AFIPS

CONFERENCE
PROCEEDINGS

VOLUME 35

1969

FALL JOINT
COMPUTER
CONFERENCE

November 18 - 20, 1969
LasVegas, Nevada

The ideas and opinions expressed herein are solely those of the authors and are
no necessarily representative of or endorsed by the 1969 Fall Joint Computer
Conference Comimittee or the American Federation of Information Processing
Societies.

Library of Congress Catalog Card Number 5544701

AFIPS PRESS
210 Summit Avenue
Montvale, New Jersey 07645

© 1969 by the American Federation of Information Processing Societies, Montvale,
New Jersey, 07645. All rights reserved. This book, or parts thereof, may not be
reproduced in any form without permission of AFIPS Press.

Printed in the United States of America

CONTENTS

OPERATING SYSTEMS

A gurvey of techniques for recognizing parallel processable streams
in computer Programs.vvee. ot onroonnrnnrenneeennn..

Performance modeling and empirical measurements in a system
designed for batch and time-sharing users.....................

Dynamic protection structures.covririiiiien.. ..

The ADEPT-50 time sharing system.cvveeivnnnein...

An operational memory share supervisor providing multi-task
processing within a single partition...........................

ARRAY LOGIC—LOGIC DESIGN OF THE 70’s

Structured logic. ... e

Characters—Universal architecture for LSI.
Fault location in cellular arrays. L.
Fault multiplication cellular arrays for LSI implementation.

The pad relocation technique for interconnecting LSI arrays of
imperfect yield. o e

COMPUTERS FOR CONGRESS

(Panel Session—No papers in this volume)

THE COMPUTER SECURITY AND PRIVACY CONTROVERSY

The application of cryptographic techniques to data processing. . . .
Security controls in the ADEPT-50 time-gharing system..........
Management of confidential information..........c.......ovvu..

PROGRAMMING LANGUAGES AND LANGUAGE PROCESSORS

Some syntactic methods for specifying extendible programming

LA ZUAZOS . . o oo ee e et e e
SYMPLE—A. general syntax directed macro processor...........

An algebraic extension to LISP.00 v
An on-line machine language debugger for 0S/360...............
The multies PL/1 compiler.,

17

27

39

61

69
81
89

99

111
119
135

145
157

169
179
187

Gonzalez
Ramamoorthy

L J.

. V.

. E. Shemer
. W. Heying

. W. Lampson
. R. Linde
. Weissman
.F

or

QRIS QR

J. E. Braun
A. Gartenhaus

m
s =
3 (s}

LA,

.T.

AL

. Waxzman

. D. Erwin
. J. Thuiber

. V.. Ramamoorthy
. C. Economaides
.F.

O aoaRmxANW

Calhoun

R. O. Skatrud-
C. Weissman
E. V. Comber

Schneider
E. Vander Mey
C. Varney

E. Patchen
Knowlton

H. Josephs
A.

V.
J.
R.
R.
P.
w.
R. A. Freibeurghouse

FORTHCOMING COMPUTER ARCHITECTURES

A design for a fast computer for scientific caleulations............
A display processor design. it

The system logic and usage recorder.
Implementation of the NASA modular computer with LSI func-
tional characters............. i

DIGITAL SIMULATION OF CONTINUOUS SYSTEMS

Project DARE: Differential analyzer replacement by on-line
digital simulation........ o

MOBSSL-UAF: An augmented block structured continuous sys-
tems simulation language for digital and hybrid computers.

A hybrid computer programming system. e

Hybrid executive—User’s approach.t

PROBLEMS IN MEDICAL DATA PROCESSING

A system for clinical data management.........................

Medical education: A challenge for natural language analysis,
artifical intelligence, and interactive graphies..................

ARCHITECTURES FOR LONG TERM RELIABILITY

Design principles for processor maintainability in real-time systems. .

Effects and detection of intermittent failures in digital systems. ...
Modular computer architecture strategies for long-term mission. , .

A compatible airborne multiprocessor...............

PUBLISHING VERSUS COMPUTING

(Panel Session—No papers in this volume)

INFORMATION MANAGEMENT SYSTEMS FOR THE 70’s

(Panel Session—No papers in this volume)

209

219

231

247

255

275

287

297

307

319

329

337

347

Melliar-Smith
Watson

.M.
W,
. H.
LE. S t erland
. K.
W
.
.E.

o~ kjE"“ﬂ?ﬂ"U

G.A. Korn

D. S. Mdller

M. J. Merritt
M. A. Franklin
J. C. Strauss
W. L. Craves

R. A. MacDonald

R. A. (lreenes

A. N. Pappalardo
C.W. Marble

G. O. Barnett

. C. Weber

. D.

Hagamen

%&

H. Y. Chang
J. M. Scanlon
M. Ball

F. Hardie
F.D. Erwin
E. Bersoff

E. J. Dietrich
L.C. Kaye

WHAT HAPPENED TO LSI PROMISES

LSI—Past promises and present accomplishment—The dilemma
ofourindustry. ...
What has happened to LSI—A supplier’s view.

TOPICS IN ON-LINE TECHNIQUES

Real-time graphic display of time-sharing system operating
characteristics......... e e
A graph manipulator for on-line network picture processing.

On-line recognition of hand generated symbols.

MANAGING MONEY WITH COMPUTERS

(Panel Session—No papers in this volume)

DATA BASE AND FILE MANAGEMENT STRATEGIES

Common file organization techniques compared..................
An information retrieval system based on superimposed coding. . . .

Establishment and maintenance of a storage hierarchy for an
on-line data base under TSS/360............................

Resources management subsystem for a large corporate informa-
tlongystem.

Incorporating complex data structures in a language designed for
social science research. o i

CIRCUIT/MEMORY INNOVATIONS

A nanosecond threshold logic gate.
Silicon-on-sapphire complementary MOS ecircuits for high speed
associative memory b e e e e e

A main frame semiconductor memory for fourth generation
LT 0y 1L ¢ P

A new approach to memory and logic—Cylindrical domain devices.
A new integrated magneticmemory............................

Mated film memory—Implementation of a new design and
Production ConeOPt. . . . our vttt e e e

359
369

379
387

399

413
423

433

441

453

463

469

479

489

499

505

H. G. Rudenberg
C. G. Thornton

J. M. Grochow
H. A. DiGiulio
P. L. Tuan

G. M. Miller

hapin
. Files
. Huskey

R~z
cwq

. 8. Peck

S. W. Kidd

L. Micheel

J. R. Burns
J. H. Scott

T.W. Hart, Jr
D. W. Hillis

QR
§
S

. R. Hoffman
. H. Bobeck

. F. Fischer

. J. Pernesk:
. Blanchon
. Carbonel

. A. Prohofsky
. W. Morgan

o gg»wmoas

A\Y

THE IMPACT OF STANDARDIZATION FOR THE 70’s

(Panel Session—No papers in this volume)

USING COMPUTERS IN EDUCATION

A computer engineering laboratory................
Evaluation of an interactive display system for teaching numerical

Computer based instruction in computer programming: A symbol
manipulation—List processing approach......................

COMPUTER RELATED SOCIAL PROBLEMS: EFFECTIVE
ACTION ALTERNATIVES

(Panel Session—No papers in this volume)

DEVELOPING A SOFTWARE ENGINEERING DISCIPLINE

(Panel Session—No papers in this volume)

PROPRIETARY SOFTWARE PRODUCTS

(Panel Session—No papers in this volume)

HARDWARE TECHNIQUES FOR INTERFACING MAN WITH
THE COMPUTER

A touch sensitive X-Y pasition encoder for computer input.
A queueing model for scan conversion.ol
Charcter generation from resistive storage of time derivatives.
Economical display generation of a large characterset............

COMPUTER-AIDED DESIGN OF COMPUTERS

ISDS: A program that designs computer instruction sets.........
Directed library search to minimize cost........................
Computer-aided-design for custom integrated systems............

MANAGEMENT PROBLEMS IN HYBRID COMPUTER
FACILITIES

(Panel Session—No papers in this volumse)

COMPUTER OUTPUT MICROFILM SYSTEMS

An overview of the computer output microfilm field............ ..
The microfilm page printer—Software considerations.............
Computer microfilm: A cost cutting solution to the EDP output

battleneck. e

515

525

535

55
553
561
569

575
581
599

613
625

629

D. M. Robinson

P. Oliver
F. P. Brooks, Jr.

P. Lorton, Jr.
J. Slimick

D. M. Avedon
S. A. Broun

J. K. Koeneman
J. R. Schwanbeck

Cl.z

THE FUTURE IN DATA PROCESSING WITH
COMMUNICATIONS

A case study of a distributed communications-oriented data
Processing SySEem. vvreitt it e
Analysis of the communications aspects of an inquiry-response

A study of asynchronous time division multiplexing for time-sharing
computer Systams. e e

TOPICAL PAPERS

The involved generation : Computing people and the disadvantaged .
The CUE approach to problem solving.
Self-contained exponentiation. L

DCDS digital simulating system...............................
Pattern recognition in speaker verification.

HYBRID TECHNIQUES AND APPLICATIONS

A hybrid/digital software package for the solution of chemical
kinetic parameter identification problems.....................
Extended space technique for hybrid computer solution of partial
differential equations.l i i

Extension and analysis of use of derivatives for compensation of
hybrid solution of linear differential equations.................
HYPAC—A hybrid-computer circuit simulation program.........

REAL-TIME HYBRID COMPUTATIONAL SYSTEMS
A time-shared I/0 processor for real-time hybrid computation.

On-line software checkout faeility for special purpose computers. . .

A hybrid frequency response technique and its application to
aircraft flight flutter testing.o,

637

655

669

679
691
701
707

721

733

751

761
771

781

789

801

N. Nisenoff
J. 8. Sykes
W.W. Chu
. Mayer

. McCully
. Clark

a%bm

A M, Carlsoq

D. J. Newman
J. C. Strauss

N. H. Kemp
P. Balaban

Strollo

A survey of techniques for recognizing

parallel processable streams in
computer programs *

by C. V. RAMAMOORTHY and M. J. GONZALEZ

The University of Texas
Austin, Texas

INTRODUCTION

State-of-the-art advances—in particular, anticipated
advances generated by LSI—have given fresh impetus
to research in the area of parallel processing. The
motives for parallel processing include the following:

1. Real-time urgency. Parallel processing can
increase the speed of computation beyond the
limit imposed by technological limitations.

2. Reduection of turnaround time of high priority
jobs.

3 Reduction of memory and time requirements
for “housekeeping” chores. The simultaneous
but properly interlocked operations of reading
inputs into memory and error checking and
editing can reduce the need for large inter-
mediate storages or costly transfers between
members in a storage hierarchy.

4. An increase in simultaneous service to many
users. In the field of the computer utility, for
example, periods of peak demand are difficult to
predict. The availability of spare processors
enables an installation to minimize the effects
of these peak periods. In addition, in the event
of a system failure, faster computational speeds
permit service ta be provided to more users
before the failure occurs.

* This work was supported by NASA Grant NGR 44-012-144.

Improved performance in a uniprocessor multi-
programmed environment. Even in a unipro-
cessor environment, parallel processable seg-
ments of high priority jobs can be overlapped so
that when one segment is waiting for I/0, the
processor can be computing its companion
segment. Thus an overall speed up in execution
is achieved.

1)

With reference to a single program, the term “paral-
lelism” can be applied at several levels. Parallelism

‘within a program can exist from the level of statements

of procedural languages to the level of micro operations.
Throughout this paper, discussion will be confined to
the more general “task’ parallelism. The term “task”
(process) generally is intended to mean a self-contained
portion of a computation which once initiated can be
carried out to its completion without the need for
additional inputs. Thus the term can be applied to a
single statement or a group of statements.

In contrast to the way the term “level” was used
above, task parallelism can exist at several levels within
a hierarchy of levels. The statements of the main
program of a FORTRAN program, for example, are
said to be tasks of the first level. The statements within
a subroutine called by the main program would then
be second level tasks. If this subroutine itself called
another subroutine, then the statements within the
latter subroutine would be of the third level, etec. Thus
a sequentially organized program can be represented
by a hierarchy of levels as shown in Figure 1. Each

2 Fall Joint Computer Conference, 1969

LEVEL 1 LEVEL 2 LEVEL 3 LEVEL n

I
I
|
| }
I I |

Figure 1—Hierarchical representation of a sequentially
organized program.

block within a level represents a single task; as before,
a task can represent a statement or a group of state-
ments.

' On-ce a sequentially organized program is resolved
into its various levels, a fundamental consideration of
parallel processing becomes prominent—namely that
of recognizing tasks within individual levels which can
be executed in parallel. Assuming the existence of a
system which can process independent tasks in parallel,
this problem can be approached from two directions.
The first approach provides the programmer with
additional tools which enable him to explicitly indicate
the parallel processable tasks. If it is decided to make
f;his indication independent of the programmer, then
it is necessary to recognize the parallel processable
tasks implicitly by analysis of the relationship between
tasks within the source program.

After the information is obtained by either of these
approaches, it must still be communicated to and
utilized by the operating system. At this point, efficient
resource utilization becomes the prime consideration.

The conditions which determine whether or not two
tasks can be executed in parallel have been investi-
gated by Bernstein.! Consider several tasks, T, of a
sequentially organized program illustrated by a flow
chart as shown in Figure 2(a). If the execution of

— — —
— — —
l—

—
[

(a) (b) (c)

Figure 2—Sequential and parallel execution of a
computational process

task T is independent of whether tasks Ty and T, are
executed sequentially as shown in Figure 2(a) or 2(b),
then parallelism is said to exist between tasks Ty and
T;. They can, therefore, be executed in parallel as
shown in Figure 2(c).

This “commutativity” is a necessary but not suffi-
cient condition for parallel processing. There may exist,
for instance, two processes which can be executed in
either order but not in parallel. For example, the in-
verse of a matrix A can be obtained in either of the
two ways shown below.

(1) @)
a) Obtain transpose of A4 a) Obtain matrix of
cofactors of 4
b) Transpose matrix
of cofactors

b) Obtain matrix of co-
factors of the transposed

matrix
¢) Divide result by ¢) Divide result by
determinant of A determinant of 4

Thus obtaining the matrix of cofactors and the trans-
position operation are two distinet processes which can
be executed in alternate order with the same result.
They cannot, however, be executed in parallel.

Other complications may arise due to hardware
limitations. Two tasks, for example, may need to access
the same memory. In this and similar situations,
requests for service must be queuéd. Djkstra, Knuth,
and Coffman?3+4 have developed efficient scheduling
procedures for using common resources.

In terms of sets representing memory locations,
Bernstein has developed the conditions which must be

Techniques for Recognizing Parallel Processable Streams 3

satisfied before sequentially organized processes can be
executed in parallel. These are based on four separate
ways in which a sequence of instructions can use a
memory location:

(1) The location is only fetched during the execution
Of Tz'.

(2) The location is only stored during the execution
OfT,'.

(8) The first operation within a task involves a fetch
with respect to a location; one of the succeeding oper-
ations of T'; stores in this location.

(4) The first operation within a task involves a store
with respect to a location; one of the succeeding oper-
ations of T'; fetches this location.

Assuming a machine model in which processors are
allowed to communicate directly with the memory
and multi-access operations are permitted, the con-
ditions for strictly parallel execution of two tasks or
program blocks can be stated as follows.

(1) The areas of memory which Task 1 “reads”
and onto which Task 2 “writes’” should be mutually
exclusive, and vice-versa.

(2) With respect to the next task in a sequential
process, Tasks 1 and 2 should not store information in
a common location.

The conditions listed by Bernstein are sufficient to
guarantee commutativity and parallelism of two
program blocks. He has shown, however, that there do
not exist algorithms for deciding the commutativity or
parallelism of arbitrary program blocks.

As an example of what has been discussed here
consider the tasks shown below which represent FOR-
TRAN statements for evaluation of three arithmetic
expressions.

X = (A+B) *(A—B)
Y = (C-D)/(C+D)
Z=X+Y

Because the execution of the third expression is inde-
pendent of the order in which the first two expressions
are executed, the first two expressions ean be executed
in parallel.

Parallelism within a task can also exist when indi-
vidual components of compound tasks can be executed
concurrently. In the same manner that individual
processors can be assigned to independent tasks,

individual functional units can be assigned to inde-
pendent components within a task. The motivation
remains the same—a decrease in execution time of
individual tasks. The CDC 6600, for example, can
utilize several arithmetic units to perform several
operations simultaneously. This type of parallelism can
be illustrated by the arithmetic expression which
follows.

X = (A+B) *(C—D)

Normally, this expression would be evaluated in a
manner similar to that shown in Figure 3(a). The
independent components within the expression, how-
ever, permit parallel execution as shown in Figure
3(b) with the same results.

Ezxplicit and implicit parallelsim

In the explicit approach to parallelism, the program-
mer himself indicates the tasks within a computational
process which can be executed in parallel. This is
normally done by means of additional instructions in
the programming language. This approach can be
illustrated by the techniques described by Conway,
Opler, Gosden, and otherss#7. FORK in the FORK
and JOIN technique® indicates thep arallel process-
ability of a specified set of tasks.within a process. The
next sequence of tasks will not be initiated until all

T =A+B T,=C-D
v
T,=C-D
\ 4 l
— =T *
X=T*T, X=T,*T,

(a) (b)

Figure 3—Illustretion of parallelism within a compound
task

4 Fall Joint Computer Conference, 1969

the tasks emanating from a FORK converge to a
JOIN statement.

In some instances, some of the parallel operations
initiated by the FORK instruction do not have to be
completed before processing can continue. For example,
one of these branch operations may be designed to
alert an I/O unit to the fact that it is to be used mo-
mentarily. The conventional FORK must be modified
to take care of these situations. Execution of an IDLE

|
v

.

IDLE

'

Figure 4—FORK and JOIN technique

statement, for example, permits processors to be
released without initiation of further action.” The
FORK and JOIN TECHNIQUE is illustrated in
Figure 4.

Another example of the explicit approach is the
PARALLEL FOR? which takes advantage of parallel
operations generated by the FOR statement in ALGOL
and similar constructs in other languages. For example,
the sum of two n X n matrices consists essentially of
n? independent operations. If n processors were availa-
ble, the addition process could be organized such that
entire rows or columns could be added simultaneously.
Thus the addition of the two matrices could be accom-
plished in n units of time. Another example of this
approach is the programming language PL,/1 which
provides the TASK option with the CALL statement
which indicates concurrent -execution of parallel
tasks.

An additional way of indicating parallelism explicitly
is to write a language which exploits the parallelism in
algorithms to be implemented by the operating system.
This is the case with TRANQUIL2? an ALGOL-
like language to be utilized by the array processors of
the ILLIAC IV. The situation is unique in that the
language was created after a system was devised to
solve an existing problem. ‘““The task of compiling a
language for the ILLIAC IV is more difficult than
compiling for conventional machines simply because of
the different hardware organization and the need to
utilize its parallelism efficiently.” A limitation of this
approach is that programs written in that particular
language can only be run on array-type computers and
is,therefore, heavily machine dependent.

The implicit approach to parallelism does not depend
on the programmer for determination of inherent
parallelism but relies instead on indicators existing
within the program itself. In contrast to the relative
ease of implementation of explicit parallelism, the
implicit approach is associated with complex compiling
and supervisory programs.

The detection of inherent parallelism between a set
of tasks depends on thorough analysis of the source
program using Bernstein’s conditions. Implementation
of a recognition scheme to accomplish this detection
is dependent on the source language. Thus a recoznizer
which is universally applicable cannot be implemented.

An algorithm developed by Fisher® approaches the
problem of parallel task detection in a general manner.
His algorithm utilizes the input and output sets of
each task (process) to determine essential ordering
and thus inherent parallelism. Given such information
as the number of processes to be analyzed, the input
and output set for each process, the given permissible

Techniques for Recognizing Parallel Processable Streams 5

ordering among the processes, and any initially known
essential order among the processes, the algorithm
generates the essential serial ordering relation and the
covering for the essential serial ordering relation. This
covering provides an indication of the tasks within the
overall process which can be executed concurrently.

Basically, this work formalizes in the form of an
algorithm the conditions for parallel processing devel-
oped by Bernstein. The conditions for parallel processing
between two tasks are extended to an overall process

Detection of task parallelism—A new approach

The next subject covered in this paper involves
_ implicit detection of parallel processable tasks within
programs prepared. for serial execution. An indication
is desired of the tasks which can be executed. in parallel
and the tasks which must be completed before the
start of the next sequence of tasks. Thus the problem
can be broken down in two parts—recognizing the
relationships between tasks within a level and using
this information to indicate the ordering between tasks.
The approach presented here is based on the fact
that computational processes can be modeled by
oriented graphs in which the vertices (nodes) represent
single tasks and the oriented edges (directed branches)
represent the permissible transition to the next task
in sequence. The graph (and thus the computational
process) can be represented in a computer by means
of a Connectivity Matrix, C.20! C is of dimension
n X n such-that C,; is a “1” if and only if there is a
directed edge from node i to node j, and it is “0”
otherwise. The properties of the directed graph and
hence of the computational process it represents can
be studied by simple manipulations of the connectivity
matrix.

A graph consisting of a set of vertices is said to be
strongly connected if and only if any node in it is reach-
able from any other. A subgraph of any graph is defined
as consisting of a subset of vertices with all the edges
between them retained. A maximal strongly connected
(M.S.C.) subgraph is a strongly connected subgraph
that includes all possible nodes which are strongly
connected with each other. Given a connectivity matrix
of a graph, all its M.S.C. subgraphs can be determined
simply by well-known methods.”0 A given program
graph can be reduced by replacing each of its M.S.C.
subgraphs. by a single vertex and retaining the edges

..connected between these vertices and others. After
the reduction, the reduced graph will not contain any
strongly connected components.

The paragraphs which follow will describe the se-
quence of operations needed to prepare for parallel

processing in a multiprocessor computer a program
written for a uniprocessor machine.

(1) The first step is to derive the program graph
which identifies the sequence in which the computation
al tasks are performed in the sequentially code-
program. Figure 5(a) illustrates an example program
graph. The program graph is represented in the com-
puter by its connectivity matrix. The connectivity
matrix for the example is given in Figure 5(b).

(2) By an analysis of the connectivity matrix, the
maximal strongly connected subgraphs are determined
by simple operations.’ This type of subgraph is il-
lustrated by tasks 2 and 12 in Figure 5. Each M.S.C.
subgraph is next considered as a single task, and the
graph, called the reduced graph, is derived. The re-
dueed graph does not contain any loops or strongly

12,2,3456780910112 12 12 1314
1 01 00000000000 O 0 00
200 1 100000000 0 0 0 00
2, 01 00000000000 0 0 00
300 00110000000 0 0 00
4 00 00000100000 0 0 00
5 00 00001000000 0 0 00
6 00 00000100000 0 0 00
7 00 00000010000 0 0 00
8 00 00000001000 0 0 00
9 00 000000001020 0 0 00
000 0000000001 0 0 0 00
00 00000000001 0 0 00
12,00 00000000000 1 0 10
1200 0 000000060000 0 1 00
12,00 o000000000 1 0 0 00
1300 00000000000 o0 0 o071
4 00 00000000000 0 0 00

,-\
o
=~

Figure 5—Program graph of a serially coded program
and its connectivity matrix

6 Fall Joint Computer Conference, 1969

connected elements. In this graph; when two or more
edges emanate from a vertex, a conditional branching
is indicated. That is, the execution sequence will take
only one of the indicated alternatives. A vertex which
initiates the branching operation will be called a
decision or branch vertex. The reduced graph for the
example program graph is shown in Figure 6. In this
graph, vertex 3 represents a branch vertex.

(3) The next step is to derive the final program
graph and its connectivity matrix 7. The elements of
T are obtained by analyzing the inputs of each vertex
in the reduced graph. An element, T,;, is a “1” if
and only if the j-th task (vertex) of the reduced graph
has as one of its inputs the output of task i; otherwise
T is a “O”. Figure 7 illustrates the final program for
the example after consideration is given to the input-
output relationships of each task. The connectivity
matrix for the final program graph is shown in F'gure 8.

From the sufficiency conditions for task parallelism.
two tasks can be executed in parallel if the input set of
one task does not depend on the output set of the other
and vice versa. The technique outlined in Step 4 detects
this relationship and uses it to provide an ordering
for task execution.

(4) The vertices of the final program graph are

Figure 6-—Reduced program graph of the serially coded
program

13 =£(10,11,12)

14 = £(7,13)

Figure 7—Final program graph of the parallel
processable program

N
o
—
—

LW
'S

C]
1
© ©® N e v b W N

—
—
O O O O O O - O O O O O O o ©

Q O O © 0O O 0O O 0O O O © O O M
O O O 0O O Q0 O 0O O O O O O -
O O O O O O 0O 0O 0O 0O 0 O —~ O w
o O O O O O 0O O O O 0 ~ O O .~
o O O O O o o o O- o O =~ O O oun
O 0O 0O 0O 0O O O O 0O ~ O O O o o
©C 0 O O C 0 0O O ~ O —~ O 0O o w
o O O 0O 0O O 0O 0O 0O O O O —~ o o
O O O O O O ~ 0O 0O O O O O o
c O O O O ~ O 0O O O O 0O O o
o 0O O 0O 0 ~ O O 0O O 0 O O o ::
o o =~ ~ ~ O 0 0 O O O O O o
©C =~ O O O O O = 0O 0O O O O o

Precedence {1}, {2}, (3,8}, (4.5,9,10}

Partitions
{6,11,12}, {7,131, {14}

Figure 8 —Connectivity matrix of the final prograrn
graph

partitioned into ‘‘precedence partitions’’!* as follows.
Using the connectivity matrix 7', a column (or columns)
containing only zeroes is located. Let this column
correspond to vertex vi. Next delete from T both the
column and the row corresponding to this vertex. The
first precedence partiton is P; = {vi}. Using the re-
maining portion of T, locate vertices {va1, Vas,. . .} which
correspond to columns containing only zeroes. The
second precedence partition P, thus contains vertices
{Vei, Ve,...}. This implies that tasks in set P.=

Techniques for Recognizing Parallel Processable Streams 7

{Vai, Vas,...} can be initiated and executed in parallel
after the tasks in the previous partition (i.e., P;) have
been completed. Next delete from T the columns and
rows corresponding to vertices in P,. This procedure is
repeated to obtain precedence partitions Ps,Py,. . .1,
until no more columns or rows remain in the 7' matrix.
It can be shown that this partitioning procedure is
valid for connectivity matrices of graphs which contain
no strongly connected components.

The implication of this precedence partitioning is
that if Py,Ps,. . .P, corresponds to times ty,te,. . .t,, the
earliest time that a task in partition P; can be initiated
is ti.

The final program graph contains the following types
of vertices: (1) The branch or decision type vertex
from which the execution sequence selects a task from
a set of alternative tasks. (2) The Fork vertex which
can initiate a set of parallel tasks. (3) The Join vertex
to which a set of parallel tasks converge after their
execution. (4) The normal vertex which receives its
input set from the outputs of preceding tasks. Figure 7a
indicates the final program graph with the first three
types of vertices indicated by B, F, and J, respectively.

(5) From precedence partitioning and the final
program graph, a Task Scheduling Table can be
developed. This table, shown in Table I, serves as an
input to the operating system to help in the scheduling
of tasks. For example, if the task being executed is a
Fork task, a look-ahead feature of the system can
prepare for parallel execution of the tasks to be ini-
tated upon completion of the currently active task.

(6) The precedence partitions of Step 4 provide an
indication of the earliest time at which a task may be
initiated. It is also desirable, however, to provide an
indication of the lafest time at which a task may be
initiated. This information can be obtained by per-
forming precedence partitions on the transpose of the
T matrix. This process can be referred to as “row par-
titions”. The implication here is that if task is in the
partition corresponding to time period t;, then t; is
the latest time that the task i can be initiated.

Using both the row and column partitions, the per-
missible initiation time for each task can be derived as
shown in Table II. Task 4, for example, can be in-
itiated during t, or t; depending on the availability of
processors. .

At this point it is desirable to clarify some possible
misinterpretations of the implications of this method.
The method presented here does not try to determine
whether any or-all of the iterations within a loop can
be executed simultaneously. Rather the iterations
executed sequentially are considered as a single task.

TABLE T—Taesk scheduling table

INPUTS | TASK TASK
TIME | TO TASKS| NUMBER | TYPE
tl - 1
t, 1 2 FORK
t3 2 3 BRANCH
ty 2 8 FORK
t4 3 4
t, 3 5
t, 8 9 FORK
t, 8 10
ts 5 6
t 9 11
t 9 12
ts 4,6 7 JOIN
te 01,12 | 13 JOIN
t, 7,13 14 JOIN

For this reason, the undecidability problem introduced
by Bernstein is not a factor here.

In addition, precedence partitions may place the
successors of a conditional within the same partition.
The interpretation of this is that only one of the suc-
cessors will be executed, and it can be executed in
parallel with the other tasks within that partition.

The FORTRAN parallel task recognizer

In order to determine the degree of applicability of
the method described above, it was decided to apply
the method to a sample FORTRAN program. This
was accomplished by writing a program whose input
consists of a FORTRAN source program; its output
consists of a listing of the tasks within the first level
of the source program which can be executed in parallel. -
The program written to accomplish this parallel task

8 Fall Joint Computer Conference, 1969

TABLE II—Permissible task initiation time

COLUMN PARTITIONS || PERMISSIBLE TASK
TIME TASK INITIATION PERIODS
f 1 TASK TIME
t 2 1 t,
t3 3,8 2 ty
t, 4,5,9,10 3 ty
tg 6,11,12 4 byt
te 7,13 5 t,
t, 14 6 te
ROW PARTITIONS 7 '
l:1 1 8 t3
t) 2 9 t,
ty 3,8 10 tyts
t, 5,9 3] t
t 4,6,10,114 12 ts
tg 7.13 13 tg
t, 14 14. t,

detection is known in its final form as a FORTRAN
Parallel Task Recognizer.!

The recognizer, also written ih FORTRAN, relies
on indicators generated by the: way in which the
program is actually written. Consider the expressions
given below.

X1 = f,(A,B)
X2 = £,(C,D)

Because the right-hand side of the second expression
does not contain a parameter generated by the compu-
tation which immediately precedes it, the two expres-
sions can be executed in parallel. If, on the other hand,
the expressions were rewritten as shown below, the

termination of fhe first computation would have to
precede the initiation of the second.

X1 = f,(A,B)

The recognizer performs this determination by com-
paring the parameters on the right-hand of the equality
sign to outcomes generated by previous statements.

Other FORTRAN instructions can be analyzed
similarly. Consider the arithmetic IF:

IF (X — Y) 34,5

Here the parameters within the parentheses must be
compared to the outputs of preceding statements in
order to determine essential order.

Other FORTRAN instructions are analyzed in a
similar manner in order to generate the connectivity
matrix for the source program. During this analysis
the recognizer assigns numbers to the executable
statements of the source program. After this is com-
pleted, the recognizer proceeds with the method of
precedence partitions described earlier. Precedence
partitions yield a list of blocks which contain the state-
ment numbers which can be executed concurrently,

Figure 9 shows a block diagram of the steps taken by
the recognizer to generate the parallel processable
tasks within the first level of a FORTRAN source
program.

Some statements within the FORTRAN set are
treated somewhat differently. The DO statement, for
example, does not itself eontain any input or output
parameters but instead generates a series of repeated
operations. Because of the loop considerations men-
tioned earlier, and because the rules of FORTRAN
require entrance into a loop only through the DO
statement, all the statements contained within a DO
loop are considered as a single task. A loop, however,
may contain a large number of statements, and a great
amount of potential parallelism may be lost if con-
sideration is not given to the statements within the
loop. For this reason, the recognizer generates a sepa-
rate connectivity matrix for each DO loop within the
program.

The recognizer itself possesses limitations which
must be eliminated before it ean be applied to programs
of a complex nature. For example, only a subset of
the entire FORTRAN set is considered for recogniton.
This could be corrected by expanding the recognition
process to include a more complete set of instructions.

In addition to the DO statement, loops can also be

Techniques for Recognizing Parallel Processable Streams 9

(START)

»
Ll

([

READ NEXT
SOURCE
PROGRAM
INSTRUCTION

IF THIS TAX IS THE
SUCCESSOR OF A
BRANCH OR TRANSHER
CPERATION, RECORD
THIS INFCRMATION

SCAN EXECUTABLE
STATEMENTS AND
COMPARE INPUT
PARAMETERS TO g Y
QUTPUTS CF RREOUS
STATEMENTS

v

RECORD INPUT
RND OUTPUT
PARAME TERS
REQUIRED BY
'HIS TASK

HEN MATCH IS
FOUND ,MXE ENIRY
IN C,Le., SHOW A
CONNECTION FROM
PREDECESSOR TO
SUCCESSOR

y

AFTER GENERATION USING THE ASSIGNED
OF CIS CQMPLETE, STATEMENT NUMBERS
GENERATE » |INDICATE THOSE
PRECEDENCE P|TASKS WITHIN THE
PARTITIONS FIRST LEVEL WHICH

CAN BE DONE IN
PARALLEL

Figure 9—Block diagram of the FORTRAN
parallel task recognizer

created by branch and transfer operations such as
the IF and GO TO instructions. To eliminate these
loops, it would be necessary to analyze the connectiv-
ity matrix in the manner mentioned earlier before
beginning the process of precedence partitions. The
recognizer does not presently perform this analysis.

Nested DO loops are not permitted, and the source
program size is limited in the number of executable
statements it may have and in the number of param-
eters any one statement can contain.

Some of these limitations could be eliminated quite
easily; others would require a considerable amount of
effort. To allow a source program. of arbitrary size
would require a somewhat more elaborate handling of
memory requirements and associated problems. At the

C THIS IS A TEST PROGRAM DESIGNED TO CHECK PPS
DIMENSION Al{10),A2(10) ,A3(10)
INTEGER Al,A2,ABC,A2X2,B,C,D
READ 100, (Al(1),I=l,10),B,C,D

1
2 READ 100, (A2(D),I=l,10),NS,NST,NSTU
3 DO 10 I=1,10
4 IF(AL(1)-A2(1)) 20,30, 40
5 20 XI1=(AL(1))*(B-C)
6 X2=D+(B/C)
7 A3(1)=XI*X2
8 10 CONTINUE
¢} THIS IS A TEST COMMENT

9 30 PRINT 200,B,C,D
10 40 CALL ALPHA(AL,A2,ABC,B4,BS5)
1l PRINT 3057,X1,X2,(A3(1),1=1,10)
12 CALL BETA(X!1,X2,A3,B6)
13 IF(B4-B5)50,50, 60
14 50 READ 315,E,F,G,H
15 X3=(E*F) +G~H)
16 X4=B6+G PARALLEL
17 X5=X3-X4 PROCESSABLE °
18 X6=(B4+B5)* X5 TASKS
19 60 PRINT 4,X3,X4,X5 (1,2
20 PRINT 52, (Al(1),1=1,10),ABC,C,(A3(]),I=1,10) (3)

100 FORMAT(1012,313) (9,10,11,12)

200 FORMAT(IHO0,8 B C D*,/,313) (13)

3057 FORMAT(IH ,2I3,10F7.1) (14)

315 FORMAT(4F7.4) (15,16)

4 FORMAT(3F7.4) 17)

52 FORMAT(1213,10F7.1) (18,19,20)

21 END
(a) (b)

Figure 10—An example of the recognition process.

present time the recognizer consists of a main program
and six subroutines. In its present form the recognizer
consists of approximately 1300 statements.

The recognizer is presently written in such a manner
that it will detect only first level parallelism. The
method it uses, however, can be applied to parallelism
at any level.

The theory of operation of the FORTRAN parallel
task recognizer will be illustrated by applying the
recognition techniques to a sample FORTRAN program.
Figure 10(a) is a listing of the sample program showing
the individual tasks. Figure 10(b) is a listing of the
parallel processable tasks as determined by precedence
partitions. The numbers to the left of the executable
statements are the numbers assigned by the recognizer
during the recognition phase.

Elimination of the limitations mentioned here and
other limitations not mentioned explicitly will be the
subject of future effort.

Observations and comments

Regardless of the manner in which the subject of
parallel processing is approached, common problems
arise. Prominent among these is a need to protect
common data. If two tasks are considered for con-
current execution and one task accesses a memory
location and the other amends it, then strict observance
must be paid to the order in which this is done. The

10 Fall Joint Computer Conference, 1969

FORTRAN recognizer, for example, may determine
that two subroutines can be executed in parallel. At
the present time no consideration is given to the fact
that both subroutines may access common data
through COMMON or EQUIVALENCE statements.

In order to truly optimize execution time for a
program which is set up for parallel processng, it
would be highly desirable to determine the time re-
quired for execution of the individual tasks within
the process. It is not enough to merely determine that
two tasks can be executed concurrently; the primary
goal is that this parallel execution result in higher
resource utilization and improved throughput. If the
time required for the execution of one task is 100 times
that of the other, for example, then it may be desirable
to execute the two tasks serially rather than in parallel.
The reasoning here is that no time wou'd be spent
in allocating processors and so forth.

Determination of task execution time, however, is
not a simple matter. Exhaustive measurements of the
type suggested by Russell and Estrin* would provide
the type of information mentioned here.

Another problem area involves implementation of
special purpose languages such as TRANQUIL. It
was mentioned earlier that programs written in a
language of this type are highly machine-limited. It
would be highly desirable to be able to implement
programs written in these languages in systems whict
are not designed to take advantage of parallelism.
Along these lines, the programming generality sug-
gested by Dennis®® may be significant.

It should be pointed out that all the techniques
which have been discussed here will create a certain
amount of overhead. For this reason it is felt that a
parallel task recognizer, for example, would be best
suited for implementation with production programs.
Thus even though some time would be lost initially,
in the long run parallel processing would result in a
significant net gain.

Conclusions

The method of indicating parallel processable tasks
introduced here and illustrated in part by the FOR-
TRAN Parallel Recognizer appears to provide enough
generality that it is independent of the language, the
application, the mode of compilation, and the number
of processors in the system. It is anticipated that this
method will remain as the basis for further effort in
this area.

In addition to the comments made earlier, some
possible future areas of effort include determination of

possible parallelism of individual iterations within a
loop. It is hoped that additional information can be
provided to the operating system other than a mere
indication of the tasks which can be executed in paral-
lel. This would include the measurements mentioned
earlier and an indication of the frequency of execution
of individual tasks.

It is also hoped that a sub-language may be de-
veloped which can be added to existing languages to
assist in the recognition process and the development
of recognizer code.

Detection of parallel components within
compound tasks

Several algorithms exist for the detection of inde-
pendent components within compound tasks,6.17.1.1
These algorithms are concerned prmarily with de-
tection of this type of parallelism within arithmetic
expressions. The first three algorithms referenced
above are gummarized in [19] where a new algorithm
is also introduced.

The arithmetic expression which will be used as an
example for each algorithm is given below.

A+B+C4+D*E*F4+G+H

Throughout this discussion. the usual precedence
between operators will apply. In order of increasing
precedence, the precedence between operators will be
as follows: + and —, *and/, and T, where T stands
for exponentiation.

Hellerman’s algorithm

This algorithm assumes that the input string is
written in reverse Polish notation and contains only
binary operators. The string is scanned from left to
right replacing by temporary results each occurrence
of adjacent operands immediately followed by an
operator. These temporary results will be considered
as operands during the next passes. Temporary results
generated during a given pass are said to be at the
same level and therefore can be executed in parallel.
There will be as many passes as there are levels in the
gyntactic tree. The compilation of the expression
listed above is shown in Figure 11.

Although this algortihm is simple and fast, it has
two shortcomings. The first is a possible difficulty in
implementation since it requires the input string to
be in Polish notation; the second is its inability to
handle operators which are not commutative.

Techniques for Recognizing Parallel Processable Streams 11

TEMPORARY RESULTS

INPUT STRING AFTER THE ith PASS GENERATED DURING ith PASS

AB+C+DE*F*+G+H+

R1=A+B
Rl C+R2 F*+G+H+ R2=D*E

R3=R1+C
R3 R4+G+H+ R4=R2*F
RS G+H+ R5=R3+R4
R6 H+ R6=R5+G
R7 R7=R6+H
LEVEL

Figure 11—Parallel computation of
A+B+4CH4D*E*F+G+H using Hellerman’s
algorithm

Stone’s algorithm

The basic function of this algorithm is to combine
two subtrees of the same level into a level that is one
higher. For example, A and B, initially of level 0, are
combined to form a subtree of level 1. The algorithm
then searches for another subtree of level 1 by attempt-
ing to combine C and D. Since precedence relation-
ships between operators prohibit this combination, the
level of subtree (A+B) is incremented by one. The
algorithm now searches for a subtree of level 2 by
attempting to combine C, D, and E. Since this com-
bination is also prohibited, subtree (A+B) is incre-
mented to level 3. The next search is successful, and a
subtree of level 3 is obtained by combining C, D, E
and F. These two subtrees are then combined to form a
single subtree of level 4.

In a similar manner the subtree (G-H), originally
of level 1, is successively incremented until it achieves
a level of 4; at that time it is combined with the other
subtree of the same level to form a final tree of level 5.

The algorithm yields an output string in reverse
Polish which. does not expressly show which operations
can be performed in parallel. Even though the output
string is generated in one pass, the recursiveness of

the algorithm causes it to be slow, and at least one
additional pass would be required to specify parallel
computations.

Squire’s algorithm

The goal of this algorithm is to form quintuples of
temporary results of the form:

Ri (operand 1, operator, operand 2, start level
=max [end level op. 1; end level op. 2], end level=
start level+1).

All temporary results which have the same start level
can be computed in parallel. Initially, all variables
have a start and end level equal to zero.

Scanning begins with the rightmost operator of the
input string and proceeds from right to left until an
operator is found whose priority is lower than that of
the previously scanned operator. In the example the
sean would vield the following substring:

D*E*F+G+H

Now a left to right scan proceeds until an operator is
found whose priority is lower than that of the left-
most operator of the substring. This yields: D*E*F.
At this point a temporary result R1 is available of the
form:

R1(D,*E,0,1).

The temporary result, R1, replaces one of the operands
and the other is deleted together with its left operator
The new substring is then:

R1*F+G+H.

The left to right scans are repeated until no further
qunituple can be produced, and at that time, the right
to left scan is re-initiated. The results of the process
are shown in Figure 12.

Although the example shows the algorithm applied
to an expression containing only binary operators, the
algorithm can also handle subtraction and division
with a corresponding increase in complexity.

A significant feature of this algorithm is that Polish
notation plays no part in either the input string or
the output quintuples. Because of the many scans and
comparisons the algorithm requires, it becomes more
complex as the length of the expression and the di-
versity of operators within the expression increase.

12 Fall Joint Computer Conference, 1969

INITIAL STRING: A+B+C+D*E*F+ G+H

RIGHT TO LEFT SCAN LEFT TO RIGHT SCAN

D*EAF+G+H RI*F+G+H
R2+G+H
A+B+C+R2+G+H R3I+C+R2+G+H
R4+RI+R2+H
R4+RS+R2
R6+R2
R7
QUINTUPLES Op.1 OPERATOR Op.2 START END
Rl D * E 0 1
R2 F * R 1 2
R3 A + B 0 1
R4 c + G 0 1
RS H + R3 1 2
R6 R4 + RS 2 3
R7 R2 + R6 3 4
LEVEL

A
LN
A NVAVEN

Figure 12—Parallel computation of
A+B+C+D*E*F+G+H using Squire’s slgorithm

Baer and Boevet’s algorithm

The algorithm uses multiple passes. To each pass
corresponds a level. All temporary results which can
be generated at that level are constructed and inserted
appropriately in the output string produced by the
corresponding pass. Then, this output string becomes
the input string for the next level until the whole
expression has been compiled. Thus the number of
passes will be equal to the number of levels in the
syntactic tree. During a pass the scanning proceeds
from left to right and each operator and operand is
scanned only once.

The simple intermediate language which this al-
gorithm produces is the most appropriate for multi-
processor compilation in that it shows directly all
operations which can be performed in parallel, namely
those having the same level number. The syntactic
tree generated by this algorithm is shown in Figure
13. v

A new algorithm

This section will introduce a technique whose goals
are: (1) to produce a binary tree which illustrates the
parallelism inherent in an arithmetic expression; and

LEVEL

4

A
/\

+

*
TS /1‘4

OA%/\/\}

Figure 13—Parallel computation of
A+B+CH+D*E*F+G+H using Baer and
Bovet’s algorithm

(2) to determine the number of registers needed to
evaluate large arithmetic or Boolean expressions with-
out intermediate transfers to main memory.

This technique is prompted by the fact that existing
computing systems possess multiple arithmetic units
which can contain a large number of active storages
(registers). In addition, the superior memory band-
widths of the next generation of computers will simplify
some of the requirements of this technique.

In the material presented below, a complex arithmet-
ic expression- is examined to determine its maximum
computational parallelism. This is accomplished by
repeated rearrangement of the given expression. During
this process the given expression in reverse Polish form
is also tested for ‘“‘well formation’”, i.e., errors and
oversights in the syntax, etc.

The arithmetic expression which was used as a model
earlier will also be used here, namely A-+B+4C+D
*[*F4-G-+H. The details of the algorithm follow:

(1) The first step is to rewrite the expression in
reverse Polish form and to reverse its order.

+H+G+*F*ED+C+B+A
(2) Starting with the rightmost symbol of the string,

assign a weight to each member of the string based on
the following procedure:

Techniques for Recognizing Parallel Processable Streams 13

Assign to symbol S; the value V,; = (V._1) + R,
i=12,...n
where R; = 1 — §(S;) given that
8(S;) = 0if S;isavariable
8(S;) = 1if S;is a unary operator
8(S;) = 2if S;is a binaryoperator

and V- = Vime+Ri—y, Viee = Vg 4+ Ry,
ete.,

such t}h‘d;t Vi—(i—l) = Vl = R], D.Ild Vo = (

Using this procedure, the following expression results:

Root
Node
i 5] 14 13 12 | 11 10
s; +| H + & | + *
V. |1 2 1 2 | 1 2
Vo
9 8 6 5 4 3 2 1
F * JE|] D + C + B A
3 2 8 2 1 2 1 2 1

Note that for a “well-formed expression’ of n symbols
V.= 1.

(3) At this point the root node of the proposed
binary tree can be determined. Thus the given string
can be divided into two independent sub-strings. To
determine the root node, draw a line to the left of the
first symbol with a weight of 1 (i = 11, S;=+4, V,=1)
to the left of the symbol with the highest weight,
V.(i=7 S8,=E, V,=V,=38). The two independent
substrings consist of the strings to the left and to the
right of this line. The root node will be the leftmost
member of the string to the left of the line (i=15,
S.=+, Vi=1). Note that V, also equals 3 for i=9;
however V,, is chosen from the earliest occurrence of
a symbol with the highest weight.

(4) The next step is to look for parallelism withni
each of the new substrings, Consider the rightmost
substring. Form a new substring consisting of the
symbols within the values of V,=1 to the right and to
the left of V... Transpose this substring with the sub-
string to the right of it whose leftmost member has a
weight of V=1,

INITIAL RIGHTMOST S+ *F*ED +C+B A
SUBSTRING Vi12323212121
—>

111098 765432 1

Si + +C+BA*F*ED

Vil2313212121

‘_
FINAL RIGHTMOST i
SUBSTRING

This procedure is repeated until the initial V,, occupies
the position i=2 in the substring. I'or this example
this is already the case. Thus the rightmost substring
is in the proper form.

(5) The transposition procedure of step 4 is applied
next to the leftmost substring. However, since the
leftmost substring of this example consists of only two
operands and one operator, no further operations are
necessary.

(6) The resultant binary tree is shown in Figure 14.
The numbers assigned to each node represent the final
weight V; of the symbol as determined in steps 1-5
above.

Some observations and comments on this algorithm
are given below.

(1) The two branches on either side of the root node
can be executed in parallel. Within each main branch,
the transposition procedure of step 4 yields supplemen-
tary root nodes. The sub-branches on each side of the
supplementary nodes can be executed in parallel.

(2) The number of levels in the binary tree can be

LEVEL
+
1
R7
3 +
3
R6’
2
+* *»
2 1
R4 RS
1 + +
A F *
1 2 1
Rl R2 R3
G C B E D

Figure 14—DBinary tree for perallel computation of
A+B+C+D*E*F+G+H

14 Fall Joint Computer Conference, 1969

predicted from the Polish form of the original string.
No. of LEVELS = MAX [NUMBER OF 1’s; Vm]
in the substring (rightmost or leftmost) containing Vm.
(3) The tree is traversed in a modified postorder
form.2 The resulting expression is

D*E*F+A+B+C+G+H

(4) An added feature of this technique is that the
number of registers required to evaluate this expression
without intermediate STORE and FETCH operations
is obtained directly from the binary tree. This infor-
mation is provided by the highest weight assigned to
any node within the tree. Thus for this example the
expression could be evaluated using at most two
registers without resorting to intermediate stores and
fetches.

(5) This technique of recognizing parallelism on a
local level has been applied to a single instruction, in
particular, an arithmetic expression. It is worthwhile
mentioning that each variable within the expression
can itself be the result of a processable task. Thus this
technique can be extended to a higher level of parallel
stream recognition, i.e., level parallelism.

In order to implement the techniques mentioned
here for components within tasks and the techniques
mentioned earlier for individual tasks, several system
features are desirable. Schemes for detecting parallel
processable components within compound tasks are
oriented primarily toward arithmetic expressions. For
these situations string manipulation ability would be
highly desirable. Since individual tasks are repre-
sented by a graph and its matrix, the ability to ma-
nipulate rows and columns easily would be very im-
portant. In this same area, an associative memory
could greatly reduce execution time in the implemen-
tation of precedence partitions.

ACKNOWLEDGMENTS

The authors would like to thank the referees of the
FJCC for their comments and suggestions which
resulted in improvements of this paper.

REFERENCES

1 A J BERNSTEIN
Analysis of programs for parallel processing
IEEE Trans on EC Vol 15 No 5 757-763 Oct 1966
2 E W DJKSTRA
Solution of a problem in concurrent programming conirol
Comm ACM Vol 8 No 9 569 Sept 1965

3

10

14

15

16

17

18

19

D KNUTH

Additional comments on a problem in concurrent
programming control

Comm ACM Vol 9 No 5 321-322 Meay 1966

E G COFFMAN R R MUNTZ

Models of pure time sharing disciplines for research
allocation

Proc 1969 Natl ACM Conf

M E CONWAY

A multiprocessor system design

Proc FJICC Vol 23 139-146 1963

A OPLER

Procedure-oriented statements to facilitate parallel processing
Comm ACM Vol 8 No 5 306-307 May 1965

J A GOSDEN

Ezxplicit parallel processing description and control in
programs for multi- and uni-processor compudters
Proc FICC Vol 29 651-660 1966

N E ABEL P P BUDNIK D J KUCK

Y MURAOKA R S NORTHCOTE

R B WILHELMSON

TRANQUIL: A language for an array processing computer
Proc SJCC 57-68 1969

D A FISHER

Program analysis for muliiprocessing

Burroughs Corp May 1967

C V RAMAMOORTHY

Analysis of graphs by connectivity considerations
Journal ACM Vol 13 No 2 211-222 April 1966

C V RAMAMOORTHY M J GONZALEZ
Recognilion and representation of parallel processable streams
in compuler programs-—I1 (task/process parallelism)
1969 Natl ACM Conf

C V RAMAMOORTHY

A structural theory of machine diagnosis

Proc SICC 743-756 1967

M J GONZALEZ C V RAMAMOORTHY
Recogrition arl represzatation of parallel processable
streams in compuler programs

Symposia on Parallel Processor Systems Technologies and
Applications Ed. L C Hobbs Spartan Books June 1969
E C RUSSELL G ESTRIN

Measurement based automatic analysis of FORTRAN
programs '

Proe SJCC 1969

J B DENNIS

Programming generality, parallelism and computer
architecture

Proc IFIPS Congress 68 C1-C7

H HELLERMAN

Parallel processing of algebraic expressions

IEEE Trans on E C Vol 15 No 1 Feb 1966

H 8 STONE

One-pass compilation of arithmetic expressions for ¢
parallel processor

Comm ACM Vol 10 No 4 220-223 April 1967

J 8 SQUIRE

A translation algorithm for a multiprocessor computer
Proc 18th ACM Natl Conf 1963

J L BAER D P BOVET

Compilation of arithmetic expressions for parallel
computation

Techniques for Recognizing Parallel Processable Streams 15

Proc IFIPS 68 B4-B10 Addison-Wesley 316
20 D KNUTH 21 R S NORTHCOTE
The art of computer programming, Vol. 1, fundamental Software developments for the array computer ILLIAC IV,

algorithms Univ of Illinois Rpt No 313 March 1969

Performance modeling and empirical

measurements in a system designed for

batch and time-sharing users

by JACK E. SHEMER and DOUGLAS W. HEYIN G

Scientific Data Systems, ¢ Zerox Company
El Segundo, California ’

INTRODUCTION

If any design goal is common to all computer system
organization schemes, it is that of providing “effective
service’”” both externally to the user of the computational
facility and internally with respect to utilization of
system resources. Thus, generally speaking, there are at
least two dimensions to this design objective. On the one
hand, effective service is the external satisfaction of a
broad spectrum of user demands. IFor example, the ideal
system might be visualized as one which economically
provides a large number of programming languages;
machine compatibility with other computers of widely
diverse hardware; and rapid computation. On the other
hand, effective service is the internal utilization of all
system components so as to increase computational
efficiency. In this respect, system structures are im-
plemented which strive to maximize sub-system
simultaneity and system throughput. For example, a
degree of macro-parallelism is attained in many present
day systems by allowing a central processing unit (CPU)
and input/output controller to share the use of a main
memory register, thereby enabling processing and
input/output (I/0) to proceed concurrently (for one or
several independent programs, depending upon the
system software).

In general, external effectiveness is all that the user
sees, and it is therefore of primary interest to him.
Whereas, the purveyor of the equipment is vitally
concerned with internal utility and coordination.
However, this latter consideration indirectly relates to

17

the quality of service the user receives (his waiting time
for service completion, the price he is charged for
service, ete.).

The ramifications of hardware and software designs to
achieve such service can be investigated both internally
and externally; yet, a particular design strategy need
not supplement effective service from both viewpoints.
On the contrary, schemes tailored to improve external
utilization often degrade internal service effectiveness
and vice versa. Unfortunately, in confronting these
design trade-offs, the designer often had to rely upon
heuristic and intuitive arguments, since there is a
general lack of design models which quantitatively
relate system variables to reflect a priori performance
estimates. Hence, the design is complicated not only by
trade-offs between the often dissimilar aims of external
and internal effective service, but also by a deficiency of
design tools for investigating various implementation
alternatives.

These problems are especially amplified with the
advent of time-shared computer systems. In time-
sharing systems, an ideal goal is to respond to interactive
on-line users such that each user receives the impression
that he has his own computer, yet at a price he can
afford. Thus in these systems, the computer complex is
shared among a number of independent users who are
concurrently communicating with the system, generat-
ing programs and interactive service requests via
on-line remote terminal equipment. This action enables
one to achieve economies of scale and distribute the cost

18 Fall Joint Computer Conference, 1969

of the system among all users according to their usage
of the facilities. Similarly, the objective of rapid response
is realized by time slicing CPU service and sharing it
among the on-line users. A request for program execution
is not necessarily serviced to completion; but rather jobs
are granted finite intervals (quanta) of processing time.
If a job fails to exhaust its demands during a quantum
allocation, then it is truncated and postponed according
to a scheduling discipline, thereby facilitating rapid
response to short requests.— This preferential treatment
of short jobs increases the programmer’s productiveness,
since one-attempt efforts, editing, debugging, and other
typically short interactive demands often encounter
exorbitant turn-around times in batch processing
environments (i.e., in relation to the amount of actual
processing time consumed, due to problems of key
punching, printer output, card stacking, and total
system demand).

However, since computation is not necessarily run to
completion and main memory size is limited (by both
economic and physical reasons), programs must be
swapped into and out of main memory as the CPU
commutates its service from request to request.
Therefore, unless swapping is achieved with no loss in
time, it is obvious that service in the time-sharing sense
is less efficient in CPU utilization than service to
completion. Also, the time spent scheduling, allocating
buffers, and controlling swap input/output represents
overhead or wasted processing time which, due to
incomplete servicing, is greater in time-sharing systems
than batch processing systems. Furthermore, if the
system is dedicated to servicing on-line requests, the
CPU is essentially idle during periods of low on-line
input traffic. Hence, a design compromise must be
attained between external response rapidity and internal
efficiency since system performance, in the general case,
is a function of both response to selected classes of users
and utilization of system resources.

Yet, exploring such problem areas prior to design is
complicated, because any performance investigation is
incorrigibly statistical. Performance is not only a
function of software characteristics such as the input/
output, memory, and processing requirements of each
on-line request together with the occurrence rate of such
requests, but also dependent upon hardware character-
istics such as the instruction processing rate and rates
accessing secondary memory.

This paper presents one approach to mitigating some
of these difficulties. A system design is briefly described
and then analyzed utilizing a matheématical model. The
gystem is structured to accommodate both batch and
time-sharing users with the goal being to achieve a

balance of system efficiency and responsiveness. A set
of variables are defined which characterize on-line user
demands and the servicing capacity of various units
within the system. These variables are then quantita-
tively related in a mathematical model to derive salient
performance measures. Examples are given which
graphically display these measures versus various ranges
of the system variables. These a priori performance
estimates are then compared with empirical data
extracted from the system during its actual operation.
Here the emphasis is given to mathematical modeling
because this analysis method is more expedient and
generally less costly than the alternative approach of
simulation. Moreover, since many of the variables are
non-independent and rely upon characterization of user
demands, and sinhce these are difficult to accurately
describe prior to actual operation, the macroscopic and
statistical indications provided by a mathematical model
are perhaps all that one can feasibly obtain.

Design and performance study
System design

The Batch/Time-Sharing Monitor (BTM) is designed
to afford SDS Sigma 5 and Sigma 7 users with interactive
and on-line time-sharing without disrupting batch
operations. For considerations of efficiency, the primary
objective of the BTM design is to provide limited time-
sharing service while concentrating on throughput of
batech jobs—the servicing of time-sharing users is
allocated to minimize response for interactive users with
no special service given to the compute bound on-line
users (because high-efficiency batch service is available).

Thus, the system is structured with resources for the
batch and time-sharing portions of the system separated
as much as possible. Different areas of main memory are
allocated so that a (compute bound) batch user is
always ‘‘ready to run.” The file device is common
because files may be shared between batch and time-
sharing users. However, the management technique
used minimizes the interference from this factor. The
swapping Rapid Access Disc (RAD) for time-shaiing
users is independent of the file device, thus insuring that
swaps in process do not affect on-going batch programs.

The batch user is kept essentially compute bound by
buffering all of his unit record I/0 via a RAD. This
allows the compute portion of each job to follow that
of the previous job without waiting for the printout,
etc., to complete. Thus, there is no need to attempt to
reclaim swap time from one time-sharing user to
another—a natural claimant: the batch job is readily
available,

Performance Modeling and Empirical Measurements 19

Hence, a very simple (and low overhead) swapping
and scheduling algorithm can be used. As a particular
user is dismissed, other users are polled in turn to see
who is “ready to run.” If someone is found (not the
same user), a replacement swap is initiated and the
CPU is allocated to the batch job. When the swap-out/
swap-in is complete, the new user is given one quantum
(i.e., providing the batch job has already had at least its
quantum); then the eycle is repeated.

In this way, batch is guaranteed a certain percentage
of the machine (and typically gets much more), and a
moderate number of time-sharing users receive rapid
response to conversational request. Yet with this
relatively simple framework, a number of questions are
unavoidable: How does on-line response and batch
throughput vary with the number of on-line users, and
how do other variables such as quantum size and swap
time relate to system performance? Moreover, how
does one characterize system performance and the
variables which influence it?

Parameterizations and performance measures

The subject of “on-line” response is unfortunately
plagued by many interpretations of what constitutes
response (and, moreover, what defines adequate
response). For the purposes of this paper, “typical
on-line requests” are those which require minimal
central processor time—less than one quantum alloca-
tion. Thus, the response time C; to a “typical on-line
demand” is that period elapsing between request
generation (the keying in of a control character such as
“carriage return”’) and the termination of the first time
quantum* which is allocated to the servicing of the
request. This definition provides the basis upon which
the on-line performance of the BTM system is analyzed
in this paper, since it is assumed that on-line users are
typically in phases of program preparation.** Thus,
providing the quantum is large enough, the great
majority of user interactions (e.g., “open the next
line,” ‘“‘delete source image,” “perform syntax check
and ingert into text,” etc.) can be satisfied with single
quantum allocations.

The mathematical model developed in the Appendix
enables one to characterize the system by selecting
values for the variables:

N = total number of active on-line communication

* Also note that if the scheduling algorithm is round-robin then
C, provides a basis for approximating the response time for
a request which requires multiple quanta.

** Note that this is not the case in system environments in which
the on-line users run production (compute bound) programs.

sources (i.e., the number of remote users who
are concurrently using the system).

A = average uger interaction rate (frequency at
which a single user requests service by the
CPU).

p = mean rate at which on-line requests are
serviced by the CPU (1/u = average
amount of CPU time required to complete
each request given that the CPU was
dedicated to the servicing of the request).

S = the average amount of time required to swap
an old user out of core and load a new user

(clearly, S is dependent upon the swapping
device as well as program size).

Oz = time quantum allocated to on-line requests
(time-sharing users).

gp = time quantum given to bateh requests
(background users).

m = the average cumulative quantum extension
(for monitor services such as scheduling, file
I/0, service calls, ete.) incurred during the
period elapsing between successive quantum
allocations to on-line jobs.

To supplement analysis efforts, the BTM system
software is capable of monitoring these (and other)
variables and accumulating their statistical distributions
during actual system operation. This does not impose
any significant overhead since much of this data is
already accumulated in the accounting log, and (as in
many other commercial systems) used as a basis for
charging users.

Upon establishing reasonable values for the above
variables, the model can then be used to derive per-
formance measures. In terms of respbnse, the salient
performance index is E[C,] where

E[C,] = the expected response time which “typical
on-line demands” experience (see defini-
tion given above).

In addition, the model can readily be used to estimate
the percentage of CPU time available for batch jobs; the
percentage of CPU time received by time-sharing users;
utilization of the swapping RAD; expectations of
system revenues; and a variety of other indices obtained
from combinations of the derived parameters.

A priori estimates for some of these performance
measures are given in Figures 1-5 for reasonable ranges

20 Fall Joint Computer Conference, 1969

é 1l ag 200 ms,
_,l 85 ms, IF 7212 RAD
§

248 ms, IF 7232 RAD
443 ms, IF 7204 RAD

A=] Request/20 user.sec.
5 L 1/p= 400 ms./request

m= 100 ms.
’ 3

Efc;)
Average
Response
To "Typical 2
On-Line
Demands"
(sec.)
1 +
ee o "Swap Limited"
8 4 “Batch Limited"
0 e f— v T v v v v v
2 6 10 14 18 22 2
N ———
NUMBER OF CONCURRE NT
USERS
Figure 1—E[Cy] vs. N (¢ = 2.5 requests/sec.)
6] r= 200 ms,
85 ms IF 7212 RAD
§ =| 248 ms. IF 7232 RAD
443 ms, IF 7204 RAD
5 4 X =1 Request/20 user.sec,
1/k = 200 ms./request
m = 100 ms,
4 -
£,
Average
Response 3
To “Typical
On-Line 7212 RAD
Demands " =200 ms

(Sec.)

OO @ "Swop limited"
L/ X5 & TBatch Hmited"
,‘ T 4 T -

N
NUMBER OF CONCURRENT
USERS

Figure 2—E[Ci] v8. N (u = 5 requests/sec.)

of the variables N, \, u, S, qz, s, and m. Obviously,
these variables will differ from one environment to
another. Therefore, before discussing conclusions which
can be drawn from these graphical results, it is appro-
priate to clarify the parameterizations and assumptions
which were used in the calculations:

LIMIT FOR
7204 RAD

80 4
LIMIT FOR
7232 RAD
PERCENT OF
CPU TIME
AVAILABLE
ForBATCH &0] LIMIT FOR
JOoBS 7212 RAD
(PrB)X 100%)
40 ol
20 9

0 10 2 30 40
N i~

NUMBER OF CONCURRENT USERS

Figure 3——Relative batch capability

10 EJ
CPU SPEED p (Requests/Sec.)
(LOG SCALE)

Figure 4—Nmax V8. CPU speed p

The average swap time S was conservatively
caleulated assuming that four RAD accesses are
required per swap with an average total of 16K
words transferred during each swap. (The RAD’s
are head per track rotating memories operating
at 1800 rpm; and the SDS model 7 204, 7232 and
7912 RAD transfer data at rates 187 X 103
bytes/sec., 384 X 10° bytes/sec. and 3 X 10°
bytes/sec., respectively.)

The user interaction rate A was estimated from
statistics gathered at RAND® and other data
extracted from the GE/Dartmouth BASIC
system® and the SDS 940 gystem.

Performance Modeling and Empirical Measurements 21

N=18
ag = 85 ms, (i,e, "swop limited")

85 ms. IF 7212 RAD
L § ={248 ms, IF 7232 RAD
\ 443 ms, IF 7204 RAD

'_\ = 1 request/20 yser-sec,
\ m =100 ms,

(]
Average 4%
Response

To “Typical
On-Line
Demands"
(Sec) 3

\ 7212 RAD 7232 RAD
B T A S S e i i o

O—0. p=2.5 requests/sec,
dr-d =5 requests/sec,

04 05 06 07 08 09 1o 1.1 .2
% (sec,) ~————sn
QUANTUM ALLOCATION

0o 01 02 03

T0
ON-LINE USERS

Figure 5—E[Cy] vs. qp (N = 18)

3. The selection of gz = 200 ms. was established
such that the majority of user interactions are
satisfied with single quantum allocations. Where-
a8, selecting gz = 85 ms. and 200 ms. was done
merely to demonstrate “swap limited” and
“bateh limited” operation, respectively.

4. The value of the average monitor time m per
on-line/batch quantum cyele was approximated
utilizing batch accounting information and
timing studies of monitor services.

5. Values of u were chosen such that the average
on-line quantum qr would be ~ 125 ms. to
150 ms. when 200 ms. was allocated. This
selection was inferred from data extracted from
the SDS 940 System and BTM code traces. (Yet,
note that a single parameter u does not provide a
characterization covering the more general case
in which the processing time distribution is
multi-modal.t However, for purposes of studying
interactive response, it provides a good approx-
imation and lends itself to the mathematical
analysis.)

t The multi-modal case arises because of a multiplicity of lan-
guage facilities and the natural division of requestsintointeractive
or compute demands.

Mathematical results

Given this framework, let us now turn our attention
to the figures. Employing the mathematical model,
a priori estimates of average interactive response time
E[C,] are displayed versus N in Figure 1 and Figure 2
for 4 = 2.5 requests/sec. and u = 5 requests/sec.,
respectively. Here, three different curves are plotted in
each figure to demonstrate the limiting effects of each
swapping device (i.e., “swap limited” operation when
the bateh quantum qp is less* than the swap time 8).
Also, note that an additional curve is given for the
model 7212 RAD to display the effects of selecting a
batch quantum which exceeds the swap time (i.e.,
“batch limited” operation). This latter curve shows that
the fastest swapping device effectively becomes a slower
device when qp is set such that operation is “batch
limited””—the model 7312 RAD is almost equivalent to
a model 7232 RAD when qp = 200 ms.

Now since N is the total number of concurrent users
(active communication sources), Figures 1 and 2 enable
one to estimate a value for the maximum number of
users Nmgx which the system can simultaneously
accommodate by: (1) assuming “swap limited” operation
and (2) defining what constitutes adequate response to
typical on-line demands. For example, if one assumes
that adequate interactive response is achieved if =~ 809,
of the time a user experiences a delay of less than 5 sec.
then, depending upon u, one concludes:**

i. the model 7204 RAD will accommodate a
maximum of 10 to 16 concurrent users for***
p = 2.5 requests/sec. to u = 5 requests/sec.,
respectively;

ii. the model 7232 RAD will accommodate a
maximum of 16 to 26 concurrent users for
x = 2.5 requests/sec. to 4 = 5 requests/sec.,
respectively;

ili. the model 7212 RAD will accommodate a
maximum of 26 to 38 users for u = 2.5 requests/
sec. to p = 5 requests/sec., respectively.

However, the actual number of on-line users who

* For this situation, the actual batch quantum allocation is the
swap time S.

** These conclusions were made by assuming that the probabil-
ity distribution for response time C, is such that twice the mean
E[C,lis (atleast) the 80 percent point. This is a reasonable assump-
tion in light of both the mathematical characterizations used in
the model and empirical measuresments.

***Note that reducing u from 5 requests/sec. to 2.5 requests/sec.
is tantamount to reducing processing speed by a factor of 1/2.

29 Fall Joint Computer Conference, 1969

concurrently use the system is a statistical parameter
which generally is less than Ny, and varies according
to the total number of on-line subscribers, their
demands, processing speed, Np.x, etc. In practice, the
total number of on-line subscribers typically exceeds
Nimex by at least a factor of three.

For the above cases, nominally 50-809, of the CPU
time is available for batch jobs. This is shown in
Figure 3. Similarly, utilizing this same response
criterion, it is interesting to observe the effects of
increasing**** CPU speed u. This is demonstrated in
Figure 4 for each of the swapping devices. As CPU speed
increases indefinitely, the capacity of the system to
service on-line requests approaches a limit established
by the swapping device.

Additional insight into system responsiveness is
provided by Figure 5. Here, B[C;] is graphically
displayed versus the on-line user quantum qz for “swap
limited”” operation and N = 18 (with all other variables
the same as those employed in Figures 1 and 2.) Note
that the selection of a minimum qg is very critical;
however, having established a minimum qg, the varia-
tions are not dramatic for a relatively large range above
minimum qz. Also, notice that as u is reduced from 5
requests/sec. to 2.5 requests/sec., a model 7232 RAD
must be used to achieve what a model 7204 RAD
accomplished in the former case; and similarly, a model
7212 RAD is required to equal the performance of a
model 7232 RAD.

Experimental results

Extensive statistics were gathered from the system
(while running typical jobs) with a twofold purpose in
mind. First, it was necessary to substantiate the validity
of the assumptions employed in the model; i.e., establish
that the chosen parameters were indeed consistent with
the actual environment. Secondly, a correlation between
empirically measured performance and the results of the
model would lend credence to the validity of the model,
and therefore allow us to extrapolate and predict
performance for other user environments and system
configurations.

The first objective was accomplished by observing a
BTM system which used a model 7212 RAD for
swapping with quanta qz = qs = 200 ms. Values for
A, u, m and program size were tabulated for many
different observation periods. For each of these monitor-
ing sessions different average values were obtained, but

*#*** Note that this latitude is only possible on a limited basis
(e.g., code optimization, faster memory, faster operation unit,
multi-processing, ete.)

the values u = 3.5 requests/sec., A = 1 request/15
user-sec., S = 85 msec. and m = 100 msec. were found
to be quite representative of most samples. The variables
and X were most subject to variation and ranged from
2 to 6 requests/sec. and from 1 request/25 user-sec. to
1 request/10 user-sec., respectively. Also, the data
indicated that the assumptions of exponentially dis-
tributed CPU time and request inter-arrival time
provided good approximations of user demands.

Given that the first objective was satisfied, realization
of the second objeetive is buttressed by Figure 6 which
plots the average of all sampled values for two of the key
performance indications (average response time E[Ci]
and CPU time available for batch Pr[B]) as a function
of the number of users N. Upon comparing these results
with the mathematical predictions (also see Figures 1-3),
one can infer that (at least for the range of variables
considered) the mathematical model is reasonably
consistent with actual system operation.

Comments

The analysis presented above primarily focused atten-
tion on the system’s capacity to accommodate user
demands. Even though no mention was given to
cost/performance tradeoffs, the model lends itself to
this latter design consideration. For example, the
variables N, Pr[B], and x might be combined to reflect
the revenue derived for service to batch jobs and the -
revenue obtained for servicing interactive users which
could then be weighted against the cost expended to

5 100
Measured
Percentage of CPU Time
Available for Batch Jobs
. Prediction N
Obtatned o SAMPLED
led fom Mode Pr{B] X 100%
?E:p,] (PERCENT)
(Sec.)
31 60
2 1 40
17 F 2

0 4 8 12 16 2 24 =B 32
N ————————i
NUMBER OF CONCURRENT

Figure 6—Empirical results

Performance Modeling and Empirical Measurements 23

provide (and maintain) the system complement. This
would provide a basis for the designer to balance CPU
cost/performance with that of other system elements.
The process of selecting and examining performance
indexes similar to those discussed here enables the
designer to better appraise the many implementation
tradeoffs which confront him. Moreover, when supple-
mented with empirical data, these techniques provide a
basis for not only configuring existing systems but also
synthesizing new systems. However, it should be
emphasized that apart from the mathematical model
itself and its macroscopic treatment of the system, the
fidelity of the results and conclusions obtained in this
analysis (or any analysis of this sort) can only be as good
as the accuracy attributed to the independent variables
(N, A, », m, 8). The values possessed by these variables
dramatically affect performance and will vary from one
environment to another. Therefore, one should be
cautious before inferring any explicit and universal
characterizations of system performance.

REFERENCES

1 B KRISHNAMOORTHI R C WOOD
Time-shared computer operations with both interarrival and
service time exponential
J A CM Vol 13 317-338 July 1966

2 E G COFFMAN JR
Stochastic models of multiple and time-shared computer
operations
Reportl 66-38 Dept of Eng Univ of Calif Los Angeles
June 1966

3 L KLEINROCK
Time-shared systems: A theoretical treatment
J A CM Vol 14 242-251 April 1967

4 J E SHEMER
Some mathematical considerations of time-sharing scheduling
algorithms
J A CM Vol 14 262272 April 1967

5 G E BRYAN
JOSS: 20,000 hours at a console—a statistical summary
Proc FJ C C 769-777 1967

6 H CANTRELL

* Time-sharing data
General Electric Technical Information Series Report
R65CD12 December 1965

7 T L SAATY
Elements of queueing theory
MecGraw-Hill New York 1961

APPENDIX
BTM mathematical model

Consider the generation of on-line requests on each
communication channel is an exponential process with
parameter A. Hence, the time interval x between

completion of a request and generation of a new request
on a given line is described by the distribution function

_ft—e™ forx>0
Alx) = ’ 0 forx < 0

Similarly, assume that the service time t required by
each on-line request is exponentially distributed with
parameter u and characterized by the distribution
function

1 — e

B(t) = [o for t

>0
fort <0
Given that there are N channels, let p (%) denote the
probability that n on-line requests are queuel at rone
arbitrary time t forn = 0, 1, - - -N, then

-NXpo(t) + uPr[R()]e(t)
forn=20

(N —)N + pPr[R(4)]]pa(t)
dpa(t) + (N — n + Drpaa(t)
dt + uPrR(t)]pna(t)
for0 < n <N

uPr[R®)]on(t) + Aow_a(t)
forn= N

where Pr[R(t)] denotes the probability that at time t
the computer is servicing one of the remotely generated
on-line requests. Note that in the above equations, the
input rate is (N — n)A when n requests are queued.
Thus the model accounts for the natural variations in
demand intensity which r3sult because there are a finite
number N of input sources.

From these equations, the stationary probability’
that n on-line requests are queued is

N (A \)
Pn =N — n)!\u Pr[R]/ ™
where

Pr[R] = limit Pr{R(t)] and

t—

_ 1
[1+2 o5 (om)]

The probability Pr[R] can be estimated by considering

24 Fall Joint Computer Conference, 1969

the interval which elapses between successive allocations
of a quantum to on-line users. Let: T; denote the total
time between the 0 on-line quantum completion and
the k™ on-line quantum completion. If the k™ comple-
tion leaves the on-line queue in an empty state, then the
expected value of the time AT} until the next on-line
quantum completion is

1 - - -
E[AT ijn0] = 5 +qgs+qgr+ m

where g is the avera‘ge quantum which batch users
receive; qr is the expected duration of an on-line
(remote user) quantum; (1/NA) is the mean time until
the generation of the next on-line request; and m is the
expected monitor overhead time per batch/on-line
quantum cycle. Here, m accounts. for any scheduling;
I/0 overhead; file operations, and any other CPU time
pre-empted by the monitor which results during the
cycle of a quantum allocation to a batch job followed by
a quantum allocation to an on-line job.

In the case when the k™ on-line quantum completion
does not leave the interactive user queue empty, then
with probability (1 — po)

E[ATx>1] = q5 + qr + m

Now let T, Tz, and T., denote respectively the length
of time out of T; which the system spends servicing
batch jobs, on-line jobs, and monitor functions,
respectively.

Then as k goes to infinity, the ratios T's/k, Tr/k, and
Tw/k converge with probability one to (qs + po/NA),
qr, and m, respectively. Therefore, in the limit, an
approximation to the fraction of the time which the
system spends servieing on-line requests is

Pr{R] = lim I:TR:| _ lim [TR/k]
k—ew | A5 = koo | T
T Tw/k

dr |
= an"‘aB"‘H_l‘l‘Po _1_)
N

Then, noting that qz + qz is essentially the computa-
tion cycle, this leads one to express Pr{R] as

Pr[R] = where f > (1 + =

Oz m)
f(QB + QR) (o]} + qer
Here, f is an appropriate scale factor introduced to

N
facilitate solving for { p,.}'

n =0

The numerical technique

is to let f increase by some small Af uatil a solution for
po 18 obtained which is consistent with Pr{R]. The
variable f satisfying this criterion will vary dramatically
depending upon N, m, u, A and qs.

Upon solving for po, the percentage of CPU time
available for batch jobs is

Gt m/N
qe + gz + m + po (1/NX)

Pr[B] =

The variables gqs and qz are heavily influenced by
quantum periods and swap time. If one assumes that
(with the exception of a batch quantum allocation every
other quantum) on-line jobs run on a demand basis
(i.e., the batch quantum g is less than the swap time S),
then qs = S. Hence, the swap time limits the rate at
which successive quantum allocations are provided to
the on-line requests (i.e., maximum service capacity is
given to on-line requests). Whereas, if the batch
quantum limits the servicing of on-line requests
(qz > 8), then qs = qa. Therefore, for completeness

B [qBifS<qB
qs = { _
|SifS > qs

and from the exponential distribution of service time
for on-line requests'—*

ar = 1/p (1 —)

Given the foregoing relations, it is now possible to
estimate the expected cycle time E[Ci which an
individual on-line (remote user) request experiences
before it is granted its first quantum allocation. As
emphasized in an earlier section, attention is focused
upon E[C,] since it provides an indication of the respon-
siveness of the system to handling “typical on-line
requests’ which require less than one quantum of CPU
time. By considering the system only at epochs of
transition between batch to on-line, monitor to batch
(or on-line), idle to batch (or on-line), etec., one obtains
the approximation

E[Ci] = po E[To] + E[n] (qs + qe + m) + qz

where

E[n] = Z Npn

ne=l

and E[Ty] is the expected time remaining subsequent to

Performance Modeling and Empirical Measurements 25

the arrival of an on-line request before the next quantum
allocation is initiated. The value of E[T,] is difficult to
accurately express since it is a function of the probability
densities for qs and m together with machine state
probabilities; however, it is clear that

E[T] < [qs + m]

At any rate, E[To] is not a dominant factor in E[C,]
unless E[Cy] is extremely small (i.e., E[C:] = qz + E[Tq),
for example). Hence, the precise value of E[Ty] is not
eritical in those cases which are of particular interest
(namely, those resulting when the on-line queue tends
toward saturation; i.e., E[n] — N).

In addition to the above result for E[C,], since the
scheduling discipline is round-robin, it is possible to
estimate®* the expected total response time E[r| t] for
an on-line request which requires a processing time t in
excess of a single quantum qg

E[R[t] & t + <t/qz> [E[C]] — (oo E[To] + qr)
+ qs + m]
where <a/b> is the smallest integer greater than a/b.

Alternate model

Let pms(Tx) denote the probability that n on-line
requests are queued at epoch T marking the completion
of the k™ on-line quantum allocation, given that at
epoch Ty, there were m on-line requests awaiting
service from the system.!:? Then independent of k
since the CPU servicing of requests is characterized as
an exponential process

Y
e](: Pr[n — m| m, gz + tlps(t) dt

y+IR—€
+ /o' Prln — m + 1|m, t] peyr(t) db
for1 <m<n

Pmn =

Oforn<m—2,m>1

y+IR—€
fo Pr{0|m, t] psiz(t) dt

forn=m—-12>0

where ¢ — 0 and Pr[k[m,t] denotes the conditional
probability of generating k new on-line requests in a

time interval t given that m requests are queued. For
example, with exponential inter-arrival

Pr[klm, t] = <N ; m) (1 — e—M)k(e—M)N_m_lc

Also, in the above equations

Smex if service to on-line customers is swap
limited (i.e., qz < 8)

gp if batch quantum limits on-line service
(i.e., qa = S)

Here, py denotes the probability density function which
describes the batch quantum allocation, and payr is
the convolution of pp with the density function pg
defining the distribution of an on-line quantum alloca-
tion. Both pp and pp include overhead functions to
account for file I/0, monitor overhead, etc.

‘The density function pp is derived from the swap time
distribution when q» < S; whereas, it depicts the CPU
servicing of batch requests when S < qz. For example,
in the latter case with 8(z) representing the Dirac-delta
function describing an independent variable z, one
could characterize the constant batch allocation interval
by

ps(t) = 8(t — (vs + as)

where the constant v 5 reflects batch overhead. Similarly,
letting v denote the overhead incurred during an
on-line quantum allocation

0 fOI'tvS“YROI'tr>‘Y}a+qR
pe(t) = {pe™ + e ™2 8(t — (qz + vr))
for vg <t < ve + az

For completeness, the transitions from the O-state are
agsumed to be

Y
pon = [Prinlo, t] pa(t) db
0

Then, having formulated the state transitions {pma}
and defined the density functions p(t) and pz4=(t), the
problem remains to solve for the steady-state proba-
bilities. This is accomplished by noting that the pm.’s
define an ergodic Markovian chain whereby in matrix
form with P = (p,) there exists a unique set of numbers
{om}¥_, such that

(oop1* * *pw) p = (popr- + * on)

26 Fall Joint Computer Conference, 1969

and

N
Doon=1

n=0

The solution of these equations produces the limiting
stationary probabilities {p.}., o which could be used in
calculating E[n] to provide a more accurate estimate of
E[C,). (That is, providing one can accurately describe
Pz, PB4k,)\’ etc')'

However, since the accuracy of such variables would
be highly questionable in the absence of any empirical
information and since this latter model presents a
number of non-trivial mathematical difficulties, it was
not utilized to derive the results given in this paper.
Yet, in the future, as sufficient data is accumulated from

the actual operation of BTM systems, then the latter
model will enable us to extrapolate and better predict
the effects of alterations to the system (e.g., improve-
ments resulting from faster swapping devices or
increases in CPU speed).

ACKNOWLEDGMENT

The authors are indebted to M. Leavitt, D. Cumming,
J. Doeppel, T. Martin and G. E. Bryan for their many
contributions to the BTM design effort and also wish to
extend thanks to all those other individuals at Scientific
Data Systems who helped to make this project possible.
In particular, the authors are grateful to D. Cota,
E. Maso and Dr. R. Spinrad for their guidance in these
efforts.

Dynamic protection structures

by B. W. LAMPSON

Berkeley Computer Corporation
Berkeley, California

INTRODUCTION

A very general problem which pervades the entire field
of operating system design is the construction of pro-
tection mechanisms. These come in many different
forms, ranging from hardware which prevents the exe-
cution of input/output instructions by user programs,
to password schemes for identifying customers when
they log onto a time-sharing system. This paper deals
with one aspect of the subject, which might be called
the meta-theory of protection systems: how can the
information which specifies protection and authorizes
access, itself be protected and manipulated. Thus, for
example, a memory protection system decides whether a
program P is allowed to store into-location T. We are
concerned with how P obtains this permission and how
he passes it on to other programs. _

In order to lend immediacy to the discussion, it
will be helpful to have some examples. To provide
some background for the examples, we imagine a
computation C running on a general multi-access
system M. The computation responds to inputs from
a terminal or a card reader. Some of these look like
commands: to compile file A, load B and print the
output double-spaced. Others may be program state-
ments or data. As C goes about its business, it executes
a large number of different programs and requires at
various times a large number of different kinds of
access to the resources of the system and to the various
objects which exist in it. It is necessary to have some
way of knowing at each instant what privileges the
computation has, and of establishing and changing
these privileges in a flexible way. We will establish a
fairly general conceptual framework for this situation,

and consider the details of implementation in a specific
system.

Part of this framework is common to most modern
operating systems; we will summarize it briefly. A
program running on the system M exists in an environ-
ment created by M, just as does a program running in
supervisor state on a machine unequipped with soft-
ware. In the latter case the environment is simply the
available memory and the available complement of
machine instructions and input/output commands;
since these appear in just the form provided by the
hardware designers, we call this environment the bare
machine. By contrast, the environment created by M
for a program is called a virtual or user machine.® It
normally has less memory, differently organized, and
an instruction set in which the input/output at least
has been greatly changed. Besides the machine reg-
isters and memory, a user machine provides a set of
objects which can be manipulated by the program. The
instructions for manipulating objects are probably
implemented in software, but this is of no concern to
the user machine program, which is generally not able
to tell how a given feature is implemented.

The basic object which executes programs is called
a task or process;s it corresponds to one copy of the
user machine. What we are primarily concerned with
in this paper is the management of the objects which
a process has access to: how are they identified, passed
around, created, destroyed, used and shared.

Beyond this point, three ideas are fundamental to
the framework being developed:

1. Objects are named by capabilities,® which are
names that are protected by the system in the

27

28 Fall Joint Computer Conference, 1969

sense that programs can move them around but
not change them or create them in an arbitrary
way. As a consequence, possession of a capa-
bility can be taken as prima facie proof of the
right to access the object it names.

2. A new kind of object called a domain is used to
group capabilities. At any time a process is
executing in some domain and hence can exercise
the capabilities which belong to the domain.
When control passes from one domain to an-
other (in a suitably restricted fashion) the capa-
bilities of the process will change.

3. Capabilities are usually obtained by presenting
domains which possess them with suitable
authorization, in the form.of a special kind of
capability called an access key. Since a domain
can possess capabilities, including access keys,
it can carry its own identification.

A key property of this framework is that it does not
distinguish any particular part of the computation. In
other words, a program running in one domain can
execute, expand the computation, access files and in
general exercise its capabilities without regard to who
created it or how far down in any hierarchy it is. Thus,
for example, a user program running under a debugging
system is quite free to create another incarnation of
the debugging system underneath him, which may in
turn create another user program which is not aware
in any way of its position in the!scheme of things. In
particular, it is possible to reset ‘things to a standard
state in one domain without disrupting higher ones.

The reason for placing so much weight on this prop-
erty is two-fold. First of all, it provides a guarantee
that programs can be glued together to make larger
programs without elaborate pre‘farrangements about
the nature of the common environment. Large systems
with active user communities quickly build up sizable
collections of valuable routines. The large ones in the
collections, such as compilers, often prove useful as
sub-routines of other programs. Thus, to implement
language X it may be convenient to translate it into
language Y, for which a compiler already exists. The X
implementor is probably unawar¢ that Y’s implemen-
tation involves a further call on an assembler. If the
basic system organization does not allow an arbitrarily
complex structure to be built up' from any point, this
kind of operation will not be feasible.

The second reason for concern about extendibility
is that it allows deficiencies in the design of the system
to be made up without changes in the basic system
itself, simply by interposing another layer between the
basic system and the user. This is especially important

when we realize that different people may have different
ideas about the nature of a deficiency.

We now have outlined the main ideas of the paper.
The remainder of the discussion is devoted to filling
them out with examples and explanations. The entire
scheme has been developed as part of the operating
system for the Berkeley Computer Corporation Model
I. Since many details and specific mechanisms are
dependent on the characteristics of the surrounding
system and underlying hardware, we digress briefly
at this point to deseribe them.

Environment

The BCC Model I is an integrated hardware and soft-
ware system designed to support alarge number (up to
500) of time-sharing users. This system consists of
two central processors, several small processors, a large
central (core and integrated circuit) memory, and rotat-
ing magnetic memory. The latter contains more than
500 108 bytes, including approximately 12X 10¢ bytes
of drum having a transfer rate of more than 5X 108
bytes per second.

The hardware allows each process more than 512k
bytes of virtual memory. The central processors can
accommodate operands of various sizes including 48-
and 96-bit floating point numbers. The addressing
structure allows characters, part-word fields and array
elements to be referenced directly. The subroutine-
calling instruction passes parameters and allocates
stack space automatically. System calls are handled
exactly like ordinary function calls; when arrays or
labels are passed to the system they are checked auto-
matically by the hardware so that they can be used
by the system without further ado.

The memory management system organizes memory
into pages. A page is identified by a 48-bit unique name
which is guaranteed different for each page ever created
in the system. Tables are maintained in the central
memory which allow the page to be found in the various
levels of the memory system. These tables are auto-
matically accessed by the address mapping hardware
the first time the page is referenced after the processor
starts to run a new process. Thereafter its real core
address is kept in fast registers. It is therefore unneces-
sary for any program other than a small part of the
basic system to be concerned about the location of a
page in the memory system; when it is referenced, it
will be brought into the central memory if it is not
already there. Extensive facilities are provided, how-
ever, to allow a process to control the level in the memo-
ry hierarchy of the pages it is interested in. The work
of managing the memory is done by a processor with

Dynamic Protection Structures 29

read-only program memory and data access to the
central memory; this processor has a 100 ns cycle
time, so that it can handle the large amount of com-
puting required to keep up with demands placed on
the memory system. Another small processor handles
‘the remote terminals, which are multiplexed in groups

of 20 to 100 at remote concentrators and brought.

into the system over high-speed lines.

Pages are grouped into files, which are treated as
randomly addressable sequences of pages. The only
mechanism provided to access the data in a file is to
put a page of the file into the virtual memory of a
process. Files and processes are named and have pro-
tection information associated with them.

Domains in action

Before plunging into a detailed analysis of capa-
bilities and domains, we will look at some of the practi-
cal situations which these facilities are designed to
serve. They all have the same general character: several
programs with different privileges exist. KEach program
corresponds to one domain. Some of the domains con-

“trol others, in the sense that the capabilities of a con-
trolled domain are a subset of those of its controlling
domain. As a first example, consider the command
process CP of an operating system. This program
accepts a command, perhaps from a remote terminal,
and attempts to recognize it as a call on a program X
which CP knows about. If it succeeds, CP calls on X for
execution, passing it any parameters which were in-
cluded in the command. To do this, CP must set up
a suitable environment for X to function in. In par-
ticular, enough memory must be provided for X to
run, X must be loaded properly, and suitable input/
output must be available. When X is finished, it will
return and CP can process a new command.

The key point is that we want CP to be protected
from X, to ensure that the user’s commands continue
to be processed even if X has bugs. In particular, we
want to be sure that '

1. X does not destroy CP’s memory or files, so
that CP can continue to run when X returns.

2. CP can stop X if it goes wild. Usually we want
the ability to set a time limit and also to inter-
vene from the terminal.

In other words, we want CP and X to run in separate
domains, as illustrated in Figure 1 (since this is an
informal discussion, we do not trouble to distinguish
carefully between the program X and the domain in
which it runs). Here we have shown the call from CP

CP;_ command processor X: command

Command input Ccapabilities

®

command output required by

pirectory of commands X

Domain X Return to CP

Domains calls

Figure 1—A command processor and its command

to X in two forms: in the picture on the right, and as
a return capability in X. The reason for the capability
is that X cannot return with a simple branch oper-
ation, since it would then be able to start CP running
at any point, which would destroy the protection.

Suppose now that we want to allow X to get addition-
al commands executed. X might, for example, be a
Fortran compiler whose output must be passed
through an assembler. A simple way to do this is to
put the assembler input on a file called, say, FOR-
TRANTEMP, and issue the command.

ASSEMBLE FORTRANTEMP, BINARY

This command is just a string, which can easily be
constructed by the compiler X. To get it executed,
however, X must be able to call CP. This situation
is illustrated in Figure 2; note the call capability in X,
which is quite different from the return capability.
We are ignoring for the moment the question of how
CP knows that X is authorized to call the assembler.

If the idea of the preceding paragraph is pursued, it
suggests the value of being able to switch the source
of command input and the destination of command
output in a flexible way. By these terms we mean the

CP: command processor X: Command Y: Command

Ccommand input

Command output Capabilities| Capabilities

required by required by

Directory of commands
X X

Domain X

Domain Y call CP

Return to X Return to CP

O-®-0-6

i
iReturn to CP
L

Figure 2—A recursive command processor

30 Fall Joint Computer Conference, 1969

traffic between a program and the entity by which it
is directed. In a time-sharing system this is normally
a terminal at which the user is sitting; in a non-inter-
active system it will be a file of control cards. It is
often desirable, however, to switch between the two,
so that routine processing can be done automatically
when the user’s attention is elsewhere, yet he can
regain control when things go awry. Again, it is not
uncommon to wish to capture a complete record of a
conversation between user and machine for later
analysis and replay. More radical, it may be of interest
to replace the user at his terminal with a program
which can manipulate the strings of characters which
constitute commands and responses. In this way major
changes in the external appearance of a system can
be obtained with little effort. :

All of these things can be accomplished by giving
interactions with the command I/0 device the form of
calls to a different domain which acts as a switch. A
generalization to include the possibility of different
command devices for different domains is easy. Thus,
a user may initiate a program in a domain X which,
while continuing to communicate with him, starts a

CPl: command MC: macro CP2: command
processor 1 command _processor 2
call CIo call cI1o call cIO
Domain MC Domain CP2 . Domain X
021‘:::':2:3. Return to CPl Return to MC
Domain CIO Return to CIO

X: _user program CIO: control I/0

call cIo call cprl
Return to CP2 call cp2
Ccall MC

Return to X

Figure 3a—S8witchable control I/0-—the domains

Top-level command processor initiates a

i command

@ which wants to drive another command
processor with some pre-stored or computed
input. It therefore creates another CP

o and calls it, telling CIO to use MC for

its 1/0

The lower CP is given a command to call

the user program X.

° This program needs input
@ which it gets by calling CIO, the domain

n which is switching the control 1/0. CIO calls
@ the current input source, which is MC

Figure 3b—Switchable control I/0 —the calls

subsidiary domain and feeds it commands. The sub-
sidiary, unaware of the way in which it is being driven,
may iterate the process by creating Z. The key fact
which makes it all work is the isolation of one domain
from others. Thus, Y may decide to close all its files
without disturbing X, since Y has no way of even
knowing about X'’s files, much less accessing them. Z,
on the other hand, can be an open book to Y. Various
aspects of the situation are illustrated in Figure 3.

This section concludes by analyzing a problem of
great practical importance: how to construct a debug-
ging system. This example is a good source of insights
into the facilities required of a protection system be-
cause of the great variety of things which can be ex-
pected to go wrong during debugging. There are two
domains, one for the debugger D and one for the pro-
gram X being debugged. We of course want D to be
protected from X, Equally important, we want X to
be completely open to D, so that every object accessible
to X is also accessible to D, and furthermore that D
can find all the objects accessible to X as well as access
them. Otherwise D will not be able to find out what X
has done or to undo any damage. Furthermore, we
want D to be able to imitate any actions which X
can take, so that D can create suitable initial conditions
for debugging parts of X. Thus, D needs operations
which, given a capability for X, allow D to

find all the capabilities in X

copy capabilities between D and X

destroy capabilitiesin X

enter X at any point with any machine state

Dynamic Protection Structures 31

With these powers, D can also handle domains which
X has created, since it can get hold of X’s capabilities
for them. Breakpoints can be inserted in X in the
form of callson D.

Domains and capabilities
The nature of capabilities

As we have already said, a capability is a protected
name of an object. When any object is created, a
capability is created to name it; without the capability
the object might as well not exist, since there is no
way to talk about it. The capability may be thought
of as an ordinary data item enclosed in a box which
prevents tampering with the contents. Thus, for ex-
ample, it may be convenient to make a capability for
a file consist of simply the disc address of its index.
This is entirely satisfactory, since programs which
handle the capability cannot modify it. If they could,
disaster would ensue, since any program could put
any desired disec address into a file capability, and
there would be no protection at all. If the machine
hardware allows a word to be tagged so that it cannot
be modified except by the supervisor, then we have
precisely what we want for a capability. The situation
is illustrated in Figure 4. It should be possible to load
and store such a word (including the tag bits) in order
to give programs the necessary freedom to manipulate
the names of the objects they are working with.

If this kind of hardware is not available a different
and potentially confusing implementation is required.
The potential can be kept from realization by referring
back to the “pure’” implementation of the last para-
graph. What is required is to hide the capabilities
away in the supervisor and provide programs with
unprotected names which ean be used to refer to them.
When a program running in domain D presents one
of these names, it is necessary to check that it actually
names a capability which belongs to D. This can easily

Capability: TAG TYPE VALUE

TAG = read-only, except to supervisor
TYPE = FILE

VALUE = disk address of index

Figure 4—Structure of a capability

NAME _TYPE VALUE DOMAINS NAME TYPE TAG

1 A 1101010 1 A
Domain 1
2 B ol1lo01!o0 2 E
3 c 0;0;1;0
4 D 01041041
1 B
5 E 1i1to!l
2 E Domair. 2
6 F 0;1;1,0
3 F
(a) capabilities grouped, with 1 c
1 Domain 3
bits for ownership 2 F
1 D
Domain 4
2 E

(b) cCapabilities separate

for each domain

Figure 5—Capabilities and unprotected names

be done, if there are n such capabilities, by using
numbers between 1 and # for the names.? An attractive
alternative, if domains can be grouped into larger units
which share many capabilities, is to number the
domains from 1 to ¢ and the entire collection of capa-
bilities from 1 to » and to attach a string of ¢ bits to
each capability. Bit d is on exactly when the capability
belongs to domain d. Figure 5 illustrates.

A somewhat more expensive implementation is to
search a table associated with the domain whenever
an unprotected name is used. This scheme shares with
the bit-string idea the advantage that it is easy for
different domains to use the same names for the same
object.

There are capabilities for all the different kinds of
objects in the system. On the Model I these are

files

pages of memory
processes
domains
interrupt calls
terminals

access keys

Domains and memory

The nature of a domain is considerably more de-
pendent on the underlying system than is the case
for capabilities, mainly because of the treatment of
memory. From a purist’s viewpoint, every access to a

32 Fall Joint Computer Conference, 1969

memory word is an exercise of a capability for that
word. A more moderate position, and one which is
quite feasible on suitable hardware, is to view each
access as the exercise of a capability for a segment
which contains the word.? The mapping hardware
which implements segmentation is thus viewed as part
of the capability system, and at satisfying unity of
outlook is gained. Since a segment is identified by
number, the preceding section applies. We shall not
consider the formidable difficulties which arise if differ-
ent domains use different names for the same segment.

If segments are accessed through capabilities like
everything else, then a domain consists of nothing more
than a collection of capabilities. On machines not
equipped with the proper hardware a domain has an
address space as well. In the Model I this is a list of
the pages which occupy each of the 64 slots for pages
in the 128k memory which is accessible to a user pro-
gram.

It is also necessary to deal with the fact that the
hardware does not allow one domain to access the
address space of another one directly. This fact is of
great importance when we consider how data is passed
back and forth between domains, since it implies that
arrays cannot be passed simply by specifying their
addresses. It is therefore extremely convenient to in-
clude as part of a call the ability to pass scalar data
items, and essential to include thé ability to pass capa-
bilities. From this foundation arbitrarily complex com-
munication can be built, since dapabilities for pages,
files and domains can be passed. Thus, if an array needs
to be passed as a parameter, 111 is sufficient to pass
capabilities for the pages or file containing the array,
together with its base address and length. The called
domain can then put the pages into its address space
and access the array. This is of course much less con-
venient than passing an entire segment as a parameter,
but it is quite workable. :

An alternative approach is to organize the hardware
so that the address space of one domain is a subset to
that of another. This eliminates all problems when the
smaller one calls the larger, although it does not help
at all when we want to share only part of the address
space. A subset organization fits well with a linear or
“ring”’-like system* in which the domains are numbered,
and the capabilities of domain i-are a subset of those
of domain i-1. As we shall see, there are good reasons
for wanting a more flexible schjeme, but for a great
many applications a linear orderirig is quite satisfactory.
To allow these to be handled .more efficiently, the
Model I hardware breaks the address space of a process
into three rings:

monitor
utility
user

in decreasing order of strength. The hardware enforces
a restriction that addressing cannot go into a higher
ring. It also provides protected entry points into the
utility and monitor rings and automatically checks
addresses passed into these rings as parameters to
ensure that they are legal in the ring from which they
came.

This simple hardware-implemented structure permits
three domains to transfer control around among each
other and to address each other’s memory in a very
convenient and efficient way. The price paid is a ri-
gidity in structure, and a drastic incompatibility with
the main, software-implemented domain mechanism.
The incompatibility is resolved by requiring & change
in ring to be reported to the software, except when the
only processing to be performed before returning the
original ring can be done with the capabilities of the
original ring. Short calls thus remain cheap, while the
overhead added to longer ones is not excessive.

Domains and processes

The relationship between domains and processes is
another area greatly influenced by the surrounding
system. The logical nature of the two kinds of object
allows a great deal of freedom: in fact, a domain has
much the same appearance to a process that a segment
of memory does. The storage for capabilities provided
by a domain can accommodate many processes, and a
single process can switch from one domain to another
(subject to restrictions which are considered in the
next section).

In the Model I, however, storage is allocated in 2k
pages, and one of these, called the context block, is
used to hold the system-maintained private data for
each process. The cost of having a process is thus high,
and there is considerable incentive to minimize the
number of processes; usually one is enough per compu-
tation, if advantage is taken of the interrupt facilities
déscribed later. When the usage of space in the context
block is analyzed, it turns out that there are only two
items which would have to be duplicated to allow
several processes to run with the same address space.
These are a 14-word machine state and a stack used
for local storage when the supervisor is executing in
the process. This stack has a minimum of about 60
words and can grow to several hundred words at certain
points during supervisor execution. It is therefore the

Dynamic Protection Structures 33

main barrier to the existence of cheap processes. The
problem can be greatly alleviated by allocating stack
space dynamically at each function call and releasing
it at each return, but this would require some major
changes in system organization.

Although processes are expensive, domains are quite
cheap, since the bit-string method is used to assign
capabilities to domains. Each process in the Model I
can have about a dozen domains associated with it.
The process can run in any of its associated domains
but in no others. This implies that two processes never
run in the same domain.

In a system in which processes are cheap, it is possible
to take an entirely different approach which encourages
the creation of processes for every purpose. In such a
system, parallel processing is of course greatly facili-
tated. In addition, free creation of processes can be
used to give a somewhat different form to many of
the facilities deseribed in this paper.3

It is perhaps worthwhile to point out that a machine
whose addressing is not organized around a stack or
base registers cannot reasonably run several processes
out of the same domain unless they are executing total-
ly disjoint code, because of the problem of address
conflicts.

Transfers of control
Calls

The only reason for creating a domain is to establish
an environment in which a process may execute with
different protection than that provided by any existing
domain, If this objective is to be fulfilled, transfers of
control between domains must be handled with great
care, since they generally imply the acquisition of
new capabilities. If it is possible for a process running
in domain X to suddenly jump into domain Y and
continue execution at any arbitrary point, X can cer-
tainly induce Y to damage the objects accessible
through Y’s capabilities. '

To provide an adequate mechanism for transfers
between domains, we introduce the idea of a protected
entry point or gate, and make the rule that transfer
into a domain is normally allowed only at a gate. A
gate is a new kind of capability which can be created
by anyone with a capability for the domain. It specifies
a location to which control is to go when the gate is
used. Gates can be passed around freely like other
capabilities, and each one may be viewed as conferring
a certain amount of power, namely the power to ac-
complish whatever the routine entered by the gate is

designed to do. With gates it is possible to selectively
distribute the powers of a domain in a flexible way.

A transfer through a gate usually takes the form of
a subroutine call; some provision must therefore be-
made for a return. It is not satisfactory to create
another gate which the called process may return
through, since he might save it away and use it to
return at some later and unexpected time. Instead,
the domain and location to return to are saved on a
call stack in the supervisor, from which the return
operation can retrieve them. It is possible to call a
domain recursively with this mechanism, a feature
which is generally desirable and also quite important
for the trap and interrupt system about to be described.

In order to allow the stack to be reset in case of an
error, or for any of the other reasons which prompt
programmers to reset stacks, a jump-return (n) oper-
ation is provided which returns to the domain n levels
back. Protection is maintained by requiring the domain
doing the jump-return to have capabilities for all the
domains being jumped over.

Traps

A trap is caused by the occurrence of some unusugl
event in the execution of the program which requires
special handling, such as a floating point overflow, a
memory protection violation or an end of file. When a
trap oceurs, it forces control to go to a specified place,
where presumably a routine has been put to deal with
the event. Whether any particular event causes a trap
or simply sets a flag which can be tested by the program
is a decision which should be under the programmer’s
control. Traps may be initiated by hardware (e.g..
floating overflow) or may be artifacts of the software;
as with most distinctions between hardware and soft-
ware implementation, this one is of little importance,
and we expect all traps to be transmitted to the program
in the same form, regardless of their origin.

These are all obvious points which are generally
accepted, and have even become embedded in the
definition of PL/I. What concerns us here is the re-
lationship between traps and domains, which is not
quite so obvious. The basic problem is that the re-
sponse to a trap must be made to depend on the environ-
ment in which is occurs. The occurrence of, say, a
floating overflow is simply a fact, and has nothing to
do with who is running. The action to be taken, on the
other hand, is entirely a function of the situation.
Consider the example in Figure 6. If a floating overflow
oceurs with the call stack in state (b), it is clear that

34 Fall Joint Computer Conference, 1969

Name Domain Traps

A | Command processor] CATCHALL l

2 Q
—

Statistical

w

package SINGMTX @
Matrix
¢ Inversion I FLTOV l
a) Domains and b) The call stack

during matrix
inversion

enabled traps

SINGMTX CATCHALL

000
OO0

c) the matrix d) the matrix

inverter returns

the matrix e)
inverter re-

cesses a turns with with trap-
floating over- trap-return return
flow { SINGMTX) (BAD DATA)

Figure 6—Traps and trapreturns

C should have the first chance to handle the trap. If
it is not interested, the domain B which called it should
have the second chance. In state (¢), on the other hand,
domain B should have the first chance, and then A.
The reasons for this is that we do not wish to give up
control to a weaker domain when a trap oceurs.

The idea is then the following: Each domain is
considered to have a father. When a trap occurs, it is
first directed to the domain S which is running. If S
does not have the trap enabled, the father of S is
tried in the same way. If no one can be found to handle
the trap, there are two possibilities:

ignore it;
generate a catchall trap which any domain that
lacks a father is forced to handle.

If a domain T is found with the trap enabled, it is
called with the name of the trap as argument. It can
then return and allow execution to proceed if it is
able to clear things up. Alternatively, it can do a
jump-return to someone farther back on the call stack
if it finds the situation to be hopeless. An important
property of this scheme is that the trap routine can do
arbitrarily complex processing without disturbing the
situation at the time of the trap.

Conceptually, we wish to think of traps as identified
by symbolic names. Each domain must then include a
list of names of the traps it has enabled. Corresponding

to each hardware-generated trap is a standard name .
Software-generated traps can use 4ny names, including
the ones for hardware traps. This makes it easy for a
subroutine to simulate the occurrence of a hardware
condition which it may not be convenient to produce.

A simple extension of the return operation to a
trap-return allows a routine to signal an error without
leaving any traces of itself; the trap-return does a
return and immediately causes the specified trap,
without allowing any execution beyond the return
point. The domain which handles the trap then sees
it as having occurred in the calling routine, which is
exactly what is wanted. Thus in Figure 6 we have a
matrix inversion routine which processes its own
floating overflows, but reflects two other conditions
to its caller with trap-return. Another useful con-
vention is to disable the trap when it occurs. This
makes it much less likely that the program will get
into a loop, especially for such traps as illegal in-
struetion and memory protection violation.

Interrupts

There remains one more way to cause a transfer
between domains: the oceurrence of an interrupt. This
is not intended to be the normal mechanism for com-
munication between cooperating processes; the basic
block and wake-up mechanisms® are expected to per-
form that function. There are times, however, when it
is desirable to force a process to do something, even
if it is not paying attention. Two obvious reasons for
this are:

a quit signal from the terminal, which indicates
that the user wants to regain control over a process
which has gone into a loop, or perhaps simply
become unnecessarily wordy ;

the elapse of a certain amount of time, which
has much the same meaning.

The action requiréd in these two cases is different.
When a timer interrupt is requested (and there may be
two kinds, for real time and CPU time) the desired
action is usually to call a specific domain, often the
one which is setting the timer. If another domain
wants a timer, it will use one which is logically different.
The user’s quit signal, on the other hand, is context
dependent like a trap; the desired action is a funection
of the routine which is running when the signal arrives.
Thus an iterative root-finder may interpret a quit as
an indication that the solution is accurate enough,
but the debugging system under which it may be run-

Dynamic Protection Structures 35

ning will curtail its printing when it sees a quit and
await a new command. This analysis suggests a simple
implementation: convert the quit into a trap from the
currently executing domain. Each interrupt, then, will
give rise to a call or a trap, depending on its type as
declared by the programmer.

Even when we see how to convert them into oper-
ations within the process, interrupts still present one
serious problem which does not arise in the handling
of traps. This is the fact that a program occasionally
needs to be allowed to compute for a while without
losing control. Usually this happens when modifi-
cations are being made to a data base; if a quit signal
should appear or a timer run out halfway through this
operation, the data is left in a peculiar state. The
obvious solution is to allow a process to become non-
interruptible for a limited period of time. The function
of the limit is to prevent the process from getting into
a state from which it cannot be retrieved; exceeding
it is a programming error and always causes the process
to become interruptible again and an error trap to
occur, regardless of whether an interrupt is actually
pending. The limit is properly measured in real time,
since its primary purpose is to put a bound on the
frustration of the user at his console.

Non-interruptibility is a process-wide condition. It
must be possible, however, for a newly-called domain
to extend the limit exactly once, so that it can function
properly even though its caller is about to exceed his
limit. The limit is thus part of a call stack entry. When
a return occurs, the old limit comes back into force,
and an immediate trap may occur if it has been ex-
ceeded.

Table T summarizes the operations connected with
transfers of control between domains.

TABLE I—Operations for transfers

Operation Arguments

Call Gate, Parameters
Return Parameters

Jump Gate, Parameters
Jump-return Depth, Parameters
Trap Trap number

Trap-return Trap number

Proprietary programs

The remainder of this paper deals with the pro-
tection problems introduced when objects are allowed

to have external, mnemonic names. The examples in
this section are intended to introduce this subject, and
are also of interest in their own right. Suppose then
that a user U has a program executing in domain P
and wishes to perform a circuit analysis. P has gener-
ated the input data for the analysis, and intends to
use the results for further calculation. Within the
system M on which P is running, some user V has
written a suitable analysis program A which he has
offered for sale, and U has decided to use V’s program.
It happens that U and V are competitors.

Both users in this situation have selfish interests
to protect. First, and most obvious, V does not want
his program stolen. He therefore insists that while it
is executing U must not be allowed to read it. Equally
important, however, is the fact that U does not want
V’s program to be able to read the calling program P
and its data; although U may not be trying to market
P, it, and especially its data, contain valuable infor-
mation about U’s current development work which
must be kept from competitors. The relationship
between U and V, and between their programs P and A,
is therefore one of mutual suspicion. Each is willing
to entrust the other with just enough information
to allow the circuit analysis to be completed, and no
more. The system must support this requirement if it
is to be a suitable vehicle for selling programs.

Furthermore, care must be taken beyond the pro-
grams. While P is running it needs the ability to ac-
cess U’s files by name, to read input data and record
results. This privilege must certainly not be extended
to A, since it can learn even more about U’s secrets
by examining his files than by looking at his program,
not to mention the possibility of modifying them. On
the other hand, A may need access to V’s files to obtain
data for the analysis and to collect statistics and ac-
counting information; this access must not be available
to P. The protection mechanisms must therefore pro-
vide for isolating P and A at the level of file naming as
well as on the lower levels which have been the subject
of this paper so far.

What is required then is a system facility something
like this. V establishes A as a proprietary program,
specifying the file on which it resides. Another user’s
program P may then ask the system to atfach this
file. To do this, the system creates a new domain A,
installs the program in it, provides it with some storage,
and returns to P a gate into A. When P wants to call
A, he uses the gate and passes whatever parameters
he thinks are needed for A to function. When A is
finished, he returns. The protection mechanisms we

36 Fall Joint Computer Conference, 1969

have been discussing prevent undesired interference
between P and A. Safeguards for the files are discussed
below.

The example above is one of a great variety of similar
situations. The system itself creates many of them. A
LOGOUT command, for example, requires special ac-
cess to accounting files and to capabilities for destroying
a process, but it would be nice to call it with the
standard command processor. Similarly, driving a
special peripheral like a printer requires special capa-
bilities. If a company maintains 'a large data base, it
may wish to give different classes of users access to
different parts of it by allowing them to call different
accessing programs. These and many other applications
fall within the general outline established by our pro-
prietary program example. We now proceed to consider
how to handle the file naming problems it presents.

External names

Table IT lists the goals of a naming system for objects,
and indicates some of the distinctions between the
use of capabilities in names which have been discussed
in previous sections, and the use of external names,
which are strings of characters such as ‘FILE1’ or
‘CIRCUIT’. In summary, it says; that capabilities are
very convenient for use by a program, since they are
cheap and self-validating. On the other hand, they are
very bad for people, since they cannot be typed in or
remembered. Names for people should also have the
property that the same name can refer to many differ-
ent objects, the distinctions to be made by context.
Thus, Smith’s file ‘ALPHA’ is not the same as Jones’
‘ALPHA’.

TABLE II— Goals of a naming system for objects

Achieved by Achieved by

Goal Capabilities external names
Names are mnemonic X
Names can be relative X

to other names
Names can be used exter- X

nally
Possession of name X

authorizes access
Names are cheap X

to use
Names can be ma- X X

nipulated by programs

Techniques for achieving all these goals are well
known. They depend on the introduction of a new kind
of object called a directory, which consists of pairs:
< external name, capability>, and an operation of
opening an object by supplying the name to obtain -
the capability. Since the external name is interpreted
relative to a directory, there is a suitable hasis for
establishing the context of a name. A tree-structured
naming system is implicit in the scheme, because
directories are themselves objects accessed by capa-
bilities. It is now easy to see how a program in & domain
D accesses the objects belonging to owner U. When D
is created, it is supplied with a capability for U’s
directory, which it simply exercises.

There is more controversy over the proper methods
of accessing objects belonging to other users. A popular
approach is to use passwords: a public read-only
directory is filled with capabilities for all other directo-
ries which allow the objects in them to be accessed
provided a correct password (usually different for each
object) is supplied as part of the opening operation.
This method is not satisfactory. First, it is inconvenient,
since it requires the person accessing the file to re-
member the password. Second, it is insecure. If he
writes the password down, or includes it in a program,
the possibility increases that it will become known. It
is bad enough to have to use a password to obtain
entry to the system, but at least only one password is
involved, it is used only once per session, and it can
be changed, if need be after each session, without too
much fuss. None of these things is true of passwords
attached to files: there are many of them, many people
need to know them, and one must be used each time
a file is opened. This scheme has no advantage except
economy of implementation.

A method based entirely on capabilities suffers only
one of these drawbacks: it is inconvenient, but secure.
It is also, however, quite complex. The idea is that if
a file (or anything else) is to be shared, a capability
for it should be passed from its owner to those who
wish to share it. The problem is that a capability,
being a protected object, must be passed through pro-
tected channels; it cannot be sent in a letter, even a
registered letter. The solution is illustrated in Figure
7. Every user has (at least) two directories, a private
one which he works with, and a transfer directory. The
public directory PUB, for which every user has a read
capability, contains write capabilities for all the trans-
fer directories. The object is to move the capability
for X from PDA to PDB. Proceed as follows:

Dynamic Protection Structures 37

Name Access Value © Name Access Value

TDA:

PUB:
A w TDA

User A's transfer directory

PDA: R PUB

RW TDA

W OBJ

W DB |*
tory

Public directory, con-
taining a write-only
capability for the
transfer directory
of each user.

User A's private direc

TDB:

* = temporary capa-
bility for
copying

+ = final copied
capability PDB:

- = path for copying RW TDB
W OBJ |**

User B's private directory

Figure 7—Sharing capabilities without access keys

A moves a capability for TDB into PDA
Using it, A moves his capability for X to TDB
B moves the capability for X from TDB to PDB

Since only B can access TDB, security is preserved. A
malicious user can confuse things by writing random
capabilities into the TDs, but it is easy for B to check
that he has gotten the right thing. Furthermore, if X
is a directory, future communication can be carried
out quite conveniently, since A and B can then com-
municate through X without any worries about out-
side interference.

A much better method is based on the simple idea
of attaching to a directory entry a list of the users
who are allowed to access it; with each user we can
also specify options, so that Rosenkrantz may be
granted write access to the file while Guildenstern can
only read it. This scheme, which was first used in
CTSS,! has two drawbacks. The first is that if the list
of users who are authorized to access a file is long, it
takes a lot of space to store it ; this problem is especially
annoying if there are several files to be accessed by the
same group of users. The second drawback is that there
is no provision for giving different kinds of access to
different domains of a computation. Both difficulties
can be overcome in a rather straightforward manner.

Before we pursue this point, it is important to notice
why the difficulty encountered above in the capability-
passing scheme does not arise here. We can think of
the computation of a logged-in user as possessing a
special kind of capability which identifies it as be-
longing to him. If SMITH is the user, we will refer to
this capability as SMITH*, meaning that the string

Capabilities for ’
SMITH's computa- !
tion before opening ‘
the file, 4

—ACPEA] R | q---""

JONES' directory

SMTTH*

Capabilities for
SMITH's computa-
tion after opening
the file.

Figure 8—Use of access keys

‘SMITH’ has been enclosed in a tamper-proof box.
When JONES wishes to give SMITH access to his
file ALPHA, he puts the name SMITH on the access
list; JONES can do this since he has a capability for
ALPHA. When a computation presents the capability
SMITH?*, the system observes that the string (or user
number) which is the c(ontents of the capability matches
the string on the access list and grants the access.
At no time is it necessary for JONES to have SMITH*
in his pdssession. He needs only the name SMITH
which, since it is not a protected object, can be com-
municated to him by shouting across the room. Figure
8 illustrates.

To generalize the method we need two ideas. One
is that of an access key. This is an object (i.e., it can
be referenced only by using a capability) which con-
sists simply of a bit string of modest length, long
enough that the number of different access keys is
larger than the number of microseconds the system
will be in existence. Any user may ask the system for a
new access key; the system will create one never seen
before and return a capability for it. The object SMITH*

38 Fall Joint Computer Conference, 1969

mentioned in the last paragraph is an example of an
access key; one is kept for each user in the system.
Since an access key is an object, capabilities for it
appear in the directories and are protected exactly as
is done for any other object (since the access key is a
small object, it may be convenient for the imple-
mentation not to give it any existence independently
of the capabilities for it, i.e., to make the value of the
capability the object itself, rather than a pointer to
it as in the case of files). To give a group of users access
to some files, all we have to do is distribute a new
access key GROUP* to the users and put GROUP
on the access list for each file. The distribution is
accomplished by creating GROUP* and putting all
the users on its access list; once they have copied it
into their directories they can be removed from the
access list, so that no space need be wasted. In practice,
as we have pointed out, numbers of perhaps 64 bits
would be used instead of strings like ‘GROUP’.

The second idea is not new at all. It congists of the
observation that since an access key is just an object,
different domains can have different access keys and
hence different kinds of access to the file system. Thus,
for example, a user’s computation may be started with
two domains, one for his program with his name as
access key, and the other for system accounting with
an access key which allows it to write into the billing
files. With a single suitable access: key, a domain can
easily get hold of an arbitrarily large collection of
other objects which are protected by other keys, since

the first key can be used to obtain other keys from the
directory system.

SUMMARY

We have described a very general scheme for dis-
tributing access to objects among the various parts of
a computation in an extremely specific and flexible
way. The scheme allows two domains to work together
with any degree of intimacy, from complete trust to
bitter mutual suspicion. It also allows a domain to
exercise firm control over everything created by it or
its subsidiaries. '

REFERENCES

1 P A CRISMAN editor
The compatible time-sharing system: A programmer’s gusde
MIT Press 2nd ed Cambridge Mass 1965

2 J P DENNIS
Segmentation and the design of multi-programmed com.puter
systems
J ACM Vol 12 Oct 1965 589

3 J B DENNIS E C Van HORN
Programming semantics jor multiprogrammed computation
CACM Vol 8 No 3 March 1966 143

4 R M GRAHAM
Protection in an information processing utility
CACM Vol 11 No 5 May 1968 368

5 B W LAMPSON
A scheduling philosophy for multi-processing systems
CACM Vol 11 No 5 May 1968 347

6 B W LAMPSON et al
A user machine in a time-sharing system
Proc IEEE Vol 54 No 12 Dec 1966

The ADEPT-50 time-sharing system

by R. R. LINDE and C. WEISSMAN

System Development Corporation
Santa Monica, California

and
C. E. FOX

King Resources Company
Los Angeles, California

INTRODUCTION

In the past decade, many computer systems intended
for operational use by large military and govern-
mental organizations have been ‘“custom made” to
meet the needs of the particular operational situation
for which they were intended. In recent years, how-
ever, there has been a growing realization that this
design approach is not the best method for long term
system development. Rather, the development of
general purpose systems has been promoted that
provide a broad, general base on which to configure
new systems. The concepts of time-sharing and gen-
eral-purpose data management have been under de-
velopment for several years, particularly in university
or research settings.!'*? These methods of computer
usage have been tested, evaluated, and refined to
the point where today they are ready to be exploited
by a broad user community.

Work on the Advanced Development Prototype
(ADP) contract was begun in January 1967 for the
 purpose of demonstrating—in an operational envi-
ronment—the potential of automatic information-
handling made possible by recent advances in com-
puter technology, particularly advances in time-
sharing executives and general-purpose data manage-
ment techniques. The result of this work is a large-
scale, multi-purpose system known as ADEPT, which

operates on IBM system 360 computers. *

The entire ADEPT system is now being used at
four field installations in the Washington, D. C. area,
as well as at SDC in Santa Monica. The system was
installed at the National Military Command System
Support Center in May 1968, at the Air Force Com-
mand Post in August 1968, and at two other govern-
ment agenecies in January 1969. These four field sites
collectively run ADEPT from 80 to 100 hours per
week, providing a total of some 2000 terminal hours
of time-sharing service monthly to their users.

The ADEPT system consists of three major com-
ponents: - a time-sharing executive; a data manage-
ment system adapted from SDC’s Time-Shared Data
Management System (TDMS) described by Bleier,*
and a programmer’s package. This paper deals ex-
clusively with the ADEPT Time-Sharing Executive,
and particularly with the more novel aspects of its
architecture and construction. Before examining these
aspects it will be instructive if we review the basic
design and hardware configuration of the system.

A general purpose operating system

The ADEPT executive is a general-purpose time-

* Development of ADEPT was supported in part by the Ad-
vanced Research Projects Agency of the Department of Defense.

39

40 Fall Joint Computer Conference, 1969

sharing system. The system operates on a 360 Model
50 with approximately 260,000 bytes of core memory,
4 million bytes of drum memory, and over 250 million
bytes of dise memory, shown graphically in Figure
1 and schematically in the appendix. With this machine
configuration, ADEPT is designed to provide respon-
sive on-line interactive service, as well as background
service to approximately 10 concurrent user jobs. It
handles a wide variety of different, independent ap-
plication programs, and supports the use of large
random-access data files. The design—basically a
swapping system—provides for flexibility and expan-
sion of system functions, and growth to more powerful
models in the 360 family.

ADEPT functions both as a batch processor (where-
by jobs are accumulated and fed to the CPU for opera-
tion one by one) and as an interactive, on-line system
(in which the user controls his job directly in real
time simply by typing console requests).

Viewed as a bateh system, ADEPT allows jobs to
be submitted to console operators or submitted from
consoles via remote batch commands (remote job
entry). In either case, jobs are “stacked” for execution
by ADEPT in a first-in/first-out order. The stack is
serviced by ADEPT as a background task, subject
to the priorities of the installation and the demands
of “foreground’ interactive users. Viewed as an inter-
active system, ADEPT allows the user to work with
a typewriter, allowing computer-user dialog in real
time. Via ADEPT console commands, the user iden-
tifies himself, his programs, and his data files, and
selectively controls the sequence and extent of opera-
tion of his job in an ad lib manner. A prime advantage
of the interactive use of ADEPT is that the system
provides an extendable library of service programs
that permit the user to edit data files, compile or
assemble programs, debug and: eliminate program
errors, and generally manage large data bases in a
responsive on-line manner.

System architecture

The architecture of the ADEPT executive is that
of the ‘“‘kernel and the shell”. The “kernel,”’ referred
to as the Basic Executive (BASEX), handles the
major problems of allocating and scheduling hard-
ware resources. It is small enough to be permanently
resident in low core memory, permitting rapid response
to urgent tasks, e.g., interrupt eontrol, memory al-
location, and input/output traffic. The “shell,” re-
ferred to as the Extended Executive (EXEX), provides
the interface between the user’s application program
and the “kernel”’. It contains those non-urgent, large-

/ CORE (.26M BYTES)

/

2303 DRUM
(3.9M BYTES)

2311 DISC PACKS
(7.25M BYTES PER PACK)

2314 DISC STORAGE
(207M BYTES)

2302 DISC STORAGE
(226M BYTES)

Figure 1—Relative capacity of various ADEPT direct-access
storage media available in less than 0.2 seconds. The initial
system that operates et SDC utilizes core, 2303 drum, 2311 and
2314 disc packs, and 2302 dise storage. The NMCSSC system
utilizes 2314 dise storage in lieu of 2311 or 2302 discs. The archi-
tecture of the ADEPT executive is such that it permits any
combinationof the ebove types of disc storagein varying amounts

task extensions of the basic “kernel” processes.that
are user-oriented rather than hardware-oriented;
they may, therefore, be scheduled and swapped.

The version of the ADEPT time-sharing system
thus far developed has multiple levels of control
beyond the two-level ‘kernel-shell” structure—i.e.,
it can be thought of figuratively as an “onion skin”.
Figure 2 shows these relationships graphically.

Beyond EXEX, “object systems” may exist as
subsystems of ADEPT (developed by the user com-
munity without modification to EXEX or BASEX),
thus further distributing and controlling the system
resources for the object programs that form still
another level of the system. The design ideas embodied
in ADEPT parallel those of Dijkstra’ Corbato,?
and Lampson,” but differ in techniques of implemen-
tation.

The ADEPT Basic Executive operates in the lower
quarter of memory, thereby providing three quarters
of memory for user programs. With the current H
core configuration, ADEPT preempts the first 65,000
bytes of core memory, the bulk of which is dedicated
to BASEX ; EXEX must then operate in user raemory

The ADEPT-50 Time-Sharing System 41

—— —

- ~
~~ OTHER FUNCTIONS ™\

Figure 2—Multiple levels of control in ADEPT

in a fashion similar to user programs. ADEPT is
designed to operate itself and user programs as a
collection of 4096-byte pages. BASEX is identified
as certain pages that are fixed in main storage and
that cannot be overlayed or swapped. EXEX and
other programs are identified as sets of pages that
move dynamically between main storage and swap
storage (i.e., drum). It is necessary to maintain con-
siderably more descriptive information about these
swappable programs than about BASEX. This
descriptive information is carried in a set of system
tables that, at any point in time, describe the current
state of the system and each program.

ADEPT views the user as a job consisting of some
number of programs (up to four for the 360/50H
configuration) that were loaded at the user’s reauest.
These programs may be independent of one another
or, with proper design, different segments of a larger
task. Implicitly, EXEX is considered to be one of
these programs. To simplify system scheduling, com-
munication, and control, only one program in the
user’s set may be active (eligible to run) at a time.
When ADEPT scheduling determines that a job may
be serviced, the current job in core is saved on swap
storage, and the active program of the next job is
brought into core from swap storage and executed
for a maximum period of time, called a quantum. The
process then repeats for other jobs. Figures 3 and 4
schematically depiet these relationships.

I
[
|

PRO!
3

1
0
2

PRO
1

2

3
@

o

~
~

Figure 3—Simple commutation of users programs. This figure
illustrates the relationship between user’s programs’ EXEX

and BASEX. Each spoke represents a user’s job, with his EXEX

providing the interface between BASEX and the hardware

resources. The maximum number of interactive job the
IBM 360/50H configuration is ten.

Figure 4—ADEPT’s basic sequence of operation. This figure
shows the basic operating system cycle: idle loop is interrupted
by an external interrupt (an activity request); a program is
scheduled, swapped into core from the drum, and executed
escape from the execution phase occurs when quantum termina-
tion condition (e.g., time expiration, service or I/O ecall, error
condition) is met; the program is then swapped out and control
is returned to the idle loop (if no other programs are eligible to
be scheduled).

Basic executive (BASEX)

Table I lists the BASEX components and their
general functions as of the eighth and latest executive
release. These basic system components form an
integrated, non-reentrant, non-relocatable, perma-

42 Fall Joint Computer Conference, 1969

nently-resident, core memory package 16 pages long
(each page is 4096 bytes). They are invoked by hard-
ware interrupts in response to service requests by
users of terminals and their programs. Note the
"division of input/output control into cataloged (SPAM
and IOS), terminal (TWRI), and drum (BXEC)
activities to permit local optimization for improved
system performance.

TABLE I-—Basic executive components

Component Function

ALLOC Drum and core memory allocation.

BXBUG Debugger for exécutive programs.

BXEC Basic sequence and swap control.

BXECSVC SVC handlers for WAIT, TIME,
DEVICE, STOP AND DISMISS
calls.

EXEX Linkage routinesfor EXEX (BASEX/
EXEX interfaces); also services com-
mands DIALOFF, DIALON.

INTRUP First-level interrupt control.

108 Channel-program level input/output
supervisory control.

RECORD Records SVC, interrupt activity in
BASEX.

SKED Scheduler.

SPAM Input/output access methods to cata-
loged storage.

TWRI Terminal input/output control.

System Tables Resident system data areas for com-

munication table (COMTAB), logged-
in user’s table (JOB), loaded programs
table (PQU), drum and core status
tables (DSTAT, CSTAT), and a
variety of other tables.

Extended executive (EXEX)

Unlike the tight, closed package of integrated
BASEX components, EXEX is a loose, open-ended
collection of semiautonomous programs. Table II
lists this collection of programs. EXEX is treated
by BASEX as a user program, with certain privileges,
and each user is given his own “copy”’ of the EXEX.
It is transparent to the user that EXEX is reentrant

TABLE II—Extended executive components

Component

AUDIT

BMON

CAT

DTD

DBUG

LOGIN
SERVIS

RUN

XXTOO

SYSDEF

SYSLOG

TEST

SYSDATA

Function

Maintains a real-time recording of all
security transactions as an account-
ability log.

Batch monitor for control of back-
ground job execution.

Cataloger for file storage access con-
trol; also services FORGET command.

Transfers recording information from
drum to dise.

Debugger for non-executive (user)
programs,

User authentication and job creation.

Library of service commands that are
reentrant, interruptible and scheduled :
APPEND, CHANGE, CREATE,
CYLS, DELETE, DRIVES, INIT,
LISTF, LISTU, LOAD, LOADD,
LOAD and GO, OVERLAY, RE-
PLACE, RESTORE, RESTORED,

SAVE, SEARCH, VARYOFF,

VARYON.

Remote bateh job submission control

servicing commands RUN and
' CANCEL.

Library of small, fast, executive
service commands: CPU, BGO,
BQUIT, BSTOP, DIAL, DRUMS,
GO, LOGOUT, QUIT, RESTART,
SKED, SKEDOFF, STATUS,
STOP, TIME; USERS.

Defines input/output hardware con-
figuration at time of system start up.

Defines authorized user/terminal se-
curity profiles at time of system
start up.

Initializes system tables at time of
system start up.

Non-resident, shared, system data
table for dial messages and other
common data, e.g., lists of all logged-in
users; other non-resident, job-specific
tables also exist, e.g., job environment
page, push-down list data page.

The ADEPT-50 Time-Sharing System 43

and is being shared with other users, except for its
data space. Each job has its own ‘“machine state”
tables saved in its unique set of environment pages.
This structure permits flexible modification and orderly
gystem expansion in a modular fashion. EXEX is
always scheduled in the same way as other user pro-
grams,

Though EXEX components are, in large part,
non-self-modifying reentrant routines and thus, could
at small cost, be relocatable; neither user programs
nor EXEX components are relocated between swaps.
The lack of any mapping hardware on the IBM 360/50
and the design goal and knowledge that most user
programs would be of maximum size made unnecessary
a software provision to relocate programs dynamically.
User programs may be relocated once at load time,
however.

Communication and control techniques used in ADEPT

Communicationis the generic term used to cover those
services that permit two (or more) programs to inter-
communicate, be they system program, user program,
or both. From this communication vantage point we
shall examine the connective mechanism used between
the Basic and Extended Executives; the techniques
that allow components within the EXEX to make
use of one another; and the system design that permits
an object program to control its own behavior as well
as to communicate with the system and with other
object programs.

The ADEPT job or process

Before we discuss the system mechanics, let us
examine how the system treats each user logically.
A user in the system is assigned a job number. Each
job in the system may be viewed as a separate process,
and each process is, by definition, independent of all
other processes running on the machine. A process—
or job— is not a program. It is the logical entity for
the execution of a program on the physical processor,
and it may contain as many as four separate programs.
A program consists of the set of machine instructions
swapped into the processor for execution, and the
Extended Executive is one of these programs.

The ADEPT executive requires a large number of
system tables to permit Basic and Extended Execu-
tive communication. Conceptually, the use of descrip-
tive tables defining the condition of a user’s process
is analogous to the state vector (or state word) dis-
cussed by Lampson and Saltzer.8® That is, the col-
lection of information contained by these tables is

sufficient to define an inactive user’s process state
at any given moment. By resetting the central proc-
essor from the state veetor, a user’s job proceeds
from an inactive to an active state as if no interrup-
tion had occurred. The state vector contains such
items as the program counter, the processor’s general
registers, the core and drum map of all the programs
in the job, and the peripheral storage file data. All
of the collective data for each program or task in the
process are contained in the state vector.

Basic and extended executive communication

Each ADEPT user (ie., any person who initiates
some activity within the system by typing in com-
mands) is given a job number and assigned an entry
in the JOB table. The JOB table contains the system’s
top-level bookkeeping on user activity. It contains
the user’s identification, his location, his security
clearance, and a pointer to his program queue. Each
user is assigned one entry, or JOB, in the table. As-
sociated with each JOB are the one or more programs
that the user is running.

Top-level bookkeeping on programs is contained
in the Program Queue (PQU) table. Each PQU entry
contains a program identification and some (but not
all) information that describes that program in terms
of its space requirements, its current activity, its
scheduling conditions, and its relationship to other
programs in the PQU that belong to the same JOB.
The detailed descriptive information and the status
of each JOB and its programs are carried in the swap-
pable environment space.

The environment pages (there can be as many as
four) comprise a number of separate tables that con-
tain such information as the contents of the general
registers, the swap storage page numbers where the
balance of the program resides, the program map,
and lists of all active data files. A single environment
page (or pages) is shared by all programs that belong
to the same JOB (user). The system design allows for
environment page overflow at which time additional
pages are assigned dynamically. The environment
pages, PQU table, JOB table, and data pages com-
prise the state vector of the user’s job.

To permit storage of “global” system variables,
and to allow system components to reference system
data that may be periodically relocated, there exists
a system communication table, which resides in low
core so that it can be referenced without loading a
base register.

The IBM 360 supervisor call (SVC) is used exclu-

44 Fall Joint Computer Conference, 1969

sively by EXEX components and object programs to
request BASEX services. Though additional overhead
is incurred in the handling of the attendant interrupt,
the centralization of context switching provided is
of considerable value in. system design, fabrication,
and checkout.

Extended executive communication

An EXEX may make use of another EXEX func-
tion by use of the SVC call mechanism. To support
the recursive EXEX, an additional SVC processing
routine is required to manage the different recursive
contexts. This routine, called the SVC Dispatcher,
processes calls from user and EXEX functions alike,
manages a swappable data page, and switches to an
interface linkage routine. The data page contains
a system communication stack that consists of a
program’s general registers and the Program Status
Word at the time of the SVC. This technique is
analogous to the push-down logic of recursive pro-
cedure calls found in ALGOIL or LISP language
systems. The stack provides a convenient means of
passing parameters between routines in the EXEX.
Since each job has its own unique data page and en-
vironment page, EXEX is both recursive and reentrant.

The environment status table (ESTAT) contains
the swap and core location for each component in
the EXEX and for each program in the job. It resides
in the job environment page. When an EXEX service
is requested, only that particular EXEX program is
brought in from swap storage, rather than the full
service library. The interface linkage routine provides
this management function; it lies as a link between
the SVC Dispatcher and the particular EXEX
function. The interface routine picks up necessary
work pages for the EXIX component involved and
branches to that component after it is brought into
core. The interface routine maintains a separate push-
down stack of return addresses providing the means
for the EXEX component to properly exit and return
control to its interface routine and then to the system.

The EXEX component called may make additional
EXEX SVC calls before exiting. To provide correct
work page allocation during recursive calls, the inter-
face routine also saves the work page core and drum
page addresses in the push-down stack. Upon com-
pletion of a call, the EXEX component returns to
its interface routine; the interface routine releases
all allocated work pages to the system and branches
t0 a common unwind procedure.

The unwind procedure, like the SVC Dispatcher,
is simply a switching mechanism. It determines, via

the stack, whether to return to a still higher level
EXEX funetion, or to turn the EXEX off and exit
to the Basic Sequence. This recursive/reentrant con-
trol is the most complex portion of ADEPT and is
the “glue” that binds BASEX and EXEX together.
Figure 5 illustrates the recursive process.

Object program communication

One of the more stringent services required of an
operating system is the rapid interchange of large
quantities of data between object programs. The
interchange of even simple arrays, matrices, and tables
via stack parameters or a common file suffers from the
inadequacy of limited eapacity or extensiveI/O time.
Many operating systems ignore this requirement,
thereby restricting the general-purpose applications.
Yet there are solutions to this problem, and one suc-
cessful technique employed in the ADEPT system is
that of “shared memory”’. Shared memory is achieved
by using the basic mechanism for managing reentrancy,
namely the program environment page map. Through
the ADEPT SHARE Page call, an object program
can request that designated pages of another program

DATA PAGE PUSH
DOWN STACK.

OBJECT
PROGRAM ISSUES
SVC CALL

A

BASEX SVC SvC NUMBER OF ENTRIES
INTERRUPT DISPATCHER
PROCESSES STACKS exix UNWIND
CALL: TURNS EXEX an DECREMENTS
EXEX ON. COMPONENT'S ‘A" COMPONENT STACK
CINERAL REGISTERS

REGISTERS

EXEX IS EXEX
SCHEDULED "B" COMPONENT
REGISTERS
DISPATCHER
ENTRY POINT

SVC DISPATCHER
SWIICHESTO | CATALOG
INTERFACE INTERFACE
ROUTINES

LOADER
INTERFACE
INTERFACE
ROUTINE
(*)

EXEX
COMPONENT ——
OPERATES

PA—

MAY ISSUE Al
EXEX SVC CALL
BEFORE RETURNING
TO INTERFACE

INTERFACE
ROUTINE

MAP
COMPONENT
INTO CORE-
BRANCH 1O
COMPONENT

RETURN
TO ANOTHER

UNWIND ROUTINE
UNWINDS DATA

PAGE PARAMETER
COMPONENT?,

TURN EXEX

OFF, RETURN
TO BASIC o
SEQUENCER

Figure 5—Block diagram of EXEX behavior and
control

The ADEPT-50 Time-Sharing System 45

in the job be added to its map. If core page numbers
are passed as parameters in various service calls, whole
pages of data may be passed between programs, EXEX
and many object programs operating under this system
use this method for inter-program communication.

ADEPT operating on the IBM 360/50H restricts
its user programs to 46 active core pages. However,
by utilizing the GETPAGE call, an object program
may acquire up to 128 drum pages and may subse-
quently activate and deactivate various page sets
by utilizing another service call, ACTDEACT (acti-
vate/ deactivate). This scheme permits bulk data from
disc storage to be placed on drum and operated upon
at “swap”’ speeds. Thus skilled system users can
achieve efficient use of time and memory by managing
their own “paging’”’. We consider this the best alterna-
tive considering the questionable state of other, auto-
matic paging algorithms. 1011213 Most EXEX com-
ponents use these calls for just such purposes. For
example, the interface routines mentioned above use
activate calls to ““turn on” called components of the
EXEX.

The Allocator component of ADEPT manages the
page map for each program, This software map re-
flects the correspondence between drum and core
pages, established initially by the SERVIS (service)
component at load time. The Allocator’s function is
to inventory available core and drum pages by main-
taining two resident system tables: one for core, the
other for drum. Whenever drum pages are released
or obtained, the Allocator updates the page map in
the job’s environment page. The Allocator processes
the SHARE (page), GETPAGE, FREEPAGE, and
ACTDEACT calls from EXEX and object programs.
SERVIS allows a program at run time to add data
pages or to overlay program segments from disc or

tape. In so doing, SERVIS makes use of the various-

Allocator calls.

Simulating console commands

An important attribute of ADEPT time-sharing
is that nearly all the functions and services that can

be initiated at the user’s console can also be called.

forth within a user’s program. A program designer
can, for example, build a system of programs, which
can operate in batch mode under the control of a pro-
gram by issuing internal commands in much the same
manner as the user sitting at the console. With this
approach, the ADEPT batch monitor controls back-
ground tasks by simulating user terminal requests.
Batch requests can be enqueued by users from any

console and then processed in turn by this supervisor
function.

Armed interrupts and rescue function

The basic design of ADEPT conveniently provides
for processing object program ‘‘armed” interrupt
calls. This means that an object program is able to
conditionally start (wakeup) and stop (sleep) the
execution of its own programs, and others as well.
The conditions for employing wakeup calls include
too much elapsed time, or the occurrence of unpre-
dictable but anticipated events, e g., errors and other
program calls. In “arming’” these ‘‘software-inter-
rupt” conditions by object program calls, the program
entry point(s) for the various conditions are specified.
When such conditions oceur, the operating system
transfers to the specified entry point and gives the
appropriate condition code. (Note that if we takethis
call one step further, and permit one object program
to arm the software and hardware interrupts of another
object program, we have the basic control mechanism
necessary to permit the operation of “‘object systems.
necessary to permit the operation of “object systems,”
i.e., subexecutives—another level in the‘‘onion skin”
of ADEPT control.)

User programs interface withthe ADEPT system
primarily via the supervisor call (SVC) instruction;
a secondary interface is provided via the program
check interrupt that protects the program and system
after various error conditions. The executive design
allows user programs to trap all such interfaces with
the system via its rescue arming mechanism. This
means that one program can trap and get first-level
control of all occurrences of SVC’s and program checks
within a single job. This mechanism also means, then,
that the responsibility and meaning for these inter-
faces can be redefined at the user program level.

As of this writing, this mechanism is being employed
to construct object systems for an improved batch
monitor, an interface for the proposed ARPA Net-
work, and to experiment with automatic translators
for compatibility with other operating systems. Other
uses include improvements in program recovery in
a variety of user tools, e.g., compiler diagnostics.

Resource allocation, access, and management

ADEPT system design, of course, includes a com-
plete set of resource controls that monitor secondary
storage devices.

46 Fall Joint Computer Conference, 1969

The cataloger

The Cataloger, an EXEX component, is functionally
analogous to the core/drum Allocator, but is used
for devices accessible by user programs. It maintains
an inventory of all assignable storage devices, assigns
unused storage on the devices, maintains descrip-
tions of the files placed on these devices, controls
access to these files, and—upon authorized request—
deletes any file. Specifically, the Cataloger:

« Assigns storage on 2302, 2311 and 2314 discs.
+ Assigns tape drives.

+Locates an inventoried file by its name and cer-
tain qualifiers that uniquely identify the file.

Issues tape or disc pack mounting instructions
to the operator when necessary.

+ Verifies the mounting of labeled volumes.

«Passes descriptive information to the user pro-
gram opening a file.

. Allows the user of a file to request more storage
for the file.

« Denies unauthorized users access to files.

«Returns assigned storage to available storage
whenever a file is deleted.

« Maintains a table of contents 6n each disc volume.

As the largest single component of the ADEPT
Eexcutive (65,000 bytes), the Cataloger was written
in a new, experimental programming language called
MOL-360 (Machine-Oriented Language for the 360).'s
It is a ‘“higher-level machine language” developed
under an ARPA-sponsored SDC research project on
metacompilers. It resolved the 'dilemma involving
our desire for higher-level source language and our
need to achieve flexibility with machine code. The
Cataloger design and checkout, enhanced by the use
of MOL-360, showed simultaneously the wvalidity
of MOL compilers for difficult machine-dependent
programming.

The SPAM component

SPAM is a BASEX component that permits sym-
bolie, user-oriented I/O. It can be viewed as a special-
purpose compiler that compiles symbolicuser program
I/0 calls into 360 channel programs, and delivers them
to the Input/Output Supervisor (I0S) for execution
via the EXCP (execute channel program) call. The

results of EXCP for the call are “interpreted’’ by
SPAM and returned to the user program as status in-
formation. As such, SPAM represents a more symbolic
I/0 capability than the EXCP level. It provides a
relatively simple method for executing the operations
of reading, writing, altering, searching for, and po-
sitioning records within ADEPT cataloged and con-
trolled disc-based and tape-based file structures.

Resource management

As of this writing, the computer operator has a set
of commands at his disposal that allow him to control
the system resources. Various privileged on-line com-
mands enable him to monitor the terminal activities
of system users and to control assignment and availa-
bility of storage devices. However, there is an in-
creasing need for a “manager” to be given more
latitude in dynamically controlling the system re-
sources and observing the status of system users,
particularly because ADEPT was designed to handle
sensitive information in classified government and
military facilities. To meet these objectives, a design
effort is under way that gives the computer operator
system-manager status, with the ability to observe
and control the actions of system users. The result
will be a program that encompasses some of the man-
agement techniques reported by Linde and Chaney!
tailored to present needs.

Swapping and scheduling user programs ‘

Most of the programs that run under ADEPT
occupy all of the core memory that is not used by
the resident Basic Executive (46 pages on the 360/
50H). If the set of needed pages could be reduced
considerable reduction in swap overhead could be
expected. One way to achieve this is to mark for swap-
out only those pages that were changed during pro-
gram execution. The hardware needed to automatically
mark changed pages is unavailable for the 360/50;
however, through use of the store-protect feature on
the Model 50, ADEPT software can simulate the ef-
fect and produce noteworthy savings in swap time.

Page marking

Whenever a user program is swapped into core, its
pages are set in a read-only condition. As the program
executes, it periodically attempts to store data (write)
in its write-protected pages. The resulting interrupt
is fielded by the system. After satisfying itself that
the store is legal for the program, the executive marks
the target page as “written,” turns off write-protect

The ADEPT-50 Time-Sharing System 47

for that page, and resumes the program’s execution.
The situation repeats for each additional page written.
At the completion of the program’s time slice, the
swapper has a map of all the program pages that
were changed (implied in the storage keys with no
write protection). Only the changed pages are swapped
out of core. Measurement of this scheme shows that
about 20 percent of the pages are changed; hence,
for every five pages swapped in, only one need be
swapped out, for a total swap of six pages, rather

than the full swap of ten pages (five in, five out). The

scheme makes the drum appear to be 40 percent faster.

The use of the storage protaction keys is based on
the functional status of each page rather than on
some user identity. User programs always run with
a program status word key of one, and the bitsin
the storage key associated with the programs start
out at zero. After a page has been initially changed,
its key is set to one also. The other bits in the key are
used toindicate: first, a page is transient, not yet
completely moved to or from swap storage; second,
a page is unavailable, i.e., it belongs to someone else;
third, a page is locked and cannot be swapped or
changed; and finally, a page is fetch-protected because
it may contain sensitive information.

Scheduling algorithm

The scheduling algorithm provides for three levels
of scheduling. Jobs that are in a ‘“terminal I/0 com-
plete” state get first preference in the schedule. Jobs
in the second level, or background queue, are run if
there are no level-one jobs to run. A job is placed in
level two when the two-second quantum clock alarm
terminates its operation two consecutive times. Com-
pute and I/O-bound programs are treated alike. A
level-two job—when allowed to run—is given quantum
interval equal to the basic quantum time multiplied
by the scheduling level (ie., 2 sec X 2 = 4 sec).
However, a level-two background job may be pre-
empted after two seconds for terminal I/0. Any opera-
tion a level-two job makes that terminates its quan-
tum prematurely will return the job to a level-one
status. The batch monitor job is run when the first
two queues are empty. User programs may be written
to overlap execution and I/O activity. OQur choice of
scheduling parameters for quantum size, and num-
ber of service levels was selected empirically and as a
result of prior experience.?

A command SKED, which is limited to the opera~
tor’s terminal, has the effect of forcing top priority
for a job (the job stays at level one all the time). Only

one job may run in this privileged scheduling state
at a time.

Pervasive security controls

Integrated throughout the ADEPT executive are
software controls for safeguarding security-sensitive
information. The conceptual framework is based
upon. four ‘‘security objects”: wuser, terminal, file,
and job. Each of these security objects is formally
identified in the system and is also described by a
security profile triplet: Authority (e.g., TOP SE-
CRET, SECRET), Need-to-Know Franchise, and
Special Category (e.g., EYES ONLY, CRYPTO).
At system initialization time, user and terminal
security profiles are established by security officers
via the system component SYSLOG. SYSLOG also
permits the association of up to 64 passwords with
each user. At LOGIN time, a user identifies himself
by his unique name, up to 12 characters, and enters
his private password to authenticate his identity. The
LOGIN component of ADEPT validates the user
and dynamically derives the security profile for the
user’s job as a complex function of the user and ter-
minal security profiles. The job security profile is
used subsequently as a set of “keys,” used when access
is made to ADEPT files. The file security profile is
the “lock’ and is under control of the file subsystem.

File access Need-to-Know is permitted for Private,
Semi-Private, and Public use. With the CREATE
command, a list of authorized users and the extent of
their access authorization (i.e., read-only, write-only,
read and write) can be established easily for Semi-
Private files. Newly created files are automatically
classified with the job’s “high water mark’ security
triplet—a cumulative security profile history of the
security of files referenced by the job. Through ju-
dicious use of the CHANGE command, these proper-
ties may be altered by the owner of the file.

Security controls are also involved in the control
of classified memory residue. Software and hardware
memory protection is extensively used. Software
memory protection is achieved by interpretive, le-
gality checking of memory bounds for I/O buffer
transfers, legality checking of device addresses for
unauthorized hardware access, and checks of other
user program attempts to seduce the operating system
into violating security controls.

The hardware protection keys are used to fetch-
protect all address space outside the user program and
data area. Also, newly allocated space to user programs
is zeéroed out to avoid classified memory residue.

The ADEPT-50 Time-Sharing System 48

for that page, and resumes the program’s execution.
The situation repeats for each additional page written.
At the completion of the program’s time slice, the
swapper has a map of all the program pages that
were changed (implied in the storage keys with no
write protection). Only the changed pages are swapped
out of core. Measurement of this scheme shows that
about 20 percent of the pages are changed; hence,
for every five pages swapped in, ionly one need be
swapped out, for a total swap of six pages, rather
than the full swap of ten pages (five in, five out). The
scheme makes the drum appear to be 40 percent faster.

The use of the storage protection keys is based on
the functional status of each page rather than on
some user identity. User programs always run with
a program status word key of one, and the bitsin
the storage key associated with the programs start
out at zero. After a page has been initially changed,
its key is set to one also. The other bits in the key are
used to indicate: first, a page is transient, not yet
completely moved to or from swap storage; second,
a page is unavallable, ie., it belongs to someone else;
third, a page is locked and cannot be swapped or
changed; and finally, a page is fetch-protected because
it may contain sensitive information.

Scheduling algorithm

The scheduling algorithm provides for three levels
of scheduling. Jobs that are in a ‘“terminal I/0 com-
plete’” state get first preference in the schedule. Jobs
in the second level, or background queue, are run if
there are no level-one jobs to run. A job is placed in
level two when the two-second quantum clock alarm
terminates its operation two consecutive times. Com-
pute and I/O-bound programs are treated alike. A
level-two job—when allowed to run—is given quantum
interval equal to the basic quantum time multiplied
by the scheduling level (i.e., 2 sec X 2 = 4 sec).
However, a level-two background, job may be pre-
empted after two seconds for terminal I/0. Any opera-
tion a level-two job makes that terminates its quan-
tum prematurely will return the job to a level-one
status. The batch monitor job is run when the first
two queues are empty. User programs may be written
to overlap execution and I/O activity. Our choice of
scheduling parameters for quantum size, and num-
ber of service levels was selected emplrlcally and as a
result of prior experience.v

A command SKED, which is hmlted to the opera-
tor’s terminal, has the effect of fqrcmg top priority
for a job (the job stays at level one all the time). Only

one job may run in this privileged scheduling state
at a time.

Pervasive security controls

Integrated throughout the ADEPT executive are
software controls for safeguarding security-sensitive
information, The conceptual framework is based
upon four “security objects”: user, terminal, file,
and job. Bach of these security objects is formally
identified in the system and is also described by a
security profile triplet: Authority (e.g., TOP SE-
CRET, SECRET), Need-to-Know Franchise, and
Special Category (e.g., EYES ONLY, CRYPTO).
At system initialization time, user and terminal
security profiles are established by security officers
via the system component SYSLOG. SYSLOG also
permits the association of up to 64 passwords with
each user. At LOGIN time, a user identifies himself
by his unique name, up to 12 characters, and enters
his private password to authenticate his identity. The
LOGIN component of ADEPT wvalidates the user
and dynamically derives the security profile for the
user’s job as a complex function of the user and ter-
minal security profiles. The job security profile is
used subsequently as a set of ‘‘keys,” used when access
is made to ADEPT files. The file security profile is
the “lock’ and is under control of the file subsystem.

File access Need-to-Know is permitted for Private,
Semi-Private, and Public use. With the CREATE
command, a list of authorized users and the extent of
their access authorization (i.e., read-only, write-only,
read and write) can be established easily for Semi-
Private files. Newly created files are automatically
classified with the job’s “high water mark’ security
triplet—a cumulative security profile history of the
security of files referenced by the job. Through ju-

dicious use of the CHANGE command, these proper-

ties may be altered by the owner of the file.

Security cdntrols are also involved in the control
of classified memory residue. Software and hardware
memory protection is extensively used. Software
memory protection is achieved by interpretive, le-
gality checking of memory bounds for I/O buffer
transfers, legality checking of device addresses for
unauthorized hardware access, and checks of other
user. program attempts to seduce the operating system
into violating security controls.

The hardware protection keys are used to fetch-
protect all address space outside the user program and
data area. Also, newly allocated space to user programs
is zeroed out to avoid classified memory residue.

The ADEPT-50 Time-Sharing System 49

Typically, the complete system reaches “on the air”
status in less than a minute.

System instrumentation

Many of the parameters built into the scheduling
and swapping of early ADEPT versions were based
upon empirical knowledge. The latest versions of
the Basic and Extended Executives include routines
to record system performance, reliability, and security
locks.

Built into the BASEX is a routine to measure the
overall and the detailed system performance.? Such
factors as the number of users, file usage, hardware
and software errors, and page transaction response
time are recorded on unused portions of the 2303
drum. These measurements provide a better under-
standing of the system under a variety of inputs and
give the designers insight into how the hardware and
software components of the system affect the per-
formance of the human user.

An AUDIT program was made part of the EXEX
to record the security interaction of terminals, users,
and files, AUDIT records EXEX activity in the areas
of LOGIN, LOGOUT, and File Manipulation. This
routine strengthens the security safeguards of the
executive. Specific items that are recorded involve:
type of event, user identification, user account num-
ber, job security, device identification, time of event,
file identification, file security and event success. In
addition, this routine provides accounting informa-
tion and is used as a means of debugging the security
locks of new system releases. '

In addition to the BASEX recording function,
several object programs have been written that simu-
late various modes of user activity and provide con-
trolled job distributions. These programs, called
“benchmarks,” run under controlled conditions and
enhance the means of improving system performance
and throughput, as described elsewhere by Karush.2
The programs are designed to gather performance
measures on the major routines of the executive and
have been of considerable help in system ‘“tuning,”
because they reflect the effect of coding and design
changes to various system routines. The routines in
the executive that are of primary concern are the
swapper, the scheduer, the terminal read/write pack-
age, and the interrupt handling processes. Attempts
are being made to design a set of benchmarks that
represent a typical job mix. However, we are primarily
interested in measuring the performance of our system
against various modifications of itself and in measuring
its behavior with respect to different job mixes.

SUMMARY

The ADEPT executive is a second-generation, general-
purpose, time-sharing system designed for IBM 360
computers. Unlike the monolithic systems of the past,!-2
it is structured in modular fashion, employing distrib-
uted executive design techniques that have permitted
evolutionary development. This design has not only
produced a flexible executive system but has given the
user the same facilities used by the executive for
controlling the behavior of his programs. ADEPT’s
security aspects are unique in the industry, and the
testing and fabrication methods employ a number
of novel approaches to system checkout that con-
tribute to its operational reliability.

It is important to note that this system deals par-
ticularly well with size limitation problems of very
large files and very large programs. The provisions
made for multiple programs per job, active/inactive
page status for programs larger than core size, page
sharing between programs, common file access across
programs within jobs, and the commitment of con-
siderable space to active file environment tables (up
to four pages worth) contribute to this success. Never-
theless, all these capabilities are designed to handle
the smaller entities as well. We feel ADEPT-50 is
a significant contribution to the technology of general-
purpose time-sharing.

ACKNOWLEDGMENTS

We would like to express our appreciation for the
dedicated efforts of some very adept individuals who
participated in the design and building of this time-
sharing system. Our thanks go to Mr. Salvador Aranda,
Mr. Peter Baker, Mrs. Martha Bleier, Mr. Arnold
Karush, Mrs. Patricia Kribs, Mr. Reginald Martin,
Mr. Alexander Tschekaloff and all the others who
have followed their lead.

REFERENCES

1 P CRISMAN editor
The compatible time-sharing system: A programmer's guide
MIT Press Cambridge Mass 1965
2 J SCHWARTZ et al
A general-purpose time-sharing system
Proc SJCC Vol 25 1964 397-411 Spartan Books Baltimore
3 E W FRANKS)
A, dota management system for time-shared file-processing
using a cross-index file and self-defining entries
AFIPS Proc Vol 28 1966 79-86 Also available as SDC
document SP-2248 21 April 1966

50 Fall Joint Computer Conference, 1969

4 R E BLEIER

Treating hierarchical data structures in the SDC time-shared

data management system (T DMS)

Proc 22nd Nat ACM Conf Thompson Book Co 1967 41-49

5 E W DIJKSTRA
The structure of T.H.E. multi-programming system
C A CM Vol 11 No 5 May 1968
6 F J CORBATO V A VYSSOTSKY
Introduction and overview of the multics system
Proc FJCC Nov 30 1965 Las Vegas Nevada
7 B W LAMPSON
Time-sharing system reference manual
Working Doc Univ of Calif Doc No:30.1030
Sept 1965 Dec 1965
8 B W LAMPSON
A scheduling philosophy for mulli-processing systems
C A CM Vol 11 No 5 May 1968
9 J H SALTZER
Traffic control in a multiplexed computer system
MAC-TR-30 thesis MIT Press July 1966
G H FINE et al
Dynamic program behavior under paging
Proc ACM 1966 223-228 Thompson Book Co Wash D C
E G COFFMAN L C VARIAN
Further experimental data on the behavior of programs in a
paging environment
C A CM Vol 11 No 7 July 1968 471-474
12 L A BELADY

10

11

A study of replacement algorithms for a virtual storage computer

IBM Systems Journal Vol 5 No 2 1966
13 R W O’NEIL
Experience using a time-shared muln—programmg system

APPENDIX A:Advanced development prototype sys-

tem block diagram.

N un CAIIN!’S
READ AND WRITE PROTECT

Sk e
2USEC

RPQ M29240 FETCH PROTECT

ALL TRANSFERS SEIWEEN CRU, CORE,
AND/OR SELECTOR CHANNELS ARE

282) CONTROL UNIT
1100 LPM #3615

1403 W)
PRINTER

14

20

21

O0F

15

16

17

18

19

S BYTRS IN PARALLEL, TRANSF EAS TO AND wrsT K DAy AR seT fos3 T o)
FROM MULTIPLEXOR ARE | BYTE (1T PARALLEL) :‘é’g:"“ T CARD READER/PUNCH
secton [smecron | seecron [MULTILEOR I
CHANNEL 3 | cHannE 2 | cHaRNaL 1 [RKEY w82
ADAPTER
1082-7
consoLt
[—
WAST MODE]
ONLY
A2 BYTES
PER SECOND
ACH nI-sEAL
(1 BYTE wiDE) 391 M BYTE CAPACITY

o | B JT)

7 |
7 CHANNEL
SwiteH
S 1L N—
2411 CONTIOR UNIT
FiLE $C,
NECORD OvERFLOW

BIT-SERIAL

SISISIS

190290 191/ /292 19V
DISC DRIVES
7,25 MSYTE CAPACITY EACH
w134 K VT TRANSFER RATE

28411 CONTROL UNIT 20
FILE SCAN ATTACHMWENT
AECORD OV!U LOW i

AVE ACCESS W/O
MOVING HEAD - 17 MS; .
WITH MOVING HEAD 120 M3

BAK
AVERAGE ACCESS TIME 15 MSEC
20 DISC PACKS (£1216) AVAILABLE

ANSOLUTE VECTOK AND CONTROL
ALmNuM:llC KEYBOARD 1243
8K QUFFER

anlAcm G(N!MVOI 1880
LIGHT PEN 4785

FUNCTION KEYBOARD 3455

238 K BYTES/SEC

2816

DUAL TAPE DRIVES

800 BITS /INCH

7 9-TRACK AND 1 7-TRACK
90 K BYTES-SEC TRANSFER RATE
112.5 INSEC

2.4
SWITCH

ADDITIONAL
DRIVES

2x8 ti0s0

312.5K SYTE/SEC TRANSFER RATE
0.6 M SEC AVERAGE ACCESS TIME

with dynamic address relocation hardware

Proc SJCC 1967 Vol 30 611-627 Thompson Book Co
Washington D C

L G ROBERTS

Multiple computer networks and intercomputer networks and
intercomputer communication

ACM Symposium on Operating System Principles
Oct 1-4 1967 Gatlinburg Tenn

E BOOK D C SCHORRE § J SHERMAN
Users manual for MOL-360

SCC Doc TM-3086,/003/01

R R LINDE P E CHANEY

Operational management of tmw—sharmg systems

Proc ACM 1966 149-159

P V McISSAC

Job descriptions and scheduling in the SDC Q-32 time-
sharing system

SDC Doc TM-2996 June 1966 28

C WEISSMAN

Security controls in the ADEPT-560 time-sharing system
AFIPS Proc FJCC Vol 35 1969

W A BERNSTEIN J T OWENS

Debugging in a time-sharing environment

AFIPS Proc FJCC Vol 33 1968 7-14

A D KARUSH

The computer system recording utility: application and
theory

SDC Doc SP-3303 Feb 1969

A D KARUSH

Benchmark analysis of time-sharing system

SDC Doc SP-3343 April 1969

UNIVERSAL CHAR SET #8640 REVISED 20 APRIL 1960
HNZ PRINT TRAIN #9:

&/10 LINES/INCH (RPQ) WO1990

2741 TERMINAL
WE 4WIR 4 DAPTER
2702 TRANSMISSION CONTROL UNIT 4708 INTERRU P
PG Rt SACAKCE 4000
K FOR 2741 1]
S053 Meax ¢ e kiad) lln PRINT INHINT £ 49933 o)
RPQ REV BREAK FOR 2741 P m o @t
4615 TERMINAL L4768 @3

NTROL TY4 4
CONTROL TYPE | {4) 4435 4-WIRE ADAPTERS @

n zm TERMINAL VIA DATA SET

wu TATA ey 1

23 m 11034 PMENTAGON
DA'A SET 23 TYPE VIA DATA SET
2

7912 TELEGAAPH

L| {4 TERMINAL ADAPTER TYPE i1t
7

TERMINAL CONTROL

RPQ Q 20589
TYPE {1 CR RECOGNITION

G Q2N

33
u3
et
EX INTERRUPT x:

33 —E
un
21 HALF DUMEX
_.
23

wo “& “' > penTAOON
7928 TERMINAL
CONTROL
BPANSION

MUX CASLE
ASSEMILY
snsn

Eined
DISMAY
CONTROL

7
LINE m utoue& 10 €CO
ADDRESSING €8 NOT HAVE TYPMMATIC
rio- (2) ON ONLY ONE 2741
DESTALCTIVE

2701 DATA ADAPTER UNIT

PARALLEL DATA ADAPTER

FEATURE (3500

FEATURE # 448:

EXPANDED
CAPABILITY
-

EXPANSION
FEATURE]— 1O REMOTE CONSOLES VIA DATA SETS (WHEN NEEDEO)
M35

An operational memory share supervisor

providing multi-task processing within a

single partition

byJ.E.BRAUN

Penna. -N. J. -Md. Interconnection
Philadelphia, Pa.

and

A. GARTENHATUS

Applied Programming Services, Inc
Philadelphia, Pa.

INTRODUCTION

The real-time digital process control system, of which
the Partition Share Supervisor is an operational feature,
was designed and implemented to assist in the functions
of monitoring, evaluating and controlling an inter-
connected system of electrical power utility com-
panies. The main processing unit is located at the
central control office with teleprocessing communi-
cations to remote lower level control centers.

The basic addressable unit within the main processor
is the byte (8 data bits -+ 1 parity bit), with a word
consisting of four bytes. There is a storage protect
option which is implemented through assignment of
storage and “keys’’ to contiguous 2048 byte blocks of
memory. A group of memory blocks with matching
protect keys comprise a partition or task area. This
protection feature permits non destructive read—out
across partition boundaries but will cause termination
of any task which attempts to write in another task’s
mMemory area.

The arithmetic-logic unit maintainsits current status
in a program status word which contains such infor-
mation as whether or not I/0 is currently being per-
mitted on each of the data channels, the protect key for

the instruction presently being executed, present
machine status, length of current instruction, the ad-
dress of the next ingtruction to be fetched, etc. There
are certain instructions within the instruetion set
which can only be executed when the machine is in
the ‘‘supervisor” state, i.e., when the portion of the
program status word which indicates machine status
is correctly set. These instructions are classified as
“privileged” instructions and perform such functions

‘as disabling data channel interrupts, altering storage

keys, resetting the program status word, ete.

The ability of the computer to disallow certain of
its instructions when operating in the normal problem
program state prevents inadvertent destruction of
critical storage area or catastrophic conditions being
caused by problem programs which could lead to
system shutdown.

This system utilizes the indeperident I/0 channel
concept which permits the main processor to continue
execution of program instructions while the channel
transfers data from I/0 devices into main storage by
cycle interleaving.

The multi-tasking capability of the manufacturer
supplied software support system permits priority

51

52 Fall Joint Computer Copference, 1969

scheduling of several tasks all utilizing the resources of
one processing unit. The design of the real-time control
system requires that it perform certain of its functions
in a eyclic basis. Therefore, the internal storage has been
divided into four task areas (partitions) with time de-
pendent and critical programs placed in partitions
with relatively higher priorities. The following task de-
scriptions are listed in order of task priorities:

Task 1 (core requirement) = 42K)

Task 1 is dedlcated to the manufacturer supplied
operating system (O/S) which contains supervisory
routines, data management routines priority scheduler,
ete.

Task 2 (core requirement — 72K)

Task 2 incorporates the process control family of
programs. It also includes the remote typewriter/card
reader communications programs since they use little
processing time and benefit from both the independence
of input/output channel operations and quick response
time available to the task. During power system
emergency situations, Task 2 additionally initiates
routines which, due to their critical nature, retain
system resources and dispatch emergency communi-
cations until the disturbance is relieved.

Task 3 (core requirement — 40K)

Task 3 contains special digital console message pro-
cessing routines, text output genemtors for programs
operational within Task 2, routines for processing card
inputs from the telecommunications system and rou-
tines which monitor and control inter-task communi-
cations.

Task 4 (core requirement = 6K)

Task 4 is the Partition Share Supervisor (PSS)
which causes Tasks 5 and 6 to share the remaining
available memory. The detailed description of this
task is the subject of this paper.

Task 5 (core requirement = 96K)

Task 5 consists primarily of scientific application
programs. These programs are run as required either on
special demand from real-time on-line tasks or peri-
odically with the length of the period depending on
the nature of the program.

HIGH TASK 2
MEMORY
ADDRESS

REAL TIME PROCESS CONTROL

TYPEWRITER/CARD READER
TELECOMMUNI CATIONS CONTROL

ANALOG/D1GITAL TELECOMMUNICATIONS T
CONTROL

EMERGENCY DISPATCH ROUTINES

DIGITAL CONSOLE MESSAGE PROCESSING
OUTPUT TEXT GENERATION FOR TASK 2 40K
REMOTE CARD INPUT PROCESSOR

TASK-TO-TASK COMMUNICATIONS MONITORING

TASK 3

6K

AN

TASK 4 PARTITION SHARE SUPERVISOR (PSS)

TASK 5/TASK 6 (SHARED PARTITION)
TINE DEPENDENT AND SPECIAL DEWAND
SCIENTIFIC APPLICATION PROGRAMS 98Kk
(TASK 5)
oR
OFFLINE MISCELLANEOUS USES
(TASK 8)

OPERATING SYSTEM CONSISTING OF: 420

SUPERY) SORY, DATA MANAGEMENT,
PRIORITY SCHEOULER ROUTINES, ETC.

TASK 1
(NUCLEUS)

Low
MEMORY
ADDRESS

Figure 1—Initial memory configuration with task
functional descriptions and relative locations shown

Task 6 (core requirement — 96K)

This task is the off-line* task and is dedicated for
miscellaneous uses such as compiles, assemblies, ac-
counting routines, ete.

Figure 1 is a functional diagram of the tasks just
discussed and shows their relative locations in com-
puter memory.

General discussion

Task dispatching

Task dispatching is under the control of the oper-
ating system. From a conceptual standpoint, the
operating system can be considered to be the only
main program in storage and all other tasks within
the computer as subroutines.

* The term off-line is used in this paper when referring to tasks
which do not directly operate within the real-time environment.
This use is similar to the term “background” which the reader
may have previously encountered.

An Operational Memory Share Supervisor 53

The dispatching function consists of allocating the
resources of the processor to the highest priority task
which is in the ‘“‘ready” state. When no tasks are in
the ready state, the processor is not working and is in
a walt state. When any task reaches a point where it
no longer can process until the completion of some

event (such as an I/O operation), it relinquishes con-

trol of computer facilities to lower priority tasks via
the scheduler. It will regain these facilities when the
event it is awaiting is completed and there are no
higher priority tasks which are in the ready state.

Inter partition communication

The subject real-time system requires that oper-
ational tasks be able to communicate for the purpose
of exchanging information such as live data, requests
to run various subtask routines, etc. Tasks which
communicate with other tasks are equipped with inter-
task communication routines which are considered the
highest priority routines within the individual task. In
this fashion, when the task is dispatched, the internal
task priority scheme allows the communication routines
to be processed first. Furthermore, any task can be
interrupted to allow its communication routines to
operate. Thus tasks can communicate at any time
(asynchronously).

Partition sharing

The Partition Share Supervisor (PSS) is required to
be able to handle three basic functions:

1. Suspend processing of the off-line task when
required.

2. Load and process the lowest priority on-line
task (LPOL).

3. Upon completion of (2) above, be able to restore
and restart the off-line task.

There are two conditions under which PSS suspends
off-line processing. One is when the previously set
real-time clock causes an interrupt. This interrupt is
recognized as indicating the LPOL is to be recycled
for a periodic run. The other is when a communication
is received from another task indicating that one of the
routines within the LPOL task is to be executed.

Figure 1 shows the computer configuration in the
normal mode. Normal mode is considered to be when
the shared partition is occupied by off-line programs.
Note that there are four problem program partitions
(excluding the nucleus).

Figure 2 shows the configuration when the off-line
programs are ‘‘rolled out” and the LPOL programs
are operational. There are now three problem program

HIGH TASK 2
MEMORY
ADDRESS
12K
TASK 3
40K

TASK 4 PARTITION SHARE SUPERVISOR gPS§[,r’///’

TASK 5 96K
(LOW PRIORITY ON LINE TASK)

COMBINED
SINGLE
TASK
AREA
(102K)
/
TASK 1 (NUCLEUS)
42K
LOW
MEMORY
ADDRESS

Figure 2—Showing memory configuration when low
priority on line (LPOL) task is active

partitions and the area dedicated to the PSS and LPOL
tasks is one contiguous partition.

Detailed discussion

The following description details the operations in-
volved in reconfigurating the system from that of
Figure 1 to that of Figure 2 and returning to that of
Figure1.

As previously stated, the PSS task is initiated for
one of two reasons:

1. Timer interrupt indicating a need to run the
LPOL task for time dependent programs.

2. External interrupt triggered by communication
from another task indicating a need to process
a requested program.

Prior to either type of interrupt, the PSS task is
in a wait state (i.e., the task cannot be dispatched
until the completion of one of the above two events).

£4 Fall Joint Computer Conference, 1969

Upon being initiated, PSS takes the following steps:

1. Places its own task in the supervisor state in
order to allow execution of privileged instructions
required to modify system control blocks in the
nucleus, override the storage protection feature,
and disable system interrupts at critical times.

2. Allows all outstanding I/O to complete in the
off-line partition (quiescing the partition).

3. Erases the boundary between the PSS task
and off-line task.

4. Deletes reference to the now non-existent off-
line task from operating system control blocks.

5. Writes a copy of the off-line partition, which is
now an extension of the memory area of the
PSS task, on a disc file.

6. Readsthe LPOL task into the vacated area.

7. Executes the LPOL task.

At this point, we have gone from the configuration
shown in Figure 1 to that of Figure 2 and the LPOL
task is now able to process its requests. Upon com-
pletion by the LPOL task of all required processing,
the following steps are taken by PSS to return to the
off-line configuration:

8. Writes the LPOL task on a disc file.
9. Reads the off-line task into the vacated area.
10. Re-establishes task boundaries erased in 3.
11. Restores system reference to the off-line task.
12. Places the PSS task in a “‘wait state’” awaiting
an interrupt which will cause a recycle.

At this point, the off-line task is fully restored to the
system and in a ‘“ready state”. It will then be redis-
patched by the task dispatching routines on a prlorlty
basis.

System control blocks

Prior to a detailed discussion of PSS mechanics, we
will discuss relevant system control blocks utilized in
effecting partition sharing,.

Task Control Block (TCB)

There is 8 TCB associated with each task. Contained
in the TCB are various boundaries, indicators, ete.,
used in performing task control. Figure 3 shows those
fields (with references labeled as used in this paper)
which are accessed or modified by PSS.

TCB List (TCBLIST)

The TCBLIST is located in the nucleus and is a
list of TCB locations in order of task priority. There

COUMMENTS

POINTER TO TASK
MSS (BOUNDARY
BOX-SEE F16.5)

CONTAINS STORAGE
PROTECTION KEY
FOR THE TASK

/// -
L

TCBTCB

i

Figure 3—Task control block (TCB)

TCBIDF TASK 1DENTIFICATION
NUNBER

POINTEN T0 NEXT
LOWER FRIORITY
TASK TCB

TCBTCB

TCBIDF

is an entry in the list for each task in the system (see
Figure4).

Task Area Boundary Block (TABB)

There is a TABB associated with each task. The
TABB contains addresses defining the upper and lower
boundaries of the task region and also has a pointer
to the first free area label within the task. The format
of a TABB is shown in Figure 5.

Free Area Label (FAL)

There is an FAL which is an integral part of every
available free storage area in memory. An FAL is

POINTER TO TCB OF HIGHEST PRIORITY TASK

POINTER TO TCB OF NEXT HIGHEST PRIORITY TASK

L]

(9
3

AY 4

POINTER TO TCB OF LOWEST PRIORITY TASK

Figure 4—TCB list (TCBLIST)

An Operational Memory Share Supervisor 55

LABLE _COMMENT
FALPT POINTER TO FIRST FREE AREA
LABEL (FAL) WITHIN TASK
FALPT AREA. (SEE FIGURE 8)
LOADDR LOADDR THE ADDRESS ?;51¥is§0'
HTAD0R BOUNDARY OF
WIADDR THE ADDRESS OF THE HIGH

BOUNDARY OF THE TASK.
Figure 5—Task area boundary block (TABB)

effectively a label for each free storage area which
defines the size of it and contains a linkage pointer to
the next FAL. The format of an FAL is shown in
Figure 6.

Input/Output Request Element (IORE)

There. is a chain of IOREs for all outstanding or
queued I/O operation requests from any partition.
Each IORE contains information used by the system
I/0 interrupt handling routines as I/0 operations are
completed. Figure 7 shows the format of an IORE.

System Vector Table (SVT)

The SVT is resident in the nucleus and contains

essential pointers required by the operating system. -

Included is a pointer to the start of the IORE chain.
The location of the SVT is retrieved from a fixed memo-
ry location which is conditioned with the SVT address
during system initialization.

As mentioned under General Discussion, the PSS
task is required to run in supervisor state at times.
Although the state of the PSS task changes from
problem to supervisor and back throughout its exe-
cution, these changes of state will not be noted in
this discussion. It should be understood that PSS
operates in problem state at all times where it is not
required to be executing privileged instructions, modi-
fying storage in another partition or the nucleus, or
disabling I/O interrupts.

FALNXT FALNXT ‘P:OINTER TUAEE?' FAL IN THE -
ThRgs, T 13 THE LAST FAL
FALCOWT IN THE CHAIN.
FALCOUNT AMOUNT OF FREE MEWORY

AVAILABLE STARTING AT THE
BEGINNING OF THIS FAL.

Figure 6—Free area label (FAL)

= T T,
10REID ////////////// WITH A VALVE OF 1.
TI00000 ™ st

OF THE TASK WHICH INITIATED
1/0 REQUEST (SEE FIGURE 3)

Figure 7—1/0 request element (1IORE)

Quiescing a partition

Prior to rolling out the off-line partition, PSS must
be sure all I/0 is quiesced in order to prevent the I/0
supervisor routines from accessing some storage area
which is in a transitory state.

There is an IORE for all outstanding and queued
I/0 requests. Within each IORE is an identification
rumber field (IOREID—see Figure 7) which links it
with the initiating task. When that task is involved in
an I/O operation, the TCBIDF field of the TCB
(Figure 8) has a task identification number that will
match the IOREID field of some active IORE.

As I/0 interruptions occur, the I/O Interrupt Han-
dler services the interrupt and removes the appropriate
IORE from the chain and makes it inactive.

Partition quiescing is accomplished by initially dis-
abling I/O interrupts, obtaining the TCBIDF field
from the TCB of the task involved, locating the IORE
chain by using the pointer in the SVT, and scanning
the TOREs checking for IOREID fields which match
the TCBIDF field of the TCB. If none are found, there
are no IOREs for the task and it is already in a quiescent
state. If any are found, then the task has a pending
1,0 interrupt or outstanding I/O requests. If this is
the case, PSS enables interrupts allowing the I/O
Supervisor to process, if necessary, and then immediate-
ly disables them. If the I/O in question has been com-
pleted, the IORE will have been removed from the
chain during the time interrupts were enabled.

PSS restarts at the beginning of the chain and checks
again, repeating the above steps until it comes to the
end of the chain without having found any active
elements for the task. When it reaches this point, there
are no longer any IOREs associated with the task and
it is in fact quiescent.

It should be noted that since the PSS task has a
higher priority than the task to be quiesced, it does
not allow any new I/0 requests to be initiated by that
task since PSS retains the computer resources.

Erasing of a partition boundary and
task deletion :

There is control information which is received by

56 Fall Joint Computer Conference, 1969

the communications routines within the PSS task
which must be accessible to the LPOL task for both
reading and writing (such as indications which LPOL
routine to is be run, the replacement value for the
next cycle time which is calculated by the LPOL task
as a function of its current running time, entry point
addresses of routines mutually shared by the PSS and
LPOL tasks, etec.). Additiona,llyj task management is
greatly facilitated by extending the PSS task area to
include the LPOL function while controlling via the
PSS Task Control Block (TCB) rather than modifying
the off-line task TCB or creating g new one.

In order to make the shared task area a memory
extension of the PSS task, the memory areas must be
linked. This is achieved by modifying the TABB (see
Figure 5) of the PSS task so that the LOADDR field
points to the low address of the shared task. Figures
8 and 8a show the pointer relationships before and
after these TABB modifications.

The storage protection feature must now be satisfied
to make the two storage areas completely contiguous.
Since there is a mismatch in storage keys between the
PSS and shared tasks, the keys associated with each
protected block of memory within the shared task are
reset to match those of the PSS task. At this point,

L

b JRN

~ ON LINE REAL TINE A
TASK AREAS 1

PSS TASK AREA

N,
X“\ OPERAT ING
'y SYSTEM
LOADDR | 1\ LOADDR TASK
I\ AREA
H1 ADDR H1ADDR

PSSTABB OFFLINE TABB
NUCLEUS

Figure 8a—TABB pointers after modification

the two task areas have become a contiguous block of

memory assigned to the PSS task area.

A Figure 9 shows how TCBs are linked together within
~ , Y the system. Note that each entry in the TCBLIST
T OK '1'- ;\20% 25&8““ points to a TCB and each TCB points to the next

ﬁ lowest priority TCB in the chain. Figure 9a shows the
arrangement of the TCBLIST and the TCBTCB field
in the next-to-last TCB in the chain after modification

: to three partitions. This has been done by replacing

PSS TASK AREA the pointer to the last TCB in the TCBLIST with a
pointer to the next-to-last T'CB, and setting TCBTCB
. field of the next-to-last TCB to zero. These modifi-
SHARED TASK AREA | roaser T rcmapr T vemser] TeB6PT |
PORTION OF
TCBLIST
T
LOADDR LOADDR TASK
AREA
Hi ADDR K1 ADDR TASK3TCB TASK4TCB TASKSTCB J TASKeTCB
PSSTABB OFFLINE TABB TeRTcH TCBTCB f TCBTCE f ZERD
NUCLEUS

Figure 8—TABB pointers in PSS and offline task
prior to modification

Figure 9—Portion of nucleus showing TCBLIST and
TCBTCB pointer relationship prior to modification

An Operational Memory Share Supervisor 57

Tosa | o | Toeser | Teseer |

TCBLIST

TASKATCB TASKATCB TASKSTCB TASKBTCB
TCBTCH —TeaTes w0V | R

Figure 9a—TCBLIST and TCBTCB pointers after
modification

cations have additionally made the last task non-
existent to the operating system.

Rollout/Rollin

The process of rolling out the off-line task and rolling
in the LPOL task is a straightforward write/read
operation to a disc file. Since storage is divided into
2048 byte units for assignment of storage keys, the
task area read or written is some multiple of 2048
bytes in length. Thus the records are read or written
in 2048 byte blocks for purposes of simplicity and
efficiency. '

Free area modification

The PSS and LPOL tasks now occupy the same task
area. It is necessary, therefore, to make certain modifi-
cations which will cause all requests for work storage
to be satisfied from that portion of the task area wholly
dedicated to the LPOL task. Although no task bound-
ary exists between LPOL and PSS, if work storage
were to be allocated from the PSS domain, it would
not be subsequently saved and restored in future
cycles since the PSS area is not included in the dynamic
area which is stored on the disc file.

Figures 10 and 10a show how these modifications
are accomplished. Initially (Figure 10) the FALPT field
of the PSS TABB is pointing to the free area within
what was its own task area. This is the normal condition
for this pointer when there is an operating off-line
task. However, we have modified the configuration to
three task areas and we now wish to make the only
available free area all exist in the LPOL area. Figure
10A. shows that the FALPT field of the PSS TABB
has been re-pointed to the first FAL within the LPOL
task area.

At this point, the LPOL task is ready to process

ON LINE REAL TIME
TASK AREAS A

)
(¢

-)
LS

PSS TASK AREA

FALNXT | FALCOUNT FIRST FAL
WITEIN TASK

FORMER TASK BOUNDARY
VACANT TASK AREA

FIRST FAL
FALNXT [FALCOUNT [+ WITHIN TASK

FALPT OPERA-
TING
SYSTEM
TASK
AREA

PSS TABB ENUT BEING USED)
NUCLEUS

Figure 10—FALPT relationship with FAL locations
prior to modification

J, ON LINE REAL TIME
~ TASK AREAS T
PSS TASK AREA
PN
/4;;»v FALNXT | FALCOUNT
(("""""" FORMER TASK BOUNDARY
|
A\ VACANT TASK AREA
NN P~ N
\Qizz ZERO | 86K N
FALPT FALPT |OPERA-
TING
SYSTEM
TASK
AREA
PSS TABB (NOT BEING USED)
NUCLEUS

Figure 10a—FALPT fields after modification

58 Fall Joint Computer Conference, 1969

whatever request caused it to be activated. We have
now covered steps 1 through 7 under General Dis-
cussion. In returning from the three partition to the
four partition environment, the steps are essentially
the reverse of those detailed.

Upon restoring the off-line task, PSS enters a wait
state and will be restarted as préviously outlined. The
task dispatcher portion of O/S will restart the off-line
task as soon as there is available computer time and
no higher priority tasks require the computer resources.

Initialization
The initialization process for PSS consists of :

1. Suspending of off-line processing.

2. Reconfiguration from four to three partitions.

3. Rolling out the off-line task.

4. Making the off-line task area one contiguous
free area.

5. Loading the LPOL task and allowing it to
initialize itself.

6. Rolling out the LPOL task.

7. Rollingin and restarting the off-line task.

8. Entering the normal cycle at the wait point.

Step 4 above has not been previously covered in
detail. In order to force the initial loading of LPOL into
the desired location, the FALs for PSS are initially
modified. Figures 10 and 10A show the PSS TABB
before and after this is done. The FALPT field of the
PSS TABB initially points to the first FAL within
the PSS area. The FALPT field of the LPOL TABB
points to the first FAL of its task area. By altering
the FALPT of the PSS TABB to make it point to the
LPOL first FAL and by altering the FAL by both
making it the last FAL in the chain and indicating
one large block of free memory, we have created a
large free area available to PSS for loading the LPOL
programs.

As the LPOL task acquires and releases memory
blocks for work storage, the FALs within the area
are modified by the operating system consistent with
memory availability. PSS simply saves the pointer to
the first LPOL FAL prior to each rollout and restores it
after rollin and prior to reinitiating LPOL. Continuity
of FAL linking is maintained in this fashion.

Special handling

There are occasions when the off-line partition can-
not be quiesced. This could be caused by a card reader
jam, a printer being out of paper, etc., causing an
IORE associated with the I/O to remain linked in the

chain beyond some reasonable amount of time (pres-
ently 10 seconds). These conditions are relatively
infrequent; however, provision has been made for them
by advising the operator via the computer console
typewriter and an attention bell that the off-line task
is non-quiescent and requires attention.

The memory area actually required by PSS is less
than 6K. However, in order to initially load PSS into
memory, a large enough partition must be available to
furnish the operating system job scheduler routines
their required amount of core. This requirement is in
the order of 24K. Thus there is a pre-initialization
phase during which. PSS changes the initial configur-
ation (Figure 11) of 50K and 52K to 6K and 96K for
the PSS and off-line tasks, respectively (Figure 1).
The technique for doing this will not be detailed; how-
ever, the essential steps are as follows:

1. Referring to Figure 12, the initial PSS task area
is shown in three segments (B, C, D) and the
initial off-line task area is shown in one segment
(Aj. The PSS Pre-Initializer is loaded by the
operating system into area B.

72K
TASK 2 (ON LINE)
/
40K
TASK 3 (ON LINE)
A
TASK 4 (PSS) 50K
e
TASK 5/6 (OFF-LINE/LPOL) 32K
e
TASK 1 (OPERATING SYSTEM) ’/J 42K
NUCLEUS

Figure 11—Initial task core allocations

An Operational Memory Share Supervisor 59

TASK 2
(ON LINE)

[O) PSS TASK

PRE-INITIALIZATION PROGRAM

® OFF-LINE TASK AREA
(INITIALLY)

OPERATING SYSTEM
(NUCLEUS)

12K

UPPER BgUiéDARV OF
TASK AREA

&K
T—LOWER n‘gggmv oF
TASK AREA
50K T FTeR
PRE- INITIALIZATION

TS INITIAL LOER
QUNDARY

BOUNDAR
OF PSS TASK AREA

52K

42K

Figure 12

2. In order to place the PSS main program in the
area where it can control storage, it must be
forced into area D. To achieve this, the task
area boundary block is modified to make area
D free and areas B and C unavailable.

3. The PSS main program is loaded into area D.

4. The off-line boundary block is modified to in-
clude areas B and C as free areas.

5. Controlis passed to PSS main.

The configuration is now that of Figure 1.

CONCLUSION

Implementation of PSS has effectively added 96K of
additional processor memory to the real-time system
of which it is an integral part. This coupled with the
facility to process off-line tasks while having an availa-
ble stand-by on-line task, has greatly enhanced the
capability of the system. The application of PSS has
effected a maximal utilization of computer resources
by the system.

REFERENCES

1 IBM System/360 operating system conirol blocks
Form No C28-6628

2 TBM system /360 operating system input/output supervisor
Program Logic Manual Form No Y-28-6616

8 IBM system/360 operating system control program with MFT
Program Logic Manual Form No Y27-7128

4 IBM system /360 operating system fixed task supervisor
Program Logie Manual Form No Y28-6612

Structured logic

by R. A. HENLE, I. T. HO, G. A. MALEY
and R. WAXMAN

IBM Components Division
Hopewell Junction, N.Y.

INTRODUCTION

Large-scale integration for computer applications
has been predicted for several years, but close examina-
tion shows that the progress has been uneven. Memory
designers continually demand higher levels of inte-
gration for larger and faster memory systems, and
new memory concepts are being developed to further
exploit the characteristics of large-scale integration.
The one-thousand-circuit chip will become nothing
more than a milestone.

But what of the logic area? Here, we struggle along
hoping to find some high-volume applications for chips
with a mere fifty circuits. When we design a medium-
sized machine we find that so much unit logic is re-
quired that the average level of integration falls below

ten. Orderly memory and random logic integrated
circuit fabrication procedures are growing so different

that thought is being given to building different types
of manufacturing facilities. This represents a rather
drastic approach and in the authors’ opinions may
prove unnecessary.

The success to date in memory is encouraging, for
it gives direction to logic. Memory products should
therefore be examined critically for they may well
hold the key to success for logic products. The salient
features of a chip used in a memory product are:

«Regularity. Memory arrays are regular in com-
ponents and wiring. The layout geometry is well
defined and can be highly optimized for total
chip utilization.

«Low Power. Memory systems are designed and
partitioned so that all circuits on a chip do not

61

dissipate maximum power at the same time.

. Well-Defined Function. The memory chip de-
signer knows exactly how his chip fits into the
entire memory system. He therefore can opti-
mize on a high level. As examples, he uses special
circuits for the latch functions and uses de-
coders redundantly to save pads.

. Volume. *While the initial memory chip design
is quite complex, the volume requirement makes
the initial design cost nearly negligible. With
this ground rule the chip can be highly engineered,
and nearly order of magnitude improvement
can be expected and obtained.

Structured logic, or array logic as it is sometimes
called, is an attempt to design logic with more of the
characteristics of memory. Many unsuccessful starts
have taken place, but we shall discuss some of the
more suceessful efforts. We shall also add some thoughts
of our own, but it should be pointed out that the prob-
lem is far from solved.

Logic arrays

The basis of all array logic is a matrix of elements
with programmable interconnections. Diode structures
have been proposed in the past, and a matrix of com-
mon collector transistors is of recent interest. The
transistor array is programmed in the factory by
connecting or not connecting the emitter of each
transistor to a common line. (See Figure 1.) We shall
use transistor arrays in our examples, for that is what
we have been working with, but diode arrays should
not be ruled out.

62 Fall Joint Computer Conference, 1969

& | &S ES
& b fb b

DR DR PRy R

Figure 1—A transistor array

The ROS 3

The read-only store (ROS) array in its simplest
form uses two decoders to feed the array: one feeds
the horizontal lines and the other the vertical lines,
as shown in Figure 2. A particular grid position in the
array is selected by activating the appropriate hori-
zontal and vertical decoder lines. The addressed cell
of the array is located at the intersection of the two
activated lines. If the emitter at this address is con-

ROS
c D i

// DECODER I\

M-
THE

Figure 2—Read-only store

DECODER
S
=

nected to the horizontal decoder line, then a 1 has
been programmed into this particular cell in the array.
If the emitter is unconnected, a 0 is said to be pro-
grammed into the array. The presence of the pro-
grammed 1 or 0 is sensed at the output when that
particular cell is addressed. The horizontal output lines
are dot ORed together to produee one common output
line, a9 shown in Figure 3.

Conceptually, the ROS is related directly to a
Karnaugh map, one bit position in the array for each
square in the appropriate Karnaugh map. Figure 4
depicts the four-variable K-map that relates to the
ROS of Tigure 2. This relationship proves the uni-
versality of a ROS, for any Boolean function that
can be K-mapped can be implemented directly. Uni-
versality is the feature of the ROS chip most often
described as an asset, but in practice it is seldom use-
ful except in code translators. The Boolean functions
used in the design of any computer are definitely not
random and not evenly distributed among all pos-
sible functions of n variables. This fact is well docu-
mented in the many failures with other universal
logic blocks (ULB’s). The real problem with the ROS
array is that it doubles in size each time an input
variable is added. This doubling in size is necessary
to maintain the dubious value of being universal.

The ROAM

The read-only associative memory (ROAM) is a

ROS CIRCUITS
1 2 3 4

i
Dol

YYVY™= g

7

0.

it

i

Figure 3—Read-only-store circuits

Structured Logic 63

K-MAP
c,0
A,B 00 O n 10
oo| 1 1 0 1
ol o 1 o 1
nfl oo 0 0 1
10| 1) 1 o

Figure 4—Karnaugh map

matrix of common collector transistors that may be
programmed by connecting or not connecting the base
of each transistor to a common line in its own column
(Figure 5.) The emitters of each row are commoned
and feed the emitter of an output transistor. Each
row of array transistors and the associated output
transistor form a current switch.

Through phase splitters, each input variable has
both true and complement lines available to the array.
Hence, each variable controls a true line and a com-
plement line (column) in the array. This gives rise

ROAM
A

Arlaslar
i

I

!

)

—
(2]

.

.y |
——

|V VI PV VS
Aol Lo el el i

et oo [+

- 33—

- VE

Figure 5—Read-only associative memory

to the word ‘‘associative’” in the name. By program-
ming each row in the array to a particular pattern
of 1’s and 0’s, the input word pattern will “associate’’
(compare) with the appropiate row in the array. If
there is no match, the outputs will remain logical zeros.
If at least one row has a pattern the same as the input
pattern, there will be a logical one output on that
horizontal line (row).

To program the array, each base is tied to a true
line (column), a complement line (column), or is
left floating. Thus, for a base tied to a true line, a 1
on that input line will yield a 1 at the emitter and a
1 at the output, since the row of emitters effectively
forms a DOT-OR (positive logic). Bases tied to a true
line are equivalent to a logical 1, since a 1 at that in-
put causes a 1 at the output.

Conversely, a base tied to a complement line is
equivalent to a logical 0. A 0 at a particular input
raises the complement line of the phase splitter,
thereby raising to the 1 level all emitters of transistors
in that column that have their bases tied to the com-
plement line (eolumn).

If the base is left floating, that array grid position
is effectively a DON’T CARE. That is, the output
line will not be raised to 1 by either a 1 or 0 at that

. transistor’s column input.

Figure 6 illustrates the implementation of an adder
position with SUM and CARRY outputs using a
ROAM array. A black triangle connecting a vertical
line and a horizontal line indicates a base connection;
lack of a black triangle indicates a floating base. Note
that if a true line is connected, then the complement
line is not connected, and vice versa for each array
grid position. Thus, at most, only 50 percent of the hori-
zontal and vertical intersections will ever be used.

To conceptually understand the ROAM and relate
it to the Karnaugh Map it is convenient to think in
terms of negative logic. Thus, down levels are logical
1, the commoned emitters of each row form a DOT-
AND (all emitters down results in a down level, any
emitter up results in an up level), and dotting the output
transistors results in a DOT-OR.

Each row of the ROAM represents a term of a
logical expression in the sum-of-products form. The
logical expression CARRY =B-C+A - B+A.-C
is in sum-of-products form, and B - C,A - B, and
A . C are each terms of the expression. Each term
may be implemented on one row of the ROAM. For
example, Figure 6 illustrates the implementation of
the CARRY function. Note that the A true and B
true columns are both connected to a transistor base
in the second row of the ROAM array, yielding the
term A - B. The three rows B-C, A- B, and A - C

64

Fall Joint Computer Conference, 1969

CARRY

¢+ SUM

Figure 6—ROAM adder position

are DOT-ORed at the output to yield B. C 4 A -
B+ A - C= CARRY. In forming the term A - B,
the variable C does not have its true or complement
column line connected to a base. CARRY is 1 if A is
1 and B is 1 regardless of the value of C.

Each term of a logical expression in sum-of-products
form is an “‘implicant’’ on a Karnaugh Map. An im-
plicant is formed by looping the 1’s in the Karnaugh
map and ‘“‘reading’ the loops from the map. Loops
can only contain adjacent 1’s and the number of ones
in a loop must be equal to 1, 2, 4,..., a power of 2.
This results from the fact that adjacent squares on a
Karnaugh map always differ only by the value of
one variable. Two squares looped yields a term with
n-1 variables (n = number of variables), four squares
looped yields a term with n-2 variables, etc. Thus,
each implicant requires one row in a ROAM. The
bigger the loop of 1’s the fewer connections need be
made in that row. The complete expression is formed
by DOT-ORing the rows which is the same as ORing
the implicants.

The example of Figure 6 uses three loops of two
1’s each to form the CARRY. The SUM is formed
by four loops of one 1 each. In this case three con-

TABLE I—Bits required for n variables in ROS and ROAM ARRAYS

VARIABLES
2 3 4 5 6 7 8 n
BITS
ROS
Always Universal 4 8 16 32 64 128 256 2n
ROAM
2 8 12 16 20 24 28 32 4n
> 3 18 24 30 36 42 48 6-n
S 4 24 32 40 48 56 64 8n
& 5 40 50 60 70 80 10-n
=2 6 48 60 72 84 96 12:n
8 7 56 70 84 98 112 14:n
3 8 64 80 96 112 128 16:n
S 9 90 108 126 144 18:n
16 160 192 224 256 32-n
27/2 Rows (Universal) 8 24 64

160 384 896 2048 n-2»

Structured Logic 65

nections must be made in each of the four required rows
to obtain

SUM=A-B-C+A-B.-C+A-B.C
+A-B-C

In contrast to the ROS, the ROAM can have uni-
versal capability with only one-half the number of
rows as the ROS needs bits for the same number of
variables. Moreover, the ROAM does not need to be
universal to be useful, thus allowing even further
reduction in size. Table I illustrates the difference
brought about by the ROS requiring one bit per K-map
position and the ROAM requiring one row per K-map
implicant.

Historically, computer functions are composed of
about four implicants or terms. The chart shows that
a four-implicant function is cheaper to implement
with a ROAM than with a ROS when the function
contains six variables or more. When the decoders
required for the ROS are considered, even four-vari-
able functions with four implicants are more econom-
ical in ROAM than in ROS.

Two useful formulas to compare ROS bits required
with ROAM bits required for a given function are:

ROS bits = 2»

ROAM bits = 21,

where n = number of variables,] = number of im-
plicants. Thus, it is more economical to build a function
with the ROAM when 27In < 2». This does not
consider the cost of the ROS decoders, which add a
factor to the inequality.

If we assume that the decoders for n-even take
2n(2»7?) bits, and for n-odd take [(n + 1) 2=+Di2 4
(n — 1) 2(==1/2] bits, then the cases for which ROAM
should be used are:

1. n even
2In < 2 4 2n(202);

2. nodd
2In< 2+ (n+4+1) (2[n+1]/2) + (n —1) (2[n—1]/2)

Thus, ROAM is more economical than ROS in most
practical problems.

A realistic example of control logic for a small ma-
chine model has been implemented using the ROAM
array. Table II gives a comparison of the number of
bits required for a ROAM implementation versus the
number of bits required for a ROS implementation.
Note that the ROAM is significantly more economical.

A partitioning of functions could have been devised
for the ROS implementation. The ROAM would still

TABLE ITI—ROS vs. ROAM—a control logic example

TOTAL NUMBER OF VARIABLES...............
TOTAL NUMBER OF FUNCTIONS...............
TOTAL NUMBER OF IMPLICANTS..............

One 7-implicant function of 13 variables
Four 1-implicant funetions of 7 variables
One 1-implicant function of 11 variables

ROAM
ARRAY SIZE: 28 X 12..........coii..
ROS 1 -
ARRAY SIZE/FUNCTION: 24, DU
6 ARRAYS FOR 6 FUNCTIONS: 6 X 16,384
SHARED DECODER...........c.covv...
TOTAL BITS. ..ot
ROS 2

ARRAY SIZE FOR 13 VARTABLES: 2. ..
ARRAY SIZE FOR 7 VARIABLES: 27 X 4
ARRAY SIZE FOR 11 VARIABLES: 2U. ..
SHARED DECODER....................
TOTAL BITS................oiiiiiin

336 BITS

16,384 BITS
98,304 BITS
3,584 BITS

101,888

8,192 BITS
512 BITS
2,048 BITS
3,584 BITS
14,336

66 Fall Joint Computer Conference, 1969

be more economical than the ROS, however, especially
when one considers the additional wiring complication
of connecting several small ROS arrays and the ad-
ditional design time required to effectively partition
the functions.

The optimum size for a ROAM has not been de-
termined, but chips with at least 512 bits on them are
desirable. This capacity would provide between eight
8-variable, 4-implicant functions, and one 64-variable,
4-implicant function (an extreme case, needless to say)
on a chip. The practicality of building and using such
a chip is yet to be determined.

The SLT array

Arrays can be designed so that they may be used for
direct replacement of present logic. The SLT array
performs the function AND-OR-INVERT in nega-
tive logic or OR-AND-INVERT in positive logic
and can be used directly to replace SLT logic. While

. direct replacement of random logic with array chips
may prove to be the wrong approach in the long run,
it may well be the only way to get array logic started.

The SLT array has the same advantages over or-
dinary logic that all arrays have: orderliness of design
and layout, and high density with relatively low cost.

e
,}RE "~
N \4-\3_‘
§re)
e <3
e ¥e Ve
E L

Figure 7—SLT array

In addition, this type of array has a higher bit usage
than other arrays, since it more closely resembles the
familiar random logic, functionally. The SLT array
does not have decoders or phase splitters on its input
lines, as do other types of arrays. This makes the array
less universal than even the ROAM array but more
effective for random logic. It is fair to say that arrays
of this type make poor code translators just as SLT
logic builds poor translators. It is difficult to believe
that any array will be effective in both random logic
and code translation problems.

As already stated, the ROAM array has specific
applications to decoders and associative memory
problems, The SLT array may very well be the ele-
ment required to do general logic design. The reason
for this is the placement of the inverters as shown in
Figure 7. This movement of the inverters to the out-
put lines may appear a minor modification, but it
should be remembered that there has never been a
useful logic block with inverters on the input lines. It
may pay to have both true and complemented out-
puts from a current switch logic block. Figure 8 shows
a full adder implementation in SLT logic and in an
SLT array.

Array-driving arrays

The SLT array in Figure 8 demonstrates one neces-
sary feature of an array that has yet to be discussed:
Any logic array must be able to drive any other array
in the same family, including itself. Note in Figure
8 the CARRY output fed back into the array. This
line probably will be an external wire. This technique
is required since it is in effect Boolean factoring, a
proven necessity. This type of feedback is also needed
to produce sequential circuits, giving memory to the
arrays.

Figure of merit

It is less meaningful to compare array logic with
random logic in each individual term of power con-
sumption, propagation delay time, and silicon area,
since one can usually be traded for the other, such as
power with delay. Instead a comparison is made of
their figures of merit, chosen to be the product of
power consumption P, delay time T, and silicon area
A, all with weight function of one (PTA). Since no
isolation wall is needed between collector transistors,
a ROS or ROAM cell including appropriate inter-
connections can be laid out on a silicon chip area equiva-
lent to 20-25 percent of that occupied by a transistor
that needs isolation walls. As shown in Figures 5 and 7,

Structured Logic 67

> [@]::3-4

7
(%)
C
=

CARRY

[T]4-CARRY

Figure 8—SLT full adder position

the delay time of an array is two levels of current
switch emitter follower (CSEF) independent of the
number of inputs. For sophisticated functions, such
as the one-bit adder shown in Figure 8, more than two
levels of logic may be required.

Some typical comparisons of array logic and random
logic include the sampling design of array logic chips
to perform the same function a random logic chip
would. This comparison helps to partially discover
the merit and the limitation of the array logic. In
comparison with random logic chips that perform
sophisticated functions or have two or more cascading
levels of CSEF’s, array logic chips have superior
PTA figures.

CONCLUSIONS

Various array configurations described here suggest
that random logic may be implemented by use of an
array of programmable crosspoints. Comparisons of
array logic with conventional logic indicate that in
many cases the PTA figure of merit is superior for
arrays. The most significant problem with arrays ap-

pears to be the limited useful size of a single array,
and the difficulty in standardizing a particular array
configuration. As a minimum achievement at this
time, it appears that arrays will be useful in develop-
ment of complex functions within a silicon chip.

Array logic will not eliminate the need for a circuit
designer in the future, since specialized designs will
be needed to optimize circuit and component technol-
ogy. In some of these design cases, the importance of
array logic techniques will be obvious, but in others
it will not be.

At this point, array logic does not appear to strongly
affect the system designer’s approach to machine de-
sign, and a knowledge of array logic may never be re-
quired.

In the future, however, to the extent that array
logic techniques influence the design and optimization
of highly efficient functions, the system designer’s
work will be significantly influenced by progress made
in developing array logic techniques.

BIBLIOGRAPHY

1 R RICE
Compuiters of the future
IBM Research Report RC-151 April 20 1959
2 R RICE
Systematic procedures for digital system realization from logic
destgn to production
Proc IEEE Vol 52 12 1691-1702 Dec 1964
3 R C MINNICK
Application of cellular logic to the design of monolithic digita
systems
Microelectronics and Large Systems
Spartan Books Wash D C 1965 225-247
4 I, C HOBBS
Effects of large arrays on machine organization and hardware
software tradeoffs
Proc FJCC 1966 Vol 29 89-96
5 R C MINNICK
Cutpoint cellular logic
IEEE Transactions on Electronic Computers Dec 1964
6 W E KING III A GUISTI
Can logic arrays be kept flexible?
AFCRIL Report 65-547 Aug 1965
7 D C FORSLUND R WAXMAN
The universal logic block (ULB) and ils application to logic
destgn
IEEE Conference Record 1966 Seventh Annual Symposium
on Switching and Automata Theory 236-250
8 88 YAU C K TANG.
Universal logic circwits and their modular realization
Proc SJCC 1968
9 R C MINNICK
A survey of microcellular research
Jour ACM Vol 14 2 April 1967 203-241

Characters—Universal architecture

for LSI

by F. D. ERWIN and J. F. McKEVITT

Hughes Aircrajt Company
Fullerton, California

BACKGROUND

Since the advent of LSI technology, several schemes
have evolved for the utilization of large arrays to their
full potential. A common and straightforward approach
involves the designer restricting himself to the equip-
ment being designed at the moment. Faced with only
a limited set of problems, it is not difficult to specify
a small number of LSI array types which will efficiently
complete the design. While the results are quite en-
couraging for specific cases,! the drawbacks of any mass
adoption of these techniques are obvious. This, the
so-called “custom approach,” would require the semi-
conductor manufacturer to be responsive to each cus-
tomer with numerous low-output production runs of
highly specialized devices. The per-unit cost to the
user, for his own efforts as well as those of the manu-
facturer, would be quite high due to the inability to
spread initial costs over many devices. In addition,
the complexity of 100-gate-plus arrays is such that it
is difficult to substitute one for another (with efficient
results). This would severely limit the .off-the-shelf
capabilities of both user and manufacturer.

An obvious solution to these problems is the intro-
duction of a small set of standard LSI chips. Semi-
conductor suppliers, making tentative advances into
LSI product marketing, have already proposed such
devices as adders, counters, and shift registers. How-
ever, this does not represent the solution to the general
problem. A design heavily committed to the use of these
devices must fall back on MSI or standard IC for the
large remainder of the circuitry. The reason is that
adders, counters, registers and other orderly, well-

69

defined areas represent the regions of the system with
the highest gate-to-pin ratios. After these portions are
lifted out of the system, the remainder is characterized
by very low gate-to-pin ratios (notably control and
data routing functions). Unable to satisfy the LSI
design criteria of high gate-to-pin ratios any longer,
the designer must look to more standard components.
Unfortunately, any proposed solution to the LSI
partitioning problem which lacks a total system ap-
proach tends to drift towards this pitfall.

Researchers striving towards partitioning for total
or near-total LSI implementation tend to diverge
along one of two conceptual paths; bit-slicing and
functional partitioning. To illustrate the difference,
consider the data portion of the computer. In functional
partitioning one may specify an adder as one LSI ar-
ray, registers as another, a shift register as a third, and
so forth. On the other hand, in bit-slicing one would
design an LSI array consisting of a combined one- or
two-bit adder, registers, shift registers, etc., then build
up his system from this chip type according to the de-
sired word length.

The bit-slice approach has resulted in some notable
advantages, particularly the ability to achieve very
high gate-to-pin ratios and implement systems using
a small number of different array types.!’* However,
bit-sliced modules have the basic flaw of being system-
dependent, a drawback described by Pariser in an
early paper.? This means that behind such bit-slicing
approaches there lie systems, rea] or implied, for which
the resulting arrays are most efficient. An attempt to
apply the arrays to a significantly different system
results in a poor design. Considering the types of bit-

70 Fall Joint Computer Conference, 1969

slice devices being proposed, inefficiencies would most
often be manifest in the design of a simple device in
which the majority of the gates of the array intended
to accomplish complex functions are wasted. Although
this may be acceptable in some situations, it is un-
likely that it would satisfy the strict requirements of
size, weight, power, and reliability imposed by aero-
space and military systems.

It is the contention of this paper that a judicious
partitioning of digital systems in general, divorced
from bias towards any particular system, results in a
set of LSI devices that can entirely implement many
different computer systems of varying functional com-
plexities and word lengths.

The resulting group of arrays, referred to as a
“character set’’ and each one indivéidually as a different
“character”, is sufficiently small in number (10), with
each type having acceptable size and gate/pin ratio,
to be considered acceptable and desirable in view of its
wide range of applications. These building blocks are
referred to as characters because of the metaphor that
may be made between the buildihg blocks and char-
acters of the alphabet (letters). Letters form words
to express the language whereas building blocks form
units to build the machine. In both cases a closed set
(of characters) is used to produce the desired end.

Although the character set is neither rigidly func-
tionally-partitioned nor bit-sliced, it is biased towards
functional partitioning to give it the versatility to
efficiently implement both complex and simple digital
devices. As an approach, functional partitioning has
a detailed and successful background.** Bit-slicing
consideratoins give the character set its ability to
implement systems of varying word lengths.

In addition to providing the user with a standard
set of chips to implement many different digital ma-
chines, the completeness of the approach (the ability
of the characters to implement the whole machine)
relieves the user of the burden of logic design. These
tasks are reduced to the selection of character types
and word lengths.

Introduction to the character set

A universal conclusion among LSI researchers is
that control functions are more difficult to modularize
than functions related to data operations. Miero-
memory control technique was chdsen as the solution
for LSI implementation for several reasons. A micro-
memory, meaning here a read-only solid-state memory
with its sequencer and instruction register, is easily
partitioned into the large modules| necessary for LSI
implementation. Control functions in this form are

then amenable to reproduction in large quantities
of identical units. Also, design with control centered
in one level of micromemory is more orderly and
straightforward.

The micromemory has been provided with a rela-
tively sophisticated microprogram instruction reper-
toire. This means that the microprogram contains the
essence of the machine’s major mathematieal func-
tions, such as multiply and complex sequencing. This
is desirable since it represents an efficient use of hard-
ware for these purposes and also reduces the number of
different array types necessary. Also, a versatile rep-
ertoire leaves the designer free to make units which
operate as simply or as complexly as desired. The
degree of flexibility which this repertoire gives the
character set is a major factor in its success. It should
be stressed that the “micro operations’” of the charac-
ter set are as important a factor as its logic design. This
fact, a critical one in all LSI solutions committed to
micromemory control, cannot be overemphasized.

Interest in designing a character set at Hughes was
concurrent with the development of an advanced com-
puter system. The character set itself was developed
with the ultimate objective of implementing all future
Hughes digital data processing equipment with a com-
mon family of LSI circuits.

The outcome of that original effort revealed that
computer structures in general are frequently ordered,
or at least amenable to such ordering, as shown in
Figure 1.

The divisions of Figure 1 are functional. That is,
regardless of the hardware characteristics, the cornputer
philosophy is such that its functions may be identified,
separated, and diagrammed as shown in the figure.

From Figure 1 came the concept of the functional
character set. With the fundamentals of LSI design
in mind, logic was designed to accomplish each computer

91112

BOOLEAN LOGIC FUNCTIONS

* MINOR: TRANSFER, SHIFT,
ROTATE, COMPLEMENT,
INCREMENT, LOGICAL
OR, ETC.

® MAJOR: ADD, SUBTRACT,
COMPUTER EXCLUSIVE OR, ETC.

CONTROL
FU
, INPUT/OUTPUT FUNCTIONS l

NCTIONS
FAST ACCESS
REGISTER STORAGE

AUXILIARY DEVICES
¢ Counters I —— 1
® CLOCKS

® SCRATCHPAD CORE MEMORY

® SWITCHES

Figure 1—Computer functional organization

Characters—Universal Architecture for LSI 71

911122

MICROMEMORY tosie ' 1
ONTROL FONCTIONS - b

MAJOR
MM Loaic Lz L2
FUNCTIONS.

INPUT/OUTPUT |
FUNCTIONS [w3 I L3 1

‘FAST ACCESS
REQISTERS, { l a1 l @

e —

(%

w2

|

SCRATCHPAD l P1 L3

CORE MEMORY DEFINED

COUNTER-
o
cLock [2 2 AS AN 1/0-TYPE DEVICE

Figure 2—Functional character set

function indicated by the picture. Bach unique LSI
chip type which resulted was referred to as.a different
character type and given an identifying name and
number. Figure 2 shows the character set which re-
sulted from the logic design according to the concepts
outlined in Figure 1. :

The character set and repertoire have been through
several improvement cycles and used in the test im-
plementation of a NASA computer to be discussed
later. Current plans include test design of the 4400
(a new Hughes computer) with the improved character
set, implementation of the character set with high
speed MOS circuits, and construction of one computer
using the characters.

These ten LSI characters alone provide the entire
hardware complement for the logic of a broad range of
computers and digital equipment. No extra logic in
the form of either IC, MSI, or custom LSI need be
added to the characters to finish the job. An important
by-produet of this is that the user need never consider
logic design. His tasks are reduced to selection of the
necessary characters and the writing of the appropriate
microprograms for them. In fact, it is possible for the
character set to fit into a realistic total design automa-
tion procedure as discussed later.

Description of the character set

This section describes each of the ten characters.
They are summarized below for reference.

G1 Register storage

L1 General logic

L2 Arithmetic logic

L3 Input/Output

M1 Micromemory counter

M2 Micro-instruction Register

MM Micro-array

P1 Scratch pad memory
P2 Up/Down counter
P3 Switch

Characters of the same letter are logically grouped
into a common unit ag illustrated in Figure 3.

G1 character

The G1 character provides the bulk of storage for
operands of the microprogram. Each character con-
tains four registers of eight bits each accompanied by
reading and writing selector gates. The storage element
is provided with simultaneous dual reading and
writing capability. The storage flip flop itself is designed
for minimum read after write delay.

Each of the two input busses is common to all
registers and carries to the G1 character eight lines
per bus, one line from each bus for each bit of the
register. Input data selection is accomplished at the
memory element by a coincidence of positive infor-
mation on a particular input bus and register selection
for that bus by destination decoding logic within the
character. The destination decoding logic is duplicated
to provide for writing from the two input busses into
the same character under control of two different micro-
commands. As will be illustrated later, this is a key
factor for the machine expandability property of the
character set as it allows G1 to form a data path link
between individual logic units under control of up to
two ' different micromemories. Different registers in
the character may be written into simultaneously.

Reading of the register is provided by dual source
decoding logic which gates data to independent dual
output busses. This duality provides for information
from any two registers to be simultaneously placed on
two output busses. The conceptual structure of the G1
character is shown in Figure 4.

Several G1 characters placed in parallel provide
registers of more than eight bits in length.

81112.8

a1 a1 DATA %} wz %) OATA

Gy] 8} (5] L
HIGISTER UNIT LOGIC UNIT
CONTROL CONTROL
CONTROL

™ [ez]

w1

v, Pl P2 B3

CONTROL UNIT

Figure 3—Typical functional character configuration

72 Fall Joint Computer Conference, 1969

L1 character

The L1 character provides the basic logic functions
selectable by microprogram. In addition input bussing
is provided for nine channels (eight bits/channel).
One chaunel of the bus is required for each G1, L2 or
or L3 character connected to the L1 character. The
logic functions provided consist of the rotates, shifts
(logical), no-operation, complement, and incrementa-
tion. Also associated with the L1 charaeter is the de-
coding logie for these logic operations. The type of
microprograniming used with the functional character
system relies heavily upon the fast and efficient manip-
ulation of bits within the various operands. To this
end, shifts and rotates have been provided which exe-
cute from 1 to 31 positions in a single step (as op-
posed to serial operation). Inerementation is accom-
plished with the use of a logic register which may also
be used as a simple holding register. The L1 character
is eight bits wide and contains the following logic:

Bussing gates

Deeoding logic

Rotate, shift, and complement logic
Incrementer

L register

Gating to output bus

SOk

In Figure 5 is shown a block: diagram of the L1
character. Several L1 characters may be connected
together to form logic operations on words longer than

$1112-19

l REQ. 2 I

RESET ¢
ouAaL I
' ouTPUT
RESET 1 SELECTION I
|] rEQ.3 l

T -

DESTINATION
DECODE

1
STINATION +SELECTION SELECTION |
g DECODE oEcoDE
"]
- MICROMEMORY
REGISTER
. STORAGE
e oo | | e] || o | e = e | [ominn | | o | | e ™

et J———
ENCODED ENCODED
SIGNALS SIGNALS.

I
|
I
|
|
I
|

ENCODED ENCODEO
SIGNALS SIGNALS.

Figure 4—G1 character block diagram

9111218

LT
L P

_______ b—

FIRST STAGE
ROTATE come

CONTROL

norate I £
|

ROTATE

MASK FOR
SHIFTING secone BUSSING L REGISTER
ROTATE anTes

MIcRO. OPERATOR I
MEMORY —L-{ open

GENERAL LOGIC

U G I, g 4115 T |

Figure 5—L1 character block diagram

one byte. A limit of four bytes exists in order to main-
tain consistency of definition in the rotates and shifts.

Information entering the L1 card from the various
sources is bussed to form the input bus. Then it is
operated upon and the resultant is bussed to the out-
put bus where it leaves the character or is optionally
stored in the L register (where it would thus be available
at the next micro-instruction time for use in the incre-
ment operation or as an “L’’ source). '

L2 character

The L2 character provides the major arithmetic
functions used by the microprogram. The arithmetic
unit provides the 2’s complement sum of the con-
tents of the A and B registers. Addition is performed
with carry look-aheal byte parallel. Control signals
may cordition the adder to alternately provide either
of two special results (a) a mod 2 addition instead
of full addition or (b) an input carry to the lowest order
bit for full addition (this forced carry in conjunction
with a negated operand accomplishes a 2’s com-
plement operand for subtraction). The L2 character
consists of two holding registers for the operands of
the adder, the adder itself, decoding and error logic,
and bussing gates. Figure 6 diagrams function-wise
the L2 character.

A typical arithmetic operation using the L2 charac-
ter might proceed as follows: (1) first operand trans-
ferred to. B register (from output bus), (2) second
operand transferred to A register, (3) after appropriate
delay access result and transfer out of L2 character via
the input. bus. The error logic provides overflow and
carry-out information.

Characters—Universal Architecture for LSI 73

9111217

| A REGISTER I [

=T

Jp— I

CONTROL DC%DDE —[ARITHMETIC UNIT ERROR
—t. CONTROL. 1 W‘OG'C
|]
|
|
| atne
| ARITHMETIC LOGIC
e e e e e e s e — — —] —— — —— =)
Figure 6—L2 character block diagram
L3 character

The L3 character provides input/output capability
for the microprogram machine. For purposes here
input/output includes not only the usual peripherals
but also main memory, scratch pads, real time clocks,
all P-characters—namely all elements of the computer
not directly controlled by the micromemory. The L3
character provides input gating for external devices—
four buffered and three non-buffered channels. The
buffered-input gating may be controlled either by the
microprogram or the exiernal I/O device itself. Four
I/0 output channels are provided. Interrupt signal
storage and interrupt mask storage for four channels are
available. Parity generation and checking along with
odd/even control is provided for the four buffered
channels. L3 also contains the necessary register des-
tination and selection logic. Figure 7 is a block diagram
of L3.

To input data, an input line is selected under micro-
program control resulting in selected data entering
an E register or, in the case of a non-buffered input,
entering the input bus. To output data, the micro-
memory places the data in the appropriate E register
and signals the corresponding I/0O unit. The E registers
themselves are available to the logic unit in 2 manner
identical to the G registers (G1) independent of their
input/output functions.

M1 character

The M1 character provides the micromemory address
register and related functions. The ten address bits
of M1 allow for addressing up to 1024 micromemory
words. The address is contained in the MMC (Micro

111216

INTERRUPT
104N [PARITY {/O-OUT 1/O-IN (NONSTORING)

______ —= T

L) '
L——* seLecT | ouTeuT
Loaic

€

H
e
S

INTERAUPT

[
INTERRUPT (m1)

PARITY

DESTINATION SELECTION
DECODE DECODE

b T - - ———— 8-

ENCODED
SIGNALS

ENCODED
SIGNALS

Figure 7—L3 character block diagram

Memory Counter) register and serves to address the
micromemory proper. Associated with the MMOC
register is a five-bit incrementer which automatically
steps through 32 microprogram address states and
then repeats addresses. This produces the effect of
a microprogram ring of 32 words in which the program
will loop until the microprogram issues an unconditional
transfer command. There is an S (save) register that
allows for subroutine jumps. The S register saves the
content of MMC upon command, keeping it available
for reinsertion into MMC. Figure 8 shows the block
diagram for M1.

Branching or transferring within the microprogram
is provided by two modes: unconditional transfer of
full 10-bit width and conditional transfers of four bit

11121

I aomrsf S 1 _‘
| - | me | ' omen
el AR Rerens
o [
| e |
! | !
' AT I ‘> |AR!AV (10
- ow ~ | I
| o I|
' s K
aomTs) s Y | jmao0
1 e " UnconotTioNAL Jume GATES | 1
S ———. Y T T T

Figure 8—M1 character block diagram

74 Fall Joint Computer Conference, 1969

width. The M1 character carries the time base whose
signal is distributed to other characters.

M2 character

The M2 character contains a. micromemory word
register. The register is 49 bits long providing for a full
micromemory word. Forty-nine bits are divided into two
16 bit fields and a 17 bit field. The first and the second
fields are instructions and the third is a constant. The
second instruction is transferred into the register loca-
tion of the first for execution resulting in sequential exe-
cution of the two instructions in the micromemory
word. Timing is derived from the timing base on the
M1 ecard. Figure 9 shows the block diagram of M2.

MM character

The MM character contains the micromemory array.
The address register and word register for the array
are located on M1 and M2 respectively. MM is a read-
only array. The presence of an address on the input
lines causes the contents of the referenced location to
appear on the output lines after an appropriate delay.
The MM character consists of 256 words of 49 bits

111224

OTHER CHARACTERS Gl ML
1
—————

MICROMEMORY
WORD REGISTER

TS l I

MICRO-INSTRUCTION almnnl
e - c— — —

MICROARRAY bob1y

MICROARRAY b1y

MICROARRAY by2-bay

Figure 9—M2 character block diagram

f111213

MICROMEMORY '

ADDRESS
ACDRESS MICROMEMORY MICROMEMORY
DECODE ARRAY WORD

Figure 10-—MM character block diagram

each. Figure 10 shows the block diagram of MM.

Several MM characters may be combined to form a
larger micromemory array. The maximum organization
is 1024 words by 98 bits.

P1 character

The P1 character is a scratch pad memory of 256
bits of storage with associated address decode logie,
address register and data register. The scratch pad is
arranged into 16 registers of 16 bits each. Figure 11
is a block diagram of P1.

The P1 character is conneeted to the L3 character
through which its data flows. Up to 16 P1’s may be
connected in series to produce a total scratch pad of
256 registers. Generally the bit width will match that
of the logic unit.

P2 character

The P2 character is an expandable eight-bit counter
with byte look-ahead logic. The introduction of a time
signal produces a real-time binary clock. The counter
may be read in parallel and is resettable to any desired
value. Zero detection is provided which may optionally
interrupt the microprogram and/or the main program.
The P2 character is connected to the L3 character
through which data and control pass. Figure 12 shows
the block diagram detail.

The P2 character contains control logic allowing the
counter to be in a run state or stop state dependent
upon microprogram control.

P3 character

The P3 character provides the capability of switching
any three input channels to any three output channels.

91112-10

ADDRESS

ADDRESS REGISTER

DATA REGISTER

' DATA
3 16 BITS [>
!

SCRATCH PAD MEMORYI

duPl

16 BITS —]

16 WORD

I—‘ ARRAY

Figure 11-—P1 character block diagram

Characters—Universal Architecture for LSI 75

911121

1

eRevious |— m m m n m m NEXT STAGE (P2}
| I
cLOCK -

M1y

| [[Joeom |
}

L
| -

REAL-TIME CLOCK|

Figure 12—P2 character block diagram

9111212

cau

CONTROL (L)

‘; CONTROL STORAGE

0UTPUT

CHANNELS

016 BIT CHANNELS TYPICAL)
my

Figure 13—P3 character block diagram

I
|
]
]
| I —

A 16-bit width is provided. This configuration allows
three simplex simultaneous connections. Figure 13
shows the block diagram for the switeh.

The input and output channels of P3 may be con-
nected to any external interfaces which are electrically
compatible. Storage is provided on the character for
nine bits of control information establishing the state
of the switch.

There is no restriction on the switch state; all pos-
sible configurations are allowed (such as three inputs
to three outputs, one input to three outputs, three
inputs to one output, ete).

Hardware applicationé

Provided these ten characters and given a design
performance specification, the decisions the designer
must make involve considerations of character types
and selection of word lengths.

Figure 14 illustrates the levels of machine complexi-
ties available to the designer. Part A illustrates a very
basic eight-bit machine, with simple logical, I/0, and
register capabilities. Part B is the machine of part A
expanded to 16 bits in its logic and register portions;
however, no new functional capabilities have been added.
Functional expansion is demonstrated in part C, where
an eight-bit adder card and four eight-bit registers are
added. Part D represents a significantly greater jump.
Illustrated is the dual-logic unit capability of the
character set. If desired, it is possible to have two logic

E. MULTICOMPUTATION EXPANSION

Figure 14—Four stages of expandability

units, with different but coordinated microprograms,
operating in parallel. They share the same sequencer
(M1), which both control. The G1 bank is common to
both logic units,

Part E illustrates an even higher level of expansion.
Two totally independent micromemory units (memory
and sequencer) drive three different logic units, linked
together through G1 cards. This level of complexity
can be carried to an almost limitless expansion of micro-
memories and logic units bound together by shared G1
characters. A comparison of parts A and E of Figure
14 illustrates the versatility of the character set as it
is adapted to both simple and complex situations.

With the hardware specified, the next major task
is the writing of microprograms. As stated before, in
machines of this type this is as important as the hard-
ware design. Often the only essential difference between
units designed for different purposes is their micro-
programs.

The microprogram repertoire designed fur the char-
acter set is described in the next section.

Description of microprogram repertoire

The micromemory word provides the control neces-
sary for the functions of the characters under its direct
influence. All these characters so controlled are-defined
to belong to a common instruction group. There is one
and only one M2 character per instruction group. A

76 Fall Joint Computer Conference, 1969

phase group consists of usually one or two co-instruc-
tion groups containing a commgn timing base. There
is one and only one M1 character per phase group as
illustrated below.

M2 M2
M1

MM MM

In a phase group containing two instruction groups
one micromemory word, accessed from the first micro-
memory array (MM), operates upon and through its
logic unit while the other word, accessed from the second
micromemory array (MM), operates upon a second
logic unit. Operations are carried out simultaneously
in each unit with some cross translation. The option
of including a second micromemory word allows for
greater system capability by providing simultaneous
operations; however, this does not affect the number
of bits in the data word. (The data width is indepen-
dently variable by byte.) '

A micromemory word is composed of two 16-bit
fields and a 17 bit field—two instruction fields and a
constant field (See Figure 15). The first and second
instruction fields are identical differing only in that
execution of the second instruction follows the first by
1/2 of cycle time (a cycle time is the time required
for a complete cycle of the micromemory). The in-
structions can access the constant field, introducing
into the data stream this constant from the micro-

91112-20
1sT 2ND
INSTRUCTION | INSTRUCTION CONSTANT
Figure 15—Micromemory word
91112-21
SOURCE OPERATOR DESTINATION
16 BITS

Figure 16—Instruction field

memory. At those times when the constant field is not
used as such, it takes on additional ecapability as a
transfer and machine control field.

Instruction Fields—Each instruction field is divided
into three subfields—source, operator, and destination
subfields as shown in Figure 16.

The source specifies the origin of the data to be
operated upon as defined by the operator field. The
destination specifies the location where the data result
will be stored after the operation is performed.

Source Subfield—The source subfield specifies the
source of information for the micro-instruction, Data
accessed by the source code appears on the input data
bus. T'ypical sources are:

Gl -G16—The general set of registers
E1 -E12—The I/O registers located on the L3

characters
CNT —The constant field from the micro-
memory word
INC -—The incremented value of the L-
register
A —A register located on card 1.2
ADD —The sum from the L2 character
L —The L register of the L1 character
ECS —The error code
*ADD —The sum from the L2 character of a

co-instruction group logic unit

Operator Subfield—The operator subfield specifies
the type of operation the micro-instruction involves.
These operators operate upon the data from the input
bus and present the result at the output bus. Typical
operators are:

RS1 — 31—A Right Shi‘t from 1 to 31 positions
LS1 — 31—A Left Shift from 1 to 31 positions

MSK —The source data masked by the

constant field of the micromemory
word

NOP
R1 -R31—A left rotate from 1 to 31 positions
CoM

—The no-operation

—The ones complement

Destination Subfield—The Destination Subfield spec-

Characters—Universal Architecture for LSI 77

ifies directly the register to receive the instruction re-
sult. These register designations are described below:

Gl -G16—The general set of registers
El -E12—The twelve 1/0 registers of the L3

characters
B —The B register of the L2 card
L —The logic register of the L1 card
A —The A register of the L2 card
*A —The A register of a co-instruction

group L2 character

Transfer Field—The transfer field allows for micro-
program specification of both conditional and uncon-
ditional transfers within the microprogram. The un-
conditional transfer provides a ten-bit address, the full
microprogram addressing capability, while conditional
transfers provide four-bit addresses. At all times when
a transfer is not effected (either conditional or uncon-
ditional) the micromemory counter is incremented by
one modulo 32.

There are basically three testable functions. They
are: (1) least significant bit—true; (2) most significant
bit—true, and (3) all bits—false (true = 1, false = 0),

Further, some of these functions may be tested as
inputs to the logic unit or as outputs and in various
combinations.

There exist eleven conditional transfer test combina-
tions and one unconditional transfer.

An appli’cation of the character set

In addition to investigation for use with the H4400,
the Hughes Character Set was used in a test design of
the NASA Modular Computer Breadboard (MCB).
The NASA MCB, a prototype of an advanced aerospace
computer, is a dual-redundant reconfigurable machine
consisting of five different module types. One each of
the Control Unit (CU), Arithmetic Unit (AU), Memory
Unit (MU), and Input-Output Unit (I/O) are required
for a working computer. The fifth module type, the
Configuration Assignment Unit (CAU), is not dupli-
cated. For a detailed description of the NASA MCB,
see “Implementation of the NASA Modular Computer
with LSI Functional Characters,” by Pariser and
Maurer, in these Proceedings.

Figure 17 shows how the NASA MCB can be im-
plemented using the Hughes character set. Notice
that the CU is the only module equipped with the
double-logic unit feature.

nize

" — My
MM
wih
(DUPLICATE)
Memony
MODULE
wo cau .
-m —L] av
(% (%3 (%3 (%)
31 (51 (%) (Y [cAy Gk)
— [Giloiai]ai]
T |
o [963 (O3 R i L a1 o2}

cAu (2] (23

IHI
cAU | Av
A)
» l p;l
]
[]
t—

[]

LT
K]

{DUPLICATE)

Figure 17—MCB-Modular computer breadboard block
diagram

The design of the NASA MCB showed that a fairly
complex computer could be implemented using only
the ten characters. Comparison of the gate counts with
that of a computer built to similar specifications in-
dicates that design with the character set involves
approximately 35 percent more gates (exclusive of
ROM). The comparison machine was composed of
23 different card types contrasted to the character
set’s ten. The overall gate-to-pin ratio was 2.6 for the
character set version and 0.75 for the comparison ma-
chine.

Table I is a representative sampling of the estimated
MCB instruction execution rates. By these estimations,
the character set version is capable of running as much
as 55 percent faster than the prototype machine. A
large part of the speed and versatility of the MCB
were attributed to the total microprogram approach
of the character set. Since each unit has its own micro-
memory control, it was possible to utilize unit overlap
to the maximum advantage.

Performance specifications for machines built from
the character set assume the following about the
characters themselves. Each character involves approxi-

78 Fall Joint Computer Conference, 1969

mately 300 gates based on SUHL II type logic. Most
characters may be sub-partitioned into two identical
LSI wafers of 150 gates each. Gate-to-pin ratios® vary
from character to character with an overall average of
about 2.6. Each level of gating must involve a propa-
gation delay of no more than 12 nanoseconds to achieve
the indicated speeds. Read-only-memory access time
is assumed to be no more than 80 nanoseconds with a
cycle time of 200 ns.

Evaluation of the character set

Design work to date indicates that most digital data
processing equipment can be implemented using only
the ten characters. Gate counts run higher than equip-
ment configured from discrete IC’s, with 140 percent
of the IC gate count representing an approximate
upper bound. Speeds appear to be comparable to the
latest airborne development computers, and promise
to be competitive with ground equipment as well.

For all systems where maintainability is a factor, units
constructed from the character: set have the obvious
advantage that only ten types of spares are needed to
insure system repairability. Nine of the characters are
identical in all applications. The tenth, the micro-
memory, stores a unique program for each application.

To bypass the requirement for spare ROM’s of specific |

patterns, research is currently under way at Hughes
to develop an electrically alterable ROM. The MM
characteis could be delivered “blank” from the
manufacturer to be written into by the user with a one-
shot process.

Reliability of character-built LSI computers will be
enhanced by the reduction in the number of lead-bonds.
Beyond that, the most significant reliability factor
probably will be the type of LSI technology chosen.
Bipolar TTL is a candidate for the character set
mechanization due to its speed Eand drive capabilities.
MOS is also being considered for its high packaging
densities and simplicity of manyifacture. Use of either
or both technologies is possible depending on system
requirements. f

LSI enjoys a natural advantage in the diagnostic
field. The arrays establish replaceable units which are
quite large, thus minimizing the degree of fault isola-
tion required. The character set in particular has several
features beneficial to diagnostic procedures. The bussed
structure provides several convenient points for ap-
plication and observation of diagnostic signals. Also,
there are only a certain number of allowable ways to
inter-connect characters. This, plus the fact that there
is no intervening logic, precludes the possibility of
unexpected timing or logic problems arising. Once the

fault detection and isolation problems are solved rela-
tive to a character, the solutionis applicable to all
combinations in which that character is found.

Furthermore, since every character is under the
control of some micromemory, a third major approach,
along with more traditional hardware and software
approaches, to diagnostics becomes available. Investi-
gations have shown that microprogram techniques are
extremely effective in both detecting and isolating
faults in the characters. This approach also promises
fagt diagnostic speeds. Not only are the diagnostics
carried out at micro-instruction speeds rather than
machine-instruction speeds, but in large machines each
micromemory can simultaneously diagnose the charac-
ters under its control.

As an example, consider the application of these
techniques to the diagnosis of the NASA MCB. Each
of nine micromemories can simultaneously diagnose
seven to 38 characters each. Any fault need be isolatable
to one of only 206 characters, for which a replacement
is chosen, assuming an operator is present, from ten
basic part types. (Of coursé, the NASA MCE actually
reconfigures automatically in ease of error.)

Problems currently under investigation are diagnosis
of the micromemory itself, amount and type of hard-
ware required, and the applicability of more conven-
tional techniques. Goals include the development of
techniques for 100 percent fault detection and isolation
to the character level.

The area of application stressed for the character
set was computer implementation. Though the comput-
er makes a meaningful application, there is, however,
great economical advantage to be gained through ap-
plication of the characters to digital equipment of
unique or low volume design. Using the character
methodology in such systems can reduce by large factors
the engineering costs, design, and checkout time in-
volved. To effectively achieve such a goal several de-
sign aids are desirable—a character assembler, a micro-
program assembler, and a system simulatcr. These
three programs would allow for complete design auto-
mation capability.

The character assembler input would consist of en-
coded instructions having the information content of
a block diagram as exemplified by Figure 3. This in-
formation in conjunction with the character charac-
teristics (which form the data base of the assembler)
is processed by the assembler to produce an output
consisting of wiring information for the interconnection
of the characters. The character assembler output may
be in the form, for example, of a wire list, an N/C
tape for automatic wiring machine, or a tape input

Characters—Universal Architecture for LSI 79

TABLE I—Estimated MCB execution times

INSTRUCTION

FLOATING POINT ADD/SUBTRACT
FLOATING POINT MULTIPLY
FLOATING POINT DIVIDE

STORE (MAIN MEMORY)

LOAD (MAIN' MEMORY)
CONDITIONAL BRANCH

ALL SHIFTS (REGARDLESS OF LENGTH)
OR/AND

DIRECT ADD

ADD/SUBTRACT

MULTIPLY

TIME IN u-Sec

54 4+ A
21.8 + A
210+ A

7.0

7

3.8

5.8

6.2

4.6

6.8
20.8

A = (EQUALIZATION + NORMALIZATION TIME) < 5.2 u4-SEC FOR 32 BITS.

to a routing program for printed eircuit card etch layout.

The encoding information for the micromemory
array is provided on tape by the microprogram as-
sembler. This tape is used directly in the manufacture
or alteration of the array. The microprogram code is
assembled with the usual aids provided by machine
language assemblers.

System simulation would be aceomplished from (1) in-
formation of the machine structure as input to the
character assembler, (2) the microprogram code as in-
put to the microprogram assembler and (3) instructions
from the system designer input directly to the system
simulator. The degree to which system checkout would
be accomplished would of course be dependent upon
the sophistication of the simulator. However, because
of the high level of definition of the characters them-
selves the simulator would not be concerned with details
of the Boolean logic or signal interface consistency
between characters. Therefore a worthwbile simulator
is seen as a feasible task.

Thus, the complete system—microprogrammable
characters, character assembler, microprogram as-
sembler, and system simulator—provide the system
designer the capability for total system design from
his desk. Furthermore, he is not concerned with logic
design in any form. When he specifies the following:

1. character configuration
2. microprograms
3. simulation instruction

these item are provided for:

1. character assembly

2. back panel wiring
3. micro-array encoding
4, system checkout

all without the services of a logic designer or the tech-
nician’s help. In fact, it is conceivable that no human
intervention need take place between the system de-
signer and his designed hardware!

ACKNOWLEDGMENT

The research reported in this paper was sponsored in
part by the Electronics Research Center under Con-
tract NAS 12-665.

REFERENCES

1 R C JENNINGS
Design and fabrication of a general purpose airborne computer
using LSI arrays
Digest 1968 IEEE Computer Group Conf June 1968

2 N CSERHALMI O LOWENSCHUSS B SCHEFF
Efficient partitioning for the batch—fabricated fourth
generation computer
Proec FICC 1968

3 J J PARISER
Connection considerations with a veiw toward balch fabrication
Proc of the Nat Symposium of the Impact of Batch
Fabrication on Future Computers April 1965 213

4 H R BEELITZ S8 LEVY R J LINDHARDT
H S MILLER
System architecture for large scale integration
Proc FICC 1967

5 J J PARISER H E MAURER
Implementation of the NASA modular computer with LSI
Sfunctional characters
Proc FICC 1969

Fault location in cellular arrays*

by K. J. THURBER

Honeywell Systems and Research Center
St. Paul, Minnesota

INTRODUCTION

Testing of complex integrated cellular logic circuits
fabricated using LSI techniques has become a source of
concern to users and manufacturers. Since an economi-
cally feasible solution to testing problems is not visible
for the complex arrays contemplated for the near future,
manufacturers have acknowledged the seriousness of
the problem. Currently some observers believe that LST
cannot be tested because general procedures for testing
and diagnosing digital circuits are applicable to small
networks of approximately 30 gates, while ecellular
arrays are contemplated as containing hundreds or
thousands of gates on one chip. However, if arrays are
constrained to be in a cellular form, then testing
problems can be simplified and test schedules can be
produced which use the interconnection structure of
cellular arrays.

In some cases the iterative interconnection structure
of cellular arrays enables derivation of test schedules
that exhibit an iterative nature, thus reducing the
complexity of the testing problem in comparison with
testing problems encountered in testing a noniterative
structure containing an equal number of gates. It has
been shown that the structure of single-rail cascades can
be used to great advantage in the derivation of test
algorithms for cascades ® and that this testing can be
accomplished from the edge of the cascade. These results
are extendable to a large class of arrays. However,

*The author was formerly with the Electrical Engineering
Department, Montana State University, Bozeman, Montana.
This work has been supported by a National Science Foundation
Grant, No. GJ-158, a National Defense Education Act Title IV
Fellowship, No. 67-06596, and an Air Force Cambridge Research
Laboratories Contract, No. F19628-67-C-0293.

Kautz'? has shown that cellular arrays exist which
cannot be tested from their edge terminals.

Problem definition

The iterative interconnection structure of cellular
arrays allows decomposition of testing problems for LSI
cellular arrays into several subproblems. One sub-
problem is the testing of single-rail cascades, such as the
one shown in Figure 1. These cascades can be used in the
production of more-complex cellular arrays, and tech-
niques can be derived such that if a single-rail cascade
can be tested then certain complex arrays can be tested.
Examination of problems encountered during solution
of the problem of testing single-rail cascades using only
input and output terminals of cascades produces
methods that can be used to test more-complex arrays.
Specifically, the solution of problems involved in testing
single-rail cascades lends insight to methods useful in
testing cellular arrays from their edge terminals by
computers using an average of only two or three tests
per cell contained in the array.

Figure 2 indicates the construction of an important

class of cellular arrays. An example of an important class

81

of arrays that has this interconnection structure is a
cutpoint array.¢ This array consists of collector rows and
vertical cascades. Busses extend across all collector rows
and distribute every variable across the vertical cas-
cades. This construction reduces the testing of this
array to the testing of a single-rail cascade, since each
collector row can be tested as a single-rail cascade (under
the added assumption that both a 0 and a 1 can be
placed on the input to each buss that extends across
the collector rows) and each vertical cascade can be
tested as a single-rail cascade. Output values of vertical

82 Fall Joint Computer Conference, 1969

oo L
ot e B

Figure 1—Interconnection structure of cascades

X, _— —

4 ——t -

R ——

1 \J 1 L 1

Figure 2—Construction of a testable cellular array

cascades are measured at the bottom of the array
whereas collector row output values are measured on
the right-hand side of the array; Admittedly, it would
be desirable to test all collector rows (and all vertical
cascades) simultaneously; howevéer, to accomplish this,
a restriction on the array structure must be made that
restricts the class of testable arrays until the procedure
becomes practically useless. :

Practical considerations

Consideration of testing problems produced by LSI
chips may help develop test algorithms that could be
used to test today’s complex printed circuit boards.
However, complex cellular arrays in practice will be
more difficult to test than printed ecircuit boards.
Consider that not only must exact error locations be
indicated, but that a decision must be made based on
the number of errors and their locations as to what can

be done with imperfect arrays. Are imperfect arrays
discarded or can they be salvaged in some manner?
Minnick® and Spandorfer® have suggested that extra
vertical cascades and collector rows be installed at
predetermined intervals in arrays, such as in Figure 2.
If a vertical easeade or collector row has an error, then
the extra cascade or row could be used to produce the
correct funetion.

Before any test procedures can be established, an
error or circuit failure criterion must be established
which allows definition of possible error types that may
appear in LSI construction. In a later section an
expanded allowable set of errors for certain types of
cellular arrays will be presented.

Placing an accessible test pad on an interconnection
between cells reduces the effective area usable for the
cells. For this reason attempts should be made to
accomplish all testing and location of faulty cells from
the terminals of the array without any test pads being
included in the array.

A test schedule could verify the complete truth table,
transfer function, or state table for any given device;
however, this procedure would require too much time
and would add greatly to the expense of the array.
Instead of a complete verification procedure, another
solution could be to test certain input conditions on a
probabalistic or expected utilization basis; however,
this method is still very unsatisfactory. A feasible
approach is to decide on a dominant failure mode from
which a set of allowable errors can be derived for each
cell type used in arrays under consideration. With this
knowledge manufacturers could construct arrays using
certain interconnection structures and could design cells
with redundant properties. This would cause an increase
in the probability that, if a failure occurs which is one
of the dominant failure types, the cell error that occurs
is a cell error that is contained in the set of allowable
errors.

Generation of tests and test equipment

Redundant design, failure modes, allowable errors,
and required confidence level contribute to the deter-
mination of the number of tests required; however, the
array’s structure can almost determine the number of
tests independently of these factors. Test schedules are
constructed to verify whether each cell is producing i'ts
specified function. This method of testing was chosen 1n
preference to verifying an array’s truth table because
the number of tests needed is generally much less than
m(27+1), where m functions of n -+ 1 varial')les are
produced. Under certain assumptions, choosing test

Fault Location in Cellular Arrays 83

schedules capable of accomplishing the task of locating
every error in arrays such as shown in Iigure 2 is
plausible (see Theorem 1), and these test schedules can
be programmed for testing using digital computers.
Because of their iterative structures, cellular arrays
simplify problems encountered in the detection and
location of faults.

Since test schedules can be programmed for single-rail
cascades, computers will be able to test many types of
arrays with very minor software input changes. In
particular, for the single-rail cascade under the assump-
tions of Theorem 1, a general fault detection program
could be written. To test a cascade the only needed input
information would be the cell types and their location
in the cascade. With this information the general
program is able to test all cascades of one type. When
the type of caseade changes, this information can be
given the computer as input data and all cascades of the
new type can then be tested. Because of the structural
interconnection of arrays shown in Figure 2, no repro-
gramming of the computer is needed when a new type
of array appears.

Assumptions and definitions

Figure 1 illustrates the interconnection structure of a
Maitra cascade.? Every cell in the cascade is a two-input,
one output cell. It is assumed that the Boolean variables
applied to the cascade are numbered as illustrated on the
cascade shown in Iigure 1. All testing of the cascade is
accomplished using only the input leads and the output
lead of each cascade (and of arrays). The ability to
measure the functional value produced by a cell by
means of probing a buss connecting two adjacent cells is
not assumed. To minimize the ‘“uncertainties” (the
functional values between cells cannot be measured and
the location of the error is unknown; therefore, the
functional values between cells are uncertain) involved
in testing cascades, it is assumed that cell n is tested first
(see Figure 1), then cell n—1, ete. If an error occurs in
cell n—j, its propagation may be stopped by one of cells
n-1, n-2, -+, n—j 4 1. Once cell n is tested, it may be
set such that it transmits the output of cell n—1 to the
output terminal of the cascade. In this manner (under
certain error assumptions) the cells may be tested in the
following order until error location results: n, n~1, -« -, 1.
The number of tests needed to test a cellular cascade is
0(n)*, where n is the number of cells in the cascade.

It is assumed that only one error (faulty cell) may
appear in a cascade. Also, the interconnections between
cells do not fail, the error is time independent; i.e.,

* See Definition 6.

if cell m is in error at time ¢;, then cell m is still in error
at t» > ¢ and the error type in cell m has not changed.
Tfurther, the input and output leads of the cascade do
not fail.

It is assumed that the 12 allowable cell functions for a
Maitra cascade are fl) f2’ f37 f47 f5) fﬁv f7; fsi f97 f107 flla f13’
and f14. (See Definition 1 for an explanation of the notation
fi) Seven allowable errors are assumed for cach cell;
these are f1; (s—a—1; stuck-at-one), fo (s-a-0; stuck-at-
zero), fis—p (complementation where p is the cell
funection), fi2 (the input X), f3 (the complement of the
input X), fie (the input Y), and f; (the complement of
the input ¥). These seven errors consist of the two
failure types (s—a-0 and s—a-1) usually assumed by
most fault diagnosticians augmented by fis—p, fi2, f3, f10,
and f;. [Note that fi, and f; have different allowable
error sets; i.e., Er = (fo, fis, S5y Jro, f3) and Ers =
(fe5 frsy Jroy I3y fro).]

Definition 1.
follows:

The cell functions are numbered as

X: Yo fofifofsfofsfoJofafo fro fufro fis fua fis

000101010101010101
010011001100110011
100000111100001111
110000000011 111111

Definiton 2. An error occurs in a cell whenever the
cell produces a function that is not the same as the
function specified for that cell.

Definition 3. G = (fy, f2, f4, f5, for f1, f5r Jor J10, 11, fr3y
f14)'

Definition 4. I, denotes (1, 2, 3, 4, -++ D).

Definition 5. The error function E is a mapping
from G x I, to G, where E(f;, j) = fx denotes that cell j
was theoretically to produce fie,G but instead it
produced fre@. Clearly, E(f;, j) = f; indicates that cell i
does not have an error ocecurring in it.

Definition 6. X* means either X or X', but not both.

Definition 7. O(n) means the same order of mag-
nitude as n.

A necessary and sufficient condition for faull
location in cascades

Location of a single fault in a cascade is considered in
this section. A necessary and sufficient condition for
location of a single fault in a cascade is proven. The

84 Fall Joint Computer Conference, 1969

proof of Theorem 1 can be utilized to obtain an algo-
rithm to locate faults in a cellular cascade or array.

Theorem 1.

Proof:

Given a cascade with 7 cells, then the error
can be located if and only if for every
tel, — (1)

(1) E(fu, %) # fis, fro
(2 E(fu,) # fisi fs
B) E(fs, 1) #* fo, fro

4) E(fo, %) 5 fo, f5.

(5) E(fs, 1) # fo, f12, s
6) E(fs, 9) 5= fo, f12, f5
(7) E(fis, 1) # fua; f1s
(8) E(f1,7) # f3 fis

) E(fs, %) # fo, fre
(10) E(fy, ©) # fo, fs
(11) E(fiw, 1) 5 fo, f1s, fs
(12) E(fs, 1) # flo,_fo, fis

The proof is an induction proof. Clearly,
the theorem is true for the case n = 1.
Assume that the theorem is true for a
positive integer k and consider a cascade
with & + 1 cells. Given the cell function
for cell & + 1, if it can be shown that the
error can be located in cell £ 4 1 if and
only if assumptions (1) through (12) are

C

E (fg. k*1) # fy or f,, I

[0 01 Tl

E (fe.kﬂ) =fgorfy X Y,

E (g, kel) = 1. f,.
ki Tk {100 Or fyy

{0

Il 10

T ,

E (fe,kﬂ) = l'e

E (l‘B,k‘fl) =fg E (f“,k"l) =1y E "f”.k*l) =1

or fB or '10 or 115

lo B

lo |1 1 fo 1 Io It

(fo) fg fg

f

(fyp) fg f3 10 7 f15

Figure 5—Test decision map for fg

|

E (fy, k1) # f; or fg]

Ol 00 J

or

E (fy, k+1) = {,,

E (fy, kt1) w ty, £,

2" 10
. X Y,
112 k+1 "k ‘13' or f15

°f

1 01 ﬂ 1[

E (fp, k1) « 1,

E (fz.kH) =1, E (fz,kﬂ) = f5 E (lz,kﬂ) - fz

or ‘12 or ‘10 or 113 or 1‘15
9]] o] § u q 1] q 1
)y | M1y f f10 @ SER (LAY f5
Figure 6—Test decision map for f;
I E (fg, k+1) f 5, fyorf,]

OI 00 1I

E (fg, k1) = f, 1, X Y, E (fg ktl) = £, f
6 o 16 k1 Yk 6 5 fer
r E My k+1) ¢ f1p 07 15] orf, orfig
oI 00 . 1| or L o1 q 1
. E(f,,, k+1)={,, g, E (fg, kt1) =1, E (fg, k+1) = f, E (fy, k+1) = f, E (£, k) = £
Bty k+1) = £y, £, £1y K1 Yy “ 1, orf1 : 6t:x‘f ° 6orf s ¢ f s s —_
50 OF {14 . 6 10 orfg orfi5
of 1] o1 q 1 of] o 1 10 o] 1 of i
E(f,,, k+1) = ¢, E(f,,, k+1) =1 E(f,,, kt) =1, E(fu.kﬂ)-ra
14 0 14 10 " ! . fo |2 flo | % s | %5 fgt3) | 15
orf, or t“ or fs orf,
of Il o 1] 10 ;o 1 of |
o |Mdfia | fio 114 o &) 3| Iyg Figure 7—Test decision map for fe

Figure 3—Test decision map for fi,

I E(f;, k+D# fyorf 1
Io 00 Il
E(f,,, k+1) = fy, f, Ky Y,
11° 0 4 k+1 Tk
E(f,;, k+1) = f_ orf
f100 Or fy3 1 5 11
Io Il 10]o . Ix
E k+1) =1,
Eff,, ktDefy | E(), ktD =1, B ket €, K+ =1y
¢ N 1’ 11 or f
orlio ol H . 1l
0 1 lo i 1 fo |1 lo 11

f,

0 f

10

fula | T

Qe

Figure 4—Test decision map for fi,

valid for cell & + 1, then the proof is
complete.

Assume conditions (1) through (12').
This part of the proof is now completed in
Figures 3 through 14. Note that if Co,
C,, -+, Ciare used to set ¥; = C at time
t1, then if ¥, = C'is wanted at time & if
Co, Cy, - - -, C; are utilized again, Y, is the
same value as it was at £,; however all that
can be said about ¥; is that it is either C
or (", but not both. This fact is used in t:he
proof of this theorem. In the figures with
the circled function number it may be
necessary to add one more test to deter-

Fault Location in Cellular Arrays

85

-

E (l‘g,kﬂ) # far fgr OF £}

E (fy. k+1) £ g or fy

ol 00 1l oL 00 1‘
E (g, k+1) = £, £, Xea Yy E (g, k+1) = £, o, E (k) = £, o < v E (f,,k+) = £, 1,
or f1p or f15 fig» oF fiy ket or f1g
of 1[01 o 1 of 1 o1 o 1|
E (fg kH) =y | E (fg.k+1) = f, E (fg, k+1) = 1y E (fg.k+) = £y B (f;, k) = E (1. k+) = o Eff k+)=f; |E (k) =6
or f9 or flo or f9 or 115 or f12 or f“ or f5 or 1‘15
o- 1] of | 10 o] 1 o 1) of 1] of 1] 10 of 1] of bl
o |t |ty [fp fg s fg (ty) 15 fy) f15 f14 f g | 5 | s
Figure 8—Test decision map for fy Figure 12—Test decision map for f;
I I l N P]
E (l‘la,kﬂ) ¢ IIZ or £15
ol 00 1
0 00 i
E ()50 k¢1) = £, Ty - E (£ 5, k+1) = £, T, E (fyq k1) = £ 0r 1), X Vi B (g k1) = 1y or iy
flO' or f\.’i k+1 Tk or f13 ol 1I o . OI ll
ol ,1‘ oL ol 1| -
B g =t |] B (f k1) = £ 0 | E (f g k1) = 1y
E (!13,k+1) - fo E (fls,kﬂ) = f2 E (113,k+1) = f5 E (fls,k+1) . fa or flz E (fm.kﬂ) = f1o “}_}) or 1.10
or f13 or fm or ’13 or f13
- of 1| 10 of 1]
o[1‘ ol 1[11 01 1[o] 1|
(1) 1, f f Q) 1,
0 1 3 15! fio
fo [UPLLIT] Y f10 fs @ 3 @5 fg- ot 2

Figure 9—Test decision map for fi,

l

E (f7,k+1) # {5 or f;¢

]

Figure 13—Test decision map for fyg

I

£
E (f5.k+1) fo, £ or fyg

-

Ol 00 l[
E (I‘s,kﬂ) =fgorf, X1 Yy E (f5.k+1) = {5 or Iy
of | 01 o 1

E (fs.kﬂ) = fs
or f,

E (fs,k+1\ = fg
(fy4)

of 1

fg (fo) fla

ol o1 1I
E (T, k) = fo, T,
7 o Ts -
e ort X Y E (L, k+1) = Ty or £
8 °F f12 .
o[Il 10 of |
E (T, k1) = fg | E (6, k1) = fg E (I, k+1) = f;
or f, or f. or f. l:':”7"””‘{7
8 12 10
o] 1| o 18 1 o 1 of 1
I tg 1 1 (r3>@ o |
Figure 10—Test decision map for f;
£
L B, ko) £ 1 or), —I
o‘ 00 1l
E (f,, k) = £, f
. + N
E)(I'_,‘,kﬂ)-f4 or fi4 Xy 4 Yk
f1q Or fre
0 1I 10 ol 1|
E (T kD) = 1, i E (T, kD) = 1y E (T, k+1) = T
or £ E (k) = 1, e)
10 or fy) or ;g
o} 1] o] 1f " of 1] o 1
~”o’® f10 fa | M1y f3 11 fs s

Figure 11—Test decision map for f;

E (fs.k*l) =1y

E (fs,kﬂ) =g
or fs

Figure 14—Test decision map for fy

ol 1T

fy fg (rm)

mine whether the cell is in error or is
receiving the complemented sequence.
The proof of the other half of the
theorem will be by contradiction. Assume
that the error can be located, but that the
restrictions (1) through (12) are not
needed. Then it can be verified that the
following pairs of conditions give the same
output at the cascade’s terminal. Since the
two conditions give the same outputs, the
error cannot be located, which is a eon-
tradiction of the assumption; therefore,

86

Fall Joint Computer Conference, 1969

the assumption that the restrictions are
not needed is incorrect and the proof is
completed. After (1) an abbreviated nota-
tion is used. Note: Using the Test
Decision Maps and the contradiction part
of this proof one can actually determine
the values of Y, 1.

1 Ye=111apnd E(fu, k + 1) = fua
are equivalent to ¥; = 0, 1, 0 and
E(fu, k + 1) = fi5 at the cascade’s
output terminal.

Y, = 0, O,OandE(f14, k 4 1) = f14
are equivalent. to Y, = 0, 1, 0 and
E(fu, k + 1) = fi2 at the cascade’s
output terminal.

(2) Yk = 0, O, 0 and E(fu, k + 1) = fn;
Ye=0,0,1and E(fu, k + 1) = fa.
Yi=1,1,1and E(fu, k + 1) = fu;
Y/c = 0, 0, land ¥ (fn, k + 1) = fm.

(3) Y, = 1, 1; 1 and E(fS; k 4+ 1) = fs;
Y, = 10,1 a‘nd E(fs; E4+1) = S

ch = 07 O; 0 a'nd E(fs; k + 1) =f8;
Yk = 1, 0, 1 and E(fg, k -+ 1) =f0.

@) Yi=1,1,1and E(fy, k + 1) = fi;
Y, = 0, 1, 1 and E(fQ’ kE+ 1) = fa.
Yy =0,0,0and E(fy, k + 1) = fy;
Yy =0,1,1and E(fo, k + 1) = fo.

®) Yi=1,1,1and E(fo, k + 1) = f;
Y,=0,1,0and E(fg, k. + 1) = fs.

Y, =0,0,0and E(fy, £+ 1) = fg;

Y, =0,1,0and E(fg, k + 1) = fu.

Yk =]-7 0; 1 and E(fﬁ; k—l— 1) =f07
Y,=0,1,0and E(fy, k + 1) = f,.

(6) Yy = 1, 1; 1 and E(f!); k + 1) = f9;
Ye=0,1,0and E(fo, ¥ + 1) = fi.

Y, = 0, 0,0and E(f97k+1) =f9;
Yi=0,1,0and E(fo, £ + 1) = fs.
Yk = 1} O! 1a€nd E(f9yk+ 1) = f9;
Ye=0,1,0and E(fo, ¥ + 1) = fe.

(7) Ye=1, 1,1 and E(fis, k + 1) = fi3;
Yy=0,1, 1and E(fis, k + 1) = fa.

Yy =10,0,0and E(fis, k + 1) = fus;
Yk = 0, 1, 1 and E(fm, k + 1) = f15.

®) Yi=1,1,1and E(fr, k + 1) = fy;
=1,0,1and E(fs, k + 1) = f.

Yy=0,0,0and E(fs, k + 1) = fy;
Ye=1,0,1and E(fy, k + 1) = fis.

(9) Y, =]., 1, 1 and E(f.;, k -+ 1) = f4;
Y = 0, 0, 1 and E(f4, k +]) = fo.
Ye=0,0,0and E(fy, £ + 1) = f4
Y}c = 0, 0, 1 and E(f.;, k + 1) = fm.

(10) Y= 1,1, 1and E(fy, k + 1) = fy;
Y, = 0, 1, 0 and E(fl, k+].) = fo.
Yy =10,00and E(fy, k+ 1) = fi;
Yi=0,1,0and E(fy, k + 1) = fi.

(11) Yk = 1, 1, 1 and E(fm, k + 1) = flO;
Y, = 0, 1, 0 and E(flo, kE+ 1) = f],a.

Y. = 0,0,0 and E(fio,k + 1) = fu;
Y,=0, 1,0and Elfi, k' + 1) = fo.

Yk = 1, 0, 1 and E(fm, k + 1) =f10;
Yk == 0, 1, 0 and E(fm, k + [) = f5.

(12) Yy =1,1,1and E(fs, k + 1) = fs;
Yi=0,1,0and E(fs, k + 1) = fo.
Y, =0,0,0and E(fs, £ + 1) = fs;
Y],; = 0, 1, 0 and E(fﬁ, k + 1) = f15.
Ye=1,0,1and E(fs, k + 1) = f;
Y = 0, 1, 0 and E(f5, k+]) = flO-

If the cascade meets the assumptions of Theorem 1,
then Theorem 1 can be used to determine test schedules
for the location of an error in cascades. It should be
noted that when cell k is tested, one obtains information
about thecellsk — 1,k — 2, - -+, 1, and therefore a test
schedule with 0(n) tests will test any cascade with n
cells under the allowable error set’. Clearly, if the
conditions of Theorem 1 are relaxed, then fault detection
(and maybe isolation) can be accomplished in the same
number of tests; however, if one is only interested in
fault detection, Theorem 2 is the best technique to use.

If a more complex cascade than the cascades con-
sidered here is under consideration, then a good
understanding of the method used to derive the
theorems in this paper will allow one to extend the
theories presented. If the cell functions fo, f3, fi2, and fis
are allowed, then the fault techniques may be easily
extended since none of these funetions depend on the ¥
value; however, one must exercise care in the use of the
theory because it is based on the ability of the tester to
place theoretically both a 0 and a 1 on the Y inter-
connection, and examples (trivial) in which this cannot
be accomplished do exist.

Fault detection in Maitra cascades

In this section the detection of a single fault in a
cascade is considered. The theory for this section is
based on the observation that every n cell Maitra

Fault Location in Cellular Arrays 87

cascade (as defined in this paper) produces a function
dependent on X°.

The purpose of this detection scheme is to utilize
exactly two tests to detect whether a cascade has a
faulty cell.

Theorem 2. Let the Maitra cascade have n cells. If Cy
Cq, - -+, C, are such that f(X,, Cy, Cs,y - -+
C,) = Xo* then

(1) f(1) Cl) Yy Cﬂ) = f(Oy Cl!) Cﬂ)
implies that there exists a cell i such
that E(fy, ©) = fo, fis, fr2, 0T fs.

@2 7, Cyy -+, Ca) = (1%’ and f(O,
Cy, +++, Cy) = (0%) imply that there
exists a cell ¢ such that E(f,, 7) =
fi5—p OT f5.

3) f@, Cy, -+, C) = 1* and f(O,
Cy, --+, Cy) = 0* imply that there is
no error in theé cascade or that there
exists a cell such that E(f,, ©) = fuw
and p = 10.

’

Proof: In part (1) f does not depend on Xo;
therefore, there must be a cell ¢ such that
E(fp, ©) = fo, f15, fro, or f5. In part (2) f
depends on (X,*)’; therefore, there is a
cell ¢ such that E(f,, 2) = fis—p or fs.
Whereas, the proof of part (3) is now
obvious.

X, was chosen as the variable to be used in Theorem 2
because of the symmetry of the resulting theorem.
Since X; can be made (by a suitable choice of constants,
to pass theoretically through every cell*, the theorem
could be rewritten in terms of X;. In terms of the
complexity of the detection scheme it is seen that
cascades could have a very simple detection test
schedule. It should be noted that Theorem 2 can very
easily be adapted to provide fault detection in cascades
if it is assumed that fio is not an allowable error for any
of the 12 cell functions.

Examples

This section consists of examples of the use of
Theorems 1 and 2. f, denotes the measured value of
f whereas fr denotes the theoretical value of f.

* Assuming the cell function for cell 1 is not f1 or f5.

Example 1. Assume that there is no error in the
cascade shown in Figure 15.

Test
Xo X3 Xo X5 Xuo fr fa Conclusion
O 0 0 1 0 0 O

0 0 1 1 0o 1 1

o 0 0 1 1 1 1 E(fe, 4) = fs
o 0 1 0 0 0 o E(fs,3) = fs
0o 1 0 1 0 1 1 E(fu, 2) = fus
i 0 0 1 0 1 1 E(fis, 1) = fu

Example 2. Assume that E(fs, 3) = fi5 in the cascade
shown in Figure 15.

Test

Xo Xy Xo Xs X4 fr fa Conclusion
0o 0 0 1 0 0 1

O 0 1 1 0 1 1

0 0 0 1 1 1 0 B(fo, 4) = fs
0O 0 1 0 0 0 1 E(fs, 3) = fis

Example 3. Assume that E(fis, 2) = f3 in the cascade
shown in Figure 15.

Test

Xo Xi Xo X3 Xi fr fa Conclusion

O o0 o0 1 0 0 1

0 O 1 1 0 1 O

o 0 O 1 1 1 0 E(fs, 4) = fo

O 0 1 O 0 0 O E(fs, 3) = fs %0

an extra test is
needed.

E(f3,3) # fs and
the complemen-
ted sequence
Y, is Dbeing
received.

E(fi, 2) = f3

Example 4. This example satisfies the hypothesis of
Theorem 2. Assume that E(fs, 4) = fo for
the cascade shown in Figure 15.

[(XO + Xl + X2) XS] @ X4 = fT(X(), X1, Xz, Xs, X4)
fT(XU, 0, O, 1; 0) = XO

£4(0,0,0,1,0) = f-(1,0,0, 1,0) = 0 implies that there
is a cell 7 such that E(fp, 'L) = fo, f15, fl?, or f3.

88 Fall Joint Computer Conference, 1969

X, H
o 1, fa fy f

Figure 15—A cascade to be tested

CONCLUSION

Techniques for fault location and detection in cellular
arrays with an allowable error sefu of fo, f15, fis—», f3, fr2,
T, or fio were described in this paper. It was shown that
the problem of testing an array could be reduced to the
problem of testing a cascade. The solutions presented
are particularly attractive because of their simplicity.
To locate an error, 0(n) tests aré needed for an n cell
cascade. Detection of an error requires only two tests
if the allowable error set is reduced by one error (fio).

A necessary and sufficient condition for single-error
location was given. If the restrictions of this condition
are relaxed, then an isolation theorem such as given by
Thurber ¢7 ean be derived; however, this isolation
condition will be more complex than the theorem given
by Thurber 7. A criterion that :enables detection of a
single error in only two tests was| derived.

Although the theories presented were derived for
regular arrays of logic, they have potentially wide areas
of application. A good understanding of the philosophies
presented here will allow the extension of the results to
cascades of m input n output cells. Also, some irregular
arrays may be tested using this theory if they can be
decomposed into sections composed of some form of a
cascaded structure (or sections composed of structures

closely resembling a cascaded structure).

ACKNOWLEDGMENT

The author wishes to thank R. C. Minnick for his help
in the preparation of this paper.

REFERENCES

1 W H KAUTZ
Testing for faults in combinational cellular logic arrays
1967 Switching and Automata Theory Symposium
2 W H KAUTZ
Diagnosis and testing of cellular arrays, properties of
cellular arrays for logic and storage
SRI Project 5876 Scientific Rpt No 3 July 1967 119-145
3 K K MAITRA
Cascaded switching nelworks of two-input flexible cells
IRE Trans on Electronic Computers Vol EC-11 April
1962 136-143
4 R C MINNICK
Cutpoint cellular logic
IEEE Trans on Electronic Computers Vol EC-13 Dec
1964 635-698
5 R C MINNICK
A survey of microcellular research
Journal Association for Computing Machinery Vol 14 April
1967 203-241
6 K J THURBER
Fault location in cellular arrays
PhD dissertation Montang State Univ June 1969
7 K J THURBER)
Fault location in cellular cascades
Submitted to IEEE Trans on Computers
8 L. M SPANDORFER J V MURPHY
Synthesis of logic functions on an array of integrated circuits
Scientific Rpt No 1 for UNIVAC Project 4645 AFCRL-
63-528 Contract AF 19(628)2907 Sperry Rand Corp
UNIVAC Engineering Center Oct 1963

Fast multiplication cellular arrays for

LSI implementation

by C. V. RAMAMOORTHY and
S. C. ECONOMIDES

The University of Texas at Austin
Austin, Texas

INTRODUCTION

The inherent capabilities of Large Scale Integration
technology have recently shifted attention toward two
major concepts in the design of funectional computer
subsystems; the concepts of Functional Modules and
Cellular Arrays. '

The Functional Module concept emphasizes the
possible standardization of frequently used common
digital subsystem units such as registers, adders,
counters, etc. Because of the unique iterative proper-
ties also displayed by these units it is common to view
them as building blocks (functional modules), built
on a single substrate of material, the interconnection
of which can expand significantly their functional
capabilities. In addition to standardization, their
massive production may suggest low cost subsystems.

The Cellular Array concept allows the interconnec-
tion of several types of mutually independent logic
blocks, the cells, in various geometric configurations
to perform a desired operation.

This paper is an attempt to combine the above two
approaches in the realization of a Binary Cellular
Array multiplication unit easily adaptable to the
LSI realization techniques and speculate the possibili-
ties of the realization of other similar such functional
units aiming to lower the cost per unit of computa-
tion and possibly increase the overall system reliability.

Multiplication was chosen in the study because it
forms the basis of division and square root operations
by iterative methods as well as others indicated by
design trend of present day computing systems.

89

The methodology and retroactive design procedures
of the Multiplication Array are presented. Intercon-
nection arrangements at the cell level, for the array
formation, as well as the module level by bringing all
module inputs and outputs at the terminals of the
“package’’, for the purpose of assembling larger mul-
tiplication units, are also shown.

Since in any LSI circuit testing imposes a complex
problem some diagnostic schemes are suggested for
reconfiguration and operation under reduced capabili-
ties or even by automatically switching in of a per-
manently connected spare module.

Other LSI considerations in terms of cell or module
fan-in/fan-out, total number of pins required per
package, chip sizes and densities and rough cost es-
timates are also discussed.

Single bit multiplier

“Figures 1 and 2 show the integral parts and the de-
tailed cellular array structure of the multiplication
unit, in which each row of the array corresponds to
one bit of the multiplier. The array uses K-bit operands
producing 2K bit product.

To achieve fast execution time the multiplication
is done by performing K-1 carry save additions (simple
EXCLUSIVE-OR operations) followed by a full
binary addition. Since the cells in the atray operate
asynchronously, the unit as a whole can operate faster
without using a clock pulse.

We shall next explain the single-bit multiplication
unit in some detail. :

9% pall Joint Computer Conference, 1969

I MULTIPLICAND BITS I

]

SHIFTING ARRAY
AND
CARRY SAVE ADDER

SLI4 ¥TTILTAN

|

A |
FULL BINARY ADDER /

ARt |

Figure 1—The integral parts of the asynchronous
multiplication array

Let the multiplicand be represented by the binary
vector M = (mj, ms, - -- my) and the multiplier by the
binary vector N == (ny, Dy, -« - ny).

A kx2k, P matrix is now generated starting from right
to left (whose elements p;; are computed from the
relation ps;; = m; - n;, pse {0, 1} with the following
conditions ;

m;_¢; if n; = 1 and/or

0if n; = 0 and/or y
<1i-—1for

In terms of the array to be implemented, this condition
implies that for the range “i,”” ““j”” where p.; = 0 no cell
will be required to perform a logi¢ function. Thus the
[P] matrix has the following form:

P1,2k—1 P1,2+—2...P1,x...D13 P12 Pu
P2,2r—1 P2,2x~2° ¢ *P2,x" " “Pas P22 P21
Pk,2k~1 Pr2r—2 Prk Pks Pks2 Pk

Z.
il
‘ ,.'{4!4@@,(@’ 2t

¥
D22

Figure 2—The ‘‘single-bit’’ asynchronous multiplication
cellular array

The following example will illustrate the above
matrix formation.

EXAMPLE

MULTIPLY ...

M = (10101) and N = (111111)

000010101
000101010
001010100
010101000
101010000

then the P matrix is P =

The above matrix can be realized by selective AND-
ing of components of M and N. This “Shifting Net-
work’” accomplishes the proper positioning of the
numbers to be added before their addition, just as in
the conventional multiplication. Arrays of Carry
Save Adders are used to perform the addition of these
binary numbers utilizing Wallace’s algorithm.!

The first stage of the Carry Save Adder adds the
first two rows of the P matrix (first two generated
partial products) thus generating two vectors—the
first partial sums and the first carry having the form:

8 = (S, 2k—1 S1, 2k—2- . .51, k. . .811)

¢ = (€1, 261 Cy 2k—2...Cy k. ..Cn); Sqj, Cije{0, 1}

The double subscript is used to identify the above
vectors with corresponding positions of the P matrix
that contributes to their generation.

Fast Multiplication Cellular Arrays 9!

The logic functions yielding the elements s,; and
Ca; are:;

$2; = PuDz + Dy P
C2; = P1;°Pej

where j = 2, 3,---2k — 1. The composite cells are
shown in Figure 3a.

In the subsequent stages the Carry Save Adder will
add three vectors: The sum vector generated at the
previous stage, the carry vector generated at the
previous stage shifted once to the left and the next row
vector of the P matrix.

The logic functions producing the new s and ¢ vectors

S = (Ss 2k—1 Siy2k—2. . -Si, ko - .841)
¢ = (Cq, 25—1Csy 25-2. . .Cy, k. . .Ci1)
fori = 3,4,...k,andj =1,2,3...2k — 1 are:
Cittj = 84iCiyj—1 + SiPit1,; + CopimiPityys

Sitlyi = 8iiPi+1,iCiri—1 T 8ifPit1,iC i1 T+

+ 84iPit1,iC 5y5—1 T+ SisPityy i1

The composite cell ‘C’ is shown on TFigure 3b. After
the Carry Save Addition has been performed for all
the partial product row vectors of the matrix P, a
Ripple Binary Adder is used to add the sum and carry
row vectors of the last stage of the Carry Save Adder.
The typical cell of this Ripple Binary Adder has the
same structure as ‘“cell C”’ of the Carry Save Adder,
except that it ripples through the carries generated to
next high order position and puts out the correct
binary sum which of course involves any carry inci-
dent into it from the previous stage. The output of
the Ripple Binary Adder is the final product of the
multiplication.

The superposition of the “Shifting Array’”’, the “Car-
ry Save Adder” and the ‘“Ripple Binary Adder” re-
sulting in the “Single Bit Multiplication Cellular
Array” is as shown in Figures 1 and 2.

It was found that with a Carry Save Adder there is
considerable gain in the time propagation over the
choice of Full Binary Adder. Assuming a uniform delay
d for each cell in the array, the total execution time
T, of k bit by k bit multiplication is bounded between
the limits (k-1) d < T, < 2kd. The lower limit (k-1)
d is the total delay in the Carry Save Adder while the

Pot, - 1 2

MAJORITY :u MAJORITY

FUNCTION OF Fpy=foy—cy FUNCTION

THREE OF TWO
VARIABLES

Fos "EXGLUSIVE-

Y 3@-% _(? OR"

2 FUNCTION
OF TWO

VARIABLES

VARIABLES

"EXCLUSIVE-OR"
FUNCTION OF
THREE
VARIABLES

Figure 3a, b—Cell “S”, Cell “C”

upper limit 2kd depends on the choice of the device
for the final Full Binary Addition. This, as compared
to the maximum delay requirement in a conventional
multiplier due to k(k-1) d full binary additions plus
k-single bit left shifts. The asynchronous multipli-
cation array, as implemented is shown in Figure 2.

Two-bit multiplier

Upon examination of this array it was decided that
the time propagation and therefore the computational
speed could be further improved by reducing the Carry
Save Adder stages, in other words, the rows of the
array. This also improves the attenuation factor of
the cell inputs as they ripple throug the array.

An alternate multiplying algorithm, examining the
multiplier bits in subsets of two, was investigated re-
sulting in the block diagram of Figure 4 which dis-
plays the integral parts of the modified array. To il-
lustrate the algorithm better, this was assumed to be
an m X n instead of a square array and the multiplier
parts now are:

1. The m + n 4 2-—Dbitregister for the multiplicand
2. The n + 2 —bit register for the multiplier

3. The m + n -+ 3—bit registers for the final
product

The Binary Shifting Array (BSA)

The Input Control Circuit (ICC)

The Carry Save Adder (CSA) -

The “End Around Carry’’ Accumulator (EACA).

N ok

Before investigating the above circuits the general
algorithm coneept must be established. This algorithm

92 Fall Joint Computer Conference, 1969

{ M+N+2 —

T

M+N+2
YITTJLLTOANW II9 - 2 + N

) |

Figure 4—The modified “two bit” multiplier

calls for three types of decisions in each multiplication
stage: ADD or SUBTRACT a single multiple” of the
multiplicand and SHIFT without generating any mul-
tiples of the multiplicand. This is opposed to the
conventional multiplication which requires only shifts
of the multiplicand and their addition. For the pos-
sible four 2-bit combination one has the following
obvious interpretation: :

a. Combination 00; = 04y Add nothing to the
partial product

b. Combination 01, = 1, Add one times the mul-
tiplicand to the partial product

¢. Combination 10, = 2;, Add two times the mul-
tiplicand to the partial product

d. Combination 11; = 33 Add three times the
multiplicand to the partial produet.

Combinations (a), (b) impose no difficulty in their
generation. Combination (¢) requires a 1-bit shift of
the multiplicand to the left according to the obvious
simple fact: to generate any 2"-th multiple of a binary
number (the multiplicand in thisicase), where n is any
integer n > 0, shift the numberin-bit position to the
left. For example, to generate 16)Xm = 2¢Xm, shift
m four bit positions to the left. For combination (d)
one notices that the multiplicand can be expressed
in the following two ways:
(1) (@Xm)— (I1Xm) (2) 2Xm)+ (1Xm).
The first representation was chosen for this multi-
plication algorithm, according to which a comple-
mentation (2’s complement) of one times the multi-
plicand is performed and added to the corresponding
present stage of the multiplication array while a re-

quest is issued to add one times the multiplicand in
the following stage in that order. Thelatter request is
taken care of by adding “1” to the bit pair of the
multiplier corresponding to the next multiplication
stage, thus increasing the pair’s integer value by one.
This is commonly known as a “carryout.”

The subtraction of multiplicand from the partial
product is performed in two stages. The one’s comple-
ment of m is “added” into the Carry Save Adder of
the row. A “one” in the lowest order bit position cor-
responding to the row is generated and inserted into
the End-Around-Carry Accumulator (EACA), at
the appropriate column. Together this constitutes
adding the two’s complement of m after appropriate
shifting. Thus any sequential borrow propagation is
prevented at the Carry Save Adder stages. Since the
“End-Around-one’s”’ if generated by any or all rows
are inserted at distinct columns of the EACA the
latter performs at most one accumulation during a
complete multiplication cycle. It must be remembered
that partial produets generated at each row are bussed
to the next row of cells with a 2-bit left shift.

The following two tables indicate the decisions that
have to be made when the various bit pair combina-
tions are encountered at a given stage when no carry-
out (Table I) or a carryout (Table II) has been gen-
erated in the previous stage.t

Multiple of
Bits m generated Carryout

Multiple of
Bits m generated Carryout

00 0 0 00 1 0
01 1 ‘ 1 01 2 0
10 2 2 10 -1 1
11 -1 -1 11 0 1
Table 1 Table IT

Finally to illustrate the overall performance of the
modified multiplier with minimum effort an example
of a 4-bit positive multiplicand times a 6-bit positive
multiplier producing a 6 4 4 = 10-bit long product
is presented. The extension of the algorithm and
techniques involved can be easily extended for an
arbitrary bit length multiplicand or multiplier.

The binary shifting array

The BSA generates the elements p;; ¢(0,1) and such
that

pi=0forl £j<m-+1;i>3
j€<m+n;i>3

Fast Multiplication Cellular Arrays 93

where
m = no. of bits in M

n = no. of bitsin N

with the rest of the p:’s varying according to the
corresponding multiplicand bits. Its implementation
procedure is as follows:

1. Provide for one additional bit pair at the most
significant part of the multiplier by inserting
two zeroes in the register. This will take care
of a possible generation of a “carryout’” at the
two most significant bits of the multiplier. Pro-
vide for as many zeros to the left-hand side of
the multiplicand register to make it (m + n + 2)
bits long.

2. Examine the multiplier bits two at a time from
the least significant to the most significant bits.

3. Generate the following three numbers for each
multiplier bit pair:

a. The multiplicand

b. The multiplicand inverted (one’s comple-
complement)

¢. Twice the multiplicand.

Repeat for the next bit pair until all n-multiplier bits

are used. For this particular example the proce-
dure will yield the formation of possible CSA inputs,
where the “boxed in”” numbers will be the rows of the
P matrix chosen by the control lines of the ICC (Fig-
ure 5a).
The two numbers are placed in the registers with the
least significant bit of the multiplier starting at the
top. For every bit pair of the multiplier there is a
corresponding triplet of “AND’’ gate rows and one of
inverters, all together being capable of generating any
of the desired forms of the multiplicand ecalled for in
Tables I and II.

The “AND’’ gates have two inputs and one output,
one of the inputs being a multiplicand bit bussed
across and the other being the appropriate line acti-
vated by the ICC. The outputs of the leftmost column
are used to keep count of the “End Around Carries’’
and are directly connected to the appropriate positions
of the EACA.

The input control circuit

The ICC is a column of (n/2 4+ 2) rectangular cells
(see Figure 4). Its operation is to select the appropriate
multiplicand multiple for each possible bit pair com-
bination, by the way of three output lines: Ly, L., Ls.

1 0 1 1 Multiplicand

0 01 0 1 0 1 1 Multiplier

!
0}0 0 000001011
]

£

11 1 1 1 11101 00
L

i

010 0 0 0 0 01 0 1 1
! _
0:000001011

+

1’111110100
0{00001011
020001011

1)1 11 01 00

]

0,0 0 1 0 1 1

'

0,0 1 0 1 1
111 0 1 0 0

]

011 0 1 1

Figure 5a—Multiplication example

Figure 5b—Cell-K of the input control circuit

94 Fall Joint Computer Conference, 1969

L; activates the single multiple of the multiplicand (first
“AND” gate row of each group of rows in the ESA).
L, activates the 2’s complement iof the multiplicand
(second “AND” gate row, directly under each row of
inverters). L; activates the double multiple of the
multiplicand. Therefore, the typical cell of the ICC has
B,, B, and Cy as inputs and L;, I, and L; as outputs.
Its logic functions are shown below. B and B; are any
two consecutive bits and C, is the c¢arryout. The logic:

M M 2M
B1 B2 Co Ll L2 L3

— O OO0 0
— et OO =00
—_— QO = O = O = O
OO0 OO O
O OO RQOCOC
SO ~—OoOO—=OO

Note: The interpretation of By, B;= 01 is not one times
the multiplier as it would obviously appear, but it is
instead two times the multiplicand becayse of the way
the multiplier is placed in the register, vertically with
the least significant bit on the top. The By, B, = 10
combination is interpreted in a similar manner

Ll E]I—BZCO + B1E260

Ly, = Eszco + B1B260

Lz = BiB:Co + BiB:Cl

N —— S —
SATATATA A AT [
i eiaininomalin:
A A A A A H

//C/u C/u C/'-'/C/‘J "/u C c/ys / I B
L) i
cccmc‘iy(f(ﬁy « H |

y S Kl 8 8 C 8 é -

Figure 6—The binary multiplying cellular array

The typical cell “K” of the ICC is shown in detail in
Figure 5b.

The carry save adder, end around carry
accumulator and full binary adder

A layout of the inputs to the CSA stages, the EACA
and FBA is displayed below. The groups of binary
numbers between the lines represent the actual inputs
to a particular row of cells. The first three groups are
CSA row inputs. The fourth group represents the EACA
inputs and the final group, those of the FBA. All binary
numbers representing partial products are of course
P matrix row vectors activated by the ICC lines due
to a particular multiplier bit pair combination.

110100 Istpartial product
0100 2nd partial product

1st partial sum
1st carry
3rd partial product

100011000100 2ndpartial sum
0111001000000 2nd-carry
01011 4th partial product
010001000100 3rdpartial sum
1010110000000 3rdcarry
0 1 1 1 EndAround Carries
000111010001 4th partial sum
0100000001000 4thcarry

1100111011001 Final Sum (Result)

Figure 6 shows array after superimposing the in-
dividual circuits.

It can be easily noticed that there is a reduction
by a factor of two in the total number of cell rows re-
quired for the array and therefore in the total final
propagation T,, at the expense of some additional
control logic, a number of inverters and an additional
stage for the EACA. No further complexity in the
cell structure results, thus the otiginally developed
cells were used, with a minor modification for cell 8
as shown in Figure 7a. This cell may also be present
in the single bit multiplication array.

It must also be noticed that the overflow of bits
resulting in the left-most significant part of the final

Fast Multiplication Cellular Arrays 95

S1j

/ci, i-1

/ ‘
c1+ 1: j S

1+1,]

Figure 7a—Cell “S”—A form of Cell “8”

NS /N -~

<
)
<

A4

Figure 7b—Cell “R’”—Reconfiguration cell

product register may be advantageously utilized for
sign and decimal point considerations.

Diagnostics and reconfiguration

In order to incorporate diagnostics in the array
and study the interconnection problem, a standard
size module had to be assumed. It was felt that the
implementation of a 64 X 64 bit multiplier would be

a good choice for all practical purposes. An intercon-
necting scheme of standard dimension 64 X 8 bit
modules to realize the 64 bit multiplier was then de-
vised aiming to minimize the number of pins per
module necessary for the interconnection.

As seen in Figure 8, the resulting 64 X 64 multi-
plication unit requires 2-Full Binary addition stages
and 4-Carry Save addition stages per module, a
total of 32-Carry Save additions and 15-Binary Addi-
tions (only one for the first module). However, there
is a real time overlap between these various stages,
and by utilizing a pipelining technique and a series
of flip-flops after each FBA, a 100 percent utilization
of the unit during computation is achieved, and the
multiplication cycle is considerably faster. This is
illustrated shortly in connection with Table I1I.

The basic module as displayed in Figure 6 has to be
modified further for the interconnection. An extra
FBA and additional gating for diagnostic purposes is

10, _» 64
-t ‘

MODULE - 1

FRA-1

~ torage
5|+ Bits
L4 -
MODULE - 2 b8 Bits
—4 ¢ 2 -Bits

FRA-T
Flip Flop Storage

P B FoW 44

MODULE -3 l

MODULE -4 l

MODULE - 5 l

MODULE - 6 l

MODULE - 7 1

MODULE - 8 l

SPARE MODULE

v ¥ v
[PRODUCT REGISIER]
128, '

-

Figure 8—Example of an assembled 64 X 64-bit
multiplication unit using the pipelining scheme

96 Fall Joint Computer anference, 1969

introduced in every module between the output of its
respective FBA and what is shown as a product
register. The typical newly developed cell for the
diagnostics and reconfiguration is shown in Figure
7b, while the above mentioned modifications are dis-
played in detail in Figure 9 for a typical module.

As seen, three additional control lines are needed
to perform the following functions.

a. To relay a Fault or No-Fault signal, indicating
that a fault has or has not occurred in one par-
ticular module (NF/F) (e.g.,if F = 0 NF = 1).

b. To relay a No Shift signal for the output of this
module, (NS = 1) if no fault has occurred in
the preceding module.

¢. To relay a shift, eight-bits to the right, (S = 1)
for the output of this and all subsequent modules
if a fault has been detected in the preceding
module.

The detection of the fault could be accomplished by
a software routine which may check the final product
of the unit periodically and appropriately set the flip-
flops of the control signals.

By shifting the outputs of all subsequent modules
to the malfunctioning one eight-bit positions to the
right while foreing the output of the faulty module to be
equal to zero at the same time and simultaneously
introducing the spare module which is permanently
connected to the unit, one can still achieve 100 percent
computational efficiency. If another module fails to
function properly, by applying again the same recon-
figuration scheme the unit will function with a reduced
capability since the eight-least significant bits of the
multiplier will be lost. No provision has been made at
this point if two modules fail to function properly

. L,

64-8 63-8 -8
MULTIPLICAND
h"‘_ ~ Pmns

P
I

Figure 9—The combinational logic gating
for reconfiguration

at the same time. At least one of them must be replaced
to put the multiplication unit back in service.

Aiming to maximize the number of multiplications
per unit time, as already mentioned, one can introduce
storage elements at intermediate points. This allows
the unit to accept a new set of operands without waiting
for the total completion of the present computation.

Consider an m X m bit multiplier module. If the
intermediate computations are stored after the Carry
Save adders, the first Binary adder and the second
Binary adder, the rate of multiplications in the module
per unit time will be

1

= ————— where
max [tcs, tb] w

m

ot
o
®

|

= Total time propagation through the CSA.

t, = Total time propagation through the I'BA for
the binary addition of two m-bit binary
numbers.

Then the number of storage elements required per
module is 2m + m + m = 4m. If, however, storage
elements are inserted at the outputs of the two Binary
Adders only, as shown in Figure 8, the maximum rate
of multiplications in each module per unit time will be

1
Boee = £ 1T
while the total number of storage elements required
will be decreased by half, that is 2m.

The table below gives the sequence of events in
the first four modules of the 64 X 64 composite mul-
tiplier unit of eight modules, based on the pipelining
technique.

Table ITI

MODULES

TIME UNITS 1 2 3 4
By Bu Bu Bu

By By, Br Bxn Ba
By Bsy, Bz Ba Bis

By Ba, Bz By, Bis By, By
B51 B517 B4l BG].) B33 Bﬁl} B24

QU QO DD

Each time unit in the above table corresponds to the
factor t, + t., and B, represents the j* binary
addition of the i** multiplication.

Fast Multiplication Cellular Arrays 97

o o o s e A

Figure 10—An alternate interconnecting scheme for
the 8-modules of the 64 X 64 multiplication unit

Another interconnecting scheme which has not been
investigated yet in detail but seems to be equally as
efficient, considerably faster and adaptable to the
proposed reconfiguration technique is the one shown in
Fig. 10, where each level of nodes represents FTBA’s
Figure 10, where each level of nodes represents FBA’s
performing in parallel with an anticipated multiplication
cycle of

[1 + loggn] ts + tca .

LSI implementation

The implementation shown for the 64 X 8 module
reveals a number of characteristics suitable for large
scale integration. Among them are the repetitive
interconnections of simple identical cells and the
modularity suitable for expansion and reconfiguration.

Below some of the approximate hardware require-
ments are pointed out.

Approximate number of PINS/MODULE

m + n + 2 needed for the multiplicand register
m + n + 2 needed as inputs to the second FBA
m + n + 2needed for the product

n + 2 needed for the multiplier register
three-control pins for reconfiguration

Al

Approximate number of CELLS/MODULE

The cells are the kinds already discrussed: C, S,
8/, R, K. All are present in a module.

m X n/2 cells needed for the CSA stages

m + n cells needed for the EACA stage

m -+ nreconfiguration cells

2 (m + n + 2) cells needed for the two FBS’s
n/2 -+ 1 cells needed for the ICC.

CUR 0N

Approximate number of GATES/CELL*

For cell “C” approximately seven-gates are required

For cell “S”, “S”” approximately three-gates are
required

For cell “R” approximately two-gates are required

For cell “K” approximately nine-gates are required

The above estimates point out the fact that testing
at the individual cell or circuit level (item yet to be
examined) becomes a problem, especially when the
complexity of the chip is increased, with a paralleled
decrease in reliability and yield of non-defective chips.
However, using the modular approach it is advisable
to perform the testing externally on the module and
discard the malfunctioning units. This would consider-
ably decrease the amount of logic on a chip, which would
otherwise have to be inserted for the testing of the
individual ecircuits. This approach seems to be eco-
nomically feasible since it is estimated that by 1970
an LSI chip of 100 X 100 mils in size may contain
200 components, at five cents per component, while
by 1975 an LSI chip of 300 X 300 mils in size may
contain as many as 3,600 components at the cost of
about one cent per component. Therefore, miniaturi-
zation of LSI chips will disecourage the testing on the
individual ecircuit level, while the loss due to the
discarding of modules after tesing at the frame level,
will be negligible.

In view of the above considerations and since the
present state-of-art high density MOS circuits are
being driven at 10 MHz, implementation of the
multiplier modules as the one presented by MOS cir-
cuits appears very desirable from a manufacturing
viewpoint. A reasonable building block might be a
64 X 64 bit multiplication unit requiring an approxi-
mate number of 5000 active elements (field effect
transistors), One could also visualize the whole unit
incorporated in one or two chips. Where speed is the
primary requirement, the unit can be designed using
fast bipolar transistors, with an expected five ns delay.
Assuming then a 64 X 64 bit module is implemented
by bipolar transistors, the execution time could be
in the neighborhood of 0.225us, which when pipelined,
the maximum number of multiplications per second may
be approximately 5 X 108, An MOS array of the same
module will perform in an order of magnitude slower
than in the bipolar case.

* The above gates are mostly “AND” gates with the “OR” gate
not included in the count. They are also 2(m + n) additional
gates needed for the reconfiguration scheme and m X n gates for
shifting each array.

98 Fall Joint Computer Copference, 1969

The pin count also indicates that the current design
is within the state-of-art of the MOS technology.

The performance figures given :above are educated
guesses since the circuit and intérmodule delays are
dependent on the circuit types, their interconnections,
the chip topology, ete. In addition;the design examples
described in the previous sections indicaté the ease
with which the array could be partitioned to fit
reasonable unit or chip sizes.

CONCLUSION

Since fast multiplication has become the basis of
iterative divisions and square roots in fast computerss:?
there appears to be a need for cheap array type, LSI
realizable multiplication subsystems. This paper reports
the design methodology and the detailed implementa-
tion of one such structure. Ease of diagnosis and capa-
bility of reconfiguration were used as twin requirements
in the final design. When the unit is composed of a
number of modules and a malfunection is detected in
one of them, a method of switching automatically in
a spare module was presented. An estimate of the
logie circuitry in the hard core (that portion of the
unit which must be operating without any faults)
during testing is found to be less that 14 percent for
a 32 X 32 module, 9.7 percent for 64 X 64 module
and 4 percent for 128 X 128 module. Therefore,
as the size of the multiplication module-unit increases
the relative size of the hard core décreases very rapidly.

To conclude, the cellular array implementation of an
asynchrouous multiplication unit; using mostly non-
carry-propagating Carry Save addérs was accomplished.
The final cell design and the control and the recon-
figuring circuitry are quite simple.

A number of additional studies:needs to be done in
the future. The design of self-diagnosable and repairable

functional arrays appear quite feasible and‘ worth
considering. The possibility of composite design of
a multiplication, division and square rooting unit using
techniques presented in this paper could be very use-
ful, particularly if the division and square root al-
gorithms are based on the availability of fast multi-
plication units such as those discussed in this paper.

ACKNOWLEDGMENTS

The authors would like to thank Mr. Gary Wang of
the NASA Electronics Research Center for sharing
with them some of his thoughts on the subject. Also
Mr, W. R. Adrion, graduate student at the University
of Texas at Austin for his constructive suggestions.

REFERENCES

1 C S WALLACE
A suggestion for a fast multiplier
IEEE Trans Prof Group on Electronic Computers Vol 13
No 1 Feb 1964
2 Methods for high-speed addition and multiplication
NBS Cir No 591 1958
3 O L, MAacSORELY
High-speed arithmetic in binary computers
Proc IRE Vol 49 No 1 Jan 1961
4 M LEHMAN
Short-cut muitiplication and division in automatic binary
digital compulers
Proc Inst Elec Eng Paper No 2693M Vol 1058 Sept 1958
5 I FLORES
The logic of computer arithmetic
Prentice-Hall Ine 1963
6 D FERRARI
A division method using o parallel multiplier
IEEE Trans Prof Group on Electronic Computers Vol 16
No 2 April 1967
7 S F ANDERSON et al
IBM system model 91: Floating point execution unit
IBM Journal of Research and Development Jan 1967

The Pad Relocation technique for

interconnecting LSI arrays of imperfect

yield

by D. F. CALHOUN

Hughes Aircraft Company
Culver City, California

INTRODUCTION

The interconnection of circuits required in Large Scale
Integration (LSI) using multi-level metalization above
monolithic semiconductor arrays is taking basically
two approaches. One is predicated on processing with
a reasonable yield entire arrays without any semicon-
ductor defects (i.e., 100 percent yield chips) which
allows once-generated fixed-wiring patterns to obtain
the required interconnect. The second approach aims
at much larger semiconductor arrays (ie., full-slice
LSI) for which defect-free processing cannot be ex-
pected. Thus, probe tests are made of the semicon-
ductor circuits processed on each LSI slice (or wafer)
and record is made of the good and bad circuit posi-
tions. Unique interconnection masks are then generated
to interconnect good circuits in each wafer’s particular
yield pattern using certain “discretion’” in avoiding
the bad circuits. As a result, the 100 percent yield
approach emphasizes the need to use standard inter-
connect masks but is complexity limited by the oc-
currence of defective circuits in larger arrays, whereas
approaches capable of routing around the defective
circuits have required a full set of unique signal inter-
connect masks for each wafer’s particular yield pattern.

The Pad Relocation approach, however, allows the
interconnection of full-slice LSI arrays containing de-
fective circuits to be accomplished with a minimal
amount of unique interconnect per array. Only a
portion of one of the typically three interconnect levels
varies from array to array, thus allowing significant

99

improvements in the cost, reliability, and testability
of the finished arrays as well as less limitation on cell
yields and array complexities.

Description of the Pad Relocation technique

Pad Relocation is a technique which allows a pre-
determined standard pattern of good circuits to be
established on all LSI slices used to perform the same
array function regardless of the varying yield patterns
determined by DC wafer probe tests. This is accom -
plished by relocating the pads of nearby good circuits
to the positions where good circuits were specified
by a prescribed master pattern, but were not- found
during wafer probe tests. The pad positions above a
bad circuit (or any unused circuit) are isolated from
that circuit by a layer of dielectric. Where good cir-
cuits are found in expected good circuit locations,
those circuits are used without relocation. Thus, the
Pad Relocation technique functionally establishes a
specified pattern of good circuits as if there had actually
been a 100 percent circuit yield in that pattern. A
single wiring pattern can then be generated for all
the LSI arrays of the same function to accomplish the
much more complex signal interconnect between the
master pattern circuits. By determining standard
cross-under areas within the Pad Relocation layer
where relocation lines need never occur, it has been
shown that large arrays can be interconnected with
the same number of total interconnect layers as re-
quired by discretionary techniques.

100 Fall Joint Computer Conference, 1969

With each wafer’s good circuits located in the pre-
determined master pattern, an optimal standard
interconnect of the circuits can be made for each
wafer. Since this signal routing and mask-making
expense is incurred only once for each function, much
more effort can be spent optimizing the signal routing.
As a result, the total number of interconnect levels
(including Pad Relocation) may actually be fewer
(for very complex arrays) than other techniques by
which the interconnect is generated for each wafer’s
particular yield pattern.

The Pad Relocation technique has been 100 per-
cent successful for all integrated circuit and special
LSI wafers considered so far. The “master pattern”
gives the prescribed locations of good ecircuits to
which each LSI array’s particular yield will be tailored.
Statistically, if M is the percentage of wafer circuits
in the master pattern and Y is the wafer circuit yield
from probe tests, then only M(100-Y)/100 percent
of all wafer circuits need to be relocated. For example,
if Y = 35 percent and M = 30 percent, then the
relocation (as a statistical average) of 19.5 percent
of the wafer circuits will establish a master pattern
that uses 86 percent of all the good wafer circuits.
This would allow 120 good circuits to be located in
prescribed positions, leaving an average of only 20
good circuits unused.,

An example

The methodology of the Pad Relocation technique
is best described by example. Figure 1 shows the map-
ping of circuits on an LST wafer. Each dot represents
the position of a semiconductor cell such as a full
adder, or a quad two-input NAND gate cell, or a flip-
flop, ete. Figure 2 identifies with a slash (/) the loca-
tion of all circuits determined to be good by dc wafer
probe tests on a particular slice.. The yield of wafer
circuits varies from 10 percent to 90 percent depending
on the circuit complexity, and the locations of the
good circuits cannot be predicted from wafer to wafer.
This makes it impossible to use standard intercon-
nect patterns without first transforming the various
wafer yield patterns to a singlé standard pattern.
The circuit yield (the percent of ‘total circuits which
are good) for the wafer in Figure 2 is nearly 30 percent
and yet there is not a single area jof 100 percent yield
that is larger than three circuits bjr two circuits. Thus,
100 percent yield could obtain umits with only about
5 percent of the complexity allowed by full-slice inter-
connection techniques. The goal is to tailor by some
efficient means the locations of the good circuits in
Figure 2 to a standard pattern that may be used for

Figure 1—Integrated circuit wafer

Figure 2—Wafer after test—Slashes show good circuit
positions

all wafers with about the same circuit yield. For higher
vield wafers, there are other standard patterns which
use more good circuits.

Figure 3 shows a master pattern (in heavy dots)
which can be used for wafers having at least a 25 per-
cent yield. That pattern is characterized by a more

The Pad Relocation Technique 101

Y EEY X Xl
e@ o s 00 0 000 0 00

TR AN XN KRN R

e@ @@ o @0 s
se o o v@ocso@ @ @O
Y REE X KRN EEIENY J
Y FEEEEEEY ENAE RKEN BRI
NN XIAE EIIEN IRECEEN NN I
Qe oo o O XX X R KX KRN X
Y XY KX EEORE ITEN R
EEEE X X EREE IR BB AC
.0......0-..000.......
LY X o-"....a.o.o.-oc.o
IR XX AN IACECN BRI
Y RIREICIY RECECE IR BRI
‘oo'.o.-.o.o.o.c....
o0 e 0o 0060 0@ @ ® e 0.0 o

' X IEENIITAN KN N

o 000 0 e@@ * c@° 00 o0

s oe@ e ose e e o0 0@
I IEN

Figure 3—A master pattern of good circuits—All wafers
will be matched to this pattern by the Pad
Relocation technique

dense usage of good circuits toward the center of the
wafer with good circuit positions never adjoined on
more than one side by another circuit in the master
pattern. The latter characteristic facilitates the routing
of standard signal interconnect as well as the reloca-
tion of circuits in at least three directions. The matching
of the master pattern to the expected yield distri-
bution as a function of distance from the wafer center
optimizes the conflicting goals of minimum number of
relocations and maximum probability of fulfilling the
master pattern.

Figure 4 shows the Figure 3 master pattern super-
imposed on the particular wafer yield of Figure 2.
The objective now is to route a nearby good circuit,
shown by a slash, to each heavy dot (i.e., master pat-
tern position) which initially is without a good cir-
cuit. This specification can be completed manually
giving a coding sheet description of necessary circuit
relocations; or a simple computer routing program can
output a punched tape or cards that can be used to
make a mask automatically. The computer routine for
Pad Relocation will use about two orders of magni-
tude less run time than a customized signal routing
primarily because no cireuit placement or logic signal
routing are required. Pad Relocation requires only
that a good circuit be identified for relocation to each
position in the master pattern which did not initially
have a good circuit. A later paper will present work
that is under way to automate the Pad Relocation

/ @

@ f) .
Y Y24 Y EEEE I
-o/0/ - - ®- ./ - @®.

/)7 @/ . @. 0. . .0 .0..
.o e @ /9 -/ -9/ /@
X SV YN VAL Ry
AL Y VRV SNV YRR YAV
/e -0 9.9/9/0/. 0.
.-/ - @. - .9/ @ .. @. .
.o /e -0 .0/ / .0/ /)
RN VEREEYE VERY EX B TN
e //9/0/0.9.-0.0///0.
SR VAT Y YA I
NN NN E YEREY A .o
.-/ 0-0:-/-0../0/9.-/0
- ®. -7/ - .70..0.
IRV EN YA I WIRN VIR
AR I
CYAR

Figure 4 —Master pattern superimposed on the particular
vield of the Figure 2 wafer

selection and specification with the use of interactive
graphics.
Figure 5 shows a manually generated specification

AREA A

./——c-.-’.. 1.
Py /){717£'i1ﬂ:1177/
o1 (e "8 57574, 041
SOy --’*:"‘/_{;4(7“'
".‘ﬂ’/‘ﬁ‘/", -04?7;
/P SR Layna Bl
-ojf-/fi--/i/ﬁ-ﬁo
:;_;7;4;4:;4"@.'
it

Tigure 5—Specification of a set of relocations necessary
to completely implement the master pattern of
Figure 3

102 Fall Joint Computer Conference, 1969

of possible relocations that completely satisfies the
master pattern of Figure 3, using the good ecircuit
positions of the wafer in Figure!2. The longest relo-
cation line length is less than [0.45 inch. Figure 6
shows how the relocation in area A of Figure 5 can be
accomplished without crossovers for a quad two-input
gate cell. Each gate of the bad circuit at the lower left
is functionally replaced with a good gate from the top
right circuit. It should be noted that the computer
needs only subroutines for leaving (or cntering) a cell
from the top, bottom, left, and right, for moving paral-
lel lines over some number of cells, and for making
ninety degree turns in order to d¢ all the possible Pad
Relocation routing patterns. Figuix'e 7 shows the actual
Pad Relocation of an SN5480 gated full adder above
a silicon wafer using 0.002 inch aluminum lines on
0.0035 inch centers. Figure 8 shiows how simple the
Pad Relocation mask is if it is considered as a set of
the above mentioned subroutines.

Intermediate step to full wafer LSI

TFigure 9 shows an intermediafte step to full-wafer
LSI using the Pad Relocation technique. Three 4-bit
Modular Multiplier modules are @0 be fabricated from
the three bordered half-inch square areas (as was sug-
gested in a 1968 FJCC paper by D. F. Calhoun).
Within the three bordered areas, slashes again repre-
sent good circuits and circles show the master pattern

Figure 6—A set of pad relocations necessary to replace
functionally the quad two-input gate circuit in
area A of Figure 5

Figure 7—Pad Relocation of an SN5480 gated full
adder above a silicon wafer (Using 0.002-inch
aluminum lines on 0.0035-inch centers)

locations. The lines terminating in arrowheads show
how three, eight, and five good circuits can be relo-
cated into the positions circled to establish the same
pattern of good circuits for each module, thus allowing
the use of one standard signal interconnect pattern
for all subsequent modules tailored to that pattern.

Figure 10 demonstrates the simplicity of a coding
sheet specification of the necessary circuit relocations

Figure 8—Mask pattern for the pad relocations specified
in Figure 5

The Pad Relocation Technique 103

2 % & @ # & 2 € ¥ %

&
*
Ll
* .
A 4
* a
i
* &
* e
* .
* &
v e
* e
* .

g.¢ % o & @
¥

Figure 9—Pad Relocation routing for three 200-gate
modules on a single 1-14inch wefer

for the three multipliers of Figure 9. Figure 11 shows
the four possible Pad Relocation interconnect patterns
which are necessary for the LSI multipliers. For these
modules it seems appropriate to incorporate simple

wawe PAD_RELOCATION LS1 euone HUGHES o, o o6 enom. vo..
TIRCOIT, RECOTATION OIRECTION
123456 ’LLE&E‘E}:&L _%E‘L)‘mz.—_— .3 Vﬂ]ﬂ!zﬂl [43 84 45 45 47 l!wsli?ﬂ')lﬁ%gg_ﬂhggg
CS] Tl Til, i ADN)
T B3 i EEEiclolcloe] 3T 11 11T
H SPECIIFIEIS] [THIE] 1
2]] vl
8] of 1m0 |THE|
JORE| oolo] [C[1RICIV[I[T;
7 L] [T HIAT] WilLL] [Ble]]
H 8] |] REJLIOICIATE]:
i L, 11
H ' L. [2] Rl=! [R[1]G]H|T]
v 10 L]t L{L_LEF‘I'
! 12| L4 B RIE[LO]-
] ICAIT|I
TS}t fckEm] 2l 1 T
-1 2] 3 1L
I HH{CloffuMn] 1313
g PIELC] [FTJE]S
g 1[c Lo]-
g CIA[T[1[OIN] MAJS
PAT Tk
o €] Us]ElD] Jal
9|] H TASIRC HT
PLOS1[T[TJON[
[

"
)
L.
Q]
m|
rad
Ll
Gl

i

HUGHES AIRCRAFT COMPANY

7094 FORTRAN CODING SHEET

Figure 10—Coding sheet specification

SN5480
FULL ADDER
PAD POSITION:

(14 PADS EACH

Figure 11-—Four relocation patterns for SN5480’s

signal cross-under lines and power distribution in
the Pad Relocation level so as to require only two
additional levels of interconnect above the tested
LSI chips.

A Pad Relocation LSI hardware program

An LSI hardware development program began in
January 1969 (in which Hughes Aircraft Company
contracted Texas Instruments to do the multi-level
processing) and which resulted in fully tested and
packaged 207 gate arrays in May 1969. During this
program, (1) TI fabricated and tested one type of
their LSI wafers having a certain mix of gates and

flip-flops, (2) TI supplied the yield information on

each wafer to be processed for Hughes, (3) Hughes
generated both the one standard signal interconnect
mask for all wafers as well as an individual Pad Reloca-
tion mask for each wafer, and (4) using the mask speci-
fications from Hughes, TI processed the two additional
levels of interconnect and tested and packaged each
of the finished units. Similar programs for higher
complexity arrays have since been initiated. The
results of this program are described below.

The logic array to be built in LSI

Investigations were made three years ago at Hughes
Aircraft Company into the applicat'on of LSI arrays

104 Fall Joint Computer Conference, 1969

to techniques for doing the Ver\? high speed sum-of-
products computations required |in advanced digital
filtering systems. A result of th]s study was the de-
-velopment of the high speed “‘\/Iodular Carry Advance
Multiplier” which was descrlbed 'in a 1968 Fall Joint
Computer Conference paper by D. F. Calhoun. Among
its characteristics is its modularity which allows
longer wordlength multlphcatlom to be efficiently ac-
complished (in terms of speed and parts) simply by
paralleling more of the identical modules. A 5-bit
sign-and-magnitude Modular Mu]tlpller designed with
four types of logic gates and a J K flip-flop was thus
chosen as the vehicle for LSI development on this
program. Such an array forms and. stores in a register
the 9-bit sign-and-magnitude product of two 5-bit
operands. The 5-bit multiplier design uses 153 NAND
gates and 9 flip-flops (each equlva,lent to six NAND
gates) for a total of 207 1nterconnected gates per LSI
wafer.

The logical interconnection of 207 gates using less
than one square inch of an LSI wafer represents well
any state-of-the-art bipolar LSI approach. Two levels
of interconnect (including the Pad Relocation) were
used above the tested wafer which already had a first
level of metalization for component interconnect.
In terms of cross-over complexity, signal linelengths,
and circuit fan-outs, the Modular Multiplier design
can be considered typical of a 200 gate logic array.

Description of the chosen LQI slice

The chosen semiconductor slice for this LSI develop-
ment program was the Texas In[struments type “K”
slice. Basically, the K slice is a blploar array of tran-
sistor-transistor logic (TTL) gaﬁes and flip-flops oc-
cupying an active area of about /1.1 square inches. A
picture of this LSI wafer is shown in Figure 12. The
array is subdivided into 298 cells of dimension 0.084
inch by 0.044 inch. Of the 298 basic wafer cells, 170
are split into two 42 by 44 mil half-cells for gates while
the 128 JK flip-flops on the wafer occupy full 84 by
44 mil cells. The distribution of logic elements on the
K slice is shown in Figure 13. Each cell labeled “‘3”
has two independent three-input NAND gates while
the adjacent cells labeled ¢“5” have an independent
five-input NAND gate and a one-input NAND gate.
In three of the rows of gates a single seven-input
NAND gate designated by a ‘7"’ was processed instead
of two three-input NAND gates The rows of full-
sized 84 by 44 mil cells contain the JK flip-flops, which
are labeled “FF”. In total therej are 642 logic gates
(170 ones, 264 threes, 170 fives, 'and 38 sevens) and
128 JK flip-flops pracessed on the wafer.

FLAT SIDE OF SLICE

Figure 12—Texas Instruments LSI type “K" slice
(HAC Fhoto 4R07185)

LSI ARRAY - SLICE “K"

s‘nnmu.s
‘ s
44 MILS 3|sfa|s|a|s|[3]s
f a]s[als]als[a]s[a[s]a]s
3[s|als[3]s|als]s]slals|a]s]a]s
a[s]a]s[a]s]a]s]a[s][a]s]a]s]a]s
e fle F|F FlF Fle FlF F{F FlF F|F F|lF F
3[s]a]s]a]s[a]s[a]s]a]s]a]s]|a]s][3]s]3]s[3]s]3]5
F F|F FIF FIF F|F F|F F|F F|F F|F. FlF F|F F F
7[s []s]7]e]7]s[7]sl7 s s{7]s]7[s{o]s[7]s]7]5
€ r|lf FlF F[F FlF ElF FlFr F|F E|F F|F F|F F F[F FIF F
s[s]as|a]s[a]s]a]s]s]sls]s{s][s{s]s]s]s]{a]s]s]s]a]s]=]5
F F|fr F|F F|F F|F F|F F|F F|F E]F F|F F]F F|F F|F F|F F
a[elafs|ss]a]s]s]s|o]sfa]e|a]s]a]s]afs]als]|a]s]|a]s|a]s] r1eamus
r fFlr e|lF F|F FlF F|F F|F €|F F[F F[F ¢ ele F[F FlF F
1lsfrfe]]]s]]| o]s]]s]]s]7]s]7][s]"[s["]c]7]=]"]=
F FIF F ¥ F|F FIF FIF F|F F|F FlF F[F F|F FlF F(F ¢
(a[s]a]s][s]s]s]s]a]s[a]s]3]s]a]s]a]s]a]s]a]s[s]s]3]s!s]s
F FlF FIF F|F FIF F|F FIF F|F FIF FlF FlF FIF FlF FF F
a[s[3]s| 3]sl a]s[3]s]a]s]a]s]2]s[3]5]3]s|3]s]2]]3]s5] 3]+
F F|F F|F F|F FIF E|F F|F F|F F|F E|F F F FIF F|F F
s 7]s]7[s]7]s] 7]s]72]s|7]s[2]sl7]s]]s]]["]=
¢ F|lF FIF F[F FIF F|F F|F. F|F F|F F