. G. and M. Pring, "The Simulation and Analysis
by Digital Computer of Biochemical Systems in Terms of
Kinetic Models," J Theor Biol20, pp. 297-313, 1967.

6. Deland, E. C., Chemist-The Rand Chemical Equilibrium

978 National Computer Conference, 1976

Program, Memo RM-5404-PR, Rand Corp., Santa Monica,
Calif., 1967.

7. Clasen, R. J., The Solution of Chemical Kinetics P"'oblems
that Produce Stiff Differential Equations, PhD Thesis, Uni
versity of California, Los Angeles, 1974.

8. Clasen, R. J., D. Garfinkel, N. Z. Shapiro and G.-C. Roman,
"A Method for Solving Certain Stiff Differential Equa
tions," SIAM Journal on Appl Math, submitted for pub
lication.

9. Hindmarsh, A. C., Linear Multi-step Methods for Ordinary
Differential Equations: Method Formulations, Stability, and
the Methods of Nordsieck and Gear, Memo UCRL-51186
Rev., Lawrence Livermore Laboratory, University of Cali
fornia, Livermore, 1972.

10. Hindmarsh, A. C., GEARB: Solution of Ordinary Differ
ential Equations Having Banded Jacobian, Memo UCID-

30059 Rev. 1, Lawrence Livermore Laboratory, University
of California, Livermore, 1975.

11. Curtis, A. R. and E. M. Chance, CHEK and CHEKMAT:
Two Chemical Reaction Kinetics Programs AERE-R 7345,
United Kingdom Atomic Energy Authority, Harwell, Ox
fordshire, 1974.

12. Marbach, C. B., Differential Equation Solving in Biochemi
cal Simulation: A New Method and Implementation, M S
Thesis, University of Pennsylvania, 1973.

13. Garfinkel, D., A Machine-Independent Language for the
Simulation of Complex Chemical and Biochemical Systems,
Comput. Biomed Res 2, pp. 31-44, 1968.

14. Roman, G.-C., Program Control Restructuring as a Meth
odology for Systematic Programming, Ph D Thesis, Uni
versity of Pennsylvania, 1976.

A geometric analysis of heuristic search

by GORDON J. VANDERBRUG
University of Maryland
College Park, Maryland

ABSTRACT

Search spaces for various types of problem repre
sentations can be represented in one quadrant of the
coordinate planes. This geometric representation is
used to prove some formal properties of heuristic
search strategies involving completeness, admissibility,
optimality, consistency, and the use of the perfect
heuristic. The geometric analysis provides an intuitive
alternative to the algebraic analysis which appears in
the literature.

INTRODUCTION

To specify a state-space representation for a problem,
one must specify a start state~ the general structure
of a state, a characterization of a goal state, and a set
of operators which map states into states. To solve
a problem using such a representation one successively
applies operators to currently generated states to ob
tain new states until a goal state is generated. This
process is called searching the search space (or state
space), and can be done in many different ways. The
manner in which it is done is called a search strategy.
The solution to the problem is the sequence of operators
which transforms the start state into the generated
goal state.

The graph model for searching a state-space is based
on associating states in the representation with nodes
of the graph, and operators of the representation with
arcs of the graph. With this model we can view a state
space representation as an implicit definition of a
graph. It defines a start node and procedures for
generating other nodes of the graph.

A search strategy can be thought of as a process of
making explicit part of this implicitly defined graph.
In this paper we will be dealing with a frequently oc
curring class of search strategies called ordered search
strategies. An ordered search strategy determines the
manner in which the state-space is generated by as
signing a merit ordering to the nodes. A merit order
ing is a procedure for ranking the nodes. The search
process occurs in stages, and at each state the merit
ordering specifies which node is to be expanded (i.e.,

which node is to have its successor nodes generated by
applying all applicable operators). An ordered search
algorithm is presented in Figure 1. It is equivalent to
the algorithms presented in Hart, Nilsson, and
Raphael;1 Pohl;2 and Kowalski. 3

Usually merit orderings are defined by evaluation
functions. Evaluation functions use selected features
of a state to assign it a number, and thus rank it rela
tive to all the other states. One possible evaluation
function assumes that the operators have associated
costs, and assigns to each node the sum of the costs
of the operators used to generate it. This evaluation
function is usually denoted by g, and the search result
ing from its use is called the uniform cost search
strategy. In terms of the graph which represents the

Set S to the empty set and § to the start node
While § is not empty do

Choose n E § such that n has best merit (resolve ties arbi
trarily)

If n is a goal node
then

Exit with success

else
Place n in S
For each mEr (n) do

Cases

end

1) m, Sand m ~ §
place min § with pointer to n

2) m E § and new merit is better than old merit
set pointer to n and redefine merit

3) m E S and new merit is better than old merit
place m in § with pointer to n and redefine merit

Exit with failure

Figure I-An ordered search algorithm. S is the set of nodes
which have been expanded, § the set of nodes which are

candidates for expansion, and r(n) the finite set of
successors of the node n. The algorithm forms a

979

tree of the nodes in the problem space, with
the nodes in § at the tips of the tree.

When the algorithm exits with success
the solution path can be found

by tracing the pointers from
the goal node to the start

node

980 National Computer Conference, 1976

state-space, the uniform cost strategy uses the cost of
the path from the start node to the node n as the merit
of n. Pure heuristic search uses and estimates, h (n),
of the cost of a path from n to the nearest goal node
as the merit of n. Frequently h (n) is based on the
extent to which selected features of the node n differ
from these same features of a goal node. This cost is
frequently referred to as the distance from n to a goal.
We will insist that h(n) =0 whenever n is a goal node.
An ordered search strategy which uses an evaluation
function f(n) =g(n) +h(n), with both a cost and a
heuristic component, is called diagonal search. Various
weights on the cost and heuristic components can be
achieved with the function f(n) = (l-w)g(n) +wh(n),
for w€[O,l]. w=O and w=l are uniform cost and pure
heuristic search respectively; while (rJ= Ij2 is diagonal
search, since the two evaluation functions, Ihg (n) +
lhh(n) and g(n) +h(n), define the same merit or
dering.

DEFINITIONS

An ordered search strategy is said to be complete if
whenever there exists a solution to the problem the
strategy will find one. An admissible strategy is one
which terminates with a minimum cost solution when
ever one exists. The concept of optimality applies to
strategies which are admissible and is defined as fol
lows. Let hl and h2 be two heuristic functions such
that h2 (n) <hl (n) ~hp (n) for all nongoal nodes n,
where hp is a perfect heuristic function (the heuristic
which gives the exact cost to the nearest goal). An
admissible strategy is said to be optimal if searching
with h2 expands all of the nodes that searching with hl
expands. Admissibility can be viewed as the optimality
of the solution, whereas optimality is really the opti
mality of the search process.

In order to prove that ordered search strategies
possess the above properties certain assumptions on
the heuristic function and the graph of the search
space must be made. A heuristic h satisfies the lower
bound condition if h (n) ~hll (n) for all n, where hp is
the perfect heuristic. A heuristic h is said to be con
sistent if any nand n' such that there is a path from
n to n', h(n) -h(n') ~k(n,n'), where k(n,n') is the
cost of the path from n to n'. The concept of a o-graph
will also be used in the theorems. We will define a
o-graph to be a graph which does not contain a path
with an unbounded sequence of partial sums of arc
costs.

GEOMETRIC REPRESENTATION

The proofs of the theorems in this section are geo
metrically-based proofs, in that they use a method of
representing the search space in one quadrant of the
coordinate plane. Each node n has a cost g (n) and

a heuristic h (n) associated with it (for uniform cost
search h == 0). Thus we can represent the node n at the
point (i,j), where i=h(n) and j=g(n). This repre
sentation maps the entire search space into one
quadrant of the plane (many nodes can be mapped
into the same point, but this is of no consequence), and
gives us the basis for geometrically describing the
search process.

Figure 2 provides an example of the geometric
representation of a search space. Note that the node n
is represented at the point (h (n), g (n)), and that
the h-axis extends horizontally to the right while the
g-axis extends vertically downward. Since the g-com
ponent of any start node is zero, all start nodes lie on
the h-axis. Similarly, all goal nodes lie on the g-axis
since their h-components are zero. The nodes n6 and n,
could be placed in more than one position in the plane
since there is more than one path from no to each.
In Figure 2 we have chosen the position which cor
responds to the shortest path.

The heuristic used in Figure 2 satisfies the lower
bound condition since it can be verified that the h (nd
is less than or equal to the distance between n i and n,
for i=l, ... ,7. However, this heuristic is not con-

9 (no) = 0 h (no) OK 7

9(n1)=1 h (n
1

) ., 5

"2
9 ("2) = 2 h (n

2
) .. 5

9 ("3) = 4 h ("3) • 7

9 (n4) = 3 h (n4) • 2

9 (n5) = 8 h (n
5

) .. 3

9 (n6) = 6 h (n6 ' • 1
9 (n7) " 7 h (n7' ., 0

no - start node
n1 - goal node

4 5 6 7 8 9 10

no

n1

n2
3

n4
4

n3

n6
7

n7
8

n5

10

Figure 2-An example of the coordinate representation of a
search space

sistent since (for example) h (n1) -h (n4) =5-2=3,
while k (nH n 4) =2.

Each choice of (lj in (" = (1- (lj) g + wh determines the
direction in which the space will be searched. Search
with (0= 1;2 is called diagonal search because it defines
all nodes which lie on the same diagonal to have equal
merit and attempts to expand nodes in the direction
indicated in Figure 3 (a). Upwards diagonal search
differs from diagonal in that node n has better merit
than a node n' iff f (n) <f (n/), or h (n) <h (n/) when
2/ __ , 2/ __ 1> ____ -:I _.L.L ____ .L_.L _ ______ -:1 __ ,J~_:_ .Ll...~ _~_~

1- \11) =1- \11) ; a11U al"l,,~!IllJl,,;::; I"V ~AlJauu UVU~;::; 111 1,,11~ ;::;~111~

direction as diagonal search except that the search pro
ceeds up successive diagonals as indicated in Figure
3(b). Figures 3(c)-3(f) illustrate the direction of
search for various values of w. If the distinction be
tween the h-components is made for nodes with the
same f-value as is done in upwards diagonal search,
then along each line in these figures the search
proceeds in the direction of the h-axis.

As the process of searching the space proceeds, the
region of the quadrant which has been covered grows.
As any stage of the search process all nodes which lie
inside the covered region (including the boundary)
can potentially be expanded. A node n lying inside
such a region will be expanded if there is a path from

h

, 9

h

Geometric Analysis of Heuristic Search 981

the start node to n such that all the nodes on this path
also lie within the region. Note that n lying within
the region covered by the search is not sufficient rea
son for it to be expanded. Note also that a- node which
is expanded does not necessarily lie on the diagonal of
the triangular region, but may lie strictly within the
region.

An alternative to specifying an evaluation function
in the form fw= (1-w)g+wh for w€[O,l] is to use the
form fa=g+ex.h for ex.€ [O,x). Since scaling the evalua-
.L:~_ -C ____ .L: __ ,J~~ _ _ ~.L _l...~ ___ .Ll...~ ____ .:.L ___ -:l~_.: __ -:1_
I"IV11 .L U11\;I"IVll uv~;::; 11UI" \;l1~l1g~ 1,,11~ 111~111" VI U~1111g U~-

fined by it, the relationship between these two forms
is given by ex. = (1)/ (1-(0). For example, diagonal search
is specified by setting either w= 1;2 or ex. = 1 in these re
spective formulas.

When the first form is used, changes in the value of
___ ._.~ _____ , ____ .L _~.L ___ .~" __ .L _ _ l...~ __ : __ .Ll..._ -:I: •• __ .L: __

OJ cvrr~;::;lJVuu !IlV;::;1" llal"Urall,Y I"V cHa11glHg I"ll~ UIr~CI"IVll

of search as illustrated in Figure 3. However, the
parameter ex. in the second form can be thought of as
being part of the heuristic component of the evalua
tion function. When this is done, it is most natural to
think in terms of the direction of search remaining
diagonal, but all the nodes being moved either towards
the g-axis if ex. < 1, or away from the g-axis if ex.>1.
Thus the above two forms point out the two ways in

h

9

Fig. 3.1 --}t Diagonal Search. F1,. 3.b -i- Upper Ofagonal Search. 1 Ftg. I.e .,..

h

Fig. 3.d .{

h

Fig. 3.e .-0.

Figure 3-The direction of search in the coordinate representa
tion of the search space for various values of w

Ftg. 3;f ,1~

982 National Computer Conference, 1976

which a change in an evaluation function can be
viewed; either as a change in the direction of search
or as a change in the position of the nodes. In this
paper we will use the fw= (l-w)g+wh alternative.

THEOREMS

N ow that we have explained the geometric repre
sentation of the search space, we turn to the state
ments and proofs of the theorems. The proofs of the
theorems refer to the illustrations in Figure 4. The
term search strategy will mean an ordered search
strategy which uses the evaluation function fw=
(l-w)g+toJh.

THEOREM 1. [Completeness] A search strategy is
complete for all o-graphs iff WE:[O,l).

PROOF: Assume that there is a solution, that is, a
path from the start node s to a goal node t, and that
(l)E:[0,1). Thus, the direction of search is not parallel
to the g-axis (the case where w= 1). This case is il
lustrated in Figure 4 (a). Suppose that the solution is
not found. Then the search strategy never reached all of

h
5

9

t

h

the nodes on the solution path because some region in
the plane encountered by the search strategy contains
an infinite number of nodes. Since (1)=1=1, such a region
must be either an infinite strip parallel to the h-axis
(the case where w = 0), or an finite triangular region
(the case where 0«.)<1). In either case, since some
region contains an infinite number of nodes, there
exists a path in the graph whose g-values are un
bounded. A path of unbounded g-values is the only
condition which can give rise to an infinite number of
nodes in either a region parallel to the h-axis or a finite
triangular region. However, a path of unbounded
g-values is impossible because the graph is 3-finite.
Hence, if WE:[O,l) then all the nodes along the path
from s to t will eventually be expanded; that is the
search strategy is complete.

N ow suppose that w = 1. Then since there can be an
infinite path in the graph whose h-values are bounded
above, one of the infinite strips which are encountered
by the search strategy before it covers all of the nodes
from s to t can contain infinitely many nodes. Such a
strip would prevent the search strategy from finding
the solution. Thus search with w= 1 is incomplete.

h

Fig. 4.a With .-1, search may
never cover the region which
includes all of the nodes on I
solution path.

Fig.4.b Diagonal search with Fig. 4.c Selrch with wt<I/2

9

h

Fig. 4.d Search with ...>J/2
and a heuristic which satisfies
the lower bound condition. The
nodes along the subpath labeled
P will prevent the minimum goal
node t from being found.

9

a perfect heuristic. Only nodes
on a minimum solution path Ire
expanded.

h

Fig. 4.e Diagonal search with
a consistent heuristic. The search
never has to backtrack to' an earlier
diagonal.

Figure 4-lIlustrations of different search strategies with vari
ous conditions on the heuristic. Although not explicitly

shown in the figures, all modes which lie in. a region of
search and have ancestors forming a path back to

the start node which also lie in the region of
search are expanded

and I heuristic which satisfies
the lower bound condition.

h

Fi g. 4. f Search wi th _1/2
and a perfect heuristic. If
all arcs of the graph have
unit arc costs then only nodes
on a mini m solution path
Ire expanded.

The admissibility theorem tells us the conditions
under which the first solution found is a minimum cost
solution.

THEOREM 2. [Admissibility] Let h satisfy the lower
bound condition, h:::;hl" where hp is the perfect heu
ristic. Then search with h is admissible for a-graphs
iff, Wf [0,%].

PROOF: Let us begin by thinking in terms of the
nodes positioned in the plane as defined by the perfect
heuristic hll" Since g(ni) +hp(nj) equals the minimum
solution cost for each node n j which is on a minimum
solution path s=no, ••• , nk=t, all such nj must lie
on the minimum cost diagonal of the plane (see Figure
4 (b)). Since g (n') + hI' (n') is greater than the mini
mum solution cost for each node n' which does not lie
on a minimum solution path, all such n' lie outside the
triangular region defined by the minimum cost di
agonal. Thus, no nodes lie within this triangular re
gion. If the heuristic is not perfect, but does satisfy the
lower bound condition, then the nodes no, ... , nk are all
pulled to the left and lie in the triangular region (some
may lie on the boundary). Thus, diagonal, upper di
agonal, and any search with w~% (see Figure 4(c»
will have expanded n,}, ... , nk-l by the time search
reaches the location of the minimum goal node t, and
therefore t will be found before any other goal node.
Hence if Wf[O,%] the search is admissible.

However, if w>ll2 (see Figure 4(d» the region
covered by the search can include all of the nodeS on a
nonminimum path like s-nn', ... , nl'=t' (and thus
find a nonminimum solution), before it covers all of
the nodes on the minimum path s=no, ••• , nk. In Fig
ure 4(a) the nodes along the subpath (of the minimum
solution path) labeled P lie outside the region which
includes all of s=no', ••• , n/ =t'. These nodes (and
all of the successors along the minimum path) will not
be expanded, and the minimum goal node will not be
found. Thus in wdO,%] the search is not admissible.

The optimality theorem tells us that for all of the
values of w which give admissible searches, the use of
bette.r heuristics will result in improved searches.

THEOREM 3. [Optimality] Let wdO,%], and h~<hl
:::;hll" Then search with h~ expands every node ex
panded by search with hl for all a-graphs that contain a
minimum solution.

PROO F: Again let us begin with the nodes positioned
in the plane for the perfect heuristic, where nodes on
a minimum solution path lie on the minimum cost di
agonal and all others lie outside the triangular region.
N ow think in terms of the movement of the nodes in
the plane which results from using the heuristics hl
and h2 instead of hp • Since h2<h17 h~ pulls all of the
nodes into the triangular region which are pulled there
by hH and others besides. Not all of the nodes which
lie inside the triangular region will be expanded. Only
those for which there exists a path back to a start

Geometric Analysis of Heuristic Search 983

node such that all of the nodeS on this path also lie
in the triangular region will be expanded. However,
all of the nodes pulled in by hl that are expanded by hl
will also be expanded by h2' because those paths back
to a start node whose nodes are placed in the triangular
region by hl will also be placed there by h2. Thus
search with h2 expands all of the nodes expanded by
search with hh and diagonal search (i.e., w=ll2) is
optimal.

For w< % the reason for optimality is similar. The
poorer heuristic pulls more nodes inside the triangular
region than the better heuristic, only now the tri
angular region in question is as shown in Figure 4 (c) .

The completeness and admissibility theorems were
stated as iff conditions in terms of the subinterval of
[0,1] in which the properties held. This is not done for
the optimality theorem becaUSe optimality is defined
for admissible heuristics, and admissibility holds only
in the subinterval [0,lj2]. Thus since Wf [lj2,1] elimi
nates admissibility, optimality in this subinterval is
not a queston.

If the hypothesis of the optimality theorem is
changed from h2<h1 :::;h to h2 :::;h1 :::;h, then it is possible
that search with h~ may not expand a node n which lies
on the minimum cost diagonal which is expanded by
search with h 1 • This is because a search strategy re
solves ties arbitrarily, and search with the poorer
heuristic h~ may choose to expand a node n which is
tied for merit with a minimal goal node, while search
with the better heuristic hI chooses not to expand n.
Thus, if h~:::;hl:::;h then search with h2 expands all the
nodes expanded by search with hl except possibly for a
set of nodes which have the same merit as a.minimum
goal node.

Let us now turn to the consistency property of a
heuristic function. It has been pointed out that in gen
eral a search strategy does not expand the nodes of the
graph according to the merit ordering. Thus, in gen
eral, diagonal search does not expand a node as soon as
it falls within the region which has been searched. It
must continually backtrack to earlier diagonals to ex
pand nodes. Consistency of the heuristic is a sufficient
condition to prevent this from happening.

THEOREM 4. If h is consistent then diagonal search
(i.e., w=%) never has to backtrack to an earlier di
agonal to expand a node.

PROOF: If h is consistent, then if k (n,n') exists then
hen) -hen') :::;k(n,n'). What does this condition mean
in terms of the coordinate representation of the search
space?

h (n) -h (n') :::;g (n') - g (n)
¢:::> g(n) +h(n) :::;g(n/) +h(n')
¢:::> h(n)-h(n'):::;k(n,n')
¢:::> f (n) :::;f (n/)

Thus consistency means that if n precedes n' in the
graph (which is a necessary and sufficient condition
for k (n,n') to exist), then f (n) :::;f (n'). In terms of the

984 National Computer Conference, 1976

coordinate representation this means that n appears on
the same or an earlier diagonal. Hence diagonal search
moves from diagonal to diagonal to expand nodes, and
never has to backtrack to an earlier diagonal to ex
pand a node (see Figure 4 (e)) .

An important consequence of Theorem 4 is that if a
heuristic is consistent then an ordered search strategy
will never have to expand a node more than once; the
first path found to any node is the minimum cost path
to that node. Thus, when the heuristic is consistent,
Case 3 (in the algorithm given in Figure 1), where
m€S and the new merit is better than the old merit,
will not arise.

Sometimes the concept of a monotonic evaluation
function is used instead of consistency. An evaluation
function f is monotonic if for all nand n', n~n/~f(n)
~f(n'), and h(n/) =0 when n' is a goal node; where
n<n' means that n precedes n' in the graph, and n~n'
means that either n precedes n' or n equals n'. For
w = V2 the concept of monotonicity is equivalent to that
of consistency.

At one time it was thought that the optimality prop
erty required the consistency assumption. Recall that
the proof of the optimality theorem depended on the
poorer heuristic h2 pulling all of the nodes into the
triangular region which are pulled in by the better
heuristic hI' Thus all of the nodes pulled in and ex
panded by hI were pulled in and expanded by h 2 • If the
consistency of hI is assumed, then every node pulled
in by hI is also expanded by hI' Thus we can say every
node pulled in by hI is pulled in and expanded by h2.
However, it is clear that the optimality property does
not depend on hI expanding every node which it pulls
into the triangular region. That is, the consistency as
sumption is not necessary for optimality.

THEOREM 5. [Perfect Heuristic] Suppose that all
arcs of the graph have unit costs. Then search with
fw= (l-w)g+wh only expands nodes on a minimum
solution path iff [V2,1].

PROOF: As indicated earlier, a perfect heuristic
places no nodes inside the triangular region defined
by the minimum cost diagonal, and places all nodes on
all minimum solution paths on the minimum cost di
agonal itself. No nodes will be expanded until the area
covered by the search includes the start node (see
Figure 4 (f)). To prove the theorem we must show
that at each stage of the search the node that is ex
panded lies on the minimum cost diagonal.

Let s=nO,nI, .. " nk=t be a minimum solution path.
Clearly the first stage expands a node on the minimum
cost diagonal since the node expanded is no. Suppose
that nO,n H ••• , nl are the only nodes which have been
expanded at the ith stage. Then since all arcs have
unit arc costs the successor of ni which is on the mini
mum solution path namely niW lies on the diagonal
and a successor n' which is not on the minimum solu
tion path lies off of the diagonal to the right of nl +1 (see

Figure 4 (f». Thus ni+1 has better merit than the other
successors of ni. ni+l has better merit than any previ
ously unexpanded successor nfl, because ni has better
merit than n", and ni+l has better merit than ni' Hence,
ni+I will be expanded at stage i + 1, and only nodes on
the minimum solutions path are expanded.

If w€ [112,1] then it is possible for the previously un
expanded successor n" to have better merit than ni~I'
Hence a node not on the minimum solution path may be
expanded.

If the unit arc costs assumption is removed from the
hypothesis of Theorem 5 the conclusion is not true.
This is because the node n' may be in the region which
gives it a better merit than ni+H and thus a node off of
the minimum solution path will be expanded. It is
clear that the unit arc cost assumption can be replaced
by a constant arc cost assumption. Figure 5 illustrates
that Theorem 5 does not generalize to arbitrary arc
costs.

All values of 0 ~w ~ V2 are equally good in the sense
that completeness, admissibility, and optimality all
hold for (J)€ [0,112] provided h satisfies the lowerbound
condition. However, it is clear from an examination
of the regions expanded by searching with various
values of W€[O,1f2] that w=1f2 is best, because it expands
fewest nodes.

Ignoring admissibility and optimality for the mo-

]0

0
', ·

"] n'

4 2

no - 5 tart node

n2 - goa] node

fen) = }.J(n)~(n)

/ I I I L,nl'1
,I / I If/I

/ / V1 I

I L In' I

/I I I

n2
I I

I I

/ l/
;1

i;
I(

I
I

g(no) = 0 h(no) = 5 f(nO) = ~
g(n]) =] hen]) = 4 fen]) = 3

g(n') = 4 hen') = 2 f(n') =2%

g(n2) = 6 h(n2) = 0 f(n2) = 2

nO

Figure 5-An illustration that Theorem 5 does not generalize to
arbitrary arc costs. Searching the above graph with the

perfect heuristic using w = 2/3 not only expand the
node n' which is off of the minimum solution path,

it even finds the nonminimal solution no' n', n
2

ment, there seem to be intuitive reasons for choosing
w=I, or at least for choosing (J»lh. Recall that g is
the cost-to-date component of the evaluation function,
and that h estimates the cost to the nearest goal. An
intuitive reason for choosing w= 1 is as follows. Since
the search has progressed to the point of generating n,
why should we concern ourselves with the cost that
has been incurred to get there? Perhaps we should
only concern ourselves with what is the expected cost
to get to a goal.

On the other hand, in addition to the fact that we
may desire a minimum solution, which is not guaran
teed when w>lh, there is the following reason for
including a g-component in the evaluation function.
Sometimes it is difficult to construct a good heuristic
function for a problem, and in these cases the presence
of a g-component does not hinder the search, and some
times helps it. Consider, for example, a heuristic func
tion h which is of bounded error (hp(n) -€::;h(n)::;
hI' (n) + €, for some € > 0 and all n) , and which is defined
in a way that deliberately misleads the search by being
as optimistic as possible for nodes off the minimum
solution path and as pessimistic as possible for nodes
on the minimum solution path. It has been shown
that for such a heuristic, diagonal search (w = lh) ex
pands fewer nodes in obtaining a solution than does
pure heuristic search ((J) = 1). This is an extreme ex
ample, but it does illustrate how a g-component can
act as a stabilizing source when a poor heuristic is
used.

BIBLIOGRAPHICAL REMARKS
AND CONCLUSION

Graph representations have long been recognized as
important models in problem solving. Discussion of
both early and more recent use of graph representa
tions can be found in the books by Ernst and Newell, 4

Barnerji,5 Nilsson,6 and Slagle. 7 These books along
with the articles by Amarel,R Michie,9 and Sandewall10

also contain general discussions of ordered search
strategies.

The admissibility and optimality of ordered search
strategies and the concepts related to these theorems
are due to Hart, Nilsson, and Raphae1.1,1l Algebraic
proofs of these theorems also appear in Nilsson.6 In
this reference a S-graph is defined to be a graph whose
arc costs are bounded away from zero. The definition
used in this paper which restricts the partial sums of
the arc costs along an infinite path from being un
bounded is more general, since it allows finitely many
arcs of zero cost. This definition is based on the con
cept of a o-finite merit ordering which was used by
Kowalski,~ who also was the first to use the geometric
representation. Pohp2 investigated the evaluation
function fw= (I-w)g+wh in some experiments on the
I5-puzzle. Doran and MichielS also experimented with
the I5-puzzle. The theorem on completeness was

Geometric Analysis of Heuristic Search 985

proved by Pohl. ~ The theorem on the perfect heuristic
and the argument for including a g-component in
evaluation function are also due to PohlY To the best
of our knowledge, the fact that the theorem on the
perfect heuristic does not generalize to arbitrary arc
costs has not previously been pointed out.

Hart, Nilsson, and Raphael,t,ll developed ordered
search strategies for directed graphs, which are used
to represent state-space representations. Chang and
Slagle14 developed ordered Rearch strategies for AND/
OR graphs, which are used for problem-reduction rep
resentations. Ordered search strategies for theorem
proving graphs, which are used to represent state
space representations with multiple-input operators,
were developed by Kowalski, 3 and also by Michie and
Siebert.15 An illustration of how the direction in which
a problem space is searched determines whether a
single problem representation is viewed either as a
state-space or a problem-reduction representation ap
pears in VanderBrug and Minker.16

The formal properties of ordered search algorithms,
which we proved using the geometric representation,
are of limited interest to the developers of a practical
problem solving system. Completeness is rarely a big
consideration in the design of such a system. Usually
what keeps a search from being successful is exhaus
tion of the available resources, not the incompleteness
of the search strategy. Admissibility is only sometimes
an important consideration, since often a solution
which is approximately minimum is sufficient. Thus,
one can use a heuristic which only approximately sat
isfies the lowerbound condition (i.e., h::;hp+€), and
expect to get a solution which is approximately mini
mum. Such a search is less conservative (in the sense
that it takes more chances) than an admissible one,
and frequently will find an approximately minimum
solution before the admissible search finds a minimum
one.

Nonetheless, the theorems are important formal
properties, and help to unify the work done in this
area. We believe that the geometric approach to the
presentation of these formal properties is an intuitive
alternative to the algebraic approach.

ACKNOWLEDGMENTS

The support of the National Aeronautics and Space
Administration under Grant NGR-2I-002-270, and the
assistance of L. Kanal, J. Minker and A. Rosenfeld is
gratefully acknowledged.

REFERENCES

1, Hart, P. N., N. Nilsson and B. Raphael, "A Fonnal Basis
for the Heuristic Detennination of Minimum Cost Paths,"
IEEE Trans, Sys. Sci. Cybernetics, Vol. S.S.C.-4, No.2,
July 1968, pp. 100-107.

2. Pohl, 1., "Heuristic Search Viewed as Path Finding in a

986 National Computer Conference, 1976

Graph," Artificial Intelligence Journal, Vol. 1, No.3, Fall
1970, pp. 193-204.

3. Kowalski, R., "Search Strategies for Theorem-Proving,"
In: Meltzer, B. & Michie, D. (eds.), Machine Intelligence 5,
American Elsevier, New York, 1970, pp. 181-201.

4. Ernst, G. W. and A. Newell, GPS-A Case Study in Gen
erality and Probl€'rn Solving, Academic Press, New York,
1969.

5. Banerji, R. B., Theory of Problern Solving, American Else
vier, New York, 1969.

6. Nilsson, N. J., Problem-Solving Methods in Artificial Intelli
gence, McGraw-Hill, New York, 1971.

7. Slagle, J. R., Artificial Intelligence: The Heuristic Pro
gramming Approach, McGraw-Hill, New York, 1971.

8. Amarel, S., "An Approach to Heuristic Problem-Solving and
Theorem Proving in the Propositional Calculus," In: J.
Hart and S. Takasu (eds.), Systems and Computer Science,
U. of Toronto Press, Toronto, 1967.

9. Michie, D., "Heuristic Search," Computer Journal, Vol. 14,
No.1, pp. 96-102.

10. Sandewall, E., "Heuristic Search: Concepts and Methods,"

In: Findler, N. V. & Meltzer, B. (eds.), Artificial Intelli
gence and Heuristic Programming, American Elsevier, New
York, 1971, pp. 81-100.

11. Hart, P. N., N. Nilsson and B. Raphael, "Correction to 'A
Formal Basis for the Heuristic Determination of Minimum
Cost Paths'," SIGART Newsletter, Dec. 1972.

12. Pohl, I., "First Results on the Effect of Error in Heuristic
Search," In: Meltzer, B. & Michie, D. (eds.) , Machine
Intelligence 5, American Elsevier, New York, 1970, pp.
219-236.

13. Doran, J. E. and D. Michie, "Experiments with the Graph
Traverser Program," Proc. R. Soc. (A), Vol. 294, pp. 235-
259.

14. Chang, C. L. and J. R. Slagle, "An Admissible and Optimal
Algorithm for Searching AND/OR Graphs," Artificial In
telligence Journal, Vol. 2, No.2, Fall 1971, pp. 117-128.

15. Michie, D. and E. E. Siebert, "Some Binary Derivation
Systems," JACM, Vol. 21, No.2, April 1974, pp. 175-190.

16. VanderBrug, G. J. and J. Minker, "State-Space, Problem
Reduction, and Theorem Proving-Some Relationships,"
CACM, Vol. 18, No.2, February 1975, pp. 107-115.

Another algorithm for reducing bandwidth
and profile of a sparse matrix

1.." UT D C'1\KVr'J'1U
U-y "". .L'. ..:;J.l.U.J..L.L.L

International Labor Office
Geneva, Switzerland

and

ILONA ARANY
Computing Center of the Ministry of Labor
Budapest, Hungary

ABSTRACT

The paper describes a new bandwidth reduction method
for sparse matrices which promises to be both fast and
effective in comparison with known methods. The al
gorithm operates on the undirected graph correspond
ing to the incidence matrix induced by the original
sparse matrix, and separates into three distinct phases:
(1) determination of a spanning tree of maximum
length, (2) modification of the spanning tree into a
free level structure of small width, (3) level-by-Ievel
numbering of the level structure. The final numbering
produced corresponds to a renumbering of the rows
and columns of a sparse matrix so as to concentrate
non-zero elements of the matrix in a band about the
main diagonal.

INTRODUCTION

As electronic computers make possible computations
on ever larger data sets, it has come to be realized 1,pl1,2

that most large matrices are, in the nature of things,
sparse; more precisely, that a matrix of (large) order
n will generally contain only Kn non-zero elements,
where K tends to decrease as n increases (K is often as
little as 2 or 3 and only rarely greater than 20). There
has been, accordingly, during the last ten years, a good
deal of research into techniques for efficient computer
handling of large sparse matrices. These techniques
may be separated into two classes:

T 1: techniques which deal with the given sparse
matrix, more or less directly, in a sparse form
(some typical approaches are surveyed in
[2] and [3]) ;

T 2: techniques which transform the given sparse
matrix into a band form (which may then be
processed further by efficient and well-known
band matrix algorithms).

987

Initially "direct" techniques T 1 attracted more inter
est, and the utility of "band" techniques T 2 was occa
sionally questioned. 4 Research into T 2 techniques was
spurred however by the work of Cuthill-McKee/ who
described an effective bandwidth reduction algorithm
with execution time linear in Kn. Instead of dealing
directly with the given matrix, Cuthill-McKee (here
after called CM) dealt with the numbered graph whose
connections correspond to the given matrix's zero/non
zero structure; they renumbered the vertices of this
graph, and this renumbering therefore defined the in
terchanges of rows and columns required to transform
the original sparse matrix into a band matrix.

The CM method was later modified in various ways,
especially by Rose,6 who also contributed an important
analysis of the application of Gaussian elimination to
band matrices, showing in particular the importance
of the profile.

The algorithm presented here, called the SA algo
rithm, is of class T 2. It results from efforts to improve
on previous work,7 and has been directly stimulated by
the approach suggested by Smyth-Benzi (hereafter
called SB) 8 as well as by the related algorithm pub
lished independently by Gibbs-Poole-Stockmeyer (here
after called GPS).9 Like the CM and GPS algorithms,
SA renumbers the vertices of a given numbered graph
with the objective of minimizing the maximum differ
ence between numbers assigned to connected vertices.
Also in common with these algorithms, SA reduces
profile as well as bandwidth6 and may be applied to
non-symmetric as well as to symmetric matrices.

TERMINOLOGY

We use the term graph, and the symbol G or G (V, E) ,
to denote a finite connected * undirected graph without

* The algorithm may easily be modified to deal separately with
the disjoint components of a single graph.

988 National Computer Conference, 1976

loops or multiple edges defined on a vertex set V of
cardinality n= iVI > 1 and an edge set E of cardinality
m = i E I. For any distinct pair of vertices u, v f V, we
define the usual distance function p(u,v) to be the num
ber of edges on the shortest path from u to v. For a
single vertex u, we adopt the convention p (u,u) =0;
for unconnected vertices u,v, we set p (u,v) = oc; if
p (u, v) = 1, then u and v are said to be adjacent. The
diameter of G is defined by

diam (G) =maxu.Y€v[p (u,v) J.

Since we assume G is connected, diam (G) ::::; n-l.
Apart from such basic terms, we need for our pur

poses here to define four main concepts: level struc
ture, free level structure, numbering, and bandwidth.

A level structure LS of a graph G (V,E) is an as
signment of the vertices of V into sets, called levels
Lu Lz, ••• , LA, such that

(1) Ll contains at least one vertex;
(2) for each k=2,3, ... , A, Lk contains every ver

tex not in a previous level which is adjacent
to some vertex of Lk-1•

It follows from this definition that if G is connected,
LS contains all n vertices of V; that the levels are dis
joint; that l::::;A::::;diam(G) +1; and that LS is deter
mined uniquely by the choice of vertices in L1• We may
therefore unambiguously denote LS by LS (L1) or,
when L1 = {u}, by LS (u). We observe in fact that level
Lk of LS (L1) consists of exactly those vertices which
occur in the k tb level of every spanning forest (SF)
grown from the vertex set Ll (for a description of this
process see Reference 5). LS(L1) therefore corre
sponds (one-many) to the SF (L1), and LS (u) to the
spanning trees ST (u). Whenever edges are not im
portant, then, we may refer to LS and SF /ST inter
changeably. *

A free level structure FLS of a graph G(V,E) is an
arrangement of all n vertices of V into A levels LlJ L2 ,

... , LA, such that

(1) no level is empty;
(2) if ufLk then all vertices adjacent to u are in

either Lk-U Lk , or Lk+1•

We note that in this case also l::::;A::::;diam(G) +1,
but that FLS(u) is no longer uniquely determined
(Figure 1). For either LS or FLS we speak of the
width of level k, w(Lk) = 141, and the width of the
structure, w(LS) or w(FLS) =max1 <k<Aw(Lk). A is
called the length of the structure. - -

Following GPS, we now define a numbering a.=a.(V)
of G(V,E) to be a one-one map of V onto the first n
natural numbers {l,2, ... , n}. For a given numbering

'" We dwell on this point to avoid confusion. The definition of
LS given here is more restrictive than the original definition
given in Reference 7, but is compatible with the SF/ST usage of
Reference 8. The GPS definition of LS Reference 9 is compatible
with Reference 7, and what GPS call the "level structure rooted
at u" is identical to our LS (u).

I
I

I

~

unique level structure LS(u)

u,
I

I
I

I

~
\ , \

\
\
\
\

•

u t

~
'\

I \
\
\

\

\ ..

four free level structures FLS(u)

U,
I

I
I

I

.. - - - -"!

\

\

I

I
I

.----~-----.

Figure 1

I
~

I
I

I

I
I

I
I

;:.-- --
I

a., we may define Oa (G), the bandwidth of the graph G
relative to the numbering a., to be

Oa=Oa(G) =max(II,YlEEIa.(u) -a.(v) I.

The bandwidth of G is then

o=8(G) =minlllla [8a (G) J.

GENERAL DESCRIPTION OF THE SA
ALGORITHM

Our goal is therefore, given G (V,E), to find a num
bering a.=a.(V) such that Oa=O(G). Our (heuristic)
algorithm approaches this problem in three distinct
phases:

I FindLS
U sing the SB method,8 a level structure LS
=LS(u) is found such that A=diam(G) +l.

II FindFLS
Using a subset M (IMI=min {ILAI, In/XI}) of
the vertices of level LA in LS (u), a new level
structure, denoted LS' = LS' (M), is grown.
LS' is also of length A. LS and LS' are syste
matically compared, and an FLS is determined
such that w=w(FLS) is small (if possible,
W= In/Xi).

III Number FLS
FLS is numbered on a level-by-Ievel basis; that
is, first, the integers {1,2, ... ,wd are assigned
to the vertices of the first level of FLS (Wk

denotes the width of the k tb level of FLS) ;

second, the integers {WI + 1, WI +2, ... , WI

+ W 2} are assigned to the vertices of the sec
ond level; and so on, until all vertices have
been numbered. The algorithm makes use of
knowledge of the edges joining vertices of
successive levels in an effort to minimize
bandwidth: it searches for a level-by-Ievel
numbering (I. such that the corresponding
bandwidth satisfies

i'l~::S:w+~,

where ~ successively takes the values 0,1, ... ,
w-l. The first numbering found which satis
fies this condition is the required numbering
(I..

The justification of algorithms such as this is partly
theoretical, partly experimental, and numerous varia
tions in strategy are possible. In practical terms, we
are trying to find a "reasonably good" numbering with
out needing to investigate all of the n! different possi
ble numberings; our strategy therefore'is always in
fluenced by estimates, often very rough in nature, of
the additional benefit to be expected from the additional
effort expended. We will find an example of this kind
of strategic thinking in Phase II of SA: we do not
carry out an exhaustive search to find the FLS of truly
minimum width, even though such a search might not
on the average be too laborious, simply because (1) it
seems that an exhaustive search would not be likely to
decrease w; (2) the result might be merely to decrease
w by 1, but not decrease ~a, and in addition make num
bering more lengthy and difficult. On the other hand,
in Phase I, we propose using the SB algorithm S instead
of the GPS pseudo-diameter algorithm,9 because the
former guarantees finding a longest spanning tree at
(apparently) no additional cost. On the theoretical
side, the basic justification for level-by-Ievel numbering
is the result of Arany-Sz6da 10 that corresponding to
every numbering (I. of G there exists at least one FLS
whose width w=8a , and which may be numbered on a
level-by-Ievel basis to yield the numbering (I.. Since the
case oa=8 is included in this result, it follows that level
by-level numbering of an FLS is an acceptable ap
proach to bandwidth reduction, in that it does not ex
clude any minimum case. The result however does not
point to any particular FLS-growing or FLS-number
ing algorithms.

PHASE I OF SA: FIND LS

As noted above, the SB diameter algorithm is pro
posed here, because it guarantees finding ,.\ = diam (G)
+ 1 and apparently is comparable to the GPS pseudo
diameter algorithm in execution time. The SB algo
rithm is described fully in Reference 8 and is not in
cluded here*.

* We do however provide a correction to the algorithm SPAN
(h,i) given in the Appendix of Reference 8. In step 7 replace

Algorithm for Reducing Bandwidth 989

diameter = 8, pseUdO-diameter = 6

Figure 2

GPS state in Reference 9 that their pseudo-diameter
algorithm found the true diameter in all test cases.
Figure 2 illustrates a graph of diameter 8 whose GPS
pseudo-diameter is 6. The GPS algorithm would re
quire the growth of 6 spanning trees to achieve this
result, the SB algorithm 3 spanning trees (starting
vertex CD). Removal of edges (4,8) and (5,9) from
Figure 2 and insertion of edge (4,5) would permit G PS
to find a pseudo-diameter 7 at a cost of growing 4
spanning trees. For a symmetrized version of the
Curtis matrix4 (Figure 3), SB finds diameter 7 at a
cost of 6 spanning trees (starting vertex CD) , and G PS
finds pseudo-diameter 7 from each of six starting
vertices of minimum degree at an average cost of 5.5
spanning trees. See Table I.

A more detailed analysis of the application of the
GPS pseudo-diameter algorithm to the Curtis matrix

TABLE I-Comparison of SB and GPS

number of
(pseudo-) diameter LS grown

example SB GPS SB GPS

Figure 2 8 6 3 6
Figure 2 (mod.) 8 7 3 4
Curtis matrix 7 7 6 5.5

the ending "." with "gotoll.". Step 8 should read "[Is the
vertex connected to jorig in level g+1?] If h=l and level (h,
elist(j» =g+1, goto10; otherwise got011.". Interchange steps
9 and 10.

990 National Computer Conference, 1976

FLS corresponding to Curtis matrix

Figure 3

shows that 48 or the 54 vertices would, used as starting
root vertices, yield maximum pseudo-diameter 7; of
these 48 vertices, the 9 extreme vertices yield A=8
immediately, 22 yield A=7 but contain an extreme ver
tex in Lr , and 15 yield A= 6 with an extreme vertex in
L6 (there are two other special cases). These statistics
appear to be related to the success of the GPS algo
rithm, and it would be interesting to know if for much
larger graphs also (n=500 to 5000) such a high per
centage of optimal starting root vertices occurs.

GPS initially searc.hes V for a vertex of lowest de
gree as starting root vertex, and from the correspond
ing LA selects additional root vertices in increasing
order of degree. SB includes no such searches.

PHASE II OF SA: FIND FLS

The algorithm described below is an attempt to deal
efficiently with difficult cases which may arise when G
is not "well" connected (Figure 4) ; that is, when a
number of vertices swing into different levels in the
level structure LS' grown from vertices of LA in LS (u) .
It seems that the growing of this "reverse" level struc
ture (step (1) of the following algorithm) will nor
mally accomplish what GPS accomplish in phase II
of their algorithm; the other steps in the algorithm
given below make use of the same information pro
posed by GPS~ but in a more flexible manner.

Given LS(u) of length A=diam(G) +1, phase II
proceeds as follows:

(1) [Grow "reverse" LS'.] For R= I niX 1,* choose a
set of vertices M<LA such that IMI =min [R,
w (LA)] and grow LS' (M) with levels Lk' of
width w'(k), k=1,2, ... , A (L/=M).

(2) [Calculate initial value of T.]
T~~l~k~A min [R-w'(k),O]; if T=O, goto (16).
[Two criteria are used to determine whether the
movement of a vertex of FLS(M) from one level
to another yields a "better" FLS: the value T
given here and the value T'=l[R-w'(k)]2. The
FLS is "better" if the vertex movement in
creases T (by unity) or decreases T'. T is also
an "absolute" criterion, since any FLS for which
T=O is accepted; T' is not calculated explicitly
because it is not "absolute", so that only AT' is
required (see step (12». Both T and T' may
be used since T; decreases iff T does not in
crease.]

(3) [Calculate level pairs.] As in Reference 9, asso
ciate with each vertex v f V a level pair (gnh"\"),
where gy is the level of v in LS' (M), where h,.=
A-kv+1, and ky is the level of v in LS(u).

(4) [Separate "movable" vertices into r connected
components.] As in Reference 9, separate all
vertices such that gv=hy into r disjoint connected
components CU C2, • • ., Cr of cardinality cu c2,

* SB propose rather I n/~ I.

Algorithm for Reducing Bandwidth 991

• •• , Cn respectively, arranged so that C1 ::;C2 ::;

· .. ::;cro
(5) If r=O, goto (16).
(6) [Organize storage for vertices in component Cr.]

Associate with each vertex XrjfCn j = 1,2, . . ., Cr,
an identifier [v (j) ,g (j) ,h (j)], where v (j) is a
pointer to the level pair of the vertex V=Xtj, and
[g (j),h (j)] is the level pair of Xrj (that is,
g(j) =gV(j), h(j) =hv(j); order the vertices so
that g (1) ~ g (2) ~. . . ~ g (cr) •

(7) [Initialize vertex movement parameters for Cr.]
j~l; AT~O, AT'~O; for each k=1,2, ... , A,
w(k)~w'(k).

[For each Cr, we need to provide temporary stor
age for the level widths w' (k) : this temporary
storage into w(k) is used to keep track of moves
made since the last acceptance of a vertex move
ment (last increase of T or decrease of T').]

(8) [Move vertex Xrj from level g (j) to g (j) -1.]
Perform MOVE-VERTEX(j,y) as follows:
(8.1) y~g(j)~g(j) -1;
(8.2) w(y)~w(y) +1, w(y+1)~w(y+1) -1;
(8.3) let j' successively take the values j + 1, . . .,

Cn 1, ... , j; for the first value j' such that
g (j') >h (j'), set j~j';

(8.4) if there is no such j', set j~O.
[Given j, MOVE-VERTEX (j,y) returns the new
level y of the moved vertex Xrj' together with the
next admissible value of j. The vertex move
ments take place in a "cascade" from higher-level
vertices to lower-level vertices, in accordance
with the observation that under these circum
stances a vertex Xrj may always be moved to the
preceding level, provided that g (j) >h (j) (ini
tially, of course, g (j) >h (j) for every j = 1,2,
· .. , cr). Note that not all possible configura
tions of Cr are necessarily covered by the move
ments included here.]

(9) [Calculate AT.] AT~AT+ (if w(y+1) >R-l, 1;
otherwise, 0) - (if w (y) > R, 1 ; otherwise 0) .
[The full expression for AT is

T= -min{R- [w(y) -l],O}+min{R-w(y),O}
-min{R- [w(y+1) +l],O}+min{R-w

(y+1),0}.]
(10) [For increased T, store present arrangement of

vertices into levels.] If AT= 1, T~T+ 1, AT~O,
and perform STORE~P ATTERN ; otherwise,
goto (12).
[STORE-PATTERN does the following: for j=
1,2, ... , Cn gy(j)~g (j); for k= 1,2, ... , A,
w'(k)~w(k); AT'~O. Note that AT' is reset
after every increase of T, but that acceptance
based on AT' does not reset AT (step (13».]

(11) IfT=O,goto (16).
(12) [Calculate AT'.] AT~AT'+ [w(y) -w(y+1)

-1].
(13) If AT'<O, perform STORE-PATTERN.

992 National Computer Conference, 1976

(14) [More vertex movements possible?] If j>O,
goto (8).

(15) [More components of "movable" vertices?] r~
r-l, goto (5).

(16) Exit.
[The FLS (M) which best satisfies the T and T'
criteria has now been determined. Each vertex v
of FLS (M) is placed into the level specified by
gn and the width of each level Lk ' is given by
w'(k) .]

Figure 4 illustrates the result of the application of
the algorithm to an LS with many movable vertices.
In this case only three vertices would need to be moved
before FLS became acceptable (T=O). In the example
of Figure 2, an FLS of width 5 would be accepted
(T= -3) after movement of two vertices. For the two
dimensional grid discussed in detail by G PS, phase II
yields an optimal FLS = LS (M) after step (1), and no
vertex movements are required. For the Curtis matrix,
on the other hand, consideration of the connected
components in decreasing order of size actually in
hibits bandwidth reduction: for starting vertex u = CD
and a corresponding LS (M) of width 11 (T = - 9) , the
algorithm requires 56 vertex movements to yield an

LS(u) LS' (M)

u Vs v6 v7 Vs

[s, /16 /51] I H I = min

= 4
FLS(H)

Figure 4

FLS of width 10 (T= -7). Although this result leads
to an optimum numbering (8= 10), much unnecessary
work is done. Clearly, in order to evaluate the effi
ciency and utility of phase II of the SA algorithm, con
siderable computational experience, especially with
large matrices, is desirable.

PHASE III OF SA: NUMBER FLS

We propose here a somewhat more sophisticated
numbering algorithm than has previously been em
ployed,5,7,9 but which retains the property of having
execution time approximately linear in n. Indeed, as
we shall see, the numbering algorithm has the interest
ing property of being rather more efficient in the more
difficult cases.

Suppose we are given an FLS (M) of length A and
width w', with levels Lk' of width w' (k), k= 1,2, ... , A.
Suppose further that corresponding to each Vf.V, we
may identify gn the level of v, and A (v), the set of
vertices adj acent to v; and that corresponding to each
level Lk' of FLS, we may identify the vertices Xkj f. Lk',
j = 1,2, ... , w' (k). Phase III assigns numbers to the
vertices on a level-by-Ievel basis, with the objective of
arriving at a numbering (J. of G which corresponds to a
suitably small bandwidth 8a • In the large, phase III
proceeds as follows:

(1) A.~O.
(2) Oa~w'+A..
(3) For each k= 1,2, ... , A, try to assign numbers

to the vertices Xkj £ Lk' in such a manner that the
number n (x) of each vertex x satisfies

In (x) -n (y) I ~Oa,

for every y f. Ax.

(4) If for some k, it turns out that the vertices cannot
be numbered to satisfy this condition, then
A.~A.+ 1, goto (2).

We observe that, in principle, this algorithm will
terminate sooner or later; indeed, as CM remark,5 for
oa=2w' -1, any level-by-Ievel numbering of FLS will
satisfy the condition given in step (3). We observe
further that, in practice, the algorithm will normally
terminate at some value Oa close to w'; in fact, in the
great majority of cases, for Oa=W'.*

We give now a more detailed description of step (3).
Since the same procedure is used for the numbering of
each level, we confine ourselves to describing the
numbering of the kth level Lk'. Certain basic values
need to be defined and calculated:

W'(k) = ~l~k'~kW'(k'), l~k~A;
=0, k=O.

A:tl (j) = {V/Xkjf.L'k!\ v£A (xkj) !\ vf.Lk:t/}, the set of
vertices of L'k+l (L'k-l) adjacent to the jth
vertex in L' k.

* However an unpublished example due to Arany-SzOda has the
following characteristics: n = 60, m = 112, W' = 9, a (G) = 14.

a:1 (j) = !A±l (j) [.

lown (j) = minxEA lWn (x), a-I (x) >0;
=W'(k-l), a-I (x) =0;

the lowest number assigned to any vertex in
Lk-t' which is adjacent to the jth vertex in
L k '.

The processing required for each level falls naturally
into two stages, which we call INITIALIZE Lk' and
NUMBER L k ':

INITIALIZE Lk'

(1) For each vertex Xkj~ j = 1,2, ... , w' (k), calculate
(1.1) xmin(j)~max[I+W'(k-l), W'(k) +a+1

(j) -Oa] , the least number assignable to Xkj
which is compatible with bandwidth Oa;

(1.2) xmax(j)~min[W'(k), oa+lown (j)], the
greatest number assignable to Xkj which is
compatible with Oa;

(1.3) xrange (j) ~xmax (j) - xmin (j) + 1; if
xrange(j) ~o, goto INCREMENT .6. (step
(4) in the general outline of phase III given
above) .

(2) nrangeclass (j) ~o, j = 1,2, . . ., w' (k) .
[The number of vertices to which a number
W'(k-l)+j', j'=1,2, ... , w'(k), may be as
signed will be determined; nrangeclass (j) will
then contain a pointer to the first of the numbers
W'(k-1) +j' which may be assigned.to exactly j
vertices.]

(3) For each number j'= 1,2, ... , w' (k) :
(3.1) calculate

nr (j'), the number of values of j for which
xmin (j) :::::j':::::xmax(j) ;

nlist (j',I) to nlist (j',nr (j'», a list con
taining the values of j for which xmin
(j) :::::j' :::::xmax (j) ;

(3.2) if nr (j') =0, goto INCREMENT.6.;
(3.3) np (j') ~nrangeclass (nr (j')) , nrangeclass

(nr (j')) ~j'.
[np (j') is a pointer to the next number in
nrangeclass (nr (j')) .]

NUMBER Lk'
(4) J~l, counter~O.
(5) If nrangeclass (J) =0, JH" + 1, goto (5).

[The numbers to be assigned are chosen in in
creasing order of nrangeclass.]

(6) j'~nrangeclass (J), nrangeclass (J)~np (j').
[j' is the number to be assigned.]

(7) [Determine j, the vertex to which j' is assigned.]
(7.1) h~l, j~nlist (j',h) ;
(7.2) h~h+ 1, jl~nlist(j',h) ; if L=O,

goto (7.6) ;
(7.3) if range (jI) <xrange(j), xrange(j)~

xrange(j) -1,j~jHgoto (7.2);
(7.4) xrange (j 1) ~xrange (j 1) -1 ; if xrange

(jl) =0, goto INCREMENT .6.;

Algorithm for Reducing Bandwidth 993

(7.5) goto (7.2) ;
(7.6) exit.

(8) [Assign j' to j.]
(8.1) n(xkj)~W'(k-1) +j';
(8.2) counter~counter+l; if counter=w' (k),

goto (11) ;
(8.3) xrange(j)~CC, nr (j')~O.

(9) [Delete j and j' from storage.] For every J'=
xmin (j), xmin (j) +, . . ., xmax (j) such that
nr(J') =0, do the following:
(9.1) rold~:nr (J'), nr (J')~nl' (J') -1;
(9.2) if rold= 1, goto INCREMENT .6.;

if rold=J, J~nr (J') ;
(9.3) pold~np (J'), np(J')~nrangeclass

(nr(J'», nrangeclass(r(J'))H"';
(9.4) if nrangeclass (roId) =J', nrangeclass (roId)

~pold, goto (9.7) ; otherwise,
j 2~nrangeclass (rold) ;

(9.5) if np (j2) =J', j2~np (j2)' goto (9.5) ;
(9.6) np(j2)~pold;
(9.7) exit.

(10) Goto (5).
(11) Exit.

Table II displays results obtained using the above
algorithm on a few examples; these results [0 (SA)]
are compared with optinum numbering [S.(FLS)]
and with results [o(GPS) . obtained by the GPS num
bering algorithm. S.(FL~ <was attained neither by SA
nor GPS, primarily bt ;use more than single-level
lookahead was required.

It appears that, in phase III as in the other phases,
SA produces results at least as satisfactory as those of
G PS. The execution time of phase III is bounded above
by a value proportional to ~w' (k) 2, and depends essen
tially on the size of the variables xrange (j) and nr (j') :
when these variables are small-that is, when the num
bering is more difficult-execution time will corre
spondingly be small. Storage required for phase III
is of the order of w' (w' +6).

CONCLUSIONS

We have described a bandwidth reduction algorithm
which appears to be competitive in effectiveness and
efficiency with presently known algorithm. Systematic
testing on large matrices encountered in practice is re-

TABLE II-Numbering FLS using SA

FLS a(SA) a(FLS) a(GPS)

Figure 2 6 5 6
Figure 3 11 10 11
FLS of width 10 determined
by applying phase II to
Curtis matrix
[L.' = {52,53,54}] 11 10 12
Figure 4 5 4 6

994 National Computer Conference, 1976

quired. Some of the more important questions remain
ing to be clarified, either by experiment or by analysis,
are as follows:

(1) The execution time of SB (phase I of SA) is pro
portional to 2Hm. What can be said about the
magnitude of H?

(2) In what (more efficient) way can vertex move
ments be evaluated during phase II, in order to
yield an optimum FLS?

(3) Given two FLS of G of widths WI and w2 >WU de
note by 01 and O2 the least bandwidths obtainable
by level-by-Ievel numbering of the first and second
FLS, respectively. Does it follow that 02~01?

REFERENCES

1. Willoughby, Ralph A., Sparse Matrix Algorithms and Their
Relation to Problem Classes and Computer Architecture,
IBM Research Publication RC 2833, March 1970, 38 pp.

2, Pooch, Udo W. and Al Nieder, "A Survey of Indexing
Techniques for Sparse Matrices," ACM Computing Surveys
5-2, June 1973, pp. 109-133.

3. Tewarson, R. P., "Computations with Sparse Matrices,"
SIAM Review, 12-4, October 1970, pp. 527-543.

4. Curtis, A. R. and J. K. Reid, "The Solution of Large Sparse
Unsymmetric Systems of Linear Equations," Proc. IFIP
Congress 71, 1972, pp. 1240-1245.

5. Cuthill, E. and J. McKee, "Reducing the Bandwidth of
Sparse Symmetric Matrices," Proc. 24th Nat. Conf. ACM,
1969, pp. 157-172.

6. Rose, D. J., Symmetric Elimination on Sparse Positive
Definite Systems and the Potewtial Flow Network Problem.
Ph.D. thesis, Harvard Univ., 1972.

7. Arany, Ilona, W. F. Smyth and Lajos Sz6da, "An Improved
Method for Reducing the Bandwidth of Sparse Symmetric
Matrices," Proc. IFIP Congress 71, 1972, pp. 1246-1250.

8. Smyth, W. F. and W. M. L. Benzi, "An Algorithm for Find
ing the Diameter of a Graph," Proc. IFIP Congress 74,
1975, pp. 500-503.

9. Gibbs, Norman E., William G. Poole and Paul K. StQck
meyer, An Algorithm for Reducing the Bandwidth and
Profile of a Sparse Matrix, Technical Report No.5, July
1974,25 pp.

10. Arany, Ilona and Lajos Sz6da, "Ritka Szimmetrikus
Matrixok Savszelesseg Redukci6ja, "Info'f"YfUici6 Elektronika
4, 1973, pp. 273-282.

Business opportunity analysis

JOHN P. DOLAN
Crown Zellerbach
San Francisco, California

and

by JAMES S. KETCHEL
University of Puget Sound
Tacoma, Washington

ABSTRACT

Opportunity analysis is proposed as a technological
forecasting method for assessing monetary profit to a
firm. The method can employ use of the Delphi com
mittee, the Bayesian algorithm, computer conferenc
ing, and impact analysis, with certain suggested modi
fications.

INTRODUCTION

Opportunity analysis involves the assessment, in terms
of its monetary potential for profit, of any single or
series of potential developments affecting the business.
The potential developments could be a set of exogenous
events, such as a reduction of taxes or the passage of
favorable legislation. On the other hand, it can look at
endogenous events such as a proposed cost reduction
program. Finally, it can be used to evaluate such
things as investment proposals which contain both
internal and external variables. This paper presents
the concepts underlying opportunity analysis and a
suggested procedure for conducting an opportunity
analysis.

UNDERLYING CONGEPTS

Opportunity analysis combines the Bayesian decision
process with the Delphi method, with modifications
discussed in this paper.

The Bayesian process l involves making a roster of
future possible events; assigning a subjective prob
ability to each event; making a list of alternative ac
tions; setting a payoff for each matrix action cell;
calculating the expected value for each action; and,
finally, choosing that alternative with the highest value.

The Delphi method, as originally designed2 and de
veloped at the RAND Corporation,3-j is a technique

995

for obtaining group OpInIOn. The method has three
features; opinions of group members are anonymous;
group members have the opportunity to change indi
vidual opinions through iteration and feedback; and,
group opinion emerges (and perhaps converges) as a
statistical summary of individual responses. The Delphi
method was designed to overcome the effect of indi
vidual decision maker bias that might be found in the
Bayesian decision process. In implementing the Delphi
method, the first step is to obtain a panel of experts to
whom a coordinator mails a questionnaire. Anonymity
of individual panel members' opinions is preserved as
the questionnaire is returned directly to the coordina
tor. In the second step, the coordinator summarizes
opinions and mails the summary to the panel for re
view. The process may be iterated as members review
the responses of others and the summary causing a
reconsideration of opinion. Finally, a group consensus
unfolds as a statistical summary of opinion.

RESEARCH AND REFINEMENTS

Within the past decade, applications of Delphi have
proliferated. To mention but a few, Delphi has been
used to forecast data processing technology,S com
munications technology,9 European political events/o
food and nutrition technology,ll automobile tire tech
nology,I2 international affairs/3 computer develop
ments and applications,H biomedical research and drug
therapy/5 and weaponry technology.16 Delphi has also
been used for policy making. Applications have been
in civil defense/7 and in teacher education. IS Con
comitant with the applications research have been re
finements to the Delphi method. Of particular interest
to us in developing opportunity analysis have been four
types of refinements:

(a) Use of the Bayesian process. It has been sug
gested19 that probabilities be assigned to events. This

996 National Computer Conference, 1976

refinement has been applied to assessing threats to
an organization,2° wherein it was felt that time periods
are not necessarily mutually exclusive and that a par
ticular event might occur in any of several time
periods, each with its own probability, within the fore
casting horizon.

(b) Use of the computer. The computer has been used
to produce the statistical summaries of the Delphi
iterations,2° and has been used as the medium for
transmitting questions to the panel and for receiving
responses.21 ,22

(c) Use of a preliminary panel. The question has been
raised23 as to the source of the questions posed to the
Delphi committee. One approach20 is to have an ex
ploratory conference of knowledgeable individuals who
produce a grocery list of issues for subsequent con
sideration by the Delphi panel.

(d) Consideration of dependent or interrelated events.
Referred to as cross correlations24 and cross-impact
analysis10,25-28 this refinement to the Delphi method
considers the likelihood of one particular event in the
forecast, given the occurrence of one or more other
forecasted events.

Opportunity analysis proposes to adopt these four
refinements.

THE OPPORTUNITY ANALYSIS PROCESS

In developing business plans, one of the most difficult
assessments is what projects or businesses a company
should engage in. Commonly this work is handled by a
new idea gathering unit of some type, or may be the
result of approaches from outside the organization. In
any case, a series of judgments must be made as to the
viability and profitability of suggested new products,
and this often is done for each project standing on
its own.

Not uncommonly, related projects occur at one or
more research locations remote from the corporate
headquarters, and so the researchers and corporate
staff personnel operate without benefit of each other's
insight. This is particularly costly to the problem of
project selection and new business development. An
alternative to the deterministic discounted cash flow
capital budgeting approaches is opportunity analysis.
This is a five part process which utilizes the principles
of the Delphi process and Bayesian algorithm as out
lined previously.

Step One. Idea input.-During this stage of the
process, there would be a general survey of the mem
bers of the corporation dealing with technology devel
opment. The survey can be conducted by mail or by
conferencing on a computer terminal. The important
element is that the technology be spelled out in terms
of what need it fulfills, i.e., savings in unit labor costs,
decreased raw materials cost, increased performance,

the estimated cost of commercializing the technology,
and the length of time it is expected to take to
achieve it.

At this phase of the investigation it is best not to
identify the donor in order to help overcome the "not
invented here" problem. It is also important that all
offerings are invited without imposing criteria so that
a free flow is inspired.

This approach is contrasted with the method em
ployed in20 where threats to the organization were
identified as a result of a series of face-to-face com
mittee meetings.

Step Two: Idea exchange.-From the array of in
puts is assembled a master list of the developments,
without the time or money figures shown. This list is
then fed back to the group, via mail or computer con
ferencing, for estimation of what ideas would be likely
to complement others, and what would be likely to
supplant others. For each overlap area, the degree of
overlap would be estimated. This degree of overlap is
used to establish cross-impacts from one idea to an
other. This is necessary so that later in the process we
can establish the total impact of an event across time,
rather than its simple, immediate effect.

Step Three: Critical factor analysis.-Each group
of ideas is tested for cross correlation and cross-impact.
We view cross correlation analysis being appropriate
for two simultaneous and related events. By contrast,
we view cross-impact analysis being used for the cir
cumstance of temporal priority when one event (or
more than one event) precedes and is a prerequisite
to another event. When either of the above conditions
is found, a private meeting is held between the co
ordinator and each panel member internal to the or
ganization to probe the key assumptions underlying the
ideas. In the case of the labor saving device, this might
be that wage rates will rise. For increased perfor
mance, the assumption may be that the result will be a
higher price for the finished product. The factors
which could change and impact these assumptions must
be probed. For the critical factor analysis to be effec
tive, the panel member should sort out in his/her mind
whether events are dependent or related.

Once this is done, a series of testable statements is
made by the coordinator which relate to the factors.
In the case of a labor saving device, En (See Table I)
this might read "Labor rates for this class of labor will
rise six percent per year" E 12 • As a statement measur
ing the overall effect, we would also need to evaluate
the event "Labor rate adjustment by union contract
reflecting six percent productivity increase" E 13 • For
the product with improved performance E2H we might
say "A product with this feature can be marketed at a
$5.00 premium to current competitive items" E 23.
A related event would be "Introduction of a competi
tor's product with this feature" E 22. These events
must be clear enough to allow an evaluation of their
probability of being true.

TABLE I

Uncon-
di tiona I Cross
Proba- Corre-
bility lation

Event Set 1: Labor Saving Device Ell E12
Event Set 2: Product Improvement E21 E22

Cross
Impact

Further, vve should point out that it is possible
for E 23 and E12 to be cross-impacted, given that the
union might ask for a wage increase due to larger
business revenues.

The analyst might want to plot the probabilities for
each sample space above, as illustrated in Figure 1,
to show an increasing probability O\Ter time.

Step Four: Likelihood assessment.-For each of the
statements made a suitable group of experts, most of
whom would be external to the firm, is selected capable
of weighing the probability of occurrence. For the
labor-saving device, this might be labor economists or
personnel specialists. For the product whose perfor
mance is enhanced, this could be a sales group or a
panel of consumers of the product. These should be
people knowledgeable in the area; seeking a single "ex
pert" is to be avoided. It will be necessary to employ
the Delphi procedure of resubmitting those events
which do not achieve a reasonable consensus on the
first pass.

Step Five: Opportunities Matrix.-The assessment
is made in terms of probability of occurrence within
selected time frames. For each time frame, the
Bayesian algorithm is applied by multiplying the prob
ability times the dollar value of the event. The details
for this procedure have been given in Reference 29.

The summary of the above steps produces a final
product grouping which shows the collected ideas, their
estimated costs and benefits, and a probability of the
reven ues from those benefits being achieved. This is
arrayed from top down, with the package of ideas
having the highest probabilistic revenue relative to
costs (from the Bayesian algorithm) on top and down
ward to those with lower and perhaps negative re
turns. With such a list in hand, it is much simpler for
management to probe for new product ideas, and to
discuss with those in research those areas with the
highest promised returns. It may also be possible to

cunmlative
probability

time

Figure 1

E ••
1.J

Business Opportunity Analysis 997

discuss, using the earlier estimates, the possible trade
off of additional expenditures on favorable projects in
order to reduce the time necessary to produce the
benefits.

The five steps could be represented as a flow chart:

OPPOR=I7Y ANALYSIS PROCESS

Qualitative Qua.···l'ti ta~i ve

one Idea I A I ~stimat,:" _ cos::! 1
,--Ga_th,-e_rin __ g_~I----' I ;,;xpeccea "ayans n
- ..
I~:~:l----B '---____ ~

'lhree - critical ?ac::arJ
Analysis ~ Statements

Four I I,:~,:,~~a~
I Ll...K.el.l.!lood

Assess:nent

Five

SUMMARY

We have outlined a procedure for assessing in mone
tary terms the likely value of an innovation or group
of innovations to a corporation. This is done usi!' rr the
principles of the Bayesian algorithm and the .L _ .~;

technique, as modified. The extension of the procedures
from those used in impact analysis20 has required
certain changes which are discussed.

ACKNOWLEDGMENT

The authors thank Dr. Mitchel F. Bloom, University
of Puget Sound, for his review and constructive cri
tique of the original draft of this paper.

REFERENCES

1. Bierman, Harold, Jr., Charles P. Bonini and Warren H.
Hausman, Quantitative Analysis for Business Decisions,
4th ed. Homewood, Illinois; Richard D. Irwin, Inc., 1973,
pp.68-77.

2. Helmer, Olaf and Norman Dalkey, "An Experimental Ap
plication of the Delphi Method to the Use of Experts,"
Management Science, Volume 9, Number 3, April, 1963.

3. Gordon, T. and O. HeLmer, Report on a. Long-Range Fore
casting Study, The RAND Corporation, P-2982, September
1964.

4. Brown, Bernice and Olaf Helmer, Improving the Reliability
of Estimates Obtained from a Consensus of Experts, Re
port P-2986, The RAND Corporation, September, 1964.

5. Dalkey, Norman C., The Delphi Metlwd: An Experimental
Study on Group Opinion, The RAND Corporation, RM-
5888-PR, June, 1969.

6. Dalkey, Norman C., B. Brown and S. Cochran, The Delphi
Method, IV: Effect of Percentile Feedback and Feed-in of
Relevant Facts, The RAND Corporation, RM-6118-PR,
March, 1970.

7. Dalkey, Norman C. and Daniel L. Rourke, Experimental

998 National Computer Conference, 1976

Assessm.ent of Delphi Procedures with Group Value Judg
m.ents, The RAND Corporation, R-612-ARPA, February,
1971.

8. Cetron, Marvin J., Technological Forecasting, New York,
Technology Forecasting Institute, 1969, pp. 145-160.

9. Sulc, 0., "A Methodological Approach to the Integration of
Technological and Social Forecasts," Technological Fore
casting, Volume 1, 1969, pp. 105-10S.

10. Enzer, Selwyn, "Delphi and Cross-Impact Techniques: An
Effective Combination for Systematic Futures Analysis,"
Proceedings of the International Future Research Confer
ence, Vol. 1, Kyoto, Japan, April, 1970.

11. Wooden, Robert P. and Bill R. Richeson, "Technological
Forecasting: The Delphi Technique," Food Technology,
Vol. 25, October, 1971, pp. 59-63.

12. Kovac, Frederick J., "Technology Forecasting-Tires,"
Chem.ical Technology, January, 1971, pp. lS-23.

13. Martino, Joseph P., "An Experiment with the Delphi Pro
cedure for Long-Range Forecasting," IEEE Transactions
on Engneering Management, Vol. EM-15, No.3, September,
1968, pp. 138-144.

14. Bjerrum, Chresten A., "Forecast of Computer Develop
ments and Applications 1968-2000," Futures, Vol. 1, No.4,
June 1969, pp. 331-338.

15. Bender, A. Douglas, Alvin E. Strack, George W. Ebright
and George von Haunalter, "Delphic Study Examines De
velopments in Medicine," Futures, Vol. I, No.4, June, 1969,
pp. 289-302.

16. Cetron, Marvin J. and D. N. Dick, "Producing the First
Navy Technological Forecast," Technological Forecasting,
Vol. 1, 1969, pp. 185-195.

17. Turoff, Murray, "The Design of a Policy Delphi," Tech
nological Forecasting and Social Change, Vol. 2, 1970,
pp. 149-171.

18. Cyphert, Frederick R. and Walter L. Gant, "The Delphi
Technique: A Tool for Collecting Opinions in Teacher Edu
cation," The Journal of Teacher Education, Vol. 21, No.3,
Fall, 1970, pp. 417-425.

19. Blackman, A. Wade, Jr., "The Use of Bayesian Techniques
in Delphi Forecasts," Technological Forecasting and Social
Change 2, 1971, pp. 261-26S.

20. Ketchel, James S. and John Dolan, "Impact Analysis," Pro
ceedings of the Associa;tion for Com.puting Machinery An
nal Conference, San Diego, California, November, 1974,
pp.318-325.

21. Turoff, Murray, "Delphi Conferencing: Computer-Based
Conferencing with Anonymity," Technological Forecasting
and Social Change, Volume 3, Number 2,1972, pp. 159.

22. Turoff, Murray, "Conferencing via Computer," Information
Networks Conference, 1972, pp. 194-197.

23. Martino, Joseph P., Technological Forecasting for Decision
m.aking, New York, American Elsevier Publishing Company,
Inc., 1972, p. 26.

24. Gordon, T. J., "New Approaches to Delphi," in Technologi
cal Forecasting for Industry and Governm.ent, edited by
James R. Bright, Englewood Cliffs, New Jersey, Prentice
Hall, Inc., 1968, pp. 134-143.

25. Gordon, T. J. and H. Hayward, "Initial Experiments with
the Cross Impact Matrix Method of Forecasting," Futures,
Vol. 1, No.2, December, 1968, pp. 100-116.

26. Turoif, Murray, "An Alternative Approach to Cross Impact
Analysis," Technological Forecasting and Social Change,
Vol. 3, 1972, pp. 309-339.

27. Wilson, Ian H., "Socio-Political Forecasting: A New Di
mension to Strategic Planning," Michigan Business Review,
July, 1974, pp. 15-25.

28. Bloom, Mitchel F., "Deterministic Trend Cross-Impact Fore
casting," Technological Forecasting and Social Change, Vol.
8, 1975, pp. 35-74.

29. Dolan, John and James S. Ketchel, "Stochastic Risk Analy
sis in Capital Budgeting," joint meeting of the Operations
Research Society of America and the Institute of Manage
ment Science, San Juan, Puerto Rico, October, 1974.

30. Linstone, Harold A. and Murray Turoff (editors), The Del
phi Method, Reading, Massachusetts, Addison-Wesley Pub
lishing Company, 1975, p. 3.

A ~~unique number" generator

by ARMEN NAHAPETIAN
A_rya-Mehr Uni1,er8ity of Technology
Tehran, Iran

ABSTRACT

In many computer s)Tstems and applications; the need
arises for the software to generate unique numbers or
names for the identification of dynamically generated
entities.

Such a generator is described here which produces
new numbers and reuses numbers released by the
system.

An analysis is carried out to determine the storage
requirements of the generator in relation to the num
ber of requests that can be accommodated.

INTRODUCTION

In computer applications, situations often arise where
the software dynamically generates entities that must
be named for future reference.

Examples of such cases are compilers that generate
names for temporary locations in assembly language,
graphic systems that generate names for created sub
pictures, operating systems that generate internal
names for jobs submitted or files created, etc.

The generation of unique names for such cases can,
of course, be accomplished by incrementing a counter
ea-ch time a new name is requested. The resulting in
teger can directly be used as a name or converted to an
appropriate base if an alphabetic or alphanumeric
name is needed.

For example, to generate five-character Fortran iden
tifiers, the number can be converted to a mixed radix
integer

the first digit representing a letter and the rest alpha
numeric characters.

The method just described has the following draw
back. Since in most applications the names generated
are used for a period of time and then released; even
tually the counter will be incremented to its limit, even
if the set of names currently in use has a much smaller
size than this limit.

With additional restrictions imposed on the names,
the limit of the counter might be reached even sooner.

999

If, for example, names were restricted to one letter
followed by one digit, this limit would be 260.

To somewhat overcome this inefficiency, the number
generator to be described can be used which not only
generates new names, but also tries to reuse as many
of the names released as possible.

THE GENERATOR

The generator works by simply storing the released
numbers (names) in a fixed-size stack. If a new num
ber is requested the stack is tried first and only in case
of an empty stack is the counter incremented to gen
erate a new number.

Since the size of the stack is finite, cases might arise
where a returned number cannot be pushed onto a full
stack. Thus, the reuse of such numbers is eliminated.
The results obtained in section three can be used for
choosing an appropriate stack size based on the counter
limit and the total number of requests anticipated.

The algorithms that follow represent the "request"
and "return" operations for the unique number n. The
initial value of the variable "pointer" should be zero
and "counter" must initially be set to the smallest in
teger that can be represented or is appropriate for a
name. "Stacksize" and "countlimit" represent "the
maximum capacity of the stack and the maximum count
of the counter, respectively. The array "stack" and
integers "pointer," "countlimit" and "stacksize" are
assumed to be declared globally.

procedure request (n) ;
integer n;
Begin

if pointer> 0 then begin n~stack (pointer) ; pointer
~pointer-l end
else if counter = count
limit then overflow

else begin
counter~counter + 1;
n~ounter

end request;

procedure return (n) ;
integer n;

end

1000 National Computer Conference, 1976

Begin
if pointer < stacksize then begin

pointer~pointer + I ;
stack (pointer)~n
end

end return;

THE STACK SIZE

To determine the minimum stack size for a specific
application, in addition to the number of names needed
and the counter capacity, statistical information on the
occurrence of the requests and returns must be pro
vided. Of course in any case the stack size need not be
larger than the number of distinct values the counter
can produce.

The results of the following analysis can be used in
cases where the occurrence of requests and returns
(transitions) can assume to be a Markov process,t
i.e., the probability of a transition being a request or
a return is independent of previous transitions. The
results can even be used in applications where a large
number of request lead into a steady state Markov
process, and a large number of returns terminate the
process. Since to determine the stack size in such a
case one need only consider the steady state (at the
beginning of the process the stack is almost empty, and
at the end, most numbers lost due to a full stack will
not be needed again for reuse).

Assuming a probability p for a request and q=l-p
for a return at each transition, the state diagram and
the transition probability matrix of the process are
shown in Figure 1.

The number representing each state is the number
of elements in the stack of size S and the state repre
sented by G is the state where each time entered (due

p

G

0

1

5-1

5

G

P

p

q

q 0

q

p q

p

••• ~q
q

5-1 5

... 0

0 0

... 0 0

p q

o p q

Figure 1

to a request) a new number must be generated by the
counter due to an empty stack.

Using Ti to represent the expected number of transi
tions needed to reach state G from state i, and assum
ing C to be the number of distinct values the counter
can produce, the expected number of transitions for
the generator to overflow can be shown as

Tover=To+CTG

i.e., the expected number of transitions for entering
state G, C + 1 times starting from state zero.

And the expected number of transitions before over
flow occurs, being one less than Tom is

T=To+CTG-1

To and T G can be obtained from the following set of
equations

to be

TG=p+q(l+T1)

To=p+q(1+T1)

Tl=p(l+To) +q(l+Tz)

T2 =p(1+T1) +p(1+T3)

TS-1=p (1 +TS-2) +q (l +Ts)
Ts=p(l+Ts-l) +q(I+Ts)

TG=To= (lip) (1+a+a2 + ... as) = (lip)
(as+1 -1) I (a-I)

where a=q/p, thus the expected number of transitions
before overflow occurs is

T= (C+I) (lIp) (as+1 -1)/(a-I)-1

And finally the expected number of requests that can
be accommodated with a stack size of S and counter
capacity of C,

R=pT= (C+ 1) (as+1 _1) I (a-I) -p

which for p=q=1/2 reduces to

R= (C+I) (S+l) -1/2

CONCLUSION

A number generator was introduced that issues a
unique number each time a request is made, trying to
save and reissue returned number by using a stack.

The generator can be used for generating alphanu
meric names by converting the generated numbers to
an appropriate base.

Assuming the request and return transitions to be a
Markov process, formulas were derived for the ex
pected number of requests that can be accommodated in
terms of the maximum capacities of the counter and
the stack.

REFERENCE

1. Parzen, Modern Probability Theory and its Applications,
Wiley, 1960.

An on-line test program for peripheral devices

by AKIRA TANEDA, HIKARU OKU and DAIJI NAMBA
Nippon Telegraph and Telephone Public Corporation
Yokosuka, Japan

ABSTRACT

An on-line test program is a program to detect troubles
in devices being used in service or to assure correctness
of their operation. Therefore, it is required that the
on-line test program is able to safely certify device
functions without any disturbance to the service. That
is, since the on-line test program interrupts usual
guards of an operating system, it may cause disturb
ances to the service, for example, by breaking contents
of media used in the service. Therefore, the require
ment to the on-line test program is not only to satisfy
test functions but also to remove each disturbance
cause which seems to affect the service. In addition, it
is necessary to test automatically to improve the
capability of the program and to avoid disturbances
resulting from misoperations.

This paper describes design objectives, service in
terruption countermeasures and automatic- test tech
niques for an on-line test program designed mainly to
test peripheral devices of DIPS (Dendenkosha Infor
mation Processing System), that is a standard data
communication system in NTTPC (Nippon Telegraph
and Telephone Public Corporation).

The fault detection ability of this program was con
firmed at a satisfactory level, according to experiments
involving artificial device troubles.

INTRODUCTION

Information processing devices carry out important
missions in every social activity as well as economic
activity. Therefore, it is very important to assure their
reliability. Especially, higher reliability is demanded
in data communication systems offering on-line
services.

It is natural that a system down condition or informa
tion destruction resulting from device troubles, would
cause serious damages, not only to a specific user but
also to every user. Therefore, generally, device trouble
detection, trouble influence prevention and trouble re
covery are taken into consideration by means of coun
termeasures involving redundant design in a device,
mUltiple installation of the same devices, fail soft con-

1001

trol and so on, in a system design stage of a data com
munication system.

On the other hand; after the sYRtem is operational,
periodic inspections and adj ustments of devices to
reduce the mean time between failures (MTBF) and
rapid repairs to shorten the mean time to repair
(MTTR) are required as maintenance operations.

In these maintenance operations, it is necessary to
certify device functions after inspections and adjust
ments, to gather failure information about troubled
devices, to locate failures and to certify device func
tions after repairs. Tools for these confirmations are
maintenance panels, test equipment, test programs and
fault locating programs. Each has individual charac
teristics and application fields, so they are not able to
be compared simply with each other. However, on
line test programs, whose handling is easy and which
do not require any special hardware for confirmation,
are the most suitable for certifying device functions
with the service in a short time without involving
manpower.

It is not only necessary to satisfy test functions, but
also to avoid disturbances to' the service, because on
line test programs access together with service to de
vices to be tested.

The authors developed an on-line test program in
DIPS (Dendenkosha Information Processing System)
that is a standard data communication system in
NTTPC (Nippon Telegraph and Telephone Public Cor
poration) .

This program mainly tests functions of peripheral
devices (file memories and low speed input output de
vices), under the configuration shown in Figure 1 for
example. The reason why peripheral devices are se
lected is that peripheral devices have mechanical parts,
so they cause trouble frequently and require many in
spections and adj ustments, as well as there being many
devices in a system. In an example of a data commu
nication system in NTT, maintenance tasks for periph
eral devices run into 70-80 percent of all mainte
nance tasks in a system.

The fault detection coverage of this program is about
80 percent of all circuits in the devices according to the
experiment by means of artificially induced troubles.

1002 National Computer Conference, 1976

CPU: Central processing unit

MEM: Main memory

DCH: Data channel

TYP: Console typewriter unit

LP: Line printer

IOC: Input output controller

100: Input output device

~ -----tested device

Figure I-Test system configuration (example)

Design objectives, service interruption and misop
eration prevention measures and evaluation of the pro
gram are covered in the following.

DESIGN OBJECTIVES

The following main design objectives are set for the
test program:

(1) Making detailed tests
(2) Preventing service interruptions
(3) Making operation easy

(1) Making detailed tests-Generally, devices must
handle many status transitions and many series of out
put patterns corresponding to many series of input
patterns. Testing a certain function perfectly is con
firmation of all status transitions and series of outputs
corresponding to all inputs. It is impossible technically
and economically to perform such tests for all func
tions of a device by program. Thus, the test program
is not essentially perfect. Therefore, an important
obj ective is how to increase the fault detection ability
of the test program within technical and economical
feasibilities by making detailed test items. To accom
plish this objective, it is necessary to inspect a status
transition and a series of outputs corresponding to at
least a series of inputs for all functions which can be
tested by the program.

(2) Preventing service interruptions-The test pro
gram interrupts usual guards for testing of an operat
ing system. For example, it accesses troubled devices
or uses inhibited commands to usual users. Therefore,
running of the test program may seriously disturb the
system service. It is necessary to try to find the cause
of disturbances resulting from running the test pro
gram and to take the most suitable measures to meet
any problems encountered.

(3) Making operation easy-There are many kinds
of peripheral devices in a system. Even if variations
of a kind of device are neglected by an operating sys
tem, the test program is aware of their varieties in
many cases. In addition, it is necessary to select the
most suitable program corresponding to status data
tables of the operating system for devices to determine
the test partition.

It is difficult for an operator to be aware of the varie
ties and to select the most suitable test program; in
addition, he may cause disturbances resulting from mis
operations. Therefore, test automation, such that a test
program corresponding to these test conditions being
automatically scheduled and executed, is required.

Ways to achieve these design objectives are men
tioned in the following.

WAYS TO SATISFY TEST FUNCTIONS

As mentioned previously, it is necessary to test all
device functions by using at least one series of inputs
corresponding to each function. It is impossible to per
form tests using all series of inputs.

Therefore, it is desired to test at least all functions
prescribed by the logic specification of the device, by
using one very severe data pattern for devices corre
sponding to each function. For example, when mechani
cal parts are tested, they shall be operated, insofar as
possible, within the boundaries of their performance.
When logical parts are tested, it is necessary that
tested circuits be covered in more detail by being tested
repeatedly with random data patterns.

SERVICE INTERRUPTION PREVENTION

Service interruption prevention is the most impor
tant problem in the design of an on-line test program.
Causes which are considered to disturb the service are
shown in Table I. Appropriate actions are required to
remove these causes.

Incorrect access to a troubled device

In accessing to a troubled device by the on-line test
program, there is a possibility of destroying the writ
ten information on the media of a correctly operating

TABLE I-Interruption Causes

~ __ I_T_E_M ____ -+ __________ -O-U-T_L--I_N_E __ -------~
,.,C=Ob= 0' oo.Cen" i. ~di. in CO, "mo. I
::::~9 ,,~ ."opo<o"=, _ 0' C~i" ,"~,"_d -l

I Test trace whl.ch may rema~n a:rt:.er 1:.~Sl. ,tJrogra..-n I

Incorrect access

to nomal devices

Ga.::cDage

~ __________ +-e_xe_c_ut_io_n_L_-s_s_to_p_pe_d_b_y_S_O~ __ r_ea_s_on_s_-______ ~

Conflict with the service about system resouces I

service which a test program is going to use_ I
L---__ --L-__________________ J
Conflict with the

device caused by incorrect action to it. This proba
bility is very small. However, once incorrect access
happens, the disturbance may cause widespread dele
terious results on the service. Some examples of coun
termeasures are:

(1) In case of channel (CH) or input output con
troller (laC) trouble, there is a possibility that input
output operation of a testing system might cause in
correct access to an input output device (laD), which
doesn't belong to the testing system, by means of the
incorrect behavior of CH, laC and to destroy the re
corded data in the media used in the service.

When the accessing route to the device consists of a
dual path, assigning one path for the test and the other
path for the service, it is possible to prevent trouble as
shown in Figure 2. In this case, laDs in the service
are reserved by using the device reserve command via
the path for the service.

Functions of this command are to tie a specific IOD
to a specific path. Namely, by tying the devices to the
path for the service, each device for the service is free
from incorrect access by the tested device.

~2) In the case of the band selector trouble in a mag
netIc drum memory, there is a possibility that another
band could be accessed instead of the allocated band
for the test and the recorded information on the cor
rect band might be destroyed.

Accordingly it is necessary that band address in-

TEST ACCESS PATH

RESERVING PATH

Figure 2-A concept of reservation from the normal access path

On-Line Test Program 1003

formation for the test must be fully checked before the
test is started by the command.

Garbage prevention

Garbage is defined as traces that may be left when
running a test program is completed or interrupted.
Two types of garbage are considered. One is the trace
left on the control table of the operating system, for
example, the discrimination flag to indinofo "(:l7hof-...,O,.

each device is on test or not. The other is th~V t;~;Ui~ft
on the hardware of each device for example, the re
peated status of the command. These traces must be
cl~ared after the test is finished, because, later on, they
wIll become causes of service disturbance. When a test
is stopped due to the system being down, these traces
are cleared at the time of restart of the operating sys
tem. However, when the test is stopped by operator
command and abort is caused, the traces must be
cleared by the test program itself. Moreover, in order
to double the guard against service disturbance, it must
have the function of clearing garbage by operator
command.

Preventing service conflict concerning resources

There are conflicts with the service concerning all the
system resources needed for the test.

To prevent the system from serious disturbance
caused by interruption of the service by this conflict,
the resources used in time sharing mode or space shar
ing mode, such as CPU or main memory, are to be
owned by both the test system and the service. Re
sources which are difficult to hold in common (such as
the device being tested) are owned exclusively by the
test system.

Holding resources in common or exclusively for the
test program results in lowering the processing power
of the system. In short, it increases the overhead.
Therefore, fundamental methods to deal with overhead
are to shorten the testing time and to decrease the
amount of resources needed for the test. They are as
follows.

(1) In regard to CPU overhead, most of the test
transaction is related to input-output operation, due to
the nature of the test program, and the effect on CPU
time is very small.

But, as some trouble might arise when the system is
busy furnishing the service, a restriction must be im
posed wherein a test program can't be used at such a
time. Moreover, setting the test program as a back
ground job for the service, the service should be done
primarily.

By these means, overhead to CPU time for service
can be made almost negligible.

(2) By avoiding the exclusive possession of devices
necessary for the test insofar as possible and holding

1004 National Computer Conference, 1976

them in common with service system, effective usage of
resources can be accomplished.

However, in case the resources must be possessed ex
clusively due to test necessity, in order to prevent occu
pation for resources for a long time by hardware er
rors or program bug, it is necessary to watch the time
while resources are used for the test. After a limited
time is over, the test should be stopped, and resources
must be returned to the service. Also the quantity of
main memory must be minimized.

(3) The time for testing each device is usually lim
ited to within 20 minutes. This is decided by consid
ering avoiding exclusive possession of system resources
for a long time and considering the necessary time for
maintaining each device.

Accordingly some tests which need a long time to run
(for example, the test for initializing the media) must
be omitted, except in the case when a special order by
the operator is being accomplished.

Considering the measures mentioned above, the time
for the test could be shortened and system resource
availability increased. After all, overhead to the ser
vice could be decreased.

OPERATION SIMPLIFICATION AND
MISOPERATION PREVENTION

If an operator instigates a test which may destroy
information on the active device by overwriting, for
example, it may cause an extremely adverse disturb
ance to the service where the program runs as it is.
Because a man sometimes commits careless mistakes, it
is necessary to run the program as automatically as
possible. When the operator intervenes, simple opera
tion and prevention against misoperation are essential.

Test automation

For test automation, the test program should start
automatically, through the detection of the trouble
device by the operating system without the interven
tion of an operator. However, as explained in the pre
vious section, it cannot be uniquely decided as to
whether the system should be tested during the most
busy time or not, and whether a long test should be
performed or not. Therefore, it was decided that the
program should start according to the start command
by an operator.

Items that should be decided by the operator's judg
ment for test program execution are the tested device
address number, execution of a test requiring long run
ning time and so on.

Necessary information to select optimal test pro
grams is classified according to the following attri
butes.

Attribute 1: noted on the peculiarity in running the
test (whether operator intervention is

T ABLE II-Block Select Pattern

~--+----------------

b l Block class is B Block class B is able to run

~~--------------- I
b2 Block class is C Block class C 1S able to run I

~-b-3-+--B-I-OC-k-cl-a-ss~~--D--- -I .woO< d .. " ,,-';:~-;--:-=1
~_b._4_-+-__ B~k class 1S_E__ '- -"'~~~'"'' " .. '" 00 ,= I

", .,"'" 0"'" " , 1 .,"'" 0'", , " .. ,. '0 = .J

i", '

Parameters designated by
Another block attribute I

an operator ----1

! Hardware inherent conditions
b I6 -b31' _

Hardware inherent conditions I

corresponding to designated

device. l
corresponding to the test 1tern

------- -------.- --_._-------------- ---'-------------'

Sane test items gathered due to their attributes are called Block.

necessary or not, whether the running
time is long or short, and so on).

Attribute 2: based on the restriction of the I/O
macro command (logical state of a
tested device and its access path,
whether the inhibition of the interrup
tion is necessary or not and so on).

Attribute 3: media for tests noted (whether the vol
ume for maintenance is necessary or
not).

Attribute 4: based on peculiar conditions of the de
vice (kinds of devices and so on).

A combination of these attributes decides the test
items running condition (test condition). This test
condition is prepared beforehand as a kind of data,
called the Original Block Selected Pattern (OBSP),
for every proper test item.

On the other hand, when the test running command
is input, the parameters of that command and the con
dition of the tested devices decide the condition of the
test item which can be executed. This is called the Ac
tual Block Select Pattern (ABSP). A part of OBSP
and ABSP is shown in Table II. The meaning of the
block class (A-F) in the table is shown in Table III.

TABLE III-Block Class

Test not required interruption mask
tion

Test required interrup
tion mask*

Test not occupying
a channel

Test occupying a channel **

Standard
-- ------1

I
I ---------'

Optior.al

'* Test which occupies cPt; during testing time

... * Test w~ich occupies c:tannel during testing time

The program selects the only block which has the
OBSP corresponding to ABSP.

According to such an automatic selecting function
of the test items, an operator can test safely without
being concerned with differences in the test programs,
the states of tested devices, the kinds of devices and so
on.

Protection against misoperation

Misoperation that causes extremely adverse effects
to the service, include incorrect appointment of the
tested device; incorrect mounting of the medium and
the wrong establishment of the pseudo-trouble, for
example.

For these misoperations, the following countermea
sures apply.

(1) For the wrong appointment of the tested de
vices, it is sufficient to limit the test to the active
device unless the area for test is prepared in that
media.

(2) For incorrect mounting of a data storage media,
a usual countermeasure is to use a specific medium for
test in order to protect the media for service. There
fore, when the medium for test is not mounted, the
program notifies the operator before it permits execu
tion of the test.

(3) The test by pseudo-trouble is required to test
the hard-core; such as the trouble detecting circuit and
the trouble diagnosing circuit.

Misoperation in such a test is extremely adverse to
the system and is not guarded by the program. There
fore, at least such a test should not be performed under
the operating system in service.

Even if it can't satisfy the necessary condition, it is
thought inevitable to cancel some test items in order to
avoid the disturbance. By following such procedures,
the safety of the test will be increased much more.

PROGRAM STRUCTURE

The structure of this test program is shown in Fig
ure 3.

The test control part, the part of controlling and
helping test execution, mainly carries out the function
shown in Table IV.

The test execution part covers whole necessary test
items.

EVALUATION

In previous sections, design objectives and imple
mentation are described.

Performance of the test program and its influence on
service by the test execution will be described in this
section.

Block No.1

Block No.2

Block No. r

On-Line Test Program 1005

Hardware

Test Execution Part

I I I
II I.

r:-'-IL-, ~-~I ~
I TYP I i CR

I !CCE i

! test i test ! I test !
L~dule r I module i ~~

DPM: Magnetic disc pack memory

MTM: Magnetic tape memory

LPE; Line printer

TYP: Typewriter Unit

CR: Card reader

CCE: CommWlication control equipment

Figure 3-0n-line test program structure

Perjormance

Incompleteness of testing functions is caused by
selecting only those test items which can be executed
automatically. In addition, tests using perfect data
patterns are not able to be implemented. In relation
to this problem, an example of results of experiments
using pseudo-troubles is described for a magnetic disc
pack memory (DPM) and a lineprinter (LP) in DIPS.

T ABLE IV-Summary of Test Control Part Function

No. FUNCTION OF TEST CONTROL PART

1 automatic running control

2 cOllUlland processing

3 task control
.--_.-

4 event processing

5 prevention disturbance

6 I setting up test conditions

resource management

8 macro processing

1006 National Computer Conference, 1976

(1) Experimental method and results-Pseudo
troubles are made to stick logic signals at '0' or '1' at
the terminals of connectors for logic circuits packages.
This makes single and solid trouble.

Several hundreds of troubles are set, selected at
random from logic diagrams of the devices. The test
program performs each test for the pseudo-troubles
and is checked to determine whether it detects pseudo
troubles or not.

Experimental results are shown in Table V.
(2) Consideration-Circuits that can't be activated

oy the program as shown in Table V are circuits related
to the maintenance panel and so on, whose troubles
can't be detected by any programs. Therefore, prob
lems are in parts where the pseudo-troubled circuits
were justified normal in Table V. These parts consist
of (A) parts that can't be tested automatically by the
program and (B) parts that can't be tested as a result
of incompleteness of data patterns.

Since (A) parts are mainly hard-core for the diag
nosis and their test requires setting pseudo-troubles,
the test automation can't be implemented.

These parts form about 10 percent of all circuits in
DPM and about three percent in LP.

On the other hand, about 17 percent of pseudo
troubled circuits in DPM and about four percent in LP
were justified as shown in Table V.

Therefore, it is considered that the remaining seven
percent in DPM and one percent in LP belong to (B).
As mentioned above, it is almost impossible technically
and economically for these parts to be perfectly cov
ered. Thus it is considered that this amount of defects
in fault detection is inevitable.

Defects in fault detection caused by (A) are mostly
related to hard-core prepared for fault locating pro
gram. Such a hard-core is not used by the operating
system or the service, so it is not essential to test them.

It was confirmed that the test program described in

TABLE V-Experiment Result Due to Pseudo-trouble

1 NUMBER or ·-L-----l;~·~NTAGE OF TPDUBLES PERCENTAGE OF TrouBLES

I
i D E V r C E PSEUDO-TROUBLE POINTS I PER:ENTAGE OF :NOT ABLE TO BE DE'i'ECT- JUSTIFIED NOMAL BY

1 \ TOOUBLE DETECTION I ED BY ANY PROGRAM THE TEST PRlXORAM

I D P M 3ll! 72'! ---. ~~:- I
~ II, 83\ 13\ i

this paper can satisfy more than 90 percent of trouble
detection ability.

Test influence on service

There are test items that have to occupy an access
path (channel, IOC) to accomplish a test, for example
the test to confirm whether a channel is busy. In the
case of occupation of one of the dual paths for a test,
if some troubles occur at the same time at the other
of the dual paths, service for some file users connected
to this path becomes impossible. When a single path is
connected to some on-line devices, the path occupying
test is not performed. In the case of occupation of one
of the dual paths for a test, probability P f for the other
path (CH,IOC) to encounter a trouble is given by

P f = 1- e-at/tm

tm=109/fcb.ioc feb.ioc; FITs
where t; test execution time of the path
a; path occupying rate tm; MTBF

a is about 20 percent, if t is one hour per day then P r
is about 0.002.

This means that trouble in the other path during the
test execution occurs once every five thousand days.
Therefore, it is clear that this probability P r is negli
gible.

CONCLUSION

Design objectives, methods to realize them and evalua
tion about the on line test program have been men
tioned.

It was shown that functions required for testing de
vices were satisfied by using at least one severe data
pattern.

Disturbances caused by devices were mentioned
along with countermeasures preventing disturbances
to the service, and those caused by men were discussed
along with countermeasures preventing misoperations.
So, it became clear that the test programs, produced by
ways mentioned in this paper are able to be utilized
effectively and had little adverse influence on service.
These test programs are expected to allow device main
tenance to become easier and the cost of maintenance
will become lower by its usage.

Structure of the ELF operating system *

by DAVID L. RETZ
Stanford Research Institute
..... ___ 1_ Tl~_l_ ~,...1':-4! __ .;
.l'~t:!lllU ..c a..I1\., Va.l~.LV.1..1.ua

and

BRUCE W. SCHAFER
University of California
Santa Barbara, California

ABSTRACT

This paper describes the ELF operating system struc
ture and discusses a number of considerations which
influenced its design. Several applications supported
by the system are presented in relation to that struc
ture. The software tools used for constructing and
maintaining the system are described, and several
implementation problems which were encountered are
presented.

INTRODUCTION

ELF is a multiprogrammed operating system which
provides a set of programming tools for a computer
network environment. The system is implemented for
the DEC PDP-II series computers and is being used
to support a number of research applications at vari
ous sites in the ARPA network. 1 ,2

ELF development was started in early 1973 at the
Speech Communications Research Laboratory in Santa
Barbara, California. An initial version of the system
provided multi-user terminal support capability for
network access. 3 In early 1974 that system was tested
at several network sites and a decision was made to
expand the system structure to provide a more general
operating system environment. An initial version of
the expanded system was operational at the beginning
of 1975, and is currently being used at 30 network
sites.

Development of the ELF** system was motivated by
the need for a flexible network/user interface. The re
quirements for such an interface included multi-user

* This work was supported by the Advanced Research Projects
Agency, through Contract No. N00014-73-C-0221 at the Speech
Communications Research Laboratory, Santa Barbara, Cali
fornia, and through Contract No. F30602-75-C-0320 at Stan
ford Research Institute.
** The name ELF is German for "eleven," and is somewhat ger
mane to the naming of IMPs in the ARPA network.

1007

terminal access to remote interactive systems, periph
eral support for transfer of locally-stored files, real
time data acquisition facilities, and a test-bed for re
'search problems related to computer networks. It was
required that these functions be implementable with a
variety of hardware and software configurations and
be maintainable using the communication facilities
provided by the network.

Design of the ELF system draws upon a number
of techniques used in other operating systems described
in the literature. For example, ELF enables sharing
of hardware resources (processor, memory, and I/O
devices) by providing a multiprogrammed virtual
memory environment; ELF implements a tree struc
ture of processes similar to that found in the TENEX,4
UNIX,5 and XDS 9406 systems.

The ELF system has been structured in a hierarchi
cal fashion in order to simplify its specification and
testing, and to provide flexibility of system configura
tion. Real-time constraints imposed on the system
force a compartmentalization of critical paths which
disable response to interrupts; limits are placed on the
maximum duration of these paths.

A robust inter-process communication facility is in
corporated in the system in order to facilitate com
munication with remote programs (processes) in the
network. Programs which utilize ARP A network
protocols7,s to access remote resources (e.g., files)
utilize this inter-process communication facility exten
sively.

A command language interpreter allows the system
to accept requests for service from user terminals, and
provides functions for controlling individual user pro
grams in the virtual memory environment provided by
the system. A library of these user programs provides
capabilities for terminal access to remote systems,
Input/Output of digitally-sampled data, transfer of
files, or the debugging of new system facilities.

This paper describes the ELF operating system
structure and discusses a number of considerations

1008 National Computer Conference, 1976

which influenced its design. Several applications sup
ported by the system are presented in relation to that
structure. The software tools used for constructing
and maintaining the system are described, and several
implementation problems which were encountered are
presented.

SYSTEM ORGANIZATION

At the center of the ELF system exists a set of
modules, collectively referred to as the Kernel, which
provides a set of primitive functions for outer-level
procedures, and performs tasks which allow the sys
tem's processor, memory, and I/O devices to be shared
among a set of processes. Kernel primitives perform
functions such as dynamic creation of processes, pro
cess synchronization, allocation of virtual storage,
scheduling of I/O requests, and sharing of an interval
timer.9

The selection of procedures which reside above the
Kernel varies somewhat and is determined by the range
of applications to be supported by a system. In ELF
systems which provide multi-user terminal support, a
set of procedures known as the EXEC provides a
mechanism for allocating system resources to users.
The notion of a "Job" is utilized at this level to provide
an encapsulation of the resources associated with a
given user: a tree structure of processes, a collection
of open files, allocated virtual storage, and so forth.
EXEC procedures utilize Kernel facilities to create
Jobs, interpret user commands, run user processes,
and maintain the system file structure. User processes
which are run under the EXEC provide a variety of
functions, including terminal access to remote inter
active systems on the network. An illustration of the
layered system structure is shown in Figure 1.

USER

EXEC

KERNEL

Figure l-An example of the layered ELF system structure

The Network Control Program (NCP) is another
module which may be selected. The NCP uses facilities
provided by the Kernel to support a communication
mechanism between local and remote processes in the
ARPA network. It consists of a set of procedures
which establish and control data flow on a set of con
nections using the ARPA network protocols [Ref].

THE ELF KERNEL

The ELF Kernel concerns itself with three primary
areas. The first of these, Processor Management, con
trols distribution of the processor among a number of
asynchronous processes and provides for process syn
chronization and mutual exclusion. The second major
portion of the Kernel is Storage Management, which
handles the allocation of physical and virtual storage
available to processes in the system. The third portion,
I/O management, controls the interaction between
processes and external devices, and additionally pro
vides a facility for inter-process communication.

Processor management techniques

The Kernel provides a set of system calls which
allow processes to be created, compete for processor
service according to priority, inter-communicate, or be
terminated. A process is characterized by a virtual
program counter, a set of general-purpose registers, a
stack, and a queue of elements which are called event
messages. Processes are created in the ready state,
and remain ready until they are blocked by calling
a system primitive for synchronization or mutual ex
clusion. A scheduling program in the Kernel main
tains a list of processes which are in the ready state
and transfers control to the highest priority ready
process.

Process synchronization

A process synchronization mechanism similar to the
message buffer scheme described by Brinch-Hansen
is implemented.10 Each process owns a queue of event
messages sent to it by other processes. A process can
block itself until a message is added to its event queue
by issuing a system primitive called WAIT, which
places the process in the "waiting" state if its event
'message queue is empty. If a process issues the WAIT
primitive and elements exist on its event message
queue, the process is left in the "ready" state, the event
message at the head of its queue is removed and is re
turned as a parameter.

Event messages are placed on a process' event queue
by another process which invokes the SIGNAL primi
tive, specifying a destination process name and event
message. When a process awakens, it receives the
24-bit message in addition to the name of the process

which signalled it. In general, the 24-bit message field
is interpreted by ELF system processes as an 8-bit
"event code" and a 16-bit "data" field. While this as
signment of bits is a convention for system processes,
higher-level (user) processes which choose to syn
chronize using SIGNAL and WAIT may use the 24-bit
event message field arbitrarily. A system primitive
exists to allow a process to wait for a specific event
code.

Examples of synchronization primitives are shown
below:

WAIT~(PNAME, EVENT, DATA)
SIGNAL (PNAME, EVENT, DATA)
WAIT-SPECIFIC <EVENT)~<PNAME, EVENT,

DATA)

Processor scheduling

Every process that is in the ready state resides in a
priority queue that corresponds to a priority level that
it was assigned when it was created. The ability of a
process to gain control of the processor is a function of
the priority queue in which it runs and its position in
that queue.

The position of a process within a given queue is
determined according to its behavior. A daemon pro
cess receives control at regular intervals (currently,
every 250 ms.). When it receives control it re-orders
the processes within each queue according to their
utilization of the processor during the preceding time
interval. A process' composite priority is a combina
tion of the priority queue in which it resides and its
position in that queue; the process in control of the
processor at any point in time is the process at the
head of the queue with the highest priority value. This
scheme effects a "round-robin" scheduling technique
for compute-bound processes while assigning a higher
composite priority to processes that are not compute
bound.

Protection mechanisms

Because processes rely on the validity of messages
received on their event queues, a protection scheme is
required to prevent processes from receiving messages
from other non-authorized processes. This mechanism
is implemented by means of a capability value which
is assigned to a process when the process is created,
and may change as the process makes calls to various
primitives in the operating system. The access rights
of a process executing at a given capability level are a
subset of the rights allowed a process with a lower
capability value.

A process may be assigned a "branch name" which
identifies the processes and all sub-processes in the tree
below it. (The assignment of branch-names to pro
cesses is utilized by the ELF EXEC in identifying a

Structure of the ELF Operating System 1009

process as a member of a particular Job.) Processes
which have the maximum capability value can SIG
N AL any process in the system; processes which are
running with lower capability values are limited to the
set of processes having identical branch-names.

Mutual exclusion techniques

Processes may request mutual exclusion by means of
binary semaphores. Kernel primitives allow dynamic
assignment of semaphore names, and provide Dijk
stra's P and V operations on those semaphoresY En
tries may continue to be added to a process' event
message queue while the process is waiting for exclu
sive access to a resource.

Process creation and termination

A process is created by issuing a CREATE-PRO
CESS system call, specifying a starting address, set of
registers, capability value, priority level, and an event
code to be used to SIGNAL the creating process when
the created process halts itself or encounters a system
error (e.g., invalid parameter specification to a Kernel
primitive). The system maintains a relationship be
tween each process and its creator, and keeps a list of
all processes created by a given process.

A process may be frozen by means of the FREEZE
PROCESS primitive. This causes the process to be
blocked and its creator to be signalled with an event
message containing the name of the process which was
frozen. At this point, the process' registers may be
examined or modified, the process may be "thawed,"
or the process may be terminated. Entries may con
tinue to be added to the event message queue while a
process is frozen.

A process may only be terminated by its creator.
When a process is terminated, all the processes it has
created are also terminated and any resources associ
ated with it (such as outstanding event messages) are
released.

Storage management techniques

The Storage Management portion of the Kernel pro
vides a mechanism for creation of a number of virtual
address spaces and controls their mapping into physi
cal memory. An address map defines the relation be
tween a user's virtual storage and physical storage ad
dresses. A specific address map becomes associated
with a process when the process is created. Any num
ber of address maps may be defined for processes
running in user mode; there is a single address map
defined in kernel mode, and this is utilized for system
(Kernel) primitives. The processor switches from
kernel mode to user mode when it gives control to a
process; it switches from user mode to kernel mode

1010 National Computer Conference, 1976

when a user process makes a system call or is in
terrupted.

Storage management data structw'es

There are two data structures used to maintain the
relationship between virtual and physical storage.
Each virtual address space is mapped as a set of 4096-
word pages. A Virtual Storage Map (VSM) is an
array which describes the state of each page in a
virtual address space. A given page may be undefined
(a "hole" in the address space), defined but non-resi
dent, or defined and resident. Each entry in the VSM
which describes a resident page contains a pointer to
the page in physical storage. A virtual page may also
be "read-only," in which case the hardware memory
mapping facilities are utilized to prevent modification
of shared or protected data. A Virtual Storage Map
exists for each virtual address space. Kernel primi
tives exist for the creation (allocation) of a new virtual
address space, and the creation of pages within an ad
dress space.

The Physical Storage Table (PST) indicates the
relationship between physical pages and the (virtual)
pages which occupy them. A mechanism for sharing
of virtual pages is provided by the system; in the case
of shared pages, the physical storage table points to
the head of a linked list of VSM entries. The data
structure used to implement this mechanism is shown
in Figure 2.

A Virtual Storage Map identifier is included in the
system state information for each process. This value
uniquely identifies the user address space in which a
process is running, and is a logical extension of the
process' program counter, as shown in Figure 3. Hard
ware storage mapping register values are derived

I

L Q' -- -~
/

PST

Figure 2-Storage management data structures

from the Virtual Storage Map when the scheduler
transfers control to a process.

Storage management primitives

A set of Storage Management primitives enables a
process to allocate a new virtual address space, to allo
cate pages within an address space, to cause pages to
be shared between address spaces, or to block transfer
data between address spaces. A new address space is
created using the primitive CREATE-VSM, which re
turns an 8-bit VSM identifier for the new address
space. The address space (and all physical storage
associated with it) is released when a process issues a
DELETE-VSM primitive or when the process which
created the address space is terminated.

Creation of a new address space does not allocate
any pages within it. A process may define (allocate)
new pages within an address space by issuing a DE
FINE-P AGE primitive, which allocates a new page in
virtual storage and defines the specified page. The
caller specifies the Read-Write/Read-Only status of the
page. The process may optionally cause the page to be
mapped into a page in another address space, causing
the pages to be shared between the address spaces. For
certain applications (such as system debugging) it is
necessary to map a user page into an arbitrary physical
page of memory. A privileged (Le., capability-re
stricted) primitive allows a process to perform this
function.

System primitives require the ability to access pa
rameters which are passed as arguments by a calling
process. A system call exists for transfer of a block
of data between two address spaces. A primitive may
request the identifier of the previous address space in
order to obtain or return parameters to its caller.

Hierarchical procedures

ELF allows the establishment of a hierarchical struc
ture of system primitives by means of a run-time bind
ing mechanism. This permits a modular extension of
system facilities, such as the addition of file system
functions, without requiring modification of the Kernel.
The mechanism enables a system initialization process
to specify a correspondence between a set of system
primitives and the procedures in a user address space
which implement them.

When a process makes a call to a system primitive

8 16

VSM ID PC

Figure 3-A process' virtual program counter

the system performs some task as an extension of that
process. Control may be transferred from the calling
process to a primitive in a different address space.
In this case the system reloads the hardware mapping
registers from the new virtual storage map and trans
fers control to the primitive in the new address space.
The identifier of the previous address space is saved on
the Kernel stack to allow restoration of mapping in
formation when the primitive returns.

A process which runs in a user address space may
utilize special instructions which "trap" through well
known address vectors on a stand-alone processor; the
instructions trap through the corresponding locations
in the active user space. A process which is being
debugged and reaches a breakpoint, for example, causes
control to be transferred to the address contained in
the break-point vector (Location 14) of the user ad
dress space. This has facilitated the adaption of sev
eral debugging packages which run on a stand-alone
PDP-II. It is also possible for a process to call a
Kernel primitive which requests a signal in the event
that a specified process reaches a break-point, and
causes the break-pointed process to be placed in the
frozen state. A process may thus be responsible for the
debugging of a number of processes in the system. The
application of this mechanism will be described later.

Input/output management

The Input/Output portion of the Kernel provides a
set of system primitives which enable processes to
schedule physical I/O requests to devices and to utilize
the system's hardware clock. The I/O system queues
requests to each device, performs a mapping from
virtual to physical storage, provides an inter-process
communication facility, and allows the system to be
tailored for a particular hardware configuration by
selection of a set of device driver modules.

Processes cause the initiation of physical I/O trans
fers by calling a system primitive which places their
request on a queue for a particular device. An I/O
process schedules I/O activity on each device, perfor~s
storage mapping functions, and causes physical I/O
requests to be initiated by calls to device driver pro
cedures.

Input/output primitives

Processes cause requests to be placed on a queue for
a particular device by issuing the system primitive
START-IO and specifying a device name, a buffer
address, a byte count, a function code, and an optional
device address. When the requested I/O operation
completes, the user process is signalled by the I/O
system with the requested event code. Function codes
are defined for performing Read, Write, or Device
Specific (e.g., rewind tape) operations. I/O primitives

Structure of the ELF Operating System 1011

exist for allocation of de,\rices and their optional assign
ment on a per-process basis. When a sending process
issues a write request, it is signalled when all of the
bytes it has requested to be written have been trans
ferred. When a process issues a read request, it may
specify a data transfer mode (in the I/O function
code) . A "record" mode read request signals the
process (and satisfies its request) when one or more
bytes have been read; the reader is informed of the
number of bytes actually transferred. A "stream"
mode read request signals the reader '~lhen the number
of bytes requested have been transferred.

INPUT/OUTPUT DEVICE CLASSES

There are three types of I/O devices supported by the
system. The first of these classes handles character
oriented devices, such as terminals or line printers,
which are used in an interrupt-driven fashion. In the
case of character-oriented devices, the system moves
the block of data being transferred between the Kernel
and the requester's address space. This is necessary
to allow interrupt routines to directly address the
buffer used for data transfer.

Two utility procedures are made available to device
drivers which support terminals. One of these pro
cedures manages a ring buffer to allow type-ahead in
the absence of an I/O request from user process. A
second utility procedure performs terminal-specific
output functions, such as output of padding (ASCII
NUL) or expansion of ASCII Horizontal TAB char
acters. Selection of these two options is made possible
by an I/O system primitive for setting device char
acteristics.

A second class of devices which are supported by the
system transfer data on a direct memory access basis
and require no processor intervention during the data
transfer. The virtt;tal storage structure of the system
forces the I/O system to perform a mapping of a user
process' I/O buffer into its location in physical storage
before calling the device driver which initiates the
transfer. (I/O devices which directly access memory
do not utilize the processor's memory mapping hard
ware.) Additionally, the system must determine
whether a buffer which is specified in an I/O request
crosses page boundaries, and take special action if the
associated physical pages are non-contiguous. When
this is the case, the I/O system carries out the opera
tion in a piecemeal fashion, initiating separate data
transfers for the portions of the buffer residing in each
individual page. User processes may avoid this in
efficiency by appropriate allocation of buffer space.

A third class of devices provides it mechanism for
inter-process communication in a fashion which ap
pears identical to data transfer to a physical I/O
device. A set of pseudo-devices, called "Inter-Process
Ports" (IPP's) may be used for data transfer between
processes. User processes may take advantage of this

1012 National Computer Conference, 1976

facility in order to allow flexible assignment of their
Input/Output streams; specifically, a process may
accept input from either a physically-connected ter
minal or a remote process on a network. The utilization
of Inter-Process Ports for network communication will
be described later.

An Inter-Process Port is effectively a mailbox12

which may be read or written by a pair of processes.
A separate read and write request queue is maintained
for each Inter-Process Port. Whenever the I/O system
receives a matching pair (read, write) of requests,
data is transferred from writer to reader. The writer
and reader processes are signalled if their respective
requests are satisfied. It is possible for the sender to
issue an "end-of-stream" indication, which uncondi
tionally satisfies the request of a receiver which is
reading in stream mode; the receiver is signalled as
usual with the number of bytes actually transferred.
Inter-Process Ports may be assigned to a specific pair
of processes.

Timer primitives

Timer primitives enable a process to set a number
of interval timers and to receive an event message
when a timer expires. Additionally, the process may
stop a running timer by setting its interval to 0 or may
get the current time remaining before a timer expires.

The Kernel maintains a 32-bit Time-of-Day, which
is kept in 40-microsecond ticks. Kernel primitives
allow user processes to get (or set) the Time-of-Day
value. Conversion routines exist outside of the Kernel
for obtaining the Time-of-Day as a character string.

THE ELF EXEC

The EXEC is utilized in ELF systems which require
a flexible user programming environment. The EXEC
interprets user commands and provides a framework
for user program support. The command language
provides functions such as user identification, display
of system status, and initiation of user processes.
Design of the ELF command language is patterned
after the executive language of the TENEX operating
system because of the user-oriented characteristics of
that language.4

The EXEC support structure provides a set of primi
tives which are called by user processes below it and
includes a terminal control mechanism for interrupting
those processes. EXEC primitives allow logical data
paths to be established for terminal control and for
access to a system file structure; they also perform a
number of utility functions, such as data conversion
(e.g., time-of-day to string).

The EXEC is implemented as a set of re-entrant
procedures which utilize Kernel primitives to support
an inverted tree structure of processes. A process

called the Logger issues I/O requests to a set of ter
minals or Inter-Process Ports and "listens" for the
arrival of an attention character (control-C). When
this occurs, the logger creates an EXEC process which
receives characters from the device and interprets
user commands. Additionally, it allocates and formats
a set of control tables which are used to maintain
resources allocated to the newly-created "Job." A Job
is identified by a branch-name which is assigned to the
EXEC process and becomes associated with all pro
cesses in the inverted tree under it. The Job effects a
policy for allocation of resources (storage, files, etc.)
to each user.

A system primitive exists to enable the logger process
to be signalled when a terminal port has been dynami
cally added to the system. This function allows the
system to respond to remote requests for connection
from the network and to support a number of virtual
terminals. Once a new logger port is established, the
logger process issues I/O requests in the same fashion
as it would for local terminals; in this case, however,
I/O takes place on a pair of Inter-Process Ports.

The EXEC maintains a directory of "sub-systems"
which may be dynamically expanded while the system
is running. A sub-system is a named collection of
procedures which have been loaded into a virtual ad
dress space. The EXEC allows the user to initiate a
subsystem by typing its name; the EXEC then creates
a user process and enables that process to communicate
with the controlling terminal by means of EXEC file
primitives.

A number of user sub-systems have been written to
perform a variety of functions. TELNET, for example,
provides the function of terminal access to remote
systems on the ARPA network. The TELNET pro
gram utilizes file primitives provided by the EXEC to
interpret user commands and to establish or terminate
connections to remote network Hosts. A cross-network
loader, called USERLOADER, allows programs to be
loaded into a user virtual address space from a remote
file system by means of the file transfer protocol8 used
in the ARPA network.

Generally, a user process is connected to a controlling
terminal until the process halts (by freezing itself) or
the user interrupts it by typing the EXEC attention
character (control-C). I/O to the controlling terminal
is re-directed to the EXEC process until the user allows
the interrupted sub-system to resume or runs another
sub-system. The active tree of user processes is ter
minated, whenever a user requests to run a sub
system, explicitly issues a "reset" command, or logs
out of the system.

Some user processes require the ability to suppress
the interrupt facility provided by the EXEC; the user
process may specify a "transparent mode" which
causes the EXEC to ignore interrupt characters and
places this responsibility on the sub-system. This is
needed, for example, in the TELNET sub-system,

which must be able to transmit the interrupt char
acter to a remote system on the network.

The association between a controlling terminal and
a Job may be dissolved by means of a user command
or as a result of an error received on a terminal port.
The state of the Job and its user processes is saved,
and a user may re-attach to it by an EXEC command.

Design of the ELF file system has been aimed at
providing a mechanism for terminal control over a
set of user processes and the support stream-oriented
Input/Output for a \rariety of device classes. .J..A:J.. table=
driven mechanism is used to implement stream Input/
Output for sequential and file-structured devices. The
file structure is compatible with the FILES-II struc
ture utilized by the DEC RSX-l1 operating systemsY

The file system provides a primitive for initializing a
file path; the file system returns ,'Ilith a J ob ... unique
identifier called a Job File Handle. This identifier may
then be used to efficiently call primitives which perform
file I/O. The file system supports I/O primitives which
read or write relative blocks within a random-access
file, and provide a device-independent mechanism for
reading or writing a stream of bytes. Stream-oriented
primitives exist for byte-input, byte output, string
input, and string-output.

NETWORK COMMUNICATION CONTROL

The Network Control Program (NCP) is an essen
tial component in the ELF system which makes pos
sible process-to-process communication in a network
environment. The NCP provides a mechanism for
establishing and breaking connections between ELF
processes and processes distributed on the ARPA net
work.

The NCP includes a set of processes which receive
messages from the network, interpret messages ac
cording to ARPA network standard protocols, format
outgoing messages, and control the flow of data on
connections by means of the Inter-Process Port facility
provided by the ELF Kernel.

A set of network control primitives enables processes
within ELF to request the establishment or termination
of network connections. When a process calls an NCP
primitive to open a connection, the primitive returns
the name of an Inter-Process Port which is to be used
for data transfer on the connection. When the connec
tion is opened, the process may cause data transfers by
calling the normal Kernel I/O primitives using the
Port-name which was returned. A process may request
that an Inter-Process Port supporting a connection be
specifically assigned to the NCP and user processes in
order to prevent malevolent processes in the system
from performing unauthorized data transfers on the
Port.

An important Kernel function which is used by the
NCP in the control of data flow on a network connec
tion is that of obtaining the number of bytes requested

Structure of the ELF Operating System 1013

to be read or "\vritten on an Inter-Process Port. This
function is necessary to enable the NCP to intelligently
determine the amount of data which may be accepted
from a remote process. ARPANET protocols utilize a
flow control mechanism whereby a sending process
must be informed of the buffering capability at the
destination.

In addition to control of communication using stan
dard ARPA network protocols, the NCP provides a
simple dispatch function for development of experi
mental protocols. Processes which utilize this function
must specify a field which uniquely identifies received
messages. Messages are delivered to the user processes
(via an Inter-Process Port) in the form in which they
arrive from the network.

SYSTEM APPLICATIONS

The ELF system is being used in a variety of applica
tions which require a set of operating system com
ponents for network communication. The ELF Kernel
provides a base for a variety of software configura
tions which are tailored according to system require
ments. The configuration of processes shown in Figure
4 is typical of ELF systems which provide terminal
access to remote systems on the ARPA network. The
Kernel, EXEC, and NCP modules support a number
of users who access the network by running the TEL
NET sub-system of the EXEC.

Additional processes may be added to the system for
peripheral support. For example, a simple process
which uses the ELF NCP to await a remote request
for connection may be included in the system. The
process accepts a connection, receives a stream of data,
and outputs it to a local line printer. A status indica
tion from the NCP signals that a remote process has
closed the connection, and the peripheral control
process then returns to the "listening" state.

This process provides a simple mechanism for shar
ing of a peripheral device (in this case, a line printer)
among a number of service sites in the network. A
daemon process at each service site checks periodically
for files to be listed. When they exist, it opens a con
nection and transmits each file. The ELF NCP queues
remote requests for connection while the peripheral
process is busy.

A more flexible mechanism for peripheral support is
provided by the ARPA network fiie transfer protocoi
server process which may be included in the system.
The file transfer server responds to remote requests
and utilizes facilities provided by the ELF EXEC (file
system) to carry out data transfer to a variety of
peripherals.

The support of real-time data acquisition functions
for speech research has been one of the goals in design
of the ELF Kernel. A user process runs as an EXEC
sub-system and performs functions of real-time data
sampling and file I/O for digitization of speech wave-

1014 National Computer Conference, 1976

LOGGER

EXEC

SYSTEM
INIT

Figure 4-Example process tree

NCP

EXEC

forms. The system may thus be used as a data acquisi
tion station while simultaneously providing a terminal
support function for access to remote systems. The
sampled signal may be transferred to the remote sys
tem by the file transfer protocol process.

The ELF Kernel provides a support base for develop
ment of experimental networks and protocols. The
packet radio network14 for example, utilizes the en
vironment provided by the Kernel to support a set of
user processes which perform network routing control
functions. Additionally, new protocols being tested in
the ARPA network utilize the inter-process communi
cation facility provided by the Kernel in the implemen
tation of new network control processes.

DEVELOPMENT AND MAINTENANCE TOOLS

Development and maintenance of the ELF system
has made extensive use of software tools provided
within the framework of the ARPA network. The
rENEX operating systems available on the network,

for example, have provided a number of services for
software development. ELF modules are edited, com
piled, and linked together using a set of online sub
systems in TENEX. When an ELF system is gener
ated it may be bootstrapped into a target PDP-II
system by transfer of the binary file through the net
work.

The ELF Kernel, EXEC, and NCP are written in
MACRO-II assembly language. The virtual memory
structure provided by the system allows user processes
to be written in higher-level languages. Compilers for
the BCPL and LI0II Languages are available under
TENEX and generate code for the PDP-I1. The files
produced by these compilers may be transferred to an
ELF file structure by means of the file transfer pro
tocol or may be loaded by the ELF USERLOADER
sub-system, which was described above.

A number of debugging tools have been developed.
A low-level (stand-alone) debugger, called FLEA, was
implemented to facilitate checkout of the virtual
memory system. FLEA provides the capability of
examining or breakpointing any location in physical
memory.

Several debuggers which run on a stand-alone PDP-
11 have been modified to run in an ELF user address
space. Modification was required to make use of ELF
I/O primitives for terminal control. Hardware I/O
device registers are not available to processes in a
user address space.

An additional debugging mechanism involves the
interpretation of debug commands received from the
network by a system debugging process. This approach
minimizes space requirement in a processor being
debugged while taking advantage of facilities available
on large systems to provide a comfortable user lan
guage and a symbolic representation of addresses and
instructions. A system debug process* which resides
in ELF utilizes the breakpoint signal facility provided
by the Kernel and is responsible for debugging of a
number of other processes.

ELF system software is distributed as a set of source
modules which are accessible in a directory at one of
the network TENEX service sites. Users may access
the source files by means of the network file transfer
protocol. Release-notes and bug-reports (user-feed
back) take place through the use of the network mes
sage system.

CONCLUSION

The foregoing discussion has presented a structural
view of the ELF system as a mechanism for user access
to remote resources. A number of design decisions
have been made in supporting a range of user applica
tions. At this point we critically examine several of

* Developed at Bolt, Beranek, and Newman, Inc., Cambridge,
MA.

these decisions and discuss their relation to the result
ing system structure.

The event message scheme which is utilized for
process synchronization has proven to be a flexible
mechanism which allows processes to wait for multiple
events. This capability is required for reliable com
munication in a network environment: error conditions
may arise and "time-outs" are sometimes needed in
order to resynchronize a connection sequence. The
synchronization mechanism used here is an alterna
tive to the creation of a process for each event; that
solution was considered too costly in terms of processor
overhead and system table space requirements. Rather,
the event message mechanism enables a single process
to be multiplexed for several events. Two drawbacks
were encountered with the ELF event mechanism,
however. First, it is required that any procedure which
performs an operation which-specifies an event corle
(e.g., initiation of an I/O request) must receive as a
parameter an event code which it may use. In the
absence of a statically-allocated set of event codes, an
arbitrary system procedure has no knowledge of the
set of event codes currently being used by a calling
process. A second drawback is the lack of a reliable
mechanism for bounding the number of event messages
which may be allocated by a signalling process. The
strategy of blocking a signalling process when the
system's supply of event messages has run out is sus
ceptible to deadlock. For example, the signalling
process may be executing an interrupt routine which
signals completion of an I/O operation. However, if
the process is itself the process being signalled and the
supply of event messages runs out the process will
deadlock. As a result of these problems, the current
system implementation simply returns an error con
dition to the signalling process, indicating the lack of
event message queue space in the system.

The Inter-Process Port mechanism which has been
implemented in the system has been valuable in imple
menting network protocol processes and has provided
an effective mechanism for performing local and net
work I/O in a transparent fashion. There are two
disadvantages to that mechanism. First, a Port
mechanism requires buffer space in each address space
which communicates using the port. Second, processing
time is consumed in the copying of data from the sender
to the receiver's buffer space. It is believed that these
disadvantages are outweighed, however, by the system
flexibility introduced by a general inter-process com
munication mechanism.

The memory management scheme used in ELF has
been designed to provide a simple mechanism for allo
cation of physical storage and to provide a means for
sharing of user pages. A problem with the current
storage allocation scheme is that of internal fragmen
tation which results when a number of small user
procedures reside in a virtual address space or when
a large number of user processes wish to share a small

Structure of the ELF Operating System 1015

amount of data. A modification of the storage manage
ment portion of the Kernel to provide for variable
sized segments is currently under consideration.

The choice of a hierarchical structure of system
functions has provided modularity and has facilitated
checkout of the system. Its drawback is an occasional
overhead introduced in the passing of parameters
between levels. Provision of standard memory man
agement functions which facilitate these tasks in hard
ware would alleviate this problem.

SUMMARY

This paper has presented a description of the ELF
Operating system which provides a set of user access
facilities for the ARPA computer network. We have
attempted to describe the system from a structural
point of view and point out operating system functions
which are necessary in a network environment.

ACKNOWLEDGMENTS

In addition to the work done by the authors, significant
contributions to the design and implementation of the
system were made by Mr. Jon Miller, who was respon
sible for the I/O and Storage Management portions of
the Kernel, and Mr. Jim McClurg, who participated in
implementation of the file system and maintained sys
tem documentation. Contributions were also made by
V. Strazisar and E. Mader at Bolt, Beranek, and N ew
man, Inc., and by Mr. P. Raveling of University of
Southern California Information Sciences Institute.

REFERENCES

1. Roberts, L. G., B. D. Wessler, "Computer Network Develop
ment to Achieve Resource Sharing," Proceedings of AFIPS
SJCC 1970, pp. 543-~49.

2. Heart, F. E., R. E. Kahn, S. M. Ornstein, W. R. Crowther,
D. C. Walden, "The Interface Message Processor for the
ARPA Computer Network," Proceedings of AFIPS SJCC
1970, pp. 551-567.

3. Retz, D. L., "ELF-A System for Network Access," Pro
ceedings of IEEE Intercon, New York City, April, 1975.

4. Bobrow, D. G., J. D. Burchfiel, D. L. Murphy, R. S. Tom
linson, "TENEX, a Paged Timesharing System for the
PDP-10," Communications of the ACM, Vol. 15, No.3,
March, 1972, pp. 135-143.

5. Richie, D. M., K. Thompson, "The UNIX Time-Sharing
System," Communications of the ACM, Vol. 17, No.7,
July, 1974, pp. 365-375.

6. Lampson, B., et aI., "A User Machine in a Time-Sharing
System," Proceedings IEEE 54, 12 December, 1966, pp.
1766-1774.

7. McKenzie, A. A., HOST JHOST Protocol for the ARPA
Network, National Technical Information Service,
AD757680.

8. Crocker, S. D., R. M. Metcalfe, J. B. Postel and J. F.
Heafnet, "Function-Oriented Protocols for the ARPA Com
puter Network," Proceedings of AFIPS SJCC 1972, Vol. 40,
pp. 271-279.

9. Retz, D., J. Miller, J. McClurg, B. Schafer, ELF System

1016 National Computer Conference, 1976

Programmer's Guide," Speech Communications Research
Laboratory, Santa Barbara, Calif., September, 1974.

10. Brinch-Hansen, P., Operating System Principles, Prentice
Hall, July, 1973.

11. Dijkstra, E. W., The Structure of the "THE"-Multipro
gramming System," Communications of the ACM, Vol. 11,
No.5, May, 1968, pp. 341-346.

12. Spier, M., E. Organick, "The MULTICS Interprocess Com-

munication Facility," Proceedings of the ACM Second Sym
posium on Operating System Principles, Princeton Uni
versity, October 20-22, 1969, pp. 83-91.

13. Digital Equipment Corporation, RSX-ll I/O Operations
Manual, Order No. DEC-11-0MFSA-B-D.

14. Burchfiel, J., R. Tomlinson, M. Beeler, "Functions and
Structure of a Packet Radio Station," Proceedings of
AFIPS NCC 1975, Vol. 44, pp. 245-251.

Elements of a planning and modeling system

by THOMAS H. NAYLOR
Duke University and Socia) Systems, Inc.
Chapel Hili, North Caroiina

ABSTRACT

Today there are nearly hvo thousand corporations in
North America and Europe either using, developing,
or experimenting with some form of corporate plan
ning model. With the emergence of this new and
rather substantial interest in the methodology of cor
porate planning modeling, there appears to be a defi
nite need for a conceptual framework which can be
used to design and implement computer based plan
ning and modeling systems.

In this paper we describe a collection of elements
which we believe to be of critical importance in de
signing a corporate planning model. Our objective is
to develop a set of criteria for not only designing a
planning and modeling system, but a set of criteria
which can also be used to facilitate the evaluation and
comparison of alternative planning and modeling
systems.

There are nearly 50 planning and modeling software
packages on the market today. These include systems
such as BUDPLAN, COMOS, and SIMPLAN. This
paper attempts to provide the reader with a convenient
check-list of possible features to consider in either
designing one's own system or selecting an appropriate
software package.

INTRODUCTION

A recent survey by Naylor and Schauland confirms
the fact that nearly 2,000 corporations in North
America and Europe are either using, developing, or
experimenting with some form of corporate planning
model. For the most part, these models are "what if"
simulation models capable of generating alternative
futures and scenarios depending on the policy assump
tions and external assumptions made by corporate
management. Our survey indicated that less than 4
percent of the models in a sample of 346 companies
were optimization models. The rest were simulation
models.

We believe there are eight basic elements which one

1017

must consider in designing a planning and modeling
system:

1. Planning System
2. Management Information System
3. Modeling System
4. Forecasting System
5. Econometric Modeling
6. User Orientation of the System
7. System Availability
8. Software System.

PLANNING SYSTEM

The point of departure for any corporate planning
model is the planning system itself. That is, the
design of the planning system for the organization
should be set in place before any consideration is given
to the modeling system.

As the most general case let us consider a large,
decentralized company consisting of multiple divisions,
groups, products, or strategic business units. For
simplicity, we shall refer to any such sub-system of an
integrated company as a business unit. Each business
unit is assumed to be autonomous and is responsible
for its own marketing and production activities. Al
though cash management and overall corporate finan
cial planning are centralized at the corporate level,
each business unit is responsible for its own income
statement.

At the beginning of the planning cycle, global goals
and objectives for the company are specified by top
management and interpreted to the business units by
the corporate planning department. These corporate
goals may take the form of specific target obj ectives
for the company as a whole or for individual business
units. Typical target variables may include return on
investment (ROl), market share, sales growth, and
cash flow, as well as environmental, social, and politi
cal objectives.

The corporate planning department designs the re
port formats to be employed by the business units in

1018 National Computer Conference, 1976

formulating their business plans. Standardized re
porting at the business unit level greatly facilitates
the consolidation of plans across all business units.
However, individual business units are permitted to
make their own assumptions concerning marketing
and production provided they are explicit about the
external assumptions and policy assumptions under
lying their business plans. Financial plans at the
business unit level follow logically from given assump
tions about revenues and costs.

Plans from the business units are transmitted to the
corporate planning department for consolidation, re
view, and evaluation. In the initial stages of the plan
ning process, the business plans will be returned to
the business units for modification and reformulation
in light of corporate goals. This iterative process will
be replicated until all of the business plans have been
approved and consolidated into the company's overall
corporate plan.

In the following section we shall describe how busi
ness planning'models can be integrated into the plan
ning process. The integration of planning models into
the planning process is perhaps the single most difficult
step in the entire process of corporate modeling. Rela
tively few companies have successfully integrated cor
porate planning modeling into the planning process.
Two notable exceptions are the Wells Fargo Bank and
the Central National Bank of Cleveland.

Business planning models

Figure 1 contains a flow chart of a consolidated cor
porate planning model which is driven by a series of
business planning models for the individual businesses

of the company. These models may either be used on a
stand alone basis at the business unit level or con
solidated and used by the corporate planning depart
ment, senior financial officers, or the chief executive
officer. Each business unit model consists of a front
end financial model driven by a marketing model and a
production model.

The objectives of the business unit models are to
generate alternative scenarios and business plans based
on varying assumptions about business unit policies
and assumptions about the external environment of the
businesses.

Financial planning models

Each business planning model produces as output
data a proforma income statement for the business
unit. In cases where the business unit is actually a
subsidiary of the parent company, then proforma bal
ance sheets and sources-and-uses of funds statements
may be produced as well. Basically, these business
financial models can be used to simulate the effects on
net profit of alternative business strategies for a given
business unit. The validity of the results generated by
a business unit financial model will be no better or
worse than the assumptions underlying the revenue
and production cost projections which feed the model.

Marketing planning models

Marketing planning models provide the revenue pro
jections which drive the business planning models.
Two alternatives are available-forecasting models
and econometric marketing models. Forecasting models

Division 1 Division 2 - - - - Division N

Marketing
Model

Production I
Model I

L-_______ -'--______ --j~ - - - - - --

Corporate
Financial Model

Figure 1-A Conceptual Framework for Corporate Models

Production
Model

are naive, mechanistic, time-series techniques which
attempt to forecast next month's sales in terms of last
month's sales, sales the month before that, and the
month before that. Forecasting models are void of
explanatory power and cannot be used to simulate the
effects of alternative marketing strategies or alterna
tive assumptions about the national economy on sales
or market share. Econometric models, on the other
hand, can be used to improve one's understanding of
the "market" and to simulate the effect on sales volume,
sales revenue, and market share of alternative pricing,
advertising, and competitive strategies as well as al
ternative assumptions about the national or regional
economy.

Production planning models

Given a sales forecast for a particular business unit,
how much will it cost to produce at a level which will
satisfy the demand forecast? That is the raison d' etre
for production planning models. A number of compa
nies including Monsanto and Inland Steel use a type of
activity analysis approach to production planning
modeling which generates the cost-of-goods sold as
sociated with a given demand forecast. A reasonable
extension of this approach is for the production model
to generate the minimum cost production plan associ
ated with a given level of demand for the products of
the business unit. This latter alternative represents a
logical interface between mathematical programming
and other optimization techniques and corporate simu
lation models.

Consolidated corporate planning models

As we have previously indicated, the individual busi
ness planning models may either be used as planning
tools for the separate business units, or consolidated
at the corporate level to form consolidated corporate
plans. The corporate planning department should have
the option to perform "what if" experiments with any
of the business unit models on either a stand alone
basis or as part of a totally integrated planning and
modeling system.

The output reports of a consolidated corporate
planning model typically include proforma income
statements, balance sheets, and sources-and-uses of
funds statements. Our survey indicated that of those
firms which have some type of corporate planning
model the following applications are the most preva
lent: (1) cash flow analysis, (2) financial forecasting,
(3) profit planning, (4) budgeting, (5) investment
analysis, and (6) merger-acquisition analysis.

In summary, a corporate planning and modeling
system should have the ability to integrate finance,
marketing, and production at the business unit level
and the ability to run the business unit models sepa
rately or as part of a consolidated corporate financial

Elements of a Planning and Modeling System 1019

planning model. "Vhether the company engages in
"top down" or "bottom up" planning is less important
than whether or not the planning modeling system can
be easily adapted to the planning system. Regardless of
the type of planning system, two features are critical
(1) the ease with which financial, marketing, and pro
duction models can be integrated and (2) the ease with
which financial consolidation can be achieved.

Given a planning system, the next important element
in the development of a corporate planning modeling
system is the management information system. We
shall define the term management information system
to include the following elements: (1) database, (2)
database management system, (3) security system,
(4) report generator, and (5) graphics.

Database

A decision to develop a corporate planning model is
tantamount to a serious commitment to the mainte
nance of comprehensive internal and external data
bases. Our database requirements become quite ex
plicit once we settle on the design for a corporate
planning model.

-lnternal data

To develop an annual financial planning model we
need at least three or four years of historical financial
data. We require even more data if the model is a
monthly or quarterly model. Econometric marketing
models should have 25 to 30 observations of historical
data. While most firms have little or no difficulty meet
ing the data requirements for financial models, data
problems are much more severe in the case of market
ing and production models.

External data

Most econometric marketing models attempt to link
sales volumes and sales revenues to the national or
regional economy in which a particular product is sold.
A number of service bureaus offer national historical
macroeconomic data and econometric forecasts to their
clients. These services tend to be quite expensive and
the econometric forecasts offered by the bureaus have
not been noted for their accuracy in recent years.

An inexpensive alternative to the use of an econo
metric forecasting service is to subscribe to the histori
cal database of the National Bureau of Economic Re
search (NBER). The fee for the NBER database is
quite nominal and includes over 2,200 economic time
series. In other words, use the NBER data base to
specify, estimate, and validate your econometric

1020 National Computer Conference, 1976

models. Then either make your own assumptions about
the economy of the United States or subscribe only to
the quarterly forecasts of one of the aforementioned
econometric service bureaus. It is possible to purchase
the forecasts for considerably less than a "full service"
contract from one of these bureaus. The NBER data
base is available through most timesharing bureaus
and can also be installed on the user's in-house com
puter.

Database management system

Not only should a planning and modeling system
have databases, but it should also have a flexible, easy
to-use database management system for reading data
into the system, storing it, and making it readily
available for modeling and report generator. At last
three different approaches to database management
have emerged among the numerous planning and
modeling software systems which are currently avail
able-(1) matrix, (2) row-column, and (3) record
file.

Matrix

PSG II, a FORTRAN based planning system as well
as several APL based planning and modeling systems
use matrices to read data into the system. Both data
base management and modeling functions are carried
out using matrix manipulations. If the user is a sci
entific programmer, matrix manipulations should cause
no problems. However, many corporate planners and
financial analysts are neither mathematicians nor sci
entific programmers and may find matrix manipula
tions difficult, if not impossible to use.

Row-column

Other planning and modeling systems such as
FORESIGHT make use of row numbers and column
numbers to create databases, formulate models, and
generate reports. While the row-column number ap
proach may have some appeal to accountants who are
accustomed to working with financial spread sheets,
the user must keep track of the row and column num
bers. Furthermore, econometric and production data
do not necessarily lend themselves to this restricted
notation.

Record-file

Other planning and modeling systems like SIM
PLAN make use of records as the basic unit of data.
A record is a time series variable such as SALES,
COST, or PROFIT. A record has a name, an abbrevia
tion, a value, units, and a security level which deter
mines who has access to which SIMPLAN records. A

file is a collection of SIMPLAN records. Each business
unit may have one or more SIMPLAN files. For ex
ample, for a given business one file may contain actual
historical data. Another file may contain budgeted,
projected, or simulated series. Variance reports and
validation runs are particularly easy to implement
with the multiple file concept.

Security system

There should also be some means of controlling who
has access to which files, records, models, and reports
within the planning and modeling system. Division
managers should be able to access their own databases,
models, and reports, but not those of other divisions
or the entire corporation. Corporate management
should, on the other hand, be able to access the cor
porate database as well as all division databases,
models, and reports. A built-in security system makes
all of this possible.

Report generator

The front-end of any planning system is a set of
financial reports. Therefore, it follows that a report
generator should be an integral part of any planning
and modeling system. Basically, management should
be able to have any type of report format it desires.
That is, the report generator should not impose any
restrictions on the type of report which is produced by
the system.

The report generator should be flexible and easy-to
use. Some report generators are so easy-to-use that
typists with no previous programming experience can
be taught to produce financial reports with little or
no effort.

Of the 50 planning and modeling software packages
available today, over two-thirds of them are primarily
report generators. That is, they can produce financial
reports and do financial consolidations, but have very
limited database management, modeling, and econo
metric features. PROPHIT II, FAL, FORESIGHT,
and INFOT AB are examples of financial report gen
erators. Although financial report generation and
financial consolidations are important elements in a
planning' and modeling system, there are other im
portant elements to consider. Unfortunately, a number
of users of systems which are primarily report genera
tors have found themselves locked into expensive .out
side timesharing charges only to realize, when it is too
late, that they need additional database management,
modeling, econometric, and forecasting features which
are not available in their financial report generator.
Although simple financial modeling and report genera
tion are ideal starting points for those who are just
beginning to develop a planning and modeling system,
beware of dead-end systems which can only do report

generation and are not available for installation on
your in-house computer.

In summary, in selecting a report generator, make
sure that the planning and modeling system of which
it is a part has the flexibility and features which you
will need in the future as well as the present.

Graphics

An increasing number of planning and modeling
software packages now offer graphics as an alternative
way of displaying output data and corporate plans.
The graphical display of sales, cost, and profit trends
can be an effective way to present planning data to
top management.

MODELING SYSTEM

Given the discrete nature of business planning data,
virtually all corporate planning models take the form
of finite difference equations. In this section we shall
describe five modeling features which the user may
want to include in a planning modeling system: (1)
recursive models, (2) simultaneous models, (3) logical
models, (4) risk analysis, and (5) optimization.

Recursive modeling

Most of the financial planning models which have
been developed to date are recursive or causally or
dered models. That is by placing the equations of the
model in the proper order it is possible to solve each
equation one at a time by substituting the solution
values of previous equations into the right-hand side
of each equation. Recursive models have the computa
tional advantage that you do not have to resort to
matrix inversion or some other simultaneous equation
technique to solve the system of equations. Below is an
example of a recursive financial model.

1 SALES
2 REVENUE
3 CGS

=A-B*PRICE
=PRICE * SALES
= .60 * REVENUE
=REVENUE-CGS
=.50 * PBT
=PBT-TAX

4 PBT
5 TAX
6 NPR

In this example, the selling PRICE is given. A and B
are parameters and

SALES
REVENUE
CGS
PBT
TAX
NPR

= Sales volume (units)
= Sales revenue
= Cost of goods sold
= Profit before taxes
= Taxes
=Net profit

But in many financial models it is impossible to ex
press the logic of the model as a series of recursive,

Elements of a Planning and Modeling System 1021

causally ordered equations. It is for this reason that a
corporate modeling system should include the capabil
ity to solve simultaneous equation models as well as
recursive models.

Simultaneous models

Consider the following five-equation financial model.

lINT =.12 * Debt
2 PROFIT = REVENUE - CGS - INT - TAX
3 DEBT =DEBT(-1) +NDEBT
4 CASH =CASH(-1) +PROFIT+NDEBT
5 NDEBT =MBAL-CASH

Profit (PROFIT) in Equation 2 is defined as sales
revenue (REVENUE) less cost of goods sold (CGS) 7

interest (INT) , and taxes (TAX). But INT depends
on total indebtedness (DEBT) in Equation 1. From
the balance sheet total debt in Equation 3 for this
period is equal to last period's debt DEBT (-1) plus
new debt (NDEBT). New debt is defined in Equa
tion 5 as the difference between the cash balance
(CASH) and the firm's minimum required cash bal
ance (MBAL). CASH in Equation 4 is the sum of last
period's CASH, PROFIT, and NDEBT.

Although this model is quite simple it is, neverthe
less, a simultaneous equation model. It is impossible
to solve the model recursively merely by placing the
equations in the correct order. Solution of this model
requires the use of a technique capable of solving
simultaneous equations. This model may either be
solved through matrix inversion techniques or some
other generalized technique such as the Gauss-Seidel
method which is suitable for both linear and nonlinear
simultaneous equation models.

As you can see from our example model, it is indeed
quite likely that we will encounter simultaneity even in
quite simple financial models. Very few of the financial
modeling software pakages have the ability to solve
simultaneous systems of equations. CUFFS, SIM
PLAN, and XSIM are exceptions to this rule. SIM
PLAN and XSIM can handle linear and nonlinear
simultaneous equation models. CUFFS can solve linear
models.

Simultaneous equation problems can also arise in
econometric marketing models where two or more
products are either complements or substitutes.

Many banks have developed a special type of finan
cial planning model known as an asset-liability model.
Most of these models have been formulated as recur
sive models. Yet logically this is totally absurd, for the
very nature of a bank's assets and liabilities is a
simultaneous jointly determined structure. For ex
ample, demand deposits and time deposits are substi
tutes and both are likely to be correlated with various
loan demand equations. Loan demand depends on in
terest rates and interest rates depend on the supply
and demand for loans. Consumer loans and mortgage

1022 National Computer Conference, 1976

loans may be substitutes for one another. To attempt
to model the asset-liability structure of a bank with
a recursive model makes little or no sense. It is not
surprising to find that a number of banks have en
countered serious difficulties in attempting to validate
recursive, bank planning models. The financial struc
ture of a bank is simply not recursive.

Logical models

The ability to check whether or not cash balances or
inventory levels have dropped below some predeter
mined minimum level is another important element of
a planning modeling system. Logical commands such
as an IF statement or a GO TO command are desirable
features for a planning modeling system.

Risk analysis

A strong case can be made for treating some of the
external variables in a corporate planning model as
random or probabilistic variables with given hypo
thetical or empirical probability distributions. This
type of analysis is known as risk analysis. Risk analy
sis is useful in testing the sensitivity of the planning
model to random shocks and perturbations, construct
ing confidence intervals, and testing hypotheses. But
our survey of 346 corporations indicates that of those
firms which have some form of corporate planning
model, only 6 percent make use of risk analysis.

There are two major reasons why risk analysis has
been used so seldom with planning models. First, use
of risk analysis with corporate planning models is
prohibitively expensive. Plan on multiplying your
computer bill for the deterministic version of your
model by a factor of 100 if you use risk analysis.
Second, risk analysis is difficult to explain and inter
pret to management.

Some analysts use a type of pseudo-risk analysis in
which they experiment with "optimistic," "pessi
mistic," "most likely" values of external variables
rather than treating them as random variables.

Optimization

As we have previously indicated, only 4 percent of
the users of corporate planning models identified in
our survey were found to be using their models as
optimization models. Those firms which do not use
optimization techniques in conjunction with corporate
planning models tend to use them for production
planning rather than as global optimization models
for an entire business or the corporation as a whole.

Although optimization models are widely used in
certain process industries such as oil refineries, rarely
are these production scheduling models integrated into

a corporate planning model. Virtually every major oil
refinery in the world uses mathematical programming
to schedule its operations. At this point in time we
are not aware of a single oil company which has a
linear programming model linked to a corporate
planning model.

The difficulty with using optimization techniques to
develop optimal plans for a corporation as a whole is a
problem of problem definition. Although top manage
ment is indeed interested in profits, ROI, discounted
cash flow or some equivalent measure of performance,
these are by no means the only measures of effective
ness which management uses to evaluate corporate
plans. Output of corporate planning models is a vector
not a single variable. If the company wants to survive,
management must necessarily monitor a whole host of
output variables-profit, ROI, market share, sales
growth, cash flow, as well as all of the line items of the
income statement and balance sheet.

Faced with a multiple output planning problem,
optimization techniques which optimize with respect to
a single output variable are of limited use to corporate
planners. The use of goal programming and utility
theory have been suggested as means of quantifying
trade-offs among conflicting corporate objectives. The
track records of these two techniques as corporate
planning tools are not impressive.

Although the energy crisis, shortages of a variety of
production inputs, and inflation may cause more firms
to utilize optimization techniques for production plan
ning modeling, we do not foresee significant usage of
these techniques as global optimization techniques for
overall corporate planning. However, we do expect
them to be used more often as production planning
tools at the business unit level and integrated into
business financial models.

Very few of the existing planning and modeling
languages have mathematical programming routines
incorporated into their structures. COMOS, the plan
ning and modeling system developed by CIBA-GEIGY,
does have this feature. Some planning and modeling
systems have the ability to interface and exchange
files with mathematical programming packages.

FORECASTING SYSTEM

The ability to generate short term forecasts not only
for market planning models but for any external varia
ble which appears to have a reasonably stable relation
ship with respect to time is another important element
to be considered for inclusion in a planning modeling
system. A variety of short term, "naive," forecasting
tools are available ranging from simple time trends
to the Box-Jenkins technique in terms of degree of
complexity. Although short-term forecasting models
have a definite role to play in corporate modeling,
they have little or no explanatory power and cannot be
used for "what if" analysis.

Time trends

Probably the most straightforward forecasting
models are simple linear, quadratic, exponential, or
logarithmic time trends which express sales volume,
for example, as a function of time only. The param
eters are estimated by ordinary least squares tech
niques.

Exponential smoothing

Exponential smoothing techniques consist of a set of
weighting schemes which assign greater weight to
more recent historical observations than those from the
more distant past. Again the rationale is the same.
To forecast the future all one needR to know is the cor
rect relationship between past sales and future sales.
The problem of exponential smoothing is one of select
ing the approximate weighting scheme.

Adaptive forecasting

Adaptive forecasting models are a collection of tech
niques which have the ability to "self correct" if the
forecast is not tracking the actual behavior of the sys
tem. Adaptive forecasting techniques are much easier
to use than Box-Jenkins techniques and have been
known to perform equally well.

Box-Jenkins

Box-J enkins techniques are the most powerful, most
sophisticated, and most difficult to use forecasting tech
niques available. They are not techniques for amateurs.
In fact, the user will probably need a mathematical
statistician to hold his hand while using these complex
procedures. Through a set of "transfer functions" it
is possible to link Box-Jenkins forecasts to a set of
external leading indicators.

ECONOMETRIC MODELING SYSTEM

If the user wants to do computer simulation experi
ments simulating the effects on sales volume or market
share of alternative pricing, advertising, and competi
tive strategies, then econometric models are the appro
priate analytical tools. Econometric models can also be
used to link market forecasts to the national and re
gional economies. Finally, our understanding of the
market behavior of specific products or groups of
products can be considerably enhanced through the use
of econometric marketing models. But the forecasting
accuracy of any econometric marketing model is no
better than the accuracy of the policy assumptions and
assumptions about the firm's external environment
which underlie the model.

Elements of a Planning and Modeling System 1023

J..lI ethodoloy-y

Econometric modeling involves a four-step methodol
ogy which will be summarized below. These steps
include: (1) model specification, (2) parameter esti
mation, (3) validation, and (4) policy simulation.
Given the present state of development of computer
software, it is now possible to implement all four of
these steps within the planning modeling system with
out having to go out of the system to FORTRAN,
PL/l, or some other type of subroutines. SIMPLAN
and XSIM are among the very few modeling systems
-which have a fully integrated econometric modeling
capability.

Specification

Unfortunately, most econometrics textbooks are con
cerned only with the question of "Given an econo
metric model, how do we estimate the parameters of
the model?" In other words, the entire question of
model specification has been assumed away by most
textbooks and university courses on econometrics.

The specification of econometric marketing models
requires: (1) considerable knowledge of the market
of the product or group of products being modeled,
(2) familiarity with econometric and statistical meth
ods, and (3) some knowledge of microeconomics and
the theory of markets.

If multiple product econometric models are to be
developed, we recommend the use of a well designed
questionnaire to be used by analysts in extracting rele
vant market information from product managers. Such
a questionnaire can greatly reduce the amount of inter
action time between analysts and product managers.

Estimation

Single-equation econometric models can be estimated
using ordinary least-squares (OLS) regression tech
niques. Simultaneous-equation models require the use
of techniques like two-stage least-squares (TSLS) or
other simultaneous-equation estimators. The applica
tion of OLS to simultaneous-equation models may yield
biased, inconsistent estimates. Most of the planning
and modeling software packages include OLS, but
very few of them offer TSLS or other simultaneous
equation estimators.

Validation

The ultimate test of the validity of an econometric
model is how well it forecasts the actual behavior of the
system it was designed to emulate. This implies solv
ing the model each period for the output variables in
terms of given policy variables and external variables
as well as lagged values of the output variables gen-

1024 National Computer Conference, 1976

erated by the model in preceding time periods. In other
words, the model is viewed as a closed loop dynamic
system which is driven by a set of starting values for
the lagged output variables and given values for the
policy and external variables.

Since econometric models may either be linear or
nonlinear and either recursive or simultaneous, some
technique like the Gauss-Seidel method is needed to
solve the simultaneous equation models. Ideally, simple
one-wora - commands like SOLVE and VALIDATE
can be used to solve and validate econometric models.
It is also desirable to produce a comparison of simu
lated and actual values and perhaps compute mean
percent absolute errors for each output variable.

Simulation

Finally, once we have specified, estimated, and vali
dated an econometric model which we feel we can live
with, we are then ready to conduct policy simulations
with the model. We simply change the policy variables
and external variables and solve for the output varia
bles. Again we need a technique like the Gauss-Seidel
method to solve the simultaneous equations.

Integrated models

Although estimation, validation, and policy simula
tion are, in fact, three separate computer programs,
it is possible to integrate each of these steps into a
single system so that the user can move easily from
one step to another. Commands like ESTIMATE and
TSLS can be used to estimate the parameters with
ordinary least-squares and two-stage least-square re
spectively. In addition, a set of test statistics for each
equation will also be produced-R,2 t-statistic, F-sta
tistic, standard errors, Durbin-Watson statistics, etc.
VALIDATE and SOLVE commands generate the time
paths of the output variables for validation purposes
and policy simulation.

Some systems also contain a SAVE command which
enables the user to save the structural specification and
parameter estimates of an econometric marketing
model and pass them on to a financial model without
ever leaving the system. With this feature, it is quite
easy to integrate financial, marketing, and production
models. No longer is it necessary to develop econo
metric models on one system and then re-code them for
use on a different system if one wants to use the econo
metric results for planning. Econometric modeling as
well as forecasting modeling can now be fully inte
grated into the planning modeling system.

National and regional economic models

It is also possible to link national econometric models
and economic databases directly to a planning and

modeling system. For example, Monsanto and Dresser
Industries each have the Wharton Econometric Fore
casting Model installed on their in-house computer and
linked to their business planning models. Hundreds of
firms use modeling systems which are linked to the
NBER economic database on several timesharing
service bureaus.

USER ORIENTATION OF THE SYSTEM

Up to this point we have described a number of basic
elements which we believe to be worthy of serious
consideration in the design of a planning and modeling
system. Various subsets of each of these elements are
available in the form of special purpose computer soft
ware packages. For example, RAMIS, NOMAD,
TOT AL, and INS are all excellent database manage
ment systems. F AL, INFOT AB, PROPHIT II, PSG
II, and FORESIGHT are all financial report genera
tors. ESP, TSP, ECON, and SPX are econometric
and statistical estimation packages. Many of these
software packages are quite well suited for special
purpose functional applications.

But if our objective is comprehensive corporate
planning and modeling then we are likely to require
(1) a database management system, (2) a security
system, (3) a report generator, (4) a simulation
modeling system, (5) a forecasting system, and (6)
an econometric modeling system. And, furthermore,
it would be extremely convenient to have all of these
features linked together as subsystems of a truly
integrated planning and modeling system.

Ease of use

It is one thing to advocate an integrated planning
and modeling system consisting of the six subsystems
described in the preceding paragraph, but what if the
resulting system is an extremely cumbersome, difficult
to-use system which requires the user to be a senior
programmer or computer scientist? Fortunately, re
cent breakthroughs in computer science and corporate
modeling techniques have made it possible to design
and implement an easy-to-use planning and modeling
system which includes all six of the subsystems de
scribed in this paper. More will be said concerning the
ease of use of planning modeling systems, when we
discuss computer software systems.

User specified subroutines

Although we have advocated a planning and model
ing system which contains a substantial number of
powerful built-in functions and subroutines, we recog
nize the impossibility of building a system which is all
things to all people. There will always be a user who
wants some special subroutine to satisfy his own

unique needs" With this thought in mind, an integrated
planning and modeling system should be sufficiently
open ended to permit the user to write his own sub
routines in, for example, FORTRAN or PL/l. With
this feature, the user never gets locked into a particu
lar system.

SYSTEM AVAILABILITY

Corporate planning modeling systems may either
be run interactively or in batch either on the user's in~
house computer or on an outside service bureau. Al
though computer service bureaus, particularly time
sharing bureaus, may provide a convenient vehicle for
the development and testing of individual business
unit planning models, putting an integrated compre
hensive total corporate planning model and database
up on an outside service bureau is likely to be pro
hibitively expensive. The disk charges for the cor
porate databases alone will be enormous. Over the long
run, we believe that most of the really serious cor
porate planning and modeling systems for large compa
nies will be implemented on in-house computers rather
than on an outside bureau. However, smaller firms
which are equivalent to single business units in our
Figure 1 flow chart, will still find service bureaus to be
the most cost effective alternative for doing financial
planning and modeling.

Interactive

All things being equal, it is difficult to argue against
the merits of interactive computing for corporate
planning and modeling. The benefits of conversational
computing to planning are obvious and well docu
mented in the literature. But interactive computing
can be quite expensive even on in-house computers, if
one considers the opportunity cost of alternative uses
of computer central processing units. Therefore, we
recommend interactive computing during the model
debugging stage and when the timeliness of alternative
plans and scenarios justifies the premium charges for
interactive computing.

Batch

Batch computing is more appropriate for creating
large historical databases and doing multi-scenario
production runs where the user is not faced with an
urgent deadline to make a decision.

SOFTW ARE SYSTEM

What about the task of programming a corporate
planning and modeling system? Basically, two al
ternatives are available. The system can either be
programmed in a general purpose scientific language

Elements of a Planning and Modeling System 1025

like FORTRAN, PL/1, or APL or it can be coded in a
planning and modeling language like BUD PLAN ,
COMOS, or SIMPLAN.

There are at least two maj or benefits associated
with the use of one of the scientific programming
languages. First, they are extremely flexible. That is,
every feature which we have proposed for a planning
and modeling system could be coded in FORTRAN,
PL/1, or APL. Indeed, our survey showed that 50 per
cent of the corporate models in our sample had been
written in FORTRAN. Second~ these languages are
quite well-known, particularly FORTRAN.

But there are some very serious limitations to the
use of scientific programming languages for corporate
planning models. First, corporate planners and finan
cial analysts may not be familiar with any of these
languages since they may not have previous computing
experience. Second, database management and report
generation are not the main strengths of FORTRAN
and APL. (PL/1 admittedly has some features which
facilitate file manipulation and report generation.)
Third, these languages offer little assistance in either
formulating or coding corporate planning models, since
they are general purpose scientific languages. Fourth,
it is the rule rather than the exception for top man
agement to make frequent changes in their require
ments in terms of report formats, policy assumptions,
external assumptions, types of consolidations, etc.
Mergers and acquisitions occur, new products are in
trod uced, and old products are dropped. These types
of changes are not easy to implement with scientific
programming languages. A major reason for the de
mise of most of the large-scale models developed in
the 1960's was their lack of flexibility. Without excep
tion, the Sun Oil, Xerox, and N ew York Times models,
as well as several others, were all written in FOR
TRAN. When Sun Oil merged with another oil
company, the model was dropped rather than re-pro
gramming it in FORTRAN. Fifth, even if the model
builders are accomplished programmers, econometric
modeling is very difficult with scientific programming
languages.

Some have suggested that APL will be the wave of
the future for corporate modeling. Although APL is
by far the most powerful scientific language available
today, it has some unique disadvantages which are
likely to render null and void the fantasy of corporate
managers sitting at their APL terminals doing cor
porate planning. First, APL assumes the user is pro
ficient at mathematics including matrix algebra. This
assumption simply does not hold up in the real world.
Very few managers have ever been exposed to matrix
algebra. Second, the special characters and mathe
matical operators of APL are likely to be foreign to
most managers, financial analysts, and corporate plan
ners. In summary, APL is a fantastic language for
computer scientists and mathematicians, but its utility
as a corporate planning tool is severely limited.

1026 National Computer Conference, 1976

The alternative to scientific programming languages
is to use one of the new planning and modeling lan
guages designed specifically to facilitate the formula
tion and coding of corporate planning models. Among
the benefits to be derived from using one of these
planning and modeling systems are the following.
First, they are easy to use. To do financial modeling
with a system like SIMPLAN, the user must be
familiar with high school algebra, accounting, and
finance. The user need not be familiar with modeling
or computer programming. Second, some of these
systems provide a conceptual framework for planning
and modeling which makes it much easier to develop
the model in the first place. Third, with a select few of
these systems, it is possible to have all six of the fol
lowing subsystems integrated within the planning and
modeling system: (1) database management, (2) se
curity, (3) report generation, (4) simulation model
ing, (5) forecasting, and (6) econometrics. Fourth,
many of these planning and modeling systems are quite
flexible. Changes in databases, models, and reports
are easy to implement. Fifth, even if the model build
ers are senior programmers, econometrics, forecasting,
and risk analysis are much easier to implement with
one of these systems than with a scientific language.

Of course, the advantages of these planning and
modeling software systems must be weighed against
their costs. First, these systems are not available free
of charge to the user. That is, the user must pay a
fee for the use of one of these planning and modeling
systems. A limited number of these systems can be
licensed for use on in-house computers. These include
BUDPLAN, FORESIGHT, FP-70, PSG II, and SIM
PLAN. Nearly all of these systems are available on a
surcharge basis on various timesharing service bu
reaus. Second, since the computer is doing the work of
many programmers, the computer running costs will
definitely be higher than say similar models pro-

grammed in FORTRAN, but the human costs should
be considerably less.

SUMMARY AND CONCLUSIONS

With nearly 2,000 companies now experimenting with
some form of planning model, it is not surprising to
observe that many of these companies began using a
particular modeling system without giving much
thought to the long-run implications of the system
which was selected. It is not uncommon to find one
division of a company using FAL, another using
PROPHIT II, and a third using a FORTRAN model
running on yet a different service bureau's computer.
At the same time, the corporation maintains a cor
porate database as well as databases for each division
on the in-house computer. Corporate planning may
also subscribe to one or more outside econometric fore
casting services.

In other words, it is not unusual to find large compa
nies subscribing to as many as six different modeling
services with exact duplicates of the corporate data
base running on the in-house computer as well as on
outside service bureaus.

With a little thought and careful planning, it is pos
sible to design an integrated planning and modeling
system which will satisfy corporate management as
well as the management of all of the business units.
Financial, marketing, and production planning models
can all be developed within one system which is linked
to a national econometric database. And, finally, the
system can be implemented on the company's in-house
computer thus eliminating outside timesharing charges
and the costly duplication of databases.

In summary, time spent on the design of a com
pany's planning and modeling system may be time
well-spent.

Analysis of ~~naturar" language discourse*

by SALLY YEATES SEDELOW
The National Science Foundation
Washington, D.C.
and
The University of Kansas at Lawrence

ABSTRACT

Referential linkage in extended language strings
(multiple-sentence, paragraph, etc.) is of great in
terest to computer scientists, linguists, and literary
scholars concerned with the analysis of discourse. In
all three disciplines, semantic relationships are cen
tral to approaches to inter-sentential, inter-paragraph,
and inter-supraparagraph linkings. This paper com
pares and contrasts some of the directions taken in
current research and explores the possible utility of a
general-purpose thesaurus for the construction of
semantic frames of reference. The utility of such a
thesaurus for measuring semantic distance between
terms and thus establishing possible linkages is sug
gested by an experiment concerning word prefixation.

Discourse analysis is now being undertaken by
research scientists in a number of disciplines. Its
meaning varies from field to field and even from scien
tist to scientist; traditionally, it has implied the struc
tural analysis of a relatively large number of consecu
tive natural language sentences, paragraphs, chapters,
or larger units. (It is not restricted to the spoken
word, although that is one meaning of discourse.)

As a former professor of English literature with a
major interest in the analysis of language-strings of
the length of Hamlet, or Paradise Lost, I have watched
the growing interest in discourse of my newer col
leagues in computer science and in linguistics with
both genuine excitement and, it must be confessed, a
frequent feeling of deja vu. Thus, extended debate
on the subject of Hframes" at a recent workshop on
theoretical issues in natural language processing
sounded very like discussions over the years by literary
scholars and students on topics such as "frame of
reference" and "point of view." I feel that my new
colleagues are, in a sense, just beginning to learn to
talk but, on the other hand, perhaps in time their talk
will be couched in more precisely used terms than

* The views expressed in this paper are those of the author,
and do not necessarily reflect any policies of the National
Science Foundation.

1027

those employed in analogous literary conversations. I
certainly hope so, since such precision was for me a
prime motivation in having become associated with
computer scientists and linguists.

Although discourse analysis has been a primary con
cern of literary scholars for many years, for both lin
guists and computer scientists it does represent an
excItIng new concern. The reasons for computer
science coming to this study rather late are quite ob
vious, but that linguists should be so slow to arrive on
the scene may seem to some rather surprising. For
the sake of clarification, it might be noted that for a
number of decades literature and linguistics (at least
as linguistics is practiced in this country) have been
very much separated from each other. Linguistics
departments have sometimes provided, as a service,
courses on the English language, but the heart of the
discipline has been elsewhere. The "elsewhere" has
been a world of micro-events, such as the basic units
of sound, or the basic units of grammatical structure,
which were long considered to be solely syntactic.
Given this concern with micro units, the outer bounds
considered necessary for adequate study of such units
were provided by the sentence. As I have already
noted, literary scholars find it necessary and desirable
to concern themselves with texts of lengths greater
than a sentence; thus, the work of linguists has not
been of overwhelming interest to literary scholars, and
vice versa. Further, there has been relatively little of
the interdisciplinary dialogue which might have pushed
linguists somewhat sooner toward looking at the types
of language phenomena of interest to literary scholars.

:More recently, linguists have been forced, perhaps
partially through their own need for new approaches
to the study of language but also because of efforts to
use computers for language-dependent tasks-such as
machine translation-to try to place their microunits
within systems which, in turn, have proved to be parts
of ever larger systems. Early efforts to use the com
puter to provide translations produced generally un
satisfactory results partly because semantic systems
had been essentially ignored by linguists. Attempts to
apply the computer to other areas entailing heavy

1028 National Computer Conference, 1976

manipulation of natural language-areas such as in
formation retrieval and computer-assisted instruction
-have clearly demonstrated both that semantics must
be taken into account and that the length of a sentence
does not provide an upper bound for semantic inter
pretation of a language string. Linguists, of course,
have not been ignorant of the existence of semantics
and long language strings. In effect, they simply
decided to ignore these areas because they looked
intractable. Currently, practical necessity and intel
lectual curiosity are moving linguists into discourse
analysis; so that now we have a coincidence of interest
among some linguists, some computer scientists, and
some literary scholars (not to mention certain psy
chologists and other social scientists). In order to
provide context for the relevance of my own research
to this emerging area, I'd like to refer briefly to some
forefront thinking about discourse analysis in com
puter science and linguistics and then show where
my own work, which originated in the study of liter
ature, fits.

At the moment, it is probably accurate to divide
approaches to discourse analysis into those efforts
which are concentrating upon rather short, although
still multiple, sequences of sentences and those ap
proaches which are concentrating upon texts which are
much longer, even of narrative length.

Those scholars and scientists concerned with "small
scale" discourse analysis want to describe linkages be
tween and among contiguous or near-contiguous sen
tences, as well as to describe linkages between a single
sentence and its context; the context may be provided
either by contiguous sentences or by networks of asso
ciations built up from earlier experience with reality,
however perceived. A simple example of linkage be
tween sentences is pronominal reference: both lin
guists and computer scientists have been concerned
with this aspect of anaphora (literally, the carrying
up or back to something earlier) and of cataphora
(carrying forward).

Examples of computer-based natural language sys
tems which deal with aspects of reference linkage can
now be readily located. They range from examples in
Winograd's block world program in which the com
puter responds to the command "Grasp the pyramid"
by saying "I don't understand which pyramid you
mean" because the particular pyramid implied by the
article "the" was not specified in an earlier sentence,I
to concerns such as those described by Barbara Deutsch
at the Stanford Research Institute in her recent paper
on "Establishing Context in Task-Oriented Dia
logues."2 When the SRI computer is told to "Assemble
the air-compressor" and to "Begin by attaching the
pump to the platform" it starts by inspecting some
thing called focus spaces to determine whether there
is more than one air compressor to worry about; it
proceeds analogously when "attaching the pump to
the platform."

The SRI grammar, described by Jane Robinson,3 can
also handle elliptical references between sentences, as
in the following sequence: "What is the length of the
surface displacement of the Lafayette? . . . What is
its draft? and "What is the length of the Lafayette?
. . . The Ethan Allen?" In this sequence of four
sentences we have an example of anaphoric reference
through the use of "its" in the second sentence and of
elliptical anaphoric reference in the fourth sentence
which, in its entirety, would read "What is the length
of the Ethan Allen ?".

Let me offer one more example of current specu
lation by a computer scientist about an aspect of small
scale discourse analysis; in this case, the concern is
with linkages among single sentences and an individ
ual's "store" of earlier verbal and sensory experience.
This example is the beginning of a fable, as told by
Wallace Chafe, a linguist at Berkeley, and retold by
Marvin Minsky :4

TheTe was once a Wolf who saw a Lamb
dTinking at a TiveT and wanted an excuse to
eat it. FOT that pUTpose, even though he him
self was upstTeam, he accused the Lamb of
stiTring up the wateT and keeping him fTom
drinking . ..

Minsky says that to understand this fable one must
realize that the wolf is lying. To understand "even
though" one must realize that the contamination in
question doesn't move upstream. This realization in
turn requires us to understand (among other things)
the word "upstream," itself. Minsky then devotes sev
eral pages to indicating how his framework might help
one understand some of these terms as well as the
more extended meaning of these two sentences. By
frame, Minsky means a

data-structure for representing a stereotyped sit
uation, like being in a certain kind of living room,
or going to a child's birthday party. . . . For
visual scene analysis the different frames of a
system describe the scene from different view
points, and the transformations between one
frame and another represent the effects of mov
ing from place to place. For nonvisual kinds of
frames, the differences between the frames of a
system can represent actions, cause-effect rela
tions or changes in metaphorical viewpoint. 4

A little later, I want to return to this example to
indicate how some of my research can help to get at
"frames of reference" which, in turn, will help to
delineate discourse structures where the structure de
pends upon the perception of semantic relationships.

For macro discourse analysis, the most relevant cur
rent work in computer science is content analytic and
I will recur to it briefly later. When we turn to lin
guistics, we find a number of linguists-notably Robert
Longacre;;.'; and Joseph Grimes 7 and students associ-

ated with them-who have become involved in the
analysis of macro discourse ranging up to short nar
ratives in length. In The Thread of Discourse/ Joseph
Grimes provides a broad overview of these discourse
analytic techniques, a number of which would be use
ful for discourses of any length. Many of the ap
proaches to discourse analysis described by Grimes de
pend on too much preliminary background for use in
this paper, but a brief description of two of the ap
proaches would seem worthwhile in order to provide
some sense of linguists' orientations toward this new
area.

One very simple technique is span analysis. An
identification span consists of a series of identifica
tions of the same participant in a narrative-a series
in which no identification is stronger than the one
before it. Strength of identification is defined as a
ranking that goes from proper names, to explicit de
scriptives like "the last speaker at the symposium," to
common nouns like "the speaker," to nouns used gen
erically like "the fellow," to pronouns like "him," to
reference without identification. When a shift occurs
from a weak form of identification to a stronger form,
the current span is terminated and a new one begins.
The spans can be shown graphically simply by taking
a piece of paper, listing vertically from 1 to n the
number of clauses, or phrases, and drawing vertical
lines to show the length of the spans. Such spans
can be used for many other characteristics of dis
course such as setting, time, and place, and can reveal
patterns which graphically illustrate the differences
in style between one work and another, between one
author and another, and so on.

I would like to mention one other discourse ana
lytic technique described by Grimes and, in fact de
veloped by his students, Mary Ruth Wise and Ivan
Lowe.R This approach depends upon the roles taken
by participants in a narrative. Here, roles are de
scribed by such terms as agent, experiencer, instru
ment, and other analogous categories drawn from case
grammars, which are now of great research interest
to both linguists and computer scientists. This ap
proach to discourse analysis studies the shifting of
roles among the participants in a discourse. The per
ception of shift is based upon relative rankings among
cases such as agent, experiencer, and so on. In this
system, agent is the highest ranking role and a case
called essive, which is rather analogous to the exis
tential state, is the lowest ranking.

One type of role shift is a reversal, which involves an
exchange of relative ranking between two participants
in a narrative. In some simple narratives, reversal is
the only shift which occurs. The text tends to start out
with one character as agent and the next as, say,
goal, then reverses so that the second character is
agent and the first has a role of lower rank. A second
reversal brings the characters back into the original
orientation; in some of the simple folk narratives

Analysis of "Natural" Language Discourse 1029

studied by u-rImes ana nIS students, this second re
versal signals the beginning of a new paragraph.

Another kind of role shift is described as a switch,
in which the second and third participants undergo
reversal of rank. In a number of narratives studied
by Grimes and his students, the regular progression of
events is carried by single operations such as a single
reversal or a single switch. Whenever there are com
posite operations, such as a switch and reversal, or
reversal and switch, there is a surprise, an interrup
tion or a point in the narrative where things go wrong.

Grimes tries, with varying degrees of success, to
provide a text-analytic operational significance to such
categories as cohesion, theme, setting, background,
evaluation, and many others, including a range of
types of linkages between sentences. Almost all, if
not all, the categories for discourse analysis he ex
plores depend upon understanding word meanings,
phrasal meanings, clausal meanings, paragraph mean
ings, and so on. Meaning-semantics-is the key to
discourse analysis and therein lies a challenge for any
efforts to use the computer for discourse analysis.

My own research on computer approaches to dis
course analysis has been partly built upon training as
a literary scholar. Thus I have been concerned with
texts of extended lengths and I have wanted to find
methodologies, procedures, and/or algorithms suitable
for use with a broad range of texts. By contrast, for
the most part computer scientists concerned with dis
course have tended to constrain the universe of dis
course with which they deal to a very small segment
of reality. The reasons for such constraints are ob
vious when you consider the complicated problems
which must be dealt with in even a very modest uni
verse; but I have chosen not to follow this path be
cause my own preferences and training make it un
congenial and, especially, because as a scientist I
strongly prefer general solutions for natural language
problems to ad hoc solutions.

When I began working with computers* I decided
to concentrate upon structures of meaning because
those are of major importance to discourse which, as I
have stated before, is of central importance to most
literary scholars. At that time (thirteen years ago)
other people were working on parsers and I plamied
simply to borrow a parser from someone else when
the need arose. I t is doubtless a splendid testimonial
to man's ingenuity as a user of language that the gen
eral-purpose parser I need is still not available, al
though there has been excellent research on this prob
lem and there are parsers to which I would now like
access.

My approach was to develop a set of content analytic
programs which I used to look for literary themes.
Themes comprise semantically-related words and form

'" Much of the research described on the folIovdng pages has
been supported by the Information Systems Branch, Office of
Naval Research.

1030 National Computer Conference, 1976

part of the structure of a discourse. For example, part
of the structuring form of Hamlet is provided by a
network of associations involving disease, madness,
and decay, just as part of the structure of Paradise
Lost involves a semantic network of words associated
with variety and variation. I have written and talked
about this research elsewhere9

-
12 and I will not discuss

it further here. But I do want to talk about an out
come of that research-that is, further research, on
the nature of thesauri.

Thesauri now come in many forms. In the context
of information retrieval, a thesaurus most often con
sists of a list of terms, sometimes divided into cate
gories, relating to some specialty area. The kind of
thesaurus I have in mind is not one of these special
purpose word lists, but rather a general-purpose refer
ence work showing semantic relationships among
words in a whole language. Specifically, I have in
mind the English-language thesaurus, Roget's Inter
national ThesaurusY Although no such general ref
erence work is 'perfect,' or even nearly perfect, it
does have the strong advantage of validation through
time and across a culture. I argue that large corpora
such as Roget's Thesaurus or the Merriam-Webster's
dictionary should be investigated for their potential
utility in dealing with semantics for all kinds of com
puter-based tasks. They also lend themselves to seg
mental exfoliation when a finer semantic mesh is
needed for a specific purpose. Such potential sources
of semantic information have been largely ignored by
those seeking to use the computer to capture meaning
in natural language. Notable exceptions to this rule
are John Olney at SDC and his associates who have
put Webste1"s Collegiate DictionaryH into computer
accessible form; among those using this version of the
dictionary are Robert Simmons and Robert Amsler
who, in a recent paper15 state that "from a linguistic
point of view . . . the proper source of semantic in
formation is a large corpus of ordinary usage of the
language."

One of the reasons these general purpose corpora
haven't been more extensively employed is that they
are difficult to use. Another is that they are difficult
to get into a useable form. Part of my own research
effort in recent years has been directed toward putting
Roget's International Thesaurus into computer-acces
sible form. The Thesaurus is now in computer-acces
sible form although the editing hasn't been completed.

Editing is a major problem because the Thesaurus
makes many assumptions concerning the ability of the
human reader to fill in elisions, supply context, and
otherwise rely on the enormous store of information
in the human brain. An example of a frequently oc
curring type of elision is "jump up or off" in which the
jump for "jump off" is omitted. An example of the
dependence upon the human reader to fill in or at
least understand what a possible extension of items in
the Thesaurus might be is the frequent use of etc.

to indicate the continuation of lists. Examples of such
lists are "Pan-American, Pan-Pacific, Pan-Hellenic,
etc.", (multiply by 5, etc.)", "hourly, daily, etc." and
so on. These and other analogous problems which
must be dealt with in order to use the Thesaurus in
automated systems have been discussed elsewhere.16

,17

Our reason for putting the Thesaurus into computer
accessible form was to use it for content analytic ap
plications. In order to put it to such use, it is desirable
to have a clear understanding of the structure of the
Thesaurus; approaches to the study of the structure
have been explored by a graduate student, Robert
Bryan, and are described in research reports for this
project (available through the Computer Science De
partment at the University of Kansas) y,19 A major
potential utility of the Thesaurus not only for content
analysis but for many other efforts to use the computer
to understand natural language is as a guide to mea
sures of semantic distance. That is, the number of
nodes one must pass through in the Thesaurus to get
from one word to another, or from one concept to
another, can be taken as measures of semantic dis
tance. Again, the graph theoretic approaches out
lined by Bryan are intended to facilitate research on
this question. It should be borne in mind that since
any given term may appear at several different nodes
in the graph, semantic space in the Thesaurus is much
more complex than the organizing tree-structure for
the Thesaurus content might lead one to suppose.

The viability of the Thesaurus as a potential source
of information concerning semantic distance was a
central issue in an experiment we undertook with ref
erence to prefixation. Our experiment was to see
whether the Thesaurus might be used for determining
when a particular string of alphabetic characters is
serving as a prefix. The experiment is described in
some detail by Sam Warfel in one of our research
reports. 20 As you may know, the Thesaurus is orga
nized hierarchically, with the basic text consisting of
1040 semantic categories each with a number and a
label, e.g., "854. lack of feelings." Each of these num
bered categories is divided syntactically and seman
tically. For the purposes of this experiment the syn
tactic categories were ignored, because a preliminary
investigation suggested that syntactic categories added
no useful information toward the determination of
prefixed words. (An obvious reason for this impres
sion is that syntactic category membership is most
often indicated by suffixes.)

To clarify the following discussion, it may be worth
while to describe briefly the general structure of the
hierarchy in the Thesaurus so that ensuing references
to "levels" will be understandable. The 1040 categories
are related at a higher level in the Thesaurus by
the "Synopsis of Categories," which is not part of the
basic text but is presented as an outline following the
Preface. In this synopsis the Thesaurus is divided
into eight classes (e.g., Class Six: Intellect). Each

class is divided into several labeled sub-classes indi
cated by Roman numerals (e.g., I. Intellectual Facul
ties and Properties) and each sub-class is divided into
labeled sub-sub-classes designated by capital letters
(e.g., L. Conformity to Fact). Each sub-sub-class is
divided into several of the 1040 categories (e.g., 515.
Truth) which are numbered consecutively throughout
the text. Each of the 1040 categories is subdivided into
numbered 'paragraphs' of words; for example, there
are twenty-two such divisions under 515. Truth, so
that there are subcategories 515.1-515.22. These
'paragraphs' are, in turn, subdivided into semi-colon
groups; that is, within a paragraph those words most
closely related are grouped and delimited by semi
colons, e.g.,

accuracy, correctness, rightness;
exactness, exactitude;
preciseness, precision;

Thus, in the following discussion of the value of seman
tic distance measures for determining prefixation, the
levels referenced are as follows:

Levell e.g., Class Six: Intellect
Level 2. e.g., 1. Intellectual Faculties and Properties

Level 3. e.g., L. Conformity to Fact
Level 4. e.g., 515. Truth

Level 5. e.g., 515.3
Level 6. e.g., accuracy, correctness, rightness;

Our assumption was that words occurring either in
the same place in the hierarchy or very near each
other in the hierarchy are more likely to be related
than those further away. Therefore, it seemed pos
sible that words having the same root and differing
only by prefix would tend to fall together in the
Thesaurus, (Le., to be only short distances apart). In
general, our sampling bore out our hypothesis. That
is, words such as joy and enjoy (863), rich and en
rich (835), guise and disguise (230), courage and
encourage (891), occur in the same fourth level cate
gories in the Thesaurus hierarchy. On the other hand,
words such as vent and prevent are shown not to be
long together because prevent does not occur in either
the same category or any of the categories related to
categories associated with the unprefixed root vent.

To gain a further sense of the utility of the Thesau
rus for this purpose, we compared the use of the
Thesaurus with that of our prefix recognizing pro
gram (which is operational and which is based on
ad hoc decisions on all the words in the Random House
dictionary).21 We used the Thesaurus for the com
parison of thirty-eight word pairs which had been
turned up during the course of a computer run of the
PREFIX program (22). PREFIX produced ten word
pairs which struck me as viable pairings. Had the
Thesaurus been used to examine those same word
pairs, eight of them would have been linked together.
The word pairs are shown below, with those bearing

Analysis of "Natural" Language Discourse 1031

the * indicating the pairings also produced by the
Thesaurus:

integration-disinte-
gration

* able-enable
* courage-encourage
* danger-endanger
* doubted-undoubted

moralize-demoralize
* capacity-incapacitate
* labor-elaboration
* sequence-consequence
* valuate-evaluate

Of the ten pairs on the above list, the grouping of
moralize and demoralize is at least questionable. The
Thesaurus' judgment here may be preferable to my
own when I was earlier looking at the results of the
PREFIX run.

The PREFIX program grouped together three word
pairs which should not have been grouped. The
Thesaurus identified none of these words as appropri
ately paired:

cent-recent pare-prepares tribute-distribution

The PREFIX program produced twenty-five pair
ings which I judged to be helpful in some contexts
(some of them very rare and esoteric) but not in
others. Those pairs in the list below which would
have been linked by the Thesaurus are again shown
with an *:

* compass-encompass
* conceivable-incon

ceivable
cover-discover

* fend-defend
fluence-influence

* joy-enjoy
* junction-conjunction

ligation-obligation
mode-outmode

* ply-apply
promise-compromise

* refutable-irrefutab1e

* rich-enrich
* rupture-disrupt

see-foresee
* separable-inseparable

stead-instead
strict-restrict

* thinkable-unthinkable
tinction-distinction
gaged-engaged
ordina te-coordinate
vestiga tion-investiga-

tion
j ugate-subj ugate

As should be apparent from the examples above,
as well as, hopefully, from any sampling others might
make of the Thesaurus, while the Thesaurus is not
perfect for this task, nonetheless, it is rather good.
Some problems could be taken care of if inconsis
tencies in the organization of the Thesaurus were
eliminated. For example, although most negation and
reversal relationships are expressed in adjacent cate
gories under the same third level headings, there are
exceptions to that organizational principle. Thus, al
though there is a category at the fourth level in the
hierarchy labeled "disintegration" there is no com
parable category labeled "integration," despite the
fact that there are categories labeled "order" and
"disorder" as well as "continuity" and "discontinuity."

The same inconsistency is apparent with talkative
ness and untalkativeness where the third level cate
gories containing the words are quite far removed

1032 National Computer Conference, 1976

from each other, unlike other positive-negative cate
gory pairs:

(Level 2) III. Communication of Ideas

I.
(Level 3) B. Modes of

Communica
tion

552. Com
munication

552.4

communica
tiveness,
talkative
ness ... ;

I
M U .1 t· . ncommumca lve-

ness; Secrecy

611. Uncommunica
tiveness

611.2

taci turni ty,
un talkativeness ... ;

A different problem arises with the pairs birth-re
birth and born-reborn where the first word in each
pair occurs in fourth level categories related to either
"beginning" or "physical birth" while the second word
in each pair occurs only in fourth level categories re
lated to the religious experience of conversion. There
fore, the words in the pairs are not judged by the
program to be prefixed since the metaphoric relation
ship between the two uses of birth is not shown in the
Thesaurus.

In order to achieve comparability in these measures
of semantic distance provided by the Thesaurus, orga
nizational inconsistencies in the Thesaurus such as
revealed by this experiment would need to be coped
with either through cross referencing or shifts in the
structure of the Thesaurus. Metaphorical relationships
will be more difficult to capture, although it is the case
that the Thesaurus, unlike a dictionary, is rather
strong on making some metaphorical relationships
explicit. This facet of the Thesaurus is useful, as we
shall see in an experiment with the Thesaurus and the
few sentences from the fable about the wolf and the
lamb cited earlier.

For the sake of convenience, the initial sentences of
the fable I cited earlier are repeated:

There was once a Wolf 'who saw a Lamb
drinking at a river and wanted an excuse to
eat it. For that purpose, even though he him
self was upstream, he accused the Lamb of
stirring up the 'l.()ater and keeping him from
drinking . ..

The experiment I want to undertake here is first
to use the Thesaurus to see what kind of contextual
"frame" it can provide to facilitate understanding of
the fable. When the Thesaurus fails, I will suggest
the use of a parser or dictionary, either separately or
in combination with each other or with the Thesaurus.
Let me say, prefatorially, that this experiment, as is

the case with Minsky's article on frames, ignores
many difficulties that would in fact arise were one
using the Thesaurus, as well as, for that matter, the
dictionary and parser to cope with the fable. The goal
in this next little exercise is to see whether there is
any point in pursuing further the use of the Thesaurus
for such a task.

Our assumption-a strong one-will be that the
computer has no information about any of the words
in these sentences and that, in fact, the Thesaurus
must be used to provide the context.

You will observe that the first sentence of the fable
is: "There was once a Wolf who saw a Lamb drinking
at a river and wanted an excuse to eat it." A lookup
of "river" in Roget's will locate "river" under "run
ning water" and it will be linked with "stream" as
well as with "drinking water." Thus the notion of
river as drinkable emerges. The word "wolf" appears
in a listing of animals. "Lamb" does not appear in
that list but it is linked to "sheep" which, in turn,
appears as an animal. "Sheep" is also linked to "mut
ton" which is linked in the Thesaurus index to "meat"
which in turn occurs with "feed" and "dine." Given
metaphors' pleasing property of frequently having
some relationship to (symbolic) reality, it would prob
ably be useful to find in the Thesaurus the use of
"wolf" to mean "devour," which in turn occurs in the
index under "eat up." Thus, as it happens, the Thesau
rus associates wolf with eating and on the basis of
this association it might be possible for a computer
program to assume that the creature who "wanted an
excuse to eat it" is the wolf. The lamb is not par
ticularly associated with drinking through any refer
ences in the Thesaurus. Rather, a syntactic parser
might be expected to work out the relationship be
tween the lamb and drinking in the phrase "lamb
drinking at a river."

The chief problem in this sentence is the identifica
tion of "it." To repeat the sentence: "There was once
a wolf who saw a lamb drinking at a river and wanted
an excuse to eat it." "It" could refer either to the
lamb or to the river. The only route to disambiguation
that looks possible to me is at the syntactic level, which
might point up a parallelism between the wolf seeing
an object-the lamb-and eating it. In both cases, "it"
is the object of an action by the wolf and possibly
through this parallelism "it" might be identified with
lamb. I find no information in the Thesa'llr1.lS that
would enable a program to perform this disambigua
tion. It is possible to deduce from the Thesaurus that
a lamb can be eaten if you follow a somewhat circu
itous path which, under the listing of animals, provides
the word "flesh" in connection with "horse flesh" and
under "eating" provides the word "flesh eater." You
will remember that "sheep" appeared under "animals"
and that the word "lamb" was linked with "sheep."
Unfortunately, there is no information in the Thesau
rus which would suggest that a river cannot be eaten.

To the contrary, the words "drinking" and "drink"
occur under the general heading of "eating," so one
might conclude that the "lamb," for example, could
just as well be said to be eating a river as to be drink
ing it. The preposition "at" in the phrase "lamb drink
ing at the river" might be helpful here, but it is dif
ficult for me to see how it could solve this problem.

With reference to the word "excuse" in this sen
tence: the wolf "wanted an excuse to eat it" -the
Thesaurus lists "excuse" along with "guise," "mark,"
!!pretext" and "false pretence" and it also links "false
pretender" with the expression "wolf in sheep's cloth
ing." Syntactic analysis might be necessary to estab
lish that it is the wolf, not the sheep, which is linked
to "false pretender" in that group but, given such
analysis, "excuse" is linked to "wolf."

The portion of the second sentence we have is:
"For that purpose, even though he, himself, was up
stream, he accused the lamb of stirring up the water
and keeping him from drinking " Syntactic anal
ysis should establish that "he, himself" is the subject
of the second sentence and rules governing anaphoric
reference would identify the subject, "he, himself,"
with the subject, "wolf," of the first sentence.

The meaning of "upstream" and its connotations
for this little narrative are quite difficult to get at.
As noted earlier, the Thesaurus is structured so that,
frequently, categories having opposite meanings are
juxtaposed. For example, Ascent, which contains the
word "upstream" is next to Descent, which contains
the word, "downstream." It would be possible to get
from one category to the other by searching on the
word "stream." If one looked up "upstream" in W eb
ster's Seventh Collegiate Dictiona'ry, the definition "at
or toward the source of a stream" turns out not to be
terribly helpful. On the other hand the definition of
"downstream" is "in the direction of the flow of the
stream" and flow is associated with movement both in
the dictionary and in Roget's Thesaurus. The index of
the Thesaurus provides many clues that "move" and
"motion" entail a change of position; for example, one
finds the phrases "move back" and "move forward."
The dictionary, as you remember, associates move
ment or flow with directionality and "downstream" is
shown by the thesaurus structure to be the opposite
of "upstream." Further, the "even though" in this
sentence implies some condition-opposite or con
trary to-not consonant with one's !!frame" involving
"u pstream."

At this point, the computer-based information pro
cessing programs might be in a position to try to pro
duce some version of the representation suggested by
Minsky in his discussion of this small segment of dis
course. It might be desirable to represent the relative
positions of the wolf and the lamb vis-a.-vis the direc
tion of flow of the river; and it may, indeed, be neces
sary to build into the computer program some sort of
"primitive sense perception" to show that disturbing

Analysis of "Natural" Language Discourse 1033

the water at the lamb's location doesn't affect the
water at the wolf's location. This kind of "sense-per
ceived" knowledge, which forms the basis for much
exploratory work in computer science, does not de
pend, initially, upon word associations but rather upon
visual experience. (I t may even depend also on a
stored analytical model of physical processes.) Much
knowledge, of course, has an ultimate dependence upon
visual experience but this particular perception is dif
ficult to track down to its final meaning through either
thesaural associations or dictionary definitions. Given
some such primitive representation of the factual situ
ation it would then be desirable to try to contrast the
verbal statement after "accuse" with the realistic rep
resentation produced by the "even though."

One can see how it might be possible to combine a
parser, a thesaurus, and a dictionary, as well as, per
haps, sensory primitives to conclude that the wolf in
tends to pick a fight with a lamb, but I am not certain
that it will be clear whether the wolf wants to eat the
lamb or the river-although the suggested syntactic
clues might provide some probability that the wolf
would like to eat the lamb. If the syntactic informa
tion doesn't provide a satisfactory resolution, then
one envisions having to provide some primitive sense
perception based on the size of a river relative to that
of a wolf or on what animals, perhaps even wolves,
have been seen to eat, or some combination of those
perceptions. The role of Roget's and the dictionary,
obviously, would be to try to reduce markedly the num
ber of such perceptions one would have to build into
a system and to capture, instead, many such percep
tions through patterns of word association which
presumably reflect one's sense perceptions (and [im
plicit] reality models).

It is certainly clear to me, as I'm sure you will be
able to guess, that an effort to get down to cases and
actually program a computer to make its way through
a thesaurus and dictionary, draw the appropriate in
ferences, and combine those inferences with syntactic
and sensory information is going to be exceedingly
complicated. But it needs repeated, strong emphasis
that we require general, not ad hoc, solutions to these
problems. I argue that one should be exploring the
possible utility of these general-purpose reference
works with an eye toward revising and adapting them
to the needs of specific discourse analyses for the very
pragmatic reason that no one seems to have the pa
tience to construct from scratch a thesaurus or diction
ary that deals with a very large segment of "reality"
and, at the same time, is specifically designed for a set
of "language understanding" computer programs. Fur
ther, there is at present no consensus as to what
theories or procedures the computer programs should
embody; therefore, there is no consensus as to how
words and their semantic relationships should be rep
resented. It is also the case that general-purpose
reference "vorks have some claim to cultural valida-

1034 National Computer Conference, 1976

tion; such is not the case for ad hoc thesauri or dic
tionaries for special-purpose programs.

In summary, one can surmise, I think, how one
might build upon some of the types of analyses I have
suggested to use the computer to analyze discourse.
For small scale, or micro discourse, syntactic parsers
will be valuable, as will dictionaries and thesauri for
their guides to meaning. Representation of at least
visual perception "primitives" probably cannot be cir
cumvented. I've said nothing about sound patterns,
but research directed toward enabling the computer
to move from the written word to spoken "output" as
well as to enable the computer to understand speech
is currently in progress and such research clearly has
relevance for the study of patterns of sound in dis
course. For macro discourse, all the procedures rele
vant for small-scale discourse are germane. In ad
dition, the kinds of thematic analyses made possible
by my programs are relevant for extended discourse.
It is then possible to make visible patterns of thematic
occurrence within a text by graphically portraying the
themes at the locations in which they occur. John B.
Smith of Penn State, once a student of mine, used some
of my programs and some of his own to portray oc
currence patterns of images in Joyce's Portrait of the
Artist-and discovered that those moments Joyce had
described as epiphanal were graphically obvious be
cause of the coincidence of major imagery patterns at
those points in the Portrait. Spans of setting, of iden
tification, and of other categories to which I have
alluded will eventually be amenable to computer analy
sis if we are able to deal with the many thorny issues
related to perception of meaning that I have illus
trated through examples in this paper.

The importance of computer-based discourse analy
sis for the many natural language applications in com
puter-based systems cannot be overemphasized. The
long-awaited breakthroughs in information retrieval
and in other application areas, such as computer-as
sisted instruction, which are dependent upon informa
tion retrieval (broadly defined) must await an in
creased algorithmic and computational capability for
the analysis and generation of extended discourse. It
behooves us to explore every possible avenue to full
or partial solution of the many complex problems which
must be solved in order to achieve computer-based
discourse analysis. The implications are immense
both for the development of the non-numeric aspects
of computer science and for the next maj or stage in
the application of computers to the solution of human
problems and to aiding with society's work-a-day
tasks.

REFERENCES

1. \Vinograd, Terry, Understanding Natural Language, New
York: Academic Press, 1972.

2. Deutsch, Barbara, Establishing Context in Task-Oriented
Dialogues, Stanford Research Institute, Artificial Intelli
gence Center, Technical Note 114, September, 1975.

3. Robinson, Jane J., A Tuneable Performance Grammar,
Stanford Research Institute, Artificial Intelligence Center,
Technical Note 112, September, 1975.

4. Minsky, Marvin, "A Framework for Representing Knowl
edge," in Patrick Henry Winston, ed., The Psychology of
Computer Vision, McGraw-Hill, 1975, pp. 211-177.

5. Longacre, Robert E., Hierarchy and Universality of Dis
course Constituents in New Guinea Languages: Discussion,
Georgetown University School of Languages and Linguis
tics, 1972.

6. Longacre, Robert E., Philippine Languages: Discourse
Paragraph and Sentence Structure, Summer Institute of
Linguistics, 1968.

7. Grimes, Joseph E., The Thread of Discourse, Technical
Report No.1, NSF Grant GS-3180, Cornell University,
1972.

8. Wise, Mary Ruth and Ivan Lowe, Permutation Groups in
Discourse, Languages and Linguistics Working Papers No.
4, 12-34. Georgetown University School of Languages and
Linguistics, 1972.

9. Sedelow, Sally Yeates and Walter A. Sedelow, Jr., "A
Preface to Computational Stylistics," in Computer and
Literary Style, Kent State University Press, 1966, pp. 1-13.

10. Sedelow, Sally Yeates and Walter A. Sedelow, Jr., "Cate
gories and Procedures for Content Analysis in the Humani
ties," in George Gerbner, et al., ed., The Analysis of Com
munication Content, John Wiley & Sons, Inc., 1969, pp.
487-499.

11. Sedelow, Sally Yeates and Walter A. Sedelow, Jr., "Stylistic
Analysis," in Harold Borko, ed., Automated Language
Processing: The State of the Art, John Wiley & Sons, Inc.,
1967, pp. 181-213.

12. Sedelow, Sally Yeates, The Narrative Method of Paradise
Lost, University Microfilms, Inc., Ann Arbor, 1961.

13. Roget's International Thesaurus, Third Edition, Thomas Y.
Crowell Co., New York, 1962.

14. Webster's Seventh New Collegiate Dictionary, G. & C.
Merriam Co., Springfield, Mass., 1967.

15. Simmons, Robert E. and Robert A. Amsler, "Modelling Dic
tionary Data," in Ralph Grishman, ed., Directions in Arti
ficial Intelligence, Natural Language Processing, Courant
Computer Science Report Number 7, Courant Institute of
Mathematical Sciences, Computer Science Dept., New York
University, August, 1975.

16. Harris, Herbert R., "The Automated Version of Roget's
International Thesaurus: A Description with Suggestions
for Future Editing," in Sally Yeates Sedelow, et al., Auto
mated Language Analysis, 1973-1974, pp. 6-32.

17. Sedelow, Sally Yeates, "Etc. in Roget's International
Thesaurus," in Sally Yeates Sedelow, et al., Automated
Language Analysis, 1972-1973, pp. 35-43.

18. Bryan, Robert, "Abstract Thesauri and Graph Theory Ap
plications to Thesaurus Research," in Sally Yeates Sedelow,
et al., Automated Language Analysis, 1972-1973, pp. 45-89.

19. Bryan, Robert, "Modeling in Thesaurus Research," in Sally
Yeates Sedelow, et al., Automated Language Analysis,
1973-1974, pp. 44-59.

20. Warfel, Sam, "The Value of a Thesaurus for Prefix Identi
fication," in Sally Yeates Sedelow, et al., Automated Lan
guage Analysis, 1971-1972, pp. 31-49.

21. The Random House Dictionary of the English Language,
ed. Jess Stein, New York, 1966.

22. Sedelow, Sally Yeates, "PREFIX" in Sally Y. Sedelow,
et al., Automated Language Analysis, 1968-1969, pp. 12-25.

Computer animated film systems-A rat's nest of trade-offs

by BRUCE CORNWELL*
COr!sulta:nt
Brooklyn, N eW York

and

KATHARINE CORN\VELL*
Peat, Marwick, Mitchell & Co.
New York, New York

ABSTRACT

Selected examples of computer animated film produc
tion systems are analyzed in regard to usefulness for
student projects, commercial film production and
graphic research. No system seems ideal for all of
these purposes and the most sophisticated systems in
hibit a "collaborative" relationship with the computer,
especially regarding images that relate to mathematics,
science, or aesthetic spin-offs from these fields. A
minimal system of batch mode computing with micro
film output is described.

The two most beautiful aspects of the computer as
used in batch mode processing is that most any system
is infinitely expandable from the standpoint of hard
ware, and it has unlimited flexibility in view of the
vast range of languages that can be utilized. It is al
most astounding that one can gradually expand a com
puter from scratch, without having to make far-reach
ing decisions, other than the jump from a hand-held
programmable calculator to a system with peripherals,
or the jump to a larger word size if one starts out with
a mini computer. In contrast to this possible over
simplification, the building of a general purpose system
for the production of computer animated films is prac
tically an insoluble problem. Not only is there no ideal
final system, but the route toward the building of a
high-capacity or high-versatility system presents an
obstacle course of decisions. These decisions are simpli
fied if the system is dedicated to a single purpose, such
as films for use as engineering simulation studies pro
duced by an engineering concern with an in-house
facility.

Aside from such specialized applications, there are
two questions that might be explored: (1) What is a
minimum, workable computer animated film system,
and (2) What are the trade-offs as one expands up-

* Free lance computer animated film producers.

1035

ward? These questions are especially relevant when
considering the possibility of a facility for production
of computer animated films within an educational en
vironment.

There are several insights that can be gained from
an examination of the problems encountered in the
selection of equipment, materials and facilities for
conventional motion picture production. To begin,
there is no such thing as a general purpose film pro
duction facility, or motion picture camera. Equally
sophisticated film producers may require totally differ
ent equipment, as when shooting on a wildlife refuge,
or on a sound stage. The term, trade-off, in the mo
tion picture field is not a matter of differences of
degree-like 10 to 25 percent in cost, portability, speed
-it can mean equipment being totally incompatible for
diverse tasks. Trade-off with equipment for computer
animated films can be almost as drastic.

If the proposed facility is predicated toward ease of
film production, eventually the filmmaking process can
become child's play, and the end result may be trivial.
For instance, Fortran can be used to construct an end
less variety of mathematical functions as graphs. And
these can be subjected to motion that is also mathe
matical. But, if Fortran is bypassed by the filmmaker
for the option of a graphic display with light pen, the
whole universe of mathematical graphics is essentially
discarded. When a computer is used to execute elabo
rate mathematical functions-or even simple ones
this user often feels the presence of the computer as an
unseen collaborator. On the other hand, freehand
graphics is reputable. It was invented millenniums be
fore mathematics. However, with the availability of
interactive graphics, it is practically impossible to di
rect students not to use a tool that instantly generates
dynamic results in preference to doing something the
hard way. A parallel to this is a problem of students
who are starting to shoot live films. Although the zoom
lens is simpler and more versatile than a turret with
three fixed focal length lenses, it is most difficult to

1036 National Computer Conference, 1976

convince the students not to zoom in and out ad
nauseam.

There is no absolute minimum configuration for a
computer animated film system, and the minimum end
of the spectrum is in almost the same state of flux as
the maximum configuration end of the spectrum. How
ever, for purposes of this discussion we would like to
present for consideration a system that we have used
for over ten years of experimenting, teaching, and con
tract production of computer films in a variety of areas.
Probably it should not be called a system since there is
no dedicated hardware, Figure 1. The only dedicated
item is four boxes of punched cards that comprise a
standard graphics software package. We are presently
working with a modified version of the Integrated
Graphics Software developed by the Rand Corporation.
Our version is for the Stromberg Datagraphix 4060
plotter. All of the computing is done batch mode on any
of several IBM-360-370 installations. The plotting has
been done off-line on a number of microfilm plotters,
including Datagraphix, Gould, Seaco, and most fre
quently the Information International Inc. FR-80.
Since most microfilm plotters have the ability to emu
late their competitors, there has been little need for
changes in software (those subroutines that convert
our vector descriptions into commands that drive the
microfilm plotter) .

In order to assess this minimum system within the
total range of computer animated films, its throughput
potential should be compared with that of several other
configurations. As in discussion of live film produc
tion, it is most simple to classify a mode of film pro
duction by the end product rather than by the equip
ment needed to achieve that result.

The minimum system described above is reason
ably effective for the production of dynamic line
images. This would include films that demonstrate
scientific as well as mathematical principles since some
areas of science, particularly physics, lend themselves
to mathematically controlled graphics. l For some ob
scure reason, it is practically impossible to present a

Batch Mode

Computer

/
Microfilm

Plotter

Printed
CUtput

Output Film

Figure l-Flow diagram of minimum computer animated film
system

dynamic mathematical structure that does not display
aesthetic attributes to even the non-mathematician,
especially if a music track is synchronized with the
images. Probably the most significant example of this
effect is in the work of John Whitney.2 This type of
film is described by curve (1) of Figure 2. It requires
a great amount of planning and usually rather elabo
rate programs to drive the plotting software. How
ever, the end result can be accomplished with a mini
mum of hardware as shown by the descent of the curve.
(It should be noted that Whitney has used an inter
active graphic terminal to simplify input to his driving
program. This saves time.) Finally, it will be noted
that this type of film requires the most time for
throughput. This is not entirely discouraging in the
long view. If the film is to display a unique time
motion structure, the conception, design, the writing
of a driving program along with a few new subroutines
that are invariably required, and the debugging of
these programs-all these added together make the
throughput ability of the hardware less than crucial.
When this system is used for classes in computer ani
mated film which we teach at the New School, some
students choose to spend far more time at the black
board than the computer center.3

A second type of film is emerging in the area of
computer animated cartograms and statistical graphs.4

This is graphed as (2) in Figure 2. Typically, this type
of film displays very complex information and requires
massive input data to accomplish its purpose. Once a
program is operational, there is little need for the pro
grammer to interact with the system, since the primary
purpose of the film is to reveal what the data has to
show. This curve (2) would also apply equally well
to films that simulate traffic flow through a system of
paths with symbols that represent people or vehicles. 5

An emerging category of films could be called simu
lated cinematography, (3). The major initial thrust
in this direction was made at the University of Utah

maximum
recrKireme7'lt (1)

(2)

""-,;""- (4)
reaui1"err.ent

CATEGORY of REQt!IRE~lENT

the the
pl'OgI'C!17rie!': system • •••••••••••.

Driving Digitized
Program Data CCJT'{llex
C"",lexi ty Input Software

Inter
Active
Graphics

'!

TYPE OF FIlM

Ranked app""";""'tely
by time required for
tln>ougnp.t

~ Cartoon
.Animation

Sir.1Jlated
Cinematography

Cartograms
and Graphs

Dynamic line
I'Mges

Figure 2-Comparison of computing needs required by selected
types of animation

where the scheme was developed for representing
curved surfaces with a continuously shaded image that
would take into account the location of the light source
and the reflective characteristics of the surface. 6 Or, in
other words, photographs without a camera pointed
at an object. The computing required to display a full
frame of shaded image is vastly greater than required
for line structures of considerable complexity. This
is a major inhibiting factor if the object of producing
motion pictures is to study the motion rather than the
object in motion. Also the output film must be gener=
ated on a display that has beam intensity controllable
by very small increments, unlike any of the microfilm
plotters. However, considerable effort and ingenuity
is being directed toward making these techniques of
simulated cinematography a viable avenue of film pro
duction, especially in vievv of accomplishments at the
University of Ohio.'

A fourth type of film, curve (4), is the computer
animated cartoon. Probably the foremost example of
this type would be the output of Computer Image Cor
poration.~ This also involves a much more complex
system than dynamic line images and the characteristic
curve is almost a reciprocal of the dynamic line images
curve (1). Although the computer slavishly follows the
animator's guidance, it would be more fitting to con
sider the computer as an entire animation studio pro
duction staff, rather than a slave. This is a very
sophisticated use of the computer as both a time-saving
and labor-saving device. One of the main fascinations
of experimenting with dynamic line images is that the
aesthetic effect of the film created is often surprising.
Conversely, the virtue of a cartoon animation system
is its ability to deliver exactly ,vhat the designer re
quests.

One major omission from the graph is computer
generated films that display a walk-through of three
dimensional space (usually architectural) in full color.
Its characteristic curve would be a straight line
through the maximum requirement in each category.
Since there are only a few such systems in existence, it
is hardly an optional route for building a computer
animation facility from available resources. But even
this area is in a state of flux with simplifications of
hardware. lI

It can be observed that the more efficient a system
is at performing a given graphic task, the less feasible
or encouraging it is to use that system for a diversity
of generalized tasks. For instance, it would be almost
ridiculous to use a system capable of cartoon animation
or simulated cinematography to drive simple geometric
symbols of vehicles in a traffic engineering simulation.
Computer animation systems might be separated by
purpose into two categories. Is the system intended to
simulate other clearly established processes of motion
picture production (including animation)? Or, is the
system intended to offer the most direct means of pro
ducing motion graphs that describe, or are driven by,

Computer Animated Film Systems 1037

numerical processes? Or, restated, the choice is
graphics that emulate graphics, or graphics that syn
thesize numerics.

If this comparison of various systems justifies con
sideration of the minimum system as a starting point,
there are several items concerning its application that
could be clarified.

Fortran seems the most commonly used language
since the majority of graphic software packages are
compatible with Fortran. Simscript is another very
•• ~~-4! •• 1 1~~~ •• ~~~ ~~~~~;~11~~ -4!~_ ~~~;~~~_;~~ ~;~ •• 1~+;~~~
UDl;lo Ul la.ll~ Ua.~I;, I;DVI;L,.1a.llJ loU! 1;.1.1~1l.11;~! ll.1O Dll.11U.1a.l".1U.1.1D,

and it can be used to drive the graphic software, al
though not as simply as Fortran.

Graphic debugging can be accomplished on a line
printer by a fairly simple set of subroutines, about 100
statements, which emulate the plotting software and
produce strings of asterisks. Batch mode turn around
can slow the throughput until the user discovers that
working on several portions of a project simultaneously
can leave little idle time. Another point on debugging
that can effect considerable cost savings involves a
modification in the graphic software. All of the sub
routines that are accessed by our driving program are
subject to being turned off or on by one call from the
main program. This enables us to run through a
lengthy sequence but plot on film only a few selected
frames. This does consume extra computing time, but
that cost is small in comparison with costs of de
bugging by means of a long plotting run.

The final component to consider is the microfilm
plotter. Even if one has funds available to purchase
or lease a plotter, it could be viewed as a serious mis
use of funds if there were not enough footage of film
output to keep the machine going at least two hours a
day (figure about 100 16mm feet/hour) Furthermore,
an in-house plotter demands a motion picture film
processing machine, such as a Kodak Prostar, but if
the film output is to be used as a master for making
extra prints, or color prints, the film from the plotter
should be reversal processed and that is not simple
on a Prostar. And finally, unless one has a resident
engineer provided by the manufacturer of the plotter,
the system may be down at times less than convenient.

The alternative is to use a commercial microfilm
plotting facility. Although we are located in New York
City, it has proven most convenient and economical to
work with a company in Los Angeles. They are located
within a mile of the airport, and operate 24 hours a
day, seven days a week. Our cost for this service is
about 10¢ per 35mm frame. However, we often plot
four separate 16mm images within the 35mm frame
which reduces the cost to .025 per 16mm frame.

In conclusion, computer animated film production
has one pitfall that also afflicts many would-be conven
tional film producers: It is quite easy to fall in love
with beautiful, sophisticated and versatile equipment
without first determining the objective of the under
taking toward furthering film as a communication

1038 National Computer Conference, 1976

medium. If there is any doubt about this objective, it
is far safer to start small.

REFERENCES

1. Ehrlich, R., B. Cornwell and K. Cornwell, Relath'ity: A
Series of Computer Animated Films, Houghton Mifflin Com
pany, 1974.

2. Whitney, J., Permutations, Film Library Service, New York
Museum of Modern Art, 1968.

3. Seigel, M., B. Cornwell, et aI., Batch Mode Square Dance,
(16mm color film), New School for Social Research, 1974.

4. Cornwell, B. and D. Kasik, Unemployment 1954-1974, by
Race, The Graphic Social Reporting Project, Bureau of So
cial Science Research, 1975.

5. Joline, E., The Application of Computer DTawn Motion Pic
tures to Urban Transportation Concepts, Personal Rapid
Transit III, 1976.

6. Joline, E., "Application of Computer Drawn Films for Vali
dation and Visualization of Airport Simulations," Winter
Simulation Conference, December 1971.

7. Watkins, G., Real Time Visible Surface Algorithm, Uni
versity of Utah Technical Reports UTC-CSC-70-101, July
1970.

8. Csuri, C., "Computer Animation," SIGGRAPH Proceedings,
1975, SIGGRAPH Conference on Computer Graphics and
Interactive Techniques.

9. Csuri, C., "Real Time Computer Animation," IFIPS Con
gress, Stockholm, 1974.

10. Holman, D. and L. Holman, "A Better Mousetrap, the CAE
SAR," Filmmakers Newsletter, February 1975.

11. Goldstein, R. and R. Nagel, "3-D Visual Simulation," Simu
lation, January 1971, Simulation Councils, Inc.

12. Eastman, J. and J. Staudhammer, "Computer Display of
Colored 3-D Object Images," Proceedings of the 2nd Annual
Symposium on Computer Architecture, p. 23-7, 1975.

Speakeasy-A window into a computer*

by STAN COHEN
Argonne National Laboratory
A _~~~~~ Tll~~~~"

""'""'l..~6V.lIJ.l1:;, ..I..l.L.l.l.IV.lO

ABSTRACT

Speakeasy is a system that enables a user to harness
the power of a computer as a tool for problem solving.
This paper describes the structure of that system and
demonstrates some of its capabilities. The examples
show some of the power that results when relatively
straightforward graphical facilities are added to this
general purpose system.

INTRODUCTION

A modern computer complex is an extremely fast in
formation processor with a vast amount of stored in
formation available to it. Machines and their associ
ated software are becoming ever faster, ever larger and
ever more complex. This growth in capability brings
with it increasing responsibility to provide the normal
user with adequate access to available information.
Unfortunately a sense of isolation from advances in
computer science is common in many disciplines and
results in the people most in need of the capabilities
provided by a computer being forced to rely on second
ary sources for solutions to their problems or to ignore
advances entirely and to program using first genera
tion computer techniques.

One answer to this problem of information exchange
can be found within the structure of the computer
itself. A generalized modular system that is designed
to access and operate with libraries of stored informa
tion can make advanced algorithms and general infor
mation available to users in a sensible way. Properly
structured, such a system acts as an interface between
user and the computer, matching the user's needs to
capabilities available to him. Inadequacies in such a
system are answered by adding new capabilities to
satisfy existing needs. A system designed for growth
provides the environment to answer the needs of users;
it can at the same time provide researchers in computa
tional science with an audience for their work.

This paper describes a system of this type that has
been in use and under development for over a decade.

* Work performed under the auspices of the U.S. Energy Re
search and Development Administration.

1039

Originally designed as a tool for research scientists,
the generalized and easily used structure of this proces
Ror has now led to its acceptance by a large and varied
user community. Although Speakeasyl-4 has been in
existence for many years, it is the widespread avail
ability of time-sharing systems such a TSO and VM/
CMS that accounts for the recent rapid growth in
acceptance. The Speakeasy processor is currently
available for use on IBM 360 or 370 computers oper
ating under OS, TSO, VM/CMS or MTS. It has been
translated for use on F ACOM-230 and PDP-10 com
puters. Translations to several other computer systems
are now being carried out.

There is an active user group involving some 70
different installations and over a thousand users. The
user communities already include physical scientists,
engineers, econometricians, government agencies and
universities. The growth in the capabilities of Speak
easy in recent years is partially in response to the
diverse nature of its user group and partially due to
contributions from it.

This paper is intended as a general description of the
Speakeasy system. It is divided into two major sec
tions. The first describes the structure of the system.
The general form of this system should be of interest
to a computer scientist since it is here that the exten
sibility and growth capabilities reside. The second
section is a sampling of the capabilities found in actual
operational versions of the system. The features illus
trated are only a few of those that make this system
valuable to its users. They show that a truly user
oriented system can at the same time be a powerful
one.

THE OVERALL DESCRIPTION

The structure of the Speakeasy system is illustrated
in Figure 1. The system consists of a language pro
cessor that interprets the requests of the user and
breaks them down into basic syntactical components.
The language structure is a straightforward one
modeled on conventional mathematics. A scratch-pad
storage facility available to the processor enables it to
maintain transient information for the duration of the

1040 National Computer Conference, 1976

SPEAKEASY
PROCESSOR

NAMED
STORAGE

USER
INTERFACE

BASIC
SYSTEM

LIBRARIES OF
COMPUTATION
FAC III T'I ES

Figure l-A schematic view of the Speakeasy system. The bulk
of the computational facilities are contained in the modules

that make up the libraries attached to the system

particular application. The processor and this scratch
pad provide the mechanism for a user to define and
address structured objects that represent transient
information in the tasks being assigned to the system.

Libraries of pre-compiled routines are attached to
the processor to provide the system with its working
vocabulary. When a specific operator is requested of
the system, all of the libraries attached to the system
are searched. If the requested operator is found, it is
dynamically linked to the system so that it may perform
its function. In most cases such operations involve
operands previously defined and saved in the transient
scratch-pad area. New results are also saved there and
are therefore available for later use by other opera
tions.

This operator-operand formulation with a wide
variety of operators on structured objects is the heart
of the Speakeasy system. The ability to define struc
tured objects such as arrays, vectors and matrices
makes it meaningful to develop a large set of operators
tailored to specific data structures. The use of attached
libraries makes it possible to provide an ever increas
ing set of such operators without creating a system of
immense size and complexity.

The modularity of this system, the use of libraries
and the simplicity of its control language combine to
provide a powerful system that is easily used and ca
pable of sustained growth.

Design of the language

The Speakeasy system can be viewed as a repository.
The communication language for the system (also
called Speakeasy) is intended to make this repository
usable. In designing the language and its syntactical
rules the foremost considerations were naturalness,
ease of use and tolerance for trivial mistakes. The
basic specification for the language is a simple one.
If a request by a user is unambiguous and looks correct
to him then it should be accepted by the system.

This design philosophy is somewhat different from
that of normal computer languages that provides fea
tures to enable the user to exploit the capabilities of
the machinery itself. Such languages are specified so
that a large number of decisions that relate only in
directly to the calculation must be made by the pro
grammer. To give just a few examples, fixed point
versus floating numbers, dimension statements for
quantities that occur only as intermediate results, and
input and output formats are concepts only indirectly
related to the statement of the problem itself. Fre
quently such relatively trivial specifications constitute
the bulk of a program; the parts related to the calcula
tion are but a small part of the material written by the
user. It is the volume of this extraneous information
that accounts for many of the errors encountered in
conventional programming.

In Speakeasy most of such decisions are considered
to be part of the internal functions of the system. The.
user formulates his problem in a brief and natural
manner, the system translates this formulation into an
executable form, relieving the user of as many trivial
decisions as possible. In fact, the Speakeasy language
specifications bear little relationship to the structure of
a computer and only very indirectly reflect the form of
calculation as executed in the computer.

The Speakeasy language is designed to operate with
structured objects. Scalars, arrays of numbers, mathe
matical vectors and true matrices are among the many
classes of structured objects that a user may define and
use in his calculation. Implicit algebraic rules that are
class dependent provide a variety of tools for formu
lating calculations while operating on defined objects
as single entities. Complete matrix algebra is provided
in a natural notation. This combined with the array
processing capabilities, enables one to write a directive
program that does not involve the loops and branches
that make up most of the computational steps in con
ventional programs.

The availability of structured objects means that an
operator-operand language with great richness can be
developed (one of the limitations of usual languages
is that the scalar structure of the languages limit func
tional values to scalars). Each of the operators in
Speakeasy is designed as a self-contained module whose
operations are dependent upon the structure of its
operands. In this way all of the decisions normally
necessary in invoking routines in conventional pro
gramming techniques are internally contained in the
operators of the system. Each operator is clearly de
finable in terms of what it does and contains many
checks to see that it is being properly applied. By
placing decision processes such as these within the
system the user is relieved of most of the mundane
parts of programming. The user can therefore con
centrate his effort on formulating the overall logic of
his problem and still be assured that the large number
of trivial decisions are being properly made.

The overall language designed around an operator
operand concept combined with conventional algebraic
tools is powerful, easily learned and easily used. It is
logically complete and is extensible in both the types of
structure supported and the operators available for
manipulating objects.

The transient scratch-pad-named storage

A special dynamic storage scheme is an important
component of the Speakeasy system. This storage facil
ity provides the mechanism for defining and retrieving
the structured objects discussed previously. In this
scheme each defined object has associated with it a
complete description of its structure along with par
ticular values for its elements. Most importantly, the
object and its descriptive information can be refer
enced by name. The name is all that is needed to locate
any defined object, to determine everything about its
structure and to use it in a calculation.

Named Storage" was developed for use with calcu
lations in nuclear physics. 1 It is this storage technique
that led to the development of Speakeasy. Individual
modules of the Speakeasy system (the operators avail
able to the language processor) are designed to operate
on objects defined in Named Storage and to produce
new objects there. The extreme modularity of the
Speakeasy system is a consequence of this rather
straightforward storage scheme.

Each defined object in Named Storage has descrip
tive information appended to it which designates its
class, the type of data in its elements and its dimen
sionality. The allowed ranges for these designators
has been made large so that new data types, new
classes, etc. can be supported in later developments.
Since no computational capabilities are contained in
the storage package it is possible to extend the capa
bilities of Speakeasy entirely through additions to the
operators attached to the system.

The libraries-linkules

In most computer systems each new addition brings
with it increases in complexity, more overhead and a
larger processor. Even with a very modular system
this remains the case. The benefit of each addition
must be weighed against the consequence that it will
have on the overall system performance. It is there
fore unlikely that a feature of great benefit to only a
few users will ever be adopted if it degrades the sys
tem's use for others.

The library orientation of the Speakeasy system
solves this problem in a particularly interesting way.
The use of attached libraries containing operators such
as those described earlier provides a system with easily
expandable capability in a way that neither constrains
the growth nor increases the basic structure of the

Speakeasy 1041

system. Operators that are dynamICallY attacnea. to
the processor, called linkules,3 provide the means for
adding any desired capability for those who need it,
without others even being aware of its existence.
Private libraries of linkules can be used to give each
user community a processor tailored to its own needs.

The freedom provided by a library oriented system
is obvious. Growth by the accumulation of new infor
mation is automatic. Maintenance is particularly
easy since replacement, modification and additions are
Blade on Blt:mlbers of libraries and not On the processor
itself.

Each new operator added to the system brings with
it capabilities that are enhanced by the presence of
other operators in the system. A system such as Speak
easy thus reaches a critical stage where the interrela
tionship between the operators begins to make itself
felt. After this threshold is reached the growth of the
capabilities of the system are often based on finding
new ways to interconnect existing facilities. Speakeasy
has passed that threshold and it is no longer possible
to clearly define the limits of the capabilities of the
existing system.

The user interface

The user's first introduction to a system such as
Speakeasy can be through a variety of devices. It is
important that a system such as Speakeasy functions
equally well for each type of device and that it be able
to exploit the particular capabilities of each. In this
system this is accomplished by isolating all input and
output to specific components of the system, designing
interfaces to classes of devices, and providing other
general facilities that can be selectively made available
to users of specific devices on demand.

This ability to interface correctly to every type of
terminal in a time sharing environment is of particular
psychological importance since the intent is to make
this system appear natural to the casual user. If the
introductory session with the processor is spent de
scribing how a particular device is used or why a multi
tude of peculiar keys are used then it is unlikely that
the user will ever be convinced of the naturalness of
the language.

The currently operational versions of Speakeasy can
be used with card readers, printers, plotters, ASCII
terminals, IBM 2741's, Tektronix 4000 series graphics
terminals, or any combinations of these devices. In
each case the adaptation is one in which the device is
natural to use and one where all of its hardware capa
bilities can be exploited.

EXAMPLES OF SPEAKEASY

Speakeasy is best demonstrated in a time sharing
environment, for it is there that the ease of use and

1042 National Computer Conference, 1976

natural form of the language becomes most obvious.
Complete novices can begin to carry out calculations
with only a few minutes instruction. Built in docu
mentation and teaching aids enable such users to learn
about the wide variety of capabilities within the sys
tem and to soon begin to utilize the system as a tool in
their daily work. As their demands grow they find
within the system a wide variety of facilities that can
be merged together into an extremely powerful tool.

It is obviously not possible in this short paper to
convey the feeling associated with an interactive sys
tem. Neither is it possible to demonstrate more than a
few of the capabilities of this large system. No attempt
is made, for instance, to illustrate the use of stored
programs or of the editor that is available to construct
such programs. N either is there any discussion of the
means of storing and retrieving information. The
examples given here must therefore be viewed as a
demonstration of only a few of the available features
and perhaps as a tantalizing taste of what can be found
within the system.

Examples of the arithmetic capabilities

The bulk of the computational capabilities in this
system are related to numerics. Many of these facili
ties were provided by simply designing interfaces to
existing Fortran coded mathematical subroutines and
functions. Every attempt is made to find the best avail
able technique and to provide as sensible and as general
a facility for the users as is possible. It is in this way
that the novice computer user is able to make use of
advanced computational techniques. *

The system contains the basic operations of numeri
cal calculus, statistics, matrix algebra and most of the
usual special functions. Many of the operations are
available for both real and complex numbers.

Figure 2 shows the processor being used as a desk
calculator. The two characters :_ are the prompt
symbols for the manual mode of Speakeasy. The user's
request is typed on this remainder of the line. A car
riage return indicates that the request is complete and
that processing should take place. If the request elicits
a response it is almost immediate and it is followed by
a new prompt. A special implied print convention
echoes simple input requests and prints the result. This
result is also given the name ANSWER so that it may
be used in later calculations. Users may define vari
ables by straightforward assignment statements such
as those illustrated. Standard mathematics notation
is clearly demonstrated by the use of absolute value
signs and factorials, and by the normal hierarchy for
the evaluation of involved expressions.

* For example, EISP ACK is a general purpose eigen-analysis
package. In Speakeasy the words EIGENVALUE and EIGEN
VECTOR are used to invoke this package. Decisions relating
to the particular choice of path through EISPACK are made by
the linkule interface. The novice user is thus provided with a
powerful computational package in a simple way.

: 2+2
i+2 = 4
: 3*SQRT(3)
3*SQRT(3) = 5.1962
: 3**3
3**3 = 27
: ANSWER+20
ANSWER+20 = 47
: X=9 ; Y=18
:-X*Y-5
X*Y-5 = 157
: 4*X+ 13*5 !-7! 1
4*x+13*5!-7! 1 = 4716
: (3*LOG(4»*(SQRT(3.5*8/6.555)+17.6)
(3*LOG(4»*(SQRT(3.5*8/6.555)+17.6) 81.792
: ACOS(-l)
ACOS(-l) = 3.1416
: SIGNIFICANCE 15
:-ANSWER
ANSWER = 3.14159265358979
: SIGNIFICANCE 5
:-ANGLES IN DEGREES
:-RATIONALIZE
:-2/3+1/7*SIN(30)
273+1/7*SIN(30) 31/42
: (-32)**(-3/5)
(~32)**(-3/5) = -1/8
: (-2)**(3/2)
IN LINE" (-2)**(3/2) ENTERED COMPLEX DOMAIN.
:_DOMAIN COMPLEX
: RETRY
(~2)**(3/2) = -2.82841
: (2-31) **2
(2-31)**2 = -5-121
: SQRT(3-4I)
SQRT(3-4I) = 2-11
: ANSWER**2
ANSWER**2 = 3-41

Figure 2-A sample of the use of Speakeasy in the manual or
desk calculator mode of operation. Note the natural form

of the directive language

Figure 3 illustrates the definition and use of arrays
of numbers. It is of course not possible to show more
than a few of the available capabilities. The compact
ness and the direct form of the language should be
apparent. The rather natural and readable form of
output should also be noted. It should be realized that
this output form is the default form. Further tailoring
is of course possible.

Figure 4 shows the means for defining and operating
with matrices. The computational power that is hidden
within these few statements should be apparent to
those familiar with this field of numerical analysis.
Some of the available tailoring commands are also
illustrated here to demonstrate the flexibility of the
system.

In Speakeasy two dimensional arrays and matrices
belong to different families. The algebraic rules for
operating on such objects are different. In Figure 5
some of the operations shown in the previous figure
are repeated using arrays instead of matrices. The
differences are apparent.

: ANGLES IN DEGREES
: =X=GRID(0.360.15)
: SINE=SIN(X) -: COSINE=COS(X) -
: TABULATE X SINE COSINE -

X SINE COSINE

0 0 1
15 .25882 .96593
30 1/2 .86603
45 .70711 .70711
60 .86603 1/2
75 .96593 .":;;>00":;

90 1 -0
105 .96593 -.25882
120 .86603 -1/2
135 • 70711 -.70711
150 1/2 -.86603
165 .25882 -.96593
180 -0 -1

__ , ... & nnn~(~\ 1 0
: A~/,J,~,~~n~\JJ,~,u

:-AVERAGE(X)
AVERAGE(X) = 4.122
:_CUMSUM(X)

CUMSUM(X) (A 6 COMPONENT ARRAY)

X SINE COSINE

195 -.25882 -.96593
210 -1/2 -.86603
225 -.70711 -.70711
240 -.86603 -1/2
255 -.96593 -.25882
... "." -1 n
":;/V v

285 -.96593 .25882
300 -.86603 1/2
315 -.70711 • 70711
330 -1/2 .86603
345 -.25882 .96593
360 0 1

7 10 14 15.732 16.732 24.732

:_ORDERED(X)

ORDERED(X) (A 6 COMPONENT ARRAY)
1 1.7321 3 4 7 8

Figure 3-The compact form of the Speakeasy language is
shown here. There are a large number of functions such as

CUMS"LM and AVERAGE. The explicit looping so com
mon in other languages is rarely used in Speakeasy

Documentation

Any computer system must be properly documented
in order that it be usable. Documentation for a major
system is not an easy task. If approached solely by con
ventional means it would be even more difficult in a
system like Speakeasy that is designed for growth.
Any printed documentation would be outdated before
it was published. Fortunately, the system itself is ca
pable of providing facilities that not only supply the
documentation but do so in a way that is guaranteed
to be self-sustained.

A library of documents referred to as the Speakeasy
HELP documents is attached to the system. This
library is addressed by a linkule in the normal library.
Each word, concept or facility available in the system
is described in a member of the HELP document
library. The library is designed as a tree structure so
that a user probing the library in an interactive session
is led quickly to the specific concept of interest.

Figures 6-8 illustrate the HELP documents and show
how the tree structure provides quick access to infor
mation about a specific operation. Each of the over
500 documents in this library is available in a similar
way. The intent of these short documents is to inform
the user of the operational definition of each word. No
attempt is made to explain specifics of the techniques
used. A second library containing larger documents

Speakeasy 1043

:_X=MATRIX(3,3:1,2,3,5,2,7,3,1,6)
: X

X (A 3 BY 3 MATRIX)
123
527
316

l/X

1/X (A 3 BY 3 MATRIX)
I:" I, '- n J, '- , 11'\

-J/~O ~/~O -~/L

9/16 3/16 -1/2
1/16 -5/16 1/2

NORATIONALIZE
:-l/X

itx (A 3 BY 3 MATRIX)
-.3125 .5625 -.5

.5625 .1875 -.5

.0625 -.3125 .5

X*ANSWER

X*ANSWER (A 3 BY 3 MATRIX)
1 6.9389E-17 0
010

-2.7756E-17 0 1

:_PRINTNULL(lE-10)
: ANSWER

ANSWER (A 3 BY 3 MATRIX)
100
010
001

_EIGENVALUES (X)

EIGENVALUES (X) (A VECTOR WITH 3 COMPONENTS)
-1.5484 1.0928 9.4556

Figure 4-Built-in matrix algebra is available in a natural way

is available for that purpose and is equally easily ac
cessed.

A complete teaching facility is also built into the
library of the standard system. A series of tutorial
sessions provide a novice with step by step instructions
on the use of special facilities. One of these sessions
is an introduction to Speakeasy graphics. A few pages
of this are shown in Figure 9.

Interactive graphics

A graphics display terminal in a time-sharing en
vironment greatly increases the potentials for true
interactive computing. This is particularly evident for
the exploratory types of computation that are so com
mon in many problem solving and research environ
ments. Because large amounts of information can be
rapidly and sensibly displayed it is possible for the
user to quickly interpret the effects of various choices.

1044 National Computer Conference~ 1976

:_X=ARRAY(3,3:1,2,3,S,2,7,3,1,6)
X

X (A 3 BY 3
123
527
316

1/X

1/X (A 3
1
.2
.33333

BY 3
.5
.5
1

X*ANSWER

ARRAY)

ARRAY)
.33333
.14286
.16667

X*ANSWER (A 3 BY 3 ARRAY)
111
111
1 1 1

_SUMROWS(X)

SUMROWS(X)
6 14

(A 3
10

COMPONENT ARRAY)

Figure 5-The algebraic operations in Speakeasy are class
dependent. The array algebra in these examples should be

contrasted to the algebra shown in Figure 4

: HELP
-HELP explains how to use Speakeasy.

QUIT is the command to leave Speakeasy.
INOUT lists words dealing with input and output.
MATH lists mathmatical functions.
PHYSICS
STATISTICS
OBJECTS
PROGRAMS
DATATYPES
MISCELLANEOUS
BUGS
NEWS
TUTORIAL
VOCABULARY
HELP XX

are functions of interest primarily to physicists.
lists words related to statistics.
lists words dealing with structured objects.
lists words used in writing programs.
lists words about types of data used in Speakeasy.
lis ts other Speakeasy words.
gives the known errors and stage of correction.
gives recent modifications and new features.
tells how to use the Speakeasy tutorial.
lists all the words in Speakeasy.
gives an explanation of the word XX.

XX is any vocabulary word.

: HELP GRAPHICS
-GRAPHICS are words which deal with graphical output.

CALCWORDS lists words used to plot on a CALCOMP plotter.
GRAPHWORDS lists graphics words usable with most graphic devices.
OLDTEK lists words used with the old Tektronix package.
PRINTGRAPHS lists words used to plot a line printer or a

non-graphics terminal.
TEKWORDS lists words used to plot on a Tektronix terminal.

Note: An attempt is being made to, wherever possible, make graphics
words independent of the graphic output device being used to create
the plot. At present only a few meet that goal (type HELP GRAPHWORDS
for the list). In the future, the words listed in the TEKWORDS Help
Document will form the basis of the new graphics vocabulary.

To obtain a description of a given word XXX, enter
HELP XXX

Figure 6-Evel'Y word kno'\vn to the Speakeasy processor is
described by a short HELP document. These documents are

arranged in a tree structure, part of which is shown
here

: HELP GRAPHWORDS
-GRAPHWORDS lists graphics words usable with most graphic devices.

ADDGRAPH adds a graph to a previous graph.
GRAPH plots a graph.

: HELP GRAPH
-GRAPH(Y:X) plots Y as a function of X.

X and Yare one dimensional ·arrays of equal length. The scale, if
not defined, is computed automatically, the curve is plotted, and the
axes are drawn and numbered. The GRAPH command may be used alone or
else combined with other graphics words to tailor the graph format
to the user I s requirements.

GRAPH(Yl,Y2, .•. YN:X) is an alternate form. It generates a multiple
plot. Each variable, Yl through YN, is plotted as a fUnction of X.
Note that a colon must be inserted before the dependent variable.

GRAPH(Y) is an alternate form. The points are assumed to be equally
spaced and are plotted as a function of the integers, 1 2 3 •.• N, where
N is the number of elements of Y.

GRAPH(Yl,Y2, ... ,YN:) is an alternate form. Each variable is
plotted as a function of the integers. The arguments must have the
same number of elements.

A generalization allows a dependent (vertical) variable tc have
a two dimensional structure. In this case each row of the array is
treated as if it were a separate variable. The number of elements in
a row must therefore be equal to the number of elements in X. The
array may have any number of rows. Note that an array with this
structure can be prepared rather easily by taking advantage of the
HIWIDE convention (see the HIWIDE Help Document).

The GRAPH command is available with all graphics packages with
the exception of the option that allows a plot versus the integers if
no horizontal variable is given. This option is not available with
the old Tektronix graphics package.

Figure 7-A continuation of the tree search shown in Figure 6.
These documents are short and supply operational definitions

: HELP TEKWORDS
-TEKWORDS are words used to obtain a graph on the Tektronix terminal.

There are seven classes:
1. Initialization instructions:

TEKRESET resets the graph description to its default status.
TEKTRONIX initializes the Tektronix graphics package.

2. Instructions used to specify or describe the plot:
GRAPHS OFF suppresses graphic output.
GRAPHS ON restores graphic output.
OVERLAY merges several graphs on the same display.
SETTITLE specifies the graph title.
SETXAXIS describes the format of the horizontal axis.
SETXLABEL specifies the label used on the horizontal axis.
SETXSCALE specifies the horizontal scale.
SETYAXIS describes the format of the vertical axis.
SETYLABEL specifies the label used on the vertical axis.
SETYSCALE specifies the vertical scale.

3. Commands used to generste output on the terminal:
ADDGRAPH adds curves to an existing graph.
ADD SCALE adds scale labels.
BELL generates an audible signal.
ERASE erases the screen.
GRAPH plots a graph.
HARDCOPY copies the display on the hard copy uni t.
WAIT suspends processing.

4. Functions which return information about the graph:
GRAPHLOC returns the location of the graph.
CURSOR returns an indicated location on the display.
SHOWGRAPH lists the current graph description.

5. Words
ANNOTATE
PRINTSIZE
SETCHAR
TEXTHEIGHT
TEXTWIDTH

which deal with text output:
writes text on a graphic display.
specifies the character size used for print output.
specifies the character size used for graphic output.
returns the height of a text object.
returns the width of a text obj ect.

6. Words describing special purpose scales:
BETASCALE describes use of Reciprocal Absolute Temperature scales.
PROBSCALE describes how to generate Normal Probability scales.

7. Variables used to contain parameters and auxiliary data:
LINECODE its value controls the format of the plotted curves.
PLOTPARM a common storage area which can be used to store and

retrieve the current plot specification.
NULLPOINT a special value used to omit points from a curve. JR

To obtain a description of a given word XXX, enter
HELP XXX

Figure 8-The list of HELP documents that relate to the Tek
tronix graphics package

TUTORIAL TEKTRONIX
TEKTRONI PAGE 0
TEKTRONIX

Table of contents
1 Introduction
2 Plotting a simple graph
3 More abou t GRAPH
4 Labels
5 Controlling the line format
6 ADD GRAPH

HARDCOPY, WAIT, and ERASE
8 Setting the scale
9 Converting to new units
10 Setting the graph size and location
11 Conclus ion

MORE
TEKTRONI PAGE 1
!NTROnt'CTION

A gr.aphics s'Uppc!"t p~ck~gc::0 available whi..:h .:illuw$ yuu
to plot graphs on a Tektronix terminal. This Tutorial will
introduce you to some of its features. It will first show you how
to plot a simple graph using only a few Speakeasy statements. Then
It will show you how to add scale labels and a title and how to
change the foriUat of the: plotted curves. It will show you two
methods of making a copy of the display. Finally it will explain
some of the facilities which allow you to set up your own graph
layout and to create quite elaborate displays. The Tutorial should
be used while you are logged on to a Tektronix terminal. If you
are not, wait until you are.

Type MORE to start the actu:ll session.

: MORE
TEKTRONI PAGE 2
PLOTTING A SI~PLE GRAPH

You must be familiar with only two Speakeasy graphics
statements to begin using Tektronix graphics. The first,
USE TEKTRONIX, initializes the system and must always be typed
before using any graphics words. GRAPH is then available to
actually plot a graph. For example, examine the following
series of statements:

X~GRID(O,10); Y=SIN(X)
USE TEKTROllIX
GRAPH(Y:X)

Try this yourself. (At your installation, the USE TEKTRONIX
statement may result in a request for information about the
terminal you are using.) The GRAPH statement automatically
gives you a complete graph. T!nless you have specified otherwise,
it takes care of the details of planning, scaling, and laying out
your graph.

Try plotting other functions using the GRAPH command. When
you are interested in more information, type MORE.

Figure 9-The start of the tutorial session on the Tektronix
graphics package

He is then in a position to conjecture sensible alterna
tive problems. It is in such situations that the wealth
of available facilities combined with the concise and
natural directed language of Speakeasy plays its most
powerful role. The system provides an environment
that matches closely the needs of such a user. He may
quickly formulate and carry out alternative calcula
tions and see their results. The flexibility and power
of the system becomes most apparent when the results
of one calculation lead to ideas that can be tested on
the spot by applying new techniques built from tools
provided by the system.

The graphical capabilities in Speakeasy are straight
forward ones. They are designed to provide the user
with the means of displaying computed functions in
easily interpreted ways. The discussion here is limited
to the facilities currently available for display termi
nals such as the Tektronix 4012 or 4014. Alternatives
exist for other graphical devices and crude graphics
are even available on printers and terminals limited to
character displays. Figure 10 shows a simple contour
plot that can be obtained on such a device. Figure 11
shows a sample of graphical output on a printer.

Perhaps the most dramatic example is illustrated in
Figure 12. This example is the result of entering the

Speakeasy 1045

1111 99 8888 666666666666 44 A BBBBBB BBBBBBBB
11111 99 g8888 6666666666 44 ~~ 0 A BBBB BBBBB

11111 99 88888 666666 44 22 0 A BBB BB
11111 99 888888 666 4 2 0 A BBB

9 11111 99 888888888 666 44 2 00 A BBB
CCCCCC 99 11111 999 888888888888 666 44 2 00 A BBB

CCCCCCCCCC
ccccccccccc
ccccccccccc
ccccccccccc
ccccccc
cccccc
ccccc

99 11111 999 888888888888 66 4 22 0 AA BBB
99 11111 9999 8888888888 66 4 2 0 AA BBB

88 99 11111 99999 888888 66 44 2 0 AA BBB
888 99 11111 9999999 88888 66 4 2 0 AA BBB
8888 99 111111 9999999 88888 6 4 2 0 A BB

888 99 111111 9999999 8888 66 4 2 00 A BB
888 999 1111111 99999 888 66 4 2 0 A BB
8888 99 111111111 99999 8888 6 4 2 0 A BB

888 99 1111111111 9999 888 6 44 2·0 AA BB
888 99 1111111111 999 888 6 4 2 0 AA BB

6 888 99 11111111111 999 888 66 4 2 0 A BB
6 8888 99 11111111111 999 88 66 4 2 00 A BB
66 888 999 111111111111 999 888 66 4 2 0 AA BBB
66 888 99 11111111111 999 888 6 4 2 0 AA BB
66 888 999 111111111111 99 888 6 4 2 0 A BBB
666 8888 999 111111111111 999 88 66 4 2 00 AA BB

ccccc
cccccc
ccccc
ccccc
ccccc
cccccc
ccccccc

666 888 999 11111111111 99 888 66 4 2 0 AA BBB

CCCCCCCC
CCCCCCC

CCCCCC
CCCC

CC
666 SSS 999 11111111111 99 88 6 4 2 0 AA BBB
666 888 9999 1111111111 99 88 6 4 2 00 AA BBB
666 8888 9999 111111111 99 888 66 4 2 0 AA BBBB
666 8888 99999 111111111 99 88 6 4 2 00 AAA BBBBB

666 8888 999999 11111111 99 88 6 4 2 0 AA BBBBB
666 88888 9999999 111111 99 88 66 4 22 00 AAA BBBBBBB
666 88888 999999 111111 9 88 6 44 2 00 AAA BBBBB

666 8888888 999999 111111 99 88 66 4 2 00 AAAA B
666 88888888 99999 11111 9988 6 4 22 00 AAAAA
6666 88888888888 9999 11111 9 88 6 44 22 000 AAAAA

4 666 8888888888 999 1111 9 88 66 44 22 000 AAA
66666 88888888 999 1111 9988 66 44 22 0000

~~44 666666 888888 99 111 9988 66 44 222 000000
44444 66666666 88888 99 111 9 88 66 44 2222

2 44444 6666666 8888 99 111 9 88 66 444 22222
2222 4444444 66666 888 99 111 9 888 66 4444 222

222222 444444 6666 88899 111 9 888 66 44444
2222222 4444 666 888 9 111 99 888 666 4444

0000000 222222 444 66 88 9 111 99 888 66666
00000000 2222 444 66 88 9 111 99 8888 66666

0000000 222 44 66 88 9 111 99 88888 6666
AAAAAAAAAAA 00000 222 44 66 8899 111 99 888888

0000 22 44 66 88 99 1111 999 888888 A AAAAAAAAAA
000 22 44 66 88 9 1111 999 8888888

000 22 44 6 88 9 11111 9999 888888
00 2 4 6 88 99 11111 9999 8888

00 2 4 6 88 99 111111 9999 88

AAAAAA
BBBBBBB

BBBBBBBBBBBBBBBB

AAAAA
AAAA

AAAA BB B BBBBBBB B BB BBBB BBB

Figure lO-A sample of the output of the contour plotter for
non-graphics terminals

DAYAGE = 17924
SYMBOL: * IS PHYSICAL
SYMBOL: X IS EMOT ION
SYMBOL: 0 IS INTELL

.. + ..•• + •.•. + + ••.• + •••• + + ..•. + .•.• + ••.• + •••• + ..••.

00 ** X 00
• *00 XOO * XX XXOO 00 *

.75 +0* XO * x OOX o * * +

P XO * x 0 x 0 X.

H XO X x *0 x

Y 0 0 0

S x 0 x * 0 x 0 X

I + X X 0 x* x +

C XO x 0* X 0 X

A o * 0 0

L X 0 X 0 X *
X 0 X X OX

-.75 + *x 0 X 00 X XO * +
XXOOX 00 * * XX XX 00 00.

X 00 ** X 00

: .+ ••.• + .•.. + •••. + •... + + + .•.. + ••.• + + .••• + ...••
17925 17935 17945 17955 17965 17975

17930 17940 17950 17960 17970

DAY

Figure ll-It is often desirable to produce graphical output on a
non-graphics terminal. This is an example of one form of

such output available in Speakeasy

1046 National Computer Conference, 1976

_X·~~ID<O.lQ) J Y-SINC)()*E><P(-X/10)
=·rCRIl~TII'C:(V')() J CRAP~HV z·)()

-0.4

-0.6

6 8 10

Figure 12-A simple graph and the statements that produced it

four statements:

X=GRID (0,10)
Y=SIN (X) *EXP (-X/I0)
Z=DERIVATIVE (Y:X)
GRAPH (Y,Z : X)

This example makes use of a device-independent
graphics package being developed by John H. Reynolds
at Comsat Laboratory that is distributed as part of the
standard Speakeasy system.

As indicated by this example, automatic scaling and
grid generation are provided as a default. A large
number of control facilities enable the user to further
tailor the graphical output to his specific needs. Figure

& ,. 1& ill 26 J8 3S ... 8 5 18 15 ill 25 31 3S ...

Figure 13-A set of graphs that were produced by a Speakeasy
program

E3 E3 D
Figure 14-Another use of the three-dimensional package show

ing its use for a variety of projections of an object

13 is a graph that illustrates some of the other features
of this package. This graph also shows some of the
statistical capabilities of the system. It was contributed
by R. A. Stack of The First National Bank of Chicago.

Basic three-dimensional graphics have recently been
added to the facilities available6

• The approach taken
has been to define a three-dimensional object by creat
ing a matrix of its vertex coordinates and then describ
ing the edges through a connectivity array involving
these verticies. The power of the arithmetic capabili-

Figure 15-A sampling of some of the capabilities that are
available in a system that combines general mathematical

tools with simple graphics

Figure 16.-An example of a steroscopic pairs produced by the
three-dimensional graphics package

Speakeasy 1047

ties of Speakeasy can be used to manipulate the defined
objects. The built-in matrix algebra, in particular,
makes it easy to rotate, move or distort objects. Several
speciallinkules were provided to help in the generation
of objects made up of several components. The simple
command DRA W3D is used to create the visual dis
play. Options for perspective projections are also pro
vided. Figures 14 through 16 show some of the possi
bilities.

REFERENCES

1. Cohen, S., "The DELPHI-SPEAKEASY System," Computer
Phys. Commun. 2 (1), pp. 1-10, January 1971.

2. Cohen, S., "Speakeasy: RAKUGO," First USA-Japan Com
puter Conference Proceedings, Tokyo, 1972.

3. Cohen, S., The Speakeasy-3 Reference Manual, Argonne
National Laboratory Report ANL-8000, May 1973.

4. Cohen, S., "Speakeasy," Sigplan Notices 9 (4), pp. 118-126,
April 1974.

5. Cohen, S., Named Storage, Argonne National Laboratory
Report ANL-7021, April 1964.

G. Blackmond, K., "Three Dimensional Graphics in Speakeasy,"
unpublished, July 1975.

A case study of a young child doing turtle graphics in LOGO*

by CYNTHIA J. SOLOMON
Boston University
Boston, Massachusetts

and

SEYMOUR PAPERT**
Massachusetts Institute of Technology
Cambridge, Massachusetts

ABSTRACT

This paper explores some important issues with re
gard to using computers in education. It probes into
the question of what programming ideas and projects
will engage young children. In particular, a seven year
old child's involvement in turtle graphics is presented
as a case study.

This paper describes and comments on the experi
ence of a young child in the MIT AI-LOGO Lab where
she was involved in talking in LOGO to a display turtle
and a PDP-11/45 computer. The child, a second grader,
spent several hours on a consecutive Saturday and Sun
day engaged in interesting debugging sessions. She
worked long and hard. Why she could do so and why
the experience was so interesting is partially explained
by looking at her past experiences. In mid-January,
the year before, when she was a first grader, she and I
started working together learning about turtles and
their world and thus explored turtle graphics. She
visited twice a week for a month, staying from 1;2 to 34
of an hour. We continued to meet, but less regularly,
until the end of April. During that time she learned to
talk to the display turtle. She learned the LOGO turtle
commands like CLEARSCREEN (CS) , FORWARD
(FD), RIGHT (RT), LEFT (LT), PEND OWN (PD),
PENUP (PU); and she learned to use them to make
up her O'VIl!l commands for the turtle.

My goal for her first year had been for her to
understand procedures both by using them and con
structing them. She was given the following kind of
experience. She made the turtle draw something by a
series of direct commands. She would then think of a

* The research described in this paper was conducted at Massa
chusetts Institute of Technology in the Artificial Intelligence
Laboratory's LOGO GROUP. Under the support of the National
Institute of Education Grant No. NIE-G-74-0012, and of the
National Science Foundation Grant No. EC-40708X.
** Comments by Dr. Papert.

1049

name for the picture (or piece of picture) and teach
that word to the computer. To help her in this con
struction I wrote down the commands as she debugged
them. When she "taught" the procedure to the com
puter she would either read the commands as I had
written them or I would read them to her. Then she
would tryout or "run" the procedure and see if there
were any bugs.

The kinds of debugging situations Est encountered
varied but I was always ready to intervene in case the
situation became un resolvable for her. I presented Est
with the same kind of materials and projects as I de
veloped for older children. What I expected to see with
a young child was a clearer indication of where bugs
in the material and ideas lay, e.g., what ideas are hard
to grasp and what ideas can be understood if presented
in a crisper manner or imbedded in better situations.
From the sessions with Lin, another first grader I had
worked with quite extensively, I developed techniques
and aids which have helped older children get into
turtle work, and subprocedurization, debugging, an
thropomorphizing.

Let me back off a bit here and explain what prepara
tions I had made. To aid kids in defining procedures
and to exploit the idea of teaching things to the com
puter I provided a procedure called TEACH. This
command was used instead of LOGO's TO for defining
procedures. TEACH requested a name for the pro
cedure to be defined and then asked for each instruc-
tion of the procedure by saying "STEP 10:" etc. until
the child typed "END". Thus line numbers were as
signed to each instruction starting at 10 in increments
of 10. I also prepared procedures for making squares,
circles and pieces of circle. They require inputs, which
allow their size to be varied. The child also had the
choice of using either RSQUARE or LSQUARE,
RCIRCLE or LCIRCLE, RARC or LARC. For ex-

ample, D could be drawn by RSQUARE or

1050 National Computer Conference, 1976

LSQUARE; only the turtle's starting and stopping
states indicate which procedure should be used. All of
these procedures were treated as primitive commands.
Nonetheless, most children will teach the turtle to make
a square or circle of fixed size by using FORWARD
and RIGHT, thereby understanding the turtle's be
havior in the process.

The turtle became more than a drawing device. It
was a creature with certain behaviors which are inter
esting to study and might help us understand ourselves.
The turtle lives on a display screen. Its initial state is
in the middle of the screen with its nose pointing north
or at 0 degrees. We can change its state by telling it to
move FORW ARD some number of units or turn
RIGHT some number of degrees. We have marked the
screen with 4 differently colored labels, NORTH,
EAST, SOUTH and WEST. So we begin to build up a
description of the turtle which is outside of the words
provided by the LOGO language. Some of these we use
to form a meta-language while others we turn into
LOGO commands.

The previous remarks are meant to be background
to the core of this paper, which is a picture of Est's two
day interaction in the turtle-LOGO world after a break
of almost six months. When Est arrived there was an
initial bit of awkwardness. Her father was with her
and wanted to see what kinds of things she would be
doing. The work area was drastically changed. And
Est wore a patch on her left eye. Her work from six
months ago was in her workspace. I suggested she
show her father her flower, a rather spectacular piece
of opportunism. She exclaimed, "Oh yes you say CB
seven times for this." She did it, her father satisfied
at having seen something and reassured that she could
see, left. We then abandoned last year's work and pro
ceeded to reinvestigate the turtle's behavior. She re
membered turtle commands in their abbreviated form
like CS, FD, RT, LT, BK and also TEACH. She had

CB

FLOUER

difficulty remembering how to execute commands. That
is she forgot to press the CR button and she also forgot
to space between words. Last year (in anticipation of
the Lebel keyboards) we had marked the CR key DOlT
and thus the metaphor of "tell the computer or turtle
to DO IT." Unfortunately the key was no longer so
marked. But Est developed an interesting way out as
a result. This little anecdote will be discussed later.

I had not made a firm plan because I wanted to see
what she remembered, how she had changed, what the
atmosphere was like. I didn't want to burden her with
last year's experience. I had wanted to start off fresh
and she too wanted that so I cleaned out her workspace.
Intellectually we'd build on what she knew but we
wouldn't examine last year's work. (Have you ever
tried to understand a program you wrote six months
ago!) I asked her to make the turtle draw a square
or a box. She preferred to think of it as a box. (Last
year she had written a procedure called BOX.) I told
her in review that RT 90 headed the turtle from
NORTH to EAST.

She made a square. Using TEACH (another result
of work with Lin) she defined FOX, her box. I helped
her by writing down what she did and reading it out to
her. But now I wanted to make her independent. I
posed the following problem. Make another FOX
under the first like this:

D D
I 1
1 __ 1

The turtle drew FOX and its stopping state was 90 de
grees left of its starting state. This made the problem
harder, more distracting. Est kept producing

The turtle's actions upside down!

or this EE
but this 8 was hard. I sat down and talked with
her about the turtle's nose when it started and when it

stopped. I said "Maybe it would be easier if the turtle
ended the same way as it started." So we changed
FOX. She did find it easier.

Our next project was a man, a stick figure man. I
drew it and said, "vVhat's that?" "A man" she said.

00
t !

We debugged it together facing the difficulties of this

~ being the same as this ~ ,but upside

down. I picked this kind of figure rather than one
with different arms and legs because it is easier and
harder. There are fewer parts making it easier, but
the idea of representing arms and legs by the same
procedure is a bit jarring the first time. It is, of course,
part of exploiting the subprocedure game. Another
nev".' idea she encountered was having to relocate the
turtle's starting state to accommodate the man's head.
We had to back the turtle up 90 units before running
the man procedure.

"\Ve taught the computer how to draw the LEGS/
ARMS. First she taught the computer to EH which

caused the turtle to draw this ~ .

TOEH
10 RT 60 She knew she could choose another angle
20 FD 100
30 BK 100
40 LT 60 we emphasized the 2 part process
50 LT 60

60 FD 100 6. " / ~ ~ v/' ~ 'v/ ~
70 BK 100

80 RT 60
END

73

N ow Est forgot for a moment that our plan had been
to turn EH upside down. When she ran EH she com
plained it wasn't making legs. This is interesting be
cause it often happens with older kids as well. The idea
of rotating objects to make them be different is con
trasted here with rotating objects to understand they
don't change. But here we look at the object differ-

Turtle Graphics in LOGO 1051

ently. This shape ~ can only be arms, not legs,

but rotated like this ~ ,it can be arms and legs.

She taught D.

TaD
10 RT 180 last year she would have said RT 90 RT

90
20EH
30 RT 180
END

She then put the pieces together and added a neck. .
This year she chose numbers like 150 and 40. Last
year she would have picked 43, 49, etc. or 90.

vVhen it was time to make a head there was very
little screen space left. I saw it coming and began
suggesting teaching the body parts to the computer.
When she ran into the difficulty we were already mak
ing plans to deal with it. She taught UH and then before
running it she backed the turtle 90 units. (This time
she used 90. Was it because BK was not as familiar as
FD?) When we made the head there were rotation
decisions and then size decisions. She had forgotten
the effect of RCIRCLE/LCIRCLE's input, it was the
radius not the diameter, but one buggy drawing was a
sufficient reminder. Here were her procedures, UH
and RUTH. By the way, using D for both arms and
legs worked out wen and surprised me.

TOUH
10 D
20 FD 150
30D
40 FD 40
END

TO RUTH
10 BACK 90
20UH
30 LEFT 90
40 RCIRCLE 50
50 RIGHT 90
60 BACK 100 We took 90 away from 150 and added

40.
END

The way we worked followed last year's·pattern:

1. Draw something on paper.

2. Draw "it" on the screen using direct commands, in
cluding subprocedures already taught. The quoted it
("it") means that we are opportunistic. If something
better turns up as we draw we might change our goal.

3. Now we teach the computer to do what we just did.
(This is the step on which I shall·concentrate in the
next pages.) So the model for the learner is:

10 Do something
20 Teach the computer to do it

1052 National Computer Conference, 1976

In more detail we could add:

5 Plan it first
15 Think about how you do it
25 Think about why it didn't quite work ... debug

N ext I asked Est to make another man without

narie

destroying RUTH. We discussed how it differed from
RUTH. This one was to be MARIE. Est really wanted
to make MARIE and worked hard at it. What she could
and what she could not do by herself revealed some in
teresting patterns I have often seen and talked about
but which have not been discussed explicitly. So let's
look in detail at her progress.

Remember RUTH used UH to make the body. UH
ran D to make the arms and the legs. To make MARIE
we want to replace UH by a new procedure (Est
eventually called it S), but first she needed to replace D.
She called her new procedure K.

TOK
10 RT 90
20 FD 100 6 I> --l> ~ <r--
30 BK 100 . ,.
40 RT 180
50 FD 100 cO--- ~ ~

60 BK 100
70 RT 90
END

Est does not do this directly. Perhaps doing so is too
"formal" for her age. Perhaps she was following a
pattern I had set up last year. Whatever the reason
her way was to "be MARIE herself", i.e., she would
give the instructions as direct commands which would
later be taught using TEACH. This is how she did
everything. But there is more than one way to do this.
So back to details.

I left Est entirely on her own. She worked for some
X minutes and eventually produced the result she
wanted on the screen. This obviously shows a mastery
of FD, RT etc. as well as an ability to organize her
work. But now comes a difficulty often seen in children
this age. She has on the paper in front of her all the
commands for MARIE. She knows how to use TEACH
and certainly could have typed it all in (this she had
done before). But her immediate goal was different.
She set herself the sub-goal of "teaching the legs", i.e.,
of making a subprocedure K, which she would later
incorporate into MARIE. But she blocks here. She

seems to find it hard to isolate just the instructions
she needs for this. Why? Is this a quirk of my teach
ing or something deep? Seymour says it looks like a
"figure ground problem", "structure dependent per
ception", "reversibility" and like what J. Bamberger
sees in children's descriptions of clapping. I don't
know, but it feels like a real problem.

I watched from a distance and eventually decided to
intervene following a principle of allowing children
enough success soon enough to make the fight worth
while. It needed hardly any intervention. In cases like
this it usually doesn't need much. Often it is sufficient
to say: "Ok, let's do it together." But then all I do is
read to her what she sees on her paper. Another tech
nique that gets the same result is to write, or have the
child write, on a piece of paper just what she has typed
to the computer. Why do these subtle things help? Be
cause it is a trivial problem? Maybe. But perhaps also
because it is a deep problem related to what psy
chologists might call attention and what we might call
the control process of sub-procedure management. Any
way, it needed very little intervention and she was off
on the track and soon Marie worked.

Research issues: understand this phenomenon, get
better at observing just what intervention works and
why, track the progress of a child over longer periods.

SOME GENERAL OBSERVATIONS

1. Compared with last year Est could work much
more independently. (More than half a year is a big
piece of her life!)

2. Her work with RCIRCLE and LCIRCLE would
have been easier if the inputs were diameter (which
"exists") rather than radius (which is about a
non-existent point called center). Although later she
made a design which was understandable because the
input was the radius.

3. She had trouble remembering to ~. This she
cured by playing this game with the computer: after
typing an instruction she would say, firmly and
dramatically "DO IT" while hitting the CR key. She
knew what "game she was playing". There was no
trace of my manipulating her. On the contrary she
manipulated herself. We'll see another good example
in day 2 of how she is able to set up a deliberate
strategy of programming around her own perceived
bugs.

I set up the model for DO IT and feel that the way I
did it (the rhythm, the degree of "reality" and also
playfulness, etc.) made a very big difference as to
whether this kind of thing works. On Day 2 she in
vented similar techniques of her own. So perhaps my
suggestion took only because it was a kind of thing she
does spontaneously. Big research issue!!

Day 2-Preamble:

Again I had no detailed plan except the general idea
of making an animation in which RUTH and MARIE
alternate to give a jumping effect. I had written a new
aid to help in snapping pictures called TS whose effect
is to save SNAPs. But when I used it with Est I hadn't
tried it out and it had a bug! I really got flustered by
that. Lesson: don't use undebugged stuff, but if you do
don't get flustered.

To warm up I showed Est POLY. She played with
inputs. I showed her POLY 50 90. Then I asked her
to change the shape. She tried POLY 50 80. She
didn't want to call it a star (a 9 pointed star) , then she
tried POLY 50 40, POLY 50 60. Then she tried POLY
20 30, and POLY 20 20. She remarked that the last
two were different sized circles. Finally she tried
POLY 20 100 followed by POLY 50 100. She had to
struggle with the idea that the 2 figures were the same
shape. The first one was very tiny. So she tried POLY
100 100. That she thought could be the same as POLY
50 100, but still the size of the figures did bring into
question whether the shape was the same.

My intention on the day before was to make an
animation using RUTH and MARIE. We continued
to work on this scheme after I fixed a TS bug. When I
discussed what we had to do:

DISPLAY :RUTH
WIPECLEAN
DISPLAY:MARIE
WIPECLEAN

and do these steps over again, I then added we want

D
POLY 50 S0 POLY 50 S0

POLY 28 29

Turtle Graphics in LOGO 1053

o o
POLY 2a laa POLY sa laa

\../\ 7'-... / - v ~

POLY laa laa

the computer to wait and suggested that it WAIT 5.
The following conversation ensued.

E : Does that mean 5 seconds
C:No
WAIT 60 is a second
E : But if I say 1 that's a second
C: Yes but computers count faster.

Then Seymour intervened and played a RACE with
her. He wrote RACE. It took an input, a starting
number and then counted up to 21 by one's. So

RACE ~1 2 345 67 8 . . . 21

He asked Est to count against the computer. The
computer won.

The racing and counting seemed to give another di
mension and added more reality to some aspects of the
computer:

... its sequential behavior (After all up to now the
results of her programs have been static. So even if

0
POLY 25 S0

POLY 25 49

POLY 28 38

1054 National Computer Conference, 1976

the drawing is sequential, the static may be more
real.)
... its sense of time
. . . its quickness (even though this isn't in the
nano-second range.)

She finished teaching P to the computer. She and I
resumed our discussion about recursion. P was to be
recursive. We had played the people procedure game
(To POW RAISE-ARM LOWER-ARM SAY-POW)
last year but she didn't remember. I asked her to be
the POW procedure and we worked through it again.
Then she made P behave in the same way and ran it.
The desired effect was achieved.

I asked her to use LCIRCLE and RCIRCLE to make

she quickly made
out of LCIRCLE 90 and
LCIRCLE 60

Again an interesting phenomenon (the "start up
bug") : she seemed to block until I said "What about
moving the turtle?" A trivial piece of advice. Perhaps
it really means "stop being complicated, do something
simple."

She asked how much to move it. I answered, "Well
it walks 90 units to the middle of the big circle and 60
units to the middle of the small so move it 90 take
away 60. She did and completed the picture. We then
took a break for lunch.

By the way I had tried to accept her first version but
she would not give up on the original picture.

After lunch I asked her to make

This time using LC or RC (which took diameter as
their input).

Then I went away. I suspected she had ritualized her
experience with the head of RUTH and MARIE.
I wanted to see if she could undo it.
She worked very hard.

She got

I finally modified the model to

She said no she only wanted 1 leaf. (Esthetics).
She did it! She called it DF for dumb flower (again
emphatic and dramatic).

In all this I see another interesting phenomenon.
Call it making cliches. Are they good or bad? Perhaps
necessary. Anyway that's how it seems to go. (Sey
mour says it now has the blessing of "frame theory"
and something cognitive psychologists call "stereo
typing". Again I don't know but I'm glad to know
that theoretical people are paying attention to the
things that seem important. Also, what does Piaget
mean by schema ?)

Here is a series of events.
In making the men Est constructed

The obvious first pass at doing this is

FD 50
RCIRCLE 50

but this gives

The debugged version is FD 50

LT90
RCIRCLE 50 r 1

Est worked awhile on this and eventually knew how to
make figures like

Now the flower model called for

P
I

which Est had previously found easier. But now she
has trouble, She has "formed a cliche" or "overgen
eralized" or whatever. You might say "well she doesn't
understand anything. She is echoing mechanically."
But it's not so simple. Look at what happened when I
suggested putting in a leaf to form:

She didn't make

Turtle Graphics in LOGO 1055

as she would if "LT 90 RCIRCLE" had been completely
ritualized. So it's more subtle. Actually Est had de
veloped another cliche. Instead of saying LT 90, she
would say RT 90, RT 90, RT 90. In this problem there
was payoff. Then she would always turn the turtle
right.

My next suggestion was to make a row of flowers.
She did

DF
DF

o
T
9

but the second DF drew the same flower again. Aston
ishment! Bug! Again a very "trivial" piece of advice
got her going. I pointed to where the next flower could
be. No words were necessary (what a lesson for talka
tive teachers!) . . . she knows how to drive the turtle
and she quickly drew a row of flowers.

DF
RT90 QQ FD 50
RT90
RT90

~ 1 RT90
DF
RT90
etc.

"Fantastic" I said, "and what about one to the left."
Serious thinking. It has to go BK 150 she said, "be
cause there are 123 of them."

Again the research problem: What do these "little"
aids mean? What is the learner's problem. This
learner sometimes handled this amazingly. Her flower
drawer is called DF. Like many children her age she
sometimes reverses letters and especially since FD is a
LOGO word. So several times her intended DF got the
reply:

FORWARD NEEDS MORE INPUTS

So she wrote a big DF on a piece of paper. I'u"!; a CIrCle
around it and looked at it ritualistically every time she
wanted to draw a flower! (Best model this year of
debugging.)

I emphasize: the particular trick for DF was entirely
her own idea. If I helped it was by conveying (rather
than telling) an attitude to debugging and towards
using paper and pencil as a material aid. I had often
taken up the pencil in times of difficulty.

Finally another "cliche" which I already mentioned,
Est never used LEFT spontaneously. She knew what it

1056 National Computer Conference, 1976

did and would oblige if asked to use it. But on her own
she would say

RT90
RT90
RT90

rather than

LT90

There seemed to be no reason to complain or "correct"
this perfectly adequate representation! It might be
interesting to watch its development. But probably not.
One day she will use LT 90 and no one will ever know
what happened. Except her, perhaps.

REFERENCES

1. Bamberger, Jeanne, The Development of Musical Intelli
gence I: Strategies for Representing Simple Rhythms, MIT
AI Lab. LOGO Memo 19, November 1975.

2. Minsky, Marvin and Seymour Papert, Artificial Intelligence,

Oregon University Press, 1974. Also as AI Progress Rept.,
Mass. Inst. Tech., Artificial Intelligence Lab., Memo 252,
1972.

3. Minsky, Marvin, A Framework for Representing Knowledge,
MIT, A1 Memo 306, 1974.

4. ::VIinsky, Marvin, "Form and Content in Computer Science,"
JACM, Vol. 17 , No.2, 1970. Also as MIT AI Memo 187,
1969.

5. Papert, Seymour and Cynthia Solomon, Twenty Things to
Do with a Computer, MIT, AI Lab. LOGO Memo 3, July
1971. Also in Educational Technology, April 1972.

6. Papert, Seymour, Teaching Children to be Mathematicians
vs. Teaching about Mathematics, MIT A1 Lab. LOGO Memo
4, July, 1971. Also in Int. J. Math. Educ. Sci. Technol.,
vol. 3, 249-262, 1972.

7. Papert, Seymour, Uses of Technology to Enhance Education,
MIT AI Lab. LOGO Memo 8, June 1973.

8. Papert, Seymour, "On Making a Theorem for a Child,"
Proc. ACM Annual Conf. Aug. 1972. Also in New Educa
tional Technology, General Turtle Development Inc., Cam
bridge, Ma.

9. Solomon, Cynthia, "Leading a Child to a Computer Cul
ture," Proc. ACM SIGCSE-SIGCUE Joint Symposium,
SIGSCE BULLETIN 8,1/SIGCUE TOPICS 2, February
1976. Also as)UT AI LAB LOGO ME)10 20, 1975.

Feature selection for binary data-Medical
.;

diagnosis with fuzzy sets *

.,. T.&. ,.,'T":'ln,.... T")y-;,r'7T"\'PTT au .J A1V1~~ v. n.c..lJ.1..I.c.n..
Marquette University
Milwaukee, Wisconsin

ABSTRACT

The notion of fuzzy sets-sets with imprecise boun
daries-is a natural cornerstone upon which to build
algorithms based on approximate reasoning. Since
their inception in 1965 by Zadeh/ fuzzy sets have led
to first steps towards quantifying data analysis in many
fields previously immune to mathematical examination.
A fairly exhaustive introduction to the theory and
applications of fuzzy sets2 lists 238 papers dealing with
a great variety of recent investigations.

INTRODUCTION

In this paper we discuss the applicability of the fuzzy
ISODATA clustering algorithms for (1) dimension
ality reduction of binary valued data sets, and (2)
computerized medical diagnosis. The first question is
often referred to as feature selection; overviews of
many popular approaches are available in References
3 and 4. Loosely speaking, one wants to reduce the
number of characteristics originally measured to some
optimal subset which retains at least as much informa
tion about substructure in the data as the original
ones. Computerized medical diagnosis is an extremely
difficult and ambitious undertaking. Considering the
risks involved, enormous improvements need to be
made in existing methodologies before the medical
community can be asked to rely on the diagnostic sug
gestions of a computer. However, it is our conviction
that the attitude of pessimism displayed in Reference
5 towards this enterprise is largely attributable to the
failure of conventional (that is, non-fuzzy) techniques,
the results of which must either be accepted at face
value or rej ected out of hand: we believe that fuzzy
sets can be used as a basis for computerized diagnostic
advice that will provide valuable insight and direction
for clinicians with a large data base of previous case
histories.

'" This research supported by National Science Foundation
Grant DCR75-05014.

1057

FUZZY CLUSTERING ALGORITHMS

Let Rd denote real, d-dimensional Euclidean space
(feature space), and let X= {X h X 2, ••• ,xn } cRd. Each
Xk= (XkHXk2, ... , Xkd) E Rd is a feature vector (sub
ject, patient) ; each Xkj in R is the jth feature (charac
teristic, attribute, symptom) of feature vector Xk; and
if every xkj E{O, I} , we call X a binary valued data
set. In this instance, we say Xk has attribute j when
Xkj = 1, and is lacking it if Xkj = o. Cluster analysis with
respect to X is the problem of finding an integer c,
2::;c<n, and c subsets (clusters) of X which partition
it into subgroups of points revealing intrinsic substruc
ture in the data. Algorithms to partition X abound;
the partitions they find depend on the classification
criterion used by the algorithm which defines similar
ity between pairs of vectors in X.

There are hard (Le., conventional) and fuzzy meth
ods, and each of these main classes can be roughly
subdivided into graph-theoretic and objective function
techniques. Readers interested in hard algorithms for
clustering will find an introduction to the literature
in Reference 3; a brief review of fuzzy clustering fol
lows. Clustering with fuzzy sets was first proposed
in Reference 6. References 7 -10 discuss some of
the earliest fuzzy pattern classification schemes. In
1969 Ruspini delineated the first fuzzy clustering
method based on objective functions, and foreshad
owed the usefulness of information measures (entropy)
in the fuzzy sets context. His technique was enlarged
and illustrated in References 12-15. Dunn16 defined
the first fuzzy extension of the classical within group
sum of squared errors ("NGSS) objective functional,
and in Reference 17 this approach was generalized to
yield the infinite family of algorithms discussed belQw.
Methods of clustering based on fuzzy graphs are still
in their infancy; References 18-23 are seminal works
in this direction.

CLUSTERING WITH FUZZY ISODATA

A hard c-partition P of X is a collection of c non
empty subsets of X, say P= {YU Y2, ... , Ye}, whose

1058 National Computer Conference, 1976

union is X and whose pairwise intersections are dis
joint. To characterize P by a matrix, let Ui: X--?{O, 1}
be the characteristic function of Yi:

() {
1 in case Xk e Y i 1 l' 1 k

Ui X k =Uik= 0 th' ~; <l<C; < <no o erWlse J - - --
(1)

Denote by Ven the vector space of all real c x n matrices,
let U e Ve1u and let Uik be the ikth entry of U. The set
of matrices

Me={UeVen: uike{O,l} Vi,k;tUik=1 Vk;~Uik>OVi}
(2)

is called hard c-partition space for X because each
partition P of X corresponds uniquely to the matrix
in Me whose rows are the values for the characteristic
functions of the subsets in P as shown in Equation (1).

Solutions for all hard clustering algorithms lie in Me,
and this is a fundamental drawback for two reasons:
First, each member of the data must be assigned un
equivocal membership in one and only one of the c
partitioning subsets; however, .the substructure in
real data rarely-if ever-is so distinct that every
member in X is most realistically described as a full
member of a single subclass. A fuzzy model can over
come this objection by allowing every individual par
tial membership in all c subsets, as, for example, one
would desire for hybrids when classifying them in
parallel with their progenitors. Secondly, Mc is a finite
but extremely large set, a complication which often
manifests itself in analytical as well as computational
intractabilities.

Fuzzy sets provide a natural way to surmount the
objections above. We call any function Ui that maps X
into the closed interval [0,1] a fuzzy subset or fuzzy
cluster in X. The number Ui (Xk) = Uik is the grade of
membership of subject Xk in fuzzy set Ui, and fuzzy
c-partitions of X are defined by imbedding Mc in

Mfe={UeVen: uike[0,1]Vi,k;~Uik=1 Vk;~Uik>OVi}'
(3)

Mfc is called fuzzy c-partition space associated with X.
The requirement that each column in U sum to one
stipulates that every vector in X be assigned a total
membership equal to unity in the partitioning subsets.
If Me is enlarged to include matrices which may have
some zero rows, say Meo, then Mfe is the convex hull
of McoY Compactness, convexity, and continuity en
dow Mfc with a pleasant mathematical structure; for
example, it has been shown24 numerically that because
M fc is continuous, algorithms defined on it have paths
of feasible solutions around undesirable local trap
states of algorithms confined to Mc.

Given Mfc, how can fuzzy c-partitions of X be found?
One way to identify optimal fuzzy clusterings in X is
via the family of generalized WGSS error objective

functionals defined in Reference 17. On the Cartesian
product of Mfc with R"d, we define for me[l,::c)

fl C

J m (U,v) = L L (uik)mllxk-viW, (4)
k=l i=l

In (4) UeMfe, V= (V 1 ,V2 , ••• , ve)eRed, Vi= (ViUVi2, ... ,
vid)eRd for 1~i~c, and 11·11 is any norm on feature
space. Jill is an etxension of the classical minimum
variance objective functional JJ because Jm=J1 V m
whenever UeMe is hard. The c vectors {Vi} compris
ing v are presumed to have features prototypical of
vectors in X having a high affinity for membership in
the respective fuzzy clusters {ud, and so are called
cluster centers of their respective fuzzy clusters. These
vectors will play an important role in the sequel. The
measure of similarity in (4) is the norm II' II ; in this
model it compares members of the data to each other
indirectly via distances between them and the cluster
centers.

Optimal fuzzy c-partitionings of X are defined as
part of solution pairs (U,v) of the optimization
problem

minimize{Jm(U,v)} over MfeQ9Re<i. (5)

Partitions arising as part of solutions for (5) are re
lated to a well defined type of hard, compact, well
separated (CWS) clusters for X in Reference 16.
There are structured data sets whose clusters do not
enjoy this property, but there is a wide class of pat
terns for which this criterion is very basic, and we
adopt it here as implicit in our clustering goals.

Necessary conditions for solutions of (5) were de
rived17 for the class of functionals in (4) whose norms
were differentiable (e.g., inner product induced
norms). It was shown there that for m> 1 and
Xk=FVi V i,k,

Uik=['(1. t]' l~i~c; l~k~n, (~a) L IIXk-~ill m-l

j=l Ilxk-Vjll

Vi=[~ (U,.)IDXk], l~i~c (6b)

L (Ulk)m
1.,-=1

are necessary in order for (U,.v) to be a local solution
of (5). Full details for m = 1 and the singular cases
Xk = Vi for some i and k may be found in References
16 and 17. At m=1 requirement (6a) is replaced by
a nearest neighbor assignment rule, UeMe is neces
sarily hard, the cluster centers in (6b) are merely the
centroids of the hard subsets in U, and the resultant
algorithm is essentially the hard ISODATA process of
Ball and Hall.25 For m>1 equations (6) define the

Fuzzy ISODATA algorithms

Choose any cxn matrix UoeMfe. (7a)

Compute the weighted means {i'i} with Do
and (6b).

Update Uo~U with equation (6a).

Compute the maximum membership defect

max{1 ClJ)ik- (DoLki}·
i,k

(7b)

(7c)

(7d)

If less than some prespecified tolerance e, stop.
Otherwise relabel U~Uo and return to (7b).

Implicit in (7) are tie-breaking rules and resolution of
singularities. These equations define an iterative
optimization procedure for locating approximate
minima of J m. It is convenient to recast this loop in
the form of the iterative matrix operator T m :Mfe~Mfe
defined by •

Tm (Uk) = Uk+1 = (Tm)k (Do), k=O,1,2, (8)

Since U's which are part of optimal pairs for Jm must
lie among the fixed points of Tm, we call approximate
minima of J m fixed points of fuzzy ISODATA. J m has
the descent property on successive iterates of Tm and
the associated set of cluster centers they determine,
but it is not now known whether the iterate sequence
{Tm(1Jk)} is theoretically convergent. We mention this
because the numerical example below suggests an in
teresting conjecture about these fixed points. The pos
sibility of using T m to approximate a maximum likeli
hood operator for certain problems in unsupervised
learning is discussed in Reference 26.

SCALAR MEASURES OF PARTITION QUALITY

Since optimal partitionings of X are defined as part
of solutions of (5), an obvious way to rank competing
partitions is by their corresponding values with J m'
Unfortunately, J m is not an exception to the fact that
global minima of objective functions may suggest very
poor interpretations of substructure in X.24,27,28 Conse
quently, values of Jm do not necessarily rank the merits
of different D's in Mfe as worthwhile clusterings of X.
It is here that fuzzy ISODATA departs from conven
tional clustering techniques, because with hard ob
jective functions the functional values are the only
information usually available for addressing this ques
tion. With fuzzy partitions however, the fuzziness of
iT allows one to asspciate various measures of parti
tion quality with U which are independent of the
method used to produce these partitions. Fuzzy ISO
DATA is used to generate likely candidates for optimal
clusterings of X; their relative quality has been as
sessed by either of two scalar valued measures defined
on M fc :

Fe (U) = trace (UUt) In, superscript t being here
transpose, (9)

Hc(U) = - (i iUil' log" Uik) In, with ae(l,oo).
k=l i=i (10)

Medical Diagnosis with Fuzzy Sets 1059

Fe: Mfc~[l/c,l] was defined in Reference 17 as the
partition coefficient of U; He: Mft(O,logac] was defined
in Reference 27 as the average classification entropy
of U. Although the functional forms of Fe and He are
quite :different, they are related as follows:

Fe(U) =1 (::}He(U) =0 ¢:>UeMe is hard. (lla)

FeCi) =l/c¢:>He CU) =IOgac¢::>U= [l/c]. (lIb)

1-Fe(U)« ~~~~))<lh(C-Fe(U». (11c)

Equations (11) suggest that the equi-membership par
tition U=[l/c], i.e., uik=l/cVi,k, is the fuzziest or
worst one can do (geometrically U is the centroid of
Meo); on the other hand" the ideal situation occurs
when the substructure in X is so distinct that a fuzzy
algorithm recommends a hard c-partitioning of X.
Maximizing Fe over different fixed points of fuzzy
algorithms minimizes the total content or overlap in
pairwise fuzzy intersections; equivalently, minimizing
He over the same choices maximizes the "information"
extracted from U. In either case, we presume that
values of these measures serve as a relative indication
of the uncertainty an algorithm experiences in trying
to assign memberships to the vectors in X. Note
that Fe and He are well defined for partitions generated
by any fuzzy clustering method, not just ISODATA;
moreover, these functions convey no information about
the relative merits of hard c-partitions of X, their
usefulness depending entirely on the idea of fuzziness.
N umericai evidence indicates that He is probably more
sensitive than Fe in ranking U's; this has been at
tributed to the fact that the slope of the logarithmic
curve on most of (0,1) is much steeper than that of
the parabola (He is a sum of logarithmic terms, Fe a
sum of parabolic ones). Nonetheless, both measures
seem useful, since the lower bound in (llc) is a
sharper indication than that in (lla) of how small
He(U) is.

In general the clustering strategy used with fuzzy
ISODATA has been to minimize He over approximate
fixed points of T m for whatever alternatives have been
considered, and regard the resultant c-partitioning
of X as the most optin;Lal one. If this partition is rela
tively fuzzy (as measured by He), we do not infer that
X has no well defined substructure; we conclude that
none of the algorithms tried have been successful at
finding it.

A NUMERICAL EXAMPLE

Table I lists 11 symptoms of 107 stomach disease
patients who have either hiatal hernia (patients 1-57)
or gallstones (patients 58-107). Table I constitutes
our binary data set X. The data was collected as part
of a larger study at the Henry Ford Hospital in Detroit
by Rinaldo, Scheinok, and Rupe. 30 Various studies
utilizing the larger data set for computerized medical

1060 National Computer Conference, 1976

TABLE I-Data Set X: Class 1; Hiatal Hernia

Patient Symptoms

1 , 1 , (I 1 ,-, (I I) (I I)

2 1 I) 1 (I 0 (I I)

.~: 1 ,-, 1 1 (I (I (I

4 1 1 1 I) (I I)
co __ I 1 1 1 (I I) I)

6 1 1 1 I) I) I)

7 1 1 1 1 I) (I

:=: , 1 , 1 1 1 I) (I

9 1 1 1 1 I) (I

1 I) 1 1 (I (I I) (I

11 1 1 1 I) 1 I) (I

12 1 1 1 (I 1 I) 1
1-:' --' 1 1 1 1 (I I) (I

14 1 1 1 I) 1 I) (I 1
15 1 1 (I I) 1 (I I)

16 1 1 1 I) I) 1 (I 1
17 1 1 1 (I 1 (I 1 1
l-=-'-' 1 1 1 (I 1 1 I)

19 1 1 1 1 (I 1 (I

20 1 1 1 1 I) 1 (I

21 - 1 1 1 1 (I 1 (I

22 1 1 ~
(i (I 1 1 1

.= •. -:. 1 (I (I (I I) 1 1 1 ~'_'

24 1 1 (I 1 (I (I (I (I (I
'-,e:" c-_, 1 1 (I 1 (I 1 I) (I 1 1
2E. 1 1 1 1 (I (I 1 I)
.-.~ c,- I) ,- (I (I (I

2::: 1 1 (I (I I)

2'::- 1 1 I) I) 1
::::0 1 1 I) (I 1
:=:1 1 1 1 (I I)
.-: .. =.
'-'~ 1 1 1 (I 1
.: .. :. 1 1 (I I) 1 ,_"_,

:=:4 1 1 1 (I I) 1 '-'
.-.C"
';"-- 1 1 1 (I 1 I) (I

:=:6 1 1 1 (I 1 (I (I
.-.~ 1 1 1 (I 1 1 0 . .:. (

:~:::: 1 1 1 (I 1 1 I)

3'3 1 1 1 1 I) U
40 1 1 1 1 I) I

41 1 1 1 1 1
42 1 1 '- 1 1 1
4:=: 1 1 0 1 1 1
44 1 1 1 I) (I 1
45 1 1 I) 1 I) 1 I)

46 1 1 (I (I 1 I) 1 (i

47 1 1 (I I) 1 (I 1 -' 1
4':' '-' 1 1 ,-, I) 1 1 -1 1 1
49 1 1 1 I) (I (I I) 1 1
50 1 1 1 (I 1 I) I) (I I)

51 1 1 1 (I 1 (I (I 1=, 1
c·-, -_'e. 1 1 1 I) 1 (I 1 (I (I

5:3 1 1 1 1 I) 1 (I (I (I

54 1 1 1 1 (I 1 1 1 1
c:-c:-
,_I._I 1 1 (I 0 1 (I 1 1 (I

5E. 1 1 1 (I (I 1 1 1 1 (I
c:--:>
,_I .. 1 1 1 (I 1 1 1 (I (I 1

Medical Diagnosis with Fuzzy Sets 1061

TABLE I (Coniinued)

Patient Symptoms

5::: 1 0 0 0 1 1
59 1 0 I) 1 1 (I I)

61) 1 (I (I 1 1 I) 1

61 1 (I 1 (I 1 1 (I

':.2 1 1 (I (I (I (I

6.::: II 1 1 ;) i (; i) ,-,
'-'

':,4

I
1 1 (I 1 1 I) I)

,:.5 1 1 fl 1 1 (I I)

66 1 i 1 (I f! .L

t· ..- 1 (I (I I) 1 I) I)

6:::: '- 1 (I (I 1 (I I) 0
6':=t 1 0 I) 1 (I 1 (I

70 1 (I 1 I) 1 I)

71 1 0 1 1 0
72 1 0 1 1 1
~.-. 1 (I 1 1 1 r" . .:.

74 1 1 (I I)
-:-c:- 1 1 1 1 (I ,. _I

... t:. 1 (I (I (I 1 '-' 1
7-::' 1 1 (I (I 1 1 (I (I
I ,
7::: 1 1 (I (I 1 1 (I (I

79 1 1 I) 0 1 1 (I (I

:::: I) 1 1 I) (I 1 1 (I 1 1
::: 1 1 1 1 t) 1 1 I) I)

::::2 II 1 1 1 I) 1 1 (I I)

::!:~: 1 1 1 (I 1 i (I I)

:::4 1 1 1 1 1 (I (I

:=:5 1 1 1 1 1 (I (t

:::.:' 1 1 1 1 1 (I I)

:::7 1 1 1 1 i
:::::: 1 1 1 1 1 I)

:::9 I 1 1 1 1 1 0

90 1 I) (I u 1 1 0
91 1 0 1 (I 1 1 (I

':=t2 1 (I 1 1 1 1 (I

93 1 0 1 1 1 1 0
·:=t4 1 1 0 (I 1 (I (I

95 1 1 (I (t 1 (I 0
'3':. 1 1 (I (I 1 1 (I t)

97 1 1 0 0 1 1 1 (I

9:=: 1 1 I) (I 1 1 1 (I

':=t9 1 1 0 0 1 1 1 (I

100 1 1 0 0 1 (I I) (I

1 I) 1 1 1 1 U 1 '-' (I I)

1 (12 1 1 1 0 1 0 1 (I (I

103 1 1 1 0 1 0 1 I) (i

104 1 1 1 0 1 0 1 (I

105 1 1 1 I) 1 (I I) (I

106 1 1 1 1 (I 0 0 (I

1 (17 1 1 1 1 (I I-I (! (;

1062 National Computer Conference, 1976

diagnosis have been discussed in References 31-35;
full details on the data are available in Reference 3l.
The 11 symptoms measured (present = 1, absent=O)
were:

Symptom
1
2
3
4
5
6
7
8
9

10
11

Description or type of Abdominal Pain
Male=l; Female = 0
Epigastric Pain
Upper right quadrant pain
Back pain -
Discomfort episodes of 1-4 weeks
Discomfort episodes of 0-1 days
Relief induced by food ingestion
Aggravation induced by food ingestion
Aggravation induced by position
Weight loss (at least 20 lbs. in 6 mos.)
Persistence (at least 1 month in length)

The calculations were made in single precision For
trans IV using logarithms in (10) to base e=2.718
The convergence threshold e used in (7b) was e=O.Ol.
Because fuzzy ISODATA-like all hill climbing meth
ods-is susceptible to stagnation at local minima of J m,
it is necessary to test the stability of fixed points of T m
by varying the initial guess for Uo in (7a). Other
studies report results concerning this parameter; for
this example the only initial guess used is

Uo=a.U +/fU, where a.=-Y¥2, .8=1- y1f2, and

[

10 ... 0 1 11 1 1 01 ... 0100 0

U . .1
= 1 • • 1

00 i! 00 0

(12)

,---cxc--,,---cx (n-c)--,

Uo is an initial guess lying midway between -0 and the
hard c-partitions of X, as measured by the value of Fe,
since Fe (U 0) = 112 + (1 /2c) . Only one initial guess is
used in this example to shorten the presentation of
numerical results.

Finding c is often the most important and difficult
problem in clustering. The use of fuzzy ISODATA for
this purpose is discussed elsewhere; in this investiga
tion we fix c=2 in the interests of brevity. The algo
rithmic parameters varied here are the weighting ex
ponent m and norm 11'11 appearing in (4). Values for
mare 1.10, 1.33, 1.67, and 2.00. Results with other
values are contained in Reference 29. Three norms
induced by the weighted inner product (x,x)=xtAx on
Rd were used. These norms were realized by different
choices for the symmetric matrix A :

Nl (Euclidean) induced by A=I, the d x d
identity. (13a)

N2 (Diagonal) induced by A= [diag(a/, ... , ai)]-I,
the inverse of the diagonal matrix of marginal
sample feature variances. (13b)

N3 (Mahalonobis) induced by A= [cov(X)]-I, the
inverse of the sample covariance matrix. (13c)

Further discussion on these choices may be found in
Reference 35. Having established the computing proto
cols, we turn to the numeric results.

Table II lists entropies H2 and their lower bounds
I-F2 for the fixed points of Tm obtained by processing
X with (7) under the assumptions above. These values
are comparable only for fixed values for m, because as
m~l, partitions obtained by fuzzy ISODATA are
always "less fuzzy" in the sense of Fe or He. Since (7)
represents an infinite family of algorithms, there is
the practical question of which one to use. The only
theoretical result concerning this to date appears in
Reference 36, where an analogy to minimum resistance
electrical networks is used to suggest that only J 2 ex
tends the physical interpretation of J 1 made there. It
will be seen in Table II that ISODATA proceeds from
UQ to -0 (quite rapidly) for every norm at m=2.00; for
N2 and N3 at m= 1.67; and for N3 at m= 1.33 (recall
from (lIb) that with c=2, F 2=.500 if and only if
evaluated at -0). Whether or not other initial guesses
for Uo would lead to this fixed point is a matter of
speculation; the rather surprising conjecture suggested
by this observation is that the size of stability domains
of fixed points of T m is dependent on both m and the
norm in (4). Of course, as m~ 00, iT becomes the only
fixed point of T m, as is evident from (6a). Table II
shows that it may be necessary to experimentally de
crease m towards m=l until fuzzy ISODATA success
fully begins to avoid equi-memberships for a given set
of data.

The values in Table II also indicate a slight prefer
ence for the Euclidean norm over N2, and a definite
preference compared to N3, so we infer that this data

TABLE II-Entropies for Data Set X

Weighting Norm Lower Bound Entropy
Exponent

II· I 1-F 2 (U) H2 (U) m

N1 .051 .088

1.10 N2 .057 .095

N3 .086 .162

N1 .253 .397

1.33 N2 .274 .425

N3 .500 .693

N1 .420 .608

1.67 N2 .500 .693

N3 .500 .693

N1 .500 .693

2.00 N2 .500 .693

N3 .500 .693 .

I

i

is most separable by N1 among the three norms con
sidered. Accordingly, the norm in (4) for subsequent
runs is now fixed at 11'11 = N1, and in view of the results
obtained at m = 1.67 and 2.00, we drop these values
for the weighting exponent.

In Table III are listed the membership functions cor
responding to terminal partitions obtained with (7),
11'1 i =N1, and m= 1.10, 1.33. Scanning these values,
one quickly obtains a feel for which members of the
data indicate a strong desire to be classified into one
subclass or the other. As we expect, the partition of
X associated with the smaller value of m is very nearly
hard; while the second partition begins to exhibit
clearly those subjects in X apparently causing the most
difficulty to ISODATA in assigning memberships. This
feature of fuzziness-identification of the trouble
some or distinguished individuals in the data-is per
haps the most important reason for using fuzzy models.
Information of this kind is simply not available when
using hard classification procedures, for then all the
entries in solution partitions are O's and l's.

Since any discussion of error rates presumes a com
parison with hard labels, it is necessary to convert
fuzzy partitions into hard ones before this is possible.
An obvious (but not necessarily best) way to do this is
via the maximum membership rule: assign each Xk€X
to the cluster in which it holds maximum membership.
All error rates mentioned below are computed with
hard 2-partitions of the data obtained in this fashion.
With this convention in mind, we have from Table III
at m=1.10 23 incorrect labels, and at m=1.33, 25 mis
labelled patients. We emphasize that these are not
classifier performance rates, because we are clustering
here; no attempt is being made to train a classifier for
prediction with unlabelled samples. However, we pre
sume these figures are indicative of error rates which
may be obtained with fuzzy classifiers now under study.
Of more immediate interest is the way we can use fuzzy
ISODATA to attack the feature selection problem.

FEATURE SELECTION USING FUZZY ISODATA

. Contrar-y to one's intuition, adding more features
does not always lead to better classifier performance. 3

In some instances the converse is true; deletion of
features may remove the source of confusion pre
venting an algorithm from. detecting substructure
known (or presumed) to exist in the data, and in any
event, reduction of the dimension of feature space al
leviates the computational burden imposed by using
many features. In medicine, this amounts to asking
for the minimum number of symptoms needed to detect
a particular disease, or to discriminate between closely
related ones. The basis for a technique of fuzzy feature
selection using algorithm (7) is contained in the simple

Proposition Let X be any binary valued data set, X=
{XlJ ... , Xn} contained in Rd; let {vd be

Medical Diagnosis with Fuzzy Sets 1063

the cluster centers given by (6b); and
suppose Vij to be the jth component of Vi for
l::;i::;c; l::;j ::;d. Then

'C'ij=O=> X1j=X2j=" . =xnj=O

vij=l=> Xij=X2j= ... xnj=l

(14a)

(14b)

(14c)

Proof Rewriting equation (6a) in the form Uik=
0/1 +Cik), where Cik is the sum in the denominator
over j = 1,2, ... , c with J+i, we observe that Cik>O
for every i and k, hence Uik € (0,1) for every i and k.

fI.

In view of this the denominator in (6b), L. (Uik) m> 0
k=l

for 1::; i::; c. Now consider the component form of (6b)
for any j;

(15)

The coefficients of Xkj in (15) are all strictly positive,
and since every Xkj is greater than or equal to zero, Vij
is also. Moreover, this also shows that Vij can equal
zero if and only if all the Xkj in (15) are zero. Finally,
since every Xkj in (15) is less than or equal to one, that
sum is bounded above by 1, the number obtained upon
replacing all of the Xk/S with 1. Since the maximum
is attained when this occurs, the proof is complete.

We elaborate the implications of equations (14) for
feature selection by the following series of observa
tions:

(i) Vij=O: Since the proof is independent of i, it's easy
to see that an even stronger statement holds: Vij::::: 0
(::::)Vkj=O for l::;k::;c with k+i. From (14b) it follows
that this occurs when and only when attribute j is
absent from all n members of the data, in which case
it is irrelevant to substructure in X (medically, no
patient had symptom j) .

(ii) vij=l: As in .(i), the stronger statement vij=l if
and only if all the Vk/S with k+i are 1 holds. In this
event, feature j is a maximal descriptor of the n indi
viduals in X (medically, all patients had symptom j) .

(iii) O<vij<l: Again, this can.happen when and only
when O<vkj<l for all k+i. Ostensibly, feature j has a
variable amount of influence in describing members of
the c subgroups in X. This suggests that the relative
magnitudes of VIj, V2"j, ••• , VCj may rank the efficacy
of j as a descriptor of each subclass (medically, some
patients in each subclass had symptom j, and others
did not).

(iv) Combining (i}-(iii), it is seen that one of the
cluster centers Vi is entirely binary valued if and only if
all c of them are, and this occurs if and only if all n
members of the data are identical. In this eventuality
there is no possibility for mathematical (or medical)
detection of subclasses in X. On the other hand, we

1064 National Computer Conference, 1976

T ABLE III-Membership Functions Obtained by Fuzzy ISODAT A

Patient

2

4
5

?

10
11
12
13
14
15
16
17
1 :::
19
20
21
22
.= .. :-.
1-.._1

24
.-.r= .::.._1

2E.
27

: .. :.
_'L..

36

:~:.~

40
41
42
4:~:

44
4~

4f.
47
4:::
49
50
51
':=.-. ,_Ie
1::"' •
1."

m=1.10

• I) (11
• 001
. 137
· 137
• 1 :~:7
. 137
• 002
• 002
• 002
• 000
• 000

000
• 005
• 3:::'~
• 002
• 022
• ':;'5'~
• 092
• 000
• (I (I (I

• 000 .= .. :: .. :. 1-,. __ 1,_1

• 917
7:::5
cc-.-, · ,_,._":'

• 99'~
• 015
• 0 (I

II 0 0
• 0 (I

• I) (I

• (I (I

• 0 (1
o I)

• I) ::.

• 0 u:"":·
00

• 00
• (i 0
• 00

(I

• i)

• 0
• (I

• (I

• (I

• 0 I
(I I)

• (I tit::;
OO:~!

03:::

· 004

99'~

'~'~9
:::63
:::63

• :::f.3

.99:::
1 000
1 000
1 000

611
9'~:::

041
.90:::

1 000
1.000
1. 0 (I 0

I t:.,..

442
• 0 (I 1

1 00
1. 0 (I
1. 0 (I
1. 0 (I
1 00
1 (10
1 00

1-4 1:';7

1 0 0
1 • 0 (I

1. (I 0
1 (I 0
1 (I 0
1 I) I)

1 • 0 U (i

1 000
1 000
1 (I(!(!

1 0(10
1 000

.764

m=1.33

2:::0
2:::0
.=.': .. :.

• '_1._1._'

I:I':~ -:. • ,_,._1._'

· .= .. :. .. .: .
.: .. : .. :. · "_"_"-,

420
.420
.420

11'='
• 04:::
• 114
.464

671
.-.C"'-' • .::. ,_Ie..

341
:::20

• 1'"":'7
• 1 ~:7
• 1 ~:7
4'~'~

554
.466

.230
0:::':·

• 1"1:"":::=:

• 04'~
025
022

• 022
4:~:5

435
152
152

• 032
• 032

I) 1 =:
o 1 ~,

• 0 1 ~:
• 06:::
• 079
• 07'?
• 046

113
• 176

• :~:4 (I
.6:::4

15:~:

720
• 720
• 1 t:
• 167
• 167
• 167
.5::: 0
.5::: (I
.5:=: I)

1 ::: I)

:::63
501

• ~: 15
44':.
534
1 -.. -, = .. .: .

• 770
'314
'3':.2
1::-':.2

97:::
'37:::
5~,5

Sf.S
:::4::;
:::4;::
'~6;::

• '~6~:;
9:::7

;321

• '~21
.954

-11-:"""":' · : .. :.,.
:::24

• 1 .:.1
660

• :~: 16
:::47

Patient

54
c:-c:-
._1._1

SE.
c:--:o
"_I .. -~I-' II 0_11='

5':;'

II
1

'::,0 1
.:: 1 ,_, .L

E.2 1
'::.:::: 1
EA 1
t.5 1
66 1
CI..-

68
69
70
71
72
----:-.-.
I" .:.-

74
75
..- 1:-

77 1
?1-' ... :. 1
7'~ 1
::: 0
::: 1 1
:::2 1
;=::3 1
:::4 1
:=:5 1
S6 1
:-,~ 1 .=. f

:=:::: 1
:=:'3
'30
'31 1
:32 1
9:~: 1
'34
95
'3'::,
97
9:::
'31~

1 00
1 01
1 02
1 03
1 04
1 05
1 06
1 07

TABLE III (Continued)

m=1 .10
A " u 2

u
1

· 020 · '3::: 0

· 507 4'33

· 052 · '34S
149 851 · · --- - -'-1,-,,-, '-11-."=' · ::- :::":. · 1_,1_'1- II

· 000 · 000

I · 000 · 000
'~94 006 ·

· 0 · 000

· 0 · 000

· 0 000

· 10 · 000
0 · 000
0 1 · 000

01 · 9'3'3

· ·-I~ .=.- ; · :::63

· 1,-,-:0
.;.. i :::63

· 000 1 · 000

· 005 · '3'35

· 005 '31'35

· 05'3 · '341

· 155 :=:45

· 99::: 02

· 000 00

· 000 00

· 000 00
'3'3':;- 01

· 000 00

· 000 If 0

· 000 0

· 000 1 0

· 000 0
000 10

· 000 0
000 1(:

'3'3'~ 01
'~'3'3 I I) 1
000 000

· -,1)0 000

· 00 · 000
00 1 000
00 1 000
O:~: 9'3"(
00 1 000
05 '31~5

01 9'3'3
03 · 'j'~7

· 731 · 2E.'::a

· 997 00::::
'~p:;'7 00::::
'395 005

· 034 966

· '35:::: 042

· I~~:=: 042

Medical Diagnosis with Fuzzy Sets 1065

m=1.33

·-.. c.-.
• C-_II:-

.57':·
.742 I
.424

.331 .669

.324 • E,7EH ------• :::~::4 • 1 E.E.

• O:~:2 II

.064

• ::::::4
• ::::::4

• 126
.2::: 0

.=.--:.":.
• '_'0_'0_'

.=."-:.":'
• '_"°_1 0

_'

· 11 :::
.4':'4
.464
.546
• 57'::·

.940

.904

.13'32
• '3'32
.13:32

• '3'3E'

· '360
.90'3

• 06:::
· 022

.152

· 1'31

I::"'-'C:-
• "_IC-_1.

• :::36

• '::,74
.674

.204
· 116
• 116
.022
.022
• 022
• :::74
.720
.167
.167

.5:=:':r
• 5:;:tr
.454
.424
.135
• (11::::
• (11:;:
• 06 (I
• 1)'36
· 00:::
• (10:::
• I) O::~

· (loa
• (10;::
• I) 0:::
.033
• 04 (I
· 0'31
· 117
.077
.077
• 077

• St=:,5
• :::4:::
.717
• ::: 0':;'

.761

.475
· 112
• 112
• 164
.761

1066 National Computer Conference, 1976

I

I
I
I

find that if and only if a single cluster center has no
component either 0 or 1, then all c cluster centers are
of this type.

In view of these remarks, it seems natural to call the
components {Vij} of cluster center Vi the leature centers
of class i. Table IV exhibits values of these centers for
each of the fuzzy partitions listed in Table III. The
ranking of symptom importance for patients with
hiatal hernia (class 1) established by values of {Vij} at
either value of m is 2>6>1>9 ... >10. We infer
from this that among the 11 symptoms measured, epi
gastric pain (2) is most likely to occur in patients
with this disorder, whereas they will exhibit weight
loss (10) only occasionally. To see whether the magni
tudes of the v1/s really do this, let Pij be the relative
frequency of occurrence of symptom j in class i pa
tients. From Table I we find that P12=0.982, Pl,lO=
0.035. These frequencies should be compared to the
values of the corresponding feature centers for class 1:
for example, with m= 1.10 we have v1:.!=0.985, and
V1,lO=0.021. These comparisons seem to corroborate
our supposition concerning the ability of the fuzzy
feature centers to rank the significance of the features
as descriptors of each class.

For patients with gallstones (class 2), there is some
shifting in ranks established by changing m from 1.10
to 1.33 ; this seem to indicate that members of this class
are somewhat less distinctive. Nonetheless, we find
from Table IV that in both cases, the most important
features are {3,6,8,2}; the least important are {5,7,9}.
Of course, one may take the opposite view, and regard
{5,7,9} as the features most important for deciding a
patient does not have gallstones. This remark points

T ABLE IV-Cluster Centers for the Membership Functions in
Table III

Exponent Symptom feature Centers Absolute

(Hernia) (Galls.) Differences

m j °1j V2j I ~1 j-02 jl

1 .570 .269 .302
2 .985 .668 .317
3 .063 .929 .865
4 .226 .551 .324
5 .174 .104 .070

1.10 6 .770 .837 .068
7 .418 .048 .370
8 .393 .844 .451
9 .479 .044 .435

10 .021 .165 .144
11 .117 .251 .134

1 .654 • 260 .394
2 .974 .752 .222
3 .105 .686 .581
4 .214 .485 .271
5 .191 .098 .093

1.33 6 .713 .878 .164
7 .467 .092 .375
8 .285 .839 .553
9 .527 .103 .423

10 .031 .118 .087
11 .127 .198 .071

up the fact that the Vi/S do not establish which features
possess discriminatory power for separating class i
from closely related classes, and at the same time, sug
gests a way to use the feature centers for pairs of sub
classes to select optimal discriminators.

An obvious indication of "how separable" classes i
and j are is their . cluster center separation "Vi-Vjll.
This measure, however, suppresses the information
we want to use for reducing the number of features
required to effect the classification. A more suitable
measure is afforded by the vector of absolute differ
ences of the components of Vi and Vj: for all i and j let

lij= (Ivil-vjll,IVi2- Vj21,· .. ,IVid-Vjd!>. (16)

The components of fjj,k of vector lij measure feature
center separations between the feature centers for
classes i and j. Equations (14) lead to the following
results for these components:

o ~fij,k ~ 1 for all i,j, and k. (17a)

fij,k = 0 <=>Either all or none of the vectors in both
classes i and j have feature k. (17b)

fij,k = 1 ¢:>All vectors in class i and no vectors in class
j have feature k, or vice versa. (17 c)

We presume feature k to be either useless or optimal as
a discriminator between classes i and j according as
(17b) or (17 c) respectively occurs. (17 a) shows these
to be the extremes, intimating that the values fij,H
f ij ,2, ••• , fij,d rank by their magnitudes the relative
utility of the d features for discrimination between
classes i and j.

To test this speculation, the vector 112 defined by
(16) corresponding to the cluster centers in Table IV
was used to identify the optimal feature subsets of di
mensions 1,2, and 3, and the data set X was reprocessed
with fuzzy ISODAT A using only these features. The
last column of Table IV reports the values of f 12,k: evi
dently symptom 3-upper right quadrant pain-is
implicated as the most powerful attribute for dis
tinguishing between gallstones and hiatal hernia. The
feature center values v13 =0.105 and V 23 =0.686 sug
gest that very few hernia patients suffer from symp
tom 3, while most gallstones patients may be expected
to have it. Indeed, from Table I we find that the rela
tive frequencies of symptom 3 are P13=0.123 and P23=
0.680 respectively. Continuing in this fashion, we de
duce that either {3,8} or {3,9} would be the best 2-di
mensional subset of features to use; that {3,8,9} is the
best set of 3 features at either value of m; and so on .

The results of clustering these feature subsets are
reported in Table V as numbers of misclassifications
stemming from the hard 2-partitions realized by maxi
mum membership conversion of the associated fuzzy
fixed points of Tm. Using symptom 3 alone results in
exactly the same hard partitions as using symptoms
3 and 9; moreover, it will be seen that the overall error
rates achieved with either of these subsets is at least

TABLE V-Misciassificaiions * Using Reduced Feature Spaces

m=1.10 m=1.33

Symptoms Galls. Hernia Overall Galls. Hernia Overall

Used n1=50 n2=57 n=107 n1=50 n2=57 n=107

1-11 17 23 13 12 25

16 7 23 16 7 23

3.9 16 7 23 16 23
.. 0 '-' ... 23 36 13 23 36

13 23 36 10 17 27

n1=43 n2=41 n=84 n1=43 n2=41 n=84

I~ I 7 7 0 7

*Sased on hard (maximum membership) partitions.

#Oata X with patients {23-26.55-57.67-75.94-100} deleted.

as good as the rate attained using all 11 features. Note
that symptoms 3 and 9 are much less effective than
3 and 8, and the error rate using {S,8,9} is in between
the best and worst ones shown. From these results it
appears that the feature selection method proposed
above successfully extracts a small number of features
which possess essentially the same information rele
vant to substructure in X detected by fuzzy ISODATA
as the original ones.

SUMMARY

Fuzzy clustering, and in particular fuzzy ISODATA,
has been reviewed, and is proposed here as a basis for a
new technique applicable to the problem of feature
selection. Specifically, equations (14) and (17) seem
useful in ranking the effectiveness of binary valued
features both as subclass representatives and as dis
criminators between pairs of fuzzy subclasses in X.
A numerical example was presented which seems suc
cessful enough to warrant further investigations into
the plausibility of the method. We note that this tech
nique is applicable only for binary data sets: in fact,
(6b) shows that the cluster centers {vd lie in the
linear subspace generated by the data, so when the
features have continuous domains, (14) and (17) are
invalid.

As a means of computerized medical diagnosis, the
technique described above is incomplete in the sense
that it is a clustering method, not a classifier. None
theless, it seems fair to assert that our example exhibits
the promise fuzzy sets may hold for this problem. Our
conviction is that fuzziness is the premise needed as a
basis for pattern recognition; more precisely, we think
it an appropriate generalization of the conventional
strategies criticized in Reference 5. The reason for
this lies with the fuzzy membership values generated
by algorithms like fuzzy ISODATA; not only do they

Medical Diagnosis with Fuzzy Sets 1067

indicate a patient's relative affinity for having every
disease represented by members of the data; but per
haps more importantly, low memberships can be used
to identify those patients· whose symptoms indicate
further personal attention. For example, the values in
Table III suggest that the 23 patients whose Table I
labels are {23-26,55-57,67-75,94-100} are-by virtue of
their relatively low memberships-the ones most af
fecting the computer's success at separating the two
subclasses. If these 23 individuals are deleted from X,
and the remaining 84 patients are processed with
ISODATA, the results reported in the last row of
Table V indicate an increase of about 14 percent in the
accuracy of labelling obtained on all 11 features with
either value of m. This appears to confirm that low
memberships signal troublesome patients. (Note that
processing this deleted set '''lith only feature 3 results
in a recognition rate of 100 percent: the 23 patients
identified above are precisely the 23 subjects having
the "uncharacteristic" labels for members of their
classes with respect to feature 3 alone). Of course,
it is not the business of the medical community to
delete troublesome patients from data sets for the
convenience of a computer: on the contrary, these are
the patients that doctors want most to identify, and
we believe that fuzzy methodologies will eventually be
useful in realizing computer assistance and counseling
for people in this profession.

REFERENCES

1. Zadeh, L., "Fuzzy Sets," In/. and Control, 8, 1965, pp. 338-
353.

2. Zadeh, L., K. Fu, K. Tanaka and M. Shimura, Fuzzy Sets
and Their Applications to Cognitive and Decision Processes,
Academic Press. New York, 1975.

3. Duda, R. and P. Hart, Pattern Classification and Scene
Analysis, Wiley-Interscience, New York, 1973.

4. Tou. J. and R. Gonzalez, Pattern Recognition Principles,
Addison Wesley, Reading. 1975.

5. Croft, D., "Mathematical Methods in Medical Diagnosis,"
Annals Bio. Engr., 2, 1974, pp. 68-89.

6. Bellman, R.. R. Kalaba, and L. Zadeh, "Abstraction and
Pattern Classification," Jo. Math. Anal. and Appl., 13, 1966,
pp.1-7.

7. Chang, C., Fuzzy Sets and Pattern Recognition, PhD Thesis,
Univ. of California at Berkeley. 1967.

8. Wee. W .• On a Generalization of Adaptive Algorithms and
Applications of the· Fuzzy Set Concept to Pattern Classifi
cation, Tech. Rep. 67-7, EE Dept., Purdue Univ., Lafayette,
Indiana, 1967.

9. Flake, R. and B. Turner, "Numerical Classification for
Taxonomic Problems." Jo. Theo. Bio., 20. 1968. pp. 260-270.

10. Gitman,1. and M. Levine, "An Algorithm for Detecting Uni
model Fuzzy Sets and Its Application as a Clustering Tech
nique." IEEE Trans. Comp., C-19, 1970, pp. 917-923.

11. Ruspini, E., "A New Approach to Clustering," Inf. and
Control, 15, 1969. pp. 22-32.

12. --, "Numerical Methods for Fuzzy Clustering," Inf.
Sciences, 2, 1970, pp. 319-350.

13. --, New Experimental Results in Fuzzy Clustering,
Internal Report. Brain Research Institute. UCLl\. 1970.

1068 National Computer Conference, 1976

14; ---, Applications of Fuzzy Clustering to Pattern Recog
nition, Internal Report, Brain Research Institute, UCLA,
1970.

15. Larsen, L., E. Ruspini, J. McNew, D. Walter and W. Adey,
"A Test of Sleep Staging Systems in the Unrestrained
Chimpanzee," Brain Research, 40, 1972, pp. 319-343.

16. Dunn, J., "A Fuzzy Relative of the ISODATA Process and
Its Use in Detecting Compact Well-Separated Clusters,"
Jo. Cybernetics, 3,3,1974, pp. 32-57.

17. Bezdek, J., Fuzzy Mathematics in Pattern Classification,
PhD Thesis, Applied Mathematics, Cornell Univ. Ithaca,
1973.

18. Zadeh, L., "Similarity Relations and Fuzzy Orderings,"
Inf. Sciences, 3, 1971, pp. 177-200.

19. Tamura, S., S. Niguchi and K. Tanaka, "Pattern Classifica
tion Based on Fuzzy Relations," IEEE Trans. SMC, SMC-1,
1971, pp. 61-66.

20. Dunn, J., "A Graph-Theoretic Analysis of Pattern Classi
fication via Tamura's Fuzzy Relation," IEEE Trans. SMC,
SMC-4, 1974, pp. 310-313.

21. Kandel, A. and L. Yelowitz, "Fuzzy Chains," IEEE Trans.
SMC, SMC-4, pp. 472-475.

22. Yeh, R. and S. Bang, Fuzzy Relations, Fuzzy Graphs, and
their Applications to Clustering Analysis, CS Report
SESLTC-3, Univ. of Texas at Austin, 1974.

23. Rosenfeld, A., "Fuzzy Graphs," in Fuzzy Sets' and Their
Applications to Cognitive and Decision Processes, Zadeh
et a!., eds., Academic Press, New York, 1975.

24. Bezdek, J., "Cluster Validity with Fuzzy Sets," Jo. Cyber
netics," 3,3, 1974, pp. 58-73.

25. Ball, G. and D. Hall, "A Clustering Technique for Sum
marizing Multivariate Data," Behav. Sci., 12, 1967, pp. 15'3-
155.

26. Bezdek, J. and J. Dunn, "Optimal Fuzzy Partitions: A
Heuristic for Estimating the Parameters in a Mixture of
Normal Distributions," IEEE Trans. Comp., Aug., 1975,
pp. 835-838.

27. Wishart, D., "Mode Analysis: A Generalization of Nearest
Neighbor Which Reduces Chaining Effects," in Numerical
Taxonomy, Cole, A. ed., Academic Press, New York, 1969,
pp. 282-308.

28. Ling, R., Cluster Analysis, PhD Thesis, Yale Univ., New
Haven, 1971.

29. Bezdek, J., "Mathematical Models for Systematics and
Taxonomy," in Proc. Eighth Int. Conf. on Numerical
Taxonomy, G. Estabrook, Ed., Freeman, San Francisco, 1975.

30. Rinaldo, J., P. Scheinok, and C. Rupe, "Symptom Diagnosis:
A Mathematical Analysis of Epigastric Pain," Ann. Int.
Medicine, 59,1963, pp. 145-154.

31. Scheinok, P. and J. Rinaldo, "Symptom Diagnosis: Optimal
Subsets for Upper Abdominal Pain," Compo and Bio. Res.,
1,1967, pp. 221-236.

32. Scheinok, P., "Symptom Diagnosis: Bayes' Theorem and
Bahadur's Distribution," Bio-Med. Comp., 3,1, 1973, pp.
17-28.

33. Cumberbatch, J. and H. Heaps, "Application of a Non
Bayesian Approach to Computer Aided Diagnosis for Upper
Abdominal Pain," Bio-M ed. Comp., 1973.

34. Toussaint, G. and P. Sharpe, "An Efficient Method for
Estimating the Probability of Misclassification Applied to a
Problem in Medical Diagnosis," Compo Bio. Med., 4, 1975,
pp. 269-278.

35. Bezdek, J. "Numerical Taxonomy with Fczzy Sets," Jo.
Math. Bio., 1,1, 1973, pp. 57-71.

36. ---, "A Physical Interpretation of Fuzzy ISO DATA,"
IEEE Trans. SMC, in press.

Procedural representation in a fuzzy problem-solving system

by RICHARD A. LEFAIVRE
Rutgers University
N P.W Rrunswick, New Jersey

ABSTRACT

This paper addresses the problem of developing new
representational structures for use in problem-solving
domains which are imprecise or uncertain in nature.
The incompatibility of precise representations with
complex systems is discussed, and an argument is made
that the inability to arrive at symbolic representations,
not any inherent "complexity," is what makes natural
reasoning difficult to model. The programming lan
guage FUZZY, which provides a number of facilities
for representing and manipulating fuzzy information,
is described briefly, and the use of "procedure demons"
to specify global control regimes is examined. The pro
cedural mechanisms available in FUZZY are then used
to analyze a simple problem of fuzzy deductive in
ference.

INTRODUCTION

The ability to effectively utilize information which is
vague, imprecise, or uncertain is of inestimable im
portance to a problem-solving system which is con
fronted with a world view even approaching the "real
world" in complexity. It is clear that human problem
solvers are able to function in inexact domains long
before they can manipulate the abstract symbols we
create to represent "exact" reasoning (e.g., consider
how you were able to recognize your mother as a two
year-old). But it is precisely the kind of vague, im
precise reasoning which humans seem to do so well
which perplexes researchers in the developing field of
cognitive science* who are concerned with understand
ing and modeling the thought process. Relatively wel1-
defined problem domains such as game playing and
theorem proving have been most amenable to analysis
and successful simulation. Problem areas which are
somewhat more imprecise-that is, whose "rules" and
solution algorithms are vaguely specified-have proven
to be more difficult to model at a level approaching that
of human performance (consider simple scene descrip
tion and speech understanding). And other domains

* Weare indebted to Bobrow and Collins:l for the populariza
tion of this term.

1069

even less amenable to precise analysis have yet to be
even considered by researchers in artificial intelligence,
although they constitute the bulk of the average hu
man's reasoning effort (how does one judge that a par
ticular face is "pretty"; decide whether or not to get
married, and to whom; figure out whether to go to a
play or a movie tonight, and, if so, which one?).

The p-roblem of representation

Zadeh2.1,25 describes what he calls the principle of
incompatibility, which states that the complexity of a
given domain is more or less inversely related to the
precision (exactness) with which it can be analyzed.
Although this tenant seems to hold true in many situa
tions; and can indeed be made a truism by utilizing it
as a definition of the ill-defined term "complexity," it
is somewhat unsatisfying. Do we really believe that
the ability to recognize a chair as a chair and not a
table, bench, footstool, etc., is a more complex action
than proving a theorem in predicate calculus or play
ing a reasonable game of chess, simply because we can
analyze the latter more precisely than the former?
It appears to me that the problem lies not in the under
lying complexity of the task, but in the level at which
we can (symbolically) represent our knowledge about
the particular task and its problem domain. It happens
that we have developed precise mechanisms for repre
senting our knowledge about the complex reasoning
utilized in game playing and theorem proving (involv
ing constraints, rules of action, searching techniques,
etc.), whereas the simple task of recognizing a chair
(much less a pretty face) has defied attempts at sym
bolie representation. The reason, of course, is that
games and formal logics exist in artificial domains
which are of necessity described symbolically. Deal
ing with the real world involves a natural form of rea
soning which must be developed well before artificial
symbolic reasoning appears, and the resulting mecha
nisms involved in such natural reasoning are corre
spondingly harder to introspect about (and, therefore,
to translate into symbolic representations).

Unfortunately, the only mechanisms we have avail
able for artificially representing knowledge are sym-

1070 National Computer Conference, 1976

bolic in nature-a situation which will in all likeli
hood remain unchanged for some time to come. Our
task is thus to develop more general and powerful
representational structures, along with techniques for
integrating and utilizing these structures to their best
advantage. At the same time we must search for ways
of representing so-called "real-world" (i.e., naturally
non-symbolic) knowledge in such a way that it can be
effectively utilized in the problem-solving process. It
is this problem that the research reported here ad
dresses.

Previous research

Past investigations into the problem of representing
knowledge which is vague, imprecise, uncertain, in
exact, or probabilistic in nature can be grouped into
four major classifications:

(1) Philosophical and logical foundations-Philoso
phers of language have long contended that any sym
bolic system (i.e., language) used to describe the real
world must, of necessity, admit concepts which are
ill-defined. Indeed, it can be argued that it is precisely
the fuzziness of natural language (and the underlying
cognitive structure upon which it is built) that allows
us to communicate in a meaningful way. The infinite
complexity of our world makes it necessary for us to
summarize, generalize, compress, and otherwise elimi
nate the mass of irrelevant detail with which we are
continually confronted. Formal logicians, who are con
cerned with representing knowledge in a formal sys
tem, discovered quite early that classical logic with
its true-false dichotomy was not sufficient to represent
the full range of human knowledge. Various attempts
were thus devised to liberalize this dichotomy, result
ing in non-standard systems such as intuitionistic logic,
modal logics, many-valued logics, probabilistic logic,
and fuzzy logic. Although such systems are certainly
of interest in their own right, it now seems quite clear
that formal, syntactically-based systems are not suffi
cient for use in a dynamic, problem-solving environ
ment. For a further discussion of these philosophical
and logical foundations, see LeFaivre13 and McCarthy
and Hayes.15

(2) Formal tools for representation and analysis
In the past decade a new set of formal tools and con
cepts for analyzing the process of approximate reason
ing has evolved from the theory of fuzzy sets (Zadeh,23
Goguen7). Such semantically-grounded concepts as
fuzzy sets, fuzzy relations, fuzzy algorithms, linguistic
variables, and linguistic hedges give us a new set of
tools for symbolically representing and manipulating
fuzzy information. At this time most of the work in
this area has been theoretical in nature-we are just
beginning to investigate the effect which some of these
new concepts will have on actual problem-solving
systems.

(3) Problem-specific AI systems-Although it is
true that the overwhelming majority of systems de
veloped by AI researchers have dealt with simplified
domains, thereby ignoring the problem of representing
real-world information, there have been some attempts
to begin to come to grips with this problem. For ex
ample, Munson 1R investigated the general problem of
dealing with the uncertainty encountered in the real
world. Several systems which utilize semantic net
memory structures provide mechanisms for handling
various kinds of fuzziness (e.g., Quillian19 and
Becker1

). Notable among these is the SCHOLAR sys
tem developed by Carbonell, into which a variety of
different kinds of fuzzy reasoning capabilities have
been placed (see Carbonell and Collins~ and Collins, et
a1. 6

). The MYCIN system of Shortliffe20 is also notable
for its use of a model of inexact reasoning in medicine.

(4) Problem-independent AI systems-This final
classification involves programming systems which are
not oriented towards any particular problem domain,
but rather provide general facilities for representing
fuzzy knowledge. Leell discusses the problem of creat
ing a resolution theorem prover based on fuzzy logic
(such a system could, in theory, be used as a general
problem-solver-see GreenS). To my knowledge, the
described system was never implemented. Michalskj16
discusses the implementation of a "variable-valued
logic" system which provides mechanisms for ex
pressing and solving problems in discrete mathematics
which are intrinsically nonlinear. In 1972 Rob Kling
and the author began to discuss some of the modifica
tions which might be made to a contemporary "AI
language" (MICRO-PLANNER21) to allow it to effec
tively utilize fuzzy information. The resulting system
(FUZZY -PLANNER) was subsequently developed on
paper by Kling,9 although it was never implemented.
FUZZY-PLANNER, however, stands as the spiritual
predecessor to the system described in this paper.

A BRIEF DESCRIPTION OF FUZZY

One of the more important trends in artificial in
telligence in recent years has been the development of
powerful new programming languages for use in AI
research (see Bobrow and RaphaeI4

). The research re
ported in this paper had as one of its goals the develop
ment of a new language which synthesized many of
the good ideas of previous AI languages while provid
ing facilities for the efficient storage, retrieval, and
manipulation of fuzzy knowledge. The resulting lan
guage (called FUZZY) is a complex system which
would be impossible to describe fully in a paper of this
nature. I shall thus present here a brief overview of
the language, and then concentrate in subsequent sec
tions on procedural representation. Note that an early
version of the system was described in Reference 12,
and a complete description of the language may be

found in Reference 13. A discussion of how FUZZY
can be utilized to represent a variety of different forms
of fuzzy knowledge, including explicitly and implicitly
defined fuzzy sets, fuzzy relations, fuzzy algorithms,
and linguistic hedges, appears in Reference 14. FUZZY
is a LISP-based system, and has been implemented in
both UNIVAC 1110 LISP and UCI LISP for the
PDP-10.

Fuzzy expressiuns

FUZZY is in essence a many-valued programming
language. By this I mean that, unlike traditional lan
guages in which expressions evaluate to a single value,
FUZZY expressions may return both a value and a
"fuzzy truth-value," or Z-value. * The Z-value range is
specified by the LISP variables ZLOW and ZHIGH,
and may be changed by the user as desired (the initial
values are 0 and 1). Primitives are available for re
trieving the value (VAL) or Z-value (ZVAL) portions
of an expression, and for computing logical combina
tions of fuzzy expressions (ZAND, ZOR, ZNOT). In
all cases a default Z-value of ZHIGH is provided by
the system if no Z-value is present explicitly.

In addition to being able to return values and
Z-values, FUZZY expressions may either succeed or
fail in a manner similar to other AI languages (see
Reference 4). Failure is caused by simply returning
a value of FAIL, with any other value constituting suc
cess. Several variations of a standard IF-THEN-ELSE
mechanism are available for controlling success and
failure of individual expressions, and a user-controlled
backtrack mechanism is available via the SAVE, RE
STORE, and FOR statements.

The associative net

In addition to standard LISP data structures,
FUZZY allows fuzzy knowledge to be explicitly repre
sented by maintaining an associative network of asser
tions with optional Z-value modifiers. Standard ADD
and REMOVE primitives are available for maintain
ing this net, while the FETCH primitive may be used
to access the net via a powerful structural pattern
matcher. The net is automatically ordered by Z-values,
and options are available in FETCH to place con
straints on the Z-value range to be accessed and to
specify whether the assertion with the highest or low
est Z-value in the range is to be retrieved. One varia
tion of the FOR statement allows the user to iterate

* The term "Z-value" was chosen so as not to give any semantic
connotations to the usage of this numeric modifier, since it can
represent a conventional truth-value, a fuzzy set grade of mem
bership, a degree of certainty or belief, a simple weight, or any
thing else the user wishes.

Fuzzy Problem-Solving System 1071

through an assertions in the net which match a certain
pattern and have a Z-value in the desired range.

Fuzzy procedures

It is often the case that knowledge is complex enough
to prevent it from being stored explicitly in the form
of simple assertions. FUZZY thus provides a powerful
method of implicitly representing fuzzy knowledge via
the specification of procedures (using the PROC state
ment) . The procedural mechanisms of FUZZY will
be discussed more fully in a later section of this
paper.

Deductive mechanisms

Like other AI languages (see Reference 4), FUZZY
allows assertions to be implicitly defined via the speci
fication of deduce procedures. The primitive DEDUCE
is similar to FETCH, except that instead of searching
for an assertion in the associative net, it searches for
a procedure which allows the desired assertion to be
computed. A GOAL primitive is also available which
first performs a FETCH, utilizing DEDUCE only if
the assertion is not present explicitly in the net. The
pattern-directed procedure invocation mechanism of
FUZZY is similar to that of other AI languages, ex
cept that FUZZY allows Z-value modifiers to be com
puted and returned along with assertions. Variations
of the FOR statement are available for iterating
through assertions generated by deduce procedures,
and a simple mechanism is available for writing gen
erators-procedures which compute an assertion for
use by a higher-level FOR statement but which can
be restarted to compute an alternative assertion if
necessary.

INFERENCE IN A FUZZY ENVIRONMENT

Classical and fuzzy detachment

In order to provide some motivation for the pro
cedural mechanisms described in the next section, let
us consider briefly the problem of deductive inference
in a fuzzy environment. Like other AI languages,
FUZZY provides facilities for automatically "de
ducing" information via the use of procedures. In
nonfuzzy domains, the use of deduce procedures to rep
resent deductive arguments is relatively straightfor
ward. For example, the classic argument "all humans
are mortal; Socrates is human; therefore Socrates is
mortal" may be succinctly represented by the FUZZY
statements:

1072 National Computer Conference, 1976

(ADD DEDUCE:
(PROC (MORTAL ?X)

(GOAL (HUMAN !X»» *
(ADD (HUMAN SOCRATES»
(DEDUCE (MORTAL SOCRATES»

This argument is an example of the rule of detachment,
which is represented in classical logic by the theorem:

(A and (A implies B» implies B

In other words, given that "A" is true and "A implies
B" is true, we may deduce that B is true.

Consider, however, the role of detachment in a non
standard (e.g., many-valued) logic. Here the formulas
"A" and "A implies B" may be only partially true
how then are we to compute a truth-value for B? We
need to define a "detachment operator" which lets us
combine the truth-values of "A" and "A implies B"
in some way to arrive at an estimate of the truth
value of B. The importance of the selection of this
operator, which is discussed more fully in Goguen,7
Kling,D and LeFaivre,I3 can be illustrated by the follow
ing example.

A paradox

Consider the following two premises:

(1) 1 is a small integer.
(2) If n is a small integer, then n+ 1 is still a

small integer.

Certainly these seem to be reasonable statements. We
would all agree that 1 is a small integer, and surely
adding 1 to a small integer doesn't magically make it
not small. But given these two innocent premises, we
are able to prove by an appropriate number of appli
cations of the rule of detachment that any positive
integer N is small. This deduction is an example of the
classic "paradox of the heap" discussed by Black2 and
Goguen,' and illustrates one of the major shortcomings
of classical logic. The problem, of course, is that the
set of "small integers" is not sharply defined-we have
attempted to impose the laws of classical logic on a
nonclassical (Le., fuzzy) problem.

Paradox resolved

We can make use of fuzzy detachment to resolve the
above "paradox" by noting that the result of adding 1
to a small integer, while still small, is not quite as
small as it was before. In other words, premise (2)
above is not quite true-let us say that it has a truth
value of 0.99. If we assume that the truth-value of

* (MORTAL ?X) acts as the pattern of the given procedure,
which will be matched against the requested assertion in the
DEDUCE statement; the sub-pattern ?X will match anything
(in this case SOCRATES), binding the item matched to the
variable X; !X is then used to retrieve the matched value.

; Define deduce procedure stating
; that humanity is sufficient to
; prove mortality.
; Assert Socrates' humanity.
; Request proof of his mortality.

(1) is 1.0, and we use multiplication for our detach
ment operator, it is trivial to show that the truth
value of the statement "N is small" is 0.99N-I, which is
an intuitively satisfying result. Hence, the "paradox"
of classical logic becomes a valid deduction when
formulated in many-valued logic. Let us now consider
how such a problem might be represented in FUZZY.

PROCEDURAL REPRESENTATION IN FUZZY

We saw in the preceding section an example of a
problem in which a multiplicative combination of
truth-values led to a satisfactory representation of a
simple fuzzy deduction. It is natural to ask whether
we wish to always combine truth-values multiplica
tively. The answer seems to be no. For example, the
theory of fuzzy sets makes use of the minimum and
maximum for various numeric computations, and one
can envision situations where the sum or average
might be desired. The point is that a fuzzy problem
solving system must not force decisions of this type
upon the user, but should make it easy for him to ex
periment with a variety of forms of control.

Global control

The issue being discussed here might be character
ized as the amount of global control a procedure exer
cises over its local computations. For example, most
conventional programming languages (FORTRAN,
LISP) exercise no global control-all decisions (e.g.,
when to exit from a function) are made at the local
level by statements within the procedure. On the other
hand, MICRO-PLANNER21 monitors the execution of
its procedures (theorems), looking for statements
which fail (return NIL) and taking some global action
(backtracking) when necessary. We are faced with
the question of what form of global control (if any)
should be built into a FUZZY procedure. Consider a
typical example: we want a procedure to succeed only
if each of its local expressions succeeds with a Z-value
above some threshold value. Now, this could of course
be done using only local control-by inserting tests
of the Z-value of each expression into the procedure
but this would clutter up the routine with rather un
interesting and repetitive local computations, obscur
ing its overall structure. In addition, each procedure
requiring this particular global control regime would
have to have the necessary local computations built in
-a clearly inelegant solution. We would like to be able
to simply specify the threshold value and have the

system perform the necessary manipulations:

(PROC THRESH: (n) (pattern) (e1) (e2) ...)

A fixed procedure mechanism of this form would
be the FUZZY equivalent of the simple control present
in MICRO-PLANNER theorems. However, as men
tioned earlier, there may be other forms of global con
trol which might be desirable-for example: ignore all
failures; succeed only if at least (n) of the statements
succeed; succeed only if some junction of the indi
vidual Z-values exceeds a threshold (e.g., a threshold
operator) ; return as a Z-value the minimum (maxi
mum, sum, product) of the individual Z-values en
countered; etc. FUZZY procedures allow all of these
forms of global control (and more) via the specifica
tion of procedure demons.

Procedure demons

A procedure demon is a LISP function which is as
sociated with a procedure, and which is given control
after each expression of the procedure is evaluated.
The demon is passed the result of the evaluation, the
threshold value associated with the procedure, and an
"accumulated Z-value" which may be dynamically com
puted by the demon. When the procedure is exited the
demon is called one last time with a value of DONE
in order to make any necessary final computations
(e.g., computing an average). For example, consider
the case of succeeding only if all of the expressions in a
procedure succeed with a Z-value above some thresh
old, keeping track of the minimum Z-value encoun
tered. A procedure demon which exercises this form of
global control might be defined as follows (this is in
fact FUZZY's standard default demon) :

(DE *DEMON (V TH AC)
(COND [(EQ V FAIL) (FAIL)]

[(EQ V DONE) AC]
[(LT (ZVAL V) TH)

(FAIL)]
[T (MIN (ZV AL V) AC)]»

The value returned by a procedure demon is saved
by the system and becomes the new accumulated
Z-value upon the next call to the demon. Thus in ad
dition to checking for statements which fail or fall
below the threshold (and causing the procedure to fail
if one is found), *DEMON keeps track of the lowest
Z-value encountered, as desired. The final accumu
lated Z-value (i.e., the value returned by the demon
after it is passed DONE) is returned as the Z-value
portion of the procedure result. A procedure which
uses *DEMON might be defined as follows:

(PROC DEMON: *DEMON THRESH: 0.5
ACCUM: 1.0 ...)

This indicates that the demon for this procedure is
*DEMON, the threshold value is 0.5, and the initial

Fuzzy Problem-Solving System 1073

accumulated Z-value is 1.0 (i.e., this is the value used
the first time the demon is called after entering the
procedure). The DEMON:, THRESH:, and ACCUM:
fields are all optional, with default values of *DEMON,
ZLOW, and ZHIGH, respectively, assumed.

If a procedure demon of NIL is specified, no demon
calls are made (i.e., the procedure is evaluated in a
manner similar to a LISP PROG, with only local con
trol allowed). Other procedure demons may be written
by the user to specify unique forms of global control
(see Reference 13). The motivation behind the pro-
cedure demon mechanism is that once a library of fre
quently-used procedure demons is built up, the user
may easily specify a variety of global control regimes.
He is thus relieved of much of the "dirty work" of di
rectly manipulating Z-values in the programs he
writeS. Indeed, in many cases the user need not e\1en
be aware that he is working with fuzzy information.

Paradox revisited

Recall the "paradox" of the small integers discussed
earlier. Let us briefly examine the issue of fuzzy de
tachment in FUZZY by showing how the procedural
mechanism just described can be used to represent
this problem. We first define a procedure demon DE
TACH which represents the (multiplicative) detach
ment operator:

(DE DETACH (VTHAC)
(COND [(EQVFAIL) (FAIL)]

[(EQVDONE) AC]
[T (TIMES TH (ZV AL

V))]»

We then add the two premises to the data base. As
usual, the implication "if n is small then n+ 1 is small"
is expressed as a deduce procedure which utilizes back
ward chaining:

(ADD (SMALL 1»

(ADD DEDUCE:
(PROC DEMON: DETACH THRESH: 0.99

(SMALL ?N)
(GOAL (SMALL &(SUB1 !N») »

(The prefix "&" acts as a LISP evaluation operator).
A request like:

(DEDUCE (SMALL 20»

would then cause the proper Z-value (0.9919
) to be

computed.
Note that all of the Z-value manipulations are car

ried out by the procedure demon. Except for the speci
fication of a non-standard demon and a threshold value,
which in this case is analogous to the truth-value of the
deduce procedure, the representation of a fuzzy deduc
tive argument is identical to the non-fuzzy example
shown previously.

1074 National Computer Conference, 1976

CONCLUSION

One of the major goals of artificial intelligence re
search is the search for powerful and efficient repre
sentations of knowledge. Certain types of knowledge
are adequately represented in traditional forms, e.g., as
strings, arrays, or lists. In other situations net struc
tures which are accessed associatively seem to provide
more power and flexibility. In recent years it has be
come apparent that much knowledge is of sufficient
complexity to be best represented procedurally. Recent
advances in language design have provided powerful
new tools which allow knowledge represented in a
variety of declarative and procedural forms to be in
tegrated in a natural manner. The research reported
here was concerned with extending these representa
tional tools in yet another dimension-toward the ef
ficient representation and utilization of knowledge
which is imprecise and uncertain in nature.

It is clear that we are a long way from being able
to represent and utilize the full range of non-symbolic
knowledge available to the human problem-solver in his
natural reasoning processes. In the past year, how
ever, a new representational synthesis has begun to
emerge among artificial intelligence researchers (e.g.,
see Minsky,17 Kuipers,Io Winograd/2

), although its
exact nature is not yet clear. It remains to be seen
what direction the search for fuzzy representations
will take in light of this new synthesis.

REFERENCES

1. Becker, J., An Information-Processing Model of Intermedi
ate-Level Cognition, Technical Report No. 2335, Bolt
Beranek and Newman, Inc., 1970.

2. Black, M., "Reasoning with Loose Concepts," Dialogue, 2,
pp. 1-12, 1963.

3. Bobrow, D. and A. Collins (eds.), Representation and Un
derstanding,' Studies in Cognitive Science, New York:
Academic Press, 1975.

4. Bobrow, D. and B. Raphael, "New Programming Languages
for Artificial Intelligence Research," Computing Surveys, 6,
pp. 153-174,1974.

5. Carbonell, J. and A. Collins, "Natural Semantics in Arti
ficial Intelligence," Proc. Third Int. Joint Conf. on Artificial
Intelligence, Stanford, California, 1973.

6. Collins, A., E. Warnock, N. Aiello and M. Miller, "Reason
ing from Incomplete Knowledge," in Bobrow and Collins.s

7. Goguen, J., "The Logic of Inexact Concepts," Synthese, 19,
pp. 325-373, 1969.

8. Green, C., The Application of Theorem Proving to Question
Answering Systems, Memo AI-96, Stanford University AI
Lab, 1969.

9. Kling, R, "FUZZY-PLANNER: Reasoning with Inexact
Concepts in a Procedural Problem-Solving Language," J. of
Cybe1'netics, 4, pp. 105-122, 1974.

10. Kuipers, B., "Representing Knowledge for Recognition," in
Bobrow and Collins.3

11. Lee, R, "Fuzzy Logic and the Resolution Principle," J.
Assoc. Comput. Mach., 19, pp. 109-119, 1972.

12. LeFaivre, R, FUZZY,' A Programming Language for
Fuzzy Problem-Solving, Technical Report No. 202, Computer
Sciences Dept., University of Wisconsin, 1974.

13. LeFaivre, R., Fuzzy Problem-Solving, Ph.D. Dissertation,
Computer Sciences Dept., University of Wisconsin. Avail
able as Technical Report No. 37, Madison Academic Com
puting Center, University of Wisconsin, 1974.

14. LeFaivre, R., "The Representation of Fuzzy Knowledge,"
J. of Cybernetics, 4, pp. 57-66,1974.

15. McCarthy, J. and P. Hayes, "Some Philosophical Problems
from the Standpoint of Artificial Intelligence," in B. Meltzer
and D. Michie (eds.): Machine Intelligence 4, Edinburgh:
Edinburgh University, 1969.

16. Michalski, R., "AQVAL/1-Computer Implementation of a
Variable-Valued Logic System VL/1 and Examples of Its
Application to Pattern Recognition," Proc. First Int. Joint
Conf. on Pattern Recognition, Washington, D. C., 1973.

17. Minsky, M., "A Framework for Representing Knowledge,"
in P. Winston (ed.): The Psychology of Computer Vision,
New York: McGraw-Hill,1975.

18. Munson, J., "Robot Planning, Execution, and Monitoring in
an Uncertain Environment," Proc. Second Int. Joint Conf.
on Artificial Intelligence, London, 1971.

19. Quillian, M. R., "Semantic Memory," in M. Minsky (ed.):
Semantic Information Processing, Cambridge, MIT, 1968.

20. Shortliife, E., MYCIN,' A Rule-Based Computer Program
for Advising Physicians Regarding Antimicrobial Therapy
Selection, Memo AIM-251, Stanford University AI Lab,
1974.

21. Sussman, G., T. Winograd and E. Charniak, Micro-Planner
Reference Manual, Memo No. 203A, MIT AI Lab, 1971.

22. Winograd, T., "Frame Representations and the Dec1arative
Procedural Controversy," in Bobrow and Collins.3

23. Zadeh, L., "Fuzzy Sets," Information and Control, 8, pp.
338-353, 1965.

24. Zadeh, L., "Outline of a New Approach to the Analysis of
Complex Systems and Decision Processes," IEEE Trans. on
Systems, Man, and Cybernetics, SMC-3, pp. 28-44, 1973.

25. Zadeh, L., The Concept of a Linguistic Variable and Its
Application to Approximate Reasoning, Memo No. ERL
M411, Electronics Research Lab, University of California,
Berkeley, 1973.

Subjective Bayesian methods for rule-based inference systems*

by RICHARD O. DUDA, PETER E. HART and NILS J. NILSSON
Stanford Research Institute
Menlo Park, California

ABSTRACT

The general problem of drawing inferences from un
certain or incomplete evidence has invited a variety of
technical approaches, some mathematically rigorous
and some largely informal and intuitive. Most current
inference systems in artificial intelligence have empha
sized intuitive methods, because the absence of ade
quate statistical samples forces a reliance on the sub
jective judgment of human experts. We describe in
this paper a subjective Bayesian inference method that
realizes some of the advantages of both formal and in
formal approaches. Of particular interest are the modi
fications needed to deal with the inconsistencies usually
found in collections of subjective statements.

INTRODUCTION

One of the characteristics of human reasoning is the
ability to form useful judgments from uncertain and
incomplete evidence. This ability is not only needed
for everyday activities, which people would normally
never formalize, but also for tasks such as medical diag
nosis or securities analysis, which have been subjected
to formal treatment.

Because the general need to form judgments from in
complete data is so widespread, many techniques have
been developed to aid or supplant people in this task.
Probability theory and statistics provide a powerful
framework for dealing with many inference prob
lems. 1 ,2 In standard approaches, the link between alter
native hypotheses and relevant evidence is represented
by conditional or joint probabilities that are estimated
from statistical samples. If the number of alternative
hypotheses and the amount of relevant evidence are not
too great, and if the available sample is sufficiently
large, then probability and statistics furnish the pre
ferred analytical tools. However, when many kinds of
evidence simultaneously bear on an hypothesis, tradi
tional statistical approaches become inappropriate be
cause estimation problems become unmanageable.

Recent work in artificial intelligence has suggested

;' The work reported herein was supported by the Advanced
Research Projects Agency of the Department of Defense under
Contract DAHC04-75-C-0005.

1075

other approaches to the problem of resolving hypoth
eses on the basis of a mass of uncertain evidence.
Among the most attractive are rule-based systems,
which use a large body of inference rules, supplied by
experts, to provide the knowledge needed to distinguish
among competing hypotheses.3

-
6 Each inference rule

defines the role of a particular set of evidence in re
solving a particular hypothesis. Typically, an ad hoc
scoring function is used to combine the effects of col
lections of uncertain evidence acting through several
inference rules on the same hypothesis. Thus, rule
based systems attempt to substitute judgments distilled
from long experience for joint probabilities estimated
from prohibitively large samples.

Our purpose in this paper is to describe a subjective
Bayesian technique that can be used in place of ad hoc
scoring functions in rule-based inference systems. Our
intent is to retain insofar as possible the well-under
stood methods of probability theory, introducing only
those modifications needed because we are dealing with
networks of subjective inference rules. The scope of
the paper is limited; we shall not discuss here the more
general issues of representation and control that must
be faced when designing a complete rule-based infer
ence system.

FUNDAMENTALS

In a rule-based inference system, the rules are typi
cally of the form

If El and E2 and ... and En
thenH

where Ei (i=l ... n) is the ith piece of evidence and H
is an hypothesis suggested by the evidence. Each infer
ence rule has a certain strength measured by parame
ters that will be defined later. For now it suffices to say
that the greater the strength, the greater is the power
of the evidence to confirm the hypothesis. In most ap
plications, the rules and their strengths are provided
by carefully interviewing experts.

The individual pieces of evidence (the E i) and the
hypothesis (H) of a rule are propositional statements.
Instead of being either absolutely true or false, the
truth values of these propositional statements may be

1076 National Computer Conference, 1976

uncertain. In this paper we shall represent these un
certainties by probabilities, so that associated with
each propositional statement is a corresponding proba
bility value.

To simplify matters, we shall assume (without loss
of generality) that each rule has only a single proposi
tional statement as evidence on its left-hand side. To
reduce a conjunction to a single statement, we need a
method for computing the joint probability, P (Eh ••• ,

En) from the individual probabilities P (EJ. Two sim
ple alternatives are to assume independence of the Ei
or to use the fuzzy set computation P (Eh • • ., En) =
min P (Ei). More generally, the left-hand side of a rule
could contain an arbitrary logical expression, E. The
results of this paper do not depend on how the proba
bility of E is computed.

We represent a rule of the form "if E then H"
graphically by the following structure:

0-0
Here a propositional statement is being represented as
a node, and an inference rule is being represented as an
arc. A collection of rules about some specific subject
area invariably uses the same pieces of evidence to im
ply several different hypotheses. It also frequently hap
pens that several alternative pieces of evidence imply
the same hypothesis. Furthermore, there are often
chains of evidences and hypotheses. For these reasons
it is natural to represent a collection of rules as a graph
structure or inference net.

An example of an inference net is shown in Figure 1.

SA-4763-1

Figure i-A simple inference net

The Hi at the top of the net are alternative hypotheses
to be resolved. Each arc entering a node represents an
inference rule and has associated with it a strength.
Notice that a typical intermediate node like E5 can play
hvo roles: it provides supporting evidence for the
nodes above it (E 2 and E 3) , and it acts as an hypothesis
to be resolved by evidence below it (Es and E 9) •

The main problem to be considered in this paper con
cerns the propagation of probabilities through the net.
Suppose for example, that a user of the net provides
evidence by deciding that the probability of a node, say
E 6, should be changed from its prior value to some new
value. Obviously this should require updating of the
probability of E4 and, in turn, Eh E 2, and Hk , and so on.
Any mechanism used for propagating probabilities
must be able to cope with a number of problems. The
rules have uncertainty associated with them, and the
evidence provided by a user may be uncertain. These
two different kinds of uncertainty must somehow be
combined. Multiple evidence typically bears on a single
hypothesis, so that some form of independence must
usually be assumed. Finally, the rules are provided
subjectively by experts, so certain kinds of inconsisten
cies arise that can seriously jeopardize success. In the
following sections we suggest a Bayesian updating
scheme that addresses these concerns.

SUBJECTIVE BAYESIAN UPDATING

Suppose we are given a rule if E, then H. Let us be
gin with the simplified problem of updating the proba
bility of H given its prior value and given that E is ob
served to be true. By Bayes rule, we have

P(HIE) P(EiH)P(H)
P(E) (1)

For our purposes, a more convenient form of Bayes
rule is arrived at by writing the complementary form
for the negation of H

P(HIE) = P(EiH)P(H)
P(E) ,

and dividing Eq. (1) by Eq. (2) to obtain

P(HIE)
P(HIE)

P(EIH) P(H)
P(EIH) P(H)'

(2)

(3)

Each of the three terms in this equation has a tradi
tional interpretation. We define the prior odds on H to
be

O(H) P(H)
P(H)

and the posterior odds to be

O(HIE) P(HIE)
P(HIE)

P(H)
1-P(H)

P(H!E)
1-P(H'E) ,

N ow the likelihood ratio is defined by

P(EjH)
A P(E:H)'

(4)

(5)

(6)

so Eq. ;) becomes the odds-likelihood formulation of
Bayes rule:

(7)

This equation tells us how to update the odds on H given
the observation of E. For rule-based inference sys
tems, we assume that a human expert has given the
rule and has provided the likelihood ratio A to indicate
the "strength" of the rule. A high value of A(A»I)
represents, roughly speaking, the fact that E is suffi-
cient for H, since the observation that E is true ,:vill
transform indifferent prior odds on H into heavy pos
terior odds in favor of H. Notice, incidentally, that the
underlying probabilities can be recovered from their
odds by the simple formula

p_ 0
-'- -0+1' (8)

so that the odds and the probabilities give exactly the
same information.

Suppose now that we wish to update the odds on H
given that E is observed to be false. In a strictly anal
ogous fashion, we write.

o (HIE) =AO (H),

where we define A by

P(EIH)
P(EIH)

1-P(E,H)
1-P(E:H) .

(9)

(10)

Notice that A must also be provided by the human ex
pert; it cannot be derived from A. A low value of A,
(O::;;X«I) represents, roughly speaking, the fact that
E is necessary for H, since the observation that E is
false will by Eq. 9 transform indifferent prior odds on
H into odds heavily against H. Curiously, although A
and A must be separately provided by the expert, they
are not completely independent of each other. In par
ticular, Eqs. (6) and (10) yield

l-AP(EIII)
1-P(EIH) ,

(11)

so that, if we exclude the extreme cases of P(E:H) be
ing either 0 or 1, we see that A> 1 implies A< 1, and
A<l implies :\>1. Further, we have A=l if and only
if A= 1. This means that if the expert gives a rule such
that the presence of E enhances the odds on H (Le.,
A> 1), he should also tell us that the absence of E de
presses the odds on H (i.e., A<I). To some extent, this
mathematical requirement does violence to intuition.
People who work with rule-based inference systems
are commonly told by experts that "The presence of E
enhances the odds on H, but the absence of E has no
significance." In other words, the expert says that A> 1,
but A= 1. Subsequently, we shall suggest some modifi
cations that address this and other problems of incon
sistency.

We note in passing that knowledge of both A and A is
equivalent to knowledge of both P (E I H) and P (E I II) .
Indeed, it follows at once from Eqs. (6) and (10) that

Subjective Bayesian Methods 1077

(12)

and

P(EiH) = 1-~
, A-A (13)

Thus, whether the expert should be asked to provide A
and A, P(E!H) and P(EIH), or, indeed, some other
equivalent information is a psychological rather than
a mathematical question.'

UNCERTAIN EVIDENCE AND THE
PROBLEM OF PRIOR PROBABILITIES

Having seen how to update the probability of an hy
pothesis when the evidence is known to be either cer
tainly true or certainly false, let us consider now how
updating should proceed when the user of the system
is uncertain. We begin by assuming that when a user
says "I am 70 percent certain that E is true," he means
that P (Ei relevant observations) =.7. We designate
by E' the relevant observations that he makes, and
simply write P(EIE') for the user's response.

We now need to obtain an expression for P(HIE').
Formally,

P(H:E') =P(H,EiE') +P(H,EIE')
=P (HIE,E') P (EIE')

+P(HIE,E')P(EIE;). (14)

We make the reasonable assumption that if we kno'w E
to be true (or false), then the observations E' relevant
to E provide no further information about H. With
this assumption, Eq. (14) becomes

P(HIE') =P(HIE)P(EIE') +P(HIE)P(EiE'). (15)

Here P (H i E) and P (H i E) are obtained directly from
Bayes rule, i.e., from Eq. (7) and Eq. (9), respectively.

If the user is certain that E is true, then P (H IE') =
P(HIE). If the user is certain that E is false, then
P(HIE') =P(HIE). In general, Eq. (15) gives P(HIE')
as a linear interpolation between these two extreme
cases. In particular, note that if P(EiE') =P(E) then
P (HiE') = P (H). This has the simple interpretation
that if the evidence E' is no better than a priori knowl
edge, then application of the rule leaves the probability
of H unchanged.

In a pure Bayesian formulation, Eq. (15) is the so
lution to the updating question. In practice, however,
there are significant difficulties in using this formula
tion in an inference net. These difficulties stem from a
combination of the classical Bayesian dilemma over
prior probabilities and the use of subjective proba
bilities.

To appreciate the difficulty, consider again a typical
pair of nodes E and H embedded in an inference net. It
is apparent from Eqs. (7) and (9) that the updating
procedure depends on the availability of the prior odds

1078 National Computer Conference, 1976

a (H). Thus, although we have not emphasized the
point until now, we see that the expert must be de
pended upon to provide the prior odds as well as A and
A when the inference rule is given. On the other hand,
recall our earlier observation that E also acts as an
hypothesis to be resolved by the nodes below it in the
net. Thus, the expert must also provide prior odds on
E. If all of these quantities were specified consistently,
then the situation would be as represented in Figure
2. The straight line plotted is simply Eq. (15), and
shows the interpolation noted above. In particular,
note that if the user asserts that P (EIE') =P (E), then
the updated probability is P(HiE') =P(H). In other
words, if the user provides no new evidence, then the
probability of H remains unchanged.

In the practical case, unfortunately, the subjectively
obtained prior probabilities are virtually certain to be
inconsistent, and the situation becomes as shown in Fig
ure 3. Note that P (E), the prior probability provided
by the expert, is different from Pc(E), the probability
consistent with P (H). Here, if the user provides no
new evidence-Le., if P(EIE') =P(E)-then the for
mal Bayesian updating scheme will substantially
change the probability of H from its prior value P (H).
Furthermore, for the case shown in Figure 3, if the
user asserts that E is true with a probability P(EIE')
lying in the interval between P (E) and Pc (E) , then the
updated probability P (HIE') will be less than P (H).
Thus, we have here an example of a rule intended to
increase the probability of H if E is found to be true,
but which turns out to have the opposite effect. This
type of error can be compounded as probabilities are
propagated through the net.

Several measures can be taken to correct the unfor
tunate effects of priors that are inconsistent with in
ference rules. Since the problem can be thought of as
one of overspecification, one approach would be to relax

P(HiE')
(UPDATED

PROBABI LlTY
OF H)

o PIE)

P(E~E')

(CURRENT PROBABI LlTY OF E)

SA-4763-2

Figure 2-Idealized updating of P(H:E')

P(HIE')
(UPDATED

PROBABI LlTY
OF H)

P(HIE) -----------~

- - - - - ------.
./:

/! 1
.- I I

P(H)

P(HIE)

I
: :

o . I I

o PIE)

PIE IE')
(CURRENT PROBABILITY OF E)

SA-4763-3

Figure 3-Inconsistent priors

the specification of whatever quantities are subjectively
least certain. For example, if the subjective specifica
tion of P (E) were least certain (in the expert"s opin
ion), then we might set peE) =Pc(E). This approach
leads to difficulties because the pair of nodes E and H
under consideration are embedded in a large net. For
example, in Figure 1, we might be considering node E2
as the hypothesis H, and node Es as the evidence E. If
we were to establish a prior probability P (E 5) to be
consistent with P (E 2), we would simultaneously make
P (Es) inconsistent with the priors on Es and E 9, which
provide supporting evidence for E 5 • Prior probabili
ties can therefore not be forced into consistency on the
basis of the local structure of the inference net; appar
ently, a more global process-perhaps a relaxation
process-would be required.

A second alternative for achieving consistency would.
be to adjust the linear interpolation function shown in
Figure 3. There are several possibilities, one of which
is illustrated in Figure 4a. The linear function has
been broken into a piecewise linear function at the
coordinates of the prior probabilities, forcing con
sistent updating of the probability of H given E'. Two
other possibilities are shown in Figures 4b and 4c. In
Figure 4b we have introduced a dead zone over the in
terval between the specified prior probability P (E) and
the consistent prior Pc (E). Intuitively, the argument
in support of this consistent interpolation function is
that if the user cannot give a response outside this in
terval, then he is not sufficiently certain of his response
to warrant any change in the probability of H. Figure
4c shows another possibility, motivated by the earlier
observation that experts often give rules of the form
"The presence of E enhances the odds on H, but the ab
sence of E has no significance." By keeping P (HE')
equal to P (H) when P (E 'E') is less than P (E) we are

P(HIE')

o PIE)

P(EIE')

(a)

SA-4763-4

Figure 4 (a) -Consistent interpolation functions

effectively allowing the forbidden situation where ,\> 1
and A= 1. In effect, this is equivalent to the method
illustrated in Figure 4a under the assumption that
P(HIE) =P(H).

It is interesting to compare theSe modifications with
the procedure used by Shortliffe to handle uncertain
evidence in the MYCIN system.4

,5 While the nonlinear
equations that result from use of Shortliffe's version of
confirmation theory prevent a general comparison, it is
possible to express his procedure in our terms for the
special case of a single rule. The result for the case in

P(HIE)

P(H:E')
P(H)

o

o

---------------.

/!

PIE)

P(EIE')

(b)

I
I
I
I

SA-4763-!J

Figure 4 (b) -Consistent interpolation functions (continued)

Subjective Bayesian Methods 1079

P(HiE)

P(HIE')
P(H)

o

o PIE)

P(EIE')

(e)
SA-4763-6

Figure 4 (c) -Consistent interpolation functions (concluded)

which the presence of E supports H is shown in Figure
5. Clearly, the solution is identical to that of Figure 4c
except for the interval from P (E) to P t (E) within
which Shortliffe's solution maintains P (HIE') at the a
priori valUe P (H).

The graphical representations in Figures 2 through
4 provide a nice vehicle for visualizing the discrepan
cies between formal and subjective Bayesian updating,
and make it easy to invent other alternatives for recon
ciling inconsistencies. For completeness, the Appendix
contains the easily computable algebraic representa-

/~.
-----.-.... - .

I

P(H:E)

P(H) •
P(H:E')

I
P(HIE)

t 0

0

P(EIE')
SA-4763-7

Figure 5-The interpolation function used in the mycin system
PdE) =P(E) +t[l-P(E) J. Typically, t=O.2.

1080 National Computer Conference, 1976

tions of these functions, and also treats the comple
mentary case in which the straight line given by Eq.
(15) has a negative slope (the case in which A<A). In
a small experimental system, the function shown in
Figure 4a has given satisfactory preliminary results. S

THE USE OF MULTIPLE EVIDENCE

We turn now to the more general updating problem
in which several rules of the form El~H, ... , En~H all
concern the same hypothesis H. * Since most nodes in
actual inference nets have several incoming arcs, this is
the case of greatest practical interest. In order to gain
some insight about how multiple evidence should be
used to update H when the evidence is uncertain and
the priors are inconsistent, let us first consider briefly
how updating would formally proceed in simpler cases.

Suppose the ith inference rule has associated with it
the usual two quantities Ai and Ai. For a first simple
case, how should H be updated when all the Ei have
been observed to be certainly true? This case is anal
ogous to the case summarized by Eq. (7). Under the
assumption that the pieces of evidence are conditionally

n

independent (i.e., that P(Eu ... ,EnIH) = II P(EiIH)
i=l

11

and that P (E h ••• , E.JH) = II P (EiIH», it is not
i=l

difficult to reach an analogous answer. Specifically, the
odds on H are updated by the expression

O(HIE" ... ,En)=[UA;] O(H), (16)

where

P(EiIH)
Ai= P(Ei!H) . (17)

Similarly, if all the evidence is observed to be cer
tainly false, we can under conditional independence as
sumptions again factor the joint likelihood ratio to ob
tain

O(HIE" ... ,En)=[U>:,]o(H). (18)

N ow let us consider the general case of uncertain evi
dence and inconsistent prior probabilities. ¥,r e already
know that the posterior odds 0 (HIEO given a single
observation E/ can be computed using updating func
tions like the ones shown in Figure 4. We can therefore
define, for a single inference rule, an effective likelihood
ratio At' by

,::" O(HiE/)
Ai 0 (H) (19)

* This should not be confused with the conjunctive premise
mentioned earlier.

By making the assumption now that the Ei' are inde
pendent, we can obtain for the general case an expres
sion similar to the simple updating formulas given by
Eqs. (16) and (18) :

O(HIE,', ... ,E;) = [U ,v} (H). (20)

To use this expression in an inference net system, we
simply store with each node its prior odds (or proba
bility), and store with each incoming arc an effective
likelihood ratio At'. Whenever a piece of evidence pro
vided by the user causes P (EdEO to be updated, a new
effective likelihood ratio is computed and the posterior
odds in favor of H is computed using Eq. (20). This
procedure has the following consequences:

(1) If no evidence is obtained for a rule, then it will
retain an initial effective likelihood ratio of
unity, since prior and "posterior" odds are the
same.

(2) The order in which evidence is obtained and
rules are applied does not affect the final poste
rior probabilities.

(3) The same rule can be used repeatedly, with the
same or different values for the probability of
the evidence. In particular, if a user changes
his mind and modifies an earlier assertion, the
new assertion will correctly "undo" any effects
of earlier statements.

CONCLUSIONS

The probability updating procedure presented here has
several points to recommend it. It accepts subjective
information that can readily be obtained from ex
perts. The two conditional probabilities, P (EIH) and
P (E IH), that determine the strength of an inference
rule typically are intuitively meaningful measures, and
the procedure is tolerant of the inevitable inconsisten
cies in subjective expert information. The basis in
probability theory of our procedure provides a useful
theoretical foundation for calculating the effects of un
certain evidence. One value of theory is that it makes
us explicitly aware of certain underlying assumptions
about such matters as conditional independence, prior
probabilities, and inconsistent information. Finally,
our procedure is straightforward computationally and
can be readily implemented in inference net systems.

There are, however, some questions that remain to be
dealt with. If the network contains multiple paths
linking a given piece of evidence to the same hypoth
esis, the independence assumption is obviously violated.
It is important to settle on a reasonable (if ad hoc)
modification of our basic procedure that behaves appro
priately in such situations. (A more extreme complica
tion would involve being able to avoid the circular rea
soning implied by inference nets with loops.)

There are sometimes cases lvhere some of the nodes
in an inference net are related by a constraint not ex
pressed in any given rule. For example, a subset of hy
potheses may be mutually exclusive and exhaustive, in
which case their probabilities must always sum to one,
regardless of their individual values. Such a constraint
may be inconsistent with the associated rule strengths
given us by the experts. Perhaps a simple expedient,
such as renormalization of probability values, can be
justified in this case.

vVe 11&Ve not addressed here at all issues of inference
net control strategy: for example, which hypotheses
should be pursued and which evidence should be sought
at any step. The answers to these sorts of questions may
be heavily dependent on the particular application. An
other global question concerns rules containing logical
statements that may include quantifiers and variables.
But in whatever way these questions are answered, the
basic updating procedure presented here would ap
pear to be a useful component of rule-based inference
systems.

Subjective Bayesian Methods 1081

Selection, Stanford Artificial Intelligence Laboratory Memo
AIM-251, Stanford University, Stanford, California, October
1974.

i). Shortliffe, E. H. and B. G. Buchanan, "A Model of Inexact
Reasoning in Medicine," Mathematical Biosciences, Vol. 23,
pp. 351-379, 1975.

6. Davis, R. and J. King, "An Overview of Production Systems,"
in Machine Representations of Knowledge, D. Reidel Publish
ing Co.; forthcoming.

7. Gustafson, D. R., et al., "Wisconsin Computer Aided Medical
Diagnosis Project-Progress Report," in Computer Diagnosis
and Diagnostic Methods, pp. 255-278, J. A. Jacquez, ed.,
Charles C. Thomas, Springfield, Illinois, i972.

8. Sutherland, G., Implementation of Inference Nets-II, Techni
cal Note 122, Artificial Intelligence Center, Stanford Research
Institute, Menlo Park, California, January 1976.

APPENDIX

Complete analytical expressions gIVIng P (HIE') as a
piecewise linear function of P (E IE') are given in this
Appendix. These expressions correspond to the three
graphical representations illustrated in Figure 4. The
simplest expression corresponds to Figure 4a:

- P(E;E') -
: P (H!E) + P (E) [P (H) -P (HIE)] O::;P(EIE') ::;P(E)

P(HE') =)
. ! P(H) -P(H;E)P(E) P(E E') P(HiE) -P(H)

I-P(E) +. I-P(E)

(AI)

P (E)::;P (E:E') ::;1

ACKNOWLEDGMENTS

We have benefited from the comments of many of our
colleagues, but would like particularly to acknowledge
the contributions of Georgia Sutherland at SRI, and
the stimulating and helpful discussions with E. H.
Shortliffe, Bruce Buchanan, Randall Davis, and Dana
Ludwig at Stanford University. This work was sup
ported by the Advanced Projects Research Agency un
der Contract DAHC04-75-C-0005.

Here it is important to note that the four quantities
P(H), P(E), P(HiE), and P(HIE) are assumed to be
estimates obtained from experts. Were the true proba
bilities to be used in this formula, it would reduce at
once to the linear expression given by Eq. (15). The
estimates of P (HIE) and P (HIE) might be obtained
directly from an expert, but would more often be ob
tained through Bayes rule [Eqs. (7) and (9), respec
tively]. To be explicit,

P(E!H)P(H)
P(HiE) = [P(E;H) -P(E:H)]P(H) +P(E[H)

AP(H)
(A2)

(A-l)P(H) +1

and

- [1-P(EIH)]P(H)
P(HIE) = [P(E'H) -P(E[H)]P(H) +1-P(E\H)

lP(H)
(A3)

REFERENCES

1. Hadley, G., Introduction to Probability and Statistical De
cision Theory, Holden-Day, San Francisco, California, 1967.

2. Raiffa, H., Decision Analysis, Addison-Wesley, New York,
New York, 1968.

3. \Vaterman, D. A., "Generalization Learning Techniques for
Automating the Learning of Heuristics," Artificial Intelli
gence, Vol. 1, pp. 121-170, Spring 1970.

4. Shortliffe, E. H., MYCIN: A Rule-Based Computer Program
for Adt'ising Physicians Regarding Antimicrobial Therapy

(A-l)P(H) +1

To obtain the equations for Figure 4b, we define
Pc (E) by

P(H) -P(HIE)
Pc(E)= P(H1E)-P(H\E) (A4)

In general, this quantity will differ from the P (E)
value supplied by the expert. For Figure 4b we must
distinguish between the two cases P (E) :::;; Pc (E) and
P(E) >Pc(E). The equations are as follows:

1082 National Computer Conference, 1976

Case 1: prE) -:;;Pc(E)

1
P(HIE)+ P(EIE')[P(H)_P(HIE)]

P(E)
P(HIE) = P(H)

O-:;;P(EIE') -:;;P(E)

P(E) -:;;P(EiE') -:;;Pc(E)

Pc(E) -:;;P(EIE')-:;;l P(HiE) +P(EiE') [P(HIE) -P(HIE)]

[P(HiE) +P(EIE') [P(HIE) -P(HIE)] O-:;;P(EIE') -:;;Pc(E)

P(HIE') =1' P(H) Pc(E) -:;;P(EIE') -:;;P(E)

P(H) -P(HIE)P(E) P(E E') P(HIE) -P(H) P(E) <P(KE') <1
1-P(E) + 1-P(E) -'-

(A5)

(A6)

Finally, there are also two cases to be distinguished
for Figure 4c. The first case corresponds to assuming
that P(HIE)=P(H), so that Pc(E)=O. The second
case corresponds to assuming that P (HIE) =P (H), so
that Pc (E) =1. In effect, these cases correspond to the

observe that if both A and l are significant and if the

A _~

rules E~H and E~H taken separately. The corre-
sponding equations are special cases of Eqs. (A5) and
(A6) :

A _1
two separate rules E~H and E~H are treated as if
E and E were statistically independent, then Eqs. (A 7)
and (A8) yield the same result as Eq. (AI). This fol
lows from the fact that when P(HIE') =P(H) we
have O(HIE') =O(H), so that Eq. (19) yields A'=1.

-~
Thus, if O-:;;P(EIE') -:;;P(E) only the rule E~H con-

{

P(H) O-:;;P(EiE') -:;;P(E)

P(HIE') = P(H) -P(H[E)P(E) P(E:E') P(H:E) -P(H) peE) <P(E!E') <1
1-P(E) + 1-P(E) -'-

(A7)

{

- P(EiE')- ,
P(HIE') = P(HIE) + P(E) [P(H) -P(HiE)] O-:;;P(EIE) -:;;P(E)

P(H) P(E)-:;;P(EIE')-:;;l
(A8)

Ordinarily one would view this as a simplified ap

proximation that is useful when one of the two likeli

hood ratios is dominant. However, it is interesting to

tributes to P(HIE'), while if P(E) -:;;P(EIE') -:;;1 only
. A

the rule E~H contributes to P (HIE'), the contribu-
tions being exactly those given in Eq. (AI).

1976 NATIONAL COMPUTER CONFERENCE COMMITTEES

CONFERENCE
Carl Hammer
Sperry Univac
Washington, DC

FINANCE
Norman Moraff
Bureau of the Census
Suitland, MD

PUBLICATIONS
Joyce A. Amenta
Informatics, Inc.
Rockville, MD

SPECIAL ACTIVITIES
Thomas A. D' Auria
Columbia University
New York, NY

STUDENT COMPUTER FAIR
Serna Marks
IBM Corporation
New York, NY

PROGRAM
Stanley Winkler
IBM Corporation
Gaithersburg, MD

SPECIAL ASSISTANT
Lee Danner
IBM Corporation
Gaithersburg, MD

PUBLIC RELATIONS
Dorothy Ray
General Research Corporation
McLean, VA

CONFERENCE OPERATIONS
Ruben D. Maldonado
Auerbach Associates
Germantown, MD

COMPUTER GRAPHICS ART
EXHIBIT

Jackie Potts
Social Security Administration
Baltimore, MD

SCIENCE FILM THEATER
Adrian J. Basili
A.T.&T. Co.
New York, NY

BICENTENNIAL ACTIVITIES
Edward K. Zimmerman
Bicentennial Administration
Washington, DC

NCCC LIAISON
Harvey Garner
University of Pennsylvania
Philadelphia, P A

HISTORICAL PERSPECTIVE
William F. Luebbert
U.S. Military Academy
West Point, NY

1924-1975

SECRETARY
Cecil Shelton

LEGAL COUNSEL
Ronald L. Winkler
Sutherland, Asbill & Brennan
Washington, DC

EXHIBITS
Thomas W. Johnston
Control Data Corporation
Minneapolis, MN

NCCC LIAISON
Henry S. McDonald
Bell Laboratories
Murray Hill, NJ

AWARDS
Marjorie Jewell
AFIPS
Montvale, NJ

PROGRAM COMMITTEE

David H. Ahl
Creative Computing
Morristown, N J

John L. Berg

Chairman

Stanley Winkler
IBM Corporation
Gaithersburg, MD

National Bureau of Standards
Washington, DC

Robert A. Beverage
IBM Corporation
Gaithersburg, MD

Robert L. Brueck
MRI Systems Corporation
Austin, TX

Dennis Branstad
National Bureau of Standards
Washington, DC

Anita J. Cochran
Bell Laboratories
Murray Hill, NJ

Ira Cotton
National Bureau of Standards
Washington, DC

Philip H. Enslow, Jr.
Georgia Institute of Technology
Atlanta, GA

Saul 1. Gass
University of Maryland
College Park, MD

Robert Gildea
The Mitre Corporation
Colorado Springs, CO

Harvey J. Greenberg
Virginia Polytechnic Institute
Reston, VA

Anne M. Gulick
IBM
Gaithersburg, MD

Franklin F. Kuo
Department of Defense
Washington, DC

Herbert Maisel
GeorgetO\"lln University
Washington, DC

Stuart L. Mathison
Telenet Communication Corporation
Washington, DC

Da vid Mishelevich
The University of Texas Health Science Ctr.
Dallas, TX

Norman Moraff
Bureau of the Census
Suitland, MD

Thomas Murray
DelMonte Corporation
San Francisco, CA

George N. Nomicos
IBM Education Center-Europe
Brussells, Belgium

Paul Oliver
Department of the Navy
Washington, DC

Norman Rasmussen
Consultant
Boston, MA

Dan C. Ross
Ross Telecommunications Engineering Corp.
Washington, DC

J. E. Savage
Brown University
Providence, Rhode Island

Philip M. Walker
Telenet Communication Corporation
Washington, DC

Milton J . Waxman
Systems Group of TRW, Inc.
Redondo Beach, CA

Kurt J. Ziegler, Jr.
IBM Corporation
Gaithersburg, MD

PROGRAM ADVISORY COMMITTEE

Maybelle Cremer
Tuscon, AZ

Ruth M. Davis
National Bureau of Standards
Washington, DC

Alexander S. Douglas
The London School of Economics

and Political Science
University of London
London, England

Edward J. Grenier, Jr.
Sutherland, Asbill & Brennan
Washington, DC

Janice C. Lipsen
Counselors for Management
Washington, DC

FINANCE COMMITTEE

Chairman

Norman Moraff
Bureau of the Census
Suitland, MD

Heinz Zemanek
IBM Corporation
Vienna, Austria

SPECIAL ASSISTANT'S COMMITTEE

Robert G. Abbott
Y ourdon, Inc.
New York, NY

Marshal D. Abrams

Chairman

Lee Danner
IBM Corporation
Gaithersburg, MD

National Bureau of Standards
Gaithersburg, MD

Terrence H. Coyle
Eastman Kodak Company
Rochester, NY

Verna Danner
Computer Learning Center
Fairfax, VA

Nathaniel Macon
The American University
Washington, DC

Henry S. McDonald
Bell Laboratories
Murray Hill, NJ

Stephen W. Miller
Stanford Research Institute
Menlo Park, CA

Jack Moshman
Moshman Associates, Inc.
Washington, DC

Bruce G. Oldfield
IBM Corporation
Paris, France

Joan Golden
Old Bridge, NJ

Raymond G. Fox
IBM Corporation
Manassas, V A

Delores C. Harris
IBM Corporation
Gaithersburg, MD

John H. Mitchell
Eastman Kodak Company
Rochester, NY

Paul D. Oyer
U.S. Bureau of the Census
Washington, DC

Harold J. Podell
U.S. General Accounting Office
Washington, DC

Walter E. Simonson
U.S. Bureau of Census
Washington, DC

T"lITT-nT Trt "rnyr..'T("'1 rtAl\/l'''It./I'TrnmT.'1T.'1
rUD.l..Jl\J.fiilVl'lt::) \JV1U1Vili i~~

Lester Bounds
Lester Bounds, Inc.
Arlington, V A

Kenneth J. McCallister
Federal City College
Washington, DC

Paul D. Oyer
U.S. Bureau of the Census
Washington, DC

Chairman

Joyce A. Amenta
Informatics, Inc.
Rockville, MD

PUBLIC RELATIONS COMMITTEE

Chairman

Dorothy Ray
General Research Corporation
McLean, VA

Karl R. Ahren
J ames Talcott Inc.
New York, NY

J. D. Alexander
Fleet Material Support Office
Mechanicsburg, P A

Byron Allen
Air Force Avionics Labs
Dayton,OH

Jim Brandeberry
Wright State University
Dayton,OH

James Case
Worldwide Church of God
Pasadena, CA

Rosetta L. Winkler
Consultant
Bethesda, MD

Edward Y ourdon
Y ourdon, Inc.
New York, NY

Dorothy Ray
General Research Corporation
McLean, VA

Lester Ungerleider
A AT
Il..Il..~

Arlington, V A

Virginia Walker
U.S. Bureau of the Census
Washington, DC

V ice-C hairman
Nancy L. Ayer
ADP Systems
Falls Church, VA

Joe K. Clema
General Dynamics
Dayton,OH

Robin Connelly
Worldwide Church of God
Pasadena, CA

R. Crisafulli
Education Testing Service
Princeton, N J

Carson Grabbe
Worldwide Church of God
Pasadena, CA

Charles E. Green
Renegotiation Board
Washington, DC

,Frank Hubans, Jr.
General Dynamics
Dayton,OH

Susan H. Lewis
Signal Processing Systems, Inc.
Waltham, MA

Ruth McQueen
Amarillo College
Amarillo, TX

Annamary M. Phillips
Raytheon Company
Burlington, MA

Krishnan Ramaswamy
Pennsylvania Department of Health
Harrisburg, P A

David R. Skeen
Office of Naval Research
Arlington, VA

Murray Zuckerman

Thomas J. Sorger
Sorger Associates
Peabody, MA

Russell Staley
Texas A&M University
College Station, TX

Ronald Stewart
Systems Design Co~sultants
Des Plaines, IL

Vern Van Dyke
National Agricultural Library
Beltsville, MD

Alan Zimmermann
Computer Processing Institute
East Hartford, CT

Insurance Systems Consultants
San Francisco, CA

SPECIAL ACTIVITIES COMMITTEES

David H. Brandin

Chairman

Thomas A. D' Auria
Columbia University
New York, NY

Stanford Research Institute
Menlo Park, CA

Donna Denyer
New York Times
New York, NY

Mimi Garrard
Mimi Garrard Dance Company
New York, NY

Steven L. Jamison
IBM Corporation
Palo Alto, CA

Lou Katz
Columbia University
New York, NY

Hal Lamster
Telmar Communications
New York, NY

Nancy Mackta
American Express Company
New York, NY

SemaMarks
IBM Corporation
New York, NY

Douglas Rochester
Chase Manhattan Bank
New York, NY

Robert Wine
Chase Manhattan Bank
New York, NY

CONFERENCE OPERATIONS COMMITTEE

Claire Chase

Chairman

Ruben D. Maldonado
Auerbach Associates
Germantown, MD

New York City Finance Administration
lI.T "UT V " ... 1, lI.TV
..L.,"::;; VV ..L. V.1..I\.., ..Irr..., ..L

Lori Capadanno
American Telephone & Telegraph
Basking Ridge, N J

Pat Cunniff
Chase Manhattan Bank
New York, NY

STUDENT COMPUTER FAIR COMMITTEE

David Ahl
Creative Computing
Morristown, N J

Joseph Gianrotti

Chairman

Serna Marks
IBM Corporation
New York, NY

City University of New York
New York, NY

Laurence Heimrath
City University of New York
New York, NY

Robert G. Wine

TomD'Auria
Columbia University
lI.T "TTT V " ... 1, lI.TV , ~ vv .J.. VL n.., J..., .L

Ed Gittleson
New York City Human Resources Agency
New York, NY

,Xl arren Person
Municipal Credit Union
New York, NY

Beth Norman
City University of New York
New York, NY

Howard Rubin
Hunter College
New York, NY

Robert Taylor
Teachers College
New York, NY

The Chase Manhattan Bank
New York, NY

STUDENT COMPUTER FAIR JUDGES

Joel S. Birnbaum
IBM Research Division
Yorktown Heights, NY

Ludwig Braun
SUNY at Stony Brook
Stony Brook, NY

Bill Etra
University of Maryland
Baltimore, MD

Louise Etra
City University of New York
New York, NY

Steve Gray
Consultant
Darien, CT

Nancy Grosch
Information Systems Design
Santa Clara, CA

Walter Koetke
Lexington High School
Lexington, MA

Stephen Levine
Lawrence Livermore Lab
Livermore, CA

Daniel McCracken
Consultant
Ossining, NY

Ted Nelson
University of Illinois
Chicago,IL

Seymour Papert
Massachusetts Institute of Technology
Cambridge, MA

Frederik Pohl
Bantam Books, Inc.
New York, NY

COMPUTER GRAPHICS ART EXHIBIT COMMITTEE

Chairman

Jackie Potts
Social Security Administration
Baltimore, MD

Alyce Branum
Digital Equipment Corporation
Marlboro, MA

George Champine
Univac
Roseville, MN

William Fetter
Southern Illinois University
Carbondale, IL

E. T. Manning
Watson-Manning, Inc.
Stratford, CT

SCIENCE FILM THEATRE COMMITTEE

Chairman

Adrian J. Basili

Grace Hertlein
California State University
Chico, CA

Ken Knowlton
Bell Laboratories
Murray Hill, N J

Kurt F. Lauckner
Eastern Michigan University
Ypsilanti, MI

American Telephone & Telegraph
NewYork,NY

Rhonda Beck
Western Electric
New York, ~Y

Robert C. Spieker
Western Electric
New York, NY

AMERICAN FEDERATION OF INFORMATION PROCESSING
SOCIETIES, INC. (AFIPS)

OFFICERS AND BOARD OF DIRECTORS

President

Anthony Ralston
State University of New York
Amherst,NY

Sec-retaTY

Sylvia Charp
The School District of Philadelphia
Philadelphia, P A

Executive Director

Robert W. Rector
AFIPS
Montvale, N J

ACM Directors

Jean Sammet
IBM Corporation
Cambridge, MA

Willard J. Holden
Palo Alto, CA

Stuart Lynn
Rice University
Houston, TX

Data Processing Management Association Directors

Edward J. Palmer
Boston University
Boston, MA

Institute of Internal .. 4uditors Director

William E. Perry
The Institute of Internal Auditors
Orlando, FL

Vice P'i'esident

Albert S. Hoagland
IBM Corporation
San Jose, CA

T·reasurer

Walter A. Johnson
Consolidated Paper Company, Inc.
Wisconsin Rapids, WI

IEEE Directors

Dick Simmons
TexasA&M
College Station, TX

Stephen S. Yau
Northwestern University
Evanston, IL

Rolland B. Arndt
Sperry Univac
St. Paul, MN

Herbert B. Safford
GTE Data Services, Inc.
Marina Del Rey, CA

Society for Computer Simulation Director

Paul W. Berthiaume
Electronic Associates, Inc.
West Long Branch, N J

Society for Information Display Director

Carlo P. Crocetti
Rome Air Development Center
Griffis Air Force Base, NY

Association for Educational Data Systems Director

Thomas McConnell
Atlanta Public Schools
Atlanta, GA

American Institute of Certified Public
Accountants Director

John Mitchell
American Institute of Certified Public Accountants
New York, NY

A merican Statistical Association Director

James Filliben
National Bureau of Standards
Washington, DC

Instrument Society of America Director

Theodore J. Williams
Purdue University
W. Lafayette, IN

Society for Industrial and Applied
Mathematics Director

Donald L. Thomsen, Jr.
SIAM Institute for Mathematics
New Canaan, CT

Special Libraries Association Director

Herbert S. White
Graduate Library, School University
Bloomington, IN

American Institute of Aeronautics and
Astronautics Director

Kenneth A. Hales
Boeing Aerospace Co.
Seattle, WA

American Society for Information Science Director

Harold Borko
UCLA School of Library Science
Los Angeles, CA

Association for Computation Linguistics Director

A. Hood Roberts
Center for Applied Linguistics
Arlington, VA

NATIONAL COMPUTER CONFERENCE BOARD MEMBERS

Chairman-IEEE-CS Representative

Merlin Smith
T.J. Watson Research Center
Yorktown Heights, NY

Vice Chairman-SCS Representative

Ralph Wheeler
LMSC
Sunnyvale, CA

Treasurer-AF IPS Representative

Walter A. Johnson
Consolidated Paper Company, Inc.
Wisconsin Rapids, WI

Secretary-AFIPS Representative

Theodore J. Williams
Purdue University
West Lafayette, IN

AFIPS Representatives

Anthony Ralston
State University of New York
Amherst, NY

DPMA Representative

James F. Towsen
The Statesman Group
Harrisburg, P A

NATIONAL COMPUTER CONFERENCE COMMITTEE

Chairman

Jeffrey D. Stein
On-Line Business Systems, Inc.
San Francisco, CA

Morton M. Astrahan
IBM Research Laboratory
San Jose, CA

Al Hawkes
Sargent & Lundy Engineers
Chicago,IL

Russell Ko Brown
Moore Paper Company
Houston, TX

1976 NATIONAL COMPUTER CONFERENCE

Chairman

Carl Hammer
Sperry Univac
Washington, DC

1978 NATIONAL COMPUTER CONFERENCE

Chairm.an

Stephen W. Miller
Stanford Research Institute
Menlo Park, CA

Albert S. Hoagland
IBM Corporation
San Jose, CA

ACM Representative

Rockwell International
Anaheim,CA

Harvey L. Garner
University of Pennsylvania
Philadelphia, P A

Jerry Koory
On-Line Business Systems, Inc.
Los Angeles, CA

Henry S. McDonald
Bell Laboratories
Murray Hill, N J

1977 NATIONAL COMPUTER CONFERENCE

Chairman

Portia Isaacson
University of Texas
Richardson, TX

Ahl, David H.
Alberts, David S.
Amarel, Saul
Amenta, Joyce A.
Anderson, Walter L.

Baldwin, Lioyd
Berg, John L.
Berglund, Patricia
Betz, Nancy
Boardman, Thomas L.
Bomzer, H. W.
Borgerson, Barry R.
Brainerd, John G.
Branstad, Dennis K.
Brewer, Susan
Brown, Carol
Butler, Margaret
Buzen, Jeffrey P.

Chu, Yaohan
Cochran, Anita J.
Cotton, Ira
Courtot, Marilyn E.

Davis, John C.
Davis, Ruth M.
DeGeorge, Frank D.

Eberlein, Patricia
Estrin, Gerald
Estrin, Thelma
Etra, Louise R.
Evans, B. O.

Farber, David J.
Feigenbaum, Edward A.
Firestone, Roger M.
Fox, Margaret
Frank, Ronald A.
Friedman, Leonard
Fritz, W. Barkley

Gey, Fredric C.
Gildea, Robert
Goldstine, Herman
Green, Teresa O.

SESSiON CHAIRMEN

Greenwald-Katz, Genevieve
Gregory, Francis M. Jr.
Gregory, Neal
G rinoch, Etelle
Gulick, Anne M.

Hedges, HarrjT G.
Hirst, Norman F.
Jackson, Peter E.
Jacob, Jean-Paul
J amison, Steven L.
Johnson, Carol
Joshi, A. K.
J oslin, Edward O.

Kaenel, Reg A.
Kahn, Robert E.
Kameny, Iris
Kapur, Gopal K.
Keller, Roy F.
Ketchel, James S.
Kiehl, Janet
Kimbleton, Stephen R.
Ki via t, Philip J.
Klingman, Darwin
Kuo, Franklin F.

Ledley, Robert S.
Levine, Stephen
Lipsen, Janice C.
Lowenthal, Eugene L.

Macon, Nathaniel
Madden, Thomas J.
Maisel, Herbert
McLeod, John
Mellen, Greg E.
Merten, Alan G.
Merwin, Richard E.
Miller, Edward F. Jr.
Minsky, Marvin
Mishelevich, David J.
Morgan, Howard L.
Moshman, Jack
Murphy, Evelyn R.

Neary, Dennis R.
N elson, Eldred C.

Oliver, Paul
Oliver, S. Ron

Padwo, Saul
Pantell, Bernice
Papert, Seymour
Patinella, Anthony J.
Perry, William E.
Poh, Susan S.
Poppel, Harvey L.
Potts, Jackie
Pouzin, Louis
Proctor, Bernice J.
Prywes, Noah S.
Pyke, Thomas N. Jr.

Raben, Joseph
Rauscher, Tomlinson G.
Rieger, Charles
Ruspini, Enrique

Sager, Naomi
Salasin, John
Scala, Joseph
Scala, Patsy
Scharpf, Norman W.
Schneck, Paul B.
Sedelow, Walter A. Jr.
Seligman, Naomi
Shepard, Richard H.
Soden, John V.
Speer, Richard
Svobodova, Liba
Swift, Stephen T.

Turn, Rein
TUroff, Murray

Weber, William R.
Welke, Larry A.
Winkler, Stanley

Yau, Stephen S.
Yeh, Raymond T.
Y ourdon, Edward
Y ovits, Marshall C.

Adler, J.
Allan, J. J. III
Allen, D.
Allen, J.
Amelio, G. F.
Anderson, D. K.
Anderson, J. P.
Anderson, P. F.
Anderson, P.
Anderson, R.
Armer, P.

Backer, D.
Bacus, J. W.
Baecker, R. M.
Baird, G. N.
Baker, T.
Baldwin, R. C.
Bales, H.
Balkovich, E.
Balzer, R.
Barefoot, D. B.
Barlow, J. S.
Barnett, G. O.
Baumberger, B. E.
Bearden, G. D.
Beeler, M.
Bell, R.
Bell, T. E. Jr.
Bendick, M.
Benton, J. B.
Bigelow, R. P.
Boehm,B. W.
Boggs, D. R.
Bookwalter, T.
Bork, A.
Bowie, J.
Branum, A.
Bridger, D. A.
Broos, M. S.
Brown,C.L.
Brown, J. S.
Brown,R.
Buchanan, B.
Budzik, P.
Burchfiel, J.
Burntyk, N.
Burrows, J. H.
Bushkin, A. A.

Carabello, J. M.
Carter, G.
Chaitin, G.
Chankter, A.
Chapman, R.

PARTICIPANTS

Chapman, W. E. III
Chen, P.
Chmura, J.
Cho, Z. H.
Chow, W.
Chu, C.
Clay, B. M.
Clippinger, R.
Cohen, K. J.
Collins, J.
Congdon, M.
Conners, R. W.
Constable, T.
Constantine, L.
Cook,M. M.
Cornish, L.
Cosloy, E. S.
Cossette, A.
Cremer, R.
Crissey, B. L.
Cruver, H. F.
Custer, D. D.

Darby, L.
Day,J.
Deese, D. R.
DeGeorge, F. D.
Denning, P. J.
Dennis, J.
Dodd, G. G.
Dooling, L.
Dorodnicin, A. A.
Dunion, J.
Durk, D.
Dyer, S. J. III

Eastman, C. M.
Eichert, E. S.
Ellis, C.
Engel, F. Jr.
Engelbart, D.
Epperly, E. V.
Erickson, R. F.
Erman, L.
Etra, W.
Eulenberg, J.

Fields, C.
Figer, J. P.
Foulds, R.
Frampton, L.
Frankfeldt, C.
Franklin, M.
Franklin, W.
Freed, R. N.

Furtman, E. L.
Fuss, D.

Gagliardi, U.
.Gardner, R. I.
Gear hart, J. B.
Gill, J. M.
Giorgini, A.
Glaser, G.
Gluck, S. E.
Gluckson, F.
Goetz, M. A.
Goldberg, B.
Goldberg, J.
Goldberg, P.
Goldfield, R. J.
Goldstein, C. M.
Goldstein, I.
Golub, H.
Goodenough, J. B.
Graham, M.
Graham, R. M.
Gray, H. J.
Greenberg, D.
Gruenberger, F.
Guiltinan, R. J.

Hagstrom, S.
Hall, T.
Hanna, W. E. Jr.
Harder, D. C.
Harlow, C. A.
Harvey, F. L.
Hawrylyshyn, P.
Heaton, D.
Heil, S. W.
Hendler, H.
Henriquez, V.
Herman, G. T.
Herrmann, W. T.
Higgs, L. D.
Highland, H. J.
Hirschsohn, 1.
Hobbs, J. R.
Holloway, C. A.
Holthouse, M. A.
Housel, B. C.
Hoylman, J. M.
Howard, P. C.
Howard, S.
Hoyt, P. M.
Hubbert, D. S.
Hutton, W. E.

Isaacson, P.
Ivaldi, A. M.

Jackson, IVI. Marcus, M. Quake, R. P.
Jacobs, 1. Margeson, A. J. Quong, C.
J aniczek, P. M. Marion, R. A.
Jasper, D. P. Marks, S. Ragland, T. R.
Jelinek, F. Martin, S. Ralston, A.
Jenkin, M. A. Martin, T. Randall, G.
Johnson, Cecil Mason, P. H. Rather, E. D.
Johnson, E. Mathews, M. V. Rattner, J.
Johnson, E. C. Mauchly, J. Reifer, D. J.
Johnson, H. A. Mayhew, W. Rettberg, R.
J oh.n8on, R. R. 1\1I"~rol""lT""TT ~ T

Ries, D . .L.'.L,,",V1U..:l.n..'CJ, ~. eJ.

Jones, C. McDonald, D. Ritchie, D. M.
Joseph, E. C. McGowan, C. Ritea, B.
Justice, N. McLean, J. Roark, M. L.

McN eal, J. K. Robertson, T. A.
Kalfel, J. McRae, W.B. Rose, C.
Kanodia, R. K. 1\11" "h T

Rosen, S. .J..Y.L c;~:a lall, eJ •

Kaplan, A. R. Meissner, L. P. Rosenschein, S.
Karplus, W. J. Mercer, R. L. Rosin, R. F.
Kashmari, S. A. Metcalfe, R. M. Ross, D. T.
Katz, L. Meurer, T. Rowe,1. H.
Kay,A. Mills, H. D. Rule, D.
Kennington, J. Moldow, B. R ulifson, J.
Kent, C. Morino, M. M. Russell, R. D.
King, D. Morris, J. A.
King, J. C. Mullinax, J.

Sanchez, E.
Kirkley, J. L. Myer, T.

Sanchez, W.
Kleiman, H. Myers, G. J.

Sanders, R.
Knowlton, K. Sandin, D.
Kroneberg, D. Nash-Webber, B. Savides, P.
Kudo, T. Nelson, T. H. Schmedel, S. R.
Kulikowski, C. Nemeth, A. Schmidt, C.
Kurzweil, R. Ness, D. Schmidt, S. C.

Nordlund, D. L. Schmidt, W. B.
LaDue, R. B. Normark, W. F. Schneidewind, N. F.
Lansberry, C. R. Norton, H. Schneidman, A.
Larsen, G. N. Nunamaker, J. F. Schultz, M.
Larson, A. G. Schwartz, J.
Laufer, R. Oestreicher, D. See, M.
Leary, W. Ogdin, J. Selfridge, O.
Lee, R. M. O'Leary, H. E. Jr. Selig, S. M.
Leffler, L. C. Ornata, S. Sell, R.
Lerner, L. O'Neill, J. T. Shair, H.
Lester, A. L. Opderbeck, H. Shapiro, S.
Lipkin, L. E. Organ, L. W. Shay, B. P.
Liskov, B. Sherman, A. H.
Little, J. Page, L. F. Shortliffe, E. H.
Lodwick, G. S. Palacios-Hammeken, L. Shourt, J.
Longsworth, M. A. Palmer, F. B. Shu,N.
Lubin, J. F. Patrick, P. H. Simmons, R. B.
Lukoff, H. Patton, S. K. Slutzky, J.
Lum,V. Y. Picard, P. Smaby, R.
Lundell, E. D. Pohl, F. Smith, R. E.
Lyet, J. P. Pollock, K. A. Smith, W. H.

Poor, V. D. Snyder, J. N.
Malone, W. Pople, H. Souder, D. E.
Mallary, R. Postle, W. Spiegel, L.
Mandell, M. S. Potash, H. Sridharan, N. S.

Steele, T. Jr. Tucker, A. Jr. Wein, M.
Stoian, E. R. Tunnicliffe, W. W. Weller, M.
Stokes, G. Wells, W. I.
Stout, H. S. Uhlig, R. P. Westin, A. F.
Stazisar, V. Uzgalia, R. C. White, H. S.
Strecker, W. D. White,M.
Suther land, I. Van Natta, B. Whitney, R.
Suzuki, R. Vaughan, W. K. Whittaker, W.
Szolovits, P. Vezza, A. Wilkes, M.

Vidal, J. Williamson, H.
Volz, R. A. Wilson, M. E.

Tajima, K. Winston, J. S.
Takase, H. Wade,B. \V. Withington, F.
Tasker, R. R. Walden, D. Wolf,E. W.
Taulbee, O. E. Walker, D. L. Wolff, A.
Teicholtz, E. D. Walker, D. Wood,R.
Tillinghast, J. Walker, P. D. Wray, W.
Thayer, T. Walker, S. T. Wright, H.
Thomas, K. L. Walrod, R. A. Wright, L. S.
Thompson, G. L. Walters, R. F.
Tikson, M. Waltz, D. Yakimovsky, Y.
Tomlinson, R. Watkins, W.
Travis, I. Weber,R. A. Zelkowitz, M.
Tretiak, O. Wegner, P. Zingg, R. J.

Abbey, MaryW.
Abrams, Marshall D.
Ackerman, L. V.
Adams,E.N.
Adams, Elizabeth Byrne
Adams, J. Alan
Adams. Scott
Adams, William A.
Agrawala, Ashok K.
Aicher, J. R.
Aiken, Robert M.
Aines, Andrew A.
Airhart, T. E.
Albers, Glen
Aldred, William M.
Alexiou, John K.
Ali, Phi
Allan, John J. III
Allen, John R.
Allen, Richard D.
Allen, Rodney H.
Alpert, Stephen R.
Alter, Ralph
Amarel, Saul
Amicone, Ray C.
Andersen, Niels C.
Anderson, Peter G.
Anderson, Robert H.
Anderson, Sherwood E.
Anderson, T. C.
Andree, R. V.
Archer, David A.
Archibald, Julius A. Jr.
Armer, Paul
Arnovick, G. N.
Aron, J. D.
Arterbery, Vivian J.
Ash, Alvin
Asprey, Winifred
Astrahan, M. M.
Atchison, William F.
Atherton, Pauline
Atkins, D. E.
Atwood, Delbert W. Jr.
Augustin, D. C.
Aupperle, Eric M.
Austin, Donald M.
Austing, Richard H.
A vrunin, Ira L.
Ayer, Nancy L.
Ayers, Lawrence F.

Bachman, Charles W.
Baer, J. L.
Bagley, James E.

Nee '76 RE~'~REES

Bahn, Michael M.
Bailey, Eugene
Baird, George
Baker, F. T.
Baker, James A.
Baker, Lara H. Jr.
Baker, R. A.
Baker, Robert L.
Ball, N. Addison
Baltzer, Philip K.
Balzer, Robert M.
Bandurski, Ann Ellis
Banerj i, Ranan
Barnes, Bruce H.
Barnes, Robert F. Jr.
Barnett, G. Octo
Barnett, Robert T. Jr.
Barr, Avron
Barr, William J.
Barrett, William A.
Basili, Victor R.
Bassler, Richard A.
Bate, Roger R.
Bateman, Barry L.
Bauman, Burton L.
Bayer, Gary E.
Beall, William H.
Bearden, G. D.
Beaton, Albert E.
Beck, Leland
Beck, Paul N.
Bednar, Gregory M.
Bein, Donald H.
Beitz, E. Henry
Belady, L. A.
Belden, Glen W.
Belford, Geneva
Bell, Thomas E.
BeHan, T. M.
Belzer, Jack
Berner, Robert W.
Bennett, John
Benson, Walter R.
Berg, John L.
Berger, Ralph
Berger, Ray
Berglund, Ralph G.
Berk, Toby
Berning, Paul T.
Bernstein, George B.
Bernstein, M. 1.
Bernstein, Ralph
Berra, Bruce P.
Bertaut, Edgard F.
Bewley, William L.

Bigelow, Robert P.
Billingsley, Fred C.
Binder, Richard
Binford, Thomas O.
Bingham, Harvey W.
Bise, Robert G.
Bitterli, Charles V.
Bitz, Ira
Bjorner, Dines
Black, Donald V.
Blanc, Robert P.
Blomgren, George H.
Bloomfield, James A.
Blue, Richard B. Sr.
Blum, Joseph
Bodoia, Morris J.
Bollenbacher, Roger L.
Bolton, Ronald M.
Bono, Peter R.
Booth, Grayce M.
Booth, Taylor L.
Borgerson, Barry R.
Bork, Alfred
Borko, Harold
Bouknight, Jack
Bourne, John R.
Brackett, John W.
Bradshaw, Charles L.
Braithwaite, Timothy
Brandejs, Jan F.
Brandon, Daniel M. Jr.
Branscomb, Lewis M.
Branstad, Dennis K.
Bratman, Harvey
Bremer, John W.
Brennan, R. D.
Bressler, Robert
Brickman, Norman F.
Bright, Herbert S.
Brignoli, Frank
Brociner, Betty B.
Brown, John R.
Browne, J. C.
Browne, Peter S.
Bruce, Bertram
Bryan, G. Edward
Bucher, Michael D.
Burns, Joseph L.
Burns, S. K.
Burton, Hilary
Burton, William D. Jr.
Buscher, David J.
Butler, George A.
Butler, Robert
Butterfield, Max A.

Cady, George M.
Callahan, J. A.
Campaigne, H.
Campbell, John B.
Campise, James A.
Cannon, Robert L. Jr.
Caplan, D.
Capsis, George
Cardenas, Alfonso F.
Cardwell, David W.
Carey, Bernard J.
Carlson, Carl R.
Carlson, Eric D.
Carlson, Gary
Carlson, Richard R.
Carmichael, Bruce
Carmichael, Robert L.
Carr, John W. III
Carroll, Allen M.
Carter, George
Case, James A.
Case, Leon R. II
Case, Richard P.
Casey, Richard G.
Cashman, Thomas J.
Cashton, Sidney
Castruccio, Peter A.
Cave, Randal H.
Cea, Eugene J.
Chamberlin, Donald D.
Champine, G. A.
Chan, Maynard M. W.
Chang,H. Y.
Chang, Hsu
Chao, Yen W.
Charp, Sylvia
Chase, Harlan C.
Chauhan, Rohi
Cheatham, Thomas E.
Chen, Peter
Chen, Robert C.
Chen, Thomas T.
Chen, Tien Chi
Chernak, Jess
Cheung, Roger C.
Cheydleur, Ben F.
Chi, Emile C.
Chinitz, M. P.
Cho, SeonH.
Chou, Wushow
Chu, W. W.
Chu, Yaohan
Clark, David D.
Clark, Stephen C. III
Climis, Ted E.
Clymer, James R. W.
Cochran, Anita
Codd, E. F.

Cody, William J. Jr.
Cohen, Dan
Cohen, Jack
Cole, G. D.
Coleman, Michael L.
Coles, L. Stephen
Collmeyer, Arthur J.
Colub, Gene H.
Condon, S. F.
Conner, William M.
Cook, Gord
Cook, Meyer
Cook, Peter G.
Cooprider, Lee W.
Corduan, Alfred E.
Corley, Melvin R.
Cornish, Edward S.
Cotterman, William W.
Cotton, Ira W.
Cottrell, Norman E.
Couch, John Dennis
Couger, J. Daniel
Couperus, J.
Courtright, Benjamin F.
Cowan, Robert J.
Cowgill, Daniel E.
Creel, R. E.
Creveling, Cyrus J.
Crocker, Dean D.
Culpepper, L. M.
Curtis, Kent K.

Dacey, Michael F.
Dahm, David M.
Dalenius, Tore
Dalphin, John F.
Daniels, E. L.
Daniels, Walter E. Jr.
Danner, Lee
Davida, George
Davidson, Donald A.
Davies, W. Ronald
Davis, Alan
Davis, C. M.
Davis, Carl G.
Davis, John C.
Davis, R. M.
Day, Paul
Deal, Richard L.
Dean, Edwin B.
Deb, Rajat K.
De Bons, Anthony
Defiore, Casper R.
De Greene, Kenyon B.
De Regt, Maurits P.
Devine, Edward P.
Dickson, Charles H.
Diethelm, M. A.

Dixon, Louis F.
Dobkin, David
Dockery, John T.
Dodd, George
Donaldson, Fletcher W.
Dorn, Philip H.
Douglas, John R.
Douthat, Dean Z.
Dowling, Terry
Drane, Douglas
'Draper, George L.
Drattell, Alan
Duane, Darrell W.
Ducasse, Edgar
Dumey, Arnold I.
Duncan, Karen
Dunlavey, Richard
Dunn, Robert M.
Dutka, Jacques
Dwyer, Samuel J. III
Dylewski, T. J.
Dym, Charles H.

Easley, Joseph H.
Eastman, Charles
Eccles; William J.
Eckhouse, Richard H. Jr.
Edwards, Judith B.
Edwards, W. Allan
Ehlers, Marvin W.
Eirich, Donald L.
Eirich, Peter L.
Eisen, Lawrence
Elfant, Robert F.
Elkins, Bryce L.
Elliott, David W.
Elliott, Glenn R.
Elman, Stanley A.
Emerson, E. James
Engel, Diana
Engel, Gerald L.
Enslow, Philip H. Jr.
Erickson, Raymond F.
Ernst, George W.
Esch, John W.
Estock, Richard G.
Estrin, Thelma
Evans, W. Buell

Fabry, R. S.
Faiman, M.
Farmer, Nick A.
Farmer, Victor J.
Faust, Hilda C.
Fein, Alvin E.
Feingold, Robert S.
Feldman, 1.
Felton, Walter W.

Feng, Tse-Yun Garrett, Richard E. Grobstein, David L.
Ferrari, D. Gass, Saul I. Groner, Gabriel F.
Feurzeig, Wallace Gates, G. W. Groner, Leo H.
Feustel, Edward Alvin Gates, Roy G rossman, George
Feyock, Stefan Gaylord, C. V. Grossman, H. B.
Fife, Dennis W. Gear, C. W. Gruhn, Ann M.
Finerman, Aaron Gerla, Mario Guetzkow, Harold
Firestone, Roger M. Gey, Fredric C. Guiteras, Joseph J.
Firschein, Oscar Gibb, Kenneth R. Gump, Raymond D.
Fischler; Martin A, Giesa, C. Eric Gussow, Milton
Fisher, Charles Gilchrist, B. Gyllstrom, Hans C.
Fisher, David A. Gilliland, B. E.
Fisher, Donald D. Gimpac, James F.

Habermann, A. N.
Fisher, Gerald A. Jr. Gitman, Israel Habib, Stanley
Fisher, John M. G lanc, Alois

Hadjioannou, Michael
Flood, Merrill M. Glaseman, Steve Hall, Wayne A.
Fogel, Marc H. Glaser, George

Hamblen, John W.
Foley, James David Glasser, Robert G. Hamilton, Dennis E.
Fong, Elizabeth Gleissner, Gene H.

Hamilton, William A.
Foster, C. L. Glick, Norman S.

Hamlet, Richard G.
Foster, Caxton C. Glorioso, Robert M.

Hammer, Fred E.
Foster, David F. Goetz, Donald F.

Hammer, Michael
Fowler, Bruce Goetz, Martin A.

Hammer, Preston C.
Fowler, Mary Gold, Archie

Hamming, R. W.
Fox, C. Robert Goldberg, Adele

Hampel, D. Fox, Margaret R. Goldberg, Jack
Hampson, Richard K.

Fox, Phillip W. Goldhirsh, Isodore L.
Hanna, William E. Jr.

Frailey, Dennis J. Golding, E. 1.
Hansen, John C. Frank, Howard Goldman, Neil M.
Hantler, S. L.

Frank, Ronald A. Goldstein, Aaron
Hardgrave, W. T. Frank, Werner L. Goldstein, Charles M. Hardy, Ann

Franke, Richard Gonzalez, Mario J. Jr.
Harlaw, Charles

Franklin, Jeff Goodman, Arnold
Harmon, John B.

Fredman, Irwin J. Goodrich, Roger E.
Harold, Frederick G.

Fredman, Michael L. Gorgone, John T.
Harper, Jackson D.

Freeman, Martin Gorman, Donald F.
Harrell, Clayton Jr.

Freiman, C. V. Gorman, Michael M.
Harris, Daniel K.

French, L. J. Gorschboth, F. F.
Harris, Floyd O. Friedman, Daniel P. Gorsline, G. W.
Harris, Fred H.

Friedman, Jerome H. Gosden, J.
Harris, Richard D. Friedman, Lee A. Gose, Anne Hamilton
Harris, William I. Fritsch, John M. Goshen, Robert J.
Harrison, Thomas J. Fritz, W. Barkley Gould, John D. Harstad, Kenneth R. Fruchter, Murray Gowdy, John N. Harter, M. D. Fuj iwara, Harry A. Grace, Alonzo G. Jr. Hartford, Donald L. Fuller, Richard H. Graham, G. Scott Hartley, Dean S. III Futrelle, Robert G ralia, Mars J. Hartwick, R. Dean

Grampp, F. T. Hattery, Lowell H.
Gagliardi, Ugo O. Grau, Albert A. Hays, Bill
Galler, Bernard A. Gray, James N. Hays, David G.
Gallo, Arpaol Greaves, John O. B. Head, Robert V.
Gammill, Robert C. Green, Duff III Heart, Frank E.
Gammon, William Howard Green, Teresa O. Hedrick, George E.
Gangl, Erwin C. Greenawalt, E. M. Heintz, Alden
Gannon, John D. Greenes, Robert A. Helgeson, Duane M.
Gantner, George E. Griffin, John R. Heller, Jack
Gardner, Jeffrey J. Grimes, Dale M. Hellwarth, George A.
Gardner, Willard H. Grishman, Ralph Henderson, D. Austin Jr.

Hennessey, James F.
Henriques, Vico E.
Henschen, Lawrence J.
Hernon, James A.
Hertlein, Grace C.
Hess, George J.
Heying, Douglas W.
Higgins, A. N.
Higgins, Thomas J.
Highland, Harold Joseph
Hill, Fredrick, J.
Hill, Harold E.
Hillman, Donald J.
Hinomoto, Hide
Hirsh, Cathy
Hixson, Harold
Ho, Thomas I. M.
Hobbs, Jerry R.
Hodge, Thea D.
Hodson, Richard B.
Hoffman, John M.
Hoffman, Lance J.
Hoffman, R. H.
Hofler, Richard D.
Hohn, Franz E.
Holden, Alistair D. C.
Holden, Willard J.
Hollander, G. L.
Hollingworth, Dennis
HoIlist, William Ladd
Holme, Dorothea
Holmes, Harvard
Home, William J.
Hook, H. O.
Hoover, L. Ronald
Hopewell, Lynn
Hopper, Grace M.
Hopwood, Gregory L.
Hopwood, Marsha D.
Hord, R. Michael
Horne, William J.
Hoskins, W. D.
Houston, H. Richard
Howard, John H. Jr.
Howell, JoAnn
Howell, Thomas H.
Howerton, Paul W.
Howley, Frank E.
Hoyt, Patrick M.
Hsiao, David K.
Huang,H. K.
Huckell, Gary R.
Hughes, Charles E.
Hughes, James
Hunt, Hurshell H.
Huntwork, Paul K.
Hutchison, John S.
Hutt, Arthur

H wang, Frank K.

Iberall, Arthur
Ingerman, Peter Zilahy

Jacobi, George T.
Jacobs, Howard
Jacobs, Walter
Jacobus, G. C.
J ames, Thomas A.
J anac, Karel
Jarvis, John F.
Jefferson, David K.
Jeffery, S.
Jensen, Alton P.
Jensen, Raymond A.
J ercinovic, L. M.
J essep, Donald C. Jr.
Johnson, A. I.
Johnson, Carl W.
Johnson, David L.
J ohnson, Walter A.
Johnson, Walter L.
J ones, Alice U.
Jones, Anita K.
Jones, Jack
Jones, Neil D.
J ones, Ronald Dale
Jones, William J.
Jordan, Thomas L. Jr.
Joseph, Earl C.
Joshi, A. K.
Joslin, Edward O.
Joyce, Charles C. Jr.
Joyce, J.
Joyner, William H. Jr.

Kaenel, R. A.
Kafafian, Haig
Kagan, Claude A. R.
Kahng,S. W.
Kain, Richard Y.
Kampen, Garry R.
Kanal, Laveen
Kandel, Abraham
Karplus, Walter J.
Kasarda, Andrew J.
Kaster, Charles G.
Katzper, Meyer
Kay, Ira M.
Kazek, Chester S. Jr.
Keller, Robert M.
Keller, Roy F.
Kennevan, Walter J.
Kieburtz, Richard B.
Kimbleton, Stephen R.
King, Jllmes C.
King, Willis K.

Kirshenbaum, Frank
Kiviat, Philip J.
Klassen, Daniel L.
Klee, Otmar A.
Kleinrock, Leonard
Kleitman, Daniel J.
Klerer, Melvin
Knight, Douglas Wayne
Knight, J. C.
Knowlton, Prentiss
Koch, Harvey S.
Kornfield, N. R.
Koss, Adele Mildred
Kovach, Ladis D.
Koymen, Kemal
Kozik, Eugene
Kraley, Michael F.
Kraska, Paul W.
Krause, Kurth
Kretchmar, A. L.
Kroeger, Joseph H.
Kronenberg, Nancy
Krueger, E. Rex
Krulee, Gilbert K.
Krummel, Larry
Kuch, T. D. C.
Kuo, Franklin F.
Kurtzberg, Jerome M.

LaFrance, Jacques E.
Laliotis, Ted
Lam, Simon S.
Lambert, Robert J.
Lamothe, Ray J.
Landau, Robert
Lane, Malcolm G.
Larson, Arvid G.
Lasser, Daniel J.
Latker, Alex C.
Laurance, Neal
Lawrie, D.
Lazar, Leonard M.
Leasure, Bruce R.
Leavitt, Michael R.
Le Beux, Pierre J.
Ledin, Victor
Ledley, Robert S.
Lee, Jan
Lee, Marshall
Lee, Robert M.
Lee, Samuel C.
Lennon, James J.
Lesk, Michael
Lester, Bruce P.
Levin, Roy
Lew, Art
Lien, Y. Edmund
Lillestrand, R. L.

Lin, Shen
Lin, Wen T. K.
Lincoln, A. James
Lincoln, Neil R.
Linde, Richard R.
Linden, Theodore A.
Lindsay, Bruce
Link, C. H.
Lipow, Myron
Lippman, Mike
Liskov, Barbara
Littrell, R. F.
Liu, C. L.
Liu, Jane W. S.
Lividini, Joseph
Lloyd, Jack
Logan, J. J.
Logue, Joseph C.
Lomet, David B.
Long, Harvey S.
Loomis, Donald C.
Lorie, Raymond A.
Lovegrove, D. H.
Lowe, Thomas C.
Lozier, Daniel W.
Lucas, Henry C. Jr.
Lucido, Anthony P.
Luck, Dennis R.
Luderer, Gottfried W. R.
Ludwig, Herbert R.
Luk, Clement
Lukas, George
Lukoff, Herman
Lum, Vincent Y.
Lumb, Arthur C.
Lundell, E. Drake Jr.
Lurie, Dan
Lutz, Michael J.
Luxenberg, H. R.
Lycklama, H.
Lykos, Peter
Lyle, Robert F.
Lynch, John T.
Lyon, M. S.
Lyons, Robert E.
Lyons, W. W.

Macaleer, R. James
Machover, Carl
Madnick, Stuart
Madrigal, Orlando S.
Madron, Beverly B.
Maguire, John N.
Mahoney, Michael
Mahoney, William C.
Maisel, Herbert
Maish, Alexander M.
Mamrak, Sandra

Mandell, Steven L.
Maniotes, John
Mann, Richard L.
Manola, Frank
Manuel, Thomas J.
Maple, Clair G.
Marcantonio, Angelo R.
Marcovitz, Alan B.
Marmor-Squires, Ann
Marrigan; Robert J,
Marsland, T. A.
Martino, Joseph P.
Martins, Gary R.
Matheny, Charles S.
Mathews, M. V.
Mathews, Walter M.
Mathis, Charles L.
Mathison, Stuart
Mathur, F. P.
Matyas, Stephen M.
Mc Carn, Davis B.
Mc Carthy, John F. Jr.
Mc Clean, R. K.
Mc Cluskey, E. J.
Mc Connell, Thomas J. Jr.
Mc Cready, R. R.
Mc Cuskey, William A.
Mc Daniel, Herman
Mc Donald, Clement
Me Donald, James C.
Mc Fadden, Ted
Mc Gill, Michael J.
Mc Gregor, P. V.
Mc I1roy, M. D.
Me Jones, Paul
Mc Kenna, James K. Jr.
Mc Knight, Randy S.
Mc Leod, Dennis J.
Mc Murran, M. W.
Meads, Jon A.
Mee, Carl III
Mehl, James W.
Meissner, Loren P.
Melkanoff, M. A.
Mellen, Greg
Meltzer, Herb
Menard, John P.
Mentges, Charles -W.
Merwin, Richard E.
Metcalfe, Robert M.
Metzner, John R.
Michel, Martin J.
Mihram, G. A.
Miles, E. P. Jr.
Milgram, David L.
Miller, Jack M.
Miller, Lawrence H.
Million, E. Z.

Miils, David L.
Mills, Harlan D.
Milner, Stuart
Mink, Thomas A.
Minker, Jack
Minsky, Naftaly
Mintz, Daniel
Misek, L. D.
Mishelevich, David J.
Mitchell, Terry R.
Modesitt, Kenneth L.
Moik, Johannes G.
Moler, Cleve
Moraff, Howard
Morgan, M. Granger
Morgenstern, George
Morris, Joel
Morris, Michael F.
Morton, A. Kent
Morton, Michael S. Scott
Moshman, Jack
Moshos, G. J.
Moyles, Dennis M.
M ucciardi, Anthony N.
Muchnick, Steven S.
Muhlhauser, Robert R.
Mullany, James
Mullen, Karen A.
Mulroney, William C.
Murray, Thomas E.
Muzio, J. C.

N agel, Roger
Nance, Richard E.
Nasem, Charles
Nash-Webber, Bonnie
Nee, David S.
Neely, Peter M.
N egroponte, Nicholas
N elson, Eldred
Nemeth, Alan G.
Neuenschwander, Charles R.
Neurath, Peter W.
Nevins, J. L.
Newman, Shelley
Newton, Carol
Nichols, A. J.
Niedermair, F. Robert
Nielson, Gregory M.
Nielsen, William C.
Nievergelt, J.
Noetzel, Andrew S.
Noonan, Robert E.
N orman, Theodore A.
Notestine, R. E.
Nugent, William R.
Nutt, Gary J.
N uxall, John W.

Oberg, James E.
O'Kane, Kevin C.
Oliver, Paul
Oliver, S. Ron
Olmer, Jane
O'Neill, Dennis M.
Osher, William J.
Ossanna, Joseph
Osterweil, Leon
Otolle, James A.
Overstreet, Claude
Owens, John D.

Palermo, Frank P.
Palley, Norman
Palmer, Richard
Palting, Cezarina A.
Parish, Randall M.
Parker, Donn B.
Parke, Benjamin G.
Patrick, Edward A.
Patterson, James W.
Patton, S. K.
Patt, Yale N.
Payne, Mary
Pearson, Karl M. Jr.
Pease, M. C.
Peavey, Ross D.
Peck, Larry J.
Pehlert, William K.
Penderghast, Thomas F.
Perlis, Alan J.
Perry, Raymond S.
Perry, William E.
Peters, Carol B.
Peterson, Emery G.
Eeterson, James
Peterson, Tom
Pfleeger, Charles
Phillips, Charles A.
Pickholtz, Raymond L.
Pinson, E. N.
Pipberger, H. V.
Pirtle, Mel
Pitts, Gerald N.
Pizer, Stephen M.
Plauger, P. J.
Plourde, Paul J.
Podell, Harold J.
Pool, Ithiel
Poole, Peter C.
Poore, Jesse H. Jr.
Popek, G. J.
Popino, J. P.
Potter, Marshall R.
Potts, Jackie
Pouring, A. A.
Powers, Ernest F.

Powers, Richard
Pratt, Arnold W.
Prescott, Lee R.
Press, Barry
Price, Robert
Prokop,Jan
Pugsley, Ronald S.
Purdy, J. Gerry
Pyke, T. N. Jr.

Quann, John J.
Quinlan, Chris R.

Raben, Jeffrey M.
Raben, Joseph
Rabinow, Jacob
Rabinowitz, Irving N.
Radwin, Mark S.
Raichelson, Gene
Raisig, Paul J. Jr.
Rajchman, Jan A.
Raj-Karne, D. G.
Rakoczi, Laszlo L.
Ramamoorthy, C. V.
Ramsay, W. Bruce
Rauscher, Tomlinson G.
Reddi, S. S.
Redell, David D.
Reifer, Donald J.
Reisner, Phyllis
Reiss, R. A.
Reitman, Julian
Reynolds, Brian M.
Rheinboldt, W.
Rice, John R.
Rich, Robert P.
Richardson, Dana Roland
Richardson, Duane E.
Riddle, William E.
Rieger, Charles J. III
Rigg, George P.
Rigney, Joseph W.
Riley, Winston III
Risse, Joseph A.
Ritea, H. Barry
Rittersbach, George H.
Rizza, J. B.
Rizzi, Anthony M.
Roberts, Alfred E.
Robinson, John
Robinson, Lucian
Rockart, John F.
Rodriguez-Rosell, Juan
Rogers, David F.
Rohr, John A.
Ronayne, Maurice F.
Rose, Lawrence L.
Roseman, Jack

Rosen, Robert
Rosenbaum, Susan L.
Rosenfeld, Azriel
Rosenthal, Charles W.
Rosin, Robert F.
Ross, Douglas T.
Roth, R. Waldo
Rothenbuecher, Oscar H.
Rotolo, Louis S.
Rubey, Raymond J.
Rubin, Arthur I.
Rudberg, Donald A.
Ruh, Lawrence A.
Russo, Paul M.
Ruth, Stephen
Ruthberg, ZelIa G.

Safford, Herbert B.
Sager, Gary R.
Sager, Naomi
Salasin, John
Salton, G.
Saltzberg, Bernard
Salz, Fred R.
Salzman, Roy M.
Samek, Michael J.
Samson, Thomas F.
Sarahan, B. L.
Sashkin, Lawrence
Sassenfeld, Helmut M.
Savage, John E.
Savage, Patric
Scanlon, J. M.
Schaffner, Mario R.
Scharff, Leon
Scher, Julian M.
Scherr, Allan L.
Schiffman, R. L.
Schlegel, C. T.
Schmidt, W. G.
Schmidt, William P.
Schneck, Paul B.
Schroeder, Michael D.
Schroeder, Thomas V.
Schubert, L. K.
Schultz, Gaymond W.
Schumacker, David
Schumacker, R. A.
Schuster, Stewart A.
Schutzer, Daniel
Schwartz, James A.
Schwartz, Mischa
Schwomeyer, Warren A.
Scott, James L.
Scott, Robert H.
Scribner, Paul
Scrutchin, Thomas W.
Seals, Eugene

Sedelow, Sally Yeates
Seidel, Robert J.
Sekino, VVarrenT.
Sevcik, K. C.
Shahbender, Rabah
Shahin, Gordon T.
Shapiro, Sidney
Shapiro, Stuart C.
Shaw, Alan C.
Shaw; Mary M,
Sheffieid, Charles
Shell, Donald
Shelly, Gary B.
Shelter, A. C.
Shemer, Jack
Shepley, D. J.
Sherman, Stephen W.
Sherrod, John
Shipman, David L.
Shipton, Harold W.
Shneiderman, Ben
Shoaf, G. H.
Shoemaker, Loren
Shohara, Sei
Short, Gerald E.
Shreckengost, R. C.
Shuey, Richard L.
Sibley, E. H.
Sibley, W. L.
Sickel, Sharon
Siegel, A.
Silvern, Leonard C.
Simmons, Dick B.
Simmons, Edward J. Jr.
Simonyi, Charles
Skeel, Robert
Slamecka, Vladimir
Slaughter, Lawrence H.
SIegel, Raymond C.
Sloan, Martha E.
Smith, Cecil L.
Smith, Clarence O.
Smith, Diane C. P.
Smith, Eugene B.
Smith, F. Gordon
Smith, John Miles
Smith, Nicholas M.
Smith, Richard
Smith, Robert L. Jr.
Smoot, Oliver R.
Sokol, George M.
Sondak, Norman E.
Spacek, Thomas R.
Sparrow, Charles A.
Spier, Michael J.
Spinrad, Robert
Spiro, Bruce E.
Spitzer, Frank

Springe, F. W.
Squires, Stephen L.
Sroda wa, Ronald J.
Stahl, Fred
Stallings, William
Stanford, W. Donald
Stanton, J. M.
Steel, Thomas B. Jr.
Stefferud, Einar
Stelmack, Frank
Stemple, David W.
Stevens, David F.
Stoffel, James C.
Stokes, Gordon E.
Stokes, Richard A.
Stone, David L.
Stone, Robert L.
Stonebraker, Michael
Story, James R.
Stout, Curtis M.
Strassmann, P. A.
Strauss, Charles M.
Stroud, W. G.
Strout, Frederick D.
Stuebing, H. G.
Stumpf, Werner E.
Stutzman, Leroy F.
Summit, Roger K.
Suszynski, N.
Sutherland, Ivan E.
Swanson, A. Kenneth
Swenson, J. Richard
Swigger, B. K.
Szygenda, S. A.

Taggart, William M. Jr.
Tam, Wing
Tanaka,R.I.
Tannenbaum, B.
Tarbell, Lawrence C. Jr.
Tartar, John
Taulbee, Orrin E.
Tausner, Miriam R.
Taylor, Robert E.
Taylor, Robert W.
Teichroew, Daniel
Tempas, Jon M.
Tenenbaum, Jay
Tesler, Lawrence G.
Thayer, Richard H.
Theilheimer, Feodor
Thomas, Charles R.
Thomas, Duane J.
Thomas, John C. Jr.
Thomas, Robert H.
Thompson, Howard K. Jr.
Thompson, Ken
Thompson, Martin

Thomsen, D. L. Jr.
Thornton, M. Zane
Tick, Leo J.
Timmreck, Eric M.
Tischhauser, J. L.
Tobagi, Fouad A.
Tonik, Albert B.
Towne, Douglas M.
Townsend, Frederick W.
Travis, Friason G.
Treu, Siegfried
Tucker, Allen
Tucker, Dorothy I.
Tucker, Edwin K.
Tuel, William G. Jr.
Tung, Chin
Turn, Rein
Turner, Jon Anthony
Turoff, Murray

Uhlig, Ronald P.
Uhr, Leonard
Ulery, Dana L.
Ullman, Jeffrey D.
Umpleby, Stuart A.
Utley, E. H.

Valentine, Sol W.
Vallbona, Carlos
Van Dam, Andries
Vanderbrug, Gordon J.
Van Houweling, Douglas E.
Van Slyke, R. M.
Vena, Peter A.
Verry, William
Vick, Charles R.
Vickers, Frank D.
Vierra, Joe C.
Viste, G. D.
Von Almen, Karl

Wachal, Robert S.
Wagner, Charles R.
Wagner, David Jon
Wagner, F. V.
Waite, William M.
Wakerly, John F.
Walden, David C.
Walford, Robert B.
Walker, Rob
Walker, Donald E.
Walston, Claude E.
Walters, T. L. Jr.
Wand, Mitchell
Ward, J as. A.
Ward, Wayne D.
Warner, Walter P.
Wasserman, Anthony I.

Watson, W. J.
Wear, Larry L.
Weber,R.A.
Wed berg, George H.
Weihrer, Anna Lea
Weingarten, Fred W.
Weirte, William M.
Weiss, Edward C.
Weiss, Eric A.
Weiss, Stephen F.
Welker, Nancy K.
Wells, James M.
Wells, Mark B.
Wen,K. Y.
Wensley, John H.
Wesselkamper, T. C.
Westin, Alan F.
Wexelblat, R. L.
Weyl, Stephen
Wheeler, T. F.
Whinston, Andrew
White, George M.
White, John R.

Whitman, Kirwin A.
Whitney, Daniel E.
Wieselman, Irving L.
Wile, David S.
Willett, Richard M.
Williams, Leland H.
Williams, Charles M.
Williams, Richard P.
Williams, Theodore J.
Williams, Thomas G.
Willman, Herbert E. Jr.
Wilner, Wayne T.
Wilson, Edwin B.
Wiorkowski, Gabrielle
Wofsey, Marvin M.
Wolf, Eric W.
Wood, David B.
Woodbury, MaxA.
Woodson, M. I. Chas, E,
Wooster, Harold
Wooton, Leland M.
Worlton, Jack
Wright, Charles

Wright, Kendall R.
Wright, S. E.
Wulf, Wm.A.
Wyllys, Ronald E.
Wyner, Donald S.

Yamada, Gordon T.
Yao, S. B.
Yarbrough, Lynn
Yonda, A. W.
Young,J. W.
Y ovits, Marshall C.

Zelkowitz, Marvin V.
Zellweger, Andres G.
Zilles, Stephen N.
Zimmerman, Joan
Zimmerman, Martin B.
Zinn, Karl L.
Zislis, Paul M.
Zosel, Mary E.
Zungoli, S. S.

Agrawal, J. P., 783
Agrawala, A. K., 715
Ahl, David H., 227
Alberts, David S., 433
Anderson, Donald R., 811
Anderson, Robert H., 501
Ar~my~ Ilona, 995
Archibald, Julius A., Jr., 917
Auerbach, Karl, 129
Auerbach, Mark, 451
Avedon, Don M., 627
A vizienis, Algirdas, 401

Backman, Frank, 147
Baille, Gerard G., 723
Barbacci, Mario R., 643
Barker, W. C., 261
Bates, David L., 597
Beddoes, Michael P., 217
Bentley, Trevor J., 869
Bezdek, James C., 1057
Birss, Edward W., 889
Bliss, J. C., 221
Bomzer, H. W., 157
Booth, Grayce M., 789
Borovec, R., 277
Brandin, David H., 75
Bright, Herbert S., 113
Brugler, J. S., 221
Browne, Peter S., 53
Bumgardner, C., 365
Burns, J. C., 617
Burris, Harrison R., 91
Butler, Margaret K., 323

Carlisle, James H., 611
Chang, S. K., 277
Chasen, Irving J., 309
Cheng, W. H., 277
Chu, W. W., 577
Chu, Yaohan, 733
Clough, Larry, 829
Cohen, Stan, 1039
Colon, Fernando C., 755
Cornwell, Bruce, 1035
Cornwell, Katharine, 1035
Coyle, Terrence H., 627

D' Angelo, Henry, 963
Dayhoff, M. 0., 261
DeFanti, Thomas A., 195
Despres, R., 477
Diffie, Whitfield, 109
Dolan, John P., 995
Douglas, A. S., 33

AUTHOR INuEX

Duda, Richard 0., 1075
Dunning, Carolyn M., 161

Edelberg, Murray, 393
Ellis, R. Gail, 251
Enison, Richard L., 113

Fernandez, Edurado B., 819
Fikes, Richard E., 349
Fosdick, Lloyd Do, 909
Fry, James P., 889

Gammill, Robert C., 927
Garfinkel, David, 973
Gerami, Carl R., 883
Gillogly, James J., 501
Glorioso, Robert M., 755
Glover, Fred, 945
Gordon, R. D., 935
Grant, Alexander P., 179
Gray, Stephen B., 235
Greenberg, Harvey J., 939
Greenwald-Katz, Genevieve, 315
Griffith, Arnold K., 639
Grishman, Ralph, 267
Grosch, Herbert R. J., 7
Gudes, Ehud, 97

Halstead, M. H., 935
Hammer, Carl, v
Hammer, Michael, 795
Hammond, William J., 625
Hart, Peter E., 1075
Haseman, William D., 829
Heinrich, Frank R., 85
Hellman, Martin E., 109
Hirschman, Lynette, 267
Holt, Craig S., 209
Howden, William E., 899
Huang, H. K., 241
Hunt, L. T., 261
Huynh, D., 541

Igersheim, Roy H., 877
Ingemarsson, Ingemar, 125

Joyce, John D., 839
Jura, S., 777

Kaenel, Reg A., 341
Kalan, James E., 939
Kastner, Carol H., 231
Katzper, Meyer, 803
Kaufman, David, 85, 129
Ke, J. S., 277

Keller, Roy F., 165
Ketchel, James S., 995
Kim, K. H., 413
Kimbleton, Stephen R., 551
Kirstein, Peter T., 597
Kleinrock, Leonard, 589
Klingman, Darwin, 945
Kobayashi, H., 541
Koch, Harvey S., 97
Koenig, Robert A., 337
Kohler, Walter H., 755
Kraley, M. F., 533
Krebs, Carl E., 365
Kuo, Franklin F., 541

LeFaivre, Richard A., 1069
Li, Dominic W., 755
Lieberson, Stan, 589
Liu, Donald, 671

Mandell, Richard L., 551
Mann, W. F., 533
Marbach, Carl B., 973
Martin, Douglas J., 657
Martin, Frank J., Jr., 467
Mazzetti, Joseph P., 139
Mazziotta, John C., 241
McGlauflin, Howard R., 683
McLean, Ephraim R., 425
Merriam, Charles, 765
Mills, David L., 523
Mishelevich, David J., 251
Mize, Susan G., 251
Moiseeva, N. 1.,287
Morgan, Howard Lee, 605

Nahapetian, Armen, 999
Namba, Daiji, 1001
Naylor, Thomas H., 1017
Neary, Dennis R., 627
Nielsen, Norman R., 75
Nilsson, Nils J., 1075
Northwood, T., 365
Nutt, Gary J., 769

O'Brien, M., 277
Oku, Hikaru, 1001
Oliver, Nissim A., 839
Orcutt, B. C., 261
Ornstein, S. M., 533
Osterweil, Leon J., 909
Otto, Robert W., 451
Ozkarahan, E. A., 855

Papert, Seymour, 1049
Parhami, Behrooz, 951
Parker, Donn B., 65
Pessel, David, 765

Pinkert, James R., 957
Polley, Vincent 1.,511
Pouzin, Louis, 483
Prenner, Charles J., 171
Priven, Lew, 443

Raitzer, Gerald A., 209
Ramamoorthy, C. V., 413
Rauscher, Tomlinson G., 715
Read, J., 277
Reboh, Rene, 349
Reddy, V. D., 783
Rege, S. L., 381
Reitan, E. H., 689
Retz, David L., 1006
Roman, Gruia-Catalin, 973
Rosenberg, Jerry M., 39
Rosenthal, Robert, 495
Ross, Phillip N., 803
Ruder, Brian, 75
Rybczynski, A., 477

Sacerdoti, Earl D., 349
Sagalowicz, Daniel, 349
Sager , Naomi, 267
Saib, Sabina H., 689
Salasin, John, 45
Savoie, Robert E., 221
Scala, Joseph, 185
Scala, Patsy, 191
Schafer, Bruce W., 1006
Schissler, L. Robert, 393
Schneider, Peter, 373
Schoellkopf, Jean P., 723
Sch uster, S. A., 855
Schwartz, R. M., 261
Sechovsky, H., 777
Sedelow, Sally Yeates, 1027
Sessions, Vivian S., 709
Shields, T. Russell, 883
Shlevin, Harold H., 295
Siewiorek, Daniel P., 643
Simonov, M. Yu, 287
Smith, Alan Jay, 457
Smith, K. C., 855
Smyth, W. F., 987
So, Yuk Ho, 829
Soden, John V., 425
Solomon, Cynthia J., 1049
Spector, Alfred Z., 171
Spector, Marion, 701
Stahl, Fred A., 97
Stastny, Peter, 251
Stokes, Adrian V., 597
Stone, Jack L., 179
Suen, Ching Y., 217
Summers, Rita C., 819
Sunshine, Carl A., 571

Swail, James C., 217
Sysuev, V. M., 287

Taneda, Akira, 1001
Tang, C. K., 749
Tobagi, Fouad A., 589
Truquet, Monique, 205
Tsui, Frank, 443
Turn, Rein, 301
Tll ... fVff l\iT l1 l"tT '701
.L I"..I..LV.&..l., "'1' ... u..L.L~J' Ii_"

Underhill, William G., 231

VanderBrug, Gordon J., 979
Vanderheiden, Gregg C., 209

Waldinger, Richard J., 349

Watson, Richard W., 357
Wedlake, J., 477
Weiland, Richard J., 883
Weldon, Jay-Louise, 863
Wessler, B., 477
White, James E., 561
Wilber, B. Michael, 349
Wilhelm, Neil C., 765
Williams, Richard, 21
Windeknecht, T. G., 963
Winkier, Staniey, 1
Wise, Richard B., 657
Wojnarowski, Matias E., 671
Wyatt, Joe B., 511

Zemanek, H., 15
Zioof, IvIoshe lVI., 845

	000001
	000002
	000003
	000004
	000005
	000006
	000007
	000008
	000009
	000010
	000011
	000012
	000013
	000014
	000015
	000016
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	0079
	0080
	0081
	0082
	0083
	0084
	0085
	0086
	0087
	0088
	0089
	0090
	0091
	0092
	0093
	0094
	0095
	0096
	0097
	0098
	0099
	0100
	0101
	0102
	0103
	0104
	0105
	0106
	0107
	0108
	0109
	0110
	0111
	0112
	0113
	0114
	0115
	0116
	0117
	0118
	0119
	0120
	0121
	0122
	0123
	0124
	0125
	0126
	0127
	0128
	0129
	0130
	0131
	0132
	0133
	0134
	0135
	0136
	0137
	0138
	0139
	0140
	0141
	0142
	0143
	0144
	0145
	0146
	0147
	0148
	0149
	0150
	0151
	0152
	0153
	0154
	0155
	0156
	0157
	0158
	0159
	0160
	0161
	0162
	0163
	0164
	0165
	0166
	0167
	0168
	0169
	0170
	0171
	0172
	0173
	0174
	0175
	0176
	0177
	0178
	0179
	0180
	0181
	0182
	0183
	0184
	0185
	0186
	0187
	0188
	0189
	0190
	0191
	0192
	0193
	0194
	0195
	0196
	0197
	0198
	0199
	0200
	0201
	0202
	0203
	0204
	0205
	0206
	0207
	0208
	0209
	0210
	0211
	0212
	0213
	0214
	0215
	0216
	0217
	0218
	0219
	0220
	0221
	0222
	0223
	0224
	0225
	0226
	0227
	0228
	0229
	0230
	0231
	0232
	0233
	0234
	0235
	0236
	0237
	0238
	0239
	0240
	0241
	0242
	0243
	0244
	0245
	0246
	0247
	0248
	0249
	0250
	0251
	0252
	0253
	0254
	0255
	0256
	0257
	0258
	0259
	0260
	0261
	0262
	0263
	0264
	0265
	0266
	0267
	0268
	0269
	0270
	0271
	0272
	0273
	0274
	0275
	0276
	0277
	0278
	0279
	0280
	0281
	0282
	0283
	0284
	0285
	0286
	0287
	0288
	0289
	0290
	0291
	0292
	0293
	0294
	0295
	0296
	0297
	0298
	0299
	0300
	0301
	0302
	0303
	0304
	0305
	0306
	0307
	0308
	0309
	0310
	0311
	0312
	0313
	0314
	0315
	0316
	0317
	0318
	0319
	0320
	0321
	0322
	0323
	0324
	0325
	0326
	0327
	0328
	0329
	0330
	0331
	0332
	0333
	0334
	0335
	0336
	0337
	0338
	0339
	0340
	0341
	0342
	0343
	0344
	0345
	0346
	0347
	0348
	0349
	0350
	0351
	0352
	0353
	0354
	0355
	0356
	0357
	0358
	0359
	0360
	0361
	0362
	0363
	0364
	0365
	0366
	0367
	0368
	0369
	0370
	0371
	0372
	0373
	0374
	0375
	0376
	0377
	0378
	0379
	0380
	0381
	0382
	0383
	0384
	0385
	0386
	0387
	0388
	0389
	0390
	0391
	0392
	0393
	0394
	0395
	0396
	0397
	0398
	0399
	0400
	0401
	0402
	0403
	0404
	0405
	0406
	0407
	0408
	0409
	0410
	0411
	0412
	0413
	0414
	0415
	0416
	0417
	0418
	0419
	0420
	0421
	0422
	0423
	0424
	0425
	0426
	0427
	0428
	0429
	0430
	0431
	0432
	0433
	0434
	0435
	0436
	0437
	0438
	0439
	0440
	0441
	0442
	0443
	0444
	0445
	0446
	0447
	0448
	0449
	0450
	0451
	0452
	0453
	0454
	0455
	0456
	0457
	0458
	0459
	0460
	0461
	0462
	0463
	0464
	0465
	0466
	0467
	0468
	0469
	0470
	0471
	0472
	0473
	0474
	0475
	0476
	0477
	0478
	0479
	0480
	0481
	0482
	0483
	0484
	0485
	0486
	0487
	0488
	0489
	0490
	0491
	0492
	0493
	0494
	0495
	0496
	0497
	0498
	0499
	0500
	0501
	0502
	0503
	0504
	0505
	0506
	0507
	0508
	0509
	0510
	0511
	0512
	0513
	0514
	0515
	0516
	0517
	0518
	0519
	0520
	0521
	0522
	0523
	0524
	0525
	0526
	0527
	0528
	0529
	0530
	0531
	0532
	0533
	0534
	0535
	0536
	0537
	0538
	0539
	0540
	0541
	0542
	0543
	0544
	0545
	0546
	0547
	0548
	0549
	0550
	0551
	0552
	0553
	0554
	0555
	0556
	0557
	0558
	0559
	0560
	0561
	0562
	0563
	0564
	0565
	0566
	0567
	0568
	0569
	0570
	0571
	0572
	0573
	0574
	0575
	0576
	0577
	0578
	0579
	0580
	0581
	0582
	0583
	0584
	0585
	0586
	0587
	0588
	0589
	0590
	0591
	0592
	0593
	0594
	0595
	0596
	0597
	0598
	0599
	0600
	0601
	0602
	0603
	0604
	0605
	0606
	0607
	0608
	0609
	0610
	0611
	0612
	0613
	0614
	0615
	0616
	0617
	0618
	0619
	0620
	0621
	0622
	0623
	0624
	0625
	0626
	0627
	0628
	0629
	0630
	0631
	0632
	0633
	0634
	0635
	0636
	0637
	0638
	0639
	0640
	0641
	0642
	0643
	0644
	0645
	0646
	0647
	0648
	0649
	0650
	0651
	0652
	0653
	0654
	0655
	0656
	0657
	0658
	0659
	0660
	0661
	0662
	0663
	0664
	0665
	0666
	0667
	0668
	0669
	0670
	0671
	0672
	0673
	0674
	0675
	0676
	0677
	0678
	0679
	0680
	0681
	0682
	0683
	0684
	0685
	0686
	0687
	0688
	0689
	0690
	0691
	0692
	0693
	0694
	0695
	0696
	0697
	0698
	0699
	0700
	0701
	0702
	0703
	0704
	0705
	0706
	0707
	0708
	0709
	0710
	0711
	0712
	0713
	0714
	0715
	0716
	0717
	0718
	0719
	0720
	0721
	0722
	0723
	0724
	0725
	0726
	0727
	0728
	0729
	0730
	0731
	0732
	0733
	0734
	0735
	0736
	0737
	0738
	0739
	0740
	0741
	0742
	0743
	0744
	0745
	0746
	0747
	0748
	0749
	0750
	0751
	0752
	0753
	0754
	0755
	0756
	0757
	0758
	0759
	0760
	0761
	0762
	0763
	0764
	0765
	0766
	0767
	0768
	0769
	0770
	0771
	0772
	0773
	0774
	0775
	0776
	0777
	0778
	0779
	0780
	0781
	0782
	0783
	0784
	0785
	0786
	0787
	0788
	0789
	0790
	0791
	0792
	0793
	0794
	0795
	0796
	0797
	0798
	0799
	0800
	0801
	0802
	0803
	0804
	0805
	0806
	0807
	0808
	0809
	0810
	0811
	0812
	0813
	0814
	0815
	0816
	0817
	0818
	0819
	0820
	0821
	0822
	0823
	0824
	0825
	0826
	0827
	0828
	0829
	0830
	0831
	0832
	0833
	0834
	0835
	0836
	0837
	0838
	0839
	0840
	0841
	0842
	0843
	0844
	0845
	0846
	0847
	0848
	0849
	0850
	0851
	0852
	0853
	0854
	0855
	0856
	0857
	0858
	0859
	0860
	0861
	0862
	0863
	0864
	0865
	0866
	0867
	0868
	0869
	0870
	0871
	0872
	0873
	0874
	0875
	0876
	0877
	0878
	0879
	0880
	0881
	0882
	0883
	0884
	0885
	0886
	0887
	0888
	0889
	0890
	0891
	0892
	0893
	0894
	0895
	0896
	0897
	0898
	0899
	0900
	0901
	0902
	0903
	0904
	0905
	0906
	0907
	0908
	0909
	0910
	0911
	0912
	0913
	0914
	0915
	0916
	0917
	0918
	0919
	0920
	0921
	0922
	0923
	0924
	0925
	0926
	0927
	0928
	0929
	0930
	0931
	0932
	0933
	0934
	0935
	0936
	0937
	0938
	0939
	0940
	0941
	0942
	0943
	0944
	0945
	0946
	0947
	0948
	0949
	0950
	0951
	0952
	0953
	0954
	0955
	0956
	0957
	0958
	0959
	0960
	0961
	0962
	0963
	0964
	0965
	0966
	0967
	0968
	0969
	0970
	0971
	0972
	0973
	0974
	0975
	0976
	0977
	0978
	0979
	0980
	0981
	0982
	0983
	0984
	0985
	0986
	0987
	0988
	0989
	0990
	0991
	0992
	0993
	0994
	0995
	0996
	0997
	0998
	0999
	1000
	1001
	1002
	1003
	1004
	1005
	1006
	1007
	1008
	1009
	1010
	1011
	1012
	1013
	1014
	1015
	1016
	1017
	1018
	1019
	1020
	1021
	1022
	1023
	1024
	1025
	1026
	1027
	1028
	1029
	1030
	1031
	1032
	1033
	1034
	1035
	1036
	1037
	1038
	1039
	1040
	1041
	1042
	1043
	1044
	1045
	1046
	1047
	1048
	1049
	1050
	1051
	1052
	1053
	1054
	1055
	1056
	1057
	1058
	1059
	1060
	1061
	1062
	1063
	1064
	1065
	1066
	1067
	1068
	1069
	1070
	1071
	1072
	1073
	1074
	1075
	1076
	1077
	1078
	1079
	1080
	1081
	1082
	1083
	1084
	1085
	1086
	1087
	1088
	1089
	1090
	1091
	1092
	1093
	1094
	1095
	1096
	1097
	1098
	1099
	1100
	1101
	1102
	1103
	1104
	1105
	1106
	1107
	1108
	1109

