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Linguistics and the future of computation

by DAVID G. HAYS

State University of New York
Buffalo, New York

My subject is the art of computation: computer archi-
tecture, computer programming, and computer applica-
tion. Linguistics provides the ideas, but the use I make of
them is net the linguist’s use, which would be an attempt
at understanding the nature of man and of human
communication, but the computer scientist’s use. In
ancient India, the study of language held the place in
science that mathematics has always held in the West.
Knowledge was organized according to the best known
linguistic principles. If we had taken that path, we would
have arrived today at a different science. Our scholarship
draws its principles from sources close to linguistics, to be
sure, but our science has rather limited itself to a basis in
Newtonian calculus. And so a chasm separates two cul-
tures.

The scientific reliance on calculus has been productive.
Often understood as a demand for precision and rigor, it
has simultaneously made theoreticians answerable to
experimental observation and facilitated the internal
organization of knowledge on a scale not imagined else-
where in human history. Very likely, a reliance on lin-
guistic laws for control of science during the same long
period would have been less successful, because the prin-
ciples of linguistic structure are more difficult to discover
and manipulate than the principles of mathematical
structure; or so it seems after two thousand years of
attention to one and neglect of the other. How it will seem
to our descendants a thousand years hence is uncertain;
they may deem the long era of Western study of mathe-
matical science somewhat pathological, and wonder why
the easy, natural organization of knowledge on linguistic
lines was rejected for so many centuries.

However that may be, the prospect for the near term is
that important opportunities will be missed if linguistic
principles continue to be neglected. Linguistics is enjoying
a period of rapid growth, so a plethora of ideas await new
uses; the computer makes it possible to manipulate even
difficult principles. Traditional mathematics seems not to
say how computers much beyond the actual state of the
art can be organized, nor how programs can be made
much more suitable to their applications and human
users, nor how many desirable fields of application can be
conquered. I think that linguistics has something to say.

THREE LINGUISTIC PRINCIPLES

Since I cannot treat the entire field of linguistics. I
have-chosen-to-sketch three prineciples that-seem -meost
basic and far-reaching. Two of them are known to every
linguist and applied automatically to every problem that
arises. The third is slightly less familiar; I have begun a
campaign to give it due recognition.

As everyone knows, the capacity for language is innate
in every human specimen, but the details of a language
are acquired by traditional transmission, from senior to
younger. As everyone knows, language is a symbolic sys-
tem, using arbitrary signs to refer to external things,
properties, and events. And, as everyone certainly knows
by now, language is productive or creative, capable of
describing new events by composition of sentences never
before uttered. Hockett® and Chomsky? explain these
things. But of course these are not principles; they are
problems for which explanatory principles are needed.

My first principle is stratification.’? This principle is
often called duality of patterning, although in recent
years the number of levels of patterning has grown. The
original observation is that language can be regarded as a
system of sounds or a system of meaningful units; both
points of view are essential. One complements the other
without supplanting it. Phonology studies language as
sound. It discovers that each of the world’s languages uses
a small alphabet of sounds, from a dozen to four times
that many, to construct all its utterances. The definition
of these unit sounds is not physical but functional. In one
language, two sounds with physically distinct manifesta-
tions are counted as functionally the same; speakers of
this language do not acquire the ability to distinguish
between the sounds, and can live out their lives without
knowing that the sounds are unlike. English has no use
for the difference between [p] and [p’], the latter having a
little puff of air at the end, yet both occur: [p] in spin, [p’
] in pin. Since other languages, notably Thai, use this
difference to distinguish utterances, it is humanly possi-
ble not only to make the two forms of /p/ but also to hear
it. Thus languages arbitrarily map out their alphabets of
sounds.®

Languages also differ in the sequences of sounds that
they permit. In Russian, the word vzbalmoshnyj ‘extrava-
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gant’ is reasonable, but the English speaker feels that the
initial sequence /vzb/ is extravagant, because initial /v/
in English is not followed by another consonant, and fur-
thermore initial /z/ is not. The Russian word violates
English rules, which is perfectly satisfactory to Russian
speakers, because they are unacquainted with English
restrictions. As Robert Southey put it, speaking of a Rus-
sian,

And last of all an Admiral came,

A terrible man with a terrible name,

A name which you all know by sight very well
But which no one can speak, and no one can spell.

(Robert Southey, ‘The March to Moscow.’) Phonology,
with its units and rules of combinations, is one level of
patterning in language.

That languages are patterned on a second level is so
well known as to require little discussion. English puts
its subject first, verb second, object last—in simple
sentences. Malagasy, a language of Madagascar, puts
the verb first, then the object, last the subject.! Other
orders are found elsewhere. English has no agreement
in gender between nouns and adjectives, but other lan-
guages such as French and Russian, Navaho and Swahili,
do; nor is gender controlled by semantics, since many
gender classes are without known semantic correlation.
Gender is as arbitrary as the English rejection of initial
/vzb/.

The units that enter into grammatical patterns are
morphemes; each language has its own stock, a vocabu-
lary that can be listed and found once more to be arbi-
trary. It seems true that some color names are universal
—needed in all languages to symbolize genetic capacities
—Dbut other color names are also coined, such as the Eng-
lish scarlet and crimson, on arbitrary lines."?

The existence of a third level of symbolic patterning is
best shown by psychological experiments. Memory for a
story is good, but not verbatim. Only the shortest
stretches of speech can be remembered word for word;
but the ideas in quite a long stretch can be recited after
only one hearing if the hearer is allowed to use his own
words and grammatical structures.® The comparison of
pictures with sentences has been investigated by several
investigators; they use models in which below is coded as
not above, forget is coded as not remember, and so on,
because they need such models to account for their sub-
jects’ latencies (times to respond measured in millisec-
onds). Using such models, they can account for the dif-
ferences between times of response to a single picture,
described with different sentences, to an impressive
degree of precision.*?

Each level of symbolic patterning should have both
units and rules of construction. On the phonological level
the units are functional sounds; the rules are rules of
sequence, for the most part. On the grammatical level the

units are morphemes and the rules are the familiar rules
of sequence, agreement, and so on. On the third level,
which can be called semological or cognitive, the units are
often called sememes; the morpheme ‘forget’ corresponds
to the sememes ‘not’ and ‘remember’. The rules of organi-
zation of this level have not been investigated adequately.
Many studies of paradigmatic organization have been
reported, sometimes presenting hierarchical classifica-
tions of items (a canary is a bird, a dog is a quadruped,
etc.), but this is only one of several kinds of organization
that must exist. Classification patterns are not sentences,
and there must be sentences of some kind on the semolog-
ical level. Chomsky’s deep structures might be suitable,
but Fillmore® and McCawley' have proposed different
views. What is needed is rapidly becoming clearer,
through both linguistic and psychological investigations.
The relations that help explain grammar, such as subject
and object, which control sequence and inflection, are not
the relations that would help most in explaining the inter-
pretation of pictures or memory for stories; for such
purposes, notions of agent, instrument, and inert material
are more suitable. But the organization of these and other
relations into a workable grammar of cognition is unfin-
ished.

Up to this point I have been arguing only that language
is stratified, requiring not one but several correlated
descriptions. Now I turn to my second principle, that
language is internalized. Internalization is a mode of stor-
age in the brain, intermediate between innateness and
learning. Concerning the neurology of these distinctions I
have nothing to say. Their functional significance is easy
enough to identify, however.

What is innate is universal in mankind, little subject to
cultural variation. Everyone sees colors in about the same
way. unless pathologically color blind. Evervone on earth
has three or more levels of linguistic patterning. The dis-
tinctions among things (nouns), properties (adjectives),
and events (verbs) are so nearly universal as to suggest
that this threefold organization of experience is innate. To
have grammar is universal, however much the grammars
of particular languages vary. The innate aspects of
thought are swift, sure, and strong.

What is internalized is not the same in every culture or
every person. But whatever a person internalizes is rea-
sonably swift, sure, and strong; less than what is innate,
more than what is learned. Besides the mechanisms of
linguistic processing, various persons internalize the skills
of their arts and crafts; some internalize the strategies of
games; and all internalize the content of at least some
social roles.

The contrast between learning and internalization is
apparent in knowledge of a foreign language. A person
who has learned something of a foreign language without
internalization can formulate sentences and manage to
express himself, and can understand what is said to him,
although slowly and with difficulty. A person who has
internalized a second language is able to speak and
understand with ease and fluency.
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Similarly in games, the difference between a master of
chess, bridge, or go is apparent. But something more of
the difference between learning and internalization is also
to be seen here. The novice has a more detailed awareness
of how he is playing; he examines the board or the cards
step by step, applying the methods he has learned, and
can report how he arrives at his decision. Awareness goes
with learned skills, not with internalized abilities.

Internalized abilities are the basis of more highly orga-
nized behavior. The high-school learner of French is not
able to think in French, nor is the novice in chess able to
construct a workable strategy for a long sequence of
moves. When a language has been internalized, it
becomes a tool of thought; when a chess player has inter-
nalized enough configurations of pieces and small
sequences of play, he can put them together into strate-
gies. The musician internalizes chords, melodies, and
ultimately passages and whole scores; he can then give his
attention to overall strategies, making his performance
lyrical, romantic, martial, or whatever.

What makes learning possible is the internalization of a
system for the storage and manipulation of symbolic
matter. If a person learns a story well enough to tell it, he
uses the facilities of symbolic organization—his linguistic
skills—to hold the substance of the story. Much of the
content of social roles is first learned in this way; the
conditions of behavior and the forms of behavior are
learned symbolically, then come to be, as social psycholo-
gists put it, part of the self—that is, internalized. In fact,
the conversion of symbolic learned material into internal-
ized capacities is a widespread and unique fact of human
life. It must be unique, since the symbol processing
capacity required is limited to man. This ability gives
man a great capacity for change, for adaptation to differ-
ent cultures, for science: by internalizing the methods of
science, he becomes a scientist.

The amount that a person internalizes in a lifetime is
easy to underestimate. A language has thousands of
morphemes and its users know them. Certainly their
semantic and grammatical organization requires tens—
more plausibly hundreds—of thousands of linkages. A
high skill such as chess takes internalize knowledge of the
same order of magnitude, according to Simon and Baren-
feld.”

I think that internalized units are more accurately
conceived as activities than as inert objects. All tissue is
metabolically active, including the tissue that supports
memory. Memory search implies an activity, searching,
in an inactive medium, perhaps a network of nodes and
arcs. More fruitfully we can imagine memory as a net-
work of active nodes with arcs that convey their activity
from one to another. A morpheme, then, is an activity
seeking at all times the conditions of its application.

My third principle in linguistics is the principle of
metalinguistic organization. Language is generally recog-
nized as able to refer to itself; one can mention a word in
order to define it, or quote a sentence in order to refute it.
A very common occurrence in grammar is the embedding

of one sentence within another. A sentence can modify a
word in another sentence, as a relative clause:

The boy who stole the pig ran away.

A sentence can serve as the object of a verb of perception,
thought, or communication:

I saw him leave. I know that he left.
You told me that she had left.

And two sentences can be embedded in temporal, spatial,
or causal relation:

He ran away because he stole the pig.
He stole the pig and then ran away.
He is hiding far from the spot where he stole the pig.

An embedded sentence is sometimes taken in the same
form as if it were independent, perhaps introduced by a
word like the English that, and sometimes greatly altered
in form as in his running away.

The definition of abstract terms can be understood by
metalingual linkages in cognitive networks. The definition
is a structure, similar to the representation of any sen-
tence or story in a cognitive network. The structure is
linked to the term it defines, and the use of the term
governed by the content of the structure. Science and
technology are replete with terms that cannot be defined
with any ease in observation sentences; they are defined,
I think, through metalingual linkages. What kind of pro-
gram is a compiler? What kind of device can correctly be
called heuristic? These questions can be answered, but
useful answers are complicated stories about the art of
programming, not simple statements of perceptual condi-
tions, and certainly not classificatory statements using
elementary features such as human, male, or concrete.

I can indicate how vast a difference there is between
metalingual operations and others by proposing that all
other operations in cognitive networks are performed by
path tracing using finite-state automata, whereas metalin-
gual operations are performed by pattern matching using
pushdown automata. These two systems differ in power; a
finite-state machine defines a regular language and a
pushdown automaton defines a context-free language.

A path in a cognitive network is defined as a sequence
of nodes and arcs; to specify a path requires only a list of
node and arc types, perhaps with mention that scme are
optional, some can be repeated. A more complex form of
path definition could be described, but I doubt that it
would enhance the effectiveness of path tracing proce-
dures. In Quillian’s work, for example, one needs only
simple path specifications to find the relation between
lawyer and client (a client employs a lawyer). To know
that a canary has wings requires a simple form of path
involving paradigmatic (a canary is a kind of bird) and
syntagmatic relations (a bird has wings). The limiting
factor is not the complexity of the path that can be
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defined from one node to ancther, but the very notion
that node-to-node paths are required.*!

Pattern matching means fitting a template. The pat-
terns I have in mind are abstract, as three examples will
show. The first, familiar to linguists, is the determination
of the applicability of a grammatical transformation. The
method, due to Chomsky, is to write a template called a
structure description. The grammatical structure of any
sentence is described by some tree; if the template fits the
tree of a certain sentence, then the transformation applies
to it, yielding a different tree. These templates contain
symbols that can apply to nodes in grammatical trees,
and relations that can connect the nodes. Chomsky was, 1
think, the first to recognize that some rules of grammar
can be applied only where structure is known; many
phenomena in language are now seen to be of this kind.
Thus linguists today ask for tree-processing languages
and cannot do with string processors.

My second example is the testing of a proof for the
applicability of a rule of inference. A proof has a tree
structure like the structure of a sentence; whether a rule
of inference can be applied has to be tested by reference
to the structure. ‘If p and q then p’ is a valid inference,
provided that in its application p is one of the arguments
of the conjunction; one cannot assert that p is true just
because p, g, and a conjunction symbol all occur in the
same string.

Finally, I come to metalingual definition. The defini-
tion is itself a template. The term it defines is correctly
used in contexts where the template fits. As in the first
two examples, the template is abstract. A structure
description defines a class of trees; the transformation it
goes with applies to any tree in the class. A rule of infer-
ence defines a class of proofs; it applies to each of them.
And a metalingual definition defines a class of contexts,
in each of which the corresponding term is usable. Char-
ity has many guises; the story-template that defines char-
ity must specify all of the relevant features of charitable
activity, leaving the rest to vary freely.

When the difference in power between finite-state and
context-free systems was discovered, it seemed that this
difference was a fundamental reason for preferring con-
text-free grammars in the study of natural language.
Later it became evident that the need to associate a struc-
tural description with each string was more important,
since context-free grammars could do so in a natural way
and finite-state automata could not. Today linguists and
programmers generally prefer the form of context-free
rules even for languages known to be finite state, just
because their need for structure is so urgent. It may prove
the same with pattern matching. In proofs, in transforma-
tions, and in definitions it is necessary to mark certain
elements: the conclusions of inferences, the elements
moved or deleted by transformation, and the key partici-
pating elements in definition. (The benefactor is charita-
ble, not the recipient.) Until I see evidence to the contra-
ry, however, I will hold the view that pattern matching is
more powerful than path tracing.

Pattern matching is, surely, a reflective activity in
comparison with path tracing. To trace a path through a
maze, one can move between the hedges, possibly mark-
ing the paths already tried with Ariadne’s thread. To see
the pattern requires rising above the hedges, looking down
on the whole from a point of view not customarily
adopted by the designers of cognitive networks. That is,
they often take such a point of view themselves, but they
do not include in their systems a component capable of
taking such a view.

COMPUTER ARCHITECTURE

I turn now to the art of computation, and ask what
kind of computer might be constructed which followed
the principles of stratification, internalization, and
metalingual operation.

Such a computer will, T freely admit, appear to be a
special-purpose device in comparison with the general-
purpose machines we know today. The human brain, on
close inspection, also begins to look like a special-purpose
machine. Its creativity is of a limited kind, yet interesting
nevertheless. The prejudice in favor of mathematics and
against linguistics prefers the present structure of the
computer; but a special-purpose machine built to linguis-
tic principles might prove useful for many problems that
have heretofore been recalcitrant.

Stratification is not unknown in computation, but it
deserves further attention. The difficulties of code trans-
lation and data-structure conversion that apparently still
exist in networks of different kinds of computers and in
large software systems that should be written in a combi-
nation of programming languages are hard to take. The
level of morphemics in language is relatively independent
of both cognition and phonology. In computer architec-
ture, it should be possible to work with notational
schemes independent of both the problem and the input-
output system. Whether this level of encoding both data
and their organization should be the medium of transmis-
sion, or specific to the processor, I do not know. But it is
clear that translators should be standard hardware items,
their existence unknown in high-level languages. Sophisti-
cation in design may be needed, but the problems seem
not insurmountable, at least for numerical, alphabetic,
and pictorial data. The design of translators for data
structures is trickier, and may even prove not to be possi-
ble on the highest level.

The lesson to be learned from the separation of gram-
mar and cognition is more profound. Language provides a
medium of exchange among persons with different inter-
ests and different backgrounds; how they will understand
the same sentence depends on their purposes as well as
their knowledge. Much difficulty in computer program-
ming apparently can be traced to the impossibility of
separating these two levels in programming languages.
Programs do not mean different things in different con-
texts; they mean the same thing always. They are there-
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fore called unambiguous, but a jaundiced eye might see a
loss of flexibility along with the elimination of doubt.
Many simple problems of this class have been solved; in
high-level languages, addition is generally not conditioned
by data types, even if the compiler has to bring the data
into a common type before adding. More difficult prob-
lems remain. At Buffalo, Teiji Furugori is working on a
system to expand driving instructions in the context of
the road and traffic. He uses principles of safe driving to
find tests and precautions that may be needed, arriving at
a program for carrying out the instruction safely. Current
computer architecture is resistant to this kind of work; it
is not easy to think of a program on two levels, one of
them providing a facility for expanding the other during
execution. An interpreter can do something of the sort;
but interpretive execution is a high price to pay. If com-
puter hardware provided for two simultaneous monitors
of the data stréam, one execufing a compiled program
while the other watched for situations in which the com-
piled version would be inadequate, the separation of
morphemics and cognition might better be realized.

In teaching internalization to students who are mainly
interested in linguistics, I use microprogramming as an
analogy. What can be seen in the opposite direction is the
fantastic extent to which microprogramming might be
carried with corresponding improvement in performance.
If the meaning of every word in a language (or a large
fraction of the words) is internalized by its users, then one
may hope that microprogramming of a similar repertory
of commands would carry possibilities for the computer
somewhat resembling what the speaker gains, to wit,
speed.

A computer could easily be built with a repertory of
10,000 commands. Its manual would be the size of a desk
dictionary; the programmer would often find that his
program consisted of one word, naming an operation, fol-
lowed by the necessary description of a data structure.
Execution would be faster because of the intrinsically
higher speed of the circuitry used in microprogramming.
Even if some microprograms were mainly executive,
making numerous calls to other microprograms, overall
speed should be increased. At one time it would have
been argued that the art could not supply 10,000 widely
used commands, but I think that time is past. If someone
were inclined, I think he could study the literature in the
field and arrive at a list of thousands of frequently used
operations.

Parallel processing adds further hope. If a computer
contains thousands of subcomputers, many of them
should be operating at each moment. Even the little we
know about the organization of linguistic and cognitive
processing in the brain suggests how parallel processing
might be used with profit in systems for new applications.

A morphemic unit is the brain seems to be an activity,
which when successful links a phonological string with
one or more points in a cognitive network. If these units
had to be tested sequentially, or even by binary search,
the time to process a sentence would be great. Instead all

of them seem to be available at all times, watching the
input and switching from latency to arousal when the
appropriate phonological string appears. If each were a
microprogram, each could have access to all input. Con-
flicts inevitably arise, with several units aroused at the
same time. Grammar serves to limit these conflicts; a
grammatical unit is one with a combination of inputs
from morphemic units. When a morphemic unit is
aroused, it signals its activation to one or several gram-
matical units. When a proper combination of morphemic
units is aroused, the grammatical unit is in turn aroused
and returns feedback to maintain the arousal of the
morphemic unit which is thereupon enabled to transmit
also to the cognitive level. Thus the condition for linkage
between phonology and cognition is a combination of
grammatical elements that amounts to the representation
of a sentence structure. This is Lamb’s model of stratal
organization, and shows how grammar reduces Texical
ambiguity. The problem it poses for computer architec-
ture is that of interconnection; unless the morphemic
units (like words) and the grammatical units (like phrase-
structure rules) are interconnected according to the
grammar of a language, nothing works. The computer
designer would prefer to make his interconnections on the
basis of more general principles; but English is used so
widely that a special-purpose computer built on the lines
of its grammar would be acceptable to a majority of the
educated persons in the world—at least, if no other were
on the market.

A similar architecture could be used for other purposes,
following the linguistic principle but not the grammar of a
natural language. Ware'® mentions picture processing and
other multidimensional systems as most urgently needing
increased computing speed. Models of physiology, of
social and political systems, and of the atmosphere and
hydrosphere are among these. Now, it is in the nature of
the world as science knows it that local and remote inter-
actions in these systems are on different time scales. A
quantum of water near the surface of a sea is influenced
by the temperature and motion of other quanta of water
and air in its vicinity; ultimately, but in a series of steps,
it can be influenced by changes at remote places. Each
individual in a society is influenced by the persons and
institutions close to him in the social structure. Each
element of a picture represents a portion of a physical
object, and must be of a kind to suit its neighbors.

To be sure, certain factors change simultaneously on a
wide scale. If a person in a picture is wearing a striped or
polka-dotted garment, the recognition of the pattern can
be applied to the improvement of the elements through-
out the area of the garment in the picture. A new law or
change in the economy can influence every person simul-
taneously. Endocrine hormones sweep through tissue
rapidly, influencing every point almost simultaneously.
When a cloud evaporates, a vast area is suddenly exposed
to a higher level of radiation from the sun.

These situations are of the kind to make stratification a
helpful mode of architecture. Each point in the grid of
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picture, physiological organism, society, or planet is con-
nected with its neighbors on its own stratum and with
units of wide influence on other strata; it need not be
connected with remote points in the same stratum.

Depending on the system, different patterns of interac-
tion have to be admitted. Clouds are formed, transported,
and evaporated. Endocrine glands, although they vary in
their activity, are permanent, as are governments. Both
glands and governments do suffer revolutionary changes
within the time spans of useful simulations. In a motion
picture, objects enter and depart.

How the elements of the first stratum are to be con-
nected with those of the next is a difficult problem. It is
known that the cat’s brain recognizes lines by parallel
processing; each possible line is represented by a cell or
cells with fixed connections to certain retinal cells. But
this does not say how the cat recognizes an object com-
posed of several lines that can be seen from varying orien-
tations. Switching seems unavoidable in any presently
conceivable system to connect the level of picture ele-
ments with the level of objects, to connect the level of
persons with the level of institutions, to connect the ele-
ments of oceans with the level of clouds, or to connect the
elements of the morphemic stratum with the level of cog-
nition in linguistic processing.

In computation, it seems that path tracing should be
implicit, pattern matching explicit. The transmission of
activity from a unit to its neighbors, leading to feedback
that maintains or terminates the activity of the original
unit, can be understood as the formation of paths. Some-
thing else, I think, happens when patterns are matched.

A typical application of a linguistically powerful com-
puter would be the discovery of patterns in the user’s
situation. The user might be a person in need of psychiat-
ric or medical help; an experimenter needing theoretical
help to analyze his results and formulate further experi-
ments; a lawyer seeking precedents to aid his clients; or a
policy officer trying to understand the activities of an
adversary. In such cases the user submits a description of
his situation and the computer applies a battery of pat-
terns to it. The battery would surely have to be composed
of thousands of possibilities to be of use; with a smaller
battery, the user or a professional would be more helpful
than the computer.

If the input is in natural language, I assume that it is
converted into a morphemic notation, in which grammati-
cal relations are made explicit, as a first step.

On the next level are thousands of patterns, each linked
metalingually to a term; the computer has symbolic pat-
terns definitive of charity, ego strength, heuristics, hostili-
ty, and so on. Each such pattern has manifold repre-
sentations on the morphemic stratum; these representa-
tions may differ in their morphemes and in the gram-
madical linkages among them. Some of these patterns, in
fact, cannot be connected to the morphemic stratum di-
rectly with any profit whatsoever, but must instead be
linked to other metalingual patterns and thence ul-
timately to morphemic representations. In this way the

cognitive patterns resemble objects in perception that
must be recognized in different perspectives.

Grammatical theory suggests an architecture for the
connection of the strata that may be applicable to other
multistratal systems. The two strata are related through a
bus; the object on the lower stratum is a tree which reads
onto the bus in one of the natural linearizations. All of the
elements of all of the patterns on the upper stratum are
connected simultaneously to the bus and go from latent to
aroused when an element of their class appears; these
elements include both node and arc labels. When the last
item has passed, each pattern checks itself for complete-
ness; all patterns above a threshold transmit their arousal
over their metalingual links to the terms they define.
Second-order patterns may come to arousal in this way,
and so on.

If this model has any validity for human processing, it
brings us close to the stage at which awareness takes over.
In awareness, conflicts are dealt with that cannot be
reduced by internalized mechanisms. The chess player
goes through a few sequences of moves to see what he can
accomplish on each of them; the listener checks out those
occasional ambiguities that he notices, and considers the
speaker’s purposes, the relevance of what he has heard to
himself, and so on. The scientist compares his overall
theoretical views with the interpretations of his data as
they come to mind and tries a few analytic tricks. In
short, this is the level at which even a powerful computer
might open a dialogue with the user.

Would a sensible person build a computer with archi-
tecture oriented to a class of problems? I think so, in a
few situations. Ware listed some problems for which the
payoff function varies over a multibillion-dollar range:
foreign policy and arms control, weather and the environ-
ment, social policy, and medicine. With such payoffs, an
investment of even a large amount in a more powerful
computer might be shown to carry a sufficient likelihood
of profit to warrant a gamble. In the case of language-
oriented architecture, it is not hard to develop a compos-
ite market in which the users control billions of dollars
and millions of lives with only their own brains as tools to
link conceptualization with data. A president arrives at
the moment of decision, after all the computer simula-
tions and briefings, with a yellow pad and a pencil; to give
him a computer which could help his brain through mul-
tistratal and metalingual linkages of data and theories
would be worth a substantial investment.

Can these applications be achieved at optimal levels
without specialized architecture? I doubt it. Parallel
processing with general-purpose computers linked
through generalized busses will surely bring an improve-
ment over serial processing, but raises problems of delay
while results are switched from one computer to another
and does nothing to solve software problems. Specialized
architecture is a lesson to be learned from linguistics with
consequences for ease of programming, time spent in
compilation or interpretation, and efficiency of parallel
processing.
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COMPUTATIONAL LINGUISTICS

I have delayed until the end a definition of my own
field, which I have presented before.” It should be more
significant against the background of the foregoing discus-
sion.

The definition is built upon a twofold distinction. One
is the distinction, familiar enough, between the infinitesi-
mal calculus and linguistics. The calculus occupies a
major place in science, giving a means of deduction in
systems of continuous change. It has developed in two
ways: Mathematical analysis, which gives a time-inde-
pendent characterization of systems including those in
which time itself is a variable—time does not appear in
the metasystem of description. And numerical analysis,
in which time is a variable of the metasystem; numerical
analysis deals in algorithms.

Linguistics, also, has developed in two ways. The time-
independent characterizations that Chomsky speaks of as
statements of competence are the subject of what is called
linguistics, with no modifier. This field corresponds to the
calculus, or to its applications to physical systems. Time-
dependent characterizations of linguistic processes are the
subject matter of computational linguistics, which also
has two parts. Its abstract branch is purely formal, deal-
ing with linguistic systems whether realized, or realizable,
in nature; its applied branch deals with algorithms for the
processing of naturally occurring languages.

I have undertaken to show that the concepts of abstract
computational linguistics provide a foundation for nonnu-
merical computation comparable to that provided by the
calculus for numerical computation. The work is still in
progress, and many who are doing it would not be com-
fortable to think of themselves as computational linguists.
I hope that the stature of the field is growing so that more
pride can attach to the label now and hereafter than in
earlier days.
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Speech understanding

by DONALD E. WALKER

Stanford Research Institute
Menlo Park, California

ABSTRACT

Research on speech understanding is adding new
dimensions to the analysis of speech and to the under-
standing of language. The accoustic, phonetic, and phon-
ological processing of speech recognition efforts are being
blended with the syntax, semantics, and pragmatics of
question-answering systems. The goal is the development
of capabilities that will allow a person to have a conversa-
tion with a computer in the performance of a shared task.
Achievement of this goal will both require and contribute
to a more comprehensive and powerful model of language
—with significant consequences for linguistics, for com-
puter science, and especially for computational linguis-
tics.

Syntax and computation

by JANE J. ROBINSON

The University of Michigan
Ann Arbor, Michigan

ABSTRACT

Algorithms have been developed for generating and
parsing with context-sensitive grammars. In principle, the
contexts to which a grammar is sensitive can be syntactic,
semantic, pragmatic, or phonetic. This development
points up the need to develop a new kind of lexicon,
whose entries contain large amounts of several kinds of
contextual information about each word or morpheme,
provided in computable form. Ways in which both the
form and content of the entries differ from those of tradi-
tional dictionaries are indicated.

Literary text processing

by SALLY YEATES SEDELOW

University of Kansas
Lawrence, Kansas

ABSTRACT

To date, computer-based literary text processing bears
much greater similarity to techniques used for informa-
tion retrieval and, to some degree, for question-answering,
than it does to techniques used in, for example, machine
translation of ‘classical’ artificial intelligence. A literary
text is treated not as ‘output’ in a process to be emulated
nor as a string to be transformed into an equivalent ver-
bal representation, but, rather, as an artifact to be ana-
lyzed and described.

The absence of process as an integrating concept in
computer-based literary text processing leads to very
different definitions of linguistic domains (such as seman-
tics and syntactics) than is the case with, for example,
artificial intelligence. This presentation explores some of
these distinctions, as well as some of the implications of
more process-oriented techniques for literary text proc-
essing.
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by DOUGLAS C. ENGELBART, RICHARD W. WATSON, and JAMES C. NORTON

Stanford Research Institute
Menlo Park, California

CONCEPT OF THE KNOWLEDGE WORKSHOP

This paper discusses the theme of augmenting a knowl-
edge workshop. The first part-of the-paper-describes the
concept and framework of the knowledge workshop. The
second part describes aspects of a prototype knowledge
workshop being developed within this framework.

The importance and implications of the idea of knowl-
edge work have been described by Drucker.®* Considering
knowledge to be the systematic organization of informa-
tion and concepts, he defines the knowledge worker as the
person who creates and applies knowledge to productive
ends, in contrast to an ‘“intellectual” for whom informa-
tion and concepts may only have importance because
they interest him, or to the manual worker who applies
manual skills or brawn. In those two books Drucker
brings out many significant facts and considerations
highly relevant to the theme here, one among them
(paraphrased below) being the accelerating rate at which
knowledge and knowledge work are coming to dominate
the working activity of our society:

In 1900 the majority and largest single group of
Americans obtained their livelihood from the farm.
By 1940 the largest single group was industrial work-
ers, especially semiskilled machine operators. By
1960, the largest single group was professional,
managerial, and technical—that is, knowledge work-
ers. By 1975-80 this group will embrace the majority
of Americans. The productivity of knowledge has
already become the key to national productivity,
competitive strength, and economic achievement,
according to Drucker. It is knowledge, not land, raw
materials, or capital, that has become the central
factor in production.

In his provocative discussions, Drucker makes exten-
sive use of such terms as ‘“‘knowledge organizations,”
“knowledge technologies,” and “knowledge societies.” It
seemed a highly appropriate extension for us to coin
“knowledge workshop’ for re-naming the area of our
special interest: the place in which knowiedge workers do
their work. Knowledge workshops have existed for centu-
ries, but our special concern is their systematic improve-
ment, toward increased effectiveness of this new breed of
craftsmen.

Workshop improvement involves systematic change not
only in the tools that help handle and transform the
materials, but in the customs, conventions, skills, proce-
dures; werking-metheods; organizational reles,training,-
etc., by which the workers and their organizations harness
their tools, their skills, and their knowledge.

Over the past ten years, the explicit focus in the Aug-
mentation Research Center (ARC) has been upon the
effects and possibilities of new knowledge workshop tools
based on the technology of computer timesharing and
modern communications.'®*" Since we consider automat-
ing many human operations, what we are after could
perhaps be termed “workshop automation.” But the very
great importance of aspects other than the new tools (i.e.,
conventions, methods, roles) makes us prefer the “aug-
mentation” term that hopefully can remain ‘“whole-
scope.” We want to keep tools in proper perspective
within the total system that augments native human
capacities toward effective action.'--1.16.18-2¢

Development of more effective knowledge workshop
technology will require talents and experience from many
backgrounds: computer hardware and software, psycholo-
gy, management science, information science, and opera-
tions research, to name a few. These must come together
within the framework of a new discipline, focused on the
systematic study of knowledge work and its workshop
environments.

TWO WAYS IN WHICH AUGMENTED
KNOWLEDGE WORKSHOPS ARE EVOLVING

Introduction

First, one can see a definite evolution of new workshop
architecture in the trends of computer application sys-
tems. An “augmented workshop domain” will probably
emerge because many special-purpose application sys-
tems are evolving by adding useful features outside their
immediate special application area. As a result, many will
tend to overlap in their general knowledge work support-
ing features.

Second, research and development is being directed
toward augmenting a ‘“Core” Knowledge Workshop
domain. This application system development is aimed
expressly at supporting basic functions of knowledge
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work. An important characteristic of such systems is to
interface usefully with specialized systems. This paper is
oriented toward this second approach.

NATURAL EVOLUTION BY SCATTERED
NUCLEI EXPANDING TOWARD A COMMON
“KNOWLEDGE WORKSHOP” DOMAIN

Anderson and Coover® point out that a decade or more
of application-system evolution is bringing about the
beginning of relatively rational user-oriented languages
for the control interfaces of advanced applications soft-
ware systems. What is interesting to note is that the func-
tions provided by the “interface control” for the more
advanced systems are coming to include editors and gen-
eralized file-management facilities, to make easier the
preparation, execution, and management of the special-
purpose tools of such systems.

It seems probable that special application-oriented
systems (languages) will evolve steadily toward helping
the user with such associated work as formulating models,
documenting them, specifying the different trial runs,
keeping track of intermediate results, annotating them
and linking them back to the users’ model(s), etc. When
the results are produced by what were initially the core
application programs (e.g., the statistical programs), he
will want ways to integrate them into his working notes,
illustrating, labeling, captioning, explaining and inter-
preting them. Eventually these notes will be shaped into
memoranda and formal publications, to undergo dialogue
and detailed study with and by others.”

Once a significant user-oriented system becomes estab-
lished, with a steady growth of user clientele, there will be
natural forces steadily increasing the effectiveness of the
system services and steadily decreasing the cost per unit
of service. And it will also be natural that the functional
domain of an application system will steadily grow out-
ward: “as long as the information must be in computer
form anyway for an adjacent, computerized process, let’s
consider applying computer aid to Activity X also.”

Because the boundary of the Application System has
grown out to be “‘next to” Activity X, it has become
relatively easy to consider extending the computer-
ized-information domain a bit so that a new applica-
tion process can support Activity X. After all, the
equipment is already there, the users who perform
Activity X are already oriented to use integrated
computer aid, and generally the computer facilitation
of Activity X will prove to have a beneficial effect on
the productivity of the rest of the applications sys-
tem.

This domain-spreading characteristic is less dependent
upon the substantive work area a particular application
system supports than it is upon the health and vitality of
its development and application (the authors of Reference
15 have important things to say on these issues): however,
it appears that continuing growth is bound to occur in

many special application domains, inevitably bringing
about overlap in common application ‘‘sub-domains” (as
seen from the center of any of these nuclei). These special
subdomains include formulating, studying, keeping track
of ideas, carrying on dialogue, publishing, negotiating,
planning, coordinating, learning, coaching, looking up in
the yellow pages to find someone who can do a special
service, etc.

CONSIDERING THE CORE KNOWLEDGE
WORKSHOP AS A SYSTEM DOMAIN IN ITS
OWN RIGHT

A second approach to the evolution of a knowledge
workshop is to recognize from the beginning the amount
and importance of human activity constantly involved in
the “core” domain of knowledge work—activity within
which more specialized functions are embedded.

If you asked a particular knowledge worker (e.g., scien-
tist, engineer, manager, or marketing specialist) what
were the foundations of his livelihood, he would probably
point to particular skills such as those involved in design-
ing an electric circuit, forecasting a market based on var-
ious data, or managing work flow in a project. If you
asked him what tools he needed to improve his effective-
ness he would point to requirements for aids in designing
circuits, analyzing his data, or scheduling the flow of
work.

But, a record of how this person used his time, even if
his work was highly specialized, would show that
specialized work such as mentioned above, while vital
to his effectiveness, probably occupied a small frac-
tion of his time and effort.

The bulk of his time, for example, would probably
be occupied by more general knowledge work: writing
and planning or design document; carrying on dia-
logue with others in writing, in person, or on the tele-
phone; studying documents; filing ideas or other
material; formulating problem-solving approaches;
coordinating work with others; and reporting results.

There would seem to be a promise of considerable
payoff in establishing a healthy, applications oriented
systems development activity within this common, “core”
domain, meeting the special-application systems “coming
the other way” and providing them with well-designed
services at a natural system-to-system interface.

It will be much more efficient to develop this domain
explicitly, by people oriented toward it, and hopefully
with resources shared in a coordinated fashion. The alter-
native of semi-random growth promises problems such as:

(1) Repetitive solutions for the same functional prob-
lems, each within the skewed perspective of a par-
ticular special-applications area for which these
problems are peripheral issues,

(2) Tncompatibility between diferent application soft-
ware systems in terms of their inputs and outputs,
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(3) Languages and other control conventions inconsist-
ent or based on different principles from one sys-
tem to another, creating unnecessary learning bar-
riers or other discouragements to cross usage.

In summary, the two trends in the evolution of knowl-
edge workshops described above are each valuable and
are complementary. Experience and specific tools and
techniques can and will be transferred between them.

There is a very extensive range of ‘“‘core” workshop
functions, common to a wide variety of knowledge work,
and they factor into many levels and dimensions. In the
sections to follow, we describe our developments, activi-
ties, and commitments from the expectation that there
soon will be increased activity in this core knowledge
workshop domain, and that it will be evolving “outward”
to meet the other application systems “heading inward.”

BASIC ASSUMPTIONS ABOUT AUGMENTED
KNOWLEDGE WORKSHOPS EMBEDDED IN A
COMPUTER NETWORK

The computer-based “tools” of a knowledge workshop
will be provided in the environment of a computer net-
work such as the ARPANET."** For instance, the core
functions will consist of a network of cooperating proces-
sors performing special functions such as editing, publish-
ing, communication of documents and messages, data
management, and so forth. Less commonly used but
important functions might exist on a single machine. The
total computer assisted workshop will be based on many
geographically separate systems.

Once there is a “digital-packet transportation system,”
it becomes possible for the individual user to reach out
through his interfacing processor(s) to access other people
and other services scattered throughout a “community,”
and the “labor marketplace” where he transacts his
knowledge work literally will not have to be affected by
geographical location.”

Specialty application systems will exist in the way that
specialty shops and services now do—and for the same
reasons. When it is easy to transport the material and
negotiate the service transactions, one group of people will
find that specilization can improve their cost/effective-
ness, and that there is a large enough market within reach
to support them. And in the network-coupled computer-
resource marketplace, the specialty shops will grow—e.g.,
application systems specially tailored for particular types
of analyses, or for checking through text for spelling
errors, or for doing the text-graphic document typography
in a special area of technical portrayal, and so on. There
will be brokers, wholesalers, middle men, and retailers.

Coordinated set of user interface principles

There will be a common set of principies, over the
many application areas, shaping user interface features

such as the language, control conventions, and methods
for obtaining help and computer-aided training.

This characteristic has two main implications. One, it
means that while each demain within the core workshop
area or within a specialized application system may have
a vocabulary unique to its area, this vocabulary will be
used within language and control structures common
throughout the workshop system. A user will learn to use
additional functions by increasing vocabulary, not by
having to learn separate “foreign” languages. Two, when
in trouble, he will invoke help or tutorial functions in a
standard way.

Grades of user proficiency

Even a once-in-a-while user with a minimum of learn-
ing will want to be able to get at least a few straightfor-
ward things done. In fact, even an expert -user-im-one
domain will be a novice in others that he uses infre-
quently. Attention to novice-oriented features is required.

But users also want and deserve the reward of
increased proficiency and capability from improvements
in their skills and knowledge, and in their conceptual
orientation to the problem domain and to their work-
shop’s system of tools, methods, conventions, etc. “Ad-
vanced vocabularies” in every special domain will be
important and unavoidable.

A corollary feature is that workers in the rapidly evolv-
ing augmented workshops should continuously be
involved with testing and training in order that their skills
and knowledge may harness available tools and method-
ology most effectively.

Ease of communication between, and addition of,
workshop domains

One cannot predict ahead of time which domains or
application systems within the workshop will want to
communicate in various sequences with which others, or
what operations will be needed in the future. Thus,
results must be easily communicated from one set of
operations to another, and it should be easy to add or
interface new domains to the workshop.

User programming capability

There will never be enough professional programmers
and system developers to develop or interface all the tools
that users may need for their work. Therefore, it must be
possible, with various levels of ease, for users to add or
interface new tools, and extend the language to meet their
needs. They should be able to do this in a variety of pro-
gramming languages with which they may have training,
or in the basic user-level language of the workshop itself.

Availability of people support services

An augmented workshop will have more support serv-
ices available than those provided by computer tools.
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There will be many people support services as well:
besides clerical support, there will be extensive and
highly specialized professional services, e.g., document
design and typography, data base design and administra-
tion, training, cataloging, retrieval formulation, etc. In
fact, the marketplace for human services will become
much more diverse and active.”

Cost decreasing, capabilities increasing

The power and range of available capabilities will
increase and costs will decrease. Modular software
designs, where only the software tools needed at any given
moment are linked into a person’s run-time computer
space, will cut system overhead for parts of the system
not in use. Modularity in hardware will provide local
configurations of terminals and miniprocessors tailored
for economically fitting needs. It is obvious that cost of
raw hardware components is plummeting; and the
assumed large market for knowledge workshop support
systems implies further help in bringing prices down.

The argument given earlier for the steady expansion of
vital application systems to other domains remains valid
for explaining why the capabilities of the workshop will
increase. Further, increasing experience with the work-
shop will lead to improvements, as will the general trend
in technology evolution.

Range of workstations and symbol representations

The range of workstations available to the user will
increase in scope and capability. These workstations will
support text with large, open-ended character sets, pic-
tures, voice, mathematical notation, tables, numbers and
other forms of knowledge representation. Even small
portable hand-held consoles will be available.™

Careful development of methodology

As much care and attention will be given to the devel-
opment, analysis, and evaluation of procedures and
methodology for use of computer and people support serv-
ices as to the development of the technological support
services.

Changed roles and organizational structure

The widespread availability of workshop services will
create the need for new organizational structures and
roles.

SELECTED DESCRIPTION OF AUGMENTED
WORKSHOP CAPABILITIES

Introduction

Within the framework described above, ARC is devel-
oping a prototype workshop svstem. Our system does not

meet all the requirements outlined previously, but it does
have a powerful set of core capabilities and experience
that leads us to believe that such goals can be achieved.

Within ARC we do as much work as possible using the
range of online capabilities offered. We serve not only as
researchers, but also as the subjects for the analysis and
evaluation of the augmentation system that we have been
developing.

Consequently, an important aspect of the augmentation
work done within ARC is that the techniques being
explored are implemented, studied, and evaluated with
the advantage of intensive everyday usage. We call this
research and development strategy “bootstrapping.”

In our experience, complex man-machine systems can
evolve only in a pragmatic mode, within real-work envi-
ronments where there is an appropriate commitment to
conscious, controlled, exploratory evolution within the
general framework outlined earlier. The plans and com-
mitments described later are a consistent extension of this
pragmatic bootstrapping strategy.

To give the reader more of a flavor of some of the many
dimensions and levels of the ARC workshop, four exam-
ple areas are discussed below in more detail, following a
quick description of our physical environment.

The first area consists of mechanisms for studying and
browsing through NLS files as an example of one func-
tional dimension that has been explored in some depth.

The second area consists of mechanisms for collabora-
tion support—a subsystem domain important to many
application areas.

The third and fourth areas, support for software engi-
neers and the ARPANET Network Information Center
(NIC), show example application domains based on func-
tions in our workshop.

General physical environment

Our computer-based tools run on a Digital Equipment
Corporation PDP-10 computer, operating with the Bolt,
Beranek, and Newman TENEX timesharing system.? The
computer is connected via an Interface Message Proces-
sor (IMP) to the ARPANET.”® There is a good deal of
interaction with Network researchers, and with Network
technology, since we operate the ARPA Network Infor-
mation Center (see below).*

There is a range of terminals: twelve old, but servicea-
ble, display consoles of our own design,”* an IMLAC dis-
play, a dozen or so 30 ch/sec portable upper/lower case
typewriter terminals, five magnetic tape-cassette storage
units that can be used either online or offline, and a 96-
character line printer. There are 125 million characters of
online disk storage.

The display consoles are equipped with a typewriter-
like keyboard, a five-finger keyset for one-handed
character input, and a “mouse”—a device for con-
trolling the position of a cursor (or pointer) on the
display screen and for input of certain control
commands. Test results on the mouse as a screen-
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selection device have been reported in Reference 25,
and good photographs and descriptions of the physi-
cal systems have appeared in References 20 and 21.

The core workshop software system and language,
called NLS, provides many basic tools, of which a num-
ber will be mentioned below. It is our ‘“core-workshop
application system.”

During the initial years of workshop development,
application and analysis, the basic knowledge-work func-
tions have centered around the composition, modification,
and study of structured textual material.*®* Some of the
capabilities in this area are described in detail in Refer-
ence 26, and are graphically shown in a movie available
on loan!'—

The structured-text manipulation has been developed
extensively because of its high payoff in the area of
applications-system development to which we have
applied our augmented workshop. We have delayed
addition of graphic-manipulation capabilities
because there were important areas associated with
the text domain needing exploration and because of
limitations in the display system and hardcopy print-
out.

To build the picture of what our Core Knowledge
Workshop is like, we first give several in-depth examples,
and then list in the section on workshop utility service
some ‘“‘workshop subsystems” that we consider to be of
considerable importance to general knowledge work.

STUDYING ONLINE DOCUMENTS

Introduction

The functions to be described form a set of controls for
easily moving one around in an information space and
allowing one to adjust the scope, format, and content of
the information seen.?-!

Given the addition of graphical, numerical, and vocal
information, which are planned for addition to the work-
shop, one can visualize many additions to the concepts
below. Even for strictly textual material there are yet
many useful ideas to be explored.

View specifications

One may want an overview of a document in a table-of-
contents like form on the screen. To facilitate this and
other needs, NLS text files are hierarchically structured
in a tree form with subordinate material at lower levels in
the hierarchy.®*

The basic conceptual unit in NLS, at each node of
the hierarchical file, is called a “statement” and is
usually a paragraph, sentence, equation, or other unit
that one wants to manipulate as a whole.

A statement can contain many characters—present-
ly, up to 2000. Therefore, a statement can contain
many lines of text. Two of the “view-specification”
parameters—depth in the hierarchy, and lines per
statement—can be controlled during study of a
document to give various overviews of it. View speci-
fications are given with highly abbreviated control
codes, because they are used very frequently and
their quick specification and execution make a great
deal of difference in the facility with which one stud-
ies the material and keeps track of where he is.

Examples of other view specifications are those that
control spacing between statements, and indentation for
levels in the hierarchy, and determine whether the identi-
fications associated with statements are to be displayed,
special filters are to be invoked to show only statements
meeting specified content requirements or whether state-
ments are to be transformed according to special rules
programmed by the user.

Moving in information space

A related viewing problem is designating the particular
location (node in a file hierarchy) to be at the top of the
screen. The computer then creates a display of the infor-
mation from that point according to the view specifica-
tions currently in effect.

The system contains a variety of appropriate com-
mands to do this; they are called jump commands
because they have the effect of “jumping’” or moving one
from place to place in the network of files available as a
user’s information space.?-%-%

One can point at a particular statement on the screen
and command the system to move on to various posi-
tions relative to the selected one, such as up or down
in the hierarchical structure, to the next or preceding
statement at the same hierarchical level, to the first
or last statement at a given level, etc.

One can tell the system to move to a specifically
named point or go to the next occurrence of a state-
ment with a specific content.

Each time a jump or move is made, the option is
offered of inciuding any of the abbreviated view spec-
ifications—a very general, single operation is “jump
to that location and display with this view.”

As one moves about in a file one may want to quickly
and easily return to a previous view of the path as one
traverses through the file and the specific view at each
point, and then aiilowing return movement to the most
recent points saved.

Another important feature in studying or browsing in a
document is being able to quickly move to other docu-
ments cited.
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There is a convention (called a “link”) for citing
documents that allows the user to specify a particular
file, statement within the file and view specification
for initial display when arriving in the cited file.

A single, quickly executed command (Jump to Link)
allows one to point at such a citation, or anywhere in
the statement preceding the citation, and the system
will go to the specific file and statement cited and
show the associated material with the specified view
parameters. This allows systems of interlinked
documents and highly specific citations to be created.

A piece of the path through the chain of documents is
saved so that one can return easily a limited distance
back along his “trail,” to previously referenced docu-
ments. Such a concept was originally suggested by Bush®
in a fertile paper that has influenced our thinking in
many ways.

Multiple windows

Another very useful feature is the ability to “split” the
viewing screen horizontally and/or vertically in up to
eight rectangular display windows of arbitrary size. Gen-
erally two to four windows are all that are used. Each
window can contain a different view of the same or differ-
ent locations, within the same or different files.*

COLLABORATIVE DIALOGUE AND
TELECONFERENCING

Introduction

The approach to collaboration support taken at ARC to
date has two main thrusts:

(1) Support for real-time dialogue (teleconferencing)
for two or more people at two terminals who want
to see and work on a common set of material. The
collaborating parties may be further augmented
with a voice telephone connection as well.

(2) Support for written, recorded dialogue, distributed
over time.

These two thrusts give a range of capabilities for sup-
port of dialogue distributed over time and space.

Teleconferencing support

Consider two people or groups of people who are geo-
graphically separated and who want to collaborate on a
document, study a computer program, learn to use a new
aspect of a system, or perform planning tasks, etc.

The workshop supports this type of collaboration by
allowing them to link their terminals so that each sees the
same information and either can control the system. This

function is available for both display and typewriter
terminal users over the ARPANET.

The technique is particularly effective between dis-
plays because of the high speed of information output and
the flexibility of being able to split the screen into several
windows, allowing more than one document or view of a
document to be displayed for discussion.

When a telephone link is also established for voice
communication between the participants, the technique
comes as close as any we know to eliminating the need for
collaborating persons or small groups to be physically
together for sophisticated interaction.

A number of other healthy approaches to teleconferenc-
ing are being explored elsewhere.!*'%% Tt would be
interesting to interface to such systems to gain experience
in their use within workshops such as described here.

RECORDED DIALOGUE SUPPORT

Introduction

As ARC has become more and more involved in the
augmentation of teams, serious consideration has been
given to improving intra- and inter-team communication
with whatever mixture of tools, conventions, and proce-
dures will help.?-%%

If a team is solving a problem that extends over a con-
siderable time, the members will begin to need help in
remembering some of the important communications—
i.e., some recording and recalling processes must be
invoked, and these processes become candidates for
augmentation.

If the complexity of the team’s problem relative to
human working capacity requires partitioning of the
problem into many parts—where each part is independ-
ently attacked, but where there is considerable interde-
pendence among the parts—the communication between
various people may well be too complex for their own
accurate recall and coordination without special aids.

Collaborating teams at ARC have been augmented by
development of a “Dialogue Support System (DSS),”
containing current and thoroughly used working records
of the group’s plans, designs, notes, etc. The central fea-
ture of this system is the ARC Journal, a specially man-
aged and serviced repository for files and messages.

The DSS involves a number of techniques for use by
distributed parties to collaborate effectively both using
general functions in the workshop and special functions
briefly described below and more fully in Reference 39.
Further aspects are described in the section on Workshop
Utility Service.

Document or message submission

The user can submit an NLS file, a part of a file, a file
prepared on another system in the ARPANET
(document). or text typed at submission time (message)
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to the Journal system. When submitted, a copy of the
document or message is transferred to a read-only file
whose permanent safekeeping is guaranteed by the Jour-
nal system. It is assigned a unique catalog number, and
automatically cataloged. Later, catalog indices based on
number, author, and “titleword out of context” are cre-
ated by another computer process.

Nonrecorded dialogue for quick messages or material
not likely to be referenced in the future is also permitted.

One can obtain catalog numbers ahead of time to inter-
link document citations for related documents that are
being prepared simultaneously. Issuing and controlling of
catalog numbers is performed by a Number System (an
automatic, crash-protected computer process).

At the time of submission, the user can contribute such
information as: title, distribution list, comments, key-
words, catalog-mumbers of -documents this mew one
supersedes (updates), and other information.

The distribution is specified as a list of unique identifi-
cation terms (abbreviated) for individuals or groups. The
latter option allows users to establish dialogue groups.
The system automatically “expands” the group identifi-
cation to generate the distribution list of the individuals
and groups that are its members. Special indices of items
belonging to subcollections (dialogue groups) can be pre-
pared to aid their members in keeping track of their dia-
logue. An extension of the mechanisms available for
group distribution could give a capability similar to one
described by Turoff.”

Entry of identification information initially into the
system, group expansion, querying to find a person’s or
group’s identification, and other functions are performed
by an Identification System.

Document distribution

Documents are distributed to a person in one, two, or
all of three of the following ways depending on informa-
tion kept by the Identification System.

(1) In hardcopy through the U.S. or corporation mail
to those not having online access or to those desir-
ing this mode,

(2) Online as citations (for documents) or actual text
(for messages) in a special file assigned to each
user.

(3} Through the ARPANET for printing or online
delivery at remote sites. This delivery is performed
using a standard Network wide protocol.

Document distribution is automated, with online deliv-
ery performed by a background computer process that
runs automatically at specified times. Printing and mail-
ing are performed by operator and clerical support. With
each such printed document, an address cover sheet is
automatically printed, so that the associated printout
pages only need to be folded in half, stapled, and stamped

before being dropped in the mail.

Document access

An effort has been made to make convenient both
online and offline access to Journal documents. The
master catalog number is the key to accessing documents.
Several strategically placed hardcopy master and access
collections (libraries) are maintained, containing all
Journal documents.

Automatic catalog-generation processes generate
author, number, and titleword indices, both online and in
hardcopy.®® The online versions of the indices can be
searched conveniently with standard NLS retrieval capa-
bilities.*"-*-4!

Online access to the full text of a document is accom-
plished by using the catalog number as a file name and
loading the file or moving to it by pointing at a citation
and asking the system to “jump”’ there as described ear-
lier.

SOFTWARE ENGINEERING AUGMENTATION

SYSTEM

Introduction

One of the important application areas in ARC’s work
is software engineering. The economics of large computer
systems, such as NLS, indicate that software develop-
ment and maintenance costs exceed hardware costs, and
that software costs are rising while hardware costs are
rapidly decreasing. The expected lifetime of most large
software systems exceeds that of any piece of computer
hardware. Large software systems are becoming increas-
ingly complex, difficult to continue evolving and main-
tain. Costs of additional enhancements made after initial
implementation generally exceed the initial cost over the
lifetime of the system. It is for these reasons that it is
important to develop a powerful application area to aid
software engineering. Areas of software engineering in
which the ARC workshop offers aids are described below.

Design and review collaboration

During design and review, the document creation, edit-
ing, and studying capabilities are used as well as the col-
laboration, described above.

Use of higher level system programming languages

Programming of NLS is performed in a higher level
ALGOL-like system programming language called L-10
developed at ARC. The L-10 language compiler takes its
input directly from standard NLS structured files. The
PDP-10 assembler also can obtain input from NLS files.

It is planned to extend this capability to other lan-
guages, for example, by providing an interface to the
BASIC system available in our machine for knowledge
workers wishing to perform more complex numerical
tasks.
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We are involved with developing a modular runtime-
linkable programming system (MPS), and with planning
a redesign of NLS to utilize MPS capabilities, both in
cooperation with the Xerox Palo Alto Research Center.
MPS will:

(1) Allow a workshop system organization that will
make it easier for many people to work on and
develop parts of the same complex system semi-
independently.

(2) Make it easier to allow pieces of the system to exist
on several processors.

(3) Allow individual users or groups of users to tailor
versions of the system to their special needs.

(4) Make it easier to move NLS to other computers
since MPS is written in itself.

(5) Speed system development because of MPS’s
improved system building language facilities, inte-
grated source-level debugging, measurement facili-
ties, the ability to construct new modules by com-
bining old ones, and to easily modify the system by
changing module interconnection.

System documentation and source-code creation

Source-code creation uses the standard NLS hierarchi-
cal file structures and allows documentation and other
programming conventions to be established that simplify
studying of source-code files.

Debugging

A form of source-level debugging is allowed through
development of several tools, of which the following are
key examples:

(1) A user program compilation and link loading facil-
ity that allows new or replacement programs to be
linked into the running system to create revised
versions for testing or other purposes.

(2) NLS-DDT, a DDT like debugging facility with a
command language more consistent with the rest of
NLS, and simplifies display of system variables
and data structures, and allows replacement of
system procedures by user supplied procedures.

(3) Use of several display windows so as to allow source
code in some windows and control of DDT in oth-
ers for the setting of breakpoints and display of
variables and data structures.

Measurement and analysis

A range of measurement tools has been developed for
analyzing system operation. These include the following:

(1) Capabilities for gathering and reporting statistics
on many operaling sysiem parameters such as utili-

zation of system components in various modes,
queue lengths, memory utilization, etc.

(2) The ability to sample the program counter for
intervals of a selectable area of the operating sys-
tem or any particular user subsystem to measure
time spent in the sampled areas;

(3) Trace and timing facilities to follow all procedure
calls during execution of a specified function.

(4) The ability to study page-faulting characteristics of
a subsystem to check on its memory use character-
istics.

(5) The ability to gather NLS command usage and
timing information.

(6) The ability to study user interaction on a task basis
from the point of view of the operating-system
scheduler.

(7) The ability to collect sample user sessions for later
playback to the system for simulated load, or for
analysis.

Maintenance

Maintenance programmers use the various functions
mentioned above. The Journal is used for reporting bugs;
NLS structured source code files simplify the study of
problem areas and the debugging tools permit easy modi-
fication and testing of the modifications.

THE ARPA NETWORK INFORMATION CENTER
(NIC)

Introduction

The NIC is presently a project embedded within
ARC.* Workshop support for the NIC is based on the
capabilities within the total ARC workshop system.

As useful as is the bootstrapping strategy mentioned
earlier, there are limits to the type of feedback it can
yield with only ARC as the user population. The NIC is
the first of what we expect will be many activities set up
to offer services to outside users. The goal is to provide a
useful service and to obtain feedback on the needs of a
wider class of knowledge workers. Exercised within the
NIC are also prototypes of information services expected
to be normal parts of the workshop.

The NIC is more than a classical information center, as
that term has come to be used, in that it provides a wider
range of services than just bibliographic and “library”
type services.

The NIC is an experiment in setting up and running a
general purpose information service for the ARPANET
community with both online and offline services. The
services offered and under development by the NIC have
as their initial basic objectives:

(1) To help people with problems find the resources
(people, systems, and information) available within
the network community that meet their needs
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(2) To help members of geographically distributed
groups collaborate with each other.

Following are the NIC services now provided to meet
the above goals in serving the present clientele:

Current online services

(1) Access to the typewriter version (TNLS) and dis-
play version (DNLS) of the Augmentation
Research Center’s Online System (NLS) for
communique creation, access, and linking between
users, and for experimental use for any other infor-
mation storage and manipulation purpose suitable
for NLS and useful to Network participants.

(2) Access to Journal, Number, and Identification
Systems. to allow. messages and documents to. be
transmitted between network participants.

(3) Access to a number of online information bases
through a special Locator file using NLS link
mechanisms and through a novice-oriented query
system.

Current offline services

(1) A Network Information Center Station set up at
each network site.

(2) Techniques for gathering, producing and maintain-
ing data bases such as bibliographic catalogs, direc-
tories of network participants, resource informa-
tion, and user guides.

(3) Support of Network dialogue existing in hardcopy
through duplication, distribution, and cataloging.

(4) General Network referral and handling of docu-
ment requests.

(5) Building of a collection of documents potentially
valuable to the Network Community. Initial con-
centration has been on obtaining documents of
possible value to the Network builders.

(6) As yet primitive selective document distribution to
Station Collections.

(7) Training in use of NIC services and facilities.

Conclusion

The Network Information Center is an example proto-
type of a new type of information service that has signifi-
cant future potential. Even though it is presently in an
experimental and developmental phase, it is providing
useful online and offline services to the ARPANET
community.

PLANS FOR A WORKSHOP UTILITY SERVICE
Motivation

It is now time for a next stage of application to be
established. We want to involve a wider group of people

so that we can begin to transfer the fruits of our past work
to them and with their assistance, to others, and so that
we can obtain feedback needed for further evolution from
wider application than is possible in our project alone.”
We want to find and support selected groups who are will-
ing to take extra trouble to be exploratory, but who:

(1) Are not necessarily oriented to being core-workshop
developers (they have their own work to do).

(2) Can see enough benefit from the system to be tried
and from the experience of trying it so that they
can justify the extra risk and expense of being
“early birds.”

(3) Can accept assurance that system reliability and
stability, and technical/application help will be
available to meet their conditions for risk and cost.

ARC is establishing a Workshop Utility Service, and
promoting the type of workshop service described above
as part of its long-term commitment to pursue the contin-
ued development of augmented knowledge workshops in a
pragmatic, evolutionary manner.

It is important to note that the last few years of work
have concentrated on the means for delivering support to
a distributed community, for providing teleconferencing
and other basic processes of collaborative dialogue, etc.
ARC has aimed consciously toward developing experience
and capabilities especially applicable to support remote
and distributed groups of exploratory users for this next
stage of wider-application bootstrapping.

One aspect of the service is that it will be an experi-
ment in harnessing the new environment of a modern
computer network to increase the feasibility of a wider
community of participants cooperating in the evolution of
an application system.

Characteristics of the planned service
The planned service offered will include:

(1) Availability of Workshop Utility computer service
to the user community from a PDP-10 TENEX
system operated by a commercial supplier.

(2) Providing training as appropriate in the use of
Display NLS (DNLS), Typewriter NLS (TNLS),
and Deferred Execution (DEX) software subsys-
tems.

(3) Providing technical assistance to a user organiza-
tion “workshop architect”” in the formulation,
development, and implementation of augmented
knowledge work procedures within selected offices
at the user organization.®

This assistance will include help in the develop-
ment of NLS use strategies suitable to the user
environments, procedures within the user organi-
zation for implementing these strategies, and
possible special-application NLS extensions (or
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simplifications) to handle the mechanics of par-
ticular user needs and methodologies.

(4) Providing “workshop architect” assistance to help
set up and assist selected geographically distrib-
uted user groups who share a special discipline or
mission orientation to utilize the workshop utility
services and to develop procedures, documentation,
and methodology for their purposes.

GENERAL DESCRIPTION OF SOME WORKSHOP
UTILITY SUBSYSTEMS

Introduction

Within a particular professional task area (mission- or
discipline-oriented) there are often groups who could be
benefited by using special workshop subsystems. These
subsystems may be specialized for their specific applica-
tion or research domain or for support of their more gen-
eral knowledge work. Our goal is to offer a workshop util-
ity service that contains a range of subsystems and asso-
ciated methodology particularly aimed at aiding general
knowledge work, and that also supports in a coordinated
way special application subsystems either by interfacing
to subsystems already existing, or by developing new
subsystems in selected areas.

In the descriptions to follow are a number of workshop
subsystem domains that are fundamental to a wide range
of knowledge work in which ARC already has extensive
developments or is committed to work. For each subsys-
tem we include some general comments as well as a brief
statement of current ARC capabilities in the area.

Document development, production, and control

Here a system is considered involving authors, editors,
supervisors, typists, distribution-control personnel, and
technical specialists. Their job is to develop documents,
through successive drafts, reviews, and revisions. Control
is needed along the way of bibliography, who has checked
what point, etc. Final drafts need checkoff, then produc-
tion. Finally distribution needs some sort of control. If it
is what we call a “functional document” such as a user
guide, then it needs to be kept up to date.®® There is a
further responsibility to keep track of who needs the
documents, who has what version, etc.

Within the ARC workshop, documents ranging from
initial drafts to final high-quality printed publications
can be quickly produced with a rich set of creation and
editing functions. All of ARC’s proposals, reports, designs,
letters, thinkpieces, user documentation, and other such
information are composed and produced using the work-
shop.

Documents in a proof or finished form can be produced
with a limited character set and control on a line printer
or typewriter, or publication-quality documents can be
produced on a photocomposer microfilm unit.

Presently there are on the order of two hundred spe-
cial directives that can be inserted in text to control
printing. These directives control such features as
typefont, pagination, margins, headers, footers, state-
ment spacing, typefont size and spacing, indenting,
numbering of various hierarchical levels, and many
other parameters useful for publication quality work.
Methodology to perform the creation, production,
and controlling functions described above has been
developed, although much work at this level is still
needed.

In terms of future goals, one would like to have display
terminals with a capability for the range of fonts availa-
ble on the photocomposer so that one could study page
layout and design interactively, showing the font to be
used, margins, justification, columnization, etc. on the
screen rather than having to rely on hardcopy proof-
sheets.

To prepare for such a capability, plans are being
made to move toward an integrated portrayal mecha-
nism for both online and hardcopy viewing.

Collaborative dialogue and teleconferencing

Effective capabilities have already been developed and
are in application, as discussed above. There is much yet
to do. The Dialogue Support System will grow to provide
the following additional general online aids:

Link-setup automation; back-link annunciators and
jumping; aids for the formation, manipulation, and study
of sets of arbitrary passages from among the dialogue
entries; and integration of cross-reference information
into hardcopy printouts. Interfaces will probably be made
to other teleconferencing capabilities that come into exist-
ence on the ARPANET.

It also will include people-system developments: con-
ventions and working procedures for using these aids
effectively in conducting collaborative dialogue among
various kinds of people, at various kinds of terminals, and
under various conditions; working methodology for teams
doing planning, design, implementation coordination; and
S0 on.

Meetings and conferences

Assemblies of people are not likely for a long time, if
ever, to be supplanted in total by technological aids.
Online conferences are held at ARC for local group meet-
ings and for meetings where some of the participants are
located across the country.

Use is made of a large-screen projection TV system to
provide a display image that many people in a conference
room can easily see. This is controlled locally or remotely
by participants in the meeting, giving access to the entire
recorded dialogue data base as needed during the meeting
and also providing the capability of recording real-time
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meeting notes and other data. The technique also allows
mixing of other video signals.

Management and organization

The capabilities offered in the workshop described in
this paper are used in project management and adminis-
tration.®® Numerical calculations can also be performed
for budget and other purposes, obtaining operands and
returning results to NLS files for further manipulation.

Where an organization has conventional project man-
agement operations, their workshop can include computer
aids for techniques such as PERT and CPM. We want to
support the interfacing that our Core Workshop can pro-
vide to special application systems for management proc-
esses.

" 'We 4are eéspecially initerested at this stage; inmanage-
ment of project teams—particularly, of application-sys-
tems development teams.

Handbook development

Capabilities described above are being extended toward
the coordinated handling of a very large and complex
body of documentation and its associated external refer-
ences. The goal is that a project or discipline of ever-
increasing size and complexity can be provided with a
service that enables the users to keep a single, coordi-
nated “superdocument” in their computer; that keeps up
to date and records the state of their affairs; and provides
a description of the state of the art in their special area.

Example contents would be glossaries, basic concept
structure, special analytic techniques, design principles,
actual design, and implementation records of all develop-
ments.

Research intelligence

The provisions within the Dialogue Support System for
cataloging and indexing internally generated items also
support the management for externally generated items,
bibliographies, contact reports, clippings, notes, etc. Here
the goal is to give a human organization (distributed or
local) an ever greater capability for integrating the many
input data concerning its external environment; process-
ing (filtering, transforming, integrating, etc.) the data so
that it can be handled on a par with internally generated
information in the organization’s establishing of plans
and goals; and adapting to external opportunities or
dangers.*®

Computer-based instruction

This is an important area to facilitate increasing the
skills of knowledge workers. ARC has as yet performed
little direct work in this area. We hope in the future to
work closely with those in the computer-based instruction

area to apply their techniques and systems in the work-
shop domain.

In training new and developing users in the use of the
system, we have begun using the system itself as a teach-
ing environment. This is done locally and with remote
users over the ARPANET.

Software engineering augmentation

A major special application area described above, that
has had considerable effort devoted to it, is support of
software engineers. The software-based tools of the work-
shop are designed and built using the tools previously
constructed. It has long been felt?*? that the greatest
“bootstrapping’’ leverage would be obtained by inten-
sively developing the augmented workshop for software
engineers; - and-we -hope—to-stimulate and suppert-mere—
activity in this area.

Knouwledge workshop analysis

Systematic analysis has begun of the workshop envi-
ronment at internal system levels, at user usage levels,
and at information-handling procedure and methodology
levels. The development of new analytic methodology and
tools is a part of this process. The analysis of application
systems, and especially of core-workshop systems, is a
very important capability to be developed. To provide a
special workshop subsystem that augments this sort of
analytic work is a natural strategic goal.

CONCLUSION—THE NEED FOR LONG-TERM
COMMITMENT

As work progresses day-to-day toward the long-term
goal of helping to make the truly augmented knowledge
workshop, and as communities of workshop users become
a reality, we at ARC frequently reflect on the magnitude
of the endeavor and its long-term nature.?

Progress is made in steps, with hundreds of short-
term tasks directed to strategically selected subgoals,
together forming a vector toward our higher-level
goals.

To continue on the vector has required a strong com-
mitment to the longer-range goals by the staff of ARC.

In addition, we see that many of the people and organi-
zations we hope to enlist in cooperative efforts will need a
similar commitment if they are to effectively aid the
process.

One of ARC’s tasks is to make the long-term objec-
tives of the workshop’s evolutionary deveiopment, the
potential value of such a system, and the strategy for
realizing that value clear enough to the collaborators
we seek, so that they will have a strong commitment
to invest resources with understanding and patience.
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One key for meeting this need will be to involve them
in serious use of the workshop as it develops. The
plans for the Workshop Utility are partly motivated
by this objective.

Although the present ARC workshop is far from
complete, it does have core capabilities that we feel
will greatly aid the next communities of users in their
perception of the value of the improved workshops of

the future.
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Graphics, problem solving and virtual systems

by R. M. DUNN

U.S. Army Electronics Command
Fort Monmouth, New Jersey

INTRODUCTION

Man naturally uses many languages when he thinks crea-
tively. Interactive computing mechanisms intended to
augment man’s higher faculties must provide for appro-
priate man-machine dialogues. The mechanisms must not
constrain man’s linguistic expressiveness for communica-
tion in the dialogues. To do so is to limit or retard the
creative activity.

This paper explores some basic concepts for problem
solving through interactive computing. Characteristics of
the interactive access process and over-all system con-
cepts are discussed. The evolution of a recognition autom-
aton is proposed based on current work toward a multi-
console, interactive graphics Design Terminal.

BASIC CONCEPTS

Certain notions about problem solving, virtual systems,
use-directed specification and interactive graphics are
central to the concluding proposal of this discussion.
These notions do not all reflect the current state-of-the-
art or even that of the very near future. However, they do
characterize the objectives and capabilities that should be
the goals of interactive computing mechanism research
development and use.

Problem solving

“Problem solving” is considered to be a process that
involves creative thinking and discovery. Problem solving
in a computer-based system is considered to be the activ-
ity of a human exploring a concept or system for which a
computer-based description has been or is being devised.
The human tries to perceive, alter and/or assess the
description, behavior, performance or other quality of the
concept or system. Very often the system or concept has
time-dependent characteristics which add to its complex-
ity.

The essence of the problem solving process is variation
and observation of the system under study. Alexander!
pointed out that human cognition functions to discover
and identify the “misfit variable” that is the cause of the
problem. To do so, the human needs to “toy” with the
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system so that he has a “feel” for its characteristics in
terms of personal judgments that may be quite subjec-
tive.

Intefactive coinputihg mecharisms in problem solving
situations should extend and amplify man’s basic abilities
for creative thinking and discovery. These mechanisms
should improve his ability to perceive previously unrecog-
nized characteristics. They should permit and support
man’s definition of new and meaningful symbols by
which he designates his perceptions. They should aid in
making any specification of values he chooses to assign to
his symbolized perceptions. And, interactive computing
mechanisms should aid in specifying and retaining any
combination of evaluated, symbolized perceptions. Of
particular interest are the combinations that man’s crea-
tive faculty perceives as being related so as to form a
higher order entity.

Virtual systems

A virtual system is considered to be an organized,
temporary collection of resources that is created for a
specific transient purpose.

Computer-based virtual systems combine processes,
processors, data storage mechanisms. Interactive, com-
puter-based virtual systems are considered to include
people as another type of resource. The specific purposes
that generate virtual systems are considered to be func-
tionally classifiable. As a result, one can associate a spe-
cific purpose with a type of virtual system in terms of the
function of the virtual system, or the process that carried
out its formation, or the structure of its physical or func-
tional organization or any combination of these attributes.

The resources that are available for use in a computer-
based virtual system may be centralized or widely dis-
tributed. Today’s trend points to the general case for the
future as being distributed resources interconnected by
communications networks. Network-oriented, computer-
based virtual systems are extensible by the simple expe-
dient of interconnecting more and/or different resources.
The problems associated with the design and control of
extensible distributed computing systems were investi-
gated as early as 1965 by Cave and Dunn,? and since then
by many others.3-45-6.7:8.9.10
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For problem solving processes that incorporate interac-
tive computing mechanisms, a particular type of com-
puter-based, network-oriented virtual system is of spe-
cific interest. This system type exhibits two hierarchical
characteristics. First, it allows and supports a hierarchy
of functional uses to which it may be put. And second, it
also embodies the capacity to interconnect and support
access to resources on a hierarchical basis.

Use-directed specification

Use-directed specification is considered to be a process
within a time-ordered activity. The subjects and history
of activity determine the semantics and pragmatics of the
specification.!! In this context, semantics is taken to be
the process of identifying relations between elements of a
specification and the intents that are to be signified by
those elements. Pragmatics is taken to be the process of
identifying the extent and manner by which the signified
intents can be of value to the time-ordered activity. For
activities that are not deterministic, the semantic and
pragmatic processes establish the operational context and
effect of use-directed specifications on a probablistic
basis.

Use-directed specification presumes an identified sys-
tem of pragmatic values based upon the goals of the activ-
ity. For many time-ordered activities, the goals are
unclear. Therefore, the associated system of pragmatic
values are poorly defined or may not exist at all at the
start of the activity. Such activities require rules of
thumb, strategies, methods or tricks that are used as
guides until the goals and pragmatic value system are
established. This heuristic'? approach requires a feedback
mechanism as part of the means by which the activity is
conducted. Feedback is used to provide information
which may lead to adjustments in the heuristics and clar-
ification of the activity’s goals and pragmatic value sys-
tem.

Adaptive, use-directed specification will be used to
characterize activities that operate in the manner just
described. Adaptive, use-directed specifications are of
particular interest for problem solving activities that
incorporate interactive mechanisms in the environment of
network-oriented, computer-based virtual systems with
hierarchical characteristics.

Interactive graphics

Interactive graphics is considered to be a computer-
based process with the human “in-the-loop.” “Interac-
tive” describes the relation between the human and the
computer-based process. The interactive relation is char-
acterized by a rate of response to human sertice requests
that is both useful and satisfying to the human. If the rate
is too fast, the substance of the response may not be use-
ful to the human. If the rate is too slow, the human may
not he satisfied. Dunn. ® Boehm,. et al..* and manv

others have explored detailed characteristics of interac-
tion in a graphics environment.

Interactive graphics is considered to have three princi-
pal purposes.” One purpose is to improve the quality and
rate of the input/output relation between people and
machines. Another purpose is to provide assistance to
people during detailed specification of some particular
abstract representation. The remaining purpose is to
provide assistance to people in visualizing and evaluating
some attribute, behavior or performance of a specified
abstract representation.

All three purposes, but especially the latter two, are of
particular interest for problem solving activities that
incorporate interactive computing mechanisms.

VIRTUAL SYSTEM ACCESS AND INTERACTIVE
GRAPHICS

Most interactive computing systems contain an inher-
ent assumption about certain knowledge required of the
users. In some systems, the assumption is open and
stated. In others, a less obvious, more troublesome situa-
tion may exist. Users of interactive computing systems
rarely can consider the system as a ‘“‘black box’ into
which parameter identification and values are entered
and from which problem solving results are received.
Most often the user is minimally required to explicitly
know: the “black box” function to be used; the identifica-
tion of the shared main computer that supports the
“black box” function; the way in which the function must
be requested; the way in which service on the supporting
computer must be requested; and the type of information
that must be provided to the function and the supporting
computer. Some interactive systems require even more of
the user.

The user of most of today’s interactive systems can
reasonably be required to have knowledge of the kind
referred to above. However, when one considers the types
of interactive systems that are likely to exist tomorrow,
these requirements are not merely unreasonable, they
may be impossible to be satisfied by typical users.

Consider the use of interactive computing mechanisms
by problem solving activities via an extensible, network-
oriented, distributed resource computing system. Over
time, such a system will undergo significant changes in the
number, type and pattern of dispersion of resources that
are inter-connected. For an individual user, as his efforts
progress or change, the combinations of resources appro-
priate to his purposes will also change. Any economic
implementation of such a system will not be free of peri-
ods or instances when “busy signals” are encountered in
response to requests for service. Therefore, it is likely that
most resources will have some level of redundancy in the
system.

The following conclusion must be drawn. If the human
user of interactive computing systems must continue to
satisfv today’s requirements in the environment of tomor-
row’s svstems, then the enormonus potential of these svs-
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tems will be lost to the user. It appears that this conclu-
sion can be obviated. If one analyzes interactive access
characteristics along with system functions and relations
in a certain way, it appears feasible t¢ reduce the burden
of system knowledge upon the user to a manageable level
in the environment of sophisticated interactive networks
of the future.

Interactive access performance characteristics

The basic motivation for interactive access is to allow
people to function as on-line controllers and participants
in the computing process. Consequently, we must con-
sider characteristics of interactive access mechanisms
from the view of both human and system performance.
Further, if we consider performance characteristics in the
context of a complex process such as “problem solving”
then, in a very loose sense, we have taken a “worst case”
approach.

The first thing to consider is that interaction is carried
on by means of a dialogue. This implies the existence of a
language known to both parties. The question is—what
should be the scope of reference of this language? Should
it be the mechanisms of computing? Or the functioning of
the interactive device? Or the topics which give rise to the
body of information pertinent to the problem to be solved?

Ideally, one should not need to be concerned with
computing mechanisms or interactive devices, but only
with information relevant to the problem. Practically, one
may want or need at least initial and, perhaps, refresher
information on mechanisms and devices. One can then
conclude that the principal concern of the language
should be the topics which relate to the problem. The
discourse should permit tutorial modes or inquiry dia-
logues on other issues only at the specific request of the
user. Raphael’s’® work and that of others have estab-
lished a solid foundation for the inquiry capability.

But, what of the problem solving topics? Should a sepa-
rate language exist for each one? Could that be feasible as
the domain of interactive problem solving expands?
Clearly, it is not even feasible with today’s primitive use.
Tomorrow’s uses will make this matter worse. It may be
equally unreasonable to expect that machine systems can
be provided with a human’s linguistic faculty for some
time. However, there are at least two feasible approxima-
tions.

The first is exemplified by MATHLAB." In this ef-
fort, the machine is being programmed with the rules of
analytical mathematics. Then the user interactively
writes a mathematical equation on a machine sensible
surface, the equation is solved analytically by the ma-
chine and the graph of the solution is displayed on an in-
teractive graphics device. The process also requires
that the machine is programmed to recognize hand-
written entries. It does this task imperfectly and has to
be corrected through re-entry of the symbols. The sensi-
ble input surface and the visible output surface to-
gether form the interactive mechanism of feedback until
man and machine have reached agreement. A related

example is the “turtle” language of Papert’s® Math-
land.

This first type of approximation provides a linguistic
mechanism for a bread topic of discourse and in addition,
provides an interactive feedback mechanism that allows
man and machine to work out misunderstandings in the
dialogue.

The second approximation is exemplified by the work
of Pendergraft.'t''* In this effort, the main concern
became the evolution of computer-based, linguistic sys-
tems of a certain kind—a semiotic system. These systems
are based on semiotics, the science of linguistic and other
signs and how they are used (first identified by Charles
Sanders Pierce and later elaborated upon by Morris ).

“A semoitic system can be precisely specified as a sys-
tem of acts rather than of things. Such a specification
describes what the system does, not what it is in a physi-
cal sense. The specification of acts consists of two basic
parts:

“(a) Potential acts. Individually, these may be thought
of as mechanical analogues of habits. Collectively, they
constitute a body of knowledge delimiting what the sys-
tem can do, what is within its competence.

“(b) Actual acts. These are individually the analogues
of behaviors realizing the potential acts or habits. They
relate to one another within a single taxonomic structure
that centers on a history of the success or failure of ele-
mentary senso-motor behaviors, or inferred projections of
that history. Together and in their relations, these actual
acts constitute a pattern of experience delimiting what the
system observes in the present, remembers of the past, or
anticipates for the future.

“Among the potential acts, there must be certain acts
which determine how the current pattern of experience is
to be “deduced” from the current body of knowledge. The
very realization of habits as behaviors depends upon this
logical part of the specification. Deductive behaviors real-
izing these logical habits themselves, may appear in the
experimental pattern being constructed; usually the sys-
tem will not be aware of its logical behaviors."?

An automatic classification system was defined and
constructed'' that provided the mechanism for the unify-
ing taxonomic structure. It was demonstrated to be capa-
ble of assessing probability of class membership for an
occurrence. It also was demonstrated to be capable of
detecting the need and carrying out effort to reclassify the
data base upon the occurrence of a “misfit.”

This second type of approximation provides a mecha-
nism for man and machine to interactively teach each
other what is relevant in their dialogue. It also provides a
capability for both partners to learn useful lessons for the
problem solving activity based on their actual history of
success and failure. This latter point is particularly rele-
vant for the situation when another user wishes to do
problem solving in an area in which the system has
already had some “‘experience.”

In summary, the interactive access mechanisms for
problem solving ought to have the following performance
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characteristics. The mechanisms should be oriented to
discourse on the subject of the problem. Recourse to sub-
sidiary dialogues, e.g. tutorial inquiry, etc., at the request
of the human, should be provided to facilitate the opera-
tion of the mechanism by the user. The mechanisms
should bear the burden of trying to deduce the system
implications of a human’s service request, rather than the
human needing to direct or set up the implementation of
service in response to the request. Use of the wide band-
width channel provided by interactive graphics for man-
machine communication at a rate comfortable to the
human is the concluding feature of this characterization.

Interactive graphics systems functions and relations

Figure 1 illustrates the relations that exist among the
five essential functions in any interactive graphics sys-
tem. The human output function presents images in a
form compatible with human viewing and cognition. The
human input function mechanizes requests for atten-
tion and provides a means for entry of position, notation or
transition data that will affect the graphics and other
processes. The storage function retains images or their
coded abstractions for subsequent processing. The appli-
cation function is the set of higher order, “black box”
processes that will utilize information inherent in images
as input data. Finally, the graphics function performs the
three types of sub-processes that are the heart of the
graphics process. One type of sub-process provides for
composition, construction or formation of images. The
second type of sub-process provides for manipulation or
transformation of images. The third type of sub-process
(attention handling) links the composition and/or manip-
ulation sub-processes to interaction, intervention or use
by higher order processes being performed either by the
application function or by the user. Notice that the rela-
tions between the graphics system functions are ones of
deata flow within an overall system.

We observe the fellowing. The data that flows from one
function of the svstem to another can always be envi-

sioned as having at least two distinct types of compo-
nents. One component type contains information about
variables and their values. The other component type
contains information about the identity and parameters
of the function that is to utilize the variable data.

Considered this way, inter-function data are messages
between elements of the graphics system. They convey
service requests for specified functions. Message struc-
tured service requests of a limited kind for computer
graphics has been considered in the environment of dis-
tributed resource, network-oriented systems.*

In order to successfully support interactive graphics
access in a network environment, careful distribution of
the graphics system functions must be accomplished
within the network facilities. And equally important, the
relationships between graphics system functions must be
preserved.

DESIGN TERMINAL

One approach for network-oriented, interactive graph-
ics is illustrated by a Design Terminal configuration®®
under development at the author’s installation. Some
limited experience with it in conjunction with network
access has been gained.”” The Design Terminal is basi-
cally a multi-console terminal with the ability to inde-
pendently and concurrently interconnect graphics con-
soles, graphics functions and network-based application
and storage functions.

Objectives

Two issues have motivated the development of the
Design Terminal. First, in certain types of installations,
there is considered to be a need to insure that interactive
facilities for problem solving and design specification are
functionally matched and economically operated with a
multi-source capability from hardware suppliers. This
issue involves concern for the relation between types of
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display mechanisms (e.g. refresh CRT’s, DVST’s, printer/
plotters, etc.), the types of graphics’ use and the proba-
bility of occurrence and volume need for each type of use.
Second, for an installation that requires many intelligent
terminals, there is the concern for the total system imple-
mentation and support costs.

The solution that is being pursued is a little farther
around the “wheel of reincarnation”® than other related
configurations. A general purpose mini-processor and a
special purpose display processor form the heart of a
terminal with remote access to many shared computers.
The general purpose mini-processor is being multi-pro-
grammed in a certain way to support concurrent, inde-
pendent graphics activities emanating from the terminal.
The main thrust is to expand the number of concurrently
active graphics consoles at the terminal so as to achieve a
satisfactory distribution of the total cost of the terminal
over each concurrently active console. Figure 2 illustrates
the test bed on which this effort is being conducted.

The Design Terminal configuration is concerned with
providing an interactive graphics terminal with the fol-
lowing capabilities: (a) in its simplest form, it is a single-
console intelligent terminal; (b) the local mini-processor
and special purpose processor facilities for providing the
graphics function are shared by many interactive graph-
ics consoles; (c¢) the graphics consoles currently active
may employ widely different display mechanisms; (d) a
majority of all the connected consoles can be concurrently
active; (e) the current use of each active console can
involve display of different images than those being gen-
erated for all other active consoles at the terminal; (f) the
terminal can concurrently obtain support for the graphics
system application and storage functions from more than
one shared main computer system; and (g) the current
use of each active console can involve a different applica-
tion on a different shared main computer than is involved
for all other active consoles at the terminal. The distribu-
tion of graphics system functions for the Design Terminal
configuration are illuustrated in Figure 3.
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Experience

Although the development of the Design Terminal is
still incomplete, our experience so far has provided
insight into the difficulties of problem solving on network-
based, virtual systems through interactive graphics.

The first point is not new. It is yet another confirma-
tion of something well known to the computing profession
and industry. Most users of computing, particularly in an
interactive environment, cannot afford to be bogged down
in the mechanics of the computer system. They certainly
don’t care about the subtle intricacies or enduring truths
and beauties of the system that turn on its builders and
masters. Therefore, the intricate knowledge about access
to and use of distributed resources must somehow be
built-in to the system.

The second point is also not completely unknown. The
telecommunications people have been considering alter-
natives for a long time. The efforts of Hambrock, et al.**
and Baron® are two of the most significant to our current
situation. In a large, dynamic and expanding network,
one cannot maintain deterministic directories of every
possible combination of resources and associated inter-
connection schemes that are being used or can be
expected to be used. The transmission facilities would be
jammed with up-date traffic and the resource processors
would be heavily burdened with directory maintenance.

For the user and the system builder, this point appears
to raise a paradox. The user doesn’t want to and can’t
manage to know everything about the network. And the
maintenance of directories within the network would
impose a severe utilization of scarce resources.

The approach of the ARPANET represents an interim
compromise for this problem, based upon Baran’s work
on distributed communication systems. However, the user
is still required to know a great deal about the use of each
resource in the network even though the communications
problem is taken care of for him. For each resource of
interest; (a) he must know that the resource exists; (b) he
must know where within the net it is located; and (c) he
must know the usage procedure required by the processor
of that resource. He may be required to know much more.
For users of interactive mechanisms with extreme accessi-
bility provided for by the Design Terminal type configu-
ration, this approach to locating and specifying essential
resources is especially troublesome.

The conclusion we draw toward the problem we pose is
that the resource directory function cannot be built into
either the resource processors or the interconnection facil-
ities of the network. We also conclude that attempts to
moderate search traffic loading in random techniques®
and relieve switching bottlenecks can be successful® pro-
vided the search criteria and routing mechanism are care-
fully defined.

There is one more point to be considered. It is raised by
the cost of computer software development and the grow-
ing diversity of available computing resources. We cannot
afford and shall not be able to afford explicit re-design of
resource linkages each time a new, useful combination is
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devised that provides additional higher level capability.
The interactive access mechanims to network-based vir-
tual systems must provide or be able to call upon a gener-
alized, dynamic linking function. This function will link
together distributed resource modules it has determined
to be available and to form the appropriate basis for sat-
isfying an interactive service request.

HIERARCHICAL ACCESS TO VIRTUAL
SYSTEMS VIA INTERACTIVE GRAPHICS

Cherry® has observed “that recognition, interpreted as
response according to habits, depends upon the past expe-
rience from which an individual acquires his particular
habits.” Although his interest was human communica-
tion, one should recall the earlier discussion on basic
concepts. In particular, consider Cherry’s observation in
the context of adaptive, use-directed specification and the
extensions and amplification of man’s basic abilities as a
result of problem solving through interactive computing
mechanisms. In this context, this observation provides a
significant suggestion toward possible answers to many
of the difficulties cited above.

Semiotic coupler function

In the linguistic environment, Pendergraft'' character-
ized a self-regulating system with goal-directed behavior
in terms useful to our purpose. A hierarchy of processes
was described. The perception process tries to recognize
input data in terms of familiar attributes. The symboliza-
tion process assigns identifiers to the recognized data. The
valuation process associates the assigned symbols to proc-
esses that effect the response of the svstem to input data.
It does so in terms of the system’s current knowledge of
pragmatic values that will satisfy its goal directed per-
formance.

For problem solving through interactive graphics access
to distributed resource networks, the goal would be for the
system to correctly determine and cause the interconnec-
tion of a virtual system necessary to satisfy each interac-
tive service request. Correctness would be a probablistic
measure that would improve with experience for a given
problem solving area.

The input data to the perception process would be the
image data and/or symbol string that specifies the inter-
active service request. The output of the perception proc-
ess would be the syntactic parsing of the service request
over the language of service requests. The perception
process also operates on a probablistic basis derived from
experience.

The input data to the symbolization process would be
the identification of processing functions that are
required to satisfy the service request. The output of the
symbolization process would be the identification of the
network’s known distributed resources that must be
assembled into a virtual system to carry out the process-
ing functions. Again, the performance of the symboliza-

tion process will improve as experience increases with
both the problem solving topic and the network resources.
In situations where processing functions are specified for
which network resources are unknown or unavailable, two
options exist. Either the symbolization process approxi-
mates the function in terms of known resources or the
network is searched.

The input data to the valuation process would be the
identification of resource modules that will be called upon
to satisfy the service request. The output of the valuation
process would be the identification of the processing
sequence and data flow relationships that must exist
amongst the activated resource modules. This valuation
process is extremely dependent on experience for
improved performance in a given problem solving area.

Adaptive classifier function

Each of the preceding processes depends upon feedback
from experience to improve performance. Pendergraft
suggests that the processes applied to stimulus informa-
tion should also be applied to response information.!

For us, this suggests that the user should interactively
‘“grade” the system’s performance. The system would then
apply the three preceding processes to the ‘‘grading”
information in order to adjust the probability assign-
ments to the estimates of relationship and to the classi-
fication structure for service requests vs. processing func-
tions. When “misfits” were identified and/or when the
probabilities computed for relationships dropped below
some threshold, the classification structure would be
recomputed. Pendergraft and Dale® originally demon-
strated the feasibility of this approach in the linguistic
environment using a technique based on Needham’s®
theory of clumps.

As new resources are added to the network, the process-
ing functions that they provide are entered into the classi-
fication structure with some initial (perhaps standard)
probability assignment for relations to all known types of
service requests. These probabilities are then revised
based upon the feedback from the user’s grading of the
system’s performance.

Use-directed specification function

The user is of pivotal importance toward specifying
service réquests and generating performance grades for
the system. Yet, as was indicated earlier, he must be
capable of the actions without being required to have
elaborate knowledge of the system’s internal content,
structure or mechanisms. It is in this area that interac-
tive graphics plays a vital role in expediting the problem
solving dialogue between man and machine.

Consider the simple concept of a “menu,” that is, a set
of alternatives displayed to the user for his selection. In a
complex problem solving area, the result of a user selec-
tion from one menu can lead Lo the display of a subordi
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nate menu for further specification of the task to be per-
formed. In effect, this process leads to a concept of the
dialogue as a selection process of the alternative paths in
trees of menus.

We claim that generalized sub-trees can be devised for
areas of problem solving methodology that can be para-
metrically instantiated to a given topic at run-time only
guided by previous menu selections during the current
session at the terminal. Furthermore, we claim that this
sub-tree concept can be devised so as to allow a given sub-
tree to be invoked from a variety of parent nodes in the
specification process. Work on the Design Terminal
includes an effort to implement this concept.

The specification process cannot be fully accommo-
dated by the mechanism of the parametric dialogue tree.
Procedures illustrated by the MATHLAB techniques, the
methods of Coons,*® the Space Form* system and more
conventional interactive graphics layout, drafting, and
curve plotting techniques will all be required in addi-
tion to alphanumeric data entry in order to complete the
specification. The point is that the semantics of these
specifications, in terms of the problem solving proc-
essing functions that are required, will have been directed
by the current use of the dialogue mechanism.

One set of choices that is always displayed or selectable
represents the user’s evaluation alternatives of the sys-
tem’s performance. Another optional set is one that places
the system in the role of a tutor, either for use of the sys-
tem or for the use of a processing function to which the
system provides access.

Another set of options should also be callable. In this
case, the user may want to access a specific processing
function. He may not know its name or the location of the
resources in the distributed system that support it. If he
does have specific identification, he may use it. If he
lacks an identifier, the user will generally know of some
attribute of the process. Therefore, he should be able to
enter a search mode in which he can construct the search
criteria for the known attribute in whatever terms that
the system supports.

The set of use-directed specifications that are achieved
in the above manner form the set of interactive service
requests that are input to the semiotic coupler function.
The selection of evaluation alternatives forms the feed-
back input to the adaptive classifier function.

A RECOGNITION AUTOMATON (RECOGNATON)

We suggest that distributed resource computing net-
works should contain nodes of at least two distinct types.
The first type is a service node at which the computing
resources of the network are connected. The second type
is the access node. It is to the access node that the user is
connected through his interactive graphics console.

We further suggest that the access node is the point in
the network which implements the functions necessary to
provide interactive hierarchical access to virtual systems
in the network. We call the implementation vehicle at the
access node a recognition automaton or Recognaton.

The Recognaton performs four principal functions.
Three of them have already been described: semiotic
coupling; adaptive classification; and use-directed specifi-
cation. The fourth function generates messages into the
distributed resource network. It uses the output data of
the valuation process of the semiotic coupling function.
These messages request assignment and activation of
network resources according to the processing sequence
and inter-process data flow requirements that were deter-
mined from the current status of the pragmatic value
system. The messages are the immediate cause for the
formation of the virtual system.

The functions of the Recognaton represent a significant
computational load at a rather sophisticated level. It is
unlikely that the cost to implement this computation
could be afforded for a single interactive graphics console.
Therefore, we conclude that multiple interactive graphics
consoles must be serviced by a given Recognaton. Figure
4 illustrates an access node with the Recognaton functions
based on the configuration of the Design Terminal that
was discussed earlier.

SUMMARY

This discussion began with a concern for an interactive
mechanism to facilitate man-machine dialogues oriented
to man’s creative thought processes. The intent was to
consider problem solving as a test-case, creative process
with practical implications. The activity of the mecha-
nism was taken to be to serve as a means for specification
of and hierarchical access to virtual systems formed in a
distributed resource computing network. A recognition
automaton, the Recognaton, has been proposed which
appears to serve the purpose and does not impose system
level conflicts. Implementation of the Recognaton
appears feasible as an extension of the Design Terminal
multi-console, interactive graphics configuration.
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Performance determination—The selection

of tools, if any

by THOMAS E. BELL

The Rand Corporation
Santa Monica, California

INTRODUCTION

As interest in computer performance analysis has grown,
the dedication of some analysts to a single tool and analy-
sis approach appears to have become stronger. In most
instances this affection probably comes from increased
familiarity and success with an approach combined with
a resulting lack of familiarity and success with other
approaches.

Other equally experienced analysts use a variety of
approaches and tools, and may give the appearance that
any tool can be used in any situation. Only a little experi-
ence is necessary, however, to conclude that personal
inspection, accounting data, hardware monitors, software
monitors, benchmarks, simulation models, and analytical
models are not equally cost effective for performing gen-
eral operations control, generating hypotheses for per-
formance improvement, testing performance improve-
ment hypotheses, changing equipment, sizing future sys-
tems, and designing hardware and/or software systems.
The analyst new to performance analysis may become
confused, discouraged, and, eventually disinterested in
the field as he attempts to start an effective effort. This
paper attempts to aid him by presenting an overview.
Tools are described; applications are listed; and impor-
tant considerations are reviewed for selecting a tool for a
specific application.

ALTERNATIVE TOOLS AND APPROACHES

An analyst’s approach to analyzing a system’s perform-
ance can, to a large extent, be described by the tools he
uses. For example, an analyst using simulation as his tool
performs an analysis based on abstracting important
characteristics, representing them correctly in a simula-
tion, checking the results of his abstractions, and per-
forming simulation experiments.* If he were analyzing
accounting data, his procedure would probably involve

*More complete procedural suggestions for pursuing a simulation
analysis can be found in Reference 1.
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listing conditioned data, generating tentative reports,
trying to employ them, and then revising the reports. The
following summaries indicate some of the important
analysis characteristics of simulation, accounting sys-
tems, and other available tools. Most of the technical
details are omitted because they are only marginally rele-
vant to this discussion.**

Personal inspection

Personal inspection can imply an uninspired glance
at the machine room. This sort of activity often leads to
beliefs about an installation based more on preconceived
notions than on reality. This “tool” usually is employed
in an “analysis” involving occasional glances at a ma-
chine room when the observer sees precisely what he
expected to see (whether it’s true or not, and often even in
the face of significant, contrary evidence). Since the
observer may only glance at the machine room for a few
minutes two or three times per day, his sample of the
day’s operation is very incomplete. This type of perform-
ance analysis, although common, is without redeeming
social value, and will not be considered further. Other
types of personal inspection are more valuable for per-
formance analysis.

Each time a piece of unit record equipment processes a
record, it emits a sound. The performance analyst can use
this sound to roughly estimate activity and judge the
occurrence of certain system-wide problems. For exam-
ple, a multiprogrammed system may be experiencing
severe disk contention in attempting to print spooled
records. Quite often, this problem manifests itself in
strongly synchronized printing from the several printers
on a large system. As the disk head moves from track to
track, first one then another printer operates. When one
printer completes output for its job, the other printer(s)
begins operating at a sharply increased rate.

** See References 2 and 3 for some details. Further material can be
found in References 4-7. A review of monitors available in 1970 ap-
pears in Reference 8.
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Multiple, rapidly spinning tapes and extremely active
disk heads can, in some environments, indicate severe
trouble. In other environments (where loads should be
causing this kind of behavior), they may indicate a
smoothly running system. Unfortunately, most installa-
tions fall somewhere between these two extremes, leaving
analysts—and managers—with an amorphous feeling of
unease.

The clues from personal inspection can be valuable, but
an experienced eye, accompanied with an equally experi-
enced ear, is often necessary to make sense from the raw
environment. Fortunately, alternatives are available.

Accounting systems

Accounting systems aggregate computer usage by task,
job, or other unit of user-directed work. The primary
objective of the accounting system’s designer is cost allo-
cation, which sometimes compromises the usefulness of
accounting system data, particularly where overhead is
involved.*

Although accounting data can be deceptive, analysts
can determine the actual data collection methods used
and perform analyses based on a good understanding of
potential errors.** Accounting data also have some dis-
tinct advantages for analyses. They are usually quite
complete because they are retained for historical pur-
poses, and changes in collection methods are well docu-
mented so that users can examine them for correctness.
The data are collected about the system’s work and or-
ganized in precisely the correct way to facilitate work-
load control—by requests for computer work (by job). In
addition to serving as input for reports about computer
component usage, accounting data (sometimes com-
bined with operations logs) can be used to determine the
use to which this activity was devoted. For example, a
user would seldom be using a simulation language if he
were involved in writing and running payroll programs,
and simulation execution could, prima facie, be consid-
ered of negligible value to the organization in this
circumstance.

For most analysts, accounting data have the advan-
tage of immediate availability, so analysis can begin
without delays for acquisition of a tool. However, imme-
diate data availability does not necessarily imply imme-
diate usability. Accounting systems are commonly very
extensive, so analysts are often overwhelmed with the
quantity of items collected and the number of inci-
dences of each item. All these data are usually placed in
poorly formatted records on a file along with irrelevant
or redundant data. The data conditioning problem may
therefore be a major hurdle for successful analysis.
Inadequate documentation of the details of data collec-

* Determining system overhead is not trivial, and one of the least triv-
ial problems is defining precisely what the term means. The appendix
suggests some of its constituents.

** See Reference 9 for some useful techniques to employ accounting
data.

tion by manufacturers and inadequacies in the data col-
lection (leading to variability in addition to significant
bias) can confuse any analysis results unless the analyst
is very careful.

Monitors

Performance monitors (whether implemented in hard-
ware or software) are designed to produce data revealing
the achieved performance of the system. These tools
produce data, not understanding, so the analyst does not
buy his way out of the need for thoughtful analysis when
he purchases one.

A hardware monitor obtains signals from a computer
system under study through high-impedance probes
attached directly to the computer’s circuitry. The signals
can usually be passed through logic patchboards to do
logical ANDs, ORs, and so on, enabling the analyst to
obtain signals when certain arbitrary, complex relation-
ships exist. The signals are then fed to counters or timers.
For example, an analyst with a hardware monitor could
determine (1) the portion of CPU time spent performing
supervisory functions while only one channel is active, or
(2) the number of times a channel becomes active during
a certain period. Because hardware monitors can sense
nearly any binary signal (within reason), they can be
used with a variety of operating systems, and even with
machines built by different manufacturers. This capabil-
ity to monitor any type of computer is usually not a criti-
cally important characteristic, because the analyst is
usually concerned with only one family of computers.
Some hardware monitors are discussed in References 2-5
and 10-14.

The hardware monitor’s primary disadvantage for
analysis is its great flexibility. Analysts with extensive
experience have learned the most important performance
possibilities to investigate, but even the notes distributed
by vendors of these monitors often prove inadequate for
aiding the novice. Cases of wasted monitoring sessions
and of monitors sitting in back rooms are seldom docu-
mented, but their validity is unquestionable. In some
cases even hardware monitor vendors, while attempting to
introduce clients to their monitors, have held a session on
an unfamiliar machine and failed miserably. (In most
cases, they have proved how valuable it is to have their
expertise on hand to aid in performing a complex analysis
with a minimum of fuss and bother.)

Software monitors consist of code residing in the
memory of the computer being monitored. This means
that they can have access to the tables that operating
systems maintain, and thereby collect data that are more
familiar to the typical performance analyst. Since he
usually was a programmer before he became an analyst,
descriptions of data collection are often more meaningful
to him than the descriptions of hardware monitor data
collection points. In addition, most software monitors are
designed to produce specific reports that the designers
found to he particularly meaningful for the hardware/
software comhination heing monitored This reduces the
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difficulty of analysis, particularly where the design of
application jobs is under consideration. Hardware moni-
tors, in systems where a program may reside in a variety
of places, do not typically produce reports on individual
problem performance that can be easily interpreted, but
software monitors typically can. For more material on
some software monitors see References 2, 3, 7, and 16-20.

The answer to every analyst’s problem is not a software
monitor. Software monitors require a non-negligible
amount of memory, often both central memory and rotat-
ing memory. In addition, some amount of I/0 and CPU
resources are necessary for operating the monitor. This all
amounts to a degradation in system performance, and at
the precise time when people are concerned with perform-
ance. As a result, the analyst needs to choose carefully
how much data he will collect and over how long a period.
This necessity adds to the analyst’s problems, and is
usually resolved in favor of short runs. This, in turn,
leads to data of questionable representativeness. Since
computer system loads usually change radically from
hour to hour, the analyst may be led to conclude that one
of his changes has resulted in significant changes in per-
formance, when the change actually resulted from differ-
ent loads over the short periods of monitoring.

The choice between hardware and software monitors
(and between the subtypes of monitors in each group—
sampling vs full time monitoring, separable vs integrated,
recording vs concurrent data reduction, and so on) is
largely dependent on situation-specific characteristics.
Application in the specific situation usually involves
monitoring the normal environment of the existing com-
puter. An alternative exists: a controlled, or semi-con-
trolled, environment can be created. This analysis
approach is closely related to the use of batch bench-
marks and artificial stimulation.

Benchmarks

A batch benchmark consists of a job, or series of jobs,
that are run to establish a “benchmark” of the system
performance. The benchmark run is usually assumed to
be typical of the normal environment but to have the
advantage of requiring a short time for execution. The
most common use of benchmarks is for equipment selec-
tion, but analysts often use benchmarks for determining
whether a change to their systems has improved the per-
formance of the benchmark job stream. The conclusion
about this performance (usually measured primarily by
the elapsed time for execution) is then assumed to be
directly related to the normal environment; an improve-
ment of 20 percent in the benchmark’s performance is
assumed to presage an improvement of 20 percent in the
real job stream’s performance. Benchmark work is
described in References 21 and 22.

For an on-line system this technique would not be
applicable because on-line jobs exist as loads on terminals
rather than as code submitted by programmers. The
analog to the benchmark job in a batch system is artifi-

cial stimulation in the on-line environment. Through
either hardware or software techniques, the computer
system is made to respond to pseudo-inputs and the
response is measured. A stimulator, implemented in soft-
ware, is described in Reference 23.

The obvious difficulty in using batch or on-line bench-
marking is relating the results to the real job stream. The
temptation is to assume that jobs presented by users are
“typical” and that the results will therefore be applicable
to reality, or that the on-line work described by the users
is actually what they do. Neither assumption is generally
true.

Running benchmarks or artificially stimulating a sys-
tem implies some kind of measurement during a period of
disrupting the system’s operation; then the results must
be related to reality. Performance modeling has the same
difficulty in relating its results to reality, but it does not
disrupt the system’s operation.

Performance modeling

Simulation modeling of computer system performance
has seemed an attractive technique to analysts for years,
and it has been used in response to this feeling. An ana-
lyst may design his own simulation using one of the gen-
eral or special purpose languages, or employ one of the
packaged simulators on the market.* In either case, he
can investigate a variety of alternative system configur-
ations without disrupting the real system, and then ex-
amine the results of the simulated operation in great
detail. Virtually all such simulations model the opera-
tion of the system through time, so time-related inter-
actions can be thoroughly investigated. Some simulation
experiences are described in References 29-35. Prob-
lems and objectives in simulating computers are de-
scribed in Reference 36.

Analytical models are usually steady-state oriented,
and therefore preclude time-related analysis. However,
they usually do provide mean and variance statistics for
analyses, so those analyses requiring steady-state solu-
tions (e.g., most equipment selections) could employ the
results of analytical modeling. Simulations, on the other
hand, must be run for extensive periods to determine the
same statistics, and analysts need to worry about prob-
lems like the degree to which an answer depends on a
stream of random numbers. Examples of analytical
modeling are given in References 37-42.

The problem that often proves overwhelming in using
either type of modeling is ensuring that the model (the
abstraction from reality) includes the most important
performance-determining characteristics and interactions
of the real system. Without this assurance, the model is
usually without value. Unfortunately for the analyst,
indication that a particular model was correct for another
installation is no real assurance that it is correct for his
installation. Unique performance determinants are

* For information about such languages and packages see References
24-28.
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usually found in operating system options, configuration
details, and workload characteristics. Therefore, a valida-
tion exercise of a simulative or analytical model is usually
a necessity if specific values of output parameters are to
be used in an analysis.

APPLICATIONS

The applications of computer performance analysis can
be categorized in a variety of ways, depending on the
objective of the categorization. In this paper the objective
is to aid in selecting an appropriate tool and analysis
approach. The following categorization will therefore be
adopted:

General control: Many installations are run by intui-
tion. Freely translated, this means that they are not
managed, but instead allowed to run without control.
All attempts at other applications of performance
analysis will be of marginal utility without control
based on adequate operating information.

Hypothesis generation: Computer system performance
improvement involves generating hypotheses, testing
hypotheses, implementing appropriate changes, and
testing the changes.* Useful information for hypothe-
sis generation often appears so difficult to specify
and obtain that random changes are attempted to
improve the system. The failure rate for performance
improvement efforts without explicit hypothesis
generation is extremely high.

Hypothesis testing: Given an interesting hypothesis, an
analyst’s first impulse is to assume its correctness
and begin changing the system. This usually results
in lots of changes and little improvement. Hypothesis
testing is imperative for consistently successful
computer system performance improvement.

Equipment change: The friendly vendor salesman says
his new super-belchfire system will solve all your
problems. The change is too large to be classified as a
performance improvement change. Should you take
his word for it and make him rich, or do your own
analysis? If you choose to do your own analysis,
you're in this category when you’re upgrading or
downgrading your system.

Sizing: Sizing a new system is a step more difficult than
equipment change because it often involves estimat-
ing workload and capacity in areas where extrapola-
tion of existing characteristics is impossible or unreli-
able. This situation does not occur so often as equip-
ment change, but usually involves much higher costs
of incorrect decisions. Typical situations are bringing
in a new computer for a conceptualized (but unreal-

* This is a summary of the steps suggested in Reference 43.

ized) workload, centralization of diverse workloads
previously run on special purpose hardware/software
systems, and decentralization of workload from a
previously large system to a series of smaller ones.
Vendor selection is included in this category since the
performance-related part of this problem can be
described as sizing and verifying (or merely verifying,
in the case of some procurements) the performance of
a certain size system.

System design: Whether dealing with hardware or soft-
ware, designers today usually are concerned with
performance. If the designers are in the application
area, the concern for performance often comes too
late for doing much about the mess. Early considera-
tion, however, can be expensive and unfruitful if
carried on without the proper approach.

The easiest situation would be for each of these cate-
gories to have exactly one tool appropriate for applica-
tion in analyses, but performance analysis has more di-
mensions than the single one of analysis objective. Two
of the most important ones are analyst experience and
type of system under consideration.

ANALYST EXPERIENCE

Some groups of analysts have considered single systems
(or a single model of system processing essentially the
same load at several sites) over a period of years. These
groups have often developed simulation and analytical
tools for one type of analysis, and then, with the tool
developed and preliminary analysis already performed,
apply them in other situations. Similarly, they may have
used accounting data for a situation where it is particu-
larly applicable, and then have applied it in an analysis
in which accounting data’s applicability is not obvious.
The ability of group members to apply a variety of famil-
iar tools freely in diverse situations is one of the reasons
for maintaining such groups.

Some other groups have developed analysis techniques
using a single tool to the extent that their members can
apply it to a much wider variety of situations than
expected because they have become particularly familiar
with its characteristics and the behavior of the systems
they are analyzing. As a result, such groups have proved
able to enter strange installations and produce valuable
results by immediately executing rather stylized analyses
to check for the presence of certain hypothesized prob-
lems.

The analyst with less than one or two years of perform-
ance analysis experience, however, cannot expect to
achieve the same results with these approaches. The
remainder of this paper will consider the situation of the
more typical analvst who is not yet extensively experi-
enced.
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TYPE OF SYSTEM

Software monitors are obviously commercially availa-
ble for IBM System 360 and 370 computers, but their
existence for other systems is often unrecognized. This
sometimes leads analysts to believe that personal inspec-
tion is the only alternative for any other system. In fact,
virtually every major computer system on the market
currently possesses an accounting system; hardware
monitors will work on any system (with the exception of
certain very high speed circuits); batch benchmarks can
be run on any system; and models can be constructed for
any system (and have been for most). In addition, soft-
ware monitors have been implemented for most computer
systems in the course of government-sponsored research.
The analyst’s problem is to discover any required,
obscure tools and to be able to use them without undue
emphasis on learning the tools’ characteristics.

The world of performance analysis tools is not so
smooth as may be implied above. First, benchmarks for
on-line systems are nearly impossible to obtain for any
system without assistance of the computer system vendor.
Second, many tools are simply no good; their implemen-
ters did a poor job, or they are poorly documented, or
they don’t do the thing needed for the problem at hand.
Third, searching out the appropriate tool may require
more time than the analyst can spend on the entire per-
formance analysis. Fourth, the analyst seldom has prior
knowledge of whether one of the first three problems will
arise, so he doesn’t know where to concentrate his search.
Fortunately, any of several different types of tools can be
used in most analyses, so the analyst can pick from sev-
eral possibilities rather than search for some single possi-
bility. The choice is largely dependent on the category of
analysis being performed.

CATEGORY OF ANALYSIS

Having presented some important analysis characteris-
tics of various tools, limited the discussion to apply only
to analysts without extensive experience, and begged the
question of tool availability, the important step remains
of matching analysis objective with type of tool and anal-
ysis. Suggestions about tool selection for each analysis
objective are given below; they should be interpreted in
the context of the discussion above.

General control

Accounting data generally have proven most appro-
priate for general control. They are organized correctly
for generating exception reports of system misuse by
programmers (incorrect specification of job options, vio-
lating resource limitations, and running jobs inappro-
priate for their assigned tasks). They also usually provide
valuable information about operations (number of

reloads of the operating system, number of reruns, inci-
dence of the system waiting for tape mounts, etc.). Fur-
ther, it provides data on the level of chargeable resource
utilization so that financial management can be
performed.

Accounting data’s primary disadvantage is the diffi-
culty of generating meaningful reports from it. It also
requires operators’ adherence to appropriate standards of
operation for maintaining reliable data. Further, it
usually can provide reports no sooner than the following
day. One alternative is to use a very inexpensive hard-
ware monitor with dynamic output for on-line operational
control and to use accounting data for normal reporting.
(Regular use of monitors, perhaps one use per month, can
also be adopted to supplement the accounting data.)

The most commonly used general control technique is
one of the least useful. Personal inspection is inadequate
for anything except the case of a manager continually on
the floor—and he needs an adequate system of reporting
to detect trends that are obscured by day-to-day prob-
lems. The techniques in this section may appear too
obvious to be important, but we find that ignoring them is
one of the most common causes of poor computer system
performance.

Hypothesis generation

Hypothesis generation for system performance
improvement is based on the free run of imagination over
partly structured data, combined with the application of
preliminary data analysis techniques. In general, the data
leading to the most obvious relationships prove best, so
personal inspection and partly reduced accounting data
often are most useful. Quick scans of system activity,
organized by job, often lead to hypotheses about user
activity. An analyst can often hypothesize operational
problems by visiting several other installations and trying
to explain the differences he observes.

Some installations have found that regular use of a
hardware or software monitor can lead to generating
hypotheses reliably. The technique is to plot data over
time and then attempt to explain all deviations from his-
torical trends. This approach may have the advantage of
hypothesis formulation based on the same data collection
device that is used for hypothesis testing.

Hypothesis testing

Nearly any tool can be used for testing performance
improvement hypotheses. The particular one chosen is
usually based on the type of hypothesis and the tool used
in generating the hypothesis. For example, hypotheses
about internal processing inefficiencies in jobs can
usually be best tested with software monitors designed to
collect data on application code. Hypotheses about the
allocation of resource use among programmers can
usually be tested most readily through the use of account-
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ing data. Simulative and analytical models can often be
used to perform tests about machine scheduling and the
trade-off of cost and performance, particularly when
hypothesis generation employed modeling.

After a hypothesis is tested, implementation of a
change is usually the next step. Following implementa-
tion, the resulting performance change requires examina-
tion to ensure that the expected change, and only that
change, has occurred. Although the same tool may be
used for both parts of hypothesis testing, employing a
different tool provides the advantage of forcing the ana-
lyst to view the system from a slightly different point of
view, and therefore reduces the chance of ignoring impor-
tant clues in seemingly familiar data. This advantage
must be traded-off against the advantage of easing detec-
tion of perturbations in the familiar data caused by
implemented changes.

A special note is in order for the use of benchmarks in
hypothesis testing. If a hypothesis involves a character-
istic of the basic system, a completely controlled test
often can test the hypothesis far more thoroughly than
other types of tests. For example, an analyst might
hypothesize that his operating system was unable to initi-
ate a high-priority job when an intermediate-priority job
had control of the CPU. While he could monitor the
normal system until the condition naturally occurred, a
simple test with the appropriate benchmark jobs could
readily test the hypothesis. We have found that artificial
stimulation of on-line systems can similarly test
hypotheses rapidly in both controlled tests and monitor-
ing normal operation. The temptation to examine only
‘“the normal system” should be resisted unless it proves to
be the most appropriate testing technique.

Equipment change

Equipment change might involve upgrading the sys-
tem’s CPU, changing from slow disks to faster ones, or
adding a terminal system. All these changes might be
considered merely major tuning changes, but they involve
enough financial risk that more analysis is devoted to
them than normal system performance improvement
efforts. In addition, the analyst has a very stylized type of
hypothesis: how much performance change results from
the hardware change? These special characteristics of
equipment change lead to increased use of benchmarks
and simulation.

When the alternative configuration exists at another
installation (usually a vendor’s facility), analysts can
generate a series of benchmarks to determine how well
the alternative performs in comparison with the existing
system. Recently, synthetic benchmarks have come to be
used more extensively in this process, particularly in test
designs which examine particular system characteristics,
or which include carefully monitoring normal system uti-
lization to improve the meaningfulness of the bench-
marks.

In other ecases there is no svstem available for running
the benchmarks. Simulation is often emploved in this

environment. The most important problem in this type of
analysis is ensuring the validity of the workload descrip-
tion on the alternative system and the validity of the
alternative’s processing characteristics. Unvalidated
simulations may be the only reasonable alternative, but
the risk of employing them is usually high.

Sizing

The technique used most commonly today in sizing
computers is listening to vendor representatives and then
deciding how much to discount their claims. This situa-
tion is partly the result of the difficulties involved in
using the alternatives—benchmarking and modeling.
Although analytical modeling is conceptually useful, its
use in sizing operations has been minimal because its
absolute accuracy is suspect. Simulative modeling
appears less suspect because the models are closer to
commonly-used descriptions of computer systems. The
sensitivity of simulation models to changes in parameters
can often be verified, at least qualitatively, so analysts
can gain some degree of faith in their correctness.

All the problems of using benchmarking in equipment
change analyses are present when benchmarking is used
in sizing analyses. In addition, the relationship of bench-
marks to workloads that will appear on a future system is
especially difficult to determine. A synthetic benchmark
job might be quite adequate for representing workload
meaningfully on a modification of the existing system,
but its characteristics might be very wrong on a com-
pletely different system. (This same problem may be true
for simulations, but a validated simulation should facili-
tate correct workload descriptions.)

Design

Tool selection in design must be divided into two parts
—selection in the early design phase and selection in the
implementation phase. In the earlier phase, performance
analysis must be based on modeling because, without any
implemented system, real data cannot be collected. The
later phase might, therefore, seem particularly suited to
the data collection approaches. In fact, modeling appears
to be a good technique to employ in concert with moni-
tored data in order to compare projections with realized
performance. Collecting data without using modeling may
decrease management control over development and
decrease the ease of data interpretation.

Design efforts can begin by using modeling exclusively,
and then integrate monitoring into the collection of tools
as their use becomes feasible.

FINAL COMMENT

Computer performance analysis tools and approaches
are in a period of rapid development, so the appropriate-
ness of their application in various situations can be
expected to change. In addition. individual analysts often
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find that an unusual application of tools proves the best
match to their particular abilities and problems. The
suggestions above should therefore not be interpreted as
proclamations of the best way to do performance analy-
sis, but as general indications of potentially useful
directions.

Inadequate understanding of computer system per-
formance currently precludes quantifying problems
across large numbers of systems. Each analyst must feel
his way to a solution for each problem with only helpful
hints for guidance. If improved understanding is devel-
oped, the artistic procedure discussed in this paper may
evolve into a discipline in which analysts have the assur-
ance they are using the correct approach to arrive at the
correct answer.
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APPENDIX—COMPUTER OVERHEAD

Accountancy requires that computer overhead costs
be borne by users who are charged directly for their
demands on the system. Data collection systems tend to
include this requirement as a basic assumption under-
lying their structures. The resulting aggregation ob-
scures the type of overhead most prominent in a system,
the resources heavily used by overhead activities, and
the portion of total system capability devoted to over-
head activities. System analysis requires these data;
they need definition and should be available for per-
formance analysis.

From the viewpoint of performance analysis, at least
five components of overhead can be identified in most
multiprogramming systems. These are:

1. 170 handling

2. User resource request handling

3. System handling of spooled I/ 0

4. Job or sub-job (e.g., job step or activity) initiation/

termination

5. System operation (including task switching, swap-

ping, maintaining system files, etc.)

1/0 handling may require large amounts of time, but
this is largely controllable by the individual user. Item
one, therefore, may not be a candidate for inclusion in a
definition of overhead in many analyses.

User resource request handling (at least at the time of
job or sub-job initiation) is similarly controllable by the
users except for required system-required resources (such
as system files). Item two might be included in definitions
more often than item one, particularly since item two is

often influenced strongly by installation-specified prac-
tices (such as setting the number of required files).

System handling of spooled I/0 is under the control of
users to the extent that they do initial and final I;0, but
the alternatives open to installation managements for
influencing its efficiency are often very great. For exam-
ple, changing blocking sizes or using an efficient spooling
system (such as HASP) can have gross effects on the
amount of resources consumed in the process. Installation
management’s control over this is so high that item three
is often included in a definition of overhead.

Initiation and termination appear to consume far more
resources than usually assumed. User-specified options
influence the amount of resource usage, but installation-
chosen options and installation-written code can impact
usage to a large degree. The choice of specific operating
system, order of searching files for stored programs, lay-
out of system files, and options in the operating system
can change the resources used to such an extent that item
four should be included in overhead in nearly all cases.

System operation is always included as a part of over-
head. The difficulty of separating this element of over-
head from all the rest is very difficult, so analyses usually
assume that it is included as part of one of the other
elements. One technique for quantifying its magnitude
is to decide on the parts of code whose execution repre-
sent it and then to measure the size of these elements.
The same parts of code can be monitored with a hardware
monitor to determine the amount of processor time and
1/0 requests that arise from execution of the code. The
sizes of system files are usually not difficult to obtain for
determining the amount of rotating memory used by this
type of overhead. This technique, however, will nearly
always underestimate that amount of overhead since
pieces of overhead are so scattered through the system.

Ideally, each of the types of overhead would be identi-
fied and measured so that installations could control the
amount of each resource that is lost to it. If the resource
loss to overhead were known for typical systems, each of
the applications of performance analysis would be eased.

Computing societies—Resource or
hobby?

by ANTHONY RALSTON

State University of New York
Buffalo, New York

ABSTRACT

The fodder for a technical society is people but people
can nevertheless use as well as be used by the society.
Such use can be passive (e.g., publishing articles in the
society’s journals) or active through direct participation
in the professional activities or administration of the
society. As in the use of all computing resources. there is a
potential for both profit and loss; these will be examined,
in part at least, seriously.
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The special libraries association today

by E. A. STRABLE

Special Libraries Association
New York, New York

ABSTRACT

Special librarians are part of the larger library commu-
nity but can be differentiated from other groups of librar-
ians (school, public, academic) by where they practice
their profession, by the groups with whom they work, and
most importantly, by their goals and objectives. The
major objective, the utilization of knowledge for practical
ends, brings special librarianship thoroughly into infor-
mation processing in some unusual and unique ways. The
Special Libraries Association is the largest society to
which special librarians belong. The Association, like its
members, is also involved in a number of activities which
impinge directly upon, and affect, the role of information
processing in the U.S.

Copyright problems in information
processing

by B. H. WEIL

Esso Research and Engineering Company
Linden, New Jersey

ABSTRACT

Present copyright laws were developed largely to pro-
tect “authors” against large-scale piracy of books, arti-
cles, motion pictures, plays, music, and the like. These
laws and related judicial decisions have in recent years
raised serious questions as to the legality of such modern
information processing as the photocopying, facsimile
transmission, microfilming, and computer input and
manipulation of copyrighted texts and data. Congress has
so far failed to clarify these matters, except for sound
recordings. It has proposed to have them studied by a
National Commission, but it has repeatedly refused to
establish this without aiso passing revisions chiefly deal-
ing with cable-TV. Emphasis will be placed in this talk on
consequences for libraries, library networks, and other
information processors, and on recent legislative develop-
ments.

Standards for library information
processing

by LOGAN C. COWGILL

Water Resources Scientific Information Center
Washington, D.C.

and
DAVID L. WEISBROD

Yale University Library
New Haven, Connecticut

ABSTRACT

Technical standards will be described in terms of their
intent, their variety (national, international, etc.), their
enumeration, and their development process. Their
importance will be evaluated in terms of their present
and future usefulness and impact.
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A network for computer users

by BRUCE K. ALCORN

Western Institute for Science and Technology
Durham, North Carolina

ABSTRACT

Computer networks are an accepted fact in the world of
computing, and have been for some time. Not so well
accepted, however, is the definition of a computer net-
work. Some claim that to be a network the communica-
tions system must connect a group of computers as
opposed to a network of terminals communicating with
one computer. Still others hold that both are examples of
computer networks; the first being a ring network and the
latter a star network.

Within education, computer networks of many descrip-
tions exist. Most such activities have dealt with the insti-
tutions of higher education, but there are some notable
exceptions. These networks are operated by universities,
independent non-profit corporations, branches of state
governments, and private industry. Some are time-shar-
ing systems, some operate in the remote batch mode, and
others offer both types of service. Most of the computing
done through these networks has been for instructional
purposes; however, a great many research problems are
processed with administrative applications last in amount
of activity, although increasing.

During 1968 the National Science Foundation initiated
a number of projects which gave a great impetus to
computer networks, mainly among colleges and universi-
ties. This effort continues today in a different form
through the Expanded Research Program Relative to a
National Science Computer Network of the NSF.

Currently the National Institute of Education is sup-
porting the development of the Nationwide Educational
Computer Service, a network designed to help colleges
and school systems meet their computing needs at a
minimum of cost. This network will consist of a large
scale computer serving a series of intelligent terminals in
institutions in various parts of the United States. The
system is configured in such a way so as to assist the
student, faculty, and administrator at a cost effective
rate. The factors involved in producing this saving
include the particular hardware and software at the cen-
tral site and at the terminal location, the mode of opera-
tion and the effective use of existing tele-communication
facilities.

Uses of the computer in large school
districts

by THOMAS J. McCONNELL, JR.

Director, Atlanta Public Schools
Atlanta, Georgia

ABSTRACT

In this age of accountability in education it is apparent
that the most economical and efficient systems conceiva-
ble must be made available to the administrator. This
fact is true at all levels of management from the class-
room to the superintendent.

Most large school districts could not perform all of the
tasks required of them if they had to operate in a manual
mode. This fact is certainly not unique to school districts
but is a common problem of our dynamic society.

The administrative use of the computer in most school
districts came about as a result of a need for more effi-
cient and faster methods of performing accounting func-
tions. After their first introduction they generally just
“growed” as Topsy would say. Most large school districts
today will have a rather sophisticated set of hardware and
software supported by a very fine staff of professionals.

With the advent of tighter budget control and with most
educators today clamoring for some form of “program
budgeting” the computer is an even more vital ingredient
that is required if we are to provide for quality education.

Additionally, it is no longer sufficient to provide auto-
mation to the administrative functions in a school dis-
trict. The computer is fast becoming an essential part of
our instructional program. This instructional role of the
computer is coming into being in the form of Computer
Managed Instruction (CMI) as well as Computer Assisted
Instruction (CAI).

Although development of uses for the computer for
instructional purposes has only been under way for a few
short years, we have witnessed some very dramatic
results. Most educators are in agreement as to the effec-
tiveness of the computer for instructional purposes; the
fact that it has not expanded as many had hoped and
assumed is a function of finances rather than a short-
coming of the implementation.

Education can expect to have some very rewarding
experiences in its relationship with the computer and the
computer professional in the seventies. This fact will
come about as a result of developments in computer tech-
nology both in hardware and in software. Also, the reduc-
tion in the cost factor should be of such magnitude that
computer services will be available to more school dis-
tricts and at a cost that they can afford.

With proper organization and cooperation the computer
can begin to realize its full potential in bringing about
efficient, effective education in its many aspects.
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Training of teachers in computer
usage

by DUANE E. RICHARDSON

Northwest Regional Educational Laboratory
Portland, Oregon

ABSTRACT

I plan to discuss the need in teacher education for
training and experience in the selection of instructional
materials for use on computers and the teacher’s role in
helping to identify criteria for developing additional
instructional materials.

Specific discussion will be directed at describing a

course which will guide teachers through the development
of a set of criteria by which to judge the value of such
instructional applications and will demonstrate how the
criteria can be applied. The course will allow the teacher
to practice application of the criteria to sample instruc-
tional uses from his particular interest.

How schools can use consultants

by DONALD R. THOMAS

ARIES Corporation
Minneapolis, Minnesota

ABSTRACT

Data processing consulting firms today offer a variety
of professional services to schools. Users of these services,
however, often differ in their opinions of the value of
these services.

The point of this presentation is simply that unsatisfac-
tory consultant relationships can have their source not
only in the consultant himself, but also in the school’s use
of the consultant’s services. In other words, use of consul-
tive services implies a two-way relationship which is sub-
ject to misuse and abuse by either party.

The experience throughout the educational computer
area demonstrates that time and effort devoted to sound
use of consultants will pay substantial dividends. That
factor should be a major one in the planned use of a
consultant.

An experienced consultant will bring expertise to a
study based upon his experiences with other clients. This
should result in client confidence and in assuring that the
unique needs of the clients will be identified and
addressed.






NAPSS-like systems—Problems and prospects

by JOHN R. RICE

Purdue University
West Lafayette, Indiana,

NAPSS-NUMERICAL ANALYSIS PROBLEM
SOLVING SYSTEM

This paper arises from the development of NAPSS
and discusses the problems solved and still to be solved in
this area. The original paper contains two phrases which
define the objectives of NAPSS {and NAPSS-like sys-
tems) in general, yet reasonably precise, terms:

“Qur aim is to make the computer behave as if it
had some of the knowledge, ability and insight of
a professional numerical analyst.”

“describe relatively complex problems in a sim-
ple mathematical language—including integra-
tion, differentiation, summation, matrix opera-
tions, algebraic and differential equations, poly-
nomial and other approximations as part of the
basic language.”

A pilot system has been completed at Purdue and runs on
a CDC 6500 with an Imlac graphics console. It does not
contain all the features implied by these objectives, but it
has (a) shown that such a system is feasible and (b)
identified the difficult problem areas and provided
insight for the design of a successful production system.
The purpose of this paper is to identify the eight princi-
pal problem areas, discuss four of them very briefly and
the other four in somewhat more detail. Several of these
problem areas are specific to NAPSS-like systems, but
others (including the two most difficult) are shared with
a wide variety of software systems of a similar level and
nature.

The presentation here does not depend on a detailed
knowledge of NAPSS, but specific details are given in the
papers listed in the references.! %4367

PROBLEM AREAS
The eight principal problem areas are listed below:

. Language Design and Processing

. Simulating Human Analysis (Artificial Intelligence)
. Internal System Organization

. User Interface

. Numerical Analysis Polyalgorithms

Symbolic Problem Analysis

. Operating System Interface

. Portability
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The first of these is the best understood and least diffi-
cult at the present time. The next four are very sub-
stantial problem areas, but the pilot NAPSS system
shows that one can obtain acceptable performance and
results. Symbolic problem analysis (except for things
like symbolic differentation, is not made in the pilot
NAPSS system and, in a numerical analysis context,
this is an undeveloped area. The interface with the oper-
ating system is very complex in the pilot system and is
an area of unsolved problems. Basically the pilot
NAPSS system needs more resources than the operating
system (which is indifferent to NAPSS) provides for one
user. The final problem area, portability is as difficult
for NAPSS as for other complex software systems.

All of these problem areas except 5 and 6 are present
in any problem solving system with a level of perform-
ance and scope similar to NAPSS. Examples include
statistical systems (BMD,SPSS,0SIRIS); linear pro-
gramming and optimization packages (LP90,0PTIMA);
engineering problem solving systems (COGO,NAS-
TRAN,ICES) and so forth. There is considerabie vari-
ation in the present characteristics of these systems, but
they have as ultimate goal to provide a very high level
system involving many built-in problem solving proce-
dures of a substantial nature.

Only a brief discussion of the first four problem areas
is presented here because they are either less difficult or
already widely discussed in the literature. The next two
problem areas are specific to NAPSS-like systems and
several pertinent points are discussed which have arisen
from an analysis of the pilot NAPSS system. The final
two are widely discussed in the literature but still very
difficult for a NAPSS-like system. Some alternatives
are presented, but the best (or even a good) one is still to
be determined.

LANGUAGE DESIGN AND PROCESSING

Ordinary mathematics is the language of NAPSS
modulo the requirement of a linear notation. While this
linear notation does lead to some unfamiliar expressions,
it is not an important constraint. NAPSS has also
included a number of conventions from mathematics that
are not normally found in programming languages
(e.g., I=2,4, - - -, N). Incremental compilation is used to
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obtain an internal text which is then executed incremen-
tally. This approach is, of course, due to the interactive
nature of NAPSS.

The creation of this language processor was a very
substantial task. The primary difficulties are associated
with the fact that all variables are dynamic in type and
structure, function variables are data structures (not
program structures) and that many operators are quite
large and complex due in part to the wide variety of oper-
and types. For example, several integrals may appear in
one assignment statement and each of these may lead to
interaction with the user. The current NAPSS language
processor is relatively slow, partly because of the nature
of the language, partly because of the incremental and
interactive approach and partly because it is the first one.
However, it performs well enough to show that it is not a
major barrier to obtaining an acceptable production sys-
tem.

SIMULATING HUMAN ANALYSIS (ARTIFICIAL
INTELLIGENCE)

The original objectives include a large component of
automatic problem solving in the NAPSS system. This
component lies primarily in the polyalgorithms and
manifests itself in two ways. First, there are facilities
to analyze the problem at hand and to select an ap-
propriate numerical analysis technique. This analysis
continues during the computation and specific techniques
may be changed several times during the execution of a
polyalgorithm. The second manifestation is in incorporat-
ing common sense into the polyalgorithms. This is both
difficult and time consuming as it requires a large num-
ber of logical decisions and the collection and retention of
a large amount of information about the history of the
polyalgorithm’s execution. The automation of problem
solving in NAPSS-like systems leads inevitably to large
codes for the numerical analysis procedures. A routine
using the secant method may take a few dozen Fortran
statements, but a robust, flexible and convenient nonlin-
ear equation polyalgorithm requires many hundreds of
statements

INTERNAL SYSTEM ORGANIZATION

NAPSS and NAPSS-like systems are inherently large.
The compiler, interpreter, command processor and super-
visor are all substantial programs. A polyalgorithm for
one operator like integration or solution of nonlinear
equations can easily run to 1000 lines of Fortran code.
Data structures created during executions may also be
quite large (e.g., matrices and arrays of functions). The
organization of this system naturally depends on the
hardware and operating system environment. The current
pilot system is organized with three levels of overlays with
a paging system and runs in a memory of about 16,000

words (CDC 6500 words have ten characters or 60 bits or
multiple instructions). Many other configurations are
feasible and this area does not, in itself, pose a major
barrier to an acceptable production system. Currently
NAPSS performs quite well provided one ignores operat-
ing system influences, i.e., when NAPSS is the only pro-
gram running. However, it is unrealistic to assume that
NAPSS-like systems have large computers dedicated to
them or that the operating system gives them preferential
treatment (compared to other interactive systems in a
multiprogramming environment). Thus the internal sys-
tem organization is determined by outside factors, pri-
marily by the requirements of the interface with the
operating system.

USER INTERFACE

A key objective of NAPSS-like systems is to provide
natural and convenient operation. This means that sub-
stantial investment must be made in good diagnostic
messages, editing facilities, console, and library and file
storage facilities. These requirements for a NAPSS-like
system are similar to those of a variety of systems. The
pilot NAPSS system does not have all these facilities
adequately developed and the primary effort was on edit-
ing, an operating system might provide many of these
facilities in some cases.

A more novel requirement here is the need for access to
a lower level language like Fortran. Note that applications
of NAPSS-like systems can easily lead to very substantial
computations. The intent is for these computations to be
done by the polyalgorithms where considerable attention
is paid to achieving efficiency. Inevitably there will be
problems where these polyalgorithms are either inapplic-
able or ineffective. Detailed numerical analysis proce-
dures (e.g., Gauss elimination) are very inefficient if
directly programmed in NAPSS and thus some outlet to a
language with more efficient execution is needed. In such
a situation, NAPSS is a problem definition and manage-
ment system for a user provided numerical analysis pro-
cedure.

There are several limits on this possibility due to differ-
ences in data structures and other internal features. An
analysis of the pilot NAPSS system indicates, however,
that a useful form of this facility can be provided with a
reasonable effort.

NUMERICAL ANALYSIS

A NAPSS-like system requires at least ten substantial
numerical analysis procedures:

. Integration

Differentiation

Summation of infinite series

Solution of linear systems (and related items like
matrix inverses and determinants)

oo
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5. Matrix eigenvalues
6. Interpolation
7. Least squares approximation (of various types)
8. Solution of nonlinear equations
9. Polynomial zeros
10. Solution of ordinary differential equations

The objective is to automate these numerical analysis
procedures so that a user can have statements like:

ANS« [F(X), (X—A TO B)

EQ2: X 12*COS(X)—F(X)/(1+X)=A*B/2
G(X)=F(X—ANS)/(1+X)
SOLVE EQ2 FOR X

EQ3: Y'"(T)—COS(TYY'(T)+TY(T)=G(T—X)—AXNS
SOLVE EQ3 FOR_Y(T)_OXN (0,2) WITH Y (0)<-0,
Y(2)«3

The user is to have confidence that either these proce-
dures are carried out accurately or that an error message
is produced.

These procedures grow rapidly in size as one perfects
the polyalgorithms. One polyalgorithm developed for the
current NAPSS system is about 2500 Fortran statements
(including comments). This large size does not come from
the numerical analysis which constitutes perhaps 20
percent of the program. It comes from simulation of
common sense (which requires numerous logical and
associated pieces of information), the extensive communi-
cation facilities for interaction with the user and various
procedures for searching, checking accuracy and so forth,
aimed at providing robustness and reliability. A further
source of complexity is the fact that all of these polyalgo-
rithms must automatically interface. Thus we must be
able to interpolate or integrate a function created by the
differential equation solver as a tabulated function (or
table valued function), one of the function types provided
in NAPSS. Since this output is not the most convenient
(or even reasonable) input to an integration polyalgo-
rithm, one must make a special provision for this inter-
face. For example in this case NAPSS could have a com-
pletely seperate polyalgorithm for integrating table val-
ued functions or it could use a local interpolation scheme
to obtain values for the usual polyalgorithm. The latter
approach is taken by the pilot NAPSS system.

In addition to numerical analysis procedures, NAPSS
currently has a symbolic differentiation procedure and
numerical differentiation is only used as a back-up for
those functions which cannot be differentiated symboli-
cally (e.g., the gamma function). One may use Leibniz
rules for differentiating integrals and piecewise symboli-
cally differentiable functions present may be handled
symbolically, so the numerical back-up procedure is infre-
quently used. It is noted below that future versions of
NAPSS should have more function types and that there
should be considerably more symbolic analysis of the
program. If these features are added, then a number of

additional symbolic procedures must also be added
including at least a reasonable symbolic integration pro-
cedure.

NAPSS currently has two basic types of functions, the
symbolic function and the tabulated (or discrete) func-
tion. (There are also the standard built-in functions.)
Both of these may internally generate substantial data
structures. Consider, for example, the result of a very
common process, Gram-Schmidt orthogonalization. The
program in NAPSS may well appear as:

/* DEFINE QUADRATIC SPLINE */
Q(X)—X 12 FOR X>=0

0
S(X)—5(Q(X)—3Q(X-1)+3Q(X—-2) —Q(X—3))
/* FIRST THREE LEGENDRE POLYNOMIALS */
B0, BX)[1[~X, BX)[2-13XT2=5
/* GRAM-SCHMIDT FOR ORTHOGONAL BASIS */
FOR K34, - +, 21 DO

Te—(K—2)/10—1, TEMP(X)—S((X—T)/10)

TEMP(X)—TEMP(X) —SUM((JTEMP(Y)B(Y)[J],

(Y= —1TO 1)), Je<0,1,- - -, K—1)

B(X)[K}—~TEMP(X)/(JTEMP(Y) 12, (Y= —1TO 1))
1.5;

The result is an array B(X)[K] of 22 quadratic spline
functions orthogonal on the interval [ —1,1]. These state-
ments currently cause NAPSS difficulty because all of
the functions are maintained internally in a form of
symbolic text. By the time the 22nd function is defined
the total amount of the text is quite large (particularly
since S(X) is defined piecewise) and the evaluation time
is also large because of the recursive nature of the defini-
tion. The integrations are, of course, carried out and con-
stant values obtained.

This difficulty may be circumvented in the pilot
NAPSS by changing the code and a non-recursive text
representation scheme has been found (but not imple-
mented) which materially reduces the evaluation time in
such situations. These remedies, however, do not face up
to the crux of the problem, namely many computations
involve manipulations in finite dimensional function
spaces. NAPSS should have a facility for such functions
and incorporate appropriate procedures for these manip-
ulations. This, of course, adds to the complexity of the
language processor, but it allows significant (sometimes
by orders of magnitude) reductions in the size of the data
structures generated for new functions and in the amount
of time required for execution in such problems. Once this
type function is introduced, then it is natural to simulta-
neously identify the case of polynomials as a separate
function type. Again NAPSS would need appropriate
manipulation procedures, but then even a simple sym-
bolic integration procedure would be valuable and allow
the program presented above to be executed in a very
small fraction of the time now required.
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SYMBOLIC ANALYSIS

We have already pointed out the usefulness of symbolic
algorithms (e.g., differentiation, integration), but there is
also a significant payoff possible from a symbolic analysis
of the program. This may be interpreted as source lan-
guage optimization and, as usual, the goal is to save on
execution time by increasing the language processing
time. There are three factors that contribute to this situa-
tion. First, NAPSS is a significantly higher level (more
powerful) language than, say, Fortran and it is much
easier to inadvertently specify a very substantial compu-
tation. Second, NAPSS allows one to directly transcribe
ordinary mathematical formulas into a program. Many
mathematical conventions ignore computations and
hence, if carried out exactly as specified, lead to gross
inefficiency. Finally, the ultimate class of users are peo-
ple who are even less aware of the mechanics and proce-
dures of computation than the average Fortran program-
mer. Indeed one of the goals of a NAPSS-like system is to
make computing power easily available to a wider class of
users.

The second factor is most apparent in matrix expres-
sions where everyone is taught to solve linear equations
by (in NAPSS) X—A7(—1)B and matrix expressions like
(D+UL)-'L~*U are routinely applied to vectors. The
inefficiencies of computing inverse matrices are well
known and algorithms have been developed for process-
ing each expression without unnecessarily computing
matrix inverses. Another simple example comes from in-
tegration where the statement

D—[(JF(X)G(Y), (X—0TO 1)), (Y0 TO 1)

is the direct analog of the usual mathematical notation.
These two examples may be handled by optimization of
single NAPSS statements. This presents no extraordinary
difficulty in the current system, but optimization involv-
ing several statements presents severe difficulties for the
current system design because it is an incremental lan-
guage processor and all variables are dynamic.

Symbolic analysis of groups of statements is worthwhile
and many of these situations are fairly obvious or corre-
spond to optimizations made in common compilers. The
following group of statements illustrate a situation unique
to NAPSS-like languages (or any language where func-
tions are true variables, i.e., data structures).

H(X)—GA'(X—A)/GB'(A-X)

G(X)—[F(T), (T<0 TO X)

PLOT G(X) FOR X0 TO 10

SOLVE Y'(T)+G(T)Y(T)=H(T/10)/(1 + G(T))
FOR Y(T) WITH Y (0)«2 ON T«0 TO 10

SOLVE G(W)/'W—H(W—A)=TAN(W/4A) FOR W

The first two statements define functions in terms of
operators implemented by polyalgorithms (assume that
GA(X) or GB(X) cannot be differeniiated symbolically)

and the last three statements required numerous evalua-
tions of these functions. The straightforward approach
now used simply makes these evaluations as needed by
the PLOT or SOLVE processors. However, it is obvious
that very significant economies are made by realizing that
these functions are to be evaluated many times and thus,
introducing the following two statements,

APPROXIMATE H(X) AS HH(X) ON 0 TO 10
APPROXIMATE G(X) AS GG(X) ON 0 TO 10

and then by using HH(X) and GG(X) in the last three
statements. A good symbolic analysis of the program
would recognize this situation and automatically replace
the symbolic definition of H(X) and G(X) by the approxi-
mations obtained from the approximation algorithm. Tt is
clear that a symbolic analysis would not be infallible in
these situations, but it appears that the savings made in
the straightforward situations would be significant.

OPERATING SYSTEM INTERFACE

The most likely environment (at this time) for a
NAPSS-like system is a medium or large scale computer
with a fairly general purpose multiprogramming mode of
operation. From the point of view of NAPSS the key
characteristics of this environment are (a) The operating
system is indifferent to NAPSS, i.e., NAPSS does not
receive special priority or resources relative to jobs with
similar characteristics. (b) Central memory is too small.
(c) Heavy, or even moderate, use of NAPSS in an inter-
active mode makes a significant adverse impact on the
overall operation of the computer. One may summarize
the situation as follows: NAPSS is too big to fit comforta-
bly in central memory for semi-continuous interactive
use. Thus it must make extensive use of secondary
memory. The result is that in saving on one scarce
resource, central memory space, one expends large
amounts of another equally scarce resource, access to
secondary memory.

One may consider five general approaches to the orga-
nization of a NAPSS-like system in an effort to obtain
acceptable performance at an acceptable cost and with an
acceptably small impact on the operating system. The
first is to operate in a small central memory area and to
be as clever as possible in instruction of programs and the
access to secondary storage. In particular, paging would
be heavily if not entirely controlled by the NAPSS system
in order to optimize transfers to secondary storage. This is
the approach used in the current pilot NAPSS system.
The second approach is to use the virtual memory facili-
ties of the operating and hardware system and then treat
NAPSS as though it were in central memory at all times.
The third approach is obtain enough real memory to hold
all, or nearly all, of NAPSS. This approach includes the
case of running a NAPSS-like system on a dedicated
computer. The fourth approach is to limit NAPSS to
batch processing use.
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The final approach is to use distributed computing
involving two processors. One processor is for language
processing. A substantial memory is required because
quite large data structure may be generated by NAPSS.
A minicomputer with a disk might be suitable to handle
a number of consoles running NAPSS. The other proces-
sor is that of a medium or large scale computer and its
function is to execute polyalgorithms. These programs
would reside in this central computer’s secondary stor-
age rather than in the minicomputer’s memory. The
necessary language and data structures would be trans-
ferred to the main computer when a polyalgorithm is to
be executed.

The batch processing approach fundamentally changes
the nature of the system and is hard to compare with the
others. The other approaches have one or more of the
following disadvantages:

1. The performance (response time) may be slow,
especially when the computer is heavily loaded.

2. A very substantial investment in hardware is
required.

3. The system is difficult to move to a new environ-
ment.

The performance of the pilot NAPSS system suggests that
each of these approaches can lead to a useful production
system. Those that invest in special hardware would no
doubt perform better, but it is still unclear which
approach gives the best performance for a given total
investment (in hardware, software development, execu-
tion time and user time).

PORTABILITY

The development of the pilot NAPSS system was a
significant investment in software, perhaps 8 to 12 man
years of effort. The numerical analysis polyalgorithms
are reasonably portable as they are Fortran programs
with only a few special characteristics. Indeed one can
locate some suitable, if not ideal, already existing pro-
grams for some of the numerical analysis. The language
processor is very specific to the operating system interface
and the hardware configuration. It is about 90 percent in
Fortran, but even so changing environments requires
perhaps 8 to 12 man months of effort by very knowledge-
able people.

NAPSS-like systems must be portable in order to get a
reasonable return from the development effort as few
organizations can justify such a system on the basis of
internal usage. A number of approaches to (nearly) ma-
chine independent software do exist (e.g., boot strap-
ping, macros, higher level languages) which are very
useful. However, I believe that a survey of widely dis-
tributed systems similar to NAPSS in complexity would
show that the key is an organization which is respon-
sible for the portability. This organization does what-
ever is necessary to make the system run on an IBM
360/75 or 370/155, a UNIVAC 1108, and CDC 6600 and
so forth. No one has yet been able to move such a system
from say an IBM 370 to a CDC 6600 with a week or two
of effort.

Another approach is to make the system run on
medium and large IBM 360’s and 370’s (within standard
configurations) and ignore the rest of the computers.

The emergence of computer networks opens up yet
another possibility for portability, but it is too early to
make a definite assessment of the performance and cost
of using a NAPSS-like system through a large computer
network. Networks also open up the possibility of a really
large NAPSS machine being made available to a wide
community of users.
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The correctness of programs for
numerical computation

by T. E. HULL

University of Toronto
Toronto, Canada

ABSTRACT

Increased attention is being paid to techniques for
proving the correctness of computer programs, and the
problem is being approached from several different points
of view. For example, those interested in systems pro-
gramming have placed particular emphasis on the impor-
tance of language design and the creation of well-struc-
tured programs. Others have been interested in more
formal approaches, including the use of assertions and
automatic theorem proving techniques. Numerical ana-
lysts must cope with special difficulties caused by round
off and truncation error, and it is the purpose of this
talk to show how various techniques can be brought
together to help prove the correctness of programs for
numerical computation.
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The changing role of simulation and
the simulation councils

by JOHN MCLEOD

Simulation Councils, Inc.
La Jolla, California

ABSTRACT

Simulation in the broadest sense is as old as man.
Everyone has a mental model of his world. Furthermore
he will use it to investigate—mentally—the possible
results of alternative courses of action.

Simulation as we know it, the use of electronic circuits
to model real or imaginary things, began about 35 years
ago. Since that time we have seen such vast changes in
both the tools and the techniques of simulation that only
the underlying philosophy remains unchanged.

And the uses and abuses of simulation have changed
radically, too. Seldom has a technology, developed pri-
marily to serve one industry—in the case of simulation
the aerospace industry --so permeated seemingly unre-
lated fields as has simulation. Today simulation is used
as an investigative tool in every branch of science, and in
many ways that by no stretch of the term can be called
science.

These changes have had their impact on our society,
too. The first Simulation Council was founded in 1952
after we had tried in vain to find a forum for discussion of
simulation among the established technical societies. As
interest grew other Simulation Councils were organized,
and in 1957 they were incorporated and became known as
Simulation Councils, Inc. Because the nine regional
Simulation Councils now comprise the only technical
society devoted exclusively to advancing the state-of-the-
art of simulation and serving those people concerned with
simulation, we are now known as SCS, the Society for
Computer Simulation.

In 1952 the analog computer was the best tool for simu-
lation, and not one of the technical societies concerned
with the up-and-coming digital computers was interested
in the analog variety. So circumstances, not purpose,
decreed that the Simulation Councils should become
thought of as the analog computer society. We are not,
and never have been; the Society for Computer Simula-
tion is concerned with the development and application of
the technology, not the tool!

That being the case, and realizing the applicability of
the simulation technology to the study of complex sys-
tems in other fields, the society fostered the necessary
technology transfer by soliciting and publishing articles
describing applications first in medicine and biology, and
for the last several years, in the social sciences.

To foster the change in role of simulation from that of a
tool for the aerospace industry to that of a means for
studying and gaining and understanding of the problems
of our society required that the society also change. This
change was first reflected in the technical content of our
journal Simulation. It has always been our policy to pub-
lish articles describing unusual applications of simula-
tion, but until a few years ago that was the only reason
material describing a socially relevant use of simulation
appeared in Simulation. Now it is our policy to solicit
such_articles, and publish as many as are approved by
our editorial review board. Therefore much of the mate-
rial in our journal is now concerned with socially relevant
issues.

The Society for Computer Simulation also publishes a
Proceedings series. Of the three released to date, all are
relevant to societal problems.

The changing role of the society is also evidenced by
changes in official policy and in the organization itself.
The change in policy was elucidated by our President in
an article published in the April 1970 issue of Simulation,
which stated in part”...the Executive Committee feels
that [our society’s] primary mission today should be to
assist people who want to use simulation in their own
fields and particularly to assist people who are dealing
with the world’s most urgent and difficult [societal]
problems..."

The principal organizational change is the establish-
ment of the World Simulation Organization to stimulate
work towards the development of simulation technology
applicable to the study of problems of our society from a
global point of view.

Concomitant with the spread of simulation to all disci-
plines has been the increase in interest within technical
societies which are only peripherally concerned with
simulation. Although these societies are primarily dedi-
cated to other fields, several have formed committees or
special interest groups with aims and objectives similar to
those of the Society for Computer Simulation.

However, the Society for Computer Simulation remains
the only technical society dedicated solely to the service
of those concerned with the art and science of simuiation,
and to the improvement of the technology on which they
must rely. That others follow is a tribute to our leader-
ship.
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Up, up and away

by THOMAS NAYLOR

Duke University
Durham, North Carolina

ABSTRACT

In 1961, Jay Forrester introduced economists, manage-
ment scientists and other social scientists to a new meth-
odology for studying the behavior of dynamic systems, a
methodology which he called Industrial Dynamics. Fol-
lowing closely on the heels of Industrial Dynamics was
Urban Dynamics, which purported to analyze the nature
of urban problems, their cases, and possible solution to
these problems in terms of interactions among compo-
nents of urban systems. More recently, Forrester has
come forth with World Dynamics. We and the inhabit-
ants of the other planets in our universe are now anx-
iously awaiting the publication of Universe Dynamics, a
volume which is to be sponsored by the Club of Olympus,
God, the Pope, Buddha, Mohammed, and the spiritual
leaders of several other major religions of this world and
the universe. Not unlike World Dynamics and other
books by Jay Fozrester, Universe Dynamics will be char-
acterized by a number of distinct features. These features
will be summarized in this paper.

In this presentation we shall comment on the methodol-
ogy used by Forrester in World Dynamics as well as the
methodology which is being set forth by his disciples who
publish The Limits of Growth and the other people
involved in the Club of Rome project. We shall address
ourselves to the whole question of the feasibility of con-
structing models of the entire world and to model struc-
tures alternative to the one set forth by Forrester, et al.

It is first necessary to consider what possible objectives
one might have in trying to prove programs correct, since
different correctness criteria can be relevant to any par-
ticular program, especially when the program is to be
used for numerical computation. Then it will be shown
that careful structuring, along with the judicious use of
assertions, can help one to organize proofs of correctness.
Good language facilities are needed for the structuring,
while assertions help make specific the details of the
proof.

Examples from linear algebra, differential equations
and other areas will be used to illustrate these ideas. The
importance of language facilities will be emphasized, and
implications for Computer Science curricula will be
pointed out. A useful analogy with proofs of theorems in
mathematics and the relevance of this analogy to certifi-
cation procedures for computer programs will be dis-
cussed.

Policy models—Concepts and rules-of-
thumb

by PETER W. HOUSE

Environmental Protection Agency
Washington, D.C.

ABSTRACT

The desire to build policy models or models for policy
makers is based on two foundations. First, the need to
solicit funds to pay for the construction of models means
that those who want to construct models have to promise
a ‘“‘useful” product. Since a large portion of the models
built are to support some level of policy, public or private,
there is a deliberate attempt to promise output which will
be useful to the decision process. Secondly, it is clear
from history that the advisor to the throne is a coveted
position and one dreamed of by many scientists. It is also
clear that the day is coming when models will play a large
role in making such policy. The advisory role then shifts
to the model builder.

Unfortunately, the reality of model development for the
policy level does not appear to agree with the rhetoric.
This presentation will review the concept of policy models
and suggest some rules-of-thumb for building them.
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On validation of simulation models

Yale University
New Haven, Connecticut

ABSTRACT

Before an investigator can claim that his simulation
model is a useful tool for studying behavior under new
hypothetical conditions, he is well advised to check its
consistency with the true system, as it exists before any
change is made. The success of this validation establishes
a basis for confidence in results that the model generates
under. new. conditions. After all, if a model cannot repro-
duce system behavior without change, then we hardly
expect it to produce truly representative results with
change.

The problem of how to validate a simulation model
arises in every simulation study in which some semblance
of a system exists. The space devoted to validation in
Naylor’s book Computer Simulation Experiments with
Models of Economic Systems indicates both the relative
importance of the topic and the difficulty of establishing
universally applicable criteria for accepting a simulation
model as a valid representation.

One way to approach the validation of a simulation
model is through its three essential components; input,
structural representation and output. For example, the
input consist of exogenous stimuli that drive the model
during a run. Consequently one would like to assure
himself that the probability distributions and time series
representations used to characterize input variables are
consistent with available data. With regard to structural
representation one would like to test whether or not the
mathematical and logical representations do not conflict
with the true system’s behavior. With regard to output
one could feel comfortable with a simulation model if it
behaved similarly to the true system when exposed to the
same input.

Interestingly enough, the greatest effort in model vali-
dation of large econometric models has concentrated on
structural representation. No doubt this is due to the fact
that regression methods, whether it be the simple least-
squares method or a more comprehensive simultaneous
equations techniques, in addition to providing procedures
for parameter estimation, facilitate hypothesis testing
regarding structural representation. Because of the avail-
ability of these regression methods, it seems hard to
believe that at least some part of a model’s structural
representation cannot be validated. Lamentably, some
researchers choose to discount and avoid the use of avail-
able test procedures.

With regard to input analysis, techniques exist for
determining the temporal and probabilistic characteris-
tics of exogeneous variables. For example the autoregres-

sive—moving average schemes described in Box and
Jenkins’ book, Time Series Analysis: Forecasting and
Control, are available today in canned statistical com-
puter programs. Maximum likelihood estimation proce-
dures are available for most common probability distri-
bution and tables based on sufficient statistics have
begun to appear in the literature. Regardless of how little
data is available, a model’s use would benefit from a
conscientious effort to characterize the mechanism that
produced those data.

As mentioned earlier a check of consistency between
model and system output in response to the same input
would be an appropriate step in validation. A natural
question that arises is: What form should the consistency
check take? One approach might go as follows: Let X,
- - -, X, be the model’s output in n consecutive time inter-
vals and let Y, - - -, Y, .be the system’s output for n con-
secutive time intervals in response to the same stimuli.
Test the hypothesis that the joint probability distribution
of X,, - - -, X, is identical with that of Y,, - - -, Y,..

My own feeling is that the above test is too stringent
and creates a misplaced emphasis on statistical exactness.
I would prefer to frame output validation in more of a
decision making context. In particular, one question that
seems useful to answer is: In response to the same input,
does the model’s output lead decision makers to take the
same action that they would take in response to the true
system’s output? While less stringent than the test first
described, its implementation requires access to decision
makers. This seems to me to be a desirable requirement
for only through continual interaction with decision
makers can an investigator hope to gauge the sensitive
issues to which his model should be responsive and the
degree of accuracy that these sensitivities require.
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In the beginning

by HOWARD CAMPAIGNE

Slippery Rock State Teachers College
Slippery Rock, Pennsylvania

ABSTRACT

The history of computers has been the history of two
components; memories and software. These two depend
heavily on each other, and all else depends on them.

The early computers had none of either, it almost
seems in retrospect. The Harvard Mark I had 132 words
of 23 decimal digits, usable only for data. ENIAC had
ten registers of ten decimals, each capable of doing
arithmetic.

It was von Neuman who pointed out that putting the
program into the memory of ENIAC (instead of reading it
from cards) would increase the throughput. Thereafter
computers were designed to have data and instructions
share the memory.

The need for larger storage was apparent to all, but
especially to programmers. EDVAC, the successor to
ENIAC, had recirculating sounds in mercury filled pipes
to get a thousand words of storage. The Manchester
machine had a TV tube to store a thousand bits.

Then the reliable magnetic core displaced these expedi-
ents, and stayed a whole generation. It was only in recent
times when larger memories became available that the
programmer had a chance. And of course it is his sophis-
ticated software which makes the modern computer sys-
tem responsive and effective.

Factors affecting commercial
computers system design in the
seventies

by WILLIAM F. SIMON

Sperry UNIVAC
Blue Bell, Pennsylvania

ABSTRACT

The design of a digital computer for the commercial
market today must, of course, face up to the pervasive
influence of IBM. But technological maturity in some
areas is slowing the rate of change so that designs seem to
converge on certain features. Microprogramming of the
native instruction set (or sets?) with emulation of a range
of older systems is such a feature. Virtual memory
addressing may be another. Characteristics of main stor-

age, random access mass storage devices, data exchange
media seem to converge while terminals and communica-
tions conventions proliferate and diverge. Some reasons
for these phenomena are evident; others will be suggested.

Whatever happened to hybrid packaging, thin films,
large scale integration, and tunnel diodes? The more
general question is: why do some technologies flourish
only in restricted environments, or never quite fulfill the
promise of their “youth?” Or is their development just
slower than we expected? While these answers cannot be
absolute, some factors affecting the acceptance of new
technologies can be identified.

Factors impacting on the evolution of
military computers

by GEORGE M. SOKOL

US Army Computer Systems Command
Fort Belvoir, Virginia

ABSTRACT

This paper will trace Army experience in ADP for the
combat environment, with emphasis on the role of soft-
ware as a factor in influencing computer organization and
design. Early Army activity on militarized computers
resulted in the Fieldata family of computers, a modular
hierarchy of ADP equipment. Subsequently, software
considerations and the evolution of functional require-
ments resulted in extended use of commercially available
computers mounted in vehicles. The balance between
central electronic logic and peripheral capability is cen-
tral to the design of militarized computers, but con-
straints of size, weight and ruggedness have greatly lim-
ited the processing capability of fieldable peripheral
equipment. The systems acquisition process also impacts
on the available characteristics of militarized computers.
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and
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Picatinny Arsenal
Dover, New Jersey

INTRODUCTION

The objective of this paper is to present what is at least
the authors’ general assessment of the state-of-the-art of
modeling and simulation in the process industries, which
in this context is taken to include the chemical, petro-
chemical, pulp and paper, metals, waste and water treat-
ment industries but excluding the manufacturing indus-
tries such as the automobile industry. Since a number of
texts'->? are available on this topic for those readers inter-
ested in a more technical treatment, this discussion will
tend to be more general, emphasizing such aspects as
economic justification, importance of experimental and/
or plant data, etc.

EXAMPLES
Paper machine

In the process customarily used for the manufacture of
paper, an aqueous stream consisting of about 0.25 percent
by weight of suspended fiber is jetted by a headbox onto a
moving wire. As the water drains through the wire, a cer-
tain fraction of the fiber is retained, forming a mat that
subsequently becomes a sheet of paper. The wire with the
mat on top passes over suction boxes to remove additional
water, thereby giving the mat sufficient strength so that it
can be lifted and passed between press rolls. It then
enters the dryer section, which consists of several steam-
heated, rotating cylinders that provide a source of heat to
vaporize the water in the sheet. The final sheet generally
contains from 5 to 10 percent water by weight.

The paper machine is a good example of a model con-
sisting almost entirely of relationships to describe physi-
cal processes. The formation of the mat over the wire is a
very complex physical process.*® Initially, the wire has no
mat on top, and the drainage rate is high but the retention
(fraction of fiber retained on wire) is low. As the mat

builds up, the drainage rate decreases and the retention
increases. This process continues until all of the free lig-
uid has drained through the wire. In general, these proc-
esses are not well-understood (especially from a quantita-
tive standpoint), and as a result, the equations used to
describe them have been primarily empirical.

The action of the suction boxes and press rolls is also a
physical process, and again are not well-understood. Sim-
ilarly, the drying of sheets is also a complex physical
process. - Initially, the sheet contains a high percentage of
water, and it is easily driven off. But as the sheet becomes
drier, the remaining water molecules are more tightly
bound (both chemically and physically) to the fiber, and
the drying rate decreases. Quantitatively, the relation-
ships are not well-developed, and again empiricism is
relied upon quite heavily.

A model of the paper machine should be capable of
relating the final sheet density (lbs/ft?), sheet moisture,
and other similar properties to inputs such as stock flow,
machine speed, dryer steam pressure, etc.

TNT process

Whereas the model for the paper machine consists
almost entirely of relationships describing physical proc-
esses, the description of chemical processes forms the
heart of many models. For example, the manufacture of
trinitrotoluene (TNT) entails the successive nitration of
toluene in the presence of strong concentrations of nitric
and sulphuric acids. In current processes, this reaction is
carried out in a two phase medium, one phase being
largely organic and the other phase being largely acid.®
According to the currently accepted theory, the organic
species diffuse from the organic phase to the acid phase,
where all reactions occur. The products of the reaction
then diffuse back into the organic phase.

In this process, the primary reactions leading to the
production of TNT are well-known at least from a stoichi-
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ometric standpoint. However, many side reactions occur,
including oxidation of the benzene ring to produce gas-
eous products (oxides of carbon and nitrogen). These
reactions are not well-understood, but nevertheless must
be included in a process model. Similarly, the relation-
ships describing the diffusion mechanism are complex
and include constants whose quantitative values are not
available. In this particular process, the solubility of the
organic species in the acid phase is not quantitatively
known.

From a model describing the TNT process, one should
be able to compute the amount of product and its compo-
sition from such inputs as feed flows and compositions,
nitrator temperatures, etc.

STEADY-STATE VS. DYNAMIC MODELS

A steady-state model is capable of yielding only the
equilibrium values of the process variables, whereas a
dynamic process model will give the time dependence of
the process variables.

Using the paper machine as an example, the design of
the plant would require a model that gives the final sheet
moisture, density, and other properties obtained when the
inputs are held at constant values for long periods of time.
This would be a steady-state model. On the other hand,
one of the most difficult control problems in the paper
industry occurs at grade change.” For example, suppose
the machine has been producing paper with a sheet den-
sity of 60 lbs/1000ft2. Now the necessary changes must be
implemented so that the machine produces paper with a
sheet density of 42 lbs/1000ft%. Since virtually all of the
paper produced in the interim must be recycled, the time
required to implement the grade change should be min-
imized. Analysis of this problem requires a model that
gives the variation of the paper characteristics with time.
This would be a dynamic model.

ECONOMIC JUSTIFICATION

Due to the complexity of most industrial processes,
development of an adequate process model frequently
requires several man-years to develop, significant outlays
for gathering data, and several hours of computer time.
Therefore, some thought must be given to the anticipated
returns prior to the start of the project. In essence, there
is frequently no return from just developing a model; the
return comes from model exploitation.

Virtually every project begins with a feasibility study,
which should identify the possible ways via which a
model can be used to improve process performance, esti-
mate the returns from each of these, develop specific
goals for the modeling effort (specify the sections of the
process to be modeled; specify if the model is to be
steady-state or dynamic, etc.), and estimate the cost of
the modeling efforts. Unfortunately, estimating returns
from model exploitation is very difficult. Furthermore,
returns can be divided into tangible returns for which

dollar values are assigned and intangible returns for
which dollar values cannot readily be assigned. For
example, just the additional insight into the process
gained as a result of the modeling effort is valuable, but
its dollar value is not easily assigned. Perhaps the day
will come when the value of process modeling has been
established to the point where models are developed for
all processes; however, we are not there yet.

For many processes, the decision as to whether or not to
undertake a modeling project is coupled with the decision
as to whether or not to install a control computer, either
supervisory or DDC. In this context, perhaps the most
likely subjects are plants with large throughputs, where
even a small improvement in process operation yields a
large return due to the large production over which it is
spread.® Many highly complex processes offer the oppor-
tunity to make great improvements in process operation,
but these frequently necessitate the greatest effort in
model development.

Typical projects for which a modeling effort can be
justified include the following:

1. Determination of the process operating conditions
that produce the maximum economic return.

2. Development of an improved control system so that
the process does not produce as much off-specifica-
tion product or does not produce a product far above
specifications, thereby entailing a form of “product
give-away.” For example, running a paper machine
to produce a sheet with 5 percent moisture when the
specification is 8 percent or less leads to product
give-away in that the machine must be run slower in
order to produce the lower moisture. Also, paper is
in effect sold by the pound, and water is far cheaper
than wood pulp.

3. Design of a new process or modifications to the cur-
rent process.

Although many modeling efforts have been in support
of computer control installations, this is certainly not the
only justification. In fact, in many of these, hindsight has
shown that the greatest return was from improvements in
process operation gained through exploitation of the
model. In many, the computer was not necessary in order
to realize these improvements.

MODEL DEVELOPMENT

In the development of a model for a process, two dis-
tinct approaches can be identified:

1. Use of purely empirical relationships obtained by
correlating the values of the dependent process vari-
ables with values of the independent process varia-
bles.

2. Development of detailed heat balances, material
balances, and rate expressions, which are then
combined to form the averall model of the process.
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The first method is purely empirical, whereas the second
relies more on the theories regarding the basic mecha-
nisms that proceed within the process.

While it may not be cbvicus at first, beth of these
approaches are ultimately based on experimental data.
Since regression is used outright to obtain the empirical
model, it is clearly based on experimental data. For any
realistic process, the detailed model encompassing the
basic mechanisms will contain parameters for which no
values are available in the literature. In these cases, one
approach is to take several ‘“‘snapshots” of the plant,
where the value of as many process variables as possible
are obtained. In general, the normal process instrumenta-
tion is not sufficient to obtain all of the needed data.
Additional recording points are often temporarily added,
and samples are frequently taken for subsequent labora-
tory analysis. With this data available, a multivariable
search technique such as Pattern'*** can be used to deter-
mine the model parameters that produce the best fit of
the experimental data.

In efforts of this type, the availability of a digital
computer for data logging can be valuable. The proper
approach is to determine what data is needed in the
modeling effort, and then program the computer to obtain
this data from carefully controlled tests on the process.
The use of a digital computer to record all possible values
during the normal operation of the process simply does
not yield satisfactory data from which a model can be
developed.

Another point of contrast between the empirical model
and the basic model involves the amount of developmen-
tal effort necessary. The empirical model can be devel-
oped with much less effort, but on the other hand, it
cannot be reliably used to predict performance outside
the range within which the data was obtained. Since the
detailed model incorporates relationships describing the
basic mechanisms, it should hold over a wider range than
the empirical model, especially if the data upon which it
is based was taken over a wide range of process operating
conditions.

NUMERICAL METHODS

In the development and exploitation of process models,
numerical techniques are needed for the following opera-
tions:

1. Solution of large sets of nonlinear algebraic equa-
tions (frequently encountered in the solution of
steady-state models).

2. Solution of large sets of nonlinear, first-order differ-
ential equations (frequently encountered in the solu-
tion of unsteady state models).

3. Solution of partial differential equations (usually
encountered in the solution of an unsteady-state
model for a distributed-parameter system).

4. Determination of the maximum or minimum of a
high-order, nonlinear function (usually encountered

in either the determination of the model parameters
that best fit the experimental data or in the determi-
nation of the process operating conditions that pro-
duce the greatest econemic return).

Only digital techniques are discussed in this section;
analog and hybrid techniques will be described subse-
quently.

In general, the numerical techniques utilized for proc-
ess models tend to be the simpler ones. The characteristic
that generally presents the most difficulties is the size of
the problems. For example, the model of the TNT plant
described in Reference 9 contains 322 nonlinear equa-
tions plus supporting relationships such as mole fraction
calculations, solubility relationships, density equations,
etc.

In the solution of sets of nonlinear algebraic equations,
the tendency is to use direct substitution methods in an
iterative approach to solving the equations. In general, a
process may contain several recycle loops, each of which
requires an iterative approach to solve the equations
involved. The existence of nested recycle loops causes the
number of iterations to increase significantly. For exam-
ple, the steady-state model for the TNT process involves
seven nested recycle loops. Although the number of itera-
tions required to obtain a solution is staggering, the prob-
lem is solved in less than a minute on a CDC 6500.

A few types of equations occur so frequently in process
systems that special methods have been developed for
them. An example of such a system is a countercurrent,
stagewise contact system, which is epitomized by a distil-
lation column. For this particular system, the Theta-
method has been developed and used extensively.™

In regard to solving the ordinary differential equations
usually encountered in dynamic models, the simple Euler
method has enjoyed far more use than any other method.
The advantages stemming from the simplicity of the
method far outweigh any increase in computational effi-
ciency gained by using higher-order methods. Further-
more, extreme accuracy is not required in many process
simulations. In effect, the model is only approximate, so
why demand extreme accuracies in the solution?

Although once avoided in process models, partial differ-
ential equations are appearing more regularly. Again,
simple finite difference methods are used most frequently
in solving problems of this type.

Maximization and minimization problems are encoun-
tered very frequently in the development and exploitation
of process models. One very necessary criterion of any
technique used is that it must be able to handle con-
straints both on the search variable and on the dependent
variables computed during each functional evaluation.
Although linear programming handles such constraints
very well, process problems are invariably nonlinear.
Sectional linear programming is quite popular, although
the conventional multivariable search techniques coupled
with a penalty function are also used.

Over the years, a number of simulation languages such
as CSMP and MIMIC have been used in simulation."* On
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the steady-state side, a number of process simulation
packages such as PACER, FLOTRAN, and others have
appeared.' An alternative to these is to write the program
directly in a language such as Fortran.

One of the problems in steady-state simulation is the
need for extensive physical property data. Many of the
steady-state simulation packages have a built-in or read-
ily available physical properties package that is a big plus
in their favor. However, many prefer to use subroutines
for physical properties, subroutines for the common unit
operations, and subroutines to control the iteration proce-
dures, but nevertheless write in Fortran their own master
or calling program and any special subroutine for opera-
tions unique to their process.

For dynamic process models with any complexity,
Fortran is almost universally preferred over one of the
simulation languages.

COMPUTATIONAL REQUIREMENTS

With the introduction of computing machines of the
capacity of the CDC 6500, Univac 1108, IBM 360/65,
and similar machines produced by other manufacturers,
the computational capacity is available to solve all but
the largest process simulations. Similarly, currently avail-
able numerical techniques seem to be adequate for all but
the very exotic processes. This is not to imply that
improved price/performance ratios for computing ma-
chines would be of no benefit. Since the modeling effort
is subject to economic justification, a significant reduction
in computational costs would lead to the undertaking of
some modeling projects currently considered unattractive.

As for the role of analog and hybrid computers in proc-
ess simulation, no significant change in the current situa-
tion is forecast. Only for those models whose solution
must be obtained a large number of times can the added
expense of analog programming be justified. However, for
such undertakings as operator training, the analog com-
puter is still quite attractive.

SUMMARY

At this stage of process modeling and simulation, the
generally poor understanding of the basic mechanisms
occurring in industrial processes is probably the major
obstacle in a modeling effort. Quantitative values for dif-
fusions, reaction rate constants, solubilities, and similar

coefficients occurring in the relationships comprising a
process model are simply not available for most processes
of interest. :

This paper has attempted to present the state-of-the-art
of process modeling as seen by the authors. This discus-
sion has necessarily been of a general nature, and excep-
tions to general statements are to be expected. In any
case, these should always be taken as one man’s opinion
for whatever it is worth.
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INTRODUCTION

Never before has the relevancy of institutions been ques-
tioned as critically as today. Many of us have now
learned what should have always been evident; that the
key to relevance is the satisfaction of needs. The com-
puter industry, and those technical societies that support
it, should view this new emphasis on service as an oppor-
tunity to stimulate its creative talents. The implication of
the “future shock” concept requires that we must antici-
pate problems if we are ever to have enough time to solve
them.

But in what way can a technicai society serve; shouid it
be a responder or a leader? Ironically, to be effective, it
must be both. It must respond to the requests of individu-
als in the technical community to use the society’s appa-
ratus for the development, review and promulgation of
needed standards. The development and review stages
can be done by groups of individuals, but it remains for
the technical society to exert a leadership role to make
these standards known and available to all who might
benefit from them.

Thus, our purpose here is to bring to your attention two
new, and we feel exciting, industrial computer standards
developments that have been undertaken by the Instru-
ment Society of America, as well as a discussion of fur-
ther actions contemplated in this field. The first is RP55,
“Hardware Testing of Digital Process Computers.” The
second is the work cosponsored with Purdue University
on software and hardware standards for industrial com-
puter languages and interfaces. This latter work is exem-
plified by the ISA series of standards entitled S61, “In-
dustrial Computer FORTRAN Procedures,” among others.
Both standards development projects have succeeded in
furthering ISA’s commitment ‘“‘to provide standards that
are competent, timely, unbiased, widely applicable, and
authoritative.”

ot

<3

ACCEPTANCE TESTING OF DIGITAL PROCESS
COMPUTERS

Needs

A Hardware Testing Committee was formed in October
1968 because a group of professionals recognized certain
specific needs of the process computer industry. The user
needed a standard in order to accurately evaluate the
performance of a digital computer and also to avoid the
costly duplication of effort when each user individually
writes his own test procedures. Conversely, the vendor
needed a standard to avoid the costly setting up of differ-
ent tests for different users and also to better understand
what tests are vital to the user.

Purpose

The purpose of the committee has been to create a
document that can serve as a guide for technical person-
nel whose duties include specifying, checking, testing, or
demonstrating hardware performance of digital process
computers at either vendor or user facilities. By basing
engineering and hardware specifications, technical adver-
tising, and reference literature on this recommended
practice, there will be provided a clearer understanding of
the digital process computer’s performance capabilities
and of the methods used for evaluating and documenting
proof of performance. Adhering to the terminology, defi-
nitions, and test recommendations should result in clearer
specifications which should further the understanding
between vendor and user.

Scope

The committee made policy decisions which defined
the scope of this recommended practice to:
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(1)

(2)

(3)

(4)
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~
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(8)

9)

Concern digital process computer hardware testing
rather than software testing. However, certain
software will be necessary to perform the hardware
tests.

Concern hardware test performance at either the
vendor’s factory or at the user’s site. This takes
into account that it would be costly for a vendor to
change his normal test location.

Concern hardware performance testing rather than
reliability or availability testing. These other char-
acteristics could be the subject for a different series
of long term tests at the user’s site.

Concern hardware testing of vendor supplied
equipment rather than also including user supplied
devices. Generally, the vendor supplied systems
includes only that equipment from the input termi-
nations to the output terminations of the computer
system.

Consider that specific limits for the hardware tests
will not exceed the vendor’s stated subsystem spec-
ifications.

Consider that before the system contract is signed,
the vendor and user will agree upon which hard-
ware testing specifications are applicable. It was
not the intent of the standard to finalize rigid speci-
fications or set specific rather than general accept-
ance criteria. This recognizes that there are many
differences both in vendor product design and in
user requirements.

Consider that the document is a basic nucleus of
tests, but other tests may be substituted based on
cost, established vendor procedures, and changing
state of the art. Although requirements to deviate
from a vendor’s normal pattern of test sequence,
duration or location could alter the effectiveness of
the testing, it could also create extra costs.

Consider that the document addresses a set of tests
which apply to basic or typical digital process
computers in today’s marketplace. Where equip-
ment configurations and features differ from those
outlined in this standard, the test procedures must
be modified to account for the individual equip-
ment’s specifications.

Consider that the document does not necessarily
assume witness tests (i.e., the collecting of tests for
a user to witness). This collection may or may not
conform to the vendor’s normal manufacturing
approach. There are three cost factors which
should be considered if a witness test is negotiated:

a. Added vendor and user manhours and expen-
ses.

b. Impact on vendor’s production cycle and
normal test sequence.

¢. Impact on user if tests are not performed cor-
rectly in his absence.

Recommended test procedures

It will not be attempted in this paper to detail reasons
for particular procedures in the areas of peripherals.

environmental, subsystem and interacting system tests.
Time will only permit naming the test procedure sections
and what they cover. In this way you may judge the
magnitude of this undertaking and the probable signifi-
cance of this recommended practice.

(1) Central Processing Unit—including instruction

(2)

(3)

(4)

(5)

(6

~

(7)

Costs

complement, arithmetic and control logic, input/
output adapters, I/0 direct memory access chan-
nel, interrupts, timers and core storage.

Data Processing Input/Output Subsystems
including the attachment circuitry which furnishes
logic controls along with data links to the input/
output bus; the controller which provides the
buffer between the computer and the input/output
device itself; and finally the input/output devices
themselves.

Digital Input/Output—including operation, signal
level, delay, noise rejection, counting accuracy,
timing accuracy and interrupt operation.

Analog Inputs—including address, speed, ac-
curacy/linearity, noise, common mode and normal
mode rejection, input resistance, input over-volt-
age recover, DC crosstalk, common mode cross-
talk and gain changing crosstalk.

Analog Outputs—including addressing, accuracy,
output capability, capacitive loading, noise, settling
time, crosstalk and droop rate for sample and hold
outputs.

Interacting Systems—including operation in a
simulated real time environment in order to check
the level of interaction or crosstalk resulting from
simultaneous demands on the several subsystems
which make up the system.
Environmental—including temperature
humidity, AC power and vibration.

and

The committee constantly had to evaluate the costs of
recommended tests versus their value. Typical factors
affecting the costs of testing are:

0))
(2)
(3)
4)
(5)
(6)
(7
(8)

Number of separate test configurations required
Methods of compliance

Sequence, duration, and location of tests
Quantity of hardware tested

Special programming requirements

Special testing equipment

Effort required to prepare and perform tests
Documentation requirements

The additional testing costs may be justified through
factors such as reduced installation costs, more timely
installation, and early identification of application prob-

lems.
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Documentation

Another unique feature of this recommended practice is
that it has given special attention to documentation of
evidence of tests performed on the hardware. Three types
of documentation are proposed in order that the user may
choose what is most appropriate cost-wise for his situa-
tion.

Type 1 would include any statement or evidence

provided by the manufacturer that the hardware has

successfully passed the agreed-upon tests.

Type 2 would be an itemized check list indicating

contractually agreed-upon tests with a certification

for each test that had been successfully performed.

Type 3 would be an individual numerical data print-

out; histograms, etc., compiled during the perform-

ance of the tests.
It is, therefore, the aim to provide maximum fléxibility in
documentation related to the testing.

Board of review

The committee was composed of eight vendors, eight
users, and two consultants. In addition to the consider-
able experience and varied backgrounds of the commit-
tee, an extensive evaluation by a Board of Review was
also required.

Serious effort was given to insuring that a wide
cross-section of the industry was represented on the
Review Board. Invitations were sent to the various ISA
committees, to attendees at the Computer Users Confer-
ence, and various computer workshops. Announcements
also appeared in Instrumentation Technology and Con-
trol Engineering. Interest was expressed by approxi-
mately 250 people, and these received the document
drafts. A very comprehensive questionnaire was also sent
to each reviewer in order that a more meaningful inter-
pretation of the review could be made. Subsequently, 117
responses were received. In addition to the questionnaire
response, other comments from the Review Board were
also considered by the appropriate subcommittee and
then each comment and its disposition were reviewed by
the SP55 Committee. The magnitude of this effort can be
judged from the fact that the comments and their disposi-
tion were finally resolved on 44 typewritten pages.

The returned questionnaires indicated an overwhelm-
ing acceptance and approval of the proposed documents.
The respondents, who came from a wide variety of
industrial and scientific backgrounds, felt that it would
be useful for both vendors and users alike. They gave the
document generally high ratings on technical grounds,
and also as to editorial layout. Some reservation was
expressed about economic aspects of the proposed testing
techniques, which is natural considering that more testing
is called for than was previously done. However, ninety-
one percent of the respondents recommended that RP55.1
be published as an ISA Recommended Practice.’ Only
three percent questioned the need for the document. The

responses were also analyzed for any generalized vendor-
user polarity. Fortunately, the percentage of those recom-
mending acceptance of the document were in approxi-
mate proportion to their percentages as vendors, users, or
consultants. In other words, there was no polarization into
vendor, user or consultant classes.

The recommended practice was subsequently submit-
ted to the American National Standards Institute and is
presently being evaluated for acceptability as an ANSI
standard. ISA’s Standards and Practices Board has met
with ANSI in order to adopt procedures permitting con-
current review by both ISA and ANSI for all future
standards.

PRESENT EFFORTS AT PROCESS CONTROL
SYSTEM LANGUAGE STANDARDIZATION

As mentioned earlier, standardization has long been
recognized as one means by which the planning, develop-
ment, programming, installation, and operation of our
plant control computer installations as well as the train-
ing of the personnel involved in all these phases can be
organized and simplified. The development of APT and
its variant languages by the machine tool industry is a
very important example of this. The Instrument Society
of America has been engaged in such activities for the
past ten years, most recently in conjunction with the
Purdue Laboratory for Applied Industrial Control of
Purdue University, West Lafayette, Indiana.*¢

Through nine semiannual meetings the Purdue Work-
shop on Standardization of Industrial Computer Lan-
guages has proposed the following possible solutions to the
programming problems raised above, and it has achieved
the results listed below:

(1) The popularity of FORTRAN indicates its use as at
least one of the procedural languages to be used as
the basis for a standardized set of process control
languages. It has been the decision of the Workshop
to extend the language to supply the missing func-
tions necessary for process control use by a set of
CALL statements. These proposed CALLS, after
approval by the Workshop, are being formally
standardized through the mechanisms of the
Instrument Society of America. One Standard has
already been issued by ISA,” another is being
reviewed at this writing,® and a third and last one is
under final development.®

(2) A so-called Long Term Procedural Language or
LTPL is also being pursued. A set of Functional
Requirements for this Language has been
approved. Since the PL/1 language is in process of
standardization by ANSI (the American National
Standards Institute), an extended subset of it (in
the manner of the extended FORTRAN) will be
tested against these requirements.'? Should it fail,
other languages will be tried or a completely new
one will be developed.
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(3) The recognized need for a set of problem-oriented
languages is being handled by the proposed devel-
opment of a set of macro-compiler routines which
will, when completed, allow the user to develop his
own special language while still preserving the
transportability capability which is so important
for the ultimate success of the standardization
effort. This latter will be accomplished by translat-
ing the former language into one or the other of the
standardized procedural languages before compila-
tion.

(4) To establish the tasks to be satisfied by the above
languages, an overall set of Functional Require-
ments has been developed.*®

(5) In order that all Committees of the Workshop
should have a common usage of the special terms of
computer programming, the Glossary Committee of
the Workshop has developed a Dictionary for
Industrial Computer Programming which has been
published by the Instrument Society of America™
in book form.

The Workshop on Standardization of Industrial Com-
puter Languages is composed entirely of representatives
of user and vendor companies active in the on-line
industrial digital computer applications field. Delegates
act on their own in all Workshop technical discussions,
but vote in the name of their companies on all substantive
matters brought up for approval. It enjoys active repre-
sentation from Japan and from seven European countries
in addition to Canada and the United States itself. Proce-
dures used in meetings and standards development are
the same as those previously outlined for the Hardware
Testing Committee.

As mentioned several times before, it is the aim and
desire of those involved in this effort that the Standards
developed will have as universal an application as possi-
ble. Every possible precaution is being taken to assure
this.

The nearly total attention in these and similar efforts
toward the use of higher level languages means that the
vendor must be responsible for producing a combination
of computer hardware and of operating system programs
which will accept the user’s programs written in the
higher level languages in the most efficient manner. A
relatively simple computer requiring a much higher use of
software accomplished functions would thus be equiva-
lent, except for speed of operation, with a much more
sophisticated and efficient computer with a correspond-
ingly smaller operating system.

The present desire on the part of both users and ven-
dors for a simplification and clarification of the present
morass of programming problems indicates that some
standardization effort, the Purdue cosponsored program,
or another, must succeed in the relatively near future.

Future possibilities and associated time scales

The standardized FORTRAN extensions as described
can be available in final form within the next one to two

years. Some of those previously made have been imple-
mented already in nearly a dozen different types of
computers. The actual standardization process requires a
relatively long period of time because of the formality
involved. Thus, the 1974-75 period appears to be the key
time for this effort.

The work of the other language committees of the
Workshop are less formally developed than that of the
FORTRAN Committee as mentioned just above. Success-
ful completion of their plans could result, however, in
significant developments in the Long Term Procedural
Language and in the Problem Oriented Languages areas
within the same time period as above.

In addition to its Instrument Society of America spon-
sorship, this effort recently received recognition from the
International Federation for Information Processing
(IFIP) when the Workshop was designated as a Working
Group of its Committee on Computer Applications in
Technology. The Workshop is also being considered for
similar recognition by the International Federation of
Automatic Control (IFAC).

As mentioned, this effort is achieving a very wide
acceptance to date. Unfortunately, partly because of its
Instrument Society of America origins and the personnel
involved in its Committees, the effort is largely based on
the needs of the continuous process industries. The input
of interested personnel from many other areas of activity
is very badly needed to assure its applicability across all
industries. To provide the necessary input from other
industries, it is hoped that one or more of the technical
societies (United States or international) active in the
discrete manufacturing field will pick up cosponsorship of
the standardization effort presently spearheaded by the
Instrument Society of America and, in cooperation with
it, make certain that a truly general set of languages is
developed for the industrial data collection and automatic
control field.

RECOMMENDED PRACTICES AND
STANDARDIZATION IN SENSOR-BASED
COMPUTER SYSTEM HARDWARE

In addition to the work just described in programming
language standardization, there is an equally vital need
for the development of standards or recommended prac-
tices in the design of the equipment used for the sensor-
based tasks of plant data collection, process monitoring,
and automatic control. Fortunately, there is major work
under way throughout the world to help correct these
deficiencies as well.

As early as 1963 the Chemical and Petroleum Indus-
tries Division of ISA set up an annual workshop entitled
The User’s Workshop on Direct Digital Control which
developed an extensive set of ‘“Guidelines on Users’
Requirements for Direct Digital Control Systems.” This
was supplemented by an equally extensive set of "Ques-
tions and Answers on Direct Digital Control” to define
and explain what was then a new concept for the applica-
tion of digital computers to industria} control tasks. A re-
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cently revised version of these original documents is
available.* The Workshop has continued through the
years, picking up cosponsorship by the Data Handling and
Computation Division and by the Automatic Control Di-
vision in 1968 when it renamed the ISA Computer Con-
trol Workshop. The last two meetings have been held at
Purdue University, West Lafayette, Indiana, as has the
Workshop on Standardization of Industrial Computer
Languages described above.

The ESONE Committee (European Standards of
Nuclear Electronics) was formed by the EURATOM in
the early 1960’s to encourage compatibility and inter-
changeability of electronic equipment in all the nuclear
laboratories of the member countries of EURATOM. In
cooperation with the NIM Committee (Nuclear Instru-
mentation Modules) of the United States Atomic Energy
Commission,-they have recently developed a.completely
compatible set of interface equipment for sensor-based
computer systems known by the title of CAMAC."**
These proposals merit serious consideration by groups in
other industries and are under active study by the ISA
Computer Control Workshop.

Japanese groups have also been quite active in the
study of potential areas of standardization. They have
recently developed a standard for a process control opera-
tor’s console (non CRT based)' which appears to have
considerable merit. It will also be given careful considera-
tion by the Instrument Society of America group.

It is important that the development of these standards
and recommended practices be a worldwide cooperative
endeavor of engineers and scientists from many countries.
Only in this way can all of us feel that we have had a part
in the development of the final system and thus assure its
overall acceptance by industry in all countries. Thus,
both the ISA Computer Control Workshop and the Lan-
guage Standardization Workshop are taking advantage of
the work of their compatriots throughout the world in
developing a set of standards and recommended practices
to guide our young but possible overly-vigorous field.

While we must be careful not to develop proposals
which will have the effect of stifling a young and vigor-
ously developing industry, there seems to be no doubt
that enough is now known of our data and control system
requirements to specify compatible data transmission
facilities, code and signal standards, interconnection
compatibility, and other items to assure a continued
strong growth without a self-imposed obsolescence of
otherwise perfectly functioning equipment.

SUMMARY

This short description has attempted to show some of the
extensive standards work now being carried out by the
Instrument Society of America in the field of the applica-

tions of digital computers to plant data collection, moni-
toring, and other automatic control tasks. The continued
success of this work will depend upon the cooperation
with and acceptance of the overail results of these devel-
opments by the vendor and user company managements
and the help of their personnel on the various committees
involved.
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INTRODUCTION

Operating systems generally provide file management service
routines that are employed by user tasks to access secondary
storage. This paper is concerned with quantitative evaluation
of several suggested performance improvements to the file
management system of the Xerox Data Systems (XDS)
operating systems.

The file management system of the new XDS Universal
Time-Sharing System (UTS) operating system includes the
same service routines employed by the older operating sys-
tem—the Batch Time-Sharing Monitor (BTM). Models for
both UTS! and BTM? have been developed to facilitate per-
formance investigation of CPU and core allocation strategies.
These models do not, however, provide capability to investi-
gate performance of the file management strategies.

A wealth of literature is available on file management sys-
tems. A report by Wilbur® details a new file management de-
sign for the Sigma Systems. Other articles have been published
to define basic file management concepts,%5 to discuss various
organization techniques**¢ and to improve understanding of
the current Sigma file management system.57 However, there
is little published work on the performance of file management
systems.

The task undertaken here is to develop and test a simple
quantitative method to evaluate the performance of proposed
modifications to the file management system. Models are
developed that reproduce current performance levels and
these models are employed to predict the performance im-
provements that will result from the implementation of
specific improvement proposals. The models are validated
against measured performance of the McDonnell Douglas

* Abstracted from an M. S. Thesis of the same title submitted to the
Sever Institute of Technology of Washington University by T. F.
McFadden in partial fuifillment of the requirements for the degree of
Master of Science, May 1972. This work was partially supported by
National Science Foundation Grant GJ-33764X.
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Automation Company XDS Sigma 7 running under the
BTM operating system.

The models developed here are extremely simple, deter-
ministie representations of important aspects of file manage-
ment. This use of simple models to represent very complex
systems is finding increasing application in computer system
performance work. The justification for working with these
simple models on this application are twofold:

1. File management system behavior is not well under-
stood and simple models develop understanding of the
important processes.

2. When applied properly, simple models can quantify
difficult design decisions.

The underlying hypothesis to this and other work with simple
models of computer systems is that system behavior must be
understood at each successive level of difficulty before pro-
ceeding to the next. The success demonstrated here in de-
veloping simple models and applying them in the design
process indicates that this present work is an appropriate
first level in the complexity hierarchy of file management
system models.

The work reported here has been abstracted from a recent
thesis.? Additional models and a more detailed discussion of
system measurement and model verification are presented in
Reference 8.

The paper is organized as follows. The next section de-
seribes the XDS file management system; current capabilities
and operation are discussed and models are developed and
validated for opening and reading a file. Several improvement
proposals are then modeled and evaluated in the third section.

XDS FILE MANAGEMENT SYSTEM

This section is divided into three parts: description of the
file management capabilities, description of the file manage-
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ment system structure, and development and validation of
models for the open and read operations.

Description of capabilities

A file, as defined by XDS, is an organized collection of
space on the secondary storage devices that may be created,
retrieved, modified, or deleted only through a call on a file
management routine.

Each file is a collection of records. A record is a discrete
subset of the information in a file that is accessed by the user
independent of other records in the file. When the file is
created the organization of the records must be specified.
Records may be organized in a consecutive, keyed, or random
format.

The space used by a consecutive or keyed file is dynamically
controlled by the monitor; the space used by a random file
must be requested by the user when the file is created and it
never changes until the file is released.

Open—When a file is going to be used it must be made avail-
able to the user via a file management routine called OPEN.
When the file is opened, the user may specify one of the fol-
lowing modes: IN, that is, read only; OUT-—write only;
INOUT—update; OUTIN—scratch. When a file is opened
OUT or OUTIN it is being created; when it is opened IN or
INOUT it must already exist. The open routine will set some
in-core pointers to the first record of the file if it has been
opened IN or INOUT and to some free space that has been
allocated for the file if it has been opened OUT or OUTIN.
These pointes are never used by the user directly. When the
user reads or writes a record the in-core pointers are used by
file management to trace the appropriate record.

Close—When the user has completed all operations on the
file he must call another routine named CLOSE. A file can
be closed with RELEASE or with SAVE. If RELEASE is
specified then all space currently allocated to the file is placed
back in the monitor’s free space pool and all pointers are
deleted. If SAVE is specified then the in-core pointers are
written to file directories maintained by the monitor so that
the file can be found when it is next opened.

Read and Write—There are a number of operations that
may be performed on records. The two that are of primary
interest are read and write. In a consecutive file the records
must be accessed in the order in which they are written.
Records in a keyed file can be accessed directly, with the as-
sociated key, or sequentially. Random files are accessed by
specifying the record number relative to the beginning of the
file. Random file records are fixed length (2048 characters).

When reading or writing the user specifies the number of
characters he wants, a buffer to hold them, and a key or record
number.

File management system structure

The structures used to keep track of files and records are
deseribed.

File Structure—The account number specified by a calling
program is used as a key to scarch a table of accounts called

an account directory (AD). There is an entry in the AD for
each account on the system that has a file. The result of the
AD scarch is a pointer to the file directory. There is only one
AD on the system and it is maintained in the ‘linked-sector’
format (double linked list of sector size [256 word] blocks).

Each entry in the AD contains the account number and
the disc address of the file directory (FD). An FD is a ‘linked-
sector’ list of file names in the corresponding account. With
each file name is a pointer to the File Information Table
(FIT) for that file.

The FIT is a 1024 character block of information on this
file. It contains security, file organization, and allocation in-
formation. The FIT points to the table of keys belonging to
this file.

Figure 1 presents a schematie of the file structure.

Sequential Access and Keyed Structure—In describing record
access, attention is restricted to sequential accesses. The strue-
ture of consecutive and keyed files is identical. Both file
organizations allow sequential accesses of records. Because the
structures are the same and both permit sequential accesses
there is no true consecutive organization. All of the code for
this organization is imbedded in the keyed file logie. The only
difference between the two structures is that records in a
consecutive file may not be accessed directly.

The result of this implementation is that most processors
have been written using keyed files rather than consecutive
files because there is an additional capability offered by
keyed files and there is no difference in speed in sequentially
accessing records on either structure. Measurements have
established that only 16 percent of the reads on the system
are done on consecutive files while 94 percent of the reads on
the system are sequential accesses. For these reasons, empha-
sis is placed on improving sequential accesses.

Once a file is opened there is a pointer in the monitor Cur-
rent File User (CFU) table to a list of keys called a Master
Index (MIX). Each MIX entry points to one of the data
granules associated with the file. Data granules arc 2048
character blocks that contain no allocation or organization
information. Figure 2 is a schematic of the record structure.
Each entry in the MIX contains the following fields:

GORE FILE DIRECTORY FILE INFORMATION TABLES
T i
ACCOUNT | FILEl _’—_I_)_._a FILEZ
DIRECTORY } FIE2 SECURITY
POINTER | . | REGORD POINTERL—>
1 . |
! : |
ACCOUNT ) FILEn __T—-r FILEn
DIRECTORY SECURITY
Ry l\_/"' RECORD POINTER| s,
ACCTI —>
[ Yelel v

ro. I

[ i

I Accta FILEl —> ...
I . |
P

-

Figure i— File structure
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(a) KEY—In a consecutive file the keys are three bytes in
length. The first key is always zero and all others fol-
low and are inecremented by one.

(b) DA—The Disc Address of the data buffer that con-
tains the next segment of the record that is associated
with this key. Data buffers are always 2048 characters
long. The disc address field is 4 characters.

(¢) DISP—The byte displacement into the granule of the
first character of the record segment.

(d) SIZE—XNumber of characters in this record segment.
(¢) C—A continuation bit to indicate whether there is
another record segment in another data granule.

(f) FAK—First Appearance of Key—When FAK =1 then
this entry is the first with this key.

(g) EOF—When set, this field indicates that this is the
last key in the MIX for this file. End Of File.

Space Allocation—The Sigma systems have two types of
secondary storage devices—fixed head and moving head.
The fixed head device is called 2 RAD (Rapid Access Device);
the moving head device is a disc. The allocation of space on
these devices is completely and dynamically controlled by
the monitor subject to user demands.

The basic allocation unit is a granule (2048 characters)
which corresponds to one page of memory. The basic access
unit is a sector (1024 characters). A sector is the smallest
unit that can be read or written on both devices.

The account directories, file directories, file information
tables and master indices are always allocated in units of a
sector and are always allocated on a RAD if there is room.
Data granules are allocated in single granule units and are
placed on a dise if there is room. The SWAP RAD is never
used for file allocation.

Table I presents the characteristics for the secondary
storage devices referenced here.

If sis the size in pages of an access from device d, the aver-
age time for that access (TAq(s)) is:

TAg4 (S) =Lg+Sq+ 2%sxT My
where:
Ly is the average latency time of device d

84 is the average seek time of device d
TMais the average multiple sector transfer time of device d.

When accessing AD, FD, MIX or FIT sectors, the average
transfer time for a single sector from device d is:

TSa=Lg+Sa+ T4
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Figure 2—Record structure

TABLE I—Speeds of Sigma Secondary Storage Devices

7242 DISC
DEVICE 7212 RAD 7232 RAD PACK
Variable Name Symbol SRAD RAD DP
Capacity (granules) 2624 3072 12000
Latency (average ms) L 17 17 12.5
Seek Time—average S 0 0 75 ms
—range 0 0 25-135 ms
Transfer Time (one sec- T .34 2.67 3.28
tor) (ms per sector)
Transfer Time (multiple TM .41 2.81 4.08

sectors) (ms per sector)

where:

Tq is the average single sector transfer time for device d.

Models of current operation

Models are developed and validated for the open file and
read record operations. The model algorithms are closely
patterned after a simple description of system operation such
as found in References 3 or 8. Reference 8 also develops a
model for the write operation and describes in detail the
measurements for specifying and validating the models.

Open Model—A simple model for the time it takes to open
a file is:

TO=TPC+TOV+TFA+TFF+TFFIT

where:

TPC =time to process the request for monitor services.

TOV  =time to read in monitor overlay.

TFA =time to search AD and find the entry that
matches the requested account.

TFF  =time to search FD and find FIT pointer for the
requested file.

TFFIT =time to read FIT and transfer the allocation and
organization information to the CFU and user
DCB.

The functions for TOV, TFA, TFF and TFFIT can be re-
fined and expressed using the following parameters:

PADR =probability that an AD is on a RAD instead of a

dise pack.

PFDR =probability that an FD is on a RAD instead of a
dise pack.

PFITR = probability that an FIT is on a RAD.

NAD =average number of AD sectors.

NFD =average number of FD sectors per account.

TAD1 =time it takes to discover that the in-core AD
sector does not contain a match.

TFD1 =same as TADI for an FD sector.

TAD2 =time it takes to find the correct entry in the in-
core AD sector given that the entry is either in
this sector or there is no such account.



66 National Computer Conference, 1973

TABLE II—Observable Open Parameters

PADR 1.00 TO 186.17 ms
PFDR .872 TAD1 .1 ms
PFITR .906 TAD2 1.5 ms
NAD 6 sectors TFD1 .1 ms
NFD 2.6 sectors TFD2 1.5 ms
SO 2.5 pages PON .333
TPC 1.7 ms

TFD2 =same as TAD2 for an FD sector.

PON =the probability that, when a request is made for
the open overlay, it is not in core and therefore
the RAD must be accessed.

SO =number of granules occupied by the open overlay
on the SWAP RAD.

The time for the open overlay can be expressed as:
TOV =PON+*TAsrap(SO)
and the time to find the file dircctory pointer is:
NAD
2

TFA=PADRx* *(TSgrap+ TADI)
NAD

+(1~PADR)* —

#*(TSpp+TADI)

+TAD2—-TAD1
and the time to find the file information table pointer is:

NFD

&

TFF=PFDRx*

*(TSrap+ TFD1)

NFD
+(1—-PFDR)*

*(TSpp+ TFD1)

+TFD2—-TFD1
and the time to read the file information table is:
TFFIT=PFITR*TSgap+ (1 —PFITR)*TSpp

Table II contains the values of observable parameters
measured in the period January through March, 1972.

Table III contains the values of computable parameters
discussed in the open model.

The difference between the two figures, the observed and
computed values of TO, is 33 percent. There are a number of
ways this figure can be improved:

(a) When the TO of 186 ms was observed, it was not pos-
sible to avoid counting cycles that were not actually

TABLE III—Computed Open Parameters

TASRAD(SO) 19.0 ms
TOV 6.3 ms
TFA 60.7 ms
TFF 30.3 ms
TO 125.4 ms

being spent on opening a file. The system has symbiont
activity going on concurrently with all other opera-
tions. The symbionts buffer input and output between
the card reader, on-line terminals, the RADs and the
line printer. So the symbionts steal cycles which are
being measured as part of open and they also produce
channel conflicts. Neither of these is considered by the
model.

(b) The figure NFD is supposed to reflect the number of
file directories in an account. The measured value is
2.6. Unfortunately there is a large percentage (40
percent) of accounts that are very small, perhaps less
than one file directory sector (30 files). These accounts
are not being used. The accounts that are being used
90 percent of the time have more than three file direc-
tory sectors. Therefore if the average number of FD
sectors searched to open a file had been observed
rather than computed, the computed value for TO
would have been closer to the observed TO.

Read Model—To simplify the read model these assumptions
are made:

(a) Thisreadisnot the first read. The effect of this assump-
tion is that all buffers can be assumed to be full. Since

TABLE IV—Observed Read Parameters

TPC 0.65 ms TMS 2 ms
TTR 1.00 ms PMIXR 0.585
TR 20.35 ms NEM 47.7 entries

there are an average of 193 records per consecutive
file, the assumption is reasonable.

(b) The record being read exists. This assumption implies
the file is not positioned at the end of file. Again, only
1 percent of the time will a read be on the first or last
record of the file.

(c) The record size is less than 2048 characters. This as-
sumption is made so that the monitor blocks the rec-
ord. The average record size is 101.6 characters.

These assumptions not only simplify the model, but they
reflect the vast majority of reads.
The time to read a record can therefore be written as:

TR=TPC+TGE+TTR+PEC*TGE
where:

TPC=time to process request to determine that it is a read
request. This parameter also includes validity
checks on the user’'s DCB and calling parameters.

TGE=time to get the next key entry (even if the next
entry is in the next MIX) and make sure that the
corresponding data granule is in core.

TTR =time to transfer entire record from monitor blocking
buffer to user’s buffer.

PEC=the probability that a record has two entrics—
entry continucd.



File Management Performance Improvements 67

The probability, PEM, that the next MIX entry is in the
resident MIX can be expressed as a function of the average
number of entries, NEM, in a MIX sector:

NEM -1

PEM = —mr

The probability, PEG, that the correct data granule is in
core is a function of the number of times the data granule
addresses change when reading through the MIX relative to
the number of entries in the MIX.

Table IV presents the observed values of the parameters
used in the sequential read model. The computed results for
the read model are found in Table V.

The difference between the computed and observed values
for TR is 42 percent. The error can be improved by refining
the observed values to correct the following:

(a) The symbionts were stealing c¢ycles from the read rec-
ord routines and producing channel conflicts that the
timing program did not detect.

(b) In addition, the observed value of TR includes time
for reads that were direct accesses on a keyed file.
These direct accesses violate some of the read model
assumptions because they frequently cause large scale
searches of all the Master Index sectors associated
with a file.

MODELS OF THE PROPOSALS

In this section, two of the performance improvement pro-
posals presented in Reference 8 are selected for quantitative
evaluation. One proposal impacts the open model and the
other proposal impacts the read model. The models developed
previously are modified to predict the performance of the file
management system after implementation of the proposals.

A proposal that impacts the open/close routines

Implementation Description—To preclude the necessity of
searching the AD on every open, it is proposed that the first
time a file is opened to an account the disc address of the
FD will be kept in one word in the context area. In addition,
as an installation option, the system will have a list of library
accounts that receive heavy use. When the system is initial-
ized for time-sharing it will search the AD looking for the
disc address of the FD for each account in its heavy use list.
The FD pointers for each heavy use account will be kept in a
parallel table in the monitor’s data area.

The result is that better than 95 percent of all opens and
closes will be in accounts whose ¥D pointers are in core. For
these opens and closes the AD search is unnecessary.

TABLE V—Computed Read Parameters

TR 11.8 ms PEC 0.042
TGE 9.7 ms PDG 0.93
PEM 0.979 TRMIX 49.18 ms

Effect on Open Model—For the majority of opens the above
proposal gives the open model as:

TO'=TPC+TOV+TFF+TFFIT
=TO-TFA
=125.4—60.7=64.7

This represents a percentage improvement of 51.5 percent.
(The figures used for TO and TFA are in Table III).

A proposal that impacts the read/write routines

Implementation Description—The significant parameter in
the read model is the time to get the next entry, TGE.
There are two expressions in TGE which must be considered:
the first is the average time to get the next Master Index
entry; the second, is the average time to make sure the correct
data granule is in core. The levels of these expressions are
1.03 and 6.7 ms. It is apparent that the number of times that
data granules are read is contributing a large number of
cycles to both the read and write models.

One of the reasons for this, of course, is the dispropor-
tionately large access time on a disc pack compared to a
RAD. Nevertheless it is the largest single parameter so it
makes sense to attack it. A reasonable proposal to decrease
the number of data granule accesses is to double the buffer
size. The model is developed so that the size of the blocking
buffer parameter ean be varied to compare the effect of vari-
ous sizes on the read and write model.

Effect of Proposal on the Read M odel—The proposal outlined
above will impact only one parameter in the read, PDG.
PDG represents the probability that the correct data granule
is in core. Its current value is 0.93.

Now, there are three reasons that a Master Index entry
will point to a different data granule than the one pointed to
by the entry that preceded it:

1. The record being written is greater than 2048 charac-
ters and therefore needs one entry, each pointing to a
different data granule, for every 2048 characters.

2. The original record has already been overwritten by a
larger record, requiring a second Master Index entry
for the characters that would not fit in the space re-
served for the original record. The second entry may
point to the same data granule but the odds are ten
to one against this because there are, on the average,
10.6 data granules per file.

3. There was not enough room in the data granule cur-
rently being buffered when the record was written.
When this occurs the first Master Index entry points
to those characters that would fit into the current data
granule and the second entry points to the remaining
characters that are positioned at the beginning of the
next data granule allocated to this file.

The first two reasons violate the assumptions for the read
model and are not considered further here.

The third reason is the only one that will be affected by
changing the data granule allocation. It follows that if there
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TABLE VI—Impact of Blocking Buffer of Size N Pages on Read Model

N (pages) PDG (ms) TGE (ms) TR (ms)
1 .930 9.729 11.78
2 .955 7.337 9.20
5 .970 5.903 7.80
10 .975 5.424 7.30

are 10.6 data granules per file by doubling the allocation size
there will be 5.3 data ‘granules’ per file. This effectively di-
vides by two the probability that a record had to be continued
because of the third item above. Tripling the size of the block-
ing buffer and data ‘granule’ would divide the probability by
three.

The question to be resolved at this point is: What share of
the 7 percent probability that the data granule address will
change can be attributed to the third reason above?

A reasonable approximation can be developed by the fol-
lowing argument:

(a) There are 2048*n characters in a data ‘granule’.

(b) There are 101.6 characters per record.

(¢) Therefore there are 20.15#n records per data ‘granule’.

(d) The 20*n record will have two Master Index entries.

(e) Then, on the average, one out of every 20*n entries
will have a data granule address that is different from
the address of the preceding entry. This probability is
1/(20.15*n) which is .0496/n.

Then for n=1, as in the original read and write models, 5
of the 7 percent figure for 1-PDG is attributable to records
overlapping data granule boundaries. The actual equation
for PDG is:

PDG=1 ——(.02+ %)

where n is the number of granules in the monitor’s blocking
buffer.

The impact of various values of n on the read model is listed
in Table V1. It is obvious that by increasing the blocking buf-
fer size, the performance of the read model can be improved.
However the amount of improvement decreases as n increases.

If there are no other considerations, a blocking buffer size
of two promises an improvement of 21 percent in the read
routine. Perhaps a user should be allowed to set his own block-
ing buffer size. A heavy sort user that has very large files, for
example, can be told that making his blocking buffers three
or four pages long will improve the running time of his job.
A final decision is not made here because the profile of jobs
actually run at any installation must be considered. In addi-
tion, there are problems like: Is there enough core available?

Is the swap channel likely to become a bottleneck due to
swapping larger users? These problems arc considered in
Reference 8 and found not to cause difficulty for the opera-
tional range considered here.

CONCLUSIONS

This paper does not pretend to develop a complete file man-
agement system model. Such a model would necessarily con-
tain model functions for cach file management activity and
some means of combining these functions with the relative
frequency of each activity. The model result would then be
related to system performance parameters such as the num-
ber of users, the expected interactive response time and the
turn-around time for compute bound jobs.

The deseribed research represents an effort to model a file
management system. The model is detailed enough to allow
certain parameters to be changed and thus show the impact
of proposals to improve the system.

The development of the model is straightforward, based on
a relatively detailed knowledge of the system. This type of
model is sensitive to changes in the basic algorithms. The
model is developed both to further understanding of the sys-
tem and to accurately predict the impact on the file manage-
ment system of performance improvements.

Work remains to be done to integrate the model into overall
system performance measures. However comparisons can be
made with this model of different file management strategies.
Development of similar models for other systems will facili-
tate the search for good file management strategies.
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A method of evaluating mass storage effects on system

performance

by M. A. DIETHELM
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INTRODUCTION

A significant proportion of the cost and usefulness of a
computing system lies in its configuration of direct access
mass storage. A frequent problem for computing installa-
tion management is evaluating the desirability of a
change in the mass storage configuration. This problem
often manifests itself in the need for quantitative decision
criteria for adding a fast(er) direct access device such as a
drum, disk or bulk core to a configuration which already
includes direct access disk devices. The decision criteria
are hopefully some reasonably accurate cost versus per-
formance functions. This paper discusses a technique for
quantifying the system performance gains which could be
reasonably expected due to the addition of a proposed
fast access device to the system configuration. It should
be noted that the measurement and analysis techniques
are not restricted to the specific question of an addition to
the configuration. That particular question has been
chosen in the hope that it will serve as an understandable
illustration for the reader and in the knowledge that it has
been a useful application for the author.

The system performance is obviously dependent upon
the usage of the mass storage configuration, not just on
the physical parameters of the specific device types con-
figured. Therefore, the usage characteristics must be
measured and modelled before the system performance
can be estimated. This characterization of mass storage
usage can be accomplished by considering the mass stor-
age space as a collection of files of which some are perma-
nent and some are temporary or dynamic (or scratch). A
measurement on the operational system will then provide
data on the amount of activity of each of the defined files.
The mass storage space is thereby modelled as a set of
files, each with a known amount of I/0 activity. The
measurement technique of file definition and quantifica-
tion of I/0 activity for each is described first in this
paper along with the results of an illustrative application
of the technique.

The next step in predicting the system performance
with an improved (hopefully) mass storage configuration
is to decide which files will be allocated where in the
revised mass storage configuration. The objective is to
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allocate the files in such a manner as to maximize system
performsance. In tThe case of adding a fast device to the
configuration, this objective is strongly correlated, within
reasonable limits, with an allocation policy which maxi-
mizes the resulting I/0 activity to the fastest device in
the mass storage configuration. This allocation policy
can be mathematically modelled as an integer linear
programming problem which includes the constraint of
a specified amount of fast device storage capacity.

Having the file allocations and resulting I/0 activity
profiles for a range of fast access device capacities, the
expected system performance change can be estimated by
use of an analytical or simulation model which includes
the parameters of proportionate distribution of I/0 activ-
ity to device types and device physical parameters as well
as CPU and main memory requirements of the job
stream. The results of application of an analytic model
are described and discussed in the latter paragraphs as a
prelude to inferring any conclusions. The analytic model
is briefly described in the Appendix.

MASS STORAGE FILE ACTIVITY
MEASUREMENT

The first requirement in determining the files to be
allocated to the faster device is to collect data on the
frequency of access to files during normal system opera-
tion. Thus the requirement is for measurements of the
activity on the existing configuration’s disk subsystem.
Such measurements can be obtained using either hard-
ware monitoring facilities or software monitoring tech-
niques. Hardware monitoring has the advantage of being
non-interfering; that is, it adds no perturbation to normal
system operation during the measurement period. A
severe disadvantage to the application of hardware moni-
toring is the elaborate, and expensive, equipment
required to obtain the required information on the fre-
quency of reference to addressable, specified portions of
the mass storage. The preferred form of the file activity
data is a histogram which depicts frequency of reference
as a function of mass storage address. Such histograms
can be garnered by use of more recent hardware monitors
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which include an address distribution capability, subject
to, of course, the disadvantages of cost, set up complexity,
and monitor hardware constrained histogram granularity.
A more flexible method of gathering the required infor-
mation is a software monitor. This method does impose a
perturbation to system operation but this can be made
small by design and code of the monitor program. It has
the strong advantage of capturing data which can be
analyzed after the fact to produce any desired reports
with any desired granularity. A software monitor de-
signed to work efficiently within GCOS* was utilized to
obtain file activity data for the analysis described for
illustration.

This ‘privileged’ software obtains control at the time of
initiation of any I/O command by the processor and
gathers into a buffer information describing the I/0
about to be started and the current system state. This
information, as gathered by the measurement program
used for this study includes the following:

Job Characteristics
Job and activity identification
File identification of the file being referenced
Central Processing Unit time used by the job
Physical 170 Characteristics
Subsystem, channel and device identification
1/0 command(s) being issued
Seek address
Data transfer size

The information gathered into the data buffer is writ-
ten to tape and subsequently analyzed by a free standing
data reduction program which produced histograms of
device and file space accesses, seek movement distances,
device utilization and a cross reference listing of files
accessed by job activities. Of primary concern to the task
of selecting files to be allocated to a proposed new device
are the histograms of device and file space accesses.

A histogram showing the accesses to a device is shown
in Figure 1. This histogram is one of 18 device histograms
resulting from application of the previously described
measurement techniques for a period of 2 1/4 hours of
operation of an H6070 system which included an 18
device DSS181 disk storage subsystem. The method of
deriving file access profiles will be illustrated using Figure
1. The physical definition of permanently allocated files
is known to the file system and to the analyst. Therefore,
each area of activity on the histograms can be related to a
permanently allocated file if it is one. If it is not a perma-
nently allocated area, then it represents the collective
activity over the measurement period of a group of tem-
porary files which were allocated dynamically to that
physical device area. Figure 1 depicts the activity of some
permanent files (GCOS Catalogs, GCOS-LO-USE, SW-
LO-USE, LUMP) and an area in which some temporary
files were allocated and used by jobs run during the

* GCOS is the acronym for the General Comprehensive Operating
Supervisor snftware for H6000 systems.
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Figure 1—Histogram of accesses to device 1 space

measurement period (ST1-MISC). The leftmost column
of the histogram gives the number of accesses within each
5 cylinder area of the disk pack and consequently is used
to calculate the number of accesses to each file, perma-
nent or temporary, defined from the activity histograms
for each device. Often the accessing pattern on a device is
not concentrated in readily discernible files as shown in
Figure 1 but is rather randomly spread over a whole
device. This is the case with large, randomly accessed
data base files as well as for large collections of small,
user files such as the collection of programs saved by the
systems’ time sharing users. In these cases the activity
histograms take the general form of the one shown in
Figure 2. In this case no small file definition and related
activity is feasible and the whole pack is defined as a file
to the fast device allocation algorithm. The resulting files
defined and access proportions for the mentioned moni-
toring period are summarized in Table I. The unit of file
size used is the “link,” a GCOS convenient unit defined
as 3840 words, or 15360 bytes. Table I provides the inputs
to the file allocation algorithm which is described in the
following section.
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Figure 2—Histogram of accesses to device 2 space
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TABLE I—Measured File Activity

Dual 6070—Monitoring Period Approx. 2.25 Hours
DSS181 {16 used deviees)—149180 Accesses
Exposure (3D) Workload (6/23/72)

File Name Size (Links) Activity (%)
GCOS CAT 80 4.1
GLOS-HI-USE 18 12.7
GLOS-LO-USE 140 3.5
SU-HI-USE 40 0.9
SW-LO-USE 150 1.7
SW-SYSLIB 40 1.3
LUMP 20 0.8
#P 55 0.9
#8 200 4.5
PACK16 750 3.9
STI-MISC 150 2.8
GLOAD-FILES 150 4.7
SYOU 2 1200 9.1
DEV. CATS 360 2.6
PACK 11 1200 3.1
PACK10 1200 4.1
D6 SCRATCH 100 3.1
D7 SCRATCH 180 2.0
D13 C SCRATCH 90 1.4
D3 SCRATCH 1 150 2.7
D3 SCRATCH 2 90 1.0
D4 MISC 600 3.3
SYOU 1 1200 9.0
D7 MISC 600 1.4
PACKS 1200 2.7
PACK9 1200 4.0
OTHER 7940 8.6

Note: 1 Link =3840 Words =15360 bytes.

OPTIMAL FILE ALLOCATION TO FAST DEVICE
WITH LIMITED CAPACITY

Having a set of mass storage files defined as well as a
measured profile of the frequency of access to each, the
next step is to postulate an allocation of these files to the
mass storage subsystems. For purposes of illustration it
will be assumed that this allocation problem may be
characterized as the selection of that subset of files which
will fit on a constrained capacity device. The selected
files will then result in the maximum proportion of 1/0
activity for the new device being added to the mass stor-
age configuration. This problem of selecting a subset of
files may be formulated as an integer linear programming
application as follows.

GIVEN
A set of n pairs (s;, f:), defined as:

s;= Size (links) of the 7th file,
fi= Fractional frequency of reference to the zth file.

A maximum size constraint, S, of the proposed fast access
device.

THE PROBLEM

Select from the given set of files that subset which maximizes
the sum of the reference frequencies to the selected subset
while keeping the sum of the selected subset file sizes less
than or equal to the given fast device capacity limitation.

MATHEMATICAL FORMULATION
Define

0—ztk file is not selected
8=
1—3t file is selected for allocation to fast device.

Then the problem is to find,
MAX z=[ 3 fi-5:]

=Ln
Subject to,
Z $:+6; <8

=l,n

This is an integer linear programming problem for
determination of the §. The Integer Programming appli-
cations program available with H6000 systems was used
to find solutions for various sizes of proposed fast access
devices. For the same data discussed previously the inte-
ger programming solution yielded the results shown in
Table 1T and Figure 3.

Table II shows the same list of files, sizes and access
frequencies given in Table I but a column has been
included for each postulated size of fast access device to
be added to the system configuration. An X in a row indi-
cates that that file should be allocated to a fast access
device of the capacity given by the column heading. Thus
the X’s in each column delineate which files to be allo-
cated to the fast access device to provide the maximum
number of fast device accesses for a specified capacity.

Figure 3 shows the activity profile for “optimum” file
allocation as a function of the capacity on a log, scale.
The fairly constant slope of approximately 10 activity
increase perdoubling of the capacity is an interesting
result. In the range of 2-32 million bytes, the same slope
characteristic has been observed in several applications of
this technique.

Application of the preceding technique provides infor-
mation on the I/0 traffic split between the proposed fast
access device and the existing mass storage and it also
dictates which files to allocate to the fast access device to
provide the maximum activity for a specified capacity.
The effects of implementing the derived allocations on
system performance must still be quantified. One method
of estimating the resulting system performance is
described in the following section.

SYSTEM PERFORMANCE IMPLICATIONS

The preceding section has discussed a technique for
selecting a set of files to be allocated to the proposed fast
access mass storage device. It produced not only the allo-
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TABLE II—“Optimum” File Allocation to Fast Access Device
Fast Access Device Capacity (M Bytes)

File Name Size (Links) Activity (%) 1 2 4 8 16 32 64
GCOS CAT 80 4.1 X X X X X X
GLOS-HI-USE 18 12.7 X X X X X X
GLOS-LO-USE 140 3.5 X X X X
SU-HI-USE 40 0.9 X X X
SW-LO-USE 150 1.7 X X
SW-SYSLIB 40 1.3 X X X X
LUMP 20 0.8 X X X X X X
#P 55 0.9 X X
#8 200 4.5 X X X
PACK16 750 3.9
STI-MISC 150 2.8 X X X
GLOAD FILES 150 4.7 X X X X
SYOU 2 1200 9.1 X
DEV. CATS 360 2.6 X
PACK 11 1200 3.1
PACK10 1200 4.1
D6 SCRATCH 100 3.1 X X X X X
D7 SCRATCH 180 2.0 X X
D13C SCRATCH 90 1.4 X X
D3 SCRATCH 1 150 2.7 X X
D3 SCRATCH 2 90 1.0 X X
D4 MISC 600 3.3
SYOU 1 1200 9.0 X
D7 MISC 600 1.4
PACKS 1200 2.7
PACK9 1200 4.0
OTHER 7940 8.6

19200 100.0 118L 258L 508L 1028L 2013L 4153 Size
17.6% 22.09%, 28.9% 39.8% 50.7% 66.29, Act.
149180 Accesses
Approx. 2.25 Hours

cation set but also the resulting proportionate I/0 activity
70} as a function of the capacity of the proposed device. The
choice of capacity of the proposed device, or even to pro-
60 cure it, depends not directly on the proportionate activity
B but rather on the system performance that results from
é 50 each possible activity level. In this section the system
2 1 performance is discussed as estimated by an analytical

S model.
g T The analytical model used to determine the system
e throughput is described in the Appendix. It specifically
L 2 includes the depth of multiprogramming, the job proces-
E sor requirement, and the number, type and speed of one
; 20§ or two IO subsystems in the calculation of system
g throughput. The mathematical assumptions made in the
g 10 analytical model are included in the Appendix informa-
% tion. An additional assumption, operational in nature, is
g o ) that the system always has jobs to work on—it will never

1

2

M + :
v T r
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CAPACITY OF FAST ACCESS DEVICE (M BYTES)

Figure 3—1; 0 activity resulting from “optimum” file allocation to

proposed device

have to decrease its effective depth of multiprogram-
ming due to an insufficient number of jobs being fed into
it. It is also assumed that the processing and high speed
channel load on the system due to unit record devices is
negligible. Similarly, only batch tvpe job streams are
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being modelled, hence no communications subsystem
overhead is included. As a result of these pragmatic
assumptions, the determined throughput will be opti-
mistic. However, the calculated throughputs for differ-
ent configurations should have the same proportional
relationships as the real systems.

The inputs required by the analytical model and the

values used for the illustrative analysis are summarized
in Table III below.
The output of the model consists of system throughput in
terms of job completion rate as well as percentage utiliza-
tion factors for the major system resources, e.g., CPU,
memory and I/0 channels. The object of this analysis is
to determine the effectiveness of alternative mass storage
configurations. Therefore system performance, in the
throughput (“work done”’) sense, will be measured as the
proportionate utilization of a system resource which is the
same in each proposed configuration—in this case the
processors. The best mass storage configuration, assuming
a given processor, is that which keeps the given processor
saturated. This definition of system performance good-
ness is only valid, of course, in the throughput sense, cer-
tainly it is not necessarily valid in the turn-around or
response time sense of performance. Regardless of the
relative merits of this definition of system performance, it
will suffice for purposes of illustration. As mentioned
before, any analytical or simulation model of perform-
ance commensurate with the analyst’s requirements may
be employed at this step of the analysis procedure.

Figure 4 shows the normalized system performance
predicted by the analytical model for a group of system
configurations which exemplify the possible mass storage
reconfiguration options. The curves are plotted as a func-
tien of the capacity of a proposed, fast, direct access
device such as a drum or bulk store. The higher curve
shows system performance as a function of the capacity
of a device with an average access time (including data
transfer time) of 1 millisecond. The lower curve is for a
device with an average access time of 10 milliseconds.

TABLE III—Model Inputs

Value(s) used

Description

Central System H6070
CPU Time Per Physical I/0 12 milliseconds

Average Multiprogramming Depth 4 and 7

Disc Subsysiems DSS181 DSS190
Number of Drives 18 16
Number of Physical Channels 2 2
Average Seek Time (ms) 3 30
Average Latency Time (ms) 12.5 8.3
Average Data Transfer Time (ms) 7 3

Drum Subsysiems No Specific Product
Average Access Time, including 1 and 10

Data Transfer {ms)
Distribution of I/0 activity to Disc
or Drum Subsystems

As specified by Figure 3 for
Drum Capacity

AVG ACCESS TNE=1MS ™ 2w

"~ — «@=-CROSSOVER WITH MAIN MEMORY

— - = oo ——  ofpem CROSSOVER WITH FASTER DISCS

k"&_’.«vs ACCESS TIME = 10 MS

S

Y
0 1 2 4 8 16 32 64

PROPOSED DEVICE CAPACITY ( ¥ BYTES )
Figure 4—System performance vs. reconfiguration proposals

Points on the vertical axis of Figure 4 represent configu-
rations which do not include a new, drum type device.
Point A represents the measured system which had a
mass storage configuration of DSS181 devices. Point B is
the predicted system performance resulting from replac-
ing the DSS181 subsystem by a DSS190 subsystem which
also consists of movable arm discs but with faster seek,
rotation and data transfer capabilities. Point C represents
the predicted performance for a system whose mass stor-
age configuration is unchanged (the original DSS181
subsystem) but whose main memory has been increased
to enable a multiprogramming depth of 7 simultaneous
production batch jobs. Horizontal lines intersecting the
performance curves for the drum-like configurations have
been drawn from points B and C. These then show the
performance cross over points which can be factored into
a cost trade-off analysis. It can be noted from these that a
4 megabyte drum produces the same performance
improvement as upgrading the movable arm subsystem,
but less than increasing the main memory capacity. To
equal the performance gain accrued from extending the
main memory, a drum capacity of at least 16 megabytes
is required for the example system.

Cost/performance information can be readily inferred
by replacing capacities and configuration by relevant cost
data. This will not be pursued here as it is necessarily
dependent upon choices of equipment suppliers as well as
the details of any particular facilities’ operations.

SUMMARY

The preceding has described a method of using meas-
urements and mathematical analysis to determine, quan-
titatively, the gains in system throughput to be expected
from various alternative changes to the system configura-
tion. The steps in this method proceed as follows.

1. Obtain accurate measurements of the access charac-
teristics of file activity on the current system during
real operations.
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2. Postulate allocations of files to various feasible
capacities of the proposed new device. This could be
done by subjective inspection of measurement
results or, as described in the preceding text, a
mathematical technique of allocating for maximum
use of a proposed faster device could be employed.

3. Using this allocation-activity information predict
system performance for the various feasible capaci-
ties of the proposed device by use of analytic or
simulation models. This information can then be
translated into cost-performance relationships for
use as one of the criteria in the decision process.

The above procedure is useful and informative. It is
obviously neither foolproof nor all inclusive. The file
activity information, as used, represents average activ-
ity over a monitoring period which may or may not be
representative of ‘“most” periods of system operation.
Further no sequential relationships (the patterns of ac-
tivity shifting from one file to another during the period)
are utilized although the measurement technique could
provide this information to a reasonable degree, e.g., a
Markov transition matrix of access from each file to the
next one accessed. The pros and cons of any and all ana-
lytic and simulation models are also always a subject of
controversy. Nevertheless it can be concluded that a sci-
entific procedure such as the one described, which uses
currently available measurement and analysis techniques
to provide reasonable estimates of system performance
gives a significant assist to the decision process.

APPENDIX

The Queuing Model of System Performance

There are various techniques of evaluating the perform-
ance of computer systems. The two more direct
approaches are measurement and analysis of models. In
the case of systems not yet in a productive situation,
measurement cannot be done. Analysis of models, how-
ever, can be used to evaluate performance of even quite
abstract hypothetical systems. There are two popular
techniques of computer system modelling. One is simula-
tion and the other is analytic mathematical modelling.
Simulation has proven a successful technique but is typi-
cally a major project, costly in both men and computer
time. Analytical modelling however, usually results in a
small computer time requirement for system evaluation.
This permits parametric or sensitivity analyses not
always economically feasible with a simulation model. An
analytic model, which includes consideration of the basic
computing system features (e.g., main memory limitation,
file subsystems, and processor competition), is a useful
aid in evaluating system level performance of computer
systems.

The particular model used in this analysis was devel-
oped by Don R. Rice.* Figure 5 is a sketch of the model
system. When a job enters the system, it is placed in the

*D. R Rice, An Analytical Model for Computer System Performance
Analysis, Ph D Dissertation, University of Florida, 1971.

Job Arrivals

System Input Queue

Finite Memory
(Maximum of K Jobs)

CPU Service

1/0
Subsystem
Service

Job Departures

Figure 5—The system model.

system input queue. If there is room in memory (less than
K jobs already resident) the job immediately is allocated
to memory. The job then gets, in its turn, alternate proc-
essor quantums and I/0 services from each device in a
specified proportion. When its total processing and I/0
requirements have been met, the job leaves the system.
This departure leaves an unoccupied slot in memory
which is immediately allocated to the earliest arriving job
in the system input queue.

The mathematical technique of evaluation such a sys-
tem requires certain assumptions:
These are:

(1) Each user of the system behaves independently of
all other users.

(2) All users are statistically identical.

(3) Arrivals into the system are Poisson distributed.

(4) Each increment of service by the processor(s) is
exponentially distributed with mean value C/f
where C is the mean processor requirement per job
and f is the mean total number of I/ O connects per
job.

(5) The time required for each file service is exponen-
tially distributed with mean value F; where F, is
the mean effective access time for file device 1.

The described system operation and assumptions permit
formulation of the problem as a continuous parameter
Markov chain as a basis for analysis.



The memory bus monitor—A new device for
developing real-time systems

by RICHARD E. FRYER

Naval Weapons Center
China Lake, California

INTRODUCTION

The memory bus monitor was designed to assist in pro-
gram development on dedicated computers. A dedicated
computer is defined here to be one that is used for only
one major application and is available to the programmer
in blocks of time as needed to complete the development
and checkout of his problem. Because of high cost, few
large scale computers can be operated in this manner.
However, many medium scale and virtually all minicom-
puters (including airborne and other process control
computers) are operated this way, at least when assembly
language code is being written. Most systems classified as
real-time also fall in this category.

The cost of such systems hardware is decreasing at
such a rate that their number is dramatically increasing.
Progress in reducing software costs is virtually nonexis-
tent, even though it is generally regarded as being the
limiting factor in the development of these systems.!
These reasons give economic justification for the develop-
ment of tools to assist in the programming task.

Most instrumentation and monitoring techniques have
been developed since 1965.% A survey of bibliographies on
systems measurements®* also reveals that software evalu-
ation and measurement techniques are being explored at
a much more intense level than hardware approaches—
probably because computer hardware designers and users
continue to be distinct varieties with relatively little cross-
pollination. The predominance of measurement tech-
niques has been developed to assist in improving time-
sharing systems or to aid comparison of large systems.
Very little emphasis has been placed on the needs of
programmers, and even less on applications for medium
and small scale systems.

Some instrumentation aids have been in use since the
early 50’s. The breakpoint register has been implemented
on many systems at least as old as the IBM 650° and as
large as the UNIVAC 1108. This register allows the pro-
grammer to execute a program at full speed until the
instruction register {or perhaps a general register) agrees
with the breakpoint value; then halt. The user can then
step through the program one instruction at a time (a
practice that is probably discouraged at 1108 installa-

s

tions). In spite of the simplicity of this device, it can be a
great--help to. the programmer. It has been reinvented a
number of times in the last few years by vendors of small
machines.

REAL-TIME SYSTEMS DEVELOPMENT

Development of software systems for real-time applica-
tions typically proceeds through definition and specifica-
tion, design, implementation and checkout stages. Due to
difficulties in predicting subprogram size and timing for
various functions, it isn’t usually known if overall size
and timing goals will be met until the complete system is
benchmarked. When original design is incomplete or sys-
tem specifications are revised, the goals my be exceeded
by a substantial margin. Then program cycle time or
memory requirements (sometimes both) must be reduced
without adversely affecting the other parameter. And this
optimization must take place while program debugging
continues.

Machine software simulators and assembly language
debugging programs (such as Digital Equipment Com-
pany’s ODT) are among the tools available at this stage of
system design. Many aspects of system design can be
verified with these tools—logical flow, variable scaling
and correctness of computation, for example—but they
are rather useless for measuring cycle time, locating
faults that occur during peak I/0 bus loading, detecting
race conditions in a multiple asynchronous interrupt
environment and similar problems. A program trace
recorded on tape can yield data on the actual program
path taken (at least over short time periods), but is
expensive to reduce, is not interactive, and can only
approximate real execution times.

The memory bus monitor is intended to supplement
these and other development tools. It is useful for initial
testing, checkout, optimization, and system validation.
Timing and instruction mix data obtained with the sys-
tem are also expected to be useful in future system
designs.

MEMORY BUS INFORMATION

The information carried on the memory bus of a typi-
cal system has a simple format. Address lines specifv the
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memory location to be accessed. Data lines carry the data
read or to be written, and control information includes a
Read/Write (R/W) line and sometimes a split cycle line
for read-modify-write operations. This information is
adequate for the operation of the memory bus monitor.
An Instruction/Data (I/D) status line is also sometimes
available. It specifies how the current bus data word will
be interpreted; its use is described in the operation sec-
tion. Other lines sometimes available include the Direct
Memory Access control line. While this and other control
lines can reveal still more information for the user, they
are not discussed further in this article.

The stream of addresses and data traveling the memory
bus, though simple in form, contains much information
about the execution of a program; information not ordi-
narily available to a programmer. The rich content of bus
information can be extracted using time and address
correlation of bus traffic. Several specific operations on
bus data and the program parameters that thev measure
are listed below.

1. The behavior of any selected variable is easy to fol-
low by identifying when its address is upon the bus.
Actual instead of intended behavior is observable.

2. The address(es) holding any specified data word
that is accessed may also be obtained by monitoring
data values and treating the address as an unknown.

3. One of the most valuable artifacts available from the
bus is the history of addresses just prior to the time
when a specific location is written. This instruction
stream tells the programmer what code was execut-
ing when an instruction or program constant is acci-
dentally destroyed.

4. Another artifact that is often referred to but rarely
measured is the instruction mix for a particular sec-
tion of code. If the code is short enough, a “static”
mix may be determined by hand or via a program
editor. However, large sections of code become
unmanageable and generally unknown branching
ratios at decision points make ‘“dynamic” (actual)
mixes difficult to predict.° Dynamic mixes are easily
obtained with the bus monitor.

5. Branching ratios are also readily extracted from the
bus.

6. Accurate and detailed timing information provides
the most effective way to optimize program cycle
time. Measuring the actual execution time of a sec-
tion of code is easily accomplished using the bus
monitor, in contrast with conventional techniques
that, for example, require changing existing instruc-
tions (such s NOPs) to uncommitted output
instructions to generate timing sentinels.

HARDWARE DESIGN

A basic system

The block diagram in Figure 1 shows the essential
elements of a minimum bus monitor. It can be used to
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Figure 1—A basic bus monitor

display the contents of any memory location as it is read
or written. The user enters the address of the location to
be monitored and selects Read, Write, or both. The data
values read or written are then displayed in the readout.
A static/dynamic switch (not shown) allows the operator
to stop the display if the update rate is too fast. A read
status indicator can be set to blink or latch each time the
selected location is read. The trigger to the readout regis-
ter is also connected to a BNC connector on the front
panel so that an oscilloscope or digital counter may be
used for frequency, period, or counting operations. Inter-
rupt and I/0 rates can be monitored this way, for exam-
ple. This signal may be ORed with the halt signal in some
computers to effect the breakpoint function.

An intermediate system

A diagram of the first system constructed appears in
Figure 2. It was designed for a Varian 622A computer in
1969, and has one primary feature missing from the pre-
vious system. The address stack is added consisting of an
8 word shift register. Each new address that appears on
the bus is pushed onto this stack.

The control logic that is used to latch the display regis-
ter can also be routed to freeze the stack. When the
address compare signal halts the stack, the user can
manually revolve the stack past the display to inspect
memory addresses (and thus instruction activity) prior to
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Figure 2—The monitor used on the Varian 622A
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the selected read or write operation. This feature was
commonly used to locate the section of code responsible
for destroying a known location.

The current design of the memory bus monitor

A simplified block diagram of the Memory Bus Moni-
tor appears in Figure 3. In addition to the functions that
existed in the earlier design, the current design has the
following features.

1. The shift register stack is replaced with a 16 word
Content Addressable Memory (CAM) that is used as
a stack, a learning memory, or as a 16 word compar-
ator depending on mode.

2. A 16 word data stack is also added with 2 extra bits
for the R/W status line and the I/D line when avail-
able. The data register (number 4 in Figure 3) and
comparator can generate a trigger when a data word
equal to the register contents appears on the bus.
Bits set in the mask register (number 5) inhibit
comparison of corresponding data bits. That is, they
become “don’t care” bits.

3. The address detector is expanded to 4 registers
(numbers 0—3). Register 1 is used with register 0 to
bracket sections of code and to straddle branches.
An output is also generated that combines registers 0
and 1 to detect any address falling between (0) and
(1), where (n) denotes the contents of register n.

4. The next two address registers, numbers 2 and 3, are
enabling registers. They are used for arming condi-
tions. Comparator pulses from these two are also
used to set and reset an RS flip-flop. The output of
this flip-flop can act as a gate to pass other events.

. The base address register, number 6, and the asso-
ciated adder are used to add a constant to keyboard

(2]

& Mem@ BUS 3

ADDRESS Ellﬁ LD DATA

TIMER VALUES
HOLOING wex RiB
REG A
N s
A
A
c
X

STACK_TRIGGER

L

AEGISTER AND
OCTALIHEX DISPLAY

E § |

DATA
ADDRESS
STACK

16 WORD CAM

DATA

STAC
16 WORS RAM

R/

MASK REG
REG NO. 5

REG NO 0 comp conie apoRess {1

il l STACK ] px || aDDRESS
ACDER
M SATNG,
COUNTER
REG NO 2 sTART ——— 10 COMPUTER HALT
cars EE— RO AT
REG NO 3 comp B

o
REG NO 7 come
Ll uP CTR

e

;

TO RES N
OR DISPLAY MPX

?

Figure 3—The current memory bus monitor

address entries and to subtract that constant from
address readouts. This feature is nearly essential for
effective use with relocated code.

. A watchdog timer function is implemented with reg-
ister 7 and an up-counter. The internal 20MHz
monitor clock is counted down to supply a 1 micro-
second and a 1 millisecond trigger rate for the timer.
The timer may be operated in either “gate mode”
that compares the time interval of the RS gate with
(7) or in a “cycle mode” that compares the time
duration between pulses. In either case, failures
(measured intervals greater than the register value)
generate a trigger.

7. Finally, though not shown in Figure 3, an octal/
hexadecimal switch controls the keyboard and read-
out mode to match the form used by the computer
under test.

(o]

The current monitor is considerably more sophisticated
than the earlier design, but is of no more than moderate
complexity (simpler than a disc controller, for example).
The unit is constructed using wire-wrap and TTL tech-
nology. Approximately 150 SSI and MSI packages are
required for the design, excluding the interface to the
memory bus. The bus interface is on a separate board
that can be easily replaced for transportability between
various 16 bit computers. For machines with a larger
address or data word only the corresponding registers and
display need to be enlarged. The device is mounted in a
197X 12" X3 1/2"'case—one selected to fit along with a
general purpose counter into a small suitcase.

The operators panel of the monitor has the following
features. A hexadecimal keyboard, 2 digit thumbwheel
switch, and an Address-Data display allow the user to
load and verify the contents of the 8 registers. Also, the
CAM storage appears at thumbwheel addresses 105 to 27,;
the data RAM at 30; to 47,. Each comparator output and
the two derived signals are routed to connectors on the
panel. Toggle switches adjacent to the connectors allow
the user to select a combination of these signals to form a
“master” trigger that is routed to the display and stack.
The selected signals may be ANDed or ORed to form a
master trigger. This composite trigger is also routed to
both a pulse and latching indicator. Control is also pro-
vided for the watchdog timer modes and for the condition
to be used to halt the operation of the monitor. A 7 posi-
tion selector switch gives access to the various modes of
operation. Status lights reflect the condition of the timer
and halt logic.

OPERATION MODES AND THEIR USES

The Register R/ W mode is used to load or modify reg-
isters at the beginning of a run, and to review CAM and
RAM contents after a run. Pushbutions on the panel set
the R/W and I/D bits in registers 0 through 4, and these
bits are compared with the bus status lines along with the
address bits.
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The Bus Monitor mode routes the contents of the
memory bus address and data registers to the display
registers. This mode is useful when operating the com-
puter in single step mode.

The Load Stack mode uses the trigger source(s)
selected by the user to transfer current address and data
registers to the stacks. These registers are also transferred
to the display. Typical monitoring operations in this
mode are described below.

1. The activity of a specific location is extracted from
the bus by putting its address in one of the 4 address
registers and enabling the comparator output to
generate the master trigger with the corresponding
toggle switch. More than one register can be used if
desired (4 is the maximum). The trigger generated
pushes the bus address and data registers onto their
respective stacks and also transfers this data to the
display. The R/W enabling bits for the 4 registers
need not be the same. The stack continues to load
until the halt flip-flop is set by the stack full trigger
or any other trigger selected by the user.

2. Addresses containing a specific data word may be
located as this word is read or written by loading
and enabling register 4. These addresses are dis-
played and pushed onto the stack. The mask register
is used to limit the comparison to, for example, the
op code field.

3. Using the data and mask registers in conjunction
with an address register allows a limited study of
variable scaling.

The Halt Stack mode allows all address and data infor-
mation to push the stacks, and halts this operation when
the master trigger occurs. Recent history of bus traffic is
the most important artifact in this mode.

1. The instruction stream that references a given word
can be recovered—particularly useful if a data word
is destroyed as mentioned for the earlier design.

2. Registers 2 and 3 are used to set and reset the RS
flip-flop. The output then enables any other triggers,
allowing the measurement mentioned above to take
place only when an event arms the device, or while
within (or outside) a defined section of code. The (0)
< ADDRESS < (1) trigger can be similarly used
for routines or data arrays instead of single words.

3. When a certain number of tasks must be completed
in a specific time, the watchdog timer is used to halt
the stack, allowing the task currently executing to be
identified.

System Timing and Counting operations are done in
both of the above two modes. The connectors on the front
panel can be connected to a general purpose counter (a
Hewlett Packard 5325 has been used). Common timing
operations are described next.

1. Program loop cycle time is determined by monitor-
ing the frequency or period of the trigger from an
address comparator.

2. Subroutine (or any section of code) timing is done by
measuring the period of the RS flip-flop with regis-
ters 2 and 3 set to the limits of the routine.

3. When a section of code calls another routine, is itself
interrupted, or has multiple exit points the time
measured using the RS flip-flop as described above
is in error. The correct value can be determined by
using the (0) £ ADDRESS < (1) signal, since it
falls to zero when the address falls outside the limits.

4. The effective cycle time is determined from the
memory cycle trigger that is routed from the bus
interface to the front panel. This measurement can
aid the user in determining if faster memory would
speed up his overall system.

Several specific counting operations that are useful are
now described.

1. The branching ratios at a decision point are readily
determined by setting one register to the branch
instruction and another to an instruction in one of
the branches. The counter is operated in the ratio
mode to give a direct ratio reading. All branches can
be quickly checked to insure that the sum of all
ratios is 1.

2. The number of occurrences of an instruction with a
given op code may be counted by using registers 5
and 6 to isolate the op code part of a word. A wait
loop is often a part of real-time programs, and if the
idle time is significant, the instruction mix becomes
contaminated. The address range can then be lim-
ited to exclude the wait loop in a manner already
described. This same technique is used to determine
a mix for a specific task.

The monitor trigger that is derived for timing is also
often useful for synchronizing an oscilloscope during
hardware checkout. Events within the computer and on
the I/0 bus that result from instruction execution can be
‘anticipated’ by the monitor.

The Address Sieve technique operates the CAM as a
learning memory. It is used to locate all instructions that
refer to a specific location. The user derives a trigger in
the usual way, and it causes the previous address (saved
in the holding register shown in Figure 3) to be applied to
the CAM. If that address is not already in the memory, it
is added.

The Selective Dump mode uses the CAM as a 16 word
comparator. The user loads the CAM with up to 16 loca-
tions that he wishes to capture; then sets up a halt trigger.
When the CAM detects a match, the address of the match
in the CAM (that is, 0 to 15) is supplied to the RAM and
the data register is stored in the corresponding RAM loca-
tion.
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The Watchdog Timer runs in all modes and generates
triggers that may be combined for the master or halt trig-
gers. When the timer mode is selected, however, meas-

and CAM are both loaded to provide 32 values. The user
may store all counter values or only those that exceed the
value in register 7. The timer values are also routed to the
display.

DIRECTIONS FOR DEVELOPMENT

When a user wants to know how long a given section of
code takes to execute, he would really like to know the
extremes and something about the distribution. The cur-
rent monitor is unsuitable for collecting all measurements
for statistical analysis since it is a manually operated
device. Anticipating this problem, some effort was made
to ease the transition to computer control of the monitor.
Also, the counter mentioned allows for remote program-
ming and data collection. There are many modes and
instances, however, when the increased cost and complex-
ity of a general purpose computer would not be justified.
Developments in microcomputers make the inclusion of
such a device in an advanced monitor an attractive option
to consider, especially if compilers are written for them.

We envision that both manual and automatic monitors
will find their way into the programmers toolkit.

SUMMARY

This paper has briefly reviewed the software development
problem for real-time and process control applications,
and has shown how memory bus information may provide
data to aid the development of these systems. A device is
described that can extract many different artifacts from
the memory bus with relative ease. The device is inexpen-
sive, small, and can be switched from machine to ma-
chine with little effort.
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INTRODUCTION

Recent progress of IC and LSI technology and advances
in microprogramming technique*! have had a major
impact on computer architecture. Rapidly decreasing
logic and memory costs and ever increasing programming
costs justify more trade-offs being carried out from soft-
ware to firmware and/or hardware, and many
experimental-%?121¢ or commercial''* models, which
stand for these trade-offs, have been announced.

However, it seems that only a little is known about
performance gain obtained by these trade-offs. One of the
main reasons for the lack of evaluation data is that there
are only a few tools to quantitatively evaluate quality of
architecture, firmware or hardware design. There are
three major approaches to this purpose.

One approach is the use of software simulators” which,
sometimes, are very useful, if appropriate simulation
models can be established. However, in most cases, it is
not an easy task to make a good simulation model for
accurate design evaluation. When one wants to simulate a
processor in detail, at the register transfer level, for
example, to evaluate the processor performance using a
software simulator, it will take a long time both to make a
simulation model and to set up simulations of many
parameters. Moreover, there is no way to automatically
convert a simulation model to an actual model, after the
desired model has been completely defined.

Another approach is to make an experimental model on
a conventional microprogrammed processor'? by replacing
its microprogram memory with another one representing
the model. In this approach, a higher simulation speed
can be obtained and processor speed improvements and
cost figures can be directly compared with the conven-
tional processor on which the model is implemented. Dif-
ficulties, however, lie in that available hardware resources
are limited to the processor used, and that evaluation
data gathering is difficult unless some measurement
means are provided.

i o ormathormatioal am dtlooaadio o 1
The third approacn to mathematical or theoretical

treatment®*® of the model can be used to obtain roughly
estimated values, and may be of supplementary use at
this evaluation stage.
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To cope with above mentioned problems of slow simu-
lation speed, large. gaps between evaluation models. and-
actual models of software simulations, and insufficient
evaluation data of hardware simulator approach, the
Computer Design and Evaluation System (CODES),
described in this paper, has been developed. It can be
used to evaluate performance gain by a sort of hardware
simulation approach with rapid simulation speed, a wide
adaptability range, effective measurement capability and
usable supporting softwares.

The system configuration will be described, and appli-
cation examples of CODES to the architecture or com-
puter design problems will be projected in the subsequent
sections.

CODES SYSTEM

System configuration

The CODES system consists of cooperable GPMS,
General Purpose Microprogram Simulator, and SYDAS,
System Data Acquisition System, operable dependently
or independently.

Therefore rapid simulation is attained by means of
hardware simulator, GPMS, and an accurate and wide
range of evaluation data can be obtained by means of
hardware monitor, SYDAS, in addition to the GPMS
built-in data acquisition capability.

Prior to simulation, the equivalent GPMS microin-
structions, into which a model is translated by the aid of
MPGS,” a software system prepared for description of a
model, are loaded into the GPMS microprogram memory,
and also sample program and data used for simulation
are loaded into the main memory. In this case, data
obtained by SYDAS through the current operating sys-
tem may be used for modeling and as initial data.

While the GPMS has been working as the virtual image
of a model, evaluation data, for example, the usage of
microinstructions and hardware registers, are obtained by
the built-in GPMS acquisition function, according to
varying selection conditions.

Simultaneously, SYDAS can obtain more accurate and
selective evaluation data without disturbing the GPMS
simulation process, depending on GPMS control signals.
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Moreover, it is possible for GPMS to control SYDAS
positively in order that a wide range of more selective
data can be obtained by SYDAS and on the contrary, it is
possible for SYDAS to order GPMS so that GPMS ceases
to simulate at a certain time and brings directly unacces-
sible information to the interface.

Furthermore, SYDAS can control GPMS simulation
behavior, in detail for some part and in rough for the
other.

GPMS

GPMS® is a general purpose microprogram controlled
hardware simulator which rapidly simulates any kind of
computer. It consists of three major modules; a process-
ing module which efficiently simulates a data manipula-
tion of a model, a simulation control module which super-
vises a simulation process and a data acquisition module
which measures hardware resource usages. The block
diagram is shown in Figure 1.

Processing module

This module is essentially an arithemetic unit capable
of sixteen bit data manipulation for simulation. It con-
tains a 16K-words core memory used for both a main

memory and a microprogram memory, a 256 words IC
memory, a sixteen bit arithmetic unit and a thirty-two bit
shift unit, etc. A microprogram memory is writable so
that the model and evaluation parameters are easily
changed. A microinstruction is composed of forty bits and
contains one bit timer control field, which is called an S
field, in addition to various fields for data manipulation
and control operation.

Simulation control module

This module supervises the exucution behavior of
microsequences in a microprogram memory, into which
the control section of a model is translated for simulation
by MPGS, and consists of System Timer, Microsequence
State Register, User’s Timer, and Sequence Control Flip-
Flop.

System Timer is the eight decimal digit clock in the
model, which is advanced by one when some GPMS
microinstructions, equivalent to a basic operation, for
example a machine cycle, a microinstruction, or a ma-
chine instruction, have been executed. Microsequence
State Register holds control words of up to eight microse-
quences, and is used to control the simulation process in
GPMS. User’s Timer is composed of eight 32-bit binary
counters, which are incremented each time the microin-
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Figure 1—Block diagram of GPMS
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struction with the S field set at “1” has been executed.
User’s Timer can interrupt simulation control after the
preset time period, and so may be used to make a pseudo
simulation of various interrupt mechanisms. Sequence
Control Flip-Flop consists of the usual sixteen bit flip-
flops, except that each of them can control the microse-
quence execution process.

Data acquisition module

A capability to acquire evaluation data is built in the
GPMS, and it measures the usage of some hardware
resources, such as register, microinstruction and data
path. It consists of sixteen 16-bit words associative
memory holding mask patterns and sixteen 32-bit binary
counters holding the usage.

SYDAS

The SYDAS is a hardware monitor, which processes
the system state signals detected by the high-impedance
probes attached to the wiring of a computer or specially
to the GPMS, measures the activities of the working sys-
tem without affecting either the hardware or software.
The use of the associative memory and associated count-
ers makes it possible to acquire system data in more flexi-
ble ways, and to reduce the volume of the data by extract-
ing the data concerned with a specific measurement.

The SYDAS contains the following major hardware
components:

Probes

Level Converter

Timer

Counters (36-bit X 2)

Associative memory (24-bit X 128 tag) and associated
counters (32-bit X 128)

® Buffer memory (8kW — 36-bit)

® Main control

® Magnetic tape units

® Minicomputer (NEAC-M4)

The system configuration of the SYDAS is shown in
Figure 2.

System state signals are picked up by high impedance
probes, which attach to the backboard pins of a computer

or GPMS. Presently, a total of 60 system state signals are
selected, as in the following groups.

Memory address and its access factor signals
Operation code signals

1/0 channel activity signals

CPU status signals

Control signals, etc.

These signals are converted and amplified by the con-
verter and are then driven through a cable to the main
control. Depending upon the data required, which are
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Figure 2—SYDAS system configuration

specified by the switches on the control panel, the main
control determines how to manipulate the system state
signals. The following four measurement routes are pre-
pared for SYDAS.

Route 1: For measuring the occurrence frequency or
time duration of the event, the system state signals which
are selected by the control panel are sent to the counters,
then, they are measured in the form of time or frequency
count. The measurement data are displayed on the
numerical display and also transferred to the minicompu-
ter periodically—at intervals of 1 or 10 seconds, as speci-
fied by the operation panel.

Route 2: When system events occur, the system state
signals are selected by the control panel, and the timer
values at that event are recorded in the magnetic tape
through the buffer memory.

Route 3: The system signals which correspond to the
watched events are stored in the associative memory
beforehand. Then the system state signals, sent from a
computer system or GPMS, are used to interrogate the
associative memory and an event is found from it. An
event, extracted in such a way, is counted by each asso-
ciated counter in the form of the event occurrence fre-
quency. The measurement data are recorded in the
magnetic tape periodically (100 ms, 1 second or 10 sec-
onds) or when the measurement was finished.
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Route 4: In the same way as for route 3, the system
state and the timer value at that event are recorded in
the magnetic tape for every extracted event.

It is possible that the various system data can be
obtained to rearrange the foregoing four routes with the
system state signals.

Data acquisition interface

Together with the GPMS built-in data acquisition
capability, timely evaluation data in GPMS can be
obtained by SYDAS through the data acquisition inter-
face between GPMS and SYDAS.

There are two kinds of interface, one is a static inter-
face through which SYDAS can acquire fixed, directly
accessible data. For example, microsequence address
patterns, microsequence state information, main memory
address patterns, machine state information and simula-
tion system time information can be obtained independ-
ently of GPMS.

The other is a dynamic and universal interface, which
is installed for GPMS input/output operation. It is used
to acquire data which SYDAS cannot directly access or
cannot obtain alone because their meaning has been
changing during simulation. In this case, required data
with a control field are edited from that by a GPMS
microsequence, especially prepared for special data
acquisition. An example is the intermediate results
obtained by the built-in GPMS data acquisition module.

PROBLEM AREA

Computer systems can be considered to be composed of
three layers, as is shown in Figure 3. At the top, there are
application programs with which users communicate,
then the system software (OS) follows to the first layer,
and the processors or input/output devices, which may be
divided into the firmware and the hardware, are set at the
bottom. The interface between the first and second layer
is defined by the OS specification, typically higher-level
languages, and the other interface is defined by a set of
processor specifications, which is here defined as com-
puter architecture, represented by the machine language.

Most of the architecture problems can be considered as
trade-off problems between the second and the third lay-
ers, so as to obtain better performance-cost at the state-
of-the-art technology. In determining the architecture, at
least two designs, which must be carefully investigated,
are required. One is the design of the system software,
which stands on the architecture, and the other is that of
the processors. In the scope of this paper, the latter part
of the design area is to be mainly discussed. This does not
mean that CODES cannot be applied to evaluating soft-
ware, but that the current interest in rapid progress of
hardware technology emphasizes that part of the design.
The major processor design problems can also be recog-
nized as trade-off problems of determining the firmware

and the hardware interface. Types of these trade-offs and
examples of trades are presented in R. L. Mandell’s
paper.®

The evaluation of these trade-offs with respect to per-
formance-cost is far from trivial, since the performance
criteria are not clearly established and the performance
measures differ from system to system. The performance
measure in this system is primarily defined to be the
processing speed of the model in a particular working
environment. The hardware cost is estimated by the
resources used by the simulation model. Using these
values, overall system performance-cost can be obtained,
applying mathematical analysis or system level software
simulation techniques.

DESIGN AND EVALUATION USING CODES

Firmware/hardware design

In designing the firmware and/or hardware, a designer
frequently encounters a problem of trading functions
performed in the firmware and hardware, or, more gener-
ally, trading performance and cost. He has to determine
the following things so as to optimize the design.

e Functional capabilities of hardware blocks, such as
adders, counters, special functional blocks, etc.

® Operating speed of those functional blocks.

® Amount of hardware resources

¢ Connections between hardware resources.

When CODES is used in this type of design, the
designer makes a model, which is described in the MPGS
language used in CODES. Control part of the model is
expressed in a form of microprogram, which is translated
into the equivalent GPMS microprogram executable on
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Figure 3—Computer system structure
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the CODES. The model description can be either macro-
scopic or microscopic, depending upon evaluation pur-
poses. At the early design stages, where roughly estimated
values are sufficient, a coarse model can work well, and at
later stages, the model should be described as precisely as
the production model. CODES provides evaluation data
by simulating sample programs and data fed into it. The
following data can be obtained through this simulation:

® Qutput of the simulated programs

® Processing time of the simulated model in executing
the simulated programs.

® Processing time in the processing modules or micro-
program routines

® Usage statistics of the hardware resources

By making use of the above data, the designer can
repeatedly change his model to improve the performance-
cost figure, to obtain which these simulation results are
interpreted according to his criterion. Instead of simulat-
ing the whole machine, it is possible to obtain the model
performance estimating the module performance figures,
that are measured by the CODES simulation and statistic
data which are obtained by the currently operating sys-
tems. If the machines are of similar architecture and
hardware, this approach has great advantages.

Trade from system software to firmware

Extensive use of writable microprogram memory fea-
tures trading frequently used functions from system soft-
ware to the firmware, keeping the rest of the instruction
repertoire unchanged. The process of performing the
trade should be started with observation of the current
systems to investigate the effective trade-off point. The
CODES measurement facility serves to determine poten-
tial trade-off functions by measuring the current systems
with respect to the module usage data and the time spent
in each module. Next step is to estimate the performance
and cost increase or decrease ratio, obtained by the
CODES simulation, to embed the selected functions on
the firmware of the system. Finally, the trade is deter-
mined, taking adverse effects into account, such as repro-
gramming the system software to accomodate the trade.
Should convenient linkage convention of calling micro-
program routines from machine language programs be
provided, this type of trade-off may be widely accepted.

When a large amount of reprogramming is acceptable
another approach™ can be taken, as is the case de-
scribed in the next section.

Higher level language processor

Implementation of higher level language (HLL) proces-
sors on the firmware/hardware is a good example of
major trade-off problems, and experiments of implement-
ing many kinds of HLL processors, such as ALGOL,!
SYMBOL,* FORTRAN,* EULER, APL,', etc., have
been reported. However, the cost-effectiveness of firm-

ware HLL processors relative to conventional software
implementation is not clearly established. The important
thing is to define the evaluation measure. An approach,
which is being carried out using CODES, is comparative
evaluation.

At the first stage, relative performance improvement is
to be measured, by implementing the interpretation
phase of the HLL compiler on the firmware. The inter-
pretation method and the functional definition of the
firmware implementation should be as close as those used
in the conventional compiler, in order to fairly compare
the two processors. Comparison is made between the
simulation result of the firmware HLL processor and the
measured data of the conventional one.

After this comparison is made the further evaluation
data of firmware-hardware trade-off, which can be evalu-
ated keeping the architecture fixed, or the evaluation data
of software-firmware/ hardware trade-off can be trans-
lated into the relative performance-cost to the conven-
tional HLL processor.

CONCLUSION

The CODES system is a powerful evaluation tool for
architecture and firmware/hardware design, especially, it
is useful to determine trade-offs, based on quantitative
evaluation data obtained by CODES simulation. For
example, as LSI technology advances, the trade-off
between firmware and hardware becomes of importance.
CODES simulation greatly helps to determine what kind
of LSI should be made. Defining better architecture is
also important, in relation to hardware and software
progress. Since the architecture stands on the state-of-the-
art balance of hardware and software, it is affected by the
changes in either part. CODES can be of use to determine
architecture.

Fast simulation speed have attained in CODES. The
CODES simulation speed depends on the model complex-
ity. Approximate speed ratio of models and the simulator
is 20-30 to 1 in a small scale model simulation, and 50-
100 to 1 in a medium scale model. This fast simulation
speed makes it possible to evaluate on various parameters
and, to some extent, to actually use CODES as a special
computer. The measurement facility embedded in
CODES provides plenty of meaningful data for analysis,
and supporting software helps to make or modify simula-
tion models.

However, CODES is not a completely satisfactory sys-
tem for applying it to various design and evaluation prob-
lems. One of the deficiencies of CODES is that it takes a
lot of time to make a large precise model. More design aid
softwares should be developed to use CODES more effec-
tively. It is being planned to connect CODES to a conven-
tional computer system on line, facilitating to rapidly
change model description or to retrieve modelis in the
files. As the course of the CODES usage experiences
many design problems, more CODES softwares will be
developed to effectively use the system.
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An analysis of multiprogrammed time-sharing

computer systems

by M. A. SENCER and C. L. SHENG
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Ottawa, Canada

INTRODUCTION

The size of the mnvestment required and the comptlexity of
the time-sharing!~® computer systems, TSCS, necessitate a
good deal of effort to be spent on the analysis of the resource
allocation problems which are obviously tied to the cost and
the congestion properties of the system configuration. In this
paper we study the congestion problems in the multipro-
gramming!'—® TSCS’s.

The activity in the past sixteen years in the analysis of the
congestion properties of the TSCS’s by purely analytical
means has been concentrated on the study of the cen-
tral processing unit (or units), CPU(’s), and the related
queues. A good survey of the subject has been provided by
MecKinney.! In the meantime more contributions to this area
have appeared in the literature.®!

There has been a separate but not so active interest in the
study of the congestion problems in the multiprogramming
systems. Heller? and Manacher® employed Gantt charts
{cf. 12) in the scheduling of the sequential “job lists” over
different processors. Ramamoorthy et al.* considered the
same problem with a different approach. A single server
priority queueing model was applied by Chang et al."® to ana-
lyze multiprogramming. Kleinrock® used a 2-stage (each
stage with a single exponential server) “cyclic queueing”?
model to study the multistage sequential servers. Later
Tanaka®® extended the 2-stage cyelic queueing model to in-
clude the Erlang distribution in one of the stages. Gaver!
extended the 2-stage cyelic queueing model of multiprogram-
ming computer systems further by including an arbitrary
number of identical processors with exponential service times
in the input-output, 10, stage in providing the busy period
analysis for the CPU under various processing distributions.

Here we present a multiprogramming model for a general
purpose TSCS, where the arrival and the departure processes
of the programs along with the main system resources, i.e.,
the CPU’s, the different kind of IOP’s and the finite main
memory size, are included and their relationships are
examined.

MODEL

The configuration of the TSCS we want to study consists of
ko>1 identical CPU’s with m groups of I0P’s where the ith

group has k;>1, (i=1,2,...,m) identical processors, as
shown in Fig. 1.

The new programs are assumed to arrive to the ith IOP
group in the form of a time-homogencous Poisson process
with an average arrival rate A;, (¢=1, 2, ..., m). If there is
less than N programs in the system a new arrival is accepted
into the system and is immediately placed in the common
queue before the particular IOP group. If the number of pro-
grams in the system is N, then any new arrival is assumed
to leave the system and never to return. These assumptions
are justified where there is practically a large number of pro-
gram originating sources and these attempt to access the
system, each time, independent of each other and the system
status, otherwise they represent approximations.

Here we consider that each program currently in the sys-
tem has one unit of space (or a “page”’) reserved for it in the
main memory. This assumption increases the efficiency of the
time-sharing policy by making more programs available to
the CPU’s at low system administration complexity, but at
the same time it may increase the IO activity between the
main and the auxiliary memories. In this paper we do not
attempt to study this trade-off.

A program (or a piece of it) after being processed, in the
¢th IOP group according to some service discipline (say
first-come-first-served), either procceds to queue for CPU
processing or departs from the system with the probabilities
p; and 1—p;, respectively.

The programs demanding CPU processing are served by
ko CPU’s in the order of their priorities, in time-sharing
poliey. Thus an idle CPU takes the program with the highest
priority among the waiting ones in the common CPU-queue
for processing. Each program is allocated a “‘time-scale” of
processing, the length of which depends on the priority level
of the program, each time it is scheduled to be processed by
a CPU. A program which needs further CPU processing after
one full time-slice is rescheduled in the CPU queue with an
appropriate priority level. Some programs may not complete
the full time-slice of processing due to various reasons, such
as termination, need for data transfer to and from the auxili-
ary memory or the programmer, etc. In that case the pro-
gram leaves the CPU to join the queue in the ¢th IOP group
to be processed, with the probability ¢:, where =1
An interrupt from a higher priority program may also cause
a currently running program to stop. Here we admit only
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Figure 1—System configuration

preemptive-resume type of interrupt policy where the inter-
rupted program sequence continues from the point where it
was stopped when its turn comes. All the IO and the CPU
queues are conceptual and assumed to be formed in the main
memory.

In this model the processing times of all the CPU’s and the
IOP’s are assumed to be independent and distributed nega-
tive exponentially. The processors in the ¢th group all have
the same mean service time 1/u;, where =0, 1, ..., m. The
transition probabilities between the IOP groups and the
CPU group are assumed to be stationary. These assumptions
have already been used successfully by other authors investi-
gating the TSCS in one form or other (cf. 4 and other refer-
ences on TSCS).

MATHEMATICAL ANALYSIS

In this section we present a mathematical analysis of the
model described in the previous section, by an extension of
the method presented by Jackson.

Let us denote by A, 7=0, 1, ..., m, the average arrival
rate (both internal and external) of programs to the th
group of processors where the oth group represents the CPU
group and the groups 1 to m correspond to the IOP groups.
Then

A=At 20 rad, 1=0,1,...,m (1)
=0
where 20=0
and Toi=¢i fori=1,2,...,m
Tio=1Pj forj=1,2,...,m
r;;=0 otherwise.

Let P(ng, n1, ..., Nm; t) denote the probability of the
state of the system with n; programs in group 7 (being served
or waiting) at time ¢, (=0, 1, ..., m). Then we can write

the system equation, following Feller,2! by relating the state
of the system at time ¢+ to that at time ¢, as follows:

P (o, .y s ) = (1=[C 3 Ao 3 sas(n) )

i=1
XP(no,...,N0m;t)

+ > MERP(ng, . ..

=1

yi—1, .0, N B)

m

+ E ao(na+1)ﬂorgj€,‘hp(ﬂo+1, ceey T?j—]., vy Ny t)
=1
+ Ea.-(n;—l—l)yirquOhP(no-—l, ey n,-+1, ey Ny t)
=l
+C Zae(ni‘l'l)m(l—rm)h
=1
XP(no, ..., ni+1, ..., nm; 1) +0(R). (2)
where C=1 if X n<N
=0
=0 if X n>N,
i=0
a;(n) =min{n, k;}, 1=0,1,...,m

€ ;=minf{n,, 1}, i=0,1,...,m.

By the usual process of forming the derivative on the left
hand side and letting it equal to zero for steady-state and
also replacing P(ng, 1, . . ., tm; 1) by P(no, ny, ..., Np), we
have

0=—[C i Nt i wia;(n;) JP (noy « « .« y Tim)

i=1 =1

+ Y MEP(ng, ..., mi—]1, ., ).

i=1

+ Zao("o+1)l‘0‘1i€ PP(ne+1,...

=1

yi—1 0., )

m

+ Z a;(ni+ 1) ppi€P(m—1,. .

=l

oL L )

+C Zai("i+1)#i(l-pi)P(n0, e

=1

,n,~+l,. . .,71,,,).

(3)

Here as we deal with Markov processes of finite states,
mutually inter-communicating, the normalized solution of
(3) is a proper and unique probability distribution.?? Then it
can be shown by substitution, as in Reference 20, that the
solution to (3) is given by the following theorem which is
different from the previously proved one® in that an arbi-
trary number, .\, is permitted in the svstem.
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Theorem: Define P;(n), for (i=0, 1, ..., m) and (n=
0,1,...,XN) as the probability of » programs in the processor
group ¢ in the above described system in steady state. Then

Pi(0) (Ai/pi)?/nl for n=0,1,...,k;

Pi(n)=
P,‘(O) (A,’/yi)n/ki!kin_k'. fOI' n=k,-, k£+1, N ,N.
Also
P(no, Ny .. s ,nm) =P0(n0) 'Pl('nl) “e. Pm(nrn)
where

P.(0) is determined from the normalizing condition
N
2 Pi(n) =1.
n=0

In the Appendix the theorem given above is extended to
cover general m-stage network as in Reference 20.

ARRIVAL RATES AND SOME
SYSTEM MEASURES

The theorem stated in the previous section suggests that
at the steady state our model can be decomposed into inde-
pendent stages (each stage corresponding to a group of
processors) of similar configuration (with different param-
eters) where each stage can be analyzed in the same way.

First we determine the average arrival rate, A, for each
stage in terms of the given system parameters. Writing R=
[rii], A=[A;] and A=[A;] where R is a(m+1) X (m+1)
square matrix and A and M are column vectors, we can put
(1) in matrix form, as

1 —P1 —P2 ... —DPm Ao 0
—q1 1 0 ... 0 A A
—g 0 1 0. 0 Az
: I A 4)
| —m [ 0 1 JAn] LAal
or
RA=X

When | R| is not identically zero (4) can be uniquely
solved for A,’s and it can be shown that the solution is given

by

m
Z P
=1

AU =

1- Z P4
=

(3)
Z At (1— Z Pigi) N
7=1,5%1% 7=1,5%4
A=
1= 2 pag;

=1

fori=1,2,...,m.

30

25§

20

0

Figure 2—The average number of programs, ,, in stage [

The first system measure to be considered is the average

number of programs, Q;, at stage 7, where =0, 1, ..., m.
A;
Let us define pi=
kipes
and a;= k iD:

From the normalizing condition we obtain for the empti-
ness probability, P;(0), for stage ¢ as,

—1
Bl ym aki(1 _piA’—k;l—l)]
i(0) = —_— 6
Pito) [M T (=) (©)
Then Q; can be computed from
N
Q= EnPi(n)
n=0
ki oy, " k.-k" N
=P.-(o>[2 i) np] M
n=1 n! kl' n=k;+1

The average number of programs at the stage 7, @;, has
been plotted as a function of «; with parameters k; and N in
Figure 2.

Next we consider the average number of busy processors
at stage 7, @, which is given by

ki—1 N
sz= E nP‘l(n} +k1 E P.(n}
n=0 n=k;

ki—1

B nat  oi(1—p¥—ket)
=Pi(0) [? a T <k.~—1)!(1—p>]

(8)
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Figure 3--The average number of busy processors, @,, in stage ¢

The Q3 has been plotted as a function of «; with parameters
k;and N in Figure 3.

The average flow time of a program through the system
can be obtained from Little’s result,?

Q=\W

where Q= the average number of programs in the system
Az =total mean arrival rate of programs to the system
W =average flow time of a program

and Q= Z Q,‘, )\T: Z )\.’.
1=

=1

CONCLUSION

The analysis presented in this paper provides us with a prac-
tical tool to examine the effects of main system resources in
a TSCS quantitatively. It is possible to extend these results
in the area of system balancing by taking the cost-revenue
considerations into account.

In the systems where the assumptions made in this study
are not justified, at least approximately, this type of analysis
may serve as a preliminary to more refined techniques or
simulation, if ever waranted.

The results are applicable to a wide range of problems
where the total common storage space is limited and an out-
put from a stage either departs from the system or forms an
input to another stage.
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APPENDIX

The general “network of waiting lines” (network of queues)
was described in Reference 20. Here we add one more condi-
tion to that stated in Reference 20 by allowing no more than
N customers in the system at any time. If a new customer
arrives to find N customers already in the system, he departs
and never returns.

Then following the previously defined notation in earlier
sections, we can write the system equation for general net-
work of waiting lines as
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P(ny, ny, . . .y W t+H) where
={1=[C 2 M+ 2 wias(n) RYP(ny, . . ., T 1) rim 3 i
=1 1 =1
-}—Z MNERP(may .., ni—1, ..., m; t) +> > (10) It can be shown that the solution to (10) in steady state
=1 =1 =1 is given by the theorem stated earlier.
Xai(ni+1) pri € AP0y, . .y net1, .. n—1, o B ) In this case it is difficult to obtain a closed form solution
for A/s.

+CY i+ ps(L=r)RP(my, . .y b1, ..oy s )

=1

+0(h).
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INTRODUCTION
The need for system performance measurement and
evaluation

The benefit to be derived from a large multi-purpose
system, such as the B6700, is that many jobs of very di-
verse characteristics can (or should) be processed concur-
rently in a reasonable period of time. Recognizing that
certain inefficiencies may result from improper or un-
controlled use, it is necessary to evaluate the computer
system carefully to assure satisfactory performance. To
this end, the objective of our work in the area of perform-
ance evaluation is to:

1. determine the location(s) and cause(s) of inefficien-
cies and bottlenecks which degrade system per-
formance to recommend steps to minimize their
effects,

2. establish a profile of the demand(s) placed upon
system resources by programs at our facility to help
predict the course of system expansion,

3. determine which user program routines are using
inordinately large portions of system resources to
recommend optimization of those routines,

4. establish control over the use of system resources.

Among the techniques which have been applied to date
in meeting these objectives are in-house developed soft-
ware monitors, benchmarking, and in-house developed
simulations. This paper discusses the software monitor,
SPASM (System Performance and Activity Software
Monitor), developed at the Federal Reserve Bank of New
York to evaluate the performance and utilization of its
Burroughs B6700 system.

THE B6700 SYSTEM

The B6700 is a large-scale multiprogramming computer
system capable of operating in a multiprocessing mode
which is supervised by a comprehensive software system
called the Master Control Program (MCP).»2 Some of the
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features of this system which distinguish it from many
other systems are: o

® Each task has assigned to it a non-overlayable area
of memory called a stack. This area provides storage
for program code and data references* associated
with the task as well as temporary storage for some
data, history and accounting information.

® Multiple users can share common program code via
a reentrant programming feature.

® The compilers automatically divide source language

programs into variable sized program code and data

segments rather than fixed sized pages.

Core storage is a virtual resource which is allocated

as needed during program execution. (This feature is

discussed in more detail below.)

® Secondary storage including magnetic tape and
head-per-track disk is also allocated dynamically by
the MCP.

¢ Channel assignments are made dynamically; that is
they are assigned when requested for each physical
170 operation.

® I/0 units are also assigned dynamically.

e Extensive interrupt facilities initiate specific MCP
routines to handle the cause of the interrupt.

® The maximum possible B6700 configuration includes
3 processors, 3 multiplexors, 256 peripheral devices,
1 million words of memory (six 8-bit characters per
word or 48 information bits per word), and 12 data
communications processors.

The current B6700 system at the Federal Reserve Bank
of New York shown in Figure 1 includes one processor,
one I/0 multiplexor with 6 data channels, one data
communications processor and a number of peripheral
devices. In addition, the system includes a virtual mem-
ory consisting of 230,000 words of 1.2 micro-second
memory, and 85 million words of head per track disk
storage.

The management of this virtual memory serves to illus-
trate the involvement of the MCP in dynamic resource

* These references are called descriptors and act as pointers to the
actual location of the code or data
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Figure 1—Configuration of the Federal Reserve Bank of New York B6700 computer system

allocation. This process is diagrammed in Figure 2. Main
memory is allocated by the MCP as a resource to cur-
rent processes. When a program requires additional
memory for a segment of code or data, an unused
area of sufficient size is sought by the MCP. If it
fails to locate a large enough unused area, it looks for an
already allocated area which may be overlaid. If neces-
sary, it links together adjacent available and in-use areas
in an attempt to create an area large enough for the cur-
rent demand. When the area is found, the desired seg-
ment is read in from disk and the segments currently
occupying this area are either relocated elsewhere in core
(if space is available), swapped out to disk or simply
marked not present. In any case, the appropriate descrip-
tor must be modified to keep track of the address in
memory or on disk of all segments involved in the swap.
All of these operations are carried out by the MCP; moni-
toring allows us to understand them better. For additional
information on the operation and structure of the B6700
see Reference 3.

B6700 PERFORMANCE STATISTICS

The complexity of the B6700 system provides both the
necessity to monitor and the ability {o monitor. The per-

vasive nature of the MCP in controlling the jobs in the
system and in allocating system resources made it neces-
sary for the system designers to reserve areas of core
memory and specific cells in the program stacks to keep
data on system and program status. This design enables
us to access and collect data on the following system
parameters:

system core memory utilization
1/0 unit utilization

1/0 queue lengths

processor utilization

multiplexor utilization
multiplexor queue length
peripheral controller utilization
system overlay activity

program overlay activity
program core memory utilization
program processor utilization
program I/0 utilization

program status

scheduler queue length

response time to non-trivial requests

These data are vital to the evaluation of our computer
system. Table I presents examples of the possible uses for
some of these statistics.



Spasm Software Monitor 95

" .. . . .
M:)I;Ed Swappe TABLE I—Examples of Collected Statistics and Their Possible Uses
Present Disk
) ’;\ Data Use
AREA_ AREA 2 ARFA 3 e ABEL L .
; g g
Segment 14 H ; System core memory utilization Determine need for itional
Program 1 Unused Segment 6 Segment 4 a} < VS Ty o addltlona
(Data) Core Program 2 Program 2§ R . memory
50 Words 50 Words (Code) 100 Wordsg(Data> 100 Words g 1/0 unit utilization, I/0 unit queue Determine need for Disk File Opti-
g lengths mizer and/or additional disk
4 storage electronic units, printers
. or disk file controllers
RELOCATED Processor queue length and com- Determine need for additional pro-
position cessor
AREA S e AREA 7 Evaluate_ effect of job priority on
execution
Unused Segment 2 Segment 1 Deternr_lme processor boundedness
Core Program 5 Program 1 of mix
50 Words 100 Words 100 Words Determine effect of processor uti-

Figure 2—B6700 memory allocation procedure

. Space is needed for a 300 word segment for one of the current tasks.

. A large enough unused area is not located.

3. The MCP finds a contiguous location made up of areas 1 through 4
which is 300 words long.

4. Area 1 contains a 50 word data segment. The MCP relocates this
segment into area 5, makes note of its new core address and removes
area 5 from the unused linkage.

5. Area 2 is unused. It is removed from the unused linkage.

6. Area 3 contains a 100 word code segment. There are no unused areas
large enough to contain it. Therefore, it is simply marked not pres-
ent. Since code cannot be modified during execution, there is no rea-
son to write it out to disk—it is already there.

7. Area 4 contains a 100 word data segment. It is written out to disk
and its new location is recorded.

8. The 300 word segment is read into core in the area formerly occupied
by areas 1 through 4 and its location is recorded.

[

DESCRIPTION OF THE SPASM SYSTEM

The B6700 System Performance and Activity Software
Monitor, SPASM, is designed to monitor the performance
of the system as a whole as well as that of individual user
programs. It consists of two separate programs, a monitor
and an analyzer, both of which are described below. The
principal criteria governing its design are:

(a) to make a software monitor capable of gathering all
the pertinent data discussed in the previous section,

(b) to minimize the additional load placed upon the
system by the monitor itself, and

(c) to provide an easily used means of summarizing
and presenting the data gathered by the monitor in
a form suitable for evaluation by technical person-
nel and management.

Ability to gather pertinent data

The Mastor Control Program concept of the B6700
helps in many ways to simplify the acquisition of the data

lization on demand for I/O (in
conjunction with I/O unit data)

System-overlay activity ~Determine-- need- -for—additionat
memory
Determine need for better task
scheduling

Determine when thrashing* occurs

Evaluate program efficiency

Evaluate system effect on job exe-
cution

Evaluate program efficiency

Change job core estimates

Determine excess demand for use
of system

Evaluate MCP scheduling algo-
rithm

Job overlay activity

Job core memory utilization

Scheduler queue length

* Thrashing is the drastic increase in overhead I/O time caused by the
frequent and repeated swapping of program code and data segments. It
is caused by having insufficient memory to meet the current memory
demand.

listed in Table I. Such information as a program’s core
usage, processor and I/0 time, and usage of overlay areas
on disk are automatically maintained in that program’s
stack by the MCP. A relatively simple modification to the
MCP permits a count of overlays performed for a pro-
gram to be maintained in its stack. Data describing the
status of programs are maintained by the MCP in arrays.

Information on system-wide performance and activity
is similarly maintained in reserved cells of the MCP’s
stack. Pointers to the head of the processor queue, I/0
queues and scheduler queue permit the monitor to link
through the queues to count entries and determine facts
about their nature. Other cells contain data on the sys-
tem-wide core usage, overlay activity, and the utilization
of the I/O multiplexor. An array is used to store the sta-
tus of all peripheral devices (exclusive of remote termi-
nals) and may be interrogated to determine this informa-
tion.

All of the above data are gathered by an independently
running monitor program. The program, developed with
the use of a specially modified version of the Burroughs
ALGOL compiler, is able to access all information main-
tained by the MCP. The program samples this informa-
tion periodically and stores the sampled data on a disk
file for later reduction and analysis.



96 National Computer Conference, 1973

Minimization of load upon the system

To minimize the additional load on the B6700, the
monitor program is relatively simple, and very efficient.
A somewhat more sophisticated analyzer program is used
to read back the raw data gathered by the monitor and
massage it into presentable form. This analysis is gener-
ally carried out at a time when its additional load upon
the system will be negligible. The system log has indi-
cated that the monitor does indeed present a minimal
load requiring about 1/4 of 1 percent processor utilization
and 2 1/4 percent utilization of one disk I/0 channel.

Easy means of analysis and presentation

The raw data gathered by the monitor can be used
directly in some cases; however, to serve best the purpose
for which SPASM was designed (i.e., as a management
reporting system) several useful presentations have been
engineered. The analyzer program, which may be run
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interactively or in batch mode will produce any of the
following:

Graphs of data versus time

Frequency distribution histograms of data
Correlation and regression analyses among data
Scanning for peak periods

The options are selected via an input language consisting
of mnemonics.

(1) Graphs of data versus time are produced to show the
minute-by-minute variations in parameters of interest.
The graphs are “drawn” on the line printer using symbols
to represent each curve. Any number of parameters may
be plotted on one graph, and a key is printed at the end
identifying all symbols used in the graph and listing the
mean values of each. To aid in tailoring the most desira-
ble presentation, rescaling of the ordinate and time axes
is permitted. In addition, the user may select a specific
time interval of interest and plot that interval only. Fig-
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Figure 3—Graph of core usage versus time
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Figure 4—Histogram of “overlayable” core usage

ure 3 presents a graph of core utilization versus time.
Lines may be drawn connecting the points to aid reada-
bility. On this graph three parameters are simultaneously
plotted, namely “SAVE” core (SYSSVE), “OVERLAYA-
BLE” core (SYSOLY) and “AVAILABLE” core
(SYSAVL). The key lists mnemonics, symbols plotted
and the mean values of the plotted parameters.

To prepare such a graph for presentation, the analyst,
using a remote terminal, first causes the analyzer to
“plot” the information on the CRT. The data is then
scaled to the analyst’s preference, perhaps adding or
deleting specific data curves to improve readability. The
analyst then re-“plots” the graph on the CRT. When he is
satisfied he directs this tailored graph to the line printer
via an input command for hard copy.

(2) Frequency distribution histograms are useful in that
they present a concise picture of the behavior of specific
parameters. The analyzer will produce, instead of, or in
addition to time graphs, a histogram of each desired
parameter. The histogram is automatically scaled to the
mode of the distribution, and is printed horizontally. The
axis which represents the observed values may be rescaled

as above to improve the clarity of the data presenta-
tion. These histograms show the distribution of observed
values of the parameter in question. Figure 4 presents a
histogram of system “OVERLAYABLE” core usage. It
covers a longer period of time than the time graph and
shows the frequency distribution of this parameter.

(3) Correlation and regression analyses among data play
an important role in aiding in the forecasting of future
needs. If the relationships among several parameters are
known, then, should a change be projected in one param-
eter, its effect on the others can be approximated, and
suitable adjustments in configuration or scheduling can
be made. For example, if one determines a relationship
between the amount of core memory and the overlay rate,
one can predict the degree of decrease in the overlay rate
should more core be added. The analyzer will allow corre-
lations and/or regressions to be run among any of the
parameters. Tables of pertinent statistics are printed as a
result.

Figure 5 presents the results of a correlation and regres-
sion analysis among core utilization, processor utilization
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Figure 5—Results of regression and correlation analysis

and overlay rate parameters. These results are seen to
show that, for example, the overlay statistics are highly
correlated to the amount of “SAVE” core in the system.
This is understandable since the larger the “SAVE” core
the greater the chance of needing to swap segments.

(4) Scanning for peak periods is a necessity in most
computer systems, especially those operated in a data
communication environment where the load fluctuates

widely. The analyzer can scan the entire day’s data and
flag time intervals (of length greater than or equal to
some specified minimum) during which the mean value of
a parameter exceeded a desired threshold. For example, a
period of five minutes or longer in which processor utili-
zation exceeded 75 percent can be easily isolated (see
Figure 6). Using this technique a peak period can be
automatically determined and then further analyzed in
more detail.
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Figure 6—Periods of peak processor utilization

The design criteria discussed above have been met and
a software monitoring system has been developed which is
comprehensive, and easily used, and yet presents a negli-
gible load upon the B6700 computer.

CONCLUSION AND OUTLOOK

The SPASM system has proven to be very instrumental
in the perforiiarice evaiuation of the B6700 system at the
Bank. Several areas in which it has been and is currently
being used are as follows:

o The statistics on processor queue length, multiplexor
utilization, and disk controller utilization were used
to aid in the analysis of the need for a second proces-
sor*, second multiplexor and additional controllers.

® The job core utilization data have been used to eval-
uate the effect of alternate programming techniques
on memory use.

® Digk utilization data have been examined to identify
any apparent imbalance of disk accesses among the
disk electronics units.

® Processor queue data are being used to determine the
effect of task priority on access to the processor.

® System overlay data are being used to determine the
adequacy of automatic and manual job selection and
scheduling.

® Processor utilization figures, as determined from the
processor queue data, were used to determine the
effect of core memory expansion on processor utiliza-
tion.

Some future possible uses planned for SPASM include:

® Use of the scheduler queue statistics to evaluate the
efficiency of the current MCP scheduling algorithm
and to evaluate the effect changes to that algorithm
have on the system performance.

® Use of the response time data to evaluate system
efficiency throughout the day with different program
mixes.

® Evaluation of resource needs of user programs.

® Evaluation of the effect that the Burroughs Data
Management System has on system efficiency.

® Building of a B6700 simulation model using the col-
lected statistics as input.

® Building an empirical model of the B6700 system by
using the collected regression data.

* See Appendix A for a discussion of how the processor queue data was
used to determine processor utilization.

The SPASM system has enabled us to collect a great
deal of data on system efficiency and, consequently, a
great deal of knowledge on how well the system performs
its functions. This knowledge is currently being used to
identify system problems and to aid in evaluating our
current configuration and possible future configurations.
Mere conjecture on system problems or system configura-
tions in the absence of supporting data is not the basis for
a logical decision on how to increase system efficiency.
Performance measurement and evaluation are essential to
efficient use of the system.
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APPENDIX A

The use of processor queue data to determine
processor utilization

The SPASM system records the length of the processor
queue periodically. The processor utilization will be based
upon these examinations, taking into account that the
monitor itself is processing at this instant of time. If the
processor queue is not empty, the monitor is preventing
some other job from processing. Consequently, if the
monitor were not in the system the processor would be
busy with some other task at that instant of time. This
is considered to be a processor “busy” sample. On the
other hand, if the processor queue is empty at the sample
time there is no demand for the processor other than the
monitoring program itself. Therefore, if the monitor
were not in the system at that instant of time the processor
would be idle. This is considered a processor “idle”
sample. Processor utilization can therefore be esti-
mated as:

No. “busy”’ samples
total No. samples

processor utilization =

This sampling approach to determining processor utili-
zation was validated by executing controlled mixes of
programs and then comparing the results of the sampling
calculation of processor utilization to the job processor
utilization given by:

processor utilization=
processor time logged against jobs in the mix
elapsed time of test interval

Table II compares the results of these two calculations.
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TABLE II—Comparison of Processor Utilization Statistics By Sampling
Technique and By Processor Time Quotient Technique

Average Processor Utilization (%)

Sampling Technique Processor Time Quotient

Test Series 1 99.1 96.5
Test Series 2 57.6 53.5

In a second type of test, processor idle time was moni-
tored (by means of a set of timing statements around the

idling procedure) to gain a close measure of utilization.
The total idle time was subtracted from the total elapsed
time of the test to obtain the processor busy time and
hence the utilization. Over a period of five hours the re-
spective processor utilization calculations were:

Sampling Technique 46.3%
Idle Timing 48.0%

These results make us confident of the validity of us-
ing the processor queue sampling technique to accumu-
late processor utilization statistics during any given time
interval.
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real-time environment

by GREGORY R. LLOYD and RICHARD E. MERWIN

SAFEGUARD System Office
Washington, D.C.

INTRODUCTION

The use of parallelism to achieve greater processing thruput
for computational problems exceeding the capability of
present day large scale sequential pipelined data processing
systems has been proposed and in some instances hardware
employing these concepts has been built. Several approaches
to hardware parallelism have been taken including multi-
processors’-23 which share common storage and input-output
facilities but carry out calculations with separate instruction
and data streams; array processors® used to augment a host
sequential type machine which executes a common instruc-
tion stream on many processors; and associative processors
which again require a host machine and vary from bit® to
word oriented® processors which alternatively select and
compute results for many data streams under control of
correlation and arithmetic instruction streams. In addition,
the concept of pipelining is used both in arithmetic pro-
cessors’ and entire systems, i.e., vector machines® to achieve
parallelism by overlap of instruction interpretation and
arithmetic processing.

Inherent in this approach to achieving greater data
processing capability is the requirement that the data and
algorithms to be processed must exhibit enough parallelism to
be efficiently executed on multiple hardware ensembles.
Algorithms which must be executed in a purely sequential
fashion achieve no benefit from having two or more data
processors available. Fortunately, a number of the problems
requiring large amounts of computational resources do
exhibit high degrees of parallelism and the proponents of the
paralle] hardware approach to satisfying this computational
requirement have shown considerable ingenuity in fitting
these problems into their proposed machines.

The advocates of sequential pipelined machines can look
forward to another order of magnitude increase in basic
computational capability before physical factors will provide
barriers to further enhancement of machine speed. When this
limit is reached and ever bigger computational problems
remain to be solved, it seems likely that the parallel pro-
cessing approach will be one of the main techniques used to
satisfy the demand for greater processing capability.

Computational parallelism can occur in several forms. In
the simplest case the identical caleulation is carried out on a
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number of scparate data sets (array processing). A more
complex ease involves different caleulations en separate data
sets (multiprocessing) and finally, the greatest challenge to
the parallel processing approach oceurs when a single cal-
culation on a single data set must be decomposed to identify
parallel computational paths within a single computational
unit. A number of mathematical calculations are susceptible
to this type of analysis, e.g., operations on matrices and
linear arrays of data.

The computational support required for a phased array
radar is representative of problems exhibiting a high degree
of parallelism. These systems can transmit a radar beam in
any direction within its field of view in a matter of micro-
seconds and can provide information on up to hundreds of
observed objects for a single transmission (often called a
“look”). The amount of information represented in digital
form which can be generated by this type of radar can exceed
millions of bits per second and the analysis of this data
provides a severe challenge to even the largest data pro-
cessors. Applications of this radar system frequently call for
periodic up dates of position for objects in view which are
being tracked. This eyelic behavior implies that a computa-
tion for all objects must be completed between observations.
Since many objects may be in view at one time, these com-
putations can be carried out for each object in parallel.

The above situation led quite naturally to the application
of associative parallel processors to provide part of the com-
putational requirements for phased array radars. A number
of studies®!®11.12 have been made of this approach including
use of various degrees of parallelism going from one bit wide
processing arrays to word oriented processors. As a point of
reference this problem has also been analyzed for implementa-
tion on sequential pipelined machines.”® One of the main
computational loads of a phased array radar involves the
filtering and smoothing of object position data to both
eliminate uninteresting objects and provide more accurate
tracking information for objects of interest. A technique for
elimination of uninteresting objects is referred to as bulk
filtering and the smoothing of data on interesting objects is
carried out with a Kalman fiiter.

The following presents an analysis of the results of the
above studies of the application of associative parallel pro-
cessors to both the bulk and Kalman filter problems. The two



102 National Computer Conference, 1973

criteria used to evaluate the application of parallel hardware
to these problems are the degree of hardware utilization
achieved and the increase in computational thruput achieved
by introducing parallelism. The latter measure is simply the
ratio of computational thruput achieved by the array of
processing elements to the thruput possible with one element
of the array. The Parallel Element Processing Ensemble
(PEPE) considered as one of the four hardware configura-
tions is the early IC model and is not the improved MSI PEPE
currently under development by the Advanced Ballistic
Missile Defense Agency.

Finally, a comparison of hardware in terms of number of
logical gates is presented to provide a measure of computa-
tional thruput derived as a function of hardware complexity.
The paper concludes with a number of observations relative
to the application of the various associative parallel hardware
approaches to this computational requirement.

FILTER COMPUTATIONS

The bulk and Kalman filters play complementary roles in
support of a phased array radar. The task assigned to the
radar is to detect objects and identify those with certain char-
acteristics e.g. objects which will impact a specified location
on the earth, and for those objects so identified, to provide
an accurate track of the expected flight path. The bulk filter
supports the selection process by eliminating from con-
sideration all detected objects not impacting a specified area
while the Kalman filter provides smoothed track data for all
impacting objects. Both filters operate upon a predictive
basis with respect to the physical laws of motion of objects
moving in space near the earth. Starting with an observed
position, i.e., detection by a radar search look, the bulk filter
projects the position of the object forward in time, giving a
maximum and minimum range at which an impacting object
could be found in the next verification transmission. Based
upon this prediction the radar is instructed to transmit
additional verification looks to determine that this object
continues to meet the selection criteria by appearing at the
predicted spot in space following the specified time interval.

Those objects which pass the bulk filter selection criteria
are candidates for precision tracking by the radar and in this
case the Kalman filter provides data smoothing and more
precise estimates of the object’s flight path. Again a pre-
diction is made of the object’s position in space at some future
time based upon previously measured positions. The radar is
instructed to look for the object at its predicted position and
determines an updated object position measurement. The
difference between the measured and predicted position is
weighted and added to the predicted position to obtain a
smoothed position estimate. Both the bulk and Kalman
filter are recursive in the sense that measurement data from
one radar transmission is used to request future measure-
ments based upon a prediction of a future spatial position of
objects. The prediction step involves evaluation of several
terms of a Taylor expansion of the equations of motion of
spatial objects, Detailed discussion of the mathematical basis
for these filters can be found in the literature on phased
array radars,!#:1

The computations required to support the bulk filter are
shown in Figure 1. The radar transmissions are designated as
either search or verify and it is assumed that every other
transmission is assigned to the search function. When an
object is detected, the search function schedules a subsequent
verification look typically after fifty milliseconds. If the
verification look confirms the presence of an object at the
predicted position another verification look is scheduled
again after fifty milliseconds. When no object is detected on a
verification look, another attempt can be made by predicting
the object’s position ahead two time intervals i.e., one
hundred milliseconds, and scheduling another verification
look. This procedure is continued until at least M verifica-
tions have been made of an object’s position out of N attempts.
If N — M attempts at verification of an object’s position
result is no detection then the object is rejected. This type of
filter is termed an M out of N look bulk filter.

Turning now to the Kalman filter the computational
problem is much more complex. In this case a six or seven
element state vector containing the three spatial coordinates,
corresponding velocities, and optionally an atmospheric drag
coefficient is maintained and updated periodically for each
tracked object. A block diagram of this computation is shown
in Figure 2. The radar measurements are input to state
vector and weighting matrix update procedures. The
weighting matrix update loop involves an internal update of
a covariance matrix which along with the radar measure-
ments is used to update a weighting matrix. The state vector
update calculation generates a weighted estimate from the
predicted and measured state vectors. The Kalman filter
computation is susceptible to decomposition into parallel
calculations and advantage can be taken of this in imple-
mentations for a parallel processor.

COMPUTATIONAL MODELS

Bulk filter

The bulk filter is designed to eliminate with a minimum
expenditure of computational resources a large number of
uninteresting objects which may appear in the field of view
of a phased array radar. A model for this situation requires
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Figure 1 -Bulk filter flow diagram
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assumptions for the number and type of objects to be handled,
efficiency of the filter in eliminating uninteresting objects,
and radar operational parameters. These assumptions must
produce a realistic load for the filter which would be char-
acteristic of a phased array radar in a cluttered environment.
The assumptions, which are based upon the Advanced
Ballistic Missile Agency’s Preliminary Hardsite Defense
study, are:

1. The radar transmits 3000 pulses, i.e. looks, per second
and every other one of these is assigned to search.

2. New objects enter the system at a rate of 100 per 10
milliseconds (Ms) all of which are assumed to be
detected on one search look.

3. Fifteen objects are classified as being of interest, i.e.
impacting a designated area (must be precision
tracked), and 85 of no interest (should be eliminated
from track).

4. Following detection an attempt must be made to
locate each object not rejected by the filter every
50 Ms.

5. The filter selection criteria is 5 (M) detections out of
7 (N) attempts. Failure to detect the object three
times in the sequence of 7 looks results in rejection.

6. The filter is assumed to reduce the original 100 objects
to 70 at the end of the third; 45 at the end of the
fourth; 30 at the end of the fifth; 25 at the end of the
sixth; and 20 at the end of the seventh look; thus
failing to eliminate 5 uninteresting objects.

Based upon the above assumptions the bulk filter accepts
500 new objects every 50 Ms. When operational steady state
is reached, the processing load becomes 100 search and 290
verify calculations every 10 Ms. Each object remains in the
filter for a maximum of 350 Ms and for a 50 Ms interval 1950
filter calculations are required corresponding to 10,000 new
objects being detected by the radar per second.

The above process can be divided into two basic steps. The
first involves analysis of all radar returns. For search returns
the new data is assigned to an available processor. For verify
returns each processor must correlate the data with that

Track Return . Track Reguest
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Figure 2—Kalman filter flow diagram

to to + 25 ms to + 50ms to + 75ms
CORRELATE CORRELATE CORRELATE
eece ¢es e
PROCESS PROCESS ¢;\ PROCESS \
f 50ms 1

Search Return 1st Verify Return

Figure 3—Correlation and arithmetic phases

being processed to determine if it represents new positional
information for an object being tracked by that processor.
For all objects in process, new data must be received every
50 Ms or it is considered to have not been redetected and
hence subject to rejection by the filter. The associative
processors studied were unable to carry out the required
calculations within the pulse repetition rate of the radar
(330 psec). To achieve timely response, the processing was
restructured into correlation and arithmetic cycles as shown
in Figure 3. During the first 25 msec interval, the processors
correlate returns from the radar with internal data (predicted
positions). During the subsequent 25 msec interval, pro-
cessors carry out the filter calculations and predict new
object positions. This approach allowed all required pro-
cessing to be completed in a 50 msec interval. Objects which
fail the selection criteria more than two times are rejected
and their processor resources are freed for reallocation.

Kalman filter

The Kalman filter computation requires many more
arithmetic operations than the bulk filter. The radar becomes
the limiting factor in this case since only one object is assumed
for each look. Assuming a radar capable of 3000 transmissions
per second and a 50 Ms update requirement for each pre-
cision track, a typical steady state assumption would be 600
search looks and 2400 tracking looks per second (corre-
sponding to 120 objects in precision track). At this tracking
load it must again be assumed that the 50 Ms update interval
is divided into 25 Ms correlation and compute cycles as was
done for the bulk filter and shown in Figure 3. This implies
that 60 tracks are updated every 25 Ms along with the same
number of verify looks being received and correlated.

EVALUATION APPROACH

The three quantities of interest in determining the relation
between a parallel processor organization and a given
problem are: resources required by the problem, resources
available from the processor configuration, and time con-
straints (if any). A more precise definition of these quantities
follows, but the general concept is that the processor capa-
bilities and problem requirements should be as closely
balanced as possible.

Quantitative resource measures and balance criteria are
derived from Chen’s" analysis of parallel and pipelined
computer architectures. Chen describes the parallelism
inherent in a job by a graph with dimensions of parallelism
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width (number of identical operations which may be per-
formed in parallel) and execution time. The ratio p is defined
for a job as the area under the step(s) showing parallelism
(width W>1) divided by the total area swept out by the
job. The hardware efficiency factor, », is the total job work
space (defined as the product of execution time and the
corresponding job width W summed over all computations)
over the total hardware work space (defined as the product
of total execution time and the number, M, of available
parallel processors). This provides a measure of utilization of
a particular hardware ensemble for each segment of a com-
putation. A modification of Chen’s 4 allows consideration of
time constraints. Hardware space will now be defined as a
product of the total time available to carry out the required
computation times M, the number of processors available.
Call this ratio 4. The work space is as defined above except
that periods of no processor activity may be included, i.e.,
job width W =0. Figure 4 illustrates these concepts showing a
computation involving several instruction widths carried out
in an available computation time T,. The stepwise value of 4
varies during job execution and the average value for the
whole job becomes: (7, is divided into N equal time inter-
vals = AT, W(T;) >0 for K steps).

N N
ZW(T,-)AT ZW(T,-)AT

MT, where n= AT

=1
I

(1,2)

Note that under this interpretation, 7 measures the fit be-
tween this particular problem and a given configuration.
If 7=1.0 the configuration has precisely the resources re-
quired to solve the problem within time constraints, assuming
that the load is completely uniform (with non-integral width
in most cases). Although # will be much less than 1.0 in most
cases, it is interesting to compare the values obtained for
processors of different organizations and execution speeds,
executing the same job (identical at least on a macroscopic
scale). Implicit in the stepwise summation of the instruction
time—processor width product are factors such as the
suitability of the particular instruction repertoire to the
problem (number of steps), hardware technology (execution
time), and organizational approach (treated in the following
section).

A criterion = is expressed as the inverse ratio of time of
execution of a given job with parallel processors to the

execution time with only one such processor (speedup over
the job). Expressing 7 in terms of job width W gives for
any job step

sequential processor execution time

parallel processor execution time

Similarly, averaging this quantity over an entire job during
the available time gives:

N
2. W(T:) AT
i=0
= 4
Ta 4)
or simply: -
F=7M 5

which states that the speed of exccution of a computation on
parallel hardware as contrasted to a single processing element
of that hardware is proportional to the efficiency of hardware
utilization times the number of available processing elements.
Again, 7 measures the equivalent number of parallel pro-
cessors required assuming a uniform load (width =7,
duration =Ta).

PROCESSOR ORGANIZATIONS

General observations

In the analysis which follows, job parallelism is calculated
on an instruction by instruction step basis. For the purposes
of this discussion, consider a more macroscopic model of job
parallelism. Sets of instructions with varying parallelism
widths will be treated as phases (®;), with phase width
defined as the maximum instruction width within the phase.
(see Figure 5, for a three phase job, with instructions in-
dicated by dashed lines).

Given this model, it is possible to treat the parallel com-
ponent in at least three distinct ways (see Figure 6). The
simplest approach is to treat a parallel step of width N as N
steps of width one which are executed serially. This would
correspond to three loops (with conditional branches) of
iteration counts Wy, Ws, W3, or one loop with iteration count
max[ Wy, W,, W;]. The worst case execution time (macro-
scopic model) for width N would be T'= Nis.

Parallel processing, in its purest sense, devotes one pro-
cessing element (PE) to each slice of width one, and executes
the total phase in T'=ta, where fa is the total execution time
for any element. Variations on this basic theme are possible.
For example, STARAN, the Goodyear Aerospace associative
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Figure 5—Three phase job space diagram
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processor,®9:12 is actually an ensemble of bit-slice processors'®
arranged in arrays of 256 each having access to 256 bits of
storage. The ensemble is capable of bitwise operations on
selected fields of storage. Since the bulk filter algorithm
requires 768 bits of storage for the information associated
with one filter calculation, i.e. track, a “black box” model
devotes three PE’s to each object in track (generally one of
the three is active at any instruction step).

The converse of the STARAN case is exemplified by the
Parallel Element Processing Ensemble (PEPE)S$ which
devotes M PE’s to N tracks, M <N. In this case, the total
processing time for one phase would be T'=[N <+ M Jia, since
each PE may process up to [N+M] tracks sequentially.
Note that for parallel correlation of K returns (associative
operations such as “between limits search”), at least K PE’s
must be available, since objects which are illuminated by a
single beam must be handled by separate processors.

A third approach is analogous to the pipelining of instruc-
tion execution. Assuming that each phase has execution time
ip, one could use one sequential proeessor to handle execution
of each phase, buffering the input and output of contiguous

DATA RESULT
ts
T = Nts
D2
N N
Sequential Processor
DATA ta RESULT
D,
D, T=ta
N ON N
Parallel Processor
DATA RESULT
i i / T= Neiltp
= [N-1+Mjtp
\" Ps ~| " For M Stages
N N

Functional Pipeline

Figure 6—Decomposition of parallelism in three processor organizations

phases to achieve a total execution time of 7= (N —1+m)tp
for an M stage process. The Signal Processing Element (SPE)
designed by the US Naval Research Laboratory® can utilize
this strategy of functional decomposition, linking fast micro-
programmed arithmetic units under the control of a
master control unit to achieve ip<M—%s for ‘“sequen-
tial” machines of the CDC 7600, IBM 370/195 elass
(T<[MY(N—1)+1Ts).

One other factor of considerable importance is the number
of control streams active in each processor array. The simplest
arrangement is a single control stream, broadeast to all
elements from a central sequencing unit. Individual PE’s may
be deactivated for part of a program sequence by central
direction, or dependent upon some condition determined by
each PE. Dual control units mean that arithmetic and
correlative operation can proceed simultaneously, allowing
the two phase strategy outlined earlier to work efficiently
(one control stream would require an “interruptible arith-
metic”’ strategy, or well defined, non-overlapping, search/
verify and arithmetic intervals). These two control streams
can act on different sets of PE’s (e.g. each PE has a mode
register which determines the central stream accepted by that
PE), or both control streams can share the same PE on a
cycle stealing basis (PEPE IC model).

Configurations considered

Table I presents the basic data on the four hardware con-
figurations considered for the bulk filter problem. Sizing
estimates are based upon the assumptions described previ-
ously, i.e. 1950 tracks in processing at any given time (steady
state). Over any 25 Ms interval, half of the tracks are being
correlated, half are being processed arithmetically.

The Kalman filter results compare the performance of
STARAN, PEPE (IC model), and the CDC 7600 in sus-
taining a precise track of 120 objects (1 observation each
50 Ms) using a basic model of the Kalman filter algorithm.
The STARAN solution attempts to take advantage of the
parallelism within the algorithm (matrix-vector operations).
Twenty-one PE are devoted to each object being tracked.
PEPE would handle one Kalman filter sequence in each of its
PE’s, performing the computations serially within the PE.

COMPARATIVE RESULTS

Bulk filter

Table II presents the values for #, 4, 7, and execution time
for each of the 4 processor configurations. As has been ex-
plained earlier # and 4 differ only in the definition of hardware
space used in the denominator of the % expression. It is
interesting to note that although the efficiency 4 over the
constrained interval is not large for any of the parallel
processors, all three do utilize their hardware efficiency over
the actual arithmetic computation (). The implication is
that some other task could be handled in the idle interval, a
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TABLE I—Bulk Filter Processor Configuration Comparison

STARAN HONEYWELL PEPE (IC model) CDC 7600
3 PE/TRACK PE/TRACK PE/20 TRACK SEQUENTIAL
Number of PE’s (1950 track load) 30 Arrays=7680 PE’s 1950 100 1
32 bit fixed point Add time/PE 18.0 usec .75 usec .25 usec 27.5-55 n.s. (60 bit)

Control Streams Single—(Standard op-
tion) all PE’s correlate
or perform arithmetic

functions

Approximate gate count/PE (not in- 82 (21,000/256 PEarray)

cluding storage)

Gate Count for configuration (PE’s 630,000
only)

Adds/see X 10¢ (~MIPS) 427

Gates/track 320*

Double—Each PE may
be in correlation or
arithmetic mode

Double—EACH PE may Single pipelined
perform correlation and
arithmetic functions

simultaneously
2,400 9,000 170,000
4.68X10¢ 900,000 170,000
2600 400 18
2400 450 87

* Based on a 30 Array configuration—246 are required for the algorithm,

more sophisticated filter algorithm could be used, or the
PE’s could be built from slower, less expensive logic. It
should be stressed that the gate counts given are strictly
processing element gates, not including memory, unit control,
or other functions.

Kalman filter

As noted above, 60 precision tracks must be updated in
25 Ms while 60 track looks are being correlated. Benchmark
data for the CDC 7600 indicates that a Kalman filter cal-
culation consisting of 371 multiplies, 313 add/subtracts, 2
divides, 6 square roots, and 1 exponentiation will require
approximately 0.3 Ms (18 Ms for 60 tracks). This leaves a
reserve of 7 Ms out of a 25 Ms interval for correlation. An
analysis of the STARAN processor applied to the Kalman
filter'? indicates that with 21 processing elements assigned to
each precision track the calculation can be carried out in
slightly less than 25 Ms. This performance is achieved by
decomposing the filter calculation into 56 multiplies, 61
add/subtracts, 3 divides, 4 square roots and is achieved at
the cost of 322 move operations. Figure 7 shows the processor
activity for the first 15 instructions of the Kalman filter
sequence. One bank of STARAN processing elements (5 256
element arrays) containing 1280 processors is required to
update tracks for 60 objects in one 25 Ms interval and corre-
late returns during the other. The PEPE configuration would
require 60 processing elements (two track files per element)
taking advantage of this hardware’s ability to do arithmetic
calculations and correlations simultaneously, achieving a
45 percent loading (11.3 Ms execution time per Kalman filter
sequence) of each PEPE processing element. Table III
summarizes the Kalman filter results.

OBSERVATIONS AND CONCLUSIONS

It should be emphasized that this study was not an attempt
to perform a qualitative evaluation of the processor organiza-

tions described in the studies.®101112 Each of the proposed
configurations is more than capable of handling the required
calculations in the time available. System cost is really
outside the scope of this paper. In particular, gate count is
not a good indicator of system cost. The circuit technology
(speed, level of integration) and chip partitioning (yield,
number of unique chips) trade-offs possible within the current
state of the art in LSI fabrication relegate gate count to at
most an order of magnitude indicator of cost.

Each of the three parallel processor organizations represents
a single point on a trade-off curve in several dimensions (i.e.
processor execution speed, loading, and cost, control stream
philosophy, etc.). Given an initial operating point, determined
by the functional requirements of the problem, the system
designer must define a set of algorithms in sufficient detail to

TABLE II—Results of Bulk Filter Analysis

CDC
STARAN HONEY- PEPE (IC 7600 SE-
3 PE/ WELL  model) PE/20 QUEN-
TRACK PE/TRACK TRACKS TIAL
Correlation time 1.8 msec 15.9 msec 2.1 msec
Né1 036 .035 .68
o1 139 34 68
Tl 9.9 22 5.7
Arithmetic time 14.5 msec 5.1 msec 3.85 msec
42 .66 .80 .79
T2 2450 780 79
fiot .38 .16 122
To2 1470 159 12.2
Total time 16.3 msec 21 msec 5.95 msec 22 msec
n .30 11 .75 1.0
r 2270 216 75 1.0
7 .19 .093 .18 .88
T 1480 181 18 .88
n

MIPS 128 286 300 18
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convince himself that he c¢an operate within any given con-
straints. Fine tuning of the system is accomplished by
restructuring the algorithms, redefining the operating point,
or both. In the two cases treated in this paper, elapsed time
is the crucial measure of system performance (in a binary
sense—it does or does not meet the requirement). The
purpose of the 7 and 7 calculations, as well as the step by step
processor activity diagrams is to provide some insight beyond
the elapsed time eriteria which might be helpful in restrue-
turing algorithms, or modifying some aspect of the system’s
architecture such as control stream philosophy. The proper-
ties of the processor activity diagrams are of significant
interest in determining the number of PE’s that are required
to handle the given load (uniform load implies fewer PE’s
and higher 5). The measures used in this paper are of some
interest because of the fact that they are functions of problem
width and instruction execution time, allowing factors such
as the selection of a particular instruction set to enter into
the values of the resultant tuning parameters.

Several more specific observations are in order. First, for
the particular bulk filter case considered, the CDC 7600 can
easily handle the computational load. Proponents of the
parallel processor approach would claim that quantity
production of PE’s, utilizing LSI technology, would enable
them to produce equivalent ensembles at less than a CDC
7600’s cost. In addition, computation time for the parallel
ensembles is only a weak function of the number of objects in
the correlation phase, and essentially independent of object
load in the arithmetic phase. Therefore, it would be simple to
seale up the capabilities of the parallel processors to handle
loads well beyond the eapability of a single, fast sequential
processor. The funetional pipelining approach advocated by
the Naval Research Laboratory would appear to be the
strongest challenger to the parallel approach in terms of
capabilities and cost (and to a somewhat lesser extent,
flexibility). Very rough estimates indicate that the bulk filter
case presented here could be handled by no more than two
arithmetic units (each with ~10,000 gates) and a single
microprogrammed control unit (~5,000 gates). Tasks which
stress the correlative capabilities of parallel arrays rather than

# ACTIVE
ELEMENTS
20
154
10 A A
54
0 A A A A A A
0 L W v v L4 g
n = e = e N ~ s P e n 2 o~ (=3
1] S B @ '
T332 8 g 22 858 883 8
== 8222 28] & «

ELASPED TIME (MICROSECONDS)

Figure 7—STARAN Kalman filter loading (one track, first 15
instructions)

TABLE III—Results of Kalman Filter Analysis

STARAN PEPE (IC model) CDC 7600
Time 25 Ms 11.3 Ms 18 Ms
7 ~.5 >.9 1
r 640 >54 1
7 ~.5 45 .72
T 640 27 .72
2uMIPS 36 108 13
gates/track 875 4500 1400

NOTE: Correlation time for the Kalman filter is not significant (~100
us) since each track is assigned a unique track number number (120
total). Accordingly, only total time figures are presented.

the parallel arithmetic capabilities should show the parallel
array architecture to its greatest advantage.

ACKNOWLEDGMENTS

The authors wish to express their gratitude to Messrs.
Brubaker and Gilmore, Goodyear Aerospace Corporation
for providing STARAN logic gate counts and Kalman filter
computation timing estimates; to Mr. W. Alexander, Honey-
well Inc. for providing PEPE and Honeywell Associative
Processor Logic gate counts; and to Mr. J. Burford, Control
Data Corporation for providing the CDC 7600 logic gate
counts. The study reports®! were prepared under the
direction of the Advanced Ballistic Missile Defense Agency,
whose cooperation is greatly appreciated.”

REFERENCES

1. Conway, M. E., “A Multi-Processor System Design,” Proceedings
AFIPS, FJCC, Vol. 24, pp. 139-146, 1963.

2. Stanga, D. C., “UNIVAC 1108 Multi-Processor System,” Proceed-
ings AFIPS, SJCC, Vol. 31, pp. 67-74, 1967.

3. Blakeney, G. R., et al, “IBM 9020 Multiprocessing System,” IBM
Systems Journal, Vol. 6, No. 2, pp. 80-94, 1967.

4. Slotnik, D. L., et al, “The ILLIAC IV Computer, IEEE Transac-
tion on Computers, Vol. C-17, pp. 746-757, August 1968.

5. Rudolph, J. A, “STARAN, A Production Implementation of an
Associative Array Processor,” Proceedings AFIPS, FICC, Vol. 41,
Part 1, pp. 229-241, 1972.

6. Githens, J. A., “A Fully Parallel Computer for Radar Data Proc-
essing,” NAECON 1970 Record, pp. 302-306, May 1970.

7. Anderson, D. W., Sparacio, F. J., Tomasula, R. M., “System/360
MOD 91 Machine Philosophy and Instruction Handiing,” IBM
Journal of Research and Development, Vol. 11, No. 1, pp. 8-24,
January 1967.

8. Hintz, R. G., “Control Data Star 100 Processor Design,” Proceed-
ings COMPCON ‘72, pp. 1-10, 1972.

9. Rohrbacher, Terminal Discrimination Development, Goodyear
Aerospace Corporation, Contract DAHC60-72-C-0051, Final
Report, March 31, 1972.

10. Schmitz, H. G., et al, ABMDA Prototype Bulk Filter Development,
Honeywell, Inc., Contract DAHC60-72-C-0050, Final Report, April
1972, HWDoc #12335-FR.

11. Phase I—Concept Definition Terminal Discrimination Develop-
ment Program, Hughes Aircraft Company, Contract DAHC60-72-
C-0052, March 13, 1972.



108 National Computer Conference, 1973

12. Gilmore, P. A., An Associative Processing Approach to Kalman 14. Chen, T. C., “Unconventional Superspeed Computer Systems,”
Filtering, Goodyear Aerospace Corporation, Report GER 15588, Proceedings AFIPS, SJCC, Vol. 39, pp. 365-371, 1971.
March 1972. 15. Thnat, J., et al, Signal Processing Element Functional Description,
13. Kalman, R. E., “A New Approach to Linear Filtering and Predic- Part I, NRL Report 7490, September 1972.

tion Problems,” Journal of Basic Engineering, Vol. 82D, pp. 35-45, 16. Shore, J. E., Second Thoughts on Parallel Processing, Naval
1960. Research Laboratory Report #7364, December 1971.



A structural approach to computer performance

analysis

by P. H. HUGHES and G. MOE
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Norway

INTRODUCTION

The performance analysis of eomputer systems is as yet a
rather unstructured field in which particular aspects of
systems or items of software are studied with the aid of
various forms of models and empirical measurements.
Kimbleton! develops a more general approach to this problem
using three primary measures of system performance. The
approach to be described here represents a similar philosophy
but deals only with throughput as the measure of system
performance. This restriction results in a model which is
convenient and practical for many purposes, particularly in
batch-processing environments. It is hoped that this approach
will contribute to the development of a common perspective
relating the performance of different aspects of the system to
the performance of the whole.

The present work arises out of a continuing program of
performance evaluation begun in 1970 on the UNIVAC 1108
operated by SINTEF (a non-profit engineering research
foundation) for the Technical University of Norway (NTH)
at Trondheim. The status of the Computing Centre has since
been revised, such that it now serves the newly formed
University of Trondheim which includes NTH.

Early attention focused on trying to understand EXEC 8
and to identify possible problem areas. One of the early
fruits of the work is described in Reference 2. However the
main emphasis for most of 1971 was on the development of
benchmark techniques supported by a software monitoring
package supplied by the University of Wisconsin as a set of
modifications to the EXEC 8 operating system.?* It was in an
effort to select and interpret from the mass of data provided
by software monitoring that the present approach emerged.

The operation of a computer system may be considered at
any number of logical levels, but between the complexities of
hardware and software lies the relatively simple functional
level of machine code and I/0 functions, at which processing
takes physical effect. The basis of this paper is a general
model of the processes at this physical level, to which all
other factors must be related in order to discover their net
effect on system performance.

THE GENERAL NATURE OF THE WORKLOAD

At the level we shall consider, a computer is a network of
devices for transferring and processing information. A program

is a series of requests for action by one or more devices,
usually in a simple, repetitive sequence.

The way in which instruetions are interpreted means that
the central processor is involved every time I/0 action is to
be initiated, so that every program can be reduced to a
cycle of requests involving the CPU and usually one or more
other devices.

In a single program system, devices not involved in the
current program remain idle, and the overlap between CPU
and I/0 activity is limited by the amount of buffer space
available in primary store. Performance analysis in this
situation is largely a matter of device speeds and the design
of individual programs.

Multiprogramming overcomes the sequential nature of
the CPU-I/O cycle by having the CPU switch between
several such programs so as to enable all devices to be driven
in parallel. The effectiveness of this technique depends upon
several factors:

(i) the buffering on secondary storage of the information
flow to and from slow peripheral devices such as
readers, printers and punches (‘spooling’ or ‘symbiont
activity’).

(ii) the provision of the optimum mix of programs from
those waiting to be run so that the most devices may
be utilised (coarse scheduling).

(iii) a method of switching between programs to achieve
the maximum processing rate (dynamic scheduling).

These scheduling strategies involve decisions about
allocating physical resources to programs and data. The
additional complexity of such a system creates its own
administrative overhead which can add significantly to the
total workload. The success of the multiprogramming is
highly sensitive to the match between physical resources and
the requirements of the workload. In particular there must be:

(iv) provision of sufficient primary store and storage
management to enable a sufficient number of pro-
grams to be active simultaneously.

(v) areasonable match between the load requirements on
each device and the device speed and capacity so as
to minimise ‘bottleneck’ effects whereby a single
overloaded device can cancel out the benefits of
multiprogramming.
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Figure 1—Configuration used by the model. Names in parentheses
denote corresponding equipment

Such a system, if properly configured and tuned, can
achieve a throughput rate several times greater than a single
program system. Performance analysis becomes much more
complex, but correspondingly more important.

A MODEL OF THE PHYSICAL WORKLOAD

We wish to model a number of independent processes, each
consisting of a cycle of CPU-I/0 requests. In real life, the
nature of these processes changes dynamically in an ex-
tremely complex way and we introduce several simplifying
assumptions:

(i) the processes are statistically identical and are always
resident in core store.

(ii) requests by a process are distributed among devices
according to a stationary, discrete probability dis-
tribution funection f.

(iii) the time taken to service a request on a particular
device ¢ is drawn from a stationary distribution
function s.

Figure 1 illustrates the network we have been using.
The names in parentheses refer to the particular equipment
in use at our installation. FH432, FH880, and FASTRAND
constitute a hierarchy of fast, intermediate, and large slow
drums respectively.

We restrict the model to those devices which satisfy the
constraint that any process receiving or waiting to receive
service from the device must be resident in core store. If a
process requires service from a device which does not satisfy
this constraint (e.g., a user terminal) it is no longer ‘active’
in the terms of the model. Normally it will be replaced in
core by some other process which is ready to proceed. This
restriction rules out an important class of performance
variables such as system response time, but has correspond-
ing advantages in dealing with throughput.

At any instant the number of active, in-core processes p is
discrete, but the average over a period of time may be non-
integer, as the mix of programs that will fit into core store
changes. In addition p includes intermittent processes such as
spooling which will contribute fractionally to its average
value. We will refer to p as the multiprogramming factor.
This is to be distinguished from the total number of open
programs (including those not in core store) which is some-
times referred to as the degree of multiprogramming.

In the first instance, all distribution functions have been
assumed to be negative exponential with appropriate mean

values for each device. First-in first-out queuing diseiplines
are also assumed. This is not strictly valid under EXEC 8 in
the case of the CPU, but the assumption does not upset the
general behaviour of the model.

Throughput and load

We may define the throughput of such a network to be the
number of request cycles completed per second for a given
load. The load is defined by two properties

(i) the distribution of requests between the various
devices
(i1) the work required of each device.

This ‘work’ cannot be easily specified independently of the
characteristics of the device, although conceptually the two
must be distinguished. The most convenient measure is in
terms of the time taken to service a request, and the dis-
tribution of such service times with respect to a particular
device.

For a given load, the distribution of requests among
N devices is described by a fixed set of probabilities
fi(i=1,... N). The proportion of requests going to each
device over a period of time will therefore be fixed, regardless
of the rate at which requests are processed. This may be
stated as an tnvariance rule for the model, expressible in two
forms with slightly different conditions:

For a given load distribution f

(1) the ratio of request service rates on respective devices
is invariant over throughput changes and

(ii) if the service times of devices do not change, the ratio
of utilizations on respective devices is invariant over
throughput changes.

Behaviour of the model

Figures 2(a), 2(b) show how the request service rate and
the utilization of each device vary with the number of active
processes p, for a simulation based on the UNIVAC 1108
configuration and workload at Regnesentret.

These two figures illustrate the respective invariance rules
just mentioned. Furthermore the two sets of curves are
directly related by the respective service times of each device
J- In passing we note that the busiest device is not in this
case the one with the highest request service rate, which is
always the CPU. Since we have assumed that service times
areindependant of p (not entirely true on allocatable devices),
it is clear that the shape of every curve is determined by the
same function F(p) which we will call the multiprogramming
gain function, shown in Figure 2(e).

This function has been investigated analytically by
Berners-Lee.? Borrowing his notation, we may express the
relationship of Figure 2(b) as

X;i(p)=F(p)z; for j=1,2,...N (D
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Figure 2—Behaviour of model as a function of the multiprogramming
factor p

where X;(p) is the utilization of device j when p processes
are active and z; is identical with X;(1), the corresponding
utilization when only one process is active.

Now when only one process is active, one and only one
device will be busy at a time, so that

N
_Ex,:l (2)

Summing equations (1) for ali devices, we have

2 X(p)=F(p) ®3)

That is, the multiprogramming gain for some degree of
multiprogramming p is equal to the sum of the device
utilizations. .
It is instructive to consider the meaning of the function
F(p). Multiprogramming gain comes about only by the
simultaneous operation of different devices. If there are p
parallel processes on N devices, then some number of pro-

cesses ¢ satisfying ¢ <min(p, N) are actually being serviced
at any instant, while (p—g) processes will be queuing for
service.

1t follows that the time-averaged value of ¢ must be F(p),
so that one may regard F(p) as the true number of processes
actually receiving service simultaneously. Since ¢ is limited
by the number of devices N it follows that the mazimum
value of F(p) must be N which we would expect to be the case
in a perfectly balanced system, at infinitely large p.

Improving system throughput

We shall consider in detail two ways of improving the
throughput of such a system:

(i) by increasing the multi-programming factor
(ii) by improving the match between system and workload

Later we shall encounter two further ways by which
throughput could be improved:

(iil) by reducing the variance of request service times

(iv) by improving the efficiency of the software so that
the same payload is achieved for a smaller total
workload.

Increasing the multiprogramming factor

We may increase the number of active processes by either
acquiring more core store or making better use of what is
available by improved core store management, or smaller
programs. The latter two alternatives may, of course, involve
a trade-off with the number of accesses required to backing
store.

The maximum gain obtainable in this way is limited by
the utilization of the most heavily used device—the current
“bottleneck.” If the present utilization of this device is X,
and the maximum utilization is unity, then the potential
relative throughput gain is 1/X,, (Figure 3). The practical
limit will of course be somewhat less than this because of
diminishing returns as p becomes large. A simple test of
whether anything is to be gained from increasing p is the
existence of any device whose utilization approaches unity.
If such a device does not exist then p is a “bottleneck.”
However, the converse does not necessarily apply if the
limiting device contains the swapping file,

Matching system and workload

This method of changing performance involves two effects
which are coupled in such a way that they sometimes conflict
with each other. They are:

(a) Improvement in monoprogrammed system per-

formance
(b) Improvement in multiprogramming gain
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These two components of system performance are seen in
(4) where r is the total no. of requests processed per second
on all devices when p=1, and R is the corresponding total at
the operational value of p (Fig. 2(a)).

R=F(p)r (4)

Clearly we may improve the total performance R by im-
proving either r or F(p), but we shall see that any action we
take to improve one has some effect on the other.

At p=1 the mean time to perform any request is 2 fs;
hence

= 2% )

In considering the potential multiprogramming gain F(p),
it is useful to examine the limiting value F; as p becomes large.
Applying equation (1) to the limiting device m we have

X
F(p)=—
Tm
and, as p becomes large,
1
F 1= (6)
Tm

The only way of improving F; is to reduce the mono-
programmed utilization z,,. But since m is the limiting device
and

N
E X;= 1
=1

it follows that z,. must have a lower bound of 1/N, at which
point all z; must be equal to 1/N and F;=XN. This is the
condition for a balanced system.

The limiting throughput corresponding to F; is obtained
by substituting in (4) using (5) and (6).

1 1
R Sy
By definition
JmSm
T T
so that
Ri= )

For a balanced system,

JnSm=fisi= ZTL‘& for i=1,...N (8

and from (4) Rl (balance) =Nr

It is important to note that while a balanced system is a
necessary and sufficient condition for a maximum potential
multiprogramming gain F, it is not necessarily an appropriate
condition for a maximum throughput R at some finite value
of p. This is because of the coupling between F(p) and r.

We shall now use equations (5) to (8) to examine in-
formally the effect, at high and low values of p, of two
alternative ways of improving the match between system
and workload. They are

(i) to reduce device service times
(i1) to redistribute the load on I/0 devices

Effect of reducing service time

Let us consider reducing service time s; on device j. From
(8), r will always be improved, but it will be most improved
(for a given percent improvement in s;) when f;s; is largest
with respect to Y f:s; i.e. when j=m, the limiting device.
From (7), if j#m, R; is not affected by the change but if
j=m then R, is inversely proportional to the service time.

Thus we may expect that for the limiting device, an im-
provement in service time will always result in an improve-
ment in throughput but this will be most marked at high
values of p. Speeding up other devices will have some effect
at low values of p, diminishing to zero as p increases (Fig.
4(a)).

If a limiting device j is speeded up sufficiently, there will
appear a new limiting device k. We may deal with this as two
successive transitions with j=m and j=m separated by the
boundary condition f;s;=fis.

Redistributing the load

This alternative depends on changing the residence of files
so that there is a shift of activity from one device to another.
Here we must bear in mind two further constraints. Firstly
this is not possible in the case of certain devices, e.g. the CPU
in a single CPU system. Secondly, a conservation rule
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Figure 4(b)—The effect of redistributing the load from device i to a
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usually applies such that work removed from one device ¢
must be added to some other device j.

That is
2 fi=1 (9)

Consider the effect of switching requests from any device ¢
to a faster device j. Since s;<s;, equation (5) tells us that r
will always be increased. Equation (7) tells us that E; will
be improved while z=m, reduced while j=m, and unaffected
while 7#m>j. (Figure 4(b)). The situation is again com-
plicated by the fact that as a particular set of requests is
switched from 7 to j a new limiting device may appear. In
this case we may consider the effect as two separate transi-
tions separated by the boundary condition fis;=jfis. where
k is the new limiting device.

The effect of switching requests to a faster device always
results in a throughput improvement at low values of p. As p
is increased, the throughput improvement will enlarge if the
donor device is the limiting device, diminish to zero if the
limiting device is not affected, and become negative if the
recipient device is the limiting device.

We should note that moving requests from a faster device
7 to a slower device 7 is the exact converse of the above. In
particular, if 7=m, we can expect a throughput improvement
at high values of p and a throughput worsening near p=1.

in the preceding discussion we have ignored the question
of device capacity. In practice, the distribution of files and
the eapacity of the respective devices must be matched to
achieve the most cost-effective I/0 load distribution. Con-
sideration of Figure 4(b) will show that the effect of load

redistribution depends both on the multiprogramming factor
and on how the load on the limiting device is affected by the
change. Redistribution is most effective if it reduces the load
on the limiting device. Successive applications of this criterion
will eventually lead to one of two situations:

either
(1) the CPU becomes the limiting deviee (CPU-bound
situation).
or

(2) the I/0 load is balanced among devices so that their
respective utilizations are equal and not less than the
CPU utilization (balanced I/O-bound situation).

Further load redistribution will be effective at lower values
of p, where some gains can be made by moving requests from
slower devices to faster ones. At higher values of p this will
have a reduced effect in the CPU-bound case and a deleterious
effect in the balanced I/0 bound case.

One may sum up the criteria for load distribution in a very
generalised way as follows. If there is low multiprogramming
one should try to ménimise the I/0 load by making maximum
use of the faster devices. If there is high multiprogramming
and an I/0 bound situation, one should try to balance the
1/0 load so that all devices are equally utilized. If there is
high multiprogramming and a CPU-bound situation, there is
little to be gained by redistributing the I/0 load, except
perhaps savings on device capacity. Clearly the optimum
distribution for a particular case cannot be expressed in such
a rule of thumb, and requires detailed calculation.

Use of tnvariarce rules

The effect of a specific change on the behaviour of the
system may be understood by applying the invariance rules
governing the ratios of request service rates and utilizations
on each device. If the service time of a device is reduced
(without changing the allocation of files between devices),
e.g., by replacing with a faster device or by optimising arm
movement, the ratio of utilizations will only change in
respect of that device, and the ratio of request rates to all
devices will remain constant. However, the magnitude of all
request rates will increase. In redistributing the load, the
same logic applies, except that the ratios of both request
rates and utilizations will change with respect to the affected
devices.

Determining F(p)

The precise =vape of F(p) for given device utilizations
depends upon the assumptions we make about the dis-
tributions of service times on the various devices.

The simulation results presented so far assume exponential
distributions and in this case we may use the formulation
developed by Berners-Lee. In Reference 5 he shows that

F(p)=8(p—1)/8(p) (4)
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on all devices)

where
8(p)= X mmmme. .. oy (5)

summed over all combinations of n;
subject to n;>0 and ny+ne4- . . .y =p

The n; thus represent all possible combinations of queue sizes
at each device 7.

Using this relationship, F(p) can be economically com-
puted by a simple program provided the z; are known, and
p and N are small.

In practice we may monitor the actual device utilizations
X, for a real system, and compute the z; from the relation

4

N
2 X;

=l

Ti=

obtained from (1) and (3)

We have found this program to be more convenient than the
simulation when exponential distributions can be assumed.
It gives precisely the same results.

Effect of service time distributions

Different shapes of F(p) are obtained by repeating the
simulation under different assumptions about the distribution
of request service times. Figure 5 shows that an observed
utilization X; will imply different values of the effective
number of processes p under the different assumptions.
Although we can estimate a reasonable range for the true
value of p there is no means of observing it directly since it
is a model parameter based on simplifying assumptions. It is
therefore important in using the model to establish its sensi-
tivity to changes in distributions and to establish what
distributions actually obtain in practice.

The exponential assumption has yielded results borne out
by experiment in the two cases to be described, but it is felt
that there must certainly be many cases where this assump-
tion will prove too simplified.

From the figure we may infer that for a given number of
parallel processes p, the effectiveness of multiprogramming is
increased as the variance of the request service times is
reduced. This is our third way of improving throughput.

Variance is an important control parameter in the model,
and allows us to reproduce in a general way many practical
effects. Some examples of these are:

o the continuously changing pattern of real workloads
e alternative queuing disciplines and time-slicing
e movable-head dises with wide ranges of service times

Work continues on establishing the effects of variance in
more detail.

Interactive loads

Within its own terms of reference the model seems to be
quite applicable to interactive loads, but applications studied
so far have had only a small interactive element so it is too
early to be conclusive about this,

We have already stressed that in its present form the
model cannot handle questions involving response time. If
interactive loads are to be properly considered, it is necessary
to introduce core allocation and paging or swapping ex-
plicitly. Many studies have of course been done in this area.
One which is rather close to the present approach is described
by Florkowski.®

APPLICATIONS

Ezpanston of core-store

During the Spring of 1971 an evaluation was attempted to
predict the effect on batch throughput of increasing the
primary core store. The eventual decision to order more core
was based upon the usual combination of hearsay, ad hoc
reasoning, and benchmark tests. In this case a certain amount
of core went into the construction of the benchmark?* and it
was run under software monitoring. However the insights
described in this paper had not then been obtained. More
than one year later we reexamined the records of those tests
to determine how consistent they were with the behaviour
of the model.

In the original core store of 128 k words, the operating
system EXEC 8 used about half of the space, leaving approxi-
mately 64 k& words available for user programs. To predict
the effect of adding a core module of 64 k& words, a benchmark
was run at Computas A/S, Oslo, Norway on a similar con-
figuration equipped with 192 k words. For the sake of com-
parison, the benchmark was run at the same installation with
one core module down. In both cases a version of EXEC 8
including the Wisconsin modifications was used.

Table I (a) shows the subsystem utilizations obtained with
the smaller core. From this table we observe that no sub-
system has a higher utilization then 0.59. As we have dis-



A Structural Approach to Computer Performance Analysis 115

TABLE I—Expansion of Core-Store

(a) Device utilization with 128 k words of core.
FAST- MAGN.
RAND TAPE

CPU  FH432 FHS880

BENCHMARK 0.59 0.26 0.26 0.56 0.25

(b) Device utilizations with 192 k words of core.
FAST- MAGN.

CPU  FH432 FH830 RAND TAPE
MODEL 0.79 0.35 0.35 0.75 0.33
BENCHMARK 0.77 0.39 0.38 0.74 0.35

(¢) Device utilizations normalised with respect to the CPU to compare
relative device loads in the two benchmark tests.

FAST- MAGN.

CPU  FH432 FH880 - RAND TAPE
128 k words 1.00 0.44 0.44 0.95 0.42
192 k words 1.00 0.51 0.49 0.96 0.45

cussed previously the limit of the utilization of the bottleneck
subsystem is 1.00 as p is increased. The system is rather far
from this maximum and a natural explanation is that the
system has insufficient core store. There are of course other
possible explanations:

(1) unsaturated system caused by insufficient backlog
(ii) too few jobs opened simultaneously
(iii) the operating system is not able to make full use of
the available core

Alternative (i) is eliminated at once because there is a
significant backlog when the benchmark is running except
for a short period in the beginning and at the end of the test.
Point (ii) is eliminated if the mean storage requirements of
open runs exceed the available core. In this case the number
of open runs was set to 4, and the mean program size was
22k, giving a product in excess of the available 64 k. Point
(iii) is more difficult to handle. The safest way of investigating
this alternative is to run a benchmark at an installation
having bigger core store. In the following we assume that the
batch throughput is limited by the core store and we will use
the model to predict the effect of adding 64 &k words.

The system is represented by the queuing network shown
in Figure 1.

We assume negative exponential distributed service-times
and a “first in first out” queuing discipline. Under these
assumptions the model (in this case the analytical model is
used) gives the results shown in Figure 6.

When adding 64 k words of core, the user core space is
approximately doubled so that it is reasonable to expect a
system working at a multiprogramming factor equal to twice
the old one. Although the multiprogramming factor includes
the EXEC activity as well as the user-activity, it is assumed
that a certain increase in the user activity causes a corre-
sponding increase in the EXEC activity.

From Figure 6 we observe that a value of 2.7 has to be used
for the multiprogramming factor to match the model output
to the figures measured in benchmark MARKI1 given in
Table I (a). From Figure 6§ we also find that if the multi-
programming factor is increased to 5.4 the cpu utilization is
increased to 0.79. The corresponding relative increase in
throughput is given by

0.79—0.59
W =0.34(=20.02)

The inerease in throughput measured by the benchmark was
0.28 (24=0.05) based on elapsed time. The large error margin is
due to an end-effect in the small core test whereby one job
was running alone for 1.7 minutes out of total test time of 24
minutes. In Table I (b) a comparison is given between the
subsystem utilizations measured in the large core test and
the corresponding figures ‘given by the modet:

The improvement ‘predicted’ by the model seems a little
too optimistic, perhaps because our estimation of the new
value of p is too high. However, in view of practical difficulties
with the benchmark tests, the correspondence seems as close
as can be expected.

In Table I (¢) we given the utilization figures for the two
benchmark tests. The figures are normalized using the cpu
utilization as a base. All normalized utilization figures for
the benchmark test run on 192 k words core are higher than
those for- 128 k. This observation is partly explained by
looking at the total cpu-time in the two benchmarks. In the
first case it is 14.15 minutes, in the second it is 13.90 minutes.
By further examination of the monitor output we also find
differences in both number of accesses and service-time for
the different I/O-subsystems between the two tests. The
differences are difficult to explain from the available data.

These discrepancies show that care must be taken in using
either a benchmark or a model. When using a simple model to
investigate the effect of system-changes it is easy to overlook
significant side effects. On the other hand when using a
benchmark one runs the risk of including undesirable effects

cpu-utilizatiecn

.
o
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Figure 6—Cpu utilization as a function of the multiprogramming factor.
Workload defined by benchmark run with 128 & words core



116  National Computer Conference, 1973

due to changed test conditions. In both cases emphasis must
be placed on careful analysis of the expected effects of a
change and, in the case of a benchmark, on the monitor
output from the test. A combination of the two techniques is
clearly the safest.

Redistributing the load

After the addition of core store which coincided with the
introduction of a new version of the operating system, it
became apparent that the Fastrand drum, a movable-head,
secondary storage of some 200 million characters, and 92 ms
average access time, was the limiting device. The first re-
action was to think in terms of adding a disc system with a
much shorter net access time (of the order of 30 ms) and
positioning overlap between disc units. The model predicted
a throughput improvement of as much as 30 percent with one
such arrangement. However, following a report from the
University of Wisconsin, we tested the effect of transferring
all symbiont activity (i.e., ‘spooling’ of read and print files)
from Fastrand to a faster drum, the FH880, which had a very
low utilization. It turned out that a very large percentage of
Fastrand accesses were made in connection with these files,
and some directory accesses seem to have disappeared
altogether.

The effect can be seen from a pair of monitored benchmark
tests run before and after the change. The tests we shall
compare are:

Test A Symbiont files on Fastrand
Test B Symbiont files on FH880 drum

The change is effectively a redistribution of the I/0 load
so that we may compare the practical tests with the behaviour
of the model under the appropriate redistribution of f. In
order to use the model realistically, we need ideally an in-

dependant estimate of the total number of Fastrand accesses
involved in symbiont activity. Since this is not available, we
will make use of the observed fall in Fastrand accesses
between the two tests, but we will assume that all of the
difference is transferred to the FH880 drum, ignoring side-
effects that came to light in the course of the tests.

We shall also assume that the mean service times on each
device are not effected by the change and that service times
are distributed exponentially. Then since mean service times
are constant we may use the device utilizations as coefficients
of the load distribution for each device.

Step 1 is to use the utilizations of test A shown in line 1 of
Table II (a) to determine a value of p for the benchmark.
This is obtained from curve (a) in Figure 7 which shows the
variation of CPU utilization with p for test A. The curve was
obtained from the analytic formulation, using integer values
of p. The value of p corresponding to the required CPU
utilization is found by interpolation at 4.5.

Step 2 is to calculate the “expected” load distribution,
using the observed fall in Fastrand accesses between tests A
and B. This is shown in Table II (b). Line 4 of this table
shows the expected new load distribution. The corresponding
utilization ratio is then calculated from the device utilizations
for test A using the relationship.

expected new accesses
observed old accesses

This is shown in line 2 of Table IT (a).

Step 3 is to use the new load distribution, stated as a ratio
of utilizations at some arbitrary value of p, as input to the
model. The resultant utilization curve for the CPU is shown
in Figure [7(b)]. Since p for test A is already determined,
and is not affected by load distribution, we may read off the
expected CPU utilization. From our invariance rule, the
other device utilizations are then obtainable using the known
ratios of their input values. Expected and observed utiliza-
tions are shown in Table II (c).

New coefficient = old coefficient X

TABLE IT—Redistribution of Load

(a) Device utilizations before redistribution and ‘expected’ ratios after redistribution.

CPU FH432 FHS80 FASTRAND MAGN. TAPE
Observed utilization (test A) 0.62 0.26 0.14 0.90 0.18
Expected ratios (test B) 0.62 0.26 0.24 0.57 0.18
(b) Device Requests—observed and ‘expected’.

CPU FH432 FHS80 FASTRAND MAGN. TAPE
1. Observed (test A) 67024 33626 7351 14763 11284
2. Observed (test B) 62210 30473 11129 9326 11282
3. Observed shift —4814 —3153 +3778 —5437 ~2
4. Expected shift 0 0 (+5437) — 5437 0
5. Expected load (test B) 67024 33626 12788 9326 11284
(c) Device utilizations after re-distribution—Model ‘prediction’ and benchmark.

CPU FH432 FHS30 FASTRAND MAGN. TAPE
Model ‘prediction’ 0.77 0.32 0.30 0.71 0.22
Observed (test B) 0.71 0.29 0.27 0.68 0.22
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Figure 7(a)—Deduction of p from observed cpu utilization
Figure 7(b)—Deduction of cpu utilization for re-distributed load

The expected improvement in throughput is given by the
relative improvement in CPU utilization

0.77—0.62

=0.24 (£0.02
0.62 ( )

The increase in throughput measured by the benchmark is
0.27 (20.03) based on elapsed time. There is again an error
margin in the benchmark figure because of the appearance of
an end-effect in test B in which only one job was active for
the last 1.1 minutes. The correspondence between benchmark
and model results is surprisingly good, in view of the known
side effects and discrepancies. We will now review these
briefly.

Side-effects

In applying the model to this case, we have deliberately
ignored known side-effects of the change (Table IT, line (3)).
This is because we wished to show how the model may be
used in practice to make a prediction where side-effects would
not be known. Provided that the loads on the old limiting
device and the new limiting device are correct, other side
effects may be quite large without making a significant
difference to overall performance.

In the present case these were as follows

(i) Effect of full Fastrand.
The Fastrand device at the installation normally
operates in a heavily loaded condition, with about
80 percent of its space taken up with catalogued files
and heavy competition for the remaining 20 percent
by jobs using temporary files. In these circumstances
the acquisition of space for a new file seems to require
a great deal of extra directory activity as the available
space is randomly spread over the device. This
situation does not pertain on 880 where there is a
much smaller total area to search. Consequently, of
the 5437 accesses removed from Fastrand only 3778
were observed on 880, the remainder being directory
accesses that were no longer required. This is con-
sistent with independant benchmark tests which show

that the net total of Fastrand accesses is 1800-2000
less on an empty Fastrand than on a full one. Since
Read and Print files comprise the majority of tran-
sient Fastrand files used by the benchmark, we would
expect to lose a correspondingly high proportion of
these accesses.

(ii)) Reduced 432 accesses.
This effect has not been satisfactorily explained.

(iii) Reduced CPU requests.
This effect is really a consequence of the net reduction
in I/0 accesses. CPU requests are not monitored
directly but it is implicit in the model that the sum
of CPU requests is equal to the sum of all I/0
requests.

Discrepancies in the benchmark

There are always practical difficulties in obtaining two
precisely comparable tests with an alteration only in the test
variable. We have already referred to the end-effect in test
B. There was also a 3 percent loss of CPU time due to a
program going into error. Other slight diserepancies in
activity charged to the user amounted to &3 percent of the
total load on FH432 and FH880. Another important end-
effect is the size of the residual print-backlog at the end of
each test. The faster test leaves a longer back-log which also
affects the observed shift of accesses to FH&80.

In spite of the discrepancies, the model ‘prediction’ is
quite good because we were able to use good estimates for
the relative loads on the old and new limiting devices. The
complementary nature of the model and benchmark tech-
niques is again evident, each compensating for the weak-
nesses of the other.

STRUCTURAL PERSPECTIVE

Factors affecting the basic parameters

So far we have examined system and model behaviour in
terms of the basic parameters introduced. We shall now take
a more general look at some of the factors which affect the
values of these parameters.

The average number of active processes p is influenced by

(1) the primary storage requirements of programs

(2) the number of programs opened in parallel by the
system

(3) the management of primary storage, including the
amount devoted to system resident

(4) the amount of primary storage available.

The distribution of service time s for a device is dependent on
both device speed and the work to be performed.
For I/0 devices, service time is influenced by

(1) the no. of bits to be transferred (e.g. block length or
buffer size)
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(2) logical address within the file

(3) disposition of the file on some device

(4) the previous position of the read/write heads (if a
movable head device)

(5) positioning time, latency and transfer rate of the
device, as appropriate

For a CPU, service time is influenced by

(1) the particular instructions, registers and storage banks
involved

(2) the time-slice permitted by the dynamic scheduler

(3) the speed of the CPU logic and storage

(4) cycle-stealing

Finally, there is the distribution f of requests among
devices. Factors affecting this are:

(1) the basie processing requirements of the user programs

(2) the additional administrative load imposed by the
system: e.g. swapping, directory look-up, transfer of
non-resident executive functions, compiler scratch
files, program changes etc.

(3) the allocation of both user and system files to specific
1/0 devices.

In the case of each of these sets of factors we may dis-
tinguish a number of levels at which decisions are taken
which eventually affect the value of the physical load param-
eters. These levels are described in Figure 8. Starting with
the highest level, they may be designated:

-er Ttocexsing Revuirerents

| CEVEL ¥ DESISN OF FEUGRAMI
PRIGRAMMING i

TO ACHIEVE ECJNCMICAL DAYLT/D

LEVIL IV DESIGN OF STA
SOFTWARE 77 GEMERATE ET
WORKLOAD

TRANSLATION

Gererated Worklcad (file-criented)

|

RESOURCE
ALLOCATION

LEVEL IIT ALLOCATION
OF WORKLOAD TO DEVICES

&—— Systen

T Configuraticn
Frysical Worklcad

(evice-sriented)

RESOURCE LEVEL II SCEEDULING OF
ALLOCATION WORKLOAD TC OPTIMTSE
(Dynamic) MJLTIPPOGRAMMING
. |
Dynawic Physical Worklcad

Figure 8—Structural view of performance analvsis

Decision Level Associated Input

5 Programming User Processing

Requirements
4 Translation User Payload
3 Static Resource Generated Workload
Allocation
2 Dynamic Resource Physical Workload
Alloeation

1 Hardware Characteristics Dynamic Workload

Before dealing with each level in turn, some general
comments are in order. Firstly, in existing systems these
levels are hopelessly confused, especially the higher ones.
Secondly, these levels are not a sequential progression for any
given program, but rather reflect different kinds of decision
which should be clearly distinguished. Clearly, decisions
about static resource allocation are taken at a great many
different points in the life of a program, some by the user or
programmer, some by the installation, and some by the
system itself at run time. Thirdly, the purpose behind making
these levels distinet is to clarify how different system com-
ponents contribute to system performance, what decisions
can be taken at what level to affect it, and to distinguish
clearly between different kinds of performance question—
e.g., computer selection, the adoption of new levels of the
operating system, compiler optimization, disc scheduling,
hardware configuration. From the point of view of a particu-
lar installation, the cost-benefit of a given change must
depend upon the contribution it makes to overall system
performance through the basic parameters we have presented.

Level 5 programming

At this level the users processing requirements are given
explicit shape in some programming language, or by the
selection of a particular application package. Processing is
defined in terms of records, files and algorithms. The net
result from this level of decision making is the identifiable
workload of the computer. This is the ‘payload’, which the
user wishes to pay for and which the installation seeks to
charge for. Unfortunately, accounting information provided
by the system is often only available on a device-oriented
rather then file-oriented basis, and compounded with effects
from lower levels in the system.

This is the level at which benchmarks are prepared for
purposes of computer selection or testing of alternative con-
figurations. In the case of computer selection, the aim must be
to withhold as many decisions as possible about how the
users requirements will be implemented, since this is so
dependent upon available facilities. The alternative is to
follow up the ramifications of each system. Thus in general,
a quantitative approach to computer selection is either in-
accurate or costly, or both.

Benchmarks for a given range of computers are a more
feasible proposition since they can be constructed on the
output of level 5, leaving open as many resource allocation
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decisions as possible, so that the most can be made of alterna-
tive configurations.

Level 4 translation

By this is intended the whole range of software including
input/output routines and compilers by which the punched
instructions of the programmer are translated into specific
machine orders and the results translated back again into
printed output.

Factors involved at this level will include optimization of
code, efficiency of compilers, buffer sizes determined by
standard I/0 routines. It is clear that these will in turn affect
the core size of programs, the length of CPU requests and the
number and length of accesses to different files. The output
from this stage is the generated workload, and its relation to
the payload might be thought of as the ‘efficiency’ of the
system software. Improving this efficiency is the fourth way
of improving system performance, referred to in a previous
section.

Level 3 static resource allocation

At this level, decisions are concerned with matching pro-
cessing requirements to the capacity of the configuration.
Decisions are made about the allocation of files to specific
devices, taking account of configuration information about
physical device capacity, number of units, etec. We also
include here the decision to ‘open’ a job, implying the assign-
ment of temporary resources required for its execution. This
is done by the coarse scheduling routines, which also decide
on the number and type of jobs to be simultaneously open
and hence the job mix which is obtained. Both user and
operator may override such decisions, subordinating machine
efficiency to human convenience.

The decisions taken at this level may influence the maxi-
mum number of parallel processes and the relative activity
on different I/0 devices.

Level 2 dynamic resource allocation

By ‘dynamic’ we mean decisions taken in real time about
time-shared equipment, namely the CPU and primary store.
The number of active parallel processes is that number of
processes which are simultaneously requesting or using
devices in the system. To be active a process must first have
primary store, and the dynamic allocation of primary store
governs the number of processes active at any instant.

Given the processes with primary store, the system must
schedule their service by the CPU, which in turn gives rise
to requests for I/0 devices. The rules for selection among
processes and the timeslice that they are allowed will influence
the instantaneous load on devices. In terms of the model, this
will influence the shape of the distributions of load f and
service time s which in turn influence the shape of the gain
function F(p).

Level 1 execution

At this level, the final load has been determined, so that
the remaining effects on performance are due to the physical
characteristics of the devices. Unfortunately, it is difficult to
express the load in terms which are independent of the
specific device. The function f gives the distributions of
requests, but the service time s is a compound of load and
device speed as we have discussed. However, it is at least a
quantity which can be directly monitored for a given work-
load and configuration, and one may estimate how it is
affected by changes in device characteristics.

In principle, the important parameters of our model can
be monitored directly at this level of the system, although
we have not yet succeeded in obtaining an empirical value for
p. However, the model depends for its simplicity and power
on the correct use of the distributions of these parameters
and investigations continue in this area.

CONCLUSION

We have presented a set of concepts which have been de-
veloped in an effort to master the performance characteristies
of a complex computer system. These concepts, together with
the simple queuing model which enables us to handle them,
have proven their usefulness in a variety of practieal situa-
tions, some of which have been described.

The application of these concepts depends upon having
the necessary information provided by monitoring tech-
niques, and conversely provides insight in the selection and
interpretation of monitor output. While such abstractions
should whenever possible be reinforced by practical tests,
such as benchmarks, they in turn provide insight in the
interpretation of benchmark results.

In its present form the model is strictly concerned with
throughput and is not capable of distinguishing other per-
formance variables such as response time. This severely
restricts its usefulness in a timesharing environment, but is
very convenient in situations where throughput is of prime
concern.

Consideration of the distinct tvpes of decisions made
within the computer complex, suggests that it may be possible
to assess the effect of different system components on overall
performance in terms of their effect on the basic parameters
of the model.

It is thought that the approach deseribed may be particu-
larly useful to individual computer installations seeking an
effective strategy for performance analysis.
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Simulation—A tool for performance evaluation in

network computers

by EDWARD K. BOWDON, SR., SANDRA A. MAMRAK and FRED R. SALZ

University of Illinois at Urbana-Champaign
Urbana, Illinois

INTRODUCTION

The success or failure of network computers in today’s
highly competitive market will be determined by system
performance. Consequently, existing network computer
configurations are constantly being modified, extended,
and hopefully, improved. The key question pertaining to
the implementation of proposed changes is “Does the
proposed change improve the existing system
performance?”’” Unless techniques are developed for
measuring system performance, network computers will
remain expensive toys for researchers, instead of becom-
ing cost effective tools for progress.

In order to analyze and evaluate the effects of proposed
changes on system performance, we could employ a
number of different techniques. One approach would be
to modify an existing network by implementing the pro-
posed changes and then run tests. Unfortunately, for
complex changes this approach becomes extremely costly
both in terms of the designer’s time and the programmer’s
time. In addition, there may be considerable unproduc-
tive machine time.

Alternatively, we could construct a mathematical
model of the envisioned network using either analytical or
simulation techniques. Queueing theory or scheduling
theory could be employed to facilitate formulation of the
model, but even for simple networks the resulting models
tend to become quite complex, and rather stringent sim-
plifying assumptions must be made in order to find solu-
tions. On the other hand, simulation techniques are lim-
ited only by the capacity of the computer on which the
simulation is performed and the ingenuity of the pro-
grammer. Furthermore, the results of the simulation tend
to be in a form that is easier to interpret than those of the
analytical models.

To be of value, however, a simulation model must be
accurate both statistically and functionally. In order to
ensure that the analysis of proposed changes based on the
simulation results are realistic, the model’s performance
must be measured against a known quantity: the existing
network.

In this paper we present a simulation model for a hypo-
thetical geographically distributed network computer.
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Since the model was developed for a hypothetical net-
work, we needed to ensure that the results were valid and
that no gross errors existed in the model. Our approach
was to design a general n node network simulator and
then to particularize the input parameters to describe
ILLINET (the computer communications network at the
University of Illinois). For a given period, system
accounting records provided exact details of the resources
used by each task in the system including CPU usage,
input/output resources used, core region size requested,
and total real time in the system. Using the first three of
these parameters as input data, we could simulate the
fourth. Comparison of the actual real time in the system
to the simulated real time in the system authenticated the
accuracy of the model. Extrapolating from these results,
we could then consider the more general network with
reasonable assurance of accurate results.

MODEL DEVELOPMENT

We begin the development of our network model by
focusing our attention on ILLINET. This system contains
a powerful central computer with copious backup mem-
ory which responds to the sporadic demands of varying
priorities of decentralized complexes. The satellite com-
plexes illustrated in Figure 1 include:

(1) Simple remote consoles.

(2) Slow I1/0.

(3) Faster 1/0 with an optional small general purpose
computer for local housekeeping.

Small general purpose computers for servicing
visual display consoles.

Control computers for monitoring and controlling
experiments.

Geographically remote satellite computers.

(4)
(5)
(6)

This network was selected for study because it represents
many of the philosophies and ideas which enter into the
design of any network computer. The problems of interest
here include the relative capabilities of the network, iden-
tification of specific limitations of the network, and the
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Figure 1 —ILLINET— University of Illinois computer
communications network

interrelationship between communication and computing.
From a long range viewpoint, one of the more interesting
problems is the effect on system performance of central-
ized vs. distributed control in the operating system.

From a postulation of the essential characteristics of
our computer network, we have formulated a GPSS
model for a three node network, illustrated in Figure 2.
Jobs entering the nodes of the network come from three
independent job streams, each with its own arrival rate.

A single node was isolated so that performance could be
tested and optimized for the individual nodes before
proceeding to the entire network. A node in a network

23 A

L

A2 ks 32

Figure 2-— Hypathetical network computer

computer conceptually performs three major functions:
queue handling and priority assignment; processor alloca-
tion; and resource allocation other than the CPU (such as
main storage, input/output devices, etc.).

The goal of the single node optimization was to develop
a priority scheme that would minimize the mean flow
time of a set of jobs, while maintaining a given level of
CPU and memory utilization. The IBM 360/75 was taken
as the model node, the present scheduling scheme of the
360/75 under HASP (Houston Automatic Spooling Prior-
ity System)' was evaluated, and as a result a new priority
scheme was devised and analyzed using the simulation
model.

NODE DESCRIPTION

The logical structure of the HASP and 0S/360 systems
currently in use on ILLINET is illustrated in Figure 3
and briefly described in the following paragraphs.

Job initiation

Under the present HASP and 0.S. system jobs are read
simultaneously from terminals, tapes, readers, disks, and
other devices. As a job arrives, it is placed onto the HASP
spool (which has a limit of 400 jobs). If the spool is full,
either the input unit is detached, or the job is recycled
back out to tape to be reread later at a controlled rate.

Upon entering the system, jobs are assigned a “magic
number,” Y, where the value of Y is determined as fol-
lows:

Y=SEC+ .1*IOREQ+.03*LINES. (1)

SEC represents seconds of CPU usage, LINES represents
printed output, and IOREQ represents the transfer to or

HASP INITIATORS

PLACE JoB

O %
0. S. QUEUE

JoB
v ACCOUNTING

QUTPUT

Fignre 3a—T.ogical structnre nf HASP
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Figure 3b—Logical structure of O.S.

from core storage of blocks of data. Based on this magic
number, a “class’ assignment is given to each job.

Any one of seven initiators can be set to recognize up to
five different classes of jobs, in a specific order. It is in
this order that a free initiator will take a job off the spool
and feed it to O.S. For example, if an initiator is set CBA,
it will first search the spool for a class C job; if not found,
it will look for a class B. If there is no B job, and no A job
either, the initiator will be put in a wait state. Once the
job is selected, it is put on the 0.S. queue to be serviced
by the operating system.

0.S. initiation

After a job is placed on the O.S. queue, there is no
longer any class distinction. Another set of initiators
selects jobs on a first-come, first-served basis and
removes them from the 0.S. queue. It is the function of
these initiators to take the job through the various stages
of execution.

The control cards for the first {or next) step is scanned
for errors, and if everything is satisfactory, data manage-
ment is called to allocate the devices requested. The initi-
ator waits for completion.

The O.S. supervisor is then called to allocate core
space. The first block of contiguous core large enough to
contain the step request is allocated to the job. If no such
space is available, the initiator must wait, and is therefore
tying up both the O.S. and HASP initiators. No proce-
dures in O.S. exist for compacting core to avoid fragmen-
tation. Once core is allocated, the program is loaded, and
the job is placed on a ready queue with the highest non-
system priority.

0.S. scheduler

Jobs are selectively given control of the CPU by the
0.S. scheduler. The job with the highest dispatching
priority is given control until an interrupt occurs—either
user initiated or system initiated.

HASP dispatcher

Every two seconds, a signal is sent by the dispatcher to
interrupt the CPU, if busy. All of the jobs on the ready
queue are then reordered by the assignment of new dis-
patching priorities based on resources used in the pre-
vious 2 second interval. The job that has the lowest ratio
of CPU time to I/0 requests will get the highest dispatch-
ing priority. (For example, the jobs that used the least
CPU time will tend to get the CPU first on return from
the interrupt.) During this period, HASP updates elapsed
statistics and checks them against job estimates, termi-
nating the job if any have been exceeded.

Job termination

When execution of the job is completed, control is
returned to the HASP initiator to proceed with job termi-
nation. Accounting is updated, the progression list is set
to mark completion, and Print or Punch service is called
to produce the actual output. Purge service is then called
to physically remove the job from the system. The initia-
tor is then returned to a free state to select a new job from
the spool.

The main goal of the HASP and O.S. system is to
minimize the mean flow time and hence the mean waiting
time for all jobs in the system, provided that certain
checks and balances are taken into account. These
include prohibiting long jobs from capturing the CPU
during time periods when smaller jobs are vying for CPU
time, prohibiting shorter jobs from completely monopoliz-
ing the CPU, and keeping a balance of CPU bound and
I/0 bound jobs in core at any given time. At this point
the question was asked: “Could these goals be achieved
in a more efficient way?”

PROPOSED PRIORITY SCHEME

In a single server queueing system assuming Poisson
arrivals, the shortest-processing-time discipline is optimal
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with respect to minimizing mean flow-time (given that
arrival and processing times of jobs are not known in
advance of their arrivals).2 This result is also bound to the
assumption that jobs are served singly and totally by the
server and then released to make room for the next job.

Processing time

With respect to 0S/360 there are several levels and
points of view from which to define processing or service
time. From the user’s point of view processing time is, for
all practical purposes, the time from which his program is
read into HASP to the time when his output has been
physically produced—punched, filed, plotted and/or
printed. Within this process there are actually three levels
of service:

(1) The initial HASP queuing of the job, readying it
for 0.S.; a single server process in the precise sense
of the word.

(2) The O.S. processing of the job; a quasi single server
process where the single-server is in fact hopping
around among (usually) four different jobs.

(3) The final HASP queueing and outputting of the
job; again a true single-server process.

The second level of service was used as a reference point
and processing time was defined as the total time a job is
under O.S. control, whether it is using the CPU or not.
The total time a job is under control of O.S. consists of
four time elements:

(1) Waiting for core—this quantity is directly related to
the region of core requested by a job and can be
represented by « - R where « is a statistical measure
of the relationship of core region requests to sec-
onds waiting and R is the region size requested.

(2) Direct CPU usage—this quantity can be measured
in seconds by a control clock and is denoted by
CPUSEC.

(3) Executing I/0—this quantity includes the time
needed for both waiting on an I/0 queue and for
actually executing 1/0. It is directly related to the
number of I/0 requests a job issues and can be
represented by 8- IO where 8 is a statistical meas-
ure of the relationship of the number of I/0
requests to seconds waiting for and executing 1,0,
and 10 is the number if I/ O requests issued.

(4) Waiting on the ready queue—this quantity is heav-
ily dependent on the current job configuration.
Since the 0.S. queue configuration a job encounters
is unknown when the job enters HASP, this waiting
time is not accounted for in the initial assignment.

The total job processing time, PRT, may be expressed
as follows:

PRT=qa- R+CPUSEC+8-I0 (2)

This number, calculated for each job, becomes an initial
priority assignment (the lower the number the higher the

job’s priority). A summary of the dynamics of the pro-
posed priority scheme is depicted in Figure 4.

Dynamic priority assignment

Once the initial static priority assignment has been
determined for each job, a dynamic priority assignment
algorithm is used to ensure that the checks and bala